1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Pressure stall information for CPU, memory and IO 4 * 5 * Copyright (c) 2018 Facebook, Inc. 6 * Author: Johannes Weiner <hannes@cmpxchg.org> 7 * 8 * Polling support by Suren Baghdasaryan <surenb@google.com> 9 * Copyright (c) 2018 Google, Inc. 10 * 11 * When CPU, memory and IO are contended, tasks experience delays that 12 * reduce throughput and introduce latencies into the workload. Memory 13 * and IO contention, in addition, can cause a full loss of forward 14 * progress in which the CPU goes idle. 15 * 16 * This code aggregates individual task delays into resource pressure 17 * metrics that indicate problems with both workload health and 18 * resource utilization. 19 * 20 * Model 21 * 22 * The time in which a task can execute on a CPU is our baseline for 23 * productivity. Pressure expresses the amount of time in which this 24 * potential cannot be realized due to resource contention. 25 * 26 * This concept of productivity has two components: the workload and 27 * the CPU. To measure the impact of pressure on both, we define two 28 * contention states for a resource: SOME and FULL. 29 * 30 * In the SOME state of a given resource, one or more tasks are 31 * delayed on that resource. This affects the workload's ability to 32 * perform work, but the CPU may still be executing other tasks. 33 * 34 * In the FULL state of a given resource, all non-idle tasks are 35 * delayed on that resource such that nobody is advancing and the CPU 36 * goes idle. This leaves both workload and CPU unproductive. 37 * 38 * SOME = nr_delayed_tasks != 0 39 * FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0 40 * 41 * What it means for a task to be productive is defined differently 42 * for each resource. For IO, productive means a running task. For 43 * memory, productive means a running task that isn't a reclaimer. For 44 * CPU, productive means an oncpu task. 45 * 46 * Naturally, the FULL state doesn't exist for the CPU resource at the 47 * system level, but exist at the cgroup level. At the cgroup level, 48 * FULL means all non-idle tasks in the cgroup are delayed on the CPU 49 * resource which is being used by others outside of the cgroup or 50 * throttled by the cgroup cpu.max configuration. 51 * 52 * The percentage of wallclock time spent in those compound stall 53 * states gives pressure numbers between 0 and 100 for each resource, 54 * where the SOME percentage indicates workload slowdowns and the FULL 55 * percentage indicates reduced CPU utilization: 56 * 57 * %SOME = time(SOME) / period 58 * %FULL = time(FULL) / period 59 * 60 * Multiple CPUs 61 * 62 * The more tasks and available CPUs there are, the more work can be 63 * performed concurrently. This means that the potential that can go 64 * unrealized due to resource contention *also* scales with non-idle 65 * tasks and CPUs. 66 * 67 * Consider a scenario where 257 number crunching tasks are trying to 68 * run concurrently on 256 CPUs. If we simply aggregated the task 69 * states, we would have to conclude a CPU SOME pressure number of 70 * 100%, since *somebody* is waiting on a runqueue at all 71 * times. However, that is clearly not the amount of contention the 72 * workload is experiencing: only one out of 256 possible execution 73 * threads will be contended at any given time, or about 0.4%. 74 * 75 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any 76 * given time *one* of the tasks is delayed due to a lack of memory. 77 * Again, looking purely at the task state would yield a memory FULL 78 * pressure number of 0%, since *somebody* is always making forward 79 * progress. But again this wouldn't capture the amount of execution 80 * potential lost, which is 1 out of 4 CPUs, or 25%. 81 * 82 * To calculate wasted potential (pressure) with multiple processors, 83 * we have to base our calculation on the number of non-idle tasks in 84 * conjunction with the number of available CPUs, which is the number 85 * of potential execution threads. SOME becomes then the proportion of 86 * delayed tasks to possible threads, and FULL is the share of possible 87 * threads that are unproductive due to delays: 88 * 89 * threads = min(nr_nonidle_tasks, nr_cpus) 90 * SOME = min(nr_delayed_tasks / threads, 1) 91 * FULL = (threads - min(nr_productive_tasks, threads)) / threads 92 * 93 * For the 257 number crunchers on 256 CPUs, this yields: 94 * 95 * threads = min(257, 256) 96 * SOME = min(1 / 256, 1) = 0.4% 97 * FULL = (256 - min(256, 256)) / 256 = 0% 98 * 99 * For the 1 out of 4 memory-delayed tasks, this yields: 100 * 101 * threads = min(4, 4) 102 * SOME = min(1 / 4, 1) = 25% 103 * FULL = (4 - min(3, 4)) / 4 = 25% 104 * 105 * [ Substitute nr_cpus with 1, and you can see that it's a natural 106 * extension of the single-CPU model. ] 107 * 108 * Implementation 109 * 110 * To assess the precise time spent in each such state, we would have 111 * to freeze the system on task changes and start/stop the state 112 * clocks accordingly. Obviously that doesn't scale in practice. 113 * 114 * Because the scheduler aims to distribute the compute load evenly 115 * among the available CPUs, we can track task state locally to each 116 * CPU and, at much lower frequency, extrapolate the global state for 117 * the cumulative stall times and the running averages. 118 * 119 * For each runqueue, we track: 120 * 121 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0) 122 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu]) 123 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0) 124 * 125 * and then periodically aggregate: 126 * 127 * tNONIDLE = sum(tNONIDLE[i]) 128 * 129 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE 130 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE 131 * 132 * %SOME = tSOME / period 133 * %FULL = tFULL / period 134 * 135 * This gives us an approximation of pressure that is practical 136 * cost-wise, yet way more sensitive and accurate than periodic 137 * sampling of the aggregate task states would be. 138 */ 139 140 static int psi_bug __read_mostly; 141 142 DEFINE_STATIC_KEY_FALSE(psi_disabled); 143 DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled); 144 145 #ifdef CONFIG_PSI_DEFAULT_DISABLED 146 static bool psi_enable; 147 #else 148 static bool psi_enable = true; 149 #endif 150 static int __init setup_psi(char *str) 151 { 152 return kstrtobool(str, &psi_enable) == 0; 153 } 154 __setup("psi=", setup_psi); 155 156 /* Running averages - we need to be higher-res than loadavg */ 157 #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */ 158 #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */ 159 #define EXP_60s 1981 /* 1/exp(2s/60s) */ 160 #define EXP_300s 2034 /* 1/exp(2s/300s) */ 161 162 /* PSI trigger definitions */ 163 #define WINDOW_MAX_US 10000000 /* Max window size is 10s */ 164 #define UPDATES_PER_WINDOW 10 /* 10 updates per window */ 165 166 /* Sampling frequency in nanoseconds */ 167 static u64 psi_period __read_mostly; 168 169 /* System-level pressure and stall tracking */ 170 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu); 171 struct psi_group psi_system = { 172 .pcpu = &system_group_pcpu, 173 }; 174 175 static void psi_avgs_work(struct work_struct *work); 176 177 static void poll_timer_fn(struct timer_list *t); 178 179 static void group_init(struct psi_group *group) 180 { 181 int cpu; 182 183 group->enabled = true; 184 for_each_possible_cpu(cpu) 185 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq); 186 group->avg_last_update = sched_clock(); 187 group->avg_next_update = group->avg_last_update + psi_period; 188 mutex_init(&group->avgs_lock); 189 190 /* Init avg trigger-related members */ 191 INIT_LIST_HEAD(&group->avg_triggers); 192 memset(group->avg_nr_triggers, 0, sizeof(group->avg_nr_triggers)); 193 INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work); 194 195 /* Init rtpoll trigger-related members */ 196 atomic_set(&group->rtpoll_scheduled, 0); 197 mutex_init(&group->rtpoll_trigger_lock); 198 INIT_LIST_HEAD(&group->rtpoll_triggers); 199 group->rtpoll_min_period = U32_MAX; 200 group->rtpoll_next_update = ULLONG_MAX; 201 init_waitqueue_head(&group->rtpoll_wait); 202 timer_setup(&group->rtpoll_timer, poll_timer_fn, 0); 203 rcu_assign_pointer(group->rtpoll_task, NULL); 204 } 205 206 void __init psi_init(void) 207 { 208 if (!psi_enable) { 209 static_branch_enable(&psi_disabled); 210 static_branch_disable(&psi_cgroups_enabled); 211 return; 212 } 213 214 if (!cgroup_psi_enabled()) 215 static_branch_disable(&psi_cgroups_enabled); 216 217 psi_period = jiffies_to_nsecs(PSI_FREQ); 218 group_init(&psi_system); 219 } 220 221 static bool test_state(unsigned int *tasks, enum psi_states state, bool oncpu) 222 { 223 switch (state) { 224 case PSI_IO_SOME: 225 return unlikely(tasks[NR_IOWAIT]); 226 case PSI_IO_FULL: 227 return unlikely(tasks[NR_IOWAIT] && !tasks[NR_RUNNING]); 228 case PSI_MEM_SOME: 229 return unlikely(tasks[NR_MEMSTALL]); 230 case PSI_MEM_FULL: 231 return unlikely(tasks[NR_MEMSTALL] && 232 tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING]); 233 case PSI_CPU_SOME: 234 return unlikely(tasks[NR_RUNNING] > oncpu); 235 case PSI_CPU_FULL: 236 return unlikely(tasks[NR_RUNNING] && !oncpu); 237 case PSI_NONIDLE: 238 return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || 239 tasks[NR_RUNNING]; 240 default: 241 return false; 242 } 243 } 244 245 static void get_recent_times(struct psi_group *group, int cpu, 246 enum psi_aggregators aggregator, u32 *times, 247 u32 *pchanged_states) 248 { 249 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu); 250 int current_cpu = raw_smp_processor_id(); 251 unsigned int tasks[NR_PSI_TASK_COUNTS]; 252 u64 now, state_start; 253 enum psi_states s; 254 unsigned int seq; 255 u32 state_mask; 256 257 *pchanged_states = 0; 258 259 /* Snapshot a coherent view of the CPU state */ 260 do { 261 seq = read_seqcount_begin(&groupc->seq); 262 now = cpu_clock(cpu); 263 memcpy(times, groupc->times, sizeof(groupc->times)); 264 state_mask = groupc->state_mask; 265 state_start = groupc->state_start; 266 if (cpu == current_cpu) 267 memcpy(tasks, groupc->tasks, sizeof(groupc->tasks)); 268 } while (read_seqcount_retry(&groupc->seq, seq)); 269 270 /* Calculate state time deltas against the previous snapshot */ 271 for (s = 0; s < NR_PSI_STATES; s++) { 272 u32 delta; 273 /* 274 * In addition to already concluded states, we also 275 * incorporate currently active states on the CPU, 276 * since states may last for many sampling periods. 277 * 278 * This way we keep our delta sampling buckets small 279 * (u32) and our reported pressure close to what's 280 * actually happening. 281 */ 282 if (state_mask & (1 << s)) 283 times[s] += now - state_start; 284 285 delta = times[s] - groupc->times_prev[aggregator][s]; 286 groupc->times_prev[aggregator][s] = times[s]; 287 288 times[s] = delta; 289 if (delta) 290 *pchanged_states |= (1 << s); 291 } 292 293 /* 294 * When collect_percpu_times() from the avgs_work, we don't want to 295 * re-arm avgs_work when all CPUs are IDLE. But the current CPU running 296 * this avgs_work is never IDLE, cause avgs_work can't be shut off. 297 * So for the current CPU, we need to re-arm avgs_work only when 298 * (NR_RUNNING > 1 || NR_IOWAIT > 0 || NR_MEMSTALL > 0), for other CPUs 299 * we can just check PSI_NONIDLE delta. 300 */ 301 if (current_work() == &group->avgs_work.work) { 302 bool reschedule; 303 304 if (cpu == current_cpu) 305 reschedule = tasks[NR_RUNNING] + 306 tasks[NR_IOWAIT] + 307 tasks[NR_MEMSTALL] > 1; 308 else 309 reschedule = *pchanged_states & (1 << PSI_NONIDLE); 310 311 if (reschedule) 312 *pchanged_states |= PSI_STATE_RESCHEDULE; 313 } 314 } 315 316 static void calc_avgs(unsigned long avg[3], int missed_periods, 317 u64 time, u64 period) 318 { 319 unsigned long pct; 320 321 /* Fill in zeroes for periods of no activity */ 322 if (missed_periods) { 323 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods); 324 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods); 325 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods); 326 } 327 328 /* Sample the most recent active period */ 329 pct = div_u64(time * 100, period); 330 pct *= FIXED_1; 331 avg[0] = calc_load(avg[0], EXP_10s, pct); 332 avg[1] = calc_load(avg[1], EXP_60s, pct); 333 avg[2] = calc_load(avg[2], EXP_300s, pct); 334 } 335 336 static void collect_percpu_times(struct psi_group *group, 337 enum psi_aggregators aggregator, 338 u32 *pchanged_states) 339 { 340 u64 deltas[NR_PSI_STATES - 1] = { 0, }; 341 unsigned long nonidle_total = 0; 342 u32 changed_states = 0; 343 int cpu; 344 int s; 345 346 /* 347 * Collect the per-cpu time buckets and average them into a 348 * single time sample that is normalized to wallclock time. 349 * 350 * For averaging, each CPU is weighted by its non-idle time in 351 * the sampling period. This eliminates artifacts from uneven 352 * loading, or even entirely idle CPUs. 353 */ 354 for_each_possible_cpu(cpu) { 355 u32 times[NR_PSI_STATES]; 356 u32 nonidle; 357 u32 cpu_changed_states; 358 359 get_recent_times(group, cpu, aggregator, times, 360 &cpu_changed_states); 361 changed_states |= cpu_changed_states; 362 363 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]); 364 nonidle_total += nonidle; 365 366 for (s = 0; s < PSI_NONIDLE; s++) 367 deltas[s] += (u64)times[s] * nonidle; 368 } 369 370 /* 371 * Integrate the sample into the running statistics that are 372 * reported to userspace: the cumulative stall times and the 373 * decaying averages. 374 * 375 * Pressure percentages are sampled at PSI_FREQ. We might be 376 * called more often when the user polls more frequently than 377 * that; we might be called less often when there is no task 378 * activity, thus no data, and clock ticks are sporadic. The 379 * below handles both. 380 */ 381 382 /* total= */ 383 for (s = 0; s < NR_PSI_STATES - 1; s++) 384 group->total[aggregator][s] += 385 div_u64(deltas[s], max(nonidle_total, 1UL)); 386 387 if (pchanged_states) 388 *pchanged_states = changed_states; 389 } 390 391 /* Trigger tracking window manipulations */ 392 static void window_reset(struct psi_window *win, u64 now, u64 value, 393 u64 prev_growth) 394 { 395 win->start_time = now; 396 win->start_value = value; 397 win->prev_growth = prev_growth; 398 } 399 400 /* 401 * PSI growth tracking window update and growth calculation routine. 402 * 403 * This approximates a sliding tracking window by interpolating 404 * partially elapsed windows using historical growth data from the 405 * previous intervals. This minimizes memory requirements (by not storing 406 * all the intermediate values in the previous window) and simplifies 407 * the calculations. It works well because PSI signal changes only in 408 * positive direction and over relatively small window sizes the growth 409 * is close to linear. 410 */ 411 static u64 window_update(struct psi_window *win, u64 now, u64 value) 412 { 413 u64 elapsed; 414 u64 growth; 415 416 elapsed = now - win->start_time; 417 growth = value - win->start_value; 418 /* 419 * After each tracking window passes win->start_value and 420 * win->start_time get reset and win->prev_growth stores 421 * the average per-window growth of the previous window. 422 * win->prev_growth is then used to interpolate additional 423 * growth from the previous window assuming it was linear. 424 */ 425 if (elapsed > win->size) 426 window_reset(win, now, value, growth); 427 else { 428 u32 remaining; 429 430 remaining = win->size - elapsed; 431 growth += div64_u64(win->prev_growth * remaining, win->size); 432 } 433 434 return growth; 435 } 436 437 static u64 update_triggers(struct psi_group *group, u64 now, bool *update_total, 438 enum psi_aggregators aggregator) 439 { 440 struct psi_trigger *t; 441 u64 *total = group->total[aggregator]; 442 struct list_head *triggers; 443 u64 *aggregator_total; 444 *update_total = false; 445 446 if (aggregator == PSI_AVGS) { 447 triggers = &group->avg_triggers; 448 aggregator_total = group->avg_total; 449 } else { 450 triggers = &group->rtpoll_triggers; 451 aggregator_total = group->rtpoll_total; 452 } 453 454 /* 455 * On subsequent updates, calculate growth deltas and let 456 * watchers know when their specified thresholds are exceeded. 457 */ 458 list_for_each_entry(t, triggers, node) { 459 u64 growth; 460 bool new_stall; 461 462 new_stall = aggregator_total[t->state] != total[t->state]; 463 464 /* Check for stall activity or a previous threshold breach */ 465 if (!new_stall && !t->pending_event) 466 continue; 467 /* 468 * Check for new stall activity, as well as deferred 469 * events that occurred in the last window after the 470 * trigger had already fired (we want to ratelimit 471 * events without dropping any). 472 */ 473 if (new_stall) { 474 /* 475 * Multiple triggers might be looking at the same state, 476 * remember to update group->polling_total[] once we've 477 * been through all of them. Also remember to extend the 478 * polling time if we see new stall activity. 479 */ 480 *update_total = true; 481 482 /* Calculate growth since last update */ 483 growth = window_update(&t->win, now, total[t->state]); 484 if (!t->pending_event) { 485 if (growth < t->threshold) 486 continue; 487 488 t->pending_event = true; 489 } 490 } 491 /* Limit event signaling to once per window */ 492 if (now < t->last_event_time + t->win.size) 493 continue; 494 495 /* Generate an event */ 496 if (cmpxchg(&t->event, 0, 1) == 0) 497 wake_up_interruptible(&t->event_wait); 498 t->last_event_time = now; 499 /* Reset threshold breach flag once event got generated */ 500 t->pending_event = false; 501 } 502 503 return now + group->rtpoll_min_period; 504 } 505 506 static u64 update_averages(struct psi_group *group, u64 now) 507 { 508 unsigned long missed_periods = 0; 509 u64 expires, period; 510 u64 avg_next_update; 511 int s; 512 513 /* avgX= */ 514 expires = group->avg_next_update; 515 if (now - expires >= psi_period) 516 missed_periods = div_u64(now - expires, psi_period); 517 518 /* 519 * The periodic clock tick can get delayed for various 520 * reasons, especially on loaded systems. To avoid clock 521 * drift, we schedule the clock in fixed psi_period intervals. 522 * But the deltas we sample out of the per-cpu buckets above 523 * are based on the actual time elapsing between clock ticks. 524 */ 525 avg_next_update = expires + ((1 + missed_periods) * psi_period); 526 period = now - (group->avg_last_update + (missed_periods * psi_period)); 527 group->avg_last_update = now; 528 529 for (s = 0; s < NR_PSI_STATES - 1; s++) { 530 u32 sample; 531 532 sample = group->total[PSI_AVGS][s] - group->avg_total[s]; 533 /* 534 * Due to the lockless sampling of the time buckets, 535 * recorded time deltas can slip into the next period, 536 * which under full pressure can result in samples in 537 * excess of the period length. 538 * 539 * We don't want to report non-sensical pressures in 540 * excess of 100%, nor do we want to drop such events 541 * on the floor. Instead we punt any overage into the 542 * future until pressure subsides. By doing this we 543 * don't underreport the occurring pressure curve, we 544 * just report it delayed by one period length. 545 * 546 * The error isn't cumulative. As soon as another 547 * delta slips from a period P to P+1, by definition 548 * it frees up its time T in P. 549 */ 550 if (sample > period) 551 sample = period; 552 group->avg_total[s] += sample; 553 calc_avgs(group->avg[s], missed_periods, sample, period); 554 } 555 556 return avg_next_update; 557 } 558 559 static void psi_avgs_work(struct work_struct *work) 560 { 561 struct delayed_work *dwork; 562 struct psi_group *group; 563 u32 changed_states; 564 bool update_total; 565 u64 now; 566 567 dwork = to_delayed_work(work); 568 group = container_of(dwork, struct psi_group, avgs_work); 569 570 mutex_lock(&group->avgs_lock); 571 572 now = sched_clock(); 573 574 collect_percpu_times(group, PSI_AVGS, &changed_states); 575 /* 576 * If there is task activity, periodically fold the per-cpu 577 * times and feed samples into the running averages. If things 578 * are idle and there is no data to process, stop the clock. 579 * Once restarted, we'll catch up the running averages in one 580 * go - see calc_avgs() and missed_periods. 581 */ 582 if (now >= group->avg_next_update) { 583 update_triggers(group, now, &update_total, PSI_AVGS); 584 group->avg_next_update = update_averages(group, now); 585 } 586 587 if (changed_states & PSI_STATE_RESCHEDULE) { 588 schedule_delayed_work(dwork, nsecs_to_jiffies( 589 group->avg_next_update - now) + 1); 590 } 591 592 mutex_unlock(&group->avgs_lock); 593 } 594 595 static void init_rtpoll_triggers(struct psi_group *group, u64 now) 596 { 597 struct psi_trigger *t; 598 599 list_for_each_entry(t, &group->rtpoll_triggers, node) 600 window_reset(&t->win, now, 601 group->total[PSI_POLL][t->state], 0); 602 memcpy(group->rtpoll_total, group->total[PSI_POLL], 603 sizeof(group->rtpoll_total)); 604 group->rtpoll_next_update = now + group->rtpoll_min_period; 605 } 606 607 /* Schedule polling if it's not already scheduled or forced. */ 608 static void psi_schedule_rtpoll_work(struct psi_group *group, unsigned long delay, 609 bool force) 610 { 611 struct task_struct *task; 612 613 /* 614 * atomic_xchg should be called even when !force to provide a 615 * full memory barrier (see the comment inside psi_rtpoll_work). 616 */ 617 if (atomic_xchg(&group->rtpoll_scheduled, 1) && !force) 618 return; 619 620 rcu_read_lock(); 621 622 task = rcu_dereference(group->rtpoll_task); 623 /* 624 * kworker might be NULL in case psi_trigger_destroy races with 625 * psi_task_change (hotpath) which can't use locks 626 */ 627 if (likely(task)) 628 mod_timer(&group->rtpoll_timer, jiffies + delay); 629 else 630 atomic_set(&group->rtpoll_scheduled, 0); 631 632 rcu_read_unlock(); 633 } 634 635 static void psi_rtpoll_work(struct psi_group *group) 636 { 637 bool force_reschedule = false; 638 u32 changed_states; 639 bool update_total; 640 u64 now; 641 642 mutex_lock(&group->rtpoll_trigger_lock); 643 644 now = sched_clock(); 645 646 if (now > group->rtpoll_until) { 647 /* 648 * We are either about to start or might stop polling if no 649 * state change was recorded. Resetting poll_scheduled leaves 650 * a small window for psi_group_change to sneak in and schedule 651 * an immediate poll_work before we get to rescheduling. One 652 * potential extra wakeup at the end of the polling window 653 * should be negligible and polling_next_update still keeps 654 * updates correctly on schedule. 655 */ 656 atomic_set(&group->rtpoll_scheduled, 0); 657 /* 658 * A task change can race with the poll worker that is supposed to 659 * report on it. To avoid missing events, ensure ordering between 660 * poll_scheduled and the task state accesses, such that if the poll 661 * worker misses the state update, the task change is guaranteed to 662 * reschedule the poll worker: 663 * 664 * poll worker: 665 * atomic_set(poll_scheduled, 0) 666 * smp_mb() 667 * LOAD states 668 * 669 * task change: 670 * STORE states 671 * if atomic_xchg(poll_scheduled, 1) == 0: 672 * schedule poll worker 673 * 674 * The atomic_xchg() implies a full barrier. 675 */ 676 smp_mb(); 677 } else { 678 /* Polling window is not over, keep rescheduling */ 679 force_reschedule = true; 680 } 681 682 683 collect_percpu_times(group, PSI_POLL, &changed_states); 684 685 if (changed_states & group->rtpoll_states) { 686 /* Initialize trigger windows when entering polling mode */ 687 if (now > group->rtpoll_until) 688 init_rtpoll_triggers(group, now); 689 690 /* 691 * Keep the monitor active for at least the duration of the 692 * minimum tracking window as long as monitor states are 693 * changing. 694 */ 695 group->rtpoll_until = now + 696 group->rtpoll_min_period * UPDATES_PER_WINDOW; 697 } 698 699 if (now > group->rtpoll_until) { 700 group->rtpoll_next_update = ULLONG_MAX; 701 goto out; 702 } 703 704 if (now >= group->rtpoll_next_update) { 705 group->rtpoll_next_update = update_triggers(group, now, &update_total, PSI_POLL); 706 if (update_total) 707 memcpy(group->rtpoll_total, group->total[PSI_POLL], 708 sizeof(group->rtpoll_total)); 709 } 710 711 psi_schedule_rtpoll_work(group, 712 nsecs_to_jiffies(group->rtpoll_next_update - now) + 1, 713 force_reschedule); 714 715 out: 716 mutex_unlock(&group->rtpoll_trigger_lock); 717 } 718 719 static int psi_rtpoll_worker(void *data) 720 { 721 struct psi_group *group = (struct psi_group *)data; 722 723 sched_set_fifo_low(current); 724 725 while (true) { 726 wait_event_interruptible(group->rtpoll_wait, 727 atomic_cmpxchg(&group->rtpoll_wakeup, 1, 0) || 728 kthread_should_stop()); 729 if (kthread_should_stop()) 730 break; 731 732 psi_rtpoll_work(group); 733 } 734 return 0; 735 } 736 737 static void poll_timer_fn(struct timer_list *t) 738 { 739 struct psi_group *group = from_timer(group, t, rtpoll_timer); 740 741 atomic_set(&group->rtpoll_wakeup, 1); 742 wake_up_interruptible(&group->rtpoll_wait); 743 } 744 745 static void record_times(struct psi_group_cpu *groupc, u64 now) 746 { 747 u32 delta; 748 749 delta = now - groupc->state_start; 750 groupc->state_start = now; 751 752 if (groupc->state_mask & (1 << PSI_IO_SOME)) { 753 groupc->times[PSI_IO_SOME] += delta; 754 if (groupc->state_mask & (1 << PSI_IO_FULL)) 755 groupc->times[PSI_IO_FULL] += delta; 756 } 757 758 if (groupc->state_mask & (1 << PSI_MEM_SOME)) { 759 groupc->times[PSI_MEM_SOME] += delta; 760 if (groupc->state_mask & (1 << PSI_MEM_FULL)) 761 groupc->times[PSI_MEM_FULL] += delta; 762 } 763 764 if (groupc->state_mask & (1 << PSI_CPU_SOME)) { 765 groupc->times[PSI_CPU_SOME] += delta; 766 if (groupc->state_mask & (1 << PSI_CPU_FULL)) 767 groupc->times[PSI_CPU_FULL] += delta; 768 } 769 770 if (groupc->state_mask & (1 << PSI_NONIDLE)) 771 groupc->times[PSI_NONIDLE] += delta; 772 } 773 774 static void psi_group_change(struct psi_group *group, int cpu, 775 unsigned int clear, unsigned int set, u64 now, 776 bool wake_clock) 777 { 778 struct psi_group_cpu *groupc; 779 unsigned int t, m; 780 enum psi_states s; 781 u32 state_mask; 782 783 groupc = per_cpu_ptr(group->pcpu, cpu); 784 785 /* 786 * First we update the task counts according to the state 787 * change requested through the @clear and @set bits. 788 * 789 * Then if the cgroup PSI stats accounting enabled, we 790 * assess the aggregate resource states this CPU's tasks 791 * have been in since the last change, and account any 792 * SOME and FULL time these may have resulted in. 793 */ 794 write_seqcount_begin(&groupc->seq); 795 796 /* 797 * Start with TSK_ONCPU, which doesn't have a corresponding 798 * task count - it's just a boolean flag directly encoded in 799 * the state mask. Clear, set, or carry the current state if 800 * no changes are requested. 801 */ 802 if (unlikely(clear & TSK_ONCPU)) { 803 state_mask = 0; 804 clear &= ~TSK_ONCPU; 805 } else if (unlikely(set & TSK_ONCPU)) { 806 state_mask = PSI_ONCPU; 807 set &= ~TSK_ONCPU; 808 } else { 809 state_mask = groupc->state_mask & PSI_ONCPU; 810 } 811 812 /* 813 * The rest of the state mask is calculated based on the task 814 * counts. Update those first, then construct the mask. 815 */ 816 for (t = 0, m = clear; m; m &= ~(1 << t), t++) { 817 if (!(m & (1 << t))) 818 continue; 819 if (groupc->tasks[t]) { 820 groupc->tasks[t]--; 821 } else if (!psi_bug) { 822 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n", 823 cpu, t, groupc->tasks[0], 824 groupc->tasks[1], groupc->tasks[2], 825 groupc->tasks[3], clear, set); 826 psi_bug = 1; 827 } 828 } 829 830 for (t = 0; set; set &= ~(1 << t), t++) 831 if (set & (1 << t)) 832 groupc->tasks[t]++; 833 834 if (!group->enabled) { 835 /* 836 * On the first group change after disabling PSI, conclude 837 * the current state and flush its time. This is unlikely 838 * to matter to the user, but aggregation (get_recent_times) 839 * may have already incorporated the live state into times_prev; 840 * avoid a delta sample underflow when PSI is later re-enabled. 841 */ 842 if (unlikely(groupc->state_mask & (1 << PSI_NONIDLE))) 843 record_times(groupc, now); 844 845 groupc->state_mask = state_mask; 846 847 write_seqcount_end(&groupc->seq); 848 return; 849 } 850 851 for (s = 0; s < NR_PSI_STATES; s++) { 852 if (test_state(groupc->tasks, s, state_mask & PSI_ONCPU)) 853 state_mask |= (1 << s); 854 } 855 856 /* 857 * Since we care about lost potential, a memstall is FULL 858 * when there are no other working tasks, but also when 859 * the CPU is actively reclaiming and nothing productive 860 * could run even if it were runnable. So when the current 861 * task in a cgroup is in_memstall, the corresponding groupc 862 * on that cpu is in PSI_MEM_FULL state. 863 */ 864 if (unlikely((state_mask & PSI_ONCPU) && cpu_curr(cpu)->in_memstall)) 865 state_mask |= (1 << PSI_MEM_FULL); 866 867 record_times(groupc, now); 868 869 groupc->state_mask = state_mask; 870 871 write_seqcount_end(&groupc->seq); 872 873 if (state_mask & group->rtpoll_states) 874 psi_schedule_rtpoll_work(group, 1, false); 875 876 if (wake_clock && !delayed_work_pending(&group->avgs_work)) 877 schedule_delayed_work(&group->avgs_work, PSI_FREQ); 878 } 879 880 static inline struct psi_group *task_psi_group(struct task_struct *task) 881 { 882 #ifdef CONFIG_CGROUPS 883 if (static_branch_likely(&psi_cgroups_enabled)) 884 return cgroup_psi(task_dfl_cgroup(task)); 885 #endif 886 return &psi_system; 887 } 888 889 static void psi_flags_change(struct task_struct *task, int clear, int set) 890 { 891 if (((task->psi_flags & set) || 892 (task->psi_flags & clear) != clear) && 893 !psi_bug) { 894 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n", 895 task->pid, task->comm, task_cpu(task), 896 task->psi_flags, clear, set); 897 psi_bug = 1; 898 } 899 900 task->psi_flags &= ~clear; 901 task->psi_flags |= set; 902 } 903 904 void psi_task_change(struct task_struct *task, int clear, int set) 905 { 906 int cpu = task_cpu(task); 907 struct psi_group *group; 908 u64 now; 909 910 if (!task->pid) 911 return; 912 913 psi_flags_change(task, clear, set); 914 915 now = cpu_clock(cpu); 916 917 group = task_psi_group(task); 918 do { 919 psi_group_change(group, cpu, clear, set, now, true); 920 } while ((group = group->parent)); 921 } 922 923 void psi_task_switch(struct task_struct *prev, struct task_struct *next, 924 bool sleep) 925 { 926 struct psi_group *group, *common = NULL; 927 int cpu = task_cpu(prev); 928 u64 now = cpu_clock(cpu); 929 930 if (next->pid) { 931 psi_flags_change(next, 0, TSK_ONCPU); 932 /* 933 * Set TSK_ONCPU on @next's cgroups. If @next shares any 934 * ancestors with @prev, those will already have @prev's 935 * TSK_ONCPU bit set, and we can stop the iteration there. 936 */ 937 group = task_psi_group(next); 938 do { 939 if (per_cpu_ptr(group->pcpu, cpu)->state_mask & 940 PSI_ONCPU) { 941 common = group; 942 break; 943 } 944 945 psi_group_change(group, cpu, 0, TSK_ONCPU, now, true); 946 } while ((group = group->parent)); 947 } 948 949 if (prev->pid) { 950 int clear = TSK_ONCPU, set = 0; 951 bool wake_clock = true; 952 953 /* 954 * When we're going to sleep, psi_dequeue() lets us 955 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and 956 * TSK_IOWAIT here, where we can combine it with 957 * TSK_ONCPU and save walking common ancestors twice. 958 */ 959 if (sleep) { 960 clear |= TSK_RUNNING; 961 if (prev->in_memstall) 962 clear |= TSK_MEMSTALL_RUNNING; 963 if (prev->in_iowait) 964 set |= TSK_IOWAIT; 965 966 /* 967 * Periodic aggregation shuts off if there is a period of no 968 * task changes, so we wake it back up if necessary. However, 969 * don't do this if the task change is the aggregation worker 970 * itself going to sleep, or we'll ping-pong forever. 971 */ 972 if (unlikely((prev->flags & PF_WQ_WORKER) && 973 wq_worker_last_func(prev) == psi_avgs_work)) 974 wake_clock = false; 975 } 976 977 psi_flags_change(prev, clear, set); 978 979 group = task_psi_group(prev); 980 do { 981 if (group == common) 982 break; 983 psi_group_change(group, cpu, clear, set, now, wake_clock); 984 } while ((group = group->parent)); 985 986 /* 987 * TSK_ONCPU is handled up to the common ancestor. If there are 988 * any other differences between the two tasks (e.g. prev goes 989 * to sleep, or only one task is memstall), finish propagating 990 * those differences all the way up to the root. 991 */ 992 if ((prev->psi_flags ^ next->psi_flags) & ~TSK_ONCPU) { 993 clear &= ~TSK_ONCPU; 994 for (; group; group = group->parent) 995 psi_group_change(group, cpu, clear, set, now, wake_clock); 996 } 997 } 998 } 999 1000 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1001 void psi_account_irqtime(struct task_struct *task, u32 delta) 1002 { 1003 int cpu = task_cpu(task); 1004 struct psi_group *group; 1005 struct psi_group_cpu *groupc; 1006 u64 now; 1007 1008 if (!task->pid) 1009 return; 1010 1011 now = cpu_clock(cpu); 1012 1013 group = task_psi_group(task); 1014 do { 1015 if (!group->enabled) 1016 continue; 1017 1018 groupc = per_cpu_ptr(group->pcpu, cpu); 1019 1020 write_seqcount_begin(&groupc->seq); 1021 1022 record_times(groupc, now); 1023 groupc->times[PSI_IRQ_FULL] += delta; 1024 1025 write_seqcount_end(&groupc->seq); 1026 1027 if (group->rtpoll_states & (1 << PSI_IRQ_FULL)) 1028 psi_schedule_rtpoll_work(group, 1, false); 1029 } while ((group = group->parent)); 1030 } 1031 #endif 1032 1033 /** 1034 * psi_memstall_enter - mark the beginning of a memory stall section 1035 * @flags: flags to handle nested sections 1036 * 1037 * Marks the calling task as being stalled due to a lack of memory, 1038 * such as waiting for a refault or performing reclaim. 1039 */ 1040 void psi_memstall_enter(unsigned long *flags) 1041 { 1042 struct rq_flags rf; 1043 struct rq *rq; 1044 1045 if (static_branch_likely(&psi_disabled)) 1046 return; 1047 1048 *flags = current->in_memstall; 1049 if (*flags) 1050 return; 1051 /* 1052 * in_memstall setting & accounting needs to be atomic wrt 1053 * changes to the task's scheduling state, otherwise we can 1054 * race with CPU migration. 1055 */ 1056 rq = this_rq_lock_irq(&rf); 1057 1058 current->in_memstall = 1; 1059 psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING); 1060 1061 rq_unlock_irq(rq, &rf); 1062 } 1063 EXPORT_SYMBOL_GPL(psi_memstall_enter); 1064 1065 /** 1066 * psi_memstall_leave - mark the end of an memory stall section 1067 * @flags: flags to handle nested memdelay sections 1068 * 1069 * Marks the calling task as no longer stalled due to lack of memory. 1070 */ 1071 void psi_memstall_leave(unsigned long *flags) 1072 { 1073 struct rq_flags rf; 1074 struct rq *rq; 1075 1076 if (static_branch_likely(&psi_disabled)) 1077 return; 1078 1079 if (*flags) 1080 return; 1081 /* 1082 * in_memstall clearing & accounting needs to be atomic wrt 1083 * changes to the task's scheduling state, otherwise we could 1084 * race with CPU migration. 1085 */ 1086 rq = this_rq_lock_irq(&rf); 1087 1088 current->in_memstall = 0; 1089 psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0); 1090 1091 rq_unlock_irq(rq, &rf); 1092 } 1093 EXPORT_SYMBOL_GPL(psi_memstall_leave); 1094 1095 #ifdef CONFIG_CGROUPS 1096 int psi_cgroup_alloc(struct cgroup *cgroup) 1097 { 1098 if (!static_branch_likely(&psi_cgroups_enabled)) 1099 return 0; 1100 1101 cgroup->psi = kzalloc(sizeof(struct psi_group), GFP_KERNEL); 1102 if (!cgroup->psi) 1103 return -ENOMEM; 1104 1105 cgroup->psi->pcpu = alloc_percpu(struct psi_group_cpu); 1106 if (!cgroup->psi->pcpu) { 1107 kfree(cgroup->psi); 1108 return -ENOMEM; 1109 } 1110 group_init(cgroup->psi); 1111 cgroup->psi->parent = cgroup_psi(cgroup_parent(cgroup)); 1112 return 0; 1113 } 1114 1115 void psi_cgroup_free(struct cgroup *cgroup) 1116 { 1117 if (!static_branch_likely(&psi_cgroups_enabled)) 1118 return; 1119 1120 cancel_delayed_work_sync(&cgroup->psi->avgs_work); 1121 free_percpu(cgroup->psi->pcpu); 1122 /* All triggers must be removed by now */ 1123 WARN_ONCE(cgroup->psi->rtpoll_states, "psi: trigger leak\n"); 1124 kfree(cgroup->psi); 1125 } 1126 1127 /** 1128 * cgroup_move_task - move task to a different cgroup 1129 * @task: the task 1130 * @to: the target css_set 1131 * 1132 * Move task to a new cgroup and safely migrate its associated stall 1133 * state between the different groups. 1134 * 1135 * This function acquires the task's rq lock to lock out concurrent 1136 * changes to the task's scheduling state and - in case the task is 1137 * running - concurrent changes to its stall state. 1138 */ 1139 void cgroup_move_task(struct task_struct *task, struct css_set *to) 1140 { 1141 unsigned int task_flags; 1142 struct rq_flags rf; 1143 struct rq *rq; 1144 1145 if (!static_branch_likely(&psi_cgroups_enabled)) { 1146 /* 1147 * Lame to do this here, but the scheduler cannot be locked 1148 * from the outside, so we move cgroups from inside sched/. 1149 */ 1150 rcu_assign_pointer(task->cgroups, to); 1151 return; 1152 } 1153 1154 rq = task_rq_lock(task, &rf); 1155 1156 /* 1157 * We may race with schedule() dropping the rq lock between 1158 * deactivating prev and switching to next. Because the psi 1159 * updates from the deactivation are deferred to the switch 1160 * callback to save cgroup tree updates, the task's scheduling 1161 * state here is not coherent with its psi state: 1162 * 1163 * schedule() cgroup_move_task() 1164 * rq_lock() 1165 * deactivate_task() 1166 * p->on_rq = 0 1167 * psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates 1168 * pick_next_task() 1169 * rq_unlock() 1170 * rq_lock() 1171 * psi_task_change() // old cgroup 1172 * task->cgroups = to 1173 * psi_task_change() // new cgroup 1174 * rq_unlock() 1175 * rq_lock() 1176 * psi_sched_switch() // does deferred updates in new cgroup 1177 * 1178 * Don't rely on the scheduling state. Use psi_flags instead. 1179 */ 1180 task_flags = task->psi_flags; 1181 1182 if (task_flags) 1183 psi_task_change(task, task_flags, 0); 1184 1185 /* See comment above */ 1186 rcu_assign_pointer(task->cgroups, to); 1187 1188 if (task_flags) 1189 psi_task_change(task, 0, task_flags); 1190 1191 task_rq_unlock(rq, task, &rf); 1192 } 1193 1194 void psi_cgroup_restart(struct psi_group *group) 1195 { 1196 int cpu; 1197 1198 /* 1199 * After we disable psi_group->enabled, we don't actually 1200 * stop percpu tasks accounting in each psi_group_cpu, 1201 * instead only stop test_state() loop, record_times() 1202 * and averaging worker, see psi_group_change() for details. 1203 * 1204 * When disable cgroup PSI, this function has nothing to sync 1205 * since cgroup pressure files are hidden and percpu psi_group_cpu 1206 * would see !psi_group->enabled and only do task accounting. 1207 * 1208 * When re-enable cgroup PSI, this function use psi_group_change() 1209 * to get correct state mask from test_state() loop on tasks[], 1210 * and restart groupc->state_start from now, use .clear = .set = 0 1211 * here since no task status really changed. 1212 */ 1213 if (!group->enabled) 1214 return; 1215 1216 for_each_possible_cpu(cpu) { 1217 struct rq *rq = cpu_rq(cpu); 1218 struct rq_flags rf; 1219 u64 now; 1220 1221 rq_lock_irq(rq, &rf); 1222 now = cpu_clock(cpu); 1223 psi_group_change(group, cpu, 0, 0, now, true); 1224 rq_unlock_irq(rq, &rf); 1225 } 1226 } 1227 #endif /* CONFIG_CGROUPS */ 1228 1229 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res) 1230 { 1231 bool only_full = false; 1232 int full; 1233 u64 now; 1234 1235 if (static_branch_likely(&psi_disabled)) 1236 return -EOPNOTSUPP; 1237 1238 /* Update averages before reporting them */ 1239 mutex_lock(&group->avgs_lock); 1240 now = sched_clock(); 1241 collect_percpu_times(group, PSI_AVGS, NULL); 1242 if (now >= group->avg_next_update) 1243 group->avg_next_update = update_averages(group, now); 1244 mutex_unlock(&group->avgs_lock); 1245 1246 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1247 only_full = res == PSI_IRQ; 1248 #endif 1249 1250 for (full = 0; full < 2 - only_full; full++) { 1251 unsigned long avg[3] = { 0, }; 1252 u64 total = 0; 1253 int w; 1254 1255 /* CPU FULL is undefined at the system level */ 1256 if (!(group == &psi_system && res == PSI_CPU && full)) { 1257 for (w = 0; w < 3; w++) 1258 avg[w] = group->avg[res * 2 + full][w]; 1259 total = div_u64(group->total[PSI_AVGS][res * 2 + full], 1260 NSEC_PER_USEC); 1261 } 1262 1263 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n", 1264 full || only_full ? "full" : "some", 1265 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]), 1266 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]), 1267 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]), 1268 total); 1269 } 1270 1271 return 0; 1272 } 1273 1274 struct psi_trigger *psi_trigger_create(struct psi_group *group, 1275 char *buf, enum psi_res res, struct file *file) 1276 { 1277 struct psi_trigger *t; 1278 enum psi_states state; 1279 u32 threshold_us; 1280 bool privileged; 1281 u32 window_us; 1282 1283 if (static_branch_likely(&psi_disabled)) 1284 return ERR_PTR(-EOPNOTSUPP); 1285 1286 /* 1287 * Checking the privilege here on file->f_cred implies that a privileged user 1288 * could open the file and delegate the write to an unprivileged one. 1289 */ 1290 privileged = cap_raised(file->f_cred->cap_effective, CAP_SYS_RESOURCE); 1291 1292 if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2) 1293 state = PSI_IO_SOME + res * 2; 1294 else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2) 1295 state = PSI_IO_FULL + res * 2; 1296 else 1297 return ERR_PTR(-EINVAL); 1298 1299 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1300 if (res == PSI_IRQ && --state != PSI_IRQ_FULL) 1301 return ERR_PTR(-EINVAL); 1302 #endif 1303 1304 if (state >= PSI_NONIDLE) 1305 return ERR_PTR(-EINVAL); 1306 1307 if (window_us == 0 || window_us > WINDOW_MAX_US) 1308 return ERR_PTR(-EINVAL); 1309 1310 /* 1311 * Unprivileged users can only use 2s windows so that averages aggregation 1312 * work is used, and no RT threads need to be spawned. 1313 */ 1314 if (!privileged && window_us % 2000000) 1315 return ERR_PTR(-EINVAL); 1316 1317 /* Check threshold */ 1318 if (threshold_us == 0 || threshold_us > window_us) 1319 return ERR_PTR(-EINVAL); 1320 1321 t = kmalloc(sizeof(*t), GFP_KERNEL); 1322 if (!t) 1323 return ERR_PTR(-ENOMEM); 1324 1325 t->group = group; 1326 t->state = state; 1327 t->threshold = threshold_us * NSEC_PER_USEC; 1328 t->win.size = window_us * NSEC_PER_USEC; 1329 window_reset(&t->win, sched_clock(), 1330 group->total[PSI_POLL][t->state], 0); 1331 1332 t->event = 0; 1333 t->last_event_time = 0; 1334 init_waitqueue_head(&t->event_wait); 1335 t->pending_event = false; 1336 t->aggregator = privileged ? PSI_POLL : PSI_AVGS; 1337 1338 if (privileged) { 1339 mutex_lock(&group->rtpoll_trigger_lock); 1340 1341 if (!rcu_access_pointer(group->rtpoll_task)) { 1342 struct task_struct *task; 1343 1344 task = kthread_create(psi_rtpoll_worker, group, "psimon"); 1345 if (IS_ERR(task)) { 1346 kfree(t); 1347 mutex_unlock(&group->rtpoll_trigger_lock); 1348 return ERR_CAST(task); 1349 } 1350 atomic_set(&group->rtpoll_wakeup, 0); 1351 wake_up_process(task); 1352 rcu_assign_pointer(group->rtpoll_task, task); 1353 } 1354 1355 list_add(&t->node, &group->rtpoll_triggers); 1356 group->rtpoll_min_period = min(group->rtpoll_min_period, 1357 div_u64(t->win.size, UPDATES_PER_WINDOW)); 1358 group->rtpoll_nr_triggers[t->state]++; 1359 group->rtpoll_states |= (1 << t->state); 1360 1361 mutex_unlock(&group->rtpoll_trigger_lock); 1362 } else { 1363 mutex_lock(&group->avgs_lock); 1364 1365 list_add(&t->node, &group->avg_triggers); 1366 group->avg_nr_triggers[t->state]++; 1367 1368 mutex_unlock(&group->avgs_lock); 1369 } 1370 return t; 1371 } 1372 1373 void psi_trigger_destroy(struct psi_trigger *t) 1374 { 1375 struct psi_group *group; 1376 struct task_struct *task_to_destroy = NULL; 1377 1378 /* 1379 * We do not check psi_disabled since it might have been disabled after 1380 * the trigger got created. 1381 */ 1382 if (!t) 1383 return; 1384 1385 group = t->group; 1386 /* 1387 * Wakeup waiters to stop polling and clear the queue to prevent it from 1388 * being accessed later. Can happen if cgroup is deleted from under a 1389 * polling process. 1390 */ 1391 wake_up_pollfree(&t->event_wait); 1392 1393 if (t->aggregator == PSI_AVGS) { 1394 mutex_lock(&group->avgs_lock); 1395 if (!list_empty(&t->node)) { 1396 list_del(&t->node); 1397 group->avg_nr_triggers[t->state]--; 1398 } 1399 mutex_unlock(&group->avgs_lock); 1400 } else { 1401 mutex_lock(&group->rtpoll_trigger_lock); 1402 if (!list_empty(&t->node)) { 1403 struct psi_trigger *tmp; 1404 u64 period = ULLONG_MAX; 1405 1406 list_del(&t->node); 1407 group->rtpoll_nr_triggers[t->state]--; 1408 if (!group->rtpoll_nr_triggers[t->state]) 1409 group->rtpoll_states &= ~(1 << t->state); 1410 /* 1411 * Reset min update period for the remaining triggers 1412 * iff the destroying trigger had the min window size. 1413 */ 1414 if (group->rtpoll_min_period == div_u64(t->win.size, UPDATES_PER_WINDOW)) { 1415 list_for_each_entry(tmp, &group->rtpoll_triggers, node) 1416 period = min(period, div_u64(tmp->win.size, 1417 UPDATES_PER_WINDOW)); 1418 group->rtpoll_min_period = period; 1419 } 1420 /* Destroy rtpoll_task when the last trigger is destroyed */ 1421 if (group->rtpoll_states == 0) { 1422 group->rtpoll_until = 0; 1423 task_to_destroy = rcu_dereference_protected( 1424 group->rtpoll_task, 1425 lockdep_is_held(&group->rtpoll_trigger_lock)); 1426 rcu_assign_pointer(group->rtpoll_task, NULL); 1427 del_timer(&group->rtpoll_timer); 1428 } 1429 } 1430 mutex_unlock(&group->rtpoll_trigger_lock); 1431 } 1432 1433 /* 1434 * Wait for psi_schedule_rtpoll_work RCU to complete its read-side 1435 * critical section before destroying the trigger and optionally the 1436 * rtpoll_task. 1437 */ 1438 synchronize_rcu(); 1439 /* 1440 * Stop kthread 'psimon' after releasing rtpoll_trigger_lock to prevent 1441 * a deadlock while waiting for psi_rtpoll_work to acquire 1442 * rtpoll_trigger_lock 1443 */ 1444 if (task_to_destroy) { 1445 /* 1446 * After the RCU grace period has expired, the worker 1447 * can no longer be found through group->rtpoll_task. 1448 */ 1449 kthread_stop(task_to_destroy); 1450 atomic_set(&group->rtpoll_scheduled, 0); 1451 } 1452 kfree(t); 1453 } 1454 1455 __poll_t psi_trigger_poll(void **trigger_ptr, 1456 struct file *file, poll_table *wait) 1457 { 1458 __poll_t ret = DEFAULT_POLLMASK; 1459 struct psi_trigger *t; 1460 1461 if (static_branch_likely(&psi_disabled)) 1462 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; 1463 1464 t = smp_load_acquire(trigger_ptr); 1465 if (!t) 1466 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; 1467 1468 poll_wait(file, &t->event_wait, wait); 1469 1470 if (cmpxchg(&t->event, 1, 0) == 1) 1471 ret |= EPOLLPRI; 1472 1473 return ret; 1474 } 1475 1476 #ifdef CONFIG_PROC_FS 1477 static int psi_io_show(struct seq_file *m, void *v) 1478 { 1479 return psi_show(m, &psi_system, PSI_IO); 1480 } 1481 1482 static int psi_memory_show(struct seq_file *m, void *v) 1483 { 1484 return psi_show(m, &psi_system, PSI_MEM); 1485 } 1486 1487 static int psi_cpu_show(struct seq_file *m, void *v) 1488 { 1489 return psi_show(m, &psi_system, PSI_CPU); 1490 } 1491 1492 static int psi_io_open(struct inode *inode, struct file *file) 1493 { 1494 return single_open(file, psi_io_show, NULL); 1495 } 1496 1497 static int psi_memory_open(struct inode *inode, struct file *file) 1498 { 1499 return single_open(file, psi_memory_show, NULL); 1500 } 1501 1502 static int psi_cpu_open(struct inode *inode, struct file *file) 1503 { 1504 return single_open(file, psi_cpu_show, NULL); 1505 } 1506 1507 static ssize_t psi_write(struct file *file, const char __user *user_buf, 1508 size_t nbytes, enum psi_res res) 1509 { 1510 char buf[32]; 1511 size_t buf_size; 1512 struct seq_file *seq; 1513 struct psi_trigger *new; 1514 1515 if (static_branch_likely(&psi_disabled)) 1516 return -EOPNOTSUPP; 1517 1518 if (!nbytes) 1519 return -EINVAL; 1520 1521 buf_size = min(nbytes, sizeof(buf)); 1522 if (copy_from_user(buf, user_buf, buf_size)) 1523 return -EFAULT; 1524 1525 buf[buf_size - 1] = '\0'; 1526 1527 seq = file->private_data; 1528 1529 /* Take seq->lock to protect seq->private from concurrent writes */ 1530 mutex_lock(&seq->lock); 1531 1532 /* Allow only one trigger per file descriptor */ 1533 if (seq->private) { 1534 mutex_unlock(&seq->lock); 1535 return -EBUSY; 1536 } 1537 1538 new = psi_trigger_create(&psi_system, buf, res, file); 1539 if (IS_ERR(new)) { 1540 mutex_unlock(&seq->lock); 1541 return PTR_ERR(new); 1542 } 1543 1544 smp_store_release(&seq->private, new); 1545 mutex_unlock(&seq->lock); 1546 1547 return nbytes; 1548 } 1549 1550 static ssize_t psi_io_write(struct file *file, const char __user *user_buf, 1551 size_t nbytes, loff_t *ppos) 1552 { 1553 return psi_write(file, user_buf, nbytes, PSI_IO); 1554 } 1555 1556 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf, 1557 size_t nbytes, loff_t *ppos) 1558 { 1559 return psi_write(file, user_buf, nbytes, PSI_MEM); 1560 } 1561 1562 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf, 1563 size_t nbytes, loff_t *ppos) 1564 { 1565 return psi_write(file, user_buf, nbytes, PSI_CPU); 1566 } 1567 1568 static __poll_t psi_fop_poll(struct file *file, poll_table *wait) 1569 { 1570 struct seq_file *seq = file->private_data; 1571 1572 return psi_trigger_poll(&seq->private, file, wait); 1573 } 1574 1575 static int psi_fop_release(struct inode *inode, struct file *file) 1576 { 1577 struct seq_file *seq = file->private_data; 1578 1579 psi_trigger_destroy(seq->private); 1580 return single_release(inode, file); 1581 } 1582 1583 static const struct proc_ops psi_io_proc_ops = { 1584 .proc_open = psi_io_open, 1585 .proc_read = seq_read, 1586 .proc_lseek = seq_lseek, 1587 .proc_write = psi_io_write, 1588 .proc_poll = psi_fop_poll, 1589 .proc_release = psi_fop_release, 1590 }; 1591 1592 static const struct proc_ops psi_memory_proc_ops = { 1593 .proc_open = psi_memory_open, 1594 .proc_read = seq_read, 1595 .proc_lseek = seq_lseek, 1596 .proc_write = psi_memory_write, 1597 .proc_poll = psi_fop_poll, 1598 .proc_release = psi_fop_release, 1599 }; 1600 1601 static const struct proc_ops psi_cpu_proc_ops = { 1602 .proc_open = psi_cpu_open, 1603 .proc_read = seq_read, 1604 .proc_lseek = seq_lseek, 1605 .proc_write = psi_cpu_write, 1606 .proc_poll = psi_fop_poll, 1607 .proc_release = psi_fop_release, 1608 }; 1609 1610 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1611 static int psi_irq_show(struct seq_file *m, void *v) 1612 { 1613 return psi_show(m, &psi_system, PSI_IRQ); 1614 } 1615 1616 static int psi_irq_open(struct inode *inode, struct file *file) 1617 { 1618 return single_open(file, psi_irq_show, NULL); 1619 } 1620 1621 static ssize_t psi_irq_write(struct file *file, const char __user *user_buf, 1622 size_t nbytes, loff_t *ppos) 1623 { 1624 return psi_write(file, user_buf, nbytes, PSI_IRQ); 1625 } 1626 1627 static const struct proc_ops psi_irq_proc_ops = { 1628 .proc_open = psi_irq_open, 1629 .proc_read = seq_read, 1630 .proc_lseek = seq_lseek, 1631 .proc_write = psi_irq_write, 1632 .proc_poll = psi_fop_poll, 1633 .proc_release = psi_fop_release, 1634 }; 1635 #endif 1636 1637 static int __init psi_proc_init(void) 1638 { 1639 if (psi_enable) { 1640 proc_mkdir("pressure", NULL); 1641 proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops); 1642 proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops); 1643 proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops); 1644 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1645 proc_create("pressure/irq", 0666, NULL, &psi_irq_proc_ops); 1646 #endif 1647 } 1648 return 0; 1649 } 1650 module_init(psi_proc_init); 1651 1652 #endif /* CONFIG_PROC_FS */ 1653