1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Per Entity Load Tracking 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 * 23 * Move PELT related code from fair.c into this pelt.c file 24 * Author: Vincent Guittot <vincent.guittot@linaro.org> 25 */ 26 27 #include <linux/sched.h> 28 #include "sched.h" 29 #include "pelt.h" 30 31 /* 32 * Approximate: 33 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 34 */ 35 static u64 decay_load(u64 val, u64 n) 36 { 37 unsigned int local_n; 38 39 if (unlikely(n > LOAD_AVG_PERIOD * 63)) 40 return 0; 41 42 /* after bounds checking we can collapse to 32-bit */ 43 local_n = n; 44 45 /* 46 * As y^PERIOD = 1/2, we can combine 47 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 48 * With a look-up table which covers y^n (n<PERIOD) 49 * 50 * To achieve constant time decay_load. 51 */ 52 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 53 val >>= local_n / LOAD_AVG_PERIOD; 54 local_n %= LOAD_AVG_PERIOD; 55 } 56 57 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 58 return val; 59 } 60 61 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3) 62 { 63 u32 c1, c2, c3 = d3; /* y^0 == 1 */ 64 65 /* 66 * c1 = d1 y^p 67 */ 68 c1 = decay_load((u64)d1, periods); 69 70 /* 71 * p-1 72 * c2 = 1024 \Sum y^n 73 * n=1 74 * 75 * inf inf 76 * = 1024 ( \Sum y^n - \Sum y^n - y^0 ) 77 * n=0 n=p 78 */ 79 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024; 80 81 return c1 + c2 + c3; 82 } 83 84 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 85 86 /* 87 * Accumulate the three separate parts of the sum; d1 the remainder 88 * of the last (incomplete) period, d2 the span of full periods and d3 89 * the remainder of the (incomplete) current period. 90 * 91 * d1 d2 d3 92 * ^ ^ ^ 93 * | | | 94 * |<->|<----------------->|<--->| 95 * ... |---x---|------| ... |------|-----x (now) 96 * 97 * p-1 98 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0 99 * n=1 100 * 101 * = u y^p + (Step 1) 102 * 103 * p-1 104 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2) 105 * n=1 106 */ 107 static __always_inline u32 108 accumulate_sum(u64 delta, struct sched_avg *sa, 109 unsigned long load, unsigned long runnable, int running) 110 { 111 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */ 112 u64 periods; 113 114 delta += sa->period_contrib; 115 periods = delta / 1024; /* A period is 1024us (~1ms) */ 116 117 /* 118 * Step 1: decay old *_sum if we crossed period boundaries. 119 */ 120 if (periods) { 121 sa->load_sum = decay_load(sa->load_sum, periods); 122 sa->runnable_load_sum = 123 decay_load(sa->runnable_load_sum, periods); 124 sa->util_sum = decay_load((u64)(sa->util_sum), periods); 125 126 /* 127 * Step 2 128 */ 129 delta %= 1024; 130 contrib = __accumulate_pelt_segments(periods, 131 1024 - sa->period_contrib, delta); 132 } 133 sa->period_contrib = delta; 134 135 if (load) 136 sa->load_sum += load * contrib; 137 if (runnable) 138 sa->runnable_load_sum += runnable * contrib; 139 if (running) 140 sa->util_sum += contrib << SCHED_CAPACITY_SHIFT; 141 142 return periods; 143 } 144 145 /* 146 * We can represent the historical contribution to runnable average as the 147 * coefficients of a geometric series. To do this we sub-divide our runnable 148 * history into segments of approximately 1ms (1024us); label the segment that 149 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 150 * 151 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 152 * p0 p1 p2 153 * (now) (~1ms ago) (~2ms ago) 154 * 155 * Let u_i denote the fraction of p_i that the entity was runnable. 156 * 157 * We then designate the fractions u_i as our co-efficients, yielding the 158 * following representation of historical load: 159 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 160 * 161 * We choose y based on the with of a reasonably scheduling period, fixing: 162 * y^32 = 0.5 163 * 164 * This means that the contribution to load ~32ms ago (u_32) will be weighted 165 * approximately half as much as the contribution to load within the last ms 166 * (u_0). 167 * 168 * When a period "rolls over" and we have new u_0`, multiplying the previous 169 * sum again by y is sufficient to update: 170 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 171 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 172 */ 173 static __always_inline int 174 ___update_load_sum(u64 now, struct sched_avg *sa, 175 unsigned long load, unsigned long runnable, int running) 176 { 177 u64 delta; 178 179 delta = now - sa->last_update_time; 180 /* 181 * This should only happen when time goes backwards, which it 182 * unfortunately does during sched clock init when we swap over to TSC. 183 */ 184 if ((s64)delta < 0) { 185 sa->last_update_time = now; 186 return 0; 187 } 188 189 /* 190 * Use 1024ns as the unit of measurement since it's a reasonable 191 * approximation of 1us and fast to compute. 192 */ 193 delta >>= 10; 194 if (!delta) 195 return 0; 196 197 sa->last_update_time += delta << 10; 198 199 /* 200 * running is a subset of runnable (weight) so running can't be set if 201 * runnable is clear. But there are some corner cases where the current 202 * se has been already dequeued but cfs_rq->curr still points to it. 203 * This means that weight will be 0 but not running for a sched_entity 204 * but also for a cfs_rq if the latter becomes idle. As an example, 205 * this happens during idle_balance() which calls 206 * update_blocked_averages() 207 */ 208 if (!load) 209 runnable = running = 0; 210 211 /* 212 * Now we know we crossed measurement unit boundaries. The *_avg 213 * accrues by two steps: 214 * 215 * Step 1: accumulate *_sum since last_update_time. If we haven't 216 * crossed period boundaries, finish. 217 */ 218 if (!accumulate_sum(delta, sa, load, runnable, running)) 219 return 0; 220 221 return 1; 222 } 223 224 static __always_inline void 225 ___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable) 226 { 227 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 228 229 /* 230 * Step 2: update *_avg. 231 */ 232 sa->load_avg = div_u64(load * sa->load_sum, divider); 233 sa->runnable_load_avg = div_u64(runnable * sa->runnable_load_sum, divider); 234 WRITE_ONCE(sa->util_avg, sa->util_sum / divider); 235 } 236 237 /* 238 * sched_entity: 239 * 240 * task: 241 * se_runnable() == se_weight() 242 * 243 * group: [ see update_cfs_group() ] 244 * se_weight() = tg->weight * grq->load_avg / tg->load_avg 245 * se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg 246 * 247 * load_sum := runnable_sum 248 * load_avg = se_weight(se) * runnable_avg 249 * 250 * runnable_load_sum := runnable_sum 251 * runnable_load_avg = se_runnable(se) * runnable_avg 252 * 253 * XXX collapse load_sum and runnable_load_sum 254 * 255 * cfq_rq: 256 * 257 * load_sum = \Sum se_weight(se) * se->avg.load_sum 258 * load_avg = \Sum se->avg.load_avg 259 * 260 * runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum 261 * runnable_load_avg = \Sum se->avg.runable_load_avg 262 */ 263 264 int __update_load_avg_blocked_se(u64 now, struct sched_entity *se) 265 { 266 if (___update_load_sum(now, &se->avg, 0, 0, 0)) { 267 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se)); 268 return 1; 269 } 270 271 return 0; 272 } 273 274 int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se) 275 { 276 if (___update_load_sum(now, &se->avg, !!se->on_rq, !!se->on_rq, 277 cfs_rq->curr == se)) { 278 279 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se)); 280 cfs_se_util_change(&se->avg); 281 return 1; 282 } 283 284 return 0; 285 } 286 287 int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq) 288 { 289 if (___update_load_sum(now, &cfs_rq->avg, 290 scale_load_down(cfs_rq->load.weight), 291 scale_load_down(cfs_rq->runnable_weight), 292 cfs_rq->curr != NULL)) { 293 294 ___update_load_avg(&cfs_rq->avg, 1, 1); 295 return 1; 296 } 297 298 return 0; 299 } 300 301 /* 302 * rt_rq: 303 * 304 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked 305 * util_sum = cpu_scale * load_sum 306 * runnable_load_sum = load_sum 307 * 308 * load_avg and runnable_load_avg are not supported and meaningless. 309 * 310 */ 311 312 int update_rt_rq_load_avg(u64 now, struct rq *rq, int running) 313 { 314 if (___update_load_sum(now, &rq->avg_rt, 315 running, 316 running, 317 running)) { 318 319 ___update_load_avg(&rq->avg_rt, 1, 1); 320 return 1; 321 } 322 323 return 0; 324 } 325 326 /* 327 * dl_rq: 328 * 329 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked 330 * util_sum = cpu_scale * load_sum 331 * runnable_load_sum = load_sum 332 * 333 */ 334 335 int update_dl_rq_load_avg(u64 now, struct rq *rq, int running) 336 { 337 if (___update_load_sum(now, &rq->avg_dl, 338 running, 339 running, 340 running)) { 341 342 ___update_load_avg(&rq->avg_dl, 1, 1); 343 return 1; 344 } 345 346 return 0; 347 } 348 349 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 350 /* 351 * irq: 352 * 353 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked 354 * util_sum = cpu_scale * load_sum 355 * runnable_load_sum = load_sum 356 * 357 */ 358 359 int update_irq_load_avg(struct rq *rq, u64 running) 360 { 361 int ret = 0; 362 363 /* 364 * We can't use clock_pelt because irq time is not accounted in 365 * clock_task. Instead we directly scale the running time to 366 * reflect the real amount of computation 367 */ 368 running = cap_scale(running, arch_scale_freq_capacity(cpu_of(rq))); 369 running = cap_scale(running, arch_scale_cpu_capacity(NULL, cpu_of(rq))); 370 371 /* 372 * We know the time that has been used by interrupt since last update 373 * but we don't when. Let be pessimistic and assume that interrupt has 374 * happened just before the update. This is not so far from reality 375 * because interrupt will most probably wake up task and trig an update 376 * of rq clock during which the metric is updated. 377 * We start to decay with normal context time and then we add the 378 * interrupt context time. 379 * We can safely remove running from rq->clock because 380 * rq->clock += delta with delta >= running 381 */ 382 ret = ___update_load_sum(rq->clock - running, &rq->avg_irq, 383 0, 384 0, 385 0); 386 ret += ___update_load_sum(rq->clock, &rq->avg_irq, 387 1, 388 1, 389 1); 390 391 if (ret) 392 ___update_load_avg(&rq->avg_irq, 1, 1); 393 394 return ret; 395 } 396 #endif 397