1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic entry points for the idle threads and 4 * implementation of the idle task scheduling class. 5 * 6 * (NOTE: these are not related to SCHED_IDLE batch scheduled 7 * tasks which are handled in sched/fair.c ) 8 */ 9 #include <linux/cpuidle.h> 10 #include <linux/suspend.h> 11 #include <linux/livepatch.h> 12 #include "sched.h" 13 #include "smp.h" 14 15 /* Linker adds these: start and end of __cpuidle functions */ 16 extern char __cpuidle_text_start[], __cpuidle_text_end[]; 17 18 /** 19 * sched_idle_set_state - Record idle state for the current CPU. 20 * @idle_state: State to record. 21 */ 22 void sched_idle_set_state(struct cpuidle_state *idle_state) 23 { 24 idle_set_state(this_rq(), idle_state); 25 } 26 27 static int __read_mostly cpu_idle_force_poll; 28 29 void cpu_idle_poll_ctrl(bool enable) 30 { 31 if (enable) { 32 cpu_idle_force_poll++; 33 } else { 34 cpu_idle_force_poll--; 35 WARN_ON_ONCE(cpu_idle_force_poll < 0); 36 } 37 } 38 39 #ifdef CONFIG_GENERIC_IDLE_POLL_SETUP 40 static int __init cpu_idle_poll_setup(char *__unused) 41 { 42 cpu_idle_force_poll = 1; 43 44 return 1; 45 } 46 __setup("nohlt", cpu_idle_poll_setup); 47 48 static int __init cpu_idle_nopoll_setup(char *__unused) 49 { 50 cpu_idle_force_poll = 0; 51 52 return 1; 53 } 54 __setup("hlt", cpu_idle_nopoll_setup); 55 #endif /* CONFIG_GENERIC_IDLE_POLL_SETUP */ 56 57 static noinline int __cpuidle cpu_idle_poll(void) 58 { 59 instrumentation_begin(); 60 trace_cpu_idle(0, smp_processor_id()); 61 stop_critical_timings(); 62 ct_cpuidle_enter(); 63 64 raw_local_irq_enable(); 65 while (!tif_need_resched() && 66 (cpu_idle_force_poll || tick_check_broadcast_expired())) 67 cpu_relax(); 68 raw_local_irq_disable(); 69 70 ct_cpuidle_exit(); 71 start_critical_timings(); 72 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id()); 73 local_irq_enable(); 74 instrumentation_end(); 75 76 return 1; 77 } 78 79 /* Weak implementations for optional arch specific functions */ 80 void __weak arch_cpu_idle_prepare(void) { } 81 void __weak arch_cpu_idle_enter(void) { } 82 void __weak arch_cpu_idle_exit(void) { } 83 void __weak __noreturn arch_cpu_idle_dead(void) { while (1); } 84 void __weak arch_cpu_idle(void) 85 { 86 cpu_idle_force_poll = 1; 87 } 88 89 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE 90 DEFINE_STATIC_KEY_FALSE(arch_needs_tick_broadcast); 91 92 static inline void cond_tick_broadcast_enter(void) 93 { 94 if (static_branch_unlikely(&arch_needs_tick_broadcast)) 95 tick_broadcast_enter(); 96 } 97 98 static inline void cond_tick_broadcast_exit(void) 99 { 100 if (static_branch_unlikely(&arch_needs_tick_broadcast)) 101 tick_broadcast_exit(); 102 } 103 #else /* !CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE: */ 104 static inline void cond_tick_broadcast_enter(void) { } 105 static inline void cond_tick_broadcast_exit(void) { } 106 #endif /* !CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE */ 107 108 /** 109 * default_idle_call - Default CPU idle routine. 110 * 111 * To use when the cpuidle framework cannot be used. 112 */ 113 void __cpuidle default_idle_call(void) 114 { 115 instrumentation_begin(); 116 if (!current_clr_polling_and_test()) { 117 cond_tick_broadcast_enter(); 118 trace_cpu_idle(1, smp_processor_id()); 119 stop_critical_timings(); 120 121 ct_cpuidle_enter(); 122 arch_cpu_idle(); 123 ct_cpuidle_exit(); 124 125 start_critical_timings(); 126 trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id()); 127 cond_tick_broadcast_exit(); 128 } 129 local_irq_enable(); 130 instrumentation_end(); 131 } 132 133 static int call_cpuidle_s2idle(struct cpuidle_driver *drv, 134 struct cpuidle_device *dev, 135 u64 max_latency_ns) 136 { 137 if (current_clr_polling_and_test()) 138 return -EBUSY; 139 140 return cpuidle_enter_s2idle(drv, dev, max_latency_ns); 141 } 142 143 static int call_cpuidle(struct cpuidle_driver *drv, struct cpuidle_device *dev, 144 int next_state) 145 { 146 /* 147 * The idle task must be scheduled, it is pointless to go to idle, just 148 * update no idle residency and return. 149 */ 150 if (current_clr_polling_and_test()) { 151 dev->last_residency_ns = 0; 152 local_irq_enable(); 153 return -EBUSY; 154 } 155 156 /* 157 * Enter the idle state previously returned by the governor decision. 158 * This function will block until an interrupt occurs and will take 159 * care of re-enabling the local interrupts 160 */ 161 return cpuidle_enter(drv, dev, next_state); 162 } 163 164 /** 165 * cpuidle_idle_call - the main idle function 166 * 167 * NOTE: no locks or semaphores should be used here 168 * 169 * On architectures that support TIF_POLLING_NRFLAG, is called with polling 170 * set, and it returns with polling set. If it ever stops polling, it 171 * must clear the polling bit. 172 */ 173 static void cpuidle_idle_call(void) 174 { 175 struct cpuidle_device *dev = cpuidle_get_device(); 176 struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev); 177 int next_state, entered_state; 178 179 /* 180 * Check if the idle task must be rescheduled. If it is the 181 * case, exit the function after re-enabling the local IRQ. 182 */ 183 if (need_resched()) { 184 local_irq_enable(); 185 return; 186 } 187 188 if (cpuidle_not_available(drv, dev)) { 189 tick_nohz_idle_stop_tick(); 190 191 default_idle_call(); 192 goto exit_idle; 193 } 194 195 /* 196 * Suspend-to-idle ("s2idle") is a system state in which all user space 197 * has been frozen, all I/O devices have been suspended and the only 198 * activity happens here and in interrupts (if any). In that case bypass 199 * the cpuidle governor and go straight for the deepest idle state 200 * available. Possibly also suspend the local tick and the entire 201 * timekeeping to prevent timer interrupts from kicking us out of idle 202 * until a proper wakeup interrupt happens. 203 */ 204 205 if (idle_should_enter_s2idle() || dev->forced_idle_latency_limit_ns) { 206 u64 max_latency_ns; 207 208 if (idle_should_enter_s2idle()) { 209 max_latency_ns = cpu_wakeup_latency_qos_limit() * 210 NSEC_PER_USEC; 211 212 entered_state = call_cpuidle_s2idle(drv, dev, 213 max_latency_ns); 214 if (entered_state > 0) 215 goto exit_idle; 216 } else { 217 max_latency_ns = dev->forced_idle_latency_limit_ns; 218 } 219 220 tick_nohz_idle_stop_tick(); 221 222 next_state = cpuidle_find_deepest_state(drv, dev, max_latency_ns); 223 call_cpuidle(drv, dev, next_state); 224 } else { 225 bool stop_tick = true; 226 227 /* 228 * Ask the cpuidle framework to choose a convenient idle state. 229 */ 230 next_state = cpuidle_select(drv, dev, &stop_tick); 231 232 if (stop_tick || tick_nohz_tick_stopped()) 233 tick_nohz_idle_stop_tick(); 234 else 235 tick_nohz_idle_retain_tick(); 236 237 entered_state = call_cpuidle(drv, dev, next_state); 238 /* 239 * Give the governor an opportunity to reflect on the outcome 240 */ 241 cpuidle_reflect(dev, entered_state); 242 } 243 244 exit_idle: 245 __current_set_polling(); 246 247 /* 248 * It is up to the idle functions to re-enable local interrupts 249 */ 250 if (WARN_ON_ONCE(irqs_disabled())) 251 local_irq_enable(); 252 } 253 254 /* 255 * Generic idle loop implementation 256 * 257 * Called with polling cleared. 258 */ 259 static void do_idle(void) 260 { 261 int cpu = smp_processor_id(); 262 263 /* 264 * Check if we need to update blocked load 265 */ 266 nohz_run_idle_balance(cpu); 267 268 /* 269 * If the arch has a polling bit, we maintain an invariant: 270 * 271 * Our polling bit is clear if we're not scheduled (i.e. if rq->curr != 272 * rq->idle). This means that, if rq->idle has the polling bit set, 273 * then setting need_resched is guaranteed to cause the CPU to 274 * reschedule. 275 */ 276 277 __current_set_polling(); 278 tick_nohz_idle_enter(); 279 280 while (!need_resched()) { 281 282 /* 283 * Interrupts shouldn't be re-enabled from that point on until 284 * the CPU sleeping instruction is reached. Otherwise an interrupt 285 * may fire and queue a timer that would be ignored until the CPU 286 * wakes from the sleeping instruction. And testing need_resched() 287 * doesn't tell about pending needed timer reprogram. 288 * 289 * Several cases to consider: 290 * 291 * - SLEEP-UNTIL-PENDING-INTERRUPT based instructions such as 292 * "wfi" or "mwait" are fine because they can be entered with 293 * interrupt disabled. 294 * 295 * - sti;mwait() couple is fine because the interrupts are 296 * re-enabled only upon the execution of mwait, leaving no gap 297 * in-between. 298 * 299 * - ROLLBACK based idle handlers with the sleeping instruction 300 * called with interrupts enabled are NOT fine. In this scheme 301 * when the interrupt detects it has interrupted an idle handler, 302 * it rolls back to its beginning which performs the 303 * need_resched() check before re-executing the sleeping 304 * instruction. This can leak a pending needed timer reprogram. 305 * If such a scheme is really mandatory due to the lack of an 306 * appropriate CPU sleeping instruction, then a FAST-FORWARD 307 * must instead be applied: when the interrupt detects it has 308 * interrupted an idle handler, it must resume to the end of 309 * this idle handler so that the generic idle loop is iterated 310 * again to reprogram the tick. 311 */ 312 local_irq_disable(); 313 314 if (cpu_is_offline(cpu)) { 315 cpuhp_report_idle_dead(); 316 arch_cpu_idle_dead(); 317 } 318 319 arch_cpu_idle_enter(); 320 rcu_nocb_flush_deferred_wakeup(); 321 322 /* 323 * In poll mode we re-enable interrupts and spin. Also if we 324 * detected in the wakeup from idle path that the tick 325 * broadcast device expired for us, we don't want to go deep 326 * idle as we know that the IPI is going to arrive right away. 327 */ 328 if (cpu_idle_force_poll || tick_check_broadcast_expired()) { 329 tick_nohz_idle_restart_tick(); 330 cpu_idle_poll(); 331 } else { 332 cpuidle_idle_call(); 333 } 334 arch_cpu_idle_exit(); 335 } 336 337 /* 338 * Since we fell out of the loop above, we know TIF_NEED_RESCHED must 339 * be set, propagate it into PREEMPT_NEED_RESCHED. 340 * 341 * This is required because for polling idle loops we will not have had 342 * an IPI to fold the state for us. 343 */ 344 preempt_set_need_resched(); 345 tick_nohz_idle_exit(); 346 __current_clr_polling(); 347 348 /* 349 * We promise to call sched_ttwu_pending() and reschedule if 350 * need_resched() is set while polling is set. That means that clearing 351 * polling needs to be visible before doing these things. 352 */ 353 smp_mb__after_atomic(); 354 355 /* 356 * RCU relies on this call to be done outside of an RCU read-side 357 * critical section. 358 */ 359 flush_smp_call_function_queue(); 360 schedule_idle(); 361 362 if (unlikely(klp_patch_pending(current))) 363 klp_update_patch_state(current); 364 } 365 366 bool cpu_in_idle(unsigned long pc) 367 { 368 return pc >= (unsigned long)__cpuidle_text_start && 369 pc < (unsigned long)__cpuidle_text_end; 370 } 371 372 struct idle_timer { 373 struct hrtimer timer; 374 int done; 375 }; 376 377 static enum hrtimer_restart idle_inject_timer_fn(struct hrtimer *timer) 378 { 379 struct idle_timer *it = container_of(timer, struct idle_timer, timer); 380 381 WRITE_ONCE(it->done, 1); 382 set_tsk_need_resched(current); 383 384 return HRTIMER_NORESTART; 385 } 386 387 void play_idle_precise(u64 duration_ns, u64 latency_ns) 388 { 389 struct idle_timer it; 390 391 /* 392 * Only FIFO tasks can disable the tick since they don't need the forced 393 * preemption. 394 */ 395 WARN_ON_ONCE(current->policy != SCHED_FIFO); 396 WARN_ON_ONCE(current->nr_cpus_allowed != 1); 397 WARN_ON_ONCE(!(current->flags & PF_KTHREAD)); 398 WARN_ON_ONCE(!(current->flags & PF_NO_SETAFFINITY)); 399 WARN_ON_ONCE(!duration_ns); 400 WARN_ON_ONCE(current->mm); 401 402 rcu_sleep_check(); 403 preempt_disable(); 404 current->flags |= PF_IDLE; 405 cpuidle_use_deepest_state(latency_ns); 406 407 it.done = 0; 408 hrtimer_setup_on_stack(&it.timer, idle_inject_timer_fn, CLOCK_MONOTONIC, 409 HRTIMER_MODE_REL_HARD); 410 hrtimer_start(&it.timer, ns_to_ktime(duration_ns), 411 HRTIMER_MODE_REL_PINNED_HARD); 412 413 while (!READ_ONCE(it.done)) 414 do_idle(); 415 416 cpuidle_use_deepest_state(0); 417 current->flags &= ~PF_IDLE; 418 419 preempt_fold_need_resched(); 420 preempt_enable(); 421 } 422 EXPORT_SYMBOL_GPL(play_idle_precise); 423 424 void cpu_startup_entry(enum cpuhp_state state) 425 { 426 current->flags |= PF_IDLE; 427 arch_cpu_idle_prepare(); 428 cpuhp_online_idle(state); 429 while (1) 430 do_idle(); 431 } 432 433 /* 434 * idle-task scheduling class. 435 */ 436 437 static int 438 select_task_rq_idle(struct task_struct *p, int cpu, int flags) 439 { 440 return task_cpu(p); /* IDLE tasks as never migrated */ 441 } 442 443 static int 444 balance_idle(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 445 { 446 return WARN_ON_ONCE(1); 447 } 448 449 /* 450 * Idle tasks are unconditionally rescheduled: 451 */ 452 static void wakeup_preempt_idle(struct rq *rq, struct task_struct *p, int flags) 453 { 454 resched_curr(rq); 455 } 456 457 static void update_curr_idle(struct rq *rq); 458 459 static void put_prev_task_idle(struct rq *rq, struct task_struct *prev, struct task_struct *next) 460 { 461 update_curr_idle(rq); 462 scx_update_idle(rq, false, true); 463 } 464 465 static void set_next_task_idle(struct rq *rq, struct task_struct *next, bool first) 466 { 467 update_idle_core(rq); 468 scx_update_idle(rq, true, true); 469 schedstat_inc(rq->sched_goidle); 470 next->se.exec_start = rq_clock_task(rq); 471 } 472 473 struct task_struct *pick_task_idle(struct rq *rq, struct rq_flags *rf) 474 { 475 scx_update_idle(rq, true, false); 476 return rq->idle; 477 } 478 479 /* 480 * It is not legal to sleep in the idle task - print a warning 481 * message if some code attempts to do it: 482 */ 483 static bool 484 dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags) 485 { 486 raw_spin_rq_unlock_irq(rq); 487 printk(KERN_ERR "bad: scheduling from the idle thread!\n"); 488 dump_stack(); 489 raw_spin_rq_lock_irq(rq); 490 return true; 491 } 492 493 /* 494 * scheduler tick hitting a task of our scheduling class. 495 * 496 * NOTE: This function can be called remotely by the tick offload that 497 * goes along full dynticks. Therefore no local assumption can be made 498 * and everything must be accessed through the @rq and @curr passed in 499 * parameters. 500 */ 501 static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued) 502 { 503 update_curr_idle(rq); 504 } 505 506 static void switching_to_idle(struct rq *rq, struct task_struct *p) 507 { 508 BUG(); 509 } 510 511 static void 512 prio_changed_idle(struct rq *rq, struct task_struct *p, u64 oldprio) 513 { 514 if (p->prio == oldprio) 515 return; 516 517 BUG(); 518 } 519 520 static void update_curr_idle(struct rq *rq) 521 { 522 struct sched_entity *se = &rq->idle->se; 523 u64 now = rq_clock_task(rq); 524 s64 delta_exec; 525 526 delta_exec = now - se->exec_start; 527 if (unlikely(delta_exec <= 0)) 528 return; 529 530 se->exec_start = now; 531 532 dl_server_update_idle(&rq->fair_server, delta_exec); 533 } 534 535 /* 536 * Simple, special scheduling class for the per-CPU idle tasks: 537 */ 538 DEFINE_SCHED_CLASS(idle) = { 539 540 .queue_mask = 0, 541 542 /* no enqueue/yield_task for idle tasks */ 543 544 /* dequeue is not valid, we print a debug message there: */ 545 .dequeue_task = dequeue_task_idle, 546 547 .wakeup_preempt = wakeup_preempt_idle, 548 549 .pick_task = pick_task_idle, 550 .put_prev_task = put_prev_task_idle, 551 .set_next_task = set_next_task_idle, 552 553 .balance = balance_idle, 554 .select_task_rq = select_task_rq_idle, 555 .set_cpus_allowed = set_cpus_allowed_common, 556 557 .task_tick = task_tick_idle, 558 559 .prio_changed = prio_changed_idle, 560 .switching_to = switching_to_idle, 561 .update_curr = update_curr_idle, 562 }; 563