xref: /linux/kernel/sched/rt.c (revision b1a54551dd9ed5ef1763b97b35a0999ca002b95c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 
7 int sched_rr_timeslice = RR_TIMESLICE;
8 /* More than 4 hours if BW_SHIFT equals 20. */
9 static const u64 max_rt_runtime = MAX_BW;
10 
11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
12 
13 struct rt_bandwidth def_rt_bandwidth;
14 
15 /*
16  * period over which we measure -rt task CPU usage in us.
17  * default: 1s
18  */
19 int sysctl_sched_rt_period = 1000000;
20 
21 /*
22  * part of the period that we allow rt tasks to run in us.
23  * default: 0.95s
24  */
25 int sysctl_sched_rt_runtime = 950000;
26 
27 #ifdef CONFIG_SYSCTL
28 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
29 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
30 		size_t *lenp, loff_t *ppos);
31 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
32 		size_t *lenp, loff_t *ppos);
33 static struct ctl_table sched_rt_sysctls[] = {
34 	{
35 		.procname       = "sched_rt_period_us",
36 		.data           = &sysctl_sched_rt_period,
37 		.maxlen         = sizeof(int),
38 		.mode           = 0644,
39 		.proc_handler   = sched_rt_handler,
40 		.extra1         = SYSCTL_ONE,
41 		.extra2         = SYSCTL_INT_MAX,
42 	},
43 	{
44 		.procname       = "sched_rt_runtime_us",
45 		.data           = &sysctl_sched_rt_runtime,
46 		.maxlen         = sizeof(int),
47 		.mode           = 0644,
48 		.proc_handler   = sched_rt_handler,
49 		.extra1         = SYSCTL_NEG_ONE,
50 		.extra2         = (void *)&sysctl_sched_rt_period,
51 	},
52 	{
53 		.procname       = "sched_rr_timeslice_ms",
54 		.data           = &sysctl_sched_rr_timeslice,
55 		.maxlen         = sizeof(int),
56 		.mode           = 0644,
57 		.proc_handler   = sched_rr_handler,
58 	},
59 	{}
60 };
61 
62 static int __init sched_rt_sysctl_init(void)
63 {
64 	register_sysctl_init("kernel", sched_rt_sysctls);
65 	return 0;
66 }
67 late_initcall(sched_rt_sysctl_init);
68 #endif
69 
70 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
71 {
72 	struct rt_bandwidth *rt_b =
73 		container_of(timer, struct rt_bandwidth, rt_period_timer);
74 	int idle = 0;
75 	int overrun;
76 
77 	raw_spin_lock(&rt_b->rt_runtime_lock);
78 	for (;;) {
79 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
80 		if (!overrun)
81 			break;
82 
83 		raw_spin_unlock(&rt_b->rt_runtime_lock);
84 		idle = do_sched_rt_period_timer(rt_b, overrun);
85 		raw_spin_lock(&rt_b->rt_runtime_lock);
86 	}
87 	if (idle)
88 		rt_b->rt_period_active = 0;
89 	raw_spin_unlock(&rt_b->rt_runtime_lock);
90 
91 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
92 }
93 
94 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
95 {
96 	rt_b->rt_period = ns_to_ktime(period);
97 	rt_b->rt_runtime = runtime;
98 
99 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
100 
101 	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
102 		     HRTIMER_MODE_REL_HARD);
103 	rt_b->rt_period_timer.function = sched_rt_period_timer;
104 }
105 
106 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
107 {
108 	raw_spin_lock(&rt_b->rt_runtime_lock);
109 	if (!rt_b->rt_period_active) {
110 		rt_b->rt_period_active = 1;
111 		/*
112 		 * SCHED_DEADLINE updates the bandwidth, as a run away
113 		 * RT task with a DL task could hog a CPU. But DL does
114 		 * not reset the period. If a deadline task was running
115 		 * without an RT task running, it can cause RT tasks to
116 		 * throttle when they start up. Kick the timer right away
117 		 * to update the period.
118 		 */
119 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
120 		hrtimer_start_expires(&rt_b->rt_period_timer,
121 				      HRTIMER_MODE_ABS_PINNED_HARD);
122 	}
123 	raw_spin_unlock(&rt_b->rt_runtime_lock);
124 }
125 
126 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
127 {
128 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
129 		return;
130 
131 	do_start_rt_bandwidth(rt_b);
132 }
133 
134 void init_rt_rq(struct rt_rq *rt_rq)
135 {
136 	struct rt_prio_array *array;
137 	int i;
138 
139 	array = &rt_rq->active;
140 	for (i = 0; i < MAX_RT_PRIO; i++) {
141 		INIT_LIST_HEAD(array->queue + i);
142 		__clear_bit(i, array->bitmap);
143 	}
144 	/* delimiter for bitsearch: */
145 	__set_bit(MAX_RT_PRIO, array->bitmap);
146 
147 #if defined CONFIG_SMP
148 	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
149 	rt_rq->highest_prio.next = MAX_RT_PRIO-1;
150 	rt_rq->overloaded = 0;
151 	plist_head_init(&rt_rq->pushable_tasks);
152 #endif /* CONFIG_SMP */
153 	/* We start is dequeued state, because no RT tasks are queued */
154 	rt_rq->rt_queued = 0;
155 
156 	rt_rq->rt_time = 0;
157 	rt_rq->rt_throttled = 0;
158 	rt_rq->rt_runtime = 0;
159 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
160 }
161 
162 #ifdef CONFIG_RT_GROUP_SCHED
163 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
164 {
165 	hrtimer_cancel(&rt_b->rt_period_timer);
166 }
167 
168 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
169 
170 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
171 {
172 #ifdef CONFIG_SCHED_DEBUG
173 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
174 #endif
175 	return container_of(rt_se, struct task_struct, rt);
176 }
177 
178 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
179 {
180 	return rt_rq->rq;
181 }
182 
183 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
184 {
185 	return rt_se->rt_rq;
186 }
187 
188 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
189 {
190 	struct rt_rq *rt_rq = rt_se->rt_rq;
191 
192 	return rt_rq->rq;
193 }
194 
195 void unregister_rt_sched_group(struct task_group *tg)
196 {
197 	if (tg->rt_se)
198 		destroy_rt_bandwidth(&tg->rt_bandwidth);
199 
200 }
201 
202 void free_rt_sched_group(struct task_group *tg)
203 {
204 	int i;
205 
206 	for_each_possible_cpu(i) {
207 		if (tg->rt_rq)
208 			kfree(tg->rt_rq[i]);
209 		if (tg->rt_se)
210 			kfree(tg->rt_se[i]);
211 	}
212 
213 	kfree(tg->rt_rq);
214 	kfree(tg->rt_se);
215 }
216 
217 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
218 		struct sched_rt_entity *rt_se, int cpu,
219 		struct sched_rt_entity *parent)
220 {
221 	struct rq *rq = cpu_rq(cpu);
222 
223 	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
224 	rt_rq->rt_nr_boosted = 0;
225 	rt_rq->rq = rq;
226 	rt_rq->tg = tg;
227 
228 	tg->rt_rq[cpu] = rt_rq;
229 	tg->rt_se[cpu] = rt_se;
230 
231 	if (!rt_se)
232 		return;
233 
234 	if (!parent)
235 		rt_se->rt_rq = &rq->rt;
236 	else
237 		rt_se->rt_rq = parent->my_q;
238 
239 	rt_se->my_q = rt_rq;
240 	rt_se->parent = parent;
241 	INIT_LIST_HEAD(&rt_se->run_list);
242 }
243 
244 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
245 {
246 	struct rt_rq *rt_rq;
247 	struct sched_rt_entity *rt_se;
248 	int i;
249 
250 	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
251 	if (!tg->rt_rq)
252 		goto err;
253 	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
254 	if (!tg->rt_se)
255 		goto err;
256 
257 	init_rt_bandwidth(&tg->rt_bandwidth,
258 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
259 
260 	for_each_possible_cpu(i) {
261 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
262 				     GFP_KERNEL, cpu_to_node(i));
263 		if (!rt_rq)
264 			goto err;
265 
266 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
267 				     GFP_KERNEL, cpu_to_node(i));
268 		if (!rt_se)
269 			goto err_free_rq;
270 
271 		init_rt_rq(rt_rq);
272 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
273 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
274 	}
275 
276 	return 1;
277 
278 err_free_rq:
279 	kfree(rt_rq);
280 err:
281 	return 0;
282 }
283 
284 #else /* CONFIG_RT_GROUP_SCHED */
285 
286 #define rt_entity_is_task(rt_se) (1)
287 
288 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
289 {
290 	return container_of(rt_se, struct task_struct, rt);
291 }
292 
293 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
294 {
295 	return container_of(rt_rq, struct rq, rt);
296 }
297 
298 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
299 {
300 	struct task_struct *p = rt_task_of(rt_se);
301 
302 	return task_rq(p);
303 }
304 
305 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
306 {
307 	struct rq *rq = rq_of_rt_se(rt_se);
308 
309 	return &rq->rt;
310 }
311 
312 void unregister_rt_sched_group(struct task_group *tg) { }
313 
314 void free_rt_sched_group(struct task_group *tg) { }
315 
316 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
317 {
318 	return 1;
319 }
320 #endif /* CONFIG_RT_GROUP_SCHED */
321 
322 #ifdef CONFIG_SMP
323 
324 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
325 {
326 	/* Try to pull RT tasks here if we lower this rq's prio */
327 	return rq->online && rq->rt.highest_prio.curr > prev->prio;
328 }
329 
330 static inline int rt_overloaded(struct rq *rq)
331 {
332 	return atomic_read(&rq->rd->rto_count);
333 }
334 
335 static inline void rt_set_overload(struct rq *rq)
336 {
337 	if (!rq->online)
338 		return;
339 
340 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
341 	/*
342 	 * Make sure the mask is visible before we set
343 	 * the overload count. That is checked to determine
344 	 * if we should look at the mask. It would be a shame
345 	 * if we looked at the mask, but the mask was not
346 	 * updated yet.
347 	 *
348 	 * Matched by the barrier in pull_rt_task().
349 	 */
350 	smp_wmb();
351 	atomic_inc(&rq->rd->rto_count);
352 }
353 
354 static inline void rt_clear_overload(struct rq *rq)
355 {
356 	if (!rq->online)
357 		return;
358 
359 	/* the order here really doesn't matter */
360 	atomic_dec(&rq->rd->rto_count);
361 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
362 }
363 
364 static inline int has_pushable_tasks(struct rq *rq)
365 {
366 	return !plist_head_empty(&rq->rt.pushable_tasks);
367 }
368 
369 static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
370 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
371 
372 static void push_rt_tasks(struct rq *);
373 static void pull_rt_task(struct rq *);
374 
375 static inline void rt_queue_push_tasks(struct rq *rq)
376 {
377 	if (!has_pushable_tasks(rq))
378 		return;
379 
380 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
381 }
382 
383 static inline void rt_queue_pull_task(struct rq *rq)
384 {
385 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
386 }
387 
388 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
389 {
390 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
391 	plist_node_init(&p->pushable_tasks, p->prio);
392 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
393 
394 	/* Update the highest prio pushable task */
395 	if (p->prio < rq->rt.highest_prio.next)
396 		rq->rt.highest_prio.next = p->prio;
397 
398 	if (!rq->rt.overloaded) {
399 		rt_set_overload(rq);
400 		rq->rt.overloaded = 1;
401 	}
402 }
403 
404 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
405 {
406 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
407 
408 	/* Update the new highest prio pushable task */
409 	if (has_pushable_tasks(rq)) {
410 		p = plist_first_entry(&rq->rt.pushable_tasks,
411 				      struct task_struct, pushable_tasks);
412 		rq->rt.highest_prio.next = p->prio;
413 	} else {
414 		rq->rt.highest_prio.next = MAX_RT_PRIO-1;
415 
416 		if (rq->rt.overloaded) {
417 			rt_clear_overload(rq);
418 			rq->rt.overloaded = 0;
419 		}
420 	}
421 }
422 
423 #else
424 
425 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
426 {
427 }
428 
429 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
430 {
431 }
432 
433 static inline void rt_queue_push_tasks(struct rq *rq)
434 {
435 }
436 #endif /* CONFIG_SMP */
437 
438 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
439 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
440 
441 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
442 {
443 	return rt_se->on_rq;
444 }
445 
446 #ifdef CONFIG_UCLAMP_TASK
447 /*
448  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
449  * settings.
450  *
451  * This check is only important for heterogeneous systems where uclamp_min value
452  * is higher than the capacity of a @cpu. For non-heterogeneous system this
453  * function will always return true.
454  *
455  * The function will return true if the capacity of the @cpu is >= the
456  * uclamp_min and false otherwise.
457  *
458  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
459  * > uclamp_max.
460  */
461 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
462 {
463 	unsigned int min_cap;
464 	unsigned int max_cap;
465 	unsigned int cpu_cap;
466 
467 	/* Only heterogeneous systems can benefit from this check */
468 	if (!sched_asym_cpucap_active())
469 		return true;
470 
471 	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
472 	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
473 
474 	cpu_cap = arch_scale_cpu_capacity(cpu);
475 
476 	return cpu_cap >= min(min_cap, max_cap);
477 }
478 #else
479 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
480 {
481 	return true;
482 }
483 #endif
484 
485 #ifdef CONFIG_RT_GROUP_SCHED
486 
487 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
488 {
489 	if (!rt_rq->tg)
490 		return RUNTIME_INF;
491 
492 	return rt_rq->rt_runtime;
493 }
494 
495 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
496 {
497 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
498 }
499 
500 typedef struct task_group *rt_rq_iter_t;
501 
502 static inline struct task_group *next_task_group(struct task_group *tg)
503 {
504 	do {
505 		tg = list_entry_rcu(tg->list.next,
506 			typeof(struct task_group), list);
507 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
508 
509 	if (&tg->list == &task_groups)
510 		tg = NULL;
511 
512 	return tg;
513 }
514 
515 #define for_each_rt_rq(rt_rq, iter, rq)					\
516 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
517 		(iter = next_task_group(iter)) &&			\
518 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
519 
520 #define for_each_sched_rt_entity(rt_se) \
521 	for (; rt_se; rt_se = rt_se->parent)
522 
523 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
524 {
525 	return rt_se->my_q;
526 }
527 
528 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
529 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
530 
531 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
532 {
533 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
534 	struct rq *rq = rq_of_rt_rq(rt_rq);
535 	struct sched_rt_entity *rt_se;
536 
537 	int cpu = cpu_of(rq);
538 
539 	rt_se = rt_rq->tg->rt_se[cpu];
540 
541 	if (rt_rq->rt_nr_running) {
542 		if (!rt_se)
543 			enqueue_top_rt_rq(rt_rq);
544 		else if (!on_rt_rq(rt_se))
545 			enqueue_rt_entity(rt_se, 0);
546 
547 		if (rt_rq->highest_prio.curr < curr->prio)
548 			resched_curr(rq);
549 	}
550 }
551 
552 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
553 {
554 	struct sched_rt_entity *rt_se;
555 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
556 
557 	rt_se = rt_rq->tg->rt_se[cpu];
558 
559 	if (!rt_se) {
560 		dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
561 		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
562 		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
563 	}
564 	else if (on_rt_rq(rt_se))
565 		dequeue_rt_entity(rt_se, 0);
566 }
567 
568 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
569 {
570 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
571 }
572 
573 static int rt_se_boosted(struct sched_rt_entity *rt_se)
574 {
575 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
576 	struct task_struct *p;
577 
578 	if (rt_rq)
579 		return !!rt_rq->rt_nr_boosted;
580 
581 	p = rt_task_of(rt_se);
582 	return p->prio != p->normal_prio;
583 }
584 
585 #ifdef CONFIG_SMP
586 static inline const struct cpumask *sched_rt_period_mask(void)
587 {
588 	return this_rq()->rd->span;
589 }
590 #else
591 static inline const struct cpumask *sched_rt_period_mask(void)
592 {
593 	return cpu_online_mask;
594 }
595 #endif
596 
597 static inline
598 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
599 {
600 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
601 }
602 
603 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
604 {
605 	return &rt_rq->tg->rt_bandwidth;
606 }
607 
608 #else /* !CONFIG_RT_GROUP_SCHED */
609 
610 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
611 {
612 	return rt_rq->rt_runtime;
613 }
614 
615 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
616 {
617 	return ktime_to_ns(def_rt_bandwidth.rt_period);
618 }
619 
620 typedef struct rt_rq *rt_rq_iter_t;
621 
622 #define for_each_rt_rq(rt_rq, iter, rq) \
623 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
624 
625 #define for_each_sched_rt_entity(rt_se) \
626 	for (; rt_se; rt_se = NULL)
627 
628 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
629 {
630 	return NULL;
631 }
632 
633 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
634 {
635 	struct rq *rq = rq_of_rt_rq(rt_rq);
636 
637 	if (!rt_rq->rt_nr_running)
638 		return;
639 
640 	enqueue_top_rt_rq(rt_rq);
641 	resched_curr(rq);
642 }
643 
644 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
645 {
646 	dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
647 }
648 
649 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
650 {
651 	return rt_rq->rt_throttled;
652 }
653 
654 static inline const struct cpumask *sched_rt_period_mask(void)
655 {
656 	return cpu_online_mask;
657 }
658 
659 static inline
660 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
661 {
662 	return &cpu_rq(cpu)->rt;
663 }
664 
665 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
666 {
667 	return &def_rt_bandwidth;
668 }
669 
670 #endif /* CONFIG_RT_GROUP_SCHED */
671 
672 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
673 {
674 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
675 
676 	return (hrtimer_active(&rt_b->rt_period_timer) ||
677 		rt_rq->rt_time < rt_b->rt_runtime);
678 }
679 
680 #ifdef CONFIG_SMP
681 /*
682  * We ran out of runtime, see if we can borrow some from our neighbours.
683  */
684 static void do_balance_runtime(struct rt_rq *rt_rq)
685 {
686 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
687 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
688 	int i, weight;
689 	u64 rt_period;
690 
691 	weight = cpumask_weight(rd->span);
692 
693 	raw_spin_lock(&rt_b->rt_runtime_lock);
694 	rt_period = ktime_to_ns(rt_b->rt_period);
695 	for_each_cpu(i, rd->span) {
696 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
697 		s64 diff;
698 
699 		if (iter == rt_rq)
700 			continue;
701 
702 		raw_spin_lock(&iter->rt_runtime_lock);
703 		/*
704 		 * Either all rqs have inf runtime and there's nothing to steal
705 		 * or __disable_runtime() below sets a specific rq to inf to
706 		 * indicate its been disabled and disallow stealing.
707 		 */
708 		if (iter->rt_runtime == RUNTIME_INF)
709 			goto next;
710 
711 		/*
712 		 * From runqueues with spare time, take 1/n part of their
713 		 * spare time, but no more than our period.
714 		 */
715 		diff = iter->rt_runtime - iter->rt_time;
716 		if (diff > 0) {
717 			diff = div_u64((u64)diff, weight);
718 			if (rt_rq->rt_runtime + diff > rt_period)
719 				diff = rt_period - rt_rq->rt_runtime;
720 			iter->rt_runtime -= diff;
721 			rt_rq->rt_runtime += diff;
722 			if (rt_rq->rt_runtime == rt_period) {
723 				raw_spin_unlock(&iter->rt_runtime_lock);
724 				break;
725 			}
726 		}
727 next:
728 		raw_spin_unlock(&iter->rt_runtime_lock);
729 	}
730 	raw_spin_unlock(&rt_b->rt_runtime_lock);
731 }
732 
733 /*
734  * Ensure this RQ takes back all the runtime it lend to its neighbours.
735  */
736 static void __disable_runtime(struct rq *rq)
737 {
738 	struct root_domain *rd = rq->rd;
739 	rt_rq_iter_t iter;
740 	struct rt_rq *rt_rq;
741 
742 	if (unlikely(!scheduler_running))
743 		return;
744 
745 	for_each_rt_rq(rt_rq, iter, rq) {
746 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
747 		s64 want;
748 		int i;
749 
750 		raw_spin_lock(&rt_b->rt_runtime_lock);
751 		raw_spin_lock(&rt_rq->rt_runtime_lock);
752 		/*
753 		 * Either we're all inf and nobody needs to borrow, or we're
754 		 * already disabled and thus have nothing to do, or we have
755 		 * exactly the right amount of runtime to take out.
756 		 */
757 		if (rt_rq->rt_runtime == RUNTIME_INF ||
758 				rt_rq->rt_runtime == rt_b->rt_runtime)
759 			goto balanced;
760 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
761 
762 		/*
763 		 * Calculate the difference between what we started out with
764 		 * and what we current have, that's the amount of runtime
765 		 * we lend and now have to reclaim.
766 		 */
767 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
768 
769 		/*
770 		 * Greedy reclaim, take back as much as we can.
771 		 */
772 		for_each_cpu(i, rd->span) {
773 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
774 			s64 diff;
775 
776 			/*
777 			 * Can't reclaim from ourselves or disabled runqueues.
778 			 */
779 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
780 				continue;
781 
782 			raw_spin_lock(&iter->rt_runtime_lock);
783 			if (want > 0) {
784 				diff = min_t(s64, iter->rt_runtime, want);
785 				iter->rt_runtime -= diff;
786 				want -= diff;
787 			} else {
788 				iter->rt_runtime -= want;
789 				want -= want;
790 			}
791 			raw_spin_unlock(&iter->rt_runtime_lock);
792 
793 			if (!want)
794 				break;
795 		}
796 
797 		raw_spin_lock(&rt_rq->rt_runtime_lock);
798 		/*
799 		 * We cannot be left wanting - that would mean some runtime
800 		 * leaked out of the system.
801 		 */
802 		WARN_ON_ONCE(want);
803 balanced:
804 		/*
805 		 * Disable all the borrow logic by pretending we have inf
806 		 * runtime - in which case borrowing doesn't make sense.
807 		 */
808 		rt_rq->rt_runtime = RUNTIME_INF;
809 		rt_rq->rt_throttled = 0;
810 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
811 		raw_spin_unlock(&rt_b->rt_runtime_lock);
812 
813 		/* Make rt_rq available for pick_next_task() */
814 		sched_rt_rq_enqueue(rt_rq);
815 	}
816 }
817 
818 static void __enable_runtime(struct rq *rq)
819 {
820 	rt_rq_iter_t iter;
821 	struct rt_rq *rt_rq;
822 
823 	if (unlikely(!scheduler_running))
824 		return;
825 
826 	/*
827 	 * Reset each runqueue's bandwidth settings
828 	 */
829 	for_each_rt_rq(rt_rq, iter, rq) {
830 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
831 
832 		raw_spin_lock(&rt_b->rt_runtime_lock);
833 		raw_spin_lock(&rt_rq->rt_runtime_lock);
834 		rt_rq->rt_runtime = rt_b->rt_runtime;
835 		rt_rq->rt_time = 0;
836 		rt_rq->rt_throttled = 0;
837 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
838 		raw_spin_unlock(&rt_b->rt_runtime_lock);
839 	}
840 }
841 
842 static void balance_runtime(struct rt_rq *rt_rq)
843 {
844 	if (!sched_feat(RT_RUNTIME_SHARE))
845 		return;
846 
847 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
848 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
849 		do_balance_runtime(rt_rq);
850 		raw_spin_lock(&rt_rq->rt_runtime_lock);
851 	}
852 }
853 #else /* !CONFIG_SMP */
854 static inline void balance_runtime(struct rt_rq *rt_rq) {}
855 #endif /* CONFIG_SMP */
856 
857 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
858 {
859 	int i, idle = 1, throttled = 0;
860 	const struct cpumask *span;
861 
862 	span = sched_rt_period_mask();
863 #ifdef CONFIG_RT_GROUP_SCHED
864 	/*
865 	 * FIXME: isolated CPUs should really leave the root task group,
866 	 * whether they are isolcpus or were isolated via cpusets, lest
867 	 * the timer run on a CPU which does not service all runqueues,
868 	 * potentially leaving other CPUs indefinitely throttled.  If
869 	 * isolation is really required, the user will turn the throttle
870 	 * off to kill the perturbations it causes anyway.  Meanwhile,
871 	 * this maintains functionality for boot and/or troubleshooting.
872 	 */
873 	if (rt_b == &root_task_group.rt_bandwidth)
874 		span = cpu_online_mask;
875 #endif
876 	for_each_cpu(i, span) {
877 		int enqueue = 0;
878 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
879 		struct rq *rq = rq_of_rt_rq(rt_rq);
880 		struct rq_flags rf;
881 		int skip;
882 
883 		/*
884 		 * When span == cpu_online_mask, taking each rq->lock
885 		 * can be time-consuming. Try to avoid it when possible.
886 		 */
887 		raw_spin_lock(&rt_rq->rt_runtime_lock);
888 		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
889 			rt_rq->rt_runtime = rt_b->rt_runtime;
890 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
891 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
892 		if (skip)
893 			continue;
894 
895 		rq_lock(rq, &rf);
896 		update_rq_clock(rq);
897 
898 		if (rt_rq->rt_time) {
899 			u64 runtime;
900 
901 			raw_spin_lock(&rt_rq->rt_runtime_lock);
902 			if (rt_rq->rt_throttled)
903 				balance_runtime(rt_rq);
904 			runtime = rt_rq->rt_runtime;
905 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
906 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
907 				rt_rq->rt_throttled = 0;
908 				enqueue = 1;
909 
910 				/*
911 				 * When we're idle and a woken (rt) task is
912 				 * throttled wakeup_preempt() will set
913 				 * skip_update and the time between the wakeup
914 				 * and this unthrottle will get accounted as
915 				 * 'runtime'.
916 				 */
917 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
918 					rq_clock_cancel_skipupdate(rq);
919 			}
920 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
921 				idle = 0;
922 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
923 		} else if (rt_rq->rt_nr_running) {
924 			idle = 0;
925 			if (!rt_rq_throttled(rt_rq))
926 				enqueue = 1;
927 		}
928 		if (rt_rq->rt_throttled)
929 			throttled = 1;
930 
931 		if (enqueue)
932 			sched_rt_rq_enqueue(rt_rq);
933 		rq_unlock(rq, &rf);
934 	}
935 
936 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
937 		return 1;
938 
939 	return idle;
940 }
941 
942 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
943 {
944 #ifdef CONFIG_RT_GROUP_SCHED
945 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
946 
947 	if (rt_rq)
948 		return rt_rq->highest_prio.curr;
949 #endif
950 
951 	return rt_task_of(rt_se)->prio;
952 }
953 
954 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
955 {
956 	u64 runtime = sched_rt_runtime(rt_rq);
957 
958 	if (rt_rq->rt_throttled)
959 		return rt_rq_throttled(rt_rq);
960 
961 	if (runtime >= sched_rt_period(rt_rq))
962 		return 0;
963 
964 	balance_runtime(rt_rq);
965 	runtime = sched_rt_runtime(rt_rq);
966 	if (runtime == RUNTIME_INF)
967 		return 0;
968 
969 	if (rt_rq->rt_time > runtime) {
970 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
971 
972 		/*
973 		 * Don't actually throttle groups that have no runtime assigned
974 		 * but accrue some time due to boosting.
975 		 */
976 		if (likely(rt_b->rt_runtime)) {
977 			rt_rq->rt_throttled = 1;
978 			printk_deferred_once("sched: RT throttling activated\n");
979 		} else {
980 			/*
981 			 * In case we did anyway, make it go away,
982 			 * replenishment is a joke, since it will replenish us
983 			 * with exactly 0 ns.
984 			 */
985 			rt_rq->rt_time = 0;
986 		}
987 
988 		if (rt_rq_throttled(rt_rq)) {
989 			sched_rt_rq_dequeue(rt_rq);
990 			return 1;
991 		}
992 	}
993 
994 	return 0;
995 }
996 
997 /*
998  * Update the current task's runtime statistics. Skip current tasks that
999  * are not in our scheduling class.
1000  */
1001 static void update_curr_rt(struct rq *rq)
1002 {
1003 	struct task_struct *curr = rq->curr;
1004 	struct sched_rt_entity *rt_se = &curr->rt;
1005 	s64 delta_exec;
1006 
1007 	if (curr->sched_class != &rt_sched_class)
1008 		return;
1009 
1010 	delta_exec = update_curr_common(rq);
1011 	if (unlikely(delta_exec <= 0))
1012 		return;
1013 
1014 	if (!rt_bandwidth_enabled())
1015 		return;
1016 
1017 	for_each_sched_rt_entity(rt_se) {
1018 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1019 		int exceeded;
1020 
1021 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1022 			raw_spin_lock(&rt_rq->rt_runtime_lock);
1023 			rt_rq->rt_time += delta_exec;
1024 			exceeded = sched_rt_runtime_exceeded(rt_rq);
1025 			if (exceeded)
1026 				resched_curr(rq);
1027 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1028 			if (exceeded)
1029 				do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1030 		}
1031 	}
1032 }
1033 
1034 static void
1035 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1036 {
1037 	struct rq *rq = rq_of_rt_rq(rt_rq);
1038 
1039 	BUG_ON(&rq->rt != rt_rq);
1040 
1041 	if (!rt_rq->rt_queued)
1042 		return;
1043 
1044 	BUG_ON(!rq->nr_running);
1045 
1046 	sub_nr_running(rq, count);
1047 	rt_rq->rt_queued = 0;
1048 
1049 }
1050 
1051 static void
1052 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1053 {
1054 	struct rq *rq = rq_of_rt_rq(rt_rq);
1055 
1056 	BUG_ON(&rq->rt != rt_rq);
1057 
1058 	if (rt_rq->rt_queued)
1059 		return;
1060 
1061 	if (rt_rq_throttled(rt_rq))
1062 		return;
1063 
1064 	if (rt_rq->rt_nr_running) {
1065 		add_nr_running(rq, rt_rq->rt_nr_running);
1066 		rt_rq->rt_queued = 1;
1067 	}
1068 
1069 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1070 	cpufreq_update_util(rq, 0);
1071 }
1072 
1073 #if defined CONFIG_SMP
1074 
1075 static void
1076 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1077 {
1078 	struct rq *rq = rq_of_rt_rq(rt_rq);
1079 
1080 #ifdef CONFIG_RT_GROUP_SCHED
1081 	/*
1082 	 * Change rq's cpupri only if rt_rq is the top queue.
1083 	 */
1084 	if (&rq->rt != rt_rq)
1085 		return;
1086 #endif
1087 	if (rq->online && prio < prev_prio)
1088 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1089 }
1090 
1091 static void
1092 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1093 {
1094 	struct rq *rq = rq_of_rt_rq(rt_rq);
1095 
1096 #ifdef CONFIG_RT_GROUP_SCHED
1097 	/*
1098 	 * Change rq's cpupri only if rt_rq is the top queue.
1099 	 */
1100 	if (&rq->rt != rt_rq)
1101 		return;
1102 #endif
1103 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1104 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1105 }
1106 
1107 #else /* CONFIG_SMP */
1108 
1109 static inline
1110 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1111 static inline
1112 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1113 
1114 #endif /* CONFIG_SMP */
1115 
1116 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1117 static void
1118 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1119 {
1120 	int prev_prio = rt_rq->highest_prio.curr;
1121 
1122 	if (prio < prev_prio)
1123 		rt_rq->highest_prio.curr = prio;
1124 
1125 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1126 }
1127 
1128 static void
1129 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1130 {
1131 	int prev_prio = rt_rq->highest_prio.curr;
1132 
1133 	if (rt_rq->rt_nr_running) {
1134 
1135 		WARN_ON(prio < prev_prio);
1136 
1137 		/*
1138 		 * This may have been our highest task, and therefore
1139 		 * we may have some recomputation to do
1140 		 */
1141 		if (prio == prev_prio) {
1142 			struct rt_prio_array *array = &rt_rq->active;
1143 
1144 			rt_rq->highest_prio.curr =
1145 				sched_find_first_bit(array->bitmap);
1146 		}
1147 
1148 	} else {
1149 		rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1150 	}
1151 
1152 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1153 }
1154 
1155 #else
1156 
1157 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1158 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1159 
1160 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1161 
1162 #ifdef CONFIG_RT_GROUP_SCHED
1163 
1164 static void
1165 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1166 {
1167 	if (rt_se_boosted(rt_se))
1168 		rt_rq->rt_nr_boosted++;
1169 
1170 	if (rt_rq->tg)
1171 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1172 }
1173 
1174 static void
1175 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1176 {
1177 	if (rt_se_boosted(rt_se))
1178 		rt_rq->rt_nr_boosted--;
1179 
1180 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1181 }
1182 
1183 #else /* CONFIG_RT_GROUP_SCHED */
1184 
1185 static void
1186 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1187 {
1188 	start_rt_bandwidth(&def_rt_bandwidth);
1189 }
1190 
1191 static inline
1192 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1193 
1194 #endif /* CONFIG_RT_GROUP_SCHED */
1195 
1196 static inline
1197 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1198 {
1199 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1200 
1201 	if (group_rq)
1202 		return group_rq->rt_nr_running;
1203 	else
1204 		return 1;
1205 }
1206 
1207 static inline
1208 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1209 {
1210 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1211 	struct task_struct *tsk;
1212 
1213 	if (group_rq)
1214 		return group_rq->rr_nr_running;
1215 
1216 	tsk = rt_task_of(rt_se);
1217 
1218 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1219 }
1220 
1221 static inline
1222 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1223 {
1224 	int prio = rt_se_prio(rt_se);
1225 
1226 	WARN_ON(!rt_prio(prio));
1227 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1228 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1229 
1230 	inc_rt_prio(rt_rq, prio);
1231 	inc_rt_group(rt_se, rt_rq);
1232 }
1233 
1234 static inline
1235 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1236 {
1237 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1238 	WARN_ON(!rt_rq->rt_nr_running);
1239 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1240 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1241 
1242 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1243 	dec_rt_group(rt_se, rt_rq);
1244 }
1245 
1246 /*
1247  * Change rt_se->run_list location unless SAVE && !MOVE
1248  *
1249  * assumes ENQUEUE/DEQUEUE flags match
1250  */
1251 static inline bool move_entity(unsigned int flags)
1252 {
1253 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1254 		return false;
1255 
1256 	return true;
1257 }
1258 
1259 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1260 {
1261 	list_del_init(&rt_se->run_list);
1262 
1263 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1264 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1265 
1266 	rt_se->on_list = 0;
1267 }
1268 
1269 static inline struct sched_statistics *
1270 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1271 {
1272 #ifdef CONFIG_RT_GROUP_SCHED
1273 	/* schedstats is not supported for rt group. */
1274 	if (!rt_entity_is_task(rt_se))
1275 		return NULL;
1276 #endif
1277 
1278 	return &rt_task_of(rt_se)->stats;
1279 }
1280 
1281 static inline void
1282 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1283 {
1284 	struct sched_statistics *stats;
1285 	struct task_struct *p = NULL;
1286 
1287 	if (!schedstat_enabled())
1288 		return;
1289 
1290 	if (rt_entity_is_task(rt_se))
1291 		p = rt_task_of(rt_se);
1292 
1293 	stats = __schedstats_from_rt_se(rt_se);
1294 	if (!stats)
1295 		return;
1296 
1297 	__update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1298 }
1299 
1300 static inline void
1301 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1302 {
1303 	struct sched_statistics *stats;
1304 	struct task_struct *p = NULL;
1305 
1306 	if (!schedstat_enabled())
1307 		return;
1308 
1309 	if (rt_entity_is_task(rt_se))
1310 		p = rt_task_of(rt_se);
1311 
1312 	stats = __schedstats_from_rt_se(rt_se);
1313 	if (!stats)
1314 		return;
1315 
1316 	__update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1317 }
1318 
1319 static inline void
1320 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1321 			int flags)
1322 {
1323 	if (!schedstat_enabled())
1324 		return;
1325 
1326 	if (flags & ENQUEUE_WAKEUP)
1327 		update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1328 }
1329 
1330 static inline void
1331 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1332 {
1333 	struct sched_statistics *stats;
1334 	struct task_struct *p = NULL;
1335 
1336 	if (!schedstat_enabled())
1337 		return;
1338 
1339 	if (rt_entity_is_task(rt_se))
1340 		p = rt_task_of(rt_se);
1341 
1342 	stats = __schedstats_from_rt_se(rt_se);
1343 	if (!stats)
1344 		return;
1345 
1346 	__update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1347 }
1348 
1349 static inline void
1350 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1351 			int flags)
1352 {
1353 	struct task_struct *p = NULL;
1354 
1355 	if (!schedstat_enabled())
1356 		return;
1357 
1358 	if (rt_entity_is_task(rt_se))
1359 		p = rt_task_of(rt_se);
1360 
1361 	if ((flags & DEQUEUE_SLEEP) && p) {
1362 		unsigned int state;
1363 
1364 		state = READ_ONCE(p->__state);
1365 		if (state & TASK_INTERRUPTIBLE)
1366 			__schedstat_set(p->stats.sleep_start,
1367 					rq_clock(rq_of_rt_rq(rt_rq)));
1368 
1369 		if (state & TASK_UNINTERRUPTIBLE)
1370 			__schedstat_set(p->stats.block_start,
1371 					rq_clock(rq_of_rt_rq(rt_rq)));
1372 	}
1373 }
1374 
1375 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1376 {
1377 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1378 	struct rt_prio_array *array = &rt_rq->active;
1379 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1380 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1381 
1382 	/*
1383 	 * Don't enqueue the group if its throttled, or when empty.
1384 	 * The latter is a consequence of the former when a child group
1385 	 * get throttled and the current group doesn't have any other
1386 	 * active members.
1387 	 */
1388 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1389 		if (rt_se->on_list)
1390 			__delist_rt_entity(rt_se, array);
1391 		return;
1392 	}
1393 
1394 	if (move_entity(flags)) {
1395 		WARN_ON_ONCE(rt_se->on_list);
1396 		if (flags & ENQUEUE_HEAD)
1397 			list_add(&rt_se->run_list, queue);
1398 		else
1399 			list_add_tail(&rt_se->run_list, queue);
1400 
1401 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1402 		rt_se->on_list = 1;
1403 	}
1404 	rt_se->on_rq = 1;
1405 
1406 	inc_rt_tasks(rt_se, rt_rq);
1407 }
1408 
1409 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1410 {
1411 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1412 	struct rt_prio_array *array = &rt_rq->active;
1413 
1414 	if (move_entity(flags)) {
1415 		WARN_ON_ONCE(!rt_se->on_list);
1416 		__delist_rt_entity(rt_se, array);
1417 	}
1418 	rt_se->on_rq = 0;
1419 
1420 	dec_rt_tasks(rt_se, rt_rq);
1421 }
1422 
1423 /*
1424  * Because the prio of an upper entry depends on the lower
1425  * entries, we must remove entries top - down.
1426  */
1427 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1428 {
1429 	struct sched_rt_entity *back = NULL;
1430 	unsigned int rt_nr_running;
1431 
1432 	for_each_sched_rt_entity(rt_se) {
1433 		rt_se->back = back;
1434 		back = rt_se;
1435 	}
1436 
1437 	rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1438 
1439 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1440 		if (on_rt_rq(rt_se))
1441 			__dequeue_rt_entity(rt_se, flags);
1442 	}
1443 
1444 	dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1445 }
1446 
1447 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1448 {
1449 	struct rq *rq = rq_of_rt_se(rt_se);
1450 
1451 	update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1452 
1453 	dequeue_rt_stack(rt_se, flags);
1454 	for_each_sched_rt_entity(rt_se)
1455 		__enqueue_rt_entity(rt_se, flags);
1456 	enqueue_top_rt_rq(&rq->rt);
1457 }
1458 
1459 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1460 {
1461 	struct rq *rq = rq_of_rt_se(rt_se);
1462 
1463 	update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1464 
1465 	dequeue_rt_stack(rt_se, flags);
1466 
1467 	for_each_sched_rt_entity(rt_se) {
1468 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1469 
1470 		if (rt_rq && rt_rq->rt_nr_running)
1471 			__enqueue_rt_entity(rt_se, flags);
1472 	}
1473 	enqueue_top_rt_rq(&rq->rt);
1474 }
1475 
1476 /*
1477  * Adding/removing a task to/from a priority array:
1478  */
1479 static void
1480 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1481 {
1482 	struct sched_rt_entity *rt_se = &p->rt;
1483 
1484 	if (flags & ENQUEUE_WAKEUP)
1485 		rt_se->timeout = 0;
1486 
1487 	check_schedstat_required();
1488 	update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1489 
1490 	enqueue_rt_entity(rt_se, flags);
1491 
1492 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1493 		enqueue_pushable_task(rq, p);
1494 }
1495 
1496 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1497 {
1498 	struct sched_rt_entity *rt_se = &p->rt;
1499 
1500 	update_curr_rt(rq);
1501 	dequeue_rt_entity(rt_se, flags);
1502 
1503 	dequeue_pushable_task(rq, p);
1504 }
1505 
1506 /*
1507  * Put task to the head or the end of the run list without the overhead of
1508  * dequeue followed by enqueue.
1509  */
1510 static void
1511 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1512 {
1513 	if (on_rt_rq(rt_se)) {
1514 		struct rt_prio_array *array = &rt_rq->active;
1515 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1516 
1517 		if (head)
1518 			list_move(&rt_se->run_list, queue);
1519 		else
1520 			list_move_tail(&rt_se->run_list, queue);
1521 	}
1522 }
1523 
1524 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1525 {
1526 	struct sched_rt_entity *rt_se = &p->rt;
1527 	struct rt_rq *rt_rq;
1528 
1529 	for_each_sched_rt_entity(rt_se) {
1530 		rt_rq = rt_rq_of_se(rt_se);
1531 		requeue_rt_entity(rt_rq, rt_se, head);
1532 	}
1533 }
1534 
1535 static void yield_task_rt(struct rq *rq)
1536 {
1537 	requeue_task_rt(rq, rq->curr, 0);
1538 }
1539 
1540 #ifdef CONFIG_SMP
1541 static int find_lowest_rq(struct task_struct *task);
1542 
1543 static int
1544 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1545 {
1546 	struct task_struct *curr;
1547 	struct rq *rq;
1548 	bool test;
1549 
1550 	/* For anything but wake ups, just return the task_cpu */
1551 	if (!(flags & (WF_TTWU | WF_FORK)))
1552 		goto out;
1553 
1554 	rq = cpu_rq(cpu);
1555 
1556 	rcu_read_lock();
1557 	curr = READ_ONCE(rq->curr); /* unlocked access */
1558 
1559 	/*
1560 	 * If the current task on @p's runqueue is an RT task, then
1561 	 * try to see if we can wake this RT task up on another
1562 	 * runqueue. Otherwise simply start this RT task
1563 	 * on its current runqueue.
1564 	 *
1565 	 * We want to avoid overloading runqueues. If the woken
1566 	 * task is a higher priority, then it will stay on this CPU
1567 	 * and the lower prio task should be moved to another CPU.
1568 	 * Even though this will probably make the lower prio task
1569 	 * lose its cache, we do not want to bounce a higher task
1570 	 * around just because it gave up its CPU, perhaps for a
1571 	 * lock?
1572 	 *
1573 	 * For equal prio tasks, we just let the scheduler sort it out.
1574 	 *
1575 	 * Otherwise, just let it ride on the affined RQ and the
1576 	 * post-schedule router will push the preempted task away
1577 	 *
1578 	 * This test is optimistic, if we get it wrong the load-balancer
1579 	 * will have to sort it out.
1580 	 *
1581 	 * We take into account the capacity of the CPU to ensure it fits the
1582 	 * requirement of the task - which is only important on heterogeneous
1583 	 * systems like big.LITTLE.
1584 	 */
1585 	test = curr &&
1586 	       unlikely(rt_task(curr)) &&
1587 	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1588 
1589 	if (test || !rt_task_fits_capacity(p, cpu)) {
1590 		int target = find_lowest_rq(p);
1591 
1592 		/*
1593 		 * Bail out if we were forcing a migration to find a better
1594 		 * fitting CPU but our search failed.
1595 		 */
1596 		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1597 			goto out_unlock;
1598 
1599 		/*
1600 		 * Don't bother moving it if the destination CPU is
1601 		 * not running a lower priority task.
1602 		 */
1603 		if (target != -1 &&
1604 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1605 			cpu = target;
1606 	}
1607 
1608 out_unlock:
1609 	rcu_read_unlock();
1610 
1611 out:
1612 	return cpu;
1613 }
1614 
1615 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1616 {
1617 	/*
1618 	 * Current can't be migrated, useless to reschedule,
1619 	 * let's hope p can move out.
1620 	 */
1621 	if (rq->curr->nr_cpus_allowed == 1 ||
1622 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1623 		return;
1624 
1625 	/*
1626 	 * p is migratable, so let's not schedule it and
1627 	 * see if it is pushed or pulled somewhere else.
1628 	 */
1629 	if (p->nr_cpus_allowed != 1 &&
1630 	    cpupri_find(&rq->rd->cpupri, p, NULL))
1631 		return;
1632 
1633 	/*
1634 	 * There appear to be other CPUs that can accept
1635 	 * the current task but none can run 'p', so lets reschedule
1636 	 * to try and push the current task away:
1637 	 */
1638 	requeue_task_rt(rq, p, 1);
1639 	resched_curr(rq);
1640 }
1641 
1642 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1643 {
1644 	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1645 		/*
1646 		 * This is OK, because current is on_cpu, which avoids it being
1647 		 * picked for load-balance and preemption/IRQs are still
1648 		 * disabled avoiding further scheduler activity on it and we've
1649 		 * not yet started the picking loop.
1650 		 */
1651 		rq_unpin_lock(rq, rf);
1652 		pull_rt_task(rq);
1653 		rq_repin_lock(rq, rf);
1654 	}
1655 
1656 	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1657 }
1658 #endif /* CONFIG_SMP */
1659 
1660 /*
1661  * Preempt the current task with a newly woken task if needed:
1662  */
1663 static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
1664 {
1665 	if (p->prio < rq->curr->prio) {
1666 		resched_curr(rq);
1667 		return;
1668 	}
1669 
1670 #ifdef CONFIG_SMP
1671 	/*
1672 	 * If:
1673 	 *
1674 	 * - the newly woken task is of equal priority to the current task
1675 	 * - the newly woken task is non-migratable while current is migratable
1676 	 * - current will be preempted on the next reschedule
1677 	 *
1678 	 * we should check to see if current can readily move to a different
1679 	 * cpu.  If so, we will reschedule to allow the push logic to try
1680 	 * to move current somewhere else, making room for our non-migratable
1681 	 * task.
1682 	 */
1683 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1684 		check_preempt_equal_prio(rq, p);
1685 #endif
1686 }
1687 
1688 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1689 {
1690 	struct sched_rt_entity *rt_se = &p->rt;
1691 	struct rt_rq *rt_rq = &rq->rt;
1692 
1693 	p->se.exec_start = rq_clock_task(rq);
1694 	if (on_rt_rq(&p->rt))
1695 		update_stats_wait_end_rt(rt_rq, rt_se);
1696 
1697 	/* The running task is never eligible for pushing */
1698 	dequeue_pushable_task(rq, p);
1699 
1700 	if (!first)
1701 		return;
1702 
1703 	/*
1704 	 * If prev task was rt, put_prev_task() has already updated the
1705 	 * utilization. We only care of the case where we start to schedule a
1706 	 * rt task
1707 	 */
1708 	if (rq->curr->sched_class != &rt_sched_class)
1709 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1710 
1711 	rt_queue_push_tasks(rq);
1712 }
1713 
1714 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1715 {
1716 	struct rt_prio_array *array = &rt_rq->active;
1717 	struct sched_rt_entity *next = NULL;
1718 	struct list_head *queue;
1719 	int idx;
1720 
1721 	idx = sched_find_first_bit(array->bitmap);
1722 	BUG_ON(idx >= MAX_RT_PRIO);
1723 
1724 	queue = array->queue + idx;
1725 	if (SCHED_WARN_ON(list_empty(queue)))
1726 		return NULL;
1727 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1728 
1729 	return next;
1730 }
1731 
1732 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1733 {
1734 	struct sched_rt_entity *rt_se;
1735 	struct rt_rq *rt_rq  = &rq->rt;
1736 
1737 	do {
1738 		rt_se = pick_next_rt_entity(rt_rq);
1739 		if (unlikely(!rt_se))
1740 			return NULL;
1741 		rt_rq = group_rt_rq(rt_se);
1742 	} while (rt_rq);
1743 
1744 	return rt_task_of(rt_se);
1745 }
1746 
1747 static struct task_struct *pick_task_rt(struct rq *rq)
1748 {
1749 	struct task_struct *p;
1750 
1751 	if (!sched_rt_runnable(rq))
1752 		return NULL;
1753 
1754 	p = _pick_next_task_rt(rq);
1755 
1756 	return p;
1757 }
1758 
1759 static struct task_struct *pick_next_task_rt(struct rq *rq)
1760 {
1761 	struct task_struct *p = pick_task_rt(rq);
1762 
1763 	if (p)
1764 		set_next_task_rt(rq, p, true);
1765 
1766 	return p;
1767 }
1768 
1769 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1770 {
1771 	struct sched_rt_entity *rt_se = &p->rt;
1772 	struct rt_rq *rt_rq = &rq->rt;
1773 
1774 	if (on_rt_rq(&p->rt))
1775 		update_stats_wait_start_rt(rt_rq, rt_se);
1776 
1777 	update_curr_rt(rq);
1778 
1779 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1780 
1781 	/*
1782 	 * The previous task needs to be made eligible for pushing
1783 	 * if it is still active
1784 	 */
1785 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1786 		enqueue_pushable_task(rq, p);
1787 }
1788 
1789 #ifdef CONFIG_SMP
1790 
1791 /* Only try algorithms three times */
1792 #define RT_MAX_TRIES 3
1793 
1794 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1795 {
1796 	if (!task_on_cpu(rq, p) &&
1797 	    cpumask_test_cpu(cpu, &p->cpus_mask))
1798 		return 1;
1799 
1800 	return 0;
1801 }
1802 
1803 /*
1804  * Return the highest pushable rq's task, which is suitable to be executed
1805  * on the CPU, NULL otherwise
1806  */
1807 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1808 {
1809 	struct plist_head *head = &rq->rt.pushable_tasks;
1810 	struct task_struct *p;
1811 
1812 	if (!has_pushable_tasks(rq))
1813 		return NULL;
1814 
1815 	plist_for_each_entry(p, head, pushable_tasks) {
1816 		if (pick_rt_task(rq, p, cpu))
1817 			return p;
1818 	}
1819 
1820 	return NULL;
1821 }
1822 
1823 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1824 
1825 static int find_lowest_rq(struct task_struct *task)
1826 {
1827 	struct sched_domain *sd;
1828 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1829 	int this_cpu = smp_processor_id();
1830 	int cpu      = task_cpu(task);
1831 	int ret;
1832 
1833 	/* Make sure the mask is initialized first */
1834 	if (unlikely(!lowest_mask))
1835 		return -1;
1836 
1837 	if (task->nr_cpus_allowed == 1)
1838 		return -1; /* No other targets possible */
1839 
1840 	/*
1841 	 * If we're on asym system ensure we consider the different capacities
1842 	 * of the CPUs when searching for the lowest_mask.
1843 	 */
1844 	if (sched_asym_cpucap_active()) {
1845 
1846 		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1847 					  task, lowest_mask,
1848 					  rt_task_fits_capacity);
1849 	} else {
1850 
1851 		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1852 				  task, lowest_mask);
1853 	}
1854 
1855 	if (!ret)
1856 		return -1; /* No targets found */
1857 
1858 	/*
1859 	 * At this point we have built a mask of CPUs representing the
1860 	 * lowest priority tasks in the system.  Now we want to elect
1861 	 * the best one based on our affinity and topology.
1862 	 *
1863 	 * We prioritize the last CPU that the task executed on since
1864 	 * it is most likely cache-hot in that location.
1865 	 */
1866 	if (cpumask_test_cpu(cpu, lowest_mask))
1867 		return cpu;
1868 
1869 	/*
1870 	 * Otherwise, we consult the sched_domains span maps to figure
1871 	 * out which CPU is logically closest to our hot cache data.
1872 	 */
1873 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1874 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1875 
1876 	rcu_read_lock();
1877 	for_each_domain(cpu, sd) {
1878 		if (sd->flags & SD_WAKE_AFFINE) {
1879 			int best_cpu;
1880 
1881 			/*
1882 			 * "this_cpu" is cheaper to preempt than a
1883 			 * remote processor.
1884 			 */
1885 			if (this_cpu != -1 &&
1886 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1887 				rcu_read_unlock();
1888 				return this_cpu;
1889 			}
1890 
1891 			best_cpu = cpumask_any_and_distribute(lowest_mask,
1892 							      sched_domain_span(sd));
1893 			if (best_cpu < nr_cpu_ids) {
1894 				rcu_read_unlock();
1895 				return best_cpu;
1896 			}
1897 		}
1898 	}
1899 	rcu_read_unlock();
1900 
1901 	/*
1902 	 * And finally, if there were no matches within the domains
1903 	 * just give the caller *something* to work with from the compatible
1904 	 * locations.
1905 	 */
1906 	if (this_cpu != -1)
1907 		return this_cpu;
1908 
1909 	cpu = cpumask_any_distribute(lowest_mask);
1910 	if (cpu < nr_cpu_ids)
1911 		return cpu;
1912 
1913 	return -1;
1914 }
1915 
1916 /* Will lock the rq it finds */
1917 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1918 {
1919 	struct rq *lowest_rq = NULL;
1920 	int tries;
1921 	int cpu;
1922 
1923 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1924 		cpu = find_lowest_rq(task);
1925 
1926 		if ((cpu == -1) || (cpu == rq->cpu))
1927 			break;
1928 
1929 		lowest_rq = cpu_rq(cpu);
1930 
1931 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1932 			/*
1933 			 * Target rq has tasks of equal or higher priority,
1934 			 * retrying does not release any lock and is unlikely
1935 			 * to yield a different result.
1936 			 */
1937 			lowest_rq = NULL;
1938 			break;
1939 		}
1940 
1941 		/* if the prio of this runqueue changed, try again */
1942 		if (double_lock_balance(rq, lowest_rq)) {
1943 			/*
1944 			 * We had to unlock the run queue. In
1945 			 * the mean time, task could have
1946 			 * migrated already or had its affinity changed.
1947 			 * Also make sure that it wasn't scheduled on its rq.
1948 			 * It is possible the task was scheduled, set
1949 			 * "migrate_disabled" and then got preempted, so we must
1950 			 * check the task migration disable flag here too.
1951 			 */
1952 			if (unlikely(task_rq(task) != rq ||
1953 				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1954 				     task_on_cpu(rq, task) ||
1955 				     !rt_task(task) ||
1956 				     is_migration_disabled(task) ||
1957 				     !task_on_rq_queued(task))) {
1958 
1959 				double_unlock_balance(rq, lowest_rq);
1960 				lowest_rq = NULL;
1961 				break;
1962 			}
1963 		}
1964 
1965 		/* If this rq is still suitable use it. */
1966 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1967 			break;
1968 
1969 		/* try again */
1970 		double_unlock_balance(rq, lowest_rq);
1971 		lowest_rq = NULL;
1972 	}
1973 
1974 	return lowest_rq;
1975 }
1976 
1977 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1978 {
1979 	struct task_struct *p;
1980 
1981 	if (!has_pushable_tasks(rq))
1982 		return NULL;
1983 
1984 	p = plist_first_entry(&rq->rt.pushable_tasks,
1985 			      struct task_struct, pushable_tasks);
1986 
1987 	BUG_ON(rq->cpu != task_cpu(p));
1988 	BUG_ON(task_current(rq, p));
1989 	BUG_ON(p->nr_cpus_allowed <= 1);
1990 
1991 	BUG_ON(!task_on_rq_queued(p));
1992 	BUG_ON(!rt_task(p));
1993 
1994 	return p;
1995 }
1996 
1997 /*
1998  * If the current CPU has more than one RT task, see if the non
1999  * running task can migrate over to a CPU that is running a task
2000  * of lesser priority.
2001  */
2002 static int push_rt_task(struct rq *rq, bool pull)
2003 {
2004 	struct task_struct *next_task;
2005 	struct rq *lowest_rq;
2006 	int ret = 0;
2007 
2008 	if (!rq->rt.overloaded)
2009 		return 0;
2010 
2011 	next_task = pick_next_pushable_task(rq);
2012 	if (!next_task)
2013 		return 0;
2014 
2015 retry:
2016 	/*
2017 	 * It's possible that the next_task slipped in of
2018 	 * higher priority than current. If that's the case
2019 	 * just reschedule current.
2020 	 */
2021 	if (unlikely(next_task->prio < rq->curr->prio)) {
2022 		resched_curr(rq);
2023 		return 0;
2024 	}
2025 
2026 	if (is_migration_disabled(next_task)) {
2027 		struct task_struct *push_task = NULL;
2028 		int cpu;
2029 
2030 		if (!pull || rq->push_busy)
2031 			return 0;
2032 
2033 		/*
2034 		 * Invoking find_lowest_rq() on anything but an RT task doesn't
2035 		 * make sense. Per the above priority check, curr has to
2036 		 * be of higher priority than next_task, so no need to
2037 		 * reschedule when bailing out.
2038 		 *
2039 		 * Note that the stoppers are masqueraded as SCHED_FIFO
2040 		 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2041 		 */
2042 		if (rq->curr->sched_class != &rt_sched_class)
2043 			return 0;
2044 
2045 		cpu = find_lowest_rq(rq->curr);
2046 		if (cpu == -1 || cpu == rq->cpu)
2047 			return 0;
2048 
2049 		/*
2050 		 * Given we found a CPU with lower priority than @next_task,
2051 		 * therefore it should be running. However we cannot migrate it
2052 		 * to this other CPU, instead attempt to push the current
2053 		 * running task on this CPU away.
2054 		 */
2055 		push_task = get_push_task(rq);
2056 		if (push_task) {
2057 			preempt_disable();
2058 			raw_spin_rq_unlock(rq);
2059 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2060 					    push_task, &rq->push_work);
2061 			preempt_enable();
2062 			raw_spin_rq_lock(rq);
2063 		}
2064 
2065 		return 0;
2066 	}
2067 
2068 	if (WARN_ON(next_task == rq->curr))
2069 		return 0;
2070 
2071 	/* We might release rq lock */
2072 	get_task_struct(next_task);
2073 
2074 	/* find_lock_lowest_rq locks the rq if found */
2075 	lowest_rq = find_lock_lowest_rq(next_task, rq);
2076 	if (!lowest_rq) {
2077 		struct task_struct *task;
2078 		/*
2079 		 * find_lock_lowest_rq releases rq->lock
2080 		 * so it is possible that next_task has migrated.
2081 		 *
2082 		 * We need to make sure that the task is still on the same
2083 		 * run-queue and is also still the next task eligible for
2084 		 * pushing.
2085 		 */
2086 		task = pick_next_pushable_task(rq);
2087 		if (task == next_task) {
2088 			/*
2089 			 * The task hasn't migrated, and is still the next
2090 			 * eligible task, but we failed to find a run-queue
2091 			 * to push it to.  Do not retry in this case, since
2092 			 * other CPUs will pull from us when ready.
2093 			 */
2094 			goto out;
2095 		}
2096 
2097 		if (!task)
2098 			/* No more tasks, just exit */
2099 			goto out;
2100 
2101 		/*
2102 		 * Something has shifted, try again.
2103 		 */
2104 		put_task_struct(next_task);
2105 		next_task = task;
2106 		goto retry;
2107 	}
2108 
2109 	deactivate_task(rq, next_task, 0);
2110 	set_task_cpu(next_task, lowest_rq->cpu);
2111 	activate_task(lowest_rq, next_task, 0);
2112 	resched_curr(lowest_rq);
2113 	ret = 1;
2114 
2115 	double_unlock_balance(rq, lowest_rq);
2116 out:
2117 	put_task_struct(next_task);
2118 
2119 	return ret;
2120 }
2121 
2122 static void push_rt_tasks(struct rq *rq)
2123 {
2124 	/* push_rt_task will return true if it moved an RT */
2125 	while (push_rt_task(rq, false))
2126 		;
2127 }
2128 
2129 #ifdef HAVE_RT_PUSH_IPI
2130 
2131 /*
2132  * When a high priority task schedules out from a CPU and a lower priority
2133  * task is scheduled in, a check is made to see if there's any RT tasks
2134  * on other CPUs that are waiting to run because a higher priority RT task
2135  * is currently running on its CPU. In this case, the CPU with multiple RT
2136  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2137  * up that may be able to run one of its non-running queued RT tasks.
2138  *
2139  * All CPUs with overloaded RT tasks need to be notified as there is currently
2140  * no way to know which of these CPUs have the highest priority task waiting
2141  * to run. Instead of trying to take a spinlock on each of these CPUs,
2142  * which has shown to cause large latency when done on machines with many
2143  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2144  * RT tasks waiting to run.
2145  *
2146  * Just sending an IPI to each of the CPUs is also an issue, as on large
2147  * count CPU machines, this can cause an IPI storm on a CPU, especially
2148  * if its the only CPU with multiple RT tasks queued, and a large number
2149  * of CPUs scheduling a lower priority task at the same time.
2150  *
2151  * Each root domain has its own irq work function that can iterate over
2152  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2153  * task must be checked if there's one or many CPUs that are lowering
2154  * their priority, there's a single irq work iterator that will try to
2155  * push off RT tasks that are waiting to run.
2156  *
2157  * When a CPU schedules a lower priority task, it will kick off the
2158  * irq work iterator that will jump to each CPU with overloaded RT tasks.
2159  * As it only takes the first CPU that schedules a lower priority task
2160  * to start the process, the rto_start variable is incremented and if
2161  * the atomic result is one, then that CPU will try to take the rto_lock.
2162  * This prevents high contention on the lock as the process handles all
2163  * CPUs scheduling lower priority tasks.
2164  *
2165  * All CPUs that are scheduling a lower priority task will increment the
2166  * rt_loop_next variable. This will make sure that the irq work iterator
2167  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2168  * priority task, even if the iterator is in the middle of a scan. Incrementing
2169  * the rt_loop_next will cause the iterator to perform another scan.
2170  *
2171  */
2172 static int rto_next_cpu(struct root_domain *rd)
2173 {
2174 	int next;
2175 	int cpu;
2176 
2177 	/*
2178 	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2179 	 * rt_next_cpu() will simply return the first CPU found in
2180 	 * the rto_mask.
2181 	 *
2182 	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2183 	 * will return the next CPU found in the rto_mask.
2184 	 *
2185 	 * If there are no more CPUs left in the rto_mask, then a check is made
2186 	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2187 	 * the rto_lock held, but any CPU may increment the rto_loop_next
2188 	 * without any locking.
2189 	 */
2190 	for (;;) {
2191 
2192 		/* When rto_cpu is -1 this acts like cpumask_first() */
2193 		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2194 
2195 		rd->rto_cpu = cpu;
2196 
2197 		if (cpu < nr_cpu_ids)
2198 			return cpu;
2199 
2200 		rd->rto_cpu = -1;
2201 
2202 		/*
2203 		 * ACQUIRE ensures we see the @rto_mask changes
2204 		 * made prior to the @next value observed.
2205 		 *
2206 		 * Matches WMB in rt_set_overload().
2207 		 */
2208 		next = atomic_read_acquire(&rd->rto_loop_next);
2209 
2210 		if (rd->rto_loop == next)
2211 			break;
2212 
2213 		rd->rto_loop = next;
2214 	}
2215 
2216 	return -1;
2217 }
2218 
2219 static inline bool rto_start_trylock(atomic_t *v)
2220 {
2221 	return !atomic_cmpxchg_acquire(v, 0, 1);
2222 }
2223 
2224 static inline void rto_start_unlock(atomic_t *v)
2225 {
2226 	atomic_set_release(v, 0);
2227 }
2228 
2229 static void tell_cpu_to_push(struct rq *rq)
2230 {
2231 	int cpu = -1;
2232 
2233 	/* Keep the loop going if the IPI is currently active */
2234 	atomic_inc(&rq->rd->rto_loop_next);
2235 
2236 	/* Only one CPU can initiate a loop at a time */
2237 	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2238 		return;
2239 
2240 	raw_spin_lock(&rq->rd->rto_lock);
2241 
2242 	/*
2243 	 * The rto_cpu is updated under the lock, if it has a valid CPU
2244 	 * then the IPI is still running and will continue due to the
2245 	 * update to loop_next, and nothing needs to be done here.
2246 	 * Otherwise it is finishing up and an ipi needs to be sent.
2247 	 */
2248 	if (rq->rd->rto_cpu < 0)
2249 		cpu = rto_next_cpu(rq->rd);
2250 
2251 	raw_spin_unlock(&rq->rd->rto_lock);
2252 
2253 	rto_start_unlock(&rq->rd->rto_loop_start);
2254 
2255 	if (cpu >= 0) {
2256 		/* Make sure the rd does not get freed while pushing */
2257 		sched_get_rd(rq->rd);
2258 		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2259 	}
2260 }
2261 
2262 /* Called from hardirq context */
2263 void rto_push_irq_work_func(struct irq_work *work)
2264 {
2265 	struct root_domain *rd =
2266 		container_of(work, struct root_domain, rto_push_work);
2267 	struct rq *rq;
2268 	int cpu;
2269 
2270 	rq = this_rq();
2271 
2272 	/*
2273 	 * We do not need to grab the lock to check for has_pushable_tasks.
2274 	 * When it gets updated, a check is made if a push is possible.
2275 	 */
2276 	if (has_pushable_tasks(rq)) {
2277 		raw_spin_rq_lock(rq);
2278 		while (push_rt_task(rq, true))
2279 			;
2280 		raw_spin_rq_unlock(rq);
2281 	}
2282 
2283 	raw_spin_lock(&rd->rto_lock);
2284 
2285 	/* Pass the IPI to the next rt overloaded queue */
2286 	cpu = rto_next_cpu(rd);
2287 
2288 	raw_spin_unlock(&rd->rto_lock);
2289 
2290 	if (cpu < 0) {
2291 		sched_put_rd(rd);
2292 		return;
2293 	}
2294 
2295 	/* Try the next RT overloaded CPU */
2296 	irq_work_queue_on(&rd->rto_push_work, cpu);
2297 }
2298 #endif /* HAVE_RT_PUSH_IPI */
2299 
2300 static void pull_rt_task(struct rq *this_rq)
2301 {
2302 	int this_cpu = this_rq->cpu, cpu;
2303 	bool resched = false;
2304 	struct task_struct *p, *push_task;
2305 	struct rq *src_rq;
2306 	int rt_overload_count = rt_overloaded(this_rq);
2307 
2308 	if (likely(!rt_overload_count))
2309 		return;
2310 
2311 	/*
2312 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2313 	 * see overloaded we must also see the rto_mask bit.
2314 	 */
2315 	smp_rmb();
2316 
2317 	/* If we are the only overloaded CPU do nothing */
2318 	if (rt_overload_count == 1 &&
2319 	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2320 		return;
2321 
2322 #ifdef HAVE_RT_PUSH_IPI
2323 	if (sched_feat(RT_PUSH_IPI)) {
2324 		tell_cpu_to_push(this_rq);
2325 		return;
2326 	}
2327 #endif
2328 
2329 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2330 		if (this_cpu == cpu)
2331 			continue;
2332 
2333 		src_rq = cpu_rq(cpu);
2334 
2335 		/*
2336 		 * Don't bother taking the src_rq->lock if the next highest
2337 		 * task is known to be lower-priority than our current task.
2338 		 * This may look racy, but if this value is about to go
2339 		 * logically higher, the src_rq will push this task away.
2340 		 * And if its going logically lower, we do not care
2341 		 */
2342 		if (src_rq->rt.highest_prio.next >=
2343 		    this_rq->rt.highest_prio.curr)
2344 			continue;
2345 
2346 		/*
2347 		 * We can potentially drop this_rq's lock in
2348 		 * double_lock_balance, and another CPU could
2349 		 * alter this_rq
2350 		 */
2351 		push_task = NULL;
2352 		double_lock_balance(this_rq, src_rq);
2353 
2354 		/*
2355 		 * We can pull only a task, which is pushable
2356 		 * on its rq, and no others.
2357 		 */
2358 		p = pick_highest_pushable_task(src_rq, this_cpu);
2359 
2360 		/*
2361 		 * Do we have an RT task that preempts
2362 		 * the to-be-scheduled task?
2363 		 */
2364 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2365 			WARN_ON(p == src_rq->curr);
2366 			WARN_ON(!task_on_rq_queued(p));
2367 
2368 			/*
2369 			 * There's a chance that p is higher in priority
2370 			 * than what's currently running on its CPU.
2371 			 * This is just that p is waking up and hasn't
2372 			 * had a chance to schedule. We only pull
2373 			 * p if it is lower in priority than the
2374 			 * current task on the run queue
2375 			 */
2376 			if (p->prio < src_rq->curr->prio)
2377 				goto skip;
2378 
2379 			if (is_migration_disabled(p)) {
2380 				push_task = get_push_task(src_rq);
2381 			} else {
2382 				deactivate_task(src_rq, p, 0);
2383 				set_task_cpu(p, this_cpu);
2384 				activate_task(this_rq, p, 0);
2385 				resched = true;
2386 			}
2387 			/*
2388 			 * We continue with the search, just in
2389 			 * case there's an even higher prio task
2390 			 * in another runqueue. (low likelihood
2391 			 * but possible)
2392 			 */
2393 		}
2394 skip:
2395 		double_unlock_balance(this_rq, src_rq);
2396 
2397 		if (push_task) {
2398 			preempt_disable();
2399 			raw_spin_rq_unlock(this_rq);
2400 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2401 					    push_task, &src_rq->push_work);
2402 			preempt_enable();
2403 			raw_spin_rq_lock(this_rq);
2404 		}
2405 	}
2406 
2407 	if (resched)
2408 		resched_curr(this_rq);
2409 }
2410 
2411 /*
2412  * If we are not running and we are not going to reschedule soon, we should
2413  * try to push tasks away now
2414  */
2415 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2416 {
2417 	bool need_to_push = !task_on_cpu(rq, p) &&
2418 			    !test_tsk_need_resched(rq->curr) &&
2419 			    p->nr_cpus_allowed > 1 &&
2420 			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2421 			    (rq->curr->nr_cpus_allowed < 2 ||
2422 			     rq->curr->prio <= p->prio);
2423 
2424 	if (need_to_push)
2425 		push_rt_tasks(rq);
2426 }
2427 
2428 /* Assumes rq->lock is held */
2429 static void rq_online_rt(struct rq *rq)
2430 {
2431 	if (rq->rt.overloaded)
2432 		rt_set_overload(rq);
2433 
2434 	__enable_runtime(rq);
2435 
2436 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2437 }
2438 
2439 /* Assumes rq->lock is held */
2440 static void rq_offline_rt(struct rq *rq)
2441 {
2442 	if (rq->rt.overloaded)
2443 		rt_clear_overload(rq);
2444 
2445 	__disable_runtime(rq);
2446 
2447 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2448 }
2449 
2450 /*
2451  * When switch from the rt queue, we bring ourselves to a position
2452  * that we might want to pull RT tasks from other runqueues.
2453  */
2454 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2455 {
2456 	/*
2457 	 * If there are other RT tasks then we will reschedule
2458 	 * and the scheduling of the other RT tasks will handle
2459 	 * the balancing. But if we are the last RT task
2460 	 * we may need to handle the pulling of RT tasks
2461 	 * now.
2462 	 */
2463 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2464 		return;
2465 
2466 	rt_queue_pull_task(rq);
2467 }
2468 
2469 void __init init_sched_rt_class(void)
2470 {
2471 	unsigned int i;
2472 
2473 	for_each_possible_cpu(i) {
2474 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2475 					GFP_KERNEL, cpu_to_node(i));
2476 	}
2477 }
2478 #endif /* CONFIG_SMP */
2479 
2480 /*
2481  * When switching a task to RT, we may overload the runqueue
2482  * with RT tasks. In this case we try to push them off to
2483  * other runqueues.
2484  */
2485 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2486 {
2487 	/*
2488 	 * If we are running, update the avg_rt tracking, as the running time
2489 	 * will now on be accounted into the latter.
2490 	 */
2491 	if (task_current(rq, p)) {
2492 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2493 		return;
2494 	}
2495 
2496 	/*
2497 	 * If we are not running we may need to preempt the current
2498 	 * running task. If that current running task is also an RT task
2499 	 * then see if we can move to another run queue.
2500 	 */
2501 	if (task_on_rq_queued(p)) {
2502 #ifdef CONFIG_SMP
2503 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2504 			rt_queue_push_tasks(rq);
2505 #endif /* CONFIG_SMP */
2506 		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2507 			resched_curr(rq);
2508 	}
2509 }
2510 
2511 /*
2512  * Priority of the task has changed. This may cause
2513  * us to initiate a push or pull.
2514  */
2515 static void
2516 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2517 {
2518 	if (!task_on_rq_queued(p))
2519 		return;
2520 
2521 	if (task_current(rq, p)) {
2522 #ifdef CONFIG_SMP
2523 		/*
2524 		 * If our priority decreases while running, we
2525 		 * may need to pull tasks to this runqueue.
2526 		 */
2527 		if (oldprio < p->prio)
2528 			rt_queue_pull_task(rq);
2529 
2530 		/*
2531 		 * If there's a higher priority task waiting to run
2532 		 * then reschedule.
2533 		 */
2534 		if (p->prio > rq->rt.highest_prio.curr)
2535 			resched_curr(rq);
2536 #else
2537 		/* For UP simply resched on drop of prio */
2538 		if (oldprio < p->prio)
2539 			resched_curr(rq);
2540 #endif /* CONFIG_SMP */
2541 	} else {
2542 		/*
2543 		 * This task is not running, but if it is
2544 		 * greater than the current running task
2545 		 * then reschedule.
2546 		 */
2547 		if (p->prio < rq->curr->prio)
2548 			resched_curr(rq);
2549 	}
2550 }
2551 
2552 #ifdef CONFIG_POSIX_TIMERS
2553 static void watchdog(struct rq *rq, struct task_struct *p)
2554 {
2555 	unsigned long soft, hard;
2556 
2557 	/* max may change after cur was read, this will be fixed next tick */
2558 	soft = task_rlimit(p, RLIMIT_RTTIME);
2559 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2560 
2561 	if (soft != RLIM_INFINITY) {
2562 		unsigned long next;
2563 
2564 		if (p->rt.watchdog_stamp != jiffies) {
2565 			p->rt.timeout++;
2566 			p->rt.watchdog_stamp = jiffies;
2567 		}
2568 
2569 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2570 		if (p->rt.timeout > next) {
2571 			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2572 						    p->se.sum_exec_runtime);
2573 		}
2574 	}
2575 }
2576 #else
2577 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2578 #endif
2579 
2580 /*
2581  * scheduler tick hitting a task of our scheduling class.
2582  *
2583  * NOTE: This function can be called remotely by the tick offload that
2584  * goes along full dynticks. Therefore no local assumption can be made
2585  * and everything must be accessed through the @rq and @curr passed in
2586  * parameters.
2587  */
2588 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2589 {
2590 	struct sched_rt_entity *rt_se = &p->rt;
2591 
2592 	update_curr_rt(rq);
2593 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2594 
2595 	watchdog(rq, p);
2596 
2597 	/*
2598 	 * RR tasks need a special form of timeslice management.
2599 	 * FIFO tasks have no timeslices.
2600 	 */
2601 	if (p->policy != SCHED_RR)
2602 		return;
2603 
2604 	if (--p->rt.time_slice)
2605 		return;
2606 
2607 	p->rt.time_slice = sched_rr_timeslice;
2608 
2609 	/*
2610 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2611 	 * the only element on the queue
2612 	 */
2613 	for_each_sched_rt_entity(rt_se) {
2614 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2615 			requeue_task_rt(rq, p, 0);
2616 			resched_curr(rq);
2617 			return;
2618 		}
2619 	}
2620 }
2621 
2622 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2623 {
2624 	/*
2625 	 * Time slice is 0 for SCHED_FIFO tasks
2626 	 */
2627 	if (task->policy == SCHED_RR)
2628 		return sched_rr_timeslice;
2629 	else
2630 		return 0;
2631 }
2632 
2633 #ifdef CONFIG_SCHED_CORE
2634 static int task_is_throttled_rt(struct task_struct *p, int cpu)
2635 {
2636 	struct rt_rq *rt_rq;
2637 
2638 #ifdef CONFIG_RT_GROUP_SCHED
2639 	rt_rq = task_group(p)->rt_rq[cpu];
2640 #else
2641 	rt_rq = &cpu_rq(cpu)->rt;
2642 #endif
2643 
2644 	return rt_rq_throttled(rt_rq);
2645 }
2646 #endif
2647 
2648 DEFINE_SCHED_CLASS(rt) = {
2649 
2650 	.enqueue_task		= enqueue_task_rt,
2651 	.dequeue_task		= dequeue_task_rt,
2652 	.yield_task		= yield_task_rt,
2653 
2654 	.wakeup_preempt		= wakeup_preempt_rt,
2655 
2656 	.pick_next_task		= pick_next_task_rt,
2657 	.put_prev_task		= put_prev_task_rt,
2658 	.set_next_task          = set_next_task_rt,
2659 
2660 #ifdef CONFIG_SMP
2661 	.balance		= balance_rt,
2662 	.pick_task		= pick_task_rt,
2663 	.select_task_rq		= select_task_rq_rt,
2664 	.set_cpus_allowed       = set_cpus_allowed_common,
2665 	.rq_online              = rq_online_rt,
2666 	.rq_offline             = rq_offline_rt,
2667 	.task_woken		= task_woken_rt,
2668 	.switched_from		= switched_from_rt,
2669 	.find_lock_rq		= find_lock_lowest_rq,
2670 #endif
2671 
2672 	.task_tick		= task_tick_rt,
2673 
2674 	.get_rr_interval	= get_rr_interval_rt,
2675 
2676 	.prio_changed		= prio_changed_rt,
2677 	.switched_to		= switched_to_rt,
2678 
2679 	.update_curr		= update_curr_rt,
2680 
2681 #ifdef CONFIG_SCHED_CORE
2682 	.task_is_throttled	= task_is_throttled_rt,
2683 #endif
2684 
2685 #ifdef CONFIG_UCLAMP_TASK
2686 	.uclamp_enabled		= 1,
2687 #endif
2688 };
2689 
2690 #ifdef CONFIG_RT_GROUP_SCHED
2691 /*
2692  * Ensure that the real time constraints are schedulable.
2693  */
2694 static DEFINE_MUTEX(rt_constraints_mutex);
2695 
2696 static inline int tg_has_rt_tasks(struct task_group *tg)
2697 {
2698 	struct task_struct *task;
2699 	struct css_task_iter it;
2700 	int ret = 0;
2701 
2702 	/*
2703 	 * Autogroups do not have RT tasks; see autogroup_create().
2704 	 */
2705 	if (task_group_is_autogroup(tg))
2706 		return 0;
2707 
2708 	css_task_iter_start(&tg->css, 0, &it);
2709 	while (!ret && (task = css_task_iter_next(&it)))
2710 		ret |= rt_task(task);
2711 	css_task_iter_end(&it);
2712 
2713 	return ret;
2714 }
2715 
2716 struct rt_schedulable_data {
2717 	struct task_group *tg;
2718 	u64 rt_period;
2719 	u64 rt_runtime;
2720 };
2721 
2722 static int tg_rt_schedulable(struct task_group *tg, void *data)
2723 {
2724 	struct rt_schedulable_data *d = data;
2725 	struct task_group *child;
2726 	unsigned long total, sum = 0;
2727 	u64 period, runtime;
2728 
2729 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2730 	runtime = tg->rt_bandwidth.rt_runtime;
2731 
2732 	if (tg == d->tg) {
2733 		period = d->rt_period;
2734 		runtime = d->rt_runtime;
2735 	}
2736 
2737 	/*
2738 	 * Cannot have more runtime than the period.
2739 	 */
2740 	if (runtime > period && runtime != RUNTIME_INF)
2741 		return -EINVAL;
2742 
2743 	/*
2744 	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2745 	 */
2746 	if (rt_bandwidth_enabled() && !runtime &&
2747 	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2748 		return -EBUSY;
2749 
2750 	total = to_ratio(period, runtime);
2751 
2752 	/*
2753 	 * Nobody can have more than the global setting allows.
2754 	 */
2755 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2756 		return -EINVAL;
2757 
2758 	/*
2759 	 * The sum of our children's runtime should not exceed our own.
2760 	 */
2761 	list_for_each_entry_rcu(child, &tg->children, siblings) {
2762 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2763 		runtime = child->rt_bandwidth.rt_runtime;
2764 
2765 		if (child == d->tg) {
2766 			period = d->rt_period;
2767 			runtime = d->rt_runtime;
2768 		}
2769 
2770 		sum += to_ratio(period, runtime);
2771 	}
2772 
2773 	if (sum > total)
2774 		return -EINVAL;
2775 
2776 	return 0;
2777 }
2778 
2779 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2780 {
2781 	int ret;
2782 
2783 	struct rt_schedulable_data data = {
2784 		.tg = tg,
2785 		.rt_period = period,
2786 		.rt_runtime = runtime,
2787 	};
2788 
2789 	rcu_read_lock();
2790 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2791 	rcu_read_unlock();
2792 
2793 	return ret;
2794 }
2795 
2796 static int tg_set_rt_bandwidth(struct task_group *tg,
2797 		u64 rt_period, u64 rt_runtime)
2798 {
2799 	int i, err = 0;
2800 
2801 	/*
2802 	 * Disallowing the root group RT runtime is BAD, it would disallow the
2803 	 * kernel creating (and or operating) RT threads.
2804 	 */
2805 	if (tg == &root_task_group && rt_runtime == 0)
2806 		return -EINVAL;
2807 
2808 	/* No period doesn't make any sense. */
2809 	if (rt_period == 0)
2810 		return -EINVAL;
2811 
2812 	/*
2813 	 * Bound quota to defend quota against overflow during bandwidth shift.
2814 	 */
2815 	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2816 		return -EINVAL;
2817 
2818 	mutex_lock(&rt_constraints_mutex);
2819 	err = __rt_schedulable(tg, rt_period, rt_runtime);
2820 	if (err)
2821 		goto unlock;
2822 
2823 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2824 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2825 	tg->rt_bandwidth.rt_runtime = rt_runtime;
2826 
2827 	for_each_possible_cpu(i) {
2828 		struct rt_rq *rt_rq = tg->rt_rq[i];
2829 
2830 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2831 		rt_rq->rt_runtime = rt_runtime;
2832 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2833 	}
2834 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2835 unlock:
2836 	mutex_unlock(&rt_constraints_mutex);
2837 
2838 	return err;
2839 }
2840 
2841 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2842 {
2843 	u64 rt_runtime, rt_period;
2844 
2845 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2846 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2847 	if (rt_runtime_us < 0)
2848 		rt_runtime = RUNTIME_INF;
2849 	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2850 		return -EINVAL;
2851 
2852 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2853 }
2854 
2855 long sched_group_rt_runtime(struct task_group *tg)
2856 {
2857 	u64 rt_runtime_us;
2858 
2859 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2860 		return -1;
2861 
2862 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2863 	do_div(rt_runtime_us, NSEC_PER_USEC);
2864 	return rt_runtime_us;
2865 }
2866 
2867 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2868 {
2869 	u64 rt_runtime, rt_period;
2870 
2871 	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2872 		return -EINVAL;
2873 
2874 	rt_period = rt_period_us * NSEC_PER_USEC;
2875 	rt_runtime = tg->rt_bandwidth.rt_runtime;
2876 
2877 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2878 }
2879 
2880 long sched_group_rt_period(struct task_group *tg)
2881 {
2882 	u64 rt_period_us;
2883 
2884 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2885 	do_div(rt_period_us, NSEC_PER_USEC);
2886 	return rt_period_us;
2887 }
2888 
2889 #ifdef CONFIG_SYSCTL
2890 static int sched_rt_global_constraints(void)
2891 {
2892 	int ret = 0;
2893 
2894 	mutex_lock(&rt_constraints_mutex);
2895 	ret = __rt_schedulable(NULL, 0, 0);
2896 	mutex_unlock(&rt_constraints_mutex);
2897 
2898 	return ret;
2899 }
2900 #endif /* CONFIG_SYSCTL */
2901 
2902 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2903 {
2904 	/* Don't accept realtime tasks when there is no way for them to run */
2905 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2906 		return 0;
2907 
2908 	return 1;
2909 }
2910 
2911 #else /* !CONFIG_RT_GROUP_SCHED */
2912 
2913 #ifdef CONFIG_SYSCTL
2914 static int sched_rt_global_constraints(void)
2915 {
2916 	unsigned long flags;
2917 	int i;
2918 
2919 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2920 	for_each_possible_cpu(i) {
2921 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2922 
2923 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2924 		rt_rq->rt_runtime = global_rt_runtime();
2925 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2926 	}
2927 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2928 
2929 	return 0;
2930 }
2931 #endif /* CONFIG_SYSCTL */
2932 #endif /* CONFIG_RT_GROUP_SCHED */
2933 
2934 #ifdef CONFIG_SYSCTL
2935 static int sched_rt_global_validate(void)
2936 {
2937 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2938 		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2939 		 ((u64)sysctl_sched_rt_runtime *
2940 			NSEC_PER_USEC > max_rt_runtime)))
2941 		return -EINVAL;
2942 
2943 	return 0;
2944 }
2945 
2946 static void sched_rt_do_global(void)
2947 {
2948 	unsigned long flags;
2949 
2950 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2951 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2952 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2953 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2954 }
2955 
2956 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2957 		size_t *lenp, loff_t *ppos)
2958 {
2959 	int old_period, old_runtime;
2960 	static DEFINE_MUTEX(mutex);
2961 	int ret;
2962 
2963 	mutex_lock(&mutex);
2964 	old_period = sysctl_sched_rt_period;
2965 	old_runtime = sysctl_sched_rt_runtime;
2966 
2967 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2968 
2969 	if (!ret && write) {
2970 		ret = sched_rt_global_validate();
2971 		if (ret)
2972 			goto undo;
2973 
2974 		ret = sched_dl_global_validate();
2975 		if (ret)
2976 			goto undo;
2977 
2978 		ret = sched_rt_global_constraints();
2979 		if (ret)
2980 			goto undo;
2981 
2982 		sched_rt_do_global();
2983 		sched_dl_do_global();
2984 	}
2985 	if (0) {
2986 undo:
2987 		sysctl_sched_rt_period = old_period;
2988 		sysctl_sched_rt_runtime = old_runtime;
2989 	}
2990 	mutex_unlock(&mutex);
2991 
2992 	return ret;
2993 }
2994 
2995 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2996 		size_t *lenp, loff_t *ppos)
2997 {
2998 	int ret;
2999 	static DEFINE_MUTEX(mutex);
3000 
3001 	mutex_lock(&mutex);
3002 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
3003 	/*
3004 	 * Make sure that internally we keep jiffies.
3005 	 * Also, writing zero resets the timeslice to default:
3006 	 */
3007 	if (!ret && write) {
3008 		sched_rr_timeslice =
3009 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3010 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
3011 
3012 		if (sysctl_sched_rr_timeslice <= 0)
3013 			sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
3014 	}
3015 	mutex_unlock(&mutex);
3016 
3017 	return ret;
3018 }
3019 #endif /* CONFIG_SYSCTL */
3020 
3021 #ifdef CONFIG_SCHED_DEBUG
3022 void print_rt_stats(struct seq_file *m, int cpu)
3023 {
3024 	rt_rq_iter_t iter;
3025 	struct rt_rq *rt_rq;
3026 
3027 	rcu_read_lock();
3028 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3029 		print_rt_rq(m, cpu, rt_rq);
3030 	rcu_read_unlock();
3031 }
3032 #endif /* CONFIG_SCHED_DEBUG */
3033