1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR 4 * policies) 5 */ 6 7 int sched_rr_timeslice = RR_TIMESLICE; 8 /* More than 4 hours if BW_SHIFT equals 20. */ 9 static const u64 max_rt_runtime = MAX_BW; 10 11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); 12 13 struct rt_bandwidth def_rt_bandwidth; 14 15 /* 16 * period over which we measure -rt task CPU usage in us. 17 * default: 1s 18 */ 19 int sysctl_sched_rt_period = 1000000; 20 21 /* 22 * part of the period that we allow rt tasks to run in us. 23 * default: 0.95s 24 */ 25 int sysctl_sched_rt_runtime = 950000; 26 27 #ifdef CONFIG_SYSCTL 28 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ; 29 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer, 30 size_t *lenp, loff_t *ppos); 31 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer, 32 size_t *lenp, loff_t *ppos); 33 static struct ctl_table sched_rt_sysctls[] = { 34 { 35 .procname = "sched_rt_period_us", 36 .data = &sysctl_sched_rt_period, 37 .maxlen = sizeof(int), 38 .mode = 0644, 39 .proc_handler = sched_rt_handler, 40 .extra1 = SYSCTL_ONE, 41 .extra2 = SYSCTL_INT_MAX, 42 }, 43 { 44 .procname = "sched_rt_runtime_us", 45 .data = &sysctl_sched_rt_runtime, 46 .maxlen = sizeof(int), 47 .mode = 0644, 48 .proc_handler = sched_rt_handler, 49 .extra1 = SYSCTL_NEG_ONE, 50 .extra2 = (void *)&sysctl_sched_rt_period, 51 }, 52 { 53 .procname = "sched_rr_timeslice_ms", 54 .data = &sysctl_sched_rr_timeslice, 55 .maxlen = sizeof(int), 56 .mode = 0644, 57 .proc_handler = sched_rr_handler, 58 }, 59 }; 60 61 static int __init sched_rt_sysctl_init(void) 62 { 63 register_sysctl_init("kernel", sched_rt_sysctls); 64 return 0; 65 } 66 late_initcall(sched_rt_sysctl_init); 67 #endif 68 69 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) 70 { 71 struct rt_bandwidth *rt_b = 72 container_of(timer, struct rt_bandwidth, rt_period_timer); 73 int idle = 0; 74 int overrun; 75 76 raw_spin_lock(&rt_b->rt_runtime_lock); 77 for (;;) { 78 overrun = hrtimer_forward_now(timer, rt_b->rt_period); 79 if (!overrun) 80 break; 81 82 raw_spin_unlock(&rt_b->rt_runtime_lock); 83 idle = do_sched_rt_period_timer(rt_b, overrun); 84 raw_spin_lock(&rt_b->rt_runtime_lock); 85 } 86 if (idle) 87 rt_b->rt_period_active = 0; 88 raw_spin_unlock(&rt_b->rt_runtime_lock); 89 90 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 91 } 92 93 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) 94 { 95 rt_b->rt_period = ns_to_ktime(period); 96 rt_b->rt_runtime = runtime; 97 98 raw_spin_lock_init(&rt_b->rt_runtime_lock); 99 100 hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC, 101 HRTIMER_MODE_REL_HARD); 102 rt_b->rt_period_timer.function = sched_rt_period_timer; 103 } 104 105 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b) 106 { 107 raw_spin_lock(&rt_b->rt_runtime_lock); 108 if (!rt_b->rt_period_active) { 109 rt_b->rt_period_active = 1; 110 /* 111 * SCHED_DEADLINE updates the bandwidth, as a run away 112 * RT task with a DL task could hog a CPU. But DL does 113 * not reset the period. If a deadline task was running 114 * without an RT task running, it can cause RT tasks to 115 * throttle when they start up. Kick the timer right away 116 * to update the period. 117 */ 118 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0)); 119 hrtimer_start_expires(&rt_b->rt_period_timer, 120 HRTIMER_MODE_ABS_PINNED_HARD); 121 } 122 raw_spin_unlock(&rt_b->rt_runtime_lock); 123 } 124 125 static void start_rt_bandwidth(struct rt_bandwidth *rt_b) 126 { 127 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) 128 return; 129 130 do_start_rt_bandwidth(rt_b); 131 } 132 133 void init_rt_rq(struct rt_rq *rt_rq) 134 { 135 struct rt_prio_array *array; 136 int i; 137 138 array = &rt_rq->active; 139 for (i = 0; i < MAX_RT_PRIO; i++) { 140 INIT_LIST_HEAD(array->queue + i); 141 __clear_bit(i, array->bitmap); 142 } 143 /* delimiter for bitsearch: */ 144 __set_bit(MAX_RT_PRIO, array->bitmap); 145 146 #if defined CONFIG_SMP 147 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 148 rt_rq->highest_prio.next = MAX_RT_PRIO-1; 149 rt_rq->overloaded = 0; 150 plist_head_init(&rt_rq->pushable_tasks); 151 #endif /* CONFIG_SMP */ 152 /* We start is dequeued state, because no RT tasks are queued */ 153 rt_rq->rt_queued = 0; 154 155 rt_rq->rt_time = 0; 156 rt_rq->rt_throttled = 0; 157 rt_rq->rt_runtime = 0; 158 raw_spin_lock_init(&rt_rq->rt_runtime_lock); 159 } 160 161 #ifdef CONFIG_RT_GROUP_SCHED 162 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) 163 { 164 hrtimer_cancel(&rt_b->rt_period_timer); 165 } 166 167 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q) 168 169 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 170 { 171 #ifdef CONFIG_SCHED_DEBUG 172 WARN_ON_ONCE(!rt_entity_is_task(rt_se)); 173 #endif 174 return container_of(rt_se, struct task_struct, rt); 175 } 176 177 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 178 { 179 return rt_rq->rq; 180 } 181 182 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 183 { 184 return rt_se->rt_rq; 185 } 186 187 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 188 { 189 struct rt_rq *rt_rq = rt_se->rt_rq; 190 191 return rt_rq->rq; 192 } 193 194 void unregister_rt_sched_group(struct task_group *tg) 195 { 196 if (tg->rt_se) 197 destroy_rt_bandwidth(&tg->rt_bandwidth); 198 199 } 200 201 void free_rt_sched_group(struct task_group *tg) 202 { 203 int i; 204 205 for_each_possible_cpu(i) { 206 if (tg->rt_rq) 207 kfree(tg->rt_rq[i]); 208 if (tg->rt_se) 209 kfree(tg->rt_se[i]); 210 } 211 212 kfree(tg->rt_rq); 213 kfree(tg->rt_se); 214 } 215 216 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 217 struct sched_rt_entity *rt_se, int cpu, 218 struct sched_rt_entity *parent) 219 { 220 struct rq *rq = cpu_rq(cpu); 221 222 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 223 rt_rq->rt_nr_boosted = 0; 224 rt_rq->rq = rq; 225 rt_rq->tg = tg; 226 227 tg->rt_rq[cpu] = rt_rq; 228 tg->rt_se[cpu] = rt_se; 229 230 if (!rt_se) 231 return; 232 233 if (!parent) 234 rt_se->rt_rq = &rq->rt; 235 else 236 rt_se->rt_rq = parent->my_q; 237 238 rt_se->my_q = rt_rq; 239 rt_se->parent = parent; 240 INIT_LIST_HEAD(&rt_se->run_list); 241 } 242 243 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 244 { 245 struct rt_rq *rt_rq; 246 struct sched_rt_entity *rt_se; 247 int i; 248 249 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL); 250 if (!tg->rt_rq) 251 goto err; 252 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL); 253 if (!tg->rt_se) 254 goto err; 255 256 init_rt_bandwidth(&tg->rt_bandwidth, 257 ktime_to_ns(def_rt_bandwidth.rt_period), 0); 258 259 for_each_possible_cpu(i) { 260 rt_rq = kzalloc_node(sizeof(struct rt_rq), 261 GFP_KERNEL, cpu_to_node(i)); 262 if (!rt_rq) 263 goto err; 264 265 rt_se = kzalloc_node(sizeof(struct sched_rt_entity), 266 GFP_KERNEL, cpu_to_node(i)); 267 if (!rt_se) 268 goto err_free_rq; 269 270 init_rt_rq(rt_rq); 271 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; 272 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); 273 } 274 275 return 1; 276 277 err_free_rq: 278 kfree(rt_rq); 279 err: 280 return 0; 281 } 282 283 #else /* CONFIG_RT_GROUP_SCHED */ 284 285 #define rt_entity_is_task(rt_se) (1) 286 287 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) 288 { 289 return container_of(rt_se, struct task_struct, rt); 290 } 291 292 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) 293 { 294 return container_of(rt_rq, struct rq, rt); 295 } 296 297 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se) 298 { 299 struct task_struct *p = rt_task_of(rt_se); 300 301 return task_rq(p); 302 } 303 304 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) 305 { 306 struct rq *rq = rq_of_rt_se(rt_se); 307 308 return &rq->rt; 309 } 310 311 void unregister_rt_sched_group(struct task_group *tg) { } 312 313 void free_rt_sched_group(struct task_group *tg) { } 314 315 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) 316 { 317 return 1; 318 } 319 #endif /* CONFIG_RT_GROUP_SCHED */ 320 321 #ifdef CONFIG_SMP 322 323 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev) 324 { 325 /* Try to pull RT tasks here if we lower this rq's prio */ 326 return rq->online && rq->rt.highest_prio.curr > prev->prio; 327 } 328 329 static inline int rt_overloaded(struct rq *rq) 330 { 331 return atomic_read(&rq->rd->rto_count); 332 } 333 334 static inline void rt_set_overload(struct rq *rq) 335 { 336 if (!rq->online) 337 return; 338 339 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); 340 /* 341 * Make sure the mask is visible before we set 342 * the overload count. That is checked to determine 343 * if we should look at the mask. It would be a shame 344 * if we looked at the mask, but the mask was not 345 * updated yet. 346 * 347 * Matched by the barrier in pull_rt_task(). 348 */ 349 smp_wmb(); 350 atomic_inc(&rq->rd->rto_count); 351 } 352 353 static inline void rt_clear_overload(struct rq *rq) 354 { 355 if (!rq->online) 356 return; 357 358 /* the order here really doesn't matter */ 359 atomic_dec(&rq->rd->rto_count); 360 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); 361 } 362 363 static inline int has_pushable_tasks(struct rq *rq) 364 { 365 return !plist_head_empty(&rq->rt.pushable_tasks); 366 } 367 368 static DEFINE_PER_CPU(struct balance_callback, rt_push_head); 369 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head); 370 371 static void push_rt_tasks(struct rq *); 372 static void pull_rt_task(struct rq *); 373 374 static inline void rt_queue_push_tasks(struct rq *rq) 375 { 376 if (!has_pushable_tasks(rq)) 377 return; 378 379 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks); 380 } 381 382 static inline void rt_queue_pull_task(struct rq *rq) 383 { 384 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task); 385 } 386 387 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 388 { 389 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 390 plist_node_init(&p->pushable_tasks, p->prio); 391 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); 392 393 /* Update the highest prio pushable task */ 394 if (p->prio < rq->rt.highest_prio.next) 395 rq->rt.highest_prio.next = p->prio; 396 397 if (!rq->rt.overloaded) { 398 rt_set_overload(rq); 399 rq->rt.overloaded = 1; 400 } 401 } 402 403 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 404 { 405 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); 406 407 /* Update the new highest prio pushable task */ 408 if (has_pushable_tasks(rq)) { 409 p = plist_first_entry(&rq->rt.pushable_tasks, 410 struct task_struct, pushable_tasks); 411 rq->rt.highest_prio.next = p->prio; 412 } else { 413 rq->rt.highest_prio.next = MAX_RT_PRIO-1; 414 415 if (rq->rt.overloaded) { 416 rt_clear_overload(rq); 417 rq->rt.overloaded = 0; 418 } 419 } 420 } 421 422 #else 423 424 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) 425 { 426 } 427 428 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) 429 { 430 } 431 432 static inline void rt_queue_push_tasks(struct rq *rq) 433 { 434 } 435 #endif /* CONFIG_SMP */ 436 437 static void enqueue_top_rt_rq(struct rt_rq *rt_rq); 438 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count); 439 440 static inline int on_rt_rq(struct sched_rt_entity *rt_se) 441 { 442 return rt_se->on_rq; 443 } 444 445 #ifdef CONFIG_UCLAMP_TASK 446 /* 447 * Verify the fitness of task @p to run on @cpu taking into account the uclamp 448 * settings. 449 * 450 * This check is only important for heterogeneous systems where uclamp_min value 451 * is higher than the capacity of a @cpu. For non-heterogeneous system this 452 * function will always return true. 453 * 454 * The function will return true if the capacity of the @cpu is >= the 455 * uclamp_min and false otherwise. 456 * 457 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min 458 * > uclamp_max. 459 */ 460 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 461 { 462 unsigned int min_cap; 463 unsigned int max_cap; 464 unsigned int cpu_cap; 465 466 /* Only heterogeneous systems can benefit from this check */ 467 if (!sched_asym_cpucap_active()) 468 return true; 469 470 min_cap = uclamp_eff_value(p, UCLAMP_MIN); 471 max_cap = uclamp_eff_value(p, UCLAMP_MAX); 472 473 cpu_cap = arch_scale_cpu_capacity(cpu); 474 475 return cpu_cap >= min(min_cap, max_cap); 476 } 477 #else 478 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu) 479 { 480 return true; 481 } 482 #endif 483 484 #ifdef CONFIG_RT_GROUP_SCHED 485 486 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 487 { 488 if (!rt_rq->tg) 489 return RUNTIME_INF; 490 491 return rt_rq->rt_runtime; 492 } 493 494 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 495 { 496 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); 497 } 498 499 typedef struct task_group *rt_rq_iter_t; 500 501 static inline struct task_group *next_task_group(struct task_group *tg) 502 { 503 do { 504 tg = list_entry_rcu(tg->list.next, 505 typeof(struct task_group), list); 506 } while (&tg->list != &task_groups && task_group_is_autogroup(tg)); 507 508 if (&tg->list == &task_groups) 509 tg = NULL; 510 511 return tg; 512 } 513 514 #define for_each_rt_rq(rt_rq, iter, rq) \ 515 for (iter = container_of(&task_groups, typeof(*iter), list); \ 516 (iter = next_task_group(iter)) && \ 517 (rt_rq = iter->rt_rq[cpu_of(rq)]);) 518 519 #define for_each_sched_rt_entity(rt_se) \ 520 for (; rt_se; rt_se = rt_se->parent) 521 522 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 523 { 524 return rt_se->my_q; 525 } 526 527 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 528 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags); 529 530 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 531 { 532 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; 533 struct rq *rq = rq_of_rt_rq(rt_rq); 534 struct sched_rt_entity *rt_se; 535 536 int cpu = cpu_of(rq); 537 538 rt_se = rt_rq->tg->rt_se[cpu]; 539 540 if (rt_rq->rt_nr_running) { 541 if (!rt_se) 542 enqueue_top_rt_rq(rt_rq); 543 else if (!on_rt_rq(rt_se)) 544 enqueue_rt_entity(rt_se, 0); 545 546 if (rt_rq->highest_prio.curr < curr->prio) 547 resched_curr(rq); 548 } 549 } 550 551 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 552 { 553 struct sched_rt_entity *rt_se; 554 int cpu = cpu_of(rq_of_rt_rq(rt_rq)); 555 556 rt_se = rt_rq->tg->rt_se[cpu]; 557 558 if (!rt_se) { 559 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running); 560 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 561 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0); 562 } 563 else if (on_rt_rq(rt_se)) 564 dequeue_rt_entity(rt_se, 0); 565 } 566 567 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 568 { 569 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; 570 } 571 572 static int rt_se_boosted(struct sched_rt_entity *rt_se) 573 { 574 struct rt_rq *rt_rq = group_rt_rq(rt_se); 575 struct task_struct *p; 576 577 if (rt_rq) 578 return !!rt_rq->rt_nr_boosted; 579 580 p = rt_task_of(rt_se); 581 return p->prio != p->normal_prio; 582 } 583 584 #ifdef CONFIG_SMP 585 static inline const struct cpumask *sched_rt_period_mask(void) 586 { 587 return this_rq()->rd->span; 588 } 589 #else 590 static inline const struct cpumask *sched_rt_period_mask(void) 591 { 592 return cpu_online_mask; 593 } 594 #endif 595 596 static inline 597 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 598 { 599 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; 600 } 601 602 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 603 { 604 return &rt_rq->tg->rt_bandwidth; 605 } 606 607 #else /* !CONFIG_RT_GROUP_SCHED */ 608 609 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) 610 { 611 return rt_rq->rt_runtime; 612 } 613 614 static inline u64 sched_rt_period(struct rt_rq *rt_rq) 615 { 616 return ktime_to_ns(def_rt_bandwidth.rt_period); 617 } 618 619 typedef struct rt_rq *rt_rq_iter_t; 620 621 #define for_each_rt_rq(rt_rq, iter, rq) \ 622 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) 623 624 #define for_each_sched_rt_entity(rt_se) \ 625 for (; rt_se; rt_se = NULL) 626 627 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) 628 { 629 return NULL; 630 } 631 632 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) 633 { 634 struct rq *rq = rq_of_rt_rq(rt_rq); 635 636 if (!rt_rq->rt_nr_running) 637 return; 638 639 enqueue_top_rt_rq(rt_rq); 640 resched_curr(rq); 641 } 642 643 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) 644 { 645 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running); 646 } 647 648 static inline int rt_rq_throttled(struct rt_rq *rt_rq) 649 { 650 return rt_rq->rt_throttled; 651 } 652 653 static inline const struct cpumask *sched_rt_period_mask(void) 654 { 655 return cpu_online_mask; 656 } 657 658 static inline 659 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) 660 { 661 return &cpu_rq(cpu)->rt; 662 } 663 664 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) 665 { 666 return &def_rt_bandwidth; 667 } 668 669 #endif /* CONFIG_RT_GROUP_SCHED */ 670 671 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq) 672 { 673 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 674 675 return (hrtimer_active(&rt_b->rt_period_timer) || 676 rt_rq->rt_time < rt_b->rt_runtime); 677 } 678 679 #ifdef CONFIG_SMP 680 /* 681 * We ran out of runtime, see if we can borrow some from our neighbours. 682 */ 683 static void do_balance_runtime(struct rt_rq *rt_rq) 684 { 685 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 686 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd; 687 int i, weight; 688 u64 rt_period; 689 690 weight = cpumask_weight(rd->span); 691 692 raw_spin_lock(&rt_b->rt_runtime_lock); 693 rt_period = ktime_to_ns(rt_b->rt_period); 694 for_each_cpu(i, rd->span) { 695 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 696 s64 diff; 697 698 if (iter == rt_rq) 699 continue; 700 701 raw_spin_lock(&iter->rt_runtime_lock); 702 /* 703 * Either all rqs have inf runtime and there's nothing to steal 704 * or __disable_runtime() below sets a specific rq to inf to 705 * indicate its been disabled and disallow stealing. 706 */ 707 if (iter->rt_runtime == RUNTIME_INF) 708 goto next; 709 710 /* 711 * From runqueues with spare time, take 1/n part of their 712 * spare time, but no more than our period. 713 */ 714 diff = iter->rt_runtime - iter->rt_time; 715 if (diff > 0) { 716 diff = div_u64((u64)diff, weight); 717 if (rt_rq->rt_runtime + diff > rt_period) 718 diff = rt_period - rt_rq->rt_runtime; 719 iter->rt_runtime -= diff; 720 rt_rq->rt_runtime += diff; 721 if (rt_rq->rt_runtime == rt_period) { 722 raw_spin_unlock(&iter->rt_runtime_lock); 723 break; 724 } 725 } 726 next: 727 raw_spin_unlock(&iter->rt_runtime_lock); 728 } 729 raw_spin_unlock(&rt_b->rt_runtime_lock); 730 } 731 732 /* 733 * Ensure this RQ takes back all the runtime it lend to its neighbours. 734 */ 735 static void __disable_runtime(struct rq *rq) 736 { 737 struct root_domain *rd = rq->rd; 738 rt_rq_iter_t iter; 739 struct rt_rq *rt_rq; 740 741 if (unlikely(!scheduler_running)) 742 return; 743 744 for_each_rt_rq(rt_rq, iter, rq) { 745 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 746 s64 want; 747 int i; 748 749 raw_spin_lock(&rt_b->rt_runtime_lock); 750 raw_spin_lock(&rt_rq->rt_runtime_lock); 751 /* 752 * Either we're all inf and nobody needs to borrow, or we're 753 * already disabled and thus have nothing to do, or we have 754 * exactly the right amount of runtime to take out. 755 */ 756 if (rt_rq->rt_runtime == RUNTIME_INF || 757 rt_rq->rt_runtime == rt_b->rt_runtime) 758 goto balanced; 759 raw_spin_unlock(&rt_rq->rt_runtime_lock); 760 761 /* 762 * Calculate the difference between what we started out with 763 * and what we current have, that's the amount of runtime 764 * we lend and now have to reclaim. 765 */ 766 want = rt_b->rt_runtime - rt_rq->rt_runtime; 767 768 /* 769 * Greedy reclaim, take back as much as we can. 770 */ 771 for_each_cpu(i, rd->span) { 772 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); 773 s64 diff; 774 775 /* 776 * Can't reclaim from ourselves or disabled runqueues. 777 */ 778 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) 779 continue; 780 781 raw_spin_lock(&iter->rt_runtime_lock); 782 if (want > 0) { 783 diff = min_t(s64, iter->rt_runtime, want); 784 iter->rt_runtime -= diff; 785 want -= diff; 786 } else { 787 iter->rt_runtime -= want; 788 want -= want; 789 } 790 raw_spin_unlock(&iter->rt_runtime_lock); 791 792 if (!want) 793 break; 794 } 795 796 raw_spin_lock(&rt_rq->rt_runtime_lock); 797 /* 798 * We cannot be left wanting - that would mean some runtime 799 * leaked out of the system. 800 */ 801 WARN_ON_ONCE(want); 802 balanced: 803 /* 804 * Disable all the borrow logic by pretending we have inf 805 * runtime - in which case borrowing doesn't make sense. 806 */ 807 rt_rq->rt_runtime = RUNTIME_INF; 808 rt_rq->rt_throttled = 0; 809 raw_spin_unlock(&rt_rq->rt_runtime_lock); 810 raw_spin_unlock(&rt_b->rt_runtime_lock); 811 812 /* Make rt_rq available for pick_next_task() */ 813 sched_rt_rq_enqueue(rt_rq); 814 } 815 } 816 817 static void __enable_runtime(struct rq *rq) 818 { 819 rt_rq_iter_t iter; 820 struct rt_rq *rt_rq; 821 822 if (unlikely(!scheduler_running)) 823 return; 824 825 /* 826 * Reset each runqueue's bandwidth settings 827 */ 828 for_each_rt_rq(rt_rq, iter, rq) { 829 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 830 831 raw_spin_lock(&rt_b->rt_runtime_lock); 832 raw_spin_lock(&rt_rq->rt_runtime_lock); 833 rt_rq->rt_runtime = rt_b->rt_runtime; 834 rt_rq->rt_time = 0; 835 rt_rq->rt_throttled = 0; 836 raw_spin_unlock(&rt_rq->rt_runtime_lock); 837 raw_spin_unlock(&rt_b->rt_runtime_lock); 838 } 839 } 840 841 static void balance_runtime(struct rt_rq *rt_rq) 842 { 843 if (!sched_feat(RT_RUNTIME_SHARE)) 844 return; 845 846 if (rt_rq->rt_time > rt_rq->rt_runtime) { 847 raw_spin_unlock(&rt_rq->rt_runtime_lock); 848 do_balance_runtime(rt_rq); 849 raw_spin_lock(&rt_rq->rt_runtime_lock); 850 } 851 } 852 #else /* !CONFIG_SMP */ 853 static inline void balance_runtime(struct rt_rq *rt_rq) {} 854 #endif /* CONFIG_SMP */ 855 856 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) 857 { 858 int i, idle = 1, throttled = 0; 859 const struct cpumask *span; 860 861 span = sched_rt_period_mask(); 862 #ifdef CONFIG_RT_GROUP_SCHED 863 /* 864 * FIXME: isolated CPUs should really leave the root task group, 865 * whether they are isolcpus or were isolated via cpusets, lest 866 * the timer run on a CPU which does not service all runqueues, 867 * potentially leaving other CPUs indefinitely throttled. If 868 * isolation is really required, the user will turn the throttle 869 * off to kill the perturbations it causes anyway. Meanwhile, 870 * this maintains functionality for boot and/or troubleshooting. 871 */ 872 if (rt_b == &root_task_group.rt_bandwidth) 873 span = cpu_online_mask; 874 #endif 875 for_each_cpu(i, span) { 876 int enqueue = 0; 877 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); 878 struct rq *rq = rq_of_rt_rq(rt_rq); 879 struct rq_flags rf; 880 int skip; 881 882 /* 883 * When span == cpu_online_mask, taking each rq->lock 884 * can be time-consuming. Try to avoid it when possible. 885 */ 886 raw_spin_lock(&rt_rq->rt_runtime_lock); 887 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF) 888 rt_rq->rt_runtime = rt_b->rt_runtime; 889 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running; 890 raw_spin_unlock(&rt_rq->rt_runtime_lock); 891 if (skip) 892 continue; 893 894 rq_lock(rq, &rf); 895 update_rq_clock(rq); 896 897 if (rt_rq->rt_time) { 898 u64 runtime; 899 900 raw_spin_lock(&rt_rq->rt_runtime_lock); 901 if (rt_rq->rt_throttled) 902 balance_runtime(rt_rq); 903 runtime = rt_rq->rt_runtime; 904 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); 905 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { 906 rt_rq->rt_throttled = 0; 907 enqueue = 1; 908 909 /* 910 * When we're idle and a woken (rt) task is 911 * throttled wakeup_preempt() will set 912 * skip_update and the time between the wakeup 913 * and this unthrottle will get accounted as 914 * 'runtime'. 915 */ 916 if (rt_rq->rt_nr_running && rq->curr == rq->idle) 917 rq_clock_cancel_skipupdate(rq); 918 } 919 if (rt_rq->rt_time || rt_rq->rt_nr_running) 920 idle = 0; 921 raw_spin_unlock(&rt_rq->rt_runtime_lock); 922 } else if (rt_rq->rt_nr_running) { 923 idle = 0; 924 if (!rt_rq_throttled(rt_rq)) 925 enqueue = 1; 926 } 927 if (rt_rq->rt_throttled) 928 throttled = 1; 929 930 if (enqueue) 931 sched_rt_rq_enqueue(rt_rq); 932 rq_unlock(rq, &rf); 933 } 934 935 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)) 936 return 1; 937 938 return idle; 939 } 940 941 static inline int rt_se_prio(struct sched_rt_entity *rt_se) 942 { 943 #ifdef CONFIG_RT_GROUP_SCHED 944 struct rt_rq *rt_rq = group_rt_rq(rt_se); 945 946 if (rt_rq) 947 return rt_rq->highest_prio.curr; 948 #endif 949 950 return rt_task_of(rt_se)->prio; 951 } 952 953 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) 954 { 955 u64 runtime = sched_rt_runtime(rt_rq); 956 957 if (rt_rq->rt_throttled) 958 return rt_rq_throttled(rt_rq); 959 960 if (runtime >= sched_rt_period(rt_rq)) 961 return 0; 962 963 balance_runtime(rt_rq); 964 runtime = sched_rt_runtime(rt_rq); 965 if (runtime == RUNTIME_INF) 966 return 0; 967 968 if (rt_rq->rt_time > runtime) { 969 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); 970 971 /* 972 * Don't actually throttle groups that have no runtime assigned 973 * but accrue some time due to boosting. 974 */ 975 if (likely(rt_b->rt_runtime)) { 976 rt_rq->rt_throttled = 1; 977 printk_deferred_once("sched: RT throttling activated\n"); 978 } else { 979 /* 980 * In case we did anyway, make it go away, 981 * replenishment is a joke, since it will replenish us 982 * with exactly 0 ns. 983 */ 984 rt_rq->rt_time = 0; 985 } 986 987 if (rt_rq_throttled(rt_rq)) { 988 sched_rt_rq_dequeue(rt_rq); 989 return 1; 990 } 991 } 992 993 return 0; 994 } 995 996 /* 997 * Update the current task's runtime statistics. Skip current tasks that 998 * are not in our scheduling class. 999 */ 1000 static void update_curr_rt(struct rq *rq) 1001 { 1002 struct task_struct *curr = rq->curr; 1003 struct sched_rt_entity *rt_se = &curr->rt; 1004 s64 delta_exec; 1005 1006 if (curr->sched_class != &rt_sched_class) 1007 return; 1008 1009 delta_exec = update_curr_common(rq); 1010 if (unlikely(delta_exec <= 0)) 1011 return; 1012 1013 if (!rt_bandwidth_enabled()) 1014 return; 1015 1016 for_each_sched_rt_entity(rt_se) { 1017 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1018 int exceeded; 1019 1020 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { 1021 raw_spin_lock(&rt_rq->rt_runtime_lock); 1022 rt_rq->rt_time += delta_exec; 1023 exceeded = sched_rt_runtime_exceeded(rt_rq); 1024 if (exceeded) 1025 resched_curr(rq); 1026 raw_spin_unlock(&rt_rq->rt_runtime_lock); 1027 if (exceeded) 1028 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq)); 1029 } 1030 } 1031 } 1032 1033 static void 1034 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count) 1035 { 1036 struct rq *rq = rq_of_rt_rq(rt_rq); 1037 1038 BUG_ON(&rq->rt != rt_rq); 1039 1040 if (!rt_rq->rt_queued) 1041 return; 1042 1043 BUG_ON(!rq->nr_running); 1044 1045 sub_nr_running(rq, count); 1046 rt_rq->rt_queued = 0; 1047 1048 } 1049 1050 static void 1051 enqueue_top_rt_rq(struct rt_rq *rt_rq) 1052 { 1053 struct rq *rq = rq_of_rt_rq(rt_rq); 1054 1055 BUG_ON(&rq->rt != rt_rq); 1056 1057 if (rt_rq->rt_queued) 1058 return; 1059 1060 if (rt_rq_throttled(rt_rq)) 1061 return; 1062 1063 if (rt_rq->rt_nr_running) { 1064 add_nr_running(rq, rt_rq->rt_nr_running); 1065 rt_rq->rt_queued = 1; 1066 } 1067 1068 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */ 1069 cpufreq_update_util(rq, 0); 1070 } 1071 1072 #if defined CONFIG_SMP 1073 1074 static void 1075 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1076 { 1077 struct rq *rq = rq_of_rt_rq(rt_rq); 1078 1079 #ifdef CONFIG_RT_GROUP_SCHED 1080 /* 1081 * Change rq's cpupri only if rt_rq is the top queue. 1082 */ 1083 if (&rq->rt != rt_rq) 1084 return; 1085 #endif 1086 if (rq->online && prio < prev_prio) 1087 cpupri_set(&rq->rd->cpupri, rq->cpu, prio); 1088 } 1089 1090 static void 1091 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) 1092 { 1093 struct rq *rq = rq_of_rt_rq(rt_rq); 1094 1095 #ifdef CONFIG_RT_GROUP_SCHED 1096 /* 1097 * Change rq's cpupri only if rt_rq is the top queue. 1098 */ 1099 if (&rq->rt != rt_rq) 1100 return; 1101 #endif 1102 if (rq->online && rt_rq->highest_prio.curr != prev_prio) 1103 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); 1104 } 1105 1106 #else /* CONFIG_SMP */ 1107 1108 static inline 1109 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1110 static inline 1111 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} 1112 1113 #endif /* CONFIG_SMP */ 1114 1115 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 1116 static void 1117 inc_rt_prio(struct rt_rq *rt_rq, int prio) 1118 { 1119 int prev_prio = rt_rq->highest_prio.curr; 1120 1121 if (prio < prev_prio) 1122 rt_rq->highest_prio.curr = prio; 1123 1124 inc_rt_prio_smp(rt_rq, prio, prev_prio); 1125 } 1126 1127 static void 1128 dec_rt_prio(struct rt_rq *rt_rq, int prio) 1129 { 1130 int prev_prio = rt_rq->highest_prio.curr; 1131 1132 if (rt_rq->rt_nr_running) { 1133 1134 WARN_ON(prio < prev_prio); 1135 1136 /* 1137 * This may have been our highest task, and therefore 1138 * we may have some recomputation to do 1139 */ 1140 if (prio == prev_prio) { 1141 struct rt_prio_array *array = &rt_rq->active; 1142 1143 rt_rq->highest_prio.curr = 1144 sched_find_first_bit(array->bitmap); 1145 } 1146 1147 } else { 1148 rt_rq->highest_prio.curr = MAX_RT_PRIO-1; 1149 } 1150 1151 dec_rt_prio_smp(rt_rq, prio, prev_prio); 1152 } 1153 1154 #else 1155 1156 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} 1157 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} 1158 1159 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ 1160 1161 #ifdef CONFIG_RT_GROUP_SCHED 1162 1163 static void 1164 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1165 { 1166 if (rt_se_boosted(rt_se)) 1167 rt_rq->rt_nr_boosted++; 1168 1169 if (rt_rq->tg) 1170 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); 1171 } 1172 1173 static void 1174 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1175 { 1176 if (rt_se_boosted(rt_se)) 1177 rt_rq->rt_nr_boosted--; 1178 1179 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); 1180 } 1181 1182 #else /* CONFIG_RT_GROUP_SCHED */ 1183 1184 static void 1185 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1186 { 1187 start_rt_bandwidth(&def_rt_bandwidth); 1188 } 1189 1190 static inline 1191 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} 1192 1193 #endif /* CONFIG_RT_GROUP_SCHED */ 1194 1195 static inline 1196 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se) 1197 { 1198 struct rt_rq *group_rq = group_rt_rq(rt_se); 1199 1200 if (group_rq) 1201 return group_rq->rt_nr_running; 1202 else 1203 return 1; 1204 } 1205 1206 static inline 1207 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se) 1208 { 1209 struct rt_rq *group_rq = group_rt_rq(rt_se); 1210 struct task_struct *tsk; 1211 1212 if (group_rq) 1213 return group_rq->rr_nr_running; 1214 1215 tsk = rt_task_of(rt_se); 1216 1217 return (tsk->policy == SCHED_RR) ? 1 : 0; 1218 } 1219 1220 static inline 1221 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1222 { 1223 int prio = rt_se_prio(rt_se); 1224 1225 WARN_ON(!rt_prio(prio)); 1226 rt_rq->rt_nr_running += rt_se_nr_running(rt_se); 1227 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se); 1228 1229 inc_rt_prio(rt_rq, prio); 1230 inc_rt_group(rt_se, rt_rq); 1231 } 1232 1233 static inline 1234 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) 1235 { 1236 WARN_ON(!rt_prio(rt_se_prio(rt_se))); 1237 WARN_ON(!rt_rq->rt_nr_running); 1238 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se); 1239 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se); 1240 1241 dec_rt_prio(rt_rq, rt_se_prio(rt_se)); 1242 dec_rt_group(rt_se, rt_rq); 1243 } 1244 1245 /* 1246 * Change rt_se->run_list location unless SAVE && !MOVE 1247 * 1248 * assumes ENQUEUE/DEQUEUE flags match 1249 */ 1250 static inline bool move_entity(unsigned int flags) 1251 { 1252 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 1253 return false; 1254 1255 return true; 1256 } 1257 1258 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array) 1259 { 1260 list_del_init(&rt_se->run_list); 1261 1262 if (list_empty(array->queue + rt_se_prio(rt_se))) 1263 __clear_bit(rt_se_prio(rt_se), array->bitmap); 1264 1265 rt_se->on_list = 0; 1266 } 1267 1268 static inline struct sched_statistics * 1269 __schedstats_from_rt_se(struct sched_rt_entity *rt_se) 1270 { 1271 #ifdef CONFIG_RT_GROUP_SCHED 1272 /* schedstats is not supported for rt group. */ 1273 if (!rt_entity_is_task(rt_se)) 1274 return NULL; 1275 #endif 1276 1277 return &rt_task_of(rt_se)->stats; 1278 } 1279 1280 static inline void 1281 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1282 { 1283 struct sched_statistics *stats; 1284 struct task_struct *p = NULL; 1285 1286 if (!schedstat_enabled()) 1287 return; 1288 1289 if (rt_entity_is_task(rt_se)) 1290 p = rt_task_of(rt_se); 1291 1292 stats = __schedstats_from_rt_se(rt_se); 1293 if (!stats) 1294 return; 1295 1296 __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats); 1297 } 1298 1299 static inline void 1300 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1301 { 1302 struct sched_statistics *stats; 1303 struct task_struct *p = NULL; 1304 1305 if (!schedstat_enabled()) 1306 return; 1307 1308 if (rt_entity_is_task(rt_se)) 1309 p = rt_task_of(rt_se); 1310 1311 stats = __schedstats_from_rt_se(rt_se); 1312 if (!stats) 1313 return; 1314 1315 __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats); 1316 } 1317 1318 static inline void 1319 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, 1320 int flags) 1321 { 1322 if (!schedstat_enabled()) 1323 return; 1324 1325 if (flags & ENQUEUE_WAKEUP) 1326 update_stats_enqueue_sleeper_rt(rt_rq, rt_se); 1327 } 1328 1329 static inline void 1330 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se) 1331 { 1332 struct sched_statistics *stats; 1333 struct task_struct *p = NULL; 1334 1335 if (!schedstat_enabled()) 1336 return; 1337 1338 if (rt_entity_is_task(rt_se)) 1339 p = rt_task_of(rt_se); 1340 1341 stats = __schedstats_from_rt_se(rt_se); 1342 if (!stats) 1343 return; 1344 1345 __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats); 1346 } 1347 1348 static inline void 1349 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, 1350 int flags) 1351 { 1352 struct task_struct *p = NULL; 1353 1354 if (!schedstat_enabled()) 1355 return; 1356 1357 if (rt_entity_is_task(rt_se)) 1358 p = rt_task_of(rt_se); 1359 1360 if ((flags & DEQUEUE_SLEEP) && p) { 1361 unsigned int state; 1362 1363 state = READ_ONCE(p->__state); 1364 if (state & TASK_INTERRUPTIBLE) 1365 __schedstat_set(p->stats.sleep_start, 1366 rq_clock(rq_of_rt_rq(rt_rq))); 1367 1368 if (state & TASK_UNINTERRUPTIBLE) 1369 __schedstat_set(p->stats.block_start, 1370 rq_clock(rq_of_rt_rq(rt_rq))); 1371 } 1372 } 1373 1374 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1375 { 1376 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1377 struct rt_prio_array *array = &rt_rq->active; 1378 struct rt_rq *group_rq = group_rt_rq(rt_se); 1379 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1380 1381 /* 1382 * Don't enqueue the group if its throttled, or when empty. 1383 * The latter is a consequence of the former when a child group 1384 * get throttled and the current group doesn't have any other 1385 * active members. 1386 */ 1387 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) { 1388 if (rt_se->on_list) 1389 __delist_rt_entity(rt_se, array); 1390 return; 1391 } 1392 1393 if (move_entity(flags)) { 1394 WARN_ON_ONCE(rt_se->on_list); 1395 if (flags & ENQUEUE_HEAD) 1396 list_add(&rt_se->run_list, queue); 1397 else 1398 list_add_tail(&rt_se->run_list, queue); 1399 1400 __set_bit(rt_se_prio(rt_se), array->bitmap); 1401 rt_se->on_list = 1; 1402 } 1403 rt_se->on_rq = 1; 1404 1405 inc_rt_tasks(rt_se, rt_rq); 1406 } 1407 1408 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1409 { 1410 struct rt_rq *rt_rq = rt_rq_of_se(rt_se); 1411 struct rt_prio_array *array = &rt_rq->active; 1412 1413 if (move_entity(flags)) { 1414 WARN_ON_ONCE(!rt_se->on_list); 1415 __delist_rt_entity(rt_se, array); 1416 } 1417 rt_se->on_rq = 0; 1418 1419 dec_rt_tasks(rt_se, rt_rq); 1420 } 1421 1422 /* 1423 * Because the prio of an upper entry depends on the lower 1424 * entries, we must remove entries top - down. 1425 */ 1426 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags) 1427 { 1428 struct sched_rt_entity *back = NULL; 1429 unsigned int rt_nr_running; 1430 1431 for_each_sched_rt_entity(rt_se) { 1432 rt_se->back = back; 1433 back = rt_se; 1434 } 1435 1436 rt_nr_running = rt_rq_of_se(back)->rt_nr_running; 1437 1438 for (rt_se = back; rt_se; rt_se = rt_se->back) { 1439 if (on_rt_rq(rt_se)) 1440 __dequeue_rt_entity(rt_se, flags); 1441 } 1442 1443 dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running); 1444 } 1445 1446 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1447 { 1448 struct rq *rq = rq_of_rt_se(rt_se); 1449 1450 update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags); 1451 1452 dequeue_rt_stack(rt_se, flags); 1453 for_each_sched_rt_entity(rt_se) 1454 __enqueue_rt_entity(rt_se, flags); 1455 enqueue_top_rt_rq(&rq->rt); 1456 } 1457 1458 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags) 1459 { 1460 struct rq *rq = rq_of_rt_se(rt_se); 1461 1462 update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags); 1463 1464 dequeue_rt_stack(rt_se, flags); 1465 1466 for_each_sched_rt_entity(rt_se) { 1467 struct rt_rq *rt_rq = group_rt_rq(rt_se); 1468 1469 if (rt_rq && rt_rq->rt_nr_running) 1470 __enqueue_rt_entity(rt_se, flags); 1471 } 1472 enqueue_top_rt_rq(&rq->rt); 1473 } 1474 1475 /* 1476 * Adding/removing a task to/from a priority array: 1477 */ 1478 static void 1479 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1480 { 1481 struct sched_rt_entity *rt_se = &p->rt; 1482 1483 if (flags & ENQUEUE_WAKEUP) 1484 rt_se->timeout = 0; 1485 1486 check_schedstat_required(); 1487 update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se); 1488 1489 enqueue_rt_entity(rt_se, flags); 1490 1491 if (!task_current(rq, p) && p->nr_cpus_allowed > 1) 1492 enqueue_pushable_task(rq, p); 1493 } 1494 1495 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) 1496 { 1497 struct sched_rt_entity *rt_se = &p->rt; 1498 1499 update_curr_rt(rq); 1500 dequeue_rt_entity(rt_se, flags); 1501 1502 dequeue_pushable_task(rq, p); 1503 } 1504 1505 /* 1506 * Put task to the head or the end of the run list without the overhead of 1507 * dequeue followed by enqueue. 1508 */ 1509 static void 1510 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) 1511 { 1512 if (on_rt_rq(rt_se)) { 1513 struct rt_prio_array *array = &rt_rq->active; 1514 struct list_head *queue = array->queue + rt_se_prio(rt_se); 1515 1516 if (head) 1517 list_move(&rt_se->run_list, queue); 1518 else 1519 list_move_tail(&rt_se->run_list, queue); 1520 } 1521 } 1522 1523 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) 1524 { 1525 struct sched_rt_entity *rt_se = &p->rt; 1526 struct rt_rq *rt_rq; 1527 1528 for_each_sched_rt_entity(rt_se) { 1529 rt_rq = rt_rq_of_se(rt_se); 1530 requeue_rt_entity(rt_rq, rt_se, head); 1531 } 1532 } 1533 1534 static void yield_task_rt(struct rq *rq) 1535 { 1536 requeue_task_rt(rq, rq->curr, 0); 1537 } 1538 1539 #ifdef CONFIG_SMP 1540 static int find_lowest_rq(struct task_struct *task); 1541 1542 static int 1543 select_task_rq_rt(struct task_struct *p, int cpu, int flags) 1544 { 1545 struct task_struct *curr; 1546 struct rq *rq; 1547 bool test; 1548 1549 /* For anything but wake ups, just return the task_cpu */ 1550 if (!(flags & (WF_TTWU | WF_FORK))) 1551 goto out; 1552 1553 rq = cpu_rq(cpu); 1554 1555 rcu_read_lock(); 1556 curr = READ_ONCE(rq->curr); /* unlocked access */ 1557 1558 /* 1559 * If the current task on @p's runqueue is an RT task, then 1560 * try to see if we can wake this RT task up on another 1561 * runqueue. Otherwise simply start this RT task 1562 * on its current runqueue. 1563 * 1564 * We want to avoid overloading runqueues. If the woken 1565 * task is a higher priority, then it will stay on this CPU 1566 * and the lower prio task should be moved to another CPU. 1567 * Even though this will probably make the lower prio task 1568 * lose its cache, we do not want to bounce a higher task 1569 * around just because it gave up its CPU, perhaps for a 1570 * lock? 1571 * 1572 * For equal prio tasks, we just let the scheduler sort it out. 1573 * 1574 * Otherwise, just let it ride on the affined RQ and the 1575 * post-schedule router will push the preempted task away 1576 * 1577 * This test is optimistic, if we get it wrong the load-balancer 1578 * will have to sort it out. 1579 * 1580 * We take into account the capacity of the CPU to ensure it fits the 1581 * requirement of the task - which is only important on heterogeneous 1582 * systems like big.LITTLE. 1583 */ 1584 test = curr && 1585 unlikely(rt_task(curr)) && 1586 (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio); 1587 1588 if (test || !rt_task_fits_capacity(p, cpu)) { 1589 int target = find_lowest_rq(p); 1590 1591 /* 1592 * Bail out if we were forcing a migration to find a better 1593 * fitting CPU but our search failed. 1594 */ 1595 if (!test && target != -1 && !rt_task_fits_capacity(p, target)) 1596 goto out_unlock; 1597 1598 /* 1599 * Don't bother moving it if the destination CPU is 1600 * not running a lower priority task. 1601 */ 1602 if (target != -1 && 1603 p->prio < cpu_rq(target)->rt.highest_prio.curr) 1604 cpu = target; 1605 } 1606 1607 out_unlock: 1608 rcu_read_unlock(); 1609 1610 out: 1611 return cpu; 1612 } 1613 1614 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) 1615 { 1616 /* 1617 * Current can't be migrated, useless to reschedule, 1618 * let's hope p can move out. 1619 */ 1620 if (rq->curr->nr_cpus_allowed == 1 || 1621 !cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) 1622 return; 1623 1624 /* 1625 * p is migratable, so let's not schedule it and 1626 * see if it is pushed or pulled somewhere else. 1627 */ 1628 if (p->nr_cpus_allowed != 1 && 1629 cpupri_find(&rq->rd->cpupri, p, NULL)) 1630 return; 1631 1632 /* 1633 * There appear to be other CPUs that can accept 1634 * the current task but none can run 'p', so lets reschedule 1635 * to try and push the current task away: 1636 */ 1637 requeue_task_rt(rq, p, 1); 1638 resched_curr(rq); 1639 } 1640 1641 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1642 { 1643 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) { 1644 /* 1645 * This is OK, because current is on_cpu, which avoids it being 1646 * picked for load-balance and preemption/IRQs are still 1647 * disabled avoiding further scheduler activity on it and we've 1648 * not yet started the picking loop. 1649 */ 1650 rq_unpin_lock(rq, rf); 1651 pull_rt_task(rq); 1652 rq_repin_lock(rq, rf); 1653 } 1654 1655 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq); 1656 } 1657 #endif /* CONFIG_SMP */ 1658 1659 /* 1660 * Preempt the current task with a newly woken task if needed: 1661 */ 1662 static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags) 1663 { 1664 if (p->prio < rq->curr->prio) { 1665 resched_curr(rq); 1666 return; 1667 } 1668 1669 #ifdef CONFIG_SMP 1670 /* 1671 * If: 1672 * 1673 * - the newly woken task is of equal priority to the current task 1674 * - the newly woken task is non-migratable while current is migratable 1675 * - current will be preempted on the next reschedule 1676 * 1677 * we should check to see if current can readily move to a different 1678 * cpu. If so, we will reschedule to allow the push logic to try 1679 * to move current somewhere else, making room for our non-migratable 1680 * task. 1681 */ 1682 if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) 1683 check_preempt_equal_prio(rq, p); 1684 #endif 1685 } 1686 1687 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first) 1688 { 1689 struct sched_rt_entity *rt_se = &p->rt; 1690 struct rt_rq *rt_rq = &rq->rt; 1691 1692 p->se.exec_start = rq_clock_task(rq); 1693 if (on_rt_rq(&p->rt)) 1694 update_stats_wait_end_rt(rt_rq, rt_se); 1695 1696 /* The running task is never eligible for pushing */ 1697 dequeue_pushable_task(rq, p); 1698 1699 if (!first) 1700 return; 1701 1702 /* 1703 * If prev task was rt, put_prev_task() has already updated the 1704 * utilization. We only care of the case where we start to schedule a 1705 * rt task 1706 */ 1707 if (rq->curr->sched_class != &rt_sched_class) 1708 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); 1709 1710 rt_queue_push_tasks(rq); 1711 } 1712 1713 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq) 1714 { 1715 struct rt_prio_array *array = &rt_rq->active; 1716 struct sched_rt_entity *next = NULL; 1717 struct list_head *queue; 1718 int idx; 1719 1720 idx = sched_find_first_bit(array->bitmap); 1721 BUG_ON(idx >= MAX_RT_PRIO); 1722 1723 queue = array->queue + idx; 1724 if (SCHED_WARN_ON(list_empty(queue))) 1725 return NULL; 1726 next = list_entry(queue->next, struct sched_rt_entity, run_list); 1727 1728 return next; 1729 } 1730 1731 static struct task_struct *_pick_next_task_rt(struct rq *rq) 1732 { 1733 struct sched_rt_entity *rt_se; 1734 struct rt_rq *rt_rq = &rq->rt; 1735 1736 do { 1737 rt_se = pick_next_rt_entity(rt_rq); 1738 if (unlikely(!rt_se)) 1739 return NULL; 1740 rt_rq = group_rt_rq(rt_se); 1741 } while (rt_rq); 1742 1743 return rt_task_of(rt_se); 1744 } 1745 1746 static struct task_struct *pick_task_rt(struct rq *rq) 1747 { 1748 struct task_struct *p; 1749 1750 if (!sched_rt_runnable(rq)) 1751 return NULL; 1752 1753 p = _pick_next_task_rt(rq); 1754 1755 return p; 1756 } 1757 1758 static struct task_struct *pick_next_task_rt(struct rq *rq) 1759 { 1760 struct task_struct *p = pick_task_rt(rq); 1761 1762 if (p) 1763 set_next_task_rt(rq, p, true); 1764 1765 return p; 1766 } 1767 1768 static void put_prev_task_rt(struct rq *rq, struct task_struct *p) 1769 { 1770 struct sched_rt_entity *rt_se = &p->rt; 1771 struct rt_rq *rt_rq = &rq->rt; 1772 1773 if (on_rt_rq(&p->rt)) 1774 update_stats_wait_start_rt(rt_rq, rt_se); 1775 1776 update_curr_rt(rq); 1777 1778 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 1779 1780 /* 1781 * The previous task needs to be made eligible for pushing 1782 * if it is still active 1783 */ 1784 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1) 1785 enqueue_pushable_task(rq, p); 1786 } 1787 1788 #ifdef CONFIG_SMP 1789 1790 /* Only try algorithms three times */ 1791 #define RT_MAX_TRIES 3 1792 1793 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) 1794 { 1795 if (!task_on_cpu(rq, p) && 1796 cpumask_test_cpu(cpu, &p->cpus_mask)) 1797 return 1; 1798 1799 return 0; 1800 } 1801 1802 /* 1803 * Return the highest pushable rq's task, which is suitable to be executed 1804 * on the CPU, NULL otherwise 1805 */ 1806 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu) 1807 { 1808 struct plist_head *head = &rq->rt.pushable_tasks; 1809 struct task_struct *p; 1810 1811 if (!has_pushable_tasks(rq)) 1812 return NULL; 1813 1814 plist_for_each_entry(p, head, pushable_tasks) { 1815 if (pick_rt_task(rq, p, cpu)) 1816 return p; 1817 } 1818 1819 return NULL; 1820 } 1821 1822 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); 1823 1824 static int find_lowest_rq(struct task_struct *task) 1825 { 1826 struct sched_domain *sd; 1827 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask); 1828 int this_cpu = smp_processor_id(); 1829 int cpu = task_cpu(task); 1830 int ret; 1831 1832 /* Make sure the mask is initialized first */ 1833 if (unlikely(!lowest_mask)) 1834 return -1; 1835 1836 if (task->nr_cpus_allowed == 1) 1837 return -1; /* No other targets possible */ 1838 1839 /* 1840 * If we're on asym system ensure we consider the different capacities 1841 * of the CPUs when searching for the lowest_mask. 1842 */ 1843 if (sched_asym_cpucap_active()) { 1844 1845 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri, 1846 task, lowest_mask, 1847 rt_task_fits_capacity); 1848 } else { 1849 1850 ret = cpupri_find(&task_rq(task)->rd->cpupri, 1851 task, lowest_mask); 1852 } 1853 1854 if (!ret) 1855 return -1; /* No targets found */ 1856 1857 /* 1858 * At this point we have built a mask of CPUs representing the 1859 * lowest priority tasks in the system. Now we want to elect 1860 * the best one based on our affinity and topology. 1861 * 1862 * We prioritize the last CPU that the task executed on since 1863 * it is most likely cache-hot in that location. 1864 */ 1865 if (cpumask_test_cpu(cpu, lowest_mask)) 1866 return cpu; 1867 1868 /* 1869 * Otherwise, we consult the sched_domains span maps to figure 1870 * out which CPU is logically closest to our hot cache data. 1871 */ 1872 if (!cpumask_test_cpu(this_cpu, lowest_mask)) 1873 this_cpu = -1; /* Skip this_cpu opt if not among lowest */ 1874 1875 rcu_read_lock(); 1876 for_each_domain(cpu, sd) { 1877 if (sd->flags & SD_WAKE_AFFINE) { 1878 int best_cpu; 1879 1880 /* 1881 * "this_cpu" is cheaper to preempt than a 1882 * remote processor. 1883 */ 1884 if (this_cpu != -1 && 1885 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { 1886 rcu_read_unlock(); 1887 return this_cpu; 1888 } 1889 1890 best_cpu = cpumask_any_and_distribute(lowest_mask, 1891 sched_domain_span(sd)); 1892 if (best_cpu < nr_cpu_ids) { 1893 rcu_read_unlock(); 1894 return best_cpu; 1895 } 1896 } 1897 } 1898 rcu_read_unlock(); 1899 1900 /* 1901 * And finally, if there were no matches within the domains 1902 * just give the caller *something* to work with from the compatible 1903 * locations. 1904 */ 1905 if (this_cpu != -1) 1906 return this_cpu; 1907 1908 cpu = cpumask_any_distribute(lowest_mask); 1909 if (cpu < nr_cpu_ids) 1910 return cpu; 1911 1912 return -1; 1913 } 1914 1915 /* Will lock the rq it finds */ 1916 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) 1917 { 1918 struct rq *lowest_rq = NULL; 1919 int tries; 1920 int cpu; 1921 1922 for (tries = 0; tries < RT_MAX_TRIES; tries++) { 1923 cpu = find_lowest_rq(task); 1924 1925 if ((cpu == -1) || (cpu == rq->cpu)) 1926 break; 1927 1928 lowest_rq = cpu_rq(cpu); 1929 1930 if (lowest_rq->rt.highest_prio.curr <= task->prio) { 1931 /* 1932 * Target rq has tasks of equal or higher priority, 1933 * retrying does not release any lock and is unlikely 1934 * to yield a different result. 1935 */ 1936 lowest_rq = NULL; 1937 break; 1938 } 1939 1940 /* if the prio of this runqueue changed, try again */ 1941 if (double_lock_balance(rq, lowest_rq)) { 1942 /* 1943 * We had to unlock the run queue. In 1944 * the mean time, task could have 1945 * migrated already or had its affinity changed. 1946 * Also make sure that it wasn't scheduled on its rq. 1947 * It is possible the task was scheduled, set 1948 * "migrate_disabled" and then got preempted, so we must 1949 * check the task migration disable flag here too. 1950 */ 1951 if (unlikely(task_rq(task) != rq || 1952 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) || 1953 task_on_cpu(rq, task) || 1954 !rt_task(task) || 1955 is_migration_disabled(task) || 1956 !task_on_rq_queued(task))) { 1957 1958 double_unlock_balance(rq, lowest_rq); 1959 lowest_rq = NULL; 1960 break; 1961 } 1962 } 1963 1964 /* If this rq is still suitable use it. */ 1965 if (lowest_rq->rt.highest_prio.curr > task->prio) 1966 break; 1967 1968 /* try again */ 1969 double_unlock_balance(rq, lowest_rq); 1970 lowest_rq = NULL; 1971 } 1972 1973 return lowest_rq; 1974 } 1975 1976 static struct task_struct *pick_next_pushable_task(struct rq *rq) 1977 { 1978 struct task_struct *p; 1979 1980 if (!has_pushable_tasks(rq)) 1981 return NULL; 1982 1983 p = plist_first_entry(&rq->rt.pushable_tasks, 1984 struct task_struct, pushable_tasks); 1985 1986 BUG_ON(rq->cpu != task_cpu(p)); 1987 BUG_ON(task_current(rq, p)); 1988 BUG_ON(p->nr_cpus_allowed <= 1); 1989 1990 BUG_ON(!task_on_rq_queued(p)); 1991 BUG_ON(!rt_task(p)); 1992 1993 return p; 1994 } 1995 1996 /* 1997 * If the current CPU has more than one RT task, see if the non 1998 * running task can migrate over to a CPU that is running a task 1999 * of lesser priority. 2000 */ 2001 static int push_rt_task(struct rq *rq, bool pull) 2002 { 2003 struct task_struct *next_task; 2004 struct rq *lowest_rq; 2005 int ret = 0; 2006 2007 if (!rq->rt.overloaded) 2008 return 0; 2009 2010 next_task = pick_next_pushable_task(rq); 2011 if (!next_task) 2012 return 0; 2013 2014 retry: 2015 /* 2016 * It's possible that the next_task slipped in of 2017 * higher priority than current. If that's the case 2018 * just reschedule current. 2019 */ 2020 if (unlikely(next_task->prio < rq->curr->prio)) { 2021 resched_curr(rq); 2022 return 0; 2023 } 2024 2025 if (is_migration_disabled(next_task)) { 2026 struct task_struct *push_task = NULL; 2027 int cpu; 2028 2029 if (!pull || rq->push_busy) 2030 return 0; 2031 2032 /* 2033 * Invoking find_lowest_rq() on anything but an RT task doesn't 2034 * make sense. Per the above priority check, curr has to 2035 * be of higher priority than next_task, so no need to 2036 * reschedule when bailing out. 2037 * 2038 * Note that the stoppers are masqueraded as SCHED_FIFO 2039 * (cf. sched_set_stop_task()), so we can't rely on rt_task(). 2040 */ 2041 if (rq->curr->sched_class != &rt_sched_class) 2042 return 0; 2043 2044 cpu = find_lowest_rq(rq->curr); 2045 if (cpu == -1 || cpu == rq->cpu) 2046 return 0; 2047 2048 /* 2049 * Given we found a CPU with lower priority than @next_task, 2050 * therefore it should be running. However we cannot migrate it 2051 * to this other CPU, instead attempt to push the current 2052 * running task on this CPU away. 2053 */ 2054 push_task = get_push_task(rq); 2055 if (push_task) { 2056 preempt_disable(); 2057 raw_spin_rq_unlock(rq); 2058 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2059 push_task, &rq->push_work); 2060 preempt_enable(); 2061 raw_spin_rq_lock(rq); 2062 } 2063 2064 return 0; 2065 } 2066 2067 if (WARN_ON(next_task == rq->curr)) 2068 return 0; 2069 2070 /* We might release rq lock */ 2071 get_task_struct(next_task); 2072 2073 /* find_lock_lowest_rq locks the rq if found */ 2074 lowest_rq = find_lock_lowest_rq(next_task, rq); 2075 if (!lowest_rq) { 2076 struct task_struct *task; 2077 /* 2078 * find_lock_lowest_rq releases rq->lock 2079 * so it is possible that next_task has migrated. 2080 * 2081 * We need to make sure that the task is still on the same 2082 * run-queue and is also still the next task eligible for 2083 * pushing. 2084 */ 2085 task = pick_next_pushable_task(rq); 2086 if (task == next_task) { 2087 /* 2088 * The task hasn't migrated, and is still the next 2089 * eligible task, but we failed to find a run-queue 2090 * to push it to. Do not retry in this case, since 2091 * other CPUs will pull from us when ready. 2092 */ 2093 goto out; 2094 } 2095 2096 if (!task) 2097 /* No more tasks, just exit */ 2098 goto out; 2099 2100 /* 2101 * Something has shifted, try again. 2102 */ 2103 put_task_struct(next_task); 2104 next_task = task; 2105 goto retry; 2106 } 2107 2108 deactivate_task(rq, next_task, 0); 2109 set_task_cpu(next_task, lowest_rq->cpu); 2110 activate_task(lowest_rq, next_task, 0); 2111 resched_curr(lowest_rq); 2112 ret = 1; 2113 2114 double_unlock_balance(rq, lowest_rq); 2115 out: 2116 put_task_struct(next_task); 2117 2118 return ret; 2119 } 2120 2121 static void push_rt_tasks(struct rq *rq) 2122 { 2123 /* push_rt_task will return true if it moved an RT */ 2124 while (push_rt_task(rq, false)) 2125 ; 2126 } 2127 2128 #ifdef HAVE_RT_PUSH_IPI 2129 2130 /* 2131 * When a high priority task schedules out from a CPU and a lower priority 2132 * task is scheduled in, a check is made to see if there's any RT tasks 2133 * on other CPUs that are waiting to run because a higher priority RT task 2134 * is currently running on its CPU. In this case, the CPU with multiple RT 2135 * tasks queued on it (overloaded) needs to be notified that a CPU has opened 2136 * up that may be able to run one of its non-running queued RT tasks. 2137 * 2138 * All CPUs with overloaded RT tasks need to be notified as there is currently 2139 * no way to know which of these CPUs have the highest priority task waiting 2140 * to run. Instead of trying to take a spinlock on each of these CPUs, 2141 * which has shown to cause large latency when done on machines with many 2142 * CPUs, sending an IPI to the CPUs to have them push off the overloaded 2143 * RT tasks waiting to run. 2144 * 2145 * Just sending an IPI to each of the CPUs is also an issue, as on large 2146 * count CPU machines, this can cause an IPI storm on a CPU, especially 2147 * if its the only CPU with multiple RT tasks queued, and a large number 2148 * of CPUs scheduling a lower priority task at the same time. 2149 * 2150 * Each root domain has its own irq work function that can iterate over 2151 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT 2152 * task must be checked if there's one or many CPUs that are lowering 2153 * their priority, there's a single irq work iterator that will try to 2154 * push off RT tasks that are waiting to run. 2155 * 2156 * When a CPU schedules a lower priority task, it will kick off the 2157 * irq work iterator that will jump to each CPU with overloaded RT tasks. 2158 * As it only takes the first CPU that schedules a lower priority task 2159 * to start the process, the rto_start variable is incremented and if 2160 * the atomic result is one, then that CPU will try to take the rto_lock. 2161 * This prevents high contention on the lock as the process handles all 2162 * CPUs scheduling lower priority tasks. 2163 * 2164 * All CPUs that are scheduling a lower priority task will increment the 2165 * rt_loop_next variable. This will make sure that the irq work iterator 2166 * checks all RT overloaded CPUs whenever a CPU schedules a new lower 2167 * priority task, even if the iterator is in the middle of a scan. Incrementing 2168 * the rt_loop_next will cause the iterator to perform another scan. 2169 * 2170 */ 2171 static int rto_next_cpu(struct root_domain *rd) 2172 { 2173 int next; 2174 int cpu; 2175 2176 /* 2177 * When starting the IPI RT pushing, the rto_cpu is set to -1, 2178 * rt_next_cpu() will simply return the first CPU found in 2179 * the rto_mask. 2180 * 2181 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it 2182 * will return the next CPU found in the rto_mask. 2183 * 2184 * If there are no more CPUs left in the rto_mask, then a check is made 2185 * against rto_loop and rto_loop_next. rto_loop is only updated with 2186 * the rto_lock held, but any CPU may increment the rto_loop_next 2187 * without any locking. 2188 */ 2189 for (;;) { 2190 2191 /* When rto_cpu is -1 this acts like cpumask_first() */ 2192 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask); 2193 2194 rd->rto_cpu = cpu; 2195 2196 if (cpu < nr_cpu_ids) 2197 return cpu; 2198 2199 rd->rto_cpu = -1; 2200 2201 /* 2202 * ACQUIRE ensures we see the @rto_mask changes 2203 * made prior to the @next value observed. 2204 * 2205 * Matches WMB in rt_set_overload(). 2206 */ 2207 next = atomic_read_acquire(&rd->rto_loop_next); 2208 2209 if (rd->rto_loop == next) 2210 break; 2211 2212 rd->rto_loop = next; 2213 } 2214 2215 return -1; 2216 } 2217 2218 static inline bool rto_start_trylock(atomic_t *v) 2219 { 2220 return !atomic_cmpxchg_acquire(v, 0, 1); 2221 } 2222 2223 static inline void rto_start_unlock(atomic_t *v) 2224 { 2225 atomic_set_release(v, 0); 2226 } 2227 2228 static void tell_cpu_to_push(struct rq *rq) 2229 { 2230 int cpu = -1; 2231 2232 /* Keep the loop going if the IPI is currently active */ 2233 atomic_inc(&rq->rd->rto_loop_next); 2234 2235 /* Only one CPU can initiate a loop at a time */ 2236 if (!rto_start_trylock(&rq->rd->rto_loop_start)) 2237 return; 2238 2239 raw_spin_lock(&rq->rd->rto_lock); 2240 2241 /* 2242 * The rto_cpu is updated under the lock, if it has a valid CPU 2243 * then the IPI is still running and will continue due to the 2244 * update to loop_next, and nothing needs to be done here. 2245 * Otherwise it is finishing up and an ipi needs to be sent. 2246 */ 2247 if (rq->rd->rto_cpu < 0) 2248 cpu = rto_next_cpu(rq->rd); 2249 2250 raw_spin_unlock(&rq->rd->rto_lock); 2251 2252 rto_start_unlock(&rq->rd->rto_loop_start); 2253 2254 if (cpu >= 0) { 2255 /* Make sure the rd does not get freed while pushing */ 2256 sched_get_rd(rq->rd); 2257 irq_work_queue_on(&rq->rd->rto_push_work, cpu); 2258 } 2259 } 2260 2261 /* Called from hardirq context */ 2262 void rto_push_irq_work_func(struct irq_work *work) 2263 { 2264 struct root_domain *rd = 2265 container_of(work, struct root_domain, rto_push_work); 2266 struct rq *rq; 2267 int cpu; 2268 2269 rq = this_rq(); 2270 2271 /* 2272 * We do not need to grab the lock to check for has_pushable_tasks. 2273 * When it gets updated, a check is made if a push is possible. 2274 */ 2275 if (has_pushable_tasks(rq)) { 2276 raw_spin_rq_lock(rq); 2277 while (push_rt_task(rq, true)) 2278 ; 2279 raw_spin_rq_unlock(rq); 2280 } 2281 2282 raw_spin_lock(&rd->rto_lock); 2283 2284 /* Pass the IPI to the next rt overloaded queue */ 2285 cpu = rto_next_cpu(rd); 2286 2287 raw_spin_unlock(&rd->rto_lock); 2288 2289 if (cpu < 0) { 2290 sched_put_rd(rd); 2291 return; 2292 } 2293 2294 /* Try the next RT overloaded CPU */ 2295 irq_work_queue_on(&rd->rto_push_work, cpu); 2296 } 2297 #endif /* HAVE_RT_PUSH_IPI */ 2298 2299 static void pull_rt_task(struct rq *this_rq) 2300 { 2301 int this_cpu = this_rq->cpu, cpu; 2302 bool resched = false; 2303 struct task_struct *p, *push_task; 2304 struct rq *src_rq; 2305 int rt_overload_count = rt_overloaded(this_rq); 2306 2307 if (likely(!rt_overload_count)) 2308 return; 2309 2310 /* 2311 * Match the barrier from rt_set_overloaded; this guarantees that if we 2312 * see overloaded we must also see the rto_mask bit. 2313 */ 2314 smp_rmb(); 2315 2316 /* If we are the only overloaded CPU do nothing */ 2317 if (rt_overload_count == 1 && 2318 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask)) 2319 return; 2320 2321 #ifdef HAVE_RT_PUSH_IPI 2322 if (sched_feat(RT_PUSH_IPI)) { 2323 tell_cpu_to_push(this_rq); 2324 return; 2325 } 2326 #endif 2327 2328 for_each_cpu(cpu, this_rq->rd->rto_mask) { 2329 if (this_cpu == cpu) 2330 continue; 2331 2332 src_rq = cpu_rq(cpu); 2333 2334 /* 2335 * Don't bother taking the src_rq->lock if the next highest 2336 * task is known to be lower-priority than our current task. 2337 * This may look racy, but if this value is about to go 2338 * logically higher, the src_rq will push this task away. 2339 * And if its going logically lower, we do not care 2340 */ 2341 if (src_rq->rt.highest_prio.next >= 2342 this_rq->rt.highest_prio.curr) 2343 continue; 2344 2345 /* 2346 * We can potentially drop this_rq's lock in 2347 * double_lock_balance, and another CPU could 2348 * alter this_rq 2349 */ 2350 push_task = NULL; 2351 double_lock_balance(this_rq, src_rq); 2352 2353 /* 2354 * We can pull only a task, which is pushable 2355 * on its rq, and no others. 2356 */ 2357 p = pick_highest_pushable_task(src_rq, this_cpu); 2358 2359 /* 2360 * Do we have an RT task that preempts 2361 * the to-be-scheduled task? 2362 */ 2363 if (p && (p->prio < this_rq->rt.highest_prio.curr)) { 2364 WARN_ON(p == src_rq->curr); 2365 WARN_ON(!task_on_rq_queued(p)); 2366 2367 /* 2368 * There's a chance that p is higher in priority 2369 * than what's currently running on its CPU. 2370 * This is just that p is waking up and hasn't 2371 * had a chance to schedule. We only pull 2372 * p if it is lower in priority than the 2373 * current task on the run queue 2374 */ 2375 if (p->prio < src_rq->curr->prio) 2376 goto skip; 2377 2378 if (is_migration_disabled(p)) { 2379 push_task = get_push_task(src_rq); 2380 } else { 2381 deactivate_task(src_rq, p, 0); 2382 set_task_cpu(p, this_cpu); 2383 activate_task(this_rq, p, 0); 2384 resched = true; 2385 } 2386 /* 2387 * We continue with the search, just in 2388 * case there's an even higher prio task 2389 * in another runqueue. (low likelihood 2390 * but possible) 2391 */ 2392 } 2393 skip: 2394 double_unlock_balance(this_rq, src_rq); 2395 2396 if (push_task) { 2397 preempt_disable(); 2398 raw_spin_rq_unlock(this_rq); 2399 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop, 2400 push_task, &src_rq->push_work); 2401 preempt_enable(); 2402 raw_spin_rq_lock(this_rq); 2403 } 2404 } 2405 2406 if (resched) 2407 resched_curr(this_rq); 2408 } 2409 2410 /* 2411 * If we are not running and we are not going to reschedule soon, we should 2412 * try to push tasks away now 2413 */ 2414 static void task_woken_rt(struct rq *rq, struct task_struct *p) 2415 { 2416 bool need_to_push = !task_on_cpu(rq, p) && 2417 !test_tsk_need_resched(rq->curr) && 2418 p->nr_cpus_allowed > 1 && 2419 (dl_task(rq->curr) || rt_task(rq->curr)) && 2420 (rq->curr->nr_cpus_allowed < 2 || 2421 rq->curr->prio <= p->prio); 2422 2423 if (need_to_push) 2424 push_rt_tasks(rq); 2425 } 2426 2427 /* Assumes rq->lock is held */ 2428 static void rq_online_rt(struct rq *rq) 2429 { 2430 if (rq->rt.overloaded) 2431 rt_set_overload(rq); 2432 2433 __enable_runtime(rq); 2434 2435 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); 2436 } 2437 2438 /* Assumes rq->lock is held */ 2439 static void rq_offline_rt(struct rq *rq) 2440 { 2441 if (rq->rt.overloaded) 2442 rt_clear_overload(rq); 2443 2444 __disable_runtime(rq); 2445 2446 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); 2447 } 2448 2449 /* 2450 * When switch from the rt queue, we bring ourselves to a position 2451 * that we might want to pull RT tasks from other runqueues. 2452 */ 2453 static void switched_from_rt(struct rq *rq, struct task_struct *p) 2454 { 2455 /* 2456 * If there are other RT tasks then we will reschedule 2457 * and the scheduling of the other RT tasks will handle 2458 * the balancing. But if we are the last RT task 2459 * we may need to handle the pulling of RT tasks 2460 * now. 2461 */ 2462 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running) 2463 return; 2464 2465 rt_queue_pull_task(rq); 2466 } 2467 2468 void __init init_sched_rt_class(void) 2469 { 2470 unsigned int i; 2471 2472 for_each_possible_cpu(i) { 2473 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), 2474 GFP_KERNEL, cpu_to_node(i)); 2475 } 2476 } 2477 #endif /* CONFIG_SMP */ 2478 2479 /* 2480 * When switching a task to RT, we may overload the runqueue 2481 * with RT tasks. In this case we try to push them off to 2482 * other runqueues. 2483 */ 2484 static void switched_to_rt(struct rq *rq, struct task_struct *p) 2485 { 2486 /* 2487 * If we are running, update the avg_rt tracking, as the running time 2488 * will now on be accounted into the latter. 2489 */ 2490 if (task_current(rq, p)) { 2491 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0); 2492 return; 2493 } 2494 2495 /* 2496 * If we are not running we may need to preempt the current 2497 * running task. If that current running task is also an RT task 2498 * then see if we can move to another run queue. 2499 */ 2500 if (task_on_rq_queued(p)) { 2501 #ifdef CONFIG_SMP 2502 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded) 2503 rt_queue_push_tasks(rq); 2504 #endif /* CONFIG_SMP */ 2505 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq))) 2506 resched_curr(rq); 2507 } 2508 } 2509 2510 /* 2511 * Priority of the task has changed. This may cause 2512 * us to initiate a push or pull. 2513 */ 2514 static void 2515 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) 2516 { 2517 if (!task_on_rq_queued(p)) 2518 return; 2519 2520 if (task_current(rq, p)) { 2521 #ifdef CONFIG_SMP 2522 /* 2523 * If our priority decreases while running, we 2524 * may need to pull tasks to this runqueue. 2525 */ 2526 if (oldprio < p->prio) 2527 rt_queue_pull_task(rq); 2528 2529 /* 2530 * If there's a higher priority task waiting to run 2531 * then reschedule. 2532 */ 2533 if (p->prio > rq->rt.highest_prio.curr) 2534 resched_curr(rq); 2535 #else 2536 /* For UP simply resched on drop of prio */ 2537 if (oldprio < p->prio) 2538 resched_curr(rq); 2539 #endif /* CONFIG_SMP */ 2540 } else { 2541 /* 2542 * This task is not running, but if it is 2543 * greater than the current running task 2544 * then reschedule. 2545 */ 2546 if (p->prio < rq->curr->prio) 2547 resched_curr(rq); 2548 } 2549 } 2550 2551 #ifdef CONFIG_POSIX_TIMERS 2552 static void watchdog(struct rq *rq, struct task_struct *p) 2553 { 2554 unsigned long soft, hard; 2555 2556 /* max may change after cur was read, this will be fixed next tick */ 2557 soft = task_rlimit(p, RLIMIT_RTTIME); 2558 hard = task_rlimit_max(p, RLIMIT_RTTIME); 2559 2560 if (soft != RLIM_INFINITY) { 2561 unsigned long next; 2562 2563 if (p->rt.watchdog_stamp != jiffies) { 2564 p->rt.timeout++; 2565 p->rt.watchdog_stamp = jiffies; 2566 } 2567 2568 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); 2569 if (p->rt.timeout > next) { 2570 posix_cputimers_rt_watchdog(&p->posix_cputimers, 2571 p->se.sum_exec_runtime); 2572 } 2573 } 2574 } 2575 #else 2576 static inline void watchdog(struct rq *rq, struct task_struct *p) { } 2577 #endif 2578 2579 /* 2580 * scheduler tick hitting a task of our scheduling class. 2581 * 2582 * NOTE: This function can be called remotely by the tick offload that 2583 * goes along full dynticks. Therefore no local assumption can be made 2584 * and everything must be accessed through the @rq and @curr passed in 2585 * parameters. 2586 */ 2587 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) 2588 { 2589 struct sched_rt_entity *rt_se = &p->rt; 2590 2591 update_curr_rt(rq); 2592 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1); 2593 2594 watchdog(rq, p); 2595 2596 /* 2597 * RR tasks need a special form of timeslice management. 2598 * FIFO tasks have no timeslices. 2599 */ 2600 if (p->policy != SCHED_RR) 2601 return; 2602 2603 if (--p->rt.time_slice) 2604 return; 2605 2606 p->rt.time_slice = sched_rr_timeslice; 2607 2608 /* 2609 * Requeue to the end of queue if we (and all of our ancestors) are not 2610 * the only element on the queue 2611 */ 2612 for_each_sched_rt_entity(rt_se) { 2613 if (rt_se->run_list.prev != rt_se->run_list.next) { 2614 requeue_task_rt(rq, p, 0); 2615 resched_curr(rq); 2616 return; 2617 } 2618 } 2619 } 2620 2621 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) 2622 { 2623 /* 2624 * Time slice is 0 for SCHED_FIFO tasks 2625 */ 2626 if (task->policy == SCHED_RR) 2627 return sched_rr_timeslice; 2628 else 2629 return 0; 2630 } 2631 2632 #ifdef CONFIG_SCHED_CORE 2633 static int task_is_throttled_rt(struct task_struct *p, int cpu) 2634 { 2635 struct rt_rq *rt_rq; 2636 2637 #ifdef CONFIG_RT_GROUP_SCHED 2638 rt_rq = task_group(p)->rt_rq[cpu]; 2639 #else 2640 rt_rq = &cpu_rq(cpu)->rt; 2641 #endif 2642 2643 return rt_rq_throttled(rt_rq); 2644 } 2645 #endif 2646 2647 DEFINE_SCHED_CLASS(rt) = { 2648 2649 .enqueue_task = enqueue_task_rt, 2650 .dequeue_task = dequeue_task_rt, 2651 .yield_task = yield_task_rt, 2652 2653 .wakeup_preempt = wakeup_preempt_rt, 2654 2655 .pick_next_task = pick_next_task_rt, 2656 .put_prev_task = put_prev_task_rt, 2657 .set_next_task = set_next_task_rt, 2658 2659 #ifdef CONFIG_SMP 2660 .balance = balance_rt, 2661 .pick_task = pick_task_rt, 2662 .select_task_rq = select_task_rq_rt, 2663 .set_cpus_allowed = set_cpus_allowed_common, 2664 .rq_online = rq_online_rt, 2665 .rq_offline = rq_offline_rt, 2666 .task_woken = task_woken_rt, 2667 .switched_from = switched_from_rt, 2668 .find_lock_rq = find_lock_lowest_rq, 2669 #endif 2670 2671 .task_tick = task_tick_rt, 2672 2673 .get_rr_interval = get_rr_interval_rt, 2674 2675 .prio_changed = prio_changed_rt, 2676 .switched_to = switched_to_rt, 2677 2678 .update_curr = update_curr_rt, 2679 2680 #ifdef CONFIG_SCHED_CORE 2681 .task_is_throttled = task_is_throttled_rt, 2682 #endif 2683 2684 #ifdef CONFIG_UCLAMP_TASK 2685 .uclamp_enabled = 1, 2686 #endif 2687 }; 2688 2689 #ifdef CONFIG_RT_GROUP_SCHED 2690 /* 2691 * Ensure that the real time constraints are schedulable. 2692 */ 2693 static DEFINE_MUTEX(rt_constraints_mutex); 2694 2695 static inline int tg_has_rt_tasks(struct task_group *tg) 2696 { 2697 struct task_struct *task; 2698 struct css_task_iter it; 2699 int ret = 0; 2700 2701 /* 2702 * Autogroups do not have RT tasks; see autogroup_create(). 2703 */ 2704 if (task_group_is_autogroup(tg)) 2705 return 0; 2706 2707 css_task_iter_start(&tg->css, 0, &it); 2708 while (!ret && (task = css_task_iter_next(&it))) 2709 ret |= rt_task(task); 2710 css_task_iter_end(&it); 2711 2712 return ret; 2713 } 2714 2715 struct rt_schedulable_data { 2716 struct task_group *tg; 2717 u64 rt_period; 2718 u64 rt_runtime; 2719 }; 2720 2721 static int tg_rt_schedulable(struct task_group *tg, void *data) 2722 { 2723 struct rt_schedulable_data *d = data; 2724 struct task_group *child; 2725 unsigned long total, sum = 0; 2726 u64 period, runtime; 2727 2728 period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2729 runtime = tg->rt_bandwidth.rt_runtime; 2730 2731 if (tg == d->tg) { 2732 period = d->rt_period; 2733 runtime = d->rt_runtime; 2734 } 2735 2736 /* 2737 * Cannot have more runtime than the period. 2738 */ 2739 if (runtime > period && runtime != RUNTIME_INF) 2740 return -EINVAL; 2741 2742 /* 2743 * Ensure we don't starve existing RT tasks if runtime turns zero. 2744 */ 2745 if (rt_bandwidth_enabled() && !runtime && 2746 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg)) 2747 return -EBUSY; 2748 2749 total = to_ratio(period, runtime); 2750 2751 /* 2752 * Nobody can have more than the global setting allows. 2753 */ 2754 if (total > to_ratio(global_rt_period(), global_rt_runtime())) 2755 return -EINVAL; 2756 2757 /* 2758 * The sum of our children's runtime should not exceed our own. 2759 */ 2760 list_for_each_entry_rcu(child, &tg->children, siblings) { 2761 period = ktime_to_ns(child->rt_bandwidth.rt_period); 2762 runtime = child->rt_bandwidth.rt_runtime; 2763 2764 if (child == d->tg) { 2765 period = d->rt_period; 2766 runtime = d->rt_runtime; 2767 } 2768 2769 sum += to_ratio(period, runtime); 2770 } 2771 2772 if (sum > total) 2773 return -EINVAL; 2774 2775 return 0; 2776 } 2777 2778 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) 2779 { 2780 int ret; 2781 2782 struct rt_schedulable_data data = { 2783 .tg = tg, 2784 .rt_period = period, 2785 .rt_runtime = runtime, 2786 }; 2787 2788 rcu_read_lock(); 2789 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data); 2790 rcu_read_unlock(); 2791 2792 return ret; 2793 } 2794 2795 static int tg_set_rt_bandwidth(struct task_group *tg, 2796 u64 rt_period, u64 rt_runtime) 2797 { 2798 int i, err = 0; 2799 2800 /* 2801 * Disallowing the root group RT runtime is BAD, it would disallow the 2802 * kernel creating (and or operating) RT threads. 2803 */ 2804 if (tg == &root_task_group && rt_runtime == 0) 2805 return -EINVAL; 2806 2807 /* No period doesn't make any sense. */ 2808 if (rt_period == 0) 2809 return -EINVAL; 2810 2811 /* 2812 * Bound quota to defend quota against overflow during bandwidth shift. 2813 */ 2814 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime) 2815 return -EINVAL; 2816 2817 mutex_lock(&rt_constraints_mutex); 2818 err = __rt_schedulable(tg, rt_period, rt_runtime); 2819 if (err) 2820 goto unlock; 2821 2822 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2823 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); 2824 tg->rt_bandwidth.rt_runtime = rt_runtime; 2825 2826 for_each_possible_cpu(i) { 2827 struct rt_rq *rt_rq = tg->rt_rq[i]; 2828 2829 raw_spin_lock(&rt_rq->rt_runtime_lock); 2830 rt_rq->rt_runtime = rt_runtime; 2831 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2832 } 2833 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); 2834 unlock: 2835 mutex_unlock(&rt_constraints_mutex); 2836 2837 return err; 2838 } 2839 2840 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) 2841 { 2842 u64 rt_runtime, rt_period; 2843 2844 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); 2845 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; 2846 if (rt_runtime_us < 0) 2847 rt_runtime = RUNTIME_INF; 2848 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC) 2849 return -EINVAL; 2850 2851 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2852 } 2853 2854 long sched_group_rt_runtime(struct task_group *tg) 2855 { 2856 u64 rt_runtime_us; 2857 2858 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) 2859 return -1; 2860 2861 rt_runtime_us = tg->rt_bandwidth.rt_runtime; 2862 do_div(rt_runtime_us, NSEC_PER_USEC); 2863 return rt_runtime_us; 2864 } 2865 2866 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us) 2867 { 2868 u64 rt_runtime, rt_period; 2869 2870 if (rt_period_us > U64_MAX / NSEC_PER_USEC) 2871 return -EINVAL; 2872 2873 rt_period = rt_period_us * NSEC_PER_USEC; 2874 rt_runtime = tg->rt_bandwidth.rt_runtime; 2875 2876 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime); 2877 } 2878 2879 long sched_group_rt_period(struct task_group *tg) 2880 { 2881 u64 rt_period_us; 2882 2883 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); 2884 do_div(rt_period_us, NSEC_PER_USEC); 2885 return rt_period_us; 2886 } 2887 2888 #ifdef CONFIG_SYSCTL 2889 static int sched_rt_global_constraints(void) 2890 { 2891 int ret = 0; 2892 2893 mutex_lock(&rt_constraints_mutex); 2894 ret = __rt_schedulable(NULL, 0, 0); 2895 mutex_unlock(&rt_constraints_mutex); 2896 2897 return ret; 2898 } 2899 #endif /* CONFIG_SYSCTL */ 2900 2901 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) 2902 { 2903 /* Don't accept realtime tasks when there is no way for them to run */ 2904 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0) 2905 return 0; 2906 2907 return 1; 2908 } 2909 2910 #else /* !CONFIG_RT_GROUP_SCHED */ 2911 2912 #ifdef CONFIG_SYSCTL 2913 static int sched_rt_global_constraints(void) 2914 { 2915 unsigned long flags; 2916 int i; 2917 2918 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 2919 for_each_possible_cpu(i) { 2920 struct rt_rq *rt_rq = &cpu_rq(i)->rt; 2921 2922 raw_spin_lock(&rt_rq->rt_runtime_lock); 2923 rt_rq->rt_runtime = global_rt_runtime(); 2924 raw_spin_unlock(&rt_rq->rt_runtime_lock); 2925 } 2926 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 2927 2928 return 0; 2929 } 2930 #endif /* CONFIG_SYSCTL */ 2931 #endif /* CONFIG_RT_GROUP_SCHED */ 2932 2933 #ifdef CONFIG_SYSCTL 2934 static int sched_rt_global_validate(void) 2935 { 2936 if ((sysctl_sched_rt_runtime != RUNTIME_INF) && 2937 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) || 2938 ((u64)sysctl_sched_rt_runtime * 2939 NSEC_PER_USEC > max_rt_runtime))) 2940 return -EINVAL; 2941 2942 return 0; 2943 } 2944 2945 static void sched_rt_do_global(void) 2946 { 2947 unsigned long flags; 2948 2949 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); 2950 def_rt_bandwidth.rt_runtime = global_rt_runtime(); 2951 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); 2952 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); 2953 } 2954 2955 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer, 2956 size_t *lenp, loff_t *ppos) 2957 { 2958 int old_period, old_runtime; 2959 static DEFINE_MUTEX(mutex); 2960 int ret; 2961 2962 mutex_lock(&mutex); 2963 old_period = sysctl_sched_rt_period; 2964 old_runtime = sysctl_sched_rt_runtime; 2965 2966 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2967 2968 if (!ret && write) { 2969 ret = sched_rt_global_validate(); 2970 if (ret) 2971 goto undo; 2972 2973 ret = sched_dl_global_validate(); 2974 if (ret) 2975 goto undo; 2976 2977 ret = sched_rt_global_constraints(); 2978 if (ret) 2979 goto undo; 2980 2981 sched_rt_do_global(); 2982 sched_dl_do_global(); 2983 } 2984 if (0) { 2985 undo: 2986 sysctl_sched_rt_period = old_period; 2987 sysctl_sched_rt_runtime = old_runtime; 2988 } 2989 mutex_unlock(&mutex); 2990 2991 return ret; 2992 } 2993 2994 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer, 2995 size_t *lenp, loff_t *ppos) 2996 { 2997 int ret; 2998 static DEFINE_MUTEX(mutex); 2999 3000 mutex_lock(&mutex); 3001 ret = proc_dointvec(table, write, buffer, lenp, ppos); 3002 /* 3003 * Make sure that internally we keep jiffies. 3004 * Also, writing zero resets the timeslice to default: 3005 */ 3006 if (!ret && write) { 3007 sched_rr_timeslice = 3008 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE : 3009 msecs_to_jiffies(sysctl_sched_rr_timeslice); 3010 3011 if (sysctl_sched_rr_timeslice <= 0) 3012 sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE); 3013 } 3014 mutex_unlock(&mutex); 3015 3016 return ret; 3017 } 3018 #endif /* CONFIG_SYSCTL */ 3019 3020 #ifdef CONFIG_SCHED_DEBUG 3021 void print_rt_stats(struct seq_file *m, int cpu) 3022 { 3023 rt_rq_iter_t iter; 3024 struct rt_rq *rt_rq; 3025 3026 rcu_read_lock(); 3027 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) 3028 print_rt_rq(m, cpu, rt_rq); 3029 rcu_read_unlock(); 3030 } 3031 #endif /* CONFIG_SCHED_DEBUG */ 3032