1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 4 * policies) 5 */ 6 7 #include "sched.h" 8 9 #include <linux/slab.h> 10 #include <linux/irq_work.h> 11 12 int sched_rr_timeslice = RR_TIMESLICE; 13 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE; 14 15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 16 17 struct rt_bandwidth def_rt_bandwidth; 18 19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 20 { 21 struct rt_bandwidth *rt_b = 22 container_of(timer, struct rt_bandwidth, rt_period_timer); 23 int idle = 0; 24 int overrun; 25 26 raw_spin_lock(&rt_b->rt_runtime_lock); 27 for (;;) { 28 overrun = hrtimer_forward_now(timer, rt_b->rt_period); 29 if (!overrun) 30 break; 31 32 raw_spin_unlock(&rt_b->rt_runtime_lock); 33 idle = do_sched_rt_period_timer(rt_b, overrun); 34 raw_spin_lock(&rt_b->rt_runtime_lock); 35 } 36 if (idle) 37 rt_b->rt_period_active = 0; 38 raw_spin_unlock(&rt_b->rt_runtime_lock); 39 40 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 41 } 42 43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 44 { 45 rt_b->rt_period = ns_to_ktime(period); 46 rt_b->rt_runtime = runtime; 47 48 raw_spin_lock_init(&rt_b->rt_runtime_lock); 49 50 hrtimer_init(&rt_b->rt_period_timer, 51 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 52 rt_b->rt_period_timer.function = sched_rt_period_timer; 53 } 54 55 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 56 { 57 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 58 return; 59 60 raw_spin_lock(&rt_b->rt_runtime_lock); 61 if (!rt_b->rt_period_active) { 62 rt_b->rt_period_active = 1; 63 /* 64 * SCHED_DEADLINE updates the bandwidth, as a run away 65 * RT task with a DL task could hog a CPU. But DL does 66 * not reset the period. If a deadline task was running 67 * without an RT task running, it can cause RT tasks to 68 * throttle when they start up. Kick the timer right away 69 * to update the period. 70 */ 71 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 72 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED); 73 } 74 raw_spin_unlock(&rt_b->rt_runtime_lock); 75 } 76 77 void init_rt_rq(struct rt_rq *rt_rq) 78 { 79 struct rt_prio_array *array; 80 int i; 81 82 array = &rt_rq->active; 83 for (i = 0; i < MAX_RT_PRIO; i++) { 84 INIT_LIST_HEAD(array->queue + i); 85 __clear_bit(i, array->bitmap); 86 } 87 /* delimiter for bitsearch: */ 88 __set_bit(MAX_RT_PRIO, array->bitmap); 89 90 #if defined CONFIG_SMP 91 rt_rq->highest_prio.curr = MAX_RT_PRIO; 92 rt_rq->highest_prio.next = MAX_RT_PRIO; 93 rt_rq->rt_nr_migratory = 0; 94 rt_rq->overloaded = 0; 95 plist_head_init(&rt_rq->pushable_tasks); 96 #endif /* CONFIG_SMP */ 97 /* We start is dequeued state, because no RT tasks are queued */ 98 rt_rq->rt_queued = 0; 99 100 rt_rq->rt_time = 0; 101 rt_rq->rt_throttled = 0; 102 rt_rq->rt_runtime = 0; 103 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 104 } 105 106 #ifdef CONFIG_RT_GROUP_SCHED 107 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 108 { 109 hrtimer_cancel(&rt_b->rt_period_timer); 110 } 111 112 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 113 114 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 115 { 116 #ifdef CONFIG_SCHED_DEBUG 117 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 118 #endif 119 return container_of(rt_se, struct task_struct, rt); 120 } 121 122 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 123 { 124 return rt_rq->rq; 125 } 126 127 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 128 { 129 return rt_se->rt_rq; 130 } 131 132 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 133 { 134 struct rt_rq *rt_rq = rt_se->rt_rq; 135 136 return rt_rq->rq; 137 } 138 139 void free_rt_sched_group(struct task_group *tg) 140 { 141 int i; 142 143 if (tg->rt_se) 144 destroy_rt_bandwidth(&tg->rt_bandwidth); 145 146 for_each_possible_cpu(i) { 147 if (tg->rt_rq) 148 kfree(tg->rt_rq[i]); 149 if (tg->rt_se) 150 kfree(tg->rt_se[i]); 151 } 152 153 kfree(tg->rt_rq); 154 kfree(tg->rt_se); 155 } 156 157 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 158 struct sched_rt_entity *rt_se, int cpu, 159 struct sched_rt_entity *parent) 160 { 161 struct rq *rq = cpu_rq(cpu); 162 163 rt_rq->highest_prio.curr = MAX_RT_PRIO; 164 rt_rq->rt_nr_boosted = 0; 165 rt_rq->rq = rq; 166 rt_rq->tg = tg; 167 168 tg->rt_rq[cpu] = rt_rq; 169 tg->rt_se[cpu] = rt_se; 170 171 if (!rt_se) 172 return; 173 174 if (!parent) 175 rt_se->rt_rq = &rq->rt; 176 else 177 rt_se->rt_rq = parent->my_q; 178 179 rt_se->my_q = rt_rq; 180 rt_se->parent = parent; 181 INIT_LIST_HEAD(&rt_se->run_list); 182 } 183 184 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 185 { 186 struct rt_rq *rt_rq; 187 struct sched_rt_entity *rt_se; 188 int i; 189 190 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); 191 if (!tg->rt_rq) 192 goto err; 193 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); 194 if (!tg->rt_se) 195 goto err; 196 197 init_rt_bandwidth(&tg->rt_bandwidth, 198 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 199 200 for_each_possible_cpu(i) { 201 rt_rq = kzalloc_node(sizeof(struct rt_rq), 202 GFP_KERNEL, cpu_to_node(i)); 203 if (!rt_rq) 204 goto err; 205 206 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 207 GFP_KERNEL, cpu_to_node(i)); 208 if (!rt_se) 209 goto err_free_rq; 210 211 init_rt_rq(rt_rq); 212 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 213 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 214 } 215 216 return 1; 217 218 err_free_rq: 219 kfree(rt_rq); 220 err: 221 return 0; 222 } 223 224 #else /* CONFIG_RT_GROUP_SCHED */ 225 226 #define rt_entity_is_task(rt_se) (1) 227 228 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 229 { 230 return container_of(rt_se, struct task_struct, rt); 231 } 232 233 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 234 { 235 return container_of(rt_rq, struct rq, rt); 236 } 237 238 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 239 { 240 struct task_struct *p = rt_task_of(rt_se); 241 242 return task_rq(p); 243 } 244 245 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 246 { 247 struct rq *rq = rq_of_rt_se(rt_se); 248 249 return &rq->rt; 250 } 251 252 void free_rt_sched_group(struct task_group *tg) { } 253 254 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 255 { 256 return 1; 257 } 258 #endif /* CONFIG_RT_GROUP_SCHED */ 259 260 #ifdef CONFIG_SMP 261 262 static void pull_rt_task(struct rq *this_rq); 263 264 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 265 { 266 /* Try to pull RT tasks here if we lower this rq's prio */ 267 return rq->rt.highest_prio.curr > prev->prio; 268 } 269 270 static inline int rt_overloaded(struct rq *rq) 271 { 272 return atomic_read(&rq->rd->rto_count); 273 } 274 275 static inline void rt_set_overload(struct rq *rq) 276 { 277 if (!rq->online) 278 return; 279 280 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 281 /* 282 * Make sure the mask is visible before we set 283 * the overload count. That is checked to determine 284 * if we should look at the mask. It would be a shame 285 * if we looked at the mask, but the mask was not 286 * updated yet. 287 * 288 * Matched by the barrier in pull_rt_task(). 289 */ 290 smp_wmb(); 291 atomic_inc(&rq->rd->rto_count); 292 } 293 294 static inline void rt_clear_overload(struct rq *rq) 295 { 296 if (!rq->online) 297 return; 298 299 /* the order here really doesn't matter */ 300 atomic_dec(&rq->rd->rto_count); 301 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 302 } 303 304 static void update_rt_migration(struct rt_rq *rt_rq) 305 { 306 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 307 if (!rt_rq->overloaded) { 308 rt_set_overload(rq_of_rt_rq(rt_rq)); 309 rt_rq->overloaded = 1; 310 } 311 } else if (rt_rq->overloaded) { 312 rt_clear_overload(rq_of_rt_rq(rt_rq)); 313 rt_rq->overloaded = 0; 314 } 315 } 316 317 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 318 { 319 struct task_struct *p; 320 321 if (!rt_entity_is_task(rt_se)) 322 return; 323 324 p = rt_task_of(rt_se); 325 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 326 327 rt_rq->rt_nr_total++; 328 if (p->nr_cpus_allowed > 1) 329 rt_rq->rt_nr_migratory++; 330 331 update_rt_migration(rt_rq); 332 } 333 334 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 335 { 336 struct task_struct *p; 337 338 if (!rt_entity_is_task(rt_se)) 339 return; 340 341 p = rt_task_of(rt_se); 342 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 343 344 rt_rq->rt_nr_total--; 345 if (p->nr_cpus_allowed > 1) 346 rt_rq->rt_nr_migratory--; 347 348 update_rt_migration(rt_rq); 349 } 350 351 static inline int has_pushable_tasks(struct rq *rq) 352 { 353 return !plist_head_empty(&rq->rt.pushable_tasks); 354 } 355 356 static DEFINE_PER_CPU(struct callback_head, rt_push_head); 357 static DEFINE_PER_CPU(struct callback_head, rt_pull_head); 358 359 static void push_rt_tasks(struct rq *); 360 static void pull_rt_task(struct rq *); 361 362 static inline void queue_push_tasks(struct rq *rq) 363 { 364 if (!has_pushable_tasks(rq)) 365 return; 366 367 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); 368 } 369 370 static inline void queue_pull_task(struct rq *rq) 371 { 372 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); 373 } 374 375 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 376 { 377 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 378 plist_node_init(&p->pushable_tasks, p->prio); 379 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 380 381 /* Update the highest prio pushable task */ 382 if (p->prio < rq->rt.highest_prio.next) 383 rq->rt.highest_prio.next = p->prio; 384 } 385 386 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 387 { 388 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 389 390 /* Update the new highest prio pushable task */ 391 if (has_pushable_tasks(rq)) { 392 p = plist_first_entry(&rq->rt.pushable_tasks, 393 struct task_struct, pushable_tasks); 394 rq->rt.highest_prio.next = p->prio; 395 } else 396 rq->rt.highest_prio.next = MAX_RT_PRIO; 397 } 398 399 #else 400 401 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 402 { 403 } 404 405 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 406 { 407 } 408 409 static inline 410 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 411 { 412 } 413 414 static inline 415 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 416 { 417 } 418 419 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 420 { 421 return false; 422 } 423 424 static inline void pull_rt_task(struct rq *this_rq) 425 { 426 } 427 428 static inline void queue_push_tasks(struct rq *rq) 429 { 430 } 431 #endif /* CONFIG_SMP */ 432 433 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 434 static void dequeue_top_rt_rq(struct rt_rq *rt_rq); 435 436 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 437 { 438 return rt_se->on_rq; 439 } 440 441 #ifdef CONFIG_RT_GROUP_SCHED 442 443 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 444 { 445 if (!rt_rq->tg) 446 return RUNTIME_INF; 447 448 return rt_rq->rt_runtime; 449 } 450 451 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 452 { 453 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 454 } 455 456 typedef struct task_group *rt_rq_iter_t; 457 458 static inline struct task_group *next_task_group(struct task_group *tg) 459 { 460 do { 461 tg = list_entry_rcu(tg->list.next, 462 typeof(struct task_group), list); 463 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 464 465 if (&tg->list == &task_groups) 466 tg = NULL; 467 468 return tg; 469 } 470 471 #define for_each_rt_rq(rt_rq, iter, rq) \ 472 for (iter = container_of(&task_groups, typeof(*iter), list); \ 473 (iter = next_task_group(iter)) && \ 474 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 475 476 #define for_each_sched_rt_entity(rt_se) \ 477 for (; rt_se; rt_se = rt_se->parent) 478 479 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 480 { 481 return rt_se->my_q; 482 } 483 484 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 485 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 486 487 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 488 { 489 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 490 struct rq *rq = rq_of_rt_rq(rt_rq); 491 struct sched_rt_entity *rt_se; 492 493 int cpu = cpu_of(rq); 494 495 rt_se = rt_rq->tg->rt_se[cpu]; 496 497 if (rt_rq->rt_nr_running) { 498 if (!rt_se) 499 enqueue_top_rt_rq(rt_rq); 500 else if (!on_rt_rq(rt_se)) 501 enqueue_rt_entity(rt_se, 0); 502 503 if (rt_rq->highest_prio.curr < curr->prio) 504 resched_curr(rq); 505 } 506 } 507 508 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 509 { 510 struct sched_rt_entity *rt_se; 511 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 512 513 rt_se = rt_rq->tg->rt_se[cpu]; 514 515 if (!rt_se) 516 dequeue_top_rt_rq(rt_rq); 517 else if (on_rt_rq(rt_se)) 518 dequeue_rt_entity(rt_se, 0); 519 } 520 521 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 522 { 523 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 524 } 525 526 static int rt_se_boosted(struct sched_rt_entity *rt_se) 527 { 528 struct rt_rq *rt_rq = group_rt_rq(rt_se); 529 struct task_struct *p; 530 531 if (rt_rq) 532 return !!rt_rq->rt_nr_boosted; 533 534 p = rt_task_of(rt_se); 535 return p->prio != p->normal_prio; 536 } 537 538 #ifdef CONFIG_SMP 539 static inline const struct cpumask *sched_rt_period_mask(void) 540 { 541 return this_rq()->rd->span; 542 } 543 #else 544 static inline const struct cpumask *sched_rt_period_mask(void) 545 { 546 return cpu_online_mask; 547 } 548 #endif 549 550 static inline 551 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 552 { 553 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 554 } 555 556 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 557 { 558 return &rt_rq->tg->rt_bandwidth; 559 } 560 561 #else /* !CONFIG_RT_GROUP_SCHED */ 562 563 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 564 { 565 return rt_rq->rt_runtime; 566 } 567 568 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 569 { 570 return ktime_to_ns(def_rt_bandwidth.rt_period); 571 } 572 573 typedef struct rt_rq *rt_rq_iter_t; 574 575 #define for_each_rt_rq(rt_rq, iter, rq) \ 576 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 577 578 #define for_each_sched_rt_entity(rt_se) \ 579 for (; rt_se; rt_se = NULL) 580 581 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 582 { 583 return NULL; 584 } 585 586 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 587 { 588 struct rq *rq = rq_of_rt_rq(rt_rq); 589 590 if (!rt_rq->rt_nr_running) 591 return; 592 593 enqueue_top_rt_rq(rt_rq); 594 resched_curr(rq); 595 } 596 597 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 598 { 599 dequeue_top_rt_rq(rt_rq); 600 } 601 602 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 603 { 604 return rt_rq->rt_throttled; 605 } 606 607 static inline const struct cpumask *sched_rt_period_mask(void) 608 { 609 return cpu_online_mask; 610 } 611 612 static inline 613 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 614 { 615 return &cpu_rq(cpu)->rt; 616 } 617 618 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 619 { 620 return &def_rt_bandwidth; 621 } 622 623 #endif /* CONFIG_RT_GROUP_SCHED */ 624 625 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 626 { 627 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 628 629 return (hrtimer_active(&rt_b->rt_period_timer) || 630 rt_rq->rt_time < rt_b->rt_runtime); 631 } 632 633 #ifdef CONFIG_SMP 634 /* 635 * We ran out of runtime, see if we can borrow some from our neighbours. 636 */ 637 static void do_balance_runtime(struct rt_rq *rt_rq) 638 { 639 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 640 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 641 int i, weight; 642 u64 rt_period; 643 644 weight = cpumask_weight(rd->span); 645 646 raw_spin_lock(&rt_b->rt_runtime_lock); 647 rt_period = ktime_to_ns(rt_b->rt_period); 648 for_each_cpu(i, rd->span) { 649 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 650 s64 diff; 651 652 if (iter == rt_rq) 653 continue; 654 655 raw_spin_lock(&iter->rt_runtime_lock); 656 /* 657 * Either all rqs have inf runtime and there's nothing to steal 658 * or __disable_runtime() below sets a specific rq to inf to 659 * indicate its been disabled and disalow stealing. 660 */ 661 if (iter->rt_runtime == RUNTIME_INF) 662 goto next; 663 664 /* 665 * From runqueues with spare time, take 1/n part of their 666 * spare time, but no more than our period. 667 */ 668 diff = iter->rt_runtime - iter->rt_time; 669 if (diff > 0) { 670 diff = div_u64((u64)diff, weight); 671 if (rt_rq->rt_runtime + diff > rt_period) 672 diff = rt_period - rt_rq->rt_runtime; 673 iter->rt_runtime -= diff; 674 rt_rq->rt_runtime += diff; 675 if (rt_rq->rt_runtime == rt_period) { 676 raw_spin_unlock(&iter->rt_runtime_lock); 677 break; 678 } 679 } 680 next: 681 raw_spin_unlock(&iter->rt_runtime_lock); 682 } 683 raw_spin_unlock(&rt_b->rt_runtime_lock); 684 } 685 686 /* 687 * Ensure this RQ takes back all the runtime it lend to its neighbours. 688 */ 689 static void __disable_runtime(struct rq *rq) 690 { 691 struct root_domain *rd = rq->rd; 692 rt_rq_iter_t iter; 693 struct rt_rq *rt_rq; 694 695 if (unlikely(!scheduler_running)) 696 return; 697 698 for_each_rt_rq(rt_rq, iter, rq) { 699 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 700 s64 want; 701 int i; 702 703 raw_spin_lock(&rt_b->rt_runtime_lock); 704 raw_spin_lock(&rt_rq->rt_runtime_lock); 705 /* 706 * Either we're all inf and nobody needs to borrow, or we're 707 * already disabled and thus have nothing to do, or we have 708 * exactly the right amount of runtime to take out. 709 */ 710 if (rt_rq->rt_runtime == RUNTIME_INF || 711 rt_rq->rt_runtime == rt_b->rt_runtime) 712 goto balanced; 713 raw_spin_unlock(&rt_rq->rt_runtime_lock); 714 715 /* 716 * Calculate the difference between what we started out with 717 * and what we current have, that's the amount of runtime 718 * we lend and now have to reclaim. 719 */ 720 want = rt_b->rt_runtime - rt_rq->rt_runtime; 721 722 /* 723 * Greedy reclaim, take back as much as we can. 724 */ 725 for_each_cpu(i, rd->span) { 726 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 727 s64 diff; 728 729 /* 730 * Can't reclaim from ourselves or disabled runqueues. 731 */ 732 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 733 continue; 734 735 raw_spin_lock(&iter->rt_runtime_lock); 736 if (want > 0) { 737 diff = min_t(s64, iter->rt_runtime, want); 738 iter->rt_runtime -= diff; 739 want -= diff; 740 } else { 741 iter->rt_runtime -= want; 742 want -= want; 743 } 744 raw_spin_unlock(&iter->rt_runtime_lock); 745 746 if (!want) 747 break; 748 } 749 750 raw_spin_lock(&rt_rq->rt_runtime_lock); 751 /* 752 * We cannot be left wanting - that would mean some runtime 753 * leaked out of the system. 754 */ 755 BUG_ON(want); 756 balanced: 757 /* 758 * Disable all the borrow logic by pretending we have inf 759 * runtime - in which case borrowing doesn't make sense. 760 */ 761 rt_rq->rt_runtime = RUNTIME_INF; 762 rt_rq->rt_throttled = 0; 763 raw_spin_unlock(&rt_rq->rt_runtime_lock); 764 raw_spin_unlock(&rt_b->rt_runtime_lock); 765 766 /* Make rt_rq available for pick_next_task() */ 767 sched_rt_rq_enqueue(rt_rq); 768 } 769 } 770 771 static void __enable_runtime(struct rq *rq) 772 { 773 rt_rq_iter_t iter; 774 struct rt_rq *rt_rq; 775 776 if (unlikely(!scheduler_running)) 777 return; 778 779 /* 780 * Reset each runqueue's bandwidth settings 781 */ 782 for_each_rt_rq(rt_rq, iter, rq) { 783 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 784 785 raw_spin_lock(&rt_b->rt_runtime_lock); 786 raw_spin_lock(&rt_rq->rt_runtime_lock); 787 rt_rq->rt_runtime = rt_b->rt_runtime; 788 rt_rq->rt_time = 0; 789 rt_rq->rt_throttled = 0; 790 raw_spin_unlock(&rt_rq->rt_runtime_lock); 791 raw_spin_unlock(&rt_b->rt_runtime_lock); 792 } 793 } 794 795 static void balance_runtime(struct rt_rq *rt_rq) 796 { 797 if (!sched_feat(RT_RUNTIME_SHARE)) 798 return; 799 800 if (rt_rq->rt_time > rt_rq->rt_runtime) { 801 raw_spin_unlock(&rt_rq->rt_runtime_lock); 802 do_balance_runtime(rt_rq); 803 raw_spin_lock(&rt_rq->rt_runtime_lock); 804 } 805 } 806 #else /* !CONFIG_SMP */ 807 static inline void balance_runtime(struct rt_rq *rt_rq) {} 808 #endif /* CONFIG_SMP */ 809 810 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 811 { 812 int i, idle = 1, throttled = 0; 813 const struct cpumask *span; 814 815 span = sched_rt_period_mask(); 816 #ifdef CONFIG_RT_GROUP_SCHED 817 /* 818 * FIXME: isolated CPUs should really leave the root task group, 819 * whether they are isolcpus or were isolated via cpusets, lest 820 * the timer run on a CPU which does not service all runqueues, 821 * potentially leaving other CPUs indefinitely throttled. If 822 * isolation is really required, the user will turn the throttle 823 * off to kill the perturbations it causes anyway. Meanwhile, 824 * this maintains functionality for boot and/or troubleshooting. 825 */ 826 if (rt_b == &root_task_group.rt_bandwidth) 827 span = cpu_online_mask; 828 #endif 829 for_each_cpu(i, span) { 830 int enqueue = 0; 831 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 832 struct rq *rq = rq_of_rt_rq(rt_rq); 833 int skip; 834 835 /* 836 * When span == cpu_online_mask, taking each rq->lock 837 * can be time-consuming. Try to avoid it when possible. 838 */ 839 raw_spin_lock(&rt_rq->rt_runtime_lock); 840 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; 841 raw_spin_unlock(&rt_rq->rt_runtime_lock); 842 if (skip) 843 continue; 844 845 raw_spin_lock(&rq->lock); 846 if (rt_rq->rt_time) { 847 u64 runtime; 848 849 raw_spin_lock(&rt_rq->rt_runtime_lock); 850 if (rt_rq->rt_throttled) 851 balance_runtime(rt_rq); 852 runtime = rt_rq->rt_runtime; 853 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 854 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 855 rt_rq->rt_throttled = 0; 856 enqueue = 1; 857 858 /* 859 * When we're idle and a woken (rt) task is 860 * throttled check_preempt_curr() will set 861 * skip_update and the time between the wakeup 862 * and this unthrottle will get accounted as 863 * 'runtime'. 864 */ 865 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 866 rq_clock_skip_update(rq, false); 867 } 868 if (rt_rq->rt_time || rt_rq->rt_nr_running) 869 idle = 0; 870 raw_spin_unlock(&rt_rq->rt_runtime_lock); 871 } else if (rt_rq->rt_nr_running) { 872 idle = 0; 873 if (!rt_rq_throttled(rt_rq)) 874 enqueue = 1; 875 } 876 if (rt_rq->rt_throttled) 877 throttled = 1; 878 879 if (enqueue) 880 sched_rt_rq_enqueue(rt_rq); 881 raw_spin_unlock(&rq->lock); 882 } 883 884 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 885 return 1; 886 887 return idle; 888 } 889 890 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 891 { 892 #ifdef CONFIG_RT_GROUP_SCHED 893 struct rt_rq *rt_rq = group_rt_rq(rt_se); 894 895 if (rt_rq) 896 return rt_rq->highest_prio.curr; 897 #endif 898 899 return rt_task_of(rt_se)->prio; 900 } 901 902 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 903 { 904 u64 runtime = sched_rt_runtime(rt_rq); 905 906 if (rt_rq->rt_throttled) 907 return rt_rq_throttled(rt_rq); 908 909 if (runtime >= sched_rt_period(rt_rq)) 910 return 0; 911 912 balance_runtime(rt_rq); 913 runtime = sched_rt_runtime(rt_rq); 914 if (runtime == RUNTIME_INF) 915 return 0; 916 917 if (rt_rq->rt_time > runtime) { 918 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 919 920 /* 921 * Don't actually throttle groups that have no runtime assigned 922 * but accrue some time due to boosting. 923 */ 924 if (likely(rt_b->rt_runtime)) { 925 rt_rq->rt_throttled = 1; 926 printk_deferred_once("sched: RT throttling activated\n"); 927 } else { 928 /* 929 * In case we did anyway, make it go away, 930 * replenishment is a joke, since it will replenish us 931 * with exactly 0 ns. 932 */ 933 rt_rq->rt_time = 0; 934 } 935 936 if (rt_rq_throttled(rt_rq)) { 937 sched_rt_rq_dequeue(rt_rq); 938 return 1; 939 } 940 } 941 942 return 0; 943 } 944 945 /* 946 * Update the current task's runtime statistics. Skip current tasks that 947 * are not in our scheduling class. 948 */ 949 static void update_curr_rt(struct rq *rq) 950 { 951 struct task_struct *curr = rq->curr; 952 struct sched_rt_entity *rt_se = &curr->rt; 953 u64 now = rq_clock_task(rq); 954 u64 delta_exec; 955 956 if (curr->sched_class != &rt_sched_class) 957 return; 958 959 delta_exec = now - curr->se.exec_start; 960 if (unlikely((s64)delta_exec <= 0)) 961 return; 962 963 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 964 cpufreq_update_util(rq, SCHED_CPUFREQ_RT); 965 966 schedstat_set(curr->se.statistics.exec_max, 967 max(curr->se.statistics.exec_max, delta_exec)); 968 969 curr->se.sum_exec_runtime += delta_exec; 970 account_group_exec_runtime(curr, delta_exec); 971 972 curr->se.exec_start = now; 973 cgroup_account_cputime(curr, delta_exec); 974 975 sched_rt_avg_update(rq, delta_exec); 976 977 if (!rt_bandwidth_enabled()) 978 return; 979 980 for_each_sched_rt_entity(rt_se) { 981 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 982 983 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 984 raw_spin_lock(&rt_rq->rt_runtime_lock); 985 rt_rq->rt_time += delta_exec; 986 if (sched_rt_runtime_exceeded(rt_rq)) 987 resched_curr(rq); 988 raw_spin_unlock(&rt_rq->rt_runtime_lock); 989 } 990 } 991 } 992 993 static void 994 dequeue_top_rt_rq(struct rt_rq *rt_rq) 995 { 996 struct rq *rq = rq_of_rt_rq(rt_rq); 997 998 BUG_ON(&rq->rt != rt_rq); 999 1000 if (!rt_rq->rt_queued) 1001 return; 1002 1003 BUG_ON(!rq->nr_running); 1004 1005 sub_nr_running(rq, rt_rq->rt_nr_running); 1006 rt_rq->rt_queued = 0; 1007 } 1008 1009 static void 1010 enqueue_top_rt_rq(struct rt_rq *rt_rq) 1011 { 1012 struct rq *rq = rq_of_rt_rq(rt_rq); 1013 1014 BUG_ON(&rq->rt != rt_rq); 1015 1016 if (rt_rq->rt_queued) 1017 return; 1018 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running) 1019 return; 1020 1021 add_nr_running(rq, rt_rq->rt_nr_running); 1022 rt_rq->rt_queued = 1; 1023 } 1024 1025 #if defined CONFIG_SMP 1026 1027 static void 1028 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1029 { 1030 struct rq *rq = rq_of_rt_rq(rt_rq); 1031 1032 #ifdef CONFIG_RT_GROUP_SCHED 1033 /* 1034 * Change rq's cpupri only if rt_rq is the top queue. 1035 */ 1036 if (&rq->rt != rt_rq) 1037 return; 1038 #endif 1039 if (rq->online && prio < prev_prio) 1040 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1041 } 1042 1043 static void 1044 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1045 { 1046 struct rq *rq = rq_of_rt_rq(rt_rq); 1047 1048 #ifdef CONFIG_RT_GROUP_SCHED 1049 /* 1050 * Change rq's cpupri only if rt_rq is the top queue. 1051 */ 1052 if (&rq->rt != rt_rq) 1053 return; 1054 #endif 1055 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1056 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1057 } 1058 1059 #else /* CONFIG_SMP */ 1060 1061 static inline 1062 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1063 static inline 1064 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1065 1066 #endif /* CONFIG_SMP */ 1067 1068 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1069 static void 1070 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1071 { 1072 int prev_prio = rt_rq->highest_prio.curr; 1073 1074 if (prio < prev_prio) 1075 rt_rq->highest_prio.curr = prio; 1076 1077 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1078 } 1079 1080 static void 1081 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1082 { 1083 int prev_prio = rt_rq->highest_prio.curr; 1084 1085 if (rt_rq->rt_nr_running) { 1086 1087 WARN_ON(prio < prev_prio); 1088 1089 /* 1090 * This may have been our highest task, and therefore 1091 * we may have some recomputation to do 1092 */ 1093 if (prio == prev_prio) { 1094 struct rt_prio_array *array = &rt_rq->active; 1095 1096 rt_rq->highest_prio.curr = 1097 sched_find_first_bit(array->bitmap); 1098 } 1099 1100 } else 1101 rt_rq->highest_prio.curr = MAX_RT_PRIO; 1102 1103 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1104 } 1105 1106 #else 1107 1108 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1109 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1110 1111 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1112 1113 #ifdef CONFIG_RT_GROUP_SCHED 1114 1115 static void 1116 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1117 { 1118 if (rt_se_boosted(rt_se)) 1119 rt_rq->rt_nr_boosted++; 1120 1121 if (rt_rq->tg) 1122 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1123 } 1124 1125 static void 1126 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1127 { 1128 if (rt_se_boosted(rt_se)) 1129 rt_rq->rt_nr_boosted--; 1130 1131 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1132 } 1133 1134 #else /* CONFIG_RT_GROUP_SCHED */ 1135 1136 static void 1137 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1138 { 1139 start_rt_bandwidth(&def_rt_bandwidth); 1140 } 1141 1142 static inline 1143 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1144 1145 #endif /* CONFIG_RT_GROUP_SCHED */ 1146 1147 static inline 1148 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1149 { 1150 struct rt_rq *group_rq = group_rt_rq(rt_se); 1151 1152 if (group_rq) 1153 return group_rq->rt_nr_running; 1154 else 1155 return 1; 1156 } 1157 1158 static inline 1159 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) 1160 { 1161 struct rt_rq *group_rq = group_rt_rq(rt_se); 1162 struct task_struct *tsk; 1163 1164 if (group_rq) 1165 return group_rq->rr_nr_running; 1166 1167 tsk = rt_task_of(rt_se); 1168 1169 return (tsk->policy == SCHED_RR) ? 1 : 0; 1170 } 1171 1172 static inline 1173 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1174 { 1175 int prio = rt_se_prio(rt_se); 1176 1177 WARN_ON(!rt_prio(prio)); 1178 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1179 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); 1180 1181 inc_rt_prio(rt_rq, prio); 1182 inc_rt_migration(rt_se, rt_rq); 1183 inc_rt_group(rt_se, rt_rq); 1184 } 1185 1186 static inline 1187 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1188 { 1189 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1190 WARN_ON(!rt_rq->rt_nr_running); 1191 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1192 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); 1193 1194 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1195 dec_rt_migration(rt_se, rt_rq); 1196 dec_rt_group(rt_se, rt_rq); 1197 } 1198 1199 /* 1200 * Change rt_se->run_list location unless SAVE && !MOVE 1201 * 1202 * assumes ENQUEUE/DEQUEUE flags match 1203 */ 1204 static inline bool move_entity(unsigned int flags) 1205 { 1206 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 1207 return false; 1208 1209 return true; 1210 } 1211 1212 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) 1213 { 1214 list_del_init(&rt_se->run_list); 1215 1216 if (list_empty(array->queue + rt_se_prio(rt_se))) 1217 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1218 1219 rt_se->on_list = 0; 1220 } 1221 1222 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1223 { 1224 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1225 struct rt_prio_array *array = &rt_rq->active; 1226 struct rt_rq *group_rq = group_rt_rq(rt_se); 1227 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1228 1229 /* 1230 * Don't enqueue the group if its throttled, or when empty. 1231 * The latter is a consequence of the former when a child group 1232 * get throttled and the current group doesn't have any other 1233 * active members. 1234 */ 1235 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { 1236 if (rt_se->on_list) 1237 __delist_rt_entity(rt_se, array); 1238 return; 1239 } 1240 1241 if (move_entity(flags)) { 1242 WARN_ON_ONCE(rt_se->on_list); 1243 if (flags & ENQUEUE_HEAD) 1244 list_add(&rt_se->run_list, queue); 1245 else 1246 list_add_tail(&rt_se->run_list, queue); 1247 1248 __set_bit(rt_se_prio(rt_se), array->bitmap); 1249 rt_se->on_list = 1; 1250 } 1251 rt_se->on_rq = 1; 1252 1253 inc_rt_tasks(rt_se, rt_rq); 1254 } 1255 1256 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1257 { 1258 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1259 struct rt_prio_array *array = &rt_rq->active; 1260 1261 if (move_entity(flags)) { 1262 WARN_ON_ONCE(!rt_se->on_list); 1263 __delist_rt_entity(rt_se, array); 1264 } 1265 rt_se->on_rq = 0; 1266 1267 dec_rt_tasks(rt_se, rt_rq); 1268 } 1269 1270 /* 1271 * Because the prio of an upper entry depends on the lower 1272 * entries, we must remove entries top - down. 1273 */ 1274 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) 1275 { 1276 struct sched_rt_entity *back = NULL; 1277 1278 for_each_sched_rt_entity(rt_se) { 1279 rt_se->back = back; 1280 back = rt_se; 1281 } 1282 1283 dequeue_top_rt_rq(rt_rq_of_se(back)); 1284 1285 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1286 if (on_rt_rq(rt_se)) 1287 __dequeue_rt_entity(rt_se, flags); 1288 } 1289 } 1290 1291 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1292 { 1293 struct rq *rq = rq_of_rt_se(rt_se); 1294 1295 dequeue_rt_stack(rt_se, flags); 1296 for_each_sched_rt_entity(rt_se) 1297 __enqueue_rt_entity(rt_se, flags); 1298 enqueue_top_rt_rq(&rq->rt); 1299 } 1300 1301 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1302 { 1303 struct rq *rq = rq_of_rt_se(rt_se); 1304 1305 dequeue_rt_stack(rt_se, flags); 1306 1307 for_each_sched_rt_entity(rt_se) { 1308 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1309 1310 if (rt_rq && rt_rq->rt_nr_running) 1311 __enqueue_rt_entity(rt_se, flags); 1312 } 1313 enqueue_top_rt_rq(&rq->rt); 1314 } 1315 1316 /* 1317 * Adding/removing a task to/from a priority array: 1318 */ 1319 static void 1320 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1321 { 1322 struct sched_rt_entity *rt_se = &p->rt; 1323 1324 if (flags & ENQUEUE_WAKEUP) 1325 rt_se->timeout = 0; 1326 1327 enqueue_rt_entity(rt_se, flags); 1328 1329 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1330 enqueue_pushable_task(rq, p); 1331 } 1332 1333 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1334 { 1335 struct sched_rt_entity *rt_se = &p->rt; 1336 1337 update_curr_rt(rq); 1338 dequeue_rt_entity(rt_se, flags); 1339 1340 dequeue_pushable_task(rq, p); 1341 } 1342 1343 /* 1344 * Put task to the head or the end of the run list without the overhead of 1345 * dequeue followed by enqueue. 1346 */ 1347 static void 1348 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1349 { 1350 if (on_rt_rq(rt_se)) { 1351 struct rt_prio_array *array = &rt_rq->active; 1352 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1353 1354 if (head) 1355 list_move(&rt_se->run_list, queue); 1356 else 1357 list_move_tail(&rt_se->run_list, queue); 1358 } 1359 } 1360 1361 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1362 { 1363 struct sched_rt_entity *rt_se = &p->rt; 1364 struct rt_rq *rt_rq; 1365 1366 for_each_sched_rt_entity(rt_se) { 1367 rt_rq = rt_rq_of_se(rt_se); 1368 requeue_rt_entity(rt_rq, rt_se, head); 1369 } 1370 } 1371 1372 static void yield_task_rt(struct rq *rq) 1373 { 1374 requeue_task_rt(rq, rq->curr, 0); 1375 } 1376 1377 #ifdef CONFIG_SMP 1378 static int find_lowest_rq(struct task_struct *task); 1379 1380 static int 1381 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) 1382 { 1383 struct task_struct *curr; 1384 struct rq *rq; 1385 1386 /* For anything but wake ups, just return the task_cpu */ 1387 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 1388 goto out; 1389 1390 rq = cpu_rq(cpu); 1391 1392 rcu_read_lock(); 1393 curr = READ_ONCE(rq->curr); /* unlocked access */ 1394 1395 /* 1396 * If the current task on @p's runqueue is an RT task, then 1397 * try to see if we can wake this RT task up on another 1398 * runqueue. Otherwise simply start this RT task 1399 * on its current runqueue. 1400 * 1401 * We want to avoid overloading runqueues. If the woken 1402 * task is a higher priority, then it will stay on this CPU 1403 * and the lower prio task should be moved to another CPU. 1404 * Even though this will probably make the lower prio task 1405 * lose its cache, we do not want to bounce a higher task 1406 * around just because it gave up its CPU, perhaps for a 1407 * lock? 1408 * 1409 * For equal prio tasks, we just let the scheduler sort it out. 1410 * 1411 * Otherwise, just let it ride on the affined RQ and the 1412 * post-schedule router will push the preempted task away 1413 * 1414 * This test is optimistic, if we get it wrong the load-balancer 1415 * will have to sort it out. 1416 */ 1417 if (curr && unlikely(rt_task(curr)) && 1418 (curr->nr_cpus_allowed < 2 || 1419 curr->prio <= p->prio)) { 1420 int target = find_lowest_rq(p); 1421 1422 /* 1423 * Don't bother moving it if the destination CPU is 1424 * not running a lower priority task. 1425 */ 1426 if (target != -1 && 1427 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1428 cpu = target; 1429 } 1430 rcu_read_unlock(); 1431 1432 out: 1433 return cpu; 1434 } 1435 1436 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1437 { 1438 /* 1439 * Current can't be migrated, useless to reschedule, 1440 * let's hope p can move out. 1441 */ 1442 if (rq->curr->nr_cpus_allowed == 1 || 1443 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1444 return; 1445 1446 /* 1447 * p is migratable, so let's not schedule it and 1448 * see if it is pushed or pulled somewhere else. 1449 */ 1450 if (p->nr_cpus_allowed != 1 1451 && cpupri_find(&rq->rd->cpupri, p, NULL)) 1452 return; 1453 1454 /* 1455 * There appears to be other cpus that can accept 1456 * current and none to run 'p', so lets reschedule 1457 * to try and push current away: 1458 */ 1459 requeue_task_rt(rq, p, 1); 1460 resched_curr(rq); 1461 } 1462 1463 #endif /* CONFIG_SMP */ 1464 1465 /* 1466 * Preempt the current task with a newly woken task if needed: 1467 */ 1468 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1469 { 1470 if (p->prio < rq->curr->prio) { 1471 resched_curr(rq); 1472 return; 1473 } 1474 1475 #ifdef CONFIG_SMP 1476 /* 1477 * If: 1478 * 1479 * - the newly woken task is of equal priority to the current task 1480 * - the newly woken task is non-migratable while current is migratable 1481 * - current will be preempted on the next reschedule 1482 * 1483 * we should check to see if current can readily move to a different 1484 * cpu. If so, we will reschedule to allow the push logic to try 1485 * to move current somewhere else, making room for our non-migratable 1486 * task. 1487 */ 1488 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1489 check_preempt_equal_prio(rq, p); 1490 #endif 1491 } 1492 1493 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 1494 struct rt_rq *rt_rq) 1495 { 1496 struct rt_prio_array *array = &rt_rq->active; 1497 struct sched_rt_entity *next = NULL; 1498 struct list_head *queue; 1499 int idx; 1500 1501 idx = sched_find_first_bit(array->bitmap); 1502 BUG_ON(idx >= MAX_RT_PRIO); 1503 1504 queue = array->queue + idx; 1505 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1506 1507 return next; 1508 } 1509 1510 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1511 { 1512 struct sched_rt_entity *rt_se; 1513 struct task_struct *p; 1514 struct rt_rq *rt_rq = &rq->rt; 1515 1516 do { 1517 rt_se = pick_next_rt_entity(rq, rt_rq); 1518 BUG_ON(!rt_se); 1519 rt_rq = group_rt_rq(rt_se); 1520 } while (rt_rq); 1521 1522 p = rt_task_of(rt_se); 1523 p->se.exec_start = rq_clock_task(rq); 1524 1525 return p; 1526 } 1527 1528 static struct task_struct * 1529 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 1530 { 1531 struct task_struct *p; 1532 struct rt_rq *rt_rq = &rq->rt; 1533 1534 if (need_pull_rt_task(rq, prev)) { 1535 /* 1536 * This is OK, because current is on_cpu, which avoids it being 1537 * picked for load-balance and preemption/IRQs are still 1538 * disabled avoiding further scheduler activity on it and we're 1539 * being very careful to re-start the picking loop. 1540 */ 1541 rq_unpin_lock(rq, rf); 1542 pull_rt_task(rq); 1543 rq_repin_lock(rq, rf); 1544 /* 1545 * pull_rt_task() can drop (and re-acquire) rq->lock; this 1546 * means a dl or stop task can slip in, in which case we need 1547 * to re-start task selection. 1548 */ 1549 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) || 1550 rq->dl.dl_nr_running)) 1551 return RETRY_TASK; 1552 } 1553 1554 /* 1555 * We may dequeue prev's rt_rq in put_prev_task(). 1556 * So, we update time before rt_nr_running check. 1557 */ 1558 if (prev->sched_class == &rt_sched_class) 1559 update_curr_rt(rq); 1560 1561 if (!rt_rq->rt_queued) 1562 return NULL; 1563 1564 put_prev_task(rq, prev); 1565 1566 p = _pick_next_task_rt(rq); 1567 1568 /* The running task is never eligible for pushing */ 1569 dequeue_pushable_task(rq, p); 1570 1571 queue_push_tasks(rq); 1572 1573 return p; 1574 } 1575 1576 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1577 { 1578 update_curr_rt(rq); 1579 1580 /* 1581 * The previous task needs to be made eligible for pushing 1582 * if it is still active 1583 */ 1584 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1585 enqueue_pushable_task(rq, p); 1586 } 1587 1588 #ifdef CONFIG_SMP 1589 1590 /* Only try algorithms three times */ 1591 #define RT_MAX_TRIES 3 1592 1593 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1594 { 1595 if (!task_running(rq, p) && 1596 cpumask_test_cpu(cpu, &p->cpus_allowed)) 1597 return 1; 1598 return 0; 1599 } 1600 1601 /* 1602 * Return the highest pushable rq's task, which is suitable to be executed 1603 * on the cpu, NULL otherwise 1604 */ 1605 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1606 { 1607 struct plist_head *head = &rq->rt.pushable_tasks; 1608 struct task_struct *p; 1609 1610 if (!has_pushable_tasks(rq)) 1611 return NULL; 1612 1613 plist_for_each_entry(p, head, pushable_tasks) { 1614 if (pick_rt_task(rq, p, cpu)) 1615 return p; 1616 } 1617 1618 return NULL; 1619 } 1620 1621 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1622 1623 static int find_lowest_rq(struct task_struct *task) 1624 { 1625 struct sched_domain *sd; 1626 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1627 int this_cpu = smp_processor_id(); 1628 int cpu = task_cpu(task); 1629 1630 /* Make sure the mask is initialized first */ 1631 if (unlikely(!lowest_mask)) 1632 return -1; 1633 1634 if (task->nr_cpus_allowed == 1) 1635 return -1; /* No other targets possible */ 1636 1637 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) 1638 return -1; /* No targets found */ 1639 1640 /* 1641 * At this point we have built a mask of cpus representing the 1642 * lowest priority tasks in the system. Now we want to elect 1643 * the best one based on our affinity and topology. 1644 * 1645 * We prioritize the last cpu that the task executed on since 1646 * it is most likely cache-hot in that location. 1647 */ 1648 if (cpumask_test_cpu(cpu, lowest_mask)) 1649 return cpu; 1650 1651 /* 1652 * Otherwise, we consult the sched_domains span maps to figure 1653 * out which cpu is logically closest to our hot cache data. 1654 */ 1655 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1656 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1657 1658 rcu_read_lock(); 1659 for_each_domain(cpu, sd) { 1660 if (sd->flags & SD_WAKE_AFFINE) { 1661 int best_cpu; 1662 1663 /* 1664 * "this_cpu" is cheaper to preempt than a 1665 * remote processor. 1666 */ 1667 if (this_cpu != -1 && 1668 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1669 rcu_read_unlock(); 1670 return this_cpu; 1671 } 1672 1673 best_cpu = cpumask_first_and(lowest_mask, 1674 sched_domain_span(sd)); 1675 if (best_cpu < nr_cpu_ids) { 1676 rcu_read_unlock(); 1677 return best_cpu; 1678 } 1679 } 1680 } 1681 rcu_read_unlock(); 1682 1683 /* 1684 * And finally, if there were no matches within the domains 1685 * just give the caller *something* to work with from the compatible 1686 * locations. 1687 */ 1688 if (this_cpu != -1) 1689 return this_cpu; 1690 1691 cpu = cpumask_any(lowest_mask); 1692 if (cpu < nr_cpu_ids) 1693 return cpu; 1694 return -1; 1695 } 1696 1697 /* Will lock the rq it finds */ 1698 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1699 { 1700 struct rq *lowest_rq = NULL; 1701 int tries; 1702 int cpu; 1703 1704 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1705 cpu = find_lowest_rq(task); 1706 1707 if ((cpu == -1) || (cpu == rq->cpu)) 1708 break; 1709 1710 lowest_rq = cpu_rq(cpu); 1711 1712 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1713 /* 1714 * Target rq has tasks of equal or higher priority, 1715 * retrying does not release any lock and is unlikely 1716 * to yield a different result. 1717 */ 1718 lowest_rq = NULL; 1719 break; 1720 } 1721 1722 /* if the prio of this runqueue changed, try again */ 1723 if (double_lock_balance(rq, lowest_rq)) { 1724 /* 1725 * We had to unlock the run queue. In 1726 * the mean time, task could have 1727 * migrated already or had its affinity changed. 1728 * Also make sure that it wasn't scheduled on its rq. 1729 */ 1730 if (unlikely(task_rq(task) != rq || 1731 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) || 1732 task_running(rq, task) || 1733 !rt_task(task) || 1734 !task_on_rq_queued(task))) { 1735 1736 double_unlock_balance(rq, lowest_rq); 1737 lowest_rq = NULL; 1738 break; 1739 } 1740 } 1741 1742 /* If this rq is still suitable use it. */ 1743 if (lowest_rq->rt.highest_prio.curr > task->prio) 1744 break; 1745 1746 /* try again */ 1747 double_unlock_balance(rq, lowest_rq); 1748 lowest_rq = NULL; 1749 } 1750 1751 return lowest_rq; 1752 } 1753 1754 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1755 { 1756 struct task_struct *p; 1757 1758 if (!has_pushable_tasks(rq)) 1759 return NULL; 1760 1761 p = plist_first_entry(&rq->rt.pushable_tasks, 1762 struct task_struct, pushable_tasks); 1763 1764 BUG_ON(rq->cpu != task_cpu(p)); 1765 BUG_ON(task_current(rq, p)); 1766 BUG_ON(p->nr_cpus_allowed <= 1); 1767 1768 BUG_ON(!task_on_rq_queued(p)); 1769 BUG_ON(!rt_task(p)); 1770 1771 return p; 1772 } 1773 1774 /* 1775 * If the current CPU has more than one RT task, see if the non 1776 * running task can migrate over to a CPU that is running a task 1777 * of lesser priority. 1778 */ 1779 static int push_rt_task(struct rq *rq) 1780 { 1781 struct task_struct *next_task; 1782 struct rq *lowest_rq; 1783 int ret = 0; 1784 1785 if (!rq->rt.overloaded) 1786 return 0; 1787 1788 next_task = pick_next_pushable_task(rq); 1789 if (!next_task) 1790 return 0; 1791 1792 retry: 1793 if (unlikely(next_task == rq->curr)) { 1794 WARN_ON(1); 1795 return 0; 1796 } 1797 1798 /* 1799 * It's possible that the next_task slipped in of 1800 * higher priority than current. If that's the case 1801 * just reschedule current. 1802 */ 1803 if (unlikely(next_task->prio < rq->curr->prio)) { 1804 resched_curr(rq); 1805 return 0; 1806 } 1807 1808 /* We might release rq lock */ 1809 get_task_struct(next_task); 1810 1811 /* find_lock_lowest_rq locks the rq if found */ 1812 lowest_rq = find_lock_lowest_rq(next_task, rq); 1813 if (!lowest_rq) { 1814 struct task_struct *task; 1815 /* 1816 * find_lock_lowest_rq releases rq->lock 1817 * so it is possible that next_task has migrated. 1818 * 1819 * We need to make sure that the task is still on the same 1820 * run-queue and is also still the next task eligible for 1821 * pushing. 1822 */ 1823 task = pick_next_pushable_task(rq); 1824 if (task == next_task) { 1825 /* 1826 * The task hasn't migrated, and is still the next 1827 * eligible task, but we failed to find a run-queue 1828 * to push it to. Do not retry in this case, since 1829 * other cpus will pull from us when ready. 1830 */ 1831 goto out; 1832 } 1833 1834 if (!task) 1835 /* No more tasks, just exit */ 1836 goto out; 1837 1838 /* 1839 * Something has shifted, try again. 1840 */ 1841 put_task_struct(next_task); 1842 next_task = task; 1843 goto retry; 1844 } 1845 1846 deactivate_task(rq, next_task, 0); 1847 set_task_cpu(next_task, lowest_rq->cpu); 1848 activate_task(lowest_rq, next_task, 0); 1849 ret = 1; 1850 1851 resched_curr(lowest_rq); 1852 1853 double_unlock_balance(rq, lowest_rq); 1854 1855 out: 1856 put_task_struct(next_task); 1857 1858 return ret; 1859 } 1860 1861 static void push_rt_tasks(struct rq *rq) 1862 { 1863 /* push_rt_task will return true if it moved an RT */ 1864 while (push_rt_task(rq)) 1865 ; 1866 } 1867 1868 #ifdef HAVE_RT_PUSH_IPI 1869 1870 /* 1871 * When a high priority task schedules out from a CPU and a lower priority 1872 * task is scheduled in, a check is made to see if there's any RT tasks 1873 * on other CPUs that are waiting to run because a higher priority RT task 1874 * is currently running on its CPU. In this case, the CPU with multiple RT 1875 * tasks queued on it (overloaded) needs to be notified that a CPU has opened 1876 * up that may be able to run one of its non-running queued RT tasks. 1877 * 1878 * All CPUs with overloaded RT tasks need to be notified as there is currently 1879 * no way to know which of these CPUs have the highest priority task waiting 1880 * to run. Instead of trying to take a spinlock on each of these CPUs, 1881 * which has shown to cause large latency when done on machines with many 1882 * CPUs, sending an IPI to the CPUs to have them push off the overloaded 1883 * RT tasks waiting to run. 1884 * 1885 * Just sending an IPI to each of the CPUs is also an issue, as on large 1886 * count CPU machines, this can cause an IPI storm on a CPU, especially 1887 * if its the only CPU with multiple RT tasks queued, and a large number 1888 * of CPUs scheduling a lower priority task at the same time. 1889 * 1890 * Each root domain has its own irq work function that can iterate over 1891 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT 1892 * tassk must be checked if there's one or many CPUs that are lowering 1893 * their priority, there's a single irq work iterator that will try to 1894 * push off RT tasks that are waiting to run. 1895 * 1896 * When a CPU schedules a lower priority task, it will kick off the 1897 * irq work iterator that will jump to each CPU with overloaded RT tasks. 1898 * As it only takes the first CPU that schedules a lower priority task 1899 * to start the process, the rto_start variable is incremented and if 1900 * the atomic result is one, then that CPU will try to take the rto_lock. 1901 * This prevents high contention on the lock as the process handles all 1902 * CPUs scheduling lower priority tasks. 1903 * 1904 * All CPUs that are scheduling a lower priority task will increment the 1905 * rt_loop_next variable. This will make sure that the irq work iterator 1906 * checks all RT overloaded CPUs whenever a CPU schedules a new lower 1907 * priority task, even if the iterator is in the middle of a scan. Incrementing 1908 * the rt_loop_next will cause the iterator to perform another scan. 1909 * 1910 */ 1911 static int rto_next_cpu(struct root_domain *rd) 1912 { 1913 int next; 1914 int cpu; 1915 1916 /* 1917 * When starting the IPI RT pushing, the rto_cpu is set to -1, 1918 * rt_next_cpu() will simply return the first CPU found in 1919 * the rto_mask. 1920 * 1921 * If rto_next_cpu() is called with rto_cpu is a valid cpu, it 1922 * will return the next CPU found in the rto_mask. 1923 * 1924 * If there are no more CPUs left in the rto_mask, then a check is made 1925 * against rto_loop and rto_loop_next. rto_loop is only updated with 1926 * the rto_lock held, but any CPU may increment the rto_loop_next 1927 * without any locking. 1928 */ 1929 for (;;) { 1930 1931 /* When rto_cpu is -1 this acts like cpumask_first() */ 1932 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); 1933 1934 rd->rto_cpu = cpu; 1935 1936 if (cpu < nr_cpu_ids) 1937 return cpu; 1938 1939 rd->rto_cpu = -1; 1940 1941 /* 1942 * ACQUIRE ensures we see the @rto_mask changes 1943 * made prior to the @next value observed. 1944 * 1945 * Matches WMB in rt_set_overload(). 1946 */ 1947 next = atomic_read_acquire(&rd->rto_loop_next); 1948 1949 if (rd->rto_loop == next) 1950 break; 1951 1952 rd->rto_loop = next; 1953 } 1954 1955 return -1; 1956 } 1957 1958 static inline bool rto_start_trylock(atomic_t *v) 1959 { 1960 return !atomic_cmpxchg_acquire(v, 0, 1); 1961 } 1962 1963 static inline void rto_start_unlock(atomic_t *v) 1964 { 1965 atomic_set_release(v, 0); 1966 } 1967 1968 static void tell_cpu_to_push(struct rq *rq) 1969 { 1970 int cpu = -1; 1971 1972 /* Keep the loop going if the IPI is currently active */ 1973 atomic_inc(&rq->rd->rto_loop_next); 1974 1975 /* Only one CPU can initiate a loop at a time */ 1976 if (!rto_start_trylock(&rq->rd->rto_loop_start)) 1977 return; 1978 1979 raw_spin_lock(&rq->rd->rto_lock); 1980 1981 /* 1982 * The rto_cpu is updated under the lock, if it has a valid cpu 1983 * then the IPI is still running and will continue due to the 1984 * update to loop_next, and nothing needs to be done here. 1985 * Otherwise it is finishing up and an ipi needs to be sent. 1986 */ 1987 if (rq->rd->rto_cpu < 0) 1988 cpu = rto_next_cpu(rq->rd); 1989 1990 raw_spin_unlock(&rq->rd->rto_lock); 1991 1992 rto_start_unlock(&rq->rd->rto_loop_start); 1993 1994 if (cpu >= 0) { 1995 /* Make sure the rd does not get freed while pushing */ 1996 sched_get_rd(rq->rd); 1997 irq_work_queue_on(&rq->rd->rto_push_work, cpu); 1998 } 1999 } 2000 2001 /* Called from hardirq context */ 2002 void rto_push_irq_work_func(struct irq_work *work) 2003 { 2004 struct root_domain *rd = 2005 container_of(work, struct root_domain, rto_push_work); 2006 struct rq *rq; 2007 int cpu; 2008 2009 rq = this_rq(); 2010 2011 /* 2012 * We do not need to grab the lock to check for has_pushable_tasks. 2013 * When it gets updated, a check is made if a push is possible. 2014 */ 2015 if (has_pushable_tasks(rq)) { 2016 raw_spin_lock(&rq->lock); 2017 push_rt_tasks(rq); 2018 raw_spin_unlock(&rq->lock); 2019 } 2020 2021 raw_spin_lock(&rd->rto_lock); 2022 2023 /* Pass the IPI to the next rt overloaded queue */ 2024 cpu = rto_next_cpu(rd); 2025 2026 raw_spin_unlock(&rd->rto_lock); 2027 2028 if (cpu < 0) { 2029 sched_put_rd(rd); 2030 return; 2031 } 2032 2033 /* Try the next RT overloaded CPU */ 2034 irq_work_queue_on(&rd->rto_push_work, cpu); 2035 } 2036 #endif /* HAVE_RT_PUSH_IPI */ 2037 2038 static void pull_rt_task(struct rq *this_rq) 2039 { 2040 int this_cpu = this_rq->cpu, cpu; 2041 bool resched = false; 2042 struct task_struct *p; 2043 struct rq *src_rq; 2044 int rt_overload_count = rt_overloaded(this_rq); 2045 2046 if (likely(!rt_overload_count)) 2047 return; 2048 2049 /* 2050 * Match the barrier from rt_set_overloaded; this guarantees that if we 2051 * see overloaded we must also see the rto_mask bit. 2052 */ 2053 smp_rmb(); 2054 2055 /* If we are the only overloaded CPU do nothing */ 2056 if (rt_overload_count == 1 && 2057 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) 2058 return; 2059 2060 #ifdef HAVE_RT_PUSH_IPI 2061 if (sched_feat(RT_PUSH_IPI)) { 2062 tell_cpu_to_push(this_rq); 2063 return; 2064 } 2065 #endif 2066 2067 for_each_cpu(cpu, this_rq->rd->rto_mask) { 2068 if (this_cpu == cpu) 2069 continue; 2070 2071 src_rq = cpu_rq(cpu); 2072 2073 /* 2074 * Don't bother taking the src_rq->lock if the next highest 2075 * task is known to be lower-priority than our current task. 2076 * This may look racy, but if this value is about to go 2077 * logically higher, the src_rq will push this task away. 2078 * And if its going logically lower, we do not care 2079 */ 2080 if (src_rq->rt.highest_prio.next >= 2081 this_rq->rt.highest_prio.curr) 2082 continue; 2083 2084 /* 2085 * We can potentially drop this_rq's lock in 2086 * double_lock_balance, and another CPU could 2087 * alter this_rq 2088 */ 2089 double_lock_balance(this_rq, src_rq); 2090 2091 /* 2092 * We can pull only a task, which is pushable 2093 * on its rq, and no others. 2094 */ 2095 p = pick_highest_pushable_task(src_rq, this_cpu); 2096 2097 /* 2098 * Do we have an RT task that preempts 2099 * the to-be-scheduled task? 2100 */ 2101 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 2102 WARN_ON(p == src_rq->curr); 2103 WARN_ON(!task_on_rq_queued(p)); 2104 2105 /* 2106 * There's a chance that p is higher in priority 2107 * than what's currently running on its cpu. 2108 * This is just that p is wakeing up and hasn't 2109 * had a chance to schedule. We only pull 2110 * p if it is lower in priority than the 2111 * current task on the run queue 2112 */ 2113 if (p->prio < src_rq->curr->prio) 2114 goto skip; 2115 2116 resched = true; 2117 2118 deactivate_task(src_rq, p, 0); 2119 set_task_cpu(p, this_cpu); 2120 activate_task(this_rq, p, 0); 2121 /* 2122 * We continue with the search, just in 2123 * case there's an even higher prio task 2124 * in another runqueue. (low likelihood 2125 * but possible) 2126 */ 2127 } 2128 skip: 2129 double_unlock_balance(this_rq, src_rq); 2130 } 2131 2132 if (resched) 2133 resched_curr(this_rq); 2134 } 2135 2136 /* 2137 * If we are not running and we are not going to reschedule soon, we should 2138 * try to push tasks away now 2139 */ 2140 static void task_woken_rt(struct rq *rq, struct task_struct *p) 2141 { 2142 if (!task_running(rq, p) && 2143 !test_tsk_need_resched(rq->curr) && 2144 p->nr_cpus_allowed > 1 && 2145 (dl_task(rq->curr) || rt_task(rq->curr)) && 2146 (rq->curr->nr_cpus_allowed < 2 || 2147 rq->curr->prio <= p->prio)) 2148 push_rt_tasks(rq); 2149 } 2150 2151 /* Assumes rq->lock is held */ 2152 static void rq_online_rt(struct rq *rq) 2153 { 2154 if (rq->rt.overloaded) 2155 rt_set_overload(rq); 2156 2157 __enable_runtime(rq); 2158 2159 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2160 } 2161 2162 /* Assumes rq->lock is held */ 2163 static void rq_offline_rt(struct rq *rq) 2164 { 2165 if (rq->rt.overloaded) 2166 rt_clear_overload(rq); 2167 2168 __disable_runtime(rq); 2169 2170 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 2171 } 2172 2173 /* 2174 * When switch from the rt queue, we bring ourselves to a position 2175 * that we might want to pull RT tasks from other runqueues. 2176 */ 2177 static void switched_from_rt(struct rq *rq, struct task_struct *p) 2178 { 2179 /* 2180 * If there are other RT tasks then we will reschedule 2181 * and the scheduling of the other RT tasks will handle 2182 * the balancing. But if we are the last RT task 2183 * we may need to handle the pulling of RT tasks 2184 * now. 2185 */ 2186 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 2187 return; 2188 2189 queue_pull_task(rq); 2190 } 2191 2192 void __init init_sched_rt_class(void) 2193 { 2194 unsigned int i; 2195 2196 for_each_possible_cpu(i) { 2197 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 2198 GFP_KERNEL, cpu_to_node(i)); 2199 } 2200 } 2201 #endif /* CONFIG_SMP */ 2202 2203 /* 2204 * When switching a task to RT, we may overload the runqueue 2205 * with RT tasks. In this case we try to push them off to 2206 * other runqueues. 2207 */ 2208 static void switched_to_rt(struct rq *rq, struct task_struct *p) 2209 { 2210 /* 2211 * If we are already running, then there's nothing 2212 * that needs to be done. But if we are not running 2213 * we may need to preempt the current running task. 2214 * If that current running task is also an RT task 2215 * then see if we can move to another run queue. 2216 */ 2217 if (task_on_rq_queued(p) && rq->curr != p) { 2218 #ifdef CONFIG_SMP 2219 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) 2220 queue_push_tasks(rq); 2221 #endif /* CONFIG_SMP */ 2222 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq))) 2223 resched_curr(rq); 2224 } 2225 } 2226 2227 /* 2228 * Priority of the task has changed. This may cause 2229 * us to initiate a push or pull. 2230 */ 2231 static void 2232 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2233 { 2234 if (!task_on_rq_queued(p)) 2235 return; 2236 2237 if (rq->curr == p) { 2238 #ifdef CONFIG_SMP 2239 /* 2240 * If our priority decreases while running, we 2241 * may need to pull tasks to this runqueue. 2242 */ 2243 if (oldprio < p->prio) 2244 queue_pull_task(rq); 2245 2246 /* 2247 * If there's a higher priority task waiting to run 2248 * then reschedule. 2249 */ 2250 if (p->prio > rq->rt.highest_prio.curr) 2251 resched_curr(rq); 2252 #else 2253 /* For UP simply resched on drop of prio */ 2254 if (oldprio < p->prio) 2255 resched_curr(rq); 2256 #endif /* CONFIG_SMP */ 2257 } else { 2258 /* 2259 * This task is not running, but if it is 2260 * greater than the current running task 2261 * then reschedule. 2262 */ 2263 if (p->prio < rq->curr->prio) 2264 resched_curr(rq); 2265 } 2266 } 2267 2268 #ifdef CONFIG_POSIX_TIMERS 2269 static void watchdog(struct rq *rq, struct task_struct *p) 2270 { 2271 unsigned long soft, hard; 2272 2273 /* max may change after cur was read, this will be fixed next tick */ 2274 soft = task_rlimit(p, RLIMIT_RTTIME); 2275 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2276 2277 if (soft != RLIM_INFINITY) { 2278 unsigned long next; 2279 2280 if (p->rt.watchdog_stamp != jiffies) { 2281 p->rt.timeout++; 2282 p->rt.watchdog_stamp = jiffies; 2283 } 2284 2285 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2286 if (p->rt.timeout > next) 2287 p->cputime_expires.sched_exp = p->se.sum_exec_runtime; 2288 } 2289 } 2290 #else 2291 static inline void watchdog(struct rq *rq, struct task_struct *p) { } 2292 #endif 2293 2294 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2295 { 2296 struct sched_rt_entity *rt_se = &p->rt; 2297 2298 update_curr_rt(rq); 2299 2300 watchdog(rq, p); 2301 2302 /* 2303 * RR tasks need a special form of timeslice management. 2304 * FIFO tasks have no timeslices. 2305 */ 2306 if (p->policy != SCHED_RR) 2307 return; 2308 2309 if (--p->rt.time_slice) 2310 return; 2311 2312 p->rt.time_slice = sched_rr_timeslice; 2313 2314 /* 2315 * Requeue to the end of queue if we (and all of our ancestors) are not 2316 * the only element on the queue 2317 */ 2318 for_each_sched_rt_entity(rt_se) { 2319 if (rt_se->run_list.prev != rt_se->run_list.next) { 2320 requeue_task_rt(rq, p, 0); 2321 resched_curr(rq); 2322 return; 2323 } 2324 } 2325 } 2326 2327 static void set_curr_task_rt(struct rq *rq) 2328 { 2329 struct task_struct *p = rq->curr; 2330 2331 p->se.exec_start = rq_clock_task(rq); 2332 2333 /* The running task is never eligible for pushing */ 2334 dequeue_pushable_task(rq, p); 2335 } 2336 2337 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2338 { 2339 /* 2340 * Time slice is 0 for SCHED_FIFO tasks 2341 */ 2342 if (task->policy == SCHED_RR) 2343 return sched_rr_timeslice; 2344 else 2345 return 0; 2346 } 2347 2348 const struct sched_class rt_sched_class = { 2349 .next = &fair_sched_class, 2350 .enqueue_task = enqueue_task_rt, 2351 .dequeue_task = dequeue_task_rt, 2352 .yield_task = yield_task_rt, 2353 2354 .check_preempt_curr = check_preempt_curr_rt, 2355 2356 .pick_next_task = pick_next_task_rt, 2357 .put_prev_task = put_prev_task_rt, 2358 2359 #ifdef CONFIG_SMP 2360 .select_task_rq = select_task_rq_rt, 2361 2362 .set_cpus_allowed = set_cpus_allowed_common, 2363 .rq_online = rq_online_rt, 2364 .rq_offline = rq_offline_rt, 2365 .task_woken = task_woken_rt, 2366 .switched_from = switched_from_rt, 2367 #endif 2368 2369 .set_curr_task = set_curr_task_rt, 2370 .task_tick = task_tick_rt, 2371 2372 .get_rr_interval = get_rr_interval_rt, 2373 2374 .prio_changed = prio_changed_rt, 2375 .switched_to = switched_to_rt, 2376 2377 .update_curr = update_curr_rt, 2378 }; 2379 2380 #ifdef CONFIG_RT_GROUP_SCHED 2381 /* 2382 * Ensure that the real time constraints are schedulable. 2383 */ 2384 static DEFINE_MUTEX(rt_constraints_mutex); 2385 2386 /* Must be called with tasklist_lock held */ 2387 static inline int tg_has_rt_tasks(struct task_group *tg) 2388 { 2389 struct task_struct *g, *p; 2390 2391 /* 2392 * Autogroups do not have RT tasks; see autogroup_create(). 2393 */ 2394 if (task_group_is_autogroup(tg)) 2395 return 0; 2396 2397 for_each_process_thread(g, p) { 2398 if (rt_task(p) && task_group(p) == tg) 2399 return 1; 2400 } 2401 2402 return 0; 2403 } 2404 2405 struct rt_schedulable_data { 2406 struct task_group *tg; 2407 u64 rt_period; 2408 u64 rt_runtime; 2409 }; 2410 2411 static int tg_rt_schedulable(struct task_group *tg, void *data) 2412 { 2413 struct rt_schedulable_data *d = data; 2414 struct task_group *child; 2415 unsigned long total, sum = 0; 2416 u64 period, runtime; 2417 2418 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2419 runtime = tg->rt_bandwidth.rt_runtime; 2420 2421 if (tg == d->tg) { 2422 period = d->rt_period; 2423 runtime = d->rt_runtime; 2424 } 2425 2426 /* 2427 * Cannot have more runtime than the period. 2428 */ 2429 if (runtime > period && runtime != RUNTIME_INF) 2430 return -EINVAL; 2431 2432 /* 2433 * Ensure we don't starve existing RT tasks. 2434 */ 2435 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 2436 return -EBUSY; 2437 2438 total = to_ratio(period, runtime); 2439 2440 /* 2441 * Nobody can have more than the global setting allows. 2442 */ 2443 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 2444 return -EINVAL; 2445 2446 /* 2447 * The sum of our children's runtime should not exceed our own. 2448 */ 2449 list_for_each_entry_rcu(child, &tg->children, siblings) { 2450 period = ktime_to_ns(child->rt_bandwidth.rt_period); 2451 runtime = child->rt_bandwidth.rt_runtime; 2452 2453 if (child == d->tg) { 2454 period = d->rt_period; 2455 runtime = d->rt_runtime; 2456 } 2457 2458 sum += to_ratio(period, runtime); 2459 } 2460 2461 if (sum > total) 2462 return -EINVAL; 2463 2464 return 0; 2465 } 2466 2467 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 2468 { 2469 int ret; 2470 2471 struct rt_schedulable_data data = { 2472 .tg = tg, 2473 .rt_period = period, 2474 .rt_runtime = runtime, 2475 }; 2476 2477 rcu_read_lock(); 2478 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 2479 rcu_read_unlock(); 2480 2481 return ret; 2482 } 2483 2484 static int tg_set_rt_bandwidth(struct task_group *tg, 2485 u64 rt_period, u64 rt_runtime) 2486 { 2487 int i, err = 0; 2488 2489 /* 2490 * Disallowing the root group RT runtime is BAD, it would disallow the 2491 * kernel creating (and or operating) RT threads. 2492 */ 2493 if (tg == &root_task_group && rt_runtime == 0) 2494 return -EINVAL; 2495 2496 /* No period doesn't make any sense. */ 2497 if (rt_period == 0) 2498 return -EINVAL; 2499 2500 mutex_lock(&rt_constraints_mutex); 2501 read_lock(&tasklist_lock); 2502 err = __rt_schedulable(tg, rt_period, rt_runtime); 2503 if (err) 2504 goto unlock; 2505 2506 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2507 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 2508 tg->rt_bandwidth.rt_runtime = rt_runtime; 2509 2510 for_each_possible_cpu(i) { 2511 struct rt_rq *rt_rq = tg->rt_rq[i]; 2512 2513 raw_spin_lock(&rt_rq->rt_runtime_lock); 2514 rt_rq->rt_runtime = rt_runtime; 2515 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2516 } 2517 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2518 unlock: 2519 read_unlock(&tasklist_lock); 2520 mutex_unlock(&rt_constraints_mutex); 2521 2522 return err; 2523 } 2524 2525 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 2526 { 2527 u64 rt_runtime, rt_period; 2528 2529 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2530 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 2531 if (rt_runtime_us < 0) 2532 rt_runtime = RUNTIME_INF; 2533 2534 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2535 } 2536 2537 long sched_group_rt_runtime(struct task_group *tg) 2538 { 2539 u64 rt_runtime_us; 2540 2541 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 2542 return -1; 2543 2544 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 2545 do_div(rt_runtime_us, NSEC_PER_USEC); 2546 return rt_runtime_us; 2547 } 2548 2549 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 2550 { 2551 u64 rt_runtime, rt_period; 2552 2553 rt_period = rt_period_us * NSEC_PER_USEC; 2554 rt_runtime = tg->rt_bandwidth.rt_runtime; 2555 2556 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2557 } 2558 2559 long sched_group_rt_period(struct task_group *tg) 2560 { 2561 u64 rt_period_us; 2562 2563 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 2564 do_div(rt_period_us, NSEC_PER_USEC); 2565 return rt_period_us; 2566 } 2567 2568 static int sched_rt_global_constraints(void) 2569 { 2570 int ret = 0; 2571 2572 mutex_lock(&rt_constraints_mutex); 2573 read_lock(&tasklist_lock); 2574 ret = __rt_schedulable(NULL, 0, 0); 2575 read_unlock(&tasklist_lock); 2576 mutex_unlock(&rt_constraints_mutex); 2577 2578 return ret; 2579 } 2580 2581 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 2582 { 2583 /* Don't accept realtime tasks when there is no way for them to run */ 2584 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 2585 return 0; 2586 2587 return 1; 2588 } 2589 2590 #else /* !CONFIG_RT_GROUP_SCHED */ 2591 static int sched_rt_global_constraints(void) 2592 { 2593 unsigned long flags; 2594 int i; 2595 2596 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 2597 for_each_possible_cpu(i) { 2598 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 2599 2600 raw_spin_lock(&rt_rq->rt_runtime_lock); 2601 rt_rq->rt_runtime = global_rt_runtime(); 2602 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2603 } 2604 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 2605 2606 return 0; 2607 } 2608 #endif /* CONFIG_RT_GROUP_SCHED */ 2609 2610 static int sched_rt_global_validate(void) 2611 { 2612 if (sysctl_sched_rt_period <= 0) 2613 return -EINVAL; 2614 2615 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 2616 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 2617 return -EINVAL; 2618 2619 return 0; 2620 } 2621 2622 static void sched_rt_do_global(void) 2623 { 2624 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 2625 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 2626 } 2627 2628 int sched_rt_handler(struct ctl_table *table, int write, 2629 void __user *buffer, size_t *lenp, 2630 loff_t *ppos) 2631 { 2632 int old_period, old_runtime; 2633 static DEFINE_MUTEX(mutex); 2634 int ret; 2635 2636 mutex_lock(&mutex); 2637 old_period = sysctl_sched_rt_period; 2638 old_runtime = sysctl_sched_rt_runtime; 2639 2640 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2641 2642 if (!ret && write) { 2643 ret = sched_rt_global_validate(); 2644 if (ret) 2645 goto undo; 2646 2647 ret = sched_dl_global_validate(); 2648 if (ret) 2649 goto undo; 2650 2651 ret = sched_rt_global_constraints(); 2652 if (ret) 2653 goto undo; 2654 2655 sched_rt_do_global(); 2656 sched_dl_do_global(); 2657 } 2658 if (0) { 2659 undo: 2660 sysctl_sched_rt_period = old_period; 2661 sysctl_sched_rt_runtime = old_runtime; 2662 } 2663 mutex_unlock(&mutex); 2664 2665 return ret; 2666 } 2667 2668 int sched_rr_handler(struct ctl_table *table, int write, 2669 void __user *buffer, size_t *lenp, 2670 loff_t *ppos) 2671 { 2672 int ret; 2673 static DEFINE_MUTEX(mutex); 2674 2675 mutex_lock(&mutex); 2676 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2677 /* 2678 * Make sure that internally we keep jiffies. 2679 * Also, writing zero resets the timeslice to default: 2680 */ 2681 if (!ret && write) { 2682 sched_rr_timeslice = 2683 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 2684 msecs_to_jiffies(sysctl_sched_rr_timeslice); 2685 } 2686 mutex_unlock(&mutex); 2687 return ret; 2688 } 2689 2690 #ifdef CONFIG_SCHED_DEBUG 2691 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2692 2693 void print_rt_stats(struct seq_file *m, int cpu) 2694 { 2695 rt_rq_iter_t iter; 2696 struct rt_rq *rt_rq; 2697 2698 rcu_read_lock(); 2699 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2700 print_rt_rq(m, cpu, rt_rq); 2701 rcu_read_unlock(); 2702 } 2703 #endif /* CONFIG_SCHED_DEBUG */ 2704