1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Pressure stall information for CPU, memory and IO 4 * 5 * Copyright (c) 2018 Facebook, Inc. 6 * Author: Johannes Weiner <hannes@cmpxchg.org> 7 * 8 * Polling support by Suren Baghdasaryan <surenb@google.com> 9 * Copyright (c) 2018 Google, Inc. 10 * 11 * When CPU, memory and IO are contended, tasks experience delays that 12 * reduce throughput and introduce latencies into the workload. Memory 13 * and IO contention, in addition, can cause a full loss of forward 14 * progress in which the CPU goes idle. 15 * 16 * This code aggregates individual task delays into resource pressure 17 * metrics that indicate problems with both workload health and 18 * resource utilization. 19 * 20 * Model 21 * 22 * The time in which a task can execute on a CPU is our baseline for 23 * productivity. Pressure expresses the amount of time in which this 24 * potential cannot be realized due to resource contention. 25 * 26 * This concept of productivity has two components: the workload and 27 * the CPU. To measure the impact of pressure on both, we define two 28 * contention states for a resource: SOME and FULL. 29 * 30 * In the SOME state of a given resource, one or more tasks are 31 * delayed on that resource. This affects the workload's ability to 32 * perform work, but the CPU may still be executing other tasks. 33 * 34 * In the FULL state of a given resource, all non-idle tasks are 35 * delayed on that resource such that nobody is advancing and the CPU 36 * goes idle. This leaves both workload and CPU unproductive. 37 * 38 * SOME = nr_delayed_tasks != 0 39 * FULL = nr_delayed_tasks != 0 && nr_productive_tasks == 0 40 * 41 * What it means for a task to be productive is defined differently 42 * for each resource. For IO, productive means a running task. For 43 * memory, productive means a running task that isn't a reclaimer. For 44 * CPU, productive means an on-CPU task. 45 * 46 * Naturally, the FULL state doesn't exist for the CPU resource at the 47 * system level, but exist at the cgroup level. At the cgroup level, 48 * FULL means all non-idle tasks in the cgroup are delayed on the CPU 49 * resource which is being used by others outside of the cgroup or 50 * throttled by the cgroup cpu.max configuration. 51 * 52 * The percentage of wall clock time spent in those compound stall 53 * states gives pressure numbers between 0 and 100 for each resource, 54 * where the SOME percentage indicates workload slowdowns and the FULL 55 * percentage indicates reduced CPU utilization: 56 * 57 * %SOME = time(SOME) / period 58 * %FULL = time(FULL) / period 59 * 60 * Multiple CPUs 61 * 62 * The more tasks and available CPUs there are, the more work can be 63 * performed concurrently. This means that the potential that can go 64 * unrealized due to resource contention *also* scales with non-idle 65 * tasks and CPUs. 66 * 67 * Consider a scenario where 257 number crunching tasks are trying to 68 * run concurrently on 256 CPUs. If we simply aggregated the task 69 * states, we would have to conclude a CPU SOME pressure number of 70 * 100%, since *somebody* is waiting on a runqueue at all 71 * times. However, that is clearly not the amount of contention the 72 * workload is experiencing: only one out of 256 possible execution 73 * threads will be contended at any given time, or about 0.4%. 74 * 75 * Conversely, consider a scenario of 4 tasks and 4 CPUs where at any 76 * given time *one* of the tasks is delayed due to a lack of memory. 77 * Again, looking purely at the task state would yield a memory FULL 78 * pressure number of 0%, since *somebody* is always making forward 79 * progress. But again this wouldn't capture the amount of execution 80 * potential lost, which is 1 out of 4 CPUs, or 25%. 81 * 82 * To calculate wasted potential (pressure) with multiple processors, 83 * we have to base our calculation on the number of non-idle tasks in 84 * conjunction with the number of available CPUs, which is the number 85 * of potential execution threads. SOME becomes then the proportion of 86 * delayed tasks to possible threads, and FULL is the share of possible 87 * threads that are unproductive due to delays: 88 * 89 * threads = min(nr_nonidle_tasks, nr_cpus) 90 * SOME = min(nr_delayed_tasks / threads, 1) 91 * FULL = (threads - min(nr_productive_tasks, threads)) / threads 92 * 93 * For the 257 number crunchers on 256 CPUs, this yields: 94 * 95 * threads = min(257, 256) 96 * SOME = min(1 / 256, 1) = 0.4% 97 * FULL = (256 - min(256, 256)) / 256 = 0% 98 * 99 * For the 1 out of 4 memory-delayed tasks, this yields: 100 * 101 * threads = min(4, 4) 102 * SOME = min(1 / 4, 1) = 25% 103 * FULL = (4 - min(3, 4)) / 4 = 25% 104 * 105 * [ Substitute nr_cpus with 1, and you can see that it's a natural 106 * extension of the single-CPU model. ] 107 * 108 * Implementation 109 * 110 * To assess the precise time spent in each such state, we would have 111 * to freeze the system on task changes and start/stop the state 112 * clocks accordingly. Obviously that doesn't scale in practice. 113 * 114 * Because the scheduler aims to distribute the compute load evenly 115 * among the available CPUs, we can track task state locally to each 116 * CPU and, at much lower frequency, extrapolate the global state for 117 * the cumulative stall times and the running averages. 118 * 119 * For each runqueue, we track: 120 * 121 * tSOME[cpu] = time(nr_delayed_tasks[cpu] != 0) 122 * tFULL[cpu] = time(nr_delayed_tasks[cpu] && !nr_productive_tasks[cpu]) 123 * tNONIDLE[cpu] = time(nr_nonidle_tasks[cpu] != 0) 124 * 125 * and then periodically aggregate: 126 * 127 * tNONIDLE = sum(tNONIDLE[i]) 128 * 129 * tSOME = sum(tSOME[i] * tNONIDLE[i]) / tNONIDLE 130 * tFULL = sum(tFULL[i] * tNONIDLE[i]) / tNONIDLE 131 * 132 * %SOME = tSOME / period 133 * %FULL = tFULL / period 134 * 135 * This gives us an approximation of pressure that is practical 136 * cost-wise, yet way more sensitive and accurate than periodic 137 * sampling of the aggregate task states would be. 138 */ 139 #include <linux/sched/clock.h> 140 #include <linux/workqueue.h> 141 #include <linux/psi.h> 142 #include "sched.h" 143 144 static int psi_bug __read_mostly; 145 146 DEFINE_STATIC_KEY_FALSE(psi_disabled); 147 static DEFINE_STATIC_KEY_TRUE(psi_cgroups_enabled); 148 149 #ifdef CONFIG_PSI_DEFAULT_DISABLED 150 static bool psi_enable; 151 #else 152 static bool psi_enable = true; 153 #endif 154 static int __init setup_psi(char *str) 155 { 156 return kstrtobool(str, &psi_enable) == 0; 157 } 158 __setup("psi=", setup_psi); 159 160 /* Running averages - we need to be higher-res than loadavg */ 161 #define PSI_FREQ (2*HZ+1) /* 2 sec intervals */ 162 #define EXP_10s 1677 /* 1/exp(2s/10s) as fixed-point */ 163 #define EXP_60s 1981 /* 1/exp(2s/60s) */ 164 #define EXP_300s 2034 /* 1/exp(2s/300s) */ 165 166 /* PSI trigger definitions */ 167 #define WINDOW_MAX_US 10000000 /* Max window size is 10s */ 168 #define UPDATES_PER_WINDOW 10 /* 10 updates per window */ 169 170 /* Sampling frequency in nanoseconds */ 171 static u64 psi_period __read_mostly; 172 173 /* System-level pressure and stall tracking */ 174 static DEFINE_PER_CPU(struct psi_group_cpu, system_group_pcpu); 175 struct psi_group psi_system = { 176 .pcpu = &system_group_pcpu, 177 }; 178 179 static DEFINE_PER_CPU(seqcount_t, psi_seq); 180 181 static inline void psi_write_begin(int cpu) 182 { 183 write_seqcount_begin(per_cpu_ptr(&psi_seq, cpu)); 184 } 185 186 static inline void psi_write_end(int cpu) 187 { 188 write_seqcount_end(per_cpu_ptr(&psi_seq, cpu)); 189 } 190 191 static inline u32 psi_read_begin(int cpu) 192 { 193 return read_seqcount_begin(per_cpu_ptr(&psi_seq, cpu)); 194 } 195 196 static inline bool psi_read_retry(int cpu, u32 seq) 197 { 198 return read_seqcount_retry(per_cpu_ptr(&psi_seq, cpu), seq); 199 } 200 201 static void psi_avgs_work(struct work_struct *work); 202 203 static void poll_timer_fn(struct timer_list *t); 204 205 static void group_init(struct psi_group *group) 206 { 207 int cpu; 208 209 group->enabled = true; 210 for_each_possible_cpu(cpu) 211 seqcount_init(per_cpu_ptr(&psi_seq, cpu)); 212 group->avg_last_update = sched_clock(); 213 group->avg_next_update = group->avg_last_update + psi_period; 214 mutex_init(&group->avgs_lock); 215 216 /* Init avg trigger-related members */ 217 INIT_LIST_HEAD(&group->avg_triggers); 218 memset(group->avg_nr_triggers, 0, sizeof(group->avg_nr_triggers)); 219 INIT_DELAYED_WORK(&group->avgs_work, psi_avgs_work); 220 221 /* Init rtpoll trigger-related members */ 222 atomic_set(&group->rtpoll_scheduled, 0); 223 mutex_init(&group->rtpoll_trigger_lock); 224 INIT_LIST_HEAD(&group->rtpoll_triggers); 225 group->rtpoll_min_period = U32_MAX; 226 group->rtpoll_next_update = ULLONG_MAX; 227 init_waitqueue_head(&group->rtpoll_wait); 228 timer_setup(&group->rtpoll_timer, poll_timer_fn, 0); 229 rcu_assign_pointer(group->rtpoll_task, NULL); 230 } 231 232 void __init psi_init(void) 233 { 234 if (!psi_enable) { 235 static_branch_enable(&psi_disabled); 236 static_branch_disable(&psi_cgroups_enabled); 237 return; 238 } 239 240 if (!cgroup_psi_enabled()) 241 static_branch_disable(&psi_cgroups_enabled); 242 243 psi_period = jiffies_to_nsecs(PSI_FREQ); 244 group_init(&psi_system); 245 } 246 247 static u32 test_states(unsigned int *tasks, u32 state_mask) 248 { 249 const bool oncpu = state_mask & PSI_ONCPU; 250 251 if (tasks[NR_IOWAIT]) { 252 state_mask |= BIT(PSI_IO_SOME); 253 if (!tasks[NR_RUNNING]) 254 state_mask |= BIT(PSI_IO_FULL); 255 } 256 257 if (tasks[NR_MEMSTALL]) { 258 state_mask |= BIT(PSI_MEM_SOME); 259 if (tasks[NR_RUNNING] == tasks[NR_MEMSTALL_RUNNING]) 260 state_mask |= BIT(PSI_MEM_FULL); 261 } 262 263 if (tasks[NR_RUNNING] > oncpu) 264 state_mask |= BIT(PSI_CPU_SOME); 265 266 if (tasks[NR_RUNNING] && !oncpu) 267 state_mask |= BIT(PSI_CPU_FULL); 268 269 if (tasks[NR_IOWAIT] || tasks[NR_MEMSTALL] || tasks[NR_RUNNING]) 270 state_mask |= BIT(PSI_NONIDLE); 271 272 return state_mask; 273 } 274 275 static void get_recent_times(struct psi_group *group, int cpu, 276 enum psi_aggregators aggregator, u32 *times, 277 u32 *pchanged_states) 278 { 279 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu); 280 int current_cpu = raw_smp_processor_id(); 281 unsigned int tasks[NR_PSI_TASK_COUNTS]; 282 u64 now, state_start; 283 enum psi_states s; 284 unsigned int seq; 285 u32 state_mask; 286 287 *pchanged_states = 0; 288 289 /* Snapshot a coherent view of the CPU state */ 290 do { 291 seq = psi_read_begin(cpu); 292 now = cpu_clock(cpu); 293 memcpy(times, groupc->times, sizeof(groupc->times)); 294 state_mask = groupc->state_mask; 295 state_start = groupc->state_start; 296 if (cpu == current_cpu) 297 memcpy(tasks, groupc->tasks, sizeof(groupc->tasks)); 298 } while (psi_read_retry(cpu, seq)); 299 300 /* Calculate state time deltas against the previous snapshot */ 301 for (s = 0; s < NR_PSI_STATES; s++) { 302 u32 delta; 303 /* 304 * In addition to already concluded states, we also 305 * incorporate currently active states on the CPU, 306 * since states may last for many sampling periods. 307 * 308 * This way we keep our delta sampling buckets small 309 * (u32) and our reported pressure close to what's 310 * actually happening. 311 */ 312 if (state_mask & (1 << s)) 313 times[s] += now - state_start; 314 315 delta = times[s] - groupc->times_prev[aggregator][s]; 316 groupc->times_prev[aggregator][s] = times[s]; 317 318 times[s] = delta; 319 if (delta) 320 *pchanged_states |= (1 << s); 321 } 322 323 /* 324 * When collect_percpu_times() from the avgs_work, we don't want to 325 * re-arm avgs_work when all CPUs are IDLE. But the current CPU running 326 * this avgs_work is never IDLE, cause avgs_work can't be shut off. 327 * So for the current CPU, we need to re-arm avgs_work only when 328 * (NR_RUNNING > 1 || NR_IOWAIT > 0 || NR_MEMSTALL > 0), for other CPUs 329 * we can just check PSI_NONIDLE delta. 330 */ 331 if (current_work() == &group->avgs_work.work) { 332 bool reschedule; 333 334 if (cpu == current_cpu) 335 reschedule = tasks[NR_RUNNING] + 336 tasks[NR_IOWAIT] + 337 tasks[NR_MEMSTALL] > 1; 338 else 339 reschedule = *pchanged_states & (1 << PSI_NONIDLE); 340 341 if (reschedule) 342 *pchanged_states |= PSI_STATE_RESCHEDULE; 343 } 344 } 345 346 static void calc_avgs(unsigned long avg[3], int missed_periods, 347 u64 time, u64 period) 348 { 349 unsigned long pct; 350 351 /* Fill in zeroes for periods of no activity */ 352 if (missed_periods) { 353 avg[0] = calc_load_n(avg[0], EXP_10s, 0, missed_periods); 354 avg[1] = calc_load_n(avg[1], EXP_60s, 0, missed_periods); 355 avg[2] = calc_load_n(avg[2], EXP_300s, 0, missed_periods); 356 } 357 358 /* Sample the most recent active period */ 359 pct = div_u64(time * 100, period); 360 pct *= FIXED_1; 361 avg[0] = calc_load(avg[0], EXP_10s, pct); 362 avg[1] = calc_load(avg[1], EXP_60s, pct); 363 avg[2] = calc_load(avg[2], EXP_300s, pct); 364 } 365 366 static void collect_percpu_times(struct psi_group *group, 367 enum psi_aggregators aggregator, 368 u32 *pchanged_states) 369 { 370 u64 deltas[NR_PSI_STATES - 1] = { 0, }; 371 unsigned long nonidle_total = 0; 372 u32 changed_states = 0; 373 int cpu; 374 int s; 375 376 /* 377 * Collect the per-cpu time buckets and average them into a 378 * single time sample that is normalized to wall clock time. 379 * 380 * For averaging, each CPU is weighted by its non-idle time in 381 * the sampling period. This eliminates artifacts from uneven 382 * loading, or even entirely idle CPUs. 383 */ 384 for_each_possible_cpu(cpu) { 385 u32 times[NR_PSI_STATES]; 386 u32 nonidle; 387 u32 cpu_changed_states; 388 389 get_recent_times(group, cpu, aggregator, times, 390 &cpu_changed_states); 391 changed_states |= cpu_changed_states; 392 393 nonidle = nsecs_to_jiffies(times[PSI_NONIDLE]); 394 nonidle_total += nonidle; 395 396 for (s = 0; s < PSI_NONIDLE; s++) 397 deltas[s] += (u64)times[s] * nonidle; 398 } 399 400 /* 401 * Integrate the sample into the running statistics that are 402 * reported to userspace: the cumulative stall times and the 403 * decaying averages. 404 * 405 * Pressure percentages are sampled at PSI_FREQ. We might be 406 * called more often when the user polls more frequently than 407 * that; we might be called less often when there is no task 408 * activity, thus no data, and clock ticks are sporadic. The 409 * below handles both. 410 */ 411 412 /* total= */ 413 for (s = 0; s < NR_PSI_STATES - 1; s++) 414 group->total[aggregator][s] += 415 div_u64(deltas[s], max(nonidle_total, 1UL)); 416 417 if (pchanged_states) 418 *pchanged_states = changed_states; 419 } 420 421 /* Trigger tracking window manipulations */ 422 static void window_reset(struct psi_window *win, u64 now, u64 value, 423 u64 prev_growth) 424 { 425 win->start_time = now; 426 win->start_value = value; 427 win->prev_growth = prev_growth; 428 } 429 430 /* 431 * PSI growth tracking window update and growth calculation routine. 432 * 433 * This approximates a sliding tracking window by interpolating 434 * partially elapsed windows using historical growth data from the 435 * previous intervals. This minimizes memory requirements (by not storing 436 * all the intermediate values in the previous window) and simplifies 437 * the calculations. It works well because PSI signal changes only in 438 * positive direction and over relatively small window sizes the growth 439 * is close to linear. 440 */ 441 static u64 window_update(struct psi_window *win, u64 now, u64 value) 442 { 443 u64 elapsed; 444 u64 growth; 445 446 elapsed = now - win->start_time; 447 growth = value - win->start_value; 448 /* 449 * After each tracking window passes win->start_value and 450 * win->start_time get reset and win->prev_growth stores 451 * the average per-window growth of the previous window. 452 * win->prev_growth is then used to interpolate additional 453 * growth from the previous window assuming it was linear. 454 */ 455 if (elapsed > win->size) 456 window_reset(win, now, value, growth); 457 else { 458 u32 remaining; 459 460 remaining = win->size - elapsed; 461 growth += div64_u64(win->prev_growth * remaining, win->size); 462 } 463 464 return growth; 465 } 466 467 static void update_triggers(struct psi_group *group, u64 now, 468 enum psi_aggregators aggregator) 469 { 470 struct psi_trigger *t; 471 u64 *total = group->total[aggregator]; 472 struct list_head *triggers; 473 u64 *aggregator_total; 474 475 if (aggregator == PSI_AVGS) { 476 triggers = &group->avg_triggers; 477 aggregator_total = group->avg_total; 478 } else { 479 triggers = &group->rtpoll_triggers; 480 aggregator_total = group->rtpoll_total; 481 } 482 483 /* 484 * On subsequent updates, calculate growth deltas and let 485 * watchers know when their specified thresholds are exceeded. 486 */ 487 list_for_each_entry(t, triggers, node) { 488 u64 growth; 489 bool new_stall; 490 491 new_stall = aggregator_total[t->state] != total[t->state]; 492 493 /* Check for stall activity or a previous threshold breach */ 494 if (!new_stall && !t->pending_event) 495 continue; 496 /* 497 * Check for new stall activity, as well as deferred 498 * events that occurred in the last window after the 499 * trigger had already fired (we want to ratelimit 500 * events without dropping any). 501 */ 502 if (new_stall) { 503 /* Calculate growth since last update */ 504 growth = window_update(&t->win, now, total[t->state]); 505 if (!t->pending_event) { 506 if (growth < t->threshold) 507 continue; 508 509 t->pending_event = true; 510 } 511 } 512 /* Limit event signaling to once per window */ 513 if (now < t->last_event_time + t->win.size) 514 continue; 515 516 /* Generate an event */ 517 if (cmpxchg(&t->event, 0, 1) == 0) { 518 if (t->of) 519 kernfs_notify(t->of->kn); 520 else 521 wake_up_interruptible(&t->event_wait); 522 } 523 t->last_event_time = now; 524 /* Reset threshold breach flag once event got generated */ 525 t->pending_event = false; 526 } 527 } 528 529 static u64 update_averages(struct psi_group *group, u64 now) 530 { 531 unsigned long missed_periods = 0; 532 u64 expires, period; 533 u64 avg_next_update; 534 int s; 535 536 /* avgX= */ 537 expires = group->avg_next_update; 538 if (now - expires >= psi_period) 539 missed_periods = div_u64(now - expires, psi_period); 540 541 /* 542 * The periodic clock tick can get delayed for various 543 * reasons, especially on loaded systems. To avoid clock 544 * drift, we schedule the clock in fixed psi_period intervals. 545 * But the deltas we sample out of the per-cpu buckets above 546 * are based on the actual time elapsing between clock ticks. 547 */ 548 avg_next_update = expires + ((1 + missed_periods) * psi_period); 549 period = now - (group->avg_last_update + (missed_periods * psi_period)); 550 group->avg_last_update = now; 551 552 for (s = 0; s < NR_PSI_STATES - 1; s++) { 553 u32 sample; 554 555 sample = group->total[PSI_AVGS][s] - group->avg_total[s]; 556 /* 557 * Due to the lockless sampling of the time buckets, 558 * recorded time deltas can slip into the next period, 559 * which under full pressure can result in samples in 560 * excess of the period length. 561 * 562 * We don't want to report non-sensical pressures in 563 * excess of 100%, nor do we want to drop such events 564 * on the floor. Instead we punt any overage into the 565 * future until pressure subsides. By doing this we 566 * don't underreport the occurring pressure curve, we 567 * just report it delayed by one period length. 568 * 569 * The error isn't cumulative. As soon as another 570 * delta slips from a period P to P+1, by definition 571 * it frees up its time T in P. 572 */ 573 if (sample > period) 574 sample = period; 575 group->avg_total[s] += sample; 576 calc_avgs(group->avg[s], missed_periods, sample, period); 577 } 578 579 return avg_next_update; 580 } 581 582 static void psi_avgs_work(struct work_struct *work) 583 { 584 struct delayed_work *dwork; 585 struct psi_group *group; 586 u32 changed_states; 587 u64 now; 588 589 dwork = to_delayed_work(work); 590 group = container_of(dwork, struct psi_group, avgs_work); 591 592 mutex_lock(&group->avgs_lock); 593 594 now = sched_clock(); 595 596 collect_percpu_times(group, PSI_AVGS, &changed_states); 597 /* 598 * If there is task activity, periodically fold the per-cpu 599 * times and feed samples into the running averages. If things 600 * are idle and there is no data to process, stop the clock. 601 * Once restarted, we'll catch up the running averages in one 602 * go - see calc_avgs() and missed_periods. 603 */ 604 if (now >= group->avg_next_update) { 605 update_triggers(group, now, PSI_AVGS); 606 group->avg_next_update = update_averages(group, now); 607 } 608 609 if (changed_states & PSI_STATE_RESCHEDULE) { 610 schedule_delayed_work(dwork, nsecs_to_jiffies( 611 group->avg_next_update - now) + 1); 612 } 613 614 mutex_unlock(&group->avgs_lock); 615 } 616 617 static void init_rtpoll_triggers(struct psi_group *group, u64 now) 618 { 619 struct psi_trigger *t; 620 621 list_for_each_entry(t, &group->rtpoll_triggers, node) 622 window_reset(&t->win, now, 623 group->total[PSI_POLL][t->state], 0); 624 memcpy(group->rtpoll_total, group->total[PSI_POLL], 625 sizeof(group->rtpoll_total)); 626 group->rtpoll_next_update = now + group->rtpoll_min_period; 627 } 628 629 /* Schedule rtpolling if it's not already scheduled or forced. */ 630 static void psi_schedule_rtpoll_work(struct psi_group *group, unsigned long delay, 631 bool force) 632 { 633 struct task_struct *task; 634 635 /* 636 * atomic_xchg should be called even when !force to provide a 637 * full memory barrier (see the comment inside psi_rtpoll_work). 638 */ 639 if (atomic_xchg(&group->rtpoll_scheduled, 1) && !force) 640 return; 641 642 rcu_read_lock(); 643 644 task = rcu_dereference(group->rtpoll_task); 645 /* 646 * kworker might be NULL in case psi_trigger_destroy races with 647 * psi_task_change (hotpath) which can't use locks 648 */ 649 if (likely(task)) 650 mod_timer(&group->rtpoll_timer, jiffies + delay); 651 else 652 atomic_set(&group->rtpoll_scheduled, 0); 653 654 rcu_read_unlock(); 655 } 656 657 static void psi_rtpoll_work(struct psi_group *group) 658 { 659 bool force_reschedule = false; 660 u32 changed_states; 661 u64 now; 662 663 mutex_lock(&group->rtpoll_trigger_lock); 664 665 now = sched_clock(); 666 667 if (now > group->rtpoll_until) { 668 /* 669 * We are either about to start or might stop rtpolling if no 670 * state change was recorded. Resetting rtpoll_scheduled leaves 671 * a small window for psi_group_change to sneak in and schedule 672 * an immediate rtpoll_work before we get to rescheduling. One 673 * potential extra wakeup at the end of the rtpolling window 674 * should be negligible and rtpoll_next_update still keeps 675 * updates correctly on schedule. 676 */ 677 atomic_set(&group->rtpoll_scheduled, 0); 678 /* 679 * A task change can race with the rtpoll worker that is supposed to 680 * report on it. To avoid missing events, ensure ordering between 681 * rtpoll_scheduled and the task state accesses, such that if the 682 * rtpoll worker misses the state update, the task change is 683 * guaranteed to reschedule the rtpoll worker: 684 * 685 * rtpoll worker: 686 * atomic_set(rtpoll_scheduled, 0) 687 * smp_mb() 688 * LOAD states 689 * 690 * task change: 691 * STORE states 692 * if atomic_xchg(rtpoll_scheduled, 1) == 0: 693 * schedule rtpoll worker 694 * 695 * The atomic_xchg() implies a full barrier. 696 */ 697 smp_mb(); 698 } else { 699 /* The rtpolling window is not over, keep rescheduling */ 700 force_reschedule = true; 701 } 702 703 704 collect_percpu_times(group, PSI_POLL, &changed_states); 705 706 if (changed_states & group->rtpoll_states) { 707 /* Initialize trigger windows when entering rtpolling mode */ 708 if (now > group->rtpoll_until) 709 init_rtpoll_triggers(group, now); 710 711 /* 712 * Keep the monitor active for at least the duration of the 713 * minimum tracking window as long as monitor states are 714 * changing. 715 */ 716 group->rtpoll_until = now + 717 group->rtpoll_min_period * UPDATES_PER_WINDOW; 718 } 719 720 if (now > group->rtpoll_until) { 721 group->rtpoll_next_update = ULLONG_MAX; 722 goto out; 723 } 724 725 if (now >= group->rtpoll_next_update) { 726 if (changed_states & group->rtpoll_states) { 727 update_triggers(group, now, PSI_POLL); 728 memcpy(group->rtpoll_total, group->total[PSI_POLL], 729 sizeof(group->rtpoll_total)); 730 } 731 group->rtpoll_next_update = now + group->rtpoll_min_period; 732 } 733 734 psi_schedule_rtpoll_work(group, 735 nsecs_to_jiffies(group->rtpoll_next_update - now) + 1, 736 force_reschedule); 737 738 out: 739 mutex_unlock(&group->rtpoll_trigger_lock); 740 } 741 742 static int psi_rtpoll_worker(void *data) 743 { 744 struct psi_group *group = (struct psi_group *)data; 745 746 sched_set_fifo_low(current); 747 748 while (true) { 749 wait_event_interruptible(group->rtpoll_wait, 750 atomic_cmpxchg(&group->rtpoll_wakeup, 1, 0) || 751 kthread_should_stop()); 752 if (kthread_should_stop()) 753 break; 754 755 psi_rtpoll_work(group); 756 } 757 return 0; 758 } 759 760 static void poll_timer_fn(struct timer_list *t) 761 { 762 struct psi_group *group = timer_container_of(group, t, rtpoll_timer); 763 764 atomic_set(&group->rtpoll_wakeup, 1); 765 wake_up_interruptible(&group->rtpoll_wait); 766 } 767 768 static void record_times(struct psi_group_cpu *groupc, u64 now) 769 { 770 u32 delta; 771 772 delta = now - groupc->state_start; 773 groupc->state_start = now; 774 775 if (groupc->state_mask & (1 << PSI_IO_SOME)) { 776 groupc->times[PSI_IO_SOME] += delta; 777 if (groupc->state_mask & (1 << PSI_IO_FULL)) 778 groupc->times[PSI_IO_FULL] += delta; 779 } 780 781 if (groupc->state_mask & (1 << PSI_MEM_SOME)) { 782 groupc->times[PSI_MEM_SOME] += delta; 783 if (groupc->state_mask & (1 << PSI_MEM_FULL)) 784 groupc->times[PSI_MEM_FULL] += delta; 785 } 786 787 if (groupc->state_mask & (1 << PSI_CPU_SOME)) { 788 groupc->times[PSI_CPU_SOME] += delta; 789 if (groupc->state_mask & (1 << PSI_CPU_FULL)) 790 groupc->times[PSI_CPU_FULL] += delta; 791 } 792 793 if (groupc->state_mask & (1 << PSI_NONIDLE)) 794 groupc->times[PSI_NONIDLE] += delta; 795 } 796 797 #define for_each_group(iter, group) \ 798 for (typeof(group) iter = group; iter; iter = iter->parent) 799 800 static void psi_group_change(struct psi_group *group, int cpu, 801 unsigned int clear, unsigned int set, 802 u64 now, bool wake_clock) 803 { 804 struct psi_group_cpu *groupc; 805 unsigned int t, m; 806 u32 state_mask; 807 808 lockdep_assert_rq_held(cpu_rq(cpu)); 809 groupc = per_cpu_ptr(group->pcpu, cpu); 810 811 /* 812 * Start with TSK_ONCPU, which doesn't have a corresponding 813 * task count - it's just a boolean flag directly encoded in 814 * the state mask. Clear, set, or carry the current state if 815 * no changes are requested. 816 */ 817 if (unlikely(clear & TSK_ONCPU)) { 818 state_mask = 0; 819 clear &= ~TSK_ONCPU; 820 } else if (unlikely(set & TSK_ONCPU)) { 821 state_mask = PSI_ONCPU; 822 set &= ~TSK_ONCPU; 823 } else { 824 state_mask = groupc->state_mask & PSI_ONCPU; 825 } 826 827 /* 828 * The rest of the state mask is calculated based on the task 829 * counts. Update those first, then construct the mask. 830 */ 831 for (t = 0, m = clear; m; m &= ~(1 << t), t++) { 832 if (!(m & (1 << t))) 833 continue; 834 if (groupc->tasks[t]) { 835 groupc->tasks[t]--; 836 } else if (!psi_bug) { 837 printk_deferred(KERN_ERR "psi: task underflow! cpu=%d t=%d tasks=[%u %u %u %u] clear=%x set=%x\n", 838 cpu, t, groupc->tasks[0], 839 groupc->tasks[1], groupc->tasks[2], 840 groupc->tasks[3], clear, set); 841 psi_bug = 1; 842 } 843 } 844 845 for (t = 0; set; set &= ~(1 << t), t++) 846 if (set & (1 << t)) 847 groupc->tasks[t]++; 848 849 if (!group->enabled) { 850 /* 851 * On the first group change after disabling PSI, conclude 852 * the current state and flush its time. This is unlikely 853 * to matter to the user, but aggregation (get_recent_times) 854 * may have already incorporated the live state into times_prev; 855 * avoid a delta sample underflow when PSI is later re-enabled. 856 */ 857 if (unlikely(groupc->state_mask & (1 << PSI_NONIDLE))) 858 record_times(groupc, now); 859 860 groupc->state_mask = state_mask; 861 862 return; 863 } 864 865 state_mask = test_states(groupc->tasks, state_mask); 866 867 /* 868 * Since we care about lost potential, a memstall is FULL 869 * when there are no other working tasks, but also when 870 * the CPU is actively reclaiming and nothing productive 871 * could run even if it were runnable. So when the current 872 * task in a cgroup is in_memstall, the corresponding groupc 873 * on that cpu is in PSI_MEM_FULL state. 874 */ 875 if (unlikely((state_mask & PSI_ONCPU) && cpu_curr(cpu)->in_memstall)) 876 state_mask |= (1 << PSI_MEM_FULL); 877 878 record_times(groupc, now); 879 880 groupc->state_mask = state_mask; 881 882 if (state_mask & group->rtpoll_states) 883 psi_schedule_rtpoll_work(group, 1, false); 884 885 if (wake_clock && !delayed_work_pending(&group->avgs_work)) 886 schedule_delayed_work(&group->avgs_work, PSI_FREQ); 887 } 888 889 static inline struct psi_group *task_psi_group(struct task_struct *task) 890 { 891 #ifdef CONFIG_CGROUPS 892 if (static_branch_likely(&psi_cgroups_enabled)) 893 return cgroup_psi(task_dfl_cgroup(task)); 894 #endif 895 return &psi_system; 896 } 897 898 static void psi_flags_change(struct task_struct *task, int clear, int set) 899 { 900 if (((task->psi_flags & set) || 901 (task->psi_flags & clear) != clear) && 902 !psi_bug) { 903 printk_deferred(KERN_ERR "psi: inconsistent task state! task=%d:%s cpu=%d psi_flags=%x clear=%x set=%x\n", 904 task->pid, task->comm, task_cpu(task), 905 task->psi_flags, clear, set); 906 psi_bug = 1; 907 } 908 909 task->psi_flags &= ~clear; 910 task->psi_flags |= set; 911 } 912 913 void psi_task_change(struct task_struct *task, int clear, int set) 914 { 915 int cpu = task_cpu(task); 916 u64 now; 917 918 if (!task->pid) 919 return; 920 921 psi_flags_change(task, clear, set); 922 923 psi_write_begin(cpu); 924 now = cpu_clock(cpu); 925 for_each_group(group, task_psi_group(task)) 926 psi_group_change(group, cpu, clear, set, now, true); 927 psi_write_end(cpu); 928 } 929 930 void psi_task_switch(struct task_struct *prev, struct task_struct *next, 931 bool sleep) 932 { 933 struct psi_group *common = NULL; 934 int cpu = task_cpu(prev); 935 u64 now; 936 937 psi_write_begin(cpu); 938 now = cpu_clock(cpu); 939 940 if (next->pid) { 941 psi_flags_change(next, 0, TSK_ONCPU); 942 /* 943 * Set TSK_ONCPU on @next's cgroups. If @next shares any 944 * ancestors with @prev, those will already have @prev's 945 * TSK_ONCPU bit set, and we can stop the iteration there. 946 */ 947 for_each_group(group, task_psi_group(next)) { 948 struct psi_group_cpu *groupc = per_cpu_ptr(group->pcpu, cpu); 949 950 if (groupc->state_mask & PSI_ONCPU) { 951 common = group; 952 break; 953 } 954 psi_group_change(group, cpu, 0, TSK_ONCPU, now, true); 955 } 956 } 957 958 if (prev->pid) { 959 int clear = TSK_ONCPU, set = 0; 960 bool wake_clock = true; 961 962 /* 963 * When we're going to sleep, psi_dequeue() lets us 964 * handle TSK_RUNNING, TSK_MEMSTALL_RUNNING and 965 * TSK_IOWAIT here, where we can combine it with 966 * TSK_ONCPU and save walking common ancestors twice. 967 */ 968 if (sleep) { 969 clear |= TSK_RUNNING; 970 if (prev->in_memstall) 971 clear |= TSK_MEMSTALL_RUNNING; 972 if (prev->in_iowait) 973 set |= TSK_IOWAIT; 974 975 /* 976 * Periodic aggregation shuts off if there is a period of no 977 * task changes, so we wake it back up if necessary. However, 978 * don't do this if the task change is the aggregation worker 979 * itself going to sleep, or we'll ping-pong forever. 980 */ 981 if (unlikely((prev->flags & PF_WQ_WORKER) && 982 wq_worker_last_func(prev) == psi_avgs_work)) 983 wake_clock = false; 984 } 985 986 psi_flags_change(prev, clear, set); 987 988 for_each_group(group, task_psi_group(prev)) { 989 if (group == common) 990 break; 991 psi_group_change(group, cpu, clear, set, now, wake_clock); 992 } 993 994 /* 995 * TSK_ONCPU is handled up to the common ancestor. If there are 996 * any other differences between the two tasks (e.g. prev goes 997 * to sleep, or only one task is memstall), finish propagating 998 * those differences all the way up to the root. 999 */ 1000 if ((prev->psi_flags ^ next->psi_flags) & ~TSK_ONCPU) { 1001 clear &= ~TSK_ONCPU; 1002 for_each_group(group, common) 1003 psi_group_change(group, cpu, clear, set, now, wake_clock); 1004 } 1005 } 1006 psi_write_end(cpu); 1007 } 1008 1009 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1010 void psi_account_irqtime(struct rq *rq, struct task_struct *curr, struct task_struct *prev) 1011 { 1012 int cpu = task_cpu(curr); 1013 struct psi_group_cpu *groupc; 1014 s64 delta; 1015 u64 irq; 1016 u64 now; 1017 1018 if (static_branch_likely(&psi_disabled) || !irqtime_enabled()) 1019 return; 1020 1021 if (!curr->pid) 1022 return; 1023 1024 lockdep_assert_rq_held(rq); 1025 if (prev && task_psi_group(prev) == task_psi_group(curr)) 1026 return; 1027 1028 irq = irq_time_read(cpu); 1029 delta = (s64)(irq - rq->psi_irq_time); 1030 if (delta < 0) 1031 return; 1032 rq->psi_irq_time = irq; 1033 1034 psi_write_begin(cpu); 1035 now = cpu_clock(cpu); 1036 1037 for_each_group(group, task_psi_group(curr)) { 1038 if (!group->enabled) 1039 continue; 1040 1041 groupc = per_cpu_ptr(group->pcpu, cpu); 1042 1043 record_times(groupc, now); 1044 groupc->times[PSI_IRQ_FULL] += delta; 1045 1046 if (group->rtpoll_states & (1 << PSI_IRQ_FULL)) 1047 psi_schedule_rtpoll_work(group, 1, false); 1048 } 1049 psi_write_end(cpu); 1050 } 1051 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 1052 1053 /** 1054 * psi_memstall_enter - mark the beginning of a memory stall section 1055 * @flags: flags to handle nested sections 1056 * 1057 * Marks the calling task as being stalled due to a lack of memory, 1058 * such as waiting for a refault or performing reclaim. 1059 */ 1060 void psi_memstall_enter(unsigned long *flags) 1061 { 1062 struct rq_flags rf; 1063 struct rq *rq; 1064 1065 if (static_branch_likely(&psi_disabled)) 1066 return; 1067 1068 *flags = current->in_memstall; 1069 if (*flags) 1070 return; 1071 /* 1072 * in_memstall setting & accounting needs to be atomic wrt 1073 * changes to the task's scheduling state, otherwise we can 1074 * race with CPU migration. 1075 */ 1076 rq = this_rq_lock_irq(&rf); 1077 1078 current->in_memstall = 1; 1079 psi_task_change(current, 0, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING); 1080 1081 rq_unlock_irq(rq, &rf); 1082 } 1083 EXPORT_SYMBOL_GPL(psi_memstall_enter); 1084 1085 /** 1086 * psi_memstall_leave - mark the end of an memory stall section 1087 * @flags: flags to handle nested memdelay sections 1088 * 1089 * Marks the calling task as no longer stalled due to lack of memory. 1090 */ 1091 void psi_memstall_leave(unsigned long *flags) 1092 { 1093 struct rq_flags rf; 1094 struct rq *rq; 1095 1096 if (static_branch_likely(&psi_disabled)) 1097 return; 1098 1099 if (*flags) 1100 return; 1101 /* 1102 * in_memstall clearing & accounting needs to be atomic wrt 1103 * changes to the task's scheduling state, otherwise we could 1104 * race with CPU migration. 1105 */ 1106 rq = this_rq_lock_irq(&rf); 1107 1108 current->in_memstall = 0; 1109 psi_task_change(current, TSK_MEMSTALL | TSK_MEMSTALL_RUNNING, 0); 1110 1111 rq_unlock_irq(rq, &rf); 1112 } 1113 EXPORT_SYMBOL_GPL(psi_memstall_leave); 1114 1115 #ifdef CONFIG_CGROUPS 1116 int psi_cgroup_alloc(struct cgroup *cgroup) 1117 { 1118 if (!static_branch_likely(&psi_cgroups_enabled)) 1119 return 0; 1120 1121 cgroup->psi = kzalloc(sizeof(struct psi_group), GFP_KERNEL); 1122 if (!cgroup->psi) 1123 return -ENOMEM; 1124 1125 cgroup->psi->pcpu = alloc_percpu(struct psi_group_cpu); 1126 if (!cgroup->psi->pcpu) { 1127 kfree(cgroup->psi); 1128 return -ENOMEM; 1129 } 1130 group_init(cgroup->psi); 1131 cgroup->psi->parent = cgroup_psi(cgroup_parent(cgroup)); 1132 return 0; 1133 } 1134 1135 void psi_cgroup_free(struct cgroup *cgroup) 1136 { 1137 if (!static_branch_likely(&psi_cgroups_enabled)) 1138 return; 1139 1140 cancel_delayed_work_sync(&cgroup->psi->avgs_work); 1141 free_percpu(cgroup->psi->pcpu); 1142 /* All triggers must be removed by now */ 1143 WARN_ONCE(cgroup->psi->rtpoll_states, "psi: trigger leak\n"); 1144 kfree(cgroup->psi); 1145 } 1146 1147 /** 1148 * cgroup_move_task - move task to a different cgroup 1149 * @task: the task 1150 * @to: the target css_set 1151 * 1152 * Move task to a new cgroup and safely migrate its associated stall 1153 * state between the different groups. 1154 * 1155 * This function acquires the task's rq lock to lock out concurrent 1156 * changes to the task's scheduling state and - in case the task is 1157 * running - concurrent changes to its stall state. 1158 */ 1159 void cgroup_move_task(struct task_struct *task, struct css_set *to) 1160 { 1161 unsigned int task_flags; 1162 struct rq_flags rf; 1163 struct rq *rq; 1164 1165 if (!static_branch_likely(&psi_cgroups_enabled)) { 1166 /* 1167 * Lame to do this here, but the scheduler cannot be locked 1168 * from the outside, so we move cgroups from inside sched/. 1169 */ 1170 rcu_assign_pointer(task->cgroups, to); 1171 return; 1172 } 1173 1174 rq = task_rq_lock(task, &rf); 1175 1176 /* 1177 * We may race with schedule() dropping the rq lock between 1178 * deactivating prev and switching to next. Because the psi 1179 * updates from the deactivation are deferred to the switch 1180 * callback to save cgroup tree updates, the task's scheduling 1181 * state here is not coherent with its psi state: 1182 * 1183 * schedule() cgroup_move_task() 1184 * rq_lock() 1185 * deactivate_task() 1186 * p->on_rq = 0 1187 * psi_dequeue() // defers TSK_RUNNING & TSK_IOWAIT updates 1188 * pick_next_task() 1189 * rq_unlock() 1190 * rq_lock() 1191 * psi_task_change() // old cgroup 1192 * task->cgroups = to 1193 * psi_task_change() // new cgroup 1194 * rq_unlock() 1195 * rq_lock() 1196 * psi_sched_switch() // does deferred updates in new cgroup 1197 * 1198 * Don't rely on the scheduling state. Use psi_flags instead. 1199 */ 1200 task_flags = task->psi_flags; 1201 1202 if (task_flags) 1203 psi_task_change(task, task_flags, 0); 1204 1205 /* See comment above */ 1206 rcu_assign_pointer(task->cgroups, to); 1207 1208 if (task_flags) 1209 psi_task_change(task, 0, task_flags); 1210 1211 task_rq_unlock(rq, task, &rf); 1212 } 1213 1214 void psi_cgroup_restart(struct psi_group *group) 1215 { 1216 int cpu; 1217 1218 /* 1219 * After we disable psi_group->enabled, we don't actually 1220 * stop percpu tasks accounting in each psi_group_cpu, 1221 * instead only stop test_states() loop, record_times() 1222 * and averaging worker, see psi_group_change() for details. 1223 * 1224 * When disable cgroup PSI, this function has nothing to sync 1225 * since cgroup pressure files are hidden and percpu psi_group_cpu 1226 * would see !psi_group->enabled and only do task accounting. 1227 * 1228 * When re-enable cgroup PSI, this function use psi_group_change() 1229 * to get correct state mask from test_states() loop on tasks[], 1230 * and restart groupc->state_start from now, use .clear = .set = 0 1231 * here since no task status really changed. 1232 */ 1233 if (!group->enabled) 1234 return; 1235 1236 for_each_possible_cpu(cpu) { 1237 u64 now; 1238 1239 guard(rq_lock_irq)(cpu_rq(cpu)); 1240 1241 psi_write_begin(cpu); 1242 now = cpu_clock(cpu); 1243 psi_group_change(group, cpu, 0, 0, now, true); 1244 psi_write_end(cpu); 1245 } 1246 } 1247 #endif /* CONFIG_CGROUPS */ 1248 1249 int psi_show(struct seq_file *m, struct psi_group *group, enum psi_res res) 1250 { 1251 bool only_full = false; 1252 int full; 1253 u64 now; 1254 1255 if (static_branch_likely(&psi_disabled)) 1256 return -EOPNOTSUPP; 1257 1258 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1259 if (!irqtime_enabled() && res == PSI_IRQ) 1260 return -EOPNOTSUPP; 1261 #endif 1262 1263 /* Update averages before reporting them */ 1264 mutex_lock(&group->avgs_lock); 1265 now = sched_clock(); 1266 collect_percpu_times(group, PSI_AVGS, NULL); 1267 if (now >= group->avg_next_update) 1268 group->avg_next_update = update_averages(group, now); 1269 mutex_unlock(&group->avgs_lock); 1270 1271 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1272 only_full = res == PSI_IRQ; 1273 #endif 1274 1275 for (full = 0; full < 2 - only_full; full++) { 1276 unsigned long avg[3] = { 0, }; 1277 u64 total = 0; 1278 int w; 1279 1280 /* CPU FULL is undefined at the system level */ 1281 if (!(group == &psi_system && res == PSI_CPU && full)) { 1282 for (w = 0; w < 3; w++) 1283 avg[w] = group->avg[res * 2 + full][w]; 1284 total = div_u64(group->total[PSI_AVGS][res * 2 + full], 1285 NSEC_PER_USEC); 1286 } 1287 1288 seq_printf(m, "%s avg10=%lu.%02lu avg60=%lu.%02lu avg300=%lu.%02lu total=%llu\n", 1289 full || only_full ? "full" : "some", 1290 LOAD_INT(avg[0]), LOAD_FRAC(avg[0]), 1291 LOAD_INT(avg[1]), LOAD_FRAC(avg[1]), 1292 LOAD_INT(avg[2]), LOAD_FRAC(avg[2]), 1293 total); 1294 } 1295 1296 return 0; 1297 } 1298 1299 struct psi_trigger *psi_trigger_create(struct psi_group *group, char *buf, 1300 enum psi_res res, struct file *file, 1301 struct kernfs_open_file *of) 1302 { 1303 struct psi_trigger *t; 1304 enum psi_states state; 1305 u32 threshold_us; 1306 bool privileged; 1307 u32 window_us; 1308 1309 if (static_branch_likely(&psi_disabled)) 1310 return ERR_PTR(-EOPNOTSUPP); 1311 1312 /* 1313 * Checking the privilege here on file->f_cred implies that a privileged user 1314 * could open the file and delegate the write to an unprivileged one. 1315 */ 1316 privileged = cap_raised(file->f_cred->cap_effective, CAP_SYS_RESOURCE); 1317 1318 if (sscanf(buf, "some %u %u", &threshold_us, &window_us) == 2) 1319 state = PSI_IO_SOME + res * 2; 1320 else if (sscanf(buf, "full %u %u", &threshold_us, &window_us) == 2) 1321 state = PSI_IO_FULL + res * 2; 1322 else 1323 return ERR_PTR(-EINVAL); 1324 1325 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1326 if (res == PSI_IRQ && --state != PSI_IRQ_FULL) 1327 return ERR_PTR(-EINVAL); 1328 #endif 1329 1330 if (state >= PSI_NONIDLE) 1331 return ERR_PTR(-EINVAL); 1332 1333 if (window_us == 0 || window_us > WINDOW_MAX_US) 1334 return ERR_PTR(-EINVAL); 1335 1336 /* 1337 * Unprivileged users can only use 2s windows so that averages aggregation 1338 * work is used, and no RT threads need to be spawned. 1339 */ 1340 if (!privileged && window_us % 2000000) 1341 return ERR_PTR(-EINVAL); 1342 1343 /* Check threshold */ 1344 if (threshold_us == 0 || threshold_us > window_us) 1345 return ERR_PTR(-EINVAL); 1346 1347 t = kmalloc(sizeof(*t), GFP_KERNEL); 1348 if (!t) 1349 return ERR_PTR(-ENOMEM); 1350 1351 t->group = group; 1352 t->state = state; 1353 t->threshold = threshold_us * NSEC_PER_USEC; 1354 t->win.size = window_us * NSEC_PER_USEC; 1355 window_reset(&t->win, sched_clock(), 1356 group->total[PSI_POLL][t->state], 0); 1357 1358 t->event = 0; 1359 t->last_event_time = 0; 1360 t->of = of; 1361 if (!of) 1362 init_waitqueue_head(&t->event_wait); 1363 t->pending_event = false; 1364 t->aggregator = privileged ? PSI_POLL : PSI_AVGS; 1365 1366 if (privileged) { 1367 mutex_lock(&group->rtpoll_trigger_lock); 1368 1369 if (!rcu_access_pointer(group->rtpoll_task)) { 1370 struct task_struct *task; 1371 1372 task = kthread_create(psi_rtpoll_worker, group, "psimon"); 1373 if (IS_ERR(task)) { 1374 kfree(t); 1375 mutex_unlock(&group->rtpoll_trigger_lock); 1376 return ERR_CAST(task); 1377 } 1378 atomic_set(&group->rtpoll_wakeup, 0); 1379 wake_up_process(task); 1380 rcu_assign_pointer(group->rtpoll_task, task); 1381 } 1382 1383 list_add(&t->node, &group->rtpoll_triggers); 1384 group->rtpoll_min_period = min(group->rtpoll_min_period, 1385 div_u64(t->win.size, UPDATES_PER_WINDOW)); 1386 group->rtpoll_nr_triggers[t->state]++; 1387 group->rtpoll_states |= (1 << t->state); 1388 1389 mutex_unlock(&group->rtpoll_trigger_lock); 1390 } else { 1391 mutex_lock(&group->avgs_lock); 1392 1393 list_add(&t->node, &group->avg_triggers); 1394 group->avg_nr_triggers[t->state]++; 1395 1396 mutex_unlock(&group->avgs_lock); 1397 } 1398 return t; 1399 } 1400 1401 void psi_trigger_destroy(struct psi_trigger *t) 1402 { 1403 struct psi_group *group; 1404 struct task_struct *task_to_destroy = NULL; 1405 1406 /* 1407 * We do not check psi_disabled since it might have been disabled after 1408 * the trigger got created. 1409 */ 1410 if (!t) 1411 return; 1412 1413 group = t->group; 1414 /* 1415 * Wakeup waiters to stop polling and clear the queue to prevent it from 1416 * being accessed later. Can happen if cgroup is deleted from under a 1417 * polling process. 1418 */ 1419 if (t->of) 1420 kernfs_notify(t->of->kn); 1421 else 1422 wake_up_interruptible(&t->event_wait); 1423 1424 if (t->aggregator == PSI_AVGS) { 1425 mutex_lock(&group->avgs_lock); 1426 if (!list_empty(&t->node)) { 1427 list_del(&t->node); 1428 group->avg_nr_triggers[t->state]--; 1429 } 1430 mutex_unlock(&group->avgs_lock); 1431 } else { 1432 mutex_lock(&group->rtpoll_trigger_lock); 1433 if (!list_empty(&t->node)) { 1434 struct psi_trigger *tmp; 1435 u64 period = ULLONG_MAX; 1436 1437 list_del(&t->node); 1438 group->rtpoll_nr_triggers[t->state]--; 1439 if (!group->rtpoll_nr_triggers[t->state]) 1440 group->rtpoll_states &= ~(1 << t->state); 1441 /* 1442 * Reset min update period for the remaining triggers 1443 * iff the destroying trigger had the min window size. 1444 */ 1445 if (group->rtpoll_min_period == div_u64(t->win.size, UPDATES_PER_WINDOW)) { 1446 list_for_each_entry(tmp, &group->rtpoll_triggers, node) 1447 period = min(period, div_u64(tmp->win.size, 1448 UPDATES_PER_WINDOW)); 1449 group->rtpoll_min_period = period; 1450 } 1451 /* Destroy rtpoll_task when the last trigger is destroyed */ 1452 if (group->rtpoll_states == 0) { 1453 group->rtpoll_until = 0; 1454 task_to_destroy = rcu_dereference_protected( 1455 group->rtpoll_task, 1456 lockdep_is_held(&group->rtpoll_trigger_lock)); 1457 rcu_assign_pointer(group->rtpoll_task, NULL); 1458 timer_delete(&group->rtpoll_timer); 1459 } 1460 } 1461 mutex_unlock(&group->rtpoll_trigger_lock); 1462 } 1463 1464 /* 1465 * Wait for psi_schedule_rtpoll_work RCU to complete its read-side 1466 * critical section before destroying the trigger and optionally the 1467 * rtpoll_task. 1468 */ 1469 synchronize_rcu(); 1470 /* 1471 * Stop kthread 'psimon' after releasing rtpoll_trigger_lock to prevent 1472 * a deadlock while waiting for psi_rtpoll_work to acquire 1473 * rtpoll_trigger_lock 1474 */ 1475 if (task_to_destroy) { 1476 /* 1477 * After the RCU grace period has expired, the worker 1478 * can no longer be found through group->rtpoll_task. 1479 */ 1480 kthread_stop(task_to_destroy); 1481 atomic_set(&group->rtpoll_scheduled, 0); 1482 } 1483 kfree(t); 1484 } 1485 1486 __poll_t psi_trigger_poll(void **trigger_ptr, 1487 struct file *file, poll_table *wait) 1488 { 1489 __poll_t ret = DEFAULT_POLLMASK; 1490 struct psi_trigger *t; 1491 1492 if (static_branch_likely(&psi_disabled)) 1493 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; 1494 1495 t = smp_load_acquire(trigger_ptr); 1496 if (!t) 1497 return DEFAULT_POLLMASK | EPOLLERR | EPOLLPRI; 1498 1499 if (t->of) 1500 kernfs_generic_poll(t->of, wait); 1501 else 1502 poll_wait(file, &t->event_wait, wait); 1503 1504 if (cmpxchg(&t->event, 1, 0) == 1) 1505 ret |= EPOLLPRI; 1506 1507 return ret; 1508 } 1509 1510 #ifdef CONFIG_PROC_FS 1511 static int psi_io_show(struct seq_file *m, void *v) 1512 { 1513 return psi_show(m, &psi_system, PSI_IO); 1514 } 1515 1516 static int psi_memory_show(struct seq_file *m, void *v) 1517 { 1518 return psi_show(m, &psi_system, PSI_MEM); 1519 } 1520 1521 static int psi_cpu_show(struct seq_file *m, void *v) 1522 { 1523 return psi_show(m, &psi_system, PSI_CPU); 1524 } 1525 1526 static int psi_io_open(struct inode *inode, struct file *file) 1527 { 1528 return single_open(file, psi_io_show, NULL); 1529 } 1530 1531 static int psi_memory_open(struct inode *inode, struct file *file) 1532 { 1533 return single_open(file, psi_memory_show, NULL); 1534 } 1535 1536 static int psi_cpu_open(struct inode *inode, struct file *file) 1537 { 1538 return single_open(file, psi_cpu_show, NULL); 1539 } 1540 1541 static ssize_t psi_write(struct file *file, const char __user *user_buf, 1542 size_t nbytes, enum psi_res res) 1543 { 1544 char buf[32]; 1545 size_t buf_size; 1546 struct seq_file *seq; 1547 struct psi_trigger *new; 1548 1549 if (static_branch_likely(&psi_disabled)) 1550 return -EOPNOTSUPP; 1551 1552 if (!nbytes) 1553 return -EINVAL; 1554 1555 buf_size = min(nbytes, sizeof(buf)); 1556 if (copy_from_user(buf, user_buf, buf_size)) 1557 return -EFAULT; 1558 1559 buf[buf_size - 1] = '\0'; 1560 1561 seq = file->private_data; 1562 1563 /* Take seq->lock to protect seq->private from concurrent writes */ 1564 mutex_lock(&seq->lock); 1565 1566 /* Allow only one trigger per file descriptor */ 1567 if (seq->private) { 1568 mutex_unlock(&seq->lock); 1569 return -EBUSY; 1570 } 1571 1572 new = psi_trigger_create(&psi_system, buf, res, file, NULL); 1573 if (IS_ERR(new)) { 1574 mutex_unlock(&seq->lock); 1575 return PTR_ERR(new); 1576 } 1577 1578 smp_store_release(&seq->private, new); 1579 mutex_unlock(&seq->lock); 1580 1581 return nbytes; 1582 } 1583 1584 static ssize_t psi_io_write(struct file *file, const char __user *user_buf, 1585 size_t nbytes, loff_t *ppos) 1586 { 1587 return psi_write(file, user_buf, nbytes, PSI_IO); 1588 } 1589 1590 static ssize_t psi_memory_write(struct file *file, const char __user *user_buf, 1591 size_t nbytes, loff_t *ppos) 1592 { 1593 return psi_write(file, user_buf, nbytes, PSI_MEM); 1594 } 1595 1596 static ssize_t psi_cpu_write(struct file *file, const char __user *user_buf, 1597 size_t nbytes, loff_t *ppos) 1598 { 1599 return psi_write(file, user_buf, nbytes, PSI_CPU); 1600 } 1601 1602 static __poll_t psi_fop_poll(struct file *file, poll_table *wait) 1603 { 1604 struct seq_file *seq = file->private_data; 1605 1606 return psi_trigger_poll(&seq->private, file, wait); 1607 } 1608 1609 static int psi_fop_release(struct inode *inode, struct file *file) 1610 { 1611 struct seq_file *seq = file->private_data; 1612 1613 psi_trigger_destroy(seq->private); 1614 return single_release(inode, file); 1615 } 1616 1617 static const struct proc_ops psi_io_proc_ops = { 1618 .proc_open = psi_io_open, 1619 .proc_read = seq_read, 1620 .proc_lseek = seq_lseek, 1621 .proc_write = psi_io_write, 1622 .proc_poll = psi_fop_poll, 1623 .proc_release = psi_fop_release, 1624 }; 1625 1626 static const struct proc_ops psi_memory_proc_ops = { 1627 .proc_open = psi_memory_open, 1628 .proc_read = seq_read, 1629 .proc_lseek = seq_lseek, 1630 .proc_write = psi_memory_write, 1631 .proc_poll = psi_fop_poll, 1632 .proc_release = psi_fop_release, 1633 }; 1634 1635 static const struct proc_ops psi_cpu_proc_ops = { 1636 .proc_open = psi_cpu_open, 1637 .proc_read = seq_read, 1638 .proc_lseek = seq_lseek, 1639 .proc_write = psi_cpu_write, 1640 .proc_poll = psi_fop_poll, 1641 .proc_release = psi_fop_release, 1642 }; 1643 1644 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1645 static int psi_irq_show(struct seq_file *m, void *v) 1646 { 1647 return psi_show(m, &psi_system, PSI_IRQ); 1648 } 1649 1650 static int psi_irq_open(struct inode *inode, struct file *file) 1651 { 1652 return single_open(file, psi_irq_show, NULL); 1653 } 1654 1655 static ssize_t psi_irq_write(struct file *file, const char __user *user_buf, 1656 size_t nbytes, loff_t *ppos) 1657 { 1658 return psi_write(file, user_buf, nbytes, PSI_IRQ); 1659 } 1660 1661 static const struct proc_ops psi_irq_proc_ops = { 1662 .proc_open = psi_irq_open, 1663 .proc_read = seq_read, 1664 .proc_lseek = seq_lseek, 1665 .proc_write = psi_irq_write, 1666 .proc_poll = psi_fop_poll, 1667 .proc_release = psi_fop_release, 1668 }; 1669 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 1670 1671 static int __init psi_proc_init(void) 1672 { 1673 if (psi_enable) { 1674 proc_mkdir("pressure", NULL); 1675 proc_create("pressure/io", 0666, NULL, &psi_io_proc_ops); 1676 proc_create("pressure/memory", 0666, NULL, &psi_memory_proc_ops); 1677 proc_create("pressure/cpu", 0666, NULL, &psi_cpu_proc_ops); 1678 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1679 proc_create("pressure/irq", 0666, NULL, &psi_irq_proc_ops); 1680 #endif 1681 } 1682 return 0; 1683 } 1684 module_init(psi_proc_init); 1685 1686 #endif /* CONFIG_PROC_FS */ 1687