1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 4 * policies) 5 */ 6 7 int sched_rr_timeslice = RR_TIMESLICE; 8 /* More than 4 hours if BW_SHIFT equals 20. */ 9 static const u64 max_rt_runtime = MAX_BW; 10 11 /* 12 * period over which we measure -rt task CPU usage in us. 13 * default: 1s 14 */ 15 int sysctl_sched_rt_period = 1000000; 16 17 /* 18 * part of the period that we allow rt tasks to run in us. 19 * default: 0.95s 20 */ 21 int sysctl_sched_rt_runtime = 950000; 22 23 #ifdef CONFIG_SYSCTL 24 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ; 25 static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer, 26 size_t *lenp, loff_t *ppos); 27 static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer, 28 size_t *lenp, loff_t *ppos); 29 static struct ctl_table sched_rt_sysctls[] = { 30 { 31 .procname = "sched_rt_period_us", 32 .data = &sysctl_sched_rt_period, 33 .maxlen = sizeof(int), 34 .mode = 0644, 35 .proc_handler = sched_rt_handler, 36 .extra1 = SYSCTL_ONE, 37 .extra2 = SYSCTL_INT_MAX, 38 }, 39 { 40 .procname = "sched_rt_runtime_us", 41 .data = &sysctl_sched_rt_runtime, 42 .maxlen = sizeof(int), 43 .mode = 0644, 44 .proc_handler = sched_rt_handler, 45 .extra1 = SYSCTL_NEG_ONE, 46 .extra2 = (void *)&sysctl_sched_rt_period, 47 }, 48 { 49 .procname = "sched_rr_timeslice_ms", 50 .data = &sysctl_sched_rr_timeslice, 51 .maxlen = sizeof(int), 52 .mode = 0644, 53 .proc_handler = sched_rr_handler, 54 }, 55 }; 56 57 static int __init sched_rt_sysctl_init(void) 58 { 59 register_sysctl_init("kernel", sched_rt_sysctls); 60 return 0; 61 } 62 late_initcall(sched_rt_sysctl_init); 63 #endif 64 65 void init_rt_rq(struct rt_rq *rt_rq) 66 { 67 struct rt_prio_array *array; 68 int i; 69 70 array = &rt_rq->active; 71 for (i = 0; i < MAX_RT_PRIO; i++) { 72 INIT_LIST_HEAD(array->queue + i); 73 __clear_bit(i, array->bitmap); 74 } 75 /* delimiter for bitsearch: */ 76 __set_bit(MAX_RT_PRIO, array->bitmap); 77 78 #if defined CONFIG_SMP 79 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 80 rt_rq->highest_prio.next = MAX_RT_PRIO-1; 81 rt_rq->overloaded = 0; 82 plist_head_init(&rt_rq->pushable_tasks); 83 #endif /* CONFIG_SMP */ 84 /* We start is dequeued state, because no RT tasks are queued */ 85 rt_rq->rt_queued = 0; 86 87 #ifdef CONFIG_RT_GROUP_SCHED 88 rt_rq->rt_time = 0; 89 rt_rq->rt_throttled = 0; 90 rt_rq->rt_runtime = 0; 91 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 92 #endif 93 } 94 95 #ifdef CONFIG_RT_GROUP_SCHED 96 97 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 98 99 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 100 { 101 struct rt_bandwidth *rt_b = 102 container_of(timer, struct rt_bandwidth, rt_period_timer); 103 int idle = 0; 104 int overrun; 105 106 raw_spin_lock(&rt_b->rt_runtime_lock); 107 for (;;) { 108 overrun = hrtimer_forward_now(timer, rt_b->rt_period); 109 if (!overrun) 110 break; 111 112 raw_spin_unlock(&rt_b->rt_runtime_lock); 113 idle = do_sched_rt_period_timer(rt_b, overrun); 114 raw_spin_lock(&rt_b->rt_runtime_lock); 115 } 116 if (idle) 117 rt_b->rt_period_active = 0; 118 raw_spin_unlock(&rt_b->rt_runtime_lock); 119 120 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 121 } 122 123 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 124 { 125 rt_b->rt_period = ns_to_ktime(period); 126 rt_b->rt_runtime = runtime; 127 128 raw_spin_lock_init(&rt_b->rt_runtime_lock); 129 130 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC, 131 HRTIMER_MODE_REL_HARD); 132 rt_b->rt_period_timer.function = sched_rt_period_timer; 133 } 134 135 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b) 136 { 137 raw_spin_lock(&rt_b->rt_runtime_lock); 138 if (!rt_b->rt_period_active) { 139 rt_b->rt_period_active = 1; 140 /* 141 * SCHED_DEADLINE updates the bandwidth, as a run away 142 * RT task with a DL task could hog a CPU. But DL does 143 * not reset the period. If a deadline task was running 144 * without an RT task running, it can cause RT tasks to 145 * throttle when they start up. Kick the timer right away 146 * to update the period. 147 */ 148 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 149 hrtimer_start_expires(&rt_b->rt_period_timer, 150 HRTIMER_MODE_ABS_PINNED_HARD); 151 } 152 raw_spin_unlock(&rt_b->rt_runtime_lock); 153 } 154 155 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 156 { 157 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 158 return; 159 160 do_start_rt_bandwidth(rt_b); 161 } 162 163 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 164 { 165 hrtimer_cancel(&rt_b->rt_period_timer); 166 } 167 168 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 169 170 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 171 { 172 #ifdef CONFIG_SCHED_DEBUG 173 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 174 #endif 175 return container_of(rt_se, struct task_struct, rt); 176 } 177 178 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 179 { 180 return rt_rq->rq; 181 } 182 183 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 184 { 185 return rt_se->rt_rq; 186 } 187 188 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 189 { 190 struct rt_rq *rt_rq = rt_se->rt_rq; 191 192 return rt_rq->rq; 193 } 194 195 void unregister_rt_sched_group(struct task_group *tg) 196 { 197 if (tg->rt_se) 198 destroy_rt_bandwidth(&tg->rt_bandwidth); 199 } 200 201 void free_rt_sched_group(struct task_group *tg) 202 { 203 int i; 204 205 for_each_possible_cpu(i) { 206 if (tg->rt_rq) 207 kfree(tg->rt_rq[i]); 208 if (tg->rt_se) 209 kfree(tg->rt_se[i]); 210 } 211 212 kfree(tg->rt_rq); 213 kfree(tg->rt_se); 214 } 215 216 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 217 struct sched_rt_entity *rt_se, int cpu, 218 struct sched_rt_entity *parent) 219 { 220 struct rq *rq = cpu_rq(cpu); 221 222 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 223 rt_rq->rt_nr_boosted = 0; 224 rt_rq->rq = rq; 225 rt_rq->tg = tg; 226 227 tg->rt_rq[cpu] = rt_rq; 228 tg->rt_se[cpu] = rt_se; 229 230 if (!rt_se) 231 return; 232 233 if (!parent) 234 rt_se->rt_rq = &rq->rt; 235 else 236 rt_se->rt_rq = parent->my_q; 237 238 rt_se->my_q = rt_rq; 239 rt_se->parent = parent; 240 INIT_LIST_HEAD(&rt_se->run_list); 241 } 242 243 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 244 { 245 struct rt_rq *rt_rq; 246 struct sched_rt_entity *rt_se; 247 int i; 248 249 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL); 250 if (!tg->rt_rq) 251 goto err; 252 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL); 253 if (!tg->rt_se) 254 goto err; 255 256 init_rt_bandwidth(&tg->rt_bandwidth, ktime_to_ns(global_rt_period()), 0); 257 258 for_each_possible_cpu(i) { 259 rt_rq = kzalloc_node(sizeof(struct rt_rq), 260 GFP_KERNEL, cpu_to_node(i)); 261 if (!rt_rq) 262 goto err; 263 264 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 265 GFP_KERNEL, cpu_to_node(i)); 266 if (!rt_se) 267 goto err_free_rq; 268 269 init_rt_rq(rt_rq); 270 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 271 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 272 } 273 274 return 1; 275 276 err_free_rq: 277 kfree(rt_rq); 278 err: 279 return 0; 280 } 281 282 #else /* CONFIG_RT_GROUP_SCHED */ 283 284 #define rt_entity_is_task(rt_se) (1) 285 286 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 287 { 288 return container_of(rt_se, struct task_struct, rt); 289 } 290 291 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 292 { 293 return container_of(rt_rq, struct rq, rt); 294 } 295 296 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 297 { 298 struct task_struct *p = rt_task_of(rt_se); 299 300 return task_rq(p); 301 } 302 303 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 304 { 305 struct rq *rq = rq_of_rt_se(rt_se); 306 307 return &rq->rt; 308 } 309 310 void unregister_rt_sched_group(struct task_group *tg) { } 311 312 void free_rt_sched_group(struct task_group *tg) { } 313 314 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 315 { 316 return 1; 317 } 318 #endif /* CONFIG_RT_GROUP_SCHED */ 319 320 #ifdef CONFIG_SMP 321 322 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 323 { 324 /* Try to pull RT tasks here if we lower this rq's prio */ 325 return rq->online && rq->rt.highest_prio.curr > prev->prio; 326 } 327 328 static inline int rt_overloaded(struct rq *rq) 329 { 330 return atomic_read(&rq->rd->rto_count); 331 } 332 333 static inline void rt_set_overload(struct rq *rq) 334 { 335 if (!rq->online) 336 return; 337 338 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 339 /* 340 * Make sure the mask is visible before we set 341 * the overload count. That is checked to determine 342 * if we should look at the mask. It would be a shame 343 * if we looked at the mask, but the mask was not 344 * updated yet. 345 * 346 * Matched by the barrier in pull_rt_task(). 347 */ 348 smp_wmb(); 349 atomic_inc(&rq->rd->rto_count); 350 } 351 352 static inline void rt_clear_overload(struct rq *rq) 353 { 354 if (!rq->online) 355 return; 356 357 /* the order here really doesn't matter */ 358 atomic_dec(&rq->rd->rto_count); 359 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 360 } 361 362 static inline int has_pushable_tasks(struct rq *rq) 363 { 364 return !plist_head_empty(&rq->rt.pushable_tasks); 365 } 366 367 static DEFINE_PER_CPU(struct balance_callback, rt_push_head); 368 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head); 369 370 static void push_rt_tasks(struct rq *); 371 static void pull_rt_task(struct rq *); 372 373 static inline void rt_queue_push_tasks(struct rq *rq) 374 { 375 if (!has_pushable_tasks(rq)) 376 return; 377 378 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); 379 } 380 381 static inline void rt_queue_pull_task(struct rq *rq) 382 { 383 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); 384 } 385 386 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 387 { 388 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 389 plist_node_init(&p->pushable_tasks, p->prio); 390 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 391 392 /* Update the highest prio pushable task */ 393 if (p->prio < rq->rt.highest_prio.next) 394 rq->rt.highest_prio.next = p->prio; 395 396 if (!rq->rt.overloaded) { 397 rt_set_overload(rq); 398 rq->rt.overloaded = 1; 399 } 400 } 401 402 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 403 { 404 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 405 406 /* Update the new highest prio pushable task */ 407 if (has_pushable_tasks(rq)) { 408 p = plist_first_entry(&rq->rt.pushable_tasks, 409 struct task_struct, pushable_tasks); 410 rq->rt.highest_prio.next = p->prio; 411 } else { 412 rq->rt.highest_prio.next = MAX_RT_PRIO-1; 413 414 if (rq->rt.overloaded) { 415 rt_clear_overload(rq); 416 rq->rt.overloaded = 0; 417 } 418 } 419 } 420 421 #else 422 423 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 424 { 425 } 426 427 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 428 { 429 } 430 431 static inline void rt_queue_push_tasks(struct rq *rq) 432 { 433 } 434 #endif /* CONFIG_SMP */ 435 436 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 437 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count); 438 439 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 440 { 441 return rt_se->on_rq; 442 } 443 444 #ifdef CONFIG_UCLAMP_TASK 445 /* 446 * Verify the fitness of task @p to run on @cpu taking into account the uclamp 447 * settings. 448 * 449 * This check is only important for heterogeneous systems where uclamp_min value 450 * is higher than the capacity of a @cpu. For non-heterogeneous system this 451 * function will always return true. 452 * 453 * The function will return true if the capacity of the @cpu is >= the 454 * uclamp_min and false otherwise. 455 * 456 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min 457 * > uclamp_max. 458 */ 459 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 460 { 461 unsigned int min_cap; 462 unsigned int max_cap; 463 unsigned int cpu_cap; 464 465 /* Only heterogeneous systems can benefit from this check */ 466 if (!sched_asym_cpucap_active()) 467 return true; 468 469 min_cap = uclamp_eff_value(p, UCLAMP_MIN); 470 max_cap = uclamp_eff_value(p, UCLAMP_MAX); 471 472 cpu_cap = arch_scale_cpu_capacity(cpu); 473 474 return cpu_cap >= min(min_cap, max_cap); 475 } 476 #else 477 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 478 { 479 return true; 480 } 481 #endif 482 483 #ifdef CONFIG_RT_GROUP_SCHED 484 485 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 486 { 487 if (!rt_rq->tg) 488 return RUNTIME_INF; 489 490 return rt_rq->rt_runtime; 491 } 492 493 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 494 { 495 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 496 } 497 498 typedef struct task_group *rt_rq_iter_t; 499 500 static inline struct task_group *next_task_group(struct task_group *tg) 501 { 502 do { 503 tg = list_entry_rcu(tg->list.next, 504 typeof(struct task_group), list); 505 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 506 507 if (&tg->list == &task_groups) 508 tg = NULL; 509 510 return tg; 511 } 512 513 #define for_each_rt_rq(rt_rq, iter, rq) \ 514 for (iter = container_of(&task_groups, typeof(*iter), list); \ 515 (iter = next_task_group(iter)) && \ 516 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 517 518 #define for_each_sched_rt_entity(rt_se) \ 519 for (; rt_se; rt_se = rt_se->parent) 520 521 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 522 { 523 return rt_se->my_q; 524 } 525 526 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 527 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 528 529 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 530 { 531 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 532 struct rq *rq = rq_of_rt_rq(rt_rq); 533 struct sched_rt_entity *rt_se; 534 535 int cpu = cpu_of(rq); 536 537 rt_se = rt_rq->tg->rt_se[cpu]; 538 539 if (rt_rq->rt_nr_running) { 540 if (!rt_se) 541 enqueue_top_rt_rq(rt_rq); 542 else if (!on_rt_rq(rt_se)) 543 enqueue_rt_entity(rt_se, 0); 544 545 if (rt_rq->highest_prio.curr < curr->prio) 546 resched_curr(rq); 547 } 548 } 549 550 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 551 { 552 struct sched_rt_entity *rt_se; 553 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 554 555 rt_se = rt_rq->tg->rt_se[cpu]; 556 557 if (!rt_se) { 558 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running); 559 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 560 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0); 561 } 562 else if (on_rt_rq(rt_se)) 563 dequeue_rt_entity(rt_se, 0); 564 } 565 566 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 567 { 568 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 569 } 570 571 static int rt_se_boosted(struct sched_rt_entity *rt_se) 572 { 573 struct rt_rq *rt_rq = group_rt_rq(rt_se); 574 struct task_struct *p; 575 576 if (rt_rq) 577 return !!rt_rq->rt_nr_boosted; 578 579 p = rt_task_of(rt_se); 580 return p->prio != p->normal_prio; 581 } 582 583 #ifdef CONFIG_SMP 584 static inline const struct cpumask *sched_rt_period_mask(void) 585 { 586 return this_rq()->rd->span; 587 } 588 #else 589 static inline const struct cpumask *sched_rt_period_mask(void) 590 { 591 return cpu_online_mask; 592 } 593 #endif 594 595 static inline 596 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 597 { 598 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 599 } 600 601 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 602 { 603 return &rt_rq->tg->rt_bandwidth; 604 } 605 606 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 607 { 608 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 609 610 return (hrtimer_active(&rt_b->rt_period_timer) || 611 rt_rq->rt_time < rt_b->rt_runtime); 612 } 613 614 #ifdef CONFIG_SMP 615 /* 616 * We ran out of runtime, see if we can borrow some from our neighbours. 617 */ 618 static void do_balance_runtime(struct rt_rq *rt_rq) 619 { 620 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 621 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 622 int i, weight; 623 u64 rt_period; 624 625 weight = cpumask_weight(rd->span); 626 627 raw_spin_lock(&rt_b->rt_runtime_lock); 628 rt_period = ktime_to_ns(rt_b->rt_period); 629 for_each_cpu(i, rd->span) { 630 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 631 s64 diff; 632 633 if (iter == rt_rq) 634 continue; 635 636 raw_spin_lock(&iter->rt_runtime_lock); 637 /* 638 * Either all rqs have inf runtime and there's nothing to steal 639 * or __disable_runtime() below sets a specific rq to inf to 640 * indicate its been disabled and disallow stealing. 641 */ 642 if (iter->rt_runtime == RUNTIME_INF) 643 goto next; 644 645 /* 646 * From runqueues with spare time, take 1/n part of their 647 * spare time, but no more than our period. 648 */ 649 diff = iter->rt_runtime - iter->rt_time; 650 if (diff > 0) { 651 diff = div_u64((u64)diff, weight); 652 if (rt_rq->rt_runtime + diff > rt_period) 653 diff = rt_period - rt_rq->rt_runtime; 654 iter->rt_runtime -= diff; 655 rt_rq->rt_runtime += diff; 656 if (rt_rq->rt_runtime == rt_period) { 657 raw_spin_unlock(&iter->rt_runtime_lock); 658 break; 659 } 660 } 661 next: 662 raw_spin_unlock(&iter->rt_runtime_lock); 663 } 664 raw_spin_unlock(&rt_b->rt_runtime_lock); 665 } 666 667 /* 668 * Ensure this RQ takes back all the runtime it lend to its neighbours. 669 */ 670 static void __disable_runtime(struct rq *rq) 671 { 672 struct root_domain *rd = rq->rd; 673 rt_rq_iter_t iter; 674 struct rt_rq *rt_rq; 675 676 if (unlikely(!scheduler_running)) 677 return; 678 679 for_each_rt_rq(rt_rq, iter, rq) { 680 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 681 s64 want; 682 int i; 683 684 raw_spin_lock(&rt_b->rt_runtime_lock); 685 raw_spin_lock(&rt_rq->rt_runtime_lock); 686 /* 687 * Either we're all inf and nobody needs to borrow, or we're 688 * already disabled and thus have nothing to do, or we have 689 * exactly the right amount of runtime to take out. 690 */ 691 if (rt_rq->rt_runtime == RUNTIME_INF || 692 rt_rq->rt_runtime == rt_b->rt_runtime) 693 goto balanced; 694 raw_spin_unlock(&rt_rq->rt_runtime_lock); 695 696 /* 697 * Calculate the difference between what we started out with 698 * and what we current have, that's the amount of runtime 699 * we lend and now have to reclaim. 700 */ 701 want = rt_b->rt_runtime - rt_rq->rt_runtime; 702 703 /* 704 * Greedy reclaim, take back as much as we can. 705 */ 706 for_each_cpu(i, rd->span) { 707 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 708 s64 diff; 709 710 /* 711 * Can't reclaim from ourselves or disabled runqueues. 712 */ 713 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 714 continue; 715 716 raw_spin_lock(&iter->rt_runtime_lock); 717 if (want > 0) { 718 diff = min_t(s64, iter->rt_runtime, want); 719 iter->rt_runtime -= diff; 720 want -= diff; 721 } else { 722 iter->rt_runtime -= want; 723 want -= want; 724 } 725 raw_spin_unlock(&iter->rt_runtime_lock); 726 727 if (!want) 728 break; 729 } 730 731 raw_spin_lock(&rt_rq->rt_runtime_lock); 732 /* 733 * We cannot be left wanting - that would mean some runtime 734 * leaked out of the system. 735 */ 736 WARN_ON_ONCE(want); 737 balanced: 738 /* 739 * Disable all the borrow logic by pretending we have inf 740 * runtime - in which case borrowing doesn't make sense. 741 */ 742 rt_rq->rt_runtime = RUNTIME_INF; 743 rt_rq->rt_throttled = 0; 744 raw_spin_unlock(&rt_rq->rt_runtime_lock); 745 raw_spin_unlock(&rt_b->rt_runtime_lock); 746 747 /* Make rt_rq available for pick_next_task() */ 748 sched_rt_rq_enqueue(rt_rq); 749 } 750 } 751 752 static void __enable_runtime(struct rq *rq) 753 { 754 rt_rq_iter_t iter; 755 struct rt_rq *rt_rq; 756 757 if (unlikely(!scheduler_running)) 758 return; 759 760 /* 761 * Reset each runqueue's bandwidth settings 762 */ 763 for_each_rt_rq(rt_rq, iter, rq) { 764 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 765 766 raw_spin_lock(&rt_b->rt_runtime_lock); 767 raw_spin_lock(&rt_rq->rt_runtime_lock); 768 rt_rq->rt_runtime = rt_b->rt_runtime; 769 rt_rq->rt_time = 0; 770 rt_rq->rt_throttled = 0; 771 raw_spin_unlock(&rt_rq->rt_runtime_lock); 772 raw_spin_unlock(&rt_b->rt_runtime_lock); 773 } 774 } 775 776 static void balance_runtime(struct rt_rq *rt_rq) 777 { 778 if (!sched_feat(RT_RUNTIME_SHARE)) 779 return; 780 781 if (rt_rq->rt_time > rt_rq->rt_runtime) { 782 raw_spin_unlock(&rt_rq->rt_runtime_lock); 783 do_balance_runtime(rt_rq); 784 raw_spin_lock(&rt_rq->rt_runtime_lock); 785 } 786 } 787 #else /* !CONFIG_SMP */ 788 static inline void balance_runtime(struct rt_rq *rt_rq) {} 789 #endif /* CONFIG_SMP */ 790 791 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 792 { 793 int i, idle = 1, throttled = 0; 794 const struct cpumask *span; 795 796 span = sched_rt_period_mask(); 797 798 /* 799 * FIXME: isolated CPUs should really leave the root task group, 800 * whether they are isolcpus or were isolated via cpusets, lest 801 * the timer run on a CPU which does not service all runqueues, 802 * potentially leaving other CPUs indefinitely throttled. If 803 * isolation is really required, the user will turn the throttle 804 * off to kill the perturbations it causes anyway. Meanwhile, 805 * this maintains functionality for boot and/or troubleshooting. 806 */ 807 if (rt_b == &root_task_group.rt_bandwidth) 808 span = cpu_online_mask; 809 810 for_each_cpu(i, span) { 811 int enqueue = 0; 812 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 813 struct rq *rq = rq_of_rt_rq(rt_rq); 814 struct rq_flags rf; 815 int skip; 816 817 /* 818 * When span == cpu_online_mask, taking each rq->lock 819 * can be time-consuming. Try to avoid it when possible. 820 */ 821 raw_spin_lock(&rt_rq->rt_runtime_lock); 822 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF) 823 rt_rq->rt_runtime = rt_b->rt_runtime; 824 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; 825 raw_spin_unlock(&rt_rq->rt_runtime_lock); 826 if (skip) 827 continue; 828 829 rq_lock(rq, &rf); 830 update_rq_clock(rq); 831 832 if (rt_rq->rt_time) { 833 u64 runtime; 834 835 raw_spin_lock(&rt_rq->rt_runtime_lock); 836 if (rt_rq->rt_throttled) 837 balance_runtime(rt_rq); 838 runtime = rt_rq->rt_runtime; 839 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 840 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 841 rt_rq->rt_throttled = 0; 842 enqueue = 1; 843 844 /* 845 * When we're idle and a woken (rt) task is 846 * throttled wakeup_preempt() will set 847 * skip_update and the time between the wakeup 848 * and this unthrottle will get accounted as 849 * 'runtime'. 850 */ 851 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 852 rq_clock_cancel_skipupdate(rq); 853 } 854 if (rt_rq->rt_time || rt_rq->rt_nr_running) 855 idle = 0; 856 raw_spin_unlock(&rt_rq->rt_runtime_lock); 857 } else if (rt_rq->rt_nr_running) { 858 idle = 0; 859 if (!rt_rq_throttled(rt_rq)) 860 enqueue = 1; 861 } 862 if (rt_rq->rt_throttled) 863 throttled = 1; 864 865 if (enqueue) 866 sched_rt_rq_enqueue(rt_rq); 867 rq_unlock(rq, &rf); 868 } 869 870 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 871 return 1; 872 873 return idle; 874 } 875 876 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 877 { 878 u64 runtime = sched_rt_runtime(rt_rq); 879 880 if (rt_rq->rt_throttled) 881 return rt_rq_throttled(rt_rq); 882 883 if (runtime >= sched_rt_period(rt_rq)) 884 return 0; 885 886 balance_runtime(rt_rq); 887 runtime = sched_rt_runtime(rt_rq); 888 if (runtime == RUNTIME_INF) 889 return 0; 890 891 if (rt_rq->rt_time > runtime) { 892 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 893 894 /* 895 * Don't actually throttle groups that have no runtime assigned 896 * but accrue some time due to boosting. 897 */ 898 if (likely(rt_b->rt_runtime)) { 899 rt_rq->rt_throttled = 1; 900 printk_deferred_once("sched: RT throttling activated\n"); 901 } else { 902 /* 903 * In case we did anyway, make it go away, 904 * replenishment is a joke, since it will replenish us 905 * with exactly 0 ns. 906 */ 907 rt_rq->rt_time = 0; 908 } 909 910 if (rt_rq_throttled(rt_rq)) { 911 sched_rt_rq_dequeue(rt_rq); 912 return 1; 913 } 914 } 915 916 return 0; 917 } 918 919 #else /* !CONFIG_RT_GROUP_SCHED */ 920 921 typedef struct rt_rq *rt_rq_iter_t; 922 923 #define for_each_rt_rq(rt_rq, iter, rq) \ 924 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 925 926 #define for_each_sched_rt_entity(rt_se) \ 927 for (; rt_se; rt_se = NULL) 928 929 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 930 { 931 return NULL; 932 } 933 934 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 935 { 936 struct rq *rq = rq_of_rt_rq(rt_rq); 937 938 if (!rt_rq->rt_nr_running) 939 return; 940 941 enqueue_top_rt_rq(rt_rq); 942 resched_curr(rq); 943 } 944 945 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 946 { 947 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running); 948 } 949 950 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 951 { 952 return false; 953 } 954 955 static inline const struct cpumask *sched_rt_period_mask(void) 956 { 957 return cpu_online_mask; 958 } 959 960 static inline 961 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 962 { 963 return &cpu_rq(cpu)->rt; 964 } 965 966 #ifdef CONFIG_SMP 967 static void __enable_runtime(struct rq *rq) { } 968 static void __disable_runtime(struct rq *rq) { } 969 #endif 970 971 #endif /* CONFIG_RT_GROUP_SCHED */ 972 973 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 974 { 975 #ifdef CONFIG_RT_GROUP_SCHED 976 struct rt_rq *rt_rq = group_rt_rq(rt_se); 977 978 if (rt_rq) 979 return rt_rq->highest_prio.curr; 980 #endif 981 982 return rt_task_of(rt_se)->prio; 983 } 984 985 /* 986 * Update the current task's runtime statistics. Skip current tasks that 987 * are not in our scheduling class. 988 */ 989 static void update_curr_rt(struct rq *rq) 990 { 991 struct task_struct *curr = rq->curr; 992 s64 delta_exec; 993 994 if (curr->sched_class != &rt_sched_class) 995 return; 996 997 delta_exec = update_curr_common(rq); 998 if (unlikely(delta_exec <= 0)) 999 return; 1000 1001 #ifdef CONFIG_RT_GROUP_SCHED 1002 struct sched_rt_entity *rt_se = &curr->rt; 1003 1004 if (!rt_bandwidth_enabled()) 1005 return; 1006 1007 for_each_sched_rt_entity(rt_se) { 1008 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1009 int exceeded; 1010 1011 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 1012 raw_spin_lock(&rt_rq->rt_runtime_lock); 1013 rt_rq->rt_time += delta_exec; 1014 exceeded = sched_rt_runtime_exceeded(rt_rq); 1015 if (exceeded) 1016 resched_curr(rq); 1017 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1018 if (exceeded) 1019 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq)); 1020 } 1021 } 1022 #endif 1023 } 1024 1025 static void 1026 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count) 1027 { 1028 struct rq *rq = rq_of_rt_rq(rt_rq); 1029 1030 BUG_ON(&rq->rt != rt_rq); 1031 1032 if (!rt_rq->rt_queued) 1033 return; 1034 1035 BUG_ON(!rq->nr_running); 1036 1037 sub_nr_running(rq, count); 1038 rt_rq->rt_queued = 0; 1039 1040 } 1041 1042 static void 1043 enqueue_top_rt_rq(struct rt_rq *rt_rq) 1044 { 1045 struct rq *rq = rq_of_rt_rq(rt_rq); 1046 1047 BUG_ON(&rq->rt != rt_rq); 1048 1049 if (rt_rq->rt_queued) 1050 return; 1051 1052 if (rt_rq_throttled(rt_rq)) 1053 return; 1054 1055 if (rt_rq->rt_nr_running) { 1056 add_nr_running(rq, rt_rq->rt_nr_running); 1057 rt_rq->rt_queued = 1; 1058 } 1059 1060 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 1061 cpufreq_update_util(rq, 0); 1062 } 1063 1064 #if defined CONFIG_SMP 1065 1066 static void 1067 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1068 { 1069 struct rq *rq = rq_of_rt_rq(rt_rq); 1070 1071 #ifdef CONFIG_RT_GROUP_SCHED 1072 /* 1073 * Change rq's cpupri only if rt_rq is the top queue. 1074 */ 1075 if (&rq->rt != rt_rq) 1076 return; 1077 #endif 1078 if (rq->online && prio < prev_prio) 1079 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1080 } 1081 1082 static void 1083 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1084 { 1085 struct rq *rq = rq_of_rt_rq(rt_rq); 1086 1087 #ifdef CONFIG_RT_GROUP_SCHED 1088 /* 1089 * Change rq's cpupri only if rt_rq is the top queue. 1090 */ 1091 if (&rq->rt != rt_rq) 1092 return; 1093 #endif 1094 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1095 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1096 } 1097 1098 #else /* CONFIG_SMP */ 1099 1100 static inline 1101 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1102 static inline 1103 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1104 1105 #endif /* CONFIG_SMP */ 1106 1107 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1108 static void 1109 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1110 { 1111 int prev_prio = rt_rq->highest_prio.curr; 1112 1113 if (prio < prev_prio) 1114 rt_rq->highest_prio.curr = prio; 1115 1116 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1117 } 1118 1119 static void 1120 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1121 { 1122 int prev_prio = rt_rq->highest_prio.curr; 1123 1124 if (rt_rq->rt_nr_running) { 1125 1126 WARN_ON(prio < prev_prio); 1127 1128 /* 1129 * This may have been our highest task, and therefore 1130 * we may have some re-computation to do 1131 */ 1132 if (prio == prev_prio) { 1133 struct rt_prio_array *array = &rt_rq->active; 1134 1135 rt_rq->highest_prio.curr = 1136 sched_find_first_bit(array->bitmap); 1137 } 1138 1139 } else { 1140 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 1141 } 1142 1143 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1144 } 1145 1146 #else 1147 1148 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1149 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1150 1151 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1152 1153 #ifdef CONFIG_RT_GROUP_SCHED 1154 1155 static void 1156 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1157 { 1158 if (rt_se_boosted(rt_se)) 1159 rt_rq->rt_nr_boosted++; 1160 1161 if (rt_rq->tg) 1162 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1163 } 1164 1165 static void 1166 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1167 { 1168 if (rt_se_boosted(rt_se)) 1169 rt_rq->rt_nr_boosted--; 1170 1171 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1172 } 1173 1174 #else /* CONFIG_RT_GROUP_SCHED */ 1175 1176 static void 1177 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1178 { 1179 } 1180 1181 static inline 1182 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1183 1184 #endif /* CONFIG_RT_GROUP_SCHED */ 1185 1186 static inline 1187 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1188 { 1189 struct rt_rq *group_rq = group_rt_rq(rt_se); 1190 1191 if (group_rq) 1192 return group_rq->rt_nr_running; 1193 else 1194 return 1; 1195 } 1196 1197 static inline 1198 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) 1199 { 1200 struct rt_rq *group_rq = group_rt_rq(rt_se); 1201 struct task_struct *tsk; 1202 1203 if (group_rq) 1204 return group_rq->rr_nr_running; 1205 1206 tsk = rt_task_of(rt_se); 1207 1208 return (tsk->policy == SCHED_RR) ? 1 : 0; 1209 } 1210 1211 static inline 1212 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1213 { 1214 int prio = rt_se_prio(rt_se); 1215 1216 WARN_ON(!rt_prio(prio)); 1217 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1218 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); 1219 1220 inc_rt_prio(rt_rq, prio); 1221 inc_rt_group(rt_se, rt_rq); 1222 } 1223 1224 static inline 1225 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1226 { 1227 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1228 WARN_ON(!rt_rq->rt_nr_running); 1229 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1230 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); 1231 1232 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1233 dec_rt_group(rt_se, rt_rq); 1234 } 1235 1236 /* 1237 * Change rt_se->run_list location unless SAVE && !MOVE 1238 * 1239 * assumes ENQUEUE/DEQUEUE flags match 1240 */ 1241 static inline bool move_entity(unsigned int flags) 1242 { 1243 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 1244 return false; 1245 1246 return true; 1247 } 1248 1249 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) 1250 { 1251 list_del_init(&rt_se->run_list); 1252 1253 if (list_empty(array->queue + rt_se_prio(rt_se))) 1254 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1255 1256 rt_se->on_list = 0; 1257 } 1258 1259 static inline struct sched_statistics * 1260 __schedstats_from_rt_se(struct sched_rt_entity *rt_se) 1261 { 1262 #ifdef CONFIG_RT_GROUP_SCHED 1263 /* schedstats is not supported for rt group. */ 1264 if (!rt_entity_is_task(rt_se)) 1265 return NULL; 1266 #endif 1267 1268 return &rt_task_of(rt_se)->stats; 1269 } 1270 1271 static inline void 1272 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1273 { 1274 struct sched_statistics *stats; 1275 struct task_struct *p = NULL; 1276 1277 if (!schedstat_enabled()) 1278 return; 1279 1280 if (rt_entity_is_task(rt_se)) 1281 p = rt_task_of(rt_se); 1282 1283 stats = __schedstats_from_rt_se(rt_se); 1284 if (!stats) 1285 return; 1286 1287 __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats); 1288 } 1289 1290 static inline void 1291 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1292 { 1293 struct sched_statistics *stats; 1294 struct task_struct *p = NULL; 1295 1296 if (!schedstat_enabled()) 1297 return; 1298 1299 if (rt_entity_is_task(rt_se)) 1300 p = rt_task_of(rt_se); 1301 1302 stats = __schedstats_from_rt_se(rt_se); 1303 if (!stats) 1304 return; 1305 1306 __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats); 1307 } 1308 1309 static inline void 1310 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, 1311 int flags) 1312 { 1313 if (!schedstat_enabled()) 1314 return; 1315 1316 if (flags & ENQUEUE_WAKEUP) 1317 update_stats_enqueue_sleeper_rt(rt_rq, rt_se); 1318 } 1319 1320 static inline void 1321 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1322 { 1323 struct sched_statistics *stats; 1324 struct task_struct *p = NULL; 1325 1326 if (!schedstat_enabled()) 1327 return; 1328 1329 if (rt_entity_is_task(rt_se)) 1330 p = rt_task_of(rt_se); 1331 1332 stats = __schedstats_from_rt_se(rt_se); 1333 if (!stats) 1334 return; 1335 1336 __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats); 1337 } 1338 1339 static inline void 1340 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, 1341 int flags) 1342 { 1343 struct task_struct *p = NULL; 1344 1345 if (!schedstat_enabled()) 1346 return; 1347 1348 if (rt_entity_is_task(rt_se)) 1349 p = rt_task_of(rt_se); 1350 1351 if ((flags & DEQUEUE_SLEEP) && p) { 1352 unsigned int state; 1353 1354 state = READ_ONCE(p->__state); 1355 if (state & TASK_INTERRUPTIBLE) 1356 __schedstat_set(p->stats.sleep_start, 1357 rq_clock(rq_of_rt_rq(rt_rq))); 1358 1359 if (state & TASK_UNINTERRUPTIBLE) 1360 __schedstat_set(p->stats.block_start, 1361 rq_clock(rq_of_rt_rq(rt_rq))); 1362 } 1363 } 1364 1365 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1366 { 1367 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1368 struct rt_prio_array *array = &rt_rq->active; 1369 struct rt_rq *group_rq = group_rt_rq(rt_se); 1370 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1371 1372 /* 1373 * Don't enqueue the group if its throttled, or when empty. 1374 * The latter is a consequence of the former when a child group 1375 * get throttled and the current group doesn't have any other 1376 * active members. 1377 */ 1378 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { 1379 if (rt_se->on_list) 1380 __delist_rt_entity(rt_se, array); 1381 return; 1382 } 1383 1384 if (move_entity(flags)) { 1385 WARN_ON_ONCE(rt_se->on_list); 1386 if (flags & ENQUEUE_HEAD) 1387 list_add(&rt_se->run_list, queue); 1388 else 1389 list_add_tail(&rt_se->run_list, queue); 1390 1391 __set_bit(rt_se_prio(rt_se), array->bitmap); 1392 rt_se->on_list = 1; 1393 } 1394 rt_se->on_rq = 1; 1395 1396 inc_rt_tasks(rt_se, rt_rq); 1397 } 1398 1399 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1400 { 1401 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1402 struct rt_prio_array *array = &rt_rq->active; 1403 1404 if (move_entity(flags)) { 1405 WARN_ON_ONCE(!rt_se->on_list); 1406 __delist_rt_entity(rt_se, array); 1407 } 1408 rt_se->on_rq = 0; 1409 1410 dec_rt_tasks(rt_se, rt_rq); 1411 } 1412 1413 /* 1414 * Because the prio of an upper entry depends on the lower 1415 * entries, we must remove entries top - down. 1416 */ 1417 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) 1418 { 1419 struct sched_rt_entity *back = NULL; 1420 unsigned int rt_nr_running; 1421 1422 for_each_sched_rt_entity(rt_se) { 1423 rt_se->back = back; 1424 back = rt_se; 1425 } 1426 1427 rt_nr_running = rt_rq_of_se(back)->rt_nr_running; 1428 1429 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1430 if (on_rt_rq(rt_se)) 1431 __dequeue_rt_entity(rt_se, flags); 1432 } 1433 1434 dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running); 1435 } 1436 1437 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1438 { 1439 struct rq *rq = rq_of_rt_se(rt_se); 1440 1441 update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags); 1442 1443 dequeue_rt_stack(rt_se, flags); 1444 for_each_sched_rt_entity(rt_se) 1445 __enqueue_rt_entity(rt_se, flags); 1446 enqueue_top_rt_rq(&rq->rt); 1447 } 1448 1449 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1450 { 1451 struct rq *rq = rq_of_rt_se(rt_se); 1452 1453 update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags); 1454 1455 dequeue_rt_stack(rt_se, flags); 1456 1457 for_each_sched_rt_entity(rt_se) { 1458 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1459 1460 if (rt_rq && rt_rq->rt_nr_running) 1461 __enqueue_rt_entity(rt_se, flags); 1462 } 1463 enqueue_top_rt_rq(&rq->rt); 1464 } 1465 1466 /* 1467 * Adding/removing a task to/from a priority array: 1468 */ 1469 static void 1470 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1471 { 1472 struct sched_rt_entity *rt_se = &p->rt; 1473 1474 if (flags & ENQUEUE_WAKEUP) 1475 rt_se->timeout = 0; 1476 1477 check_schedstat_required(); 1478 update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se); 1479 1480 enqueue_rt_entity(rt_se, flags); 1481 1482 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1483 enqueue_pushable_task(rq, p); 1484 } 1485 1486 static bool dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1487 { 1488 struct sched_rt_entity *rt_se = &p->rt; 1489 1490 update_curr_rt(rq); 1491 dequeue_rt_entity(rt_se, flags); 1492 1493 dequeue_pushable_task(rq, p); 1494 1495 return true; 1496 } 1497 1498 /* 1499 * Put task to the head or the end of the run list without the overhead of 1500 * dequeue followed by enqueue. 1501 */ 1502 static void 1503 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1504 { 1505 if (on_rt_rq(rt_se)) { 1506 struct rt_prio_array *array = &rt_rq->active; 1507 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1508 1509 if (head) 1510 list_move(&rt_se->run_list, queue); 1511 else 1512 list_move_tail(&rt_se->run_list, queue); 1513 } 1514 } 1515 1516 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1517 { 1518 struct sched_rt_entity *rt_se = &p->rt; 1519 struct rt_rq *rt_rq; 1520 1521 for_each_sched_rt_entity(rt_se) { 1522 rt_rq = rt_rq_of_se(rt_se); 1523 requeue_rt_entity(rt_rq, rt_se, head); 1524 } 1525 } 1526 1527 static void yield_task_rt(struct rq *rq) 1528 { 1529 requeue_task_rt(rq, rq->curr, 0); 1530 } 1531 1532 #ifdef CONFIG_SMP 1533 static int find_lowest_rq(struct task_struct *task); 1534 1535 static int 1536 select_task_rq_rt(struct task_struct *p, int cpu, int flags) 1537 { 1538 struct task_struct *curr; 1539 struct rq *rq; 1540 bool test; 1541 1542 /* For anything but wake ups, just return the task_cpu */ 1543 if (!(flags & (WF_TTWU | WF_FORK))) 1544 goto out; 1545 1546 rq = cpu_rq(cpu); 1547 1548 rcu_read_lock(); 1549 curr = READ_ONCE(rq->curr); /* unlocked access */ 1550 1551 /* 1552 * If the current task on @p's runqueue is an RT task, then 1553 * try to see if we can wake this RT task up on another 1554 * runqueue. Otherwise simply start this RT task 1555 * on its current runqueue. 1556 * 1557 * We want to avoid overloading runqueues. If the woken 1558 * task is a higher priority, then it will stay on this CPU 1559 * and the lower prio task should be moved to another CPU. 1560 * Even though this will probably make the lower prio task 1561 * lose its cache, we do not want to bounce a higher task 1562 * around just because it gave up its CPU, perhaps for a 1563 * lock? 1564 * 1565 * For equal prio tasks, we just let the scheduler sort it out. 1566 * 1567 * Otherwise, just let it ride on the affine RQ and the 1568 * post-schedule router will push the preempted task away 1569 * 1570 * This test is optimistic, if we get it wrong the load-balancer 1571 * will have to sort it out. 1572 * 1573 * We take into account the capacity of the CPU to ensure it fits the 1574 * requirement of the task - which is only important on heterogeneous 1575 * systems like big.LITTLE. 1576 */ 1577 test = curr && 1578 unlikely(rt_task(curr)) && 1579 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio); 1580 1581 if (test || !rt_task_fits_capacity(p, cpu)) { 1582 int target = find_lowest_rq(p); 1583 1584 /* 1585 * Bail out if we were forcing a migration to find a better 1586 * fitting CPU but our search failed. 1587 */ 1588 if (!test && target != -1 && !rt_task_fits_capacity(p, target)) 1589 goto out_unlock; 1590 1591 /* 1592 * Don't bother moving it if the destination CPU is 1593 * not running a lower priority task. 1594 */ 1595 if (target != -1 && 1596 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1597 cpu = target; 1598 } 1599 1600 out_unlock: 1601 rcu_read_unlock(); 1602 1603 out: 1604 return cpu; 1605 } 1606 1607 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1608 { 1609 /* 1610 * Current can't be migrated, useless to reschedule, 1611 * let's hope p can move out. 1612 */ 1613 if (rq->curr->nr_cpus_allowed == 1 || 1614 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1615 return; 1616 1617 /* 1618 * p is migratable, so let's not schedule it and 1619 * see if it is pushed or pulled somewhere else. 1620 */ 1621 if (p->nr_cpus_allowed != 1 && 1622 cpupri_find(&rq->rd->cpupri, p, NULL)) 1623 return; 1624 1625 /* 1626 * There appear to be other CPUs that can accept 1627 * the current task but none can run 'p', so lets reschedule 1628 * to try and push the current task away: 1629 */ 1630 requeue_task_rt(rq, p, 1); 1631 resched_curr(rq); 1632 } 1633 1634 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1635 { 1636 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) { 1637 /* 1638 * This is OK, because current is on_cpu, which avoids it being 1639 * picked for load-balance and preemption/IRQs are still 1640 * disabled avoiding further scheduler activity on it and we've 1641 * not yet started the picking loop. 1642 */ 1643 rq_unpin_lock(rq, rf); 1644 pull_rt_task(rq); 1645 rq_repin_lock(rq, rf); 1646 } 1647 1648 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq); 1649 } 1650 #endif /* CONFIG_SMP */ 1651 1652 /* 1653 * Preempt the current task with a newly woken task if needed: 1654 */ 1655 static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags) 1656 { 1657 if (p->prio < rq->curr->prio) { 1658 resched_curr(rq); 1659 return; 1660 } 1661 1662 #ifdef CONFIG_SMP 1663 /* 1664 * If: 1665 * 1666 * - the newly woken task is of equal priority to the current task 1667 * - the newly woken task is non-migratable while current is migratable 1668 * - current will be preempted on the next reschedule 1669 * 1670 * we should check to see if current can readily move to a different 1671 * cpu. If so, we will reschedule to allow the push logic to try 1672 * to move current somewhere else, making room for our non-migratable 1673 * task. 1674 */ 1675 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1676 check_preempt_equal_prio(rq, p); 1677 #endif 1678 } 1679 1680 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first) 1681 { 1682 struct sched_rt_entity *rt_se = &p->rt; 1683 struct rt_rq *rt_rq = &rq->rt; 1684 1685 p->se.exec_start = rq_clock_task(rq); 1686 if (on_rt_rq(&p->rt)) 1687 update_stats_wait_end_rt(rt_rq, rt_se); 1688 1689 /* The running task is never eligible for pushing */ 1690 dequeue_pushable_task(rq, p); 1691 1692 if (!first) 1693 return; 1694 1695 /* 1696 * If prev task was rt, put_prev_task() has already updated the 1697 * utilization. We only care of the case where we start to schedule a 1698 * rt task 1699 */ 1700 if (rq->curr->sched_class != &rt_sched_class) 1701 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); 1702 1703 rt_queue_push_tasks(rq); 1704 } 1705 1706 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq) 1707 { 1708 struct rt_prio_array *array = &rt_rq->active; 1709 struct sched_rt_entity *next = NULL; 1710 struct list_head *queue; 1711 int idx; 1712 1713 idx = sched_find_first_bit(array->bitmap); 1714 BUG_ON(idx >= MAX_RT_PRIO); 1715 1716 queue = array->queue + idx; 1717 if (SCHED_WARN_ON(list_empty(queue))) 1718 return NULL; 1719 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1720 1721 return next; 1722 } 1723 1724 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1725 { 1726 struct sched_rt_entity *rt_se; 1727 struct rt_rq *rt_rq = &rq->rt; 1728 1729 do { 1730 rt_se = pick_next_rt_entity(rt_rq); 1731 if (unlikely(!rt_se)) 1732 return NULL; 1733 rt_rq = group_rt_rq(rt_se); 1734 } while (rt_rq); 1735 1736 return rt_task_of(rt_se); 1737 } 1738 1739 static struct task_struct *pick_task_rt(struct rq *rq) 1740 { 1741 struct task_struct *p; 1742 1743 if (!sched_rt_runnable(rq)) 1744 return NULL; 1745 1746 p = _pick_next_task_rt(rq); 1747 1748 return p; 1749 } 1750 1751 static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct task_struct *next) 1752 { 1753 struct sched_rt_entity *rt_se = &p->rt; 1754 struct rt_rq *rt_rq = &rq->rt; 1755 1756 if (on_rt_rq(&p->rt)) 1757 update_stats_wait_start_rt(rt_rq, rt_se); 1758 1759 update_curr_rt(rq); 1760 1761 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 1762 1763 /* 1764 * The previous task needs to be made eligible for pushing 1765 * if it is still active 1766 */ 1767 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1768 enqueue_pushable_task(rq, p); 1769 } 1770 1771 #ifdef CONFIG_SMP 1772 1773 /* Only try algorithms three times */ 1774 #define RT_MAX_TRIES 3 1775 1776 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1777 { 1778 if (!task_on_cpu(rq, p) && 1779 cpumask_test_cpu(cpu, &p->cpus_mask)) 1780 return 1; 1781 1782 return 0; 1783 } 1784 1785 /* 1786 * Return the highest pushable rq's task, which is suitable to be executed 1787 * on the CPU, NULL otherwise 1788 */ 1789 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1790 { 1791 struct plist_head *head = &rq->rt.pushable_tasks; 1792 struct task_struct *p; 1793 1794 if (!has_pushable_tasks(rq)) 1795 return NULL; 1796 1797 plist_for_each_entry(p, head, pushable_tasks) { 1798 if (pick_rt_task(rq, p, cpu)) 1799 return p; 1800 } 1801 1802 return NULL; 1803 } 1804 1805 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1806 1807 static int find_lowest_rq(struct task_struct *task) 1808 { 1809 struct sched_domain *sd; 1810 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1811 int this_cpu = smp_processor_id(); 1812 int cpu = task_cpu(task); 1813 int ret; 1814 1815 /* Make sure the mask is initialized first */ 1816 if (unlikely(!lowest_mask)) 1817 return -1; 1818 1819 if (task->nr_cpus_allowed == 1) 1820 return -1; /* No other targets possible */ 1821 1822 /* 1823 * If we're on asym system ensure we consider the different capacities 1824 * of the CPUs when searching for the lowest_mask. 1825 */ 1826 if (sched_asym_cpucap_active()) { 1827 1828 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri, 1829 task, lowest_mask, 1830 rt_task_fits_capacity); 1831 } else { 1832 1833 ret = cpupri_find(&task_rq(task)->rd->cpupri, 1834 task, lowest_mask); 1835 } 1836 1837 if (!ret) 1838 return -1; /* No targets found */ 1839 1840 /* 1841 * At this point we have built a mask of CPUs representing the 1842 * lowest priority tasks in the system. Now we want to elect 1843 * the best one based on our affinity and topology. 1844 * 1845 * We prioritize the last CPU that the task executed on since 1846 * it is most likely cache-hot in that location. 1847 */ 1848 if (cpumask_test_cpu(cpu, lowest_mask)) 1849 return cpu; 1850 1851 /* 1852 * Otherwise, we consult the sched_domains span maps to figure 1853 * out which CPU is logically closest to our hot cache data. 1854 */ 1855 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1856 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1857 1858 rcu_read_lock(); 1859 for_each_domain(cpu, sd) { 1860 if (sd->flags & SD_WAKE_AFFINE) { 1861 int best_cpu; 1862 1863 /* 1864 * "this_cpu" is cheaper to preempt than a 1865 * remote processor. 1866 */ 1867 if (this_cpu != -1 && 1868 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1869 rcu_read_unlock(); 1870 return this_cpu; 1871 } 1872 1873 best_cpu = cpumask_any_and_distribute(lowest_mask, 1874 sched_domain_span(sd)); 1875 if (best_cpu < nr_cpu_ids) { 1876 rcu_read_unlock(); 1877 return best_cpu; 1878 } 1879 } 1880 } 1881 rcu_read_unlock(); 1882 1883 /* 1884 * And finally, if there were no matches within the domains 1885 * just give the caller *something* to work with from the compatible 1886 * locations. 1887 */ 1888 if (this_cpu != -1) 1889 return this_cpu; 1890 1891 cpu = cpumask_any_distribute(lowest_mask); 1892 if (cpu < nr_cpu_ids) 1893 return cpu; 1894 1895 return -1; 1896 } 1897 1898 /* Will lock the rq it finds */ 1899 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1900 { 1901 struct rq *lowest_rq = NULL; 1902 int tries; 1903 int cpu; 1904 1905 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1906 cpu = find_lowest_rq(task); 1907 1908 if ((cpu == -1) || (cpu == rq->cpu)) 1909 break; 1910 1911 lowest_rq = cpu_rq(cpu); 1912 1913 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1914 /* 1915 * Target rq has tasks of equal or higher priority, 1916 * retrying does not release any lock and is unlikely 1917 * to yield a different result. 1918 */ 1919 lowest_rq = NULL; 1920 break; 1921 } 1922 1923 /* if the prio of this runqueue changed, try again */ 1924 if (double_lock_balance(rq, lowest_rq)) { 1925 /* 1926 * We had to unlock the run queue. In 1927 * the mean time, task could have 1928 * migrated already or had its affinity changed. 1929 * Also make sure that it wasn't scheduled on its rq. 1930 * It is possible the task was scheduled, set 1931 * "migrate_disabled" and then got preempted, so we must 1932 * check the task migration disable flag here too. 1933 */ 1934 if (unlikely(task_rq(task) != rq || 1935 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) || 1936 task_on_cpu(rq, task) || 1937 !rt_task(task) || 1938 is_migration_disabled(task) || 1939 !task_on_rq_queued(task))) { 1940 1941 double_unlock_balance(rq, lowest_rq); 1942 lowest_rq = NULL; 1943 break; 1944 } 1945 } 1946 1947 /* If this rq is still suitable use it. */ 1948 if (lowest_rq->rt.highest_prio.curr > task->prio) 1949 break; 1950 1951 /* try again */ 1952 double_unlock_balance(rq, lowest_rq); 1953 lowest_rq = NULL; 1954 } 1955 1956 return lowest_rq; 1957 } 1958 1959 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1960 { 1961 struct task_struct *p; 1962 1963 if (!has_pushable_tasks(rq)) 1964 return NULL; 1965 1966 p = plist_first_entry(&rq->rt.pushable_tasks, 1967 struct task_struct, pushable_tasks); 1968 1969 BUG_ON(rq->cpu != task_cpu(p)); 1970 BUG_ON(task_current(rq, p)); 1971 BUG_ON(p->nr_cpus_allowed <= 1); 1972 1973 BUG_ON(!task_on_rq_queued(p)); 1974 BUG_ON(!rt_task(p)); 1975 1976 return p; 1977 } 1978 1979 /* 1980 * If the current CPU has more than one RT task, see if the non 1981 * running task can migrate over to a CPU that is running a task 1982 * of lesser priority. 1983 */ 1984 static int push_rt_task(struct rq *rq, bool pull) 1985 { 1986 struct task_struct *next_task; 1987 struct rq *lowest_rq; 1988 int ret = 0; 1989 1990 if (!rq->rt.overloaded) 1991 return 0; 1992 1993 next_task = pick_next_pushable_task(rq); 1994 if (!next_task) 1995 return 0; 1996 1997 retry: 1998 /* 1999 * It's possible that the next_task slipped in of 2000 * higher priority than current. If that's the case 2001 * just reschedule current. 2002 */ 2003 if (unlikely(next_task->prio < rq->curr->prio)) { 2004 resched_curr(rq); 2005 return 0; 2006 } 2007 2008 if (is_migration_disabled(next_task)) { 2009 struct task_struct *push_task = NULL; 2010 int cpu; 2011 2012 if (!pull || rq->push_busy) 2013 return 0; 2014 2015 /* 2016 * Invoking find_lowest_rq() on anything but an RT task doesn't 2017 * make sense. Per the above priority check, curr has to 2018 * be of higher priority than next_task, so no need to 2019 * reschedule when bailing out. 2020 * 2021 * Note that the stoppers are masqueraded as SCHED_FIFO 2022 * (cf. sched_set_stop_task()), so we can't rely on rt_task(). 2023 */ 2024 if (rq->curr->sched_class != &rt_sched_class) 2025 return 0; 2026 2027 cpu = find_lowest_rq(rq->curr); 2028 if (cpu == -1 || cpu == rq->cpu) 2029 return 0; 2030 2031 /* 2032 * Given we found a CPU with lower priority than @next_task, 2033 * therefore it should be running. However we cannot migrate it 2034 * to this other CPU, instead attempt to push the current 2035 * running task on this CPU away. 2036 */ 2037 push_task = get_push_task(rq); 2038 if (push_task) { 2039 preempt_disable(); 2040 raw_spin_rq_unlock(rq); 2041 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2042 push_task, &rq->push_work); 2043 preempt_enable(); 2044 raw_spin_rq_lock(rq); 2045 } 2046 2047 return 0; 2048 } 2049 2050 if (WARN_ON(next_task == rq->curr)) 2051 return 0; 2052 2053 /* We might release rq lock */ 2054 get_task_struct(next_task); 2055 2056 /* find_lock_lowest_rq locks the rq if found */ 2057 lowest_rq = find_lock_lowest_rq(next_task, rq); 2058 if (!lowest_rq) { 2059 struct task_struct *task; 2060 /* 2061 * find_lock_lowest_rq releases rq->lock 2062 * so it is possible that next_task has migrated. 2063 * 2064 * We need to make sure that the task is still on the same 2065 * run-queue and is also still the next task eligible for 2066 * pushing. 2067 */ 2068 task = pick_next_pushable_task(rq); 2069 if (task == next_task) { 2070 /* 2071 * The task hasn't migrated, and is still the next 2072 * eligible task, but we failed to find a run-queue 2073 * to push it to. Do not retry in this case, since 2074 * other CPUs will pull from us when ready. 2075 */ 2076 goto out; 2077 } 2078 2079 if (!task) 2080 /* No more tasks, just exit */ 2081 goto out; 2082 2083 /* 2084 * Something has shifted, try again. 2085 */ 2086 put_task_struct(next_task); 2087 next_task = task; 2088 goto retry; 2089 } 2090 2091 deactivate_task(rq, next_task, 0); 2092 set_task_cpu(next_task, lowest_rq->cpu); 2093 activate_task(lowest_rq, next_task, 0); 2094 resched_curr(lowest_rq); 2095 ret = 1; 2096 2097 double_unlock_balance(rq, lowest_rq); 2098 out: 2099 put_task_struct(next_task); 2100 2101 return ret; 2102 } 2103 2104 static void push_rt_tasks(struct rq *rq) 2105 { 2106 /* push_rt_task will return true if it moved an RT */ 2107 while (push_rt_task(rq, false)) 2108 ; 2109 } 2110 2111 #ifdef HAVE_RT_PUSH_IPI 2112 2113 /* 2114 * When a high priority task schedules out from a CPU and a lower priority 2115 * task is scheduled in, a check is made to see if there's any RT tasks 2116 * on other CPUs that are waiting to run because a higher priority RT task 2117 * is currently running on its CPU. In this case, the CPU with multiple RT 2118 * tasks queued on it (overloaded) needs to be notified that a CPU has opened 2119 * up that may be able to run one of its non-running queued RT tasks. 2120 * 2121 * All CPUs with overloaded RT tasks need to be notified as there is currently 2122 * no way to know which of these CPUs have the highest priority task waiting 2123 * to run. Instead of trying to take a spinlock on each of these CPUs, 2124 * which has shown to cause large latency when done on machines with many 2125 * CPUs, sending an IPI to the CPUs to have them push off the overloaded 2126 * RT tasks waiting to run. 2127 * 2128 * Just sending an IPI to each of the CPUs is also an issue, as on large 2129 * count CPU machines, this can cause an IPI storm on a CPU, especially 2130 * if its the only CPU with multiple RT tasks queued, and a large number 2131 * of CPUs scheduling a lower priority task at the same time. 2132 * 2133 * Each root domain has its own IRQ work function that can iterate over 2134 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT 2135 * task must be checked if there's one or many CPUs that are lowering 2136 * their priority, there's a single IRQ work iterator that will try to 2137 * push off RT tasks that are waiting to run. 2138 * 2139 * When a CPU schedules a lower priority task, it will kick off the 2140 * IRQ work iterator that will jump to each CPU with overloaded RT tasks. 2141 * As it only takes the first CPU that schedules a lower priority task 2142 * to start the process, the rto_start variable is incremented and if 2143 * the atomic result is one, then that CPU will try to take the rto_lock. 2144 * This prevents high contention on the lock as the process handles all 2145 * CPUs scheduling lower priority tasks. 2146 * 2147 * All CPUs that are scheduling a lower priority task will increment the 2148 * rt_loop_next variable. This will make sure that the IRQ work iterator 2149 * checks all RT overloaded CPUs whenever a CPU schedules a new lower 2150 * priority task, even if the iterator is in the middle of a scan. Incrementing 2151 * the rt_loop_next will cause the iterator to perform another scan. 2152 * 2153 */ 2154 static int rto_next_cpu(struct root_domain *rd) 2155 { 2156 int next; 2157 int cpu; 2158 2159 /* 2160 * When starting the IPI RT pushing, the rto_cpu is set to -1, 2161 * rt_next_cpu() will simply return the first CPU found in 2162 * the rto_mask. 2163 * 2164 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it 2165 * will return the next CPU found in the rto_mask. 2166 * 2167 * If there are no more CPUs left in the rto_mask, then a check is made 2168 * against rto_loop and rto_loop_next. rto_loop is only updated with 2169 * the rto_lock held, but any CPU may increment the rto_loop_next 2170 * without any locking. 2171 */ 2172 for (;;) { 2173 2174 /* When rto_cpu is -1 this acts like cpumask_first() */ 2175 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); 2176 2177 rd->rto_cpu = cpu; 2178 2179 if (cpu < nr_cpu_ids) 2180 return cpu; 2181 2182 rd->rto_cpu = -1; 2183 2184 /* 2185 * ACQUIRE ensures we see the @rto_mask changes 2186 * made prior to the @next value observed. 2187 * 2188 * Matches WMB in rt_set_overload(). 2189 */ 2190 next = atomic_read_acquire(&rd->rto_loop_next); 2191 2192 if (rd->rto_loop == next) 2193 break; 2194 2195 rd->rto_loop = next; 2196 } 2197 2198 return -1; 2199 } 2200 2201 static inline bool rto_start_trylock(atomic_t *v) 2202 { 2203 return !atomic_cmpxchg_acquire(v, 0, 1); 2204 } 2205 2206 static inline void rto_start_unlock(atomic_t *v) 2207 { 2208 atomic_set_release(v, 0); 2209 } 2210 2211 static void tell_cpu_to_push(struct rq *rq) 2212 { 2213 int cpu = -1; 2214 2215 /* Keep the loop going if the IPI is currently active */ 2216 atomic_inc(&rq->rd->rto_loop_next); 2217 2218 /* Only one CPU can initiate a loop at a time */ 2219 if (!rto_start_trylock(&rq->rd->rto_loop_start)) 2220 return; 2221 2222 raw_spin_lock(&rq->rd->rto_lock); 2223 2224 /* 2225 * The rto_cpu is updated under the lock, if it has a valid CPU 2226 * then the IPI is still running and will continue due to the 2227 * update to loop_next, and nothing needs to be done here. 2228 * Otherwise it is finishing up and an IPI needs to be sent. 2229 */ 2230 if (rq->rd->rto_cpu < 0) 2231 cpu = rto_next_cpu(rq->rd); 2232 2233 raw_spin_unlock(&rq->rd->rto_lock); 2234 2235 rto_start_unlock(&rq->rd->rto_loop_start); 2236 2237 if (cpu >= 0) { 2238 /* Make sure the rd does not get freed while pushing */ 2239 sched_get_rd(rq->rd); 2240 irq_work_queue_on(&rq->rd->rto_push_work, cpu); 2241 } 2242 } 2243 2244 /* Called from hardirq context */ 2245 void rto_push_irq_work_func(struct irq_work *work) 2246 { 2247 struct root_domain *rd = 2248 container_of(work, struct root_domain, rto_push_work); 2249 struct rq *rq; 2250 int cpu; 2251 2252 rq = this_rq(); 2253 2254 /* 2255 * We do not need to grab the lock to check for has_pushable_tasks. 2256 * When it gets updated, a check is made if a push is possible. 2257 */ 2258 if (has_pushable_tasks(rq)) { 2259 raw_spin_rq_lock(rq); 2260 while (push_rt_task(rq, true)) 2261 ; 2262 raw_spin_rq_unlock(rq); 2263 } 2264 2265 raw_spin_lock(&rd->rto_lock); 2266 2267 /* Pass the IPI to the next rt overloaded queue */ 2268 cpu = rto_next_cpu(rd); 2269 2270 raw_spin_unlock(&rd->rto_lock); 2271 2272 if (cpu < 0) { 2273 sched_put_rd(rd); 2274 return; 2275 } 2276 2277 /* Try the next RT overloaded CPU */ 2278 irq_work_queue_on(&rd->rto_push_work, cpu); 2279 } 2280 #endif /* HAVE_RT_PUSH_IPI */ 2281 2282 static void pull_rt_task(struct rq *this_rq) 2283 { 2284 int this_cpu = this_rq->cpu, cpu; 2285 bool resched = false; 2286 struct task_struct *p, *push_task; 2287 struct rq *src_rq; 2288 int rt_overload_count = rt_overloaded(this_rq); 2289 2290 if (likely(!rt_overload_count)) 2291 return; 2292 2293 /* 2294 * Match the barrier from rt_set_overloaded; this guarantees that if we 2295 * see overloaded we must also see the rto_mask bit. 2296 */ 2297 smp_rmb(); 2298 2299 /* If we are the only overloaded CPU do nothing */ 2300 if (rt_overload_count == 1 && 2301 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) 2302 return; 2303 2304 #ifdef HAVE_RT_PUSH_IPI 2305 if (sched_feat(RT_PUSH_IPI)) { 2306 tell_cpu_to_push(this_rq); 2307 return; 2308 } 2309 #endif 2310 2311 for_each_cpu(cpu, this_rq->rd->rto_mask) { 2312 if (this_cpu == cpu) 2313 continue; 2314 2315 src_rq = cpu_rq(cpu); 2316 2317 /* 2318 * Don't bother taking the src_rq->lock if the next highest 2319 * task is known to be lower-priority than our current task. 2320 * This may look racy, but if this value is about to go 2321 * logically higher, the src_rq will push this task away. 2322 * And if its going logically lower, we do not care 2323 */ 2324 if (src_rq->rt.highest_prio.next >= 2325 this_rq->rt.highest_prio.curr) 2326 continue; 2327 2328 /* 2329 * We can potentially drop this_rq's lock in 2330 * double_lock_balance, and another CPU could 2331 * alter this_rq 2332 */ 2333 push_task = NULL; 2334 double_lock_balance(this_rq, src_rq); 2335 2336 /* 2337 * We can pull only a task, which is pushable 2338 * on its rq, and no others. 2339 */ 2340 p = pick_highest_pushable_task(src_rq, this_cpu); 2341 2342 /* 2343 * Do we have an RT task that preempts 2344 * the to-be-scheduled task? 2345 */ 2346 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 2347 WARN_ON(p == src_rq->curr); 2348 WARN_ON(!task_on_rq_queued(p)); 2349 2350 /* 2351 * There's a chance that p is higher in priority 2352 * than what's currently running on its CPU. 2353 * This is just that p is waking up and hasn't 2354 * had a chance to schedule. We only pull 2355 * p if it is lower in priority than the 2356 * current task on the run queue 2357 */ 2358 if (p->prio < src_rq->curr->prio) 2359 goto skip; 2360 2361 if (is_migration_disabled(p)) { 2362 push_task = get_push_task(src_rq); 2363 } else { 2364 deactivate_task(src_rq, p, 0); 2365 set_task_cpu(p, this_cpu); 2366 activate_task(this_rq, p, 0); 2367 resched = true; 2368 } 2369 /* 2370 * We continue with the search, just in 2371 * case there's an even higher prio task 2372 * in another runqueue. (low likelihood 2373 * but possible) 2374 */ 2375 } 2376 skip: 2377 double_unlock_balance(this_rq, src_rq); 2378 2379 if (push_task) { 2380 preempt_disable(); 2381 raw_spin_rq_unlock(this_rq); 2382 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, 2383 push_task, &src_rq->push_work); 2384 preempt_enable(); 2385 raw_spin_rq_lock(this_rq); 2386 } 2387 } 2388 2389 if (resched) 2390 resched_curr(this_rq); 2391 } 2392 2393 /* 2394 * If we are not running and we are not going to reschedule soon, we should 2395 * try to push tasks away now 2396 */ 2397 static void task_woken_rt(struct rq *rq, struct task_struct *p) 2398 { 2399 bool need_to_push = !task_on_cpu(rq, p) && 2400 !test_tsk_need_resched(rq->curr) && 2401 p->nr_cpus_allowed > 1 && 2402 (dl_task(rq->curr) || rt_task(rq->curr)) && 2403 (rq->curr->nr_cpus_allowed < 2 || 2404 rq->curr->prio <= p->prio); 2405 2406 if (need_to_push) 2407 push_rt_tasks(rq); 2408 } 2409 2410 /* Assumes rq->lock is held */ 2411 static void rq_online_rt(struct rq *rq) 2412 { 2413 if (rq->rt.overloaded) 2414 rt_set_overload(rq); 2415 2416 __enable_runtime(rq); 2417 2418 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2419 } 2420 2421 /* Assumes rq->lock is held */ 2422 static void rq_offline_rt(struct rq *rq) 2423 { 2424 if (rq->rt.overloaded) 2425 rt_clear_overload(rq); 2426 2427 __disable_runtime(rq); 2428 2429 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 2430 } 2431 2432 /* 2433 * When switch from the rt queue, we bring ourselves to a position 2434 * that we might want to pull RT tasks from other runqueues. 2435 */ 2436 static void switched_from_rt(struct rq *rq, struct task_struct *p) 2437 { 2438 /* 2439 * If there are other RT tasks then we will reschedule 2440 * and the scheduling of the other RT tasks will handle 2441 * the balancing. But if we are the last RT task 2442 * we may need to handle the pulling of RT tasks 2443 * now. 2444 */ 2445 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 2446 return; 2447 2448 rt_queue_pull_task(rq); 2449 } 2450 2451 void __init init_sched_rt_class(void) 2452 { 2453 unsigned int i; 2454 2455 for_each_possible_cpu(i) { 2456 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 2457 GFP_KERNEL, cpu_to_node(i)); 2458 } 2459 } 2460 #endif /* CONFIG_SMP */ 2461 2462 /* 2463 * When switching a task to RT, we may overload the runqueue 2464 * with RT tasks. In this case we try to push them off to 2465 * other runqueues. 2466 */ 2467 static void switched_to_rt(struct rq *rq, struct task_struct *p) 2468 { 2469 /* 2470 * If we are running, update the avg_rt tracking, as the running time 2471 * will now on be accounted into the latter. 2472 */ 2473 if (task_current(rq, p)) { 2474 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2475 return; 2476 } 2477 2478 /* 2479 * If we are not running we may need to preempt the current 2480 * running task. If that current running task is also an RT task 2481 * then see if we can move to another run queue. 2482 */ 2483 if (task_on_rq_queued(p)) { 2484 #ifdef CONFIG_SMP 2485 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) 2486 rt_queue_push_tasks(rq); 2487 #endif /* CONFIG_SMP */ 2488 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq))) 2489 resched_curr(rq); 2490 } 2491 } 2492 2493 /* 2494 * Priority of the task has changed. This may cause 2495 * us to initiate a push or pull. 2496 */ 2497 static void 2498 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2499 { 2500 if (!task_on_rq_queued(p)) 2501 return; 2502 2503 if (task_current(rq, p)) { 2504 #ifdef CONFIG_SMP 2505 /* 2506 * If our priority decreases while running, we 2507 * may need to pull tasks to this runqueue. 2508 */ 2509 if (oldprio < p->prio) 2510 rt_queue_pull_task(rq); 2511 2512 /* 2513 * If there's a higher priority task waiting to run 2514 * then reschedule. 2515 */ 2516 if (p->prio > rq->rt.highest_prio.curr) 2517 resched_curr(rq); 2518 #else 2519 /* For UP simply resched on drop of prio */ 2520 if (oldprio < p->prio) 2521 resched_curr(rq); 2522 #endif /* CONFIG_SMP */ 2523 } else { 2524 /* 2525 * This task is not running, but if it is 2526 * greater than the current running task 2527 * then reschedule. 2528 */ 2529 if (p->prio < rq->curr->prio) 2530 resched_curr(rq); 2531 } 2532 } 2533 2534 #ifdef CONFIG_POSIX_TIMERS 2535 static void watchdog(struct rq *rq, struct task_struct *p) 2536 { 2537 unsigned long soft, hard; 2538 2539 /* max may change after cur was read, this will be fixed next tick */ 2540 soft = task_rlimit(p, RLIMIT_RTTIME); 2541 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2542 2543 if (soft != RLIM_INFINITY) { 2544 unsigned long next; 2545 2546 if (p->rt.watchdog_stamp != jiffies) { 2547 p->rt.timeout++; 2548 p->rt.watchdog_stamp = jiffies; 2549 } 2550 2551 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2552 if (p->rt.timeout > next) { 2553 posix_cputimers_rt_watchdog(&p->posix_cputimers, 2554 p->se.sum_exec_runtime); 2555 } 2556 } 2557 } 2558 #else 2559 static inline void watchdog(struct rq *rq, struct task_struct *p) { } 2560 #endif 2561 2562 /* 2563 * scheduler tick hitting a task of our scheduling class. 2564 * 2565 * NOTE: This function can be called remotely by the tick offload that 2566 * goes along full dynticks. Therefore no local assumption can be made 2567 * and everything must be accessed through the @rq and @curr passed in 2568 * parameters. 2569 */ 2570 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2571 { 2572 struct sched_rt_entity *rt_se = &p->rt; 2573 2574 update_curr_rt(rq); 2575 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2576 2577 watchdog(rq, p); 2578 2579 /* 2580 * RR tasks need a special form of time-slice management. 2581 * FIFO tasks have no timeslices. 2582 */ 2583 if (p->policy != SCHED_RR) 2584 return; 2585 2586 if (--p->rt.time_slice) 2587 return; 2588 2589 p->rt.time_slice = sched_rr_timeslice; 2590 2591 /* 2592 * Requeue to the end of queue if we (and all of our ancestors) are not 2593 * the only element on the queue 2594 */ 2595 for_each_sched_rt_entity(rt_se) { 2596 if (rt_se->run_list.prev != rt_se->run_list.next) { 2597 requeue_task_rt(rq, p, 0); 2598 resched_curr(rq); 2599 return; 2600 } 2601 } 2602 } 2603 2604 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2605 { 2606 /* 2607 * Time slice is 0 for SCHED_FIFO tasks 2608 */ 2609 if (task->policy == SCHED_RR) 2610 return sched_rr_timeslice; 2611 else 2612 return 0; 2613 } 2614 2615 #ifdef CONFIG_SCHED_CORE 2616 static int task_is_throttled_rt(struct task_struct *p, int cpu) 2617 { 2618 struct rt_rq *rt_rq; 2619 2620 #ifdef CONFIG_RT_GROUP_SCHED 2621 rt_rq = task_group(p)->rt_rq[cpu]; 2622 #else 2623 rt_rq = &cpu_rq(cpu)->rt; 2624 #endif 2625 2626 return rt_rq_throttled(rt_rq); 2627 } 2628 #endif 2629 2630 DEFINE_SCHED_CLASS(rt) = { 2631 2632 .enqueue_task = enqueue_task_rt, 2633 .dequeue_task = dequeue_task_rt, 2634 .yield_task = yield_task_rt, 2635 2636 .wakeup_preempt = wakeup_preempt_rt, 2637 2638 .pick_task = pick_task_rt, 2639 .put_prev_task = put_prev_task_rt, 2640 .set_next_task = set_next_task_rt, 2641 2642 #ifdef CONFIG_SMP 2643 .balance = balance_rt, 2644 .select_task_rq = select_task_rq_rt, 2645 .set_cpus_allowed = set_cpus_allowed_common, 2646 .rq_online = rq_online_rt, 2647 .rq_offline = rq_offline_rt, 2648 .task_woken = task_woken_rt, 2649 .switched_from = switched_from_rt, 2650 .find_lock_rq = find_lock_lowest_rq, 2651 #endif 2652 2653 .task_tick = task_tick_rt, 2654 2655 .get_rr_interval = get_rr_interval_rt, 2656 2657 .prio_changed = prio_changed_rt, 2658 .switched_to = switched_to_rt, 2659 2660 .update_curr = update_curr_rt, 2661 2662 #ifdef CONFIG_SCHED_CORE 2663 .task_is_throttled = task_is_throttled_rt, 2664 #endif 2665 2666 #ifdef CONFIG_UCLAMP_TASK 2667 .uclamp_enabled = 1, 2668 #endif 2669 }; 2670 2671 #ifdef CONFIG_RT_GROUP_SCHED 2672 /* 2673 * Ensure that the real time constraints are schedulable. 2674 */ 2675 static DEFINE_MUTEX(rt_constraints_mutex); 2676 2677 static inline int tg_has_rt_tasks(struct task_group *tg) 2678 { 2679 struct task_struct *task; 2680 struct css_task_iter it; 2681 int ret = 0; 2682 2683 /* 2684 * Autogroups do not have RT tasks; see autogroup_create(). 2685 */ 2686 if (task_group_is_autogroup(tg)) 2687 return 0; 2688 2689 css_task_iter_start(&tg->css, 0, &it); 2690 while (!ret && (task = css_task_iter_next(&it))) 2691 ret |= rt_task(task); 2692 css_task_iter_end(&it); 2693 2694 return ret; 2695 } 2696 2697 struct rt_schedulable_data { 2698 struct task_group *tg; 2699 u64 rt_period; 2700 u64 rt_runtime; 2701 }; 2702 2703 static int tg_rt_schedulable(struct task_group *tg, void *data) 2704 { 2705 struct rt_schedulable_data *d = data; 2706 struct task_group *child; 2707 unsigned long total, sum = 0; 2708 u64 period, runtime; 2709 2710 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2711 runtime = tg->rt_bandwidth.rt_runtime; 2712 2713 if (tg == d->tg) { 2714 period = d->rt_period; 2715 runtime = d->rt_runtime; 2716 } 2717 2718 /* 2719 * Cannot have more runtime than the period. 2720 */ 2721 if (runtime > period && runtime != RUNTIME_INF) 2722 return -EINVAL; 2723 2724 /* 2725 * Ensure we don't starve existing RT tasks if runtime turns zero. 2726 */ 2727 if (rt_bandwidth_enabled() && !runtime && 2728 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg)) 2729 return -EBUSY; 2730 2731 total = to_ratio(period, runtime); 2732 2733 /* 2734 * Nobody can have more than the global setting allows. 2735 */ 2736 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 2737 return -EINVAL; 2738 2739 /* 2740 * The sum of our children's runtime should not exceed our own. 2741 */ 2742 list_for_each_entry_rcu(child, &tg->children, siblings) { 2743 period = ktime_to_ns(child->rt_bandwidth.rt_period); 2744 runtime = child->rt_bandwidth.rt_runtime; 2745 2746 if (child == d->tg) { 2747 period = d->rt_period; 2748 runtime = d->rt_runtime; 2749 } 2750 2751 sum += to_ratio(period, runtime); 2752 } 2753 2754 if (sum > total) 2755 return -EINVAL; 2756 2757 return 0; 2758 } 2759 2760 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 2761 { 2762 int ret; 2763 2764 struct rt_schedulable_data data = { 2765 .tg = tg, 2766 .rt_period = period, 2767 .rt_runtime = runtime, 2768 }; 2769 2770 rcu_read_lock(); 2771 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 2772 rcu_read_unlock(); 2773 2774 return ret; 2775 } 2776 2777 static int tg_set_rt_bandwidth(struct task_group *tg, 2778 u64 rt_period, u64 rt_runtime) 2779 { 2780 int i, err = 0; 2781 2782 /* 2783 * Disallowing the root group RT runtime is BAD, it would disallow the 2784 * kernel creating (and or operating) RT threads. 2785 */ 2786 if (tg == &root_task_group && rt_runtime == 0) 2787 return -EINVAL; 2788 2789 /* No period doesn't make any sense. */ 2790 if (rt_period == 0) 2791 return -EINVAL; 2792 2793 /* 2794 * Bound quota to defend quota against overflow during bandwidth shift. 2795 */ 2796 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime) 2797 return -EINVAL; 2798 2799 mutex_lock(&rt_constraints_mutex); 2800 err = __rt_schedulable(tg, rt_period, rt_runtime); 2801 if (err) 2802 goto unlock; 2803 2804 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2805 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 2806 tg->rt_bandwidth.rt_runtime = rt_runtime; 2807 2808 for_each_possible_cpu(i) { 2809 struct rt_rq *rt_rq = tg->rt_rq[i]; 2810 2811 raw_spin_lock(&rt_rq->rt_runtime_lock); 2812 rt_rq->rt_runtime = rt_runtime; 2813 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2814 } 2815 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2816 unlock: 2817 mutex_unlock(&rt_constraints_mutex); 2818 2819 return err; 2820 } 2821 2822 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 2823 { 2824 u64 rt_runtime, rt_period; 2825 2826 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2827 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 2828 if (rt_runtime_us < 0) 2829 rt_runtime = RUNTIME_INF; 2830 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC) 2831 return -EINVAL; 2832 2833 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2834 } 2835 2836 long sched_group_rt_runtime(struct task_group *tg) 2837 { 2838 u64 rt_runtime_us; 2839 2840 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 2841 return -1; 2842 2843 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 2844 do_div(rt_runtime_us, NSEC_PER_USEC); 2845 return rt_runtime_us; 2846 } 2847 2848 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 2849 { 2850 u64 rt_runtime, rt_period; 2851 2852 if (rt_period_us > U64_MAX / NSEC_PER_USEC) 2853 return -EINVAL; 2854 2855 rt_period = rt_period_us * NSEC_PER_USEC; 2856 rt_runtime = tg->rt_bandwidth.rt_runtime; 2857 2858 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2859 } 2860 2861 long sched_group_rt_period(struct task_group *tg) 2862 { 2863 u64 rt_period_us; 2864 2865 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 2866 do_div(rt_period_us, NSEC_PER_USEC); 2867 return rt_period_us; 2868 } 2869 2870 #ifdef CONFIG_SYSCTL 2871 static int sched_rt_global_constraints(void) 2872 { 2873 int ret = 0; 2874 2875 mutex_lock(&rt_constraints_mutex); 2876 ret = __rt_schedulable(NULL, 0, 0); 2877 mutex_unlock(&rt_constraints_mutex); 2878 2879 return ret; 2880 } 2881 #endif /* CONFIG_SYSCTL */ 2882 2883 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 2884 { 2885 /* Don't accept real-time tasks when there is no way for them to run */ 2886 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 2887 return 0; 2888 2889 return 1; 2890 } 2891 2892 #else /* !CONFIG_RT_GROUP_SCHED */ 2893 2894 #ifdef CONFIG_SYSCTL 2895 static int sched_rt_global_constraints(void) 2896 { 2897 return 0; 2898 } 2899 #endif /* CONFIG_SYSCTL */ 2900 #endif /* CONFIG_RT_GROUP_SCHED */ 2901 2902 #ifdef CONFIG_SYSCTL 2903 static int sched_rt_global_validate(void) 2904 { 2905 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 2906 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) || 2907 ((u64)sysctl_sched_rt_runtime * 2908 NSEC_PER_USEC > max_rt_runtime))) 2909 return -EINVAL; 2910 2911 return 0; 2912 } 2913 2914 static void sched_rt_do_global(void) 2915 { 2916 } 2917 2918 static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer, 2919 size_t *lenp, loff_t *ppos) 2920 { 2921 int old_period, old_runtime; 2922 static DEFINE_MUTEX(mutex); 2923 int ret; 2924 2925 mutex_lock(&mutex); 2926 old_period = sysctl_sched_rt_period; 2927 old_runtime = sysctl_sched_rt_runtime; 2928 2929 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2930 2931 if (!ret && write) { 2932 ret = sched_rt_global_validate(); 2933 if (ret) 2934 goto undo; 2935 2936 ret = sched_dl_global_validate(); 2937 if (ret) 2938 goto undo; 2939 2940 ret = sched_rt_global_constraints(); 2941 if (ret) 2942 goto undo; 2943 2944 sched_rt_do_global(); 2945 sched_dl_do_global(); 2946 } 2947 if (0) { 2948 undo: 2949 sysctl_sched_rt_period = old_period; 2950 sysctl_sched_rt_runtime = old_runtime; 2951 } 2952 mutex_unlock(&mutex); 2953 2954 return ret; 2955 } 2956 2957 static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer, 2958 size_t *lenp, loff_t *ppos) 2959 { 2960 int ret; 2961 static DEFINE_MUTEX(mutex); 2962 2963 mutex_lock(&mutex); 2964 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2965 /* 2966 * Make sure that internally we keep jiffies. 2967 * Also, writing zero resets the time-slice to default: 2968 */ 2969 if (!ret && write) { 2970 sched_rr_timeslice = 2971 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 2972 msecs_to_jiffies(sysctl_sched_rr_timeslice); 2973 2974 if (sysctl_sched_rr_timeslice <= 0) 2975 sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE); 2976 } 2977 mutex_unlock(&mutex); 2978 2979 return ret; 2980 } 2981 #endif /* CONFIG_SYSCTL */ 2982 2983 #ifdef CONFIG_SCHED_DEBUG 2984 void print_rt_stats(struct seq_file *m, int cpu) 2985 { 2986 rt_rq_iter_t iter; 2987 struct rt_rq *rt_rq; 2988 2989 rcu_read_lock(); 2990 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2991 print_rt_rq(m, cpu, rt_rq); 2992 rcu_read_unlock(); 2993 } 2994 #endif /* CONFIG_SCHED_DEBUG */ 2995