xref: /linux/kernel/sched/psi.c (revision a1c3be890440a1769ed6f822376a3e3ab0d42994)
1 /*
2  * Pressure stall information for CPU, memory and IO
3  *
4  * Copyright (c) 2018 Facebook, Inc.
5  * Author: Johannes Weiner <hannes@cmpxchg.org>
6  *
7  * Polling support by Suren Baghdasaryan <surenb@google.com>
8  * Copyright (c) 2018 Google, Inc.
9  *
10  * When CPU, memory and IO are contended, tasks experience delays that
11  * reduce throughput and introduce latencies into the workload. Memory
12  * and IO contention, in addition, can cause a full loss of forward
13  * progress in which the CPU goes idle.
14  *
15  * This code aggregates individual task delays into resource pressure
16  * metrics that indicate problems with both workload health and
17  * resource utilization.
18  *
19  *			Model
20  *
21  * The time in which a task can execute on a CPU is our baseline for
22  * productivity. Pressure expresses the amount of time in which this
23  * potential cannot be realized due to resource contention.
24  *
25  * This concept of productivity has two components: the workload and
26  * the CPU. To measure the impact of pressure on both, we define two
27  * contention states for a resource: SOME and FULL.
28  *
29  * In the SOME state of a given resource, one or more tasks are
30  * delayed on that resource. This affects the workload's ability to
31  * perform work, but the CPU may still be executing other tasks.
32  *
33  * In the FULL state of a given resource, all non-idle tasks are
34  * delayed on that resource such that nobody is advancing and the CPU
35  * goes idle. This leaves both workload and CPU unproductive.
36  *
37  * (Naturally, the FULL state doesn't exist for the CPU resource.)
38  *
39  *	SOME = nr_delayed_tasks != 0
40  *	FULL = nr_delayed_tasks != 0 && nr_running_tasks == 0
41  *
42  * The percentage of wallclock time spent in those compound stall
43  * states gives pressure numbers between 0 and 100 for each resource,
44  * where the SOME percentage indicates workload slowdowns and the FULL
45  * percentage indicates reduced CPU utilization:
46  *
47  *	%SOME = time(SOME) / period
48  *	%FULL = time(FULL) / period
49  *
50  *			Multiple CPUs
51  *
52  * The more tasks and available CPUs there are, the more work can be
53  * performed concurrently. This means that the potential that can go
54  * unrealized due to resource contention *also* scales with non-idle
55  * tasks and CPUs.
56  *
57  * Consider a scenario where 257 number crunching tasks are trying to
58  * run concurrently on 256 CPUs. If we simply aggregated the task
59  * states, we would have to conclude a CPU SOME pressure number of
60  * 100%, since *somebody* is waiting on a runqueue at all
61  * times. However, that is clearly not the amount of contention the
62  * workload is experiencing: only one out of 256 possible exceution
63  * threads will be contended at any given time, or about 0.4%.
64  *
65  * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
66  * given time *one* of the tasks is delayed due to a lack of memory.
67  * Again, looking purely at the task state would yield a memory FULL
68  * pressure number of 0%, since *somebody* is always making forward
69  * progress. But again this wouldn't capture the amount of execution
70  * potential lost, which is 1 out of 4 CPUs, or 25%.
71  *
72  * To calculate wasted potential (pressure) with multiple processors,
73  * we have to base our calculation on the number of non-idle tasks in
74  * conjunction with the number of available CPUs, which is the number
75  * of potential execution threads. SOME becomes then the proportion of
76  * delayed tasks to possibe threads, and FULL is the share of possible
77  * threads that are unproductive due to delays:
78  *
79  *	threads = min(nr_nonidle_tasks, nr_cpus)
80  *	   SOME = min(nr_delayed_tasks / threads, 1)
81  *	   FULL = (threads - min(nr_running_tasks, threads)) / threads
82  *
83  * For the 257 number crunchers on 256 CPUs, this yields:
84  *
85  *	threads = min(257, 256)
86  *	   SOME = min(1 / 256, 1)             = 0.4%
87  *	   FULL = (256 - min(257, 256)) / 256 = 0%
88  *
89  * For the 1 out of 4 memory-delayed tasks, this yields:
90  *
91  *	threads = min(4, 4)
92  *	   SOME = min(1 / 4, 1)               = 25%
93  *	   FULL = (4 - min(3, 4)) / 4         = 25%
94  *
95  * [ Substitute nr_cpus with 1, and you can see that it's a natural
96  *   extension of the single-CPU model. ]
97  *
98  *			Implementation
99  *
100  * To assess the precise time spent in each such state, we would have
101  * to freeze the system on task changes and start/stop the state
102  * clocks accordingly. Obviously that doesn't scale in practice.
103  *
104  * Because the scheduler aims to distribute the compute load evenly
105  * among the available CPUs, we can track task state locally to each
106  * CPU and, at much lower frequency, extrapolate the global state for
107  * the cumulative stall times and the running averages.
108  *
109  * For each runqueue, we track:
110  *
111  *	   tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
112  *	   tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_running_tasks[cpu])
113  *	tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
114  *
115  * and then periodically aggregate:
116  *
117  *	tNONIDLE = sum(tNONIDLE[i])
118  *
119  *	   tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
120  *	   tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
121  *
122  *	   %SOME = tSOME / period
123  *	   %FULL = tFULL / period
124  *
125  * This gives us an approximation of pressure that is practical
126  * cost-wise, yet way more sensitive and accurate than periodic
127  * sampling of the aggregate task states would be.
128  */
129 
130 #include "../workqueue_internal.h"
131 #include <linux/sched/loadavg.h>
132 #include <linux/seq_file.h>
133 #include <linux/proc_fs.h>
134 #include <linux/seqlock.h>
135 #include <linux/uaccess.h>
136 #include <linux/cgroup.h>
137 #include <linux/module.h>
138 #include <linux/sched.h>
139 #include <linux/ctype.h>
140 #include <linux/file.h>
141 #include <linux/poll.h>
142 #include <linux/psi.h>
143 #include "sched.h"
144 
145 static int psi_bug __read_mostly;
146 
147 DEFINE_STATIC_KEY_FALSE(psi_disabled);
148 
149 #ifdef CONFIG_PSI_DEFAULT_DISABLED
150 static bool psi_enable;
151 #else
152 static bool psi_enable = true;
153 #endif
154 static int __init setup_psi(char *str)
155 {
156 	return kstrtobool(str, &psi_enable) == 0;
157 }
158 __setup("psi=", setup_psi);
159 
160 /* Running averages - we need to be higher-res than loadavg */
161 #define PSI_FREQ	(2*HZ+1)	/* 2 sec intervals */
162 #define EXP_10s		1677		/* 1/exp(2s/10s) as fixed-point */
163 #define EXP_60s		1981		/* 1/exp(2s/60s) */
164 #define EXP_300s	2034		/* 1/exp(2s/300s) */
165 
166 /* PSI trigger definitions */
167 #define WINDOW_MIN_US 500000	/* Min window size is 500ms */
168 #define WINDOW_MAX_US 10000000	/* Max window size is 10s */
169 #define UPDATES_PER_WINDOW 10	/* 10 updates per window */
170 
171 /* Sampling frequency in nanoseconds */
172 static u64 psi_period __read_mostly;
173 
174 /* System-level pressure and stall tracking */
175 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
176 struct psi_group psi_system = {
177 	.pcpu = &system_group_pcpu,
178 };
179 
180 static void psi_avgs_work(struct work_struct *work);
181 
182 static void group_init(struct psi_group *group)
183 {
184 	int cpu;
185 
186 	for_each_possible_cpu(cpu)
187 		seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
188 	group->avg_last_update = sched_clock();
189 	group->avg_next_update = group->avg_last_update + psi_period;
190 	INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
191 	mutex_init(&group->avgs_lock);
192 	/* Init trigger-related members */
193 	mutex_init(&group->trigger_lock);
194 	INIT_LIST_HEAD(&group->triggers);
195 	memset(group->nr_triggers, 0, sizeof(group->nr_triggers));
196 	group->poll_states = 0;
197 	group->poll_min_period = U32_MAX;
198 	memset(group->polling_total, 0, sizeof(group->polling_total));
199 	group->polling_next_update = ULLONG_MAX;
200 	group->polling_until = 0;
201 	rcu_assign_pointer(group->poll_task, NULL);
202 }
203 
204 void __init psi_init(void)
205 {
206 	if (!psi_enable) {
207 		static_branch_enable(&psi_disabled);
208 		return;
209 	}
210 
211 	psi_period = jiffies_to_nsecs(PSI_FREQ);
212 	group_init(&psi_system);
213 }
214 
215 static bool test_state(unsigned int *tasks, enum psi_states state)
216 {
217 	switch (state) {
218 	case PSI_IO_SOME:
219 		return tasks[NR_IOWAIT];
220 	case PSI_IO_FULL:
221 		return tasks[NR_IOWAIT] && !tasks[NR_RUNNING];
222 	case PSI_MEM_SOME:
223 		return tasks[NR_MEMSTALL];
224 	case PSI_MEM_FULL:
225 		return tasks[NR_MEMSTALL] && !tasks[NR_RUNNING];
226 	case PSI_CPU_SOME:
227 		return tasks[NR_RUNNING] > tasks[NR_ONCPU];
228 	case PSI_NONIDLE:
229 		return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] ||
230 			tasks[NR_RUNNING];
231 	default:
232 		return false;
233 	}
234 }
235 
236 static void get_recent_times(struct psi_group *group, int cpu,
237 			     enum psi_aggregators aggregator, u32 *times,
238 			     u32 *pchanged_states)
239 {
240 	struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
241 	u64 now, state_start;
242 	enum psi_states s;
243 	unsigned int seq;
244 	u32 state_mask;
245 
246 	*pchanged_states = 0;
247 
248 	/* Snapshot a coherent view of the CPU state */
249 	do {
250 		seq = read_seqcount_begin(&groupc->seq);
251 		now = cpu_clock(cpu);
252 		memcpy(times, groupc->times, sizeof(groupc->times));
253 		state_mask = groupc->state_mask;
254 		state_start = groupc->state_start;
255 	} while (read_seqcount_retry(&groupc->seq, seq));
256 
257 	/* Calculate state time deltas against the previous snapshot */
258 	for (s = 0; s < NR_PSI_STATES; s++) {
259 		u32 delta;
260 		/*
261 		 * In addition to already concluded states, we also
262 		 * incorporate currently active states on the CPU,
263 		 * since states may last for many sampling periods.
264 		 *
265 		 * This way we keep our delta sampling buckets small
266 		 * (u32) and our reported pressure close to what's
267 		 * actually happening.
268 		 */
269 		if (state_mask & (1 << s))
270 			times[s] += now - state_start;
271 
272 		delta = times[s] - groupc->times_prev[aggregator][s];
273 		groupc->times_prev[aggregator][s] = times[s];
274 
275 		times[s] = delta;
276 		if (delta)
277 			*pchanged_states |= (1 << s);
278 	}
279 }
280 
281 static void calc_avgs(unsigned long avg[3], int missed_periods,
282 		      u64 time, u64 period)
283 {
284 	unsigned long pct;
285 
286 	/* Fill in zeroes for periods of no activity */
287 	if (missed_periods) {
288 		avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
289 		avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
290 		avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
291 	}
292 
293 	/* Sample the most recent active period */
294 	pct = div_u64(time * 100, period);
295 	pct *= FIXED_1;
296 	avg[0] = calc_load(avg[0], EXP_10s, pct);
297 	avg[1] = calc_load(avg[1], EXP_60s, pct);
298 	avg[2] = calc_load(avg[2], EXP_300s, pct);
299 }
300 
301 static void collect_percpu_times(struct psi_group *group,
302 				 enum psi_aggregators aggregator,
303 				 u32 *pchanged_states)
304 {
305 	u64 deltas[NR_PSI_STATES - 1] = { 0, };
306 	unsigned long nonidle_total = 0;
307 	u32 changed_states = 0;
308 	int cpu;
309 	int s;
310 
311 	/*
312 	 * Collect the per-cpu time buckets and average them into a
313 	 * single time sample that is normalized to wallclock time.
314 	 *
315 	 * For averaging, each CPU is weighted by its non-idle time in
316 	 * the sampling period. This eliminates artifacts from uneven
317 	 * loading, or even entirely idle CPUs.
318 	 */
319 	for_each_possible_cpu(cpu) {
320 		u32 times[NR_PSI_STATES];
321 		u32 nonidle;
322 		u32 cpu_changed_states;
323 
324 		get_recent_times(group, cpu, aggregator, times,
325 				&cpu_changed_states);
326 		changed_states |= cpu_changed_states;
327 
328 		nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
329 		nonidle_total += nonidle;
330 
331 		for (s = 0; s < PSI_NONIDLE; s++)
332 			deltas[s] += (u64)times[s] * nonidle;
333 	}
334 
335 	/*
336 	 * Integrate the sample into the running statistics that are
337 	 * reported to userspace: the cumulative stall times and the
338 	 * decaying averages.
339 	 *
340 	 * Pressure percentages are sampled at PSI_FREQ. We might be
341 	 * called more often when the user polls more frequently than
342 	 * that; we might be called less often when there is no task
343 	 * activity, thus no data, and clock ticks are sporadic. The
344 	 * below handles both.
345 	 */
346 
347 	/* total= */
348 	for (s = 0; s < NR_PSI_STATES - 1; s++)
349 		group->total[aggregator][s] +=
350 				div_u64(deltas[s], max(nonidle_total, 1UL));
351 
352 	if (pchanged_states)
353 		*pchanged_states = changed_states;
354 }
355 
356 static u64 update_averages(struct psi_group *group, u64 now)
357 {
358 	unsigned long missed_periods = 0;
359 	u64 expires, period;
360 	u64 avg_next_update;
361 	int s;
362 
363 	/* avgX= */
364 	expires = group->avg_next_update;
365 	if (now - expires >= psi_period)
366 		missed_periods = div_u64(now - expires, psi_period);
367 
368 	/*
369 	 * The periodic clock tick can get delayed for various
370 	 * reasons, especially on loaded systems. To avoid clock
371 	 * drift, we schedule the clock in fixed psi_period intervals.
372 	 * But the deltas we sample out of the per-cpu buckets above
373 	 * are based on the actual time elapsing between clock ticks.
374 	 */
375 	avg_next_update = expires + ((1 + missed_periods) * psi_period);
376 	period = now - (group->avg_last_update + (missed_periods * psi_period));
377 	group->avg_last_update = now;
378 
379 	for (s = 0; s < NR_PSI_STATES - 1; s++) {
380 		u32 sample;
381 
382 		sample = group->total[PSI_AVGS][s] - group->avg_total[s];
383 		/*
384 		 * Due to the lockless sampling of the time buckets,
385 		 * recorded time deltas can slip into the next period,
386 		 * which under full pressure can result in samples in
387 		 * excess of the period length.
388 		 *
389 		 * We don't want to report non-sensical pressures in
390 		 * excess of 100%, nor do we want to drop such events
391 		 * on the floor. Instead we punt any overage into the
392 		 * future until pressure subsides. By doing this we
393 		 * don't underreport the occurring pressure curve, we
394 		 * just report it delayed by one period length.
395 		 *
396 		 * The error isn't cumulative. As soon as another
397 		 * delta slips from a period P to P+1, by definition
398 		 * it frees up its time T in P.
399 		 */
400 		if (sample > period)
401 			sample = period;
402 		group->avg_total[s] += sample;
403 		calc_avgs(group->avg[s], missed_periods, sample, period);
404 	}
405 
406 	return avg_next_update;
407 }
408 
409 static void psi_avgs_work(struct work_struct *work)
410 {
411 	struct delayed_work *dwork;
412 	struct psi_group *group;
413 	u32 changed_states;
414 	bool nonidle;
415 	u64 now;
416 
417 	dwork = to_delayed_work(work);
418 	group = container_of(dwork, struct psi_group, avgs_work);
419 
420 	mutex_lock(&group->avgs_lock);
421 
422 	now = sched_clock();
423 
424 	collect_percpu_times(group, PSI_AVGS, &changed_states);
425 	nonidle = changed_states & (1 << PSI_NONIDLE);
426 	/*
427 	 * If there is task activity, periodically fold the per-cpu
428 	 * times and feed samples into the running averages. If things
429 	 * are idle and there is no data to process, stop the clock.
430 	 * Once restarted, we'll catch up the running averages in one
431 	 * go - see calc_avgs() and missed_periods.
432 	 */
433 	if (now >= group->avg_next_update)
434 		group->avg_next_update = update_averages(group, now);
435 
436 	if (nonidle) {
437 		schedule_delayed_work(dwork, nsecs_to_jiffies(
438 				group->avg_next_update - now) + 1);
439 	}
440 
441 	mutex_unlock(&group->avgs_lock);
442 }
443 
444 /* Trigger tracking window manupulations */
445 static void window_reset(struct psi_window *win, u64 now, u64 value,
446 			 u64 prev_growth)
447 {
448 	win->start_time = now;
449 	win->start_value = value;
450 	win->prev_growth = prev_growth;
451 }
452 
453 /*
454  * PSI growth tracking window update and growth calculation routine.
455  *
456  * This approximates a sliding tracking window by interpolating
457  * partially elapsed windows using historical growth data from the
458  * previous intervals. This minimizes memory requirements (by not storing
459  * all the intermediate values in the previous window) and simplifies
460  * the calculations. It works well because PSI signal changes only in
461  * positive direction and over relatively small window sizes the growth
462  * is close to linear.
463  */
464 static u64 window_update(struct psi_window *win, u64 now, u64 value)
465 {
466 	u64 elapsed;
467 	u64 growth;
468 
469 	elapsed = now - win->start_time;
470 	growth = value - win->start_value;
471 	/*
472 	 * After each tracking window passes win->start_value and
473 	 * win->start_time get reset and win->prev_growth stores
474 	 * the average per-window growth of the previous window.
475 	 * win->prev_growth is then used to interpolate additional
476 	 * growth from the previous window assuming it was linear.
477 	 */
478 	if (elapsed > win->size)
479 		window_reset(win, now, value, growth);
480 	else {
481 		u32 remaining;
482 
483 		remaining = win->size - elapsed;
484 		growth += div64_u64(win->prev_growth * remaining, win->size);
485 	}
486 
487 	return growth;
488 }
489 
490 static void init_triggers(struct psi_group *group, u64 now)
491 {
492 	struct psi_trigger *t;
493 
494 	list_for_each_entry(t, &group->triggers, node)
495 		window_reset(&t->win, now,
496 				group->total[PSI_POLL][t->state], 0);
497 	memcpy(group->polling_total, group->total[PSI_POLL],
498 		   sizeof(group->polling_total));
499 	group->polling_next_update = now + group->poll_min_period;
500 }
501 
502 static u64 update_triggers(struct psi_group *group, u64 now)
503 {
504 	struct psi_trigger *t;
505 	bool new_stall = false;
506 	u64 *total = group->total[PSI_POLL];
507 
508 	/*
509 	 * On subsequent updates, calculate growth deltas and let
510 	 * watchers know when their specified thresholds are exceeded.
511 	 */
512 	list_for_each_entry(t, &group->triggers, node) {
513 		u64 growth;
514 
515 		/* Check for stall activity */
516 		if (group->polling_total[t->state] == total[t->state])
517 			continue;
518 
519 		/*
520 		 * Multiple triggers might be looking at the same state,
521 		 * remember to update group->polling_total[] once we've
522 		 * been through all of them. Also remember to extend the
523 		 * polling time if we see new stall activity.
524 		 */
525 		new_stall = true;
526 
527 		/* Calculate growth since last update */
528 		growth = window_update(&t->win, now, total[t->state]);
529 		if (growth < t->threshold)
530 			continue;
531 
532 		/* Limit event signaling to once per window */
533 		if (now < t->last_event_time + t->win.size)
534 			continue;
535 
536 		/* Generate an event */
537 		if (cmpxchg(&t->event, 0, 1) == 0)
538 			wake_up_interruptible(&t->event_wait);
539 		t->last_event_time = now;
540 	}
541 
542 	if (new_stall)
543 		memcpy(group->polling_total, total,
544 				sizeof(group->polling_total));
545 
546 	return now + group->poll_min_period;
547 }
548 
549 /* Schedule polling if it's not already scheduled. */
550 static void psi_schedule_poll_work(struct psi_group *group, unsigned long delay)
551 {
552 	struct task_struct *task;
553 
554 	/*
555 	 * Do not reschedule if already scheduled.
556 	 * Possible race with a timer scheduled after this check but before
557 	 * mod_timer below can be tolerated because group->polling_next_update
558 	 * will keep updates on schedule.
559 	 */
560 	if (timer_pending(&group->poll_timer))
561 		return;
562 
563 	rcu_read_lock();
564 
565 	task = rcu_dereference(group->poll_task);
566 	/*
567 	 * kworker might be NULL in case psi_trigger_destroy races with
568 	 * psi_task_change (hotpath) which can't use locks
569 	 */
570 	if (likely(task))
571 		mod_timer(&group->poll_timer, jiffies + delay);
572 
573 	rcu_read_unlock();
574 }
575 
576 static void psi_poll_work(struct psi_group *group)
577 {
578 	u32 changed_states;
579 	u64 now;
580 
581 	mutex_lock(&group->trigger_lock);
582 
583 	now = sched_clock();
584 
585 	collect_percpu_times(group, PSI_POLL, &changed_states);
586 
587 	if (changed_states & group->poll_states) {
588 		/* Initialize trigger windows when entering polling mode */
589 		if (now > group->polling_until)
590 			init_triggers(group, now);
591 
592 		/*
593 		 * Keep the monitor active for at least the duration of the
594 		 * minimum tracking window as long as monitor states are
595 		 * changing.
596 		 */
597 		group->polling_until = now +
598 			group->poll_min_period * UPDATES_PER_WINDOW;
599 	}
600 
601 	if (now > group->polling_until) {
602 		group->polling_next_update = ULLONG_MAX;
603 		goto out;
604 	}
605 
606 	if (now >= group->polling_next_update)
607 		group->polling_next_update = update_triggers(group, now);
608 
609 	psi_schedule_poll_work(group,
610 		nsecs_to_jiffies(group->polling_next_update - now) + 1);
611 
612 out:
613 	mutex_unlock(&group->trigger_lock);
614 }
615 
616 static int psi_poll_worker(void *data)
617 {
618 	struct psi_group *group = (struct psi_group *)data;
619 
620 	sched_set_fifo_low(current);
621 
622 	while (true) {
623 		wait_event_interruptible(group->poll_wait,
624 				atomic_cmpxchg(&group->poll_wakeup, 1, 0) ||
625 				kthread_should_stop());
626 		if (kthread_should_stop())
627 			break;
628 
629 		psi_poll_work(group);
630 	}
631 	return 0;
632 }
633 
634 static void poll_timer_fn(struct timer_list *t)
635 {
636 	struct psi_group *group = from_timer(group, t, poll_timer);
637 
638 	atomic_set(&group->poll_wakeup, 1);
639 	wake_up_interruptible(&group->poll_wait);
640 }
641 
642 static void record_times(struct psi_group_cpu *groupc, int cpu,
643 			 bool memstall_tick)
644 {
645 	u32 delta;
646 	u64 now;
647 
648 	now = cpu_clock(cpu);
649 	delta = now - groupc->state_start;
650 	groupc->state_start = now;
651 
652 	if (groupc->state_mask & (1 << PSI_IO_SOME)) {
653 		groupc->times[PSI_IO_SOME] += delta;
654 		if (groupc->state_mask & (1 << PSI_IO_FULL))
655 			groupc->times[PSI_IO_FULL] += delta;
656 	}
657 
658 	if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
659 		groupc->times[PSI_MEM_SOME] += delta;
660 		if (groupc->state_mask & (1 << PSI_MEM_FULL))
661 			groupc->times[PSI_MEM_FULL] += delta;
662 		else if (memstall_tick) {
663 			u32 sample;
664 			/*
665 			 * Since we care about lost potential, a
666 			 * memstall is FULL when there are no other
667 			 * working tasks, but also when the CPU is
668 			 * actively reclaiming and nothing productive
669 			 * could run even if it were runnable.
670 			 *
671 			 * When the timer tick sees a reclaiming CPU,
672 			 * regardless of runnable tasks, sample a FULL
673 			 * tick (or less if it hasn't been a full tick
674 			 * since the last state change).
675 			 */
676 			sample = min(delta, (u32)jiffies_to_nsecs(1));
677 			groupc->times[PSI_MEM_FULL] += sample;
678 		}
679 	}
680 
681 	if (groupc->state_mask & (1 << PSI_CPU_SOME))
682 		groupc->times[PSI_CPU_SOME] += delta;
683 
684 	if (groupc->state_mask & (1 << PSI_NONIDLE))
685 		groupc->times[PSI_NONIDLE] += delta;
686 }
687 
688 static void psi_group_change(struct psi_group *group, int cpu,
689 			     unsigned int clear, unsigned int set,
690 			     bool wake_clock)
691 {
692 	struct psi_group_cpu *groupc;
693 	u32 state_mask = 0;
694 	unsigned int t, m;
695 	enum psi_states s;
696 
697 	groupc = per_cpu_ptr(group->pcpu, cpu);
698 
699 	/*
700 	 * First we assess the aggregate resource states this CPU's
701 	 * tasks have been in since the last change, and account any
702 	 * SOME and FULL time these may have resulted in.
703 	 *
704 	 * Then we update the task counts according to the state
705 	 * change requested through the @clear and @set bits.
706 	 */
707 	write_seqcount_begin(&groupc->seq);
708 
709 	record_times(groupc, cpu, false);
710 
711 	for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
712 		if (!(m & (1 << t)))
713 			continue;
714 		if (groupc->tasks[t] == 0 && !psi_bug) {
715 			printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
716 					cpu, t, groupc->tasks[0],
717 					groupc->tasks[1], groupc->tasks[2],
718 					groupc->tasks[3], clear, set);
719 			psi_bug = 1;
720 		}
721 		groupc->tasks[t]--;
722 	}
723 
724 	for (t = 0; set; set &= ~(1 << t), t++)
725 		if (set & (1 << t))
726 			groupc->tasks[t]++;
727 
728 	/* Calculate state mask representing active states */
729 	for (s = 0; s < NR_PSI_STATES; s++) {
730 		if (test_state(groupc->tasks, s))
731 			state_mask |= (1 << s);
732 	}
733 	groupc->state_mask = state_mask;
734 
735 	write_seqcount_end(&groupc->seq);
736 
737 	if (state_mask & group->poll_states)
738 		psi_schedule_poll_work(group, 1);
739 
740 	if (wake_clock && !delayed_work_pending(&group->avgs_work))
741 		schedule_delayed_work(&group->avgs_work, PSI_FREQ);
742 }
743 
744 static struct psi_group *iterate_groups(struct task_struct *task, void **iter)
745 {
746 #ifdef CONFIG_CGROUPS
747 	struct cgroup *cgroup = NULL;
748 
749 	if (!*iter)
750 		cgroup = task->cgroups->dfl_cgrp;
751 	else if (*iter == &psi_system)
752 		return NULL;
753 	else
754 		cgroup = cgroup_parent(*iter);
755 
756 	if (cgroup && cgroup_parent(cgroup)) {
757 		*iter = cgroup;
758 		return cgroup_psi(cgroup);
759 	}
760 #else
761 	if (*iter)
762 		return NULL;
763 #endif
764 	*iter = &psi_system;
765 	return &psi_system;
766 }
767 
768 static void psi_flags_change(struct task_struct *task, int clear, int set)
769 {
770 	if (((task->psi_flags & set) ||
771 	     (task->psi_flags & clear) != clear) &&
772 	    !psi_bug) {
773 		printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
774 				task->pid, task->comm, task_cpu(task),
775 				task->psi_flags, clear, set);
776 		psi_bug = 1;
777 	}
778 
779 	task->psi_flags &= ~clear;
780 	task->psi_flags |= set;
781 }
782 
783 void psi_task_change(struct task_struct *task, int clear, int set)
784 {
785 	int cpu = task_cpu(task);
786 	struct psi_group *group;
787 	bool wake_clock = true;
788 	void *iter = NULL;
789 
790 	if (!task->pid)
791 		return;
792 
793 	psi_flags_change(task, clear, set);
794 
795 	/*
796 	 * Periodic aggregation shuts off if there is a period of no
797 	 * task changes, so we wake it back up if necessary. However,
798 	 * don't do this if the task change is the aggregation worker
799 	 * itself going to sleep, or we'll ping-pong forever.
800 	 */
801 	if (unlikely((clear & TSK_RUNNING) &&
802 		     (task->flags & PF_WQ_WORKER) &&
803 		     wq_worker_last_func(task) == psi_avgs_work))
804 		wake_clock = false;
805 
806 	while ((group = iterate_groups(task, &iter)))
807 		psi_group_change(group, cpu, clear, set, wake_clock);
808 }
809 
810 void psi_task_switch(struct task_struct *prev, struct task_struct *next,
811 		     bool sleep)
812 {
813 	struct psi_group *group, *common = NULL;
814 	int cpu = task_cpu(prev);
815 	void *iter;
816 
817 	if (next->pid) {
818 		psi_flags_change(next, 0, TSK_ONCPU);
819 		/*
820 		 * When moving state between tasks, the group that
821 		 * contains them both does not change: we can stop
822 		 * updating the tree once we reach the first common
823 		 * ancestor. Iterate @next's ancestors until we
824 		 * encounter @prev's state.
825 		 */
826 		iter = NULL;
827 		while ((group = iterate_groups(next, &iter))) {
828 			if (per_cpu_ptr(group->pcpu, cpu)->tasks[NR_ONCPU]) {
829 				common = group;
830 				break;
831 			}
832 
833 			psi_group_change(group, cpu, 0, TSK_ONCPU, true);
834 		}
835 	}
836 
837 	/*
838 	 * If this is a voluntary sleep, dequeue will have taken care
839 	 * of the outgoing TSK_ONCPU alongside TSK_RUNNING already. We
840 	 * only need to deal with it during preemption.
841 	 */
842 	if (sleep)
843 		return;
844 
845 	if (prev->pid) {
846 		psi_flags_change(prev, TSK_ONCPU, 0);
847 
848 		iter = NULL;
849 		while ((group = iterate_groups(prev, &iter)) && group != common)
850 			psi_group_change(group, cpu, TSK_ONCPU, 0, true);
851 	}
852 }
853 
854 void psi_memstall_tick(struct task_struct *task, int cpu)
855 {
856 	struct psi_group *group;
857 	void *iter = NULL;
858 
859 	while ((group = iterate_groups(task, &iter))) {
860 		struct psi_group_cpu *groupc;
861 
862 		groupc = per_cpu_ptr(group->pcpu, cpu);
863 		write_seqcount_begin(&groupc->seq);
864 		record_times(groupc, cpu, true);
865 		write_seqcount_end(&groupc->seq);
866 	}
867 }
868 
869 /**
870  * psi_memstall_enter - mark the beginning of a memory stall section
871  * @flags: flags to handle nested sections
872  *
873  * Marks the calling task as being stalled due to a lack of memory,
874  * such as waiting for a refault or performing reclaim.
875  */
876 void psi_memstall_enter(unsigned long *flags)
877 {
878 	struct rq_flags rf;
879 	struct rq *rq;
880 
881 	if (static_branch_likely(&psi_disabled))
882 		return;
883 
884 	*flags = current->in_memstall;
885 	if (*flags)
886 		return;
887 	/*
888 	 * in_memstall setting & accounting needs to be atomic wrt
889 	 * changes to the task's scheduling state, otherwise we can
890 	 * race with CPU migration.
891 	 */
892 	rq = this_rq_lock_irq(&rf);
893 
894 	current->in_memstall = 1;
895 	psi_task_change(current, 0, TSK_MEMSTALL);
896 
897 	rq_unlock_irq(rq, &rf);
898 }
899 
900 /**
901  * psi_memstall_leave - mark the end of an memory stall section
902  * @flags: flags to handle nested memdelay sections
903  *
904  * Marks the calling task as no longer stalled due to lack of memory.
905  */
906 void psi_memstall_leave(unsigned long *flags)
907 {
908 	struct rq_flags rf;
909 	struct rq *rq;
910 
911 	if (static_branch_likely(&psi_disabled))
912 		return;
913 
914 	if (*flags)
915 		return;
916 	/*
917 	 * in_memstall clearing & accounting needs to be atomic wrt
918 	 * changes to the task's scheduling state, otherwise we could
919 	 * race with CPU migration.
920 	 */
921 	rq = this_rq_lock_irq(&rf);
922 
923 	current->in_memstall = 0;
924 	psi_task_change(current, TSK_MEMSTALL, 0);
925 
926 	rq_unlock_irq(rq, &rf);
927 }
928 
929 #ifdef CONFIG_CGROUPS
930 int psi_cgroup_alloc(struct cgroup *cgroup)
931 {
932 	if (static_branch_likely(&psi_disabled))
933 		return 0;
934 
935 	cgroup->psi.pcpu = alloc_percpu(struct psi_group_cpu);
936 	if (!cgroup->psi.pcpu)
937 		return -ENOMEM;
938 	group_init(&cgroup->psi);
939 	return 0;
940 }
941 
942 void psi_cgroup_free(struct cgroup *cgroup)
943 {
944 	if (static_branch_likely(&psi_disabled))
945 		return;
946 
947 	cancel_delayed_work_sync(&cgroup->psi.avgs_work);
948 	free_percpu(cgroup->psi.pcpu);
949 	/* All triggers must be removed by now */
950 	WARN_ONCE(cgroup->psi.poll_states, "psi: trigger leak\n");
951 }
952 
953 /**
954  * cgroup_move_task - move task to a different cgroup
955  * @task: the task
956  * @to: the target css_set
957  *
958  * Move task to a new cgroup and safely migrate its associated stall
959  * state between the different groups.
960  *
961  * This function acquires the task's rq lock to lock out concurrent
962  * changes to the task's scheduling state and - in case the task is
963  * running - concurrent changes to its stall state.
964  */
965 void cgroup_move_task(struct task_struct *task, struct css_set *to)
966 {
967 	unsigned int task_flags = 0;
968 	struct rq_flags rf;
969 	struct rq *rq;
970 
971 	if (static_branch_likely(&psi_disabled)) {
972 		/*
973 		 * Lame to do this here, but the scheduler cannot be locked
974 		 * from the outside, so we move cgroups from inside sched/.
975 		 */
976 		rcu_assign_pointer(task->cgroups, to);
977 		return;
978 	}
979 
980 	rq = task_rq_lock(task, &rf);
981 
982 	if (task_on_rq_queued(task)) {
983 		task_flags = TSK_RUNNING;
984 		if (task_current(rq, task))
985 			task_flags |= TSK_ONCPU;
986 	} else if (task->in_iowait)
987 		task_flags = TSK_IOWAIT;
988 
989 	if (task->in_memstall)
990 		task_flags |= TSK_MEMSTALL;
991 
992 	if (task_flags)
993 		psi_task_change(task, task_flags, 0);
994 
995 	/* See comment above */
996 	rcu_assign_pointer(task->cgroups, to);
997 
998 	if (task_flags)
999 		psi_task_change(task, 0, task_flags);
1000 
1001 	task_rq_unlock(rq, task, &rf);
1002 }
1003 #endif /* CONFIG_CGROUPS */
1004 
1005 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
1006 {
1007 	int full;
1008 	u64 now;
1009 
1010 	if (static_branch_likely(&psi_disabled))
1011 		return -EOPNOTSUPP;
1012 
1013 	/* Update averages before reporting them */
1014 	mutex_lock(&group->avgs_lock);
1015 	now = sched_clock();
1016 	collect_percpu_times(group, PSI_AVGS, NULL);
1017 	if (now >= group->avg_next_update)
1018 		group->avg_next_update = update_averages(group, now);
1019 	mutex_unlock(&group->avgs_lock);
1020 
1021 	for (full = 0; full < 2 - (res == PSI_CPU); full++) {
1022 		unsigned long avg[3];
1023 		u64 total;
1024 		int w;
1025 
1026 		for (w = 0; w < 3; w++)
1027 			avg[w] = group->avg[res * 2 + full][w];
1028 		total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1029 				NSEC_PER_USEC);
1030 
1031 		seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1032 			   full ? "full" : "some",
1033 			   LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1034 			   LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1035 			   LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1036 			   total);
1037 	}
1038 
1039 	return 0;
1040 }
1041 
1042 static int psi_io_show(struct seq_file *m, void *v)
1043 {
1044 	return psi_show(m, &psi_system, PSI_IO);
1045 }
1046 
1047 static int psi_memory_show(struct seq_file *m, void *v)
1048 {
1049 	return psi_show(m, &psi_system, PSI_MEM);
1050 }
1051 
1052 static int psi_cpu_show(struct seq_file *m, void *v)
1053 {
1054 	return psi_show(m, &psi_system, PSI_CPU);
1055 }
1056 
1057 static int psi_io_open(struct inode *inode, struct file *file)
1058 {
1059 	return single_open(file, psi_io_show, NULL);
1060 }
1061 
1062 static int psi_memory_open(struct inode *inode, struct file *file)
1063 {
1064 	return single_open(file, psi_memory_show, NULL);
1065 }
1066 
1067 static int psi_cpu_open(struct inode *inode, struct file *file)
1068 {
1069 	return single_open(file, psi_cpu_show, NULL);
1070 }
1071 
1072 struct psi_trigger *psi_trigger_create(struct psi_group *group,
1073 			char *buf, size_t nbytes, enum psi_res res)
1074 {
1075 	struct psi_trigger *t;
1076 	enum psi_states state;
1077 	u32 threshold_us;
1078 	u32 window_us;
1079 
1080 	if (static_branch_likely(&psi_disabled))
1081 		return ERR_PTR(-EOPNOTSUPP);
1082 
1083 	if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1084 		state = PSI_IO_SOME + res * 2;
1085 	else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1086 		state = PSI_IO_FULL + res * 2;
1087 	else
1088 		return ERR_PTR(-EINVAL);
1089 
1090 	if (state >= PSI_NONIDLE)
1091 		return ERR_PTR(-EINVAL);
1092 
1093 	if (window_us < WINDOW_MIN_US ||
1094 		window_us > WINDOW_MAX_US)
1095 		return ERR_PTR(-EINVAL);
1096 
1097 	/* Check threshold */
1098 	if (threshold_us == 0 || threshold_us > window_us)
1099 		return ERR_PTR(-EINVAL);
1100 
1101 	t = kmalloc(sizeof(*t), GFP_KERNEL);
1102 	if (!t)
1103 		return ERR_PTR(-ENOMEM);
1104 
1105 	t->group = group;
1106 	t->state = state;
1107 	t->threshold = threshold_us * NSEC_PER_USEC;
1108 	t->win.size = window_us * NSEC_PER_USEC;
1109 	window_reset(&t->win, 0, 0, 0);
1110 
1111 	t->event = 0;
1112 	t->last_event_time = 0;
1113 	init_waitqueue_head(&t->event_wait);
1114 	kref_init(&t->refcount);
1115 
1116 	mutex_lock(&group->trigger_lock);
1117 
1118 	if (!rcu_access_pointer(group->poll_task)) {
1119 		struct task_struct *task;
1120 
1121 		task = kthread_create(psi_poll_worker, group, "psimon");
1122 		if (IS_ERR(task)) {
1123 			kfree(t);
1124 			mutex_unlock(&group->trigger_lock);
1125 			return ERR_CAST(task);
1126 		}
1127 		atomic_set(&group->poll_wakeup, 0);
1128 		init_waitqueue_head(&group->poll_wait);
1129 		wake_up_process(task);
1130 		timer_setup(&group->poll_timer, poll_timer_fn, 0);
1131 		rcu_assign_pointer(group->poll_task, task);
1132 	}
1133 
1134 	list_add(&t->node, &group->triggers);
1135 	group->poll_min_period = min(group->poll_min_period,
1136 		div_u64(t->win.size, UPDATES_PER_WINDOW));
1137 	group->nr_triggers[t->state]++;
1138 	group->poll_states |= (1 << t->state);
1139 
1140 	mutex_unlock(&group->trigger_lock);
1141 
1142 	return t;
1143 }
1144 
1145 static void psi_trigger_destroy(struct kref *ref)
1146 {
1147 	struct psi_trigger *t = container_of(ref, struct psi_trigger, refcount);
1148 	struct psi_group *group = t->group;
1149 	struct task_struct *task_to_destroy = NULL;
1150 
1151 	if (static_branch_likely(&psi_disabled))
1152 		return;
1153 
1154 	/*
1155 	 * Wakeup waiters to stop polling. Can happen if cgroup is deleted
1156 	 * from under a polling process.
1157 	 */
1158 	wake_up_interruptible(&t->event_wait);
1159 
1160 	mutex_lock(&group->trigger_lock);
1161 
1162 	if (!list_empty(&t->node)) {
1163 		struct psi_trigger *tmp;
1164 		u64 period = ULLONG_MAX;
1165 
1166 		list_del(&t->node);
1167 		group->nr_triggers[t->state]--;
1168 		if (!group->nr_triggers[t->state])
1169 			group->poll_states &= ~(1 << t->state);
1170 		/* reset min update period for the remaining triggers */
1171 		list_for_each_entry(tmp, &group->triggers, node)
1172 			period = min(period, div_u64(tmp->win.size,
1173 					UPDATES_PER_WINDOW));
1174 		group->poll_min_period = period;
1175 		/* Destroy poll_task when the last trigger is destroyed */
1176 		if (group->poll_states == 0) {
1177 			group->polling_until = 0;
1178 			task_to_destroy = rcu_dereference_protected(
1179 					group->poll_task,
1180 					lockdep_is_held(&group->trigger_lock));
1181 			rcu_assign_pointer(group->poll_task, NULL);
1182 		}
1183 	}
1184 
1185 	mutex_unlock(&group->trigger_lock);
1186 
1187 	/*
1188 	 * Wait for both *trigger_ptr from psi_trigger_replace and
1189 	 * poll_task RCUs to complete their read-side critical sections
1190 	 * before destroying the trigger and optionally the poll_task
1191 	 */
1192 	synchronize_rcu();
1193 	/*
1194 	 * Destroy the kworker after releasing trigger_lock to prevent a
1195 	 * deadlock while waiting for psi_poll_work to acquire trigger_lock
1196 	 */
1197 	if (task_to_destroy) {
1198 		/*
1199 		 * After the RCU grace period has expired, the worker
1200 		 * can no longer be found through group->poll_task.
1201 		 * But it might have been already scheduled before
1202 		 * that - deschedule it cleanly before destroying it.
1203 		 */
1204 		del_timer_sync(&group->poll_timer);
1205 		kthread_stop(task_to_destroy);
1206 	}
1207 	kfree(t);
1208 }
1209 
1210 void psi_trigger_replace(void **trigger_ptr, struct psi_trigger *new)
1211 {
1212 	struct psi_trigger *old = *trigger_ptr;
1213 
1214 	if (static_branch_likely(&psi_disabled))
1215 		return;
1216 
1217 	rcu_assign_pointer(*trigger_ptr, new);
1218 	if (old)
1219 		kref_put(&old->refcount, psi_trigger_destroy);
1220 }
1221 
1222 __poll_t psi_trigger_poll(void **trigger_ptr,
1223 				struct file *file, poll_table *wait)
1224 {
1225 	__poll_t ret = DEFAULT_POLLMASK;
1226 	struct psi_trigger *t;
1227 
1228 	if (static_branch_likely(&psi_disabled))
1229 		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1230 
1231 	rcu_read_lock();
1232 
1233 	t = rcu_dereference(*(void __rcu __force **)trigger_ptr);
1234 	if (!t) {
1235 		rcu_read_unlock();
1236 		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1237 	}
1238 	kref_get(&t->refcount);
1239 
1240 	rcu_read_unlock();
1241 
1242 	poll_wait(file, &t->event_wait, wait);
1243 
1244 	if (cmpxchg(&t->event, 1, 0) == 1)
1245 		ret |= EPOLLPRI;
1246 
1247 	kref_put(&t->refcount, psi_trigger_destroy);
1248 
1249 	return ret;
1250 }
1251 
1252 static ssize_t psi_write(struct file *file, const char __user *user_buf,
1253 			 size_t nbytes, enum psi_res res)
1254 {
1255 	char buf[32];
1256 	size_t buf_size;
1257 	struct seq_file *seq;
1258 	struct psi_trigger *new;
1259 
1260 	if (static_branch_likely(&psi_disabled))
1261 		return -EOPNOTSUPP;
1262 
1263 	if (!nbytes)
1264 		return -EINVAL;
1265 
1266 	buf_size = min(nbytes, sizeof(buf));
1267 	if (copy_from_user(buf, user_buf, buf_size))
1268 		return -EFAULT;
1269 
1270 	buf[buf_size - 1] = '\0';
1271 
1272 	new = psi_trigger_create(&psi_system, buf, nbytes, res);
1273 	if (IS_ERR(new))
1274 		return PTR_ERR(new);
1275 
1276 	seq = file->private_data;
1277 	/* Take seq->lock to protect seq->private from concurrent writes */
1278 	mutex_lock(&seq->lock);
1279 	psi_trigger_replace(&seq->private, new);
1280 	mutex_unlock(&seq->lock);
1281 
1282 	return nbytes;
1283 }
1284 
1285 static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1286 			    size_t nbytes, loff_t *ppos)
1287 {
1288 	return psi_write(file, user_buf, nbytes, PSI_IO);
1289 }
1290 
1291 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1292 				size_t nbytes, loff_t *ppos)
1293 {
1294 	return psi_write(file, user_buf, nbytes, PSI_MEM);
1295 }
1296 
1297 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1298 			     size_t nbytes, loff_t *ppos)
1299 {
1300 	return psi_write(file, user_buf, nbytes, PSI_CPU);
1301 }
1302 
1303 static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1304 {
1305 	struct seq_file *seq = file->private_data;
1306 
1307 	return psi_trigger_poll(&seq->private, file, wait);
1308 }
1309 
1310 static int psi_fop_release(struct inode *inode, struct file *file)
1311 {
1312 	struct seq_file *seq = file->private_data;
1313 
1314 	psi_trigger_replace(&seq->private, NULL);
1315 	return single_release(inode, file);
1316 }
1317 
1318 static const struct proc_ops psi_io_proc_ops = {
1319 	.proc_open	= psi_io_open,
1320 	.proc_read	= seq_read,
1321 	.proc_lseek	= seq_lseek,
1322 	.proc_write	= psi_io_write,
1323 	.proc_poll	= psi_fop_poll,
1324 	.proc_release	= psi_fop_release,
1325 };
1326 
1327 static const struct proc_ops psi_memory_proc_ops = {
1328 	.proc_open	= psi_memory_open,
1329 	.proc_read	= seq_read,
1330 	.proc_lseek	= seq_lseek,
1331 	.proc_write	= psi_memory_write,
1332 	.proc_poll	= psi_fop_poll,
1333 	.proc_release	= psi_fop_release,
1334 };
1335 
1336 static const struct proc_ops psi_cpu_proc_ops = {
1337 	.proc_open	= psi_cpu_open,
1338 	.proc_read	= seq_read,
1339 	.proc_lseek	= seq_lseek,
1340 	.proc_write	= psi_cpu_write,
1341 	.proc_poll	= psi_fop_poll,
1342 	.proc_release	= psi_fop_release,
1343 };
1344 
1345 static int __init psi_proc_init(void)
1346 {
1347 	if (psi_enable) {
1348 		proc_mkdir("pressure", NULL);
1349 		proc_create("pressure/io", 0, NULL, &psi_io_proc_ops);
1350 		proc_create("pressure/memory", 0, NULL, &psi_memory_proc_ops);
1351 		proc_create("pressure/cpu", 0, NULL, &psi_cpu_proc_ops);
1352 	}
1353 	return 0;
1354 }
1355 module_init(psi_proc_init);
1356