xref: /linux/kernel/sched/idle.c (revision 70d837c3e017a0dc2bc52abf07abfeebd006c946)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic entry points for the idle threads and
4  * implementation of the idle task scheduling class.
5  *
6  * (NOTE: these are not related to SCHED_IDLE batch scheduled
7  *        tasks which are handled in sched/fair.c )
8  */
9 #include <linux/cpuidle.h>
10 #include <linux/suspend.h>
11 #include <linux/livepatch.h>
12 #include "sched.h"
13 #include "smp.h"
14 
15 /* Linker adds these: start and end of __cpuidle functions */
16 extern char __cpuidle_text_start[], __cpuidle_text_end[];
17 
18 /**
19  * sched_idle_set_state - Record idle state for the current CPU.
20  * @idle_state: State to record.
21  */
sched_idle_set_state(struct cpuidle_state * idle_state)22 void sched_idle_set_state(struct cpuidle_state *idle_state)
23 {
24 	idle_set_state(this_rq(), idle_state);
25 }
26 
27 static int __read_mostly cpu_idle_force_poll;
28 
cpu_idle_poll_ctrl(bool enable)29 void cpu_idle_poll_ctrl(bool enable)
30 {
31 	if (enable) {
32 		cpu_idle_force_poll++;
33 	} else {
34 		cpu_idle_force_poll--;
35 		WARN_ON_ONCE(cpu_idle_force_poll < 0);
36 	}
37 }
38 
39 #ifdef CONFIG_GENERIC_IDLE_POLL_SETUP
cpu_idle_poll_setup(char * __unused)40 static int __init cpu_idle_poll_setup(char *__unused)
41 {
42 	cpu_idle_force_poll = 1;
43 
44 	return 1;
45 }
46 __setup("nohlt", cpu_idle_poll_setup);
47 
cpu_idle_nopoll_setup(char * __unused)48 static int __init cpu_idle_nopoll_setup(char *__unused)
49 {
50 	cpu_idle_force_poll = 0;
51 
52 	return 1;
53 }
54 __setup("hlt", cpu_idle_nopoll_setup);
55 #endif /* CONFIG_GENERIC_IDLE_POLL_SETUP */
56 
cpu_idle_poll(void)57 static noinline int __cpuidle cpu_idle_poll(void)
58 {
59 	instrumentation_begin();
60 	trace_cpu_idle(0, smp_processor_id());
61 	stop_critical_timings();
62 	ct_cpuidle_enter();
63 
64 	raw_local_irq_enable();
65 	while (!tif_need_resched() &&
66 	       (cpu_idle_force_poll || tick_check_broadcast_expired()))
67 		cpu_relax();
68 	raw_local_irq_disable();
69 
70 	ct_cpuidle_exit();
71 	start_critical_timings();
72 	trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
73 	local_irq_enable();
74 	instrumentation_end();
75 
76 	return 1;
77 }
78 
79 /* Weak implementations for optional arch specific functions */
arch_cpu_idle_prepare(void)80 void __weak arch_cpu_idle_prepare(void) { }
arch_cpu_idle_enter(void)81 void __weak arch_cpu_idle_enter(void) { }
arch_cpu_idle_exit(void)82 void __weak arch_cpu_idle_exit(void) { }
arch_cpu_idle_dead(void)83 void __weak __noreturn arch_cpu_idle_dead(void) { while (1); }
arch_cpu_idle(void)84 void __weak arch_cpu_idle(void)
85 {
86 	cpu_idle_force_poll = 1;
87 }
88 
89 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE
90 DEFINE_STATIC_KEY_FALSE(arch_needs_tick_broadcast);
91 
cond_tick_broadcast_enter(void)92 static inline void cond_tick_broadcast_enter(void)
93 {
94 	if (static_branch_unlikely(&arch_needs_tick_broadcast))
95 		tick_broadcast_enter();
96 }
97 
cond_tick_broadcast_exit(void)98 static inline void cond_tick_broadcast_exit(void)
99 {
100 	if (static_branch_unlikely(&arch_needs_tick_broadcast))
101 		tick_broadcast_exit();
102 }
103 #else /* !CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE: */
cond_tick_broadcast_enter(void)104 static inline void cond_tick_broadcast_enter(void) { }
cond_tick_broadcast_exit(void)105 static inline void cond_tick_broadcast_exit(void) { }
106 #endif /* !CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE */
107 
108 /**
109  * default_idle_call - Default CPU idle routine.
110  *
111  * To use when the cpuidle framework cannot be used.
112  */
default_idle_call(void)113 void __cpuidle default_idle_call(void)
114 {
115 	instrumentation_begin();
116 	if (!current_clr_polling_and_test()) {
117 		cond_tick_broadcast_enter();
118 		trace_cpu_idle(1, smp_processor_id());
119 		stop_critical_timings();
120 
121 		ct_cpuidle_enter();
122 		arch_cpu_idle();
123 		ct_cpuidle_exit();
124 
125 		start_critical_timings();
126 		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
127 		cond_tick_broadcast_exit();
128 	}
129 	local_irq_enable();
130 	instrumentation_end();
131 }
132 
call_cpuidle_s2idle(struct cpuidle_driver * drv,struct cpuidle_device * dev,u64 max_latency_ns)133 static int call_cpuidle_s2idle(struct cpuidle_driver *drv,
134 			       struct cpuidle_device *dev,
135 			       u64 max_latency_ns)
136 {
137 	if (current_clr_polling_and_test())
138 		return -EBUSY;
139 
140 	return cpuidle_enter_s2idle(drv, dev, max_latency_ns);
141 }
142 
call_cpuidle(struct cpuidle_driver * drv,struct cpuidle_device * dev,int next_state)143 static int call_cpuidle(struct cpuidle_driver *drv, struct cpuidle_device *dev,
144 		      int next_state)
145 {
146 	/*
147 	 * The idle task must be scheduled, it is pointless to go to idle, just
148 	 * update no idle residency and return.
149 	 */
150 	if (current_clr_polling_and_test()) {
151 		dev->last_residency_ns = 0;
152 		local_irq_enable();
153 		return -EBUSY;
154 	}
155 
156 	/*
157 	 * Enter the idle state previously returned by the governor decision.
158 	 * This function will block until an interrupt occurs and will take
159 	 * care of re-enabling the local interrupts
160 	 */
161 	return cpuidle_enter(drv, dev, next_state);
162 }
163 
164 /**
165  * cpuidle_idle_call - the main idle function
166  *
167  * NOTE: no locks or semaphores should be used here
168  *
169  * On architectures that support TIF_POLLING_NRFLAG, is called with polling
170  * set, and it returns with polling set.  If it ever stops polling, it
171  * must clear the polling bit.
172  */
cpuidle_idle_call(void)173 static void cpuidle_idle_call(void)
174 {
175 	struct cpuidle_device *dev = cpuidle_get_device();
176 	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
177 	int next_state, entered_state;
178 
179 	/*
180 	 * Check if the idle task must be rescheduled. If it is the
181 	 * case, exit the function after re-enabling the local IRQ.
182 	 */
183 	if (need_resched()) {
184 		local_irq_enable();
185 		return;
186 	}
187 
188 	if (cpuidle_not_available(drv, dev)) {
189 		tick_nohz_idle_stop_tick();
190 
191 		default_idle_call();
192 		goto exit_idle;
193 	}
194 
195 	/*
196 	 * Suspend-to-idle ("s2idle") is a system state in which all user space
197 	 * has been frozen, all I/O devices have been suspended and the only
198 	 * activity happens here and in interrupts (if any). In that case bypass
199 	 * the cpuidle governor and go straight for the deepest idle state
200 	 * available.  Possibly also suspend the local tick and the entire
201 	 * timekeeping to prevent timer interrupts from kicking us out of idle
202 	 * until a proper wakeup interrupt happens.
203 	 */
204 
205 	if (idle_should_enter_s2idle() || dev->forced_idle_latency_limit_ns) {
206 		u64 max_latency_ns;
207 
208 		if (idle_should_enter_s2idle()) {
209 			max_latency_ns = cpu_wakeup_latency_qos_limit() *
210 					 NSEC_PER_USEC;
211 
212 			entered_state = call_cpuidle_s2idle(drv, dev,
213 							    max_latency_ns);
214 			if (entered_state > 0)
215 				goto exit_idle;
216 		} else {
217 			max_latency_ns = dev->forced_idle_latency_limit_ns;
218 		}
219 
220 		tick_nohz_idle_stop_tick();
221 
222 		next_state = cpuidle_find_deepest_state(drv, dev, max_latency_ns);
223 		call_cpuidle(drv, dev, next_state);
224 	} else {
225 		bool stop_tick = true;
226 
227 		/*
228 		 * Ask the cpuidle framework to choose a convenient idle state.
229 		 */
230 		next_state = cpuidle_select(drv, dev, &stop_tick);
231 
232 		if (stop_tick || tick_nohz_tick_stopped())
233 			tick_nohz_idle_stop_tick();
234 		else
235 			tick_nohz_idle_retain_tick();
236 
237 		entered_state = call_cpuidle(drv, dev, next_state);
238 		/*
239 		 * Give the governor an opportunity to reflect on the outcome
240 		 */
241 		cpuidle_reflect(dev, entered_state);
242 	}
243 
244 exit_idle:
245 	__current_set_polling();
246 
247 	/*
248 	 * It is up to the idle functions to re-enable local interrupts
249 	 */
250 	if (WARN_ON_ONCE(irqs_disabled()))
251 		local_irq_enable();
252 }
253 
254 /*
255  * Generic idle loop implementation
256  *
257  * Called with polling cleared.
258  */
do_idle(void)259 static void do_idle(void)
260 {
261 	int cpu = smp_processor_id();
262 
263 	/*
264 	 * Check if we need to update blocked load
265 	 */
266 	nohz_run_idle_balance(cpu);
267 
268 	/*
269 	 * If the arch has a polling bit, we maintain an invariant:
270 	 *
271 	 * Our polling bit is clear if we're not scheduled (i.e. if rq->curr !=
272 	 * rq->idle). This means that, if rq->idle has the polling bit set,
273 	 * then setting need_resched is guaranteed to cause the CPU to
274 	 * reschedule.
275 	 */
276 
277 	__current_set_polling();
278 	tick_nohz_idle_enter();
279 
280 	while (!need_resched()) {
281 
282 		/*
283 		 * Interrupts shouldn't be re-enabled from that point on until
284 		 * the CPU sleeping instruction is reached. Otherwise an interrupt
285 		 * may fire and queue a timer that would be ignored until the CPU
286 		 * wakes from the sleeping instruction. And testing need_resched()
287 		 * doesn't tell about pending needed timer reprogram.
288 		 *
289 		 * Several cases to consider:
290 		 *
291 		 * - SLEEP-UNTIL-PENDING-INTERRUPT based instructions such as
292 		 *   "wfi" or "mwait" are fine because they can be entered with
293 		 *   interrupt disabled.
294 		 *
295 		 * - sti;mwait() couple is fine because the interrupts are
296 		 *   re-enabled only upon the execution of mwait, leaving no gap
297 		 *   in-between.
298 		 *
299 		 * - ROLLBACK based idle handlers with the sleeping instruction
300 		 *   called with interrupts enabled are NOT fine. In this scheme
301 		 *   when the interrupt detects it has interrupted an idle handler,
302 		 *   it rolls back to its beginning which performs the
303 		 *   need_resched() check before re-executing the sleeping
304 		 *   instruction. This can leak a pending needed timer reprogram.
305 		 *   If such a scheme is really mandatory due to the lack of an
306 		 *   appropriate CPU sleeping instruction, then a FAST-FORWARD
307 		 *   must instead be applied: when the interrupt detects it has
308 		 *   interrupted an idle handler, it must resume to the end of
309 		 *   this idle handler so that the generic idle loop is iterated
310 		 *   again to reprogram the tick.
311 		 */
312 		local_irq_disable();
313 
314 		if (cpu_is_offline(cpu)) {
315 			cpuhp_report_idle_dead();
316 			arch_cpu_idle_dead();
317 		}
318 
319 		arch_cpu_idle_enter();
320 		rcu_nocb_flush_deferred_wakeup();
321 
322 		/*
323 		 * In poll mode we re-enable interrupts and spin. Also if we
324 		 * detected in the wakeup from idle path that the tick
325 		 * broadcast device expired for us, we don't want to go deep
326 		 * idle as we know that the IPI is going to arrive right away.
327 		 */
328 		if (cpu_idle_force_poll || tick_check_broadcast_expired()) {
329 			tick_nohz_idle_restart_tick();
330 			cpu_idle_poll();
331 		} else {
332 			cpuidle_idle_call();
333 		}
334 		arch_cpu_idle_exit();
335 	}
336 
337 	/*
338 	 * Since we fell out of the loop above, we know TIF_NEED_RESCHED must
339 	 * be set, propagate it into PREEMPT_NEED_RESCHED.
340 	 *
341 	 * This is required because for polling idle loops we will not have had
342 	 * an IPI to fold the state for us.
343 	 */
344 	preempt_set_need_resched();
345 	tick_nohz_idle_exit();
346 	__current_clr_polling();
347 
348 	/*
349 	 * We promise to call sched_ttwu_pending() and reschedule if
350 	 * need_resched() is set while polling is set. That means that clearing
351 	 * polling needs to be visible before doing these things.
352 	 */
353 	smp_mb__after_atomic();
354 
355 	/*
356 	 * RCU relies on this call to be done outside of an RCU read-side
357 	 * critical section.
358 	 */
359 	flush_smp_call_function_queue();
360 	schedule_idle();
361 
362 	if (unlikely(klp_patch_pending(current)))
363 		klp_update_patch_state(current);
364 }
365 
cpu_in_idle(unsigned long pc)366 bool cpu_in_idle(unsigned long pc)
367 {
368 	return pc >= (unsigned long)__cpuidle_text_start &&
369 		pc < (unsigned long)__cpuidle_text_end;
370 }
371 
372 struct idle_timer {
373 	struct hrtimer timer;
374 	int done;
375 };
376 
idle_inject_timer_fn(struct hrtimer * timer)377 static enum hrtimer_restart idle_inject_timer_fn(struct hrtimer *timer)
378 {
379 	struct idle_timer *it = container_of(timer, struct idle_timer, timer);
380 
381 	WRITE_ONCE(it->done, 1);
382 	set_tsk_need_resched(current);
383 
384 	return HRTIMER_NORESTART;
385 }
386 
play_idle_precise(u64 duration_ns,u64 latency_ns)387 void play_idle_precise(u64 duration_ns, u64 latency_ns)
388 {
389 	struct idle_timer it;
390 
391 	/*
392 	 * Only FIFO tasks can disable the tick since they don't need the forced
393 	 * preemption.
394 	 */
395 	WARN_ON_ONCE(current->policy != SCHED_FIFO);
396 	WARN_ON_ONCE(current->nr_cpus_allowed != 1);
397 	WARN_ON_ONCE(!(current->flags & PF_KTHREAD));
398 	WARN_ON_ONCE(!(current->flags & PF_NO_SETAFFINITY));
399 	WARN_ON_ONCE(!duration_ns);
400 	WARN_ON_ONCE(current->mm);
401 
402 	rcu_sleep_check();
403 	preempt_disable();
404 	current->flags |= PF_IDLE;
405 	cpuidle_use_deepest_state(latency_ns);
406 
407 	it.done = 0;
408 	hrtimer_setup_on_stack(&it.timer, idle_inject_timer_fn, CLOCK_MONOTONIC,
409 			       HRTIMER_MODE_REL_HARD);
410 	hrtimer_start(&it.timer, ns_to_ktime(duration_ns),
411 		      HRTIMER_MODE_REL_PINNED_HARD);
412 
413 	while (!READ_ONCE(it.done))
414 		do_idle();
415 
416 	cpuidle_use_deepest_state(0);
417 	current->flags &= ~PF_IDLE;
418 
419 	preempt_fold_need_resched();
420 	preempt_enable();
421 }
422 EXPORT_SYMBOL_GPL(play_idle_precise);
423 
cpu_startup_entry(enum cpuhp_state state)424 void cpu_startup_entry(enum cpuhp_state state)
425 {
426 	current->flags |= PF_IDLE;
427 	arch_cpu_idle_prepare();
428 	cpuhp_online_idle(state);
429 	while (1)
430 		do_idle();
431 }
432 
433 /*
434  * idle-task scheduling class.
435  */
436 
437 static int
select_task_rq_idle(struct task_struct * p,int cpu,int flags)438 select_task_rq_idle(struct task_struct *p, int cpu, int flags)
439 {
440 	return task_cpu(p); /* IDLE tasks as never migrated */
441 }
442 
443 static int
balance_idle(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)444 balance_idle(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
445 {
446 	return WARN_ON_ONCE(1);
447 }
448 
449 /*
450  * Idle tasks are unconditionally rescheduled:
451  */
wakeup_preempt_idle(struct rq * rq,struct task_struct * p,int flags)452 static void wakeup_preempt_idle(struct rq *rq, struct task_struct *p, int flags)
453 {
454 	resched_curr(rq);
455 }
456 
457 static void update_curr_idle(struct rq *rq);
458 
put_prev_task_idle(struct rq * rq,struct task_struct * prev,struct task_struct * next)459 static void put_prev_task_idle(struct rq *rq, struct task_struct *prev, struct task_struct *next)
460 {
461 	update_curr_idle(rq);
462 	scx_update_idle(rq, false, true);
463 }
464 
set_next_task_idle(struct rq * rq,struct task_struct * next,bool first)465 static void set_next_task_idle(struct rq *rq, struct task_struct *next, bool first)
466 {
467 	update_idle_core(rq);
468 	scx_update_idle(rq, true, true);
469 	schedstat_inc(rq->sched_goidle);
470 	next->se.exec_start = rq_clock_task(rq);
471 }
472 
pick_task_idle(struct rq * rq,struct rq_flags * rf)473 struct task_struct *pick_task_idle(struct rq *rq, struct rq_flags *rf)
474 {
475 	scx_update_idle(rq, true, false);
476 	return rq->idle;
477 }
478 
479 /*
480  * It is not legal to sleep in the idle task - print a warning
481  * message if some code attempts to do it:
482  */
483 static bool
dequeue_task_idle(struct rq * rq,struct task_struct * p,int flags)484 dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags)
485 {
486 	raw_spin_rq_unlock_irq(rq);
487 	printk(KERN_ERR "bad: scheduling from the idle thread!\n");
488 	dump_stack();
489 	raw_spin_rq_lock_irq(rq);
490 	return true;
491 }
492 
493 /*
494  * scheduler tick hitting a task of our scheduling class.
495  *
496  * NOTE: This function can be called remotely by the tick offload that
497  * goes along full dynticks. Therefore no local assumption can be made
498  * and everything must be accessed through the @rq and @curr passed in
499  * parameters.
500  */
task_tick_idle(struct rq * rq,struct task_struct * curr,int queued)501 static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued)
502 {
503 	update_curr_idle(rq);
504 }
505 
switching_to_idle(struct rq * rq,struct task_struct * p)506 static void switching_to_idle(struct rq *rq, struct task_struct *p)
507 {
508 	BUG();
509 }
510 
511 static void
prio_changed_idle(struct rq * rq,struct task_struct * p,u64 oldprio)512 prio_changed_idle(struct rq *rq, struct task_struct *p, u64 oldprio)
513 {
514 	if (p->prio == oldprio)
515 		return;
516 
517 	BUG();
518 }
519 
update_curr_idle(struct rq * rq)520 static void update_curr_idle(struct rq *rq)
521 {
522 	struct sched_entity *se = &rq->idle->se;
523 	u64 now = rq_clock_task(rq);
524 	s64 delta_exec;
525 
526 	delta_exec = now - se->exec_start;
527 	if (unlikely(delta_exec <= 0))
528 		return;
529 
530 	se->exec_start = now;
531 
532 	dl_server_update_idle(&rq->fair_server, delta_exec);
533 }
534 
535 /*
536  * Simple, special scheduling class for the per-CPU idle tasks:
537  */
538 DEFINE_SCHED_CLASS(idle) = {
539 
540 	.queue_mask		= 0,
541 
542 	/* no enqueue/yield_task for idle tasks */
543 
544 	/* dequeue is not valid, we print a debug message there: */
545 	.dequeue_task		= dequeue_task_idle,
546 
547 	.wakeup_preempt		= wakeup_preempt_idle,
548 
549 	.pick_task		= pick_task_idle,
550 	.put_prev_task		= put_prev_task_idle,
551 	.set_next_task          = set_next_task_idle,
552 
553 	.balance		= balance_idle,
554 	.select_task_rq		= select_task_rq_idle,
555 	.set_cpus_allowed	= set_cpus_allowed_common,
556 
557 	.task_tick		= task_tick_idle,
558 
559 	.prio_changed		= prio_changed_idle,
560 	.switching_to		= switching_to_idle,
561 	.update_curr		= update_curr_idle,
562 };
563