xref: /linux/kernel/sched/rt.c (revision 662f11d55ffd02933e1bd275d732b97eddccf870)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 #include "sched.h"
7 
8 #include "pelt.h"
9 
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12 /* More than 4 hours if BW_SHIFT equals 20. */
13 static const u64 max_rt_runtime = MAX_BW;
14 
15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
16 
17 struct rt_bandwidth def_rt_bandwidth;
18 
19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
20 {
21 	struct rt_bandwidth *rt_b =
22 		container_of(timer, struct rt_bandwidth, rt_period_timer);
23 	int idle = 0;
24 	int overrun;
25 
26 	raw_spin_lock(&rt_b->rt_runtime_lock);
27 	for (;;) {
28 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
29 		if (!overrun)
30 			break;
31 
32 		raw_spin_unlock(&rt_b->rt_runtime_lock);
33 		idle = do_sched_rt_period_timer(rt_b, overrun);
34 		raw_spin_lock(&rt_b->rt_runtime_lock);
35 	}
36 	if (idle)
37 		rt_b->rt_period_active = 0;
38 	raw_spin_unlock(&rt_b->rt_runtime_lock);
39 
40 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
41 }
42 
43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
44 {
45 	rt_b->rt_period = ns_to_ktime(period);
46 	rt_b->rt_runtime = runtime;
47 
48 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
49 
50 	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
51 		     HRTIMER_MODE_REL_HARD);
52 	rt_b->rt_period_timer.function = sched_rt_period_timer;
53 }
54 
55 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
56 {
57 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
58 		return;
59 
60 	raw_spin_lock(&rt_b->rt_runtime_lock);
61 	if (!rt_b->rt_period_active) {
62 		rt_b->rt_period_active = 1;
63 		/*
64 		 * SCHED_DEADLINE updates the bandwidth, as a run away
65 		 * RT task with a DL task could hog a CPU. But DL does
66 		 * not reset the period. If a deadline task was running
67 		 * without an RT task running, it can cause RT tasks to
68 		 * throttle when they start up. Kick the timer right away
69 		 * to update the period.
70 		 */
71 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
72 		hrtimer_start_expires(&rt_b->rt_period_timer,
73 				      HRTIMER_MODE_ABS_PINNED_HARD);
74 	}
75 	raw_spin_unlock(&rt_b->rt_runtime_lock);
76 }
77 
78 void init_rt_rq(struct rt_rq *rt_rq)
79 {
80 	struct rt_prio_array *array;
81 	int i;
82 
83 	array = &rt_rq->active;
84 	for (i = 0; i < MAX_RT_PRIO; i++) {
85 		INIT_LIST_HEAD(array->queue + i);
86 		__clear_bit(i, array->bitmap);
87 	}
88 	/* delimiter for bitsearch: */
89 	__set_bit(MAX_RT_PRIO, array->bitmap);
90 
91 #if defined CONFIG_SMP
92 	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
93 	rt_rq->highest_prio.next = MAX_RT_PRIO-1;
94 	rt_rq->rt_nr_migratory = 0;
95 	rt_rq->overloaded = 0;
96 	plist_head_init(&rt_rq->pushable_tasks);
97 #endif /* CONFIG_SMP */
98 	/* We start is dequeued state, because no RT tasks are queued */
99 	rt_rq->rt_queued = 0;
100 
101 	rt_rq->rt_time = 0;
102 	rt_rq->rt_throttled = 0;
103 	rt_rq->rt_runtime = 0;
104 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
105 }
106 
107 #ifdef CONFIG_RT_GROUP_SCHED
108 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
109 {
110 	hrtimer_cancel(&rt_b->rt_period_timer);
111 }
112 
113 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
114 
115 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
116 {
117 #ifdef CONFIG_SCHED_DEBUG
118 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
119 #endif
120 	return container_of(rt_se, struct task_struct, rt);
121 }
122 
123 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
124 {
125 	return rt_rq->rq;
126 }
127 
128 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
129 {
130 	return rt_se->rt_rq;
131 }
132 
133 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
134 {
135 	struct rt_rq *rt_rq = rt_se->rt_rq;
136 
137 	return rt_rq->rq;
138 }
139 
140 void unregister_rt_sched_group(struct task_group *tg)
141 {
142 	if (tg->rt_se)
143 		destroy_rt_bandwidth(&tg->rt_bandwidth);
144 
145 }
146 
147 void free_rt_sched_group(struct task_group *tg)
148 {
149 	int i;
150 
151 	for_each_possible_cpu(i) {
152 		if (tg->rt_rq)
153 			kfree(tg->rt_rq[i]);
154 		if (tg->rt_se)
155 			kfree(tg->rt_se[i]);
156 	}
157 
158 	kfree(tg->rt_rq);
159 	kfree(tg->rt_se);
160 }
161 
162 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
163 		struct sched_rt_entity *rt_se, int cpu,
164 		struct sched_rt_entity *parent)
165 {
166 	struct rq *rq = cpu_rq(cpu);
167 
168 	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
169 	rt_rq->rt_nr_boosted = 0;
170 	rt_rq->rq = rq;
171 	rt_rq->tg = tg;
172 
173 	tg->rt_rq[cpu] = rt_rq;
174 	tg->rt_se[cpu] = rt_se;
175 
176 	if (!rt_se)
177 		return;
178 
179 	if (!parent)
180 		rt_se->rt_rq = &rq->rt;
181 	else
182 		rt_se->rt_rq = parent->my_q;
183 
184 	rt_se->my_q = rt_rq;
185 	rt_se->parent = parent;
186 	INIT_LIST_HEAD(&rt_se->run_list);
187 }
188 
189 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
190 {
191 	struct rt_rq *rt_rq;
192 	struct sched_rt_entity *rt_se;
193 	int i;
194 
195 	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
196 	if (!tg->rt_rq)
197 		goto err;
198 	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
199 	if (!tg->rt_se)
200 		goto err;
201 
202 	init_rt_bandwidth(&tg->rt_bandwidth,
203 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
204 
205 	for_each_possible_cpu(i) {
206 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
207 				     GFP_KERNEL, cpu_to_node(i));
208 		if (!rt_rq)
209 			goto err;
210 
211 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
212 				     GFP_KERNEL, cpu_to_node(i));
213 		if (!rt_se)
214 			goto err_free_rq;
215 
216 		init_rt_rq(rt_rq);
217 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
218 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
219 	}
220 
221 	return 1;
222 
223 err_free_rq:
224 	kfree(rt_rq);
225 err:
226 	return 0;
227 }
228 
229 #else /* CONFIG_RT_GROUP_SCHED */
230 
231 #define rt_entity_is_task(rt_se) (1)
232 
233 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
234 {
235 	return container_of(rt_se, struct task_struct, rt);
236 }
237 
238 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
239 {
240 	return container_of(rt_rq, struct rq, rt);
241 }
242 
243 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
244 {
245 	struct task_struct *p = rt_task_of(rt_se);
246 
247 	return task_rq(p);
248 }
249 
250 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
251 {
252 	struct rq *rq = rq_of_rt_se(rt_se);
253 
254 	return &rq->rt;
255 }
256 
257 void unregister_rt_sched_group(struct task_group *tg) { }
258 
259 void free_rt_sched_group(struct task_group *tg) { }
260 
261 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
262 {
263 	return 1;
264 }
265 #endif /* CONFIG_RT_GROUP_SCHED */
266 
267 #ifdef CONFIG_SMP
268 
269 static void pull_rt_task(struct rq *this_rq);
270 
271 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
272 {
273 	/* Try to pull RT tasks here if we lower this rq's prio */
274 	return rq->online && rq->rt.highest_prio.curr > prev->prio;
275 }
276 
277 static inline int rt_overloaded(struct rq *rq)
278 {
279 	return atomic_read(&rq->rd->rto_count);
280 }
281 
282 static inline void rt_set_overload(struct rq *rq)
283 {
284 	if (!rq->online)
285 		return;
286 
287 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
288 	/*
289 	 * Make sure the mask is visible before we set
290 	 * the overload count. That is checked to determine
291 	 * if we should look at the mask. It would be a shame
292 	 * if we looked at the mask, but the mask was not
293 	 * updated yet.
294 	 *
295 	 * Matched by the barrier in pull_rt_task().
296 	 */
297 	smp_wmb();
298 	atomic_inc(&rq->rd->rto_count);
299 }
300 
301 static inline void rt_clear_overload(struct rq *rq)
302 {
303 	if (!rq->online)
304 		return;
305 
306 	/* the order here really doesn't matter */
307 	atomic_dec(&rq->rd->rto_count);
308 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
309 }
310 
311 static void update_rt_migration(struct rt_rq *rt_rq)
312 {
313 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
314 		if (!rt_rq->overloaded) {
315 			rt_set_overload(rq_of_rt_rq(rt_rq));
316 			rt_rq->overloaded = 1;
317 		}
318 	} else if (rt_rq->overloaded) {
319 		rt_clear_overload(rq_of_rt_rq(rt_rq));
320 		rt_rq->overloaded = 0;
321 	}
322 }
323 
324 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
325 {
326 	struct task_struct *p;
327 
328 	if (!rt_entity_is_task(rt_se))
329 		return;
330 
331 	p = rt_task_of(rt_se);
332 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
333 
334 	rt_rq->rt_nr_total++;
335 	if (p->nr_cpus_allowed > 1)
336 		rt_rq->rt_nr_migratory++;
337 
338 	update_rt_migration(rt_rq);
339 }
340 
341 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
342 {
343 	struct task_struct *p;
344 
345 	if (!rt_entity_is_task(rt_se))
346 		return;
347 
348 	p = rt_task_of(rt_se);
349 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
350 
351 	rt_rq->rt_nr_total--;
352 	if (p->nr_cpus_allowed > 1)
353 		rt_rq->rt_nr_migratory--;
354 
355 	update_rt_migration(rt_rq);
356 }
357 
358 static inline int has_pushable_tasks(struct rq *rq)
359 {
360 	return !plist_head_empty(&rq->rt.pushable_tasks);
361 }
362 
363 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
364 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
365 
366 static void push_rt_tasks(struct rq *);
367 static void pull_rt_task(struct rq *);
368 
369 static inline void rt_queue_push_tasks(struct rq *rq)
370 {
371 	if (!has_pushable_tasks(rq))
372 		return;
373 
374 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
375 }
376 
377 static inline void rt_queue_pull_task(struct rq *rq)
378 {
379 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
380 }
381 
382 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
383 {
384 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
385 	plist_node_init(&p->pushable_tasks, p->prio);
386 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
387 
388 	/* Update the highest prio pushable task */
389 	if (p->prio < rq->rt.highest_prio.next)
390 		rq->rt.highest_prio.next = p->prio;
391 }
392 
393 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
394 {
395 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
396 
397 	/* Update the new highest prio pushable task */
398 	if (has_pushable_tasks(rq)) {
399 		p = plist_first_entry(&rq->rt.pushable_tasks,
400 				      struct task_struct, pushable_tasks);
401 		rq->rt.highest_prio.next = p->prio;
402 	} else {
403 		rq->rt.highest_prio.next = MAX_RT_PRIO-1;
404 	}
405 }
406 
407 #else
408 
409 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
410 {
411 }
412 
413 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
414 {
415 }
416 
417 static inline
418 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
419 {
420 }
421 
422 static inline
423 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
424 {
425 }
426 
427 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
428 {
429 	return false;
430 }
431 
432 static inline void pull_rt_task(struct rq *this_rq)
433 {
434 }
435 
436 static inline void rt_queue_push_tasks(struct rq *rq)
437 {
438 }
439 #endif /* CONFIG_SMP */
440 
441 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
442 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
443 
444 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
445 {
446 	return rt_se->on_rq;
447 }
448 
449 #ifdef CONFIG_UCLAMP_TASK
450 /*
451  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
452  * settings.
453  *
454  * This check is only important for heterogeneous systems where uclamp_min value
455  * is higher than the capacity of a @cpu. For non-heterogeneous system this
456  * function will always return true.
457  *
458  * The function will return true if the capacity of the @cpu is >= the
459  * uclamp_min and false otherwise.
460  *
461  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
462  * > uclamp_max.
463  */
464 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
465 {
466 	unsigned int min_cap;
467 	unsigned int max_cap;
468 	unsigned int cpu_cap;
469 
470 	/* Only heterogeneous systems can benefit from this check */
471 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
472 		return true;
473 
474 	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
475 	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
476 
477 	cpu_cap = capacity_orig_of(cpu);
478 
479 	return cpu_cap >= min(min_cap, max_cap);
480 }
481 #else
482 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
483 {
484 	return true;
485 }
486 #endif
487 
488 #ifdef CONFIG_RT_GROUP_SCHED
489 
490 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
491 {
492 	if (!rt_rq->tg)
493 		return RUNTIME_INF;
494 
495 	return rt_rq->rt_runtime;
496 }
497 
498 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
499 {
500 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
501 }
502 
503 typedef struct task_group *rt_rq_iter_t;
504 
505 static inline struct task_group *next_task_group(struct task_group *tg)
506 {
507 	do {
508 		tg = list_entry_rcu(tg->list.next,
509 			typeof(struct task_group), list);
510 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
511 
512 	if (&tg->list == &task_groups)
513 		tg = NULL;
514 
515 	return tg;
516 }
517 
518 #define for_each_rt_rq(rt_rq, iter, rq)					\
519 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
520 		(iter = next_task_group(iter)) &&			\
521 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
522 
523 #define for_each_sched_rt_entity(rt_se) \
524 	for (; rt_se; rt_se = rt_se->parent)
525 
526 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
527 {
528 	return rt_se->my_q;
529 }
530 
531 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
532 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
533 
534 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
535 {
536 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
537 	struct rq *rq = rq_of_rt_rq(rt_rq);
538 	struct sched_rt_entity *rt_se;
539 
540 	int cpu = cpu_of(rq);
541 
542 	rt_se = rt_rq->tg->rt_se[cpu];
543 
544 	if (rt_rq->rt_nr_running) {
545 		if (!rt_se)
546 			enqueue_top_rt_rq(rt_rq);
547 		else if (!on_rt_rq(rt_se))
548 			enqueue_rt_entity(rt_se, 0);
549 
550 		if (rt_rq->highest_prio.curr < curr->prio)
551 			resched_curr(rq);
552 	}
553 }
554 
555 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
556 {
557 	struct sched_rt_entity *rt_se;
558 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
559 
560 	rt_se = rt_rq->tg->rt_se[cpu];
561 
562 	if (!rt_se) {
563 		dequeue_top_rt_rq(rt_rq);
564 		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
565 		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
566 	}
567 	else if (on_rt_rq(rt_se))
568 		dequeue_rt_entity(rt_se, 0);
569 }
570 
571 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
572 {
573 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
574 }
575 
576 static int rt_se_boosted(struct sched_rt_entity *rt_se)
577 {
578 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
579 	struct task_struct *p;
580 
581 	if (rt_rq)
582 		return !!rt_rq->rt_nr_boosted;
583 
584 	p = rt_task_of(rt_se);
585 	return p->prio != p->normal_prio;
586 }
587 
588 #ifdef CONFIG_SMP
589 static inline const struct cpumask *sched_rt_period_mask(void)
590 {
591 	return this_rq()->rd->span;
592 }
593 #else
594 static inline const struct cpumask *sched_rt_period_mask(void)
595 {
596 	return cpu_online_mask;
597 }
598 #endif
599 
600 static inline
601 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
602 {
603 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
604 }
605 
606 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
607 {
608 	return &rt_rq->tg->rt_bandwidth;
609 }
610 
611 #else /* !CONFIG_RT_GROUP_SCHED */
612 
613 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
614 {
615 	return rt_rq->rt_runtime;
616 }
617 
618 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
619 {
620 	return ktime_to_ns(def_rt_bandwidth.rt_period);
621 }
622 
623 typedef struct rt_rq *rt_rq_iter_t;
624 
625 #define for_each_rt_rq(rt_rq, iter, rq) \
626 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
627 
628 #define for_each_sched_rt_entity(rt_se) \
629 	for (; rt_se; rt_se = NULL)
630 
631 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
632 {
633 	return NULL;
634 }
635 
636 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
637 {
638 	struct rq *rq = rq_of_rt_rq(rt_rq);
639 
640 	if (!rt_rq->rt_nr_running)
641 		return;
642 
643 	enqueue_top_rt_rq(rt_rq);
644 	resched_curr(rq);
645 }
646 
647 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
648 {
649 	dequeue_top_rt_rq(rt_rq);
650 }
651 
652 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
653 {
654 	return rt_rq->rt_throttled;
655 }
656 
657 static inline const struct cpumask *sched_rt_period_mask(void)
658 {
659 	return cpu_online_mask;
660 }
661 
662 static inline
663 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
664 {
665 	return &cpu_rq(cpu)->rt;
666 }
667 
668 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
669 {
670 	return &def_rt_bandwidth;
671 }
672 
673 #endif /* CONFIG_RT_GROUP_SCHED */
674 
675 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
676 {
677 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
678 
679 	return (hrtimer_active(&rt_b->rt_period_timer) ||
680 		rt_rq->rt_time < rt_b->rt_runtime);
681 }
682 
683 #ifdef CONFIG_SMP
684 /*
685  * We ran out of runtime, see if we can borrow some from our neighbours.
686  */
687 static void do_balance_runtime(struct rt_rq *rt_rq)
688 {
689 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
690 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
691 	int i, weight;
692 	u64 rt_period;
693 
694 	weight = cpumask_weight(rd->span);
695 
696 	raw_spin_lock(&rt_b->rt_runtime_lock);
697 	rt_period = ktime_to_ns(rt_b->rt_period);
698 	for_each_cpu(i, rd->span) {
699 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
700 		s64 diff;
701 
702 		if (iter == rt_rq)
703 			continue;
704 
705 		raw_spin_lock(&iter->rt_runtime_lock);
706 		/*
707 		 * Either all rqs have inf runtime and there's nothing to steal
708 		 * or __disable_runtime() below sets a specific rq to inf to
709 		 * indicate its been disabled and disallow stealing.
710 		 */
711 		if (iter->rt_runtime == RUNTIME_INF)
712 			goto next;
713 
714 		/*
715 		 * From runqueues with spare time, take 1/n part of their
716 		 * spare time, but no more than our period.
717 		 */
718 		diff = iter->rt_runtime - iter->rt_time;
719 		if (diff > 0) {
720 			diff = div_u64((u64)diff, weight);
721 			if (rt_rq->rt_runtime + diff > rt_period)
722 				diff = rt_period - rt_rq->rt_runtime;
723 			iter->rt_runtime -= diff;
724 			rt_rq->rt_runtime += diff;
725 			if (rt_rq->rt_runtime == rt_period) {
726 				raw_spin_unlock(&iter->rt_runtime_lock);
727 				break;
728 			}
729 		}
730 next:
731 		raw_spin_unlock(&iter->rt_runtime_lock);
732 	}
733 	raw_spin_unlock(&rt_b->rt_runtime_lock);
734 }
735 
736 /*
737  * Ensure this RQ takes back all the runtime it lend to its neighbours.
738  */
739 static void __disable_runtime(struct rq *rq)
740 {
741 	struct root_domain *rd = rq->rd;
742 	rt_rq_iter_t iter;
743 	struct rt_rq *rt_rq;
744 
745 	if (unlikely(!scheduler_running))
746 		return;
747 
748 	for_each_rt_rq(rt_rq, iter, rq) {
749 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
750 		s64 want;
751 		int i;
752 
753 		raw_spin_lock(&rt_b->rt_runtime_lock);
754 		raw_spin_lock(&rt_rq->rt_runtime_lock);
755 		/*
756 		 * Either we're all inf and nobody needs to borrow, or we're
757 		 * already disabled and thus have nothing to do, or we have
758 		 * exactly the right amount of runtime to take out.
759 		 */
760 		if (rt_rq->rt_runtime == RUNTIME_INF ||
761 				rt_rq->rt_runtime == rt_b->rt_runtime)
762 			goto balanced;
763 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
764 
765 		/*
766 		 * Calculate the difference between what we started out with
767 		 * and what we current have, that's the amount of runtime
768 		 * we lend and now have to reclaim.
769 		 */
770 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
771 
772 		/*
773 		 * Greedy reclaim, take back as much as we can.
774 		 */
775 		for_each_cpu(i, rd->span) {
776 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
777 			s64 diff;
778 
779 			/*
780 			 * Can't reclaim from ourselves or disabled runqueues.
781 			 */
782 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
783 				continue;
784 
785 			raw_spin_lock(&iter->rt_runtime_lock);
786 			if (want > 0) {
787 				diff = min_t(s64, iter->rt_runtime, want);
788 				iter->rt_runtime -= diff;
789 				want -= diff;
790 			} else {
791 				iter->rt_runtime -= want;
792 				want -= want;
793 			}
794 			raw_spin_unlock(&iter->rt_runtime_lock);
795 
796 			if (!want)
797 				break;
798 		}
799 
800 		raw_spin_lock(&rt_rq->rt_runtime_lock);
801 		/*
802 		 * We cannot be left wanting - that would mean some runtime
803 		 * leaked out of the system.
804 		 */
805 		BUG_ON(want);
806 balanced:
807 		/*
808 		 * Disable all the borrow logic by pretending we have inf
809 		 * runtime - in which case borrowing doesn't make sense.
810 		 */
811 		rt_rq->rt_runtime = RUNTIME_INF;
812 		rt_rq->rt_throttled = 0;
813 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
814 		raw_spin_unlock(&rt_b->rt_runtime_lock);
815 
816 		/* Make rt_rq available for pick_next_task() */
817 		sched_rt_rq_enqueue(rt_rq);
818 	}
819 }
820 
821 static void __enable_runtime(struct rq *rq)
822 {
823 	rt_rq_iter_t iter;
824 	struct rt_rq *rt_rq;
825 
826 	if (unlikely(!scheduler_running))
827 		return;
828 
829 	/*
830 	 * Reset each runqueue's bandwidth settings
831 	 */
832 	for_each_rt_rq(rt_rq, iter, rq) {
833 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
834 
835 		raw_spin_lock(&rt_b->rt_runtime_lock);
836 		raw_spin_lock(&rt_rq->rt_runtime_lock);
837 		rt_rq->rt_runtime = rt_b->rt_runtime;
838 		rt_rq->rt_time = 0;
839 		rt_rq->rt_throttled = 0;
840 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
841 		raw_spin_unlock(&rt_b->rt_runtime_lock);
842 	}
843 }
844 
845 static void balance_runtime(struct rt_rq *rt_rq)
846 {
847 	if (!sched_feat(RT_RUNTIME_SHARE))
848 		return;
849 
850 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
851 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
852 		do_balance_runtime(rt_rq);
853 		raw_spin_lock(&rt_rq->rt_runtime_lock);
854 	}
855 }
856 #else /* !CONFIG_SMP */
857 static inline void balance_runtime(struct rt_rq *rt_rq) {}
858 #endif /* CONFIG_SMP */
859 
860 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
861 {
862 	int i, idle = 1, throttled = 0;
863 	const struct cpumask *span;
864 
865 	span = sched_rt_period_mask();
866 #ifdef CONFIG_RT_GROUP_SCHED
867 	/*
868 	 * FIXME: isolated CPUs should really leave the root task group,
869 	 * whether they are isolcpus or were isolated via cpusets, lest
870 	 * the timer run on a CPU which does not service all runqueues,
871 	 * potentially leaving other CPUs indefinitely throttled.  If
872 	 * isolation is really required, the user will turn the throttle
873 	 * off to kill the perturbations it causes anyway.  Meanwhile,
874 	 * this maintains functionality for boot and/or troubleshooting.
875 	 */
876 	if (rt_b == &root_task_group.rt_bandwidth)
877 		span = cpu_online_mask;
878 #endif
879 	for_each_cpu(i, span) {
880 		int enqueue = 0;
881 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
882 		struct rq *rq = rq_of_rt_rq(rt_rq);
883 		int skip;
884 
885 		/*
886 		 * When span == cpu_online_mask, taking each rq->lock
887 		 * can be time-consuming. Try to avoid it when possible.
888 		 */
889 		raw_spin_lock(&rt_rq->rt_runtime_lock);
890 		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
891 			rt_rq->rt_runtime = rt_b->rt_runtime;
892 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
893 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
894 		if (skip)
895 			continue;
896 
897 		raw_spin_rq_lock(rq);
898 		update_rq_clock(rq);
899 
900 		if (rt_rq->rt_time) {
901 			u64 runtime;
902 
903 			raw_spin_lock(&rt_rq->rt_runtime_lock);
904 			if (rt_rq->rt_throttled)
905 				balance_runtime(rt_rq);
906 			runtime = rt_rq->rt_runtime;
907 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
908 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
909 				rt_rq->rt_throttled = 0;
910 				enqueue = 1;
911 
912 				/*
913 				 * When we're idle and a woken (rt) task is
914 				 * throttled check_preempt_curr() will set
915 				 * skip_update and the time between the wakeup
916 				 * and this unthrottle will get accounted as
917 				 * 'runtime'.
918 				 */
919 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
920 					rq_clock_cancel_skipupdate(rq);
921 			}
922 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
923 				idle = 0;
924 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
925 		} else if (rt_rq->rt_nr_running) {
926 			idle = 0;
927 			if (!rt_rq_throttled(rt_rq))
928 				enqueue = 1;
929 		}
930 		if (rt_rq->rt_throttled)
931 			throttled = 1;
932 
933 		if (enqueue)
934 			sched_rt_rq_enqueue(rt_rq);
935 		raw_spin_rq_unlock(rq);
936 	}
937 
938 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
939 		return 1;
940 
941 	return idle;
942 }
943 
944 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
945 {
946 #ifdef CONFIG_RT_GROUP_SCHED
947 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
948 
949 	if (rt_rq)
950 		return rt_rq->highest_prio.curr;
951 #endif
952 
953 	return rt_task_of(rt_se)->prio;
954 }
955 
956 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
957 {
958 	u64 runtime = sched_rt_runtime(rt_rq);
959 
960 	if (rt_rq->rt_throttled)
961 		return rt_rq_throttled(rt_rq);
962 
963 	if (runtime >= sched_rt_period(rt_rq))
964 		return 0;
965 
966 	balance_runtime(rt_rq);
967 	runtime = sched_rt_runtime(rt_rq);
968 	if (runtime == RUNTIME_INF)
969 		return 0;
970 
971 	if (rt_rq->rt_time > runtime) {
972 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
973 
974 		/*
975 		 * Don't actually throttle groups that have no runtime assigned
976 		 * but accrue some time due to boosting.
977 		 */
978 		if (likely(rt_b->rt_runtime)) {
979 			rt_rq->rt_throttled = 1;
980 			printk_deferred_once("sched: RT throttling activated\n");
981 		} else {
982 			/*
983 			 * In case we did anyway, make it go away,
984 			 * replenishment is a joke, since it will replenish us
985 			 * with exactly 0 ns.
986 			 */
987 			rt_rq->rt_time = 0;
988 		}
989 
990 		if (rt_rq_throttled(rt_rq)) {
991 			sched_rt_rq_dequeue(rt_rq);
992 			return 1;
993 		}
994 	}
995 
996 	return 0;
997 }
998 
999 /*
1000  * Update the current task's runtime statistics. Skip current tasks that
1001  * are not in our scheduling class.
1002  */
1003 static void update_curr_rt(struct rq *rq)
1004 {
1005 	struct task_struct *curr = rq->curr;
1006 	struct sched_rt_entity *rt_se = &curr->rt;
1007 	u64 delta_exec;
1008 	u64 now;
1009 
1010 	if (curr->sched_class != &rt_sched_class)
1011 		return;
1012 
1013 	now = rq_clock_task(rq);
1014 	delta_exec = now - curr->se.exec_start;
1015 	if (unlikely((s64)delta_exec <= 0))
1016 		return;
1017 
1018 	schedstat_set(curr->stats.exec_max,
1019 		      max(curr->stats.exec_max, delta_exec));
1020 
1021 	trace_sched_stat_runtime(curr, delta_exec, 0);
1022 
1023 	curr->se.sum_exec_runtime += delta_exec;
1024 	account_group_exec_runtime(curr, delta_exec);
1025 
1026 	curr->se.exec_start = now;
1027 	cgroup_account_cputime(curr, delta_exec);
1028 
1029 	if (!rt_bandwidth_enabled())
1030 		return;
1031 
1032 	for_each_sched_rt_entity(rt_se) {
1033 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1034 
1035 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1036 			raw_spin_lock(&rt_rq->rt_runtime_lock);
1037 			rt_rq->rt_time += delta_exec;
1038 			if (sched_rt_runtime_exceeded(rt_rq))
1039 				resched_curr(rq);
1040 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1041 		}
1042 	}
1043 }
1044 
1045 static void
1046 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1047 {
1048 	struct rq *rq = rq_of_rt_rq(rt_rq);
1049 
1050 	BUG_ON(&rq->rt != rt_rq);
1051 
1052 	if (!rt_rq->rt_queued)
1053 		return;
1054 
1055 	BUG_ON(!rq->nr_running);
1056 
1057 	sub_nr_running(rq, rt_rq->rt_nr_running);
1058 	rt_rq->rt_queued = 0;
1059 
1060 }
1061 
1062 static void
1063 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1064 {
1065 	struct rq *rq = rq_of_rt_rq(rt_rq);
1066 
1067 	BUG_ON(&rq->rt != rt_rq);
1068 
1069 	if (rt_rq->rt_queued)
1070 		return;
1071 
1072 	if (rt_rq_throttled(rt_rq))
1073 		return;
1074 
1075 	if (rt_rq->rt_nr_running) {
1076 		add_nr_running(rq, rt_rq->rt_nr_running);
1077 		rt_rq->rt_queued = 1;
1078 	}
1079 
1080 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1081 	cpufreq_update_util(rq, 0);
1082 }
1083 
1084 #if defined CONFIG_SMP
1085 
1086 static void
1087 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1088 {
1089 	struct rq *rq = rq_of_rt_rq(rt_rq);
1090 
1091 #ifdef CONFIG_RT_GROUP_SCHED
1092 	/*
1093 	 * Change rq's cpupri only if rt_rq is the top queue.
1094 	 */
1095 	if (&rq->rt != rt_rq)
1096 		return;
1097 #endif
1098 	if (rq->online && prio < prev_prio)
1099 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1100 }
1101 
1102 static void
1103 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1104 {
1105 	struct rq *rq = rq_of_rt_rq(rt_rq);
1106 
1107 #ifdef CONFIG_RT_GROUP_SCHED
1108 	/*
1109 	 * Change rq's cpupri only if rt_rq is the top queue.
1110 	 */
1111 	if (&rq->rt != rt_rq)
1112 		return;
1113 #endif
1114 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1115 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1116 }
1117 
1118 #else /* CONFIG_SMP */
1119 
1120 static inline
1121 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1122 static inline
1123 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1124 
1125 #endif /* CONFIG_SMP */
1126 
1127 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1128 static void
1129 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1130 {
1131 	int prev_prio = rt_rq->highest_prio.curr;
1132 
1133 	if (prio < prev_prio)
1134 		rt_rq->highest_prio.curr = prio;
1135 
1136 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1137 }
1138 
1139 static void
1140 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1141 {
1142 	int prev_prio = rt_rq->highest_prio.curr;
1143 
1144 	if (rt_rq->rt_nr_running) {
1145 
1146 		WARN_ON(prio < prev_prio);
1147 
1148 		/*
1149 		 * This may have been our highest task, and therefore
1150 		 * we may have some recomputation to do
1151 		 */
1152 		if (prio == prev_prio) {
1153 			struct rt_prio_array *array = &rt_rq->active;
1154 
1155 			rt_rq->highest_prio.curr =
1156 				sched_find_first_bit(array->bitmap);
1157 		}
1158 
1159 	} else {
1160 		rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1161 	}
1162 
1163 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1164 }
1165 
1166 #else
1167 
1168 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1169 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1170 
1171 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1172 
1173 #ifdef CONFIG_RT_GROUP_SCHED
1174 
1175 static void
1176 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1177 {
1178 	if (rt_se_boosted(rt_se))
1179 		rt_rq->rt_nr_boosted++;
1180 
1181 	if (rt_rq->tg)
1182 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1183 }
1184 
1185 static void
1186 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1187 {
1188 	if (rt_se_boosted(rt_se))
1189 		rt_rq->rt_nr_boosted--;
1190 
1191 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1192 }
1193 
1194 #else /* CONFIG_RT_GROUP_SCHED */
1195 
1196 static void
1197 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1198 {
1199 	start_rt_bandwidth(&def_rt_bandwidth);
1200 }
1201 
1202 static inline
1203 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1204 
1205 #endif /* CONFIG_RT_GROUP_SCHED */
1206 
1207 static inline
1208 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1209 {
1210 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1211 
1212 	if (group_rq)
1213 		return group_rq->rt_nr_running;
1214 	else
1215 		return 1;
1216 }
1217 
1218 static inline
1219 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1220 {
1221 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1222 	struct task_struct *tsk;
1223 
1224 	if (group_rq)
1225 		return group_rq->rr_nr_running;
1226 
1227 	tsk = rt_task_of(rt_se);
1228 
1229 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1230 }
1231 
1232 static inline
1233 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1234 {
1235 	int prio = rt_se_prio(rt_se);
1236 
1237 	WARN_ON(!rt_prio(prio));
1238 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1239 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1240 
1241 	inc_rt_prio(rt_rq, prio);
1242 	inc_rt_migration(rt_se, rt_rq);
1243 	inc_rt_group(rt_se, rt_rq);
1244 }
1245 
1246 static inline
1247 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1248 {
1249 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1250 	WARN_ON(!rt_rq->rt_nr_running);
1251 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1252 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1253 
1254 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1255 	dec_rt_migration(rt_se, rt_rq);
1256 	dec_rt_group(rt_se, rt_rq);
1257 }
1258 
1259 /*
1260  * Change rt_se->run_list location unless SAVE && !MOVE
1261  *
1262  * assumes ENQUEUE/DEQUEUE flags match
1263  */
1264 static inline bool move_entity(unsigned int flags)
1265 {
1266 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1267 		return false;
1268 
1269 	return true;
1270 }
1271 
1272 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1273 {
1274 	list_del_init(&rt_se->run_list);
1275 
1276 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1277 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1278 
1279 	rt_se->on_list = 0;
1280 }
1281 
1282 static inline struct sched_statistics *
1283 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1284 {
1285 #ifdef CONFIG_RT_GROUP_SCHED
1286 	/* schedstats is not supported for rt group. */
1287 	if (!rt_entity_is_task(rt_se))
1288 		return NULL;
1289 #endif
1290 
1291 	return &rt_task_of(rt_se)->stats;
1292 }
1293 
1294 static inline void
1295 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1296 {
1297 	struct sched_statistics *stats;
1298 	struct task_struct *p = NULL;
1299 
1300 	if (!schedstat_enabled())
1301 		return;
1302 
1303 	if (rt_entity_is_task(rt_se))
1304 		p = rt_task_of(rt_se);
1305 
1306 	stats = __schedstats_from_rt_se(rt_se);
1307 	if (!stats)
1308 		return;
1309 
1310 	__update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1311 }
1312 
1313 static inline void
1314 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1315 {
1316 	struct sched_statistics *stats;
1317 	struct task_struct *p = NULL;
1318 
1319 	if (!schedstat_enabled())
1320 		return;
1321 
1322 	if (rt_entity_is_task(rt_se))
1323 		p = rt_task_of(rt_se);
1324 
1325 	stats = __schedstats_from_rt_se(rt_se);
1326 	if (!stats)
1327 		return;
1328 
1329 	__update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1330 }
1331 
1332 static inline void
1333 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1334 			int flags)
1335 {
1336 	if (!schedstat_enabled())
1337 		return;
1338 
1339 	if (flags & ENQUEUE_WAKEUP)
1340 		update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1341 }
1342 
1343 static inline void
1344 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1345 {
1346 	struct sched_statistics *stats;
1347 	struct task_struct *p = NULL;
1348 
1349 	if (!schedstat_enabled())
1350 		return;
1351 
1352 	if (rt_entity_is_task(rt_se))
1353 		p = rt_task_of(rt_se);
1354 
1355 	stats = __schedstats_from_rt_se(rt_se);
1356 	if (!stats)
1357 		return;
1358 
1359 	__update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1360 }
1361 
1362 static inline void
1363 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1364 			int flags)
1365 {
1366 	struct task_struct *p = NULL;
1367 
1368 	if (!schedstat_enabled())
1369 		return;
1370 
1371 	if (rt_entity_is_task(rt_se))
1372 		p = rt_task_of(rt_se);
1373 
1374 	if ((flags & DEQUEUE_SLEEP) && p) {
1375 		unsigned int state;
1376 
1377 		state = READ_ONCE(p->__state);
1378 		if (state & TASK_INTERRUPTIBLE)
1379 			__schedstat_set(p->stats.sleep_start,
1380 					rq_clock(rq_of_rt_rq(rt_rq)));
1381 
1382 		if (state & TASK_UNINTERRUPTIBLE)
1383 			__schedstat_set(p->stats.block_start,
1384 					rq_clock(rq_of_rt_rq(rt_rq)));
1385 	}
1386 }
1387 
1388 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1389 {
1390 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1391 	struct rt_prio_array *array = &rt_rq->active;
1392 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1393 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1394 
1395 	/*
1396 	 * Don't enqueue the group if its throttled, or when empty.
1397 	 * The latter is a consequence of the former when a child group
1398 	 * get throttled and the current group doesn't have any other
1399 	 * active members.
1400 	 */
1401 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1402 		if (rt_se->on_list)
1403 			__delist_rt_entity(rt_se, array);
1404 		return;
1405 	}
1406 
1407 	if (move_entity(flags)) {
1408 		WARN_ON_ONCE(rt_se->on_list);
1409 		if (flags & ENQUEUE_HEAD)
1410 			list_add(&rt_se->run_list, queue);
1411 		else
1412 			list_add_tail(&rt_se->run_list, queue);
1413 
1414 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1415 		rt_se->on_list = 1;
1416 	}
1417 	rt_se->on_rq = 1;
1418 
1419 	inc_rt_tasks(rt_se, rt_rq);
1420 }
1421 
1422 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1423 {
1424 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1425 	struct rt_prio_array *array = &rt_rq->active;
1426 
1427 	if (move_entity(flags)) {
1428 		WARN_ON_ONCE(!rt_se->on_list);
1429 		__delist_rt_entity(rt_se, array);
1430 	}
1431 	rt_se->on_rq = 0;
1432 
1433 	dec_rt_tasks(rt_se, rt_rq);
1434 }
1435 
1436 /*
1437  * Because the prio of an upper entry depends on the lower
1438  * entries, we must remove entries top - down.
1439  */
1440 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1441 {
1442 	struct sched_rt_entity *back = NULL;
1443 
1444 	for_each_sched_rt_entity(rt_se) {
1445 		rt_se->back = back;
1446 		back = rt_se;
1447 	}
1448 
1449 	dequeue_top_rt_rq(rt_rq_of_se(back));
1450 
1451 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1452 		if (on_rt_rq(rt_se))
1453 			__dequeue_rt_entity(rt_se, flags);
1454 	}
1455 }
1456 
1457 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1458 {
1459 	struct rq *rq = rq_of_rt_se(rt_se);
1460 
1461 	update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1462 
1463 	dequeue_rt_stack(rt_se, flags);
1464 	for_each_sched_rt_entity(rt_se)
1465 		__enqueue_rt_entity(rt_se, flags);
1466 	enqueue_top_rt_rq(&rq->rt);
1467 }
1468 
1469 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1470 {
1471 	struct rq *rq = rq_of_rt_se(rt_se);
1472 
1473 	update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1474 
1475 	dequeue_rt_stack(rt_se, flags);
1476 
1477 	for_each_sched_rt_entity(rt_se) {
1478 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1479 
1480 		if (rt_rq && rt_rq->rt_nr_running)
1481 			__enqueue_rt_entity(rt_se, flags);
1482 	}
1483 	enqueue_top_rt_rq(&rq->rt);
1484 }
1485 
1486 /*
1487  * Adding/removing a task to/from a priority array:
1488  */
1489 static void
1490 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1491 {
1492 	struct sched_rt_entity *rt_se = &p->rt;
1493 
1494 	if (flags & ENQUEUE_WAKEUP)
1495 		rt_se->timeout = 0;
1496 
1497 	check_schedstat_required();
1498 	update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1499 
1500 	enqueue_rt_entity(rt_se, flags);
1501 
1502 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1503 		enqueue_pushable_task(rq, p);
1504 }
1505 
1506 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1507 {
1508 	struct sched_rt_entity *rt_se = &p->rt;
1509 
1510 	update_curr_rt(rq);
1511 	dequeue_rt_entity(rt_se, flags);
1512 
1513 	dequeue_pushable_task(rq, p);
1514 }
1515 
1516 /*
1517  * Put task to the head or the end of the run list without the overhead of
1518  * dequeue followed by enqueue.
1519  */
1520 static void
1521 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1522 {
1523 	if (on_rt_rq(rt_se)) {
1524 		struct rt_prio_array *array = &rt_rq->active;
1525 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1526 
1527 		if (head)
1528 			list_move(&rt_se->run_list, queue);
1529 		else
1530 			list_move_tail(&rt_se->run_list, queue);
1531 	}
1532 }
1533 
1534 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1535 {
1536 	struct sched_rt_entity *rt_se = &p->rt;
1537 	struct rt_rq *rt_rq;
1538 
1539 	for_each_sched_rt_entity(rt_se) {
1540 		rt_rq = rt_rq_of_se(rt_se);
1541 		requeue_rt_entity(rt_rq, rt_se, head);
1542 	}
1543 }
1544 
1545 static void yield_task_rt(struct rq *rq)
1546 {
1547 	requeue_task_rt(rq, rq->curr, 0);
1548 }
1549 
1550 #ifdef CONFIG_SMP
1551 static int find_lowest_rq(struct task_struct *task);
1552 
1553 static int
1554 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1555 {
1556 	struct task_struct *curr;
1557 	struct rq *rq;
1558 	bool test;
1559 
1560 	/* For anything but wake ups, just return the task_cpu */
1561 	if (!(flags & (WF_TTWU | WF_FORK)))
1562 		goto out;
1563 
1564 	rq = cpu_rq(cpu);
1565 
1566 	rcu_read_lock();
1567 	curr = READ_ONCE(rq->curr); /* unlocked access */
1568 
1569 	/*
1570 	 * If the current task on @p's runqueue is an RT task, then
1571 	 * try to see if we can wake this RT task up on another
1572 	 * runqueue. Otherwise simply start this RT task
1573 	 * on its current runqueue.
1574 	 *
1575 	 * We want to avoid overloading runqueues. If the woken
1576 	 * task is a higher priority, then it will stay on this CPU
1577 	 * and the lower prio task should be moved to another CPU.
1578 	 * Even though this will probably make the lower prio task
1579 	 * lose its cache, we do not want to bounce a higher task
1580 	 * around just because it gave up its CPU, perhaps for a
1581 	 * lock?
1582 	 *
1583 	 * For equal prio tasks, we just let the scheduler sort it out.
1584 	 *
1585 	 * Otherwise, just let it ride on the affined RQ and the
1586 	 * post-schedule router will push the preempted task away
1587 	 *
1588 	 * This test is optimistic, if we get it wrong the load-balancer
1589 	 * will have to sort it out.
1590 	 *
1591 	 * We take into account the capacity of the CPU to ensure it fits the
1592 	 * requirement of the task - which is only important on heterogeneous
1593 	 * systems like big.LITTLE.
1594 	 */
1595 	test = curr &&
1596 	       unlikely(rt_task(curr)) &&
1597 	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1598 
1599 	if (test || !rt_task_fits_capacity(p, cpu)) {
1600 		int target = find_lowest_rq(p);
1601 
1602 		/*
1603 		 * Bail out if we were forcing a migration to find a better
1604 		 * fitting CPU but our search failed.
1605 		 */
1606 		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1607 			goto out_unlock;
1608 
1609 		/*
1610 		 * Don't bother moving it if the destination CPU is
1611 		 * not running a lower priority task.
1612 		 */
1613 		if (target != -1 &&
1614 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1615 			cpu = target;
1616 	}
1617 
1618 out_unlock:
1619 	rcu_read_unlock();
1620 
1621 out:
1622 	return cpu;
1623 }
1624 
1625 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1626 {
1627 	/*
1628 	 * Current can't be migrated, useless to reschedule,
1629 	 * let's hope p can move out.
1630 	 */
1631 	if (rq->curr->nr_cpus_allowed == 1 ||
1632 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1633 		return;
1634 
1635 	/*
1636 	 * p is migratable, so let's not schedule it and
1637 	 * see if it is pushed or pulled somewhere else.
1638 	 */
1639 	if (p->nr_cpus_allowed != 1 &&
1640 	    cpupri_find(&rq->rd->cpupri, p, NULL))
1641 		return;
1642 
1643 	/*
1644 	 * There appear to be other CPUs that can accept
1645 	 * the current task but none can run 'p', so lets reschedule
1646 	 * to try and push the current task away:
1647 	 */
1648 	requeue_task_rt(rq, p, 1);
1649 	resched_curr(rq);
1650 }
1651 
1652 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1653 {
1654 	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1655 		/*
1656 		 * This is OK, because current is on_cpu, which avoids it being
1657 		 * picked for load-balance and preemption/IRQs are still
1658 		 * disabled avoiding further scheduler activity on it and we've
1659 		 * not yet started the picking loop.
1660 		 */
1661 		rq_unpin_lock(rq, rf);
1662 		pull_rt_task(rq);
1663 		rq_repin_lock(rq, rf);
1664 	}
1665 
1666 	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1667 }
1668 #endif /* CONFIG_SMP */
1669 
1670 /*
1671  * Preempt the current task with a newly woken task if needed:
1672  */
1673 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1674 {
1675 	if (p->prio < rq->curr->prio) {
1676 		resched_curr(rq);
1677 		return;
1678 	}
1679 
1680 #ifdef CONFIG_SMP
1681 	/*
1682 	 * If:
1683 	 *
1684 	 * - the newly woken task is of equal priority to the current task
1685 	 * - the newly woken task is non-migratable while current is migratable
1686 	 * - current will be preempted on the next reschedule
1687 	 *
1688 	 * we should check to see if current can readily move to a different
1689 	 * cpu.  If so, we will reschedule to allow the push logic to try
1690 	 * to move current somewhere else, making room for our non-migratable
1691 	 * task.
1692 	 */
1693 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1694 		check_preempt_equal_prio(rq, p);
1695 #endif
1696 }
1697 
1698 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1699 {
1700 	struct sched_rt_entity *rt_se = &p->rt;
1701 	struct rt_rq *rt_rq = &rq->rt;
1702 
1703 	p->se.exec_start = rq_clock_task(rq);
1704 	if (on_rt_rq(&p->rt))
1705 		update_stats_wait_end_rt(rt_rq, rt_se);
1706 
1707 	/* The running task is never eligible for pushing */
1708 	dequeue_pushable_task(rq, p);
1709 
1710 	if (!first)
1711 		return;
1712 
1713 	/*
1714 	 * If prev task was rt, put_prev_task() has already updated the
1715 	 * utilization. We only care of the case where we start to schedule a
1716 	 * rt task
1717 	 */
1718 	if (rq->curr->sched_class != &rt_sched_class)
1719 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1720 
1721 	rt_queue_push_tasks(rq);
1722 }
1723 
1724 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1725 						   struct rt_rq *rt_rq)
1726 {
1727 	struct rt_prio_array *array = &rt_rq->active;
1728 	struct sched_rt_entity *next = NULL;
1729 	struct list_head *queue;
1730 	int idx;
1731 
1732 	idx = sched_find_first_bit(array->bitmap);
1733 	BUG_ON(idx >= MAX_RT_PRIO);
1734 
1735 	queue = array->queue + idx;
1736 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1737 
1738 	return next;
1739 }
1740 
1741 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1742 {
1743 	struct sched_rt_entity *rt_se;
1744 	struct rt_rq *rt_rq  = &rq->rt;
1745 
1746 	do {
1747 		rt_se = pick_next_rt_entity(rq, rt_rq);
1748 		BUG_ON(!rt_se);
1749 		rt_rq = group_rt_rq(rt_se);
1750 	} while (rt_rq);
1751 
1752 	return rt_task_of(rt_se);
1753 }
1754 
1755 static struct task_struct *pick_task_rt(struct rq *rq)
1756 {
1757 	struct task_struct *p;
1758 
1759 	if (!sched_rt_runnable(rq))
1760 		return NULL;
1761 
1762 	p = _pick_next_task_rt(rq);
1763 
1764 	return p;
1765 }
1766 
1767 static struct task_struct *pick_next_task_rt(struct rq *rq)
1768 {
1769 	struct task_struct *p = pick_task_rt(rq);
1770 
1771 	if (p)
1772 		set_next_task_rt(rq, p, true);
1773 
1774 	return p;
1775 }
1776 
1777 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1778 {
1779 	struct sched_rt_entity *rt_se = &p->rt;
1780 	struct rt_rq *rt_rq = &rq->rt;
1781 
1782 	if (on_rt_rq(&p->rt))
1783 		update_stats_wait_start_rt(rt_rq, rt_se);
1784 
1785 	update_curr_rt(rq);
1786 
1787 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1788 
1789 	/*
1790 	 * The previous task needs to be made eligible for pushing
1791 	 * if it is still active
1792 	 */
1793 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1794 		enqueue_pushable_task(rq, p);
1795 }
1796 
1797 #ifdef CONFIG_SMP
1798 
1799 /* Only try algorithms three times */
1800 #define RT_MAX_TRIES 3
1801 
1802 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1803 {
1804 	if (!task_running(rq, p) &&
1805 	    cpumask_test_cpu(cpu, &p->cpus_mask))
1806 		return 1;
1807 
1808 	return 0;
1809 }
1810 
1811 /*
1812  * Return the highest pushable rq's task, which is suitable to be executed
1813  * on the CPU, NULL otherwise
1814  */
1815 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1816 {
1817 	struct plist_head *head = &rq->rt.pushable_tasks;
1818 	struct task_struct *p;
1819 
1820 	if (!has_pushable_tasks(rq))
1821 		return NULL;
1822 
1823 	plist_for_each_entry(p, head, pushable_tasks) {
1824 		if (pick_rt_task(rq, p, cpu))
1825 			return p;
1826 	}
1827 
1828 	return NULL;
1829 }
1830 
1831 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1832 
1833 static int find_lowest_rq(struct task_struct *task)
1834 {
1835 	struct sched_domain *sd;
1836 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1837 	int this_cpu = smp_processor_id();
1838 	int cpu      = task_cpu(task);
1839 	int ret;
1840 
1841 	/* Make sure the mask is initialized first */
1842 	if (unlikely(!lowest_mask))
1843 		return -1;
1844 
1845 	if (task->nr_cpus_allowed == 1)
1846 		return -1; /* No other targets possible */
1847 
1848 	/*
1849 	 * If we're on asym system ensure we consider the different capacities
1850 	 * of the CPUs when searching for the lowest_mask.
1851 	 */
1852 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1853 
1854 		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1855 					  task, lowest_mask,
1856 					  rt_task_fits_capacity);
1857 	} else {
1858 
1859 		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1860 				  task, lowest_mask);
1861 	}
1862 
1863 	if (!ret)
1864 		return -1; /* No targets found */
1865 
1866 	/*
1867 	 * At this point we have built a mask of CPUs representing the
1868 	 * lowest priority tasks in the system.  Now we want to elect
1869 	 * the best one based on our affinity and topology.
1870 	 *
1871 	 * We prioritize the last CPU that the task executed on since
1872 	 * it is most likely cache-hot in that location.
1873 	 */
1874 	if (cpumask_test_cpu(cpu, lowest_mask))
1875 		return cpu;
1876 
1877 	/*
1878 	 * Otherwise, we consult the sched_domains span maps to figure
1879 	 * out which CPU is logically closest to our hot cache data.
1880 	 */
1881 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1882 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1883 
1884 	rcu_read_lock();
1885 	for_each_domain(cpu, sd) {
1886 		if (sd->flags & SD_WAKE_AFFINE) {
1887 			int best_cpu;
1888 
1889 			/*
1890 			 * "this_cpu" is cheaper to preempt than a
1891 			 * remote processor.
1892 			 */
1893 			if (this_cpu != -1 &&
1894 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1895 				rcu_read_unlock();
1896 				return this_cpu;
1897 			}
1898 
1899 			best_cpu = cpumask_any_and_distribute(lowest_mask,
1900 							      sched_domain_span(sd));
1901 			if (best_cpu < nr_cpu_ids) {
1902 				rcu_read_unlock();
1903 				return best_cpu;
1904 			}
1905 		}
1906 	}
1907 	rcu_read_unlock();
1908 
1909 	/*
1910 	 * And finally, if there were no matches within the domains
1911 	 * just give the caller *something* to work with from the compatible
1912 	 * locations.
1913 	 */
1914 	if (this_cpu != -1)
1915 		return this_cpu;
1916 
1917 	cpu = cpumask_any_distribute(lowest_mask);
1918 	if (cpu < nr_cpu_ids)
1919 		return cpu;
1920 
1921 	return -1;
1922 }
1923 
1924 /* Will lock the rq it finds */
1925 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1926 {
1927 	struct rq *lowest_rq = NULL;
1928 	int tries;
1929 	int cpu;
1930 
1931 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1932 		cpu = find_lowest_rq(task);
1933 
1934 		if ((cpu == -1) || (cpu == rq->cpu))
1935 			break;
1936 
1937 		lowest_rq = cpu_rq(cpu);
1938 
1939 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1940 			/*
1941 			 * Target rq has tasks of equal or higher priority,
1942 			 * retrying does not release any lock and is unlikely
1943 			 * to yield a different result.
1944 			 */
1945 			lowest_rq = NULL;
1946 			break;
1947 		}
1948 
1949 		/* if the prio of this runqueue changed, try again */
1950 		if (double_lock_balance(rq, lowest_rq)) {
1951 			/*
1952 			 * We had to unlock the run queue. In
1953 			 * the mean time, task could have
1954 			 * migrated already or had its affinity changed.
1955 			 * Also make sure that it wasn't scheduled on its rq.
1956 			 */
1957 			if (unlikely(task_rq(task) != rq ||
1958 				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1959 				     task_running(rq, task) ||
1960 				     !rt_task(task) ||
1961 				     !task_on_rq_queued(task))) {
1962 
1963 				double_unlock_balance(rq, lowest_rq);
1964 				lowest_rq = NULL;
1965 				break;
1966 			}
1967 		}
1968 
1969 		/* If this rq is still suitable use it. */
1970 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1971 			break;
1972 
1973 		/* try again */
1974 		double_unlock_balance(rq, lowest_rq);
1975 		lowest_rq = NULL;
1976 	}
1977 
1978 	return lowest_rq;
1979 }
1980 
1981 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1982 {
1983 	struct task_struct *p;
1984 
1985 	if (!has_pushable_tasks(rq))
1986 		return NULL;
1987 
1988 	p = plist_first_entry(&rq->rt.pushable_tasks,
1989 			      struct task_struct, pushable_tasks);
1990 
1991 	BUG_ON(rq->cpu != task_cpu(p));
1992 	BUG_ON(task_current(rq, p));
1993 	BUG_ON(p->nr_cpus_allowed <= 1);
1994 
1995 	BUG_ON(!task_on_rq_queued(p));
1996 	BUG_ON(!rt_task(p));
1997 
1998 	return p;
1999 }
2000 
2001 /*
2002  * If the current CPU has more than one RT task, see if the non
2003  * running task can migrate over to a CPU that is running a task
2004  * of lesser priority.
2005  */
2006 static int push_rt_task(struct rq *rq, bool pull)
2007 {
2008 	struct task_struct *next_task;
2009 	struct rq *lowest_rq;
2010 	int ret = 0;
2011 
2012 	if (!rq->rt.overloaded)
2013 		return 0;
2014 
2015 	next_task = pick_next_pushable_task(rq);
2016 	if (!next_task)
2017 		return 0;
2018 
2019 retry:
2020 	if (is_migration_disabled(next_task)) {
2021 		struct task_struct *push_task = NULL;
2022 		int cpu;
2023 
2024 		if (!pull || rq->push_busy)
2025 			return 0;
2026 
2027 		cpu = find_lowest_rq(rq->curr);
2028 		if (cpu == -1 || cpu == rq->cpu)
2029 			return 0;
2030 
2031 		/*
2032 		 * Given we found a CPU with lower priority than @next_task,
2033 		 * therefore it should be running. However we cannot migrate it
2034 		 * to this other CPU, instead attempt to push the current
2035 		 * running task on this CPU away.
2036 		 */
2037 		push_task = get_push_task(rq);
2038 		if (push_task) {
2039 			raw_spin_rq_unlock(rq);
2040 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2041 					    push_task, &rq->push_work);
2042 			raw_spin_rq_lock(rq);
2043 		}
2044 
2045 		return 0;
2046 	}
2047 
2048 	if (WARN_ON(next_task == rq->curr))
2049 		return 0;
2050 
2051 	/*
2052 	 * It's possible that the next_task slipped in of
2053 	 * higher priority than current. If that's the case
2054 	 * just reschedule current.
2055 	 */
2056 	if (unlikely(next_task->prio < rq->curr->prio)) {
2057 		resched_curr(rq);
2058 		return 0;
2059 	}
2060 
2061 	/* We might release rq lock */
2062 	get_task_struct(next_task);
2063 
2064 	/* find_lock_lowest_rq locks the rq if found */
2065 	lowest_rq = find_lock_lowest_rq(next_task, rq);
2066 	if (!lowest_rq) {
2067 		struct task_struct *task;
2068 		/*
2069 		 * find_lock_lowest_rq releases rq->lock
2070 		 * so it is possible that next_task has migrated.
2071 		 *
2072 		 * We need to make sure that the task is still on the same
2073 		 * run-queue and is also still the next task eligible for
2074 		 * pushing.
2075 		 */
2076 		task = pick_next_pushable_task(rq);
2077 		if (task == next_task) {
2078 			/*
2079 			 * The task hasn't migrated, and is still the next
2080 			 * eligible task, but we failed to find a run-queue
2081 			 * to push it to.  Do not retry in this case, since
2082 			 * other CPUs will pull from us when ready.
2083 			 */
2084 			goto out;
2085 		}
2086 
2087 		if (!task)
2088 			/* No more tasks, just exit */
2089 			goto out;
2090 
2091 		/*
2092 		 * Something has shifted, try again.
2093 		 */
2094 		put_task_struct(next_task);
2095 		next_task = task;
2096 		goto retry;
2097 	}
2098 
2099 	deactivate_task(rq, next_task, 0);
2100 	set_task_cpu(next_task, lowest_rq->cpu);
2101 	activate_task(lowest_rq, next_task, 0);
2102 	resched_curr(lowest_rq);
2103 	ret = 1;
2104 
2105 	double_unlock_balance(rq, lowest_rq);
2106 out:
2107 	put_task_struct(next_task);
2108 
2109 	return ret;
2110 }
2111 
2112 static void push_rt_tasks(struct rq *rq)
2113 {
2114 	/* push_rt_task will return true if it moved an RT */
2115 	while (push_rt_task(rq, false))
2116 		;
2117 }
2118 
2119 #ifdef HAVE_RT_PUSH_IPI
2120 
2121 /*
2122  * When a high priority task schedules out from a CPU and a lower priority
2123  * task is scheduled in, a check is made to see if there's any RT tasks
2124  * on other CPUs that are waiting to run because a higher priority RT task
2125  * is currently running on its CPU. In this case, the CPU with multiple RT
2126  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2127  * up that may be able to run one of its non-running queued RT tasks.
2128  *
2129  * All CPUs with overloaded RT tasks need to be notified as there is currently
2130  * no way to know which of these CPUs have the highest priority task waiting
2131  * to run. Instead of trying to take a spinlock on each of these CPUs,
2132  * which has shown to cause large latency when done on machines with many
2133  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2134  * RT tasks waiting to run.
2135  *
2136  * Just sending an IPI to each of the CPUs is also an issue, as on large
2137  * count CPU machines, this can cause an IPI storm on a CPU, especially
2138  * if its the only CPU with multiple RT tasks queued, and a large number
2139  * of CPUs scheduling a lower priority task at the same time.
2140  *
2141  * Each root domain has its own irq work function that can iterate over
2142  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2143  * task must be checked if there's one or many CPUs that are lowering
2144  * their priority, there's a single irq work iterator that will try to
2145  * push off RT tasks that are waiting to run.
2146  *
2147  * When a CPU schedules a lower priority task, it will kick off the
2148  * irq work iterator that will jump to each CPU with overloaded RT tasks.
2149  * As it only takes the first CPU that schedules a lower priority task
2150  * to start the process, the rto_start variable is incremented and if
2151  * the atomic result is one, then that CPU will try to take the rto_lock.
2152  * This prevents high contention on the lock as the process handles all
2153  * CPUs scheduling lower priority tasks.
2154  *
2155  * All CPUs that are scheduling a lower priority task will increment the
2156  * rt_loop_next variable. This will make sure that the irq work iterator
2157  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2158  * priority task, even if the iterator is in the middle of a scan. Incrementing
2159  * the rt_loop_next will cause the iterator to perform another scan.
2160  *
2161  */
2162 static int rto_next_cpu(struct root_domain *rd)
2163 {
2164 	int next;
2165 	int cpu;
2166 
2167 	/*
2168 	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2169 	 * rt_next_cpu() will simply return the first CPU found in
2170 	 * the rto_mask.
2171 	 *
2172 	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2173 	 * will return the next CPU found in the rto_mask.
2174 	 *
2175 	 * If there are no more CPUs left in the rto_mask, then a check is made
2176 	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2177 	 * the rto_lock held, but any CPU may increment the rto_loop_next
2178 	 * without any locking.
2179 	 */
2180 	for (;;) {
2181 
2182 		/* When rto_cpu is -1 this acts like cpumask_first() */
2183 		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2184 
2185 		rd->rto_cpu = cpu;
2186 
2187 		if (cpu < nr_cpu_ids)
2188 			return cpu;
2189 
2190 		rd->rto_cpu = -1;
2191 
2192 		/*
2193 		 * ACQUIRE ensures we see the @rto_mask changes
2194 		 * made prior to the @next value observed.
2195 		 *
2196 		 * Matches WMB in rt_set_overload().
2197 		 */
2198 		next = atomic_read_acquire(&rd->rto_loop_next);
2199 
2200 		if (rd->rto_loop == next)
2201 			break;
2202 
2203 		rd->rto_loop = next;
2204 	}
2205 
2206 	return -1;
2207 }
2208 
2209 static inline bool rto_start_trylock(atomic_t *v)
2210 {
2211 	return !atomic_cmpxchg_acquire(v, 0, 1);
2212 }
2213 
2214 static inline void rto_start_unlock(atomic_t *v)
2215 {
2216 	atomic_set_release(v, 0);
2217 }
2218 
2219 static void tell_cpu_to_push(struct rq *rq)
2220 {
2221 	int cpu = -1;
2222 
2223 	/* Keep the loop going if the IPI is currently active */
2224 	atomic_inc(&rq->rd->rto_loop_next);
2225 
2226 	/* Only one CPU can initiate a loop at a time */
2227 	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2228 		return;
2229 
2230 	raw_spin_lock(&rq->rd->rto_lock);
2231 
2232 	/*
2233 	 * The rto_cpu is updated under the lock, if it has a valid CPU
2234 	 * then the IPI is still running and will continue due to the
2235 	 * update to loop_next, and nothing needs to be done here.
2236 	 * Otherwise it is finishing up and an ipi needs to be sent.
2237 	 */
2238 	if (rq->rd->rto_cpu < 0)
2239 		cpu = rto_next_cpu(rq->rd);
2240 
2241 	raw_spin_unlock(&rq->rd->rto_lock);
2242 
2243 	rto_start_unlock(&rq->rd->rto_loop_start);
2244 
2245 	if (cpu >= 0) {
2246 		/* Make sure the rd does not get freed while pushing */
2247 		sched_get_rd(rq->rd);
2248 		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2249 	}
2250 }
2251 
2252 /* Called from hardirq context */
2253 void rto_push_irq_work_func(struct irq_work *work)
2254 {
2255 	struct root_domain *rd =
2256 		container_of(work, struct root_domain, rto_push_work);
2257 	struct rq *rq;
2258 	int cpu;
2259 
2260 	rq = this_rq();
2261 
2262 	/*
2263 	 * We do not need to grab the lock to check for has_pushable_tasks.
2264 	 * When it gets updated, a check is made if a push is possible.
2265 	 */
2266 	if (has_pushable_tasks(rq)) {
2267 		raw_spin_rq_lock(rq);
2268 		while (push_rt_task(rq, true))
2269 			;
2270 		raw_spin_rq_unlock(rq);
2271 	}
2272 
2273 	raw_spin_lock(&rd->rto_lock);
2274 
2275 	/* Pass the IPI to the next rt overloaded queue */
2276 	cpu = rto_next_cpu(rd);
2277 
2278 	raw_spin_unlock(&rd->rto_lock);
2279 
2280 	if (cpu < 0) {
2281 		sched_put_rd(rd);
2282 		return;
2283 	}
2284 
2285 	/* Try the next RT overloaded CPU */
2286 	irq_work_queue_on(&rd->rto_push_work, cpu);
2287 }
2288 #endif /* HAVE_RT_PUSH_IPI */
2289 
2290 static void pull_rt_task(struct rq *this_rq)
2291 {
2292 	int this_cpu = this_rq->cpu, cpu;
2293 	bool resched = false;
2294 	struct task_struct *p, *push_task;
2295 	struct rq *src_rq;
2296 	int rt_overload_count = rt_overloaded(this_rq);
2297 
2298 	if (likely(!rt_overload_count))
2299 		return;
2300 
2301 	/*
2302 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2303 	 * see overloaded we must also see the rto_mask bit.
2304 	 */
2305 	smp_rmb();
2306 
2307 	/* If we are the only overloaded CPU do nothing */
2308 	if (rt_overload_count == 1 &&
2309 	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2310 		return;
2311 
2312 #ifdef HAVE_RT_PUSH_IPI
2313 	if (sched_feat(RT_PUSH_IPI)) {
2314 		tell_cpu_to_push(this_rq);
2315 		return;
2316 	}
2317 #endif
2318 
2319 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2320 		if (this_cpu == cpu)
2321 			continue;
2322 
2323 		src_rq = cpu_rq(cpu);
2324 
2325 		/*
2326 		 * Don't bother taking the src_rq->lock if the next highest
2327 		 * task is known to be lower-priority than our current task.
2328 		 * This may look racy, but if this value is about to go
2329 		 * logically higher, the src_rq will push this task away.
2330 		 * And if its going logically lower, we do not care
2331 		 */
2332 		if (src_rq->rt.highest_prio.next >=
2333 		    this_rq->rt.highest_prio.curr)
2334 			continue;
2335 
2336 		/*
2337 		 * We can potentially drop this_rq's lock in
2338 		 * double_lock_balance, and another CPU could
2339 		 * alter this_rq
2340 		 */
2341 		push_task = NULL;
2342 		double_lock_balance(this_rq, src_rq);
2343 
2344 		/*
2345 		 * We can pull only a task, which is pushable
2346 		 * on its rq, and no others.
2347 		 */
2348 		p = pick_highest_pushable_task(src_rq, this_cpu);
2349 
2350 		/*
2351 		 * Do we have an RT task that preempts
2352 		 * the to-be-scheduled task?
2353 		 */
2354 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2355 			WARN_ON(p == src_rq->curr);
2356 			WARN_ON(!task_on_rq_queued(p));
2357 
2358 			/*
2359 			 * There's a chance that p is higher in priority
2360 			 * than what's currently running on its CPU.
2361 			 * This is just that p is waking up and hasn't
2362 			 * had a chance to schedule. We only pull
2363 			 * p if it is lower in priority than the
2364 			 * current task on the run queue
2365 			 */
2366 			if (p->prio < src_rq->curr->prio)
2367 				goto skip;
2368 
2369 			if (is_migration_disabled(p)) {
2370 				push_task = get_push_task(src_rq);
2371 			} else {
2372 				deactivate_task(src_rq, p, 0);
2373 				set_task_cpu(p, this_cpu);
2374 				activate_task(this_rq, p, 0);
2375 				resched = true;
2376 			}
2377 			/*
2378 			 * We continue with the search, just in
2379 			 * case there's an even higher prio task
2380 			 * in another runqueue. (low likelihood
2381 			 * but possible)
2382 			 */
2383 		}
2384 skip:
2385 		double_unlock_balance(this_rq, src_rq);
2386 
2387 		if (push_task) {
2388 			raw_spin_rq_unlock(this_rq);
2389 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2390 					    push_task, &src_rq->push_work);
2391 			raw_spin_rq_lock(this_rq);
2392 		}
2393 	}
2394 
2395 	if (resched)
2396 		resched_curr(this_rq);
2397 }
2398 
2399 /*
2400  * If we are not running and we are not going to reschedule soon, we should
2401  * try to push tasks away now
2402  */
2403 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2404 {
2405 	bool need_to_push = !task_running(rq, p) &&
2406 			    !test_tsk_need_resched(rq->curr) &&
2407 			    p->nr_cpus_allowed > 1 &&
2408 			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2409 			    (rq->curr->nr_cpus_allowed < 2 ||
2410 			     rq->curr->prio <= p->prio);
2411 
2412 	if (need_to_push)
2413 		push_rt_tasks(rq);
2414 }
2415 
2416 /* Assumes rq->lock is held */
2417 static void rq_online_rt(struct rq *rq)
2418 {
2419 	if (rq->rt.overloaded)
2420 		rt_set_overload(rq);
2421 
2422 	__enable_runtime(rq);
2423 
2424 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2425 }
2426 
2427 /* Assumes rq->lock is held */
2428 static void rq_offline_rt(struct rq *rq)
2429 {
2430 	if (rq->rt.overloaded)
2431 		rt_clear_overload(rq);
2432 
2433 	__disable_runtime(rq);
2434 
2435 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2436 }
2437 
2438 /*
2439  * When switch from the rt queue, we bring ourselves to a position
2440  * that we might want to pull RT tasks from other runqueues.
2441  */
2442 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2443 {
2444 	/*
2445 	 * If there are other RT tasks then we will reschedule
2446 	 * and the scheduling of the other RT tasks will handle
2447 	 * the balancing. But if we are the last RT task
2448 	 * we may need to handle the pulling of RT tasks
2449 	 * now.
2450 	 */
2451 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2452 		return;
2453 
2454 	rt_queue_pull_task(rq);
2455 }
2456 
2457 void __init init_sched_rt_class(void)
2458 {
2459 	unsigned int i;
2460 
2461 	for_each_possible_cpu(i) {
2462 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2463 					GFP_KERNEL, cpu_to_node(i));
2464 	}
2465 }
2466 #endif /* CONFIG_SMP */
2467 
2468 /*
2469  * When switching a task to RT, we may overload the runqueue
2470  * with RT tasks. In this case we try to push them off to
2471  * other runqueues.
2472  */
2473 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2474 {
2475 	/*
2476 	 * If we are running, update the avg_rt tracking, as the running time
2477 	 * will now on be accounted into the latter.
2478 	 */
2479 	if (task_current(rq, p)) {
2480 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2481 		return;
2482 	}
2483 
2484 	/*
2485 	 * If we are not running we may need to preempt the current
2486 	 * running task. If that current running task is also an RT task
2487 	 * then see if we can move to another run queue.
2488 	 */
2489 	if (task_on_rq_queued(p)) {
2490 #ifdef CONFIG_SMP
2491 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2492 			rt_queue_push_tasks(rq);
2493 #endif /* CONFIG_SMP */
2494 		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2495 			resched_curr(rq);
2496 	}
2497 }
2498 
2499 /*
2500  * Priority of the task has changed. This may cause
2501  * us to initiate a push or pull.
2502  */
2503 static void
2504 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2505 {
2506 	if (!task_on_rq_queued(p))
2507 		return;
2508 
2509 	if (task_current(rq, p)) {
2510 #ifdef CONFIG_SMP
2511 		/*
2512 		 * If our priority decreases while running, we
2513 		 * may need to pull tasks to this runqueue.
2514 		 */
2515 		if (oldprio < p->prio)
2516 			rt_queue_pull_task(rq);
2517 
2518 		/*
2519 		 * If there's a higher priority task waiting to run
2520 		 * then reschedule.
2521 		 */
2522 		if (p->prio > rq->rt.highest_prio.curr)
2523 			resched_curr(rq);
2524 #else
2525 		/* For UP simply resched on drop of prio */
2526 		if (oldprio < p->prio)
2527 			resched_curr(rq);
2528 #endif /* CONFIG_SMP */
2529 	} else {
2530 		/*
2531 		 * This task is not running, but if it is
2532 		 * greater than the current running task
2533 		 * then reschedule.
2534 		 */
2535 		if (p->prio < rq->curr->prio)
2536 			resched_curr(rq);
2537 	}
2538 }
2539 
2540 #ifdef CONFIG_POSIX_TIMERS
2541 static void watchdog(struct rq *rq, struct task_struct *p)
2542 {
2543 	unsigned long soft, hard;
2544 
2545 	/* max may change after cur was read, this will be fixed next tick */
2546 	soft = task_rlimit(p, RLIMIT_RTTIME);
2547 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2548 
2549 	if (soft != RLIM_INFINITY) {
2550 		unsigned long next;
2551 
2552 		if (p->rt.watchdog_stamp != jiffies) {
2553 			p->rt.timeout++;
2554 			p->rt.watchdog_stamp = jiffies;
2555 		}
2556 
2557 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2558 		if (p->rt.timeout > next) {
2559 			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2560 						    p->se.sum_exec_runtime);
2561 		}
2562 	}
2563 }
2564 #else
2565 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2566 #endif
2567 
2568 /*
2569  * scheduler tick hitting a task of our scheduling class.
2570  *
2571  * NOTE: This function can be called remotely by the tick offload that
2572  * goes along full dynticks. Therefore no local assumption can be made
2573  * and everything must be accessed through the @rq and @curr passed in
2574  * parameters.
2575  */
2576 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2577 {
2578 	struct sched_rt_entity *rt_se = &p->rt;
2579 
2580 	update_curr_rt(rq);
2581 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2582 
2583 	watchdog(rq, p);
2584 
2585 	/*
2586 	 * RR tasks need a special form of timeslice management.
2587 	 * FIFO tasks have no timeslices.
2588 	 */
2589 	if (p->policy != SCHED_RR)
2590 		return;
2591 
2592 	if (--p->rt.time_slice)
2593 		return;
2594 
2595 	p->rt.time_slice = sched_rr_timeslice;
2596 
2597 	/*
2598 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2599 	 * the only element on the queue
2600 	 */
2601 	for_each_sched_rt_entity(rt_se) {
2602 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2603 			requeue_task_rt(rq, p, 0);
2604 			resched_curr(rq);
2605 			return;
2606 		}
2607 	}
2608 }
2609 
2610 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2611 {
2612 	/*
2613 	 * Time slice is 0 for SCHED_FIFO tasks
2614 	 */
2615 	if (task->policy == SCHED_RR)
2616 		return sched_rr_timeslice;
2617 	else
2618 		return 0;
2619 }
2620 
2621 DEFINE_SCHED_CLASS(rt) = {
2622 
2623 	.enqueue_task		= enqueue_task_rt,
2624 	.dequeue_task		= dequeue_task_rt,
2625 	.yield_task		= yield_task_rt,
2626 
2627 	.check_preempt_curr	= check_preempt_curr_rt,
2628 
2629 	.pick_next_task		= pick_next_task_rt,
2630 	.put_prev_task		= put_prev_task_rt,
2631 	.set_next_task          = set_next_task_rt,
2632 
2633 #ifdef CONFIG_SMP
2634 	.balance		= balance_rt,
2635 	.pick_task		= pick_task_rt,
2636 	.select_task_rq		= select_task_rq_rt,
2637 	.set_cpus_allowed       = set_cpus_allowed_common,
2638 	.rq_online              = rq_online_rt,
2639 	.rq_offline             = rq_offline_rt,
2640 	.task_woken		= task_woken_rt,
2641 	.switched_from		= switched_from_rt,
2642 	.find_lock_rq		= find_lock_lowest_rq,
2643 #endif
2644 
2645 	.task_tick		= task_tick_rt,
2646 
2647 	.get_rr_interval	= get_rr_interval_rt,
2648 
2649 	.prio_changed		= prio_changed_rt,
2650 	.switched_to		= switched_to_rt,
2651 
2652 	.update_curr		= update_curr_rt,
2653 
2654 #ifdef CONFIG_UCLAMP_TASK
2655 	.uclamp_enabled		= 1,
2656 #endif
2657 };
2658 
2659 #ifdef CONFIG_RT_GROUP_SCHED
2660 /*
2661  * Ensure that the real time constraints are schedulable.
2662  */
2663 static DEFINE_MUTEX(rt_constraints_mutex);
2664 
2665 static inline int tg_has_rt_tasks(struct task_group *tg)
2666 {
2667 	struct task_struct *task;
2668 	struct css_task_iter it;
2669 	int ret = 0;
2670 
2671 	/*
2672 	 * Autogroups do not have RT tasks; see autogroup_create().
2673 	 */
2674 	if (task_group_is_autogroup(tg))
2675 		return 0;
2676 
2677 	css_task_iter_start(&tg->css, 0, &it);
2678 	while (!ret && (task = css_task_iter_next(&it)))
2679 		ret |= rt_task(task);
2680 	css_task_iter_end(&it);
2681 
2682 	return ret;
2683 }
2684 
2685 struct rt_schedulable_data {
2686 	struct task_group *tg;
2687 	u64 rt_period;
2688 	u64 rt_runtime;
2689 };
2690 
2691 static int tg_rt_schedulable(struct task_group *tg, void *data)
2692 {
2693 	struct rt_schedulable_data *d = data;
2694 	struct task_group *child;
2695 	unsigned long total, sum = 0;
2696 	u64 period, runtime;
2697 
2698 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2699 	runtime = tg->rt_bandwidth.rt_runtime;
2700 
2701 	if (tg == d->tg) {
2702 		period = d->rt_period;
2703 		runtime = d->rt_runtime;
2704 	}
2705 
2706 	/*
2707 	 * Cannot have more runtime than the period.
2708 	 */
2709 	if (runtime > period && runtime != RUNTIME_INF)
2710 		return -EINVAL;
2711 
2712 	/*
2713 	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2714 	 */
2715 	if (rt_bandwidth_enabled() && !runtime &&
2716 	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2717 		return -EBUSY;
2718 
2719 	total = to_ratio(period, runtime);
2720 
2721 	/*
2722 	 * Nobody can have more than the global setting allows.
2723 	 */
2724 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2725 		return -EINVAL;
2726 
2727 	/*
2728 	 * The sum of our children's runtime should not exceed our own.
2729 	 */
2730 	list_for_each_entry_rcu(child, &tg->children, siblings) {
2731 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2732 		runtime = child->rt_bandwidth.rt_runtime;
2733 
2734 		if (child == d->tg) {
2735 			period = d->rt_period;
2736 			runtime = d->rt_runtime;
2737 		}
2738 
2739 		sum += to_ratio(period, runtime);
2740 	}
2741 
2742 	if (sum > total)
2743 		return -EINVAL;
2744 
2745 	return 0;
2746 }
2747 
2748 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2749 {
2750 	int ret;
2751 
2752 	struct rt_schedulable_data data = {
2753 		.tg = tg,
2754 		.rt_period = period,
2755 		.rt_runtime = runtime,
2756 	};
2757 
2758 	rcu_read_lock();
2759 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2760 	rcu_read_unlock();
2761 
2762 	return ret;
2763 }
2764 
2765 static int tg_set_rt_bandwidth(struct task_group *tg,
2766 		u64 rt_period, u64 rt_runtime)
2767 {
2768 	int i, err = 0;
2769 
2770 	/*
2771 	 * Disallowing the root group RT runtime is BAD, it would disallow the
2772 	 * kernel creating (and or operating) RT threads.
2773 	 */
2774 	if (tg == &root_task_group && rt_runtime == 0)
2775 		return -EINVAL;
2776 
2777 	/* No period doesn't make any sense. */
2778 	if (rt_period == 0)
2779 		return -EINVAL;
2780 
2781 	/*
2782 	 * Bound quota to defend quota against overflow during bandwidth shift.
2783 	 */
2784 	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2785 		return -EINVAL;
2786 
2787 	mutex_lock(&rt_constraints_mutex);
2788 	err = __rt_schedulable(tg, rt_period, rt_runtime);
2789 	if (err)
2790 		goto unlock;
2791 
2792 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2793 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2794 	tg->rt_bandwidth.rt_runtime = rt_runtime;
2795 
2796 	for_each_possible_cpu(i) {
2797 		struct rt_rq *rt_rq = tg->rt_rq[i];
2798 
2799 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2800 		rt_rq->rt_runtime = rt_runtime;
2801 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2802 	}
2803 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2804 unlock:
2805 	mutex_unlock(&rt_constraints_mutex);
2806 
2807 	return err;
2808 }
2809 
2810 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2811 {
2812 	u64 rt_runtime, rt_period;
2813 
2814 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2815 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2816 	if (rt_runtime_us < 0)
2817 		rt_runtime = RUNTIME_INF;
2818 	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2819 		return -EINVAL;
2820 
2821 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2822 }
2823 
2824 long sched_group_rt_runtime(struct task_group *tg)
2825 {
2826 	u64 rt_runtime_us;
2827 
2828 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2829 		return -1;
2830 
2831 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2832 	do_div(rt_runtime_us, NSEC_PER_USEC);
2833 	return rt_runtime_us;
2834 }
2835 
2836 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2837 {
2838 	u64 rt_runtime, rt_period;
2839 
2840 	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2841 		return -EINVAL;
2842 
2843 	rt_period = rt_period_us * NSEC_PER_USEC;
2844 	rt_runtime = tg->rt_bandwidth.rt_runtime;
2845 
2846 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2847 }
2848 
2849 long sched_group_rt_period(struct task_group *tg)
2850 {
2851 	u64 rt_period_us;
2852 
2853 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2854 	do_div(rt_period_us, NSEC_PER_USEC);
2855 	return rt_period_us;
2856 }
2857 
2858 static int sched_rt_global_constraints(void)
2859 {
2860 	int ret = 0;
2861 
2862 	mutex_lock(&rt_constraints_mutex);
2863 	ret = __rt_schedulable(NULL, 0, 0);
2864 	mutex_unlock(&rt_constraints_mutex);
2865 
2866 	return ret;
2867 }
2868 
2869 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2870 {
2871 	/* Don't accept realtime tasks when there is no way for them to run */
2872 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2873 		return 0;
2874 
2875 	return 1;
2876 }
2877 
2878 #else /* !CONFIG_RT_GROUP_SCHED */
2879 static int sched_rt_global_constraints(void)
2880 {
2881 	unsigned long flags;
2882 	int i;
2883 
2884 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2885 	for_each_possible_cpu(i) {
2886 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2887 
2888 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2889 		rt_rq->rt_runtime = global_rt_runtime();
2890 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2891 	}
2892 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2893 
2894 	return 0;
2895 }
2896 #endif /* CONFIG_RT_GROUP_SCHED */
2897 
2898 static int sched_rt_global_validate(void)
2899 {
2900 	if (sysctl_sched_rt_period <= 0)
2901 		return -EINVAL;
2902 
2903 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2904 		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2905 		 ((u64)sysctl_sched_rt_runtime *
2906 			NSEC_PER_USEC > max_rt_runtime)))
2907 		return -EINVAL;
2908 
2909 	return 0;
2910 }
2911 
2912 static void sched_rt_do_global(void)
2913 {
2914 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2915 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2916 }
2917 
2918 int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2919 		size_t *lenp, loff_t *ppos)
2920 {
2921 	int old_period, old_runtime;
2922 	static DEFINE_MUTEX(mutex);
2923 	int ret;
2924 
2925 	mutex_lock(&mutex);
2926 	old_period = sysctl_sched_rt_period;
2927 	old_runtime = sysctl_sched_rt_runtime;
2928 
2929 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2930 
2931 	if (!ret && write) {
2932 		ret = sched_rt_global_validate();
2933 		if (ret)
2934 			goto undo;
2935 
2936 		ret = sched_dl_global_validate();
2937 		if (ret)
2938 			goto undo;
2939 
2940 		ret = sched_rt_global_constraints();
2941 		if (ret)
2942 			goto undo;
2943 
2944 		sched_rt_do_global();
2945 		sched_dl_do_global();
2946 	}
2947 	if (0) {
2948 undo:
2949 		sysctl_sched_rt_period = old_period;
2950 		sysctl_sched_rt_runtime = old_runtime;
2951 	}
2952 	mutex_unlock(&mutex);
2953 
2954 	return ret;
2955 }
2956 
2957 int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2958 		size_t *lenp, loff_t *ppos)
2959 {
2960 	int ret;
2961 	static DEFINE_MUTEX(mutex);
2962 
2963 	mutex_lock(&mutex);
2964 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
2965 	/*
2966 	 * Make sure that internally we keep jiffies.
2967 	 * Also, writing zero resets the timeslice to default:
2968 	 */
2969 	if (!ret && write) {
2970 		sched_rr_timeslice =
2971 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2972 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
2973 	}
2974 	mutex_unlock(&mutex);
2975 
2976 	return ret;
2977 }
2978 
2979 #ifdef CONFIG_SCHED_DEBUG
2980 void print_rt_stats(struct seq_file *m, int cpu)
2981 {
2982 	rt_rq_iter_t iter;
2983 	struct rt_rq *rt_rq;
2984 
2985 	rcu_read_lock();
2986 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2987 		print_rt_rq(m, cpu, rt_rq);
2988 	rcu_read_unlock();
2989 }
2990 #endif /* CONFIG_SCHED_DEBUG */
2991