1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Pressure stall information for CPU, memory and IO 4 * 5 * Copyright (c) 2018 Facebook, Inc. 6 * Author: Johannes Weiner <hannes@cmpxchg.org> 7 * 8 * Polling support by Suren Baghdasaryan <surenb@google.com> 9 * Copyright (c) 2018 Google, Inc. 10 * 11 * When CPU, memory and IO are contended, tasks experience delays that 12 * reduce throughput and introduce latencies into the workload. Memory 13 * and IO contention, in addition, can cause a full loss of forward 14 * progress in which the CPU goes idle. 15 * 16 * This code aggregates individual task delays into resource pressure 17 * metrics that indicate problems with both workload health and 18 * resource utilization. 19 * 20 * Model 21 * 22 * The time in which a task can execute on a CPU is our baseline for 23 * productivity. Pressure expresses the amount of time in which this 24 * potential cannot be realized due to resource contention. 25 * 26 * This concept of productivity has two components: the workload and 27 * the CPU. To measure the impact of pressure on both, we define two 28 * contention states for a resource: SOME and FULL. 29 * 30 * In the SOME state of a given resource, one or more tasks are 31 * delayed on that resource. This affects the workload's ability to 32 * perform work, but the CPU may still be executing other tasks. 33 * 34 * In the FULL state of a given resource, all non-idle tasks are 35 * delayed on that resource such that nobody is advancing and the CPU 36 * goes idle. This leaves both workload and CPU unproductive. 37 * 38 * SOME = nr_delayed_tasks != 0 39 * FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0 40 * 41 * What it means for a task to be productive is defined differently 42 * for each resource. For IO, productive means a running task. For 43 * memory, productive means a running task that isn't a reclaimer. For 44 * CPU, productive means an oncpu task. 45 * 46 * Naturally, the FULL state doesn't exist for the CPU resource at the 47 * system level, but exist at the cgroup level. At the cgroup level, 48 * FULL means all non-idle tasks in the cgroup are delayed on the CPU 49 * resource which is being used by others outside of the cgroup or 50 * throttled by the cgroup cpu.max configuration. 51 * 52 * The percentage of wallclock time spent in those compound stall 53 * states gives pressure numbers between 0 and 100 for each resource, 54 * where the SOME percentage indicates workload slowdowns and the FULL 55 * percentage indicates reduced CPU utilization: 56 * 57 * %SOME = time(SOME) / period 58 * %FULL = time(FULL) / period 59 * 60 * Multiple CPUs 61 * 62 * The more tasks and available CPUs there are, the more work can be 63 * performed concurrently. This means that the potential that can go 64 * unrealized due to resource contention *also* scales with non-idle 65 * tasks and CPUs. 66 * 67 * Consider a scenario where 257 number crunching tasks are trying to 68 * run concurrently on 256 CPUs. If we simply aggregated the task 69 * states, we would have to conclude a CPU SOME pressure number of 70 * 100%, since *somebody* is waiting on a runqueue at all 71 * times. However, that is clearly not the amount of contention the 72 * workload is experiencing: only one out of 256 possible execution 73 * threads will be contended at any given time, or about 0.4%. 74 * 75 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any 76 * given time *one* of the tasks is delayed due to a lack of memory. 77 * Again, looking purely at the task state would yield a memory FULL 78 * pressure number of 0%, since *somebody* is always making forward 79 * progress. But again this wouldn't capture the amount of execution 80 * potential lost, which is 1 out of 4 CPUs, or 25%. 81 * 82 * To calculate wasted potential (pressure) with multiple processors, 83 * we have to base our calculation on the number of non-idle tasks in 84 * conjunction with the number of available CPUs, which is the number 85 * of potential execution threads. SOME becomes then the proportion of 86 * delayed tasks to possible threads, and FULL is the share of possible 87 * threads that are unproductive due to delays: 88 * 89 * threads = min(nr_nonidle_tasks, nr_cpus) 90 * SOME = min(nr_delayed_tasks / threads, 1) 91 * FULL = (threads - min(nr_productive_tasks, threads)) / threads 92 * 93 * For the 257 number crunchers on 256 CPUs, this yields: 94 * 95 * threads = min(257, 256) 96 * SOME = min(1 / 256, 1) = 0.4% 97 * FULL = (256 - min(256, 256)) / 256 = 0% 98 * 99 * For the 1 out of 4 memory-delayed tasks, this yields: 100 * 101 * threads = min(4, 4) 102 * SOME = min(1 / 4, 1) = 25% 103 * FULL = (4 - min(3, 4)) / 4 = 25% 104 * 105 * [ Substitute nr_cpus with 1, and you can see that it's a natural 106 * extension of the single-CPU model. ] 107 * 108 * Implementation 109 * 110 * To assess the precise time spent in each such state, we would have 111 * to freeze the system on task changes and start/stop the state 112 * clocks accordingly. Obviously that doesn't scale in practice. 113 * 114 * Because the scheduler aims to distribute the compute load evenly 115 * among the available CPUs, we can track task state locally to each 116 * CPU and, at much lower frequency, extrapolate the global state for 117 * the cumulative stall times and the running averages. 118 * 119 * For each runqueue, we track: 120 * 121 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0) 122 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu]) 123 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0) 124 * 125 * and then periodically aggregate: 126 * 127 * tNONIDLE = sum(tNONIDLE[i]) 128 * 129 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE 130 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE 131 * 132 * %SOME = tSOME / period 133 * %FULL = tFULL / period 134 * 135 * This gives us an approximation of pressure that is practical 136 * cost-wise, yet way more sensitive and accurate than periodic 137 * sampling of the aggregate task states would be. 138 */ 139 140 static int psi_bug __read_mostly; 141 142 DEFINE_STATIC_KEY_FALSE(psi_disabled); 143 DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled); 144 145 #ifdef CONFIG_PSI_DEFAULT_DISABLED 146 static bool psi_enable; 147 #else 148 static bool psi_enable = true; 149 #endif 150 static int __init setup_psi(char *str) 151 { 152 return kstrtobool(str, &psi_enable) == 0; 153 } 154 __setup("psi=", setup_psi); 155 156 /* Running averages - we need to be higher-res than loadavg */ 157 #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */ 158 #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */ 159 #define EXP_60s 1981 /* 1/exp(2s/60s) */ 160 #define EXP_300s 2034 /* 1/exp(2s/300s) */ 161 162 /* PSI trigger definitions */ 163 #define WINDOW_MIN_US 500000 /* Min window size is 500ms */ 164 #define WINDOW_MAX_US 10000000 /* Max window size is 10s */ 165 #define UPDATES_PER_WINDOW 10 /* 10 updates per window */ 166 167 /* Sampling frequency in nanoseconds */ 168 static u64 psi_period __read_mostly; 169 170 /* System-level pressure and stall tracking */ 171 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu); 172 struct psi_group psi_system = { 173 .pcpu = &system_group_pcpu, 174 }; 175 176 static void psi_avgs_work(struct work_struct *work); 177 178 static void poll_timer_fn(struct timer_list *t); 179 180 static void group_init(struct psi_group *group) 181 { 182 int cpu; 183 184 group->enabled = true; 185 for_each_possible_cpu(cpu) 186 seqcount_init(&per_cpu_ptr(group->pcpu, cpu)->seq); 187 group->avg_last_update = sched_clock(); 188 group->avg_next_update = group->avg_last_update + psi_period; 189 mutex_init(&group->avgs_lock); 190 191 /* Init avg trigger-related members */ 192 INIT_LIST_HEAD(&group->avg_triggers); 193 memset(group->avg_nr_triggers, 0, sizeof(group->avg_nr_triggers)); 194 INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work); 195 196 /* Init rtpoll trigger-related members */ 197 atomic_set(&group->rtpoll_scheduled, 0); 198 mutex_init(&group->rtpoll_trigger_lock); 199 INIT_LIST_HEAD(&group->rtpoll_triggers); 200 group->rtpoll_min_period = U32_MAX; 201 group->rtpoll_next_update = ULLONG_MAX; 202 init_waitqueue_head(&group->rtpoll_wait); 203 timer_setup(&group->rtpoll_timer, poll_timer_fn, 0); 204 rcu_assign_pointer(group->rtpoll_task, NULL); 205 } 206 207 void __init psi_init(void) 208 { 209 if (!psi_enable) { 210 static_branch_enable(&psi_disabled); 211 static_branch_disable(&psi_cgroups_enabled); 212 return; 213 } 214 215 if (!cgroup_psi_enabled()) 216 static_branch_disable(&psi_cgroups_enabled); 217 218 psi_period = jiffies_to_nsecs(PSI_FREQ); 219 group_init(&psi_system); 220 } 221 222 static bool test_state(unsigned int *tasks, enum psi_states state, bool oncpu) 223 { 224 switch (state) { 225 case PSI_IO_SOME: 226 return unlikely(tasks[NR_IOWAIT]); 227 case PSI_IO_FULL: 228 return unlikely(tasks[NR_IOWAIT] && !tasks[NR_RUNNING]); 229 case PSI_MEM_SOME: 230 return unlikely(tasks[NR_MEMSTALL]); 231 case PSI_MEM_FULL: 232 return unlikely(tasks[NR_MEMSTALL] && 233 tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING]); 234 case PSI_CPU_SOME: 235 return unlikely(tasks[NR_RUNNING] > oncpu); 236 case PSI_CPU_FULL: 237 return unlikely(tasks[NR_RUNNING] && !oncpu); 238 case PSI_NONIDLE: 239 return tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || 240 tasks[NR_RUNNING]; 241 default: 242 return false; 243 } 244 } 245 246 static void get_recent_times(struct psi_group *group, int cpu, 247 enum psi_aggregators aggregator, u32 *times, 248 u32 *pchanged_states) 249 { 250 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu); 251 int current_cpu = raw_smp_processor_id(); 252 unsigned int tasks[NR_PSI_TASK_COUNTS]; 253 u64 now, state_start; 254 enum psi_states s; 255 unsigned int seq; 256 u32 state_mask; 257 258 *pchanged_states = 0; 259 260 /* Snapshot a coherent view of the CPU state */ 261 do { 262 seq = read_seqcount_begin(&groupc->seq); 263 now = cpu_clock(cpu); 264 memcpy(times, groupc->times, sizeof(groupc->times)); 265 state_mask = groupc->state_mask; 266 state_start = groupc->state_start; 267 if (cpu == current_cpu) 268 memcpy(tasks, groupc->tasks, sizeof(groupc->tasks)); 269 } while (read_seqcount_retry(&groupc->seq, seq)); 270 271 /* Calculate state time deltas against the previous snapshot */ 272 for (s = 0; s < NR_PSI_STATES; s++) { 273 u32 delta; 274 /* 275 * In addition to already concluded states, we also 276 * incorporate currently active states on the CPU, 277 * since states may last for many sampling periods. 278 * 279 * This way we keep our delta sampling buckets small 280 * (u32) and our reported pressure close to what's 281 * actually happening. 282 */ 283 if (state_mask & (1 << s)) 284 times[s] += now - state_start; 285 286 delta = times[s] - groupc->times_prev[aggregator][s]; 287 groupc->times_prev[aggregator][s] = times[s]; 288 289 times[s] = delta; 290 if (delta) 291 *pchanged_states |= (1 << s); 292 } 293 294 /* 295 * When collect_percpu_times() from the avgs_work, we don't want to 296 * re-arm avgs_work when all CPUs are IDLE. But the current CPU running 297 * this avgs_work is never IDLE, cause avgs_work can't be shut off. 298 * So for the current CPU, we need to re-arm avgs_work only when 299 * (NR_RUNNING > 1 || NR_IOWAIT > 0 || NR_MEMSTALL > 0), for other CPUs 300 * we can just check PSI_NONIDLE delta. 301 */ 302 if (current_work() == &group->avgs_work.work) { 303 bool reschedule; 304 305 if (cpu == current_cpu) 306 reschedule = tasks[NR_RUNNING] + 307 tasks[NR_IOWAIT] + 308 tasks[NR_MEMSTALL] > 1; 309 else 310 reschedule = *pchanged_states & (1 << PSI_NONIDLE); 311 312 if (reschedule) 313 *pchanged_states |= PSI_STATE_RESCHEDULE; 314 } 315 } 316 317 static void calc_avgs(unsigned long avg[3], int missed_periods, 318 u64 time, u64 period) 319 { 320 unsigned long pct; 321 322 /* Fill in zeroes for periods of no activity */ 323 if (missed_periods) { 324 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods); 325 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods); 326 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods); 327 } 328 329 /* Sample the most recent active period */ 330 pct = div_u64(time * 100, period); 331 pct *= FIXED_1; 332 avg[0] = calc_load(avg[0], EXP_10s, pct); 333 avg[1] = calc_load(avg[1], EXP_60s, pct); 334 avg[2] = calc_load(avg[2], EXP_300s, pct); 335 } 336 337 static void collect_percpu_times(struct psi_group *group, 338 enum psi_aggregators aggregator, 339 u32 *pchanged_states) 340 { 341 u64 deltas[NR_PSI_STATES - 1] = { 0, }; 342 unsigned long nonidle_total = 0; 343 u32 changed_states = 0; 344 int cpu; 345 int s; 346 347 /* 348 * Collect the per-cpu time buckets and average them into a 349 * single time sample that is normalized to wallclock time. 350 * 351 * For averaging, each CPU is weighted by its non-idle time in 352 * the sampling period. This eliminates artifacts from uneven 353 * loading, or even entirely idle CPUs. 354 */ 355 for_each_possible_cpu(cpu) { 356 u32 times[NR_PSI_STATES]; 357 u32 nonidle; 358 u32 cpu_changed_states; 359 360 get_recent_times(group, cpu, aggregator, times, 361 &cpu_changed_states); 362 changed_states |= cpu_changed_states; 363 364 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]); 365 nonidle_total += nonidle; 366 367 for (s = 0; s < PSI_NONIDLE; s++) 368 deltas[s] += (u64)times[s] * nonidle; 369 } 370 371 /* 372 * Integrate the sample into the running statistics that are 373 * reported to userspace: the cumulative stall times and the 374 * decaying averages. 375 * 376 * Pressure percentages are sampled at PSI_FREQ. We might be 377 * called more often when the user polls more frequently than 378 * that; we might be called less often when there is no task 379 * activity, thus no data, and clock ticks are sporadic. The 380 * below handles both. 381 */ 382 383 /* total= */ 384 for (s = 0; s < NR_PSI_STATES - 1; s++) 385 group->total[aggregator][s] += 386 div_u64(deltas[s], max(nonidle_total, 1UL)); 387 388 if (pchanged_states) 389 *pchanged_states = changed_states; 390 } 391 392 /* Trigger tracking window manipulations */ 393 static void window_reset(struct psi_window *win, u64 now, u64 value, 394 u64 prev_growth) 395 { 396 win->start_time = now; 397 win->start_value = value; 398 win->prev_growth = prev_growth; 399 } 400 401 /* 402 * PSI growth tracking window update and growth calculation routine. 403 * 404 * This approximates a sliding tracking window by interpolating 405 * partially elapsed windows using historical growth data from the 406 * previous intervals. This minimizes memory requirements (by not storing 407 * all the intermediate values in the previous window) and simplifies 408 * the calculations. It works well because PSI signal changes only in 409 * positive direction and over relatively small window sizes the growth 410 * is close to linear. 411 */ 412 static u64 window_update(struct psi_window *win, u64 now, u64 value) 413 { 414 u64 elapsed; 415 u64 growth; 416 417 elapsed = now - win->start_time; 418 growth = value - win->start_value; 419 /* 420 * After each tracking window passes win->start_value and 421 * win->start_time get reset and win->prev_growth stores 422 * the average per-window growth of the previous window. 423 * win->prev_growth is then used to interpolate additional 424 * growth from the previous window assuming it was linear. 425 */ 426 if (elapsed > win->size) 427 window_reset(win, now, value, growth); 428 else { 429 u32 remaining; 430 431 remaining = win->size - elapsed; 432 growth += div64_u64(win->prev_growth * remaining, win->size); 433 } 434 435 return growth; 436 } 437 438 static u64 update_triggers(struct psi_group *group, u64 now, bool *update_total, 439 enum psi_aggregators aggregator) 440 { 441 struct psi_trigger *t; 442 u64 *total = group->total[aggregator]; 443 struct list_head *triggers; 444 u64 *aggregator_total; 445 *update_total = false; 446 447 if (aggregator == PSI_AVGS) { 448 triggers = &group->avg_triggers; 449 aggregator_total = group->avg_total; 450 } else { 451 triggers = &group->rtpoll_triggers; 452 aggregator_total = group->rtpoll_total; 453 } 454 455 /* 456 * On subsequent updates, calculate growth deltas and let 457 * watchers know when their specified thresholds are exceeded. 458 */ 459 list_for_each_entry(t, triggers, node) { 460 u64 growth; 461 bool new_stall; 462 463 new_stall = aggregator_total[t->state] != total[t->state]; 464 465 /* Check for stall activity or a previous threshold breach */ 466 if (!new_stall && !t->pending_event) 467 continue; 468 /* 469 * Check for new stall activity, as well as deferred 470 * events that occurred in the last window after the 471 * trigger had already fired (we want to ratelimit 472 * events without dropping any). 473 */ 474 if (new_stall) { 475 /* 476 * Multiple triggers might be looking at the same state, 477 * remember to update group->polling_total[] once we've 478 * been through all of them. Also remember to extend the 479 * polling time if we see new stall activity. 480 */ 481 *update_total = true; 482 483 /* Calculate growth since last update */ 484 growth = window_update(&t->win, now, total[t->state]); 485 if (!t->pending_event) { 486 if (growth < t->threshold) 487 continue; 488 489 t->pending_event = true; 490 } 491 } 492 /* Limit event signaling to once per window */ 493 if (now < t->last_event_time + t->win.size) 494 continue; 495 496 /* Generate an event */ 497 if (cmpxchg(&t->event, 0, 1) == 0) 498 wake_up_interruptible(&t->event_wait); 499 t->last_event_time = now; 500 /* Reset threshold breach flag once event got generated */ 501 t->pending_event = false; 502 } 503 504 return now + group->rtpoll_min_period; 505 } 506 507 static u64 update_averages(struct psi_group *group, u64 now) 508 { 509 unsigned long missed_periods = 0; 510 u64 expires, period; 511 u64 avg_next_update; 512 int s; 513 514 /* avgX= */ 515 expires = group->avg_next_update; 516 if (now - expires >= psi_period) 517 missed_periods = div_u64(now - expires, psi_period); 518 519 /* 520 * The periodic clock tick can get delayed for various 521 * reasons, especially on loaded systems. To avoid clock 522 * drift, we schedule the clock in fixed psi_period intervals. 523 * But the deltas we sample out of the per-cpu buckets above 524 * are based on the actual time elapsing between clock ticks. 525 */ 526 avg_next_update = expires + ((1 + missed_periods) * psi_period); 527 period = now - (group->avg_last_update + (missed_periods * psi_period)); 528 group->avg_last_update = now; 529 530 for (s = 0; s < NR_PSI_STATES - 1; s++) { 531 u32 sample; 532 533 sample = group->total[PSI_AVGS][s] - group->avg_total[s]; 534 /* 535 * Due to the lockless sampling of the time buckets, 536 * recorded time deltas can slip into the next period, 537 * which under full pressure can result in samples in 538 * excess of the period length. 539 * 540 * We don't want to report non-sensical pressures in 541 * excess of 100%, nor do we want to drop such events 542 * on the floor. Instead we punt any overage into the 543 * future until pressure subsides. By doing this we 544 * don't underreport the occurring pressure curve, we 545 * just report it delayed by one period length. 546 * 547 * The error isn't cumulative. As soon as another 548 * delta slips from a period P to P+1, by definition 549 * it frees up its time T in P. 550 */ 551 if (sample > period) 552 sample = period; 553 group->avg_total[s] += sample; 554 calc_avgs(group->avg[s], missed_periods, sample, period); 555 } 556 557 return avg_next_update; 558 } 559 560 static void psi_avgs_work(struct work_struct *work) 561 { 562 struct delayed_work *dwork; 563 struct psi_group *group; 564 u32 changed_states; 565 bool update_total; 566 u64 now; 567 568 dwork = to_delayed_work(work); 569 group = container_of(dwork, struct psi_group, avgs_work); 570 571 mutex_lock(&group->avgs_lock); 572 573 now = sched_clock(); 574 575 collect_percpu_times(group, PSI_AVGS, &changed_states); 576 /* 577 * If there is task activity, periodically fold the per-cpu 578 * times and feed samples into the running averages. If things 579 * are idle and there is no data to process, stop the clock. 580 * Once restarted, we'll catch up the running averages in one 581 * go - see calc_avgs() and missed_periods. 582 */ 583 if (now >= group->avg_next_update) { 584 update_triggers(group, now, &update_total, PSI_AVGS); 585 group->avg_next_update = update_averages(group, now); 586 } 587 588 if (changed_states & PSI_STATE_RESCHEDULE) { 589 schedule_delayed_work(dwork, nsecs_to_jiffies( 590 group->avg_next_update - now) + 1); 591 } 592 593 mutex_unlock(&group->avgs_lock); 594 } 595 596 static void init_rtpoll_triggers(struct psi_group *group, u64 now) 597 { 598 struct psi_trigger *t; 599 600 list_for_each_entry(t, &group->rtpoll_triggers, node) 601 window_reset(&t->win, now, 602 group->total[PSI_POLL][t->state], 0); 603 memcpy(group->rtpoll_total, group->total[PSI_POLL], 604 sizeof(group->rtpoll_total)); 605 group->rtpoll_next_update = now + group->rtpoll_min_period; 606 } 607 608 /* Schedule polling if it's not already scheduled or forced. */ 609 static void psi_schedule_rtpoll_work(struct psi_group *group, unsigned long delay, 610 bool force) 611 { 612 struct task_struct *task; 613 614 /* 615 * atomic_xchg should be called even when !force to provide a 616 * full memory barrier (see the comment inside psi_rtpoll_work). 617 */ 618 if (atomic_xchg(&group->rtpoll_scheduled, 1) && !force) 619 return; 620 621 rcu_read_lock(); 622 623 task = rcu_dereference(group->rtpoll_task); 624 /* 625 * kworker might be NULL in case psi_trigger_destroy races with 626 * psi_task_change (hotpath) which can't use locks 627 */ 628 if (likely(task)) 629 mod_timer(&group->rtpoll_timer, jiffies + delay); 630 else 631 atomic_set(&group->rtpoll_scheduled, 0); 632 633 rcu_read_unlock(); 634 } 635 636 static void psi_rtpoll_work(struct psi_group *group) 637 { 638 bool force_reschedule = false; 639 u32 changed_states; 640 bool update_total; 641 u64 now; 642 643 mutex_lock(&group->rtpoll_trigger_lock); 644 645 now = sched_clock(); 646 647 if (now > group->rtpoll_until) { 648 /* 649 * We are either about to start or might stop polling if no 650 * state change was recorded. Resetting poll_scheduled leaves 651 * a small window for psi_group_change to sneak in and schedule 652 * an immediate poll_work before we get to rescheduling. One 653 * potential extra wakeup at the end of the polling window 654 * should be negligible and polling_next_update still keeps 655 * updates correctly on schedule. 656 */ 657 atomic_set(&group->rtpoll_scheduled, 0); 658 /* 659 * A task change can race with the poll worker that is supposed to 660 * report on it. To avoid missing events, ensure ordering between 661 * poll_scheduled and the task state accesses, such that if the poll 662 * worker misses the state update, the task change is guaranteed to 663 * reschedule the poll worker: 664 * 665 * poll worker: 666 * atomic_set(poll_scheduled, 0) 667 * smp_mb() 668 * LOAD states 669 * 670 * task change: 671 * STORE states 672 * if atomic_xchg(poll_scheduled, 1) == 0: 673 * schedule poll worker 674 * 675 * The atomic_xchg() implies a full barrier. 676 */ 677 smp_mb(); 678 } else { 679 /* Polling window is not over, keep rescheduling */ 680 force_reschedule = true; 681 } 682 683 684 collect_percpu_times(group, PSI_POLL, &changed_states); 685 686 if (changed_states & group->rtpoll_states) { 687 /* Initialize trigger windows when entering polling mode */ 688 if (now > group->rtpoll_until) 689 init_rtpoll_triggers(group, now); 690 691 /* 692 * Keep the monitor active for at least the duration of the 693 * minimum tracking window as long as monitor states are 694 * changing. 695 */ 696 group->rtpoll_until = now + 697 group->rtpoll_min_period * UPDATES_PER_WINDOW; 698 } 699 700 if (now > group->rtpoll_until) { 701 group->rtpoll_next_update = ULLONG_MAX; 702 goto out; 703 } 704 705 if (now >= group->rtpoll_next_update) { 706 group->rtpoll_next_update = update_triggers(group, now, &update_total, PSI_POLL); 707 if (update_total) 708 memcpy(group->rtpoll_total, group->total[PSI_POLL], 709 sizeof(group->rtpoll_total)); 710 } 711 712 psi_schedule_rtpoll_work(group, 713 nsecs_to_jiffies(group->rtpoll_next_update - now) + 1, 714 force_reschedule); 715 716 out: 717 mutex_unlock(&group->rtpoll_trigger_lock); 718 } 719 720 static int psi_rtpoll_worker(void *data) 721 { 722 struct psi_group *group = (struct psi_group *)data; 723 724 sched_set_fifo_low(current); 725 726 while (true) { 727 wait_event_interruptible(group->rtpoll_wait, 728 atomic_cmpxchg(&group->rtpoll_wakeup, 1, 0) || 729 kthread_should_stop()); 730 if (kthread_should_stop()) 731 break; 732 733 psi_rtpoll_work(group); 734 } 735 return 0; 736 } 737 738 static void poll_timer_fn(struct timer_list *t) 739 { 740 struct psi_group *group = from_timer(group, t, rtpoll_timer); 741 742 atomic_set(&group->rtpoll_wakeup, 1); 743 wake_up_interruptible(&group->rtpoll_wait); 744 } 745 746 static void record_times(struct psi_group_cpu *groupc, u64 now) 747 { 748 u32 delta; 749 750 delta = now - groupc->state_start; 751 groupc->state_start = now; 752 753 if (groupc->state_mask & (1 << PSI_IO_SOME)) { 754 groupc->times[PSI_IO_SOME] += delta; 755 if (groupc->state_mask & (1 << PSI_IO_FULL)) 756 groupc->times[PSI_IO_FULL] += delta; 757 } 758 759 if (groupc->state_mask & (1 << PSI_MEM_SOME)) { 760 groupc->times[PSI_MEM_SOME] += delta; 761 if (groupc->state_mask & (1 << PSI_MEM_FULL)) 762 groupc->times[PSI_MEM_FULL] += delta; 763 } 764 765 if (groupc->state_mask & (1 << PSI_CPU_SOME)) { 766 groupc->times[PSI_CPU_SOME] += delta; 767 if (groupc->state_mask & (1 << PSI_CPU_FULL)) 768 groupc->times[PSI_CPU_FULL] += delta; 769 } 770 771 if (groupc->state_mask & (1 << PSI_NONIDLE)) 772 groupc->times[PSI_NONIDLE] += delta; 773 } 774 775 static void psi_group_change(struct psi_group *group, int cpu, 776 unsigned int clear, unsigned int set, u64 now, 777 bool wake_clock) 778 { 779 struct psi_group_cpu *groupc; 780 unsigned int t, m; 781 enum psi_states s; 782 u32 state_mask; 783 784 groupc = per_cpu_ptr(group->pcpu, cpu); 785 786 /* 787 * First we update the task counts according to the state 788 * change requested through the @clear and @set bits. 789 * 790 * Then if the cgroup PSI stats accounting enabled, we 791 * assess the aggregate resource states this CPU's tasks 792 * have been in since the last change, and account any 793 * SOME and FULL time these may have resulted in. 794 */ 795 write_seqcount_begin(&groupc->seq); 796 797 /* 798 * Start with TSK_ONCPU, which doesn't have a corresponding 799 * task count - it's just a boolean flag directly encoded in 800 * the state mask. Clear, set, or carry the current state if 801 * no changes are requested. 802 */ 803 if (unlikely(clear & TSK_ONCPU)) { 804 state_mask = 0; 805 clear &= ~TSK_ONCPU; 806 } else if (unlikely(set & TSK_ONCPU)) { 807 state_mask = PSI_ONCPU; 808 set &= ~TSK_ONCPU; 809 } else { 810 state_mask = groupc->state_mask & PSI_ONCPU; 811 } 812 813 /* 814 * The rest of the state mask is calculated based on the task 815 * counts. Update those first, then construct the mask. 816 */ 817 for (t = 0, m = clear; m; m &= ~(1 << t), t++) { 818 if (!(m & (1 << t))) 819 continue; 820 if (groupc->tasks[t]) { 821 groupc->tasks[t]--; 822 } else if (!psi_bug) { 823 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n", 824 cpu, t, groupc->tasks[0], 825 groupc->tasks[1], groupc->tasks[2], 826 groupc->tasks[3], clear, set); 827 psi_bug = 1; 828 } 829 } 830 831 for (t = 0; set; set &= ~(1 << t), t++) 832 if (set & (1 << t)) 833 groupc->tasks[t]++; 834 835 if (!group->enabled) { 836 /* 837 * On the first group change after disabling PSI, conclude 838 * the current state and flush its time. This is unlikely 839 * to matter to the user, but aggregation (get_recent_times) 840 * may have already incorporated the live state into times_prev; 841 * avoid a delta sample underflow when PSI is later re-enabled. 842 */ 843 if (unlikely(groupc->state_mask & (1 << PSI_NONIDLE))) 844 record_times(groupc, now); 845 846 groupc->state_mask = state_mask; 847 848 write_seqcount_end(&groupc->seq); 849 return; 850 } 851 852 for (s = 0; s < NR_PSI_STATES; s++) { 853 if (test_state(groupc->tasks, s, state_mask & PSI_ONCPU)) 854 state_mask |= (1 << s); 855 } 856 857 /* 858 * Since we care about lost potential, a memstall is FULL 859 * when there are no other working tasks, but also when 860 * the CPU is actively reclaiming and nothing productive 861 * could run even if it were runnable. So when the current 862 * task in a cgroup is in_memstall, the corresponding groupc 863 * on that cpu is in PSI_MEM_FULL state. 864 */ 865 if (unlikely((state_mask & PSI_ONCPU) && cpu_curr(cpu)->in_memstall)) 866 state_mask |= (1 << PSI_MEM_FULL); 867 868 record_times(groupc, now); 869 870 groupc->state_mask = state_mask; 871 872 write_seqcount_end(&groupc->seq); 873 874 if (state_mask & group->rtpoll_states) 875 psi_schedule_rtpoll_work(group, 1, false); 876 877 if (wake_clock && !delayed_work_pending(&group->avgs_work)) 878 schedule_delayed_work(&group->avgs_work, PSI_FREQ); 879 } 880 881 static inline struct psi_group *task_psi_group(struct task_struct *task) 882 { 883 #ifdef CONFIG_CGROUPS 884 if (static_branch_likely(&psi_cgroups_enabled)) 885 return cgroup_psi(task_dfl_cgroup(task)); 886 #endif 887 return &psi_system; 888 } 889 890 static void psi_flags_change(struct task_struct *task, int clear, int set) 891 { 892 if (((task->psi_flags & set) || 893 (task->psi_flags & clear) != clear) && 894 !psi_bug) { 895 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n", 896 task->pid, task->comm, task_cpu(task), 897 task->psi_flags, clear, set); 898 psi_bug = 1; 899 } 900 901 task->psi_flags &= ~clear; 902 task->psi_flags |= set; 903 } 904 905 void psi_task_change(struct task_struct *task, int clear, int set) 906 { 907 int cpu = task_cpu(task); 908 struct psi_group *group; 909 u64 now; 910 911 if (!task->pid) 912 return; 913 914 psi_flags_change(task, clear, set); 915 916 now = cpu_clock(cpu); 917 918 group = task_psi_group(task); 919 do { 920 psi_group_change(group, cpu, clear, set, now, true); 921 } while ((group = group->parent)); 922 } 923 924 void psi_task_switch(struct task_struct *prev, struct task_struct *next, 925 bool sleep) 926 { 927 struct psi_group *group, *common = NULL; 928 int cpu = task_cpu(prev); 929 u64 now = cpu_clock(cpu); 930 931 if (next->pid) { 932 psi_flags_change(next, 0, TSK_ONCPU); 933 /* 934 * Set TSK_ONCPU on @next's cgroups. If @next shares any 935 * ancestors with @prev, those will already have @prev's 936 * TSK_ONCPU bit set, and we can stop the iteration there. 937 */ 938 group = task_psi_group(next); 939 do { 940 if (per_cpu_ptr(group->pcpu, cpu)->state_mask & 941 PSI_ONCPU) { 942 common = group; 943 break; 944 } 945 946 psi_group_change(group, cpu, 0, TSK_ONCPU, now, true); 947 } while ((group = group->parent)); 948 } 949 950 if (prev->pid) { 951 int clear = TSK_ONCPU, set = 0; 952 bool wake_clock = true; 953 954 /* 955 * When we're going to sleep, psi_dequeue() lets us 956 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and 957 * TSK_IOWAIT here, where we can combine it with 958 * TSK_ONCPU and save walking common ancestors twice. 959 */ 960 if (sleep) { 961 clear |= TSK_RUNNING; 962 if (prev->in_memstall) 963 clear |= TSK_MEMSTALL_RUNNING; 964 if (prev->in_iowait) 965 set |= TSK_IOWAIT; 966 967 /* 968 * Periodic aggregation shuts off if there is a period of no 969 * task changes, so we wake it back up if necessary. However, 970 * don't do this if the task change is the aggregation worker 971 * itself going to sleep, or we'll ping-pong forever. 972 */ 973 if (unlikely((prev->flags & PF_WQ_WORKER) && 974 wq_worker_last_func(prev) == psi_avgs_work)) 975 wake_clock = false; 976 } 977 978 psi_flags_change(prev, clear, set); 979 980 group = task_psi_group(prev); 981 do { 982 if (group == common) 983 break; 984 psi_group_change(group, cpu, clear, set, now, wake_clock); 985 } while ((group = group->parent)); 986 987 /* 988 * TSK_ONCPU is handled up to the common ancestor. If there are 989 * any other differences between the two tasks (e.g. prev goes 990 * to sleep, or only one task is memstall), finish propagating 991 * those differences all the way up to the root. 992 */ 993 if ((prev->psi_flags ^ next->psi_flags) & ~TSK_ONCPU) { 994 clear &= ~TSK_ONCPU; 995 for (; group; group = group->parent) 996 psi_group_change(group, cpu, clear, set, now, wake_clock); 997 } 998 } 999 } 1000 1001 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1002 void psi_account_irqtime(struct task_struct *task, u32 delta) 1003 { 1004 int cpu = task_cpu(task); 1005 struct psi_group *group; 1006 struct psi_group_cpu *groupc; 1007 u64 now; 1008 1009 if (!task->pid) 1010 return; 1011 1012 now = cpu_clock(cpu); 1013 1014 group = task_psi_group(task); 1015 do { 1016 if (!group->enabled) 1017 continue; 1018 1019 groupc = per_cpu_ptr(group->pcpu, cpu); 1020 1021 write_seqcount_begin(&groupc->seq); 1022 1023 record_times(groupc, now); 1024 groupc->times[PSI_IRQ_FULL] += delta; 1025 1026 write_seqcount_end(&groupc->seq); 1027 1028 if (group->rtpoll_states & (1 << PSI_IRQ_FULL)) 1029 psi_schedule_rtpoll_work(group, 1, false); 1030 } while ((group = group->parent)); 1031 } 1032 #endif 1033 1034 /** 1035 * psi_memstall_enter - mark the beginning of a memory stall section 1036 * @flags: flags to handle nested sections 1037 * 1038 * Marks the calling task as being stalled due to a lack of memory, 1039 * such as waiting for a refault or performing reclaim. 1040 */ 1041 void psi_memstall_enter(unsigned long *flags) 1042 { 1043 struct rq_flags rf; 1044 struct rq *rq; 1045 1046 if (static_branch_likely(&psi_disabled)) 1047 return; 1048 1049 *flags = current->in_memstall; 1050 if (*flags) 1051 return; 1052 /* 1053 * in_memstall setting & accounting needs to be atomic wrt 1054 * changes to the task's scheduling state, otherwise we can 1055 * race with CPU migration. 1056 */ 1057 rq = this_rq_lock_irq(&rf); 1058 1059 current->in_memstall = 1; 1060 psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING); 1061 1062 rq_unlock_irq(rq, &rf); 1063 } 1064 EXPORT_SYMBOL_GPL(psi_memstall_enter); 1065 1066 /** 1067 * psi_memstall_leave - mark the end of an memory stall section 1068 * @flags: flags to handle nested memdelay sections 1069 * 1070 * Marks the calling task as no longer stalled due to lack of memory. 1071 */ 1072 void psi_memstall_leave(unsigned long *flags) 1073 { 1074 struct rq_flags rf; 1075 struct rq *rq; 1076 1077 if (static_branch_likely(&psi_disabled)) 1078 return; 1079 1080 if (*flags) 1081 return; 1082 /* 1083 * in_memstall clearing & accounting needs to be atomic wrt 1084 * changes to the task's scheduling state, otherwise we could 1085 * race with CPU migration. 1086 */ 1087 rq = this_rq_lock_irq(&rf); 1088 1089 current->in_memstall = 0; 1090 psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0); 1091 1092 rq_unlock_irq(rq, &rf); 1093 } 1094 EXPORT_SYMBOL_GPL(psi_memstall_leave); 1095 1096 #ifdef CONFIG_CGROUPS 1097 int psi_cgroup_alloc(struct cgroup *cgroup) 1098 { 1099 if (!static_branch_likely(&psi_cgroups_enabled)) 1100 return 0; 1101 1102 cgroup->psi = kzalloc(sizeof(struct psi_group), GFP_KERNEL); 1103 if (!cgroup->psi) 1104 return -ENOMEM; 1105 1106 cgroup->psi->pcpu = alloc_percpu(struct psi_group_cpu); 1107 if (!cgroup->psi->pcpu) { 1108 kfree(cgroup->psi); 1109 return -ENOMEM; 1110 } 1111 group_init(cgroup->psi); 1112 cgroup->psi->parent = cgroup_psi(cgroup_parent(cgroup)); 1113 return 0; 1114 } 1115 1116 void psi_cgroup_free(struct cgroup *cgroup) 1117 { 1118 if (!static_branch_likely(&psi_cgroups_enabled)) 1119 return; 1120 1121 cancel_delayed_work_sync(&cgroup->psi->avgs_work); 1122 free_percpu(cgroup->psi->pcpu); 1123 /* All triggers must be removed by now */ 1124 WARN_ONCE(cgroup->psi->rtpoll_states, "psi: trigger leak\n"); 1125 kfree(cgroup->psi); 1126 } 1127 1128 /** 1129 * cgroup_move_task - move task to a different cgroup 1130 * @task: the task 1131 * @to: the target css_set 1132 * 1133 * Move task to a new cgroup and safely migrate its associated stall 1134 * state between the different groups. 1135 * 1136 * This function acquires the task's rq lock to lock out concurrent 1137 * changes to the task's scheduling state and - in case the task is 1138 * running - concurrent changes to its stall state. 1139 */ 1140 void cgroup_move_task(struct task_struct *task, struct css_set *to) 1141 { 1142 unsigned int task_flags; 1143 struct rq_flags rf; 1144 struct rq *rq; 1145 1146 if (!static_branch_likely(&psi_cgroups_enabled)) { 1147 /* 1148 * Lame to do this here, but the scheduler cannot be locked 1149 * from the outside, so we move cgroups from inside sched/. 1150 */ 1151 rcu_assign_pointer(task->cgroups, to); 1152 return; 1153 } 1154 1155 rq = task_rq_lock(task, &rf); 1156 1157 /* 1158 * We may race with schedule() dropping the rq lock between 1159 * deactivating prev and switching to next. Because the psi 1160 * updates from the deactivation are deferred to the switch 1161 * callback to save cgroup tree updates, the task's scheduling 1162 * state here is not coherent with its psi state: 1163 * 1164 * schedule() cgroup_move_task() 1165 * rq_lock() 1166 * deactivate_task() 1167 * p->on_rq = 0 1168 * psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates 1169 * pick_next_task() 1170 * rq_unlock() 1171 * rq_lock() 1172 * psi_task_change() // old cgroup 1173 * task->cgroups = to 1174 * psi_task_change() // new cgroup 1175 * rq_unlock() 1176 * rq_lock() 1177 * psi_sched_switch() // does deferred updates in new cgroup 1178 * 1179 * Don't rely on the scheduling state. Use psi_flags instead. 1180 */ 1181 task_flags = task->psi_flags; 1182 1183 if (task_flags) 1184 psi_task_change(task, task_flags, 0); 1185 1186 /* See comment above */ 1187 rcu_assign_pointer(task->cgroups, to); 1188 1189 if (task_flags) 1190 psi_task_change(task, 0, task_flags); 1191 1192 task_rq_unlock(rq, task, &rf); 1193 } 1194 1195 void psi_cgroup_restart(struct psi_group *group) 1196 { 1197 int cpu; 1198 1199 /* 1200 * After we disable psi_group->enabled, we don't actually 1201 * stop percpu tasks accounting in each psi_group_cpu, 1202 * instead only stop test_state() loop, record_times() 1203 * and averaging worker, see psi_group_change() for details. 1204 * 1205 * When disable cgroup PSI, this function has nothing to sync 1206 * since cgroup pressure files are hidden and percpu psi_group_cpu 1207 * would see !psi_group->enabled and only do task accounting. 1208 * 1209 * When re-enable cgroup PSI, this function use psi_group_change() 1210 * to get correct state mask from test_state() loop on tasks[], 1211 * and restart groupc->state_start from now, use .clear = .set = 0 1212 * here since no task status really changed. 1213 */ 1214 if (!group->enabled) 1215 return; 1216 1217 for_each_possible_cpu(cpu) { 1218 struct rq *rq = cpu_rq(cpu); 1219 struct rq_flags rf; 1220 u64 now; 1221 1222 rq_lock_irq(rq, &rf); 1223 now = cpu_clock(cpu); 1224 psi_group_change(group, cpu, 0, 0, now, true); 1225 rq_unlock_irq(rq, &rf); 1226 } 1227 } 1228 #endif /* CONFIG_CGROUPS */ 1229 1230 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res) 1231 { 1232 bool only_full = false; 1233 int full; 1234 u64 now; 1235 1236 if (static_branch_likely(&psi_disabled)) 1237 return -EOPNOTSUPP; 1238 1239 /* Update averages before reporting them */ 1240 mutex_lock(&group->avgs_lock); 1241 now = sched_clock(); 1242 collect_percpu_times(group, PSI_AVGS, NULL); 1243 if (now >= group->avg_next_update) 1244 group->avg_next_update = update_averages(group, now); 1245 mutex_unlock(&group->avgs_lock); 1246 1247 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1248 only_full = res == PSI_IRQ; 1249 #endif 1250 1251 for (full = 0; full < 2 - only_full; full++) { 1252 unsigned long avg[3] = { 0, }; 1253 u64 total = 0; 1254 int w; 1255 1256 /* CPU FULL is undefined at the system level */ 1257 if (!(group == &psi_system && res == PSI_CPU && full)) { 1258 for (w = 0; w < 3; w++) 1259 avg[w] = group->avg[res * 2 + full][w]; 1260 total = div_u64(group->total[PSI_AVGS][res * 2 + full], 1261 NSEC_PER_USEC); 1262 } 1263 1264 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n", 1265 full || only_full ? "full" : "some", 1266 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]), 1267 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]), 1268 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]), 1269 total); 1270 } 1271 1272 return 0; 1273 } 1274 1275 struct psi_trigger *psi_trigger_create(struct psi_group *group, 1276 char *buf, enum psi_res res, struct file *file) 1277 { 1278 struct psi_trigger *t; 1279 enum psi_states state; 1280 u32 threshold_us; 1281 bool privileged; 1282 u32 window_us; 1283 1284 if (static_branch_likely(&psi_disabled)) 1285 return ERR_PTR(-EOPNOTSUPP); 1286 1287 /* 1288 * Checking the privilege here on file->f_cred implies that a privileged user 1289 * could open the file and delegate the write to an unprivileged one. 1290 */ 1291 privileged = cap_raised(file->f_cred->cap_effective, CAP_SYS_RESOURCE); 1292 1293 if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2) 1294 state = PSI_IO_SOME + res * 2; 1295 else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2) 1296 state = PSI_IO_FULL + res * 2; 1297 else 1298 return ERR_PTR(-EINVAL); 1299 1300 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1301 if (res == PSI_IRQ && --state != PSI_IRQ_FULL) 1302 return ERR_PTR(-EINVAL); 1303 #endif 1304 1305 if (state >= PSI_NONIDLE) 1306 return ERR_PTR(-EINVAL); 1307 1308 if (window_us < WINDOW_MIN_US || 1309 window_us > WINDOW_MAX_US) 1310 return ERR_PTR(-EINVAL); 1311 1312 /* 1313 * Unprivileged users can only use 2s windows so that averages aggregation 1314 * work is used, and no RT threads need to be spawned. 1315 */ 1316 if (!privileged && window_us % 2000000) 1317 return ERR_PTR(-EINVAL); 1318 1319 /* Check threshold */ 1320 if (threshold_us == 0 || threshold_us > window_us) 1321 return ERR_PTR(-EINVAL); 1322 1323 t = kmalloc(sizeof(*t), GFP_KERNEL); 1324 if (!t) 1325 return ERR_PTR(-ENOMEM); 1326 1327 t->group = group; 1328 t->state = state; 1329 t->threshold = threshold_us * NSEC_PER_USEC; 1330 t->win.size = window_us * NSEC_PER_USEC; 1331 window_reset(&t->win, sched_clock(), 1332 group->total[PSI_POLL][t->state], 0); 1333 1334 t->event = 0; 1335 t->last_event_time = 0; 1336 init_waitqueue_head(&t->event_wait); 1337 t->pending_event = false; 1338 t->aggregator = privileged ? PSI_POLL : PSI_AVGS; 1339 1340 if (privileged) { 1341 mutex_lock(&group->rtpoll_trigger_lock); 1342 1343 if (!rcu_access_pointer(group->rtpoll_task)) { 1344 struct task_struct *task; 1345 1346 task = kthread_create(psi_rtpoll_worker, group, "psimon"); 1347 if (IS_ERR(task)) { 1348 kfree(t); 1349 mutex_unlock(&group->rtpoll_trigger_lock); 1350 return ERR_CAST(task); 1351 } 1352 atomic_set(&group->rtpoll_wakeup, 0); 1353 wake_up_process(task); 1354 rcu_assign_pointer(group->rtpoll_task, task); 1355 } 1356 1357 list_add(&t->node, &group->rtpoll_triggers); 1358 group->rtpoll_min_period = min(group->rtpoll_min_period, 1359 div_u64(t->win.size, UPDATES_PER_WINDOW)); 1360 group->rtpoll_nr_triggers[t->state]++; 1361 group->rtpoll_states |= (1 << t->state); 1362 1363 mutex_unlock(&group->rtpoll_trigger_lock); 1364 } else { 1365 mutex_lock(&group->avgs_lock); 1366 1367 list_add(&t->node, &group->avg_triggers); 1368 group->avg_nr_triggers[t->state]++; 1369 1370 mutex_unlock(&group->avgs_lock); 1371 } 1372 return t; 1373 } 1374 1375 void psi_trigger_destroy(struct psi_trigger *t) 1376 { 1377 struct psi_group *group; 1378 struct task_struct *task_to_destroy = NULL; 1379 1380 /* 1381 * We do not check psi_disabled since it might have been disabled after 1382 * the trigger got created. 1383 */ 1384 if (!t) 1385 return; 1386 1387 group = t->group; 1388 /* 1389 * Wakeup waiters to stop polling and clear the queue to prevent it from 1390 * being accessed later. Can happen if cgroup is deleted from under a 1391 * polling process. 1392 */ 1393 wake_up_pollfree(&t->event_wait); 1394 1395 if (t->aggregator == PSI_AVGS) { 1396 mutex_lock(&group->avgs_lock); 1397 if (!list_empty(&t->node)) { 1398 list_del(&t->node); 1399 group->avg_nr_triggers[t->state]--; 1400 } 1401 mutex_unlock(&group->avgs_lock); 1402 } else { 1403 mutex_lock(&group->rtpoll_trigger_lock); 1404 if (!list_empty(&t->node)) { 1405 struct psi_trigger *tmp; 1406 u64 period = ULLONG_MAX; 1407 1408 list_del(&t->node); 1409 group->rtpoll_nr_triggers[t->state]--; 1410 if (!group->rtpoll_nr_triggers[t->state]) 1411 group->rtpoll_states &= ~(1 << t->state); 1412 /* reset min update period for the remaining triggers */ 1413 list_for_each_entry(tmp, &group->rtpoll_triggers, node) 1414 period = min(period, div_u64(tmp->win.size, 1415 UPDATES_PER_WINDOW)); 1416 group->rtpoll_min_period = period; 1417 /* Destroy rtpoll_task when the last trigger is destroyed */ 1418 if (group->rtpoll_states == 0) { 1419 group->rtpoll_until = 0; 1420 task_to_destroy = rcu_dereference_protected( 1421 group->rtpoll_task, 1422 lockdep_is_held(&group->rtpoll_trigger_lock)); 1423 rcu_assign_pointer(group->rtpoll_task, NULL); 1424 del_timer(&group->rtpoll_timer); 1425 } 1426 } 1427 mutex_unlock(&group->rtpoll_trigger_lock); 1428 } 1429 1430 /* 1431 * Wait for psi_schedule_rtpoll_work RCU to complete its read-side 1432 * critical section before destroying the trigger and optionally the 1433 * rtpoll_task. 1434 */ 1435 synchronize_rcu(); 1436 /* 1437 * Stop kthread 'psimon' after releasing rtpoll_trigger_lock to prevent 1438 * a deadlock while waiting for psi_rtpoll_work to acquire 1439 * rtpoll_trigger_lock 1440 */ 1441 if (task_to_destroy) { 1442 /* 1443 * After the RCU grace period has expired, the worker 1444 * can no longer be found through group->rtpoll_task. 1445 */ 1446 kthread_stop(task_to_destroy); 1447 atomic_set(&group->rtpoll_scheduled, 0); 1448 } 1449 kfree(t); 1450 } 1451 1452 __poll_t psi_trigger_poll(void **trigger_ptr, 1453 struct file *file, poll_table *wait) 1454 { 1455 __poll_t ret = DEFAULT_POLLMASK; 1456 struct psi_trigger *t; 1457 1458 if (static_branch_likely(&psi_disabled)) 1459 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; 1460 1461 t = smp_load_acquire(trigger_ptr); 1462 if (!t) 1463 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; 1464 1465 poll_wait(file, &t->event_wait, wait); 1466 1467 if (cmpxchg(&t->event, 1, 0) == 1) 1468 ret |= EPOLLPRI; 1469 1470 return ret; 1471 } 1472 1473 #ifdef CONFIG_PROC_FS 1474 static int psi_io_show(struct seq_file *m, void *v) 1475 { 1476 return psi_show(m, &psi_system, PSI_IO); 1477 } 1478 1479 static int psi_memory_show(struct seq_file *m, void *v) 1480 { 1481 return psi_show(m, &psi_system, PSI_MEM); 1482 } 1483 1484 static int psi_cpu_show(struct seq_file *m, void *v) 1485 { 1486 return psi_show(m, &psi_system, PSI_CPU); 1487 } 1488 1489 static int psi_io_open(struct inode *inode, struct file *file) 1490 { 1491 return single_open(file, psi_io_show, NULL); 1492 } 1493 1494 static int psi_memory_open(struct inode *inode, struct file *file) 1495 { 1496 return single_open(file, psi_memory_show, NULL); 1497 } 1498 1499 static int psi_cpu_open(struct inode *inode, struct file *file) 1500 { 1501 return single_open(file, psi_cpu_show, NULL); 1502 } 1503 1504 static ssize_t psi_write(struct file *file, const char __user *user_buf, 1505 size_t nbytes, enum psi_res res) 1506 { 1507 char buf[32]; 1508 size_t buf_size; 1509 struct seq_file *seq; 1510 struct psi_trigger *new; 1511 1512 if (static_branch_likely(&psi_disabled)) 1513 return -EOPNOTSUPP; 1514 1515 if (!nbytes) 1516 return -EINVAL; 1517 1518 buf_size = min(nbytes, sizeof(buf)); 1519 if (copy_from_user(buf, user_buf, buf_size)) 1520 return -EFAULT; 1521 1522 buf[buf_size - 1] = '\0'; 1523 1524 seq = file->private_data; 1525 1526 /* Take seq->lock to protect seq->private from concurrent writes */ 1527 mutex_lock(&seq->lock); 1528 1529 /* Allow only one trigger per file descriptor */ 1530 if (seq->private) { 1531 mutex_unlock(&seq->lock); 1532 return -EBUSY; 1533 } 1534 1535 new = psi_trigger_create(&psi_system, buf, res, file); 1536 if (IS_ERR(new)) { 1537 mutex_unlock(&seq->lock); 1538 return PTR_ERR(new); 1539 } 1540 1541 smp_store_release(&seq->private, new); 1542 mutex_unlock(&seq->lock); 1543 1544 return nbytes; 1545 } 1546 1547 static ssize_t psi_io_write(struct file *file, const char __user *user_buf, 1548 size_t nbytes, loff_t *ppos) 1549 { 1550 return psi_write(file, user_buf, nbytes, PSI_IO); 1551 } 1552 1553 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf, 1554 size_t nbytes, loff_t *ppos) 1555 { 1556 return psi_write(file, user_buf, nbytes, PSI_MEM); 1557 } 1558 1559 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf, 1560 size_t nbytes, loff_t *ppos) 1561 { 1562 return psi_write(file, user_buf, nbytes, PSI_CPU); 1563 } 1564 1565 static __poll_t psi_fop_poll(struct file *file, poll_table *wait) 1566 { 1567 struct seq_file *seq = file->private_data; 1568 1569 return psi_trigger_poll(&seq->private, file, wait); 1570 } 1571 1572 static int psi_fop_release(struct inode *inode, struct file *file) 1573 { 1574 struct seq_file *seq = file->private_data; 1575 1576 psi_trigger_destroy(seq->private); 1577 return single_release(inode, file); 1578 } 1579 1580 static const struct proc_ops psi_io_proc_ops = { 1581 .proc_open = psi_io_open, 1582 .proc_read = seq_read, 1583 .proc_lseek = seq_lseek, 1584 .proc_write = psi_io_write, 1585 .proc_poll = psi_fop_poll, 1586 .proc_release = psi_fop_release, 1587 }; 1588 1589 static const struct proc_ops psi_memory_proc_ops = { 1590 .proc_open = psi_memory_open, 1591 .proc_read = seq_read, 1592 .proc_lseek = seq_lseek, 1593 .proc_write = psi_memory_write, 1594 .proc_poll = psi_fop_poll, 1595 .proc_release = psi_fop_release, 1596 }; 1597 1598 static const struct proc_ops psi_cpu_proc_ops = { 1599 .proc_open = psi_cpu_open, 1600 .proc_read = seq_read, 1601 .proc_lseek = seq_lseek, 1602 .proc_write = psi_cpu_write, 1603 .proc_poll = psi_fop_poll, 1604 .proc_release = psi_fop_release, 1605 }; 1606 1607 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1608 static int psi_irq_show(struct seq_file *m, void *v) 1609 { 1610 return psi_show(m, &psi_system, PSI_IRQ); 1611 } 1612 1613 static int psi_irq_open(struct inode *inode, struct file *file) 1614 { 1615 return single_open(file, psi_irq_show, NULL); 1616 } 1617 1618 static ssize_t psi_irq_write(struct file *file, const char __user *user_buf, 1619 size_t nbytes, loff_t *ppos) 1620 { 1621 return psi_write(file, user_buf, nbytes, PSI_IRQ); 1622 } 1623 1624 static const struct proc_ops psi_irq_proc_ops = { 1625 .proc_open = psi_irq_open, 1626 .proc_read = seq_read, 1627 .proc_lseek = seq_lseek, 1628 .proc_write = psi_irq_write, 1629 .proc_poll = psi_fop_poll, 1630 .proc_release = psi_fop_release, 1631 }; 1632 #endif 1633 1634 static int __init psi_proc_init(void) 1635 { 1636 if (psi_enable) { 1637 proc_mkdir("pressure", NULL); 1638 proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops); 1639 proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops); 1640 proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops); 1641 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1642 proc_create("pressure/irq", 0666, NULL, &psi_irq_proc_ops); 1643 #endif 1644 } 1645 return 0; 1646 } 1647 module_init(psi_proc_init); 1648 1649 #endif /* CONFIG_PROC_FS */ 1650