xref: /linux/kernel/sched/rt.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3  * policies)
4  */
5 
6 #include "sched.h"
7 
8 #include <linux/slab.h>
9 
10 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
11 
12 struct rt_bandwidth def_rt_bandwidth;
13 
14 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
15 {
16 	struct rt_bandwidth *rt_b =
17 		container_of(timer, struct rt_bandwidth, rt_period_timer);
18 	ktime_t now;
19 	int overrun;
20 	int idle = 0;
21 
22 	for (;;) {
23 		now = hrtimer_cb_get_time(timer);
24 		overrun = hrtimer_forward(timer, now, rt_b->rt_period);
25 
26 		if (!overrun)
27 			break;
28 
29 		idle = do_sched_rt_period_timer(rt_b, overrun);
30 	}
31 
32 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
33 }
34 
35 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
36 {
37 	rt_b->rt_period = ns_to_ktime(period);
38 	rt_b->rt_runtime = runtime;
39 
40 	raw_spin_lock_init(&rt_b->rt_runtime_lock);
41 
42 	hrtimer_init(&rt_b->rt_period_timer,
43 			CLOCK_MONOTONIC, HRTIMER_MODE_REL);
44 	rt_b->rt_period_timer.function = sched_rt_period_timer;
45 }
46 
47 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
48 {
49 	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
50 		return;
51 
52 	if (hrtimer_active(&rt_b->rt_period_timer))
53 		return;
54 
55 	raw_spin_lock(&rt_b->rt_runtime_lock);
56 	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
57 	raw_spin_unlock(&rt_b->rt_runtime_lock);
58 }
59 
60 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
61 {
62 	struct rt_prio_array *array;
63 	int i;
64 
65 	array = &rt_rq->active;
66 	for (i = 0; i < MAX_RT_PRIO; i++) {
67 		INIT_LIST_HEAD(array->queue + i);
68 		__clear_bit(i, array->bitmap);
69 	}
70 	/* delimiter for bitsearch: */
71 	__set_bit(MAX_RT_PRIO, array->bitmap);
72 
73 #if defined CONFIG_SMP
74 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
75 	rt_rq->highest_prio.next = MAX_RT_PRIO;
76 	rt_rq->rt_nr_migratory = 0;
77 	rt_rq->overloaded = 0;
78 	plist_head_init(&rt_rq->pushable_tasks);
79 #endif
80 
81 	rt_rq->rt_time = 0;
82 	rt_rq->rt_throttled = 0;
83 	rt_rq->rt_runtime = 0;
84 	raw_spin_lock_init(&rt_rq->rt_runtime_lock);
85 }
86 
87 #ifdef CONFIG_RT_GROUP_SCHED
88 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
89 {
90 	hrtimer_cancel(&rt_b->rt_period_timer);
91 }
92 
93 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
94 
95 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
96 {
97 #ifdef CONFIG_SCHED_DEBUG
98 	WARN_ON_ONCE(!rt_entity_is_task(rt_se));
99 #endif
100 	return container_of(rt_se, struct task_struct, rt);
101 }
102 
103 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
104 {
105 	return rt_rq->rq;
106 }
107 
108 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
109 {
110 	return rt_se->rt_rq;
111 }
112 
113 void free_rt_sched_group(struct task_group *tg)
114 {
115 	int i;
116 
117 	if (tg->rt_se)
118 		destroy_rt_bandwidth(&tg->rt_bandwidth);
119 
120 	for_each_possible_cpu(i) {
121 		if (tg->rt_rq)
122 			kfree(tg->rt_rq[i]);
123 		if (tg->rt_se)
124 			kfree(tg->rt_se[i]);
125 	}
126 
127 	kfree(tg->rt_rq);
128 	kfree(tg->rt_se);
129 }
130 
131 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
132 		struct sched_rt_entity *rt_se, int cpu,
133 		struct sched_rt_entity *parent)
134 {
135 	struct rq *rq = cpu_rq(cpu);
136 
137 	rt_rq->highest_prio.curr = MAX_RT_PRIO;
138 	rt_rq->rt_nr_boosted = 0;
139 	rt_rq->rq = rq;
140 	rt_rq->tg = tg;
141 
142 	tg->rt_rq[cpu] = rt_rq;
143 	tg->rt_se[cpu] = rt_se;
144 
145 	if (!rt_se)
146 		return;
147 
148 	if (!parent)
149 		rt_se->rt_rq = &rq->rt;
150 	else
151 		rt_se->rt_rq = parent->my_q;
152 
153 	rt_se->my_q = rt_rq;
154 	rt_se->parent = parent;
155 	INIT_LIST_HEAD(&rt_se->run_list);
156 }
157 
158 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
159 {
160 	struct rt_rq *rt_rq;
161 	struct sched_rt_entity *rt_se;
162 	int i;
163 
164 	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
165 	if (!tg->rt_rq)
166 		goto err;
167 	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
168 	if (!tg->rt_se)
169 		goto err;
170 
171 	init_rt_bandwidth(&tg->rt_bandwidth,
172 			ktime_to_ns(def_rt_bandwidth.rt_period), 0);
173 
174 	for_each_possible_cpu(i) {
175 		rt_rq = kzalloc_node(sizeof(struct rt_rq),
176 				     GFP_KERNEL, cpu_to_node(i));
177 		if (!rt_rq)
178 			goto err;
179 
180 		rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
181 				     GFP_KERNEL, cpu_to_node(i));
182 		if (!rt_se)
183 			goto err_free_rq;
184 
185 		init_rt_rq(rt_rq, cpu_rq(i));
186 		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
187 		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
188 	}
189 
190 	return 1;
191 
192 err_free_rq:
193 	kfree(rt_rq);
194 err:
195 	return 0;
196 }
197 
198 #else /* CONFIG_RT_GROUP_SCHED */
199 
200 #define rt_entity_is_task(rt_se) (1)
201 
202 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
203 {
204 	return container_of(rt_se, struct task_struct, rt);
205 }
206 
207 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
208 {
209 	return container_of(rt_rq, struct rq, rt);
210 }
211 
212 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
213 {
214 	struct task_struct *p = rt_task_of(rt_se);
215 	struct rq *rq = task_rq(p);
216 
217 	return &rq->rt;
218 }
219 
220 void free_rt_sched_group(struct task_group *tg) { }
221 
222 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
223 {
224 	return 1;
225 }
226 #endif /* CONFIG_RT_GROUP_SCHED */
227 
228 #ifdef CONFIG_SMP
229 
230 static inline int rt_overloaded(struct rq *rq)
231 {
232 	return atomic_read(&rq->rd->rto_count);
233 }
234 
235 static inline void rt_set_overload(struct rq *rq)
236 {
237 	if (!rq->online)
238 		return;
239 
240 	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
241 	/*
242 	 * Make sure the mask is visible before we set
243 	 * the overload count. That is checked to determine
244 	 * if we should look at the mask. It would be a shame
245 	 * if we looked at the mask, but the mask was not
246 	 * updated yet.
247 	 */
248 	wmb();
249 	atomic_inc(&rq->rd->rto_count);
250 }
251 
252 static inline void rt_clear_overload(struct rq *rq)
253 {
254 	if (!rq->online)
255 		return;
256 
257 	/* the order here really doesn't matter */
258 	atomic_dec(&rq->rd->rto_count);
259 	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
260 }
261 
262 static void update_rt_migration(struct rt_rq *rt_rq)
263 {
264 	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
265 		if (!rt_rq->overloaded) {
266 			rt_set_overload(rq_of_rt_rq(rt_rq));
267 			rt_rq->overloaded = 1;
268 		}
269 	} else if (rt_rq->overloaded) {
270 		rt_clear_overload(rq_of_rt_rq(rt_rq));
271 		rt_rq->overloaded = 0;
272 	}
273 }
274 
275 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
276 {
277 	struct task_struct *p;
278 
279 	if (!rt_entity_is_task(rt_se))
280 		return;
281 
282 	p = rt_task_of(rt_se);
283 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
284 
285 	rt_rq->rt_nr_total++;
286 	if (p->nr_cpus_allowed > 1)
287 		rt_rq->rt_nr_migratory++;
288 
289 	update_rt_migration(rt_rq);
290 }
291 
292 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
293 {
294 	struct task_struct *p;
295 
296 	if (!rt_entity_is_task(rt_se))
297 		return;
298 
299 	p = rt_task_of(rt_se);
300 	rt_rq = &rq_of_rt_rq(rt_rq)->rt;
301 
302 	rt_rq->rt_nr_total--;
303 	if (p->nr_cpus_allowed > 1)
304 		rt_rq->rt_nr_migratory--;
305 
306 	update_rt_migration(rt_rq);
307 }
308 
309 static inline int has_pushable_tasks(struct rq *rq)
310 {
311 	return !plist_head_empty(&rq->rt.pushable_tasks);
312 }
313 
314 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
315 {
316 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
317 	plist_node_init(&p->pushable_tasks, p->prio);
318 	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
319 
320 	/* Update the highest prio pushable task */
321 	if (p->prio < rq->rt.highest_prio.next)
322 		rq->rt.highest_prio.next = p->prio;
323 }
324 
325 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
326 {
327 	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
328 
329 	/* Update the new highest prio pushable task */
330 	if (has_pushable_tasks(rq)) {
331 		p = plist_first_entry(&rq->rt.pushable_tasks,
332 				      struct task_struct, pushable_tasks);
333 		rq->rt.highest_prio.next = p->prio;
334 	} else
335 		rq->rt.highest_prio.next = MAX_RT_PRIO;
336 }
337 
338 #else
339 
340 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
341 {
342 }
343 
344 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
345 {
346 }
347 
348 static inline
349 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
350 {
351 }
352 
353 static inline
354 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
355 {
356 }
357 
358 #endif /* CONFIG_SMP */
359 
360 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
361 {
362 	return !list_empty(&rt_se->run_list);
363 }
364 
365 #ifdef CONFIG_RT_GROUP_SCHED
366 
367 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
368 {
369 	if (!rt_rq->tg)
370 		return RUNTIME_INF;
371 
372 	return rt_rq->rt_runtime;
373 }
374 
375 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
376 {
377 	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
378 }
379 
380 typedef struct task_group *rt_rq_iter_t;
381 
382 static inline struct task_group *next_task_group(struct task_group *tg)
383 {
384 	do {
385 		tg = list_entry_rcu(tg->list.next,
386 			typeof(struct task_group), list);
387 	} while (&tg->list != &task_groups && task_group_is_autogroup(tg));
388 
389 	if (&tg->list == &task_groups)
390 		tg = NULL;
391 
392 	return tg;
393 }
394 
395 #define for_each_rt_rq(rt_rq, iter, rq)					\
396 	for (iter = container_of(&task_groups, typeof(*iter), list);	\
397 		(iter = next_task_group(iter)) &&			\
398 		(rt_rq = iter->rt_rq[cpu_of(rq)]);)
399 
400 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
401 {
402 	list_add_rcu(&rt_rq->leaf_rt_rq_list,
403 			&rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
404 }
405 
406 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
407 {
408 	list_del_rcu(&rt_rq->leaf_rt_rq_list);
409 }
410 
411 #define for_each_leaf_rt_rq(rt_rq, rq) \
412 	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
413 
414 #define for_each_sched_rt_entity(rt_se) \
415 	for (; rt_se; rt_se = rt_se->parent)
416 
417 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
418 {
419 	return rt_se->my_q;
420 }
421 
422 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
423 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
424 
425 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
426 {
427 	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
428 	struct sched_rt_entity *rt_se;
429 
430 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
431 
432 	rt_se = rt_rq->tg->rt_se[cpu];
433 
434 	if (rt_rq->rt_nr_running) {
435 		if (rt_se && !on_rt_rq(rt_se))
436 			enqueue_rt_entity(rt_se, false);
437 		if (rt_rq->highest_prio.curr < curr->prio)
438 			resched_task(curr);
439 	}
440 }
441 
442 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
443 {
444 	struct sched_rt_entity *rt_se;
445 	int cpu = cpu_of(rq_of_rt_rq(rt_rq));
446 
447 	rt_se = rt_rq->tg->rt_se[cpu];
448 
449 	if (rt_se && on_rt_rq(rt_se))
450 		dequeue_rt_entity(rt_se);
451 }
452 
453 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
454 {
455 	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
456 }
457 
458 static int rt_se_boosted(struct sched_rt_entity *rt_se)
459 {
460 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
461 	struct task_struct *p;
462 
463 	if (rt_rq)
464 		return !!rt_rq->rt_nr_boosted;
465 
466 	p = rt_task_of(rt_se);
467 	return p->prio != p->normal_prio;
468 }
469 
470 #ifdef CONFIG_SMP
471 static inline const struct cpumask *sched_rt_period_mask(void)
472 {
473 	return cpu_rq(smp_processor_id())->rd->span;
474 }
475 #else
476 static inline const struct cpumask *sched_rt_period_mask(void)
477 {
478 	return cpu_online_mask;
479 }
480 #endif
481 
482 static inline
483 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
484 {
485 	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
486 }
487 
488 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
489 {
490 	return &rt_rq->tg->rt_bandwidth;
491 }
492 
493 #else /* !CONFIG_RT_GROUP_SCHED */
494 
495 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
496 {
497 	return rt_rq->rt_runtime;
498 }
499 
500 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
501 {
502 	return ktime_to_ns(def_rt_bandwidth.rt_period);
503 }
504 
505 typedef struct rt_rq *rt_rq_iter_t;
506 
507 #define for_each_rt_rq(rt_rq, iter, rq) \
508 	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
509 
510 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
511 {
512 }
513 
514 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
515 {
516 }
517 
518 #define for_each_leaf_rt_rq(rt_rq, rq) \
519 	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
520 
521 #define for_each_sched_rt_entity(rt_se) \
522 	for (; rt_se; rt_se = NULL)
523 
524 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
525 {
526 	return NULL;
527 }
528 
529 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
530 {
531 	if (rt_rq->rt_nr_running)
532 		resched_task(rq_of_rt_rq(rt_rq)->curr);
533 }
534 
535 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
536 {
537 }
538 
539 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
540 {
541 	return rt_rq->rt_throttled;
542 }
543 
544 static inline const struct cpumask *sched_rt_period_mask(void)
545 {
546 	return cpu_online_mask;
547 }
548 
549 static inline
550 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
551 {
552 	return &cpu_rq(cpu)->rt;
553 }
554 
555 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
556 {
557 	return &def_rt_bandwidth;
558 }
559 
560 #endif /* CONFIG_RT_GROUP_SCHED */
561 
562 #ifdef CONFIG_SMP
563 /*
564  * We ran out of runtime, see if we can borrow some from our neighbours.
565  */
566 static int do_balance_runtime(struct rt_rq *rt_rq)
567 {
568 	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
569 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
570 	int i, weight, more = 0;
571 	u64 rt_period;
572 
573 	weight = cpumask_weight(rd->span);
574 
575 	raw_spin_lock(&rt_b->rt_runtime_lock);
576 	rt_period = ktime_to_ns(rt_b->rt_period);
577 	for_each_cpu(i, rd->span) {
578 		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
579 		s64 diff;
580 
581 		if (iter == rt_rq)
582 			continue;
583 
584 		raw_spin_lock(&iter->rt_runtime_lock);
585 		/*
586 		 * Either all rqs have inf runtime and there's nothing to steal
587 		 * or __disable_runtime() below sets a specific rq to inf to
588 		 * indicate its been disabled and disalow stealing.
589 		 */
590 		if (iter->rt_runtime == RUNTIME_INF)
591 			goto next;
592 
593 		/*
594 		 * From runqueues with spare time, take 1/n part of their
595 		 * spare time, but no more than our period.
596 		 */
597 		diff = iter->rt_runtime - iter->rt_time;
598 		if (diff > 0) {
599 			diff = div_u64((u64)diff, weight);
600 			if (rt_rq->rt_runtime + diff > rt_period)
601 				diff = rt_period - rt_rq->rt_runtime;
602 			iter->rt_runtime -= diff;
603 			rt_rq->rt_runtime += diff;
604 			more = 1;
605 			if (rt_rq->rt_runtime == rt_period) {
606 				raw_spin_unlock(&iter->rt_runtime_lock);
607 				break;
608 			}
609 		}
610 next:
611 		raw_spin_unlock(&iter->rt_runtime_lock);
612 	}
613 	raw_spin_unlock(&rt_b->rt_runtime_lock);
614 
615 	return more;
616 }
617 
618 /*
619  * Ensure this RQ takes back all the runtime it lend to its neighbours.
620  */
621 static void __disable_runtime(struct rq *rq)
622 {
623 	struct root_domain *rd = rq->rd;
624 	rt_rq_iter_t iter;
625 	struct rt_rq *rt_rq;
626 
627 	if (unlikely(!scheduler_running))
628 		return;
629 
630 	for_each_rt_rq(rt_rq, iter, rq) {
631 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
632 		s64 want;
633 		int i;
634 
635 		raw_spin_lock(&rt_b->rt_runtime_lock);
636 		raw_spin_lock(&rt_rq->rt_runtime_lock);
637 		/*
638 		 * Either we're all inf and nobody needs to borrow, or we're
639 		 * already disabled and thus have nothing to do, or we have
640 		 * exactly the right amount of runtime to take out.
641 		 */
642 		if (rt_rq->rt_runtime == RUNTIME_INF ||
643 				rt_rq->rt_runtime == rt_b->rt_runtime)
644 			goto balanced;
645 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
646 
647 		/*
648 		 * Calculate the difference between what we started out with
649 		 * and what we current have, that's the amount of runtime
650 		 * we lend and now have to reclaim.
651 		 */
652 		want = rt_b->rt_runtime - rt_rq->rt_runtime;
653 
654 		/*
655 		 * Greedy reclaim, take back as much as we can.
656 		 */
657 		for_each_cpu(i, rd->span) {
658 			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
659 			s64 diff;
660 
661 			/*
662 			 * Can't reclaim from ourselves or disabled runqueues.
663 			 */
664 			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
665 				continue;
666 
667 			raw_spin_lock(&iter->rt_runtime_lock);
668 			if (want > 0) {
669 				diff = min_t(s64, iter->rt_runtime, want);
670 				iter->rt_runtime -= diff;
671 				want -= diff;
672 			} else {
673 				iter->rt_runtime -= want;
674 				want -= want;
675 			}
676 			raw_spin_unlock(&iter->rt_runtime_lock);
677 
678 			if (!want)
679 				break;
680 		}
681 
682 		raw_spin_lock(&rt_rq->rt_runtime_lock);
683 		/*
684 		 * We cannot be left wanting - that would mean some runtime
685 		 * leaked out of the system.
686 		 */
687 		BUG_ON(want);
688 balanced:
689 		/*
690 		 * Disable all the borrow logic by pretending we have inf
691 		 * runtime - in which case borrowing doesn't make sense.
692 		 */
693 		rt_rq->rt_runtime = RUNTIME_INF;
694 		rt_rq->rt_throttled = 0;
695 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
696 		raw_spin_unlock(&rt_b->rt_runtime_lock);
697 	}
698 }
699 
700 static void disable_runtime(struct rq *rq)
701 {
702 	unsigned long flags;
703 
704 	raw_spin_lock_irqsave(&rq->lock, flags);
705 	__disable_runtime(rq);
706 	raw_spin_unlock_irqrestore(&rq->lock, flags);
707 }
708 
709 static void __enable_runtime(struct rq *rq)
710 {
711 	rt_rq_iter_t iter;
712 	struct rt_rq *rt_rq;
713 
714 	if (unlikely(!scheduler_running))
715 		return;
716 
717 	/*
718 	 * Reset each runqueue's bandwidth settings
719 	 */
720 	for_each_rt_rq(rt_rq, iter, rq) {
721 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
722 
723 		raw_spin_lock(&rt_b->rt_runtime_lock);
724 		raw_spin_lock(&rt_rq->rt_runtime_lock);
725 		rt_rq->rt_runtime = rt_b->rt_runtime;
726 		rt_rq->rt_time = 0;
727 		rt_rq->rt_throttled = 0;
728 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
729 		raw_spin_unlock(&rt_b->rt_runtime_lock);
730 	}
731 }
732 
733 static void enable_runtime(struct rq *rq)
734 {
735 	unsigned long flags;
736 
737 	raw_spin_lock_irqsave(&rq->lock, flags);
738 	__enable_runtime(rq);
739 	raw_spin_unlock_irqrestore(&rq->lock, flags);
740 }
741 
742 int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu)
743 {
744 	int cpu = (int)(long)hcpu;
745 
746 	switch (action) {
747 	case CPU_DOWN_PREPARE:
748 	case CPU_DOWN_PREPARE_FROZEN:
749 		disable_runtime(cpu_rq(cpu));
750 		return NOTIFY_OK;
751 
752 	case CPU_DOWN_FAILED:
753 	case CPU_DOWN_FAILED_FROZEN:
754 	case CPU_ONLINE:
755 	case CPU_ONLINE_FROZEN:
756 		enable_runtime(cpu_rq(cpu));
757 		return NOTIFY_OK;
758 
759 	default:
760 		return NOTIFY_DONE;
761 	}
762 }
763 
764 static int balance_runtime(struct rt_rq *rt_rq)
765 {
766 	int more = 0;
767 
768 	if (!sched_feat(RT_RUNTIME_SHARE))
769 		return more;
770 
771 	if (rt_rq->rt_time > rt_rq->rt_runtime) {
772 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
773 		more = do_balance_runtime(rt_rq);
774 		raw_spin_lock(&rt_rq->rt_runtime_lock);
775 	}
776 
777 	return more;
778 }
779 #else /* !CONFIG_SMP */
780 static inline int balance_runtime(struct rt_rq *rt_rq)
781 {
782 	return 0;
783 }
784 #endif /* CONFIG_SMP */
785 
786 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
787 {
788 	int i, idle = 1, throttled = 0;
789 	const struct cpumask *span;
790 
791 	span = sched_rt_period_mask();
792 #ifdef CONFIG_RT_GROUP_SCHED
793 	/*
794 	 * FIXME: isolated CPUs should really leave the root task group,
795 	 * whether they are isolcpus or were isolated via cpusets, lest
796 	 * the timer run on a CPU which does not service all runqueues,
797 	 * potentially leaving other CPUs indefinitely throttled.  If
798 	 * isolation is really required, the user will turn the throttle
799 	 * off to kill the perturbations it causes anyway.  Meanwhile,
800 	 * this maintains functionality for boot and/or troubleshooting.
801 	 */
802 	if (rt_b == &root_task_group.rt_bandwidth)
803 		span = cpu_online_mask;
804 #endif
805 	for_each_cpu(i, span) {
806 		int enqueue = 0;
807 		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
808 		struct rq *rq = rq_of_rt_rq(rt_rq);
809 
810 		raw_spin_lock(&rq->lock);
811 		if (rt_rq->rt_time) {
812 			u64 runtime;
813 
814 			raw_spin_lock(&rt_rq->rt_runtime_lock);
815 			if (rt_rq->rt_throttled)
816 				balance_runtime(rt_rq);
817 			runtime = rt_rq->rt_runtime;
818 			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
819 			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
820 				rt_rq->rt_throttled = 0;
821 				enqueue = 1;
822 
823 				/*
824 				 * Force a clock update if the CPU was idle,
825 				 * lest wakeup -> unthrottle time accumulate.
826 				 */
827 				if (rt_rq->rt_nr_running && rq->curr == rq->idle)
828 					rq->skip_clock_update = -1;
829 			}
830 			if (rt_rq->rt_time || rt_rq->rt_nr_running)
831 				idle = 0;
832 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
833 		} else if (rt_rq->rt_nr_running) {
834 			idle = 0;
835 			if (!rt_rq_throttled(rt_rq))
836 				enqueue = 1;
837 		}
838 		if (rt_rq->rt_throttled)
839 			throttled = 1;
840 
841 		if (enqueue)
842 			sched_rt_rq_enqueue(rt_rq);
843 		raw_spin_unlock(&rq->lock);
844 	}
845 
846 	if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
847 		return 1;
848 
849 	return idle;
850 }
851 
852 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
853 {
854 #ifdef CONFIG_RT_GROUP_SCHED
855 	struct rt_rq *rt_rq = group_rt_rq(rt_se);
856 
857 	if (rt_rq)
858 		return rt_rq->highest_prio.curr;
859 #endif
860 
861 	return rt_task_of(rt_se)->prio;
862 }
863 
864 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
865 {
866 	u64 runtime = sched_rt_runtime(rt_rq);
867 
868 	if (rt_rq->rt_throttled)
869 		return rt_rq_throttled(rt_rq);
870 
871 	if (runtime >= sched_rt_period(rt_rq))
872 		return 0;
873 
874 	balance_runtime(rt_rq);
875 	runtime = sched_rt_runtime(rt_rq);
876 	if (runtime == RUNTIME_INF)
877 		return 0;
878 
879 	if (rt_rq->rt_time > runtime) {
880 		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
881 
882 		/*
883 		 * Don't actually throttle groups that have no runtime assigned
884 		 * but accrue some time due to boosting.
885 		 */
886 		if (likely(rt_b->rt_runtime)) {
887 			static bool once = false;
888 
889 			rt_rq->rt_throttled = 1;
890 
891 			if (!once) {
892 				once = true;
893 				printk_sched("sched: RT throttling activated\n");
894 			}
895 		} else {
896 			/*
897 			 * In case we did anyway, make it go away,
898 			 * replenishment is a joke, since it will replenish us
899 			 * with exactly 0 ns.
900 			 */
901 			rt_rq->rt_time = 0;
902 		}
903 
904 		if (rt_rq_throttled(rt_rq)) {
905 			sched_rt_rq_dequeue(rt_rq);
906 			return 1;
907 		}
908 	}
909 
910 	return 0;
911 }
912 
913 /*
914  * Update the current task's runtime statistics. Skip current tasks that
915  * are not in our scheduling class.
916  */
917 static void update_curr_rt(struct rq *rq)
918 {
919 	struct task_struct *curr = rq->curr;
920 	struct sched_rt_entity *rt_se = &curr->rt;
921 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
922 	u64 delta_exec;
923 
924 	if (curr->sched_class != &rt_sched_class)
925 		return;
926 
927 	delta_exec = rq->clock_task - curr->se.exec_start;
928 	if (unlikely((s64)delta_exec < 0))
929 		delta_exec = 0;
930 
931 	schedstat_set(curr->se.statistics.exec_max,
932 		      max(curr->se.statistics.exec_max, delta_exec));
933 
934 	curr->se.sum_exec_runtime += delta_exec;
935 	account_group_exec_runtime(curr, delta_exec);
936 
937 	curr->se.exec_start = rq->clock_task;
938 	cpuacct_charge(curr, delta_exec);
939 
940 	sched_rt_avg_update(rq, delta_exec);
941 
942 	if (!rt_bandwidth_enabled())
943 		return;
944 
945 	for_each_sched_rt_entity(rt_se) {
946 		rt_rq = rt_rq_of_se(rt_se);
947 
948 		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
949 			raw_spin_lock(&rt_rq->rt_runtime_lock);
950 			rt_rq->rt_time += delta_exec;
951 			if (sched_rt_runtime_exceeded(rt_rq))
952 				resched_task(curr);
953 			raw_spin_unlock(&rt_rq->rt_runtime_lock);
954 		}
955 	}
956 }
957 
958 #if defined CONFIG_SMP
959 
960 static void
961 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
962 {
963 	struct rq *rq = rq_of_rt_rq(rt_rq);
964 
965 	if (rq->online && prio < prev_prio)
966 		cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
967 }
968 
969 static void
970 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
971 {
972 	struct rq *rq = rq_of_rt_rq(rt_rq);
973 
974 	if (rq->online && rt_rq->highest_prio.curr != prev_prio)
975 		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
976 }
977 
978 #else /* CONFIG_SMP */
979 
980 static inline
981 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
982 static inline
983 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
984 
985 #endif /* CONFIG_SMP */
986 
987 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
988 static void
989 inc_rt_prio(struct rt_rq *rt_rq, int prio)
990 {
991 	int prev_prio = rt_rq->highest_prio.curr;
992 
993 	if (prio < prev_prio)
994 		rt_rq->highest_prio.curr = prio;
995 
996 	inc_rt_prio_smp(rt_rq, prio, prev_prio);
997 }
998 
999 static void
1000 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1001 {
1002 	int prev_prio = rt_rq->highest_prio.curr;
1003 
1004 	if (rt_rq->rt_nr_running) {
1005 
1006 		WARN_ON(prio < prev_prio);
1007 
1008 		/*
1009 		 * This may have been our highest task, and therefore
1010 		 * we may have some recomputation to do
1011 		 */
1012 		if (prio == prev_prio) {
1013 			struct rt_prio_array *array = &rt_rq->active;
1014 
1015 			rt_rq->highest_prio.curr =
1016 				sched_find_first_bit(array->bitmap);
1017 		}
1018 
1019 	} else
1020 		rt_rq->highest_prio.curr = MAX_RT_PRIO;
1021 
1022 	dec_rt_prio_smp(rt_rq, prio, prev_prio);
1023 }
1024 
1025 #else
1026 
1027 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1028 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1029 
1030 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1031 
1032 #ifdef CONFIG_RT_GROUP_SCHED
1033 
1034 static void
1035 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1036 {
1037 	if (rt_se_boosted(rt_se))
1038 		rt_rq->rt_nr_boosted++;
1039 
1040 	if (rt_rq->tg)
1041 		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1042 }
1043 
1044 static void
1045 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1046 {
1047 	if (rt_se_boosted(rt_se))
1048 		rt_rq->rt_nr_boosted--;
1049 
1050 	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1051 }
1052 
1053 #else /* CONFIG_RT_GROUP_SCHED */
1054 
1055 static void
1056 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1057 {
1058 	start_rt_bandwidth(&def_rt_bandwidth);
1059 }
1060 
1061 static inline
1062 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1063 
1064 #endif /* CONFIG_RT_GROUP_SCHED */
1065 
1066 static inline
1067 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1068 {
1069 	int prio = rt_se_prio(rt_se);
1070 
1071 	WARN_ON(!rt_prio(prio));
1072 	rt_rq->rt_nr_running++;
1073 
1074 	inc_rt_prio(rt_rq, prio);
1075 	inc_rt_migration(rt_se, rt_rq);
1076 	inc_rt_group(rt_se, rt_rq);
1077 }
1078 
1079 static inline
1080 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1081 {
1082 	WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1083 	WARN_ON(!rt_rq->rt_nr_running);
1084 	rt_rq->rt_nr_running--;
1085 
1086 	dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1087 	dec_rt_migration(rt_se, rt_rq);
1088 	dec_rt_group(rt_se, rt_rq);
1089 }
1090 
1091 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1092 {
1093 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1094 	struct rt_prio_array *array = &rt_rq->active;
1095 	struct rt_rq *group_rq = group_rt_rq(rt_se);
1096 	struct list_head *queue = array->queue + rt_se_prio(rt_se);
1097 
1098 	/*
1099 	 * Don't enqueue the group if its throttled, or when empty.
1100 	 * The latter is a consequence of the former when a child group
1101 	 * get throttled and the current group doesn't have any other
1102 	 * active members.
1103 	 */
1104 	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
1105 		return;
1106 
1107 	if (!rt_rq->rt_nr_running)
1108 		list_add_leaf_rt_rq(rt_rq);
1109 
1110 	if (head)
1111 		list_add(&rt_se->run_list, queue);
1112 	else
1113 		list_add_tail(&rt_se->run_list, queue);
1114 	__set_bit(rt_se_prio(rt_se), array->bitmap);
1115 
1116 	inc_rt_tasks(rt_se, rt_rq);
1117 }
1118 
1119 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
1120 {
1121 	struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1122 	struct rt_prio_array *array = &rt_rq->active;
1123 
1124 	list_del_init(&rt_se->run_list);
1125 	if (list_empty(array->queue + rt_se_prio(rt_se)))
1126 		__clear_bit(rt_se_prio(rt_se), array->bitmap);
1127 
1128 	dec_rt_tasks(rt_se, rt_rq);
1129 	if (!rt_rq->rt_nr_running)
1130 		list_del_leaf_rt_rq(rt_rq);
1131 }
1132 
1133 /*
1134  * Because the prio of an upper entry depends on the lower
1135  * entries, we must remove entries top - down.
1136  */
1137 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
1138 {
1139 	struct sched_rt_entity *back = NULL;
1140 
1141 	for_each_sched_rt_entity(rt_se) {
1142 		rt_se->back = back;
1143 		back = rt_se;
1144 	}
1145 
1146 	for (rt_se = back; rt_se; rt_se = rt_se->back) {
1147 		if (on_rt_rq(rt_se))
1148 			__dequeue_rt_entity(rt_se);
1149 	}
1150 }
1151 
1152 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
1153 {
1154 	dequeue_rt_stack(rt_se);
1155 	for_each_sched_rt_entity(rt_se)
1156 		__enqueue_rt_entity(rt_se, head);
1157 }
1158 
1159 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
1160 {
1161 	dequeue_rt_stack(rt_se);
1162 
1163 	for_each_sched_rt_entity(rt_se) {
1164 		struct rt_rq *rt_rq = group_rt_rq(rt_se);
1165 
1166 		if (rt_rq && rt_rq->rt_nr_running)
1167 			__enqueue_rt_entity(rt_se, false);
1168 	}
1169 }
1170 
1171 /*
1172  * Adding/removing a task to/from a priority array:
1173  */
1174 static void
1175 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1176 {
1177 	struct sched_rt_entity *rt_se = &p->rt;
1178 
1179 	if (flags & ENQUEUE_WAKEUP)
1180 		rt_se->timeout = 0;
1181 
1182 	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
1183 
1184 	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1185 		enqueue_pushable_task(rq, p);
1186 
1187 	inc_nr_running(rq);
1188 }
1189 
1190 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1191 {
1192 	struct sched_rt_entity *rt_se = &p->rt;
1193 
1194 	update_curr_rt(rq);
1195 	dequeue_rt_entity(rt_se);
1196 
1197 	dequeue_pushable_task(rq, p);
1198 
1199 	dec_nr_running(rq);
1200 }
1201 
1202 /*
1203  * Put task to the head or the end of the run list without the overhead of
1204  * dequeue followed by enqueue.
1205  */
1206 static void
1207 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1208 {
1209 	if (on_rt_rq(rt_se)) {
1210 		struct rt_prio_array *array = &rt_rq->active;
1211 		struct list_head *queue = array->queue + rt_se_prio(rt_se);
1212 
1213 		if (head)
1214 			list_move(&rt_se->run_list, queue);
1215 		else
1216 			list_move_tail(&rt_se->run_list, queue);
1217 	}
1218 }
1219 
1220 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1221 {
1222 	struct sched_rt_entity *rt_se = &p->rt;
1223 	struct rt_rq *rt_rq;
1224 
1225 	for_each_sched_rt_entity(rt_se) {
1226 		rt_rq = rt_rq_of_se(rt_se);
1227 		requeue_rt_entity(rt_rq, rt_se, head);
1228 	}
1229 }
1230 
1231 static void yield_task_rt(struct rq *rq)
1232 {
1233 	requeue_task_rt(rq, rq->curr, 0);
1234 }
1235 
1236 #ifdef CONFIG_SMP
1237 static int find_lowest_rq(struct task_struct *task);
1238 
1239 static int
1240 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
1241 {
1242 	struct task_struct *curr;
1243 	struct rq *rq;
1244 	int cpu;
1245 
1246 	cpu = task_cpu(p);
1247 
1248 	if (p->nr_cpus_allowed == 1)
1249 		goto out;
1250 
1251 	/* For anything but wake ups, just return the task_cpu */
1252 	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1253 		goto out;
1254 
1255 	rq = cpu_rq(cpu);
1256 
1257 	rcu_read_lock();
1258 	curr = ACCESS_ONCE(rq->curr); /* unlocked access */
1259 
1260 	/*
1261 	 * If the current task on @p's runqueue is an RT task, then
1262 	 * try to see if we can wake this RT task up on another
1263 	 * runqueue. Otherwise simply start this RT task
1264 	 * on its current runqueue.
1265 	 *
1266 	 * We want to avoid overloading runqueues. If the woken
1267 	 * task is a higher priority, then it will stay on this CPU
1268 	 * and the lower prio task should be moved to another CPU.
1269 	 * Even though this will probably make the lower prio task
1270 	 * lose its cache, we do not want to bounce a higher task
1271 	 * around just because it gave up its CPU, perhaps for a
1272 	 * lock?
1273 	 *
1274 	 * For equal prio tasks, we just let the scheduler sort it out.
1275 	 *
1276 	 * Otherwise, just let it ride on the affined RQ and the
1277 	 * post-schedule router will push the preempted task away
1278 	 *
1279 	 * This test is optimistic, if we get it wrong the load-balancer
1280 	 * will have to sort it out.
1281 	 */
1282 	if (curr && unlikely(rt_task(curr)) &&
1283 	    (curr->nr_cpus_allowed < 2 ||
1284 	     curr->prio <= p->prio) &&
1285 	    (p->nr_cpus_allowed > 1)) {
1286 		int target = find_lowest_rq(p);
1287 
1288 		if (target != -1)
1289 			cpu = target;
1290 	}
1291 	rcu_read_unlock();
1292 
1293 out:
1294 	return cpu;
1295 }
1296 
1297 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1298 {
1299 	if (rq->curr->nr_cpus_allowed == 1)
1300 		return;
1301 
1302 	if (p->nr_cpus_allowed != 1
1303 	    && cpupri_find(&rq->rd->cpupri, p, NULL))
1304 		return;
1305 
1306 	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1307 		return;
1308 
1309 	/*
1310 	 * There appears to be other cpus that can accept
1311 	 * current and none to run 'p', so lets reschedule
1312 	 * to try and push current away:
1313 	 */
1314 	requeue_task_rt(rq, p, 1);
1315 	resched_task(rq->curr);
1316 }
1317 
1318 #endif /* CONFIG_SMP */
1319 
1320 /*
1321  * Preempt the current task with a newly woken task if needed:
1322  */
1323 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1324 {
1325 	if (p->prio < rq->curr->prio) {
1326 		resched_task(rq->curr);
1327 		return;
1328 	}
1329 
1330 #ifdef CONFIG_SMP
1331 	/*
1332 	 * If:
1333 	 *
1334 	 * - the newly woken task is of equal priority to the current task
1335 	 * - the newly woken task is non-migratable while current is migratable
1336 	 * - current will be preempted on the next reschedule
1337 	 *
1338 	 * we should check to see if current can readily move to a different
1339 	 * cpu.  If so, we will reschedule to allow the push logic to try
1340 	 * to move current somewhere else, making room for our non-migratable
1341 	 * task.
1342 	 */
1343 	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1344 		check_preempt_equal_prio(rq, p);
1345 #endif
1346 }
1347 
1348 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1349 						   struct rt_rq *rt_rq)
1350 {
1351 	struct rt_prio_array *array = &rt_rq->active;
1352 	struct sched_rt_entity *next = NULL;
1353 	struct list_head *queue;
1354 	int idx;
1355 
1356 	idx = sched_find_first_bit(array->bitmap);
1357 	BUG_ON(idx >= MAX_RT_PRIO);
1358 
1359 	queue = array->queue + idx;
1360 	next = list_entry(queue->next, struct sched_rt_entity, run_list);
1361 
1362 	return next;
1363 }
1364 
1365 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1366 {
1367 	struct sched_rt_entity *rt_se;
1368 	struct task_struct *p;
1369 	struct rt_rq *rt_rq;
1370 
1371 	rt_rq = &rq->rt;
1372 
1373 	if (!rt_rq->rt_nr_running)
1374 		return NULL;
1375 
1376 	if (rt_rq_throttled(rt_rq))
1377 		return NULL;
1378 
1379 	do {
1380 		rt_se = pick_next_rt_entity(rq, rt_rq);
1381 		BUG_ON(!rt_se);
1382 		rt_rq = group_rt_rq(rt_se);
1383 	} while (rt_rq);
1384 
1385 	p = rt_task_of(rt_se);
1386 	p->se.exec_start = rq->clock_task;
1387 
1388 	return p;
1389 }
1390 
1391 static struct task_struct *pick_next_task_rt(struct rq *rq)
1392 {
1393 	struct task_struct *p = _pick_next_task_rt(rq);
1394 
1395 	/* The running task is never eligible for pushing */
1396 	if (p)
1397 		dequeue_pushable_task(rq, p);
1398 
1399 #ifdef CONFIG_SMP
1400 	/*
1401 	 * We detect this state here so that we can avoid taking the RQ
1402 	 * lock again later if there is no need to push
1403 	 */
1404 	rq->post_schedule = has_pushable_tasks(rq);
1405 #endif
1406 
1407 	return p;
1408 }
1409 
1410 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1411 {
1412 	update_curr_rt(rq);
1413 
1414 	/*
1415 	 * The previous task needs to be made eligible for pushing
1416 	 * if it is still active
1417 	 */
1418 	if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1419 		enqueue_pushable_task(rq, p);
1420 }
1421 
1422 #ifdef CONFIG_SMP
1423 
1424 /* Only try algorithms three times */
1425 #define RT_MAX_TRIES 3
1426 
1427 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1428 {
1429 	if (!task_running(rq, p) &&
1430 	    (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) &&
1431 	    (p->nr_cpus_allowed > 1))
1432 		return 1;
1433 	return 0;
1434 }
1435 
1436 /* Return the second highest RT task, NULL otherwise */
1437 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1438 {
1439 	struct task_struct *next = NULL;
1440 	struct sched_rt_entity *rt_se;
1441 	struct rt_prio_array *array;
1442 	struct rt_rq *rt_rq;
1443 	int idx;
1444 
1445 	for_each_leaf_rt_rq(rt_rq, rq) {
1446 		array = &rt_rq->active;
1447 		idx = sched_find_first_bit(array->bitmap);
1448 next_idx:
1449 		if (idx >= MAX_RT_PRIO)
1450 			continue;
1451 		if (next && next->prio <= idx)
1452 			continue;
1453 		list_for_each_entry(rt_se, array->queue + idx, run_list) {
1454 			struct task_struct *p;
1455 
1456 			if (!rt_entity_is_task(rt_se))
1457 				continue;
1458 
1459 			p = rt_task_of(rt_se);
1460 			if (pick_rt_task(rq, p, cpu)) {
1461 				next = p;
1462 				break;
1463 			}
1464 		}
1465 		if (!next) {
1466 			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1467 			goto next_idx;
1468 		}
1469 	}
1470 
1471 	return next;
1472 }
1473 
1474 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1475 
1476 static int find_lowest_rq(struct task_struct *task)
1477 {
1478 	struct sched_domain *sd;
1479 	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1480 	int this_cpu = smp_processor_id();
1481 	int cpu      = task_cpu(task);
1482 
1483 	/* Make sure the mask is initialized first */
1484 	if (unlikely(!lowest_mask))
1485 		return -1;
1486 
1487 	if (task->nr_cpus_allowed == 1)
1488 		return -1; /* No other targets possible */
1489 
1490 	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1491 		return -1; /* No targets found */
1492 
1493 	/*
1494 	 * At this point we have built a mask of cpus representing the
1495 	 * lowest priority tasks in the system.  Now we want to elect
1496 	 * the best one based on our affinity and topology.
1497 	 *
1498 	 * We prioritize the last cpu that the task executed on since
1499 	 * it is most likely cache-hot in that location.
1500 	 */
1501 	if (cpumask_test_cpu(cpu, lowest_mask))
1502 		return cpu;
1503 
1504 	/*
1505 	 * Otherwise, we consult the sched_domains span maps to figure
1506 	 * out which cpu is logically closest to our hot cache data.
1507 	 */
1508 	if (!cpumask_test_cpu(this_cpu, lowest_mask))
1509 		this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1510 
1511 	rcu_read_lock();
1512 	for_each_domain(cpu, sd) {
1513 		if (sd->flags & SD_WAKE_AFFINE) {
1514 			int best_cpu;
1515 
1516 			/*
1517 			 * "this_cpu" is cheaper to preempt than a
1518 			 * remote processor.
1519 			 */
1520 			if (this_cpu != -1 &&
1521 			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1522 				rcu_read_unlock();
1523 				return this_cpu;
1524 			}
1525 
1526 			best_cpu = cpumask_first_and(lowest_mask,
1527 						     sched_domain_span(sd));
1528 			if (best_cpu < nr_cpu_ids) {
1529 				rcu_read_unlock();
1530 				return best_cpu;
1531 			}
1532 		}
1533 	}
1534 	rcu_read_unlock();
1535 
1536 	/*
1537 	 * And finally, if there were no matches within the domains
1538 	 * just give the caller *something* to work with from the compatible
1539 	 * locations.
1540 	 */
1541 	if (this_cpu != -1)
1542 		return this_cpu;
1543 
1544 	cpu = cpumask_any(lowest_mask);
1545 	if (cpu < nr_cpu_ids)
1546 		return cpu;
1547 	return -1;
1548 }
1549 
1550 /* Will lock the rq it finds */
1551 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1552 {
1553 	struct rq *lowest_rq = NULL;
1554 	int tries;
1555 	int cpu;
1556 
1557 	for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1558 		cpu = find_lowest_rq(task);
1559 
1560 		if ((cpu == -1) || (cpu == rq->cpu))
1561 			break;
1562 
1563 		lowest_rq = cpu_rq(cpu);
1564 
1565 		/* if the prio of this runqueue changed, try again */
1566 		if (double_lock_balance(rq, lowest_rq)) {
1567 			/*
1568 			 * We had to unlock the run queue. In
1569 			 * the mean time, task could have
1570 			 * migrated already or had its affinity changed.
1571 			 * Also make sure that it wasn't scheduled on its rq.
1572 			 */
1573 			if (unlikely(task_rq(task) != rq ||
1574 				     !cpumask_test_cpu(lowest_rq->cpu,
1575 						       tsk_cpus_allowed(task)) ||
1576 				     task_running(rq, task) ||
1577 				     !task->on_rq)) {
1578 
1579 				double_unlock_balance(rq, lowest_rq);
1580 				lowest_rq = NULL;
1581 				break;
1582 			}
1583 		}
1584 
1585 		/* If this rq is still suitable use it. */
1586 		if (lowest_rq->rt.highest_prio.curr > task->prio)
1587 			break;
1588 
1589 		/* try again */
1590 		double_unlock_balance(rq, lowest_rq);
1591 		lowest_rq = NULL;
1592 	}
1593 
1594 	return lowest_rq;
1595 }
1596 
1597 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1598 {
1599 	struct task_struct *p;
1600 
1601 	if (!has_pushable_tasks(rq))
1602 		return NULL;
1603 
1604 	p = plist_first_entry(&rq->rt.pushable_tasks,
1605 			      struct task_struct, pushable_tasks);
1606 
1607 	BUG_ON(rq->cpu != task_cpu(p));
1608 	BUG_ON(task_current(rq, p));
1609 	BUG_ON(p->nr_cpus_allowed <= 1);
1610 
1611 	BUG_ON(!p->on_rq);
1612 	BUG_ON(!rt_task(p));
1613 
1614 	return p;
1615 }
1616 
1617 /*
1618  * If the current CPU has more than one RT task, see if the non
1619  * running task can migrate over to a CPU that is running a task
1620  * of lesser priority.
1621  */
1622 static int push_rt_task(struct rq *rq)
1623 {
1624 	struct task_struct *next_task;
1625 	struct rq *lowest_rq;
1626 	int ret = 0;
1627 
1628 	if (!rq->rt.overloaded)
1629 		return 0;
1630 
1631 	next_task = pick_next_pushable_task(rq);
1632 	if (!next_task)
1633 		return 0;
1634 
1635 retry:
1636 	if (unlikely(next_task == rq->curr)) {
1637 		WARN_ON(1);
1638 		return 0;
1639 	}
1640 
1641 	/*
1642 	 * It's possible that the next_task slipped in of
1643 	 * higher priority than current. If that's the case
1644 	 * just reschedule current.
1645 	 */
1646 	if (unlikely(next_task->prio < rq->curr->prio)) {
1647 		resched_task(rq->curr);
1648 		return 0;
1649 	}
1650 
1651 	/* We might release rq lock */
1652 	get_task_struct(next_task);
1653 
1654 	/* find_lock_lowest_rq locks the rq if found */
1655 	lowest_rq = find_lock_lowest_rq(next_task, rq);
1656 	if (!lowest_rq) {
1657 		struct task_struct *task;
1658 		/*
1659 		 * find_lock_lowest_rq releases rq->lock
1660 		 * so it is possible that next_task has migrated.
1661 		 *
1662 		 * We need to make sure that the task is still on the same
1663 		 * run-queue and is also still the next task eligible for
1664 		 * pushing.
1665 		 */
1666 		task = pick_next_pushable_task(rq);
1667 		if (task_cpu(next_task) == rq->cpu && task == next_task) {
1668 			/*
1669 			 * The task hasn't migrated, and is still the next
1670 			 * eligible task, but we failed to find a run-queue
1671 			 * to push it to.  Do not retry in this case, since
1672 			 * other cpus will pull from us when ready.
1673 			 */
1674 			goto out;
1675 		}
1676 
1677 		if (!task)
1678 			/* No more tasks, just exit */
1679 			goto out;
1680 
1681 		/*
1682 		 * Something has shifted, try again.
1683 		 */
1684 		put_task_struct(next_task);
1685 		next_task = task;
1686 		goto retry;
1687 	}
1688 
1689 	deactivate_task(rq, next_task, 0);
1690 	set_task_cpu(next_task, lowest_rq->cpu);
1691 	activate_task(lowest_rq, next_task, 0);
1692 	ret = 1;
1693 
1694 	resched_task(lowest_rq->curr);
1695 
1696 	double_unlock_balance(rq, lowest_rq);
1697 
1698 out:
1699 	put_task_struct(next_task);
1700 
1701 	return ret;
1702 }
1703 
1704 static void push_rt_tasks(struct rq *rq)
1705 {
1706 	/* push_rt_task will return true if it moved an RT */
1707 	while (push_rt_task(rq))
1708 		;
1709 }
1710 
1711 static int pull_rt_task(struct rq *this_rq)
1712 {
1713 	int this_cpu = this_rq->cpu, ret = 0, cpu;
1714 	struct task_struct *p;
1715 	struct rq *src_rq;
1716 
1717 	if (likely(!rt_overloaded(this_rq)))
1718 		return 0;
1719 
1720 	for_each_cpu(cpu, this_rq->rd->rto_mask) {
1721 		if (this_cpu == cpu)
1722 			continue;
1723 
1724 		src_rq = cpu_rq(cpu);
1725 
1726 		/*
1727 		 * Don't bother taking the src_rq->lock if the next highest
1728 		 * task is known to be lower-priority than our current task.
1729 		 * This may look racy, but if this value is about to go
1730 		 * logically higher, the src_rq will push this task away.
1731 		 * And if its going logically lower, we do not care
1732 		 */
1733 		if (src_rq->rt.highest_prio.next >=
1734 		    this_rq->rt.highest_prio.curr)
1735 			continue;
1736 
1737 		/*
1738 		 * We can potentially drop this_rq's lock in
1739 		 * double_lock_balance, and another CPU could
1740 		 * alter this_rq
1741 		 */
1742 		double_lock_balance(this_rq, src_rq);
1743 
1744 		/*
1745 		 * Are there still pullable RT tasks?
1746 		 */
1747 		if (src_rq->rt.rt_nr_running <= 1)
1748 			goto skip;
1749 
1750 		p = pick_next_highest_task_rt(src_rq, this_cpu);
1751 
1752 		/*
1753 		 * Do we have an RT task that preempts
1754 		 * the to-be-scheduled task?
1755 		 */
1756 		if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1757 			WARN_ON(p == src_rq->curr);
1758 			WARN_ON(!p->on_rq);
1759 
1760 			/*
1761 			 * There's a chance that p is higher in priority
1762 			 * than what's currently running on its cpu.
1763 			 * This is just that p is wakeing up and hasn't
1764 			 * had a chance to schedule. We only pull
1765 			 * p if it is lower in priority than the
1766 			 * current task on the run queue
1767 			 */
1768 			if (p->prio < src_rq->curr->prio)
1769 				goto skip;
1770 
1771 			ret = 1;
1772 
1773 			deactivate_task(src_rq, p, 0);
1774 			set_task_cpu(p, this_cpu);
1775 			activate_task(this_rq, p, 0);
1776 			/*
1777 			 * We continue with the search, just in
1778 			 * case there's an even higher prio task
1779 			 * in another runqueue. (low likelihood
1780 			 * but possible)
1781 			 */
1782 		}
1783 skip:
1784 		double_unlock_balance(this_rq, src_rq);
1785 	}
1786 
1787 	return ret;
1788 }
1789 
1790 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1791 {
1792 	/* Try to pull RT tasks here if we lower this rq's prio */
1793 	if (rq->rt.highest_prio.curr > prev->prio)
1794 		pull_rt_task(rq);
1795 }
1796 
1797 static void post_schedule_rt(struct rq *rq)
1798 {
1799 	push_rt_tasks(rq);
1800 }
1801 
1802 /*
1803  * If we are not running and we are not going to reschedule soon, we should
1804  * try to push tasks away now
1805  */
1806 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1807 {
1808 	if (!task_running(rq, p) &&
1809 	    !test_tsk_need_resched(rq->curr) &&
1810 	    has_pushable_tasks(rq) &&
1811 	    p->nr_cpus_allowed > 1 &&
1812 	    rt_task(rq->curr) &&
1813 	    (rq->curr->nr_cpus_allowed < 2 ||
1814 	     rq->curr->prio <= p->prio))
1815 		push_rt_tasks(rq);
1816 }
1817 
1818 static void set_cpus_allowed_rt(struct task_struct *p,
1819 				const struct cpumask *new_mask)
1820 {
1821 	struct rq *rq;
1822 	int weight;
1823 
1824 	BUG_ON(!rt_task(p));
1825 
1826 	if (!p->on_rq)
1827 		return;
1828 
1829 	weight = cpumask_weight(new_mask);
1830 
1831 	/*
1832 	 * Only update if the process changes its state from whether it
1833 	 * can migrate or not.
1834 	 */
1835 	if ((p->nr_cpus_allowed > 1) == (weight > 1))
1836 		return;
1837 
1838 	rq = task_rq(p);
1839 
1840 	/*
1841 	 * The process used to be able to migrate OR it can now migrate
1842 	 */
1843 	if (weight <= 1) {
1844 		if (!task_current(rq, p))
1845 			dequeue_pushable_task(rq, p);
1846 		BUG_ON(!rq->rt.rt_nr_migratory);
1847 		rq->rt.rt_nr_migratory--;
1848 	} else {
1849 		if (!task_current(rq, p))
1850 			enqueue_pushable_task(rq, p);
1851 		rq->rt.rt_nr_migratory++;
1852 	}
1853 
1854 	update_rt_migration(&rq->rt);
1855 }
1856 
1857 /* Assumes rq->lock is held */
1858 static void rq_online_rt(struct rq *rq)
1859 {
1860 	if (rq->rt.overloaded)
1861 		rt_set_overload(rq);
1862 
1863 	__enable_runtime(rq);
1864 
1865 	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1866 }
1867 
1868 /* Assumes rq->lock is held */
1869 static void rq_offline_rt(struct rq *rq)
1870 {
1871 	if (rq->rt.overloaded)
1872 		rt_clear_overload(rq);
1873 
1874 	__disable_runtime(rq);
1875 
1876 	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1877 }
1878 
1879 /*
1880  * When switch from the rt queue, we bring ourselves to a position
1881  * that we might want to pull RT tasks from other runqueues.
1882  */
1883 static void switched_from_rt(struct rq *rq, struct task_struct *p)
1884 {
1885 	/*
1886 	 * If there are other RT tasks then we will reschedule
1887 	 * and the scheduling of the other RT tasks will handle
1888 	 * the balancing. But if we are the last RT task
1889 	 * we may need to handle the pulling of RT tasks
1890 	 * now.
1891 	 */
1892 	if (p->on_rq && !rq->rt.rt_nr_running)
1893 		pull_rt_task(rq);
1894 }
1895 
1896 void init_sched_rt_class(void)
1897 {
1898 	unsigned int i;
1899 
1900 	for_each_possible_cpu(i) {
1901 		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1902 					GFP_KERNEL, cpu_to_node(i));
1903 	}
1904 }
1905 #endif /* CONFIG_SMP */
1906 
1907 /*
1908  * When switching a task to RT, we may overload the runqueue
1909  * with RT tasks. In this case we try to push them off to
1910  * other runqueues.
1911  */
1912 static void switched_to_rt(struct rq *rq, struct task_struct *p)
1913 {
1914 	int check_resched = 1;
1915 
1916 	/*
1917 	 * If we are already running, then there's nothing
1918 	 * that needs to be done. But if we are not running
1919 	 * we may need to preempt the current running task.
1920 	 * If that current running task is also an RT task
1921 	 * then see if we can move to another run queue.
1922 	 */
1923 	if (p->on_rq && rq->curr != p) {
1924 #ifdef CONFIG_SMP
1925 		if (rq->rt.overloaded && push_rt_task(rq) &&
1926 		    /* Don't resched if we changed runqueues */
1927 		    rq != task_rq(p))
1928 			check_resched = 0;
1929 #endif /* CONFIG_SMP */
1930 		if (check_resched && p->prio < rq->curr->prio)
1931 			resched_task(rq->curr);
1932 	}
1933 }
1934 
1935 /*
1936  * Priority of the task has changed. This may cause
1937  * us to initiate a push or pull.
1938  */
1939 static void
1940 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
1941 {
1942 	if (!p->on_rq)
1943 		return;
1944 
1945 	if (rq->curr == p) {
1946 #ifdef CONFIG_SMP
1947 		/*
1948 		 * If our priority decreases while running, we
1949 		 * may need to pull tasks to this runqueue.
1950 		 */
1951 		if (oldprio < p->prio)
1952 			pull_rt_task(rq);
1953 		/*
1954 		 * If there's a higher priority task waiting to run
1955 		 * then reschedule. Note, the above pull_rt_task
1956 		 * can release the rq lock and p could migrate.
1957 		 * Only reschedule if p is still on the same runqueue.
1958 		 */
1959 		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1960 			resched_task(p);
1961 #else
1962 		/* For UP simply resched on drop of prio */
1963 		if (oldprio < p->prio)
1964 			resched_task(p);
1965 #endif /* CONFIG_SMP */
1966 	} else {
1967 		/*
1968 		 * This task is not running, but if it is
1969 		 * greater than the current running task
1970 		 * then reschedule.
1971 		 */
1972 		if (p->prio < rq->curr->prio)
1973 			resched_task(rq->curr);
1974 	}
1975 }
1976 
1977 static void watchdog(struct rq *rq, struct task_struct *p)
1978 {
1979 	unsigned long soft, hard;
1980 
1981 	/* max may change after cur was read, this will be fixed next tick */
1982 	soft = task_rlimit(p, RLIMIT_RTTIME);
1983 	hard = task_rlimit_max(p, RLIMIT_RTTIME);
1984 
1985 	if (soft != RLIM_INFINITY) {
1986 		unsigned long next;
1987 
1988 		p->rt.timeout++;
1989 		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1990 		if (p->rt.timeout > next)
1991 			p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1992 	}
1993 }
1994 
1995 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1996 {
1997 	struct sched_rt_entity *rt_se = &p->rt;
1998 
1999 	update_curr_rt(rq);
2000 
2001 	watchdog(rq, p);
2002 
2003 	/*
2004 	 * RR tasks need a special form of timeslice management.
2005 	 * FIFO tasks have no timeslices.
2006 	 */
2007 	if (p->policy != SCHED_RR)
2008 		return;
2009 
2010 	if (--p->rt.time_slice)
2011 		return;
2012 
2013 	p->rt.time_slice = RR_TIMESLICE;
2014 
2015 	/*
2016 	 * Requeue to the end of queue if we (and all of our ancestors) are the
2017 	 * only element on the queue
2018 	 */
2019 	for_each_sched_rt_entity(rt_se) {
2020 		if (rt_se->run_list.prev != rt_se->run_list.next) {
2021 			requeue_task_rt(rq, p, 0);
2022 			set_tsk_need_resched(p);
2023 			return;
2024 		}
2025 	}
2026 }
2027 
2028 static void set_curr_task_rt(struct rq *rq)
2029 {
2030 	struct task_struct *p = rq->curr;
2031 
2032 	p->se.exec_start = rq->clock_task;
2033 
2034 	/* The running task is never eligible for pushing */
2035 	dequeue_pushable_task(rq, p);
2036 }
2037 
2038 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2039 {
2040 	/*
2041 	 * Time slice is 0 for SCHED_FIFO tasks
2042 	 */
2043 	if (task->policy == SCHED_RR)
2044 		return RR_TIMESLICE;
2045 	else
2046 		return 0;
2047 }
2048 
2049 const struct sched_class rt_sched_class = {
2050 	.next			= &fair_sched_class,
2051 	.enqueue_task		= enqueue_task_rt,
2052 	.dequeue_task		= dequeue_task_rt,
2053 	.yield_task		= yield_task_rt,
2054 
2055 	.check_preempt_curr	= check_preempt_curr_rt,
2056 
2057 	.pick_next_task		= pick_next_task_rt,
2058 	.put_prev_task		= put_prev_task_rt,
2059 
2060 #ifdef CONFIG_SMP
2061 	.select_task_rq		= select_task_rq_rt,
2062 
2063 	.set_cpus_allowed       = set_cpus_allowed_rt,
2064 	.rq_online              = rq_online_rt,
2065 	.rq_offline             = rq_offline_rt,
2066 	.pre_schedule		= pre_schedule_rt,
2067 	.post_schedule		= post_schedule_rt,
2068 	.task_woken		= task_woken_rt,
2069 	.switched_from		= switched_from_rt,
2070 #endif
2071 
2072 	.set_curr_task          = set_curr_task_rt,
2073 	.task_tick		= task_tick_rt,
2074 
2075 	.get_rr_interval	= get_rr_interval_rt,
2076 
2077 	.prio_changed		= prio_changed_rt,
2078 	.switched_to		= switched_to_rt,
2079 };
2080 
2081 #ifdef CONFIG_SCHED_DEBUG
2082 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2083 
2084 void print_rt_stats(struct seq_file *m, int cpu)
2085 {
2086 	rt_rq_iter_t iter;
2087 	struct rt_rq *rt_rq;
2088 
2089 	rcu_read_lock();
2090 	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2091 		print_rt_rq(m, cpu, rt_rq);
2092 	rcu_read_unlock();
2093 }
2094 #endif /* CONFIG_SCHED_DEBUG */
2095