1 /* 2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 3 * policies) 4 */ 5 6 #include "sched.h" 7 8 #include <linux/slab.h> 9 #include <linux/irq_work.h> 10 11 int sched_rr_timeslice = RR_TIMESLICE; 12 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE; 13 14 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 15 16 struct rt_bandwidth def_rt_bandwidth; 17 18 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 19 { 20 struct rt_bandwidth *rt_b = 21 container_of(timer, struct rt_bandwidth, rt_period_timer); 22 int idle = 0; 23 int overrun; 24 25 raw_spin_lock(&rt_b->rt_runtime_lock); 26 for (;;) { 27 overrun = hrtimer_forward_now(timer, rt_b->rt_period); 28 if (!overrun) 29 break; 30 31 raw_spin_unlock(&rt_b->rt_runtime_lock); 32 idle = do_sched_rt_period_timer(rt_b, overrun); 33 raw_spin_lock(&rt_b->rt_runtime_lock); 34 } 35 if (idle) 36 rt_b->rt_period_active = 0; 37 raw_spin_unlock(&rt_b->rt_runtime_lock); 38 39 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 40 } 41 42 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 43 { 44 rt_b->rt_period = ns_to_ktime(period); 45 rt_b->rt_runtime = runtime; 46 47 raw_spin_lock_init(&rt_b->rt_runtime_lock); 48 49 hrtimer_init(&rt_b->rt_period_timer, 50 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 51 rt_b->rt_period_timer.function = sched_rt_period_timer; 52 } 53 54 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 55 { 56 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 57 return; 58 59 raw_spin_lock(&rt_b->rt_runtime_lock); 60 if (!rt_b->rt_period_active) { 61 rt_b->rt_period_active = 1; 62 /* 63 * SCHED_DEADLINE updates the bandwidth, as a run away 64 * RT task with a DL task could hog a CPU. But DL does 65 * not reset the period. If a deadline task was running 66 * without an RT task running, it can cause RT tasks to 67 * throttle when they start up. Kick the timer right away 68 * to update the period. 69 */ 70 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 71 hrtimer_start_expires(&rt_b->rt_period_timer, HRTIMER_MODE_ABS_PINNED); 72 } 73 raw_spin_unlock(&rt_b->rt_runtime_lock); 74 } 75 76 #if defined(CONFIG_SMP) && defined(HAVE_RT_PUSH_IPI) 77 static void push_irq_work_func(struct irq_work *work); 78 #endif 79 80 void init_rt_rq(struct rt_rq *rt_rq) 81 { 82 struct rt_prio_array *array; 83 int i; 84 85 array = &rt_rq->active; 86 for (i = 0; i < MAX_RT_PRIO; i++) { 87 INIT_LIST_HEAD(array->queue + i); 88 __clear_bit(i, array->bitmap); 89 } 90 /* delimiter for bitsearch: */ 91 __set_bit(MAX_RT_PRIO, array->bitmap); 92 93 #if defined CONFIG_SMP 94 rt_rq->highest_prio.curr = MAX_RT_PRIO; 95 rt_rq->highest_prio.next = MAX_RT_PRIO; 96 rt_rq->rt_nr_migratory = 0; 97 rt_rq->overloaded = 0; 98 plist_head_init(&rt_rq->pushable_tasks); 99 100 #ifdef HAVE_RT_PUSH_IPI 101 rt_rq->push_flags = 0; 102 rt_rq->push_cpu = nr_cpu_ids; 103 raw_spin_lock_init(&rt_rq->push_lock); 104 init_irq_work(&rt_rq->push_work, push_irq_work_func); 105 #endif 106 #endif /* CONFIG_SMP */ 107 /* We start is dequeued state, because no RT tasks are queued */ 108 rt_rq->rt_queued = 0; 109 110 rt_rq->rt_time = 0; 111 rt_rq->rt_throttled = 0; 112 rt_rq->rt_runtime = 0; 113 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 114 } 115 116 #ifdef CONFIG_RT_GROUP_SCHED 117 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 118 { 119 hrtimer_cancel(&rt_b->rt_period_timer); 120 } 121 122 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 123 124 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 125 { 126 #ifdef CONFIG_SCHED_DEBUG 127 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 128 #endif 129 return container_of(rt_se, struct task_struct, rt); 130 } 131 132 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 133 { 134 return rt_rq->rq; 135 } 136 137 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 138 { 139 return rt_se->rt_rq; 140 } 141 142 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 143 { 144 struct rt_rq *rt_rq = rt_se->rt_rq; 145 146 return rt_rq->rq; 147 } 148 149 void free_rt_sched_group(struct task_group *tg) 150 { 151 int i; 152 153 if (tg->rt_se) 154 destroy_rt_bandwidth(&tg->rt_bandwidth); 155 156 for_each_possible_cpu(i) { 157 if (tg->rt_rq) 158 kfree(tg->rt_rq[i]); 159 if (tg->rt_se) 160 kfree(tg->rt_se[i]); 161 } 162 163 kfree(tg->rt_rq); 164 kfree(tg->rt_se); 165 } 166 167 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 168 struct sched_rt_entity *rt_se, int cpu, 169 struct sched_rt_entity *parent) 170 { 171 struct rq *rq = cpu_rq(cpu); 172 173 rt_rq->highest_prio.curr = MAX_RT_PRIO; 174 rt_rq->rt_nr_boosted = 0; 175 rt_rq->rq = rq; 176 rt_rq->tg = tg; 177 178 tg->rt_rq[cpu] = rt_rq; 179 tg->rt_se[cpu] = rt_se; 180 181 if (!rt_se) 182 return; 183 184 if (!parent) 185 rt_se->rt_rq = &rq->rt; 186 else 187 rt_se->rt_rq = parent->my_q; 188 189 rt_se->my_q = rt_rq; 190 rt_se->parent = parent; 191 INIT_LIST_HEAD(&rt_se->run_list); 192 } 193 194 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 195 { 196 struct rt_rq *rt_rq; 197 struct sched_rt_entity *rt_se; 198 int i; 199 200 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); 201 if (!tg->rt_rq) 202 goto err; 203 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); 204 if (!tg->rt_se) 205 goto err; 206 207 init_rt_bandwidth(&tg->rt_bandwidth, 208 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 209 210 for_each_possible_cpu(i) { 211 rt_rq = kzalloc_node(sizeof(struct rt_rq), 212 GFP_KERNEL, cpu_to_node(i)); 213 if (!rt_rq) 214 goto err; 215 216 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 217 GFP_KERNEL, cpu_to_node(i)); 218 if (!rt_se) 219 goto err_free_rq; 220 221 init_rt_rq(rt_rq); 222 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 223 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 224 } 225 226 return 1; 227 228 err_free_rq: 229 kfree(rt_rq); 230 err: 231 return 0; 232 } 233 234 #else /* CONFIG_RT_GROUP_SCHED */ 235 236 #define rt_entity_is_task(rt_se) (1) 237 238 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 239 { 240 return container_of(rt_se, struct task_struct, rt); 241 } 242 243 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 244 { 245 return container_of(rt_rq, struct rq, rt); 246 } 247 248 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 249 { 250 struct task_struct *p = rt_task_of(rt_se); 251 252 return task_rq(p); 253 } 254 255 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 256 { 257 struct rq *rq = rq_of_rt_se(rt_se); 258 259 return &rq->rt; 260 } 261 262 void free_rt_sched_group(struct task_group *tg) { } 263 264 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 265 { 266 return 1; 267 } 268 #endif /* CONFIG_RT_GROUP_SCHED */ 269 270 #ifdef CONFIG_SMP 271 272 static void pull_rt_task(struct rq *this_rq); 273 274 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 275 { 276 /* Try to pull RT tasks here if we lower this rq's prio */ 277 return rq->rt.highest_prio.curr > prev->prio; 278 } 279 280 static inline int rt_overloaded(struct rq *rq) 281 { 282 return atomic_read(&rq->rd->rto_count); 283 } 284 285 static inline void rt_set_overload(struct rq *rq) 286 { 287 if (!rq->online) 288 return; 289 290 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 291 /* 292 * Make sure the mask is visible before we set 293 * the overload count. That is checked to determine 294 * if we should look at the mask. It would be a shame 295 * if we looked at the mask, but the mask was not 296 * updated yet. 297 * 298 * Matched by the barrier in pull_rt_task(). 299 */ 300 smp_wmb(); 301 atomic_inc(&rq->rd->rto_count); 302 } 303 304 static inline void rt_clear_overload(struct rq *rq) 305 { 306 if (!rq->online) 307 return; 308 309 /* the order here really doesn't matter */ 310 atomic_dec(&rq->rd->rto_count); 311 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 312 } 313 314 static void update_rt_migration(struct rt_rq *rt_rq) 315 { 316 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 317 if (!rt_rq->overloaded) { 318 rt_set_overload(rq_of_rt_rq(rt_rq)); 319 rt_rq->overloaded = 1; 320 } 321 } else if (rt_rq->overloaded) { 322 rt_clear_overload(rq_of_rt_rq(rt_rq)); 323 rt_rq->overloaded = 0; 324 } 325 } 326 327 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 328 { 329 struct task_struct *p; 330 331 if (!rt_entity_is_task(rt_se)) 332 return; 333 334 p = rt_task_of(rt_se); 335 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 336 337 rt_rq->rt_nr_total++; 338 if (p->nr_cpus_allowed > 1) 339 rt_rq->rt_nr_migratory++; 340 341 update_rt_migration(rt_rq); 342 } 343 344 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 345 { 346 struct task_struct *p; 347 348 if (!rt_entity_is_task(rt_se)) 349 return; 350 351 p = rt_task_of(rt_se); 352 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 353 354 rt_rq->rt_nr_total--; 355 if (p->nr_cpus_allowed > 1) 356 rt_rq->rt_nr_migratory--; 357 358 update_rt_migration(rt_rq); 359 } 360 361 static inline int has_pushable_tasks(struct rq *rq) 362 { 363 return !plist_head_empty(&rq->rt.pushable_tasks); 364 } 365 366 static DEFINE_PER_CPU(struct callback_head, rt_push_head); 367 static DEFINE_PER_CPU(struct callback_head, rt_pull_head); 368 369 static void push_rt_tasks(struct rq *); 370 static void pull_rt_task(struct rq *); 371 372 static inline void queue_push_tasks(struct rq *rq) 373 { 374 if (!has_pushable_tasks(rq)) 375 return; 376 377 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); 378 } 379 380 static inline void queue_pull_task(struct rq *rq) 381 { 382 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); 383 } 384 385 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 386 { 387 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 388 plist_node_init(&p->pushable_tasks, p->prio); 389 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 390 391 /* Update the highest prio pushable task */ 392 if (p->prio < rq->rt.highest_prio.next) 393 rq->rt.highest_prio.next = p->prio; 394 } 395 396 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 397 { 398 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 399 400 /* Update the new highest prio pushable task */ 401 if (has_pushable_tasks(rq)) { 402 p = plist_first_entry(&rq->rt.pushable_tasks, 403 struct task_struct, pushable_tasks); 404 rq->rt.highest_prio.next = p->prio; 405 } else 406 rq->rt.highest_prio.next = MAX_RT_PRIO; 407 } 408 409 #else 410 411 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 412 { 413 } 414 415 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 416 { 417 } 418 419 static inline 420 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 421 { 422 } 423 424 static inline 425 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 426 { 427 } 428 429 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 430 { 431 return false; 432 } 433 434 static inline void pull_rt_task(struct rq *this_rq) 435 { 436 } 437 438 static inline void queue_push_tasks(struct rq *rq) 439 { 440 } 441 #endif /* CONFIG_SMP */ 442 443 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 444 static void dequeue_top_rt_rq(struct rt_rq *rt_rq); 445 446 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 447 { 448 return rt_se->on_rq; 449 } 450 451 #ifdef CONFIG_RT_GROUP_SCHED 452 453 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 454 { 455 if (!rt_rq->tg) 456 return RUNTIME_INF; 457 458 return rt_rq->rt_runtime; 459 } 460 461 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 462 { 463 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 464 } 465 466 typedef struct task_group *rt_rq_iter_t; 467 468 static inline struct task_group *next_task_group(struct task_group *tg) 469 { 470 do { 471 tg = list_entry_rcu(tg->list.next, 472 typeof(struct task_group), list); 473 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 474 475 if (&tg->list == &task_groups) 476 tg = NULL; 477 478 return tg; 479 } 480 481 #define for_each_rt_rq(rt_rq, iter, rq) \ 482 for (iter = container_of(&task_groups, typeof(*iter), list); \ 483 (iter = next_task_group(iter)) && \ 484 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 485 486 #define for_each_sched_rt_entity(rt_se) \ 487 for (; rt_se; rt_se = rt_se->parent) 488 489 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 490 { 491 return rt_se->my_q; 492 } 493 494 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 495 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 496 497 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 498 { 499 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 500 struct rq *rq = rq_of_rt_rq(rt_rq); 501 struct sched_rt_entity *rt_se; 502 503 int cpu = cpu_of(rq); 504 505 rt_se = rt_rq->tg->rt_se[cpu]; 506 507 if (rt_rq->rt_nr_running) { 508 if (!rt_se) 509 enqueue_top_rt_rq(rt_rq); 510 else if (!on_rt_rq(rt_se)) 511 enqueue_rt_entity(rt_se, 0); 512 513 if (rt_rq->highest_prio.curr < curr->prio) 514 resched_curr(rq); 515 } 516 } 517 518 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 519 { 520 struct sched_rt_entity *rt_se; 521 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 522 523 rt_se = rt_rq->tg->rt_se[cpu]; 524 525 if (!rt_se) 526 dequeue_top_rt_rq(rt_rq); 527 else if (on_rt_rq(rt_se)) 528 dequeue_rt_entity(rt_se, 0); 529 } 530 531 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 532 { 533 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 534 } 535 536 static int rt_se_boosted(struct sched_rt_entity *rt_se) 537 { 538 struct rt_rq *rt_rq = group_rt_rq(rt_se); 539 struct task_struct *p; 540 541 if (rt_rq) 542 return !!rt_rq->rt_nr_boosted; 543 544 p = rt_task_of(rt_se); 545 return p->prio != p->normal_prio; 546 } 547 548 #ifdef CONFIG_SMP 549 static inline const struct cpumask *sched_rt_period_mask(void) 550 { 551 return this_rq()->rd->span; 552 } 553 #else 554 static inline const struct cpumask *sched_rt_period_mask(void) 555 { 556 return cpu_online_mask; 557 } 558 #endif 559 560 static inline 561 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 562 { 563 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 564 } 565 566 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 567 { 568 return &rt_rq->tg->rt_bandwidth; 569 } 570 571 #else /* !CONFIG_RT_GROUP_SCHED */ 572 573 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 574 { 575 return rt_rq->rt_runtime; 576 } 577 578 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 579 { 580 return ktime_to_ns(def_rt_bandwidth.rt_period); 581 } 582 583 typedef struct rt_rq *rt_rq_iter_t; 584 585 #define for_each_rt_rq(rt_rq, iter, rq) \ 586 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 587 588 #define for_each_sched_rt_entity(rt_se) \ 589 for (; rt_se; rt_se = NULL) 590 591 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 592 { 593 return NULL; 594 } 595 596 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 597 { 598 struct rq *rq = rq_of_rt_rq(rt_rq); 599 600 if (!rt_rq->rt_nr_running) 601 return; 602 603 enqueue_top_rt_rq(rt_rq); 604 resched_curr(rq); 605 } 606 607 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 608 { 609 dequeue_top_rt_rq(rt_rq); 610 } 611 612 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 613 { 614 return rt_rq->rt_throttled; 615 } 616 617 static inline const struct cpumask *sched_rt_period_mask(void) 618 { 619 return cpu_online_mask; 620 } 621 622 static inline 623 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 624 { 625 return &cpu_rq(cpu)->rt; 626 } 627 628 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 629 { 630 return &def_rt_bandwidth; 631 } 632 633 #endif /* CONFIG_RT_GROUP_SCHED */ 634 635 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 636 { 637 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 638 639 return (hrtimer_active(&rt_b->rt_period_timer) || 640 rt_rq->rt_time < rt_b->rt_runtime); 641 } 642 643 #ifdef CONFIG_SMP 644 /* 645 * We ran out of runtime, see if we can borrow some from our neighbours. 646 */ 647 static void do_balance_runtime(struct rt_rq *rt_rq) 648 { 649 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 650 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 651 int i, weight; 652 u64 rt_period; 653 654 weight = cpumask_weight(rd->span); 655 656 raw_spin_lock(&rt_b->rt_runtime_lock); 657 rt_period = ktime_to_ns(rt_b->rt_period); 658 for_each_cpu(i, rd->span) { 659 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 660 s64 diff; 661 662 if (iter == rt_rq) 663 continue; 664 665 raw_spin_lock(&iter->rt_runtime_lock); 666 /* 667 * Either all rqs have inf runtime and there's nothing to steal 668 * or __disable_runtime() below sets a specific rq to inf to 669 * indicate its been disabled and disalow stealing. 670 */ 671 if (iter->rt_runtime == RUNTIME_INF) 672 goto next; 673 674 /* 675 * From runqueues with spare time, take 1/n part of their 676 * spare time, but no more than our period. 677 */ 678 diff = iter->rt_runtime - iter->rt_time; 679 if (diff > 0) { 680 diff = div_u64((u64)diff, weight); 681 if (rt_rq->rt_runtime + diff > rt_period) 682 diff = rt_period - rt_rq->rt_runtime; 683 iter->rt_runtime -= diff; 684 rt_rq->rt_runtime += diff; 685 if (rt_rq->rt_runtime == rt_period) { 686 raw_spin_unlock(&iter->rt_runtime_lock); 687 break; 688 } 689 } 690 next: 691 raw_spin_unlock(&iter->rt_runtime_lock); 692 } 693 raw_spin_unlock(&rt_b->rt_runtime_lock); 694 } 695 696 /* 697 * Ensure this RQ takes back all the runtime it lend to its neighbours. 698 */ 699 static void __disable_runtime(struct rq *rq) 700 { 701 struct root_domain *rd = rq->rd; 702 rt_rq_iter_t iter; 703 struct rt_rq *rt_rq; 704 705 if (unlikely(!scheduler_running)) 706 return; 707 708 for_each_rt_rq(rt_rq, iter, rq) { 709 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 710 s64 want; 711 int i; 712 713 raw_spin_lock(&rt_b->rt_runtime_lock); 714 raw_spin_lock(&rt_rq->rt_runtime_lock); 715 /* 716 * Either we're all inf and nobody needs to borrow, or we're 717 * already disabled and thus have nothing to do, or we have 718 * exactly the right amount of runtime to take out. 719 */ 720 if (rt_rq->rt_runtime == RUNTIME_INF || 721 rt_rq->rt_runtime == rt_b->rt_runtime) 722 goto balanced; 723 raw_spin_unlock(&rt_rq->rt_runtime_lock); 724 725 /* 726 * Calculate the difference between what we started out with 727 * and what we current have, that's the amount of runtime 728 * we lend and now have to reclaim. 729 */ 730 want = rt_b->rt_runtime - rt_rq->rt_runtime; 731 732 /* 733 * Greedy reclaim, take back as much as we can. 734 */ 735 for_each_cpu(i, rd->span) { 736 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 737 s64 diff; 738 739 /* 740 * Can't reclaim from ourselves or disabled runqueues. 741 */ 742 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 743 continue; 744 745 raw_spin_lock(&iter->rt_runtime_lock); 746 if (want > 0) { 747 diff = min_t(s64, iter->rt_runtime, want); 748 iter->rt_runtime -= diff; 749 want -= diff; 750 } else { 751 iter->rt_runtime -= want; 752 want -= want; 753 } 754 raw_spin_unlock(&iter->rt_runtime_lock); 755 756 if (!want) 757 break; 758 } 759 760 raw_spin_lock(&rt_rq->rt_runtime_lock); 761 /* 762 * We cannot be left wanting - that would mean some runtime 763 * leaked out of the system. 764 */ 765 BUG_ON(want); 766 balanced: 767 /* 768 * Disable all the borrow logic by pretending we have inf 769 * runtime - in which case borrowing doesn't make sense. 770 */ 771 rt_rq->rt_runtime = RUNTIME_INF; 772 rt_rq->rt_throttled = 0; 773 raw_spin_unlock(&rt_rq->rt_runtime_lock); 774 raw_spin_unlock(&rt_b->rt_runtime_lock); 775 776 /* Make rt_rq available for pick_next_task() */ 777 sched_rt_rq_enqueue(rt_rq); 778 } 779 } 780 781 static void __enable_runtime(struct rq *rq) 782 { 783 rt_rq_iter_t iter; 784 struct rt_rq *rt_rq; 785 786 if (unlikely(!scheduler_running)) 787 return; 788 789 /* 790 * Reset each runqueue's bandwidth settings 791 */ 792 for_each_rt_rq(rt_rq, iter, rq) { 793 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 794 795 raw_spin_lock(&rt_b->rt_runtime_lock); 796 raw_spin_lock(&rt_rq->rt_runtime_lock); 797 rt_rq->rt_runtime = rt_b->rt_runtime; 798 rt_rq->rt_time = 0; 799 rt_rq->rt_throttled = 0; 800 raw_spin_unlock(&rt_rq->rt_runtime_lock); 801 raw_spin_unlock(&rt_b->rt_runtime_lock); 802 } 803 } 804 805 static void balance_runtime(struct rt_rq *rt_rq) 806 { 807 if (!sched_feat(RT_RUNTIME_SHARE)) 808 return; 809 810 if (rt_rq->rt_time > rt_rq->rt_runtime) { 811 raw_spin_unlock(&rt_rq->rt_runtime_lock); 812 do_balance_runtime(rt_rq); 813 raw_spin_lock(&rt_rq->rt_runtime_lock); 814 } 815 } 816 #else /* !CONFIG_SMP */ 817 static inline void balance_runtime(struct rt_rq *rt_rq) {} 818 #endif /* CONFIG_SMP */ 819 820 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 821 { 822 int i, idle = 1, throttled = 0; 823 const struct cpumask *span; 824 825 span = sched_rt_period_mask(); 826 #ifdef CONFIG_RT_GROUP_SCHED 827 /* 828 * FIXME: isolated CPUs should really leave the root task group, 829 * whether they are isolcpus or were isolated via cpusets, lest 830 * the timer run on a CPU which does not service all runqueues, 831 * potentially leaving other CPUs indefinitely throttled. If 832 * isolation is really required, the user will turn the throttle 833 * off to kill the perturbations it causes anyway. Meanwhile, 834 * this maintains functionality for boot and/or troubleshooting. 835 */ 836 if (rt_b == &root_task_group.rt_bandwidth) 837 span = cpu_online_mask; 838 #endif 839 for_each_cpu(i, span) { 840 int enqueue = 0; 841 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 842 struct rq *rq = rq_of_rt_rq(rt_rq); 843 int skip; 844 845 /* 846 * When span == cpu_online_mask, taking each rq->lock 847 * can be time-consuming. Try to avoid it when possible. 848 */ 849 raw_spin_lock(&rt_rq->rt_runtime_lock); 850 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; 851 raw_spin_unlock(&rt_rq->rt_runtime_lock); 852 if (skip) 853 continue; 854 855 raw_spin_lock(&rq->lock); 856 if (rt_rq->rt_time) { 857 u64 runtime; 858 859 raw_spin_lock(&rt_rq->rt_runtime_lock); 860 if (rt_rq->rt_throttled) 861 balance_runtime(rt_rq); 862 runtime = rt_rq->rt_runtime; 863 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 864 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 865 rt_rq->rt_throttled = 0; 866 enqueue = 1; 867 868 /* 869 * When we're idle and a woken (rt) task is 870 * throttled check_preempt_curr() will set 871 * skip_update and the time between the wakeup 872 * and this unthrottle will get accounted as 873 * 'runtime'. 874 */ 875 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 876 rq_clock_skip_update(rq, false); 877 } 878 if (rt_rq->rt_time || rt_rq->rt_nr_running) 879 idle = 0; 880 raw_spin_unlock(&rt_rq->rt_runtime_lock); 881 } else if (rt_rq->rt_nr_running) { 882 idle = 0; 883 if (!rt_rq_throttled(rt_rq)) 884 enqueue = 1; 885 } 886 if (rt_rq->rt_throttled) 887 throttled = 1; 888 889 if (enqueue) 890 sched_rt_rq_enqueue(rt_rq); 891 raw_spin_unlock(&rq->lock); 892 } 893 894 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 895 return 1; 896 897 return idle; 898 } 899 900 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 901 { 902 #ifdef CONFIG_RT_GROUP_SCHED 903 struct rt_rq *rt_rq = group_rt_rq(rt_se); 904 905 if (rt_rq) 906 return rt_rq->highest_prio.curr; 907 #endif 908 909 return rt_task_of(rt_se)->prio; 910 } 911 912 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 913 { 914 u64 runtime = sched_rt_runtime(rt_rq); 915 916 if (rt_rq->rt_throttled) 917 return rt_rq_throttled(rt_rq); 918 919 if (runtime >= sched_rt_period(rt_rq)) 920 return 0; 921 922 balance_runtime(rt_rq); 923 runtime = sched_rt_runtime(rt_rq); 924 if (runtime == RUNTIME_INF) 925 return 0; 926 927 if (rt_rq->rt_time > runtime) { 928 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 929 930 /* 931 * Don't actually throttle groups that have no runtime assigned 932 * but accrue some time due to boosting. 933 */ 934 if (likely(rt_b->rt_runtime)) { 935 rt_rq->rt_throttled = 1; 936 printk_deferred_once("sched: RT throttling activated\n"); 937 } else { 938 /* 939 * In case we did anyway, make it go away, 940 * replenishment is a joke, since it will replenish us 941 * with exactly 0 ns. 942 */ 943 rt_rq->rt_time = 0; 944 } 945 946 if (rt_rq_throttled(rt_rq)) { 947 sched_rt_rq_dequeue(rt_rq); 948 return 1; 949 } 950 } 951 952 return 0; 953 } 954 955 /* 956 * Update the current task's runtime statistics. Skip current tasks that 957 * are not in our scheduling class. 958 */ 959 static void update_curr_rt(struct rq *rq) 960 { 961 struct task_struct *curr = rq->curr; 962 struct sched_rt_entity *rt_se = &curr->rt; 963 u64 delta_exec; 964 965 if (curr->sched_class != &rt_sched_class) 966 return; 967 968 delta_exec = rq_clock_task(rq) - curr->se.exec_start; 969 if (unlikely((s64)delta_exec <= 0)) 970 return; 971 972 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 973 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_RT); 974 975 schedstat_set(curr->se.statistics.exec_max, 976 max(curr->se.statistics.exec_max, delta_exec)); 977 978 curr->se.sum_exec_runtime += delta_exec; 979 account_group_exec_runtime(curr, delta_exec); 980 981 curr->se.exec_start = rq_clock_task(rq); 982 cpuacct_charge(curr, delta_exec); 983 984 sched_rt_avg_update(rq, delta_exec); 985 986 if (!rt_bandwidth_enabled()) 987 return; 988 989 for_each_sched_rt_entity(rt_se) { 990 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 991 992 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 993 raw_spin_lock(&rt_rq->rt_runtime_lock); 994 rt_rq->rt_time += delta_exec; 995 if (sched_rt_runtime_exceeded(rt_rq)) 996 resched_curr(rq); 997 raw_spin_unlock(&rt_rq->rt_runtime_lock); 998 } 999 } 1000 } 1001 1002 static void 1003 dequeue_top_rt_rq(struct rt_rq *rt_rq) 1004 { 1005 struct rq *rq = rq_of_rt_rq(rt_rq); 1006 1007 BUG_ON(&rq->rt != rt_rq); 1008 1009 if (!rt_rq->rt_queued) 1010 return; 1011 1012 BUG_ON(!rq->nr_running); 1013 1014 sub_nr_running(rq, rt_rq->rt_nr_running); 1015 rt_rq->rt_queued = 0; 1016 } 1017 1018 static void 1019 enqueue_top_rt_rq(struct rt_rq *rt_rq) 1020 { 1021 struct rq *rq = rq_of_rt_rq(rt_rq); 1022 1023 BUG_ON(&rq->rt != rt_rq); 1024 1025 if (rt_rq->rt_queued) 1026 return; 1027 if (rt_rq_throttled(rt_rq) || !rt_rq->rt_nr_running) 1028 return; 1029 1030 add_nr_running(rq, rt_rq->rt_nr_running); 1031 rt_rq->rt_queued = 1; 1032 } 1033 1034 #if defined CONFIG_SMP 1035 1036 static void 1037 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1038 { 1039 struct rq *rq = rq_of_rt_rq(rt_rq); 1040 1041 #ifdef CONFIG_RT_GROUP_SCHED 1042 /* 1043 * Change rq's cpupri only if rt_rq is the top queue. 1044 */ 1045 if (&rq->rt != rt_rq) 1046 return; 1047 #endif 1048 if (rq->online && prio < prev_prio) 1049 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1050 } 1051 1052 static void 1053 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1054 { 1055 struct rq *rq = rq_of_rt_rq(rt_rq); 1056 1057 #ifdef CONFIG_RT_GROUP_SCHED 1058 /* 1059 * Change rq's cpupri only if rt_rq is the top queue. 1060 */ 1061 if (&rq->rt != rt_rq) 1062 return; 1063 #endif 1064 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1065 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1066 } 1067 1068 #else /* CONFIG_SMP */ 1069 1070 static inline 1071 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1072 static inline 1073 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1074 1075 #endif /* CONFIG_SMP */ 1076 1077 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1078 static void 1079 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1080 { 1081 int prev_prio = rt_rq->highest_prio.curr; 1082 1083 if (prio < prev_prio) 1084 rt_rq->highest_prio.curr = prio; 1085 1086 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1087 } 1088 1089 static void 1090 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1091 { 1092 int prev_prio = rt_rq->highest_prio.curr; 1093 1094 if (rt_rq->rt_nr_running) { 1095 1096 WARN_ON(prio < prev_prio); 1097 1098 /* 1099 * This may have been our highest task, and therefore 1100 * we may have some recomputation to do 1101 */ 1102 if (prio == prev_prio) { 1103 struct rt_prio_array *array = &rt_rq->active; 1104 1105 rt_rq->highest_prio.curr = 1106 sched_find_first_bit(array->bitmap); 1107 } 1108 1109 } else 1110 rt_rq->highest_prio.curr = MAX_RT_PRIO; 1111 1112 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1113 } 1114 1115 #else 1116 1117 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1118 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1119 1120 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1121 1122 #ifdef CONFIG_RT_GROUP_SCHED 1123 1124 static void 1125 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1126 { 1127 if (rt_se_boosted(rt_se)) 1128 rt_rq->rt_nr_boosted++; 1129 1130 if (rt_rq->tg) 1131 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1132 } 1133 1134 static void 1135 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1136 { 1137 if (rt_se_boosted(rt_se)) 1138 rt_rq->rt_nr_boosted--; 1139 1140 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1141 } 1142 1143 #else /* CONFIG_RT_GROUP_SCHED */ 1144 1145 static void 1146 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1147 { 1148 start_rt_bandwidth(&def_rt_bandwidth); 1149 } 1150 1151 static inline 1152 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1153 1154 #endif /* CONFIG_RT_GROUP_SCHED */ 1155 1156 static inline 1157 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1158 { 1159 struct rt_rq *group_rq = group_rt_rq(rt_se); 1160 1161 if (group_rq) 1162 return group_rq->rt_nr_running; 1163 else 1164 return 1; 1165 } 1166 1167 static inline 1168 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) 1169 { 1170 struct rt_rq *group_rq = group_rt_rq(rt_se); 1171 struct task_struct *tsk; 1172 1173 if (group_rq) 1174 return group_rq->rr_nr_running; 1175 1176 tsk = rt_task_of(rt_se); 1177 1178 return (tsk->policy == SCHED_RR) ? 1 : 0; 1179 } 1180 1181 static inline 1182 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1183 { 1184 int prio = rt_se_prio(rt_se); 1185 1186 WARN_ON(!rt_prio(prio)); 1187 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1188 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); 1189 1190 inc_rt_prio(rt_rq, prio); 1191 inc_rt_migration(rt_se, rt_rq); 1192 inc_rt_group(rt_se, rt_rq); 1193 } 1194 1195 static inline 1196 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1197 { 1198 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1199 WARN_ON(!rt_rq->rt_nr_running); 1200 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1201 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); 1202 1203 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1204 dec_rt_migration(rt_se, rt_rq); 1205 dec_rt_group(rt_se, rt_rq); 1206 } 1207 1208 /* 1209 * Change rt_se->run_list location unless SAVE && !MOVE 1210 * 1211 * assumes ENQUEUE/DEQUEUE flags match 1212 */ 1213 static inline bool move_entity(unsigned int flags) 1214 { 1215 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 1216 return false; 1217 1218 return true; 1219 } 1220 1221 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) 1222 { 1223 list_del_init(&rt_se->run_list); 1224 1225 if (list_empty(array->queue + rt_se_prio(rt_se))) 1226 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1227 1228 rt_se->on_list = 0; 1229 } 1230 1231 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1232 { 1233 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1234 struct rt_prio_array *array = &rt_rq->active; 1235 struct rt_rq *group_rq = group_rt_rq(rt_se); 1236 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1237 1238 /* 1239 * Don't enqueue the group if its throttled, or when empty. 1240 * The latter is a consequence of the former when a child group 1241 * get throttled and the current group doesn't have any other 1242 * active members. 1243 */ 1244 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { 1245 if (rt_se->on_list) 1246 __delist_rt_entity(rt_se, array); 1247 return; 1248 } 1249 1250 if (move_entity(flags)) { 1251 WARN_ON_ONCE(rt_se->on_list); 1252 if (flags & ENQUEUE_HEAD) 1253 list_add(&rt_se->run_list, queue); 1254 else 1255 list_add_tail(&rt_se->run_list, queue); 1256 1257 __set_bit(rt_se_prio(rt_se), array->bitmap); 1258 rt_se->on_list = 1; 1259 } 1260 rt_se->on_rq = 1; 1261 1262 inc_rt_tasks(rt_se, rt_rq); 1263 } 1264 1265 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1266 { 1267 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1268 struct rt_prio_array *array = &rt_rq->active; 1269 1270 if (move_entity(flags)) { 1271 WARN_ON_ONCE(!rt_se->on_list); 1272 __delist_rt_entity(rt_se, array); 1273 } 1274 rt_se->on_rq = 0; 1275 1276 dec_rt_tasks(rt_se, rt_rq); 1277 } 1278 1279 /* 1280 * Because the prio of an upper entry depends on the lower 1281 * entries, we must remove entries top - down. 1282 */ 1283 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) 1284 { 1285 struct sched_rt_entity *back = NULL; 1286 1287 for_each_sched_rt_entity(rt_se) { 1288 rt_se->back = back; 1289 back = rt_se; 1290 } 1291 1292 dequeue_top_rt_rq(rt_rq_of_se(back)); 1293 1294 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1295 if (on_rt_rq(rt_se)) 1296 __dequeue_rt_entity(rt_se, flags); 1297 } 1298 } 1299 1300 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1301 { 1302 struct rq *rq = rq_of_rt_se(rt_se); 1303 1304 dequeue_rt_stack(rt_se, flags); 1305 for_each_sched_rt_entity(rt_se) 1306 __enqueue_rt_entity(rt_se, flags); 1307 enqueue_top_rt_rq(&rq->rt); 1308 } 1309 1310 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1311 { 1312 struct rq *rq = rq_of_rt_se(rt_se); 1313 1314 dequeue_rt_stack(rt_se, flags); 1315 1316 for_each_sched_rt_entity(rt_se) { 1317 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1318 1319 if (rt_rq && rt_rq->rt_nr_running) 1320 __enqueue_rt_entity(rt_se, flags); 1321 } 1322 enqueue_top_rt_rq(&rq->rt); 1323 } 1324 1325 /* 1326 * Adding/removing a task to/from a priority array: 1327 */ 1328 static void 1329 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1330 { 1331 struct sched_rt_entity *rt_se = &p->rt; 1332 1333 if (flags & ENQUEUE_WAKEUP) 1334 rt_se->timeout = 0; 1335 1336 enqueue_rt_entity(rt_se, flags); 1337 1338 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1339 enqueue_pushable_task(rq, p); 1340 } 1341 1342 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1343 { 1344 struct sched_rt_entity *rt_se = &p->rt; 1345 1346 update_curr_rt(rq); 1347 dequeue_rt_entity(rt_se, flags); 1348 1349 dequeue_pushable_task(rq, p); 1350 } 1351 1352 /* 1353 * Put task to the head or the end of the run list without the overhead of 1354 * dequeue followed by enqueue. 1355 */ 1356 static void 1357 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1358 { 1359 if (on_rt_rq(rt_se)) { 1360 struct rt_prio_array *array = &rt_rq->active; 1361 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1362 1363 if (head) 1364 list_move(&rt_se->run_list, queue); 1365 else 1366 list_move_tail(&rt_se->run_list, queue); 1367 } 1368 } 1369 1370 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1371 { 1372 struct sched_rt_entity *rt_se = &p->rt; 1373 struct rt_rq *rt_rq; 1374 1375 for_each_sched_rt_entity(rt_se) { 1376 rt_rq = rt_rq_of_se(rt_se); 1377 requeue_rt_entity(rt_rq, rt_se, head); 1378 } 1379 } 1380 1381 static void yield_task_rt(struct rq *rq) 1382 { 1383 requeue_task_rt(rq, rq->curr, 0); 1384 } 1385 1386 #ifdef CONFIG_SMP 1387 static int find_lowest_rq(struct task_struct *task); 1388 1389 static int 1390 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags) 1391 { 1392 struct task_struct *curr; 1393 struct rq *rq; 1394 1395 /* For anything but wake ups, just return the task_cpu */ 1396 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 1397 goto out; 1398 1399 rq = cpu_rq(cpu); 1400 1401 rcu_read_lock(); 1402 curr = READ_ONCE(rq->curr); /* unlocked access */ 1403 1404 /* 1405 * If the current task on @p's runqueue is an RT task, then 1406 * try to see if we can wake this RT task up on another 1407 * runqueue. Otherwise simply start this RT task 1408 * on its current runqueue. 1409 * 1410 * We want to avoid overloading runqueues. If the woken 1411 * task is a higher priority, then it will stay on this CPU 1412 * and the lower prio task should be moved to another CPU. 1413 * Even though this will probably make the lower prio task 1414 * lose its cache, we do not want to bounce a higher task 1415 * around just because it gave up its CPU, perhaps for a 1416 * lock? 1417 * 1418 * For equal prio tasks, we just let the scheduler sort it out. 1419 * 1420 * Otherwise, just let it ride on the affined RQ and the 1421 * post-schedule router will push the preempted task away 1422 * 1423 * This test is optimistic, if we get it wrong the load-balancer 1424 * will have to sort it out. 1425 */ 1426 if (curr && unlikely(rt_task(curr)) && 1427 (curr->nr_cpus_allowed < 2 || 1428 curr->prio <= p->prio)) { 1429 int target = find_lowest_rq(p); 1430 1431 /* 1432 * Don't bother moving it if the destination CPU is 1433 * not running a lower priority task. 1434 */ 1435 if (target != -1 && 1436 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1437 cpu = target; 1438 } 1439 rcu_read_unlock(); 1440 1441 out: 1442 return cpu; 1443 } 1444 1445 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1446 { 1447 /* 1448 * Current can't be migrated, useless to reschedule, 1449 * let's hope p can move out. 1450 */ 1451 if (rq->curr->nr_cpus_allowed == 1 || 1452 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1453 return; 1454 1455 /* 1456 * p is migratable, so let's not schedule it and 1457 * see if it is pushed or pulled somewhere else. 1458 */ 1459 if (p->nr_cpus_allowed != 1 1460 && cpupri_find(&rq->rd->cpupri, p, NULL)) 1461 return; 1462 1463 /* 1464 * There appears to be other cpus that can accept 1465 * current and none to run 'p', so lets reschedule 1466 * to try and push current away: 1467 */ 1468 requeue_task_rt(rq, p, 1); 1469 resched_curr(rq); 1470 } 1471 1472 #endif /* CONFIG_SMP */ 1473 1474 /* 1475 * Preempt the current task with a newly woken task if needed: 1476 */ 1477 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1478 { 1479 if (p->prio < rq->curr->prio) { 1480 resched_curr(rq); 1481 return; 1482 } 1483 1484 #ifdef CONFIG_SMP 1485 /* 1486 * If: 1487 * 1488 * - the newly woken task is of equal priority to the current task 1489 * - the newly woken task is non-migratable while current is migratable 1490 * - current will be preempted on the next reschedule 1491 * 1492 * we should check to see if current can readily move to a different 1493 * cpu. If so, we will reschedule to allow the push logic to try 1494 * to move current somewhere else, making room for our non-migratable 1495 * task. 1496 */ 1497 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1498 check_preempt_equal_prio(rq, p); 1499 #endif 1500 } 1501 1502 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 1503 struct rt_rq *rt_rq) 1504 { 1505 struct rt_prio_array *array = &rt_rq->active; 1506 struct sched_rt_entity *next = NULL; 1507 struct list_head *queue; 1508 int idx; 1509 1510 idx = sched_find_first_bit(array->bitmap); 1511 BUG_ON(idx >= MAX_RT_PRIO); 1512 1513 queue = array->queue + idx; 1514 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1515 1516 return next; 1517 } 1518 1519 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1520 { 1521 struct sched_rt_entity *rt_se; 1522 struct task_struct *p; 1523 struct rt_rq *rt_rq = &rq->rt; 1524 1525 do { 1526 rt_se = pick_next_rt_entity(rq, rt_rq); 1527 BUG_ON(!rt_se); 1528 rt_rq = group_rt_rq(rt_se); 1529 } while (rt_rq); 1530 1531 p = rt_task_of(rt_se); 1532 p->se.exec_start = rq_clock_task(rq); 1533 1534 return p; 1535 } 1536 1537 static struct task_struct * 1538 pick_next_task_rt(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 1539 { 1540 struct task_struct *p; 1541 struct rt_rq *rt_rq = &rq->rt; 1542 1543 if (need_pull_rt_task(rq, prev)) { 1544 /* 1545 * This is OK, because current is on_cpu, which avoids it being 1546 * picked for load-balance and preemption/IRQs are still 1547 * disabled avoiding further scheduler activity on it and we're 1548 * being very careful to re-start the picking loop. 1549 */ 1550 rq_unpin_lock(rq, rf); 1551 pull_rt_task(rq); 1552 rq_repin_lock(rq, rf); 1553 /* 1554 * pull_rt_task() can drop (and re-acquire) rq->lock; this 1555 * means a dl or stop task can slip in, in which case we need 1556 * to re-start task selection. 1557 */ 1558 if (unlikely((rq->stop && task_on_rq_queued(rq->stop)) || 1559 rq->dl.dl_nr_running)) 1560 return RETRY_TASK; 1561 } 1562 1563 /* 1564 * We may dequeue prev's rt_rq in put_prev_task(). 1565 * So, we update time before rt_nr_running check. 1566 */ 1567 if (prev->sched_class == &rt_sched_class) 1568 update_curr_rt(rq); 1569 1570 if (!rt_rq->rt_queued) 1571 return NULL; 1572 1573 put_prev_task(rq, prev); 1574 1575 p = _pick_next_task_rt(rq); 1576 1577 /* The running task is never eligible for pushing */ 1578 dequeue_pushable_task(rq, p); 1579 1580 queue_push_tasks(rq); 1581 1582 return p; 1583 } 1584 1585 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1586 { 1587 update_curr_rt(rq); 1588 1589 /* 1590 * The previous task needs to be made eligible for pushing 1591 * if it is still active 1592 */ 1593 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1594 enqueue_pushable_task(rq, p); 1595 } 1596 1597 #ifdef CONFIG_SMP 1598 1599 /* Only try algorithms three times */ 1600 #define RT_MAX_TRIES 3 1601 1602 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1603 { 1604 if (!task_running(rq, p) && 1605 cpumask_test_cpu(cpu, &p->cpus_allowed)) 1606 return 1; 1607 return 0; 1608 } 1609 1610 /* 1611 * Return the highest pushable rq's task, which is suitable to be executed 1612 * on the cpu, NULL otherwise 1613 */ 1614 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1615 { 1616 struct plist_head *head = &rq->rt.pushable_tasks; 1617 struct task_struct *p; 1618 1619 if (!has_pushable_tasks(rq)) 1620 return NULL; 1621 1622 plist_for_each_entry(p, head, pushable_tasks) { 1623 if (pick_rt_task(rq, p, cpu)) 1624 return p; 1625 } 1626 1627 return NULL; 1628 } 1629 1630 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1631 1632 static int find_lowest_rq(struct task_struct *task) 1633 { 1634 struct sched_domain *sd; 1635 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1636 int this_cpu = smp_processor_id(); 1637 int cpu = task_cpu(task); 1638 1639 /* Make sure the mask is initialized first */ 1640 if (unlikely(!lowest_mask)) 1641 return -1; 1642 1643 if (task->nr_cpus_allowed == 1) 1644 return -1; /* No other targets possible */ 1645 1646 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) 1647 return -1; /* No targets found */ 1648 1649 /* 1650 * At this point we have built a mask of cpus representing the 1651 * lowest priority tasks in the system. Now we want to elect 1652 * the best one based on our affinity and topology. 1653 * 1654 * We prioritize the last cpu that the task executed on since 1655 * it is most likely cache-hot in that location. 1656 */ 1657 if (cpumask_test_cpu(cpu, lowest_mask)) 1658 return cpu; 1659 1660 /* 1661 * Otherwise, we consult the sched_domains span maps to figure 1662 * out which cpu is logically closest to our hot cache data. 1663 */ 1664 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1665 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1666 1667 rcu_read_lock(); 1668 for_each_domain(cpu, sd) { 1669 if (sd->flags & SD_WAKE_AFFINE) { 1670 int best_cpu; 1671 1672 /* 1673 * "this_cpu" is cheaper to preempt than a 1674 * remote processor. 1675 */ 1676 if (this_cpu != -1 && 1677 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1678 rcu_read_unlock(); 1679 return this_cpu; 1680 } 1681 1682 best_cpu = cpumask_first_and(lowest_mask, 1683 sched_domain_span(sd)); 1684 if (best_cpu < nr_cpu_ids) { 1685 rcu_read_unlock(); 1686 return best_cpu; 1687 } 1688 } 1689 } 1690 rcu_read_unlock(); 1691 1692 /* 1693 * And finally, if there were no matches within the domains 1694 * just give the caller *something* to work with from the compatible 1695 * locations. 1696 */ 1697 if (this_cpu != -1) 1698 return this_cpu; 1699 1700 cpu = cpumask_any(lowest_mask); 1701 if (cpu < nr_cpu_ids) 1702 return cpu; 1703 return -1; 1704 } 1705 1706 /* Will lock the rq it finds */ 1707 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1708 { 1709 struct rq *lowest_rq = NULL; 1710 int tries; 1711 int cpu; 1712 1713 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1714 cpu = find_lowest_rq(task); 1715 1716 if ((cpu == -1) || (cpu == rq->cpu)) 1717 break; 1718 1719 lowest_rq = cpu_rq(cpu); 1720 1721 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1722 /* 1723 * Target rq has tasks of equal or higher priority, 1724 * retrying does not release any lock and is unlikely 1725 * to yield a different result. 1726 */ 1727 lowest_rq = NULL; 1728 break; 1729 } 1730 1731 /* if the prio of this runqueue changed, try again */ 1732 if (double_lock_balance(rq, lowest_rq)) { 1733 /* 1734 * We had to unlock the run queue. In 1735 * the mean time, task could have 1736 * migrated already or had its affinity changed. 1737 * Also make sure that it wasn't scheduled on its rq. 1738 */ 1739 if (unlikely(task_rq(task) != rq || 1740 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_allowed) || 1741 task_running(rq, task) || 1742 !rt_task(task) || 1743 !task_on_rq_queued(task))) { 1744 1745 double_unlock_balance(rq, lowest_rq); 1746 lowest_rq = NULL; 1747 break; 1748 } 1749 } 1750 1751 /* If this rq is still suitable use it. */ 1752 if (lowest_rq->rt.highest_prio.curr > task->prio) 1753 break; 1754 1755 /* try again */ 1756 double_unlock_balance(rq, lowest_rq); 1757 lowest_rq = NULL; 1758 } 1759 1760 return lowest_rq; 1761 } 1762 1763 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1764 { 1765 struct task_struct *p; 1766 1767 if (!has_pushable_tasks(rq)) 1768 return NULL; 1769 1770 p = plist_first_entry(&rq->rt.pushable_tasks, 1771 struct task_struct, pushable_tasks); 1772 1773 BUG_ON(rq->cpu != task_cpu(p)); 1774 BUG_ON(task_current(rq, p)); 1775 BUG_ON(p->nr_cpus_allowed <= 1); 1776 1777 BUG_ON(!task_on_rq_queued(p)); 1778 BUG_ON(!rt_task(p)); 1779 1780 return p; 1781 } 1782 1783 /* 1784 * If the current CPU has more than one RT task, see if the non 1785 * running task can migrate over to a CPU that is running a task 1786 * of lesser priority. 1787 */ 1788 static int push_rt_task(struct rq *rq) 1789 { 1790 struct task_struct *next_task; 1791 struct rq *lowest_rq; 1792 int ret = 0; 1793 1794 if (!rq->rt.overloaded) 1795 return 0; 1796 1797 next_task = pick_next_pushable_task(rq); 1798 if (!next_task) 1799 return 0; 1800 1801 retry: 1802 if (unlikely(next_task == rq->curr)) { 1803 WARN_ON(1); 1804 return 0; 1805 } 1806 1807 /* 1808 * It's possible that the next_task slipped in of 1809 * higher priority than current. If that's the case 1810 * just reschedule current. 1811 */ 1812 if (unlikely(next_task->prio < rq->curr->prio)) { 1813 resched_curr(rq); 1814 return 0; 1815 } 1816 1817 /* We might release rq lock */ 1818 get_task_struct(next_task); 1819 1820 /* find_lock_lowest_rq locks the rq if found */ 1821 lowest_rq = find_lock_lowest_rq(next_task, rq); 1822 if (!lowest_rq) { 1823 struct task_struct *task; 1824 /* 1825 * find_lock_lowest_rq releases rq->lock 1826 * so it is possible that next_task has migrated. 1827 * 1828 * We need to make sure that the task is still on the same 1829 * run-queue and is also still the next task eligible for 1830 * pushing. 1831 */ 1832 task = pick_next_pushable_task(rq); 1833 if (task == next_task) { 1834 /* 1835 * The task hasn't migrated, and is still the next 1836 * eligible task, but we failed to find a run-queue 1837 * to push it to. Do not retry in this case, since 1838 * other cpus will pull from us when ready. 1839 */ 1840 goto out; 1841 } 1842 1843 if (!task) 1844 /* No more tasks, just exit */ 1845 goto out; 1846 1847 /* 1848 * Something has shifted, try again. 1849 */ 1850 put_task_struct(next_task); 1851 next_task = task; 1852 goto retry; 1853 } 1854 1855 deactivate_task(rq, next_task, 0); 1856 set_task_cpu(next_task, lowest_rq->cpu); 1857 activate_task(lowest_rq, next_task, 0); 1858 ret = 1; 1859 1860 resched_curr(lowest_rq); 1861 1862 double_unlock_balance(rq, lowest_rq); 1863 1864 out: 1865 put_task_struct(next_task); 1866 1867 return ret; 1868 } 1869 1870 static void push_rt_tasks(struct rq *rq) 1871 { 1872 /* push_rt_task will return true if it moved an RT */ 1873 while (push_rt_task(rq)) 1874 ; 1875 } 1876 1877 #ifdef HAVE_RT_PUSH_IPI 1878 /* 1879 * The search for the next cpu always starts at rq->cpu and ends 1880 * when we reach rq->cpu again. It will never return rq->cpu. 1881 * This returns the next cpu to check, or nr_cpu_ids if the loop 1882 * is complete. 1883 * 1884 * rq->rt.push_cpu holds the last cpu returned by this function, 1885 * or if this is the first instance, it must hold rq->cpu. 1886 */ 1887 static int rto_next_cpu(struct rq *rq) 1888 { 1889 int prev_cpu = rq->rt.push_cpu; 1890 int cpu; 1891 1892 cpu = cpumask_next(prev_cpu, rq->rd->rto_mask); 1893 1894 /* 1895 * If the previous cpu is less than the rq's CPU, then it already 1896 * passed the end of the mask, and has started from the beginning. 1897 * We end if the next CPU is greater or equal to rq's CPU. 1898 */ 1899 if (prev_cpu < rq->cpu) { 1900 if (cpu >= rq->cpu) 1901 return nr_cpu_ids; 1902 1903 } else if (cpu >= nr_cpu_ids) { 1904 /* 1905 * We passed the end of the mask, start at the beginning. 1906 * If the result is greater or equal to the rq's CPU, then 1907 * the loop is finished. 1908 */ 1909 cpu = cpumask_first(rq->rd->rto_mask); 1910 if (cpu >= rq->cpu) 1911 return nr_cpu_ids; 1912 } 1913 rq->rt.push_cpu = cpu; 1914 1915 /* Return cpu to let the caller know if the loop is finished or not */ 1916 return cpu; 1917 } 1918 1919 static int find_next_push_cpu(struct rq *rq) 1920 { 1921 struct rq *next_rq; 1922 int cpu; 1923 1924 while (1) { 1925 cpu = rto_next_cpu(rq); 1926 if (cpu >= nr_cpu_ids) 1927 break; 1928 next_rq = cpu_rq(cpu); 1929 1930 /* Make sure the next rq can push to this rq */ 1931 if (next_rq->rt.highest_prio.next < rq->rt.highest_prio.curr) 1932 break; 1933 } 1934 1935 return cpu; 1936 } 1937 1938 #define RT_PUSH_IPI_EXECUTING 1 1939 #define RT_PUSH_IPI_RESTART 2 1940 1941 /* 1942 * When a high priority task schedules out from a CPU and a lower priority 1943 * task is scheduled in, a check is made to see if there's any RT tasks 1944 * on other CPUs that are waiting to run because a higher priority RT task 1945 * is currently running on its CPU. In this case, the CPU with multiple RT 1946 * tasks queued on it (overloaded) needs to be notified that a CPU has opened 1947 * up that may be able to run one of its non-running queued RT tasks. 1948 * 1949 * On large CPU boxes, there's the case that several CPUs could schedule 1950 * a lower priority task at the same time, in which case it will look for 1951 * any overloaded CPUs that it could pull a task from. To do this, the runqueue 1952 * lock must be taken from that overloaded CPU. Having 10s of CPUs all fighting 1953 * for a single overloaded CPU's runqueue lock can produce a large latency. 1954 * (This has actually been observed on large boxes running cyclictest). 1955 * Instead of taking the runqueue lock of the overloaded CPU, each of the 1956 * CPUs that scheduled a lower priority task simply sends an IPI to the 1957 * overloaded CPU. An IPI is much cheaper than taking an runqueue lock with 1958 * lots of contention. The overloaded CPU will look to push its non-running 1959 * RT task off, and if it does, it can then ignore the other IPIs coming 1960 * in, and just pass those IPIs off to any other overloaded CPU. 1961 * 1962 * When a CPU schedules a lower priority task, it only sends an IPI to 1963 * the "next" CPU that has overloaded RT tasks. This prevents IPI storms, 1964 * as having 10 CPUs scheduling lower priority tasks and 10 CPUs with 1965 * RT overloaded tasks, would cause 100 IPIs to go out at once. 1966 * 1967 * The overloaded RT CPU, when receiving an IPI, will try to push off its 1968 * overloaded RT tasks and then send an IPI to the next CPU that has 1969 * overloaded RT tasks. This stops when all CPUs with overloaded RT tasks 1970 * have completed. Just because a CPU may have pushed off its own overloaded 1971 * RT task does not mean it should stop sending the IPI around to other 1972 * overloaded CPUs. There may be another RT task waiting to run on one of 1973 * those CPUs that are of higher priority than the one that was just 1974 * pushed. 1975 * 1976 * An optimization that could possibly be made is to make a CPU array similar 1977 * to the cpupri array mask of all running RT tasks, but for the overloaded 1978 * case, then the IPI could be sent to only the CPU with the highest priority 1979 * RT task waiting, and that CPU could send off further IPIs to the CPU with 1980 * the next highest waiting task. Since the overloaded case is much less likely 1981 * to happen, the complexity of this implementation may not be worth it. 1982 * Instead, just send an IPI around to all overloaded CPUs. 1983 * 1984 * The rq->rt.push_flags holds the status of the IPI that is going around. 1985 * A run queue can only send out a single IPI at a time. The possible flags 1986 * for rq->rt.push_flags are: 1987 * 1988 * (None or zero): No IPI is going around for the current rq 1989 * RT_PUSH_IPI_EXECUTING: An IPI for the rq is being passed around 1990 * RT_PUSH_IPI_RESTART: The priority of the running task for the rq 1991 * has changed, and the IPI should restart 1992 * circulating the overloaded CPUs again. 1993 * 1994 * rq->rt.push_cpu contains the CPU that is being sent the IPI. It is updated 1995 * before sending to the next CPU. 1996 * 1997 * Instead of having all CPUs that schedule a lower priority task send 1998 * an IPI to the same "first" CPU in the RT overload mask, they send it 1999 * to the next overloaded CPU after their own CPU. This helps distribute 2000 * the work when there's more than one overloaded CPU and multiple CPUs 2001 * scheduling in lower priority tasks. 2002 * 2003 * When a rq schedules a lower priority task than what was currently 2004 * running, the next CPU with overloaded RT tasks is examined first. 2005 * That is, if CPU 1 and 5 are overloaded, and CPU 3 schedules a lower 2006 * priority task, it will send an IPI first to CPU 5, then CPU 5 will 2007 * send to CPU 1 if it is still overloaded. CPU 1 will clear the 2008 * rq->rt.push_flags if RT_PUSH_IPI_RESTART is not set. 2009 * 2010 * The first CPU to notice IPI_RESTART is set, will clear that flag and then 2011 * send an IPI to the next overloaded CPU after the rq->cpu and not the next 2012 * CPU after push_cpu. That is, if CPU 1, 4 and 5 are overloaded when CPU 3 2013 * schedules a lower priority task, and the IPI_RESTART gets set while the 2014 * handling is being done on CPU 5, it will clear the flag and send it back to 2015 * CPU 4 instead of CPU 1. 2016 * 2017 * Note, the above logic can be disabled by turning off the sched_feature 2018 * RT_PUSH_IPI. Then the rq lock of the overloaded CPU will simply be 2019 * taken by the CPU requesting a pull and the waiting RT task will be pulled 2020 * by that CPU. This may be fine for machines with few CPUs. 2021 */ 2022 static void tell_cpu_to_push(struct rq *rq) 2023 { 2024 int cpu; 2025 2026 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) { 2027 raw_spin_lock(&rq->rt.push_lock); 2028 /* Make sure it's still executing */ 2029 if (rq->rt.push_flags & RT_PUSH_IPI_EXECUTING) { 2030 /* 2031 * Tell the IPI to restart the loop as things have 2032 * changed since it started. 2033 */ 2034 rq->rt.push_flags |= RT_PUSH_IPI_RESTART; 2035 raw_spin_unlock(&rq->rt.push_lock); 2036 return; 2037 } 2038 raw_spin_unlock(&rq->rt.push_lock); 2039 } 2040 2041 /* When here, there's no IPI going around */ 2042 2043 rq->rt.push_cpu = rq->cpu; 2044 cpu = find_next_push_cpu(rq); 2045 if (cpu >= nr_cpu_ids) 2046 return; 2047 2048 rq->rt.push_flags = RT_PUSH_IPI_EXECUTING; 2049 2050 irq_work_queue_on(&rq->rt.push_work, cpu); 2051 } 2052 2053 /* Called from hardirq context */ 2054 static void try_to_push_tasks(void *arg) 2055 { 2056 struct rt_rq *rt_rq = arg; 2057 struct rq *rq, *src_rq; 2058 int this_cpu; 2059 int cpu; 2060 2061 this_cpu = rt_rq->push_cpu; 2062 2063 /* Paranoid check */ 2064 BUG_ON(this_cpu != smp_processor_id()); 2065 2066 rq = cpu_rq(this_cpu); 2067 src_rq = rq_of_rt_rq(rt_rq); 2068 2069 again: 2070 if (has_pushable_tasks(rq)) { 2071 raw_spin_lock(&rq->lock); 2072 push_rt_task(rq); 2073 raw_spin_unlock(&rq->lock); 2074 } 2075 2076 /* Pass the IPI to the next rt overloaded queue */ 2077 raw_spin_lock(&rt_rq->push_lock); 2078 /* 2079 * If the source queue changed since the IPI went out, 2080 * we need to restart the search from that CPU again. 2081 */ 2082 if (rt_rq->push_flags & RT_PUSH_IPI_RESTART) { 2083 rt_rq->push_flags &= ~RT_PUSH_IPI_RESTART; 2084 rt_rq->push_cpu = src_rq->cpu; 2085 } 2086 2087 cpu = find_next_push_cpu(src_rq); 2088 2089 if (cpu >= nr_cpu_ids) 2090 rt_rq->push_flags &= ~RT_PUSH_IPI_EXECUTING; 2091 raw_spin_unlock(&rt_rq->push_lock); 2092 2093 if (cpu >= nr_cpu_ids) 2094 return; 2095 2096 /* 2097 * It is possible that a restart caused this CPU to be 2098 * chosen again. Don't bother with an IPI, just see if we 2099 * have more to push. 2100 */ 2101 if (unlikely(cpu == rq->cpu)) 2102 goto again; 2103 2104 /* Try the next RT overloaded CPU */ 2105 irq_work_queue_on(&rt_rq->push_work, cpu); 2106 } 2107 2108 static void push_irq_work_func(struct irq_work *work) 2109 { 2110 struct rt_rq *rt_rq = container_of(work, struct rt_rq, push_work); 2111 2112 try_to_push_tasks(rt_rq); 2113 } 2114 #endif /* HAVE_RT_PUSH_IPI */ 2115 2116 static void pull_rt_task(struct rq *this_rq) 2117 { 2118 int this_cpu = this_rq->cpu, cpu; 2119 bool resched = false; 2120 struct task_struct *p; 2121 struct rq *src_rq; 2122 2123 if (likely(!rt_overloaded(this_rq))) 2124 return; 2125 2126 /* 2127 * Match the barrier from rt_set_overloaded; this guarantees that if we 2128 * see overloaded we must also see the rto_mask bit. 2129 */ 2130 smp_rmb(); 2131 2132 #ifdef HAVE_RT_PUSH_IPI 2133 if (sched_feat(RT_PUSH_IPI)) { 2134 tell_cpu_to_push(this_rq); 2135 return; 2136 } 2137 #endif 2138 2139 for_each_cpu(cpu, this_rq->rd->rto_mask) { 2140 if (this_cpu == cpu) 2141 continue; 2142 2143 src_rq = cpu_rq(cpu); 2144 2145 /* 2146 * Don't bother taking the src_rq->lock if the next highest 2147 * task is known to be lower-priority than our current task. 2148 * This may look racy, but if this value is about to go 2149 * logically higher, the src_rq will push this task away. 2150 * And if its going logically lower, we do not care 2151 */ 2152 if (src_rq->rt.highest_prio.next >= 2153 this_rq->rt.highest_prio.curr) 2154 continue; 2155 2156 /* 2157 * We can potentially drop this_rq's lock in 2158 * double_lock_balance, and another CPU could 2159 * alter this_rq 2160 */ 2161 double_lock_balance(this_rq, src_rq); 2162 2163 /* 2164 * We can pull only a task, which is pushable 2165 * on its rq, and no others. 2166 */ 2167 p = pick_highest_pushable_task(src_rq, this_cpu); 2168 2169 /* 2170 * Do we have an RT task that preempts 2171 * the to-be-scheduled task? 2172 */ 2173 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 2174 WARN_ON(p == src_rq->curr); 2175 WARN_ON(!task_on_rq_queued(p)); 2176 2177 /* 2178 * There's a chance that p is higher in priority 2179 * than what's currently running on its cpu. 2180 * This is just that p is wakeing up and hasn't 2181 * had a chance to schedule. We only pull 2182 * p if it is lower in priority than the 2183 * current task on the run queue 2184 */ 2185 if (p->prio < src_rq->curr->prio) 2186 goto skip; 2187 2188 resched = true; 2189 2190 deactivate_task(src_rq, p, 0); 2191 set_task_cpu(p, this_cpu); 2192 activate_task(this_rq, p, 0); 2193 /* 2194 * We continue with the search, just in 2195 * case there's an even higher prio task 2196 * in another runqueue. (low likelihood 2197 * but possible) 2198 */ 2199 } 2200 skip: 2201 double_unlock_balance(this_rq, src_rq); 2202 } 2203 2204 if (resched) 2205 resched_curr(this_rq); 2206 } 2207 2208 /* 2209 * If we are not running and we are not going to reschedule soon, we should 2210 * try to push tasks away now 2211 */ 2212 static void task_woken_rt(struct rq *rq, struct task_struct *p) 2213 { 2214 if (!task_running(rq, p) && 2215 !test_tsk_need_resched(rq->curr) && 2216 p->nr_cpus_allowed > 1 && 2217 (dl_task(rq->curr) || rt_task(rq->curr)) && 2218 (rq->curr->nr_cpus_allowed < 2 || 2219 rq->curr->prio <= p->prio)) 2220 push_rt_tasks(rq); 2221 } 2222 2223 /* Assumes rq->lock is held */ 2224 static void rq_online_rt(struct rq *rq) 2225 { 2226 if (rq->rt.overloaded) 2227 rt_set_overload(rq); 2228 2229 __enable_runtime(rq); 2230 2231 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2232 } 2233 2234 /* Assumes rq->lock is held */ 2235 static void rq_offline_rt(struct rq *rq) 2236 { 2237 if (rq->rt.overloaded) 2238 rt_clear_overload(rq); 2239 2240 __disable_runtime(rq); 2241 2242 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 2243 } 2244 2245 /* 2246 * When switch from the rt queue, we bring ourselves to a position 2247 * that we might want to pull RT tasks from other runqueues. 2248 */ 2249 static void switched_from_rt(struct rq *rq, struct task_struct *p) 2250 { 2251 /* 2252 * If there are other RT tasks then we will reschedule 2253 * and the scheduling of the other RT tasks will handle 2254 * the balancing. But if we are the last RT task 2255 * we may need to handle the pulling of RT tasks 2256 * now. 2257 */ 2258 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 2259 return; 2260 2261 queue_pull_task(rq); 2262 } 2263 2264 void __init init_sched_rt_class(void) 2265 { 2266 unsigned int i; 2267 2268 for_each_possible_cpu(i) { 2269 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 2270 GFP_KERNEL, cpu_to_node(i)); 2271 } 2272 } 2273 #endif /* CONFIG_SMP */ 2274 2275 /* 2276 * When switching a task to RT, we may overload the runqueue 2277 * with RT tasks. In this case we try to push them off to 2278 * other runqueues. 2279 */ 2280 static void switched_to_rt(struct rq *rq, struct task_struct *p) 2281 { 2282 /* 2283 * If we are already running, then there's nothing 2284 * that needs to be done. But if we are not running 2285 * we may need to preempt the current running task. 2286 * If that current running task is also an RT task 2287 * then see if we can move to another run queue. 2288 */ 2289 if (task_on_rq_queued(p) && rq->curr != p) { 2290 #ifdef CONFIG_SMP 2291 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) 2292 queue_push_tasks(rq); 2293 #endif /* CONFIG_SMP */ 2294 if (p->prio < rq->curr->prio) 2295 resched_curr(rq); 2296 } 2297 } 2298 2299 /* 2300 * Priority of the task has changed. This may cause 2301 * us to initiate a push or pull. 2302 */ 2303 static void 2304 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2305 { 2306 if (!task_on_rq_queued(p)) 2307 return; 2308 2309 if (rq->curr == p) { 2310 #ifdef CONFIG_SMP 2311 /* 2312 * If our priority decreases while running, we 2313 * may need to pull tasks to this runqueue. 2314 */ 2315 if (oldprio < p->prio) 2316 queue_pull_task(rq); 2317 2318 /* 2319 * If there's a higher priority task waiting to run 2320 * then reschedule. 2321 */ 2322 if (p->prio > rq->rt.highest_prio.curr) 2323 resched_curr(rq); 2324 #else 2325 /* For UP simply resched on drop of prio */ 2326 if (oldprio < p->prio) 2327 resched_curr(rq); 2328 #endif /* CONFIG_SMP */ 2329 } else { 2330 /* 2331 * This task is not running, but if it is 2332 * greater than the current running task 2333 * then reschedule. 2334 */ 2335 if (p->prio < rq->curr->prio) 2336 resched_curr(rq); 2337 } 2338 } 2339 2340 #ifdef CONFIG_POSIX_TIMERS 2341 static void watchdog(struct rq *rq, struct task_struct *p) 2342 { 2343 unsigned long soft, hard; 2344 2345 /* max may change after cur was read, this will be fixed next tick */ 2346 soft = task_rlimit(p, RLIMIT_RTTIME); 2347 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2348 2349 if (soft != RLIM_INFINITY) { 2350 unsigned long next; 2351 2352 if (p->rt.watchdog_stamp != jiffies) { 2353 p->rt.timeout++; 2354 p->rt.watchdog_stamp = jiffies; 2355 } 2356 2357 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2358 if (p->rt.timeout > next) 2359 p->cputime_expires.sched_exp = p->se.sum_exec_runtime; 2360 } 2361 } 2362 #else 2363 static inline void watchdog(struct rq *rq, struct task_struct *p) { } 2364 #endif 2365 2366 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2367 { 2368 struct sched_rt_entity *rt_se = &p->rt; 2369 2370 update_curr_rt(rq); 2371 2372 watchdog(rq, p); 2373 2374 /* 2375 * RR tasks need a special form of timeslice management. 2376 * FIFO tasks have no timeslices. 2377 */ 2378 if (p->policy != SCHED_RR) 2379 return; 2380 2381 if (--p->rt.time_slice) 2382 return; 2383 2384 p->rt.time_slice = sched_rr_timeslice; 2385 2386 /* 2387 * Requeue to the end of queue if we (and all of our ancestors) are not 2388 * the only element on the queue 2389 */ 2390 for_each_sched_rt_entity(rt_se) { 2391 if (rt_se->run_list.prev != rt_se->run_list.next) { 2392 requeue_task_rt(rq, p, 0); 2393 resched_curr(rq); 2394 return; 2395 } 2396 } 2397 } 2398 2399 static void set_curr_task_rt(struct rq *rq) 2400 { 2401 struct task_struct *p = rq->curr; 2402 2403 p->se.exec_start = rq_clock_task(rq); 2404 2405 /* The running task is never eligible for pushing */ 2406 dequeue_pushable_task(rq, p); 2407 } 2408 2409 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2410 { 2411 /* 2412 * Time slice is 0 for SCHED_FIFO tasks 2413 */ 2414 if (task->policy == SCHED_RR) 2415 return sched_rr_timeslice; 2416 else 2417 return 0; 2418 } 2419 2420 const struct sched_class rt_sched_class = { 2421 .next = &fair_sched_class, 2422 .enqueue_task = enqueue_task_rt, 2423 .dequeue_task = dequeue_task_rt, 2424 .yield_task = yield_task_rt, 2425 2426 .check_preempt_curr = check_preempt_curr_rt, 2427 2428 .pick_next_task = pick_next_task_rt, 2429 .put_prev_task = put_prev_task_rt, 2430 2431 #ifdef CONFIG_SMP 2432 .select_task_rq = select_task_rq_rt, 2433 2434 .set_cpus_allowed = set_cpus_allowed_common, 2435 .rq_online = rq_online_rt, 2436 .rq_offline = rq_offline_rt, 2437 .task_woken = task_woken_rt, 2438 .switched_from = switched_from_rt, 2439 #endif 2440 2441 .set_curr_task = set_curr_task_rt, 2442 .task_tick = task_tick_rt, 2443 2444 .get_rr_interval = get_rr_interval_rt, 2445 2446 .prio_changed = prio_changed_rt, 2447 .switched_to = switched_to_rt, 2448 2449 .update_curr = update_curr_rt, 2450 }; 2451 2452 #ifdef CONFIG_RT_GROUP_SCHED 2453 /* 2454 * Ensure that the real time constraints are schedulable. 2455 */ 2456 static DEFINE_MUTEX(rt_constraints_mutex); 2457 2458 /* Must be called with tasklist_lock held */ 2459 static inline int tg_has_rt_tasks(struct task_group *tg) 2460 { 2461 struct task_struct *g, *p; 2462 2463 /* 2464 * Autogroups do not have RT tasks; see autogroup_create(). 2465 */ 2466 if (task_group_is_autogroup(tg)) 2467 return 0; 2468 2469 for_each_process_thread(g, p) { 2470 if (rt_task(p) && task_group(p) == tg) 2471 return 1; 2472 } 2473 2474 return 0; 2475 } 2476 2477 struct rt_schedulable_data { 2478 struct task_group *tg; 2479 u64 rt_period; 2480 u64 rt_runtime; 2481 }; 2482 2483 static int tg_rt_schedulable(struct task_group *tg, void *data) 2484 { 2485 struct rt_schedulable_data *d = data; 2486 struct task_group *child; 2487 unsigned long total, sum = 0; 2488 u64 period, runtime; 2489 2490 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2491 runtime = tg->rt_bandwidth.rt_runtime; 2492 2493 if (tg == d->tg) { 2494 period = d->rt_period; 2495 runtime = d->rt_runtime; 2496 } 2497 2498 /* 2499 * Cannot have more runtime than the period. 2500 */ 2501 if (runtime > period && runtime != RUNTIME_INF) 2502 return -EINVAL; 2503 2504 /* 2505 * Ensure we don't starve existing RT tasks. 2506 */ 2507 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) 2508 return -EBUSY; 2509 2510 total = to_ratio(period, runtime); 2511 2512 /* 2513 * Nobody can have more than the global setting allows. 2514 */ 2515 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 2516 return -EINVAL; 2517 2518 /* 2519 * The sum of our children's runtime should not exceed our own. 2520 */ 2521 list_for_each_entry_rcu(child, &tg->children, siblings) { 2522 period = ktime_to_ns(child->rt_bandwidth.rt_period); 2523 runtime = child->rt_bandwidth.rt_runtime; 2524 2525 if (child == d->tg) { 2526 period = d->rt_period; 2527 runtime = d->rt_runtime; 2528 } 2529 2530 sum += to_ratio(period, runtime); 2531 } 2532 2533 if (sum > total) 2534 return -EINVAL; 2535 2536 return 0; 2537 } 2538 2539 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 2540 { 2541 int ret; 2542 2543 struct rt_schedulable_data data = { 2544 .tg = tg, 2545 .rt_period = period, 2546 .rt_runtime = runtime, 2547 }; 2548 2549 rcu_read_lock(); 2550 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 2551 rcu_read_unlock(); 2552 2553 return ret; 2554 } 2555 2556 static int tg_set_rt_bandwidth(struct task_group *tg, 2557 u64 rt_period, u64 rt_runtime) 2558 { 2559 int i, err = 0; 2560 2561 /* 2562 * Disallowing the root group RT runtime is BAD, it would disallow the 2563 * kernel creating (and or operating) RT threads. 2564 */ 2565 if (tg == &root_task_group && rt_runtime == 0) 2566 return -EINVAL; 2567 2568 /* No period doesn't make any sense. */ 2569 if (rt_period == 0) 2570 return -EINVAL; 2571 2572 mutex_lock(&rt_constraints_mutex); 2573 read_lock(&tasklist_lock); 2574 err = __rt_schedulable(tg, rt_period, rt_runtime); 2575 if (err) 2576 goto unlock; 2577 2578 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2579 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 2580 tg->rt_bandwidth.rt_runtime = rt_runtime; 2581 2582 for_each_possible_cpu(i) { 2583 struct rt_rq *rt_rq = tg->rt_rq[i]; 2584 2585 raw_spin_lock(&rt_rq->rt_runtime_lock); 2586 rt_rq->rt_runtime = rt_runtime; 2587 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2588 } 2589 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2590 unlock: 2591 read_unlock(&tasklist_lock); 2592 mutex_unlock(&rt_constraints_mutex); 2593 2594 return err; 2595 } 2596 2597 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 2598 { 2599 u64 rt_runtime, rt_period; 2600 2601 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2602 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 2603 if (rt_runtime_us < 0) 2604 rt_runtime = RUNTIME_INF; 2605 2606 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2607 } 2608 2609 long sched_group_rt_runtime(struct task_group *tg) 2610 { 2611 u64 rt_runtime_us; 2612 2613 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 2614 return -1; 2615 2616 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 2617 do_div(rt_runtime_us, NSEC_PER_USEC); 2618 return rt_runtime_us; 2619 } 2620 2621 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 2622 { 2623 u64 rt_runtime, rt_period; 2624 2625 rt_period = rt_period_us * NSEC_PER_USEC; 2626 rt_runtime = tg->rt_bandwidth.rt_runtime; 2627 2628 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2629 } 2630 2631 long sched_group_rt_period(struct task_group *tg) 2632 { 2633 u64 rt_period_us; 2634 2635 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 2636 do_div(rt_period_us, NSEC_PER_USEC); 2637 return rt_period_us; 2638 } 2639 2640 static int sched_rt_global_constraints(void) 2641 { 2642 int ret = 0; 2643 2644 mutex_lock(&rt_constraints_mutex); 2645 read_lock(&tasklist_lock); 2646 ret = __rt_schedulable(NULL, 0, 0); 2647 read_unlock(&tasklist_lock); 2648 mutex_unlock(&rt_constraints_mutex); 2649 2650 return ret; 2651 } 2652 2653 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 2654 { 2655 /* Don't accept realtime tasks when there is no way for them to run */ 2656 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 2657 return 0; 2658 2659 return 1; 2660 } 2661 2662 #else /* !CONFIG_RT_GROUP_SCHED */ 2663 static int sched_rt_global_constraints(void) 2664 { 2665 unsigned long flags; 2666 int i; 2667 2668 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 2669 for_each_possible_cpu(i) { 2670 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 2671 2672 raw_spin_lock(&rt_rq->rt_runtime_lock); 2673 rt_rq->rt_runtime = global_rt_runtime(); 2674 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2675 } 2676 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 2677 2678 return 0; 2679 } 2680 #endif /* CONFIG_RT_GROUP_SCHED */ 2681 2682 static int sched_rt_global_validate(void) 2683 { 2684 if (sysctl_sched_rt_period <= 0) 2685 return -EINVAL; 2686 2687 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 2688 (sysctl_sched_rt_runtime > sysctl_sched_rt_period)) 2689 return -EINVAL; 2690 2691 return 0; 2692 } 2693 2694 static void sched_rt_do_global(void) 2695 { 2696 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 2697 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 2698 } 2699 2700 int sched_rt_handler(struct ctl_table *table, int write, 2701 void __user *buffer, size_t *lenp, 2702 loff_t *ppos) 2703 { 2704 int old_period, old_runtime; 2705 static DEFINE_MUTEX(mutex); 2706 int ret; 2707 2708 mutex_lock(&mutex); 2709 old_period = sysctl_sched_rt_period; 2710 old_runtime = sysctl_sched_rt_runtime; 2711 2712 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2713 2714 if (!ret && write) { 2715 ret = sched_rt_global_validate(); 2716 if (ret) 2717 goto undo; 2718 2719 ret = sched_dl_global_validate(); 2720 if (ret) 2721 goto undo; 2722 2723 ret = sched_rt_global_constraints(); 2724 if (ret) 2725 goto undo; 2726 2727 sched_rt_do_global(); 2728 sched_dl_do_global(); 2729 } 2730 if (0) { 2731 undo: 2732 sysctl_sched_rt_period = old_period; 2733 sysctl_sched_rt_runtime = old_runtime; 2734 } 2735 mutex_unlock(&mutex); 2736 2737 return ret; 2738 } 2739 2740 int sched_rr_handler(struct ctl_table *table, int write, 2741 void __user *buffer, size_t *lenp, 2742 loff_t *ppos) 2743 { 2744 int ret; 2745 static DEFINE_MUTEX(mutex); 2746 2747 mutex_lock(&mutex); 2748 ret = proc_dointvec(table, write, buffer, lenp, ppos); 2749 /* 2750 * Make sure that internally we keep jiffies. 2751 * Also, writing zero resets the timeslice to default: 2752 */ 2753 if (!ret && write) { 2754 sched_rr_timeslice = 2755 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 2756 msecs_to_jiffies(sysctl_sched_rr_timeslice); 2757 } 2758 mutex_unlock(&mutex); 2759 return ret; 2760 } 2761 2762 #ifdef CONFIG_SCHED_DEBUG 2763 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2764 2765 void print_rt_stats(struct seq_file *m, int cpu) 2766 { 2767 rt_rq_iter_t iter; 2768 struct rt_rq *rt_rq; 2769 2770 rcu_read_lock(); 2771 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2772 print_rt_rq(m, cpu, rt_rq); 2773 rcu_read_unlock(); 2774 } 2775 #endif /* CONFIG_SCHED_DEBUG */ 2776