xref: /linux/kernel/sched/rt.c (revision 93d90ad708b8da6efc0e487b66111aa9db7f70c7)
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5 
6 #include "sched.h"
7 
8 #include <linux/slab.h>
9 
10 int sched_rr_timeslice = RR_TIMESLICE;
11 
12 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
13 
14 struct rt_bandwidth def_rt_bandwidth;
15 
16 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
17 {
18 	struct rt_bandwidth *rt_b =
19 		container_of(timer, struct rt_bandwidth, rt_period_timer);
20 	ktime_t now;
21 	int overrun;
22 	int idle = 0;
23 
24 	for (;;) {
25 		now = hrtimer_cb_get_time(timer);
26 		overrun = hrtimer_forward(timer, now, rt_b->rt_period);
27 
28 		if (!overrun)
29 			break;
30 
31 		idle = do_sched_rt_period_timer(rt_b, overrun);
32 	}
33 
34 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
35 }
36 
37 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
38 {
39 	rt_b->rt_period = ns_to_ktime(period);
40 	rt_b->rt_runtime = runtime;
41 
42 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
43 
44 	hrtimer_init(&rt_b->rt_period_timer,
45 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
46 	rt_b->rt_period_timer.function = sched_rt_period_timer;
47 }
48 
49 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
50 {
51 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
52 		return;
53 
54 	if (hrtimer_active(&rt_b->rt_period_timer))
55 		return;
56 
57 	raw_spin_lock(&rt_b->rt_runtime_lock);
58 	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
59 	raw_spin_unlock(&rt_b->rt_runtime_lock);
60 }
61 
62 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
63 {
64 	struct rt_prio_array *array;
65 	int i;
66 
67 	array = &rt_rq->active;
68 	for (i = 0; i < MAX_RT_PRIO; i++) {
69 		INIT_LIST_HEAD(array->queue + i);
70 		__clear_bit(i, array->bitmap);
71 	}
72 	/* delimiter for bitsearch: */
73 	__set_bit(MAX_RT_PRIO, array->bitmap);
74 
75 #if defined CONFIG_SMP
76 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
77 	rt_rq->highest_prio.next = MAX_RT_PRIO;
78 	rt_rq->rt_nr_migratory = 0;
79 	rt_rq->overloaded = 0;
80 	plist_head_init(&rt_rq->pushable_tasks);
81 #endif
82 	/* We start is dequeued state, because no RT tasks are queued */
83 	rt_rq->rt_queued = 0;
84 
85 	rt_rq->rt_time = 0;
86 	rt_rq->rt_throttled = 0;
87 	rt_rq->rt_runtime = 0;
88 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
89 }
90 
91 #ifdef CONFIG_RT_GROUP_SCHED
92 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
93 {
94 	hrtimer_cancel(&rt_b->rt_period_timer);
95 }
96 
97 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
98 
99 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
100 {
101 #ifdef CONFIG_SCHED_DEBUG
102 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
103 #endif
104 	return container_of(rt_se, struct task_struct, rt);
105 }
106 
107 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
108 {
109 	return rt_rq->rq;
110 }
111 
112 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
113 {
114 	return rt_se->rt_rq;
115 }
116 
117 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
118 {
119 	struct rt_rq *rt_rq = rt_se->rt_rq;
120 
121 	return rt_rq->rq;
122 }
123 
124 void free_rt_sched_group(struct task_group *tg)
125 {
126 	int i;
127 
128 	if (tg->rt_se)
129 		destroy_rt_bandwidth(&tg->rt_bandwidth);
130 
131 	for_each_possible_cpu(i) {
132 		if (tg->rt_rq)
133 			kfree(tg->rt_rq[i]);
134 		if (tg->rt_se)
135 			kfree(tg->rt_se[i]);
136 	}
137 
138 	kfree(tg->rt_rq);
139 	kfree(tg->rt_se);
140 }
141 
142 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
143 		struct sched_rt_entity *rt_se, int cpu,
144 		struct sched_rt_entity *parent)
145 {
146 	struct rq *rq = cpu_rq(cpu);
147 
148 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
149 	rt_rq->rt_nr_boosted = 0;
150 	rt_rq->rq = rq;
151 	rt_rq->tg = tg;
152 
153 	tg->rt_rq[cpu] = rt_rq;
154 	tg->rt_se[cpu] = rt_se;
155 
156 	if (!rt_se)
157 		return;
158 
159 	if (!parent)
160 		rt_se->rt_rq = &rq->rt;
161 	else
162 		rt_se->rt_rq = parent->my_q;
163 
164 	rt_se->my_q = rt_rq;
165 	rt_se->parent = parent;
166 	INIT_LIST_HEAD(&rt_se->run_list);
167 }
168 
169 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
170 {
171 	struct rt_rq *rt_rq;
172 	struct sched_rt_entity *rt_se;
173 	int i;
174 
175 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
176 	if (!tg->rt_rq)
177 		goto err;
178 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
179 	if (!tg->rt_se)
180 		goto err;
181 
182 	init_rt_bandwidth(&tg->rt_bandwidth,
183 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
184 
185 	for_each_possible_cpu(i) {
186 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
187 				     GFP_KERNEL, cpu_to_node(i));
188 		if (!rt_rq)
189 			goto err;
190 
191 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
192 				     GFP_KERNEL, cpu_to_node(i));
193 		if (!rt_se)
194 			goto err_free_rq;
195 
196 		init_rt_rq(rt_rq, cpu_rq(i));
197 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
198 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
199 	}
200 
201 	return 1;
202 
203 err_free_rq:
204 	kfree(rt_rq);
205 err:
206 	return 0;
207 }
208 
209 #else /* CONFIG_RT_GROUP_SCHED */
210 
211 #define rt_entity_is_task(rt_se) (1)
212 
213 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
214 {
215 	return container_of(rt_se, struct task_struct, rt);
216 }
217 
218 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
219 {
220 	return container_of(rt_rq, struct rq, rt);
221 }
222 
223 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
224 {
225 	struct task_struct *p = rt_task_of(rt_se);
226 
227 	return task_rq(p);
228 }
229 
230 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
231 {
232 	struct rq *rq = rq_of_rt_se(rt_se);
233 
234 	return &rq->rt;
235 }
236 
237 void free_rt_sched_group(struct task_group *tg) { }
238 
239 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
240 {
241 	return 1;
242 }
243 #endif /* CONFIG_RT_GROUP_SCHED */
244 
245 #ifdef CONFIG_SMP
246 
247 static int pull_rt_task(struct rq *this_rq);
248 
249 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
250 {
251 	/* Try to pull RT tasks here if we lower this rq's prio */
252 	return rq->rt.highest_prio.curr > prev->prio;
253 }
254 
255 static inline int rt_overloaded(struct rq *rq)
256 {
257 	return atomic_read(&rq->rd->rto_count);
258 }
259 
260 static inline void rt_set_overload(struct rq *rq)
261 {
262 	if (!rq->online)
263 		return;
264 
265 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
266 	/*
267 	 * Make sure the mask is visible before we set
268 	 * the overload count. That is checked to determine
269 	 * if we should look at the mask. It would be a shame
270 	 * if we looked at the mask, but the mask was not
271 	 * updated yet.
272 	 *
273 	 * Matched by the barrier in pull_rt_task().
274 	 */
275 	smp_wmb();
276 	atomic_inc(&rq->rd->rto_count);
277 }
278 
279 static inline void rt_clear_overload(struct rq *rq)
280 {
281 	if (!rq->online)
282 		return;
283 
284 	/* the order here really doesn't matter */
285 	atomic_dec(&rq->rd->rto_count);
286 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
287 }
288 
289 static void update_rt_migration(struct rt_rq *rt_rq)
290 {
291 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
292 		if (!rt_rq->overloaded) {
293 			rt_set_overload(rq_of_rt_rq(rt_rq));
294 			rt_rq->overloaded = 1;
295 		}
296 	} else if (rt_rq->overloaded) {
297 		rt_clear_overload(rq_of_rt_rq(rt_rq));
298 		rt_rq->overloaded = 0;
299 	}
300 }
301 
302 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
303 {
304 	struct task_struct *p;
305 
306 	if (!rt_entity_is_task(rt_se))
307 		return;
308 
309 	p = rt_task_of(rt_se);
310 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
311 
312 	rt_rq->rt_nr_total++;
313 	if (p->nr_cpus_allowed > 1)
314 		rt_rq->rt_nr_migratory++;
315 
316 	update_rt_migration(rt_rq);
317 }
318 
319 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
320 {
321 	struct task_struct *p;
322 
323 	if (!rt_entity_is_task(rt_se))
324 		return;
325 
326 	p = rt_task_of(rt_se);
327 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
328 
329 	rt_rq->rt_nr_total--;
330 	if (p->nr_cpus_allowed > 1)
331 		rt_rq->rt_nr_migratory--;
332 
333 	update_rt_migration(rt_rq);
334 }
335 
336 static inline int has_pushable_tasks(struct rq *rq)
337 {
338 	return !plist_head_empty(&rq->rt.pushable_tasks);
339 }
340 
341 static inline void set_post_schedule(struct rq *rq)
342 {
343 	/*
344 	 * We detect this state here so that we can avoid taking the RQ
345 	 * lock again later if there is no need to push
346 	 */
347 	rq->post_schedule = has_pushable_tasks(rq);
348 }
349 
350 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
351 {
352 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
353 	plist_node_init(&p->pushable_tasks, p->prio);
354 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
355 
356 	/* Update the highest prio pushable task */
357 	if (p->prio < rq->rt.highest_prio.next)
358 		rq->rt.highest_prio.next = p->prio;
359 }
360 
361 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
362 {
363 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
364 
365 	/* Update the new highest prio pushable task */
366 	if (has_pushable_tasks(rq)) {
367 		p = plist_first_entry(&rq->rt.pushable_tasks,
368 				      struct task_struct, pushable_tasks);
369 		rq->rt.highest_prio.next = p->prio;
370 	} else
371 		rq->rt.highest_prio.next = MAX_RT_PRIO;
372 }
373 
374 #else
375 
376 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
377 {
378 }
379 
380 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
381 {
382 }
383 
384 static inline
385 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
386 {
387 }
388 
389 static inline
390 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
391 {
392 }
393 
394 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
395 {
396 	return false;
397 }
398 
399 static inline int pull_rt_task(struct rq *this_rq)
400 {
401 	return 0;
402 }
403 
404 static inline void set_post_schedule(struct rq *rq)
405 {
406 }
407 #endif /* CONFIG_SMP */
408 
409 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
410 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
411 
412 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
413 {
414 	return !list_empty(&rt_se->run_list);
415 }
416 
417 #ifdef CONFIG_RT_GROUP_SCHED
418 
419 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
420 {
421 	if (!rt_rq->tg)
422 		return RUNTIME_INF;
423 
424 	return rt_rq->rt_runtime;
425 }
426 
427 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
428 {
429 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
430 }
431 
432 typedef struct task_group *rt_rq_iter_t;
433 
434 static inline struct task_group *next_task_group(struct task_group *tg)
435 {
436 	do {
437 		tg = list_entry_rcu(tg->list.next,
438 			typeof(struct task_group), list);
439 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
440 
441 	if (&tg->list == &task_groups)
442 		tg = NULL;
443 
444 	return tg;
445 }
446 
447 #define for_each_rt_rq(rt_rq, iter, rq)					\
448 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
449 		(iter = next_task_group(iter)) &&			\
450 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
451 
452 #define for_each_sched_rt_entity(rt_se) \
453 	for (; rt_se; rt_se = rt_se->parent)
454 
455 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
456 {
457 	return rt_se->my_q;
458 }
459 
460 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
461 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
462 
463 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
464 {
465 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
466 	struct rq *rq = rq_of_rt_rq(rt_rq);
467 	struct sched_rt_entity *rt_se;
468 
469 	int cpu = cpu_of(rq);
470 
471 	rt_se = rt_rq->tg->rt_se[cpu];
472 
473 	if (rt_rq->rt_nr_running) {
474 		if (!rt_se)
475 			enqueue_top_rt_rq(rt_rq);
476 		else if (!on_rt_rq(rt_se))
477 			enqueue_rt_entity(rt_se, false);
478 
479 		if (rt_rq->highest_prio.curr < curr->prio)
480 			resched_curr(rq);
481 	}
482 }
483 
484 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
485 {
486 	struct sched_rt_entity *rt_se;
487 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
488 
489 	rt_se = rt_rq->tg->rt_se[cpu];
490 
491 	if (!rt_se)
492 		dequeue_top_rt_rq(rt_rq);
493 	else if (on_rt_rq(rt_se))
494 		dequeue_rt_entity(rt_se);
495 }
496 
497 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
498 {
499 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
500 }
501 
502 static int rt_se_boosted(struct sched_rt_entity *rt_se)
503 {
504 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
505 	struct task_struct *p;
506 
507 	if (rt_rq)
508 		return !!rt_rq->rt_nr_boosted;
509 
510 	p = rt_task_of(rt_se);
511 	return p->prio != p->normal_prio;
512 }
513 
514 #ifdef CONFIG_SMP
515 static inline const struct cpumask *sched_rt_period_mask(void)
516 {
517 	return this_rq()->rd->span;
518 }
519 #else
520 static inline const struct cpumask *sched_rt_period_mask(void)
521 {
522 	return cpu_online_mask;
523 }
524 #endif
525 
526 static inline
527 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
528 {
529 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
530 }
531 
532 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
533 {
534 	return &rt_rq->tg->rt_bandwidth;
535 }
536 
537 #else /* !CONFIG_RT_GROUP_SCHED */
538 
539 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
540 {
541 	return rt_rq->rt_runtime;
542 }
543 
544 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
545 {
546 	return ktime_to_ns(def_rt_bandwidth.rt_period);
547 }
548 
549 typedef struct rt_rq *rt_rq_iter_t;
550 
551 #define for_each_rt_rq(rt_rq, iter, rq) \
552 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
553 
554 #define for_each_sched_rt_entity(rt_se) \
555 	for (; rt_se; rt_se = NULL)
556 
557 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
558 {
559 	return NULL;
560 }
561 
562 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
563 {
564 	struct rq *rq = rq_of_rt_rq(rt_rq);
565 
566 	if (!rt_rq->rt_nr_running)
567 		return;
568 
569 	enqueue_top_rt_rq(rt_rq);
570 	resched_curr(rq);
571 }
572 
573 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
574 {
575 	dequeue_top_rt_rq(rt_rq);
576 }
577 
578 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
579 {
580 	return rt_rq->rt_throttled;
581 }
582 
583 static inline const struct cpumask *sched_rt_period_mask(void)
584 {
585 	return cpu_online_mask;
586 }
587 
588 static inline
589 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
590 {
591 	return &cpu_rq(cpu)->rt;
592 }
593 
594 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
595 {
596 	return &def_rt_bandwidth;
597 }
598 
599 #endif /* CONFIG_RT_GROUP_SCHED */
600 
601 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
602 {
603 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
604 
605 	return (hrtimer_active(&rt_b->rt_period_timer) ||
606 		rt_rq->rt_time < rt_b->rt_runtime);
607 }
608 
609 #ifdef CONFIG_SMP
610 /*
611  * We ran out of runtime, see if we can borrow some from our neighbours.
612  */
613 static int do_balance_runtime(struct rt_rq *rt_rq)
614 {
615 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
616 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
617 	int i, weight, more = 0;
618 	u64 rt_period;
619 
620 	weight = cpumask_weight(rd->span);
621 
622 	raw_spin_lock(&rt_b->rt_runtime_lock);
623 	rt_period = ktime_to_ns(rt_b->rt_period);
624 	for_each_cpu(i, rd->span) {
625 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
626 		s64 diff;
627 
628 		if (iter == rt_rq)
629 			continue;
630 
631 		raw_spin_lock(&iter->rt_runtime_lock);
632 		/*
633 		 * Either all rqs have inf runtime and there's nothing to steal
634 		 * or __disable_runtime() below sets a specific rq to inf to
635 		 * indicate its been disabled and disalow stealing.
636 		 */
637 		if (iter->rt_runtime == RUNTIME_INF)
638 			goto next;
639 
640 		/*
641 		 * From runqueues with spare time, take 1/n part of their
642 		 * spare time, but no more than our period.
643 		 */
644 		diff = iter->rt_runtime - iter->rt_time;
645 		if (diff > 0) {
646 			diff = div_u64((u64)diff, weight);
647 			if (rt_rq->rt_runtime + diff > rt_period)
648 				diff = rt_period - rt_rq->rt_runtime;
649 			iter->rt_runtime -= diff;
650 			rt_rq->rt_runtime += diff;
651 			more = 1;
652 			if (rt_rq->rt_runtime == rt_period) {
653 				raw_spin_unlock(&iter->rt_runtime_lock);
654 				break;
655 			}
656 		}
657 next:
658 		raw_spin_unlock(&iter->rt_runtime_lock);
659 	}
660 	raw_spin_unlock(&rt_b->rt_runtime_lock);
661 
662 	return more;
663 }
664 
665 /*
666  * Ensure this RQ takes back all the runtime it lend to its neighbours.
667  */
668 static void __disable_runtime(struct rq *rq)
669 {
670 	struct root_domain *rd = rq->rd;
671 	rt_rq_iter_t iter;
672 	struct rt_rq *rt_rq;
673 
674 	if (unlikely(!scheduler_running))
675 		return;
676 
677 	for_each_rt_rq(rt_rq, iter, rq) {
678 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
679 		s64 want;
680 		int i;
681 
682 		raw_spin_lock(&rt_b->rt_runtime_lock);
683 		raw_spin_lock(&rt_rq->rt_runtime_lock);
684 		/*
685 		 * Either we're all inf and nobody needs to borrow, or we're
686 		 * already disabled and thus have nothing to do, or we have
687 		 * exactly the right amount of runtime to take out.
688 		 */
689 		if (rt_rq->rt_runtime == RUNTIME_INF ||
690 				rt_rq->rt_runtime == rt_b->rt_runtime)
691 			goto balanced;
692 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
693 
694 		/*
695 		 * Calculate the difference between what we started out with
696 		 * and what we current have, that's the amount of runtime
697 		 * we lend and now have to reclaim.
698 		 */
699 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
700 
701 		/*
702 		 * Greedy reclaim, take back as much as we can.
703 		 */
704 		for_each_cpu(i, rd->span) {
705 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
706 			s64 diff;
707 
708 			/*
709 			 * Can't reclaim from ourselves or disabled runqueues.
710 			 */
711 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
712 				continue;
713 
714 			raw_spin_lock(&iter->rt_runtime_lock);
715 			if (want > 0) {
716 				diff = min_t(s64, iter->rt_runtime, want);
717 				iter->rt_runtime -= diff;
718 				want -= diff;
719 			} else {
720 				iter->rt_runtime -= want;
721 				want -= want;
722 			}
723 			raw_spin_unlock(&iter->rt_runtime_lock);
724 
725 			if (!want)
726 				break;
727 		}
728 
729 		raw_spin_lock(&rt_rq->rt_runtime_lock);
730 		/*
731 		 * We cannot be left wanting - that would mean some runtime
732 		 * leaked out of the system.
733 		 */
734 		BUG_ON(want);
735 balanced:
736 		/*
737 		 * Disable all the borrow logic by pretending we have inf
738 		 * runtime - in which case borrowing doesn't make sense.
739 		 */
740 		rt_rq->rt_runtime = RUNTIME_INF;
741 		rt_rq->rt_throttled = 0;
742 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
743 		raw_spin_unlock(&rt_b->rt_runtime_lock);
744 
745 		/* Make rt_rq available for pick_next_task() */
746 		sched_rt_rq_enqueue(rt_rq);
747 	}
748 }
749 
750 static void __enable_runtime(struct rq *rq)
751 {
752 	rt_rq_iter_t iter;
753 	struct rt_rq *rt_rq;
754 
755 	if (unlikely(!scheduler_running))
756 		return;
757 
758 	/*
759 	 * Reset each runqueue's bandwidth settings
760 	 */
761 	for_each_rt_rq(rt_rq, iter, rq) {
762 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
763 
764 		raw_spin_lock(&rt_b->rt_runtime_lock);
765 		raw_spin_lock(&rt_rq->rt_runtime_lock);
766 		rt_rq->rt_runtime = rt_b->rt_runtime;
767 		rt_rq->rt_time = 0;
768 		rt_rq->rt_throttled = 0;
769 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
770 		raw_spin_unlock(&rt_b->rt_runtime_lock);
771 	}
772 }
773 
774 static int balance_runtime(struct rt_rq *rt_rq)
775 {
776 	int more = 0;
777 
778 	if (!sched_feat(RT_RUNTIME_SHARE))
779 		return more;
780 
781 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
782 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
783 		more = do_balance_runtime(rt_rq);
784 		raw_spin_lock(&rt_rq->rt_runtime_lock);
785 	}
786 
787 	return more;
788 }
789 #else /* !CONFIG_SMP */
790 static inline int balance_runtime(struct rt_rq *rt_rq)
791 {
792 	return 0;
793 }
794 #endif /* CONFIG_SMP */
795 
796 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
797 {
798 	int i, idle = 1, throttled = 0;
799 	const struct cpumask *span;
800 
801 	span = sched_rt_period_mask();
802 #ifdef CONFIG_RT_GROUP_SCHED
803 	/*
804 	 * FIXME: isolated CPUs should really leave the root task group,
805 	 * whether they are isolcpus or were isolated via cpusets, lest
806 	 * the timer run on a CPU which does not service all runqueues,
807 	 * potentially leaving other CPUs indefinitely throttled.  If
808 	 * isolation is really required, the user will turn the throttle
809 	 * off to kill the perturbations it causes anyway.  Meanwhile,
810 	 * this maintains functionality for boot and/or troubleshooting.
811 	 */
812 	if (rt_b == &root_task_group.rt_bandwidth)
813 		span = cpu_online_mask;
814 #endif
815 	for_each_cpu(i, span) {
816 		int enqueue = 0;
817 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
818 		struct rq *rq = rq_of_rt_rq(rt_rq);
819 
820 		raw_spin_lock(&rq->lock);
821 		if (rt_rq->rt_time) {
822 			u64 runtime;
823 
824 			raw_spin_lock(&rt_rq->rt_runtime_lock);
825 			if (rt_rq->rt_throttled)
826 				balance_runtime(rt_rq);
827 			runtime = rt_rq->rt_runtime;
828 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
829 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
830 				rt_rq->rt_throttled = 0;
831 				enqueue = 1;
832 
833 				/*
834 				 * Force a clock update if the CPU was idle,
835 				 * lest wakeup -> unthrottle time accumulate.
836 				 */
837 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
838 					rq->skip_clock_update = -1;
839 			}
840 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
841 				idle = 0;
842 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
843 		} else if (rt_rq->rt_nr_running) {
844 			idle = 0;
845 			if (!rt_rq_throttled(rt_rq))
846 				enqueue = 1;
847 		}
848 		if (rt_rq->rt_throttled)
849 			throttled = 1;
850 
851 		if (enqueue)
852 			sched_rt_rq_enqueue(rt_rq);
853 		raw_spin_unlock(&rq->lock);
854 	}
855 
856 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
857 		return 1;
858 
859 	return idle;
860 }
861 
862 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
863 {
864 #ifdef CONFIG_RT_GROUP_SCHED
865 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
866 
867 	if (rt_rq)
868 		return rt_rq->highest_prio.curr;
869 #endif
870 
871 	return rt_task_of(rt_se)->prio;
872 }
873 
874 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
875 {
876 	u64 runtime = sched_rt_runtime(rt_rq);
877 
878 	if (rt_rq->rt_throttled)
879 		return rt_rq_throttled(rt_rq);
880 
881 	if (runtime >= sched_rt_period(rt_rq))
882 		return 0;
883 
884 	balance_runtime(rt_rq);
885 	runtime = sched_rt_runtime(rt_rq);
886 	if (runtime == RUNTIME_INF)
887 		return 0;
888 
889 	if (rt_rq->rt_time > runtime) {
890 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
891 
892 		/*
893 		 * Don't actually throttle groups that have no runtime assigned
894 		 * but accrue some time due to boosting.
895 		 */
896 		if (likely(rt_b->rt_runtime)) {
897 			rt_rq->rt_throttled = 1;
898 			printk_deferred_once("sched: RT throttling activated\n");
899 		} else {
900 			/*
901 			 * In case we did anyway, make it go away,
902 			 * replenishment is a joke, since it will replenish us
903 			 * with exactly 0 ns.
904 			 */
905 			rt_rq->rt_time = 0;
906 		}
907 
908 		if (rt_rq_throttled(rt_rq)) {
909 			sched_rt_rq_dequeue(rt_rq);
910 			return 1;
911 		}
912 	}
913 
914 	return 0;
915 }
916 
917 /*
918  * Update the current task's runtime statistics. Skip current tasks that
919  * are not in our scheduling class.
920  */
921 static void update_curr_rt(struct rq *rq)
922 {
923 	struct task_struct *curr = rq->curr;
924 	struct sched_rt_entity *rt_se = &curr->rt;
925 	u64 delta_exec;
926 
927 	if (curr->sched_class != &rt_sched_class)
928 		return;
929 
930 	delta_exec = rq_clock_task(rq) - curr->se.exec_start;
931 	if (unlikely((s64)delta_exec <= 0))
932 		return;
933 
934 	schedstat_set(curr->se.statistics.exec_max,
935 		      max(curr->se.statistics.exec_max, delta_exec));
936 
937 	curr->se.sum_exec_runtime += delta_exec;
938 	account_group_exec_runtime(curr, delta_exec);
939 
940 	curr->se.exec_start = rq_clock_task(rq);
941 	cpuacct_charge(curr, delta_exec);
942 
943 	sched_rt_avg_update(rq, delta_exec);
944 
945 	if (!rt_bandwidth_enabled())
946 		return;
947 
948 	for_each_sched_rt_entity(rt_se) {
949 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
950 
951 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
952 			raw_spin_lock(&rt_rq->rt_runtime_lock);
953 			rt_rq->rt_time += delta_exec;
954 			if (sched_rt_runtime_exceeded(rt_rq))
955 				resched_curr(rq);
956 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
957 		}
958 	}
959 }
960 
961 static void
962 dequeue_top_rt_rq(struct rt_rq *rt_rq)
963 {
964 	struct rq *rq = rq_of_rt_rq(rt_rq);
965 
966 	BUG_ON(&rq->rt != rt_rq);
967 
968 	if (!rt_rq->rt_queued)
969 		return;
970 
971 	BUG_ON(!rq->nr_running);
972 
973 	sub_nr_running(rq, rt_rq->rt_nr_running);
974 	rt_rq->rt_queued = 0;
975 }
976 
977 static void
978 enqueue_top_rt_rq(struct rt_rq *rt_rq)
979 {
980 	struct rq *rq = rq_of_rt_rq(rt_rq);
981 
982 	BUG_ON(&rq->rt != rt_rq);
983 
984 	if (rt_rq->rt_queued)
985 		return;
986 	if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running)
987 		return;
988 
989 	add_nr_running(rq, rt_rq->rt_nr_running);
990 	rt_rq->rt_queued = 1;
991 }
992 
993 #if defined CONFIG_SMP
994 
995 static void
996 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
997 {
998 	struct rq *rq = rq_of_rt_rq(rt_rq);
999 
1000 #ifdef CONFIG_RT_GROUP_SCHED
1001 	/*
1002 	 * Change rq's cpupri only if rt_rq is the top queue.
1003 	 */
1004 	if (&rq->rt != rt_rq)
1005 		return;
1006 #endif
1007 	if (rq->online && prio < prev_prio)
1008 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1009 }
1010 
1011 static void
1012 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1013 {
1014 	struct rq *rq = rq_of_rt_rq(rt_rq);
1015 
1016 #ifdef CONFIG_RT_GROUP_SCHED
1017 	/*
1018 	 * Change rq's cpupri only if rt_rq is the top queue.
1019 	 */
1020 	if (&rq->rt != rt_rq)
1021 		return;
1022 #endif
1023 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1024 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1025 }
1026 
1027 #else /* CONFIG_SMP */
1028 
1029 static inline
1030 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1031 static inline
1032 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1033 
1034 #endif /* CONFIG_SMP */
1035 
1036 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1037 static void
1038 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1039 {
1040 	int prev_prio = rt_rq->highest_prio.curr;
1041 
1042 	if (prio < prev_prio)
1043 		rt_rq->highest_prio.curr = prio;
1044 
1045 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1046 }
1047 
1048 static void
1049 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1050 {
1051 	int prev_prio = rt_rq->highest_prio.curr;
1052 
1053 	if (rt_rq->rt_nr_running) {
1054 
1055 		WARN_ON(prio < prev_prio);
1056 
1057 		/*
1058 		 * This may have been our highest task, and therefore
1059 		 * we may have some recomputation to do
1060 		 */
1061 		if (prio == prev_prio) {
1062 			struct rt_prio_array *array = &rt_rq->active;
1063 
1064 			rt_rq->highest_prio.curr =
1065 				sched_find_first_bit(array->bitmap);
1066 		}
1067 
1068 	} else
1069 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1070 
1071 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1072 }
1073 
1074 #else
1075 
1076 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1077 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1078 
1079 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1080 
1081 #ifdef CONFIG_RT_GROUP_SCHED
1082 
1083 static void
1084 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1085 {
1086 	if (rt_se_boosted(rt_se))
1087 		rt_rq->rt_nr_boosted++;
1088 
1089 	if (rt_rq->tg)
1090 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1091 }
1092 
1093 static void
1094 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1095 {
1096 	if (rt_se_boosted(rt_se))
1097 		rt_rq->rt_nr_boosted--;
1098 
1099 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1100 }
1101 
1102 #else /* CONFIG_RT_GROUP_SCHED */
1103 
1104 static void
1105 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1106 {
1107 	start_rt_bandwidth(&def_rt_bandwidth);
1108 }
1109 
1110 static inline
1111 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1112 
1113 #endif /* CONFIG_RT_GROUP_SCHED */
1114 
1115 static inline
1116 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1117 {
1118 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1119 
1120 	if (group_rq)
1121 		return group_rq->rt_nr_running;
1122 	else
1123 		return 1;
1124 }
1125 
1126 static inline
1127 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1128 {
1129 	int prio = rt_se_prio(rt_se);
1130 
1131 	WARN_ON(!rt_prio(prio));
1132 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1133 
1134 	inc_rt_prio(rt_rq, prio);
1135 	inc_rt_migration(rt_se, rt_rq);
1136 	inc_rt_group(rt_se, rt_rq);
1137 }
1138 
1139 static inline
1140 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1141 {
1142 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1143 	WARN_ON(!rt_rq->rt_nr_running);
1144 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1145 
1146 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1147 	dec_rt_migration(rt_se, rt_rq);
1148 	dec_rt_group(rt_se, rt_rq);
1149 }
1150 
1151 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1152 {
1153 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1154 	struct rt_prio_array *array = &rt_rq->active;
1155 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1156 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1157 
1158 	/*
1159 	 * Don't enqueue the group if its throttled, or when empty.
1160 	 * The latter is a consequence of the former when a child group
1161 	 * get throttled and the current group doesn't have any other
1162 	 * active members.
1163 	 */
1164 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1165 		return;
1166 
1167 	if (head)
1168 		list_add(&rt_se->run_list, queue);
1169 	else
1170 		list_add_tail(&rt_se->run_list, queue);
1171 	__set_bit(rt_se_prio(rt_se), array->bitmap);
1172 
1173 	inc_rt_tasks(rt_se, rt_rq);
1174 }
1175 
1176 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1177 {
1178 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1179 	struct rt_prio_array *array = &rt_rq->active;
1180 
1181 	list_del_init(&rt_se->run_list);
1182 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1183 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1184 
1185 	dec_rt_tasks(rt_se, rt_rq);
1186 }
1187 
1188 /*
1189  * Because the prio of an upper entry depends on the lower
1190  * entries, we must remove entries top - down.
1191  */
1192 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1193 {
1194 	struct sched_rt_entity *back = NULL;
1195 
1196 	for_each_sched_rt_entity(rt_se) {
1197 		rt_se->back = back;
1198 		back = rt_se;
1199 	}
1200 
1201 	dequeue_top_rt_rq(rt_rq_of_se(back));
1202 
1203 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1204 		if (on_rt_rq(rt_se))
1205 			__dequeue_rt_entity(rt_se);
1206 	}
1207 }
1208 
1209 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1210 {
1211 	struct rq *rq = rq_of_rt_se(rt_se);
1212 
1213 	dequeue_rt_stack(rt_se);
1214 	for_each_sched_rt_entity(rt_se)
1215 		__enqueue_rt_entity(rt_se, head);
1216 	enqueue_top_rt_rq(&rq->rt);
1217 }
1218 
1219 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1220 {
1221 	struct rq *rq = rq_of_rt_se(rt_se);
1222 
1223 	dequeue_rt_stack(rt_se);
1224 
1225 	for_each_sched_rt_entity(rt_se) {
1226 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1227 
1228 		if (rt_rq && rt_rq->rt_nr_running)
1229 			__enqueue_rt_entity(rt_se, false);
1230 	}
1231 	enqueue_top_rt_rq(&rq->rt);
1232 }
1233 
1234 /*
1235  * Adding/removing a task to/from a priority array:
1236  */
1237 static void
1238 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1239 {
1240 	struct sched_rt_entity *rt_se = &p->rt;
1241 
1242 	if (flags & ENQUEUE_WAKEUP)
1243 		rt_se->timeout = 0;
1244 
1245 	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1246 
1247 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1248 		enqueue_pushable_task(rq, p);
1249 }
1250 
1251 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1252 {
1253 	struct sched_rt_entity *rt_se = &p->rt;
1254 
1255 	update_curr_rt(rq);
1256 	dequeue_rt_entity(rt_se);
1257 
1258 	dequeue_pushable_task(rq, p);
1259 }
1260 
1261 /*
1262  * Put task to the head or the end of the run list without the overhead of
1263  * dequeue followed by enqueue.
1264  */
1265 static void
1266 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1267 {
1268 	if (on_rt_rq(rt_se)) {
1269 		struct rt_prio_array *array = &rt_rq->active;
1270 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1271 
1272 		if (head)
1273 			list_move(&rt_se->run_list, queue);
1274 		else
1275 			list_move_tail(&rt_se->run_list, queue);
1276 	}
1277 }
1278 
1279 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1280 {
1281 	struct sched_rt_entity *rt_se = &p->rt;
1282 	struct rt_rq *rt_rq;
1283 
1284 	for_each_sched_rt_entity(rt_se) {
1285 		rt_rq = rt_rq_of_se(rt_se);
1286 		requeue_rt_entity(rt_rq, rt_se, head);
1287 	}
1288 }
1289 
1290 static void yield_task_rt(struct rq *rq)
1291 {
1292 	requeue_task_rt(rq, rq->curr, 0);
1293 }
1294 
1295 #ifdef CONFIG_SMP
1296 static int find_lowest_rq(struct task_struct *task);
1297 
1298 static int
1299 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1300 {
1301 	struct task_struct *curr;
1302 	struct rq *rq;
1303 
1304 	/* For anything but wake ups, just return the task_cpu */
1305 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1306 		goto out;
1307 
1308 	rq = cpu_rq(cpu);
1309 
1310 	rcu_read_lock();
1311 	curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1312 
1313 	/*
1314 	 * If the current task on @p's runqueue is an RT task, then
1315 	 * try to see if we can wake this RT task up on another
1316 	 * runqueue. Otherwise simply start this RT task
1317 	 * on its current runqueue.
1318 	 *
1319 	 * We want to avoid overloading runqueues. If the woken
1320 	 * task is a higher priority, then it will stay on this CPU
1321 	 * and the lower prio task should be moved to another CPU.
1322 	 * Even though this will probably make the lower prio task
1323 	 * lose its cache, we do not want to bounce a higher task
1324 	 * around just because it gave up its CPU, perhaps for a
1325 	 * lock?
1326 	 *
1327 	 * For equal prio tasks, we just let the scheduler sort it out.
1328 	 *
1329 	 * Otherwise, just let it ride on the affined RQ and the
1330 	 * post-schedule router will push the preempted task away
1331 	 *
1332 	 * This test is optimistic, if we get it wrong the load-balancer
1333 	 * will have to sort it out.
1334 	 */
1335 	if (curr && unlikely(rt_task(curr)) &&
1336 	    (curr->nr_cpus_allowed < 2 ||
1337 	     curr->prio <= p->prio)) {
1338 		int target = find_lowest_rq(p);
1339 
1340 		if (target != -1)
1341 			cpu = target;
1342 	}
1343 	rcu_read_unlock();
1344 
1345 out:
1346 	return cpu;
1347 }
1348 
1349 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1350 {
1351 	/*
1352 	 * Current can't be migrated, useless to reschedule,
1353 	 * let's hope p can move out.
1354 	 */
1355 	if (rq->curr->nr_cpus_allowed == 1 ||
1356 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1357 		return;
1358 
1359 	/*
1360 	 * p is migratable, so let's not schedule it and
1361 	 * see if it is pushed or pulled somewhere else.
1362 	 */
1363 	if (p->nr_cpus_allowed != 1
1364 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1365 		return;
1366 
1367 	/*
1368 	 * There appears to be other cpus that can accept
1369 	 * current and none to run 'p', so lets reschedule
1370 	 * to try and push current away:
1371 	 */
1372 	requeue_task_rt(rq, p, 1);
1373 	resched_curr(rq);
1374 }
1375 
1376 #endif /* CONFIG_SMP */
1377 
1378 /*
1379  * Preempt the current task with a newly woken task if needed:
1380  */
1381 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1382 {
1383 	if (p->prio < rq->curr->prio) {
1384 		resched_curr(rq);
1385 		return;
1386 	}
1387 
1388 #ifdef CONFIG_SMP
1389 	/*
1390 	 * If:
1391 	 *
1392 	 * - the newly woken task is of equal priority to the current task
1393 	 * - the newly woken task is non-migratable while current is migratable
1394 	 * - current will be preempted on the next reschedule
1395 	 *
1396 	 * we should check to see if current can readily move to a different
1397 	 * cpu.  If so, we will reschedule to allow the push logic to try
1398 	 * to move current somewhere else, making room for our non-migratable
1399 	 * task.
1400 	 */
1401 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1402 		check_preempt_equal_prio(rq, p);
1403 #endif
1404 }
1405 
1406 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1407 						   struct rt_rq *rt_rq)
1408 {
1409 	struct rt_prio_array *array = &rt_rq->active;
1410 	struct sched_rt_entity *next = NULL;
1411 	struct list_head *queue;
1412 	int idx;
1413 
1414 	idx = sched_find_first_bit(array->bitmap);
1415 	BUG_ON(idx >= MAX_RT_PRIO);
1416 
1417 	queue = array->queue + idx;
1418 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1419 
1420 	return next;
1421 }
1422 
1423 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1424 {
1425 	struct sched_rt_entity *rt_se;
1426 	struct task_struct *p;
1427 	struct rt_rq *rt_rq  = &rq->rt;
1428 
1429 	do {
1430 		rt_se = pick_next_rt_entity(rq, rt_rq);
1431 		BUG_ON(!rt_se);
1432 		rt_rq = group_rt_rq(rt_se);
1433 	} while (rt_rq);
1434 
1435 	p = rt_task_of(rt_se);
1436 	p->se.exec_start = rq_clock_task(rq);
1437 
1438 	return p;
1439 }
1440 
1441 static struct task_struct *
1442 pick_next_task_rt(struct rq *rq, struct task_struct *prev)
1443 {
1444 	struct task_struct *p;
1445 	struct rt_rq *rt_rq = &rq->rt;
1446 
1447 	if (need_pull_rt_task(rq, prev)) {
1448 		pull_rt_task(rq);
1449 		/*
1450 		 * pull_rt_task() can drop (and re-acquire) rq->lock; this
1451 		 * means a dl or stop task can slip in, in which case we need
1452 		 * to re-start task selection.
1453 		 */
1454 		if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) ||
1455 			     rq->dl.dl_nr_running))
1456 			return RETRY_TASK;
1457 	}
1458 
1459 	/*
1460 	 * We may dequeue prev's rt_rq in put_prev_task().
1461 	 * So, we update time before rt_nr_running check.
1462 	 */
1463 	if (prev->sched_class == &rt_sched_class)
1464 		update_curr_rt(rq);
1465 
1466 	if (!rt_rq->rt_queued)
1467 		return NULL;
1468 
1469 	put_prev_task(rq, prev);
1470 
1471 	p = _pick_next_task_rt(rq);
1472 
1473 	/* The running task is never eligible for pushing */
1474 	dequeue_pushable_task(rq, p);
1475 
1476 	set_post_schedule(rq);
1477 
1478 	return p;
1479 }
1480 
1481 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1482 {
1483 	update_curr_rt(rq);
1484 
1485 	/*
1486 	 * The previous task needs to be made eligible for pushing
1487 	 * if it is still active
1488 	 */
1489 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1490 		enqueue_pushable_task(rq, p);
1491 }
1492 
1493 #ifdef CONFIG_SMP
1494 
1495 /* Only try algorithms three times */
1496 #define RT_MAX_TRIES 3
1497 
1498 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1499 {
1500 	if (!task_running(rq, p) &&
1501 	    cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1502 		return 1;
1503 	return 0;
1504 }
1505 
1506 /*
1507  * Return the highest pushable rq's task, which is suitable to be executed
1508  * on the cpu, NULL otherwise
1509  */
1510 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1511 {
1512 	struct plist_head *head = &rq->rt.pushable_tasks;
1513 	struct task_struct *p;
1514 
1515 	if (!has_pushable_tasks(rq))
1516 		return NULL;
1517 
1518 	plist_for_each_entry(p, head, pushable_tasks) {
1519 		if (pick_rt_task(rq, p, cpu))
1520 			return p;
1521 	}
1522 
1523 	return NULL;
1524 }
1525 
1526 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1527 
1528 static int find_lowest_rq(struct task_struct *task)
1529 {
1530 	struct sched_domain *sd;
1531 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1532 	int this_cpu = smp_processor_id();
1533 	int cpu      = task_cpu(task);
1534 
1535 	/* Make sure the mask is initialized first */
1536 	if (unlikely(!lowest_mask))
1537 		return -1;
1538 
1539 	if (task->nr_cpus_allowed == 1)
1540 		return -1; /* No other targets possible */
1541 
1542 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1543 		return -1; /* No targets found */
1544 
1545 	/*
1546 	 * At this point we have built a mask of cpus representing the
1547 	 * lowest priority tasks in the system.  Now we want to elect
1548 	 * the best one based on our affinity and topology.
1549 	 *
1550 	 * We prioritize the last cpu that the task executed on since
1551 	 * it is most likely cache-hot in that location.
1552 	 */
1553 	if (cpumask_test_cpu(cpu, lowest_mask))
1554 		return cpu;
1555 
1556 	/*
1557 	 * Otherwise, we consult the sched_domains span maps to figure
1558 	 * out which cpu is logically closest to our hot cache data.
1559 	 */
1560 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1561 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1562 
1563 	rcu_read_lock();
1564 	for_each_domain(cpu, sd) {
1565 		if (sd->flags & SD_WAKE_AFFINE) {
1566 			int best_cpu;
1567 
1568 			/*
1569 			 * "this_cpu" is cheaper to preempt than a
1570 			 * remote processor.
1571 			 */
1572 			if (this_cpu != -1 &&
1573 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1574 				rcu_read_unlock();
1575 				return this_cpu;
1576 			}
1577 
1578 			best_cpu = cpumask_first_and(lowest_mask,
1579 						     sched_domain_span(sd));
1580 			if (best_cpu < nr_cpu_ids) {
1581 				rcu_read_unlock();
1582 				return best_cpu;
1583 			}
1584 		}
1585 	}
1586 	rcu_read_unlock();
1587 
1588 	/*
1589 	 * And finally, if there were no matches within the domains
1590 	 * just give the caller *something* to work with from the compatible
1591 	 * locations.
1592 	 */
1593 	if (this_cpu != -1)
1594 		return this_cpu;
1595 
1596 	cpu = cpumask_any(lowest_mask);
1597 	if (cpu < nr_cpu_ids)
1598 		return cpu;
1599 	return -1;
1600 }
1601 
1602 /* Will lock the rq it finds */
1603 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1604 {
1605 	struct rq *lowest_rq = NULL;
1606 	int tries;
1607 	int cpu;
1608 
1609 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1610 		cpu = find_lowest_rq(task);
1611 
1612 		if ((cpu == -1) || (cpu == rq->cpu))
1613 			break;
1614 
1615 		lowest_rq = cpu_rq(cpu);
1616 
1617 		/* if the prio of this runqueue changed, try again */
1618 		if (double_lock_balance(rq, lowest_rq)) {
1619 			/*
1620 			 * We had to unlock the run queue. In
1621 			 * the mean time, task could have
1622 			 * migrated already or had its affinity changed.
1623 			 * Also make sure that it wasn't scheduled on its rq.
1624 			 */
1625 			if (unlikely(task_rq(task) != rq ||
1626 				     !cpumask_test_cpu(lowest_rq->cpu,
1627 						       tsk_cpus_allowed(task)) ||
1628 				     task_running(rq, task) ||
1629 				     !task_on_rq_queued(task))) {
1630 
1631 				double_unlock_balance(rq, lowest_rq);
1632 				lowest_rq = NULL;
1633 				break;
1634 			}
1635 		}
1636 
1637 		/* If this rq is still suitable use it. */
1638 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1639 			break;
1640 
1641 		/* try again */
1642 		double_unlock_balance(rq, lowest_rq);
1643 		lowest_rq = NULL;
1644 	}
1645 
1646 	return lowest_rq;
1647 }
1648 
1649 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1650 {
1651 	struct task_struct *p;
1652 
1653 	if (!has_pushable_tasks(rq))
1654 		return NULL;
1655 
1656 	p = plist_first_entry(&rq->rt.pushable_tasks,
1657 			      struct task_struct, pushable_tasks);
1658 
1659 	BUG_ON(rq->cpu != task_cpu(p));
1660 	BUG_ON(task_current(rq, p));
1661 	BUG_ON(p->nr_cpus_allowed <= 1);
1662 
1663 	BUG_ON(!task_on_rq_queued(p));
1664 	BUG_ON(!rt_task(p));
1665 
1666 	return p;
1667 }
1668 
1669 /*
1670  * If the current CPU has more than one RT task, see if the non
1671  * running task can migrate over to a CPU that is running a task
1672  * of lesser priority.
1673  */
1674 static int push_rt_task(struct rq *rq)
1675 {
1676 	struct task_struct *next_task;
1677 	struct rq *lowest_rq;
1678 	int ret = 0;
1679 
1680 	if (!rq->rt.overloaded)
1681 		return 0;
1682 
1683 	next_task = pick_next_pushable_task(rq);
1684 	if (!next_task)
1685 		return 0;
1686 
1687 retry:
1688 	if (unlikely(next_task == rq->curr)) {
1689 		WARN_ON(1);
1690 		return 0;
1691 	}
1692 
1693 	/*
1694 	 * It's possible that the next_task slipped in of
1695 	 * higher priority than current. If that's the case
1696 	 * just reschedule current.
1697 	 */
1698 	if (unlikely(next_task->prio < rq->curr->prio)) {
1699 		resched_curr(rq);
1700 		return 0;
1701 	}
1702 
1703 	/* We might release rq lock */
1704 	get_task_struct(next_task);
1705 
1706 	/* find_lock_lowest_rq locks the rq if found */
1707 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1708 	if (!lowest_rq) {
1709 		struct task_struct *task;
1710 		/*
1711 		 * find_lock_lowest_rq releases rq->lock
1712 		 * so it is possible that next_task has migrated.
1713 		 *
1714 		 * We need to make sure that the task is still on the same
1715 		 * run-queue and is also still the next task eligible for
1716 		 * pushing.
1717 		 */
1718 		task = pick_next_pushable_task(rq);
1719 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1720 			/*
1721 			 * The task hasn't migrated, and is still the next
1722 			 * eligible task, but we failed to find a run-queue
1723 			 * to push it to.  Do not retry in this case, since
1724 			 * other cpus will pull from us when ready.
1725 			 */
1726 			goto out;
1727 		}
1728 
1729 		if (!task)
1730 			/* No more tasks, just exit */
1731 			goto out;
1732 
1733 		/*
1734 		 * Something has shifted, try again.
1735 		 */
1736 		put_task_struct(next_task);
1737 		next_task = task;
1738 		goto retry;
1739 	}
1740 
1741 	deactivate_task(rq, next_task, 0);
1742 	set_task_cpu(next_task, lowest_rq->cpu);
1743 	activate_task(lowest_rq, next_task, 0);
1744 	ret = 1;
1745 
1746 	resched_curr(lowest_rq);
1747 
1748 	double_unlock_balance(rq, lowest_rq);
1749 
1750 out:
1751 	put_task_struct(next_task);
1752 
1753 	return ret;
1754 }
1755 
1756 static void push_rt_tasks(struct rq *rq)
1757 {
1758 	/* push_rt_task will return true if it moved an RT */
1759 	while (push_rt_task(rq))
1760 		;
1761 }
1762 
1763 static int pull_rt_task(struct rq *this_rq)
1764 {
1765 	int this_cpu = this_rq->cpu, ret = 0, cpu;
1766 	struct task_struct *p;
1767 	struct rq *src_rq;
1768 
1769 	if (likely(!rt_overloaded(this_rq)))
1770 		return 0;
1771 
1772 	/*
1773 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
1774 	 * see overloaded we must also see the rto_mask bit.
1775 	 */
1776 	smp_rmb();
1777 
1778 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1779 		if (this_cpu == cpu)
1780 			continue;
1781 
1782 		src_rq = cpu_rq(cpu);
1783 
1784 		/*
1785 		 * Don't bother taking the src_rq->lock if the next highest
1786 		 * task is known to be lower-priority than our current task.
1787 		 * This may look racy, but if this value is about to go
1788 		 * logically higher, the src_rq will push this task away.
1789 		 * And if its going logically lower, we do not care
1790 		 */
1791 		if (src_rq->rt.highest_prio.next >=
1792 		    this_rq->rt.highest_prio.curr)
1793 			continue;
1794 
1795 		/*
1796 		 * We can potentially drop this_rq's lock in
1797 		 * double_lock_balance, and another CPU could
1798 		 * alter this_rq
1799 		 */
1800 		double_lock_balance(this_rq, src_rq);
1801 
1802 		/*
1803 		 * We can pull only a task, which is pushable
1804 		 * on its rq, and no others.
1805 		 */
1806 		p = pick_highest_pushable_task(src_rq, this_cpu);
1807 
1808 		/*
1809 		 * Do we have an RT task that preempts
1810 		 * the to-be-scheduled task?
1811 		 */
1812 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1813 			WARN_ON(p == src_rq->curr);
1814 			WARN_ON(!task_on_rq_queued(p));
1815 
1816 			/*
1817 			 * There's a chance that p is higher in priority
1818 			 * than what's currently running on its cpu.
1819 			 * This is just that p is wakeing up and hasn't
1820 			 * had a chance to schedule. We only pull
1821 			 * p if it is lower in priority than the
1822 			 * current task on the run queue
1823 			 */
1824 			if (p->prio < src_rq->curr->prio)
1825 				goto skip;
1826 
1827 			ret = 1;
1828 
1829 			deactivate_task(src_rq, p, 0);
1830 			set_task_cpu(p, this_cpu);
1831 			activate_task(this_rq, p, 0);
1832 			/*
1833 			 * We continue with the search, just in
1834 			 * case there's an even higher prio task
1835 			 * in another runqueue. (low likelihood
1836 			 * but possible)
1837 			 */
1838 		}
1839 skip:
1840 		double_unlock_balance(this_rq, src_rq);
1841 	}
1842 
1843 	return ret;
1844 }
1845 
1846 static void post_schedule_rt(struct rq *rq)
1847 {
1848 	push_rt_tasks(rq);
1849 }
1850 
1851 /*
1852  * If we are not running and we are not going to reschedule soon, we should
1853  * try to push tasks away now
1854  */
1855 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1856 {
1857 	if (!task_running(rq, p) &&
1858 	    !test_tsk_need_resched(rq->curr) &&
1859 	    has_pushable_tasks(rq) &&
1860 	    p->nr_cpus_allowed > 1 &&
1861 	    (dl_task(rq->curr) || rt_task(rq->curr)) &&
1862 	    (rq->curr->nr_cpus_allowed < 2 ||
1863 	     rq->curr->prio <= p->prio))
1864 		push_rt_tasks(rq);
1865 }
1866 
1867 static void set_cpus_allowed_rt(struct task_struct *p,
1868 				const struct cpumask *new_mask)
1869 {
1870 	struct rq *rq;
1871 	int weight;
1872 
1873 	BUG_ON(!rt_task(p));
1874 
1875 	if (!task_on_rq_queued(p))
1876 		return;
1877 
1878 	weight = cpumask_weight(new_mask);
1879 
1880 	/*
1881 	 * Only update if the process changes its state from whether it
1882 	 * can migrate or not.
1883 	 */
1884 	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1885 		return;
1886 
1887 	rq = task_rq(p);
1888 
1889 	/*
1890 	 * The process used to be able to migrate OR it can now migrate
1891 	 */
1892 	if (weight <= 1) {
1893 		if (!task_current(rq, p))
1894 			dequeue_pushable_task(rq, p);
1895 		BUG_ON(!rq->rt.rt_nr_migratory);
1896 		rq->rt.rt_nr_migratory--;
1897 	} else {
1898 		if (!task_current(rq, p))
1899 			enqueue_pushable_task(rq, p);
1900 		rq->rt.rt_nr_migratory++;
1901 	}
1902 
1903 	update_rt_migration(&rq->rt);
1904 }
1905 
1906 /* Assumes rq->lock is held */
1907 static void rq_online_rt(struct rq *rq)
1908 {
1909 	if (rq->rt.overloaded)
1910 		rt_set_overload(rq);
1911 
1912 	__enable_runtime(rq);
1913 
1914 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1915 }
1916 
1917 /* Assumes rq->lock is held */
1918 static void rq_offline_rt(struct rq *rq)
1919 {
1920 	if (rq->rt.overloaded)
1921 		rt_clear_overload(rq);
1922 
1923 	__disable_runtime(rq);
1924 
1925 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1926 }
1927 
1928 /*
1929  * When switch from the rt queue, we bring ourselves to a position
1930  * that we might want to pull RT tasks from other runqueues.
1931  */
1932 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1933 {
1934 	/*
1935 	 * If there are other RT tasks then we will reschedule
1936 	 * and the scheduling of the other RT tasks will handle
1937 	 * the balancing. But if we are the last RT task
1938 	 * we may need to handle the pulling of RT tasks
1939 	 * now.
1940 	 */
1941 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
1942 		return;
1943 
1944 	if (pull_rt_task(rq))
1945 		resched_curr(rq);
1946 }
1947 
1948 void __init init_sched_rt_class(void)
1949 {
1950 	unsigned int i;
1951 
1952 	for_each_possible_cpu(i) {
1953 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1954 					GFP_KERNEL, cpu_to_node(i));
1955 	}
1956 }
1957 #endif /* CONFIG_SMP */
1958 
1959 /*
1960  * When switching a task to RT, we may overload the runqueue
1961  * with RT tasks. In this case we try to push them off to
1962  * other runqueues.
1963  */
1964 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1965 {
1966 	int check_resched = 1;
1967 
1968 	/*
1969 	 * If we are already running, then there's nothing
1970 	 * that needs to be done. But if we are not running
1971 	 * we may need to preempt the current running task.
1972 	 * If that current running task is also an RT task
1973 	 * then see if we can move to another run queue.
1974 	 */
1975 	if (task_on_rq_queued(p) && rq->curr != p) {
1976 #ifdef CONFIG_SMP
1977 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded &&
1978 		    /* Don't resched if we changed runqueues */
1979 		    push_rt_task(rq) && rq != task_rq(p))
1980 			check_resched = 0;
1981 #endif /* CONFIG_SMP */
1982 		if (check_resched && p->prio < rq->curr->prio)
1983 			resched_curr(rq);
1984 	}
1985 }
1986 
1987 /*
1988  * Priority of the task has changed. This may cause
1989  * us to initiate a push or pull.
1990  */
1991 static void
1992 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1993 {
1994 	if (!task_on_rq_queued(p))
1995 		return;
1996 
1997 	if (rq->curr == p) {
1998 #ifdef CONFIG_SMP
1999 		/*
2000 		 * If our priority decreases while running, we
2001 		 * may need to pull tasks to this runqueue.
2002 		 */
2003 		if (oldprio < p->prio)
2004 			pull_rt_task(rq);
2005 		/*
2006 		 * If there's a higher priority task waiting to run
2007 		 * then reschedule. Note, the above pull_rt_task
2008 		 * can release the rq lock and p could migrate.
2009 		 * Only reschedule if p is still on the same runqueue.
2010 		 */
2011 		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
2012 			resched_curr(rq);
2013 #else
2014 		/* For UP simply resched on drop of prio */
2015 		if (oldprio < p->prio)
2016 			resched_curr(rq);
2017 #endif /* CONFIG_SMP */
2018 	} else {
2019 		/*
2020 		 * This task is not running, but if it is
2021 		 * greater than the current running task
2022 		 * then reschedule.
2023 		 */
2024 		if (p->prio < rq->curr->prio)
2025 			resched_curr(rq);
2026 	}
2027 }
2028 
2029 static void watchdog(struct rq *rq, struct task_struct *p)
2030 {
2031 	unsigned long soft, hard;
2032 
2033 	/* max may change after cur was read, this will be fixed next tick */
2034 	soft = task_rlimit(p, RLIMIT_RTTIME);
2035 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2036 
2037 	if (soft != RLIM_INFINITY) {
2038 		unsigned long next;
2039 
2040 		if (p->rt.watchdog_stamp != jiffies) {
2041 			p->rt.timeout++;
2042 			p->rt.watchdog_stamp = jiffies;
2043 		}
2044 
2045 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2046 		if (p->rt.timeout > next)
2047 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
2048 	}
2049 }
2050 
2051 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2052 {
2053 	struct sched_rt_entity *rt_se = &p->rt;
2054 
2055 	update_curr_rt(rq);
2056 
2057 	watchdog(rq, p);
2058 
2059 	/*
2060 	 * RR tasks need a special form of timeslice management.
2061 	 * FIFO tasks have no timeslices.
2062 	 */
2063 	if (p->policy != SCHED_RR)
2064 		return;
2065 
2066 	if (--p->rt.time_slice)
2067 		return;
2068 
2069 	p->rt.time_slice = sched_rr_timeslice;
2070 
2071 	/*
2072 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2073 	 * the only element on the queue
2074 	 */
2075 	for_each_sched_rt_entity(rt_se) {
2076 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2077 			requeue_task_rt(rq, p, 0);
2078 			resched_curr(rq);
2079 			return;
2080 		}
2081 	}
2082 }
2083 
2084 static void set_curr_task_rt(struct rq *rq)
2085 {
2086 	struct task_struct *p = rq->curr;
2087 
2088 	p->se.exec_start = rq_clock_task(rq);
2089 
2090 	/* The running task is never eligible for pushing */
2091 	dequeue_pushable_task(rq, p);
2092 }
2093 
2094 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2095 {
2096 	/*
2097 	 * Time slice is 0 for SCHED_FIFO tasks
2098 	 */
2099 	if (task->policy == SCHED_RR)
2100 		return sched_rr_timeslice;
2101 	else
2102 		return 0;
2103 }
2104 
2105 const struct sched_class rt_sched_class = {
2106 	.next			= &fair_sched_class,
2107 	.enqueue_task		= enqueue_task_rt,
2108 	.dequeue_task		= dequeue_task_rt,
2109 	.yield_task		= yield_task_rt,
2110 
2111 	.check_preempt_curr	= check_preempt_curr_rt,
2112 
2113 	.pick_next_task		= pick_next_task_rt,
2114 	.put_prev_task		= put_prev_task_rt,
2115 
2116 #ifdef CONFIG_SMP
2117 	.select_task_rq		= select_task_rq_rt,
2118 
2119 	.set_cpus_allowed       = set_cpus_allowed_rt,
2120 	.rq_online              = rq_online_rt,
2121 	.rq_offline             = rq_offline_rt,
2122 	.post_schedule		= post_schedule_rt,
2123 	.task_woken		= task_woken_rt,
2124 	.switched_from		= switched_from_rt,
2125 #endif
2126 
2127 	.set_curr_task          = set_curr_task_rt,
2128 	.task_tick		= task_tick_rt,
2129 
2130 	.get_rr_interval	= get_rr_interval_rt,
2131 
2132 	.prio_changed		= prio_changed_rt,
2133 	.switched_to		= switched_to_rt,
2134 
2135 	.update_curr		= update_curr_rt,
2136 };
2137 
2138 #ifdef CONFIG_SCHED_DEBUG
2139 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2140 
2141 void print_rt_stats(struct seq_file *m, int cpu)
2142 {
2143 	rt_rq_iter_t iter;
2144 	struct rt_rq *rt_rq;
2145 
2146 	rcu_read_lock();
2147 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2148 		print_rt_rq(m, cpu, rt_rq);
2149 	rcu_read_unlock();
2150 }
2151 #endif /* CONFIG_SCHED_DEBUG */
2152