xref: /linux/kernel/sched/rt.c (revision abeebe8889b732b2de3c5c098350f51bc5204069)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 
7 int sched_rr_timeslice = RR_TIMESLICE;
8 /* More than 4 hours if BW_SHIFT equals 20. */
9 static const u64 max_rt_runtime = MAX_BW;
10 
11 /*
12  * period over which we measure -rt task CPU usage in us.
13  * default: 1s
14  */
15 int sysctl_sched_rt_period = 1000000;
16 
17 /*
18  * part of the period that we allow rt tasks to run in us.
19  * default: 0.95s
20  */
21 int sysctl_sched_rt_runtime = 950000;
22 
23 #ifdef CONFIG_SYSCTL
24 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
25 static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer,
26 		size_t *lenp, loff_t *ppos);
27 static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer,
28 		size_t *lenp, loff_t *ppos);
29 static const struct ctl_table sched_rt_sysctls[] = {
30 	{
31 		.procname       = "sched_rt_period_us",
32 		.data           = &sysctl_sched_rt_period,
33 		.maxlen         = sizeof(int),
34 		.mode           = 0644,
35 		.proc_handler   = sched_rt_handler,
36 		.extra1         = SYSCTL_ONE,
37 		.extra2         = SYSCTL_INT_MAX,
38 	},
39 	{
40 		.procname       = "sched_rt_runtime_us",
41 		.data           = &sysctl_sched_rt_runtime,
42 		.maxlen         = sizeof(int),
43 		.mode           = 0644,
44 		.proc_handler   = sched_rt_handler,
45 		.extra1         = SYSCTL_NEG_ONE,
46 		.extra2         = (void *)&sysctl_sched_rt_period,
47 	},
48 	{
49 		.procname       = "sched_rr_timeslice_ms",
50 		.data           = &sysctl_sched_rr_timeslice,
51 		.maxlen         = sizeof(int),
52 		.mode           = 0644,
53 		.proc_handler   = sched_rr_handler,
54 	},
55 };
56 
57 static int __init sched_rt_sysctl_init(void)
58 {
59 	register_sysctl_init("kernel", sched_rt_sysctls);
60 	return 0;
61 }
62 late_initcall(sched_rt_sysctl_init);
63 #endif
64 
65 void init_rt_rq(struct rt_rq *rt_rq)
66 {
67 	struct rt_prio_array *array;
68 	int i;
69 
70 	array = &rt_rq->active;
71 	for (i = 0; i < MAX_RT_PRIO; i++) {
72 		INIT_LIST_HEAD(array->queue + i);
73 		__clear_bit(i, array->bitmap);
74 	}
75 	/* delimiter for bitsearch: */
76 	__set_bit(MAX_RT_PRIO, array->bitmap);
77 
78 #if defined CONFIG_SMP
79 	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
80 	rt_rq->highest_prio.next = MAX_RT_PRIO-1;
81 	rt_rq->overloaded = 0;
82 	plist_head_init(&rt_rq->pushable_tasks);
83 #endif /* CONFIG_SMP */
84 	/* We start is dequeued state, because no RT tasks are queued */
85 	rt_rq->rt_queued = 0;
86 
87 #ifdef CONFIG_RT_GROUP_SCHED
88 	rt_rq->rt_time = 0;
89 	rt_rq->rt_throttled = 0;
90 	rt_rq->rt_runtime = 0;
91 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
92 #endif
93 }
94 
95 #ifdef CONFIG_RT_GROUP_SCHED
96 
97 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
98 
99 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
100 {
101 	struct rt_bandwidth *rt_b =
102 		container_of(timer, struct rt_bandwidth, rt_period_timer);
103 	int idle = 0;
104 	int overrun;
105 
106 	raw_spin_lock(&rt_b->rt_runtime_lock);
107 	for (;;) {
108 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
109 		if (!overrun)
110 			break;
111 
112 		raw_spin_unlock(&rt_b->rt_runtime_lock);
113 		idle = do_sched_rt_period_timer(rt_b, overrun);
114 		raw_spin_lock(&rt_b->rt_runtime_lock);
115 	}
116 	if (idle)
117 		rt_b->rt_period_active = 0;
118 	raw_spin_unlock(&rt_b->rt_runtime_lock);
119 
120 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
121 }
122 
123 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
124 {
125 	rt_b->rt_period = ns_to_ktime(period);
126 	rt_b->rt_runtime = runtime;
127 
128 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
129 
130 	hrtimer_setup(&rt_b->rt_period_timer, sched_rt_period_timer, CLOCK_MONOTONIC,
131 		      HRTIMER_MODE_REL_HARD);
132 }
133 
134 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
135 {
136 	raw_spin_lock(&rt_b->rt_runtime_lock);
137 	if (!rt_b->rt_period_active) {
138 		rt_b->rt_period_active = 1;
139 		/*
140 		 * SCHED_DEADLINE updates the bandwidth, as a run away
141 		 * RT task with a DL task could hog a CPU. But DL does
142 		 * not reset the period. If a deadline task was running
143 		 * without an RT task running, it can cause RT tasks to
144 		 * throttle when they start up. Kick the timer right away
145 		 * to update the period.
146 		 */
147 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
148 		hrtimer_start_expires(&rt_b->rt_period_timer,
149 				      HRTIMER_MODE_ABS_PINNED_HARD);
150 	}
151 	raw_spin_unlock(&rt_b->rt_runtime_lock);
152 }
153 
154 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
155 {
156 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
157 		return;
158 
159 	do_start_rt_bandwidth(rt_b);
160 }
161 
162 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
163 {
164 	hrtimer_cancel(&rt_b->rt_period_timer);
165 }
166 
167 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
168 
169 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
170 {
171 #ifdef CONFIG_SCHED_DEBUG
172 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
173 #endif
174 	return container_of(rt_se, struct task_struct, rt);
175 }
176 
177 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
178 {
179 	return rt_rq->rq;
180 }
181 
182 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
183 {
184 	return rt_se->rt_rq;
185 }
186 
187 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
188 {
189 	struct rt_rq *rt_rq = rt_se->rt_rq;
190 
191 	return rt_rq->rq;
192 }
193 
194 void unregister_rt_sched_group(struct task_group *tg)
195 {
196 	if (tg->rt_se)
197 		destroy_rt_bandwidth(&tg->rt_bandwidth);
198 }
199 
200 void free_rt_sched_group(struct task_group *tg)
201 {
202 	int i;
203 
204 	for_each_possible_cpu(i) {
205 		if (tg->rt_rq)
206 			kfree(tg->rt_rq[i]);
207 		if (tg->rt_se)
208 			kfree(tg->rt_se[i]);
209 	}
210 
211 	kfree(tg->rt_rq);
212 	kfree(tg->rt_se);
213 }
214 
215 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
216 		struct sched_rt_entity *rt_se, int cpu,
217 		struct sched_rt_entity *parent)
218 {
219 	struct rq *rq = cpu_rq(cpu);
220 
221 	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
222 	rt_rq->rt_nr_boosted = 0;
223 	rt_rq->rq = rq;
224 	rt_rq->tg = tg;
225 
226 	tg->rt_rq[cpu] = rt_rq;
227 	tg->rt_se[cpu] = rt_se;
228 
229 	if (!rt_se)
230 		return;
231 
232 	if (!parent)
233 		rt_se->rt_rq = &rq->rt;
234 	else
235 		rt_se->rt_rq = parent->my_q;
236 
237 	rt_se->my_q = rt_rq;
238 	rt_se->parent = parent;
239 	INIT_LIST_HEAD(&rt_se->run_list);
240 }
241 
242 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
243 {
244 	struct rt_rq *rt_rq;
245 	struct sched_rt_entity *rt_se;
246 	int i;
247 
248 	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
249 	if (!tg->rt_rq)
250 		goto err;
251 	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
252 	if (!tg->rt_se)
253 		goto err;
254 
255 	init_rt_bandwidth(&tg->rt_bandwidth, ktime_to_ns(global_rt_period()), 0);
256 
257 	for_each_possible_cpu(i) {
258 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
259 				     GFP_KERNEL, cpu_to_node(i));
260 		if (!rt_rq)
261 			goto err;
262 
263 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
264 				     GFP_KERNEL, cpu_to_node(i));
265 		if (!rt_se)
266 			goto err_free_rq;
267 
268 		init_rt_rq(rt_rq);
269 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
270 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
271 	}
272 
273 	return 1;
274 
275 err_free_rq:
276 	kfree(rt_rq);
277 err:
278 	return 0;
279 }
280 
281 #else /* CONFIG_RT_GROUP_SCHED */
282 
283 #define rt_entity_is_task(rt_se) (1)
284 
285 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
286 {
287 	return container_of(rt_se, struct task_struct, rt);
288 }
289 
290 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
291 {
292 	return container_of(rt_rq, struct rq, rt);
293 }
294 
295 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
296 {
297 	struct task_struct *p = rt_task_of(rt_se);
298 
299 	return task_rq(p);
300 }
301 
302 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
303 {
304 	struct rq *rq = rq_of_rt_se(rt_se);
305 
306 	return &rq->rt;
307 }
308 
309 void unregister_rt_sched_group(struct task_group *tg) { }
310 
311 void free_rt_sched_group(struct task_group *tg) { }
312 
313 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
314 {
315 	return 1;
316 }
317 #endif /* CONFIG_RT_GROUP_SCHED */
318 
319 #ifdef CONFIG_SMP
320 
321 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
322 {
323 	/* Try to pull RT tasks here if we lower this rq's prio */
324 	return rq->online && rq->rt.highest_prio.curr > prev->prio;
325 }
326 
327 static inline int rt_overloaded(struct rq *rq)
328 {
329 	return atomic_read(&rq->rd->rto_count);
330 }
331 
332 static inline void rt_set_overload(struct rq *rq)
333 {
334 	if (!rq->online)
335 		return;
336 
337 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
338 	/*
339 	 * Make sure the mask is visible before we set
340 	 * the overload count. That is checked to determine
341 	 * if we should look at the mask. It would be a shame
342 	 * if we looked at the mask, but the mask was not
343 	 * updated yet.
344 	 *
345 	 * Matched by the barrier in pull_rt_task().
346 	 */
347 	smp_wmb();
348 	atomic_inc(&rq->rd->rto_count);
349 }
350 
351 static inline void rt_clear_overload(struct rq *rq)
352 {
353 	if (!rq->online)
354 		return;
355 
356 	/* the order here really doesn't matter */
357 	atomic_dec(&rq->rd->rto_count);
358 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
359 }
360 
361 static inline int has_pushable_tasks(struct rq *rq)
362 {
363 	return !plist_head_empty(&rq->rt.pushable_tasks);
364 }
365 
366 static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
367 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
368 
369 static void push_rt_tasks(struct rq *);
370 static void pull_rt_task(struct rq *);
371 
372 static inline void rt_queue_push_tasks(struct rq *rq)
373 {
374 	if (!has_pushable_tasks(rq))
375 		return;
376 
377 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
378 }
379 
380 static inline void rt_queue_pull_task(struct rq *rq)
381 {
382 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
383 }
384 
385 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
386 {
387 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
388 	plist_node_init(&p->pushable_tasks, p->prio);
389 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
390 
391 	/* Update the highest prio pushable task */
392 	if (p->prio < rq->rt.highest_prio.next)
393 		rq->rt.highest_prio.next = p->prio;
394 
395 	if (!rq->rt.overloaded) {
396 		rt_set_overload(rq);
397 		rq->rt.overloaded = 1;
398 	}
399 }
400 
401 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
402 {
403 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
404 
405 	/* Update the new highest prio pushable task */
406 	if (has_pushable_tasks(rq)) {
407 		p = plist_first_entry(&rq->rt.pushable_tasks,
408 				      struct task_struct, pushable_tasks);
409 		rq->rt.highest_prio.next = p->prio;
410 	} else {
411 		rq->rt.highest_prio.next = MAX_RT_PRIO-1;
412 
413 		if (rq->rt.overloaded) {
414 			rt_clear_overload(rq);
415 			rq->rt.overloaded = 0;
416 		}
417 	}
418 }
419 
420 #else
421 
422 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
423 {
424 }
425 
426 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
427 {
428 }
429 
430 static inline void rt_queue_push_tasks(struct rq *rq)
431 {
432 }
433 #endif /* CONFIG_SMP */
434 
435 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
436 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
437 
438 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
439 {
440 	return rt_se->on_rq;
441 }
442 
443 #ifdef CONFIG_UCLAMP_TASK
444 /*
445  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
446  * settings.
447  *
448  * This check is only important for heterogeneous systems where uclamp_min value
449  * is higher than the capacity of a @cpu. For non-heterogeneous system this
450  * function will always return true.
451  *
452  * The function will return true if the capacity of the @cpu is >= the
453  * uclamp_min and false otherwise.
454  *
455  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
456  * > uclamp_max.
457  */
458 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
459 {
460 	unsigned int min_cap;
461 	unsigned int max_cap;
462 	unsigned int cpu_cap;
463 
464 	/* Only heterogeneous systems can benefit from this check */
465 	if (!sched_asym_cpucap_active())
466 		return true;
467 
468 	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
469 	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
470 
471 	cpu_cap = arch_scale_cpu_capacity(cpu);
472 
473 	return cpu_cap >= min(min_cap, max_cap);
474 }
475 #else
476 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
477 {
478 	return true;
479 }
480 #endif
481 
482 #ifdef CONFIG_RT_GROUP_SCHED
483 
484 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
485 {
486 	if (!rt_rq->tg)
487 		return RUNTIME_INF;
488 
489 	return rt_rq->rt_runtime;
490 }
491 
492 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
493 {
494 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
495 }
496 
497 typedef struct task_group *rt_rq_iter_t;
498 
499 static inline struct task_group *next_task_group(struct task_group *tg)
500 {
501 	do {
502 		tg = list_entry_rcu(tg->list.next,
503 			typeof(struct task_group), list);
504 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
505 
506 	if (&tg->list == &task_groups)
507 		tg = NULL;
508 
509 	return tg;
510 }
511 
512 #define for_each_rt_rq(rt_rq, iter, rq)					\
513 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
514 		(iter = next_task_group(iter)) &&			\
515 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
516 
517 #define for_each_sched_rt_entity(rt_se) \
518 	for (; rt_se; rt_se = rt_se->parent)
519 
520 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
521 {
522 	return rt_se->my_q;
523 }
524 
525 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
526 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
527 
528 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
529 {
530 	struct task_struct *donor = rq_of_rt_rq(rt_rq)->donor;
531 	struct rq *rq = rq_of_rt_rq(rt_rq);
532 	struct sched_rt_entity *rt_se;
533 
534 	int cpu = cpu_of(rq);
535 
536 	rt_se = rt_rq->tg->rt_se[cpu];
537 
538 	if (rt_rq->rt_nr_running) {
539 		if (!rt_se)
540 			enqueue_top_rt_rq(rt_rq);
541 		else if (!on_rt_rq(rt_se))
542 			enqueue_rt_entity(rt_se, 0);
543 
544 		if (rt_rq->highest_prio.curr < donor->prio)
545 			resched_curr(rq);
546 	}
547 }
548 
549 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
550 {
551 	struct sched_rt_entity *rt_se;
552 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
553 
554 	rt_se = rt_rq->tg->rt_se[cpu];
555 
556 	if (!rt_se) {
557 		dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
558 		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
559 		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
560 	}
561 	else if (on_rt_rq(rt_se))
562 		dequeue_rt_entity(rt_se, 0);
563 }
564 
565 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
566 {
567 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
568 }
569 
570 static int rt_se_boosted(struct sched_rt_entity *rt_se)
571 {
572 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
573 	struct task_struct *p;
574 
575 	if (rt_rq)
576 		return !!rt_rq->rt_nr_boosted;
577 
578 	p = rt_task_of(rt_se);
579 	return p->prio != p->normal_prio;
580 }
581 
582 #ifdef CONFIG_SMP
583 static inline const struct cpumask *sched_rt_period_mask(void)
584 {
585 	return this_rq()->rd->span;
586 }
587 #else
588 static inline const struct cpumask *sched_rt_period_mask(void)
589 {
590 	return cpu_online_mask;
591 }
592 #endif
593 
594 static inline
595 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
596 {
597 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
598 }
599 
600 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
601 {
602 	return &rt_rq->tg->rt_bandwidth;
603 }
604 
605 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
606 {
607 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
608 
609 	return (hrtimer_active(&rt_b->rt_period_timer) ||
610 		rt_rq->rt_time < rt_b->rt_runtime);
611 }
612 
613 #ifdef CONFIG_SMP
614 /*
615  * We ran out of runtime, see if we can borrow some from our neighbours.
616  */
617 static void do_balance_runtime(struct rt_rq *rt_rq)
618 {
619 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
620 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
621 	int i, weight;
622 	u64 rt_period;
623 
624 	weight = cpumask_weight(rd->span);
625 
626 	raw_spin_lock(&rt_b->rt_runtime_lock);
627 	rt_period = ktime_to_ns(rt_b->rt_period);
628 	for_each_cpu(i, rd->span) {
629 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
630 		s64 diff;
631 
632 		if (iter == rt_rq)
633 			continue;
634 
635 		raw_spin_lock(&iter->rt_runtime_lock);
636 		/*
637 		 * Either all rqs have inf runtime and there's nothing to steal
638 		 * or __disable_runtime() below sets a specific rq to inf to
639 		 * indicate its been disabled and disallow stealing.
640 		 */
641 		if (iter->rt_runtime == RUNTIME_INF)
642 			goto next;
643 
644 		/*
645 		 * From runqueues with spare time, take 1/n part of their
646 		 * spare time, but no more than our period.
647 		 */
648 		diff = iter->rt_runtime - iter->rt_time;
649 		if (diff > 0) {
650 			diff = div_u64((u64)diff, weight);
651 			if (rt_rq->rt_runtime + diff > rt_period)
652 				diff = rt_period - rt_rq->rt_runtime;
653 			iter->rt_runtime -= diff;
654 			rt_rq->rt_runtime += diff;
655 			if (rt_rq->rt_runtime == rt_period) {
656 				raw_spin_unlock(&iter->rt_runtime_lock);
657 				break;
658 			}
659 		}
660 next:
661 		raw_spin_unlock(&iter->rt_runtime_lock);
662 	}
663 	raw_spin_unlock(&rt_b->rt_runtime_lock);
664 }
665 
666 /*
667  * Ensure this RQ takes back all the runtime it lend to its neighbours.
668  */
669 static void __disable_runtime(struct rq *rq)
670 {
671 	struct root_domain *rd = rq->rd;
672 	rt_rq_iter_t iter;
673 	struct rt_rq *rt_rq;
674 
675 	if (unlikely(!scheduler_running))
676 		return;
677 
678 	for_each_rt_rq(rt_rq, iter, rq) {
679 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
680 		s64 want;
681 		int i;
682 
683 		raw_spin_lock(&rt_b->rt_runtime_lock);
684 		raw_spin_lock(&rt_rq->rt_runtime_lock);
685 		/*
686 		 * Either we're all inf and nobody needs to borrow, or we're
687 		 * already disabled and thus have nothing to do, or we have
688 		 * exactly the right amount of runtime to take out.
689 		 */
690 		if (rt_rq->rt_runtime == RUNTIME_INF ||
691 				rt_rq->rt_runtime == rt_b->rt_runtime)
692 			goto balanced;
693 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
694 
695 		/*
696 		 * Calculate the difference between what we started out with
697 		 * and what we current have, that's the amount of runtime
698 		 * we lend and now have to reclaim.
699 		 */
700 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
701 
702 		/*
703 		 * Greedy reclaim, take back as much as we can.
704 		 */
705 		for_each_cpu(i, rd->span) {
706 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
707 			s64 diff;
708 
709 			/*
710 			 * Can't reclaim from ourselves or disabled runqueues.
711 			 */
712 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
713 				continue;
714 
715 			raw_spin_lock(&iter->rt_runtime_lock);
716 			if (want > 0) {
717 				diff = min_t(s64, iter->rt_runtime, want);
718 				iter->rt_runtime -= diff;
719 				want -= diff;
720 			} else {
721 				iter->rt_runtime -= want;
722 				want -= want;
723 			}
724 			raw_spin_unlock(&iter->rt_runtime_lock);
725 
726 			if (!want)
727 				break;
728 		}
729 
730 		raw_spin_lock(&rt_rq->rt_runtime_lock);
731 		/*
732 		 * We cannot be left wanting - that would mean some runtime
733 		 * leaked out of the system.
734 		 */
735 		WARN_ON_ONCE(want);
736 balanced:
737 		/*
738 		 * Disable all the borrow logic by pretending we have inf
739 		 * runtime - in which case borrowing doesn't make sense.
740 		 */
741 		rt_rq->rt_runtime = RUNTIME_INF;
742 		rt_rq->rt_throttled = 0;
743 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
744 		raw_spin_unlock(&rt_b->rt_runtime_lock);
745 
746 		/* Make rt_rq available for pick_next_task() */
747 		sched_rt_rq_enqueue(rt_rq);
748 	}
749 }
750 
751 static void __enable_runtime(struct rq *rq)
752 {
753 	rt_rq_iter_t iter;
754 	struct rt_rq *rt_rq;
755 
756 	if (unlikely(!scheduler_running))
757 		return;
758 
759 	/*
760 	 * Reset each runqueue's bandwidth settings
761 	 */
762 	for_each_rt_rq(rt_rq, iter, rq) {
763 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
764 
765 		raw_spin_lock(&rt_b->rt_runtime_lock);
766 		raw_spin_lock(&rt_rq->rt_runtime_lock);
767 		rt_rq->rt_runtime = rt_b->rt_runtime;
768 		rt_rq->rt_time = 0;
769 		rt_rq->rt_throttled = 0;
770 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
771 		raw_spin_unlock(&rt_b->rt_runtime_lock);
772 	}
773 }
774 
775 static void balance_runtime(struct rt_rq *rt_rq)
776 {
777 	if (!sched_feat(RT_RUNTIME_SHARE))
778 		return;
779 
780 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
781 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
782 		do_balance_runtime(rt_rq);
783 		raw_spin_lock(&rt_rq->rt_runtime_lock);
784 	}
785 }
786 #else /* !CONFIG_SMP */
787 static inline void balance_runtime(struct rt_rq *rt_rq) {}
788 #endif /* CONFIG_SMP */
789 
790 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
791 {
792 	int i, idle = 1, throttled = 0;
793 	const struct cpumask *span;
794 
795 	span = sched_rt_period_mask();
796 
797 	/*
798 	 * FIXME: isolated CPUs should really leave the root task group,
799 	 * whether they are isolcpus or were isolated via cpusets, lest
800 	 * the timer run on a CPU which does not service all runqueues,
801 	 * potentially leaving other CPUs indefinitely throttled.  If
802 	 * isolation is really required, the user will turn the throttle
803 	 * off to kill the perturbations it causes anyway.  Meanwhile,
804 	 * this maintains functionality for boot and/or troubleshooting.
805 	 */
806 	if (rt_b == &root_task_group.rt_bandwidth)
807 		span = cpu_online_mask;
808 
809 	for_each_cpu(i, span) {
810 		int enqueue = 0;
811 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
812 		struct rq *rq = rq_of_rt_rq(rt_rq);
813 		struct rq_flags rf;
814 		int skip;
815 
816 		/*
817 		 * When span == cpu_online_mask, taking each rq->lock
818 		 * can be time-consuming. Try to avoid it when possible.
819 		 */
820 		raw_spin_lock(&rt_rq->rt_runtime_lock);
821 		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
822 			rt_rq->rt_runtime = rt_b->rt_runtime;
823 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
824 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
825 		if (skip)
826 			continue;
827 
828 		rq_lock(rq, &rf);
829 		update_rq_clock(rq);
830 
831 		if (rt_rq->rt_time) {
832 			u64 runtime;
833 
834 			raw_spin_lock(&rt_rq->rt_runtime_lock);
835 			if (rt_rq->rt_throttled)
836 				balance_runtime(rt_rq);
837 			runtime = rt_rq->rt_runtime;
838 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
839 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
840 				rt_rq->rt_throttled = 0;
841 				enqueue = 1;
842 
843 				/*
844 				 * When we're idle and a woken (rt) task is
845 				 * throttled wakeup_preempt() will set
846 				 * skip_update and the time between the wakeup
847 				 * and this unthrottle will get accounted as
848 				 * 'runtime'.
849 				 */
850 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
851 					rq_clock_cancel_skipupdate(rq);
852 			}
853 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
854 				idle = 0;
855 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
856 		} else if (rt_rq->rt_nr_running) {
857 			idle = 0;
858 			if (!rt_rq_throttled(rt_rq))
859 				enqueue = 1;
860 		}
861 		if (rt_rq->rt_throttled)
862 			throttled = 1;
863 
864 		if (enqueue)
865 			sched_rt_rq_enqueue(rt_rq);
866 		rq_unlock(rq, &rf);
867 	}
868 
869 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
870 		return 1;
871 
872 	return idle;
873 }
874 
875 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
876 {
877 	u64 runtime = sched_rt_runtime(rt_rq);
878 
879 	if (rt_rq->rt_throttled)
880 		return rt_rq_throttled(rt_rq);
881 
882 	if (runtime >= sched_rt_period(rt_rq))
883 		return 0;
884 
885 	balance_runtime(rt_rq);
886 	runtime = sched_rt_runtime(rt_rq);
887 	if (runtime == RUNTIME_INF)
888 		return 0;
889 
890 	if (rt_rq->rt_time > runtime) {
891 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
892 
893 		/*
894 		 * Don't actually throttle groups that have no runtime assigned
895 		 * but accrue some time due to boosting.
896 		 */
897 		if (likely(rt_b->rt_runtime)) {
898 			rt_rq->rt_throttled = 1;
899 			printk_deferred_once("sched: RT throttling activated\n");
900 		} else {
901 			/*
902 			 * In case we did anyway, make it go away,
903 			 * replenishment is a joke, since it will replenish us
904 			 * with exactly 0 ns.
905 			 */
906 			rt_rq->rt_time = 0;
907 		}
908 
909 		if (rt_rq_throttled(rt_rq)) {
910 			sched_rt_rq_dequeue(rt_rq);
911 			return 1;
912 		}
913 	}
914 
915 	return 0;
916 }
917 
918 #else /* !CONFIG_RT_GROUP_SCHED */
919 
920 typedef struct rt_rq *rt_rq_iter_t;
921 
922 #define for_each_rt_rq(rt_rq, iter, rq) \
923 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
924 
925 #define for_each_sched_rt_entity(rt_se) \
926 	for (; rt_se; rt_se = NULL)
927 
928 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
929 {
930 	return NULL;
931 }
932 
933 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
934 {
935 	struct rq *rq = rq_of_rt_rq(rt_rq);
936 
937 	if (!rt_rq->rt_nr_running)
938 		return;
939 
940 	enqueue_top_rt_rq(rt_rq);
941 	resched_curr(rq);
942 }
943 
944 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
945 {
946 	dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
947 }
948 
949 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
950 {
951 	return false;
952 }
953 
954 static inline const struct cpumask *sched_rt_period_mask(void)
955 {
956 	return cpu_online_mask;
957 }
958 
959 static inline
960 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
961 {
962 	return &cpu_rq(cpu)->rt;
963 }
964 
965 #ifdef CONFIG_SMP
966 static void __enable_runtime(struct rq *rq) { }
967 static void __disable_runtime(struct rq *rq) { }
968 #endif
969 
970 #endif /* CONFIG_RT_GROUP_SCHED */
971 
972 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
973 {
974 #ifdef CONFIG_RT_GROUP_SCHED
975 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
976 
977 	if (rt_rq)
978 		return rt_rq->highest_prio.curr;
979 #endif
980 
981 	return rt_task_of(rt_se)->prio;
982 }
983 
984 /*
985  * Update the current task's runtime statistics. Skip current tasks that
986  * are not in our scheduling class.
987  */
988 static void update_curr_rt(struct rq *rq)
989 {
990 	struct task_struct *donor = rq->donor;
991 	s64 delta_exec;
992 
993 	if (donor->sched_class != &rt_sched_class)
994 		return;
995 
996 	delta_exec = update_curr_common(rq);
997 	if (unlikely(delta_exec <= 0))
998 		return;
999 
1000 #ifdef CONFIG_RT_GROUP_SCHED
1001 	struct sched_rt_entity *rt_se = &donor->rt;
1002 
1003 	if (!rt_bandwidth_enabled())
1004 		return;
1005 
1006 	for_each_sched_rt_entity(rt_se) {
1007 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1008 		int exceeded;
1009 
1010 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1011 			raw_spin_lock(&rt_rq->rt_runtime_lock);
1012 			rt_rq->rt_time += delta_exec;
1013 			exceeded = sched_rt_runtime_exceeded(rt_rq);
1014 			if (exceeded)
1015 				resched_curr(rq);
1016 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1017 			if (exceeded)
1018 				do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1019 		}
1020 	}
1021 #endif
1022 }
1023 
1024 static void
1025 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1026 {
1027 	struct rq *rq = rq_of_rt_rq(rt_rq);
1028 
1029 	BUG_ON(&rq->rt != rt_rq);
1030 
1031 	if (!rt_rq->rt_queued)
1032 		return;
1033 
1034 	BUG_ON(!rq->nr_running);
1035 
1036 	sub_nr_running(rq, count);
1037 	rt_rq->rt_queued = 0;
1038 
1039 }
1040 
1041 static void
1042 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1043 {
1044 	struct rq *rq = rq_of_rt_rq(rt_rq);
1045 
1046 	BUG_ON(&rq->rt != rt_rq);
1047 
1048 	if (rt_rq->rt_queued)
1049 		return;
1050 
1051 	if (rt_rq_throttled(rt_rq))
1052 		return;
1053 
1054 	if (rt_rq->rt_nr_running) {
1055 		add_nr_running(rq, rt_rq->rt_nr_running);
1056 		rt_rq->rt_queued = 1;
1057 	}
1058 
1059 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1060 	cpufreq_update_util(rq, 0);
1061 }
1062 
1063 #if defined CONFIG_SMP
1064 
1065 static void
1066 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1067 {
1068 	struct rq *rq = rq_of_rt_rq(rt_rq);
1069 
1070 #ifdef CONFIG_RT_GROUP_SCHED
1071 	/*
1072 	 * Change rq's cpupri only if rt_rq is the top queue.
1073 	 */
1074 	if (&rq->rt != rt_rq)
1075 		return;
1076 #endif
1077 	if (rq->online && prio < prev_prio)
1078 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1079 }
1080 
1081 static void
1082 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1083 {
1084 	struct rq *rq = rq_of_rt_rq(rt_rq);
1085 
1086 #ifdef CONFIG_RT_GROUP_SCHED
1087 	/*
1088 	 * Change rq's cpupri only if rt_rq is the top queue.
1089 	 */
1090 	if (&rq->rt != rt_rq)
1091 		return;
1092 #endif
1093 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1094 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1095 }
1096 
1097 #else /* CONFIG_SMP */
1098 
1099 static inline
1100 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1101 static inline
1102 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1103 
1104 #endif /* CONFIG_SMP */
1105 
1106 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1107 static void
1108 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1109 {
1110 	int prev_prio = rt_rq->highest_prio.curr;
1111 
1112 	if (prio < prev_prio)
1113 		rt_rq->highest_prio.curr = prio;
1114 
1115 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1116 }
1117 
1118 static void
1119 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1120 {
1121 	int prev_prio = rt_rq->highest_prio.curr;
1122 
1123 	if (rt_rq->rt_nr_running) {
1124 
1125 		WARN_ON(prio < prev_prio);
1126 
1127 		/*
1128 		 * This may have been our highest task, and therefore
1129 		 * we may have some re-computation to do
1130 		 */
1131 		if (prio == prev_prio) {
1132 			struct rt_prio_array *array = &rt_rq->active;
1133 
1134 			rt_rq->highest_prio.curr =
1135 				sched_find_first_bit(array->bitmap);
1136 		}
1137 
1138 	} else {
1139 		rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1140 	}
1141 
1142 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1143 }
1144 
1145 #else
1146 
1147 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1148 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1149 
1150 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1151 
1152 #ifdef CONFIG_RT_GROUP_SCHED
1153 
1154 static void
1155 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1156 {
1157 	if (rt_se_boosted(rt_se))
1158 		rt_rq->rt_nr_boosted++;
1159 
1160 	if (rt_rq->tg)
1161 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1162 }
1163 
1164 static void
1165 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1166 {
1167 	if (rt_se_boosted(rt_se))
1168 		rt_rq->rt_nr_boosted--;
1169 
1170 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1171 }
1172 
1173 #else /* CONFIG_RT_GROUP_SCHED */
1174 
1175 static void
1176 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1177 {
1178 }
1179 
1180 static inline
1181 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1182 
1183 #endif /* CONFIG_RT_GROUP_SCHED */
1184 
1185 static inline
1186 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1187 {
1188 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1189 
1190 	if (group_rq)
1191 		return group_rq->rt_nr_running;
1192 	else
1193 		return 1;
1194 }
1195 
1196 static inline
1197 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1198 {
1199 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1200 	struct task_struct *tsk;
1201 
1202 	if (group_rq)
1203 		return group_rq->rr_nr_running;
1204 
1205 	tsk = rt_task_of(rt_se);
1206 
1207 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1208 }
1209 
1210 static inline
1211 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1212 {
1213 	int prio = rt_se_prio(rt_se);
1214 
1215 	WARN_ON(!rt_prio(prio));
1216 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1217 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1218 
1219 	inc_rt_prio(rt_rq, prio);
1220 	inc_rt_group(rt_se, rt_rq);
1221 }
1222 
1223 static inline
1224 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1225 {
1226 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1227 	WARN_ON(!rt_rq->rt_nr_running);
1228 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1229 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1230 
1231 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1232 	dec_rt_group(rt_se, rt_rq);
1233 }
1234 
1235 /*
1236  * Change rt_se->run_list location unless SAVE && !MOVE
1237  *
1238  * assumes ENQUEUE/DEQUEUE flags match
1239  */
1240 static inline bool move_entity(unsigned int flags)
1241 {
1242 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1243 		return false;
1244 
1245 	return true;
1246 }
1247 
1248 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1249 {
1250 	list_del_init(&rt_se->run_list);
1251 
1252 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1253 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1254 
1255 	rt_se->on_list = 0;
1256 }
1257 
1258 static inline struct sched_statistics *
1259 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1260 {
1261 #ifdef CONFIG_RT_GROUP_SCHED
1262 	/* schedstats is not supported for rt group. */
1263 	if (!rt_entity_is_task(rt_se))
1264 		return NULL;
1265 #endif
1266 
1267 	return &rt_task_of(rt_se)->stats;
1268 }
1269 
1270 static inline void
1271 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1272 {
1273 	struct sched_statistics *stats;
1274 	struct task_struct *p = NULL;
1275 
1276 	if (!schedstat_enabled())
1277 		return;
1278 
1279 	if (rt_entity_is_task(rt_se))
1280 		p = rt_task_of(rt_se);
1281 
1282 	stats = __schedstats_from_rt_se(rt_se);
1283 	if (!stats)
1284 		return;
1285 
1286 	__update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1287 }
1288 
1289 static inline void
1290 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1291 {
1292 	struct sched_statistics *stats;
1293 	struct task_struct *p = NULL;
1294 
1295 	if (!schedstat_enabled())
1296 		return;
1297 
1298 	if (rt_entity_is_task(rt_se))
1299 		p = rt_task_of(rt_se);
1300 
1301 	stats = __schedstats_from_rt_se(rt_se);
1302 	if (!stats)
1303 		return;
1304 
1305 	__update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1306 }
1307 
1308 static inline void
1309 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1310 			int flags)
1311 {
1312 	if (!schedstat_enabled())
1313 		return;
1314 
1315 	if (flags & ENQUEUE_WAKEUP)
1316 		update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1317 }
1318 
1319 static inline void
1320 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1321 {
1322 	struct sched_statistics *stats;
1323 	struct task_struct *p = NULL;
1324 
1325 	if (!schedstat_enabled())
1326 		return;
1327 
1328 	if (rt_entity_is_task(rt_se))
1329 		p = rt_task_of(rt_se);
1330 
1331 	stats = __schedstats_from_rt_se(rt_se);
1332 	if (!stats)
1333 		return;
1334 
1335 	__update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1336 }
1337 
1338 static inline void
1339 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1340 			int flags)
1341 {
1342 	struct task_struct *p = NULL;
1343 
1344 	if (!schedstat_enabled())
1345 		return;
1346 
1347 	if (rt_entity_is_task(rt_se))
1348 		p = rt_task_of(rt_se);
1349 
1350 	if ((flags & DEQUEUE_SLEEP) && p) {
1351 		unsigned int state;
1352 
1353 		state = READ_ONCE(p->__state);
1354 		if (state & TASK_INTERRUPTIBLE)
1355 			__schedstat_set(p->stats.sleep_start,
1356 					rq_clock(rq_of_rt_rq(rt_rq)));
1357 
1358 		if (state & TASK_UNINTERRUPTIBLE)
1359 			__schedstat_set(p->stats.block_start,
1360 					rq_clock(rq_of_rt_rq(rt_rq)));
1361 	}
1362 }
1363 
1364 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1365 {
1366 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1367 	struct rt_prio_array *array = &rt_rq->active;
1368 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1369 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1370 
1371 	/*
1372 	 * Don't enqueue the group if its throttled, or when empty.
1373 	 * The latter is a consequence of the former when a child group
1374 	 * get throttled and the current group doesn't have any other
1375 	 * active members.
1376 	 */
1377 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1378 		if (rt_se->on_list)
1379 			__delist_rt_entity(rt_se, array);
1380 		return;
1381 	}
1382 
1383 	if (move_entity(flags)) {
1384 		WARN_ON_ONCE(rt_se->on_list);
1385 		if (flags & ENQUEUE_HEAD)
1386 			list_add(&rt_se->run_list, queue);
1387 		else
1388 			list_add_tail(&rt_se->run_list, queue);
1389 
1390 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1391 		rt_se->on_list = 1;
1392 	}
1393 	rt_se->on_rq = 1;
1394 
1395 	inc_rt_tasks(rt_se, rt_rq);
1396 }
1397 
1398 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1399 {
1400 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1401 	struct rt_prio_array *array = &rt_rq->active;
1402 
1403 	if (move_entity(flags)) {
1404 		WARN_ON_ONCE(!rt_se->on_list);
1405 		__delist_rt_entity(rt_se, array);
1406 	}
1407 	rt_se->on_rq = 0;
1408 
1409 	dec_rt_tasks(rt_se, rt_rq);
1410 }
1411 
1412 /*
1413  * Because the prio of an upper entry depends on the lower
1414  * entries, we must remove entries top - down.
1415  */
1416 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1417 {
1418 	struct sched_rt_entity *back = NULL;
1419 	unsigned int rt_nr_running;
1420 
1421 	for_each_sched_rt_entity(rt_se) {
1422 		rt_se->back = back;
1423 		back = rt_se;
1424 	}
1425 
1426 	rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1427 
1428 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1429 		if (on_rt_rq(rt_se))
1430 			__dequeue_rt_entity(rt_se, flags);
1431 	}
1432 
1433 	dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1434 }
1435 
1436 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1437 {
1438 	struct rq *rq = rq_of_rt_se(rt_se);
1439 
1440 	update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1441 
1442 	dequeue_rt_stack(rt_se, flags);
1443 	for_each_sched_rt_entity(rt_se)
1444 		__enqueue_rt_entity(rt_se, flags);
1445 	enqueue_top_rt_rq(&rq->rt);
1446 }
1447 
1448 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1449 {
1450 	struct rq *rq = rq_of_rt_se(rt_se);
1451 
1452 	update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1453 
1454 	dequeue_rt_stack(rt_se, flags);
1455 
1456 	for_each_sched_rt_entity(rt_se) {
1457 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1458 
1459 		if (rt_rq && rt_rq->rt_nr_running)
1460 			__enqueue_rt_entity(rt_se, flags);
1461 	}
1462 	enqueue_top_rt_rq(&rq->rt);
1463 }
1464 
1465 /*
1466  * Adding/removing a task to/from a priority array:
1467  */
1468 static void
1469 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1470 {
1471 	struct sched_rt_entity *rt_se = &p->rt;
1472 
1473 	if (flags & ENQUEUE_WAKEUP)
1474 		rt_se->timeout = 0;
1475 
1476 	check_schedstat_required();
1477 	update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1478 
1479 	enqueue_rt_entity(rt_se, flags);
1480 
1481 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1482 		enqueue_pushable_task(rq, p);
1483 }
1484 
1485 static bool dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1486 {
1487 	struct sched_rt_entity *rt_se = &p->rt;
1488 
1489 	update_curr_rt(rq);
1490 	dequeue_rt_entity(rt_se, flags);
1491 
1492 	dequeue_pushable_task(rq, p);
1493 
1494 	return true;
1495 }
1496 
1497 /*
1498  * Put task to the head or the end of the run list without the overhead of
1499  * dequeue followed by enqueue.
1500  */
1501 static void
1502 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1503 {
1504 	if (on_rt_rq(rt_se)) {
1505 		struct rt_prio_array *array = &rt_rq->active;
1506 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1507 
1508 		if (head)
1509 			list_move(&rt_se->run_list, queue);
1510 		else
1511 			list_move_tail(&rt_se->run_list, queue);
1512 	}
1513 }
1514 
1515 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1516 {
1517 	struct sched_rt_entity *rt_se = &p->rt;
1518 	struct rt_rq *rt_rq;
1519 
1520 	for_each_sched_rt_entity(rt_se) {
1521 		rt_rq = rt_rq_of_se(rt_se);
1522 		requeue_rt_entity(rt_rq, rt_se, head);
1523 	}
1524 }
1525 
1526 static void yield_task_rt(struct rq *rq)
1527 {
1528 	requeue_task_rt(rq, rq->curr, 0);
1529 }
1530 
1531 #ifdef CONFIG_SMP
1532 static int find_lowest_rq(struct task_struct *task);
1533 
1534 static int
1535 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1536 {
1537 	struct task_struct *curr, *donor;
1538 	struct rq *rq;
1539 	bool test;
1540 
1541 	/* For anything but wake ups, just return the task_cpu */
1542 	if (!(flags & (WF_TTWU | WF_FORK)))
1543 		goto out;
1544 
1545 	rq = cpu_rq(cpu);
1546 
1547 	rcu_read_lock();
1548 	curr = READ_ONCE(rq->curr); /* unlocked access */
1549 	donor = READ_ONCE(rq->donor);
1550 
1551 	/*
1552 	 * If the current task on @p's runqueue is an RT task, then
1553 	 * try to see if we can wake this RT task up on another
1554 	 * runqueue. Otherwise simply start this RT task
1555 	 * on its current runqueue.
1556 	 *
1557 	 * We want to avoid overloading runqueues. If the woken
1558 	 * task is a higher priority, then it will stay on this CPU
1559 	 * and the lower prio task should be moved to another CPU.
1560 	 * Even though this will probably make the lower prio task
1561 	 * lose its cache, we do not want to bounce a higher task
1562 	 * around just because it gave up its CPU, perhaps for a
1563 	 * lock?
1564 	 *
1565 	 * For equal prio tasks, we just let the scheduler sort it out.
1566 	 *
1567 	 * Otherwise, just let it ride on the affine RQ and the
1568 	 * post-schedule router will push the preempted task away
1569 	 *
1570 	 * This test is optimistic, if we get it wrong the load-balancer
1571 	 * will have to sort it out.
1572 	 *
1573 	 * We take into account the capacity of the CPU to ensure it fits the
1574 	 * requirement of the task - which is only important on heterogeneous
1575 	 * systems like big.LITTLE.
1576 	 */
1577 	test = curr &&
1578 	       unlikely(rt_task(donor)) &&
1579 	       (curr->nr_cpus_allowed < 2 || donor->prio <= p->prio);
1580 
1581 	if (test || !rt_task_fits_capacity(p, cpu)) {
1582 		int target = find_lowest_rq(p);
1583 
1584 		/*
1585 		 * Bail out if we were forcing a migration to find a better
1586 		 * fitting CPU but our search failed.
1587 		 */
1588 		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1589 			goto out_unlock;
1590 
1591 		/*
1592 		 * Don't bother moving it if the destination CPU is
1593 		 * not running a lower priority task.
1594 		 */
1595 		if (target != -1 &&
1596 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1597 			cpu = target;
1598 	}
1599 
1600 out_unlock:
1601 	rcu_read_unlock();
1602 
1603 out:
1604 	return cpu;
1605 }
1606 
1607 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1608 {
1609 	if (rq->curr->nr_cpus_allowed == 1 ||
1610 	    !cpupri_find(&rq->rd->cpupri, rq->donor, NULL))
1611 		return;
1612 
1613 	/*
1614 	 * p is migratable, so let's not schedule it and
1615 	 * see if it is pushed or pulled somewhere else.
1616 	 */
1617 	if (p->nr_cpus_allowed != 1 &&
1618 	    cpupri_find(&rq->rd->cpupri, p, NULL))
1619 		return;
1620 
1621 	/*
1622 	 * There appear to be other CPUs that can accept
1623 	 * the current task but none can run 'p', so lets reschedule
1624 	 * to try and push the current task away:
1625 	 */
1626 	requeue_task_rt(rq, p, 1);
1627 	resched_curr(rq);
1628 }
1629 
1630 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1631 {
1632 	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1633 		/*
1634 		 * This is OK, because current is on_cpu, which avoids it being
1635 		 * picked for load-balance and preemption/IRQs are still
1636 		 * disabled avoiding further scheduler activity on it and we've
1637 		 * not yet started the picking loop.
1638 		 */
1639 		rq_unpin_lock(rq, rf);
1640 		pull_rt_task(rq);
1641 		rq_repin_lock(rq, rf);
1642 	}
1643 
1644 	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1645 }
1646 #endif /* CONFIG_SMP */
1647 
1648 /*
1649  * Preempt the current task with a newly woken task if needed:
1650  */
1651 static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
1652 {
1653 	struct task_struct *donor = rq->donor;
1654 
1655 	if (p->prio < donor->prio) {
1656 		resched_curr(rq);
1657 		return;
1658 	}
1659 
1660 #ifdef CONFIG_SMP
1661 	/*
1662 	 * If:
1663 	 *
1664 	 * - the newly woken task is of equal priority to the current task
1665 	 * - the newly woken task is non-migratable while current is migratable
1666 	 * - current will be preempted on the next reschedule
1667 	 *
1668 	 * we should check to see if current can readily move to a different
1669 	 * cpu.  If so, we will reschedule to allow the push logic to try
1670 	 * to move current somewhere else, making room for our non-migratable
1671 	 * task.
1672 	 */
1673 	if (p->prio == donor->prio && !test_tsk_need_resched(rq->curr))
1674 		check_preempt_equal_prio(rq, p);
1675 #endif
1676 }
1677 
1678 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1679 {
1680 	struct sched_rt_entity *rt_se = &p->rt;
1681 	struct rt_rq *rt_rq = &rq->rt;
1682 
1683 	p->se.exec_start = rq_clock_task(rq);
1684 	if (on_rt_rq(&p->rt))
1685 		update_stats_wait_end_rt(rt_rq, rt_se);
1686 
1687 	/* The running task is never eligible for pushing */
1688 	dequeue_pushable_task(rq, p);
1689 
1690 	if (!first)
1691 		return;
1692 
1693 	/*
1694 	 * If prev task was rt, put_prev_task() has already updated the
1695 	 * utilization. We only care of the case where we start to schedule a
1696 	 * rt task
1697 	 */
1698 	if (rq->donor->sched_class != &rt_sched_class)
1699 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1700 
1701 	rt_queue_push_tasks(rq);
1702 }
1703 
1704 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1705 {
1706 	struct rt_prio_array *array = &rt_rq->active;
1707 	struct sched_rt_entity *next = NULL;
1708 	struct list_head *queue;
1709 	int idx;
1710 
1711 	idx = sched_find_first_bit(array->bitmap);
1712 	BUG_ON(idx >= MAX_RT_PRIO);
1713 
1714 	queue = array->queue + idx;
1715 	if (SCHED_WARN_ON(list_empty(queue)))
1716 		return NULL;
1717 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1718 
1719 	return next;
1720 }
1721 
1722 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1723 {
1724 	struct sched_rt_entity *rt_se;
1725 	struct rt_rq *rt_rq  = &rq->rt;
1726 
1727 	do {
1728 		rt_se = pick_next_rt_entity(rt_rq);
1729 		if (unlikely(!rt_se))
1730 			return NULL;
1731 		rt_rq = group_rt_rq(rt_se);
1732 	} while (rt_rq);
1733 
1734 	return rt_task_of(rt_se);
1735 }
1736 
1737 static struct task_struct *pick_task_rt(struct rq *rq)
1738 {
1739 	struct task_struct *p;
1740 
1741 	if (!sched_rt_runnable(rq))
1742 		return NULL;
1743 
1744 	p = _pick_next_task_rt(rq);
1745 
1746 	return p;
1747 }
1748 
1749 static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct task_struct *next)
1750 {
1751 	struct sched_rt_entity *rt_se = &p->rt;
1752 	struct rt_rq *rt_rq = &rq->rt;
1753 
1754 	if (on_rt_rq(&p->rt))
1755 		update_stats_wait_start_rt(rt_rq, rt_se);
1756 
1757 	update_curr_rt(rq);
1758 
1759 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1760 
1761 	/*
1762 	 * The previous task needs to be made eligible for pushing
1763 	 * if it is still active
1764 	 */
1765 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1766 		enqueue_pushable_task(rq, p);
1767 }
1768 
1769 #ifdef CONFIG_SMP
1770 
1771 /* Only try algorithms three times */
1772 #define RT_MAX_TRIES 3
1773 
1774 /*
1775  * Return the highest pushable rq's task, which is suitable to be executed
1776  * on the CPU, NULL otherwise
1777  */
1778 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1779 {
1780 	struct plist_head *head = &rq->rt.pushable_tasks;
1781 	struct task_struct *p;
1782 
1783 	if (!has_pushable_tasks(rq))
1784 		return NULL;
1785 
1786 	plist_for_each_entry(p, head, pushable_tasks) {
1787 		if (task_is_pushable(rq, p, cpu))
1788 			return p;
1789 	}
1790 
1791 	return NULL;
1792 }
1793 
1794 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1795 
1796 static int find_lowest_rq(struct task_struct *task)
1797 {
1798 	struct sched_domain *sd;
1799 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1800 	int this_cpu = smp_processor_id();
1801 	int cpu      = task_cpu(task);
1802 	int ret;
1803 
1804 	/* Make sure the mask is initialized first */
1805 	if (unlikely(!lowest_mask))
1806 		return -1;
1807 
1808 	if (task->nr_cpus_allowed == 1)
1809 		return -1; /* No other targets possible */
1810 
1811 	/*
1812 	 * If we're on asym system ensure we consider the different capacities
1813 	 * of the CPUs when searching for the lowest_mask.
1814 	 */
1815 	if (sched_asym_cpucap_active()) {
1816 
1817 		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1818 					  task, lowest_mask,
1819 					  rt_task_fits_capacity);
1820 	} else {
1821 
1822 		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1823 				  task, lowest_mask);
1824 	}
1825 
1826 	if (!ret)
1827 		return -1; /* No targets found */
1828 
1829 	/*
1830 	 * At this point we have built a mask of CPUs representing the
1831 	 * lowest priority tasks in the system.  Now we want to elect
1832 	 * the best one based on our affinity and topology.
1833 	 *
1834 	 * We prioritize the last CPU that the task executed on since
1835 	 * it is most likely cache-hot in that location.
1836 	 */
1837 	if (cpumask_test_cpu(cpu, lowest_mask))
1838 		return cpu;
1839 
1840 	/*
1841 	 * Otherwise, we consult the sched_domains span maps to figure
1842 	 * out which CPU is logically closest to our hot cache data.
1843 	 */
1844 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1845 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1846 
1847 	rcu_read_lock();
1848 	for_each_domain(cpu, sd) {
1849 		if (sd->flags & SD_WAKE_AFFINE) {
1850 			int best_cpu;
1851 
1852 			/*
1853 			 * "this_cpu" is cheaper to preempt than a
1854 			 * remote processor.
1855 			 */
1856 			if (this_cpu != -1 &&
1857 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1858 				rcu_read_unlock();
1859 				return this_cpu;
1860 			}
1861 
1862 			best_cpu = cpumask_any_and_distribute(lowest_mask,
1863 							      sched_domain_span(sd));
1864 			if (best_cpu < nr_cpu_ids) {
1865 				rcu_read_unlock();
1866 				return best_cpu;
1867 			}
1868 		}
1869 	}
1870 	rcu_read_unlock();
1871 
1872 	/*
1873 	 * And finally, if there were no matches within the domains
1874 	 * just give the caller *something* to work with from the compatible
1875 	 * locations.
1876 	 */
1877 	if (this_cpu != -1)
1878 		return this_cpu;
1879 
1880 	cpu = cpumask_any_distribute(lowest_mask);
1881 	if (cpu < nr_cpu_ids)
1882 		return cpu;
1883 
1884 	return -1;
1885 }
1886 
1887 /* Will lock the rq it finds */
1888 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1889 {
1890 	struct rq *lowest_rq = NULL;
1891 	int tries;
1892 	int cpu;
1893 
1894 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1895 		cpu = find_lowest_rq(task);
1896 
1897 		if ((cpu == -1) || (cpu == rq->cpu))
1898 			break;
1899 
1900 		lowest_rq = cpu_rq(cpu);
1901 
1902 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1903 			/*
1904 			 * Target rq has tasks of equal or higher priority,
1905 			 * retrying does not release any lock and is unlikely
1906 			 * to yield a different result.
1907 			 */
1908 			lowest_rq = NULL;
1909 			break;
1910 		}
1911 
1912 		/* if the prio of this runqueue changed, try again */
1913 		if (double_lock_balance(rq, lowest_rq)) {
1914 			/*
1915 			 * We had to unlock the run queue. In
1916 			 * the mean time, task could have
1917 			 * migrated already or had its affinity changed.
1918 			 * Also make sure that it wasn't scheduled on its rq.
1919 			 * It is possible the task was scheduled, set
1920 			 * "migrate_disabled" and then got preempted, so we must
1921 			 * check the task migration disable flag here too.
1922 			 */
1923 			if (unlikely(task_rq(task) != rq ||
1924 				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1925 				     task_on_cpu(rq, task) ||
1926 				     !rt_task(task) ||
1927 				     is_migration_disabled(task) ||
1928 				     !task_on_rq_queued(task))) {
1929 
1930 				double_unlock_balance(rq, lowest_rq);
1931 				lowest_rq = NULL;
1932 				break;
1933 			}
1934 		}
1935 
1936 		/* If this rq is still suitable use it. */
1937 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1938 			break;
1939 
1940 		/* try again */
1941 		double_unlock_balance(rq, lowest_rq);
1942 		lowest_rq = NULL;
1943 	}
1944 
1945 	return lowest_rq;
1946 }
1947 
1948 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1949 {
1950 	struct task_struct *p;
1951 
1952 	if (!has_pushable_tasks(rq))
1953 		return NULL;
1954 
1955 	p = plist_first_entry(&rq->rt.pushable_tasks,
1956 			      struct task_struct, pushable_tasks);
1957 
1958 	BUG_ON(rq->cpu != task_cpu(p));
1959 	BUG_ON(task_current(rq, p));
1960 	BUG_ON(task_current_donor(rq, p));
1961 	BUG_ON(p->nr_cpus_allowed <= 1);
1962 
1963 	BUG_ON(!task_on_rq_queued(p));
1964 	BUG_ON(!rt_task(p));
1965 
1966 	return p;
1967 }
1968 
1969 /*
1970  * If the current CPU has more than one RT task, see if the non
1971  * running task can migrate over to a CPU that is running a task
1972  * of lesser priority.
1973  */
1974 static int push_rt_task(struct rq *rq, bool pull)
1975 {
1976 	struct task_struct *next_task;
1977 	struct rq *lowest_rq;
1978 	int ret = 0;
1979 
1980 	if (!rq->rt.overloaded)
1981 		return 0;
1982 
1983 	next_task = pick_next_pushable_task(rq);
1984 	if (!next_task)
1985 		return 0;
1986 
1987 retry:
1988 	/*
1989 	 * It's possible that the next_task slipped in of
1990 	 * higher priority than current. If that's the case
1991 	 * just reschedule current.
1992 	 */
1993 	if (unlikely(next_task->prio < rq->donor->prio)) {
1994 		resched_curr(rq);
1995 		return 0;
1996 	}
1997 
1998 	if (is_migration_disabled(next_task)) {
1999 		struct task_struct *push_task = NULL;
2000 		int cpu;
2001 
2002 		if (!pull || rq->push_busy)
2003 			return 0;
2004 
2005 		/*
2006 		 * Invoking find_lowest_rq() on anything but an RT task doesn't
2007 		 * make sense. Per the above priority check, curr has to
2008 		 * be of higher priority than next_task, so no need to
2009 		 * reschedule when bailing out.
2010 		 *
2011 		 * Note that the stoppers are masqueraded as SCHED_FIFO
2012 		 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2013 		 */
2014 		if (rq->donor->sched_class != &rt_sched_class)
2015 			return 0;
2016 
2017 		cpu = find_lowest_rq(rq->curr);
2018 		if (cpu == -1 || cpu == rq->cpu)
2019 			return 0;
2020 
2021 		/*
2022 		 * Given we found a CPU with lower priority than @next_task,
2023 		 * therefore it should be running. However we cannot migrate it
2024 		 * to this other CPU, instead attempt to push the current
2025 		 * running task on this CPU away.
2026 		 */
2027 		push_task = get_push_task(rq);
2028 		if (push_task) {
2029 			preempt_disable();
2030 			raw_spin_rq_unlock(rq);
2031 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2032 					    push_task, &rq->push_work);
2033 			preempt_enable();
2034 			raw_spin_rq_lock(rq);
2035 		}
2036 
2037 		return 0;
2038 	}
2039 
2040 	if (WARN_ON(next_task == rq->curr))
2041 		return 0;
2042 
2043 	/* We might release rq lock */
2044 	get_task_struct(next_task);
2045 
2046 	/* find_lock_lowest_rq locks the rq if found */
2047 	lowest_rq = find_lock_lowest_rq(next_task, rq);
2048 	if (!lowest_rq) {
2049 		struct task_struct *task;
2050 		/*
2051 		 * find_lock_lowest_rq releases rq->lock
2052 		 * so it is possible that next_task has migrated.
2053 		 *
2054 		 * We need to make sure that the task is still on the same
2055 		 * run-queue and is also still the next task eligible for
2056 		 * pushing.
2057 		 */
2058 		task = pick_next_pushable_task(rq);
2059 		if (task == next_task) {
2060 			/*
2061 			 * The task hasn't migrated, and is still the next
2062 			 * eligible task, but we failed to find a run-queue
2063 			 * to push it to.  Do not retry in this case, since
2064 			 * other CPUs will pull from us when ready.
2065 			 */
2066 			goto out;
2067 		}
2068 
2069 		if (!task)
2070 			/* No more tasks, just exit */
2071 			goto out;
2072 
2073 		/*
2074 		 * Something has shifted, try again.
2075 		 */
2076 		put_task_struct(next_task);
2077 		next_task = task;
2078 		goto retry;
2079 	}
2080 
2081 	move_queued_task_locked(rq, lowest_rq, next_task);
2082 	resched_curr(lowest_rq);
2083 	ret = 1;
2084 
2085 	double_unlock_balance(rq, lowest_rq);
2086 out:
2087 	put_task_struct(next_task);
2088 
2089 	return ret;
2090 }
2091 
2092 static void push_rt_tasks(struct rq *rq)
2093 {
2094 	/* push_rt_task will return true if it moved an RT */
2095 	while (push_rt_task(rq, false))
2096 		;
2097 }
2098 
2099 #ifdef HAVE_RT_PUSH_IPI
2100 
2101 /*
2102  * When a high priority task schedules out from a CPU and a lower priority
2103  * task is scheduled in, a check is made to see if there's any RT tasks
2104  * on other CPUs that are waiting to run because a higher priority RT task
2105  * is currently running on its CPU. In this case, the CPU with multiple RT
2106  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2107  * up that may be able to run one of its non-running queued RT tasks.
2108  *
2109  * All CPUs with overloaded RT tasks need to be notified as there is currently
2110  * no way to know which of these CPUs have the highest priority task waiting
2111  * to run. Instead of trying to take a spinlock on each of these CPUs,
2112  * which has shown to cause large latency when done on machines with many
2113  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2114  * RT tasks waiting to run.
2115  *
2116  * Just sending an IPI to each of the CPUs is also an issue, as on large
2117  * count CPU machines, this can cause an IPI storm on a CPU, especially
2118  * if its the only CPU with multiple RT tasks queued, and a large number
2119  * of CPUs scheduling a lower priority task at the same time.
2120  *
2121  * Each root domain has its own IRQ work function that can iterate over
2122  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2123  * task must be checked if there's one or many CPUs that are lowering
2124  * their priority, there's a single IRQ work iterator that will try to
2125  * push off RT tasks that are waiting to run.
2126  *
2127  * When a CPU schedules a lower priority task, it will kick off the
2128  * IRQ work iterator that will jump to each CPU with overloaded RT tasks.
2129  * As it only takes the first CPU that schedules a lower priority task
2130  * to start the process, the rto_start variable is incremented and if
2131  * the atomic result is one, then that CPU will try to take the rto_lock.
2132  * This prevents high contention on the lock as the process handles all
2133  * CPUs scheduling lower priority tasks.
2134  *
2135  * All CPUs that are scheduling a lower priority task will increment the
2136  * rt_loop_next variable. This will make sure that the IRQ work iterator
2137  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2138  * priority task, even if the iterator is in the middle of a scan. Incrementing
2139  * the rt_loop_next will cause the iterator to perform another scan.
2140  *
2141  */
2142 static int rto_next_cpu(struct root_domain *rd)
2143 {
2144 	int next;
2145 	int cpu;
2146 
2147 	/*
2148 	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2149 	 * rt_next_cpu() will simply return the first CPU found in
2150 	 * the rto_mask.
2151 	 *
2152 	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2153 	 * will return the next CPU found in the rto_mask.
2154 	 *
2155 	 * If there are no more CPUs left in the rto_mask, then a check is made
2156 	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2157 	 * the rto_lock held, but any CPU may increment the rto_loop_next
2158 	 * without any locking.
2159 	 */
2160 	for (;;) {
2161 
2162 		/* When rto_cpu is -1 this acts like cpumask_first() */
2163 		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2164 
2165 		rd->rto_cpu = cpu;
2166 
2167 		if (cpu < nr_cpu_ids)
2168 			return cpu;
2169 
2170 		rd->rto_cpu = -1;
2171 
2172 		/*
2173 		 * ACQUIRE ensures we see the @rto_mask changes
2174 		 * made prior to the @next value observed.
2175 		 *
2176 		 * Matches WMB in rt_set_overload().
2177 		 */
2178 		next = atomic_read_acquire(&rd->rto_loop_next);
2179 
2180 		if (rd->rto_loop == next)
2181 			break;
2182 
2183 		rd->rto_loop = next;
2184 	}
2185 
2186 	return -1;
2187 }
2188 
2189 static inline bool rto_start_trylock(atomic_t *v)
2190 {
2191 	return !atomic_cmpxchg_acquire(v, 0, 1);
2192 }
2193 
2194 static inline void rto_start_unlock(atomic_t *v)
2195 {
2196 	atomic_set_release(v, 0);
2197 }
2198 
2199 static void tell_cpu_to_push(struct rq *rq)
2200 {
2201 	int cpu = -1;
2202 
2203 	/* Keep the loop going if the IPI is currently active */
2204 	atomic_inc(&rq->rd->rto_loop_next);
2205 
2206 	/* Only one CPU can initiate a loop at a time */
2207 	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2208 		return;
2209 
2210 	raw_spin_lock(&rq->rd->rto_lock);
2211 
2212 	/*
2213 	 * The rto_cpu is updated under the lock, if it has a valid CPU
2214 	 * then the IPI is still running and will continue due to the
2215 	 * update to loop_next, and nothing needs to be done here.
2216 	 * Otherwise it is finishing up and an IPI needs to be sent.
2217 	 */
2218 	if (rq->rd->rto_cpu < 0)
2219 		cpu = rto_next_cpu(rq->rd);
2220 
2221 	raw_spin_unlock(&rq->rd->rto_lock);
2222 
2223 	rto_start_unlock(&rq->rd->rto_loop_start);
2224 
2225 	if (cpu >= 0) {
2226 		/* Make sure the rd does not get freed while pushing */
2227 		sched_get_rd(rq->rd);
2228 		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2229 	}
2230 }
2231 
2232 /* Called from hardirq context */
2233 void rto_push_irq_work_func(struct irq_work *work)
2234 {
2235 	struct root_domain *rd =
2236 		container_of(work, struct root_domain, rto_push_work);
2237 	struct rq *rq;
2238 	int cpu;
2239 
2240 	rq = this_rq();
2241 
2242 	/*
2243 	 * We do not need to grab the lock to check for has_pushable_tasks.
2244 	 * When it gets updated, a check is made if a push is possible.
2245 	 */
2246 	if (has_pushable_tasks(rq)) {
2247 		raw_spin_rq_lock(rq);
2248 		while (push_rt_task(rq, true))
2249 			;
2250 		raw_spin_rq_unlock(rq);
2251 	}
2252 
2253 	raw_spin_lock(&rd->rto_lock);
2254 
2255 	/* Pass the IPI to the next rt overloaded queue */
2256 	cpu = rto_next_cpu(rd);
2257 
2258 	raw_spin_unlock(&rd->rto_lock);
2259 
2260 	if (cpu < 0) {
2261 		sched_put_rd(rd);
2262 		return;
2263 	}
2264 
2265 	/* Try the next RT overloaded CPU */
2266 	irq_work_queue_on(&rd->rto_push_work, cpu);
2267 }
2268 #endif /* HAVE_RT_PUSH_IPI */
2269 
2270 static void pull_rt_task(struct rq *this_rq)
2271 {
2272 	int this_cpu = this_rq->cpu, cpu;
2273 	bool resched = false;
2274 	struct task_struct *p, *push_task;
2275 	struct rq *src_rq;
2276 	int rt_overload_count = rt_overloaded(this_rq);
2277 
2278 	if (likely(!rt_overload_count))
2279 		return;
2280 
2281 	/*
2282 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2283 	 * see overloaded we must also see the rto_mask bit.
2284 	 */
2285 	smp_rmb();
2286 
2287 	/* If we are the only overloaded CPU do nothing */
2288 	if (rt_overload_count == 1 &&
2289 	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2290 		return;
2291 
2292 #ifdef HAVE_RT_PUSH_IPI
2293 	if (sched_feat(RT_PUSH_IPI)) {
2294 		tell_cpu_to_push(this_rq);
2295 		return;
2296 	}
2297 #endif
2298 
2299 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2300 		if (this_cpu == cpu)
2301 			continue;
2302 
2303 		src_rq = cpu_rq(cpu);
2304 
2305 		/*
2306 		 * Don't bother taking the src_rq->lock if the next highest
2307 		 * task is known to be lower-priority than our current task.
2308 		 * This may look racy, but if this value is about to go
2309 		 * logically higher, the src_rq will push this task away.
2310 		 * And if its going logically lower, we do not care
2311 		 */
2312 		if (src_rq->rt.highest_prio.next >=
2313 		    this_rq->rt.highest_prio.curr)
2314 			continue;
2315 
2316 		/*
2317 		 * We can potentially drop this_rq's lock in
2318 		 * double_lock_balance, and another CPU could
2319 		 * alter this_rq
2320 		 */
2321 		push_task = NULL;
2322 		double_lock_balance(this_rq, src_rq);
2323 
2324 		/*
2325 		 * We can pull only a task, which is pushable
2326 		 * on its rq, and no others.
2327 		 */
2328 		p = pick_highest_pushable_task(src_rq, this_cpu);
2329 
2330 		/*
2331 		 * Do we have an RT task that preempts
2332 		 * the to-be-scheduled task?
2333 		 */
2334 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2335 			WARN_ON(p == src_rq->curr);
2336 			WARN_ON(!task_on_rq_queued(p));
2337 
2338 			/*
2339 			 * There's a chance that p is higher in priority
2340 			 * than what's currently running on its CPU.
2341 			 * This is just that p is waking up and hasn't
2342 			 * had a chance to schedule. We only pull
2343 			 * p if it is lower in priority than the
2344 			 * current task on the run queue
2345 			 */
2346 			if (p->prio < src_rq->donor->prio)
2347 				goto skip;
2348 
2349 			if (is_migration_disabled(p)) {
2350 				push_task = get_push_task(src_rq);
2351 			} else {
2352 				move_queued_task_locked(src_rq, this_rq, p);
2353 				resched = true;
2354 			}
2355 			/*
2356 			 * We continue with the search, just in
2357 			 * case there's an even higher prio task
2358 			 * in another runqueue. (low likelihood
2359 			 * but possible)
2360 			 */
2361 		}
2362 skip:
2363 		double_unlock_balance(this_rq, src_rq);
2364 
2365 		if (push_task) {
2366 			preempt_disable();
2367 			raw_spin_rq_unlock(this_rq);
2368 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2369 					    push_task, &src_rq->push_work);
2370 			preempt_enable();
2371 			raw_spin_rq_lock(this_rq);
2372 		}
2373 	}
2374 
2375 	if (resched)
2376 		resched_curr(this_rq);
2377 }
2378 
2379 /*
2380  * If we are not running and we are not going to reschedule soon, we should
2381  * try to push tasks away now
2382  */
2383 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2384 {
2385 	bool need_to_push = !task_on_cpu(rq, p) &&
2386 			    !test_tsk_need_resched(rq->curr) &&
2387 			    p->nr_cpus_allowed > 1 &&
2388 			    (dl_task(rq->donor) || rt_task(rq->donor)) &&
2389 			    (rq->curr->nr_cpus_allowed < 2 ||
2390 			     rq->donor->prio <= p->prio);
2391 
2392 	if (need_to_push)
2393 		push_rt_tasks(rq);
2394 }
2395 
2396 /* Assumes rq->lock is held */
2397 static void rq_online_rt(struct rq *rq)
2398 {
2399 	if (rq->rt.overloaded)
2400 		rt_set_overload(rq);
2401 
2402 	__enable_runtime(rq);
2403 
2404 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2405 }
2406 
2407 /* Assumes rq->lock is held */
2408 static void rq_offline_rt(struct rq *rq)
2409 {
2410 	if (rq->rt.overloaded)
2411 		rt_clear_overload(rq);
2412 
2413 	__disable_runtime(rq);
2414 
2415 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2416 }
2417 
2418 /*
2419  * When switch from the rt queue, we bring ourselves to a position
2420  * that we might want to pull RT tasks from other runqueues.
2421  */
2422 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2423 {
2424 	/*
2425 	 * If there are other RT tasks then we will reschedule
2426 	 * and the scheduling of the other RT tasks will handle
2427 	 * the balancing. But if we are the last RT task
2428 	 * we may need to handle the pulling of RT tasks
2429 	 * now.
2430 	 */
2431 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2432 		return;
2433 
2434 	rt_queue_pull_task(rq);
2435 }
2436 
2437 void __init init_sched_rt_class(void)
2438 {
2439 	unsigned int i;
2440 
2441 	for_each_possible_cpu(i) {
2442 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2443 					GFP_KERNEL, cpu_to_node(i));
2444 	}
2445 }
2446 #endif /* CONFIG_SMP */
2447 
2448 /*
2449  * When switching a task to RT, we may overload the runqueue
2450  * with RT tasks. In this case we try to push them off to
2451  * other runqueues.
2452  */
2453 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2454 {
2455 	/*
2456 	 * If we are running, update the avg_rt tracking, as the running time
2457 	 * will now on be accounted into the latter.
2458 	 */
2459 	if (task_current(rq, p)) {
2460 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2461 		return;
2462 	}
2463 
2464 	/*
2465 	 * If we are not running we may need to preempt the current
2466 	 * running task. If that current running task is also an RT task
2467 	 * then see if we can move to another run queue.
2468 	 */
2469 	if (task_on_rq_queued(p)) {
2470 #ifdef CONFIG_SMP
2471 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2472 			rt_queue_push_tasks(rq);
2473 #endif /* CONFIG_SMP */
2474 		if (p->prio < rq->donor->prio && cpu_online(cpu_of(rq)))
2475 			resched_curr(rq);
2476 	}
2477 }
2478 
2479 /*
2480  * Priority of the task has changed. This may cause
2481  * us to initiate a push or pull.
2482  */
2483 static void
2484 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2485 {
2486 	if (!task_on_rq_queued(p))
2487 		return;
2488 
2489 	if (task_current_donor(rq, p)) {
2490 #ifdef CONFIG_SMP
2491 		/*
2492 		 * If our priority decreases while running, we
2493 		 * may need to pull tasks to this runqueue.
2494 		 */
2495 		if (oldprio < p->prio)
2496 			rt_queue_pull_task(rq);
2497 
2498 		/*
2499 		 * If there's a higher priority task waiting to run
2500 		 * then reschedule.
2501 		 */
2502 		if (p->prio > rq->rt.highest_prio.curr)
2503 			resched_curr(rq);
2504 #else
2505 		/* For UP simply resched on drop of prio */
2506 		if (oldprio < p->prio)
2507 			resched_curr(rq);
2508 #endif /* CONFIG_SMP */
2509 	} else {
2510 		/*
2511 		 * This task is not running, but if it is
2512 		 * greater than the current running task
2513 		 * then reschedule.
2514 		 */
2515 		if (p->prio < rq->donor->prio)
2516 			resched_curr(rq);
2517 	}
2518 }
2519 
2520 #ifdef CONFIG_POSIX_TIMERS
2521 static void watchdog(struct rq *rq, struct task_struct *p)
2522 {
2523 	unsigned long soft, hard;
2524 
2525 	/* max may change after cur was read, this will be fixed next tick */
2526 	soft = task_rlimit(p, RLIMIT_RTTIME);
2527 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2528 
2529 	if (soft != RLIM_INFINITY) {
2530 		unsigned long next;
2531 
2532 		if (p->rt.watchdog_stamp != jiffies) {
2533 			p->rt.timeout++;
2534 			p->rt.watchdog_stamp = jiffies;
2535 		}
2536 
2537 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2538 		if (p->rt.timeout > next) {
2539 			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2540 						    p->se.sum_exec_runtime);
2541 		}
2542 	}
2543 }
2544 #else
2545 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2546 #endif
2547 
2548 /*
2549  * scheduler tick hitting a task of our scheduling class.
2550  *
2551  * NOTE: This function can be called remotely by the tick offload that
2552  * goes along full dynticks. Therefore no local assumption can be made
2553  * and everything must be accessed through the @rq and @curr passed in
2554  * parameters.
2555  */
2556 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2557 {
2558 	struct sched_rt_entity *rt_se = &p->rt;
2559 
2560 	update_curr_rt(rq);
2561 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2562 
2563 	watchdog(rq, p);
2564 
2565 	/*
2566 	 * RR tasks need a special form of time-slice management.
2567 	 * FIFO tasks have no timeslices.
2568 	 */
2569 	if (p->policy != SCHED_RR)
2570 		return;
2571 
2572 	if (--p->rt.time_slice)
2573 		return;
2574 
2575 	p->rt.time_slice = sched_rr_timeslice;
2576 
2577 	/*
2578 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2579 	 * the only element on the queue
2580 	 */
2581 	for_each_sched_rt_entity(rt_se) {
2582 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2583 			requeue_task_rt(rq, p, 0);
2584 			resched_curr(rq);
2585 			return;
2586 		}
2587 	}
2588 }
2589 
2590 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2591 {
2592 	/*
2593 	 * Time slice is 0 for SCHED_FIFO tasks
2594 	 */
2595 	if (task->policy == SCHED_RR)
2596 		return sched_rr_timeslice;
2597 	else
2598 		return 0;
2599 }
2600 
2601 #ifdef CONFIG_SCHED_CORE
2602 static int task_is_throttled_rt(struct task_struct *p, int cpu)
2603 {
2604 	struct rt_rq *rt_rq;
2605 
2606 #ifdef CONFIG_RT_GROUP_SCHED
2607 	rt_rq = task_group(p)->rt_rq[cpu];
2608 #else
2609 	rt_rq = &cpu_rq(cpu)->rt;
2610 #endif
2611 
2612 	return rt_rq_throttled(rt_rq);
2613 }
2614 #endif
2615 
2616 DEFINE_SCHED_CLASS(rt) = {
2617 
2618 	.enqueue_task		= enqueue_task_rt,
2619 	.dequeue_task		= dequeue_task_rt,
2620 	.yield_task		= yield_task_rt,
2621 
2622 	.wakeup_preempt		= wakeup_preempt_rt,
2623 
2624 	.pick_task		= pick_task_rt,
2625 	.put_prev_task		= put_prev_task_rt,
2626 	.set_next_task          = set_next_task_rt,
2627 
2628 #ifdef CONFIG_SMP
2629 	.balance		= balance_rt,
2630 	.select_task_rq		= select_task_rq_rt,
2631 	.set_cpus_allowed       = set_cpus_allowed_common,
2632 	.rq_online              = rq_online_rt,
2633 	.rq_offline             = rq_offline_rt,
2634 	.task_woken		= task_woken_rt,
2635 	.switched_from		= switched_from_rt,
2636 	.find_lock_rq		= find_lock_lowest_rq,
2637 #endif
2638 
2639 	.task_tick		= task_tick_rt,
2640 
2641 	.get_rr_interval	= get_rr_interval_rt,
2642 
2643 	.prio_changed		= prio_changed_rt,
2644 	.switched_to		= switched_to_rt,
2645 
2646 	.update_curr		= update_curr_rt,
2647 
2648 #ifdef CONFIG_SCHED_CORE
2649 	.task_is_throttled	= task_is_throttled_rt,
2650 #endif
2651 
2652 #ifdef CONFIG_UCLAMP_TASK
2653 	.uclamp_enabled		= 1,
2654 #endif
2655 };
2656 
2657 #ifdef CONFIG_RT_GROUP_SCHED
2658 /*
2659  * Ensure that the real time constraints are schedulable.
2660  */
2661 static DEFINE_MUTEX(rt_constraints_mutex);
2662 
2663 static inline int tg_has_rt_tasks(struct task_group *tg)
2664 {
2665 	struct task_struct *task;
2666 	struct css_task_iter it;
2667 	int ret = 0;
2668 
2669 	/*
2670 	 * Autogroups do not have RT tasks; see autogroup_create().
2671 	 */
2672 	if (task_group_is_autogroup(tg))
2673 		return 0;
2674 
2675 	css_task_iter_start(&tg->css, 0, &it);
2676 	while (!ret && (task = css_task_iter_next(&it)))
2677 		ret |= rt_task(task);
2678 	css_task_iter_end(&it);
2679 
2680 	return ret;
2681 }
2682 
2683 struct rt_schedulable_data {
2684 	struct task_group *tg;
2685 	u64 rt_period;
2686 	u64 rt_runtime;
2687 };
2688 
2689 static int tg_rt_schedulable(struct task_group *tg, void *data)
2690 {
2691 	struct rt_schedulable_data *d = data;
2692 	struct task_group *child;
2693 	unsigned long total, sum = 0;
2694 	u64 period, runtime;
2695 
2696 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2697 	runtime = tg->rt_bandwidth.rt_runtime;
2698 
2699 	if (tg == d->tg) {
2700 		period = d->rt_period;
2701 		runtime = d->rt_runtime;
2702 	}
2703 
2704 	/*
2705 	 * Cannot have more runtime than the period.
2706 	 */
2707 	if (runtime > period && runtime != RUNTIME_INF)
2708 		return -EINVAL;
2709 
2710 	/*
2711 	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2712 	 */
2713 	if (rt_bandwidth_enabled() && !runtime &&
2714 	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2715 		return -EBUSY;
2716 
2717 	total = to_ratio(period, runtime);
2718 
2719 	/*
2720 	 * Nobody can have more than the global setting allows.
2721 	 */
2722 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2723 		return -EINVAL;
2724 
2725 	/*
2726 	 * The sum of our children's runtime should not exceed our own.
2727 	 */
2728 	list_for_each_entry_rcu(child, &tg->children, siblings) {
2729 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2730 		runtime = child->rt_bandwidth.rt_runtime;
2731 
2732 		if (child == d->tg) {
2733 			period = d->rt_period;
2734 			runtime = d->rt_runtime;
2735 		}
2736 
2737 		sum += to_ratio(period, runtime);
2738 	}
2739 
2740 	if (sum > total)
2741 		return -EINVAL;
2742 
2743 	return 0;
2744 }
2745 
2746 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2747 {
2748 	int ret;
2749 
2750 	struct rt_schedulable_data data = {
2751 		.tg = tg,
2752 		.rt_period = period,
2753 		.rt_runtime = runtime,
2754 	};
2755 
2756 	rcu_read_lock();
2757 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2758 	rcu_read_unlock();
2759 
2760 	return ret;
2761 }
2762 
2763 static int tg_set_rt_bandwidth(struct task_group *tg,
2764 		u64 rt_period, u64 rt_runtime)
2765 {
2766 	int i, err = 0;
2767 
2768 	/*
2769 	 * Disallowing the root group RT runtime is BAD, it would disallow the
2770 	 * kernel creating (and or operating) RT threads.
2771 	 */
2772 	if (tg == &root_task_group && rt_runtime == 0)
2773 		return -EINVAL;
2774 
2775 	/* No period doesn't make any sense. */
2776 	if (rt_period == 0)
2777 		return -EINVAL;
2778 
2779 	/*
2780 	 * Bound quota to defend quota against overflow during bandwidth shift.
2781 	 */
2782 	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2783 		return -EINVAL;
2784 
2785 	mutex_lock(&rt_constraints_mutex);
2786 	err = __rt_schedulable(tg, rt_period, rt_runtime);
2787 	if (err)
2788 		goto unlock;
2789 
2790 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2791 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2792 	tg->rt_bandwidth.rt_runtime = rt_runtime;
2793 
2794 	for_each_possible_cpu(i) {
2795 		struct rt_rq *rt_rq = tg->rt_rq[i];
2796 
2797 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2798 		rt_rq->rt_runtime = rt_runtime;
2799 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2800 	}
2801 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2802 unlock:
2803 	mutex_unlock(&rt_constraints_mutex);
2804 
2805 	return err;
2806 }
2807 
2808 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2809 {
2810 	u64 rt_runtime, rt_period;
2811 
2812 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2813 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2814 	if (rt_runtime_us < 0)
2815 		rt_runtime = RUNTIME_INF;
2816 	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2817 		return -EINVAL;
2818 
2819 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2820 }
2821 
2822 long sched_group_rt_runtime(struct task_group *tg)
2823 {
2824 	u64 rt_runtime_us;
2825 
2826 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2827 		return -1;
2828 
2829 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2830 	do_div(rt_runtime_us, NSEC_PER_USEC);
2831 	return rt_runtime_us;
2832 }
2833 
2834 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2835 {
2836 	u64 rt_runtime, rt_period;
2837 
2838 	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2839 		return -EINVAL;
2840 
2841 	rt_period = rt_period_us * NSEC_PER_USEC;
2842 	rt_runtime = tg->rt_bandwidth.rt_runtime;
2843 
2844 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2845 }
2846 
2847 long sched_group_rt_period(struct task_group *tg)
2848 {
2849 	u64 rt_period_us;
2850 
2851 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2852 	do_div(rt_period_us, NSEC_PER_USEC);
2853 	return rt_period_us;
2854 }
2855 
2856 #ifdef CONFIG_SYSCTL
2857 static int sched_rt_global_constraints(void)
2858 {
2859 	int ret = 0;
2860 
2861 	mutex_lock(&rt_constraints_mutex);
2862 	ret = __rt_schedulable(NULL, 0, 0);
2863 	mutex_unlock(&rt_constraints_mutex);
2864 
2865 	return ret;
2866 }
2867 #endif /* CONFIG_SYSCTL */
2868 
2869 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2870 {
2871 	/* Don't accept real-time tasks when there is no way for them to run */
2872 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2873 		return 0;
2874 
2875 	return 1;
2876 }
2877 
2878 #else /* !CONFIG_RT_GROUP_SCHED */
2879 
2880 #ifdef CONFIG_SYSCTL
2881 static int sched_rt_global_constraints(void)
2882 {
2883 	return 0;
2884 }
2885 #endif /* CONFIG_SYSCTL */
2886 #endif /* CONFIG_RT_GROUP_SCHED */
2887 
2888 #ifdef CONFIG_SYSCTL
2889 static int sched_rt_global_validate(void)
2890 {
2891 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2892 		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2893 		 ((u64)sysctl_sched_rt_runtime *
2894 			NSEC_PER_USEC > max_rt_runtime)))
2895 		return -EINVAL;
2896 
2897 	return 0;
2898 }
2899 
2900 static void sched_rt_do_global(void)
2901 {
2902 }
2903 
2904 static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer,
2905 		size_t *lenp, loff_t *ppos)
2906 {
2907 	int old_period, old_runtime;
2908 	static DEFINE_MUTEX(mutex);
2909 	int ret;
2910 
2911 	mutex_lock(&mutex);
2912 	old_period = sysctl_sched_rt_period;
2913 	old_runtime = sysctl_sched_rt_runtime;
2914 
2915 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2916 
2917 	if (!ret && write) {
2918 		ret = sched_rt_global_validate();
2919 		if (ret)
2920 			goto undo;
2921 
2922 		ret = sched_dl_global_validate();
2923 		if (ret)
2924 			goto undo;
2925 
2926 		ret = sched_rt_global_constraints();
2927 		if (ret)
2928 			goto undo;
2929 
2930 		sched_rt_do_global();
2931 		sched_dl_do_global();
2932 	}
2933 	if (0) {
2934 undo:
2935 		sysctl_sched_rt_period = old_period;
2936 		sysctl_sched_rt_runtime = old_runtime;
2937 	}
2938 	mutex_unlock(&mutex);
2939 
2940 	return ret;
2941 }
2942 
2943 static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer,
2944 		size_t *lenp, loff_t *ppos)
2945 {
2946 	int ret;
2947 	static DEFINE_MUTEX(mutex);
2948 
2949 	mutex_lock(&mutex);
2950 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2951 	/*
2952 	 * Make sure that internally we keep jiffies.
2953 	 * Also, writing zero resets the time-slice to default:
2954 	 */
2955 	if (!ret && write) {
2956 		sched_rr_timeslice =
2957 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2958 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
2959 
2960 		if (sysctl_sched_rr_timeslice <= 0)
2961 			sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
2962 	}
2963 	mutex_unlock(&mutex);
2964 
2965 	return ret;
2966 }
2967 #endif /* CONFIG_SYSCTL */
2968 
2969 #ifdef CONFIG_SCHED_DEBUG
2970 void print_rt_stats(struct seq_file *m, int cpu)
2971 {
2972 	rt_rq_iter_t iter;
2973 	struct rt_rq *rt_rq;
2974 
2975 	rcu_read_lock();
2976 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2977 		print_rt_rq(m, cpu, rt_rq);
2978 	rcu_read_unlock();
2979 }
2980 #endif /* CONFIG_SCHED_DEBUG */
2981