1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Per Entity Load Tracking (PELT) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 * 23 * Move PELT related code from fair.c into this pelt.c file 24 * Author: Vincent Guittot <vincent.guittot@linaro.org> 25 */ 26 #include "pelt.h" 27 28 /* 29 * Approximate: 30 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 31 */ 32 static u64 decay_load(u64 val, u64 n) 33 { 34 unsigned int local_n; 35 36 if (unlikely(n > LOAD_AVG_PERIOD * 63)) 37 return 0; 38 39 /* after bounds checking we can collapse to 32-bit */ 40 local_n = n; 41 42 /* 43 * As y^PERIOD = 1/2, we can combine 44 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 45 * With a look-up table which covers y^n (n<PERIOD) 46 * 47 * To achieve constant time decay_load. 48 */ 49 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 50 val >>= local_n / LOAD_AVG_PERIOD; 51 local_n %= LOAD_AVG_PERIOD; 52 } 53 54 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 55 return val; 56 } 57 58 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3) 59 { 60 u32 c1, c2, c3 = d3; /* y^0 == 1 */ 61 62 /* 63 * c1 = d1 y^p 64 */ 65 c1 = decay_load((u64)d1, periods); 66 67 /* 68 * p-1 69 * c2 = 1024 \Sum y^n 70 * n=1 71 * 72 * inf inf 73 * = 1024 ( \Sum y^n - \Sum y^n - y^0 ) 74 * n=0 n=p 75 */ 76 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024; 77 78 return c1 + c2 + c3; 79 } 80 81 /* 82 * Accumulate the three separate parts of the sum; d1 the remainder 83 * of the last (incomplete) period, d2 the span of full periods and d3 84 * the remainder of the (incomplete) current period. 85 * 86 * d1 d2 d3 87 * ^ ^ ^ 88 * | | | 89 * |<->|<----------------->|<--->| 90 * ... |---x---|------| ... |------|-----x (now) 91 * 92 * p-1 93 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0 94 * n=1 95 * 96 * = u y^p + (Step 1) 97 * 98 * p-1 99 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2) 100 * n=1 101 */ 102 static __always_inline u32 103 accumulate_sum(u64 delta, struct sched_avg *sa, 104 unsigned long load, unsigned long runnable, int running) 105 { 106 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */ 107 u64 periods; 108 109 delta += sa->period_contrib; 110 periods = delta / 1024; /* A period is 1024us (~1ms) */ 111 112 /* 113 * Step 1: decay old *_sum if we crossed period boundaries. 114 */ 115 if (periods) { 116 sa->load_sum = decay_load(sa->load_sum, periods); 117 sa->runnable_sum = 118 decay_load(sa->runnable_sum, periods); 119 sa->util_sum = decay_load((u64)(sa->util_sum), periods); 120 121 /* 122 * Step 2 123 */ 124 delta %= 1024; 125 if (load) { 126 /* 127 * This relies on the: 128 * 129 * if (!load) 130 * runnable = running = 0; 131 * 132 * clause from ___update_load_sum(); this results in 133 * the below usage of @contrib to disappear entirely, 134 * so no point in calculating it. 135 */ 136 contrib = __accumulate_pelt_segments(periods, 137 1024 - sa->period_contrib, delta); 138 } 139 } 140 sa->period_contrib = delta; 141 142 if (load) 143 sa->load_sum += load * contrib; 144 if (runnable) 145 sa->runnable_sum += runnable * contrib << SCHED_CAPACITY_SHIFT; 146 if (running) 147 sa->util_sum += contrib << SCHED_CAPACITY_SHIFT; 148 149 return periods; 150 } 151 152 /* 153 * We can represent the historical contribution to runnable average as the 154 * coefficients of a geometric series. To do this we sub-divide our runnable 155 * history into segments of approximately 1ms (1024us); label the segment that 156 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 157 * 158 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 159 * p0 p1 p2 160 * (now) (~1ms ago) (~2ms ago) 161 * 162 * Let u_i denote the fraction of p_i that the entity was runnable. 163 * 164 * We then designate the fractions u_i as our co-efficients, yielding the 165 * following representation of historical load: 166 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 167 * 168 * We choose y based on the with of a reasonably scheduling period, fixing: 169 * y^32 = 0.5 170 * 171 * This means that the contribution to load ~32ms ago (u_32) will be weighted 172 * approximately half as much as the contribution to load within the last ms 173 * (u_0). 174 * 175 * When a period "rolls over" and we have new u_0`, multiplying the previous 176 * sum again by y is sufficient to update: 177 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 178 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 179 */ 180 static __always_inline int 181 ___update_load_sum(u64 now, struct sched_avg *sa, 182 unsigned long load, unsigned long runnable, int running) 183 { 184 u64 delta; 185 186 delta = now - sa->last_update_time; 187 /* 188 * This should only happen when time goes backwards, which it 189 * unfortunately does during sched clock init when we swap over to TSC. 190 */ 191 if ((s64)delta < 0) { 192 sa->last_update_time = now; 193 return 0; 194 } 195 196 /* 197 * Use 1024ns as the unit of measurement since it's a reasonable 198 * approximation of 1us and fast to compute. 199 */ 200 delta >>= 10; 201 if (!delta) 202 return 0; 203 204 sa->last_update_time += delta << 10; 205 206 /* 207 * running is a subset of runnable (weight) so running can't be set if 208 * runnable is clear. But there are some corner cases where the current 209 * se has been already dequeued but cfs_rq->curr still points to it. 210 * This means that weight will be 0 but not running for a sched_entity 211 * but also for a cfs_rq if the latter becomes idle. As an example, 212 * this happens during sched_balance_newidle() which calls 213 * sched_balance_update_blocked_averages(). 214 * 215 * Also see the comment in accumulate_sum(). 216 */ 217 if (!load) 218 runnable = running = 0; 219 220 /* 221 * Now we know we crossed measurement unit boundaries. The *_avg 222 * accrues by two steps: 223 * 224 * Step 1: accumulate *_sum since last_update_time. If we haven't 225 * crossed period boundaries, finish. 226 */ 227 if (!accumulate_sum(delta, sa, load, runnable, running)) 228 return 0; 229 230 return 1; 231 } 232 233 /* 234 * When syncing *_avg with *_sum, we must take into account the current 235 * position in the PELT segment otherwise the remaining part of the segment 236 * will be considered as idle time whereas it's not yet elapsed and this will 237 * generate unwanted oscillation in the range [1002..1024[. 238 * 239 * The max value of *_sum varies with the position in the time segment and is 240 * equals to : 241 * 242 * LOAD_AVG_MAX*y + sa->period_contrib 243 * 244 * which can be simplified into: 245 * 246 * LOAD_AVG_MAX - 1024 + sa->period_contrib 247 * 248 * because LOAD_AVG_MAX*y == LOAD_AVG_MAX-1024 249 * 250 * The same care must be taken when a sched entity is added, updated or 251 * removed from a cfs_rq and we need to update sched_avg. Scheduler entities 252 * and the cfs rq, to which they are attached, have the same position in the 253 * time segment because they use the same clock. This means that we can use 254 * the period_contrib of cfs_rq when updating the sched_avg of a sched_entity 255 * if it's more convenient. 256 */ 257 static __always_inline void 258 ___update_load_avg(struct sched_avg *sa, unsigned long load) 259 { 260 u32 divider = get_pelt_divider(sa); 261 262 /* 263 * Step 2: update *_avg. 264 */ 265 sa->load_avg = div_u64(load * sa->load_sum, divider); 266 sa->runnable_avg = div_u64(sa->runnable_sum, divider); 267 WRITE_ONCE(sa->util_avg, sa->util_sum / divider); 268 } 269 270 /* 271 * sched_entity: 272 * 273 * task: 274 * se_weight() = se->load.weight 275 * se_runnable() = !!on_rq 276 * 277 * group: [ see update_cfs_group() ] 278 * se_weight() = tg->weight * grq->load_avg / tg->load_avg 279 * se_runnable() = grq->h_nr_runnable 280 * 281 * runnable_sum = se_runnable() * runnable = grq->runnable_sum 282 * runnable_avg = runnable_sum 283 * 284 * load_sum := runnable 285 * load_avg = se_weight(se) * load_sum 286 * 287 * cfq_rq: 288 * 289 * runnable_sum = \Sum se->avg.runnable_sum 290 * runnable_avg = \Sum se->avg.runnable_avg 291 * 292 * load_sum = \Sum se_weight(se) * se->avg.load_sum 293 * load_avg = \Sum se->avg.load_avg 294 */ 295 296 int __update_load_avg_blocked_se(u64 now, struct sched_entity *se) 297 { 298 if (___update_load_sum(now, &se->avg, 0, 0, 0)) { 299 ___update_load_avg(&se->avg, se_weight(se)); 300 trace_pelt_se_tp(se); 301 return 1; 302 } 303 304 return 0; 305 } 306 307 int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se) 308 { 309 if (___update_load_sum(now, &se->avg, !!se->on_rq, se_runnable(se), 310 cfs_rq->curr == se)) { 311 312 ___update_load_avg(&se->avg, se_weight(se)); 313 cfs_se_util_change(&se->avg); 314 trace_pelt_se_tp(se); 315 return 1; 316 } 317 318 return 0; 319 } 320 321 int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq) 322 { 323 if (___update_load_sum(now, &cfs_rq->avg, 324 scale_load_down(cfs_rq->load.weight), 325 cfs_rq->h_nr_runnable, 326 cfs_rq->curr != NULL)) { 327 328 ___update_load_avg(&cfs_rq->avg, 1); 329 trace_pelt_cfs_tp(cfs_rq); 330 return 1; 331 } 332 333 return 0; 334 } 335 336 /* 337 * rt_rq: 338 * 339 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked 340 * util_sum = cpu_scale * load_sum 341 * runnable_sum = util_sum 342 * 343 * load_avg and runnable_avg are not supported and meaningless. 344 * 345 */ 346 347 int update_rt_rq_load_avg(u64 now, struct rq *rq, int running) 348 { 349 if (___update_load_sum(now, &rq->avg_rt, 350 running, 351 running, 352 running)) { 353 354 ___update_load_avg(&rq->avg_rt, 1); 355 trace_pelt_rt_tp(rq); 356 return 1; 357 } 358 359 return 0; 360 } 361 362 /* 363 * dl_rq: 364 * 365 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked 366 * util_sum = cpu_scale * load_sum 367 * runnable_sum = util_sum 368 * 369 * load_avg and runnable_avg are not supported and meaningless. 370 * 371 */ 372 373 int update_dl_rq_load_avg(u64 now, struct rq *rq, int running) 374 { 375 if (___update_load_sum(now, &rq->avg_dl, 376 running, 377 running, 378 running)) { 379 380 ___update_load_avg(&rq->avg_dl, 1); 381 trace_pelt_dl_tp(rq); 382 return 1; 383 } 384 385 return 0; 386 } 387 388 #ifdef CONFIG_SCHED_HW_PRESSURE 389 /* 390 * hardware: 391 * 392 * load_sum = \Sum se->avg.load_sum but se->avg.load_sum is not tracked 393 * 394 * util_avg and runnable_load_avg are not supported and meaningless. 395 * 396 * Unlike rt/dl utilization tracking that track time spent by a cpu 397 * running a rt/dl task through util_avg, the average HW pressure is 398 * tracked through load_avg. This is because HW pressure signal is 399 * time weighted "delta" capacity unlike util_avg which is binary. 400 * "delta capacity" = actual capacity - 401 * capped capacity a cpu due to a HW event. 402 */ 403 404 int update_hw_load_avg(u64 now, struct rq *rq, u64 capacity) 405 { 406 if (___update_load_sum(now, &rq->avg_hw, 407 capacity, 408 capacity, 409 capacity)) { 410 ___update_load_avg(&rq->avg_hw, 1); 411 trace_pelt_hw_tp(rq); 412 return 1; 413 } 414 415 return 0; 416 } 417 #endif /* CONFIG_SCHED_HW_PRESSURE */ 418 419 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 420 /* 421 * IRQ: 422 * 423 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked 424 * util_sum = cpu_scale * load_sum 425 * runnable_sum = util_sum 426 * 427 * load_avg and runnable_avg are not supported and meaningless. 428 * 429 */ 430 431 int update_irq_load_avg(struct rq *rq, u64 running) 432 { 433 int ret = 0; 434 435 /* 436 * We can't use clock_pelt because IRQ time is not accounted in 437 * clock_task. Instead we directly scale the running time to 438 * reflect the real amount of computation 439 */ 440 running = cap_scale(running, arch_scale_freq_capacity(cpu_of(rq))); 441 running = cap_scale(running, arch_scale_cpu_capacity(cpu_of(rq))); 442 443 /* 444 * We know the time that has been used by interrupt since last update 445 * but we don't when. Let be pessimistic and assume that interrupt has 446 * happened just before the update. This is not so far from reality 447 * because interrupt will most probably wake up task and trig an update 448 * of rq clock during which the metric is updated. 449 * We start to decay with normal context time and then we add the 450 * interrupt context time. 451 * We can safely remove running from rq->clock because 452 * rq->clock += delta with delta >= running 453 */ 454 ret = ___update_load_sum(rq->clock - running, &rq->avg_irq, 455 0, 456 0, 457 0); 458 ret += ___update_load_sum(rq->clock, &rq->avg_irq, 459 1, 460 1, 461 1); 462 463 if (ret) { 464 ___update_load_avg(&rq->avg_irq, 1); 465 trace_pelt_irq_tp(rq); 466 } 467 468 return ret; 469 } 470 #endif /* CONFIG_HAVE_SCHED_AVG_IRQ */ 471 472 /* 473 * Load avg and utiliztion metrics need to be updated periodically and before 474 * consumption. This function updates the metrics for all subsystems except for 475 * the fair class. @rq must be locked and have its clock updated. 476 */ 477 bool update_other_load_avgs(struct rq *rq) 478 { 479 u64 now = rq_clock_pelt(rq); 480 const struct sched_class *curr_class = rq->donor->sched_class; 481 unsigned long hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 482 483 lockdep_assert_rq_held(rq); 484 485 /* hw_pressure doesn't care about invariance */ 486 return update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 487 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 488 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure) | 489 update_irq_load_avg(rq, 0); 490 } 491