1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Per Entity Load Tracking 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 * 23 * Move PELT related code from fair.c into this pelt.c file 24 * Author: Vincent Guittot <vincent.guittot@linaro.org> 25 */ 26 27 #include <linux/sched.h> 28 #include "sched.h" 29 #include "pelt.h" 30 31 #include <trace/events/sched.h> 32 33 /* 34 * Approximate: 35 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 36 */ 37 static u64 decay_load(u64 val, u64 n) 38 { 39 unsigned int local_n; 40 41 if (unlikely(n > LOAD_AVG_PERIOD * 63)) 42 return 0; 43 44 /* after bounds checking we can collapse to 32-bit */ 45 local_n = n; 46 47 /* 48 * As y^PERIOD = 1/2, we can combine 49 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 50 * With a look-up table which covers y^n (n<PERIOD) 51 * 52 * To achieve constant time decay_load. 53 */ 54 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 55 val >>= local_n / LOAD_AVG_PERIOD; 56 local_n %= LOAD_AVG_PERIOD; 57 } 58 59 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 60 return val; 61 } 62 63 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3) 64 { 65 u32 c1, c2, c3 = d3; /* y^0 == 1 */ 66 67 /* 68 * c1 = d1 y^p 69 */ 70 c1 = decay_load((u64)d1, periods); 71 72 /* 73 * p-1 74 * c2 = 1024 \Sum y^n 75 * n=1 76 * 77 * inf inf 78 * = 1024 ( \Sum y^n - \Sum y^n - y^0 ) 79 * n=0 n=p 80 */ 81 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024; 82 83 return c1 + c2 + c3; 84 } 85 86 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 87 88 /* 89 * Accumulate the three separate parts of the sum; d1 the remainder 90 * of the last (incomplete) period, d2 the span of full periods and d3 91 * the remainder of the (incomplete) current period. 92 * 93 * d1 d2 d3 94 * ^ ^ ^ 95 * | | | 96 * |<->|<----------------->|<--->| 97 * ... |---x---|------| ... |------|-----x (now) 98 * 99 * p-1 100 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0 101 * n=1 102 * 103 * = u y^p + (Step 1) 104 * 105 * p-1 106 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2) 107 * n=1 108 */ 109 static __always_inline u32 110 accumulate_sum(u64 delta, struct sched_avg *sa, 111 unsigned long load, unsigned long runnable, int running) 112 { 113 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */ 114 u64 periods; 115 116 delta += sa->period_contrib; 117 periods = delta / 1024; /* A period is 1024us (~1ms) */ 118 119 /* 120 * Step 1: decay old *_sum if we crossed period boundaries. 121 */ 122 if (periods) { 123 sa->load_sum = decay_load(sa->load_sum, periods); 124 sa->runnable_load_sum = 125 decay_load(sa->runnable_load_sum, periods); 126 sa->util_sum = decay_load((u64)(sa->util_sum), periods); 127 128 /* 129 * Step 2 130 */ 131 delta %= 1024; 132 contrib = __accumulate_pelt_segments(periods, 133 1024 - sa->period_contrib, delta); 134 } 135 sa->period_contrib = delta; 136 137 if (load) 138 sa->load_sum += load * contrib; 139 if (runnable) 140 sa->runnable_load_sum += runnable * contrib; 141 if (running) 142 sa->util_sum += contrib << SCHED_CAPACITY_SHIFT; 143 144 return periods; 145 } 146 147 /* 148 * We can represent the historical contribution to runnable average as the 149 * coefficients of a geometric series. To do this we sub-divide our runnable 150 * history into segments of approximately 1ms (1024us); label the segment that 151 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 152 * 153 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 154 * p0 p1 p2 155 * (now) (~1ms ago) (~2ms ago) 156 * 157 * Let u_i denote the fraction of p_i that the entity was runnable. 158 * 159 * We then designate the fractions u_i as our co-efficients, yielding the 160 * following representation of historical load: 161 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 162 * 163 * We choose y based on the with of a reasonably scheduling period, fixing: 164 * y^32 = 0.5 165 * 166 * This means that the contribution to load ~32ms ago (u_32) will be weighted 167 * approximately half as much as the contribution to load within the last ms 168 * (u_0). 169 * 170 * When a period "rolls over" and we have new u_0`, multiplying the previous 171 * sum again by y is sufficient to update: 172 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 173 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 174 */ 175 static __always_inline int 176 ___update_load_sum(u64 now, struct sched_avg *sa, 177 unsigned long load, unsigned long runnable, int running) 178 { 179 u64 delta; 180 181 delta = now - sa->last_update_time; 182 /* 183 * This should only happen when time goes backwards, which it 184 * unfortunately does during sched clock init when we swap over to TSC. 185 */ 186 if ((s64)delta < 0) { 187 sa->last_update_time = now; 188 return 0; 189 } 190 191 /* 192 * Use 1024ns as the unit of measurement since it's a reasonable 193 * approximation of 1us and fast to compute. 194 */ 195 delta >>= 10; 196 if (!delta) 197 return 0; 198 199 sa->last_update_time += delta << 10; 200 201 /* 202 * running is a subset of runnable (weight) so running can't be set if 203 * runnable is clear. But there are some corner cases where the current 204 * se has been already dequeued but cfs_rq->curr still points to it. 205 * This means that weight will be 0 but not running for a sched_entity 206 * but also for a cfs_rq if the latter becomes idle. As an example, 207 * this happens during idle_balance() which calls 208 * update_blocked_averages() 209 */ 210 if (!load) 211 runnable = running = 0; 212 213 /* 214 * Now we know we crossed measurement unit boundaries. The *_avg 215 * accrues by two steps: 216 * 217 * Step 1: accumulate *_sum since last_update_time. If we haven't 218 * crossed period boundaries, finish. 219 */ 220 if (!accumulate_sum(delta, sa, load, runnable, running)) 221 return 0; 222 223 return 1; 224 } 225 226 static __always_inline void 227 ___update_load_avg(struct sched_avg *sa, unsigned long load, unsigned long runnable) 228 { 229 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 230 231 /* 232 * Step 2: update *_avg. 233 */ 234 sa->load_avg = div_u64(load * sa->load_sum, divider); 235 sa->runnable_load_avg = div_u64(runnable * sa->runnable_load_sum, divider); 236 WRITE_ONCE(sa->util_avg, sa->util_sum / divider); 237 } 238 239 /* 240 * sched_entity: 241 * 242 * task: 243 * se_runnable() == se_weight() 244 * 245 * group: [ see update_cfs_group() ] 246 * se_weight() = tg->weight * grq->load_avg / tg->load_avg 247 * se_runnable() = se_weight(se) * grq->runnable_load_avg / grq->load_avg 248 * 249 * load_sum := runnable_sum 250 * load_avg = se_weight(se) * runnable_avg 251 * 252 * runnable_load_sum := runnable_sum 253 * runnable_load_avg = se_runnable(se) * runnable_avg 254 * 255 * XXX collapse load_sum and runnable_load_sum 256 * 257 * cfq_rq: 258 * 259 * load_sum = \Sum se_weight(se) * se->avg.load_sum 260 * load_avg = \Sum se->avg.load_avg 261 * 262 * runnable_load_sum = \Sum se_runnable(se) * se->avg.runnable_load_sum 263 * runnable_load_avg = \Sum se->avg.runable_load_avg 264 */ 265 266 int __update_load_avg_blocked_se(u64 now, struct sched_entity *se) 267 { 268 if (___update_load_sum(now, &se->avg, 0, 0, 0)) { 269 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se)); 270 trace_pelt_se_tp(se); 271 return 1; 272 } 273 274 return 0; 275 } 276 277 int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se) 278 { 279 if (___update_load_sum(now, &se->avg, !!se->on_rq, !!se->on_rq, 280 cfs_rq->curr == se)) { 281 282 ___update_load_avg(&se->avg, se_weight(se), se_runnable(se)); 283 cfs_se_util_change(&se->avg); 284 trace_pelt_se_tp(se); 285 return 1; 286 } 287 288 return 0; 289 } 290 291 int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq) 292 { 293 if (___update_load_sum(now, &cfs_rq->avg, 294 scale_load_down(cfs_rq->load.weight), 295 scale_load_down(cfs_rq->runnable_weight), 296 cfs_rq->curr != NULL)) { 297 298 ___update_load_avg(&cfs_rq->avg, 1, 1); 299 trace_pelt_cfs_tp(cfs_rq); 300 return 1; 301 } 302 303 return 0; 304 } 305 306 /* 307 * rt_rq: 308 * 309 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked 310 * util_sum = cpu_scale * load_sum 311 * runnable_load_sum = load_sum 312 * 313 * load_avg and runnable_load_avg are not supported and meaningless. 314 * 315 */ 316 317 int update_rt_rq_load_avg(u64 now, struct rq *rq, int running) 318 { 319 if (___update_load_sum(now, &rq->avg_rt, 320 running, 321 running, 322 running)) { 323 324 ___update_load_avg(&rq->avg_rt, 1, 1); 325 trace_pelt_rt_tp(rq); 326 return 1; 327 } 328 329 return 0; 330 } 331 332 /* 333 * dl_rq: 334 * 335 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked 336 * util_sum = cpu_scale * load_sum 337 * runnable_load_sum = load_sum 338 * 339 */ 340 341 int update_dl_rq_load_avg(u64 now, struct rq *rq, int running) 342 { 343 if (___update_load_sum(now, &rq->avg_dl, 344 running, 345 running, 346 running)) { 347 348 ___update_load_avg(&rq->avg_dl, 1, 1); 349 trace_pelt_dl_tp(rq); 350 return 1; 351 } 352 353 return 0; 354 } 355 356 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 357 /* 358 * irq: 359 * 360 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked 361 * util_sum = cpu_scale * load_sum 362 * runnable_load_sum = load_sum 363 * 364 */ 365 366 int update_irq_load_avg(struct rq *rq, u64 running) 367 { 368 int ret = 0; 369 370 /* 371 * We can't use clock_pelt because irq time is not accounted in 372 * clock_task. Instead we directly scale the running time to 373 * reflect the real amount of computation 374 */ 375 running = cap_scale(running, arch_scale_freq_capacity(cpu_of(rq))); 376 running = cap_scale(running, arch_scale_cpu_capacity(cpu_of(rq))); 377 378 /* 379 * We know the time that has been used by interrupt since last update 380 * but we don't when. Let be pessimistic and assume that interrupt has 381 * happened just before the update. This is not so far from reality 382 * because interrupt will most probably wake up task and trig an update 383 * of rq clock during which the metric is updated. 384 * We start to decay with normal context time and then we add the 385 * interrupt context time. 386 * We can safely remove running from rq->clock because 387 * rq->clock += delta with delta >= running 388 */ 389 ret = ___update_load_sum(rq->clock - running, &rq->avg_irq, 390 0, 391 0, 392 0); 393 ret += ___update_load_sum(rq->clock, &rq->avg_irq, 394 1, 395 1, 396 1); 397 398 if (ret) { 399 ___update_load_avg(&rq->avg_irq, 1, 1); 400 trace_pelt_irq_tp(rq); 401 } 402 403 return ret; 404 } 405 #endif 406