1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 51 #include <asm/switch_to.h> 52 53 #include <linux/sched/cond_resched.h> 54 55 #include "sched.h" 56 #include "stats.h" 57 #include "autogroup.h" 58 59 /* 60 * Targeted preemption latency for CPU-bound tasks: 61 * 62 * NOTE: this latency value is not the same as the concept of 63 * 'timeslice length' - timeslices in CFS are of variable length 64 * and have no persistent notion like in traditional, time-slice 65 * based scheduling concepts. 66 * 67 * (to see the precise effective timeslice length of your workload, 68 * run vmstat and monitor the context-switches (cs) field) 69 * 70 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 71 */ 72 unsigned int sysctl_sched_latency = 6000000ULL; 73 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 74 75 /* 76 * The initial- and re-scaling of tunables is configurable 77 * 78 * Options are: 79 * 80 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 81 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 82 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 83 * 84 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 85 */ 86 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 87 88 /* 89 * Minimal preemption granularity for CPU-bound tasks: 90 * 91 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 92 */ 93 unsigned int sysctl_sched_min_granularity = 750000ULL; 94 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 95 96 /* 97 * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks. 98 * Applies only when SCHED_IDLE tasks compete with normal tasks. 99 * 100 * (default: 0.75 msec) 101 */ 102 unsigned int sysctl_sched_idle_min_granularity = 750000ULL; 103 104 /* 105 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 106 */ 107 static unsigned int sched_nr_latency = 8; 108 109 /* 110 * After fork, child runs first. If set to 0 (default) then 111 * parent will (try to) run first. 112 */ 113 unsigned int sysctl_sched_child_runs_first __read_mostly; 114 115 /* 116 * SCHED_OTHER wake-up granularity. 117 * 118 * This option delays the preemption effects of decoupled workloads 119 * and reduces their over-scheduling. Synchronous workloads will still 120 * have immediate wakeup/sleep latencies. 121 * 122 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 123 */ 124 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 125 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 126 127 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 128 129 int sched_thermal_decay_shift; 130 static int __init setup_sched_thermal_decay_shift(char *str) 131 { 132 int _shift = 0; 133 134 if (kstrtoint(str, 0, &_shift)) 135 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 136 137 sched_thermal_decay_shift = clamp(_shift, 0, 10); 138 return 1; 139 } 140 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 141 142 #ifdef CONFIG_SMP 143 /* 144 * For asym packing, by default the lower numbered CPU has higher priority. 145 */ 146 int __weak arch_asym_cpu_priority(int cpu) 147 { 148 return -cpu; 149 } 150 151 /* 152 * The margin used when comparing utilization with CPU capacity. 153 * 154 * (default: ~20%) 155 */ 156 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 157 158 /* 159 * The margin used when comparing CPU capacities. 160 * is 'cap1' noticeably greater than 'cap2' 161 * 162 * (default: ~5%) 163 */ 164 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 165 #endif 166 167 #ifdef CONFIG_CFS_BANDWIDTH 168 /* 169 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 170 * each time a cfs_rq requests quota. 171 * 172 * Note: in the case that the slice exceeds the runtime remaining (either due 173 * to consumption or the quota being specified to be smaller than the slice) 174 * we will always only issue the remaining available time. 175 * 176 * (default: 5 msec, units: microseconds) 177 */ 178 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 179 #endif 180 181 #ifdef CONFIG_NUMA_BALANCING 182 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 183 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 184 #endif 185 186 #ifdef CONFIG_SYSCTL 187 static struct ctl_table sched_fair_sysctls[] = { 188 { 189 .procname = "sched_child_runs_first", 190 .data = &sysctl_sched_child_runs_first, 191 .maxlen = sizeof(unsigned int), 192 .mode = 0644, 193 .proc_handler = proc_dointvec, 194 }, 195 #ifdef CONFIG_CFS_BANDWIDTH 196 { 197 .procname = "sched_cfs_bandwidth_slice_us", 198 .data = &sysctl_sched_cfs_bandwidth_slice, 199 .maxlen = sizeof(unsigned int), 200 .mode = 0644, 201 .proc_handler = proc_dointvec_minmax, 202 .extra1 = SYSCTL_ONE, 203 }, 204 #endif 205 #ifdef CONFIG_NUMA_BALANCING 206 { 207 .procname = "numa_balancing_promote_rate_limit_MBps", 208 .data = &sysctl_numa_balancing_promote_rate_limit, 209 .maxlen = sizeof(unsigned int), 210 .mode = 0644, 211 .proc_handler = proc_dointvec_minmax, 212 .extra1 = SYSCTL_ZERO, 213 }, 214 #endif /* CONFIG_NUMA_BALANCING */ 215 {} 216 }; 217 218 static int __init sched_fair_sysctl_init(void) 219 { 220 register_sysctl_init("kernel", sched_fair_sysctls); 221 return 0; 222 } 223 late_initcall(sched_fair_sysctl_init); 224 #endif 225 226 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 227 { 228 lw->weight += inc; 229 lw->inv_weight = 0; 230 } 231 232 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 233 { 234 lw->weight -= dec; 235 lw->inv_weight = 0; 236 } 237 238 static inline void update_load_set(struct load_weight *lw, unsigned long w) 239 { 240 lw->weight = w; 241 lw->inv_weight = 0; 242 } 243 244 /* 245 * Increase the granularity value when there are more CPUs, 246 * because with more CPUs the 'effective latency' as visible 247 * to users decreases. But the relationship is not linear, 248 * so pick a second-best guess by going with the log2 of the 249 * number of CPUs. 250 * 251 * This idea comes from the SD scheduler of Con Kolivas: 252 */ 253 static unsigned int get_update_sysctl_factor(void) 254 { 255 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 256 unsigned int factor; 257 258 switch (sysctl_sched_tunable_scaling) { 259 case SCHED_TUNABLESCALING_NONE: 260 factor = 1; 261 break; 262 case SCHED_TUNABLESCALING_LINEAR: 263 factor = cpus; 264 break; 265 case SCHED_TUNABLESCALING_LOG: 266 default: 267 factor = 1 + ilog2(cpus); 268 break; 269 } 270 271 return factor; 272 } 273 274 static void update_sysctl(void) 275 { 276 unsigned int factor = get_update_sysctl_factor(); 277 278 #define SET_SYSCTL(name) \ 279 (sysctl_##name = (factor) * normalized_sysctl_##name) 280 SET_SYSCTL(sched_min_granularity); 281 SET_SYSCTL(sched_latency); 282 SET_SYSCTL(sched_wakeup_granularity); 283 #undef SET_SYSCTL 284 } 285 286 void __init sched_init_granularity(void) 287 { 288 update_sysctl(); 289 } 290 291 #define WMULT_CONST (~0U) 292 #define WMULT_SHIFT 32 293 294 static void __update_inv_weight(struct load_weight *lw) 295 { 296 unsigned long w; 297 298 if (likely(lw->inv_weight)) 299 return; 300 301 w = scale_load_down(lw->weight); 302 303 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 304 lw->inv_weight = 1; 305 else if (unlikely(!w)) 306 lw->inv_weight = WMULT_CONST; 307 else 308 lw->inv_weight = WMULT_CONST / w; 309 } 310 311 /* 312 * delta_exec * weight / lw.weight 313 * OR 314 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 315 * 316 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 317 * we're guaranteed shift stays positive because inv_weight is guaranteed to 318 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 319 * 320 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 321 * weight/lw.weight <= 1, and therefore our shift will also be positive. 322 */ 323 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 324 { 325 u64 fact = scale_load_down(weight); 326 u32 fact_hi = (u32)(fact >> 32); 327 int shift = WMULT_SHIFT; 328 int fs; 329 330 __update_inv_weight(lw); 331 332 if (unlikely(fact_hi)) { 333 fs = fls(fact_hi); 334 shift -= fs; 335 fact >>= fs; 336 } 337 338 fact = mul_u32_u32(fact, lw->inv_weight); 339 340 fact_hi = (u32)(fact >> 32); 341 if (fact_hi) { 342 fs = fls(fact_hi); 343 shift -= fs; 344 fact >>= fs; 345 } 346 347 return mul_u64_u32_shr(delta_exec, fact, shift); 348 } 349 350 351 const struct sched_class fair_sched_class; 352 353 /************************************************************** 354 * CFS operations on generic schedulable entities: 355 */ 356 357 #ifdef CONFIG_FAIR_GROUP_SCHED 358 359 /* Walk up scheduling entities hierarchy */ 360 #define for_each_sched_entity(se) \ 361 for (; se; se = se->parent) 362 363 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 364 { 365 struct rq *rq = rq_of(cfs_rq); 366 int cpu = cpu_of(rq); 367 368 if (cfs_rq->on_list) 369 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 370 371 cfs_rq->on_list = 1; 372 373 /* 374 * Ensure we either appear before our parent (if already 375 * enqueued) or force our parent to appear after us when it is 376 * enqueued. The fact that we always enqueue bottom-up 377 * reduces this to two cases and a special case for the root 378 * cfs_rq. Furthermore, it also means that we will always reset 379 * tmp_alone_branch either when the branch is connected 380 * to a tree or when we reach the top of the tree 381 */ 382 if (cfs_rq->tg->parent && 383 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 384 /* 385 * If parent is already on the list, we add the child 386 * just before. Thanks to circular linked property of 387 * the list, this means to put the child at the tail 388 * of the list that starts by parent. 389 */ 390 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 391 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 392 /* 393 * The branch is now connected to its tree so we can 394 * reset tmp_alone_branch to the beginning of the 395 * list. 396 */ 397 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 398 return true; 399 } 400 401 if (!cfs_rq->tg->parent) { 402 /* 403 * cfs rq without parent should be put 404 * at the tail of the list. 405 */ 406 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 407 &rq->leaf_cfs_rq_list); 408 /* 409 * We have reach the top of a tree so we can reset 410 * tmp_alone_branch to the beginning of the list. 411 */ 412 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 413 return true; 414 } 415 416 /* 417 * The parent has not already been added so we want to 418 * make sure that it will be put after us. 419 * tmp_alone_branch points to the begin of the branch 420 * where we will add parent. 421 */ 422 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 423 /* 424 * update tmp_alone_branch to points to the new begin 425 * of the branch 426 */ 427 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 428 return false; 429 } 430 431 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 432 { 433 if (cfs_rq->on_list) { 434 struct rq *rq = rq_of(cfs_rq); 435 436 /* 437 * With cfs_rq being unthrottled/throttled during an enqueue, 438 * it can happen the tmp_alone_branch points the a leaf that 439 * we finally want to del. In this case, tmp_alone_branch moves 440 * to the prev element but it will point to rq->leaf_cfs_rq_list 441 * at the end of the enqueue. 442 */ 443 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 444 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 445 446 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 447 cfs_rq->on_list = 0; 448 } 449 } 450 451 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 452 { 453 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 454 } 455 456 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 457 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 458 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 459 leaf_cfs_rq_list) 460 461 /* Do the two (enqueued) entities belong to the same group ? */ 462 static inline struct cfs_rq * 463 is_same_group(struct sched_entity *se, struct sched_entity *pse) 464 { 465 if (se->cfs_rq == pse->cfs_rq) 466 return se->cfs_rq; 467 468 return NULL; 469 } 470 471 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 472 { 473 return se->parent; 474 } 475 476 static void 477 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 478 { 479 int se_depth, pse_depth; 480 481 /* 482 * preemption test can be made between sibling entities who are in the 483 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 484 * both tasks until we find their ancestors who are siblings of common 485 * parent. 486 */ 487 488 /* First walk up until both entities are at same depth */ 489 se_depth = (*se)->depth; 490 pse_depth = (*pse)->depth; 491 492 while (se_depth > pse_depth) { 493 se_depth--; 494 *se = parent_entity(*se); 495 } 496 497 while (pse_depth > se_depth) { 498 pse_depth--; 499 *pse = parent_entity(*pse); 500 } 501 502 while (!is_same_group(*se, *pse)) { 503 *se = parent_entity(*se); 504 *pse = parent_entity(*pse); 505 } 506 } 507 508 static int tg_is_idle(struct task_group *tg) 509 { 510 return tg->idle > 0; 511 } 512 513 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 514 { 515 return cfs_rq->idle > 0; 516 } 517 518 static int se_is_idle(struct sched_entity *se) 519 { 520 if (entity_is_task(se)) 521 return task_has_idle_policy(task_of(se)); 522 return cfs_rq_is_idle(group_cfs_rq(se)); 523 } 524 525 #else /* !CONFIG_FAIR_GROUP_SCHED */ 526 527 #define for_each_sched_entity(se) \ 528 for (; se; se = NULL) 529 530 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 531 { 532 return true; 533 } 534 535 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 536 { 537 } 538 539 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 540 { 541 } 542 543 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 544 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 545 546 static inline struct sched_entity *parent_entity(struct sched_entity *se) 547 { 548 return NULL; 549 } 550 551 static inline void 552 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 553 { 554 } 555 556 static inline int tg_is_idle(struct task_group *tg) 557 { 558 return 0; 559 } 560 561 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 562 { 563 return 0; 564 } 565 566 static int se_is_idle(struct sched_entity *se) 567 { 568 return 0; 569 } 570 571 #endif /* CONFIG_FAIR_GROUP_SCHED */ 572 573 static __always_inline 574 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 575 576 /************************************************************** 577 * Scheduling class tree data structure manipulation methods: 578 */ 579 580 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 581 { 582 s64 delta = (s64)(vruntime - max_vruntime); 583 if (delta > 0) 584 max_vruntime = vruntime; 585 586 return max_vruntime; 587 } 588 589 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 590 { 591 s64 delta = (s64)(vruntime - min_vruntime); 592 if (delta < 0) 593 min_vruntime = vruntime; 594 595 return min_vruntime; 596 } 597 598 static inline bool entity_before(const struct sched_entity *a, 599 const struct sched_entity *b) 600 { 601 return (s64)(a->vruntime - b->vruntime) < 0; 602 } 603 604 #define __node_2_se(node) \ 605 rb_entry((node), struct sched_entity, run_node) 606 607 static void update_min_vruntime(struct cfs_rq *cfs_rq) 608 { 609 struct sched_entity *curr = cfs_rq->curr; 610 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 611 612 u64 vruntime = cfs_rq->min_vruntime; 613 614 if (curr) { 615 if (curr->on_rq) 616 vruntime = curr->vruntime; 617 else 618 curr = NULL; 619 } 620 621 if (leftmost) { /* non-empty tree */ 622 struct sched_entity *se = __node_2_se(leftmost); 623 624 if (!curr) 625 vruntime = se->vruntime; 626 else 627 vruntime = min_vruntime(vruntime, se->vruntime); 628 } 629 630 /* ensure we never gain time by being placed backwards. */ 631 u64_u32_store(cfs_rq->min_vruntime, 632 max_vruntime(cfs_rq->min_vruntime, vruntime)); 633 } 634 635 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 636 { 637 return entity_before(__node_2_se(a), __node_2_se(b)); 638 } 639 640 /* 641 * Enqueue an entity into the rb-tree: 642 */ 643 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 644 { 645 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less); 646 } 647 648 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 649 { 650 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 651 } 652 653 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 654 { 655 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 656 657 if (!left) 658 return NULL; 659 660 return __node_2_se(left); 661 } 662 663 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 664 { 665 struct rb_node *next = rb_next(&se->run_node); 666 667 if (!next) 668 return NULL; 669 670 return __node_2_se(next); 671 } 672 673 #ifdef CONFIG_SCHED_DEBUG 674 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 675 { 676 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 677 678 if (!last) 679 return NULL; 680 681 return __node_2_se(last); 682 } 683 684 /************************************************************** 685 * Scheduling class statistics methods: 686 */ 687 688 int sched_update_scaling(void) 689 { 690 unsigned int factor = get_update_sysctl_factor(); 691 692 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 693 sysctl_sched_min_granularity); 694 695 #define WRT_SYSCTL(name) \ 696 (normalized_sysctl_##name = sysctl_##name / (factor)) 697 WRT_SYSCTL(sched_min_granularity); 698 WRT_SYSCTL(sched_latency); 699 WRT_SYSCTL(sched_wakeup_granularity); 700 #undef WRT_SYSCTL 701 702 return 0; 703 } 704 #endif 705 706 /* 707 * delta /= w 708 */ 709 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 710 { 711 if (unlikely(se->load.weight != NICE_0_LOAD)) 712 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 713 714 return delta; 715 } 716 717 /* 718 * The idea is to set a period in which each task runs once. 719 * 720 * When there are too many tasks (sched_nr_latency) we have to stretch 721 * this period because otherwise the slices get too small. 722 * 723 * p = (nr <= nl) ? l : l*nr/nl 724 */ 725 static u64 __sched_period(unsigned long nr_running) 726 { 727 if (unlikely(nr_running > sched_nr_latency)) 728 return nr_running * sysctl_sched_min_granularity; 729 else 730 return sysctl_sched_latency; 731 } 732 733 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq); 734 735 /* 736 * We calculate the wall-time slice from the period by taking a part 737 * proportional to the weight. 738 * 739 * s = p*P[w/rw] 740 */ 741 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 742 { 743 unsigned int nr_running = cfs_rq->nr_running; 744 struct sched_entity *init_se = se; 745 unsigned int min_gran; 746 u64 slice; 747 748 if (sched_feat(ALT_PERIOD)) 749 nr_running = rq_of(cfs_rq)->cfs.h_nr_running; 750 751 slice = __sched_period(nr_running + !se->on_rq); 752 753 for_each_sched_entity(se) { 754 struct load_weight *load; 755 struct load_weight lw; 756 struct cfs_rq *qcfs_rq; 757 758 qcfs_rq = cfs_rq_of(se); 759 load = &qcfs_rq->load; 760 761 if (unlikely(!se->on_rq)) { 762 lw = qcfs_rq->load; 763 764 update_load_add(&lw, se->load.weight); 765 load = &lw; 766 } 767 slice = __calc_delta(slice, se->load.weight, load); 768 } 769 770 if (sched_feat(BASE_SLICE)) { 771 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq)) 772 min_gran = sysctl_sched_idle_min_granularity; 773 else 774 min_gran = sysctl_sched_min_granularity; 775 776 slice = max_t(u64, slice, min_gran); 777 } 778 779 return slice; 780 } 781 782 /* 783 * We calculate the vruntime slice of a to-be-inserted task. 784 * 785 * vs = s/w 786 */ 787 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 788 { 789 return calc_delta_fair(sched_slice(cfs_rq, se), se); 790 } 791 792 #include "pelt.h" 793 #ifdef CONFIG_SMP 794 795 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 796 static unsigned long task_h_load(struct task_struct *p); 797 static unsigned long capacity_of(int cpu); 798 799 /* Give new sched_entity start runnable values to heavy its load in infant time */ 800 void init_entity_runnable_average(struct sched_entity *se) 801 { 802 struct sched_avg *sa = &se->avg; 803 804 memset(sa, 0, sizeof(*sa)); 805 806 /* 807 * Tasks are initialized with full load to be seen as heavy tasks until 808 * they get a chance to stabilize to their real load level. 809 * Group entities are initialized with zero load to reflect the fact that 810 * nothing has been attached to the task group yet. 811 */ 812 if (entity_is_task(se)) 813 sa->load_avg = scale_load_down(se->load.weight); 814 815 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 816 } 817 818 /* 819 * With new tasks being created, their initial util_avgs are extrapolated 820 * based on the cfs_rq's current util_avg: 821 * 822 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 823 * 824 * However, in many cases, the above util_avg does not give a desired 825 * value. Moreover, the sum of the util_avgs may be divergent, such 826 * as when the series is a harmonic series. 827 * 828 * To solve this problem, we also cap the util_avg of successive tasks to 829 * only 1/2 of the left utilization budget: 830 * 831 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 832 * 833 * where n denotes the nth task and cpu_scale the CPU capacity. 834 * 835 * For example, for a CPU with 1024 of capacity, a simplest series from 836 * the beginning would be like: 837 * 838 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 839 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 840 * 841 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 842 * if util_avg > util_avg_cap. 843 */ 844 void post_init_entity_util_avg(struct task_struct *p) 845 { 846 struct sched_entity *se = &p->se; 847 struct cfs_rq *cfs_rq = cfs_rq_of(se); 848 struct sched_avg *sa = &se->avg; 849 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 850 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 851 852 if (p->sched_class != &fair_sched_class) { 853 /* 854 * For !fair tasks do: 855 * 856 update_cfs_rq_load_avg(now, cfs_rq); 857 attach_entity_load_avg(cfs_rq, se); 858 switched_from_fair(rq, p); 859 * 860 * such that the next switched_to_fair() has the 861 * expected state. 862 */ 863 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 864 return; 865 } 866 867 if (cap > 0) { 868 if (cfs_rq->avg.util_avg != 0) { 869 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 870 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 871 872 if (sa->util_avg > cap) 873 sa->util_avg = cap; 874 } else { 875 sa->util_avg = cap; 876 } 877 } 878 879 sa->runnable_avg = sa->util_avg; 880 } 881 882 #else /* !CONFIG_SMP */ 883 void init_entity_runnable_average(struct sched_entity *se) 884 { 885 } 886 void post_init_entity_util_avg(struct task_struct *p) 887 { 888 } 889 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 890 { 891 } 892 #endif /* CONFIG_SMP */ 893 894 /* 895 * Update the current task's runtime statistics. 896 */ 897 static void update_curr(struct cfs_rq *cfs_rq) 898 { 899 struct sched_entity *curr = cfs_rq->curr; 900 u64 now = rq_clock_task(rq_of(cfs_rq)); 901 u64 delta_exec; 902 903 if (unlikely(!curr)) 904 return; 905 906 delta_exec = now - curr->exec_start; 907 if (unlikely((s64)delta_exec <= 0)) 908 return; 909 910 curr->exec_start = now; 911 912 if (schedstat_enabled()) { 913 struct sched_statistics *stats; 914 915 stats = __schedstats_from_se(curr); 916 __schedstat_set(stats->exec_max, 917 max(delta_exec, stats->exec_max)); 918 } 919 920 curr->sum_exec_runtime += delta_exec; 921 schedstat_add(cfs_rq->exec_clock, delta_exec); 922 923 curr->vruntime += calc_delta_fair(delta_exec, curr); 924 update_min_vruntime(cfs_rq); 925 926 if (entity_is_task(curr)) { 927 struct task_struct *curtask = task_of(curr); 928 929 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 930 cgroup_account_cputime(curtask, delta_exec); 931 account_group_exec_runtime(curtask, delta_exec); 932 } 933 934 account_cfs_rq_runtime(cfs_rq, delta_exec); 935 } 936 937 static void update_curr_fair(struct rq *rq) 938 { 939 update_curr(cfs_rq_of(&rq->curr->se)); 940 } 941 942 static inline void 943 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 944 { 945 struct sched_statistics *stats; 946 struct task_struct *p = NULL; 947 948 if (!schedstat_enabled()) 949 return; 950 951 stats = __schedstats_from_se(se); 952 953 if (entity_is_task(se)) 954 p = task_of(se); 955 956 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 957 } 958 959 static inline void 960 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 961 { 962 struct sched_statistics *stats; 963 struct task_struct *p = NULL; 964 965 if (!schedstat_enabled()) 966 return; 967 968 stats = __schedstats_from_se(se); 969 970 /* 971 * When the sched_schedstat changes from 0 to 1, some sched se 972 * maybe already in the runqueue, the se->statistics.wait_start 973 * will be 0.So it will let the delta wrong. We need to avoid this 974 * scenario. 975 */ 976 if (unlikely(!schedstat_val(stats->wait_start))) 977 return; 978 979 if (entity_is_task(se)) 980 p = task_of(se); 981 982 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 983 } 984 985 static inline void 986 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 987 { 988 struct sched_statistics *stats; 989 struct task_struct *tsk = NULL; 990 991 if (!schedstat_enabled()) 992 return; 993 994 stats = __schedstats_from_se(se); 995 996 if (entity_is_task(se)) 997 tsk = task_of(se); 998 999 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1000 } 1001 1002 /* 1003 * Task is being enqueued - update stats: 1004 */ 1005 static inline void 1006 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1007 { 1008 if (!schedstat_enabled()) 1009 return; 1010 1011 /* 1012 * Are we enqueueing a waiting task? (for current tasks 1013 * a dequeue/enqueue event is a NOP) 1014 */ 1015 if (se != cfs_rq->curr) 1016 update_stats_wait_start_fair(cfs_rq, se); 1017 1018 if (flags & ENQUEUE_WAKEUP) 1019 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1020 } 1021 1022 static inline void 1023 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1024 { 1025 1026 if (!schedstat_enabled()) 1027 return; 1028 1029 /* 1030 * Mark the end of the wait period if dequeueing a 1031 * waiting task: 1032 */ 1033 if (se != cfs_rq->curr) 1034 update_stats_wait_end_fair(cfs_rq, se); 1035 1036 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1037 struct task_struct *tsk = task_of(se); 1038 unsigned int state; 1039 1040 /* XXX racy against TTWU */ 1041 state = READ_ONCE(tsk->__state); 1042 if (state & TASK_INTERRUPTIBLE) 1043 __schedstat_set(tsk->stats.sleep_start, 1044 rq_clock(rq_of(cfs_rq))); 1045 if (state & TASK_UNINTERRUPTIBLE) 1046 __schedstat_set(tsk->stats.block_start, 1047 rq_clock(rq_of(cfs_rq))); 1048 } 1049 } 1050 1051 /* 1052 * We are picking a new current task - update its stats: 1053 */ 1054 static inline void 1055 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1056 { 1057 /* 1058 * We are starting a new run period: 1059 */ 1060 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1061 } 1062 1063 /************************************************** 1064 * Scheduling class queueing methods: 1065 */ 1066 1067 #ifdef CONFIG_NUMA 1068 #define NUMA_IMBALANCE_MIN 2 1069 1070 static inline long 1071 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1072 { 1073 /* 1074 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1075 * threshold. Above this threshold, individual tasks may be contending 1076 * for both memory bandwidth and any shared HT resources. This is an 1077 * approximation as the number of running tasks may not be related to 1078 * the number of busy CPUs due to sched_setaffinity. 1079 */ 1080 if (dst_running > imb_numa_nr) 1081 return imbalance; 1082 1083 /* 1084 * Allow a small imbalance based on a simple pair of communicating 1085 * tasks that remain local when the destination is lightly loaded. 1086 */ 1087 if (imbalance <= NUMA_IMBALANCE_MIN) 1088 return 0; 1089 1090 return imbalance; 1091 } 1092 #endif /* CONFIG_NUMA */ 1093 1094 #ifdef CONFIG_NUMA_BALANCING 1095 /* 1096 * Approximate time to scan a full NUMA task in ms. The task scan period is 1097 * calculated based on the tasks virtual memory size and 1098 * numa_balancing_scan_size. 1099 */ 1100 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1101 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1102 1103 /* Portion of address space to scan in MB */ 1104 unsigned int sysctl_numa_balancing_scan_size = 256; 1105 1106 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1107 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1108 1109 /* The page with hint page fault latency < threshold in ms is considered hot */ 1110 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1111 1112 struct numa_group { 1113 refcount_t refcount; 1114 1115 spinlock_t lock; /* nr_tasks, tasks */ 1116 int nr_tasks; 1117 pid_t gid; 1118 int active_nodes; 1119 1120 struct rcu_head rcu; 1121 unsigned long total_faults; 1122 unsigned long max_faults_cpu; 1123 /* 1124 * faults[] array is split into two regions: faults_mem and faults_cpu. 1125 * 1126 * Faults_cpu is used to decide whether memory should move 1127 * towards the CPU. As a consequence, these stats are weighted 1128 * more by CPU use than by memory faults. 1129 */ 1130 unsigned long faults[]; 1131 }; 1132 1133 /* 1134 * For functions that can be called in multiple contexts that permit reading 1135 * ->numa_group (see struct task_struct for locking rules). 1136 */ 1137 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1138 { 1139 return rcu_dereference_check(p->numa_group, p == current || 1140 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1141 } 1142 1143 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1144 { 1145 return rcu_dereference_protected(p->numa_group, p == current); 1146 } 1147 1148 static inline unsigned long group_faults_priv(struct numa_group *ng); 1149 static inline unsigned long group_faults_shared(struct numa_group *ng); 1150 1151 static unsigned int task_nr_scan_windows(struct task_struct *p) 1152 { 1153 unsigned long rss = 0; 1154 unsigned long nr_scan_pages; 1155 1156 /* 1157 * Calculations based on RSS as non-present and empty pages are skipped 1158 * by the PTE scanner and NUMA hinting faults should be trapped based 1159 * on resident pages 1160 */ 1161 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1162 rss = get_mm_rss(p->mm); 1163 if (!rss) 1164 rss = nr_scan_pages; 1165 1166 rss = round_up(rss, nr_scan_pages); 1167 return rss / nr_scan_pages; 1168 } 1169 1170 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1171 #define MAX_SCAN_WINDOW 2560 1172 1173 static unsigned int task_scan_min(struct task_struct *p) 1174 { 1175 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1176 unsigned int scan, floor; 1177 unsigned int windows = 1; 1178 1179 if (scan_size < MAX_SCAN_WINDOW) 1180 windows = MAX_SCAN_WINDOW / scan_size; 1181 floor = 1000 / windows; 1182 1183 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1184 return max_t(unsigned int, floor, scan); 1185 } 1186 1187 static unsigned int task_scan_start(struct task_struct *p) 1188 { 1189 unsigned long smin = task_scan_min(p); 1190 unsigned long period = smin; 1191 struct numa_group *ng; 1192 1193 /* Scale the maximum scan period with the amount of shared memory. */ 1194 rcu_read_lock(); 1195 ng = rcu_dereference(p->numa_group); 1196 if (ng) { 1197 unsigned long shared = group_faults_shared(ng); 1198 unsigned long private = group_faults_priv(ng); 1199 1200 period *= refcount_read(&ng->refcount); 1201 period *= shared + 1; 1202 period /= private + shared + 1; 1203 } 1204 rcu_read_unlock(); 1205 1206 return max(smin, period); 1207 } 1208 1209 static unsigned int task_scan_max(struct task_struct *p) 1210 { 1211 unsigned long smin = task_scan_min(p); 1212 unsigned long smax; 1213 struct numa_group *ng; 1214 1215 /* Watch for min being lower than max due to floor calculations */ 1216 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1217 1218 /* Scale the maximum scan period with the amount of shared memory. */ 1219 ng = deref_curr_numa_group(p); 1220 if (ng) { 1221 unsigned long shared = group_faults_shared(ng); 1222 unsigned long private = group_faults_priv(ng); 1223 unsigned long period = smax; 1224 1225 period *= refcount_read(&ng->refcount); 1226 period *= shared + 1; 1227 period /= private + shared + 1; 1228 1229 smax = max(smax, period); 1230 } 1231 1232 return max(smin, smax); 1233 } 1234 1235 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1236 { 1237 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1238 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1239 } 1240 1241 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1242 { 1243 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1244 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1245 } 1246 1247 /* Shared or private faults. */ 1248 #define NR_NUMA_HINT_FAULT_TYPES 2 1249 1250 /* Memory and CPU locality */ 1251 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1252 1253 /* Averaged statistics, and temporary buffers. */ 1254 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1255 1256 pid_t task_numa_group_id(struct task_struct *p) 1257 { 1258 struct numa_group *ng; 1259 pid_t gid = 0; 1260 1261 rcu_read_lock(); 1262 ng = rcu_dereference(p->numa_group); 1263 if (ng) 1264 gid = ng->gid; 1265 rcu_read_unlock(); 1266 1267 return gid; 1268 } 1269 1270 /* 1271 * The averaged statistics, shared & private, memory & CPU, 1272 * occupy the first half of the array. The second half of the 1273 * array is for current counters, which are averaged into the 1274 * first set by task_numa_placement. 1275 */ 1276 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1277 { 1278 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1279 } 1280 1281 static inline unsigned long task_faults(struct task_struct *p, int nid) 1282 { 1283 if (!p->numa_faults) 1284 return 0; 1285 1286 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1287 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1288 } 1289 1290 static inline unsigned long group_faults(struct task_struct *p, int nid) 1291 { 1292 struct numa_group *ng = deref_task_numa_group(p); 1293 1294 if (!ng) 1295 return 0; 1296 1297 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1298 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1299 } 1300 1301 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1302 { 1303 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1304 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1305 } 1306 1307 static inline unsigned long group_faults_priv(struct numa_group *ng) 1308 { 1309 unsigned long faults = 0; 1310 int node; 1311 1312 for_each_online_node(node) { 1313 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1314 } 1315 1316 return faults; 1317 } 1318 1319 static inline unsigned long group_faults_shared(struct numa_group *ng) 1320 { 1321 unsigned long faults = 0; 1322 int node; 1323 1324 for_each_online_node(node) { 1325 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1326 } 1327 1328 return faults; 1329 } 1330 1331 /* 1332 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1333 * considered part of a numa group's pseudo-interleaving set. Migrations 1334 * between these nodes are slowed down, to allow things to settle down. 1335 */ 1336 #define ACTIVE_NODE_FRACTION 3 1337 1338 static bool numa_is_active_node(int nid, struct numa_group *ng) 1339 { 1340 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1341 } 1342 1343 /* Handle placement on systems where not all nodes are directly connected. */ 1344 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1345 int lim_dist, bool task) 1346 { 1347 unsigned long score = 0; 1348 int node, max_dist; 1349 1350 /* 1351 * All nodes are directly connected, and the same distance 1352 * from each other. No need for fancy placement algorithms. 1353 */ 1354 if (sched_numa_topology_type == NUMA_DIRECT) 1355 return 0; 1356 1357 /* sched_max_numa_distance may be changed in parallel. */ 1358 max_dist = READ_ONCE(sched_max_numa_distance); 1359 /* 1360 * This code is called for each node, introducing N^2 complexity, 1361 * which should be ok given the number of nodes rarely exceeds 8. 1362 */ 1363 for_each_online_node(node) { 1364 unsigned long faults; 1365 int dist = node_distance(nid, node); 1366 1367 /* 1368 * The furthest away nodes in the system are not interesting 1369 * for placement; nid was already counted. 1370 */ 1371 if (dist >= max_dist || node == nid) 1372 continue; 1373 1374 /* 1375 * On systems with a backplane NUMA topology, compare groups 1376 * of nodes, and move tasks towards the group with the most 1377 * memory accesses. When comparing two nodes at distance 1378 * "hoplimit", only nodes closer by than "hoplimit" are part 1379 * of each group. Skip other nodes. 1380 */ 1381 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1382 continue; 1383 1384 /* Add up the faults from nearby nodes. */ 1385 if (task) 1386 faults = task_faults(p, node); 1387 else 1388 faults = group_faults(p, node); 1389 1390 /* 1391 * On systems with a glueless mesh NUMA topology, there are 1392 * no fixed "groups of nodes". Instead, nodes that are not 1393 * directly connected bounce traffic through intermediate 1394 * nodes; a numa_group can occupy any set of nodes. 1395 * The further away a node is, the less the faults count. 1396 * This seems to result in good task placement. 1397 */ 1398 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1399 faults *= (max_dist - dist); 1400 faults /= (max_dist - LOCAL_DISTANCE); 1401 } 1402 1403 score += faults; 1404 } 1405 1406 return score; 1407 } 1408 1409 /* 1410 * These return the fraction of accesses done by a particular task, or 1411 * task group, on a particular numa node. The group weight is given a 1412 * larger multiplier, in order to group tasks together that are almost 1413 * evenly spread out between numa nodes. 1414 */ 1415 static inline unsigned long task_weight(struct task_struct *p, int nid, 1416 int dist) 1417 { 1418 unsigned long faults, total_faults; 1419 1420 if (!p->numa_faults) 1421 return 0; 1422 1423 total_faults = p->total_numa_faults; 1424 1425 if (!total_faults) 1426 return 0; 1427 1428 faults = task_faults(p, nid); 1429 faults += score_nearby_nodes(p, nid, dist, true); 1430 1431 return 1000 * faults / total_faults; 1432 } 1433 1434 static inline unsigned long group_weight(struct task_struct *p, int nid, 1435 int dist) 1436 { 1437 struct numa_group *ng = deref_task_numa_group(p); 1438 unsigned long faults, total_faults; 1439 1440 if (!ng) 1441 return 0; 1442 1443 total_faults = ng->total_faults; 1444 1445 if (!total_faults) 1446 return 0; 1447 1448 faults = group_faults(p, nid); 1449 faults += score_nearby_nodes(p, nid, dist, false); 1450 1451 return 1000 * faults / total_faults; 1452 } 1453 1454 /* 1455 * If memory tiering mode is enabled, cpupid of slow memory page is 1456 * used to record scan time instead of CPU and PID. When tiering mode 1457 * is disabled at run time, the scan time (in cpupid) will be 1458 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1459 * access out of array bound. 1460 */ 1461 static inline bool cpupid_valid(int cpupid) 1462 { 1463 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1464 } 1465 1466 /* 1467 * For memory tiering mode, if there are enough free pages (more than 1468 * enough watermark defined here) in fast memory node, to take full 1469 * advantage of fast memory capacity, all recently accessed slow 1470 * memory pages will be migrated to fast memory node without 1471 * considering hot threshold. 1472 */ 1473 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1474 { 1475 int z; 1476 unsigned long enough_wmark; 1477 1478 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1479 pgdat->node_present_pages >> 4); 1480 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1481 struct zone *zone = pgdat->node_zones + z; 1482 1483 if (!populated_zone(zone)) 1484 continue; 1485 1486 if (zone_watermark_ok(zone, 0, 1487 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1488 ZONE_MOVABLE, 0)) 1489 return true; 1490 } 1491 return false; 1492 } 1493 1494 /* 1495 * For memory tiering mode, when page tables are scanned, the scan 1496 * time will be recorded in struct page in addition to make page 1497 * PROT_NONE for slow memory page. So when the page is accessed, in 1498 * hint page fault handler, the hint page fault latency is calculated 1499 * via, 1500 * 1501 * hint page fault latency = hint page fault time - scan time 1502 * 1503 * The smaller the hint page fault latency, the higher the possibility 1504 * for the page to be hot. 1505 */ 1506 static int numa_hint_fault_latency(struct page *page) 1507 { 1508 int last_time, time; 1509 1510 time = jiffies_to_msecs(jiffies); 1511 last_time = xchg_page_access_time(page, time); 1512 1513 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1514 } 1515 1516 /* 1517 * For memory tiering mode, too high promotion/demotion throughput may 1518 * hurt application latency. So we provide a mechanism to rate limit 1519 * the number of pages that are tried to be promoted. 1520 */ 1521 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1522 unsigned long rate_limit, int nr) 1523 { 1524 unsigned long nr_cand; 1525 unsigned int now, start; 1526 1527 now = jiffies_to_msecs(jiffies); 1528 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1529 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1530 start = pgdat->nbp_rl_start; 1531 if (now - start > MSEC_PER_SEC && 1532 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1533 pgdat->nbp_rl_nr_cand = nr_cand; 1534 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1535 return true; 1536 return false; 1537 } 1538 1539 #define NUMA_MIGRATION_ADJUST_STEPS 16 1540 1541 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1542 unsigned long rate_limit, 1543 unsigned int ref_th) 1544 { 1545 unsigned int now, start, th_period, unit_th, th; 1546 unsigned long nr_cand, ref_cand, diff_cand; 1547 1548 now = jiffies_to_msecs(jiffies); 1549 th_period = sysctl_numa_balancing_scan_period_max; 1550 start = pgdat->nbp_th_start; 1551 if (now - start > th_period && 1552 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1553 ref_cand = rate_limit * 1554 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1555 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1556 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1557 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1558 th = pgdat->nbp_threshold ? : ref_th; 1559 if (diff_cand > ref_cand * 11 / 10) 1560 th = max(th - unit_th, unit_th); 1561 else if (diff_cand < ref_cand * 9 / 10) 1562 th = min(th + unit_th, ref_th * 2); 1563 pgdat->nbp_th_nr_cand = nr_cand; 1564 pgdat->nbp_threshold = th; 1565 } 1566 } 1567 1568 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1569 int src_nid, int dst_cpu) 1570 { 1571 struct numa_group *ng = deref_curr_numa_group(p); 1572 int dst_nid = cpu_to_node(dst_cpu); 1573 int last_cpupid, this_cpupid; 1574 1575 /* 1576 * The pages in slow memory node should be migrated according 1577 * to hot/cold instead of private/shared. 1578 */ 1579 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1580 !node_is_toptier(src_nid)) { 1581 struct pglist_data *pgdat; 1582 unsigned long rate_limit; 1583 unsigned int latency, th, def_th; 1584 1585 pgdat = NODE_DATA(dst_nid); 1586 if (pgdat_free_space_enough(pgdat)) { 1587 /* workload changed, reset hot threshold */ 1588 pgdat->nbp_threshold = 0; 1589 return true; 1590 } 1591 1592 def_th = sysctl_numa_balancing_hot_threshold; 1593 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1594 (20 - PAGE_SHIFT); 1595 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1596 1597 th = pgdat->nbp_threshold ? : def_th; 1598 latency = numa_hint_fault_latency(page); 1599 if (latency >= th) 1600 return false; 1601 1602 return !numa_promotion_rate_limit(pgdat, rate_limit, 1603 thp_nr_pages(page)); 1604 } 1605 1606 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1607 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1608 1609 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1610 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1611 return false; 1612 1613 /* 1614 * Allow first faults or private faults to migrate immediately early in 1615 * the lifetime of a task. The magic number 4 is based on waiting for 1616 * two full passes of the "multi-stage node selection" test that is 1617 * executed below. 1618 */ 1619 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1620 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1621 return true; 1622 1623 /* 1624 * Multi-stage node selection is used in conjunction with a periodic 1625 * migration fault to build a temporal task<->page relation. By using 1626 * a two-stage filter we remove short/unlikely relations. 1627 * 1628 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1629 * a task's usage of a particular page (n_p) per total usage of this 1630 * page (n_t) (in a given time-span) to a probability. 1631 * 1632 * Our periodic faults will sample this probability and getting the 1633 * same result twice in a row, given these samples are fully 1634 * independent, is then given by P(n)^2, provided our sample period 1635 * is sufficiently short compared to the usage pattern. 1636 * 1637 * This quadric squishes small probabilities, making it less likely we 1638 * act on an unlikely task<->page relation. 1639 */ 1640 if (!cpupid_pid_unset(last_cpupid) && 1641 cpupid_to_nid(last_cpupid) != dst_nid) 1642 return false; 1643 1644 /* Always allow migrate on private faults */ 1645 if (cpupid_match_pid(p, last_cpupid)) 1646 return true; 1647 1648 /* A shared fault, but p->numa_group has not been set up yet. */ 1649 if (!ng) 1650 return true; 1651 1652 /* 1653 * Destination node is much more heavily used than the source 1654 * node? Allow migration. 1655 */ 1656 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1657 ACTIVE_NODE_FRACTION) 1658 return true; 1659 1660 /* 1661 * Distribute memory according to CPU & memory use on each node, 1662 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1663 * 1664 * faults_cpu(dst) 3 faults_cpu(src) 1665 * --------------- * - > --------------- 1666 * faults_mem(dst) 4 faults_mem(src) 1667 */ 1668 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1669 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1670 } 1671 1672 /* 1673 * 'numa_type' describes the node at the moment of load balancing. 1674 */ 1675 enum numa_type { 1676 /* The node has spare capacity that can be used to run more tasks. */ 1677 node_has_spare = 0, 1678 /* 1679 * The node is fully used and the tasks don't compete for more CPU 1680 * cycles. Nevertheless, some tasks might wait before running. 1681 */ 1682 node_fully_busy, 1683 /* 1684 * The node is overloaded and can't provide expected CPU cycles to all 1685 * tasks. 1686 */ 1687 node_overloaded 1688 }; 1689 1690 /* Cached statistics for all CPUs within a node */ 1691 struct numa_stats { 1692 unsigned long load; 1693 unsigned long runnable; 1694 unsigned long util; 1695 /* Total compute capacity of CPUs on a node */ 1696 unsigned long compute_capacity; 1697 unsigned int nr_running; 1698 unsigned int weight; 1699 enum numa_type node_type; 1700 int idle_cpu; 1701 }; 1702 1703 static inline bool is_core_idle(int cpu) 1704 { 1705 #ifdef CONFIG_SCHED_SMT 1706 int sibling; 1707 1708 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1709 if (cpu == sibling) 1710 continue; 1711 1712 if (!idle_cpu(sibling)) 1713 return false; 1714 } 1715 #endif 1716 1717 return true; 1718 } 1719 1720 struct task_numa_env { 1721 struct task_struct *p; 1722 1723 int src_cpu, src_nid; 1724 int dst_cpu, dst_nid; 1725 int imb_numa_nr; 1726 1727 struct numa_stats src_stats, dst_stats; 1728 1729 int imbalance_pct; 1730 int dist; 1731 1732 struct task_struct *best_task; 1733 long best_imp; 1734 int best_cpu; 1735 }; 1736 1737 static unsigned long cpu_load(struct rq *rq); 1738 static unsigned long cpu_runnable(struct rq *rq); 1739 1740 static inline enum 1741 numa_type numa_classify(unsigned int imbalance_pct, 1742 struct numa_stats *ns) 1743 { 1744 if ((ns->nr_running > ns->weight) && 1745 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1746 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1747 return node_overloaded; 1748 1749 if ((ns->nr_running < ns->weight) || 1750 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1751 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1752 return node_has_spare; 1753 1754 return node_fully_busy; 1755 } 1756 1757 #ifdef CONFIG_SCHED_SMT 1758 /* Forward declarations of select_idle_sibling helpers */ 1759 static inline bool test_idle_cores(int cpu); 1760 static inline int numa_idle_core(int idle_core, int cpu) 1761 { 1762 if (!static_branch_likely(&sched_smt_present) || 1763 idle_core >= 0 || !test_idle_cores(cpu)) 1764 return idle_core; 1765 1766 /* 1767 * Prefer cores instead of packing HT siblings 1768 * and triggering future load balancing. 1769 */ 1770 if (is_core_idle(cpu)) 1771 idle_core = cpu; 1772 1773 return idle_core; 1774 } 1775 #else 1776 static inline int numa_idle_core(int idle_core, int cpu) 1777 { 1778 return idle_core; 1779 } 1780 #endif 1781 1782 /* 1783 * Gather all necessary information to make NUMA balancing placement 1784 * decisions that are compatible with standard load balancer. This 1785 * borrows code and logic from update_sg_lb_stats but sharing a 1786 * common implementation is impractical. 1787 */ 1788 static void update_numa_stats(struct task_numa_env *env, 1789 struct numa_stats *ns, int nid, 1790 bool find_idle) 1791 { 1792 int cpu, idle_core = -1; 1793 1794 memset(ns, 0, sizeof(*ns)); 1795 ns->idle_cpu = -1; 1796 1797 rcu_read_lock(); 1798 for_each_cpu(cpu, cpumask_of_node(nid)) { 1799 struct rq *rq = cpu_rq(cpu); 1800 1801 ns->load += cpu_load(rq); 1802 ns->runnable += cpu_runnable(rq); 1803 ns->util += cpu_util_cfs(cpu); 1804 ns->nr_running += rq->cfs.h_nr_running; 1805 ns->compute_capacity += capacity_of(cpu); 1806 1807 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 1808 if (READ_ONCE(rq->numa_migrate_on) || 1809 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1810 continue; 1811 1812 if (ns->idle_cpu == -1) 1813 ns->idle_cpu = cpu; 1814 1815 idle_core = numa_idle_core(idle_core, cpu); 1816 } 1817 } 1818 rcu_read_unlock(); 1819 1820 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1821 1822 ns->node_type = numa_classify(env->imbalance_pct, ns); 1823 1824 if (idle_core >= 0) 1825 ns->idle_cpu = idle_core; 1826 } 1827 1828 static void task_numa_assign(struct task_numa_env *env, 1829 struct task_struct *p, long imp) 1830 { 1831 struct rq *rq = cpu_rq(env->dst_cpu); 1832 1833 /* Check if run-queue part of active NUMA balance. */ 1834 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1835 int cpu; 1836 int start = env->dst_cpu; 1837 1838 /* Find alternative idle CPU. */ 1839 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 1840 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1841 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1842 continue; 1843 } 1844 1845 env->dst_cpu = cpu; 1846 rq = cpu_rq(env->dst_cpu); 1847 if (!xchg(&rq->numa_migrate_on, 1)) 1848 goto assign; 1849 } 1850 1851 /* Failed to find an alternative idle CPU */ 1852 return; 1853 } 1854 1855 assign: 1856 /* 1857 * Clear previous best_cpu/rq numa-migrate flag, since task now 1858 * found a better CPU to move/swap. 1859 */ 1860 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1861 rq = cpu_rq(env->best_cpu); 1862 WRITE_ONCE(rq->numa_migrate_on, 0); 1863 } 1864 1865 if (env->best_task) 1866 put_task_struct(env->best_task); 1867 if (p) 1868 get_task_struct(p); 1869 1870 env->best_task = p; 1871 env->best_imp = imp; 1872 env->best_cpu = env->dst_cpu; 1873 } 1874 1875 static bool load_too_imbalanced(long src_load, long dst_load, 1876 struct task_numa_env *env) 1877 { 1878 long imb, old_imb; 1879 long orig_src_load, orig_dst_load; 1880 long src_capacity, dst_capacity; 1881 1882 /* 1883 * The load is corrected for the CPU capacity available on each node. 1884 * 1885 * src_load dst_load 1886 * ------------ vs --------- 1887 * src_capacity dst_capacity 1888 */ 1889 src_capacity = env->src_stats.compute_capacity; 1890 dst_capacity = env->dst_stats.compute_capacity; 1891 1892 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1893 1894 orig_src_load = env->src_stats.load; 1895 orig_dst_load = env->dst_stats.load; 1896 1897 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1898 1899 /* Would this change make things worse? */ 1900 return (imb > old_imb); 1901 } 1902 1903 /* 1904 * Maximum NUMA importance can be 1998 (2*999); 1905 * SMALLIMP @ 30 would be close to 1998/64. 1906 * Used to deter task migration. 1907 */ 1908 #define SMALLIMP 30 1909 1910 /* 1911 * This checks if the overall compute and NUMA accesses of the system would 1912 * be improved if the source tasks was migrated to the target dst_cpu taking 1913 * into account that it might be best if task running on the dst_cpu should 1914 * be exchanged with the source task 1915 */ 1916 static bool task_numa_compare(struct task_numa_env *env, 1917 long taskimp, long groupimp, bool maymove) 1918 { 1919 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1920 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1921 long imp = p_ng ? groupimp : taskimp; 1922 struct task_struct *cur; 1923 long src_load, dst_load; 1924 int dist = env->dist; 1925 long moveimp = imp; 1926 long load; 1927 bool stopsearch = false; 1928 1929 if (READ_ONCE(dst_rq->numa_migrate_on)) 1930 return false; 1931 1932 rcu_read_lock(); 1933 cur = rcu_dereference(dst_rq->curr); 1934 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1935 cur = NULL; 1936 1937 /* 1938 * Because we have preemption enabled we can get migrated around and 1939 * end try selecting ourselves (current == env->p) as a swap candidate. 1940 */ 1941 if (cur == env->p) { 1942 stopsearch = true; 1943 goto unlock; 1944 } 1945 1946 if (!cur) { 1947 if (maymove && moveimp >= env->best_imp) 1948 goto assign; 1949 else 1950 goto unlock; 1951 } 1952 1953 /* Skip this swap candidate if cannot move to the source cpu. */ 1954 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1955 goto unlock; 1956 1957 /* 1958 * Skip this swap candidate if it is not moving to its preferred 1959 * node and the best task is. 1960 */ 1961 if (env->best_task && 1962 env->best_task->numa_preferred_nid == env->src_nid && 1963 cur->numa_preferred_nid != env->src_nid) { 1964 goto unlock; 1965 } 1966 1967 /* 1968 * "imp" is the fault differential for the source task between the 1969 * source and destination node. Calculate the total differential for 1970 * the source task and potential destination task. The more negative 1971 * the value is, the more remote accesses that would be expected to 1972 * be incurred if the tasks were swapped. 1973 * 1974 * If dst and source tasks are in the same NUMA group, or not 1975 * in any group then look only at task weights. 1976 */ 1977 cur_ng = rcu_dereference(cur->numa_group); 1978 if (cur_ng == p_ng) { 1979 /* 1980 * Do not swap within a group or between tasks that have 1981 * no group if there is spare capacity. Swapping does 1982 * not address the load imbalance and helps one task at 1983 * the cost of punishing another. 1984 */ 1985 if (env->dst_stats.node_type == node_has_spare) 1986 goto unlock; 1987 1988 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1989 task_weight(cur, env->dst_nid, dist); 1990 /* 1991 * Add some hysteresis to prevent swapping the 1992 * tasks within a group over tiny differences. 1993 */ 1994 if (cur_ng) 1995 imp -= imp / 16; 1996 } else { 1997 /* 1998 * Compare the group weights. If a task is all by itself 1999 * (not part of a group), use the task weight instead. 2000 */ 2001 if (cur_ng && p_ng) 2002 imp += group_weight(cur, env->src_nid, dist) - 2003 group_weight(cur, env->dst_nid, dist); 2004 else 2005 imp += task_weight(cur, env->src_nid, dist) - 2006 task_weight(cur, env->dst_nid, dist); 2007 } 2008 2009 /* Discourage picking a task already on its preferred node */ 2010 if (cur->numa_preferred_nid == env->dst_nid) 2011 imp -= imp / 16; 2012 2013 /* 2014 * Encourage picking a task that moves to its preferred node. 2015 * This potentially makes imp larger than it's maximum of 2016 * 1998 (see SMALLIMP and task_weight for why) but in this 2017 * case, it does not matter. 2018 */ 2019 if (cur->numa_preferred_nid == env->src_nid) 2020 imp += imp / 8; 2021 2022 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2023 imp = moveimp; 2024 cur = NULL; 2025 goto assign; 2026 } 2027 2028 /* 2029 * Prefer swapping with a task moving to its preferred node over a 2030 * task that is not. 2031 */ 2032 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2033 env->best_task->numa_preferred_nid != env->src_nid) { 2034 goto assign; 2035 } 2036 2037 /* 2038 * If the NUMA importance is less than SMALLIMP, 2039 * task migration might only result in ping pong 2040 * of tasks and also hurt performance due to cache 2041 * misses. 2042 */ 2043 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2044 goto unlock; 2045 2046 /* 2047 * In the overloaded case, try and keep the load balanced. 2048 */ 2049 load = task_h_load(env->p) - task_h_load(cur); 2050 if (!load) 2051 goto assign; 2052 2053 dst_load = env->dst_stats.load + load; 2054 src_load = env->src_stats.load - load; 2055 2056 if (load_too_imbalanced(src_load, dst_load, env)) 2057 goto unlock; 2058 2059 assign: 2060 /* Evaluate an idle CPU for a task numa move. */ 2061 if (!cur) { 2062 int cpu = env->dst_stats.idle_cpu; 2063 2064 /* Nothing cached so current CPU went idle since the search. */ 2065 if (cpu < 0) 2066 cpu = env->dst_cpu; 2067 2068 /* 2069 * If the CPU is no longer truly idle and the previous best CPU 2070 * is, keep using it. 2071 */ 2072 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2073 idle_cpu(env->best_cpu)) { 2074 cpu = env->best_cpu; 2075 } 2076 2077 env->dst_cpu = cpu; 2078 } 2079 2080 task_numa_assign(env, cur, imp); 2081 2082 /* 2083 * If a move to idle is allowed because there is capacity or load 2084 * balance improves then stop the search. While a better swap 2085 * candidate may exist, a search is not free. 2086 */ 2087 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2088 stopsearch = true; 2089 2090 /* 2091 * If a swap candidate must be identified and the current best task 2092 * moves its preferred node then stop the search. 2093 */ 2094 if (!maymove && env->best_task && 2095 env->best_task->numa_preferred_nid == env->src_nid) { 2096 stopsearch = true; 2097 } 2098 unlock: 2099 rcu_read_unlock(); 2100 2101 return stopsearch; 2102 } 2103 2104 static void task_numa_find_cpu(struct task_numa_env *env, 2105 long taskimp, long groupimp) 2106 { 2107 bool maymove = false; 2108 int cpu; 2109 2110 /* 2111 * If dst node has spare capacity, then check if there is an 2112 * imbalance that would be overruled by the load balancer. 2113 */ 2114 if (env->dst_stats.node_type == node_has_spare) { 2115 unsigned int imbalance; 2116 int src_running, dst_running; 2117 2118 /* 2119 * Would movement cause an imbalance? Note that if src has 2120 * more running tasks that the imbalance is ignored as the 2121 * move improves the imbalance from the perspective of the 2122 * CPU load balancer. 2123 * */ 2124 src_running = env->src_stats.nr_running - 1; 2125 dst_running = env->dst_stats.nr_running + 1; 2126 imbalance = max(0, dst_running - src_running); 2127 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2128 env->imb_numa_nr); 2129 2130 /* Use idle CPU if there is no imbalance */ 2131 if (!imbalance) { 2132 maymove = true; 2133 if (env->dst_stats.idle_cpu >= 0) { 2134 env->dst_cpu = env->dst_stats.idle_cpu; 2135 task_numa_assign(env, NULL, 0); 2136 return; 2137 } 2138 } 2139 } else { 2140 long src_load, dst_load, load; 2141 /* 2142 * If the improvement from just moving env->p direction is better 2143 * than swapping tasks around, check if a move is possible. 2144 */ 2145 load = task_h_load(env->p); 2146 dst_load = env->dst_stats.load + load; 2147 src_load = env->src_stats.load - load; 2148 maymove = !load_too_imbalanced(src_load, dst_load, env); 2149 } 2150 2151 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2152 /* Skip this CPU if the source task cannot migrate */ 2153 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2154 continue; 2155 2156 env->dst_cpu = cpu; 2157 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2158 break; 2159 } 2160 } 2161 2162 static int task_numa_migrate(struct task_struct *p) 2163 { 2164 struct task_numa_env env = { 2165 .p = p, 2166 2167 .src_cpu = task_cpu(p), 2168 .src_nid = task_node(p), 2169 2170 .imbalance_pct = 112, 2171 2172 .best_task = NULL, 2173 .best_imp = 0, 2174 .best_cpu = -1, 2175 }; 2176 unsigned long taskweight, groupweight; 2177 struct sched_domain *sd; 2178 long taskimp, groupimp; 2179 struct numa_group *ng; 2180 struct rq *best_rq; 2181 int nid, ret, dist; 2182 2183 /* 2184 * Pick the lowest SD_NUMA domain, as that would have the smallest 2185 * imbalance and would be the first to start moving tasks about. 2186 * 2187 * And we want to avoid any moving of tasks about, as that would create 2188 * random movement of tasks -- counter the numa conditions we're trying 2189 * to satisfy here. 2190 */ 2191 rcu_read_lock(); 2192 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2193 if (sd) { 2194 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2195 env.imb_numa_nr = sd->imb_numa_nr; 2196 } 2197 rcu_read_unlock(); 2198 2199 /* 2200 * Cpusets can break the scheduler domain tree into smaller 2201 * balance domains, some of which do not cross NUMA boundaries. 2202 * Tasks that are "trapped" in such domains cannot be migrated 2203 * elsewhere, so there is no point in (re)trying. 2204 */ 2205 if (unlikely(!sd)) { 2206 sched_setnuma(p, task_node(p)); 2207 return -EINVAL; 2208 } 2209 2210 env.dst_nid = p->numa_preferred_nid; 2211 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2212 taskweight = task_weight(p, env.src_nid, dist); 2213 groupweight = group_weight(p, env.src_nid, dist); 2214 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2215 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2216 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2217 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2218 2219 /* Try to find a spot on the preferred nid. */ 2220 task_numa_find_cpu(&env, taskimp, groupimp); 2221 2222 /* 2223 * Look at other nodes in these cases: 2224 * - there is no space available on the preferred_nid 2225 * - the task is part of a numa_group that is interleaved across 2226 * multiple NUMA nodes; in order to better consolidate the group, 2227 * we need to check other locations. 2228 */ 2229 ng = deref_curr_numa_group(p); 2230 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2231 for_each_node_state(nid, N_CPU) { 2232 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2233 continue; 2234 2235 dist = node_distance(env.src_nid, env.dst_nid); 2236 if (sched_numa_topology_type == NUMA_BACKPLANE && 2237 dist != env.dist) { 2238 taskweight = task_weight(p, env.src_nid, dist); 2239 groupweight = group_weight(p, env.src_nid, dist); 2240 } 2241 2242 /* Only consider nodes where both task and groups benefit */ 2243 taskimp = task_weight(p, nid, dist) - taskweight; 2244 groupimp = group_weight(p, nid, dist) - groupweight; 2245 if (taskimp < 0 && groupimp < 0) 2246 continue; 2247 2248 env.dist = dist; 2249 env.dst_nid = nid; 2250 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2251 task_numa_find_cpu(&env, taskimp, groupimp); 2252 } 2253 } 2254 2255 /* 2256 * If the task is part of a workload that spans multiple NUMA nodes, 2257 * and is migrating into one of the workload's active nodes, remember 2258 * this node as the task's preferred numa node, so the workload can 2259 * settle down. 2260 * A task that migrated to a second choice node will be better off 2261 * trying for a better one later. Do not set the preferred node here. 2262 */ 2263 if (ng) { 2264 if (env.best_cpu == -1) 2265 nid = env.src_nid; 2266 else 2267 nid = cpu_to_node(env.best_cpu); 2268 2269 if (nid != p->numa_preferred_nid) 2270 sched_setnuma(p, nid); 2271 } 2272 2273 /* No better CPU than the current one was found. */ 2274 if (env.best_cpu == -1) { 2275 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2276 return -EAGAIN; 2277 } 2278 2279 best_rq = cpu_rq(env.best_cpu); 2280 if (env.best_task == NULL) { 2281 ret = migrate_task_to(p, env.best_cpu); 2282 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2283 if (ret != 0) 2284 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2285 return ret; 2286 } 2287 2288 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2289 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2290 2291 if (ret != 0) 2292 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2293 put_task_struct(env.best_task); 2294 return ret; 2295 } 2296 2297 /* Attempt to migrate a task to a CPU on the preferred node. */ 2298 static void numa_migrate_preferred(struct task_struct *p) 2299 { 2300 unsigned long interval = HZ; 2301 2302 /* This task has no NUMA fault statistics yet */ 2303 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2304 return; 2305 2306 /* Periodically retry migrating the task to the preferred node */ 2307 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2308 p->numa_migrate_retry = jiffies + interval; 2309 2310 /* Success if task is already running on preferred CPU */ 2311 if (task_node(p) == p->numa_preferred_nid) 2312 return; 2313 2314 /* Otherwise, try migrate to a CPU on the preferred node */ 2315 task_numa_migrate(p); 2316 } 2317 2318 /* 2319 * Find out how many nodes the workload is actively running on. Do this by 2320 * tracking the nodes from which NUMA hinting faults are triggered. This can 2321 * be different from the set of nodes where the workload's memory is currently 2322 * located. 2323 */ 2324 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2325 { 2326 unsigned long faults, max_faults = 0; 2327 int nid, active_nodes = 0; 2328 2329 for_each_node_state(nid, N_CPU) { 2330 faults = group_faults_cpu(numa_group, nid); 2331 if (faults > max_faults) 2332 max_faults = faults; 2333 } 2334 2335 for_each_node_state(nid, N_CPU) { 2336 faults = group_faults_cpu(numa_group, nid); 2337 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2338 active_nodes++; 2339 } 2340 2341 numa_group->max_faults_cpu = max_faults; 2342 numa_group->active_nodes = active_nodes; 2343 } 2344 2345 /* 2346 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2347 * increments. The more local the fault statistics are, the higher the scan 2348 * period will be for the next scan window. If local/(local+remote) ratio is 2349 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2350 * the scan period will decrease. Aim for 70% local accesses. 2351 */ 2352 #define NUMA_PERIOD_SLOTS 10 2353 #define NUMA_PERIOD_THRESHOLD 7 2354 2355 /* 2356 * Increase the scan period (slow down scanning) if the majority of 2357 * our memory is already on our local node, or if the majority of 2358 * the page accesses are shared with other processes. 2359 * Otherwise, decrease the scan period. 2360 */ 2361 static void update_task_scan_period(struct task_struct *p, 2362 unsigned long shared, unsigned long private) 2363 { 2364 unsigned int period_slot; 2365 int lr_ratio, ps_ratio; 2366 int diff; 2367 2368 unsigned long remote = p->numa_faults_locality[0]; 2369 unsigned long local = p->numa_faults_locality[1]; 2370 2371 /* 2372 * If there were no record hinting faults then either the task is 2373 * completely idle or all activity is in areas that are not of interest 2374 * to automatic numa balancing. Related to that, if there were failed 2375 * migration then it implies we are migrating too quickly or the local 2376 * node is overloaded. In either case, scan slower 2377 */ 2378 if (local + shared == 0 || p->numa_faults_locality[2]) { 2379 p->numa_scan_period = min(p->numa_scan_period_max, 2380 p->numa_scan_period << 1); 2381 2382 p->mm->numa_next_scan = jiffies + 2383 msecs_to_jiffies(p->numa_scan_period); 2384 2385 return; 2386 } 2387 2388 /* 2389 * Prepare to scale scan period relative to the current period. 2390 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2391 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2392 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2393 */ 2394 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2395 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2396 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2397 2398 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2399 /* 2400 * Most memory accesses are local. There is no need to 2401 * do fast NUMA scanning, since memory is already local. 2402 */ 2403 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2404 if (!slot) 2405 slot = 1; 2406 diff = slot * period_slot; 2407 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2408 /* 2409 * Most memory accesses are shared with other tasks. 2410 * There is no point in continuing fast NUMA scanning, 2411 * since other tasks may just move the memory elsewhere. 2412 */ 2413 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2414 if (!slot) 2415 slot = 1; 2416 diff = slot * period_slot; 2417 } else { 2418 /* 2419 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2420 * yet they are not on the local NUMA node. Speed up 2421 * NUMA scanning to get the memory moved over. 2422 */ 2423 int ratio = max(lr_ratio, ps_ratio); 2424 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2425 } 2426 2427 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2428 task_scan_min(p), task_scan_max(p)); 2429 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2430 } 2431 2432 /* 2433 * Get the fraction of time the task has been running since the last 2434 * NUMA placement cycle. The scheduler keeps similar statistics, but 2435 * decays those on a 32ms period, which is orders of magnitude off 2436 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2437 * stats only if the task is so new there are no NUMA statistics yet. 2438 */ 2439 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2440 { 2441 u64 runtime, delta, now; 2442 /* Use the start of this time slice to avoid calculations. */ 2443 now = p->se.exec_start; 2444 runtime = p->se.sum_exec_runtime; 2445 2446 if (p->last_task_numa_placement) { 2447 delta = runtime - p->last_sum_exec_runtime; 2448 *period = now - p->last_task_numa_placement; 2449 2450 /* Avoid time going backwards, prevent potential divide error: */ 2451 if (unlikely((s64)*period < 0)) 2452 *period = 0; 2453 } else { 2454 delta = p->se.avg.load_sum; 2455 *period = LOAD_AVG_MAX; 2456 } 2457 2458 p->last_sum_exec_runtime = runtime; 2459 p->last_task_numa_placement = now; 2460 2461 return delta; 2462 } 2463 2464 /* 2465 * Determine the preferred nid for a task in a numa_group. This needs to 2466 * be done in a way that produces consistent results with group_weight, 2467 * otherwise workloads might not converge. 2468 */ 2469 static int preferred_group_nid(struct task_struct *p, int nid) 2470 { 2471 nodemask_t nodes; 2472 int dist; 2473 2474 /* Direct connections between all NUMA nodes. */ 2475 if (sched_numa_topology_type == NUMA_DIRECT) 2476 return nid; 2477 2478 /* 2479 * On a system with glueless mesh NUMA topology, group_weight 2480 * scores nodes according to the number of NUMA hinting faults on 2481 * both the node itself, and on nearby nodes. 2482 */ 2483 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2484 unsigned long score, max_score = 0; 2485 int node, max_node = nid; 2486 2487 dist = sched_max_numa_distance; 2488 2489 for_each_node_state(node, N_CPU) { 2490 score = group_weight(p, node, dist); 2491 if (score > max_score) { 2492 max_score = score; 2493 max_node = node; 2494 } 2495 } 2496 return max_node; 2497 } 2498 2499 /* 2500 * Finding the preferred nid in a system with NUMA backplane 2501 * interconnect topology is more involved. The goal is to locate 2502 * tasks from numa_groups near each other in the system, and 2503 * untangle workloads from different sides of the system. This requires 2504 * searching down the hierarchy of node groups, recursively searching 2505 * inside the highest scoring group of nodes. The nodemask tricks 2506 * keep the complexity of the search down. 2507 */ 2508 nodes = node_states[N_CPU]; 2509 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2510 unsigned long max_faults = 0; 2511 nodemask_t max_group = NODE_MASK_NONE; 2512 int a, b; 2513 2514 /* Are there nodes at this distance from each other? */ 2515 if (!find_numa_distance(dist)) 2516 continue; 2517 2518 for_each_node_mask(a, nodes) { 2519 unsigned long faults = 0; 2520 nodemask_t this_group; 2521 nodes_clear(this_group); 2522 2523 /* Sum group's NUMA faults; includes a==b case. */ 2524 for_each_node_mask(b, nodes) { 2525 if (node_distance(a, b) < dist) { 2526 faults += group_faults(p, b); 2527 node_set(b, this_group); 2528 node_clear(b, nodes); 2529 } 2530 } 2531 2532 /* Remember the top group. */ 2533 if (faults > max_faults) { 2534 max_faults = faults; 2535 max_group = this_group; 2536 /* 2537 * subtle: at the smallest distance there is 2538 * just one node left in each "group", the 2539 * winner is the preferred nid. 2540 */ 2541 nid = a; 2542 } 2543 } 2544 /* Next round, evaluate the nodes within max_group. */ 2545 if (!max_faults) 2546 break; 2547 nodes = max_group; 2548 } 2549 return nid; 2550 } 2551 2552 static void task_numa_placement(struct task_struct *p) 2553 { 2554 int seq, nid, max_nid = NUMA_NO_NODE; 2555 unsigned long max_faults = 0; 2556 unsigned long fault_types[2] = { 0, 0 }; 2557 unsigned long total_faults; 2558 u64 runtime, period; 2559 spinlock_t *group_lock = NULL; 2560 struct numa_group *ng; 2561 2562 /* 2563 * The p->mm->numa_scan_seq field gets updated without 2564 * exclusive access. Use READ_ONCE() here to ensure 2565 * that the field is read in a single access: 2566 */ 2567 seq = READ_ONCE(p->mm->numa_scan_seq); 2568 if (p->numa_scan_seq == seq) 2569 return; 2570 p->numa_scan_seq = seq; 2571 p->numa_scan_period_max = task_scan_max(p); 2572 2573 total_faults = p->numa_faults_locality[0] + 2574 p->numa_faults_locality[1]; 2575 runtime = numa_get_avg_runtime(p, &period); 2576 2577 /* If the task is part of a group prevent parallel updates to group stats */ 2578 ng = deref_curr_numa_group(p); 2579 if (ng) { 2580 group_lock = &ng->lock; 2581 spin_lock_irq(group_lock); 2582 } 2583 2584 /* Find the node with the highest number of faults */ 2585 for_each_online_node(nid) { 2586 /* Keep track of the offsets in numa_faults array */ 2587 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2588 unsigned long faults = 0, group_faults = 0; 2589 int priv; 2590 2591 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2592 long diff, f_diff, f_weight; 2593 2594 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2595 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2596 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2597 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2598 2599 /* Decay existing window, copy faults since last scan */ 2600 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2601 fault_types[priv] += p->numa_faults[membuf_idx]; 2602 p->numa_faults[membuf_idx] = 0; 2603 2604 /* 2605 * Normalize the faults_from, so all tasks in a group 2606 * count according to CPU use, instead of by the raw 2607 * number of faults. Tasks with little runtime have 2608 * little over-all impact on throughput, and thus their 2609 * faults are less important. 2610 */ 2611 f_weight = div64_u64(runtime << 16, period + 1); 2612 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2613 (total_faults + 1); 2614 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2615 p->numa_faults[cpubuf_idx] = 0; 2616 2617 p->numa_faults[mem_idx] += diff; 2618 p->numa_faults[cpu_idx] += f_diff; 2619 faults += p->numa_faults[mem_idx]; 2620 p->total_numa_faults += diff; 2621 if (ng) { 2622 /* 2623 * safe because we can only change our own group 2624 * 2625 * mem_idx represents the offset for a given 2626 * nid and priv in a specific region because it 2627 * is at the beginning of the numa_faults array. 2628 */ 2629 ng->faults[mem_idx] += diff; 2630 ng->faults[cpu_idx] += f_diff; 2631 ng->total_faults += diff; 2632 group_faults += ng->faults[mem_idx]; 2633 } 2634 } 2635 2636 if (!ng) { 2637 if (faults > max_faults) { 2638 max_faults = faults; 2639 max_nid = nid; 2640 } 2641 } else if (group_faults > max_faults) { 2642 max_faults = group_faults; 2643 max_nid = nid; 2644 } 2645 } 2646 2647 /* Cannot migrate task to CPU-less node */ 2648 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) { 2649 int near_nid = max_nid; 2650 int distance, near_distance = INT_MAX; 2651 2652 for_each_node_state(nid, N_CPU) { 2653 distance = node_distance(max_nid, nid); 2654 if (distance < near_distance) { 2655 near_nid = nid; 2656 near_distance = distance; 2657 } 2658 } 2659 max_nid = near_nid; 2660 } 2661 2662 if (ng) { 2663 numa_group_count_active_nodes(ng); 2664 spin_unlock_irq(group_lock); 2665 max_nid = preferred_group_nid(p, max_nid); 2666 } 2667 2668 if (max_faults) { 2669 /* Set the new preferred node */ 2670 if (max_nid != p->numa_preferred_nid) 2671 sched_setnuma(p, max_nid); 2672 } 2673 2674 update_task_scan_period(p, fault_types[0], fault_types[1]); 2675 } 2676 2677 static inline int get_numa_group(struct numa_group *grp) 2678 { 2679 return refcount_inc_not_zero(&grp->refcount); 2680 } 2681 2682 static inline void put_numa_group(struct numa_group *grp) 2683 { 2684 if (refcount_dec_and_test(&grp->refcount)) 2685 kfree_rcu(grp, rcu); 2686 } 2687 2688 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2689 int *priv) 2690 { 2691 struct numa_group *grp, *my_grp; 2692 struct task_struct *tsk; 2693 bool join = false; 2694 int cpu = cpupid_to_cpu(cpupid); 2695 int i; 2696 2697 if (unlikely(!deref_curr_numa_group(p))) { 2698 unsigned int size = sizeof(struct numa_group) + 2699 NR_NUMA_HINT_FAULT_STATS * 2700 nr_node_ids * sizeof(unsigned long); 2701 2702 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2703 if (!grp) 2704 return; 2705 2706 refcount_set(&grp->refcount, 1); 2707 grp->active_nodes = 1; 2708 grp->max_faults_cpu = 0; 2709 spin_lock_init(&grp->lock); 2710 grp->gid = p->pid; 2711 2712 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2713 grp->faults[i] = p->numa_faults[i]; 2714 2715 grp->total_faults = p->total_numa_faults; 2716 2717 grp->nr_tasks++; 2718 rcu_assign_pointer(p->numa_group, grp); 2719 } 2720 2721 rcu_read_lock(); 2722 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2723 2724 if (!cpupid_match_pid(tsk, cpupid)) 2725 goto no_join; 2726 2727 grp = rcu_dereference(tsk->numa_group); 2728 if (!grp) 2729 goto no_join; 2730 2731 my_grp = deref_curr_numa_group(p); 2732 if (grp == my_grp) 2733 goto no_join; 2734 2735 /* 2736 * Only join the other group if its bigger; if we're the bigger group, 2737 * the other task will join us. 2738 */ 2739 if (my_grp->nr_tasks > grp->nr_tasks) 2740 goto no_join; 2741 2742 /* 2743 * Tie-break on the grp address. 2744 */ 2745 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2746 goto no_join; 2747 2748 /* Always join threads in the same process. */ 2749 if (tsk->mm == current->mm) 2750 join = true; 2751 2752 /* Simple filter to avoid false positives due to PID collisions */ 2753 if (flags & TNF_SHARED) 2754 join = true; 2755 2756 /* Update priv based on whether false sharing was detected */ 2757 *priv = !join; 2758 2759 if (join && !get_numa_group(grp)) 2760 goto no_join; 2761 2762 rcu_read_unlock(); 2763 2764 if (!join) 2765 return; 2766 2767 WARN_ON_ONCE(irqs_disabled()); 2768 double_lock_irq(&my_grp->lock, &grp->lock); 2769 2770 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2771 my_grp->faults[i] -= p->numa_faults[i]; 2772 grp->faults[i] += p->numa_faults[i]; 2773 } 2774 my_grp->total_faults -= p->total_numa_faults; 2775 grp->total_faults += p->total_numa_faults; 2776 2777 my_grp->nr_tasks--; 2778 grp->nr_tasks++; 2779 2780 spin_unlock(&my_grp->lock); 2781 spin_unlock_irq(&grp->lock); 2782 2783 rcu_assign_pointer(p->numa_group, grp); 2784 2785 put_numa_group(my_grp); 2786 return; 2787 2788 no_join: 2789 rcu_read_unlock(); 2790 return; 2791 } 2792 2793 /* 2794 * Get rid of NUMA statistics associated with a task (either current or dead). 2795 * If @final is set, the task is dead and has reached refcount zero, so we can 2796 * safely free all relevant data structures. Otherwise, there might be 2797 * concurrent reads from places like load balancing and procfs, and we should 2798 * reset the data back to default state without freeing ->numa_faults. 2799 */ 2800 void task_numa_free(struct task_struct *p, bool final) 2801 { 2802 /* safe: p either is current or is being freed by current */ 2803 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2804 unsigned long *numa_faults = p->numa_faults; 2805 unsigned long flags; 2806 int i; 2807 2808 if (!numa_faults) 2809 return; 2810 2811 if (grp) { 2812 spin_lock_irqsave(&grp->lock, flags); 2813 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2814 grp->faults[i] -= p->numa_faults[i]; 2815 grp->total_faults -= p->total_numa_faults; 2816 2817 grp->nr_tasks--; 2818 spin_unlock_irqrestore(&grp->lock, flags); 2819 RCU_INIT_POINTER(p->numa_group, NULL); 2820 put_numa_group(grp); 2821 } 2822 2823 if (final) { 2824 p->numa_faults = NULL; 2825 kfree(numa_faults); 2826 } else { 2827 p->total_numa_faults = 0; 2828 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2829 numa_faults[i] = 0; 2830 } 2831 } 2832 2833 /* 2834 * Got a PROT_NONE fault for a page on @node. 2835 */ 2836 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2837 { 2838 struct task_struct *p = current; 2839 bool migrated = flags & TNF_MIGRATED; 2840 int cpu_node = task_node(current); 2841 int local = !!(flags & TNF_FAULT_LOCAL); 2842 struct numa_group *ng; 2843 int priv; 2844 2845 if (!static_branch_likely(&sched_numa_balancing)) 2846 return; 2847 2848 /* for example, ksmd faulting in a user's mm */ 2849 if (!p->mm) 2850 return; 2851 2852 /* 2853 * NUMA faults statistics are unnecessary for the slow memory 2854 * node for memory tiering mode. 2855 */ 2856 if (!node_is_toptier(mem_node) && 2857 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 2858 !cpupid_valid(last_cpupid))) 2859 return; 2860 2861 /* Allocate buffer to track faults on a per-node basis */ 2862 if (unlikely(!p->numa_faults)) { 2863 int size = sizeof(*p->numa_faults) * 2864 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2865 2866 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2867 if (!p->numa_faults) 2868 return; 2869 2870 p->total_numa_faults = 0; 2871 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2872 } 2873 2874 /* 2875 * First accesses are treated as private, otherwise consider accesses 2876 * to be private if the accessing pid has not changed 2877 */ 2878 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2879 priv = 1; 2880 } else { 2881 priv = cpupid_match_pid(p, last_cpupid); 2882 if (!priv && !(flags & TNF_NO_GROUP)) 2883 task_numa_group(p, last_cpupid, flags, &priv); 2884 } 2885 2886 /* 2887 * If a workload spans multiple NUMA nodes, a shared fault that 2888 * occurs wholly within the set of nodes that the workload is 2889 * actively using should be counted as local. This allows the 2890 * scan rate to slow down when a workload has settled down. 2891 */ 2892 ng = deref_curr_numa_group(p); 2893 if (!priv && !local && ng && ng->active_nodes > 1 && 2894 numa_is_active_node(cpu_node, ng) && 2895 numa_is_active_node(mem_node, ng)) 2896 local = 1; 2897 2898 /* 2899 * Retry to migrate task to preferred node periodically, in case it 2900 * previously failed, or the scheduler moved us. 2901 */ 2902 if (time_after(jiffies, p->numa_migrate_retry)) { 2903 task_numa_placement(p); 2904 numa_migrate_preferred(p); 2905 } 2906 2907 if (migrated) 2908 p->numa_pages_migrated += pages; 2909 if (flags & TNF_MIGRATE_FAIL) 2910 p->numa_faults_locality[2] += pages; 2911 2912 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2913 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2914 p->numa_faults_locality[local] += pages; 2915 } 2916 2917 static void reset_ptenuma_scan(struct task_struct *p) 2918 { 2919 /* 2920 * We only did a read acquisition of the mmap sem, so 2921 * p->mm->numa_scan_seq is written to without exclusive access 2922 * and the update is not guaranteed to be atomic. That's not 2923 * much of an issue though, since this is just used for 2924 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2925 * expensive, to avoid any form of compiler optimizations: 2926 */ 2927 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2928 p->mm->numa_scan_offset = 0; 2929 } 2930 2931 /* 2932 * The expensive part of numa migration is done from task_work context. 2933 * Triggered from task_tick_numa(). 2934 */ 2935 static void task_numa_work(struct callback_head *work) 2936 { 2937 unsigned long migrate, next_scan, now = jiffies; 2938 struct task_struct *p = current; 2939 struct mm_struct *mm = p->mm; 2940 u64 runtime = p->se.sum_exec_runtime; 2941 struct vm_area_struct *vma; 2942 unsigned long start, end; 2943 unsigned long nr_pte_updates = 0; 2944 long pages, virtpages; 2945 struct vma_iterator vmi; 2946 2947 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2948 2949 work->next = work; 2950 /* 2951 * Who cares about NUMA placement when they're dying. 2952 * 2953 * NOTE: make sure not to dereference p->mm before this check, 2954 * exit_task_work() happens _after_ exit_mm() so we could be called 2955 * without p->mm even though we still had it when we enqueued this 2956 * work. 2957 */ 2958 if (p->flags & PF_EXITING) 2959 return; 2960 2961 if (!mm->numa_next_scan) { 2962 mm->numa_next_scan = now + 2963 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2964 } 2965 2966 /* 2967 * Enforce maximal scan/migration frequency.. 2968 */ 2969 migrate = mm->numa_next_scan; 2970 if (time_before(now, migrate)) 2971 return; 2972 2973 if (p->numa_scan_period == 0) { 2974 p->numa_scan_period_max = task_scan_max(p); 2975 p->numa_scan_period = task_scan_start(p); 2976 } 2977 2978 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2979 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 2980 return; 2981 2982 /* 2983 * Delay this task enough that another task of this mm will likely win 2984 * the next time around. 2985 */ 2986 p->node_stamp += 2 * TICK_NSEC; 2987 2988 start = mm->numa_scan_offset; 2989 pages = sysctl_numa_balancing_scan_size; 2990 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2991 virtpages = pages * 8; /* Scan up to this much virtual space */ 2992 if (!pages) 2993 return; 2994 2995 2996 if (!mmap_read_trylock(mm)) 2997 return; 2998 vma_iter_init(&vmi, mm, start); 2999 vma = vma_next(&vmi); 3000 if (!vma) { 3001 reset_ptenuma_scan(p); 3002 start = 0; 3003 vma_iter_set(&vmi, start); 3004 vma = vma_next(&vmi); 3005 } 3006 3007 do { 3008 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3009 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3010 continue; 3011 } 3012 3013 /* 3014 * Shared library pages mapped by multiple processes are not 3015 * migrated as it is expected they are cache replicated. Avoid 3016 * hinting faults in read-only file-backed mappings or the vdso 3017 * as migrating the pages will be of marginal benefit. 3018 */ 3019 if (!vma->vm_mm || 3020 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 3021 continue; 3022 3023 /* 3024 * Skip inaccessible VMAs to avoid any confusion between 3025 * PROT_NONE and NUMA hinting ptes 3026 */ 3027 if (!vma_is_accessible(vma)) 3028 continue; 3029 3030 do { 3031 start = max(start, vma->vm_start); 3032 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3033 end = min(end, vma->vm_end); 3034 nr_pte_updates = change_prot_numa(vma, start, end); 3035 3036 /* 3037 * Try to scan sysctl_numa_balancing_size worth of 3038 * hpages that have at least one present PTE that 3039 * is not already pte-numa. If the VMA contains 3040 * areas that are unused or already full of prot_numa 3041 * PTEs, scan up to virtpages, to skip through those 3042 * areas faster. 3043 */ 3044 if (nr_pte_updates) 3045 pages -= (end - start) >> PAGE_SHIFT; 3046 virtpages -= (end - start) >> PAGE_SHIFT; 3047 3048 start = end; 3049 if (pages <= 0 || virtpages <= 0) 3050 goto out; 3051 3052 cond_resched(); 3053 } while (end != vma->vm_end); 3054 } for_each_vma(vmi, vma); 3055 3056 out: 3057 /* 3058 * It is possible to reach the end of the VMA list but the last few 3059 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3060 * would find the !migratable VMA on the next scan but not reset the 3061 * scanner to the start so check it now. 3062 */ 3063 if (vma) 3064 mm->numa_scan_offset = start; 3065 else 3066 reset_ptenuma_scan(p); 3067 mmap_read_unlock(mm); 3068 3069 /* 3070 * Make sure tasks use at least 32x as much time to run other code 3071 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3072 * Usually update_task_scan_period slows down scanning enough; on an 3073 * overloaded system we need to limit overhead on a per task basis. 3074 */ 3075 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3076 u64 diff = p->se.sum_exec_runtime - runtime; 3077 p->node_stamp += 32 * diff; 3078 } 3079 } 3080 3081 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3082 { 3083 int mm_users = 0; 3084 struct mm_struct *mm = p->mm; 3085 3086 if (mm) { 3087 mm_users = atomic_read(&mm->mm_users); 3088 if (mm_users == 1) { 3089 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3090 mm->numa_scan_seq = 0; 3091 } 3092 } 3093 p->node_stamp = 0; 3094 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3095 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3096 p->numa_migrate_retry = 0; 3097 /* Protect against double add, see task_tick_numa and task_numa_work */ 3098 p->numa_work.next = &p->numa_work; 3099 p->numa_faults = NULL; 3100 p->numa_pages_migrated = 0; 3101 p->total_numa_faults = 0; 3102 RCU_INIT_POINTER(p->numa_group, NULL); 3103 p->last_task_numa_placement = 0; 3104 p->last_sum_exec_runtime = 0; 3105 3106 init_task_work(&p->numa_work, task_numa_work); 3107 3108 /* New address space, reset the preferred nid */ 3109 if (!(clone_flags & CLONE_VM)) { 3110 p->numa_preferred_nid = NUMA_NO_NODE; 3111 return; 3112 } 3113 3114 /* 3115 * New thread, keep existing numa_preferred_nid which should be copied 3116 * already by arch_dup_task_struct but stagger when scans start. 3117 */ 3118 if (mm) { 3119 unsigned int delay; 3120 3121 delay = min_t(unsigned int, task_scan_max(current), 3122 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3123 delay += 2 * TICK_NSEC; 3124 p->node_stamp = delay; 3125 } 3126 } 3127 3128 /* 3129 * Drive the periodic memory faults.. 3130 */ 3131 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3132 { 3133 struct callback_head *work = &curr->numa_work; 3134 u64 period, now; 3135 3136 /* 3137 * We don't care about NUMA placement if we don't have memory. 3138 */ 3139 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3140 return; 3141 3142 /* 3143 * Using runtime rather than walltime has the dual advantage that 3144 * we (mostly) drive the selection from busy threads and that the 3145 * task needs to have done some actual work before we bother with 3146 * NUMA placement. 3147 */ 3148 now = curr->se.sum_exec_runtime; 3149 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3150 3151 if (now > curr->node_stamp + period) { 3152 if (!curr->node_stamp) 3153 curr->numa_scan_period = task_scan_start(curr); 3154 curr->node_stamp += period; 3155 3156 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3157 task_work_add(curr, work, TWA_RESUME); 3158 } 3159 } 3160 3161 static void update_scan_period(struct task_struct *p, int new_cpu) 3162 { 3163 int src_nid = cpu_to_node(task_cpu(p)); 3164 int dst_nid = cpu_to_node(new_cpu); 3165 3166 if (!static_branch_likely(&sched_numa_balancing)) 3167 return; 3168 3169 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3170 return; 3171 3172 if (src_nid == dst_nid) 3173 return; 3174 3175 /* 3176 * Allow resets if faults have been trapped before one scan 3177 * has completed. This is most likely due to a new task that 3178 * is pulled cross-node due to wakeups or load balancing. 3179 */ 3180 if (p->numa_scan_seq) { 3181 /* 3182 * Avoid scan adjustments if moving to the preferred 3183 * node or if the task was not previously running on 3184 * the preferred node. 3185 */ 3186 if (dst_nid == p->numa_preferred_nid || 3187 (p->numa_preferred_nid != NUMA_NO_NODE && 3188 src_nid != p->numa_preferred_nid)) 3189 return; 3190 } 3191 3192 p->numa_scan_period = task_scan_start(p); 3193 } 3194 3195 #else 3196 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3197 { 3198 } 3199 3200 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3201 { 3202 } 3203 3204 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3205 { 3206 } 3207 3208 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3209 { 3210 } 3211 3212 #endif /* CONFIG_NUMA_BALANCING */ 3213 3214 static void 3215 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3216 { 3217 update_load_add(&cfs_rq->load, se->load.weight); 3218 #ifdef CONFIG_SMP 3219 if (entity_is_task(se)) { 3220 struct rq *rq = rq_of(cfs_rq); 3221 3222 account_numa_enqueue(rq, task_of(se)); 3223 list_add(&se->group_node, &rq->cfs_tasks); 3224 } 3225 #endif 3226 cfs_rq->nr_running++; 3227 if (se_is_idle(se)) 3228 cfs_rq->idle_nr_running++; 3229 } 3230 3231 static void 3232 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3233 { 3234 update_load_sub(&cfs_rq->load, se->load.weight); 3235 #ifdef CONFIG_SMP 3236 if (entity_is_task(se)) { 3237 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3238 list_del_init(&se->group_node); 3239 } 3240 #endif 3241 cfs_rq->nr_running--; 3242 if (se_is_idle(se)) 3243 cfs_rq->idle_nr_running--; 3244 } 3245 3246 /* 3247 * Signed add and clamp on underflow. 3248 * 3249 * Explicitly do a load-store to ensure the intermediate value never hits 3250 * memory. This allows lockless observations without ever seeing the negative 3251 * values. 3252 */ 3253 #define add_positive(_ptr, _val) do { \ 3254 typeof(_ptr) ptr = (_ptr); \ 3255 typeof(_val) val = (_val); \ 3256 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3257 \ 3258 res = var + val; \ 3259 \ 3260 if (val < 0 && res > var) \ 3261 res = 0; \ 3262 \ 3263 WRITE_ONCE(*ptr, res); \ 3264 } while (0) 3265 3266 /* 3267 * Unsigned subtract and clamp on underflow. 3268 * 3269 * Explicitly do a load-store to ensure the intermediate value never hits 3270 * memory. This allows lockless observations without ever seeing the negative 3271 * values. 3272 */ 3273 #define sub_positive(_ptr, _val) do { \ 3274 typeof(_ptr) ptr = (_ptr); \ 3275 typeof(*ptr) val = (_val); \ 3276 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3277 res = var - val; \ 3278 if (res > var) \ 3279 res = 0; \ 3280 WRITE_ONCE(*ptr, res); \ 3281 } while (0) 3282 3283 /* 3284 * Remove and clamp on negative, from a local variable. 3285 * 3286 * A variant of sub_positive(), which does not use explicit load-store 3287 * and is thus optimized for local variable updates. 3288 */ 3289 #define lsub_positive(_ptr, _val) do { \ 3290 typeof(_ptr) ptr = (_ptr); \ 3291 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3292 } while (0) 3293 3294 #ifdef CONFIG_SMP 3295 static inline void 3296 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3297 { 3298 cfs_rq->avg.load_avg += se->avg.load_avg; 3299 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3300 } 3301 3302 static inline void 3303 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3304 { 3305 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3306 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3307 /* See update_cfs_rq_load_avg() */ 3308 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3309 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3310 } 3311 #else 3312 static inline void 3313 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3314 static inline void 3315 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3316 #endif 3317 3318 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3319 unsigned long weight) 3320 { 3321 if (se->on_rq) { 3322 /* commit outstanding execution time */ 3323 if (cfs_rq->curr == se) 3324 update_curr(cfs_rq); 3325 update_load_sub(&cfs_rq->load, se->load.weight); 3326 } 3327 dequeue_load_avg(cfs_rq, se); 3328 3329 update_load_set(&se->load, weight); 3330 3331 #ifdef CONFIG_SMP 3332 do { 3333 u32 divider = get_pelt_divider(&se->avg); 3334 3335 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3336 } while (0); 3337 #endif 3338 3339 enqueue_load_avg(cfs_rq, se); 3340 if (se->on_rq) 3341 update_load_add(&cfs_rq->load, se->load.weight); 3342 3343 } 3344 3345 void reweight_task(struct task_struct *p, int prio) 3346 { 3347 struct sched_entity *se = &p->se; 3348 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3349 struct load_weight *load = &se->load; 3350 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3351 3352 reweight_entity(cfs_rq, se, weight); 3353 load->inv_weight = sched_prio_to_wmult[prio]; 3354 } 3355 3356 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3357 3358 #ifdef CONFIG_FAIR_GROUP_SCHED 3359 #ifdef CONFIG_SMP 3360 /* 3361 * All this does is approximate the hierarchical proportion which includes that 3362 * global sum we all love to hate. 3363 * 3364 * That is, the weight of a group entity, is the proportional share of the 3365 * group weight based on the group runqueue weights. That is: 3366 * 3367 * tg->weight * grq->load.weight 3368 * ge->load.weight = ----------------------------- (1) 3369 * \Sum grq->load.weight 3370 * 3371 * Now, because computing that sum is prohibitively expensive to compute (been 3372 * there, done that) we approximate it with this average stuff. The average 3373 * moves slower and therefore the approximation is cheaper and more stable. 3374 * 3375 * So instead of the above, we substitute: 3376 * 3377 * grq->load.weight -> grq->avg.load_avg (2) 3378 * 3379 * which yields the following: 3380 * 3381 * tg->weight * grq->avg.load_avg 3382 * ge->load.weight = ------------------------------ (3) 3383 * tg->load_avg 3384 * 3385 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3386 * 3387 * That is shares_avg, and it is right (given the approximation (2)). 3388 * 3389 * The problem with it is that because the average is slow -- it was designed 3390 * to be exactly that of course -- this leads to transients in boundary 3391 * conditions. In specific, the case where the group was idle and we start the 3392 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3393 * yielding bad latency etc.. 3394 * 3395 * Now, in that special case (1) reduces to: 3396 * 3397 * tg->weight * grq->load.weight 3398 * ge->load.weight = ----------------------------- = tg->weight (4) 3399 * grp->load.weight 3400 * 3401 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3402 * 3403 * So what we do is modify our approximation (3) to approach (4) in the (near) 3404 * UP case, like: 3405 * 3406 * ge->load.weight = 3407 * 3408 * tg->weight * grq->load.weight 3409 * --------------------------------------------------- (5) 3410 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3411 * 3412 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3413 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3414 * 3415 * 3416 * tg->weight * grq->load.weight 3417 * ge->load.weight = ----------------------------- (6) 3418 * tg_load_avg' 3419 * 3420 * Where: 3421 * 3422 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3423 * max(grq->load.weight, grq->avg.load_avg) 3424 * 3425 * And that is shares_weight and is icky. In the (near) UP case it approaches 3426 * (4) while in the normal case it approaches (3). It consistently 3427 * overestimates the ge->load.weight and therefore: 3428 * 3429 * \Sum ge->load.weight >= tg->weight 3430 * 3431 * hence icky! 3432 */ 3433 static long calc_group_shares(struct cfs_rq *cfs_rq) 3434 { 3435 long tg_weight, tg_shares, load, shares; 3436 struct task_group *tg = cfs_rq->tg; 3437 3438 tg_shares = READ_ONCE(tg->shares); 3439 3440 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3441 3442 tg_weight = atomic_long_read(&tg->load_avg); 3443 3444 /* Ensure tg_weight >= load */ 3445 tg_weight -= cfs_rq->tg_load_avg_contrib; 3446 tg_weight += load; 3447 3448 shares = (tg_shares * load); 3449 if (tg_weight) 3450 shares /= tg_weight; 3451 3452 /* 3453 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3454 * of a group with small tg->shares value. It is a floor value which is 3455 * assigned as a minimum load.weight to the sched_entity representing 3456 * the group on a CPU. 3457 * 3458 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3459 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3460 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3461 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3462 * instead of 0. 3463 */ 3464 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3465 } 3466 #endif /* CONFIG_SMP */ 3467 3468 /* 3469 * Recomputes the group entity based on the current state of its group 3470 * runqueue. 3471 */ 3472 static void update_cfs_group(struct sched_entity *se) 3473 { 3474 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3475 long shares; 3476 3477 if (!gcfs_rq) 3478 return; 3479 3480 if (throttled_hierarchy(gcfs_rq)) 3481 return; 3482 3483 #ifndef CONFIG_SMP 3484 shares = READ_ONCE(gcfs_rq->tg->shares); 3485 3486 if (likely(se->load.weight == shares)) 3487 return; 3488 #else 3489 shares = calc_group_shares(gcfs_rq); 3490 #endif 3491 3492 reweight_entity(cfs_rq_of(se), se, shares); 3493 } 3494 3495 #else /* CONFIG_FAIR_GROUP_SCHED */ 3496 static inline void update_cfs_group(struct sched_entity *se) 3497 { 3498 } 3499 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3500 3501 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3502 { 3503 struct rq *rq = rq_of(cfs_rq); 3504 3505 if (&rq->cfs == cfs_rq) { 3506 /* 3507 * There are a few boundary cases this might miss but it should 3508 * get called often enough that that should (hopefully) not be 3509 * a real problem. 3510 * 3511 * It will not get called when we go idle, because the idle 3512 * thread is a different class (!fair), nor will the utilization 3513 * number include things like RT tasks. 3514 * 3515 * As is, the util number is not freq-invariant (we'd have to 3516 * implement arch_scale_freq_capacity() for that). 3517 * 3518 * See cpu_util_cfs(). 3519 */ 3520 cpufreq_update_util(rq, flags); 3521 } 3522 } 3523 3524 #ifdef CONFIG_SMP 3525 static inline bool load_avg_is_decayed(struct sched_avg *sa) 3526 { 3527 if (sa->load_sum) 3528 return false; 3529 3530 if (sa->util_sum) 3531 return false; 3532 3533 if (sa->runnable_sum) 3534 return false; 3535 3536 /* 3537 * _avg must be null when _sum are null because _avg = _sum / divider 3538 * Make sure that rounding and/or propagation of PELT values never 3539 * break this. 3540 */ 3541 SCHED_WARN_ON(sa->load_avg || 3542 sa->util_avg || 3543 sa->runnable_avg); 3544 3545 return true; 3546 } 3547 3548 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3549 { 3550 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 3551 cfs_rq->last_update_time_copy); 3552 } 3553 #ifdef CONFIG_FAIR_GROUP_SCHED 3554 /* 3555 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 3556 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 3557 * bottom-up, we only have to test whether the cfs_rq before us on the list 3558 * is our child. 3559 * If cfs_rq is not on the list, test whether a child needs its to be added to 3560 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 3561 */ 3562 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 3563 { 3564 struct cfs_rq *prev_cfs_rq; 3565 struct list_head *prev; 3566 3567 if (cfs_rq->on_list) { 3568 prev = cfs_rq->leaf_cfs_rq_list.prev; 3569 } else { 3570 struct rq *rq = rq_of(cfs_rq); 3571 3572 prev = rq->tmp_alone_branch; 3573 } 3574 3575 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 3576 3577 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 3578 } 3579 3580 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 3581 { 3582 if (cfs_rq->load.weight) 3583 return false; 3584 3585 if (!load_avg_is_decayed(&cfs_rq->avg)) 3586 return false; 3587 3588 if (child_cfs_rq_on_list(cfs_rq)) 3589 return false; 3590 3591 return true; 3592 } 3593 3594 /** 3595 * update_tg_load_avg - update the tg's load avg 3596 * @cfs_rq: the cfs_rq whose avg changed 3597 * 3598 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3599 * However, because tg->load_avg is a global value there are performance 3600 * considerations. 3601 * 3602 * In order to avoid having to look at the other cfs_rq's, we use a 3603 * differential update where we store the last value we propagated. This in 3604 * turn allows skipping updates if the differential is 'small'. 3605 * 3606 * Updating tg's load_avg is necessary before update_cfs_share(). 3607 */ 3608 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3609 { 3610 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3611 3612 /* 3613 * No need to update load_avg for root_task_group as it is not used. 3614 */ 3615 if (cfs_rq->tg == &root_task_group) 3616 return; 3617 3618 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3619 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3620 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3621 } 3622 } 3623 3624 /* 3625 * Called within set_task_rq() right before setting a task's CPU. The 3626 * caller only guarantees p->pi_lock is held; no other assumptions, 3627 * including the state of rq->lock, should be made. 3628 */ 3629 void set_task_rq_fair(struct sched_entity *se, 3630 struct cfs_rq *prev, struct cfs_rq *next) 3631 { 3632 u64 p_last_update_time; 3633 u64 n_last_update_time; 3634 3635 if (!sched_feat(ATTACH_AGE_LOAD)) 3636 return; 3637 3638 /* 3639 * We are supposed to update the task to "current" time, then its up to 3640 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3641 * getting what current time is, so simply throw away the out-of-date 3642 * time. This will result in the wakee task is less decayed, but giving 3643 * the wakee more load sounds not bad. 3644 */ 3645 if (!(se->avg.last_update_time && prev)) 3646 return; 3647 3648 p_last_update_time = cfs_rq_last_update_time(prev); 3649 n_last_update_time = cfs_rq_last_update_time(next); 3650 3651 __update_load_avg_blocked_se(p_last_update_time, se); 3652 se->avg.last_update_time = n_last_update_time; 3653 } 3654 3655 /* 3656 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3657 * propagate its contribution. The key to this propagation is the invariant 3658 * that for each group: 3659 * 3660 * ge->avg == grq->avg (1) 3661 * 3662 * _IFF_ we look at the pure running and runnable sums. Because they 3663 * represent the very same entity, just at different points in the hierarchy. 3664 * 3665 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3666 * and simply copies the running/runnable sum over (but still wrong, because 3667 * the group entity and group rq do not have their PELT windows aligned). 3668 * 3669 * However, update_tg_cfs_load() is more complex. So we have: 3670 * 3671 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3672 * 3673 * And since, like util, the runnable part should be directly transferable, 3674 * the following would _appear_ to be the straight forward approach: 3675 * 3676 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3677 * 3678 * And per (1) we have: 3679 * 3680 * ge->avg.runnable_avg == grq->avg.runnable_avg 3681 * 3682 * Which gives: 3683 * 3684 * ge->load.weight * grq->avg.load_avg 3685 * ge->avg.load_avg = ----------------------------------- (4) 3686 * grq->load.weight 3687 * 3688 * Except that is wrong! 3689 * 3690 * Because while for entities historical weight is not important and we 3691 * really only care about our future and therefore can consider a pure 3692 * runnable sum, runqueues can NOT do this. 3693 * 3694 * We specifically want runqueues to have a load_avg that includes 3695 * historical weights. Those represent the blocked load, the load we expect 3696 * to (shortly) return to us. This only works by keeping the weights as 3697 * integral part of the sum. We therefore cannot decompose as per (3). 3698 * 3699 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3700 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3701 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3702 * runnable section of these tasks overlap (or not). If they were to perfectly 3703 * align the rq as a whole would be runnable 2/3 of the time. If however we 3704 * always have at least 1 runnable task, the rq as a whole is always runnable. 3705 * 3706 * So we'll have to approximate.. :/ 3707 * 3708 * Given the constraint: 3709 * 3710 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3711 * 3712 * We can construct a rule that adds runnable to a rq by assuming minimal 3713 * overlap. 3714 * 3715 * On removal, we'll assume each task is equally runnable; which yields: 3716 * 3717 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3718 * 3719 * XXX: only do this for the part of runnable > running ? 3720 * 3721 */ 3722 static inline void 3723 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3724 { 3725 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 3726 u32 new_sum, divider; 3727 3728 /* Nothing to update */ 3729 if (!delta_avg) 3730 return; 3731 3732 /* 3733 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3734 * See ___update_load_avg() for details. 3735 */ 3736 divider = get_pelt_divider(&cfs_rq->avg); 3737 3738 3739 /* Set new sched_entity's utilization */ 3740 se->avg.util_avg = gcfs_rq->avg.util_avg; 3741 new_sum = se->avg.util_avg * divider; 3742 delta_sum = (long)new_sum - (long)se->avg.util_sum; 3743 se->avg.util_sum = new_sum; 3744 3745 /* Update parent cfs_rq utilization */ 3746 add_positive(&cfs_rq->avg.util_avg, delta_avg); 3747 add_positive(&cfs_rq->avg.util_sum, delta_sum); 3748 3749 /* See update_cfs_rq_load_avg() */ 3750 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 3751 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 3752 } 3753 3754 static inline void 3755 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3756 { 3757 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3758 u32 new_sum, divider; 3759 3760 /* Nothing to update */ 3761 if (!delta_avg) 3762 return; 3763 3764 /* 3765 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3766 * See ___update_load_avg() for details. 3767 */ 3768 divider = get_pelt_divider(&cfs_rq->avg); 3769 3770 /* Set new sched_entity's runnable */ 3771 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3772 new_sum = se->avg.runnable_avg * divider; 3773 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 3774 se->avg.runnable_sum = new_sum; 3775 3776 /* Update parent cfs_rq runnable */ 3777 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 3778 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 3779 /* See update_cfs_rq_load_avg() */ 3780 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 3781 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 3782 } 3783 3784 static inline void 3785 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3786 { 3787 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3788 unsigned long load_avg; 3789 u64 load_sum = 0; 3790 s64 delta_sum; 3791 u32 divider; 3792 3793 if (!runnable_sum) 3794 return; 3795 3796 gcfs_rq->prop_runnable_sum = 0; 3797 3798 /* 3799 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3800 * See ___update_load_avg() for details. 3801 */ 3802 divider = get_pelt_divider(&cfs_rq->avg); 3803 3804 if (runnable_sum >= 0) { 3805 /* 3806 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3807 * the CPU is saturated running == runnable. 3808 */ 3809 runnable_sum += se->avg.load_sum; 3810 runnable_sum = min_t(long, runnable_sum, divider); 3811 } else { 3812 /* 3813 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3814 * assuming all tasks are equally runnable. 3815 */ 3816 if (scale_load_down(gcfs_rq->load.weight)) { 3817 load_sum = div_u64(gcfs_rq->avg.load_sum, 3818 scale_load_down(gcfs_rq->load.weight)); 3819 } 3820 3821 /* But make sure to not inflate se's runnable */ 3822 runnable_sum = min(se->avg.load_sum, load_sum); 3823 } 3824 3825 /* 3826 * runnable_sum can't be lower than running_sum 3827 * Rescale running sum to be in the same range as runnable sum 3828 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3829 * runnable_sum is in [0 : LOAD_AVG_MAX] 3830 */ 3831 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3832 runnable_sum = max(runnable_sum, running_sum); 3833 3834 load_sum = se_weight(se) * runnable_sum; 3835 load_avg = div_u64(load_sum, divider); 3836 3837 delta_avg = load_avg - se->avg.load_avg; 3838 if (!delta_avg) 3839 return; 3840 3841 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3842 3843 se->avg.load_sum = runnable_sum; 3844 se->avg.load_avg = load_avg; 3845 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3846 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3847 /* See update_cfs_rq_load_avg() */ 3848 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3849 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3850 } 3851 3852 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3853 { 3854 cfs_rq->propagate = 1; 3855 cfs_rq->prop_runnable_sum += runnable_sum; 3856 } 3857 3858 /* Update task and its cfs_rq load average */ 3859 static inline int propagate_entity_load_avg(struct sched_entity *se) 3860 { 3861 struct cfs_rq *cfs_rq, *gcfs_rq; 3862 3863 if (entity_is_task(se)) 3864 return 0; 3865 3866 gcfs_rq = group_cfs_rq(se); 3867 if (!gcfs_rq->propagate) 3868 return 0; 3869 3870 gcfs_rq->propagate = 0; 3871 3872 cfs_rq = cfs_rq_of(se); 3873 3874 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3875 3876 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3877 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3878 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3879 3880 trace_pelt_cfs_tp(cfs_rq); 3881 trace_pelt_se_tp(se); 3882 3883 return 1; 3884 } 3885 3886 /* 3887 * Check if we need to update the load and the utilization of a blocked 3888 * group_entity: 3889 */ 3890 static inline bool skip_blocked_update(struct sched_entity *se) 3891 { 3892 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3893 3894 /* 3895 * If sched_entity still have not zero load or utilization, we have to 3896 * decay it: 3897 */ 3898 if (se->avg.load_avg || se->avg.util_avg) 3899 return false; 3900 3901 /* 3902 * If there is a pending propagation, we have to update the load and 3903 * the utilization of the sched_entity: 3904 */ 3905 if (gcfs_rq->propagate) 3906 return false; 3907 3908 /* 3909 * Otherwise, the load and the utilization of the sched_entity is 3910 * already zero and there is no pending propagation, so it will be a 3911 * waste of time to try to decay it: 3912 */ 3913 return true; 3914 } 3915 3916 #else /* CONFIG_FAIR_GROUP_SCHED */ 3917 3918 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 3919 3920 static inline int propagate_entity_load_avg(struct sched_entity *se) 3921 { 3922 return 0; 3923 } 3924 3925 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3926 3927 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3928 3929 #ifdef CONFIG_NO_HZ_COMMON 3930 static inline void migrate_se_pelt_lag(struct sched_entity *se) 3931 { 3932 u64 throttled = 0, now, lut; 3933 struct cfs_rq *cfs_rq; 3934 struct rq *rq; 3935 bool is_idle; 3936 3937 if (load_avg_is_decayed(&se->avg)) 3938 return; 3939 3940 cfs_rq = cfs_rq_of(se); 3941 rq = rq_of(cfs_rq); 3942 3943 rcu_read_lock(); 3944 is_idle = is_idle_task(rcu_dereference(rq->curr)); 3945 rcu_read_unlock(); 3946 3947 /* 3948 * The lag estimation comes with a cost we don't want to pay all the 3949 * time. Hence, limiting to the case where the source CPU is idle and 3950 * we know we are at the greatest risk to have an outdated clock. 3951 */ 3952 if (!is_idle) 3953 return; 3954 3955 /* 3956 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 3957 * 3958 * last_update_time (the cfs_rq's last_update_time) 3959 * = cfs_rq_clock_pelt()@cfs_rq_idle 3960 * = rq_clock_pelt()@cfs_rq_idle 3961 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 3962 * 3963 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 3964 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 3965 * 3966 * rq_idle_lag (delta between now and rq's update) 3967 * = sched_clock_cpu() - rq_clock()@rq_idle 3968 * 3969 * We can then write: 3970 * 3971 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 3972 * sched_clock_cpu() - rq_clock()@rq_idle 3973 * Where: 3974 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 3975 * rq_clock()@rq_idle is rq->clock_idle 3976 * cfs->throttled_clock_pelt_time@cfs_rq_idle 3977 * is cfs_rq->throttled_pelt_idle 3978 */ 3979 3980 #ifdef CONFIG_CFS_BANDWIDTH 3981 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 3982 /* The clock has been stopped for throttling */ 3983 if (throttled == U64_MAX) 3984 return; 3985 #endif 3986 now = u64_u32_load(rq->clock_pelt_idle); 3987 /* 3988 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 3989 * is observed the old clock_pelt_idle value and the new clock_idle, 3990 * which lead to an underestimation. The opposite would lead to an 3991 * overestimation. 3992 */ 3993 smp_rmb(); 3994 lut = cfs_rq_last_update_time(cfs_rq); 3995 3996 now -= throttled; 3997 if (now < lut) 3998 /* 3999 * cfs_rq->avg.last_update_time is more recent than our 4000 * estimation, let's use it. 4001 */ 4002 now = lut; 4003 else 4004 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4005 4006 __update_load_avg_blocked_se(now, se); 4007 } 4008 #else 4009 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4010 #endif 4011 4012 /** 4013 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4014 * @now: current time, as per cfs_rq_clock_pelt() 4015 * @cfs_rq: cfs_rq to update 4016 * 4017 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4018 * avg. The immediate corollary is that all (fair) tasks must be attached. 4019 * 4020 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4021 * 4022 * Return: true if the load decayed or we removed load. 4023 * 4024 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4025 * call update_tg_load_avg() when this function returns true. 4026 */ 4027 static inline int 4028 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4029 { 4030 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4031 struct sched_avg *sa = &cfs_rq->avg; 4032 int decayed = 0; 4033 4034 if (cfs_rq->removed.nr) { 4035 unsigned long r; 4036 u32 divider = get_pelt_divider(&cfs_rq->avg); 4037 4038 raw_spin_lock(&cfs_rq->removed.lock); 4039 swap(cfs_rq->removed.util_avg, removed_util); 4040 swap(cfs_rq->removed.load_avg, removed_load); 4041 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4042 cfs_rq->removed.nr = 0; 4043 raw_spin_unlock(&cfs_rq->removed.lock); 4044 4045 r = removed_load; 4046 sub_positive(&sa->load_avg, r); 4047 sub_positive(&sa->load_sum, r * divider); 4048 /* See sa->util_sum below */ 4049 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4050 4051 r = removed_util; 4052 sub_positive(&sa->util_avg, r); 4053 sub_positive(&sa->util_sum, r * divider); 4054 /* 4055 * Because of rounding, se->util_sum might ends up being +1 more than 4056 * cfs->util_sum. Although this is not a problem by itself, detaching 4057 * a lot of tasks with the rounding problem between 2 updates of 4058 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4059 * cfs_util_avg is not. 4060 * Check that util_sum is still above its lower bound for the new 4061 * util_avg. Given that period_contrib might have moved since the last 4062 * sync, we are only sure that util_sum must be above or equal to 4063 * util_avg * minimum possible divider 4064 */ 4065 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4066 4067 r = removed_runnable; 4068 sub_positive(&sa->runnable_avg, r); 4069 sub_positive(&sa->runnable_sum, r * divider); 4070 /* See sa->util_sum above */ 4071 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4072 sa->runnable_avg * PELT_MIN_DIVIDER); 4073 4074 /* 4075 * removed_runnable is the unweighted version of removed_load so we 4076 * can use it to estimate removed_load_sum. 4077 */ 4078 add_tg_cfs_propagate(cfs_rq, 4079 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4080 4081 decayed = 1; 4082 } 4083 4084 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4085 u64_u32_store_copy(sa->last_update_time, 4086 cfs_rq->last_update_time_copy, 4087 sa->last_update_time); 4088 return decayed; 4089 } 4090 4091 /** 4092 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4093 * @cfs_rq: cfs_rq to attach to 4094 * @se: sched_entity to attach 4095 * 4096 * Must call update_cfs_rq_load_avg() before this, since we rely on 4097 * cfs_rq->avg.last_update_time being current. 4098 */ 4099 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4100 { 4101 /* 4102 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4103 * See ___update_load_avg() for details. 4104 */ 4105 u32 divider = get_pelt_divider(&cfs_rq->avg); 4106 4107 /* 4108 * When we attach the @se to the @cfs_rq, we must align the decay 4109 * window because without that, really weird and wonderful things can 4110 * happen. 4111 * 4112 * XXX illustrate 4113 */ 4114 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4115 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4116 4117 /* 4118 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4119 * period_contrib. This isn't strictly correct, but since we're 4120 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4121 * _sum a little. 4122 */ 4123 se->avg.util_sum = se->avg.util_avg * divider; 4124 4125 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4126 4127 se->avg.load_sum = se->avg.load_avg * divider; 4128 if (se_weight(se) < se->avg.load_sum) 4129 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4130 else 4131 se->avg.load_sum = 1; 4132 4133 enqueue_load_avg(cfs_rq, se); 4134 cfs_rq->avg.util_avg += se->avg.util_avg; 4135 cfs_rq->avg.util_sum += se->avg.util_sum; 4136 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4137 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4138 4139 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4140 4141 cfs_rq_util_change(cfs_rq, 0); 4142 4143 trace_pelt_cfs_tp(cfs_rq); 4144 } 4145 4146 /** 4147 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4148 * @cfs_rq: cfs_rq to detach from 4149 * @se: sched_entity to detach 4150 * 4151 * Must call update_cfs_rq_load_avg() before this, since we rely on 4152 * cfs_rq->avg.last_update_time being current. 4153 */ 4154 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4155 { 4156 dequeue_load_avg(cfs_rq, se); 4157 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4158 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4159 /* See update_cfs_rq_load_avg() */ 4160 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4161 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4162 4163 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4164 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4165 /* See update_cfs_rq_load_avg() */ 4166 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4167 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4168 4169 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4170 4171 cfs_rq_util_change(cfs_rq, 0); 4172 4173 trace_pelt_cfs_tp(cfs_rq); 4174 } 4175 4176 /* 4177 * Optional action to be done while updating the load average 4178 */ 4179 #define UPDATE_TG 0x1 4180 #define SKIP_AGE_LOAD 0x2 4181 #define DO_ATTACH 0x4 4182 #define DO_DETACH 0x8 4183 4184 /* Update task and its cfs_rq load average */ 4185 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4186 { 4187 u64 now = cfs_rq_clock_pelt(cfs_rq); 4188 int decayed; 4189 4190 /* 4191 * Track task load average for carrying it to new CPU after migrated, and 4192 * track group sched_entity load average for task_h_load calc in migration 4193 */ 4194 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4195 __update_load_avg_se(now, cfs_rq, se); 4196 4197 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4198 decayed |= propagate_entity_load_avg(se); 4199 4200 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4201 4202 /* 4203 * DO_ATTACH means we're here from enqueue_entity(). 4204 * !last_update_time means we've passed through 4205 * migrate_task_rq_fair() indicating we migrated. 4206 * 4207 * IOW we're enqueueing a task on a new CPU. 4208 */ 4209 attach_entity_load_avg(cfs_rq, se); 4210 update_tg_load_avg(cfs_rq); 4211 4212 } else if (flags & DO_DETACH) { 4213 /* 4214 * DO_DETACH means we're here from dequeue_entity() 4215 * and we are migrating task out of the CPU. 4216 */ 4217 detach_entity_load_avg(cfs_rq, se); 4218 update_tg_load_avg(cfs_rq); 4219 } else if (decayed) { 4220 cfs_rq_util_change(cfs_rq, 0); 4221 4222 if (flags & UPDATE_TG) 4223 update_tg_load_avg(cfs_rq); 4224 } 4225 } 4226 4227 /* 4228 * Synchronize entity load avg of dequeued entity without locking 4229 * the previous rq. 4230 */ 4231 static void sync_entity_load_avg(struct sched_entity *se) 4232 { 4233 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4234 u64 last_update_time; 4235 4236 last_update_time = cfs_rq_last_update_time(cfs_rq); 4237 __update_load_avg_blocked_se(last_update_time, se); 4238 } 4239 4240 /* 4241 * Task first catches up with cfs_rq, and then subtract 4242 * itself from the cfs_rq (task must be off the queue now). 4243 */ 4244 static void remove_entity_load_avg(struct sched_entity *se) 4245 { 4246 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4247 unsigned long flags; 4248 4249 /* 4250 * tasks cannot exit without having gone through wake_up_new_task() -> 4251 * enqueue_task_fair() which will have added things to the cfs_rq, 4252 * so we can remove unconditionally. 4253 */ 4254 4255 sync_entity_load_avg(se); 4256 4257 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4258 ++cfs_rq->removed.nr; 4259 cfs_rq->removed.util_avg += se->avg.util_avg; 4260 cfs_rq->removed.load_avg += se->avg.load_avg; 4261 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4262 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4263 } 4264 4265 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4266 { 4267 return cfs_rq->avg.runnable_avg; 4268 } 4269 4270 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4271 { 4272 return cfs_rq->avg.load_avg; 4273 } 4274 4275 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 4276 4277 static inline unsigned long task_util(struct task_struct *p) 4278 { 4279 return READ_ONCE(p->se.avg.util_avg); 4280 } 4281 4282 static inline unsigned long _task_util_est(struct task_struct *p) 4283 { 4284 struct util_est ue = READ_ONCE(p->se.avg.util_est); 4285 4286 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 4287 } 4288 4289 static inline unsigned long task_util_est(struct task_struct *p) 4290 { 4291 return max(task_util(p), _task_util_est(p)); 4292 } 4293 4294 #ifdef CONFIG_UCLAMP_TASK 4295 static inline unsigned long uclamp_task_util(struct task_struct *p, 4296 unsigned long uclamp_min, 4297 unsigned long uclamp_max) 4298 { 4299 return clamp(task_util_est(p), uclamp_min, uclamp_max); 4300 } 4301 #else 4302 static inline unsigned long uclamp_task_util(struct task_struct *p, 4303 unsigned long uclamp_min, 4304 unsigned long uclamp_max) 4305 { 4306 return task_util_est(p); 4307 } 4308 #endif 4309 4310 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4311 struct task_struct *p) 4312 { 4313 unsigned int enqueued; 4314 4315 if (!sched_feat(UTIL_EST)) 4316 return; 4317 4318 /* Update root cfs_rq's estimated utilization */ 4319 enqueued = cfs_rq->avg.util_est.enqueued; 4320 enqueued += _task_util_est(p); 4321 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4322 4323 trace_sched_util_est_cfs_tp(cfs_rq); 4324 } 4325 4326 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4327 struct task_struct *p) 4328 { 4329 unsigned int enqueued; 4330 4331 if (!sched_feat(UTIL_EST)) 4332 return; 4333 4334 /* Update root cfs_rq's estimated utilization */ 4335 enqueued = cfs_rq->avg.util_est.enqueued; 4336 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4337 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4338 4339 trace_sched_util_est_cfs_tp(cfs_rq); 4340 } 4341 4342 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4343 4344 /* 4345 * Check if a (signed) value is within a specified (unsigned) margin, 4346 * based on the observation that: 4347 * 4348 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4349 * 4350 * NOTE: this only works when value + margin < INT_MAX. 4351 */ 4352 static inline bool within_margin(int value, int margin) 4353 { 4354 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4355 } 4356 4357 static inline void util_est_update(struct cfs_rq *cfs_rq, 4358 struct task_struct *p, 4359 bool task_sleep) 4360 { 4361 long last_ewma_diff, last_enqueued_diff; 4362 struct util_est ue; 4363 4364 if (!sched_feat(UTIL_EST)) 4365 return; 4366 4367 /* 4368 * Skip update of task's estimated utilization when the task has not 4369 * yet completed an activation, e.g. being migrated. 4370 */ 4371 if (!task_sleep) 4372 return; 4373 4374 /* 4375 * If the PELT values haven't changed since enqueue time, 4376 * skip the util_est update. 4377 */ 4378 ue = p->se.avg.util_est; 4379 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4380 return; 4381 4382 last_enqueued_diff = ue.enqueued; 4383 4384 /* 4385 * Reset EWMA on utilization increases, the moving average is used only 4386 * to smooth utilization decreases. 4387 */ 4388 ue.enqueued = task_util(p); 4389 if (sched_feat(UTIL_EST_FASTUP)) { 4390 if (ue.ewma < ue.enqueued) { 4391 ue.ewma = ue.enqueued; 4392 goto done; 4393 } 4394 } 4395 4396 /* 4397 * Skip update of task's estimated utilization when its members are 4398 * already ~1% close to its last activation value. 4399 */ 4400 last_ewma_diff = ue.enqueued - ue.ewma; 4401 last_enqueued_diff -= ue.enqueued; 4402 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4403 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4404 goto done; 4405 4406 return; 4407 } 4408 4409 /* 4410 * To avoid overestimation of actual task utilization, skip updates if 4411 * we cannot grant there is idle time in this CPU. 4412 */ 4413 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4414 return; 4415 4416 /* 4417 * Update Task's estimated utilization 4418 * 4419 * When *p completes an activation we can consolidate another sample 4420 * of the task size. This is done by storing the current PELT value 4421 * as ue.enqueued and by using this value to update the Exponential 4422 * Weighted Moving Average (EWMA): 4423 * 4424 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4425 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4426 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4427 * = w * ( last_ewma_diff ) + ewma(t-1) 4428 * = w * (last_ewma_diff + ewma(t-1) / w) 4429 * 4430 * Where 'w' is the weight of new samples, which is configured to be 4431 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4432 */ 4433 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4434 ue.ewma += last_ewma_diff; 4435 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4436 done: 4437 ue.enqueued |= UTIL_AVG_UNCHANGED; 4438 WRITE_ONCE(p->se.avg.util_est, ue); 4439 4440 trace_sched_util_est_se_tp(&p->se); 4441 } 4442 4443 static inline int util_fits_cpu(unsigned long util, 4444 unsigned long uclamp_min, 4445 unsigned long uclamp_max, 4446 int cpu) 4447 { 4448 unsigned long capacity_orig, capacity_orig_thermal; 4449 unsigned long capacity = capacity_of(cpu); 4450 bool fits, uclamp_max_fits; 4451 4452 /* 4453 * Check if the real util fits without any uclamp boost/cap applied. 4454 */ 4455 fits = fits_capacity(util, capacity); 4456 4457 if (!uclamp_is_used()) 4458 return fits; 4459 4460 /* 4461 * We must use capacity_orig_of() for comparing against uclamp_min and 4462 * uclamp_max. We only care about capacity pressure (by using 4463 * capacity_of()) for comparing against the real util. 4464 * 4465 * If a task is boosted to 1024 for example, we don't want a tiny 4466 * pressure to skew the check whether it fits a CPU or not. 4467 * 4468 * Similarly if a task is capped to capacity_orig_of(little_cpu), it 4469 * should fit a little cpu even if there's some pressure. 4470 * 4471 * Only exception is for thermal pressure since it has a direct impact 4472 * on available OPP of the system. 4473 * 4474 * We honour it for uclamp_min only as a drop in performance level 4475 * could result in not getting the requested minimum performance level. 4476 * 4477 * For uclamp_max, we can tolerate a drop in performance level as the 4478 * goal is to cap the task. So it's okay if it's getting less. 4479 */ 4480 capacity_orig = capacity_orig_of(cpu); 4481 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu); 4482 4483 /* 4484 * We want to force a task to fit a cpu as implied by uclamp_max. 4485 * But we do have some corner cases to cater for.. 4486 * 4487 * 4488 * C=z 4489 * | ___ 4490 * | C=y | | 4491 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4492 * | C=x | | | | 4493 * | ___ | | | | 4494 * | | | | | | | (util somewhere in this region) 4495 * | | | | | | | 4496 * | | | | | | | 4497 * +---------------------------------------- 4498 * cpu0 cpu1 cpu2 4499 * 4500 * In the above example if a task is capped to a specific performance 4501 * point, y, then when: 4502 * 4503 * * util = 80% of x then it does not fit on cpu0 and should migrate 4504 * to cpu1 4505 * * util = 80% of y then it is forced to fit on cpu1 to honour 4506 * uclamp_max request. 4507 * 4508 * which is what we're enforcing here. A task always fits if 4509 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 4510 * the normal upmigration rules should withhold still. 4511 * 4512 * Only exception is when we are on max capacity, then we need to be 4513 * careful not to block overutilized state. This is so because: 4514 * 4515 * 1. There's no concept of capping at max_capacity! We can't go 4516 * beyond this performance level anyway. 4517 * 2. The system is being saturated when we're operating near 4518 * max capacity, it doesn't make sense to block overutilized. 4519 */ 4520 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 4521 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 4522 fits = fits || uclamp_max_fits; 4523 4524 /* 4525 * 4526 * C=z 4527 * | ___ (region a, capped, util >= uclamp_max) 4528 * | C=y | | 4529 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4530 * | C=x | | | | 4531 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 4532 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 4533 * | | | | | | | 4534 * | | | | | | | (region c, boosted, util < uclamp_min) 4535 * +---------------------------------------- 4536 * cpu0 cpu1 cpu2 4537 * 4538 * a) If util > uclamp_max, then we're capped, we don't care about 4539 * actual fitness value here. We only care if uclamp_max fits 4540 * capacity without taking margin/pressure into account. 4541 * See comment above. 4542 * 4543 * b) If uclamp_min <= util <= uclamp_max, then the normal 4544 * fits_capacity() rules apply. Except we need to ensure that we 4545 * enforce we remain within uclamp_max, see comment above. 4546 * 4547 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 4548 * need to take into account the boosted value fits the CPU without 4549 * taking margin/pressure into account. 4550 * 4551 * Cases (a) and (b) are handled in the 'fits' variable already. We 4552 * just need to consider an extra check for case (c) after ensuring we 4553 * handle the case uclamp_min > uclamp_max. 4554 */ 4555 uclamp_min = min(uclamp_min, uclamp_max); 4556 if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal)) 4557 return -1; 4558 4559 return fits; 4560 } 4561 4562 static inline int task_fits_cpu(struct task_struct *p, int cpu) 4563 { 4564 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 4565 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 4566 unsigned long util = task_util_est(p); 4567 /* 4568 * Return true only if the cpu fully fits the task requirements, which 4569 * include the utilization but also the performance hints. 4570 */ 4571 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 4572 } 4573 4574 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4575 { 4576 if (!sched_asym_cpucap_active()) 4577 return; 4578 4579 if (!p || p->nr_cpus_allowed == 1) { 4580 rq->misfit_task_load = 0; 4581 return; 4582 } 4583 4584 if (task_fits_cpu(p, cpu_of(rq))) { 4585 rq->misfit_task_load = 0; 4586 return; 4587 } 4588 4589 /* 4590 * Make sure that misfit_task_load will not be null even if 4591 * task_h_load() returns 0. 4592 */ 4593 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4594 } 4595 4596 #else /* CONFIG_SMP */ 4597 4598 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4599 { 4600 return true; 4601 } 4602 4603 #define UPDATE_TG 0x0 4604 #define SKIP_AGE_LOAD 0x0 4605 #define DO_ATTACH 0x0 4606 #define DO_DETACH 0x0 4607 4608 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4609 { 4610 cfs_rq_util_change(cfs_rq, 0); 4611 } 4612 4613 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4614 4615 static inline void 4616 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4617 static inline void 4618 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4619 4620 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4621 { 4622 return 0; 4623 } 4624 4625 static inline void 4626 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4627 4628 static inline void 4629 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4630 4631 static inline void 4632 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4633 bool task_sleep) {} 4634 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4635 4636 #endif /* CONFIG_SMP */ 4637 4638 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4639 { 4640 #ifdef CONFIG_SCHED_DEBUG 4641 s64 d = se->vruntime - cfs_rq->min_vruntime; 4642 4643 if (d < 0) 4644 d = -d; 4645 4646 if (d > 3*sysctl_sched_latency) 4647 schedstat_inc(cfs_rq->nr_spread_over); 4648 #endif 4649 } 4650 4651 static inline bool entity_is_long_sleeper(struct sched_entity *se) 4652 { 4653 struct cfs_rq *cfs_rq; 4654 u64 sleep_time; 4655 4656 if (se->exec_start == 0) 4657 return false; 4658 4659 cfs_rq = cfs_rq_of(se); 4660 4661 sleep_time = rq_clock_task(rq_of(cfs_rq)); 4662 4663 /* Happen while migrating because of clock task divergence */ 4664 if (sleep_time <= se->exec_start) 4665 return false; 4666 4667 sleep_time -= se->exec_start; 4668 if (sleep_time > ((1ULL << 63) / scale_load_down(NICE_0_LOAD))) 4669 return true; 4670 4671 return false; 4672 } 4673 4674 static void 4675 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4676 { 4677 u64 vruntime = cfs_rq->min_vruntime; 4678 4679 /* 4680 * The 'current' period is already promised to the current tasks, 4681 * however the extra weight of the new task will slow them down a 4682 * little, place the new task so that it fits in the slot that 4683 * stays open at the end. 4684 */ 4685 if (initial && sched_feat(START_DEBIT)) 4686 vruntime += sched_vslice(cfs_rq, se); 4687 4688 /* sleeps up to a single latency don't count. */ 4689 if (!initial) { 4690 unsigned long thresh; 4691 4692 if (se_is_idle(se)) 4693 thresh = sysctl_sched_min_granularity; 4694 else 4695 thresh = sysctl_sched_latency; 4696 4697 /* 4698 * Halve their sleep time's effect, to allow 4699 * for a gentler effect of sleepers: 4700 */ 4701 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4702 thresh >>= 1; 4703 4704 vruntime -= thresh; 4705 } 4706 4707 /* 4708 * Pull vruntime of the entity being placed to the base level of 4709 * cfs_rq, to prevent boosting it if placed backwards. 4710 * However, min_vruntime can advance much faster than real time, with 4711 * the extreme being when an entity with the minimal weight always runs 4712 * on the cfs_rq. If the waking entity slept for a long time, its 4713 * vruntime difference from min_vruntime may overflow s64 and their 4714 * comparison may get inversed, so ignore the entity's original 4715 * vruntime in that case. 4716 * The maximal vruntime speedup is given by the ratio of normal to 4717 * minimal weight: scale_load_down(NICE_0_LOAD) / MIN_SHARES. 4718 * When placing a migrated waking entity, its exec_start has been set 4719 * from a different rq. In order to take into account a possible 4720 * divergence between new and prev rq's clocks task because of irq and 4721 * stolen time, we take an additional margin. 4722 * So, cutting off on the sleep time of 4723 * 2^63 / scale_load_down(NICE_0_LOAD) ~ 104 days 4724 * should be safe. 4725 */ 4726 if (entity_is_long_sleeper(se)) 4727 se->vruntime = vruntime; 4728 else 4729 se->vruntime = max_vruntime(se->vruntime, vruntime); 4730 } 4731 4732 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4733 4734 static inline bool cfs_bandwidth_used(void); 4735 4736 /* 4737 * MIGRATION 4738 * 4739 * dequeue 4740 * update_curr() 4741 * update_min_vruntime() 4742 * vruntime -= min_vruntime 4743 * 4744 * enqueue 4745 * update_curr() 4746 * update_min_vruntime() 4747 * vruntime += min_vruntime 4748 * 4749 * this way the vruntime transition between RQs is done when both 4750 * min_vruntime are up-to-date. 4751 * 4752 * WAKEUP (remote) 4753 * 4754 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4755 * vruntime -= min_vruntime 4756 * 4757 * enqueue 4758 * update_curr() 4759 * update_min_vruntime() 4760 * vruntime += min_vruntime 4761 * 4762 * this way we don't have the most up-to-date min_vruntime on the originating 4763 * CPU and an up-to-date min_vruntime on the destination CPU. 4764 */ 4765 4766 static void 4767 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4768 { 4769 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4770 bool curr = cfs_rq->curr == se; 4771 4772 /* 4773 * If we're the current task, we must renormalise before calling 4774 * update_curr(). 4775 */ 4776 if (renorm && curr) 4777 se->vruntime += cfs_rq->min_vruntime; 4778 4779 update_curr(cfs_rq); 4780 4781 /* 4782 * Otherwise, renormalise after, such that we're placed at the current 4783 * moment in time, instead of some random moment in the past. Being 4784 * placed in the past could significantly boost this task to the 4785 * fairness detriment of existing tasks. 4786 */ 4787 if (renorm && !curr) 4788 se->vruntime += cfs_rq->min_vruntime; 4789 4790 /* 4791 * When enqueuing a sched_entity, we must: 4792 * - Update loads to have both entity and cfs_rq synced with now. 4793 * - For group_entity, update its runnable_weight to reflect the new 4794 * h_nr_running of its group cfs_rq. 4795 * - For group_entity, update its weight to reflect the new share of 4796 * its group cfs_rq 4797 * - Add its new weight to cfs_rq->load.weight 4798 */ 4799 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4800 se_update_runnable(se); 4801 update_cfs_group(se); 4802 account_entity_enqueue(cfs_rq, se); 4803 4804 if (flags & ENQUEUE_WAKEUP) 4805 place_entity(cfs_rq, se, 0); 4806 /* Entity has migrated, no longer consider this task hot */ 4807 if (flags & ENQUEUE_MIGRATED) 4808 se->exec_start = 0; 4809 4810 check_schedstat_required(); 4811 update_stats_enqueue_fair(cfs_rq, se, flags); 4812 check_spread(cfs_rq, se); 4813 if (!curr) 4814 __enqueue_entity(cfs_rq, se); 4815 se->on_rq = 1; 4816 4817 if (cfs_rq->nr_running == 1) { 4818 check_enqueue_throttle(cfs_rq); 4819 if (!throttled_hierarchy(cfs_rq)) 4820 list_add_leaf_cfs_rq(cfs_rq); 4821 } 4822 } 4823 4824 static void __clear_buddies_last(struct sched_entity *se) 4825 { 4826 for_each_sched_entity(se) { 4827 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4828 if (cfs_rq->last != se) 4829 break; 4830 4831 cfs_rq->last = NULL; 4832 } 4833 } 4834 4835 static void __clear_buddies_next(struct sched_entity *se) 4836 { 4837 for_each_sched_entity(se) { 4838 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4839 if (cfs_rq->next != se) 4840 break; 4841 4842 cfs_rq->next = NULL; 4843 } 4844 } 4845 4846 static void __clear_buddies_skip(struct sched_entity *se) 4847 { 4848 for_each_sched_entity(se) { 4849 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4850 if (cfs_rq->skip != se) 4851 break; 4852 4853 cfs_rq->skip = NULL; 4854 } 4855 } 4856 4857 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4858 { 4859 if (cfs_rq->last == se) 4860 __clear_buddies_last(se); 4861 4862 if (cfs_rq->next == se) 4863 __clear_buddies_next(se); 4864 4865 if (cfs_rq->skip == se) 4866 __clear_buddies_skip(se); 4867 } 4868 4869 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4870 4871 static void 4872 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4873 { 4874 int action = UPDATE_TG; 4875 4876 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 4877 action |= DO_DETACH; 4878 4879 /* 4880 * Update run-time statistics of the 'current'. 4881 */ 4882 update_curr(cfs_rq); 4883 4884 /* 4885 * When dequeuing a sched_entity, we must: 4886 * - Update loads to have both entity and cfs_rq synced with now. 4887 * - For group_entity, update its runnable_weight to reflect the new 4888 * h_nr_running of its group cfs_rq. 4889 * - Subtract its previous weight from cfs_rq->load.weight. 4890 * - For group entity, update its weight to reflect the new share 4891 * of its group cfs_rq. 4892 */ 4893 update_load_avg(cfs_rq, se, action); 4894 se_update_runnable(se); 4895 4896 update_stats_dequeue_fair(cfs_rq, se, flags); 4897 4898 clear_buddies(cfs_rq, se); 4899 4900 if (se != cfs_rq->curr) 4901 __dequeue_entity(cfs_rq, se); 4902 se->on_rq = 0; 4903 account_entity_dequeue(cfs_rq, se); 4904 4905 /* 4906 * Normalize after update_curr(); which will also have moved 4907 * min_vruntime if @se is the one holding it back. But before doing 4908 * update_min_vruntime() again, which will discount @se's position and 4909 * can move min_vruntime forward still more. 4910 */ 4911 if (!(flags & DEQUEUE_SLEEP)) 4912 se->vruntime -= cfs_rq->min_vruntime; 4913 4914 /* return excess runtime on last dequeue */ 4915 return_cfs_rq_runtime(cfs_rq); 4916 4917 update_cfs_group(se); 4918 4919 /* 4920 * Now advance min_vruntime if @se was the entity holding it back, 4921 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4922 * put back on, and if we advance min_vruntime, we'll be placed back 4923 * further than we started -- ie. we'll be penalized. 4924 */ 4925 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4926 update_min_vruntime(cfs_rq); 4927 4928 if (cfs_rq->nr_running == 0) 4929 update_idle_cfs_rq_clock_pelt(cfs_rq); 4930 } 4931 4932 /* 4933 * Preempt the current task with a newly woken task if needed: 4934 */ 4935 static void 4936 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4937 { 4938 unsigned long ideal_runtime, delta_exec; 4939 struct sched_entity *se; 4940 s64 delta; 4941 4942 /* 4943 * When many tasks blow up the sched_period; it is possible that 4944 * sched_slice() reports unusually large results (when many tasks are 4945 * very light for example). Therefore impose a maximum. 4946 */ 4947 ideal_runtime = min_t(u64, sched_slice(cfs_rq, curr), sysctl_sched_latency); 4948 4949 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4950 if (delta_exec > ideal_runtime) { 4951 resched_curr(rq_of(cfs_rq)); 4952 /* 4953 * The current task ran long enough, ensure it doesn't get 4954 * re-elected due to buddy favours. 4955 */ 4956 clear_buddies(cfs_rq, curr); 4957 return; 4958 } 4959 4960 /* 4961 * Ensure that a task that missed wakeup preemption by a 4962 * narrow margin doesn't have to wait for a full slice. 4963 * This also mitigates buddy induced latencies under load. 4964 */ 4965 if (delta_exec < sysctl_sched_min_granularity) 4966 return; 4967 4968 se = __pick_first_entity(cfs_rq); 4969 delta = curr->vruntime - se->vruntime; 4970 4971 if (delta < 0) 4972 return; 4973 4974 if (delta > ideal_runtime) 4975 resched_curr(rq_of(cfs_rq)); 4976 } 4977 4978 static void 4979 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4980 { 4981 clear_buddies(cfs_rq, se); 4982 4983 /* 'current' is not kept within the tree. */ 4984 if (se->on_rq) { 4985 /* 4986 * Any task has to be enqueued before it get to execute on 4987 * a CPU. So account for the time it spent waiting on the 4988 * runqueue. 4989 */ 4990 update_stats_wait_end_fair(cfs_rq, se); 4991 __dequeue_entity(cfs_rq, se); 4992 update_load_avg(cfs_rq, se, UPDATE_TG); 4993 } 4994 4995 update_stats_curr_start(cfs_rq, se); 4996 cfs_rq->curr = se; 4997 4998 /* 4999 * Track our maximum slice length, if the CPU's load is at 5000 * least twice that of our own weight (i.e. dont track it 5001 * when there are only lesser-weight tasks around): 5002 */ 5003 if (schedstat_enabled() && 5004 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5005 struct sched_statistics *stats; 5006 5007 stats = __schedstats_from_se(se); 5008 __schedstat_set(stats->slice_max, 5009 max((u64)stats->slice_max, 5010 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5011 } 5012 5013 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5014 } 5015 5016 static int 5017 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 5018 5019 /* 5020 * Pick the next process, keeping these things in mind, in this order: 5021 * 1) keep things fair between processes/task groups 5022 * 2) pick the "next" process, since someone really wants that to run 5023 * 3) pick the "last" process, for cache locality 5024 * 4) do not run the "skip" process, if something else is available 5025 */ 5026 static struct sched_entity * 5027 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 5028 { 5029 struct sched_entity *left = __pick_first_entity(cfs_rq); 5030 struct sched_entity *se; 5031 5032 /* 5033 * If curr is set we have to see if its left of the leftmost entity 5034 * still in the tree, provided there was anything in the tree at all. 5035 */ 5036 if (!left || (curr && entity_before(curr, left))) 5037 left = curr; 5038 5039 se = left; /* ideally we run the leftmost entity */ 5040 5041 /* 5042 * Avoid running the skip buddy, if running something else can 5043 * be done without getting too unfair. 5044 */ 5045 if (cfs_rq->skip && cfs_rq->skip == se) { 5046 struct sched_entity *second; 5047 5048 if (se == curr) { 5049 second = __pick_first_entity(cfs_rq); 5050 } else { 5051 second = __pick_next_entity(se); 5052 if (!second || (curr && entity_before(curr, second))) 5053 second = curr; 5054 } 5055 5056 if (second && wakeup_preempt_entity(second, left) < 1) 5057 se = second; 5058 } 5059 5060 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { 5061 /* 5062 * Someone really wants this to run. If it's not unfair, run it. 5063 */ 5064 se = cfs_rq->next; 5065 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { 5066 /* 5067 * Prefer last buddy, try to return the CPU to a preempted task. 5068 */ 5069 se = cfs_rq->last; 5070 } 5071 5072 return se; 5073 } 5074 5075 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5076 5077 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5078 { 5079 /* 5080 * If still on the runqueue then deactivate_task() 5081 * was not called and update_curr() has to be done: 5082 */ 5083 if (prev->on_rq) 5084 update_curr(cfs_rq); 5085 5086 /* throttle cfs_rqs exceeding runtime */ 5087 check_cfs_rq_runtime(cfs_rq); 5088 5089 check_spread(cfs_rq, prev); 5090 5091 if (prev->on_rq) { 5092 update_stats_wait_start_fair(cfs_rq, prev); 5093 /* Put 'current' back into the tree. */ 5094 __enqueue_entity(cfs_rq, prev); 5095 /* in !on_rq case, update occurred at dequeue */ 5096 update_load_avg(cfs_rq, prev, 0); 5097 } 5098 cfs_rq->curr = NULL; 5099 } 5100 5101 static void 5102 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5103 { 5104 /* 5105 * Update run-time statistics of the 'current'. 5106 */ 5107 update_curr(cfs_rq); 5108 5109 /* 5110 * Ensure that runnable average is periodically updated. 5111 */ 5112 update_load_avg(cfs_rq, curr, UPDATE_TG); 5113 update_cfs_group(curr); 5114 5115 #ifdef CONFIG_SCHED_HRTICK 5116 /* 5117 * queued ticks are scheduled to match the slice, so don't bother 5118 * validating it and just reschedule. 5119 */ 5120 if (queued) { 5121 resched_curr(rq_of(cfs_rq)); 5122 return; 5123 } 5124 /* 5125 * don't let the period tick interfere with the hrtick preemption 5126 */ 5127 if (!sched_feat(DOUBLE_TICK) && 5128 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5129 return; 5130 #endif 5131 5132 if (cfs_rq->nr_running > 1) 5133 check_preempt_tick(cfs_rq, curr); 5134 } 5135 5136 5137 /************************************************** 5138 * CFS bandwidth control machinery 5139 */ 5140 5141 #ifdef CONFIG_CFS_BANDWIDTH 5142 5143 #ifdef CONFIG_JUMP_LABEL 5144 static struct static_key __cfs_bandwidth_used; 5145 5146 static inline bool cfs_bandwidth_used(void) 5147 { 5148 return static_key_false(&__cfs_bandwidth_used); 5149 } 5150 5151 void cfs_bandwidth_usage_inc(void) 5152 { 5153 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5154 } 5155 5156 void cfs_bandwidth_usage_dec(void) 5157 { 5158 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5159 } 5160 #else /* CONFIG_JUMP_LABEL */ 5161 static bool cfs_bandwidth_used(void) 5162 { 5163 return true; 5164 } 5165 5166 void cfs_bandwidth_usage_inc(void) {} 5167 void cfs_bandwidth_usage_dec(void) {} 5168 #endif /* CONFIG_JUMP_LABEL */ 5169 5170 /* 5171 * default period for cfs group bandwidth. 5172 * default: 0.1s, units: nanoseconds 5173 */ 5174 static inline u64 default_cfs_period(void) 5175 { 5176 return 100000000ULL; 5177 } 5178 5179 static inline u64 sched_cfs_bandwidth_slice(void) 5180 { 5181 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5182 } 5183 5184 /* 5185 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5186 * directly instead of rq->clock to avoid adding additional synchronization 5187 * around rq->lock. 5188 * 5189 * requires cfs_b->lock 5190 */ 5191 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5192 { 5193 s64 runtime; 5194 5195 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5196 return; 5197 5198 cfs_b->runtime += cfs_b->quota; 5199 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5200 if (runtime > 0) { 5201 cfs_b->burst_time += runtime; 5202 cfs_b->nr_burst++; 5203 } 5204 5205 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5206 cfs_b->runtime_snap = cfs_b->runtime; 5207 } 5208 5209 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5210 { 5211 return &tg->cfs_bandwidth; 5212 } 5213 5214 /* returns 0 on failure to allocate runtime */ 5215 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5216 struct cfs_rq *cfs_rq, u64 target_runtime) 5217 { 5218 u64 min_amount, amount = 0; 5219 5220 lockdep_assert_held(&cfs_b->lock); 5221 5222 /* note: this is a positive sum as runtime_remaining <= 0 */ 5223 min_amount = target_runtime - cfs_rq->runtime_remaining; 5224 5225 if (cfs_b->quota == RUNTIME_INF) 5226 amount = min_amount; 5227 else { 5228 start_cfs_bandwidth(cfs_b); 5229 5230 if (cfs_b->runtime > 0) { 5231 amount = min(cfs_b->runtime, min_amount); 5232 cfs_b->runtime -= amount; 5233 cfs_b->idle = 0; 5234 } 5235 } 5236 5237 cfs_rq->runtime_remaining += amount; 5238 5239 return cfs_rq->runtime_remaining > 0; 5240 } 5241 5242 /* returns 0 on failure to allocate runtime */ 5243 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5244 { 5245 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5246 int ret; 5247 5248 raw_spin_lock(&cfs_b->lock); 5249 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5250 raw_spin_unlock(&cfs_b->lock); 5251 5252 return ret; 5253 } 5254 5255 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5256 { 5257 /* dock delta_exec before expiring quota (as it could span periods) */ 5258 cfs_rq->runtime_remaining -= delta_exec; 5259 5260 if (likely(cfs_rq->runtime_remaining > 0)) 5261 return; 5262 5263 if (cfs_rq->throttled) 5264 return; 5265 /* 5266 * if we're unable to extend our runtime we resched so that the active 5267 * hierarchy can be throttled 5268 */ 5269 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5270 resched_curr(rq_of(cfs_rq)); 5271 } 5272 5273 static __always_inline 5274 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5275 { 5276 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5277 return; 5278 5279 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5280 } 5281 5282 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5283 { 5284 return cfs_bandwidth_used() && cfs_rq->throttled; 5285 } 5286 5287 /* check whether cfs_rq, or any parent, is throttled */ 5288 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5289 { 5290 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5291 } 5292 5293 /* 5294 * Ensure that neither of the group entities corresponding to src_cpu or 5295 * dest_cpu are members of a throttled hierarchy when performing group 5296 * load-balance operations. 5297 */ 5298 static inline int throttled_lb_pair(struct task_group *tg, 5299 int src_cpu, int dest_cpu) 5300 { 5301 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5302 5303 src_cfs_rq = tg->cfs_rq[src_cpu]; 5304 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5305 5306 return throttled_hierarchy(src_cfs_rq) || 5307 throttled_hierarchy(dest_cfs_rq); 5308 } 5309 5310 static int tg_unthrottle_up(struct task_group *tg, void *data) 5311 { 5312 struct rq *rq = data; 5313 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5314 5315 cfs_rq->throttle_count--; 5316 if (!cfs_rq->throttle_count) { 5317 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5318 cfs_rq->throttled_clock_pelt; 5319 5320 /* Add cfs_rq with load or one or more already running entities to the list */ 5321 if (!cfs_rq_is_decayed(cfs_rq)) 5322 list_add_leaf_cfs_rq(cfs_rq); 5323 } 5324 5325 return 0; 5326 } 5327 5328 static int tg_throttle_down(struct task_group *tg, void *data) 5329 { 5330 struct rq *rq = data; 5331 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5332 5333 /* group is entering throttled state, stop time */ 5334 if (!cfs_rq->throttle_count) { 5335 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5336 list_del_leaf_cfs_rq(cfs_rq); 5337 } 5338 cfs_rq->throttle_count++; 5339 5340 return 0; 5341 } 5342 5343 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5344 { 5345 struct rq *rq = rq_of(cfs_rq); 5346 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5347 struct sched_entity *se; 5348 long task_delta, idle_task_delta, dequeue = 1; 5349 5350 raw_spin_lock(&cfs_b->lock); 5351 /* This will start the period timer if necessary */ 5352 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5353 /* 5354 * We have raced with bandwidth becoming available, and if we 5355 * actually throttled the timer might not unthrottle us for an 5356 * entire period. We additionally needed to make sure that any 5357 * subsequent check_cfs_rq_runtime calls agree not to throttle 5358 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5359 * for 1ns of runtime rather than just check cfs_b. 5360 */ 5361 dequeue = 0; 5362 } else { 5363 list_add_tail_rcu(&cfs_rq->throttled_list, 5364 &cfs_b->throttled_cfs_rq); 5365 } 5366 raw_spin_unlock(&cfs_b->lock); 5367 5368 if (!dequeue) 5369 return false; /* Throttle no longer required. */ 5370 5371 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5372 5373 /* freeze hierarchy runnable averages while throttled */ 5374 rcu_read_lock(); 5375 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5376 rcu_read_unlock(); 5377 5378 task_delta = cfs_rq->h_nr_running; 5379 idle_task_delta = cfs_rq->idle_h_nr_running; 5380 for_each_sched_entity(se) { 5381 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5382 /* throttled entity or throttle-on-deactivate */ 5383 if (!se->on_rq) 5384 goto done; 5385 5386 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5387 5388 if (cfs_rq_is_idle(group_cfs_rq(se))) 5389 idle_task_delta = cfs_rq->h_nr_running; 5390 5391 qcfs_rq->h_nr_running -= task_delta; 5392 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5393 5394 if (qcfs_rq->load.weight) { 5395 /* Avoid re-evaluating load for this entity: */ 5396 se = parent_entity(se); 5397 break; 5398 } 5399 } 5400 5401 for_each_sched_entity(se) { 5402 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5403 /* throttled entity or throttle-on-deactivate */ 5404 if (!se->on_rq) 5405 goto done; 5406 5407 update_load_avg(qcfs_rq, se, 0); 5408 se_update_runnable(se); 5409 5410 if (cfs_rq_is_idle(group_cfs_rq(se))) 5411 idle_task_delta = cfs_rq->h_nr_running; 5412 5413 qcfs_rq->h_nr_running -= task_delta; 5414 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5415 } 5416 5417 /* At this point se is NULL and we are at root level*/ 5418 sub_nr_running(rq, task_delta); 5419 5420 done: 5421 /* 5422 * Note: distribution will already see us throttled via the 5423 * throttled-list. rq->lock protects completion. 5424 */ 5425 cfs_rq->throttled = 1; 5426 cfs_rq->throttled_clock = rq_clock(rq); 5427 return true; 5428 } 5429 5430 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5431 { 5432 struct rq *rq = rq_of(cfs_rq); 5433 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5434 struct sched_entity *se; 5435 long task_delta, idle_task_delta; 5436 5437 se = cfs_rq->tg->se[cpu_of(rq)]; 5438 5439 cfs_rq->throttled = 0; 5440 5441 update_rq_clock(rq); 5442 5443 raw_spin_lock(&cfs_b->lock); 5444 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5445 list_del_rcu(&cfs_rq->throttled_list); 5446 raw_spin_unlock(&cfs_b->lock); 5447 5448 /* update hierarchical throttle state */ 5449 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5450 5451 if (!cfs_rq->load.weight) { 5452 if (!cfs_rq->on_list) 5453 return; 5454 /* 5455 * Nothing to run but something to decay (on_list)? 5456 * Complete the branch. 5457 */ 5458 for_each_sched_entity(se) { 5459 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5460 break; 5461 } 5462 goto unthrottle_throttle; 5463 } 5464 5465 task_delta = cfs_rq->h_nr_running; 5466 idle_task_delta = cfs_rq->idle_h_nr_running; 5467 for_each_sched_entity(se) { 5468 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5469 5470 if (se->on_rq) 5471 break; 5472 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5473 5474 if (cfs_rq_is_idle(group_cfs_rq(se))) 5475 idle_task_delta = cfs_rq->h_nr_running; 5476 5477 qcfs_rq->h_nr_running += task_delta; 5478 qcfs_rq->idle_h_nr_running += idle_task_delta; 5479 5480 /* end evaluation on encountering a throttled cfs_rq */ 5481 if (cfs_rq_throttled(qcfs_rq)) 5482 goto unthrottle_throttle; 5483 } 5484 5485 for_each_sched_entity(se) { 5486 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5487 5488 update_load_avg(qcfs_rq, se, UPDATE_TG); 5489 se_update_runnable(se); 5490 5491 if (cfs_rq_is_idle(group_cfs_rq(se))) 5492 idle_task_delta = cfs_rq->h_nr_running; 5493 5494 qcfs_rq->h_nr_running += task_delta; 5495 qcfs_rq->idle_h_nr_running += idle_task_delta; 5496 5497 /* end evaluation on encountering a throttled cfs_rq */ 5498 if (cfs_rq_throttled(qcfs_rq)) 5499 goto unthrottle_throttle; 5500 } 5501 5502 /* At this point se is NULL and we are at root level*/ 5503 add_nr_running(rq, task_delta); 5504 5505 unthrottle_throttle: 5506 assert_list_leaf_cfs_rq(rq); 5507 5508 /* Determine whether we need to wake up potentially idle CPU: */ 5509 if (rq->curr == rq->idle && rq->cfs.nr_running) 5510 resched_curr(rq); 5511 } 5512 5513 #ifdef CONFIG_SMP 5514 static void __cfsb_csd_unthrottle(void *arg) 5515 { 5516 struct cfs_rq *cursor, *tmp; 5517 struct rq *rq = arg; 5518 struct rq_flags rf; 5519 5520 rq_lock(rq, &rf); 5521 5522 /* 5523 * Since we hold rq lock we're safe from concurrent manipulation of 5524 * the CSD list. However, this RCU critical section annotates the 5525 * fact that we pair with sched_free_group_rcu(), so that we cannot 5526 * race with group being freed in the window between removing it 5527 * from the list and advancing to the next entry in the list. 5528 */ 5529 rcu_read_lock(); 5530 5531 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 5532 throttled_csd_list) { 5533 list_del_init(&cursor->throttled_csd_list); 5534 5535 if (cfs_rq_throttled(cursor)) 5536 unthrottle_cfs_rq(cursor); 5537 } 5538 5539 rcu_read_unlock(); 5540 5541 rq_unlock(rq, &rf); 5542 } 5543 5544 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5545 { 5546 struct rq *rq = rq_of(cfs_rq); 5547 bool first; 5548 5549 if (rq == this_rq()) { 5550 unthrottle_cfs_rq(cfs_rq); 5551 return; 5552 } 5553 5554 /* Already enqueued */ 5555 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 5556 return; 5557 5558 first = list_empty(&rq->cfsb_csd_list); 5559 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 5560 if (first) 5561 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 5562 } 5563 #else 5564 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5565 { 5566 unthrottle_cfs_rq(cfs_rq); 5567 } 5568 #endif 5569 5570 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5571 { 5572 lockdep_assert_rq_held(rq_of(cfs_rq)); 5573 5574 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 5575 cfs_rq->runtime_remaining <= 0)) 5576 return; 5577 5578 __unthrottle_cfs_rq_async(cfs_rq); 5579 } 5580 5581 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5582 { 5583 struct cfs_rq *local_unthrottle = NULL; 5584 int this_cpu = smp_processor_id(); 5585 u64 runtime, remaining = 1; 5586 bool throttled = false; 5587 struct cfs_rq *cfs_rq; 5588 struct rq_flags rf; 5589 struct rq *rq; 5590 5591 rcu_read_lock(); 5592 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5593 throttled_list) { 5594 rq = rq_of(cfs_rq); 5595 5596 if (!remaining) { 5597 throttled = true; 5598 break; 5599 } 5600 5601 rq_lock_irqsave(rq, &rf); 5602 if (!cfs_rq_throttled(cfs_rq)) 5603 goto next; 5604 5605 #ifdef CONFIG_SMP 5606 /* Already queued for async unthrottle */ 5607 if (!list_empty(&cfs_rq->throttled_csd_list)) 5608 goto next; 5609 #endif 5610 5611 /* By the above checks, this should never be true */ 5612 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5613 5614 raw_spin_lock(&cfs_b->lock); 5615 runtime = -cfs_rq->runtime_remaining + 1; 5616 if (runtime > cfs_b->runtime) 5617 runtime = cfs_b->runtime; 5618 cfs_b->runtime -= runtime; 5619 remaining = cfs_b->runtime; 5620 raw_spin_unlock(&cfs_b->lock); 5621 5622 cfs_rq->runtime_remaining += runtime; 5623 5624 /* we check whether we're throttled above */ 5625 if (cfs_rq->runtime_remaining > 0) { 5626 if (cpu_of(rq) != this_cpu || 5627 SCHED_WARN_ON(local_unthrottle)) 5628 unthrottle_cfs_rq_async(cfs_rq); 5629 else 5630 local_unthrottle = cfs_rq; 5631 } else { 5632 throttled = true; 5633 } 5634 5635 next: 5636 rq_unlock_irqrestore(rq, &rf); 5637 } 5638 rcu_read_unlock(); 5639 5640 if (local_unthrottle) { 5641 rq = cpu_rq(this_cpu); 5642 rq_lock_irqsave(rq, &rf); 5643 if (cfs_rq_throttled(local_unthrottle)) 5644 unthrottle_cfs_rq(local_unthrottle); 5645 rq_unlock_irqrestore(rq, &rf); 5646 } 5647 5648 return throttled; 5649 } 5650 5651 /* 5652 * Responsible for refilling a task_group's bandwidth and unthrottling its 5653 * cfs_rqs as appropriate. If there has been no activity within the last 5654 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5655 * used to track this state. 5656 */ 5657 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5658 { 5659 int throttled; 5660 5661 /* no need to continue the timer with no bandwidth constraint */ 5662 if (cfs_b->quota == RUNTIME_INF) 5663 goto out_deactivate; 5664 5665 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5666 cfs_b->nr_periods += overrun; 5667 5668 /* Refill extra burst quota even if cfs_b->idle */ 5669 __refill_cfs_bandwidth_runtime(cfs_b); 5670 5671 /* 5672 * idle depends on !throttled (for the case of a large deficit), and if 5673 * we're going inactive then everything else can be deferred 5674 */ 5675 if (cfs_b->idle && !throttled) 5676 goto out_deactivate; 5677 5678 if (!throttled) { 5679 /* mark as potentially idle for the upcoming period */ 5680 cfs_b->idle = 1; 5681 return 0; 5682 } 5683 5684 /* account preceding periods in which throttling occurred */ 5685 cfs_b->nr_throttled += overrun; 5686 5687 /* 5688 * This check is repeated as we release cfs_b->lock while we unthrottle. 5689 */ 5690 while (throttled && cfs_b->runtime > 0) { 5691 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5692 /* we can't nest cfs_b->lock while distributing bandwidth */ 5693 throttled = distribute_cfs_runtime(cfs_b); 5694 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5695 } 5696 5697 /* 5698 * While we are ensured activity in the period following an 5699 * unthrottle, this also covers the case in which the new bandwidth is 5700 * insufficient to cover the existing bandwidth deficit. (Forcing the 5701 * timer to remain active while there are any throttled entities.) 5702 */ 5703 cfs_b->idle = 0; 5704 5705 return 0; 5706 5707 out_deactivate: 5708 return 1; 5709 } 5710 5711 /* a cfs_rq won't donate quota below this amount */ 5712 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5713 /* minimum remaining period time to redistribute slack quota */ 5714 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5715 /* how long we wait to gather additional slack before distributing */ 5716 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5717 5718 /* 5719 * Are we near the end of the current quota period? 5720 * 5721 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5722 * hrtimer base being cleared by hrtimer_start. In the case of 5723 * migrate_hrtimers, base is never cleared, so we are fine. 5724 */ 5725 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5726 { 5727 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5728 s64 remaining; 5729 5730 /* if the call-back is running a quota refresh is already occurring */ 5731 if (hrtimer_callback_running(refresh_timer)) 5732 return 1; 5733 5734 /* is a quota refresh about to occur? */ 5735 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5736 if (remaining < (s64)min_expire) 5737 return 1; 5738 5739 return 0; 5740 } 5741 5742 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5743 { 5744 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5745 5746 /* if there's a quota refresh soon don't bother with slack */ 5747 if (runtime_refresh_within(cfs_b, min_left)) 5748 return; 5749 5750 /* don't push forwards an existing deferred unthrottle */ 5751 if (cfs_b->slack_started) 5752 return; 5753 cfs_b->slack_started = true; 5754 5755 hrtimer_start(&cfs_b->slack_timer, 5756 ns_to_ktime(cfs_bandwidth_slack_period), 5757 HRTIMER_MODE_REL); 5758 } 5759 5760 /* we know any runtime found here is valid as update_curr() precedes return */ 5761 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5762 { 5763 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5764 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5765 5766 if (slack_runtime <= 0) 5767 return; 5768 5769 raw_spin_lock(&cfs_b->lock); 5770 if (cfs_b->quota != RUNTIME_INF) { 5771 cfs_b->runtime += slack_runtime; 5772 5773 /* we are under rq->lock, defer unthrottling using a timer */ 5774 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5775 !list_empty(&cfs_b->throttled_cfs_rq)) 5776 start_cfs_slack_bandwidth(cfs_b); 5777 } 5778 raw_spin_unlock(&cfs_b->lock); 5779 5780 /* even if it's not valid for return we don't want to try again */ 5781 cfs_rq->runtime_remaining -= slack_runtime; 5782 } 5783 5784 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5785 { 5786 if (!cfs_bandwidth_used()) 5787 return; 5788 5789 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5790 return; 5791 5792 __return_cfs_rq_runtime(cfs_rq); 5793 } 5794 5795 /* 5796 * This is done with a timer (instead of inline with bandwidth return) since 5797 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5798 */ 5799 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5800 { 5801 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5802 unsigned long flags; 5803 5804 /* confirm we're still not at a refresh boundary */ 5805 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5806 cfs_b->slack_started = false; 5807 5808 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5809 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5810 return; 5811 } 5812 5813 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5814 runtime = cfs_b->runtime; 5815 5816 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5817 5818 if (!runtime) 5819 return; 5820 5821 distribute_cfs_runtime(cfs_b); 5822 } 5823 5824 /* 5825 * When a group wakes up we want to make sure that its quota is not already 5826 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5827 * runtime as update_curr() throttling can not trigger until it's on-rq. 5828 */ 5829 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5830 { 5831 if (!cfs_bandwidth_used()) 5832 return; 5833 5834 /* an active group must be handled by the update_curr()->put() path */ 5835 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5836 return; 5837 5838 /* ensure the group is not already throttled */ 5839 if (cfs_rq_throttled(cfs_rq)) 5840 return; 5841 5842 /* update runtime allocation */ 5843 account_cfs_rq_runtime(cfs_rq, 0); 5844 if (cfs_rq->runtime_remaining <= 0) 5845 throttle_cfs_rq(cfs_rq); 5846 } 5847 5848 static void sync_throttle(struct task_group *tg, int cpu) 5849 { 5850 struct cfs_rq *pcfs_rq, *cfs_rq; 5851 5852 if (!cfs_bandwidth_used()) 5853 return; 5854 5855 if (!tg->parent) 5856 return; 5857 5858 cfs_rq = tg->cfs_rq[cpu]; 5859 pcfs_rq = tg->parent->cfs_rq[cpu]; 5860 5861 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5862 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 5863 } 5864 5865 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5866 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5867 { 5868 if (!cfs_bandwidth_used()) 5869 return false; 5870 5871 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5872 return false; 5873 5874 /* 5875 * it's possible for a throttled entity to be forced into a running 5876 * state (e.g. set_curr_task), in this case we're finished. 5877 */ 5878 if (cfs_rq_throttled(cfs_rq)) 5879 return true; 5880 5881 return throttle_cfs_rq(cfs_rq); 5882 } 5883 5884 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5885 { 5886 struct cfs_bandwidth *cfs_b = 5887 container_of(timer, struct cfs_bandwidth, slack_timer); 5888 5889 do_sched_cfs_slack_timer(cfs_b); 5890 5891 return HRTIMER_NORESTART; 5892 } 5893 5894 extern const u64 max_cfs_quota_period; 5895 5896 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5897 { 5898 struct cfs_bandwidth *cfs_b = 5899 container_of(timer, struct cfs_bandwidth, period_timer); 5900 unsigned long flags; 5901 int overrun; 5902 int idle = 0; 5903 int count = 0; 5904 5905 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5906 for (;;) { 5907 overrun = hrtimer_forward_now(timer, cfs_b->period); 5908 if (!overrun) 5909 break; 5910 5911 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5912 5913 if (++count > 3) { 5914 u64 new, old = ktime_to_ns(cfs_b->period); 5915 5916 /* 5917 * Grow period by a factor of 2 to avoid losing precision. 5918 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5919 * to fail. 5920 */ 5921 new = old * 2; 5922 if (new < max_cfs_quota_period) { 5923 cfs_b->period = ns_to_ktime(new); 5924 cfs_b->quota *= 2; 5925 cfs_b->burst *= 2; 5926 5927 pr_warn_ratelimited( 5928 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5929 smp_processor_id(), 5930 div_u64(new, NSEC_PER_USEC), 5931 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5932 } else { 5933 pr_warn_ratelimited( 5934 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5935 smp_processor_id(), 5936 div_u64(old, NSEC_PER_USEC), 5937 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5938 } 5939 5940 /* reset count so we don't come right back in here */ 5941 count = 0; 5942 } 5943 } 5944 if (idle) 5945 cfs_b->period_active = 0; 5946 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5947 5948 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5949 } 5950 5951 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5952 { 5953 raw_spin_lock_init(&cfs_b->lock); 5954 cfs_b->runtime = 0; 5955 cfs_b->quota = RUNTIME_INF; 5956 cfs_b->period = ns_to_ktime(default_cfs_period()); 5957 cfs_b->burst = 0; 5958 5959 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5960 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5961 cfs_b->period_timer.function = sched_cfs_period_timer; 5962 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5963 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5964 cfs_b->slack_started = false; 5965 } 5966 5967 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5968 { 5969 cfs_rq->runtime_enabled = 0; 5970 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5971 #ifdef CONFIG_SMP 5972 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 5973 #endif 5974 } 5975 5976 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5977 { 5978 lockdep_assert_held(&cfs_b->lock); 5979 5980 if (cfs_b->period_active) 5981 return; 5982 5983 cfs_b->period_active = 1; 5984 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5985 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5986 } 5987 5988 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5989 { 5990 int __maybe_unused i; 5991 5992 /* init_cfs_bandwidth() was not called */ 5993 if (!cfs_b->throttled_cfs_rq.next) 5994 return; 5995 5996 hrtimer_cancel(&cfs_b->period_timer); 5997 hrtimer_cancel(&cfs_b->slack_timer); 5998 5999 /* 6000 * It is possible that we still have some cfs_rq's pending on a CSD 6001 * list, though this race is very rare. In order for this to occur, we 6002 * must have raced with the last task leaving the group while there 6003 * exist throttled cfs_rq(s), and the period_timer must have queued the 6004 * CSD item but the remote cpu has not yet processed it. To handle this, 6005 * we can simply flush all pending CSD work inline here. We're 6006 * guaranteed at this point that no additional cfs_rq of this group can 6007 * join a CSD list. 6008 */ 6009 #ifdef CONFIG_SMP 6010 for_each_possible_cpu(i) { 6011 struct rq *rq = cpu_rq(i); 6012 unsigned long flags; 6013 6014 if (list_empty(&rq->cfsb_csd_list)) 6015 continue; 6016 6017 local_irq_save(flags); 6018 __cfsb_csd_unthrottle(rq); 6019 local_irq_restore(flags); 6020 } 6021 #endif 6022 } 6023 6024 /* 6025 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6026 * 6027 * The race is harmless, since modifying bandwidth settings of unhooked group 6028 * bits doesn't do much. 6029 */ 6030 6031 /* cpu online callback */ 6032 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6033 { 6034 struct task_group *tg; 6035 6036 lockdep_assert_rq_held(rq); 6037 6038 rcu_read_lock(); 6039 list_for_each_entry_rcu(tg, &task_groups, list) { 6040 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6041 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6042 6043 raw_spin_lock(&cfs_b->lock); 6044 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6045 raw_spin_unlock(&cfs_b->lock); 6046 } 6047 rcu_read_unlock(); 6048 } 6049 6050 /* cpu offline callback */ 6051 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6052 { 6053 struct task_group *tg; 6054 6055 lockdep_assert_rq_held(rq); 6056 6057 rcu_read_lock(); 6058 list_for_each_entry_rcu(tg, &task_groups, list) { 6059 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6060 6061 if (!cfs_rq->runtime_enabled) 6062 continue; 6063 6064 /* 6065 * clock_task is not advancing so we just need to make sure 6066 * there's some valid quota amount 6067 */ 6068 cfs_rq->runtime_remaining = 1; 6069 /* 6070 * Offline rq is schedulable till CPU is completely disabled 6071 * in take_cpu_down(), so we prevent new cfs throttling here. 6072 */ 6073 cfs_rq->runtime_enabled = 0; 6074 6075 if (cfs_rq_throttled(cfs_rq)) 6076 unthrottle_cfs_rq(cfs_rq); 6077 } 6078 rcu_read_unlock(); 6079 } 6080 6081 #else /* CONFIG_CFS_BANDWIDTH */ 6082 6083 static inline bool cfs_bandwidth_used(void) 6084 { 6085 return false; 6086 } 6087 6088 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6089 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6090 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6091 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6092 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6093 6094 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6095 { 6096 return 0; 6097 } 6098 6099 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6100 { 6101 return 0; 6102 } 6103 6104 static inline int throttled_lb_pair(struct task_group *tg, 6105 int src_cpu, int dest_cpu) 6106 { 6107 return 0; 6108 } 6109 6110 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6111 6112 #ifdef CONFIG_FAIR_GROUP_SCHED 6113 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6114 #endif 6115 6116 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6117 { 6118 return NULL; 6119 } 6120 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6121 static inline void update_runtime_enabled(struct rq *rq) {} 6122 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6123 6124 #endif /* CONFIG_CFS_BANDWIDTH */ 6125 6126 /************************************************** 6127 * CFS operations on tasks: 6128 */ 6129 6130 #ifdef CONFIG_SCHED_HRTICK 6131 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6132 { 6133 struct sched_entity *se = &p->se; 6134 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6135 6136 SCHED_WARN_ON(task_rq(p) != rq); 6137 6138 if (rq->cfs.h_nr_running > 1) { 6139 u64 slice = sched_slice(cfs_rq, se); 6140 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6141 s64 delta = slice - ran; 6142 6143 if (delta < 0) { 6144 if (task_current(rq, p)) 6145 resched_curr(rq); 6146 return; 6147 } 6148 hrtick_start(rq, delta); 6149 } 6150 } 6151 6152 /* 6153 * called from enqueue/dequeue and updates the hrtick when the 6154 * current task is from our class and nr_running is low enough 6155 * to matter. 6156 */ 6157 static void hrtick_update(struct rq *rq) 6158 { 6159 struct task_struct *curr = rq->curr; 6160 6161 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6162 return; 6163 6164 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 6165 hrtick_start_fair(rq, curr); 6166 } 6167 #else /* !CONFIG_SCHED_HRTICK */ 6168 static inline void 6169 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6170 { 6171 } 6172 6173 static inline void hrtick_update(struct rq *rq) 6174 { 6175 } 6176 #endif 6177 6178 #ifdef CONFIG_SMP 6179 static inline bool cpu_overutilized(int cpu) 6180 { 6181 unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6182 unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6183 6184 /* Return true only if the utilization doesn't fit CPU's capacity */ 6185 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6186 } 6187 6188 static inline void update_overutilized_status(struct rq *rq) 6189 { 6190 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 6191 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 6192 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 6193 } 6194 } 6195 #else 6196 static inline void update_overutilized_status(struct rq *rq) { } 6197 #endif 6198 6199 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6200 static int sched_idle_rq(struct rq *rq) 6201 { 6202 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6203 rq->nr_running); 6204 } 6205 6206 /* 6207 * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use 6208 * of idle_nr_running, which does not consider idle descendants of normal 6209 * entities. 6210 */ 6211 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq) 6212 { 6213 return cfs_rq->nr_running && 6214 cfs_rq->nr_running == cfs_rq->idle_nr_running; 6215 } 6216 6217 #ifdef CONFIG_SMP 6218 static int sched_idle_cpu(int cpu) 6219 { 6220 return sched_idle_rq(cpu_rq(cpu)); 6221 } 6222 #endif 6223 6224 /* 6225 * The enqueue_task method is called before nr_running is 6226 * increased. Here we update the fair scheduling stats and 6227 * then put the task into the rbtree: 6228 */ 6229 static void 6230 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6231 { 6232 struct cfs_rq *cfs_rq; 6233 struct sched_entity *se = &p->se; 6234 int idle_h_nr_running = task_has_idle_policy(p); 6235 int task_new = !(flags & ENQUEUE_WAKEUP); 6236 6237 /* 6238 * The code below (indirectly) updates schedutil which looks at 6239 * the cfs_rq utilization to select a frequency. 6240 * Let's add the task's estimated utilization to the cfs_rq's 6241 * estimated utilization, before we update schedutil. 6242 */ 6243 util_est_enqueue(&rq->cfs, p); 6244 6245 /* 6246 * If in_iowait is set, the code below may not trigger any cpufreq 6247 * utilization updates, so do it here explicitly with the IOWAIT flag 6248 * passed. 6249 */ 6250 if (p->in_iowait) 6251 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6252 6253 for_each_sched_entity(se) { 6254 if (se->on_rq) 6255 break; 6256 cfs_rq = cfs_rq_of(se); 6257 enqueue_entity(cfs_rq, se, flags); 6258 6259 cfs_rq->h_nr_running++; 6260 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6261 6262 if (cfs_rq_is_idle(cfs_rq)) 6263 idle_h_nr_running = 1; 6264 6265 /* end evaluation on encountering a throttled cfs_rq */ 6266 if (cfs_rq_throttled(cfs_rq)) 6267 goto enqueue_throttle; 6268 6269 flags = ENQUEUE_WAKEUP; 6270 } 6271 6272 for_each_sched_entity(se) { 6273 cfs_rq = cfs_rq_of(se); 6274 6275 update_load_avg(cfs_rq, se, UPDATE_TG); 6276 se_update_runnable(se); 6277 update_cfs_group(se); 6278 6279 cfs_rq->h_nr_running++; 6280 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6281 6282 if (cfs_rq_is_idle(cfs_rq)) 6283 idle_h_nr_running = 1; 6284 6285 /* end evaluation on encountering a throttled cfs_rq */ 6286 if (cfs_rq_throttled(cfs_rq)) 6287 goto enqueue_throttle; 6288 } 6289 6290 /* At this point se is NULL and we are at root level*/ 6291 add_nr_running(rq, 1); 6292 6293 /* 6294 * Since new tasks are assigned an initial util_avg equal to 6295 * half of the spare capacity of their CPU, tiny tasks have the 6296 * ability to cross the overutilized threshold, which will 6297 * result in the load balancer ruining all the task placement 6298 * done by EAS. As a way to mitigate that effect, do not account 6299 * for the first enqueue operation of new tasks during the 6300 * overutilized flag detection. 6301 * 6302 * A better way of solving this problem would be to wait for 6303 * the PELT signals of tasks to converge before taking them 6304 * into account, but that is not straightforward to implement, 6305 * and the following generally works well enough in practice. 6306 */ 6307 if (!task_new) 6308 update_overutilized_status(rq); 6309 6310 enqueue_throttle: 6311 assert_list_leaf_cfs_rq(rq); 6312 6313 hrtick_update(rq); 6314 } 6315 6316 static void set_next_buddy(struct sched_entity *se); 6317 6318 /* 6319 * The dequeue_task method is called before nr_running is 6320 * decreased. We remove the task from the rbtree and 6321 * update the fair scheduling stats: 6322 */ 6323 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6324 { 6325 struct cfs_rq *cfs_rq; 6326 struct sched_entity *se = &p->se; 6327 int task_sleep = flags & DEQUEUE_SLEEP; 6328 int idle_h_nr_running = task_has_idle_policy(p); 6329 bool was_sched_idle = sched_idle_rq(rq); 6330 6331 util_est_dequeue(&rq->cfs, p); 6332 6333 for_each_sched_entity(se) { 6334 cfs_rq = cfs_rq_of(se); 6335 dequeue_entity(cfs_rq, se, flags); 6336 6337 cfs_rq->h_nr_running--; 6338 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6339 6340 if (cfs_rq_is_idle(cfs_rq)) 6341 idle_h_nr_running = 1; 6342 6343 /* end evaluation on encountering a throttled cfs_rq */ 6344 if (cfs_rq_throttled(cfs_rq)) 6345 goto dequeue_throttle; 6346 6347 /* Don't dequeue parent if it has other entities besides us */ 6348 if (cfs_rq->load.weight) { 6349 /* Avoid re-evaluating load for this entity: */ 6350 se = parent_entity(se); 6351 /* 6352 * Bias pick_next to pick a task from this cfs_rq, as 6353 * p is sleeping when it is within its sched_slice. 6354 */ 6355 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 6356 set_next_buddy(se); 6357 break; 6358 } 6359 flags |= DEQUEUE_SLEEP; 6360 } 6361 6362 for_each_sched_entity(se) { 6363 cfs_rq = cfs_rq_of(se); 6364 6365 update_load_avg(cfs_rq, se, UPDATE_TG); 6366 se_update_runnable(se); 6367 update_cfs_group(se); 6368 6369 cfs_rq->h_nr_running--; 6370 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6371 6372 if (cfs_rq_is_idle(cfs_rq)) 6373 idle_h_nr_running = 1; 6374 6375 /* end evaluation on encountering a throttled cfs_rq */ 6376 if (cfs_rq_throttled(cfs_rq)) 6377 goto dequeue_throttle; 6378 6379 } 6380 6381 /* At this point se is NULL and we are at root level*/ 6382 sub_nr_running(rq, 1); 6383 6384 /* balance early to pull high priority tasks */ 6385 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 6386 rq->next_balance = jiffies; 6387 6388 dequeue_throttle: 6389 util_est_update(&rq->cfs, p, task_sleep); 6390 hrtick_update(rq); 6391 } 6392 6393 #ifdef CONFIG_SMP 6394 6395 /* Working cpumask for: load_balance, load_balance_newidle. */ 6396 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6397 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 6398 6399 #ifdef CONFIG_NO_HZ_COMMON 6400 6401 static struct { 6402 cpumask_var_t idle_cpus_mask; 6403 atomic_t nr_cpus; 6404 int has_blocked; /* Idle CPUS has blocked load */ 6405 int needs_update; /* Newly idle CPUs need their next_balance collated */ 6406 unsigned long next_balance; /* in jiffy units */ 6407 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 6408 } nohz ____cacheline_aligned; 6409 6410 #endif /* CONFIG_NO_HZ_COMMON */ 6411 6412 static unsigned long cpu_load(struct rq *rq) 6413 { 6414 return cfs_rq_load_avg(&rq->cfs); 6415 } 6416 6417 /* 6418 * cpu_load_without - compute CPU load without any contributions from *p 6419 * @cpu: the CPU which load is requested 6420 * @p: the task which load should be discounted 6421 * 6422 * The load of a CPU is defined by the load of tasks currently enqueued on that 6423 * CPU as well as tasks which are currently sleeping after an execution on that 6424 * CPU. 6425 * 6426 * This method returns the load of the specified CPU by discounting the load of 6427 * the specified task, whenever the task is currently contributing to the CPU 6428 * load. 6429 */ 6430 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 6431 { 6432 struct cfs_rq *cfs_rq; 6433 unsigned int load; 6434 6435 /* Task has no contribution or is new */ 6436 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6437 return cpu_load(rq); 6438 6439 cfs_rq = &rq->cfs; 6440 load = READ_ONCE(cfs_rq->avg.load_avg); 6441 6442 /* Discount task's util from CPU's util */ 6443 lsub_positive(&load, task_h_load(p)); 6444 6445 return load; 6446 } 6447 6448 static unsigned long cpu_runnable(struct rq *rq) 6449 { 6450 return cfs_rq_runnable_avg(&rq->cfs); 6451 } 6452 6453 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 6454 { 6455 struct cfs_rq *cfs_rq; 6456 unsigned int runnable; 6457 6458 /* Task has no contribution or is new */ 6459 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6460 return cpu_runnable(rq); 6461 6462 cfs_rq = &rq->cfs; 6463 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 6464 6465 /* Discount task's runnable from CPU's runnable */ 6466 lsub_positive(&runnable, p->se.avg.runnable_avg); 6467 6468 return runnable; 6469 } 6470 6471 static unsigned long capacity_of(int cpu) 6472 { 6473 return cpu_rq(cpu)->cpu_capacity; 6474 } 6475 6476 static void record_wakee(struct task_struct *p) 6477 { 6478 /* 6479 * Only decay a single time; tasks that have less then 1 wakeup per 6480 * jiffy will not have built up many flips. 6481 */ 6482 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 6483 current->wakee_flips >>= 1; 6484 current->wakee_flip_decay_ts = jiffies; 6485 } 6486 6487 if (current->last_wakee != p) { 6488 current->last_wakee = p; 6489 current->wakee_flips++; 6490 } 6491 } 6492 6493 /* 6494 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 6495 * 6496 * A waker of many should wake a different task than the one last awakened 6497 * at a frequency roughly N times higher than one of its wakees. 6498 * 6499 * In order to determine whether we should let the load spread vs consolidating 6500 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 6501 * partner, and a factor of lls_size higher frequency in the other. 6502 * 6503 * With both conditions met, we can be relatively sure that the relationship is 6504 * non-monogamous, with partner count exceeding socket size. 6505 * 6506 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 6507 * whatever is irrelevant, spread criteria is apparent partner count exceeds 6508 * socket size. 6509 */ 6510 static int wake_wide(struct task_struct *p) 6511 { 6512 unsigned int master = current->wakee_flips; 6513 unsigned int slave = p->wakee_flips; 6514 int factor = __this_cpu_read(sd_llc_size); 6515 6516 if (master < slave) 6517 swap(master, slave); 6518 if (slave < factor || master < slave * factor) 6519 return 0; 6520 return 1; 6521 } 6522 6523 /* 6524 * The purpose of wake_affine() is to quickly determine on which CPU we can run 6525 * soonest. For the purpose of speed we only consider the waking and previous 6526 * CPU. 6527 * 6528 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 6529 * cache-affine and is (or will be) idle. 6530 * 6531 * wake_affine_weight() - considers the weight to reflect the average 6532 * scheduling latency of the CPUs. This seems to work 6533 * for the overloaded case. 6534 */ 6535 static int 6536 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 6537 { 6538 /* 6539 * If this_cpu is idle, it implies the wakeup is from interrupt 6540 * context. Only allow the move if cache is shared. Otherwise an 6541 * interrupt intensive workload could force all tasks onto one 6542 * node depending on the IO topology or IRQ affinity settings. 6543 * 6544 * If the prev_cpu is idle and cache affine then avoid a migration. 6545 * There is no guarantee that the cache hot data from an interrupt 6546 * is more important than cache hot data on the prev_cpu and from 6547 * a cpufreq perspective, it's better to have higher utilisation 6548 * on one CPU. 6549 */ 6550 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 6551 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 6552 6553 if (sync && cpu_rq(this_cpu)->nr_running == 1) 6554 return this_cpu; 6555 6556 if (available_idle_cpu(prev_cpu)) 6557 return prev_cpu; 6558 6559 return nr_cpumask_bits; 6560 } 6561 6562 static int 6563 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 6564 int this_cpu, int prev_cpu, int sync) 6565 { 6566 s64 this_eff_load, prev_eff_load; 6567 unsigned long task_load; 6568 6569 this_eff_load = cpu_load(cpu_rq(this_cpu)); 6570 6571 if (sync) { 6572 unsigned long current_load = task_h_load(current); 6573 6574 if (current_load > this_eff_load) 6575 return this_cpu; 6576 6577 this_eff_load -= current_load; 6578 } 6579 6580 task_load = task_h_load(p); 6581 6582 this_eff_load += task_load; 6583 if (sched_feat(WA_BIAS)) 6584 this_eff_load *= 100; 6585 this_eff_load *= capacity_of(prev_cpu); 6586 6587 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 6588 prev_eff_load -= task_load; 6589 if (sched_feat(WA_BIAS)) 6590 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 6591 prev_eff_load *= capacity_of(this_cpu); 6592 6593 /* 6594 * If sync, adjust the weight of prev_eff_load such that if 6595 * prev_eff == this_eff that select_idle_sibling() will consider 6596 * stacking the wakee on top of the waker if no other CPU is 6597 * idle. 6598 */ 6599 if (sync) 6600 prev_eff_load += 1; 6601 6602 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 6603 } 6604 6605 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 6606 int this_cpu, int prev_cpu, int sync) 6607 { 6608 int target = nr_cpumask_bits; 6609 6610 if (sched_feat(WA_IDLE)) 6611 target = wake_affine_idle(this_cpu, prev_cpu, sync); 6612 6613 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 6614 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 6615 6616 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 6617 if (target == nr_cpumask_bits) 6618 return prev_cpu; 6619 6620 schedstat_inc(sd->ttwu_move_affine); 6621 schedstat_inc(p->stats.nr_wakeups_affine); 6622 return target; 6623 } 6624 6625 static struct sched_group * 6626 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 6627 6628 /* 6629 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 6630 */ 6631 static int 6632 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 6633 { 6634 unsigned long load, min_load = ULONG_MAX; 6635 unsigned int min_exit_latency = UINT_MAX; 6636 u64 latest_idle_timestamp = 0; 6637 int least_loaded_cpu = this_cpu; 6638 int shallowest_idle_cpu = -1; 6639 int i; 6640 6641 /* Check if we have any choice: */ 6642 if (group->group_weight == 1) 6643 return cpumask_first(sched_group_span(group)); 6644 6645 /* Traverse only the allowed CPUs */ 6646 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 6647 struct rq *rq = cpu_rq(i); 6648 6649 if (!sched_core_cookie_match(rq, p)) 6650 continue; 6651 6652 if (sched_idle_cpu(i)) 6653 return i; 6654 6655 if (available_idle_cpu(i)) { 6656 struct cpuidle_state *idle = idle_get_state(rq); 6657 if (idle && idle->exit_latency < min_exit_latency) { 6658 /* 6659 * We give priority to a CPU whose idle state 6660 * has the smallest exit latency irrespective 6661 * of any idle timestamp. 6662 */ 6663 min_exit_latency = idle->exit_latency; 6664 latest_idle_timestamp = rq->idle_stamp; 6665 shallowest_idle_cpu = i; 6666 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6667 rq->idle_stamp > latest_idle_timestamp) { 6668 /* 6669 * If equal or no active idle state, then 6670 * the most recently idled CPU might have 6671 * a warmer cache. 6672 */ 6673 latest_idle_timestamp = rq->idle_stamp; 6674 shallowest_idle_cpu = i; 6675 } 6676 } else if (shallowest_idle_cpu == -1) { 6677 load = cpu_load(cpu_rq(i)); 6678 if (load < min_load) { 6679 min_load = load; 6680 least_loaded_cpu = i; 6681 } 6682 } 6683 } 6684 6685 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6686 } 6687 6688 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6689 int cpu, int prev_cpu, int sd_flag) 6690 { 6691 int new_cpu = cpu; 6692 6693 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 6694 return prev_cpu; 6695 6696 /* 6697 * We need task's util for cpu_util_without, sync it up to 6698 * prev_cpu's last_update_time. 6699 */ 6700 if (!(sd_flag & SD_BALANCE_FORK)) 6701 sync_entity_load_avg(&p->se); 6702 6703 while (sd) { 6704 struct sched_group *group; 6705 struct sched_domain *tmp; 6706 int weight; 6707 6708 if (!(sd->flags & sd_flag)) { 6709 sd = sd->child; 6710 continue; 6711 } 6712 6713 group = find_idlest_group(sd, p, cpu); 6714 if (!group) { 6715 sd = sd->child; 6716 continue; 6717 } 6718 6719 new_cpu = find_idlest_group_cpu(group, p, cpu); 6720 if (new_cpu == cpu) { 6721 /* Now try balancing at a lower domain level of 'cpu': */ 6722 sd = sd->child; 6723 continue; 6724 } 6725 6726 /* Now try balancing at a lower domain level of 'new_cpu': */ 6727 cpu = new_cpu; 6728 weight = sd->span_weight; 6729 sd = NULL; 6730 for_each_domain(cpu, tmp) { 6731 if (weight <= tmp->span_weight) 6732 break; 6733 if (tmp->flags & sd_flag) 6734 sd = tmp; 6735 } 6736 } 6737 6738 return new_cpu; 6739 } 6740 6741 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 6742 { 6743 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 6744 sched_cpu_cookie_match(cpu_rq(cpu), p)) 6745 return cpu; 6746 6747 return -1; 6748 } 6749 6750 #ifdef CONFIG_SCHED_SMT 6751 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6752 EXPORT_SYMBOL_GPL(sched_smt_present); 6753 6754 static inline void set_idle_cores(int cpu, int val) 6755 { 6756 struct sched_domain_shared *sds; 6757 6758 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6759 if (sds) 6760 WRITE_ONCE(sds->has_idle_cores, val); 6761 } 6762 6763 static inline bool test_idle_cores(int cpu) 6764 { 6765 struct sched_domain_shared *sds; 6766 6767 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6768 if (sds) 6769 return READ_ONCE(sds->has_idle_cores); 6770 6771 return false; 6772 } 6773 6774 /* 6775 * Scans the local SMT mask to see if the entire core is idle, and records this 6776 * information in sd_llc_shared->has_idle_cores. 6777 * 6778 * Since SMT siblings share all cache levels, inspecting this limited remote 6779 * state should be fairly cheap. 6780 */ 6781 void __update_idle_core(struct rq *rq) 6782 { 6783 int core = cpu_of(rq); 6784 int cpu; 6785 6786 rcu_read_lock(); 6787 if (test_idle_cores(core)) 6788 goto unlock; 6789 6790 for_each_cpu(cpu, cpu_smt_mask(core)) { 6791 if (cpu == core) 6792 continue; 6793 6794 if (!available_idle_cpu(cpu)) 6795 goto unlock; 6796 } 6797 6798 set_idle_cores(core, 1); 6799 unlock: 6800 rcu_read_unlock(); 6801 } 6802 6803 /* 6804 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6805 * there are no idle cores left in the system; tracked through 6806 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6807 */ 6808 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6809 { 6810 bool idle = true; 6811 int cpu; 6812 6813 for_each_cpu(cpu, cpu_smt_mask(core)) { 6814 if (!available_idle_cpu(cpu)) { 6815 idle = false; 6816 if (*idle_cpu == -1) { 6817 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 6818 *idle_cpu = cpu; 6819 break; 6820 } 6821 continue; 6822 } 6823 break; 6824 } 6825 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 6826 *idle_cpu = cpu; 6827 } 6828 6829 if (idle) 6830 return core; 6831 6832 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6833 return -1; 6834 } 6835 6836 /* 6837 * Scan the local SMT mask for idle CPUs. 6838 */ 6839 static int select_idle_smt(struct task_struct *p, int target) 6840 { 6841 int cpu; 6842 6843 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 6844 if (cpu == target) 6845 continue; 6846 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6847 return cpu; 6848 } 6849 6850 return -1; 6851 } 6852 6853 #else /* CONFIG_SCHED_SMT */ 6854 6855 static inline void set_idle_cores(int cpu, int val) 6856 { 6857 } 6858 6859 static inline bool test_idle_cores(int cpu) 6860 { 6861 return false; 6862 } 6863 6864 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6865 { 6866 return __select_idle_cpu(core, p); 6867 } 6868 6869 static inline int select_idle_smt(struct task_struct *p, int target) 6870 { 6871 return -1; 6872 } 6873 6874 #endif /* CONFIG_SCHED_SMT */ 6875 6876 /* 6877 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6878 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6879 * average idle time for this rq (as found in rq->avg_idle). 6880 */ 6881 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 6882 { 6883 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 6884 int i, cpu, idle_cpu = -1, nr = INT_MAX; 6885 struct sched_domain_shared *sd_share; 6886 struct rq *this_rq = this_rq(); 6887 int this = smp_processor_id(); 6888 struct sched_domain *this_sd = NULL; 6889 u64 time = 0; 6890 6891 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6892 6893 if (sched_feat(SIS_PROP) && !has_idle_core) { 6894 u64 avg_cost, avg_idle, span_avg; 6895 unsigned long now = jiffies; 6896 6897 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6898 if (!this_sd) 6899 return -1; 6900 6901 /* 6902 * If we're busy, the assumption that the last idle period 6903 * predicts the future is flawed; age away the remaining 6904 * predicted idle time. 6905 */ 6906 if (unlikely(this_rq->wake_stamp < now)) { 6907 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 6908 this_rq->wake_stamp++; 6909 this_rq->wake_avg_idle >>= 1; 6910 } 6911 } 6912 6913 avg_idle = this_rq->wake_avg_idle; 6914 avg_cost = this_sd->avg_scan_cost + 1; 6915 6916 span_avg = sd->span_weight * avg_idle; 6917 if (span_avg > 4*avg_cost) 6918 nr = div_u64(span_avg, avg_cost); 6919 else 6920 nr = 4; 6921 6922 time = cpu_clock(this); 6923 } 6924 6925 if (sched_feat(SIS_UTIL)) { 6926 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 6927 if (sd_share) { 6928 /* because !--nr is the condition to stop scan */ 6929 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 6930 /* overloaded LLC is unlikely to have idle cpu/core */ 6931 if (nr == 1) 6932 return -1; 6933 } 6934 } 6935 6936 for_each_cpu_wrap(cpu, cpus, target + 1) { 6937 if (has_idle_core) { 6938 i = select_idle_core(p, cpu, cpus, &idle_cpu); 6939 if ((unsigned int)i < nr_cpumask_bits) 6940 return i; 6941 6942 } else { 6943 if (!--nr) 6944 return -1; 6945 idle_cpu = __select_idle_cpu(cpu, p); 6946 if ((unsigned int)idle_cpu < nr_cpumask_bits) 6947 break; 6948 } 6949 } 6950 6951 if (has_idle_core) 6952 set_idle_cores(target, false); 6953 6954 if (sched_feat(SIS_PROP) && this_sd && !has_idle_core) { 6955 time = cpu_clock(this) - time; 6956 6957 /* 6958 * Account for the scan cost of wakeups against the average 6959 * idle time. 6960 */ 6961 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 6962 6963 update_avg(&this_sd->avg_scan_cost, time); 6964 } 6965 6966 return idle_cpu; 6967 } 6968 6969 /* 6970 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6971 * the task fits. If no CPU is big enough, but there are idle ones, try to 6972 * maximize capacity. 6973 */ 6974 static int 6975 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6976 { 6977 unsigned long task_util, util_min, util_max, best_cap = 0; 6978 int fits, best_fits = 0; 6979 int cpu, best_cpu = -1; 6980 struct cpumask *cpus; 6981 6982 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 6983 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6984 6985 task_util = task_util_est(p); 6986 util_min = uclamp_eff_value(p, UCLAMP_MIN); 6987 util_max = uclamp_eff_value(p, UCLAMP_MAX); 6988 6989 for_each_cpu_wrap(cpu, cpus, target + 1) { 6990 unsigned long cpu_cap = capacity_of(cpu); 6991 6992 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6993 continue; 6994 6995 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 6996 6997 /* This CPU fits with all requirements */ 6998 if (fits > 0) 6999 return cpu; 7000 /* 7001 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7002 * Look for the CPU with best capacity. 7003 */ 7004 else if (fits < 0) 7005 cpu_cap = capacity_orig_of(cpu) - thermal_load_avg(cpu_rq(cpu)); 7006 7007 /* 7008 * First, select CPU which fits better (-1 being better than 0). 7009 * Then, select the one with best capacity at same level. 7010 */ 7011 if ((fits < best_fits) || 7012 ((fits == best_fits) && (cpu_cap > best_cap))) { 7013 best_cap = cpu_cap; 7014 best_cpu = cpu; 7015 best_fits = fits; 7016 } 7017 } 7018 7019 return best_cpu; 7020 } 7021 7022 static inline bool asym_fits_cpu(unsigned long util, 7023 unsigned long util_min, 7024 unsigned long util_max, 7025 int cpu) 7026 { 7027 if (sched_asym_cpucap_active()) 7028 /* 7029 * Return true only if the cpu fully fits the task requirements 7030 * which include the utilization and the performance hints. 7031 */ 7032 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7033 7034 return true; 7035 } 7036 7037 /* 7038 * Try and locate an idle core/thread in the LLC cache domain. 7039 */ 7040 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7041 { 7042 bool has_idle_core = false; 7043 struct sched_domain *sd; 7044 unsigned long task_util, util_min, util_max; 7045 int i, recent_used_cpu; 7046 7047 /* 7048 * On asymmetric system, update task utilization because we will check 7049 * that the task fits with cpu's capacity. 7050 */ 7051 if (sched_asym_cpucap_active()) { 7052 sync_entity_load_avg(&p->se); 7053 task_util = task_util_est(p); 7054 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7055 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7056 } 7057 7058 /* 7059 * per-cpu select_rq_mask usage 7060 */ 7061 lockdep_assert_irqs_disabled(); 7062 7063 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7064 asym_fits_cpu(task_util, util_min, util_max, target)) 7065 return target; 7066 7067 /* 7068 * If the previous CPU is cache affine and idle, don't be stupid: 7069 */ 7070 if (prev != target && cpus_share_cache(prev, target) && 7071 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7072 asym_fits_cpu(task_util, util_min, util_max, prev)) 7073 return prev; 7074 7075 /* 7076 * Allow a per-cpu kthread to stack with the wakee if the 7077 * kworker thread and the tasks previous CPUs are the same. 7078 * The assumption is that the wakee queued work for the 7079 * per-cpu kthread that is now complete and the wakeup is 7080 * essentially a sync wakeup. An obvious example of this 7081 * pattern is IO completions. 7082 */ 7083 if (is_per_cpu_kthread(current) && 7084 in_task() && 7085 prev == smp_processor_id() && 7086 this_rq()->nr_running <= 1 && 7087 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7088 return prev; 7089 } 7090 7091 /* Check a recently used CPU as a potential idle candidate: */ 7092 recent_used_cpu = p->recent_used_cpu; 7093 p->recent_used_cpu = prev; 7094 if (recent_used_cpu != prev && 7095 recent_used_cpu != target && 7096 cpus_share_cache(recent_used_cpu, target) && 7097 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7098 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && 7099 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7100 return recent_used_cpu; 7101 } 7102 7103 /* 7104 * For asymmetric CPU capacity systems, our domain of interest is 7105 * sd_asym_cpucapacity rather than sd_llc. 7106 */ 7107 if (sched_asym_cpucap_active()) { 7108 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7109 /* 7110 * On an asymmetric CPU capacity system where an exclusive 7111 * cpuset defines a symmetric island (i.e. one unique 7112 * capacity_orig value through the cpuset), the key will be set 7113 * but the CPUs within that cpuset will not have a domain with 7114 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7115 * capacity path. 7116 */ 7117 if (sd) { 7118 i = select_idle_capacity(p, sd, target); 7119 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7120 } 7121 } 7122 7123 sd = rcu_dereference(per_cpu(sd_llc, target)); 7124 if (!sd) 7125 return target; 7126 7127 if (sched_smt_active()) { 7128 has_idle_core = test_idle_cores(target); 7129 7130 if (!has_idle_core && cpus_share_cache(prev, target)) { 7131 i = select_idle_smt(p, prev); 7132 if ((unsigned int)i < nr_cpumask_bits) 7133 return i; 7134 } 7135 } 7136 7137 i = select_idle_cpu(p, sd, has_idle_core, target); 7138 if ((unsigned)i < nr_cpumask_bits) 7139 return i; 7140 7141 return target; 7142 } 7143 7144 /* 7145 * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu 7146 * (@dst_cpu = -1) or migrated to @dst_cpu. 7147 */ 7148 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 7149 { 7150 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7151 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7152 7153 /* 7154 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7155 * contribution. If @p migrates from another CPU to @cpu add its 7156 * contribution. In all the other cases @cpu is not impacted by the 7157 * migration so its util_avg is already correct. 7158 */ 7159 if (task_cpu(p) == cpu && dst_cpu != cpu) 7160 lsub_positive(&util, task_util(p)); 7161 else if (task_cpu(p) != cpu && dst_cpu == cpu) 7162 util += task_util(p); 7163 7164 if (sched_feat(UTIL_EST)) { 7165 unsigned long util_est; 7166 7167 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 7168 7169 /* 7170 * During wake-up @p isn't enqueued yet and doesn't contribute 7171 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued. 7172 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7173 * has been enqueued. 7174 * 7175 * During exec (@dst_cpu = -1) @p is enqueued and does 7176 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued. 7177 * Remove it to "simulate" cpu_util without @p's contribution. 7178 * 7179 * Despite the task_on_rq_queued(@p) check there is still a 7180 * small window for a possible race when an exec 7181 * select_task_rq_fair() races with LB's detach_task(). 7182 * 7183 * detach_task() 7184 * deactivate_task() 7185 * p->on_rq = TASK_ON_RQ_MIGRATING; 7186 * -------------------------------- A 7187 * dequeue_task() \ 7188 * dequeue_task_fair() + Race Time 7189 * util_est_dequeue() / 7190 * -------------------------------- B 7191 * 7192 * The additional check "current == p" is required to further 7193 * reduce the race window. 7194 */ 7195 if (dst_cpu == cpu) 7196 util_est += _task_util_est(p); 7197 else if (unlikely(task_on_rq_queued(p) || current == p)) 7198 lsub_positive(&util_est, _task_util_est(p)); 7199 7200 util = max(util, util_est); 7201 } 7202 7203 return min(util, capacity_orig_of(cpu)); 7204 } 7205 7206 /* 7207 * cpu_util_without: compute cpu utilization without any contributions from *p 7208 * @cpu: the CPU which utilization is requested 7209 * @p: the task which utilization should be discounted 7210 * 7211 * The utilization of a CPU is defined by the utilization of tasks currently 7212 * enqueued on that CPU as well as tasks which are currently sleeping after an 7213 * execution on that CPU. 7214 * 7215 * This method returns the utilization of the specified CPU by discounting the 7216 * utilization of the specified task, whenever the task is currently 7217 * contributing to the CPU utilization. 7218 */ 7219 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7220 { 7221 /* Task has no contribution or is new */ 7222 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7223 return cpu_util_cfs(cpu); 7224 7225 return cpu_util_next(cpu, p, -1); 7226 } 7227 7228 /* 7229 * energy_env - Utilization landscape for energy estimation. 7230 * @task_busy_time: Utilization contribution by the task for which we test the 7231 * placement. Given by eenv_task_busy_time(). 7232 * @pd_busy_time: Utilization of the whole perf domain without the task 7233 * contribution. Given by eenv_pd_busy_time(). 7234 * @cpu_cap: Maximum CPU capacity for the perf domain. 7235 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 7236 */ 7237 struct energy_env { 7238 unsigned long task_busy_time; 7239 unsigned long pd_busy_time; 7240 unsigned long cpu_cap; 7241 unsigned long pd_cap; 7242 }; 7243 7244 /* 7245 * Compute the task busy time for compute_energy(). This time cannot be 7246 * injected directly into effective_cpu_util() because of the IRQ scaling. 7247 * The latter only makes sense with the most recent CPUs where the task has 7248 * run. 7249 */ 7250 static inline void eenv_task_busy_time(struct energy_env *eenv, 7251 struct task_struct *p, int prev_cpu) 7252 { 7253 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 7254 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 7255 7256 if (unlikely(irq >= max_cap)) 7257 busy_time = max_cap; 7258 else 7259 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 7260 7261 eenv->task_busy_time = busy_time; 7262 } 7263 7264 /* 7265 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 7266 * utilization for each @pd_cpus, it however doesn't take into account 7267 * clamping since the ratio (utilization / cpu_capacity) is already enough to 7268 * scale the EM reported power consumption at the (eventually clamped) 7269 * cpu_capacity. 7270 * 7271 * The contribution of the task @p for which we want to estimate the 7272 * energy cost is removed (by cpu_util_next()) and must be calculated 7273 * separately (see eenv_task_busy_time). This ensures: 7274 * 7275 * - A stable PD utilization, no matter which CPU of that PD we want to place 7276 * the task on. 7277 * 7278 * - A fair comparison between CPUs as the task contribution (task_util()) 7279 * will always be the same no matter which CPU utilization we rely on 7280 * (util_avg or util_est). 7281 * 7282 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 7283 * exceed @eenv->pd_cap. 7284 */ 7285 static inline void eenv_pd_busy_time(struct energy_env *eenv, 7286 struct cpumask *pd_cpus, 7287 struct task_struct *p) 7288 { 7289 unsigned long busy_time = 0; 7290 int cpu; 7291 7292 for_each_cpu(cpu, pd_cpus) { 7293 unsigned long util = cpu_util_next(cpu, p, -1); 7294 7295 busy_time += effective_cpu_util(cpu, util, ENERGY_UTIL, NULL); 7296 } 7297 7298 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 7299 } 7300 7301 /* 7302 * Compute the maximum utilization for compute_energy() when the task @p 7303 * is placed on the cpu @dst_cpu. 7304 * 7305 * Returns the maximum utilization among @eenv->cpus. This utilization can't 7306 * exceed @eenv->cpu_cap. 7307 */ 7308 static inline unsigned long 7309 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 7310 struct task_struct *p, int dst_cpu) 7311 { 7312 unsigned long max_util = 0; 7313 int cpu; 7314 7315 for_each_cpu(cpu, pd_cpus) { 7316 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 7317 unsigned long util = cpu_util_next(cpu, p, dst_cpu); 7318 unsigned long cpu_util; 7319 7320 /* 7321 * Performance domain frequency: utilization clamping 7322 * must be considered since it affects the selection 7323 * of the performance domain frequency. 7324 * NOTE: in case RT tasks are running, by default the 7325 * FREQUENCY_UTIL's utilization can be max OPP. 7326 */ 7327 cpu_util = effective_cpu_util(cpu, util, FREQUENCY_UTIL, tsk); 7328 max_util = max(max_util, cpu_util); 7329 } 7330 7331 return min(max_util, eenv->cpu_cap); 7332 } 7333 7334 /* 7335 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 7336 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 7337 * contribution is ignored. 7338 */ 7339 static inline unsigned long 7340 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 7341 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 7342 { 7343 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 7344 unsigned long busy_time = eenv->pd_busy_time; 7345 7346 if (dst_cpu >= 0) 7347 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 7348 7349 return em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 7350 } 7351 7352 /* 7353 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 7354 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 7355 * spare capacity in each performance domain and uses it as a potential 7356 * candidate to execute the task. Then, it uses the Energy Model to figure 7357 * out which of the CPU candidates is the most energy-efficient. 7358 * 7359 * The rationale for this heuristic is as follows. In a performance domain, 7360 * all the most energy efficient CPU candidates (according to the Energy 7361 * Model) are those for which we'll request a low frequency. When there are 7362 * several CPUs for which the frequency request will be the same, we don't 7363 * have enough data to break the tie between them, because the Energy Model 7364 * only includes active power costs. With this model, if we assume that 7365 * frequency requests follow utilization (e.g. using schedutil), the CPU with 7366 * the maximum spare capacity in a performance domain is guaranteed to be among 7367 * the best candidates of the performance domain. 7368 * 7369 * In practice, it could be preferable from an energy standpoint to pack 7370 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 7371 * but that could also hurt our chances to go cluster idle, and we have no 7372 * ways to tell with the current Energy Model if this is actually a good 7373 * idea or not. So, find_energy_efficient_cpu() basically favors 7374 * cluster-packing, and spreading inside a cluster. That should at least be 7375 * a good thing for latency, and this is consistent with the idea that most 7376 * of the energy savings of EAS come from the asymmetry of the system, and 7377 * not so much from breaking the tie between identical CPUs. That's also the 7378 * reason why EAS is enabled in the topology code only for systems where 7379 * SD_ASYM_CPUCAPACITY is set. 7380 * 7381 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 7382 * they don't have any useful utilization data yet and it's not possible to 7383 * forecast their impact on energy consumption. Consequently, they will be 7384 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 7385 * to be energy-inefficient in some use-cases. The alternative would be to 7386 * bias new tasks towards specific types of CPUs first, or to try to infer 7387 * their util_avg from the parent task, but those heuristics could hurt 7388 * other use-cases too. So, until someone finds a better way to solve this, 7389 * let's keep things simple by re-using the existing slow path. 7390 */ 7391 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 7392 { 7393 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7394 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 7395 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 7396 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 7397 struct root_domain *rd = this_rq()->rd; 7398 int cpu, best_energy_cpu, target = -1; 7399 int prev_fits = -1, best_fits = -1; 7400 unsigned long best_thermal_cap = 0; 7401 unsigned long prev_thermal_cap = 0; 7402 struct sched_domain *sd; 7403 struct perf_domain *pd; 7404 struct energy_env eenv; 7405 7406 rcu_read_lock(); 7407 pd = rcu_dereference(rd->pd); 7408 if (!pd || READ_ONCE(rd->overutilized)) 7409 goto unlock; 7410 7411 /* 7412 * Energy-aware wake-up happens on the lowest sched_domain starting 7413 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 7414 */ 7415 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 7416 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 7417 sd = sd->parent; 7418 if (!sd) 7419 goto unlock; 7420 7421 target = prev_cpu; 7422 7423 sync_entity_load_avg(&p->se); 7424 if (!uclamp_task_util(p, p_util_min, p_util_max)) 7425 goto unlock; 7426 7427 eenv_task_busy_time(&eenv, p, prev_cpu); 7428 7429 for (; pd; pd = pd->next) { 7430 unsigned long util_min = p_util_min, util_max = p_util_max; 7431 unsigned long cpu_cap, cpu_thermal_cap, util; 7432 unsigned long cur_delta, max_spare_cap = 0; 7433 unsigned long rq_util_min, rq_util_max; 7434 unsigned long prev_spare_cap = 0; 7435 int max_spare_cap_cpu = -1; 7436 unsigned long base_energy; 7437 int fits, max_fits = -1; 7438 7439 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 7440 7441 if (cpumask_empty(cpus)) 7442 continue; 7443 7444 /* Account thermal pressure for the energy estimation */ 7445 cpu = cpumask_first(cpus); 7446 cpu_thermal_cap = arch_scale_cpu_capacity(cpu); 7447 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu); 7448 7449 eenv.cpu_cap = cpu_thermal_cap; 7450 eenv.pd_cap = 0; 7451 7452 for_each_cpu(cpu, cpus) { 7453 struct rq *rq = cpu_rq(cpu); 7454 7455 eenv.pd_cap += cpu_thermal_cap; 7456 7457 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7458 continue; 7459 7460 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 7461 continue; 7462 7463 util = cpu_util_next(cpu, p, cpu); 7464 cpu_cap = capacity_of(cpu); 7465 7466 /* 7467 * Skip CPUs that cannot satisfy the capacity request. 7468 * IOW, placing the task there would make the CPU 7469 * overutilized. Take uclamp into account to see how 7470 * much capacity we can get out of the CPU; this is 7471 * aligned with sched_cpu_util(). 7472 */ 7473 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 7474 /* 7475 * Open code uclamp_rq_util_with() except for 7476 * the clamp() part. Ie: apply max aggregation 7477 * only. util_fits_cpu() logic requires to 7478 * operate on non clamped util but must use the 7479 * max-aggregated uclamp_{min, max}. 7480 */ 7481 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 7482 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 7483 7484 util_min = max(rq_util_min, p_util_min); 7485 util_max = max(rq_util_max, p_util_max); 7486 } 7487 7488 fits = util_fits_cpu(util, util_min, util_max, cpu); 7489 if (!fits) 7490 continue; 7491 7492 lsub_positive(&cpu_cap, util); 7493 7494 if (cpu == prev_cpu) { 7495 /* Always use prev_cpu as a candidate. */ 7496 prev_spare_cap = cpu_cap; 7497 prev_fits = fits; 7498 } else if ((fits > max_fits) || 7499 ((fits == max_fits) && (cpu_cap > max_spare_cap))) { 7500 /* 7501 * Find the CPU with the maximum spare capacity 7502 * among the remaining CPUs in the performance 7503 * domain. 7504 */ 7505 max_spare_cap = cpu_cap; 7506 max_spare_cap_cpu = cpu; 7507 max_fits = fits; 7508 } 7509 } 7510 7511 if (max_spare_cap_cpu < 0 && prev_spare_cap == 0) 7512 continue; 7513 7514 eenv_pd_busy_time(&eenv, cpus, p); 7515 /* Compute the 'base' energy of the pd, without @p */ 7516 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 7517 7518 /* Evaluate the energy impact of using prev_cpu. */ 7519 if (prev_spare_cap > 0) { 7520 prev_delta = compute_energy(&eenv, pd, cpus, p, 7521 prev_cpu); 7522 /* CPU utilization has changed */ 7523 if (prev_delta < base_energy) 7524 goto unlock; 7525 prev_delta -= base_energy; 7526 prev_thermal_cap = cpu_thermal_cap; 7527 best_delta = min(best_delta, prev_delta); 7528 } 7529 7530 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 7531 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 7532 /* Current best energy cpu fits better */ 7533 if (max_fits < best_fits) 7534 continue; 7535 7536 /* 7537 * Both don't fit performance hint (i.e. uclamp_min) 7538 * but best energy cpu has better capacity. 7539 */ 7540 if ((max_fits < 0) && 7541 (cpu_thermal_cap <= best_thermal_cap)) 7542 continue; 7543 7544 cur_delta = compute_energy(&eenv, pd, cpus, p, 7545 max_spare_cap_cpu); 7546 /* CPU utilization has changed */ 7547 if (cur_delta < base_energy) 7548 goto unlock; 7549 cur_delta -= base_energy; 7550 7551 /* 7552 * Both fit for the task but best energy cpu has lower 7553 * energy impact. 7554 */ 7555 if ((max_fits > 0) && (best_fits > 0) && 7556 (cur_delta >= best_delta)) 7557 continue; 7558 7559 best_delta = cur_delta; 7560 best_energy_cpu = max_spare_cap_cpu; 7561 best_fits = max_fits; 7562 best_thermal_cap = cpu_thermal_cap; 7563 } 7564 } 7565 rcu_read_unlock(); 7566 7567 if ((best_fits > prev_fits) || 7568 ((best_fits > 0) && (best_delta < prev_delta)) || 7569 ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap))) 7570 target = best_energy_cpu; 7571 7572 return target; 7573 7574 unlock: 7575 rcu_read_unlock(); 7576 7577 return target; 7578 } 7579 7580 /* 7581 * select_task_rq_fair: Select target runqueue for the waking task in domains 7582 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 7583 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 7584 * 7585 * Balances load by selecting the idlest CPU in the idlest group, or under 7586 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 7587 * 7588 * Returns the target CPU number. 7589 */ 7590 static int 7591 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 7592 { 7593 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 7594 struct sched_domain *tmp, *sd = NULL; 7595 int cpu = smp_processor_id(); 7596 int new_cpu = prev_cpu; 7597 int want_affine = 0; 7598 /* SD_flags and WF_flags share the first nibble */ 7599 int sd_flag = wake_flags & 0xF; 7600 7601 /* 7602 * required for stable ->cpus_allowed 7603 */ 7604 lockdep_assert_held(&p->pi_lock); 7605 if (wake_flags & WF_TTWU) { 7606 record_wakee(p); 7607 7608 if (sched_energy_enabled()) { 7609 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 7610 if (new_cpu >= 0) 7611 return new_cpu; 7612 new_cpu = prev_cpu; 7613 } 7614 7615 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 7616 } 7617 7618 rcu_read_lock(); 7619 for_each_domain(cpu, tmp) { 7620 /* 7621 * If both 'cpu' and 'prev_cpu' are part of this domain, 7622 * cpu is a valid SD_WAKE_AFFINE target. 7623 */ 7624 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 7625 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 7626 if (cpu != prev_cpu) 7627 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 7628 7629 sd = NULL; /* Prefer wake_affine over balance flags */ 7630 break; 7631 } 7632 7633 /* 7634 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 7635 * usually do not have SD_BALANCE_WAKE set. That means wakeup 7636 * will usually go to the fast path. 7637 */ 7638 if (tmp->flags & sd_flag) 7639 sd = tmp; 7640 else if (!want_affine) 7641 break; 7642 } 7643 7644 if (unlikely(sd)) { 7645 /* Slow path */ 7646 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 7647 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 7648 /* Fast path */ 7649 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 7650 } 7651 rcu_read_unlock(); 7652 7653 return new_cpu; 7654 } 7655 7656 /* 7657 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 7658 * cfs_rq_of(p) references at time of call are still valid and identify the 7659 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 7660 */ 7661 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 7662 { 7663 struct sched_entity *se = &p->se; 7664 7665 /* 7666 * As blocked tasks retain absolute vruntime the migration needs to 7667 * deal with this by subtracting the old and adding the new 7668 * min_vruntime -- the latter is done by enqueue_entity() when placing 7669 * the task on the new runqueue. 7670 */ 7671 if (READ_ONCE(p->__state) == TASK_WAKING) { 7672 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7673 7674 se->vruntime -= u64_u32_load(cfs_rq->min_vruntime); 7675 } 7676 7677 if (!task_on_rq_migrating(p)) { 7678 remove_entity_load_avg(se); 7679 7680 /* 7681 * Here, the task's PELT values have been updated according to 7682 * the current rq's clock. But if that clock hasn't been 7683 * updated in a while, a substantial idle time will be missed, 7684 * leading to an inflation after wake-up on the new rq. 7685 * 7686 * Estimate the missing time from the cfs_rq last_update_time 7687 * and update sched_avg to improve the PELT continuity after 7688 * migration. 7689 */ 7690 migrate_se_pelt_lag(se); 7691 } 7692 7693 /* Tell new CPU we are migrated */ 7694 se->avg.last_update_time = 0; 7695 7696 update_scan_period(p, new_cpu); 7697 } 7698 7699 static void task_dead_fair(struct task_struct *p) 7700 { 7701 remove_entity_load_avg(&p->se); 7702 } 7703 7704 static int 7705 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7706 { 7707 if (rq->nr_running) 7708 return 1; 7709 7710 return newidle_balance(rq, rf) != 0; 7711 } 7712 #endif /* CONFIG_SMP */ 7713 7714 static unsigned long wakeup_gran(struct sched_entity *se) 7715 { 7716 unsigned long gran = sysctl_sched_wakeup_granularity; 7717 7718 /* 7719 * Since its curr running now, convert the gran from real-time 7720 * to virtual-time in his units. 7721 * 7722 * By using 'se' instead of 'curr' we penalize light tasks, so 7723 * they get preempted easier. That is, if 'se' < 'curr' then 7724 * the resulting gran will be larger, therefore penalizing the 7725 * lighter, if otoh 'se' > 'curr' then the resulting gran will 7726 * be smaller, again penalizing the lighter task. 7727 * 7728 * This is especially important for buddies when the leftmost 7729 * task is higher priority than the buddy. 7730 */ 7731 return calc_delta_fair(gran, se); 7732 } 7733 7734 /* 7735 * Should 'se' preempt 'curr'. 7736 * 7737 * |s1 7738 * |s2 7739 * |s3 7740 * g 7741 * |<--->|c 7742 * 7743 * w(c, s1) = -1 7744 * w(c, s2) = 0 7745 * w(c, s3) = 1 7746 * 7747 */ 7748 static int 7749 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 7750 { 7751 s64 gran, vdiff = curr->vruntime - se->vruntime; 7752 7753 if (vdiff <= 0) 7754 return -1; 7755 7756 gran = wakeup_gran(se); 7757 if (vdiff > gran) 7758 return 1; 7759 7760 return 0; 7761 } 7762 7763 static void set_last_buddy(struct sched_entity *se) 7764 { 7765 for_each_sched_entity(se) { 7766 if (SCHED_WARN_ON(!se->on_rq)) 7767 return; 7768 if (se_is_idle(se)) 7769 return; 7770 cfs_rq_of(se)->last = se; 7771 } 7772 } 7773 7774 static void set_next_buddy(struct sched_entity *se) 7775 { 7776 for_each_sched_entity(se) { 7777 if (SCHED_WARN_ON(!se->on_rq)) 7778 return; 7779 if (se_is_idle(se)) 7780 return; 7781 cfs_rq_of(se)->next = se; 7782 } 7783 } 7784 7785 static void set_skip_buddy(struct sched_entity *se) 7786 { 7787 for_each_sched_entity(se) 7788 cfs_rq_of(se)->skip = se; 7789 } 7790 7791 /* 7792 * Preempt the current task with a newly woken task if needed: 7793 */ 7794 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 7795 { 7796 struct task_struct *curr = rq->curr; 7797 struct sched_entity *se = &curr->se, *pse = &p->se; 7798 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7799 int scale = cfs_rq->nr_running >= sched_nr_latency; 7800 int next_buddy_marked = 0; 7801 int cse_is_idle, pse_is_idle; 7802 7803 if (unlikely(se == pse)) 7804 return; 7805 7806 /* 7807 * This is possible from callers such as attach_tasks(), in which we 7808 * unconditionally check_preempt_curr() after an enqueue (which may have 7809 * lead to a throttle). This both saves work and prevents false 7810 * next-buddy nomination below. 7811 */ 7812 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 7813 return; 7814 7815 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 7816 set_next_buddy(pse); 7817 next_buddy_marked = 1; 7818 } 7819 7820 /* 7821 * We can come here with TIF_NEED_RESCHED already set from new task 7822 * wake up path. 7823 * 7824 * Note: this also catches the edge-case of curr being in a throttled 7825 * group (e.g. via set_curr_task), since update_curr() (in the 7826 * enqueue of curr) will have resulted in resched being set. This 7827 * prevents us from potentially nominating it as a false LAST_BUDDY 7828 * below. 7829 */ 7830 if (test_tsk_need_resched(curr)) 7831 return; 7832 7833 /* Idle tasks are by definition preempted by non-idle tasks. */ 7834 if (unlikely(task_has_idle_policy(curr)) && 7835 likely(!task_has_idle_policy(p))) 7836 goto preempt; 7837 7838 /* 7839 * Batch and idle tasks do not preempt non-idle tasks (their preemption 7840 * is driven by the tick): 7841 */ 7842 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 7843 return; 7844 7845 find_matching_se(&se, &pse); 7846 WARN_ON_ONCE(!pse); 7847 7848 cse_is_idle = se_is_idle(se); 7849 pse_is_idle = se_is_idle(pse); 7850 7851 /* 7852 * Preempt an idle group in favor of a non-idle group (and don't preempt 7853 * in the inverse case). 7854 */ 7855 if (cse_is_idle && !pse_is_idle) 7856 goto preempt; 7857 if (cse_is_idle != pse_is_idle) 7858 return; 7859 7860 update_curr(cfs_rq_of(se)); 7861 if (wakeup_preempt_entity(se, pse) == 1) { 7862 /* 7863 * Bias pick_next to pick the sched entity that is 7864 * triggering this preemption. 7865 */ 7866 if (!next_buddy_marked) 7867 set_next_buddy(pse); 7868 goto preempt; 7869 } 7870 7871 return; 7872 7873 preempt: 7874 resched_curr(rq); 7875 /* 7876 * Only set the backward buddy when the current task is still 7877 * on the rq. This can happen when a wakeup gets interleaved 7878 * with schedule on the ->pre_schedule() or idle_balance() 7879 * point, either of which can * drop the rq lock. 7880 * 7881 * Also, during early boot the idle thread is in the fair class, 7882 * for obvious reasons its a bad idea to schedule back to it. 7883 */ 7884 if (unlikely(!se->on_rq || curr == rq->idle)) 7885 return; 7886 7887 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 7888 set_last_buddy(se); 7889 } 7890 7891 #ifdef CONFIG_SMP 7892 static struct task_struct *pick_task_fair(struct rq *rq) 7893 { 7894 struct sched_entity *se; 7895 struct cfs_rq *cfs_rq; 7896 7897 again: 7898 cfs_rq = &rq->cfs; 7899 if (!cfs_rq->nr_running) 7900 return NULL; 7901 7902 do { 7903 struct sched_entity *curr = cfs_rq->curr; 7904 7905 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 7906 if (curr) { 7907 if (curr->on_rq) 7908 update_curr(cfs_rq); 7909 else 7910 curr = NULL; 7911 7912 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 7913 goto again; 7914 } 7915 7916 se = pick_next_entity(cfs_rq, curr); 7917 cfs_rq = group_cfs_rq(se); 7918 } while (cfs_rq); 7919 7920 return task_of(se); 7921 } 7922 #endif 7923 7924 struct task_struct * 7925 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7926 { 7927 struct cfs_rq *cfs_rq = &rq->cfs; 7928 struct sched_entity *se; 7929 struct task_struct *p; 7930 int new_tasks; 7931 7932 again: 7933 if (!sched_fair_runnable(rq)) 7934 goto idle; 7935 7936 #ifdef CONFIG_FAIR_GROUP_SCHED 7937 if (!prev || prev->sched_class != &fair_sched_class) 7938 goto simple; 7939 7940 /* 7941 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 7942 * likely that a next task is from the same cgroup as the current. 7943 * 7944 * Therefore attempt to avoid putting and setting the entire cgroup 7945 * hierarchy, only change the part that actually changes. 7946 */ 7947 7948 do { 7949 struct sched_entity *curr = cfs_rq->curr; 7950 7951 /* 7952 * Since we got here without doing put_prev_entity() we also 7953 * have to consider cfs_rq->curr. If it is still a runnable 7954 * entity, update_curr() will update its vruntime, otherwise 7955 * forget we've ever seen it. 7956 */ 7957 if (curr) { 7958 if (curr->on_rq) 7959 update_curr(cfs_rq); 7960 else 7961 curr = NULL; 7962 7963 /* 7964 * This call to check_cfs_rq_runtime() will do the 7965 * throttle and dequeue its entity in the parent(s). 7966 * Therefore the nr_running test will indeed 7967 * be correct. 7968 */ 7969 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7970 cfs_rq = &rq->cfs; 7971 7972 if (!cfs_rq->nr_running) 7973 goto idle; 7974 7975 goto simple; 7976 } 7977 } 7978 7979 se = pick_next_entity(cfs_rq, curr); 7980 cfs_rq = group_cfs_rq(se); 7981 } while (cfs_rq); 7982 7983 p = task_of(se); 7984 7985 /* 7986 * Since we haven't yet done put_prev_entity and if the selected task 7987 * is a different task than we started out with, try and touch the 7988 * least amount of cfs_rqs. 7989 */ 7990 if (prev != p) { 7991 struct sched_entity *pse = &prev->se; 7992 7993 while (!(cfs_rq = is_same_group(se, pse))) { 7994 int se_depth = se->depth; 7995 int pse_depth = pse->depth; 7996 7997 if (se_depth <= pse_depth) { 7998 put_prev_entity(cfs_rq_of(pse), pse); 7999 pse = parent_entity(pse); 8000 } 8001 if (se_depth >= pse_depth) { 8002 set_next_entity(cfs_rq_of(se), se); 8003 se = parent_entity(se); 8004 } 8005 } 8006 8007 put_prev_entity(cfs_rq, pse); 8008 set_next_entity(cfs_rq, se); 8009 } 8010 8011 goto done; 8012 simple: 8013 #endif 8014 if (prev) 8015 put_prev_task(rq, prev); 8016 8017 do { 8018 se = pick_next_entity(cfs_rq, NULL); 8019 set_next_entity(cfs_rq, se); 8020 cfs_rq = group_cfs_rq(se); 8021 } while (cfs_rq); 8022 8023 p = task_of(se); 8024 8025 done: __maybe_unused; 8026 #ifdef CONFIG_SMP 8027 /* 8028 * Move the next running task to the front of 8029 * the list, so our cfs_tasks list becomes MRU 8030 * one. 8031 */ 8032 list_move(&p->se.group_node, &rq->cfs_tasks); 8033 #endif 8034 8035 if (hrtick_enabled_fair(rq)) 8036 hrtick_start_fair(rq, p); 8037 8038 update_misfit_status(p, rq); 8039 8040 return p; 8041 8042 idle: 8043 if (!rf) 8044 return NULL; 8045 8046 new_tasks = newidle_balance(rq, rf); 8047 8048 /* 8049 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 8050 * possible for any higher priority task to appear. In that case we 8051 * must re-start the pick_next_entity() loop. 8052 */ 8053 if (new_tasks < 0) 8054 return RETRY_TASK; 8055 8056 if (new_tasks > 0) 8057 goto again; 8058 8059 /* 8060 * rq is about to be idle, check if we need to update the 8061 * lost_idle_time of clock_pelt 8062 */ 8063 update_idle_rq_clock_pelt(rq); 8064 8065 return NULL; 8066 } 8067 8068 static struct task_struct *__pick_next_task_fair(struct rq *rq) 8069 { 8070 return pick_next_task_fair(rq, NULL, NULL); 8071 } 8072 8073 /* 8074 * Account for a descheduled task: 8075 */ 8076 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 8077 { 8078 struct sched_entity *se = &prev->se; 8079 struct cfs_rq *cfs_rq; 8080 8081 for_each_sched_entity(se) { 8082 cfs_rq = cfs_rq_of(se); 8083 put_prev_entity(cfs_rq, se); 8084 } 8085 } 8086 8087 /* 8088 * sched_yield() is very simple 8089 * 8090 * The magic of dealing with the ->skip buddy is in pick_next_entity. 8091 */ 8092 static void yield_task_fair(struct rq *rq) 8093 { 8094 struct task_struct *curr = rq->curr; 8095 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8096 struct sched_entity *se = &curr->se; 8097 8098 /* 8099 * Are we the only task in the tree? 8100 */ 8101 if (unlikely(rq->nr_running == 1)) 8102 return; 8103 8104 clear_buddies(cfs_rq, se); 8105 8106 if (curr->policy != SCHED_BATCH) { 8107 update_rq_clock(rq); 8108 /* 8109 * Update run-time statistics of the 'current'. 8110 */ 8111 update_curr(cfs_rq); 8112 /* 8113 * Tell update_rq_clock() that we've just updated, 8114 * so we don't do microscopic update in schedule() 8115 * and double the fastpath cost. 8116 */ 8117 rq_clock_skip_update(rq); 8118 } 8119 8120 set_skip_buddy(se); 8121 } 8122 8123 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8124 { 8125 struct sched_entity *se = &p->se; 8126 8127 /* throttled hierarchies are not runnable */ 8128 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8129 return false; 8130 8131 /* Tell the scheduler that we'd really like pse to run next. */ 8132 set_next_buddy(se); 8133 8134 yield_task_fair(rq); 8135 8136 return true; 8137 } 8138 8139 #ifdef CONFIG_SMP 8140 /************************************************** 8141 * Fair scheduling class load-balancing methods. 8142 * 8143 * BASICS 8144 * 8145 * The purpose of load-balancing is to achieve the same basic fairness the 8146 * per-CPU scheduler provides, namely provide a proportional amount of compute 8147 * time to each task. This is expressed in the following equation: 8148 * 8149 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 8150 * 8151 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 8152 * W_i,0 is defined as: 8153 * 8154 * W_i,0 = \Sum_j w_i,j (2) 8155 * 8156 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 8157 * is derived from the nice value as per sched_prio_to_weight[]. 8158 * 8159 * The weight average is an exponential decay average of the instantaneous 8160 * weight: 8161 * 8162 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 8163 * 8164 * C_i is the compute capacity of CPU i, typically it is the 8165 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 8166 * can also include other factors [XXX]. 8167 * 8168 * To achieve this balance we define a measure of imbalance which follows 8169 * directly from (1): 8170 * 8171 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 8172 * 8173 * We them move tasks around to minimize the imbalance. In the continuous 8174 * function space it is obvious this converges, in the discrete case we get 8175 * a few fun cases generally called infeasible weight scenarios. 8176 * 8177 * [XXX expand on: 8178 * - infeasible weights; 8179 * - local vs global optima in the discrete case. ] 8180 * 8181 * 8182 * SCHED DOMAINS 8183 * 8184 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 8185 * for all i,j solution, we create a tree of CPUs that follows the hardware 8186 * topology where each level pairs two lower groups (or better). This results 8187 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 8188 * tree to only the first of the previous level and we decrease the frequency 8189 * of load-balance at each level inv. proportional to the number of CPUs in 8190 * the groups. 8191 * 8192 * This yields: 8193 * 8194 * log_2 n 1 n 8195 * \Sum { --- * --- * 2^i } = O(n) (5) 8196 * i = 0 2^i 2^i 8197 * `- size of each group 8198 * | | `- number of CPUs doing load-balance 8199 * | `- freq 8200 * `- sum over all levels 8201 * 8202 * Coupled with a limit on how many tasks we can migrate every balance pass, 8203 * this makes (5) the runtime complexity of the balancer. 8204 * 8205 * An important property here is that each CPU is still (indirectly) connected 8206 * to every other CPU in at most O(log n) steps: 8207 * 8208 * The adjacency matrix of the resulting graph is given by: 8209 * 8210 * log_2 n 8211 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 8212 * k = 0 8213 * 8214 * And you'll find that: 8215 * 8216 * A^(log_2 n)_i,j != 0 for all i,j (7) 8217 * 8218 * Showing there's indeed a path between every CPU in at most O(log n) steps. 8219 * The task movement gives a factor of O(m), giving a convergence complexity 8220 * of: 8221 * 8222 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 8223 * 8224 * 8225 * WORK CONSERVING 8226 * 8227 * In order to avoid CPUs going idle while there's still work to do, new idle 8228 * balancing is more aggressive and has the newly idle CPU iterate up the domain 8229 * tree itself instead of relying on other CPUs to bring it work. 8230 * 8231 * This adds some complexity to both (5) and (8) but it reduces the total idle 8232 * time. 8233 * 8234 * [XXX more?] 8235 * 8236 * 8237 * CGROUPS 8238 * 8239 * Cgroups make a horror show out of (2), instead of a simple sum we get: 8240 * 8241 * s_k,i 8242 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 8243 * S_k 8244 * 8245 * Where 8246 * 8247 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 8248 * 8249 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 8250 * 8251 * The big problem is S_k, its a global sum needed to compute a local (W_i) 8252 * property. 8253 * 8254 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 8255 * rewrite all of this once again.] 8256 */ 8257 8258 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 8259 8260 enum fbq_type { regular, remote, all }; 8261 8262 /* 8263 * 'group_type' describes the group of CPUs at the moment of load balancing. 8264 * 8265 * The enum is ordered by pulling priority, with the group with lowest priority 8266 * first so the group_type can simply be compared when selecting the busiest 8267 * group. See update_sd_pick_busiest(). 8268 */ 8269 enum group_type { 8270 /* The group has spare capacity that can be used to run more tasks. */ 8271 group_has_spare = 0, 8272 /* 8273 * The group is fully used and the tasks don't compete for more CPU 8274 * cycles. Nevertheless, some tasks might wait before running. 8275 */ 8276 group_fully_busy, 8277 /* 8278 * One task doesn't fit with CPU's capacity and must be migrated to a 8279 * more powerful CPU. 8280 */ 8281 group_misfit_task, 8282 /* 8283 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 8284 * and the task should be migrated to it instead of running on the 8285 * current CPU. 8286 */ 8287 group_asym_packing, 8288 /* 8289 * The tasks' affinity constraints previously prevented the scheduler 8290 * from balancing the load across the system. 8291 */ 8292 group_imbalanced, 8293 /* 8294 * The CPU is overloaded and can't provide expected CPU cycles to all 8295 * tasks. 8296 */ 8297 group_overloaded 8298 }; 8299 8300 enum migration_type { 8301 migrate_load = 0, 8302 migrate_util, 8303 migrate_task, 8304 migrate_misfit 8305 }; 8306 8307 #define LBF_ALL_PINNED 0x01 8308 #define LBF_NEED_BREAK 0x02 8309 #define LBF_DST_PINNED 0x04 8310 #define LBF_SOME_PINNED 0x08 8311 #define LBF_ACTIVE_LB 0x10 8312 8313 struct lb_env { 8314 struct sched_domain *sd; 8315 8316 struct rq *src_rq; 8317 int src_cpu; 8318 8319 int dst_cpu; 8320 struct rq *dst_rq; 8321 8322 struct cpumask *dst_grpmask; 8323 int new_dst_cpu; 8324 enum cpu_idle_type idle; 8325 long imbalance; 8326 /* The set of CPUs under consideration for load-balancing */ 8327 struct cpumask *cpus; 8328 8329 unsigned int flags; 8330 8331 unsigned int loop; 8332 unsigned int loop_break; 8333 unsigned int loop_max; 8334 8335 enum fbq_type fbq_type; 8336 enum migration_type migration_type; 8337 struct list_head tasks; 8338 }; 8339 8340 /* 8341 * Is this task likely cache-hot: 8342 */ 8343 static int task_hot(struct task_struct *p, struct lb_env *env) 8344 { 8345 s64 delta; 8346 8347 lockdep_assert_rq_held(env->src_rq); 8348 8349 if (p->sched_class != &fair_sched_class) 8350 return 0; 8351 8352 if (unlikely(task_has_idle_policy(p))) 8353 return 0; 8354 8355 /* SMT siblings share cache */ 8356 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 8357 return 0; 8358 8359 /* 8360 * Buddy candidates are cache hot: 8361 */ 8362 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 8363 (&p->se == cfs_rq_of(&p->se)->next || 8364 &p->se == cfs_rq_of(&p->se)->last)) 8365 return 1; 8366 8367 if (sysctl_sched_migration_cost == -1) 8368 return 1; 8369 8370 /* 8371 * Don't migrate task if the task's cookie does not match 8372 * with the destination CPU's core cookie. 8373 */ 8374 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 8375 return 1; 8376 8377 if (sysctl_sched_migration_cost == 0) 8378 return 0; 8379 8380 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 8381 8382 return delta < (s64)sysctl_sched_migration_cost; 8383 } 8384 8385 #ifdef CONFIG_NUMA_BALANCING 8386 /* 8387 * Returns 1, if task migration degrades locality 8388 * Returns 0, if task migration improves locality i.e migration preferred. 8389 * Returns -1, if task migration is not affected by locality. 8390 */ 8391 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 8392 { 8393 struct numa_group *numa_group = rcu_dereference(p->numa_group); 8394 unsigned long src_weight, dst_weight; 8395 int src_nid, dst_nid, dist; 8396 8397 if (!static_branch_likely(&sched_numa_balancing)) 8398 return -1; 8399 8400 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 8401 return -1; 8402 8403 src_nid = cpu_to_node(env->src_cpu); 8404 dst_nid = cpu_to_node(env->dst_cpu); 8405 8406 if (src_nid == dst_nid) 8407 return -1; 8408 8409 /* Migrating away from the preferred node is always bad. */ 8410 if (src_nid == p->numa_preferred_nid) { 8411 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 8412 return 1; 8413 else 8414 return -1; 8415 } 8416 8417 /* Encourage migration to the preferred node. */ 8418 if (dst_nid == p->numa_preferred_nid) 8419 return 0; 8420 8421 /* Leaving a core idle is often worse than degrading locality. */ 8422 if (env->idle == CPU_IDLE) 8423 return -1; 8424 8425 dist = node_distance(src_nid, dst_nid); 8426 if (numa_group) { 8427 src_weight = group_weight(p, src_nid, dist); 8428 dst_weight = group_weight(p, dst_nid, dist); 8429 } else { 8430 src_weight = task_weight(p, src_nid, dist); 8431 dst_weight = task_weight(p, dst_nid, dist); 8432 } 8433 8434 return dst_weight < src_weight; 8435 } 8436 8437 #else 8438 static inline int migrate_degrades_locality(struct task_struct *p, 8439 struct lb_env *env) 8440 { 8441 return -1; 8442 } 8443 #endif 8444 8445 /* 8446 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 8447 */ 8448 static 8449 int can_migrate_task(struct task_struct *p, struct lb_env *env) 8450 { 8451 int tsk_cache_hot; 8452 8453 lockdep_assert_rq_held(env->src_rq); 8454 8455 /* 8456 * We do not migrate tasks that are: 8457 * 1) throttled_lb_pair, or 8458 * 2) cannot be migrated to this CPU due to cpus_ptr, or 8459 * 3) running (obviously), or 8460 * 4) are cache-hot on their current CPU. 8461 */ 8462 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 8463 return 0; 8464 8465 /* Disregard pcpu kthreads; they are where they need to be. */ 8466 if (kthread_is_per_cpu(p)) 8467 return 0; 8468 8469 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 8470 int cpu; 8471 8472 schedstat_inc(p->stats.nr_failed_migrations_affine); 8473 8474 env->flags |= LBF_SOME_PINNED; 8475 8476 /* 8477 * Remember if this task can be migrated to any other CPU in 8478 * our sched_group. We may want to revisit it if we couldn't 8479 * meet load balance goals by pulling other tasks on src_cpu. 8480 * 8481 * Avoid computing new_dst_cpu 8482 * - for NEWLY_IDLE 8483 * - if we have already computed one in current iteration 8484 * - if it's an active balance 8485 */ 8486 if (env->idle == CPU_NEWLY_IDLE || 8487 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 8488 return 0; 8489 8490 /* Prevent to re-select dst_cpu via env's CPUs: */ 8491 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 8492 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 8493 env->flags |= LBF_DST_PINNED; 8494 env->new_dst_cpu = cpu; 8495 break; 8496 } 8497 } 8498 8499 return 0; 8500 } 8501 8502 /* Record that we found at least one task that could run on dst_cpu */ 8503 env->flags &= ~LBF_ALL_PINNED; 8504 8505 if (task_on_cpu(env->src_rq, p)) { 8506 schedstat_inc(p->stats.nr_failed_migrations_running); 8507 return 0; 8508 } 8509 8510 /* 8511 * Aggressive migration if: 8512 * 1) active balance 8513 * 2) destination numa is preferred 8514 * 3) task is cache cold, or 8515 * 4) too many balance attempts have failed. 8516 */ 8517 if (env->flags & LBF_ACTIVE_LB) 8518 return 1; 8519 8520 tsk_cache_hot = migrate_degrades_locality(p, env); 8521 if (tsk_cache_hot == -1) 8522 tsk_cache_hot = task_hot(p, env); 8523 8524 if (tsk_cache_hot <= 0 || 8525 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 8526 if (tsk_cache_hot == 1) { 8527 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 8528 schedstat_inc(p->stats.nr_forced_migrations); 8529 } 8530 return 1; 8531 } 8532 8533 schedstat_inc(p->stats.nr_failed_migrations_hot); 8534 return 0; 8535 } 8536 8537 /* 8538 * detach_task() -- detach the task for the migration specified in env 8539 */ 8540 static void detach_task(struct task_struct *p, struct lb_env *env) 8541 { 8542 lockdep_assert_rq_held(env->src_rq); 8543 8544 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 8545 set_task_cpu(p, env->dst_cpu); 8546 } 8547 8548 /* 8549 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 8550 * part of active balancing operations within "domain". 8551 * 8552 * Returns a task if successful and NULL otherwise. 8553 */ 8554 static struct task_struct *detach_one_task(struct lb_env *env) 8555 { 8556 struct task_struct *p; 8557 8558 lockdep_assert_rq_held(env->src_rq); 8559 8560 list_for_each_entry_reverse(p, 8561 &env->src_rq->cfs_tasks, se.group_node) { 8562 if (!can_migrate_task(p, env)) 8563 continue; 8564 8565 detach_task(p, env); 8566 8567 /* 8568 * Right now, this is only the second place where 8569 * lb_gained[env->idle] is updated (other is detach_tasks) 8570 * so we can safely collect stats here rather than 8571 * inside detach_tasks(). 8572 */ 8573 schedstat_inc(env->sd->lb_gained[env->idle]); 8574 return p; 8575 } 8576 return NULL; 8577 } 8578 8579 /* 8580 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 8581 * busiest_rq, as part of a balancing operation within domain "sd". 8582 * 8583 * Returns number of detached tasks if successful and 0 otherwise. 8584 */ 8585 static int detach_tasks(struct lb_env *env) 8586 { 8587 struct list_head *tasks = &env->src_rq->cfs_tasks; 8588 unsigned long util, load; 8589 struct task_struct *p; 8590 int detached = 0; 8591 8592 lockdep_assert_rq_held(env->src_rq); 8593 8594 /* 8595 * Source run queue has been emptied by another CPU, clear 8596 * LBF_ALL_PINNED flag as we will not test any task. 8597 */ 8598 if (env->src_rq->nr_running <= 1) { 8599 env->flags &= ~LBF_ALL_PINNED; 8600 return 0; 8601 } 8602 8603 if (env->imbalance <= 0) 8604 return 0; 8605 8606 while (!list_empty(tasks)) { 8607 /* 8608 * We don't want to steal all, otherwise we may be treated likewise, 8609 * which could at worst lead to a livelock crash. 8610 */ 8611 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 8612 break; 8613 8614 env->loop++; 8615 /* 8616 * We've more or less seen every task there is, call it quits 8617 * unless we haven't found any movable task yet. 8618 */ 8619 if (env->loop > env->loop_max && 8620 !(env->flags & LBF_ALL_PINNED)) 8621 break; 8622 8623 /* take a breather every nr_migrate tasks */ 8624 if (env->loop > env->loop_break) { 8625 env->loop_break += SCHED_NR_MIGRATE_BREAK; 8626 env->flags |= LBF_NEED_BREAK; 8627 break; 8628 } 8629 8630 p = list_last_entry(tasks, struct task_struct, se.group_node); 8631 8632 if (!can_migrate_task(p, env)) 8633 goto next; 8634 8635 switch (env->migration_type) { 8636 case migrate_load: 8637 /* 8638 * Depending of the number of CPUs and tasks and the 8639 * cgroup hierarchy, task_h_load() can return a null 8640 * value. Make sure that env->imbalance decreases 8641 * otherwise detach_tasks() will stop only after 8642 * detaching up to loop_max tasks. 8643 */ 8644 load = max_t(unsigned long, task_h_load(p), 1); 8645 8646 if (sched_feat(LB_MIN) && 8647 load < 16 && !env->sd->nr_balance_failed) 8648 goto next; 8649 8650 /* 8651 * Make sure that we don't migrate too much load. 8652 * Nevertheless, let relax the constraint if 8653 * scheduler fails to find a good waiting task to 8654 * migrate. 8655 */ 8656 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 8657 goto next; 8658 8659 env->imbalance -= load; 8660 break; 8661 8662 case migrate_util: 8663 util = task_util_est(p); 8664 8665 if (util > env->imbalance) 8666 goto next; 8667 8668 env->imbalance -= util; 8669 break; 8670 8671 case migrate_task: 8672 env->imbalance--; 8673 break; 8674 8675 case migrate_misfit: 8676 /* This is not a misfit task */ 8677 if (task_fits_cpu(p, env->src_cpu)) 8678 goto next; 8679 8680 env->imbalance = 0; 8681 break; 8682 } 8683 8684 detach_task(p, env); 8685 list_add(&p->se.group_node, &env->tasks); 8686 8687 detached++; 8688 8689 #ifdef CONFIG_PREEMPTION 8690 /* 8691 * NEWIDLE balancing is a source of latency, so preemptible 8692 * kernels will stop after the first task is detached to minimize 8693 * the critical section. 8694 */ 8695 if (env->idle == CPU_NEWLY_IDLE) 8696 break; 8697 #endif 8698 8699 /* 8700 * We only want to steal up to the prescribed amount of 8701 * load/util/tasks. 8702 */ 8703 if (env->imbalance <= 0) 8704 break; 8705 8706 continue; 8707 next: 8708 list_move(&p->se.group_node, tasks); 8709 } 8710 8711 /* 8712 * Right now, this is one of only two places we collect this stat 8713 * so we can safely collect detach_one_task() stats here rather 8714 * than inside detach_one_task(). 8715 */ 8716 schedstat_add(env->sd->lb_gained[env->idle], detached); 8717 8718 return detached; 8719 } 8720 8721 /* 8722 * attach_task() -- attach the task detached by detach_task() to its new rq. 8723 */ 8724 static void attach_task(struct rq *rq, struct task_struct *p) 8725 { 8726 lockdep_assert_rq_held(rq); 8727 8728 WARN_ON_ONCE(task_rq(p) != rq); 8729 activate_task(rq, p, ENQUEUE_NOCLOCK); 8730 check_preempt_curr(rq, p, 0); 8731 } 8732 8733 /* 8734 * attach_one_task() -- attaches the task returned from detach_one_task() to 8735 * its new rq. 8736 */ 8737 static void attach_one_task(struct rq *rq, struct task_struct *p) 8738 { 8739 struct rq_flags rf; 8740 8741 rq_lock(rq, &rf); 8742 update_rq_clock(rq); 8743 attach_task(rq, p); 8744 rq_unlock(rq, &rf); 8745 } 8746 8747 /* 8748 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 8749 * new rq. 8750 */ 8751 static void attach_tasks(struct lb_env *env) 8752 { 8753 struct list_head *tasks = &env->tasks; 8754 struct task_struct *p; 8755 struct rq_flags rf; 8756 8757 rq_lock(env->dst_rq, &rf); 8758 update_rq_clock(env->dst_rq); 8759 8760 while (!list_empty(tasks)) { 8761 p = list_first_entry(tasks, struct task_struct, se.group_node); 8762 list_del_init(&p->se.group_node); 8763 8764 attach_task(env->dst_rq, p); 8765 } 8766 8767 rq_unlock(env->dst_rq, &rf); 8768 } 8769 8770 #ifdef CONFIG_NO_HZ_COMMON 8771 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 8772 { 8773 if (cfs_rq->avg.load_avg) 8774 return true; 8775 8776 if (cfs_rq->avg.util_avg) 8777 return true; 8778 8779 return false; 8780 } 8781 8782 static inline bool others_have_blocked(struct rq *rq) 8783 { 8784 if (READ_ONCE(rq->avg_rt.util_avg)) 8785 return true; 8786 8787 if (READ_ONCE(rq->avg_dl.util_avg)) 8788 return true; 8789 8790 if (thermal_load_avg(rq)) 8791 return true; 8792 8793 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 8794 if (READ_ONCE(rq->avg_irq.util_avg)) 8795 return true; 8796 #endif 8797 8798 return false; 8799 } 8800 8801 static inline void update_blocked_load_tick(struct rq *rq) 8802 { 8803 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 8804 } 8805 8806 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 8807 { 8808 if (!has_blocked) 8809 rq->has_blocked_load = 0; 8810 } 8811 #else 8812 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 8813 static inline bool others_have_blocked(struct rq *rq) { return false; } 8814 static inline void update_blocked_load_tick(struct rq *rq) {} 8815 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 8816 #endif 8817 8818 static bool __update_blocked_others(struct rq *rq, bool *done) 8819 { 8820 const struct sched_class *curr_class; 8821 u64 now = rq_clock_pelt(rq); 8822 unsigned long thermal_pressure; 8823 bool decayed; 8824 8825 /* 8826 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 8827 * DL and IRQ signals have been updated before updating CFS. 8828 */ 8829 curr_class = rq->curr->sched_class; 8830 8831 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 8832 8833 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 8834 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 8835 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 8836 update_irq_load_avg(rq, 0); 8837 8838 if (others_have_blocked(rq)) 8839 *done = false; 8840 8841 return decayed; 8842 } 8843 8844 #ifdef CONFIG_FAIR_GROUP_SCHED 8845 8846 static bool __update_blocked_fair(struct rq *rq, bool *done) 8847 { 8848 struct cfs_rq *cfs_rq, *pos; 8849 bool decayed = false; 8850 int cpu = cpu_of(rq); 8851 8852 /* 8853 * Iterates the task_group tree in a bottom up fashion, see 8854 * list_add_leaf_cfs_rq() for details. 8855 */ 8856 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 8857 struct sched_entity *se; 8858 8859 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 8860 update_tg_load_avg(cfs_rq); 8861 8862 if (cfs_rq->nr_running == 0) 8863 update_idle_cfs_rq_clock_pelt(cfs_rq); 8864 8865 if (cfs_rq == &rq->cfs) 8866 decayed = true; 8867 } 8868 8869 /* Propagate pending load changes to the parent, if any: */ 8870 se = cfs_rq->tg->se[cpu]; 8871 if (se && !skip_blocked_update(se)) 8872 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 8873 8874 /* 8875 * There can be a lot of idle CPU cgroups. Don't let fully 8876 * decayed cfs_rqs linger on the list. 8877 */ 8878 if (cfs_rq_is_decayed(cfs_rq)) 8879 list_del_leaf_cfs_rq(cfs_rq); 8880 8881 /* Don't need periodic decay once load/util_avg are null */ 8882 if (cfs_rq_has_blocked(cfs_rq)) 8883 *done = false; 8884 } 8885 8886 return decayed; 8887 } 8888 8889 /* 8890 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 8891 * This needs to be done in a top-down fashion because the load of a child 8892 * group is a fraction of its parents load. 8893 */ 8894 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 8895 { 8896 struct rq *rq = rq_of(cfs_rq); 8897 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 8898 unsigned long now = jiffies; 8899 unsigned long load; 8900 8901 if (cfs_rq->last_h_load_update == now) 8902 return; 8903 8904 WRITE_ONCE(cfs_rq->h_load_next, NULL); 8905 for_each_sched_entity(se) { 8906 cfs_rq = cfs_rq_of(se); 8907 WRITE_ONCE(cfs_rq->h_load_next, se); 8908 if (cfs_rq->last_h_load_update == now) 8909 break; 8910 } 8911 8912 if (!se) { 8913 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 8914 cfs_rq->last_h_load_update = now; 8915 } 8916 8917 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 8918 load = cfs_rq->h_load; 8919 load = div64_ul(load * se->avg.load_avg, 8920 cfs_rq_load_avg(cfs_rq) + 1); 8921 cfs_rq = group_cfs_rq(se); 8922 cfs_rq->h_load = load; 8923 cfs_rq->last_h_load_update = now; 8924 } 8925 } 8926 8927 static unsigned long task_h_load(struct task_struct *p) 8928 { 8929 struct cfs_rq *cfs_rq = task_cfs_rq(p); 8930 8931 update_cfs_rq_h_load(cfs_rq); 8932 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 8933 cfs_rq_load_avg(cfs_rq) + 1); 8934 } 8935 #else 8936 static bool __update_blocked_fair(struct rq *rq, bool *done) 8937 { 8938 struct cfs_rq *cfs_rq = &rq->cfs; 8939 bool decayed; 8940 8941 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 8942 if (cfs_rq_has_blocked(cfs_rq)) 8943 *done = false; 8944 8945 return decayed; 8946 } 8947 8948 static unsigned long task_h_load(struct task_struct *p) 8949 { 8950 return p->se.avg.load_avg; 8951 } 8952 #endif 8953 8954 static void update_blocked_averages(int cpu) 8955 { 8956 bool decayed = false, done = true; 8957 struct rq *rq = cpu_rq(cpu); 8958 struct rq_flags rf; 8959 8960 rq_lock_irqsave(rq, &rf); 8961 update_blocked_load_tick(rq); 8962 update_rq_clock(rq); 8963 8964 decayed |= __update_blocked_others(rq, &done); 8965 decayed |= __update_blocked_fair(rq, &done); 8966 8967 update_blocked_load_status(rq, !done); 8968 if (decayed) 8969 cpufreq_update_util(rq, 0); 8970 rq_unlock_irqrestore(rq, &rf); 8971 } 8972 8973 /********** Helpers for find_busiest_group ************************/ 8974 8975 /* 8976 * sg_lb_stats - stats of a sched_group required for load_balancing 8977 */ 8978 struct sg_lb_stats { 8979 unsigned long avg_load; /*Avg load across the CPUs of the group */ 8980 unsigned long group_load; /* Total load over the CPUs of the group */ 8981 unsigned long group_capacity; 8982 unsigned long group_util; /* Total utilization over the CPUs of the group */ 8983 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 8984 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 8985 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 8986 unsigned int idle_cpus; 8987 unsigned int group_weight; 8988 enum group_type group_type; 8989 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 8990 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 8991 #ifdef CONFIG_NUMA_BALANCING 8992 unsigned int nr_numa_running; 8993 unsigned int nr_preferred_running; 8994 #endif 8995 }; 8996 8997 /* 8998 * sd_lb_stats - Structure to store the statistics of a sched_domain 8999 * during load balancing. 9000 */ 9001 struct sd_lb_stats { 9002 struct sched_group *busiest; /* Busiest group in this sd */ 9003 struct sched_group *local; /* Local group in this sd */ 9004 unsigned long total_load; /* Total load of all groups in sd */ 9005 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9006 unsigned long avg_load; /* Average load across all groups in sd */ 9007 unsigned int prefer_sibling; /* tasks should go to sibling first */ 9008 9009 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 9010 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9011 }; 9012 9013 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9014 { 9015 /* 9016 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9017 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9018 * We must however set busiest_stat::group_type and 9019 * busiest_stat::idle_cpus to the worst busiest group because 9020 * update_sd_pick_busiest() reads these before assignment. 9021 */ 9022 *sds = (struct sd_lb_stats){ 9023 .busiest = NULL, 9024 .local = NULL, 9025 .total_load = 0UL, 9026 .total_capacity = 0UL, 9027 .busiest_stat = { 9028 .idle_cpus = UINT_MAX, 9029 .group_type = group_has_spare, 9030 }, 9031 }; 9032 } 9033 9034 static unsigned long scale_rt_capacity(int cpu) 9035 { 9036 struct rq *rq = cpu_rq(cpu); 9037 unsigned long max = arch_scale_cpu_capacity(cpu); 9038 unsigned long used, free; 9039 unsigned long irq; 9040 9041 irq = cpu_util_irq(rq); 9042 9043 if (unlikely(irq >= max)) 9044 return 1; 9045 9046 /* 9047 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9048 * (running and not running) with weights 0 and 1024 respectively. 9049 * avg_thermal.load_avg tracks thermal pressure and the weighted 9050 * average uses the actual delta max capacity(load). 9051 */ 9052 used = READ_ONCE(rq->avg_rt.util_avg); 9053 used += READ_ONCE(rq->avg_dl.util_avg); 9054 used += thermal_load_avg(rq); 9055 9056 if (unlikely(used >= max)) 9057 return 1; 9058 9059 free = max - used; 9060 9061 return scale_irq_capacity(free, irq, max); 9062 } 9063 9064 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9065 { 9066 unsigned long capacity = scale_rt_capacity(cpu); 9067 struct sched_group *sdg = sd->groups; 9068 9069 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 9070 9071 if (!capacity) 9072 capacity = 1; 9073 9074 cpu_rq(cpu)->cpu_capacity = capacity; 9075 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9076 9077 sdg->sgc->capacity = capacity; 9078 sdg->sgc->min_capacity = capacity; 9079 sdg->sgc->max_capacity = capacity; 9080 } 9081 9082 void update_group_capacity(struct sched_domain *sd, int cpu) 9083 { 9084 struct sched_domain *child = sd->child; 9085 struct sched_group *group, *sdg = sd->groups; 9086 unsigned long capacity, min_capacity, max_capacity; 9087 unsigned long interval; 9088 9089 interval = msecs_to_jiffies(sd->balance_interval); 9090 interval = clamp(interval, 1UL, max_load_balance_interval); 9091 sdg->sgc->next_update = jiffies + interval; 9092 9093 if (!child) { 9094 update_cpu_capacity(sd, cpu); 9095 return; 9096 } 9097 9098 capacity = 0; 9099 min_capacity = ULONG_MAX; 9100 max_capacity = 0; 9101 9102 if (child->flags & SD_OVERLAP) { 9103 /* 9104 * SD_OVERLAP domains cannot assume that child groups 9105 * span the current group. 9106 */ 9107 9108 for_each_cpu(cpu, sched_group_span(sdg)) { 9109 unsigned long cpu_cap = capacity_of(cpu); 9110 9111 capacity += cpu_cap; 9112 min_capacity = min(cpu_cap, min_capacity); 9113 max_capacity = max(cpu_cap, max_capacity); 9114 } 9115 } else { 9116 /* 9117 * !SD_OVERLAP domains can assume that child groups 9118 * span the current group. 9119 */ 9120 9121 group = child->groups; 9122 do { 9123 struct sched_group_capacity *sgc = group->sgc; 9124 9125 capacity += sgc->capacity; 9126 min_capacity = min(sgc->min_capacity, min_capacity); 9127 max_capacity = max(sgc->max_capacity, max_capacity); 9128 group = group->next; 9129 } while (group != child->groups); 9130 } 9131 9132 sdg->sgc->capacity = capacity; 9133 sdg->sgc->min_capacity = min_capacity; 9134 sdg->sgc->max_capacity = max_capacity; 9135 } 9136 9137 /* 9138 * Check whether the capacity of the rq has been noticeably reduced by side 9139 * activity. The imbalance_pct is used for the threshold. 9140 * Return true is the capacity is reduced 9141 */ 9142 static inline int 9143 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 9144 { 9145 return ((rq->cpu_capacity * sd->imbalance_pct) < 9146 (rq->cpu_capacity_orig * 100)); 9147 } 9148 9149 /* 9150 * Check whether a rq has a misfit task and if it looks like we can actually 9151 * help that task: we can migrate the task to a CPU of higher capacity, or 9152 * the task's current CPU is heavily pressured. 9153 */ 9154 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 9155 { 9156 return rq->misfit_task_load && 9157 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 9158 check_cpu_capacity(rq, sd)); 9159 } 9160 9161 /* 9162 * Group imbalance indicates (and tries to solve) the problem where balancing 9163 * groups is inadequate due to ->cpus_ptr constraints. 9164 * 9165 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9166 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 9167 * Something like: 9168 * 9169 * { 0 1 2 3 } { 4 5 6 7 } 9170 * * * * * 9171 * 9172 * If we were to balance group-wise we'd place two tasks in the first group and 9173 * two tasks in the second group. Clearly this is undesired as it will overload 9174 * cpu 3 and leave one of the CPUs in the second group unused. 9175 * 9176 * The current solution to this issue is detecting the skew in the first group 9177 * by noticing the lower domain failed to reach balance and had difficulty 9178 * moving tasks due to affinity constraints. 9179 * 9180 * When this is so detected; this group becomes a candidate for busiest; see 9181 * update_sd_pick_busiest(). And calculate_imbalance() and 9182 * find_busiest_group() avoid some of the usual balance conditions to allow it 9183 * to create an effective group imbalance. 9184 * 9185 * This is a somewhat tricky proposition since the next run might not find the 9186 * group imbalance and decide the groups need to be balanced again. A most 9187 * subtle and fragile situation. 9188 */ 9189 9190 static inline int sg_imbalanced(struct sched_group *group) 9191 { 9192 return group->sgc->imbalance; 9193 } 9194 9195 /* 9196 * group_has_capacity returns true if the group has spare capacity that could 9197 * be used by some tasks. 9198 * We consider that a group has spare capacity if the number of task is 9199 * smaller than the number of CPUs or if the utilization is lower than the 9200 * available capacity for CFS tasks. 9201 * For the latter, we use a threshold to stabilize the state, to take into 9202 * account the variance of the tasks' load and to return true if the available 9203 * capacity in meaningful for the load balancer. 9204 * As an example, an available capacity of 1% can appear but it doesn't make 9205 * any benefit for the load balance. 9206 */ 9207 static inline bool 9208 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9209 { 9210 if (sgs->sum_nr_running < sgs->group_weight) 9211 return true; 9212 9213 if ((sgs->group_capacity * imbalance_pct) < 9214 (sgs->group_runnable * 100)) 9215 return false; 9216 9217 if ((sgs->group_capacity * 100) > 9218 (sgs->group_util * imbalance_pct)) 9219 return true; 9220 9221 return false; 9222 } 9223 9224 /* 9225 * group_is_overloaded returns true if the group has more tasks than it can 9226 * handle. 9227 * group_is_overloaded is not equals to !group_has_capacity because a group 9228 * with the exact right number of tasks, has no more spare capacity but is not 9229 * overloaded so both group_has_capacity and group_is_overloaded return 9230 * false. 9231 */ 9232 static inline bool 9233 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9234 { 9235 if (sgs->sum_nr_running <= sgs->group_weight) 9236 return false; 9237 9238 if ((sgs->group_capacity * 100) < 9239 (sgs->group_util * imbalance_pct)) 9240 return true; 9241 9242 if ((sgs->group_capacity * imbalance_pct) < 9243 (sgs->group_runnable * 100)) 9244 return true; 9245 9246 return false; 9247 } 9248 9249 static inline enum 9250 group_type group_classify(unsigned int imbalance_pct, 9251 struct sched_group *group, 9252 struct sg_lb_stats *sgs) 9253 { 9254 if (group_is_overloaded(imbalance_pct, sgs)) 9255 return group_overloaded; 9256 9257 if (sg_imbalanced(group)) 9258 return group_imbalanced; 9259 9260 if (sgs->group_asym_packing) 9261 return group_asym_packing; 9262 9263 if (sgs->group_misfit_task_load) 9264 return group_misfit_task; 9265 9266 if (!group_has_capacity(imbalance_pct, sgs)) 9267 return group_fully_busy; 9268 9269 return group_has_spare; 9270 } 9271 9272 /** 9273 * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks 9274 * @dst_cpu: Destination CPU of the load balancing 9275 * @sds: Load-balancing data with statistics of the local group 9276 * @sgs: Load-balancing statistics of the candidate busiest group 9277 * @sg: The candidate busiest group 9278 * 9279 * Check the state of the SMT siblings of both @sds::local and @sg and decide 9280 * if @dst_cpu can pull tasks. 9281 * 9282 * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of 9283 * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks 9284 * only if @dst_cpu has higher priority. 9285 * 9286 * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more 9287 * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority. 9288 * Bigger imbalances in the number of busy CPUs will be dealt with in 9289 * update_sd_pick_busiest(). 9290 * 9291 * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings 9292 * of @dst_cpu are idle and @sg has lower priority. 9293 * 9294 * Return: true if @dst_cpu can pull tasks, false otherwise. 9295 */ 9296 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds, 9297 struct sg_lb_stats *sgs, 9298 struct sched_group *sg) 9299 { 9300 #ifdef CONFIG_SCHED_SMT 9301 bool local_is_smt, sg_is_smt; 9302 int sg_busy_cpus; 9303 9304 local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY; 9305 sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY; 9306 9307 sg_busy_cpus = sgs->group_weight - sgs->idle_cpus; 9308 9309 if (!local_is_smt) { 9310 /* 9311 * If we are here, @dst_cpu is idle and does not have SMT 9312 * siblings. Pull tasks if candidate group has two or more 9313 * busy CPUs. 9314 */ 9315 if (sg_busy_cpus >= 2) /* implies sg_is_smt */ 9316 return true; 9317 9318 /* 9319 * @dst_cpu does not have SMT siblings. @sg may have SMT 9320 * siblings and only one is busy. In such case, @dst_cpu 9321 * can help if it has higher priority and is idle (i.e., 9322 * it has no running tasks). 9323 */ 9324 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 9325 } 9326 9327 /* @dst_cpu has SMT siblings. */ 9328 9329 if (sg_is_smt) { 9330 int local_busy_cpus = sds->local->group_weight - 9331 sds->local_stat.idle_cpus; 9332 int busy_cpus_delta = sg_busy_cpus - local_busy_cpus; 9333 9334 if (busy_cpus_delta == 1) 9335 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 9336 9337 return false; 9338 } 9339 9340 /* 9341 * @sg does not have SMT siblings. Ensure that @sds::local does not end 9342 * up with more than one busy SMT sibling and only pull tasks if there 9343 * are not busy CPUs (i.e., no CPU has running tasks). 9344 */ 9345 if (!sds->local_stat.sum_nr_running) 9346 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 9347 9348 return false; 9349 #else 9350 /* Always return false so that callers deal with non-SMT cases. */ 9351 return false; 9352 #endif 9353 } 9354 9355 static inline bool 9356 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 9357 struct sched_group *group) 9358 { 9359 /* Only do SMT checks if either local or candidate have SMT siblings */ 9360 if ((sds->local->flags & SD_SHARE_CPUCAPACITY) || 9361 (group->flags & SD_SHARE_CPUCAPACITY)) 9362 return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group); 9363 9364 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 9365 } 9366 9367 static inline bool 9368 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 9369 { 9370 /* 9371 * When there is more than 1 task, the group_overloaded case already 9372 * takes care of cpu with reduced capacity 9373 */ 9374 if (rq->cfs.h_nr_running != 1) 9375 return false; 9376 9377 return check_cpu_capacity(rq, sd); 9378 } 9379 9380 /** 9381 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 9382 * @env: The load balancing environment. 9383 * @sds: Load-balancing data with statistics of the local group. 9384 * @group: sched_group whose statistics are to be updated. 9385 * @sgs: variable to hold the statistics for this group. 9386 * @sg_status: Holds flag indicating the status of the sched_group 9387 */ 9388 static inline void update_sg_lb_stats(struct lb_env *env, 9389 struct sd_lb_stats *sds, 9390 struct sched_group *group, 9391 struct sg_lb_stats *sgs, 9392 int *sg_status) 9393 { 9394 int i, nr_running, local_group; 9395 9396 memset(sgs, 0, sizeof(*sgs)); 9397 9398 local_group = group == sds->local; 9399 9400 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9401 struct rq *rq = cpu_rq(i); 9402 unsigned long load = cpu_load(rq); 9403 9404 sgs->group_load += load; 9405 sgs->group_util += cpu_util_cfs(i); 9406 sgs->group_runnable += cpu_runnable(rq); 9407 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 9408 9409 nr_running = rq->nr_running; 9410 sgs->sum_nr_running += nr_running; 9411 9412 if (nr_running > 1) 9413 *sg_status |= SG_OVERLOAD; 9414 9415 if (cpu_overutilized(i)) 9416 *sg_status |= SG_OVERUTILIZED; 9417 9418 #ifdef CONFIG_NUMA_BALANCING 9419 sgs->nr_numa_running += rq->nr_numa_running; 9420 sgs->nr_preferred_running += rq->nr_preferred_running; 9421 #endif 9422 /* 9423 * No need to call idle_cpu() if nr_running is not 0 9424 */ 9425 if (!nr_running && idle_cpu(i)) { 9426 sgs->idle_cpus++; 9427 /* Idle cpu can't have misfit task */ 9428 continue; 9429 } 9430 9431 if (local_group) 9432 continue; 9433 9434 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9435 /* Check for a misfit task on the cpu */ 9436 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 9437 sgs->group_misfit_task_load = rq->misfit_task_load; 9438 *sg_status |= SG_OVERLOAD; 9439 } 9440 } else if ((env->idle != CPU_NOT_IDLE) && 9441 sched_reduced_capacity(rq, env->sd)) { 9442 /* Check for a task running on a CPU with reduced capacity */ 9443 if (sgs->group_misfit_task_load < load) 9444 sgs->group_misfit_task_load = load; 9445 } 9446 } 9447 9448 sgs->group_capacity = group->sgc->capacity; 9449 9450 sgs->group_weight = group->group_weight; 9451 9452 /* Check if dst CPU is idle and preferred to this group */ 9453 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 9454 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 9455 sched_asym(env, sds, sgs, group)) { 9456 sgs->group_asym_packing = 1; 9457 } 9458 9459 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 9460 9461 /* Computing avg_load makes sense only when group is overloaded */ 9462 if (sgs->group_type == group_overloaded) 9463 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9464 sgs->group_capacity; 9465 } 9466 9467 /** 9468 * update_sd_pick_busiest - return 1 on busiest group 9469 * @env: The load balancing environment. 9470 * @sds: sched_domain statistics 9471 * @sg: sched_group candidate to be checked for being the busiest 9472 * @sgs: sched_group statistics 9473 * 9474 * Determine if @sg is a busier group than the previously selected 9475 * busiest group. 9476 * 9477 * Return: %true if @sg is a busier group than the previously selected 9478 * busiest group. %false otherwise. 9479 */ 9480 static bool update_sd_pick_busiest(struct lb_env *env, 9481 struct sd_lb_stats *sds, 9482 struct sched_group *sg, 9483 struct sg_lb_stats *sgs) 9484 { 9485 struct sg_lb_stats *busiest = &sds->busiest_stat; 9486 9487 /* Make sure that there is at least one task to pull */ 9488 if (!sgs->sum_h_nr_running) 9489 return false; 9490 9491 /* 9492 * Don't try to pull misfit tasks we can't help. 9493 * We can use max_capacity here as reduction in capacity on some 9494 * CPUs in the group should either be possible to resolve 9495 * internally or be covered by avg_load imbalance (eventually). 9496 */ 9497 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9498 (sgs->group_type == group_misfit_task) && 9499 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 9500 sds->local_stat.group_type != group_has_spare)) 9501 return false; 9502 9503 if (sgs->group_type > busiest->group_type) 9504 return true; 9505 9506 if (sgs->group_type < busiest->group_type) 9507 return false; 9508 9509 /* 9510 * The candidate and the current busiest group are the same type of 9511 * group. Let check which one is the busiest according to the type. 9512 */ 9513 9514 switch (sgs->group_type) { 9515 case group_overloaded: 9516 /* Select the overloaded group with highest avg_load. */ 9517 if (sgs->avg_load <= busiest->avg_load) 9518 return false; 9519 break; 9520 9521 case group_imbalanced: 9522 /* 9523 * Select the 1st imbalanced group as we don't have any way to 9524 * choose one more than another. 9525 */ 9526 return false; 9527 9528 case group_asym_packing: 9529 /* Prefer to move from lowest priority CPU's work */ 9530 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 9531 return false; 9532 break; 9533 9534 case group_misfit_task: 9535 /* 9536 * If we have more than one misfit sg go with the biggest 9537 * misfit. 9538 */ 9539 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 9540 return false; 9541 break; 9542 9543 case group_fully_busy: 9544 /* 9545 * Select the fully busy group with highest avg_load. In 9546 * theory, there is no need to pull task from such kind of 9547 * group because tasks have all compute capacity that they need 9548 * but we can still improve the overall throughput by reducing 9549 * contention when accessing shared HW resources. 9550 * 9551 * XXX for now avg_load is not computed and always 0 so we 9552 * select the 1st one. 9553 */ 9554 if (sgs->avg_load <= busiest->avg_load) 9555 return false; 9556 break; 9557 9558 case group_has_spare: 9559 /* 9560 * Select not overloaded group with lowest number of idle cpus 9561 * and highest number of running tasks. We could also compare 9562 * the spare capacity which is more stable but it can end up 9563 * that the group has less spare capacity but finally more idle 9564 * CPUs which means less opportunity to pull tasks. 9565 */ 9566 if (sgs->idle_cpus > busiest->idle_cpus) 9567 return false; 9568 else if ((sgs->idle_cpus == busiest->idle_cpus) && 9569 (sgs->sum_nr_running <= busiest->sum_nr_running)) 9570 return false; 9571 9572 break; 9573 } 9574 9575 /* 9576 * Candidate sg has no more than one task per CPU and has higher 9577 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 9578 * throughput. Maximize throughput, power/energy consequences are not 9579 * considered. 9580 */ 9581 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9582 (sgs->group_type <= group_fully_busy) && 9583 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 9584 return false; 9585 9586 return true; 9587 } 9588 9589 #ifdef CONFIG_NUMA_BALANCING 9590 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9591 { 9592 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 9593 return regular; 9594 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 9595 return remote; 9596 return all; 9597 } 9598 9599 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9600 { 9601 if (rq->nr_running > rq->nr_numa_running) 9602 return regular; 9603 if (rq->nr_running > rq->nr_preferred_running) 9604 return remote; 9605 return all; 9606 } 9607 #else 9608 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 9609 { 9610 return all; 9611 } 9612 9613 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 9614 { 9615 return regular; 9616 } 9617 #endif /* CONFIG_NUMA_BALANCING */ 9618 9619 9620 struct sg_lb_stats; 9621 9622 /* 9623 * task_running_on_cpu - return 1 if @p is running on @cpu. 9624 */ 9625 9626 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 9627 { 9628 /* Task has no contribution or is new */ 9629 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 9630 return 0; 9631 9632 if (task_on_rq_queued(p)) 9633 return 1; 9634 9635 return 0; 9636 } 9637 9638 /** 9639 * idle_cpu_without - would a given CPU be idle without p ? 9640 * @cpu: the processor on which idleness is tested. 9641 * @p: task which should be ignored. 9642 * 9643 * Return: 1 if the CPU would be idle. 0 otherwise. 9644 */ 9645 static int idle_cpu_without(int cpu, struct task_struct *p) 9646 { 9647 struct rq *rq = cpu_rq(cpu); 9648 9649 if (rq->curr != rq->idle && rq->curr != p) 9650 return 0; 9651 9652 /* 9653 * rq->nr_running can't be used but an updated version without the 9654 * impact of p on cpu must be used instead. The updated nr_running 9655 * be computed and tested before calling idle_cpu_without(). 9656 */ 9657 9658 #ifdef CONFIG_SMP 9659 if (rq->ttwu_pending) 9660 return 0; 9661 #endif 9662 9663 return 1; 9664 } 9665 9666 /* 9667 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 9668 * @sd: The sched_domain level to look for idlest group. 9669 * @group: sched_group whose statistics are to be updated. 9670 * @sgs: variable to hold the statistics for this group. 9671 * @p: The task for which we look for the idlest group/CPU. 9672 */ 9673 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 9674 struct sched_group *group, 9675 struct sg_lb_stats *sgs, 9676 struct task_struct *p) 9677 { 9678 int i, nr_running; 9679 9680 memset(sgs, 0, sizeof(*sgs)); 9681 9682 /* Assume that task can't fit any CPU of the group */ 9683 if (sd->flags & SD_ASYM_CPUCAPACITY) 9684 sgs->group_misfit_task_load = 1; 9685 9686 for_each_cpu(i, sched_group_span(group)) { 9687 struct rq *rq = cpu_rq(i); 9688 unsigned int local; 9689 9690 sgs->group_load += cpu_load_without(rq, p); 9691 sgs->group_util += cpu_util_without(i, p); 9692 sgs->group_runnable += cpu_runnable_without(rq, p); 9693 local = task_running_on_cpu(i, p); 9694 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 9695 9696 nr_running = rq->nr_running - local; 9697 sgs->sum_nr_running += nr_running; 9698 9699 /* 9700 * No need to call idle_cpu_without() if nr_running is not 0 9701 */ 9702 if (!nr_running && idle_cpu_without(i, p)) 9703 sgs->idle_cpus++; 9704 9705 /* Check if task fits in the CPU */ 9706 if (sd->flags & SD_ASYM_CPUCAPACITY && 9707 sgs->group_misfit_task_load && 9708 task_fits_cpu(p, i)) 9709 sgs->group_misfit_task_load = 0; 9710 9711 } 9712 9713 sgs->group_capacity = group->sgc->capacity; 9714 9715 sgs->group_weight = group->group_weight; 9716 9717 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 9718 9719 /* 9720 * Computing avg_load makes sense only when group is fully busy or 9721 * overloaded 9722 */ 9723 if (sgs->group_type == group_fully_busy || 9724 sgs->group_type == group_overloaded) 9725 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9726 sgs->group_capacity; 9727 } 9728 9729 static bool update_pick_idlest(struct sched_group *idlest, 9730 struct sg_lb_stats *idlest_sgs, 9731 struct sched_group *group, 9732 struct sg_lb_stats *sgs) 9733 { 9734 if (sgs->group_type < idlest_sgs->group_type) 9735 return true; 9736 9737 if (sgs->group_type > idlest_sgs->group_type) 9738 return false; 9739 9740 /* 9741 * The candidate and the current idlest group are the same type of 9742 * group. Let check which one is the idlest according to the type. 9743 */ 9744 9745 switch (sgs->group_type) { 9746 case group_overloaded: 9747 case group_fully_busy: 9748 /* Select the group with lowest avg_load. */ 9749 if (idlest_sgs->avg_load <= sgs->avg_load) 9750 return false; 9751 break; 9752 9753 case group_imbalanced: 9754 case group_asym_packing: 9755 /* Those types are not used in the slow wakeup path */ 9756 return false; 9757 9758 case group_misfit_task: 9759 /* Select group with the highest max capacity */ 9760 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 9761 return false; 9762 break; 9763 9764 case group_has_spare: 9765 /* Select group with most idle CPUs */ 9766 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 9767 return false; 9768 9769 /* Select group with lowest group_util */ 9770 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 9771 idlest_sgs->group_util <= sgs->group_util) 9772 return false; 9773 9774 break; 9775 } 9776 9777 return true; 9778 } 9779 9780 /* 9781 * find_idlest_group() finds and returns the least busy CPU group within the 9782 * domain. 9783 * 9784 * Assumes p is allowed on at least one CPU in sd. 9785 */ 9786 static struct sched_group * 9787 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 9788 { 9789 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 9790 struct sg_lb_stats local_sgs, tmp_sgs; 9791 struct sg_lb_stats *sgs; 9792 unsigned long imbalance; 9793 struct sg_lb_stats idlest_sgs = { 9794 .avg_load = UINT_MAX, 9795 .group_type = group_overloaded, 9796 }; 9797 9798 do { 9799 int local_group; 9800 9801 /* Skip over this group if it has no CPUs allowed */ 9802 if (!cpumask_intersects(sched_group_span(group), 9803 p->cpus_ptr)) 9804 continue; 9805 9806 /* Skip over this group if no cookie matched */ 9807 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 9808 continue; 9809 9810 local_group = cpumask_test_cpu(this_cpu, 9811 sched_group_span(group)); 9812 9813 if (local_group) { 9814 sgs = &local_sgs; 9815 local = group; 9816 } else { 9817 sgs = &tmp_sgs; 9818 } 9819 9820 update_sg_wakeup_stats(sd, group, sgs, p); 9821 9822 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 9823 idlest = group; 9824 idlest_sgs = *sgs; 9825 } 9826 9827 } while (group = group->next, group != sd->groups); 9828 9829 9830 /* There is no idlest group to push tasks to */ 9831 if (!idlest) 9832 return NULL; 9833 9834 /* The local group has been skipped because of CPU affinity */ 9835 if (!local) 9836 return idlest; 9837 9838 /* 9839 * If the local group is idler than the selected idlest group 9840 * don't try and push the task. 9841 */ 9842 if (local_sgs.group_type < idlest_sgs.group_type) 9843 return NULL; 9844 9845 /* 9846 * If the local group is busier than the selected idlest group 9847 * try and push the task. 9848 */ 9849 if (local_sgs.group_type > idlest_sgs.group_type) 9850 return idlest; 9851 9852 switch (local_sgs.group_type) { 9853 case group_overloaded: 9854 case group_fully_busy: 9855 9856 /* Calculate allowed imbalance based on load */ 9857 imbalance = scale_load_down(NICE_0_LOAD) * 9858 (sd->imbalance_pct-100) / 100; 9859 9860 /* 9861 * When comparing groups across NUMA domains, it's possible for 9862 * the local domain to be very lightly loaded relative to the 9863 * remote domains but "imbalance" skews the comparison making 9864 * remote CPUs look much more favourable. When considering 9865 * cross-domain, add imbalance to the load on the remote node 9866 * and consider staying local. 9867 */ 9868 9869 if ((sd->flags & SD_NUMA) && 9870 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 9871 return NULL; 9872 9873 /* 9874 * If the local group is less loaded than the selected 9875 * idlest group don't try and push any tasks. 9876 */ 9877 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 9878 return NULL; 9879 9880 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 9881 return NULL; 9882 break; 9883 9884 case group_imbalanced: 9885 case group_asym_packing: 9886 /* Those type are not used in the slow wakeup path */ 9887 return NULL; 9888 9889 case group_misfit_task: 9890 /* Select group with the highest max capacity */ 9891 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 9892 return NULL; 9893 break; 9894 9895 case group_has_spare: 9896 #ifdef CONFIG_NUMA 9897 if (sd->flags & SD_NUMA) { 9898 int imb_numa_nr = sd->imb_numa_nr; 9899 #ifdef CONFIG_NUMA_BALANCING 9900 int idlest_cpu; 9901 /* 9902 * If there is spare capacity at NUMA, try to select 9903 * the preferred node 9904 */ 9905 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 9906 return NULL; 9907 9908 idlest_cpu = cpumask_first(sched_group_span(idlest)); 9909 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 9910 return idlest; 9911 #endif /* CONFIG_NUMA_BALANCING */ 9912 /* 9913 * Otherwise, keep the task close to the wakeup source 9914 * and improve locality if the number of running tasks 9915 * would remain below threshold where an imbalance is 9916 * allowed while accounting for the possibility the 9917 * task is pinned to a subset of CPUs. If there is a 9918 * real need of migration, periodic load balance will 9919 * take care of it. 9920 */ 9921 if (p->nr_cpus_allowed != NR_CPUS) { 9922 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 9923 9924 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 9925 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 9926 } 9927 9928 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 9929 if (!adjust_numa_imbalance(imbalance, 9930 local_sgs.sum_nr_running + 1, 9931 imb_numa_nr)) { 9932 return NULL; 9933 } 9934 } 9935 #endif /* CONFIG_NUMA */ 9936 9937 /* 9938 * Select group with highest number of idle CPUs. We could also 9939 * compare the utilization which is more stable but it can end 9940 * up that the group has less spare capacity but finally more 9941 * idle CPUs which means more opportunity to run task. 9942 */ 9943 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 9944 return NULL; 9945 break; 9946 } 9947 9948 return idlest; 9949 } 9950 9951 static void update_idle_cpu_scan(struct lb_env *env, 9952 unsigned long sum_util) 9953 { 9954 struct sched_domain_shared *sd_share; 9955 int llc_weight, pct; 9956 u64 x, y, tmp; 9957 /* 9958 * Update the number of CPUs to scan in LLC domain, which could 9959 * be used as a hint in select_idle_cpu(). The update of sd_share 9960 * could be expensive because it is within a shared cache line. 9961 * So the write of this hint only occurs during periodic load 9962 * balancing, rather than CPU_NEWLY_IDLE, because the latter 9963 * can fire way more frequently than the former. 9964 */ 9965 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 9966 return; 9967 9968 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 9969 if (env->sd->span_weight != llc_weight) 9970 return; 9971 9972 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 9973 if (!sd_share) 9974 return; 9975 9976 /* 9977 * The number of CPUs to search drops as sum_util increases, when 9978 * sum_util hits 85% or above, the scan stops. 9979 * The reason to choose 85% as the threshold is because this is the 9980 * imbalance_pct(117) when a LLC sched group is overloaded. 9981 * 9982 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 9983 * and y'= y / SCHED_CAPACITY_SCALE 9984 * 9985 * x is the ratio of sum_util compared to the CPU capacity: 9986 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 9987 * y' is the ratio of CPUs to be scanned in the LLC domain, 9988 * and the number of CPUs to scan is calculated by: 9989 * 9990 * nr_scan = llc_weight * y' [2] 9991 * 9992 * When x hits the threshold of overloaded, AKA, when 9993 * x = 100 / pct, y drops to 0. According to [1], 9994 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 9995 * 9996 * Scale x by SCHED_CAPACITY_SCALE: 9997 * x' = sum_util / llc_weight; [3] 9998 * 9999 * and finally [1] becomes: 10000 * y = SCHED_CAPACITY_SCALE - 10001 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10002 * 10003 */ 10004 /* equation [3] */ 10005 x = sum_util; 10006 do_div(x, llc_weight); 10007 10008 /* equation [4] */ 10009 pct = env->sd->imbalance_pct; 10010 tmp = x * x * pct * pct; 10011 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10012 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10013 y = SCHED_CAPACITY_SCALE - tmp; 10014 10015 /* equation [2] */ 10016 y *= llc_weight; 10017 do_div(y, SCHED_CAPACITY_SCALE); 10018 if ((int)y != sd_share->nr_idle_scan) 10019 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10020 } 10021 10022 /** 10023 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10024 * @env: The load balancing environment. 10025 * @sds: variable to hold the statistics for this sched_domain. 10026 */ 10027 10028 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10029 { 10030 struct sched_domain *child = env->sd->child; 10031 struct sched_group *sg = env->sd->groups; 10032 struct sg_lb_stats *local = &sds->local_stat; 10033 struct sg_lb_stats tmp_sgs; 10034 unsigned long sum_util = 0; 10035 int sg_status = 0; 10036 10037 do { 10038 struct sg_lb_stats *sgs = &tmp_sgs; 10039 int local_group; 10040 10041 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10042 if (local_group) { 10043 sds->local = sg; 10044 sgs = local; 10045 10046 if (env->idle != CPU_NEWLY_IDLE || 10047 time_after_eq(jiffies, sg->sgc->next_update)) 10048 update_group_capacity(env->sd, env->dst_cpu); 10049 } 10050 10051 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 10052 10053 if (local_group) 10054 goto next_group; 10055 10056 10057 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 10058 sds->busiest = sg; 10059 sds->busiest_stat = *sgs; 10060 } 10061 10062 next_group: 10063 /* Now, start updating sd_lb_stats */ 10064 sds->total_load += sgs->group_load; 10065 sds->total_capacity += sgs->group_capacity; 10066 10067 sum_util += sgs->group_util; 10068 sg = sg->next; 10069 } while (sg != env->sd->groups); 10070 10071 /* Tag domain that child domain prefers tasks go to siblings first */ 10072 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 10073 10074 10075 if (env->sd->flags & SD_NUMA) 10076 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 10077 10078 if (!env->sd->parent) { 10079 struct root_domain *rd = env->dst_rq->rd; 10080 10081 /* update overload indicator if we are at root domain */ 10082 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 10083 10084 /* Update over-utilization (tipping point, U >= 0) indicator */ 10085 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 10086 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 10087 } else if (sg_status & SG_OVERUTILIZED) { 10088 struct root_domain *rd = env->dst_rq->rd; 10089 10090 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 10091 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 10092 } 10093 10094 update_idle_cpu_scan(env, sum_util); 10095 } 10096 10097 /** 10098 * calculate_imbalance - Calculate the amount of imbalance present within the 10099 * groups of a given sched_domain during load balance. 10100 * @env: load balance environment 10101 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 10102 */ 10103 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 10104 { 10105 struct sg_lb_stats *local, *busiest; 10106 10107 local = &sds->local_stat; 10108 busiest = &sds->busiest_stat; 10109 10110 if (busiest->group_type == group_misfit_task) { 10111 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10112 /* Set imbalance to allow misfit tasks to be balanced. */ 10113 env->migration_type = migrate_misfit; 10114 env->imbalance = 1; 10115 } else { 10116 /* 10117 * Set load imbalance to allow moving task from cpu 10118 * with reduced capacity. 10119 */ 10120 env->migration_type = migrate_load; 10121 env->imbalance = busiest->group_misfit_task_load; 10122 } 10123 return; 10124 } 10125 10126 if (busiest->group_type == group_asym_packing) { 10127 /* 10128 * In case of asym capacity, we will try to migrate all load to 10129 * the preferred CPU. 10130 */ 10131 env->migration_type = migrate_task; 10132 env->imbalance = busiest->sum_h_nr_running; 10133 return; 10134 } 10135 10136 if (busiest->group_type == group_imbalanced) { 10137 /* 10138 * In the group_imb case we cannot rely on group-wide averages 10139 * to ensure CPU-load equilibrium, try to move any task to fix 10140 * the imbalance. The next load balance will take care of 10141 * balancing back the system. 10142 */ 10143 env->migration_type = migrate_task; 10144 env->imbalance = 1; 10145 return; 10146 } 10147 10148 /* 10149 * Try to use spare capacity of local group without overloading it or 10150 * emptying busiest. 10151 */ 10152 if (local->group_type == group_has_spare) { 10153 if ((busiest->group_type > group_fully_busy) && 10154 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 10155 /* 10156 * If busiest is overloaded, try to fill spare 10157 * capacity. This might end up creating spare capacity 10158 * in busiest or busiest still being overloaded but 10159 * there is no simple way to directly compute the 10160 * amount of load to migrate in order to balance the 10161 * system. 10162 */ 10163 env->migration_type = migrate_util; 10164 env->imbalance = max(local->group_capacity, local->group_util) - 10165 local->group_util; 10166 10167 /* 10168 * In some cases, the group's utilization is max or even 10169 * higher than capacity because of migrations but the 10170 * local CPU is (newly) idle. There is at least one 10171 * waiting task in this overloaded busiest group. Let's 10172 * try to pull it. 10173 */ 10174 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 10175 env->migration_type = migrate_task; 10176 env->imbalance = 1; 10177 } 10178 10179 return; 10180 } 10181 10182 if (busiest->group_weight == 1 || sds->prefer_sibling) { 10183 unsigned int nr_diff = busiest->sum_nr_running; 10184 /* 10185 * When prefer sibling, evenly spread running tasks on 10186 * groups. 10187 */ 10188 env->migration_type = migrate_task; 10189 lsub_positive(&nr_diff, local->sum_nr_running); 10190 env->imbalance = nr_diff; 10191 } else { 10192 10193 /* 10194 * If there is no overload, we just want to even the number of 10195 * idle cpus. 10196 */ 10197 env->migration_type = migrate_task; 10198 env->imbalance = max_t(long, 0, 10199 (local->idle_cpus - busiest->idle_cpus)); 10200 } 10201 10202 #ifdef CONFIG_NUMA 10203 /* Consider allowing a small imbalance between NUMA groups */ 10204 if (env->sd->flags & SD_NUMA) { 10205 env->imbalance = adjust_numa_imbalance(env->imbalance, 10206 local->sum_nr_running + 1, 10207 env->sd->imb_numa_nr); 10208 } 10209 #endif 10210 10211 /* Number of tasks to move to restore balance */ 10212 env->imbalance >>= 1; 10213 10214 return; 10215 } 10216 10217 /* 10218 * Local is fully busy but has to take more load to relieve the 10219 * busiest group 10220 */ 10221 if (local->group_type < group_overloaded) { 10222 /* 10223 * Local will become overloaded so the avg_load metrics are 10224 * finally needed. 10225 */ 10226 10227 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 10228 local->group_capacity; 10229 10230 /* 10231 * If the local group is more loaded than the selected 10232 * busiest group don't try to pull any tasks. 10233 */ 10234 if (local->avg_load >= busiest->avg_load) { 10235 env->imbalance = 0; 10236 return; 10237 } 10238 10239 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 10240 sds->total_capacity; 10241 10242 /* 10243 * If the local group is more loaded than the average system 10244 * load, don't try to pull any tasks. 10245 */ 10246 if (local->avg_load >= sds->avg_load) { 10247 env->imbalance = 0; 10248 return; 10249 } 10250 10251 } 10252 10253 /* 10254 * Both group are or will become overloaded and we're trying to get all 10255 * the CPUs to the average_load, so we don't want to push ourselves 10256 * above the average load, nor do we wish to reduce the max loaded CPU 10257 * below the average load. At the same time, we also don't want to 10258 * reduce the group load below the group capacity. Thus we look for 10259 * the minimum possible imbalance. 10260 */ 10261 env->migration_type = migrate_load; 10262 env->imbalance = min( 10263 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 10264 (sds->avg_load - local->avg_load) * local->group_capacity 10265 ) / SCHED_CAPACITY_SCALE; 10266 } 10267 10268 /******* find_busiest_group() helpers end here *********************/ 10269 10270 /* 10271 * Decision matrix according to the local and busiest group type: 10272 * 10273 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 10274 * has_spare nr_idle balanced N/A N/A balanced balanced 10275 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 10276 * misfit_task force N/A N/A N/A N/A N/A 10277 * asym_packing force force N/A N/A force force 10278 * imbalanced force force N/A N/A force force 10279 * overloaded force force N/A N/A force avg_load 10280 * 10281 * N/A : Not Applicable because already filtered while updating 10282 * statistics. 10283 * balanced : The system is balanced for these 2 groups. 10284 * force : Calculate the imbalance as load migration is probably needed. 10285 * avg_load : Only if imbalance is significant enough. 10286 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 10287 * different in groups. 10288 */ 10289 10290 /** 10291 * find_busiest_group - Returns the busiest group within the sched_domain 10292 * if there is an imbalance. 10293 * @env: The load balancing environment. 10294 * 10295 * Also calculates the amount of runnable load which should be moved 10296 * to restore balance. 10297 * 10298 * Return: - The busiest group if imbalance exists. 10299 */ 10300 static struct sched_group *find_busiest_group(struct lb_env *env) 10301 { 10302 struct sg_lb_stats *local, *busiest; 10303 struct sd_lb_stats sds; 10304 10305 init_sd_lb_stats(&sds); 10306 10307 /* 10308 * Compute the various statistics relevant for load balancing at 10309 * this level. 10310 */ 10311 update_sd_lb_stats(env, &sds); 10312 10313 /* There is no busy sibling group to pull tasks from */ 10314 if (!sds.busiest) 10315 goto out_balanced; 10316 10317 busiest = &sds.busiest_stat; 10318 10319 /* Misfit tasks should be dealt with regardless of the avg load */ 10320 if (busiest->group_type == group_misfit_task) 10321 goto force_balance; 10322 10323 if (sched_energy_enabled()) { 10324 struct root_domain *rd = env->dst_rq->rd; 10325 10326 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 10327 goto out_balanced; 10328 } 10329 10330 /* ASYM feature bypasses nice load balance check */ 10331 if (busiest->group_type == group_asym_packing) 10332 goto force_balance; 10333 10334 /* 10335 * If the busiest group is imbalanced the below checks don't 10336 * work because they assume all things are equal, which typically 10337 * isn't true due to cpus_ptr constraints and the like. 10338 */ 10339 if (busiest->group_type == group_imbalanced) 10340 goto force_balance; 10341 10342 local = &sds.local_stat; 10343 /* 10344 * If the local group is busier than the selected busiest group 10345 * don't try and pull any tasks. 10346 */ 10347 if (local->group_type > busiest->group_type) 10348 goto out_balanced; 10349 10350 /* 10351 * When groups are overloaded, use the avg_load to ensure fairness 10352 * between tasks. 10353 */ 10354 if (local->group_type == group_overloaded) { 10355 /* 10356 * If the local group is more loaded than the selected 10357 * busiest group don't try to pull any tasks. 10358 */ 10359 if (local->avg_load >= busiest->avg_load) 10360 goto out_balanced; 10361 10362 /* XXX broken for overlapping NUMA groups */ 10363 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 10364 sds.total_capacity; 10365 10366 /* 10367 * Don't pull any tasks if this group is already above the 10368 * domain average load. 10369 */ 10370 if (local->avg_load >= sds.avg_load) 10371 goto out_balanced; 10372 10373 /* 10374 * If the busiest group is more loaded, use imbalance_pct to be 10375 * conservative. 10376 */ 10377 if (100 * busiest->avg_load <= 10378 env->sd->imbalance_pct * local->avg_load) 10379 goto out_balanced; 10380 } 10381 10382 /* Try to move all excess tasks to child's sibling domain */ 10383 if (sds.prefer_sibling && local->group_type == group_has_spare && 10384 busiest->sum_nr_running > local->sum_nr_running + 1) 10385 goto force_balance; 10386 10387 if (busiest->group_type != group_overloaded) { 10388 if (env->idle == CPU_NOT_IDLE) 10389 /* 10390 * If the busiest group is not overloaded (and as a 10391 * result the local one too) but this CPU is already 10392 * busy, let another idle CPU try to pull task. 10393 */ 10394 goto out_balanced; 10395 10396 if (busiest->group_weight > 1 && 10397 local->idle_cpus <= (busiest->idle_cpus + 1)) 10398 /* 10399 * If the busiest group is not overloaded 10400 * and there is no imbalance between this and busiest 10401 * group wrt idle CPUs, it is balanced. The imbalance 10402 * becomes significant if the diff is greater than 1 10403 * otherwise we might end up to just move the imbalance 10404 * on another group. Of course this applies only if 10405 * there is more than 1 CPU per group. 10406 */ 10407 goto out_balanced; 10408 10409 if (busiest->sum_h_nr_running == 1) 10410 /* 10411 * busiest doesn't have any tasks waiting to run 10412 */ 10413 goto out_balanced; 10414 } 10415 10416 force_balance: 10417 /* Looks like there is an imbalance. Compute it */ 10418 calculate_imbalance(env, &sds); 10419 return env->imbalance ? sds.busiest : NULL; 10420 10421 out_balanced: 10422 env->imbalance = 0; 10423 return NULL; 10424 } 10425 10426 /* 10427 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 10428 */ 10429 static struct rq *find_busiest_queue(struct lb_env *env, 10430 struct sched_group *group) 10431 { 10432 struct rq *busiest = NULL, *rq; 10433 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 10434 unsigned int busiest_nr = 0; 10435 int i; 10436 10437 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10438 unsigned long capacity, load, util; 10439 unsigned int nr_running; 10440 enum fbq_type rt; 10441 10442 rq = cpu_rq(i); 10443 rt = fbq_classify_rq(rq); 10444 10445 /* 10446 * We classify groups/runqueues into three groups: 10447 * - regular: there are !numa tasks 10448 * - remote: there are numa tasks that run on the 'wrong' node 10449 * - all: there is no distinction 10450 * 10451 * In order to avoid migrating ideally placed numa tasks, 10452 * ignore those when there's better options. 10453 * 10454 * If we ignore the actual busiest queue to migrate another 10455 * task, the next balance pass can still reduce the busiest 10456 * queue by moving tasks around inside the node. 10457 * 10458 * If we cannot move enough load due to this classification 10459 * the next pass will adjust the group classification and 10460 * allow migration of more tasks. 10461 * 10462 * Both cases only affect the total convergence complexity. 10463 */ 10464 if (rt > env->fbq_type) 10465 continue; 10466 10467 nr_running = rq->cfs.h_nr_running; 10468 if (!nr_running) 10469 continue; 10470 10471 capacity = capacity_of(i); 10472 10473 /* 10474 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 10475 * eventually lead to active_balancing high->low capacity. 10476 * Higher per-CPU capacity is considered better than balancing 10477 * average load. 10478 */ 10479 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 10480 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 10481 nr_running == 1) 10482 continue; 10483 10484 /* Make sure we only pull tasks from a CPU of lower priority */ 10485 if ((env->sd->flags & SD_ASYM_PACKING) && 10486 sched_asym_prefer(i, env->dst_cpu) && 10487 nr_running == 1) 10488 continue; 10489 10490 switch (env->migration_type) { 10491 case migrate_load: 10492 /* 10493 * When comparing with load imbalance, use cpu_load() 10494 * which is not scaled with the CPU capacity. 10495 */ 10496 load = cpu_load(rq); 10497 10498 if (nr_running == 1 && load > env->imbalance && 10499 !check_cpu_capacity(rq, env->sd)) 10500 break; 10501 10502 /* 10503 * For the load comparisons with the other CPUs, 10504 * consider the cpu_load() scaled with the CPU 10505 * capacity, so that the load can be moved away 10506 * from the CPU that is potentially running at a 10507 * lower capacity. 10508 * 10509 * Thus we're looking for max(load_i / capacity_i), 10510 * crosswise multiplication to rid ourselves of the 10511 * division works out to: 10512 * load_i * capacity_j > load_j * capacity_i; 10513 * where j is our previous maximum. 10514 */ 10515 if (load * busiest_capacity > busiest_load * capacity) { 10516 busiest_load = load; 10517 busiest_capacity = capacity; 10518 busiest = rq; 10519 } 10520 break; 10521 10522 case migrate_util: 10523 util = cpu_util_cfs(i); 10524 10525 /* 10526 * Don't try to pull utilization from a CPU with one 10527 * running task. Whatever its utilization, we will fail 10528 * detach the task. 10529 */ 10530 if (nr_running <= 1) 10531 continue; 10532 10533 if (busiest_util < util) { 10534 busiest_util = util; 10535 busiest = rq; 10536 } 10537 break; 10538 10539 case migrate_task: 10540 if (busiest_nr < nr_running) { 10541 busiest_nr = nr_running; 10542 busiest = rq; 10543 } 10544 break; 10545 10546 case migrate_misfit: 10547 /* 10548 * For ASYM_CPUCAPACITY domains with misfit tasks we 10549 * simply seek the "biggest" misfit task. 10550 */ 10551 if (rq->misfit_task_load > busiest_load) { 10552 busiest_load = rq->misfit_task_load; 10553 busiest = rq; 10554 } 10555 10556 break; 10557 10558 } 10559 } 10560 10561 return busiest; 10562 } 10563 10564 /* 10565 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 10566 * so long as it is large enough. 10567 */ 10568 #define MAX_PINNED_INTERVAL 512 10569 10570 static inline bool 10571 asym_active_balance(struct lb_env *env) 10572 { 10573 /* 10574 * ASYM_PACKING needs to force migrate tasks from busy but 10575 * lower priority CPUs in order to pack all tasks in the 10576 * highest priority CPUs. 10577 */ 10578 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 10579 sched_asym_prefer(env->dst_cpu, env->src_cpu); 10580 } 10581 10582 static inline bool 10583 imbalanced_active_balance(struct lb_env *env) 10584 { 10585 struct sched_domain *sd = env->sd; 10586 10587 /* 10588 * The imbalanced case includes the case of pinned tasks preventing a fair 10589 * distribution of the load on the system but also the even distribution of the 10590 * threads on a system with spare capacity 10591 */ 10592 if ((env->migration_type == migrate_task) && 10593 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 10594 return 1; 10595 10596 return 0; 10597 } 10598 10599 static int need_active_balance(struct lb_env *env) 10600 { 10601 struct sched_domain *sd = env->sd; 10602 10603 if (asym_active_balance(env)) 10604 return 1; 10605 10606 if (imbalanced_active_balance(env)) 10607 return 1; 10608 10609 /* 10610 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 10611 * It's worth migrating the task if the src_cpu's capacity is reduced 10612 * because of other sched_class or IRQs if more capacity stays 10613 * available on dst_cpu. 10614 */ 10615 if ((env->idle != CPU_NOT_IDLE) && 10616 (env->src_rq->cfs.h_nr_running == 1)) { 10617 if ((check_cpu_capacity(env->src_rq, sd)) && 10618 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 10619 return 1; 10620 } 10621 10622 if (env->migration_type == migrate_misfit) 10623 return 1; 10624 10625 return 0; 10626 } 10627 10628 static int active_load_balance_cpu_stop(void *data); 10629 10630 static int should_we_balance(struct lb_env *env) 10631 { 10632 struct sched_group *sg = env->sd->groups; 10633 int cpu; 10634 10635 /* 10636 * Ensure the balancing environment is consistent; can happen 10637 * when the softirq triggers 'during' hotplug. 10638 */ 10639 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 10640 return 0; 10641 10642 /* 10643 * In the newly idle case, we will allow all the CPUs 10644 * to do the newly idle load balance. 10645 * 10646 * However, we bail out if we already have tasks or a wakeup pending, 10647 * to optimize wakeup latency. 10648 */ 10649 if (env->idle == CPU_NEWLY_IDLE) { 10650 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 10651 return 0; 10652 return 1; 10653 } 10654 10655 /* Try to find first idle CPU */ 10656 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 10657 if (!idle_cpu(cpu)) 10658 continue; 10659 10660 /* Are we the first idle CPU? */ 10661 return cpu == env->dst_cpu; 10662 } 10663 10664 /* Are we the first CPU of this group ? */ 10665 return group_balance_cpu(sg) == env->dst_cpu; 10666 } 10667 10668 /* 10669 * Check this_cpu to ensure it is balanced within domain. Attempt to move 10670 * tasks if there is an imbalance. 10671 */ 10672 static int load_balance(int this_cpu, struct rq *this_rq, 10673 struct sched_domain *sd, enum cpu_idle_type idle, 10674 int *continue_balancing) 10675 { 10676 int ld_moved, cur_ld_moved, active_balance = 0; 10677 struct sched_domain *sd_parent = sd->parent; 10678 struct sched_group *group; 10679 struct rq *busiest; 10680 struct rq_flags rf; 10681 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 10682 struct lb_env env = { 10683 .sd = sd, 10684 .dst_cpu = this_cpu, 10685 .dst_rq = this_rq, 10686 .dst_grpmask = sched_group_span(sd->groups), 10687 .idle = idle, 10688 .loop_break = SCHED_NR_MIGRATE_BREAK, 10689 .cpus = cpus, 10690 .fbq_type = all, 10691 .tasks = LIST_HEAD_INIT(env.tasks), 10692 }; 10693 10694 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 10695 10696 schedstat_inc(sd->lb_count[idle]); 10697 10698 redo: 10699 if (!should_we_balance(&env)) { 10700 *continue_balancing = 0; 10701 goto out_balanced; 10702 } 10703 10704 group = find_busiest_group(&env); 10705 if (!group) { 10706 schedstat_inc(sd->lb_nobusyg[idle]); 10707 goto out_balanced; 10708 } 10709 10710 busiest = find_busiest_queue(&env, group); 10711 if (!busiest) { 10712 schedstat_inc(sd->lb_nobusyq[idle]); 10713 goto out_balanced; 10714 } 10715 10716 WARN_ON_ONCE(busiest == env.dst_rq); 10717 10718 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 10719 10720 env.src_cpu = busiest->cpu; 10721 env.src_rq = busiest; 10722 10723 ld_moved = 0; 10724 /* Clear this flag as soon as we find a pullable task */ 10725 env.flags |= LBF_ALL_PINNED; 10726 if (busiest->nr_running > 1) { 10727 /* 10728 * Attempt to move tasks. If find_busiest_group has found 10729 * an imbalance but busiest->nr_running <= 1, the group is 10730 * still unbalanced. ld_moved simply stays zero, so it is 10731 * correctly treated as an imbalance. 10732 */ 10733 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 10734 10735 more_balance: 10736 rq_lock_irqsave(busiest, &rf); 10737 update_rq_clock(busiest); 10738 10739 /* 10740 * cur_ld_moved - load moved in current iteration 10741 * ld_moved - cumulative load moved across iterations 10742 */ 10743 cur_ld_moved = detach_tasks(&env); 10744 10745 /* 10746 * We've detached some tasks from busiest_rq. Every 10747 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 10748 * unlock busiest->lock, and we are able to be sure 10749 * that nobody can manipulate the tasks in parallel. 10750 * See task_rq_lock() family for the details. 10751 */ 10752 10753 rq_unlock(busiest, &rf); 10754 10755 if (cur_ld_moved) { 10756 attach_tasks(&env); 10757 ld_moved += cur_ld_moved; 10758 } 10759 10760 local_irq_restore(rf.flags); 10761 10762 if (env.flags & LBF_NEED_BREAK) { 10763 env.flags &= ~LBF_NEED_BREAK; 10764 /* Stop if we tried all running tasks */ 10765 if (env.loop < busiest->nr_running) 10766 goto more_balance; 10767 } 10768 10769 /* 10770 * Revisit (affine) tasks on src_cpu that couldn't be moved to 10771 * us and move them to an alternate dst_cpu in our sched_group 10772 * where they can run. The upper limit on how many times we 10773 * iterate on same src_cpu is dependent on number of CPUs in our 10774 * sched_group. 10775 * 10776 * This changes load balance semantics a bit on who can move 10777 * load to a given_cpu. In addition to the given_cpu itself 10778 * (or a ilb_cpu acting on its behalf where given_cpu is 10779 * nohz-idle), we now have balance_cpu in a position to move 10780 * load to given_cpu. In rare situations, this may cause 10781 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 10782 * _independently_ and at _same_ time to move some load to 10783 * given_cpu) causing excess load to be moved to given_cpu. 10784 * This however should not happen so much in practice and 10785 * moreover subsequent load balance cycles should correct the 10786 * excess load moved. 10787 */ 10788 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 10789 10790 /* Prevent to re-select dst_cpu via env's CPUs */ 10791 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 10792 10793 env.dst_rq = cpu_rq(env.new_dst_cpu); 10794 env.dst_cpu = env.new_dst_cpu; 10795 env.flags &= ~LBF_DST_PINNED; 10796 env.loop = 0; 10797 env.loop_break = SCHED_NR_MIGRATE_BREAK; 10798 10799 /* 10800 * Go back to "more_balance" rather than "redo" since we 10801 * need to continue with same src_cpu. 10802 */ 10803 goto more_balance; 10804 } 10805 10806 /* 10807 * We failed to reach balance because of affinity. 10808 */ 10809 if (sd_parent) { 10810 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10811 10812 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 10813 *group_imbalance = 1; 10814 } 10815 10816 /* All tasks on this runqueue were pinned by CPU affinity */ 10817 if (unlikely(env.flags & LBF_ALL_PINNED)) { 10818 __cpumask_clear_cpu(cpu_of(busiest), cpus); 10819 /* 10820 * Attempting to continue load balancing at the current 10821 * sched_domain level only makes sense if there are 10822 * active CPUs remaining as possible busiest CPUs to 10823 * pull load from which are not contained within the 10824 * destination group that is receiving any migrated 10825 * load. 10826 */ 10827 if (!cpumask_subset(cpus, env.dst_grpmask)) { 10828 env.loop = 0; 10829 env.loop_break = SCHED_NR_MIGRATE_BREAK; 10830 goto redo; 10831 } 10832 goto out_all_pinned; 10833 } 10834 } 10835 10836 if (!ld_moved) { 10837 schedstat_inc(sd->lb_failed[idle]); 10838 /* 10839 * Increment the failure counter only on periodic balance. 10840 * We do not want newidle balance, which can be very 10841 * frequent, pollute the failure counter causing 10842 * excessive cache_hot migrations and active balances. 10843 */ 10844 if (idle != CPU_NEWLY_IDLE) 10845 sd->nr_balance_failed++; 10846 10847 if (need_active_balance(&env)) { 10848 unsigned long flags; 10849 10850 raw_spin_rq_lock_irqsave(busiest, flags); 10851 10852 /* 10853 * Don't kick the active_load_balance_cpu_stop, 10854 * if the curr task on busiest CPU can't be 10855 * moved to this_cpu: 10856 */ 10857 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 10858 raw_spin_rq_unlock_irqrestore(busiest, flags); 10859 goto out_one_pinned; 10860 } 10861 10862 /* Record that we found at least one task that could run on this_cpu */ 10863 env.flags &= ~LBF_ALL_PINNED; 10864 10865 /* 10866 * ->active_balance synchronizes accesses to 10867 * ->active_balance_work. Once set, it's cleared 10868 * only after active load balance is finished. 10869 */ 10870 if (!busiest->active_balance) { 10871 busiest->active_balance = 1; 10872 busiest->push_cpu = this_cpu; 10873 active_balance = 1; 10874 } 10875 raw_spin_rq_unlock_irqrestore(busiest, flags); 10876 10877 if (active_balance) { 10878 stop_one_cpu_nowait(cpu_of(busiest), 10879 active_load_balance_cpu_stop, busiest, 10880 &busiest->active_balance_work); 10881 } 10882 } 10883 } else { 10884 sd->nr_balance_failed = 0; 10885 } 10886 10887 if (likely(!active_balance) || need_active_balance(&env)) { 10888 /* We were unbalanced, so reset the balancing interval */ 10889 sd->balance_interval = sd->min_interval; 10890 } 10891 10892 goto out; 10893 10894 out_balanced: 10895 /* 10896 * We reach balance although we may have faced some affinity 10897 * constraints. Clear the imbalance flag only if other tasks got 10898 * a chance to move and fix the imbalance. 10899 */ 10900 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 10901 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10902 10903 if (*group_imbalance) 10904 *group_imbalance = 0; 10905 } 10906 10907 out_all_pinned: 10908 /* 10909 * We reach balance because all tasks are pinned at this level so 10910 * we can't migrate them. Let the imbalance flag set so parent level 10911 * can try to migrate them. 10912 */ 10913 schedstat_inc(sd->lb_balanced[idle]); 10914 10915 sd->nr_balance_failed = 0; 10916 10917 out_one_pinned: 10918 ld_moved = 0; 10919 10920 /* 10921 * newidle_balance() disregards balance intervals, so we could 10922 * repeatedly reach this code, which would lead to balance_interval 10923 * skyrocketing in a short amount of time. Skip the balance_interval 10924 * increase logic to avoid that. 10925 */ 10926 if (env.idle == CPU_NEWLY_IDLE) 10927 goto out; 10928 10929 /* tune up the balancing interval */ 10930 if ((env.flags & LBF_ALL_PINNED && 10931 sd->balance_interval < MAX_PINNED_INTERVAL) || 10932 sd->balance_interval < sd->max_interval) 10933 sd->balance_interval *= 2; 10934 out: 10935 return ld_moved; 10936 } 10937 10938 static inline unsigned long 10939 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 10940 { 10941 unsigned long interval = sd->balance_interval; 10942 10943 if (cpu_busy) 10944 interval *= sd->busy_factor; 10945 10946 /* scale ms to jiffies */ 10947 interval = msecs_to_jiffies(interval); 10948 10949 /* 10950 * Reduce likelihood of busy balancing at higher domains racing with 10951 * balancing at lower domains by preventing their balancing periods 10952 * from being multiples of each other. 10953 */ 10954 if (cpu_busy) 10955 interval -= 1; 10956 10957 interval = clamp(interval, 1UL, max_load_balance_interval); 10958 10959 return interval; 10960 } 10961 10962 static inline void 10963 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 10964 { 10965 unsigned long interval, next; 10966 10967 /* used by idle balance, so cpu_busy = 0 */ 10968 interval = get_sd_balance_interval(sd, 0); 10969 next = sd->last_balance + interval; 10970 10971 if (time_after(*next_balance, next)) 10972 *next_balance = next; 10973 } 10974 10975 /* 10976 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 10977 * running tasks off the busiest CPU onto idle CPUs. It requires at 10978 * least 1 task to be running on each physical CPU where possible, and 10979 * avoids physical / logical imbalances. 10980 */ 10981 static int active_load_balance_cpu_stop(void *data) 10982 { 10983 struct rq *busiest_rq = data; 10984 int busiest_cpu = cpu_of(busiest_rq); 10985 int target_cpu = busiest_rq->push_cpu; 10986 struct rq *target_rq = cpu_rq(target_cpu); 10987 struct sched_domain *sd; 10988 struct task_struct *p = NULL; 10989 struct rq_flags rf; 10990 10991 rq_lock_irq(busiest_rq, &rf); 10992 /* 10993 * Between queueing the stop-work and running it is a hole in which 10994 * CPUs can become inactive. We should not move tasks from or to 10995 * inactive CPUs. 10996 */ 10997 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 10998 goto out_unlock; 10999 11000 /* Make sure the requested CPU hasn't gone down in the meantime: */ 11001 if (unlikely(busiest_cpu != smp_processor_id() || 11002 !busiest_rq->active_balance)) 11003 goto out_unlock; 11004 11005 /* Is there any task to move? */ 11006 if (busiest_rq->nr_running <= 1) 11007 goto out_unlock; 11008 11009 /* 11010 * This condition is "impossible", if it occurs 11011 * we need to fix it. Originally reported by 11012 * Bjorn Helgaas on a 128-CPU setup. 11013 */ 11014 WARN_ON_ONCE(busiest_rq == target_rq); 11015 11016 /* Search for an sd spanning us and the target CPU. */ 11017 rcu_read_lock(); 11018 for_each_domain(target_cpu, sd) { 11019 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 11020 break; 11021 } 11022 11023 if (likely(sd)) { 11024 struct lb_env env = { 11025 .sd = sd, 11026 .dst_cpu = target_cpu, 11027 .dst_rq = target_rq, 11028 .src_cpu = busiest_rq->cpu, 11029 .src_rq = busiest_rq, 11030 .idle = CPU_IDLE, 11031 .flags = LBF_ACTIVE_LB, 11032 }; 11033 11034 schedstat_inc(sd->alb_count); 11035 update_rq_clock(busiest_rq); 11036 11037 p = detach_one_task(&env); 11038 if (p) { 11039 schedstat_inc(sd->alb_pushed); 11040 /* Active balancing done, reset the failure counter. */ 11041 sd->nr_balance_failed = 0; 11042 } else { 11043 schedstat_inc(sd->alb_failed); 11044 } 11045 } 11046 rcu_read_unlock(); 11047 out_unlock: 11048 busiest_rq->active_balance = 0; 11049 rq_unlock(busiest_rq, &rf); 11050 11051 if (p) 11052 attach_one_task(target_rq, p); 11053 11054 local_irq_enable(); 11055 11056 return 0; 11057 } 11058 11059 static DEFINE_SPINLOCK(balancing); 11060 11061 /* 11062 * Scale the max load_balance interval with the number of CPUs in the system. 11063 * This trades load-balance latency on larger machines for less cross talk. 11064 */ 11065 void update_max_interval(void) 11066 { 11067 max_load_balance_interval = HZ*num_online_cpus()/10; 11068 } 11069 11070 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 11071 { 11072 if (cost > sd->max_newidle_lb_cost) { 11073 /* 11074 * Track max cost of a domain to make sure to not delay the 11075 * next wakeup on the CPU. 11076 */ 11077 sd->max_newidle_lb_cost = cost; 11078 sd->last_decay_max_lb_cost = jiffies; 11079 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 11080 /* 11081 * Decay the newidle max times by ~1% per second to ensure that 11082 * it is not outdated and the current max cost is actually 11083 * shorter. 11084 */ 11085 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 11086 sd->last_decay_max_lb_cost = jiffies; 11087 11088 return true; 11089 } 11090 11091 return false; 11092 } 11093 11094 /* 11095 * It checks each scheduling domain to see if it is due to be balanced, 11096 * and initiates a balancing operation if so. 11097 * 11098 * Balancing parameters are set up in init_sched_domains. 11099 */ 11100 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 11101 { 11102 int continue_balancing = 1; 11103 int cpu = rq->cpu; 11104 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11105 unsigned long interval; 11106 struct sched_domain *sd; 11107 /* Earliest time when we have to do rebalance again */ 11108 unsigned long next_balance = jiffies + 60*HZ; 11109 int update_next_balance = 0; 11110 int need_serialize, need_decay = 0; 11111 u64 max_cost = 0; 11112 11113 rcu_read_lock(); 11114 for_each_domain(cpu, sd) { 11115 /* 11116 * Decay the newidle max times here because this is a regular 11117 * visit to all the domains. 11118 */ 11119 need_decay = update_newidle_cost(sd, 0); 11120 max_cost += sd->max_newidle_lb_cost; 11121 11122 /* 11123 * Stop the load balance at this level. There is another 11124 * CPU in our sched group which is doing load balancing more 11125 * actively. 11126 */ 11127 if (!continue_balancing) { 11128 if (need_decay) 11129 continue; 11130 break; 11131 } 11132 11133 interval = get_sd_balance_interval(sd, busy); 11134 11135 need_serialize = sd->flags & SD_SERIALIZE; 11136 if (need_serialize) { 11137 if (!spin_trylock(&balancing)) 11138 goto out; 11139 } 11140 11141 if (time_after_eq(jiffies, sd->last_balance + interval)) { 11142 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 11143 /* 11144 * The LBF_DST_PINNED logic could have changed 11145 * env->dst_cpu, so we can't know our idle 11146 * state even if we migrated tasks. Update it. 11147 */ 11148 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 11149 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11150 } 11151 sd->last_balance = jiffies; 11152 interval = get_sd_balance_interval(sd, busy); 11153 } 11154 if (need_serialize) 11155 spin_unlock(&balancing); 11156 out: 11157 if (time_after(next_balance, sd->last_balance + interval)) { 11158 next_balance = sd->last_balance + interval; 11159 update_next_balance = 1; 11160 } 11161 } 11162 if (need_decay) { 11163 /* 11164 * Ensure the rq-wide value also decays but keep it at a 11165 * reasonable floor to avoid funnies with rq->avg_idle. 11166 */ 11167 rq->max_idle_balance_cost = 11168 max((u64)sysctl_sched_migration_cost, max_cost); 11169 } 11170 rcu_read_unlock(); 11171 11172 /* 11173 * next_balance will be updated only when there is a need. 11174 * When the cpu is attached to null domain for ex, it will not be 11175 * updated. 11176 */ 11177 if (likely(update_next_balance)) 11178 rq->next_balance = next_balance; 11179 11180 } 11181 11182 static inline int on_null_domain(struct rq *rq) 11183 { 11184 return unlikely(!rcu_dereference_sched(rq->sd)); 11185 } 11186 11187 #ifdef CONFIG_NO_HZ_COMMON 11188 /* 11189 * idle load balancing details 11190 * - When one of the busy CPUs notice that there may be an idle rebalancing 11191 * needed, they will kick the idle load balancer, which then does idle 11192 * load balancing for all the idle CPUs. 11193 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set 11194 * anywhere yet. 11195 */ 11196 11197 static inline int find_new_ilb(void) 11198 { 11199 int ilb; 11200 const struct cpumask *hk_mask; 11201 11202 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 11203 11204 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) { 11205 11206 if (ilb == smp_processor_id()) 11207 continue; 11208 11209 if (idle_cpu(ilb)) 11210 return ilb; 11211 } 11212 11213 return nr_cpu_ids; 11214 } 11215 11216 /* 11217 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 11218 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 11219 */ 11220 static void kick_ilb(unsigned int flags) 11221 { 11222 int ilb_cpu; 11223 11224 /* 11225 * Increase nohz.next_balance only when if full ilb is triggered but 11226 * not if we only update stats. 11227 */ 11228 if (flags & NOHZ_BALANCE_KICK) 11229 nohz.next_balance = jiffies+1; 11230 11231 ilb_cpu = find_new_ilb(); 11232 11233 if (ilb_cpu >= nr_cpu_ids) 11234 return; 11235 11236 /* 11237 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 11238 * the first flag owns it; cleared by nohz_csd_func(). 11239 */ 11240 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 11241 if (flags & NOHZ_KICK_MASK) 11242 return; 11243 11244 /* 11245 * This way we generate an IPI on the target CPU which 11246 * is idle. And the softirq performing nohz idle load balance 11247 * will be run before returning from the IPI. 11248 */ 11249 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 11250 } 11251 11252 /* 11253 * Current decision point for kicking the idle load balancer in the presence 11254 * of idle CPUs in the system. 11255 */ 11256 static void nohz_balancer_kick(struct rq *rq) 11257 { 11258 unsigned long now = jiffies; 11259 struct sched_domain_shared *sds; 11260 struct sched_domain *sd; 11261 int nr_busy, i, cpu = rq->cpu; 11262 unsigned int flags = 0; 11263 11264 if (unlikely(rq->idle_balance)) 11265 return; 11266 11267 /* 11268 * We may be recently in ticked or tickless idle mode. At the first 11269 * busy tick after returning from idle, we will update the busy stats. 11270 */ 11271 nohz_balance_exit_idle(rq); 11272 11273 /* 11274 * None are in tickless mode and hence no need for NOHZ idle load 11275 * balancing. 11276 */ 11277 if (likely(!atomic_read(&nohz.nr_cpus))) 11278 return; 11279 11280 if (READ_ONCE(nohz.has_blocked) && 11281 time_after(now, READ_ONCE(nohz.next_blocked))) 11282 flags = NOHZ_STATS_KICK; 11283 11284 if (time_before(now, nohz.next_balance)) 11285 goto out; 11286 11287 if (rq->nr_running >= 2) { 11288 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11289 goto out; 11290 } 11291 11292 rcu_read_lock(); 11293 11294 sd = rcu_dereference(rq->sd); 11295 if (sd) { 11296 /* 11297 * If there's a CFS task and the current CPU has reduced 11298 * capacity; kick the ILB to see if there's a better CPU to run 11299 * on. 11300 */ 11301 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 11302 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11303 goto unlock; 11304 } 11305 } 11306 11307 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 11308 if (sd) { 11309 /* 11310 * When ASYM_PACKING; see if there's a more preferred CPU 11311 * currently idle; in which case, kick the ILB to move tasks 11312 * around. 11313 */ 11314 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 11315 if (sched_asym_prefer(i, cpu)) { 11316 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11317 goto unlock; 11318 } 11319 } 11320 } 11321 11322 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 11323 if (sd) { 11324 /* 11325 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 11326 * to run the misfit task on. 11327 */ 11328 if (check_misfit_status(rq, sd)) { 11329 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11330 goto unlock; 11331 } 11332 11333 /* 11334 * For asymmetric systems, we do not want to nicely balance 11335 * cache use, instead we want to embrace asymmetry and only 11336 * ensure tasks have enough CPU capacity. 11337 * 11338 * Skip the LLC logic because it's not relevant in that case. 11339 */ 11340 goto unlock; 11341 } 11342 11343 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 11344 if (sds) { 11345 /* 11346 * If there is an imbalance between LLC domains (IOW we could 11347 * increase the overall cache use), we need some less-loaded LLC 11348 * domain to pull some load. Likewise, we may need to spread 11349 * load within the current LLC domain (e.g. packed SMT cores but 11350 * other CPUs are idle). We can't really know from here how busy 11351 * the others are - so just get a nohz balance going if it looks 11352 * like this LLC domain has tasks we could move. 11353 */ 11354 nr_busy = atomic_read(&sds->nr_busy_cpus); 11355 if (nr_busy > 1) { 11356 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11357 goto unlock; 11358 } 11359 } 11360 unlock: 11361 rcu_read_unlock(); 11362 out: 11363 if (READ_ONCE(nohz.needs_update)) 11364 flags |= NOHZ_NEXT_KICK; 11365 11366 if (flags) 11367 kick_ilb(flags); 11368 } 11369 11370 static void set_cpu_sd_state_busy(int cpu) 11371 { 11372 struct sched_domain *sd; 11373 11374 rcu_read_lock(); 11375 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11376 11377 if (!sd || !sd->nohz_idle) 11378 goto unlock; 11379 sd->nohz_idle = 0; 11380 11381 atomic_inc(&sd->shared->nr_busy_cpus); 11382 unlock: 11383 rcu_read_unlock(); 11384 } 11385 11386 void nohz_balance_exit_idle(struct rq *rq) 11387 { 11388 SCHED_WARN_ON(rq != this_rq()); 11389 11390 if (likely(!rq->nohz_tick_stopped)) 11391 return; 11392 11393 rq->nohz_tick_stopped = 0; 11394 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 11395 atomic_dec(&nohz.nr_cpus); 11396 11397 set_cpu_sd_state_busy(rq->cpu); 11398 } 11399 11400 static void set_cpu_sd_state_idle(int cpu) 11401 { 11402 struct sched_domain *sd; 11403 11404 rcu_read_lock(); 11405 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11406 11407 if (!sd || sd->nohz_idle) 11408 goto unlock; 11409 sd->nohz_idle = 1; 11410 11411 atomic_dec(&sd->shared->nr_busy_cpus); 11412 unlock: 11413 rcu_read_unlock(); 11414 } 11415 11416 /* 11417 * This routine will record that the CPU is going idle with tick stopped. 11418 * This info will be used in performing idle load balancing in the future. 11419 */ 11420 void nohz_balance_enter_idle(int cpu) 11421 { 11422 struct rq *rq = cpu_rq(cpu); 11423 11424 SCHED_WARN_ON(cpu != smp_processor_id()); 11425 11426 /* If this CPU is going down, then nothing needs to be done: */ 11427 if (!cpu_active(cpu)) 11428 return; 11429 11430 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 11431 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 11432 return; 11433 11434 /* 11435 * Can be set safely without rq->lock held 11436 * If a clear happens, it will have evaluated last additions because 11437 * rq->lock is held during the check and the clear 11438 */ 11439 rq->has_blocked_load = 1; 11440 11441 /* 11442 * The tick is still stopped but load could have been added in the 11443 * meantime. We set the nohz.has_blocked flag to trig a check of the 11444 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 11445 * of nohz.has_blocked can only happen after checking the new load 11446 */ 11447 if (rq->nohz_tick_stopped) 11448 goto out; 11449 11450 /* If we're a completely isolated CPU, we don't play: */ 11451 if (on_null_domain(rq)) 11452 return; 11453 11454 rq->nohz_tick_stopped = 1; 11455 11456 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 11457 atomic_inc(&nohz.nr_cpus); 11458 11459 /* 11460 * Ensures that if nohz_idle_balance() fails to observe our 11461 * @idle_cpus_mask store, it must observe the @has_blocked 11462 * and @needs_update stores. 11463 */ 11464 smp_mb__after_atomic(); 11465 11466 set_cpu_sd_state_idle(cpu); 11467 11468 WRITE_ONCE(nohz.needs_update, 1); 11469 out: 11470 /* 11471 * Each time a cpu enter idle, we assume that it has blocked load and 11472 * enable the periodic update of the load of idle cpus 11473 */ 11474 WRITE_ONCE(nohz.has_blocked, 1); 11475 } 11476 11477 static bool update_nohz_stats(struct rq *rq) 11478 { 11479 unsigned int cpu = rq->cpu; 11480 11481 if (!rq->has_blocked_load) 11482 return false; 11483 11484 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 11485 return false; 11486 11487 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 11488 return true; 11489 11490 update_blocked_averages(cpu); 11491 11492 return rq->has_blocked_load; 11493 } 11494 11495 /* 11496 * Internal function that runs load balance for all idle cpus. The load balance 11497 * can be a simple update of blocked load or a complete load balance with 11498 * tasks movement depending of flags. 11499 */ 11500 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 11501 { 11502 /* Earliest time when we have to do rebalance again */ 11503 unsigned long now = jiffies; 11504 unsigned long next_balance = now + 60*HZ; 11505 bool has_blocked_load = false; 11506 int update_next_balance = 0; 11507 int this_cpu = this_rq->cpu; 11508 int balance_cpu; 11509 struct rq *rq; 11510 11511 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 11512 11513 /* 11514 * We assume there will be no idle load after this update and clear 11515 * the has_blocked flag. If a cpu enters idle in the mean time, it will 11516 * set the has_blocked flag and trigger another update of idle load. 11517 * Because a cpu that becomes idle, is added to idle_cpus_mask before 11518 * setting the flag, we are sure to not clear the state and not 11519 * check the load of an idle cpu. 11520 * 11521 * Same applies to idle_cpus_mask vs needs_update. 11522 */ 11523 if (flags & NOHZ_STATS_KICK) 11524 WRITE_ONCE(nohz.has_blocked, 0); 11525 if (flags & NOHZ_NEXT_KICK) 11526 WRITE_ONCE(nohz.needs_update, 0); 11527 11528 /* 11529 * Ensures that if we miss the CPU, we must see the has_blocked 11530 * store from nohz_balance_enter_idle(). 11531 */ 11532 smp_mb(); 11533 11534 /* 11535 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 11536 * chance for other idle cpu to pull load. 11537 */ 11538 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 11539 if (!idle_cpu(balance_cpu)) 11540 continue; 11541 11542 /* 11543 * If this CPU gets work to do, stop the load balancing 11544 * work being done for other CPUs. Next load 11545 * balancing owner will pick it up. 11546 */ 11547 if (need_resched()) { 11548 if (flags & NOHZ_STATS_KICK) 11549 has_blocked_load = true; 11550 if (flags & NOHZ_NEXT_KICK) 11551 WRITE_ONCE(nohz.needs_update, 1); 11552 goto abort; 11553 } 11554 11555 rq = cpu_rq(balance_cpu); 11556 11557 if (flags & NOHZ_STATS_KICK) 11558 has_blocked_load |= update_nohz_stats(rq); 11559 11560 /* 11561 * If time for next balance is due, 11562 * do the balance. 11563 */ 11564 if (time_after_eq(jiffies, rq->next_balance)) { 11565 struct rq_flags rf; 11566 11567 rq_lock_irqsave(rq, &rf); 11568 update_rq_clock(rq); 11569 rq_unlock_irqrestore(rq, &rf); 11570 11571 if (flags & NOHZ_BALANCE_KICK) 11572 rebalance_domains(rq, CPU_IDLE); 11573 } 11574 11575 if (time_after(next_balance, rq->next_balance)) { 11576 next_balance = rq->next_balance; 11577 update_next_balance = 1; 11578 } 11579 } 11580 11581 /* 11582 * next_balance will be updated only when there is a need. 11583 * When the CPU is attached to null domain for ex, it will not be 11584 * updated. 11585 */ 11586 if (likely(update_next_balance)) 11587 nohz.next_balance = next_balance; 11588 11589 if (flags & NOHZ_STATS_KICK) 11590 WRITE_ONCE(nohz.next_blocked, 11591 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 11592 11593 abort: 11594 /* There is still blocked load, enable periodic update */ 11595 if (has_blocked_load) 11596 WRITE_ONCE(nohz.has_blocked, 1); 11597 } 11598 11599 /* 11600 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 11601 * rebalancing for all the cpus for whom scheduler ticks are stopped. 11602 */ 11603 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 11604 { 11605 unsigned int flags = this_rq->nohz_idle_balance; 11606 11607 if (!flags) 11608 return false; 11609 11610 this_rq->nohz_idle_balance = 0; 11611 11612 if (idle != CPU_IDLE) 11613 return false; 11614 11615 _nohz_idle_balance(this_rq, flags); 11616 11617 return true; 11618 } 11619 11620 /* 11621 * Check if we need to run the ILB for updating blocked load before entering 11622 * idle state. 11623 */ 11624 void nohz_run_idle_balance(int cpu) 11625 { 11626 unsigned int flags; 11627 11628 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 11629 11630 /* 11631 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 11632 * (ie NOHZ_STATS_KICK set) and will do the same. 11633 */ 11634 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 11635 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 11636 } 11637 11638 static void nohz_newidle_balance(struct rq *this_rq) 11639 { 11640 int this_cpu = this_rq->cpu; 11641 11642 /* 11643 * This CPU doesn't want to be disturbed by scheduler 11644 * housekeeping 11645 */ 11646 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 11647 return; 11648 11649 /* Will wake up very soon. No time for doing anything else*/ 11650 if (this_rq->avg_idle < sysctl_sched_migration_cost) 11651 return; 11652 11653 /* Don't need to update blocked load of idle CPUs*/ 11654 if (!READ_ONCE(nohz.has_blocked) || 11655 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 11656 return; 11657 11658 /* 11659 * Set the need to trigger ILB in order to update blocked load 11660 * before entering idle state. 11661 */ 11662 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 11663 } 11664 11665 #else /* !CONFIG_NO_HZ_COMMON */ 11666 static inline void nohz_balancer_kick(struct rq *rq) { } 11667 11668 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 11669 { 11670 return false; 11671 } 11672 11673 static inline void nohz_newidle_balance(struct rq *this_rq) { } 11674 #endif /* CONFIG_NO_HZ_COMMON */ 11675 11676 /* 11677 * newidle_balance is called by schedule() if this_cpu is about to become 11678 * idle. Attempts to pull tasks from other CPUs. 11679 * 11680 * Returns: 11681 * < 0 - we released the lock and there are !fair tasks present 11682 * 0 - failed, no new tasks 11683 * > 0 - success, new (fair) tasks present 11684 */ 11685 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 11686 { 11687 unsigned long next_balance = jiffies + HZ; 11688 int this_cpu = this_rq->cpu; 11689 u64 t0, t1, curr_cost = 0; 11690 struct sched_domain *sd; 11691 int pulled_task = 0; 11692 11693 update_misfit_status(NULL, this_rq); 11694 11695 /* 11696 * There is a task waiting to run. No need to search for one. 11697 * Return 0; the task will be enqueued when switching to idle. 11698 */ 11699 if (this_rq->ttwu_pending) 11700 return 0; 11701 11702 /* 11703 * We must set idle_stamp _before_ calling idle_balance(), such that we 11704 * measure the duration of idle_balance() as idle time. 11705 */ 11706 this_rq->idle_stamp = rq_clock(this_rq); 11707 11708 /* 11709 * Do not pull tasks towards !active CPUs... 11710 */ 11711 if (!cpu_active(this_cpu)) 11712 return 0; 11713 11714 /* 11715 * This is OK, because current is on_cpu, which avoids it being picked 11716 * for load-balance and preemption/IRQs are still disabled avoiding 11717 * further scheduler activity on it and we're being very careful to 11718 * re-start the picking loop. 11719 */ 11720 rq_unpin_lock(this_rq, rf); 11721 11722 rcu_read_lock(); 11723 sd = rcu_dereference_check_sched_domain(this_rq->sd); 11724 11725 if (!READ_ONCE(this_rq->rd->overload) || 11726 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 11727 11728 if (sd) 11729 update_next_balance(sd, &next_balance); 11730 rcu_read_unlock(); 11731 11732 goto out; 11733 } 11734 rcu_read_unlock(); 11735 11736 raw_spin_rq_unlock(this_rq); 11737 11738 t0 = sched_clock_cpu(this_cpu); 11739 update_blocked_averages(this_cpu); 11740 11741 rcu_read_lock(); 11742 for_each_domain(this_cpu, sd) { 11743 int continue_balancing = 1; 11744 u64 domain_cost; 11745 11746 update_next_balance(sd, &next_balance); 11747 11748 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 11749 break; 11750 11751 if (sd->flags & SD_BALANCE_NEWIDLE) { 11752 11753 pulled_task = load_balance(this_cpu, this_rq, 11754 sd, CPU_NEWLY_IDLE, 11755 &continue_balancing); 11756 11757 t1 = sched_clock_cpu(this_cpu); 11758 domain_cost = t1 - t0; 11759 update_newidle_cost(sd, domain_cost); 11760 11761 curr_cost += domain_cost; 11762 t0 = t1; 11763 } 11764 11765 /* 11766 * Stop searching for tasks to pull if there are 11767 * now runnable tasks on this rq. 11768 */ 11769 if (pulled_task || this_rq->nr_running > 0 || 11770 this_rq->ttwu_pending) 11771 break; 11772 } 11773 rcu_read_unlock(); 11774 11775 raw_spin_rq_lock(this_rq); 11776 11777 if (curr_cost > this_rq->max_idle_balance_cost) 11778 this_rq->max_idle_balance_cost = curr_cost; 11779 11780 /* 11781 * While browsing the domains, we released the rq lock, a task could 11782 * have been enqueued in the meantime. Since we're not going idle, 11783 * pretend we pulled a task. 11784 */ 11785 if (this_rq->cfs.h_nr_running && !pulled_task) 11786 pulled_task = 1; 11787 11788 /* Is there a task of a high priority class? */ 11789 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 11790 pulled_task = -1; 11791 11792 out: 11793 /* Move the next balance forward */ 11794 if (time_after(this_rq->next_balance, next_balance)) 11795 this_rq->next_balance = next_balance; 11796 11797 if (pulled_task) 11798 this_rq->idle_stamp = 0; 11799 else 11800 nohz_newidle_balance(this_rq); 11801 11802 rq_repin_lock(this_rq, rf); 11803 11804 return pulled_task; 11805 } 11806 11807 /* 11808 * run_rebalance_domains is triggered when needed from the scheduler tick. 11809 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 11810 */ 11811 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 11812 { 11813 struct rq *this_rq = this_rq(); 11814 enum cpu_idle_type idle = this_rq->idle_balance ? 11815 CPU_IDLE : CPU_NOT_IDLE; 11816 11817 /* 11818 * If this CPU has a pending nohz_balance_kick, then do the 11819 * balancing on behalf of the other idle CPUs whose ticks are 11820 * stopped. Do nohz_idle_balance *before* rebalance_domains to 11821 * give the idle CPUs a chance to load balance. Else we may 11822 * load balance only within the local sched_domain hierarchy 11823 * and abort nohz_idle_balance altogether if we pull some load. 11824 */ 11825 if (nohz_idle_balance(this_rq, idle)) 11826 return; 11827 11828 /* normal load balance */ 11829 update_blocked_averages(this_rq->cpu); 11830 rebalance_domains(this_rq, idle); 11831 } 11832 11833 /* 11834 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 11835 */ 11836 void trigger_load_balance(struct rq *rq) 11837 { 11838 /* 11839 * Don't need to rebalance while attached to NULL domain or 11840 * runqueue CPU is not active 11841 */ 11842 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 11843 return; 11844 11845 if (time_after_eq(jiffies, rq->next_balance)) 11846 raise_softirq(SCHED_SOFTIRQ); 11847 11848 nohz_balancer_kick(rq); 11849 } 11850 11851 static void rq_online_fair(struct rq *rq) 11852 { 11853 update_sysctl(); 11854 11855 update_runtime_enabled(rq); 11856 } 11857 11858 static void rq_offline_fair(struct rq *rq) 11859 { 11860 update_sysctl(); 11861 11862 /* Ensure any throttled groups are reachable by pick_next_task */ 11863 unthrottle_offline_cfs_rqs(rq); 11864 } 11865 11866 #endif /* CONFIG_SMP */ 11867 11868 #ifdef CONFIG_SCHED_CORE 11869 static inline bool 11870 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 11871 { 11872 u64 slice = sched_slice(cfs_rq_of(se), se); 11873 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 11874 11875 return (rtime * min_nr_tasks > slice); 11876 } 11877 11878 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 11879 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 11880 { 11881 if (!sched_core_enabled(rq)) 11882 return; 11883 11884 /* 11885 * If runqueue has only one task which used up its slice and 11886 * if the sibling is forced idle, then trigger schedule to 11887 * give forced idle task a chance. 11888 * 11889 * sched_slice() considers only this active rq and it gets the 11890 * whole slice. But during force idle, we have siblings acting 11891 * like a single runqueue and hence we need to consider runnable 11892 * tasks on this CPU and the forced idle CPU. Ideally, we should 11893 * go through the forced idle rq, but that would be a perf hit. 11894 * We can assume that the forced idle CPU has at least 11895 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 11896 * if we need to give up the CPU. 11897 */ 11898 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 11899 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 11900 resched_curr(rq); 11901 } 11902 11903 /* 11904 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 11905 */ 11906 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 11907 bool forceidle) 11908 { 11909 for_each_sched_entity(se) { 11910 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11911 11912 if (forceidle) { 11913 if (cfs_rq->forceidle_seq == fi_seq) 11914 break; 11915 cfs_rq->forceidle_seq = fi_seq; 11916 } 11917 11918 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 11919 } 11920 } 11921 11922 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 11923 { 11924 struct sched_entity *se = &p->se; 11925 11926 if (p->sched_class != &fair_sched_class) 11927 return; 11928 11929 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 11930 } 11931 11932 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 11933 bool in_fi) 11934 { 11935 struct rq *rq = task_rq(a); 11936 const struct sched_entity *sea = &a->se; 11937 const struct sched_entity *seb = &b->se; 11938 struct cfs_rq *cfs_rqa; 11939 struct cfs_rq *cfs_rqb; 11940 s64 delta; 11941 11942 SCHED_WARN_ON(task_rq(b)->core != rq->core); 11943 11944 #ifdef CONFIG_FAIR_GROUP_SCHED 11945 /* 11946 * Find an se in the hierarchy for tasks a and b, such that the se's 11947 * are immediate siblings. 11948 */ 11949 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 11950 int sea_depth = sea->depth; 11951 int seb_depth = seb->depth; 11952 11953 if (sea_depth >= seb_depth) 11954 sea = parent_entity(sea); 11955 if (sea_depth <= seb_depth) 11956 seb = parent_entity(seb); 11957 } 11958 11959 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 11960 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 11961 11962 cfs_rqa = sea->cfs_rq; 11963 cfs_rqb = seb->cfs_rq; 11964 #else 11965 cfs_rqa = &task_rq(a)->cfs; 11966 cfs_rqb = &task_rq(b)->cfs; 11967 #endif 11968 11969 /* 11970 * Find delta after normalizing se's vruntime with its cfs_rq's 11971 * min_vruntime_fi, which would have been updated in prior calls 11972 * to se_fi_update(). 11973 */ 11974 delta = (s64)(sea->vruntime - seb->vruntime) + 11975 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 11976 11977 return delta > 0; 11978 } 11979 #else 11980 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 11981 #endif 11982 11983 /* 11984 * scheduler tick hitting a task of our scheduling class. 11985 * 11986 * NOTE: This function can be called remotely by the tick offload that 11987 * goes along full dynticks. Therefore no local assumption can be made 11988 * and everything must be accessed through the @rq and @curr passed in 11989 * parameters. 11990 */ 11991 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 11992 { 11993 struct cfs_rq *cfs_rq; 11994 struct sched_entity *se = &curr->se; 11995 11996 for_each_sched_entity(se) { 11997 cfs_rq = cfs_rq_of(se); 11998 entity_tick(cfs_rq, se, queued); 11999 } 12000 12001 if (static_branch_unlikely(&sched_numa_balancing)) 12002 task_tick_numa(rq, curr); 12003 12004 update_misfit_status(curr, rq); 12005 update_overutilized_status(task_rq(curr)); 12006 12007 task_tick_core(rq, curr); 12008 } 12009 12010 /* 12011 * called on fork with the child task as argument from the parent's context 12012 * - child not yet on the tasklist 12013 * - preemption disabled 12014 */ 12015 static void task_fork_fair(struct task_struct *p) 12016 { 12017 struct cfs_rq *cfs_rq; 12018 struct sched_entity *se = &p->se, *curr; 12019 struct rq *rq = this_rq(); 12020 struct rq_flags rf; 12021 12022 rq_lock(rq, &rf); 12023 update_rq_clock(rq); 12024 12025 cfs_rq = task_cfs_rq(current); 12026 curr = cfs_rq->curr; 12027 if (curr) { 12028 update_curr(cfs_rq); 12029 se->vruntime = curr->vruntime; 12030 } 12031 place_entity(cfs_rq, se, 1); 12032 12033 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 12034 /* 12035 * Upon rescheduling, sched_class::put_prev_task() will place 12036 * 'current' within the tree based on its new key value. 12037 */ 12038 swap(curr->vruntime, se->vruntime); 12039 resched_curr(rq); 12040 } 12041 12042 se->vruntime -= cfs_rq->min_vruntime; 12043 rq_unlock(rq, &rf); 12044 } 12045 12046 /* 12047 * Priority of the task has changed. Check to see if we preempt 12048 * the current task. 12049 */ 12050 static void 12051 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 12052 { 12053 if (!task_on_rq_queued(p)) 12054 return; 12055 12056 if (rq->cfs.nr_running == 1) 12057 return; 12058 12059 /* 12060 * Reschedule if we are currently running on this runqueue and 12061 * our priority decreased, or if we are not currently running on 12062 * this runqueue and our priority is higher than the current's 12063 */ 12064 if (task_current(rq, p)) { 12065 if (p->prio > oldprio) 12066 resched_curr(rq); 12067 } else 12068 check_preempt_curr(rq, p, 0); 12069 } 12070 12071 static inline bool vruntime_normalized(struct task_struct *p) 12072 { 12073 struct sched_entity *se = &p->se; 12074 12075 /* 12076 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 12077 * the dequeue_entity(.flags=0) will already have normalized the 12078 * vruntime. 12079 */ 12080 if (p->on_rq) 12081 return true; 12082 12083 /* 12084 * When !on_rq, vruntime of the task has usually NOT been normalized. 12085 * But there are some cases where it has already been normalized: 12086 * 12087 * - A forked child which is waiting for being woken up by 12088 * wake_up_new_task(). 12089 * - A task which has been woken up by try_to_wake_up() and 12090 * waiting for actually being woken up by sched_ttwu_pending(). 12091 */ 12092 if (!se->sum_exec_runtime || 12093 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup)) 12094 return true; 12095 12096 return false; 12097 } 12098 12099 #ifdef CONFIG_FAIR_GROUP_SCHED 12100 /* 12101 * Propagate the changes of the sched_entity across the tg tree to make it 12102 * visible to the root 12103 */ 12104 static void propagate_entity_cfs_rq(struct sched_entity *se) 12105 { 12106 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12107 12108 if (cfs_rq_throttled(cfs_rq)) 12109 return; 12110 12111 if (!throttled_hierarchy(cfs_rq)) 12112 list_add_leaf_cfs_rq(cfs_rq); 12113 12114 /* Start to propagate at parent */ 12115 se = se->parent; 12116 12117 for_each_sched_entity(se) { 12118 cfs_rq = cfs_rq_of(se); 12119 12120 update_load_avg(cfs_rq, se, UPDATE_TG); 12121 12122 if (cfs_rq_throttled(cfs_rq)) 12123 break; 12124 12125 if (!throttled_hierarchy(cfs_rq)) 12126 list_add_leaf_cfs_rq(cfs_rq); 12127 } 12128 } 12129 #else 12130 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 12131 #endif 12132 12133 static void detach_entity_cfs_rq(struct sched_entity *se) 12134 { 12135 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12136 12137 #ifdef CONFIG_SMP 12138 /* 12139 * In case the task sched_avg hasn't been attached: 12140 * - A forked task which hasn't been woken up by wake_up_new_task(). 12141 * - A task which has been woken up by try_to_wake_up() but is 12142 * waiting for actually being woken up by sched_ttwu_pending(). 12143 */ 12144 if (!se->avg.last_update_time) 12145 return; 12146 #endif 12147 12148 /* Catch up with the cfs_rq and remove our load when we leave */ 12149 update_load_avg(cfs_rq, se, 0); 12150 detach_entity_load_avg(cfs_rq, se); 12151 update_tg_load_avg(cfs_rq); 12152 propagate_entity_cfs_rq(se); 12153 } 12154 12155 static void attach_entity_cfs_rq(struct sched_entity *se) 12156 { 12157 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12158 12159 /* Synchronize entity with its cfs_rq */ 12160 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 12161 attach_entity_load_avg(cfs_rq, se); 12162 update_tg_load_avg(cfs_rq); 12163 propagate_entity_cfs_rq(se); 12164 } 12165 12166 static void detach_task_cfs_rq(struct task_struct *p) 12167 { 12168 struct sched_entity *se = &p->se; 12169 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12170 12171 if (!vruntime_normalized(p)) { 12172 /* 12173 * Fix up our vruntime so that the current sleep doesn't 12174 * cause 'unlimited' sleep bonus. 12175 */ 12176 place_entity(cfs_rq, se, 0); 12177 se->vruntime -= cfs_rq->min_vruntime; 12178 } 12179 12180 detach_entity_cfs_rq(se); 12181 } 12182 12183 static void attach_task_cfs_rq(struct task_struct *p) 12184 { 12185 struct sched_entity *se = &p->se; 12186 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12187 12188 attach_entity_cfs_rq(se); 12189 12190 if (!vruntime_normalized(p)) 12191 se->vruntime += cfs_rq->min_vruntime; 12192 } 12193 12194 static void switched_from_fair(struct rq *rq, struct task_struct *p) 12195 { 12196 detach_task_cfs_rq(p); 12197 } 12198 12199 static void switched_to_fair(struct rq *rq, struct task_struct *p) 12200 { 12201 attach_task_cfs_rq(p); 12202 12203 if (task_on_rq_queued(p)) { 12204 /* 12205 * We were most likely switched from sched_rt, so 12206 * kick off the schedule if running, otherwise just see 12207 * if we can still preempt the current task. 12208 */ 12209 if (task_current(rq, p)) 12210 resched_curr(rq); 12211 else 12212 check_preempt_curr(rq, p, 0); 12213 } 12214 } 12215 12216 /* Account for a task changing its policy or group. 12217 * 12218 * This routine is mostly called to set cfs_rq->curr field when a task 12219 * migrates between groups/classes. 12220 */ 12221 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 12222 { 12223 struct sched_entity *se = &p->se; 12224 12225 #ifdef CONFIG_SMP 12226 if (task_on_rq_queued(p)) { 12227 /* 12228 * Move the next running task to the front of the list, so our 12229 * cfs_tasks list becomes MRU one. 12230 */ 12231 list_move(&se->group_node, &rq->cfs_tasks); 12232 } 12233 #endif 12234 12235 for_each_sched_entity(se) { 12236 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12237 12238 set_next_entity(cfs_rq, se); 12239 /* ensure bandwidth has been allocated on our new cfs_rq */ 12240 account_cfs_rq_runtime(cfs_rq, 0); 12241 } 12242 } 12243 12244 void init_cfs_rq(struct cfs_rq *cfs_rq) 12245 { 12246 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 12247 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 12248 #ifdef CONFIG_SMP 12249 raw_spin_lock_init(&cfs_rq->removed.lock); 12250 #endif 12251 } 12252 12253 #ifdef CONFIG_FAIR_GROUP_SCHED 12254 static void task_change_group_fair(struct task_struct *p) 12255 { 12256 /* 12257 * We couldn't detach or attach a forked task which 12258 * hasn't been woken up by wake_up_new_task(). 12259 */ 12260 if (READ_ONCE(p->__state) == TASK_NEW) 12261 return; 12262 12263 detach_task_cfs_rq(p); 12264 12265 #ifdef CONFIG_SMP 12266 /* Tell se's cfs_rq has been changed -- migrated */ 12267 p->se.avg.last_update_time = 0; 12268 #endif 12269 set_task_rq(p, task_cpu(p)); 12270 attach_task_cfs_rq(p); 12271 } 12272 12273 void free_fair_sched_group(struct task_group *tg) 12274 { 12275 int i; 12276 12277 for_each_possible_cpu(i) { 12278 if (tg->cfs_rq) 12279 kfree(tg->cfs_rq[i]); 12280 if (tg->se) 12281 kfree(tg->se[i]); 12282 } 12283 12284 kfree(tg->cfs_rq); 12285 kfree(tg->se); 12286 } 12287 12288 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12289 { 12290 struct sched_entity *se; 12291 struct cfs_rq *cfs_rq; 12292 int i; 12293 12294 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 12295 if (!tg->cfs_rq) 12296 goto err; 12297 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 12298 if (!tg->se) 12299 goto err; 12300 12301 tg->shares = NICE_0_LOAD; 12302 12303 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12304 12305 for_each_possible_cpu(i) { 12306 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 12307 GFP_KERNEL, cpu_to_node(i)); 12308 if (!cfs_rq) 12309 goto err; 12310 12311 se = kzalloc_node(sizeof(struct sched_entity_stats), 12312 GFP_KERNEL, cpu_to_node(i)); 12313 if (!se) 12314 goto err_free_rq; 12315 12316 init_cfs_rq(cfs_rq); 12317 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 12318 init_entity_runnable_average(se); 12319 } 12320 12321 return 1; 12322 12323 err_free_rq: 12324 kfree(cfs_rq); 12325 err: 12326 return 0; 12327 } 12328 12329 void online_fair_sched_group(struct task_group *tg) 12330 { 12331 struct sched_entity *se; 12332 struct rq_flags rf; 12333 struct rq *rq; 12334 int i; 12335 12336 for_each_possible_cpu(i) { 12337 rq = cpu_rq(i); 12338 se = tg->se[i]; 12339 rq_lock_irq(rq, &rf); 12340 update_rq_clock(rq); 12341 attach_entity_cfs_rq(se); 12342 sync_throttle(tg, i); 12343 rq_unlock_irq(rq, &rf); 12344 } 12345 } 12346 12347 void unregister_fair_sched_group(struct task_group *tg) 12348 { 12349 unsigned long flags; 12350 struct rq *rq; 12351 int cpu; 12352 12353 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12354 12355 for_each_possible_cpu(cpu) { 12356 if (tg->se[cpu]) 12357 remove_entity_load_avg(tg->se[cpu]); 12358 12359 /* 12360 * Only empty task groups can be destroyed; so we can speculatively 12361 * check on_list without danger of it being re-added. 12362 */ 12363 if (!tg->cfs_rq[cpu]->on_list) 12364 continue; 12365 12366 rq = cpu_rq(cpu); 12367 12368 raw_spin_rq_lock_irqsave(rq, flags); 12369 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 12370 raw_spin_rq_unlock_irqrestore(rq, flags); 12371 } 12372 } 12373 12374 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 12375 struct sched_entity *se, int cpu, 12376 struct sched_entity *parent) 12377 { 12378 struct rq *rq = cpu_rq(cpu); 12379 12380 cfs_rq->tg = tg; 12381 cfs_rq->rq = rq; 12382 init_cfs_rq_runtime(cfs_rq); 12383 12384 tg->cfs_rq[cpu] = cfs_rq; 12385 tg->se[cpu] = se; 12386 12387 /* se could be NULL for root_task_group */ 12388 if (!se) 12389 return; 12390 12391 if (!parent) { 12392 se->cfs_rq = &rq->cfs; 12393 se->depth = 0; 12394 } else { 12395 se->cfs_rq = parent->my_q; 12396 se->depth = parent->depth + 1; 12397 } 12398 12399 se->my_q = cfs_rq; 12400 /* guarantee group entities always have weight */ 12401 update_load_set(&se->load, NICE_0_LOAD); 12402 se->parent = parent; 12403 } 12404 12405 static DEFINE_MUTEX(shares_mutex); 12406 12407 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 12408 { 12409 int i; 12410 12411 lockdep_assert_held(&shares_mutex); 12412 12413 /* 12414 * We can't change the weight of the root cgroup. 12415 */ 12416 if (!tg->se[0]) 12417 return -EINVAL; 12418 12419 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 12420 12421 if (tg->shares == shares) 12422 return 0; 12423 12424 tg->shares = shares; 12425 for_each_possible_cpu(i) { 12426 struct rq *rq = cpu_rq(i); 12427 struct sched_entity *se = tg->se[i]; 12428 struct rq_flags rf; 12429 12430 /* Propagate contribution to hierarchy */ 12431 rq_lock_irqsave(rq, &rf); 12432 update_rq_clock(rq); 12433 for_each_sched_entity(se) { 12434 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 12435 update_cfs_group(se); 12436 } 12437 rq_unlock_irqrestore(rq, &rf); 12438 } 12439 12440 return 0; 12441 } 12442 12443 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 12444 { 12445 int ret; 12446 12447 mutex_lock(&shares_mutex); 12448 if (tg_is_idle(tg)) 12449 ret = -EINVAL; 12450 else 12451 ret = __sched_group_set_shares(tg, shares); 12452 mutex_unlock(&shares_mutex); 12453 12454 return ret; 12455 } 12456 12457 int sched_group_set_idle(struct task_group *tg, long idle) 12458 { 12459 int i; 12460 12461 if (tg == &root_task_group) 12462 return -EINVAL; 12463 12464 if (idle < 0 || idle > 1) 12465 return -EINVAL; 12466 12467 mutex_lock(&shares_mutex); 12468 12469 if (tg->idle == idle) { 12470 mutex_unlock(&shares_mutex); 12471 return 0; 12472 } 12473 12474 tg->idle = idle; 12475 12476 for_each_possible_cpu(i) { 12477 struct rq *rq = cpu_rq(i); 12478 struct sched_entity *se = tg->se[i]; 12479 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 12480 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 12481 long idle_task_delta; 12482 struct rq_flags rf; 12483 12484 rq_lock_irqsave(rq, &rf); 12485 12486 grp_cfs_rq->idle = idle; 12487 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 12488 goto next_cpu; 12489 12490 if (se->on_rq) { 12491 parent_cfs_rq = cfs_rq_of(se); 12492 if (cfs_rq_is_idle(grp_cfs_rq)) 12493 parent_cfs_rq->idle_nr_running++; 12494 else 12495 parent_cfs_rq->idle_nr_running--; 12496 } 12497 12498 idle_task_delta = grp_cfs_rq->h_nr_running - 12499 grp_cfs_rq->idle_h_nr_running; 12500 if (!cfs_rq_is_idle(grp_cfs_rq)) 12501 idle_task_delta *= -1; 12502 12503 for_each_sched_entity(se) { 12504 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12505 12506 if (!se->on_rq) 12507 break; 12508 12509 cfs_rq->idle_h_nr_running += idle_task_delta; 12510 12511 /* Already accounted at parent level and above. */ 12512 if (cfs_rq_is_idle(cfs_rq)) 12513 break; 12514 } 12515 12516 next_cpu: 12517 rq_unlock_irqrestore(rq, &rf); 12518 } 12519 12520 /* Idle groups have minimum weight. */ 12521 if (tg_is_idle(tg)) 12522 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 12523 else 12524 __sched_group_set_shares(tg, NICE_0_LOAD); 12525 12526 mutex_unlock(&shares_mutex); 12527 return 0; 12528 } 12529 12530 #else /* CONFIG_FAIR_GROUP_SCHED */ 12531 12532 void free_fair_sched_group(struct task_group *tg) { } 12533 12534 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12535 { 12536 return 1; 12537 } 12538 12539 void online_fair_sched_group(struct task_group *tg) { } 12540 12541 void unregister_fair_sched_group(struct task_group *tg) { } 12542 12543 #endif /* CONFIG_FAIR_GROUP_SCHED */ 12544 12545 12546 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 12547 { 12548 struct sched_entity *se = &task->se; 12549 unsigned int rr_interval = 0; 12550 12551 /* 12552 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 12553 * idle runqueue: 12554 */ 12555 if (rq->cfs.load.weight) 12556 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 12557 12558 return rr_interval; 12559 } 12560 12561 /* 12562 * All the scheduling class methods: 12563 */ 12564 DEFINE_SCHED_CLASS(fair) = { 12565 12566 .enqueue_task = enqueue_task_fair, 12567 .dequeue_task = dequeue_task_fair, 12568 .yield_task = yield_task_fair, 12569 .yield_to_task = yield_to_task_fair, 12570 12571 .check_preempt_curr = check_preempt_wakeup, 12572 12573 .pick_next_task = __pick_next_task_fair, 12574 .put_prev_task = put_prev_task_fair, 12575 .set_next_task = set_next_task_fair, 12576 12577 #ifdef CONFIG_SMP 12578 .balance = balance_fair, 12579 .pick_task = pick_task_fair, 12580 .select_task_rq = select_task_rq_fair, 12581 .migrate_task_rq = migrate_task_rq_fair, 12582 12583 .rq_online = rq_online_fair, 12584 .rq_offline = rq_offline_fair, 12585 12586 .task_dead = task_dead_fair, 12587 .set_cpus_allowed = set_cpus_allowed_common, 12588 #endif 12589 12590 .task_tick = task_tick_fair, 12591 .task_fork = task_fork_fair, 12592 12593 .prio_changed = prio_changed_fair, 12594 .switched_from = switched_from_fair, 12595 .switched_to = switched_to_fair, 12596 12597 .get_rr_interval = get_rr_interval_fair, 12598 12599 .update_curr = update_curr_fair, 12600 12601 #ifdef CONFIG_FAIR_GROUP_SCHED 12602 .task_change_group = task_change_group_fair, 12603 #endif 12604 12605 #ifdef CONFIG_UCLAMP_TASK 12606 .uclamp_enabled = 1, 12607 #endif 12608 }; 12609 12610 #ifdef CONFIG_SCHED_DEBUG 12611 void print_cfs_stats(struct seq_file *m, int cpu) 12612 { 12613 struct cfs_rq *cfs_rq, *pos; 12614 12615 rcu_read_lock(); 12616 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 12617 print_cfs_rq(m, cpu, cfs_rq); 12618 rcu_read_unlock(); 12619 } 12620 12621 #ifdef CONFIG_NUMA_BALANCING 12622 void show_numa_stats(struct task_struct *p, struct seq_file *m) 12623 { 12624 int node; 12625 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 12626 struct numa_group *ng; 12627 12628 rcu_read_lock(); 12629 ng = rcu_dereference(p->numa_group); 12630 for_each_online_node(node) { 12631 if (p->numa_faults) { 12632 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 12633 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 12634 } 12635 if (ng) { 12636 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 12637 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 12638 } 12639 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 12640 } 12641 rcu_read_unlock(); 12642 } 12643 #endif /* CONFIG_NUMA_BALANCING */ 12644 #endif /* CONFIG_SCHED_DEBUG */ 12645 12646 __init void init_sched_fair_class(void) 12647 { 12648 #ifdef CONFIG_SMP 12649 int i; 12650 12651 for_each_possible_cpu(i) { 12652 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 12653 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 12654 12655 #ifdef CONFIG_CFS_BANDWIDTH 12656 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 12657 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 12658 #endif 12659 } 12660 12661 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 12662 12663 #ifdef CONFIG_NO_HZ_COMMON 12664 nohz.next_balance = jiffies; 12665 nohz.next_blocked = jiffies; 12666 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 12667 #endif 12668 #endif /* SMP */ 12669 12670 } 12671