1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 4 * policies) 5 */ 6 7 #include "sched.h" 8 9 #include <linux/slab.h> 10 #include <linux/irq_work.h> 11 12 int sched_rr_timeslice = RR_TIMESLICE; 13 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE; 14 15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 16 17 struct rt_bandwidth def_rt_bandwidth; 18 19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 20 { 21 struct rt_bandwidth *rt_b = 22 container_of(timer, struct rt_bandwidth, rt_period_timer); 23 int idle = 0; 24 int overrun; 25 26 raw_spin_lock(&rt_b->rt_runtime_lock); 27 for (;;) { 28 overrun = hrtimer_forward_now(timer, rt_b->rt_period); 29 if (!overrun) 30 break; 31 32 raw_spin_unlock(&rt_b->rt_runtime_lock); 33 idle = do_sched_rt_period_timer(rt_b, overrun); 34 raw_spin_lock(&rt_b->rt_runtime_lock); 35 } 36 if (idle) 37 rt_b->rt_period_active = 0; 38 raw_spin_unlock(&rt_b->rt_runtime_lock); 39 40 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 41 } 42 43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 44 { 45 rt_b->rt_period = ns_to_ktime(period); 46 rt_b->rt_runtime = runtime; 47 48 raw_spin_lock_init(&rt_b->rt_runtime_lock); 49 50 hrtimer_init(&rt_b->rt_period_timer, 51 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 52 rt_b->rt_period_timer.function = sched_rt_period_timer; 53 } 54 55 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 56 { 57 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 58 return; 59 60 raw_spin_lock(&rt_b->rt_runtime_lock); 61 if (!rt_b->rt_period_active) { 62 rt_b->rt_period_active = 1; 63 /* 64 * SCHED_DEADLINE updates the bandwidth, as a run away 65 * RT task with a DL task could hog a CPU. But DL does 66 * not reset the period. If a deadline task was running 67 * without an RT task running, it can cause RT tasks to 68 * throttle when they start up. Kick the timer right away 69 * to update the period. 70 */ 71 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 72 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED); 73 } 74 raw_spin_unlock(&rt_b->rt_runtime_lock); 75 } 76 77 #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI) 78 static void push_irq_work_func(struct irq_work *work); 79 #endif 80 81 void init_rt_rq(struct rt_rq *rt_rq) 82 { 83 struct rt_prio_array *array; 84 int i; 85 86 array = &rt_rq->active; 87 for (i = 0; i < MAX_RT_PRIO; i++) { 88 INIT_LIST_HEAD(array->queue + i); 89 __clear_bit(i, array->bitmap); 90 } 91 /* delimiter for bitsearch: */ 92 __set_bit(MAX_RT_PRIO, array->bitmap); 93 94 #if defined CONFIG_SMP 95 rt_rq->highest_prio.curr = MAX_RT_PRIO; 96 rt_rq->highest_prio.next = MAX_RT_PRIO; 97 rt_rq->rt_nr_migratory = 0; 98 rt_rq->overloaded = 0; 99 plist_head_init(&rt_rq->pushable_tasks); 100 101 #ifdef HAVE_RT_PUSH_IPI 102 rt_rq->push_flags = 0; 103 rt_rq->push_cpu = nr_cpu_ids; 104 raw_spin_lock_init(&rt_rq->push_lock); 105 init_irq_work(&rt_rq->push_work, push_irq_work_func); 106 #endif 107 #endif /* CONFIG_SMP */ 108 /* We start is dequeued state, because no RT tasks are queued */ 109 rt_rq->rt_queued = 0; 110 111 rt_rq->rt_time = 0; 112 rt_rq->rt_throttled = 0; 113 rt_rq->rt_runtime = 0; 114 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 115 } 116 117 #ifdef CONFIG_RT_GROUP_SCHED 118 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 119 { 120 hrtimer_cancel(&rt_b->rt_period_timer); 121 } 122 123 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 124 125 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 126 { 127 #ifdef CONFIG_SCHED_DEBUG 128 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 129 #endif 130 return container_of(rt_se, struct task_struct, rt); 131 } 132 133 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 134 { 135 return rt_rq->rq; 136 } 137 138 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 139 { 140 return rt_se->rt_rq; 141 } 142 143 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 144 { 145 struct rt_rq *rt_rq = rt_se->rt_rq; 146 147 return rt_rq->rq; 148 } 149 150 void free_rt_sched_group(struct task_group *tg) 151 { 152 int i; 153 154 if (tg->rt_se) 155 destroy_rt_bandwidth(&tg->rt_bandwidth); 156 157 for_each_possible_cpu(i) { 158 if (tg->rt_rq) 159 kfree(tg->rt_rq[i]); 160 if (tg->rt_se) 161 kfree(tg->rt_se[i]); 162 } 163 164 kfree(tg->rt_rq); 165 kfree(tg->rt_se); 166 } 167 168 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 169 struct sched_rt_entity *rt_se, int cpu, 170 struct sched_rt_entity *parent) 171 { 172 struct rq *rq = cpu_rq(cpu); 173 174 rt_rq->highest_prio.curr = MAX_RT_PRIO; 175 rt_rq->rt_nr_boosted = 0; 176 rt_rq->rq = rq; 177 rt_rq->tg = tg; 178 179 tg->rt_rq[cpu] = rt_rq; 180 tg->rt_se[cpu] = rt_se; 181 182 if (!rt_se) 183 return; 184 185 if (!parent) 186 rt_se->rt_rq = &rq->rt; 187 else 188 rt_se->rt_rq = parent->my_q; 189 190 rt_se->my_q = rt_rq; 191 rt_se->parent = parent; 192 INIT_LIST_HEAD(&rt_se->run_list); 193 } 194 195 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 196 { 197 struct rt_rq *rt_rq; 198 struct sched_rt_entity *rt_se; 199 int i; 200 201 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); 202 if (!tg->rt_rq) 203 goto err; 204 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); 205 if (!tg->rt_se) 206 goto err; 207 208 init_rt_bandwidth(&tg->rt_bandwidth, 209 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 210 211 for_each_possible_cpu(i) { 212 rt_rq = kzalloc_node(sizeof(struct rt_rq), 213 GFP_KERNEL, cpu_to_node(i)); 214 if (!rt_rq) 215 goto err; 216 217 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 218 GFP_KERNEL, cpu_to_node(i)); 219 if (!rt_se) 220 goto err_free_rq; 221 222 init_rt_rq(rt_rq); 223 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 224 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 225 } 226 227 return 1; 228 229 err_free_rq: 230 kfree(rt_rq); 231 err: 232 return 0; 233 } 234 235 #else /* CONFIG_RT_GROUP_SCHED */ 236 237 #define rt_entity_is_task(rt_se) (1) 238 239 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 240 { 241 return container_of(rt_se, struct task_struct, rt); 242 } 243 244 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 245 { 246 return container_of(rt_rq, struct rq, rt); 247 } 248 249 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 250 { 251 struct task_struct *p = rt_task_of(rt_se); 252 253 return task_rq(p); 254 } 255 256 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 257 { 258 struct rq *rq = rq_of_rt_se(rt_se); 259 260 return &rq->rt; 261 } 262 263 void free_rt_sched_group(struct task_group *tg) { } 264 265 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 266 { 267 return 1; 268 } 269 #endif /* CONFIG_RT_GROUP_SCHED */ 270 271 #ifdef CONFIG_SMP 272 273 static void pull_rt_task(struct rq *this_rq); 274 275 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 276 { 277 /* Try to pull RT tasks here if we lower this rq's prio */ 278 return rq->rt.highest_prio.curr > prev->prio; 279 } 280 281 static inline int rt_overloaded(struct rq *rq) 282 { 283 return atomic_read(&rq->rd->rto_count); 284 } 285 286 static inline void rt_set_overload(struct rq *rq) 287 { 288 if (!rq->online) 289 return; 290 291 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 292 /* 293 * Make sure the mask is visible before we set 294 * the overload count. That is checked to determine 295 * if we should look at the mask. It would be a shame 296 * if we looked at the mask, but the mask was not 297 * updated yet. 298 * 299 * Matched by the barrier in pull_rt_task(). 300 */ 301 smp_wmb(); 302 atomic_inc(&rq->rd->rto_count); 303 } 304 305 static inline void rt_clear_overload(struct rq *rq) 306 { 307 if (!rq->online) 308 return; 309 310 /* the order here really doesn't matter */ 311 atomic_dec(&rq->rd->rto_count); 312 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 313 } 314 315 static void update_rt_migration(struct rt_rq *rt_rq) 316 { 317 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 318 if (!rt_rq->overloaded) { 319 rt_set_overload(rq_of_rt_rq(rt_rq)); 320 rt_rq->overloaded = 1; 321 } 322 } else if (rt_rq->overloaded) { 323 rt_clear_overload(rq_of_rt_rq(rt_rq)); 324 rt_rq->overloaded = 0; 325 } 326 } 327 328 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 329 { 330 struct task_struct *p; 331 332 if (!rt_entity_is_task(rt_se)) 333 return; 334 335 p = rt_task_of(rt_se); 336 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 337 338 rt_rq->rt_nr_total++; 339 if (p->nr_cpus_allowed > 1) 340 rt_rq->rt_nr_migratory++; 341 342 update_rt_migration(rt_rq); 343 } 344 345 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 346 { 347 struct task_struct *p; 348 349 if (!rt_entity_is_task(rt_se)) 350 return; 351 352 p = rt_task_of(rt_se); 353 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 354 355 rt_rq->rt_nr_total--; 356 if (p->nr_cpus_allowed > 1) 357 rt_rq->rt_nr_migratory--; 358 359 update_rt_migration(rt_rq); 360 } 361 362 static inline int has_pushable_tasks(struct rq *rq) 363 { 364 return !plist_head_empty(&rq->rt.pushable_tasks); 365 } 366 367 static DEFINE_PER_CPU(struct callback_head, rt_push_head); 368 static DEFINE_PER_CPU(struct callback_head, rt_pull_head); 369 370 static void push_rt_tasks(struct rq *); 371 static void pull_rt_task(struct rq *); 372 373 static inline void queue_push_tasks(struct rq *rq) 374 { 375 if (!has_pushable_tasks(rq)) 376 return; 377 378 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); 379 } 380 381 static inline void queue_pull_task(struct rq *rq) 382 { 383 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); 384 } 385 386 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 387 { 388 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 389 plist_node_init(&p->pushable_tasks, p->prio); 390 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 391 392 /* Update the highest prio pushable task */ 393 if (p->prio < rq->rt.highest_prio.next) 394 rq->rt.highest_prio.next = p->prio; 395 } 396 397 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 398 { 399 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 400 401 /* Update the new highest prio pushable task */ 402 if (has_pushable_tasks(rq)) { 403 p = plist_first_entry(&rq->rt.pushable_tasks, 404 struct task_struct, pushable_tasks); 405 rq->rt.highest_prio.next = p->prio; 406 } else 407 rq->rt.highest_prio.next = MAX_RT_PRIO; 408 } 409 410 #else 411 412 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 413 { 414 } 415 416 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 417 { 418 } 419 420 static inline 421 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 422 { 423 } 424 425 static inline 426 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 427 { 428 } 429 430 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 431 { 432 return false; 433 } 434 435 static inline void pull_rt_task(struct rq *this_rq) 436 { 437 } 438 439 static inline void queue_push_tasks(struct rq *rq) 440 { 441 } 442 #endif /* CONFIG_SMP */ 443 444 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 445 static void dequeue_top_rt_rq(struct rt_rq *rt_rq); 446 447 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 448 { 449 return rt_se->on_rq; 450 } 451 452 #ifdef CONFIG_RT_GROUP_SCHED 453 454 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 455 { 456 if (!rt_rq->tg) 457 return RUNTIME_INF; 458 459 return rt_rq->rt_runtime; 460 } 461 462 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 463 { 464 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 465 } 466 467 typedef struct task_group *rt_rq_iter_t; 468 469 static inline struct task_group *next_task_group(struct task_group *tg) 470 { 471 do { 472 tg = list_entry_rcu(tg->list.next, 473 typeof(struct task_group), list); 474 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 475 476 if (&tg->list == &task_groups) 477 tg = NULL; 478 479 return tg; 480 } 481 482 #define for_each_rt_rq(rt_rq, iter, rq) \ 483 for (iter = container_of(&task_groups, typeof(*iter), list); \ 484 (iter = next_task_group(iter)) && \ 485 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 486 487 #define for_each_sched_rt_entity(rt_se) \ 488 for (; rt_se; rt_se = rt_se->parent) 489 490 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 491 { 492 return rt_se->my_q; 493 } 494 495 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 496 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 497 498 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 499 { 500 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 501 struct rq *rq = rq_of_rt_rq(rt_rq); 502 struct sched_rt_entity *rt_se; 503 504 int cpu = cpu_of(rq); 505 506 rt_se = rt_rq->tg->rt_se[cpu]; 507 508 if (rt_rq->rt_nr_running) { 509 if (!rt_se) 510 enqueue_top_rt_rq(rt_rq); 511 else if (!on_rt_rq(rt_se)) 512 enqueue_rt_entity(rt_se, 0); 513 514 if (rt_rq->highest_prio.curr < curr->prio) 515 resched_curr(rq); 516 } 517 } 518 519 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 520 { 521 struct sched_rt_entity *rt_se; 522 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 523 524 rt_se = rt_rq->tg->rt_se[cpu]; 525 526 if (!rt_se) 527 dequeue_top_rt_rq(rt_rq); 528 else if (on_rt_rq(rt_se)) 529 dequeue_rt_entity(rt_se, 0); 530 } 531 532 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 533 { 534 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 535 } 536 537 static int rt_se_boosted(struct sched_rt_entity *rt_se) 538 { 539 struct rt_rq *rt_rq = group_rt_rq(rt_se); 540 struct task_struct *p; 541 542 if (rt_rq) 543 return !!rt_rq->rt_nr_boosted; 544 545 p = rt_task_of(rt_se); 546 return p->prio != p->normal_prio; 547 } 548 549 #ifdef CONFIG_SMP 550 static inline const struct cpumask *sched_rt_period_mask(void) 551 { 552 return this_rq()->rd->span; 553 } 554 #else 555 static inline const struct cpumask *sched_rt_period_mask(void) 556 { 557 return cpu_online_mask; 558 } 559 #endif 560 561 static inline 562 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 563 { 564 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 565 } 566 567 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 568 { 569 return &rt_rq->tg->rt_bandwidth; 570 } 571 572 #else /* !CONFIG_RT_GROUP_SCHED */ 573 574 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 575 { 576 return rt_rq->rt_runtime; 577 } 578 579 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 580 { 581 return ktime_to_ns(def_rt_bandwidth.rt_period); 582 } 583 584 typedef struct rt_rq *rt_rq_iter_t; 585 586 #define for_each_rt_rq(rt_rq, iter, rq) \ 587 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 588 589 #define for_each_sched_rt_entity(rt_se) \ 590 for (; rt_se; rt_se = NULL) 591 592 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 593 { 594 return NULL; 595 } 596 597 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 598 { 599 struct rq *rq = rq_of_rt_rq(rt_rq); 600 601 if (!rt_rq->rt_nr_running) 602 return; 603 604 enqueue_top_rt_rq(rt_rq); 605 resched_curr(rq); 606 } 607 608 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 609 { 610 dequeue_top_rt_rq(rt_rq); 611 } 612 613 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 614 { 615 return rt_rq->rt_throttled; 616 } 617 618 static inline const struct cpumask *sched_rt_period_mask(void) 619 { 620 return cpu_online_mask; 621 } 622 623 static inline 624 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 625 { 626 return &cpu_rq(cpu)->rt; 627 } 628 629 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 630 { 631 return &def_rt_bandwidth; 632 } 633 634 #endif /* CONFIG_RT_GROUP_SCHED */ 635 636 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 637 { 638 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 639 640 return (hrtimer_active(&rt_b->rt_period_timer) || 641 rt_rq->rt_time < rt_b->rt_runtime); 642 } 643 644 #ifdef CONFIG_SMP 645 /* 646 * We ran out of runtime, see if we can borrow some from our neighbours. 647 */ 648 static void do_balance_runtime(struct rt_rq *rt_rq) 649 { 650 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 651 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 652 int i, weight; 653 u64 rt_period; 654 655 weight = cpumask_weight(rd->span); 656 657 raw_spin_lock(&rt_b->rt_runtime_lock); 658 rt_period = ktime_to_ns(rt_b->rt_period); 659 for_each_cpu(i, rd->span) { 660 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 661 s64 diff; 662 663 if (iter == rt_rq) 664 continue; 665 666 raw_spin_lock(&iter->rt_runtime_lock); 667 /* 668 * Either all rqs have inf runtime and there's nothing to steal 669 * or __disable_runtime() below sets a specific rq to inf to 670 * indicate its been disabled and disalow stealing. 671 */ 672 if (iter->rt_runtime == RUNTIME_INF) 673 goto next; 674 675 /* 676 * From runqueues with spare time, take 1/n part of their 677 * spare time, but no more than our period. 678 */ 679 diff = iter->rt_runtime - iter->rt_time; 680 if (diff > 0) { 681 diff = div_u64((u64)diff, weight); 682 if (rt_rq->rt_runtime + diff > rt_period) 683 diff = rt_period - rt_rq->rt_runtime; 684 iter->rt_runtime -= diff; 685 rt_rq->rt_runtime += diff; 686 if (rt_rq->rt_runtime == rt_period) { 687 raw_spin_unlock(&iter->rt_runtime_lock); 688 break; 689 } 690 } 691 next: 692 raw_spin_unlock(&iter->rt_runtime_lock); 693 } 694 raw_spin_unlock(&rt_b->rt_runtime_lock); 695 } 696 697 /* 698 * Ensure this RQ takes back all the runtime it lend to its neighbours. 699 */ 700 static void __disable_runtime(struct rq *rq) 701 { 702 struct root_domain *rd = rq->rd; 703 rt_rq_iter_t iter; 704 struct rt_rq *rt_rq; 705 706 if (unlikely(!scheduler_running)) 707 return; 708 709 for_each_rt_rq(rt_rq, iter, rq) { 710 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 711 s64 want; 712 int i; 713 714 raw_spin_lock(&rt_b->rt_runtime_lock); 715 raw_spin_lock(&rt_rq->rt_runtime_lock); 716 /* 717 * Either we're all inf and nobody needs to borrow, or we're 718 * already disabled and thus have nothing to do, or we have 719 * exactly the right amount of runtime to take out. 720 */ 721 if (rt_rq->rt_runtime == RUNTIME_INF || 722 rt_rq->rt_runtime == rt_b->rt_runtime) 723 goto balanced; 724 raw_spin_unlock(&rt_rq->rt_runtime_lock); 725 726 /* 727 * Calculate the difference between what we started out with 728 * and what we current have, that's the amount of runtime 729 * we lend and now have to reclaim. 730 */ 731 want = rt_b->rt_runtime - rt_rq->rt_runtime; 732 733 /* 734 * Greedy reclaim, take back as much as we can. 735 */ 736 for_each_cpu(i, rd->span) { 737 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 738 s64 diff; 739 740 /* 741 * Can't reclaim from ourselves or disabled runqueues. 742 */ 743 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 744 continue; 745 746 raw_spin_lock(&iter->rt_runtime_lock); 747 if (want > 0) { 748 diff = min_t(s64, iter->rt_runtime, want); 749 iter->rt_runtime -= diff; 750 want -= diff; 751 } else { 752 iter->rt_runtime -= want; 753 want -= want; 754 } 755 raw_spin_unlock(&iter->rt_runtime_lock); 756 757 if (!want) 758 break; 759 } 760 761 raw_spin_lock(&rt_rq->rt_runtime_lock); 762 /* 763 * We cannot be left wanting - that would mean some runtime 764 * leaked out of the system. 765 */ 766 BUG_ON(want); 767 balanced: 768 /* 769 * Disable all the borrow logic by pretending we have inf 770 * runtime - in which case borrowing doesn't make sense. 771 */ 772 rt_rq->rt_runtime = RUNTIME_INF; 773 rt_rq->rt_throttled = 0; 774 raw_spin_unlock(&rt_rq->rt_runtime_lock); 775 raw_spin_unlock(&rt_b->rt_runtime_lock); 776 777 /* Make rt_rq available for pick_next_task() */ 778 sched_rt_rq_enqueue(rt_rq); 779 } 780 } 781 782 static void __enable_runtime(struct rq *rq) 783 { 784 rt_rq_iter_t iter; 785 struct rt_rq *rt_rq; 786 787 if (unlikely(!scheduler_running)) 788 return; 789 790 /* 791 * Reset each runqueue's bandwidth settings 792 */ 793 for_each_rt_rq(rt_rq, iter, rq) { 794 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 795 796 raw_spin_lock(&rt_b->rt_runtime_lock); 797 raw_spin_lock(&rt_rq->rt_runtime_lock); 798 rt_rq->rt_runtime = rt_b->rt_runtime; 799 rt_rq->rt_time = 0; 800 rt_rq->rt_throttled = 0; 801 raw_spin_unlock(&rt_rq->rt_runtime_lock); 802 raw_spin_unlock(&rt_b->rt_runtime_lock); 803 } 804 } 805 806 static void balance_runtime(struct rt_rq *rt_rq) 807 { 808 if (!sched_feat(RT_RUNTIME_SHARE)) 809 return; 810 811 if (rt_rq->rt_time > rt_rq->rt_runtime) { 812 raw_spin_unlock(&rt_rq->rt_runtime_lock); 813 do_balance_runtime(rt_rq); 814 raw_spin_lock(&rt_rq->rt_runtime_lock); 815 } 816 } 817 #else /* !CONFIG_SMP */ 818 static inline void balance_runtime(struct rt_rq *rt_rq) {} 819 #endif /* CONFIG_SMP */ 820 821 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 822 { 823 int i, idle = 1, throttled = 0; 824 const struct cpumask *span; 825 826 span = sched_rt_period_mask(); 827 #ifdef CONFIG_RT_GROUP_SCHED 828 /* 829 * FIXME: isolated CPUs should really leave the root task group, 830 * whether they are isolcpus or were isolated via cpusets, lest 831 * the timer run on a CPU which does not service all runqueues, 832 * potentially leaving other CPUs indefinitely throttled. If 833 * isolation is really required, the user will turn the throttle 834 * off to kill the perturbations it causes anyway. Meanwhile, 835 * this maintains functionality for boot and/or troubleshooting. 836 */ 837 if (rt_b == &root_task_group.rt_bandwidth) 838 span = cpu_online_mask; 839 #endif 840 for_each_cpu(i, span) { 841 int enqueue = 0; 842 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 843 struct rq *rq = rq_of_rt_rq(rt_rq); 844 int skip; 845 846 /* 847 * When span == cpu_online_mask, taking each rq->lock 848 * can be time-consuming. Try to avoid it when possible. 849 */ 850 raw_spin_lock(&rt_rq->rt_runtime_lock); 851 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; 852 raw_spin_unlock(&rt_rq->rt_runtime_lock); 853 if (skip) 854 continue; 855 856 raw_spin_lock(&rq->lock); 857 if (rt_rq->rt_time) { 858 u64 runtime; 859 860 raw_spin_lock(&rt_rq->rt_runtime_lock); 861 if (rt_rq->rt_throttled) 862 balance_runtime(rt_rq); 863 runtime = rt_rq->rt_runtime; 864 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 865 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 866 rt_rq->rt_throttled = 0; 867 enqueue = 1; 868 869 /* 870 * When we're idle and a woken (rt) task is 871 * throttled check_preempt_curr() will set 872 * skip_update and the time between the wakeup 873 * and this unthrottle will get accounted as 874 * 'runtime'. 875 */ 876 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 877 rq_clock_skip_update(rq, false); 878 } 879 if (rt_rq->rt_time || rt_rq->rt_nr_running) 880 idle = 0; 881 raw_spin_unlock(&rt_rq->rt_runtime_lock); 882 } else if (rt_rq->rt_nr_running) { 883 idle = 0; 884 if (!rt_rq_throttled(rt_rq)) 885 enqueue = 1; 886 } 887 if (rt_rq->rt_throttled) 888 throttled = 1; 889 890 if (enqueue) 891 sched_rt_rq_enqueue(rt_rq); 892 raw_spin_unlock(&rq->lock); 893 } 894 895 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 896 return 1; 897 898 return idle; 899 } 900 901 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 902 { 903 #ifdef CONFIG_RT_GROUP_SCHED 904 struct rt_rq *rt_rq = group_rt_rq(rt_se); 905 906 if (rt_rq) 907 return rt_rq->highest_prio.curr; 908 #endif 909 910 return rt_task_of(rt_se)->prio; 911 } 912 913 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 914 { 915 u64 runtime = sched_rt_runtime(rt_rq); 916 917 if (rt_rq->rt_throttled) 918 return rt_rq_throttled(rt_rq); 919 920 if (runtime >= sched_rt_period(rt_rq)) 921 return 0; 922 923 balance_runtime(rt_rq); 924 runtime = sched_rt_runtime(rt_rq); 925 if (runtime == RUNTIME_INF) 926 return 0; 927 928 if (rt_rq->rt_time > runtime) { 929 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 930 931 /* 932 * Don't actually throttle groups that have no runtime assigned 933 * but accrue some time due to boosting. 934 */ 935 if (likely(rt_b->rt_runtime)) { 936 rt_rq->rt_throttled = 1; 937 printk_deferred_once("sched: RT throttling activated\n"); 938 } else { 939 /* 940 * In case we did anyway, make it go away, 941 * replenishment is a joke, since it will replenish us 942 * with exactly 0 ns. 943 */ 944 rt_rq->rt_time = 0; 945 } 946 947 if (rt_rq_throttled(rt_rq)) { 948 sched_rt_rq_dequeue(rt_rq); 949 return 1; 950 } 951 } 952 953 return 0; 954 } 955 956 /* 957 * Update the current task's runtime statistics. Skip current tasks that 958 * are not in our scheduling class. 959 */ 960 static void update_curr_rt(struct rq *rq) 961 { 962 struct task_struct *curr = rq->curr; 963 struct sched_rt_entity *rt_se = &curr->rt; 964 u64 delta_exec; 965 966 if (curr->sched_class != &rt_sched_class) 967 return; 968 969 delta_exec = rq_clock_task(rq) - curr->se.exec_start; 970 if (unlikely((s64)delta_exec <= 0)) 971 return; 972 973 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 974 cpufreq_update_util(rq, SCHED_CPUFREQ_RT); 975 976 schedstat_set(curr->se.statistics.exec_max, 977 max(curr->se.statistics.exec_max, delta_exec)); 978 979 curr->se.sum_exec_runtime += delta_exec; 980 account_group_exec_runtime(curr, delta_exec); 981 982 curr->se.exec_start = rq_clock_task(rq); 983 cpuacct_charge(curr, delta_exec); 984 985 sched_rt_avg_update(rq, delta_exec); 986 987 if (!rt_bandwidth_enabled()) 988 return; 989 990 for_each_sched_rt_entity(rt_se) { 991 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 992 993 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 994 raw_spin_lock(&rt_rq->rt_runtime_lock); 995 rt_rq->rt_time += delta_exec; 996 if (sched_rt_runtime_exceeded(rt_rq)) 997 resched_curr(rq); 998 raw_spin_unlock(&rt_rq->rt_runtime_lock); 999 } 1000 } 1001 } 1002 1003 static void 1004 dequeue_top_rt_rq(struct rt_rq *rt_rq) 1005 { 1006 struct rq *rq = rq_of_rt_rq(rt_rq); 1007 1008 BUG_ON(&rq->rt != rt_rq); 1009 1010 if (!rt_rq->rt_queued) 1011 return; 1012 1013 BUG_ON(!rq->nr_running); 1014 1015 sub_nr_running(rq, rt_rq->rt_nr_running); 1016 rt_rq->rt_queued = 0; 1017 } 1018 1019 static void 1020 enqueue_top_rt_rq(struct rt_rq *rt_rq) 1021 { 1022 struct rq *rq = rq_of_rt_rq(rt_rq); 1023 1024 BUG_ON(&rq->rt != rt_rq); 1025 1026 if (rt_rq->rt_queued) 1027 return; 1028 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running) 1029 return; 1030 1031 add_nr_running(rq, rt_rq->rt_nr_running); 1032 rt_rq->rt_queued = 1; 1033 } 1034 1035 #if defined CONFIG_SMP 1036 1037 static void 1038 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1039 { 1040 struct rq *rq = rq_of_rt_rq(rt_rq); 1041 1042 #ifdef CONFIG_RT_GROUP_SCHED 1043 /* 1044 * Change rq's cpupri only if rt_rq is the top queue. 1045 */ 1046 if (&rq->rt != rt_rq) 1047 return; 1048 #endif 1049 if (rq->online && prio < prev_prio) 1050 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1051 } 1052 1053 static void 1054 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1055 { 1056 struct rq *rq = rq_of_rt_rq(rt_rq); 1057 1058 #ifdef CONFIG_RT_GROUP_SCHED 1059 /* 1060 * Change rq's cpupri only if rt_rq is the top queue. 1061 */ 1062 if (&rq->rt != rt_rq) 1063 return; 1064 #endif 1065 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1066 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1067 } 1068 1069 #else /* CONFIG_SMP */ 1070 1071 static inline 1072 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1073 static inline 1074 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1075 1076 #endif /* CONFIG_SMP */ 1077 1078 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1079 static void 1080 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1081 { 1082 int prev_prio = rt_rq->highest_prio.curr; 1083 1084 if (prio < prev_prio) 1085 rt_rq->highest_prio.curr = prio; 1086 1087 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1088 } 1089 1090 static void 1091 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1092 { 1093 int prev_prio = rt_rq->highest_prio.curr; 1094 1095 if (rt_rq->rt_nr_running) { 1096 1097 WARN_ON(prio < prev_prio); 1098 1099 /* 1100 * This may have been our highest task, and therefore 1101 * we may have some recomputation to do 1102 */ 1103 if (prio == prev_prio) { 1104 struct rt_prio_array *array = &rt_rq->active; 1105 1106 rt_rq->highest_prio.curr = 1107 sched_find_first_bit(array->bitmap); 1108 } 1109 1110 } else 1111 rt_rq->highest_prio.curr = MAX_RT_PRIO; 1112 1113 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1114 } 1115 1116 #else 1117 1118 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1119 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1120 1121 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1122 1123 #ifdef CONFIG_RT_GROUP_SCHED 1124 1125 static void 1126 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1127 { 1128 if (rt_se_boosted(rt_se)) 1129 rt_rq->rt_nr_boosted++; 1130 1131 if (rt_rq->tg) 1132 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1133 } 1134 1135 static void 1136 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1137 { 1138 if (rt_se_boosted(rt_se)) 1139 rt_rq->rt_nr_boosted--; 1140 1141 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1142 } 1143 1144 #else /* CONFIG_RT_GROUP_SCHED */ 1145 1146 static void 1147 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1148 { 1149 start_rt_bandwidth(&def_rt_bandwidth); 1150 } 1151 1152 static inline 1153 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1154 1155 #endif /* CONFIG_RT_GROUP_SCHED */ 1156 1157 static inline 1158 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1159 { 1160 struct rt_rq *group_rq = group_rt_rq(rt_se); 1161 1162 if (group_rq) 1163 return group_rq->rt_nr_running; 1164 else 1165 return 1; 1166 } 1167 1168 static inline 1169 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) 1170 { 1171 struct rt_rq *group_rq = group_rt_rq(rt_se); 1172 struct task_struct *tsk; 1173 1174 if (group_rq) 1175 return group_rq->rr_nr_running; 1176 1177 tsk = rt_task_of(rt_se); 1178 1179 return (tsk->policy == SCHED_RR) ? 1 : 0; 1180 } 1181 1182 static inline 1183 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1184 { 1185 int prio = rt_se_prio(rt_se); 1186 1187 WARN_ON(!rt_prio(prio)); 1188 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1189 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); 1190 1191 inc_rt_prio(rt_rq, prio); 1192 inc_rt_migration(rt_se, rt_rq); 1193 inc_rt_group(rt_se, rt_rq); 1194 } 1195 1196 static inline 1197 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1198 { 1199 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1200 WARN_ON(!rt_rq->rt_nr_running); 1201 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1202 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); 1203 1204 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1205 dec_rt_migration(rt_se, rt_rq); 1206 dec_rt_group(rt_se, rt_rq); 1207 } 1208 1209 /* 1210 * Change rt_se->run_list location unless SAVE && !MOVE 1211 * 1212 * assumes ENQUEUE/DEQUEUE flags match 1213 */ 1214 static inline bool move_entity(unsigned int flags) 1215 { 1216 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 1217 return false; 1218 1219 return true; 1220 } 1221 1222 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) 1223 { 1224 list_del_init(&rt_se->run_list); 1225 1226 if (list_empty(array->queue + rt_se_prio(rt_se))) 1227 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1228 1229 rt_se->on_list = 0; 1230 } 1231 1232 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1233 { 1234 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1235 struct rt_prio_array *array = &rt_rq->active; 1236 struct rt_rq *group_rq = group_rt_rq(rt_se); 1237 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1238 1239 /* 1240 * Don't enqueue the group if its throttled, or when empty. 1241 * The latter is a consequence of the former when a child group 1242 * get throttled and the current group doesn't have any other 1243 * active members. 1244 */ 1245 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { 1246 if (rt_se->on_list) 1247 __delist_rt_entity(rt_se, array); 1248 return; 1249 } 1250 1251 if (move_entity(flags)) { 1252 WARN_ON_ONCE(rt_se->on_list); 1253 if (flags & ENQUEUE_HEAD) 1254 list_add(&rt_se->run_list, queue); 1255 else 1256 list_add_tail(&rt_se->run_list, queue); 1257 1258 __set_bit(rt_se_prio(rt_se), array->bitmap); 1259 rt_se->on_list = 1; 1260 } 1261 rt_se->on_rq = 1; 1262 1263 inc_rt_tasks(rt_se, rt_rq); 1264 } 1265 1266 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1267 { 1268 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1269 struct rt_prio_array *array = &rt_rq->active; 1270 1271 if (move_entity(flags)) { 1272 WARN_ON_ONCE(!rt_se->on_list); 1273 __delist_rt_entity(rt_se, array); 1274 } 1275 rt_se->on_rq = 0; 1276 1277 dec_rt_tasks(rt_se, rt_rq); 1278 } 1279 1280 /* 1281 * Because the prio of an upper entry depends on the lower 1282 * entries, we must remove entries top - down. 1283 */ 1284 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) 1285 { 1286 struct sched_rt_entity *back = NULL; 1287 1288 for_each_sched_rt_entity(rt_se) { 1289 rt_se->back = back; 1290 back = rt_se; 1291 } 1292 1293 dequeue_top_rt_rq(rt_rq_of_se(back)); 1294 1295 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1296 if (on_rt_rq(rt_se)) 1297 __dequeue_rt_entity(rt_se, flags); 1298 } 1299 } 1300 1301 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1302 { 1303 struct rq *rq = rq_of_rt_se(rt_se); 1304 1305 dequeue_rt_stack(rt_se, flags); 1306 for_each_sched_rt_entity(rt_se) 1307 __enqueue_rt_entity(rt_se, flags); 1308 enqueue_top_rt_rq(&rq->rt); 1309 } 1310 1311 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1312 { 1313 struct rq *rq = rq_of_rt_se(rt_se); 1314 1315 dequeue_rt_stack(rt_se, flags); 1316 1317 for_each_sched_rt_entity(rt_se) { 1318 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1319 1320 if (rt_rq && rt_rq->rt_nr_running) 1321 __enqueue_rt_entity(rt_se, flags); 1322 } 1323 enqueue_top_rt_rq(&rq->rt); 1324 } 1325 1326 /* 1327 * Adding/removing a task to/from a priority array: 1328 */ 1329 static void 1330 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1331 { 1332 struct sched_rt_entity *rt_se = &p->rt; 1333 1334 if (flags & ENQUEUE_WAKEUP) 1335 rt_se->timeout = 0; 1336 1337 enqueue_rt_entity(rt_se, flags); 1338 1339 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1340 enqueue_pushable_task(rq, p); 1341 } 1342 1343 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1344 { 1345 struct sched_rt_entity *rt_se = &p->rt; 1346 1347 update_curr_rt(rq); 1348 dequeue_rt_entity(rt_se, flags); 1349 1350 dequeue_pushable_task(rq, p); 1351 } 1352 1353 /* 1354 * Put task to the head or the end of the run list without the overhead of 1355 * dequeue followed by enqueue. 1356 */ 1357 static void 1358 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1359 { 1360 if (on_rt_rq(rt_se)) { 1361 struct rt_prio_array *array = &rt_rq->active; 1362 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1363 1364 if (head) 1365 list_move(&rt_se->run_list, queue); 1366 else 1367 list_move_tail(&rt_se->run_list, queue); 1368 } 1369 } 1370 1371 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1372 { 1373 struct sched_rt_entity *rt_se = &p->rt; 1374 struct rt_rq *rt_rq; 1375 1376 for_each_sched_rt_entity(rt_se) { 1377 rt_rq = rt_rq_of_se(rt_se); 1378 requeue_rt_entity(rt_rq, rt_se, head); 1379 } 1380 } 1381 1382 static void yield_task_rt(struct rq *rq) 1383 { 1384 requeue_task_rt(rq, rq->curr, 0); 1385 } 1386 1387 #ifdef CONFIG_SMP 1388 static int find_lowest_rq(struct task_struct *task); 1389 1390 static int 1391 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) 1392 { 1393 struct task_struct *curr; 1394 struct rq *rq; 1395 1396 /* For anything but wake ups, just return the task_cpu */ 1397 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 1398 goto out; 1399 1400 rq = cpu_rq(cpu); 1401 1402 rcu_read_lock(); 1403 curr = READ_ONCE(rq->curr); /* unlocked access */ 1404 1405 /* 1406 * If the current task on @p's runqueue is an RT task, then 1407 * try to see if we can wake this RT task up on another 1408 * runqueue. Otherwise simply start this RT task 1409 * on its current runqueue. 1410 * 1411 * We want to avoid overloading runqueues. If the woken 1412 * task is a higher priority, then it will stay on this CPU 1413 * and the lower prio task should be moved to another CPU. 1414 * Even though this will probably make the lower prio task 1415 * lose its cache, we do not want to bounce a higher task 1416 * around just because it gave up its CPU, perhaps for a 1417 * lock? 1418 * 1419 * For equal prio tasks, we just let the scheduler sort it out. 1420 * 1421 * Otherwise, just let it ride on the affined RQ and the 1422 * post-schedule router will push the preempted task away 1423 * 1424 * This test is optimistic, if we get it wrong the load-balancer 1425 * will have to sort it out. 1426 */ 1427 if (curr && unlikely(rt_task(curr)) && 1428 (curr->nr_cpus_allowed < 2 || 1429 curr->prio <= p->prio)) { 1430 int target = find_lowest_rq(p); 1431 1432 /* 1433 * Don't bother moving it if the destination CPU is 1434 * not running a lower priority task. 1435 */ 1436 if (target != -1 && 1437 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1438 cpu = target; 1439 } 1440 rcu_read_unlock(); 1441 1442 out: 1443 return cpu; 1444 } 1445 1446 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1447 { 1448 /* 1449 * Current can't be migrated, useless to reschedule, 1450 * let's hope p can move out. 1451 */ 1452 if (rq->curr->nr_cpus_allowed == 1 || 1453 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1454 return; 1455 1456 /* 1457 * p is migratable, so let's not schedule it and 1458 * see if it is pushed or pulled somewhere else. 1459 */ 1460 if (p->nr_cpus_allowed != 1 1461 && cpupri_find(&rq->rd->cpupri, p, NULL)) 1462 return; 1463 1464 /* 1465 * There appears to be other cpus that can accept 1466 * current and none to run 'p', so lets reschedule 1467 * to try and push current away: 1468 */ 1469 requeue_task_rt(rq, p, 1); 1470 resched_curr(rq); 1471 } 1472 1473 #endif /* CONFIG_SMP */ 1474 1475 /* 1476 * Preempt the current task with a newly woken task if needed: 1477 */ 1478 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1479 { 1480 if (p->prio < rq->curr->prio) { 1481 resched_curr(rq); 1482 return; 1483 } 1484 1485 #ifdef CONFIG_SMP 1486 /* 1487 * If: 1488 * 1489 * - the newly woken task is of equal priority to the current task 1490 * - the newly woken task is non-migratable while current is migratable 1491 * - current will be preempted on the next reschedule 1492 * 1493 * we should check to see if current can readily move to a different 1494 * cpu. If so, we will reschedule to allow the push logic to try 1495 * to move current somewhere else, making room for our non-migratable 1496 * task. 1497 */ 1498 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1499 check_preempt_equal_prio(rq, p); 1500 #endif 1501 } 1502 1503 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 1504 struct rt_rq *rt_rq) 1505 { 1506 struct rt_prio_array *array = &rt_rq->active; 1507 struct sched_rt_entity *next = NULL; 1508 struct list_head *queue; 1509 int idx; 1510 1511 idx = sched_find_first_bit(array->bitmap); 1512 BUG_ON(idx >= MAX_RT_PRIO); 1513 1514 queue = array->queue + idx; 1515 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1516 1517 return next; 1518 } 1519 1520 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1521 { 1522 struct sched_rt_entity *rt_se; 1523 struct task_struct *p; 1524 struct rt_rq *rt_rq = &rq->rt; 1525 1526 do { 1527 rt_se = pick_next_rt_entity(rq, rt_rq); 1528 BUG_ON(!rt_se); 1529 rt_rq = group_rt_rq(rt_se); 1530 } while (rt_rq); 1531 1532 p = rt_task_of(rt_se); 1533 p->se.exec_start = rq_clock_task(rq); 1534 1535 return p; 1536 } 1537 1538 static struct task_struct * 1539 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 1540 { 1541 struct task_struct *p; 1542 struct rt_rq *rt_rq = &rq->rt; 1543 1544 if (need_pull_rt_task(rq, prev)) { 1545 /* 1546 * This is OK, because current is on_cpu, which avoids it being 1547 * picked for load-balance and preemption/IRQs are still 1548 * disabled avoiding further scheduler activity on it and we're 1549 * being very careful to re-start the picking loop. 1550 */ 1551 rq_unpin_lock(rq, rf); 1552 pull_rt_task(rq); 1553 rq_repin_lock(rq, rf); 1554 /* 1555 * pull_rt_task() can drop (and re-acquire) rq->lock; this 1556 * means a dl or stop task can slip in, in which case we need 1557 * to re-start task selection. 1558 */ 1559 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) || 1560 rq->dl.dl_nr_running)) 1561 return RETRY_TASK; 1562 } 1563 1564 /* 1565 * We may dequeue prev's rt_rq in put_prev_task(). 1566 * So, we update time before rt_nr_running check. 1567 */ 1568 if (prev->sched_class == &rt_sched_class) 1569 update_curr_rt(rq); 1570 1571 if (!rt_rq->rt_queued) 1572 return NULL; 1573 1574 put_prev_task(rq, prev); 1575 1576 p = _pick_next_task_rt(rq); 1577 1578 /* The running task is never eligible for pushing */ 1579 dequeue_pushable_task(rq, p); 1580 1581 queue_push_tasks(rq); 1582 1583 return p; 1584 } 1585 1586 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1587 { 1588 update_curr_rt(rq); 1589 1590 /* 1591 * The previous task needs to be made eligible for pushing 1592 * if it is still active 1593 */ 1594 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1595 enqueue_pushable_task(rq, p); 1596 } 1597 1598 #ifdef CONFIG_SMP 1599 1600 /* Only try algorithms three times */ 1601 #define RT_MAX_TRIES 3 1602 1603 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1604 { 1605 if (!task_running(rq, p) && 1606 cpumask_test_cpu(cpu, &p->cpus_allowed)) 1607 return 1; 1608 return 0; 1609 } 1610 1611 /* 1612 * Return the highest pushable rq's task, which is suitable to be executed 1613 * on the cpu, NULL otherwise 1614 */ 1615 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1616 { 1617 struct plist_head *head = &rq->rt.pushable_tasks; 1618 struct task_struct *p; 1619 1620 if (!has_pushable_tasks(rq)) 1621 return NULL; 1622 1623 plist_for_each_entry(p, head, pushable_tasks) { 1624 if (pick_rt_task(rq, p, cpu)) 1625 return p; 1626 } 1627 1628 return NULL; 1629 } 1630 1631 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1632 1633 static int find_lowest_rq(struct task_struct *task) 1634 { 1635 struct sched_domain *sd; 1636 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1637 int this_cpu = smp_processor_id(); 1638 int cpu = task_cpu(task); 1639 1640 /* Make sure the mask is initialized first */ 1641 if (unlikely(!lowest_mask)) 1642 return -1; 1643 1644 if (task->nr_cpus_allowed == 1) 1645 return -1; /* No other targets possible */ 1646 1647 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) 1648 return -1; /* No targets found */ 1649 1650 /* 1651 * At this point we have built a mask of cpus representing the 1652 * lowest priority tasks in the system. Now we want to elect 1653 * the best one based on our affinity and topology. 1654 * 1655 * We prioritize the last cpu that the task executed on since 1656 * it is most likely cache-hot in that location. 1657 */ 1658 if (cpumask_test_cpu(cpu, lowest_mask)) 1659 return cpu; 1660 1661 /* 1662 * Otherwise, we consult the sched_domains span maps to figure 1663 * out which cpu is logically closest to our hot cache data. 1664 */ 1665 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1666 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1667 1668 rcu_read_lock(); 1669 for_each_domain(cpu, sd) { 1670 if (sd->flags & SD_WAKE_AFFINE) { 1671 int best_cpu; 1672 1673 /* 1674 * "this_cpu" is cheaper to preempt than a 1675 * remote processor. 1676 */ 1677 if (this_cpu != -1 && 1678 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1679 rcu_read_unlock(); 1680 return this_cpu; 1681 } 1682 1683 best_cpu = cpumask_first_and(lowest_mask, 1684 sched_domain_span(sd)); 1685 if (best_cpu < nr_cpu_ids) { 1686 rcu_read_unlock(); 1687 return best_cpu; 1688 } 1689 } 1690 } 1691 rcu_read_unlock(); 1692 1693 /* 1694 * And finally, if there were no matches within the domains 1695 * just give the caller *something* to work with from the compatible 1696 * locations. 1697 */ 1698 if (this_cpu != -1) 1699 return this_cpu; 1700 1701 cpu = cpumask_any(lowest_mask); 1702 if (cpu < nr_cpu_ids) 1703 return cpu; 1704 return -1; 1705 } 1706 1707 /* Will lock the rq it finds */ 1708 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1709 { 1710 struct rq *lowest_rq = NULL; 1711 int tries; 1712 int cpu; 1713 1714 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1715 cpu = find_lowest_rq(task); 1716 1717 if ((cpu == -1) || (cpu == rq->cpu)) 1718 break; 1719 1720 lowest_rq = cpu_rq(cpu); 1721 1722 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1723 /* 1724 * Target rq has tasks of equal or higher priority, 1725 * retrying does not release any lock and is unlikely 1726 * to yield a different result. 1727 */ 1728 lowest_rq = NULL; 1729 break; 1730 } 1731 1732 /* if the prio of this runqueue changed, try again */ 1733 if (double_lock_balance(rq, lowest_rq)) { 1734 /* 1735 * We had to unlock the run queue. In 1736 * the mean time, task could have 1737 * migrated already or had its affinity changed. 1738 * Also make sure that it wasn't scheduled on its rq. 1739 */ 1740 if (unlikely(task_rq(task) != rq || 1741 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) || 1742 task_running(rq, task) || 1743 !rt_task(task) || 1744 !task_on_rq_queued(task))) { 1745 1746 double_unlock_balance(rq, lowest_rq); 1747 lowest_rq = NULL; 1748 break; 1749 } 1750 } 1751 1752 /* If this rq is still suitable use it. */ 1753 if (lowest_rq->rt.highest_prio.curr > task->prio) 1754 break; 1755 1756 /* try again */ 1757 double_unlock_balance(rq, lowest_rq); 1758 lowest_rq = NULL; 1759 } 1760 1761 return lowest_rq; 1762 } 1763 1764 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1765 { 1766 struct task_struct *p; 1767 1768 if (!has_pushable_tasks(rq)) 1769 return NULL; 1770 1771 p = plist_first_entry(&rq->rt.pushable_tasks, 1772 struct task_struct, pushable_tasks); 1773 1774 BUG_ON(rq->cpu != task_cpu(p)); 1775 BUG_ON(task_current(rq, p)); 1776 BUG_ON(p->nr_cpus_allowed <= 1); 1777 1778 BUG_ON(!task_on_rq_queued(p)); 1779 BUG_ON(!rt_task(p)); 1780 1781 return p; 1782 } 1783 1784 /* 1785 * If the current CPU has more than one RT task, see if the non 1786 * running task can migrate over to a CPU that is running a task 1787 * of lesser priority. 1788 */ 1789 static int push_rt_task(struct rq *rq) 1790 { 1791 struct task_struct *next_task; 1792 struct rq *lowest_rq; 1793 int ret = 0; 1794 1795 if (!rq->rt.overloaded) 1796 return 0; 1797 1798 next_task = pick_next_pushable_task(rq); 1799 if (!next_task) 1800 return 0; 1801 1802 retry: 1803 if (unlikely(next_task == rq->curr)) { 1804 WARN_ON(1); 1805 return 0; 1806 } 1807 1808 /* 1809 * It's possible that the next_task slipped in of 1810 * higher priority than current. If that's the case 1811 * just reschedule current. 1812 */ 1813 if (unlikely(next_task->prio < rq->curr->prio)) { 1814 resched_curr(rq); 1815 return 0; 1816 } 1817 1818 /* We might release rq lock */ 1819 get_task_struct(next_task); 1820 1821 /* find_lock_lowest_rq locks the rq if found */ 1822 lowest_rq = find_lock_lowest_rq(next_task, rq); 1823 if (!lowest_rq) { 1824 struct task_struct *task; 1825 /* 1826 * find_lock_lowest_rq releases rq->lock 1827 * so it is possible that next_task has migrated. 1828 * 1829 * We need to make sure that the task is still on the same 1830 * run-queue and is also still the next task eligible for 1831 * pushing. 1832 */ 1833 task = pick_next_pushable_task(rq); 1834 if (task == next_task) { 1835 /* 1836 * The task hasn't migrated, and is still the next 1837 * eligible task, but we failed to find a run-queue 1838 * to push it to. Do not retry in this case, since 1839 * other cpus will pull from us when ready. 1840 */ 1841 goto out; 1842 } 1843 1844 if (!task) 1845 /* No more tasks, just exit */ 1846 goto out; 1847 1848 /* 1849 * Something has shifted, try again. 1850 */ 1851 put_task_struct(next_task); 1852 next_task = task; 1853 goto retry; 1854 } 1855 1856 deactivate_task(rq, next_task, 0); 1857 set_task_cpu(next_task, lowest_rq->cpu); 1858 activate_task(lowest_rq, next_task, 0); 1859 ret = 1; 1860 1861 resched_curr(lowest_rq); 1862 1863 double_unlock_balance(rq, lowest_rq); 1864 1865 out: 1866 put_task_struct(next_task); 1867 1868 return ret; 1869 } 1870 1871 static void push_rt_tasks(struct rq *rq) 1872 { 1873 /* push_rt_task will return true if it moved an RT */ 1874 while (push_rt_task(rq)) 1875 ; 1876 } 1877 1878 #ifdef HAVE_RT_PUSH_IPI 1879 /* 1880 * The search for the next cpu always starts at rq->cpu and ends 1881 * when we reach rq->cpu again. It will never return rq->cpu. 1882 * This returns the next cpu to check, or nr_cpu_ids if the loop 1883 * is complete. 1884 * 1885 * rq->rt.push_cpu holds the last cpu returned by this function, 1886 * or if this is the first instance, it must hold rq->cpu. 1887 */ 1888 static int rto_next_cpu(struct rq *rq) 1889 { 1890 int prev_cpu = rq->rt.push_cpu; 1891 int cpu; 1892 1893 cpu = cpumask_next(prev_cpu, rq->rd->rto_mask); 1894 1895 /* 1896 * If the previous cpu is less than the rq's CPU, then it already 1897 * passed the end of the mask, and has started from the beginning. 1898 * We end if the next CPU is greater or equal to rq's CPU. 1899 */ 1900 if (prev_cpu < rq->cpu) { 1901 if (cpu >= rq->cpu) 1902 return nr_cpu_ids; 1903 1904 } else if (cpu >= nr_cpu_ids) { 1905 /* 1906 * We passed the end of the mask, start at the beginning. 1907 * If the result is greater or equal to the rq's CPU, then 1908 * the loop is finished. 1909 */ 1910 cpu = cpumask_first(rq->rd->rto_mask); 1911 if (cpu >= rq->cpu) 1912 return nr_cpu_ids; 1913 } 1914 rq->rt.push_cpu = cpu; 1915 1916 /* Return cpu to let the caller know if the loop is finished or not */ 1917 return cpu; 1918 } 1919 1920 static int find_next_push_cpu(struct rq *rq) 1921 { 1922 struct rq *next_rq; 1923 int cpu; 1924 1925 while (1) { 1926 cpu = rto_next_cpu(rq); 1927 if (cpu >= nr_cpu_ids) 1928 break; 1929 next_rq = cpu_rq(cpu); 1930 1931 /* Make sure the next rq can push to this rq */ 1932 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr) 1933 break; 1934 } 1935 1936 return cpu; 1937 } 1938 1939 #define RT_PUSH_IPI_EXECUTING 1 1940 #define RT_PUSH_IPI_RESTART 2 1941 1942 /* 1943 * When a high priority task schedules out from a CPU and a lower priority 1944 * task is scheduled in, a check is made to see if there's any RT tasks 1945 * on other CPUs that are waiting to run because a higher priority RT task 1946 * is currently running on its CPU. In this case, the CPU with multiple RT 1947 * tasks queued on it (overloaded) needs to be notified that a CPU has opened 1948 * up that may be able to run one of its non-running queued RT tasks. 1949 * 1950 * On large CPU boxes, there's the case that several CPUs could schedule 1951 * a lower priority task at the same time, in which case it will look for 1952 * any overloaded CPUs that it could pull a task from. To do this, the runqueue 1953 * lock must be taken from that overloaded CPU. Having 10s of CPUs all fighting 1954 * for a single overloaded CPU's runqueue lock can produce a large latency. 1955 * (This has actually been observed on large boxes running cyclictest). 1956 * Instead of taking the runqueue lock of the overloaded CPU, each of the 1957 * CPUs that scheduled a lower priority task simply sends an IPI to the 1958 * overloaded CPU. An IPI is much cheaper than taking an runqueue lock with 1959 * lots of contention. The overloaded CPU will look to push its non-running 1960 * RT task off, and if it does, it can then ignore the other IPIs coming 1961 * in, and just pass those IPIs off to any other overloaded CPU. 1962 * 1963 * When a CPU schedules a lower priority task, it only sends an IPI to 1964 * the "next" CPU that has overloaded RT tasks. This prevents IPI storms, 1965 * as having 10 CPUs scheduling lower priority tasks and 10 CPUs with 1966 * RT overloaded tasks, would cause 100 IPIs to go out at once. 1967 * 1968 * The overloaded RT CPU, when receiving an IPI, will try to push off its 1969 * overloaded RT tasks and then send an IPI to the next CPU that has 1970 * overloaded RT tasks. This stops when all CPUs with overloaded RT tasks 1971 * have completed. Just because a CPU may have pushed off its own overloaded 1972 * RT task does not mean it should stop sending the IPI around to other 1973 * overloaded CPUs. There may be another RT task waiting to run on one of 1974 * those CPUs that are of higher priority than the one that was just 1975 * pushed. 1976 * 1977 * An optimization that could possibly be made is to make a CPU array similar 1978 * to the cpupri array mask of all running RT tasks, but for the overloaded 1979 * case, then the IPI could be sent to only the CPU with the highest priority 1980 * RT task waiting, and that CPU could send off further IPIs to the CPU with 1981 * the next highest waiting task. Since the overloaded case is much less likely 1982 * to happen, the complexity of this implementation may not be worth it. 1983 * Instead, just send an IPI around to all overloaded CPUs. 1984 * 1985 * The rq->rt.push_flags holds the status of the IPI that is going around. 1986 * A run queue can only send out a single IPI at a time. The possible flags 1987 * for rq->rt.push_flags are: 1988 * 1989 * (None or zero): No IPI is going around for the current rq 1990 * RT_PUSH_IPI_EXECUTING: An IPI for the rq is being passed around 1991 * RT_PUSH_IPI_RESTART: The priority of the running task for the rq 1992 * has changed, and the IPI should restart 1993 * circulating the overloaded CPUs again. 1994 * 1995 * rq->rt.push_cpu contains the CPU that is being sent the IPI. It is updated 1996 * before sending to the next CPU. 1997 * 1998 * Instead of having all CPUs that schedule a lower priority task send 1999 * an IPI to the same "first" CPU in the RT overload mask, they send it 2000 * to the next overloaded CPU after their own CPU. This helps distribute 2001 * the work when there's more than one overloaded CPU and multiple CPUs 2002 * scheduling in lower priority tasks. 2003 * 2004 * When a rq schedules a lower priority task than what was currently 2005 * running, the next CPU with overloaded RT tasks is examined first. 2006 * That is, if CPU 1 and 5 are overloaded, and CPU 3 schedules a lower 2007 * priority task, it will send an IPI first to CPU 5, then CPU 5 will 2008 * send to CPU 1 if it is still overloaded. CPU 1 will clear the 2009 * rq->rt.push_flags if RT_PUSH_IPI_RESTART is not set. 2010 * 2011 * The first CPU to notice IPI_RESTART is set, will clear that flag and then 2012 * send an IPI to the next overloaded CPU after the rq->cpu and not the next 2013 * CPU after push_cpu. That is, if CPU 1, 4 and 5 are overloaded when CPU 3 2014 * schedules a lower priority task, and the IPI_RESTART gets set while the 2015 * handling is being done on CPU 5, it will clear the flag and send it back to 2016 * CPU 4 instead of CPU 1. 2017 * 2018 * Note, the above logic can be disabled by turning off the sched_feature 2019 * RT_PUSH_IPI. Then the rq lock of the overloaded CPU will simply be 2020 * taken by the CPU requesting a pull and the waiting RT task will be pulled 2021 * by that CPU. This may be fine for machines with few CPUs. 2022 */ 2023 static void tell_cpu_to_push(struct rq *rq) 2024 { 2025 int cpu; 2026 2027 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) { 2028 raw_spin_lock(&rq->rt.push_lock); 2029 /* Make sure it's still executing */ 2030 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) { 2031 /* 2032 * Tell the IPI to restart the loop as things have 2033 * changed since it started. 2034 */ 2035 rq->rt.push_flags |= RT_PUSH_IPI_RESTART; 2036 raw_spin_unlock(&rq->rt.push_lock); 2037 return; 2038 } 2039 raw_spin_unlock(&rq->rt.push_lock); 2040 } 2041 2042 /* When here, there's no IPI going around */ 2043 2044 rq->rt.push_cpu = rq->cpu; 2045 cpu = find_next_push_cpu(rq); 2046 if (cpu >= nr_cpu_ids) 2047 return; 2048 2049 rq->rt.push_flags = RT_PUSH_IPI_EXECUTING; 2050 2051 irq_work_queue_on(&rq->rt.push_work, cpu); 2052 } 2053 2054 /* Called from hardirq context */ 2055 static void try_to_push_tasks(void *arg) 2056 { 2057 struct rt_rq *rt_rq = arg; 2058 struct rq *rq, *src_rq; 2059 int this_cpu; 2060 int cpu; 2061 2062 this_cpu = rt_rq->push_cpu; 2063 2064 /* Paranoid check */ 2065 BUG_ON(this_cpu != smp_processor_id()); 2066 2067 rq = cpu_rq(this_cpu); 2068 src_rq = rq_of_rt_rq(rt_rq); 2069 2070 again: 2071 if (has_pushable_tasks(rq)) { 2072 raw_spin_lock(&rq->lock); 2073 push_rt_task(rq); 2074 raw_spin_unlock(&rq->lock); 2075 } 2076 2077 /* Pass the IPI to the next rt overloaded queue */ 2078 raw_spin_lock(&rt_rq->push_lock); 2079 /* 2080 * If the source queue changed since the IPI went out, 2081 * we need to restart the search from that CPU again. 2082 */ 2083 if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) { 2084 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART; 2085 rt_rq->push_cpu = src_rq->cpu; 2086 } 2087 2088 cpu = find_next_push_cpu(src_rq); 2089 2090 if (cpu >= nr_cpu_ids) 2091 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING; 2092 raw_spin_unlock(&rt_rq->push_lock); 2093 2094 if (cpu >= nr_cpu_ids) 2095 return; 2096 2097 /* 2098 * It is possible that a restart caused this CPU to be 2099 * chosen again. Don't bother with an IPI, just see if we 2100 * have more to push. 2101 */ 2102 if (unlikely(cpu == rq->cpu)) 2103 goto again; 2104 2105 /* Try the next RT overloaded CPU */ 2106 irq_work_queue_on(&rt_rq->push_work, cpu); 2107 } 2108 2109 static void push_irq_work_func(struct irq_work *work) 2110 { 2111 struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work); 2112 2113 try_to_push_tasks(rt_rq); 2114 } 2115 #endif /* HAVE_RT_PUSH_IPI */ 2116 2117 static void pull_rt_task(struct rq *this_rq) 2118 { 2119 int this_cpu = this_rq->cpu, cpu; 2120 bool resched = false; 2121 struct task_struct *p; 2122 struct rq *src_rq; 2123 2124 if (likely(!rt_overloaded(this_rq))) 2125 return; 2126 2127 /* 2128 * Match the barrier from rt_set_overloaded; this guarantees that if we 2129 * see overloaded we must also see the rto_mask bit. 2130 */ 2131 smp_rmb(); 2132 2133 #ifdef HAVE_RT_PUSH_IPI 2134 if (sched_feat(RT_PUSH_IPI)) { 2135 tell_cpu_to_push(this_rq); 2136 return; 2137 } 2138 #endif 2139 2140 for_each_cpu(cpu, this_rq->rd->rto_mask) { 2141 if (this_cpu == cpu) 2142 continue; 2143 2144 src_rq = cpu_rq(cpu); 2145 2146 /* 2147 * Don't bother taking the src_rq->lock if the next highest 2148 * task is known to be lower-priority than our current task. 2149 * This may look racy, but if this value is about to go 2150 * logically higher, the src_rq will push this task away. 2151 * And if its going logically lower, we do not care 2152 */ 2153 if (src_rq->rt.highest_prio.next >= 2154 this_rq->rt.highest_prio.curr) 2155 continue; 2156 2157 /* 2158 * We can potentially drop this_rq's lock in 2159 * double_lock_balance, and another CPU could 2160 * alter this_rq 2161 */ 2162 double_lock_balance(this_rq, src_rq); 2163 2164 /* 2165 * We can pull only a task, which is pushable 2166 * on its rq, and no others. 2167 */ 2168 p = pick_highest_pushable_task(src_rq, this_cpu); 2169 2170 /* 2171 * Do we have an RT task that preempts 2172 * the to-be-scheduled task? 2173 */ 2174 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 2175 WARN_ON(p == src_rq->curr); 2176 WARN_ON(!task_on_rq_queued(p)); 2177 2178 /* 2179 * There's a chance that p is higher in priority 2180 * than what's currently running on its cpu. 2181 * This is just that p is wakeing up and hasn't 2182 * had a chance to schedule. We only pull 2183 * p if it is lower in priority than the 2184 * current task on the run queue 2185 */ 2186 if (p->prio < src_rq->curr->prio) 2187 goto skip; 2188 2189 resched = true; 2190 2191 deactivate_task(src_rq, p, 0); 2192 set_task_cpu(p, this_cpu); 2193 activate_task(this_rq, p, 0); 2194 /* 2195 * We continue with the search, just in 2196 * case there's an even higher prio task 2197 * in another runqueue. (low likelihood 2198 * but possible) 2199 */ 2200 } 2201 skip: 2202 double_unlock_balance(this_rq, src_rq); 2203 } 2204 2205 if (resched) 2206 resched_curr(this_rq); 2207 } 2208 2209 /* 2210 * If we are not running and we are not going to reschedule soon, we should 2211 * try to push tasks away now 2212 */ 2213 static void task_woken_rt(struct rq *rq, struct task_struct *p) 2214 { 2215 if (!task_running(rq, p) && 2216 !test_tsk_need_resched(rq->curr) && 2217 p->nr_cpus_allowed > 1 && 2218 (dl_task(rq->curr) || rt_task(rq->curr)) && 2219 (rq->curr->nr_cpus_allowed < 2 || 2220 rq->curr->prio <= p->prio)) 2221 push_rt_tasks(rq); 2222 } 2223 2224 /* Assumes rq->lock is held */ 2225 static void rq_online_rt(struct rq *rq) 2226 { 2227 if (rq->rt.overloaded) 2228 rt_set_overload(rq); 2229 2230 __enable_runtime(rq); 2231 2232 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2233 } 2234 2235 /* Assumes rq->lock is held */ 2236 static void rq_offline_rt(struct rq *rq) 2237 { 2238 if (rq->rt.overloaded) 2239 rt_clear_overload(rq); 2240 2241 __disable_runtime(rq); 2242 2243 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 2244 } 2245 2246 /* 2247 * When switch from the rt queue, we bring ourselves to a position 2248 * that we might want to pull RT tasks from other runqueues. 2249 */ 2250 static void switched_from_rt(struct rq *rq, struct task_struct *p) 2251 { 2252 /* 2253 * If there are other RT tasks then we will reschedule 2254 * and the scheduling of the other RT tasks will handle 2255 * the balancing. But if we are the last RT task 2256 * we may need to handle the pulling of RT tasks 2257 * now. 2258 */ 2259 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 2260 return; 2261 2262 queue_pull_task(rq); 2263 } 2264 2265 void __init init_sched_rt_class(void) 2266 { 2267 unsigned int i; 2268 2269 for_each_possible_cpu(i) { 2270 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 2271 GFP_KERNEL, cpu_to_node(i)); 2272 } 2273 } 2274 #endif /* CONFIG_SMP */ 2275 2276 /* 2277 * When switching a task to RT, we may overload the runqueue 2278 * with RT tasks. In this case we try to push them off to 2279 * other runqueues. 2280 */ 2281 static void switched_to_rt(struct rq *rq, struct task_struct *p) 2282 { 2283 /* 2284 * If we are already running, then there's nothing 2285 * that needs to be done. But if we are not running 2286 * we may need to preempt the current running task. 2287 * If that current running task is also an RT task 2288 * then see if we can move to another run queue. 2289 */ 2290 if (task_on_rq_queued(p) && rq->curr != p) { 2291 #ifdef CONFIG_SMP 2292 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) 2293 queue_push_tasks(rq); 2294 #endif /* CONFIG_SMP */ 2295 if (p->prio < rq->curr->prio) 2296 resched_curr(rq); 2297 } 2298 } 2299 2300 /* 2301 * Priority of the task has changed. This may cause 2302 * us to initiate a push or pull. 2303 */ 2304 static void 2305 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2306 { 2307 if (!task_on_rq_queued(p)) 2308 return; 2309 2310 if (rq->curr == p) { 2311 #ifdef CONFIG_SMP 2312 /* 2313 * If our priority decreases while running, we 2314 * may need to pull tasks to this runqueue. 2315 */ 2316 if (oldprio < p->prio) 2317 queue_pull_task(rq); 2318 2319 /* 2320 * If there's a higher priority task waiting to run 2321 * then reschedule. 2322 */ 2323 if (p->prio > rq->rt.highest_prio.curr) 2324 resched_curr(rq); 2325 #else 2326 /* For UP simply resched on drop of prio */ 2327 if (oldprio < p->prio) 2328 resched_curr(rq); 2329 #endif /* CONFIG_SMP */ 2330 } else { 2331 /* 2332 * This task is not running, but if it is 2333 * greater than the current running task 2334 * then reschedule. 2335 */ 2336 if (p->prio < rq->curr->prio) 2337 resched_curr(rq); 2338 } 2339 } 2340 2341 #ifdef CONFIG_POSIX_TIMERS 2342 static void watchdog(struct rq *rq, struct task_struct *p) 2343 { 2344 unsigned long soft, hard; 2345 2346 /* max may change after cur was read, this will be fixed next tick */ 2347 soft = task_rlimit(p, RLIMIT_RTTIME); 2348 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2349 2350 if (soft != RLIM_INFINITY) { 2351 unsigned long next; 2352 2353 if (p->rt.watchdog_stamp != jiffies) { 2354 p->rt.timeout++; 2355 p->rt.watchdog_stamp = jiffies; 2356 } 2357 2358 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2359 if (p->rt.timeout > next) 2360 p->cputime_expires.sched_exp = p->se.sum_exec_runtime; 2361 } 2362 } 2363 #else 2364 static inline void watchdog(struct rq *rq, struct task_struct *p) { } 2365 #endif 2366 2367 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2368 { 2369 struct sched_rt_entity *rt_se = &p->rt; 2370 2371 update_curr_rt(rq); 2372 2373 watchdog(rq, p); 2374 2375 /* 2376 * RR tasks need a special form of timeslice management. 2377 * FIFO tasks have no timeslices. 2378 */ 2379 if (p->policy != SCHED_RR) 2380 return; 2381 2382 if (--p->rt.time_slice) 2383 return; 2384 2385 p->rt.time_slice = sched_rr_timeslice; 2386 2387 /* 2388 * Requeue to the end of queue if we (and all of our ancestors) are not 2389 * the only element on the queue 2390 */ 2391 for_each_sched_rt_entity(rt_se) { 2392 if (rt_se->run_list.prev != rt_se->run_list.next) { 2393 requeue_task_rt(rq, p, 0); 2394 resched_curr(rq); 2395 return; 2396 } 2397 } 2398 } 2399 2400 static void set_curr_task_rt(struct rq *rq) 2401 { 2402 struct task_struct *p = rq->curr; 2403 2404 p->se.exec_start = rq_clock_task(rq); 2405 2406 /* The running task is never eligible for pushing */ 2407 dequeue_pushable_task(rq, p); 2408 } 2409 2410 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2411 { 2412 /* 2413 * Time slice is 0 for SCHED_FIFO tasks 2414 */ 2415 if (task->policy == SCHED_RR) 2416 return sched_rr_timeslice; 2417 else 2418 return 0; 2419 } 2420 2421 const struct sched_class rt_sched_class = { 2422 .next = &fair_sched_class, 2423 .enqueue_task = enqueue_task_rt, 2424 .dequeue_task = dequeue_task_rt, 2425 .yield_task = yield_task_rt, 2426 2427 .check_preempt_curr = check_preempt_curr_rt, 2428 2429 .pick_next_task = pick_next_task_rt, 2430 .put_prev_task = put_prev_task_rt, 2431 2432 #ifdef CONFIG_SMP 2433 .select_task_rq = select_task_rq_rt, 2434 2435 .set_cpus_allowed = set_cpus_allowed_common, 2436 .rq_online = rq_online_rt, 2437 .rq_offline = rq_offline_rt, 2438 .task_woken = task_woken_rt, 2439 .switched_from = switched_from_rt, 2440 #endif 2441 2442 .set_curr_task = set_curr_task_rt, 2443 .task_tick = task_tick_rt, 2444 2445 .get_rr_interval = get_rr_interval_rt, 2446 2447 .prio_changed = prio_changed_rt, 2448 .switched_to = switched_to_rt, 2449 2450 .update_curr = update_curr_rt, 2451 }; 2452 2453 #ifdef CONFIG_RT_GROUP_SCHED 2454 /* 2455 * Ensure that the real time constraints are schedulable. 2456 */ 2457 static DEFINE_MUTEX(rt_constraints_mutex); 2458 2459 /* Must be called with tasklist_lock held */ 2460 static inline int tg_has_rt_tasks(struct task_group *tg) 2461 { 2462 struct task_struct *g, *p; 2463 2464 /* 2465 * Autogroups do not have RT tasks; see autogroup_create(). 2466 */ 2467 if (task_group_is_autogroup(tg)) 2468 return 0; 2469 2470 for_each_process_thread(g, p) { 2471 if (rt_task(p) && task_group(p) == tg) 2472 return 1; 2473 } 2474 2475 return 0; 2476 } 2477 2478 struct rt_schedulable_data { 2479 struct task_group *tg; 2480 u64 rt_period; 2481 u64 rt_runtime; 2482 }; 2483 2484 static int tg_rt_schedulable(struct task_group *tg, void *data) 2485 { 2486 struct rt_schedulable_data *d = data; 2487 struct task_group *child; 2488 unsigned long total, sum = 0; 2489 u64 period, runtime; 2490 2491 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2492 runtime = tg->rt_bandwidth.rt_runtime; 2493 2494 if (tg == d->tg) { 2495 period = d->rt_period; 2496 runtime = d->rt_runtime; 2497 } 2498 2499 /* 2500 * Cannot have more runtime than the period. 2501 */ 2502 if (runtime > period && runtime != RUNTIME_INF) 2503 return -EINVAL; 2504 2505 /* 2506 * Ensure we don't starve existing RT tasks. 2507 */ 2508 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 2509 return -EBUSY; 2510 2511 total = to_ratio(period, runtime); 2512 2513 /* 2514 * Nobody can have more than the global setting allows. 2515 */ 2516 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 2517 return -EINVAL; 2518 2519 /* 2520 * The sum of our children's runtime should not exceed our own. 2521 */ 2522 list_for_each_entry_rcu(child, &tg->children, siblings) { 2523 period = ktime_to_ns(child->rt_bandwidth.rt_period); 2524 runtime = child->rt_bandwidth.rt_runtime; 2525 2526 if (child == d->tg) { 2527 period = d->rt_period; 2528 runtime = d->rt_runtime; 2529 } 2530 2531 sum += to_ratio(period, runtime); 2532 } 2533 2534 if (sum > total) 2535 return -EINVAL; 2536 2537 return 0; 2538 } 2539 2540 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 2541 { 2542 int ret; 2543 2544 struct rt_schedulable_data data = { 2545 .tg = tg, 2546 .rt_period = period, 2547 .rt_runtime = runtime, 2548 }; 2549 2550 rcu_read_lock(); 2551 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 2552 rcu_read_unlock(); 2553 2554 return ret; 2555 } 2556 2557 static int tg_set_rt_bandwidth(struct task_group *tg, 2558 u64 rt_period, u64 rt_runtime) 2559 { 2560 int i, err = 0; 2561 2562 /* 2563 * Disallowing the root group RT runtime is BAD, it would disallow the 2564 * kernel creating (and or operating) RT threads. 2565 */ 2566 if (tg == &root_task_group && rt_runtime == 0) 2567 return -EINVAL; 2568 2569 /* No period doesn't make any sense. */ 2570 if (rt_period == 0) 2571 return -EINVAL; 2572 2573 mutex_lock(&rt_constraints_mutex); 2574 read_lock(&tasklist_lock); 2575 err = __rt_schedulable(tg, rt_period, rt_runtime); 2576 if (err) 2577 goto unlock; 2578 2579 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2580 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 2581 tg->rt_bandwidth.rt_runtime = rt_runtime; 2582 2583 for_each_possible_cpu(i) { 2584 struct rt_rq *rt_rq = tg->rt_rq[i]; 2585 2586 raw_spin_lock(&rt_rq->rt_runtime_lock); 2587 rt_rq->rt_runtime = rt_runtime; 2588 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2589 } 2590 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2591 unlock: 2592 read_unlock(&tasklist_lock); 2593 mutex_unlock(&rt_constraints_mutex); 2594 2595 return err; 2596 } 2597 2598 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 2599 { 2600 u64 rt_runtime, rt_period; 2601 2602 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2603 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 2604 if (rt_runtime_us < 0) 2605 rt_runtime = RUNTIME_INF; 2606 2607 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2608 } 2609 2610 long sched_group_rt_runtime(struct task_group *tg) 2611 { 2612 u64 rt_runtime_us; 2613 2614 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 2615 return -1; 2616 2617 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 2618 do_div(rt_runtime_us, NSEC_PER_USEC); 2619 return rt_runtime_us; 2620 } 2621 2622 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 2623 { 2624 u64 rt_runtime, rt_period; 2625 2626 rt_period = rt_period_us * NSEC_PER_USEC; 2627 rt_runtime = tg->rt_bandwidth.rt_runtime; 2628 2629 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2630 } 2631 2632 long sched_group_rt_period(struct task_group *tg) 2633 { 2634 u64 rt_period_us; 2635 2636 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 2637 do_div(rt_period_us, NSEC_PER_USEC); 2638 return rt_period_us; 2639 } 2640 2641 static int sched_rt_global_constraints(void) 2642 { 2643 int ret = 0; 2644 2645 mutex_lock(&rt_constraints_mutex); 2646 read_lock(&tasklist_lock); 2647 ret = __rt_schedulable(NULL, 0, 0); 2648 read_unlock(&tasklist_lock); 2649 mutex_unlock(&rt_constraints_mutex); 2650 2651 return ret; 2652 } 2653 2654 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 2655 { 2656 /* Don't accept realtime tasks when there is no way for them to run */ 2657 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 2658 return 0; 2659 2660 return 1; 2661 } 2662 2663 #else /* !CONFIG_RT_GROUP_SCHED */ 2664 static int sched_rt_global_constraints(void) 2665 { 2666 unsigned long flags; 2667 int i; 2668 2669 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 2670 for_each_possible_cpu(i) { 2671 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 2672 2673 raw_spin_lock(&rt_rq->rt_runtime_lock); 2674 rt_rq->rt_runtime = global_rt_runtime(); 2675 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2676 } 2677 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 2678 2679 return 0; 2680 } 2681 #endif /* CONFIG_RT_GROUP_SCHED */ 2682 2683 static int sched_rt_global_validate(void) 2684 { 2685 if (sysctl_sched_rt_period <= 0) 2686 return -EINVAL; 2687 2688 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 2689 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 2690 return -EINVAL; 2691 2692 return 0; 2693 } 2694 2695 static void sched_rt_do_global(void) 2696 { 2697 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 2698 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 2699 } 2700 2701 int sched_rt_handler(struct ctl_table *table, int write, 2702 void __user *buffer, size_t *lenp, 2703 loff_t *ppos) 2704 { 2705 int old_period, old_runtime; 2706 static DEFINE_MUTEX(mutex); 2707 int ret; 2708 2709 mutex_lock(&mutex); 2710 old_period = sysctl_sched_rt_period; 2711 old_runtime = sysctl_sched_rt_runtime; 2712 2713 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2714 2715 if (!ret && write) { 2716 ret = sched_rt_global_validate(); 2717 if (ret) 2718 goto undo; 2719 2720 ret = sched_dl_global_validate(); 2721 if (ret) 2722 goto undo; 2723 2724 ret = sched_rt_global_constraints(); 2725 if (ret) 2726 goto undo; 2727 2728 sched_rt_do_global(); 2729 sched_dl_do_global(); 2730 } 2731 if (0) { 2732 undo: 2733 sysctl_sched_rt_period = old_period; 2734 sysctl_sched_rt_runtime = old_runtime; 2735 } 2736 mutex_unlock(&mutex); 2737 2738 return ret; 2739 } 2740 2741 int sched_rr_handler(struct ctl_table *table, int write, 2742 void __user *buffer, size_t *lenp, 2743 loff_t *ppos) 2744 { 2745 int ret; 2746 static DEFINE_MUTEX(mutex); 2747 2748 mutex_lock(&mutex); 2749 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2750 /* 2751 * Make sure that internally we keep jiffies. 2752 * Also, writing zero resets the timeslice to default: 2753 */ 2754 if (!ret && write) { 2755 sched_rr_timeslice = 2756 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 2757 msecs_to_jiffies(sysctl_sched_rr_timeslice); 2758 } 2759 mutex_unlock(&mutex); 2760 return ret; 2761 } 2762 2763 #ifdef CONFIG_SCHED_DEBUG 2764 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2765 2766 void print_rt_stats(struct seq_file *m, int cpu) 2767 { 2768 rt_rq_iter_t iter; 2769 struct rt_rq *rt_rq; 2770 2771 rcu_read_lock(); 2772 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2773 print_rt_rq(m, cpu, rt_rq); 2774 rcu_read_unlock(); 2775 } 2776 #endif /* CONFIG_SCHED_DEBUG */ 2777