1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Per Entity Load Tracking (PELT) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 * 23 * Move PELT related code from fair.c into this pelt.c file 24 * Author: Vincent Guittot <vincent.guittot@linaro.org> 25 */ 26 27 /* 28 * Approximate: 29 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 30 */ 31 static u64 decay_load(u64 val, u64 n) 32 { 33 unsigned int local_n; 34 35 if (unlikely(n > LOAD_AVG_PERIOD * 63)) 36 return 0; 37 38 /* after bounds checking we can collapse to 32-bit */ 39 local_n = n; 40 41 /* 42 * As y^PERIOD = 1/2, we can combine 43 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 44 * With a look-up table which covers y^n (n<PERIOD) 45 * 46 * To achieve constant time decay_load. 47 */ 48 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 49 val >>= local_n / LOAD_AVG_PERIOD; 50 local_n %= LOAD_AVG_PERIOD; 51 } 52 53 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 54 return val; 55 } 56 57 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3) 58 { 59 u32 c1, c2, c3 = d3; /* y^0 == 1 */ 60 61 /* 62 * c1 = d1 y^p 63 */ 64 c1 = decay_load((u64)d1, periods); 65 66 /* 67 * p-1 68 * c2 = 1024 \Sum y^n 69 * n=1 70 * 71 * inf inf 72 * = 1024 ( \Sum y^n - \Sum y^n - y^0 ) 73 * n=0 n=p 74 */ 75 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024; 76 77 return c1 + c2 + c3; 78 } 79 80 /* 81 * Accumulate the three separate parts of the sum; d1 the remainder 82 * of the last (incomplete) period, d2 the span of full periods and d3 83 * the remainder of the (incomplete) current period. 84 * 85 * d1 d2 d3 86 * ^ ^ ^ 87 * | | | 88 * |<->|<----------------->|<--->| 89 * ... |---x---|------| ... |------|-----x (now) 90 * 91 * p-1 92 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0 93 * n=1 94 * 95 * = u y^p + (Step 1) 96 * 97 * p-1 98 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2) 99 * n=1 100 */ 101 static __always_inline u32 102 accumulate_sum(u64 delta, struct sched_avg *sa, 103 unsigned long load, unsigned long runnable, int running) 104 { 105 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */ 106 u64 periods; 107 108 delta += sa->period_contrib; 109 periods = delta / 1024; /* A period is 1024us (~1ms) */ 110 111 /* 112 * Step 1: decay old *_sum if we crossed period boundaries. 113 */ 114 if (periods) { 115 sa->load_sum = decay_load(sa->load_sum, periods); 116 sa->runnable_sum = 117 decay_load(sa->runnable_sum, periods); 118 sa->util_sum = decay_load((u64)(sa->util_sum), periods); 119 120 /* 121 * Step 2 122 */ 123 delta %= 1024; 124 if (load) { 125 /* 126 * This relies on the: 127 * 128 * if (!load) 129 * runnable = running = 0; 130 * 131 * clause from ___update_load_sum(); this results in 132 * the below usage of @contrib to disappear entirely, 133 * so no point in calculating it. 134 */ 135 contrib = __accumulate_pelt_segments(periods, 136 1024 - sa->period_contrib, delta); 137 } 138 } 139 sa->period_contrib = delta; 140 141 if (load) 142 sa->load_sum += load * contrib; 143 if (runnable) 144 sa->runnable_sum += runnable * contrib << SCHED_CAPACITY_SHIFT; 145 if (running) 146 sa->util_sum += contrib << SCHED_CAPACITY_SHIFT; 147 148 return periods; 149 } 150 151 /* 152 * We can represent the historical contribution to runnable average as the 153 * coefficients of a geometric series. To do this we sub-divide our runnable 154 * history into segments of approximately 1ms (1024us); label the segment that 155 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 156 * 157 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 158 * p0 p1 p2 159 * (now) (~1ms ago) (~2ms ago) 160 * 161 * Let u_i denote the fraction of p_i that the entity was runnable. 162 * 163 * We then designate the fractions u_i as our co-efficients, yielding the 164 * following representation of historical load: 165 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 166 * 167 * We choose y based on the with of a reasonably scheduling period, fixing: 168 * y^32 = 0.5 169 * 170 * This means that the contribution to load ~32ms ago (u_32) will be weighted 171 * approximately half as much as the contribution to load within the last ms 172 * (u_0). 173 * 174 * When a period "rolls over" and we have new u_0`, multiplying the previous 175 * sum again by y is sufficient to update: 176 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 177 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 178 */ 179 static __always_inline int 180 ___update_load_sum(u64 now, struct sched_avg *sa, 181 unsigned long load, unsigned long runnable, int running) 182 { 183 u64 delta; 184 185 delta = now - sa->last_update_time; 186 /* 187 * This should only happen when time goes backwards, which it 188 * unfortunately does during sched clock init when we swap over to TSC. 189 */ 190 if ((s64)delta < 0) { 191 sa->last_update_time = now; 192 return 0; 193 } 194 195 /* 196 * Use 1024ns as the unit of measurement since it's a reasonable 197 * approximation of 1us and fast to compute. 198 */ 199 delta >>= 10; 200 if (!delta) 201 return 0; 202 203 sa->last_update_time += delta << 10; 204 205 /* 206 * running is a subset of runnable (weight) so running can't be set if 207 * runnable is clear. But there are some corner cases where the current 208 * se has been already dequeued but cfs_rq->curr still points to it. 209 * This means that weight will be 0 but not running for a sched_entity 210 * but also for a cfs_rq if the latter becomes idle. As an example, 211 * this happens during sched_balance_newidle() which calls 212 * sched_balance_update_blocked_averages(). 213 * 214 * Also see the comment in accumulate_sum(). 215 */ 216 if (!load) 217 runnable = running = 0; 218 219 /* 220 * Now we know we crossed measurement unit boundaries. The *_avg 221 * accrues by two steps: 222 * 223 * Step 1: accumulate *_sum since last_update_time. If we haven't 224 * crossed period boundaries, finish. 225 */ 226 if (!accumulate_sum(delta, sa, load, runnable, running)) 227 return 0; 228 229 return 1; 230 } 231 232 /* 233 * When syncing *_avg with *_sum, we must take into account the current 234 * position in the PELT segment otherwise the remaining part of the segment 235 * will be considered as idle time whereas it's not yet elapsed and this will 236 * generate unwanted oscillation in the range [1002..1024[. 237 * 238 * The max value of *_sum varies with the position in the time segment and is 239 * equals to : 240 * 241 * LOAD_AVG_MAX*y + sa->period_contrib 242 * 243 * which can be simplified into: 244 * 245 * LOAD_AVG_MAX - 1024 + sa->period_contrib 246 * 247 * because LOAD_AVG_MAX*y == LOAD_AVG_MAX-1024 248 * 249 * The same care must be taken when a sched entity is added, updated or 250 * removed from a cfs_rq and we need to update sched_avg. Scheduler entities 251 * and the cfs rq, to which they are attached, have the same position in the 252 * time segment because they use the same clock. This means that we can use 253 * the period_contrib of cfs_rq when updating the sched_avg of a sched_entity 254 * if it's more convenient. 255 */ 256 static __always_inline void 257 ___update_load_avg(struct sched_avg *sa, unsigned long load) 258 { 259 u32 divider = get_pelt_divider(sa); 260 261 /* 262 * Step 2: update *_avg. 263 */ 264 sa->load_avg = div_u64(load * sa->load_sum, divider); 265 sa->runnable_avg = div_u64(sa->runnable_sum, divider); 266 WRITE_ONCE(sa->util_avg, sa->util_sum / divider); 267 } 268 269 /* 270 * sched_entity: 271 * 272 * task: 273 * se_weight() = se->load.weight 274 * se_runnable() = !!on_rq 275 * 276 * group: [ see update_cfs_group() ] 277 * se_weight() = tg->weight * grq->load_avg / tg->load_avg 278 * se_runnable() = grq->h_nr_running 279 * 280 * runnable_sum = se_runnable() * runnable = grq->runnable_sum 281 * runnable_avg = runnable_sum 282 * 283 * load_sum := runnable 284 * load_avg = se_weight(se) * load_sum 285 * 286 * cfq_rq: 287 * 288 * runnable_sum = \Sum se->avg.runnable_sum 289 * runnable_avg = \Sum se->avg.runnable_avg 290 * 291 * load_sum = \Sum se_weight(se) * se->avg.load_sum 292 * load_avg = \Sum se->avg.load_avg 293 */ 294 295 int __update_load_avg_blocked_se(u64 now, struct sched_entity *se) 296 { 297 if (___update_load_sum(now, &se->avg, 0, 0, 0)) { 298 ___update_load_avg(&se->avg, se_weight(se)); 299 trace_pelt_se_tp(se); 300 return 1; 301 } 302 303 return 0; 304 } 305 306 int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se) 307 { 308 if (___update_load_sum(now, &se->avg, !!se->on_rq, se_runnable(se), 309 cfs_rq->curr == se)) { 310 311 ___update_load_avg(&se->avg, se_weight(se)); 312 cfs_se_util_change(&se->avg); 313 trace_pelt_se_tp(se); 314 return 1; 315 } 316 317 return 0; 318 } 319 320 int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq) 321 { 322 if (___update_load_sum(now, &cfs_rq->avg, 323 scale_load_down(cfs_rq->load.weight), 324 cfs_rq->h_nr_running, 325 cfs_rq->curr != NULL)) { 326 327 ___update_load_avg(&cfs_rq->avg, 1); 328 trace_pelt_cfs_tp(cfs_rq); 329 return 1; 330 } 331 332 return 0; 333 } 334 335 /* 336 * rt_rq: 337 * 338 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked 339 * util_sum = cpu_scale * load_sum 340 * runnable_sum = util_sum 341 * 342 * load_avg and runnable_avg are not supported and meaningless. 343 * 344 */ 345 346 int update_rt_rq_load_avg(u64 now, struct rq *rq, int running) 347 { 348 if (___update_load_sum(now, &rq->avg_rt, 349 running, 350 running, 351 running)) { 352 353 ___update_load_avg(&rq->avg_rt, 1); 354 trace_pelt_rt_tp(rq); 355 return 1; 356 } 357 358 return 0; 359 } 360 361 /* 362 * dl_rq: 363 * 364 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked 365 * util_sum = cpu_scale * load_sum 366 * runnable_sum = util_sum 367 * 368 * load_avg and runnable_avg are not supported and meaningless. 369 * 370 */ 371 372 int update_dl_rq_load_avg(u64 now, struct rq *rq, int running) 373 { 374 if (___update_load_sum(now, &rq->avg_dl, 375 running, 376 running, 377 running)) { 378 379 ___update_load_avg(&rq->avg_dl, 1); 380 trace_pelt_dl_tp(rq); 381 return 1; 382 } 383 384 return 0; 385 } 386 387 #ifdef CONFIG_SCHED_HW_PRESSURE 388 /* 389 * hardware: 390 * 391 * load_sum = \Sum se->avg.load_sum but se->avg.load_sum is not tracked 392 * 393 * util_avg and runnable_load_avg are not supported and meaningless. 394 * 395 * Unlike rt/dl utilization tracking that track time spent by a cpu 396 * running a rt/dl task through util_avg, the average HW pressure is 397 * tracked through load_avg. This is because HW pressure signal is 398 * time weighted "delta" capacity unlike util_avg which is binary. 399 * "delta capacity" = actual capacity - 400 * capped capacity a cpu due to a HW event. 401 */ 402 403 int update_hw_load_avg(u64 now, struct rq *rq, u64 capacity) 404 { 405 if (___update_load_sum(now, &rq->avg_hw, 406 capacity, 407 capacity, 408 capacity)) { 409 ___update_load_avg(&rq->avg_hw, 1); 410 trace_pelt_hw_tp(rq); 411 return 1; 412 } 413 414 return 0; 415 } 416 #endif 417 418 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 419 /* 420 * IRQ: 421 * 422 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked 423 * util_sum = cpu_scale * load_sum 424 * runnable_sum = util_sum 425 * 426 * load_avg and runnable_avg are not supported and meaningless. 427 * 428 */ 429 430 int update_irq_load_avg(struct rq *rq, u64 running) 431 { 432 int ret = 0; 433 434 /* 435 * We can't use clock_pelt because IRQ time is not accounted in 436 * clock_task. Instead we directly scale the running time to 437 * reflect the real amount of computation 438 */ 439 running = cap_scale(running, arch_scale_freq_capacity(cpu_of(rq))); 440 running = cap_scale(running, arch_scale_cpu_capacity(cpu_of(rq))); 441 442 /* 443 * We know the time that has been used by interrupt since last update 444 * but we don't when. Let be pessimistic and assume that interrupt has 445 * happened just before the update. This is not so far from reality 446 * because interrupt will most probably wake up task and trig an update 447 * of rq clock during which the metric is updated. 448 * We start to decay with normal context time and then we add the 449 * interrupt context time. 450 * We can safely remove running from rq->clock because 451 * rq->clock += delta with delta >= running 452 */ 453 ret = ___update_load_sum(rq->clock - running, &rq->avg_irq, 454 0, 455 0, 456 0); 457 ret += ___update_load_sum(rq->clock, &rq->avg_irq, 458 1, 459 1, 460 1); 461 462 if (ret) { 463 ___update_load_avg(&rq->avg_irq, 1); 464 trace_pelt_irq_tp(rq); 465 } 466 467 return ret; 468 } 469 #endif 470 471 /* 472 * Load avg and utiliztion metrics need to be updated periodically and before 473 * consumption. This function updates the metrics for all subsystems except for 474 * the fair class. @rq must be locked and have its clock updated. 475 */ 476 bool update_other_load_avgs(struct rq *rq) 477 { 478 u64 now = rq_clock_pelt(rq); 479 const struct sched_class *curr_class = rq->donor->sched_class; 480 unsigned long hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 481 482 lockdep_assert_rq_held(rq); 483 484 /* hw_pressure doesn't care about invariance */ 485 return update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 486 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 487 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure) | 488 update_irq_load_avg(rq, 0); 489 } 490