xref: /linux/kernel/sched/rt.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5 
6 #include "sched.h"
7 
8 #include <linux/slab.h>
9 #include <linux/irq_work.h>
10 
11 int sched_rr_timeslice = RR_TIMESLICE;
12 
13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
14 
15 struct rt_bandwidth def_rt_bandwidth;
16 
17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
18 {
19 	struct rt_bandwidth *rt_b =
20 		container_of(timer, struct rt_bandwidth, rt_period_timer);
21 	int idle = 0;
22 	int overrun;
23 
24 	raw_spin_lock(&rt_b->rt_runtime_lock);
25 	for (;;) {
26 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
27 		if (!overrun)
28 			break;
29 
30 		raw_spin_unlock(&rt_b->rt_runtime_lock);
31 		idle = do_sched_rt_period_timer(rt_b, overrun);
32 		raw_spin_lock(&rt_b->rt_runtime_lock);
33 	}
34 	if (idle)
35 		rt_b->rt_period_active = 0;
36 	raw_spin_unlock(&rt_b->rt_runtime_lock);
37 
38 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
39 }
40 
41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
42 {
43 	rt_b->rt_period = ns_to_ktime(period);
44 	rt_b->rt_runtime = runtime;
45 
46 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
47 
48 	hrtimer_init(&rt_b->rt_period_timer,
49 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
50 	rt_b->rt_period_timer.function = sched_rt_period_timer;
51 }
52 
53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
54 {
55 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
56 		return;
57 
58 	raw_spin_lock(&rt_b->rt_runtime_lock);
59 	if (!rt_b->rt_period_active) {
60 		rt_b->rt_period_active = 1;
61 		hrtimer_forward_now(&rt_b->rt_period_timer, rt_b->rt_period);
62 		hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED);
63 	}
64 	raw_spin_unlock(&rt_b->rt_runtime_lock);
65 }
66 
67 #ifdef CONFIG_SMP
68 static void push_irq_work_func(struct irq_work *work);
69 #endif
70 
71 void init_rt_rq(struct rt_rq *rt_rq)
72 {
73 	struct rt_prio_array *array;
74 	int i;
75 
76 	array = &rt_rq->active;
77 	for (i = 0; i < MAX_RT_PRIO; i++) {
78 		INIT_LIST_HEAD(array->queue + i);
79 		__clear_bit(i, array->bitmap);
80 	}
81 	/* delimiter for bitsearch: */
82 	__set_bit(MAX_RT_PRIO, array->bitmap);
83 
84 #if defined CONFIG_SMP
85 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
86 	rt_rq->highest_prio.next = MAX_RT_PRIO;
87 	rt_rq->rt_nr_migratory = 0;
88 	rt_rq->overloaded = 0;
89 	plist_head_init(&rt_rq->pushable_tasks);
90 
91 #ifdef HAVE_RT_PUSH_IPI
92 	rt_rq->push_flags = 0;
93 	rt_rq->push_cpu = nr_cpu_ids;
94 	raw_spin_lock_init(&rt_rq->push_lock);
95 	init_irq_work(&rt_rq->push_work, push_irq_work_func);
96 #endif
97 #endif /* CONFIG_SMP */
98 	/* We start is dequeued state, because no RT tasks are queued */
99 	rt_rq->rt_queued = 0;
100 
101 	rt_rq->rt_time = 0;
102 	rt_rq->rt_throttled = 0;
103 	rt_rq->rt_runtime = 0;
104 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
105 }
106 
107 #ifdef CONFIG_RT_GROUP_SCHED
108 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
109 {
110 	hrtimer_cancel(&rt_b->rt_period_timer);
111 }
112 
113 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
114 
115 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
116 {
117 #ifdef CONFIG_SCHED_DEBUG
118 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
119 #endif
120 	return container_of(rt_se, struct task_struct, rt);
121 }
122 
123 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
124 {
125 	return rt_rq->rq;
126 }
127 
128 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
129 {
130 	return rt_se->rt_rq;
131 }
132 
133 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
134 {
135 	struct rt_rq *rt_rq = rt_se->rt_rq;
136 
137 	return rt_rq->rq;
138 }
139 
140 void free_rt_sched_group(struct task_group *tg)
141 {
142 	int i;
143 
144 	if (tg->rt_se)
145 		destroy_rt_bandwidth(&tg->rt_bandwidth);
146 
147 	for_each_possible_cpu(i) {
148 		if (tg->rt_rq)
149 			kfree(tg->rt_rq[i]);
150 		if (tg->rt_se)
151 			kfree(tg->rt_se[i]);
152 	}
153 
154 	kfree(tg->rt_rq);
155 	kfree(tg->rt_se);
156 }
157 
158 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
159 		struct sched_rt_entity *rt_se, int cpu,
160 		struct sched_rt_entity *parent)
161 {
162 	struct rq *rq = cpu_rq(cpu);
163 
164 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
165 	rt_rq->rt_nr_boosted = 0;
166 	rt_rq->rq = rq;
167 	rt_rq->tg = tg;
168 
169 	tg->rt_rq[cpu] = rt_rq;
170 	tg->rt_se[cpu] = rt_se;
171 
172 	if (!rt_se)
173 		return;
174 
175 	if (!parent)
176 		rt_se->rt_rq = &rq->rt;
177 	else
178 		rt_se->rt_rq = parent->my_q;
179 
180 	rt_se->my_q = rt_rq;
181 	rt_se->parent = parent;
182 	INIT_LIST_HEAD(&rt_se->run_list);
183 }
184 
185 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
186 {
187 	struct rt_rq *rt_rq;
188 	struct sched_rt_entity *rt_se;
189 	int i;
190 
191 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
192 	if (!tg->rt_rq)
193 		goto err;
194 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
195 	if (!tg->rt_se)
196 		goto err;
197 
198 	init_rt_bandwidth(&tg->rt_bandwidth,
199 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
200 
201 	for_each_possible_cpu(i) {
202 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
203 				     GFP_KERNEL, cpu_to_node(i));
204 		if (!rt_rq)
205 			goto err;
206 
207 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
208 				     GFP_KERNEL, cpu_to_node(i));
209 		if (!rt_se)
210 			goto err_free_rq;
211 
212 		init_rt_rq(rt_rq);
213 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
214 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
215 	}
216 
217 	return 1;
218 
219 err_free_rq:
220 	kfree(rt_rq);
221 err:
222 	return 0;
223 }
224 
225 #else /* CONFIG_RT_GROUP_SCHED */
226 
227 #define rt_entity_is_task(rt_se) (1)
228 
229 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
230 {
231 	return container_of(rt_se, struct task_struct, rt);
232 }
233 
234 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
235 {
236 	return container_of(rt_rq, struct rq, rt);
237 }
238 
239 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
240 {
241 	struct task_struct *p = rt_task_of(rt_se);
242 
243 	return task_rq(p);
244 }
245 
246 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
247 {
248 	struct rq *rq = rq_of_rt_se(rt_se);
249 
250 	return &rq->rt;
251 }
252 
253 void free_rt_sched_group(struct task_group *tg) { }
254 
255 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
256 {
257 	return 1;
258 }
259 #endif /* CONFIG_RT_GROUP_SCHED */
260 
261 #ifdef CONFIG_SMP
262 
263 static void pull_rt_task(struct rq *this_rq);
264 
265 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
266 {
267 	/* Try to pull RT tasks here if we lower this rq's prio */
268 	return rq->rt.highest_prio.curr > prev->prio;
269 }
270 
271 static inline int rt_overloaded(struct rq *rq)
272 {
273 	return atomic_read(&rq->rd->rto_count);
274 }
275 
276 static inline void rt_set_overload(struct rq *rq)
277 {
278 	if (!rq->online)
279 		return;
280 
281 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
282 	/*
283 	 * Make sure the mask is visible before we set
284 	 * the overload count. That is checked to determine
285 	 * if we should look at the mask. It would be a shame
286 	 * if we looked at the mask, but the mask was not
287 	 * updated yet.
288 	 *
289 	 * Matched by the barrier in pull_rt_task().
290 	 */
291 	smp_wmb();
292 	atomic_inc(&rq->rd->rto_count);
293 }
294 
295 static inline void rt_clear_overload(struct rq *rq)
296 {
297 	if (!rq->online)
298 		return;
299 
300 	/* the order here really doesn't matter */
301 	atomic_dec(&rq->rd->rto_count);
302 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
303 }
304 
305 static void update_rt_migration(struct rt_rq *rt_rq)
306 {
307 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
308 		if (!rt_rq->overloaded) {
309 			rt_set_overload(rq_of_rt_rq(rt_rq));
310 			rt_rq->overloaded = 1;
311 		}
312 	} else if (rt_rq->overloaded) {
313 		rt_clear_overload(rq_of_rt_rq(rt_rq));
314 		rt_rq->overloaded = 0;
315 	}
316 }
317 
318 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
319 {
320 	struct task_struct *p;
321 
322 	if (!rt_entity_is_task(rt_se))
323 		return;
324 
325 	p = rt_task_of(rt_se);
326 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
327 
328 	rt_rq->rt_nr_total++;
329 	if (p->nr_cpus_allowed > 1)
330 		rt_rq->rt_nr_migratory++;
331 
332 	update_rt_migration(rt_rq);
333 }
334 
335 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
336 {
337 	struct task_struct *p;
338 
339 	if (!rt_entity_is_task(rt_se))
340 		return;
341 
342 	p = rt_task_of(rt_se);
343 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
344 
345 	rt_rq->rt_nr_total--;
346 	if (p->nr_cpus_allowed > 1)
347 		rt_rq->rt_nr_migratory--;
348 
349 	update_rt_migration(rt_rq);
350 }
351 
352 static inline int has_pushable_tasks(struct rq *rq)
353 {
354 	return !plist_head_empty(&rq->rt.pushable_tasks);
355 }
356 
357 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
358 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
359 
360 static void push_rt_tasks(struct rq *);
361 static void pull_rt_task(struct rq *);
362 
363 static inline void queue_push_tasks(struct rq *rq)
364 {
365 	if (!has_pushable_tasks(rq))
366 		return;
367 
368 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
369 }
370 
371 static inline void queue_pull_task(struct rq *rq)
372 {
373 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
374 }
375 
376 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
377 {
378 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
379 	plist_node_init(&p->pushable_tasks, p->prio);
380 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
381 
382 	/* Update the highest prio pushable task */
383 	if (p->prio < rq->rt.highest_prio.next)
384 		rq->rt.highest_prio.next = p->prio;
385 }
386 
387 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
388 {
389 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
390 
391 	/* Update the new highest prio pushable task */
392 	if (has_pushable_tasks(rq)) {
393 		p = plist_first_entry(&rq->rt.pushable_tasks,
394 				      struct task_struct, pushable_tasks);
395 		rq->rt.highest_prio.next = p->prio;
396 	} else
397 		rq->rt.highest_prio.next = MAX_RT_PRIO;
398 }
399 
400 #else
401 
402 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
403 {
404 }
405 
406 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
407 {
408 }
409 
410 static inline
411 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
412 {
413 }
414 
415 static inline
416 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
417 {
418 }
419 
420 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
421 {
422 	return false;
423 }
424 
425 static inline void pull_rt_task(struct rq *this_rq)
426 {
427 }
428 
429 static inline void queue_push_tasks(struct rq *rq)
430 {
431 }
432 #endif /* CONFIG_SMP */
433 
434 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
435 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
436 
437 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
438 {
439 	return !list_empty(&rt_se->run_list);
440 }
441 
442 #ifdef CONFIG_RT_GROUP_SCHED
443 
444 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
445 {
446 	if (!rt_rq->tg)
447 		return RUNTIME_INF;
448 
449 	return rt_rq->rt_runtime;
450 }
451 
452 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
453 {
454 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
455 }
456 
457 typedef struct task_group *rt_rq_iter_t;
458 
459 static inline struct task_group *next_task_group(struct task_group *tg)
460 {
461 	do {
462 		tg = list_entry_rcu(tg->list.next,
463 			typeof(struct task_group), list);
464 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
465 
466 	if (&tg->list == &task_groups)
467 		tg = NULL;
468 
469 	return tg;
470 }
471 
472 #define for_each_rt_rq(rt_rq, iter, rq)					\
473 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
474 		(iter = next_task_group(iter)) &&			\
475 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
476 
477 #define for_each_sched_rt_entity(rt_se) \
478 	for (; rt_se; rt_se = rt_se->parent)
479 
480 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
481 {
482 	return rt_se->my_q;
483 }
484 
485 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
486 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
487 
488 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
489 {
490 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
491 	struct rq *rq = rq_of_rt_rq(rt_rq);
492 	struct sched_rt_entity *rt_se;
493 
494 	int cpu = cpu_of(rq);
495 
496 	rt_se = rt_rq->tg->rt_se[cpu];
497 
498 	if (rt_rq->rt_nr_running) {
499 		if (!rt_se)
500 			enqueue_top_rt_rq(rt_rq);
501 		else if (!on_rt_rq(rt_se))
502 			enqueue_rt_entity(rt_se, false);
503 
504 		if (rt_rq->highest_prio.curr < curr->prio)
505 			resched_curr(rq);
506 	}
507 }
508 
509 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
510 {
511 	struct sched_rt_entity *rt_se;
512 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
513 
514 	rt_se = rt_rq->tg->rt_se[cpu];
515 
516 	if (!rt_se)
517 		dequeue_top_rt_rq(rt_rq);
518 	else if (on_rt_rq(rt_se))
519 		dequeue_rt_entity(rt_se);
520 }
521 
522 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
523 {
524 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
525 }
526 
527 static int rt_se_boosted(struct sched_rt_entity *rt_se)
528 {
529 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
530 	struct task_struct *p;
531 
532 	if (rt_rq)
533 		return !!rt_rq->rt_nr_boosted;
534 
535 	p = rt_task_of(rt_se);
536 	return p->prio != p->normal_prio;
537 }
538 
539 #ifdef CONFIG_SMP
540 static inline const struct cpumask *sched_rt_period_mask(void)
541 {
542 	return this_rq()->rd->span;
543 }
544 #else
545 static inline const struct cpumask *sched_rt_period_mask(void)
546 {
547 	return cpu_online_mask;
548 }
549 #endif
550 
551 static inline
552 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
553 {
554 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
555 }
556 
557 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
558 {
559 	return &rt_rq->tg->rt_bandwidth;
560 }
561 
562 #else /* !CONFIG_RT_GROUP_SCHED */
563 
564 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
565 {
566 	return rt_rq->rt_runtime;
567 }
568 
569 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
570 {
571 	return ktime_to_ns(def_rt_bandwidth.rt_period);
572 }
573 
574 typedef struct rt_rq *rt_rq_iter_t;
575 
576 #define for_each_rt_rq(rt_rq, iter, rq) \
577 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
578 
579 #define for_each_sched_rt_entity(rt_se) \
580 	for (; rt_se; rt_se = NULL)
581 
582 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
583 {
584 	return NULL;
585 }
586 
587 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
588 {
589 	struct rq *rq = rq_of_rt_rq(rt_rq);
590 
591 	if (!rt_rq->rt_nr_running)
592 		return;
593 
594 	enqueue_top_rt_rq(rt_rq);
595 	resched_curr(rq);
596 }
597 
598 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
599 {
600 	dequeue_top_rt_rq(rt_rq);
601 }
602 
603 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
604 {
605 	return rt_rq->rt_throttled;
606 }
607 
608 static inline const struct cpumask *sched_rt_period_mask(void)
609 {
610 	return cpu_online_mask;
611 }
612 
613 static inline
614 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
615 {
616 	return &cpu_rq(cpu)->rt;
617 }
618 
619 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
620 {
621 	return &def_rt_bandwidth;
622 }
623 
624 #endif /* CONFIG_RT_GROUP_SCHED */
625 
626 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
627 {
628 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
629 
630 	return (hrtimer_active(&rt_b->rt_period_timer) ||
631 		rt_rq->rt_time < rt_b->rt_runtime);
632 }
633 
634 #ifdef CONFIG_SMP
635 /*
636  * We ran out of runtime, see if we can borrow some from our neighbours.
637  */
638 static void do_balance_runtime(struct rt_rq *rt_rq)
639 {
640 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
641 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
642 	int i, weight;
643 	u64 rt_period;
644 
645 	weight = cpumask_weight(rd->span);
646 
647 	raw_spin_lock(&rt_b->rt_runtime_lock);
648 	rt_period = ktime_to_ns(rt_b->rt_period);
649 	for_each_cpu(i, rd->span) {
650 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
651 		s64 diff;
652 
653 		if (iter == rt_rq)
654 			continue;
655 
656 		raw_spin_lock(&iter->rt_runtime_lock);
657 		/*
658 		 * Either all rqs have inf runtime and there's nothing to steal
659 		 * or __disable_runtime() below sets a specific rq to inf to
660 		 * indicate its been disabled and disalow stealing.
661 		 */
662 		if (iter->rt_runtime == RUNTIME_INF)
663 			goto next;
664 
665 		/*
666 		 * From runqueues with spare time, take 1/n part of their
667 		 * spare time, but no more than our period.
668 		 */
669 		diff = iter->rt_runtime - iter->rt_time;
670 		if (diff > 0) {
671 			diff = div_u64((u64)diff, weight);
672 			if (rt_rq->rt_runtime + diff > rt_period)
673 				diff = rt_period - rt_rq->rt_runtime;
674 			iter->rt_runtime -= diff;
675 			rt_rq->rt_runtime += diff;
676 			if (rt_rq->rt_runtime == rt_period) {
677 				raw_spin_unlock(&iter->rt_runtime_lock);
678 				break;
679 			}
680 		}
681 next:
682 		raw_spin_unlock(&iter->rt_runtime_lock);
683 	}
684 	raw_spin_unlock(&rt_b->rt_runtime_lock);
685 }
686 
687 /*
688  * Ensure this RQ takes back all the runtime it lend to its neighbours.
689  */
690 static void __disable_runtime(struct rq *rq)
691 {
692 	struct root_domain *rd = rq->rd;
693 	rt_rq_iter_t iter;
694 	struct rt_rq *rt_rq;
695 
696 	if (unlikely(!scheduler_running))
697 		return;
698 
699 	for_each_rt_rq(rt_rq, iter, rq) {
700 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
701 		s64 want;
702 		int i;
703 
704 		raw_spin_lock(&rt_b->rt_runtime_lock);
705 		raw_spin_lock(&rt_rq->rt_runtime_lock);
706 		/*
707 		 * Either we're all inf and nobody needs to borrow, or we're
708 		 * already disabled and thus have nothing to do, or we have
709 		 * exactly the right amount of runtime to take out.
710 		 */
711 		if (rt_rq->rt_runtime == RUNTIME_INF ||
712 				rt_rq->rt_runtime == rt_b->rt_runtime)
713 			goto balanced;
714 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
715 
716 		/*
717 		 * Calculate the difference between what we started out with
718 		 * and what we current have, that's the amount of runtime
719 		 * we lend and now have to reclaim.
720 		 */
721 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
722 
723 		/*
724 		 * Greedy reclaim, take back as much as we can.
725 		 */
726 		for_each_cpu(i, rd->span) {
727 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
728 			s64 diff;
729 
730 			/*
731 			 * Can't reclaim from ourselves or disabled runqueues.
732 			 */
733 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
734 				continue;
735 
736 			raw_spin_lock(&iter->rt_runtime_lock);
737 			if (want > 0) {
738 				diff = min_t(s64, iter->rt_runtime, want);
739 				iter->rt_runtime -= diff;
740 				want -= diff;
741 			} else {
742 				iter->rt_runtime -= want;
743 				want -= want;
744 			}
745 			raw_spin_unlock(&iter->rt_runtime_lock);
746 
747 			if (!want)
748 				break;
749 		}
750 
751 		raw_spin_lock(&rt_rq->rt_runtime_lock);
752 		/*
753 		 * We cannot be left wanting - that would mean some runtime
754 		 * leaked out of the system.
755 		 */
756 		BUG_ON(want);
757 balanced:
758 		/*
759 		 * Disable all the borrow logic by pretending we have inf
760 		 * runtime - in which case borrowing doesn't make sense.
761 		 */
762 		rt_rq->rt_runtime = RUNTIME_INF;
763 		rt_rq->rt_throttled = 0;
764 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
765 		raw_spin_unlock(&rt_b->rt_runtime_lock);
766 
767 		/* Make rt_rq available for pick_next_task() */
768 		sched_rt_rq_enqueue(rt_rq);
769 	}
770 }
771 
772 static void __enable_runtime(struct rq *rq)
773 {
774 	rt_rq_iter_t iter;
775 	struct rt_rq *rt_rq;
776 
777 	if (unlikely(!scheduler_running))
778 		return;
779 
780 	/*
781 	 * Reset each runqueue's bandwidth settings
782 	 */
783 	for_each_rt_rq(rt_rq, iter, rq) {
784 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
785 
786 		raw_spin_lock(&rt_b->rt_runtime_lock);
787 		raw_spin_lock(&rt_rq->rt_runtime_lock);
788 		rt_rq->rt_runtime = rt_b->rt_runtime;
789 		rt_rq->rt_time = 0;
790 		rt_rq->rt_throttled = 0;
791 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
792 		raw_spin_unlock(&rt_b->rt_runtime_lock);
793 	}
794 }
795 
796 static void balance_runtime(struct rt_rq *rt_rq)
797 {
798 	if (!sched_feat(RT_RUNTIME_SHARE))
799 		return;
800 
801 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
802 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
803 		do_balance_runtime(rt_rq);
804 		raw_spin_lock(&rt_rq->rt_runtime_lock);
805 	}
806 }
807 #else /* !CONFIG_SMP */
808 static inline void balance_runtime(struct rt_rq *rt_rq) {}
809 #endif /* CONFIG_SMP */
810 
811 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
812 {
813 	int i, idle = 1, throttled = 0;
814 	const struct cpumask *span;
815 
816 	span = sched_rt_period_mask();
817 #ifdef CONFIG_RT_GROUP_SCHED
818 	/*
819 	 * FIXME: isolated CPUs should really leave the root task group,
820 	 * whether they are isolcpus or were isolated via cpusets, lest
821 	 * the timer run on a CPU which does not service all runqueues,
822 	 * potentially leaving other CPUs indefinitely throttled.  If
823 	 * isolation is really required, the user will turn the throttle
824 	 * off to kill the perturbations it causes anyway.  Meanwhile,
825 	 * this maintains functionality for boot and/or troubleshooting.
826 	 */
827 	if (rt_b == &root_task_group.rt_bandwidth)
828 		span = cpu_online_mask;
829 #endif
830 	for_each_cpu(i, span) {
831 		int enqueue = 0;
832 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
833 		struct rq *rq = rq_of_rt_rq(rt_rq);
834 
835 		raw_spin_lock(&rq->lock);
836 		if (rt_rq->rt_time) {
837 			u64 runtime;
838 
839 			raw_spin_lock(&rt_rq->rt_runtime_lock);
840 			if (rt_rq->rt_throttled)
841 				balance_runtime(rt_rq);
842 			runtime = rt_rq->rt_runtime;
843 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
844 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
845 				rt_rq->rt_throttled = 0;
846 				enqueue = 1;
847 
848 				/*
849 				 * When we're idle and a woken (rt) task is
850 				 * throttled check_preempt_curr() will set
851 				 * skip_update and the time between the wakeup
852 				 * and this unthrottle will get accounted as
853 				 * 'runtime'.
854 				 */
855 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
856 					rq_clock_skip_update(rq, false);
857 			}
858 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
859 				idle = 0;
860 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
861 		} else if (rt_rq->rt_nr_running) {
862 			idle = 0;
863 			if (!rt_rq_throttled(rt_rq))
864 				enqueue = 1;
865 		}
866 		if (rt_rq->rt_throttled)
867 			throttled = 1;
868 
869 		if (enqueue)
870 			sched_rt_rq_enqueue(rt_rq);
871 		raw_spin_unlock(&rq->lock);
872 	}
873 
874 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
875 		return 1;
876 
877 	return idle;
878 }
879 
880 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
881 {
882 #ifdef CONFIG_RT_GROUP_SCHED
883 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
884 
885 	if (rt_rq)
886 		return rt_rq->highest_prio.curr;
887 #endif
888 
889 	return rt_task_of(rt_se)->prio;
890 }
891 
892 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
893 {
894 	u64 runtime = sched_rt_runtime(rt_rq);
895 
896 	if (rt_rq->rt_throttled)
897 		return rt_rq_throttled(rt_rq);
898 
899 	if (runtime >= sched_rt_period(rt_rq))
900 		return 0;
901 
902 	balance_runtime(rt_rq);
903 	runtime = sched_rt_runtime(rt_rq);
904 	if (runtime == RUNTIME_INF)
905 		return 0;
906 
907 	if (rt_rq->rt_time > runtime) {
908 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
909 
910 		/*
911 		 * Don't actually throttle groups that have no runtime assigned
912 		 * but accrue some time due to boosting.
913 		 */
914 		if (likely(rt_b->rt_runtime)) {
915 			rt_rq->rt_throttled = 1;
916 			printk_deferred_once("sched: RT throttling activated\n");
917 		} else {
918 			/*
919 			 * In case we did anyway, make it go away,
920 			 * replenishment is a joke, since it will replenish us
921 			 * with exactly 0 ns.
922 			 */
923 			rt_rq->rt_time = 0;
924 		}
925 
926 		if (rt_rq_throttled(rt_rq)) {
927 			sched_rt_rq_dequeue(rt_rq);
928 			return 1;
929 		}
930 	}
931 
932 	return 0;
933 }
934 
935 /*
936  * Update the current task's runtime statistics. Skip current tasks that
937  * are not in our scheduling class.
938  */
939 static void update_curr_rt(struct rq *rq)
940 {
941 	struct task_struct *curr = rq->curr;
942 	struct sched_rt_entity *rt_se = &curr->rt;
943 	u64 delta_exec;
944 
945 	if (curr->sched_class != &rt_sched_class)
946 		return;
947 
948 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
949 	if (unlikely((s64)delta_exec <= 0))
950 		return;
951 
952 	schedstat_set(curr->se.statistics.exec_max,
953 		      max(curr->se.statistics.exec_max, delta_exec));
954 
955 	curr->se.sum_exec_runtime += delta_exec;
956 	account_group_exec_runtime(curr, delta_exec);
957 
958 	curr->se.exec_start = rq_clock_task(rq);
959 	cpuacct_charge(curr, delta_exec);
960 
961 	sched_rt_avg_update(rq, delta_exec);
962 
963 	if (!rt_bandwidth_enabled())
964 		return;
965 
966 	for_each_sched_rt_entity(rt_se) {
967 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
968 
969 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
970 			raw_spin_lock(&rt_rq->rt_runtime_lock);
971 			rt_rq->rt_time += delta_exec;
972 			if (sched_rt_runtime_exceeded(rt_rq))
973 				resched_curr(rq);
974 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
975 		}
976 	}
977 }
978 
979 static void
980 dequeue_top_rt_rq(struct rt_rq *rt_rq)
981 {
982 	struct rq *rq = rq_of_rt_rq(rt_rq);
983 
984 	BUG_ON(&rq->rt != rt_rq);
985 
986 	if (!rt_rq->rt_queued)
987 		return;
988 
989 	BUG_ON(!rq->nr_running);
990 
991 	sub_nr_running(rq, rt_rq->rt_nr_running);
992 	rt_rq->rt_queued = 0;
993 }
994 
995 static void
996 enqueue_top_rt_rq(struct rt_rq *rt_rq)
997 {
998 	struct rq *rq = rq_of_rt_rq(rt_rq);
999 
1000 	BUG_ON(&rq->rt != rt_rq);
1001 
1002 	if (rt_rq->rt_queued)
1003 		return;
1004 	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
1005 		return;
1006 
1007 	add_nr_running(rq, rt_rq->rt_nr_running);
1008 	rt_rq->rt_queued = 1;
1009 }
1010 
1011 #if defined CONFIG_SMP
1012 
1013 static void
1014 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1015 {
1016 	struct rq *rq = rq_of_rt_rq(rt_rq);
1017 
1018 #ifdef CONFIG_RT_GROUP_SCHED
1019 	/*
1020 	 * Change rq's cpupri only if rt_rq is the top queue.
1021 	 */
1022 	if (&rq->rt != rt_rq)
1023 		return;
1024 #endif
1025 	if (rq->online && prio < prev_prio)
1026 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1027 }
1028 
1029 static void
1030 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1031 {
1032 	struct rq *rq = rq_of_rt_rq(rt_rq);
1033 
1034 #ifdef CONFIG_RT_GROUP_SCHED
1035 	/*
1036 	 * Change rq's cpupri only if rt_rq is the top queue.
1037 	 */
1038 	if (&rq->rt != rt_rq)
1039 		return;
1040 #endif
1041 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1042 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1043 }
1044 
1045 #else /* CONFIG_SMP */
1046 
1047 static inline
1048 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1049 static inline
1050 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1051 
1052 #endif /* CONFIG_SMP */
1053 
1054 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1055 static void
1056 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1057 {
1058 	int prev_prio = rt_rq->highest_prio.curr;
1059 
1060 	if (prio < prev_prio)
1061 		rt_rq->highest_prio.curr = prio;
1062 
1063 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1064 }
1065 
1066 static void
1067 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1068 {
1069 	int prev_prio = rt_rq->highest_prio.curr;
1070 
1071 	if (rt_rq->rt_nr_running) {
1072 
1073 		WARN_ON(prio < prev_prio);
1074 
1075 		/*
1076 		 * This may have been our highest task, and therefore
1077 		 * we may have some recomputation to do
1078 		 */
1079 		if (prio == prev_prio) {
1080 			struct rt_prio_array *array = &rt_rq->active;
1081 
1082 			rt_rq->highest_prio.curr =
1083 				sched_find_first_bit(array->bitmap);
1084 		}
1085 
1086 	} else
1087 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1088 
1089 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1090 }
1091 
1092 #else
1093 
1094 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1095 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1096 
1097 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1098 
1099 #ifdef CONFIG_RT_GROUP_SCHED
1100 
1101 static void
1102 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1103 {
1104 	if (rt_se_boosted(rt_se))
1105 		rt_rq->rt_nr_boosted++;
1106 
1107 	if (rt_rq->tg)
1108 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1109 }
1110 
1111 static void
1112 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1113 {
1114 	if (rt_se_boosted(rt_se))
1115 		rt_rq->rt_nr_boosted--;
1116 
1117 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1118 }
1119 
1120 #else /* CONFIG_RT_GROUP_SCHED */
1121 
1122 static void
1123 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1124 {
1125 	start_rt_bandwidth(&def_rt_bandwidth);
1126 }
1127 
1128 static inline
1129 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1130 
1131 #endif /* CONFIG_RT_GROUP_SCHED */
1132 
1133 static inline
1134 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1135 {
1136 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1137 
1138 	if (group_rq)
1139 		return group_rq->rt_nr_running;
1140 	else
1141 		return 1;
1142 }
1143 
1144 static inline
1145 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1146 {
1147 	int prio = rt_se_prio(rt_se);
1148 
1149 	WARN_ON(!rt_prio(prio));
1150 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1151 
1152 	inc_rt_prio(rt_rq, prio);
1153 	inc_rt_migration(rt_se, rt_rq);
1154 	inc_rt_group(rt_se, rt_rq);
1155 }
1156 
1157 static inline
1158 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1159 {
1160 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1161 	WARN_ON(!rt_rq->rt_nr_running);
1162 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1163 
1164 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1165 	dec_rt_migration(rt_se, rt_rq);
1166 	dec_rt_group(rt_se, rt_rq);
1167 }
1168 
1169 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1170 {
1171 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1172 	struct rt_prio_array *array = &rt_rq->active;
1173 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1174 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1175 
1176 	/*
1177 	 * Don't enqueue the group if its throttled, or when empty.
1178 	 * The latter is a consequence of the former when a child group
1179 	 * get throttled and the current group doesn't have any other
1180 	 * active members.
1181 	 */
1182 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1183 		return;
1184 
1185 	if (head)
1186 		list_add(&rt_se->run_list, queue);
1187 	else
1188 		list_add_tail(&rt_se->run_list, queue);
1189 	__set_bit(rt_se_prio(rt_se), array->bitmap);
1190 
1191 	inc_rt_tasks(rt_se, rt_rq);
1192 }
1193 
1194 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1195 {
1196 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1197 	struct rt_prio_array *array = &rt_rq->active;
1198 
1199 	list_del_init(&rt_se->run_list);
1200 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1201 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1202 
1203 	dec_rt_tasks(rt_se, rt_rq);
1204 }
1205 
1206 /*
1207  * Because the prio of an upper entry depends on the lower
1208  * entries, we must remove entries top - down.
1209  */
1210 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1211 {
1212 	struct sched_rt_entity *back = NULL;
1213 
1214 	for_each_sched_rt_entity(rt_se) {
1215 		rt_se->back = back;
1216 		back = rt_se;
1217 	}
1218 
1219 	dequeue_top_rt_rq(rt_rq_of_se(back));
1220 
1221 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1222 		if (on_rt_rq(rt_se))
1223 			__dequeue_rt_entity(rt_se);
1224 	}
1225 }
1226 
1227 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1228 {
1229 	struct rq *rq = rq_of_rt_se(rt_se);
1230 
1231 	dequeue_rt_stack(rt_se);
1232 	for_each_sched_rt_entity(rt_se)
1233 		__enqueue_rt_entity(rt_se, head);
1234 	enqueue_top_rt_rq(&rq->rt);
1235 }
1236 
1237 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1238 {
1239 	struct rq *rq = rq_of_rt_se(rt_se);
1240 
1241 	dequeue_rt_stack(rt_se);
1242 
1243 	for_each_sched_rt_entity(rt_se) {
1244 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1245 
1246 		if (rt_rq && rt_rq->rt_nr_running)
1247 			__enqueue_rt_entity(rt_se, false);
1248 	}
1249 	enqueue_top_rt_rq(&rq->rt);
1250 }
1251 
1252 /*
1253  * Adding/removing a task to/from a priority array:
1254  */
1255 static void
1256 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1257 {
1258 	struct sched_rt_entity *rt_se = &p->rt;
1259 
1260 	if (flags & ENQUEUE_WAKEUP)
1261 		rt_se->timeout = 0;
1262 
1263 	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1264 
1265 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1266 		enqueue_pushable_task(rq, p);
1267 }
1268 
1269 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1270 {
1271 	struct sched_rt_entity *rt_se = &p->rt;
1272 
1273 	update_curr_rt(rq);
1274 	dequeue_rt_entity(rt_se);
1275 
1276 	dequeue_pushable_task(rq, p);
1277 }
1278 
1279 /*
1280  * Put task to the head or the end of the run list without the overhead of
1281  * dequeue followed by enqueue.
1282  */
1283 static void
1284 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1285 {
1286 	if (on_rt_rq(rt_se)) {
1287 		struct rt_prio_array *array = &rt_rq->active;
1288 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1289 
1290 		if (head)
1291 			list_move(&rt_se->run_list, queue);
1292 		else
1293 			list_move_tail(&rt_se->run_list, queue);
1294 	}
1295 }
1296 
1297 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1298 {
1299 	struct sched_rt_entity *rt_se = &p->rt;
1300 	struct rt_rq *rt_rq;
1301 
1302 	for_each_sched_rt_entity(rt_se) {
1303 		rt_rq = rt_rq_of_se(rt_se);
1304 		requeue_rt_entity(rt_rq, rt_se, head);
1305 	}
1306 }
1307 
1308 static void yield_task_rt(struct rq *rq)
1309 {
1310 	requeue_task_rt(rq, rq->curr, 0);
1311 }
1312 
1313 #ifdef CONFIG_SMP
1314 static int find_lowest_rq(struct task_struct *task);
1315 
1316 static int
1317 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1318 {
1319 	struct task_struct *curr;
1320 	struct rq *rq;
1321 
1322 	/* For anything but wake ups, just return the task_cpu */
1323 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1324 		goto out;
1325 
1326 	rq = cpu_rq(cpu);
1327 
1328 	rcu_read_lock();
1329 	curr = READ_ONCE(rq->curr); /* unlocked access */
1330 
1331 	/*
1332 	 * If the current task on @p's runqueue is an RT task, then
1333 	 * try to see if we can wake this RT task up on another
1334 	 * runqueue. Otherwise simply start this RT task
1335 	 * on its current runqueue.
1336 	 *
1337 	 * We want to avoid overloading runqueues. If the woken
1338 	 * task is a higher priority, then it will stay on this CPU
1339 	 * and the lower prio task should be moved to another CPU.
1340 	 * Even though this will probably make the lower prio task
1341 	 * lose its cache, we do not want to bounce a higher task
1342 	 * around just because it gave up its CPU, perhaps for a
1343 	 * lock?
1344 	 *
1345 	 * For equal prio tasks, we just let the scheduler sort it out.
1346 	 *
1347 	 * Otherwise, just let it ride on the affined RQ and the
1348 	 * post-schedule router will push the preempted task away
1349 	 *
1350 	 * This test is optimistic, if we get it wrong the load-balancer
1351 	 * will have to sort it out.
1352 	 */
1353 	if (curr && unlikely(rt_task(curr)) &&
1354 	    (curr->nr_cpus_allowed < 2 ||
1355 	     curr->prio <= p->prio)) {
1356 		int target = find_lowest_rq(p);
1357 
1358 		/*
1359 		 * Don't bother moving it if the destination CPU is
1360 		 * not running a lower priority task.
1361 		 */
1362 		if (target != -1 &&
1363 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1364 			cpu = target;
1365 	}
1366 	rcu_read_unlock();
1367 
1368 out:
1369 	return cpu;
1370 }
1371 
1372 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1373 {
1374 	/*
1375 	 * Current can't be migrated, useless to reschedule,
1376 	 * let's hope p can move out.
1377 	 */
1378 	if (rq->curr->nr_cpus_allowed == 1 ||
1379 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1380 		return;
1381 
1382 	/*
1383 	 * p is migratable, so let's not schedule it and
1384 	 * see if it is pushed or pulled somewhere else.
1385 	 */
1386 	if (p->nr_cpus_allowed != 1
1387 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1388 		return;
1389 
1390 	/*
1391 	 * There appears to be other cpus that can accept
1392 	 * current and none to run 'p', so lets reschedule
1393 	 * to try and push current away:
1394 	 */
1395 	requeue_task_rt(rq, p, 1);
1396 	resched_curr(rq);
1397 }
1398 
1399 #endif /* CONFIG_SMP */
1400 
1401 /*
1402  * Preempt the current task with a newly woken task if needed:
1403  */
1404 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1405 {
1406 	if (p->prio < rq->curr->prio) {
1407 		resched_curr(rq);
1408 		return;
1409 	}
1410 
1411 #ifdef CONFIG_SMP
1412 	/*
1413 	 * If:
1414 	 *
1415 	 * - the newly woken task is of equal priority to the current task
1416 	 * - the newly woken task is non-migratable while current is migratable
1417 	 * - current will be preempted on the next reschedule
1418 	 *
1419 	 * we should check to see if current can readily move to a different
1420 	 * cpu.  If so, we will reschedule to allow the push logic to try
1421 	 * to move current somewhere else, making room for our non-migratable
1422 	 * task.
1423 	 */
1424 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1425 		check_preempt_equal_prio(rq, p);
1426 #endif
1427 }
1428 
1429 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1430 						   struct rt_rq *rt_rq)
1431 {
1432 	struct rt_prio_array *array = &rt_rq->active;
1433 	struct sched_rt_entity *next = NULL;
1434 	struct list_head *queue;
1435 	int idx;
1436 
1437 	idx = sched_find_first_bit(array->bitmap);
1438 	BUG_ON(idx >= MAX_RT_PRIO);
1439 
1440 	queue = array->queue + idx;
1441 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1442 
1443 	return next;
1444 }
1445 
1446 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1447 {
1448 	struct sched_rt_entity *rt_se;
1449 	struct task_struct *p;
1450 	struct rt_rq *rt_rq  = &rq->rt;
1451 
1452 	do {
1453 		rt_se = pick_next_rt_entity(rq, rt_rq);
1454 		BUG_ON(!rt_se);
1455 		rt_rq = group_rt_rq(rt_se);
1456 	} while (rt_rq);
1457 
1458 	p = rt_task_of(rt_se);
1459 	p->se.exec_start = rq_clock_task(rq);
1460 
1461 	return p;
1462 }
1463 
1464 static struct task_struct *
1465 pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1466 {
1467 	struct task_struct *p;
1468 	struct rt_rq *rt_rq = &rq->rt;
1469 
1470 	if (need_pull_rt_task(rq, prev)) {
1471 		/*
1472 		 * This is OK, because current is on_cpu, which avoids it being
1473 		 * picked for load-balance and preemption/IRQs are still
1474 		 * disabled avoiding further scheduler activity on it and we're
1475 		 * being very careful to re-start the picking loop.
1476 		 */
1477 		lockdep_unpin_lock(&rq->lock);
1478 		pull_rt_task(rq);
1479 		lockdep_pin_lock(&rq->lock);
1480 		/*
1481 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1482 		 * means a dl or stop task can slip in, in which case we need
1483 		 * to re-start task selection.
1484 		 */
1485 		if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1486 			     rq->dl.dl_nr_running))
1487 			return RETRY_TASK;
1488 	}
1489 
1490 	/*
1491 	 * We may dequeue prev's rt_rq in put_prev_task().
1492 	 * So, we update time before rt_nr_running check.
1493 	 */
1494 	if (prev->sched_class == &rt_sched_class)
1495 		update_curr_rt(rq);
1496 
1497 	if (!rt_rq->rt_queued)
1498 		return NULL;
1499 
1500 	put_prev_task(rq, prev);
1501 
1502 	p = _pick_next_task_rt(rq);
1503 
1504 	/* The running task is never eligible for pushing */
1505 	dequeue_pushable_task(rq, p);
1506 
1507 	queue_push_tasks(rq);
1508 
1509 	return p;
1510 }
1511 
1512 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1513 {
1514 	update_curr_rt(rq);
1515 
1516 	/*
1517 	 * The previous task needs to be made eligible for pushing
1518 	 * if it is still active
1519 	 */
1520 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1521 		enqueue_pushable_task(rq, p);
1522 }
1523 
1524 #ifdef CONFIG_SMP
1525 
1526 /* Only try algorithms three times */
1527 #define RT_MAX_TRIES 3
1528 
1529 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1530 {
1531 	if (!task_running(rq, p) &&
1532 	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1533 		return 1;
1534 	return 0;
1535 }
1536 
1537 /*
1538  * Return the highest pushable rq's task, which is suitable to be executed
1539  * on the cpu, NULL otherwise
1540  */
1541 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1542 {
1543 	struct plist_head *head = &rq->rt.pushable_tasks;
1544 	struct task_struct *p;
1545 
1546 	if (!has_pushable_tasks(rq))
1547 		return NULL;
1548 
1549 	plist_for_each_entry(p, head, pushable_tasks) {
1550 		if (pick_rt_task(rq, p, cpu))
1551 			return p;
1552 	}
1553 
1554 	return NULL;
1555 }
1556 
1557 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1558 
1559 static int find_lowest_rq(struct task_struct *task)
1560 {
1561 	struct sched_domain *sd;
1562 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1563 	int this_cpu = smp_processor_id();
1564 	int cpu      = task_cpu(task);
1565 
1566 	/* Make sure the mask is initialized first */
1567 	if (unlikely(!lowest_mask))
1568 		return -1;
1569 
1570 	if (task->nr_cpus_allowed == 1)
1571 		return -1; /* No other targets possible */
1572 
1573 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1574 		return -1; /* No targets found */
1575 
1576 	/*
1577 	 * At this point we have built a mask of cpus representing the
1578 	 * lowest priority tasks in the system.  Now we want to elect
1579 	 * the best one based on our affinity and topology.
1580 	 *
1581 	 * We prioritize the last cpu that the task executed on since
1582 	 * it is most likely cache-hot in that location.
1583 	 */
1584 	if (cpumask_test_cpu(cpu, lowest_mask))
1585 		return cpu;
1586 
1587 	/*
1588 	 * Otherwise, we consult the sched_domains span maps to figure
1589 	 * out which cpu is logically closest to our hot cache data.
1590 	 */
1591 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1592 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1593 
1594 	rcu_read_lock();
1595 	for_each_domain(cpu, sd) {
1596 		if (sd->flags & SD_WAKE_AFFINE) {
1597 			int best_cpu;
1598 
1599 			/*
1600 			 * "this_cpu" is cheaper to preempt than a
1601 			 * remote processor.
1602 			 */
1603 			if (this_cpu != -1 &&
1604 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1605 				rcu_read_unlock();
1606 				return this_cpu;
1607 			}
1608 
1609 			best_cpu = cpumask_first_and(lowest_mask,
1610 						     sched_domain_span(sd));
1611 			if (best_cpu < nr_cpu_ids) {
1612 				rcu_read_unlock();
1613 				return best_cpu;
1614 			}
1615 		}
1616 	}
1617 	rcu_read_unlock();
1618 
1619 	/*
1620 	 * And finally, if there were no matches within the domains
1621 	 * just give the caller *something* to work with from the compatible
1622 	 * locations.
1623 	 */
1624 	if (this_cpu != -1)
1625 		return this_cpu;
1626 
1627 	cpu = cpumask_any(lowest_mask);
1628 	if (cpu < nr_cpu_ids)
1629 		return cpu;
1630 	return -1;
1631 }
1632 
1633 /* Will lock the rq it finds */
1634 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1635 {
1636 	struct rq *lowest_rq = NULL;
1637 	int tries;
1638 	int cpu;
1639 
1640 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1641 		cpu = find_lowest_rq(task);
1642 
1643 		if ((cpu == -1) || (cpu == rq->cpu))
1644 			break;
1645 
1646 		lowest_rq = cpu_rq(cpu);
1647 
1648 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1649 			/*
1650 			 * Target rq has tasks of equal or higher priority,
1651 			 * retrying does not release any lock and is unlikely
1652 			 * to yield a different result.
1653 			 */
1654 			lowest_rq = NULL;
1655 			break;
1656 		}
1657 
1658 		/* if the prio of this runqueue changed, try again */
1659 		if (double_lock_balance(rq, lowest_rq)) {
1660 			/*
1661 			 * We had to unlock the run queue. In
1662 			 * the mean time, task could have
1663 			 * migrated already or had its affinity changed.
1664 			 * Also make sure that it wasn't scheduled on its rq.
1665 			 */
1666 			if (unlikely(task_rq(task) != rq ||
1667 				     !cpumask_test_cpu(lowest_rq->cpu,
1668 						       tsk_cpus_allowed(task)) ||
1669 				     task_running(rq, task) ||
1670 				     !task_on_rq_queued(task))) {
1671 
1672 				double_unlock_balance(rq, lowest_rq);
1673 				lowest_rq = NULL;
1674 				break;
1675 			}
1676 		}
1677 
1678 		/* If this rq is still suitable use it. */
1679 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1680 			break;
1681 
1682 		/* try again */
1683 		double_unlock_balance(rq, lowest_rq);
1684 		lowest_rq = NULL;
1685 	}
1686 
1687 	return lowest_rq;
1688 }
1689 
1690 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1691 {
1692 	struct task_struct *p;
1693 
1694 	if (!has_pushable_tasks(rq))
1695 		return NULL;
1696 
1697 	p = plist_first_entry(&rq->rt.pushable_tasks,
1698 			      struct task_struct, pushable_tasks);
1699 
1700 	BUG_ON(rq->cpu != task_cpu(p));
1701 	BUG_ON(task_current(rq, p));
1702 	BUG_ON(p->nr_cpus_allowed <= 1);
1703 
1704 	BUG_ON(!task_on_rq_queued(p));
1705 	BUG_ON(!rt_task(p));
1706 
1707 	return p;
1708 }
1709 
1710 /*
1711  * If the current CPU has more than one RT task, see if the non
1712  * running task can migrate over to a CPU that is running a task
1713  * of lesser priority.
1714  */
1715 static int push_rt_task(struct rq *rq)
1716 {
1717 	struct task_struct *next_task;
1718 	struct rq *lowest_rq;
1719 	int ret = 0;
1720 
1721 	if (!rq->rt.overloaded)
1722 		return 0;
1723 
1724 	next_task = pick_next_pushable_task(rq);
1725 	if (!next_task)
1726 		return 0;
1727 
1728 retry:
1729 	if (unlikely(next_task == rq->curr)) {
1730 		WARN_ON(1);
1731 		return 0;
1732 	}
1733 
1734 	/*
1735 	 * It's possible that the next_task slipped in of
1736 	 * higher priority than current. If that's the case
1737 	 * just reschedule current.
1738 	 */
1739 	if (unlikely(next_task->prio < rq->curr->prio)) {
1740 		resched_curr(rq);
1741 		return 0;
1742 	}
1743 
1744 	/* We might release rq lock */
1745 	get_task_struct(next_task);
1746 
1747 	/* find_lock_lowest_rq locks the rq if found */
1748 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1749 	if (!lowest_rq) {
1750 		struct task_struct *task;
1751 		/*
1752 		 * find_lock_lowest_rq releases rq->lock
1753 		 * so it is possible that next_task has migrated.
1754 		 *
1755 		 * We need to make sure that the task is still on the same
1756 		 * run-queue and is also still the next task eligible for
1757 		 * pushing.
1758 		 */
1759 		task = pick_next_pushable_task(rq);
1760 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1761 			/*
1762 			 * The task hasn't migrated, and is still the next
1763 			 * eligible task, but we failed to find a run-queue
1764 			 * to push it to.  Do not retry in this case, since
1765 			 * other cpus will pull from us when ready.
1766 			 */
1767 			goto out;
1768 		}
1769 
1770 		if (!task)
1771 			/* No more tasks, just exit */
1772 			goto out;
1773 
1774 		/*
1775 		 * Something has shifted, try again.
1776 		 */
1777 		put_task_struct(next_task);
1778 		next_task = task;
1779 		goto retry;
1780 	}
1781 
1782 	deactivate_task(rq, next_task, 0);
1783 	set_task_cpu(next_task, lowest_rq->cpu);
1784 	activate_task(lowest_rq, next_task, 0);
1785 	ret = 1;
1786 
1787 	resched_curr(lowest_rq);
1788 
1789 	double_unlock_balance(rq, lowest_rq);
1790 
1791 out:
1792 	put_task_struct(next_task);
1793 
1794 	return ret;
1795 }
1796 
1797 static void push_rt_tasks(struct rq *rq)
1798 {
1799 	/* push_rt_task will return true if it moved an RT */
1800 	while (push_rt_task(rq))
1801 		;
1802 }
1803 
1804 #ifdef HAVE_RT_PUSH_IPI
1805 /*
1806  * The search for the next cpu always starts at rq->cpu and ends
1807  * when we reach rq->cpu again. It will never return rq->cpu.
1808  * This returns the next cpu to check, or nr_cpu_ids if the loop
1809  * is complete.
1810  *
1811  * rq->rt.push_cpu holds the last cpu returned by this function,
1812  * or if this is the first instance, it must hold rq->cpu.
1813  */
1814 static int rto_next_cpu(struct rq *rq)
1815 {
1816 	int prev_cpu = rq->rt.push_cpu;
1817 	int cpu;
1818 
1819 	cpu = cpumask_next(prev_cpu, rq->rd->rto_mask);
1820 
1821 	/*
1822 	 * If the previous cpu is less than the rq's CPU, then it already
1823 	 * passed the end of the mask, and has started from the beginning.
1824 	 * We end if the next CPU is greater or equal to rq's CPU.
1825 	 */
1826 	if (prev_cpu < rq->cpu) {
1827 		if (cpu >= rq->cpu)
1828 			return nr_cpu_ids;
1829 
1830 	} else if (cpu >= nr_cpu_ids) {
1831 		/*
1832 		 * We passed the end of the mask, start at the beginning.
1833 		 * If the result is greater or equal to the rq's CPU, then
1834 		 * the loop is finished.
1835 		 */
1836 		cpu = cpumask_first(rq->rd->rto_mask);
1837 		if (cpu >= rq->cpu)
1838 			return nr_cpu_ids;
1839 	}
1840 	rq->rt.push_cpu = cpu;
1841 
1842 	/* Return cpu to let the caller know if the loop is finished or not */
1843 	return cpu;
1844 }
1845 
1846 static int find_next_push_cpu(struct rq *rq)
1847 {
1848 	struct rq *next_rq;
1849 	int cpu;
1850 
1851 	while (1) {
1852 		cpu = rto_next_cpu(rq);
1853 		if (cpu >= nr_cpu_ids)
1854 			break;
1855 		next_rq = cpu_rq(cpu);
1856 
1857 		/* Make sure the next rq can push to this rq */
1858 		if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr)
1859 			break;
1860 	}
1861 
1862 	return cpu;
1863 }
1864 
1865 #define RT_PUSH_IPI_EXECUTING		1
1866 #define RT_PUSH_IPI_RESTART		2
1867 
1868 static void tell_cpu_to_push(struct rq *rq)
1869 {
1870 	int cpu;
1871 
1872 	if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1873 		raw_spin_lock(&rq->rt.push_lock);
1874 		/* Make sure it's still executing */
1875 		if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) {
1876 			/*
1877 			 * Tell the IPI to restart the loop as things have
1878 			 * changed since it started.
1879 			 */
1880 			rq->rt.push_flags |= RT_PUSH_IPI_RESTART;
1881 			raw_spin_unlock(&rq->rt.push_lock);
1882 			return;
1883 		}
1884 		raw_spin_unlock(&rq->rt.push_lock);
1885 	}
1886 
1887 	/* When here, there's no IPI going around */
1888 
1889 	rq->rt.push_cpu = rq->cpu;
1890 	cpu = find_next_push_cpu(rq);
1891 	if (cpu >= nr_cpu_ids)
1892 		return;
1893 
1894 	rq->rt.push_flags = RT_PUSH_IPI_EXECUTING;
1895 
1896 	irq_work_queue_on(&rq->rt.push_work, cpu);
1897 }
1898 
1899 /* Called from hardirq context */
1900 static void try_to_push_tasks(void *arg)
1901 {
1902 	struct rt_rq *rt_rq = arg;
1903 	struct rq *rq, *src_rq;
1904 	int this_cpu;
1905 	int cpu;
1906 
1907 	this_cpu = rt_rq->push_cpu;
1908 
1909 	/* Paranoid check */
1910 	BUG_ON(this_cpu != smp_processor_id());
1911 
1912 	rq = cpu_rq(this_cpu);
1913 	src_rq = rq_of_rt_rq(rt_rq);
1914 
1915 again:
1916 	if (has_pushable_tasks(rq)) {
1917 		raw_spin_lock(&rq->lock);
1918 		push_rt_task(rq);
1919 		raw_spin_unlock(&rq->lock);
1920 	}
1921 
1922 	/* Pass the IPI to the next rt overloaded queue */
1923 	raw_spin_lock(&rt_rq->push_lock);
1924 	/*
1925 	 * If the source queue changed since the IPI went out,
1926 	 * we need to restart the search from that CPU again.
1927 	 */
1928 	if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) {
1929 		rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART;
1930 		rt_rq->push_cpu = src_rq->cpu;
1931 	}
1932 
1933 	cpu = find_next_push_cpu(src_rq);
1934 
1935 	if (cpu >= nr_cpu_ids)
1936 		rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING;
1937 	raw_spin_unlock(&rt_rq->push_lock);
1938 
1939 	if (cpu >= nr_cpu_ids)
1940 		return;
1941 
1942 	/*
1943 	 * It is possible that a restart caused this CPU to be
1944 	 * chosen again. Don't bother with an IPI, just see if we
1945 	 * have more to push.
1946 	 */
1947 	if (unlikely(cpu == rq->cpu))
1948 		goto again;
1949 
1950 	/* Try the next RT overloaded CPU */
1951 	irq_work_queue_on(&rt_rq->push_work, cpu);
1952 }
1953 
1954 static void push_irq_work_func(struct irq_work *work)
1955 {
1956 	struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work);
1957 
1958 	try_to_push_tasks(rt_rq);
1959 }
1960 #endif /* HAVE_RT_PUSH_IPI */
1961 
1962 static void pull_rt_task(struct rq *this_rq)
1963 {
1964 	int this_cpu = this_rq->cpu, cpu;
1965 	bool resched = false;
1966 	struct task_struct *p;
1967 	struct rq *src_rq;
1968 
1969 	if (likely(!rt_overloaded(this_rq)))
1970 		return;
1971 
1972 	/*
1973 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
1974 	 * see overloaded we must also see the rto_mask bit.
1975 	 */
1976 	smp_rmb();
1977 
1978 #ifdef HAVE_RT_PUSH_IPI
1979 	if (sched_feat(RT_PUSH_IPI)) {
1980 		tell_cpu_to_push(this_rq);
1981 		return;
1982 	}
1983 #endif
1984 
1985 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1986 		if (this_cpu == cpu)
1987 			continue;
1988 
1989 		src_rq = cpu_rq(cpu);
1990 
1991 		/*
1992 		 * Don't bother taking the src_rq->lock if the next highest
1993 		 * task is known to be lower-priority than our current task.
1994 		 * This may look racy, but if this value is about to go
1995 		 * logically higher, the src_rq will push this task away.
1996 		 * And if its going logically lower, we do not care
1997 		 */
1998 		if (src_rq->rt.highest_prio.next >=
1999 		    this_rq->rt.highest_prio.curr)
2000 			continue;
2001 
2002 		/*
2003 		 * We can potentially drop this_rq's lock in
2004 		 * double_lock_balance, and another CPU could
2005 		 * alter this_rq
2006 		 */
2007 		double_lock_balance(this_rq, src_rq);
2008 
2009 		/*
2010 		 * We can pull only a task, which is pushable
2011 		 * on its rq, and no others.
2012 		 */
2013 		p = pick_highest_pushable_task(src_rq, this_cpu);
2014 
2015 		/*
2016 		 * Do we have an RT task that preempts
2017 		 * the to-be-scheduled task?
2018 		 */
2019 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2020 			WARN_ON(p == src_rq->curr);
2021 			WARN_ON(!task_on_rq_queued(p));
2022 
2023 			/*
2024 			 * There's a chance that p is higher in priority
2025 			 * than what's currently running on its cpu.
2026 			 * This is just that p is wakeing up and hasn't
2027 			 * had a chance to schedule. We only pull
2028 			 * p if it is lower in priority than the
2029 			 * current task on the run queue
2030 			 */
2031 			if (p->prio < src_rq->curr->prio)
2032 				goto skip;
2033 
2034 			resched = true;
2035 
2036 			deactivate_task(src_rq, p, 0);
2037 			set_task_cpu(p, this_cpu);
2038 			activate_task(this_rq, p, 0);
2039 			/*
2040 			 * We continue with the search, just in
2041 			 * case there's an even higher prio task
2042 			 * in another runqueue. (low likelihood
2043 			 * but possible)
2044 			 */
2045 		}
2046 skip:
2047 		double_unlock_balance(this_rq, src_rq);
2048 	}
2049 
2050 	if (resched)
2051 		resched_curr(this_rq);
2052 }
2053 
2054 /*
2055  * If we are not running and we are not going to reschedule soon, we should
2056  * try to push tasks away now
2057  */
2058 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2059 {
2060 	if (!task_running(rq, p) &&
2061 	    !test_tsk_need_resched(rq->curr) &&
2062 	    p->nr_cpus_allowed > 1 &&
2063 	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2064 	    (rq->curr->nr_cpus_allowed < 2 ||
2065 	     rq->curr->prio <= p->prio))
2066 		push_rt_tasks(rq);
2067 }
2068 
2069 /* Assumes rq->lock is held */
2070 static void rq_online_rt(struct rq *rq)
2071 {
2072 	if (rq->rt.overloaded)
2073 		rt_set_overload(rq);
2074 
2075 	__enable_runtime(rq);
2076 
2077 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2078 }
2079 
2080 /* Assumes rq->lock is held */
2081 static void rq_offline_rt(struct rq *rq)
2082 {
2083 	if (rq->rt.overloaded)
2084 		rt_clear_overload(rq);
2085 
2086 	__disable_runtime(rq);
2087 
2088 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2089 }
2090 
2091 /*
2092  * When switch from the rt queue, we bring ourselves to a position
2093  * that we might want to pull RT tasks from other runqueues.
2094  */
2095 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2096 {
2097 	/*
2098 	 * If there are other RT tasks then we will reschedule
2099 	 * and the scheduling of the other RT tasks will handle
2100 	 * the balancing. But if we are the last RT task
2101 	 * we may need to handle the pulling of RT tasks
2102 	 * now.
2103 	 */
2104 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2105 		return;
2106 
2107 	queue_pull_task(rq);
2108 }
2109 
2110 void __init init_sched_rt_class(void)
2111 {
2112 	unsigned int i;
2113 
2114 	for_each_possible_cpu(i) {
2115 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2116 					GFP_KERNEL, cpu_to_node(i));
2117 	}
2118 }
2119 #endif /* CONFIG_SMP */
2120 
2121 /*
2122  * When switching a task to RT, we may overload the runqueue
2123  * with RT tasks. In this case we try to push them off to
2124  * other runqueues.
2125  */
2126 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2127 {
2128 	/*
2129 	 * If we are already running, then there's nothing
2130 	 * that needs to be done. But if we are not running
2131 	 * we may need to preempt the current running task.
2132 	 * If that current running task is also an RT task
2133 	 * then see if we can move to another run queue.
2134 	 */
2135 	if (task_on_rq_queued(p) && rq->curr != p) {
2136 #ifdef CONFIG_SMP
2137 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2138 			queue_push_tasks(rq);
2139 #else
2140 		if (p->prio < rq->curr->prio)
2141 			resched_curr(rq);
2142 #endif /* CONFIG_SMP */
2143 	}
2144 }
2145 
2146 /*
2147  * Priority of the task has changed. This may cause
2148  * us to initiate a push or pull.
2149  */
2150 static void
2151 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2152 {
2153 	if (!task_on_rq_queued(p))
2154 		return;
2155 
2156 	if (rq->curr == p) {
2157 #ifdef CONFIG_SMP
2158 		/*
2159 		 * If our priority decreases while running, we
2160 		 * may need to pull tasks to this runqueue.
2161 		 */
2162 		if (oldprio < p->prio)
2163 			queue_pull_task(rq);
2164 
2165 		/*
2166 		 * If there's a higher priority task waiting to run
2167 		 * then reschedule.
2168 		 */
2169 		if (p->prio > rq->rt.highest_prio.curr)
2170 			resched_curr(rq);
2171 #else
2172 		/* For UP simply resched on drop of prio */
2173 		if (oldprio < p->prio)
2174 			resched_curr(rq);
2175 #endif /* CONFIG_SMP */
2176 	} else {
2177 		/*
2178 		 * This task is not running, but if it is
2179 		 * greater than the current running task
2180 		 * then reschedule.
2181 		 */
2182 		if (p->prio < rq->curr->prio)
2183 			resched_curr(rq);
2184 	}
2185 }
2186 
2187 static void watchdog(struct rq *rq, struct task_struct *p)
2188 {
2189 	unsigned long soft, hard;
2190 
2191 	/* max may change after cur was read, this will be fixed next tick */
2192 	soft = task_rlimit(p, RLIMIT_RTTIME);
2193 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2194 
2195 	if (soft != RLIM_INFINITY) {
2196 		unsigned long next;
2197 
2198 		if (p->rt.watchdog_stamp != jiffies) {
2199 			p->rt.timeout++;
2200 			p->rt.watchdog_stamp = jiffies;
2201 		}
2202 
2203 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2204 		if (p->rt.timeout > next)
2205 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2206 	}
2207 }
2208 
2209 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2210 {
2211 	struct sched_rt_entity *rt_se = &p->rt;
2212 
2213 	update_curr_rt(rq);
2214 
2215 	watchdog(rq, p);
2216 
2217 	/*
2218 	 * RR tasks need a special form of timeslice management.
2219 	 * FIFO tasks have no timeslices.
2220 	 */
2221 	if (p->policy != SCHED_RR)
2222 		return;
2223 
2224 	if (--p->rt.time_slice)
2225 		return;
2226 
2227 	p->rt.time_slice = sched_rr_timeslice;
2228 
2229 	/*
2230 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2231 	 * the only element on the queue
2232 	 */
2233 	for_each_sched_rt_entity(rt_se) {
2234 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2235 			requeue_task_rt(rq, p, 0);
2236 			resched_curr(rq);
2237 			return;
2238 		}
2239 	}
2240 }
2241 
2242 static void set_curr_task_rt(struct rq *rq)
2243 {
2244 	struct task_struct *p = rq->curr;
2245 
2246 	p->se.exec_start = rq_clock_task(rq);
2247 
2248 	/* The running task is never eligible for pushing */
2249 	dequeue_pushable_task(rq, p);
2250 }
2251 
2252 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2253 {
2254 	/*
2255 	 * Time slice is 0 for SCHED_FIFO tasks
2256 	 */
2257 	if (task->policy == SCHED_RR)
2258 		return sched_rr_timeslice;
2259 	else
2260 		return 0;
2261 }
2262 
2263 const struct sched_class rt_sched_class = {
2264 	.next			= &fair_sched_class,
2265 	.enqueue_task		= enqueue_task_rt,
2266 	.dequeue_task		= dequeue_task_rt,
2267 	.yield_task		= yield_task_rt,
2268 
2269 	.check_preempt_curr	= check_preempt_curr_rt,
2270 
2271 	.pick_next_task		= pick_next_task_rt,
2272 	.put_prev_task		= put_prev_task_rt,
2273 
2274 #ifdef CONFIG_SMP
2275 	.select_task_rq		= select_task_rq_rt,
2276 
2277 	.set_cpus_allowed       = set_cpus_allowed_common,
2278 	.rq_online              = rq_online_rt,
2279 	.rq_offline             = rq_offline_rt,
2280 	.task_woken		= task_woken_rt,
2281 	.switched_from		= switched_from_rt,
2282 #endif
2283 
2284 	.set_curr_task          = set_curr_task_rt,
2285 	.task_tick		= task_tick_rt,
2286 
2287 	.get_rr_interval	= get_rr_interval_rt,
2288 
2289 	.prio_changed		= prio_changed_rt,
2290 	.switched_to		= switched_to_rt,
2291 
2292 	.update_curr		= update_curr_rt,
2293 };
2294 
2295 #ifdef CONFIG_SCHED_DEBUG
2296 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2297 
2298 void print_rt_stats(struct seq_file *m, int cpu)
2299 {
2300 	rt_rq_iter_t iter;
2301 	struct rt_rq *rt_rq;
2302 
2303 	rcu_read_lock();
2304 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2305 		print_rt_rq(m, cpu, rt_rq);
2306 	rcu_read_unlock();
2307 }
2308 #endif /* CONFIG_SCHED_DEBUG */
2309