xref: /linux/kernel/sched/rt.c (revision a0efa2f362a69e47b9d8b48f770ef3a0249a7911)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 
7 int sched_rr_timeslice = RR_TIMESLICE;
8 /* More than 4 hours if BW_SHIFT equals 20. */
9 static const u64 max_rt_runtime = MAX_BW;
10 
11 /*
12  * period over which we measure -rt task CPU usage in us.
13  * default: 1s
14  */
15 int sysctl_sched_rt_period = 1000000;
16 
17 /*
18  * part of the period that we allow rt tasks to run in us.
19  * default: 0.95s
20  */
21 int sysctl_sched_rt_runtime = 950000;
22 
23 #ifdef CONFIG_SYSCTL
24 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
25 static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer,
26 		size_t *lenp, loff_t *ppos);
27 static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer,
28 		size_t *lenp, loff_t *ppos);
29 static struct ctl_table sched_rt_sysctls[] = {
30 	{
31 		.procname       = "sched_rt_period_us",
32 		.data           = &sysctl_sched_rt_period,
33 		.maxlen         = sizeof(int),
34 		.mode           = 0644,
35 		.proc_handler   = sched_rt_handler,
36 		.extra1         = SYSCTL_ONE,
37 		.extra2         = SYSCTL_INT_MAX,
38 	},
39 	{
40 		.procname       = "sched_rt_runtime_us",
41 		.data           = &sysctl_sched_rt_runtime,
42 		.maxlen         = sizeof(int),
43 		.mode           = 0644,
44 		.proc_handler   = sched_rt_handler,
45 		.extra1         = SYSCTL_NEG_ONE,
46 		.extra2         = (void *)&sysctl_sched_rt_period,
47 	},
48 	{
49 		.procname       = "sched_rr_timeslice_ms",
50 		.data           = &sysctl_sched_rr_timeslice,
51 		.maxlen         = sizeof(int),
52 		.mode           = 0644,
53 		.proc_handler   = sched_rr_handler,
54 	},
55 };
56 
57 static int __init sched_rt_sysctl_init(void)
58 {
59 	register_sysctl_init("kernel", sched_rt_sysctls);
60 	return 0;
61 }
62 late_initcall(sched_rt_sysctl_init);
63 #endif
64 
65 void init_rt_rq(struct rt_rq *rt_rq)
66 {
67 	struct rt_prio_array *array;
68 	int i;
69 
70 	array = &rt_rq->active;
71 	for (i = 0; i < MAX_RT_PRIO; i++) {
72 		INIT_LIST_HEAD(array->queue + i);
73 		__clear_bit(i, array->bitmap);
74 	}
75 	/* delimiter for bitsearch: */
76 	__set_bit(MAX_RT_PRIO, array->bitmap);
77 
78 #if defined CONFIG_SMP
79 	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
80 	rt_rq->highest_prio.next = MAX_RT_PRIO-1;
81 	rt_rq->overloaded = 0;
82 	plist_head_init(&rt_rq->pushable_tasks);
83 #endif /* CONFIG_SMP */
84 	/* We start is dequeued state, because no RT tasks are queued */
85 	rt_rq->rt_queued = 0;
86 
87 #ifdef CONFIG_RT_GROUP_SCHED
88 	rt_rq->rt_time = 0;
89 	rt_rq->rt_throttled = 0;
90 	rt_rq->rt_runtime = 0;
91 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
92 #endif
93 }
94 
95 #ifdef CONFIG_RT_GROUP_SCHED
96 
97 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
98 
99 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
100 {
101 	struct rt_bandwidth *rt_b =
102 		container_of(timer, struct rt_bandwidth, rt_period_timer);
103 	int idle = 0;
104 	int overrun;
105 
106 	raw_spin_lock(&rt_b->rt_runtime_lock);
107 	for (;;) {
108 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
109 		if (!overrun)
110 			break;
111 
112 		raw_spin_unlock(&rt_b->rt_runtime_lock);
113 		idle = do_sched_rt_period_timer(rt_b, overrun);
114 		raw_spin_lock(&rt_b->rt_runtime_lock);
115 	}
116 	if (idle)
117 		rt_b->rt_period_active = 0;
118 	raw_spin_unlock(&rt_b->rt_runtime_lock);
119 
120 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
121 }
122 
123 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
124 {
125 	rt_b->rt_period = ns_to_ktime(period);
126 	rt_b->rt_runtime = runtime;
127 
128 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
129 
130 	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
131 		     HRTIMER_MODE_REL_HARD);
132 	rt_b->rt_period_timer.function = sched_rt_period_timer;
133 }
134 
135 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
136 {
137 	raw_spin_lock(&rt_b->rt_runtime_lock);
138 	if (!rt_b->rt_period_active) {
139 		rt_b->rt_period_active = 1;
140 		/*
141 		 * SCHED_DEADLINE updates the bandwidth, as a run away
142 		 * RT task with a DL task could hog a CPU. But DL does
143 		 * not reset the period. If a deadline task was running
144 		 * without an RT task running, it can cause RT tasks to
145 		 * throttle when they start up. Kick the timer right away
146 		 * to update the period.
147 		 */
148 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
149 		hrtimer_start_expires(&rt_b->rt_period_timer,
150 				      HRTIMER_MODE_ABS_PINNED_HARD);
151 	}
152 	raw_spin_unlock(&rt_b->rt_runtime_lock);
153 }
154 
155 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
156 {
157 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
158 		return;
159 
160 	do_start_rt_bandwidth(rt_b);
161 }
162 
163 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
164 {
165 	hrtimer_cancel(&rt_b->rt_period_timer);
166 }
167 
168 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
169 
170 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
171 {
172 #ifdef CONFIG_SCHED_DEBUG
173 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
174 #endif
175 	return container_of(rt_se, struct task_struct, rt);
176 }
177 
178 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
179 {
180 	return rt_rq->rq;
181 }
182 
183 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
184 {
185 	return rt_se->rt_rq;
186 }
187 
188 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
189 {
190 	struct rt_rq *rt_rq = rt_se->rt_rq;
191 
192 	return rt_rq->rq;
193 }
194 
195 void unregister_rt_sched_group(struct task_group *tg)
196 {
197 	if (tg->rt_se)
198 		destroy_rt_bandwidth(&tg->rt_bandwidth);
199 }
200 
201 void free_rt_sched_group(struct task_group *tg)
202 {
203 	int i;
204 
205 	for_each_possible_cpu(i) {
206 		if (tg->rt_rq)
207 			kfree(tg->rt_rq[i]);
208 		if (tg->rt_se)
209 			kfree(tg->rt_se[i]);
210 	}
211 
212 	kfree(tg->rt_rq);
213 	kfree(tg->rt_se);
214 }
215 
216 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
217 		struct sched_rt_entity *rt_se, int cpu,
218 		struct sched_rt_entity *parent)
219 {
220 	struct rq *rq = cpu_rq(cpu);
221 
222 	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
223 	rt_rq->rt_nr_boosted = 0;
224 	rt_rq->rq = rq;
225 	rt_rq->tg = tg;
226 
227 	tg->rt_rq[cpu] = rt_rq;
228 	tg->rt_se[cpu] = rt_se;
229 
230 	if (!rt_se)
231 		return;
232 
233 	if (!parent)
234 		rt_se->rt_rq = &rq->rt;
235 	else
236 		rt_se->rt_rq = parent->my_q;
237 
238 	rt_se->my_q = rt_rq;
239 	rt_se->parent = parent;
240 	INIT_LIST_HEAD(&rt_se->run_list);
241 }
242 
243 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
244 {
245 	struct rt_rq *rt_rq;
246 	struct sched_rt_entity *rt_se;
247 	int i;
248 
249 	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
250 	if (!tg->rt_rq)
251 		goto err;
252 	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
253 	if (!tg->rt_se)
254 		goto err;
255 
256 	init_rt_bandwidth(&tg->rt_bandwidth, ktime_to_ns(global_rt_period()), 0);
257 
258 	for_each_possible_cpu(i) {
259 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
260 				     GFP_KERNEL, cpu_to_node(i));
261 		if (!rt_rq)
262 			goto err;
263 
264 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
265 				     GFP_KERNEL, cpu_to_node(i));
266 		if (!rt_se)
267 			goto err_free_rq;
268 
269 		init_rt_rq(rt_rq);
270 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
271 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
272 	}
273 
274 	return 1;
275 
276 err_free_rq:
277 	kfree(rt_rq);
278 err:
279 	return 0;
280 }
281 
282 #else /* CONFIG_RT_GROUP_SCHED */
283 
284 #define rt_entity_is_task(rt_se) (1)
285 
286 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
287 {
288 	return container_of(rt_se, struct task_struct, rt);
289 }
290 
291 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
292 {
293 	return container_of(rt_rq, struct rq, rt);
294 }
295 
296 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
297 {
298 	struct task_struct *p = rt_task_of(rt_se);
299 
300 	return task_rq(p);
301 }
302 
303 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
304 {
305 	struct rq *rq = rq_of_rt_se(rt_se);
306 
307 	return &rq->rt;
308 }
309 
310 void unregister_rt_sched_group(struct task_group *tg) { }
311 
312 void free_rt_sched_group(struct task_group *tg) { }
313 
314 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
315 {
316 	return 1;
317 }
318 #endif /* CONFIG_RT_GROUP_SCHED */
319 
320 #ifdef CONFIG_SMP
321 
322 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
323 {
324 	/* Try to pull RT tasks here if we lower this rq's prio */
325 	return rq->online && rq->rt.highest_prio.curr > prev->prio;
326 }
327 
328 static inline int rt_overloaded(struct rq *rq)
329 {
330 	return atomic_read(&rq->rd->rto_count);
331 }
332 
333 static inline void rt_set_overload(struct rq *rq)
334 {
335 	if (!rq->online)
336 		return;
337 
338 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
339 	/*
340 	 * Make sure the mask is visible before we set
341 	 * the overload count. That is checked to determine
342 	 * if we should look at the mask. It would be a shame
343 	 * if we looked at the mask, but the mask was not
344 	 * updated yet.
345 	 *
346 	 * Matched by the barrier in pull_rt_task().
347 	 */
348 	smp_wmb();
349 	atomic_inc(&rq->rd->rto_count);
350 }
351 
352 static inline void rt_clear_overload(struct rq *rq)
353 {
354 	if (!rq->online)
355 		return;
356 
357 	/* the order here really doesn't matter */
358 	atomic_dec(&rq->rd->rto_count);
359 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
360 }
361 
362 static inline int has_pushable_tasks(struct rq *rq)
363 {
364 	return !plist_head_empty(&rq->rt.pushable_tasks);
365 }
366 
367 static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
368 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
369 
370 static void push_rt_tasks(struct rq *);
371 static void pull_rt_task(struct rq *);
372 
373 static inline void rt_queue_push_tasks(struct rq *rq)
374 {
375 	if (!has_pushable_tasks(rq))
376 		return;
377 
378 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
379 }
380 
381 static inline void rt_queue_pull_task(struct rq *rq)
382 {
383 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
384 }
385 
386 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
387 {
388 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
389 	plist_node_init(&p->pushable_tasks, p->prio);
390 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
391 
392 	/* Update the highest prio pushable task */
393 	if (p->prio < rq->rt.highest_prio.next)
394 		rq->rt.highest_prio.next = p->prio;
395 
396 	if (!rq->rt.overloaded) {
397 		rt_set_overload(rq);
398 		rq->rt.overloaded = 1;
399 	}
400 }
401 
402 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
403 {
404 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
405 
406 	/* Update the new highest prio pushable task */
407 	if (has_pushable_tasks(rq)) {
408 		p = plist_first_entry(&rq->rt.pushable_tasks,
409 				      struct task_struct, pushable_tasks);
410 		rq->rt.highest_prio.next = p->prio;
411 	} else {
412 		rq->rt.highest_prio.next = MAX_RT_PRIO-1;
413 
414 		if (rq->rt.overloaded) {
415 			rt_clear_overload(rq);
416 			rq->rt.overloaded = 0;
417 		}
418 	}
419 }
420 
421 #else
422 
423 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
424 {
425 }
426 
427 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
428 {
429 }
430 
431 static inline void rt_queue_push_tasks(struct rq *rq)
432 {
433 }
434 #endif /* CONFIG_SMP */
435 
436 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
437 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
438 
439 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
440 {
441 	return rt_se->on_rq;
442 }
443 
444 #ifdef CONFIG_UCLAMP_TASK
445 /*
446  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
447  * settings.
448  *
449  * This check is only important for heterogeneous systems where uclamp_min value
450  * is higher than the capacity of a @cpu. For non-heterogeneous system this
451  * function will always return true.
452  *
453  * The function will return true if the capacity of the @cpu is >= the
454  * uclamp_min and false otherwise.
455  *
456  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
457  * > uclamp_max.
458  */
459 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
460 {
461 	unsigned int min_cap;
462 	unsigned int max_cap;
463 	unsigned int cpu_cap;
464 
465 	/* Only heterogeneous systems can benefit from this check */
466 	if (!sched_asym_cpucap_active())
467 		return true;
468 
469 	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
470 	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
471 
472 	cpu_cap = arch_scale_cpu_capacity(cpu);
473 
474 	return cpu_cap >= min(min_cap, max_cap);
475 }
476 #else
477 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
478 {
479 	return true;
480 }
481 #endif
482 
483 #ifdef CONFIG_RT_GROUP_SCHED
484 
485 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
486 {
487 	if (!rt_rq->tg)
488 		return RUNTIME_INF;
489 
490 	return rt_rq->rt_runtime;
491 }
492 
493 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
494 {
495 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
496 }
497 
498 typedef struct task_group *rt_rq_iter_t;
499 
500 static inline struct task_group *next_task_group(struct task_group *tg)
501 {
502 	do {
503 		tg = list_entry_rcu(tg->list.next,
504 			typeof(struct task_group), list);
505 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
506 
507 	if (&tg->list == &task_groups)
508 		tg = NULL;
509 
510 	return tg;
511 }
512 
513 #define for_each_rt_rq(rt_rq, iter, rq)					\
514 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
515 		(iter = next_task_group(iter)) &&			\
516 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
517 
518 #define for_each_sched_rt_entity(rt_se) \
519 	for (; rt_se; rt_se = rt_se->parent)
520 
521 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
522 {
523 	return rt_se->my_q;
524 }
525 
526 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
527 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
528 
529 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
530 {
531 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
532 	struct rq *rq = rq_of_rt_rq(rt_rq);
533 	struct sched_rt_entity *rt_se;
534 
535 	int cpu = cpu_of(rq);
536 
537 	rt_se = rt_rq->tg->rt_se[cpu];
538 
539 	if (rt_rq->rt_nr_running) {
540 		if (!rt_se)
541 			enqueue_top_rt_rq(rt_rq);
542 		else if (!on_rt_rq(rt_se))
543 			enqueue_rt_entity(rt_se, 0);
544 
545 		if (rt_rq->highest_prio.curr < curr->prio)
546 			resched_curr(rq);
547 	}
548 }
549 
550 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
551 {
552 	struct sched_rt_entity *rt_se;
553 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
554 
555 	rt_se = rt_rq->tg->rt_se[cpu];
556 
557 	if (!rt_se) {
558 		dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
559 		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
560 		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
561 	}
562 	else if (on_rt_rq(rt_se))
563 		dequeue_rt_entity(rt_se, 0);
564 }
565 
566 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
567 {
568 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
569 }
570 
571 static int rt_se_boosted(struct sched_rt_entity *rt_se)
572 {
573 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
574 	struct task_struct *p;
575 
576 	if (rt_rq)
577 		return !!rt_rq->rt_nr_boosted;
578 
579 	p = rt_task_of(rt_se);
580 	return p->prio != p->normal_prio;
581 }
582 
583 #ifdef CONFIG_SMP
584 static inline const struct cpumask *sched_rt_period_mask(void)
585 {
586 	return this_rq()->rd->span;
587 }
588 #else
589 static inline const struct cpumask *sched_rt_period_mask(void)
590 {
591 	return cpu_online_mask;
592 }
593 #endif
594 
595 static inline
596 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
597 {
598 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
599 }
600 
601 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
602 {
603 	return &rt_rq->tg->rt_bandwidth;
604 }
605 
606 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
607 {
608 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
609 
610 	return (hrtimer_active(&rt_b->rt_period_timer) ||
611 		rt_rq->rt_time < rt_b->rt_runtime);
612 }
613 
614 #ifdef CONFIG_SMP
615 /*
616  * We ran out of runtime, see if we can borrow some from our neighbours.
617  */
618 static void do_balance_runtime(struct rt_rq *rt_rq)
619 {
620 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
621 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
622 	int i, weight;
623 	u64 rt_period;
624 
625 	weight = cpumask_weight(rd->span);
626 
627 	raw_spin_lock(&rt_b->rt_runtime_lock);
628 	rt_period = ktime_to_ns(rt_b->rt_period);
629 	for_each_cpu(i, rd->span) {
630 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
631 		s64 diff;
632 
633 		if (iter == rt_rq)
634 			continue;
635 
636 		raw_spin_lock(&iter->rt_runtime_lock);
637 		/*
638 		 * Either all rqs have inf runtime and there's nothing to steal
639 		 * or __disable_runtime() below sets a specific rq to inf to
640 		 * indicate its been disabled and disallow stealing.
641 		 */
642 		if (iter->rt_runtime == RUNTIME_INF)
643 			goto next;
644 
645 		/*
646 		 * From runqueues with spare time, take 1/n part of their
647 		 * spare time, but no more than our period.
648 		 */
649 		diff = iter->rt_runtime - iter->rt_time;
650 		if (diff > 0) {
651 			diff = div_u64((u64)diff, weight);
652 			if (rt_rq->rt_runtime + diff > rt_period)
653 				diff = rt_period - rt_rq->rt_runtime;
654 			iter->rt_runtime -= diff;
655 			rt_rq->rt_runtime += diff;
656 			if (rt_rq->rt_runtime == rt_period) {
657 				raw_spin_unlock(&iter->rt_runtime_lock);
658 				break;
659 			}
660 		}
661 next:
662 		raw_spin_unlock(&iter->rt_runtime_lock);
663 	}
664 	raw_spin_unlock(&rt_b->rt_runtime_lock);
665 }
666 
667 /*
668  * Ensure this RQ takes back all the runtime it lend to its neighbours.
669  */
670 static void __disable_runtime(struct rq *rq)
671 {
672 	struct root_domain *rd = rq->rd;
673 	rt_rq_iter_t iter;
674 	struct rt_rq *rt_rq;
675 
676 	if (unlikely(!scheduler_running))
677 		return;
678 
679 	for_each_rt_rq(rt_rq, iter, rq) {
680 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
681 		s64 want;
682 		int i;
683 
684 		raw_spin_lock(&rt_b->rt_runtime_lock);
685 		raw_spin_lock(&rt_rq->rt_runtime_lock);
686 		/*
687 		 * Either we're all inf and nobody needs to borrow, or we're
688 		 * already disabled and thus have nothing to do, or we have
689 		 * exactly the right amount of runtime to take out.
690 		 */
691 		if (rt_rq->rt_runtime == RUNTIME_INF ||
692 				rt_rq->rt_runtime == rt_b->rt_runtime)
693 			goto balanced;
694 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
695 
696 		/*
697 		 * Calculate the difference between what we started out with
698 		 * and what we current have, that's the amount of runtime
699 		 * we lend and now have to reclaim.
700 		 */
701 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
702 
703 		/*
704 		 * Greedy reclaim, take back as much as we can.
705 		 */
706 		for_each_cpu(i, rd->span) {
707 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
708 			s64 diff;
709 
710 			/*
711 			 * Can't reclaim from ourselves or disabled runqueues.
712 			 */
713 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
714 				continue;
715 
716 			raw_spin_lock(&iter->rt_runtime_lock);
717 			if (want > 0) {
718 				diff = min_t(s64, iter->rt_runtime, want);
719 				iter->rt_runtime -= diff;
720 				want -= diff;
721 			} else {
722 				iter->rt_runtime -= want;
723 				want -= want;
724 			}
725 			raw_spin_unlock(&iter->rt_runtime_lock);
726 
727 			if (!want)
728 				break;
729 		}
730 
731 		raw_spin_lock(&rt_rq->rt_runtime_lock);
732 		/*
733 		 * We cannot be left wanting - that would mean some runtime
734 		 * leaked out of the system.
735 		 */
736 		WARN_ON_ONCE(want);
737 balanced:
738 		/*
739 		 * Disable all the borrow logic by pretending we have inf
740 		 * runtime - in which case borrowing doesn't make sense.
741 		 */
742 		rt_rq->rt_runtime = RUNTIME_INF;
743 		rt_rq->rt_throttled = 0;
744 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
745 		raw_spin_unlock(&rt_b->rt_runtime_lock);
746 
747 		/* Make rt_rq available for pick_next_task() */
748 		sched_rt_rq_enqueue(rt_rq);
749 	}
750 }
751 
752 static void __enable_runtime(struct rq *rq)
753 {
754 	rt_rq_iter_t iter;
755 	struct rt_rq *rt_rq;
756 
757 	if (unlikely(!scheduler_running))
758 		return;
759 
760 	/*
761 	 * Reset each runqueue's bandwidth settings
762 	 */
763 	for_each_rt_rq(rt_rq, iter, rq) {
764 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
765 
766 		raw_spin_lock(&rt_b->rt_runtime_lock);
767 		raw_spin_lock(&rt_rq->rt_runtime_lock);
768 		rt_rq->rt_runtime = rt_b->rt_runtime;
769 		rt_rq->rt_time = 0;
770 		rt_rq->rt_throttled = 0;
771 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
772 		raw_spin_unlock(&rt_b->rt_runtime_lock);
773 	}
774 }
775 
776 static void balance_runtime(struct rt_rq *rt_rq)
777 {
778 	if (!sched_feat(RT_RUNTIME_SHARE))
779 		return;
780 
781 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
782 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
783 		do_balance_runtime(rt_rq);
784 		raw_spin_lock(&rt_rq->rt_runtime_lock);
785 	}
786 }
787 #else /* !CONFIG_SMP */
788 static inline void balance_runtime(struct rt_rq *rt_rq) {}
789 #endif /* CONFIG_SMP */
790 
791 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
792 {
793 	int i, idle = 1, throttled = 0;
794 	const struct cpumask *span;
795 
796 	span = sched_rt_period_mask();
797 
798 	/*
799 	 * FIXME: isolated CPUs should really leave the root task group,
800 	 * whether they are isolcpus or were isolated via cpusets, lest
801 	 * the timer run on a CPU which does not service all runqueues,
802 	 * potentially leaving other CPUs indefinitely throttled.  If
803 	 * isolation is really required, the user will turn the throttle
804 	 * off to kill the perturbations it causes anyway.  Meanwhile,
805 	 * this maintains functionality for boot and/or troubleshooting.
806 	 */
807 	if (rt_b == &root_task_group.rt_bandwidth)
808 		span = cpu_online_mask;
809 
810 	for_each_cpu(i, span) {
811 		int enqueue = 0;
812 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
813 		struct rq *rq = rq_of_rt_rq(rt_rq);
814 		struct rq_flags rf;
815 		int skip;
816 
817 		/*
818 		 * When span == cpu_online_mask, taking each rq->lock
819 		 * can be time-consuming. Try to avoid it when possible.
820 		 */
821 		raw_spin_lock(&rt_rq->rt_runtime_lock);
822 		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
823 			rt_rq->rt_runtime = rt_b->rt_runtime;
824 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
825 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
826 		if (skip)
827 			continue;
828 
829 		rq_lock(rq, &rf);
830 		update_rq_clock(rq);
831 
832 		if (rt_rq->rt_time) {
833 			u64 runtime;
834 
835 			raw_spin_lock(&rt_rq->rt_runtime_lock);
836 			if (rt_rq->rt_throttled)
837 				balance_runtime(rt_rq);
838 			runtime = rt_rq->rt_runtime;
839 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
840 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
841 				rt_rq->rt_throttled = 0;
842 				enqueue = 1;
843 
844 				/*
845 				 * When we're idle and a woken (rt) task is
846 				 * throttled wakeup_preempt() will set
847 				 * skip_update and the time between the wakeup
848 				 * and this unthrottle will get accounted as
849 				 * 'runtime'.
850 				 */
851 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
852 					rq_clock_cancel_skipupdate(rq);
853 			}
854 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
855 				idle = 0;
856 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
857 		} else if (rt_rq->rt_nr_running) {
858 			idle = 0;
859 			if (!rt_rq_throttled(rt_rq))
860 				enqueue = 1;
861 		}
862 		if (rt_rq->rt_throttled)
863 			throttled = 1;
864 
865 		if (enqueue)
866 			sched_rt_rq_enqueue(rt_rq);
867 		rq_unlock(rq, &rf);
868 	}
869 
870 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
871 		return 1;
872 
873 	return idle;
874 }
875 
876 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
877 {
878 	u64 runtime = sched_rt_runtime(rt_rq);
879 
880 	if (rt_rq->rt_throttled)
881 		return rt_rq_throttled(rt_rq);
882 
883 	if (runtime >= sched_rt_period(rt_rq))
884 		return 0;
885 
886 	balance_runtime(rt_rq);
887 	runtime = sched_rt_runtime(rt_rq);
888 	if (runtime == RUNTIME_INF)
889 		return 0;
890 
891 	if (rt_rq->rt_time > runtime) {
892 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
893 
894 		/*
895 		 * Don't actually throttle groups that have no runtime assigned
896 		 * but accrue some time due to boosting.
897 		 */
898 		if (likely(rt_b->rt_runtime)) {
899 			rt_rq->rt_throttled = 1;
900 			printk_deferred_once("sched: RT throttling activated\n");
901 		} else {
902 			/*
903 			 * In case we did anyway, make it go away,
904 			 * replenishment is a joke, since it will replenish us
905 			 * with exactly 0 ns.
906 			 */
907 			rt_rq->rt_time = 0;
908 		}
909 
910 		if (rt_rq_throttled(rt_rq)) {
911 			sched_rt_rq_dequeue(rt_rq);
912 			return 1;
913 		}
914 	}
915 
916 	return 0;
917 }
918 
919 #else /* !CONFIG_RT_GROUP_SCHED */
920 
921 typedef struct rt_rq *rt_rq_iter_t;
922 
923 #define for_each_rt_rq(rt_rq, iter, rq) \
924 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
925 
926 #define for_each_sched_rt_entity(rt_se) \
927 	for (; rt_se; rt_se = NULL)
928 
929 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
930 {
931 	return NULL;
932 }
933 
934 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
935 {
936 	struct rq *rq = rq_of_rt_rq(rt_rq);
937 
938 	if (!rt_rq->rt_nr_running)
939 		return;
940 
941 	enqueue_top_rt_rq(rt_rq);
942 	resched_curr(rq);
943 }
944 
945 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
946 {
947 	dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
948 }
949 
950 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
951 {
952 	return false;
953 }
954 
955 static inline const struct cpumask *sched_rt_period_mask(void)
956 {
957 	return cpu_online_mask;
958 }
959 
960 static inline
961 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
962 {
963 	return &cpu_rq(cpu)->rt;
964 }
965 
966 #ifdef CONFIG_SMP
967 static void __enable_runtime(struct rq *rq) { }
968 static void __disable_runtime(struct rq *rq) { }
969 #endif
970 
971 #endif /* CONFIG_RT_GROUP_SCHED */
972 
973 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
974 {
975 #ifdef CONFIG_RT_GROUP_SCHED
976 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
977 
978 	if (rt_rq)
979 		return rt_rq->highest_prio.curr;
980 #endif
981 
982 	return rt_task_of(rt_se)->prio;
983 }
984 
985 /*
986  * Update the current task's runtime statistics. Skip current tasks that
987  * are not in our scheduling class.
988  */
989 static void update_curr_rt(struct rq *rq)
990 {
991 	struct task_struct *curr = rq->curr;
992 	s64 delta_exec;
993 
994 	if (curr->sched_class != &rt_sched_class)
995 		return;
996 
997 	delta_exec = update_curr_common(rq);
998 	if (unlikely(delta_exec <= 0))
999 		return;
1000 
1001 #ifdef CONFIG_RT_GROUP_SCHED
1002 	struct sched_rt_entity *rt_se = &curr->rt;
1003 
1004 	if (!rt_bandwidth_enabled())
1005 		return;
1006 
1007 	for_each_sched_rt_entity(rt_se) {
1008 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1009 		int exceeded;
1010 
1011 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1012 			raw_spin_lock(&rt_rq->rt_runtime_lock);
1013 			rt_rq->rt_time += delta_exec;
1014 			exceeded = sched_rt_runtime_exceeded(rt_rq);
1015 			if (exceeded)
1016 				resched_curr(rq);
1017 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1018 			if (exceeded)
1019 				do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1020 		}
1021 	}
1022 #endif
1023 }
1024 
1025 static void
1026 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1027 {
1028 	struct rq *rq = rq_of_rt_rq(rt_rq);
1029 
1030 	BUG_ON(&rq->rt != rt_rq);
1031 
1032 	if (!rt_rq->rt_queued)
1033 		return;
1034 
1035 	BUG_ON(!rq->nr_running);
1036 
1037 	sub_nr_running(rq, count);
1038 	rt_rq->rt_queued = 0;
1039 
1040 }
1041 
1042 static void
1043 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1044 {
1045 	struct rq *rq = rq_of_rt_rq(rt_rq);
1046 
1047 	BUG_ON(&rq->rt != rt_rq);
1048 
1049 	if (rt_rq->rt_queued)
1050 		return;
1051 
1052 	if (rt_rq_throttled(rt_rq))
1053 		return;
1054 
1055 	if (rt_rq->rt_nr_running) {
1056 		add_nr_running(rq, rt_rq->rt_nr_running);
1057 		rt_rq->rt_queued = 1;
1058 	}
1059 
1060 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1061 	cpufreq_update_util(rq, 0);
1062 }
1063 
1064 #if defined CONFIG_SMP
1065 
1066 static void
1067 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1068 {
1069 	struct rq *rq = rq_of_rt_rq(rt_rq);
1070 
1071 #ifdef CONFIG_RT_GROUP_SCHED
1072 	/*
1073 	 * Change rq's cpupri only if rt_rq is the top queue.
1074 	 */
1075 	if (&rq->rt != rt_rq)
1076 		return;
1077 #endif
1078 	if (rq->online && prio < prev_prio)
1079 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1080 }
1081 
1082 static void
1083 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1084 {
1085 	struct rq *rq = rq_of_rt_rq(rt_rq);
1086 
1087 #ifdef CONFIG_RT_GROUP_SCHED
1088 	/*
1089 	 * Change rq's cpupri only if rt_rq is the top queue.
1090 	 */
1091 	if (&rq->rt != rt_rq)
1092 		return;
1093 #endif
1094 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1095 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1096 }
1097 
1098 #else /* CONFIG_SMP */
1099 
1100 static inline
1101 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1102 static inline
1103 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1104 
1105 #endif /* CONFIG_SMP */
1106 
1107 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1108 static void
1109 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1110 {
1111 	int prev_prio = rt_rq->highest_prio.curr;
1112 
1113 	if (prio < prev_prio)
1114 		rt_rq->highest_prio.curr = prio;
1115 
1116 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1117 }
1118 
1119 static void
1120 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1121 {
1122 	int prev_prio = rt_rq->highest_prio.curr;
1123 
1124 	if (rt_rq->rt_nr_running) {
1125 
1126 		WARN_ON(prio < prev_prio);
1127 
1128 		/*
1129 		 * This may have been our highest task, and therefore
1130 		 * we may have some re-computation to do
1131 		 */
1132 		if (prio == prev_prio) {
1133 			struct rt_prio_array *array = &rt_rq->active;
1134 
1135 			rt_rq->highest_prio.curr =
1136 				sched_find_first_bit(array->bitmap);
1137 		}
1138 
1139 	} else {
1140 		rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1141 	}
1142 
1143 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1144 }
1145 
1146 #else
1147 
1148 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1149 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1150 
1151 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1152 
1153 #ifdef CONFIG_RT_GROUP_SCHED
1154 
1155 static void
1156 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1157 {
1158 	if (rt_se_boosted(rt_se))
1159 		rt_rq->rt_nr_boosted++;
1160 
1161 	if (rt_rq->tg)
1162 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1163 }
1164 
1165 static void
1166 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1167 {
1168 	if (rt_se_boosted(rt_se))
1169 		rt_rq->rt_nr_boosted--;
1170 
1171 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1172 }
1173 
1174 #else /* CONFIG_RT_GROUP_SCHED */
1175 
1176 static void
1177 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1178 {
1179 }
1180 
1181 static inline
1182 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1183 
1184 #endif /* CONFIG_RT_GROUP_SCHED */
1185 
1186 static inline
1187 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1188 {
1189 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1190 
1191 	if (group_rq)
1192 		return group_rq->rt_nr_running;
1193 	else
1194 		return 1;
1195 }
1196 
1197 static inline
1198 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1199 {
1200 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1201 	struct task_struct *tsk;
1202 
1203 	if (group_rq)
1204 		return group_rq->rr_nr_running;
1205 
1206 	tsk = rt_task_of(rt_se);
1207 
1208 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1209 }
1210 
1211 static inline
1212 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1213 {
1214 	int prio = rt_se_prio(rt_se);
1215 
1216 	WARN_ON(!rt_prio(prio));
1217 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1218 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1219 
1220 	inc_rt_prio(rt_rq, prio);
1221 	inc_rt_group(rt_se, rt_rq);
1222 }
1223 
1224 static inline
1225 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1226 {
1227 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1228 	WARN_ON(!rt_rq->rt_nr_running);
1229 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1230 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1231 
1232 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1233 	dec_rt_group(rt_se, rt_rq);
1234 }
1235 
1236 /*
1237  * Change rt_se->run_list location unless SAVE && !MOVE
1238  *
1239  * assumes ENQUEUE/DEQUEUE flags match
1240  */
1241 static inline bool move_entity(unsigned int flags)
1242 {
1243 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1244 		return false;
1245 
1246 	return true;
1247 }
1248 
1249 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1250 {
1251 	list_del_init(&rt_se->run_list);
1252 
1253 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1254 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1255 
1256 	rt_se->on_list = 0;
1257 }
1258 
1259 static inline struct sched_statistics *
1260 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1261 {
1262 #ifdef CONFIG_RT_GROUP_SCHED
1263 	/* schedstats is not supported for rt group. */
1264 	if (!rt_entity_is_task(rt_se))
1265 		return NULL;
1266 #endif
1267 
1268 	return &rt_task_of(rt_se)->stats;
1269 }
1270 
1271 static inline void
1272 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1273 {
1274 	struct sched_statistics *stats;
1275 	struct task_struct *p = NULL;
1276 
1277 	if (!schedstat_enabled())
1278 		return;
1279 
1280 	if (rt_entity_is_task(rt_se))
1281 		p = rt_task_of(rt_se);
1282 
1283 	stats = __schedstats_from_rt_se(rt_se);
1284 	if (!stats)
1285 		return;
1286 
1287 	__update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1288 }
1289 
1290 static inline void
1291 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1292 {
1293 	struct sched_statistics *stats;
1294 	struct task_struct *p = NULL;
1295 
1296 	if (!schedstat_enabled())
1297 		return;
1298 
1299 	if (rt_entity_is_task(rt_se))
1300 		p = rt_task_of(rt_se);
1301 
1302 	stats = __schedstats_from_rt_se(rt_se);
1303 	if (!stats)
1304 		return;
1305 
1306 	__update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1307 }
1308 
1309 static inline void
1310 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1311 			int flags)
1312 {
1313 	if (!schedstat_enabled())
1314 		return;
1315 
1316 	if (flags & ENQUEUE_WAKEUP)
1317 		update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1318 }
1319 
1320 static inline void
1321 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1322 {
1323 	struct sched_statistics *stats;
1324 	struct task_struct *p = NULL;
1325 
1326 	if (!schedstat_enabled())
1327 		return;
1328 
1329 	if (rt_entity_is_task(rt_se))
1330 		p = rt_task_of(rt_se);
1331 
1332 	stats = __schedstats_from_rt_se(rt_se);
1333 	if (!stats)
1334 		return;
1335 
1336 	__update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1337 }
1338 
1339 static inline void
1340 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1341 			int flags)
1342 {
1343 	struct task_struct *p = NULL;
1344 
1345 	if (!schedstat_enabled())
1346 		return;
1347 
1348 	if (rt_entity_is_task(rt_se))
1349 		p = rt_task_of(rt_se);
1350 
1351 	if ((flags & DEQUEUE_SLEEP) && p) {
1352 		unsigned int state;
1353 
1354 		state = READ_ONCE(p->__state);
1355 		if (state & TASK_INTERRUPTIBLE)
1356 			__schedstat_set(p->stats.sleep_start,
1357 					rq_clock(rq_of_rt_rq(rt_rq)));
1358 
1359 		if (state & TASK_UNINTERRUPTIBLE)
1360 			__schedstat_set(p->stats.block_start,
1361 					rq_clock(rq_of_rt_rq(rt_rq)));
1362 	}
1363 }
1364 
1365 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1366 {
1367 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1368 	struct rt_prio_array *array = &rt_rq->active;
1369 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1370 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1371 
1372 	/*
1373 	 * Don't enqueue the group if its throttled, or when empty.
1374 	 * The latter is a consequence of the former when a child group
1375 	 * get throttled and the current group doesn't have any other
1376 	 * active members.
1377 	 */
1378 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1379 		if (rt_se->on_list)
1380 			__delist_rt_entity(rt_se, array);
1381 		return;
1382 	}
1383 
1384 	if (move_entity(flags)) {
1385 		WARN_ON_ONCE(rt_se->on_list);
1386 		if (flags & ENQUEUE_HEAD)
1387 			list_add(&rt_se->run_list, queue);
1388 		else
1389 			list_add_tail(&rt_se->run_list, queue);
1390 
1391 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1392 		rt_se->on_list = 1;
1393 	}
1394 	rt_se->on_rq = 1;
1395 
1396 	inc_rt_tasks(rt_se, rt_rq);
1397 }
1398 
1399 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1400 {
1401 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1402 	struct rt_prio_array *array = &rt_rq->active;
1403 
1404 	if (move_entity(flags)) {
1405 		WARN_ON_ONCE(!rt_se->on_list);
1406 		__delist_rt_entity(rt_se, array);
1407 	}
1408 	rt_se->on_rq = 0;
1409 
1410 	dec_rt_tasks(rt_se, rt_rq);
1411 }
1412 
1413 /*
1414  * Because the prio of an upper entry depends on the lower
1415  * entries, we must remove entries top - down.
1416  */
1417 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1418 {
1419 	struct sched_rt_entity *back = NULL;
1420 	unsigned int rt_nr_running;
1421 
1422 	for_each_sched_rt_entity(rt_se) {
1423 		rt_se->back = back;
1424 		back = rt_se;
1425 	}
1426 
1427 	rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1428 
1429 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1430 		if (on_rt_rq(rt_se))
1431 			__dequeue_rt_entity(rt_se, flags);
1432 	}
1433 
1434 	dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1435 }
1436 
1437 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1438 {
1439 	struct rq *rq = rq_of_rt_se(rt_se);
1440 
1441 	update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1442 
1443 	dequeue_rt_stack(rt_se, flags);
1444 	for_each_sched_rt_entity(rt_se)
1445 		__enqueue_rt_entity(rt_se, flags);
1446 	enqueue_top_rt_rq(&rq->rt);
1447 }
1448 
1449 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1450 {
1451 	struct rq *rq = rq_of_rt_se(rt_se);
1452 
1453 	update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1454 
1455 	dequeue_rt_stack(rt_se, flags);
1456 
1457 	for_each_sched_rt_entity(rt_se) {
1458 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1459 
1460 		if (rt_rq && rt_rq->rt_nr_running)
1461 			__enqueue_rt_entity(rt_se, flags);
1462 	}
1463 	enqueue_top_rt_rq(&rq->rt);
1464 }
1465 
1466 /*
1467  * Adding/removing a task to/from a priority array:
1468  */
1469 static void
1470 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1471 {
1472 	struct sched_rt_entity *rt_se = &p->rt;
1473 
1474 	if (flags & ENQUEUE_WAKEUP)
1475 		rt_se->timeout = 0;
1476 
1477 	check_schedstat_required();
1478 	update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1479 
1480 	enqueue_rt_entity(rt_se, flags);
1481 
1482 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1483 		enqueue_pushable_task(rq, p);
1484 }
1485 
1486 static bool dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1487 {
1488 	struct sched_rt_entity *rt_se = &p->rt;
1489 
1490 	update_curr_rt(rq);
1491 	dequeue_rt_entity(rt_se, flags);
1492 
1493 	dequeue_pushable_task(rq, p);
1494 
1495 	return true;
1496 }
1497 
1498 /*
1499  * Put task to the head or the end of the run list without the overhead of
1500  * dequeue followed by enqueue.
1501  */
1502 static void
1503 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1504 {
1505 	if (on_rt_rq(rt_se)) {
1506 		struct rt_prio_array *array = &rt_rq->active;
1507 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1508 
1509 		if (head)
1510 			list_move(&rt_se->run_list, queue);
1511 		else
1512 			list_move_tail(&rt_se->run_list, queue);
1513 	}
1514 }
1515 
1516 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1517 {
1518 	struct sched_rt_entity *rt_se = &p->rt;
1519 	struct rt_rq *rt_rq;
1520 
1521 	for_each_sched_rt_entity(rt_se) {
1522 		rt_rq = rt_rq_of_se(rt_se);
1523 		requeue_rt_entity(rt_rq, rt_se, head);
1524 	}
1525 }
1526 
1527 static void yield_task_rt(struct rq *rq)
1528 {
1529 	requeue_task_rt(rq, rq->curr, 0);
1530 }
1531 
1532 #ifdef CONFIG_SMP
1533 static int find_lowest_rq(struct task_struct *task);
1534 
1535 static int
1536 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1537 {
1538 	struct task_struct *curr;
1539 	struct rq *rq;
1540 	bool test;
1541 
1542 	/* For anything but wake ups, just return the task_cpu */
1543 	if (!(flags & (WF_TTWU | WF_FORK)))
1544 		goto out;
1545 
1546 	rq = cpu_rq(cpu);
1547 
1548 	rcu_read_lock();
1549 	curr = READ_ONCE(rq->curr); /* unlocked access */
1550 
1551 	/*
1552 	 * If the current task on @p's runqueue is an RT task, then
1553 	 * try to see if we can wake this RT task up on another
1554 	 * runqueue. Otherwise simply start this RT task
1555 	 * on its current runqueue.
1556 	 *
1557 	 * We want to avoid overloading runqueues. If the woken
1558 	 * task is a higher priority, then it will stay on this CPU
1559 	 * and the lower prio task should be moved to another CPU.
1560 	 * Even though this will probably make the lower prio task
1561 	 * lose its cache, we do not want to bounce a higher task
1562 	 * around just because it gave up its CPU, perhaps for a
1563 	 * lock?
1564 	 *
1565 	 * For equal prio tasks, we just let the scheduler sort it out.
1566 	 *
1567 	 * Otherwise, just let it ride on the affine RQ and the
1568 	 * post-schedule router will push the preempted task away
1569 	 *
1570 	 * This test is optimistic, if we get it wrong the load-balancer
1571 	 * will have to sort it out.
1572 	 *
1573 	 * We take into account the capacity of the CPU to ensure it fits the
1574 	 * requirement of the task - which is only important on heterogeneous
1575 	 * systems like big.LITTLE.
1576 	 */
1577 	test = curr &&
1578 	       unlikely(rt_task(curr)) &&
1579 	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1580 
1581 	if (test || !rt_task_fits_capacity(p, cpu)) {
1582 		int target = find_lowest_rq(p);
1583 
1584 		/*
1585 		 * Bail out if we were forcing a migration to find a better
1586 		 * fitting CPU but our search failed.
1587 		 */
1588 		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1589 			goto out_unlock;
1590 
1591 		/*
1592 		 * Don't bother moving it if the destination CPU is
1593 		 * not running a lower priority task.
1594 		 */
1595 		if (target != -1 &&
1596 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1597 			cpu = target;
1598 	}
1599 
1600 out_unlock:
1601 	rcu_read_unlock();
1602 
1603 out:
1604 	return cpu;
1605 }
1606 
1607 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1608 {
1609 	/*
1610 	 * Current can't be migrated, useless to reschedule,
1611 	 * let's hope p can move out.
1612 	 */
1613 	if (rq->curr->nr_cpus_allowed == 1 ||
1614 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1615 		return;
1616 
1617 	/*
1618 	 * p is migratable, so let's not schedule it and
1619 	 * see if it is pushed or pulled somewhere else.
1620 	 */
1621 	if (p->nr_cpus_allowed != 1 &&
1622 	    cpupri_find(&rq->rd->cpupri, p, NULL))
1623 		return;
1624 
1625 	/*
1626 	 * There appear to be other CPUs that can accept
1627 	 * the current task but none can run 'p', so lets reschedule
1628 	 * to try and push the current task away:
1629 	 */
1630 	requeue_task_rt(rq, p, 1);
1631 	resched_curr(rq);
1632 }
1633 
1634 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1635 {
1636 	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1637 		/*
1638 		 * This is OK, because current is on_cpu, which avoids it being
1639 		 * picked for load-balance and preemption/IRQs are still
1640 		 * disabled avoiding further scheduler activity on it and we've
1641 		 * not yet started the picking loop.
1642 		 */
1643 		rq_unpin_lock(rq, rf);
1644 		pull_rt_task(rq);
1645 		rq_repin_lock(rq, rf);
1646 	}
1647 
1648 	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1649 }
1650 #endif /* CONFIG_SMP */
1651 
1652 /*
1653  * Preempt the current task with a newly woken task if needed:
1654  */
1655 static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
1656 {
1657 	if (p->prio < rq->curr->prio) {
1658 		resched_curr(rq);
1659 		return;
1660 	}
1661 
1662 #ifdef CONFIG_SMP
1663 	/*
1664 	 * If:
1665 	 *
1666 	 * - the newly woken task is of equal priority to the current task
1667 	 * - the newly woken task is non-migratable while current is migratable
1668 	 * - current will be preempted on the next reschedule
1669 	 *
1670 	 * we should check to see if current can readily move to a different
1671 	 * cpu.  If so, we will reschedule to allow the push logic to try
1672 	 * to move current somewhere else, making room for our non-migratable
1673 	 * task.
1674 	 */
1675 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1676 		check_preempt_equal_prio(rq, p);
1677 #endif
1678 }
1679 
1680 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1681 {
1682 	struct sched_rt_entity *rt_se = &p->rt;
1683 	struct rt_rq *rt_rq = &rq->rt;
1684 
1685 	p->se.exec_start = rq_clock_task(rq);
1686 	if (on_rt_rq(&p->rt))
1687 		update_stats_wait_end_rt(rt_rq, rt_se);
1688 
1689 	/* The running task is never eligible for pushing */
1690 	dequeue_pushable_task(rq, p);
1691 
1692 	if (!first)
1693 		return;
1694 
1695 	/*
1696 	 * If prev task was rt, put_prev_task() has already updated the
1697 	 * utilization. We only care of the case where we start to schedule a
1698 	 * rt task
1699 	 */
1700 	if (rq->curr->sched_class != &rt_sched_class)
1701 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1702 
1703 	rt_queue_push_tasks(rq);
1704 }
1705 
1706 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1707 {
1708 	struct rt_prio_array *array = &rt_rq->active;
1709 	struct sched_rt_entity *next = NULL;
1710 	struct list_head *queue;
1711 	int idx;
1712 
1713 	idx = sched_find_first_bit(array->bitmap);
1714 	BUG_ON(idx >= MAX_RT_PRIO);
1715 
1716 	queue = array->queue + idx;
1717 	if (SCHED_WARN_ON(list_empty(queue)))
1718 		return NULL;
1719 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1720 
1721 	return next;
1722 }
1723 
1724 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1725 {
1726 	struct sched_rt_entity *rt_se;
1727 	struct rt_rq *rt_rq  = &rq->rt;
1728 
1729 	do {
1730 		rt_se = pick_next_rt_entity(rt_rq);
1731 		if (unlikely(!rt_se))
1732 			return NULL;
1733 		rt_rq = group_rt_rq(rt_se);
1734 	} while (rt_rq);
1735 
1736 	return rt_task_of(rt_se);
1737 }
1738 
1739 static struct task_struct *pick_task_rt(struct rq *rq)
1740 {
1741 	struct task_struct *p;
1742 
1743 	if (!sched_rt_runnable(rq))
1744 		return NULL;
1745 
1746 	p = _pick_next_task_rt(rq);
1747 
1748 	return p;
1749 }
1750 
1751 static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct task_struct *next)
1752 {
1753 	struct sched_rt_entity *rt_se = &p->rt;
1754 	struct rt_rq *rt_rq = &rq->rt;
1755 
1756 	if (on_rt_rq(&p->rt))
1757 		update_stats_wait_start_rt(rt_rq, rt_se);
1758 
1759 	update_curr_rt(rq);
1760 
1761 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1762 
1763 	/*
1764 	 * The previous task needs to be made eligible for pushing
1765 	 * if it is still active
1766 	 */
1767 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1768 		enqueue_pushable_task(rq, p);
1769 }
1770 
1771 #ifdef CONFIG_SMP
1772 
1773 /* Only try algorithms three times */
1774 #define RT_MAX_TRIES 3
1775 
1776 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1777 {
1778 	if (!task_on_cpu(rq, p) &&
1779 	    cpumask_test_cpu(cpu, &p->cpus_mask))
1780 		return 1;
1781 
1782 	return 0;
1783 }
1784 
1785 /*
1786  * Return the highest pushable rq's task, which is suitable to be executed
1787  * on the CPU, NULL otherwise
1788  */
1789 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1790 {
1791 	struct plist_head *head = &rq->rt.pushable_tasks;
1792 	struct task_struct *p;
1793 
1794 	if (!has_pushable_tasks(rq))
1795 		return NULL;
1796 
1797 	plist_for_each_entry(p, head, pushable_tasks) {
1798 		if (pick_rt_task(rq, p, cpu))
1799 			return p;
1800 	}
1801 
1802 	return NULL;
1803 }
1804 
1805 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1806 
1807 static int find_lowest_rq(struct task_struct *task)
1808 {
1809 	struct sched_domain *sd;
1810 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1811 	int this_cpu = smp_processor_id();
1812 	int cpu      = task_cpu(task);
1813 	int ret;
1814 
1815 	/* Make sure the mask is initialized first */
1816 	if (unlikely(!lowest_mask))
1817 		return -1;
1818 
1819 	if (task->nr_cpus_allowed == 1)
1820 		return -1; /* No other targets possible */
1821 
1822 	/*
1823 	 * If we're on asym system ensure we consider the different capacities
1824 	 * of the CPUs when searching for the lowest_mask.
1825 	 */
1826 	if (sched_asym_cpucap_active()) {
1827 
1828 		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1829 					  task, lowest_mask,
1830 					  rt_task_fits_capacity);
1831 	} else {
1832 
1833 		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1834 				  task, lowest_mask);
1835 	}
1836 
1837 	if (!ret)
1838 		return -1; /* No targets found */
1839 
1840 	/*
1841 	 * At this point we have built a mask of CPUs representing the
1842 	 * lowest priority tasks in the system.  Now we want to elect
1843 	 * the best one based on our affinity and topology.
1844 	 *
1845 	 * We prioritize the last CPU that the task executed on since
1846 	 * it is most likely cache-hot in that location.
1847 	 */
1848 	if (cpumask_test_cpu(cpu, lowest_mask))
1849 		return cpu;
1850 
1851 	/*
1852 	 * Otherwise, we consult the sched_domains span maps to figure
1853 	 * out which CPU is logically closest to our hot cache data.
1854 	 */
1855 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1856 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1857 
1858 	rcu_read_lock();
1859 	for_each_domain(cpu, sd) {
1860 		if (sd->flags & SD_WAKE_AFFINE) {
1861 			int best_cpu;
1862 
1863 			/*
1864 			 * "this_cpu" is cheaper to preempt than a
1865 			 * remote processor.
1866 			 */
1867 			if (this_cpu != -1 &&
1868 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1869 				rcu_read_unlock();
1870 				return this_cpu;
1871 			}
1872 
1873 			best_cpu = cpumask_any_and_distribute(lowest_mask,
1874 							      sched_domain_span(sd));
1875 			if (best_cpu < nr_cpu_ids) {
1876 				rcu_read_unlock();
1877 				return best_cpu;
1878 			}
1879 		}
1880 	}
1881 	rcu_read_unlock();
1882 
1883 	/*
1884 	 * And finally, if there were no matches within the domains
1885 	 * just give the caller *something* to work with from the compatible
1886 	 * locations.
1887 	 */
1888 	if (this_cpu != -1)
1889 		return this_cpu;
1890 
1891 	cpu = cpumask_any_distribute(lowest_mask);
1892 	if (cpu < nr_cpu_ids)
1893 		return cpu;
1894 
1895 	return -1;
1896 }
1897 
1898 /* Will lock the rq it finds */
1899 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1900 {
1901 	struct rq *lowest_rq = NULL;
1902 	int tries;
1903 	int cpu;
1904 
1905 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1906 		cpu = find_lowest_rq(task);
1907 
1908 		if ((cpu == -1) || (cpu == rq->cpu))
1909 			break;
1910 
1911 		lowest_rq = cpu_rq(cpu);
1912 
1913 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1914 			/*
1915 			 * Target rq has tasks of equal or higher priority,
1916 			 * retrying does not release any lock and is unlikely
1917 			 * to yield a different result.
1918 			 */
1919 			lowest_rq = NULL;
1920 			break;
1921 		}
1922 
1923 		/* if the prio of this runqueue changed, try again */
1924 		if (double_lock_balance(rq, lowest_rq)) {
1925 			/*
1926 			 * We had to unlock the run queue. In
1927 			 * the mean time, task could have
1928 			 * migrated already or had its affinity changed.
1929 			 * Also make sure that it wasn't scheduled on its rq.
1930 			 * It is possible the task was scheduled, set
1931 			 * "migrate_disabled" and then got preempted, so we must
1932 			 * check the task migration disable flag here too.
1933 			 */
1934 			if (unlikely(task_rq(task) != rq ||
1935 				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1936 				     task_on_cpu(rq, task) ||
1937 				     !rt_task(task) ||
1938 				     is_migration_disabled(task) ||
1939 				     !task_on_rq_queued(task))) {
1940 
1941 				double_unlock_balance(rq, lowest_rq);
1942 				lowest_rq = NULL;
1943 				break;
1944 			}
1945 		}
1946 
1947 		/* If this rq is still suitable use it. */
1948 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1949 			break;
1950 
1951 		/* try again */
1952 		double_unlock_balance(rq, lowest_rq);
1953 		lowest_rq = NULL;
1954 	}
1955 
1956 	return lowest_rq;
1957 }
1958 
1959 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1960 {
1961 	struct task_struct *p;
1962 
1963 	if (!has_pushable_tasks(rq))
1964 		return NULL;
1965 
1966 	p = plist_first_entry(&rq->rt.pushable_tasks,
1967 			      struct task_struct, pushable_tasks);
1968 
1969 	BUG_ON(rq->cpu != task_cpu(p));
1970 	BUG_ON(task_current(rq, p));
1971 	BUG_ON(p->nr_cpus_allowed <= 1);
1972 
1973 	BUG_ON(!task_on_rq_queued(p));
1974 	BUG_ON(!rt_task(p));
1975 
1976 	return p;
1977 }
1978 
1979 /*
1980  * If the current CPU has more than one RT task, see if the non
1981  * running task can migrate over to a CPU that is running a task
1982  * of lesser priority.
1983  */
1984 static int push_rt_task(struct rq *rq, bool pull)
1985 {
1986 	struct task_struct *next_task;
1987 	struct rq *lowest_rq;
1988 	int ret = 0;
1989 
1990 	if (!rq->rt.overloaded)
1991 		return 0;
1992 
1993 	next_task = pick_next_pushable_task(rq);
1994 	if (!next_task)
1995 		return 0;
1996 
1997 retry:
1998 	/*
1999 	 * It's possible that the next_task slipped in of
2000 	 * higher priority than current. If that's the case
2001 	 * just reschedule current.
2002 	 */
2003 	if (unlikely(next_task->prio < rq->curr->prio)) {
2004 		resched_curr(rq);
2005 		return 0;
2006 	}
2007 
2008 	if (is_migration_disabled(next_task)) {
2009 		struct task_struct *push_task = NULL;
2010 		int cpu;
2011 
2012 		if (!pull || rq->push_busy)
2013 			return 0;
2014 
2015 		/*
2016 		 * Invoking find_lowest_rq() on anything but an RT task doesn't
2017 		 * make sense. Per the above priority check, curr has to
2018 		 * be of higher priority than next_task, so no need to
2019 		 * reschedule when bailing out.
2020 		 *
2021 		 * Note that the stoppers are masqueraded as SCHED_FIFO
2022 		 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2023 		 */
2024 		if (rq->curr->sched_class != &rt_sched_class)
2025 			return 0;
2026 
2027 		cpu = find_lowest_rq(rq->curr);
2028 		if (cpu == -1 || cpu == rq->cpu)
2029 			return 0;
2030 
2031 		/*
2032 		 * Given we found a CPU with lower priority than @next_task,
2033 		 * therefore it should be running. However we cannot migrate it
2034 		 * to this other CPU, instead attempt to push the current
2035 		 * running task on this CPU away.
2036 		 */
2037 		push_task = get_push_task(rq);
2038 		if (push_task) {
2039 			preempt_disable();
2040 			raw_spin_rq_unlock(rq);
2041 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2042 					    push_task, &rq->push_work);
2043 			preempt_enable();
2044 			raw_spin_rq_lock(rq);
2045 		}
2046 
2047 		return 0;
2048 	}
2049 
2050 	if (WARN_ON(next_task == rq->curr))
2051 		return 0;
2052 
2053 	/* We might release rq lock */
2054 	get_task_struct(next_task);
2055 
2056 	/* find_lock_lowest_rq locks the rq if found */
2057 	lowest_rq = find_lock_lowest_rq(next_task, rq);
2058 	if (!lowest_rq) {
2059 		struct task_struct *task;
2060 		/*
2061 		 * find_lock_lowest_rq releases rq->lock
2062 		 * so it is possible that next_task has migrated.
2063 		 *
2064 		 * We need to make sure that the task is still on the same
2065 		 * run-queue and is also still the next task eligible for
2066 		 * pushing.
2067 		 */
2068 		task = pick_next_pushable_task(rq);
2069 		if (task == next_task) {
2070 			/*
2071 			 * The task hasn't migrated, and is still the next
2072 			 * eligible task, but we failed to find a run-queue
2073 			 * to push it to.  Do not retry in this case, since
2074 			 * other CPUs will pull from us when ready.
2075 			 */
2076 			goto out;
2077 		}
2078 
2079 		if (!task)
2080 			/* No more tasks, just exit */
2081 			goto out;
2082 
2083 		/*
2084 		 * Something has shifted, try again.
2085 		 */
2086 		put_task_struct(next_task);
2087 		next_task = task;
2088 		goto retry;
2089 	}
2090 
2091 	deactivate_task(rq, next_task, 0);
2092 	set_task_cpu(next_task, lowest_rq->cpu);
2093 	activate_task(lowest_rq, next_task, 0);
2094 	resched_curr(lowest_rq);
2095 	ret = 1;
2096 
2097 	double_unlock_balance(rq, lowest_rq);
2098 out:
2099 	put_task_struct(next_task);
2100 
2101 	return ret;
2102 }
2103 
2104 static void push_rt_tasks(struct rq *rq)
2105 {
2106 	/* push_rt_task will return true if it moved an RT */
2107 	while (push_rt_task(rq, false))
2108 		;
2109 }
2110 
2111 #ifdef HAVE_RT_PUSH_IPI
2112 
2113 /*
2114  * When a high priority task schedules out from a CPU and a lower priority
2115  * task is scheduled in, a check is made to see if there's any RT tasks
2116  * on other CPUs that are waiting to run because a higher priority RT task
2117  * is currently running on its CPU. In this case, the CPU with multiple RT
2118  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2119  * up that may be able to run one of its non-running queued RT tasks.
2120  *
2121  * All CPUs with overloaded RT tasks need to be notified as there is currently
2122  * no way to know which of these CPUs have the highest priority task waiting
2123  * to run. Instead of trying to take a spinlock on each of these CPUs,
2124  * which has shown to cause large latency when done on machines with many
2125  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2126  * RT tasks waiting to run.
2127  *
2128  * Just sending an IPI to each of the CPUs is also an issue, as on large
2129  * count CPU machines, this can cause an IPI storm on a CPU, especially
2130  * if its the only CPU with multiple RT tasks queued, and a large number
2131  * of CPUs scheduling a lower priority task at the same time.
2132  *
2133  * Each root domain has its own IRQ work function that can iterate over
2134  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2135  * task must be checked if there's one or many CPUs that are lowering
2136  * their priority, there's a single IRQ work iterator that will try to
2137  * push off RT tasks that are waiting to run.
2138  *
2139  * When a CPU schedules a lower priority task, it will kick off the
2140  * IRQ work iterator that will jump to each CPU with overloaded RT tasks.
2141  * As it only takes the first CPU that schedules a lower priority task
2142  * to start the process, the rto_start variable is incremented and if
2143  * the atomic result is one, then that CPU will try to take the rto_lock.
2144  * This prevents high contention on the lock as the process handles all
2145  * CPUs scheduling lower priority tasks.
2146  *
2147  * All CPUs that are scheduling a lower priority task will increment the
2148  * rt_loop_next variable. This will make sure that the IRQ work iterator
2149  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2150  * priority task, even if the iterator is in the middle of a scan. Incrementing
2151  * the rt_loop_next will cause the iterator to perform another scan.
2152  *
2153  */
2154 static int rto_next_cpu(struct root_domain *rd)
2155 {
2156 	int next;
2157 	int cpu;
2158 
2159 	/*
2160 	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2161 	 * rt_next_cpu() will simply return the first CPU found in
2162 	 * the rto_mask.
2163 	 *
2164 	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2165 	 * will return the next CPU found in the rto_mask.
2166 	 *
2167 	 * If there are no more CPUs left in the rto_mask, then a check is made
2168 	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2169 	 * the rto_lock held, but any CPU may increment the rto_loop_next
2170 	 * without any locking.
2171 	 */
2172 	for (;;) {
2173 
2174 		/* When rto_cpu is -1 this acts like cpumask_first() */
2175 		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2176 
2177 		rd->rto_cpu = cpu;
2178 
2179 		if (cpu < nr_cpu_ids)
2180 			return cpu;
2181 
2182 		rd->rto_cpu = -1;
2183 
2184 		/*
2185 		 * ACQUIRE ensures we see the @rto_mask changes
2186 		 * made prior to the @next value observed.
2187 		 *
2188 		 * Matches WMB in rt_set_overload().
2189 		 */
2190 		next = atomic_read_acquire(&rd->rto_loop_next);
2191 
2192 		if (rd->rto_loop == next)
2193 			break;
2194 
2195 		rd->rto_loop = next;
2196 	}
2197 
2198 	return -1;
2199 }
2200 
2201 static inline bool rto_start_trylock(atomic_t *v)
2202 {
2203 	return !atomic_cmpxchg_acquire(v, 0, 1);
2204 }
2205 
2206 static inline void rto_start_unlock(atomic_t *v)
2207 {
2208 	atomic_set_release(v, 0);
2209 }
2210 
2211 static void tell_cpu_to_push(struct rq *rq)
2212 {
2213 	int cpu = -1;
2214 
2215 	/* Keep the loop going if the IPI is currently active */
2216 	atomic_inc(&rq->rd->rto_loop_next);
2217 
2218 	/* Only one CPU can initiate a loop at a time */
2219 	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2220 		return;
2221 
2222 	raw_spin_lock(&rq->rd->rto_lock);
2223 
2224 	/*
2225 	 * The rto_cpu is updated under the lock, if it has a valid CPU
2226 	 * then the IPI is still running and will continue due to the
2227 	 * update to loop_next, and nothing needs to be done here.
2228 	 * Otherwise it is finishing up and an IPI needs to be sent.
2229 	 */
2230 	if (rq->rd->rto_cpu < 0)
2231 		cpu = rto_next_cpu(rq->rd);
2232 
2233 	raw_spin_unlock(&rq->rd->rto_lock);
2234 
2235 	rto_start_unlock(&rq->rd->rto_loop_start);
2236 
2237 	if (cpu >= 0) {
2238 		/* Make sure the rd does not get freed while pushing */
2239 		sched_get_rd(rq->rd);
2240 		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2241 	}
2242 }
2243 
2244 /* Called from hardirq context */
2245 void rto_push_irq_work_func(struct irq_work *work)
2246 {
2247 	struct root_domain *rd =
2248 		container_of(work, struct root_domain, rto_push_work);
2249 	struct rq *rq;
2250 	int cpu;
2251 
2252 	rq = this_rq();
2253 
2254 	/*
2255 	 * We do not need to grab the lock to check for has_pushable_tasks.
2256 	 * When it gets updated, a check is made if a push is possible.
2257 	 */
2258 	if (has_pushable_tasks(rq)) {
2259 		raw_spin_rq_lock(rq);
2260 		while (push_rt_task(rq, true))
2261 			;
2262 		raw_spin_rq_unlock(rq);
2263 	}
2264 
2265 	raw_spin_lock(&rd->rto_lock);
2266 
2267 	/* Pass the IPI to the next rt overloaded queue */
2268 	cpu = rto_next_cpu(rd);
2269 
2270 	raw_spin_unlock(&rd->rto_lock);
2271 
2272 	if (cpu < 0) {
2273 		sched_put_rd(rd);
2274 		return;
2275 	}
2276 
2277 	/* Try the next RT overloaded CPU */
2278 	irq_work_queue_on(&rd->rto_push_work, cpu);
2279 }
2280 #endif /* HAVE_RT_PUSH_IPI */
2281 
2282 static void pull_rt_task(struct rq *this_rq)
2283 {
2284 	int this_cpu = this_rq->cpu, cpu;
2285 	bool resched = false;
2286 	struct task_struct *p, *push_task;
2287 	struct rq *src_rq;
2288 	int rt_overload_count = rt_overloaded(this_rq);
2289 
2290 	if (likely(!rt_overload_count))
2291 		return;
2292 
2293 	/*
2294 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2295 	 * see overloaded we must also see the rto_mask bit.
2296 	 */
2297 	smp_rmb();
2298 
2299 	/* If we are the only overloaded CPU do nothing */
2300 	if (rt_overload_count == 1 &&
2301 	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2302 		return;
2303 
2304 #ifdef HAVE_RT_PUSH_IPI
2305 	if (sched_feat(RT_PUSH_IPI)) {
2306 		tell_cpu_to_push(this_rq);
2307 		return;
2308 	}
2309 #endif
2310 
2311 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2312 		if (this_cpu == cpu)
2313 			continue;
2314 
2315 		src_rq = cpu_rq(cpu);
2316 
2317 		/*
2318 		 * Don't bother taking the src_rq->lock if the next highest
2319 		 * task is known to be lower-priority than our current task.
2320 		 * This may look racy, but if this value is about to go
2321 		 * logically higher, the src_rq will push this task away.
2322 		 * And if its going logically lower, we do not care
2323 		 */
2324 		if (src_rq->rt.highest_prio.next >=
2325 		    this_rq->rt.highest_prio.curr)
2326 			continue;
2327 
2328 		/*
2329 		 * We can potentially drop this_rq's lock in
2330 		 * double_lock_balance, and another CPU could
2331 		 * alter this_rq
2332 		 */
2333 		push_task = NULL;
2334 		double_lock_balance(this_rq, src_rq);
2335 
2336 		/*
2337 		 * We can pull only a task, which is pushable
2338 		 * on its rq, and no others.
2339 		 */
2340 		p = pick_highest_pushable_task(src_rq, this_cpu);
2341 
2342 		/*
2343 		 * Do we have an RT task that preempts
2344 		 * the to-be-scheduled task?
2345 		 */
2346 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2347 			WARN_ON(p == src_rq->curr);
2348 			WARN_ON(!task_on_rq_queued(p));
2349 
2350 			/*
2351 			 * There's a chance that p is higher in priority
2352 			 * than what's currently running on its CPU.
2353 			 * This is just that p is waking up and hasn't
2354 			 * had a chance to schedule. We only pull
2355 			 * p if it is lower in priority than the
2356 			 * current task on the run queue
2357 			 */
2358 			if (p->prio < src_rq->curr->prio)
2359 				goto skip;
2360 
2361 			if (is_migration_disabled(p)) {
2362 				push_task = get_push_task(src_rq);
2363 			} else {
2364 				deactivate_task(src_rq, p, 0);
2365 				set_task_cpu(p, this_cpu);
2366 				activate_task(this_rq, p, 0);
2367 				resched = true;
2368 			}
2369 			/*
2370 			 * We continue with the search, just in
2371 			 * case there's an even higher prio task
2372 			 * in another runqueue. (low likelihood
2373 			 * but possible)
2374 			 */
2375 		}
2376 skip:
2377 		double_unlock_balance(this_rq, src_rq);
2378 
2379 		if (push_task) {
2380 			preempt_disable();
2381 			raw_spin_rq_unlock(this_rq);
2382 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2383 					    push_task, &src_rq->push_work);
2384 			preempt_enable();
2385 			raw_spin_rq_lock(this_rq);
2386 		}
2387 	}
2388 
2389 	if (resched)
2390 		resched_curr(this_rq);
2391 }
2392 
2393 /*
2394  * If we are not running and we are not going to reschedule soon, we should
2395  * try to push tasks away now
2396  */
2397 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2398 {
2399 	bool need_to_push = !task_on_cpu(rq, p) &&
2400 			    !test_tsk_need_resched(rq->curr) &&
2401 			    p->nr_cpus_allowed > 1 &&
2402 			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2403 			    (rq->curr->nr_cpus_allowed < 2 ||
2404 			     rq->curr->prio <= p->prio);
2405 
2406 	if (need_to_push)
2407 		push_rt_tasks(rq);
2408 }
2409 
2410 /* Assumes rq->lock is held */
2411 static void rq_online_rt(struct rq *rq)
2412 {
2413 	if (rq->rt.overloaded)
2414 		rt_set_overload(rq);
2415 
2416 	__enable_runtime(rq);
2417 
2418 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2419 }
2420 
2421 /* Assumes rq->lock is held */
2422 static void rq_offline_rt(struct rq *rq)
2423 {
2424 	if (rq->rt.overloaded)
2425 		rt_clear_overload(rq);
2426 
2427 	__disable_runtime(rq);
2428 
2429 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2430 }
2431 
2432 /*
2433  * When switch from the rt queue, we bring ourselves to a position
2434  * that we might want to pull RT tasks from other runqueues.
2435  */
2436 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2437 {
2438 	/*
2439 	 * If there are other RT tasks then we will reschedule
2440 	 * and the scheduling of the other RT tasks will handle
2441 	 * the balancing. But if we are the last RT task
2442 	 * we may need to handle the pulling of RT tasks
2443 	 * now.
2444 	 */
2445 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2446 		return;
2447 
2448 	rt_queue_pull_task(rq);
2449 }
2450 
2451 void __init init_sched_rt_class(void)
2452 {
2453 	unsigned int i;
2454 
2455 	for_each_possible_cpu(i) {
2456 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2457 					GFP_KERNEL, cpu_to_node(i));
2458 	}
2459 }
2460 #endif /* CONFIG_SMP */
2461 
2462 /*
2463  * When switching a task to RT, we may overload the runqueue
2464  * with RT tasks. In this case we try to push them off to
2465  * other runqueues.
2466  */
2467 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2468 {
2469 	/*
2470 	 * If we are running, update the avg_rt tracking, as the running time
2471 	 * will now on be accounted into the latter.
2472 	 */
2473 	if (task_current(rq, p)) {
2474 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2475 		return;
2476 	}
2477 
2478 	/*
2479 	 * If we are not running we may need to preempt the current
2480 	 * running task. If that current running task is also an RT task
2481 	 * then see if we can move to another run queue.
2482 	 */
2483 	if (task_on_rq_queued(p)) {
2484 #ifdef CONFIG_SMP
2485 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2486 			rt_queue_push_tasks(rq);
2487 #endif /* CONFIG_SMP */
2488 		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2489 			resched_curr(rq);
2490 	}
2491 }
2492 
2493 /*
2494  * Priority of the task has changed. This may cause
2495  * us to initiate a push or pull.
2496  */
2497 static void
2498 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2499 {
2500 	if (!task_on_rq_queued(p))
2501 		return;
2502 
2503 	if (task_current(rq, p)) {
2504 #ifdef CONFIG_SMP
2505 		/*
2506 		 * If our priority decreases while running, we
2507 		 * may need to pull tasks to this runqueue.
2508 		 */
2509 		if (oldprio < p->prio)
2510 			rt_queue_pull_task(rq);
2511 
2512 		/*
2513 		 * If there's a higher priority task waiting to run
2514 		 * then reschedule.
2515 		 */
2516 		if (p->prio > rq->rt.highest_prio.curr)
2517 			resched_curr(rq);
2518 #else
2519 		/* For UP simply resched on drop of prio */
2520 		if (oldprio < p->prio)
2521 			resched_curr(rq);
2522 #endif /* CONFIG_SMP */
2523 	} else {
2524 		/*
2525 		 * This task is not running, but if it is
2526 		 * greater than the current running task
2527 		 * then reschedule.
2528 		 */
2529 		if (p->prio < rq->curr->prio)
2530 			resched_curr(rq);
2531 	}
2532 }
2533 
2534 #ifdef CONFIG_POSIX_TIMERS
2535 static void watchdog(struct rq *rq, struct task_struct *p)
2536 {
2537 	unsigned long soft, hard;
2538 
2539 	/* max may change after cur was read, this will be fixed next tick */
2540 	soft = task_rlimit(p, RLIMIT_RTTIME);
2541 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2542 
2543 	if (soft != RLIM_INFINITY) {
2544 		unsigned long next;
2545 
2546 		if (p->rt.watchdog_stamp != jiffies) {
2547 			p->rt.timeout++;
2548 			p->rt.watchdog_stamp = jiffies;
2549 		}
2550 
2551 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2552 		if (p->rt.timeout > next) {
2553 			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2554 						    p->se.sum_exec_runtime);
2555 		}
2556 	}
2557 }
2558 #else
2559 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2560 #endif
2561 
2562 /*
2563  * scheduler tick hitting a task of our scheduling class.
2564  *
2565  * NOTE: This function can be called remotely by the tick offload that
2566  * goes along full dynticks. Therefore no local assumption can be made
2567  * and everything must be accessed through the @rq and @curr passed in
2568  * parameters.
2569  */
2570 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2571 {
2572 	struct sched_rt_entity *rt_se = &p->rt;
2573 
2574 	update_curr_rt(rq);
2575 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2576 
2577 	watchdog(rq, p);
2578 
2579 	/*
2580 	 * RR tasks need a special form of time-slice management.
2581 	 * FIFO tasks have no timeslices.
2582 	 */
2583 	if (p->policy != SCHED_RR)
2584 		return;
2585 
2586 	if (--p->rt.time_slice)
2587 		return;
2588 
2589 	p->rt.time_slice = sched_rr_timeslice;
2590 
2591 	/*
2592 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2593 	 * the only element on the queue
2594 	 */
2595 	for_each_sched_rt_entity(rt_se) {
2596 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2597 			requeue_task_rt(rq, p, 0);
2598 			resched_curr(rq);
2599 			return;
2600 		}
2601 	}
2602 }
2603 
2604 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2605 {
2606 	/*
2607 	 * Time slice is 0 for SCHED_FIFO tasks
2608 	 */
2609 	if (task->policy == SCHED_RR)
2610 		return sched_rr_timeslice;
2611 	else
2612 		return 0;
2613 }
2614 
2615 #ifdef CONFIG_SCHED_CORE
2616 static int task_is_throttled_rt(struct task_struct *p, int cpu)
2617 {
2618 	struct rt_rq *rt_rq;
2619 
2620 #ifdef CONFIG_RT_GROUP_SCHED
2621 	rt_rq = task_group(p)->rt_rq[cpu];
2622 #else
2623 	rt_rq = &cpu_rq(cpu)->rt;
2624 #endif
2625 
2626 	return rt_rq_throttled(rt_rq);
2627 }
2628 #endif
2629 
2630 DEFINE_SCHED_CLASS(rt) = {
2631 
2632 	.enqueue_task		= enqueue_task_rt,
2633 	.dequeue_task		= dequeue_task_rt,
2634 	.yield_task		= yield_task_rt,
2635 
2636 	.wakeup_preempt		= wakeup_preempt_rt,
2637 
2638 	.pick_task		= pick_task_rt,
2639 	.put_prev_task		= put_prev_task_rt,
2640 	.set_next_task          = set_next_task_rt,
2641 
2642 #ifdef CONFIG_SMP
2643 	.balance		= balance_rt,
2644 	.select_task_rq		= select_task_rq_rt,
2645 	.set_cpus_allowed       = set_cpus_allowed_common,
2646 	.rq_online              = rq_online_rt,
2647 	.rq_offline             = rq_offline_rt,
2648 	.task_woken		= task_woken_rt,
2649 	.switched_from		= switched_from_rt,
2650 	.find_lock_rq		= find_lock_lowest_rq,
2651 #endif
2652 
2653 	.task_tick		= task_tick_rt,
2654 
2655 	.get_rr_interval	= get_rr_interval_rt,
2656 
2657 	.prio_changed		= prio_changed_rt,
2658 	.switched_to		= switched_to_rt,
2659 
2660 	.update_curr		= update_curr_rt,
2661 
2662 #ifdef CONFIG_SCHED_CORE
2663 	.task_is_throttled	= task_is_throttled_rt,
2664 #endif
2665 
2666 #ifdef CONFIG_UCLAMP_TASK
2667 	.uclamp_enabled		= 1,
2668 #endif
2669 };
2670 
2671 #ifdef CONFIG_RT_GROUP_SCHED
2672 /*
2673  * Ensure that the real time constraints are schedulable.
2674  */
2675 static DEFINE_MUTEX(rt_constraints_mutex);
2676 
2677 static inline int tg_has_rt_tasks(struct task_group *tg)
2678 {
2679 	struct task_struct *task;
2680 	struct css_task_iter it;
2681 	int ret = 0;
2682 
2683 	/*
2684 	 * Autogroups do not have RT tasks; see autogroup_create().
2685 	 */
2686 	if (task_group_is_autogroup(tg))
2687 		return 0;
2688 
2689 	css_task_iter_start(&tg->css, 0, &it);
2690 	while (!ret && (task = css_task_iter_next(&it)))
2691 		ret |= rt_task(task);
2692 	css_task_iter_end(&it);
2693 
2694 	return ret;
2695 }
2696 
2697 struct rt_schedulable_data {
2698 	struct task_group *tg;
2699 	u64 rt_period;
2700 	u64 rt_runtime;
2701 };
2702 
2703 static int tg_rt_schedulable(struct task_group *tg, void *data)
2704 {
2705 	struct rt_schedulable_data *d = data;
2706 	struct task_group *child;
2707 	unsigned long total, sum = 0;
2708 	u64 period, runtime;
2709 
2710 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2711 	runtime = tg->rt_bandwidth.rt_runtime;
2712 
2713 	if (tg == d->tg) {
2714 		period = d->rt_period;
2715 		runtime = d->rt_runtime;
2716 	}
2717 
2718 	/*
2719 	 * Cannot have more runtime than the period.
2720 	 */
2721 	if (runtime > period && runtime != RUNTIME_INF)
2722 		return -EINVAL;
2723 
2724 	/*
2725 	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2726 	 */
2727 	if (rt_bandwidth_enabled() && !runtime &&
2728 	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2729 		return -EBUSY;
2730 
2731 	total = to_ratio(period, runtime);
2732 
2733 	/*
2734 	 * Nobody can have more than the global setting allows.
2735 	 */
2736 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2737 		return -EINVAL;
2738 
2739 	/*
2740 	 * The sum of our children's runtime should not exceed our own.
2741 	 */
2742 	list_for_each_entry_rcu(child, &tg->children, siblings) {
2743 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2744 		runtime = child->rt_bandwidth.rt_runtime;
2745 
2746 		if (child == d->tg) {
2747 			period = d->rt_period;
2748 			runtime = d->rt_runtime;
2749 		}
2750 
2751 		sum += to_ratio(period, runtime);
2752 	}
2753 
2754 	if (sum > total)
2755 		return -EINVAL;
2756 
2757 	return 0;
2758 }
2759 
2760 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2761 {
2762 	int ret;
2763 
2764 	struct rt_schedulable_data data = {
2765 		.tg = tg,
2766 		.rt_period = period,
2767 		.rt_runtime = runtime,
2768 	};
2769 
2770 	rcu_read_lock();
2771 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2772 	rcu_read_unlock();
2773 
2774 	return ret;
2775 }
2776 
2777 static int tg_set_rt_bandwidth(struct task_group *tg,
2778 		u64 rt_period, u64 rt_runtime)
2779 {
2780 	int i, err = 0;
2781 
2782 	/*
2783 	 * Disallowing the root group RT runtime is BAD, it would disallow the
2784 	 * kernel creating (and or operating) RT threads.
2785 	 */
2786 	if (tg == &root_task_group && rt_runtime == 0)
2787 		return -EINVAL;
2788 
2789 	/* No period doesn't make any sense. */
2790 	if (rt_period == 0)
2791 		return -EINVAL;
2792 
2793 	/*
2794 	 * Bound quota to defend quota against overflow during bandwidth shift.
2795 	 */
2796 	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2797 		return -EINVAL;
2798 
2799 	mutex_lock(&rt_constraints_mutex);
2800 	err = __rt_schedulable(tg, rt_period, rt_runtime);
2801 	if (err)
2802 		goto unlock;
2803 
2804 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2805 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2806 	tg->rt_bandwidth.rt_runtime = rt_runtime;
2807 
2808 	for_each_possible_cpu(i) {
2809 		struct rt_rq *rt_rq = tg->rt_rq[i];
2810 
2811 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2812 		rt_rq->rt_runtime = rt_runtime;
2813 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2814 	}
2815 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2816 unlock:
2817 	mutex_unlock(&rt_constraints_mutex);
2818 
2819 	return err;
2820 }
2821 
2822 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2823 {
2824 	u64 rt_runtime, rt_period;
2825 
2826 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2827 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2828 	if (rt_runtime_us < 0)
2829 		rt_runtime = RUNTIME_INF;
2830 	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2831 		return -EINVAL;
2832 
2833 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2834 }
2835 
2836 long sched_group_rt_runtime(struct task_group *tg)
2837 {
2838 	u64 rt_runtime_us;
2839 
2840 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2841 		return -1;
2842 
2843 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2844 	do_div(rt_runtime_us, NSEC_PER_USEC);
2845 	return rt_runtime_us;
2846 }
2847 
2848 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2849 {
2850 	u64 rt_runtime, rt_period;
2851 
2852 	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2853 		return -EINVAL;
2854 
2855 	rt_period = rt_period_us * NSEC_PER_USEC;
2856 	rt_runtime = tg->rt_bandwidth.rt_runtime;
2857 
2858 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2859 }
2860 
2861 long sched_group_rt_period(struct task_group *tg)
2862 {
2863 	u64 rt_period_us;
2864 
2865 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2866 	do_div(rt_period_us, NSEC_PER_USEC);
2867 	return rt_period_us;
2868 }
2869 
2870 #ifdef CONFIG_SYSCTL
2871 static int sched_rt_global_constraints(void)
2872 {
2873 	int ret = 0;
2874 
2875 	mutex_lock(&rt_constraints_mutex);
2876 	ret = __rt_schedulable(NULL, 0, 0);
2877 	mutex_unlock(&rt_constraints_mutex);
2878 
2879 	return ret;
2880 }
2881 #endif /* CONFIG_SYSCTL */
2882 
2883 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2884 {
2885 	/* Don't accept real-time tasks when there is no way for them to run */
2886 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2887 		return 0;
2888 
2889 	return 1;
2890 }
2891 
2892 #else /* !CONFIG_RT_GROUP_SCHED */
2893 
2894 #ifdef CONFIG_SYSCTL
2895 static int sched_rt_global_constraints(void)
2896 {
2897 	return 0;
2898 }
2899 #endif /* CONFIG_SYSCTL */
2900 #endif /* CONFIG_RT_GROUP_SCHED */
2901 
2902 #ifdef CONFIG_SYSCTL
2903 static int sched_rt_global_validate(void)
2904 {
2905 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2906 		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2907 		 ((u64)sysctl_sched_rt_runtime *
2908 			NSEC_PER_USEC > max_rt_runtime)))
2909 		return -EINVAL;
2910 
2911 	return 0;
2912 }
2913 
2914 static void sched_rt_do_global(void)
2915 {
2916 }
2917 
2918 static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer,
2919 		size_t *lenp, loff_t *ppos)
2920 {
2921 	int old_period, old_runtime;
2922 	static DEFINE_MUTEX(mutex);
2923 	int ret;
2924 
2925 	mutex_lock(&mutex);
2926 	old_period = sysctl_sched_rt_period;
2927 	old_runtime = sysctl_sched_rt_runtime;
2928 
2929 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2930 
2931 	if (!ret && write) {
2932 		ret = sched_rt_global_validate();
2933 		if (ret)
2934 			goto undo;
2935 
2936 		ret = sched_dl_global_validate();
2937 		if (ret)
2938 			goto undo;
2939 
2940 		ret = sched_rt_global_constraints();
2941 		if (ret)
2942 			goto undo;
2943 
2944 		sched_rt_do_global();
2945 		sched_dl_do_global();
2946 	}
2947 	if (0) {
2948 undo:
2949 		sysctl_sched_rt_period = old_period;
2950 		sysctl_sched_rt_runtime = old_runtime;
2951 	}
2952 	mutex_unlock(&mutex);
2953 
2954 	return ret;
2955 }
2956 
2957 static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer,
2958 		size_t *lenp, loff_t *ppos)
2959 {
2960 	int ret;
2961 	static DEFINE_MUTEX(mutex);
2962 
2963 	mutex_lock(&mutex);
2964 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2965 	/*
2966 	 * Make sure that internally we keep jiffies.
2967 	 * Also, writing zero resets the time-slice to default:
2968 	 */
2969 	if (!ret && write) {
2970 		sched_rr_timeslice =
2971 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2972 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
2973 
2974 		if (sysctl_sched_rr_timeslice <= 0)
2975 			sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
2976 	}
2977 	mutex_unlock(&mutex);
2978 
2979 	return ret;
2980 }
2981 #endif /* CONFIG_SYSCTL */
2982 
2983 #ifdef CONFIG_SCHED_DEBUG
2984 void print_rt_stats(struct seq_file *m, int cpu)
2985 {
2986 	rt_rq_iter_t iter;
2987 	struct rt_rq *rt_rq;
2988 
2989 	rcu_read_lock();
2990 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2991 		print_rt_rq(m, cpu, rt_rq);
2992 	rcu_read_unlock();
2993 }
2994 #endif /* CONFIG_SCHED_DEBUG */
2995