1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include "sched.h" 24 25 #include <trace/events/sched.h> 26 27 /* 28 * Targeted preemption latency for CPU-bound tasks: 29 * 30 * NOTE: this latency value is not the same as the concept of 31 * 'timeslice length' - timeslices in CFS are of variable length 32 * and have no persistent notion like in traditional, time-slice 33 * based scheduling concepts. 34 * 35 * (to see the precise effective timeslice length of your workload, 36 * run vmstat and monitor the context-switches (cs) field) 37 * 38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 39 */ 40 unsigned int sysctl_sched_latency = 6000000ULL; 41 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 42 43 /* 44 * The initial- and re-scaling of tunables is configurable 45 * 46 * Options are: 47 * 48 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 49 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 50 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 51 * 52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 53 */ 54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 55 56 /* 57 * Minimal preemption granularity for CPU-bound tasks: 58 * 59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 60 */ 61 unsigned int sysctl_sched_min_granularity = 750000ULL; 62 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 63 64 /* 65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 66 */ 67 static unsigned int sched_nr_latency = 8; 68 69 /* 70 * After fork, child runs first. If set to 0 (default) then 71 * parent will (try to) run first. 72 */ 73 unsigned int sysctl_sched_child_runs_first __read_mostly; 74 75 /* 76 * SCHED_OTHER wake-up granularity. 77 * 78 * This option delays the preemption effects of decoupled workloads 79 * and reduces their over-scheduling. Synchronous workloads will still 80 * have immediate wakeup/sleep latencies. 81 * 82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 83 */ 84 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 85 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 86 87 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 88 89 #ifdef CONFIG_SMP 90 /* 91 * For asym packing, by default the lower numbered CPU has higher priority. 92 */ 93 int __weak arch_asym_cpu_priority(int cpu) 94 { 95 return -cpu; 96 } 97 98 /* 99 * The margin used when comparing utilization with CPU capacity: 100 * util * margin < capacity * 1024 101 * 102 * (default: ~20%) 103 */ 104 static unsigned int capacity_margin = 1280; 105 #endif 106 107 #ifdef CONFIG_CFS_BANDWIDTH 108 /* 109 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 110 * each time a cfs_rq requests quota. 111 * 112 * Note: in the case that the slice exceeds the runtime remaining (either due 113 * to consumption or the quota being specified to be smaller than the slice) 114 * we will always only issue the remaining available time. 115 * 116 * (default: 5 msec, units: microseconds) 117 */ 118 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 119 #endif 120 121 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 122 { 123 lw->weight += inc; 124 lw->inv_weight = 0; 125 } 126 127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 128 { 129 lw->weight -= dec; 130 lw->inv_weight = 0; 131 } 132 133 static inline void update_load_set(struct load_weight *lw, unsigned long w) 134 { 135 lw->weight = w; 136 lw->inv_weight = 0; 137 } 138 139 /* 140 * Increase the granularity value when there are more CPUs, 141 * because with more CPUs the 'effective latency' as visible 142 * to users decreases. But the relationship is not linear, 143 * so pick a second-best guess by going with the log2 of the 144 * number of CPUs. 145 * 146 * This idea comes from the SD scheduler of Con Kolivas: 147 */ 148 static unsigned int get_update_sysctl_factor(void) 149 { 150 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 151 unsigned int factor; 152 153 switch (sysctl_sched_tunable_scaling) { 154 case SCHED_TUNABLESCALING_NONE: 155 factor = 1; 156 break; 157 case SCHED_TUNABLESCALING_LINEAR: 158 factor = cpus; 159 break; 160 case SCHED_TUNABLESCALING_LOG: 161 default: 162 factor = 1 + ilog2(cpus); 163 break; 164 } 165 166 return factor; 167 } 168 169 static void update_sysctl(void) 170 { 171 unsigned int factor = get_update_sysctl_factor(); 172 173 #define SET_SYSCTL(name) \ 174 (sysctl_##name = (factor) * normalized_sysctl_##name) 175 SET_SYSCTL(sched_min_granularity); 176 SET_SYSCTL(sched_latency); 177 SET_SYSCTL(sched_wakeup_granularity); 178 #undef SET_SYSCTL 179 } 180 181 void sched_init_granularity(void) 182 { 183 update_sysctl(); 184 } 185 186 #define WMULT_CONST (~0U) 187 #define WMULT_SHIFT 32 188 189 static void __update_inv_weight(struct load_weight *lw) 190 { 191 unsigned long w; 192 193 if (likely(lw->inv_weight)) 194 return; 195 196 w = scale_load_down(lw->weight); 197 198 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 199 lw->inv_weight = 1; 200 else if (unlikely(!w)) 201 lw->inv_weight = WMULT_CONST; 202 else 203 lw->inv_weight = WMULT_CONST / w; 204 } 205 206 /* 207 * delta_exec * weight / lw.weight 208 * OR 209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 210 * 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 212 * we're guaranteed shift stays positive because inv_weight is guaranteed to 213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 214 * 215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 216 * weight/lw.weight <= 1, and therefore our shift will also be positive. 217 */ 218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 219 { 220 u64 fact = scale_load_down(weight); 221 int shift = WMULT_SHIFT; 222 223 __update_inv_weight(lw); 224 225 if (unlikely(fact >> 32)) { 226 while (fact >> 32) { 227 fact >>= 1; 228 shift--; 229 } 230 } 231 232 /* hint to use a 32x32->64 mul */ 233 fact = (u64)(u32)fact * lw->inv_weight; 234 235 while (fact >> 32) { 236 fact >>= 1; 237 shift--; 238 } 239 240 return mul_u64_u32_shr(delta_exec, fact, shift); 241 } 242 243 244 const struct sched_class fair_sched_class; 245 246 /************************************************************** 247 * CFS operations on generic schedulable entities: 248 */ 249 250 #ifdef CONFIG_FAIR_GROUP_SCHED 251 252 /* cpu runqueue to which this cfs_rq is attached */ 253 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 254 { 255 return cfs_rq->rq; 256 } 257 258 static inline struct task_struct *task_of(struct sched_entity *se) 259 { 260 SCHED_WARN_ON(!entity_is_task(se)); 261 return container_of(se, struct task_struct, se); 262 } 263 264 /* Walk up scheduling entities hierarchy */ 265 #define for_each_sched_entity(se) \ 266 for (; se; se = se->parent) 267 268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 269 { 270 return p->se.cfs_rq; 271 } 272 273 /* runqueue on which this entity is (to be) queued */ 274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 275 { 276 return se->cfs_rq; 277 } 278 279 /* runqueue "owned" by this group */ 280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 281 { 282 return grp->my_q; 283 } 284 285 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 286 { 287 if (!cfs_rq->on_list) { 288 struct rq *rq = rq_of(cfs_rq); 289 int cpu = cpu_of(rq); 290 /* 291 * Ensure we either appear before our parent (if already 292 * enqueued) or force our parent to appear after us when it is 293 * enqueued. The fact that we always enqueue bottom-up 294 * reduces this to two cases and a special case for the root 295 * cfs_rq. Furthermore, it also means that we will always reset 296 * tmp_alone_branch either when the branch is connected 297 * to a tree or when we reach the beg of the tree 298 */ 299 if (cfs_rq->tg->parent && 300 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 301 /* 302 * If parent is already on the list, we add the child 303 * just before. Thanks to circular linked property of 304 * the list, this means to put the child at the tail 305 * of the list that starts by parent. 306 */ 307 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 308 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 309 /* 310 * The branch is now connected to its tree so we can 311 * reset tmp_alone_branch to the beginning of the 312 * list. 313 */ 314 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 315 } else if (!cfs_rq->tg->parent) { 316 /* 317 * cfs rq without parent should be put 318 * at the tail of the list. 319 */ 320 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 321 &rq->leaf_cfs_rq_list); 322 /* 323 * We have reach the beg of a tree so we can reset 324 * tmp_alone_branch to the beginning of the list. 325 */ 326 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 327 } else { 328 /* 329 * The parent has not already been added so we want to 330 * make sure that it will be put after us. 331 * tmp_alone_branch points to the beg of the branch 332 * where we will add parent. 333 */ 334 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 335 rq->tmp_alone_branch); 336 /* 337 * update tmp_alone_branch to points to the new beg 338 * of the branch 339 */ 340 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 341 } 342 343 cfs_rq->on_list = 1; 344 } 345 } 346 347 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 348 { 349 if (cfs_rq->on_list) { 350 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 351 cfs_rq->on_list = 0; 352 } 353 } 354 355 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 356 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 357 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 358 leaf_cfs_rq_list) 359 360 /* Do the two (enqueued) entities belong to the same group ? */ 361 static inline struct cfs_rq * 362 is_same_group(struct sched_entity *se, struct sched_entity *pse) 363 { 364 if (se->cfs_rq == pse->cfs_rq) 365 return se->cfs_rq; 366 367 return NULL; 368 } 369 370 static inline struct sched_entity *parent_entity(struct sched_entity *se) 371 { 372 return se->parent; 373 } 374 375 static void 376 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 377 { 378 int se_depth, pse_depth; 379 380 /* 381 * preemption test can be made between sibling entities who are in the 382 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 383 * both tasks until we find their ancestors who are siblings of common 384 * parent. 385 */ 386 387 /* First walk up until both entities are at same depth */ 388 se_depth = (*se)->depth; 389 pse_depth = (*pse)->depth; 390 391 while (se_depth > pse_depth) { 392 se_depth--; 393 *se = parent_entity(*se); 394 } 395 396 while (pse_depth > se_depth) { 397 pse_depth--; 398 *pse = parent_entity(*pse); 399 } 400 401 while (!is_same_group(*se, *pse)) { 402 *se = parent_entity(*se); 403 *pse = parent_entity(*pse); 404 } 405 } 406 407 #else /* !CONFIG_FAIR_GROUP_SCHED */ 408 409 static inline struct task_struct *task_of(struct sched_entity *se) 410 { 411 return container_of(se, struct task_struct, se); 412 } 413 414 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 415 { 416 return container_of(cfs_rq, struct rq, cfs); 417 } 418 419 420 #define for_each_sched_entity(se) \ 421 for (; se; se = NULL) 422 423 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 424 { 425 return &task_rq(p)->cfs; 426 } 427 428 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 429 { 430 struct task_struct *p = task_of(se); 431 struct rq *rq = task_rq(p); 432 433 return &rq->cfs; 434 } 435 436 /* runqueue "owned" by this group */ 437 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 438 { 439 return NULL; 440 } 441 442 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 443 { 444 } 445 446 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 447 { 448 } 449 450 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 451 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 452 453 static inline struct sched_entity *parent_entity(struct sched_entity *se) 454 { 455 return NULL; 456 } 457 458 static inline void 459 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 460 { 461 } 462 463 #endif /* CONFIG_FAIR_GROUP_SCHED */ 464 465 static __always_inline 466 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 467 468 /************************************************************** 469 * Scheduling class tree data structure manipulation methods: 470 */ 471 472 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 473 { 474 s64 delta = (s64)(vruntime - max_vruntime); 475 if (delta > 0) 476 max_vruntime = vruntime; 477 478 return max_vruntime; 479 } 480 481 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 482 { 483 s64 delta = (s64)(vruntime - min_vruntime); 484 if (delta < 0) 485 min_vruntime = vruntime; 486 487 return min_vruntime; 488 } 489 490 static inline int entity_before(struct sched_entity *a, 491 struct sched_entity *b) 492 { 493 return (s64)(a->vruntime - b->vruntime) < 0; 494 } 495 496 static void update_min_vruntime(struct cfs_rq *cfs_rq) 497 { 498 struct sched_entity *curr = cfs_rq->curr; 499 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 500 501 u64 vruntime = cfs_rq->min_vruntime; 502 503 if (curr) { 504 if (curr->on_rq) 505 vruntime = curr->vruntime; 506 else 507 curr = NULL; 508 } 509 510 if (leftmost) { /* non-empty tree */ 511 struct sched_entity *se; 512 se = rb_entry(leftmost, struct sched_entity, run_node); 513 514 if (!curr) 515 vruntime = se->vruntime; 516 else 517 vruntime = min_vruntime(vruntime, se->vruntime); 518 } 519 520 /* ensure we never gain time by being placed backwards. */ 521 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 522 #ifndef CONFIG_64BIT 523 smp_wmb(); 524 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 525 #endif 526 } 527 528 /* 529 * Enqueue an entity into the rb-tree: 530 */ 531 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 532 { 533 struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node; 534 struct rb_node *parent = NULL; 535 struct sched_entity *entry; 536 bool leftmost = true; 537 538 /* 539 * Find the right place in the rbtree: 540 */ 541 while (*link) { 542 parent = *link; 543 entry = rb_entry(parent, struct sched_entity, run_node); 544 /* 545 * We dont care about collisions. Nodes with 546 * the same key stay together. 547 */ 548 if (entity_before(se, entry)) { 549 link = &parent->rb_left; 550 } else { 551 link = &parent->rb_right; 552 leftmost = false; 553 } 554 } 555 556 rb_link_node(&se->run_node, parent, link); 557 rb_insert_color_cached(&se->run_node, 558 &cfs_rq->tasks_timeline, leftmost); 559 } 560 561 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 562 { 563 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 564 } 565 566 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 567 { 568 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 569 570 if (!left) 571 return NULL; 572 573 return rb_entry(left, struct sched_entity, run_node); 574 } 575 576 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 577 { 578 struct rb_node *next = rb_next(&se->run_node); 579 580 if (!next) 581 return NULL; 582 583 return rb_entry(next, struct sched_entity, run_node); 584 } 585 586 #ifdef CONFIG_SCHED_DEBUG 587 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 588 { 589 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 590 591 if (!last) 592 return NULL; 593 594 return rb_entry(last, struct sched_entity, run_node); 595 } 596 597 /************************************************************** 598 * Scheduling class statistics methods: 599 */ 600 601 int sched_proc_update_handler(struct ctl_table *table, int write, 602 void __user *buffer, size_t *lenp, 603 loff_t *ppos) 604 { 605 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 606 unsigned int factor = get_update_sysctl_factor(); 607 608 if (ret || !write) 609 return ret; 610 611 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 612 sysctl_sched_min_granularity); 613 614 #define WRT_SYSCTL(name) \ 615 (normalized_sysctl_##name = sysctl_##name / (factor)) 616 WRT_SYSCTL(sched_min_granularity); 617 WRT_SYSCTL(sched_latency); 618 WRT_SYSCTL(sched_wakeup_granularity); 619 #undef WRT_SYSCTL 620 621 return 0; 622 } 623 #endif 624 625 /* 626 * delta /= w 627 */ 628 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 629 { 630 if (unlikely(se->load.weight != NICE_0_LOAD)) 631 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 632 633 return delta; 634 } 635 636 /* 637 * The idea is to set a period in which each task runs once. 638 * 639 * When there are too many tasks (sched_nr_latency) we have to stretch 640 * this period because otherwise the slices get too small. 641 * 642 * p = (nr <= nl) ? l : l*nr/nl 643 */ 644 static u64 __sched_period(unsigned long nr_running) 645 { 646 if (unlikely(nr_running > sched_nr_latency)) 647 return nr_running * sysctl_sched_min_granularity; 648 else 649 return sysctl_sched_latency; 650 } 651 652 /* 653 * We calculate the wall-time slice from the period by taking a part 654 * proportional to the weight. 655 * 656 * s = p*P[w/rw] 657 */ 658 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 659 { 660 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 661 662 for_each_sched_entity(se) { 663 struct load_weight *load; 664 struct load_weight lw; 665 666 cfs_rq = cfs_rq_of(se); 667 load = &cfs_rq->load; 668 669 if (unlikely(!se->on_rq)) { 670 lw = cfs_rq->load; 671 672 update_load_add(&lw, se->load.weight); 673 load = &lw; 674 } 675 slice = __calc_delta(slice, se->load.weight, load); 676 } 677 return slice; 678 } 679 680 /* 681 * We calculate the vruntime slice of a to-be-inserted task. 682 * 683 * vs = s/w 684 */ 685 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 686 { 687 return calc_delta_fair(sched_slice(cfs_rq, se), se); 688 } 689 690 #ifdef CONFIG_SMP 691 #include "pelt.h" 692 #include "sched-pelt.h" 693 694 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 695 static unsigned long task_h_load(struct task_struct *p); 696 static unsigned long capacity_of(int cpu); 697 698 /* Give new sched_entity start runnable values to heavy its load in infant time */ 699 void init_entity_runnable_average(struct sched_entity *se) 700 { 701 struct sched_avg *sa = &se->avg; 702 703 memset(sa, 0, sizeof(*sa)); 704 705 /* 706 * Tasks are initialized with full load to be seen as heavy tasks until 707 * they get a chance to stabilize to their real load level. 708 * Group entities are initialized with zero load to reflect the fact that 709 * nothing has been attached to the task group yet. 710 */ 711 if (entity_is_task(se)) 712 sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight); 713 714 se->runnable_weight = se->load.weight; 715 716 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 717 } 718 719 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 720 static void attach_entity_cfs_rq(struct sched_entity *se); 721 722 /* 723 * With new tasks being created, their initial util_avgs are extrapolated 724 * based on the cfs_rq's current util_avg: 725 * 726 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 727 * 728 * However, in many cases, the above util_avg does not give a desired 729 * value. Moreover, the sum of the util_avgs may be divergent, such 730 * as when the series is a harmonic series. 731 * 732 * To solve this problem, we also cap the util_avg of successive tasks to 733 * only 1/2 of the left utilization budget: 734 * 735 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 736 * 737 * where n denotes the nth task and cpu_scale the CPU capacity. 738 * 739 * For example, for a CPU with 1024 of capacity, a simplest series from 740 * the beginning would be like: 741 * 742 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 743 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 744 * 745 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 746 * if util_avg > util_avg_cap. 747 */ 748 void post_init_entity_util_avg(struct sched_entity *se) 749 { 750 struct cfs_rq *cfs_rq = cfs_rq_of(se); 751 struct sched_avg *sa = &se->avg; 752 long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq))); 753 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 754 755 if (cap > 0) { 756 if (cfs_rq->avg.util_avg != 0) { 757 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 758 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 759 760 if (sa->util_avg > cap) 761 sa->util_avg = cap; 762 } else { 763 sa->util_avg = cap; 764 } 765 } 766 767 if (entity_is_task(se)) { 768 struct task_struct *p = task_of(se); 769 if (p->sched_class != &fair_sched_class) { 770 /* 771 * For !fair tasks do: 772 * 773 update_cfs_rq_load_avg(now, cfs_rq); 774 attach_entity_load_avg(cfs_rq, se, 0); 775 switched_from_fair(rq, p); 776 * 777 * such that the next switched_to_fair() has the 778 * expected state. 779 */ 780 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq); 781 return; 782 } 783 } 784 785 attach_entity_cfs_rq(se); 786 } 787 788 #else /* !CONFIG_SMP */ 789 void init_entity_runnable_average(struct sched_entity *se) 790 { 791 } 792 void post_init_entity_util_avg(struct sched_entity *se) 793 { 794 } 795 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 796 { 797 } 798 #endif /* CONFIG_SMP */ 799 800 /* 801 * Update the current task's runtime statistics. 802 */ 803 static void update_curr(struct cfs_rq *cfs_rq) 804 { 805 struct sched_entity *curr = cfs_rq->curr; 806 u64 now = rq_clock_task(rq_of(cfs_rq)); 807 u64 delta_exec; 808 809 if (unlikely(!curr)) 810 return; 811 812 delta_exec = now - curr->exec_start; 813 if (unlikely((s64)delta_exec <= 0)) 814 return; 815 816 curr->exec_start = now; 817 818 schedstat_set(curr->statistics.exec_max, 819 max(delta_exec, curr->statistics.exec_max)); 820 821 curr->sum_exec_runtime += delta_exec; 822 schedstat_add(cfs_rq->exec_clock, delta_exec); 823 824 curr->vruntime += calc_delta_fair(delta_exec, curr); 825 update_min_vruntime(cfs_rq); 826 827 if (entity_is_task(curr)) { 828 struct task_struct *curtask = task_of(curr); 829 830 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 831 cgroup_account_cputime(curtask, delta_exec); 832 account_group_exec_runtime(curtask, delta_exec); 833 } 834 835 account_cfs_rq_runtime(cfs_rq, delta_exec); 836 } 837 838 static void update_curr_fair(struct rq *rq) 839 { 840 update_curr(cfs_rq_of(&rq->curr->se)); 841 } 842 843 static inline void 844 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 845 { 846 u64 wait_start, prev_wait_start; 847 848 if (!schedstat_enabled()) 849 return; 850 851 wait_start = rq_clock(rq_of(cfs_rq)); 852 prev_wait_start = schedstat_val(se->statistics.wait_start); 853 854 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 855 likely(wait_start > prev_wait_start)) 856 wait_start -= prev_wait_start; 857 858 __schedstat_set(se->statistics.wait_start, wait_start); 859 } 860 861 static inline void 862 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 863 { 864 struct task_struct *p; 865 u64 delta; 866 867 if (!schedstat_enabled()) 868 return; 869 870 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 871 872 if (entity_is_task(se)) { 873 p = task_of(se); 874 if (task_on_rq_migrating(p)) { 875 /* 876 * Preserve migrating task's wait time so wait_start 877 * time stamp can be adjusted to accumulate wait time 878 * prior to migration. 879 */ 880 __schedstat_set(se->statistics.wait_start, delta); 881 return; 882 } 883 trace_sched_stat_wait(p, delta); 884 } 885 886 __schedstat_set(se->statistics.wait_max, 887 max(schedstat_val(se->statistics.wait_max), delta)); 888 __schedstat_inc(se->statistics.wait_count); 889 __schedstat_add(se->statistics.wait_sum, delta); 890 __schedstat_set(se->statistics.wait_start, 0); 891 } 892 893 static inline void 894 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 895 { 896 struct task_struct *tsk = NULL; 897 u64 sleep_start, block_start; 898 899 if (!schedstat_enabled()) 900 return; 901 902 sleep_start = schedstat_val(se->statistics.sleep_start); 903 block_start = schedstat_val(se->statistics.block_start); 904 905 if (entity_is_task(se)) 906 tsk = task_of(se); 907 908 if (sleep_start) { 909 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 910 911 if ((s64)delta < 0) 912 delta = 0; 913 914 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 915 __schedstat_set(se->statistics.sleep_max, delta); 916 917 __schedstat_set(se->statistics.sleep_start, 0); 918 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 919 920 if (tsk) { 921 account_scheduler_latency(tsk, delta >> 10, 1); 922 trace_sched_stat_sleep(tsk, delta); 923 } 924 } 925 if (block_start) { 926 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 927 928 if ((s64)delta < 0) 929 delta = 0; 930 931 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 932 __schedstat_set(se->statistics.block_max, delta); 933 934 __schedstat_set(se->statistics.block_start, 0); 935 __schedstat_add(se->statistics.sum_sleep_runtime, delta); 936 937 if (tsk) { 938 if (tsk->in_iowait) { 939 __schedstat_add(se->statistics.iowait_sum, delta); 940 __schedstat_inc(se->statistics.iowait_count); 941 trace_sched_stat_iowait(tsk, delta); 942 } 943 944 trace_sched_stat_blocked(tsk, delta); 945 946 /* 947 * Blocking time is in units of nanosecs, so shift by 948 * 20 to get a milliseconds-range estimation of the 949 * amount of time that the task spent sleeping: 950 */ 951 if (unlikely(prof_on == SLEEP_PROFILING)) { 952 profile_hits(SLEEP_PROFILING, 953 (void *)get_wchan(tsk), 954 delta >> 20); 955 } 956 account_scheduler_latency(tsk, delta >> 10, 0); 957 } 958 } 959 } 960 961 /* 962 * Task is being enqueued - update stats: 963 */ 964 static inline void 965 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 966 { 967 if (!schedstat_enabled()) 968 return; 969 970 /* 971 * Are we enqueueing a waiting task? (for current tasks 972 * a dequeue/enqueue event is a NOP) 973 */ 974 if (se != cfs_rq->curr) 975 update_stats_wait_start(cfs_rq, se); 976 977 if (flags & ENQUEUE_WAKEUP) 978 update_stats_enqueue_sleeper(cfs_rq, se); 979 } 980 981 static inline void 982 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 983 { 984 985 if (!schedstat_enabled()) 986 return; 987 988 /* 989 * Mark the end of the wait period if dequeueing a 990 * waiting task: 991 */ 992 if (se != cfs_rq->curr) 993 update_stats_wait_end(cfs_rq, se); 994 995 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 996 struct task_struct *tsk = task_of(se); 997 998 if (tsk->state & TASK_INTERRUPTIBLE) 999 __schedstat_set(se->statistics.sleep_start, 1000 rq_clock(rq_of(cfs_rq))); 1001 if (tsk->state & TASK_UNINTERRUPTIBLE) 1002 __schedstat_set(se->statistics.block_start, 1003 rq_clock(rq_of(cfs_rq))); 1004 } 1005 } 1006 1007 /* 1008 * We are picking a new current task - update its stats: 1009 */ 1010 static inline void 1011 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1012 { 1013 /* 1014 * We are starting a new run period: 1015 */ 1016 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1017 } 1018 1019 /************************************************** 1020 * Scheduling class queueing methods: 1021 */ 1022 1023 #ifdef CONFIG_NUMA_BALANCING 1024 /* 1025 * Approximate time to scan a full NUMA task in ms. The task scan period is 1026 * calculated based on the tasks virtual memory size and 1027 * numa_balancing_scan_size. 1028 */ 1029 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1030 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1031 1032 /* Portion of address space to scan in MB */ 1033 unsigned int sysctl_numa_balancing_scan_size = 256; 1034 1035 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1036 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1037 1038 struct numa_group { 1039 atomic_t refcount; 1040 1041 spinlock_t lock; /* nr_tasks, tasks */ 1042 int nr_tasks; 1043 pid_t gid; 1044 int active_nodes; 1045 1046 struct rcu_head rcu; 1047 unsigned long total_faults; 1048 unsigned long max_faults_cpu; 1049 /* 1050 * Faults_cpu is used to decide whether memory should move 1051 * towards the CPU. As a consequence, these stats are weighted 1052 * more by CPU use than by memory faults. 1053 */ 1054 unsigned long *faults_cpu; 1055 unsigned long faults[0]; 1056 }; 1057 1058 static inline unsigned long group_faults_priv(struct numa_group *ng); 1059 static inline unsigned long group_faults_shared(struct numa_group *ng); 1060 1061 static unsigned int task_nr_scan_windows(struct task_struct *p) 1062 { 1063 unsigned long rss = 0; 1064 unsigned long nr_scan_pages; 1065 1066 /* 1067 * Calculations based on RSS as non-present and empty pages are skipped 1068 * by the PTE scanner and NUMA hinting faults should be trapped based 1069 * on resident pages 1070 */ 1071 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1072 rss = get_mm_rss(p->mm); 1073 if (!rss) 1074 rss = nr_scan_pages; 1075 1076 rss = round_up(rss, nr_scan_pages); 1077 return rss / nr_scan_pages; 1078 } 1079 1080 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1081 #define MAX_SCAN_WINDOW 2560 1082 1083 static unsigned int task_scan_min(struct task_struct *p) 1084 { 1085 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1086 unsigned int scan, floor; 1087 unsigned int windows = 1; 1088 1089 if (scan_size < MAX_SCAN_WINDOW) 1090 windows = MAX_SCAN_WINDOW / scan_size; 1091 floor = 1000 / windows; 1092 1093 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1094 return max_t(unsigned int, floor, scan); 1095 } 1096 1097 static unsigned int task_scan_start(struct task_struct *p) 1098 { 1099 unsigned long smin = task_scan_min(p); 1100 unsigned long period = smin; 1101 1102 /* Scale the maximum scan period with the amount of shared memory. */ 1103 if (p->numa_group) { 1104 struct numa_group *ng = p->numa_group; 1105 unsigned long shared = group_faults_shared(ng); 1106 unsigned long private = group_faults_priv(ng); 1107 1108 period *= atomic_read(&ng->refcount); 1109 period *= shared + 1; 1110 period /= private + shared + 1; 1111 } 1112 1113 return max(smin, period); 1114 } 1115 1116 static unsigned int task_scan_max(struct task_struct *p) 1117 { 1118 unsigned long smin = task_scan_min(p); 1119 unsigned long smax; 1120 1121 /* Watch for min being lower than max due to floor calculations */ 1122 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1123 1124 /* Scale the maximum scan period with the amount of shared memory. */ 1125 if (p->numa_group) { 1126 struct numa_group *ng = p->numa_group; 1127 unsigned long shared = group_faults_shared(ng); 1128 unsigned long private = group_faults_priv(ng); 1129 unsigned long period = smax; 1130 1131 period *= atomic_read(&ng->refcount); 1132 period *= shared + 1; 1133 period /= private + shared + 1; 1134 1135 smax = max(smax, period); 1136 } 1137 1138 return max(smin, smax); 1139 } 1140 1141 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1142 { 1143 int mm_users = 0; 1144 struct mm_struct *mm = p->mm; 1145 1146 if (mm) { 1147 mm_users = atomic_read(&mm->mm_users); 1148 if (mm_users == 1) { 1149 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 1150 mm->numa_scan_seq = 0; 1151 } 1152 } 1153 p->node_stamp = 0; 1154 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 1155 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 1156 p->numa_work.next = &p->numa_work; 1157 p->numa_faults = NULL; 1158 p->numa_group = NULL; 1159 p->last_task_numa_placement = 0; 1160 p->last_sum_exec_runtime = 0; 1161 1162 /* New address space, reset the preferred nid */ 1163 if (!(clone_flags & CLONE_VM)) { 1164 p->numa_preferred_nid = -1; 1165 return; 1166 } 1167 1168 /* 1169 * New thread, keep existing numa_preferred_nid which should be copied 1170 * already by arch_dup_task_struct but stagger when scans start. 1171 */ 1172 if (mm) { 1173 unsigned int delay; 1174 1175 delay = min_t(unsigned int, task_scan_max(current), 1176 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 1177 delay += 2 * TICK_NSEC; 1178 p->node_stamp = delay; 1179 } 1180 } 1181 1182 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1183 { 1184 rq->nr_numa_running += (p->numa_preferred_nid != -1); 1185 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1186 } 1187 1188 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1189 { 1190 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 1191 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1192 } 1193 1194 /* Shared or private faults. */ 1195 #define NR_NUMA_HINT_FAULT_TYPES 2 1196 1197 /* Memory and CPU locality */ 1198 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1199 1200 /* Averaged statistics, and temporary buffers. */ 1201 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1202 1203 pid_t task_numa_group_id(struct task_struct *p) 1204 { 1205 return p->numa_group ? p->numa_group->gid : 0; 1206 } 1207 1208 /* 1209 * The averaged statistics, shared & private, memory & CPU, 1210 * occupy the first half of the array. The second half of the 1211 * array is for current counters, which are averaged into the 1212 * first set by task_numa_placement. 1213 */ 1214 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1215 { 1216 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1217 } 1218 1219 static inline unsigned long task_faults(struct task_struct *p, int nid) 1220 { 1221 if (!p->numa_faults) 1222 return 0; 1223 1224 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1225 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1226 } 1227 1228 static inline unsigned long group_faults(struct task_struct *p, int nid) 1229 { 1230 if (!p->numa_group) 1231 return 0; 1232 1233 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1234 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1235 } 1236 1237 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1238 { 1239 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1240 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1241 } 1242 1243 static inline unsigned long group_faults_priv(struct numa_group *ng) 1244 { 1245 unsigned long faults = 0; 1246 int node; 1247 1248 for_each_online_node(node) { 1249 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1250 } 1251 1252 return faults; 1253 } 1254 1255 static inline unsigned long group_faults_shared(struct numa_group *ng) 1256 { 1257 unsigned long faults = 0; 1258 int node; 1259 1260 for_each_online_node(node) { 1261 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1262 } 1263 1264 return faults; 1265 } 1266 1267 /* 1268 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1269 * considered part of a numa group's pseudo-interleaving set. Migrations 1270 * between these nodes are slowed down, to allow things to settle down. 1271 */ 1272 #define ACTIVE_NODE_FRACTION 3 1273 1274 static bool numa_is_active_node(int nid, struct numa_group *ng) 1275 { 1276 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1277 } 1278 1279 /* Handle placement on systems where not all nodes are directly connected. */ 1280 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1281 int maxdist, bool task) 1282 { 1283 unsigned long score = 0; 1284 int node; 1285 1286 /* 1287 * All nodes are directly connected, and the same distance 1288 * from each other. No need for fancy placement algorithms. 1289 */ 1290 if (sched_numa_topology_type == NUMA_DIRECT) 1291 return 0; 1292 1293 /* 1294 * This code is called for each node, introducing N^2 complexity, 1295 * which should be ok given the number of nodes rarely exceeds 8. 1296 */ 1297 for_each_online_node(node) { 1298 unsigned long faults; 1299 int dist = node_distance(nid, node); 1300 1301 /* 1302 * The furthest away nodes in the system are not interesting 1303 * for placement; nid was already counted. 1304 */ 1305 if (dist == sched_max_numa_distance || node == nid) 1306 continue; 1307 1308 /* 1309 * On systems with a backplane NUMA topology, compare groups 1310 * of nodes, and move tasks towards the group with the most 1311 * memory accesses. When comparing two nodes at distance 1312 * "hoplimit", only nodes closer by than "hoplimit" are part 1313 * of each group. Skip other nodes. 1314 */ 1315 if (sched_numa_topology_type == NUMA_BACKPLANE && 1316 dist >= maxdist) 1317 continue; 1318 1319 /* Add up the faults from nearby nodes. */ 1320 if (task) 1321 faults = task_faults(p, node); 1322 else 1323 faults = group_faults(p, node); 1324 1325 /* 1326 * On systems with a glueless mesh NUMA topology, there are 1327 * no fixed "groups of nodes". Instead, nodes that are not 1328 * directly connected bounce traffic through intermediate 1329 * nodes; a numa_group can occupy any set of nodes. 1330 * The further away a node is, the less the faults count. 1331 * This seems to result in good task placement. 1332 */ 1333 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1334 faults *= (sched_max_numa_distance - dist); 1335 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1336 } 1337 1338 score += faults; 1339 } 1340 1341 return score; 1342 } 1343 1344 /* 1345 * These return the fraction of accesses done by a particular task, or 1346 * task group, on a particular numa node. The group weight is given a 1347 * larger multiplier, in order to group tasks together that are almost 1348 * evenly spread out between numa nodes. 1349 */ 1350 static inline unsigned long task_weight(struct task_struct *p, int nid, 1351 int dist) 1352 { 1353 unsigned long faults, total_faults; 1354 1355 if (!p->numa_faults) 1356 return 0; 1357 1358 total_faults = p->total_numa_faults; 1359 1360 if (!total_faults) 1361 return 0; 1362 1363 faults = task_faults(p, nid); 1364 faults += score_nearby_nodes(p, nid, dist, true); 1365 1366 return 1000 * faults / total_faults; 1367 } 1368 1369 static inline unsigned long group_weight(struct task_struct *p, int nid, 1370 int dist) 1371 { 1372 unsigned long faults, total_faults; 1373 1374 if (!p->numa_group) 1375 return 0; 1376 1377 total_faults = p->numa_group->total_faults; 1378 1379 if (!total_faults) 1380 return 0; 1381 1382 faults = group_faults(p, nid); 1383 faults += score_nearby_nodes(p, nid, dist, false); 1384 1385 return 1000 * faults / total_faults; 1386 } 1387 1388 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1389 int src_nid, int dst_cpu) 1390 { 1391 struct numa_group *ng = p->numa_group; 1392 int dst_nid = cpu_to_node(dst_cpu); 1393 int last_cpupid, this_cpupid; 1394 1395 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1396 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1397 1398 /* 1399 * Allow first faults or private faults to migrate immediately early in 1400 * the lifetime of a task. The magic number 4 is based on waiting for 1401 * two full passes of the "multi-stage node selection" test that is 1402 * executed below. 1403 */ 1404 if ((p->numa_preferred_nid == -1 || p->numa_scan_seq <= 4) && 1405 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1406 return true; 1407 1408 /* 1409 * Multi-stage node selection is used in conjunction with a periodic 1410 * migration fault to build a temporal task<->page relation. By using 1411 * a two-stage filter we remove short/unlikely relations. 1412 * 1413 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1414 * a task's usage of a particular page (n_p) per total usage of this 1415 * page (n_t) (in a given time-span) to a probability. 1416 * 1417 * Our periodic faults will sample this probability and getting the 1418 * same result twice in a row, given these samples are fully 1419 * independent, is then given by P(n)^2, provided our sample period 1420 * is sufficiently short compared to the usage pattern. 1421 * 1422 * This quadric squishes small probabilities, making it less likely we 1423 * act on an unlikely task<->page relation. 1424 */ 1425 if (!cpupid_pid_unset(last_cpupid) && 1426 cpupid_to_nid(last_cpupid) != dst_nid) 1427 return false; 1428 1429 /* Always allow migrate on private faults */ 1430 if (cpupid_match_pid(p, last_cpupid)) 1431 return true; 1432 1433 /* A shared fault, but p->numa_group has not been set up yet. */ 1434 if (!ng) 1435 return true; 1436 1437 /* 1438 * Destination node is much more heavily used than the source 1439 * node? Allow migration. 1440 */ 1441 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1442 ACTIVE_NODE_FRACTION) 1443 return true; 1444 1445 /* 1446 * Distribute memory according to CPU & memory use on each node, 1447 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1448 * 1449 * faults_cpu(dst) 3 faults_cpu(src) 1450 * --------------- * - > --------------- 1451 * faults_mem(dst) 4 faults_mem(src) 1452 */ 1453 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1454 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1455 } 1456 1457 static unsigned long weighted_cpuload(struct rq *rq); 1458 static unsigned long source_load(int cpu, int type); 1459 static unsigned long target_load(int cpu, int type); 1460 1461 /* Cached statistics for all CPUs within a node */ 1462 struct numa_stats { 1463 unsigned long load; 1464 1465 /* Total compute capacity of CPUs on a node */ 1466 unsigned long compute_capacity; 1467 }; 1468 1469 /* 1470 * XXX borrowed from update_sg_lb_stats 1471 */ 1472 static void update_numa_stats(struct numa_stats *ns, int nid) 1473 { 1474 int cpu; 1475 1476 memset(ns, 0, sizeof(*ns)); 1477 for_each_cpu(cpu, cpumask_of_node(nid)) { 1478 struct rq *rq = cpu_rq(cpu); 1479 1480 ns->load += weighted_cpuload(rq); 1481 ns->compute_capacity += capacity_of(cpu); 1482 } 1483 1484 } 1485 1486 struct task_numa_env { 1487 struct task_struct *p; 1488 1489 int src_cpu, src_nid; 1490 int dst_cpu, dst_nid; 1491 1492 struct numa_stats src_stats, dst_stats; 1493 1494 int imbalance_pct; 1495 int dist; 1496 1497 struct task_struct *best_task; 1498 long best_imp; 1499 int best_cpu; 1500 }; 1501 1502 static void task_numa_assign(struct task_numa_env *env, 1503 struct task_struct *p, long imp) 1504 { 1505 struct rq *rq = cpu_rq(env->dst_cpu); 1506 1507 /* Bail out if run-queue part of active NUMA balance. */ 1508 if (xchg(&rq->numa_migrate_on, 1)) 1509 return; 1510 1511 /* 1512 * Clear previous best_cpu/rq numa-migrate flag, since task now 1513 * found a better CPU to move/swap. 1514 */ 1515 if (env->best_cpu != -1) { 1516 rq = cpu_rq(env->best_cpu); 1517 WRITE_ONCE(rq->numa_migrate_on, 0); 1518 } 1519 1520 if (env->best_task) 1521 put_task_struct(env->best_task); 1522 if (p) 1523 get_task_struct(p); 1524 1525 env->best_task = p; 1526 env->best_imp = imp; 1527 env->best_cpu = env->dst_cpu; 1528 } 1529 1530 static bool load_too_imbalanced(long src_load, long dst_load, 1531 struct task_numa_env *env) 1532 { 1533 long imb, old_imb; 1534 long orig_src_load, orig_dst_load; 1535 long src_capacity, dst_capacity; 1536 1537 /* 1538 * The load is corrected for the CPU capacity available on each node. 1539 * 1540 * src_load dst_load 1541 * ------------ vs --------- 1542 * src_capacity dst_capacity 1543 */ 1544 src_capacity = env->src_stats.compute_capacity; 1545 dst_capacity = env->dst_stats.compute_capacity; 1546 1547 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1548 1549 orig_src_load = env->src_stats.load; 1550 orig_dst_load = env->dst_stats.load; 1551 1552 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1553 1554 /* Would this change make things worse? */ 1555 return (imb > old_imb); 1556 } 1557 1558 /* 1559 * Maximum NUMA importance can be 1998 (2*999); 1560 * SMALLIMP @ 30 would be close to 1998/64. 1561 * Used to deter task migration. 1562 */ 1563 #define SMALLIMP 30 1564 1565 /* 1566 * This checks if the overall compute and NUMA accesses of the system would 1567 * be improved if the source tasks was migrated to the target dst_cpu taking 1568 * into account that it might be best if task running on the dst_cpu should 1569 * be exchanged with the source task 1570 */ 1571 static void task_numa_compare(struct task_numa_env *env, 1572 long taskimp, long groupimp, bool maymove) 1573 { 1574 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1575 struct task_struct *cur; 1576 long src_load, dst_load; 1577 long load; 1578 long imp = env->p->numa_group ? groupimp : taskimp; 1579 long moveimp = imp; 1580 int dist = env->dist; 1581 1582 if (READ_ONCE(dst_rq->numa_migrate_on)) 1583 return; 1584 1585 rcu_read_lock(); 1586 cur = task_rcu_dereference(&dst_rq->curr); 1587 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1588 cur = NULL; 1589 1590 /* 1591 * Because we have preemption enabled we can get migrated around and 1592 * end try selecting ourselves (current == env->p) as a swap candidate. 1593 */ 1594 if (cur == env->p) 1595 goto unlock; 1596 1597 if (!cur) { 1598 if (maymove && moveimp >= env->best_imp) 1599 goto assign; 1600 else 1601 goto unlock; 1602 } 1603 1604 /* 1605 * "imp" is the fault differential for the source task between the 1606 * source and destination node. Calculate the total differential for 1607 * the source task and potential destination task. The more negative 1608 * the value is, the more remote accesses that would be expected to 1609 * be incurred if the tasks were swapped. 1610 */ 1611 /* Skip this swap candidate if cannot move to the source cpu */ 1612 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed)) 1613 goto unlock; 1614 1615 /* 1616 * If dst and source tasks are in the same NUMA group, or not 1617 * in any group then look only at task weights. 1618 */ 1619 if (cur->numa_group == env->p->numa_group) { 1620 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1621 task_weight(cur, env->dst_nid, dist); 1622 /* 1623 * Add some hysteresis to prevent swapping the 1624 * tasks within a group over tiny differences. 1625 */ 1626 if (cur->numa_group) 1627 imp -= imp / 16; 1628 } else { 1629 /* 1630 * Compare the group weights. If a task is all by itself 1631 * (not part of a group), use the task weight instead. 1632 */ 1633 if (cur->numa_group && env->p->numa_group) 1634 imp += group_weight(cur, env->src_nid, dist) - 1635 group_weight(cur, env->dst_nid, dist); 1636 else 1637 imp += task_weight(cur, env->src_nid, dist) - 1638 task_weight(cur, env->dst_nid, dist); 1639 } 1640 1641 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1642 imp = moveimp; 1643 cur = NULL; 1644 goto assign; 1645 } 1646 1647 /* 1648 * If the NUMA importance is less than SMALLIMP, 1649 * task migration might only result in ping pong 1650 * of tasks and also hurt performance due to cache 1651 * misses. 1652 */ 1653 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1654 goto unlock; 1655 1656 /* 1657 * In the overloaded case, try and keep the load balanced. 1658 */ 1659 load = task_h_load(env->p) - task_h_load(cur); 1660 if (!load) 1661 goto assign; 1662 1663 dst_load = env->dst_stats.load + load; 1664 src_load = env->src_stats.load - load; 1665 1666 if (load_too_imbalanced(src_load, dst_load, env)) 1667 goto unlock; 1668 1669 assign: 1670 /* 1671 * One idle CPU per node is evaluated for a task numa move. 1672 * Call select_idle_sibling to maybe find a better one. 1673 */ 1674 if (!cur) { 1675 /* 1676 * select_idle_siblings() uses an per-CPU cpumask that 1677 * can be used from IRQ context. 1678 */ 1679 local_irq_disable(); 1680 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1681 env->dst_cpu); 1682 local_irq_enable(); 1683 } 1684 1685 task_numa_assign(env, cur, imp); 1686 unlock: 1687 rcu_read_unlock(); 1688 } 1689 1690 static void task_numa_find_cpu(struct task_numa_env *env, 1691 long taskimp, long groupimp) 1692 { 1693 long src_load, dst_load, load; 1694 bool maymove = false; 1695 int cpu; 1696 1697 load = task_h_load(env->p); 1698 dst_load = env->dst_stats.load + load; 1699 src_load = env->src_stats.load - load; 1700 1701 /* 1702 * If the improvement from just moving env->p direction is better 1703 * than swapping tasks around, check if a move is possible. 1704 */ 1705 maymove = !load_too_imbalanced(src_load, dst_load, env); 1706 1707 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1708 /* Skip this CPU if the source task cannot migrate */ 1709 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed)) 1710 continue; 1711 1712 env->dst_cpu = cpu; 1713 task_numa_compare(env, taskimp, groupimp, maymove); 1714 } 1715 } 1716 1717 static int task_numa_migrate(struct task_struct *p) 1718 { 1719 struct task_numa_env env = { 1720 .p = p, 1721 1722 .src_cpu = task_cpu(p), 1723 .src_nid = task_node(p), 1724 1725 .imbalance_pct = 112, 1726 1727 .best_task = NULL, 1728 .best_imp = 0, 1729 .best_cpu = -1, 1730 }; 1731 struct sched_domain *sd; 1732 struct rq *best_rq; 1733 unsigned long taskweight, groupweight; 1734 int nid, ret, dist; 1735 long taskimp, groupimp; 1736 1737 /* 1738 * Pick the lowest SD_NUMA domain, as that would have the smallest 1739 * imbalance and would be the first to start moving tasks about. 1740 * 1741 * And we want to avoid any moving of tasks about, as that would create 1742 * random movement of tasks -- counter the numa conditions we're trying 1743 * to satisfy here. 1744 */ 1745 rcu_read_lock(); 1746 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1747 if (sd) 1748 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1749 rcu_read_unlock(); 1750 1751 /* 1752 * Cpusets can break the scheduler domain tree into smaller 1753 * balance domains, some of which do not cross NUMA boundaries. 1754 * Tasks that are "trapped" in such domains cannot be migrated 1755 * elsewhere, so there is no point in (re)trying. 1756 */ 1757 if (unlikely(!sd)) { 1758 sched_setnuma(p, task_node(p)); 1759 return -EINVAL; 1760 } 1761 1762 env.dst_nid = p->numa_preferred_nid; 1763 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1764 taskweight = task_weight(p, env.src_nid, dist); 1765 groupweight = group_weight(p, env.src_nid, dist); 1766 update_numa_stats(&env.src_stats, env.src_nid); 1767 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1768 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1769 update_numa_stats(&env.dst_stats, env.dst_nid); 1770 1771 /* Try to find a spot on the preferred nid. */ 1772 task_numa_find_cpu(&env, taskimp, groupimp); 1773 1774 /* 1775 * Look at other nodes in these cases: 1776 * - there is no space available on the preferred_nid 1777 * - the task is part of a numa_group that is interleaved across 1778 * multiple NUMA nodes; in order to better consolidate the group, 1779 * we need to check other locations. 1780 */ 1781 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1782 for_each_online_node(nid) { 1783 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1784 continue; 1785 1786 dist = node_distance(env.src_nid, env.dst_nid); 1787 if (sched_numa_topology_type == NUMA_BACKPLANE && 1788 dist != env.dist) { 1789 taskweight = task_weight(p, env.src_nid, dist); 1790 groupweight = group_weight(p, env.src_nid, dist); 1791 } 1792 1793 /* Only consider nodes where both task and groups benefit */ 1794 taskimp = task_weight(p, nid, dist) - taskweight; 1795 groupimp = group_weight(p, nid, dist) - groupweight; 1796 if (taskimp < 0 && groupimp < 0) 1797 continue; 1798 1799 env.dist = dist; 1800 env.dst_nid = nid; 1801 update_numa_stats(&env.dst_stats, env.dst_nid); 1802 task_numa_find_cpu(&env, taskimp, groupimp); 1803 } 1804 } 1805 1806 /* 1807 * If the task is part of a workload that spans multiple NUMA nodes, 1808 * and is migrating into one of the workload's active nodes, remember 1809 * this node as the task's preferred numa node, so the workload can 1810 * settle down. 1811 * A task that migrated to a second choice node will be better off 1812 * trying for a better one later. Do not set the preferred node here. 1813 */ 1814 if (p->numa_group) { 1815 if (env.best_cpu == -1) 1816 nid = env.src_nid; 1817 else 1818 nid = cpu_to_node(env.best_cpu); 1819 1820 if (nid != p->numa_preferred_nid) 1821 sched_setnuma(p, nid); 1822 } 1823 1824 /* No better CPU than the current one was found. */ 1825 if (env.best_cpu == -1) 1826 return -EAGAIN; 1827 1828 best_rq = cpu_rq(env.best_cpu); 1829 if (env.best_task == NULL) { 1830 ret = migrate_task_to(p, env.best_cpu); 1831 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1832 if (ret != 0) 1833 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1834 return ret; 1835 } 1836 1837 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 1838 WRITE_ONCE(best_rq->numa_migrate_on, 0); 1839 1840 if (ret != 0) 1841 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1842 put_task_struct(env.best_task); 1843 return ret; 1844 } 1845 1846 /* Attempt to migrate a task to a CPU on the preferred node. */ 1847 static void numa_migrate_preferred(struct task_struct *p) 1848 { 1849 unsigned long interval = HZ; 1850 1851 /* This task has no NUMA fault statistics yet */ 1852 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1853 return; 1854 1855 /* Periodically retry migrating the task to the preferred node */ 1856 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1857 p->numa_migrate_retry = jiffies + interval; 1858 1859 /* Success if task is already running on preferred CPU */ 1860 if (task_node(p) == p->numa_preferred_nid) 1861 return; 1862 1863 /* Otherwise, try migrate to a CPU on the preferred node */ 1864 task_numa_migrate(p); 1865 } 1866 1867 /* 1868 * Find out how many nodes on the workload is actively running on. Do this by 1869 * tracking the nodes from which NUMA hinting faults are triggered. This can 1870 * be different from the set of nodes where the workload's memory is currently 1871 * located. 1872 */ 1873 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1874 { 1875 unsigned long faults, max_faults = 0; 1876 int nid, active_nodes = 0; 1877 1878 for_each_online_node(nid) { 1879 faults = group_faults_cpu(numa_group, nid); 1880 if (faults > max_faults) 1881 max_faults = faults; 1882 } 1883 1884 for_each_online_node(nid) { 1885 faults = group_faults_cpu(numa_group, nid); 1886 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1887 active_nodes++; 1888 } 1889 1890 numa_group->max_faults_cpu = max_faults; 1891 numa_group->active_nodes = active_nodes; 1892 } 1893 1894 /* 1895 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1896 * increments. The more local the fault statistics are, the higher the scan 1897 * period will be for the next scan window. If local/(local+remote) ratio is 1898 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1899 * the scan period will decrease. Aim for 70% local accesses. 1900 */ 1901 #define NUMA_PERIOD_SLOTS 10 1902 #define NUMA_PERIOD_THRESHOLD 7 1903 1904 /* 1905 * Increase the scan period (slow down scanning) if the majority of 1906 * our memory is already on our local node, or if the majority of 1907 * the page accesses are shared with other processes. 1908 * Otherwise, decrease the scan period. 1909 */ 1910 static void update_task_scan_period(struct task_struct *p, 1911 unsigned long shared, unsigned long private) 1912 { 1913 unsigned int period_slot; 1914 int lr_ratio, ps_ratio; 1915 int diff; 1916 1917 unsigned long remote = p->numa_faults_locality[0]; 1918 unsigned long local = p->numa_faults_locality[1]; 1919 1920 /* 1921 * If there were no record hinting faults then either the task is 1922 * completely idle or all activity is areas that are not of interest 1923 * to automatic numa balancing. Related to that, if there were failed 1924 * migration then it implies we are migrating too quickly or the local 1925 * node is overloaded. In either case, scan slower 1926 */ 1927 if (local + shared == 0 || p->numa_faults_locality[2]) { 1928 p->numa_scan_period = min(p->numa_scan_period_max, 1929 p->numa_scan_period << 1); 1930 1931 p->mm->numa_next_scan = jiffies + 1932 msecs_to_jiffies(p->numa_scan_period); 1933 1934 return; 1935 } 1936 1937 /* 1938 * Prepare to scale scan period relative to the current period. 1939 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1940 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1941 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1942 */ 1943 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1944 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1945 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 1946 1947 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 1948 /* 1949 * Most memory accesses are local. There is no need to 1950 * do fast NUMA scanning, since memory is already local. 1951 */ 1952 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 1953 if (!slot) 1954 slot = 1; 1955 diff = slot * period_slot; 1956 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 1957 /* 1958 * Most memory accesses are shared with other tasks. 1959 * There is no point in continuing fast NUMA scanning, 1960 * since other tasks may just move the memory elsewhere. 1961 */ 1962 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 1963 if (!slot) 1964 slot = 1; 1965 diff = slot * period_slot; 1966 } else { 1967 /* 1968 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 1969 * yet they are not on the local NUMA node. Speed up 1970 * NUMA scanning to get the memory moved over. 1971 */ 1972 int ratio = max(lr_ratio, ps_ratio); 1973 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1974 } 1975 1976 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1977 task_scan_min(p), task_scan_max(p)); 1978 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1979 } 1980 1981 /* 1982 * Get the fraction of time the task has been running since the last 1983 * NUMA placement cycle. The scheduler keeps similar statistics, but 1984 * decays those on a 32ms period, which is orders of magnitude off 1985 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1986 * stats only if the task is so new there are no NUMA statistics yet. 1987 */ 1988 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 1989 { 1990 u64 runtime, delta, now; 1991 /* Use the start of this time slice to avoid calculations. */ 1992 now = p->se.exec_start; 1993 runtime = p->se.sum_exec_runtime; 1994 1995 if (p->last_task_numa_placement) { 1996 delta = runtime - p->last_sum_exec_runtime; 1997 *period = now - p->last_task_numa_placement; 1998 } else { 1999 delta = p->se.avg.load_sum; 2000 *period = LOAD_AVG_MAX; 2001 } 2002 2003 p->last_sum_exec_runtime = runtime; 2004 p->last_task_numa_placement = now; 2005 2006 return delta; 2007 } 2008 2009 /* 2010 * Determine the preferred nid for a task in a numa_group. This needs to 2011 * be done in a way that produces consistent results with group_weight, 2012 * otherwise workloads might not converge. 2013 */ 2014 static int preferred_group_nid(struct task_struct *p, int nid) 2015 { 2016 nodemask_t nodes; 2017 int dist; 2018 2019 /* Direct connections between all NUMA nodes. */ 2020 if (sched_numa_topology_type == NUMA_DIRECT) 2021 return nid; 2022 2023 /* 2024 * On a system with glueless mesh NUMA topology, group_weight 2025 * scores nodes according to the number of NUMA hinting faults on 2026 * both the node itself, and on nearby nodes. 2027 */ 2028 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2029 unsigned long score, max_score = 0; 2030 int node, max_node = nid; 2031 2032 dist = sched_max_numa_distance; 2033 2034 for_each_online_node(node) { 2035 score = group_weight(p, node, dist); 2036 if (score > max_score) { 2037 max_score = score; 2038 max_node = node; 2039 } 2040 } 2041 return max_node; 2042 } 2043 2044 /* 2045 * Finding the preferred nid in a system with NUMA backplane 2046 * interconnect topology is more involved. The goal is to locate 2047 * tasks from numa_groups near each other in the system, and 2048 * untangle workloads from different sides of the system. This requires 2049 * searching down the hierarchy of node groups, recursively searching 2050 * inside the highest scoring group of nodes. The nodemask tricks 2051 * keep the complexity of the search down. 2052 */ 2053 nodes = node_online_map; 2054 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2055 unsigned long max_faults = 0; 2056 nodemask_t max_group = NODE_MASK_NONE; 2057 int a, b; 2058 2059 /* Are there nodes at this distance from each other? */ 2060 if (!find_numa_distance(dist)) 2061 continue; 2062 2063 for_each_node_mask(a, nodes) { 2064 unsigned long faults = 0; 2065 nodemask_t this_group; 2066 nodes_clear(this_group); 2067 2068 /* Sum group's NUMA faults; includes a==b case. */ 2069 for_each_node_mask(b, nodes) { 2070 if (node_distance(a, b) < dist) { 2071 faults += group_faults(p, b); 2072 node_set(b, this_group); 2073 node_clear(b, nodes); 2074 } 2075 } 2076 2077 /* Remember the top group. */ 2078 if (faults > max_faults) { 2079 max_faults = faults; 2080 max_group = this_group; 2081 /* 2082 * subtle: at the smallest distance there is 2083 * just one node left in each "group", the 2084 * winner is the preferred nid. 2085 */ 2086 nid = a; 2087 } 2088 } 2089 /* Next round, evaluate the nodes within max_group. */ 2090 if (!max_faults) 2091 break; 2092 nodes = max_group; 2093 } 2094 return nid; 2095 } 2096 2097 static void task_numa_placement(struct task_struct *p) 2098 { 2099 int seq, nid, max_nid = -1; 2100 unsigned long max_faults = 0; 2101 unsigned long fault_types[2] = { 0, 0 }; 2102 unsigned long total_faults; 2103 u64 runtime, period; 2104 spinlock_t *group_lock = NULL; 2105 2106 /* 2107 * The p->mm->numa_scan_seq field gets updated without 2108 * exclusive access. Use READ_ONCE() here to ensure 2109 * that the field is read in a single access: 2110 */ 2111 seq = READ_ONCE(p->mm->numa_scan_seq); 2112 if (p->numa_scan_seq == seq) 2113 return; 2114 p->numa_scan_seq = seq; 2115 p->numa_scan_period_max = task_scan_max(p); 2116 2117 total_faults = p->numa_faults_locality[0] + 2118 p->numa_faults_locality[1]; 2119 runtime = numa_get_avg_runtime(p, &period); 2120 2121 /* If the task is part of a group prevent parallel updates to group stats */ 2122 if (p->numa_group) { 2123 group_lock = &p->numa_group->lock; 2124 spin_lock_irq(group_lock); 2125 } 2126 2127 /* Find the node with the highest number of faults */ 2128 for_each_online_node(nid) { 2129 /* Keep track of the offsets in numa_faults array */ 2130 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2131 unsigned long faults = 0, group_faults = 0; 2132 int priv; 2133 2134 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2135 long diff, f_diff, f_weight; 2136 2137 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2138 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2139 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2140 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2141 2142 /* Decay existing window, copy faults since last scan */ 2143 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2144 fault_types[priv] += p->numa_faults[membuf_idx]; 2145 p->numa_faults[membuf_idx] = 0; 2146 2147 /* 2148 * Normalize the faults_from, so all tasks in a group 2149 * count according to CPU use, instead of by the raw 2150 * number of faults. Tasks with little runtime have 2151 * little over-all impact on throughput, and thus their 2152 * faults are less important. 2153 */ 2154 f_weight = div64_u64(runtime << 16, period + 1); 2155 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2156 (total_faults + 1); 2157 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2158 p->numa_faults[cpubuf_idx] = 0; 2159 2160 p->numa_faults[mem_idx] += diff; 2161 p->numa_faults[cpu_idx] += f_diff; 2162 faults += p->numa_faults[mem_idx]; 2163 p->total_numa_faults += diff; 2164 if (p->numa_group) { 2165 /* 2166 * safe because we can only change our own group 2167 * 2168 * mem_idx represents the offset for a given 2169 * nid and priv in a specific region because it 2170 * is at the beginning of the numa_faults array. 2171 */ 2172 p->numa_group->faults[mem_idx] += diff; 2173 p->numa_group->faults_cpu[mem_idx] += f_diff; 2174 p->numa_group->total_faults += diff; 2175 group_faults += p->numa_group->faults[mem_idx]; 2176 } 2177 } 2178 2179 if (!p->numa_group) { 2180 if (faults > max_faults) { 2181 max_faults = faults; 2182 max_nid = nid; 2183 } 2184 } else if (group_faults > max_faults) { 2185 max_faults = group_faults; 2186 max_nid = nid; 2187 } 2188 } 2189 2190 if (p->numa_group) { 2191 numa_group_count_active_nodes(p->numa_group); 2192 spin_unlock_irq(group_lock); 2193 max_nid = preferred_group_nid(p, max_nid); 2194 } 2195 2196 if (max_faults) { 2197 /* Set the new preferred node */ 2198 if (max_nid != p->numa_preferred_nid) 2199 sched_setnuma(p, max_nid); 2200 } 2201 2202 update_task_scan_period(p, fault_types[0], fault_types[1]); 2203 } 2204 2205 static inline int get_numa_group(struct numa_group *grp) 2206 { 2207 return atomic_inc_not_zero(&grp->refcount); 2208 } 2209 2210 static inline void put_numa_group(struct numa_group *grp) 2211 { 2212 if (atomic_dec_and_test(&grp->refcount)) 2213 kfree_rcu(grp, rcu); 2214 } 2215 2216 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2217 int *priv) 2218 { 2219 struct numa_group *grp, *my_grp; 2220 struct task_struct *tsk; 2221 bool join = false; 2222 int cpu = cpupid_to_cpu(cpupid); 2223 int i; 2224 2225 if (unlikely(!p->numa_group)) { 2226 unsigned int size = sizeof(struct numa_group) + 2227 4*nr_node_ids*sizeof(unsigned long); 2228 2229 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2230 if (!grp) 2231 return; 2232 2233 atomic_set(&grp->refcount, 1); 2234 grp->active_nodes = 1; 2235 grp->max_faults_cpu = 0; 2236 spin_lock_init(&grp->lock); 2237 grp->gid = p->pid; 2238 /* Second half of the array tracks nids where faults happen */ 2239 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2240 nr_node_ids; 2241 2242 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2243 grp->faults[i] = p->numa_faults[i]; 2244 2245 grp->total_faults = p->total_numa_faults; 2246 2247 grp->nr_tasks++; 2248 rcu_assign_pointer(p->numa_group, grp); 2249 } 2250 2251 rcu_read_lock(); 2252 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2253 2254 if (!cpupid_match_pid(tsk, cpupid)) 2255 goto no_join; 2256 2257 grp = rcu_dereference(tsk->numa_group); 2258 if (!grp) 2259 goto no_join; 2260 2261 my_grp = p->numa_group; 2262 if (grp == my_grp) 2263 goto no_join; 2264 2265 /* 2266 * Only join the other group if its bigger; if we're the bigger group, 2267 * the other task will join us. 2268 */ 2269 if (my_grp->nr_tasks > grp->nr_tasks) 2270 goto no_join; 2271 2272 /* 2273 * Tie-break on the grp address. 2274 */ 2275 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2276 goto no_join; 2277 2278 /* Always join threads in the same process. */ 2279 if (tsk->mm == current->mm) 2280 join = true; 2281 2282 /* Simple filter to avoid false positives due to PID collisions */ 2283 if (flags & TNF_SHARED) 2284 join = true; 2285 2286 /* Update priv based on whether false sharing was detected */ 2287 *priv = !join; 2288 2289 if (join && !get_numa_group(grp)) 2290 goto no_join; 2291 2292 rcu_read_unlock(); 2293 2294 if (!join) 2295 return; 2296 2297 BUG_ON(irqs_disabled()); 2298 double_lock_irq(&my_grp->lock, &grp->lock); 2299 2300 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2301 my_grp->faults[i] -= p->numa_faults[i]; 2302 grp->faults[i] += p->numa_faults[i]; 2303 } 2304 my_grp->total_faults -= p->total_numa_faults; 2305 grp->total_faults += p->total_numa_faults; 2306 2307 my_grp->nr_tasks--; 2308 grp->nr_tasks++; 2309 2310 spin_unlock(&my_grp->lock); 2311 spin_unlock_irq(&grp->lock); 2312 2313 rcu_assign_pointer(p->numa_group, grp); 2314 2315 put_numa_group(my_grp); 2316 return; 2317 2318 no_join: 2319 rcu_read_unlock(); 2320 return; 2321 } 2322 2323 void task_numa_free(struct task_struct *p) 2324 { 2325 struct numa_group *grp = p->numa_group; 2326 void *numa_faults = p->numa_faults; 2327 unsigned long flags; 2328 int i; 2329 2330 if (grp) { 2331 spin_lock_irqsave(&grp->lock, flags); 2332 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2333 grp->faults[i] -= p->numa_faults[i]; 2334 grp->total_faults -= p->total_numa_faults; 2335 2336 grp->nr_tasks--; 2337 spin_unlock_irqrestore(&grp->lock, flags); 2338 RCU_INIT_POINTER(p->numa_group, NULL); 2339 put_numa_group(grp); 2340 } 2341 2342 p->numa_faults = NULL; 2343 kfree(numa_faults); 2344 } 2345 2346 /* 2347 * Got a PROT_NONE fault for a page on @node. 2348 */ 2349 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2350 { 2351 struct task_struct *p = current; 2352 bool migrated = flags & TNF_MIGRATED; 2353 int cpu_node = task_node(current); 2354 int local = !!(flags & TNF_FAULT_LOCAL); 2355 struct numa_group *ng; 2356 int priv; 2357 2358 if (!static_branch_likely(&sched_numa_balancing)) 2359 return; 2360 2361 /* for example, ksmd faulting in a user's mm */ 2362 if (!p->mm) 2363 return; 2364 2365 /* Allocate buffer to track faults on a per-node basis */ 2366 if (unlikely(!p->numa_faults)) { 2367 int size = sizeof(*p->numa_faults) * 2368 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2369 2370 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2371 if (!p->numa_faults) 2372 return; 2373 2374 p->total_numa_faults = 0; 2375 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2376 } 2377 2378 /* 2379 * First accesses are treated as private, otherwise consider accesses 2380 * to be private if the accessing pid has not changed 2381 */ 2382 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2383 priv = 1; 2384 } else { 2385 priv = cpupid_match_pid(p, last_cpupid); 2386 if (!priv && !(flags & TNF_NO_GROUP)) 2387 task_numa_group(p, last_cpupid, flags, &priv); 2388 } 2389 2390 /* 2391 * If a workload spans multiple NUMA nodes, a shared fault that 2392 * occurs wholly within the set of nodes that the workload is 2393 * actively using should be counted as local. This allows the 2394 * scan rate to slow down when a workload has settled down. 2395 */ 2396 ng = p->numa_group; 2397 if (!priv && !local && ng && ng->active_nodes > 1 && 2398 numa_is_active_node(cpu_node, ng) && 2399 numa_is_active_node(mem_node, ng)) 2400 local = 1; 2401 2402 /* 2403 * Retry to migrate task to preferred node periodically, in case it 2404 * previously failed, or the scheduler moved us. 2405 */ 2406 if (time_after(jiffies, p->numa_migrate_retry)) { 2407 task_numa_placement(p); 2408 numa_migrate_preferred(p); 2409 } 2410 2411 if (migrated) 2412 p->numa_pages_migrated += pages; 2413 if (flags & TNF_MIGRATE_FAIL) 2414 p->numa_faults_locality[2] += pages; 2415 2416 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2417 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2418 p->numa_faults_locality[local] += pages; 2419 } 2420 2421 static void reset_ptenuma_scan(struct task_struct *p) 2422 { 2423 /* 2424 * We only did a read acquisition of the mmap sem, so 2425 * p->mm->numa_scan_seq is written to without exclusive access 2426 * and the update is not guaranteed to be atomic. That's not 2427 * much of an issue though, since this is just used for 2428 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2429 * expensive, to avoid any form of compiler optimizations: 2430 */ 2431 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2432 p->mm->numa_scan_offset = 0; 2433 } 2434 2435 /* 2436 * The expensive part of numa migration is done from task_work context. 2437 * Triggered from task_tick_numa(). 2438 */ 2439 void task_numa_work(struct callback_head *work) 2440 { 2441 unsigned long migrate, next_scan, now = jiffies; 2442 struct task_struct *p = current; 2443 struct mm_struct *mm = p->mm; 2444 u64 runtime = p->se.sum_exec_runtime; 2445 struct vm_area_struct *vma; 2446 unsigned long start, end; 2447 unsigned long nr_pte_updates = 0; 2448 long pages, virtpages; 2449 2450 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2451 2452 work->next = work; /* protect against double add */ 2453 /* 2454 * Who cares about NUMA placement when they're dying. 2455 * 2456 * NOTE: make sure not to dereference p->mm before this check, 2457 * exit_task_work() happens _after_ exit_mm() so we could be called 2458 * without p->mm even though we still had it when we enqueued this 2459 * work. 2460 */ 2461 if (p->flags & PF_EXITING) 2462 return; 2463 2464 if (!mm->numa_next_scan) { 2465 mm->numa_next_scan = now + 2466 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2467 } 2468 2469 /* 2470 * Enforce maximal scan/migration frequency.. 2471 */ 2472 migrate = mm->numa_next_scan; 2473 if (time_before(now, migrate)) 2474 return; 2475 2476 if (p->numa_scan_period == 0) { 2477 p->numa_scan_period_max = task_scan_max(p); 2478 p->numa_scan_period = task_scan_start(p); 2479 } 2480 2481 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2482 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2483 return; 2484 2485 /* 2486 * Delay this task enough that another task of this mm will likely win 2487 * the next time around. 2488 */ 2489 p->node_stamp += 2 * TICK_NSEC; 2490 2491 start = mm->numa_scan_offset; 2492 pages = sysctl_numa_balancing_scan_size; 2493 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2494 virtpages = pages * 8; /* Scan up to this much virtual space */ 2495 if (!pages) 2496 return; 2497 2498 2499 if (!down_read_trylock(&mm->mmap_sem)) 2500 return; 2501 vma = find_vma(mm, start); 2502 if (!vma) { 2503 reset_ptenuma_scan(p); 2504 start = 0; 2505 vma = mm->mmap; 2506 } 2507 for (; vma; vma = vma->vm_next) { 2508 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2509 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2510 continue; 2511 } 2512 2513 /* 2514 * Shared library pages mapped by multiple processes are not 2515 * migrated as it is expected they are cache replicated. Avoid 2516 * hinting faults in read-only file-backed mappings or the vdso 2517 * as migrating the pages will be of marginal benefit. 2518 */ 2519 if (!vma->vm_mm || 2520 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2521 continue; 2522 2523 /* 2524 * Skip inaccessible VMAs to avoid any confusion between 2525 * PROT_NONE and NUMA hinting ptes 2526 */ 2527 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2528 continue; 2529 2530 do { 2531 start = max(start, vma->vm_start); 2532 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2533 end = min(end, vma->vm_end); 2534 nr_pte_updates = change_prot_numa(vma, start, end); 2535 2536 /* 2537 * Try to scan sysctl_numa_balancing_size worth of 2538 * hpages that have at least one present PTE that 2539 * is not already pte-numa. If the VMA contains 2540 * areas that are unused or already full of prot_numa 2541 * PTEs, scan up to virtpages, to skip through those 2542 * areas faster. 2543 */ 2544 if (nr_pte_updates) 2545 pages -= (end - start) >> PAGE_SHIFT; 2546 virtpages -= (end - start) >> PAGE_SHIFT; 2547 2548 start = end; 2549 if (pages <= 0 || virtpages <= 0) 2550 goto out; 2551 2552 cond_resched(); 2553 } while (end != vma->vm_end); 2554 } 2555 2556 out: 2557 /* 2558 * It is possible to reach the end of the VMA list but the last few 2559 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2560 * would find the !migratable VMA on the next scan but not reset the 2561 * scanner to the start so check it now. 2562 */ 2563 if (vma) 2564 mm->numa_scan_offset = start; 2565 else 2566 reset_ptenuma_scan(p); 2567 up_read(&mm->mmap_sem); 2568 2569 /* 2570 * Make sure tasks use at least 32x as much time to run other code 2571 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2572 * Usually update_task_scan_period slows down scanning enough; on an 2573 * overloaded system we need to limit overhead on a per task basis. 2574 */ 2575 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2576 u64 diff = p->se.sum_exec_runtime - runtime; 2577 p->node_stamp += 32 * diff; 2578 } 2579 } 2580 2581 /* 2582 * Drive the periodic memory faults.. 2583 */ 2584 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2585 { 2586 struct callback_head *work = &curr->numa_work; 2587 u64 period, now; 2588 2589 /* 2590 * We don't care about NUMA placement if we don't have memory. 2591 */ 2592 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2593 return; 2594 2595 /* 2596 * Using runtime rather than walltime has the dual advantage that 2597 * we (mostly) drive the selection from busy threads and that the 2598 * task needs to have done some actual work before we bother with 2599 * NUMA placement. 2600 */ 2601 now = curr->se.sum_exec_runtime; 2602 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2603 2604 if (now > curr->node_stamp + period) { 2605 if (!curr->node_stamp) 2606 curr->numa_scan_period = task_scan_start(curr); 2607 curr->node_stamp += period; 2608 2609 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2610 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2611 task_work_add(curr, work, true); 2612 } 2613 } 2614 } 2615 2616 static void update_scan_period(struct task_struct *p, int new_cpu) 2617 { 2618 int src_nid = cpu_to_node(task_cpu(p)); 2619 int dst_nid = cpu_to_node(new_cpu); 2620 2621 if (!static_branch_likely(&sched_numa_balancing)) 2622 return; 2623 2624 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2625 return; 2626 2627 if (src_nid == dst_nid) 2628 return; 2629 2630 /* 2631 * Allow resets if faults have been trapped before one scan 2632 * has completed. This is most likely due to a new task that 2633 * is pulled cross-node due to wakeups or load balancing. 2634 */ 2635 if (p->numa_scan_seq) { 2636 /* 2637 * Avoid scan adjustments if moving to the preferred 2638 * node or if the task was not previously running on 2639 * the preferred node. 2640 */ 2641 if (dst_nid == p->numa_preferred_nid || 2642 (p->numa_preferred_nid != -1 && src_nid != p->numa_preferred_nid)) 2643 return; 2644 } 2645 2646 p->numa_scan_period = task_scan_start(p); 2647 } 2648 2649 #else 2650 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2651 { 2652 } 2653 2654 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2655 { 2656 } 2657 2658 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2659 { 2660 } 2661 2662 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2663 { 2664 } 2665 2666 #endif /* CONFIG_NUMA_BALANCING */ 2667 2668 static void 2669 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2670 { 2671 update_load_add(&cfs_rq->load, se->load.weight); 2672 if (!parent_entity(se)) 2673 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2674 #ifdef CONFIG_SMP 2675 if (entity_is_task(se)) { 2676 struct rq *rq = rq_of(cfs_rq); 2677 2678 account_numa_enqueue(rq, task_of(se)); 2679 list_add(&se->group_node, &rq->cfs_tasks); 2680 } 2681 #endif 2682 cfs_rq->nr_running++; 2683 } 2684 2685 static void 2686 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2687 { 2688 update_load_sub(&cfs_rq->load, se->load.weight); 2689 if (!parent_entity(se)) 2690 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2691 #ifdef CONFIG_SMP 2692 if (entity_is_task(se)) { 2693 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2694 list_del_init(&se->group_node); 2695 } 2696 #endif 2697 cfs_rq->nr_running--; 2698 } 2699 2700 /* 2701 * Signed add and clamp on underflow. 2702 * 2703 * Explicitly do a load-store to ensure the intermediate value never hits 2704 * memory. This allows lockless observations without ever seeing the negative 2705 * values. 2706 */ 2707 #define add_positive(_ptr, _val) do { \ 2708 typeof(_ptr) ptr = (_ptr); \ 2709 typeof(_val) val = (_val); \ 2710 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2711 \ 2712 res = var + val; \ 2713 \ 2714 if (val < 0 && res > var) \ 2715 res = 0; \ 2716 \ 2717 WRITE_ONCE(*ptr, res); \ 2718 } while (0) 2719 2720 /* 2721 * Unsigned subtract and clamp on underflow. 2722 * 2723 * Explicitly do a load-store to ensure the intermediate value never hits 2724 * memory. This allows lockless observations without ever seeing the negative 2725 * values. 2726 */ 2727 #define sub_positive(_ptr, _val) do { \ 2728 typeof(_ptr) ptr = (_ptr); \ 2729 typeof(*ptr) val = (_val); \ 2730 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2731 res = var - val; \ 2732 if (res > var) \ 2733 res = 0; \ 2734 WRITE_ONCE(*ptr, res); \ 2735 } while (0) 2736 2737 /* 2738 * Remove and clamp on negative, from a local variable. 2739 * 2740 * A variant of sub_positive(), which does not use explicit load-store 2741 * and is thus optimized for local variable updates. 2742 */ 2743 #define lsub_positive(_ptr, _val) do { \ 2744 typeof(_ptr) ptr = (_ptr); \ 2745 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 2746 } while (0) 2747 2748 #ifdef CONFIG_SMP 2749 static inline void 2750 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2751 { 2752 cfs_rq->runnable_weight += se->runnable_weight; 2753 2754 cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg; 2755 cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum; 2756 } 2757 2758 static inline void 2759 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2760 { 2761 cfs_rq->runnable_weight -= se->runnable_weight; 2762 2763 sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg); 2764 sub_positive(&cfs_rq->avg.runnable_load_sum, 2765 se_runnable(se) * se->avg.runnable_load_sum); 2766 } 2767 2768 static inline void 2769 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2770 { 2771 cfs_rq->avg.load_avg += se->avg.load_avg; 2772 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 2773 } 2774 2775 static inline void 2776 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2777 { 2778 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 2779 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 2780 } 2781 #else 2782 static inline void 2783 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2784 static inline void 2785 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2786 static inline void 2787 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2788 static inline void 2789 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 2790 #endif 2791 2792 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2793 unsigned long weight, unsigned long runnable) 2794 { 2795 if (se->on_rq) { 2796 /* commit outstanding execution time */ 2797 if (cfs_rq->curr == se) 2798 update_curr(cfs_rq); 2799 account_entity_dequeue(cfs_rq, se); 2800 dequeue_runnable_load_avg(cfs_rq, se); 2801 } 2802 dequeue_load_avg(cfs_rq, se); 2803 2804 se->runnable_weight = runnable; 2805 update_load_set(&se->load, weight); 2806 2807 #ifdef CONFIG_SMP 2808 do { 2809 u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib; 2810 2811 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 2812 se->avg.runnable_load_avg = 2813 div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider); 2814 } while (0); 2815 #endif 2816 2817 enqueue_load_avg(cfs_rq, se); 2818 if (se->on_rq) { 2819 account_entity_enqueue(cfs_rq, se); 2820 enqueue_runnable_load_avg(cfs_rq, se); 2821 } 2822 } 2823 2824 void reweight_task(struct task_struct *p, int prio) 2825 { 2826 struct sched_entity *se = &p->se; 2827 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2828 struct load_weight *load = &se->load; 2829 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 2830 2831 reweight_entity(cfs_rq, se, weight, weight); 2832 load->inv_weight = sched_prio_to_wmult[prio]; 2833 } 2834 2835 #ifdef CONFIG_FAIR_GROUP_SCHED 2836 #ifdef CONFIG_SMP 2837 /* 2838 * All this does is approximate the hierarchical proportion which includes that 2839 * global sum we all love to hate. 2840 * 2841 * That is, the weight of a group entity, is the proportional share of the 2842 * group weight based on the group runqueue weights. That is: 2843 * 2844 * tg->weight * grq->load.weight 2845 * ge->load.weight = ----------------------------- (1) 2846 * \Sum grq->load.weight 2847 * 2848 * Now, because computing that sum is prohibitively expensive to compute (been 2849 * there, done that) we approximate it with this average stuff. The average 2850 * moves slower and therefore the approximation is cheaper and more stable. 2851 * 2852 * So instead of the above, we substitute: 2853 * 2854 * grq->load.weight -> grq->avg.load_avg (2) 2855 * 2856 * which yields the following: 2857 * 2858 * tg->weight * grq->avg.load_avg 2859 * ge->load.weight = ------------------------------ (3) 2860 * tg->load_avg 2861 * 2862 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 2863 * 2864 * That is shares_avg, and it is right (given the approximation (2)). 2865 * 2866 * The problem with it is that because the average is slow -- it was designed 2867 * to be exactly that of course -- this leads to transients in boundary 2868 * conditions. In specific, the case where the group was idle and we start the 2869 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 2870 * yielding bad latency etc.. 2871 * 2872 * Now, in that special case (1) reduces to: 2873 * 2874 * tg->weight * grq->load.weight 2875 * ge->load.weight = ----------------------------- = tg->weight (4) 2876 * grp->load.weight 2877 * 2878 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 2879 * 2880 * So what we do is modify our approximation (3) to approach (4) in the (near) 2881 * UP case, like: 2882 * 2883 * ge->load.weight = 2884 * 2885 * tg->weight * grq->load.weight 2886 * --------------------------------------------------- (5) 2887 * tg->load_avg - grq->avg.load_avg + grq->load.weight 2888 * 2889 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 2890 * we need to use grq->avg.load_avg as its lower bound, which then gives: 2891 * 2892 * 2893 * tg->weight * grq->load.weight 2894 * ge->load.weight = ----------------------------- (6) 2895 * tg_load_avg' 2896 * 2897 * Where: 2898 * 2899 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 2900 * max(grq->load.weight, grq->avg.load_avg) 2901 * 2902 * And that is shares_weight and is icky. In the (near) UP case it approaches 2903 * (4) while in the normal case it approaches (3). It consistently 2904 * overestimates the ge->load.weight and therefore: 2905 * 2906 * \Sum ge->load.weight >= tg->weight 2907 * 2908 * hence icky! 2909 */ 2910 static long calc_group_shares(struct cfs_rq *cfs_rq) 2911 { 2912 long tg_weight, tg_shares, load, shares; 2913 struct task_group *tg = cfs_rq->tg; 2914 2915 tg_shares = READ_ONCE(tg->shares); 2916 2917 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 2918 2919 tg_weight = atomic_long_read(&tg->load_avg); 2920 2921 /* Ensure tg_weight >= load */ 2922 tg_weight -= cfs_rq->tg_load_avg_contrib; 2923 tg_weight += load; 2924 2925 shares = (tg_shares * load); 2926 if (tg_weight) 2927 shares /= tg_weight; 2928 2929 /* 2930 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 2931 * of a group with small tg->shares value. It is a floor value which is 2932 * assigned as a minimum load.weight to the sched_entity representing 2933 * the group on a CPU. 2934 * 2935 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 2936 * on an 8-core system with 8 tasks each runnable on one CPU shares has 2937 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 2938 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 2939 * instead of 0. 2940 */ 2941 return clamp_t(long, shares, MIN_SHARES, tg_shares); 2942 } 2943 2944 /* 2945 * This calculates the effective runnable weight for a group entity based on 2946 * the group entity weight calculated above. 2947 * 2948 * Because of the above approximation (2), our group entity weight is 2949 * an load_avg based ratio (3). This means that it includes blocked load and 2950 * does not represent the runnable weight. 2951 * 2952 * Approximate the group entity's runnable weight per ratio from the group 2953 * runqueue: 2954 * 2955 * grq->avg.runnable_load_avg 2956 * ge->runnable_weight = ge->load.weight * -------------------------- (7) 2957 * grq->avg.load_avg 2958 * 2959 * However, analogous to above, since the avg numbers are slow, this leads to 2960 * transients in the from-idle case. Instead we use: 2961 * 2962 * ge->runnable_weight = ge->load.weight * 2963 * 2964 * max(grq->avg.runnable_load_avg, grq->runnable_weight) 2965 * ----------------------------------------------------- (8) 2966 * max(grq->avg.load_avg, grq->load.weight) 2967 * 2968 * Where these max() serve both to use the 'instant' values to fix the slow 2969 * from-idle and avoid the /0 on to-idle, similar to (6). 2970 */ 2971 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares) 2972 { 2973 long runnable, load_avg; 2974 2975 load_avg = max(cfs_rq->avg.load_avg, 2976 scale_load_down(cfs_rq->load.weight)); 2977 2978 runnable = max(cfs_rq->avg.runnable_load_avg, 2979 scale_load_down(cfs_rq->runnable_weight)); 2980 2981 runnable *= shares; 2982 if (load_avg) 2983 runnable /= load_avg; 2984 2985 return clamp_t(long, runnable, MIN_SHARES, shares); 2986 } 2987 #endif /* CONFIG_SMP */ 2988 2989 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2990 2991 /* 2992 * Recomputes the group entity based on the current state of its group 2993 * runqueue. 2994 */ 2995 static void update_cfs_group(struct sched_entity *se) 2996 { 2997 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 2998 long shares, runnable; 2999 3000 if (!gcfs_rq) 3001 return; 3002 3003 if (throttled_hierarchy(gcfs_rq)) 3004 return; 3005 3006 #ifndef CONFIG_SMP 3007 runnable = shares = READ_ONCE(gcfs_rq->tg->shares); 3008 3009 if (likely(se->load.weight == shares)) 3010 return; 3011 #else 3012 shares = calc_group_shares(gcfs_rq); 3013 runnable = calc_group_runnable(gcfs_rq, shares); 3014 #endif 3015 3016 reweight_entity(cfs_rq_of(se), se, shares, runnable); 3017 } 3018 3019 #else /* CONFIG_FAIR_GROUP_SCHED */ 3020 static inline void update_cfs_group(struct sched_entity *se) 3021 { 3022 } 3023 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3024 3025 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3026 { 3027 struct rq *rq = rq_of(cfs_rq); 3028 3029 if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) { 3030 /* 3031 * There are a few boundary cases this might miss but it should 3032 * get called often enough that that should (hopefully) not be 3033 * a real problem. 3034 * 3035 * It will not get called when we go idle, because the idle 3036 * thread is a different class (!fair), nor will the utilization 3037 * number include things like RT tasks. 3038 * 3039 * As is, the util number is not freq-invariant (we'd have to 3040 * implement arch_scale_freq_capacity() for that). 3041 * 3042 * See cpu_util(). 3043 */ 3044 cpufreq_update_util(rq, flags); 3045 } 3046 } 3047 3048 #ifdef CONFIG_SMP 3049 #ifdef CONFIG_FAIR_GROUP_SCHED 3050 /** 3051 * update_tg_load_avg - update the tg's load avg 3052 * @cfs_rq: the cfs_rq whose avg changed 3053 * @force: update regardless of how small the difference 3054 * 3055 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3056 * However, because tg->load_avg is a global value there are performance 3057 * considerations. 3058 * 3059 * In order to avoid having to look at the other cfs_rq's, we use a 3060 * differential update where we store the last value we propagated. This in 3061 * turn allows skipping updates if the differential is 'small'. 3062 * 3063 * Updating tg's load_avg is necessary before update_cfs_share(). 3064 */ 3065 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 3066 { 3067 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3068 3069 /* 3070 * No need to update load_avg for root_task_group as it is not used. 3071 */ 3072 if (cfs_rq->tg == &root_task_group) 3073 return; 3074 3075 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3076 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3077 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3078 } 3079 } 3080 3081 /* 3082 * Called within set_task_rq() right before setting a task's CPU. The 3083 * caller only guarantees p->pi_lock is held; no other assumptions, 3084 * including the state of rq->lock, should be made. 3085 */ 3086 void set_task_rq_fair(struct sched_entity *se, 3087 struct cfs_rq *prev, struct cfs_rq *next) 3088 { 3089 u64 p_last_update_time; 3090 u64 n_last_update_time; 3091 3092 if (!sched_feat(ATTACH_AGE_LOAD)) 3093 return; 3094 3095 /* 3096 * We are supposed to update the task to "current" time, then its up to 3097 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3098 * getting what current time is, so simply throw away the out-of-date 3099 * time. This will result in the wakee task is less decayed, but giving 3100 * the wakee more load sounds not bad. 3101 */ 3102 if (!(se->avg.last_update_time && prev)) 3103 return; 3104 3105 #ifndef CONFIG_64BIT 3106 { 3107 u64 p_last_update_time_copy; 3108 u64 n_last_update_time_copy; 3109 3110 do { 3111 p_last_update_time_copy = prev->load_last_update_time_copy; 3112 n_last_update_time_copy = next->load_last_update_time_copy; 3113 3114 smp_rmb(); 3115 3116 p_last_update_time = prev->avg.last_update_time; 3117 n_last_update_time = next->avg.last_update_time; 3118 3119 } while (p_last_update_time != p_last_update_time_copy || 3120 n_last_update_time != n_last_update_time_copy); 3121 } 3122 #else 3123 p_last_update_time = prev->avg.last_update_time; 3124 n_last_update_time = next->avg.last_update_time; 3125 #endif 3126 __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se); 3127 se->avg.last_update_time = n_last_update_time; 3128 } 3129 3130 3131 /* 3132 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3133 * propagate its contribution. The key to this propagation is the invariant 3134 * that for each group: 3135 * 3136 * ge->avg == grq->avg (1) 3137 * 3138 * _IFF_ we look at the pure running and runnable sums. Because they 3139 * represent the very same entity, just at different points in the hierarchy. 3140 * 3141 * Per the above update_tg_cfs_util() is trivial and simply copies the running 3142 * sum over (but still wrong, because the group entity and group rq do not have 3143 * their PELT windows aligned). 3144 * 3145 * However, update_tg_cfs_runnable() is more complex. So we have: 3146 * 3147 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3148 * 3149 * And since, like util, the runnable part should be directly transferable, 3150 * the following would _appear_ to be the straight forward approach: 3151 * 3152 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3153 * 3154 * And per (1) we have: 3155 * 3156 * ge->avg.runnable_avg == grq->avg.runnable_avg 3157 * 3158 * Which gives: 3159 * 3160 * ge->load.weight * grq->avg.load_avg 3161 * ge->avg.load_avg = ----------------------------------- (4) 3162 * grq->load.weight 3163 * 3164 * Except that is wrong! 3165 * 3166 * Because while for entities historical weight is not important and we 3167 * really only care about our future and therefore can consider a pure 3168 * runnable sum, runqueues can NOT do this. 3169 * 3170 * We specifically want runqueues to have a load_avg that includes 3171 * historical weights. Those represent the blocked load, the load we expect 3172 * to (shortly) return to us. This only works by keeping the weights as 3173 * integral part of the sum. We therefore cannot decompose as per (3). 3174 * 3175 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3176 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3177 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3178 * runnable section of these tasks overlap (or not). If they were to perfectly 3179 * align the rq as a whole would be runnable 2/3 of the time. If however we 3180 * always have at least 1 runnable task, the rq as a whole is always runnable. 3181 * 3182 * So we'll have to approximate.. :/ 3183 * 3184 * Given the constraint: 3185 * 3186 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3187 * 3188 * We can construct a rule that adds runnable to a rq by assuming minimal 3189 * overlap. 3190 * 3191 * On removal, we'll assume each task is equally runnable; which yields: 3192 * 3193 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3194 * 3195 * XXX: only do this for the part of runnable > running ? 3196 * 3197 */ 3198 3199 static inline void 3200 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3201 { 3202 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3203 3204 /* Nothing to update */ 3205 if (!delta) 3206 return; 3207 3208 /* 3209 * The relation between sum and avg is: 3210 * 3211 * LOAD_AVG_MAX - 1024 + sa->period_contrib 3212 * 3213 * however, the PELT windows are not aligned between grq and gse. 3214 */ 3215 3216 /* Set new sched_entity's utilization */ 3217 se->avg.util_avg = gcfs_rq->avg.util_avg; 3218 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3219 3220 /* Update parent cfs_rq utilization */ 3221 add_positive(&cfs_rq->avg.util_avg, delta); 3222 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3223 } 3224 3225 static inline void 3226 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3227 { 3228 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3229 unsigned long runnable_load_avg, load_avg; 3230 u64 runnable_load_sum, load_sum = 0; 3231 s64 delta_sum; 3232 3233 if (!runnable_sum) 3234 return; 3235 3236 gcfs_rq->prop_runnable_sum = 0; 3237 3238 if (runnable_sum >= 0) { 3239 /* 3240 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3241 * the CPU is saturated running == runnable. 3242 */ 3243 runnable_sum += se->avg.load_sum; 3244 runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX); 3245 } else { 3246 /* 3247 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3248 * assuming all tasks are equally runnable. 3249 */ 3250 if (scale_load_down(gcfs_rq->load.weight)) { 3251 load_sum = div_s64(gcfs_rq->avg.load_sum, 3252 scale_load_down(gcfs_rq->load.weight)); 3253 } 3254 3255 /* But make sure to not inflate se's runnable */ 3256 runnable_sum = min(se->avg.load_sum, load_sum); 3257 } 3258 3259 /* 3260 * runnable_sum can't be lower than running_sum 3261 * As running sum is scale with CPU capacity wehreas the runnable sum 3262 * is not we rescale running_sum 1st 3263 */ 3264 running_sum = se->avg.util_sum / 3265 arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq))); 3266 runnable_sum = max(runnable_sum, running_sum); 3267 3268 load_sum = (s64)se_weight(se) * runnable_sum; 3269 load_avg = div_s64(load_sum, LOAD_AVG_MAX); 3270 3271 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3272 delta_avg = load_avg - se->avg.load_avg; 3273 3274 se->avg.load_sum = runnable_sum; 3275 se->avg.load_avg = load_avg; 3276 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3277 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3278 3279 runnable_load_sum = (s64)se_runnable(se) * runnable_sum; 3280 runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX); 3281 delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum; 3282 delta_avg = runnable_load_avg - se->avg.runnable_load_avg; 3283 3284 se->avg.runnable_load_sum = runnable_sum; 3285 se->avg.runnable_load_avg = runnable_load_avg; 3286 3287 if (se->on_rq) { 3288 add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg); 3289 add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum); 3290 } 3291 } 3292 3293 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3294 { 3295 cfs_rq->propagate = 1; 3296 cfs_rq->prop_runnable_sum += runnable_sum; 3297 } 3298 3299 /* Update task and its cfs_rq load average */ 3300 static inline int propagate_entity_load_avg(struct sched_entity *se) 3301 { 3302 struct cfs_rq *cfs_rq, *gcfs_rq; 3303 3304 if (entity_is_task(se)) 3305 return 0; 3306 3307 gcfs_rq = group_cfs_rq(se); 3308 if (!gcfs_rq->propagate) 3309 return 0; 3310 3311 gcfs_rq->propagate = 0; 3312 3313 cfs_rq = cfs_rq_of(se); 3314 3315 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3316 3317 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3318 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3319 3320 return 1; 3321 } 3322 3323 /* 3324 * Check if we need to update the load and the utilization of a blocked 3325 * group_entity: 3326 */ 3327 static inline bool skip_blocked_update(struct sched_entity *se) 3328 { 3329 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3330 3331 /* 3332 * If sched_entity still have not zero load or utilization, we have to 3333 * decay it: 3334 */ 3335 if (se->avg.load_avg || se->avg.util_avg) 3336 return false; 3337 3338 /* 3339 * If there is a pending propagation, we have to update the load and 3340 * the utilization of the sched_entity: 3341 */ 3342 if (gcfs_rq->propagate) 3343 return false; 3344 3345 /* 3346 * Otherwise, the load and the utilization of the sched_entity is 3347 * already zero and there is no pending propagation, so it will be a 3348 * waste of time to try to decay it: 3349 */ 3350 return true; 3351 } 3352 3353 #else /* CONFIG_FAIR_GROUP_SCHED */ 3354 3355 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3356 3357 static inline int propagate_entity_load_avg(struct sched_entity *se) 3358 { 3359 return 0; 3360 } 3361 3362 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3363 3364 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3365 3366 /** 3367 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3368 * @now: current time, as per cfs_rq_clock_task() 3369 * @cfs_rq: cfs_rq to update 3370 * 3371 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3372 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3373 * post_init_entity_util_avg(). 3374 * 3375 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3376 * 3377 * Returns true if the load decayed or we removed load. 3378 * 3379 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3380 * call update_tg_load_avg() when this function returns true. 3381 */ 3382 static inline int 3383 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3384 { 3385 unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0; 3386 struct sched_avg *sa = &cfs_rq->avg; 3387 int decayed = 0; 3388 3389 if (cfs_rq->removed.nr) { 3390 unsigned long r; 3391 u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib; 3392 3393 raw_spin_lock(&cfs_rq->removed.lock); 3394 swap(cfs_rq->removed.util_avg, removed_util); 3395 swap(cfs_rq->removed.load_avg, removed_load); 3396 swap(cfs_rq->removed.runnable_sum, removed_runnable_sum); 3397 cfs_rq->removed.nr = 0; 3398 raw_spin_unlock(&cfs_rq->removed.lock); 3399 3400 r = removed_load; 3401 sub_positive(&sa->load_avg, r); 3402 sub_positive(&sa->load_sum, r * divider); 3403 3404 r = removed_util; 3405 sub_positive(&sa->util_avg, r); 3406 sub_positive(&sa->util_sum, r * divider); 3407 3408 add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum); 3409 3410 decayed = 1; 3411 } 3412 3413 decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq); 3414 3415 #ifndef CONFIG_64BIT 3416 smp_wmb(); 3417 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3418 #endif 3419 3420 if (decayed) 3421 cfs_rq_util_change(cfs_rq, 0); 3422 3423 return decayed; 3424 } 3425 3426 /** 3427 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3428 * @cfs_rq: cfs_rq to attach to 3429 * @se: sched_entity to attach 3430 * @flags: migration hints 3431 * 3432 * Must call update_cfs_rq_load_avg() before this, since we rely on 3433 * cfs_rq->avg.last_update_time being current. 3434 */ 3435 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3436 { 3437 u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib; 3438 3439 /* 3440 * When we attach the @se to the @cfs_rq, we must align the decay 3441 * window because without that, really weird and wonderful things can 3442 * happen. 3443 * 3444 * XXX illustrate 3445 */ 3446 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3447 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3448 3449 /* 3450 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3451 * period_contrib. This isn't strictly correct, but since we're 3452 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3453 * _sum a little. 3454 */ 3455 se->avg.util_sum = se->avg.util_avg * divider; 3456 3457 se->avg.load_sum = divider; 3458 if (se_weight(se)) { 3459 se->avg.load_sum = 3460 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3461 } 3462 3463 se->avg.runnable_load_sum = se->avg.load_sum; 3464 3465 enqueue_load_avg(cfs_rq, se); 3466 cfs_rq->avg.util_avg += se->avg.util_avg; 3467 cfs_rq->avg.util_sum += se->avg.util_sum; 3468 3469 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3470 3471 cfs_rq_util_change(cfs_rq, flags); 3472 } 3473 3474 /** 3475 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3476 * @cfs_rq: cfs_rq to detach from 3477 * @se: sched_entity to detach 3478 * 3479 * Must call update_cfs_rq_load_avg() before this, since we rely on 3480 * cfs_rq->avg.last_update_time being current. 3481 */ 3482 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3483 { 3484 dequeue_load_avg(cfs_rq, se); 3485 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3486 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3487 3488 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3489 3490 cfs_rq_util_change(cfs_rq, 0); 3491 } 3492 3493 /* 3494 * Optional action to be done while updating the load average 3495 */ 3496 #define UPDATE_TG 0x1 3497 #define SKIP_AGE_LOAD 0x2 3498 #define DO_ATTACH 0x4 3499 3500 /* Update task and its cfs_rq load average */ 3501 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3502 { 3503 u64 now = cfs_rq_clock_task(cfs_rq); 3504 struct rq *rq = rq_of(cfs_rq); 3505 int cpu = cpu_of(rq); 3506 int decayed; 3507 3508 /* 3509 * Track task load average for carrying it to new CPU after migrated, and 3510 * track group sched_entity load average for task_h_load calc in migration 3511 */ 3512 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3513 __update_load_avg_se(now, cpu, cfs_rq, se); 3514 3515 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3516 decayed |= propagate_entity_load_avg(se); 3517 3518 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3519 3520 /* 3521 * DO_ATTACH means we're here from enqueue_entity(). 3522 * !last_update_time means we've passed through 3523 * migrate_task_rq_fair() indicating we migrated. 3524 * 3525 * IOW we're enqueueing a task on a new CPU. 3526 */ 3527 attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION); 3528 update_tg_load_avg(cfs_rq, 0); 3529 3530 } else if (decayed && (flags & UPDATE_TG)) 3531 update_tg_load_avg(cfs_rq, 0); 3532 } 3533 3534 #ifndef CONFIG_64BIT 3535 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3536 { 3537 u64 last_update_time_copy; 3538 u64 last_update_time; 3539 3540 do { 3541 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3542 smp_rmb(); 3543 last_update_time = cfs_rq->avg.last_update_time; 3544 } while (last_update_time != last_update_time_copy); 3545 3546 return last_update_time; 3547 } 3548 #else 3549 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3550 { 3551 return cfs_rq->avg.last_update_time; 3552 } 3553 #endif 3554 3555 /* 3556 * Synchronize entity load avg of dequeued entity without locking 3557 * the previous rq. 3558 */ 3559 void sync_entity_load_avg(struct sched_entity *se) 3560 { 3561 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3562 u64 last_update_time; 3563 3564 last_update_time = cfs_rq_last_update_time(cfs_rq); 3565 __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se); 3566 } 3567 3568 /* 3569 * Task first catches up with cfs_rq, and then subtract 3570 * itself from the cfs_rq (task must be off the queue now). 3571 */ 3572 void remove_entity_load_avg(struct sched_entity *se) 3573 { 3574 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3575 unsigned long flags; 3576 3577 /* 3578 * tasks cannot exit without having gone through wake_up_new_task() -> 3579 * post_init_entity_util_avg() which will have added things to the 3580 * cfs_rq, so we can remove unconditionally. 3581 * 3582 * Similarly for groups, they will have passed through 3583 * post_init_entity_util_avg() before unregister_sched_fair_group() 3584 * calls this. 3585 */ 3586 3587 sync_entity_load_avg(se); 3588 3589 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3590 ++cfs_rq->removed.nr; 3591 cfs_rq->removed.util_avg += se->avg.util_avg; 3592 cfs_rq->removed.load_avg += se->avg.load_avg; 3593 cfs_rq->removed.runnable_sum += se->avg.load_sum; /* == runnable_sum */ 3594 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3595 } 3596 3597 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3598 { 3599 return cfs_rq->avg.runnable_load_avg; 3600 } 3601 3602 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3603 { 3604 return cfs_rq->avg.load_avg; 3605 } 3606 3607 static int idle_balance(struct rq *this_rq, struct rq_flags *rf); 3608 3609 static inline unsigned long task_util(struct task_struct *p) 3610 { 3611 return READ_ONCE(p->se.avg.util_avg); 3612 } 3613 3614 static inline unsigned long _task_util_est(struct task_struct *p) 3615 { 3616 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3617 3618 return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED); 3619 } 3620 3621 static inline unsigned long task_util_est(struct task_struct *p) 3622 { 3623 return max(task_util(p), _task_util_est(p)); 3624 } 3625 3626 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 3627 struct task_struct *p) 3628 { 3629 unsigned int enqueued; 3630 3631 if (!sched_feat(UTIL_EST)) 3632 return; 3633 3634 /* Update root cfs_rq's estimated utilization */ 3635 enqueued = cfs_rq->avg.util_est.enqueued; 3636 enqueued += _task_util_est(p); 3637 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 3638 } 3639 3640 /* 3641 * Check if a (signed) value is within a specified (unsigned) margin, 3642 * based on the observation that: 3643 * 3644 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 3645 * 3646 * NOTE: this only works when value + maring < INT_MAX. 3647 */ 3648 static inline bool within_margin(int value, int margin) 3649 { 3650 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 3651 } 3652 3653 static void 3654 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep) 3655 { 3656 long last_ewma_diff; 3657 struct util_est ue; 3658 3659 if (!sched_feat(UTIL_EST)) 3660 return; 3661 3662 /* Update root cfs_rq's estimated utilization */ 3663 ue.enqueued = cfs_rq->avg.util_est.enqueued; 3664 ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p)); 3665 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued); 3666 3667 /* 3668 * Skip update of task's estimated utilization when the task has not 3669 * yet completed an activation, e.g. being migrated. 3670 */ 3671 if (!task_sleep) 3672 return; 3673 3674 /* 3675 * If the PELT values haven't changed since enqueue time, 3676 * skip the util_est update. 3677 */ 3678 ue = p->se.avg.util_est; 3679 if (ue.enqueued & UTIL_AVG_UNCHANGED) 3680 return; 3681 3682 /* 3683 * Skip update of task's estimated utilization when its EWMA is 3684 * already ~1% close to its last activation value. 3685 */ 3686 ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED); 3687 last_ewma_diff = ue.enqueued - ue.ewma; 3688 if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100))) 3689 return; 3690 3691 /* 3692 * Update Task's estimated utilization 3693 * 3694 * When *p completes an activation we can consolidate another sample 3695 * of the task size. This is done by storing the current PELT value 3696 * as ue.enqueued and by using this value to update the Exponential 3697 * Weighted Moving Average (EWMA): 3698 * 3699 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 3700 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 3701 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 3702 * = w * ( last_ewma_diff ) + ewma(t-1) 3703 * = w * (last_ewma_diff + ewma(t-1) / w) 3704 * 3705 * Where 'w' is the weight of new samples, which is configured to be 3706 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 3707 */ 3708 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 3709 ue.ewma += last_ewma_diff; 3710 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 3711 WRITE_ONCE(p->se.avg.util_est, ue); 3712 } 3713 3714 static inline int task_fits_capacity(struct task_struct *p, long capacity) 3715 { 3716 return capacity * 1024 > task_util_est(p) * capacity_margin; 3717 } 3718 3719 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 3720 { 3721 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 3722 return; 3723 3724 if (!p) { 3725 rq->misfit_task_load = 0; 3726 return; 3727 } 3728 3729 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 3730 rq->misfit_task_load = 0; 3731 return; 3732 } 3733 3734 rq->misfit_task_load = task_h_load(p); 3735 } 3736 3737 #else /* CONFIG_SMP */ 3738 3739 #define UPDATE_TG 0x0 3740 #define SKIP_AGE_LOAD 0x0 3741 #define DO_ATTACH 0x0 3742 3743 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 3744 { 3745 cfs_rq_util_change(cfs_rq, 0); 3746 } 3747 3748 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3749 3750 static inline void 3751 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {} 3752 static inline void 3753 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3754 3755 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 3756 { 3757 return 0; 3758 } 3759 3760 static inline void 3761 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 3762 3763 static inline void 3764 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, 3765 bool task_sleep) {} 3766 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 3767 3768 #endif /* CONFIG_SMP */ 3769 3770 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3771 { 3772 #ifdef CONFIG_SCHED_DEBUG 3773 s64 d = se->vruntime - cfs_rq->min_vruntime; 3774 3775 if (d < 0) 3776 d = -d; 3777 3778 if (d > 3*sysctl_sched_latency) 3779 schedstat_inc(cfs_rq->nr_spread_over); 3780 #endif 3781 } 3782 3783 static void 3784 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3785 { 3786 u64 vruntime = cfs_rq->min_vruntime; 3787 3788 /* 3789 * The 'current' period is already promised to the current tasks, 3790 * however the extra weight of the new task will slow them down a 3791 * little, place the new task so that it fits in the slot that 3792 * stays open at the end. 3793 */ 3794 if (initial && sched_feat(START_DEBIT)) 3795 vruntime += sched_vslice(cfs_rq, se); 3796 3797 /* sleeps up to a single latency don't count. */ 3798 if (!initial) { 3799 unsigned long thresh = sysctl_sched_latency; 3800 3801 /* 3802 * Halve their sleep time's effect, to allow 3803 * for a gentler effect of sleepers: 3804 */ 3805 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3806 thresh >>= 1; 3807 3808 vruntime -= thresh; 3809 } 3810 3811 /* ensure we never gain time by being placed backwards. */ 3812 se->vruntime = max_vruntime(se->vruntime, vruntime); 3813 } 3814 3815 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3816 3817 static inline void check_schedstat_required(void) 3818 { 3819 #ifdef CONFIG_SCHEDSTATS 3820 if (schedstat_enabled()) 3821 return; 3822 3823 /* Force schedstat enabled if a dependent tracepoint is active */ 3824 if (trace_sched_stat_wait_enabled() || 3825 trace_sched_stat_sleep_enabled() || 3826 trace_sched_stat_iowait_enabled() || 3827 trace_sched_stat_blocked_enabled() || 3828 trace_sched_stat_runtime_enabled()) { 3829 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3830 "stat_blocked and stat_runtime require the " 3831 "kernel parameter schedstats=enable or " 3832 "kernel.sched_schedstats=1\n"); 3833 } 3834 #endif 3835 } 3836 3837 3838 /* 3839 * MIGRATION 3840 * 3841 * dequeue 3842 * update_curr() 3843 * update_min_vruntime() 3844 * vruntime -= min_vruntime 3845 * 3846 * enqueue 3847 * update_curr() 3848 * update_min_vruntime() 3849 * vruntime += min_vruntime 3850 * 3851 * this way the vruntime transition between RQs is done when both 3852 * min_vruntime are up-to-date. 3853 * 3854 * WAKEUP (remote) 3855 * 3856 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3857 * vruntime -= min_vruntime 3858 * 3859 * enqueue 3860 * update_curr() 3861 * update_min_vruntime() 3862 * vruntime += min_vruntime 3863 * 3864 * this way we don't have the most up-to-date min_vruntime on the originating 3865 * CPU and an up-to-date min_vruntime on the destination CPU. 3866 */ 3867 3868 static void 3869 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3870 { 3871 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3872 bool curr = cfs_rq->curr == se; 3873 3874 /* 3875 * If we're the current task, we must renormalise before calling 3876 * update_curr(). 3877 */ 3878 if (renorm && curr) 3879 se->vruntime += cfs_rq->min_vruntime; 3880 3881 update_curr(cfs_rq); 3882 3883 /* 3884 * Otherwise, renormalise after, such that we're placed at the current 3885 * moment in time, instead of some random moment in the past. Being 3886 * placed in the past could significantly boost this task to the 3887 * fairness detriment of existing tasks. 3888 */ 3889 if (renorm && !curr) 3890 se->vruntime += cfs_rq->min_vruntime; 3891 3892 /* 3893 * When enqueuing a sched_entity, we must: 3894 * - Update loads to have both entity and cfs_rq synced with now. 3895 * - Add its load to cfs_rq->runnable_avg 3896 * - For group_entity, update its weight to reflect the new share of 3897 * its group cfs_rq 3898 * - Add its new weight to cfs_rq->load.weight 3899 */ 3900 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 3901 update_cfs_group(se); 3902 enqueue_runnable_load_avg(cfs_rq, se); 3903 account_entity_enqueue(cfs_rq, se); 3904 3905 if (flags & ENQUEUE_WAKEUP) 3906 place_entity(cfs_rq, se, 0); 3907 3908 check_schedstat_required(); 3909 update_stats_enqueue(cfs_rq, se, flags); 3910 check_spread(cfs_rq, se); 3911 if (!curr) 3912 __enqueue_entity(cfs_rq, se); 3913 se->on_rq = 1; 3914 3915 if (cfs_rq->nr_running == 1) { 3916 list_add_leaf_cfs_rq(cfs_rq); 3917 check_enqueue_throttle(cfs_rq); 3918 } 3919 } 3920 3921 static void __clear_buddies_last(struct sched_entity *se) 3922 { 3923 for_each_sched_entity(se) { 3924 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3925 if (cfs_rq->last != se) 3926 break; 3927 3928 cfs_rq->last = NULL; 3929 } 3930 } 3931 3932 static void __clear_buddies_next(struct sched_entity *se) 3933 { 3934 for_each_sched_entity(se) { 3935 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3936 if (cfs_rq->next != se) 3937 break; 3938 3939 cfs_rq->next = NULL; 3940 } 3941 } 3942 3943 static void __clear_buddies_skip(struct sched_entity *se) 3944 { 3945 for_each_sched_entity(se) { 3946 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3947 if (cfs_rq->skip != se) 3948 break; 3949 3950 cfs_rq->skip = NULL; 3951 } 3952 } 3953 3954 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3955 { 3956 if (cfs_rq->last == se) 3957 __clear_buddies_last(se); 3958 3959 if (cfs_rq->next == se) 3960 __clear_buddies_next(se); 3961 3962 if (cfs_rq->skip == se) 3963 __clear_buddies_skip(se); 3964 } 3965 3966 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3967 3968 static void 3969 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3970 { 3971 /* 3972 * Update run-time statistics of the 'current'. 3973 */ 3974 update_curr(cfs_rq); 3975 3976 /* 3977 * When dequeuing a sched_entity, we must: 3978 * - Update loads to have both entity and cfs_rq synced with now. 3979 * - Subtract its load from the cfs_rq->runnable_avg. 3980 * - Subtract its previous weight from cfs_rq->load.weight. 3981 * - For group entity, update its weight to reflect the new share 3982 * of its group cfs_rq. 3983 */ 3984 update_load_avg(cfs_rq, se, UPDATE_TG); 3985 dequeue_runnable_load_avg(cfs_rq, se); 3986 3987 update_stats_dequeue(cfs_rq, se, flags); 3988 3989 clear_buddies(cfs_rq, se); 3990 3991 if (se != cfs_rq->curr) 3992 __dequeue_entity(cfs_rq, se); 3993 se->on_rq = 0; 3994 account_entity_dequeue(cfs_rq, se); 3995 3996 /* 3997 * Normalize after update_curr(); which will also have moved 3998 * min_vruntime if @se is the one holding it back. But before doing 3999 * update_min_vruntime() again, which will discount @se's position and 4000 * can move min_vruntime forward still more. 4001 */ 4002 if (!(flags & DEQUEUE_SLEEP)) 4003 se->vruntime -= cfs_rq->min_vruntime; 4004 4005 /* return excess runtime on last dequeue */ 4006 return_cfs_rq_runtime(cfs_rq); 4007 4008 update_cfs_group(se); 4009 4010 /* 4011 * Now advance min_vruntime if @se was the entity holding it back, 4012 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4013 * put back on, and if we advance min_vruntime, we'll be placed back 4014 * further than we started -- ie. we'll be penalized. 4015 */ 4016 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4017 update_min_vruntime(cfs_rq); 4018 } 4019 4020 /* 4021 * Preempt the current task with a newly woken task if needed: 4022 */ 4023 static void 4024 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4025 { 4026 unsigned long ideal_runtime, delta_exec; 4027 struct sched_entity *se; 4028 s64 delta; 4029 4030 ideal_runtime = sched_slice(cfs_rq, curr); 4031 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4032 if (delta_exec > ideal_runtime) { 4033 resched_curr(rq_of(cfs_rq)); 4034 /* 4035 * The current task ran long enough, ensure it doesn't get 4036 * re-elected due to buddy favours. 4037 */ 4038 clear_buddies(cfs_rq, curr); 4039 return; 4040 } 4041 4042 /* 4043 * Ensure that a task that missed wakeup preemption by a 4044 * narrow margin doesn't have to wait for a full slice. 4045 * This also mitigates buddy induced latencies under load. 4046 */ 4047 if (delta_exec < sysctl_sched_min_granularity) 4048 return; 4049 4050 se = __pick_first_entity(cfs_rq); 4051 delta = curr->vruntime - se->vruntime; 4052 4053 if (delta < 0) 4054 return; 4055 4056 if (delta > ideal_runtime) 4057 resched_curr(rq_of(cfs_rq)); 4058 } 4059 4060 static void 4061 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4062 { 4063 /* 'current' is not kept within the tree. */ 4064 if (se->on_rq) { 4065 /* 4066 * Any task has to be enqueued before it get to execute on 4067 * a CPU. So account for the time it spent waiting on the 4068 * runqueue. 4069 */ 4070 update_stats_wait_end(cfs_rq, se); 4071 __dequeue_entity(cfs_rq, se); 4072 update_load_avg(cfs_rq, se, UPDATE_TG); 4073 } 4074 4075 update_stats_curr_start(cfs_rq, se); 4076 cfs_rq->curr = se; 4077 4078 /* 4079 * Track our maximum slice length, if the CPU's load is at 4080 * least twice that of our own weight (i.e. dont track it 4081 * when there are only lesser-weight tasks around): 4082 */ 4083 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 4084 schedstat_set(se->statistics.slice_max, 4085 max((u64)schedstat_val(se->statistics.slice_max), 4086 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4087 } 4088 4089 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4090 } 4091 4092 static int 4093 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4094 4095 /* 4096 * Pick the next process, keeping these things in mind, in this order: 4097 * 1) keep things fair between processes/task groups 4098 * 2) pick the "next" process, since someone really wants that to run 4099 * 3) pick the "last" process, for cache locality 4100 * 4) do not run the "skip" process, if something else is available 4101 */ 4102 static struct sched_entity * 4103 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4104 { 4105 struct sched_entity *left = __pick_first_entity(cfs_rq); 4106 struct sched_entity *se; 4107 4108 /* 4109 * If curr is set we have to see if its left of the leftmost entity 4110 * still in the tree, provided there was anything in the tree at all. 4111 */ 4112 if (!left || (curr && entity_before(curr, left))) 4113 left = curr; 4114 4115 se = left; /* ideally we run the leftmost entity */ 4116 4117 /* 4118 * Avoid running the skip buddy, if running something else can 4119 * be done without getting too unfair. 4120 */ 4121 if (cfs_rq->skip == se) { 4122 struct sched_entity *second; 4123 4124 if (se == curr) { 4125 second = __pick_first_entity(cfs_rq); 4126 } else { 4127 second = __pick_next_entity(se); 4128 if (!second || (curr && entity_before(curr, second))) 4129 second = curr; 4130 } 4131 4132 if (second && wakeup_preempt_entity(second, left) < 1) 4133 se = second; 4134 } 4135 4136 /* 4137 * Prefer last buddy, try to return the CPU to a preempted task. 4138 */ 4139 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 4140 se = cfs_rq->last; 4141 4142 /* 4143 * Someone really wants this to run. If it's not unfair, run it. 4144 */ 4145 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 4146 se = cfs_rq->next; 4147 4148 clear_buddies(cfs_rq, se); 4149 4150 return se; 4151 } 4152 4153 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4154 4155 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4156 { 4157 /* 4158 * If still on the runqueue then deactivate_task() 4159 * was not called and update_curr() has to be done: 4160 */ 4161 if (prev->on_rq) 4162 update_curr(cfs_rq); 4163 4164 /* throttle cfs_rqs exceeding runtime */ 4165 check_cfs_rq_runtime(cfs_rq); 4166 4167 check_spread(cfs_rq, prev); 4168 4169 if (prev->on_rq) { 4170 update_stats_wait_start(cfs_rq, prev); 4171 /* Put 'current' back into the tree. */ 4172 __enqueue_entity(cfs_rq, prev); 4173 /* in !on_rq case, update occurred at dequeue */ 4174 update_load_avg(cfs_rq, prev, 0); 4175 } 4176 cfs_rq->curr = NULL; 4177 } 4178 4179 static void 4180 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4181 { 4182 /* 4183 * Update run-time statistics of the 'current'. 4184 */ 4185 update_curr(cfs_rq); 4186 4187 /* 4188 * Ensure that runnable average is periodically updated. 4189 */ 4190 update_load_avg(cfs_rq, curr, UPDATE_TG); 4191 update_cfs_group(curr); 4192 4193 #ifdef CONFIG_SCHED_HRTICK 4194 /* 4195 * queued ticks are scheduled to match the slice, so don't bother 4196 * validating it and just reschedule. 4197 */ 4198 if (queued) { 4199 resched_curr(rq_of(cfs_rq)); 4200 return; 4201 } 4202 /* 4203 * don't let the period tick interfere with the hrtick preemption 4204 */ 4205 if (!sched_feat(DOUBLE_TICK) && 4206 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4207 return; 4208 #endif 4209 4210 if (cfs_rq->nr_running > 1) 4211 check_preempt_tick(cfs_rq, curr); 4212 } 4213 4214 4215 /************************************************** 4216 * CFS bandwidth control machinery 4217 */ 4218 4219 #ifdef CONFIG_CFS_BANDWIDTH 4220 4221 #ifdef HAVE_JUMP_LABEL 4222 static struct static_key __cfs_bandwidth_used; 4223 4224 static inline bool cfs_bandwidth_used(void) 4225 { 4226 return static_key_false(&__cfs_bandwidth_used); 4227 } 4228 4229 void cfs_bandwidth_usage_inc(void) 4230 { 4231 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4232 } 4233 4234 void cfs_bandwidth_usage_dec(void) 4235 { 4236 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4237 } 4238 #else /* HAVE_JUMP_LABEL */ 4239 static bool cfs_bandwidth_used(void) 4240 { 4241 return true; 4242 } 4243 4244 void cfs_bandwidth_usage_inc(void) {} 4245 void cfs_bandwidth_usage_dec(void) {} 4246 #endif /* HAVE_JUMP_LABEL */ 4247 4248 /* 4249 * default period for cfs group bandwidth. 4250 * default: 0.1s, units: nanoseconds 4251 */ 4252 static inline u64 default_cfs_period(void) 4253 { 4254 return 100000000ULL; 4255 } 4256 4257 static inline u64 sched_cfs_bandwidth_slice(void) 4258 { 4259 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4260 } 4261 4262 /* 4263 * Replenish runtime according to assigned quota and update expiration time. 4264 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 4265 * additional synchronization around rq->lock. 4266 * 4267 * requires cfs_b->lock 4268 */ 4269 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4270 { 4271 u64 now; 4272 4273 if (cfs_b->quota == RUNTIME_INF) 4274 return; 4275 4276 now = sched_clock_cpu(smp_processor_id()); 4277 cfs_b->runtime = cfs_b->quota; 4278 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 4279 cfs_b->expires_seq++; 4280 } 4281 4282 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4283 { 4284 return &tg->cfs_bandwidth; 4285 } 4286 4287 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 4288 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4289 { 4290 if (unlikely(cfs_rq->throttle_count)) 4291 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 4292 4293 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 4294 } 4295 4296 /* returns 0 on failure to allocate runtime */ 4297 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4298 { 4299 struct task_group *tg = cfs_rq->tg; 4300 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4301 u64 amount = 0, min_amount, expires; 4302 int expires_seq; 4303 4304 /* note: this is a positive sum as runtime_remaining <= 0 */ 4305 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4306 4307 raw_spin_lock(&cfs_b->lock); 4308 if (cfs_b->quota == RUNTIME_INF) 4309 amount = min_amount; 4310 else { 4311 start_cfs_bandwidth(cfs_b); 4312 4313 if (cfs_b->runtime > 0) { 4314 amount = min(cfs_b->runtime, min_amount); 4315 cfs_b->runtime -= amount; 4316 cfs_b->idle = 0; 4317 } 4318 } 4319 expires_seq = cfs_b->expires_seq; 4320 expires = cfs_b->runtime_expires; 4321 raw_spin_unlock(&cfs_b->lock); 4322 4323 cfs_rq->runtime_remaining += amount; 4324 /* 4325 * we may have advanced our local expiration to account for allowed 4326 * spread between our sched_clock and the one on which runtime was 4327 * issued. 4328 */ 4329 if (cfs_rq->expires_seq != expires_seq) { 4330 cfs_rq->expires_seq = expires_seq; 4331 cfs_rq->runtime_expires = expires; 4332 } 4333 4334 return cfs_rq->runtime_remaining > 0; 4335 } 4336 4337 /* 4338 * Note: This depends on the synchronization provided by sched_clock and the 4339 * fact that rq->clock snapshots this value. 4340 */ 4341 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4342 { 4343 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4344 4345 /* if the deadline is ahead of our clock, nothing to do */ 4346 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 4347 return; 4348 4349 if (cfs_rq->runtime_remaining < 0) 4350 return; 4351 4352 /* 4353 * If the local deadline has passed we have to consider the 4354 * possibility that our sched_clock is 'fast' and the global deadline 4355 * has not truly expired. 4356 * 4357 * Fortunately we can check determine whether this the case by checking 4358 * whether the global deadline(cfs_b->expires_seq) has advanced. 4359 */ 4360 if (cfs_rq->expires_seq == cfs_b->expires_seq) { 4361 /* extend local deadline, drift is bounded above by 2 ticks */ 4362 cfs_rq->runtime_expires += TICK_NSEC; 4363 } else { 4364 /* global deadline is ahead, expiration has passed */ 4365 cfs_rq->runtime_remaining = 0; 4366 } 4367 } 4368 4369 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4370 { 4371 /* dock delta_exec before expiring quota (as it could span periods) */ 4372 cfs_rq->runtime_remaining -= delta_exec; 4373 expire_cfs_rq_runtime(cfs_rq); 4374 4375 if (likely(cfs_rq->runtime_remaining > 0)) 4376 return; 4377 4378 /* 4379 * if we're unable to extend our runtime we resched so that the active 4380 * hierarchy can be throttled 4381 */ 4382 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4383 resched_curr(rq_of(cfs_rq)); 4384 } 4385 4386 static __always_inline 4387 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4388 { 4389 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4390 return; 4391 4392 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4393 } 4394 4395 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4396 { 4397 return cfs_bandwidth_used() && cfs_rq->throttled; 4398 } 4399 4400 /* check whether cfs_rq, or any parent, is throttled */ 4401 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4402 { 4403 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4404 } 4405 4406 /* 4407 * Ensure that neither of the group entities corresponding to src_cpu or 4408 * dest_cpu are members of a throttled hierarchy when performing group 4409 * load-balance operations. 4410 */ 4411 static inline int throttled_lb_pair(struct task_group *tg, 4412 int src_cpu, int dest_cpu) 4413 { 4414 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4415 4416 src_cfs_rq = tg->cfs_rq[src_cpu]; 4417 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4418 4419 return throttled_hierarchy(src_cfs_rq) || 4420 throttled_hierarchy(dest_cfs_rq); 4421 } 4422 4423 static int tg_unthrottle_up(struct task_group *tg, void *data) 4424 { 4425 struct rq *rq = data; 4426 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4427 4428 cfs_rq->throttle_count--; 4429 if (!cfs_rq->throttle_count) { 4430 /* adjust cfs_rq_clock_task() */ 4431 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4432 cfs_rq->throttled_clock_task; 4433 } 4434 4435 return 0; 4436 } 4437 4438 static int tg_throttle_down(struct task_group *tg, void *data) 4439 { 4440 struct rq *rq = data; 4441 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4442 4443 /* group is entering throttled state, stop time */ 4444 if (!cfs_rq->throttle_count) 4445 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4446 cfs_rq->throttle_count++; 4447 4448 return 0; 4449 } 4450 4451 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4452 { 4453 struct rq *rq = rq_of(cfs_rq); 4454 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4455 struct sched_entity *se; 4456 long task_delta, dequeue = 1; 4457 bool empty; 4458 4459 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4460 4461 /* freeze hierarchy runnable averages while throttled */ 4462 rcu_read_lock(); 4463 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4464 rcu_read_unlock(); 4465 4466 task_delta = cfs_rq->h_nr_running; 4467 for_each_sched_entity(se) { 4468 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4469 /* throttled entity or throttle-on-deactivate */ 4470 if (!se->on_rq) 4471 break; 4472 4473 if (dequeue) 4474 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4475 qcfs_rq->h_nr_running -= task_delta; 4476 4477 if (qcfs_rq->load.weight) 4478 dequeue = 0; 4479 } 4480 4481 if (!se) 4482 sub_nr_running(rq, task_delta); 4483 4484 cfs_rq->throttled = 1; 4485 cfs_rq->throttled_clock = rq_clock(rq); 4486 raw_spin_lock(&cfs_b->lock); 4487 empty = list_empty(&cfs_b->throttled_cfs_rq); 4488 4489 /* 4490 * Add to the _head_ of the list, so that an already-started 4491 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is 4492 * not running add to the tail so that later runqueues don't get starved. 4493 */ 4494 if (cfs_b->distribute_running) 4495 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4496 else 4497 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4498 4499 /* 4500 * If we're the first throttled task, make sure the bandwidth 4501 * timer is running. 4502 */ 4503 if (empty) 4504 start_cfs_bandwidth(cfs_b); 4505 4506 raw_spin_unlock(&cfs_b->lock); 4507 } 4508 4509 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4510 { 4511 struct rq *rq = rq_of(cfs_rq); 4512 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4513 struct sched_entity *se; 4514 int enqueue = 1; 4515 long task_delta; 4516 4517 se = cfs_rq->tg->se[cpu_of(rq)]; 4518 4519 cfs_rq->throttled = 0; 4520 4521 update_rq_clock(rq); 4522 4523 raw_spin_lock(&cfs_b->lock); 4524 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4525 list_del_rcu(&cfs_rq->throttled_list); 4526 raw_spin_unlock(&cfs_b->lock); 4527 4528 /* update hierarchical throttle state */ 4529 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4530 4531 if (!cfs_rq->load.weight) 4532 return; 4533 4534 task_delta = cfs_rq->h_nr_running; 4535 for_each_sched_entity(se) { 4536 if (se->on_rq) 4537 enqueue = 0; 4538 4539 cfs_rq = cfs_rq_of(se); 4540 if (enqueue) 4541 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4542 cfs_rq->h_nr_running += task_delta; 4543 4544 if (cfs_rq_throttled(cfs_rq)) 4545 break; 4546 } 4547 4548 if (!se) 4549 add_nr_running(rq, task_delta); 4550 4551 /* Determine whether we need to wake up potentially idle CPU: */ 4552 if (rq->curr == rq->idle && rq->cfs.nr_running) 4553 resched_curr(rq); 4554 } 4555 4556 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 4557 u64 remaining, u64 expires) 4558 { 4559 struct cfs_rq *cfs_rq; 4560 u64 runtime; 4561 u64 starting_runtime = remaining; 4562 4563 rcu_read_lock(); 4564 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4565 throttled_list) { 4566 struct rq *rq = rq_of(cfs_rq); 4567 struct rq_flags rf; 4568 4569 rq_lock(rq, &rf); 4570 if (!cfs_rq_throttled(cfs_rq)) 4571 goto next; 4572 4573 runtime = -cfs_rq->runtime_remaining + 1; 4574 if (runtime > remaining) 4575 runtime = remaining; 4576 remaining -= runtime; 4577 4578 cfs_rq->runtime_remaining += runtime; 4579 cfs_rq->runtime_expires = expires; 4580 4581 /* we check whether we're throttled above */ 4582 if (cfs_rq->runtime_remaining > 0) 4583 unthrottle_cfs_rq(cfs_rq); 4584 4585 next: 4586 rq_unlock(rq, &rf); 4587 4588 if (!remaining) 4589 break; 4590 } 4591 rcu_read_unlock(); 4592 4593 return starting_runtime - remaining; 4594 } 4595 4596 /* 4597 * Responsible for refilling a task_group's bandwidth and unthrottling its 4598 * cfs_rqs as appropriate. If there has been no activity within the last 4599 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4600 * used to track this state. 4601 */ 4602 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 4603 { 4604 u64 runtime, runtime_expires; 4605 int throttled; 4606 4607 /* no need to continue the timer with no bandwidth constraint */ 4608 if (cfs_b->quota == RUNTIME_INF) 4609 goto out_deactivate; 4610 4611 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4612 cfs_b->nr_periods += overrun; 4613 4614 /* 4615 * idle depends on !throttled (for the case of a large deficit), and if 4616 * we're going inactive then everything else can be deferred 4617 */ 4618 if (cfs_b->idle && !throttled) 4619 goto out_deactivate; 4620 4621 __refill_cfs_bandwidth_runtime(cfs_b); 4622 4623 if (!throttled) { 4624 /* mark as potentially idle for the upcoming period */ 4625 cfs_b->idle = 1; 4626 return 0; 4627 } 4628 4629 /* account preceding periods in which throttling occurred */ 4630 cfs_b->nr_throttled += overrun; 4631 4632 runtime_expires = cfs_b->runtime_expires; 4633 4634 /* 4635 * This check is repeated as we are holding onto the new bandwidth while 4636 * we unthrottle. This can potentially race with an unthrottled group 4637 * trying to acquire new bandwidth from the global pool. This can result 4638 * in us over-using our runtime if it is all used during this loop, but 4639 * only by limited amounts in that extreme case. 4640 */ 4641 while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) { 4642 runtime = cfs_b->runtime; 4643 cfs_b->distribute_running = 1; 4644 raw_spin_unlock(&cfs_b->lock); 4645 /* we can't nest cfs_b->lock while distributing bandwidth */ 4646 runtime = distribute_cfs_runtime(cfs_b, runtime, 4647 runtime_expires); 4648 raw_spin_lock(&cfs_b->lock); 4649 4650 cfs_b->distribute_running = 0; 4651 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4652 4653 lsub_positive(&cfs_b->runtime, runtime); 4654 } 4655 4656 /* 4657 * While we are ensured activity in the period following an 4658 * unthrottle, this also covers the case in which the new bandwidth is 4659 * insufficient to cover the existing bandwidth deficit. (Forcing the 4660 * timer to remain active while there are any throttled entities.) 4661 */ 4662 cfs_b->idle = 0; 4663 4664 return 0; 4665 4666 out_deactivate: 4667 return 1; 4668 } 4669 4670 /* a cfs_rq won't donate quota below this amount */ 4671 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4672 /* minimum remaining period time to redistribute slack quota */ 4673 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4674 /* how long we wait to gather additional slack before distributing */ 4675 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4676 4677 /* 4678 * Are we near the end of the current quota period? 4679 * 4680 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4681 * hrtimer base being cleared by hrtimer_start. In the case of 4682 * migrate_hrtimers, base is never cleared, so we are fine. 4683 */ 4684 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4685 { 4686 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4687 u64 remaining; 4688 4689 /* if the call-back is running a quota refresh is already occurring */ 4690 if (hrtimer_callback_running(refresh_timer)) 4691 return 1; 4692 4693 /* is a quota refresh about to occur? */ 4694 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4695 if (remaining < min_expire) 4696 return 1; 4697 4698 return 0; 4699 } 4700 4701 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4702 { 4703 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4704 4705 /* if there's a quota refresh soon don't bother with slack */ 4706 if (runtime_refresh_within(cfs_b, min_left)) 4707 return; 4708 4709 hrtimer_start(&cfs_b->slack_timer, 4710 ns_to_ktime(cfs_bandwidth_slack_period), 4711 HRTIMER_MODE_REL); 4712 } 4713 4714 /* we know any runtime found here is valid as update_curr() precedes return */ 4715 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4716 { 4717 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4718 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4719 4720 if (slack_runtime <= 0) 4721 return; 4722 4723 raw_spin_lock(&cfs_b->lock); 4724 if (cfs_b->quota != RUNTIME_INF && 4725 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4726 cfs_b->runtime += slack_runtime; 4727 4728 /* we are under rq->lock, defer unthrottling using a timer */ 4729 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4730 !list_empty(&cfs_b->throttled_cfs_rq)) 4731 start_cfs_slack_bandwidth(cfs_b); 4732 } 4733 raw_spin_unlock(&cfs_b->lock); 4734 4735 /* even if it's not valid for return we don't want to try again */ 4736 cfs_rq->runtime_remaining -= slack_runtime; 4737 } 4738 4739 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4740 { 4741 if (!cfs_bandwidth_used()) 4742 return; 4743 4744 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4745 return; 4746 4747 __return_cfs_rq_runtime(cfs_rq); 4748 } 4749 4750 /* 4751 * This is done with a timer (instead of inline with bandwidth return) since 4752 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4753 */ 4754 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4755 { 4756 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4757 u64 expires; 4758 4759 /* confirm we're still not at a refresh boundary */ 4760 raw_spin_lock(&cfs_b->lock); 4761 if (cfs_b->distribute_running) { 4762 raw_spin_unlock(&cfs_b->lock); 4763 return; 4764 } 4765 4766 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4767 raw_spin_unlock(&cfs_b->lock); 4768 return; 4769 } 4770 4771 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4772 runtime = cfs_b->runtime; 4773 4774 expires = cfs_b->runtime_expires; 4775 if (runtime) 4776 cfs_b->distribute_running = 1; 4777 4778 raw_spin_unlock(&cfs_b->lock); 4779 4780 if (!runtime) 4781 return; 4782 4783 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4784 4785 raw_spin_lock(&cfs_b->lock); 4786 if (expires == cfs_b->runtime_expires) 4787 lsub_positive(&cfs_b->runtime, runtime); 4788 cfs_b->distribute_running = 0; 4789 raw_spin_unlock(&cfs_b->lock); 4790 } 4791 4792 /* 4793 * When a group wakes up we want to make sure that its quota is not already 4794 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4795 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4796 */ 4797 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4798 { 4799 if (!cfs_bandwidth_used()) 4800 return; 4801 4802 /* an active group must be handled by the update_curr()->put() path */ 4803 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4804 return; 4805 4806 /* ensure the group is not already throttled */ 4807 if (cfs_rq_throttled(cfs_rq)) 4808 return; 4809 4810 /* update runtime allocation */ 4811 account_cfs_rq_runtime(cfs_rq, 0); 4812 if (cfs_rq->runtime_remaining <= 0) 4813 throttle_cfs_rq(cfs_rq); 4814 } 4815 4816 static void sync_throttle(struct task_group *tg, int cpu) 4817 { 4818 struct cfs_rq *pcfs_rq, *cfs_rq; 4819 4820 if (!cfs_bandwidth_used()) 4821 return; 4822 4823 if (!tg->parent) 4824 return; 4825 4826 cfs_rq = tg->cfs_rq[cpu]; 4827 pcfs_rq = tg->parent->cfs_rq[cpu]; 4828 4829 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4830 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4831 } 4832 4833 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4834 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4835 { 4836 if (!cfs_bandwidth_used()) 4837 return false; 4838 4839 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4840 return false; 4841 4842 /* 4843 * it's possible for a throttled entity to be forced into a running 4844 * state (e.g. set_curr_task), in this case we're finished. 4845 */ 4846 if (cfs_rq_throttled(cfs_rq)) 4847 return true; 4848 4849 throttle_cfs_rq(cfs_rq); 4850 return true; 4851 } 4852 4853 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4854 { 4855 struct cfs_bandwidth *cfs_b = 4856 container_of(timer, struct cfs_bandwidth, slack_timer); 4857 4858 do_sched_cfs_slack_timer(cfs_b); 4859 4860 return HRTIMER_NORESTART; 4861 } 4862 4863 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4864 { 4865 struct cfs_bandwidth *cfs_b = 4866 container_of(timer, struct cfs_bandwidth, period_timer); 4867 int overrun; 4868 int idle = 0; 4869 4870 raw_spin_lock(&cfs_b->lock); 4871 for (;;) { 4872 overrun = hrtimer_forward_now(timer, cfs_b->period); 4873 if (!overrun) 4874 break; 4875 4876 idle = do_sched_cfs_period_timer(cfs_b, overrun); 4877 } 4878 if (idle) 4879 cfs_b->period_active = 0; 4880 raw_spin_unlock(&cfs_b->lock); 4881 4882 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4883 } 4884 4885 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4886 { 4887 raw_spin_lock_init(&cfs_b->lock); 4888 cfs_b->runtime = 0; 4889 cfs_b->quota = RUNTIME_INF; 4890 cfs_b->period = ns_to_ktime(default_cfs_period()); 4891 4892 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4893 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4894 cfs_b->period_timer.function = sched_cfs_period_timer; 4895 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4896 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4897 cfs_b->distribute_running = 0; 4898 } 4899 4900 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4901 { 4902 cfs_rq->runtime_enabled = 0; 4903 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4904 } 4905 4906 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4907 { 4908 u64 overrun; 4909 4910 lockdep_assert_held(&cfs_b->lock); 4911 4912 if (cfs_b->period_active) 4913 return; 4914 4915 cfs_b->period_active = 1; 4916 overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 4917 cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period); 4918 cfs_b->expires_seq++; 4919 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 4920 } 4921 4922 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4923 { 4924 /* init_cfs_bandwidth() was not called */ 4925 if (!cfs_b->throttled_cfs_rq.next) 4926 return; 4927 4928 hrtimer_cancel(&cfs_b->period_timer); 4929 hrtimer_cancel(&cfs_b->slack_timer); 4930 } 4931 4932 /* 4933 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 4934 * 4935 * The race is harmless, since modifying bandwidth settings of unhooked group 4936 * bits doesn't do much. 4937 */ 4938 4939 /* cpu online calback */ 4940 static void __maybe_unused update_runtime_enabled(struct rq *rq) 4941 { 4942 struct task_group *tg; 4943 4944 lockdep_assert_held(&rq->lock); 4945 4946 rcu_read_lock(); 4947 list_for_each_entry_rcu(tg, &task_groups, list) { 4948 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 4949 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4950 4951 raw_spin_lock(&cfs_b->lock); 4952 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 4953 raw_spin_unlock(&cfs_b->lock); 4954 } 4955 rcu_read_unlock(); 4956 } 4957 4958 /* cpu offline callback */ 4959 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 4960 { 4961 struct task_group *tg; 4962 4963 lockdep_assert_held(&rq->lock); 4964 4965 rcu_read_lock(); 4966 list_for_each_entry_rcu(tg, &task_groups, list) { 4967 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4968 4969 if (!cfs_rq->runtime_enabled) 4970 continue; 4971 4972 /* 4973 * clock_task is not advancing so we just need to make sure 4974 * there's some valid quota amount 4975 */ 4976 cfs_rq->runtime_remaining = 1; 4977 /* 4978 * Offline rq is schedulable till CPU is completely disabled 4979 * in take_cpu_down(), so we prevent new cfs throttling here. 4980 */ 4981 cfs_rq->runtime_enabled = 0; 4982 4983 if (cfs_rq_throttled(cfs_rq)) 4984 unthrottle_cfs_rq(cfs_rq); 4985 } 4986 rcu_read_unlock(); 4987 } 4988 4989 #else /* CONFIG_CFS_BANDWIDTH */ 4990 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4991 { 4992 return rq_clock_task(rq_of(cfs_rq)); 4993 } 4994 4995 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 4996 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 4997 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 4998 static inline void sync_throttle(struct task_group *tg, int cpu) {} 4999 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5000 5001 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5002 { 5003 return 0; 5004 } 5005 5006 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5007 { 5008 return 0; 5009 } 5010 5011 static inline int throttled_lb_pair(struct task_group *tg, 5012 int src_cpu, int dest_cpu) 5013 { 5014 return 0; 5015 } 5016 5017 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5018 5019 #ifdef CONFIG_FAIR_GROUP_SCHED 5020 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5021 #endif 5022 5023 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5024 { 5025 return NULL; 5026 } 5027 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5028 static inline void update_runtime_enabled(struct rq *rq) {} 5029 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5030 5031 #endif /* CONFIG_CFS_BANDWIDTH */ 5032 5033 /************************************************** 5034 * CFS operations on tasks: 5035 */ 5036 5037 #ifdef CONFIG_SCHED_HRTICK 5038 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5039 { 5040 struct sched_entity *se = &p->se; 5041 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5042 5043 SCHED_WARN_ON(task_rq(p) != rq); 5044 5045 if (rq->cfs.h_nr_running > 1) { 5046 u64 slice = sched_slice(cfs_rq, se); 5047 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5048 s64 delta = slice - ran; 5049 5050 if (delta < 0) { 5051 if (rq->curr == p) 5052 resched_curr(rq); 5053 return; 5054 } 5055 hrtick_start(rq, delta); 5056 } 5057 } 5058 5059 /* 5060 * called from enqueue/dequeue and updates the hrtick when the 5061 * current task is from our class and nr_running is low enough 5062 * to matter. 5063 */ 5064 static void hrtick_update(struct rq *rq) 5065 { 5066 struct task_struct *curr = rq->curr; 5067 5068 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 5069 return; 5070 5071 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5072 hrtick_start_fair(rq, curr); 5073 } 5074 #else /* !CONFIG_SCHED_HRTICK */ 5075 static inline void 5076 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5077 { 5078 } 5079 5080 static inline void hrtick_update(struct rq *rq) 5081 { 5082 } 5083 #endif 5084 5085 #ifdef CONFIG_SMP 5086 static inline unsigned long cpu_util(int cpu); 5087 static unsigned long capacity_of(int cpu); 5088 5089 static inline bool cpu_overutilized(int cpu) 5090 { 5091 return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin); 5092 } 5093 5094 static inline void update_overutilized_status(struct rq *rq) 5095 { 5096 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) 5097 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5098 } 5099 #else 5100 static inline void update_overutilized_status(struct rq *rq) { } 5101 #endif 5102 5103 /* 5104 * The enqueue_task method is called before nr_running is 5105 * increased. Here we update the fair scheduling stats and 5106 * then put the task into the rbtree: 5107 */ 5108 static void 5109 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5110 { 5111 struct cfs_rq *cfs_rq; 5112 struct sched_entity *se = &p->se; 5113 5114 /* 5115 * The code below (indirectly) updates schedutil which looks at 5116 * the cfs_rq utilization to select a frequency. 5117 * Let's add the task's estimated utilization to the cfs_rq's 5118 * estimated utilization, before we update schedutil. 5119 */ 5120 util_est_enqueue(&rq->cfs, p); 5121 5122 /* 5123 * If in_iowait is set, the code below may not trigger any cpufreq 5124 * utilization updates, so do it here explicitly with the IOWAIT flag 5125 * passed. 5126 */ 5127 if (p->in_iowait) 5128 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5129 5130 for_each_sched_entity(se) { 5131 if (se->on_rq) 5132 break; 5133 cfs_rq = cfs_rq_of(se); 5134 enqueue_entity(cfs_rq, se, flags); 5135 5136 /* 5137 * end evaluation on encountering a throttled cfs_rq 5138 * 5139 * note: in the case of encountering a throttled cfs_rq we will 5140 * post the final h_nr_running increment below. 5141 */ 5142 if (cfs_rq_throttled(cfs_rq)) 5143 break; 5144 cfs_rq->h_nr_running++; 5145 5146 flags = ENQUEUE_WAKEUP; 5147 } 5148 5149 for_each_sched_entity(se) { 5150 cfs_rq = cfs_rq_of(se); 5151 cfs_rq->h_nr_running++; 5152 5153 if (cfs_rq_throttled(cfs_rq)) 5154 break; 5155 5156 update_load_avg(cfs_rq, se, UPDATE_TG); 5157 update_cfs_group(se); 5158 } 5159 5160 if (!se) { 5161 add_nr_running(rq, 1); 5162 /* 5163 * Since new tasks are assigned an initial util_avg equal to 5164 * half of the spare capacity of their CPU, tiny tasks have the 5165 * ability to cross the overutilized threshold, which will 5166 * result in the load balancer ruining all the task placement 5167 * done by EAS. As a way to mitigate that effect, do not account 5168 * for the first enqueue operation of new tasks during the 5169 * overutilized flag detection. 5170 * 5171 * A better way of solving this problem would be to wait for 5172 * the PELT signals of tasks to converge before taking them 5173 * into account, but that is not straightforward to implement, 5174 * and the following generally works well enough in practice. 5175 */ 5176 if (flags & ENQUEUE_WAKEUP) 5177 update_overutilized_status(rq); 5178 5179 } 5180 5181 hrtick_update(rq); 5182 } 5183 5184 static void set_next_buddy(struct sched_entity *se); 5185 5186 /* 5187 * The dequeue_task method is called before nr_running is 5188 * decreased. We remove the task from the rbtree and 5189 * update the fair scheduling stats: 5190 */ 5191 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5192 { 5193 struct cfs_rq *cfs_rq; 5194 struct sched_entity *se = &p->se; 5195 int task_sleep = flags & DEQUEUE_SLEEP; 5196 5197 for_each_sched_entity(se) { 5198 cfs_rq = cfs_rq_of(se); 5199 dequeue_entity(cfs_rq, se, flags); 5200 5201 /* 5202 * end evaluation on encountering a throttled cfs_rq 5203 * 5204 * note: in the case of encountering a throttled cfs_rq we will 5205 * post the final h_nr_running decrement below. 5206 */ 5207 if (cfs_rq_throttled(cfs_rq)) 5208 break; 5209 cfs_rq->h_nr_running--; 5210 5211 /* Don't dequeue parent if it has other entities besides us */ 5212 if (cfs_rq->load.weight) { 5213 /* Avoid re-evaluating load for this entity: */ 5214 se = parent_entity(se); 5215 /* 5216 * Bias pick_next to pick a task from this cfs_rq, as 5217 * p is sleeping when it is within its sched_slice. 5218 */ 5219 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5220 set_next_buddy(se); 5221 break; 5222 } 5223 flags |= DEQUEUE_SLEEP; 5224 } 5225 5226 for_each_sched_entity(se) { 5227 cfs_rq = cfs_rq_of(se); 5228 cfs_rq->h_nr_running--; 5229 5230 if (cfs_rq_throttled(cfs_rq)) 5231 break; 5232 5233 update_load_avg(cfs_rq, se, UPDATE_TG); 5234 update_cfs_group(se); 5235 } 5236 5237 if (!se) 5238 sub_nr_running(rq, 1); 5239 5240 util_est_dequeue(&rq->cfs, p, task_sleep); 5241 hrtick_update(rq); 5242 } 5243 5244 #ifdef CONFIG_SMP 5245 5246 /* Working cpumask for: load_balance, load_balance_newidle. */ 5247 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5248 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5249 5250 #ifdef CONFIG_NO_HZ_COMMON 5251 /* 5252 * per rq 'load' arrray crap; XXX kill this. 5253 */ 5254 5255 /* 5256 * The exact cpuload calculated at every tick would be: 5257 * 5258 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 5259 * 5260 * If a CPU misses updates for n ticks (as it was idle) and update gets 5261 * called on the n+1-th tick when CPU may be busy, then we have: 5262 * 5263 * load_n = (1 - 1/2^i)^n * load_0 5264 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 5265 * 5266 * decay_load_missed() below does efficient calculation of 5267 * 5268 * load' = (1 - 1/2^i)^n * load 5269 * 5270 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 5271 * This allows us to precompute the above in said factors, thereby allowing the 5272 * reduction of an arbitrary n in O(log_2 n) steps. (See also 5273 * fixed_power_int()) 5274 * 5275 * The calculation is approximated on a 128 point scale. 5276 */ 5277 #define DEGRADE_SHIFT 7 5278 5279 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 5280 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 5281 { 0, 0, 0, 0, 0, 0, 0, 0 }, 5282 { 64, 32, 8, 0, 0, 0, 0, 0 }, 5283 { 96, 72, 40, 12, 1, 0, 0, 0 }, 5284 { 112, 98, 75, 43, 15, 1, 0, 0 }, 5285 { 120, 112, 98, 76, 45, 16, 2, 0 } 5286 }; 5287 5288 /* 5289 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 5290 * would be when CPU is idle and so we just decay the old load without 5291 * adding any new load. 5292 */ 5293 static unsigned long 5294 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 5295 { 5296 int j = 0; 5297 5298 if (!missed_updates) 5299 return load; 5300 5301 if (missed_updates >= degrade_zero_ticks[idx]) 5302 return 0; 5303 5304 if (idx == 1) 5305 return load >> missed_updates; 5306 5307 while (missed_updates) { 5308 if (missed_updates % 2) 5309 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 5310 5311 missed_updates >>= 1; 5312 j++; 5313 } 5314 return load; 5315 } 5316 5317 static struct { 5318 cpumask_var_t idle_cpus_mask; 5319 atomic_t nr_cpus; 5320 int has_blocked; /* Idle CPUS has blocked load */ 5321 unsigned long next_balance; /* in jiffy units */ 5322 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5323 } nohz ____cacheline_aligned; 5324 5325 #endif /* CONFIG_NO_HZ_COMMON */ 5326 5327 /** 5328 * __cpu_load_update - update the rq->cpu_load[] statistics 5329 * @this_rq: The rq to update statistics for 5330 * @this_load: The current load 5331 * @pending_updates: The number of missed updates 5332 * 5333 * Update rq->cpu_load[] statistics. This function is usually called every 5334 * scheduler tick (TICK_NSEC). 5335 * 5336 * This function computes a decaying average: 5337 * 5338 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 5339 * 5340 * Because of NOHZ it might not get called on every tick which gives need for 5341 * the @pending_updates argument. 5342 * 5343 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 5344 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 5345 * = A * (A * load[i]_n-2 + B) + B 5346 * = A * (A * (A * load[i]_n-3 + B) + B) + B 5347 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 5348 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 5349 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 5350 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 5351 * 5352 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 5353 * any change in load would have resulted in the tick being turned back on. 5354 * 5355 * For regular NOHZ, this reduces to: 5356 * 5357 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 5358 * 5359 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 5360 * term. 5361 */ 5362 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 5363 unsigned long pending_updates) 5364 { 5365 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 5366 int i, scale; 5367 5368 this_rq->nr_load_updates++; 5369 5370 /* Update our load: */ 5371 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 5372 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 5373 unsigned long old_load, new_load; 5374 5375 /* scale is effectively 1 << i now, and >> i divides by scale */ 5376 5377 old_load = this_rq->cpu_load[i]; 5378 #ifdef CONFIG_NO_HZ_COMMON 5379 old_load = decay_load_missed(old_load, pending_updates - 1, i); 5380 if (tickless_load) { 5381 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 5382 /* 5383 * old_load can never be a negative value because a 5384 * decayed tickless_load cannot be greater than the 5385 * original tickless_load. 5386 */ 5387 old_load += tickless_load; 5388 } 5389 #endif 5390 new_load = this_load; 5391 /* 5392 * Round up the averaging division if load is increasing. This 5393 * prevents us from getting stuck on 9 if the load is 10, for 5394 * example. 5395 */ 5396 if (new_load > old_load) 5397 new_load += scale - 1; 5398 5399 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 5400 } 5401 } 5402 5403 /* Used instead of source_load when we know the type == 0 */ 5404 static unsigned long weighted_cpuload(struct rq *rq) 5405 { 5406 return cfs_rq_runnable_load_avg(&rq->cfs); 5407 } 5408 5409 #ifdef CONFIG_NO_HZ_COMMON 5410 /* 5411 * There is no sane way to deal with nohz on smp when using jiffies because the 5412 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading 5413 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 5414 * 5415 * Therefore we need to avoid the delta approach from the regular tick when 5416 * possible since that would seriously skew the load calculation. This is why we 5417 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 5418 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 5419 * loop exit, nohz_idle_balance, nohz full exit...) 5420 * 5421 * This means we might still be one tick off for nohz periods. 5422 */ 5423 5424 static void cpu_load_update_nohz(struct rq *this_rq, 5425 unsigned long curr_jiffies, 5426 unsigned long load) 5427 { 5428 unsigned long pending_updates; 5429 5430 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 5431 if (pending_updates) { 5432 this_rq->last_load_update_tick = curr_jiffies; 5433 /* 5434 * In the regular NOHZ case, we were idle, this means load 0. 5435 * In the NOHZ_FULL case, we were non-idle, we should consider 5436 * its weighted load. 5437 */ 5438 cpu_load_update(this_rq, load, pending_updates); 5439 } 5440 } 5441 5442 /* 5443 * Called from nohz_idle_balance() to update the load ratings before doing the 5444 * idle balance. 5445 */ 5446 static void cpu_load_update_idle(struct rq *this_rq) 5447 { 5448 /* 5449 * bail if there's load or we're actually up-to-date. 5450 */ 5451 if (weighted_cpuload(this_rq)) 5452 return; 5453 5454 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 5455 } 5456 5457 /* 5458 * Record CPU load on nohz entry so we know the tickless load to account 5459 * on nohz exit. cpu_load[0] happens then to be updated more frequently 5460 * than other cpu_load[idx] but it should be fine as cpu_load readers 5461 * shouldn't rely into synchronized cpu_load[*] updates. 5462 */ 5463 void cpu_load_update_nohz_start(void) 5464 { 5465 struct rq *this_rq = this_rq(); 5466 5467 /* 5468 * This is all lockless but should be fine. If weighted_cpuload changes 5469 * concurrently we'll exit nohz. And cpu_load write can race with 5470 * cpu_load_update_idle() but both updater would be writing the same. 5471 */ 5472 this_rq->cpu_load[0] = weighted_cpuload(this_rq); 5473 } 5474 5475 /* 5476 * Account the tickless load in the end of a nohz frame. 5477 */ 5478 void cpu_load_update_nohz_stop(void) 5479 { 5480 unsigned long curr_jiffies = READ_ONCE(jiffies); 5481 struct rq *this_rq = this_rq(); 5482 unsigned long load; 5483 struct rq_flags rf; 5484 5485 if (curr_jiffies == this_rq->last_load_update_tick) 5486 return; 5487 5488 load = weighted_cpuload(this_rq); 5489 rq_lock(this_rq, &rf); 5490 update_rq_clock(this_rq); 5491 cpu_load_update_nohz(this_rq, curr_jiffies, load); 5492 rq_unlock(this_rq, &rf); 5493 } 5494 #else /* !CONFIG_NO_HZ_COMMON */ 5495 static inline void cpu_load_update_nohz(struct rq *this_rq, 5496 unsigned long curr_jiffies, 5497 unsigned long load) { } 5498 #endif /* CONFIG_NO_HZ_COMMON */ 5499 5500 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 5501 { 5502 #ifdef CONFIG_NO_HZ_COMMON 5503 /* See the mess around cpu_load_update_nohz(). */ 5504 this_rq->last_load_update_tick = READ_ONCE(jiffies); 5505 #endif 5506 cpu_load_update(this_rq, load, 1); 5507 } 5508 5509 /* 5510 * Called from scheduler_tick() 5511 */ 5512 void cpu_load_update_active(struct rq *this_rq) 5513 { 5514 unsigned long load = weighted_cpuload(this_rq); 5515 5516 if (tick_nohz_tick_stopped()) 5517 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 5518 else 5519 cpu_load_update_periodic(this_rq, load); 5520 } 5521 5522 /* 5523 * Return a low guess at the load of a migration-source CPU weighted 5524 * according to the scheduling class and "nice" value. 5525 * 5526 * We want to under-estimate the load of migration sources, to 5527 * balance conservatively. 5528 */ 5529 static unsigned long source_load(int cpu, int type) 5530 { 5531 struct rq *rq = cpu_rq(cpu); 5532 unsigned long total = weighted_cpuload(rq); 5533 5534 if (type == 0 || !sched_feat(LB_BIAS)) 5535 return total; 5536 5537 return min(rq->cpu_load[type-1], total); 5538 } 5539 5540 /* 5541 * Return a high guess at the load of a migration-target CPU weighted 5542 * according to the scheduling class and "nice" value. 5543 */ 5544 static unsigned long target_load(int cpu, int type) 5545 { 5546 struct rq *rq = cpu_rq(cpu); 5547 unsigned long total = weighted_cpuload(rq); 5548 5549 if (type == 0 || !sched_feat(LB_BIAS)) 5550 return total; 5551 5552 return max(rq->cpu_load[type-1], total); 5553 } 5554 5555 static unsigned long capacity_of(int cpu) 5556 { 5557 return cpu_rq(cpu)->cpu_capacity; 5558 } 5559 5560 static unsigned long capacity_orig_of(int cpu) 5561 { 5562 return cpu_rq(cpu)->cpu_capacity_orig; 5563 } 5564 5565 static unsigned long cpu_avg_load_per_task(int cpu) 5566 { 5567 struct rq *rq = cpu_rq(cpu); 5568 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5569 unsigned long load_avg = weighted_cpuload(rq); 5570 5571 if (nr_running) 5572 return load_avg / nr_running; 5573 5574 return 0; 5575 } 5576 5577 static void record_wakee(struct task_struct *p) 5578 { 5579 /* 5580 * Only decay a single time; tasks that have less then 1 wakeup per 5581 * jiffy will not have built up many flips. 5582 */ 5583 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5584 current->wakee_flips >>= 1; 5585 current->wakee_flip_decay_ts = jiffies; 5586 } 5587 5588 if (current->last_wakee != p) { 5589 current->last_wakee = p; 5590 current->wakee_flips++; 5591 } 5592 } 5593 5594 /* 5595 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5596 * 5597 * A waker of many should wake a different task than the one last awakened 5598 * at a frequency roughly N times higher than one of its wakees. 5599 * 5600 * In order to determine whether we should let the load spread vs consolidating 5601 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5602 * partner, and a factor of lls_size higher frequency in the other. 5603 * 5604 * With both conditions met, we can be relatively sure that the relationship is 5605 * non-monogamous, with partner count exceeding socket size. 5606 * 5607 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5608 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5609 * socket size. 5610 */ 5611 static int wake_wide(struct task_struct *p) 5612 { 5613 unsigned int master = current->wakee_flips; 5614 unsigned int slave = p->wakee_flips; 5615 int factor = this_cpu_read(sd_llc_size); 5616 5617 if (master < slave) 5618 swap(master, slave); 5619 if (slave < factor || master < slave * factor) 5620 return 0; 5621 return 1; 5622 } 5623 5624 /* 5625 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5626 * soonest. For the purpose of speed we only consider the waking and previous 5627 * CPU. 5628 * 5629 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5630 * cache-affine and is (or will be) idle. 5631 * 5632 * wake_affine_weight() - considers the weight to reflect the average 5633 * scheduling latency of the CPUs. This seems to work 5634 * for the overloaded case. 5635 */ 5636 static int 5637 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5638 { 5639 /* 5640 * If this_cpu is idle, it implies the wakeup is from interrupt 5641 * context. Only allow the move if cache is shared. Otherwise an 5642 * interrupt intensive workload could force all tasks onto one 5643 * node depending on the IO topology or IRQ affinity settings. 5644 * 5645 * If the prev_cpu is idle and cache affine then avoid a migration. 5646 * There is no guarantee that the cache hot data from an interrupt 5647 * is more important than cache hot data on the prev_cpu and from 5648 * a cpufreq perspective, it's better to have higher utilisation 5649 * on one CPU. 5650 */ 5651 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5652 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5653 5654 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5655 return this_cpu; 5656 5657 return nr_cpumask_bits; 5658 } 5659 5660 static int 5661 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5662 int this_cpu, int prev_cpu, int sync) 5663 { 5664 s64 this_eff_load, prev_eff_load; 5665 unsigned long task_load; 5666 5667 this_eff_load = target_load(this_cpu, sd->wake_idx); 5668 5669 if (sync) { 5670 unsigned long current_load = task_h_load(current); 5671 5672 if (current_load > this_eff_load) 5673 return this_cpu; 5674 5675 this_eff_load -= current_load; 5676 } 5677 5678 task_load = task_h_load(p); 5679 5680 this_eff_load += task_load; 5681 if (sched_feat(WA_BIAS)) 5682 this_eff_load *= 100; 5683 this_eff_load *= capacity_of(prev_cpu); 5684 5685 prev_eff_load = source_load(prev_cpu, sd->wake_idx); 5686 prev_eff_load -= task_load; 5687 if (sched_feat(WA_BIAS)) 5688 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 5689 prev_eff_load *= capacity_of(this_cpu); 5690 5691 /* 5692 * If sync, adjust the weight of prev_eff_load such that if 5693 * prev_eff == this_eff that select_idle_sibling() will consider 5694 * stacking the wakee on top of the waker if no other CPU is 5695 * idle. 5696 */ 5697 if (sync) 5698 prev_eff_load += 1; 5699 5700 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 5701 } 5702 5703 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5704 int this_cpu, int prev_cpu, int sync) 5705 { 5706 int target = nr_cpumask_bits; 5707 5708 if (sched_feat(WA_IDLE)) 5709 target = wake_affine_idle(this_cpu, prev_cpu, sync); 5710 5711 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 5712 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 5713 5714 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5715 if (target == nr_cpumask_bits) 5716 return prev_cpu; 5717 5718 schedstat_inc(sd->ttwu_move_affine); 5719 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5720 return target; 5721 } 5722 5723 static unsigned long cpu_util_without(int cpu, struct task_struct *p); 5724 5725 static unsigned long capacity_spare_without(int cpu, struct task_struct *p) 5726 { 5727 return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0); 5728 } 5729 5730 /* 5731 * find_idlest_group finds and returns the least busy CPU group within the 5732 * domain. 5733 * 5734 * Assumes p is allowed on at least one CPU in sd. 5735 */ 5736 static struct sched_group * 5737 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5738 int this_cpu, int sd_flag) 5739 { 5740 struct sched_group *idlest = NULL, *group = sd->groups; 5741 struct sched_group *most_spare_sg = NULL; 5742 unsigned long min_runnable_load = ULONG_MAX; 5743 unsigned long this_runnable_load = ULONG_MAX; 5744 unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX; 5745 unsigned long most_spare = 0, this_spare = 0; 5746 int load_idx = sd->forkexec_idx; 5747 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 5748 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 5749 (sd->imbalance_pct-100) / 100; 5750 5751 if (sd_flag & SD_BALANCE_WAKE) 5752 load_idx = sd->wake_idx; 5753 5754 do { 5755 unsigned long load, avg_load, runnable_load; 5756 unsigned long spare_cap, max_spare_cap; 5757 int local_group; 5758 int i; 5759 5760 /* Skip over this group if it has no CPUs allowed */ 5761 if (!cpumask_intersects(sched_group_span(group), 5762 &p->cpus_allowed)) 5763 continue; 5764 5765 local_group = cpumask_test_cpu(this_cpu, 5766 sched_group_span(group)); 5767 5768 /* 5769 * Tally up the load of all CPUs in the group and find 5770 * the group containing the CPU with most spare capacity. 5771 */ 5772 avg_load = 0; 5773 runnable_load = 0; 5774 max_spare_cap = 0; 5775 5776 for_each_cpu(i, sched_group_span(group)) { 5777 /* Bias balancing toward CPUs of our domain */ 5778 if (local_group) 5779 load = source_load(i, load_idx); 5780 else 5781 load = target_load(i, load_idx); 5782 5783 runnable_load += load; 5784 5785 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 5786 5787 spare_cap = capacity_spare_without(i, p); 5788 5789 if (spare_cap > max_spare_cap) 5790 max_spare_cap = spare_cap; 5791 } 5792 5793 /* Adjust by relative CPU capacity of the group */ 5794 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 5795 group->sgc->capacity; 5796 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 5797 group->sgc->capacity; 5798 5799 if (local_group) { 5800 this_runnable_load = runnable_load; 5801 this_avg_load = avg_load; 5802 this_spare = max_spare_cap; 5803 } else { 5804 if (min_runnable_load > (runnable_load + imbalance)) { 5805 /* 5806 * The runnable load is significantly smaller 5807 * so we can pick this new CPU: 5808 */ 5809 min_runnable_load = runnable_load; 5810 min_avg_load = avg_load; 5811 idlest = group; 5812 } else if ((runnable_load < (min_runnable_load + imbalance)) && 5813 (100*min_avg_load > imbalance_scale*avg_load)) { 5814 /* 5815 * The runnable loads are close so take the 5816 * blocked load into account through avg_load: 5817 */ 5818 min_avg_load = avg_load; 5819 idlest = group; 5820 } 5821 5822 if (most_spare < max_spare_cap) { 5823 most_spare = max_spare_cap; 5824 most_spare_sg = group; 5825 } 5826 } 5827 } while (group = group->next, group != sd->groups); 5828 5829 /* 5830 * The cross-over point between using spare capacity or least load 5831 * is too conservative for high utilization tasks on partially 5832 * utilized systems if we require spare_capacity > task_util(p), 5833 * so we allow for some task stuffing by using 5834 * spare_capacity > task_util(p)/2. 5835 * 5836 * Spare capacity can't be used for fork because the utilization has 5837 * not been set yet, we must first select a rq to compute the initial 5838 * utilization. 5839 */ 5840 if (sd_flag & SD_BALANCE_FORK) 5841 goto skip_spare; 5842 5843 if (this_spare > task_util(p) / 2 && 5844 imbalance_scale*this_spare > 100*most_spare) 5845 return NULL; 5846 5847 if (most_spare > task_util(p) / 2) 5848 return most_spare_sg; 5849 5850 skip_spare: 5851 if (!idlest) 5852 return NULL; 5853 5854 /* 5855 * When comparing groups across NUMA domains, it's possible for the 5856 * local domain to be very lightly loaded relative to the remote 5857 * domains but "imbalance" skews the comparison making remote CPUs 5858 * look much more favourable. When considering cross-domain, add 5859 * imbalance to the runnable load on the remote node and consider 5860 * staying local. 5861 */ 5862 if ((sd->flags & SD_NUMA) && 5863 min_runnable_load + imbalance >= this_runnable_load) 5864 return NULL; 5865 5866 if (min_runnable_load > (this_runnable_load + imbalance)) 5867 return NULL; 5868 5869 if ((this_runnable_load < (min_runnable_load + imbalance)) && 5870 (100*this_avg_load < imbalance_scale*min_avg_load)) 5871 return NULL; 5872 5873 return idlest; 5874 } 5875 5876 /* 5877 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 5878 */ 5879 static int 5880 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5881 { 5882 unsigned long load, min_load = ULONG_MAX; 5883 unsigned int min_exit_latency = UINT_MAX; 5884 u64 latest_idle_timestamp = 0; 5885 int least_loaded_cpu = this_cpu; 5886 int shallowest_idle_cpu = -1; 5887 int i; 5888 5889 /* Check if we have any choice: */ 5890 if (group->group_weight == 1) 5891 return cpumask_first(sched_group_span(group)); 5892 5893 /* Traverse only the allowed CPUs */ 5894 for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) { 5895 if (available_idle_cpu(i)) { 5896 struct rq *rq = cpu_rq(i); 5897 struct cpuidle_state *idle = idle_get_state(rq); 5898 if (idle && idle->exit_latency < min_exit_latency) { 5899 /* 5900 * We give priority to a CPU whose idle state 5901 * has the smallest exit latency irrespective 5902 * of any idle timestamp. 5903 */ 5904 min_exit_latency = idle->exit_latency; 5905 latest_idle_timestamp = rq->idle_stamp; 5906 shallowest_idle_cpu = i; 5907 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5908 rq->idle_stamp > latest_idle_timestamp) { 5909 /* 5910 * If equal or no active idle state, then 5911 * the most recently idled CPU might have 5912 * a warmer cache. 5913 */ 5914 latest_idle_timestamp = rq->idle_stamp; 5915 shallowest_idle_cpu = i; 5916 } 5917 } else if (shallowest_idle_cpu == -1) { 5918 load = weighted_cpuload(cpu_rq(i)); 5919 if (load < min_load) { 5920 min_load = load; 5921 least_loaded_cpu = i; 5922 } 5923 } 5924 } 5925 5926 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5927 } 5928 5929 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 5930 int cpu, int prev_cpu, int sd_flag) 5931 { 5932 int new_cpu = cpu; 5933 5934 if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed)) 5935 return prev_cpu; 5936 5937 /* 5938 * We need task's util for capacity_spare_without, sync it up to 5939 * prev_cpu's last_update_time. 5940 */ 5941 if (!(sd_flag & SD_BALANCE_FORK)) 5942 sync_entity_load_avg(&p->se); 5943 5944 while (sd) { 5945 struct sched_group *group; 5946 struct sched_domain *tmp; 5947 int weight; 5948 5949 if (!(sd->flags & sd_flag)) { 5950 sd = sd->child; 5951 continue; 5952 } 5953 5954 group = find_idlest_group(sd, p, cpu, sd_flag); 5955 if (!group) { 5956 sd = sd->child; 5957 continue; 5958 } 5959 5960 new_cpu = find_idlest_group_cpu(group, p, cpu); 5961 if (new_cpu == cpu) { 5962 /* Now try balancing at a lower domain level of 'cpu': */ 5963 sd = sd->child; 5964 continue; 5965 } 5966 5967 /* Now try balancing at a lower domain level of 'new_cpu': */ 5968 cpu = new_cpu; 5969 weight = sd->span_weight; 5970 sd = NULL; 5971 for_each_domain(cpu, tmp) { 5972 if (weight <= tmp->span_weight) 5973 break; 5974 if (tmp->flags & sd_flag) 5975 sd = tmp; 5976 } 5977 } 5978 5979 return new_cpu; 5980 } 5981 5982 #ifdef CONFIG_SCHED_SMT 5983 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 5984 5985 static inline void set_idle_cores(int cpu, int val) 5986 { 5987 struct sched_domain_shared *sds; 5988 5989 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5990 if (sds) 5991 WRITE_ONCE(sds->has_idle_cores, val); 5992 } 5993 5994 static inline bool test_idle_cores(int cpu, bool def) 5995 { 5996 struct sched_domain_shared *sds; 5997 5998 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5999 if (sds) 6000 return READ_ONCE(sds->has_idle_cores); 6001 6002 return def; 6003 } 6004 6005 /* 6006 * Scans the local SMT mask to see if the entire core is idle, and records this 6007 * information in sd_llc_shared->has_idle_cores. 6008 * 6009 * Since SMT siblings share all cache levels, inspecting this limited remote 6010 * state should be fairly cheap. 6011 */ 6012 void __update_idle_core(struct rq *rq) 6013 { 6014 int core = cpu_of(rq); 6015 int cpu; 6016 6017 rcu_read_lock(); 6018 if (test_idle_cores(core, true)) 6019 goto unlock; 6020 6021 for_each_cpu(cpu, cpu_smt_mask(core)) { 6022 if (cpu == core) 6023 continue; 6024 6025 if (!available_idle_cpu(cpu)) 6026 goto unlock; 6027 } 6028 6029 set_idle_cores(core, 1); 6030 unlock: 6031 rcu_read_unlock(); 6032 } 6033 6034 /* 6035 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6036 * there are no idle cores left in the system; tracked through 6037 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6038 */ 6039 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6040 { 6041 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6042 int core, cpu; 6043 6044 if (!static_branch_likely(&sched_smt_present)) 6045 return -1; 6046 6047 if (!test_idle_cores(target, false)) 6048 return -1; 6049 6050 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed); 6051 6052 for_each_cpu_wrap(core, cpus, target) { 6053 bool idle = true; 6054 6055 for_each_cpu(cpu, cpu_smt_mask(core)) { 6056 cpumask_clear_cpu(cpu, cpus); 6057 if (!available_idle_cpu(cpu)) 6058 idle = false; 6059 } 6060 6061 if (idle) 6062 return core; 6063 } 6064 6065 /* 6066 * Failed to find an idle core; stop looking for one. 6067 */ 6068 set_idle_cores(target, 0); 6069 6070 return -1; 6071 } 6072 6073 /* 6074 * Scan the local SMT mask for idle CPUs. 6075 */ 6076 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6077 { 6078 int cpu; 6079 6080 if (!static_branch_likely(&sched_smt_present)) 6081 return -1; 6082 6083 for_each_cpu(cpu, cpu_smt_mask(target)) { 6084 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6085 continue; 6086 if (available_idle_cpu(cpu)) 6087 return cpu; 6088 } 6089 6090 return -1; 6091 } 6092 6093 #else /* CONFIG_SCHED_SMT */ 6094 6095 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 6096 { 6097 return -1; 6098 } 6099 6100 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6101 { 6102 return -1; 6103 } 6104 6105 #endif /* CONFIG_SCHED_SMT */ 6106 6107 /* 6108 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6109 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6110 * average idle time for this rq (as found in rq->avg_idle). 6111 */ 6112 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 6113 { 6114 struct sched_domain *this_sd; 6115 u64 avg_cost, avg_idle; 6116 u64 time, cost; 6117 s64 delta; 6118 int cpu, nr = INT_MAX; 6119 6120 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6121 if (!this_sd) 6122 return -1; 6123 6124 /* 6125 * Due to large variance we need a large fuzz factor; hackbench in 6126 * particularly is sensitive here. 6127 */ 6128 avg_idle = this_rq()->avg_idle / 512; 6129 avg_cost = this_sd->avg_scan_cost + 1; 6130 6131 if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost) 6132 return -1; 6133 6134 if (sched_feat(SIS_PROP)) { 6135 u64 span_avg = sd->span_weight * avg_idle; 6136 if (span_avg > 4*avg_cost) 6137 nr = div_u64(span_avg, avg_cost); 6138 else 6139 nr = 4; 6140 } 6141 6142 time = local_clock(); 6143 6144 for_each_cpu_wrap(cpu, sched_domain_span(sd), target) { 6145 if (!--nr) 6146 return -1; 6147 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6148 continue; 6149 if (available_idle_cpu(cpu)) 6150 break; 6151 } 6152 6153 time = local_clock() - time; 6154 cost = this_sd->avg_scan_cost; 6155 delta = (s64)(time - cost) / 8; 6156 this_sd->avg_scan_cost += delta; 6157 6158 return cpu; 6159 } 6160 6161 /* 6162 * Try and locate an idle core/thread in the LLC cache domain. 6163 */ 6164 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6165 { 6166 struct sched_domain *sd; 6167 int i, recent_used_cpu; 6168 6169 if (available_idle_cpu(target)) 6170 return target; 6171 6172 /* 6173 * If the previous CPU is cache affine and idle, don't be stupid: 6174 */ 6175 if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev)) 6176 return prev; 6177 6178 /* Check a recently used CPU as a potential idle candidate: */ 6179 recent_used_cpu = p->recent_used_cpu; 6180 if (recent_used_cpu != prev && 6181 recent_used_cpu != target && 6182 cpus_share_cache(recent_used_cpu, target) && 6183 available_idle_cpu(recent_used_cpu) && 6184 cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) { 6185 /* 6186 * Replace recent_used_cpu with prev as it is a potential 6187 * candidate for the next wake: 6188 */ 6189 p->recent_used_cpu = prev; 6190 return recent_used_cpu; 6191 } 6192 6193 sd = rcu_dereference(per_cpu(sd_llc, target)); 6194 if (!sd) 6195 return target; 6196 6197 i = select_idle_core(p, sd, target); 6198 if ((unsigned)i < nr_cpumask_bits) 6199 return i; 6200 6201 i = select_idle_cpu(p, sd, target); 6202 if ((unsigned)i < nr_cpumask_bits) 6203 return i; 6204 6205 i = select_idle_smt(p, sd, target); 6206 if ((unsigned)i < nr_cpumask_bits) 6207 return i; 6208 6209 return target; 6210 } 6211 6212 /** 6213 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks 6214 * @cpu: the CPU to get the utilization of 6215 * 6216 * The unit of the return value must be the one of capacity so we can compare 6217 * the utilization with the capacity of the CPU that is available for CFS task 6218 * (ie cpu_capacity). 6219 * 6220 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 6221 * recent utilization of currently non-runnable tasks on a CPU. It represents 6222 * the amount of utilization of a CPU in the range [0..capacity_orig] where 6223 * capacity_orig is the cpu_capacity available at the highest frequency 6224 * (arch_scale_freq_capacity()). 6225 * The utilization of a CPU converges towards a sum equal to or less than the 6226 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 6227 * the running time on this CPU scaled by capacity_curr. 6228 * 6229 * The estimated utilization of a CPU is defined to be the maximum between its 6230 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks 6231 * currently RUNNABLE on that CPU. 6232 * This allows to properly represent the expected utilization of a CPU which 6233 * has just got a big task running since a long sleep period. At the same time 6234 * however it preserves the benefits of the "blocked utilization" in 6235 * describing the potential for other tasks waking up on the same CPU. 6236 * 6237 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 6238 * higher than capacity_orig because of unfortunate rounding in 6239 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 6240 * the average stabilizes with the new running time. We need to check that the 6241 * utilization stays within the range of [0..capacity_orig] and cap it if 6242 * necessary. Without utilization capping, a group could be seen as overloaded 6243 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 6244 * available capacity. We allow utilization to overshoot capacity_curr (but not 6245 * capacity_orig) as it useful for predicting the capacity required after task 6246 * migrations (scheduler-driven DVFS). 6247 * 6248 * Return: the (estimated) utilization for the specified CPU 6249 */ 6250 static inline unsigned long cpu_util(int cpu) 6251 { 6252 struct cfs_rq *cfs_rq; 6253 unsigned int util; 6254 6255 cfs_rq = &cpu_rq(cpu)->cfs; 6256 util = READ_ONCE(cfs_rq->avg.util_avg); 6257 6258 if (sched_feat(UTIL_EST)) 6259 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued)); 6260 6261 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6262 } 6263 6264 /* 6265 * cpu_util_without: compute cpu utilization without any contributions from *p 6266 * @cpu: the CPU which utilization is requested 6267 * @p: the task which utilization should be discounted 6268 * 6269 * The utilization of a CPU is defined by the utilization of tasks currently 6270 * enqueued on that CPU as well as tasks which are currently sleeping after an 6271 * execution on that CPU. 6272 * 6273 * This method returns the utilization of the specified CPU by discounting the 6274 * utilization of the specified task, whenever the task is currently 6275 * contributing to the CPU utilization. 6276 */ 6277 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6278 { 6279 struct cfs_rq *cfs_rq; 6280 unsigned int util; 6281 6282 /* Task has no contribution or is new */ 6283 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6284 return cpu_util(cpu); 6285 6286 cfs_rq = &cpu_rq(cpu)->cfs; 6287 util = READ_ONCE(cfs_rq->avg.util_avg); 6288 6289 /* Discount task's util from CPU's util */ 6290 lsub_positive(&util, task_util(p)); 6291 6292 /* 6293 * Covered cases: 6294 * 6295 * a) if *p is the only task sleeping on this CPU, then: 6296 * cpu_util (== task_util) > util_est (== 0) 6297 * and thus we return: 6298 * cpu_util_without = (cpu_util - task_util) = 0 6299 * 6300 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6301 * IDLE, then: 6302 * cpu_util >= task_util 6303 * cpu_util > util_est (== 0) 6304 * and thus we discount *p's blocked utilization to return: 6305 * cpu_util_without = (cpu_util - task_util) >= 0 6306 * 6307 * c) if other tasks are RUNNABLE on that CPU and 6308 * util_est > cpu_util 6309 * then we use util_est since it returns a more restrictive 6310 * estimation of the spare capacity on that CPU, by just 6311 * considering the expected utilization of tasks already 6312 * runnable on that CPU. 6313 * 6314 * Cases a) and b) are covered by the above code, while case c) is 6315 * covered by the following code when estimated utilization is 6316 * enabled. 6317 */ 6318 if (sched_feat(UTIL_EST)) { 6319 unsigned int estimated = 6320 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6321 6322 /* 6323 * Despite the following checks we still have a small window 6324 * for a possible race, when an execl's select_task_rq_fair() 6325 * races with LB's detach_task(): 6326 * 6327 * detach_task() 6328 * p->on_rq = TASK_ON_RQ_MIGRATING; 6329 * ---------------------------------- A 6330 * deactivate_task() \ 6331 * dequeue_task() + RaceTime 6332 * util_est_dequeue() / 6333 * ---------------------------------- B 6334 * 6335 * The additional check on "current == p" it's required to 6336 * properly fix the execl regression and it helps in further 6337 * reducing the chances for the above race. 6338 */ 6339 if (unlikely(task_on_rq_queued(p) || current == p)) 6340 lsub_positive(&estimated, _task_util_est(p)); 6341 6342 util = max(util, estimated); 6343 } 6344 6345 /* 6346 * Utilization (estimated) can exceed the CPU capacity, thus let's 6347 * clamp to the maximum CPU capacity to ensure consistency with 6348 * the cpu_util call. 6349 */ 6350 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6351 } 6352 6353 /* 6354 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 6355 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 6356 * 6357 * In that case WAKE_AFFINE doesn't make sense and we'll let 6358 * BALANCE_WAKE sort things out. 6359 */ 6360 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 6361 { 6362 long min_cap, max_cap; 6363 6364 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 6365 return 0; 6366 6367 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 6368 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 6369 6370 /* Minimum capacity is close to max, no need to abort wake_affine */ 6371 if (max_cap - min_cap < max_cap >> 3) 6372 return 0; 6373 6374 /* Bring task utilization in sync with prev_cpu */ 6375 sync_entity_load_avg(&p->se); 6376 6377 return !task_fits_capacity(p, min_cap); 6378 } 6379 6380 /* 6381 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6382 * to @dst_cpu. 6383 */ 6384 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6385 { 6386 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6387 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6388 6389 /* 6390 * If @p migrates from @cpu to another, remove its contribution. Or, 6391 * if @p migrates from another CPU to @cpu, add its contribution. In 6392 * the other cases, @cpu is not impacted by the migration, so the 6393 * util_avg should already be correct. 6394 */ 6395 if (task_cpu(p) == cpu && dst_cpu != cpu) 6396 sub_positive(&util, task_util(p)); 6397 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6398 util += task_util(p); 6399 6400 if (sched_feat(UTIL_EST)) { 6401 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6402 6403 /* 6404 * During wake-up, the task isn't enqueued yet and doesn't 6405 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6406 * so just add it (if needed) to "simulate" what will be 6407 * cpu_util() after the task has been enqueued. 6408 */ 6409 if (dst_cpu == cpu) 6410 util_est += _task_util_est(p); 6411 6412 util = max(util, util_est); 6413 } 6414 6415 return min(util, capacity_orig_of(cpu)); 6416 } 6417 6418 /* 6419 * compute_energy(): Estimates the energy that would be consumed if @p was 6420 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6421 * landscape of the * CPUs after the task migration, and uses the Energy Model 6422 * to compute what would be the energy if we decided to actually migrate that 6423 * task. 6424 */ 6425 static long 6426 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6427 { 6428 long util, max_util, sum_util, energy = 0; 6429 int cpu; 6430 6431 for (; pd; pd = pd->next) { 6432 max_util = sum_util = 0; 6433 /* 6434 * The capacity state of CPUs of the current rd can be driven by 6435 * CPUs of another rd if they belong to the same performance 6436 * domain. So, account for the utilization of these CPUs too 6437 * by masking pd with cpu_online_mask instead of the rd span. 6438 * 6439 * If an entire performance domain is outside of the current rd, 6440 * it will not appear in its pd list and will not be accounted 6441 * by compute_energy(). 6442 */ 6443 for_each_cpu_and(cpu, perf_domain_span(pd), cpu_online_mask) { 6444 util = cpu_util_next(cpu, p, dst_cpu); 6445 util = schedutil_energy_util(cpu, util); 6446 max_util = max(util, max_util); 6447 sum_util += util; 6448 } 6449 6450 energy += em_pd_energy(pd->em_pd, max_util, sum_util); 6451 } 6452 6453 return energy; 6454 } 6455 6456 /* 6457 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6458 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6459 * spare capacity in each performance domain and uses it as a potential 6460 * candidate to execute the task. Then, it uses the Energy Model to figure 6461 * out which of the CPU candidates is the most energy-efficient. 6462 * 6463 * The rationale for this heuristic is as follows. In a performance domain, 6464 * all the most energy efficient CPU candidates (according to the Energy 6465 * Model) are those for which we'll request a low frequency. When there are 6466 * several CPUs for which the frequency request will be the same, we don't 6467 * have enough data to break the tie between them, because the Energy Model 6468 * only includes active power costs. With this model, if we assume that 6469 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6470 * the maximum spare capacity in a performance domain is guaranteed to be among 6471 * the best candidates of the performance domain. 6472 * 6473 * In practice, it could be preferable from an energy standpoint to pack 6474 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6475 * but that could also hurt our chances to go cluster idle, and we have no 6476 * ways to tell with the current Energy Model if this is actually a good 6477 * idea or not. So, find_energy_efficient_cpu() basically favors 6478 * cluster-packing, and spreading inside a cluster. That should at least be 6479 * a good thing for latency, and this is consistent with the idea that most 6480 * of the energy savings of EAS come from the asymmetry of the system, and 6481 * not so much from breaking the tie between identical CPUs. That's also the 6482 * reason why EAS is enabled in the topology code only for systems where 6483 * SD_ASYM_CPUCAPACITY is set. 6484 * 6485 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6486 * they don't have any useful utilization data yet and it's not possible to 6487 * forecast their impact on energy consumption. Consequently, they will be 6488 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6489 * to be energy-inefficient in some use-cases. The alternative would be to 6490 * bias new tasks towards specific types of CPUs first, or to try to infer 6491 * their util_avg from the parent task, but those heuristics could hurt 6492 * other use-cases too. So, until someone finds a better way to solve this, 6493 * let's keep things simple by re-using the existing slow path. 6494 */ 6495 6496 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6497 { 6498 unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX; 6499 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6500 int cpu, best_energy_cpu = prev_cpu; 6501 struct perf_domain *head, *pd; 6502 unsigned long cpu_cap, util; 6503 struct sched_domain *sd; 6504 6505 rcu_read_lock(); 6506 pd = rcu_dereference(rd->pd); 6507 if (!pd || READ_ONCE(rd->overutilized)) 6508 goto fail; 6509 head = pd; 6510 6511 /* 6512 * Energy-aware wake-up happens on the lowest sched_domain starting 6513 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6514 */ 6515 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6516 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6517 sd = sd->parent; 6518 if (!sd) 6519 goto fail; 6520 6521 sync_entity_load_avg(&p->se); 6522 if (!task_util_est(p)) 6523 goto unlock; 6524 6525 for (; pd; pd = pd->next) { 6526 unsigned long cur_energy, spare_cap, max_spare_cap = 0; 6527 int max_spare_cap_cpu = -1; 6528 6529 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6530 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 6531 continue; 6532 6533 /* Skip CPUs that will be overutilized. */ 6534 util = cpu_util_next(cpu, p, cpu); 6535 cpu_cap = capacity_of(cpu); 6536 if (cpu_cap * 1024 < util * capacity_margin) 6537 continue; 6538 6539 /* Always use prev_cpu as a candidate. */ 6540 if (cpu == prev_cpu) { 6541 prev_energy = compute_energy(p, prev_cpu, head); 6542 best_energy = min(best_energy, prev_energy); 6543 continue; 6544 } 6545 6546 /* 6547 * Find the CPU with the maximum spare capacity in 6548 * the performance domain 6549 */ 6550 spare_cap = cpu_cap - util; 6551 if (spare_cap > max_spare_cap) { 6552 max_spare_cap = spare_cap; 6553 max_spare_cap_cpu = cpu; 6554 } 6555 } 6556 6557 /* Evaluate the energy impact of using this CPU. */ 6558 if (max_spare_cap_cpu >= 0) { 6559 cur_energy = compute_energy(p, max_spare_cap_cpu, head); 6560 if (cur_energy < best_energy) { 6561 best_energy = cur_energy; 6562 best_energy_cpu = max_spare_cap_cpu; 6563 } 6564 } 6565 } 6566 unlock: 6567 rcu_read_unlock(); 6568 6569 /* 6570 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6571 * least 6% of the energy used by prev_cpu. 6572 */ 6573 if (prev_energy == ULONG_MAX) 6574 return best_energy_cpu; 6575 6576 if ((prev_energy - best_energy) > (prev_energy >> 4)) 6577 return best_energy_cpu; 6578 6579 return prev_cpu; 6580 6581 fail: 6582 rcu_read_unlock(); 6583 6584 return -1; 6585 } 6586 6587 /* 6588 * select_task_rq_fair: Select target runqueue for the waking task in domains 6589 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 6590 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6591 * 6592 * Balances load by selecting the idlest CPU in the idlest group, or under 6593 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6594 * 6595 * Returns the target CPU number. 6596 * 6597 * preempt must be disabled. 6598 */ 6599 static int 6600 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 6601 { 6602 struct sched_domain *tmp, *sd = NULL; 6603 int cpu = smp_processor_id(); 6604 int new_cpu = prev_cpu; 6605 int want_affine = 0; 6606 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6607 6608 if (sd_flag & SD_BALANCE_WAKE) { 6609 record_wakee(p); 6610 6611 if (static_branch_unlikely(&sched_energy_present)) { 6612 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6613 if (new_cpu >= 0) 6614 return new_cpu; 6615 new_cpu = prev_cpu; 6616 } 6617 6618 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) && 6619 cpumask_test_cpu(cpu, &p->cpus_allowed); 6620 } 6621 6622 rcu_read_lock(); 6623 for_each_domain(cpu, tmp) { 6624 if (!(tmp->flags & SD_LOAD_BALANCE)) 6625 break; 6626 6627 /* 6628 * If both 'cpu' and 'prev_cpu' are part of this domain, 6629 * cpu is a valid SD_WAKE_AFFINE target. 6630 */ 6631 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6632 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6633 if (cpu != prev_cpu) 6634 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6635 6636 sd = NULL; /* Prefer wake_affine over balance flags */ 6637 break; 6638 } 6639 6640 if (tmp->flags & sd_flag) 6641 sd = tmp; 6642 else if (!want_affine) 6643 break; 6644 } 6645 6646 if (unlikely(sd)) { 6647 /* Slow path */ 6648 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6649 } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */ 6650 /* Fast path */ 6651 6652 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6653 6654 if (want_affine) 6655 current->recent_used_cpu = cpu; 6656 } 6657 rcu_read_unlock(); 6658 6659 return new_cpu; 6660 } 6661 6662 static void detach_entity_cfs_rq(struct sched_entity *se); 6663 6664 /* 6665 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6666 * cfs_rq_of(p) references at time of call are still valid and identify the 6667 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6668 */ 6669 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6670 { 6671 /* 6672 * As blocked tasks retain absolute vruntime the migration needs to 6673 * deal with this by subtracting the old and adding the new 6674 * min_vruntime -- the latter is done by enqueue_entity() when placing 6675 * the task on the new runqueue. 6676 */ 6677 if (p->state == TASK_WAKING) { 6678 struct sched_entity *se = &p->se; 6679 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6680 u64 min_vruntime; 6681 6682 #ifndef CONFIG_64BIT 6683 u64 min_vruntime_copy; 6684 6685 do { 6686 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6687 smp_rmb(); 6688 min_vruntime = cfs_rq->min_vruntime; 6689 } while (min_vruntime != min_vruntime_copy); 6690 #else 6691 min_vruntime = cfs_rq->min_vruntime; 6692 #endif 6693 6694 se->vruntime -= min_vruntime; 6695 } 6696 6697 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6698 /* 6699 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6700 * rq->lock and can modify state directly. 6701 */ 6702 lockdep_assert_held(&task_rq(p)->lock); 6703 detach_entity_cfs_rq(&p->se); 6704 6705 } else { 6706 /* 6707 * We are supposed to update the task to "current" time, then 6708 * its up to date and ready to go to new CPU/cfs_rq. But we 6709 * have difficulty in getting what current time is, so simply 6710 * throw away the out-of-date time. This will result in the 6711 * wakee task is less decayed, but giving the wakee more load 6712 * sounds not bad. 6713 */ 6714 remove_entity_load_avg(&p->se); 6715 } 6716 6717 /* Tell new CPU we are migrated */ 6718 p->se.avg.last_update_time = 0; 6719 6720 /* We have migrated, no longer consider this task hot */ 6721 p->se.exec_start = 0; 6722 6723 update_scan_period(p, new_cpu); 6724 } 6725 6726 static void task_dead_fair(struct task_struct *p) 6727 { 6728 remove_entity_load_avg(&p->se); 6729 } 6730 #endif /* CONFIG_SMP */ 6731 6732 static unsigned long wakeup_gran(struct sched_entity *se) 6733 { 6734 unsigned long gran = sysctl_sched_wakeup_granularity; 6735 6736 /* 6737 * Since its curr running now, convert the gran from real-time 6738 * to virtual-time in his units. 6739 * 6740 * By using 'se' instead of 'curr' we penalize light tasks, so 6741 * they get preempted easier. That is, if 'se' < 'curr' then 6742 * the resulting gran will be larger, therefore penalizing the 6743 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6744 * be smaller, again penalizing the lighter task. 6745 * 6746 * This is especially important for buddies when the leftmost 6747 * task is higher priority than the buddy. 6748 */ 6749 return calc_delta_fair(gran, se); 6750 } 6751 6752 /* 6753 * Should 'se' preempt 'curr'. 6754 * 6755 * |s1 6756 * |s2 6757 * |s3 6758 * g 6759 * |<--->|c 6760 * 6761 * w(c, s1) = -1 6762 * w(c, s2) = 0 6763 * w(c, s3) = 1 6764 * 6765 */ 6766 static int 6767 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6768 { 6769 s64 gran, vdiff = curr->vruntime - se->vruntime; 6770 6771 if (vdiff <= 0) 6772 return -1; 6773 6774 gran = wakeup_gran(se); 6775 if (vdiff > gran) 6776 return 1; 6777 6778 return 0; 6779 } 6780 6781 static void set_last_buddy(struct sched_entity *se) 6782 { 6783 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6784 return; 6785 6786 for_each_sched_entity(se) { 6787 if (SCHED_WARN_ON(!se->on_rq)) 6788 return; 6789 cfs_rq_of(se)->last = se; 6790 } 6791 } 6792 6793 static void set_next_buddy(struct sched_entity *se) 6794 { 6795 if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se)))) 6796 return; 6797 6798 for_each_sched_entity(se) { 6799 if (SCHED_WARN_ON(!se->on_rq)) 6800 return; 6801 cfs_rq_of(se)->next = se; 6802 } 6803 } 6804 6805 static void set_skip_buddy(struct sched_entity *se) 6806 { 6807 for_each_sched_entity(se) 6808 cfs_rq_of(se)->skip = se; 6809 } 6810 6811 /* 6812 * Preempt the current task with a newly woken task if needed: 6813 */ 6814 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6815 { 6816 struct task_struct *curr = rq->curr; 6817 struct sched_entity *se = &curr->se, *pse = &p->se; 6818 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6819 int scale = cfs_rq->nr_running >= sched_nr_latency; 6820 int next_buddy_marked = 0; 6821 6822 if (unlikely(se == pse)) 6823 return; 6824 6825 /* 6826 * This is possible from callers such as attach_tasks(), in which we 6827 * unconditionally check_prempt_curr() after an enqueue (which may have 6828 * lead to a throttle). This both saves work and prevents false 6829 * next-buddy nomination below. 6830 */ 6831 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6832 return; 6833 6834 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6835 set_next_buddy(pse); 6836 next_buddy_marked = 1; 6837 } 6838 6839 /* 6840 * We can come here with TIF_NEED_RESCHED already set from new task 6841 * wake up path. 6842 * 6843 * Note: this also catches the edge-case of curr being in a throttled 6844 * group (e.g. via set_curr_task), since update_curr() (in the 6845 * enqueue of curr) will have resulted in resched being set. This 6846 * prevents us from potentially nominating it as a false LAST_BUDDY 6847 * below. 6848 */ 6849 if (test_tsk_need_resched(curr)) 6850 return; 6851 6852 /* Idle tasks are by definition preempted by non-idle tasks. */ 6853 if (unlikely(task_has_idle_policy(curr)) && 6854 likely(!task_has_idle_policy(p))) 6855 goto preempt; 6856 6857 /* 6858 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6859 * is driven by the tick): 6860 */ 6861 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6862 return; 6863 6864 find_matching_se(&se, &pse); 6865 update_curr(cfs_rq_of(se)); 6866 BUG_ON(!pse); 6867 if (wakeup_preempt_entity(se, pse) == 1) { 6868 /* 6869 * Bias pick_next to pick the sched entity that is 6870 * triggering this preemption. 6871 */ 6872 if (!next_buddy_marked) 6873 set_next_buddy(pse); 6874 goto preempt; 6875 } 6876 6877 return; 6878 6879 preempt: 6880 resched_curr(rq); 6881 /* 6882 * Only set the backward buddy when the current task is still 6883 * on the rq. This can happen when a wakeup gets interleaved 6884 * with schedule on the ->pre_schedule() or idle_balance() 6885 * point, either of which can * drop the rq lock. 6886 * 6887 * Also, during early boot the idle thread is in the fair class, 6888 * for obvious reasons its a bad idea to schedule back to it. 6889 */ 6890 if (unlikely(!se->on_rq || curr == rq->idle)) 6891 return; 6892 6893 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6894 set_last_buddy(se); 6895 } 6896 6897 static struct task_struct * 6898 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6899 { 6900 struct cfs_rq *cfs_rq = &rq->cfs; 6901 struct sched_entity *se; 6902 struct task_struct *p; 6903 int new_tasks; 6904 6905 again: 6906 if (!cfs_rq->nr_running) 6907 goto idle; 6908 6909 #ifdef CONFIG_FAIR_GROUP_SCHED 6910 if (prev->sched_class != &fair_sched_class) 6911 goto simple; 6912 6913 /* 6914 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6915 * likely that a next task is from the same cgroup as the current. 6916 * 6917 * Therefore attempt to avoid putting and setting the entire cgroup 6918 * hierarchy, only change the part that actually changes. 6919 */ 6920 6921 do { 6922 struct sched_entity *curr = cfs_rq->curr; 6923 6924 /* 6925 * Since we got here without doing put_prev_entity() we also 6926 * have to consider cfs_rq->curr. If it is still a runnable 6927 * entity, update_curr() will update its vruntime, otherwise 6928 * forget we've ever seen it. 6929 */ 6930 if (curr) { 6931 if (curr->on_rq) 6932 update_curr(cfs_rq); 6933 else 6934 curr = NULL; 6935 6936 /* 6937 * This call to check_cfs_rq_runtime() will do the 6938 * throttle and dequeue its entity in the parent(s). 6939 * Therefore the nr_running test will indeed 6940 * be correct. 6941 */ 6942 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 6943 cfs_rq = &rq->cfs; 6944 6945 if (!cfs_rq->nr_running) 6946 goto idle; 6947 6948 goto simple; 6949 } 6950 } 6951 6952 se = pick_next_entity(cfs_rq, curr); 6953 cfs_rq = group_cfs_rq(se); 6954 } while (cfs_rq); 6955 6956 p = task_of(se); 6957 6958 /* 6959 * Since we haven't yet done put_prev_entity and if the selected task 6960 * is a different task than we started out with, try and touch the 6961 * least amount of cfs_rqs. 6962 */ 6963 if (prev != p) { 6964 struct sched_entity *pse = &prev->se; 6965 6966 while (!(cfs_rq = is_same_group(se, pse))) { 6967 int se_depth = se->depth; 6968 int pse_depth = pse->depth; 6969 6970 if (se_depth <= pse_depth) { 6971 put_prev_entity(cfs_rq_of(pse), pse); 6972 pse = parent_entity(pse); 6973 } 6974 if (se_depth >= pse_depth) { 6975 set_next_entity(cfs_rq_of(se), se); 6976 se = parent_entity(se); 6977 } 6978 } 6979 6980 put_prev_entity(cfs_rq, pse); 6981 set_next_entity(cfs_rq, se); 6982 } 6983 6984 goto done; 6985 simple: 6986 #endif 6987 6988 put_prev_task(rq, prev); 6989 6990 do { 6991 se = pick_next_entity(cfs_rq, NULL); 6992 set_next_entity(cfs_rq, se); 6993 cfs_rq = group_cfs_rq(se); 6994 } while (cfs_rq); 6995 6996 p = task_of(se); 6997 6998 done: __maybe_unused; 6999 #ifdef CONFIG_SMP 7000 /* 7001 * Move the next running task to the front of 7002 * the list, so our cfs_tasks list becomes MRU 7003 * one. 7004 */ 7005 list_move(&p->se.group_node, &rq->cfs_tasks); 7006 #endif 7007 7008 if (hrtick_enabled(rq)) 7009 hrtick_start_fair(rq, p); 7010 7011 update_misfit_status(p, rq); 7012 7013 return p; 7014 7015 idle: 7016 update_misfit_status(NULL, rq); 7017 new_tasks = idle_balance(rq, rf); 7018 7019 /* 7020 * Because idle_balance() releases (and re-acquires) rq->lock, it is 7021 * possible for any higher priority task to appear. In that case we 7022 * must re-start the pick_next_entity() loop. 7023 */ 7024 if (new_tasks < 0) 7025 return RETRY_TASK; 7026 7027 if (new_tasks > 0) 7028 goto again; 7029 7030 return NULL; 7031 } 7032 7033 /* 7034 * Account for a descheduled task: 7035 */ 7036 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7037 { 7038 struct sched_entity *se = &prev->se; 7039 struct cfs_rq *cfs_rq; 7040 7041 for_each_sched_entity(se) { 7042 cfs_rq = cfs_rq_of(se); 7043 put_prev_entity(cfs_rq, se); 7044 } 7045 } 7046 7047 /* 7048 * sched_yield() is very simple 7049 * 7050 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7051 */ 7052 static void yield_task_fair(struct rq *rq) 7053 { 7054 struct task_struct *curr = rq->curr; 7055 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7056 struct sched_entity *se = &curr->se; 7057 7058 /* 7059 * Are we the only task in the tree? 7060 */ 7061 if (unlikely(rq->nr_running == 1)) 7062 return; 7063 7064 clear_buddies(cfs_rq, se); 7065 7066 if (curr->policy != SCHED_BATCH) { 7067 update_rq_clock(rq); 7068 /* 7069 * Update run-time statistics of the 'current'. 7070 */ 7071 update_curr(cfs_rq); 7072 /* 7073 * Tell update_rq_clock() that we've just updated, 7074 * so we don't do microscopic update in schedule() 7075 * and double the fastpath cost. 7076 */ 7077 rq_clock_skip_update(rq); 7078 } 7079 7080 set_skip_buddy(se); 7081 } 7082 7083 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 7084 { 7085 struct sched_entity *se = &p->se; 7086 7087 /* throttled hierarchies are not runnable */ 7088 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7089 return false; 7090 7091 /* Tell the scheduler that we'd really like pse to run next. */ 7092 set_next_buddy(se); 7093 7094 yield_task_fair(rq); 7095 7096 return true; 7097 } 7098 7099 #ifdef CONFIG_SMP 7100 /************************************************** 7101 * Fair scheduling class load-balancing methods. 7102 * 7103 * BASICS 7104 * 7105 * The purpose of load-balancing is to achieve the same basic fairness the 7106 * per-CPU scheduler provides, namely provide a proportional amount of compute 7107 * time to each task. This is expressed in the following equation: 7108 * 7109 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7110 * 7111 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7112 * W_i,0 is defined as: 7113 * 7114 * W_i,0 = \Sum_j w_i,j (2) 7115 * 7116 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7117 * is derived from the nice value as per sched_prio_to_weight[]. 7118 * 7119 * The weight average is an exponential decay average of the instantaneous 7120 * weight: 7121 * 7122 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7123 * 7124 * C_i is the compute capacity of CPU i, typically it is the 7125 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7126 * can also include other factors [XXX]. 7127 * 7128 * To achieve this balance we define a measure of imbalance which follows 7129 * directly from (1): 7130 * 7131 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7132 * 7133 * We them move tasks around to minimize the imbalance. In the continuous 7134 * function space it is obvious this converges, in the discrete case we get 7135 * a few fun cases generally called infeasible weight scenarios. 7136 * 7137 * [XXX expand on: 7138 * - infeasible weights; 7139 * - local vs global optima in the discrete case. ] 7140 * 7141 * 7142 * SCHED DOMAINS 7143 * 7144 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7145 * for all i,j solution, we create a tree of CPUs that follows the hardware 7146 * topology where each level pairs two lower groups (or better). This results 7147 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7148 * tree to only the first of the previous level and we decrease the frequency 7149 * of load-balance at each level inv. proportional to the number of CPUs in 7150 * the groups. 7151 * 7152 * This yields: 7153 * 7154 * log_2 n 1 n 7155 * \Sum { --- * --- * 2^i } = O(n) (5) 7156 * i = 0 2^i 2^i 7157 * `- size of each group 7158 * | | `- number of CPUs doing load-balance 7159 * | `- freq 7160 * `- sum over all levels 7161 * 7162 * Coupled with a limit on how many tasks we can migrate every balance pass, 7163 * this makes (5) the runtime complexity of the balancer. 7164 * 7165 * An important property here is that each CPU is still (indirectly) connected 7166 * to every other CPU in at most O(log n) steps: 7167 * 7168 * The adjacency matrix of the resulting graph is given by: 7169 * 7170 * log_2 n 7171 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7172 * k = 0 7173 * 7174 * And you'll find that: 7175 * 7176 * A^(log_2 n)_i,j != 0 for all i,j (7) 7177 * 7178 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7179 * The task movement gives a factor of O(m), giving a convergence complexity 7180 * of: 7181 * 7182 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7183 * 7184 * 7185 * WORK CONSERVING 7186 * 7187 * In order to avoid CPUs going idle while there's still work to do, new idle 7188 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7189 * tree itself instead of relying on other CPUs to bring it work. 7190 * 7191 * This adds some complexity to both (5) and (8) but it reduces the total idle 7192 * time. 7193 * 7194 * [XXX more?] 7195 * 7196 * 7197 * CGROUPS 7198 * 7199 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7200 * 7201 * s_k,i 7202 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7203 * S_k 7204 * 7205 * Where 7206 * 7207 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7208 * 7209 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7210 * 7211 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7212 * property. 7213 * 7214 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7215 * rewrite all of this once again.] 7216 */ 7217 7218 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7219 7220 enum fbq_type { regular, remote, all }; 7221 7222 enum group_type { 7223 group_other = 0, 7224 group_misfit_task, 7225 group_imbalanced, 7226 group_overloaded, 7227 }; 7228 7229 #define LBF_ALL_PINNED 0x01 7230 #define LBF_NEED_BREAK 0x02 7231 #define LBF_DST_PINNED 0x04 7232 #define LBF_SOME_PINNED 0x08 7233 #define LBF_NOHZ_STATS 0x10 7234 #define LBF_NOHZ_AGAIN 0x20 7235 7236 struct lb_env { 7237 struct sched_domain *sd; 7238 7239 struct rq *src_rq; 7240 int src_cpu; 7241 7242 int dst_cpu; 7243 struct rq *dst_rq; 7244 7245 struct cpumask *dst_grpmask; 7246 int new_dst_cpu; 7247 enum cpu_idle_type idle; 7248 long imbalance; 7249 /* The set of CPUs under consideration for load-balancing */ 7250 struct cpumask *cpus; 7251 7252 unsigned int flags; 7253 7254 unsigned int loop; 7255 unsigned int loop_break; 7256 unsigned int loop_max; 7257 7258 enum fbq_type fbq_type; 7259 enum group_type src_grp_type; 7260 struct list_head tasks; 7261 }; 7262 7263 /* 7264 * Is this task likely cache-hot: 7265 */ 7266 static int task_hot(struct task_struct *p, struct lb_env *env) 7267 { 7268 s64 delta; 7269 7270 lockdep_assert_held(&env->src_rq->lock); 7271 7272 if (p->sched_class != &fair_sched_class) 7273 return 0; 7274 7275 if (unlikely(task_has_idle_policy(p))) 7276 return 0; 7277 7278 /* 7279 * Buddy candidates are cache hot: 7280 */ 7281 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7282 (&p->se == cfs_rq_of(&p->se)->next || 7283 &p->se == cfs_rq_of(&p->se)->last)) 7284 return 1; 7285 7286 if (sysctl_sched_migration_cost == -1) 7287 return 1; 7288 if (sysctl_sched_migration_cost == 0) 7289 return 0; 7290 7291 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7292 7293 return delta < (s64)sysctl_sched_migration_cost; 7294 } 7295 7296 #ifdef CONFIG_NUMA_BALANCING 7297 /* 7298 * Returns 1, if task migration degrades locality 7299 * Returns 0, if task migration improves locality i.e migration preferred. 7300 * Returns -1, if task migration is not affected by locality. 7301 */ 7302 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7303 { 7304 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7305 unsigned long src_weight, dst_weight; 7306 int src_nid, dst_nid, dist; 7307 7308 if (!static_branch_likely(&sched_numa_balancing)) 7309 return -1; 7310 7311 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7312 return -1; 7313 7314 src_nid = cpu_to_node(env->src_cpu); 7315 dst_nid = cpu_to_node(env->dst_cpu); 7316 7317 if (src_nid == dst_nid) 7318 return -1; 7319 7320 /* Migrating away from the preferred node is always bad. */ 7321 if (src_nid == p->numa_preferred_nid) { 7322 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7323 return 1; 7324 else 7325 return -1; 7326 } 7327 7328 /* Encourage migration to the preferred node. */ 7329 if (dst_nid == p->numa_preferred_nid) 7330 return 0; 7331 7332 /* Leaving a core idle is often worse than degrading locality. */ 7333 if (env->idle == CPU_IDLE) 7334 return -1; 7335 7336 dist = node_distance(src_nid, dst_nid); 7337 if (numa_group) { 7338 src_weight = group_weight(p, src_nid, dist); 7339 dst_weight = group_weight(p, dst_nid, dist); 7340 } else { 7341 src_weight = task_weight(p, src_nid, dist); 7342 dst_weight = task_weight(p, dst_nid, dist); 7343 } 7344 7345 return dst_weight < src_weight; 7346 } 7347 7348 #else 7349 static inline int migrate_degrades_locality(struct task_struct *p, 7350 struct lb_env *env) 7351 { 7352 return -1; 7353 } 7354 #endif 7355 7356 /* 7357 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7358 */ 7359 static 7360 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7361 { 7362 int tsk_cache_hot; 7363 7364 lockdep_assert_held(&env->src_rq->lock); 7365 7366 /* 7367 * We do not migrate tasks that are: 7368 * 1) throttled_lb_pair, or 7369 * 2) cannot be migrated to this CPU due to cpus_allowed, or 7370 * 3) running (obviously), or 7371 * 4) are cache-hot on their current CPU. 7372 */ 7373 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7374 return 0; 7375 7376 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) { 7377 int cpu; 7378 7379 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 7380 7381 env->flags |= LBF_SOME_PINNED; 7382 7383 /* 7384 * Remember if this task can be migrated to any other CPU in 7385 * our sched_group. We may want to revisit it if we couldn't 7386 * meet load balance goals by pulling other tasks on src_cpu. 7387 * 7388 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have 7389 * already computed one in current iteration. 7390 */ 7391 if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED)) 7392 return 0; 7393 7394 /* Prevent to re-select dst_cpu via env's CPUs: */ 7395 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7396 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) { 7397 env->flags |= LBF_DST_PINNED; 7398 env->new_dst_cpu = cpu; 7399 break; 7400 } 7401 } 7402 7403 return 0; 7404 } 7405 7406 /* Record that we found atleast one task that could run on dst_cpu */ 7407 env->flags &= ~LBF_ALL_PINNED; 7408 7409 if (task_running(env->src_rq, p)) { 7410 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 7411 return 0; 7412 } 7413 7414 /* 7415 * Aggressive migration if: 7416 * 1) destination numa is preferred 7417 * 2) task is cache cold, or 7418 * 3) too many balance attempts have failed. 7419 */ 7420 tsk_cache_hot = migrate_degrades_locality(p, env); 7421 if (tsk_cache_hot == -1) 7422 tsk_cache_hot = task_hot(p, env); 7423 7424 if (tsk_cache_hot <= 0 || 7425 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7426 if (tsk_cache_hot == 1) { 7427 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7428 schedstat_inc(p->se.statistics.nr_forced_migrations); 7429 } 7430 return 1; 7431 } 7432 7433 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 7434 return 0; 7435 } 7436 7437 /* 7438 * detach_task() -- detach the task for the migration specified in env 7439 */ 7440 static void detach_task(struct task_struct *p, struct lb_env *env) 7441 { 7442 lockdep_assert_held(&env->src_rq->lock); 7443 7444 p->on_rq = TASK_ON_RQ_MIGRATING; 7445 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7446 set_task_cpu(p, env->dst_cpu); 7447 } 7448 7449 /* 7450 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7451 * part of active balancing operations within "domain". 7452 * 7453 * Returns a task if successful and NULL otherwise. 7454 */ 7455 static struct task_struct *detach_one_task(struct lb_env *env) 7456 { 7457 struct task_struct *p; 7458 7459 lockdep_assert_held(&env->src_rq->lock); 7460 7461 list_for_each_entry_reverse(p, 7462 &env->src_rq->cfs_tasks, se.group_node) { 7463 if (!can_migrate_task(p, env)) 7464 continue; 7465 7466 detach_task(p, env); 7467 7468 /* 7469 * Right now, this is only the second place where 7470 * lb_gained[env->idle] is updated (other is detach_tasks) 7471 * so we can safely collect stats here rather than 7472 * inside detach_tasks(). 7473 */ 7474 schedstat_inc(env->sd->lb_gained[env->idle]); 7475 return p; 7476 } 7477 return NULL; 7478 } 7479 7480 static const unsigned int sched_nr_migrate_break = 32; 7481 7482 /* 7483 * detach_tasks() -- tries to detach up to imbalance weighted load from 7484 * busiest_rq, as part of a balancing operation within domain "sd". 7485 * 7486 * Returns number of detached tasks if successful and 0 otherwise. 7487 */ 7488 static int detach_tasks(struct lb_env *env) 7489 { 7490 struct list_head *tasks = &env->src_rq->cfs_tasks; 7491 struct task_struct *p; 7492 unsigned long load; 7493 int detached = 0; 7494 7495 lockdep_assert_held(&env->src_rq->lock); 7496 7497 if (env->imbalance <= 0) 7498 return 0; 7499 7500 while (!list_empty(tasks)) { 7501 /* 7502 * We don't want to steal all, otherwise we may be treated likewise, 7503 * which could at worst lead to a livelock crash. 7504 */ 7505 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7506 break; 7507 7508 p = list_last_entry(tasks, struct task_struct, se.group_node); 7509 7510 env->loop++; 7511 /* We've more or less seen every task there is, call it quits */ 7512 if (env->loop > env->loop_max) 7513 break; 7514 7515 /* take a breather every nr_migrate tasks */ 7516 if (env->loop > env->loop_break) { 7517 env->loop_break += sched_nr_migrate_break; 7518 env->flags |= LBF_NEED_BREAK; 7519 break; 7520 } 7521 7522 if (!can_migrate_task(p, env)) 7523 goto next; 7524 7525 load = task_h_load(p); 7526 7527 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 7528 goto next; 7529 7530 if ((load / 2) > env->imbalance) 7531 goto next; 7532 7533 detach_task(p, env); 7534 list_add(&p->se.group_node, &env->tasks); 7535 7536 detached++; 7537 env->imbalance -= load; 7538 7539 #ifdef CONFIG_PREEMPT 7540 /* 7541 * NEWIDLE balancing is a source of latency, so preemptible 7542 * kernels will stop after the first task is detached to minimize 7543 * the critical section. 7544 */ 7545 if (env->idle == CPU_NEWLY_IDLE) 7546 break; 7547 #endif 7548 7549 /* 7550 * We only want to steal up to the prescribed amount of 7551 * weighted load. 7552 */ 7553 if (env->imbalance <= 0) 7554 break; 7555 7556 continue; 7557 next: 7558 list_move(&p->se.group_node, tasks); 7559 } 7560 7561 /* 7562 * Right now, this is one of only two places we collect this stat 7563 * so we can safely collect detach_one_task() stats here rather 7564 * than inside detach_one_task(). 7565 */ 7566 schedstat_add(env->sd->lb_gained[env->idle], detached); 7567 7568 return detached; 7569 } 7570 7571 /* 7572 * attach_task() -- attach the task detached by detach_task() to its new rq. 7573 */ 7574 static void attach_task(struct rq *rq, struct task_struct *p) 7575 { 7576 lockdep_assert_held(&rq->lock); 7577 7578 BUG_ON(task_rq(p) != rq); 7579 activate_task(rq, p, ENQUEUE_NOCLOCK); 7580 p->on_rq = TASK_ON_RQ_QUEUED; 7581 check_preempt_curr(rq, p, 0); 7582 } 7583 7584 /* 7585 * attach_one_task() -- attaches the task returned from detach_one_task() to 7586 * its new rq. 7587 */ 7588 static void attach_one_task(struct rq *rq, struct task_struct *p) 7589 { 7590 struct rq_flags rf; 7591 7592 rq_lock(rq, &rf); 7593 update_rq_clock(rq); 7594 attach_task(rq, p); 7595 rq_unlock(rq, &rf); 7596 } 7597 7598 /* 7599 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 7600 * new rq. 7601 */ 7602 static void attach_tasks(struct lb_env *env) 7603 { 7604 struct list_head *tasks = &env->tasks; 7605 struct task_struct *p; 7606 struct rq_flags rf; 7607 7608 rq_lock(env->dst_rq, &rf); 7609 update_rq_clock(env->dst_rq); 7610 7611 while (!list_empty(tasks)) { 7612 p = list_first_entry(tasks, struct task_struct, se.group_node); 7613 list_del_init(&p->se.group_node); 7614 7615 attach_task(env->dst_rq, p); 7616 } 7617 7618 rq_unlock(env->dst_rq, &rf); 7619 } 7620 7621 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 7622 { 7623 if (cfs_rq->avg.load_avg) 7624 return true; 7625 7626 if (cfs_rq->avg.util_avg) 7627 return true; 7628 7629 return false; 7630 } 7631 7632 static inline bool others_have_blocked(struct rq *rq) 7633 { 7634 if (READ_ONCE(rq->avg_rt.util_avg)) 7635 return true; 7636 7637 if (READ_ONCE(rq->avg_dl.util_avg)) 7638 return true; 7639 7640 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 7641 if (READ_ONCE(rq->avg_irq.util_avg)) 7642 return true; 7643 #endif 7644 7645 return false; 7646 } 7647 7648 #ifdef CONFIG_FAIR_GROUP_SCHED 7649 7650 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 7651 { 7652 if (cfs_rq->load.weight) 7653 return false; 7654 7655 if (cfs_rq->avg.load_sum) 7656 return false; 7657 7658 if (cfs_rq->avg.util_sum) 7659 return false; 7660 7661 if (cfs_rq->avg.runnable_load_sum) 7662 return false; 7663 7664 return true; 7665 } 7666 7667 static void update_blocked_averages(int cpu) 7668 { 7669 struct rq *rq = cpu_rq(cpu); 7670 struct cfs_rq *cfs_rq, *pos; 7671 const struct sched_class *curr_class; 7672 struct rq_flags rf; 7673 bool done = true; 7674 7675 rq_lock_irqsave(rq, &rf); 7676 update_rq_clock(rq); 7677 7678 /* 7679 * Iterates the task_group tree in a bottom up fashion, see 7680 * list_add_leaf_cfs_rq() for details. 7681 */ 7682 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 7683 struct sched_entity *se; 7684 7685 /* throttled entities do not contribute to load */ 7686 if (throttled_hierarchy(cfs_rq)) 7687 continue; 7688 7689 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq)) 7690 update_tg_load_avg(cfs_rq, 0); 7691 7692 /* Propagate pending load changes to the parent, if any: */ 7693 se = cfs_rq->tg->se[cpu]; 7694 if (se && !skip_blocked_update(se)) 7695 update_load_avg(cfs_rq_of(se), se, 0); 7696 7697 /* 7698 * There can be a lot of idle CPU cgroups. Don't let fully 7699 * decayed cfs_rqs linger on the list. 7700 */ 7701 if (cfs_rq_is_decayed(cfs_rq)) 7702 list_del_leaf_cfs_rq(cfs_rq); 7703 7704 /* Don't need periodic decay once load/util_avg are null */ 7705 if (cfs_rq_has_blocked(cfs_rq)) 7706 done = false; 7707 } 7708 7709 curr_class = rq->curr->sched_class; 7710 update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class); 7711 update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class); 7712 update_irq_load_avg(rq, 0); 7713 /* Don't need periodic decay once load/util_avg are null */ 7714 if (others_have_blocked(rq)) 7715 done = false; 7716 7717 #ifdef CONFIG_NO_HZ_COMMON 7718 rq->last_blocked_load_update_tick = jiffies; 7719 if (done) 7720 rq->has_blocked_load = 0; 7721 #endif 7722 rq_unlock_irqrestore(rq, &rf); 7723 } 7724 7725 /* 7726 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 7727 * This needs to be done in a top-down fashion because the load of a child 7728 * group is a fraction of its parents load. 7729 */ 7730 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 7731 { 7732 struct rq *rq = rq_of(cfs_rq); 7733 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 7734 unsigned long now = jiffies; 7735 unsigned long load; 7736 7737 if (cfs_rq->last_h_load_update == now) 7738 return; 7739 7740 cfs_rq->h_load_next = NULL; 7741 for_each_sched_entity(se) { 7742 cfs_rq = cfs_rq_of(se); 7743 cfs_rq->h_load_next = se; 7744 if (cfs_rq->last_h_load_update == now) 7745 break; 7746 } 7747 7748 if (!se) { 7749 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 7750 cfs_rq->last_h_load_update = now; 7751 } 7752 7753 while ((se = cfs_rq->h_load_next) != NULL) { 7754 load = cfs_rq->h_load; 7755 load = div64_ul(load * se->avg.load_avg, 7756 cfs_rq_load_avg(cfs_rq) + 1); 7757 cfs_rq = group_cfs_rq(se); 7758 cfs_rq->h_load = load; 7759 cfs_rq->last_h_load_update = now; 7760 } 7761 } 7762 7763 static unsigned long task_h_load(struct task_struct *p) 7764 { 7765 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7766 7767 update_cfs_rq_h_load(cfs_rq); 7768 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7769 cfs_rq_load_avg(cfs_rq) + 1); 7770 } 7771 #else 7772 static inline void update_blocked_averages(int cpu) 7773 { 7774 struct rq *rq = cpu_rq(cpu); 7775 struct cfs_rq *cfs_rq = &rq->cfs; 7776 const struct sched_class *curr_class; 7777 struct rq_flags rf; 7778 7779 rq_lock_irqsave(rq, &rf); 7780 update_rq_clock(rq); 7781 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq); 7782 7783 curr_class = rq->curr->sched_class; 7784 update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class); 7785 update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class); 7786 update_irq_load_avg(rq, 0); 7787 #ifdef CONFIG_NO_HZ_COMMON 7788 rq->last_blocked_load_update_tick = jiffies; 7789 if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq)) 7790 rq->has_blocked_load = 0; 7791 #endif 7792 rq_unlock_irqrestore(rq, &rf); 7793 } 7794 7795 static unsigned long task_h_load(struct task_struct *p) 7796 { 7797 return p->se.avg.load_avg; 7798 } 7799 #endif 7800 7801 /********** Helpers for find_busiest_group ************************/ 7802 7803 /* 7804 * sg_lb_stats - stats of a sched_group required for load_balancing 7805 */ 7806 struct sg_lb_stats { 7807 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7808 unsigned long group_load; /* Total load over the CPUs of the group */ 7809 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 7810 unsigned long load_per_task; 7811 unsigned long group_capacity; 7812 unsigned long group_util; /* Total utilization of the group */ 7813 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7814 unsigned int idle_cpus; 7815 unsigned int group_weight; 7816 enum group_type group_type; 7817 int group_no_capacity; 7818 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 7819 #ifdef CONFIG_NUMA_BALANCING 7820 unsigned int nr_numa_running; 7821 unsigned int nr_preferred_running; 7822 #endif 7823 }; 7824 7825 /* 7826 * sd_lb_stats - Structure to store the statistics of a sched_domain 7827 * during load balancing. 7828 */ 7829 struct sd_lb_stats { 7830 struct sched_group *busiest; /* Busiest group in this sd */ 7831 struct sched_group *local; /* Local group in this sd */ 7832 unsigned long total_running; 7833 unsigned long total_load; /* Total load of all groups in sd */ 7834 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7835 unsigned long avg_load; /* Average load across all groups in sd */ 7836 7837 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7838 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7839 }; 7840 7841 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7842 { 7843 /* 7844 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7845 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7846 * We must however clear busiest_stat::avg_load because 7847 * update_sd_pick_busiest() reads this before assignment. 7848 */ 7849 *sds = (struct sd_lb_stats){ 7850 .busiest = NULL, 7851 .local = NULL, 7852 .total_running = 0UL, 7853 .total_load = 0UL, 7854 .total_capacity = 0UL, 7855 .busiest_stat = { 7856 .avg_load = 0UL, 7857 .sum_nr_running = 0, 7858 .group_type = group_other, 7859 }, 7860 }; 7861 } 7862 7863 /** 7864 * get_sd_load_idx - Obtain the load index for a given sched domain. 7865 * @sd: The sched_domain whose load_idx is to be obtained. 7866 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 7867 * 7868 * Return: The load index. 7869 */ 7870 static inline int get_sd_load_idx(struct sched_domain *sd, 7871 enum cpu_idle_type idle) 7872 { 7873 int load_idx; 7874 7875 switch (idle) { 7876 case CPU_NOT_IDLE: 7877 load_idx = sd->busy_idx; 7878 break; 7879 7880 case CPU_NEWLY_IDLE: 7881 load_idx = sd->newidle_idx; 7882 break; 7883 default: 7884 load_idx = sd->idle_idx; 7885 break; 7886 } 7887 7888 return load_idx; 7889 } 7890 7891 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu) 7892 { 7893 struct rq *rq = cpu_rq(cpu); 7894 unsigned long max = arch_scale_cpu_capacity(sd, cpu); 7895 unsigned long used, free; 7896 unsigned long irq; 7897 7898 irq = cpu_util_irq(rq); 7899 7900 if (unlikely(irq >= max)) 7901 return 1; 7902 7903 used = READ_ONCE(rq->avg_rt.util_avg); 7904 used += READ_ONCE(rq->avg_dl.util_avg); 7905 7906 if (unlikely(used >= max)) 7907 return 1; 7908 7909 free = max - used; 7910 7911 return scale_irq_capacity(free, irq, max); 7912 } 7913 7914 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7915 { 7916 unsigned long capacity = scale_rt_capacity(sd, cpu); 7917 struct sched_group *sdg = sd->groups; 7918 7919 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu); 7920 7921 if (!capacity) 7922 capacity = 1; 7923 7924 cpu_rq(cpu)->cpu_capacity = capacity; 7925 sdg->sgc->capacity = capacity; 7926 sdg->sgc->min_capacity = capacity; 7927 sdg->sgc->max_capacity = capacity; 7928 } 7929 7930 void update_group_capacity(struct sched_domain *sd, int cpu) 7931 { 7932 struct sched_domain *child = sd->child; 7933 struct sched_group *group, *sdg = sd->groups; 7934 unsigned long capacity, min_capacity, max_capacity; 7935 unsigned long interval; 7936 7937 interval = msecs_to_jiffies(sd->balance_interval); 7938 interval = clamp(interval, 1UL, max_load_balance_interval); 7939 sdg->sgc->next_update = jiffies + interval; 7940 7941 if (!child) { 7942 update_cpu_capacity(sd, cpu); 7943 return; 7944 } 7945 7946 capacity = 0; 7947 min_capacity = ULONG_MAX; 7948 max_capacity = 0; 7949 7950 if (child->flags & SD_OVERLAP) { 7951 /* 7952 * SD_OVERLAP domains cannot assume that child groups 7953 * span the current group. 7954 */ 7955 7956 for_each_cpu(cpu, sched_group_span(sdg)) { 7957 struct sched_group_capacity *sgc; 7958 struct rq *rq = cpu_rq(cpu); 7959 7960 /* 7961 * build_sched_domains() -> init_sched_groups_capacity() 7962 * gets here before we've attached the domains to the 7963 * runqueues. 7964 * 7965 * Use capacity_of(), which is set irrespective of domains 7966 * in update_cpu_capacity(). 7967 * 7968 * This avoids capacity from being 0 and 7969 * causing divide-by-zero issues on boot. 7970 */ 7971 if (unlikely(!rq->sd)) { 7972 capacity += capacity_of(cpu); 7973 } else { 7974 sgc = rq->sd->groups->sgc; 7975 capacity += sgc->capacity; 7976 } 7977 7978 min_capacity = min(capacity, min_capacity); 7979 max_capacity = max(capacity, max_capacity); 7980 } 7981 } else { 7982 /* 7983 * !SD_OVERLAP domains can assume that child groups 7984 * span the current group. 7985 */ 7986 7987 group = child->groups; 7988 do { 7989 struct sched_group_capacity *sgc = group->sgc; 7990 7991 capacity += sgc->capacity; 7992 min_capacity = min(sgc->min_capacity, min_capacity); 7993 max_capacity = max(sgc->max_capacity, max_capacity); 7994 group = group->next; 7995 } while (group != child->groups); 7996 } 7997 7998 sdg->sgc->capacity = capacity; 7999 sdg->sgc->min_capacity = min_capacity; 8000 sdg->sgc->max_capacity = max_capacity; 8001 } 8002 8003 /* 8004 * Check whether the capacity of the rq has been noticeably reduced by side 8005 * activity. The imbalance_pct is used for the threshold. 8006 * Return true is the capacity is reduced 8007 */ 8008 static inline int 8009 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8010 { 8011 return ((rq->cpu_capacity * sd->imbalance_pct) < 8012 (rq->cpu_capacity_orig * 100)); 8013 } 8014 8015 /* 8016 * Group imbalance indicates (and tries to solve) the problem where balancing 8017 * groups is inadequate due to ->cpus_allowed constraints. 8018 * 8019 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8020 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8021 * Something like: 8022 * 8023 * { 0 1 2 3 } { 4 5 6 7 } 8024 * * * * * 8025 * 8026 * If we were to balance group-wise we'd place two tasks in the first group and 8027 * two tasks in the second group. Clearly this is undesired as it will overload 8028 * cpu 3 and leave one of the CPUs in the second group unused. 8029 * 8030 * The current solution to this issue is detecting the skew in the first group 8031 * by noticing the lower domain failed to reach balance and had difficulty 8032 * moving tasks due to affinity constraints. 8033 * 8034 * When this is so detected; this group becomes a candidate for busiest; see 8035 * update_sd_pick_busiest(). And calculate_imbalance() and 8036 * find_busiest_group() avoid some of the usual balance conditions to allow it 8037 * to create an effective group imbalance. 8038 * 8039 * This is a somewhat tricky proposition since the next run might not find the 8040 * group imbalance and decide the groups need to be balanced again. A most 8041 * subtle and fragile situation. 8042 */ 8043 8044 static inline int sg_imbalanced(struct sched_group *group) 8045 { 8046 return group->sgc->imbalance; 8047 } 8048 8049 /* 8050 * group_has_capacity returns true if the group has spare capacity that could 8051 * be used by some tasks. 8052 * We consider that a group has spare capacity if the * number of task is 8053 * smaller than the number of CPUs or if the utilization is lower than the 8054 * available capacity for CFS tasks. 8055 * For the latter, we use a threshold to stabilize the state, to take into 8056 * account the variance of the tasks' load and to return true if the available 8057 * capacity in meaningful for the load balancer. 8058 * As an example, an available capacity of 1% can appear but it doesn't make 8059 * any benefit for the load balance. 8060 */ 8061 static inline bool 8062 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 8063 { 8064 if (sgs->sum_nr_running < sgs->group_weight) 8065 return true; 8066 8067 if ((sgs->group_capacity * 100) > 8068 (sgs->group_util * env->sd->imbalance_pct)) 8069 return true; 8070 8071 return false; 8072 } 8073 8074 /* 8075 * group_is_overloaded returns true if the group has more tasks than it can 8076 * handle. 8077 * group_is_overloaded is not equals to !group_has_capacity because a group 8078 * with the exact right number of tasks, has no more spare capacity but is not 8079 * overloaded so both group_has_capacity and group_is_overloaded return 8080 * false. 8081 */ 8082 static inline bool 8083 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 8084 { 8085 if (sgs->sum_nr_running <= sgs->group_weight) 8086 return false; 8087 8088 if ((sgs->group_capacity * 100) < 8089 (sgs->group_util * env->sd->imbalance_pct)) 8090 return true; 8091 8092 return false; 8093 } 8094 8095 /* 8096 * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller 8097 * per-CPU capacity than sched_group ref. 8098 */ 8099 static inline bool 8100 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 8101 { 8102 return sg->sgc->min_capacity * capacity_margin < 8103 ref->sgc->min_capacity * 1024; 8104 } 8105 8106 /* 8107 * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller 8108 * per-CPU capacity_orig than sched_group ref. 8109 */ 8110 static inline bool 8111 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 8112 { 8113 return sg->sgc->max_capacity * capacity_margin < 8114 ref->sgc->max_capacity * 1024; 8115 } 8116 8117 static inline enum 8118 group_type group_classify(struct sched_group *group, 8119 struct sg_lb_stats *sgs) 8120 { 8121 if (sgs->group_no_capacity) 8122 return group_overloaded; 8123 8124 if (sg_imbalanced(group)) 8125 return group_imbalanced; 8126 8127 if (sgs->group_misfit_task_load) 8128 return group_misfit_task; 8129 8130 return group_other; 8131 } 8132 8133 static bool update_nohz_stats(struct rq *rq, bool force) 8134 { 8135 #ifdef CONFIG_NO_HZ_COMMON 8136 unsigned int cpu = rq->cpu; 8137 8138 if (!rq->has_blocked_load) 8139 return false; 8140 8141 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 8142 return false; 8143 8144 if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick)) 8145 return true; 8146 8147 update_blocked_averages(cpu); 8148 8149 return rq->has_blocked_load; 8150 #else 8151 return false; 8152 #endif 8153 } 8154 8155 /** 8156 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8157 * @env: The load balancing environment. 8158 * @group: sched_group whose statistics are to be updated. 8159 * @sgs: variable to hold the statistics for this group. 8160 * @sg_status: Holds flag indicating the status of the sched_group 8161 */ 8162 static inline void update_sg_lb_stats(struct lb_env *env, 8163 struct sched_group *group, 8164 struct sg_lb_stats *sgs, 8165 int *sg_status) 8166 { 8167 int local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group)); 8168 int load_idx = get_sd_load_idx(env->sd, env->idle); 8169 unsigned long load; 8170 int i, nr_running; 8171 8172 memset(sgs, 0, sizeof(*sgs)); 8173 8174 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8175 struct rq *rq = cpu_rq(i); 8176 8177 if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false)) 8178 env->flags |= LBF_NOHZ_AGAIN; 8179 8180 /* Bias balancing toward CPUs of our domain: */ 8181 if (local_group) 8182 load = target_load(i, load_idx); 8183 else 8184 load = source_load(i, load_idx); 8185 8186 sgs->group_load += load; 8187 sgs->group_util += cpu_util(i); 8188 sgs->sum_nr_running += rq->cfs.h_nr_running; 8189 8190 nr_running = rq->nr_running; 8191 if (nr_running > 1) 8192 *sg_status |= SG_OVERLOAD; 8193 8194 if (cpu_overutilized(i)) 8195 *sg_status |= SG_OVERUTILIZED; 8196 8197 #ifdef CONFIG_NUMA_BALANCING 8198 sgs->nr_numa_running += rq->nr_numa_running; 8199 sgs->nr_preferred_running += rq->nr_preferred_running; 8200 #endif 8201 sgs->sum_weighted_load += weighted_cpuload(rq); 8202 /* 8203 * No need to call idle_cpu() if nr_running is not 0 8204 */ 8205 if (!nr_running && idle_cpu(i)) 8206 sgs->idle_cpus++; 8207 8208 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8209 sgs->group_misfit_task_load < rq->misfit_task_load) { 8210 sgs->group_misfit_task_load = rq->misfit_task_load; 8211 *sg_status |= SG_OVERLOAD; 8212 } 8213 } 8214 8215 /* Adjust by relative CPU capacity of the group */ 8216 sgs->group_capacity = group->sgc->capacity; 8217 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 8218 8219 if (sgs->sum_nr_running) 8220 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 8221 8222 sgs->group_weight = group->group_weight; 8223 8224 sgs->group_no_capacity = group_is_overloaded(env, sgs); 8225 sgs->group_type = group_classify(group, sgs); 8226 } 8227 8228 /** 8229 * update_sd_pick_busiest - return 1 on busiest group 8230 * @env: The load balancing environment. 8231 * @sds: sched_domain statistics 8232 * @sg: sched_group candidate to be checked for being the busiest 8233 * @sgs: sched_group statistics 8234 * 8235 * Determine if @sg is a busier group than the previously selected 8236 * busiest group. 8237 * 8238 * Return: %true if @sg is a busier group than the previously selected 8239 * busiest group. %false otherwise. 8240 */ 8241 static bool update_sd_pick_busiest(struct lb_env *env, 8242 struct sd_lb_stats *sds, 8243 struct sched_group *sg, 8244 struct sg_lb_stats *sgs) 8245 { 8246 struct sg_lb_stats *busiest = &sds->busiest_stat; 8247 8248 /* 8249 * Don't try to pull misfit tasks we can't help. 8250 * We can use max_capacity here as reduction in capacity on some 8251 * CPUs in the group should either be possible to resolve 8252 * internally or be covered by avg_load imbalance (eventually). 8253 */ 8254 if (sgs->group_type == group_misfit_task && 8255 (!group_smaller_max_cpu_capacity(sg, sds->local) || 8256 !group_has_capacity(env, &sds->local_stat))) 8257 return false; 8258 8259 if (sgs->group_type > busiest->group_type) 8260 return true; 8261 8262 if (sgs->group_type < busiest->group_type) 8263 return false; 8264 8265 if (sgs->avg_load <= busiest->avg_load) 8266 return false; 8267 8268 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 8269 goto asym_packing; 8270 8271 /* 8272 * Candidate sg has no more than one task per CPU and 8273 * has higher per-CPU capacity. Migrating tasks to less 8274 * capable CPUs may harm throughput. Maximize throughput, 8275 * power/energy consequences are not considered. 8276 */ 8277 if (sgs->sum_nr_running <= sgs->group_weight && 8278 group_smaller_min_cpu_capacity(sds->local, sg)) 8279 return false; 8280 8281 /* 8282 * If we have more than one misfit sg go with the biggest misfit. 8283 */ 8284 if (sgs->group_type == group_misfit_task && 8285 sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8286 return false; 8287 8288 asym_packing: 8289 /* This is the busiest node in its class. */ 8290 if (!(env->sd->flags & SD_ASYM_PACKING)) 8291 return true; 8292 8293 /* No ASYM_PACKING if target CPU is already busy */ 8294 if (env->idle == CPU_NOT_IDLE) 8295 return true; 8296 /* 8297 * ASYM_PACKING needs to move all the work to the highest 8298 * prority CPUs in the group, therefore mark all groups 8299 * of lower priority than ourself as busy. 8300 */ 8301 if (sgs->sum_nr_running && 8302 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 8303 if (!sds->busiest) 8304 return true; 8305 8306 /* Prefer to move from lowest priority CPU's work */ 8307 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 8308 sg->asym_prefer_cpu)) 8309 return true; 8310 } 8311 8312 return false; 8313 } 8314 8315 #ifdef CONFIG_NUMA_BALANCING 8316 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8317 { 8318 if (sgs->sum_nr_running > sgs->nr_numa_running) 8319 return regular; 8320 if (sgs->sum_nr_running > sgs->nr_preferred_running) 8321 return remote; 8322 return all; 8323 } 8324 8325 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8326 { 8327 if (rq->nr_running > rq->nr_numa_running) 8328 return regular; 8329 if (rq->nr_running > rq->nr_preferred_running) 8330 return remote; 8331 return all; 8332 } 8333 #else 8334 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8335 { 8336 return all; 8337 } 8338 8339 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8340 { 8341 return regular; 8342 } 8343 #endif /* CONFIG_NUMA_BALANCING */ 8344 8345 /** 8346 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 8347 * @env: The load balancing environment. 8348 * @sds: variable to hold the statistics for this sched_domain. 8349 */ 8350 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 8351 { 8352 struct sched_domain *child = env->sd->child; 8353 struct sched_group *sg = env->sd->groups; 8354 struct sg_lb_stats *local = &sds->local_stat; 8355 struct sg_lb_stats tmp_sgs; 8356 bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 8357 int sg_status = 0; 8358 8359 #ifdef CONFIG_NO_HZ_COMMON 8360 if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked)) 8361 env->flags |= LBF_NOHZ_STATS; 8362 #endif 8363 8364 do { 8365 struct sg_lb_stats *sgs = &tmp_sgs; 8366 int local_group; 8367 8368 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 8369 if (local_group) { 8370 sds->local = sg; 8371 sgs = local; 8372 8373 if (env->idle != CPU_NEWLY_IDLE || 8374 time_after_eq(jiffies, sg->sgc->next_update)) 8375 update_group_capacity(env->sd, env->dst_cpu); 8376 } 8377 8378 update_sg_lb_stats(env, sg, sgs, &sg_status); 8379 8380 if (local_group) 8381 goto next_group; 8382 8383 /* 8384 * In case the child domain prefers tasks go to siblings 8385 * first, lower the sg capacity so that we'll try 8386 * and move all the excess tasks away. We lower the capacity 8387 * of a group only if the local group has the capacity to fit 8388 * these excess tasks. The extra check prevents the case where 8389 * you always pull from the heaviest group when it is already 8390 * under-utilized (possible with a large weight task outweighs 8391 * the tasks on the system). 8392 */ 8393 if (prefer_sibling && sds->local && 8394 group_has_capacity(env, local) && 8395 (sgs->sum_nr_running > local->sum_nr_running + 1)) { 8396 sgs->group_no_capacity = 1; 8397 sgs->group_type = group_classify(sg, sgs); 8398 } 8399 8400 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 8401 sds->busiest = sg; 8402 sds->busiest_stat = *sgs; 8403 } 8404 8405 next_group: 8406 /* Now, start updating sd_lb_stats */ 8407 sds->total_running += sgs->sum_nr_running; 8408 sds->total_load += sgs->group_load; 8409 sds->total_capacity += sgs->group_capacity; 8410 8411 sg = sg->next; 8412 } while (sg != env->sd->groups); 8413 8414 #ifdef CONFIG_NO_HZ_COMMON 8415 if ((env->flags & LBF_NOHZ_AGAIN) && 8416 cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) { 8417 8418 WRITE_ONCE(nohz.next_blocked, 8419 jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD)); 8420 } 8421 #endif 8422 8423 if (env->sd->flags & SD_NUMA) 8424 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 8425 8426 if (!env->sd->parent) { 8427 struct root_domain *rd = env->dst_rq->rd; 8428 8429 /* update overload indicator if we are at root domain */ 8430 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 8431 8432 /* Update over-utilization (tipping point, U >= 0) indicator */ 8433 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 8434 } else if (sg_status & SG_OVERUTILIZED) { 8435 WRITE_ONCE(env->dst_rq->rd->overutilized, SG_OVERUTILIZED); 8436 } 8437 } 8438 8439 /** 8440 * check_asym_packing - Check to see if the group is packed into the 8441 * sched domain. 8442 * 8443 * This is primarily intended to used at the sibling level. Some 8444 * cores like POWER7 prefer to use lower numbered SMT threads. In the 8445 * case of POWER7, it can move to lower SMT modes only when higher 8446 * threads are idle. When in lower SMT modes, the threads will 8447 * perform better since they share less core resources. Hence when we 8448 * have idle threads, we want them to be the higher ones. 8449 * 8450 * This packing function is run on idle threads. It checks to see if 8451 * the busiest CPU in this domain (core in the P7 case) has a higher 8452 * CPU number than the packing function is being run on. Here we are 8453 * assuming lower CPU number will be equivalent to lower a SMT thread 8454 * number. 8455 * 8456 * Return: 1 when packing is required and a task should be moved to 8457 * this CPU. The amount of the imbalance is returned in env->imbalance. 8458 * 8459 * @env: The load balancing environment. 8460 * @sds: Statistics of the sched_domain which is to be packed 8461 */ 8462 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 8463 { 8464 int busiest_cpu; 8465 8466 if (!(env->sd->flags & SD_ASYM_PACKING)) 8467 return 0; 8468 8469 if (env->idle == CPU_NOT_IDLE) 8470 return 0; 8471 8472 if (!sds->busiest) 8473 return 0; 8474 8475 busiest_cpu = sds->busiest->asym_prefer_cpu; 8476 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 8477 return 0; 8478 8479 env->imbalance = DIV_ROUND_CLOSEST( 8480 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 8481 SCHED_CAPACITY_SCALE); 8482 8483 return 1; 8484 } 8485 8486 /** 8487 * fix_small_imbalance - Calculate the minor imbalance that exists 8488 * amongst the groups of a sched_domain, during 8489 * load balancing. 8490 * @env: The load balancing environment. 8491 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 8492 */ 8493 static inline 8494 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8495 { 8496 unsigned long tmp, capa_now = 0, capa_move = 0; 8497 unsigned int imbn = 2; 8498 unsigned long scaled_busy_load_per_task; 8499 struct sg_lb_stats *local, *busiest; 8500 8501 local = &sds->local_stat; 8502 busiest = &sds->busiest_stat; 8503 8504 if (!local->sum_nr_running) 8505 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 8506 else if (busiest->load_per_task > local->load_per_task) 8507 imbn = 1; 8508 8509 scaled_busy_load_per_task = 8510 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8511 busiest->group_capacity; 8512 8513 if (busiest->avg_load + scaled_busy_load_per_task >= 8514 local->avg_load + (scaled_busy_load_per_task * imbn)) { 8515 env->imbalance = busiest->load_per_task; 8516 return; 8517 } 8518 8519 /* 8520 * OK, we don't have enough imbalance to justify moving tasks, 8521 * however we may be able to increase total CPU capacity used by 8522 * moving them. 8523 */ 8524 8525 capa_now += busiest->group_capacity * 8526 min(busiest->load_per_task, busiest->avg_load); 8527 capa_now += local->group_capacity * 8528 min(local->load_per_task, local->avg_load); 8529 capa_now /= SCHED_CAPACITY_SCALE; 8530 8531 /* Amount of load we'd subtract */ 8532 if (busiest->avg_load > scaled_busy_load_per_task) { 8533 capa_move += busiest->group_capacity * 8534 min(busiest->load_per_task, 8535 busiest->avg_load - scaled_busy_load_per_task); 8536 } 8537 8538 /* Amount of load we'd add */ 8539 if (busiest->avg_load * busiest->group_capacity < 8540 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 8541 tmp = (busiest->avg_load * busiest->group_capacity) / 8542 local->group_capacity; 8543 } else { 8544 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 8545 local->group_capacity; 8546 } 8547 capa_move += local->group_capacity * 8548 min(local->load_per_task, local->avg_load + tmp); 8549 capa_move /= SCHED_CAPACITY_SCALE; 8550 8551 /* Move if we gain throughput */ 8552 if (capa_move > capa_now) 8553 env->imbalance = busiest->load_per_task; 8554 } 8555 8556 /** 8557 * calculate_imbalance - Calculate the amount of imbalance present within the 8558 * groups of a given sched_domain during load balance. 8559 * @env: load balance environment 8560 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 8561 */ 8562 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 8563 { 8564 unsigned long max_pull, load_above_capacity = ~0UL; 8565 struct sg_lb_stats *local, *busiest; 8566 8567 local = &sds->local_stat; 8568 busiest = &sds->busiest_stat; 8569 8570 if (busiest->group_type == group_imbalanced) { 8571 /* 8572 * In the group_imb case we cannot rely on group-wide averages 8573 * to ensure CPU-load equilibrium, look at wider averages. XXX 8574 */ 8575 busiest->load_per_task = 8576 min(busiest->load_per_task, sds->avg_load); 8577 } 8578 8579 /* 8580 * Avg load of busiest sg can be less and avg load of local sg can 8581 * be greater than avg load across all sgs of sd because avg load 8582 * factors in sg capacity and sgs with smaller group_type are 8583 * skipped when updating the busiest sg: 8584 */ 8585 if (busiest->group_type != group_misfit_task && 8586 (busiest->avg_load <= sds->avg_load || 8587 local->avg_load >= sds->avg_load)) { 8588 env->imbalance = 0; 8589 return fix_small_imbalance(env, sds); 8590 } 8591 8592 /* 8593 * If there aren't any idle CPUs, avoid creating some. 8594 */ 8595 if (busiest->group_type == group_overloaded && 8596 local->group_type == group_overloaded) { 8597 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 8598 if (load_above_capacity > busiest->group_capacity) { 8599 load_above_capacity -= busiest->group_capacity; 8600 load_above_capacity *= scale_load_down(NICE_0_LOAD); 8601 load_above_capacity /= busiest->group_capacity; 8602 } else 8603 load_above_capacity = ~0UL; 8604 } 8605 8606 /* 8607 * We're trying to get all the CPUs to the average_load, so we don't 8608 * want to push ourselves above the average load, nor do we wish to 8609 * reduce the max loaded CPU below the average load. At the same time, 8610 * we also don't want to reduce the group load below the group 8611 * capacity. Thus we look for the minimum possible imbalance. 8612 */ 8613 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 8614 8615 /* How much load to actually move to equalise the imbalance */ 8616 env->imbalance = min( 8617 max_pull * busiest->group_capacity, 8618 (sds->avg_load - local->avg_load) * local->group_capacity 8619 ) / SCHED_CAPACITY_SCALE; 8620 8621 /* Boost imbalance to allow misfit task to be balanced. */ 8622 if (busiest->group_type == group_misfit_task) { 8623 env->imbalance = max_t(long, env->imbalance, 8624 busiest->group_misfit_task_load); 8625 } 8626 8627 /* 8628 * if *imbalance is less than the average load per runnable task 8629 * there is no guarantee that any tasks will be moved so we'll have 8630 * a think about bumping its value to force at least one task to be 8631 * moved 8632 */ 8633 if (env->imbalance < busiest->load_per_task) 8634 return fix_small_imbalance(env, sds); 8635 } 8636 8637 /******* find_busiest_group() helpers end here *********************/ 8638 8639 /** 8640 * find_busiest_group - Returns the busiest group within the sched_domain 8641 * if there is an imbalance. 8642 * 8643 * Also calculates the amount of weighted load which should be moved 8644 * to restore balance. 8645 * 8646 * @env: The load balancing environment. 8647 * 8648 * Return: - The busiest group if imbalance exists. 8649 */ 8650 static struct sched_group *find_busiest_group(struct lb_env *env) 8651 { 8652 struct sg_lb_stats *local, *busiest; 8653 struct sd_lb_stats sds; 8654 8655 init_sd_lb_stats(&sds); 8656 8657 /* 8658 * Compute the various statistics relavent for load balancing at 8659 * this level. 8660 */ 8661 update_sd_lb_stats(env, &sds); 8662 8663 if (static_branch_unlikely(&sched_energy_present)) { 8664 struct root_domain *rd = env->dst_rq->rd; 8665 8666 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 8667 goto out_balanced; 8668 } 8669 8670 local = &sds.local_stat; 8671 busiest = &sds.busiest_stat; 8672 8673 /* ASYM feature bypasses nice load balance check */ 8674 if (check_asym_packing(env, &sds)) 8675 return sds.busiest; 8676 8677 /* There is no busy sibling group to pull tasks from */ 8678 if (!sds.busiest || busiest->sum_nr_running == 0) 8679 goto out_balanced; 8680 8681 /* XXX broken for overlapping NUMA groups */ 8682 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 8683 / sds.total_capacity; 8684 8685 /* 8686 * If the busiest group is imbalanced the below checks don't 8687 * work because they assume all things are equal, which typically 8688 * isn't true due to cpus_allowed constraints and the like. 8689 */ 8690 if (busiest->group_type == group_imbalanced) 8691 goto force_balance; 8692 8693 /* 8694 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group 8695 * capacities from resulting in underutilization due to avg_load. 8696 */ 8697 if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) && 8698 busiest->group_no_capacity) 8699 goto force_balance; 8700 8701 /* Misfit tasks should be dealt with regardless of the avg load */ 8702 if (busiest->group_type == group_misfit_task) 8703 goto force_balance; 8704 8705 /* 8706 * If the local group is busier than the selected busiest group 8707 * don't try and pull any tasks. 8708 */ 8709 if (local->avg_load >= busiest->avg_load) 8710 goto out_balanced; 8711 8712 /* 8713 * Don't pull any tasks if this group is already above the domain 8714 * average load. 8715 */ 8716 if (local->avg_load >= sds.avg_load) 8717 goto out_balanced; 8718 8719 if (env->idle == CPU_IDLE) { 8720 /* 8721 * This CPU is idle. If the busiest group is not overloaded 8722 * and there is no imbalance between this and busiest group 8723 * wrt idle CPUs, it is balanced. The imbalance becomes 8724 * significant if the diff is greater than 1 otherwise we 8725 * might end up to just move the imbalance on another group 8726 */ 8727 if ((busiest->group_type != group_overloaded) && 8728 (local->idle_cpus <= (busiest->idle_cpus + 1))) 8729 goto out_balanced; 8730 } else { 8731 /* 8732 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 8733 * imbalance_pct to be conservative. 8734 */ 8735 if (100 * busiest->avg_load <= 8736 env->sd->imbalance_pct * local->avg_load) 8737 goto out_balanced; 8738 } 8739 8740 force_balance: 8741 /* Looks like there is an imbalance. Compute it */ 8742 env->src_grp_type = busiest->group_type; 8743 calculate_imbalance(env, &sds); 8744 return env->imbalance ? sds.busiest : NULL; 8745 8746 out_balanced: 8747 env->imbalance = 0; 8748 return NULL; 8749 } 8750 8751 /* 8752 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 8753 */ 8754 static struct rq *find_busiest_queue(struct lb_env *env, 8755 struct sched_group *group) 8756 { 8757 struct rq *busiest = NULL, *rq; 8758 unsigned long busiest_load = 0, busiest_capacity = 1; 8759 int i; 8760 8761 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8762 unsigned long capacity, wl; 8763 enum fbq_type rt; 8764 8765 rq = cpu_rq(i); 8766 rt = fbq_classify_rq(rq); 8767 8768 /* 8769 * We classify groups/runqueues into three groups: 8770 * - regular: there are !numa tasks 8771 * - remote: there are numa tasks that run on the 'wrong' node 8772 * - all: there is no distinction 8773 * 8774 * In order to avoid migrating ideally placed numa tasks, 8775 * ignore those when there's better options. 8776 * 8777 * If we ignore the actual busiest queue to migrate another 8778 * task, the next balance pass can still reduce the busiest 8779 * queue by moving tasks around inside the node. 8780 * 8781 * If we cannot move enough load due to this classification 8782 * the next pass will adjust the group classification and 8783 * allow migration of more tasks. 8784 * 8785 * Both cases only affect the total convergence complexity. 8786 */ 8787 if (rt > env->fbq_type) 8788 continue; 8789 8790 /* 8791 * For ASYM_CPUCAPACITY domains with misfit tasks we simply 8792 * seek the "biggest" misfit task. 8793 */ 8794 if (env->src_grp_type == group_misfit_task) { 8795 if (rq->misfit_task_load > busiest_load) { 8796 busiest_load = rq->misfit_task_load; 8797 busiest = rq; 8798 } 8799 8800 continue; 8801 } 8802 8803 capacity = capacity_of(i); 8804 8805 /* 8806 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 8807 * eventually lead to active_balancing high->low capacity. 8808 * Higher per-CPU capacity is considered better than balancing 8809 * average load. 8810 */ 8811 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8812 capacity_of(env->dst_cpu) < capacity && 8813 rq->nr_running == 1) 8814 continue; 8815 8816 wl = weighted_cpuload(rq); 8817 8818 /* 8819 * When comparing with imbalance, use weighted_cpuload() 8820 * which is not scaled with the CPU capacity. 8821 */ 8822 8823 if (rq->nr_running == 1 && wl > env->imbalance && 8824 !check_cpu_capacity(rq, env->sd)) 8825 continue; 8826 8827 /* 8828 * For the load comparisons with the other CPU's, consider 8829 * the weighted_cpuload() scaled with the CPU capacity, so 8830 * that the load can be moved away from the CPU that is 8831 * potentially running at a lower capacity. 8832 * 8833 * Thus we're looking for max(wl_i / capacity_i), crosswise 8834 * multiplication to rid ourselves of the division works out 8835 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 8836 * our previous maximum. 8837 */ 8838 if (wl * busiest_capacity > busiest_load * capacity) { 8839 busiest_load = wl; 8840 busiest_capacity = capacity; 8841 busiest = rq; 8842 } 8843 } 8844 8845 return busiest; 8846 } 8847 8848 /* 8849 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 8850 * so long as it is large enough. 8851 */ 8852 #define MAX_PINNED_INTERVAL 512 8853 8854 static int need_active_balance(struct lb_env *env) 8855 { 8856 struct sched_domain *sd = env->sd; 8857 8858 if (env->idle == CPU_NEWLY_IDLE) { 8859 8860 /* 8861 * ASYM_PACKING needs to force migrate tasks from busy but 8862 * lower priority CPUs in order to pack all tasks in the 8863 * highest priority CPUs. 8864 */ 8865 if ((sd->flags & SD_ASYM_PACKING) && 8866 sched_asym_prefer(env->dst_cpu, env->src_cpu)) 8867 return 1; 8868 } 8869 8870 /* 8871 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 8872 * It's worth migrating the task if the src_cpu's capacity is reduced 8873 * because of other sched_class or IRQs if more capacity stays 8874 * available on dst_cpu. 8875 */ 8876 if ((env->idle != CPU_NOT_IDLE) && 8877 (env->src_rq->cfs.h_nr_running == 1)) { 8878 if ((check_cpu_capacity(env->src_rq, sd)) && 8879 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 8880 return 1; 8881 } 8882 8883 if (env->src_grp_type == group_misfit_task) 8884 return 1; 8885 8886 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 8887 } 8888 8889 static int active_load_balance_cpu_stop(void *data); 8890 8891 static int should_we_balance(struct lb_env *env) 8892 { 8893 struct sched_group *sg = env->sd->groups; 8894 int cpu, balance_cpu = -1; 8895 8896 /* 8897 * Ensure the balancing environment is consistent; can happen 8898 * when the softirq triggers 'during' hotplug. 8899 */ 8900 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 8901 return 0; 8902 8903 /* 8904 * In the newly idle case, we will allow all the CPUs 8905 * to do the newly idle load balance. 8906 */ 8907 if (env->idle == CPU_NEWLY_IDLE) 8908 return 1; 8909 8910 /* Try to find first idle CPU */ 8911 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 8912 if (!idle_cpu(cpu)) 8913 continue; 8914 8915 balance_cpu = cpu; 8916 break; 8917 } 8918 8919 if (balance_cpu == -1) 8920 balance_cpu = group_balance_cpu(sg); 8921 8922 /* 8923 * First idle CPU or the first CPU(busiest) in this sched group 8924 * is eligible for doing load balancing at this and above domains. 8925 */ 8926 return balance_cpu == env->dst_cpu; 8927 } 8928 8929 /* 8930 * Check this_cpu to ensure it is balanced within domain. Attempt to move 8931 * tasks if there is an imbalance. 8932 */ 8933 static int load_balance(int this_cpu, struct rq *this_rq, 8934 struct sched_domain *sd, enum cpu_idle_type idle, 8935 int *continue_balancing) 8936 { 8937 int ld_moved, cur_ld_moved, active_balance = 0; 8938 struct sched_domain *sd_parent = sd->parent; 8939 struct sched_group *group; 8940 struct rq *busiest; 8941 struct rq_flags rf; 8942 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 8943 8944 struct lb_env env = { 8945 .sd = sd, 8946 .dst_cpu = this_cpu, 8947 .dst_rq = this_rq, 8948 .dst_grpmask = sched_group_span(sd->groups), 8949 .idle = idle, 8950 .loop_break = sched_nr_migrate_break, 8951 .cpus = cpus, 8952 .fbq_type = all, 8953 .tasks = LIST_HEAD_INIT(env.tasks), 8954 }; 8955 8956 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 8957 8958 schedstat_inc(sd->lb_count[idle]); 8959 8960 redo: 8961 if (!should_we_balance(&env)) { 8962 *continue_balancing = 0; 8963 goto out_balanced; 8964 } 8965 8966 group = find_busiest_group(&env); 8967 if (!group) { 8968 schedstat_inc(sd->lb_nobusyg[idle]); 8969 goto out_balanced; 8970 } 8971 8972 busiest = find_busiest_queue(&env, group); 8973 if (!busiest) { 8974 schedstat_inc(sd->lb_nobusyq[idle]); 8975 goto out_balanced; 8976 } 8977 8978 BUG_ON(busiest == env.dst_rq); 8979 8980 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 8981 8982 env.src_cpu = busiest->cpu; 8983 env.src_rq = busiest; 8984 8985 ld_moved = 0; 8986 if (busiest->nr_running > 1) { 8987 /* 8988 * Attempt to move tasks. If find_busiest_group has found 8989 * an imbalance but busiest->nr_running <= 1, the group is 8990 * still unbalanced. ld_moved simply stays zero, so it is 8991 * correctly treated as an imbalance. 8992 */ 8993 env.flags |= LBF_ALL_PINNED; 8994 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 8995 8996 more_balance: 8997 rq_lock_irqsave(busiest, &rf); 8998 update_rq_clock(busiest); 8999 9000 /* 9001 * cur_ld_moved - load moved in current iteration 9002 * ld_moved - cumulative load moved across iterations 9003 */ 9004 cur_ld_moved = detach_tasks(&env); 9005 9006 /* 9007 * We've detached some tasks from busiest_rq. Every 9008 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 9009 * unlock busiest->lock, and we are able to be sure 9010 * that nobody can manipulate the tasks in parallel. 9011 * See task_rq_lock() family for the details. 9012 */ 9013 9014 rq_unlock(busiest, &rf); 9015 9016 if (cur_ld_moved) { 9017 attach_tasks(&env); 9018 ld_moved += cur_ld_moved; 9019 } 9020 9021 local_irq_restore(rf.flags); 9022 9023 if (env.flags & LBF_NEED_BREAK) { 9024 env.flags &= ~LBF_NEED_BREAK; 9025 goto more_balance; 9026 } 9027 9028 /* 9029 * Revisit (affine) tasks on src_cpu that couldn't be moved to 9030 * us and move them to an alternate dst_cpu in our sched_group 9031 * where they can run. The upper limit on how many times we 9032 * iterate on same src_cpu is dependent on number of CPUs in our 9033 * sched_group. 9034 * 9035 * This changes load balance semantics a bit on who can move 9036 * load to a given_cpu. In addition to the given_cpu itself 9037 * (or a ilb_cpu acting on its behalf where given_cpu is 9038 * nohz-idle), we now have balance_cpu in a position to move 9039 * load to given_cpu. In rare situations, this may cause 9040 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 9041 * _independently_ and at _same_ time to move some load to 9042 * given_cpu) causing exceess load to be moved to given_cpu. 9043 * This however should not happen so much in practice and 9044 * moreover subsequent load balance cycles should correct the 9045 * excess load moved. 9046 */ 9047 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 9048 9049 /* Prevent to re-select dst_cpu via env's CPUs */ 9050 cpumask_clear_cpu(env.dst_cpu, env.cpus); 9051 9052 env.dst_rq = cpu_rq(env.new_dst_cpu); 9053 env.dst_cpu = env.new_dst_cpu; 9054 env.flags &= ~LBF_DST_PINNED; 9055 env.loop = 0; 9056 env.loop_break = sched_nr_migrate_break; 9057 9058 /* 9059 * Go back to "more_balance" rather than "redo" since we 9060 * need to continue with same src_cpu. 9061 */ 9062 goto more_balance; 9063 } 9064 9065 /* 9066 * We failed to reach balance because of affinity. 9067 */ 9068 if (sd_parent) { 9069 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9070 9071 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 9072 *group_imbalance = 1; 9073 } 9074 9075 /* All tasks on this runqueue were pinned by CPU affinity */ 9076 if (unlikely(env.flags & LBF_ALL_PINNED)) { 9077 cpumask_clear_cpu(cpu_of(busiest), cpus); 9078 /* 9079 * Attempting to continue load balancing at the current 9080 * sched_domain level only makes sense if there are 9081 * active CPUs remaining as possible busiest CPUs to 9082 * pull load from which are not contained within the 9083 * destination group that is receiving any migrated 9084 * load. 9085 */ 9086 if (!cpumask_subset(cpus, env.dst_grpmask)) { 9087 env.loop = 0; 9088 env.loop_break = sched_nr_migrate_break; 9089 goto redo; 9090 } 9091 goto out_all_pinned; 9092 } 9093 } 9094 9095 if (!ld_moved) { 9096 schedstat_inc(sd->lb_failed[idle]); 9097 /* 9098 * Increment the failure counter only on periodic balance. 9099 * We do not want newidle balance, which can be very 9100 * frequent, pollute the failure counter causing 9101 * excessive cache_hot migrations and active balances. 9102 */ 9103 if (idle != CPU_NEWLY_IDLE) 9104 sd->nr_balance_failed++; 9105 9106 if (need_active_balance(&env)) { 9107 unsigned long flags; 9108 9109 raw_spin_lock_irqsave(&busiest->lock, flags); 9110 9111 /* 9112 * Don't kick the active_load_balance_cpu_stop, 9113 * if the curr task on busiest CPU can't be 9114 * moved to this_cpu: 9115 */ 9116 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { 9117 raw_spin_unlock_irqrestore(&busiest->lock, 9118 flags); 9119 env.flags |= LBF_ALL_PINNED; 9120 goto out_one_pinned; 9121 } 9122 9123 /* 9124 * ->active_balance synchronizes accesses to 9125 * ->active_balance_work. Once set, it's cleared 9126 * only after active load balance is finished. 9127 */ 9128 if (!busiest->active_balance) { 9129 busiest->active_balance = 1; 9130 busiest->push_cpu = this_cpu; 9131 active_balance = 1; 9132 } 9133 raw_spin_unlock_irqrestore(&busiest->lock, flags); 9134 9135 if (active_balance) { 9136 stop_one_cpu_nowait(cpu_of(busiest), 9137 active_load_balance_cpu_stop, busiest, 9138 &busiest->active_balance_work); 9139 } 9140 9141 /* We've kicked active balancing, force task migration. */ 9142 sd->nr_balance_failed = sd->cache_nice_tries+1; 9143 } 9144 } else 9145 sd->nr_balance_failed = 0; 9146 9147 if (likely(!active_balance)) { 9148 /* We were unbalanced, so reset the balancing interval */ 9149 sd->balance_interval = sd->min_interval; 9150 } else { 9151 /* 9152 * If we've begun active balancing, start to back off. This 9153 * case may not be covered by the all_pinned logic if there 9154 * is only 1 task on the busy runqueue (because we don't call 9155 * detach_tasks). 9156 */ 9157 if (sd->balance_interval < sd->max_interval) 9158 sd->balance_interval *= 2; 9159 } 9160 9161 goto out; 9162 9163 out_balanced: 9164 /* 9165 * We reach balance although we may have faced some affinity 9166 * constraints. Clear the imbalance flag if it was set. 9167 */ 9168 if (sd_parent) { 9169 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9170 9171 if (*group_imbalance) 9172 *group_imbalance = 0; 9173 } 9174 9175 out_all_pinned: 9176 /* 9177 * We reach balance because all tasks are pinned at this level so 9178 * we can't migrate them. Let the imbalance flag set so parent level 9179 * can try to migrate them. 9180 */ 9181 schedstat_inc(sd->lb_balanced[idle]); 9182 9183 sd->nr_balance_failed = 0; 9184 9185 out_one_pinned: 9186 ld_moved = 0; 9187 9188 /* 9189 * idle_balance() disregards balance intervals, so we could repeatedly 9190 * reach this code, which would lead to balance_interval skyrocketting 9191 * in a short amount of time. Skip the balance_interval increase logic 9192 * to avoid that. 9193 */ 9194 if (env.idle == CPU_NEWLY_IDLE) 9195 goto out; 9196 9197 /* tune up the balancing interval */ 9198 if ((env.flags & LBF_ALL_PINNED && 9199 sd->balance_interval < MAX_PINNED_INTERVAL) || 9200 sd->balance_interval < sd->max_interval) 9201 sd->balance_interval *= 2; 9202 out: 9203 return ld_moved; 9204 } 9205 9206 static inline unsigned long 9207 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 9208 { 9209 unsigned long interval = sd->balance_interval; 9210 9211 if (cpu_busy) 9212 interval *= sd->busy_factor; 9213 9214 /* scale ms to jiffies */ 9215 interval = msecs_to_jiffies(interval); 9216 interval = clamp(interval, 1UL, max_load_balance_interval); 9217 9218 return interval; 9219 } 9220 9221 static inline void 9222 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 9223 { 9224 unsigned long interval, next; 9225 9226 /* used by idle balance, so cpu_busy = 0 */ 9227 interval = get_sd_balance_interval(sd, 0); 9228 next = sd->last_balance + interval; 9229 9230 if (time_after(*next_balance, next)) 9231 *next_balance = next; 9232 } 9233 9234 /* 9235 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 9236 * running tasks off the busiest CPU onto idle CPUs. It requires at 9237 * least 1 task to be running on each physical CPU where possible, and 9238 * avoids physical / logical imbalances. 9239 */ 9240 static int active_load_balance_cpu_stop(void *data) 9241 { 9242 struct rq *busiest_rq = data; 9243 int busiest_cpu = cpu_of(busiest_rq); 9244 int target_cpu = busiest_rq->push_cpu; 9245 struct rq *target_rq = cpu_rq(target_cpu); 9246 struct sched_domain *sd; 9247 struct task_struct *p = NULL; 9248 struct rq_flags rf; 9249 9250 rq_lock_irq(busiest_rq, &rf); 9251 /* 9252 * Between queueing the stop-work and running it is a hole in which 9253 * CPUs can become inactive. We should not move tasks from or to 9254 * inactive CPUs. 9255 */ 9256 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 9257 goto out_unlock; 9258 9259 /* Make sure the requested CPU hasn't gone down in the meantime: */ 9260 if (unlikely(busiest_cpu != smp_processor_id() || 9261 !busiest_rq->active_balance)) 9262 goto out_unlock; 9263 9264 /* Is there any task to move? */ 9265 if (busiest_rq->nr_running <= 1) 9266 goto out_unlock; 9267 9268 /* 9269 * This condition is "impossible", if it occurs 9270 * we need to fix it. Originally reported by 9271 * Bjorn Helgaas on a 128-CPU setup. 9272 */ 9273 BUG_ON(busiest_rq == target_rq); 9274 9275 /* Search for an sd spanning us and the target CPU. */ 9276 rcu_read_lock(); 9277 for_each_domain(target_cpu, sd) { 9278 if ((sd->flags & SD_LOAD_BALANCE) && 9279 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 9280 break; 9281 } 9282 9283 if (likely(sd)) { 9284 struct lb_env env = { 9285 .sd = sd, 9286 .dst_cpu = target_cpu, 9287 .dst_rq = target_rq, 9288 .src_cpu = busiest_rq->cpu, 9289 .src_rq = busiest_rq, 9290 .idle = CPU_IDLE, 9291 /* 9292 * can_migrate_task() doesn't need to compute new_dst_cpu 9293 * for active balancing. Since we have CPU_IDLE, but no 9294 * @dst_grpmask we need to make that test go away with lying 9295 * about DST_PINNED. 9296 */ 9297 .flags = LBF_DST_PINNED, 9298 }; 9299 9300 schedstat_inc(sd->alb_count); 9301 update_rq_clock(busiest_rq); 9302 9303 p = detach_one_task(&env); 9304 if (p) { 9305 schedstat_inc(sd->alb_pushed); 9306 /* Active balancing done, reset the failure counter. */ 9307 sd->nr_balance_failed = 0; 9308 } else { 9309 schedstat_inc(sd->alb_failed); 9310 } 9311 } 9312 rcu_read_unlock(); 9313 out_unlock: 9314 busiest_rq->active_balance = 0; 9315 rq_unlock(busiest_rq, &rf); 9316 9317 if (p) 9318 attach_one_task(target_rq, p); 9319 9320 local_irq_enable(); 9321 9322 return 0; 9323 } 9324 9325 static DEFINE_SPINLOCK(balancing); 9326 9327 /* 9328 * Scale the max load_balance interval with the number of CPUs in the system. 9329 * This trades load-balance latency on larger machines for less cross talk. 9330 */ 9331 void update_max_interval(void) 9332 { 9333 max_load_balance_interval = HZ*num_online_cpus()/10; 9334 } 9335 9336 /* 9337 * It checks each scheduling domain to see if it is due to be balanced, 9338 * and initiates a balancing operation if so. 9339 * 9340 * Balancing parameters are set up in init_sched_domains. 9341 */ 9342 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 9343 { 9344 int continue_balancing = 1; 9345 int cpu = rq->cpu; 9346 unsigned long interval; 9347 struct sched_domain *sd; 9348 /* Earliest time when we have to do rebalance again */ 9349 unsigned long next_balance = jiffies + 60*HZ; 9350 int update_next_balance = 0; 9351 int need_serialize, need_decay = 0; 9352 u64 max_cost = 0; 9353 9354 rcu_read_lock(); 9355 for_each_domain(cpu, sd) { 9356 /* 9357 * Decay the newidle max times here because this is a regular 9358 * visit to all the domains. Decay ~1% per second. 9359 */ 9360 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 9361 sd->max_newidle_lb_cost = 9362 (sd->max_newidle_lb_cost * 253) / 256; 9363 sd->next_decay_max_lb_cost = jiffies + HZ; 9364 need_decay = 1; 9365 } 9366 max_cost += sd->max_newidle_lb_cost; 9367 9368 if (!(sd->flags & SD_LOAD_BALANCE)) 9369 continue; 9370 9371 /* 9372 * Stop the load balance at this level. There is another 9373 * CPU in our sched group which is doing load balancing more 9374 * actively. 9375 */ 9376 if (!continue_balancing) { 9377 if (need_decay) 9378 continue; 9379 break; 9380 } 9381 9382 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9383 9384 need_serialize = sd->flags & SD_SERIALIZE; 9385 if (need_serialize) { 9386 if (!spin_trylock(&balancing)) 9387 goto out; 9388 } 9389 9390 if (time_after_eq(jiffies, sd->last_balance + interval)) { 9391 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 9392 /* 9393 * The LBF_DST_PINNED logic could have changed 9394 * env->dst_cpu, so we can't know our idle 9395 * state even if we migrated tasks. Update it. 9396 */ 9397 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 9398 } 9399 sd->last_balance = jiffies; 9400 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 9401 } 9402 if (need_serialize) 9403 spin_unlock(&balancing); 9404 out: 9405 if (time_after(next_balance, sd->last_balance + interval)) { 9406 next_balance = sd->last_balance + interval; 9407 update_next_balance = 1; 9408 } 9409 } 9410 if (need_decay) { 9411 /* 9412 * Ensure the rq-wide value also decays but keep it at a 9413 * reasonable floor to avoid funnies with rq->avg_idle. 9414 */ 9415 rq->max_idle_balance_cost = 9416 max((u64)sysctl_sched_migration_cost, max_cost); 9417 } 9418 rcu_read_unlock(); 9419 9420 /* 9421 * next_balance will be updated only when there is a need. 9422 * When the cpu is attached to null domain for ex, it will not be 9423 * updated. 9424 */ 9425 if (likely(update_next_balance)) { 9426 rq->next_balance = next_balance; 9427 9428 #ifdef CONFIG_NO_HZ_COMMON 9429 /* 9430 * If this CPU has been elected to perform the nohz idle 9431 * balance. Other idle CPUs have already rebalanced with 9432 * nohz_idle_balance() and nohz.next_balance has been 9433 * updated accordingly. This CPU is now running the idle load 9434 * balance for itself and we need to update the 9435 * nohz.next_balance accordingly. 9436 */ 9437 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 9438 nohz.next_balance = rq->next_balance; 9439 #endif 9440 } 9441 } 9442 9443 static inline int on_null_domain(struct rq *rq) 9444 { 9445 return unlikely(!rcu_dereference_sched(rq->sd)); 9446 } 9447 9448 #ifdef CONFIG_NO_HZ_COMMON 9449 /* 9450 * idle load balancing details 9451 * - When one of the busy CPUs notice that there may be an idle rebalancing 9452 * needed, they will kick the idle load balancer, which then does idle 9453 * load balancing for all the idle CPUs. 9454 */ 9455 9456 static inline int find_new_ilb(void) 9457 { 9458 int ilb = cpumask_first(nohz.idle_cpus_mask); 9459 9460 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 9461 return ilb; 9462 9463 return nr_cpu_ids; 9464 } 9465 9466 /* 9467 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 9468 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 9469 * CPU (if there is one). 9470 */ 9471 static void kick_ilb(unsigned int flags) 9472 { 9473 int ilb_cpu; 9474 9475 nohz.next_balance++; 9476 9477 ilb_cpu = find_new_ilb(); 9478 9479 if (ilb_cpu >= nr_cpu_ids) 9480 return; 9481 9482 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 9483 if (flags & NOHZ_KICK_MASK) 9484 return; 9485 9486 /* 9487 * Use smp_send_reschedule() instead of resched_cpu(). 9488 * This way we generate a sched IPI on the target CPU which 9489 * is idle. And the softirq performing nohz idle load balance 9490 * will be run before returning from the IPI. 9491 */ 9492 smp_send_reschedule(ilb_cpu); 9493 } 9494 9495 /* 9496 * Current heuristic for kicking the idle load balancer in the presence 9497 * of an idle cpu in the system. 9498 * - This rq has more than one task. 9499 * - This rq has at least one CFS task and the capacity of the CPU is 9500 * significantly reduced because of RT tasks or IRQs. 9501 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 9502 * multiple busy cpu. 9503 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 9504 * domain span are idle. 9505 */ 9506 static void nohz_balancer_kick(struct rq *rq) 9507 { 9508 unsigned long now = jiffies; 9509 struct sched_domain_shared *sds; 9510 struct sched_domain *sd; 9511 int nr_busy, i, cpu = rq->cpu; 9512 unsigned int flags = 0; 9513 9514 if (unlikely(rq->idle_balance)) 9515 return; 9516 9517 /* 9518 * We may be recently in ticked or tickless idle mode. At the first 9519 * busy tick after returning from idle, we will update the busy stats. 9520 */ 9521 nohz_balance_exit_idle(rq); 9522 9523 /* 9524 * None are in tickless mode and hence no need for NOHZ idle load 9525 * balancing. 9526 */ 9527 if (likely(!atomic_read(&nohz.nr_cpus))) 9528 return; 9529 9530 if (READ_ONCE(nohz.has_blocked) && 9531 time_after(now, READ_ONCE(nohz.next_blocked))) 9532 flags = NOHZ_STATS_KICK; 9533 9534 if (time_before(now, nohz.next_balance)) 9535 goto out; 9536 9537 if (rq->nr_running >= 2 || rq->misfit_task_load) { 9538 flags = NOHZ_KICK_MASK; 9539 goto out; 9540 } 9541 9542 rcu_read_lock(); 9543 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 9544 if (sds) { 9545 /* 9546 * XXX: write a coherent comment on why we do this. 9547 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com 9548 */ 9549 nr_busy = atomic_read(&sds->nr_busy_cpus); 9550 if (nr_busy > 1) { 9551 flags = NOHZ_KICK_MASK; 9552 goto unlock; 9553 } 9554 9555 } 9556 9557 sd = rcu_dereference(rq->sd); 9558 if (sd) { 9559 if ((rq->cfs.h_nr_running >= 1) && 9560 check_cpu_capacity(rq, sd)) { 9561 flags = NOHZ_KICK_MASK; 9562 goto unlock; 9563 } 9564 } 9565 9566 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 9567 if (sd) { 9568 for_each_cpu(i, sched_domain_span(sd)) { 9569 if (i == cpu || 9570 !cpumask_test_cpu(i, nohz.idle_cpus_mask)) 9571 continue; 9572 9573 if (sched_asym_prefer(i, cpu)) { 9574 flags = NOHZ_KICK_MASK; 9575 goto unlock; 9576 } 9577 } 9578 } 9579 unlock: 9580 rcu_read_unlock(); 9581 out: 9582 if (flags) 9583 kick_ilb(flags); 9584 } 9585 9586 static void set_cpu_sd_state_busy(int cpu) 9587 { 9588 struct sched_domain *sd; 9589 9590 rcu_read_lock(); 9591 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9592 9593 if (!sd || !sd->nohz_idle) 9594 goto unlock; 9595 sd->nohz_idle = 0; 9596 9597 atomic_inc(&sd->shared->nr_busy_cpus); 9598 unlock: 9599 rcu_read_unlock(); 9600 } 9601 9602 void nohz_balance_exit_idle(struct rq *rq) 9603 { 9604 SCHED_WARN_ON(rq != this_rq()); 9605 9606 if (likely(!rq->nohz_tick_stopped)) 9607 return; 9608 9609 rq->nohz_tick_stopped = 0; 9610 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 9611 atomic_dec(&nohz.nr_cpus); 9612 9613 set_cpu_sd_state_busy(rq->cpu); 9614 } 9615 9616 static void set_cpu_sd_state_idle(int cpu) 9617 { 9618 struct sched_domain *sd; 9619 9620 rcu_read_lock(); 9621 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 9622 9623 if (!sd || sd->nohz_idle) 9624 goto unlock; 9625 sd->nohz_idle = 1; 9626 9627 atomic_dec(&sd->shared->nr_busy_cpus); 9628 unlock: 9629 rcu_read_unlock(); 9630 } 9631 9632 /* 9633 * This routine will record that the CPU is going idle with tick stopped. 9634 * This info will be used in performing idle load balancing in the future. 9635 */ 9636 void nohz_balance_enter_idle(int cpu) 9637 { 9638 struct rq *rq = cpu_rq(cpu); 9639 9640 SCHED_WARN_ON(cpu != smp_processor_id()); 9641 9642 /* If this CPU is going down, then nothing needs to be done: */ 9643 if (!cpu_active(cpu)) 9644 return; 9645 9646 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 9647 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED)) 9648 return; 9649 9650 /* 9651 * Can be set safely without rq->lock held 9652 * If a clear happens, it will have evaluated last additions because 9653 * rq->lock is held during the check and the clear 9654 */ 9655 rq->has_blocked_load = 1; 9656 9657 /* 9658 * The tick is still stopped but load could have been added in the 9659 * meantime. We set the nohz.has_blocked flag to trig a check of the 9660 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 9661 * of nohz.has_blocked can only happen after checking the new load 9662 */ 9663 if (rq->nohz_tick_stopped) 9664 goto out; 9665 9666 /* If we're a completely isolated CPU, we don't play: */ 9667 if (on_null_domain(rq)) 9668 return; 9669 9670 rq->nohz_tick_stopped = 1; 9671 9672 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 9673 atomic_inc(&nohz.nr_cpus); 9674 9675 /* 9676 * Ensures that if nohz_idle_balance() fails to observe our 9677 * @idle_cpus_mask store, it must observe the @has_blocked 9678 * store. 9679 */ 9680 smp_mb__after_atomic(); 9681 9682 set_cpu_sd_state_idle(cpu); 9683 9684 out: 9685 /* 9686 * Each time a cpu enter idle, we assume that it has blocked load and 9687 * enable the periodic update of the load of idle cpus 9688 */ 9689 WRITE_ONCE(nohz.has_blocked, 1); 9690 } 9691 9692 /* 9693 * Internal function that runs load balance for all idle cpus. The load balance 9694 * can be a simple update of blocked load or a complete load balance with 9695 * tasks movement depending of flags. 9696 * The function returns false if the loop has stopped before running 9697 * through all idle CPUs. 9698 */ 9699 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 9700 enum cpu_idle_type idle) 9701 { 9702 /* Earliest time when we have to do rebalance again */ 9703 unsigned long now = jiffies; 9704 unsigned long next_balance = now + 60*HZ; 9705 bool has_blocked_load = false; 9706 int update_next_balance = 0; 9707 int this_cpu = this_rq->cpu; 9708 int balance_cpu; 9709 int ret = false; 9710 struct rq *rq; 9711 9712 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 9713 9714 /* 9715 * We assume there will be no idle load after this update and clear 9716 * the has_blocked flag. If a cpu enters idle in the mean time, it will 9717 * set the has_blocked flag and trig another update of idle load. 9718 * Because a cpu that becomes idle, is added to idle_cpus_mask before 9719 * setting the flag, we are sure to not clear the state and not 9720 * check the load of an idle cpu. 9721 */ 9722 WRITE_ONCE(nohz.has_blocked, 0); 9723 9724 /* 9725 * Ensures that if we miss the CPU, we must see the has_blocked 9726 * store from nohz_balance_enter_idle(). 9727 */ 9728 smp_mb(); 9729 9730 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 9731 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 9732 continue; 9733 9734 /* 9735 * If this CPU gets work to do, stop the load balancing 9736 * work being done for other CPUs. Next load 9737 * balancing owner will pick it up. 9738 */ 9739 if (need_resched()) { 9740 has_blocked_load = true; 9741 goto abort; 9742 } 9743 9744 rq = cpu_rq(balance_cpu); 9745 9746 has_blocked_load |= update_nohz_stats(rq, true); 9747 9748 /* 9749 * If time for next balance is due, 9750 * do the balance. 9751 */ 9752 if (time_after_eq(jiffies, rq->next_balance)) { 9753 struct rq_flags rf; 9754 9755 rq_lock_irqsave(rq, &rf); 9756 update_rq_clock(rq); 9757 cpu_load_update_idle(rq); 9758 rq_unlock_irqrestore(rq, &rf); 9759 9760 if (flags & NOHZ_BALANCE_KICK) 9761 rebalance_domains(rq, CPU_IDLE); 9762 } 9763 9764 if (time_after(next_balance, rq->next_balance)) { 9765 next_balance = rq->next_balance; 9766 update_next_balance = 1; 9767 } 9768 } 9769 9770 /* Newly idle CPU doesn't need an update */ 9771 if (idle != CPU_NEWLY_IDLE) { 9772 update_blocked_averages(this_cpu); 9773 has_blocked_load |= this_rq->has_blocked_load; 9774 } 9775 9776 if (flags & NOHZ_BALANCE_KICK) 9777 rebalance_domains(this_rq, CPU_IDLE); 9778 9779 WRITE_ONCE(nohz.next_blocked, 9780 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 9781 9782 /* The full idle balance loop has been done */ 9783 ret = true; 9784 9785 abort: 9786 /* There is still blocked load, enable periodic update */ 9787 if (has_blocked_load) 9788 WRITE_ONCE(nohz.has_blocked, 1); 9789 9790 /* 9791 * next_balance will be updated only when there is a need. 9792 * When the CPU is attached to null domain for ex, it will not be 9793 * updated. 9794 */ 9795 if (likely(update_next_balance)) 9796 nohz.next_balance = next_balance; 9797 9798 return ret; 9799 } 9800 9801 /* 9802 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 9803 * rebalancing for all the cpus for whom scheduler ticks are stopped. 9804 */ 9805 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9806 { 9807 int this_cpu = this_rq->cpu; 9808 unsigned int flags; 9809 9810 if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK)) 9811 return false; 9812 9813 if (idle != CPU_IDLE) { 9814 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9815 return false; 9816 } 9817 9818 /* could be _relaxed() */ 9819 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu)); 9820 if (!(flags & NOHZ_KICK_MASK)) 9821 return false; 9822 9823 _nohz_idle_balance(this_rq, flags, idle); 9824 9825 return true; 9826 } 9827 9828 static void nohz_newidle_balance(struct rq *this_rq) 9829 { 9830 int this_cpu = this_rq->cpu; 9831 9832 /* 9833 * This CPU doesn't want to be disturbed by scheduler 9834 * housekeeping 9835 */ 9836 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED)) 9837 return; 9838 9839 /* Will wake up very soon. No time for doing anything else*/ 9840 if (this_rq->avg_idle < sysctl_sched_migration_cost) 9841 return; 9842 9843 /* Don't need to update blocked load of idle CPUs*/ 9844 if (!READ_ONCE(nohz.has_blocked) || 9845 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 9846 return; 9847 9848 raw_spin_unlock(&this_rq->lock); 9849 /* 9850 * This CPU is going to be idle and blocked load of idle CPUs 9851 * need to be updated. Run the ilb locally as it is a good 9852 * candidate for ilb instead of waking up another idle CPU. 9853 * Kick an normal ilb if we failed to do the update. 9854 */ 9855 if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE)) 9856 kick_ilb(NOHZ_STATS_KICK); 9857 raw_spin_lock(&this_rq->lock); 9858 } 9859 9860 #else /* !CONFIG_NO_HZ_COMMON */ 9861 static inline void nohz_balancer_kick(struct rq *rq) { } 9862 9863 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 9864 { 9865 return false; 9866 } 9867 9868 static inline void nohz_newidle_balance(struct rq *this_rq) { } 9869 #endif /* CONFIG_NO_HZ_COMMON */ 9870 9871 /* 9872 * idle_balance is called by schedule() if this_cpu is about to become 9873 * idle. Attempts to pull tasks from other CPUs. 9874 */ 9875 static int idle_balance(struct rq *this_rq, struct rq_flags *rf) 9876 { 9877 unsigned long next_balance = jiffies + HZ; 9878 int this_cpu = this_rq->cpu; 9879 struct sched_domain *sd; 9880 int pulled_task = 0; 9881 u64 curr_cost = 0; 9882 9883 /* 9884 * We must set idle_stamp _before_ calling idle_balance(), such that we 9885 * measure the duration of idle_balance() as idle time. 9886 */ 9887 this_rq->idle_stamp = rq_clock(this_rq); 9888 9889 /* 9890 * Do not pull tasks towards !active CPUs... 9891 */ 9892 if (!cpu_active(this_cpu)) 9893 return 0; 9894 9895 /* 9896 * This is OK, because current is on_cpu, which avoids it being picked 9897 * for load-balance and preemption/IRQs are still disabled avoiding 9898 * further scheduler activity on it and we're being very careful to 9899 * re-start the picking loop. 9900 */ 9901 rq_unpin_lock(this_rq, rf); 9902 9903 if (this_rq->avg_idle < sysctl_sched_migration_cost || 9904 !READ_ONCE(this_rq->rd->overload)) { 9905 9906 rcu_read_lock(); 9907 sd = rcu_dereference_check_sched_domain(this_rq->sd); 9908 if (sd) 9909 update_next_balance(sd, &next_balance); 9910 rcu_read_unlock(); 9911 9912 nohz_newidle_balance(this_rq); 9913 9914 goto out; 9915 } 9916 9917 raw_spin_unlock(&this_rq->lock); 9918 9919 update_blocked_averages(this_cpu); 9920 rcu_read_lock(); 9921 for_each_domain(this_cpu, sd) { 9922 int continue_balancing = 1; 9923 u64 t0, domain_cost; 9924 9925 if (!(sd->flags & SD_LOAD_BALANCE)) 9926 continue; 9927 9928 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 9929 update_next_balance(sd, &next_balance); 9930 break; 9931 } 9932 9933 if (sd->flags & SD_BALANCE_NEWIDLE) { 9934 t0 = sched_clock_cpu(this_cpu); 9935 9936 pulled_task = load_balance(this_cpu, this_rq, 9937 sd, CPU_NEWLY_IDLE, 9938 &continue_balancing); 9939 9940 domain_cost = sched_clock_cpu(this_cpu) - t0; 9941 if (domain_cost > sd->max_newidle_lb_cost) 9942 sd->max_newidle_lb_cost = domain_cost; 9943 9944 curr_cost += domain_cost; 9945 } 9946 9947 update_next_balance(sd, &next_balance); 9948 9949 /* 9950 * Stop searching for tasks to pull if there are 9951 * now runnable tasks on this rq. 9952 */ 9953 if (pulled_task || this_rq->nr_running > 0) 9954 break; 9955 } 9956 rcu_read_unlock(); 9957 9958 raw_spin_lock(&this_rq->lock); 9959 9960 if (curr_cost > this_rq->max_idle_balance_cost) 9961 this_rq->max_idle_balance_cost = curr_cost; 9962 9963 out: 9964 /* 9965 * While browsing the domains, we released the rq lock, a task could 9966 * have been enqueued in the meantime. Since we're not going idle, 9967 * pretend we pulled a task. 9968 */ 9969 if (this_rq->cfs.h_nr_running && !pulled_task) 9970 pulled_task = 1; 9971 9972 /* Move the next balance forward */ 9973 if (time_after(this_rq->next_balance, next_balance)) 9974 this_rq->next_balance = next_balance; 9975 9976 /* Is there a task of a high priority class? */ 9977 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 9978 pulled_task = -1; 9979 9980 if (pulled_task) 9981 this_rq->idle_stamp = 0; 9982 9983 rq_repin_lock(this_rq, rf); 9984 9985 return pulled_task; 9986 } 9987 9988 /* 9989 * run_rebalance_domains is triggered when needed from the scheduler tick. 9990 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 9991 */ 9992 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 9993 { 9994 struct rq *this_rq = this_rq(); 9995 enum cpu_idle_type idle = this_rq->idle_balance ? 9996 CPU_IDLE : CPU_NOT_IDLE; 9997 9998 /* 9999 * If this CPU has a pending nohz_balance_kick, then do the 10000 * balancing on behalf of the other idle CPUs whose ticks are 10001 * stopped. Do nohz_idle_balance *before* rebalance_domains to 10002 * give the idle CPUs a chance to load balance. Else we may 10003 * load balance only within the local sched_domain hierarchy 10004 * and abort nohz_idle_balance altogether if we pull some load. 10005 */ 10006 if (nohz_idle_balance(this_rq, idle)) 10007 return; 10008 10009 /* normal load balance */ 10010 update_blocked_averages(this_rq->cpu); 10011 rebalance_domains(this_rq, idle); 10012 } 10013 10014 /* 10015 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 10016 */ 10017 void trigger_load_balance(struct rq *rq) 10018 { 10019 /* Don't need to rebalance while attached to NULL domain */ 10020 if (unlikely(on_null_domain(rq))) 10021 return; 10022 10023 if (time_after_eq(jiffies, rq->next_balance)) 10024 raise_softirq(SCHED_SOFTIRQ); 10025 10026 nohz_balancer_kick(rq); 10027 } 10028 10029 static void rq_online_fair(struct rq *rq) 10030 { 10031 update_sysctl(); 10032 10033 update_runtime_enabled(rq); 10034 } 10035 10036 static void rq_offline_fair(struct rq *rq) 10037 { 10038 update_sysctl(); 10039 10040 /* Ensure any throttled groups are reachable by pick_next_task */ 10041 unthrottle_offline_cfs_rqs(rq); 10042 } 10043 10044 #endif /* CONFIG_SMP */ 10045 10046 /* 10047 * scheduler tick hitting a task of our scheduling class. 10048 * 10049 * NOTE: This function can be called remotely by the tick offload that 10050 * goes along full dynticks. Therefore no local assumption can be made 10051 * and everything must be accessed through the @rq and @curr passed in 10052 * parameters. 10053 */ 10054 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 10055 { 10056 struct cfs_rq *cfs_rq; 10057 struct sched_entity *se = &curr->se; 10058 10059 for_each_sched_entity(se) { 10060 cfs_rq = cfs_rq_of(se); 10061 entity_tick(cfs_rq, se, queued); 10062 } 10063 10064 if (static_branch_unlikely(&sched_numa_balancing)) 10065 task_tick_numa(rq, curr); 10066 10067 update_misfit_status(curr, rq); 10068 update_overutilized_status(task_rq(curr)); 10069 } 10070 10071 /* 10072 * called on fork with the child task as argument from the parent's context 10073 * - child not yet on the tasklist 10074 * - preemption disabled 10075 */ 10076 static void task_fork_fair(struct task_struct *p) 10077 { 10078 struct cfs_rq *cfs_rq; 10079 struct sched_entity *se = &p->se, *curr; 10080 struct rq *rq = this_rq(); 10081 struct rq_flags rf; 10082 10083 rq_lock(rq, &rf); 10084 update_rq_clock(rq); 10085 10086 cfs_rq = task_cfs_rq(current); 10087 curr = cfs_rq->curr; 10088 if (curr) { 10089 update_curr(cfs_rq); 10090 se->vruntime = curr->vruntime; 10091 } 10092 place_entity(cfs_rq, se, 1); 10093 10094 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 10095 /* 10096 * Upon rescheduling, sched_class::put_prev_task() will place 10097 * 'current' within the tree based on its new key value. 10098 */ 10099 swap(curr->vruntime, se->vruntime); 10100 resched_curr(rq); 10101 } 10102 10103 se->vruntime -= cfs_rq->min_vruntime; 10104 rq_unlock(rq, &rf); 10105 } 10106 10107 /* 10108 * Priority of the task has changed. Check to see if we preempt 10109 * the current task. 10110 */ 10111 static void 10112 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 10113 { 10114 if (!task_on_rq_queued(p)) 10115 return; 10116 10117 /* 10118 * Reschedule if we are currently running on this runqueue and 10119 * our priority decreased, or if we are not currently running on 10120 * this runqueue and our priority is higher than the current's 10121 */ 10122 if (rq->curr == p) { 10123 if (p->prio > oldprio) 10124 resched_curr(rq); 10125 } else 10126 check_preempt_curr(rq, p, 0); 10127 } 10128 10129 static inline bool vruntime_normalized(struct task_struct *p) 10130 { 10131 struct sched_entity *se = &p->se; 10132 10133 /* 10134 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 10135 * the dequeue_entity(.flags=0) will already have normalized the 10136 * vruntime. 10137 */ 10138 if (p->on_rq) 10139 return true; 10140 10141 /* 10142 * When !on_rq, vruntime of the task has usually NOT been normalized. 10143 * But there are some cases where it has already been normalized: 10144 * 10145 * - A forked child which is waiting for being woken up by 10146 * wake_up_new_task(). 10147 * - A task which has been woken up by try_to_wake_up() and 10148 * waiting for actually being woken up by sched_ttwu_pending(). 10149 */ 10150 if (!se->sum_exec_runtime || 10151 (p->state == TASK_WAKING && p->sched_remote_wakeup)) 10152 return true; 10153 10154 return false; 10155 } 10156 10157 #ifdef CONFIG_FAIR_GROUP_SCHED 10158 /* 10159 * Propagate the changes of the sched_entity across the tg tree to make it 10160 * visible to the root 10161 */ 10162 static void propagate_entity_cfs_rq(struct sched_entity *se) 10163 { 10164 struct cfs_rq *cfs_rq; 10165 10166 /* Start to propagate at parent */ 10167 se = se->parent; 10168 10169 for_each_sched_entity(se) { 10170 cfs_rq = cfs_rq_of(se); 10171 10172 if (cfs_rq_throttled(cfs_rq)) 10173 break; 10174 10175 update_load_avg(cfs_rq, se, UPDATE_TG); 10176 } 10177 } 10178 #else 10179 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 10180 #endif 10181 10182 static void detach_entity_cfs_rq(struct sched_entity *se) 10183 { 10184 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10185 10186 /* Catch up with the cfs_rq and remove our load when we leave */ 10187 update_load_avg(cfs_rq, se, 0); 10188 detach_entity_load_avg(cfs_rq, se); 10189 update_tg_load_avg(cfs_rq, false); 10190 propagate_entity_cfs_rq(se); 10191 } 10192 10193 static void attach_entity_cfs_rq(struct sched_entity *se) 10194 { 10195 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10196 10197 #ifdef CONFIG_FAIR_GROUP_SCHED 10198 /* 10199 * Since the real-depth could have been changed (only FAIR 10200 * class maintain depth value), reset depth properly. 10201 */ 10202 se->depth = se->parent ? se->parent->depth + 1 : 0; 10203 #endif 10204 10205 /* Synchronize entity with its cfs_rq */ 10206 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 10207 attach_entity_load_avg(cfs_rq, se, 0); 10208 update_tg_load_avg(cfs_rq, false); 10209 propagate_entity_cfs_rq(se); 10210 } 10211 10212 static void detach_task_cfs_rq(struct task_struct *p) 10213 { 10214 struct sched_entity *se = &p->se; 10215 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10216 10217 if (!vruntime_normalized(p)) { 10218 /* 10219 * Fix up our vruntime so that the current sleep doesn't 10220 * cause 'unlimited' sleep bonus. 10221 */ 10222 place_entity(cfs_rq, se, 0); 10223 se->vruntime -= cfs_rq->min_vruntime; 10224 } 10225 10226 detach_entity_cfs_rq(se); 10227 } 10228 10229 static void attach_task_cfs_rq(struct task_struct *p) 10230 { 10231 struct sched_entity *se = &p->se; 10232 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10233 10234 attach_entity_cfs_rq(se); 10235 10236 if (!vruntime_normalized(p)) 10237 se->vruntime += cfs_rq->min_vruntime; 10238 } 10239 10240 static void switched_from_fair(struct rq *rq, struct task_struct *p) 10241 { 10242 detach_task_cfs_rq(p); 10243 } 10244 10245 static void switched_to_fair(struct rq *rq, struct task_struct *p) 10246 { 10247 attach_task_cfs_rq(p); 10248 10249 if (task_on_rq_queued(p)) { 10250 /* 10251 * We were most likely switched from sched_rt, so 10252 * kick off the schedule if running, otherwise just see 10253 * if we can still preempt the current task. 10254 */ 10255 if (rq->curr == p) 10256 resched_curr(rq); 10257 else 10258 check_preempt_curr(rq, p, 0); 10259 } 10260 } 10261 10262 /* Account for a task changing its policy or group. 10263 * 10264 * This routine is mostly called to set cfs_rq->curr field when a task 10265 * migrates between groups/classes. 10266 */ 10267 static void set_curr_task_fair(struct rq *rq) 10268 { 10269 struct sched_entity *se = &rq->curr->se; 10270 10271 for_each_sched_entity(se) { 10272 struct cfs_rq *cfs_rq = cfs_rq_of(se); 10273 10274 set_next_entity(cfs_rq, se); 10275 /* ensure bandwidth has been allocated on our new cfs_rq */ 10276 account_cfs_rq_runtime(cfs_rq, 0); 10277 } 10278 } 10279 10280 void init_cfs_rq(struct cfs_rq *cfs_rq) 10281 { 10282 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 10283 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 10284 #ifndef CONFIG_64BIT 10285 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 10286 #endif 10287 #ifdef CONFIG_SMP 10288 raw_spin_lock_init(&cfs_rq->removed.lock); 10289 #endif 10290 } 10291 10292 #ifdef CONFIG_FAIR_GROUP_SCHED 10293 static void task_set_group_fair(struct task_struct *p) 10294 { 10295 struct sched_entity *se = &p->se; 10296 10297 set_task_rq(p, task_cpu(p)); 10298 se->depth = se->parent ? se->parent->depth + 1 : 0; 10299 } 10300 10301 static void task_move_group_fair(struct task_struct *p) 10302 { 10303 detach_task_cfs_rq(p); 10304 set_task_rq(p, task_cpu(p)); 10305 10306 #ifdef CONFIG_SMP 10307 /* Tell se's cfs_rq has been changed -- migrated */ 10308 p->se.avg.last_update_time = 0; 10309 #endif 10310 attach_task_cfs_rq(p); 10311 } 10312 10313 static void task_change_group_fair(struct task_struct *p, int type) 10314 { 10315 switch (type) { 10316 case TASK_SET_GROUP: 10317 task_set_group_fair(p); 10318 break; 10319 10320 case TASK_MOVE_GROUP: 10321 task_move_group_fair(p); 10322 break; 10323 } 10324 } 10325 10326 void free_fair_sched_group(struct task_group *tg) 10327 { 10328 int i; 10329 10330 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10331 10332 for_each_possible_cpu(i) { 10333 if (tg->cfs_rq) 10334 kfree(tg->cfs_rq[i]); 10335 if (tg->se) 10336 kfree(tg->se[i]); 10337 } 10338 10339 kfree(tg->cfs_rq); 10340 kfree(tg->se); 10341 } 10342 10343 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10344 { 10345 struct sched_entity *se; 10346 struct cfs_rq *cfs_rq; 10347 int i; 10348 10349 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 10350 if (!tg->cfs_rq) 10351 goto err; 10352 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 10353 if (!tg->se) 10354 goto err; 10355 10356 tg->shares = NICE_0_LOAD; 10357 10358 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 10359 10360 for_each_possible_cpu(i) { 10361 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 10362 GFP_KERNEL, cpu_to_node(i)); 10363 if (!cfs_rq) 10364 goto err; 10365 10366 se = kzalloc_node(sizeof(struct sched_entity), 10367 GFP_KERNEL, cpu_to_node(i)); 10368 if (!se) 10369 goto err_free_rq; 10370 10371 init_cfs_rq(cfs_rq); 10372 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 10373 init_entity_runnable_average(se); 10374 } 10375 10376 return 1; 10377 10378 err_free_rq: 10379 kfree(cfs_rq); 10380 err: 10381 return 0; 10382 } 10383 10384 void online_fair_sched_group(struct task_group *tg) 10385 { 10386 struct sched_entity *se; 10387 struct rq *rq; 10388 int i; 10389 10390 for_each_possible_cpu(i) { 10391 rq = cpu_rq(i); 10392 se = tg->se[i]; 10393 10394 raw_spin_lock_irq(&rq->lock); 10395 update_rq_clock(rq); 10396 attach_entity_cfs_rq(se); 10397 sync_throttle(tg, i); 10398 raw_spin_unlock_irq(&rq->lock); 10399 } 10400 } 10401 10402 void unregister_fair_sched_group(struct task_group *tg) 10403 { 10404 unsigned long flags; 10405 struct rq *rq; 10406 int cpu; 10407 10408 for_each_possible_cpu(cpu) { 10409 if (tg->se[cpu]) 10410 remove_entity_load_avg(tg->se[cpu]); 10411 10412 /* 10413 * Only empty task groups can be destroyed; so we can speculatively 10414 * check on_list without danger of it being re-added. 10415 */ 10416 if (!tg->cfs_rq[cpu]->on_list) 10417 continue; 10418 10419 rq = cpu_rq(cpu); 10420 10421 raw_spin_lock_irqsave(&rq->lock, flags); 10422 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 10423 raw_spin_unlock_irqrestore(&rq->lock, flags); 10424 } 10425 } 10426 10427 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 10428 struct sched_entity *se, int cpu, 10429 struct sched_entity *parent) 10430 { 10431 struct rq *rq = cpu_rq(cpu); 10432 10433 cfs_rq->tg = tg; 10434 cfs_rq->rq = rq; 10435 init_cfs_rq_runtime(cfs_rq); 10436 10437 tg->cfs_rq[cpu] = cfs_rq; 10438 tg->se[cpu] = se; 10439 10440 /* se could be NULL for root_task_group */ 10441 if (!se) 10442 return; 10443 10444 if (!parent) { 10445 se->cfs_rq = &rq->cfs; 10446 se->depth = 0; 10447 } else { 10448 se->cfs_rq = parent->my_q; 10449 se->depth = parent->depth + 1; 10450 } 10451 10452 se->my_q = cfs_rq; 10453 /* guarantee group entities always have weight */ 10454 update_load_set(&se->load, NICE_0_LOAD); 10455 se->parent = parent; 10456 } 10457 10458 static DEFINE_MUTEX(shares_mutex); 10459 10460 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 10461 { 10462 int i; 10463 10464 /* 10465 * We can't change the weight of the root cgroup. 10466 */ 10467 if (!tg->se[0]) 10468 return -EINVAL; 10469 10470 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 10471 10472 mutex_lock(&shares_mutex); 10473 if (tg->shares == shares) 10474 goto done; 10475 10476 tg->shares = shares; 10477 for_each_possible_cpu(i) { 10478 struct rq *rq = cpu_rq(i); 10479 struct sched_entity *se = tg->se[i]; 10480 struct rq_flags rf; 10481 10482 /* Propagate contribution to hierarchy */ 10483 rq_lock_irqsave(rq, &rf); 10484 update_rq_clock(rq); 10485 for_each_sched_entity(se) { 10486 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 10487 update_cfs_group(se); 10488 } 10489 rq_unlock_irqrestore(rq, &rf); 10490 } 10491 10492 done: 10493 mutex_unlock(&shares_mutex); 10494 return 0; 10495 } 10496 #else /* CONFIG_FAIR_GROUP_SCHED */ 10497 10498 void free_fair_sched_group(struct task_group *tg) { } 10499 10500 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 10501 { 10502 return 1; 10503 } 10504 10505 void online_fair_sched_group(struct task_group *tg) { } 10506 10507 void unregister_fair_sched_group(struct task_group *tg) { } 10508 10509 #endif /* CONFIG_FAIR_GROUP_SCHED */ 10510 10511 10512 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 10513 { 10514 struct sched_entity *se = &task->se; 10515 unsigned int rr_interval = 0; 10516 10517 /* 10518 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 10519 * idle runqueue: 10520 */ 10521 if (rq->cfs.load.weight) 10522 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 10523 10524 return rr_interval; 10525 } 10526 10527 /* 10528 * All the scheduling class methods: 10529 */ 10530 const struct sched_class fair_sched_class = { 10531 .next = &idle_sched_class, 10532 .enqueue_task = enqueue_task_fair, 10533 .dequeue_task = dequeue_task_fair, 10534 .yield_task = yield_task_fair, 10535 .yield_to_task = yield_to_task_fair, 10536 10537 .check_preempt_curr = check_preempt_wakeup, 10538 10539 .pick_next_task = pick_next_task_fair, 10540 .put_prev_task = put_prev_task_fair, 10541 10542 #ifdef CONFIG_SMP 10543 .select_task_rq = select_task_rq_fair, 10544 .migrate_task_rq = migrate_task_rq_fair, 10545 10546 .rq_online = rq_online_fair, 10547 .rq_offline = rq_offline_fair, 10548 10549 .task_dead = task_dead_fair, 10550 .set_cpus_allowed = set_cpus_allowed_common, 10551 #endif 10552 10553 .set_curr_task = set_curr_task_fair, 10554 .task_tick = task_tick_fair, 10555 .task_fork = task_fork_fair, 10556 10557 .prio_changed = prio_changed_fair, 10558 .switched_from = switched_from_fair, 10559 .switched_to = switched_to_fair, 10560 10561 .get_rr_interval = get_rr_interval_fair, 10562 10563 .update_curr = update_curr_fair, 10564 10565 #ifdef CONFIG_FAIR_GROUP_SCHED 10566 .task_change_group = task_change_group_fair, 10567 #endif 10568 }; 10569 10570 #ifdef CONFIG_SCHED_DEBUG 10571 void print_cfs_stats(struct seq_file *m, int cpu) 10572 { 10573 struct cfs_rq *cfs_rq, *pos; 10574 10575 rcu_read_lock(); 10576 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 10577 print_cfs_rq(m, cpu, cfs_rq); 10578 rcu_read_unlock(); 10579 } 10580 10581 #ifdef CONFIG_NUMA_BALANCING 10582 void show_numa_stats(struct task_struct *p, struct seq_file *m) 10583 { 10584 int node; 10585 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 10586 10587 for_each_online_node(node) { 10588 if (p->numa_faults) { 10589 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 10590 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 10591 } 10592 if (p->numa_group) { 10593 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 10594 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 10595 } 10596 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 10597 } 10598 } 10599 #endif /* CONFIG_NUMA_BALANCING */ 10600 #endif /* CONFIG_SCHED_DEBUG */ 10601 10602 __init void init_sched_fair_class(void) 10603 { 10604 #ifdef CONFIG_SMP 10605 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 10606 10607 #ifdef CONFIG_NO_HZ_COMMON 10608 nohz.next_balance = jiffies; 10609 nohz.next_blocked = jiffies; 10610 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 10611 #endif 10612 #endif /* SMP */ 10613 10614 } 10615