xref: /linux/kernel/sched/rt.c (revision b2d0f5d5dc53532e6f07bc546a476a55ebdfe0f3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 
7 #include "sched.h"
8 
9 #include <linux/slab.h>
10 #include <linux/irq_work.h>
11 
12 int sched_rr_timeslice = RR_TIMESLICE;
13 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
14 
15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
16 
17 struct rt_bandwidth def_rt_bandwidth;
18 
19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
20 {
21 	struct rt_bandwidth *rt_b =
22 		container_of(timer, struct rt_bandwidth, rt_period_timer);
23 	int idle = 0;
24 	int overrun;
25 
26 	raw_spin_lock(&rt_b->rt_runtime_lock);
27 	for (;;) {
28 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
29 		if (!overrun)
30 			break;
31 
32 		raw_spin_unlock(&rt_b->rt_runtime_lock);
33 		idle = do_sched_rt_period_timer(rt_b, overrun);
34 		raw_spin_lock(&rt_b->rt_runtime_lock);
35 	}
36 	if (idle)
37 		rt_b->rt_period_active = 0;
38 	raw_spin_unlock(&rt_b->rt_runtime_lock);
39 
40 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
41 }
42 
43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
44 {
45 	rt_b->rt_period = ns_to_ktime(period);
46 	rt_b->rt_runtime = runtime;
47 
48 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
49 
50 	hrtimer_init(&rt_b->rt_period_timer,
51 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
52 	rt_b->rt_period_timer.function = sched_rt_period_timer;
53 }
54 
55 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
56 {
57 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
58 		return;
59 
60 	raw_spin_lock(&rt_b->rt_runtime_lock);
61 	if (!rt_b->rt_period_active) {
62 		rt_b->rt_period_active = 1;
63 		/*
64 		 * SCHED_DEADLINE updates the bandwidth, as a run away
65 		 * RT task with a DL task could hog a CPU. But DL does
66 		 * not reset the period. If a deadline task was running
67 		 * without an RT task running, it can cause RT tasks to
68 		 * throttle when they start up. Kick the timer right away
69 		 * to update the period.
70 		 */
71 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
72 		hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
73 	}
74 	raw_spin_unlock(&rt_b->rt_runtime_lock);
75 }
76 
77 #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI)
78 static void push_irq_work_func(struct irq_work *work);
79 #endif
80 
81 void init_rt_rq(struct rt_rq *rt_rq)
82 {
83 	struct rt_prio_array *array;
84 	int i;
85 
86 	array = &rt_rq->active;
87 	for (i = 0; i < MAX_RT_PRIO; i++) {
88 		INIT_LIST_HEAD(array->queue + i);
89 		__clear_bit(i, array->bitmap);
90 	}
91 	/* delimiter for bitsearch: */
92 	__set_bit(MAX_RT_PRIO, array->bitmap);
93 
94 #if defined CONFIG_SMP
95 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
96 	rt_rq->highest_prio.next = MAX_RT_PRIO;
97 	rt_rq->rt_nr_migratory = 0;
98 	rt_rq->overloaded = 0;
99 	plist_head_init(&rt_rq->pushable_tasks);
100 
101 #ifdef HAVE_RT_PUSH_IPI
102 	rt_rq->push_flags = 0;
103 	rt_rq->push_cpu = nr_cpu_ids;
104 	raw_spin_lock_init(&rt_rq->push_lock);
105 	init_irq_work(&rt_rq->push_work, push_irq_work_func);
106 #endif
107 #endif /* CONFIG_SMP */
108 	/* We start is dequeued state, because no RT tasks are queued */
109 	rt_rq->rt_queued = 0;
110 
111 	rt_rq->rt_time = 0;
112 	rt_rq->rt_throttled = 0;
113 	rt_rq->rt_runtime = 0;
114 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
115 }
116 
117 #ifdef CONFIG_RT_GROUP_SCHED
118 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
119 {
120 	hrtimer_cancel(&rt_b->rt_period_timer);
121 }
122 
123 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
124 
125 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
126 {
127 #ifdef CONFIG_SCHED_DEBUG
128 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
129 #endif
130 	return container_of(rt_se, struct task_struct, rt);
131 }
132 
133 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
134 {
135 	return rt_rq->rq;
136 }
137 
138 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
139 {
140 	return rt_se->rt_rq;
141 }
142 
143 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
144 {
145 	struct rt_rq *rt_rq = rt_se->rt_rq;
146 
147 	return rt_rq->rq;
148 }
149 
150 void free_rt_sched_group(struct task_group *tg)
151 {
152 	int i;
153 
154 	if (tg->rt_se)
155 		destroy_rt_bandwidth(&tg->rt_bandwidth);
156 
157 	for_each_possible_cpu(i) {
158 		if (tg->rt_rq)
159 			kfree(tg->rt_rq[i]);
160 		if (tg->rt_se)
161 			kfree(tg->rt_se[i]);
162 	}
163 
164 	kfree(tg->rt_rq);
165 	kfree(tg->rt_se);
166 }
167 
168 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
169 		struct sched_rt_entity *rt_se, int cpu,
170 		struct sched_rt_entity *parent)
171 {
172 	struct rq *rq = cpu_rq(cpu);
173 
174 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
175 	rt_rq->rt_nr_boosted = 0;
176 	rt_rq->rq = rq;
177 	rt_rq->tg = tg;
178 
179 	tg->rt_rq[cpu] = rt_rq;
180 	tg->rt_se[cpu] = rt_se;
181 
182 	if (!rt_se)
183 		return;
184 
185 	if (!parent)
186 		rt_se->rt_rq = &rq->rt;
187 	else
188 		rt_se->rt_rq = parent->my_q;
189 
190 	rt_se->my_q = rt_rq;
191 	rt_se->parent = parent;
192 	INIT_LIST_HEAD(&rt_se->run_list);
193 }
194 
195 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
196 {
197 	struct rt_rq *rt_rq;
198 	struct sched_rt_entity *rt_se;
199 	int i;
200 
201 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
202 	if (!tg->rt_rq)
203 		goto err;
204 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
205 	if (!tg->rt_se)
206 		goto err;
207 
208 	init_rt_bandwidth(&tg->rt_bandwidth,
209 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
210 
211 	for_each_possible_cpu(i) {
212 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
213 				     GFP_KERNEL, cpu_to_node(i));
214 		if (!rt_rq)
215 			goto err;
216 
217 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
218 				     GFP_KERNEL, cpu_to_node(i));
219 		if (!rt_se)
220 			goto err_free_rq;
221 
222 		init_rt_rq(rt_rq);
223 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
224 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
225 	}
226 
227 	return 1;
228 
229 err_free_rq:
230 	kfree(rt_rq);
231 err:
232 	return 0;
233 }
234 
235 #else /* CONFIG_RT_GROUP_SCHED */
236 
237 #define rt_entity_is_task(rt_se) (1)
238 
239 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
240 {
241 	return container_of(rt_se, struct task_struct, rt);
242 }
243 
244 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
245 {
246 	return container_of(rt_rq, struct rq, rt);
247 }
248 
249 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
250 {
251 	struct task_struct *p = rt_task_of(rt_se);
252 
253 	return task_rq(p);
254 }
255 
256 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
257 {
258 	struct rq *rq = rq_of_rt_se(rt_se);
259 
260 	return &rq->rt;
261 }
262 
263 void free_rt_sched_group(struct task_group *tg) { }
264 
265 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
266 {
267 	return 1;
268 }
269 #endif /* CONFIG_RT_GROUP_SCHED */
270 
271 #ifdef CONFIG_SMP
272 
273 static void pull_rt_task(struct rq *this_rq);
274 
275 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
276 {
277 	/* Try to pull RT tasks here if we lower this rq's prio */
278 	return rq->rt.highest_prio.curr > prev->prio;
279 }
280 
281 static inline int rt_overloaded(struct rq *rq)
282 {
283 	return atomic_read(&rq->rd->rto_count);
284 }
285 
286 static inline void rt_set_overload(struct rq *rq)
287 {
288 	if (!rq->online)
289 		return;
290 
291 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
292 	/*
293 	 * Make sure the mask is visible before we set
294 	 * the overload count. That is checked to determine
295 	 * if we should look at the mask. It would be a shame
296 	 * if we looked at the mask, but the mask was not
297 	 * updated yet.
298 	 *
299 	 * Matched by the barrier in pull_rt_task().
300 	 */
301 	smp_wmb();
302 	atomic_inc(&rq->rd->rto_count);
303 }
304 
305 static inline void rt_clear_overload(struct rq *rq)
306 {
307 	if (!rq->online)
308 		return;
309 
310 	/* the order here really doesn't matter */
311 	atomic_dec(&rq->rd->rto_count);
312 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
313 }
314 
315 static void update_rt_migration(struct rt_rq *rt_rq)
316 {
317 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
318 		if (!rt_rq->overloaded) {
319 			rt_set_overload(rq_of_rt_rq(rt_rq));
320 			rt_rq->overloaded = 1;
321 		}
322 	} else if (rt_rq->overloaded) {
323 		rt_clear_overload(rq_of_rt_rq(rt_rq));
324 		rt_rq->overloaded = 0;
325 	}
326 }
327 
328 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
329 {
330 	struct task_struct *p;
331 
332 	if (!rt_entity_is_task(rt_se))
333 		return;
334 
335 	p = rt_task_of(rt_se);
336 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
337 
338 	rt_rq->rt_nr_total++;
339 	if (p->nr_cpus_allowed > 1)
340 		rt_rq->rt_nr_migratory++;
341 
342 	update_rt_migration(rt_rq);
343 }
344 
345 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
346 {
347 	struct task_struct *p;
348 
349 	if (!rt_entity_is_task(rt_se))
350 		return;
351 
352 	p = rt_task_of(rt_se);
353 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
354 
355 	rt_rq->rt_nr_total--;
356 	if (p->nr_cpus_allowed > 1)
357 		rt_rq->rt_nr_migratory--;
358 
359 	update_rt_migration(rt_rq);
360 }
361 
362 static inline int has_pushable_tasks(struct rq *rq)
363 {
364 	return !plist_head_empty(&rq->rt.pushable_tasks);
365 }
366 
367 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
368 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
369 
370 static void push_rt_tasks(struct rq *);
371 static void pull_rt_task(struct rq *);
372 
373 static inline void queue_push_tasks(struct rq *rq)
374 {
375 	if (!has_pushable_tasks(rq))
376 		return;
377 
378 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
379 }
380 
381 static inline void queue_pull_task(struct rq *rq)
382 {
383 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
384 }
385 
386 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
387 {
388 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
389 	plist_node_init(&p->pushable_tasks, p->prio);
390 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
391 
392 	/* Update the highest prio pushable task */
393 	if (p->prio < rq->rt.highest_prio.next)
394 		rq->rt.highest_prio.next = p->prio;
395 }
396 
397 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
398 {
399 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
400 
401 	/* Update the new highest prio pushable task */
402 	if (has_pushable_tasks(rq)) {
403 		p = plist_first_entry(&rq->rt.pushable_tasks,
404 				      struct task_struct, pushable_tasks);
405 		rq->rt.highest_prio.next = p->prio;
406 	} else
407 		rq->rt.highest_prio.next = MAX_RT_PRIO;
408 }
409 
410 #else
411 
412 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
413 {
414 }
415 
416 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
417 {
418 }
419 
420 static inline
421 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
422 {
423 }
424 
425 static inline
426 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
427 {
428 }
429 
430 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
431 {
432 	return false;
433 }
434 
435 static inline void pull_rt_task(struct rq *this_rq)
436 {
437 }
438 
439 static inline void queue_push_tasks(struct rq *rq)
440 {
441 }
442 #endif /* CONFIG_SMP */
443 
444 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
445 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
446 
447 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
448 {
449 	return rt_se->on_rq;
450 }
451 
452 #ifdef CONFIG_RT_GROUP_SCHED
453 
454 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
455 {
456 	if (!rt_rq->tg)
457 		return RUNTIME_INF;
458 
459 	return rt_rq->rt_runtime;
460 }
461 
462 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
463 {
464 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
465 }
466 
467 typedef struct task_group *rt_rq_iter_t;
468 
469 static inline struct task_group *next_task_group(struct task_group *tg)
470 {
471 	do {
472 		tg = list_entry_rcu(tg->list.next,
473 			typeof(struct task_group), list);
474 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
475 
476 	if (&tg->list == &task_groups)
477 		tg = NULL;
478 
479 	return tg;
480 }
481 
482 #define for_each_rt_rq(rt_rq, iter, rq)					\
483 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
484 		(iter = next_task_group(iter)) &&			\
485 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
486 
487 #define for_each_sched_rt_entity(rt_se) \
488 	for (; rt_se; rt_se = rt_se->parent)
489 
490 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
491 {
492 	return rt_se->my_q;
493 }
494 
495 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
496 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
497 
498 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
499 {
500 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
501 	struct rq *rq = rq_of_rt_rq(rt_rq);
502 	struct sched_rt_entity *rt_se;
503 
504 	int cpu = cpu_of(rq);
505 
506 	rt_se = rt_rq->tg->rt_se[cpu];
507 
508 	if (rt_rq->rt_nr_running) {
509 		if (!rt_se)
510 			enqueue_top_rt_rq(rt_rq);
511 		else if (!on_rt_rq(rt_se))
512 			enqueue_rt_entity(rt_se, 0);
513 
514 		if (rt_rq->highest_prio.curr < curr->prio)
515 			resched_curr(rq);
516 	}
517 }
518 
519 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
520 {
521 	struct sched_rt_entity *rt_se;
522 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
523 
524 	rt_se = rt_rq->tg->rt_se[cpu];
525 
526 	if (!rt_se)
527 		dequeue_top_rt_rq(rt_rq);
528 	else if (on_rt_rq(rt_se))
529 		dequeue_rt_entity(rt_se, 0);
530 }
531 
532 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
533 {
534 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
535 }
536 
537 static int rt_se_boosted(struct sched_rt_entity *rt_se)
538 {
539 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
540 	struct task_struct *p;
541 
542 	if (rt_rq)
543 		return !!rt_rq->rt_nr_boosted;
544 
545 	p = rt_task_of(rt_se);
546 	return p->prio != p->normal_prio;
547 }
548 
549 #ifdef CONFIG_SMP
550 static inline const struct cpumask *sched_rt_period_mask(void)
551 {
552 	return this_rq()->rd->span;
553 }
554 #else
555 static inline const struct cpumask *sched_rt_period_mask(void)
556 {
557 	return cpu_online_mask;
558 }
559 #endif
560 
561 static inline
562 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
563 {
564 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
565 }
566 
567 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
568 {
569 	return &rt_rq->tg->rt_bandwidth;
570 }
571 
572 #else /* !CONFIG_RT_GROUP_SCHED */
573 
574 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
575 {
576 	return rt_rq->rt_runtime;
577 }
578 
579 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
580 {
581 	return ktime_to_ns(def_rt_bandwidth.rt_period);
582 }
583 
584 typedef struct rt_rq *rt_rq_iter_t;
585 
586 #define for_each_rt_rq(rt_rq, iter, rq) \
587 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
588 
589 #define for_each_sched_rt_entity(rt_se) \
590 	for (; rt_se; rt_se = NULL)
591 
592 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
593 {
594 	return NULL;
595 }
596 
597 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
598 {
599 	struct rq *rq = rq_of_rt_rq(rt_rq);
600 
601 	if (!rt_rq->rt_nr_running)
602 		return;
603 
604 	enqueue_top_rt_rq(rt_rq);
605 	resched_curr(rq);
606 }
607 
608 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
609 {
610 	dequeue_top_rt_rq(rt_rq);
611 }
612 
613 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
614 {
615 	return rt_rq->rt_throttled;
616 }
617 
618 static inline const struct cpumask *sched_rt_period_mask(void)
619 {
620 	return cpu_online_mask;
621 }
622 
623 static inline
624 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
625 {
626 	return &cpu_rq(cpu)->rt;
627 }
628 
629 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
630 {
631 	return &def_rt_bandwidth;
632 }
633 
634 #endif /* CONFIG_RT_GROUP_SCHED */
635 
636 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
637 {
638 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
639 
640 	return (hrtimer_active(&rt_b->rt_period_timer) ||
641 		rt_rq->rt_time < rt_b->rt_runtime);
642 }
643 
644 #ifdef CONFIG_SMP
645 /*
646  * We ran out of runtime, see if we can borrow some from our neighbours.
647  */
648 static void do_balance_runtime(struct rt_rq *rt_rq)
649 {
650 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
651 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
652 	int i, weight;
653 	u64 rt_period;
654 
655 	weight = cpumask_weight(rd->span);
656 
657 	raw_spin_lock(&rt_b->rt_runtime_lock);
658 	rt_period = ktime_to_ns(rt_b->rt_period);
659 	for_each_cpu(i, rd->span) {
660 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
661 		s64 diff;
662 
663 		if (iter == rt_rq)
664 			continue;
665 
666 		raw_spin_lock(&iter->rt_runtime_lock);
667 		/*
668 		 * Either all rqs have inf runtime and there's nothing to steal
669 		 * or __disable_runtime() below sets a specific rq to inf to
670 		 * indicate its been disabled and disalow stealing.
671 		 */
672 		if (iter->rt_runtime == RUNTIME_INF)
673 			goto next;
674 
675 		/*
676 		 * From runqueues with spare time, take 1/n part of their
677 		 * spare time, but no more than our period.
678 		 */
679 		diff = iter->rt_runtime - iter->rt_time;
680 		if (diff > 0) {
681 			diff = div_u64((u64)diff, weight);
682 			if (rt_rq->rt_runtime + diff > rt_period)
683 				diff = rt_period - rt_rq->rt_runtime;
684 			iter->rt_runtime -= diff;
685 			rt_rq->rt_runtime += diff;
686 			if (rt_rq->rt_runtime == rt_period) {
687 				raw_spin_unlock(&iter->rt_runtime_lock);
688 				break;
689 			}
690 		}
691 next:
692 		raw_spin_unlock(&iter->rt_runtime_lock);
693 	}
694 	raw_spin_unlock(&rt_b->rt_runtime_lock);
695 }
696 
697 /*
698  * Ensure this RQ takes back all the runtime it lend to its neighbours.
699  */
700 static void __disable_runtime(struct rq *rq)
701 {
702 	struct root_domain *rd = rq->rd;
703 	rt_rq_iter_t iter;
704 	struct rt_rq *rt_rq;
705 
706 	if (unlikely(!scheduler_running))
707 		return;
708 
709 	for_each_rt_rq(rt_rq, iter, rq) {
710 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
711 		s64 want;
712 		int i;
713 
714 		raw_spin_lock(&rt_b->rt_runtime_lock);
715 		raw_spin_lock(&rt_rq->rt_runtime_lock);
716 		/*
717 		 * Either we're all inf and nobody needs to borrow, or we're
718 		 * already disabled and thus have nothing to do, or we have
719 		 * exactly the right amount of runtime to take out.
720 		 */
721 		if (rt_rq->rt_runtime == RUNTIME_INF ||
722 				rt_rq->rt_runtime == rt_b->rt_runtime)
723 			goto balanced;
724 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
725 
726 		/*
727 		 * Calculate the difference between what we started out with
728 		 * and what we current have, that's the amount of runtime
729 		 * we lend and now have to reclaim.
730 		 */
731 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
732 
733 		/*
734 		 * Greedy reclaim, take back as much as we can.
735 		 */
736 		for_each_cpu(i, rd->span) {
737 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
738 			s64 diff;
739 
740 			/*
741 			 * Can't reclaim from ourselves or disabled runqueues.
742 			 */
743 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
744 				continue;
745 
746 			raw_spin_lock(&iter->rt_runtime_lock);
747 			if (want > 0) {
748 				diff = min_t(s64, iter->rt_runtime, want);
749 				iter->rt_runtime -= diff;
750 				want -= diff;
751 			} else {
752 				iter->rt_runtime -= want;
753 				want -= want;
754 			}
755 			raw_spin_unlock(&iter->rt_runtime_lock);
756 
757 			if (!want)
758 				break;
759 		}
760 
761 		raw_spin_lock(&rt_rq->rt_runtime_lock);
762 		/*
763 		 * We cannot be left wanting - that would mean some runtime
764 		 * leaked out of the system.
765 		 */
766 		BUG_ON(want);
767 balanced:
768 		/*
769 		 * Disable all the borrow logic by pretending we have inf
770 		 * runtime - in which case borrowing doesn't make sense.
771 		 */
772 		rt_rq->rt_runtime = RUNTIME_INF;
773 		rt_rq->rt_throttled = 0;
774 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
775 		raw_spin_unlock(&rt_b->rt_runtime_lock);
776 
777 		/* Make rt_rq available for pick_next_task() */
778 		sched_rt_rq_enqueue(rt_rq);
779 	}
780 }
781 
782 static void __enable_runtime(struct rq *rq)
783 {
784 	rt_rq_iter_t iter;
785 	struct rt_rq *rt_rq;
786 
787 	if (unlikely(!scheduler_running))
788 		return;
789 
790 	/*
791 	 * Reset each runqueue's bandwidth settings
792 	 */
793 	for_each_rt_rq(rt_rq, iter, rq) {
794 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
795 
796 		raw_spin_lock(&rt_b->rt_runtime_lock);
797 		raw_spin_lock(&rt_rq->rt_runtime_lock);
798 		rt_rq->rt_runtime = rt_b->rt_runtime;
799 		rt_rq->rt_time = 0;
800 		rt_rq->rt_throttled = 0;
801 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
802 		raw_spin_unlock(&rt_b->rt_runtime_lock);
803 	}
804 }
805 
806 static void balance_runtime(struct rt_rq *rt_rq)
807 {
808 	if (!sched_feat(RT_RUNTIME_SHARE))
809 		return;
810 
811 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
812 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
813 		do_balance_runtime(rt_rq);
814 		raw_spin_lock(&rt_rq->rt_runtime_lock);
815 	}
816 }
817 #else /* !CONFIG_SMP */
818 static inline void balance_runtime(struct rt_rq *rt_rq) {}
819 #endif /* CONFIG_SMP */
820 
821 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
822 {
823 	int i, idle = 1, throttled = 0;
824 	const struct cpumask *span;
825 
826 	span = sched_rt_period_mask();
827 #ifdef CONFIG_RT_GROUP_SCHED
828 	/*
829 	 * FIXME: isolated CPUs should really leave the root task group,
830 	 * whether they are isolcpus or were isolated via cpusets, lest
831 	 * the timer run on a CPU which does not service all runqueues,
832 	 * potentially leaving other CPUs indefinitely throttled.  If
833 	 * isolation is really required, the user will turn the throttle
834 	 * off to kill the perturbations it causes anyway.  Meanwhile,
835 	 * this maintains functionality for boot and/or troubleshooting.
836 	 */
837 	if (rt_b == &root_task_group.rt_bandwidth)
838 		span = cpu_online_mask;
839 #endif
840 	for_each_cpu(i, span) {
841 		int enqueue = 0;
842 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
843 		struct rq *rq = rq_of_rt_rq(rt_rq);
844 		int skip;
845 
846 		/*
847 		 * When span == cpu_online_mask, taking each rq->lock
848 		 * can be time-consuming. Try to avoid it when possible.
849 		 */
850 		raw_spin_lock(&rt_rq->rt_runtime_lock);
851 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
852 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
853 		if (skip)
854 			continue;
855 
856 		raw_spin_lock(&rq->lock);
857 		if (rt_rq->rt_time) {
858 			u64 runtime;
859 
860 			raw_spin_lock(&rt_rq->rt_runtime_lock);
861 			if (rt_rq->rt_throttled)
862 				balance_runtime(rt_rq);
863 			runtime = rt_rq->rt_runtime;
864 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
865 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
866 				rt_rq->rt_throttled = 0;
867 				enqueue = 1;
868 
869 				/*
870 				 * When we're idle and a woken (rt) task is
871 				 * throttled check_preempt_curr() will set
872 				 * skip_update and the time between the wakeup
873 				 * and this unthrottle will get accounted as
874 				 * 'runtime'.
875 				 */
876 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
877 					rq_clock_skip_update(rq, false);
878 			}
879 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
880 				idle = 0;
881 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
882 		} else if (rt_rq->rt_nr_running) {
883 			idle = 0;
884 			if (!rt_rq_throttled(rt_rq))
885 				enqueue = 1;
886 		}
887 		if (rt_rq->rt_throttled)
888 			throttled = 1;
889 
890 		if (enqueue)
891 			sched_rt_rq_enqueue(rt_rq);
892 		raw_spin_unlock(&rq->lock);
893 	}
894 
895 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
896 		return 1;
897 
898 	return idle;
899 }
900 
901 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
902 {
903 #ifdef CONFIG_RT_GROUP_SCHED
904 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
905 
906 	if (rt_rq)
907 		return rt_rq->highest_prio.curr;
908 #endif
909 
910 	return rt_task_of(rt_se)->prio;
911 }
912 
913 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
914 {
915 	u64 runtime = sched_rt_runtime(rt_rq);
916 
917 	if (rt_rq->rt_throttled)
918 		return rt_rq_throttled(rt_rq);
919 
920 	if (runtime >= sched_rt_period(rt_rq))
921 		return 0;
922 
923 	balance_runtime(rt_rq);
924 	runtime = sched_rt_runtime(rt_rq);
925 	if (runtime == RUNTIME_INF)
926 		return 0;
927 
928 	if (rt_rq->rt_time > runtime) {
929 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
930 
931 		/*
932 		 * Don't actually throttle groups that have no runtime assigned
933 		 * but accrue some time due to boosting.
934 		 */
935 		if (likely(rt_b->rt_runtime)) {
936 			rt_rq->rt_throttled = 1;
937 			printk_deferred_once("sched: RT throttling activated\n");
938 		} else {
939 			/*
940 			 * In case we did anyway, make it go away,
941 			 * replenishment is a joke, since it will replenish us
942 			 * with exactly 0 ns.
943 			 */
944 			rt_rq->rt_time = 0;
945 		}
946 
947 		if (rt_rq_throttled(rt_rq)) {
948 			sched_rt_rq_dequeue(rt_rq);
949 			return 1;
950 		}
951 	}
952 
953 	return 0;
954 }
955 
956 /*
957  * Update the current task's runtime statistics. Skip current tasks that
958  * are not in our scheduling class.
959  */
960 static void update_curr_rt(struct rq *rq)
961 {
962 	struct task_struct *curr = rq->curr;
963 	struct sched_rt_entity *rt_se = &curr->rt;
964 	u64 delta_exec;
965 
966 	if (curr->sched_class != &rt_sched_class)
967 		return;
968 
969 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
970 	if (unlikely((s64)delta_exec <= 0))
971 		return;
972 
973 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
974 	cpufreq_update_util(rq, SCHED_CPUFREQ_RT);
975 
976 	schedstat_set(curr->se.statistics.exec_max,
977 		      max(curr->se.statistics.exec_max, delta_exec));
978 
979 	curr->se.sum_exec_runtime += delta_exec;
980 	account_group_exec_runtime(curr, delta_exec);
981 
982 	curr->se.exec_start = rq_clock_task(rq);
983 	cpuacct_charge(curr, delta_exec);
984 
985 	sched_rt_avg_update(rq, delta_exec);
986 
987 	if (!rt_bandwidth_enabled())
988 		return;
989 
990 	for_each_sched_rt_entity(rt_se) {
991 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
992 
993 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
994 			raw_spin_lock(&rt_rq->rt_runtime_lock);
995 			rt_rq->rt_time += delta_exec;
996 			if (sched_rt_runtime_exceeded(rt_rq))
997 				resched_curr(rq);
998 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
999 		}
1000 	}
1001 }
1002 
1003 static void
1004 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1005 {
1006 	struct rq *rq = rq_of_rt_rq(rt_rq);
1007 
1008 	BUG_ON(&rq->rt != rt_rq);
1009 
1010 	if (!rt_rq->rt_queued)
1011 		return;
1012 
1013 	BUG_ON(!rq->nr_running);
1014 
1015 	sub_nr_running(rq, rt_rq->rt_nr_running);
1016 	rt_rq->rt_queued = 0;
1017 }
1018 
1019 static void
1020 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1021 {
1022 	struct rq *rq = rq_of_rt_rq(rt_rq);
1023 
1024 	BUG_ON(&rq->rt != rt_rq);
1025 
1026 	if (rt_rq->rt_queued)
1027 		return;
1028 	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1029 		return;
1030 
1031 	add_nr_running(rq, rt_rq->rt_nr_running);
1032 	rt_rq->rt_queued = 1;
1033 }
1034 
1035 #if defined CONFIG_SMP
1036 
1037 static void
1038 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1039 {
1040 	struct rq *rq = rq_of_rt_rq(rt_rq);
1041 
1042 #ifdef CONFIG_RT_GROUP_SCHED
1043 	/*
1044 	 * Change rq's cpupri only if rt_rq is the top queue.
1045 	 */
1046 	if (&rq->rt != rt_rq)
1047 		return;
1048 #endif
1049 	if (rq->online && prio < prev_prio)
1050 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1051 }
1052 
1053 static void
1054 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1055 {
1056 	struct rq *rq = rq_of_rt_rq(rt_rq);
1057 
1058 #ifdef CONFIG_RT_GROUP_SCHED
1059 	/*
1060 	 * Change rq's cpupri only if rt_rq is the top queue.
1061 	 */
1062 	if (&rq->rt != rt_rq)
1063 		return;
1064 #endif
1065 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1066 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1067 }
1068 
1069 #else /* CONFIG_SMP */
1070 
1071 static inline
1072 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1073 static inline
1074 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1075 
1076 #endif /* CONFIG_SMP */
1077 
1078 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1079 static void
1080 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1081 {
1082 	int prev_prio = rt_rq->highest_prio.curr;
1083 
1084 	if (prio < prev_prio)
1085 		rt_rq->highest_prio.curr = prio;
1086 
1087 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1088 }
1089 
1090 static void
1091 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1092 {
1093 	int prev_prio = rt_rq->highest_prio.curr;
1094 
1095 	if (rt_rq->rt_nr_running) {
1096 
1097 		WARN_ON(prio < prev_prio);
1098 
1099 		/*
1100 		 * This may have been our highest task, and therefore
1101 		 * we may have some recomputation to do
1102 		 */
1103 		if (prio == prev_prio) {
1104 			struct rt_prio_array *array = &rt_rq->active;
1105 
1106 			rt_rq->highest_prio.curr =
1107 				sched_find_first_bit(array->bitmap);
1108 		}
1109 
1110 	} else
1111 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1112 
1113 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1114 }
1115 
1116 #else
1117 
1118 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1119 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1120 
1121 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1122 
1123 #ifdef CONFIG_RT_GROUP_SCHED
1124 
1125 static void
1126 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1127 {
1128 	if (rt_se_boosted(rt_se))
1129 		rt_rq->rt_nr_boosted++;
1130 
1131 	if (rt_rq->tg)
1132 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1133 }
1134 
1135 static void
1136 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1137 {
1138 	if (rt_se_boosted(rt_se))
1139 		rt_rq->rt_nr_boosted--;
1140 
1141 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1142 }
1143 
1144 #else /* CONFIG_RT_GROUP_SCHED */
1145 
1146 static void
1147 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1148 {
1149 	start_rt_bandwidth(&def_rt_bandwidth);
1150 }
1151 
1152 static inline
1153 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1154 
1155 #endif /* CONFIG_RT_GROUP_SCHED */
1156 
1157 static inline
1158 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1159 {
1160 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1161 
1162 	if (group_rq)
1163 		return group_rq->rt_nr_running;
1164 	else
1165 		return 1;
1166 }
1167 
1168 static inline
1169 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1170 {
1171 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1172 	struct task_struct *tsk;
1173 
1174 	if (group_rq)
1175 		return group_rq->rr_nr_running;
1176 
1177 	tsk = rt_task_of(rt_se);
1178 
1179 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1180 }
1181 
1182 static inline
1183 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1184 {
1185 	int prio = rt_se_prio(rt_se);
1186 
1187 	WARN_ON(!rt_prio(prio));
1188 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1189 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1190 
1191 	inc_rt_prio(rt_rq, prio);
1192 	inc_rt_migration(rt_se, rt_rq);
1193 	inc_rt_group(rt_se, rt_rq);
1194 }
1195 
1196 static inline
1197 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1198 {
1199 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1200 	WARN_ON(!rt_rq->rt_nr_running);
1201 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1202 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1203 
1204 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1205 	dec_rt_migration(rt_se, rt_rq);
1206 	dec_rt_group(rt_se, rt_rq);
1207 }
1208 
1209 /*
1210  * Change rt_se->run_list location unless SAVE && !MOVE
1211  *
1212  * assumes ENQUEUE/DEQUEUE flags match
1213  */
1214 static inline bool move_entity(unsigned int flags)
1215 {
1216 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1217 		return false;
1218 
1219 	return true;
1220 }
1221 
1222 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1223 {
1224 	list_del_init(&rt_se->run_list);
1225 
1226 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1227 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1228 
1229 	rt_se->on_list = 0;
1230 }
1231 
1232 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1233 {
1234 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1235 	struct rt_prio_array *array = &rt_rq->active;
1236 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1237 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1238 
1239 	/*
1240 	 * Don't enqueue the group if its throttled, or when empty.
1241 	 * The latter is a consequence of the former when a child group
1242 	 * get throttled and the current group doesn't have any other
1243 	 * active members.
1244 	 */
1245 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1246 		if (rt_se->on_list)
1247 			__delist_rt_entity(rt_se, array);
1248 		return;
1249 	}
1250 
1251 	if (move_entity(flags)) {
1252 		WARN_ON_ONCE(rt_se->on_list);
1253 		if (flags & ENQUEUE_HEAD)
1254 			list_add(&rt_se->run_list, queue);
1255 		else
1256 			list_add_tail(&rt_se->run_list, queue);
1257 
1258 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1259 		rt_se->on_list = 1;
1260 	}
1261 	rt_se->on_rq = 1;
1262 
1263 	inc_rt_tasks(rt_se, rt_rq);
1264 }
1265 
1266 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1267 {
1268 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1269 	struct rt_prio_array *array = &rt_rq->active;
1270 
1271 	if (move_entity(flags)) {
1272 		WARN_ON_ONCE(!rt_se->on_list);
1273 		__delist_rt_entity(rt_se, array);
1274 	}
1275 	rt_se->on_rq = 0;
1276 
1277 	dec_rt_tasks(rt_se, rt_rq);
1278 }
1279 
1280 /*
1281  * Because the prio of an upper entry depends on the lower
1282  * entries, we must remove entries top - down.
1283  */
1284 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1285 {
1286 	struct sched_rt_entity *back = NULL;
1287 
1288 	for_each_sched_rt_entity(rt_se) {
1289 		rt_se->back = back;
1290 		back = rt_se;
1291 	}
1292 
1293 	dequeue_top_rt_rq(rt_rq_of_se(back));
1294 
1295 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1296 		if (on_rt_rq(rt_se))
1297 			__dequeue_rt_entity(rt_se, flags);
1298 	}
1299 }
1300 
1301 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1302 {
1303 	struct rq *rq = rq_of_rt_se(rt_se);
1304 
1305 	dequeue_rt_stack(rt_se, flags);
1306 	for_each_sched_rt_entity(rt_se)
1307 		__enqueue_rt_entity(rt_se, flags);
1308 	enqueue_top_rt_rq(&rq->rt);
1309 }
1310 
1311 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1312 {
1313 	struct rq *rq = rq_of_rt_se(rt_se);
1314 
1315 	dequeue_rt_stack(rt_se, flags);
1316 
1317 	for_each_sched_rt_entity(rt_se) {
1318 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1319 
1320 		if (rt_rq && rt_rq->rt_nr_running)
1321 			__enqueue_rt_entity(rt_se, flags);
1322 	}
1323 	enqueue_top_rt_rq(&rq->rt);
1324 }
1325 
1326 /*
1327  * Adding/removing a task to/from a priority array:
1328  */
1329 static void
1330 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1331 {
1332 	struct sched_rt_entity *rt_se = &p->rt;
1333 
1334 	if (flags & ENQUEUE_WAKEUP)
1335 		rt_se->timeout = 0;
1336 
1337 	enqueue_rt_entity(rt_se, flags);
1338 
1339 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1340 		enqueue_pushable_task(rq, p);
1341 }
1342 
1343 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1344 {
1345 	struct sched_rt_entity *rt_se = &p->rt;
1346 
1347 	update_curr_rt(rq);
1348 	dequeue_rt_entity(rt_se, flags);
1349 
1350 	dequeue_pushable_task(rq, p);
1351 }
1352 
1353 /*
1354  * Put task to the head or the end of the run list without the overhead of
1355  * dequeue followed by enqueue.
1356  */
1357 static void
1358 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1359 {
1360 	if (on_rt_rq(rt_se)) {
1361 		struct rt_prio_array *array = &rt_rq->active;
1362 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1363 
1364 		if (head)
1365 			list_move(&rt_se->run_list, queue);
1366 		else
1367 			list_move_tail(&rt_se->run_list, queue);
1368 	}
1369 }
1370 
1371 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1372 {
1373 	struct sched_rt_entity *rt_se = &p->rt;
1374 	struct rt_rq *rt_rq;
1375 
1376 	for_each_sched_rt_entity(rt_se) {
1377 		rt_rq = rt_rq_of_se(rt_se);
1378 		requeue_rt_entity(rt_rq, rt_se, head);
1379 	}
1380 }
1381 
1382 static void yield_task_rt(struct rq *rq)
1383 {
1384 	requeue_task_rt(rq, rq->curr, 0);
1385 }
1386 
1387 #ifdef CONFIG_SMP
1388 static int find_lowest_rq(struct task_struct *task);
1389 
1390 static int
1391 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1392 {
1393 	struct task_struct *curr;
1394 	struct rq *rq;
1395 
1396 	/* For anything but wake ups, just return the task_cpu */
1397 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1398 		goto out;
1399 
1400 	rq = cpu_rq(cpu);
1401 
1402 	rcu_read_lock();
1403 	curr = READ_ONCE(rq->curr); /* unlocked access */
1404 
1405 	/*
1406 	 * If the current task on @p's runqueue is an RT task, then
1407 	 * try to see if we can wake this RT task up on another
1408 	 * runqueue. Otherwise simply start this RT task
1409 	 * on its current runqueue.
1410 	 *
1411 	 * We want to avoid overloading runqueues. If the woken
1412 	 * task is a higher priority, then it will stay on this CPU
1413 	 * and the lower prio task should be moved to another CPU.
1414 	 * Even though this will probably make the lower prio task
1415 	 * lose its cache, we do not want to bounce a higher task
1416 	 * around just because it gave up its CPU, perhaps for a
1417 	 * lock?
1418 	 *
1419 	 * For equal prio tasks, we just let the scheduler sort it out.
1420 	 *
1421 	 * Otherwise, just let it ride on the affined RQ and the
1422 	 * post-schedule router will push the preempted task away
1423 	 *
1424 	 * This test is optimistic, if we get it wrong the load-balancer
1425 	 * will have to sort it out.
1426 	 */
1427 	if (curr && unlikely(rt_task(curr)) &&
1428 	    (curr->nr_cpus_allowed < 2 ||
1429 	     curr->prio <= p->prio)) {
1430 		int target = find_lowest_rq(p);
1431 
1432 		/*
1433 		 * Don't bother moving it if the destination CPU is
1434 		 * not running a lower priority task.
1435 		 */
1436 		if (target != -1 &&
1437 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1438 			cpu = target;
1439 	}
1440 	rcu_read_unlock();
1441 
1442 out:
1443 	return cpu;
1444 }
1445 
1446 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1447 {
1448 	/*
1449 	 * Current can't be migrated, useless to reschedule,
1450 	 * let's hope p can move out.
1451 	 */
1452 	if (rq->curr->nr_cpus_allowed == 1 ||
1453 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1454 		return;
1455 
1456 	/*
1457 	 * p is migratable, so let's not schedule it and
1458 	 * see if it is pushed or pulled somewhere else.
1459 	 */
1460 	if (p->nr_cpus_allowed != 1
1461 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1462 		return;
1463 
1464 	/*
1465 	 * There appears to be other cpus that can accept
1466 	 * current and none to run 'p', so lets reschedule
1467 	 * to try and push current away:
1468 	 */
1469 	requeue_task_rt(rq, p, 1);
1470 	resched_curr(rq);
1471 }
1472 
1473 #endif /* CONFIG_SMP */
1474 
1475 /*
1476  * Preempt the current task with a newly woken task if needed:
1477  */
1478 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1479 {
1480 	if (p->prio < rq->curr->prio) {
1481 		resched_curr(rq);
1482 		return;
1483 	}
1484 
1485 #ifdef CONFIG_SMP
1486 	/*
1487 	 * If:
1488 	 *
1489 	 * - the newly woken task is of equal priority to the current task
1490 	 * - the newly woken task is non-migratable while current is migratable
1491 	 * - current will be preempted on the next reschedule
1492 	 *
1493 	 * we should check to see if current can readily move to a different
1494 	 * cpu.  If so, we will reschedule to allow the push logic to try
1495 	 * to move current somewhere else, making room for our non-migratable
1496 	 * task.
1497 	 */
1498 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1499 		check_preempt_equal_prio(rq, p);
1500 #endif
1501 }
1502 
1503 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1504 						   struct rt_rq *rt_rq)
1505 {
1506 	struct rt_prio_array *array = &rt_rq->active;
1507 	struct sched_rt_entity *next = NULL;
1508 	struct list_head *queue;
1509 	int idx;
1510 
1511 	idx = sched_find_first_bit(array->bitmap);
1512 	BUG_ON(idx >= MAX_RT_PRIO);
1513 
1514 	queue = array->queue + idx;
1515 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1516 
1517 	return next;
1518 }
1519 
1520 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1521 {
1522 	struct sched_rt_entity *rt_se;
1523 	struct task_struct *p;
1524 	struct rt_rq *rt_rq  = &rq->rt;
1525 
1526 	do {
1527 		rt_se = pick_next_rt_entity(rq, rt_rq);
1528 		BUG_ON(!rt_se);
1529 		rt_rq = group_rt_rq(rt_se);
1530 	} while (rt_rq);
1531 
1532 	p = rt_task_of(rt_se);
1533 	p->se.exec_start = rq_clock_task(rq);
1534 
1535 	return p;
1536 }
1537 
1538 static struct task_struct *
1539 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1540 {
1541 	struct task_struct *p;
1542 	struct rt_rq *rt_rq = &rq->rt;
1543 
1544 	if (need_pull_rt_task(rq, prev)) {
1545 		/*
1546 		 * This is OK, because current is on_cpu, which avoids it being
1547 		 * picked for load-balance and preemption/IRQs are still
1548 		 * disabled avoiding further scheduler activity on it and we're
1549 		 * being very careful to re-start the picking loop.
1550 		 */
1551 		rq_unpin_lock(rq, rf);
1552 		pull_rt_task(rq);
1553 		rq_repin_lock(rq, rf);
1554 		/*
1555 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1556 		 * means a dl or stop task can slip in, in which case we need
1557 		 * to re-start task selection.
1558 		 */
1559 		if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1560 			     rq->dl.dl_nr_running))
1561 			return RETRY_TASK;
1562 	}
1563 
1564 	/*
1565 	 * We may dequeue prev's rt_rq in put_prev_task().
1566 	 * So, we update time before rt_nr_running check.
1567 	 */
1568 	if (prev->sched_class == &rt_sched_class)
1569 		update_curr_rt(rq);
1570 
1571 	if (!rt_rq->rt_queued)
1572 		return NULL;
1573 
1574 	put_prev_task(rq, prev);
1575 
1576 	p = _pick_next_task_rt(rq);
1577 
1578 	/* The running task is never eligible for pushing */
1579 	dequeue_pushable_task(rq, p);
1580 
1581 	queue_push_tasks(rq);
1582 
1583 	return p;
1584 }
1585 
1586 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1587 {
1588 	update_curr_rt(rq);
1589 
1590 	/*
1591 	 * The previous task needs to be made eligible for pushing
1592 	 * if it is still active
1593 	 */
1594 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1595 		enqueue_pushable_task(rq, p);
1596 }
1597 
1598 #ifdef CONFIG_SMP
1599 
1600 /* Only try algorithms three times */
1601 #define RT_MAX_TRIES 3
1602 
1603 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1604 {
1605 	if (!task_running(rq, p) &&
1606 	    cpumask_test_cpu(cpu, &p->cpus_allowed))
1607 		return 1;
1608 	return 0;
1609 }
1610 
1611 /*
1612  * Return the highest pushable rq's task, which is suitable to be executed
1613  * on the cpu, NULL otherwise
1614  */
1615 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1616 {
1617 	struct plist_head *head = &rq->rt.pushable_tasks;
1618 	struct task_struct *p;
1619 
1620 	if (!has_pushable_tasks(rq))
1621 		return NULL;
1622 
1623 	plist_for_each_entry(p, head, pushable_tasks) {
1624 		if (pick_rt_task(rq, p, cpu))
1625 			return p;
1626 	}
1627 
1628 	return NULL;
1629 }
1630 
1631 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1632 
1633 static int find_lowest_rq(struct task_struct *task)
1634 {
1635 	struct sched_domain *sd;
1636 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1637 	int this_cpu = smp_processor_id();
1638 	int cpu      = task_cpu(task);
1639 
1640 	/* Make sure the mask is initialized first */
1641 	if (unlikely(!lowest_mask))
1642 		return -1;
1643 
1644 	if (task->nr_cpus_allowed == 1)
1645 		return -1; /* No other targets possible */
1646 
1647 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1648 		return -1; /* No targets found */
1649 
1650 	/*
1651 	 * At this point we have built a mask of cpus representing the
1652 	 * lowest priority tasks in the system.  Now we want to elect
1653 	 * the best one based on our affinity and topology.
1654 	 *
1655 	 * We prioritize the last cpu that the task executed on since
1656 	 * it is most likely cache-hot in that location.
1657 	 */
1658 	if (cpumask_test_cpu(cpu, lowest_mask))
1659 		return cpu;
1660 
1661 	/*
1662 	 * Otherwise, we consult the sched_domains span maps to figure
1663 	 * out which cpu is logically closest to our hot cache data.
1664 	 */
1665 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1666 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1667 
1668 	rcu_read_lock();
1669 	for_each_domain(cpu, sd) {
1670 		if (sd->flags & SD_WAKE_AFFINE) {
1671 			int best_cpu;
1672 
1673 			/*
1674 			 * "this_cpu" is cheaper to preempt than a
1675 			 * remote processor.
1676 			 */
1677 			if (this_cpu != -1 &&
1678 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1679 				rcu_read_unlock();
1680 				return this_cpu;
1681 			}
1682 
1683 			best_cpu = cpumask_first_and(lowest_mask,
1684 						     sched_domain_span(sd));
1685 			if (best_cpu < nr_cpu_ids) {
1686 				rcu_read_unlock();
1687 				return best_cpu;
1688 			}
1689 		}
1690 	}
1691 	rcu_read_unlock();
1692 
1693 	/*
1694 	 * And finally, if there were no matches within the domains
1695 	 * just give the caller *something* to work with from the compatible
1696 	 * locations.
1697 	 */
1698 	if (this_cpu != -1)
1699 		return this_cpu;
1700 
1701 	cpu = cpumask_any(lowest_mask);
1702 	if (cpu < nr_cpu_ids)
1703 		return cpu;
1704 	return -1;
1705 }
1706 
1707 /* Will lock the rq it finds */
1708 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1709 {
1710 	struct rq *lowest_rq = NULL;
1711 	int tries;
1712 	int cpu;
1713 
1714 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1715 		cpu = find_lowest_rq(task);
1716 
1717 		if ((cpu == -1) || (cpu == rq->cpu))
1718 			break;
1719 
1720 		lowest_rq = cpu_rq(cpu);
1721 
1722 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1723 			/*
1724 			 * Target rq has tasks of equal or higher priority,
1725 			 * retrying does not release any lock and is unlikely
1726 			 * to yield a different result.
1727 			 */
1728 			lowest_rq = NULL;
1729 			break;
1730 		}
1731 
1732 		/* if the prio of this runqueue changed, try again */
1733 		if (double_lock_balance(rq, lowest_rq)) {
1734 			/*
1735 			 * We had to unlock the run queue. In
1736 			 * the mean time, task could have
1737 			 * migrated already or had its affinity changed.
1738 			 * Also make sure that it wasn't scheduled on its rq.
1739 			 */
1740 			if (unlikely(task_rq(task) != rq ||
1741 				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) ||
1742 				     task_running(rq, task) ||
1743 				     !rt_task(task) ||
1744 				     !task_on_rq_queued(task))) {
1745 
1746 				double_unlock_balance(rq, lowest_rq);
1747 				lowest_rq = NULL;
1748 				break;
1749 			}
1750 		}
1751 
1752 		/* If this rq is still suitable use it. */
1753 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1754 			break;
1755 
1756 		/* try again */
1757 		double_unlock_balance(rq, lowest_rq);
1758 		lowest_rq = NULL;
1759 	}
1760 
1761 	return lowest_rq;
1762 }
1763 
1764 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1765 {
1766 	struct task_struct *p;
1767 
1768 	if (!has_pushable_tasks(rq))
1769 		return NULL;
1770 
1771 	p = plist_first_entry(&rq->rt.pushable_tasks,
1772 			      struct task_struct, pushable_tasks);
1773 
1774 	BUG_ON(rq->cpu != task_cpu(p));
1775 	BUG_ON(task_current(rq, p));
1776 	BUG_ON(p->nr_cpus_allowed <= 1);
1777 
1778 	BUG_ON(!task_on_rq_queued(p));
1779 	BUG_ON(!rt_task(p));
1780 
1781 	return p;
1782 }
1783 
1784 /*
1785  * If the current CPU has more than one RT task, see if the non
1786  * running task can migrate over to a CPU that is running a task
1787  * of lesser priority.
1788  */
1789 static int push_rt_task(struct rq *rq)
1790 {
1791 	struct task_struct *next_task;
1792 	struct rq *lowest_rq;
1793 	int ret = 0;
1794 
1795 	if (!rq->rt.overloaded)
1796 		return 0;
1797 
1798 	next_task = pick_next_pushable_task(rq);
1799 	if (!next_task)
1800 		return 0;
1801 
1802 retry:
1803 	if (unlikely(next_task == rq->curr)) {
1804 		WARN_ON(1);
1805 		return 0;
1806 	}
1807 
1808 	/*
1809 	 * It's possible that the next_task slipped in of
1810 	 * higher priority than current. If that's the case
1811 	 * just reschedule current.
1812 	 */
1813 	if (unlikely(next_task->prio < rq->curr->prio)) {
1814 		resched_curr(rq);
1815 		return 0;
1816 	}
1817 
1818 	/* We might release rq lock */
1819 	get_task_struct(next_task);
1820 
1821 	/* find_lock_lowest_rq locks the rq if found */
1822 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1823 	if (!lowest_rq) {
1824 		struct task_struct *task;
1825 		/*
1826 		 * find_lock_lowest_rq releases rq->lock
1827 		 * so it is possible that next_task has migrated.
1828 		 *
1829 		 * We need to make sure that the task is still on the same
1830 		 * run-queue and is also still the next task eligible for
1831 		 * pushing.
1832 		 */
1833 		task = pick_next_pushable_task(rq);
1834 		if (task == next_task) {
1835 			/*
1836 			 * The task hasn't migrated, and is still the next
1837 			 * eligible task, but we failed to find a run-queue
1838 			 * to push it to.  Do not retry in this case, since
1839 			 * other cpus will pull from us when ready.
1840 			 */
1841 			goto out;
1842 		}
1843 
1844 		if (!task)
1845 			/* No more tasks, just exit */
1846 			goto out;
1847 
1848 		/*
1849 		 * Something has shifted, try again.
1850 		 */
1851 		put_task_struct(next_task);
1852 		next_task = task;
1853 		goto retry;
1854 	}
1855 
1856 	deactivate_task(rq, next_task, 0);
1857 	set_task_cpu(next_task, lowest_rq->cpu);
1858 	activate_task(lowest_rq, next_task, 0);
1859 	ret = 1;
1860 
1861 	resched_curr(lowest_rq);
1862 
1863 	double_unlock_balance(rq, lowest_rq);
1864 
1865 out:
1866 	put_task_struct(next_task);
1867 
1868 	return ret;
1869 }
1870 
1871 static void push_rt_tasks(struct rq *rq)
1872 {
1873 	/* push_rt_task will return true if it moved an RT */
1874 	while (push_rt_task(rq))
1875 		;
1876 }
1877 
1878 #ifdef HAVE_RT_PUSH_IPI
1879 /*
1880  * The search for the next cpu always starts at rq->cpu and ends
1881  * when we reach rq->cpu again. It will never return rq->cpu.
1882  * This returns the next cpu to check, or nr_cpu_ids if the loop
1883  * is complete.
1884  *
1885  * rq->rt.push_cpu holds the last cpu returned by this function,
1886  * or if this is the first instance, it must hold rq->cpu.
1887  */
1888 static int rto_next_cpu(struct rq *rq)
1889 {
1890 	int prev_cpu = rq->rt.push_cpu;
1891 	int cpu;
1892 
1893 	cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1894 
1895 	/*
1896 	 * If the previous cpu is less than the rq's CPU, then it already
1897 	 * passed the end of the mask, and has started from the beginning.
1898 	 * We end if the next CPU is greater or equal to rq's CPU.
1899 	 */
1900 	if (prev_cpu < rq->cpu) {
1901 		if (cpu >= rq->cpu)
1902 			return nr_cpu_ids;
1903 
1904 	} else if (cpu >= nr_cpu_ids) {
1905 		/*
1906 		 * We passed the end of the mask, start at the beginning.
1907 		 * If the result is greater or equal to the rq's CPU, then
1908 		 * the loop is finished.
1909 		 */
1910 		cpu = cpumask_first(rq->rd->rto_mask);
1911 		if (cpu >= rq->cpu)
1912 			return nr_cpu_ids;
1913 	}
1914 	rq->rt.push_cpu = cpu;
1915 
1916 	/* Return cpu to let the caller know if the loop is finished or not */
1917 	return cpu;
1918 }
1919 
1920 static int find_next_push_cpu(struct rq *rq)
1921 {
1922 	struct rq *next_rq;
1923 	int cpu;
1924 
1925 	while (1) {
1926 		cpu = rto_next_cpu(rq);
1927 		if (cpu >= nr_cpu_ids)
1928 			break;
1929 		next_rq = cpu_rq(cpu);
1930 
1931 		/* Make sure the next rq can push to this rq */
1932 		if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1933 			break;
1934 	}
1935 
1936 	return cpu;
1937 }
1938 
1939 #define RT_PUSH_IPI_EXECUTING		1
1940 #define RT_PUSH_IPI_RESTART		2
1941 
1942 /*
1943  * When a high priority task schedules out from a CPU and a lower priority
1944  * task is scheduled in, a check is made to see if there's any RT tasks
1945  * on other CPUs that are waiting to run because a higher priority RT task
1946  * is currently running on its CPU. In this case, the CPU with multiple RT
1947  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1948  * up that may be able to run one of its non-running queued RT tasks.
1949  *
1950  * On large CPU boxes, there's the case that several CPUs could schedule
1951  * a lower priority task at the same time, in which case it will look for
1952  * any overloaded CPUs that it could pull a task from. To do this, the runqueue
1953  * lock must be taken from that overloaded CPU. Having 10s of CPUs all fighting
1954  * for a single overloaded CPU's runqueue lock can produce a large latency.
1955  * (This has actually been observed on large boxes running cyclictest).
1956  * Instead of taking the runqueue lock of the overloaded CPU, each of the
1957  * CPUs that scheduled a lower priority task simply sends an IPI to the
1958  * overloaded CPU. An IPI is much cheaper than taking an runqueue lock with
1959  * lots of contention. The overloaded CPU will look to push its non-running
1960  * RT task off, and if it does, it can then ignore the other IPIs coming
1961  * in, and just pass those IPIs off to any other overloaded CPU.
1962  *
1963  * When a CPU schedules a lower priority task, it only sends an IPI to
1964  * the "next" CPU that has overloaded RT tasks. This prevents IPI storms,
1965  * as having 10 CPUs scheduling lower priority tasks and 10 CPUs with
1966  * RT overloaded tasks, would cause 100 IPIs to go out at once.
1967  *
1968  * The overloaded RT CPU, when receiving an IPI, will try to push off its
1969  * overloaded RT tasks and then send an IPI to the next CPU that has
1970  * overloaded RT tasks. This stops when all CPUs with overloaded RT tasks
1971  * have completed. Just because a CPU may have pushed off its own overloaded
1972  * RT task does not mean it should stop sending the IPI around to other
1973  * overloaded CPUs. There may be another RT task waiting to run on one of
1974  * those CPUs that are of higher priority than the one that was just
1975  * pushed.
1976  *
1977  * An optimization that could possibly be made is to make a CPU array similar
1978  * to the cpupri array mask of all running RT tasks, but for the overloaded
1979  * case, then the IPI could be sent to only the CPU with the highest priority
1980  * RT task waiting, and that CPU could send off further IPIs to the CPU with
1981  * the next highest waiting task. Since the overloaded case is much less likely
1982  * to happen, the complexity of this implementation may not be worth it.
1983  * Instead, just send an IPI around to all overloaded CPUs.
1984  *
1985  * The rq->rt.push_flags holds the status of the IPI that is going around.
1986  * A run queue can only send out a single IPI at a time. The possible flags
1987  * for rq->rt.push_flags are:
1988  *
1989  *    (None or zero):		No IPI is going around for the current rq
1990  *    RT_PUSH_IPI_EXECUTING:	An IPI for the rq is being passed around
1991  *    RT_PUSH_IPI_RESTART:	The priority of the running task for the rq
1992  *				has changed, and the IPI should restart
1993  *				circulating the overloaded CPUs again.
1994  *
1995  * rq->rt.push_cpu contains the CPU that is being sent the IPI. It is updated
1996  * before sending to the next CPU.
1997  *
1998  * Instead of having all CPUs that schedule a lower priority task send
1999  * an IPI to the same "first" CPU in the RT overload mask, they send it
2000  * to the next overloaded CPU after their own CPU. This helps distribute
2001  * the work when there's more than one overloaded CPU and multiple CPUs
2002  * scheduling in lower priority tasks.
2003  *
2004  * When a rq schedules a lower priority task than what was currently
2005  * running, the next CPU with overloaded RT tasks is examined first.
2006  * That is, if CPU 1 and 5 are overloaded, and CPU 3 schedules a lower
2007  * priority task, it will send an IPI first to CPU 5, then CPU 5 will
2008  * send to CPU 1 if it is still overloaded. CPU 1 will clear the
2009  * rq->rt.push_flags if RT_PUSH_IPI_RESTART is not set.
2010  *
2011  * The first CPU to notice IPI_RESTART is set, will clear that flag and then
2012  * send an IPI to the next overloaded CPU after the rq->cpu and not the next
2013  * CPU after push_cpu. That is, if CPU 1, 4 and 5 are overloaded when CPU 3
2014  * schedules a lower priority task, and the IPI_RESTART gets set while the
2015  * handling is being done on CPU 5, it will clear the flag and send it back to
2016  * CPU 4 instead of CPU 1.
2017  *
2018  * Note, the above logic can be disabled by turning off the sched_feature
2019  * RT_PUSH_IPI. Then the rq lock of the overloaded CPU will simply be
2020  * taken by the CPU requesting a pull and the waiting RT task will be pulled
2021  * by that CPU. This may be fine for machines with few CPUs.
2022  */
2023 static void tell_cpu_to_push(struct rq *rq)
2024 {
2025 	int cpu;
2026 
2027 	if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
2028 		raw_spin_lock(&rq->rt.push_lock);
2029 		/* Make sure it's still executing */
2030 		if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
2031 			/*
2032 			 * Tell the IPI to restart the loop as things have
2033 			 * changed since it started.
2034 			 */
2035 			rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
2036 			raw_spin_unlock(&rq->rt.push_lock);
2037 			return;
2038 		}
2039 		raw_spin_unlock(&rq->rt.push_lock);
2040 	}
2041 
2042 	/* When here, there's no IPI going around */
2043 
2044 	rq->rt.push_cpu = rq->cpu;
2045 	cpu = find_next_push_cpu(rq);
2046 	if (cpu >= nr_cpu_ids)
2047 		return;
2048 
2049 	rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
2050 
2051 	irq_work_queue_on(&rq->rt.push_work, cpu);
2052 }
2053 
2054 /* Called from hardirq context */
2055 static void try_to_push_tasks(void *arg)
2056 {
2057 	struct rt_rq *rt_rq = arg;
2058 	struct rq *rq, *src_rq;
2059 	int this_cpu;
2060 	int cpu;
2061 
2062 	this_cpu = rt_rq->push_cpu;
2063 
2064 	/* Paranoid check */
2065 	BUG_ON(this_cpu != smp_processor_id());
2066 
2067 	rq = cpu_rq(this_cpu);
2068 	src_rq = rq_of_rt_rq(rt_rq);
2069 
2070 again:
2071 	if (has_pushable_tasks(rq)) {
2072 		raw_spin_lock(&rq->lock);
2073 		push_rt_task(rq);
2074 		raw_spin_unlock(&rq->lock);
2075 	}
2076 
2077 	/* Pass the IPI to the next rt overloaded queue */
2078 	raw_spin_lock(&rt_rq->push_lock);
2079 	/*
2080 	 * If the source queue changed since the IPI went out,
2081 	 * we need to restart the search from that CPU again.
2082 	 */
2083 	if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
2084 		rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
2085 		rt_rq->push_cpu = src_rq->cpu;
2086 	}
2087 
2088 	cpu = find_next_push_cpu(src_rq);
2089 
2090 	if (cpu >= nr_cpu_ids)
2091 		rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
2092 	raw_spin_unlock(&rt_rq->push_lock);
2093 
2094 	if (cpu >= nr_cpu_ids)
2095 		return;
2096 
2097 	/*
2098 	 * It is possible that a restart caused this CPU to be
2099 	 * chosen again. Don't bother with an IPI, just see if we
2100 	 * have more to push.
2101 	 */
2102 	if (unlikely(cpu == rq->cpu))
2103 		goto again;
2104 
2105 	/* Try the next RT overloaded CPU */
2106 	irq_work_queue_on(&rt_rq->push_work, cpu);
2107 }
2108 
2109 static void push_irq_work_func(struct irq_work *work)
2110 {
2111 	struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
2112 
2113 	try_to_push_tasks(rt_rq);
2114 }
2115 #endif /* HAVE_RT_PUSH_IPI */
2116 
2117 static void pull_rt_task(struct rq *this_rq)
2118 {
2119 	int this_cpu = this_rq->cpu, cpu;
2120 	bool resched = false;
2121 	struct task_struct *p;
2122 	struct rq *src_rq;
2123 
2124 	if (likely(!rt_overloaded(this_rq)))
2125 		return;
2126 
2127 	/*
2128 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2129 	 * see overloaded we must also see the rto_mask bit.
2130 	 */
2131 	smp_rmb();
2132 
2133 #ifdef HAVE_RT_PUSH_IPI
2134 	if (sched_feat(RT_PUSH_IPI)) {
2135 		tell_cpu_to_push(this_rq);
2136 		return;
2137 	}
2138 #endif
2139 
2140 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2141 		if (this_cpu == cpu)
2142 			continue;
2143 
2144 		src_rq = cpu_rq(cpu);
2145 
2146 		/*
2147 		 * Don't bother taking the src_rq->lock if the next highest
2148 		 * task is known to be lower-priority than our current task.
2149 		 * This may look racy, but if this value is about to go
2150 		 * logically higher, the src_rq will push this task away.
2151 		 * And if its going logically lower, we do not care
2152 		 */
2153 		if (src_rq->rt.highest_prio.next >=
2154 		    this_rq->rt.highest_prio.curr)
2155 			continue;
2156 
2157 		/*
2158 		 * We can potentially drop this_rq's lock in
2159 		 * double_lock_balance, and another CPU could
2160 		 * alter this_rq
2161 		 */
2162 		double_lock_balance(this_rq, src_rq);
2163 
2164 		/*
2165 		 * We can pull only a task, which is pushable
2166 		 * on its rq, and no others.
2167 		 */
2168 		p = pick_highest_pushable_task(src_rq, this_cpu);
2169 
2170 		/*
2171 		 * Do we have an RT task that preempts
2172 		 * the to-be-scheduled task?
2173 		 */
2174 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2175 			WARN_ON(p == src_rq->curr);
2176 			WARN_ON(!task_on_rq_queued(p));
2177 
2178 			/*
2179 			 * There's a chance that p is higher in priority
2180 			 * than what's currently running on its cpu.
2181 			 * This is just that p is wakeing up and hasn't
2182 			 * had a chance to schedule. We only pull
2183 			 * p if it is lower in priority than the
2184 			 * current task on the run queue
2185 			 */
2186 			if (p->prio < src_rq->curr->prio)
2187 				goto skip;
2188 
2189 			resched = true;
2190 
2191 			deactivate_task(src_rq, p, 0);
2192 			set_task_cpu(p, this_cpu);
2193 			activate_task(this_rq, p, 0);
2194 			/*
2195 			 * We continue with the search, just in
2196 			 * case there's an even higher prio task
2197 			 * in another runqueue. (low likelihood
2198 			 * but possible)
2199 			 */
2200 		}
2201 skip:
2202 		double_unlock_balance(this_rq, src_rq);
2203 	}
2204 
2205 	if (resched)
2206 		resched_curr(this_rq);
2207 }
2208 
2209 /*
2210  * If we are not running and we are not going to reschedule soon, we should
2211  * try to push tasks away now
2212  */
2213 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2214 {
2215 	if (!task_running(rq, p) &&
2216 	    !test_tsk_need_resched(rq->curr) &&
2217 	    p->nr_cpus_allowed > 1 &&
2218 	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2219 	    (rq->curr->nr_cpus_allowed < 2 ||
2220 	     rq->curr->prio <= p->prio))
2221 		push_rt_tasks(rq);
2222 }
2223 
2224 /* Assumes rq->lock is held */
2225 static void rq_online_rt(struct rq *rq)
2226 {
2227 	if (rq->rt.overloaded)
2228 		rt_set_overload(rq);
2229 
2230 	__enable_runtime(rq);
2231 
2232 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2233 }
2234 
2235 /* Assumes rq->lock is held */
2236 static void rq_offline_rt(struct rq *rq)
2237 {
2238 	if (rq->rt.overloaded)
2239 		rt_clear_overload(rq);
2240 
2241 	__disable_runtime(rq);
2242 
2243 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2244 }
2245 
2246 /*
2247  * When switch from the rt queue, we bring ourselves to a position
2248  * that we might want to pull RT tasks from other runqueues.
2249  */
2250 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2251 {
2252 	/*
2253 	 * If there are other RT tasks then we will reschedule
2254 	 * and the scheduling of the other RT tasks will handle
2255 	 * the balancing. But if we are the last RT task
2256 	 * we may need to handle the pulling of RT tasks
2257 	 * now.
2258 	 */
2259 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2260 		return;
2261 
2262 	queue_pull_task(rq);
2263 }
2264 
2265 void __init init_sched_rt_class(void)
2266 {
2267 	unsigned int i;
2268 
2269 	for_each_possible_cpu(i) {
2270 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2271 					GFP_KERNEL, cpu_to_node(i));
2272 	}
2273 }
2274 #endif /* CONFIG_SMP */
2275 
2276 /*
2277  * When switching a task to RT, we may overload the runqueue
2278  * with RT tasks. In this case we try to push them off to
2279  * other runqueues.
2280  */
2281 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2282 {
2283 	/*
2284 	 * If we are already running, then there's nothing
2285 	 * that needs to be done. But if we are not running
2286 	 * we may need to preempt the current running task.
2287 	 * If that current running task is also an RT task
2288 	 * then see if we can move to another run queue.
2289 	 */
2290 	if (task_on_rq_queued(p) && rq->curr != p) {
2291 #ifdef CONFIG_SMP
2292 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2293 			queue_push_tasks(rq);
2294 #endif /* CONFIG_SMP */
2295 		if (p->prio < rq->curr->prio)
2296 			resched_curr(rq);
2297 	}
2298 }
2299 
2300 /*
2301  * Priority of the task has changed. This may cause
2302  * us to initiate a push or pull.
2303  */
2304 static void
2305 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2306 {
2307 	if (!task_on_rq_queued(p))
2308 		return;
2309 
2310 	if (rq->curr == p) {
2311 #ifdef CONFIG_SMP
2312 		/*
2313 		 * If our priority decreases while running, we
2314 		 * may need to pull tasks to this runqueue.
2315 		 */
2316 		if (oldprio < p->prio)
2317 			queue_pull_task(rq);
2318 
2319 		/*
2320 		 * If there's a higher priority task waiting to run
2321 		 * then reschedule.
2322 		 */
2323 		if (p->prio > rq->rt.highest_prio.curr)
2324 			resched_curr(rq);
2325 #else
2326 		/* For UP simply resched on drop of prio */
2327 		if (oldprio < p->prio)
2328 			resched_curr(rq);
2329 #endif /* CONFIG_SMP */
2330 	} else {
2331 		/*
2332 		 * This task is not running, but if it is
2333 		 * greater than the current running task
2334 		 * then reschedule.
2335 		 */
2336 		if (p->prio < rq->curr->prio)
2337 			resched_curr(rq);
2338 	}
2339 }
2340 
2341 #ifdef CONFIG_POSIX_TIMERS
2342 static void watchdog(struct rq *rq, struct task_struct *p)
2343 {
2344 	unsigned long soft, hard;
2345 
2346 	/* max may change after cur was read, this will be fixed next tick */
2347 	soft = task_rlimit(p, RLIMIT_RTTIME);
2348 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2349 
2350 	if (soft != RLIM_INFINITY) {
2351 		unsigned long next;
2352 
2353 		if (p->rt.watchdog_stamp != jiffies) {
2354 			p->rt.timeout++;
2355 			p->rt.watchdog_stamp = jiffies;
2356 		}
2357 
2358 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2359 		if (p->rt.timeout > next)
2360 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2361 	}
2362 }
2363 #else
2364 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2365 #endif
2366 
2367 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2368 {
2369 	struct sched_rt_entity *rt_se = &p->rt;
2370 
2371 	update_curr_rt(rq);
2372 
2373 	watchdog(rq, p);
2374 
2375 	/*
2376 	 * RR tasks need a special form of timeslice management.
2377 	 * FIFO tasks have no timeslices.
2378 	 */
2379 	if (p->policy != SCHED_RR)
2380 		return;
2381 
2382 	if (--p->rt.time_slice)
2383 		return;
2384 
2385 	p->rt.time_slice = sched_rr_timeslice;
2386 
2387 	/*
2388 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2389 	 * the only element on the queue
2390 	 */
2391 	for_each_sched_rt_entity(rt_se) {
2392 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2393 			requeue_task_rt(rq, p, 0);
2394 			resched_curr(rq);
2395 			return;
2396 		}
2397 	}
2398 }
2399 
2400 static void set_curr_task_rt(struct rq *rq)
2401 {
2402 	struct task_struct *p = rq->curr;
2403 
2404 	p->se.exec_start = rq_clock_task(rq);
2405 
2406 	/* The running task is never eligible for pushing */
2407 	dequeue_pushable_task(rq, p);
2408 }
2409 
2410 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2411 {
2412 	/*
2413 	 * Time slice is 0 for SCHED_FIFO tasks
2414 	 */
2415 	if (task->policy == SCHED_RR)
2416 		return sched_rr_timeslice;
2417 	else
2418 		return 0;
2419 }
2420 
2421 const struct sched_class rt_sched_class = {
2422 	.next			= &fair_sched_class,
2423 	.enqueue_task		= enqueue_task_rt,
2424 	.dequeue_task		= dequeue_task_rt,
2425 	.yield_task		= yield_task_rt,
2426 
2427 	.check_preempt_curr	= check_preempt_curr_rt,
2428 
2429 	.pick_next_task		= pick_next_task_rt,
2430 	.put_prev_task		= put_prev_task_rt,
2431 
2432 #ifdef CONFIG_SMP
2433 	.select_task_rq		= select_task_rq_rt,
2434 
2435 	.set_cpus_allowed       = set_cpus_allowed_common,
2436 	.rq_online              = rq_online_rt,
2437 	.rq_offline             = rq_offline_rt,
2438 	.task_woken		= task_woken_rt,
2439 	.switched_from		= switched_from_rt,
2440 #endif
2441 
2442 	.set_curr_task          = set_curr_task_rt,
2443 	.task_tick		= task_tick_rt,
2444 
2445 	.get_rr_interval	= get_rr_interval_rt,
2446 
2447 	.prio_changed		= prio_changed_rt,
2448 	.switched_to		= switched_to_rt,
2449 
2450 	.update_curr		= update_curr_rt,
2451 };
2452 
2453 #ifdef CONFIG_RT_GROUP_SCHED
2454 /*
2455  * Ensure that the real time constraints are schedulable.
2456  */
2457 static DEFINE_MUTEX(rt_constraints_mutex);
2458 
2459 /* Must be called with tasklist_lock held */
2460 static inline int tg_has_rt_tasks(struct task_group *tg)
2461 {
2462 	struct task_struct *g, *p;
2463 
2464 	/*
2465 	 * Autogroups do not have RT tasks; see autogroup_create().
2466 	 */
2467 	if (task_group_is_autogroup(tg))
2468 		return 0;
2469 
2470 	for_each_process_thread(g, p) {
2471 		if (rt_task(p) && task_group(p) == tg)
2472 			return 1;
2473 	}
2474 
2475 	return 0;
2476 }
2477 
2478 struct rt_schedulable_data {
2479 	struct task_group *tg;
2480 	u64 rt_period;
2481 	u64 rt_runtime;
2482 };
2483 
2484 static int tg_rt_schedulable(struct task_group *tg, void *data)
2485 {
2486 	struct rt_schedulable_data *d = data;
2487 	struct task_group *child;
2488 	unsigned long total, sum = 0;
2489 	u64 period, runtime;
2490 
2491 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2492 	runtime = tg->rt_bandwidth.rt_runtime;
2493 
2494 	if (tg == d->tg) {
2495 		period = d->rt_period;
2496 		runtime = d->rt_runtime;
2497 	}
2498 
2499 	/*
2500 	 * Cannot have more runtime than the period.
2501 	 */
2502 	if (runtime > period && runtime != RUNTIME_INF)
2503 		return -EINVAL;
2504 
2505 	/*
2506 	 * Ensure we don't starve existing RT tasks.
2507 	 */
2508 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
2509 		return -EBUSY;
2510 
2511 	total = to_ratio(period, runtime);
2512 
2513 	/*
2514 	 * Nobody can have more than the global setting allows.
2515 	 */
2516 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2517 		return -EINVAL;
2518 
2519 	/*
2520 	 * The sum of our children's runtime should not exceed our own.
2521 	 */
2522 	list_for_each_entry_rcu(child, &tg->children, siblings) {
2523 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2524 		runtime = child->rt_bandwidth.rt_runtime;
2525 
2526 		if (child == d->tg) {
2527 			period = d->rt_period;
2528 			runtime = d->rt_runtime;
2529 		}
2530 
2531 		sum += to_ratio(period, runtime);
2532 	}
2533 
2534 	if (sum > total)
2535 		return -EINVAL;
2536 
2537 	return 0;
2538 }
2539 
2540 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2541 {
2542 	int ret;
2543 
2544 	struct rt_schedulable_data data = {
2545 		.tg = tg,
2546 		.rt_period = period,
2547 		.rt_runtime = runtime,
2548 	};
2549 
2550 	rcu_read_lock();
2551 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2552 	rcu_read_unlock();
2553 
2554 	return ret;
2555 }
2556 
2557 static int tg_set_rt_bandwidth(struct task_group *tg,
2558 		u64 rt_period, u64 rt_runtime)
2559 {
2560 	int i, err = 0;
2561 
2562 	/*
2563 	 * Disallowing the root group RT runtime is BAD, it would disallow the
2564 	 * kernel creating (and or operating) RT threads.
2565 	 */
2566 	if (tg == &root_task_group && rt_runtime == 0)
2567 		return -EINVAL;
2568 
2569 	/* No period doesn't make any sense. */
2570 	if (rt_period == 0)
2571 		return -EINVAL;
2572 
2573 	mutex_lock(&rt_constraints_mutex);
2574 	read_lock(&tasklist_lock);
2575 	err = __rt_schedulable(tg, rt_period, rt_runtime);
2576 	if (err)
2577 		goto unlock;
2578 
2579 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2580 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2581 	tg->rt_bandwidth.rt_runtime = rt_runtime;
2582 
2583 	for_each_possible_cpu(i) {
2584 		struct rt_rq *rt_rq = tg->rt_rq[i];
2585 
2586 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2587 		rt_rq->rt_runtime = rt_runtime;
2588 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2589 	}
2590 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2591 unlock:
2592 	read_unlock(&tasklist_lock);
2593 	mutex_unlock(&rt_constraints_mutex);
2594 
2595 	return err;
2596 }
2597 
2598 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2599 {
2600 	u64 rt_runtime, rt_period;
2601 
2602 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2603 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2604 	if (rt_runtime_us < 0)
2605 		rt_runtime = RUNTIME_INF;
2606 
2607 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2608 }
2609 
2610 long sched_group_rt_runtime(struct task_group *tg)
2611 {
2612 	u64 rt_runtime_us;
2613 
2614 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2615 		return -1;
2616 
2617 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2618 	do_div(rt_runtime_us, NSEC_PER_USEC);
2619 	return rt_runtime_us;
2620 }
2621 
2622 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2623 {
2624 	u64 rt_runtime, rt_period;
2625 
2626 	rt_period = rt_period_us * NSEC_PER_USEC;
2627 	rt_runtime = tg->rt_bandwidth.rt_runtime;
2628 
2629 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2630 }
2631 
2632 long sched_group_rt_period(struct task_group *tg)
2633 {
2634 	u64 rt_period_us;
2635 
2636 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2637 	do_div(rt_period_us, NSEC_PER_USEC);
2638 	return rt_period_us;
2639 }
2640 
2641 static int sched_rt_global_constraints(void)
2642 {
2643 	int ret = 0;
2644 
2645 	mutex_lock(&rt_constraints_mutex);
2646 	read_lock(&tasklist_lock);
2647 	ret = __rt_schedulable(NULL, 0, 0);
2648 	read_unlock(&tasklist_lock);
2649 	mutex_unlock(&rt_constraints_mutex);
2650 
2651 	return ret;
2652 }
2653 
2654 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2655 {
2656 	/* Don't accept realtime tasks when there is no way for them to run */
2657 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2658 		return 0;
2659 
2660 	return 1;
2661 }
2662 
2663 #else /* !CONFIG_RT_GROUP_SCHED */
2664 static int sched_rt_global_constraints(void)
2665 {
2666 	unsigned long flags;
2667 	int i;
2668 
2669 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2670 	for_each_possible_cpu(i) {
2671 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2672 
2673 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2674 		rt_rq->rt_runtime = global_rt_runtime();
2675 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2676 	}
2677 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2678 
2679 	return 0;
2680 }
2681 #endif /* CONFIG_RT_GROUP_SCHED */
2682 
2683 static int sched_rt_global_validate(void)
2684 {
2685 	if (sysctl_sched_rt_period <= 0)
2686 		return -EINVAL;
2687 
2688 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2689 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
2690 		return -EINVAL;
2691 
2692 	return 0;
2693 }
2694 
2695 static void sched_rt_do_global(void)
2696 {
2697 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2698 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2699 }
2700 
2701 int sched_rt_handler(struct ctl_table *table, int write,
2702 		void __user *buffer, size_t *lenp,
2703 		loff_t *ppos)
2704 {
2705 	int old_period, old_runtime;
2706 	static DEFINE_MUTEX(mutex);
2707 	int ret;
2708 
2709 	mutex_lock(&mutex);
2710 	old_period = sysctl_sched_rt_period;
2711 	old_runtime = sysctl_sched_rt_runtime;
2712 
2713 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2714 
2715 	if (!ret && write) {
2716 		ret = sched_rt_global_validate();
2717 		if (ret)
2718 			goto undo;
2719 
2720 		ret = sched_dl_global_validate();
2721 		if (ret)
2722 			goto undo;
2723 
2724 		ret = sched_rt_global_constraints();
2725 		if (ret)
2726 			goto undo;
2727 
2728 		sched_rt_do_global();
2729 		sched_dl_do_global();
2730 	}
2731 	if (0) {
2732 undo:
2733 		sysctl_sched_rt_period = old_period;
2734 		sysctl_sched_rt_runtime = old_runtime;
2735 	}
2736 	mutex_unlock(&mutex);
2737 
2738 	return ret;
2739 }
2740 
2741 int sched_rr_handler(struct ctl_table *table, int write,
2742 		void __user *buffer, size_t *lenp,
2743 		loff_t *ppos)
2744 {
2745 	int ret;
2746 	static DEFINE_MUTEX(mutex);
2747 
2748 	mutex_lock(&mutex);
2749 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2750 	/*
2751 	 * Make sure that internally we keep jiffies.
2752 	 * Also, writing zero resets the timeslice to default:
2753 	 */
2754 	if (!ret && write) {
2755 		sched_rr_timeslice =
2756 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2757 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
2758 	}
2759 	mutex_unlock(&mutex);
2760 	return ret;
2761 }
2762 
2763 #ifdef CONFIG_SCHED_DEBUG
2764 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2765 
2766 void print_rt_stats(struct seq_file *m, int cpu)
2767 {
2768 	rt_rq_iter_t iter;
2769 	struct rt_rq *rt_rq;
2770 
2771 	rcu_read_lock();
2772 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2773 		print_rt_rq(m, cpu, rt_rq);
2774 	rcu_read_unlock();
2775 }
2776 #endif /* CONFIG_SCHED_DEBUG */
2777