xref: /linux/kernel/sched/psi.c (revision 7e611710acf966df1e14bcf4e067385e38e549a1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Pressure stall information for CPU, memory and IO
4  *
5  * Copyright (c) 2018 Facebook, Inc.
6  * Author: Johannes Weiner <hannes@cmpxchg.org>
7  *
8  * Polling support by Suren Baghdasaryan <surenb@google.com>
9  * Copyright (c) 2018 Google, Inc.
10  *
11  * When CPU, memory and IO are contended, tasks experience delays that
12  * reduce throughput and introduce latencies into the workload. Memory
13  * and IO contention, in addition, can cause a full loss of forward
14  * progress in which the CPU goes idle.
15  *
16  * This code aggregates individual task delays into resource pressure
17  * metrics that indicate problems with both workload health and
18  * resource utilization.
19  *
20  *			Model
21  *
22  * The time in which a task can execute on a CPU is our baseline for
23  * productivity. Pressure expresses the amount of time in which this
24  * potential cannot be realized due to resource contention.
25  *
26  * This concept of productivity has two components: the workload and
27  * the CPU. To measure the impact of pressure on both, we define two
28  * contention states for a resource: SOME and FULL.
29  *
30  * In the SOME state of a given resource, one or more tasks are
31  * delayed on that resource. This affects the workload's ability to
32  * perform work, but the CPU may still be executing other tasks.
33  *
34  * In the FULL state of a given resource, all non-idle tasks are
35  * delayed on that resource such that nobody is advancing and the CPU
36  * goes idle. This leaves both workload and CPU unproductive.
37  *
38  *	SOME = nr_delayed_tasks != 0
39  *	FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0
40  *
41  * What it means for a task to be productive is defined differently
42  * for each resource. For IO, productive means a running task. For
43  * memory, productive means a running task that isn't a reclaimer. For
44  * CPU, productive means an on-CPU task.
45  *
46  * Naturally, the FULL state doesn't exist for the CPU resource at the
47  * system level, but exist at the cgroup level. At the cgroup level,
48  * FULL means all non-idle tasks in the cgroup are delayed on the CPU
49  * resource which is being used by others outside of the cgroup or
50  * throttled by the cgroup cpu.max configuration.
51  *
52  * The percentage of wall clock time spent in those compound stall
53  * states gives pressure numbers between 0 and 100 for each resource,
54  * where the SOME percentage indicates workload slowdowns and the FULL
55  * percentage indicates reduced CPU utilization:
56  *
57  *	%SOME = time(SOME) / period
58  *	%FULL = time(FULL) / period
59  *
60  *			Multiple CPUs
61  *
62  * The more tasks and available CPUs there are, the more work can be
63  * performed concurrently. This means that the potential that can go
64  * unrealized due to resource contention *also* scales with non-idle
65  * tasks and CPUs.
66  *
67  * Consider a scenario where 257 number crunching tasks are trying to
68  * run concurrently on 256 CPUs. If we simply aggregated the task
69  * states, we would have to conclude a CPU SOME pressure number of
70  * 100%, since *somebody* is waiting on a runqueue at all
71  * times. However, that is clearly not the amount of contention the
72  * workload is experiencing: only one out of 256 possible execution
73  * threads will be contended at any given time, or about 0.4%.
74  *
75  * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
76  * given time *one* of the tasks is delayed due to a lack of memory.
77  * Again, looking purely at the task state would yield a memory FULL
78  * pressure number of 0%, since *somebody* is always making forward
79  * progress. But again this wouldn't capture the amount of execution
80  * potential lost, which is 1 out of 4 CPUs, or 25%.
81  *
82  * To calculate wasted potential (pressure) with multiple processors,
83  * we have to base our calculation on the number of non-idle tasks in
84  * conjunction with the number of available CPUs, which is the number
85  * of potential execution threads. SOME becomes then the proportion of
86  * delayed tasks to possible threads, and FULL is the share of possible
87  * threads that are unproductive due to delays:
88  *
89  *	threads = min(nr_nonidle_tasks, nr_cpus)
90  *	   SOME = min(nr_delayed_tasks / threads, 1)
91  *	   FULL = (threads - min(nr_productive_tasks, threads)) / threads
92  *
93  * For the 257 number crunchers on 256 CPUs, this yields:
94  *
95  *	threads = min(257, 256)
96  *	   SOME = min(1 / 256, 1)             = 0.4%
97  *	   FULL = (256 - min(256, 256)) / 256 = 0%
98  *
99  * For the 1 out of 4 memory-delayed tasks, this yields:
100  *
101  *	threads = min(4, 4)
102  *	   SOME = min(1 / 4, 1)               = 25%
103  *	   FULL = (4 - min(3, 4)) / 4         = 25%
104  *
105  * [ Substitute nr_cpus with 1, and you can see that it's a natural
106  *   extension of the single-CPU model. ]
107  *
108  *			Implementation
109  *
110  * To assess the precise time spent in each such state, we would have
111  * to freeze the system on task changes and start/stop the state
112  * clocks accordingly. Obviously that doesn't scale in practice.
113  *
114  * Because the scheduler aims to distribute the compute load evenly
115  * among the available CPUs, we can track task state locally to each
116  * CPU and, at much lower frequency, extrapolate the global state for
117  * the cumulative stall times and the running averages.
118  *
119  * For each runqueue, we track:
120  *
121  *	   tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
122  *	   tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu])
123  *	tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
124  *
125  * and then periodically aggregate:
126  *
127  *	tNONIDLE = sum(tNONIDLE[i])
128  *
129  *	   tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
130  *	   tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
131  *
132  *	   %SOME = tSOME / period
133  *	   %FULL = tFULL / period
134  *
135  * This gives us an approximation of pressure that is practical
136  * cost-wise, yet way more sensitive and accurate than periodic
137  * sampling of the aggregate task states would be.
138  */
139 #include <linux/sched/clock.h>
140 #include <linux/workqueue.h>
141 #include <linux/psi.h>
142 #include "sched.h"
143 
144 static int psi_bug __read_mostly;
145 
146 DEFINE_STATIC_KEY_FALSE(psi_disabled);
147 static DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);
148 
149 #ifdef CONFIG_PSI_DEFAULT_DISABLED
150 static bool psi_enable;
151 #else
152 static bool psi_enable = true;
153 #endif
154 static int __init setup_psi(char *str)
155 {
156 	return kstrtobool(str, &psi_enable) == 0;
157 }
158 __setup("psi=", setup_psi);
159 
160 /* Running averages - we need to be higher-res than loadavg */
161 #define PSI_FREQ	(2*HZ+1)	/* 2 sec intervals */
162 #define EXP_10s		1677		/* 1/exp(2s/10s) as fixed-point */
163 #define EXP_60s		1981		/* 1/exp(2s/60s) */
164 #define EXP_300s	2034		/* 1/exp(2s/300s) */
165 
166 /* PSI trigger definitions */
167 #define WINDOW_MAX_US 10000000	/* Max window size is 10s */
168 #define UPDATES_PER_WINDOW 10	/* 10 updates per window */
169 
170 /* Sampling frequency in nanoseconds */
171 static u64 psi_period __read_mostly;
172 
173 /* System-level pressure and stall tracking */
174 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
175 struct psi_group psi_system = {
176 	.pcpu = &system_group_pcpu,
177 };
178 
179 static void psi_avgs_work(struct work_struct *work);
180 
181 static void poll_timer_fn(struct timer_list *t);
182 
183 static void group_init(struct psi_group *group)
184 {
185 	int cpu;
186 
187 	group->enabled = true;
188 	for_each_possible_cpu(cpu)
189 		seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
190 	group->avg_last_update = sched_clock();
191 	group->avg_next_update = group->avg_last_update + psi_period;
192 	mutex_init(&group->avgs_lock);
193 
194 	/* Init avg trigger-related members */
195 	INIT_LIST_HEAD(&group->avg_triggers);
196 	memset(group->avg_nr_triggers, 0, sizeof(group->avg_nr_triggers));
197 	INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
198 
199 	/* Init rtpoll trigger-related members */
200 	atomic_set(&group->rtpoll_scheduled, 0);
201 	mutex_init(&group->rtpoll_trigger_lock);
202 	INIT_LIST_HEAD(&group->rtpoll_triggers);
203 	group->rtpoll_min_period = U32_MAX;
204 	group->rtpoll_next_update = ULLONG_MAX;
205 	init_waitqueue_head(&group->rtpoll_wait);
206 	timer_setup(&group->rtpoll_timer, poll_timer_fn, 0);
207 	rcu_assign_pointer(group->rtpoll_task, NULL);
208 }
209 
210 void __init psi_init(void)
211 {
212 	if (!psi_enable) {
213 		static_branch_enable(&psi_disabled);
214 		static_branch_disable(&psi_cgroups_enabled);
215 		return;
216 	}
217 
218 	if (!cgroup_psi_enabled())
219 		static_branch_disable(&psi_cgroups_enabled);
220 
221 	psi_period = jiffies_to_nsecs(PSI_FREQ);
222 	group_init(&psi_system);
223 }
224 
225 static u32 test_states(unsigned int *tasks, u32 state_mask)
226 {
227 	const bool oncpu = state_mask & PSI_ONCPU;
228 
229 	if (tasks[NR_IOWAIT]) {
230 		state_mask |= BIT(PSI_IO_SOME);
231 		if (!tasks[NR_RUNNING])
232 			state_mask |= BIT(PSI_IO_FULL);
233 	}
234 
235 	if (tasks[NR_MEMSTALL]) {
236 		state_mask |= BIT(PSI_MEM_SOME);
237 		if (tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING])
238 			state_mask |= BIT(PSI_MEM_FULL);
239 	}
240 
241 	if (tasks[NR_RUNNING] > oncpu)
242 		state_mask |= BIT(PSI_CPU_SOME);
243 
244 	if (tasks[NR_RUNNING] && !oncpu)
245 		state_mask |= BIT(PSI_CPU_FULL);
246 
247 	if (tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || tasks[NR_RUNNING])
248 		state_mask |= BIT(PSI_NONIDLE);
249 
250 	return state_mask;
251 }
252 
253 static void get_recent_times(struct psi_group *group, int cpu,
254 			     enum psi_aggregators aggregator, u32 *times,
255 			     u32 *pchanged_states)
256 {
257 	struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
258 	int current_cpu = raw_smp_processor_id();
259 	unsigned int tasks[NR_PSI_TASK_COUNTS];
260 	u64 now, state_start;
261 	enum psi_states s;
262 	unsigned int seq;
263 	u32 state_mask;
264 
265 	*pchanged_states = 0;
266 
267 	/* Snapshot a coherent view of the CPU state */
268 	do {
269 		seq = read_seqcount_begin(&groupc->seq);
270 		now = cpu_clock(cpu);
271 		memcpy(times, groupc->times, sizeof(groupc->times));
272 		state_mask = groupc->state_mask;
273 		state_start = groupc->state_start;
274 		if (cpu == current_cpu)
275 			memcpy(tasks, groupc->tasks, sizeof(groupc->tasks));
276 	} while (read_seqcount_retry(&groupc->seq, seq));
277 
278 	/* Calculate state time deltas against the previous snapshot */
279 	for (s = 0; s < NR_PSI_STATES; s++) {
280 		u32 delta;
281 		/*
282 		 * In addition to already concluded states, we also
283 		 * incorporate currently active states on the CPU,
284 		 * since states may last for many sampling periods.
285 		 *
286 		 * This way we keep our delta sampling buckets small
287 		 * (u32) and our reported pressure close to what's
288 		 * actually happening.
289 		 */
290 		if (state_mask & (1 << s))
291 			times[s] += now - state_start;
292 
293 		delta = times[s] - groupc->times_prev[aggregator][s];
294 		groupc->times_prev[aggregator][s] = times[s];
295 
296 		times[s] = delta;
297 		if (delta)
298 			*pchanged_states |= (1 << s);
299 	}
300 
301 	/*
302 	 * When collect_percpu_times() from the avgs_work, we don't want to
303 	 * re-arm avgs_work when all CPUs are IDLE. But the current CPU running
304 	 * this avgs_work is never IDLE, cause avgs_work can't be shut off.
305 	 * So for the current CPU, we need to re-arm avgs_work only when
306 	 * (NR_RUNNING > 1 || NR_IOWAIT > 0 || NR_MEMSTALL > 0), for other CPUs
307 	 * we can just check PSI_NONIDLE delta.
308 	 */
309 	if (current_work() == &group->avgs_work.work) {
310 		bool reschedule;
311 
312 		if (cpu == current_cpu)
313 			reschedule = tasks[NR_RUNNING] +
314 				     tasks[NR_IOWAIT] +
315 				     tasks[NR_MEMSTALL] > 1;
316 		else
317 			reschedule = *pchanged_states & (1 << PSI_NONIDLE);
318 
319 		if (reschedule)
320 			*pchanged_states |= PSI_STATE_RESCHEDULE;
321 	}
322 }
323 
324 static void calc_avgs(unsigned long avg[3], int missed_periods,
325 		      u64 time, u64 period)
326 {
327 	unsigned long pct;
328 
329 	/* Fill in zeroes for periods of no activity */
330 	if (missed_periods) {
331 		avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
332 		avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
333 		avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
334 	}
335 
336 	/* Sample the most recent active period */
337 	pct = div_u64(time * 100, period);
338 	pct *= FIXED_1;
339 	avg[0] = calc_load(avg[0], EXP_10s, pct);
340 	avg[1] = calc_load(avg[1], EXP_60s, pct);
341 	avg[2] = calc_load(avg[2], EXP_300s, pct);
342 }
343 
344 static void collect_percpu_times(struct psi_group *group,
345 				 enum psi_aggregators aggregator,
346 				 u32 *pchanged_states)
347 {
348 	u64 deltas[NR_PSI_STATES - 1] = { 0, };
349 	unsigned long nonidle_total = 0;
350 	u32 changed_states = 0;
351 	int cpu;
352 	int s;
353 
354 	/*
355 	 * Collect the per-cpu time buckets and average them into a
356 	 * single time sample that is normalized to wall clock time.
357 	 *
358 	 * For averaging, each CPU is weighted by its non-idle time in
359 	 * the sampling period. This eliminates artifacts from uneven
360 	 * loading, or even entirely idle CPUs.
361 	 */
362 	for_each_possible_cpu(cpu) {
363 		u32 times[NR_PSI_STATES];
364 		u32 nonidle;
365 		u32 cpu_changed_states;
366 
367 		get_recent_times(group, cpu, aggregator, times,
368 				&cpu_changed_states);
369 		changed_states |= cpu_changed_states;
370 
371 		nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
372 		nonidle_total += nonidle;
373 
374 		for (s = 0; s < PSI_NONIDLE; s++)
375 			deltas[s] += (u64)times[s] * nonidle;
376 	}
377 
378 	/*
379 	 * Integrate the sample into the running statistics that are
380 	 * reported to userspace: the cumulative stall times and the
381 	 * decaying averages.
382 	 *
383 	 * Pressure percentages are sampled at PSI_FREQ. We might be
384 	 * called more often when the user polls more frequently than
385 	 * that; we might be called less often when there is no task
386 	 * activity, thus no data, and clock ticks are sporadic. The
387 	 * below handles both.
388 	 */
389 
390 	/* total= */
391 	for (s = 0; s < NR_PSI_STATES - 1; s++)
392 		group->total[aggregator][s] +=
393 				div_u64(deltas[s], max(nonidle_total, 1UL));
394 
395 	if (pchanged_states)
396 		*pchanged_states = changed_states;
397 }
398 
399 /* Trigger tracking window manipulations */
400 static void window_reset(struct psi_window *win, u64 now, u64 value,
401 			 u64 prev_growth)
402 {
403 	win->start_time = now;
404 	win->start_value = value;
405 	win->prev_growth = prev_growth;
406 }
407 
408 /*
409  * PSI growth tracking window update and growth calculation routine.
410  *
411  * This approximates a sliding tracking window by interpolating
412  * partially elapsed windows using historical growth data from the
413  * previous intervals. This minimizes memory requirements (by not storing
414  * all the intermediate values in the previous window) and simplifies
415  * the calculations. It works well because PSI signal changes only in
416  * positive direction and over relatively small window sizes the growth
417  * is close to linear.
418  */
419 static u64 window_update(struct psi_window *win, u64 now, u64 value)
420 {
421 	u64 elapsed;
422 	u64 growth;
423 
424 	elapsed = now - win->start_time;
425 	growth = value - win->start_value;
426 	/*
427 	 * After each tracking window passes win->start_value and
428 	 * win->start_time get reset and win->prev_growth stores
429 	 * the average per-window growth of the previous window.
430 	 * win->prev_growth is then used to interpolate additional
431 	 * growth from the previous window assuming it was linear.
432 	 */
433 	if (elapsed > win->size)
434 		window_reset(win, now, value, growth);
435 	else {
436 		u32 remaining;
437 
438 		remaining = win->size - elapsed;
439 		growth += div64_u64(win->prev_growth * remaining, win->size);
440 	}
441 
442 	return growth;
443 }
444 
445 static void update_triggers(struct psi_group *group, u64 now,
446 						   enum psi_aggregators aggregator)
447 {
448 	struct psi_trigger *t;
449 	u64 *total = group->total[aggregator];
450 	struct list_head *triggers;
451 	u64 *aggregator_total;
452 
453 	if (aggregator == PSI_AVGS) {
454 		triggers = &group->avg_triggers;
455 		aggregator_total = group->avg_total;
456 	} else {
457 		triggers = &group->rtpoll_triggers;
458 		aggregator_total = group->rtpoll_total;
459 	}
460 
461 	/*
462 	 * On subsequent updates, calculate growth deltas and let
463 	 * watchers know when their specified thresholds are exceeded.
464 	 */
465 	list_for_each_entry(t, triggers, node) {
466 		u64 growth;
467 		bool new_stall;
468 
469 		new_stall = aggregator_total[t->state] != total[t->state];
470 
471 		/* Check for stall activity or a previous threshold breach */
472 		if (!new_stall && !t->pending_event)
473 			continue;
474 		/*
475 		 * Check for new stall activity, as well as deferred
476 		 * events that occurred in the last window after the
477 		 * trigger had already fired (we want to ratelimit
478 		 * events without dropping any).
479 		 */
480 		if (new_stall) {
481 			/* Calculate growth since last update */
482 			growth = window_update(&t->win, now, total[t->state]);
483 			if (!t->pending_event) {
484 				if (growth < t->threshold)
485 					continue;
486 
487 				t->pending_event = true;
488 			}
489 		}
490 		/* Limit event signaling to once per window */
491 		if (now < t->last_event_time + t->win.size)
492 			continue;
493 
494 		/* Generate an event */
495 		if (cmpxchg(&t->event, 0, 1) == 0) {
496 			if (t->of)
497 				kernfs_notify(t->of->kn);
498 			else
499 				wake_up_interruptible(&t->event_wait);
500 		}
501 		t->last_event_time = now;
502 		/* Reset threshold breach flag once event got generated */
503 		t->pending_event = false;
504 	}
505 }
506 
507 static u64 update_averages(struct psi_group *group, u64 now)
508 {
509 	unsigned long missed_periods = 0;
510 	u64 expires, period;
511 	u64 avg_next_update;
512 	int s;
513 
514 	/* avgX= */
515 	expires = group->avg_next_update;
516 	if (now - expires >= psi_period)
517 		missed_periods = div_u64(now - expires, psi_period);
518 
519 	/*
520 	 * The periodic clock tick can get delayed for various
521 	 * reasons, especially on loaded systems. To avoid clock
522 	 * drift, we schedule the clock in fixed psi_period intervals.
523 	 * But the deltas we sample out of the per-cpu buckets above
524 	 * are based on the actual time elapsing between clock ticks.
525 	 */
526 	avg_next_update = expires + ((1 + missed_periods) * psi_period);
527 	period = now - (group->avg_last_update + (missed_periods * psi_period));
528 	group->avg_last_update = now;
529 
530 	for (s = 0; s < NR_PSI_STATES - 1; s++) {
531 		u32 sample;
532 
533 		sample = group->total[PSI_AVGS][s] - group->avg_total[s];
534 		/*
535 		 * Due to the lockless sampling of the time buckets,
536 		 * recorded time deltas can slip into the next period,
537 		 * which under full pressure can result in samples in
538 		 * excess of the period length.
539 		 *
540 		 * We don't want to report non-sensical pressures in
541 		 * excess of 100%, nor do we want to drop such events
542 		 * on the floor. Instead we punt any overage into the
543 		 * future until pressure subsides. By doing this we
544 		 * don't underreport the occurring pressure curve, we
545 		 * just report it delayed by one period length.
546 		 *
547 		 * The error isn't cumulative. As soon as another
548 		 * delta slips from a period P to P+1, by definition
549 		 * it frees up its time T in P.
550 		 */
551 		if (sample > period)
552 			sample = period;
553 		group->avg_total[s] += sample;
554 		calc_avgs(group->avg[s], missed_periods, sample, period);
555 	}
556 
557 	return avg_next_update;
558 }
559 
560 static void psi_avgs_work(struct work_struct *work)
561 {
562 	struct delayed_work *dwork;
563 	struct psi_group *group;
564 	u32 changed_states;
565 	u64 now;
566 
567 	dwork = to_delayed_work(work);
568 	group = container_of(dwork, struct psi_group, avgs_work);
569 
570 	mutex_lock(&group->avgs_lock);
571 
572 	now = sched_clock();
573 
574 	collect_percpu_times(group, PSI_AVGS, &changed_states);
575 	/*
576 	 * If there is task activity, periodically fold the per-cpu
577 	 * times and feed samples into the running averages. If things
578 	 * are idle and there is no data to process, stop the clock.
579 	 * Once restarted, we'll catch up the running averages in one
580 	 * go - see calc_avgs() and missed_periods.
581 	 */
582 	if (now >= group->avg_next_update) {
583 		update_triggers(group, now, PSI_AVGS);
584 		group->avg_next_update = update_averages(group, now);
585 	}
586 
587 	if (changed_states & PSI_STATE_RESCHEDULE) {
588 		schedule_delayed_work(dwork, nsecs_to_jiffies(
589 				group->avg_next_update - now) + 1);
590 	}
591 
592 	mutex_unlock(&group->avgs_lock);
593 }
594 
595 static void init_rtpoll_triggers(struct psi_group *group, u64 now)
596 {
597 	struct psi_trigger *t;
598 
599 	list_for_each_entry(t, &group->rtpoll_triggers, node)
600 		window_reset(&t->win, now,
601 				group->total[PSI_POLL][t->state], 0);
602 	memcpy(group->rtpoll_total, group->total[PSI_POLL],
603 		   sizeof(group->rtpoll_total));
604 	group->rtpoll_next_update = now + group->rtpoll_min_period;
605 }
606 
607 /* Schedule rtpolling if it's not already scheduled or forced. */
608 static void psi_schedule_rtpoll_work(struct psi_group *group, unsigned long delay,
609 				   bool force)
610 {
611 	struct task_struct *task;
612 
613 	/*
614 	 * atomic_xchg should be called even when !force to provide a
615 	 * full memory barrier (see the comment inside psi_rtpoll_work).
616 	 */
617 	if (atomic_xchg(&group->rtpoll_scheduled, 1) && !force)
618 		return;
619 
620 	rcu_read_lock();
621 
622 	task = rcu_dereference(group->rtpoll_task);
623 	/*
624 	 * kworker might be NULL in case psi_trigger_destroy races with
625 	 * psi_task_change (hotpath) which can't use locks
626 	 */
627 	if (likely(task))
628 		mod_timer(&group->rtpoll_timer, jiffies + delay);
629 	else
630 		atomic_set(&group->rtpoll_scheduled, 0);
631 
632 	rcu_read_unlock();
633 }
634 
635 static void psi_rtpoll_work(struct psi_group *group)
636 {
637 	bool force_reschedule = false;
638 	u32 changed_states;
639 	u64 now;
640 
641 	mutex_lock(&group->rtpoll_trigger_lock);
642 
643 	now = sched_clock();
644 
645 	if (now > group->rtpoll_until) {
646 		/*
647 		 * We are either about to start or might stop rtpolling if no
648 		 * state change was recorded. Resetting rtpoll_scheduled leaves
649 		 * a small window for psi_group_change to sneak in and schedule
650 		 * an immediate rtpoll_work before we get to rescheduling. One
651 		 * potential extra wakeup at the end of the rtpolling window
652 		 * should be negligible and rtpoll_next_update still keeps
653 		 * updates correctly on schedule.
654 		 */
655 		atomic_set(&group->rtpoll_scheduled, 0);
656 		/*
657 		 * A task change can race with the rtpoll worker that is supposed to
658 		 * report on it. To avoid missing events, ensure ordering between
659 		 * rtpoll_scheduled and the task state accesses, such that if the
660 		 * rtpoll worker misses the state update, the task change is
661 		 * guaranteed to reschedule the rtpoll worker:
662 		 *
663 		 * rtpoll worker:
664 		 *   atomic_set(rtpoll_scheduled, 0)
665 		 *   smp_mb()
666 		 *   LOAD states
667 		 *
668 		 * task change:
669 		 *   STORE states
670 		 *   if atomic_xchg(rtpoll_scheduled, 1) == 0:
671 		 *     schedule rtpoll worker
672 		 *
673 		 * The atomic_xchg() implies a full barrier.
674 		 */
675 		smp_mb();
676 	} else {
677 		/* The rtpolling window is not over, keep rescheduling */
678 		force_reschedule = true;
679 	}
680 
681 
682 	collect_percpu_times(group, PSI_POLL, &changed_states);
683 
684 	if (changed_states & group->rtpoll_states) {
685 		/* Initialize trigger windows when entering rtpolling mode */
686 		if (now > group->rtpoll_until)
687 			init_rtpoll_triggers(group, now);
688 
689 		/*
690 		 * Keep the monitor active for at least the duration of the
691 		 * minimum tracking window as long as monitor states are
692 		 * changing.
693 		 */
694 		group->rtpoll_until = now +
695 			group->rtpoll_min_period * UPDATES_PER_WINDOW;
696 	}
697 
698 	if (now > group->rtpoll_until) {
699 		group->rtpoll_next_update = ULLONG_MAX;
700 		goto out;
701 	}
702 
703 	if (now >= group->rtpoll_next_update) {
704 		if (changed_states & group->rtpoll_states) {
705 			update_triggers(group, now, PSI_POLL);
706 			memcpy(group->rtpoll_total, group->total[PSI_POLL],
707 				   sizeof(group->rtpoll_total));
708 		}
709 		group->rtpoll_next_update = now + group->rtpoll_min_period;
710 	}
711 
712 	psi_schedule_rtpoll_work(group,
713 		nsecs_to_jiffies(group->rtpoll_next_update - now) + 1,
714 		force_reschedule);
715 
716 out:
717 	mutex_unlock(&group->rtpoll_trigger_lock);
718 }
719 
720 static int psi_rtpoll_worker(void *data)
721 {
722 	struct psi_group *group = (struct psi_group *)data;
723 
724 	sched_set_fifo_low(current);
725 
726 	while (true) {
727 		wait_event_interruptible(group->rtpoll_wait,
728 				atomic_cmpxchg(&group->rtpoll_wakeup, 1, 0) ||
729 				kthread_should_stop());
730 		if (kthread_should_stop())
731 			break;
732 
733 		psi_rtpoll_work(group);
734 	}
735 	return 0;
736 }
737 
738 static void poll_timer_fn(struct timer_list *t)
739 {
740 	struct psi_group *group = timer_container_of(group, t, rtpoll_timer);
741 
742 	atomic_set(&group->rtpoll_wakeup, 1);
743 	wake_up_interruptible(&group->rtpoll_wait);
744 }
745 
746 static void record_times(struct psi_group_cpu *groupc, u64 now)
747 {
748 	u32 delta;
749 
750 	delta = now - groupc->state_start;
751 	groupc->state_start = now;
752 
753 	if (groupc->state_mask & (1 << PSI_IO_SOME)) {
754 		groupc->times[PSI_IO_SOME] += delta;
755 		if (groupc->state_mask & (1 << PSI_IO_FULL))
756 			groupc->times[PSI_IO_FULL] += delta;
757 	}
758 
759 	if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
760 		groupc->times[PSI_MEM_SOME] += delta;
761 		if (groupc->state_mask & (1 << PSI_MEM_FULL))
762 			groupc->times[PSI_MEM_FULL] += delta;
763 	}
764 
765 	if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
766 		groupc->times[PSI_CPU_SOME] += delta;
767 		if (groupc->state_mask & (1 << PSI_CPU_FULL))
768 			groupc->times[PSI_CPU_FULL] += delta;
769 	}
770 
771 	if (groupc->state_mask & (1 << PSI_NONIDLE))
772 		groupc->times[PSI_NONIDLE] += delta;
773 }
774 
775 static void psi_group_change(struct psi_group *group, int cpu,
776 			     unsigned int clear, unsigned int set,
777 			     bool wake_clock)
778 {
779 	struct psi_group_cpu *groupc;
780 	unsigned int t, m;
781 	u32 state_mask;
782 	u64 now;
783 
784 	lockdep_assert_rq_held(cpu_rq(cpu));
785 	groupc = per_cpu_ptr(group->pcpu, cpu);
786 
787 	/*
788 	 * First we update the task counts according to the state
789 	 * change requested through the @clear and @set bits.
790 	 *
791 	 * Then if the cgroup PSI stats accounting enabled, we
792 	 * assess the aggregate resource states this CPU's tasks
793 	 * have been in since the last change, and account any
794 	 * SOME and FULL time these may have resulted in.
795 	 */
796 	write_seqcount_begin(&groupc->seq);
797 	now = cpu_clock(cpu);
798 
799 	/*
800 	 * Start with TSK_ONCPU, which doesn't have a corresponding
801 	 * task count - it's just a boolean flag directly encoded in
802 	 * the state mask. Clear, set, or carry the current state if
803 	 * no changes are requested.
804 	 */
805 	if (unlikely(clear & TSK_ONCPU)) {
806 		state_mask = 0;
807 		clear &= ~TSK_ONCPU;
808 	} else if (unlikely(set & TSK_ONCPU)) {
809 		state_mask = PSI_ONCPU;
810 		set &= ~TSK_ONCPU;
811 	} else {
812 		state_mask = groupc->state_mask & PSI_ONCPU;
813 	}
814 
815 	/*
816 	 * The rest of the state mask is calculated based on the task
817 	 * counts. Update those first, then construct the mask.
818 	 */
819 	for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
820 		if (!(m & (1 << t)))
821 			continue;
822 		if (groupc->tasks[t]) {
823 			groupc->tasks[t]--;
824 		} else if (!psi_bug) {
825 			printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
826 					cpu, t, groupc->tasks[0],
827 					groupc->tasks[1], groupc->tasks[2],
828 					groupc->tasks[3], clear, set);
829 			psi_bug = 1;
830 		}
831 	}
832 
833 	for (t = 0; set; set &= ~(1 << t), t++)
834 		if (set & (1 << t))
835 			groupc->tasks[t]++;
836 
837 	if (!group->enabled) {
838 		/*
839 		 * On the first group change after disabling PSI, conclude
840 		 * the current state and flush its time. This is unlikely
841 		 * to matter to the user, but aggregation (get_recent_times)
842 		 * may have already incorporated the live state into times_prev;
843 		 * avoid a delta sample underflow when PSI is later re-enabled.
844 		 */
845 		if (unlikely(groupc->state_mask & (1 << PSI_NONIDLE)))
846 			record_times(groupc, now);
847 
848 		groupc->state_mask = state_mask;
849 
850 		write_seqcount_end(&groupc->seq);
851 		return;
852 	}
853 
854 	state_mask = test_states(groupc->tasks, state_mask);
855 
856 	/*
857 	 * Since we care about lost potential, a memstall is FULL
858 	 * when there are no other working tasks, but also when
859 	 * the CPU is actively reclaiming and nothing productive
860 	 * could run even if it were runnable. So when the current
861 	 * task in a cgroup is in_memstall, the corresponding groupc
862 	 * on that cpu is in PSI_MEM_FULL state.
863 	 */
864 	if (unlikely((state_mask & PSI_ONCPU) && cpu_curr(cpu)->in_memstall))
865 		state_mask |= (1 << PSI_MEM_FULL);
866 
867 	record_times(groupc, now);
868 
869 	groupc->state_mask = state_mask;
870 
871 	write_seqcount_end(&groupc->seq);
872 
873 	if (state_mask & group->rtpoll_states)
874 		psi_schedule_rtpoll_work(group, 1, false);
875 
876 	if (wake_clock && !delayed_work_pending(&group->avgs_work))
877 		schedule_delayed_work(&group->avgs_work, PSI_FREQ);
878 }
879 
880 static inline struct psi_group *task_psi_group(struct task_struct *task)
881 {
882 #ifdef CONFIG_CGROUPS
883 	if (static_branch_likely(&psi_cgroups_enabled))
884 		return cgroup_psi(task_dfl_cgroup(task));
885 #endif
886 	return &psi_system;
887 }
888 
889 static void psi_flags_change(struct task_struct *task, int clear, int set)
890 {
891 	if (((task->psi_flags & set) ||
892 	     (task->psi_flags & clear) != clear) &&
893 	    !psi_bug) {
894 		printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
895 				task->pid, task->comm, task_cpu(task),
896 				task->psi_flags, clear, set);
897 		psi_bug = 1;
898 	}
899 
900 	task->psi_flags &= ~clear;
901 	task->psi_flags |= set;
902 }
903 
904 void psi_task_change(struct task_struct *task, int clear, int set)
905 {
906 	int cpu = task_cpu(task);
907 	struct psi_group *group;
908 
909 	if (!task->pid)
910 		return;
911 
912 	psi_flags_change(task, clear, set);
913 
914 	group = task_psi_group(task);
915 	do {
916 		psi_group_change(group, cpu, clear, set, true);
917 	} while ((group = group->parent));
918 }
919 
920 void psi_task_switch(struct task_struct *prev, struct task_struct *next,
921 		     bool sleep)
922 {
923 	struct psi_group *group, *common = NULL;
924 	int cpu = task_cpu(prev);
925 
926 	if (next->pid) {
927 		psi_flags_change(next, 0, TSK_ONCPU);
928 		/*
929 		 * Set TSK_ONCPU on @next's cgroups. If @next shares any
930 		 * ancestors with @prev, those will already have @prev's
931 		 * TSK_ONCPU bit set, and we can stop the iteration there.
932 		 */
933 		group = task_psi_group(next);
934 		do {
935 			if (per_cpu_ptr(group->pcpu, cpu)->state_mask &
936 			    PSI_ONCPU) {
937 				common = group;
938 				break;
939 			}
940 
941 			psi_group_change(group, cpu, 0, TSK_ONCPU, true);
942 		} while ((group = group->parent));
943 	}
944 
945 	if (prev->pid) {
946 		int clear = TSK_ONCPU, set = 0;
947 		bool wake_clock = true;
948 
949 		/*
950 		 * When we're going to sleep, psi_dequeue() lets us
951 		 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and
952 		 * TSK_IOWAIT here, where we can combine it with
953 		 * TSK_ONCPU and save walking common ancestors twice.
954 		 */
955 		if (sleep) {
956 			clear |= TSK_RUNNING;
957 			if (prev->in_memstall)
958 				clear |= TSK_MEMSTALL_RUNNING;
959 			if (prev->in_iowait)
960 				set |= TSK_IOWAIT;
961 
962 			/*
963 			 * Periodic aggregation shuts off if there is a period of no
964 			 * task changes, so we wake it back up if necessary. However,
965 			 * don't do this if the task change is the aggregation worker
966 			 * itself going to sleep, or we'll ping-pong forever.
967 			 */
968 			if (unlikely((prev->flags & PF_WQ_WORKER) &&
969 				     wq_worker_last_func(prev) == psi_avgs_work))
970 				wake_clock = false;
971 		}
972 
973 		psi_flags_change(prev, clear, set);
974 
975 		group = task_psi_group(prev);
976 		do {
977 			if (group == common)
978 				break;
979 			psi_group_change(group, cpu, clear, set, wake_clock);
980 		} while ((group = group->parent));
981 
982 		/*
983 		 * TSK_ONCPU is handled up to the common ancestor. If there are
984 		 * any other differences between the two tasks (e.g. prev goes
985 		 * to sleep, or only one task is memstall), finish propagating
986 		 * those differences all the way up to the root.
987 		 */
988 		if ((prev->psi_flags ^ next->psi_flags) & ~TSK_ONCPU) {
989 			clear &= ~TSK_ONCPU;
990 			for (; group; group = group->parent)
991 				psi_group_change(group, cpu, clear, set, wake_clock);
992 		}
993 	}
994 }
995 
996 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
997 void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_struct *prev)
998 {
999 	int cpu = task_cpu(curr);
1000 	struct psi_group *group;
1001 	struct psi_group_cpu *groupc;
1002 	s64 delta;
1003 	u64 irq;
1004 
1005 	if (static_branch_likely(&psi_disabled) || !irqtime_enabled())
1006 		return;
1007 
1008 	if (!curr->pid)
1009 		return;
1010 
1011 	lockdep_assert_rq_held(rq);
1012 	group = task_psi_group(curr);
1013 	if (prev && task_psi_group(prev) == group)
1014 		return;
1015 
1016 	irq = irq_time_read(cpu);
1017 	delta = (s64)(irq - rq->psi_irq_time);
1018 	if (delta < 0)
1019 		return;
1020 	rq->psi_irq_time = irq;
1021 
1022 	do {
1023 		u64 now;
1024 
1025 		if (!group->enabled)
1026 			continue;
1027 
1028 		groupc = per_cpu_ptr(group->pcpu, cpu);
1029 
1030 		write_seqcount_begin(&groupc->seq);
1031 		now = cpu_clock(cpu);
1032 
1033 		record_times(groupc, now);
1034 		groupc->times[PSI_IRQ_FULL] += delta;
1035 
1036 		write_seqcount_end(&groupc->seq);
1037 
1038 		if (group->rtpoll_states & (1 << PSI_IRQ_FULL))
1039 			psi_schedule_rtpoll_work(group, 1, false);
1040 	} while ((group = group->parent));
1041 }
1042 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1043 
1044 /**
1045  * psi_memstall_enter - mark the beginning of a memory stall section
1046  * @flags: flags to handle nested sections
1047  *
1048  * Marks the calling task as being stalled due to a lack of memory,
1049  * such as waiting for a refault or performing reclaim.
1050  */
1051 void psi_memstall_enter(unsigned long *flags)
1052 {
1053 	struct rq_flags rf;
1054 	struct rq *rq;
1055 
1056 	if (static_branch_likely(&psi_disabled))
1057 		return;
1058 
1059 	*flags = current->in_memstall;
1060 	if (*flags)
1061 		return;
1062 	/*
1063 	 * in_memstall setting & accounting needs to be atomic wrt
1064 	 * changes to the task's scheduling state, otherwise we can
1065 	 * race with CPU migration.
1066 	 */
1067 	rq = this_rq_lock_irq(&rf);
1068 
1069 	current->in_memstall = 1;
1070 	psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING);
1071 
1072 	rq_unlock_irq(rq, &rf);
1073 }
1074 EXPORT_SYMBOL_GPL(psi_memstall_enter);
1075 
1076 /**
1077  * psi_memstall_leave - mark the end of an memory stall section
1078  * @flags: flags to handle nested memdelay sections
1079  *
1080  * Marks the calling task as no longer stalled due to lack of memory.
1081  */
1082 void psi_memstall_leave(unsigned long *flags)
1083 {
1084 	struct rq_flags rf;
1085 	struct rq *rq;
1086 
1087 	if (static_branch_likely(&psi_disabled))
1088 		return;
1089 
1090 	if (*flags)
1091 		return;
1092 	/*
1093 	 * in_memstall clearing & accounting needs to be atomic wrt
1094 	 * changes to the task's scheduling state, otherwise we could
1095 	 * race with CPU migration.
1096 	 */
1097 	rq = this_rq_lock_irq(&rf);
1098 
1099 	current->in_memstall = 0;
1100 	psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0);
1101 
1102 	rq_unlock_irq(rq, &rf);
1103 }
1104 EXPORT_SYMBOL_GPL(psi_memstall_leave);
1105 
1106 #ifdef CONFIG_CGROUPS
1107 int psi_cgroup_alloc(struct cgroup *cgroup)
1108 {
1109 	if (!static_branch_likely(&psi_cgroups_enabled))
1110 		return 0;
1111 
1112 	cgroup->psi = kzalloc(sizeof(struct psi_group), GFP_KERNEL);
1113 	if (!cgroup->psi)
1114 		return -ENOMEM;
1115 
1116 	cgroup->psi->pcpu = alloc_percpu(struct psi_group_cpu);
1117 	if (!cgroup->psi->pcpu) {
1118 		kfree(cgroup->psi);
1119 		return -ENOMEM;
1120 	}
1121 	group_init(cgroup->psi);
1122 	cgroup->psi->parent = cgroup_psi(cgroup_parent(cgroup));
1123 	return 0;
1124 }
1125 
1126 void psi_cgroup_free(struct cgroup *cgroup)
1127 {
1128 	if (!static_branch_likely(&psi_cgroups_enabled))
1129 		return;
1130 
1131 	cancel_delayed_work_sync(&cgroup->psi->avgs_work);
1132 	free_percpu(cgroup->psi->pcpu);
1133 	/* All triggers must be removed by now */
1134 	WARN_ONCE(cgroup->psi->rtpoll_states, "psi: trigger leak\n");
1135 	kfree(cgroup->psi);
1136 }
1137 
1138 /**
1139  * cgroup_move_task - move task to a different cgroup
1140  * @task: the task
1141  * @to: the target css_set
1142  *
1143  * Move task to a new cgroup and safely migrate its associated stall
1144  * state between the different groups.
1145  *
1146  * This function acquires the task's rq lock to lock out concurrent
1147  * changes to the task's scheduling state and - in case the task is
1148  * running - concurrent changes to its stall state.
1149  */
1150 void cgroup_move_task(struct task_struct *task, struct css_set *to)
1151 {
1152 	unsigned int task_flags;
1153 	struct rq_flags rf;
1154 	struct rq *rq;
1155 
1156 	if (!static_branch_likely(&psi_cgroups_enabled)) {
1157 		/*
1158 		 * Lame to do this here, but the scheduler cannot be locked
1159 		 * from the outside, so we move cgroups from inside sched/.
1160 		 */
1161 		rcu_assign_pointer(task->cgroups, to);
1162 		return;
1163 	}
1164 
1165 	rq = task_rq_lock(task, &rf);
1166 
1167 	/*
1168 	 * We may race with schedule() dropping the rq lock between
1169 	 * deactivating prev and switching to next. Because the psi
1170 	 * updates from the deactivation are deferred to the switch
1171 	 * callback to save cgroup tree updates, the task's scheduling
1172 	 * state here is not coherent with its psi state:
1173 	 *
1174 	 * schedule()                   cgroup_move_task()
1175 	 *   rq_lock()
1176 	 *   deactivate_task()
1177 	 *     p->on_rq = 0
1178 	 *     psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
1179 	 *   pick_next_task()
1180 	 *     rq_unlock()
1181 	 *                                rq_lock()
1182 	 *                                psi_task_change() // old cgroup
1183 	 *                                task->cgroups = to
1184 	 *                                psi_task_change() // new cgroup
1185 	 *                                rq_unlock()
1186 	 *     rq_lock()
1187 	 *   psi_sched_switch() // does deferred updates in new cgroup
1188 	 *
1189 	 * Don't rely on the scheduling state. Use psi_flags instead.
1190 	 */
1191 	task_flags = task->psi_flags;
1192 
1193 	if (task_flags)
1194 		psi_task_change(task, task_flags, 0);
1195 
1196 	/* See comment above */
1197 	rcu_assign_pointer(task->cgroups, to);
1198 
1199 	if (task_flags)
1200 		psi_task_change(task, 0, task_flags);
1201 
1202 	task_rq_unlock(rq, task, &rf);
1203 }
1204 
1205 void psi_cgroup_restart(struct psi_group *group)
1206 {
1207 	int cpu;
1208 
1209 	/*
1210 	 * After we disable psi_group->enabled, we don't actually
1211 	 * stop percpu tasks accounting in each psi_group_cpu,
1212 	 * instead only stop test_states() loop, record_times()
1213 	 * and averaging worker, see psi_group_change() for details.
1214 	 *
1215 	 * When disable cgroup PSI, this function has nothing to sync
1216 	 * since cgroup pressure files are hidden and percpu psi_group_cpu
1217 	 * would see !psi_group->enabled and only do task accounting.
1218 	 *
1219 	 * When re-enable cgroup PSI, this function use psi_group_change()
1220 	 * to get correct state mask from test_states() loop on tasks[],
1221 	 * and restart groupc->state_start from now, use .clear = .set = 0
1222 	 * here since no task status really changed.
1223 	 */
1224 	if (!group->enabled)
1225 		return;
1226 
1227 	for_each_possible_cpu(cpu) {
1228 		struct rq *rq = cpu_rq(cpu);
1229 		struct rq_flags rf;
1230 
1231 		rq_lock_irq(rq, &rf);
1232 		psi_group_change(group, cpu, 0, 0, true);
1233 		rq_unlock_irq(rq, &rf);
1234 	}
1235 }
1236 #endif /* CONFIG_CGROUPS */
1237 
1238 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
1239 {
1240 	bool only_full = false;
1241 	int full;
1242 	u64 now;
1243 
1244 	if (static_branch_likely(&psi_disabled))
1245 		return -EOPNOTSUPP;
1246 
1247 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1248 	if (!irqtime_enabled() && res == PSI_IRQ)
1249 		return -EOPNOTSUPP;
1250 #endif
1251 
1252 	/* Update averages before reporting them */
1253 	mutex_lock(&group->avgs_lock);
1254 	now = sched_clock();
1255 	collect_percpu_times(group, PSI_AVGS, NULL);
1256 	if (now >= group->avg_next_update)
1257 		group->avg_next_update = update_averages(group, now);
1258 	mutex_unlock(&group->avgs_lock);
1259 
1260 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1261 	only_full = res == PSI_IRQ;
1262 #endif
1263 
1264 	for (full = 0; full < 2 - only_full; full++) {
1265 		unsigned long avg[3] = { 0, };
1266 		u64 total = 0;
1267 		int w;
1268 
1269 		/* CPU FULL is undefined at the system level */
1270 		if (!(group == &psi_system && res == PSI_CPU && full)) {
1271 			for (w = 0; w < 3; w++)
1272 				avg[w] = group->avg[res * 2 + full][w];
1273 			total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1274 					NSEC_PER_USEC);
1275 		}
1276 
1277 		seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1278 			   full || only_full ? "full" : "some",
1279 			   LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1280 			   LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1281 			   LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1282 			   total);
1283 	}
1284 
1285 	return 0;
1286 }
1287 
1288 struct psi_trigger *psi_trigger_create(struct psi_group *group, char *buf,
1289 				       enum psi_res res, struct file *file,
1290 				       struct kernfs_open_file *of)
1291 {
1292 	struct psi_trigger *t;
1293 	enum psi_states state;
1294 	u32 threshold_us;
1295 	bool privileged;
1296 	u32 window_us;
1297 
1298 	if (static_branch_likely(&psi_disabled))
1299 		return ERR_PTR(-EOPNOTSUPP);
1300 
1301 	/*
1302 	 * Checking the privilege here on file->f_cred implies that a privileged user
1303 	 * could open the file and delegate the write to an unprivileged one.
1304 	 */
1305 	privileged = cap_raised(file->f_cred->cap_effective, CAP_SYS_RESOURCE);
1306 
1307 	if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1308 		state = PSI_IO_SOME + res * 2;
1309 	else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1310 		state = PSI_IO_FULL + res * 2;
1311 	else
1312 		return ERR_PTR(-EINVAL);
1313 
1314 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1315 	if (res == PSI_IRQ && --state != PSI_IRQ_FULL)
1316 		return ERR_PTR(-EINVAL);
1317 #endif
1318 
1319 	if (state >= PSI_NONIDLE)
1320 		return ERR_PTR(-EINVAL);
1321 
1322 	if (window_us == 0 || window_us > WINDOW_MAX_US)
1323 		return ERR_PTR(-EINVAL);
1324 
1325 	/*
1326 	 * Unprivileged users can only use 2s windows so that averages aggregation
1327 	 * work is used, and no RT threads need to be spawned.
1328 	 */
1329 	if (!privileged && window_us % 2000000)
1330 		return ERR_PTR(-EINVAL);
1331 
1332 	/* Check threshold */
1333 	if (threshold_us == 0 || threshold_us > window_us)
1334 		return ERR_PTR(-EINVAL);
1335 
1336 	t = kmalloc(sizeof(*t), GFP_KERNEL);
1337 	if (!t)
1338 		return ERR_PTR(-ENOMEM);
1339 
1340 	t->group = group;
1341 	t->state = state;
1342 	t->threshold = threshold_us * NSEC_PER_USEC;
1343 	t->win.size = window_us * NSEC_PER_USEC;
1344 	window_reset(&t->win, sched_clock(),
1345 			group->total[PSI_POLL][t->state], 0);
1346 
1347 	t->event = 0;
1348 	t->last_event_time = 0;
1349 	t->of = of;
1350 	if (!of)
1351 		init_waitqueue_head(&t->event_wait);
1352 	t->pending_event = false;
1353 	t->aggregator = privileged ? PSI_POLL : PSI_AVGS;
1354 
1355 	if (privileged) {
1356 		mutex_lock(&group->rtpoll_trigger_lock);
1357 
1358 		if (!rcu_access_pointer(group->rtpoll_task)) {
1359 			struct task_struct *task;
1360 
1361 			task = kthread_create(psi_rtpoll_worker, group, "psimon");
1362 			if (IS_ERR(task)) {
1363 				kfree(t);
1364 				mutex_unlock(&group->rtpoll_trigger_lock);
1365 				return ERR_CAST(task);
1366 			}
1367 			atomic_set(&group->rtpoll_wakeup, 0);
1368 			wake_up_process(task);
1369 			rcu_assign_pointer(group->rtpoll_task, task);
1370 		}
1371 
1372 		list_add(&t->node, &group->rtpoll_triggers);
1373 		group->rtpoll_min_period = min(group->rtpoll_min_period,
1374 			div_u64(t->win.size, UPDATES_PER_WINDOW));
1375 		group->rtpoll_nr_triggers[t->state]++;
1376 		group->rtpoll_states |= (1 << t->state);
1377 
1378 		mutex_unlock(&group->rtpoll_trigger_lock);
1379 	} else {
1380 		mutex_lock(&group->avgs_lock);
1381 
1382 		list_add(&t->node, &group->avg_triggers);
1383 		group->avg_nr_triggers[t->state]++;
1384 
1385 		mutex_unlock(&group->avgs_lock);
1386 	}
1387 	return t;
1388 }
1389 
1390 void psi_trigger_destroy(struct psi_trigger *t)
1391 {
1392 	struct psi_group *group;
1393 	struct task_struct *task_to_destroy = NULL;
1394 
1395 	/*
1396 	 * We do not check psi_disabled since it might have been disabled after
1397 	 * the trigger got created.
1398 	 */
1399 	if (!t)
1400 		return;
1401 
1402 	group = t->group;
1403 	/*
1404 	 * Wakeup waiters to stop polling and clear the queue to prevent it from
1405 	 * being accessed later. Can happen if cgroup is deleted from under a
1406 	 * polling process.
1407 	 */
1408 	if (t->of)
1409 		kernfs_notify(t->of->kn);
1410 	else
1411 		wake_up_interruptible(&t->event_wait);
1412 
1413 	if (t->aggregator == PSI_AVGS) {
1414 		mutex_lock(&group->avgs_lock);
1415 		if (!list_empty(&t->node)) {
1416 			list_del(&t->node);
1417 			group->avg_nr_triggers[t->state]--;
1418 		}
1419 		mutex_unlock(&group->avgs_lock);
1420 	} else {
1421 		mutex_lock(&group->rtpoll_trigger_lock);
1422 		if (!list_empty(&t->node)) {
1423 			struct psi_trigger *tmp;
1424 			u64 period = ULLONG_MAX;
1425 
1426 			list_del(&t->node);
1427 			group->rtpoll_nr_triggers[t->state]--;
1428 			if (!group->rtpoll_nr_triggers[t->state])
1429 				group->rtpoll_states &= ~(1 << t->state);
1430 			/*
1431 			 * Reset min update period for the remaining triggers
1432 			 * iff the destroying trigger had the min window size.
1433 			 */
1434 			if (group->rtpoll_min_period == div_u64(t->win.size, UPDATES_PER_WINDOW)) {
1435 				list_for_each_entry(tmp, &group->rtpoll_triggers, node)
1436 					period = min(period, div_u64(tmp->win.size,
1437 							UPDATES_PER_WINDOW));
1438 				group->rtpoll_min_period = period;
1439 			}
1440 			/* Destroy rtpoll_task when the last trigger is destroyed */
1441 			if (group->rtpoll_states == 0) {
1442 				group->rtpoll_until = 0;
1443 				task_to_destroy = rcu_dereference_protected(
1444 						group->rtpoll_task,
1445 						lockdep_is_held(&group->rtpoll_trigger_lock));
1446 				rcu_assign_pointer(group->rtpoll_task, NULL);
1447 				timer_delete(&group->rtpoll_timer);
1448 			}
1449 		}
1450 		mutex_unlock(&group->rtpoll_trigger_lock);
1451 	}
1452 
1453 	/*
1454 	 * Wait for psi_schedule_rtpoll_work RCU to complete its read-side
1455 	 * critical section before destroying the trigger and optionally the
1456 	 * rtpoll_task.
1457 	 */
1458 	synchronize_rcu();
1459 	/*
1460 	 * Stop kthread 'psimon' after releasing rtpoll_trigger_lock to prevent
1461 	 * a deadlock while waiting for psi_rtpoll_work to acquire
1462 	 * rtpoll_trigger_lock
1463 	 */
1464 	if (task_to_destroy) {
1465 		/*
1466 		 * After the RCU grace period has expired, the worker
1467 		 * can no longer be found through group->rtpoll_task.
1468 		 */
1469 		kthread_stop(task_to_destroy);
1470 		atomic_set(&group->rtpoll_scheduled, 0);
1471 	}
1472 	kfree(t);
1473 }
1474 
1475 __poll_t psi_trigger_poll(void **trigger_ptr,
1476 				struct file *file, poll_table *wait)
1477 {
1478 	__poll_t ret = DEFAULT_POLLMASK;
1479 	struct psi_trigger *t;
1480 
1481 	if (static_branch_likely(&psi_disabled))
1482 		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1483 
1484 	t = smp_load_acquire(trigger_ptr);
1485 	if (!t)
1486 		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1487 
1488 	if (t->of)
1489 		kernfs_generic_poll(t->of, wait);
1490 	else
1491 		poll_wait(file, &t->event_wait, wait);
1492 
1493 	if (cmpxchg(&t->event, 1, 0) == 1)
1494 		ret |= EPOLLPRI;
1495 
1496 	return ret;
1497 }
1498 
1499 #ifdef CONFIG_PROC_FS
1500 static int psi_io_show(struct seq_file *m, void *v)
1501 {
1502 	return psi_show(m, &psi_system, PSI_IO);
1503 }
1504 
1505 static int psi_memory_show(struct seq_file *m, void *v)
1506 {
1507 	return psi_show(m, &psi_system, PSI_MEM);
1508 }
1509 
1510 static int psi_cpu_show(struct seq_file *m, void *v)
1511 {
1512 	return psi_show(m, &psi_system, PSI_CPU);
1513 }
1514 
1515 static int psi_io_open(struct inode *inode, struct file *file)
1516 {
1517 	return single_open(file, psi_io_show, NULL);
1518 }
1519 
1520 static int psi_memory_open(struct inode *inode, struct file *file)
1521 {
1522 	return single_open(file, psi_memory_show, NULL);
1523 }
1524 
1525 static int psi_cpu_open(struct inode *inode, struct file *file)
1526 {
1527 	return single_open(file, psi_cpu_show, NULL);
1528 }
1529 
1530 static ssize_t psi_write(struct file *file, const char __user *user_buf,
1531 			 size_t nbytes, enum psi_res res)
1532 {
1533 	char buf[32];
1534 	size_t buf_size;
1535 	struct seq_file *seq;
1536 	struct psi_trigger *new;
1537 
1538 	if (static_branch_likely(&psi_disabled))
1539 		return -EOPNOTSUPP;
1540 
1541 	if (!nbytes)
1542 		return -EINVAL;
1543 
1544 	buf_size = min(nbytes, sizeof(buf));
1545 	if (copy_from_user(buf, user_buf, buf_size))
1546 		return -EFAULT;
1547 
1548 	buf[buf_size - 1] = '\0';
1549 
1550 	seq = file->private_data;
1551 
1552 	/* Take seq->lock to protect seq->private from concurrent writes */
1553 	mutex_lock(&seq->lock);
1554 
1555 	/* Allow only one trigger per file descriptor */
1556 	if (seq->private) {
1557 		mutex_unlock(&seq->lock);
1558 		return -EBUSY;
1559 	}
1560 
1561 	new = psi_trigger_create(&psi_system, buf, res, file, NULL);
1562 	if (IS_ERR(new)) {
1563 		mutex_unlock(&seq->lock);
1564 		return PTR_ERR(new);
1565 	}
1566 
1567 	smp_store_release(&seq->private, new);
1568 	mutex_unlock(&seq->lock);
1569 
1570 	return nbytes;
1571 }
1572 
1573 static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1574 			    size_t nbytes, loff_t *ppos)
1575 {
1576 	return psi_write(file, user_buf, nbytes, PSI_IO);
1577 }
1578 
1579 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1580 				size_t nbytes, loff_t *ppos)
1581 {
1582 	return psi_write(file, user_buf, nbytes, PSI_MEM);
1583 }
1584 
1585 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1586 			     size_t nbytes, loff_t *ppos)
1587 {
1588 	return psi_write(file, user_buf, nbytes, PSI_CPU);
1589 }
1590 
1591 static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1592 {
1593 	struct seq_file *seq = file->private_data;
1594 
1595 	return psi_trigger_poll(&seq->private, file, wait);
1596 }
1597 
1598 static int psi_fop_release(struct inode *inode, struct file *file)
1599 {
1600 	struct seq_file *seq = file->private_data;
1601 
1602 	psi_trigger_destroy(seq->private);
1603 	return single_release(inode, file);
1604 }
1605 
1606 static const struct proc_ops psi_io_proc_ops = {
1607 	.proc_open	= psi_io_open,
1608 	.proc_read	= seq_read,
1609 	.proc_lseek	= seq_lseek,
1610 	.proc_write	= psi_io_write,
1611 	.proc_poll	= psi_fop_poll,
1612 	.proc_release	= psi_fop_release,
1613 };
1614 
1615 static const struct proc_ops psi_memory_proc_ops = {
1616 	.proc_open	= psi_memory_open,
1617 	.proc_read	= seq_read,
1618 	.proc_lseek	= seq_lseek,
1619 	.proc_write	= psi_memory_write,
1620 	.proc_poll	= psi_fop_poll,
1621 	.proc_release	= psi_fop_release,
1622 };
1623 
1624 static const struct proc_ops psi_cpu_proc_ops = {
1625 	.proc_open	= psi_cpu_open,
1626 	.proc_read	= seq_read,
1627 	.proc_lseek	= seq_lseek,
1628 	.proc_write	= psi_cpu_write,
1629 	.proc_poll	= psi_fop_poll,
1630 	.proc_release	= psi_fop_release,
1631 };
1632 
1633 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1634 static int psi_irq_show(struct seq_file *m, void *v)
1635 {
1636 	return psi_show(m, &psi_system, PSI_IRQ);
1637 }
1638 
1639 static int psi_irq_open(struct inode *inode, struct file *file)
1640 {
1641 	return single_open(file, psi_irq_show, NULL);
1642 }
1643 
1644 static ssize_t psi_irq_write(struct file *file, const char __user *user_buf,
1645 			     size_t nbytes, loff_t *ppos)
1646 {
1647 	return psi_write(file, user_buf, nbytes, PSI_IRQ);
1648 }
1649 
1650 static const struct proc_ops psi_irq_proc_ops = {
1651 	.proc_open	= psi_irq_open,
1652 	.proc_read	= seq_read,
1653 	.proc_lseek	= seq_lseek,
1654 	.proc_write	= psi_irq_write,
1655 	.proc_poll	= psi_fop_poll,
1656 	.proc_release	= psi_fop_release,
1657 };
1658 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1659 
1660 static int __init psi_proc_init(void)
1661 {
1662 	if (psi_enable) {
1663 		proc_mkdir("pressure", NULL);
1664 		proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops);
1665 		proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops);
1666 		proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops);
1667 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1668 		proc_create("pressure/irq", 0666, NULL, &psi_irq_proc_ops);
1669 #endif
1670 	}
1671 	return 0;
1672 }
1673 module_init(psi_proc_init);
1674 
1675 #endif /* CONFIG_PROC_FS */
1676