xref: /linux/kernel/sched/psi.c (revision 6203ef73fa5c0358f7960b038628259be1448724)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Pressure stall information for CPU, memory and IO
4  *
5  * Copyright (c) 2018 Facebook, Inc.
6  * Author: Johannes Weiner <hannes@cmpxchg.org>
7  *
8  * Polling support by Suren Baghdasaryan <surenb@google.com>
9  * Copyright (c) 2018 Google, Inc.
10  *
11  * When CPU, memory and IO are contended, tasks experience delays that
12  * reduce throughput and introduce latencies into the workload. Memory
13  * and IO contention, in addition, can cause a full loss of forward
14  * progress in which the CPU goes idle.
15  *
16  * This code aggregates individual task delays into resource pressure
17  * metrics that indicate problems with both workload health and
18  * resource utilization.
19  *
20  *			Model
21  *
22  * The time in which a task can execute on a CPU is our baseline for
23  * productivity. Pressure expresses the amount of time in which this
24  * potential cannot be realized due to resource contention.
25  *
26  * This concept of productivity has two components: the workload and
27  * the CPU. To measure the impact of pressure on both, we define two
28  * contention states for a resource: SOME and FULL.
29  *
30  * In the SOME state of a given resource, one or more tasks are
31  * delayed on that resource. This affects the workload's ability to
32  * perform work, but the CPU may still be executing other tasks.
33  *
34  * In the FULL state of a given resource, all non-idle tasks are
35  * delayed on that resource such that nobody is advancing and the CPU
36  * goes idle. This leaves both workload and CPU unproductive.
37  *
38  *	SOME = nr_delayed_tasks != 0
39  *	FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0
40  *
41  * What it means for a task to be productive is defined differently
42  * for each resource. For IO, productive means a running task. For
43  * memory, productive means a running task that isn't a reclaimer. For
44  * CPU, productive means an on-CPU task.
45  *
46  * Naturally, the FULL state doesn't exist for the CPU resource at the
47  * system level, but exist at the cgroup level. At the cgroup level,
48  * FULL means all non-idle tasks in the cgroup are delayed on the CPU
49  * resource which is being used by others outside of the cgroup or
50  * throttled by the cgroup cpu.max configuration.
51  *
52  * The percentage of wall clock time spent in those compound stall
53  * states gives pressure numbers between 0 and 100 for each resource,
54  * where the SOME percentage indicates workload slowdowns and the FULL
55  * percentage indicates reduced CPU utilization:
56  *
57  *	%SOME = time(SOME) / period
58  *	%FULL = time(FULL) / period
59  *
60  *			Multiple CPUs
61  *
62  * The more tasks and available CPUs there are, the more work can be
63  * performed concurrently. This means that the potential that can go
64  * unrealized due to resource contention *also* scales with non-idle
65  * tasks and CPUs.
66  *
67  * Consider a scenario where 257 number crunching tasks are trying to
68  * run concurrently on 256 CPUs. If we simply aggregated the task
69  * states, we would have to conclude a CPU SOME pressure number of
70  * 100%, since *somebody* is waiting on a runqueue at all
71  * times. However, that is clearly not the amount of contention the
72  * workload is experiencing: only one out of 256 possible execution
73  * threads will be contended at any given time, or about 0.4%.
74  *
75  * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any
76  * given time *one* of the tasks is delayed due to a lack of memory.
77  * Again, looking purely at the task state would yield a memory FULL
78  * pressure number of 0%, since *somebody* is always making forward
79  * progress. But again this wouldn't capture the amount of execution
80  * potential lost, which is 1 out of 4 CPUs, or 25%.
81  *
82  * To calculate wasted potential (pressure) with multiple processors,
83  * we have to base our calculation on the number of non-idle tasks in
84  * conjunction with the number of available CPUs, which is the number
85  * of potential execution threads. SOME becomes then the proportion of
86  * delayed tasks to possible threads, and FULL is the share of possible
87  * threads that are unproductive due to delays:
88  *
89  *	threads = min(nr_nonidle_tasks, nr_cpus)
90  *	   SOME = min(nr_delayed_tasks / threads, 1)
91  *	   FULL = (threads - min(nr_productive_tasks, threads)) / threads
92  *
93  * For the 257 number crunchers on 256 CPUs, this yields:
94  *
95  *	threads = min(257, 256)
96  *	   SOME = min(1 / 256, 1)             = 0.4%
97  *	   FULL = (256 - min(256, 256)) / 256 = 0%
98  *
99  * For the 1 out of 4 memory-delayed tasks, this yields:
100  *
101  *	threads = min(4, 4)
102  *	   SOME = min(1 / 4, 1)               = 25%
103  *	   FULL = (4 - min(3, 4)) / 4         = 25%
104  *
105  * [ Substitute nr_cpus with 1, and you can see that it's a natural
106  *   extension of the single-CPU model. ]
107  *
108  *			Implementation
109  *
110  * To assess the precise time spent in each such state, we would have
111  * to freeze the system on task changes and start/stop the state
112  * clocks accordingly. Obviously that doesn't scale in practice.
113  *
114  * Because the scheduler aims to distribute the compute load evenly
115  * among the available CPUs, we can track task state locally to each
116  * CPU and, at much lower frequency, extrapolate the global state for
117  * the cumulative stall times and the running averages.
118  *
119  * For each runqueue, we track:
120  *
121  *	   tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0)
122  *	   tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu])
123  *	tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0)
124  *
125  * and then periodically aggregate:
126  *
127  *	tNONIDLE = sum(tNONIDLE[i])
128  *
129  *	   tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE
130  *	   tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE
131  *
132  *	   %SOME = tSOME / period
133  *	   %FULL = tFULL / period
134  *
135  * This gives us an approximation of pressure that is practical
136  * cost-wise, yet way more sensitive and accurate than periodic
137  * sampling of the aggregate task states would be.
138  */
139 
140 static int psi_bug __read_mostly;
141 
142 DEFINE_STATIC_KEY_FALSE(psi_disabled);
143 static DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled);
144 
145 #ifdef CONFIG_PSI_DEFAULT_DISABLED
146 static bool psi_enable;
147 #else
148 static bool psi_enable = true;
149 #endif
150 static int __init setup_psi(char *str)
151 {
152 	return kstrtobool(str, &psi_enable) == 0;
153 }
154 __setup("psi=", setup_psi);
155 
156 /* Running averages - we need to be higher-res than loadavg */
157 #define PSI_FREQ	(2*HZ+1)	/* 2 sec intervals */
158 #define EXP_10s		1677		/* 1/exp(2s/10s) as fixed-point */
159 #define EXP_60s		1981		/* 1/exp(2s/60s) */
160 #define EXP_300s	2034		/* 1/exp(2s/300s) */
161 
162 /* PSI trigger definitions */
163 #define WINDOW_MAX_US 10000000	/* Max window size is 10s */
164 #define UPDATES_PER_WINDOW 10	/* 10 updates per window */
165 
166 /* Sampling frequency in nanoseconds */
167 static u64 psi_period __read_mostly;
168 
169 /* System-level pressure and stall tracking */
170 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu);
171 struct psi_group psi_system = {
172 	.pcpu = &system_group_pcpu,
173 };
174 
175 static void psi_avgs_work(struct work_struct *work);
176 
177 static void poll_timer_fn(struct timer_list *t);
178 
179 static void group_init(struct psi_group *group)
180 {
181 	int cpu;
182 
183 	group->enabled = true;
184 	for_each_possible_cpu(cpu)
185 		seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq);
186 	group->avg_last_update = sched_clock();
187 	group->avg_next_update = group->avg_last_update + psi_period;
188 	mutex_init(&group->avgs_lock);
189 
190 	/* Init avg trigger-related members */
191 	INIT_LIST_HEAD(&group->avg_triggers);
192 	memset(group->avg_nr_triggers, 0, sizeof(group->avg_nr_triggers));
193 	INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work);
194 
195 	/* Init rtpoll trigger-related members */
196 	atomic_set(&group->rtpoll_scheduled, 0);
197 	mutex_init(&group->rtpoll_trigger_lock);
198 	INIT_LIST_HEAD(&group->rtpoll_triggers);
199 	group->rtpoll_min_period = U32_MAX;
200 	group->rtpoll_next_update = ULLONG_MAX;
201 	init_waitqueue_head(&group->rtpoll_wait);
202 	timer_setup(&group->rtpoll_timer, poll_timer_fn, 0);
203 	rcu_assign_pointer(group->rtpoll_task, NULL);
204 }
205 
206 void __init psi_init(void)
207 {
208 	if (!psi_enable) {
209 		static_branch_enable(&psi_disabled);
210 		static_branch_disable(&psi_cgroups_enabled);
211 		return;
212 	}
213 
214 	if (!cgroup_psi_enabled())
215 		static_branch_disable(&psi_cgroups_enabled);
216 
217 	psi_period = jiffies_to_nsecs(PSI_FREQ);
218 	group_init(&psi_system);
219 }
220 
221 static u32 test_states(unsigned int *tasks, u32 state_mask)
222 {
223 	const bool oncpu = state_mask & PSI_ONCPU;
224 
225 	if (tasks[NR_IOWAIT]) {
226 		state_mask |= BIT(PSI_IO_SOME);
227 		if (!tasks[NR_RUNNING])
228 			state_mask |= BIT(PSI_IO_FULL);
229 	}
230 
231 	if (tasks[NR_MEMSTALL]) {
232 		state_mask |= BIT(PSI_MEM_SOME);
233 		if (tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING])
234 			state_mask |= BIT(PSI_MEM_FULL);
235 	}
236 
237 	if (tasks[NR_RUNNING] > oncpu)
238 		state_mask |= BIT(PSI_CPU_SOME);
239 
240 	if (tasks[NR_RUNNING] && !oncpu)
241 		state_mask |= BIT(PSI_CPU_FULL);
242 
243 	if (tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || tasks[NR_RUNNING])
244 		state_mask |= BIT(PSI_NONIDLE);
245 
246 	return state_mask;
247 }
248 
249 static void get_recent_times(struct psi_group *group, int cpu,
250 			     enum psi_aggregators aggregator, u32 *times,
251 			     u32 *pchanged_states)
252 {
253 	struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu);
254 	int current_cpu = raw_smp_processor_id();
255 	unsigned int tasks[NR_PSI_TASK_COUNTS];
256 	u64 now, state_start;
257 	enum psi_states s;
258 	unsigned int seq;
259 	u32 state_mask;
260 
261 	*pchanged_states = 0;
262 
263 	/* Snapshot a coherent view of the CPU state */
264 	do {
265 		seq = read_seqcount_begin(&groupc->seq);
266 		now = cpu_clock(cpu);
267 		memcpy(times, groupc->times, sizeof(groupc->times));
268 		state_mask = groupc->state_mask;
269 		state_start = groupc->state_start;
270 		if (cpu == current_cpu)
271 			memcpy(tasks, groupc->tasks, sizeof(groupc->tasks));
272 	} while (read_seqcount_retry(&groupc->seq, seq));
273 
274 	/* Calculate state time deltas against the previous snapshot */
275 	for (s = 0; s < NR_PSI_STATES; s++) {
276 		u32 delta;
277 		/*
278 		 * In addition to already concluded states, we also
279 		 * incorporate currently active states on the CPU,
280 		 * since states may last for many sampling periods.
281 		 *
282 		 * This way we keep our delta sampling buckets small
283 		 * (u32) and our reported pressure close to what's
284 		 * actually happening.
285 		 */
286 		if (state_mask & (1 << s))
287 			times[s] += now - state_start;
288 
289 		delta = times[s] - groupc->times_prev[aggregator][s];
290 		groupc->times_prev[aggregator][s] = times[s];
291 
292 		times[s] = delta;
293 		if (delta)
294 			*pchanged_states |= (1 << s);
295 	}
296 
297 	/*
298 	 * When collect_percpu_times() from the avgs_work, we don't want to
299 	 * re-arm avgs_work when all CPUs are IDLE. But the current CPU running
300 	 * this avgs_work is never IDLE, cause avgs_work can't be shut off.
301 	 * So for the current CPU, we need to re-arm avgs_work only when
302 	 * (NR_RUNNING > 1 || NR_IOWAIT > 0 || NR_MEMSTALL > 0), for other CPUs
303 	 * we can just check PSI_NONIDLE delta.
304 	 */
305 	if (current_work() == &group->avgs_work.work) {
306 		bool reschedule;
307 
308 		if (cpu == current_cpu)
309 			reschedule = tasks[NR_RUNNING] +
310 				     tasks[NR_IOWAIT] +
311 				     tasks[NR_MEMSTALL] > 1;
312 		else
313 			reschedule = *pchanged_states & (1 << PSI_NONIDLE);
314 
315 		if (reschedule)
316 			*pchanged_states |= PSI_STATE_RESCHEDULE;
317 	}
318 }
319 
320 static void calc_avgs(unsigned long avg[3], int missed_periods,
321 		      u64 time, u64 period)
322 {
323 	unsigned long pct;
324 
325 	/* Fill in zeroes for periods of no activity */
326 	if (missed_periods) {
327 		avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods);
328 		avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods);
329 		avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods);
330 	}
331 
332 	/* Sample the most recent active period */
333 	pct = div_u64(time * 100, period);
334 	pct *= FIXED_1;
335 	avg[0] = calc_load(avg[0], EXP_10s, pct);
336 	avg[1] = calc_load(avg[1], EXP_60s, pct);
337 	avg[2] = calc_load(avg[2], EXP_300s, pct);
338 }
339 
340 static void collect_percpu_times(struct psi_group *group,
341 				 enum psi_aggregators aggregator,
342 				 u32 *pchanged_states)
343 {
344 	u64 deltas[NR_PSI_STATES - 1] = { 0, };
345 	unsigned long nonidle_total = 0;
346 	u32 changed_states = 0;
347 	int cpu;
348 	int s;
349 
350 	/*
351 	 * Collect the per-cpu time buckets and average them into a
352 	 * single time sample that is normalized to wall clock time.
353 	 *
354 	 * For averaging, each CPU is weighted by its non-idle time in
355 	 * the sampling period. This eliminates artifacts from uneven
356 	 * loading, or even entirely idle CPUs.
357 	 */
358 	for_each_possible_cpu(cpu) {
359 		u32 times[NR_PSI_STATES];
360 		u32 nonidle;
361 		u32 cpu_changed_states;
362 
363 		get_recent_times(group, cpu, aggregator, times,
364 				&cpu_changed_states);
365 		changed_states |= cpu_changed_states;
366 
367 		nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]);
368 		nonidle_total += nonidle;
369 
370 		for (s = 0; s < PSI_NONIDLE; s++)
371 			deltas[s] += (u64)times[s] * nonidle;
372 	}
373 
374 	/*
375 	 * Integrate the sample into the running statistics that are
376 	 * reported to userspace: the cumulative stall times and the
377 	 * decaying averages.
378 	 *
379 	 * Pressure percentages are sampled at PSI_FREQ. We might be
380 	 * called more often when the user polls more frequently than
381 	 * that; we might be called less often when there is no task
382 	 * activity, thus no data, and clock ticks are sporadic. The
383 	 * below handles both.
384 	 */
385 
386 	/* total= */
387 	for (s = 0; s < NR_PSI_STATES - 1; s++)
388 		group->total[aggregator][s] +=
389 				div_u64(deltas[s], max(nonidle_total, 1UL));
390 
391 	if (pchanged_states)
392 		*pchanged_states = changed_states;
393 }
394 
395 /* Trigger tracking window manipulations */
396 static void window_reset(struct psi_window *win, u64 now, u64 value,
397 			 u64 prev_growth)
398 {
399 	win->start_time = now;
400 	win->start_value = value;
401 	win->prev_growth = prev_growth;
402 }
403 
404 /*
405  * PSI growth tracking window update and growth calculation routine.
406  *
407  * This approximates a sliding tracking window by interpolating
408  * partially elapsed windows using historical growth data from the
409  * previous intervals. This minimizes memory requirements (by not storing
410  * all the intermediate values in the previous window) and simplifies
411  * the calculations. It works well because PSI signal changes only in
412  * positive direction and over relatively small window sizes the growth
413  * is close to linear.
414  */
415 static u64 window_update(struct psi_window *win, u64 now, u64 value)
416 {
417 	u64 elapsed;
418 	u64 growth;
419 
420 	elapsed = now - win->start_time;
421 	growth = value - win->start_value;
422 	/*
423 	 * After each tracking window passes win->start_value and
424 	 * win->start_time get reset and win->prev_growth stores
425 	 * the average per-window growth of the previous window.
426 	 * win->prev_growth is then used to interpolate additional
427 	 * growth from the previous window assuming it was linear.
428 	 */
429 	if (elapsed > win->size)
430 		window_reset(win, now, value, growth);
431 	else {
432 		u32 remaining;
433 
434 		remaining = win->size - elapsed;
435 		growth += div64_u64(win->prev_growth * remaining, win->size);
436 	}
437 
438 	return growth;
439 }
440 
441 static void update_triggers(struct psi_group *group, u64 now,
442 						   enum psi_aggregators aggregator)
443 {
444 	struct psi_trigger *t;
445 	u64 *total = group->total[aggregator];
446 	struct list_head *triggers;
447 	u64 *aggregator_total;
448 
449 	if (aggregator == PSI_AVGS) {
450 		triggers = &group->avg_triggers;
451 		aggregator_total = group->avg_total;
452 	} else {
453 		triggers = &group->rtpoll_triggers;
454 		aggregator_total = group->rtpoll_total;
455 	}
456 
457 	/*
458 	 * On subsequent updates, calculate growth deltas and let
459 	 * watchers know when their specified thresholds are exceeded.
460 	 */
461 	list_for_each_entry(t, triggers, node) {
462 		u64 growth;
463 		bool new_stall;
464 
465 		new_stall = aggregator_total[t->state] != total[t->state];
466 
467 		/* Check for stall activity or a previous threshold breach */
468 		if (!new_stall && !t->pending_event)
469 			continue;
470 		/*
471 		 * Check for new stall activity, as well as deferred
472 		 * events that occurred in the last window after the
473 		 * trigger had already fired (we want to ratelimit
474 		 * events without dropping any).
475 		 */
476 		if (new_stall) {
477 			/* Calculate growth since last update */
478 			growth = window_update(&t->win, now, total[t->state]);
479 			if (!t->pending_event) {
480 				if (growth < t->threshold)
481 					continue;
482 
483 				t->pending_event = true;
484 			}
485 		}
486 		/* Limit event signaling to once per window */
487 		if (now < t->last_event_time + t->win.size)
488 			continue;
489 
490 		/* Generate an event */
491 		if (cmpxchg(&t->event, 0, 1) == 0) {
492 			if (t->of)
493 				kernfs_notify(t->of->kn);
494 			else
495 				wake_up_interruptible(&t->event_wait);
496 		}
497 		t->last_event_time = now;
498 		/* Reset threshold breach flag once event got generated */
499 		t->pending_event = false;
500 	}
501 }
502 
503 static u64 update_averages(struct psi_group *group, u64 now)
504 {
505 	unsigned long missed_periods = 0;
506 	u64 expires, period;
507 	u64 avg_next_update;
508 	int s;
509 
510 	/* avgX= */
511 	expires = group->avg_next_update;
512 	if (now - expires >= psi_period)
513 		missed_periods = div_u64(now - expires, psi_period);
514 
515 	/*
516 	 * The periodic clock tick can get delayed for various
517 	 * reasons, especially on loaded systems. To avoid clock
518 	 * drift, we schedule the clock in fixed psi_period intervals.
519 	 * But the deltas we sample out of the per-cpu buckets above
520 	 * are based on the actual time elapsing between clock ticks.
521 	 */
522 	avg_next_update = expires + ((1 + missed_periods) * psi_period);
523 	period = now - (group->avg_last_update + (missed_periods * psi_period));
524 	group->avg_last_update = now;
525 
526 	for (s = 0; s < NR_PSI_STATES - 1; s++) {
527 		u32 sample;
528 
529 		sample = group->total[PSI_AVGS][s] - group->avg_total[s];
530 		/*
531 		 * Due to the lockless sampling of the time buckets,
532 		 * recorded time deltas can slip into the next period,
533 		 * which under full pressure can result in samples in
534 		 * excess of the period length.
535 		 *
536 		 * We don't want to report non-sensical pressures in
537 		 * excess of 100%, nor do we want to drop such events
538 		 * on the floor. Instead we punt any overage into the
539 		 * future until pressure subsides. By doing this we
540 		 * don't underreport the occurring pressure curve, we
541 		 * just report it delayed by one period length.
542 		 *
543 		 * The error isn't cumulative. As soon as another
544 		 * delta slips from a period P to P+1, by definition
545 		 * it frees up its time T in P.
546 		 */
547 		if (sample > period)
548 			sample = period;
549 		group->avg_total[s] += sample;
550 		calc_avgs(group->avg[s], missed_periods, sample, period);
551 	}
552 
553 	return avg_next_update;
554 }
555 
556 static void psi_avgs_work(struct work_struct *work)
557 {
558 	struct delayed_work *dwork;
559 	struct psi_group *group;
560 	u32 changed_states;
561 	u64 now;
562 
563 	dwork = to_delayed_work(work);
564 	group = container_of(dwork, struct psi_group, avgs_work);
565 
566 	mutex_lock(&group->avgs_lock);
567 
568 	now = sched_clock();
569 
570 	collect_percpu_times(group, PSI_AVGS, &changed_states);
571 	/*
572 	 * If there is task activity, periodically fold the per-cpu
573 	 * times and feed samples into the running averages. If things
574 	 * are idle and there is no data to process, stop the clock.
575 	 * Once restarted, we'll catch up the running averages in one
576 	 * go - see calc_avgs() and missed_periods.
577 	 */
578 	if (now >= group->avg_next_update) {
579 		update_triggers(group, now, PSI_AVGS);
580 		group->avg_next_update = update_averages(group, now);
581 	}
582 
583 	if (changed_states & PSI_STATE_RESCHEDULE) {
584 		schedule_delayed_work(dwork, nsecs_to_jiffies(
585 				group->avg_next_update - now) + 1);
586 	}
587 
588 	mutex_unlock(&group->avgs_lock);
589 }
590 
591 static void init_rtpoll_triggers(struct psi_group *group, u64 now)
592 {
593 	struct psi_trigger *t;
594 
595 	list_for_each_entry(t, &group->rtpoll_triggers, node)
596 		window_reset(&t->win, now,
597 				group->total[PSI_POLL][t->state], 0);
598 	memcpy(group->rtpoll_total, group->total[PSI_POLL],
599 		   sizeof(group->rtpoll_total));
600 	group->rtpoll_next_update = now + group->rtpoll_min_period;
601 }
602 
603 /* Schedule rtpolling if it's not already scheduled or forced. */
604 static void psi_schedule_rtpoll_work(struct psi_group *group, unsigned long delay,
605 				   bool force)
606 {
607 	struct task_struct *task;
608 
609 	/*
610 	 * atomic_xchg should be called even when !force to provide a
611 	 * full memory barrier (see the comment inside psi_rtpoll_work).
612 	 */
613 	if (atomic_xchg(&group->rtpoll_scheduled, 1) && !force)
614 		return;
615 
616 	rcu_read_lock();
617 
618 	task = rcu_dereference(group->rtpoll_task);
619 	/*
620 	 * kworker might be NULL in case psi_trigger_destroy races with
621 	 * psi_task_change (hotpath) which can't use locks
622 	 */
623 	if (likely(task))
624 		mod_timer(&group->rtpoll_timer, jiffies + delay);
625 	else
626 		atomic_set(&group->rtpoll_scheduled, 0);
627 
628 	rcu_read_unlock();
629 }
630 
631 static void psi_rtpoll_work(struct psi_group *group)
632 {
633 	bool force_reschedule = false;
634 	u32 changed_states;
635 	u64 now;
636 
637 	mutex_lock(&group->rtpoll_trigger_lock);
638 
639 	now = sched_clock();
640 
641 	if (now > group->rtpoll_until) {
642 		/*
643 		 * We are either about to start or might stop rtpolling if no
644 		 * state change was recorded. Resetting rtpoll_scheduled leaves
645 		 * a small window for psi_group_change to sneak in and schedule
646 		 * an immediate rtpoll_work before we get to rescheduling. One
647 		 * potential extra wakeup at the end of the rtpolling window
648 		 * should be negligible and rtpoll_next_update still keeps
649 		 * updates correctly on schedule.
650 		 */
651 		atomic_set(&group->rtpoll_scheduled, 0);
652 		/*
653 		 * A task change can race with the rtpoll worker that is supposed to
654 		 * report on it. To avoid missing events, ensure ordering between
655 		 * rtpoll_scheduled and the task state accesses, such that if the
656 		 * rtpoll worker misses the state update, the task change is
657 		 * guaranteed to reschedule the rtpoll worker:
658 		 *
659 		 * rtpoll worker:
660 		 *   atomic_set(rtpoll_scheduled, 0)
661 		 *   smp_mb()
662 		 *   LOAD states
663 		 *
664 		 * task change:
665 		 *   STORE states
666 		 *   if atomic_xchg(rtpoll_scheduled, 1) == 0:
667 		 *     schedule rtpoll worker
668 		 *
669 		 * The atomic_xchg() implies a full barrier.
670 		 */
671 		smp_mb();
672 	} else {
673 		/* The rtpolling window is not over, keep rescheduling */
674 		force_reschedule = true;
675 	}
676 
677 
678 	collect_percpu_times(group, PSI_POLL, &changed_states);
679 
680 	if (changed_states & group->rtpoll_states) {
681 		/* Initialize trigger windows when entering rtpolling mode */
682 		if (now > group->rtpoll_until)
683 			init_rtpoll_triggers(group, now);
684 
685 		/*
686 		 * Keep the monitor active for at least the duration of the
687 		 * minimum tracking window as long as monitor states are
688 		 * changing.
689 		 */
690 		group->rtpoll_until = now +
691 			group->rtpoll_min_period * UPDATES_PER_WINDOW;
692 	}
693 
694 	if (now > group->rtpoll_until) {
695 		group->rtpoll_next_update = ULLONG_MAX;
696 		goto out;
697 	}
698 
699 	if (now >= group->rtpoll_next_update) {
700 		if (changed_states & group->rtpoll_states) {
701 			update_triggers(group, now, PSI_POLL);
702 			memcpy(group->rtpoll_total, group->total[PSI_POLL],
703 				   sizeof(group->rtpoll_total));
704 		}
705 		group->rtpoll_next_update = now + group->rtpoll_min_period;
706 	}
707 
708 	psi_schedule_rtpoll_work(group,
709 		nsecs_to_jiffies(group->rtpoll_next_update - now) + 1,
710 		force_reschedule);
711 
712 out:
713 	mutex_unlock(&group->rtpoll_trigger_lock);
714 }
715 
716 static int psi_rtpoll_worker(void *data)
717 {
718 	struct psi_group *group = (struct psi_group *)data;
719 
720 	sched_set_fifo_low(current);
721 
722 	while (true) {
723 		wait_event_interruptible(group->rtpoll_wait,
724 				atomic_cmpxchg(&group->rtpoll_wakeup, 1, 0) ||
725 				kthread_should_stop());
726 		if (kthread_should_stop())
727 			break;
728 
729 		psi_rtpoll_work(group);
730 	}
731 	return 0;
732 }
733 
734 static void poll_timer_fn(struct timer_list *t)
735 {
736 	struct psi_group *group = from_timer(group, t, rtpoll_timer);
737 
738 	atomic_set(&group->rtpoll_wakeup, 1);
739 	wake_up_interruptible(&group->rtpoll_wait);
740 }
741 
742 static void record_times(struct psi_group_cpu *groupc, u64 now)
743 {
744 	u32 delta;
745 
746 	delta = now - groupc->state_start;
747 	groupc->state_start = now;
748 
749 	if (groupc->state_mask & (1 << PSI_IO_SOME)) {
750 		groupc->times[PSI_IO_SOME] += delta;
751 		if (groupc->state_mask & (1 << PSI_IO_FULL))
752 			groupc->times[PSI_IO_FULL] += delta;
753 	}
754 
755 	if (groupc->state_mask & (1 << PSI_MEM_SOME)) {
756 		groupc->times[PSI_MEM_SOME] += delta;
757 		if (groupc->state_mask & (1 << PSI_MEM_FULL))
758 			groupc->times[PSI_MEM_FULL] += delta;
759 	}
760 
761 	if (groupc->state_mask & (1 << PSI_CPU_SOME)) {
762 		groupc->times[PSI_CPU_SOME] += delta;
763 		if (groupc->state_mask & (1 << PSI_CPU_FULL))
764 			groupc->times[PSI_CPU_FULL] += delta;
765 	}
766 
767 	if (groupc->state_mask & (1 << PSI_NONIDLE))
768 		groupc->times[PSI_NONIDLE] += delta;
769 }
770 
771 static void psi_group_change(struct psi_group *group, int cpu,
772 			     unsigned int clear, unsigned int set, u64 now,
773 			     bool wake_clock)
774 {
775 	struct psi_group_cpu *groupc;
776 	unsigned int t, m;
777 	u32 state_mask;
778 
779 	groupc = per_cpu_ptr(group->pcpu, cpu);
780 
781 	/*
782 	 * First we update the task counts according to the state
783 	 * change requested through the @clear and @set bits.
784 	 *
785 	 * Then if the cgroup PSI stats accounting enabled, we
786 	 * assess the aggregate resource states this CPU's tasks
787 	 * have been in since the last change, and account any
788 	 * SOME and FULL time these may have resulted in.
789 	 */
790 	write_seqcount_begin(&groupc->seq);
791 
792 	/*
793 	 * Start with TSK_ONCPU, which doesn't have a corresponding
794 	 * task count - it's just a boolean flag directly encoded in
795 	 * the state mask. Clear, set, or carry the current state if
796 	 * no changes are requested.
797 	 */
798 	if (unlikely(clear & TSK_ONCPU)) {
799 		state_mask = 0;
800 		clear &= ~TSK_ONCPU;
801 	} else if (unlikely(set & TSK_ONCPU)) {
802 		state_mask = PSI_ONCPU;
803 		set &= ~TSK_ONCPU;
804 	} else {
805 		state_mask = groupc->state_mask & PSI_ONCPU;
806 	}
807 
808 	/*
809 	 * The rest of the state mask is calculated based on the task
810 	 * counts. Update those first, then construct the mask.
811 	 */
812 	for (t = 0, m = clear; m; m &= ~(1 << t), t++) {
813 		if (!(m & (1 << t)))
814 			continue;
815 		if (groupc->tasks[t]) {
816 			groupc->tasks[t]--;
817 		} else if (!psi_bug) {
818 			printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n",
819 					cpu, t, groupc->tasks[0],
820 					groupc->tasks[1], groupc->tasks[2],
821 					groupc->tasks[3], clear, set);
822 			psi_bug = 1;
823 		}
824 	}
825 
826 	for (t = 0; set; set &= ~(1 << t), t++)
827 		if (set & (1 << t))
828 			groupc->tasks[t]++;
829 
830 	if (!group->enabled) {
831 		/*
832 		 * On the first group change after disabling PSI, conclude
833 		 * the current state and flush its time. This is unlikely
834 		 * to matter to the user, but aggregation (get_recent_times)
835 		 * may have already incorporated the live state into times_prev;
836 		 * avoid a delta sample underflow when PSI is later re-enabled.
837 		 */
838 		if (unlikely(groupc->state_mask & (1 << PSI_NONIDLE)))
839 			record_times(groupc, now);
840 
841 		groupc->state_mask = state_mask;
842 
843 		write_seqcount_end(&groupc->seq);
844 		return;
845 	}
846 
847 	state_mask = test_states(groupc->tasks, state_mask);
848 
849 	/*
850 	 * Since we care about lost potential, a memstall is FULL
851 	 * when there are no other working tasks, but also when
852 	 * the CPU is actively reclaiming and nothing productive
853 	 * could run even if it were runnable. So when the current
854 	 * task in a cgroup is in_memstall, the corresponding groupc
855 	 * on that cpu is in PSI_MEM_FULL state.
856 	 */
857 	if (unlikely((state_mask & PSI_ONCPU) && cpu_curr(cpu)->in_memstall))
858 		state_mask |= (1 << PSI_MEM_FULL);
859 
860 	record_times(groupc, now);
861 
862 	groupc->state_mask = state_mask;
863 
864 	write_seqcount_end(&groupc->seq);
865 
866 	if (state_mask & group->rtpoll_states)
867 		psi_schedule_rtpoll_work(group, 1, false);
868 
869 	if (wake_clock && !delayed_work_pending(&group->avgs_work))
870 		schedule_delayed_work(&group->avgs_work, PSI_FREQ);
871 }
872 
873 static inline struct psi_group *task_psi_group(struct task_struct *task)
874 {
875 #ifdef CONFIG_CGROUPS
876 	if (static_branch_likely(&psi_cgroups_enabled))
877 		return cgroup_psi(task_dfl_cgroup(task));
878 #endif
879 	return &psi_system;
880 }
881 
882 static void psi_flags_change(struct task_struct *task, int clear, int set)
883 {
884 	if (((task->psi_flags & set) ||
885 	     (task->psi_flags & clear) != clear) &&
886 	    !psi_bug) {
887 		printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n",
888 				task->pid, task->comm, task_cpu(task),
889 				task->psi_flags, clear, set);
890 		psi_bug = 1;
891 	}
892 
893 	task->psi_flags &= ~clear;
894 	task->psi_flags |= set;
895 }
896 
897 void psi_task_change(struct task_struct *task, int clear, int set)
898 {
899 	int cpu = task_cpu(task);
900 	struct psi_group *group;
901 	u64 now;
902 
903 	if (!task->pid)
904 		return;
905 
906 	psi_flags_change(task, clear, set);
907 
908 	now = cpu_clock(cpu);
909 
910 	group = task_psi_group(task);
911 	do {
912 		psi_group_change(group, cpu, clear, set, now, true);
913 	} while ((group = group->parent));
914 }
915 
916 void psi_task_switch(struct task_struct *prev, struct task_struct *next,
917 		     bool sleep)
918 {
919 	struct psi_group *group, *common = NULL;
920 	int cpu = task_cpu(prev);
921 	u64 now = cpu_clock(cpu);
922 
923 	if (next->pid) {
924 		psi_flags_change(next, 0, TSK_ONCPU);
925 		/*
926 		 * Set TSK_ONCPU on @next's cgroups. If @next shares any
927 		 * ancestors with @prev, those will already have @prev's
928 		 * TSK_ONCPU bit set, and we can stop the iteration there.
929 		 */
930 		group = task_psi_group(next);
931 		do {
932 			if (per_cpu_ptr(group->pcpu, cpu)->state_mask &
933 			    PSI_ONCPU) {
934 				common = group;
935 				break;
936 			}
937 
938 			psi_group_change(group, cpu, 0, TSK_ONCPU, now, true);
939 		} while ((group = group->parent));
940 	}
941 
942 	if (prev->pid) {
943 		int clear = TSK_ONCPU, set = 0;
944 		bool wake_clock = true;
945 
946 		/*
947 		 * When we're going to sleep, psi_dequeue() lets us
948 		 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and
949 		 * TSK_IOWAIT here, where we can combine it with
950 		 * TSK_ONCPU and save walking common ancestors twice.
951 		 */
952 		if (sleep) {
953 			clear |= TSK_RUNNING;
954 			if (prev->in_memstall)
955 				clear |= TSK_MEMSTALL_RUNNING;
956 			if (prev->in_iowait)
957 				set |= TSK_IOWAIT;
958 
959 			/*
960 			 * Periodic aggregation shuts off if there is a period of no
961 			 * task changes, so we wake it back up if necessary. However,
962 			 * don't do this if the task change is the aggregation worker
963 			 * itself going to sleep, or we'll ping-pong forever.
964 			 */
965 			if (unlikely((prev->flags & PF_WQ_WORKER) &&
966 				     wq_worker_last_func(prev) == psi_avgs_work))
967 				wake_clock = false;
968 		}
969 
970 		psi_flags_change(prev, clear, set);
971 
972 		group = task_psi_group(prev);
973 		do {
974 			if (group == common)
975 				break;
976 			psi_group_change(group, cpu, clear, set, now, wake_clock);
977 		} while ((group = group->parent));
978 
979 		/*
980 		 * TSK_ONCPU is handled up to the common ancestor. If there are
981 		 * any other differences between the two tasks (e.g. prev goes
982 		 * to sleep, or only one task is memstall), finish propagating
983 		 * those differences all the way up to the root.
984 		 */
985 		if ((prev->psi_flags ^ next->psi_flags) & ~TSK_ONCPU) {
986 			clear &= ~TSK_ONCPU;
987 			for (; group; group = group->parent)
988 				psi_group_change(group, cpu, clear, set, now, wake_clock);
989 		}
990 	}
991 }
992 
993 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
994 void psi_account_irqtime(struct task_struct *task, u32 delta)
995 {
996 	int cpu = task_cpu(task);
997 	struct psi_group *group;
998 	struct psi_group_cpu *groupc;
999 	u64 now;
1000 
1001 	if (static_branch_likely(&psi_disabled))
1002 		return;
1003 
1004 	if (!task->pid)
1005 		return;
1006 
1007 	now = cpu_clock(cpu);
1008 
1009 	group = task_psi_group(task);
1010 	do {
1011 		if (!group->enabled)
1012 			continue;
1013 
1014 		groupc = per_cpu_ptr(group->pcpu, cpu);
1015 
1016 		write_seqcount_begin(&groupc->seq);
1017 
1018 		record_times(groupc, now);
1019 		groupc->times[PSI_IRQ_FULL] += delta;
1020 
1021 		write_seqcount_end(&groupc->seq);
1022 
1023 		if (group->rtpoll_states & (1 << PSI_IRQ_FULL))
1024 			psi_schedule_rtpoll_work(group, 1, false);
1025 	} while ((group = group->parent));
1026 }
1027 #endif
1028 
1029 /**
1030  * psi_memstall_enter - mark the beginning of a memory stall section
1031  * @flags: flags to handle nested sections
1032  *
1033  * Marks the calling task as being stalled due to a lack of memory,
1034  * such as waiting for a refault or performing reclaim.
1035  */
1036 void psi_memstall_enter(unsigned long *flags)
1037 {
1038 	struct rq_flags rf;
1039 	struct rq *rq;
1040 
1041 	if (static_branch_likely(&psi_disabled))
1042 		return;
1043 
1044 	*flags = current->in_memstall;
1045 	if (*flags)
1046 		return;
1047 	/*
1048 	 * in_memstall setting & accounting needs to be atomic wrt
1049 	 * changes to the task's scheduling state, otherwise we can
1050 	 * race with CPU migration.
1051 	 */
1052 	rq = this_rq_lock_irq(&rf);
1053 
1054 	current->in_memstall = 1;
1055 	psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING);
1056 
1057 	rq_unlock_irq(rq, &rf);
1058 }
1059 EXPORT_SYMBOL_GPL(psi_memstall_enter);
1060 
1061 /**
1062  * psi_memstall_leave - mark the end of an memory stall section
1063  * @flags: flags to handle nested memdelay sections
1064  *
1065  * Marks the calling task as no longer stalled due to lack of memory.
1066  */
1067 void psi_memstall_leave(unsigned long *flags)
1068 {
1069 	struct rq_flags rf;
1070 	struct rq *rq;
1071 
1072 	if (static_branch_likely(&psi_disabled))
1073 		return;
1074 
1075 	if (*flags)
1076 		return;
1077 	/*
1078 	 * in_memstall clearing & accounting needs to be atomic wrt
1079 	 * changes to the task's scheduling state, otherwise we could
1080 	 * race with CPU migration.
1081 	 */
1082 	rq = this_rq_lock_irq(&rf);
1083 
1084 	current->in_memstall = 0;
1085 	psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0);
1086 
1087 	rq_unlock_irq(rq, &rf);
1088 }
1089 EXPORT_SYMBOL_GPL(psi_memstall_leave);
1090 
1091 #ifdef CONFIG_CGROUPS
1092 int psi_cgroup_alloc(struct cgroup *cgroup)
1093 {
1094 	if (!static_branch_likely(&psi_cgroups_enabled))
1095 		return 0;
1096 
1097 	cgroup->psi = kzalloc(sizeof(struct psi_group), GFP_KERNEL);
1098 	if (!cgroup->psi)
1099 		return -ENOMEM;
1100 
1101 	cgroup->psi->pcpu = alloc_percpu(struct psi_group_cpu);
1102 	if (!cgroup->psi->pcpu) {
1103 		kfree(cgroup->psi);
1104 		return -ENOMEM;
1105 	}
1106 	group_init(cgroup->psi);
1107 	cgroup->psi->parent = cgroup_psi(cgroup_parent(cgroup));
1108 	return 0;
1109 }
1110 
1111 void psi_cgroup_free(struct cgroup *cgroup)
1112 {
1113 	if (!static_branch_likely(&psi_cgroups_enabled))
1114 		return;
1115 
1116 	cancel_delayed_work_sync(&cgroup->psi->avgs_work);
1117 	free_percpu(cgroup->psi->pcpu);
1118 	/* All triggers must be removed by now */
1119 	WARN_ONCE(cgroup->psi->rtpoll_states, "psi: trigger leak\n");
1120 	kfree(cgroup->psi);
1121 }
1122 
1123 /**
1124  * cgroup_move_task - move task to a different cgroup
1125  * @task: the task
1126  * @to: the target css_set
1127  *
1128  * Move task to a new cgroup and safely migrate its associated stall
1129  * state between the different groups.
1130  *
1131  * This function acquires the task's rq lock to lock out concurrent
1132  * changes to the task's scheduling state and - in case the task is
1133  * running - concurrent changes to its stall state.
1134  */
1135 void cgroup_move_task(struct task_struct *task, struct css_set *to)
1136 {
1137 	unsigned int task_flags;
1138 	struct rq_flags rf;
1139 	struct rq *rq;
1140 
1141 	if (!static_branch_likely(&psi_cgroups_enabled)) {
1142 		/*
1143 		 * Lame to do this here, but the scheduler cannot be locked
1144 		 * from the outside, so we move cgroups from inside sched/.
1145 		 */
1146 		rcu_assign_pointer(task->cgroups, to);
1147 		return;
1148 	}
1149 
1150 	rq = task_rq_lock(task, &rf);
1151 
1152 	/*
1153 	 * We may race with schedule() dropping the rq lock between
1154 	 * deactivating prev and switching to next. Because the psi
1155 	 * updates from the deactivation are deferred to the switch
1156 	 * callback to save cgroup tree updates, the task's scheduling
1157 	 * state here is not coherent with its psi state:
1158 	 *
1159 	 * schedule()                   cgroup_move_task()
1160 	 *   rq_lock()
1161 	 *   deactivate_task()
1162 	 *     p->on_rq = 0
1163 	 *     psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates
1164 	 *   pick_next_task()
1165 	 *     rq_unlock()
1166 	 *                                rq_lock()
1167 	 *                                psi_task_change() // old cgroup
1168 	 *                                task->cgroups = to
1169 	 *                                psi_task_change() // new cgroup
1170 	 *                                rq_unlock()
1171 	 *     rq_lock()
1172 	 *   psi_sched_switch() // does deferred updates in new cgroup
1173 	 *
1174 	 * Don't rely on the scheduling state. Use psi_flags instead.
1175 	 */
1176 	task_flags = task->psi_flags;
1177 
1178 	if (task_flags)
1179 		psi_task_change(task, task_flags, 0);
1180 
1181 	/* See comment above */
1182 	rcu_assign_pointer(task->cgroups, to);
1183 
1184 	if (task_flags)
1185 		psi_task_change(task, 0, task_flags);
1186 
1187 	task_rq_unlock(rq, task, &rf);
1188 }
1189 
1190 void psi_cgroup_restart(struct psi_group *group)
1191 {
1192 	int cpu;
1193 
1194 	/*
1195 	 * After we disable psi_group->enabled, we don't actually
1196 	 * stop percpu tasks accounting in each psi_group_cpu,
1197 	 * instead only stop test_states() loop, record_times()
1198 	 * and averaging worker, see psi_group_change() for details.
1199 	 *
1200 	 * When disable cgroup PSI, this function has nothing to sync
1201 	 * since cgroup pressure files are hidden and percpu psi_group_cpu
1202 	 * would see !psi_group->enabled and only do task accounting.
1203 	 *
1204 	 * When re-enable cgroup PSI, this function use psi_group_change()
1205 	 * to get correct state mask from test_states() loop on tasks[],
1206 	 * and restart groupc->state_start from now, use .clear = .set = 0
1207 	 * here since no task status really changed.
1208 	 */
1209 	if (!group->enabled)
1210 		return;
1211 
1212 	for_each_possible_cpu(cpu) {
1213 		struct rq *rq = cpu_rq(cpu);
1214 		struct rq_flags rf;
1215 		u64 now;
1216 
1217 		rq_lock_irq(rq, &rf);
1218 		now = cpu_clock(cpu);
1219 		psi_group_change(group, cpu, 0, 0, now, true);
1220 		rq_unlock_irq(rq, &rf);
1221 	}
1222 }
1223 #endif /* CONFIG_CGROUPS */
1224 
1225 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res)
1226 {
1227 	bool only_full = false;
1228 	int full;
1229 	u64 now;
1230 
1231 	if (static_branch_likely(&psi_disabled))
1232 		return -EOPNOTSUPP;
1233 
1234 	/* Update averages before reporting them */
1235 	mutex_lock(&group->avgs_lock);
1236 	now = sched_clock();
1237 	collect_percpu_times(group, PSI_AVGS, NULL);
1238 	if (now >= group->avg_next_update)
1239 		group->avg_next_update = update_averages(group, now);
1240 	mutex_unlock(&group->avgs_lock);
1241 
1242 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1243 	only_full = res == PSI_IRQ;
1244 #endif
1245 
1246 	for (full = 0; full < 2 - only_full; full++) {
1247 		unsigned long avg[3] = { 0, };
1248 		u64 total = 0;
1249 		int w;
1250 
1251 		/* CPU FULL is undefined at the system level */
1252 		if (!(group == &psi_system && res == PSI_CPU && full)) {
1253 			for (w = 0; w < 3; w++)
1254 				avg[w] = group->avg[res * 2 + full][w];
1255 			total = div_u64(group->total[PSI_AVGS][res * 2 + full],
1256 					NSEC_PER_USEC);
1257 		}
1258 
1259 		seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n",
1260 			   full || only_full ? "full" : "some",
1261 			   LOAD_INT(avg[0]), LOAD_FRAC(avg[0]),
1262 			   LOAD_INT(avg[1]), LOAD_FRAC(avg[1]),
1263 			   LOAD_INT(avg[2]), LOAD_FRAC(avg[2]),
1264 			   total);
1265 	}
1266 
1267 	return 0;
1268 }
1269 
1270 struct psi_trigger *psi_trigger_create(struct psi_group *group, char *buf,
1271 				       enum psi_res res, struct file *file,
1272 				       struct kernfs_open_file *of)
1273 {
1274 	struct psi_trigger *t;
1275 	enum psi_states state;
1276 	u32 threshold_us;
1277 	bool privileged;
1278 	u32 window_us;
1279 
1280 	if (static_branch_likely(&psi_disabled))
1281 		return ERR_PTR(-EOPNOTSUPP);
1282 
1283 	/*
1284 	 * Checking the privilege here on file->f_cred implies that a privileged user
1285 	 * could open the file and delegate the write to an unprivileged one.
1286 	 */
1287 	privileged = cap_raised(file->f_cred->cap_effective, CAP_SYS_RESOURCE);
1288 
1289 	if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2)
1290 		state = PSI_IO_SOME + res * 2;
1291 	else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2)
1292 		state = PSI_IO_FULL + res * 2;
1293 	else
1294 		return ERR_PTR(-EINVAL);
1295 
1296 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1297 	if (res == PSI_IRQ && --state != PSI_IRQ_FULL)
1298 		return ERR_PTR(-EINVAL);
1299 #endif
1300 
1301 	if (state >= PSI_NONIDLE)
1302 		return ERR_PTR(-EINVAL);
1303 
1304 	if (window_us == 0 || window_us > WINDOW_MAX_US)
1305 		return ERR_PTR(-EINVAL);
1306 
1307 	/*
1308 	 * Unprivileged users can only use 2s windows so that averages aggregation
1309 	 * work is used, and no RT threads need to be spawned.
1310 	 */
1311 	if (!privileged && window_us % 2000000)
1312 		return ERR_PTR(-EINVAL);
1313 
1314 	/* Check threshold */
1315 	if (threshold_us == 0 || threshold_us > window_us)
1316 		return ERR_PTR(-EINVAL);
1317 
1318 	t = kmalloc(sizeof(*t), GFP_KERNEL);
1319 	if (!t)
1320 		return ERR_PTR(-ENOMEM);
1321 
1322 	t->group = group;
1323 	t->state = state;
1324 	t->threshold = threshold_us * NSEC_PER_USEC;
1325 	t->win.size = window_us * NSEC_PER_USEC;
1326 	window_reset(&t->win, sched_clock(),
1327 			group->total[PSI_POLL][t->state], 0);
1328 
1329 	t->event = 0;
1330 	t->last_event_time = 0;
1331 	t->of = of;
1332 	if (!of)
1333 		init_waitqueue_head(&t->event_wait);
1334 	t->pending_event = false;
1335 	t->aggregator = privileged ? PSI_POLL : PSI_AVGS;
1336 
1337 	if (privileged) {
1338 		mutex_lock(&group->rtpoll_trigger_lock);
1339 
1340 		if (!rcu_access_pointer(group->rtpoll_task)) {
1341 			struct task_struct *task;
1342 
1343 			task = kthread_create(psi_rtpoll_worker, group, "psimon");
1344 			if (IS_ERR(task)) {
1345 				kfree(t);
1346 				mutex_unlock(&group->rtpoll_trigger_lock);
1347 				return ERR_CAST(task);
1348 			}
1349 			atomic_set(&group->rtpoll_wakeup, 0);
1350 			wake_up_process(task);
1351 			rcu_assign_pointer(group->rtpoll_task, task);
1352 		}
1353 
1354 		list_add(&t->node, &group->rtpoll_triggers);
1355 		group->rtpoll_min_period = min(group->rtpoll_min_period,
1356 			div_u64(t->win.size, UPDATES_PER_WINDOW));
1357 		group->rtpoll_nr_triggers[t->state]++;
1358 		group->rtpoll_states |= (1 << t->state);
1359 
1360 		mutex_unlock(&group->rtpoll_trigger_lock);
1361 	} else {
1362 		mutex_lock(&group->avgs_lock);
1363 
1364 		list_add(&t->node, &group->avg_triggers);
1365 		group->avg_nr_triggers[t->state]++;
1366 
1367 		mutex_unlock(&group->avgs_lock);
1368 	}
1369 	return t;
1370 }
1371 
1372 void psi_trigger_destroy(struct psi_trigger *t)
1373 {
1374 	struct psi_group *group;
1375 	struct task_struct *task_to_destroy = NULL;
1376 
1377 	/*
1378 	 * We do not check psi_disabled since it might have been disabled after
1379 	 * the trigger got created.
1380 	 */
1381 	if (!t)
1382 		return;
1383 
1384 	group = t->group;
1385 	/*
1386 	 * Wakeup waiters to stop polling and clear the queue to prevent it from
1387 	 * being accessed later. Can happen if cgroup is deleted from under a
1388 	 * polling process.
1389 	 */
1390 	if (t->of)
1391 		kernfs_notify(t->of->kn);
1392 	else
1393 		wake_up_interruptible(&t->event_wait);
1394 
1395 	if (t->aggregator == PSI_AVGS) {
1396 		mutex_lock(&group->avgs_lock);
1397 		if (!list_empty(&t->node)) {
1398 			list_del(&t->node);
1399 			group->avg_nr_triggers[t->state]--;
1400 		}
1401 		mutex_unlock(&group->avgs_lock);
1402 	} else {
1403 		mutex_lock(&group->rtpoll_trigger_lock);
1404 		if (!list_empty(&t->node)) {
1405 			struct psi_trigger *tmp;
1406 			u64 period = ULLONG_MAX;
1407 
1408 			list_del(&t->node);
1409 			group->rtpoll_nr_triggers[t->state]--;
1410 			if (!group->rtpoll_nr_triggers[t->state])
1411 				group->rtpoll_states &= ~(1 << t->state);
1412 			/*
1413 			 * Reset min update period for the remaining triggers
1414 			 * iff the destroying trigger had the min window size.
1415 			 */
1416 			if (group->rtpoll_min_period == div_u64(t->win.size, UPDATES_PER_WINDOW)) {
1417 				list_for_each_entry(tmp, &group->rtpoll_triggers, node)
1418 					period = min(period, div_u64(tmp->win.size,
1419 							UPDATES_PER_WINDOW));
1420 				group->rtpoll_min_period = period;
1421 			}
1422 			/* Destroy rtpoll_task when the last trigger is destroyed */
1423 			if (group->rtpoll_states == 0) {
1424 				group->rtpoll_until = 0;
1425 				task_to_destroy = rcu_dereference_protected(
1426 						group->rtpoll_task,
1427 						lockdep_is_held(&group->rtpoll_trigger_lock));
1428 				rcu_assign_pointer(group->rtpoll_task, NULL);
1429 				del_timer(&group->rtpoll_timer);
1430 			}
1431 		}
1432 		mutex_unlock(&group->rtpoll_trigger_lock);
1433 	}
1434 
1435 	/*
1436 	 * Wait for psi_schedule_rtpoll_work RCU to complete its read-side
1437 	 * critical section before destroying the trigger and optionally the
1438 	 * rtpoll_task.
1439 	 */
1440 	synchronize_rcu();
1441 	/*
1442 	 * Stop kthread 'psimon' after releasing rtpoll_trigger_lock to prevent
1443 	 * a deadlock while waiting for psi_rtpoll_work to acquire
1444 	 * rtpoll_trigger_lock
1445 	 */
1446 	if (task_to_destroy) {
1447 		/*
1448 		 * After the RCU grace period has expired, the worker
1449 		 * can no longer be found through group->rtpoll_task.
1450 		 */
1451 		kthread_stop(task_to_destroy);
1452 		atomic_set(&group->rtpoll_scheduled, 0);
1453 	}
1454 	kfree(t);
1455 }
1456 
1457 __poll_t psi_trigger_poll(void **trigger_ptr,
1458 				struct file *file, poll_table *wait)
1459 {
1460 	__poll_t ret = DEFAULT_POLLMASK;
1461 	struct psi_trigger *t;
1462 
1463 	if (static_branch_likely(&psi_disabled))
1464 		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1465 
1466 	t = smp_load_acquire(trigger_ptr);
1467 	if (!t)
1468 		return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI;
1469 
1470 	if (t->of)
1471 		kernfs_generic_poll(t->of, wait);
1472 	else
1473 		poll_wait(file, &t->event_wait, wait);
1474 
1475 	if (cmpxchg(&t->event, 1, 0) == 1)
1476 		ret |= EPOLLPRI;
1477 
1478 	return ret;
1479 }
1480 
1481 #ifdef CONFIG_PROC_FS
1482 static int psi_io_show(struct seq_file *m, void *v)
1483 {
1484 	return psi_show(m, &psi_system, PSI_IO);
1485 }
1486 
1487 static int psi_memory_show(struct seq_file *m, void *v)
1488 {
1489 	return psi_show(m, &psi_system, PSI_MEM);
1490 }
1491 
1492 static int psi_cpu_show(struct seq_file *m, void *v)
1493 {
1494 	return psi_show(m, &psi_system, PSI_CPU);
1495 }
1496 
1497 static int psi_io_open(struct inode *inode, struct file *file)
1498 {
1499 	return single_open(file, psi_io_show, NULL);
1500 }
1501 
1502 static int psi_memory_open(struct inode *inode, struct file *file)
1503 {
1504 	return single_open(file, psi_memory_show, NULL);
1505 }
1506 
1507 static int psi_cpu_open(struct inode *inode, struct file *file)
1508 {
1509 	return single_open(file, psi_cpu_show, NULL);
1510 }
1511 
1512 static ssize_t psi_write(struct file *file, const char __user *user_buf,
1513 			 size_t nbytes, enum psi_res res)
1514 {
1515 	char buf[32];
1516 	size_t buf_size;
1517 	struct seq_file *seq;
1518 	struct psi_trigger *new;
1519 
1520 	if (static_branch_likely(&psi_disabled))
1521 		return -EOPNOTSUPP;
1522 
1523 	if (!nbytes)
1524 		return -EINVAL;
1525 
1526 	buf_size = min(nbytes, sizeof(buf));
1527 	if (copy_from_user(buf, user_buf, buf_size))
1528 		return -EFAULT;
1529 
1530 	buf[buf_size - 1] = '\0';
1531 
1532 	seq = file->private_data;
1533 
1534 	/* Take seq->lock to protect seq->private from concurrent writes */
1535 	mutex_lock(&seq->lock);
1536 
1537 	/* Allow only one trigger per file descriptor */
1538 	if (seq->private) {
1539 		mutex_unlock(&seq->lock);
1540 		return -EBUSY;
1541 	}
1542 
1543 	new = psi_trigger_create(&psi_system, buf, res, file, NULL);
1544 	if (IS_ERR(new)) {
1545 		mutex_unlock(&seq->lock);
1546 		return PTR_ERR(new);
1547 	}
1548 
1549 	smp_store_release(&seq->private, new);
1550 	mutex_unlock(&seq->lock);
1551 
1552 	return nbytes;
1553 }
1554 
1555 static ssize_t psi_io_write(struct file *file, const char __user *user_buf,
1556 			    size_t nbytes, loff_t *ppos)
1557 {
1558 	return psi_write(file, user_buf, nbytes, PSI_IO);
1559 }
1560 
1561 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf,
1562 				size_t nbytes, loff_t *ppos)
1563 {
1564 	return psi_write(file, user_buf, nbytes, PSI_MEM);
1565 }
1566 
1567 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf,
1568 			     size_t nbytes, loff_t *ppos)
1569 {
1570 	return psi_write(file, user_buf, nbytes, PSI_CPU);
1571 }
1572 
1573 static __poll_t psi_fop_poll(struct file *file, poll_table *wait)
1574 {
1575 	struct seq_file *seq = file->private_data;
1576 
1577 	return psi_trigger_poll(&seq->private, file, wait);
1578 }
1579 
1580 static int psi_fop_release(struct inode *inode, struct file *file)
1581 {
1582 	struct seq_file *seq = file->private_data;
1583 
1584 	psi_trigger_destroy(seq->private);
1585 	return single_release(inode, file);
1586 }
1587 
1588 static const struct proc_ops psi_io_proc_ops = {
1589 	.proc_open	= psi_io_open,
1590 	.proc_read	= seq_read,
1591 	.proc_lseek	= seq_lseek,
1592 	.proc_write	= psi_io_write,
1593 	.proc_poll	= psi_fop_poll,
1594 	.proc_release	= psi_fop_release,
1595 };
1596 
1597 static const struct proc_ops psi_memory_proc_ops = {
1598 	.proc_open	= psi_memory_open,
1599 	.proc_read	= seq_read,
1600 	.proc_lseek	= seq_lseek,
1601 	.proc_write	= psi_memory_write,
1602 	.proc_poll	= psi_fop_poll,
1603 	.proc_release	= psi_fop_release,
1604 };
1605 
1606 static const struct proc_ops psi_cpu_proc_ops = {
1607 	.proc_open	= psi_cpu_open,
1608 	.proc_read	= seq_read,
1609 	.proc_lseek	= seq_lseek,
1610 	.proc_write	= psi_cpu_write,
1611 	.proc_poll	= psi_fop_poll,
1612 	.proc_release	= psi_fop_release,
1613 };
1614 
1615 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1616 static int psi_irq_show(struct seq_file *m, void *v)
1617 {
1618 	return psi_show(m, &psi_system, PSI_IRQ);
1619 }
1620 
1621 static int psi_irq_open(struct inode *inode, struct file *file)
1622 {
1623 	return single_open(file, psi_irq_show, NULL);
1624 }
1625 
1626 static ssize_t psi_irq_write(struct file *file, const char __user *user_buf,
1627 			     size_t nbytes, loff_t *ppos)
1628 {
1629 	return psi_write(file, user_buf, nbytes, PSI_IRQ);
1630 }
1631 
1632 static const struct proc_ops psi_irq_proc_ops = {
1633 	.proc_open	= psi_irq_open,
1634 	.proc_read	= seq_read,
1635 	.proc_lseek	= seq_lseek,
1636 	.proc_write	= psi_irq_write,
1637 	.proc_poll	= psi_fop_poll,
1638 	.proc_release	= psi_fop_release,
1639 };
1640 #endif
1641 
1642 static int __init psi_proc_init(void)
1643 {
1644 	if (psi_enable) {
1645 		proc_mkdir("pressure", NULL);
1646 		proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops);
1647 		proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops);
1648 		proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops);
1649 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1650 		proc_create("pressure/irq", 0666, NULL, &psi_irq_proc_ops);
1651 #endif
1652 	}
1653 	return 0;
1654 }
1655 module_init(psi_proc_init);
1656 
1657 #endif /* CONFIG_PROC_FS */
1658