xref: /linux/kernel/sched/rt.c (revision 59fff63cc2b75dcfe08f9eeb4b2187d73e53843d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 
7 int sched_rr_timeslice = RR_TIMESLICE;
8 /* More than 4 hours if BW_SHIFT equals 20. */
9 static const u64 max_rt_runtime = MAX_BW;
10 
11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
12 
13 struct rt_bandwidth def_rt_bandwidth;
14 
15 /*
16  * period over which we measure -rt task CPU usage in us.
17  * default: 1s
18  */
19 int sysctl_sched_rt_period = 1000000;
20 
21 /*
22  * part of the period that we allow rt tasks to run in us.
23  * default: 0.95s
24  */
25 int sysctl_sched_rt_runtime = 950000;
26 
27 #ifdef CONFIG_SYSCTL
28 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
29 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
30 		size_t *lenp, loff_t *ppos);
31 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
32 		size_t *lenp, loff_t *ppos);
33 static struct ctl_table sched_rt_sysctls[] = {
34 	{
35 		.procname       = "sched_rt_period_us",
36 		.data           = &sysctl_sched_rt_period,
37 		.maxlen         = sizeof(int),
38 		.mode           = 0644,
39 		.proc_handler   = sched_rt_handler,
40 		.extra1         = SYSCTL_ONE,
41 		.extra2         = SYSCTL_INT_MAX,
42 	},
43 	{
44 		.procname       = "sched_rt_runtime_us",
45 		.data           = &sysctl_sched_rt_runtime,
46 		.maxlen         = sizeof(int),
47 		.mode           = 0644,
48 		.proc_handler   = sched_rt_handler,
49 		.extra1         = SYSCTL_NEG_ONE,
50 		.extra2         = (void *)&sysctl_sched_rt_period,
51 	},
52 	{
53 		.procname       = "sched_rr_timeslice_ms",
54 		.data           = &sysctl_sched_rr_timeslice,
55 		.maxlen         = sizeof(int),
56 		.mode           = 0644,
57 		.proc_handler   = sched_rr_handler,
58 	},
59 	{}
60 };
61 
62 static int __init sched_rt_sysctl_init(void)
63 {
64 	register_sysctl_init("kernel", sched_rt_sysctls);
65 	return 0;
66 }
67 late_initcall(sched_rt_sysctl_init);
68 #endif
69 
70 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
71 {
72 	struct rt_bandwidth *rt_b =
73 		container_of(timer, struct rt_bandwidth, rt_period_timer);
74 	int idle = 0;
75 	int overrun;
76 
77 	raw_spin_lock(&rt_b->rt_runtime_lock);
78 	for (;;) {
79 		overrun = hrtimer_forward_now(timer, rt_b->rt_period);
80 		if (!overrun)
81 			break;
82 
83 		raw_spin_unlock(&rt_b->rt_runtime_lock);
84 		idle = do_sched_rt_period_timer(rt_b, overrun);
85 		raw_spin_lock(&rt_b->rt_runtime_lock);
86 	}
87 	if (idle)
88 		rt_b->rt_period_active = 0;
89 	raw_spin_unlock(&rt_b->rt_runtime_lock);
90 
91 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
92 }
93 
94 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
95 {
96 	rt_b->rt_period = ns_to_ktime(period);
97 	rt_b->rt_runtime = runtime;
98 
99 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
100 
101 	hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
102 		     HRTIMER_MODE_REL_HARD);
103 	rt_b->rt_period_timer.function = sched_rt_period_timer;
104 }
105 
106 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
107 {
108 	raw_spin_lock(&rt_b->rt_runtime_lock);
109 	if (!rt_b->rt_period_active) {
110 		rt_b->rt_period_active = 1;
111 		/*
112 		 * SCHED_DEADLINE updates the bandwidth, as a run away
113 		 * RT task with a DL task could hog a CPU. But DL does
114 		 * not reset the period. If a deadline task was running
115 		 * without an RT task running, it can cause RT tasks to
116 		 * throttle when they start up. Kick the timer right away
117 		 * to update the period.
118 		 */
119 		hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
120 		hrtimer_start_expires(&rt_b->rt_period_timer,
121 				      HRTIMER_MODE_ABS_PINNED_HARD);
122 	}
123 	raw_spin_unlock(&rt_b->rt_runtime_lock);
124 }
125 
126 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
127 {
128 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
129 		return;
130 
131 	do_start_rt_bandwidth(rt_b);
132 }
133 
134 void init_rt_rq(struct rt_rq *rt_rq)
135 {
136 	struct rt_prio_array *array;
137 	int i;
138 
139 	array = &rt_rq->active;
140 	for (i = 0; i < MAX_RT_PRIO; i++) {
141 		INIT_LIST_HEAD(array->queue + i);
142 		__clear_bit(i, array->bitmap);
143 	}
144 	/* delimiter for bitsearch: */
145 	__set_bit(MAX_RT_PRIO, array->bitmap);
146 
147 #if defined CONFIG_SMP
148 	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
149 	rt_rq->highest_prio.next = MAX_RT_PRIO-1;
150 	rt_rq->overloaded = 0;
151 	plist_head_init(&rt_rq->pushable_tasks);
152 #endif /* CONFIG_SMP */
153 	/* We start is dequeued state, because no RT tasks are queued */
154 	rt_rq->rt_queued = 0;
155 
156 	rt_rq->rt_time = 0;
157 	rt_rq->rt_throttled = 0;
158 	rt_rq->rt_runtime = 0;
159 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
160 }
161 
162 #ifdef CONFIG_RT_GROUP_SCHED
163 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
164 {
165 	hrtimer_cancel(&rt_b->rt_period_timer);
166 }
167 
168 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
169 
170 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
171 {
172 #ifdef CONFIG_SCHED_DEBUG
173 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
174 #endif
175 	return container_of(rt_se, struct task_struct, rt);
176 }
177 
178 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
179 {
180 	return rt_rq->rq;
181 }
182 
183 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
184 {
185 	return rt_se->rt_rq;
186 }
187 
188 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
189 {
190 	struct rt_rq *rt_rq = rt_se->rt_rq;
191 
192 	return rt_rq->rq;
193 }
194 
195 void unregister_rt_sched_group(struct task_group *tg)
196 {
197 	if (tg->rt_se)
198 		destroy_rt_bandwidth(&tg->rt_bandwidth);
199 
200 }
201 
202 void free_rt_sched_group(struct task_group *tg)
203 {
204 	int i;
205 
206 	for_each_possible_cpu(i) {
207 		if (tg->rt_rq)
208 			kfree(tg->rt_rq[i]);
209 		if (tg->rt_se)
210 			kfree(tg->rt_se[i]);
211 	}
212 
213 	kfree(tg->rt_rq);
214 	kfree(tg->rt_se);
215 }
216 
217 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
218 		struct sched_rt_entity *rt_se, int cpu,
219 		struct sched_rt_entity *parent)
220 {
221 	struct rq *rq = cpu_rq(cpu);
222 
223 	rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
224 	rt_rq->rt_nr_boosted = 0;
225 	rt_rq->rq = rq;
226 	rt_rq->tg = tg;
227 
228 	tg->rt_rq[cpu] = rt_rq;
229 	tg->rt_se[cpu] = rt_se;
230 
231 	if (!rt_se)
232 		return;
233 
234 	if (!parent)
235 		rt_se->rt_rq = &rq->rt;
236 	else
237 		rt_se->rt_rq = parent->my_q;
238 
239 	rt_se->my_q = rt_rq;
240 	rt_se->parent = parent;
241 	INIT_LIST_HEAD(&rt_se->run_list);
242 }
243 
244 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
245 {
246 	struct rt_rq *rt_rq;
247 	struct sched_rt_entity *rt_se;
248 	int i;
249 
250 	tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
251 	if (!tg->rt_rq)
252 		goto err;
253 	tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
254 	if (!tg->rt_se)
255 		goto err;
256 
257 	init_rt_bandwidth(&tg->rt_bandwidth,
258 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
259 
260 	for_each_possible_cpu(i) {
261 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
262 				     GFP_KERNEL, cpu_to_node(i));
263 		if (!rt_rq)
264 			goto err;
265 
266 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
267 				     GFP_KERNEL, cpu_to_node(i));
268 		if (!rt_se)
269 			goto err_free_rq;
270 
271 		init_rt_rq(rt_rq);
272 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
273 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
274 	}
275 
276 	return 1;
277 
278 err_free_rq:
279 	kfree(rt_rq);
280 err:
281 	return 0;
282 }
283 
284 #else /* CONFIG_RT_GROUP_SCHED */
285 
286 #define rt_entity_is_task(rt_se) (1)
287 
288 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
289 {
290 	return container_of(rt_se, struct task_struct, rt);
291 }
292 
293 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
294 {
295 	return container_of(rt_rq, struct rq, rt);
296 }
297 
298 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
299 {
300 	struct task_struct *p = rt_task_of(rt_se);
301 
302 	return task_rq(p);
303 }
304 
305 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
306 {
307 	struct rq *rq = rq_of_rt_se(rt_se);
308 
309 	return &rq->rt;
310 }
311 
312 void unregister_rt_sched_group(struct task_group *tg) { }
313 
314 void free_rt_sched_group(struct task_group *tg) { }
315 
316 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
317 {
318 	return 1;
319 }
320 #endif /* CONFIG_RT_GROUP_SCHED */
321 
322 #ifdef CONFIG_SMP
323 
324 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
325 {
326 	/* Try to pull RT tasks here if we lower this rq's prio */
327 	return rq->online && rq->rt.highest_prio.curr > prev->prio;
328 }
329 
330 static inline int rt_overloaded(struct rq *rq)
331 {
332 	return atomic_read(&rq->rd->rto_count);
333 }
334 
335 static inline void rt_set_overload(struct rq *rq)
336 {
337 	if (!rq->online)
338 		return;
339 
340 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
341 	/*
342 	 * Make sure the mask is visible before we set
343 	 * the overload count. That is checked to determine
344 	 * if we should look at the mask. It would be a shame
345 	 * if we looked at the mask, but the mask was not
346 	 * updated yet.
347 	 *
348 	 * Matched by the barrier in pull_rt_task().
349 	 */
350 	smp_wmb();
351 	atomic_inc(&rq->rd->rto_count);
352 }
353 
354 static inline void rt_clear_overload(struct rq *rq)
355 {
356 	if (!rq->online)
357 		return;
358 
359 	/* the order here really doesn't matter */
360 	atomic_dec(&rq->rd->rto_count);
361 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
362 }
363 
364 static inline int has_pushable_tasks(struct rq *rq)
365 {
366 	return !plist_head_empty(&rq->rt.pushable_tasks);
367 }
368 
369 static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
370 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
371 
372 static void push_rt_tasks(struct rq *);
373 static void pull_rt_task(struct rq *);
374 
375 static inline void rt_queue_push_tasks(struct rq *rq)
376 {
377 	if (!has_pushable_tasks(rq))
378 		return;
379 
380 	queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
381 }
382 
383 static inline void rt_queue_pull_task(struct rq *rq)
384 {
385 	queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
386 }
387 
388 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
389 {
390 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
391 	plist_node_init(&p->pushable_tasks, p->prio);
392 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
393 
394 	/* Update the highest prio pushable task */
395 	if (p->prio < rq->rt.highest_prio.next)
396 		rq->rt.highest_prio.next = p->prio;
397 
398 	if (!rq->rt.overloaded) {
399 		rt_set_overload(rq);
400 		rq->rt.overloaded = 1;
401 	}
402 }
403 
404 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
405 {
406 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
407 
408 	/* Update the new highest prio pushable task */
409 	if (has_pushable_tasks(rq)) {
410 		p = plist_first_entry(&rq->rt.pushable_tasks,
411 				      struct task_struct, pushable_tasks);
412 		rq->rt.highest_prio.next = p->prio;
413 	} else {
414 		rq->rt.highest_prio.next = MAX_RT_PRIO-1;
415 
416 		if (rq->rt.overloaded) {
417 			rt_clear_overload(rq);
418 			rq->rt.overloaded = 0;
419 		}
420 	}
421 }
422 
423 #else
424 
425 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
426 {
427 }
428 
429 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
430 {
431 }
432 
433 static inline void rt_queue_push_tasks(struct rq *rq)
434 {
435 }
436 #endif /* CONFIG_SMP */
437 
438 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
439 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
440 
441 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
442 {
443 	return rt_se->on_rq;
444 }
445 
446 #ifdef CONFIG_UCLAMP_TASK
447 /*
448  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
449  * settings.
450  *
451  * This check is only important for heterogeneous systems where uclamp_min value
452  * is higher than the capacity of a @cpu. For non-heterogeneous system this
453  * function will always return true.
454  *
455  * The function will return true if the capacity of the @cpu is >= the
456  * uclamp_min and false otherwise.
457  *
458  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
459  * > uclamp_max.
460  */
461 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
462 {
463 	unsigned int min_cap;
464 	unsigned int max_cap;
465 	unsigned int cpu_cap;
466 
467 	/* Only heterogeneous systems can benefit from this check */
468 	if (!sched_asym_cpucap_active())
469 		return true;
470 
471 	min_cap = uclamp_eff_value(p, UCLAMP_MIN);
472 	max_cap = uclamp_eff_value(p, UCLAMP_MAX);
473 
474 	cpu_cap = arch_scale_cpu_capacity(cpu);
475 
476 	return cpu_cap >= min(min_cap, max_cap);
477 }
478 #else
479 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
480 {
481 	return true;
482 }
483 #endif
484 
485 #ifdef CONFIG_RT_GROUP_SCHED
486 
487 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
488 {
489 	if (!rt_rq->tg)
490 		return RUNTIME_INF;
491 
492 	return rt_rq->rt_runtime;
493 }
494 
495 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
496 {
497 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
498 }
499 
500 typedef struct task_group *rt_rq_iter_t;
501 
502 static inline struct task_group *next_task_group(struct task_group *tg)
503 {
504 	do {
505 		tg = list_entry_rcu(tg->list.next,
506 			typeof(struct task_group), list);
507 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
508 
509 	if (&tg->list == &task_groups)
510 		tg = NULL;
511 
512 	return tg;
513 }
514 
515 #define for_each_rt_rq(rt_rq, iter, rq)					\
516 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
517 		(iter = next_task_group(iter)) &&			\
518 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
519 
520 #define for_each_sched_rt_entity(rt_se) \
521 	for (; rt_se; rt_se = rt_se->parent)
522 
523 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
524 {
525 	return rt_se->my_q;
526 }
527 
528 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
529 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
530 
531 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
532 {
533 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
534 	struct rq *rq = rq_of_rt_rq(rt_rq);
535 	struct sched_rt_entity *rt_se;
536 
537 	int cpu = cpu_of(rq);
538 
539 	rt_se = rt_rq->tg->rt_se[cpu];
540 
541 	if (rt_rq->rt_nr_running) {
542 		if (!rt_se)
543 			enqueue_top_rt_rq(rt_rq);
544 		else if (!on_rt_rq(rt_se))
545 			enqueue_rt_entity(rt_se, 0);
546 
547 		if (rt_rq->highest_prio.curr < curr->prio)
548 			resched_curr(rq);
549 	}
550 }
551 
552 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
553 {
554 	struct sched_rt_entity *rt_se;
555 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
556 
557 	rt_se = rt_rq->tg->rt_se[cpu];
558 
559 	if (!rt_se) {
560 		dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
561 		/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
562 		cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
563 	}
564 	else if (on_rt_rq(rt_se))
565 		dequeue_rt_entity(rt_se, 0);
566 }
567 
568 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
569 {
570 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
571 }
572 
573 static int rt_se_boosted(struct sched_rt_entity *rt_se)
574 {
575 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
576 	struct task_struct *p;
577 
578 	if (rt_rq)
579 		return !!rt_rq->rt_nr_boosted;
580 
581 	p = rt_task_of(rt_se);
582 	return p->prio != p->normal_prio;
583 }
584 
585 #ifdef CONFIG_SMP
586 static inline const struct cpumask *sched_rt_period_mask(void)
587 {
588 	return this_rq()->rd->span;
589 }
590 #else
591 static inline const struct cpumask *sched_rt_period_mask(void)
592 {
593 	return cpu_online_mask;
594 }
595 #endif
596 
597 static inline
598 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
599 {
600 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
601 }
602 
603 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
604 {
605 	return &rt_rq->tg->rt_bandwidth;
606 }
607 
608 #else /* !CONFIG_RT_GROUP_SCHED */
609 
610 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
611 {
612 	return rt_rq->rt_runtime;
613 }
614 
615 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
616 {
617 	return ktime_to_ns(def_rt_bandwidth.rt_period);
618 }
619 
620 typedef struct rt_rq *rt_rq_iter_t;
621 
622 #define for_each_rt_rq(rt_rq, iter, rq) \
623 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
624 
625 #define for_each_sched_rt_entity(rt_se) \
626 	for (; rt_se; rt_se = NULL)
627 
628 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
629 {
630 	return NULL;
631 }
632 
633 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
634 {
635 	struct rq *rq = rq_of_rt_rq(rt_rq);
636 
637 	if (!rt_rq->rt_nr_running)
638 		return;
639 
640 	enqueue_top_rt_rq(rt_rq);
641 	resched_curr(rq);
642 }
643 
644 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
645 {
646 	dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
647 }
648 
649 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
650 {
651 	return rt_rq->rt_throttled;
652 }
653 
654 static inline const struct cpumask *sched_rt_period_mask(void)
655 {
656 	return cpu_online_mask;
657 }
658 
659 static inline
660 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
661 {
662 	return &cpu_rq(cpu)->rt;
663 }
664 
665 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
666 {
667 	return &def_rt_bandwidth;
668 }
669 
670 #endif /* CONFIG_RT_GROUP_SCHED */
671 
672 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
673 {
674 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
675 
676 	return (hrtimer_active(&rt_b->rt_period_timer) ||
677 		rt_rq->rt_time < rt_b->rt_runtime);
678 }
679 
680 #ifdef CONFIG_SMP
681 /*
682  * We ran out of runtime, see if we can borrow some from our neighbours.
683  */
684 static void do_balance_runtime(struct rt_rq *rt_rq)
685 {
686 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
687 	struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
688 	int i, weight;
689 	u64 rt_period;
690 
691 	weight = cpumask_weight(rd->span);
692 
693 	raw_spin_lock(&rt_b->rt_runtime_lock);
694 	rt_period = ktime_to_ns(rt_b->rt_period);
695 	for_each_cpu(i, rd->span) {
696 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
697 		s64 diff;
698 
699 		if (iter == rt_rq)
700 			continue;
701 
702 		raw_spin_lock(&iter->rt_runtime_lock);
703 		/*
704 		 * Either all rqs have inf runtime and there's nothing to steal
705 		 * or __disable_runtime() below sets a specific rq to inf to
706 		 * indicate its been disabled and disallow stealing.
707 		 */
708 		if (iter->rt_runtime == RUNTIME_INF)
709 			goto next;
710 
711 		/*
712 		 * From runqueues with spare time, take 1/n part of their
713 		 * spare time, but no more than our period.
714 		 */
715 		diff = iter->rt_runtime - iter->rt_time;
716 		if (diff > 0) {
717 			diff = div_u64((u64)diff, weight);
718 			if (rt_rq->rt_runtime + diff > rt_period)
719 				diff = rt_period - rt_rq->rt_runtime;
720 			iter->rt_runtime -= diff;
721 			rt_rq->rt_runtime += diff;
722 			if (rt_rq->rt_runtime == rt_period) {
723 				raw_spin_unlock(&iter->rt_runtime_lock);
724 				break;
725 			}
726 		}
727 next:
728 		raw_spin_unlock(&iter->rt_runtime_lock);
729 	}
730 	raw_spin_unlock(&rt_b->rt_runtime_lock);
731 }
732 
733 /*
734  * Ensure this RQ takes back all the runtime it lend to its neighbours.
735  */
736 static void __disable_runtime(struct rq *rq)
737 {
738 	struct root_domain *rd = rq->rd;
739 	rt_rq_iter_t iter;
740 	struct rt_rq *rt_rq;
741 
742 	if (unlikely(!scheduler_running))
743 		return;
744 
745 	for_each_rt_rq(rt_rq, iter, rq) {
746 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
747 		s64 want;
748 		int i;
749 
750 		raw_spin_lock(&rt_b->rt_runtime_lock);
751 		raw_spin_lock(&rt_rq->rt_runtime_lock);
752 		/*
753 		 * Either we're all inf and nobody needs to borrow, or we're
754 		 * already disabled and thus have nothing to do, or we have
755 		 * exactly the right amount of runtime to take out.
756 		 */
757 		if (rt_rq->rt_runtime == RUNTIME_INF ||
758 				rt_rq->rt_runtime == rt_b->rt_runtime)
759 			goto balanced;
760 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
761 
762 		/*
763 		 * Calculate the difference between what we started out with
764 		 * and what we current have, that's the amount of runtime
765 		 * we lend and now have to reclaim.
766 		 */
767 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
768 
769 		/*
770 		 * Greedy reclaim, take back as much as we can.
771 		 */
772 		for_each_cpu(i, rd->span) {
773 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
774 			s64 diff;
775 
776 			/*
777 			 * Can't reclaim from ourselves or disabled runqueues.
778 			 */
779 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
780 				continue;
781 
782 			raw_spin_lock(&iter->rt_runtime_lock);
783 			if (want > 0) {
784 				diff = min_t(s64, iter->rt_runtime, want);
785 				iter->rt_runtime -= diff;
786 				want -= diff;
787 			} else {
788 				iter->rt_runtime -= want;
789 				want -= want;
790 			}
791 			raw_spin_unlock(&iter->rt_runtime_lock);
792 
793 			if (!want)
794 				break;
795 		}
796 
797 		raw_spin_lock(&rt_rq->rt_runtime_lock);
798 		/*
799 		 * We cannot be left wanting - that would mean some runtime
800 		 * leaked out of the system.
801 		 */
802 		WARN_ON_ONCE(want);
803 balanced:
804 		/*
805 		 * Disable all the borrow logic by pretending we have inf
806 		 * runtime - in which case borrowing doesn't make sense.
807 		 */
808 		rt_rq->rt_runtime = RUNTIME_INF;
809 		rt_rq->rt_throttled = 0;
810 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
811 		raw_spin_unlock(&rt_b->rt_runtime_lock);
812 
813 		/* Make rt_rq available for pick_next_task() */
814 		sched_rt_rq_enqueue(rt_rq);
815 	}
816 }
817 
818 static void __enable_runtime(struct rq *rq)
819 {
820 	rt_rq_iter_t iter;
821 	struct rt_rq *rt_rq;
822 
823 	if (unlikely(!scheduler_running))
824 		return;
825 
826 	/*
827 	 * Reset each runqueue's bandwidth settings
828 	 */
829 	for_each_rt_rq(rt_rq, iter, rq) {
830 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
831 
832 		raw_spin_lock(&rt_b->rt_runtime_lock);
833 		raw_spin_lock(&rt_rq->rt_runtime_lock);
834 		rt_rq->rt_runtime = rt_b->rt_runtime;
835 		rt_rq->rt_time = 0;
836 		rt_rq->rt_throttled = 0;
837 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
838 		raw_spin_unlock(&rt_b->rt_runtime_lock);
839 	}
840 }
841 
842 static void balance_runtime(struct rt_rq *rt_rq)
843 {
844 	if (!sched_feat(RT_RUNTIME_SHARE))
845 		return;
846 
847 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
848 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
849 		do_balance_runtime(rt_rq);
850 		raw_spin_lock(&rt_rq->rt_runtime_lock);
851 	}
852 }
853 #else /* !CONFIG_SMP */
854 static inline void balance_runtime(struct rt_rq *rt_rq) {}
855 #endif /* CONFIG_SMP */
856 
857 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
858 {
859 	int i, idle = 1, throttled = 0;
860 	const struct cpumask *span;
861 
862 	span = sched_rt_period_mask();
863 #ifdef CONFIG_RT_GROUP_SCHED
864 	/*
865 	 * FIXME: isolated CPUs should really leave the root task group,
866 	 * whether they are isolcpus or were isolated via cpusets, lest
867 	 * the timer run on a CPU which does not service all runqueues,
868 	 * potentially leaving other CPUs indefinitely throttled.  If
869 	 * isolation is really required, the user will turn the throttle
870 	 * off to kill the perturbations it causes anyway.  Meanwhile,
871 	 * this maintains functionality for boot and/or troubleshooting.
872 	 */
873 	if (rt_b == &root_task_group.rt_bandwidth)
874 		span = cpu_online_mask;
875 #endif
876 	for_each_cpu(i, span) {
877 		int enqueue = 0;
878 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
879 		struct rq *rq = rq_of_rt_rq(rt_rq);
880 		struct rq_flags rf;
881 		int skip;
882 
883 		/*
884 		 * When span == cpu_online_mask, taking each rq->lock
885 		 * can be time-consuming. Try to avoid it when possible.
886 		 */
887 		raw_spin_lock(&rt_rq->rt_runtime_lock);
888 		if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
889 			rt_rq->rt_runtime = rt_b->rt_runtime;
890 		skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
891 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
892 		if (skip)
893 			continue;
894 
895 		rq_lock(rq, &rf);
896 		update_rq_clock(rq);
897 
898 		if (rt_rq->rt_time) {
899 			u64 runtime;
900 
901 			raw_spin_lock(&rt_rq->rt_runtime_lock);
902 			if (rt_rq->rt_throttled)
903 				balance_runtime(rt_rq);
904 			runtime = rt_rq->rt_runtime;
905 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
906 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
907 				rt_rq->rt_throttled = 0;
908 				enqueue = 1;
909 
910 				/*
911 				 * When we're idle and a woken (rt) task is
912 				 * throttled wakeup_preempt() will set
913 				 * skip_update and the time between the wakeup
914 				 * and this unthrottle will get accounted as
915 				 * 'runtime'.
916 				 */
917 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
918 					rq_clock_cancel_skipupdate(rq);
919 			}
920 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
921 				idle = 0;
922 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
923 		} else if (rt_rq->rt_nr_running) {
924 			idle = 0;
925 			if (!rt_rq_throttled(rt_rq))
926 				enqueue = 1;
927 		}
928 		if (rt_rq->rt_throttled)
929 			throttled = 1;
930 
931 		if (enqueue)
932 			sched_rt_rq_enqueue(rt_rq);
933 		rq_unlock(rq, &rf);
934 	}
935 
936 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
937 		return 1;
938 
939 	return idle;
940 }
941 
942 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
943 {
944 #ifdef CONFIG_RT_GROUP_SCHED
945 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
946 
947 	if (rt_rq)
948 		return rt_rq->highest_prio.curr;
949 #endif
950 
951 	return rt_task_of(rt_se)->prio;
952 }
953 
954 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
955 {
956 	u64 runtime = sched_rt_runtime(rt_rq);
957 
958 	if (rt_rq->rt_throttled)
959 		return rt_rq_throttled(rt_rq);
960 
961 	if (runtime >= sched_rt_period(rt_rq))
962 		return 0;
963 
964 	balance_runtime(rt_rq);
965 	runtime = sched_rt_runtime(rt_rq);
966 	if (runtime == RUNTIME_INF)
967 		return 0;
968 
969 	if (rt_rq->rt_time > runtime) {
970 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
971 
972 		/*
973 		 * Don't actually throttle groups that have no runtime assigned
974 		 * but accrue some time due to boosting.
975 		 */
976 		if (likely(rt_b->rt_runtime)) {
977 			rt_rq->rt_throttled = 1;
978 			printk_deferred_once("sched: RT throttling activated\n");
979 		} else {
980 			/*
981 			 * In case we did anyway, make it go away,
982 			 * replenishment is a joke, since it will replenish us
983 			 * with exactly 0 ns.
984 			 */
985 			rt_rq->rt_time = 0;
986 		}
987 
988 		if (rt_rq_throttled(rt_rq)) {
989 			sched_rt_rq_dequeue(rt_rq);
990 			return 1;
991 		}
992 	}
993 
994 	return 0;
995 }
996 
997 /*
998  * Update the current task's runtime statistics. Skip current tasks that
999  * are not in our scheduling class.
1000  */
1001 static void update_curr_rt(struct rq *rq)
1002 {
1003 	struct task_struct *curr = rq->curr;
1004 	struct sched_rt_entity *rt_se = &curr->rt;
1005 	u64 delta_exec;
1006 	u64 now;
1007 
1008 	if (curr->sched_class != &rt_sched_class)
1009 		return;
1010 
1011 	now = rq_clock_task(rq);
1012 	delta_exec = now - curr->se.exec_start;
1013 	if (unlikely((s64)delta_exec <= 0))
1014 		return;
1015 
1016 	schedstat_set(curr->stats.exec_max,
1017 		      max(curr->stats.exec_max, delta_exec));
1018 
1019 	trace_sched_stat_runtime(curr, delta_exec, 0);
1020 
1021 	update_current_exec_runtime(curr, now, delta_exec);
1022 
1023 	if (!rt_bandwidth_enabled())
1024 		return;
1025 
1026 	for_each_sched_rt_entity(rt_se) {
1027 		struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1028 		int exceeded;
1029 
1030 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1031 			raw_spin_lock(&rt_rq->rt_runtime_lock);
1032 			rt_rq->rt_time += delta_exec;
1033 			exceeded = sched_rt_runtime_exceeded(rt_rq);
1034 			if (exceeded)
1035 				resched_curr(rq);
1036 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
1037 			if (exceeded)
1038 				do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1039 		}
1040 	}
1041 }
1042 
1043 static void
1044 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1045 {
1046 	struct rq *rq = rq_of_rt_rq(rt_rq);
1047 
1048 	BUG_ON(&rq->rt != rt_rq);
1049 
1050 	if (!rt_rq->rt_queued)
1051 		return;
1052 
1053 	BUG_ON(!rq->nr_running);
1054 
1055 	sub_nr_running(rq, count);
1056 	rt_rq->rt_queued = 0;
1057 
1058 }
1059 
1060 static void
1061 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1062 {
1063 	struct rq *rq = rq_of_rt_rq(rt_rq);
1064 
1065 	BUG_ON(&rq->rt != rt_rq);
1066 
1067 	if (rt_rq->rt_queued)
1068 		return;
1069 
1070 	if (rt_rq_throttled(rt_rq))
1071 		return;
1072 
1073 	if (rt_rq->rt_nr_running) {
1074 		add_nr_running(rq, rt_rq->rt_nr_running);
1075 		rt_rq->rt_queued = 1;
1076 	}
1077 
1078 	/* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1079 	cpufreq_update_util(rq, 0);
1080 }
1081 
1082 #if defined CONFIG_SMP
1083 
1084 static void
1085 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1086 {
1087 	struct rq *rq = rq_of_rt_rq(rt_rq);
1088 
1089 #ifdef CONFIG_RT_GROUP_SCHED
1090 	/*
1091 	 * Change rq's cpupri only if rt_rq is the top queue.
1092 	 */
1093 	if (&rq->rt != rt_rq)
1094 		return;
1095 #endif
1096 	if (rq->online && prio < prev_prio)
1097 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1098 }
1099 
1100 static void
1101 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1102 {
1103 	struct rq *rq = rq_of_rt_rq(rt_rq);
1104 
1105 #ifdef CONFIG_RT_GROUP_SCHED
1106 	/*
1107 	 * Change rq's cpupri only if rt_rq is the top queue.
1108 	 */
1109 	if (&rq->rt != rt_rq)
1110 		return;
1111 #endif
1112 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1113 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1114 }
1115 
1116 #else /* CONFIG_SMP */
1117 
1118 static inline
1119 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1120 static inline
1121 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1122 
1123 #endif /* CONFIG_SMP */
1124 
1125 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1126 static void
1127 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1128 {
1129 	int prev_prio = rt_rq->highest_prio.curr;
1130 
1131 	if (prio < prev_prio)
1132 		rt_rq->highest_prio.curr = prio;
1133 
1134 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
1135 }
1136 
1137 static void
1138 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1139 {
1140 	int prev_prio = rt_rq->highest_prio.curr;
1141 
1142 	if (rt_rq->rt_nr_running) {
1143 
1144 		WARN_ON(prio < prev_prio);
1145 
1146 		/*
1147 		 * This may have been our highest task, and therefore
1148 		 * we may have some recomputation to do
1149 		 */
1150 		if (prio == prev_prio) {
1151 			struct rt_prio_array *array = &rt_rq->active;
1152 
1153 			rt_rq->highest_prio.curr =
1154 				sched_find_first_bit(array->bitmap);
1155 		}
1156 
1157 	} else {
1158 		rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1159 	}
1160 
1161 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1162 }
1163 
1164 #else
1165 
1166 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1167 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1168 
1169 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1170 
1171 #ifdef CONFIG_RT_GROUP_SCHED
1172 
1173 static void
1174 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1175 {
1176 	if (rt_se_boosted(rt_se))
1177 		rt_rq->rt_nr_boosted++;
1178 
1179 	if (rt_rq->tg)
1180 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1181 }
1182 
1183 static void
1184 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1185 {
1186 	if (rt_se_boosted(rt_se))
1187 		rt_rq->rt_nr_boosted--;
1188 
1189 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1190 }
1191 
1192 #else /* CONFIG_RT_GROUP_SCHED */
1193 
1194 static void
1195 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1196 {
1197 	start_rt_bandwidth(&def_rt_bandwidth);
1198 }
1199 
1200 static inline
1201 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1202 
1203 #endif /* CONFIG_RT_GROUP_SCHED */
1204 
1205 static inline
1206 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1207 {
1208 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1209 
1210 	if (group_rq)
1211 		return group_rq->rt_nr_running;
1212 	else
1213 		return 1;
1214 }
1215 
1216 static inline
1217 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1218 {
1219 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1220 	struct task_struct *tsk;
1221 
1222 	if (group_rq)
1223 		return group_rq->rr_nr_running;
1224 
1225 	tsk = rt_task_of(rt_se);
1226 
1227 	return (tsk->policy == SCHED_RR) ? 1 : 0;
1228 }
1229 
1230 static inline
1231 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1232 {
1233 	int prio = rt_se_prio(rt_se);
1234 
1235 	WARN_ON(!rt_prio(prio));
1236 	rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1237 	rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1238 
1239 	inc_rt_prio(rt_rq, prio);
1240 	inc_rt_group(rt_se, rt_rq);
1241 }
1242 
1243 static inline
1244 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1245 {
1246 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1247 	WARN_ON(!rt_rq->rt_nr_running);
1248 	rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1249 	rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1250 
1251 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1252 	dec_rt_group(rt_se, rt_rq);
1253 }
1254 
1255 /*
1256  * Change rt_se->run_list location unless SAVE && !MOVE
1257  *
1258  * assumes ENQUEUE/DEQUEUE flags match
1259  */
1260 static inline bool move_entity(unsigned int flags)
1261 {
1262 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1263 		return false;
1264 
1265 	return true;
1266 }
1267 
1268 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1269 {
1270 	list_del_init(&rt_se->run_list);
1271 
1272 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1273 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1274 
1275 	rt_se->on_list = 0;
1276 }
1277 
1278 static inline struct sched_statistics *
1279 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1280 {
1281 #ifdef CONFIG_RT_GROUP_SCHED
1282 	/* schedstats is not supported for rt group. */
1283 	if (!rt_entity_is_task(rt_se))
1284 		return NULL;
1285 #endif
1286 
1287 	return &rt_task_of(rt_se)->stats;
1288 }
1289 
1290 static inline void
1291 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1292 {
1293 	struct sched_statistics *stats;
1294 	struct task_struct *p = NULL;
1295 
1296 	if (!schedstat_enabled())
1297 		return;
1298 
1299 	if (rt_entity_is_task(rt_se))
1300 		p = rt_task_of(rt_se);
1301 
1302 	stats = __schedstats_from_rt_se(rt_se);
1303 	if (!stats)
1304 		return;
1305 
1306 	__update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1307 }
1308 
1309 static inline void
1310 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1311 {
1312 	struct sched_statistics *stats;
1313 	struct task_struct *p = NULL;
1314 
1315 	if (!schedstat_enabled())
1316 		return;
1317 
1318 	if (rt_entity_is_task(rt_se))
1319 		p = rt_task_of(rt_se);
1320 
1321 	stats = __schedstats_from_rt_se(rt_se);
1322 	if (!stats)
1323 		return;
1324 
1325 	__update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1326 }
1327 
1328 static inline void
1329 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1330 			int flags)
1331 {
1332 	if (!schedstat_enabled())
1333 		return;
1334 
1335 	if (flags & ENQUEUE_WAKEUP)
1336 		update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1337 }
1338 
1339 static inline void
1340 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1341 {
1342 	struct sched_statistics *stats;
1343 	struct task_struct *p = NULL;
1344 
1345 	if (!schedstat_enabled())
1346 		return;
1347 
1348 	if (rt_entity_is_task(rt_se))
1349 		p = rt_task_of(rt_se);
1350 
1351 	stats = __schedstats_from_rt_se(rt_se);
1352 	if (!stats)
1353 		return;
1354 
1355 	__update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1356 }
1357 
1358 static inline void
1359 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1360 			int flags)
1361 {
1362 	struct task_struct *p = NULL;
1363 
1364 	if (!schedstat_enabled())
1365 		return;
1366 
1367 	if (rt_entity_is_task(rt_se))
1368 		p = rt_task_of(rt_se);
1369 
1370 	if ((flags & DEQUEUE_SLEEP) && p) {
1371 		unsigned int state;
1372 
1373 		state = READ_ONCE(p->__state);
1374 		if (state & TASK_INTERRUPTIBLE)
1375 			__schedstat_set(p->stats.sleep_start,
1376 					rq_clock(rq_of_rt_rq(rt_rq)));
1377 
1378 		if (state & TASK_UNINTERRUPTIBLE)
1379 			__schedstat_set(p->stats.block_start,
1380 					rq_clock(rq_of_rt_rq(rt_rq)));
1381 	}
1382 }
1383 
1384 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1385 {
1386 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1387 	struct rt_prio_array *array = &rt_rq->active;
1388 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1389 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1390 
1391 	/*
1392 	 * Don't enqueue the group if its throttled, or when empty.
1393 	 * The latter is a consequence of the former when a child group
1394 	 * get throttled and the current group doesn't have any other
1395 	 * active members.
1396 	 */
1397 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1398 		if (rt_se->on_list)
1399 			__delist_rt_entity(rt_se, array);
1400 		return;
1401 	}
1402 
1403 	if (move_entity(flags)) {
1404 		WARN_ON_ONCE(rt_se->on_list);
1405 		if (flags & ENQUEUE_HEAD)
1406 			list_add(&rt_se->run_list, queue);
1407 		else
1408 			list_add_tail(&rt_se->run_list, queue);
1409 
1410 		__set_bit(rt_se_prio(rt_se), array->bitmap);
1411 		rt_se->on_list = 1;
1412 	}
1413 	rt_se->on_rq = 1;
1414 
1415 	inc_rt_tasks(rt_se, rt_rq);
1416 }
1417 
1418 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1419 {
1420 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1421 	struct rt_prio_array *array = &rt_rq->active;
1422 
1423 	if (move_entity(flags)) {
1424 		WARN_ON_ONCE(!rt_se->on_list);
1425 		__delist_rt_entity(rt_se, array);
1426 	}
1427 	rt_se->on_rq = 0;
1428 
1429 	dec_rt_tasks(rt_se, rt_rq);
1430 }
1431 
1432 /*
1433  * Because the prio of an upper entry depends on the lower
1434  * entries, we must remove entries top - down.
1435  */
1436 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1437 {
1438 	struct sched_rt_entity *back = NULL;
1439 	unsigned int rt_nr_running;
1440 
1441 	for_each_sched_rt_entity(rt_se) {
1442 		rt_se->back = back;
1443 		back = rt_se;
1444 	}
1445 
1446 	rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1447 
1448 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1449 		if (on_rt_rq(rt_se))
1450 			__dequeue_rt_entity(rt_se, flags);
1451 	}
1452 
1453 	dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1454 }
1455 
1456 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1457 {
1458 	struct rq *rq = rq_of_rt_se(rt_se);
1459 
1460 	update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1461 
1462 	dequeue_rt_stack(rt_se, flags);
1463 	for_each_sched_rt_entity(rt_se)
1464 		__enqueue_rt_entity(rt_se, flags);
1465 	enqueue_top_rt_rq(&rq->rt);
1466 }
1467 
1468 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1469 {
1470 	struct rq *rq = rq_of_rt_se(rt_se);
1471 
1472 	update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1473 
1474 	dequeue_rt_stack(rt_se, flags);
1475 
1476 	for_each_sched_rt_entity(rt_se) {
1477 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1478 
1479 		if (rt_rq && rt_rq->rt_nr_running)
1480 			__enqueue_rt_entity(rt_se, flags);
1481 	}
1482 	enqueue_top_rt_rq(&rq->rt);
1483 }
1484 
1485 /*
1486  * Adding/removing a task to/from a priority array:
1487  */
1488 static void
1489 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1490 {
1491 	struct sched_rt_entity *rt_se = &p->rt;
1492 
1493 	if (flags & ENQUEUE_WAKEUP)
1494 		rt_se->timeout = 0;
1495 
1496 	check_schedstat_required();
1497 	update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1498 
1499 	enqueue_rt_entity(rt_se, flags);
1500 
1501 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1502 		enqueue_pushable_task(rq, p);
1503 }
1504 
1505 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1506 {
1507 	struct sched_rt_entity *rt_se = &p->rt;
1508 
1509 	update_curr_rt(rq);
1510 	dequeue_rt_entity(rt_se, flags);
1511 
1512 	dequeue_pushable_task(rq, p);
1513 }
1514 
1515 /*
1516  * Put task to the head or the end of the run list without the overhead of
1517  * dequeue followed by enqueue.
1518  */
1519 static void
1520 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1521 {
1522 	if (on_rt_rq(rt_se)) {
1523 		struct rt_prio_array *array = &rt_rq->active;
1524 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1525 
1526 		if (head)
1527 			list_move(&rt_se->run_list, queue);
1528 		else
1529 			list_move_tail(&rt_se->run_list, queue);
1530 	}
1531 }
1532 
1533 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1534 {
1535 	struct sched_rt_entity *rt_se = &p->rt;
1536 	struct rt_rq *rt_rq;
1537 
1538 	for_each_sched_rt_entity(rt_se) {
1539 		rt_rq = rt_rq_of_se(rt_se);
1540 		requeue_rt_entity(rt_rq, rt_se, head);
1541 	}
1542 }
1543 
1544 static void yield_task_rt(struct rq *rq)
1545 {
1546 	requeue_task_rt(rq, rq->curr, 0);
1547 }
1548 
1549 #ifdef CONFIG_SMP
1550 static int find_lowest_rq(struct task_struct *task);
1551 
1552 static int
1553 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1554 {
1555 	struct task_struct *curr;
1556 	struct rq *rq;
1557 	bool test;
1558 
1559 	/* For anything but wake ups, just return the task_cpu */
1560 	if (!(flags & (WF_TTWU | WF_FORK)))
1561 		goto out;
1562 
1563 	rq = cpu_rq(cpu);
1564 
1565 	rcu_read_lock();
1566 	curr = READ_ONCE(rq->curr); /* unlocked access */
1567 
1568 	/*
1569 	 * If the current task on @p's runqueue is an RT task, then
1570 	 * try to see if we can wake this RT task up on another
1571 	 * runqueue. Otherwise simply start this RT task
1572 	 * on its current runqueue.
1573 	 *
1574 	 * We want to avoid overloading runqueues. If the woken
1575 	 * task is a higher priority, then it will stay on this CPU
1576 	 * and the lower prio task should be moved to another CPU.
1577 	 * Even though this will probably make the lower prio task
1578 	 * lose its cache, we do not want to bounce a higher task
1579 	 * around just because it gave up its CPU, perhaps for a
1580 	 * lock?
1581 	 *
1582 	 * For equal prio tasks, we just let the scheduler sort it out.
1583 	 *
1584 	 * Otherwise, just let it ride on the affined RQ and the
1585 	 * post-schedule router will push the preempted task away
1586 	 *
1587 	 * This test is optimistic, if we get it wrong the load-balancer
1588 	 * will have to sort it out.
1589 	 *
1590 	 * We take into account the capacity of the CPU to ensure it fits the
1591 	 * requirement of the task - which is only important on heterogeneous
1592 	 * systems like big.LITTLE.
1593 	 */
1594 	test = curr &&
1595 	       unlikely(rt_task(curr)) &&
1596 	       (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1597 
1598 	if (test || !rt_task_fits_capacity(p, cpu)) {
1599 		int target = find_lowest_rq(p);
1600 
1601 		/*
1602 		 * Bail out if we were forcing a migration to find a better
1603 		 * fitting CPU but our search failed.
1604 		 */
1605 		if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1606 			goto out_unlock;
1607 
1608 		/*
1609 		 * Don't bother moving it if the destination CPU is
1610 		 * not running a lower priority task.
1611 		 */
1612 		if (target != -1 &&
1613 		    p->prio < cpu_rq(target)->rt.highest_prio.curr)
1614 			cpu = target;
1615 	}
1616 
1617 out_unlock:
1618 	rcu_read_unlock();
1619 
1620 out:
1621 	return cpu;
1622 }
1623 
1624 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1625 {
1626 	/*
1627 	 * Current can't be migrated, useless to reschedule,
1628 	 * let's hope p can move out.
1629 	 */
1630 	if (rq->curr->nr_cpus_allowed == 1 ||
1631 	    !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1632 		return;
1633 
1634 	/*
1635 	 * p is migratable, so let's not schedule it and
1636 	 * see if it is pushed or pulled somewhere else.
1637 	 */
1638 	if (p->nr_cpus_allowed != 1 &&
1639 	    cpupri_find(&rq->rd->cpupri, p, NULL))
1640 		return;
1641 
1642 	/*
1643 	 * There appear to be other CPUs that can accept
1644 	 * the current task but none can run 'p', so lets reschedule
1645 	 * to try and push the current task away:
1646 	 */
1647 	requeue_task_rt(rq, p, 1);
1648 	resched_curr(rq);
1649 }
1650 
1651 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1652 {
1653 	if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1654 		/*
1655 		 * This is OK, because current is on_cpu, which avoids it being
1656 		 * picked for load-balance and preemption/IRQs are still
1657 		 * disabled avoiding further scheduler activity on it and we've
1658 		 * not yet started the picking loop.
1659 		 */
1660 		rq_unpin_lock(rq, rf);
1661 		pull_rt_task(rq);
1662 		rq_repin_lock(rq, rf);
1663 	}
1664 
1665 	return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1666 }
1667 #endif /* CONFIG_SMP */
1668 
1669 /*
1670  * Preempt the current task with a newly woken task if needed:
1671  */
1672 static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
1673 {
1674 	if (p->prio < rq->curr->prio) {
1675 		resched_curr(rq);
1676 		return;
1677 	}
1678 
1679 #ifdef CONFIG_SMP
1680 	/*
1681 	 * If:
1682 	 *
1683 	 * - the newly woken task is of equal priority to the current task
1684 	 * - the newly woken task is non-migratable while current is migratable
1685 	 * - current will be preempted on the next reschedule
1686 	 *
1687 	 * we should check to see if current can readily move to a different
1688 	 * cpu.  If so, we will reschedule to allow the push logic to try
1689 	 * to move current somewhere else, making room for our non-migratable
1690 	 * task.
1691 	 */
1692 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1693 		check_preempt_equal_prio(rq, p);
1694 #endif
1695 }
1696 
1697 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1698 {
1699 	struct sched_rt_entity *rt_se = &p->rt;
1700 	struct rt_rq *rt_rq = &rq->rt;
1701 
1702 	p->se.exec_start = rq_clock_task(rq);
1703 	if (on_rt_rq(&p->rt))
1704 		update_stats_wait_end_rt(rt_rq, rt_se);
1705 
1706 	/* The running task is never eligible for pushing */
1707 	dequeue_pushable_task(rq, p);
1708 
1709 	if (!first)
1710 		return;
1711 
1712 	/*
1713 	 * If prev task was rt, put_prev_task() has already updated the
1714 	 * utilization. We only care of the case where we start to schedule a
1715 	 * rt task
1716 	 */
1717 	if (rq->curr->sched_class != &rt_sched_class)
1718 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1719 
1720 	rt_queue_push_tasks(rq);
1721 }
1722 
1723 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1724 {
1725 	struct rt_prio_array *array = &rt_rq->active;
1726 	struct sched_rt_entity *next = NULL;
1727 	struct list_head *queue;
1728 	int idx;
1729 
1730 	idx = sched_find_first_bit(array->bitmap);
1731 	BUG_ON(idx >= MAX_RT_PRIO);
1732 
1733 	queue = array->queue + idx;
1734 	if (SCHED_WARN_ON(list_empty(queue)))
1735 		return NULL;
1736 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1737 
1738 	return next;
1739 }
1740 
1741 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1742 {
1743 	struct sched_rt_entity *rt_se;
1744 	struct rt_rq *rt_rq  = &rq->rt;
1745 
1746 	do {
1747 		rt_se = pick_next_rt_entity(rt_rq);
1748 		if (unlikely(!rt_se))
1749 			return NULL;
1750 		rt_rq = group_rt_rq(rt_se);
1751 	} while (rt_rq);
1752 
1753 	return rt_task_of(rt_se);
1754 }
1755 
1756 static struct task_struct *pick_task_rt(struct rq *rq)
1757 {
1758 	struct task_struct *p;
1759 
1760 	if (!sched_rt_runnable(rq))
1761 		return NULL;
1762 
1763 	p = _pick_next_task_rt(rq);
1764 
1765 	return p;
1766 }
1767 
1768 static struct task_struct *pick_next_task_rt(struct rq *rq)
1769 {
1770 	struct task_struct *p = pick_task_rt(rq);
1771 
1772 	if (p)
1773 		set_next_task_rt(rq, p, true);
1774 
1775 	return p;
1776 }
1777 
1778 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1779 {
1780 	struct sched_rt_entity *rt_se = &p->rt;
1781 	struct rt_rq *rt_rq = &rq->rt;
1782 
1783 	if (on_rt_rq(&p->rt))
1784 		update_stats_wait_start_rt(rt_rq, rt_se);
1785 
1786 	update_curr_rt(rq);
1787 
1788 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1789 
1790 	/*
1791 	 * The previous task needs to be made eligible for pushing
1792 	 * if it is still active
1793 	 */
1794 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1795 		enqueue_pushable_task(rq, p);
1796 }
1797 
1798 #ifdef CONFIG_SMP
1799 
1800 /* Only try algorithms three times */
1801 #define RT_MAX_TRIES 3
1802 
1803 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1804 {
1805 	if (!task_on_cpu(rq, p) &&
1806 	    cpumask_test_cpu(cpu, &p->cpus_mask))
1807 		return 1;
1808 
1809 	return 0;
1810 }
1811 
1812 /*
1813  * Return the highest pushable rq's task, which is suitable to be executed
1814  * on the CPU, NULL otherwise
1815  */
1816 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1817 {
1818 	struct plist_head *head = &rq->rt.pushable_tasks;
1819 	struct task_struct *p;
1820 
1821 	if (!has_pushable_tasks(rq))
1822 		return NULL;
1823 
1824 	plist_for_each_entry(p, head, pushable_tasks) {
1825 		if (pick_rt_task(rq, p, cpu))
1826 			return p;
1827 	}
1828 
1829 	return NULL;
1830 }
1831 
1832 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1833 
1834 static int find_lowest_rq(struct task_struct *task)
1835 {
1836 	struct sched_domain *sd;
1837 	struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1838 	int this_cpu = smp_processor_id();
1839 	int cpu      = task_cpu(task);
1840 	int ret;
1841 
1842 	/* Make sure the mask is initialized first */
1843 	if (unlikely(!lowest_mask))
1844 		return -1;
1845 
1846 	if (task->nr_cpus_allowed == 1)
1847 		return -1; /* No other targets possible */
1848 
1849 	/*
1850 	 * If we're on asym system ensure we consider the different capacities
1851 	 * of the CPUs when searching for the lowest_mask.
1852 	 */
1853 	if (sched_asym_cpucap_active()) {
1854 
1855 		ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1856 					  task, lowest_mask,
1857 					  rt_task_fits_capacity);
1858 	} else {
1859 
1860 		ret = cpupri_find(&task_rq(task)->rd->cpupri,
1861 				  task, lowest_mask);
1862 	}
1863 
1864 	if (!ret)
1865 		return -1; /* No targets found */
1866 
1867 	/*
1868 	 * At this point we have built a mask of CPUs representing the
1869 	 * lowest priority tasks in the system.  Now we want to elect
1870 	 * the best one based on our affinity and topology.
1871 	 *
1872 	 * We prioritize the last CPU that the task executed on since
1873 	 * it is most likely cache-hot in that location.
1874 	 */
1875 	if (cpumask_test_cpu(cpu, lowest_mask))
1876 		return cpu;
1877 
1878 	/*
1879 	 * Otherwise, we consult the sched_domains span maps to figure
1880 	 * out which CPU is logically closest to our hot cache data.
1881 	 */
1882 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1883 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1884 
1885 	rcu_read_lock();
1886 	for_each_domain(cpu, sd) {
1887 		if (sd->flags & SD_WAKE_AFFINE) {
1888 			int best_cpu;
1889 
1890 			/*
1891 			 * "this_cpu" is cheaper to preempt than a
1892 			 * remote processor.
1893 			 */
1894 			if (this_cpu != -1 &&
1895 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1896 				rcu_read_unlock();
1897 				return this_cpu;
1898 			}
1899 
1900 			best_cpu = cpumask_any_and_distribute(lowest_mask,
1901 							      sched_domain_span(sd));
1902 			if (best_cpu < nr_cpu_ids) {
1903 				rcu_read_unlock();
1904 				return best_cpu;
1905 			}
1906 		}
1907 	}
1908 	rcu_read_unlock();
1909 
1910 	/*
1911 	 * And finally, if there were no matches within the domains
1912 	 * just give the caller *something* to work with from the compatible
1913 	 * locations.
1914 	 */
1915 	if (this_cpu != -1)
1916 		return this_cpu;
1917 
1918 	cpu = cpumask_any_distribute(lowest_mask);
1919 	if (cpu < nr_cpu_ids)
1920 		return cpu;
1921 
1922 	return -1;
1923 }
1924 
1925 /* Will lock the rq it finds */
1926 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1927 {
1928 	struct rq *lowest_rq = NULL;
1929 	int tries;
1930 	int cpu;
1931 
1932 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1933 		cpu = find_lowest_rq(task);
1934 
1935 		if ((cpu == -1) || (cpu == rq->cpu))
1936 			break;
1937 
1938 		lowest_rq = cpu_rq(cpu);
1939 
1940 		if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1941 			/*
1942 			 * Target rq has tasks of equal or higher priority,
1943 			 * retrying does not release any lock and is unlikely
1944 			 * to yield a different result.
1945 			 */
1946 			lowest_rq = NULL;
1947 			break;
1948 		}
1949 
1950 		/* if the prio of this runqueue changed, try again */
1951 		if (double_lock_balance(rq, lowest_rq)) {
1952 			/*
1953 			 * We had to unlock the run queue. In
1954 			 * the mean time, task could have
1955 			 * migrated already or had its affinity changed.
1956 			 * Also make sure that it wasn't scheduled on its rq.
1957 			 * It is possible the task was scheduled, set
1958 			 * "migrate_disabled" and then got preempted, so we must
1959 			 * check the task migration disable flag here too.
1960 			 */
1961 			if (unlikely(task_rq(task) != rq ||
1962 				     !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1963 				     task_on_cpu(rq, task) ||
1964 				     !rt_task(task) ||
1965 				     is_migration_disabled(task) ||
1966 				     !task_on_rq_queued(task))) {
1967 
1968 				double_unlock_balance(rq, lowest_rq);
1969 				lowest_rq = NULL;
1970 				break;
1971 			}
1972 		}
1973 
1974 		/* If this rq is still suitable use it. */
1975 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1976 			break;
1977 
1978 		/* try again */
1979 		double_unlock_balance(rq, lowest_rq);
1980 		lowest_rq = NULL;
1981 	}
1982 
1983 	return lowest_rq;
1984 }
1985 
1986 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1987 {
1988 	struct task_struct *p;
1989 
1990 	if (!has_pushable_tasks(rq))
1991 		return NULL;
1992 
1993 	p = plist_first_entry(&rq->rt.pushable_tasks,
1994 			      struct task_struct, pushable_tasks);
1995 
1996 	BUG_ON(rq->cpu != task_cpu(p));
1997 	BUG_ON(task_current(rq, p));
1998 	BUG_ON(p->nr_cpus_allowed <= 1);
1999 
2000 	BUG_ON(!task_on_rq_queued(p));
2001 	BUG_ON(!rt_task(p));
2002 
2003 	return p;
2004 }
2005 
2006 /*
2007  * If the current CPU has more than one RT task, see if the non
2008  * running task can migrate over to a CPU that is running a task
2009  * of lesser priority.
2010  */
2011 static int push_rt_task(struct rq *rq, bool pull)
2012 {
2013 	struct task_struct *next_task;
2014 	struct rq *lowest_rq;
2015 	int ret = 0;
2016 
2017 	if (!rq->rt.overloaded)
2018 		return 0;
2019 
2020 	next_task = pick_next_pushable_task(rq);
2021 	if (!next_task)
2022 		return 0;
2023 
2024 retry:
2025 	/*
2026 	 * It's possible that the next_task slipped in of
2027 	 * higher priority than current. If that's the case
2028 	 * just reschedule current.
2029 	 */
2030 	if (unlikely(next_task->prio < rq->curr->prio)) {
2031 		resched_curr(rq);
2032 		return 0;
2033 	}
2034 
2035 	if (is_migration_disabled(next_task)) {
2036 		struct task_struct *push_task = NULL;
2037 		int cpu;
2038 
2039 		if (!pull || rq->push_busy)
2040 			return 0;
2041 
2042 		/*
2043 		 * Invoking find_lowest_rq() on anything but an RT task doesn't
2044 		 * make sense. Per the above priority check, curr has to
2045 		 * be of higher priority than next_task, so no need to
2046 		 * reschedule when bailing out.
2047 		 *
2048 		 * Note that the stoppers are masqueraded as SCHED_FIFO
2049 		 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2050 		 */
2051 		if (rq->curr->sched_class != &rt_sched_class)
2052 			return 0;
2053 
2054 		cpu = find_lowest_rq(rq->curr);
2055 		if (cpu == -1 || cpu == rq->cpu)
2056 			return 0;
2057 
2058 		/*
2059 		 * Given we found a CPU with lower priority than @next_task,
2060 		 * therefore it should be running. However we cannot migrate it
2061 		 * to this other CPU, instead attempt to push the current
2062 		 * running task on this CPU away.
2063 		 */
2064 		push_task = get_push_task(rq);
2065 		if (push_task) {
2066 			preempt_disable();
2067 			raw_spin_rq_unlock(rq);
2068 			stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2069 					    push_task, &rq->push_work);
2070 			preempt_enable();
2071 			raw_spin_rq_lock(rq);
2072 		}
2073 
2074 		return 0;
2075 	}
2076 
2077 	if (WARN_ON(next_task == rq->curr))
2078 		return 0;
2079 
2080 	/* We might release rq lock */
2081 	get_task_struct(next_task);
2082 
2083 	/* find_lock_lowest_rq locks the rq if found */
2084 	lowest_rq = find_lock_lowest_rq(next_task, rq);
2085 	if (!lowest_rq) {
2086 		struct task_struct *task;
2087 		/*
2088 		 * find_lock_lowest_rq releases rq->lock
2089 		 * so it is possible that next_task has migrated.
2090 		 *
2091 		 * We need to make sure that the task is still on the same
2092 		 * run-queue and is also still the next task eligible for
2093 		 * pushing.
2094 		 */
2095 		task = pick_next_pushable_task(rq);
2096 		if (task == next_task) {
2097 			/*
2098 			 * The task hasn't migrated, and is still the next
2099 			 * eligible task, but we failed to find a run-queue
2100 			 * to push it to.  Do not retry in this case, since
2101 			 * other CPUs will pull from us when ready.
2102 			 */
2103 			goto out;
2104 		}
2105 
2106 		if (!task)
2107 			/* No more tasks, just exit */
2108 			goto out;
2109 
2110 		/*
2111 		 * Something has shifted, try again.
2112 		 */
2113 		put_task_struct(next_task);
2114 		next_task = task;
2115 		goto retry;
2116 	}
2117 
2118 	deactivate_task(rq, next_task, 0);
2119 	set_task_cpu(next_task, lowest_rq->cpu);
2120 	activate_task(lowest_rq, next_task, 0);
2121 	resched_curr(lowest_rq);
2122 	ret = 1;
2123 
2124 	double_unlock_balance(rq, lowest_rq);
2125 out:
2126 	put_task_struct(next_task);
2127 
2128 	return ret;
2129 }
2130 
2131 static void push_rt_tasks(struct rq *rq)
2132 {
2133 	/* push_rt_task will return true if it moved an RT */
2134 	while (push_rt_task(rq, false))
2135 		;
2136 }
2137 
2138 #ifdef HAVE_RT_PUSH_IPI
2139 
2140 /*
2141  * When a high priority task schedules out from a CPU and a lower priority
2142  * task is scheduled in, a check is made to see if there's any RT tasks
2143  * on other CPUs that are waiting to run because a higher priority RT task
2144  * is currently running on its CPU. In this case, the CPU with multiple RT
2145  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2146  * up that may be able to run one of its non-running queued RT tasks.
2147  *
2148  * All CPUs with overloaded RT tasks need to be notified as there is currently
2149  * no way to know which of these CPUs have the highest priority task waiting
2150  * to run. Instead of trying to take a spinlock on each of these CPUs,
2151  * which has shown to cause large latency when done on machines with many
2152  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2153  * RT tasks waiting to run.
2154  *
2155  * Just sending an IPI to each of the CPUs is also an issue, as on large
2156  * count CPU machines, this can cause an IPI storm on a CPU, especially
2157  * if its the only CPU with multiple RT tasks queued, and a large number
2158  * of CPUs scheduling a lower priority task at the same time.
2159  *
2160  * Each root domain has its own irq work function that can iterate over
2161  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2162  * task must be checked if there's one or many CPUs that are lowering
2163  * their priority, there's a single irq work iterator that will try to
2164  * push off RT tasks that are waiting to run.
2165  *
2166  * When a CPU schedules a lower priority task, it will kick off the
2167  * irq work iterator that will jump to each CPU with overloaded RT tasks.
2168  * As it only takes the first CPU that schedules a lower priority task
2169  * to start the process, the rto_start variable is incremented and if
2170  * the atomic result is one, then that CPU will try to take the rto_lock.
2171  * This prevents high contention on the lock as the process handles all
2172  * CPUs scheduling lower priority tasks.
2173  *
2174  * All CPUs that are scheduling a lower priority task will increment the
2175  * rt_loop_next variable. This will make sure that the irq work iterator
2176  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2177  * priority task, even if the iterator is in the middle of a scan. Incrementing
2178  * the rt_loop_next will cause the iterator to perform another scan.
2179  *
2180  */
2181 static int rto_next_cpu(struct root_domain *rd)
2182 {
2183 	int next;
2184 	int cpu;
2185 
2186 	/*
2187 	 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2188 	 * rt_next_cpu() will simply return the first CPU found in
2189 	 * the rto_mask.
2190 	 *
2191 	 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2192 	 * will return the next CPU found in the rto_mask.
2193 	 *
2194 	 * If there are no more CPUs left in the rto_mask, then a check is made
2195 	 * against rto_loop and rto_loop_next. rto_loop is only updated with
2196 	 * the rto_lock held, but any CPU may increment the rto_loop_next
2197 	 * without any locking.
2198 	 */
2199 	for (;;) {
2200 
2201 		/* When rto_cpu is -1 this acts like cpumask_first() */
2202 		cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2203 
2204 		rd->rto_cpu = cpu;
2205 
2206 		if (cpu < nr_cpu_ids)
2207 			return cpu;
2208 
2209 		rd->rto_cpu = -1;
2210 
2211 		/*
2212 		 * ACQUIRE ensures we see the @rto_mask changes
2213 		 * made prior to the @next value observed.
2214 		 *
2215 		 * Matches WMB in rt_set_overload().
2216 		 */
2217 		next = atomic_read_acquire(&rd->rto_loop_next);
2218 
2219 		if (rd->rto_loop == next)
2220 			break;
2221 
2222 		rd->rto_loop = next;
2223 	}
2224 
2225 	return -1;
2226 }
2227 
2228 static inline bool rto_start_trylock(atomic_t *v)
2229 {
2230 	return !atomic_cmpxchg_acquire(v, 0, 1);
2231 }
2232 
2233 static inline void rto_start_unlock(atomic_t *v)
2234 {
2235 	atomic_set_release(v, 0);
2236 }
2237 
2238 static void tell_cpu_to_push(struct rq *rq)
2239 {
2240 	int cpu = -1;
2241 
2242 	/* Keep the loop going if the IPI is currently active */
2243 	atomic_inc(&rq->rd->rto_loop_next);
2244 
2245 	/* Only one CPU can initiate a loop at a time */
2246 	if (!rto_start_trylock(&rq->rd->rto_loop_start))
2247 		return;
2248 
2249 	raw_spin_lock(&rq->rd->rto_lock);
2250 
2251 	/*
2252 	 * The rto_cpu is updated under the lock, if it has a valid CPU
2253 	 * then the IPI is still running and will continue due to the
2254 	 * update to loop_next, and nothing needs to be done here.
2255 	 * Otherwise it is finishing up and an ipi needs to be sent.
2256 	 */
2257 	if (rq->rd->rto_cpu < 0)
2258 		cpu = rto_next_cpu(rq->rd);
2259 
2260 	raw_spin_unlock(&rq->rd->rto_lock);
2261 
2262 	rto_start_unlock(&rq->rd->rto_loop_start);
2263 
2264 	if (cpu >= 0) {
2265 		/* Make sure the rd does not get freed while pushing */
2266 		sched_get_rd(rq->rd);
2267 		irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2268 	}
2269 }
2270 
2271 /* Called from hardirq context */
2272 void rto_push_irq_work_func(struct irq_work *work)
2273 {
2274 	struct root_domain *rd =
2275 		container_of(work, struct root_domain, rto_push_work);
2276 	struct rq *rq;
2277 	int cpu;
2278 
2279 	rq = this_rq();
2280 
2281 	/*
2282 	 * We do not need to grab the lock to check for has_pushable_tasks.
2283 	 * When it gets updated, a check is made if a push is possible.
2284 	 */
2285 	if (has_pushable_tasks(rq)) {
2286 		raw_spin_rq_lock(rq);
2287 		while (push_rt_task(rq, true))
2288 			;
2289 		raw_spin_rq_unlock(rq);
2290 	}
2291 
2292 	raw_spin_lock(&rd->rto_lock);
2293 
2294 	/* Pass the IPI to the next rt overloaded queue */
2295 	cpu = rto_next_cpu(rd);
2296 
2297 	raw_spin_unlock(&rd->rto_lock);
2298 
2299 	if (cpu < 0) {
2300 		sched_put_rd(rd);
2301 		return;
2302 	}
2303 
2304 	/* Try the next RT overloaded CPU */
2305 	irq_work_queue_on(&rd->rto_push_work, cpu);
2306 }
2307 #endif /* HAVE_RT_PUSH_IPI */
2308 
2309 static void pull_rt_task(struct rq *this_rq)
2310 {
2311 	int this_cpu = this_rq->cpu, cpu;
2312 	bool resched = false;
2313 	struct task_struct *p, *push_task;
2314 	struct rq *src_rq;
2315 	int rt_overload_count = rt_overloaded(this_rq);
2316 
2317 	if (likely(!rt_overload_count))
2318 		return;
2319 
2320 	/*
2321 	 * Match the barrier from rt_set_overloaded; this guarantees that if we
2322 	 * see overloaded we must also see the rto_mask bit.
2323 	 */
2324 	smp_rmb();
2325 
2326 	/* If we are the only overloaded CPU do nothing */
2327 	if (rt_overload_count == 1 &&
2328 	    cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2329 		return;
2330 
2331 #ifdef HAVE_RT_PUSH_IPI
2332 	if (sched_feat(RT_PUSH_IPI)) {
2333 		tell_cpu_to_push(this_rq);
2334 		return;
2335 	}
2336 #endif
2337 
2338 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
2339 		if (this_cpu == cpu)
2340 			continue;
2341 
2342 		src_rq = cpu_rq(cpu);
2343 
2344 		/*
2345 		 * Don't bother taking the src_rq->lock if the next highest
2346 		 * task is known to be lower-priority than our current task.
2347 		 * This may look racy, but if this value is about to go
2348 		 * logically higher, the src_rq will push this task away.
2349 		 * And if its going logically lower, we do not care
2350 		 */
2351 		if (src_rq->rt.highest_prio.next >=
2352 		    this_rq->rt.highest_prio.curr)
2353 			continue;
2354 
2355 		/*
2356 		 * We can potentially drop this_rq's lock in
2357 		 * double_lock_balance, and another CPU could
2358 		 * alter this_rq
2359 		 */
2360 		push_task = NULL;
2361 		double_lock_balance(this_rq, src_rq);
2362 
2363 		/*
2364 		 * We can pull only a task, which is pushable
2365 		 * on its rq, and no others.
2366 		 */
2367 		p = pick_highest_pushable_task(src_rq, this_cpu);
2368 
2369 		/*
2370 		 * Do we have an RT task that preempts
2371 		 * the to-be-scheduled task?
2372 		 */
2373 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2374 			WARN_ON(p == src_rq->curr);
2375 			WARN_ON(!task_on_rq_queued(p));
2376 
2377 			/*
2378 			 * There's a chance that p is higher in priority
2379 			 * than what's currently running on its CPU.
2380 			 * This is just that p is waking up and hasn't
2381 			 * had a chance to schedule. We only pull
2382 			 * p if it is lower in priority than the
2383 			 * current task on the run queue
2384 			 */
2385 			if (p->prio < src_rq->curr->prio)
2386 				goto skip;
2387 
2388 			if (is_migration_disabled(p)) {
2389 				push_task = get_push_task(src_rq);
2390 			} else {
2391 				deactivate_task(src_rq, p, 0);
2392 				set_task_cpu(p, this_cpu);
2393 				activate_task(this_rq, p, 0);
2394 				resched = true;
2395 			}
2396 			/*
2397 			 * We continue with the search, just in
2398 			 * case there's an even higher prio task
2399 			 * in another runqueue. (low likelihood
2400 			 * but possible)
2401 			 */
2402 		}
2403 skip:
2404 		double_unlock_balance(this_rq, src_rq);
2405 
2406 		if (push_task) {
2407 			preempt_disable();
2408 			raw_spin_rq_unlock(this_rq);
2409 			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2410 					    push_task, &src_rq->push_work);
2411 			preempt_enable();
2412 			raw_spin_rq_lock(this_rq);
2413 		}
2414 	}
2415 
2416 	if (resched)
2417 		resched_curr(this_rq);
2418 }
2419 
2420 /*
2421  * If we are not running and we are not going to reschedule soon, we should
2422  * try to push tasks away now
2423  */
2424 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2425 {
2426 	bool need_to_push = !task_on_cpu(rq, p) &&
2427 			    !test_tsk_need_resched(rq->curr) &&
2428 			    p->nr_cpus_allowed > 1 &&
2429 			    (dl_task(rq->curr) || rt_task(rq->curr)) &&
2430 			    (rq->curr->nr_cpus_allowed < 2 ||
2431 			     rq->curr->prio <= p->prio);
2432 
2433 	if (need_to_push)
2434 		push_rt_tasks(rq);
2435 }
2436 
2437 /* Assumes rq->lock is held */
2438 static void rq_online_rt(struct rq *rq)
2439 {
2440 	if (rq->rt.overloaded)
2441 		rt_set_overload(rq);
2442 
2443 	__enable_runtime(rq);
2444 
2445 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2446 }
2447 
2448 /* Assumes rq->lock is held */
2449 static void rq_offline_rt(struct rq *rq)
2450 {
2451 	if (rq->rt.overloaded)
2452 		rt_clear_overload(rq);
2453 
2454 	__disable_runtime(rq);
2455 
2456 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2457 }
2458 
2459 /*
2460  * When switch from the rt queue, we bring ourselves to a position
2461  * that we might want to pull RT tasks from other runqueues.
2462  */
2463 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2464 {
2465 	/*
2466 	 * If there are other RT tasks then we will reschedule
2467 	 * and the scheduling of the other RT tasks will handle
2468 	 * the balancing. But if we are the last RT task
2469 	 * we may need to handle the pulling of RT tasks
2470 	 * now.
2471 	 */
2472 	if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2473 		return;
2474 
2475 	rt_queue_pull_task(rq);
2476 }
2477 
2478 void __init init_sched_rt_class(void)
2479 {
2480 	unsigned int i;
2481 
2482 	for_each_possible_cpu(i) {
2483 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2484 					GFP_KERNEL, cpu_to_node(i));
2485 	}
2486 }
2487 #endif /* CONFIG_SMP */
2488 
2489 /*
2490  * When switching a task to RT, we may overload the runqueue
2491  * with RT tasks. In this case we try to push them off to
2492  * other runqueues.
2493  */
2494 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2495 {
2496 	/*
2497 	 * If we are running, update the avg_rt tracking, as the running time
2498 	 * will now on be accounted into the latter.
2499 	 */
2500 	if (task_current(rq, p)) {
2501 		update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2502 		return;
2503 	}
2504 
2505 	/*
2506 	 * If we are not running we may need to preempt the current
2507 	 * running task. If that current running task is also an RT task
2508 	 * then see if we can move to another run queue.
2509 	 */
2510 	if (task_on_rq_queued(p)) {
2511 #ifdef CONFIG_SMP
2512 		if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2513 			rt_queue_push_tasks(rq);
2514 #endif /* CONFIG_SMP */
2515 		if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2516 			resched_curr(rq);
2517 	}
2518 }
2519 
2520 /*
2521  * Priority of the task has changed. This may cause
2522  * us to initiate a push or pull.
2523  */
2524 static void
2525 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2526 {
2527 	if (!task_on_rq_queued(p))
2528 		return;
2529 
2530 	if (task_current(rq, p)) {
2531 #ifdef CONFIG_SMP
2532 		/*
2533 		 * If our priority decreases while running, we
2534 		 * may need to pull tasks to this runqueue.
2535 		 */
2536 		if (oldprio < p->prio)
2537 			rt_queue_pull_task(rq);
2538 
2539 		/*
2540 		 * If there's a higher priority task waiting to run
2541 		 * then reschedule.
2542 		 */
2543 		if (p->prio > rq->rt.highest_prio.curr)
2544 			resched_curr(rq);
2545 #else
2546 		/* For UP simply resched on drop of prio */
2547 		if (oldprio < p->prio)
2548 			resched_curr(rq);
2549 #endif /* CONFIG_SMP */
2550 	} else {
2551 		/*
2552 		 * This task is not running, but if it is
2553 		 * greater than the current running task
2554 		 * then reschedule.
2555 		 */
2556 		if (p->prio < rq->curr->prio)
2557 			resched_curr(rq);
2558 	}
2559 }
2560 
2561 #ifdef CONFIG_POSIX_TIMERS
2562 static void watchdog(struct rq *rq, struct task_struct *p)
2563 {
2564 	unsigned long soft, hard;
2565 
2566 	/* max may change after cur was read, this will be fixed next tick */
2567 	soft = task_rlimit(p, RLIMIT_RTTIME);
2568 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
2569 
2570 	if (soft != RLIM_INFINITY) {
2571 		unsigned long next;
2572 
2573 		if (p->rt.watchdog_stamp != jiffies) {
2574 			p->rt.timeout++;
2575 			p->rt.watchdog_stamp = jiffies;
2576 		}
2577 
2578 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2579 		if (p->rt.timeout > next) {
2580 			posix_cputimers_rt_watchdog(&p->posix_cputimers,
2581 						    p->se.sum_exec_runtime);
2582 		}
2583 	}
2584 }
2585 #else
2586 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2587 #endif
2588 
2589 /*
2590  * scheduler tick hitting a task of our scheduling class.
2591  *
2592  * NOTE: This function can be called remotely by the tick offload that
2593  * goes along full dynticks. Therefore no local assumption can be made
2594  * and everything must be accessed through the @rq and @curr passed in
2595  * parameters.
2596  */
2597 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2598 {
2599 	struct sched_rt_entity *rt_se = &p->rt;
2600 
2601 	update_curr_rt(rq);
2602 	update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2603 
2604 	watchdog(rq, p);
2605 
2606 	/*
2607 	 * RR tasks need a special form of timeslice management.
2608 	 * FIFO tasks have no timeslices.
2609 	 */
2610 	if (p->policy != SCHED_RR)
2611 		return;
2612 
2613 	if (--p->rt.time_slice)
2614 		return;
2615 
2616 	p->rt.time_slice = sched_rr_timeslice;
2617 
2618 	/*
2619 	 * Requeue to the end of queue if we (and all of our ancestors) are not
2620 	 * the only element on the queue
2621 	 */
2622 	for_each_sched_rt_entity(rt_se) {
2623 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2624 			requeue_task_rt(rq, p, 0);
2625 			resched_curr(rq);
2626 			return;
2627 		}
2628 	}
2629 }
2630 
2631 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2632 {
2633 	/*
2634 	 * Time slice is 0 for SCHED_FIFO tasks
2635 	 */
2636 	if (task->policy == SCHED_RR)
2637 		return sched_rr_timeslice;
2638 	else
2639 		return 0;
2640 }
2641 
2642 #ifdef CONFIG_SCHED_CORE
2643 static int task_is_throttled_rt(struct task_struct *p, int cpu)
2644 {
2645 	struct rt_rq *rt_rq;
2646 
2647 #ifdef CONFIG_RT_GROUP_SCHED
2648 	rt_rq = task_group(p)->rt_rq[cpu];
2649 #else
2650 	rt_rq = &cpu_rq(cpu)->rt;
2651 #endif
2652 
2653 	return rt_rq_throttled(rt_rq);
2654 }
2655 #endif
2656 
2657 DEFINE_SCHED_CLASS(rt) = {
2658 
2659 	.enqueue_task		= enqueue_task_rt,
2660 	.dequeue_task		= dequeue_task_rt,
2661 	.yield_task		= yield_task_rt,
2662 
2663 	.wakeup_preempt		= wakeup_preempt_rt,
2664 
2665 	.pick_next_task		= pick_next_task_rt,
2666 	.put_prev_task		= put_prev_task_rt,
2667 	.set_next_task          = set_next_task_rt,
2668 
2669 #ifdef CONFIG_SMP
2670 	.balance		= balance_rt,
2671 	.pick_task		= pick_task_rt,
2672 	.select_task_rq		= select_task_rq_rt,
2673 	.set_cpus_allowed       = set_cpus_allowed_common,
2674 	.rq_online              = rq_online_rt,
2675 	.rq_offline             = rq_offline_rt,
2676 	.task_woken		= task_woken_rt,
2677 	.switched_from		= switched_from_rt,
2678 	.find_lock_rq		= find_lock_lowest_rq,
2679 #endif
2680 
2681 	.task_tick		= task_tick_rt,
2682 
2683 	.get_rr_interval	= get_rr_interval_rt,
2684 
2685 	.prio_changed		= prio_changed_rt,
2686 	.switched_to		= switched_to_rt,
2687 
2688 	.update_curr		= update_curr_rt,
2689 
2690 #ifdef CONFIG_SCHED_CORE
2691 	.task_is_throttled	= task_is_throttled_rt,
2692 #endif
2693 
2694 #ifdef CONFIG_UCLAMP_TASK
2695 	.uclamp_enabled		= 1,
2696 #endif
2697 };
2698 
2699 #ifdef CONFIG_RT_GROUP_SCHED
2700 /*
2701  * Ensure that the real time constraints are schedulable.
2702  */
2703 static DEFINE_MUTEX(rt_constraints_mutex);
2704 
2705 static inline int tg_has_rt_tasks(struct task_group *tg)
2706 {
2707 	struct task_struct *task;
2708 	struct css_task_iter it;
2709 	int ret = 0;
2710 
2711 	/*
2712 	 * Autogroups do not have RT tasks; see autogroup_create().
2713 	 */
2714 	if (task_group_is_autogroup(tg))
2715 		return 0;
2716 
2717 	css_task_iter_start(&tg->css, 0, &it);
2718 	while (!ret && (task = css_task_iter_next(&it)))
2719 		ret |= rt_task(task);
2720 	css_task_iter_end(&it);
2721 
2722 	return ret;
2723 }
2724 
2725 struct rt_schedulable_data {
2726 	struct task_group *tg;
2727 	u64 rt_period;
2728 	u64 rt_runtime;
2729 };
2730 
2731 static int tg_rt_schedulable(struct task_group *tg, void *data)
2732 {
2733 	struct rt_schedulable_data *d = data;
2734 	struct task_group *child;
2735 	unsigned long total, sum = 0;
2736 	u64 period, runtime;
2737 
2738 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2739 	runtime = tg->rt_bandwidth.rt_runtime;
2740 
2741 	if (tg == d->tg) {
2742 		period = d->rt_period;
2743 		runtime = d->rt_runtime;
2744 	}
2745 
2746 	/*
2747 	 * Cannot have more runtime than the period.
2748 	 */
2749 	if (runtime > period && runtime != RUNTIME_INF)
2750 		return -EINVAL;
2751 
2752 	/*
2753 	 * Ensure we don't starve existing RT tasks if runtime turns zero.
2754 	 */
2755 	if (rt_bandwidth_enabled() && !runtime &&
2756 	    tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2757 		return -EBUSY;
2758 
2759 	total = to_ratio(period, runtime);
2760 
2761 	/*
2762 	 * Nobody can have more than the global setting allows.
2763 	 */
2764 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2765 		return -EINVAL;
2766 
2767 	/*
2768 	 * The sum of our children's runtime should not exceed our own.
2769 	 */
2770 	list_for_each_entry_rcu(child, &tg->children, siblings) {
2771 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
2772 		runtime = child->rt_bandwidth.rt_runtime;
2773 
2774 		if (child == d->tg) {
2775 			period = d->rt_period;
2776 			runtime = d->rt_runtime;
2777 		}
2778 
2779 		sum += to_ratio(period, runtime);
2780 	}
2781 
2782 	if (sum > total)
2783 		return -EINVAL;
2784 
2785 	return 0;
2786 }
2787 
2788 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2789 {
2790 	int ret;
2791 
2792 	struct rt_schedulable_data data = {
2793 		.tg = tg,
2794 		.rt_period = period,
2795 		.rt_runtime = runtime,
2796 	};
2797 
2798 	rcu_read_lock();
2799 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2800 	rcu_read_unlock();
2801 
2802 	return ret;
2803 }
2804 
2805 static int tg_set_rt_bandwidth(struct task_group *tg,
2806 		u64 rt_period, u64 rt_runtime)
2807 {
2808 	int i, err = 0;
2809 
2810 	/*
2811 	 * Disallowing the root group RT runtime is BAD, it would disallow the
2812 	 * kernel creating (and or operating) RT threads.
2813 	 */
2814 	if (tg == &root_task_group && rt_runtime == 0)
2815 		return -EINVAL;
2816 
2817 	/* No period doesn't make any sense. */
2818 	if (rt_period == 0)
2819 		return -EINVAL;
2820 
2821 	/*
2822 	 * Bound quota to defend quota against overflow during bandwidth shift.
2823 	 */
2824 	if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2825 		return -EINVAL;
2826 
2827 	mutex_lock(&rt_constraints_mutex);
2828 	err = __rt_schedulable(tg, rt_period, rt_runtime);
2829 	if (err)
2830 		goto unlock;
2831 
2832 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2833 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2834 	tg->rt_bandwidth.rt_runtime = rt_runtime;
2835 
2836 	for_each_possible_cpu(i) {
2837 		struct rt_rq *rt_rq = tg->rt_rq[i];
2838 
2839 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2840 		rt_rq->rt_runtime = rt_runtime;
2841 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2842 	}
2843 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2844 unlock:
2845 	mutex_unlock(&rt_constraints_mutex);
2846 
2847 	return err;
2848 }
2849 
2850 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2851 {
2852 	u64 rt_runtime, rt_period;
2853 
2854 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2855 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2856 	if (rt_runtime_us < 0)
2857 		rt_runtime = RUNTIME_INF;
2858 	else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2859 		return -EINVAL;
2860 
2861 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2862 }
2863 
2864 long sched_group_rt_runtime(struct task_group *tg)
2865 {
2866 	u64 rt_runtime_us;
2867 
2868 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2869 		return -1;
2870 
2871 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2872 	do_div(rt_runtime_us, NSEC_PER_USEC);
2873 	return rt_runtime_us;
2874 }
2875 
2876 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2877 {
2878 	u64 rt_runtime, rt_period;
2879 
2880 	if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2881 		return -EINVAL;
2882 
2883 	rt_period = rt_period_us * NSEC_PER_USEC;
2884 	rt_runtime = tg->rt_bandwidth.rt_runtime;
2885 
2886 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2887 }
2888 
2889 long sched_group_rt_period(struct task_group *tg)
2890 {
2891 	u64 rt_period_us;
2892 
2893 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2894 	do_div(rt_period_us, NSEC_PER_USEC);
2895 	return rt_period_us;
2896 }
2897 
2898 #ifdef CONFIG_SYSCTL
2899 static int sched_rt_global_constraints(void)
2900 {
2901 	int ret = 0;
2902 
2903 	mutex_lock(&rt_constraints_mutex);
2904 	ret = __rt_schedulable(NULL, 0, 0);
2905 	mutex_unlock(&rt_constraints_mutex);
2906 
2907 	return ret;
2908 }
2909 #endif /* CONFIG_SYSCTL */
2910 
2911 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2912 {
2913 	/* Don't accept realtime tasks when there is no way for them to run */
2914 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2915 		return 0;
2916 
2917 	return 1;
2918 }
2919 
2920 #else /* !CONFIG_RT_GROUP_SCHED */
2921 
2922 #ifdef CONFIG_SYSCTL
2923 static int sched_rt_global_constraints(void)
2924 {
2925 	unsigned long flags;
2926 	int i;
2927 
2928 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2929 	for_each_possible_cpu(i) {
2930 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2931 
2932 		raw_spin_lock(&rt_rq->rt_runtime_lock);
2933 		rt_rq->rt_runtime = global_rt_runtime();
2934 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
2935 	}
2936 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2937 
2938 	return 0;
2939 }
2940 #endif /* CONFIG_SYSCTL */
2941 #endif /* CONFIG_RT_GROUP_SCHED */
2942 
2943 #ifdef CONFIG_SYSCTL
2944 static int sched_rt_global_validate(void)
2945 {
2946 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2947 		((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2948 		 ((u64)sysctl_sched_rt_runtime *
2949 			NSEC_PER_USEC > max_rt_runtime)))
2950 		return -EINVAL;
2951 
2952 	return 0;
2953 }
2954 
2955 static void sched_rt_do_global(void)
2956 {
2957 	unsigned long flags;
2958 
2959 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2960 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
2961 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2962 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2963 }
2964 
2965 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2966 		size_t *lenp, loff_t *ppos)
2967 {
2968 	int old_period, old_runtime;
2969 	static DEFINE_MUTEX(mutex);
2970 	int ret;
2971 
2972 	mutex_lock(&mutex);
2973 	old_period = sysctl_sched_rt_period;
2974 	old_runtime = sysctl_sched_rt_runtime;
2975 
2976 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2977 
2978 	if (!ret && write) {
2979 		ret = sched_rt_global_validate();
2980 		if (ret)
2981 			goto undo;
2982 
2983 		ret = sched_dl_global_validate();
2984 		if (ret)
2985 			goto undo;
2986 
2987 		ret = sched_rt_global_constraints();
2988 		if (ret)
2989 			goto undo;
2990 
2991 		sched_rt_do_global();
2992 		sched_dl_do_global();
2993 	}
2994 	if (0) {
2995 undo:
2996 		sysctl_sched_rt_period = old_period;
2997 		sysctl_sched_rt_runtime = old_runtime;
2998 	}
2999 	mutex_unlock(&mutex);
3000 
3001 	return ret;
3002 }
3003 
3004 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
3005 		size_t *lenp, loff_t *ppos)
3006 {
3007 	int ret;
3008 	static DEFINE_MUTEX(mutex);
3009 
3010 	mutex_lock(&mutex);
3011 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
3012 	/*
3013 	 * Make sure that internally we keep jiffies.
3014 	 * Also, writing zero resets the timeslice to default:
3015 	 */
3016 	if (!ret && write) {
3017 		sched_rr_timeslice =
3018 			sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3019 			msecs_to_jiffies(sysctl_sched_rr_timeslice);
3020 
3021 		if (sysctl_sched_rr_timeslice <= 0)
3022 			sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
3023 	}
3024 	mutex_unlock(&mutex);
3025 
3026 	return ret;
3027 }
3028 #endif /* CONFIG_SYSCTL */
3029 
3030 #ifdef CONFIG_SCHED_DEBUG
3031 void print_rt_stats(struct seq_file *m, int cpu)
3032 {
3033 	rt_rq_iter_t iter;
3034 	struct rt_rq *rt_rq;
3035 
3036 	rcu_read_lock();
3037 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3038 		print_rt_rq(m, cpu, rt_rq);
3039 	rcu_read_unlock();
3040 }
3041 #endif /* CONFIG_SCHED_DEBUG */
3042