xref: /linux/kernel/sched/rt.c (revision 79e03f29fc84db76f78834b1f73ed329b377d753)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 #include "sched.h"
7 
8 #include "pelt.h"
9 
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12 /* More than 4 hours if BW_SHIFT equals 20. */
13 static const u64 max_rt_runtime = MAX_BW;
14 
15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
16 
17 struct rt_bandwidth def_rt_bandwidth;
18 
19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
20 {
21 	struct rt_bandwidth *rt_b =
22 		container_of(timer, struct rt_bandwidth, rt_period_timer);
23 	int idle = 0;
24 	int overrun;
25 
26 	raw_spin_lock(&rt_b->rt_runtime_lock);
27 	for (;;) {
28 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
29 		if (!overrun)
30 			break;
31 
32 		raw_spin_unlock(&rt_b->rt_runtime_lock);
33 		idle = do_sched_rt_period_timer(rt_b, overrun);
34 		raw_spin_lock(&rt_b->rt_runtime_lock);
35 	}
36 	if (idle)
37 		rt_b->rt_period_active = 0;
38 	raw_spin_unlock(&rt_b->rt_runtime_lock);
39 
40 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
41 }
42 
43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
44 {
45 	rt_b->rt_period = ns_to_ktime(period);
46 	rt_b->rt_runtime = runtime;
47 
48 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
49 
50 	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
51 		     HRTIMER_MODE_REL_HARD);
52 	rt_b->rt_period_timer.function = sched_rt_period_timer;
53 }
54 
55 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
56 {
57 	raw_spin_lock(&rt_b->rt_runtime_lock);
58 	if (!rt_b->rt_period_active) {
59 		rt_b->rt_period_active = 1;
60 		/*
61 		 * SCHED_DEADLINE updates the bandwidth, as a run away
62 		 * RT task with a DL task could hog a CPU. But DL does
63 		 * not reset the period. If a deadline task was running
64 		 * without an RT task running, it can cause RT tasks to
65 		 * throttle when they start up. Kick the timer right away
66 		 * to update the period.
67 		 */
68 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
69 		hrtimer_start_expires(&rt_b->rt_period_timer,
70 				      HRTIMER_MODE_ABS_PINNED_HARD);
71 	}
72 	raw_spin_unlock(&rt_b->rt_runtime_lock);
73 }
74 
75 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
76 {
77 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
78 		return;
79 
80 	do_start_rt_bandwidth(rt_b);
81 }
82 
83 void init_rt_rq(struct rt_rq *rt_rq)
84 {
85 	struct rt_prio_array *array;
86 	int i;
87 
88 	array = &rt_rq->active;
89 	for (i = 0; i < MAX_RT_PRIO; i++) {
90 		INIT_LIST_HEAD(array->queue + i);
91 		__clear_bit(i, array->bitmap);
92 	}
93 	/* delimiter for bitsearch: */
94 	__set_bit(MAX_RT_PRIO, array->bitmap);
95 
96 #if defined CONFIG_SMP
97 	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
98 	rt_rq->highest_prio.next = MAX_RT_PRIO-1;
99 	rt_rq->rt_nr_migratory = 0;
100 	rt_rq->overloaded = 0;
101 	plist_head_init(&rt_rq->pushable_tasks);
102 #endif /* CONFIG_SMP */
103 	/* We start is dequeued state, because no RT tasks are queued */
104 	rt_rq->rt_queued = 0;
105 
106 	rt_rq->rt_time = 0;
107 	rt_rq->rt_throttled = 0;
108 	rt_rq->rt_runtime = 0;
109 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
110 }
111 
112 #ifdef CONFIG_RT_GROUP_SCHED
113 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
114 {
115 	hrtimer_cancel(&rt_b->rt_period_timer);
116 }
117 
118 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
119 
120 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
121 {
122 #ifdef CONFIG_SCHED_DEBUG
123 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
124 #endif
125 	return container_of(rt_se, struct task_struct, rt);
126 }
127 
128 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
129 {
130 	return rt_rq->rq;
131 }
132 
133 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
134 {
135 	return rt_se->rt_rq;
136 }
137 
138 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
139 {
140 	struct rt_rq *rt_rq = rt_se->rt_rq;
141 
142 	return rt_rq->rq;
143 }
144 
145 void unregister_rt_sched_group(struct task_group *tg)
146 {
147 	if (tg->rt_se)
148 		destroy_rt_bandwidth(&tg->rt_bandwidth);
149 
150 }
151 
152 void free_rt_sched_group(struct task_group *tg)
153 {
154 	int i;
155 
156 	for_each_possible_cpu(i) {
157 		if (tg->rt_rq)
158 			kfree(tg->rt_rq[i]);
159 		if (tg->rt_se)
160 			kfree(tg->rt_se[i]);
161 	}
162 
163 	kfree(tg->rt_rq);
164 	kfree(tg->rt_se);
165 }
166 
167 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
168 		struct sched_rt_entity *rt_se, int cpu,
169 		struct sched_rt_entity *parent)
170 {
171 	struct rq *rq = cpu_rq(cpu);
172 
173 	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
174 	rt_rq->rt_nr_boosted = 0;
175 	rt_rq->rq = rq;
176 	rt_rq->tg = tg;
177 
178 	tg->rt_rq[cpu] = rt_rq;
179 	tg->rt_se[cpu] = rt_se;
180 
181 	if (!rt_se)
182 		return;
183 
184 	if (!parent)
185 		rt_se->rt_rq = &rq->rt;
186 	else
187 		rt_se->rt_rq = parent->my_q;
188 
189 	rt_se->my_q = rt_rq;
190 	rt_se->parent = parent;
191 	INIT_LIST_HEAD(&rt_se->run_list);
192 }
193 
194 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
195 {
196 	struct rt_rq *rt_rq;
197 	struct sched_rt_entity *rt_se;
198 	int i;
199 
200 	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
201 	if (!tg->rt_rq)
202 		goto err;
203 	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
204 	if (!tg->rt_se)
205 		goto err;
206 
207 	init_rt_bandwidth(&tg->rt_bandwidth,
208 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
209 
210 	for_each_possible_cpu(i) {
211 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
212 				     GFP_KERNEL, cpu_to_node(i));
213 		if (!rt_rq)
214 			goto err;
215 
216 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
217 				     GFP_KERNEL, cpu_to_node(i));
218 		if (!rt_se)
219 			goto err_free_rq;
220 
221 		init_rt_rq(rt_rq);
222 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
223 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
224 	}
225 
226 	return 1;
227 
228 err_free_rq:
229 	kfree(rt_rq);
230 err:
231 	return 0;
232 }
233 
234 #else /* CONFIG_RT_GROUP_SCHED */
235 
236 #define rt_entity_is_task(rt_se) (1)
237 
238 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
239 {
240 	return container_of(rt_se, struct task_struct, rt);
241 }
242 
243 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
244 {
245 	return container_of(rt_rq, struct rq, rt);
246 }
247 
248 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
249 {
250 	struct task_struct *p = rt_task_of(rt_se);
251 
252 	return task_rq(p);
253 }
254 
255 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
256 {
257 	struct rq *rq = rq_of_rt_se(rt_se);
258 
259 	return &rq->rt;
260 }
261 
262 void unregister_rt_sched_group(struct task_group *tg) { }
263 
264 void free_rt_sched_group(struct task_group *tg) { }
265 
266 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
267 {
268 	return 1;
269 }
270 #endif /* CONFIG_RT_GROUP_SCHED */
271 
272 #ifdef CONFIG_SMP
273 
274 static void pull_rt_task(struct rq *this_rq);
275 
276 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
277 {
278 	/* Try to pull RT tasks here if we lower this rq's prio */
279 	return rq->online && rq->rt.highest_prio.curr > prev->prio;
280 }
281 
282 static inline int rt_overloaded(struct rq *rq)
283 {
284 	return atomic_read(&rq->rd->rto_count);
285 }
286 
287 static inline void rt_set_overload(struct rq *rq)
288 {
289 	if (!rq->online)
290 		return;
291 
292 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
293 	/*
294 	 * Make sure the mask is visible before we set
295 	 * the overload count. That is checked to determine
296 	 * if we should look at the mask. It would be a shame
297 	 * if we looked at the mask, but the mask was not
298 	 * updated yet.
299 	 *
300 	 * Matched by the barrier in pull_rt_task().
301 	 */
302 	smp_wmb();
303 	atomic_inc(&rq->rd->rto_count);
304 }
305 
306 static inline void rt_clear_overload(struct rq *rq)
307 {
308 	if (!rq->online)
309 		return;
310 
311 	/* the order here really doesn't matter */
312 	atomic_dec(&rq->rd->rto_count);
313 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
314 }
315 
316 static void update_rt_migration(struct rt_rq *rt_rq)
317 {
318 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
319 		if (!rt_rq->overloaded) {
320 			rt_set_overload(rq_of_rt_rq(rt_rq));
321 			rt_rq->overloaded = 1;
322 		}
323 	} else if (rt_rq->overloaded) {
324 		rt_clear_overload(rq_of_rt_rq(rt_rq));
325 		rt_rq->overloaded = 0;
326 	}
327 }
328 
329 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
330 {
331 	struct task_struct *p;
332 
333 	if (!rt_entity_is_task(rt_se))
334 		return;
335 
336 	p = rt_task_of(rt_se);
337 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
338 
339 	rt_rq->rt_nr_total++;
340 	if (p->nr_cpus_allowed > 1)
341 		rt_rq->rt_nr_migratory++;
342 
343 	update_rt_migration(rt_rq);
344 }
345 
346 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
347 {
348 	struct task_struct *p;
349 
350 	if (!rt_entity_is_task(rt_se))
351 		return;
352 
353 	p = rt_task_of(rt_se);
354 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
355 
356 	rt_rq->rt_nr_total--;
357 	if (p->nr_cpus_allowed > 1)
358 		rt_rq->rt_nr_migratory--;
359 
360 	update_rt_migration(rt_rq);
361 }
362 
363 static inline int has_pushable_tasks(struct rq *rq)
364 {
365 	return !plist_head_empty(&rq->rt.pushable_tasks);
366 }
367 
368 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
369 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
370 
371 static void push_rt_tasks(struct rq *);
372 static void pull_rt_task(struct rq *);
373 
374 static inline void rt_queue_push_tasks(struct rq *rq)
375 {
376 	if (!has_pushable_tasks(rq))
377 		return;
378 
379 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
380 }
381 
382 static inline void rt_queue_pull_task(struct rq *rq)
383 {
384 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
385 }
386 
387 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
388 {
389 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
390 	plist_node_init(&p->pushable_tasks, p->prio);
391 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
392 
393 	/* Update the highest prio pushable task */
394 	if (p->prio < rq->rt.highest_prio.next)
395 		rq->rt.highest_prio.next = p->prio;
396 }
397 
398 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
399 {
400 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
401 
402 	/* Update the new highest prio pushable task */
403 	if (has_pushable_tasks(rq)) {
404 		p = plist_first_entry(&rq->rt.pushable_tasks,
405 				      struct task_struct, pushable_tasks);
406 		rq->rt.highest_prio.next = p->prio;
407 	} else {
408 		rq->rt.highest_prio.next = MAX_RT_PRIO-1;
409 	}
410 }
411 
412 #else
413 
414 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
415 {
416 }
417 
418 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
419 {
420 }
421 
422 static inline
423 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
424 {
425 }
426 
427 static inline
428 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
429 {
430 }
431 
432 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
433 {
434 	return false;
435 }
436 
437 static inline void pull_rt_task(struct rq *this_rq)
438 {
439 }
440 
441 static inline void rt_queue_push_tasks(struct rq *rq)
442 {
443 }
444 #endif /* CONFIG_SMP */
445 
446 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
447 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
448 
449 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
450 {
451 	return rt_se->on_rq;
452 }
453 
454 #ifdef CONFIG_UCLAMP_TASK
455 /*
456  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
457  * settings.
458  *
459  * This check is only important for heterogeneous systems where uclamp_min value
460  * is higher than the capacity of a @cpu. For non-heterogeneous system this
461  * function will always return true.
462  *
463  * The function will return true if the capacity of the @cpu is >= the
464  * uclamp_min and false otherwise.
465  *
466  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
467  * > uclamp_max.
468  */
469 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
470 {
471 	unsigned int min_cap;
472 	unsigned int max_cap;
473 	unsigned int cpu_cap;
474 
475 	/* Only heterogeneous systems can benefit from this check */
476 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
477 		return true;
478 
479 	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
480 	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
481 
482 	cpu_cap = capacity_orig_of(cpu);
483 
484 	return cpu_cap >= min(min_cap, max_cap);
485 }
486 #else
487 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
488 {
489 	return true;
490 }
491 #endif
492 
493 #ifdef CONFIG_RT_GROUP_SCHED
494 
495 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
496 {
497 	if (!rt_rq->tg)
498 		return RUNTIME_INF;
499 
500 	return rt_rq->rt_runtime;
501 }
502 
503 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
504 {
505 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
506 }
507 
508 typedef struct task_group *rt_rq_iter_t;
509 
510 static inline struct task_group *next_task_group(struct task_group *tg)
511 {
512 	do {
513 		tg = list_entry_rcu(tg->list.next,
514 			typeof(struct task_group), list);
515 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
516 
517 	if (&tg->list == &task_groups)
518 		tg = NULL;
519 
520 	return tg;
521 }
522 
523 #define for_each_rt_rq(rt_rq, iter, rq)					\
524 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
525 		(iter = next_task_group(iter)) &&			\
526 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
527 
528 #define for_each_sched_rt_entity(rt_se) \
529 	for (; rt_se; rt_se = rt_se->parent)
530 
531 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
532 {
533 	return rt_se->my_q;
534 }
535 
536 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
537 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
538 
539 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
540 {
541 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
542 	struct rq *rq = rq_of_rt_rq(rt_rq);
543 	struct sched_rt_entity *rt_se;
544 
545 	int cpu = cpu_of(rq);
546 
547 	rt_se = rt_rq->tg->rt_se[cpu];
548 
549 	if (rt_rq->rt_nr_running) {
550 		if (!rt_se)
551 			enqueue_top_rt_rq(rt_rq);
552 		else if (!on_rt_rq(rt_se))
553 			enqueue_rt_entity(rt_se, 0);
554 
555 		if (rt_rq->highest_prio.curr < curr->prio)
556 			resched_curr(rq);
557 	}
558 }
559 
560 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
561 {
562 	struct sched_rt_entity *rt_se;
563 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
564 
565 	rt_se = rt_rq->tg->rt_se[cpu];
566 
567 	if (!rt_se) {
568 		dequeue_top_rt_rq(rt_rq);
569 		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
570 		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
571 	}
572 	else if (on_rt_rq(rt_se))
573 		dequeue_rt_entity(rt_se, 0);
574 }
575 
576 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
577 {
578 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
579 }
580 
581 static int rt_se_boosted(struct sched_rt_entity *rt_se)
582 {
583 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
584 	struct task_struct *p;
585 
586 	if (rt_rq)
587 		return !!rt_rq->rt_nr_boosted;
588 
589 	p = rt_task_of(rt_se);
590 	return p->prio != p->normal_prio;
591 }
592 
593 #ifdef CONFIG_SMP
594 static inline const struct cpumask *sched_rt_period_mask(void)
595 {
596 	return this_rq()->rd->span;
597 }
598 #else
599 static inline const struct cpumask *sched_rt_period_mask(void)
600 {
601 	return cpu_online_mask;
602 }
603 #endif
604 
605 static inline
606 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
607 {
608 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
609 }
610 
611 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
612 {
613 	return &rt_rq->tg->rt_bandwidth;
614 }
615 
616 #else /* !CONFIG_RT_GROUP_SCHED */
617 
618 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
619 {
620 	return rt_rq->rt_runtime;
621 }
622 
623 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
624 {
625 	return ktime_to_ns(def_rt_bandwidth.rt_period);
626 }
627 
628 typedef struct rt_rq *rt_rq_iter_t;
629 
630 #define for_each_rt_rq(rt_rq, iter, rq) \
631 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
632 
633 #define for_each_sched_rt_entity(rt_se) \
634 	for (; rt_se; rt_se = NULL)
635 
636 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
637 {
638 	return NULL;
639 }
640 
641 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
642 {
643 	struct rq *rq = rq_of_rt_rq(rt_rq);
644 
645 	if (!rt_rq->rt_nr_running)
646 		return;
647 
648 	enqueue_top_rt_rq(rt_rq);
649 	resched_curr(rq);
650 }
651 
652 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
653 {
654 	dequeue_top_rt_rq(rt_rq);
655 }
656 
657 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
658 {
659 	return rt_rq->rt_throttled;
660 }
661 
662 static inline const struct cpumask *sched_rt_period_mask(void)
663 {
664 	return cpu_online_mask;
665 }
666 
667 static inline
668 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
669 {
670 	return &cpu_rq(cpu)->rt;
671 }
672 
673 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
674 {
675 	return &def_rt_bandwidth;
676 }
677 
678 #endif /* CONFIG_RT_GROUP_SCHED */
679 
680 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
681 {
682 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
683 
684 	return (hrtimer_active(&rt_b->rt_period_timer) ||
685 		rt_rq->rt_time < rt_b->rt_runtime);
686 }
687 
688 #ifdef CONFIG_SMP
689 /*
690  * We ran out of runtime, see if we can borrow some from our neighbours.
691  */
692 static void do_balance_runtime(struct rt_rq *rt_rq)
693 {
694 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
695 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
696 	int i, weight;
697 	u64 rt_period;
698 
699 	weight = cpumask_weight(rd->span);
700 
701 	raw_spin_lock(&rt_b->rt_runtime_lock);
702 	rt_period = ktime_to_ns(rt_b->rt_period);
703 	for_each_cpu(i, rd->span) {
704 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
705 		s64 diff;
706 
707 		if (iter == rt_rq)
708 			continue;
709 
710 		raw_spin_lock(&iter->rt_runtime_lock);
711 		/*
712 		 * Either all rqs have inf runtime and there's nothing to steal
713 		 * or __disable_runtime() below sets a specific rq to inf to
714 		 * indicate its been disabled and disallow stealing.
715 		 */
716 		if (iter->rt_runtime == RUNTIME_INF)
717 			goto next;
718 
719 		/*
720 		 * From runqueues with spare time, take 1/n part of their
721 		 * spare time, but no more than our period.
722 		 */
723 		diff = iter->rt_runtime - iter->rt_time;
724 		if (diff > 0) {
725 			diff = div_u64((u64)diff, weight);
726 			if (rt_rq->rt_runtime + diff > rt_period)
727 				diff = rt_period - rt_rq->rt_runtime;
728 			iter->rt_runtime -= diff;
729 			rt_rq->rt_runtime += diff;
730 			if (rt_rq->rt_runtime == rt_period) {
731 				raw_spin_unlock(&iter->rt_runtime_lock);
732 				break;
733 			}
734 		}
735 next:
736 		raw_spin_unlock(&iter->rt_runtime_lock);
737 	}
738 	raw_spin_unlock(&rt_b->rt_runtime_lock);
739 }
740 
741 /*
742  * Ensure this RQ takes back all the runtime it lend to its neighbours.
743  */
744 static void __disable_runtime(struct rq *rq)
745 {
746 	struct root_domain *rd = rq->rd;
747 	rt_rq_iter_t iter;
748 	struct rt_rq *rt_rq;
749 
750 	if (unlikely(!scheduler_running))
751 		return;
752 
753 	for_each_rt_rq(rt_rq, iter, rq) {
754 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
755 		s64 want;
756 		int i;
757 
758 		raw_spin_lock(&rt_b->rt_runtime_lock);
759 		raw_spin_lock(&rt_rq->rt_runtime_lock);
760 		/*
761 		 * Either we're all inf and nobody needs to borrow, or we're
762 		 * already disabled and thus have nothing to do, or we have
763 		 * exactly the right amount of runtime to take out.
764 		 */
765 		if (rt_rq->rt_runtime == RUNTIME_INF ||
766 				rt_rq->rt_runtime == rt_b->rt_runtime)
767 			goto balanced;
768 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
769 
770 		/*
771 		 * Calculate the difference between what we started out with
772 		 * and what we current have, that's the amount of runtime
773 		 * we lend and now have to reclaim.
774 		 */
775 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
776 
777 		/*
778 		 * Greedy reclaim, take back as much as we can.
779 		 */
780 		for_each_cpu(i, rd->span) {
781 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
782 			s64 diff;
783 
784 			/*
785 			 * Can't reclaim from ourselves or disabled runqueues.
786 			 */
787 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
788 				continue;
789 
790 			raw_spin_lock(&iter->rt_runtime_lock);
791 			if (want > 0) {
792 				diff = min_t(s64, iter->rt_runtime, want);
793 				iter->rt_runtime -= diff;
794 				want -= diff;
795 			} else {
796 				iter->rt_runtime -= want;
797 				want -= want;
798 			}
799 			raw_spin_unlock(&iter->rt_runtime_lock);
800 
801 			if (!want)
802 				break;
803 		}
804 
805 		raw_spin_lock(&rt_rq->rt_runtime_lock);
806 		/*
807 		 * We cannot be left wanting - that would mean some runtime
808 		 * leaked out of the system.
809 		 */
810 		BUG_ON(want);
811 balanced:
812 		/*
813 		 * Disable all the borrow logic by pretending we have inf
814 		 * runtime - in which case borrowing doesn't make sense.
815 		 */
816 		rt_rq->rt_runtime = RUNTIME_INF;
817 		rt_rq->rt_throttled = 0;
818 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
819 		raw_spin_unlock(&rt_b->rt_runtime_lock);
820 
821 		/* Make rt_rq available for pick_next_task() */
822 		sched_rt_rq_enqueue(rt_rq);
823 	}
824 }
825 
826 static void __enable_runtime(struct rq *rq)
827 {
828 	rt_rq_iter_t iter;
829 	struct rt_rq *rt_rq;
830 
831 	if (unlikely(!scheduler_running))
832 		return;
833 
834 	/*
835 	 * Reset each runqueue's bandwidth settings
836 	 */
837 	for_each_rt_rq(rt_rq, iter, rq) {
838 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
839 
840 		raw_spin_lock(&rt_b->rt_runtime_lock);
841 		raw_spin_lock(&rt_rq->rt_runtime_lock);
842 		rt_rq->rt_runtime = rt_b->rt_runtime;
843 		rt_rq->rt_time = 0;
844 		rt_rq->rt_throttled = 0;
845 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
846 		raw_spin_unlock(&rt_b->rt_runtime_lock);
847 	}
848 }
849 
850 static void balance_runtime(struct rt_rq *rt_rq)
851 {
852 	if (!sched_feat(RT_RUNTIME_SHARE))
853 		return;
854 
855 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
856 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
857 		do_balance_runtime(rt_rq);
858 		raw_spin_lock(&rt_rq->rt_runtime_lock);
859 	}
860 }
861 #else /* !CONFIG_SMP */
862 static inline void balance_runtime(struct rt_rq *rt_rq) {}
863 #endif /* CONFIG_SMP */
864 
865 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
866 {
867 	int i, idle = 1, throttled = 0;
868 	const struct cpumask *span;
869 
870 	span = sched_rt_period_mask();
871 #ifdef CONFIG_RT_GROUP_SCHED
872 	/*
873 	 * FIXME: isolated CPUs should really leave the root task group,
874 	 * whether they are isolcpus or were isolated via cpusets, lest
875 	 * the timer run on a CPU which does not service all runqueues,
876 	 * potentially leaving other CPUs indefinitely throttled.  If
877 	 * isolation is really required, the user will turn the throttle
878 	 * off to kill the perturbations it causes anyway.  Meanwhile,
879 	 * this maintains functionality for boot and/or troubleshooting.
880 	 */
881 	if (rt_b == &root_task_group.rt_bandwidth)
882 		span = cpu_online_mask;
883 #endif
884 	for_each_cpu(i, span) {
885 		int enqueue = 0;
886 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
887 		struct rq *rq = rq_of_rt_rq(rt_rq);
888 		int skip;
889 
890 		/*
891 		 * When span == cpu_online_mask, taking each rq->lock
892 		 * can be time-consuming. Try to avoid it when possible.
893 		 */
894 		raw_spin_lock(&rt_rq->rt_runtime_lock);
895 		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
896 			rt_rq->rt_runtime = rt_b->rt_runtime;
897 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
898 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
899 		if (skip)
900 			continue;
901 
902 		raw_spin_rq_lock(rq);
903 		update_rq_clock(rq);
904 
905 		if (rt_rq->rt_time) {
906 			u64 runtime;
907 
908 			raw_spin_lock(&rt_rq->rt_runtime_lock);
909 			if (rt_rq->rt_throttled)
910 				balance_runtime(rt_rq);
911 			runtime = rt_rq->rt_runtime;
912 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
913 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
914 				rt_rq->rt_throttled = 0;
915 				enqueue = 1;
916 
917 				/*
918 				 * When we're idle and a woken (rt) task is
919 				 * throttled check_preempt_curr() will set
920 				 * skip_update and the time between the wakeup
921 				 * and this unthrottle will get accounted as
922 				 * 'runtime'.
923 				 */
924 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
925 					rq_clock_cancel_skipupdate(rq);
926 			}
927 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
928 				idle = 0;
929 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
930 		} else if (rt_rq->rt_nr_running) {
931 			idle = 0;
932 			if (!rt_rq_throttled(rt_rq))
933 				enqueue = 1;
934 		}
935 		if (rt_rq->rt_throttled)
936 			throttled = 1;
937 
938 		if (enqueue)
939 			sched_rt_rq_enqueue(rt_rq);
940 		raw_spin_rq_unlock(rq);
941 	}
942 
943 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
944 		return 1;
945 
946 	return idle;
947 }
948 
949 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
950 {
951 #ifdef CONFIG_RT_GROUP_SCHED
952 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
953 
954 	if (rt_rq)
955 		return rt_rq->highest_prio.curr;
956 #endif
957 
958 	return rt_task_of(rt_se)->prio;
959 }
960 
961 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
962 {
963 	u64 runtime = sched_rt_runtime(rt_rq);
964 
965 	if (rt_rq->rt_throttled)
966 		return rt_rq_throttled(rt_rq);
967 
968 	if (runtime >= sched_rt_period(rt_rq))
969 		return 0;
970 
971 	balance_runtime(rt_rq);
972 	runtime = sched_rt_runtime(rt_rq);
973 	if (runtime == RUNTIME_INF)
974 		return 0;
975 
976 	if (rt_rq->rt_time > runtime) {
977 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
978 
979 		/*
980 		 * Don't actually throttle groups that have no runtime assigned
981 		 * but accrue some time due to boosting.
982 		 */
983 		if (likely(rt_b->rt_runtime)) {
984 			rt_rq->rt_throttled = 1;
985 			printk_deferred_once("sched: RT throttling activated\n");
986 		} else {
987 			/*
988 			 * In case we did anyway, make it go away,
989 			 * replenishment is a joke, since it will replenish us
990 			 * with exactly 0 ns.
991 			 */
992 			rt_rq->rt_time = 0;
993 		}
994 
995 		if (rt_rq_throttled(rt_rq)) {
996 			sched_rt_rq_dequeue(rt_rq);
997 			return 1;
998 		}
999 	}
1000 
1001 	return 0;
1002 }
1003 
1004 /*
1005  * Update the current task's runtime statistics. Skip current tasks that
1006  * are not in our scheduling class.
1007  */
1008 static void update_curr_rt(struct rq *rq)
1009 {
1010 	struct task_struct *curr = rq->curr;
1011 	struct sched_rt_entity *rt_se = &curr->rt;
1012 	u64 delta_exec;
1013 	u64 now;
1014 
1015 	if (curr->sched_class != &rt_sched_class)
1016 		return;
1017 
1018 	now = rq_clock_task(rq);
1019 	delta_exec = now - curr->se.exec_start;
1020 	if (unlikely((s64)delta_exec <= 0))
1021 		return;
1022 
1023 	schedstat_set(curr->stats.exec_max,
1024 		      max(curr->stats.exec_max, delta_exec));
1025 
1026 	trace_sched_stat_runtime(curr, delta_exec, 0);
1027 
1028 	curr->se.sum_exec_runtime += delta_exec;
1029 	account_group_exec_runtime(curr, delta_exec);
1030 
1031 	curr->se.exec_start = now;
1032 	cgroup_account_cputime(curr, delta_exec);
1033 
1034 	if (!rt_bandwidth_enabled())
1035 		return;
1036 
1037 	for_each_sched_rt_entity(rt_se) {
1038 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1039 		int exceeded;
1040 
1041 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1042 			raw_spin_lock(&rt_rq->rt_runtime_lock);
1043 			rt_rq->rt_time += delta_exec;
1044 			exceeded = sched_rt_runtime_exceeded(rt_rq);
1045 			if (exceeded)
1046 				resched_curr(rq);
1047 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1048 			if (exceeded)
1049 				do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1050 		}
1051 	}
1052 }
1053 
1054 static void
1055 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1056 {
1057 	struct rq *rq = rq_of_rt_rq(rt_rq);
1058 
1059 	BUG_ON(&rq->rt != rt_rq);
1060 
1061 	if (!rt_rq->rt_queued)
1062 		return;
1063 
1064 	BUG_ON(!rq->nr_running);
1065 
1066 	sub_nr_running(rq, rt_rq->rt_nr_running);
1067 	rt_rq->rt_queued = 0;
1068 
1069 }
1070 
1071 static void
1072 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1073 {
1074 	struct rq *rq = rq_of_rt_rq(rt_rq);
1075 
1076 	BUG_ON(&rq->rt != rt_rq);
1077 
1078 	if (rt_rq->rt_queued)
1079 		return;
1080 
1081 	if (rt_rq_throttled(rt_rq))
1082 		return;
1083 
1084 	if (rt_rq->rt_nr_running) {
1085 		add_nr_running(rq, rt_rq->rt_nr_running);
1086 		rt_rq->rt_queued = 1;
1087 	}
1088 
1089 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1090 	cpufreq_update_util(rq, 0);
1091 }
1092 
1093 #if defined CONFIG_SMP
1094 
1095 static void
1096 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1097 {
1098 	struct rq *rq = rq_of_rt_rq(rt_rq);
1099 
1100 #ifdef CONFIG_RT_GROUP_SCHED
1101 	/*
1102 	 * Change rq's cpupri only if rt_rq is the top queue.
1103 	 */
1104 	if (&rq->rt != rt_rq)
1105 		return;
1106 #endif
1107 	if (rq->online && prio < prev_prio)
1108 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1109 }
1110 
1111 static void
1112 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1113 {
1114 	struct rq *rq = rq_of_rt_rq(rt_rq);
1115 
1116 #ifdef CONFIG_RT_GROUP_SCHED
1117 	/*
1118 	 * Change rq's cpupri only if rt_rq is the top queue.
1119 	 */
1120 	if (&rq->rt != rt_rq)
1121 		return;
1122 #endif
1123 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1124 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1125 }
1126 
1127 #else /* CONFIG_SMP */
1128 
1129 static inline
1130 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1131 static inline
1132 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1133 
1134 #endif /* CONFIG_SMP */
1135 
1136 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1137 static void
1138 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1139 {
1140 	int prev_prio = rt_rq->highest_prio.curr;
1141 
1142 	if (prio < prev_prio)
1143 		rt_rq->highest_prio.curr = prio;
1144 
1145 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1146 }
1147 
1148 static void
1149 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1150 {
1151 	int prev_prio = rt_rq->highest_prio.curr;
1152 
1153 	if (rt_rq->rt_nr_running) {
1154 
1155 		WARN_ON(prio < prev_prio);
1156 
1157 		/*
1158 		 * This may have been our highest task, and therefore
1159 		 * we may have some recomputation to do
1160 		 */
1161 		if (prio == prev_prio) {
1162 			struct rt_prio_array *array = &rt_rq->active;
1163 
1164 			rt_rq->highest_prio.curr =
1165 				sched_find_first_bit(array->bitmap);
1166 		}
1167 
1168 	} else {
1169 		rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1170 	}
1171 
1172 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1173 }
1174 
1175 #else
1176 
1177 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1178 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1179 
1180 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1181 
1182 #ifdef CONFIG_RT_GROUP_SCHED
1183 
1184 static void
1185 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1186 {
1187 	if (rt_se_boosted(rt_se))
1188 		rt_rq->rt_nr_boosted++;
1189 
1190 	if (rt_rq->tg)
1191 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1192 }
1193 
1194 static void
1195 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1196 {
1197 	if (rt_se_boosted(rt_se))
1198 		rt_rq->rt_nr_boosted--;
1199 
1200 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1201 }
1202 
1203 #else /* CONFIG_RT_GROUP_SCHED */
1204 
1205 static void
1206 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1207 {
1208 	start_rt_bandwidth(&def_rt_bandwidth);
1209 }
1210 
1211 static inline
1212 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1213 
1214 #endif /* CONFIG_RT_GROUP_SCHED */
1215 
1216 static inline
1217 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1218 {
1219 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1220 
1221 	if (group_rq)
1222 		return group_rq->rt_nr_running;
1223 	else
1224 		return 1;
1225 }
1226 
1227 static inline
1228 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1229 {
1230 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1231 	struct task_struct *tsk;
1232 
1233 	if (group_rq)
1234 		return group_rq->rr_nr_running;
1235 
1236 	tsk = rt_task_of(rt_se);
1237 
1238 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1239 }
1240 
1241 static inline
1242 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1243 {
1244 	int prio = rt_se_prio(rt_se);
1245 
1246 	WARN_ON(!rt_prio(prio));
1247 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1248 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1249 
1250 	inc_rt_prio(rt_rq, prio);
1251 	inc_rt_migration(rt_se, rt_rq);
1252 	inc_rt_group(rt_se, rt_rq);
1253 }
1254 
1255 static inline
1256 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1257 {
1258 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1259 	WARN_ON(!rt_rq->rt_nr_running);
1260 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1261 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1262 
1263 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1264 	dec_rt_migration(rt_se, rt_rq);
1265 	dec_rt_group(rt_se, rt_rq);
1266 }
1267 
1268 /*
1269  * Change rt_se->run_list location unless SAVE && !MOVE
1270  *
1271  * assumes ENQUEUE/DEQUEUE flags match
1272  */
1273 static inline bool move_entity(unsigned int flags)
1274 {
1275 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1276 		return false;
1277 
1278 	return true;
1279 }
1280 
1281 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1282 {
1283 	list_del_init(&rt_se->run_list);
1284 
1285 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1286 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1287 
1288 	rt_se->on_list = 0;
1289 }
1290 
1291 static inline struct sched_statistics *
1292 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1293 {
1294 #ifdef CONFIG_RT_GROUP_SCHED
1295 	/* schedstats is not supported for rt group. */
1296 	if (!rt_entity_is_task(rt_se))
1297 		return NULL;
1298 #endif
1299 
1300 	return &rt_task_of(rt_se)->stats;
1301 }
1302 
1303 static inline void
1304 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1305 {
1306 	struct sched_statistics *stats;
1307 	struct task_struct *p = NULL;
1308 
1309 	if (!schedstat_enabled())
1310 		return;
1311 
1312 	if (rt_entity_is_task(rt_se))
1313 		p = rt_task_of(rt_se);
1314 
1315 	stats = __schedstats_from_rt_se(rt_se);
1316 	if (!stats)
1317 		return;
1318 
1319 	__update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1320 }
1321 
1322 static inline void
1323 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1324 {
1325 	struct sched_statistics *stats;
1326 	struct task_struct *p = NULL;
1327 
1328 	if (!schedstat_enabled())
1329 		return;
1330 
1331 	if (rt_entity_is_task(rt_se))
1332 		p = rt_task_of(rt_se);
1333 
1334 	stats = __schedstats_from_rt_se(rt_se);
1335 	if (!stats)
1336 		return;
1337 
1338 	__update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1339 }
1340 
1341 static inline void
1342 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1343 			int flags)
1344 {
1345 	if (!schedstat_enabled())
1346 		return;
1347 
1348 	if (flags & ENQUEUE_WAKEUP)
1349 		update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1350 }
1351 
1352 static inline void
1353 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1354 {
1355 	struct sched_statistics *stats;
1356 	struct task_struct *p = NULL;
1357 
1358 	if (!schedstat_enabled())
1359 		return;
1360 
1361 	if (rt_entity_is_task(rt_se))
1362 		p = rt_task_of(rt_se);
1363 
1364 	stats = __schedstats_from_rt_se(rt_se);
1365 	if (!stats)
1366 		return;
1367 
1368 	__update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1369 }
1370 
1371 static inline void
1372 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1373 			int flags)
1374 {
1375 	struct task_struct *p = NULL;
1376 
1377 	if (!schedstat_enabled())
1378 		return;
1379 
1380 	if (rt_entity_is_task(rt_se))
1381 		p = rt_task_of(rt_se);
1382 
1383 	if ((flags & DEQUEUE_SLEEP) && p) {
1384 		unsigned int state;
1385 
1386 		state = READ_ONCE(p->__state);
1387 		if (state & TASK_INTERRUPTIBLE)
1388 			__schedstat_set(p->stats.sleep_start,
1389 					rq_clock(rq_of_rt_rq(rt_rq)));
1390 
1391 		if (state & TASK_UNINTERRUPTIBLE)
1392 			__schedstat_set(p->stats.block_start,
1393 					rq_clock(rq_of_rt_rq(rt_rq)));
1394 	}
1395 }
1396 
1397 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1398 {
1399 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1400 	struct rt_prio_array *array = &rt_rq->active;
1401 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1402 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1403 
1404 	/*
1405 	 * Don't enqueue the group if its throttled, or when empty.
1406 	 * The latter is a consequence of the former when a child group
1407 	 * get throttled and the current group doesn't have any other
1408 	 * active members.
1409 	 */
1410 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1411 		if (rt_se->on_list)
1412 			__delist_rt_entity(rt_se, array);
1413 		return;
1414 	}
1415 
1416 	if (move_entity(flags)) {
1417 		WARN_ON_ONCE(rt_se->on_list);
1418 		if (flags & ENQUEUE_HEAD)
1419 			list_add(&rt_se->run_list, queue);
1420 		else
1421 			list_add_tail(&rt_se->run_list, queue);
1422 
1423 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1424 		rt_se->on_list = 1;
1425 	}
1426 	rt_se->on_rq = 1;
1427 
1428 	inc_rt_tasks(rt_se, rt_rq);
1429 }
1430 
1431 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1432 {
1433 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1434 	struct rt_prio_array *array = &rt_rq->active;
1435 
1436 	if (move_entity(flags)) {
1437 		WARN_ON_ONCE(!rt_se->on_list);
1438 		__delist_rt_entity(rt_se, array);
1439 	}
1440 	rt_se->on_rq = 0;
1441 
1442 	dec_rt_tasks(rt_se, rt_rq);
1443 }
1444 
1445 /*
1446  * Because the prio of an upper entry depends on the lower
1447  * entries, we must remove entries top - down.
1448  */
1449 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1450 {
1451 	struct sched_rt_entity *back = NULL;
1452 
1453 	for_each_sched_rt_entity(rt_se) {
1454 		rt_se->back = back;
1455 		back = rt_se;
1456 	}
1457 
1458 	dequeue_top_rt_rq(rt_rq_of_se(back));
1459 
1460 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1461 		if (on_rt_rq(rt_se))
1462 			__dequeue_rt_entity(rt_se, flags);
1463 	}
1464 }
1465 
1466 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1467 {
1468 	struct rq *rq = rq_of_rt_se(rt_se);
1469 
1470 	update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1471 
1472 	dequeue_rt_stack(rt_se, flags);
1473 	for_each_sched_rt_entity(rt_se)
1474 		__enqueue_rt_entity(rt_se, flags);
1475 	enqueue_top_rt_rq(&rq->rt);
1476 }
1477 
1478 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1479 {
1480 	struct rq *rq = rq_of_rt_se(rt_se);
1481 
1482 	update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1483 
1484 	dequeue_rt_stack(rt_se, flags);
1485 
1486 	for_each_sched_rt_entity(rt_se) {
1487 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1488 
1489 		if (rt_rq && rt_rq->rt_nr_running)
1490 			__enqueue_rt_entity(rt_se, flags);
1491 	}
1492 	enqueue_top_rt_rq(&rq->rt);
1493 }
1494 
1495 /*
1496  * Adding/removing a task to/from a priority array:
1497  */
1498 static void
1499 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1500 {
1501 	struct sched_rt_entity *rt_se = &p->rt;
1502 
1503 	if (flags & ENQUEUE_WAKEUP)
1504 		rt_se->timeout = 0;
1505 
1506 	check_schedstat_required();
1507 	update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1508 
1509 	enqueue_rt_entity(rt_se, flags);
1510 
1511 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1512 		enqueue_pushable_task(rq, p);
1513 }
1514 
1515 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1516 {
1517 	struct sched_rt_entity *rt_se = &p->rt;
1518 
1519 	update_curr_rt(rq);
1520 	dequeue_rt_entity(rt_se, flags);
1521 
1522 	dequeue_pushable_task(rq, p);
1523 }
1524 
1525 /*
1526  * Put task to the head or the end of the run list without the overhead of
1527  * dequeue followed by enqueue.
1528  */
1529 static void
1530 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1531 {
1532 	if (on_rt_rq(rt_se)) {
1533 		struct rt_prio_array *array = &rt_rq->active;
1534 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1535 
1536 		if (head)
1537 			list_move(&rt_se->run_list, queue);
1538 		else
1539 			list_move_tail(&rt_se->run_list, queue);
1540 	}
1541 }
1542 
1543 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1544 {
1545 	struct sched_rt_entity *rt_se = &p->rt;
1546 	struct rt_rq *rt_rq;
1547 
1548 	for_each_sched_rt_entity(rt_se) {
1549 		rt_rq = rt_rq_of_se(rt_se);
1550 		requeue_rt_entity(rt_rq, rt_se, head);
1551 	}
1552 }
1553 
1554 static void yield_task_rt(struct rq *rq)
1555 {
1556 	requeue_task_rt(rq, rq->curr, 0);
1557 }
1558 
1559 #ifdef CONFIG_SMP
1560 static int find_lowest_rq(struct task_struct *task);
1561 
1562 static int
1563 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1564 {
1565 	struct task_struct *curr;
1566 	struct rq *rq;
1567 	bool test;
1568 
1569 	/* For anything but wake ups, just return the task_cpu */
1570 	if (!(flags & (WF_TTWU | WF_FORK)))
1571 		goto out;
1572 
1573 	rq = cpu_rq(cpu);
1574 
1575 	rcu_read_lock();
1576 	curr = READ_ONCE(rq->curr); /* unlocked access */
1577 
1578 	/*
1579 	 * If the current task on @p's runqueue is an RT task, then
1580 	 * try to see if we can wake this RT task up on another
1581 	 * runqueue. Otherwise simply start this RT task
1582 	 * on its current runqueue.
1583 	 *
1584 	 * We want to avoid overloading runqueues. If the woken
1585 	 * task is a higher priority, then it will stay on this CPU
1586 	 * and the lower prio task should be moved to another CPU.
1587 	 * Even though this will probably make the lower prio task
1588 	 * lose its cache, we do not want to bounce a higher task
1589 	 * around just because it gave up its CPU, perhaps for a
1590 	 * lock?
1591 	 *
1592 	 * For equal prio tasks, we just let the scheduler sort it out.
1593 	 *
1594 	 * Otherwise, just let it ride on the affined RQ and the
1595 	 * post-schedule router will push the preempted task away
1596 	 *
1597 	 * This test is optimistic, if we get it wrong the load-balancer
1598 	 * will have to sort it out.
1599 	 *
1600 	 * We take into account the capacity of the CPU to ensure it fits the
1601 	 * requirement of the task - which is only important on heterogeneous
1602 	 * systems like big.LITTLE.
1603 	 */
1604 	test = curr &&
1605 	       unlikely(rt_task(curr)) &&
1606 	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1607 
1608 	if (test || !rt_task_fits_capacity(p, cpu)) {
1609 		int target = find_lowest_rq(p);
1610 
1611 		/*
1612 		 * Bail out if we were forcing a migration to find a better
1613 		 * fitting CPU but our search failed.
1614 		 */
1615 		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1616 			goto out_unlock;
1617 
1618 		/*
1619 		 * Don't bother moving it if the destination CPU is
1620 		 * not running a lower priority task.
1621 		 */
1622 		if (target != -1 &&
1623 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1624 			cpu = target;
1625 	}
1626 
1627 out_unlock:
1628 	rcu_read_unlock();
1629 
1630 out:
1631 	return cpu;
1632 }
1633 
1634 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1635 {
1636 	/*
1637 	 * Current can't be migrated, useless to reschedule,
1638 	 * let's hope p can move out.
1639 	 */
1640 	if (rq->curr->nr_cpus_allowed == 1 ||
1641 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1642 		return;
1643 
1644 	/*
1645 	 * p is migratable, so let's not schedule it and
1646 	 * see if it is pushed or pulled somewhere else.
1647 	 */
1648 	if (p->nr_cpus_allowed != 1 &&
1649 	    cpupri_find(&rq->rd->cpupri, p, NULL))
1650 		return;
1651 
1652 	/*
1653 	 * There appear to be other CPUs that can accept
1654 	 * the current task but none can run 'p', so lets reschedule
1655 	 * to try and push the current task away:
1656 	 */
1657 	requeue_task_rt(rq, p, 1);
1658 	resched_curr(rq);
1659 }
1660 
1661 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1662 {
1663 	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1664 		/*
1665 		 * This is OK, because current is on_cpu, which avoids it being
1666 		 * picked for load-balance and preemption/IRQs are still
1667 		 * disabled avoiding further scheduler activity on it and we've
1668 		 * not yet started the picking loop.
1669 		 */
1670 		rq_unpin_lock(rq, rf);
1671 		pull_rt_task(rq);
1672 		rq_repin_lock(rq, rf);
1673 	}
1674 
1675 	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1676 }
1677 #endif /* CONFIG_SMP */
1678 
1679 /*
1680  * Preempt the current task with a newly woken task if needed:
1681  */
1682 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1683 {
1684 	if (p->prio < rq->curr->prio) {
1685 		resched_curr(rq);
1686 		return;
1687 	}
1688 
1689 #ifdef CONFIG_SMP
1690 	/*
1691 	 * If:
1692 	 *
1693 	 * - the newly woken task is of equal priority to the current task
1694 	 * - the newly woken task is non-migratable while current is migratable
1695 	 * - current will be preempted on the next reschedule
1696 	 *
1697 	 * we should check to see if current can readily move to a different
1698 	 * cpu.  If so, we will reschedule to allow the push logic to try
1699 	 * to move current somewhere else, making room for our non-migratable
1700 	 * task.
1701 	 */
1702 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1703 		check_preempt_equal_prio(rq, p);
1704 #endif
1705 }
1706 
1707 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1708 {
1709 	struct sched_rt_entity *rt_se = &p->rt;
1710 	struct rt_rq *rt_rq = &rq->rt;
1711 
1712 	p->se.exec_start = rq_clock_task(rq);
1713 	if (on_rt_rq(&p->rt))
1714 		update_stats_wait_end_rt(rt_rq, rt_se);
1715 
1716 	/* The running task is never eligible for pushing */
1717 	dequeue_pushable_task(rq, p);
1718 
1719 	if (!first)
1720 		return;
1721 
1722 	/*
1723 	 * If prev task was rt, put_prev_task() has already updated the
1724 	 * utilization. We only care of the case where we start to schedule a
1725 	 * rt task
1726 	 */
1727 	if (rq->curr->sched_class != &rt_sched_class)
1728 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1729 
1730 	rt_queue_push_tasks(rq);
1731 }
1732 
1733 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1734 						   struct rt_rq *rt_rq)
1735 {
1736 	struct rt_prio_array *array = &rt_rq->active;
1737 	struct sched_rt_entity *next = NULL;
1738 	struct list_head *queue;
1739 	int idx;
1740 
1741 	idx = sched_find_first_bit(array->bitmap);
1742 	BUG_ON(idx >= MAX_RT_PRIO);
1743 
1744 	queue = array->queue + idx;
1745 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1746 
1747 	return next;
1748 }
1749 
1750 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1751 {
1752 	struct sched_rt_entity *rt_se;
1753 	struct rt_rq *rt_rq  = &rq->rt;
1754 
1755 	do {
1756 		rt_se = pick_next_rt_entity(rq, rt_rq);
1757 		BUG_ON(!rt_se);
1758 		rt_rq = group_rt_rq(rt_se);
1759 	} while (rt_rq);
1760 
1761 	return rt_task_of(rt_se);
1762 }
1763 
1764 static struct task_struct *pick_task_rt(struct rq *rq)
1765 {
1766 	struct task_struct *p;
1767 
1768 	if (!sched_rt_runnable(rq))
1769 		return NULL;
1770 
1771 	p = _pick_next_task_rt(rq);
1772 
1773 	return p;
1774 }
1775 
1776 static struct task_struct *pick_next_task_rt(struct rq *rq)
1777 {
1778 	struct task_struct *p = pick_task_rt(rq);
1779 
1780 	if (p)
1781 		set_next_task_rt(rq, p, true);
1782 
1783 	return p;
1784 }
1785 
1786 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1787 {
1788 	struct sched_rt_entity *rt_se = &p->rt;
1789 	struct rt_rq *rt_rq = &rq->rt;
1790 
1791 	if (on_rt_rq(&p->rt))
1792 		update_stats_wait_start_rt(rt_rq, rt_se);
1793 
1794 	update_curr_rt(rq);
1795 
1796 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1797 
1798 	/*
1799 	 * The previous task needs to be made eligible for pushing
1800 	 * if it is still active
1801 	 */
1802 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1803 		enqueue_pushable_task(rq, p);
1804 }
1805 
1806 #ifdef CONFIG_SMP
1807 
1808 /* Only try algorithms three times */
1809 #define RT_MAX_TRIES 3
1810 
1811 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1812 {
1813 	if (!task_running(rq, p) &&
1814 	    cpumask_test_cpu(cpu, &p->cpus_mask))
1815 		return 1;
1816 
1817 	return 0;
1818 }
1819 
1820 /*
1821  * Return the highest pushable rq's task, which is suitable to be executed
1822  * on the CPU, NULL otherwise
1823  */
1824 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1825 {
1826 	struct plist_head *head = &rq->rt.pushable_tasks;
1827 	struct task_struct *p;
1828 
1829 	if (!has_pushable_tasks(rq))
1830 		return NULL;
1831 
1832 	plist_for_each_entry(p, head, pushable_tasks) {
1833 		if (pick_rt_task(rq, p, cpu))
1834 			return p;
1835 	}
1836 
1837 	return NULL;
1838 }
1839 
1840 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1841 
1842 static int find_lowest_rq(struct task_struct *task)
1843 {
1844 	struct sched_domain *sd;
1845 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1846 	int this_cpu = smp_processor_id();
1847 	int cpu      = task_cpu(task);
1848 	int ret;
1849 
1850 	/* Make sure the mask is initialized first */
1851 	if (unlikely(!lowest_mask))
1852 		return -1;
1853 
1854 	if (task->nr_cpus_allowed == 1)
1855 		return -1; /* No other targets possible */
1856 
1857 	/*
1858 	 * If we're on asym system ensure we consider the different capacities
1859 	 * of the CPUs when searching for the lowest_mask.
1860 	 */
1861 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1862 
1863 		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1864 					  task, lowest_mask,
1865 					  rt_task_fits_capacity);
1866 	} else {
1867 
1868 		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1869 				  task, lowest_mask);
1870 	}
1871 
1872 	if (!ret)
1873 		return -1; /* No targets found */
1874 
1875 	/*
1876 	 * At this point we have built a mask of CPUs representing the
1877 	 * lowest priority tasks in the system.  Now we want to elect
1878 	 * the best one based on our affinity and topology.
1879 	 *
1880 	 * We prioritize the last CPU that the task executed on since
1881 	 * it is most likely cache-hot in that location.
1882 	 */
1883 	if (cpumask_test_cpu(cpu, lowest_mask))
1884 		return cpu;
1885 
1886 	/*
1887 	 * Otherwise, we consult the sched_domains span maps to figure
1888 	 * out which CPU is logically closest to our hot cache data.
1889 	 */
1890 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1891 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1892 
1893 	rcu_read_lock();
1894 	for_each_domain(cpu, sd) {
1895 		if (sd->flags & SD_WAKE_AFFINE) {
1896 			int best_cpu;
1897 
1898 			/*
1899 			 * "this_cpu" is cheaper to preempt than a
1900 			 * remote processor.
1901 			 */
1902 			if (this_cpu != -1 &&
1903 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1904 				rcu_read_unlock();
1905 				return this_cpu;
1906 			}
1907 
1908 			best_cpu = cpumask_any_and_distribute(lowest_mask,
1909 							      sched_domain_span(sd));
1910 			if (best_cpu < nr_cpu_ids) {
1911 				rcu_read_unlock();
1912 				return best_cpu;
1913 			}
1914 		}
1915 	}
1916 	rcu_read_unlock();
1917 
1918 	/*
1919 	 * And finally, if there were no matches within the domains
1920 	 * just give the caller *something* to work with from the compatible
1921 	 * locations.
1922 	 */
1923 	if (this_cpu != -1)
1924 		return this_cpu;
1925 
1926 	cpu = cpumask_any_distribute(lowest_mask);
1927 	if (cpu < nr_cpu_ids)
1928 		return cpu;
1929 
1930 	return -1;
1931 }
1932 
1933 /* Will lock the rq it finds */
1934 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1935 {
1936 	struct rq *lowest_rq = NULL;
1937 	int tries;
1938 	int cpu;
1939 
1940 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1941 		cpu = find_lowest_rq(task);
1942 
1943 		if ((cpu == -1) || (cpu == rq->cpu))
1944 			break;
1945 
1946 		lowest_rq = cpu_rq(cpu);
1947 
1948 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1949 			/*
1950 			 * Target rq has tasks of equal or higher priority,
1951 			 * retrying does not release any lock and is unlikely
1952 			 * to yield a different result.
1953 			 */
1954 			lowest_rq = NULL;
1955 			break;
1956 		}
1957 
1958 		/* if the prio of this runqueue changed, try again */
1959 		if (double_lock_balance(rq, lowest_rq)) {
1960 			/*
1961 			 * We had to unlock the run queue. In
1962 			 * the mean time, task could have
1963 			 * migrated already or had its affinity changed.
1964 			 * Also make sure that it wasn't scheduled on its rq.
1965 			 */
1966 			if (unlikely(task_rq(task) != rq ||
1967 				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1968 				     task_running(rq, task) ||
1969 				     !rt_task(task) ||
1970 				     !task_on_rq_queued(task))) {
1971 
1972 				double_unlock_balance(rq, lowest_rq);
1973 				lowest_rq = NULL;
1974 				break;
1975 			}
1976 		}
1977 
1978 		/* If this rq is still suitable use it. */
1979 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1980 			break;
1981 
1982 		/* try again */
1983 		double_unlock_balance(rq, lowest_rq);
1984 		lowest_rq = NULL;
1985 	}
1986 
1987 	return lowest_rq;
1988 }
1989 
1990 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1991 {
1992 	struct task_struct *p;
1993 
1994 	if (!has_pushable_tasks(rq))
1995 		return NULL;
1996 
1997 	p = plist_first_entry(&rq->rt.pushable_tasks,
1998 			      struct task_struct, pushable_tasks);
1999 
2000 	BUG_ON(rq->cpu != task_cpu(p));
2001 	BUG_ON(task_current(rq, p));
2002 	BUG_ON(p->nr_cpus_allowed <= 1);
2003 
2004 	BUG_ON(!task_on_rq_queued(p));
2005 	BUG_ON(!rt_task(p));
2006 
2007 	return p;
2008 }
2009 
2010 /*
2011  * If the current CPU has more than one RT task, see if the non
2012  * running task can migrate over to a CPU that is running a task
2013  * of lesser priority.
2014  */
2015 static int push_rt_task(struct rq *rq, bool pull)
2016 {
2017 	struct task_struct *next_task;
2018 	struct rq *lowest_rq;
2019 	int ret = 0;
2020 
2021 	if (!rq->rt.overloaded)
2022 		return 0;
2023 
2024 	next_task = pick_next_pushable_task(rq);
2025 	if (!next_task)
2026 		return 0;
2027 
2028 retry:
2029 	if (is_migration_disabled(next_task)) {
2030 		struct task_struct *push_task = NULL;
2031 		int cpu;
2032 
2033 		if (!pull || rq->push_busy)
2034 			return 0;
2035 
2036 		cpu = find_lowest_rq(rq->curr);
2037 		if (cpu == -1 || cpu == rq->cpu)
2038 			return 0;
2039 
2040 		/*
2041 		 * Given we found a CPU with lower priority than @next_task,
2042 		 * therefore it should be running. However we cannot migrate it
2043 		 * to this other CPU, instead attempt to push the current
2044 		 * running task on this CPU away.
2045 		 */
2046 		push_task = get_push_task(rq);
2047 		if (push_task) {
2048 			raw_spin_rq_unlock(rq);
2049 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2050 					    push_task, &rq->push_work);
2051 			raw_spin_rq_lock(rq);
2052 		}
2053 
2054 		return 0;
2055 	}
2056 
2057 	if (WARN_ON(next_task == rq->curr))
2058 		return 0;
2059 
2060 	/*
2061 	 * It's possible that the next_task slipped in of
2062 	 * higher priority than current. If that's the case
2063 	 * just reschedule current.
2064 	 */
2065 	if (unlikely(next_task->prio < rq->curr->prio)) {
2066 		resched_curr(rq);
2067 		return 0;
2068 	}
2069 
2070 	/* We might release rq lock */
2071 	get_task_struct(next_task);
2072 
2073 	/* find_lock_lowest_rq locks the rq if found */
2074 	lowest_rq = find_lock_lowest_rq(next_task, rq);
2075 	if (!lowest_rq) {
2076 		struct task_struct *task;
2077 		/*
2078 		 * find_lock_lowest_rq releases rq->lock
2079 		 * so it is possible that next_task has migrated.
2080 		 *
2081 		 * We need to make sure that the task is still on the same
2082 		 * run-queue and is also still the next task eligible for
2083 		 * pushing.
2084 		 */
2085 		task = pick_next_pushable_task(rq);
2086 		if (task == next_task) {
2087 			/*
2088 			 * The task hasn't migrated, and is still the next
2089 			 * eligible task, but we failed to find a run-queue
2090 			 * to push it to.  Do not retry in this case, since
2091 			 * other CPUs will pull from us when ready.
2092 			 */
2093 			goto out;
2094 		}
2095 
2096 		if (!task)
2097 			/* No more tasks, just exit */
2098 			goto out;
2099 
2100 		/*
2101 		 * Something has shifted, try again.
2102 		 */
2103 		put_task_struct(next_task);
2104 		next_task = task;
2105 		goto retry;
2106 	}
2107 
2108 	deactivate_task(rq, next_task, 0);
2109 	set_task_cpu(next_task, lowest_rq->cpu);
2110 	activate_task(lowest_rq, next_task, 0);
2111 	resched_curr(lowest_rq);
2112 	ret = 1;
2113 
2114 	double_unlock_balance(rq, lowest_rq);
2115 out:
2116 	put_task_struct(next_task);
2117 
2118 	return ret;
2119 }
2120 
2121 static void push_rt_tasks(struct rq *rq)
2122 {
2123 	/* push_rt_task will return true if it moved an RT */
2124 	while (push_rt_task(rq, false))
2125 		;
2126 }
2127 
2128 #ifdef HAVE_RT_PUSH_IPI
2129 
2130 /*
2131  * When a high priority task schedules out from a CPU and a lower priority
2132  * task is scheduled in, a check is made to see if there's any RT tasks
2133  * on other CPUs that are waiting to run because a higher priority RT task
2134  * is currently running on its CPU. In this case, the CPU with multiple RT
2135  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2136  * up that may be able to run one of its non-running queued RT tasks.
2137  *
2138  * All CPUs with overloaded RT tasks need to be notified as there is currently
2139  * no way to know which of these CPUs have the highest priority task waiting
2140  * to run. Instead of trying to take a spinlock on each of these CPUs,
2141  * which has shown to cause large latency when done on machines with many
2142  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2143  * RT tasks waiting to run.
2144  *
2145  * Just sending an IPI to each of the CPUs is also an issue, as on large
2146  * count CPU machines, this can cause an IPI storm on a CPU, especially
2147  * if its the only CPU with multiple RT tasks queued, and a large number
2148  * of CPUs scheduling a lower priority task at the same time.
2149  *
2150  * Each root domain has its own irq work function that can iterate over
2151  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2152  * task must be checked if there's one or many CPUs that are lowering
2153  * their priority, there's a single irq work iterator that will try to
2154  * push off RT tasks that are waiting to run.
2155  *
2156  * When a CPU schedules a lower priority task, it will kick off the
2157  * irq work iterator that will jump to each CPU with overloaded RT tasks.
2158  * As it only takes the first CPU that schedules a lower priority task
2159  * to start the process, the rto_start variable is incremented and if
2160  * the atomic result is one, then that CPU will try to take the rto_lock.
2161  * This prevents high contention on the lock as the process handles all
2162  * CPUs scheduling lower priority tasks.
2163  *
2164  * All CPUs that are scheduling a lower priority task will increment the
2165  * rt_loop_next variable. This will make sure that the irq work iterator
2166  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2167  * priority task, even if the iterator is in the middle of a scan. Incrementing
2168  * the rt_loop_next will cause the iterator to perform another scan.
2169  *
2170  */
2171 static int rto_next_cpu(struct root_domain *rd)
2172 {
2173 	int next;
2174 	int cpu;
2175 
2176 	/*
2177 	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2178 	 * rt_next_cpu() will simply return the first CPU found in
2179 	 * the rto_mask.
2180 	 *
2181 	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2182 	 * will return the next CPU found in the rto_mask.
2183 	 *
2184 	 * If there are no more CPUs left in the rto_mask, then a check is made
2185 	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2186 	 * the rto_lock held, but any CPU may increment the rto_loop_next
2187 	 * without any locking.
2188 	 */
2189 	for (;;) {
2190 
2191 		/* When rto_cpu is -1 this acts like cpumask_first() */
2192 		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2193 
2194 		rd->rto_cpu = cpu;
2195 
2196 		if (cpu < nr_cpu_ids)
2197 			return cpu;
2198 
2199 		rd->rto_cpu = -1;
2200 
2201 		/*
2202 		 * ACQUIRE ensures we see the @rto_mask changes
2203 		 * made prior to the @next value observed.
2204 		 *
2205 		 * Matches WMB in rt_set_overload().
2206 		 */
2207 		next = atomic_read_acquire(&rd->rto_loop_next);
2208 
2209 		if (rd->rto_loop == next)
2210 			break;
2211 
2212 		rd->rto_loop = next;
2213 	}
2214 
2215 	return -1;
2216 }
2217 
2218 static inline bool rto_start_trylock(atomic_t *v)
2219 {
2220 	return !atomic_cmpxchg_acquire(v, 0, 1);
2221 }
2222 
2223 static inline void rto_start_unlock(atomic_t *v)
2224 {
2225 	atomic_set_release(v, 0);
2226 }
2227 
2228 static void tell_cpu_to_push(struct rq *rq)
2229 {
2230 	int cpu = -1;
2231 
2232 	/* Keep the loop going if the IPI is currently active */
2233 	atomic_inc(&rq->rd->rto_loop_next);
2234 
2235 	/* Only one CPU can initiate a loop at a time */
2236 	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2237 		return;
2238 
2239 	raw_spin_lock(&rq->rd->rto_lock);
2240 
2241 	/*
2242 	 * The rto_cpu is updated under the lock, if it has a valid CPU
2243 	 * then the IPI is still running and will continue due to the
2244 	 * update to loop_next, and nothing needs to be done here.
2245 	 * Otherwise it is finishing up and an ipi needs to be sent.
2246 	 */
2247 	if (rq->rd->rto_cpu < 0)
2248 		cpu = rto_next_cpu(rq->rd);
2249 
2250 	raw_spin_unlock(&rq->rd->rto_lock);
2251 
2252 	rto_start_unlock(&rq->rd->rto_loop_start);
2253 
2254 	if (cpu >= 0) {
2255 		/* Make sure the rd does not get freed while pushing */
2256 		sched_get_rd(rq->rd);
2257 		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2258 	}
2259 }
2260 
2261 /* Called from hardirq context */
2262 void rto_push_irq_work_func(struct irq_work *work)
2263 {
2264 	struct root_domain *rd =
2265 		container_of(work, struct root_domain, rto_push_work);
2266 	struct rq *rq;
2267 	int cpu;
2268 
2269 	rq = this_rq();
2270 
2271 	/*
2272 	 * We do not need to grab the lock to check for has_pushable_tasks.
2273 	 * When it gets updated, a check is made if a push is possible.
2274 	 */
2275 	if (has_pushable_tasks(rq)) {
2276 		raw_spin_rq_lock(rq);
2277 		while (push_rt_task(rq, true))
2278 			;
2279 		raw_spin_rq_unlock(rq);
2280 	}
2281 
2282 	raw_spin_lock(&rd->rto_lock);
2283 
2284 	/* Pass the IPI to the next rt overloaded queue */
2285 	cpu = rto_next_cpu(rd);
2286 
2287 	raw_spin_unlock(&rd->rto_lock);
2288 
2289 	if (cpu < 0) {
2290 		sched_put_rd(rd);
2291 		return;
2292 	}
2293 
2294 	/* Try the next RT overloaded CPU */
2295 	irq_work_queue_on(&rd->rto_push_work, cpu);
2296 }
2297 #endif /* HAVE_RT_PUSH_IPI */
2298 
2299 static void pull_rt_task(struct rq *this_rq)
2300 {
2301 	int this_cpu = this_rq->cpu, cpu;
2302 	bool resched = false;
2303 	struct task_struct *p, *push_task;
2304 	struct rq *src_rq;
2305 	int rt_overload_count = rt_overloaded(this_rq);
2306 
2307 	if (likely(!rt_overload_count))
2308 		return;
2309 
2310 	/*
2311 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2312 	 * see overloaded we must also see the rto_mask bit.
2313 	 */
2314 	smp_rmb();
2315 
2316 	/* If we are the only overloaded CPU do nothing */
2317 	if (rt_overload_count == 1 &&
2318 	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2319 		return;
2320 
2321 #ifdef HAVE_RT_PUSH_IPI
2322 	if (sched_feat(RT_PUSH_IPI)) {
2323 		tell_cpu_to_push(this_rq);
2324 		return;
2325 	}
2326 #endif
2327 
2328 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2329 		if (this_cpu == cpu)
2330 			continue;
2331 
2332 		src_rq = cpu_rq(cpu);
2333 
2334 		/*
2335 		 * Don't bother taking the src_rq->lock if the next highest
2336 		 * task is known to be lower-priority than our current task.
2337 		 * This may look racy, but if this value is about to go
2338 		 * logically higher, the src_rq will push this task away.
2339 		 * And if its going logically lower, we do not care
2340 		 */
2341 		if (src_rq->rt.highest_prio.next >=
2342 		    this_rq->rt.highest_prio.curr)
2343 			continue;
2344 
2345 		/*
2346 		 * We can potentially drop this_rq's lock in
2347 		 * double_lock_balance, and another CPU could
2348 		 * alter this_rq
2349 		 */
2350 		push_task = NULL;
2351 		double_lock_balance(this_rq, src_rq);
2352 
2353 		/*
2354 		 * We can pull only a task, which is pushable
2355 		 * on its rq, and no others.
2356 		 */
2357 		p = pick_highest_pushable_task(src_rq, this_cpu);
2358 
2359 		/*
2360 		 * Do we have an RT task that preempts
2361 		 * the to-be-scheduled task?
2362 		 */
2363 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2364 			WARN_ON(p == src_rq->curr);
2365 			WARN_ON(!task_on_rq_queued(p));
2366 
2367 			/*
2368 			 * There's a chance that p is higher in priority
2369 			 * than what's currently running on its CPU.
2370 			 * This is just that p is waking up and hasn't
2371 			 * had a chance to schedule. We only pull
2372 			 * p if it is lower in priority than the
2373 			 * current task on the run queue
2374 			 */
2375 			if (p->prio < src_rq->curr->prio)
2376 				goto skip;
2377 
2378 			if (is_migration_disabled(p)) {
2379 				push_task = get_push_task(src_rq);
2380 			} else {
2381 				deactivate_task(src_rq, p, 0);
2382 				set_task_cpu(p, this_cpu);
2383 				activate_task(this_rq, p, 0);
2384 				resched = true;
2385 			}
2386 			/*
2387 			 * We continue with the search, just in
2388 			 * case there's an even higher prio task
2389 			 * in another runqueue. (low likelihood
2390 			 * but possible)
2391 			 */
2392 		}
2393 skip:
2394 		double_unlock_balance(this_rq, src_rq);
2395 
2396 		if (push_task) {
2397 			raw_spin_rq_unlock(this_rq);
2398 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2399 					    push_task, &src_rq->push_work);
2400 			raw_spin_rq_lock(this_rq);
2401 		}
2402 	}
2403 
2404 	if (resched)
2405 		resched_curr(this_rq);
2406 }
2407 
2408 /*
2409  * If we are not running and we are not going to reschedule soon, we should
2410  * try to push tasks away now
2411  */
2412 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2413 {
2414 	bool need_to_push = !task_running(rq, p) &&
2415 			    !test_tsk_need_resched(rq->curr) &&
2416 			    p->nr_cpus_allowed > 1 &&
2417 			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2418 			    (rq->curr->nr_cpus_allowed < 2 ||
2419 			     rq->curr->prio <= p->prio);
2420 
2421 	if (need_to_push)
2422 		push_rt_tasks(rq);
2423 }
2424 
2425 /* Assumes rq->lock is held */
2426 static void rq_online_rt(struct rq *rq)
2427 {
2428 	if (rq->rt.overloaded)
2429 		rt_set_overload(rq);
2430 
2431 	__enable_runtime(rq);
2432 
2433 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2434 }
2435 
2436 /* Assumes rq->lock is held */
2437 static void rq_offline_rt(struct rq *rq)
2438 {
2439 	if (rq->rt.overloaded)
2440 		rt_clear_overload(rq);
2441 
2442 	__disable_runtime(rq);
2443 
2444 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2445 }
2446 
2447 /*
2448  * When switch from the rt queue, we bring ourselves to a position
2449  * that we might want to pull RT tasks from other runqueues.
2450  */
2451 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2452 {
2453 	/*
2454 	 * If there are other RT tasks then we will reschedule
2455 	 * and the scheduling of the other RT tasks will handle
2456 	 * the balancing. But if we are the last RT task
2457 	 * we may need to handle the pulling of RT tasks
2458 	 * now.
2459 	 */
2460 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2461 		return;
2462 
2463 	rt_queue_pull_task(rq);
2464 }
2465 
2466 void __init init_sched_rt_class(void)
2467 {
2468 	unsigned int i;
2469 
2470 	for_each_possible_cpu(i) {
2471 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2472 					GFP_KERNEL, cpu_to_node(i));
2473 	}
2474 }
2475 #endif /* CONFIG_SMP */
2476 
2477 /*
2478  * When switching a task to RT, we may overload the runqueue
2479  * with RT tasks. In this case we try to push them off to
2480  * other runqueues.
2481  */
2482 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2483 {
2484 	/*
2485 	 * If we are running, update the avg_rt tracking, as the running time
2486 	 * will now on be accounted into the latter.
2487 	 */
2488 	if (task_current(rq, p)) {
2489 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2490 		return;
2491 	}
2492 
2493 	/*
2494 	 * If we are not running we may need to preempt the current
2495 	 * running task. If that current running task is also an RT task
2496 	 * then see if we can move to another run queue.
2497 	 */
2498 	if (task_on_rq_queued(p)) {
2499 #ifdef CONFIG_SMP
2500 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2501 			rt_queue_push_tasks(rq);
2502 #endif /* CONFIG_SMP */
2503 		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2504 			resched_curr(rq);
2505 	}
2506 }
2507 
2508 /*
2509  * Priority of the task has changed. This may cause
2510  * us to initiate a push or pull.
2511  */
2512 static void
2513 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2514 {
2515 	if (!task_on_rq_queued(p))
2516 		return;
2517 
2518 	if (task_current(rq, p)) {
2519 #ifdef CONFIG_SMP
2520 		/*
2521 		 * If our priority decreases while running, we
2522 		 * may need to pull tasks to this runqueue.
2523 		 */
2524 		if (oldprio < p->prio)
2525 			rt_queue_pull_task(rq);
2526 
2527 		/*
2528 		 * If there's a higher priority task waiting to run
2529 		 * then reschedule.
2530 		 */
2531 		if (p->prio > rq->rt.highest_prio.curr)
2532 			resched_curr(rq);
2533 #else
2534 		/* For UP simply resched on drop of prio */
2535 		if (oldprio < p->prio)
2536 			resched_curr(rq);
2537 #endif /* CONFIG_SMP */
2538 	} else {
2539 		/*
2540 		 * This task is not running, but if it is
2541 		 * greater than the current running task
2542 		 * then reschedule.
2543 		 */
2544 		if (p->prio < rq->curr->prio)
2545 			resched_curr(rq);
2546 	}
2547 }
2548 
2549 #ifdef CONFIG_POSIX_TIMERS
2550 static void watchdog(struct rq *rq, struct task_struct *p)
2551 {
2552 	unsigned long soft, hard;
2553 
2554 	/* max may change after cur was read, this will be fixed next tick */
2555 	soft = task_rlimit(p, RLIMIT_RTTIME);
2556 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2557 
2558 	if (soft != RLIM_INFINITY) {
2559 		unsigned long next;
2560 
2561 		if (p->rt.watchdog_stamp != jiffies) {
2562 			p->rt.timeout++;
2563 			p->rt.watchdog_stamp = jiffies;
2564 		}
2565 
2566 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2567 		if (p->rt.timeout > next) {
2568 			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2569 						    p->se.sum_exec_runtime);
2570 		}
2571 	}
2572 }
2573 #else
2574 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2575 #endif
2576 
2577 /*
2578  * scheduler tick hitting a task of our scheduling class.
2579  *
2580  * NOTE: This function can be called remotely by the tick offload that
2581  * goes along full dynticks. Therefore no local assumption can be made
2582  * and everything must be accessed through the @rq and @curr passed in
2583  * parameters.
2584  */
2585 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2586 {
2587 	struct sched_rt_entity *rt_se = &p->rt;
2588 
2589 	update_curr_rt(rq);
2590 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2591 
2592 	watchdog(rq, p);
2593 
2594 	/*
2595 	 * RR tasks need a special form of timeslice management.
2596 	 * FIFO tasks have no timeslices.
2597 	 */
2598 	if (p->policy != SCHED_RR)
2599 		return;
2600 
2601 	if (--p->rt.time_slice)
2602 		return;
2603 
2604 	p->rt.time_slice = sched_rr_timeslice;
2605 
2606 	/*
2607 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2608 	 * the only element on the queue
2609 	 */
2610 	for_each_sched_rt_entity(rt_se) {
2611 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2612 			requeue_task_rt(rq, p, 0);
2613 			resched_curr(rq);
2614 			return;
2615 		}
2616 	}
2617 }
2618 
2619 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2620 {
2621 	/*
2622 	 * Time slice is 0 for SCHED_FIFO tasks
2623 	 */
2624 	if (task->policy == SCHED_RR)
2625 		return sched_rr_timeslice;
2626 	else
2627 		return 0;
2628 }
2629 
2630 DEFINE_SCHED_CLASS(rt) = {
2631 
2632 	.enqueue_task		= enqueue_task_rt,
2633 	.dequeue_task		= dequeue_task_rt,
2634 	.yield_task		= yield_task_rt,
2635 
2636 	.check_preempt_curr	= check_preempt_curr_rt,
2637 
2638 	.pick_next_task		= pick_next_task_rt,
2639 	.put_prev_task		= put_prev_task_rt,
2640 	.set_next_task          = set_next_task_rt,
2641 
2642 #ifdef CONFIG_SMP
2643 	.balance		= balance_rt,
2644 	.pick_task		= pick_task_rt,
2645 	.select_task_rq		= select_task_rq_rt,
2646 	.set_cpus_allowed       = set_cpus_allowed_common,
2647 	.rq_online              = rq_online_rt,
2648 	.rq_offline             = rq_offline_rt,
2649 	.task_woken		= task_woken_rt,
2650 	.switched_from		= switched_from_rt,
2651 	.find_lock_rq		= find_lock_lowest_rq,
2652 #endif
2653 
2654 	.task_tick		= task_tick_rt,
2655 
2656 	.get_rr_interval	= get_rr_interval_rt,
2657 
2658 	.prio_changed		= prio_changed_rt,
2659 	.switched_to		= switched_to_rt,
2660 
2661 	.update_curr		= update_curr_rt,
2662 
2663 #ifdef CONFIG_UCLAMP_TASK
2664 	.uclamp_enabled		= 1,
2665 #endif
2666 };
2667 
2668 #ifdef CONFIG_RT_GROUP_SCHED
2669 /*
2670  * Ensure that the real time constraints are schedulable.
2671  */
2672 static DEFINE_MUTEX(rt_constraints_mutex);
2673 
2674 static inline int tg_has_rt_tasks(struct task_group *tg)
2675 {
2676 	struct task_struct *task;
2677 	struct css_task_iter it;
2678 	int ret = 0;
2679 
2680 	/*
2681 	 * Autogroups do not have RT tasks; see autogroup_create().
2682 	 */
2683 	if (task_group_is_autogroup(tg))
2684 		return 0;
2685 
2686 	css_task_iter_start(&tg->css, 0, &it);
2687 	while (!ret && (task = css_task_iter_next(&it)))
2688 		ret |= rt_task(task);
2689 	css_task_iter_end(&it);
2690 
2691 	return ret;
2692 }
2693 
2694 struct rt_schedulable_data {
2695 	struct task_group *tg;
2696 	u64 rt_period;
2697 	u64 rt_runtime;
2698 };
2699 
2700 static int tg_rt_schedulable(struct task_group *tg, void *data)
2701 {
2702 	struct rt_schedulable_data *d = data;
2703 	struct task_group *child;
2704 	unsigned long total, sum = 0;
2705 	u64 period, runtime;
2706 
2707 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2708 	runtime = tg->rt_bandwidth.rt_runtime;
2709 
2710 	if (tg == d->tg) {
2711 		period = d->rt_period;
2712 		runtime = d->rt_runtime;
2713 	}
2714 
2715 	/*
2716 	 * Cannot have more runtime than the period.
2717 	 */
2718 	if (runtime > period && runtime != RUNTIME_INF)
2719 		return -EINVAL;
2720 
2721 	/*
2722 	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2723 	 */
2724 	if (rt_bandwidth_enabled() && !runtime &&
2725 	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2726 		return -EBUSY;
2727 
2728 	total = to_ratio(period, runtime);
2729 
2730 	/*
2731 	 * Nobody can have more than the global setting allows.
2732 	 */
2733 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2734 		return -EINVAL;
2735 
2736 	/*
2737 	 * The sum of our children's runtime should not exceed our own.
2738 	 */
2739 	list_for_each_entry_rcu(child, &tg->children, siblings) {
2740 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2741 		runtime = child->rt_bandwidth.rt_runtime;
2742 
2743 		if (child == d->tg) {
2744 			period = d->rt_period;
2745 			runtime = d->rt_runtime;
2746 		}
2747 
2748 		sum += to_ratio(period, runtime);
2749 	}
2750 
2751 	if (sum > total)
2752 		return -EINVAL;
2753 
2754 	return 0;
2755 }
2756 
2757 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2758 {
2759 	int ret;
2760 
2761 	struct rt_schedulable_data data = {
2762 		.tg = tg,
2763 		.rt_period = period,
2764 		.rt_runtime = runtime,
2765 	};
2766 
2767 	rcu_read_lock();
2768 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2769 	rcu_read_unlock();
2770 
2771 	return ret;
2772 }
2773 
2774 static int tg_set_rt_bandwidth(struct task_group *tg,
2775 		u64 rt_period, u64 rt_runtime)
2776 {
2777 	int i, err = 0;
2778 
2779 	/*
2780 	 * Disallowing the root group RT runtime is BAD, it would disallow the
2781 	 * kernel creating (and or operating) RT threads.
2782 	 */
2783 	if (tg == &root_task_group && rt_runtime == 0)
2784 		return -EINVAL;
2785 
2786 	/* No period doesn't make any sense. */
2787 	if (rt_period == 0)
2788 		return -EINVAL;
2789 
2790 	/*
2791 	 * Bound quota to defend quota against overflow during bandwidth shift.
2792 	 */
2793 	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2794 		return -EINVAL;
2795 
2796 	mutex_lock(&rt_constraints_mutex);
2797 	err = __rt_schedulable(tg, rt_period, rt_runtime);
2798 	if (err)
2799 		goto unlock;
2800 
2801 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2802 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2803 	tg->rt_bandwidth.rt_runtime = rt_runtime;
2804 
2805 	for_each_possible_cpu(i) {
2806 		struct rt_rq *rt_rq = tg->rt_rq[i];
2807 
2808 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2809 		rt_rq->rt_runtime = rt_runtime;
2810 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2811 	}
2812 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2813 unlock:
2814 	mutex_unlock(&rt_constraints_mutex);
2815 
2816 	return err;
2817 }
2818 
2819 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2820 {
2821 	u64 rt_runtime, rt_period;
2822 
2823 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2824 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2825 	if (rt_runtime_us < 0)
2826 		rt_runtime = RUNTIME_INF;
2827 	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2828 		return -EINVAL;
2829 
2830 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2831 }
2832 
2833 long sched_group_rt_runtime(struct task_group *tg)
2834 {
2835 	u64 rt_runtime_us;
2836 
2837 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2838 		return -1;
2839 
2840 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2841 	do_div(rt_runtime_us, NSEC_PER_USEC);
2842 	return rt_runtime_us;
2843 }
2844 
2845 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2846 {
2847 	u64 rt_runtime, rt_period;
2848 
2849 	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2850 		return -EINVAL;
2851 
2852 	rt_period = rt_period_us * NSEC_PER_USEC;
2853 	rt_runtime = tg->rt_bandwidth.rt_runtime;
2854 
2855 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2856 }
2857 
2858 long sched_group_rt_period(struct task_group *tg)
2859 {
2860 	u64 rt_period_us;
2861 
2862 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2863 	do_div(rt_period_us, NSEC_PER_USEC);
2864 	return rt_period_us;
2865 }
2866 
2867 static int sched_rt_global_constraints(void)
2868 {
2869 	int ret = 0;
2870 
2871 	mutex_lock(&rt_constraints_mutex);
2872 	ret = __rt_schedulable(NULL, 0, 0);
2873 	mutex_unlock(&rt_constraints_mutex);
2874 
2875 	return ret;
2876 }
2877 
2878 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2879 {
2880 	/* Don't accept realtime tasks when there is no way for them to run */
2881 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2882 		return 0;
2883 
2884 	return 1;
2885 }
2886 
2887 #else /* !CONFIG_RT_GROUP_SCHED */
2888 static int sched_rt_global_constraints(void)
2889 {
2890 	unsigned long flags;
2891 	int i;
2892 
2893 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2894 	for_each_possible_cpu(i) {
2895 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2896 
2897 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2898 		rt_rq->rt_runtime = global_rt_runtime();
2899 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2900 	}
2901 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2902 
2903 	return 0;
2904 }
2905 #endif /* CONFIG_RT_GROUP_SCHED */
2906 
2907 static int sched_rt_global_validate(void)
2908 {
2909 	if (sysctl_sched_rt_period <= 0)
2910 		return -EINVAL;
2911 
2912 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2913 		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2914 		 ((u64)sysctl_sched_rt_runtime *
2915 			NSEC_PER_USEC > max_rt_runtime)))
2916 		return -EINVAL;
2917 
2918 	return 0;
2919 }
2920 
2921 static void sched_rt_do_global(void)
2922 {
2923 	unsigned long flags;
2924 
2925 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2926 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2927 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2928 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2929 }
2930 
2931 int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2932 		size_t *lenp, loff_t *ppos)
2933 {
2934 	int old_period, old_runtime;
2935 	static DEFINE_MUTEX(mutex);
2936 	int ret;
2937 
2938 	mutex_lock(&mutex);
2939 	old_period = sysctl_sched_rt_period;
2940 	old_runtime = sysctl_sched_rt_runtime;
2941 
2942 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2943 
2944 	if (!ret && write) {
2945 		ret = sched_rt_global_validate();
2946 		if (ret)
2947 			goto undo;
2948 
2949 		ret = sched_dl_global_validate();
2950 		if (ret)
2951 			goto undo;
2952 
2953 		ret = sched_rt_global_constraints();
2954 		if (ret)
2955 			goto undo;
2956 
2957 		sched_rt_do_global();
2958 		sched_dl_do_global();
2959 	}
2960 	if (0) {
2961 undo:
2962 		sysctl_sched_rt_period = old_period;
2963 		sysctl_sched_rt_runtime = old_runtime;
2964 	}
2965 	mutex_unlock(&mutex);
2966 
2967 	return ret;
2968 }
2969 
2970 int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2971 		size_t *lenp, loff_t *ppos)
2972 {
2973 	int ret;
2974 	static DEFINE_MUTEX(mutex);
2975 
2976 	mutex_lock(&mutex);
2977 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2978 	/*
2979 	 * Make sure that internally we keep jiffies.
2980 	 * Also, writing zero resets the timeslice to default:
2981 	 */
2982 	if (!ret && write) {
2983 		sched_rr_timeslice =
2984 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2985 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
2986 	}
2987 	mutex_unlock(&mutex);
2988 
2989 	return ret;
2990 }
2991 
2992 #ifdef CONFIG_SCHED_DEBUG
2993 void print_rt_stats(struct seq_file *m, int cpu)
2994 {
2995 	rt_rq_iter_t iter;
2996 	struct rt_rq *rt_rq;
2997 
2998 	rcu_read_lock();
2999 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3000 		print_rt_rq(m, cpu, rt_rq);
3001 	rcu_read_unlock();
3002 }
3003 #endif /* CONFIG_SCHED_DEBUG */
3004