1 /* 2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 3 * policies) 4 */ 5 6 #include "sched.h" 7 8 #include <linux/slab.h> 9 #include <linux/irq_work.h> 10 11 int sched_rr_timeslice = RR_TIMESLICE; 12 13 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 14 15 struct rt_bandwidth def_rt_bandwidth; 16 17 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 18 { 19 struct rt_bandwidth *rt_b = 20 container_of(timer, struct rt_bandwidth, rt_period_timer); 21 int idle = 0; 22 int overrun; 23 24 raw_spin_lock(&rt_b->rt_runtime_lock); 25 for (;;) { 26 overrun = hrtimer_forward_now(timer, rt_b->rt_period); 27 if (!overrun) 28 break; 29 30 raw_spin_unlock(&rt_b->rt_runtime_lock); 31 idle = do_sched_rt_period_timer(rt_b, overrun); 32 raw_spin_lock(&rt_b->rt_runtime_lock); 33 } 34 if (idle) 35 rt_b->rt_period_active = 0; 36 raw_spin_unlock(&rt_b->rt_runtime_lock); 37 38 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 39 } 40 41 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 42 { 43 rt_b->rt_period = ns_to_ktime(period); 44 rt_b->rt_runtime = runtime; 45 46 raw_spin_lock_init(&rt_b->rt_runtime_lock); 47 48 hrtimer_init(&rt_b->rt_period_timer, 49 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 50 rt_b->rt_period_timer.function = sched_rt_period_timer; 51 } 52 53 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 54 { 55 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 56 return; 57 58 raw_spin_lock(&rt_b->rt_runtime_lock); 59 if (!rt_b->rt_period_active) { 60 rt_b->rt_period_active = 1; 61 /* 62 * SCHED_DEADLINE updates the bandwidth, as a run away 63 * RT task with a DL task could hog a CPU. But DL does 64 * not reset the period. If a deadline task was running 65 * without an RT task running, it can cause RT tasks to 66 * throttle when they start up. Kick the timer right away 67 * to update the period. 68 */ 69 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 70 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED); 71 } 72 raw_spin_unlock(&rt_b->rt_runtime_lock); 73 } 74 75 #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI) 76 static void push_irq_work_func(struct irq_work *work); 77 #endif 78 79 void init_rt_rq(struct rt_rq *rt_rq) 80 { 81 struct rt_prio_array *array; 82 int i; 83 84 array = &rt_rq->active; 85 for (i = 0; i < MAX_RT_PRIO; i++) { 86 INIT_LIST_HEAD(array->queue + i); 87 __clear_bit(i, array->bitmap); 88 } 89 /* delimiter for bitsearch: */ 90 __set_bit(MAX_RT_PRIO, array->bitmap); 91 92 #if defined CONFIG_SMP 93 rt_rq->highest_prio.curr = MAX_RT_PRIO; 94 rt_rq->highest_prio.next = MAX_RT_PRIO; 95 rt_rq->rt_nr_migratory = 0; 96 rt_rq->overloaded = 0; 97 plist_head_init(&rt_rq->pushable_tasks); 98 99 #ifdef HAVE_RT_PUSH_IPI 100 rt_rq->push_flags = 0; 101 rt_rq->push_cpu = nr_cpu_ids; 102 raw_spin_lock_init(&rt_rq->push_lock); 103 init_irq_work(&rt_rq->push_work, push_irq_work_func); 104 #endif 105 #endif /* CONFIG_SMP */ 106 /* We start is dequeued state, because no RT tasks are queued */ 107 rt_rq->rt_queued = 0; 108 109 rt_rq->rt_time = 0; 110 rt_rq->rt_throttled = 0; 111 rt_rq->rt_runtime = 0; 112 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 113 } 114 115 #ifdef CONFIG_RT_GROUP_SCHED 116 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 117 { 118 hrtimer_cancel(&rt_b->rt_period_timer); 119 } 120 121 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 122 123 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 124 { 125 #ifdef CONFIG_SCHED_DEBUG 126 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 127 #endif 128 return container_of(rt_se, struct task_struct, rt); 129 } 130 131 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 132 { 133 return rt_rq->rq; 134 } 135 136 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 137 { 138 return rt_se->rt_rq; 139 } 140 141 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 142 { 143 struct rt_rq *rt_rq = rt_se->rt_rq; 144 145 return rt_rq->rq; 146 } 147 148 void free_rt_sched_group(struct task_group *tg) 149 { 150 int i; 151 152 if (tg->rt_se) 153 destroy_rt_bandwidth(&tg->rt_bandwidth); 154 155 for_each_possible_cpu(i) { 156 if (tg->rt_rq) 157 kfree(tg->rt_rq[i]); 158 if (tg->rt_se) 159 kfree(tg->rt_se[i]); 160 } 161 162 kfree(tg->rt_rq); 163 kfree(tg->rt_se); 164 } 165 166 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 167 struct sched_rt_entity *rt_se, int cpu, 168 struct sched_rt_entity *parent) 169 { 170 struct rq *rq = cpu_rq(cpu); 171 172 rt_rq->highest_prio.curr = MAX_RT_PRIO; 173 rt_rq->rt_nr_boosted = 0; 174 rt_rq->rq = rq; 175 rt_rq->tg = tg; 176 177 tg->rt_rq[cpu] = rt_rq; 178 tg->rt_se[cpu] = rt_se; 179 180 if (!rt_se) 181 return; 182 183 if (!parent) 184 rt_se->rt_rq = &rq->rt; 185 else 186 rt_se->rt_rq = parent->my_q; 187 188 rt_se->my_q = rt_rq; 189 rt_se->parent = parent; 190 INIT_LIST_HEAD(&rt_se->run_list); 191 } 192 193 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 194 { 195 struct rt_rq *rt_rq; 196 struct sched_rt_entity *rt_se; 197 int i; 198 199 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); 200 if (!tg->rt_rq) 201 goto err; 202 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); 203 if (!tg->rt_se) 204 goto err; 205 206 init_rt_bandwidth(&tg->rt_bandwidth, 207 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 208 209 for_each_possible_cpu(i) { 210 rt_rq = kzalloc_node(sizeof(struct rt_rq), 211 GFP_KERNEL, cpu_to_node(i)); 212 if (!rt_rq) 213 goto err; 214 215 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 216 GFP_KERNEL, cpu_to_node(i)); 217 if (!rt_se) 218 goto err_free_rq; 219 220 init_rt_rq(rt_rq); 221 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 222 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 223 } 224 225 return 1; 226 227 err_free_rq: 228 kfree(rt_rq); 229 err: 230 return 0; 231 } 232 233 #else /* CONFIG_RT_GROUP_SCHED */ 234 235 #define rt_entity_is_task(rt_se) (1) 236 237 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 238 { 239 return container_of(rt_se, struct task_struct, rt); 240 } 241 242 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 243 { 244 return container_of(rt_rq, struct rq, rt); 245 } 246 247 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 248 { 249 struct task_struct *p = rt_task_of(rt_se); 250 251 return task_rq(p); 252 } 253 254 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 255 { 256 struct rq *rq = rq_of_rt_se(rt_se); 257 258 return &rq->rt; 259 } 260 261 void free_rt_sched_group(struct task_group *tg) { } 262 263 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 264 { 265 return 1; 266 } 267 #endif /* CONFIG_RT_GROUP_SCHED */ 268 269 #ifdef CONFIG_SMP 270 271 static void pull_rt_task(struct rq *this_rq); 272 273 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 274 { 275 /* Try to pull RT tasks here if we lower this rq's prio */ 276 return rq->rt.highest_prio.curr > prev->prio; 277 } 278 279 static inline int rt_overloaded(struct rq *rq) 280 { 281 return atomic_read(&rq->rd->rto_count); 282 } 283 284 static inline void rt_set_overload(struct rq *rq) 285 { 286 if (!rq->online) 287 return; 288 289 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 290 /* 291 * Make sure the mask is visible before we set 292 * the overload count. That is checked to determine 293 * if we should look at the mask. It would be a shame 294 * if we looked at the mask, but the mask was not 295 * updated yet. 296 * 297 * Matched by the barrier in pull_rt_task(). 298 */ 299 smp_wmb(); 300 atomic_inc(&rq->rd->rto_count); 301 } 302 303 static inline void rt_clear_overload(struct rq *rq) 304 { 305 if (!rq->online) 306 return; 307 308 /* the order here really doesn't matter */ 309 atomic_dec(&rq->rd->rto_count); 310 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 311 } 312 313 static void update_rt_migration(struct rt_rq *rt_rq) 314 { 315 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 316 if (!rt_rq->overloaded) { 317 rt_set_overload(rq_of_rt_rq(rt_rq)); 318 rt_rq->overloaded = 1; 319 } 320 } else if (rt_rq->overloaded) { 321 rt_clear_overload(rq_of_rt_rq(rt_rq)); 322 rt_rq->overloaded = 0; 323 } 324 } 325 326 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 327 { 328 struct task_struct *p; 329 330 if (!rt_entity_is_task(rt_se)) 331 return; 332 333 p = rt_task_of(rt_se); 334 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 335 336 rt_rq->rt_nr_total++; 337 if (p->nr_cpus_allowed > 1) 338 rt_rq->rt_nr_migratory++; 339 340 update_rt_migration(rt_rq); 341 } 342 343 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 344 { 345 struct task_struct *p; 346 347 if (!rt_entity_is_task(rt_se)) 348 return; 349 350 p = rt_task_of(rt_se); 351 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 352 353 rt_rq->rt_nr_total--; 354 if (p->nr_cpus_allowed > 1) 355 rt_rq->rt_nr_migratory--; 356 357 update_rt_migration(rt_rq); 358 } 359 360 static inline int has_pushable_tasks(struct rq *rq) 361 { 362 return !plist_head_empty(&rq->rt.pushable_tasks); 363 } 364 365 static DEFINE_PER_CPU(struct callback_head, rt_push_head); 366 static DEFINE_PER_CPU(struct callback_head, rt_pull_head); 367 368 static void push_rt_tasks(struct rq *); 369 static void pull_rt_task(struct rq *); 370 371 static inline void queue_push_tasks(struct rq *rq) 372 { 373 if (!has_pushable_tasks(rq)) 374 return; 375 376 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); 377 } 378 379 static inline void queue_pull_task(struct rq *rq) 380 { 381 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); 382 } 383 384 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 385 { 386 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 387 plist_node_init(&p->pushable_tasks, p->prio); 388 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 389 390 /* Update the highest prio pushable task */ 391 if (p->prio < rq->rt.highest_prio.next) 392 rq->rt.highest_prio.next = p->prio; 393 } 394 395 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 396 { 397 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 398 399 /* Update the new highest prio pushable task */ 400 if (has_pushable_tasks(rq)) { 401 p = plist_first_entry(&rq->rt.pushable_tasks, 402 struct task_struct, pushable_tasks); 403 rq->rt.highest_prio.next = p->prio; 404 } else 405 rq->rt.highest_prio.next = MAX_RT_PRIO; 406 } 407 408 #else 409 410 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 411 { 412 } 413 414 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 415 { 416 } 417 418 static inline 419 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 420 { 421 } 422 423 static inline 424 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 425 { 426 } 427 428 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 429 { 430 return false; 431 } 432 433 static inline void pull_rt_task(struct rq *this_rq) 434 { 435 } 436 437 static inline void queue_push_tasks(struct rq *rq) 438 { 439 } 440 #endif /* CONFIG_SMP */ 441 442 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 443 static void dequeue_top_rt_rq(struct rt_rq *rt_rq); 444 445 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 446 { 447 return rt_se->on_rq; 448 } 449 450 #ifdef CONFIG_RT_GROUP_SCHED 451 452 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 453 { 454 if (!rt_rq->tg) 455 return RUNTIME_INF; 456 457 return rt_rq->rt_runtime; 458 } 459 460 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 461 { 462 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 463 } 464 465 typedef struct task_group *rt_rq_iter_t; 466 467 static inline struct task_group *next_task_group(struct task_group *tg) 468 { 469 do { 470 tg = list_entry_rcu(tg->list.next, 471 typeof(struct task_group), list); 472 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 473 474 if (&tg->list == &task_groups) 475 tg = NULL; 476 477 return tg; 478 } 479 480 #define for_each_rt_rq(rt_rq, iter, rq) \ 481 for (iter = container_of(&task_groups, typeof(*iter), list); \ 482 (iter = next_task_group(iter)) && \ 483 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 484 485 #define for_each_sched_rt_entity(rt_se) \ 486 for (; rt_se; rt_se = rt_se->parent) 487 488 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 489 { 490 return rt_se->my_q; 491 } 492 493 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 494 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 495 496 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 497 { 498 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 499 struct rq *rq = rq_of_rt_rq(rt_rq); 500 struct sched_rt_entity *rt_se; 501 502 int cpu = cpu_of(rq); 503 504 rt_se = rt_rq->tg->rt_se[cpu]; 505 506 if (rt_rq->rt_nr_running) { 507 if (!rt_se) 508 enqueue_top_rt_rq(rt_rq); 509 else if (!on_rt_rq(rt_se)) 510 enqueue_rt_entity(rt_se, 0); 511 512 if (rt_rq->highest_prio.curr < curr->prio) 513 resched_curr(rq); 514 } 515 } 516 517 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 518 { 519 struct sched_rt_entity *rt_se; 520 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 521 522 rt_se = rt_rq->tg->rt_se[cpu]; 523 524 if (!rt_se) 525 dequeue_top_rt_rq(rt_rq); 526 else if (on_rt_rq(rt_se)) 527 dequeue_rt_entity(rt_se, 0); 528 } 529 530 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 531 { 532 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 533 } 534 535 static int rt_se_boosted(struct sched_rt_entity *rt_se) 536 { 537 struct rt_rq *rt_rq = group_rt_rq(rt_se); 538 struct task_struct *p; 539 540 if (rt_rq) 541 return !!rt_rq->rt_nr_boosted; 542 543 p = rt_task_of(rt_se); 544 return p->prio != p->normal_prio; 545 } 546 547 #ifdef CONFIG_SMP 548 static inline const struct cpumask *sched_rt_period_mask(void) 549 { 550 return this_rq()->rd->span; 551 } 552 #else 553 static inline const struct cpumask *sched_rt_period_mask(void) 554 { 555 return cpu_online_mask; 556 } 557 #endif 558 559 static inline 560 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 561 { 562 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 563 } 564 565 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 566 { 567 return &rt_rq->tg->rt_bandwidth; 568 } 569 570 #else /* !CONFIG_RT_GROUP_SCHED */ 571 572 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 573 { 574 return rt_rq->rt_runtime; 575 } 576 577 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 578 { 579 return ktime_to_ns(def_rt_bandwidth.rt_period); 580 } 581 582 typedef struct rt_rq *rt_rq_iter_t; 583 584 #define for_each_rt_rq(rt_rq, iter, rq) \ 585 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 586 587 #define for_each_sched_rt_entity(rt_se) \ 588 for (; rt_se; rt_se = NULL) 589 590 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 591 { 592 return NULL; 593 } 594 595 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 596 { 597 struct rq *rq = rq_of_rt_rq(rt_rq); 598 599 if (!rt_rq->rt_nr_running) 600 return; 601 602 enqueue_top_rt_rq(rt_rq); 603 resched_curr(rq); 604 } 605 606 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 607 { 608 dequeue_top_rt_rq(rt_rq); 609 } 610 611 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 612 { 613 return rt_rq->rt_throttled; 614 } 615 616 static inline const struct cpumask *sched_rt_period_mask(void) 617 { 618 return cpu_online_mask; 619 } 620 621 static inline 622 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 623 { 624 return &cpu_rq(cpu)->rt; 625 } 626 627 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 628 { 629 return &def_rt_bandwidth; 630 } 631 632 #endif /* CONFIG_RT_GROUP_SCHED */ 633 634 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 635 { 636 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 637 638 return (hrtimer_active(&rt_b->rt_period_timer) || 639 rt_rq->rt_time < rt_b->rt_runtime); 640 } 641 642 #ifdef CONFIG_SMP 643 /* 644 * We ran out of runtime, see if we can borrow some from our neighbours. 645 */ 646 static void do_balance_runtime(struct rt_rq *rt_rq) 647 { 648 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 649 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 650 int i, weight; 651 u64 rt_period; 652 653 weight = cpumask_weight(rd->span); 654 655 raw_spin_lock(&rt_b->rt_runtime_lock); 656 rt_period = ktime_to_ns(rt_b->rt_period); 657 for_each_cpu(i, rd->span) { 658 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 659 s64 diff; 660 661 if (iter == rt_rq) 662 continue; 663 664 raw_spin_lock(&iter->rt_runtime_lock); 665 /* 666 * Either all rqs have inf runtime and there's nothing to steal 667 * or __disable_runtime() below sets a specific rq to inf to 668 * indicate its been disabled and disalow stealing. 669 */ 670 if (iter->rt_runtime == RUNTIME_INF) 671 goto next; 672 673 /* 674 * From runqueues with spare time, take 1/n part of their 675 * spare time, but no more than our period. 676 */ 677 diff = iter->rt_runtime - iter->rt_time; 678 if (diff > 0) { 679 diff = div_u64((u64)diff, weight); 680 if (rt_rq->rt_runtime + diff > rt_period) 681 diff = rt_period - rt_rq->rt_runtime; 682 iter->rt_runtime -= diff; 683 rt_rq->rt_runtime += diff; 684 if (rt_rq->rt_runtime == rt_period) { 685 raw_spin_unlock(&iter->rt_runtime_lock); 686 break; 687 } 688 } 689 next: 690 raw_spin_unlock(&iter->rt_runtime_lock); 691 } 692 raw_spin_unlock(&rt_b->rt_runtime_lock); 693 } 694 695 /* 696 * Ensure this RQ takes back all the runtime it lend to its neighbours. 697 */ 698 static void __disable_runtime(struct rq *rq) 699 { 700 struct root_domain *rd = rq->rd; 701 rt_rq_iter_t iter; 702 struct rt_rq *rt_rq; 703 704 if (unlikely(!scheduler_running)) 705 return; 706 707 for_each_rt_rq(rt_rq, iter, rq) { 708 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 709 s64 want; 710 int i; 711 712 raw_spin_lock(&rt_b->rt_runtime_lock); 713 raw_spin_lock(&rt_rq->rt_runtime_lock); 714 /* 715 * Either we're all inf and nobody needs to borrow, or we're 716 * already disabled and thus have nothing to do, or we have 717 * exactly the right amount of runtime to take out. 718 */ 719 if (rt_rq->rt_runtime == RUNTIME_INF || 720 rt_rq->rt_runtime == rt_b->rt_runtime) 721 goto balanced; 722 raw_spin_unlock(&rt_rq->rt_runtime_lock); 723 724 /* 725 * Calculate the difference between what we started out with 726 * and what we current have, that's the amount of runtime 727 * we lend and now have to reclaim. 728 */ 729 want = rt_b->rt_runtime - rt_rq->rt_runtime; 730 731 /* 732 * Greedy reclaim, take back as much as we can. 733 */ 734 for_each_cpu(i, rd->span) { 735 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 736 s64 diff; 737 738 /* 739 * Can't reclaim from ourselves or disabled runqueues. 740 */ 741 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 742 continue; 743 744 raw_spin_lock(&iter->rt_runtime_lock); 745 if (want > 0) { 746 diff = min_t(s64, iter->rt_runtime, want); 747 iter->rt_runtime -= diff; 748 want -= diff; 749 } else { 750 iter->rt_runtime -= want; 751 want -= want; 752 } 753 raw_spin_unlock(&iter->rt_runtime_lock); 754 755 if (!want) 756 break; 757 } 758 759 raw_spin_lock(&rt_rq->rt_runtime_lock); 760 /* 761 * We cannot be left wanting - that would mean some runtime 762 * leaked out of the system. 763 */ 764 BUG_ON(want); 765 balanced: 766 /* 767 * Disable all the borrow logic by pretending we have inf 768 * runtime - in which case borrowing doesn't make sense. 769 */ 770 rt_rq->rt_runtime = RUNTIME_INF; 771 rt_rq->rt_throttled = 0; 772 raw_spin_unlock(&rt_rq->rt_runtime_lock); 773 raw_spin_unlock(&rt_b->rt_runtime_lock); 774 775 /* Make rt_rq available for pick_next_task() */ 776 sched_rt_rq_enqueue(rt_rq); 777 } 778 } 779 780 static void __enable_runtime(struct rq *rq) 781 { 782 rt_rq_iter_t iter; 783 struct rt_rq *rt_rq; 784 785 if (unlikely(!scheduler_running)) 786 return; 787 788 /* 789 * Reset each runqueue's bandwidth settings 790 */ 791 for_each_rt_rq(rt_rq, iter, rq) { 792 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 793 794 raw_spin_lock(&rt_b->rt_runtime_lock); 795 raw_spin_lock(&rt_rq->rt_runtime_lock); 796 rt_rq->rt_runtime = rt_b->rt_runtime; 797 rt_rq->rt_time = 0; 798 rt_rq->rt_throttled = 0; 799 raw_spin_unlock(&rt_rq->rt_runtime_lock); 800 raw_spin_unlock(&rt_b->rt_runtime_lock); 801 } 802 } 803 804 static void balance_runtime(struct rt_rq *rt_rq) 805 { 806 if (!sched_feat(RT_RUNTIME_SHARE)) 807 return; 808 809 if (rt_rq->rt_time > rt_rq->rt_runtime) { 810 raw_spin_unlock(&rt_rq->rt_runtime_lock); 811 do_balance_runtime(rt_rq); 812 raw_spin_lock(&rt_rq->rt_runtime_lock); 813 } 814 } 815 #else /* !CONFIG_SMP */ 816 static inline void balance_runtime(struct rt_rq *rt_rq) {} 817 #endif /* CONFIG_SMP */ 818 819 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 820 { 821 int i, idle = 1, throttled = 0; 822 const struct cpumask *span; 823 824 span = sched_rt_period_mask(); 825 #ifdef CONFIG_RT_GROUP_SCHED 826 /* 827 * FIXME: isolated CPUs should really leave the root task group, 828 * whether they are isolcpus or were isolated via cpusets, lest 829 * the timer run on a CPU which does not service all runqueues, 830 * potentially leaving other CPUs indefinitely throttled. If 831 * isolation is really required, the user will turn the throttle 832 * off to kill the perturbations it causes anyway. Meanwhile, 833 * this maintains functionality for boot and/or troubleshooting. 834 */ 835 if (rt_b == &root_task_group.rt_bandwidth) 836 span = cpu_online_mask; 837 #endif 838 for_each_cpu(i, span) { 839 int enqueue = 0; 840 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 841 struct rq *rq = rq_of_rt_rq(rt_rq); 842 843 raw_spin_lock(&rq->lock); 844 if (rt_rq->rt_time) { 845 u64 runtime; 846 847 raw_spin_lock(&rt_rq->rt_runtime_lock); 848 if (rt_rq->rt_throttled) 849 balance_runtime(rt_rq); 850 runtime = rt_rq->rt_runtime; 851 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 852 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 853 rt_rq->rt_throttled = 0; 854 enqueue = 1; 855 856 /* 857 * When we're idle and a woken (rt) task is 858 * throttled check_preempt_curr() will set 859 * skip_update and the time between the wakeup 860 * and this unthrottle will get accounted as 861 * 'runtime'. 862 */ 863 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 864 rq_clock_skip_update(rq, false); 865 } 866 if (rt_rq->rt_time || rt_rq->rt_nr_running) 867 idle = 0; 868 raw_spin_unlock(&rt_rq->rt_runtime_lock); 869 } else if (rt_rq->rt_nr_running) { 870 idle = 0; 871 if (!rt_rq_throttled(rt_rq)) 872 enqueue = 1; 873 } 874 if (rt_rq->rt_throttled) 875 throttled = 1; 876 877 if (enqueue) 878 sched_rt_rq_enqueue(rt_rq); 879 raw_spin_unlock(&rq->lock); 880 } 881 882 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 883 return 1; 884 885 return idle; 886 } 887 888 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 889 { 890 #ifdef CONFIG_RT_GROUP_SCHED 891 struct rt_rq *rt_rq = group_rt_rq(rt_se); 892 893 if (rt_rq) 894 return rt_rq->highest_prio.curr; 895 #endif 896 897 return rt_task_of(rt_se)->prio; 898 } 899 900 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 901 { 902 u64 runtime = sched_rt_runtime(rt_rq); 903 904 if (rt_rq->rt_throttled) 905 return rt_rq_throttled(rt_rq); 906 907 if (runtime >= sched_rt_period(rt_rq)) 908 return 0; 909 910 balance_runtime(rt_rq); 911 runtime = sched_rt_runtime(rt_rq); 912 if (runtime == RUNTIME_INF) 913 return 0; 914 915 if (rt_rq->rt_time > runtime) { 916 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 917 918 /* 919 * Don't actually throttle groups that have no runtime assigned 920 * but accrue some time due to boosting. 921 */ 922 if (likely(rt_b->rt_runtime)) { 923 rt_rq->rt_throttled = 1; 924 printk_deferred_once("sched: RT throttling activated\n"); 925 } else { 926 /* 927 * In case we did anyway, make it go away, 928 * replenishment is a joke, since it will replenish us 929 * with exactly 0 ns. 930 */ 931 rt_rq->rt_time = 0; 932 } 933 934 if (rt_rq_throttled(rt_rq)) { 935 sched_rt_rq_dequeue(rt_rq); 936 return 1; 937 } 938 } 939 940 return 0; 941 } 942 943 /* 944 * Update the current task's runtime statistics. Skip current tasks that 945 * are not in our scheduling class. 946 */ 947 static void update_curr_rt(struct rq *rq) 948 { 949 struct task_struct *curr = rq->curr; 950 struct sched_rt_entity *rt_se = &curr->rt; 951 u64 delta_exec; 952 953 if (curr->sched_class != &rt_sched_class) 954 return; 955 956 /* Kick cpufreq (see the comment in linux/cpufreq.h). */ 957 if (cpu_of(rq) == smp_processor_id()) 958 cpufreq_trigger_update(rq_clock(rq)); 959 960 delta_exec = rq_clock_task(rq) - curr->se.exec_start; 961 if (unlikely((s64)delta_exec <= 0)) 962 return; 963 964 schedstat_set(curr->se.statistics.exec_max, 965 max(curr->se.statistics.exec_max, delta_exec)); 966 967 curr->se.sum_exec_runtime += delta_exec; 968 account_group_exec_runtime(curr, delta_exec); 969 970 curr->se.exec_start = rq_clock_task(rq); 971 cpuacct_charge(curr, delta_exec); 972 973 sched_rt_avg_update(rq, delta_exec); 974 975 if (!rt_bandwidth_enabled()) 976 return; 977 978 for_each_sched_rt_entity(rt_se) { 979 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 980 981 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 982 raw_spin_lock(&rt_rq->rt_runtime_lock); 983 rt_rq->rt_time += delta_exec; 984 if (sched_rt_runtime_exceeded(rt_rq)) 985 resched_curr(rq); 986 raw_spin_unlock(&rt_rq->rt_runtime_lock); 987 } 988 } 989 } 990 991 static void 992 dequeue_top_rt_rq(struct rt_rq *rt_rq) 993 { 994 struct rq *rq = rq_of_rt_rq(rt_rq); 995 996 BUG_ON(&rq->rt != rt_rq); 997 998 if (!rt_rq->rt_queued) 999 return; 1000 1001 BUG_ON(!rq->nr_running); 1002 1003 sub_nr_running(rq, rt_rq->rt_nr_running); 1004 rt_rq->rt_queued = 0; 1005 } 1006 1007 static void 1008 enqueue_top_rt_rq(struct rt_rq *rt_rq) 1009 { 1010 struct rq *rq = rq_of_rt_rq(rt_rq); 1011 1012 BUG_ON(&rq->rt != rt_rq); 1013 1014 if (rt_rq->rt_queued) 1015 return; 1016 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running) 1017 return; 1018 1019 add_nr_running(rq, rt_rq->rt_nr_running); 1020 rt_rq->rt_queued = 1; 1021 } 1022 1023 #if defined CONFIG_SMP 1024 1025 static void 1026 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1027 { 1028 struct rq *rq = rq_of_rt_rq(rt_rq); 1029 1030 #ifdef CONFIG_RT_GROUP_SCHED 1031 /* 1032 * Change rq's cpupri only if rt_rq is the top queue. 1033 */ 1034 if (&rq->rt != rt_rq) 1035 return; 1036 #endif 1037 if (rq->online && prio < prev_prio) 1038 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1039 } 1040 1041 static void 1042 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1043 { 1044 struct rq *rq = rq_of_rt_rq(rt_rq); 1045 1046 #ifdef CONFIG_RT_GROUP_SCHED 1047 /* 1048 * Change rq's cpupri only if rt_rq is the top queue. 1049 */ 1050 if (&rq->rt != rt_rq) 1051 return; 1052 #endif 1053 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1054 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1055 } 1056 1057 #else /* CONFIG_SMP */ 1058 1059 static inline 1060 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1061 static inline 1062 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1063 1064 #endif /* CONFIG_SMP */ 1065 1066 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1067 static void 1068 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1069 { 1070 int prev_prio = rt_rq->highest_prio.curr; 1071 1072 if (prio < prev_prio) 1073 rt_rq->highest_prio.curr = prio; 1074 1075 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1076 } 1077 1078 static void 1079 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1080 { 1081 int prev_prio = rt_rq->highest_prio.curr; 1082 1083 if (rt_rq->rt_nr_running) { 1084 1085 WARN_ON(prio < prev_prio); 1086 1087 /* 1088 * This may have been our highest task, and therefore 1089 * we may have some recomputation to do 1090 */ 1091 if (prio == prev_prio) { 1092 struct rt_prio_array *array = &rt_rq->active; 1093 1094 rt_rq->highest_prio.curr = 1095 sched_find_first_bit(array->bitmap); 1096 } 1097 1098 } else 1099 rt_rq->highest_prio.curr = MAX_RT_PRIO; 1100 1101 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1102 } 1103 1104 #else 1105 1106 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1107 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1108 1109 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1110 1111 #ifdef CONFIG_RT_GROUP_SCHED 1112 1113 static void 1114 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1115 { 1116 if (rt_se_boosted(rt_se)) 1117 rt_rq->rt_nr_boosted++; 1118 1119 if (rt_rq->tg) 1120 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1121 } 1122 1123 static void 1124 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1125 { 1126 if (rt_se_boosted(rt_se)) 1127 rt_rq->rt_nr_boosted--; 1128 1129 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1130 } 1131 1132 #else /* CONFIG_RT_GROUP_SCHED */ 1133 1134 static void 1135 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1136 { 1137 start_rt_bandwidth(&def_rt_bandwidth); 1138 } 1139 1140 static inline 1141 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1142 1143 #endif /* CONFIG_RT_GROUP_SCHED */ 1144 1145 static inline 1146 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1147 { 1148 struct rt_rq *group_rq = group_rt_rq(rt_se); 1149 1150 if (group_rq) 1151 return group_rq->rt_nr_running; 1152 else 1153 return 1; 1154 } 1155 1156 static inline 1157 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) 1158 { 1159 struct rt_rq *group_rq = group_rt_rq(rt_se); 1160 struct task_struct *tsk; 1161 1162 if (group_rq) 1163 return group_rq->rr_nr_running; 1164 1165 tsk = rt_task_of(rt_se); 1166 1167 return (tsk->policy == SCHED_RR) ? 1 : 0; 1168 } 1169 1170 static inline 1171 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1172 { 1173 int prio = rt_se_prio(rt_se); 1174 1175 WARN_ON(!rt_prio(prio)); 1176 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1177 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); 1178 1179 inc_rt_prio(rt_rq, prio); 1180 inc_rt_migration(rt_se, rt_rq); 1181 inc_rt_group(rt_se, rt_rq); 1182 } 1183 1184 static inline 1185 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1186 { 1187 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1188 WARN_ON(!rt_rq->rt_nr_running); 1189 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1190 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); 1191 1192 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1193 dec_rt_migration(rt_se, rt_rq); 1194 dec_rt_group(rt_se, rt_rq); 1195 } 1196 1197 /* 1198 * Change rt_se->run_list location unless SAVE && !MOVE 1199 * 1200 * assumes ENQUEUE/DEQUEUE flags match 1201 */ 1202 static inline bool move_entity(unsigned int flags) 1203 { 1204 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 1205 return false; 1206 1207 return true; 1208 } 1209 1210 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) 1211 { 1212 list_del_init(&rt_se->run_list); 1213 1214 if (list_empty(array->queue + rt_se_prio(rt_se))) 1215 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1216 1217 rt_se->on_list = 0; 1218 } 1219 1220 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1221 { 1222 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1223 struct rt_prio_array *array = &rt_rq->active; 1224 struct rt_rq *group_rq = group_rt_rq(rt_se); 1225 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1226 1227 /* 1228 * Don't enqueue the group if its throttled, or when empty. 1229 * The latter is a consequence of the former when a child group 1230 * get throttled and the current group doesn't have any other 1231 * active members. 1232 */ 1233 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { 1234 if (rt_se->on_list) 1235 __delist_rt_entity(rt_se, array); 1236 return; 1237 } 1238 1239 if (move_entity(flags)) { 1240 WARN_ON_ONCE(rt_se->on_list); 1241 if (flags & ENQUEUE_HEAD) 1242 list_add(&rt_se->run_list, queue); 1243 else 1244 list_add_tail(&rt_se->run_list, queue); 1245 1246 __set_bit(rt_se_prio(rt_se), array->bitmap); 1247 rt_se->on_list = 1; 1248 } 1249 rt_se->on_rq = 1; 1250 1251 inc_rt_tasks(rt_se, rt_rq); 1252 } 1253 1254 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1255 { 1256 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1257 struct rt_prio_array *array = &rt_rq->active; 1258 1259 if (move_entity(flags)) { 1260 WARN_ON_ONCE(!rt_se->on_list); 1261 __delist_rt_entity(rt_se, array); 1262 } 1263 rt_se->on_rq = 0; 1264 1265 dec_rt_tasks(rt_se, rt_rq); 1266 } 1267 1268 /* 1269 * Because the prio of an upper entry depends on the lower 1270 * entries, we must remove entries top - down. 1271 */ 1272 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) 1273 { 1274 struct sched_rt_entity *back = NULL; 1275 1276 for_each_sched_rt_entity(rt_se) { 1277 rt_se->back = back; 1278 back = rt_se; 1279 } 1280 1281 dequeue_top_rt_rq(rt_rq_of_se(back)); 1282 1283 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1284 if (on_rt_rq(rt_se)) 1285 __dequeue_rt_entity(rt_se, flags); 1286 } 1287 } 1288 1289 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1290 { 1291 struct rq *rq = rq_of_rt_se(rt_se); 1292 1293 dequeue_rt_stack(rt_se, flags); 1294 for_each_sched_rt_entity(rt_se) 1295 __enqueue_rt_entity(rt_se, flags); 1296 enqueue_top_rt_rq(&rq->rt); 1297 } 1298 1299 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1300 { 1301 struct rq *rq = rq_of_rt_se(rt_se); 1302 1303 dequeue_rt_stack(rt_se, flags); 1304 1305 for_each_sched_rt_entity(rt_se) { 1306 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1307 1308 if (rt_rq && rt_rq->rt_nr_running) 1309 __enqueue_rt_entity(rt_se, flags); 1310 } 1311 enqueue_top_rt_rq(&rq->rt); 1312 } 1313 1314 /* 1315 * Adding/removing a task to/from a priority array: 1316 */ 1317 static void 1318 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1319 { 1320 struct sched_rt_entity *rt_se = &p->rt; 1321 1322 if (flags & ENQUEUE_WAKEUP) 1323 rt_se->timeout = 0; 1324 1325 enqueue_rt_entity(rt_se, flags); 1326 1327 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1328 enqueue_pushable_task(rq, p); 1329 } 1330 1331 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1332 { 1333 struct sched_rt_entity *rt_se = &p->rt; 1334 1335 update_curr_rt(rq); 1336 dequeue_rt_entity(rt_se, flags); 1337 1338 dequeue_pushable_task(rq, p); 1339 } 1340 1341 /* 1342 * Put task to the head or the end of the run list without the overhead of 1343 * dequeue followed by enqueue. 1344 */ 1345 static void 1346 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1347 { 1348 if (on_rt_rq(rt_se)) { 1349 struct rt_prio_array *array = &rt_rq->active; 1350 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1351 1352 if (head) 1353 list_move(&rt_se->run_list, queue); 1354 else 1355 list_move_tail(&rt_se->run_list, queue); 1356 } 1357 } 1358 1359 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1360 { 1361 struct sched_rt_entity *rt_se = &p->rt; 1362 struct rt_rq *rt_rq; 1363 1364 for_each_sched_rt_entity(rt_se) { 1365 rt_rq = rt_rq_of_se(rt_se); 1366 requeue_rt_entity(rt_rq, rt_se, head); 1367 } 1368 } 1369 1370 static void yield_task_rt(struct rq *rq) 1371 { 1372 requeue_task_rt(rq, rq->curr, 0); 1373 } 1374 1375 #ifdef CONFIG_SMP 1376 static int find_lowest_rq(struct task_struct *task); 1377 1378 static int 1379 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) 1380 { 1381 struct task_struct *curr; 1382 struct rq *rq; 1383 1384 /* For anything but wake ups, just return the task_cpu */ 1385 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 1386 goto out; 1387 1388 rq = cpu_rq(cpu); 1389 1390 rcu_read_lock(); 1391 curr = READ_ONCE(rq->curr); /* unlocked access */ 1392 1393 /* 1394 * If the current task on @p's runqueue is an RT task, then 1395 * try to see if we can wake this RT task up on another 1396 * runqueue. Otherwise simply start this RT task 1397 * on its current runqueue. 1398 * 1399 * We want to avoid overloading runqueues. If the woken 1400 * task is a higher priority, then it will stay on this CPU 1401 * and the lower prio task should be moved to another CPU. 1402 * Even though this will probably make the lower prio task 1403 * lose its cache, we do not want to bounce a higher task 1404 * around just because it gave up its CPU, perhaps for a 1405 * lock? 1406 * 1407 * For equal prio tasks, we just let the scheduler sort it out. 1408 * 1409 * Otherwise, just let it ride on the affined RQ and the 1410 * post-schedule router will push the preempted task away 1411 * 1412 * This test is optimistic, if we get it wrong the load-balancer 1413 * will have to sort it out. 1414 */ 1415 if (curr && unlikely(rt_task(curr)) && 1416 (curr->nr_cpus_allowed < 2 || 1417 curr->prio <= p->prio)) { 1418 int target = find_lowest_rq(p); 1419 1420 /* 1421 * Don't bother moving it if the destination CPU is 1422 * not running a lower priority task. 1423 */ 1424 if (target != -1 && 1425 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1426 cpu = target; 1427 } 1428 rcu_read_unlock(); 1429 1430 out: 1431 return cpu; 1432 } 1433 1434 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1435 { 1436 /* 1437 * Current can't be migrated, useless to reschedule, 1438 * let's hope p can move out. 1439 */ 1440 if (rq->curr->nr_cpus_allowed == 1 || 1441 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1442 return; 1443 1444 /* 1445 * p is migratable, so let's not schedule it and 1446 * see if it is pushed or pulled somewhere else. 1447 */ 1448 if (p->nr_cpus_allowed != 1 1449 && cpupri_find(&rq->rd->cpupri, p, NULL)) 1450 return; 1451 1452 /* 1453 * There appears to be other cpus that can accept 1454 * current and none to run 'p', so lets reschedule 1455 * to try and push current away: 1456 */ 1457 requeue_task_rt(rq, p, 1); 1458 resched_curr(rq); 1459 } 1460 1461 #endif /* CONFIG_SMP */ 1462 1463 /* 1464 * Preempt the current task with a newly woken task if needed: 1465 */ 1466 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1467 { 1468 if (p->prio < rq->curr->prio) { 1469 resched_curr(rq); 1470 return; 1471 } 1472 1473 #ifdef CONFIG_SMP 1474 /* 1475 * If: 1476 * 1477 * - the newly woken task is of equal priority to the current task 1478 * - the newly woken task is non-migratable while current is migratable 1479 * - current will be preempted on the next reschedule 1480 * 1481 * we should check to see if current can readily move to a different 1482 * cpu. If so, we will reschedule to allow the push logic to try 1483 * to move current somewhere else, making room for our non-migratable 1484 * task. 1485 */ 1486 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1487 check_preempt_equal_prio(rq, p); 1488 #endif 1489 } 1490 1491 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 1492 struct rt_rq *rt_rq) 1493 { 1494 struct rt_prio_array *array = &rt_rq->active; 1495 struct sched_rt_entity *next = NULL; 1496 struct list_head *queue; 1497 int idx; 1498 1499 idx = sched_find_first_bit(array->bitmap); 1500 BUG_ON(idx >= MAX_RT_PRIO); 1501 1502 queue = array->queue + idx; 1503 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1504 1505 return next; 1506 } 1507 1508 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1509 { 1510 struct sched_rt_entity *rt_se; 1511 struct task_struct *p; 1512 struct rt_rq *rt_rq = &rq->rt; 1513 1514 do { 1515 rt_se = pick_next_rt_entity(rq, rt_rq); 1516 BUG_ON(!rt_se); 1517 rt_rq = group_rt_rq(rt_se); 1518 } while (rt_rq); 1519 1520 p = rt_task_of(rt_se); 1521 p->se.exec_start = rq_clock_task(rq); 1522 1523 return p; 1524 } 1525 1526 static struct task_struct * 1527 pick_next_task_rt(struct rq *rq, struct task_struct *prev) 1528 { 1529 struct task_struct *p; 1530 struct rt_rq *rt_rq = &rq->rt; 1531 1532 if (need_pull_rt_task(rq, prev)) { 1533 /* 1534 * This is OK, because current is on_cpu, which avoids it being 1535 * picked for load-balance and preemption/IRQs are still 1536 * disabled avoiding further scheduler activity on it and we're 1537 * being very careful to re-start the picking loop. 1538 */ 1539 lockdep_unpin_lock(&rq->lock); 1540 pull_rt_task(rq); 1541 lockdep_pin_lock(&rq->lock); 1542 /* 1543 * pull_rt_task() can drop (and re-acquire) rq->lock; this 1544 * means a dl or stop task can slip in, in which case we need 1545 * to re-start task selection. 1546 */ 1547 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) || 1548 rq->dl.dl_nr_running)) 1549 return RETRY_TASK; 1550 } 1551 1552 /* 1553 * We may dequeue prev's rt_rq in put_prev_task(). 1554 * So, we update time before rt_nr_running check. 1555 */ 1556 if (prev->sched_class == &rt_sched_class) 1557 update_curr_rt(rq); 1558 1559 if (!rt_rq->rt_queued) 1560 return NULL; 1561 1562 put_prev_task(rq, prev); 1563 1564 p = _pick_next_task_rt(rq); 1565 1566 /* The running task is never eligible for pushing */ 1567 dequeue_pushable_task(rq, p); 1568 1569 queue_push_tasks(rq); 1570 1571 return p; 1572 } 1573 1574 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1575 { 1576 update_curr_rt(rq); 1577 1578 /* 1579 * The previous task needs to be made eligible for pushing 1580 * if it is still active 1581 */ 1582 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1583 enqueue_pushable_task(rq, p); 1584 } 1585 1586 #ifdef CONFIG_SMP 1587 1588 /* Only try algorithms three times */ 1589 #define RT_MAX_TRIES 3 1590 1591 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1592 { 1593 if (!task_running(rq, p) && 1594 cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 1595 return 1; 1596 return 0; 1597 } 1598 1599 /* 1600 * Return the highest pushable rq's task, which is suitable to be executed 1601 * on the cpu, NULL otherwise 1602 */ 1603 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1604 { 1605 struct plist_head *head = &rq->rt.pushable_tasks; 1606 struct task_struct *p; 1607 1608 if (!has_pushable_tasks(rq)) 1609 return NULL; 1610 1611 plist_for_each_entry(p, head, pushable_tasks) { 1612 if (pick_rt_task(rq, p, cpu)) 1613 return p; 1614 } 1615 1616 return NULL; 1617 } 1618 1619 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1620 1621 static int find_lowest_rq(struct task_struct *task) 1622 { 1623 struct sched_domain *sd; 1624 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1625 int this_cpu = smp_processor_id(); 1626 int cpu = task_cpu(task); 1627 1628 /* Make sure the mask is initialized first */ 1629 if (unlikely(!lowest_mask)) 1630 return -1; 1631 1632 if (task->nr_cpus_allowed == 1) 1633 return -1; /* No other targets possible */ 1634 1635 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) 1636 return -1; /* No targets found */ 1637 1638 /* 1639 * At this point we have built a mask of cpus representing the 1640 * lowest priority tasks in the system. Now we want to elect 1641 * the best one based on our affinity and topology. 1642 * 1643 * We prioritize the last cpu that the task executed on since 1644 * it is most likely cache-hot in that location. 1645 */ 1646 if (cpumask_test_cpu(cpu, lowest_mask)) 1647 return cpu; 1648 1649 /* 1650 * Otherwise, we consult the sched_domains span maps to figure 1651 * out which cpu is logically closest to our hot cache data. 1652 */ 1653 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1654 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1655 1656 rcu_read_lock(); 1657 for_each_domain(cpu, sd) { 1658 if (sd->flags & SD_WAKE_AFFINE) { 1659 int best_cpu; 1660 1661 /* 1662 * "this_cpu" is cheaper to preempt than a 1663 * remote processor. 1664 */ 1665 if (this_cpu != -1 && 1666 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1667 rcu_read_unlock(); 1668 return this_cpu; 1669 } 1670 1671 best_cpu = cpumask_first_and(lowest_mask, 1672 sched_domain_span(sd)); 1673 if (best_cpu < nr_cpu_ids) { 1674 rcu_read_unlock(); 1675 return best_cpu; 1676 } 1677 } 1678 } 1679 rcu_read_unlock(); 1680 1681 /* 1682 * And finally, if there were no matches within the domains 1683 * just give the caller *something* to work with from the compatible 1684 * locations. 1685 */ 1686 if (this_cpu != -1) 1687 return this_cpu; 1688 1689 cpu = cpumask_any(lowest_mask); 1690 if (cpu < nr_cpu_ids) 1691 return cpu; 1692 return -1; 1693 } 1694 1695 /* Will lock the rq it finds */ 1696 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1697 { 1698 struct rq *lowest_rq = NULL; 1699 int tries; 1700 int cpu; 1701 1702 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1703 cpu = find_lowest_rq(task); 1704 1705 if ((cpu == -1) || (cpu == rq->cpu)) 1706 break; 1707 1708 lowest_rq = cpu_rq(cpu); 1709 1710 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1711 /* 1712 * Target rq has tasks of equal or higher priority, 1713 * retrying does not release any lock and is unlikely 1714 * to yield a different result. 1715 */ 1716 lowest_rq = NULL; 1717 break; 1718 } 1719 1720 /* if the prio of this runqueue changed, try again */ 1721 if (double_lock_balance(rq, lowest_rq)) { 1722 /* 1723 * We had to unlock the run queue. In 1724 * the mean time, task could have 1725 * migrated already or had its affinity changed. 1726 * Also make sure that it wasn't scheduled on its rq. 1727 */ 1728 if (unlikely(task_rq(task) != rq || 1729 !cpumask_test_cpu(lowest_rq->cpu, 1730 tsk_cpus_allowed(task)) || 1731 task_running(rq, task) || 1732 !task_on_rq_queued(task))) { 1733 1734 double_unlock_balance(rq, lowest_rq); 1735 lowest_rq = NULL; 1736 break; 1737 } 1738 } 1739 1740 /* If this rq is still suitable use it. */ 1741 if (lowest_rq->rt.highest_prio.curr > task->prio) 1742 break; 1743 1744 /* try again */ 1745 double_unlock_balance(rq, lowest_rq); 1746 lowest_rq = NULL; 1747 } 1748 1749 return lowest_rq; 1750 } 1751 1752 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1753 { 1754 struct task_struct *p; 1755 1756 if (!has_pushable_tasks(rq)) 1757 return NULL; 1758 1759 p = plist_first_entry(&rq->rt.pushable_tasks, 1760 struct task_struct, pushable_tasks); 1761 1762 BUG_ON(rq->cpu != task_cpu(p)); 1763 BUG_ON(task_current(rq, p)); 1764 BUG_ON(p->nr_cpus_allowed <= 1); 1765 1766 BUG_ON(!task_on_rq_queued(p)); 1767 BUG_ON(!rt_task(p)); 1768 1769 return p; 1770 } 1771 1772 /* 1773 * If the current CPU has more than one RT task, see if the non 1774 * running task can migrate over to a CPU that is running a task 1775 * of lesser priority. 1776 */ 1777 static int push_rt_task(struct rq *rq) 1778 { 1779 struct task_struct *next_task; 1780 struct rq *lowest_rq; 1781 int ret = 0; 1782 1783 if (!rq->rt.overloaded) 1784 return 0; 1785 1786 next_task = pick_next_pushable_task(rq); 1787 if (!next_task) 1788 return 0; 1789 1790 retry: 1791 if (unlikely(next_task == rq->curr)) { 1792 WARN_ON(1); 1793 return 0; 1794 } 1795 1796 /* 1797 * It's possible that the next_task slipped in of 1798 * higher priority than current. If that's the case 1799 * just reschedule current. 1800 */ 1801 if (unlikely(next_task->prio < rq->curr->prio)) { 1802 resched_curr(rq); 1803 return 0; 1804 } 1805 1806 /* We might release rq lock */ 1807 get_task_struct(next_task); 1808 1809 /* find_lock_lowest_rq locks the rq if found */ 1810 lowest_rq = find_lock_lowest_rq(next_task, rq); 1811 if (!lowest_rq) { 1812 struct task_struct *task; 1813 /* 1814 * find_lock_lowest_rq releases rq->lock 1815 * so it is possible that next_task has migrated. 1816 * 1817 * We need to make sure that the task is still on the same 1818 * run-queue and is also still the next task eligible for 1819 * pushing. 1820 */ 1821 task = pick_next_pushable_task(rq); 1822 if (task_cpu(next_task) == rq->cpu && task == next_task) { 1823 /* 1824 * The task hasn't migrated, and is still the next 1825 * eligible task, but we failed to find a run-queue 1826 * to push it to. Do not retry in this case, since 1827 * other cpus will pull from us when ready. 1828 */ 1829 goto out; 1830 } 1831 1832 if (!task) 1833 /* No more tasks, just exit */ 1834 goto out; 1835 1836 /* 1837 * Something has shifted, try again. 1838 */ 1839 put_task_struct(next_task); 1840 next_task = task; 1841 goto retry; 1842 } 1843 1844 deactivate_task(rq, next_task, 0); 1845 set_task_cpu(next_task, lowest_rq->cpu); 1846 activate_task(lowest_rq, next_task, 0); 1847 ret = 1; 1848 1849 resched_curr(lowest_rq); 1850 1851 double_unlock_balance(rq, lowest_rq); 1852 1853 out: 1854 put_task_struct(next_task); 1855 1856 return ret; 1857 } 1858 1859 static void push_rt_tasks(struct rq *rq) 1860 { 1861 /* push_rt_task will return true if it moved an RT */ 1862 while (push_rt_task(rq)) 1863 ; 1864 } 1865 1866 #ifdef HAVE_RT_PUSH_IPI 1867 /* 1868 * The search for the next cpu always starts at rq->cpu and ends 1869 * when we reach rq->cpu again. It will never return rq->cpu. 1870 * This returns the next cpu to check, or nr_cpu_ids if the loop 1871 * is complete. 1872 * 1873 * rq->rt.push_cpu holds the last cpu returned by this function, 1874 * or if this is the first instance, it must hold rq->cpu. 1875 */ 1876 static int rto_next_cpu(struct rq *rq) 1877 { 1878 int prev_cpu = rq->rt.push_cpu; 1879 int cpu; 1880 1881 cpu = cpumask_next(prev_cpu, rq->rd->rto_mask); 1882 1883 /* 1884 * If the previous cpu is less than the rq's CPU, then it already 1885 * passed the end of the mask, and has started from the beginning. 1886 * We end if the next CPU is greater or equal to rq's CPU. 1887 */ 1888 if (prev_cpu < rq->cpu) { 1889 if (cpu >= rq->cpu) 1890 return nr_cpu_ids; 1891 1892 } else if (cpu >= nr_cpu_ids) { 1893 /* 1894 * We passed the end of the mask, start at the beginning. 1895 * If the result is greater or equal to the rq's CPU, then 1896 * the loop is finished. 1897 */ 1898 cpu = cpumask_first(rq->rd->rto_mask); 1899 if (cpu >= rq->cpu) 1900 return nr_cpu_ids; 1901 } 1902 rq->rt.push_cpu = cpu; 1903 1904 /* Return cpu to let the caller know if the loop is finished or not */ 1905 return cpu; 1906 } 1907 1908 static int find_next_push_cpu(struct rq *rq) 1909 { 1910 struct rq *next_rq; 1911 int cpu; 1912 1913 while (1) { 1914 cpu = rto_next_cpu(rq); 1915 if (cpu >= nr_cpu_ids) 1916 break; 1917 next_rq = cpu_rq(cpu); 1918 1919 /* Make sure the next rq can push to this rq */ 1920 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr) 1921 break; 1922 } 1923 1924 return cpu; 1925 } 1926 1927 #define RT_PUSH_IPI_EXECUTING 1 1928 #define RT_PUSH_IPI_RESTART 2 1929 1930 static void tell_cpu_to_push(struct rq *rq) 1931 { 1932 int cpu; 1933 1934 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) { 1935 raw_spin_lock(&rq->rt.push_lock); 1936 /* Make sure it's still executing */ 1937 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) { 1938 /* 1939 * Tell the IPI to restart the loop as things have 1940 * changed since it started. 1941 */ 1942 rq->rt.push_flags |= RT_PUSH_IPI_RESTART; 1943 raw_spin_unlock(&rq->rt.push_lock); 1944 return; 1945 } 1946 raw_spin_unlock(&rq->rt.push_lock); 1947 } 1948 1949 /* When here, there's no IPI going around */ 1950 1951 rq->rt.push_cpu = rq->cpu; 1952 cpu = find_next_push_cpu(rq); 1953 if (cpu >= nr_cpu_ids) 1954 return; 1955 1956 rq->rt.push_flags = RT_PUSH_IPI_EXECUTING; 1957 1958 irq_work_queue_on(&rq->rt.push_work, cpu); 1959 } 1960 1961 /* Called from hardirq context */ 1962 static void try_to_push_tasks(void *arg) 1963 { 1964 struct rt_rq *rt_rq = arg; 1965 struct rq *rq, *src_rq; 1966 int this_cpu; 1967 int cpu; 1968 1969 this_cpu = rt_rq->push_cpu; 1970 1971 /* Paranoid check */ 1972 BUG_ON(this_cpu != smp_processor_id()); 1973 1974 rq = cpu_rq(this_cpu); 1975 src_rq = rq_of_rt_rq(rt_rq); 1976 1977 again: 1978 if (has_pushable_tasks(rq)) { 1979 raw_spin_lock(&rq->lock); 1980 push_rt_task(rq); 1981 raw_spin_unlock(&rq->lock); 1982 } 1983 1984 /* Pass the IPI to the next rt overloaded queue */ 1985 raw_spin_lock(&rt_rq->push_lock); 1986 /* 1987 * If the source queue changed since the IPI went out, 1988 * we need to restart the search from that CPU again. 1989 */ 1990 if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) { 1991 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART; 1992 rt_rq->push_cpu = src_rq->cpu; 1993 } 1994 1995 cpu = find_next_push_cpu(src_rq); 1996 1997 if (cpu >= nr_cpu_ids) 1998 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING; 1999 raw_spin_unlock(&rt_rq->push_lock); 2000 2001 if (cpu >= nr_cpu_ids) 2002 return; 2003 2004 /* 2005 * It is possible that a restart caused this CPU to be 2006 * chosen again. Don't bother with an IPI, just see if we 2007 * have more to push. 2008 */ 2009 if (unlikely(cpu == rq->cpu)) 2010 goto again; 2011 2012 /* Try the next RT overloaded CPU */ 2013 irq_work_queue_on(&rt_rq->push_work, cpu); 2014 } 2015 2016 static void push_irq_work_func(struct irq_work *work) 2017 { 2018 struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work); 2019 2020 try_to_push_tasks(rt_rq); 2021 } 2022 #endif /* HAVE_RT_PUSH_IPI */ 2023 2024 static void pull_rt_task(struct rq *this_rq) 2025 { 2026 int this_cpu = this_rq->cpu, cpu; 2027 bool resched = false; 2028 struct task_struct *p; 2029 struct rq *src_rq; 2030 2031 if (likely(!rt_overloaded(this_rq))) 2032 return; 2033 2034 /* 2035 * Match the barrier from rt_set_overloaded; this guarantees that if we 2036 * see overloaded we must also see the rto_mask bit. 2037 */ 2038 smp_rmb(); 2039 2040 #ifdef HAVE_RT_PUSH_IPI 2041 if (sched_feat(RT_PUSH_IPI)) { 2042 tell_cpu_to_push(this_rq); 2043 return; 2044 } 2045 #endif 2046 2047 for_each_cpu(cpu, this_rq->rd->rto_mask) { 2048 if (this_cpu == cpu) 2049 continue; 2050 2051 src_rq = cpu_rq(cpu); 2052 2053 /* 2054 * Don't bother taking the src_rq->lock if the next highest 2055 * task is known to be lower-priority than our current task. 2056 * This may look racy, but if this value is about to go 2057 * logically higher, the src_rq will push this task away. 2058 * And if its going logically lower, we do not care 2059 */ 2060 if (src_rq->rt.highest_prio.next >= 2061 this_rq->rt.highest_prio.curr) 2062 continue; 2063 2064 /* 2065 * We can potentially drop this_rq's lock in 2066 * double_lock_balance, and another CPU could 2067 * alter this_rq 2068 */ 2069 double_lock_balance(this_rq, src_rq); 2070 2071 /* 2072 * We can pull only a task, which is pushable 2073 * on its rq, and no others. 2074 */ 2075 p = pick_highest_pushable_task(src_rq, this_cpu); 2076 2077 /* 2078 * Do we have an RT task that preempts 2079 * the to-be-scheduled task? 2080 */ 2081 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 2082 WARN_ON(p == src_rq->curr); 2083 WARN_ON(!task_on_rq_queued(p)); 2084 2085 /* 2086 * There's a chance that p is higher in priority 2087 * than what's currently running on its cpu. 2088 * This is just that p is wakeing up and hasn't 2089 * had a chance to schedule. We only pull 2090 * p if it is lower in priority than the 2091 * current task on the run queue 2092 */ 2093 if (p->prio < src_rq->curr->prio) 2094 goto skip; 2095 2096 resched = true; 2097 2098 deactivate_task(src_rq, p, 0); 2099 set_task_cpu(p, this_cpu); 2100 activate_task(this_rq, p, 0); 2101 /* 2102 * We continue with the search, just in 2103 * case there's an even higher prio task 2104 * in another runqueue. (low likelihood 2105 * but possible) 2106 */ 2107 } 2108 skip: 2109 double_unlock_balance(this_rq, src_rq); 2110 } 2111 2112 if (resched) 2113 resched_curr(this_rq); 2114 } 2115 2116 /* 2117 * If we are not running and we are not going to reschedule soon, we should 2118 * try to push tasks away now 2119 */ 2120 static void task_woken_rt(struct rq *rq, struct task_struct *p) 2121 { 2122 if (!task_running(rq, p) && 2123 !test_tsk_need_resched(rq->curr) && 2124 p->nr_cpus_allowed > 1 && 2125 (dl_task(rq->curr) || rt_task(rq->curr)) && 2126 (rq->curr->nr_cpus_allowed < 2 || 2127 rq->curr->prio <= p->prio)) 2128 push_rt_tasks(rq); 2129 } 2130 2131 /* Assumes rq->lock is held */ 2132 static void rq_online_rt(struct rq *rq) 2133 { 2134 if (rq->rt.overloaded) 2135 rt_set_overload(rq); 2136 2137 __enable_runtime(rq); 2138 2139 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2140 } 2141 2142 /* Assumes rq->lock is held */ 2143 static void rq_offline_rt(struct rq *rq) 2144 { 2145 if (rq->rt.overloaded) 2146 rt_clear_overload(rq); 2147 2148 __disable_runtime(rq); 2149 2150 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 2151 } 2152 2153 /* 2154 * When switch from the rt queue, we bring ourselves to a position 2155 * that we might want to pull RT tasks from other runqueues. 2156 */ 2157 static void switched_from_rt(struct rq *rq, struct task_struct *p) 2158 { 2159 /* 2160 * If there are other RT tasks then we will reschedule 2161 * and the scheduling of the other RT tasks will handle 2162 * the balancing. But if we are the last RT task 2163 * we may need to handle the pulling of RT tasks 2164 * now. 2165 */ 2166 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 2167 return; 2168 2169 queue_pull_task(rq); 2170 } 2171 2172 void __init init_sched_rt_class(void) 2173 { 2174 unsigned int i; 2175 2176 for_each_possible_cpu(i) { 2177 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 2178 GFP_KERNEL, cpu_to_node(i)); 2179 } 2180 } 2181 #endif /* CONFIG_SMP */ 2182 2183 /* 2184 * When switching a task to RT, we may overload the runqueue 2185 * with RT tasks. In this case we try to push them off to 2186 * other runqueues. 2187 */ 2188 static void switched_to_rt(struct rq *rq, struct task_struct *p) 2189 { 2190 /* 2191 * If we are already running, then there's nothing 2192 * that needs to be done. But if we are not running 2193 * we may need to preempt the current running task. 2194 * If that current running task is also an RT task 2195 * then see if we can move to another run queue. 2196 */ 2197 if (task_on_rq_queued(p) && rq->curr != p) { 2198 #ifdef CONFIG_SMP 2199 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) 2200 queue_push_tasks(rq); 2201 #else 2202 if (p->prio < rq->curr->prio) 2203 resched_curr(rq); 2204 #endif /* CONFIG_SMP */ 2205 } 2206 } 2207 2208 /* 2209 * Priority of the task has changed. This may cause 2210 * us to initiate a push or pull. 2211 */ 2212 static void 2213 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2214 { 2215 if (!task_on_rq_queued(p)) 2216 return; 2217 2218 if (rq->curr == p) { 2219 #ifdef CONFIG_SMP 2220 /* 2221 * If our priority decreases while running, we 2222 * may need to pull tasks to this runqueue. 2223 */ 2224 if (oldprio < p->prio) 2225 queue_pull_task(rq); 2226 2227 /* 2228 * If there's a higher priority task waiting to run 2229 * then reschedule. 2230 */ 2231 if (p->prio > rq->rt.highest_prio.curr) 2232 resched_curr(rq); 2233 #else 2234 /* For UP simply resched on drop of prio */ 2235 if (oldprio < p->prio) 2236 resched_curr(rq); 2237 #endif /* CONFIG_SMP */ 2238 } else { 2239 /* 2240 * This task is not running, but if it is 2241 * greater than the current running task 2242 * then reschedule. 2243 */ 2244 if (p->prio < rq->curr->prio) 2245 resched_curr(rq); 2246 } 2247 } 2248 2249 static void watchdog(struct rq *rq, struct task_struct *p) 2250 { 2251 unsigned long soft, hard; 2252 2253 /* max may change after cur was read, this will be fixed next tick */ 2254 soft = task_rlimit(p, RLIMIT_RTTIME); 2255 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2256 2257 if (soft != RLIM_INFINITY) { 2258 unsigned long next; 2259 2260 if (p->rt.watchdog_stamp != jiffies) { 2261 p->rt.timeout++; 2262 p->rt.watchdog_stamp = jiffies; 2263 } 2264 2265 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2266 if (p->rt.timeout > next) 2267 p->cputime_expires.sched_exp = p->se.sum_exec_runtime; 2268 } 2269 } 2270 2271 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2272 { 2273 struct sched_rt_entity *rt_se = &p->rt; 2274 2275 update_curr_rt(rq); 2276 2277 watchdog(rq, p); 2278 2279 /* 2280 * RR tasks need a special form of timeslice management. 2281 * FIFO tasks have no timeslices. 2282 */ 2283 if (p->policy != SCHED_RR) 2284 return; 2285 2286 if (--p->rt.time_slice) 2287 return; 2288 2289 p->rt.time_slice = sched_rr_timeslice; 2290 2291 /* 2292 * Requeue to the end of queue if we (and all of our ancestors) are not 2293 * the only element on the queue 2294 */ 2295 for_each_sched_rt_entity(rt_se) { 2296 if (rt_se->run_list.prev != rt_se->run_list.next) { 2297 requeue_task_rt(rq, p, 0); 2298 resched_curr(rq); 2299 return; 2300 } 2301 } 2302 } 2303 2304 static void set_curr_task_rt(struct rq *rq) 2305 { 2306 struct task_struct *p = rq->curr; 2307 2308 p->se.exec_start = rq_clock_task(rq); 2309 2310 /* The running task is never eligible for pushing */ 2311 dequeue_pushable_task(rq, p); 2312 } 2313 2314 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2315 { 2316 /* 2317 * Time slice is 0 for SCHED_FIFO tasks 2318 */ 2319 if (task->policy == SCHED_RR) 2320 return sched_rr_timeslice; 2321 else 2322 return 0; 2323 } 2324 2325 const struct sched_class rt_sched_class = { 2326 .next = &fair_sched_class, 2327 .enqueue_task = enqueue_task_rt, 2328 .dequeue_task = dequeue_task_rt, 2329 .yield_task = yield_task_rt, 2330 2331 .check_preempt_curr = check_preempt_curr_rt, 2332 2333 .pick_next_task = pick_next_task_rt, 2334 .put_prev_task = put_prev_task_rt, 2335 2336 #ifdef CONFIG_SMP 2337 .select_task_rq = select_task_rq_rt, 2338 2339 .set_cpus_allowed = set_cpus_allowed_common, 2340 .rq_online = rq_online_rt, 2341 .rq_offline = rq_offline_rt, 2342 .task_woken = task_woken_rt, 2343 .switched_from = switched_from_rt, 2344 #endif 2345 2346 .set_curr_task = set_curr_task_rt, 2347 .task_tick = task_tick_rt, 2348 2349 .get_rr_interval = get_rr_interval_rt, 2350 2351 .prio_changed = prio_changed_rt, 2352 .switched_to = switched_to_rt, 2353 2354 .update_curr = update_curr_rt, 2355 }; 2356 2357 #ifdef CONFIG_SCHED_DEBUG 2358 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2359 2360 void print_rt_stats(struct seq_file *m, int cpu) 2361 { 2362 rt_rq_iter_t iter; 2363 struct rt_rq *rt_rq; 2364 2365 rcu_read_lock(); 2366 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2367 print_rt_rq(m, cpu, rt_rq); 2368 rcu_read_unlock(); 2369 } 2370 #endif /* CONFIG_SCHED_DEBUG */ 2371