1 /* 2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 3 * policies) 4 */ 5 6 #include "sched.h" 7 8 #include <linux/slab.h> 9 10 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 11 12 struct rt_bandwidth def_rt_bandwidth; 13 14 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 15 { 16 struct rt_bandwidth *rt_b = 17 container_of(timer, struct rt_bandwidth, rt_period_timer); 18 ktime_t now; 19 int overrun; 20 int idle = 0; 21 22 for (;;) { 23 now = hrtimer_cb_get_time(timer); 24 overrun = hrtimer_forward(timer, now, rt_b->rt_period); 25 26 if (!overrun) 27 break; 28 29 idle = do_sched_rt_period_timer(rt_b, overrun); 30 } 31 32 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 33 } 34 35 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 36 { 37 rt_b->rt_period = ns_to_ktime(period); 38 rt_b->rt_runtime = runtime; 39 40 raw_spin_lock_init(&rt_b->rt_runtime_lock); 41 42 hrtimer_init(&rt_b->rt_period_timer, 43 CLOCK_MONOTONIC, HRTIMER_MODE_REL); 44 rt_b->rt_period_timer.function = sched_rt_period_timer; 45 } 46 47 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 48 { 49 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 50 return; 51 52 if (hrtimer_active(&rt_b->rt_period_timer)) 53 return; 54 55 raw_spin_lock(&rt_b->rt_runtime_lock); 56 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period); 57 raw_spin_unlock(&rt_b->rt_runtime_lock); 58 } 59 60 void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) 61 { 62 struct rt_prio_array *array; 63 int i; 64 65 array = &rt_rq->active; 66 for (i = 0; i < MAX_RT_PRIO; i++) { 67 INIT_LIST_HEAD(array->queue + i); 68 __clear_bit(i, array->bitmap); 69 } 70 /* delimiter for bitsearch: */ 71 __set_bit(MAX_RT_PRIO, array->bitmap); 72 73 #if defined CONFIG_SMP 74 rt_rq->highest_prio.curr = MAX_RT_PRIO; 75 rt_rq->highest_prio.next = MAX_RT_PRIO; 76 rt_rq->rt_nr_migratory = 0; 77 rt_rq->overloaded = 0; 78 plist_head_init(&rt_rq->pushable_tasks); 79 #endif 80 81 rt_rq->rt_time = 0; 82 rt_rq->rt_throttled = 0; 83 rt_rq->rt_runtime = 0; 84 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 85 } 86 87 #ifdef CONFIG_RT_GROUP_SCHED 88 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 89 { 90 hrtimer_cancel(&rt_b->rt_period_timer); 91 } 92 93 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 94 95 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 96 { 97 #ifdef CONFIG_SCHED_DEBUG 98 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 99 #endif 100 return container_of(rt_se, struct task_struct, rt); 101 } 102 103 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 104 { 105 return rt_rq->rq; 106 } 107 108 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 109 { 110 return rt_se->rt_rq; 111 } 112 113 void free_rt_sched_group(struct task_group *tg) 114 { 115 int i; 116 117 if (tg->rt_se) 118 destroy_rt_bandwidth(&tg->rt_bandwidth); 119 120 for_each_possible_cpu(i) { 121 if (tg->rt_rq) 122 kfree(tg->rt_rq[i]); 123 if (tg->rt_se) 124 kfree(tg->rt_se[i]); 125 } 126 127 kfree(tg->rt_rq); 128 kfree(tg->rt_se); 129 } 130 131 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 132 struct sched_rt_entity *rt_se, int cpu, 133 struct sched_rt_entity *parent) 134 { 135 struct rq *rq = cpu_rq(cpu); 136 137 rt_rq->highest_prio.curr = MAX_RT_PRIO; 138 rt_rq->rt_nr_boosted = 0; 139 rt_rq->rq = rq; 140 rt_rq->tg = tg; 141 142 tg->rt_rq[cpu] = rt_rq; 143 tg->rt_se[cpu] = rt_se; 144 145 if (!rt_se) 146 return; 147 148 if (!parent) 149 rt_se->rt_rq = &rq->rt; 150 else 151 rt_se->rt_rq = parent->my_q; 152 153 rt_se->my_q = rt_rq; 154 rt_se->parent = parent; 155 INIT_LIST_HEAD(&rt_se->run_list); 156 } 157 158 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 159 { 160 struct rt_rq *rt_rq; 161 struct sched_rt_entity *rt_se; 162 int i; 163 164 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); 165 if (!tg->rt_rq) 166 goto err; 167 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); 168 if (!tg->rt_se) 169 goto err; 170 171 init_rt_bandwidth(&tg->rt_bandwidth, 172 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 173 174 for_each_possible_cpu(i) { 175 rt_rq = kzalloc_node(sizeof(struct rt_rq), 176 GFP_KERNEL, cpu_to_node(i)); 177 if (!rt_rq) 178 goto err; 179 180 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 181 GFP_KERNEL, cpu_to_node(i)); 182 if (!rt_se) 183 goto err_free_rq; 184 185 init_rt_rq(rt_rq, cpu_rq(i)); 186 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 187 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 188 } 189 190 return 1; 191 192 err_free_rq: 193 kfree(rt_rq); 194 err: 195 return 0; 196 } 197 198 #else /* CONFIG_RT_GROUP_SCHED */ 199 200 #define rt_entity_is_task(rt_se) (1) 201 202 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 203 { 204 return container_of(rt_se, struct task_struct, rt); 205 } 206 207 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 208 { 209 return container_of(rt_rq, struct rq, rt); 210 } 211 212 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 213 { 214 struct task_struct *p = rt_task_of(rt_se); 215 struct rq *rq = task_rq(p); 216 217 return &rq->rt; 218 } 219 220 void free_rt_sched_group(struct task_group *tg) { } 221 222 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 223 { 224 return 1; 225 } 226 #endif /* CONFIG_RT_GROUP_SCHED */ 227 228 #ifdef CONFIG_SMP 229 230 static inline int rt_overloaded(struct rq *rq) 231 { 232 return atomic_read(&rq->rd->rto_count); 233 } 234 235 static inline void rt_set_overload(struct rq *rq) 236 { 237 if (!rq->online) 238 return; 239 240 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 241 /* 242 * Make sure the mask is visible before we set 243 * the overload count. That is checked to determine 244 * if we should look at the mask. It would be a shame 245 * if we looked at the mask, but the mask was not 246 * updated yet. 247 */ 248 wmb(); 249 atomic_inc(&rq->rd->rto_count); 250 } 251 252 static inline void rt_clear_overload(struct rq *rq) 253 { 254 if (!rq->online) 255 return; 256 257 /* the order here really doesn't matter */ 258 atomic_dec(&rq->rd->rto_count); 259 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 260 } 261 262 static void update_rt_migration(struct rt_rq *rt_rq) 263 { 264 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { 265 if (!rt_rq->overloaded) { 266 rt_set_overload(rq_of_rt_rq(rt_rq)); 267 rt_rq->overloaded = 1; 268 } 269 } else if (rt_rq->overloaded) { 270 rt_clear_overload(rq_of_rt_rq(rt_rq)); 271 rt_rq->overloaded = 0; 272 } 273 } 274 275 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 276 { 277 struct task_struct *p; 278 279 if (!rt_entity_is_task(rt_se)) 280 return; 281 282 p = rt_task_of(rt_se); 283 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 284 285 rt_rq->rt_nr_total++; 286 if (p->nr_cpus_allowed > 1) 287 rt_rq->rt_nr_migratory++; 288 289 update_rt_migration(rt_rq); 290 } 291 292 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 293 { 294 struct task_struct *p; 295 296 if (!rt_entity_is_task(rt_se)) 297 return; 298 299 p = rt_task_of(rt_se); 300 rt_rq = &rq_of_rt_rq(rt_rq)->rt; 301 302 rt_rq->rt_nr_total--; 303 if (p->nr_cpus_allowed > 1) 304 rt_rq->rt_nr_migratory--; 305 306 update_rt_migration(rt_rq); 307 } 308 309 static inline int has_pushable_tasks(struct rq *rq) 310 { 311 return !plist_head_empty(&rq->rt.pushable_tasks); 312 } 313 314 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 315 { 316 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 317 plist_node_init(&p->pushable_tasks, p->prio); 318 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 319 320 /* Update the highest prio pushable task */ 321 if (p->prio < rq->rt.highest_prio.next) 322 rq->rt.highest_prio.next = p->prio; 323 } 324 325 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 326 { 327 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 328 329 /* Update the new highest prio pushable task */ 330 if (has_pushable_tasks(rq)) { 331 p = plist_first_entry(&rq->rt.pushable_tasks, 332 struct task_struct, pushable_tasks); 333 rq->rt.highest_prio.next = p->prio; 334 } else 335 rq->rt.highest_prio.next = MAX_RT_PRIO; 336 } 337 338 #else 339 340 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 341 { 342 } 343 344 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 345 { 346 } 347 348 static inline 349 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 350 { 351 } 352 353 static inline 354 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 355 { 356 } 357 358 #endif /* CONFIG_SMP */ 359 360 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 361 { 362 return !list_empty(&rt_se->run_list); 363 } 364 365 #ifdef CONFIG_RT_GROUP_SCHED 366 367 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 368 { 369 if (!rt_rq->tg) 370 return RUNTIME_INF; 371 372 return rt_rq->rt_runtime; 373 } 374 375 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 376 { 377 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 378 } 379 380 typedef struct task_group *rt_rq_iter_t; 381 382 static inline struct task_group *next_task_group(struct task_group *tg) 383 { 384 do { 385 tg = list_entry_rcu(tg->list.next, 386 typeof(struct task_group), list); 387 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 388 389 if (&tg->list == &task_groups) 390 tg = NULL; 391 392 return tg; 393 } 394 395 #define for_each_rt_rq(rt_rq, iter, rq) \ 396 for (iter = container_of(&task_groups, typeof(*iter), list); \ 397 (iter = next_task_group(iter)) && \ 398 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 399 400 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) 401 { 402 list_add_rcu(&rt_rq->leaf_rt_rq_list, 403 &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list); 404 } 405 406 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) 407 { 408 list_del_rcu(&rt_rq->leaf_rt_rq_list); 409 } 410 411 #define for_each_leaf_rt_rq(rt_rq, rq) \ 412 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) 413 414 #define for_each_sched_rt_entity(rt_se) \ 415 for (; rt_se; rt_se = rt_se->parent) 416 417 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 418 { 419 return rt_se->my_q; 420 } 421 422 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head); 423 static void dequeue_rt_entity(struct sched_rt_entity *rt_se); 424 425 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 426 { 427 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 428 struct sched_rt_entity *rt_se; 429 430 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 431 432 rt_se = rt_rq->tg->rt_se[cpu]; 433 434 if (rt_rq->rt_nr_running) { 435 if (rt_se && !on_rt_rq(rt_se)) 436 enqueue_rt_entity(rt_se, false); 437 if (rt_rq->highest_prio.curr < curr->prio) 438 resched_task(curr); 439 } 440 } 441 442 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 443 { 444 struct sched_rt_entity *rt_se; 445 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 446 447 rt_se = rt_rq->tg->rt_se[cpu]; 448 449 if (rt_se && on_rt_rq(rt_se)) 450 dequeue_rt_entity(rt_se); 451 } 452 453 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 454 { 455 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 456 } 457 458 static int rt_se_boosted(struct sched_rt_entity *rt_se) 459 { 460 struct rt_rq *rt_rq = group_rt_rq(rt_se); 461 struct task_struct *p; 462 463 if (rt_rq) 464 return !!rt_rq->rt_nr_boosted; 465 466 p = rt_task_of(rt_se); 467 return p->prio != p->normal_prio; 468 } 469 470 #ifdef CONFIG_SMP 471 static inline const struct cpumask *sched_rt_period_mask(void) 472 { 473 return cpu_rq(smp_processor_id())->rd->span; 474 } 475 #else 476 static inline const struct cpumask *sched_rt_period_mask(void) 477 { 478 return cpu_online_mask; 479 } 480 #endif 481 482 static inline 483 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 484 { 485 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 486 } 487 488 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 489 { 490 return &rt_rq->tg->rt_bandwidth; 491 } 492 493 #else /* !CONFIG_RT_GROUP_SCHED */ 494 495 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 496 { 497 return rt_rq->rt_runtime; 498 } 499 500 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 501 { 502 return ktime_to_ns(def_rt_bandwidth.rt_period); 503 } 504 505 typedef struct rt_rq *rt_rq_iter_t; 506 507 #define for_each_rt_rq(rt_rq, iter, rq) \ 508 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 509 510 static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) 511 { 512 } 513 514 static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) 515 { 516 } 517 518 #define for_each_leaf_rt_rq(rt_rq, rq) \ 519 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 520 521 #define for_each_sched_rt_entity(rt_se) \ 522 for (; rt_se; rt_se = NULL) 523 524 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 525 { 526 return NULL; 527 } 528 529 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 530 { 531 if (rt_rq->rt_nr_running) 532 resched_task(rq_of_rt_rq(rt_rq)->curr); 533 } 534 535 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 536 { 537 } 538 539 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 540 { 541 return rt_rq->rt_throttled; 542 } 543 544 static inline const struct cpumask *sched_rt_period_mask(void) 545 { 546 return cpu_online_mask; 547 } 548 549 static inline 550 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 551 { 552 return &cpu_rq(cpu)->rt; 553 } 554 555 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 556 { 557 return &def_rt_bandwidth; 558 } 559 560 #endif /* CONFIG_RT_GROUP_SCHED */ 561 562 #ifdef CONFIG_SMP 563 /* 564 * We ran out of runtime, see if we can borrow some from our neighbours. 565 */ 566 static int do_balance_runtime(struct rt_rq *rt_rq) 567 { 568 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 569 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 570 int i, weight, more = 0; 571 u64 rt_period; 572 573 weight = cpumask_weight(rd->span); 574 575 raw_spin_lock(&rt_b->rt_runtime_lock); 576 rt_period = ktime_to_ns(rt_b->rt_period); 577 for_each_cpu(i, rd->span) { 578 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 579 s64 diff; 580 581 if (iter == rt_rq) 582 continue; 583 584 raw_spin_lock(&iter->rt_runtime_lock); 585 /* 586 * Either all rqs have inf runtime and there's nothing to steal 587 * or __disable_runtime() below sets a specific rq to inf to 588 * indicate its been disabled and disalow stealing. 589 */ 590 if (iter->rt_runtime == RUNTIME_INF) 591 goto next; 592 593 /* 594 * From runqueues with spare time, take 1/n part of their 595 * spare time, but no more than our period. 596 */ 597 diff = iter->rt_runtime - iter->rt_time; 598 if (diff > 0) { 599 diff = div_u64((u64)diff, weight); 600 if (rt_rq->rt_runtime + diff > rt_period) 601 diff = rt_period - rt_rq->rt_runtime; 602 iter->rt_runtime -= diff; 603 rt_rq->rt_runtime += diff; 604 more = 1; 605 if (rt_rq->rt_runtime == rt_period) { 606 raw_spin_unlock(&iter->rt_runtime_lock); 607 break; 608 } 609 } 610 next: 611 raw_spin_unlock(&iter->rt_runtime_lock); 612 } 613 raw_spin_unlock(&rt_b->rt_runtime_lock); 614 615 return more; 616 } 617 618 /* 619 * Ensure this RQ takes back all the runtime it lend to its neighbours. 620 */ 621 static void __disable_runtime(struct rq *rq) 622 { 623 struct root_domain *rd = rq->rd; 624 rt_rq_iter_t iter; 625 struct rt_rq *rt_rq; 626 627 if (unlikely(!scheduler_running)) 628 return; 629 630 for_each_rt_rq(rt_rq, iter, rq) { 631 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 632 s64 want; 633 int i; 634 635 raw_spin_lock(&rt_b->rt_runtime_lock); 636 raw_spin_lock(&rt_rq->rt_runtime_lock); 637 /* 638 * Either we're all inf and nobody needs to borrow, or we're 639 * already disabled and thus have nothing to do, or we have 640 * exactly the right amount of runtime to take out. 641 */ 642 if (rt_rq->rt_runtime == RUNTIME_INF || 643 rt_rq->rt_runtime == rt_b->rt_runtime) 644 goto balanced; 645 raw_spin_unlock(&rt_rq->rt_runtime_lock); 646 647 /* 648 * Calculate the difference between what we started out with 649 * and what we current have, that's the amount of runtime 650 * we lend and now have to reclaim. 651 */ 652 want = rt_b->rt_runtime - rt_rq->rt_runtime; 653 654 /* 655 * Greedy reclaim, take back as much as we can. 656 */ 657 for_each_cpu(i, rd->span) { 658 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 659 s64 diff; 660 661 /* 662 * Can't reclaim from ourselves or disabled runqueues. 663 */ 664 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 665 continue; 666 667 raw_spin_lock(&iter->rt_runtime_lock); 668 if (want > 0) { 669 diff = min_t(s64, iter->rt_runtime, want); 670 iter->rt_runtime -= diff; 671 want -= diff; 672 } else { 673 iter->rt_runtime -= want; 674 want -= want; 675 } 676 raw_spin_unlock(&iter->rt_runtime_lock); 677 678 if (!want) 679 break; 680 } 681 682 raw_spin_lock(&rt_rq->rt_runtime_lock); 683 /* 684 * We cannot be left wanting - that would mean some runtime 685 * leaked out of the system. 686 */ 687 BUG_ON(want); 688 balanced: 689 /* 690 * Disable all the borrow logic by pretending we have inf 691 * runtime - in which case borrowing doesn't make sense. 692 */ 693 rt_rq->rt_runtime = RUNTIME_INF; 694 raw_spin_unlock(&rt_rq->rt_runtime_lock); 695 raw_spin_unlock(&rt_b->rt_runtime_lock); 696 } 697 } 698 699 static void disable_runtime(struct rq *rq) 700 { 701 unsigned long flags; 702 703 raw_spin_lock_irqsave(&rq->lock, flags); 704 __disable_runtime(rq); 705 raw_spin_unlock_irqrestore(&rq->lock, flags); 706 } 707 708 static void __enable_runtime(struct rq *rq) 709 { 710 rt_rq_iter_t iter; 711 struct rt_rq *rt_rq; 712 713 if (unlikely(!scheduler_running)) 714 return; 715 716 /* 717 * Reset each runqueue's bandwidth settings 718 */ 719 for_each_rt_rq(rt_rq, iter, rq) { 720 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 721 722 raw_spin_lock(&rt_b->rt_runtime_lock); 723 raw_spin_lock(&rt_rq->rt_runtime_lock); 724 rt_rq->rt_runtime = rt_b->rt_runtime; 725 rt_rq->rt_time = 0; 726 rt_rq->rt_throttled = 0; 727 raw_spin_unlock(&rt_rq->rt_runtime_lock); 728 raw_spin_unlock(&rt_b->rt_runtime_lock); 729 } 730 } 731 732 static void enable_runtime(struct rq *rq) 733 { 734 unsigned long flags; 735 736 raw_spin_lock_irqsave(&rq->lock, flags); 737 __enable_runtime(rq); 738 raw_spin_unlock_irqrestore(&rq->lock, flags); 739 } 740 741 int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu) 742 { 743 int cpu = (int)(long)hcpu; 744 745 switch (action) { 746 case CPU_DOWN_PREPARE: 747 case CPU_DOWN_PREPARE_FROZEN: 748 disable_runtime(cpu_rq(cpu)); 749 return NOTIFY_OK; 750 751 case CPU_DOWN_FAILED: 752 case CPU_DOWN_FAILED_FROZEN: 753 case CPU_ONLINE: 754 case CPU_ONLINE_FROZEN: 755 enable_runtime(cpu_rq(cpu)); 756 return NOTIFY_OK; 757 758 default: 759 return NOTIFY_DONE; 760 } 761 } 762 763 static int balance_runtime(struct rt_rq *rt_rq) 764 { 765 int more = 0; 766 767 if (!sched_feat(RT_RUNTIME_SHARE)) 768 return more; 769 770 if (rt_rq->rt_time > rt_rq->rt_runtime) { 771 raw_spin_unlock(&rt_rq->rt_runtime_lock); 772 more = do_balance_runtime(rt_rq); 773 raw_spin_lock(&rt_rq->rt_runtime_lock); 774 } 775 776 return more; 777 } 778 #else /* !CONFIG_SMP */ 779 static inline int balance_runtime(struct rt_rq *rt_rq) 780 { 781 return 0; 782 } 783 #endif /* CONFIG_SMP */ 784 785 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 786 { 787 int i, idle = 1, throttled = 0; 788 const struct cpumask *span; 789 790 span = sched_rt_period_mask(); 791 for_each_cpu(i, span) { 792 int enqueue = 0; 793 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 794 struct rq *rq = rq_of_rt_rq(rt_rq); 795 796 raw_spin_lock(&rq->lock); 797 if (rt_rq->rt_time) { 798 u64 runtime; 799 800 raw_spin_lock(&rt_rq->rt_runtime_lock); 801 if (rt_rq->rt_throttled) 802 balance_runtime(rt_rq); 803 runtime = rt_rq->rt_runtime; 804 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 805 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 806 rt_rq->rt_throttled = 0; 807 enqueue = 1; 808 809 /* 810 * Force a clock update if the CPU was idle, 811 * lest wakeup -> unthrottle time accumulate. 812 */ 813 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 814 rq->skip_clock_update = -1; 815 } 816 if (rt_rq->rt_time || rt_rq->rt_nr_running) 817 idle = 0; 818 raw_spin_unlock(&rt_rq->rt_runtime_lock); 819 } else if (rt_rq->rt_nr_running) { 820 idle = 0; 821 if (!rt_rq_throttled(rt_rq)) 822 enqueue = 1; 823 } 824 if (rt_rq->rt_throttled) 825 throttled = 1; 826 827 if (enqueue) 828 sched_rt_rq_enqueue(rt_rq); 829 raw_spin_unlock(&rq->lock); 830 } 831 832 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 833 return 1; 834 835 return idle; 836 } 837 838 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 839 { 840 #ifdef CONFIG_RT_GROUP_SCHED 841 struct rt_rq *rt_rq = group_rt_rq(rt_se); 842 843 if (rt_rq) 844 return rt_rq->highest_prio.curr; 845 #endif 846 847 return rt_task_of(rt_se)->prio; 848 } 849 850 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 851 { 852 u64 runtime = sched_rt_runtime(rt_rq); 853 854 if (rt_rq->rt_throttled) 855 return rt_rq_throttled(rt_rq); 856 857 if (runtime >= sched_rt_period(rt_rq)) 858 return 0; 859 860 balance_runtime(rt_rq); 861 runtime = sched_rt_runtime(rt_rq); 862 if (runtime == RUNTIME_INF) 863 return 0; 864 865 if (rt_rq->rt_time > runtime) { 866 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 867 868 /* 869 * Don't actually throttle groups that have no runtime assigned 870 * but accrue some time due to boosting. 871 */ 872 if (likely(rt_b->rt_runtime)) { 873 static bool once = false; 874 875 rt_rq->rt_throttled = 1; 876 877 if (!once) { 878 once = true; 879 printk_sched("sched: RT throttling activated\n"); 880 } 881 } else { 882 /* 883 * In case we did anyway, make it go away, 884 * replenishment is a joke, since it will replenish us 885 * with exactly 0 ns. 886 */ 887 rt_rq->rt_time = 0; 888 } 889 890 if (rt_rq_throttled(rt_rq)) { 891 sched_rt_rq_dequeue(rt_rq); 892 return 1; 893 } 894 } 895 896 return 0; 897 } 898 899 /* 900 * Update the current task's runtime statistics. Skip current tasks that 901 * are not in our scheduling class. 902 */ 903 static void update_curr_rt(struct rq *rq) 904 { 905 struct task_struct *curr = rq->curr; 906 struct sched_rt_entity *rt_se = &curr->rt; 907 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 908 u64 delta_exec; 909 910 if (curr->sched_class != &rt_sched_class) 911 return; 912 913 delta_exec = rq->clock_task - curr->se.exec_start; 914 if (unlikely((s64)delta_exec < 0)) 915 delta_exec = 0; 916 917 schedstat_set(curr->se.statistics.exec_max, 918 max(curr->se.statistics.exec_max, delta_exec)); 919 920 curr->se.sum_exec_runtime += delta_exec; 921 account_group_exec_runtime(curr, delta_exec); 922 923 curr->se.exec_start = rq->clock_task; 924 cpuacct_charge(curr, delta_exec); 925 926 sched_rt_avg_update(rq, delta_exec); 927 928 if (!rt_bandwidth_enabled()) 929 return; 930 931 for_each_sched_rt_entity(rt_se) { 932 rt_rq = rt_rq_of_se(rt_se); 933 934 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 935 raw_spin_lock(&rt_rq->rt_runtime_lock); 936 rt_rq->rt_time += delta_exec; 937 if (sched_rt_runtime_exceeded(rt_rq)) 938 resched_task(curr); 939 raw_spin_unlock(&rt_rq->rt_runtime_lock); 940 } 941 } 942 } 943 944 #if defined CONFIG_SMP 945 946 static void 947 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 948 { 949 struct rq *rq = rq_of_rt_rq(rt_rq); 950 951 if (rq->online && prio < prev_prio) 952 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 953 } 954 955 static void 956 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 957 { 958 struct rq *rq = rq_of_rt_rq(rt_rq); 959 960 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 961 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 962 } 963 964 #else /* CONFIG_SMP */ 965 966 static inline 967 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 968 static inline 969 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 970 971 #endif /* CONFIG_SMP */ 972 973 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 974 static void 975 inc_rt_prio(struct rt_rq *rt_rq, int prio) 976 { 977 int prev_prio = rt_rq->highest_prio.curr; 978 979 if (prio < prev_prio) 980 rt_rq->highest_prio.curr = prio; 981 982 inc_rt_prio_smp(rt_rq, prio, prev_prio); 983 } 984 985 static void 986 dec_rt_prio(struct rt_rq *rt_rq, int prio) 987 { 988 int prev_prio = rt_rq->highest_prio.curr; 989 990 if (rt_rq->rt_nr_running) { 991 992 WARN_ON(prio < prev_prio); 993 994 /* 995 * This may have been our highest task, and therefore 996 * we may have some recomputation to do 997 */ 998 if (prio == prev_prio) { 999 struct rt_prio_array *array = &rt_rq->active; 1000 1001 rt_rq->highest_prio.curr = 1002 sched_find_first_bit(array->bitmap); 1003 } 1004 1005 } else 1006 rt_rq->highest_prio.curr = MAX_RT_PRIO; 1007 1008 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1009 } 1010 1011 #else 1012 1013 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1014 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1015 1016 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1017 1018 #ifdef CONFIG_RT_GROUP_SCHED 1019 1020 static void 1021 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1022 { 1023 if (rt_se_boosted(rt_se)) 1024 rt_rq->rt_nr_boosted++; 1025 1026 if (rt_rq->tg) 1027 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1028 } 1029 1030 static void 1031 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1032 { 1033 if (rt_se_boosted(rt_se)) 1034 rt_rq->rt_nr_boosted--; 1035 1036 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1037 } 1038 1039 #else /* CONFIG_RT_GROUP_SCHED */ 1040 1041 static void 1042 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1043 { 1044 start_rt_bandwidth(&def_rt_bandwidth); 1045 } 1046 1047 static inline 1048 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1049 1050 #endif /* CONFIG_RT_GROUP_SCHED */ 1051 1052 static inline 1053 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1054 { 1055 int prio = rt_se_prio(rt_se); 1056 1057 WARN_ON(!rt_prio(prio)); 1058 rt_rq->rt_nr_running++; 1059 1060 inc_rt_prio(rt_rq, prio); 1061 inc_rt_migration(rt_se, rt_rq); 1062 inc_rt_group(rt_se, rt_rq); 1063 } 1064 1065 static inline 1066 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1067 { 1068 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1069 WARN_ON(!rt_rq->rt_nr_running); 1070 rt_rq->rt_nr_running--; 1071 1072 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1073 dec_rt_migration(rt_se, rt_rq); 1074 dec_rt_group(rt_se, rt_rq); 1075 } 1076 1077 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) 1078 { 1079 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1080 struct rt_prio_array *array = &rt_rq->active; 1081 struct rt_rq *group_rq = group_rt_rq(rt_se); 1082 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1083 1084 /* 1085 * Don't enqueue the group if its throttled, or when empty. 1086 * The latter is a consequence of the former when a child group 1087 * get throttled and the current group doesn't have any other 1088 * active members. 1089 */ 1090 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) 1091 return; 1092 1093 if (!rt_rq->rt_nr_running) 1094 list_add_leaf_rt_rq(rt_rq); 1095 1096 if (head) 1097 list_add(&rt_se->run_list, queue); 1098 else 1099 list_add_tail(&rt_se->run_list, queue); 1100 __set_bit(rt_se_prio(rt_se), array->bitmap); 1101 1102 inc_rt_tasks(rt_se, rt_rq); 1103 } 1104 1105 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) 1106 { 1107 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1108 struct rt_prio_array *array = &rt_rq->active; 1109 1110 list_del_init(&rt_se->run_list); 1111 if (list_empty(array->queue + rt_se_prio(rt_se))) 1112 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1113 1114 dec_rt_tasks(rt_se, rt_rq); 1115 if (!rt_rq->rt_nr_running) 1116 list_del_leaf_rt_rq(rt_rq); 1117 } 1118 1119 /* 1120 * Because the prio of an upper entry depends on the lower 1121 * entries, we must remove entries top - down. 1122 */ 1123 static void dequeue_rt_stack(struct sched_rt_entity *rt_se) 1124 { 1125 struct sched_rt_entity *back = NULL; 1126 1127 for_each_sched_rt_entity(rt_se) { 1128 rt_se->back = back; 1129 back = rt_se; 1130 } 1131 1132 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1133 if (on_rt_rq(rt_se)) 1134 __dequeue_rt_entity(rt_se); 1135 } 1136 } 1137 1138 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) 1139 { 1140 dequeue_rt_stack(rt_se); 1141 for_each_sched_rt_entity(rt_se) 1142 __enqueue_rt_entity(rt_se, head); 1143 } 1144 1145 static void dequeue_rt_entity(struct sched_rt_entity *rt_se) 1146 { 1147 dequeue_rt_stack(rt_se); 1148 1149 for_each_sched_rt_entity(rt_se) { 1150 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1151 1152 if (rt_rq && rt_rq->rt_nr_running) 1153 __enqueue_rt_entity(rt_se, false); 1154 } 1155 } 1156 1157 /* 1158 * Adding/removing a task to/from a priority array: 1159 */ 1160 static void 1161 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1162 { 1163 struct sched_rt_entity *rt_se = &p->rt; 1164 1165 if (flags & ENQUEUE_WAKEUP) 1166 rt_se->timeout = 0; 1167 1168 enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); 1169 1170 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1171 enqueue_pushable_task(rq, p); 1172 1173 inc_nr_running(rq); 1174 } 1175 1176 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1177 { 1178 struct sched_rt_entity *rt_se = &p->rt; 1179 1180 update_curr_rt(rq); 1181 dequeue_rt_entity(rt_se); 1182 1183 dequeue_pushable_task(rq, p); 1184 1185 dec_nr_running(rq); 1186 } 1187 1188 /* 1189 * Put task to the head or the end of the run list without the overhead of 1190 * dequeue followed by enqueue. 1191 */ 1192 static void 1193 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1194 { 1195 if (on_rt_rq(rt_se)) { 1196 struct rt_prio_array *array = &rt_rq->active; 1197 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1198 1199 if (head) 1200 list_move(&rt_se->run_list, queue); 1201 else 1202 list_move_tail(&rt_se->run_list, queue); 1203 } 1204 } 1205 1206 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1207 { 1208 struct sched_rt_entity *rt_se = &p->rt; 1209 struct rt_rq *rt_rq; 1210 1211 for_each_sched_rt_entity(rt_se) { 1212 rt_rq = rt_rq_of_se(rt_se); 1213 requeue_rt_entity(rt_rq, rt_se, head); 1214 } 1215 } 1216 1217 static void yield_task_rt(struct rq *rq) 1218 { 1219 requeue_task_rt(rq, rq->curr, 0); 1220 } 1221 1222 #ifdef CONFIG_SMP 1223 static int find_lowest_rq(struct task_struct *task); 1224 1225 static int 1226 select_task_rq_rt(struct task_struct *p, int sd_flag, int flags) 1227 { 1228 struct task_struct *curr; 1229 struct rq *rq; 1230 int cpu; 1231 1232 cpu = task_cpu(p); 1233 1234 if (p->nr_cpus_allowed == 1) 1235 goto out; 1236 1237 /* For anything but wake ups, just return the task_cpu */ 1238 if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) 1239 goto out; 1240 1241 rq = cpu_rq(cpu); 1242 1243 rcu_read_lock(); 1244 curr = ACCESS_ONCE(rq->curr); /* unlocked access */ 1245 1246 /* 1247 * If the current task on @p's runqueue is an RT task, then 1248 * try to see if we can wake this RT task up on another 1249 * runqueue. Otherwise simply start this RT task 1250 * on its current runqueue. 1251 * 1252 * We want to avoid overloading runqueues. If the woken 1253 * task is a higher priority, then it will stay on this CPU 1254 * and the lower prio task should be moved to another CPU. 1255 * Even though this will probably make the lower prio task 1256 * lose its cache, we do not want to bounce a higher task 1257 * around just because it gave up its CPU, perhaps for a 1258 * lock? 1259 * 1260 * For equal prio tasks, we just let the scheduler sort it out. 1261 * 1262 * Otherwise, just let it ride on the affined RQ and the 1263 * post-schedule router will push the preempted task away 1264 * 1265 * This test is optimistic, if we get it wrong the load-balancer 1266 * will have to sort it out. 1267 */ 1268 if (curr && unlikely(rt_task(curr)) && 1269 (curr->nr_cpus_allowed < 2 || 1270 curr->prio <= p->prio) && 1271 (p->nr_cpus_allowed > 1)) { 1272 int target = find_lowest_rq(p); 1273 1274 if (target != -1) 1275 cpu = target; 1276 } 1277 rcu_read_unlock(); 1278 1279 out: 1280 return cpu; 1281 } 1282 1283 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1284 { 1285 if (rq->curr->nr_cpus_allowed == 1) 1286 return; 1287 1288 if (p->nr_cpus_allowed != 1 1289 && cpupri_find(&rq->rd->cpupri, p, NULL)) 1290 return; 1291 1292 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1293 return; 1294 1295 /* 1296 * There appears to be other cpus that can accept 1297 * current and none to run 'p', so lets reschedule 1298 * to try and push current away: 1299 */ 1300 requeue_task_rt(rq, p, 1); 1301 resched_task(rq->curr); 1302 } 1303 1304 #endif /* CONFIG_SMP */ 1305 1306 /* 1307 * Preempt the current task with a newly woken task if needed: 1308 */ 1309 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) 1310 { 1311 if (p->prio < rq->curr->prio) { 1312 resched_task(rq->curr); 1313 return; 1314 } 1315 1316 #ifdef CONFIG_SMP 1317 /* 1318 * If: 1319 * 1320 * - the newly woken task is of equal priority to the current task 1321 * - the newly woken task is non-migratable while current is migratable 1322 * - current will be preempted on the next reschedule 1323 * 1324 * we should check to see if current can readily move to a different 1325 * cpu. If so, we will reschedule to allow the push logic to try 1326 * to move current somewhere else, making room for our non-migratable 1327 * task. 1328 */ 1329 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1330 check_preempt_equal_prio(rq, p); 1331 #endif 1332 } 1333 1334 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, 1335 struct rt_rq *rt_rq) 1336 { 1337 struct rt_prio_array *array = &rt_rq->active; 1338 struct sched_rt_entity *next = NULL; 1339 struct list_head *queue; 1340 int idx; 1341 1342 idx = sched_find_first_bit(array->bitmap); 1343 BUG_ON(idx >= MAX_RT_PRIO); 1344 1345 queue = array->queue + idx; 1346 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1347 1348 return next; 1349 } 1350 1351 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1352 { 1353 struct sched_rt_entity *rt_se; 1354 struct task_struct *p; 1355 struct rt_rq *rt_rq; 1356 1357 rt_rq = &rq->rt; 1358 1359 if (!rt_rq->rt_nr_running) 1360 return NULL; 1361 1362 if (rt_rq_throttled(rt_rq)) 1363 return NULL; 1364 1365 do { 1366 rt_se = pick_next_rt_entity(rq, rt_rq); 1367 BUG_ON(!rt_se); 1368 rt_rq = group_rt_rq(rt_se); 1369 } while (rt_rq); 1370 1371 p = rt_task_of(rt_se); 1372 p->se.exec_start = rq->clock_task; 1373 1374 return p; 1375 } 1376 1377 static struct task_struct *pick_next_task_rt(struct rq *rq) 1378 { 1379 struct task_struct *p = _pick_next_task_rt(rq); 1380 1381 /* The running task is never eligible for pushing */ 1382 if (p) 1383 dequeue_pushable_task(rq, p); 1384 1385 #ifdef CONFIG_SMP 1386 /* 1387 * We detect this state here so that we can avoid taking the RQ 1388 * lock again later if there is no need to push 1389 */ 1390 rq->post_schedule = has_pushable_tasks(rq); 1391 #endif 1392 1393 return p; 1394 } 1395 1396 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1397 { 1398 update_curr_rt(rq); 1399 1400 /* 1401 * The previous task needs to be made eligible for pushing 1402 * if it is still active 1403 */ 1404 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1405 enqueue_pushable_task(rq, p); 1406 } 1407 1408 #ifdef CONFIG_SMP 1409 1410 /* Only try algorithms three times */ 1411 #define RT_MAX_TRIES 3 1412 1413 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1414 { 1415 if (!task_running(rq, p) && 1416 (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) && 1417 (p->nr_cpus_allowed > 1)) 1418 return 1; 1419 return 0; 1420 } 1421 1422 /* Return the second highest RT task, NULL otherwise */ 1423 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) 1424 { 1425 struct task_struct *next = NULL; 1426 struct sched_rt_entity *rt_se; 1427 struct rt_prio_array *array; 1428 struct rt_rq *rt_rq; 1429 int idx; 1430 1431 for_each_leaf_rt_rq(rt_rq, rq) { 1432 array = &rt_rq->active; 1433 idx = sched_find_first_bit(array->bitmap); 1434 next_idx: 1435 if (idx >= MAX_RT_PRIO) 1436 continue; 1437 if (next && next->prio <= idx) 1438 continue; 1439 list_for_each_entry(rt_se, array->queue + idx, run_list) { 1440 struct task_struct *p; 1441 1442 if (!rt_entity_is_task(rt_se)) 1443 continue; 1444 1445 p = rt_task_of(rt_se); 1446 if (pick_rt_task(rq, p, cpu)) { 1447 next = p; 1448 break; 1449 } 1450 } 1451 if (!next) { 1452 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); 1453 goto next_idx; 1454 } 1455 } 1456 1457 return next; 1458 } 1459 1460 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1461 1462 static int find_lowest_rq(struct task_struct *task) 1463 { 1464 struct sched_domain *sd; 1465 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); 1466 int this_cpu = smp_processor_id(); 1467 int cpu = task_cpu(task); 1468 1469 /* Make sure the mask is initialized first */ 1470 if (unlikely(!lowest_mask)) 1471 return -1; 1472 1473 if (task->nr_cpus_allowed == 1) 1474 return -1; /* No other targets possible */ 1475 1476 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) 1477 return -1; /* No targets found */ 1478 1479 /* 1480 * At this point we have built a mask of cpus representing the 1481 * lowest priority tasks in the system. Now we want to elect 1482 * the best one based on our affinity and topology. 1483 * 1484 * We prioritize the last cpu that the task executed on since 1485 * it is most likely cache-hot in that location. 1486 */ 1487 if (cpumask_test_cpu(cpu, lowest_mask)) 1488 return cpu; 1489 1490 /* 1491 * Otherwise, we consult the sched_domains span maps to figure 1492 * out which cpu is logically closest to our hot cache data. 1493 */ 1494 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1495 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1496 1497 rcu_read_lock(); 1498 for_each_domain(cpu, sd) { 1499 if (sd->flags & SD_WAKE_AFFINE) { 1500 int best_cpu; 1501 1502 /* 1503 * "this_cpu" is cheaper to preempt than a 1504 * remote processor. 1505 */ 1506 if (this_cpu != -1 && 1507 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1508 rcu_read_unlock(); 1509 return this_cpu; 1510 } 1511 1512 best_cpu = cpumask_first_and(lowest_mask, 1513 sched_domain_span(sd)); 1514 if (best_cpu < nr_cpu_ids) { 1515 rcu_read_unlock(); 1516 return best_cpu; 1517 } 1518 } 1519 } 1520 rcu_read_unlock(); 1521 1522 /* 1523 * And finally, if there were no matches within the domains 1524 * just give the caller *something* to work with from the compatible 1525 * locations. 1526 */ 1527 if (this_cpu != -1) 1528 return this_cpu; 1529 1530 cpu = cpumask_any(lowest_mask); 1531 if (cpu < nr_cpu_ids) 1532 return cpu; 1533 return -1; 1534 } 1535 1536 /* Will lock the rq it finds */ 1537 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1538 { 1539 struct rq *lowest_rq = NULL; 1540 int tries; 1541 int cpu; 1542 1543 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1544 cpu = find_lowest_rq(task); 1545 1546 if ((cpu == -1) || (cpu == rq->cpu)) 1547 break; 1548 1549 lowest_rq = cpu_rq(cpu); 1550 1551 /* if the prio of this runqueue changed, try again */ 1552 if (double_lock_balance(rq, lowest_rq)) { 1553 /* 1554 * We had to unlock the run queue. In 1555 * the mean time, task could have 1556 * migrated already or had its affinity changed. 1557 * Also make sure that it wasn't scheduled on its rq. 1558 */ 1559 if (unlikely(task_rq(task) != rq || 1560 !cpumask_test_cpu(lowest_rq->cpu, 1561 tsk_cpus_allowed(task)) || 1562 task_running(rq, task) || 1563 !task->on_rq)) { 1564 1565 double_unlock_balance(rq, lowest_rq); 1566 lowest_rq = NULL; 1567 break; 1568 } 1569 } 1570 1571 /* If this rq is still suitable use it. */ 1572 if (lowest_rq->rt.highest_prio.curr > task->prio) 1573 break; 1574 1575 /* try again */ 1576 double_unlock_balance(rq, lowest_rq); 1577 lowest_rq = NULL; 1578 } 1579 1580 return lowest_rq; 1581 } 1582 1583 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1584 { 1585 struct task_struct *p; 1586 1587 if (!has_pushable_tasks(rq)) 1588 return NULL; 1589 1590 p = plist_first_entry(&rq->rt.pushable_tasks, 1591 struct task_struct, pushable_tasks); 1592 1593 BUG_ON(rq->cpu != task_cpu(p)); 1594 BUG_ON(task_current(rq, p)); 1595 BUG_ON(p->nr_cpus_allowed <= 1); 1596 1597 BUG_ON(!p->on_rq); 1598 BUG_ON(!rt_task(p)); 1599 1600 return p; 1601 } 1602 1603 /* 1604 * If the current CPU has more than one RT task, see if the non 1605 * running task can migrate over to a CPU that is running a task 1606 * of lesser priority. 1607 */ 1608 static int push_rt_task(struct rq *rq) 1609 { 1610 struct task_struct *next_task; 1611 struct rq *lowest_rq; 1612 int ret = 0; 1613 1614 if (!rq->rt.overloaded) 1615 return 0; 1616 1617 next_task = pick_next_pushable_task(rq); 1618 if (!next_task) 1619 return 0; 1620 1621 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 1622 if (unlikely(task_running(rq, next_task))) 1623 return 0; 1624 #endif 1625 1626 retry: 1627 if (unlikely(next_task == rq->curr)) { 1628 WARN_ON(1); 1629 return 0; 1630 } 1631 1632 /* 1633 * It's possible that the next_task slipped in of 1634 * higher priority than current. If that's the case 1635 * just reschedule current. 1636 */ 1637 if (unlikely(next_task->prio < rq->curr->prio)) { 1638 resched_task(rq->curr); 1639 return 0; 1640 } 1641 1642 /* We might release rq lock */ 1643 get_task_struct(next_task); 1644 1645 /* find_lock_lowest_rq locks the rq if found */ 1646 lowest_rq = find_lock_lowest_rq(next_task, rq); 1647 if (!lowest_rq) { 1648 struct task_struct *task; 1649 /* 1650 * find_lock_lowest_rq releases rq->lock 1651 * so it is possible that next_task has migrated. 1652 * 1653 * We need to make sure that the task is still on the same 1654 * run-queue and is also still the next task eligible for 1655 * pushing. 1656 */ 1657 task = pick_next_pushable_task(rq); 1658 if (task_cpu(next_task) == rq->cpu && task == next_task) { 1659 /* 1660 * The task hasn't migrated, and is still the next 1661 * eligible task, but we failed to find a run-queue 1662 * to push it to. Do not retry in this case, since 1663 * other cpus will pull from us when ready. 1664 */ 1665 goto out; 1666 } 1667 1668 if (!task) 1669 /* No more tasks, just exit */ 1670 goto out; 1671 1672 /* 1673 * Something has shifted, try again. 1674 */ 1675 put_task_struct(next_task); 1676 next_task = task; 1677 goto retry; 1678 } 1679 1680 deactivate_task(rq, next_task, 0); 1681 set_task_cpu(next_task, lowest_rq->cpu); 1682 activate_task(lowest_rq, next_task, 0); 1683 ret = 1; 1684 1685 resched_task(lowest_rq->curr); 1686 1687 double_unlock_balance(rq, lowest_rq); 1688 1689 out: 1690 put_task_struct(next_task); 1691 1692 return ret; 1693 } 1694 1695 static void push_rt_tasks(struct rq *rq) 1696 { 1697 /* push_rt_task will return true if it moved an RT */ 1698 while (push_rt_task(rq)) 1699 ; 1700 } 1701 1702 static int pull_rt_task(struct rq *this_rq) 1703 { 1704 int this_cpu = this_rq->cpu, ret = 0, cpu; 1705 struct task_struct *p; 1706 struct rq *src_rq; 1707 1708 if (likely(!rt_overloaded(this_rq))) 1709 return 0; 1710 1711 for_each_cpu(cpu, this_rq->rd->rto_mask) { 1712 if (this_cpu == cpu) 1713 continue; 1714 1715 src_rq = cpu_rq(cpu); 1716 1717 /* 1718 * Don't bother taking the src_rq->lock if the next highest 1719 * task is known to be lower-priority than our current task. 1720 * This may look racy, but if this value is about to go 1721 * logically higher, the src_rq will push this task away. 1722 * And if its going logically lower, we do not care 1723 */ 1724 if (src_rq->rt.highest_prio.next >= 1725 this_rq->rt.highest_prio.curr) 1726 continue; 1727 1728 /* 1729 * We can potentially drop this_rq's lock in 1730 * double_lock_balance, and another CPU could 1731 * alter this_rq 1732 */ 1733 double_lock_balance(this_rq, src_rq); 1734 1735 /* 1736 * Are there still pullable RT tasks? 1737 */ 1738 if (src_rq->rt.rt_nr_running <= 1) 1739 goto skip; 1740 1741 p = pick_next_highest_task_rt(src_rq, this_cpu); 1742 1743 /* 1744 * Do we have an RT task that preempts 1745 * the to-be-scheduled task? 1746 */ 1747 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 1748 WARN_ON(p == src_rq->curr); 1749 WARN_ON(!p->on_rq); 1750 1751 /* 1752 * There's a chance that p is higher in priority 1753 * than what's currently running on its cpu. 1754 * This is just that p is wakeing up and hasn't 1755 * had a chance to schedule. We only pull 1756 * p if it is lower in priority than the 1757 * current task on the run queue 1758 */ 1759 if (p->prio < src_rq->curr->prio) 1760 goto skip; 1761 1762 ret = 1; 1763 1764 deactivate_task(src_rq, p, 0); 1765 set_task_cpu(p, this_cpu); 1766 activate_task(this_rq, p, 0); 1767 /* 1768 * We continue with the search, just in 1769 * case there's an even higher prio task 1770 * in another runqueue. (low likelihood 1771 * but possible) 1772 */ 1773 } 1774 skip: 1775 double_unlock_balance(this_rq, src_rq); 1776 } 1777 1778 return ret; 1779 } 1780 1781 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) 1782 { 1783 /* Try to pull RT tasks here if we lower this rq's prio */ 1784 if (rq->rt.highest_prio.curr > prev->prio) 1785 pull_rt_task(rq); 1786 } 1787 1788 static void post_schedule_rt(struct rq *rq) 1789 { 1790 push_rt_tasks(rq); 1791 } 1792 1793 /* 1794 * If we are not running and we are not going to reschedule soon, we should 1795 * try to push tasks away now 1796 */ 1797 static void task_woken_rt(struct rq *rq, struct task_struct *p) 1798 { 1799 if (!task_running(rq, p) && 1800 !test_tsk_need_resched(rq->curr) && 1801 has_pushable_tasks(rq) && 1802 p->nr_cpus_allowed > 1 && 1803 rt_task(rq->curr) && 1804 (rq->curr->nr_cpus_allowed < 2 || 1805 rq->curr->prio <= p->prio)) 1806 push_rt_tasks(rq); 1807 } 1808 1809 static void set_cpus_allowed_rt(struct task_struct *p, 1810 const struct cpumask *new_mask) 1811 { 1812 struct rq *rq; 1813 int weight; 1814 1815 BUG_ON(!rt_task(p)); 1816 1817 if (!p->on_rq) 1818 return; 1819 1820 weight = cpumask_weight(new_mask); 1821 1822 /* 1823 * Only update if the process changes its state from whether it 1824 * can migrate or not. 1825 */ 1826 if ((p->nr_cpus_allowed > 1) == (weight > 1)) 1827 return; 1828 1829 rq = task_rq(p); 1830 1831 /* 1832 * The process used to be able to migrate OR it can now migrate 1833 */ 1834 if (weight <= 1) { 1835 if (!task_current(rq, p)) 1836 dequeue_pushable_task(rq, p); 1837 BUG_ON(!rq->rt.rt_nr_migratory); 1838 rq->rt.rt_nr_migratory--; 1839 } else { 1840 if (!task_current(rq, p)) 1841 enqueue_pushable_task(rq, p); 1842 rq->rt.rt_nr_migratory++; 1843 } 1844 1845 update_rt_migration(&rq->rt); 1846 } 1847 1848 /* Assumes rq->lock is held */ 1849 static void rq_online_rt(struct rq *rq) 1850 { 1851 if (rq->rt.overloaded) 1852 rt_set_overload(rq); 1853 1854 __enable_runtime(rq); 1855 1856 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 1857 } 1858 1859 /* Assumes rq->lock is held */ 1860 static void rq_offline_rt(struct rq *rq) 1861 { 1862 if (rq->rt.overloaded) 1863 rt_clear_overload(rq); 1864 1865 __disable_runtime(rq); 1866 1867 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 1868 } 1869 1870 /* 1871 * When switch from the rt queue, we bring ourselves to a position 1872 * that we might want to pull RT tasks from other runqueues. 1873 */ 1874 static void switched_from_rt(struct rq *rq, struct task_struct *p) 1875 { 1876 /* 1877 * If there are other RT tasks then we will reschedule 1878 * and the scheduling of the other RT tasks will handle 1879 * the balancing. But if we are the last RT task 1880 * we may need to handle the pulling of RT tasks 1881 * now. 1882 */ 1883 if (p->on_rq && !rq->rt.rt_nr_running) 1884 pull_rt_task(rq); 1885 } 1886 1887 void init_sched_rt_class(void) 1888 { 1889 unsigned int i; 1890 1891 for_each_possible_cpu(i) { 1892 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 1893 GFP_KERNEL, cpu_to_node(i)); 1894 } 1895 } 1896 #endif /* CONFIG_SMP */ 1897 1898 /* 1899 * When switching a task to RT, we may overload the runqueue 1900 * with RT tasks. In this case we try to push them off to 1901 * other runqueues. 1902 */ 1903 static void switched_to_rt(struct rq *rq, struct task_struct *p) 1904 { 1905 int check_resched = 1; 1906 1907 /* 1908 * If we are already running, then there's nothing 1909 * that needs to be done. But if we are not running 1910 * we may need to preempt the current running task. 1911 * If that current running task is also an RT task 1912 * then see if we can move to another run queue. 1913 */ 1914 if (p->on_rq && rq->curr != p) { 1915 #ifdef CONFIG_SMP 1916 if (rq->rt.overloaded && push_rt_task(rq) && 1917 /* Don't resched if we changed runqueues */ 1918 rq != task_rq(p)) 1919 check_resched = 0; 1920 #endif /* CONFIG_SMP */ 1921 if (check_resched && p->prio < rq->curr->prio) 1922 resched_task(rq->curr); 1923 } 1924 } 1925 1926 /* 1927 * Priority of the task has changed. This may cause 1928 * us to initiate a push or pull. 1929 */ 1930 static void 1931 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 1932 { 1933 if (!p->on_rq) 1934 return; 1935 1936 if (rq->curr == p) { 1937 #ifdef CONFIG_SMP 1938 /* 1939 * If our priority decreases while running, we 1940 * may need to pull tasks to this runqueue. 1941 */ 1942 if (oldprio < p->prio) 1943 pull_rt_task(rq); 1944 /* 1945 * If there's a higher priority task waiting to run 1946 * then reschedule. Note, the above pull_rt_task 1947 * can release the rq lock and p could migrate. 1948 * Only reschedule if p is still on the same runqueue. 1949 */ 1950 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) 1951 resched_task(p); 1952 #else 1953 /* For UP simply resched on drop of prio */ 1954 if (oldprio < p->prio) 1955 resched_task(p); 1956 #endif /* CONFIG_SMP */ 1957 } else { 1958 /* 1959 * This task is not running, but if it is 1960 * greater than the current running task 1961 * then reschedule. 1962 */ 1963 if (p->prio < rq->curr->prio) 1964 resched_task(rq->curr); 1965 } 1966 } 1967 1968 static void watchdog(struct rq *rq, struct task_struct *p) 1969 { 1970 unsigned long soft, hard; 1971 1972 /* max may change after cur was read, this will be fixed next tick */ 1973 soft = task_rlimit(p, RLIMIT_RTTIME); 1974 hard = task_rlimit_max(p, RLIMIT_RTTIME); 1975 1976 if (soft != RLIM_INFINITY) { 1977 unsigned long next; 1978 1979 p->rt.timeout++; 1980 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 1981 if (p->rt.timeout > next) 1982 p->cputime_expires.sched_exp = p->se.sum_exec_runtime; 1983 } 1984 } 1985 1986 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 1987 { 1988 struct sched_rt_entity *rt_se = &p->rt; 1989 1990 update_curr_rt(rq); 1991 1992 watchdog(rq, p); 1993 1994 /* 1995 * RR tasks need a special form of timeslice management. 1996 * FIFO tasks have no timeslices. 1997 */ 1998 if (p->policy != SCHED_RR) 1999 return; 2000 2001 if (--p->rt.time_slice) 2002 return; 2003 2004 p->rt.time_slice = RR_TIMESLICE; 2005 2006 /* 2007 * Requeue to the end of queue if we (and all of our ancestors) are the 2008 * only element on the queue 2009 */ 2010 for_each_sched_rt_entity(rt_se) { 2011 if (rt_se->run_list.prev != rt_se->run_list.next) { 2012 requeue_task_rt(rq, p, 0); 2013 set_tsk_need_resched(p); 2014 return; 2015 } 2016 } 2017 } 2018 2019 static void set_curr_task_rt(struct rq *rq) 2020 { 2021 struct task_struct *p = rq->curr; 2022 2023 p->se.exec_start = rq->clock_task; 2024 2025 /* The running task is never eligible for pushing */ 2026 dequeue_pushable_task(rq, p); 2027 } 2028 2029 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2030 { 2031 /* 2032 * Time slice is 0 for SCHED_FIFO tasks 2033 */ 2034 if (task->policy == SCHED_RR) 2035 return RR_TIMESLICE; 2036 else 2037 return 0; 2038 } 2039 2040 const struct sched_class rt_sched_class = { 2041 .next = &fair_sched_class, 2042 .enqueue_task = enqueue_task_rt, 2043 .dequeue_task = dequeue_task_rt, 2044 .yield_task = yield_task_rt, 2045 2046 .check_preempt_curr = check_preempt_curr_rt, 2047 2048 .pick_next_task = pick_next_task_rt, 2049 .put_prev_task = put_prev_task_rt, 2050 2051 #ifdef CONFIG_SMP 2052 .select_task_rq = select_task_rq_rt, 2053 2054 .set_cpus_allowed = set_cpus_allowed_rt, 2055 .rq_online = rq_online_rt, 2056 .rq_offline = rq_offline_rt, 2057 .pre_schedule = pre_schedule_rt, 2058 .post_schedule = post_schedule_rt, 2059 .task_woken = task_woken_rt, 2060 .switched_from = switched_from_rt, 2061 #endif 2062 2063 .set_curr_task = set_curr_task_rt, 2064 .task_tick = task_tick_rt, 2065 2066 .get_rr_interval = get_rr_interval_rt, 2067 2068 .prio_changed = prio_changed_rt, 2069 .switched_to = switched_to_rt, 2070 }; 2071 2072 #ifdef CONFIG_SCHED_DEBUG 2073 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 2074 2075 void print_rt_stats(struct seq_file *m, int cpu) 2076 { 2077 rt_rq_iter_t iter; 2078 struct rt_rq *rt_rq; 2079 2080 rcu_read_lock(); 2081 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 2082 print_rt_rq(m, cpu, rt_rq); 2083 rcu_read_unlock(); 2084 } 2085 #endif /* CONFIG_SCHED_DEBUG */ 2086