xref: /linux/kernel/sched/fair.c (revision ff4a7481c3898ffc3cc271d6aca431d190c37247)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 
25 #include <trace/events/sched.h>
26 
27 /*
28  * Targeted preemption latency for CPU-bound tasks:
29  *
30  * NOTE: this latency value is not the same as the concept of
31  * 'timeslice length' - timeslices in CFS are of variable length
32  * and have no persistent notion like in traditional, time-slice
33  * based scheduling concepts.
34  *
35  * (to see the precise effective timeslice length of your workload,
36  *  run vmstat and monitor the context-switches (cs) field)
37  *
38  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
39  */
40 unsigned int sysctl_sched_latency			= 6000000ULL;
41 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
42 
43 /*
44  * The initial- and re-scaling of tunables is configurable
45  *
46  * Options are:
47  *
48  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
49  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
50  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51  *
52  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
53  */
54 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
55 
56 /*
57  * Minimal preemption granularity for CPU-bound tasks:
58  *
59  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
60  */
61 unsigned int sysctl_sched_min_granularity			= 750000ULL;
62 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
63 
64 /*
65  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
66  */
67 static unsigned int sched_nr_latency = 8;
68 
69 /*
70  * After fork, child runs first. If set to 0 (default) then
71  * parent will (try to) run first.
72  */
73 unsigned int sysctl_sched_child_runs_first __read_mostly;
74 
75 /*
76  * SCHED_OTHER wake-up granularity.
77  *
78  * This option delays the preemption effects of decoupled workloads
79  * and reduces their over-scheduling. Synchronous workloads will still
80  * have immediate wakeup/sleep latencies.
81  *
82  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83  */
84 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
85 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
86 
87 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
88 
89 #ifdef CONFIG_SMP
90 /*
91  * For asym packing, by default the lower numbered CPU has higher priority.
92  */
93 int __weak arch_asym_cpu_priority(int cpu)
94 {
95 	return -cpu;
96 }
97 
98 /*
99  * The margin used when comparing utilization with CPU capacity:
100  * util * margin < capacity * 1024
101  *
102  * (default: ~20%)
103  */
104 static unsigned int capacity_margin			= 1280;
105 #endif
106 
107 #ifdef CONFIG_CFS_BANDWIDTH
108 /*
109  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
110  * each time a cfs_rq requests quota.
111  *
112  * Note: in the case that the slice exceeds the runtime remaining (either due
113  * to consumption or the quota being specified to be smaller than the slice)
114  * we will always only issue the remaining available time.
115  *
116  * (default: 5 msec, units: microseconds)
117  */
118 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
119 #endif
120 
121 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
122 {
123 	lw->weight += inc;
124 	lw->inv_weight = 0;
125 }
126 
127 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
128 {
129 	lw->weight -= dec;
130 	lw->inv_weight = 0;
131 }
132 
133 static inline void update_load_set(struct load_weight *lw, unsigned long w)
134 {
135 	lw->weight = w;
136 	lw->inv_weight = 0;
137 }
138 
139 /*
140  * Increase the granularity value when there are more CPUs,
141  * because with more CPUs the 'effective latency' as visible
142  * to users decreases. But the relationship is not linear,
143  * so pick a second-best guess by going with the log2 of the
144  * number of CPUs.
145  *
146  * This idea comes from the SD scheduler of Con Kolivas:
147  */
148 static unsigned int get_update_sysctl_factor(void)
149 {
150 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
151 	unsigned int factor;
152 
153 	switch (sysctl_sched_tunable_scaling) {
154 	case SCHED_TUNABLESCALING_NONE:
155 		factor = 1;
156 		break;
157 	case SCHED_TUNABLESCALING_LINEAR:
158 		factor = cpus;
159 		break;
160 	case SCHED_TUNABLESCALING_LOG:
161 	default:
162 		factor = 1 + ilog2(cpus);
163 		break;
164 	}
165 
166 	return factor;
167 }
168 
169 static void update_sysctl(void)
170 {
171 	unsigned int factor = get_update_sysctl_factor();
172 
173 #define SET_SYSCTL(name) \
174 	(sysctl_##name = (factor) * normalized_sysctl_##name)
175 	SET_SYSCTL(sched_min_granularity);
176 	SET_SYSCTL(sched_latency);
177 	SET_SYSCTL(sched_wakeup_granularity);
178 #undef SET_SYSCTL
179 }
180 
181 void sched_init_granularity(void)
182 {
183 	update_sysctl();
184 }
185 
186 #define WMULT_CONST	(~0U)
187 #define WMULT_SHIFT	32
188 
189 static void __update_inv_weight(struct load_weight *lw)
190 {
191 	unsigned long w;
192 
193 	if (likely(lw->inv_weight))
194 		return;
195 
196 	w = scale_load_down(lw->weight);
197 
198 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
199 		lw->inv_weight = 1;
200 	else if (unlikely(!w))
201 		lw->inv_weight = WMULT_CONST;
202 	else
203 		lw->inv_weight = WMULT_CONST / w;
204 }
205 
206 /*
207  * delta_exec * weight / lw.weight
208  *   OR
209  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
210  *
211  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
212  * we're guaranteed shift stays positive because inv_weight is guaranteed to
213  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
214  *
215  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
216  * weight/lw.weight <= 1, and therefore our shift will also be positive.
217  */
218 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
219 {
220 	u64 fact = scale_load_down(weight);
221 	int shift = WMULT_SHIFT;
222 
223 	__update_inv_weight(lw);
224 
225 	if (unlikely(fact >> 32)) {
226 		while (fact >> 32) {
227 			fact >>= 1;
228 			shift--;
229 		}
230 	}
231 
232 	/* hint to use a 32x32->64 mul */
233 	fact = (u64)(u32)fact * lw->inv_weight;
234 
235 	while (fact >> 32) {
236 		fact >>= 1;
237 		shift--;
238 	}
239 
240 	return mul_u64_u32_shr(delta_exec, fact, shift);
241 }
242 
243 
244 const struct sched_class fair_sched_class;
245 
246 /**************************************************************
247  * CFS operations on generic schedulable entities:
248  */
249 
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 
252 /* cpu runqueue to which this cfs_rq is attached */
253 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
254 {
255 	return cfs_rq->rq;
256 }
257 
258 static inline struct task_struct *task_of(struct sched_entity *se)
259 {
260 	SCHED_WARN_ON(!entity_is_task(se));
261 	return container_of(se, struct task_struct, se);
262 }
263 
264 /* Walk up scheduling entities hierarchy */
265 #define for_each_sched_entity(se) \
266 		for (; se; se = se->parent)
267 
268 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
269 {
270 	return p->se.cfs_rq;
271 }
272 
273 /* runqueue on which this entity is (to be) queued */
274 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
275 {
276 	return se->cfs_rq;
277 }
278 
279 /* runqueue "owned" by this group */
280 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
281 {
282 	return grp->my_q;
283 }
284 
285 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
286 {
287 	if (!cfs_rq->on_list) {
288 		struct rq *rq = rq_of(cfs_rq);
289 		int cpu = cpu_of(rq);
290 		/*
291 		 * Ensure we either appear before our parent (if already
292 		 * enqueued) or force our parent to appear after us when it is
293 		 * enqueued. The fact that we always enqueue bottom-up
294 		 * reduces this to two cases and a special case for the root
295 		 * cfs_rq. Furthermore, it also means that we will always reset
296 		 * tmp_alone_branch either when the branch is connected
297 		 * to a tree or when we reach the beg of the tree
298 		 */
299 		if (cfs_rq->tg->parent &&
300 		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
301 			/*
302 			 * If parent is already on the list, we add the child
303 			 * just before. Thanks to circular linked property of
304 			 * the list, this means to put the child at the tail
305 			 * of the list that starts by parent.
306 			 */
307 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
308 				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
309 			/*
310 			 * The branch is now connected to its tree so we can
311 			 * reset tmp_alone_branch to the beginning of the
312 			 * list.
313 			 */
314 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
315 		} else if (!cfs_rq->tg->parent) {
316 			/*
317 			 * cfs rq without parent should be put
318 			 * at the tail of the list.
319 			 */
320 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
321 				&rq->leaf_cfs_rq_list);
322 			/*
323 			 * We have reach the beg of a tree so we can reset
324 			 * tmp_alone_branch to the beginning of the list.
325 			 */
326 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
327 		} else {
328 			/*
329 			 * The parent has not already been added so we want to
330 			 * make sure that it will be put after us.
331 			 * tmp_alone_branch points to the beg of the branch
332 			 * where we will add parent.
333 			 */
334 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
335 				rq->tmp_alone_branch);
336 			/*
337 			 * update tmp_alone_branch to points to the new beg
338 			 * of the branch
339 			 */
340 			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
341 		}
342 
343 		cfs_rq->on_list = 1;
344 	}
345 }
346 
347 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
348 {
349 	if (cfs_rq->on_list) {
350 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
351 		cfs_rq->on_list = 0;
352 	}
353 }
354 
355 /* Iterate thr' all leaf cfs_rq's on a runqueue */
356 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
357 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
358 				 leaf_cfs_rq_list)
359 
360 /* Do the two (enqueued) entities belong to the same group ? */
361 static inline struct cfs_rq *
362 is_same_group(struct sched_entity *se, struct sched_entity *pse)
363 {
364 	if (se->cfs_rq == pse->cfs_rq)
365 		return se->cfs_rq;
366 
367 	return NULL;
368 }
369 
370 static inline struct sched_entity *parent_entity(struct sched_entity *se)
371 {
372 	return se->parent;
373 }
374 
375 static void
376 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
377 {
378 	int se_depth, pse_depth;
379 
380 	/*
381 	 * preemption test can be made between sibling entities who are in the
382 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
383 	 * both tasks until we find their ancestors who are siblings of common
384 	 * parent.
385 	 */
386 
387 	/* First walk up until both entities are at same depth */
388 	se_depth = (*se)->depth;
389 	pse_depth = (*pse)->depth;
390 
391 	while (se_depth > pse_depth) {
392 		se_depth--;
393 		*se = parent_entity(*se);
394 	}
395 
396 	while (pse_depth > se_depth) {
397 		pse_depth--;
398 		*pse = parent_entity(*pse);
399 	}
400 
401 	while (!is_same_group(*se, *pse)) {
402 		*se = parent_entity(*se);
403 		*pse = parent_entity(*pse);
404 	}
405 }
406 
407 #else	/* !CONFIG_FAIR_GROUP_SCHED */
408 
409 static inline struct task_struct *task_of(struct sched_entity *se)
410 {
411 	return container_of(se, struct task_struct, se);
412 }
413 
414 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
415 {
416 	return container_of(cfs_rq, struct rq, cfs);
417 }
418 
419 
420 #define for_each_sched_entity(se) \
421 		for (; se; se = NULL)
422 
423 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
424 {
425 	return &task_rq(p)->cfs;
426 }
427 
428 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
429 {
430 	struct task_struct *p = task_of(se);
431 	struct rq *rq = task_rq(p);
432 
433 	return &rq->cfs;
434 }
435 
436 /* runqueue "owned" by this group */
437 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
438 {
439 	return NULL;
440 }
441 
442 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
443 {
444 }
445 
446 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
447 {
448 }
449 
450 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
451 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
452 
453 static inline struct sched_entity *parent_entity(struct sched_entity *se)
454 {
455 	return NULL;
456 }
457 
458 static inline void
459 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
460 {
461 }
462 
463 #endif	/* CONFIG_FAIR_GROUP_SCHED */
464 
465 static __always_inline
466 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
467 
468 /**************************************************************
469  * Scheduling class tree data structure manipulation methods:
470  */
471 
472 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
473 {
474 	s64 delta = (s64)(vruntime - max_vruntime);
475 	if (delta > 0)
476 		max_vruntime = vruntime;
477 
478 	return max_vruntime;
479 }
480 
481 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
482 {
483 	s64 delta = (s64)(vruntime - min_vruntime);
484 	if (delta < 0)
485 		min_vruntime = vruntime;
486 
487 	return min_vruntime;
488 }
489 
490 static inline int entity_before(struct sched_entity *a,
491 				struct sched_entity *b)
492 {
493 	return (s64)(a->vruntime - b->vruntime) < 0;
494 }
495 
496 static void update_min_vruntime(struct cfs_rq *cfs_rq)
497 {
498 	struct sched_entity *curr = cfs_rq->curr;
499 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
500 
501 	u64 vruntime = cfs_rq->min_vruntime;
502 
503 	if (curr) {
504 		if (curr->on_rq)
505 			vruntime = curr->vruntime;
506 		else
507 			curr = NULL;
508 	}
509 
510 	if (leftmost) { /* non-empty tree */
511 		struct sched_entity *se;
512 		se = rb_entry(leftmost, struct sched_entity, run_node);
513 
514 		if (!curr)
515 			vruntime = se->vruntime;
516 		else
517 			vruntime = min_vruntime(vruntime, se->vruntime);
518 	}
519 
520 	/* ensure we never gain time by being placed backwards. */
521 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
522 #ifndef CONFIG_64BIT
523 	smp_wmb();
524 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
525 #endif
526 }
527 
528 /*
529  * Enqueue an entity into the rb-tree:
530  */
531 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
532 {
533 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
534 	struct rb_node *parent = NULL;
535 	struct sched_entity *entry;
536 	bool leftmost = true;
537 
538 	/*
539 	 * Find the right place in the rbtree:
540 	 */
541 	while (*link) {
542 		parent = *link;
543 		entry = rb_entry(parent, struct sched_entity, run_node);
544 		/*
545 		 * We dont care about collisions. Nodes with
546 		 * the same key stay together.
547 		 */
548 		if (entity_before(se, entry)) {
549 			link = &parent->rb_left;
550 		} else {
551 			link = &parent->rb_right;
552 			leftmost = false;
553 		}
554 	}
555 
556 	rb_link_node(&se->run_node, parent, link);
557 	rb_insert_color_cached(&se->run_node,
558 			       &cfs_rq->tasks_timeline, leftmost);
559 }
560 
561 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
562 {
563 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
564 }
565 
566 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
567 {
568 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
569 
570 	if (!left)
571 		return NULL;
572 
573 	return rb_entry(left, struct sched_entity, run_node);
574 }
575 
576 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
577 {
578 	struct rb_node *next = rb_next(&se->run_node);
579 
580 	if (!next)
581 		return NULL;
582 
583 	return rb_entry(next, struct sched_entity, run_node);
584 }
585 
586 #ifdef CONFIG_SCHED_DEBUG
587 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
588 {
589 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
590 
591 	if (!last)
592 		return NULL;
593 
594 	return rb_entry(last, struct sched_entity, run_node);
595 }
596 
597 /**************************************************************
598  * Scheduling class statistics methods:
599  */
600 
601 int sched_proc_update_handler(struct ctl_table *table, int write,
602 		void __user *buffer, size_t *lenp,
603 		loff_t *ppos)
604 {
605 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
606 	unsigned int factor = get_update_sysctl_factor();
607 
608 	if (ret || !write)
609 		return ret;
610 
611 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
612 					sysctl_sched_min_granularity);
613 
614 #define WRT_SYSCTL(name) \
615 	(normalized_sysctl_##name = sysctl_##name / (factor))
616 	WRT_SYSCTL(sched_min_granularity);
617 	WRT_SYSCTL(sched_latency);
618 	WRT_SYSCTL(sched_wakeup_granularity);
619 #undef WRT_SYSCTL
620 
621 	return 0;
622 }
623 #endif
624 
625 /*
626  * delta /= w
627  */
628 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
629 {
630 	if (unlikely(se->load.weight != NICE_0_LOAD))
631 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
632 
633 	return delta;
634 }
635 
636 /*
637  * The idea is to set a period in which each task runs once.
638  *
639  * When there are too many tasks (sched_nr_latency) we have to stretch
640  * this period because otherwise the slices get too small.
641  *
642  * p = (nr <= nl) ? l : l*nr/nl
643  */
644 static u64 __sched_period(unsigned long nr_running)
645 {
646 	if (unlikely(nr_running > sched_nr_latency))
647 		return nr_running * sysctl_sched_min_granularity;
648 	else
649 		return sysctl_sched_latency;
650 }
651 
652 /*
653  * We calculate the wall-time slice from the period by taking a part
654  * proportional to the weight.
655  *
656  * s = p*P[w/rw]
657  */
658 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
659 {
660 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
661 
662 	for_each_sched_entity(se) {
663 		struct load_weight *load;
664 		struct load_weight lw;
665 
666 		cfs_rq = cfs_rq_of(se);
667 		load = &cfs_rq->load;
668 
669 		if (unlikely(!se->on_rq)) {
670 			lw = cfs_rq->load;
671 
672 			update_load_add(&lw, se->load.weight);
673 			load = &lw;
674 		}
675 		slice = __calc_delta(slice, se->load.weight, load);
676 	}
677 	return slice;
678 }
679 
680 /*
681  * We calculate the vruntime slice of a to-be-inserted task.
682  *
683  * vs = s/w
684  */
685 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
686 {
687 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
688 }
689 
690 #ifdef CONFIG_SMP
691 #include "pelt.h"
692 #include "sched-pelt.h"
693 
694 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
695 static unsigned long task_h_load(struct task_struct *p);
696 static unsigned long capacity_of(int cpu);
697 
698 /* Give new sched_entity start runnable values to heavy its load in infant time */
699 void init_entity_runnable_average(struct sched_entity *se)
700 {
701 	struct sched_avg *sa = &se->avg;
702 
703 	memset(sa, 0, sizeof(*sa));
704 
705 	/*
706 	 * Tasks are initialized with full load to be seen as heavy tasks until
707 	 * they get a chance to stabilize to their real load level.
708 	 * Group entities are initialized with zero load to reflect the fact that
709 	 * nothing has been attached to the task group yet.
710 	 */
711 	if (entity_is_task(se))
712 		sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
713 
714 	se->runnable_weight = se->load.weight;
715 
716 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
717 }
718 
719 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
720 static void attach_entity_cfs_rq(struct sched_entity *se);
721 
722 /*
723  * With new tasks being created, their initial util_avgs are extrapolated
724  * based on the cfs_rq's current util_avg:
725  *
726  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
727  *
728  * However, in many cases, the above util_avg does not give a desired
729  * value. Moreover, the sum of the util_avgs may be divergent, such
730  * as when the series is a harmonic series.
731  *
732  * To solve this problem, we also cap the util_avg of successive tasks to
733  * only 1/2 of the left utilization budget:
734  *
735  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
736  *
737  * where n denotes the nth task and cpu_scale the CPU capacity.
738  *
739  * For example, for a CPU with 1024 of capacity, a simplest series from
740  * the beginning would be like:
741  *
742  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
743  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
744  *
745  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
746  * if util_avg > util_avg_cap.
747  */
748 void post_init_entity_util_avg(struct sched_entity *se)
749 {
750 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
751 	struct sched_avg *sa = &se->avg;
752 	long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
753 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
754 
755 	if (cap > 0) {
756 		if (cfs_rq->avg.util_avg != 0) {
757 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
758 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
759 
760 			if (sa->util_avg > cap)
761 				sa->util_avg = cap;
762 		} else {
763 			sa->util_avg = cap;
764 		}
765 	}
766 
767 	if (entity_is_task(se)) {
768 		struct task_struct *p = task_of(se);
769 		if (p->sched_class != &fair_sched_class) {
770 			/*
771 			 * For !fair tasks do:
772 			 *
773 			update_cfs_rq_load_avg(now, cfs_rq);
774 			attach_entity_load_avg(cfs_rq, se, 0);
775 			switched_from_fair(rq, p);
776 			 *
777 			 * such that the next switched_to_fair() has the
778 			 * expected state.
779 			 */
780 			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
781 			return;
782 		}
783 	}
784 
785 	attach_entity_cfs_rq(se);
786 }
787 
788 #else /* !CONFIG_SMP */
789 void init_entity_runnable_average(struct sched_entity *se)
790 {
791 }
792 void post_init_entity_util_avg(struct sched_entity *se)
793 {
794 }
795 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
796 {
797 }
798 #endif /* CONFIG_SMP */
799 
800 /*
801  * Update the current task's runtime statistics.
802  */
803 static void update_curr(struct cfs_rq *cfs_rq)
804 {
805 	struct sched_entity *curr = cfs_rq->curr;
806 	u64 now = rq_clock_task(rq_of(cfs_rq));
807 	u64 delta_exec;
808 
809 	if (unlikely(!curr))
810 		return;
811 
812 	delta_exec = now - curr->exec_start;
813 	if (unlikely((s64)delta_exec <= 0))
814 		return;
815 
816 	curr->exec_start = now;
817 
818 	schedstat_set(curr->statistics.exec_max,
819 		      max(delta_exec, curr->statistics.exec_max));
820 
821 	curr->sum_exec_runtime += delta_exec;
822 	schedstat_add(cfs_rq->exec_clock, delta_exec);
823 
824 	curr->vruntime += calc_delta_fair(delta_exec, curr);
825 	update_min_vruntime(cfs_rq);
826 
827 	if (entity_is_task(curr)) {
828 		struct task_struct *curtask = task_of(curr);
829 
830 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
831 		cgroup_account_cputime(curtask, delta_exec);
832 		account_group_exec_runtime(curtask, delta_exec);
833 	}
834 
835 	account_cfs_rq_runtime(cfs_rq, delta_exec);
836 }
837 
838 static void update_curr_fair(struct rq *rq)
839 {
840 	update_curr(cfs_rq_of(&rq->curr->se));
841 }
842 
843 static inline void
844 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
845 {
846 	u64 wait_start, prev_wait_start;
847 
848 	if (!schedstat_enabled())
849 		return;
850 
851 	wait_start = rq_clock(rq_of(cfs_rq));
852 	prev_wait_start = schedstat_val(se->statistics.wait_start);
853 
854 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
855 	    likely(wait_start > prev_wait_start))
856 		wait_start -= prev_wait_start;
857 
858 	__schedstat_set(se->statistics.wait_start, wait_start);
859 }
860 
861 static inline void
862 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
863 {
864 	struct task_struct *p;
865 	u64 delta;
866 
867 	if (!schedstat_enabled())
868 		return;
869 
870 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
871 
872 	if (entity_is_task(se)) {
873 		p = task_of(se);
874 		if (task_on_rq_migrating(p)) {
875 			/*
876 			 * Preserve migrating task's wait time so wait_start
877 			 * time stamp can be adjusted to accumulate wait time
878 			 * prior to migration.
879 			 */
880 			__schedstat_set(se->statistics.wait_start, delta);
881 			return;
882 		}
883 		trace_sched_stat_wait(p, delta);
884 	}
885 
886 	__schedstat_set(se->statistics.wait_max,
887 		      max(schedstat_val(se->statistics.wait_max), delta));
888 	__schedstat_inc(se->statistics.wait_count);
889 	__schedstat_add(se->statistics.wait_sum, delta);
890 	__schedstat_set(se->statistics.wait_start, 0);
891 }
892 
893 static inline void
894 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
895 {
896 	struct task_struct *tsk = NULL;
897 	u64 sleep_start, block_start;
898 
899 	if (!schedstat_enabled())
900 		return;
901 
902 	sleep_start = schedstat_val(se->statistics.sleep_start);
903 	block_start = schedstat_val(se->statistics.block_start);
904 
905 	if (entity_is_task(se))
906 		tsk = task_of(se);
907 
908 	if (sleep_start) {
909 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
910 
911 		if ((s64)delta < 0)
912 			delta = 0;
913 
914 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
915 			__schedstat_set(se->statistics.sleep_max, delta);
916 
917 		__schedstat_set(se->statistics.sleep_start, 0);
918 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
919 
920 		if (tsk) {
921 			account_scheduler_latency(tsk, delta >> 10, 1);
922 			trace_sched_stat_sleep(tsk, delta);
923 		}
924 	}
925 	if (block_start) {
926 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
927 
928 		if ((s64)delta < 0)
929 			delta = 0;
930 
931 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
932 			__schedstat_set(se->statistics.block_max, delta);
933 
934 		__schedstat_set(se->statistics.block_start, 0);
935 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
936 
937 		if (tsk) {
938 			if (tsk->in_iowait) {
939 				__schedstat_add(se->statistics.iowait_sum, delta);
940 				__schedstat_inc(se->statistics.iowait_count);
941 				trace_sched_stat_iowait(tsk, delta);
942 			}
943 
944 			trace_sched_stat_blocked(tsk, delta);
945 
946 			/*
947 			 * Blocking time is in units of nanosecs, so shift by
948 			 * 20 to get a milliseconds-range estimation of the
949 			 * amount of time that the task spent sleeping:
950 			 */
951 			if (unlikely(prof_on == SLEEP_PROFILING)) {
952 				profile_hits(SLEEP_PROFILING,
953 						(void *)get_wchan(tsk),
954 						delta >> 20);
955 			}
956 			account_scheduler_latency(tsk, delta >> 10, 0);
957 		}
958 	}
959 }
960 
961 /*
962  * Task is being enqueued - update stats:
963  */
964 static inline void
965 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
966 {
967 	if (!schedstat_enabled())
968 		return;
969 
970 	/*
971 	 * Are we enqueueing a waiting task? (for current tasks
972 	 * a dequeue/enqueue event is a NOP)
973 	 */
974 	if (se != cfs_rq->curr)
975 		update_stats_wait_start(cfs_rq, se);
976 
977 	if (flags & ENQUEUE_WAKEUP)
978 		update_stats_enqueue_sleeper(cfs_rq, se);
979 }
980 
981 static inline void
982 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
983 {
984 
985 	if (!schedstat_enabled())
986 		return;
987 
988 	/*
989 	 * Mark the end of the wait period if dequeueing a
990 	 * waiting task:
991 	 */
992 	if (se != cfs_rq->curr)
993 		update_stats_wait_end(cfs_rq, se);
994 
995 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
996 		struct task_struct *tsk = task_of(se);
997 
998 		if (tsk->state & TASK_INTERRUPTIBLE)
999 			__schedstat_set(se->statistics.sleep_start,
1000 				      rq_clock(rq_of(cfs_rq)));
1001 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1002 			__schedstat_set(se->statistics.block_start,
1003 				      rq_clock(rq_of(cfs_rq)));
1004 	}
1005 }
1006 
1007 /*
1008  * We are picking a new current task - update its stats:
1009  */
1010 static inline void
1011 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1012 {
1013 	/*
1014 	 * We are starting a new run period:
1015 	 */
1016 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1017 }
1018 
1019 /**************************************************
1020  * Scheduling class queueing methods:
1021  */
1022 
1023 #ifdef CONFIG_NUMA_BALANCING
1024 /*
1025  * Approximate time to scan a full NUMA task in ms. The task scan period is
1026  * calculated based on the tasks virtual memory size and
1027  * numa_balancing_scan_size.
1028  */
1029 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1030 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1031 
1032 /* Portion of address space to scan in MB */
1033 unsigned int sysctl_numa_balancing_scan_size = 256;
1034 
1035 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1036 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1037 
1038 struct numa_group {
1039 	atomic_t refcount;
1040 
1041 	spinlock_t lock; /* nr_tasks, tasks */
1042 	int nr_tasks;
1043 	pid_t gid;
1044 	int active_nodes;
1045 
1046 	struct rcu_head rcu;
1047 	unsigned long total_faults;
1048 	unsigned long max_faults_cpu;
1049 	/*
1050 	 * Faults_cpu is used to decide whether memory should move
1051 	 * towards the CPU. As a consequence, these stats are weighted
1052 	 * more by CPU use than by memory faults.
1053 	 */
1054 	unsigned long *faults_cpu;
1055 	unsigned long faults[0];
1056 };
1057 
1058 static inline unsigned long group_faults_priv(struct numa_group *ng);
1059 static inline unsigned long group_faults_shared(struct numa_group *ng);
1060 
1061 static unsigned int task_nr_scan_windows(struct task_struct *p)
1062 {
1063 	unsigned long rss = 0;
1064 	unsigned long nr_scan_pages;
1065 
1066 	/*
1067 	 * Calculations based on RSS as non-present and empty pages are skipped
1068 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1069 	 * on resident pages
1070 	 */
1071 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1072 	rss = get_mm_rss(p->mm);
1073 	if (!rss)
1074 		rss = nr_scan_pages;
1075 
1076 	rss = round_up(rss, nr_scan_pages);
1077 	return rss / nr_scan_pages;
1078 }
1079 
1080 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1081 #define MAX_SCAN_WINDOW 2560
1082 
1083 static unsigned int task_scan_min(struct task_struct *p)
1084 {
1085 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1086 	unsigned int scan, floor;
1087 	unsigned int windows = 1;
1088 
1089 	if (scan_size < MAX_SCAN_WINDOW)
1090 		windows = MAX_SCAN_WINDOW / scan_size;
1091 	floor = 1000 / windows;
1092 
1093 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1094 	return max_t(unsigned int, floor, scan);
1095 }
1096 
1097 static unsigned int task_scan_start(struct task_struct *p)
1098 {
1099 	unsigned long smin = task_scan_min(p);
1100 	unsigned long period = smin;
1101 
1102 	/* Scale the maximum scan period with the amount of shared memory. */
1103 	if (p->numa_group) {
1104 		struct numa_group *ng = p->numa_group;
1105 		unsigned long shared = group_faults_shared(ng);
1106 		unsigned long private = group_faults_priv(ng);
1107 
1108 		period *= atomic_read(&ng->refcount);
1109 		period *= shared + 1;
1110 		period /= private + shared + 1;
1111 	}
1112 
1113 	return max(smin, period);
1114 }
1115 
1116 static unsigned int task_scan_max(struct task_struct *p)
1117 {
1118 	unsigned long smin = task_scan_min(p);
1119 	unsigned long smax;
1120 
1121 	/* Watch for min being lower than max due to floor calculations */
1122 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1123 
1124 	/* Scale the maximum scan period with the amount of shared memory. */
1125 	if (p->numa_group) {
1126 		struct numa_group *ng = p->numa_group;
1127 		unsigned long shared = group_faults_shared(ng);
1128 		unsigned long private = group_faults_priv(ng);
1129 		unsigned long period = smax;
1130 
1131 		period *= atomic_read(&ng->refcount);
1132 		period *= shared + 1;
1133 		period /= private + shared + 1;
1134 
1135 		smax = max(smax, period);
1136 	}
1137 
1138 	return max(smin, smax);
1139 }
1140 
1141 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1142 {
1143 	int mm_users = 0;
1144 	struct mm_struct *mm = p->mm;
1145 
1146 	if (mm) {
1147 		mm_users = atomic_read(&mm->mm_users);
1148 		if (mm_users == 1) {
1149 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1150 			mm->numa_scan_seq = 0;
1151 		}
1152 	}
1153 	p->node_stamp			= 0;
1154 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
1155 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
1156 	p->numa_work.next		= &p->numa_work;
1157 	p->numa_faults			= NULL;
1158 	p->numa_group			= NULL;
1159 	p->last_task_numa_placement	= 0;
1160 	p->last_sum_exec_runtime	= 0;
1161 
1162 	/* New address space, reset the preferred nid */
1163 	if (!(clone_flags & CLONE_VM)) {
1164 		p->numa_preferred_nid = -1;
1165 		return;
1166 	}
1167 
1168 	/*
1169 	 * New thread, keep existing numa_preferred_nid which should be copied
1170 	 * already by arch_dup_task_struct but stagger when scans start.
1171 	 */
1172 	if (mm) {
1173 		unsigned int delay;
1174 
1175 		delay = min_t(unsigned int, task_scan_max(current),
1176 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1177 		delay += 2 * TICK_NSEC;
1178 		p->node_stamp = delay;
1179 	}
1180 }
1181 
1182 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1183 {
1184 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
1185 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1186 }
1187 
1188 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1189 {
1190 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1191 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1192 }
1193 
1194 /* Shared or private faults. */
1195 #define NR_NUMA_HINT_FAULT_TYPES 2
1196 
1197 /* Memory and CPU locality */
1198 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1199 
1200 /* Averaged statistics, and temporary buffers. */
1201 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1202 
1203 pid_t task_numa_group_id(struct task_struct *p)
1204 {
1205 	return p->numa_group ? p->numa_group->gid : 0;
1206 }
1207 
1208 /*
1209  * The averaged statistics, shared & private, memory & CPU,
1210  * occupy the first half of the array. The second half of the
1211  * array is for current counters, which are averaged into the
1212  * first set by task_numa_placement.
1213  */
1214 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1215 {
1216 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1217 }
1218 
1219 static inline unsigned long task_faults(struct task_struct *p, int nid)
1220 {
1221 	if (!p->numa_faults)
1222 		return 0;
1223 
1224 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1225 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1226 }
1227 
1228 static inline unsigned long group_faults(struct task_struct *p, int nid)
1229 {
1230 	if (!p->numa_group)
1231 		return 0;
1232 
1233 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1234 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1235 }
1236 
1237 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1238 {
1239 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1240 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1241 }
1242 
1243 static inline unsigned long group_faults_priv(struct numa_group *ng)
1244 {
1245 	unsigned long faults = 0;
1246 	int node;
1247 
1248 	for_each_online_node(node) {
1249 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1250 	}
1251 
1252 	return faults;
1253 }
1254 
1255 static inline unsigned long group_faults_shared(struct numa_group *ng)
1256 {
1257 	unsigned long faults = 0;
1258 	int node;
1259 
1260 	for_each_online_node(node) {
1261 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1262 	}
1263 
1264 	return faults;
1265 }
1266 
1267 /*
1268  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1269  * considered part of a numa group's pseudo-interleaving set. Migrations
1270  * between these nodes are slowed down, to allow things to settle down.
1271  */
1272 #define ACTIVE_NODE_FRACTION 3
1273 
1274 static bool numa_is_active_node(int nid, struct numa_group *ng)
1275 {
1276 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1277 }
1278 
1279 /* Handle placement on systems where not all nodes are directly connected. */
1280 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1281 					int maxdist, bool task)
1282 {
1283 	unsigned long score = 0;
1284 	int node;
1285 
1286 	/*
1287 	 * All nodes are directly connected, and the same distance
1288 	 * from each other. No need for fancy placement algorithms.
1289 	 */
1290 	if (sched_numa_topology_type == NUMA_DIRECT)
1291 		return 0;
1292 
1293 	/*
1294 	 * This code is called for each node, introducing N^2 complexity,
1295 	 * which should be ok given the number of nodes rarely exceeds 8.
1296 	 */
1297 	for_each_online_node(node) {
1298 		unsigned long faults;
1299 		int dist = node_distance(nid, node);
1300 
1301 		/*
1302 		 * The furthest away nodes in the system are not interesting
1303 		 * for placement; nid was already counted.
1304 		 */
1305 		if (dist == sched_max_numa_distance || node == nid)
1306 			continue;
1307 
1308 		/*
1309 		 * On systems with a backplane NUMA topology, compare groups
1310 		 * of nodes, and move tasks towards the group with the most
1311 		 * memory accesses. When comparing two nodes at distance
1312 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1313 		 * of each group. Skip other nodes.
1314 		 */
1315 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1316 					dist >= maxdist)
1317 			continue;
1318 
1319 		/* Add up the faults from nearby nodes. */
1320 		if (task)
1321 			faults = task_faults(p, node);
1322 		else
1323 			faults = group_faults(p, node);
1324 
1325 		/*
1326 		 * On systems with a glueless mesh NUMA topology, there are
1327 		 * no fixed "groups of nodes". Instead, nodes that are not
1328 		 * directly connected bounce traffic through intermediate
1329 		 * nodes; a numa_group can occupy any set of nodes.
1330 		 * The further away a node is, the less the faults count.
1331 		 * This seems to result in good task placement.
1332 		 */
1333 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1334 			faults *= (sched_max_numa_distance - dist);
1335 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1336 		}
1337 
1338 		score += faults;
1339 	}
1340 
1341 	return score;
1342 }
1343 
1344 /*
1345  * These return the fraction of accesses done by a particular task, or
1346  * task group, on a particular numa node.  The group weight is given a
1347  * larger multiplier, in order to group tasks together that are almost
1348  * evenly spread out between numa nodes.
1349  */
1350 static inline unsigned long task_weight(struct task_struct *p, int nid,
1351 					int dist)
1352 {
1353 	unsigned long faults, total_faults;
1354 
1355 	if (!p->numa_faults)
1356 		return 0;
1357 
1358 	total_faults = p->total_numa_faults;
1359 
1360 	if (!total_faults)
1361 		return 0;
1362 
1363 	faults = task_faults(p, nid);
1364 	faults += score_nearby_nodes(p, nid, dist, true);
1365 
1366 	return 1000 * faults / total_faults;
1367 }
1368 
1369 static inline unsigned long group_weight(struct task_struct *p, int nid,
1370 					 int dist)
1371 {
1372 	unsigned long faults, total_faults;
1373 
1374 	if (!p->numa_group)
1375 		return 0;
1376 
1377 	total_faults = p->numa_group->total_faults;
1378 
1379 	if (!total_faults)
1380 		return 0;
1381 
1382 	faults = group_faults(p, nid);
1383 	faults += score_nearby_nodes(p, nid, dist, false);
1384 
1385 	return 1000 * faults / total_faults;
1386 }
1387 
1388 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1389 				int src_nid, int dst_cpu)
1390 {
1391 	struct numa_group *ng = p->numa_group;
1392 	int dst_nid = cpu_to_node(dst_cpu);
1393 	int last_cpupid, this_cpupid;
1394 
1395 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1396 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1397 
1398 	/*
1399 	 * Allow first faults or private faults to migrate immediately early in
1400 	 * the lifetime of a task. The magic number 4 is based on waiting for
1401 	 * two full passes of the "multi-stage node selection" test that is
1402 	 * executed below.
1403 	 */
1404 	if ((p->numa_preferred_nid == -1 || p->numa_scan_seq <= 4) &&
1405 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1406 		return true;
1407 
1408 	/*
1409 	 * Multi-stage node selection is used in conjunction with a periodic
1410 	 * migration fault to build a temporal task<->page relation. By using
1411 	 * a two-stage filter we remove short/unlikely relations.
1412 	 *
1413 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1414 	 * a task's usage of a particular page (n_p) per total usage of this
1415 	 * page (n_t) (in a given time-span) to a probability.
1416 	 *
1417 	 * Our periodic faults will sample this probability and getting the
1418 	 * same result twice in a row, given these samples are fully
1419 	 * independent, is then given by P(n)^2, provided our sample period
1420 	 * is sufficiently short compared to the usage pattern.
1421 	 *
1422 	 * This quadric squishes small probabilities, making it less likely we
1423 	 * act on an unlikely task<->page relation.
1424 	 */
1425 	if (!cpupid_pid_unset(last_cpupid) &&
1426 				cpupid_to_nid(last_cpupid) != dst_nid)
1427 		return false;
1428 
1429 	/* Always allow migrate on private faults */
1430 	if (cpupid_match_pid(p, last_cpupid))
1431 		return true;
1432 
1433 	/* A shared fault, but p->numa_group has not been set up yet. */
1434 	if (!ng)
1435 		return true;
1436 
1437 	/*
1438 	 * Destination node is much more heavily used than the source
1439 	 * node? Allow migration.
1440 	 */
1441 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1442 					ACTIVE_NODE_FRACTION)
1443 		return true;
1444 
1445 	/*
1446 	 * Distribute memory according to CPU & memory use on each node,
1447 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1448 	 *
1449 	 * faults_cpu(dst)   3   faults_cpu(src)
1450 	 * --------------- * - > ---------------
1451 	 * faults_mem(dst)   4   faults_mem(src)
1452 	 */
1453 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1454 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1455 }
1456 
1457 static unsigned long weighted_cpuload(struct rq *rq);
1458 static unsigned long source_load(int cpu, int type);
1459 static unsigned long target_load(int cpu, int type);
1460 
1461 /* Cached statistics for all CPUs within a node */
1462 struct numa_stats {
1463 	unsigned long load;
1464 
1465 	/* Total compute capacity of CPUs on a node */
1466 	unsigned long compute_capacity;
1467 };
1468 
1469 /*
1470  * XXX borrowed from update_sg_lb_stats
1471  */
1472 static void update_numa_stats(struct numa_stats *ns, int nid)
1473 {
1474 	int cpu;
1475 
1476 	memset(ns, 0, sizeof(*ns));
1477 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1478 		struct rq *rq = cpu_rq(cpu);
1479 
1480 		ns->load += weighted_cpuload(rq);
1481 		ns->compute_capacity += capacity_of(cpu);
1482 	}
1483 
1484 }
1485 
1486 struct task_numa_env {
1487 	struct task_struct *p;
1488 
1489 	int src_cpu, src_nid;
1490 	int dst_cpu, dst_nid;
1491 
1492 	struct numa_stats src_stats, dst_stats;
1493 
1494 	int imbalance_pct;
1495 	int dist;
1496 
1497 	struct task_struct *best_task;
1498 	long best_imp;
1499 	int best_cpu;
1500 };
1501 
1502 static void task_numa_assign(struct task_numa_env *env,
1503 			     struct task_struct *p, long imp)
1504 {
1505 	struct rq *rq = cpu_rq(env->dst_cpu);
1506 
1507 	/* Bail out if run-queue part of active NUMA balance. */
1508 	if (xchg(&rq->numa_migrate_on, 1))
1509 		return;
1510 
1511 	/*
1512 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1513 	 * found a better CPU to move/swap.
1514 	 */
1515 	if (env->best_cpu != -1) {
1516 		rq = cpu_rq(env->best_cpu);
1517 		WRITE_ONCE(rq->numa_migrate_on, 0);
1518 	}
1519 
1520 	if (env->best_task)
1521 		put_task_struct(env->best_task);
1522 	if (p)
1523 		get_task_struct(p);
1524 
1525 	env->best_task = p;
1526 	env->best_imp = imp;
1527 	env->best_cpu = env->dst_cpu;
1528 }
1529 
1530 static bool load_too_imbalanced(long src_load, long dst_load,
1531 				struct task_numa_env *env)
1532 {
1533 	long imb, old_imb;
1534 	long orig_src_load, orig_dst_load;
1535 	long src_capacity, dst_capacity;
1536 
1537 	/*
1538 	 * The load is corrected for the CPU capacity available on each node.
1539 	 *
1540 	 * src_load        dst_load
1541 	 * ------------ vs ---------
1542 	 * src_capacity    dst_capacity
1543 	 */
1544 	src_capacity = env->src_stats.compute_capacity;
1545 	dst_capacity = env->dst_stats.compute_capacity;
1546 
1547 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1548 
1549 	orig_src_load = env->src_stats.load;
1550 	orig_dst_load = env->dst_stats.load;
1551 
1552 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1553 
1554 	/* Would this change make things worse? */
1555 	return (imb > old_imb);
1556 }
1557 
1558 /*
1559  * Maximum NUMA importance can be 1998 (2*999);
1560  * SMALLIMP @ 30 would be close to 1998/64.
1561  * Used to deter task migration.
1562  */
1563 #define SMALLIMP	30
1564 
1565 /*
1566  * This checks if the overall compute and NUMA accesses of the system would
1567  * be improved if the source tasks was migrated to the target dst_cpu taking
1568  * into account that it might be best if task running on the dst_cpu should
1569  * be exchanged with the source task
1570  */
1571 static void task_numa_compare(struct task_numa_env *env,
1572 			      long taskimp, long groupimp, bool maymove)
1573 {
1574 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1575 	struct task_struct *cur;
1576 	long src_load, dst_load;
1577 	long load;
1578 	long imp = env->p->numa_group ? groupimp : taskimp;
1579 	long moveimp = imp;
1580 	int dist = env->dist;
1581 
1582 	if (READ_ONCE(dst_rq->numa_migrate_on))
1583 		return;
1584 
1585 	rcu_read_lock();
1586 	cur = task_rcu_dereference(&dst_rq->curr);
1587 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1588 		cur = NULL;
1589 
1590 	/*
1591 	 * Because we have preemption enabled we can get migrated around and
1592 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1593 	 */
1594 	if (cur == env->p)
1595 		goto unlock;
1596 
1597 	if (!cur) {
1598 		if (maymove && moveimp >= env->best_imp)
1599 			goto assign;
1600 		else
1601 			goto unlock;
1602 	}
1603 
1604 	/*
1605 	 * "imp" is the fault differential for the source task between the
1606 	 * source and destination node. Calculate the total differential for
1607 	 * the source task and potential destination task. The more negative
1608 	 * the value is, the more remote accesses that would be expected to
1609 	 * be incurred if the tasks were swapped.
1610 	 */
1611 	/* Skip this swap candidate if cannot move to the source cpu */
1612 	if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1613 		goto unlock;
1614 
1615 	/*
1616 	 * If dst and source tasks are in the same NUMA group, or not
1617 	 * in any group then look only at task weights.
1618 	 */
1619 	if (cur->numa_group == env->p->numa_group) {
1620 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1621 		      task_weight(cur, env->dst_nid, dist);
1622 		/*
1623 		 * Add some hysteresis to prevent swapping the
1624 		 * tasks within a group over tiny differences.
1625 		 */
1626 		if (cur->numa_group)
1627 			imp -= imp / 16;
1628 	} else {
1629 		/*
1630 		 * Compare the group weights. If a task is all by itself
1631 		 * (not part of a group), use the task weight instead.
1632 		 */
1633 		if (cur->numa_group && env->p->numa_group)
1634 			imp += group_weight(cur, env->src_nid, dist) -
1635 			       group_weight(cur, env->dst_nid, dist);
1636 		else
1637 			imp += task_weight(cur, env->src_nid, dist) -
1638 			       task_weight(cur, env->dst_nid, dist);
1639 	}
1640 
1641 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1642 		imp = moveimp;
1643 		cur = NULL;
1644 		goto assign;
1645 	}
1646 
1647 	/*
1648 	 * If the NUMA importance is less than SMALLIMP,
1649 	 * task migration might only result in ping pong
1650 	 * of tasks and also hurt performance due to cache
1651 	 * misses.
1652 	 */
1653 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1654 		goto unlock;
1655 
1656 	/*
1657 	 * In the overloaded case, try and keep the load balanced.
1658 	 */
1659 	load = task_h_load(env->p) - task_h_load(cur);
1660 	if (!load)
1661 		goto assign;
1662 
1663 	dst_load = env->dst_stats.load + load;
1664 	src_load = env->src_stats.load - load;
1665 
1666 	if (load_too_imbalanced(src_load, dst_load, env))
1667 		goto unlock;
1668 
1669 assign:
1670 	/*
1671 	 * One idle CPU per node is evaluated for a task numa move.
1672 	 * Call select_idle_sibling to maybe find a better one.
1673 	 */
1674 	if (!cur) {
1675 		/*
1676 		 * select_idle_siblings() uses an per-CPU cpumask that
1677 		 * can be used from IRQ context.
1678 		 */
1679 		local_irq_disable();
1680 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1681 						   env->dst_cpu);
1682 		local_irq_enable();
1683 	}
1684 
1685 	task_numa_assign(env, cur, imp);
1686 unlock:
1687 	rcu_read_unlock();
1688 }
1689 
1690 static void task_numa_find_cpu(struct task_numa_env *env,
1691 				long taskimp, long groupimp)
1692 {
1693 	long src_load, dst_load, load;
1694 	bool maymove = false;
1695 	int cpu;
1696 
1697 	load = task_h_load(env->p);
1698 	dst_load = env->dst_stats.load + load;
1699 	src_load = env->src_stats.load - load;
1700 
1701 	/*
1702 	 * If the improvement from just moving env->p direction is better
1703 	 * than swapping tasks around, check if a move is possible.
1704 	 */
1705 	maymove = !load_too_imbalanced(src_load, dst_load, env);
1706 
1707 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1708 		/* Skip this CPU if the source task cannot migrate */
1709 		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1710 			continue;
1711 
1712 		env->dst_cpu = cpu;
1713 		task_numa_compare(env, taskimp, groupimp, maymove);
1714 	}
1715 }
1716 
1717 static int task_numa_migrate(struct task_struct *p)
1718 {
1719 	struct task_numa_env env = {
1720 		.p = p,
1721 
1722 		.src_cpu = task_cpu(p),
1723 		.src_nid = task_node(p),
1724 
1725 		.imbalance_pct = 112,
1726 
1727 		.best_task = NULL,
1728 		.best_imp = 0,
1729 		.best_cpu = -1,
1730 	};
1731 	struct sched_domain *sd;
1732 	struct rq *best_rq;
1733 	unsigned long taskweight, groupweight;
1734 	int nid, ret, dist;
1735 	long taskimp, groupimp;
1736 
1737 	/*
1738 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1739 	 * imbalance and would be the first to start moving tasks about.
1740 	 *
1741 	 * And we want to avoid any moving of tasks about, as that would create
1742 	 * random movement of tasks -- counter the numa conditions we're trying
1743 	 * to satisfy here.
1744 	 */
1745 	rcu_read_lock();
1746 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1747 	if (sd)
1748 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1749 	rcu_read_unlock();
1750 
1751 	/*
1752 	 * Cpusets can break the scheduler domain tree into smaller
1753 	 * balance domains, some of which do not cross NUMA boundaries.
1754 	 * Tasks that are "trapped" in such domains cannot be migrated
1755 	 * elsewhere, so there is no point in (re)trying.
1756 	 */
1757 	if (unlikely(!sd)) {
1758 		sched_setnuma(p, task_node(p));
1759 		return -EINVAL;
1760 	}
1761 
1762 	env.dst_nid = p->numa_preferred_nid;
1763 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1764 	taskweight = task_weight(p, env.src_nid, dist);
1765 	groupweight = group_weight(p, env.src_nid, dist);
1766 	update_numa_stats(&env.src_stats, env.src_nid);
1767 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1768 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1769 	update_numa_stats(&env.dst_stats, env.dst_nid);
1770 
1771 	/* Try to find a spot on the preferred nid. */
1772 	task_numa_find_cpu(&env, taskimp, groupimp);
1773 
1774 	/*
1775 	 * Look at other nodes in these cases:
1776 	 * - there is no space available on the preferred_nid
1777 	 * - the task is part of a numa_group that is interleaved across
1778 	 *   multiple NUMA nodes; in order to better consolidate the group,
1779 	 *   we need to check other locations.
1780 	 */
1781 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1782 		for_each_online_node(nid) {
1783 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1784 				continue;
1785 
1786 			dist = node_distance(env.src_nid, env.dst_nid);
1787 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1788 						dist != env.dist) {
1789 				taskweight = task_weight(p, env.src_nid, dist);
1790 				groupweight = group_weight(p, env.src_nid, dist);
1791 			}
1792 
1793 			/* Only consider nodes where both task and groups benefit */
1794 			taskimp = task_weight(p, nid, dist) - taskweight;
1795 			groupimp = group_weight(p, nid, dist) - groupweight;
1796 			if (taskimp < 0 && groupimp < 0)
1797 				continue;
1798 
1799 			env.dist = dist;
1800 			env.dst_nid = nid;
1801 			update_numa_stats(&env.dst_stats, env.dst_nid);
1802 			task_numa_find_cpu(&env, taskimp, groupimp);
1803 		}
1804 	}
1805 
1806 	/*
1807 	 * If the task is part of a workload that spans multiple NUMA nodes,
1808 	 * and is migrating into one of the workload's active nodes, remember
1809 	 * this node as the task's preferred numa node, so the workload can
1810 	 * settle down.
1811 	 * A task that migrated to a second choice node will be better off
1812 	 * trying for a better one later. Do not set the preferred node here.
1813 	 */
1814 	if (p->numa_group) {
1815 		if (env.best_cpu == -1)
1816 			nid = env.src_nid;
1817 		else
1818 			nid = cpu_to_node(env.best_cpu);
1819 
1820 		if (nid != p->numa_preferred_nid)
1821 			sched_setnuma(p, nid);
1822 	}
1823 
1824 	/* No better CPU than the current one was found. */
1825 	if (env.best_cpu == -1)
1826 		return -EAGAIN;
1827 
1828 	best_rq = cpu_rq(env.best_cpu);
1829 	if (env.best_task == NULL) {
1830 		ret = migrate_task_to(p, env.best_cpu);
1831 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
1832 		if (ret != 0)
1833 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1834 		return ret;
1835 	}
1836 
1837 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1838 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
1839 
1840 	if (ret != 0)
1841 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1842 	put_task_struct(env.best_task);
1843 	return ret;
1844 }
1845 
1846 /* Attempt to migrate a task to a CPU on the preferred node. */
1847 static void numa_migrate_preferred(struct task_struct *p)
1848 {
1849 	unsigned long interval = HZ;
1850 
1851 	/* This task has no NUMA fault statistics yet */
1852 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1853 		return;
1854 
1855 	/* Periodically retry migrating the task to the preferred node */
1856 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1857 	p->numa_migrate_retry = jiffies + interval;
1858 
1859 	/* Success if task is already running on preferred CPU */
1860 	if (task_node(p) == p->numa_preferred_nid)
1861 		return;
1862 
1863 	/* Otherwise, try migrate to a CPU on the preferred node */
1864 	task_numa_migrate(p);
1865 }
1866 
1867 /*
1868  * Find out how many nodes on the workload is actively running on. Do this by
1869  * tracking the nodes from which NUMA hinting faults are triggered. This can
1870  * be different from the set of nodes where the workload's memory is currently
1871  * located.
1872  */
1873 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1874 {
1875 	unsigned long faults, max_faults = 0;
1876 	int nid, active_nodes = 0;
1877 
1878 	for_each_online_node(nid) {
1879 		faults = group_faults_cpu(numa_group, nid);
1880 		if (faults > max_faults)
1881 			max_faults = faults;
1882 	}
1883 
1884 	for_each_online_node(nid) {
1885 		faults = group_faults_cpu(numa_group, nid);
1886 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1887 			active_nodes++;
1888 	}
1889 
1890 	numa_group->max_faults_cpu = max_faults;
1891 	numa_group->active_nodes = active_nodes;
1892 }
1893 
1894 /*
1895  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1896  * increments. The more local the fault statistics are, the higher the scan
1897  * period will be for the next scan window. If local/(local+remote) ratio is
1898  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1899  * the scan period will decrease. Aim for 70% local accesses.
1900  */
1901 #define NUMA_PERIOD_SLOTS 10
1902 #define NUMA_PERIOD_THRESHOLD 7
1903 
1904 /*
1905  * Increase the scan period (slow down scanning) if the majority of
1906  * our memory is already on our local node, or if the majority of
1907  * the page accesses are shared with other processes.
1908  * Otherwise, decrease the scan period.
1909  */
1910 static void update_task_scan_period(struct task_struct *p,
1911 			unsigned long shared, unsigned long private)
1912 {
1913 	unsigned int period_slot;
1914 	int lr_ratio, ps_ratio;
1915 	int diff;
1916 
1917 	unsigned long remote = p->numa_faults_locality[0];
1918 	unsigned long local = p->numa_faults_locality[1];
1919 
1920 	/*
1921 	 * If there were no record hinting faults then either the task is
1922 	 * completely idle or all activity is areas that are not of interest
1923 	 * to automatic numa balancing. Related to that, if there were failed
1924 	 * migration then it implies we are migrating too quickly or the local
1925 	 * node is overloaded. In either case, scan slower
1926 	 */
1927 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1928 		p->numa_scan_period = min(p->numa_scan_period_max,
1929 			p->numa_scan_period << 1);
1930 
1931 		p->mm->numa_next_scan = jiffies +
1932 			msecs_to_jiffies(p->numa_scan_period);
1933 
1934 		return;
1935 	}
1936 
1937 	/*
1938 	 * Prepare to scale scan period relative to the current period.
1939 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1940 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1941 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1942 	 */
1943 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1944 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1945 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1946 
1947 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1948 		/*
1949 		 * Most memory accesses are local. There is no need to
1950 		 * do fast NUMA scanning, since memory is already local.
1951 		 */
1952 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1953 		if (!slot)
1954 			slot = 1;
1955 		diff = slot * period_slot;
1956 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1957 		/*
1958 		 * Most memory accesses are shared with other tasks.
1959 		 * There is no point in continuing fast NUMA scanning,
1960 		 * since other tasks may just move the memory elsewhere.
1961 		 */
1962 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1963 		if (!slot)
1964 			slot = 1;
1965 		diff = slot * period_slot;
1966 	} else {
1967 		/*
1968 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1969 		 * yet they are not on the local NUMA node. Speed up
1970 		 * NUMA scanning to get the memory moved over.
1971 		 */
1972 		int ratio = max(lr_ratio, ps_ratio);
1973 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1974 	}
1975 
1976 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1977 			task_scan_min(p), task_scan_max(p));
1978 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1979 }
1980 
1981 /*
1982  * Get the fraction of time the task has been running since the last
1983  * NUMA placement cycle. The scheduler keeps similar statistics, but
1984  * decays those on a 32ms period, which is orders of magnitude off
1985  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1986  * stats only if the task is so new there are no NUMA statistics yet.
1987  */
1988 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1989 {
1990 	u64 runtime, delta, now;
1991 	/* Use the start of this time slice to avoid calculations. */
1992 	now = p->se.exec_start;
1993 	runtime = p->se.sum_exec_runtime;
1994 
1995 	if (p->last_task_numa_placement) {
1996 		delta = runtime - p->last_sum_exec_runtime;
1997 		*period = now - p->last_task_numa_placement;
1998 	} else {
1999 		delta = p->se.avg.load_sum;
2000 		*period = LOAD_AVG_MAX;
2001 	}
2002 
2003 	p->last_sum_exec_runtime = runtime;
2004 	p->last_task_numa_placement = now;
2005 
2006 	return delta;
2007 }
2008 
2009 /*
2010  * Determine the preferred nid for a task in a numa_group. This needs to
2011  * be done in a way that produces consistent results with group_weight,
2012  * otherwise workloads might not converge.
2013  */
2014 static int preferred_group_nid(struct task_struct *p, int nid)
2015 {
2016 	nodemask_t nodes;
2017 	int dist;
2018 
2019 	/* Direct connections between all NUMA nodes. */
2020 	if (sched_numa_topology_type == NUMA_DIRECT)
2021 		return nid;
2022 
2023 	/*
2024 	 * On a system with glueless mesh NUMA topology, group_weight
2025 	 * scores nodes according to the number of NUMA hinting faults on
2026 	 * both the node itself, and on nearby nodes.
2027 	 */
2028 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2029 		unsigned long score, max_score = 0;
2030 		int node, max_node = nid;
2031 
2032 		dist = sched_max_numa_distance;
2033 
2034 		for_each_online_node(node) {
2035 			score = group_weight(p, node, dist);
2036 			if (score > max_score) {
2037 				max_score = score;
2038 				max_node = node;
2039 			}
2040 		}
2041 		return max_node;
2042 	}
2043 
2044 	/*
2045 	 * Finding the preferred nid in a system with NUMA backplane
2046 	 * interconnect topology is more involved. The goal is to locate
2047 	 * tasks from numa_groups near each other in the system, and
2048 	 * untangle workloads from different sides of the system. This requires
2049 	 * searching down the hierarchy of node groups, recursively searching
2050 	 * inside the highest scoring group of nodes. The nodemask tricks
2051 	 * keep the complexity of the search down.
2052 	 */
2053 	nodes = node_online_map;
2054 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2055 		unsigned long max_faults = 0;
2056 		nodemask_t max_group = NODE_MASK_NONE;
2057 		int a, b;
2058 
2059 		/* Are there nodes at this distance from each other? */
2060 		if (!find_numa_distance(dist))
2061 			continue;
2062 
2063 		for_each_node_mask(a, nodes) {
2064 			unsigned long faults = 0;
2065 			nodemask_t this_group;
2066 			nodes_clear(this_group);
2067 
2068 			/* Sum group's NUMA faults; includes a==b case. */
2069 			for_each_node_mask(b, nodes) {
2070 				if (node_distance(a, b) < dist) {
2071 					faults += group_faults(p, b);
2072 					node_set(b, this_group);
2073 					node_clear(b, nodes);
2074 				}
2075 			}
2076 
2077 			/* Remember the top group. */
2078 			if (faults > max_faults) {
2079 				max_faults = faults;
2080 				max_group = this_group;
2081 				/*
2082 				 * subtle: at the smallest distance there is
2083 				 * just one node left in each "group", the
2084 				 * winner is the preferred nid.
2085 				 */
2086 				nid = a;
2087 			}
2088 		}
2089 		/* Next round, evaluate the nodes within max_group. */
2090 		if (!max_faults)
2091 			break;
2092 		nodes = max_group;
2093 	}
2094 	return nid;
2095 }
2096 
2097 static void task_numa_placement(struct task_struct *p)
2098 {
2099 	int seq, nid, max_nid = -1;
2100 	unsigned long max_faults = 0;
2101 	unsigned long fault_types[2] = { 0, 0 };
2102 	unsigned long total_faults;
2103 	u64 runtime, period;
2104 	spinlock_t *group_lock = NULL;
2105 
2106 	/*
2107 	 * The p->mm->numa_scan_seq field gets updated without
2108 	 * exclusive access. Use READ_ONCE() here to ensure
2109 	 * that the field is read in a single access:
2110 	 */
2111 	seq = READ_ONCE(p->mm->numa_scan_seq);
2112 	if (p->numa_scan_seq == seq)
2113 		return;
2114 	p->numa_scan_seq = seq;
2115 	p->numa_scan_period_max = task_scan_max(p);
2116 
2117 	total_faults = p->numa_faults_locality[0] +
2118 		       p->numa_faults_locality[1];
2119 	runtime = numa_get_avg_runtime(p, &period);
2120 
2121 	/* If the task is part of a group prevent parallel updates to group stats */
2122 	if (p->numa_group) {
2123 		group_lock = &p->numa_group->lock;
2124 		spin_lock_irq(group_lock);
2125 	}
2126 
2127 	/* Find the node with the highest number of faults */
2128 	for_each_online_node(nid) {
2129 		/* Keep track of the offsets in numa_faults array */
2130 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2131 		unsigned long faults = 0, group_faults = 0;
2132 		int priv;
2133 
2134 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2135 			long diff, f_diff, f_weight;
2136 
2137 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2138 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2139 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2140 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2141 
2142 			/* Decay existing window, copy faults since last scan */
2143 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2144 			fault_types[priv] += p->numa_faults[membuf_idx];
2145 			p->numa_faults[membuf_idx] = 0;
2146 
2147 			/*
2148 			 * Normalize the faults_from, so all tasks in a group
2149 			 * count according to CPU use, instead of by the raw
2150 			 * number of faults. Tasks with little runtime have
2151 			 * little over-all impact on throughput, and thus their
2152 			 * faults are less important.
2153 			 */
2154 			f_weight = div64_u64(runtime << 16, period + 1);
2155 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2156 				   (total_faults + 1);
2157 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2158 			p->numa_faults[cpubuf_idx] = 0;
2159 
2160 			p->numa_faults[mem_idx] += diff;
2161 			p->numa_faults[cpu_idx] += f_diff;
2162 			faults += p->numa_faults[mem_idx];
2163 			p->total_numa_faults += diff;
2164 			if (p->numa_group) {
2165 				/*
2166 				 * safe because we can only change our own group
2167 				 *
2168 				 * mem_idx represents the offset for a given
2169 				 * nid and priv in a specific region because it
2170 				 * is at the beginning of the numa_faults array.
2171 				 */
2172 				p->numa_group->faults[mem_idx] += diff;
2173 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2174 				p->numa_group->total_faults += diff;
2175 				group_faults += p->numa_group->faults[mem_idx];
2176 			}
2177 		}
2178 
2179 		if (!p->numa_group) {
2180 			if (faults > max_faults) {
2181 				max_faults = faults;
2182 				max_nid = nid;
2183 			}
2184 		} else if (group_faults > max_faults) {
2185 			max_faults = group_faults;
2186 			max_nid = nid;
2187 		}
2188 	}
2189 
2190 	if (p->numa_group) {
2191 		numa_group_count_active_nodes(p->numa_group);
2192 		spin_unlock_irq(group_lock);
2193 		max_nid = preferred_group_nid(p, max_nid);
2194 	}
2195 
2196 	if (max_faults) {
2197 		/* Set the new preferred node */
2198 		if (max_nid != p->numa_preferred_nid)
2199 			sched_setnuma(p, max_nid);
2200 	}
2201 
2202 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2203 }
2204 
2205 static inline int get_numa_group(struct numa_group *grp)
2206 {
2207 	return atomic_inc_not_zero(&grp->refcount);
2208 }
2209 
2210 static inline void put_numa_group(struct numa_group *grp)
2211 {
2212 	if (atomic_dec_and_test(&grp->refcount))
2213 		kfree_rcu(grp, rcu);
2214 }
2215 
2216 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2217 			int *priv)
2218 {
2219 	struct numa_group *grp, *my_grp;
2220 	struct task_struct *tsk;
2221 	bool join = false;
2222 	int cpu = cpupid_to_cpu(cpupid);
2223 	int i;
2224 
2225 	if (unlikely(!p->numa_group)) {
2226 		unsigned int size = sizeof(struct numa_group) +
2227 				    4*nr_node_ids*sizeof(unsigned long);
2228 
2229 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2230 		if (!grp)
2231 			return;
2232 
2233 		atomic_set(&grp->refcount, 1);
2234 		grp->active_nodes = 1;
2235 		grp->max_faults_cpu = 0;
2236 		spin_lock_init(&grp->lock);
2237 		grp->gid = p->pid;
2238 		/* Second half of the array tracks nids where faults happen */
2239 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2240 						nr_node_ids;
2241 
2242 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2243 			grp->faults[i] = p->numa_faults[i];
2244 
2245 		grp->total_faults = p->total_numa_faults;
2246 
2247 		grp->nr_tasks++;
2248 		rcu_assign_pointer(p->numa_group, grp);
2249 	}
2250 
2251 	rcu_read_lock();
2252 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2253 
2254 	if (!cpupid_match_pid(tsk, cpupid))
2255 		goto no_join;
2256 
2257 	grp = rcu_dereference(tsk->numa_group);
2258 	if (!grp)
2259 		goto no_join;
2260 
2261 	my_grp = p->numa_group;
2262 	if (grp == my_grp)
2263 		goto no_join;
2264 
2265 	/*
2266 	 * Only join the other group if its bigger; if we're the bigger group,
2267 	 * the other task will join us.
2268 	 */
2269 	if (my_grp->nr_tasks > grp->nr_tasks)
2270 		goto no_join;
2271 
2272 	/*
2273 	 * Tie-break on the grp address.
2274 	 */
2275 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2276 		goto no_join;
2277 
2278 	/* Always join threads in the same process. */
2279 	if (tsk->mm == current->mm)
2280 		join = true;
2281 
2282 	/* Simple filter to avoid false positives due to PID collisions */
2283 	if (flags & TNF_SHARED)
2284 		join = true;
2285 
2286 	/* Update priv based on whether false sharing was detected */
2287 	*priv = !join;
2288 
2289 	if (join && !get_numa_group(grp))
2290 		goto no_join;
2291 
2292 	rcu_read_unlock();
2293 
2294 	if (!join)
2295 		return;
2296 
2297 	BUG_ON(irqs_disabled());
2298 	double_lock_irq(&my_grp->lock, &grp->lock);
2299 
2300 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2301 		my_grp->faults[i] -= p->numa_faults[i];
2302 		grp->faults[i] += p->numa_faults[i];
2303 	}
2304 	my_grp->total_faults -= p->total_numa_faults;
2305 	grp->total_faults += p->total_numa_faults;
2306 
2307 	my_grp->nr_tasks--;
2308 	grp->nr_tasks++;
2309 
2310 	spin_unlock(&my_grp->lock);
2311 	spin_unlock_irq(&grp->lock);
2312 
2313 	rcu_assign_pointer(p->numa_group, grp);
2314 
2315 	put_numa_group(my_grp);
2316 	return;
2317 
2318 no_join:
2319 	rcu_read_unlock();
2320 	return;
2321 }
2322 
2323 void task_numa_free(struct task_struct *p)
2324 {
2325 	struct numa_group *grp = p->numa_group;
2326 	void *numa_faults = p->numa_faults;
2327 	unsigned long flags;
2328 	int i;
2329 
2330 	if (grp) {
2331 		spin_lock_irqsave(&grp->lock, flags);
2332 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2333 			grp->faults[i] -= p->numa_faults[i];
2334 		grp->total_faults -= p->total_numa_faults;
2335 
2336 		grp->nr_tasks--;
2337 		spin_unlock_irqrestore(&grp->lock, flags);
2338 		RCU_INIT_POINTER(p->numa_group, NULL);
2339 		put_numa_group(grp);
2340 	}
2341 
2342 	p->numa_faults = NULL;
2343 	kfree(numa_faults);
2344 }
2345 
2346 /*
2347  * Got a PROT_NONE fault for a page on @node.
2348  */
2349 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2350 {
2351 	struct task_struct *p = current;
2352 	bool migrated = flags & TNF_MIGRATED;
2353 	int cpu_node = task_node(current);
2354 	int local = !!(flags & TNF_FAULT_LOCAL);
2355 	struct numa_group *ng;
2356 	int priv;
2357 
2358 	if (!static_branch_likely(&sched_numa_balancing))
2359 		return;
2360 
2361 	/* for example, ksmd faulting in a user's mm */
2362 	if (!p->mm)
2363 		return;
2364 
2365 	/* Allocate buffer to track faults on a per-node basis */
2366 	if (unlikely(!p->numa_faults)) {
2367 		int size = sizeof(*p->numa_faults) *
2368 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2369 
2370 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2371 		if (!p->numa_faults)
2372 			return;
2373 
2374 		p->total_numa_faults = 0;
2375 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2376 	}
2377 
2378 	/*
2379 	 * First accesses are treated as private, otherwise consider accesses
2380 	 * to be private if the accessing pid has not changed
2381 	 */
2382 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2383 		priv = 1;
2384 	} else {
2385 		priv = cpupid_match_pid(p, last_cpupid);
2386 		if (!priv && !(flags & TNF_NO_GROUP))
2387 			task_numa_group(p, last_cpupid, flags, &priv);
2388 	}
2389 
2390 	/*
2391 	 * If a workload spans multiple NUMA nodes, a shared fault that
2392 	 * occurs wholly within the set of nodes that the workload is
2393 	 * actively using should be counted as local. This allows the
2394 	 * scan rate to slow down when a workload has settled down.
2395 	 */
2396 	ng = p->numa_group;
2397 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2398 				numa_is_active_node(cpu_node, ng) &&
2399 				numa_is_active_node(mem_node, ng))
2400 		local = 1;
2401 
2402 	/*
2403 	 * Retry to migrate task to preferred node periodically, in case it
2404 	 * previously failed, or the scheduler moved us.
2405 	 */
2406 	if (time_after(jiffies, p->numa_migrate_retry)) {
2407 		task_numa_placement(p);
2408 		numa_migrate_preferred(p);
2409 	}
2410 
2411 	if (migrated)
2412 		p->numa_pages_migrated += pages;
2413 	if (flags & TNF_MIGRATE_FAIL)
2414 		p->numa_faults_locality[2] += pages;
2415 
2416 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2417 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2418 	p->numa_faults_locality[local] += pages;
2419 }
2420 
2421 static void reset_ptenuma_scan(struct task_struct *p)
2422 {
2423 	/*
2424 	 * We only did a read acquisition of the mmap sem, so
2425 	 * p->mm->numa_scan_seq is written to without exclusive access
2426 	 * and the update is not guaranteed to be atomic. That's not
2427 	 * much of an issue though, since this is just used for
2428 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2429 	 * expensive, to avoid any form of compiler optimizations:
2430 	 */
2431 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2432 	p->mm->numa_scan_offset = 0;
2433 }
2434 
2435 /*
2436  * The expensive part of numa migration is done from task_work context.
2437  * Triggered from task_tick_numa().
2438  */
2439 void task_numa_work(struct callback_head *work)
2440 {
2441 	unsigned long migrate, next_scan, now = jiffies;
2442 	struct task_struct *p = current;
2443 	struct mm_struct *mm = p->mm;
2444 	u64 runtime = p->se.sum_exec_runtime;
2445 	struct vm_area_struct *vma;
2446 	unsigned long start, end;
2447 	unsigned long nr_pte_updates = 0;
2448 	long pages, virtpages;
2449 
2450 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2451 
2452 	work->next = work; /* protect against double add */
2453 	/*
2454 	 * Who cares about NUMA placement when they're dying.
2455 	 *
2456 	 * NOTE: make sure not to dereference p->mm before this check,
2457 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2458 	 * without p->mm even though we still had it when we enqueued this
2459 	 * work.
2460 	 */
2461 	if (p->flags & PF_EXITING)
2462 		return;
2463 
2464 	if (!mm->numa_next_scan) {
2465 		mm->numa_next_scan = now +
2466 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2467 	}
2468 
2469 	/*
2470 	 * Enforce maximal scan/migration frequency..
2471 	 */
2472 	migrate = mm->numa_next_scan;
2473 	if (time_before(now, migrate))
2474 		return;
2475 
2476 	if (p->numa_scan_period == 0) {
2477 		p->numa_scan_period_max = task_scan_max(p);
2478 		p->numa_scan_period = task_scan_start(p);
2479 	}
2480 
2481 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2482 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2483 		return;
2484 
2485 	/*
2486 	 * Delay this task enough that another task of this mm will likely win
2487 	 * the next time around.
2488 	 */
2489 	p->node_stamp += 2 * TICK_NSEC;
2490 
2491 	start = mm->numa_scan_offset;
2492 	pages = sysctl_numa_balancing_scan_size;
2493 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2494 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2495 	if (!pages)
2496 		return;
2497 
2498 
2499 	if (!down_read_trylock(&mm->mmap_sem))
2500 		return;
2501 	vma = find_vma(mm, start);
2502 	if (!vma) {
2503 		reset_ptenuma_scan(p);
2504 		start = 0;
2505 		vma = mm->mmap;
2506 	}
2507 	for (; vma; vma = vma->vm_next) {
2508 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2509 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2510 			continue;
2511 		}
2512 
2513 		/*
2514 		 * Shared library pages mapped by multiple processes are not
2515 		 * migrated as it is expected they are cache replicated. Avoid
2516 		 * hinting faults in read-only file-backed mappings or the vdso
2517 		 * as migrating the pages will be of marginal benefit.
2518 		 */
2519 		if (!vma->vm_mm ||
2520 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2521 			continue;
2522 
2523 		/*
2524 		 * Skip inaccessible VMAs to avoid any confusion between
2525 		 * PROT_NONE and NUMA hinting ptes
2526 		 */
2527 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2528 			continue;
2529 
2530 		do {
2531 			start = max(start, vma->vm_start);
2532 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2533 			end = min(end, vma->vm_end);
2534 			nr_pte_updates = change_prot_numa(vma, start, end);
2535 
2536 			/*
2537 			 * Try to scan sysctl_numa_balancing_size worth of
2538 			 * hpages that have at least one present PTE that
2539 			 * is not already pte-numa. If the VMA contains
2540 			 * areas that are unused or already full of prot_numa
2541 			 * PTEs, scan up to virtpages, to skip through those
2542 			 * areas faster.
2543 			 */
2544 			if (nr_pte_updates)
2545 				pages -= (end - start) >> PAGE_SHIFT;
2546 			virtpages -= (end - start) >> PAGE_SHIFT;
2547 
2548 			start = end;
2549 			if (pages <= 0 || virtpages <= 0)
2550 				goto out;
2551 
2552 			cond_resched();
2553 		} while (end != vma->vm_end);
2554 	}
2555 
2556 out:
2557 	/*
2558 	 * It is possible to reach the end of the VMA list but the last few
2559 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2560 	 * would find the !migratable VMA on the next scan but not reset the
2561 	 * scanner to the start so check it now.
2562 	 */
2563 	if (vma)
2564 		mm->numa_scan_offset = start;
2565 	else
2566 		reset_ptenuma_scan(p);
2567 	up_read(&mm->mmap_sem);
2568 
2569 	/*
2570 	 * Make sure tasks use at least 32x as much time to run other code
2571 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2572 	 * Usually update_task_scan_period slows down scanning enough; on an
2573 	 * overloaded system we need to limit overhead on a per task basis.
2574 	 */
2575 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2576 		u64 diff = p->se.sum_exec_runtime - runtime;
2577 		p->node_stamp += 32 * diff;
2578 	}
2579 }
2580 
2581 /*
2582  * Drive the periodic memory faults..
2583  */
2584 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2585 {
2586 	struct callback_head *work = &curr->numa_work;
2587 	u64 period, now;
2588 
2589 	/*
2590 	 * We don't care about NUMA placement if we don't have memory.
2591 	 */
2592 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2593 		return;
2594 
2595 	/*
2596 	 * Using runtime rather than walltime has the dual advantage that
2597 	 * we (mostly) drive the selection from busy threads and that the
2598 	 * task needs to have done some actual work before we bother with
2599 	 * NUMA placement.
2600 	 */
2601 	now = curr->se.sum_exec_runtime;
2602 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2603 
2604 	if (now > curr->node_stamp + period) {
2605 		if (!curr->node_stamp)
2606 			curr->numa_scan_period = task_scan_start(curr);
2607 		curr->node_stamp += period;
2608 
2609 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2610 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2611 			task_work_add(curr, work, true);
2612 		}
2613 	}
2614 }
2615 
2616 static void update_scan_period(struct task_struct *p, int new_cpu)
2617 {
2618 	int src_nid = cpu_to_node(task_cpu(p));
2619 	int dst_nid = cpu_to_node(new_cpu);
2620 
2621 	if (!static_branch_likely(&sched_numa_balancing))
2622 		return;
2623 
2624 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2625 		return;
2626 
2627 	if (src_nid == dst_nid)
2628 		return;
2629 
2630 	/*
2631 	 * Allow resets if faults have been trapped before one scan
2632 	 * has completed. This is most likely due to a new task that
2633 	 * is pulled cross-node due to wakeups or load balancing.
2634 	 */
2635 	if (p->numa_scan_seq) {
2636 		/*
2637 		 * Avoid scan adjustments if moving to the preferred
2638 		 * node or if the task was not previously running on
2639 		 * the preferred node.
2640 		 */
2641 		if (dst_nid == p->numa_preferred_nid ||
2642 		    (p->numa_preferred_nid != -1 && src_nid != p->numa_preferred_nid))
2643 			return;
2644 	}
2645 
2646 	p->numa_scan_period = task_scan_start(p);
2647 }
2648 
2649 #else
2650 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2651 {
2652 }
2653 
2654 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2655 {
2656 }
2657 
2658 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2659 {
2660 }
2661 
2662 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2663 {
2664 }
2665 
2666 #endif /* CONFIG_NUMA_BALANCING */
2667 
2668 static void
2669 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2670 {
2671 	update_load_add(&cfs_rq->load, se->load.weight);
2672 	if (!parent_entity(se))
2673 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2674 #ifdef CONFIG_SMP
2675 	if (entity_is_task(se)) {
2676 		struct rq *rq = rq_of(cfs_rq);
2677 
2678 		account_numa_enqueue(rq, task_of(se));
2679 		list_add(&se->group_node, &rq->cfs_tasks);
2680 	}
2681 #endif
2682 	cfs_rq->nr_running++;
2683 }
2684 
2685 static void
2686 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2687 {
2688 	update_load_sub(&cfs_rq->load, se->load.weight);
2689 	if (!parent_entity(se))
2690 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2691 #ifdef CONFIG_SMP
2692 	if (entity_is_task(se)) {
2693 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2694 		list_del_init(&se->group_node);
2695 	}
2696 #endif
2697 	cfs_rq->nr_running--;
2698 }
2699 
2700 /*
2701  * Signed add and clamp on underflow.
2702  *
2703  * Explicitly do a load-store to ensure the intermediate value never hits
2704  * memory. This allows lockless observations without ever seeing the negative
2705  * values.
2706  */
2707 #define add_positive(_ptr, _val) do {                           \
2708 	typeof(_ptr) ptr = (_ptr);                              \
2709 	typeof(_val) val = (_val);                              \
2710 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2711 								\
2712 	res = var + val;                                        \
2713 								\
2714 	if (val < 0 && res > var)                               \
2715 		res = 0;                                        \
2716 								\
2717 	WRITE_ONCE(*ptr, res);                                  \
2718 } while (0)
2719 
2720 /*
2721  * Unsigned subtract and clamp on underflow.
2722  *
2723  * Explicitly do a load-store to ensure the intermediate value never hits
2724  * memory. This allows lockless observations without ever seeing the negative
2725  * values.
2726  */
2727 #define sub_positive(_ptr, _val) do {				\
2728 	typeof(_ptr) ptr = (_ptr);				\
2729 	typeof(*ptr) val = (_val);				\
2730 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
2731 	res = var - val;					\
2732 	if (res > var)						\
2733 		res = 0;					\
2734 	WRITE_ONCE(*ptr, res);					\
2735 } while (0)
2736 
2737 /*
2738  * Remove and clamp on negative, from a local variable.
2739  *
2740  * A variant of sub_positive(), which does not use explicit load-store
2741  * and is thus optimized for local variable updates.
2742  */
2743 #define lsub_positive(_ptr, _val) do {				\
2744 	typeof(_ptr) ptr = (_ptr);				\
2745 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
2746 } while (0)
2747 
2748 #ifdef CONFIG_SMP
2749 static inline void
2750 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2751 {
2752 	cfs_rq->runnable_weight += se->runnable_weight;
2753 
2754 	cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2755 	cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2756 }
2757 
2758 static inline void
2759 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2760 {
2761 	cfs_rq->runnable_weight -= se->runnable_weight;
2762 
2763 	sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2764 	sub_positive(&cfs_rq->avg.runnable_load_sum,
2765 		     se_runnable(se) * se->avg.runnable_load_sum);
2766 }
2767 
2768 static inline void
2769 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2770 {
2771 	cfs_rq->avg.load_avg += se->avg.load_avg;
2772 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2773 }
2774 
2775 static inline void
2776 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2777 {
2778 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2779 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2780 }
2781 #else
2782 static inline void
2783 enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2784 static inline void
2785 dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2786 static inline void
2787 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2788 static inline void
2789 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2790 #endif
2791 
2792 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2793 			    unsigned long weight, unsigned long runnable)
2794 {
2795 	if (se->on_rq) {
2796 		/* commit outstanding execution time */
2797 		if (cfs_rq->curr == se)
2798 			update_curr(cfs_rq);
2799 		account_entity_dequeue(cfs_rq, se);
2800 		dequeue_runnable_load_avg(cfs_rq, se);
2801 	}
2802 	dequeue_load_avg(cfs_rq, se);
2803 
2804 	se->runnable_weight = runnable;
2805 	update_load_set(&se->load, weight);
2806 
2807 #ifdef CONFIG_SMP
2808 	do {
2809 		u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2810 
2811 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2812 		se->avg.runnable_load_avg =
2813 			div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2814 	} while (0);
2815 #endif
2816 
2817 	enqueue_load_avg(cfs_rq, se);
2818 	if (se->on_rq) {
2819 		account_entity_enqueue(cfs_rq, se);
2820 		enqueue_runnable_load_avg(cfs_rq, se);
2821 	}
2822 }
2823 
2824 void reweight_task(struct task_struct *p, int prio)
2825 {
2826 	struct sched_entity *se = &p->se;
2827 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2828 	struct load_weight *load = &se->load;
2829 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2830 
2831 	reweight_entity(cfs_rq, se, weight, weight);
2832 	load->inv_weight = sched_prio_to_wmult[prio];
2833 }
2834 
2835 #ifdef CONFIG_FAIR_GROUP_SCHED
2836 #ifdef CONFIG_SMP
2837 /*
2838  * All this does is approximate the hierarchical proportion which includes that
2839  * global sum we all love to hate.
2840  *
2841  * That is, the weight of a group entity, is the proportional share of the
2842  * group weight based on the group runqueue weights. That is:
2843  *
2844  *                     tg->weight * grq->load.weight
2845  *   ge->load.weight = -----------------------------               (1)
2846  *			  \Sum grq->load.weight
2847  *
2848  * Now, because computing that sum is prohibitively expensive to compute (been
2849  * there, done that) we approximate it with this average stuff. The average
2850  * moves slower and therefore the approximation is cheaper and more stable.
2851  *
2852  * So instead of the above, we substitute:
2853  *
2854  *   grq->load.weight -> grq->avg.load_avg                         (2)
2855  *
2856  * which yields the following:
2857  *
2858  *                     tg->weight * grq->avg.load_avg
2859  *   ge->load.weight = ------------------------------              (3)
2860  *				tg->load_avg
2861  *
2862  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2863  *
2864  * That is shares_avg, and it is right (given the approximation (2)).
2865  *
2866  * The problem with it is that because the average is slow -- it was designed
2867  * to be exactly that of course -- this leads to transients in boundary
2868  * conditions. In specific, the case where the group was idle and we start the
2869  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2870  * yielding bad latency etc..
2871  *
2872  * Now, in that special case (1) reduces to:
2873  *
2874  *                     tg->weight * grq->load.weight
2875  *   ge->load.weight = ----------------------------- = tg->weight   (4)
2876  *			    grp->load.weight
2877  *
2878  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2879  *
2880  * So what we do is modify our approximation (3) to approach (4) in the (near)
2881  * UP case, like:
2882  *
2883  *   ge->load.weight =
2884  *
2885  *              tg->weight * grq->load.weight
2886  *     ---------------------------------------------------         (5)
2887  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
2888  *
2889  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2890  * we need to use grq->avg.load_avg as its lower bound, which then gives:
2891  *
2892  *
2893  *                     tg->weight * grq->load.weight
2894  *   ge->load.weight = -----------------------------		   (6)
2895  *				tg_load_avg'
2896  *
2897  * Where:
2898  *
2899  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2900  *                  max(grq->load.weight, grq->avg.load_avg)
2901  *
2902  * And that is shares_weight and is icky. In the (near) UP case it approaches
2903  * (4) while in the normal case it approaches (3). It consistently
2904  * overestimates the ge->load.weight and therefore:
2905  *
2906  *   \Sum ge->load.weight >= tg->weight
2907  *
2908  * hence icky!
2909  */
2910 static long calc_group_shares(struct cfs_rq *cfs_rq)
2911 {
2912 	long tg_weight, tg_shares, load, shares;
2913 	struct task_group *tg = cfs_rq->tg;
2914 
2915 	tg_shares = READ_ONCE(tg->shares);
2916 
2917 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2918 
2919 	tg_weight = atomic_long_read(&tg->load_avg);
2920 
2921 	/* Ensure tg_weight >= load */
2922 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2923 	tg_weight += load;
2924 
2925 	shares = (tg_shares * load);
2926 	if (tg_weight)
2927 		shares /= tg_weight;
2928 
2929 	/*
2930 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2931 	 * of a group with small tg->shares value. It is a floor value which is
2932 	 * assigned as a minimum load.weight to the sched_entity representing
2933 	 * the group on a CPU.
2934 	 *
2935 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2936 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2937 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2938 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2939 	 * instead of 0.
2940 	 */
2941 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
2942 }
2943 
2944 /*
2945  * This calculates the effective runnable weight for a group entity based on
2946  * the group entity weight calculated above.
2947  *
2948  * Because of the above approximation (2), our group entity weight is
2949  * an load_avg based ratio (3). This means that it includes blocked load and
2950  * does not represent the runnable weight.
2951  *
2952  * Approximate the group entity's runnable weight per ratio from the group
2953  * runqueue:
2954  *
2955  *					     grq->avg.runnable_load_avg
2956  *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
2957  *						 grq->avg.load_avg
2958  *
2959  * However, analogous to above, since the avg numbers are slow, this leads to
2960  * transients in the from-idle case. Instead we use:
2961  *
2962  *   ge->runnable_weight = ge->load.weight *
2963  *
2964  *		max(grq->avg.runnable_load_avg, grq->runnable_weight)
2965  *		-----------------------------------------------------	(8)
2966  *		      max(grq->avg.load_avg, grq->load.weight)
2967  *
2968  * Where these max() serve both to use the 'instant' values to fix the slow
2969  * from-idle and avoid the /0 on to-idle, similar to (6).
2970  */
2971 static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2972 {
2973 	long runnable, load_avg;
2974 
2975 	load_avg = max(cfs_rq->avg.load_avg,
2976 		       scale_load_down(cfs_rq->load.weight));
2977 
2978 	runnable = max(cfs_rq->avg.runnable_load_avg,
2979 		       scale_load_down(cfs_rq->runnable_weight));
2980 
2981 	runnable *= shares;
2982 	if (load_avg)
2983 		runnable /= load_avg;
2984 
2985 	return clamp_t(long, runnable, MIN_SHARES, shares);
2986 }
2987 #endif /* CONFIG_SMP */
2988 
2989 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2990 
2991 /*
2992  * Recomputes the group entity based on the current state of its group
2993  * runqueue.
2994  */
2995 static void update_cfs_group(struct sched_entity *se)
2996 {
2997 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
2998 	long shares, runnable;
2999 
3000 	if (!gcfs_rq)
3001 		return;
3002 
3003 	if (throttled_hierarchy(gcfs_rq))
3004 		return;
3005 
3006 #ifndef CONFIG_SMP
3007 	runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3008 
3009 	if (likely(se->load.weight == shares))
3010 		return;
3011 #else
3012 	shares   = calc_group_shares(gcfs_rq);
3013 	runnable = calc_group_runnable(gcfs_rq, shares);
3014 #endif
3015 
3016 	reweight_entity(cfs_rq_of(se), se, shares, runnable);
3017 }
3018 
3019 #else /* CONFIG_FAIR_GROUP_SCHED */
3020 static inline void update_cfs_group(struct sched_entity *se)
3021 {
3022 }
3023 #endif /* CONFIG_FAIR_GROUP_SCHED */
3024 
3025 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3026 {
3027 	struct rq *rq = rq_of(cfs_rq);
3028 
3029 	if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3030 		/*
3031 		 * There are a few boundary cases this might miss but it should
3032 		 * get called often enough that that should (hopefully) not be
3033 		 * a real problem.
3034 		 *
3035 		 * It will not get called when we go idle, because the idle
3036 		 * thread is a different class (!fair), nor will the utilization
3037 		 * number include things like RT tasks.
3038 		 *
3039 		 * As is, the util number is not freq-invariant (we'd have to
3040 		 * implement arch_scale_freq_capacity() for that).
3041 		 *
3042 		 * See cpu_util().
3043 		 */
3044 		cpufreq_update_util(rq, flags);
3045 	}
3046 }
3047 
3048 #ifdef CONFIG_SMP
3049 #ifdef CONFIG_FAIR_GROUP_SCHED
3050 /**
3051  * update_tg_load_avg - update the tg's load avg
3052  * @cfs_rq: the cfs_rq whose avg changed
3053  * @force: update regardless of how small the difference
3054  *
3055  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3056  * However, because tg->load_avg is a global value there are performance
3057  * considerations.
3058  *
3059  * In order to avoid having to look at the other cfs_rq's, we use a
3060  * differential update where we store the last value we propagated. This in
3061  * turn allows skipping updates if the differential is 'small'.
3062  *
3063  * Updating tg's load_avg is necessary before update_cfs_share().
3064  */
3065 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3066 {
3067 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3068 
3069 	/*
3070 	 * No need to update load_avg for root_task_group as it is not used.
3071 	 */
3072 	if (cfs_rq->tg == &root_task_group)
3073 		return;
3074 
3075 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3076 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3077 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3078 	}
3079 }
3080 
3081 /*
3082  * Called within set_task_rq() right before setting a task's CPU. The
3083  * caller only guarantees p->pi_lock is held; no other assumptions,
3084  * including the state of rq->lock, should be made.
3085  */
3086 void set_task_rq_fair(struct sched_entity *se,
3087 		      struct cfs_rq *prev, struct cfs_rq *next)
3088 {
3089 	u64 p_last_update_time;
3090 	u64 n_last_update_time;
3091 
3092 	if (!sched_feat(ATTACH_AGE_LOAD))
3093 		return;
3094 
3095 	/*
3096 	 * We are supposed to update the task to "current" time, then its up to
3097 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3098 	 * getting what current time is, so simply throw away the out-of-date
3099 	 * time. This will result in the wakee task is less decayed, but giving
3100 	 * the wakee more load sounds not bad.
3101 	 */
3102 	if (!(se->avg.last_update_time && prev))
3103 		return;
3104 
3105 #ifndef CONFIG_64BIT
3106 	{
3107 		u64 p_last_update_time_copy;
3108 		u64 n_last_update_time_copy;
3109 
3110 		do {
3111 			p_last_update_time_copy = prev->load_last_update_time_copy;
3112 			n_last_update_time_copy = next->load_last_update_time_copy;
3113 
3114 			smp_rmb();
3115 
3116 			p_last_update_time = prev->avg.last_update_time;
3117 			n_last_update_time = next->avg.last_update_time;
3118 
3119 		} while (p_last_update_time != p_last_update_time_copy ||
3120 			 n_last_update_time != n_last_update_time_copy);
3121 	}
3122 #else
3123 	p_last_update_time = prev->avg.last_update_time;
3124 	n_last_update_time = next->avg.last_update_time;
3125 #endif
3126 	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3127 	se->avg.last_update_time = n_last_update_time;
3128 }
3129 
3130 
3131 /*
3132  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3133  * propagate its contribution. The key to this propagation is the invariant
3134  * that for each group:
3135  *
3136  *   ge->avg == grq->avg						(1)
3137  *
3138  * _IFF_ we look at the pure running and runnable sums. Because they
3139  * represent the very same entity, just at different points in the hierarchy.
3140  *
3141  * Per the above update_tg_cfs_util() is trivial and simply copies the running
3142  * sum over (but still wrong, because the group entity and group rq do not have
3143  * their PELT windows aligned).
3144  *
3145  * However, update_tg_cfs_runnable() is more complex. So we have:
3146  *
3147  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3148  *
3149  * And since, like util, the runnable part should be directly transferable,
3150  * the following would _appear_ to be the straight forward approach:
3151  *
3152  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3153  *
3154  * And per (1) we have:
3155  *
3156  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3157  *
3158  * Which gives:
3159  *
3160  *                      ge->load.weight * grq->avg.load_avg
3161  *   ge->avg.load_avg = -----------------------------------		(4)
3162  *                               grq->load.weight
3163  *
3164  * Except that is wrong!
3165  *
3166  * Because while for entities historical weight is not important and we
3167  * really only care about our future and therefore can consider a pure
3168  * runnable sum, runqueues can NOT do this.
3169  *
3170  * We specifically want runqueues to have a load_avg that includes
3171  * historical weights. Those represent the blocked load, the load we expect
3172  * to (shortly) return to us. This only works by keeping the weights as
3173  * integral part of the sum. We therefore cannot decompose as per (3).
3174  *
3175  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3176  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3177  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3178  * runnable section of these tasks overlap (or not). If they were to perfectly
3179  * align the rq as a whole would be runnable 2/3 of the time. If however we
3180  * always have at least 1 runnable task, the rq as a whole is always runnable.
3181  *
3182  * So we'll have to approximate.. :/
3183  *
3184  * Given the constraint:
3185  *
3186  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3187  *
3188  * We can construct a rule that adds runnable to a rq by assuming minimal
3189  * overlap.
3190  *
3191  * On removal, we'll assume each task is equally runnable; which yields:
3192  *
3193  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3194  *
3195  * XXX: only do this for the part of runnable > running ?
3196  *
3197  */
3198 
3199 static inline void
3200 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3201 {
3202 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3203 
3204 	/* Nothing to update */
3205 	if (!delta)
3206 		return;
3207 
3208 	/*
3209 	 * The relation between sum and avg is:
3210 	 *
3211 	 *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3212 	 *
3213 	 * however, the PELT windows are not aligned between grq and gse.
3214 	 */
3215 
3216 	/* Set new sched_entity's utilization */
3217 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3218 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3219 
3220 	/* Update parent cfs_rq utilization */
3221 	add_positive(&cfs_rq->avg.util_avg, delta);
3222 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3223 }
3224 
3225 static inline void
3226 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3227 {
3228 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3229 	unsigned long runnable_load_avg, load_avg;
3230 	u64 runnable_load_sum, load_sum = 0;
3231 	s64 delta_sum;
3232 
3233 	if (!runnable_sum)
3234 		return;
3235 
3236 	gcfs_rq->prop_runnable_sum = 0;
3237 
3238 	if (runnable_sum >= 0) {
3239 		/*
3240 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3241 		 * the CPU is saturated running == runnable.
3242 		 */
3243 		runnable_sum += se->avg.load_sum;
3244 		runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3245 	} else {
3246 		/*
3247 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3248 		 * assuming all tasks are equally runnable.
3249 		 */
3250 		if (scale_load_down(gcfs_rq->load.weight)) {
3251 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3252 				scale_load_down(gcfs_rq->load.weight));
3253 		}
3254 
3255 		/* But make sure to not inflate se's runnable */
3256 		runnable_sum = min(se->avg.load_sum, load_sum);
3257 	}
3258 
3259 	/*
3260 	 * runnable_sum can't be lower than running_sum
3261 	 * As running sum is scale with CPU capacity wehreas the runnable sum
3262 	 * is not we rescale running_sum 1st
3263 	 */
3264 	running_sum = se->avg.util_sum /
3265 		arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3266 	runnable_sum = max(runnable_sum, running_sum);
3267 
3268 	load_sum = (s64)se_weight(se) * runnable_sum;
3269 	load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3270 
3271 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3272 	delta_avg = load_avg - se->avg.load_avg;
3273 
3274 	se->avg.load_sum = runnable_sum;
3275 	se->avg.load_avg = load_avg;
3276 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3277 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3278 
3279 	runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3280 	runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3281 	delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3282 	delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3283 
3284 	se->avg.runnable_load_sum = runnable_sum;
3285 	se->avg.runnable_load_avg = runnable_load_avg;
3286 
3287 	if (se->on_rq) {
3288 		add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3289 		add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3290 	}
3291 }
3292 
3293 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3294 {
3295 	cfs_rq->propagate = 1;
3296 	cfs_rq->prop_runnable_sum += runnable_sum;
3297 }
3298 
3299 /* Update task and its cfs_rq load average */
3300 static inline int propagate_entity_load_avg(struct sched_entity *se)
3301 {
3302 	struct cfs_rq *cfs_rq, *gcfs_rq;
3303 
3304 	if (entity_is_task(se))
3305 		return 0;
3306 
3307 	gcfs_rq = group_cfs_rq(se);
3308 	if (!gcfs_rq->propagate)
3309 		return 0;
3310 
3311 	gcfs_rq->propagate = 0;
3312 
3313 	cfs_rq = cfs_rq_of(se);
3314 
3315 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3316 
3317 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3318 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3319 
3320 	return 1;
3321 }
3322 
3323 /*
3324  * Check if we need to update the load and the utilization of a blocked
3325  * group_entity:
3326  */
3327 static inline bool skip_blocked_update(struct sched_entity *se)
3328 {
3329 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3330 
3331 	/*
3332 	 * If sched_entity still have not zero load or utilization, we have to
3333 	 * decay it:
3334 	 */
3335 	if (se->avg.load_avg || se->avg.util_avg)
3336 		return false;
3337 
3338 	/*
3339 	 * If there is a pending propagation, we have to update the load and
3340 	 * the utilization of the sched_entity:
3341 	 */
3342 	if (gcfs_rq->propagate)
3343 		return false;
3344 
3345 	/*
3346 	 * Otherwise, the load and the utilization of the sched_entity is
3347 	 * already zero and there is no pending propagation, so it will be a
3348 	 * waste of time to try to decay it:
3349 	 */
3350 	return true;
3351 }
3352 
3353 #else /* CONFIG_FAIR_GROUP_SCHED */
3354 
3355 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3356 
3357 static inline int propagate_entity_load_avg(struct sched_entity *se)
3358 {
3359 	return 0;
3360 }
3361 
3362 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3363 
3364 #endif /* CONFIG_FAIR_GROUP_SCHED */
3365 
3366 /**
3367  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3368  * @now: current time, as per cfs_rq_clock_task()
3369  * @cfs_rq: cfs_rq to update
3370  *
3371  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3372  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3373  * post_init_entity_util_avg().
3374  *
3375  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3376  *
3377  * Returns true if the load decayed or we removed load.
3378  *
3379  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3380  * call update_tg_load_avg() when this function returns true.
3381  */
3382 static inline int
3383 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3384 {
3385 	unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3386 	struct sched_avg *sa = &cfs_rq->avg;
3387 	int decayed = 0;
3388 
3389 	if (cfs_rq->removed.nr) {
3390 		unsigned long r;
3391 		u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3392 
3393 		raw_spin_lock(&cfs_rq->removed.lock);
3394 		swap(cfs_rq->removed.util_avg, removed_util);
3395 		swap(cfs_rq->removed.load_avg, removed_load);
3396 		swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3397 		cfs_rq->removed.nr = 0;
3398 		raw_spin_unlock(&cfs_rq->removed.lock);
3399 
3400 		r = removed_load;
3401 		sub_positive(&sa->load_avg, r);
3402 		sub_positive(&sa->load_sum, r * divider);
3403 
3404 		r = removed_util;
3405 		sub_positive(&sa->util_avg, r);
3406 		sub_positive(&sa->util_sum, r * divider);
3407 
3408 		add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3409 
3410 		decayed = 1;
3411 	}
3412 
3413 	decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3414 
3415 #ifndef CONFIG_64BIT
3416 	smp_wmb();
3417 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3418 #endif
3419 
3420 	if (decayed)
3421 		cfs_rq_util_change(cfs_rq, 0);
3422 
3423 	return decayed;
3424 }
3425 
3426 /**
3427  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3428  * @cfs_rq: cfs_rq to attach to
3429  * @se: sched_entity to attach
3430  * @flags: migration hints
3431  *
3432  * Must call update_cfs_rq_load_avg() before this, since we rely on
3433  * cfs_rq->avg.last_update_time being current.
3434  */
3435 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3436 {
3437 	u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3438 
3439 	/*
3440 	 * When we attach the @se to the @cfs_rq, we must align the decay
3441 	 * window because without that, really weird and wonderful things can
3442 	 * happen.
3443 	 *
3444 	 * XXX illustrate
3445 	 */
3446 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3447 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3448 
3449 	/*
3450 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3451 	 * period_contrib. This isn't strictly correct, but since we're
3452 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3453 	 * _sum a little.
3454 	 */
3455 	se->avg.util_sum = se->avg.util_avg * divider;
3456 
3457 	se->avg.load_sum = divider;
3458 	if (se_weight(se)) {
3459 		se->avg.load_sum =
3460 			div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3461 	}
3462 
3463 	se->avg.runnable_load_sum = se->avg.load_sum;
3464 
3465 	enqueue_load_avg(cfs_rq, se);
3466 	cfs_rq->avg.util_avg += se->avg.util_avg;
3467 	cfs_rq->avg.util_sum += se->avg.util_sum;
3468 
3469 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3470 
3471 	cfs_rq_util_change(cfs_rq, flags);
3472 }
3473 
3474 /**
3475  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3476  * @cfs_rq: cfs_rq to detach from
3477  * @se: sched_entity to detach
3478  *
3479  * Must call update_cfs_rq_load_avg() before this, since we rely on
3480  * cfs_rq->avg.last_update_time being current.
3481  */
3482 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3483 {
3484 	dequeue_load_avg(cfs_rq, se);
3485 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3486 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3487 
3488 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3489 
3490 	cfs_rq_util_change(cfs_rq, 0);
3491 }
3492 
3493 /*
3494  * Optional action to be done while updating the load average
3495  */
3496 #define UPDATE_TG	0x1
3497 #define SKIP_AGE_LOAD	0x2
3498 #define DO_ATTACH	0x4
3499 
3500 /* Update task and its cfs_rq load average */
3501 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3502 {
3503 	u64 now = cfs_rq_clock_task(cfs_rq);
3504 	struct rq *rq = rq_of(cfs_rq);
3505 	int cpu = cpu_of(rq);
3506 	int decayed;
3507 
3508 	/*
3509 	 * Track task load average for carrying it to new CPU after migrated, and
3510 	 * track group sched_entity load average for task_h_load calc in migration
3511 	 */
3512 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3513 		__update_load_avg_se(now, cpu, cfs_rq, se);
3514 
3515 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3516 	decayed |= propagate_entity_load_avg(se);
3517 
3518 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3519 
3520 		/*
3521 		 * DO_ATTACH means we're here from enqueue_entity().
3522 		 * !last_update_time means we've passed through
3523 		 * migrate_task_rq_fair() indicating we migrated.
3524 		 *
3525 		 * IOW we're enqueueing a task on a new CPU.
3526 		 */
3527 		attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3528 		update_tg_load_avg(cfs_rq, 0);
3529 
3530 	} else if (decayed && (flags & UPDATE_TG))
3531 		update_tg_load_avg(cfs_rq, 0);
3532 }
3533 
3534 #ifndef CONFIG_64BIT
3535 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3536 {
3537 	u64 last_update_time_copy;
3538 	u64 last_update_time;
3539 
3540 	do {
3541 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3542 		smp_rmb();
3543 		last_update_time = cfs_rq->avg.last_update_time;
3544 	} while (last_update_time != last_update_time_copy);
3545 
3546 	return last_update_time;
3547 }
3548 #else
3549 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3550 {
3551 	return cfs_rq->avg.last_update_time;
3552 }
3553 #endif
3554 
3555 /*
3556  * Synchronize entity load avg of dequeued entity without locking
3557  * the previous rq.
3558  */
3559 void sync_entity_load_avg(struct sched_entity *se)
3560 {
3561 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3562 	u64 last_update_time;
3563 
3564 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3565 	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3566 }
3567 
3568 /*
3569  * Task first catches up with cfs_rq, and then subtract
3570  * itself from the cfs_rq (task must be off the queue now).
3571  */
3572 void remove_entity_load_avg(struct sched_entity *se)
3573 {
3574 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3575 	unsigned long flags;
3576 
3577 	/*
3578 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3579 	 * post_init_entity_util_avg() which will have added things to the
3580 	 * cfs_rq, so we can remove unconditionally.
3581 	 *
3582 	 * Similarly for groups, they will have passed through
3583 	 * post_init_entity_util_avg() before unregister_sched_fair_group()
3584 	 * calls this.
3585 	 */
3586 
3587 	sync_entity_load_avg(se);
3588 
3589 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3590 	++cfs_rq->removed.nr;
3591 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3592 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3593 	cfs_rq->removed.runnable_sum	+= se->avg.load_sum; /* == runnable_sum */
3594 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3595 }
3596 
3597 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3598 {
3599 	return cfs_rq->avg.runnable_load_avg;
3600 }
3601 
3602 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3603 {
3604 	return cfs_rq->avg.load_avg;
3605 }
3606 
3607 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3608 
3609 static inline unsigned long task_util(struct task_struct *p)
3610 {
3611 	return READ_ONCE(p->se.avg.util_avg);
3612 }
3613 
3614 static inline unsigned long _task_util_est(struct task_struct *p)
3615 {
3616 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3617 
3618 	return (max(ue.ewma, ue.enqueued) | UTIL_AVG_UNCHANGED);
3619 }
3620 
3621 static inline unsigned long task_util_est(struct task_struct *p)
3622 {
3623 	return max(task_util(p), _task_util_est(p));
3624 }
3625 
3626 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3627 				    struct task_struct *p)
3628 {
3629 	unsigned int enqueued;
3630 
3631 	if (!sched_feat(UTIL_EST))
3632 		return;
3633 
3634 	/* Update root cfs_rq's estimated utilization */
3635 	enqueued  = cfs_rq->avg.util_est.enqueued;
3636 	enqueued += _task_util_est(p);
3637 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3638 }
3639 
3640 /*
3641  * Check if a (signed) value is within a specified (unsigned) margin,
3642  * based on the observation that:
3643  *
3644  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3645  *
3646  * NOTE: this only works when value + maring < INT_MAX.
3647  */
3648 static inline bool within_margin(int value, int margin)
3649 {
3650 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3651 }
3652 
3653 static void
3654 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3655 {
3656 	long last_ewma_diff;
3657 	struct util_est ue;
3658 
3659 	if (!sched_feat(UTIL_EST))
3660 		return;
3661 
3662 	/* Update root cfs_rq's estimated utilization */
3663 	ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3664 	ue.enqueued -= min_t(unsigned int, ue.enqueued, _task_util_est(p));
3665 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3666 
3667 	/*
3668 	 * Skip update of task's estimated utilization when the task has not
3669 	 * yet completed an activation, e.g. being migrated.
3670 	 */
3671 	if (!task_sleep)
3672 		return;
3673 
3674 	/*
3675 	 * If the PELT values haven't changed since enqueue time,
3676 	 * skip the util_est update.
3677 	 */
3678 	ue = p->se.avg.util_est;
3679 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
3680 		return;
3681 
3682 	/*
3683 	 * Skip update of task's estimated utilization when its EWMA is
3684 	 * already ~1% close to its last activation value.
3685 	 */
3686 	ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3687 	last_ewma_diff = ue.enqueued - ue.ewma;
3688 	if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3689 		return;
3690 
3691 	/*
3692 	 * Update Task's estimated utilization
3693 	 *
3694 	 * When *p completes an activation we can consolidate another sample
3695 	 * of the task size. This is done by storing the current PELT value
3696 	 * as ue.enqueued and by using this value to update the Exponential
3697 	 * Weighted Moving Average (EWMA):
3698 	 *
3699 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
3700 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
3701 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
3702 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
3703 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
3704 	 *
3705 	 * Where 'w' is the weight of new samples, which is configured to be
3706 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3707 	 */
3708 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3709 	ue.ewma  += last_ewma_diff;
3710 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3711 	WRITE_ONCE(p->se.avg.util_est, ue);
3712 }
3713 
3714 static inline int task_fits_capacity(struct task_struct *p, long capacity)
3715 {
3716 	return capacity * 1024 > task_util_est(p) * capacity_margin;
3717 }
3718 
3719 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
3720 {
3721 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
3722 		return;
3723 
3724 	if (!p) {
3725 		rq->misfit_task_load = 0;
3726 		return;
3727 	}
3728 
3729 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
3730 		rq->misfit_task_load = 0;
3731 		return;
3732 	}
3733 
3734 	rq->misfit_task_load = task_h_load(p);
3735 }
3736 
3737 #else /* CONFIG_SMP */
3738 
3739 #define UPDATE_TG	0x0
3740 #define SKIP_AGE_LOAD	0x0
3741 #define DO_ATTACH	0x0
3742 
3743 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3744 {
3745 	cfs_rq_util_change(cfs_rq, 0);
3746 }
3747 
3748 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3749 
3750 static inline void
3751 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3752 static inline void
3753 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3754 
3755 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3756 {
3757 	return 0;
3758 }
3759 
3760 static inline void
3761 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3762 
3763 static inline void
3764 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3765 		 bool task_sleep) {}
3766 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
3767 
3768 #endif /* CONFIG_SMP */
3769 
3770 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3771 {
3772 #ifdef CONFIG_SCHED_DEBUG
3773 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3774 
3775 	if (d < 0)
3776 		d = -d;
3777 
3778 	if (d > 3*sysctl_sched_latency)
3779 		schedstat_inc(cfs_rq->nr_spread_over);
3780 #endif
3781 }
3782 
3783 static void
3784 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3785 {
3786 	u64 vruntime = cfs_rq->min_vruntime;
3787 
3788 	/*
3789 	 * The 'current' period is already promised to the current tasks,
3790 	 * however the extra weight of the new task will slow them down a
3791 	 * little, place the new task so that it fits in the slot that
3792 	 * stays open at the end.
3793 	 */
3794 	if (initial && sched_feat(START_DEBIT))
3795 		vruntime += sched_vslice(cfs_rq, se);
3796 
3797 	/* sleeps up to a single latency don't count. */
3798 	if (!initial) {
3799 		unsigned long thresh = sysctl_sched_latency;
3800 
3801 		/*
3802 		 * Halve their sleep time's effect, to allow
3803 		 * for a gentler effect of sleepers:
3804 		 */
3805 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3806 			thresh >>= 1;
3807 
3808 		vruntime -= thresh;
3809 	}
3810 
3811 	/* ensure we never gain time by being placed backwards. */
3812 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3813 }
3814 
3815 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3816 
3817 static inline void check_schedstat_required(void)
3818 {
3819 #ifdef CONFIG_SCHEDSTATS
3820 	if (schedstat_enabled())
3821 		return;
3822 
3823 	/* Force schedstat enabled if a dependent tracepoint is active */
3824 	if (trace_sched_stat_wait_enabled()    ||
3825 			trace_sched_stat_sleep_enabled()   ||
3826 			trace_sched_stat_iowait_enabled()  ||
3827 			trace_sched_stat_blocked_enabled() ||
3828 			trace_sched_stat_runtime_enabled())  {
3829 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3830 			     "stat_blocked and stat_runtime require the "
3831 			     "kernel parameter schedstats=enable or "
3832 			     "kernel.sched_schedstats=1\n");
3833 	}
3834 #endif
3835 }
3836 
3837 
3838 /*
3839  * MIGRATION
3840  *
3841  *	dequeue
3842  *	  update_curr()
3843  *	    update_min_vruntime()
3844  *	  vruntime -= min_vruntime
3845  *
3846  *	enqueue
3847  *	  update_curr()
3848  *	    update_min_vruntime()
3849  *	  vruntime += min_vruntime
3850  *
3851  * this way the vruntime transition between RQs is done when both
3852  * min_vruntime are up-to-date.
3853  *
3854  * WAKEUP (remote)
3855  *
3856  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3857  *	  vruntime -= min_vruntime
3858  *
3859  *	enqueue
3860  *	  update_curr()
3861  *	    update_min_vruntime()
3862  *	  vruntime += min_vruntime
3863  *
3864  * this way we don't have the most up-to-date min_vruntime on the originating
3865  * CPU and an up-to-date min_vruntime on the destination CPU.
3866  */
3867 
3868 static void
3869 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3870 {
3871 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3872 	bool curr = cfs_rq->curr == se;
3873 
3874 	/*
3875 	 * If we're the current task, we must renormalise before calling
3876 	 * update_curr().
3877 	 */
3878 	if (renorm && curr)
3879 		se->vruntime += cfs_rq->min_vruntime;
3880 
3881 	update_curr(cfs_rq);
3882 
3883 	/*
3884 	 * Otherwise, renormalise after, such that we're placed at the current
3885 	 * moment in time, instead of some random moment in the past. Being
3886 	 * placed in the past could significantly boost this task to the
3887 	 * fairness detriment of existing tasks.
3888 	 */
3889 	if (renorm && !curr)
3890 		se->vruntime += cfs_rq->min_vruntime;
3891 
3892 	/*
3893 	 * When enqueuing a sched_entity, we must:
3894 	 *   - Update loads to have both entity and cfs_rq synced with now.
3895 	 *   - Add its load to cfs_rq->runnable_avg
3896 	 *   - For group_entity, update its weight to reflect the new share of
3897 	 *     its group cfs_rq
3898 	 *   - Add its new weight to cfs_rq->load.weight
3899 	 */
3900 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3901 	update_cfs_group(se);
3902 	enqueue_runnable_load_avg(cfs_rq, se);
3903 	account_entity_enqueue(cfs_rq, se);
3904 
3905 	if (flags & ENQUEUE_WAKEUP)
3906 		place_entity(cfs_rq, se, 0);
3907 
3908 	check_schedstat_required();
3909 	update_stats_enqueue(cfs_rq, se, flags);
3910 	check_spread(cfs_rq, se);
3911 	if (!curr)
3912 		__enqueue_entity(cfs_rq, se);
3913 	se->on_rq = 1;
3914 
3915 	if (cfs_rq->nr_running == 1) {
3916 		list_add_leaf_cfs_rq(cfs_rq);
3917 		check_enqueue_throttle(cfs_rq);
3918 	}
3919 }
3920 
3921 static void __clear_buddies_last(struct sched_entity *se)
3922 {
3923 	for_each_sched_entity(se) {
3924 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3925 		if (cfs_rq->last != se)
3926 			break;
3927 
3928 		cfs_rq->last = NULL;
3929 	}
3930 }
3931 
3932 static void __clear_buddies_next(struct sched_entity *se)
3933 {
3934 	for_each_sched_entity(se) {
3935 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3936 		if (cfs_rq->next != se)
3937 			break;
3938 
3939 		cfs_rq->next = NULL;
3940 	}
3941 }
3942 
3943 static void __clear_buddies_skip(struct sched_entity *se)
3944 {
3945 	for_each_sched_entity(se) {
3946 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3947 		if (cfs_rq->skip != se)
3948 			break;
3949 
3950 		cfs_rq->skip = NULL;
3951 	}
3952 }
3953 
3954 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3955 {
3956 	if (cfs_rq->last == se)
3957 		__clear_buddies_last(se);
3958 
3959 	if (cfs_rq->next == se)
3960 		__clear_buddies_next(se);
3961 
3962 	if (cfs_rq->skip == se)
3963 		__clear_buddies_skip(se);
3964 }
3965 
3966 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3967 
3968 static void
3969 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3970 {
3971 	/*
3972 	 * Update run-time statistics of the 'current'.
3973 	 */
3974 	update_curr(cfs_rq);
3975 
3976 	/*
3977 	 * When dequeuing a sched_entity, we must:
3978 	 *   - Update loads to have both entity and cfs_rq synced with now.
3979 	 *   - Subtract its load from the cfs_rq->runnable_avg.
3980 	 *   - Subtract its previous weight from cfs_rq->load.weight.
3981 	 *   - For group entity, update its weight to reflect the new share
3982 	 *     of its group cfs_rq.
3983 	 */
3984 	update_load_avg(cfs_rq, se, UPDATE_TG);
3985 	dequeue_runnable_load_avg(cfs_rq, se);
3986 
3987 	update_stats_dequeue(cfs_rq, se, flags);
3988 
3989 	clear_buddies(cfs_rq, se);
3990 
3991 	if (se != cfs_rq->curr)
3992 		__dequeue_entity(cfs_rq, se);
3993 	se->on_rq = 0;
3994 	account_entity_dequeue(cfs_rq, se);
3995 
3996 	/*
3997 	 * Normalize after update_curr(); which will also have moved
3998 	 * min_vruntime if @se is the one holding it back. But before doing
3999 	 * update_min_vruntime() again, which will discount @se's position and
4000 	 * can move min_vruntime forward still more.
4001 	 */
4002 	if (!(flags & DEQUEUE_SLEEP))
4003 		se->vruntime -= cfs_rq->min_vruntime;
4004 
4005 	/* return excess runtime on last dequeue */
4006 	return_cfs_rq_runtime(cfs_rq);
4007 
4008 	update_cfs_group(se);
4009 
4010 	/*
4011 	 * Now advance min_vruntime if @se was the entity holding it back,
4012 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4013 	 * put back on, and if we advance min_vruntime, we'll be placed back
4014 	 * further than we started -- ie. we'll be penalized.
4015 	 */
4016 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4017 		update_min_vruntime(cfs_rq);
4018 }
4019 
4020 /*
4021  * Preempt the current task with a newly woken task if needed:
4022  */
4023 static void
4024 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4025 {
4026 	unsigned long ideal_runtime, delta_exec;
4027 	struct sched_entity *se;
4028 	s64 delta;
4029 
4030 	ideal_runtime = sched_slice(cfs_rq, curr);
4031 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4032 	if (delta_exec > ideal_runtime) {
4033 		resched_curr(rq_of(cfs_rq));
4034 		/*
4035 		 * The current task ran long enough, ensure it doesn't get
4036 		 * re-elected due to buddy favours.
4037 		 */
4038 		clear_buddies(cfs_rq, curr);
4039 		return;
4040 	}
4041 
4042 	/*
4043 	 * Ensure that a task that missed wakeup preemption by a
4044 	 * narrow margin doesn't have to wait for a full slice.
4045 	 * This also mitigates buddy induced latencies under load.
4046 	 */
4047 	if (delta_exec < sysctl_sched_min_granularity)
4048 		return;
4049 
4050 	se = __pick_first_entity(cfs_rq);
4051 	delta = curr->vruntime - se->vruntime;
4052 
4053 	if (delta < 0)
4054 		return;
4055 
4056 	if (delta > ideal_runtime)
4057 		resched_curr(rq_of(cfs_rq));
4058 }
4059 
4060 static void
4061 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4062 {
4063 	/* 'current' is not kept within the tree. */
4064 	if (se->on_rq) {
4065 		/*
4066 		 * Any task has to be enqueued before it get to execute on
4067 		 * a CPU. So account for the time it spent waiting on the
4068 		 * runqueue.
4069 		 */
4070 		update_stats_wait_end(cfs_rq, se);
4071 		__dequeue_entity(cfs_rq, se);
4072 		update_load_avg(cfs_rq, se, UPDATE_TG);
4073 	}
4074 
4075 	update_stats_curr_start(cfs_rq, se);
4076 	cfs_rq->curr = se;
4077 
4078 	/*
4079 	 * Track our maximum slice length, if the CPU's load is at
4080 	 * least twice that of our own weight (i.e. dont track it
4081 	 * when there are only lesser-weight tasks around):
4082 	 */
4083 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4084 		schedstat_set(se->statistics.slice_max,
4085 			max((u64)schedstat_val(se->statistics.slice_max),
4086 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4087 	}
4088 
4089 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4090 }
4091 
4092 static int
4093 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4094 
4095 /*
4096  * Pick the next process, keeping these things in mind, in this order:
4097  * 1) keep things fair between processes/task groups
4098  * 2) pick the "next" process, since someone really wants that to run
4099  * 3) pick the "last" process, for cache locality
4100  * 4) do not run the "skip" process, if something else is available
4101  */
4102 static struct sched_entity *
4103 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4104 {
4105 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4106 	struct sched_entity *se;
4107 
4108 	/*
4109 	 * If curr is set we have to see if its left of the leftmost entity
4110 	 * still in the tree, provided there was anything in the tree at all.
4111 	 */
4112 	if (!left || (curr && entity_before(curr, left)))
4113 		left = curr;
4114 
4115 	se = left; /* ideally we run the leftmost entity */
4116 
4117 	/*
4118 	 * Avoid running the skip buddy, if running something else can
4119 	 * be done without getting too unfair.
4120 	 */
4121 	if (cfs_rq->skip == se) {
4122 		struct sched_entity *second;
4123 
4124 		if (se == curr) {
4125 			second = __pick_first_entity(cfs_rq);
4126 		} else {
4127 			second = __pick_next_entity(se);
4128 			if (!second || (curr && entity_before(curr, second)))
4129 				second = curr;
4130 		}
4131 
4132 		if (second && wakeup_preempt_entity(second, left) < 1)
4133 			se = second;
4134 	}
4135 
4136 	/*
4137 	 * Prefer last buddy, try to return the CPU to a preempted task.
4138 	 */
4139 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4140 		se = cfs_rq->last;
4141 
4142 	/*
4143 	 * Someone really wants this to run. If it's not unfair, run it.
4144 	 */
4145 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4146 		se = cfs_rq->next;
4147 
4148 	clear_buddies(cfs_rq, se);
4149 
4150 	return se;
4151 }
4152 
4153 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4154 
4155 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4156 {
4157 	/*
4158 	 * If still on the runqueue then deactivate_task()
4159 	 * was not called and update_curr() has to be done:
4160 	 */
4161 	if (prev->on_rq)
4162 		update_curr(cfs_rq);
4163 
4164 	/* throttle cfs_rqs exceeding runtime */
4165 	check_cfs_rq_runtime(cfs_rq);
4166 
4167 	check_spread(cfs_rq, prev);
4168 
4169 	if (prev->on_rq) {
4170 		update_stats_wait_start(cfs_rq, prev);
4171 		/* Put 'current' back into the tree. */
4172 		__enqueue_entity(cfs_rq, prev);
4173 		/* in !on_rq case, update occurred at dequeue */
4174 		update_load_avg(cfs_rq, prev, 0);
4175 	}
4176 	cfs_rq->curr = NULL;
4177 }
4178 
4179 static void
4180 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4181 {
4182 	/*
4183 	 * Update run-time statistics of the 'current'.
4184 	 */
4185 	update_curr(cfs_rq);
4186 
4187 	/*
4188 	 * Ensure that runnable average is periodically updated.
4189 	 */
4190 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4191 	update_cfs_group(curr);
4192 
4193 #ifdef CONFIG_SCHED_HRTICK
4194 	/*
4195 	 * queued ticks are scheduled to match the slice, so don't bother
4196 	 * validating it and just reschedule.
4197 	 */
4198 	if (queued) {
4199 		resched_curr(rq_of(cfs_rq));
4200 		return;
4201 	}
4202 	/*
4203 	 * don't let the period tick interfere with the hrtick preemption
4204 	 */
4205 	if (!sched_feat(DOUBLE_TICK) &&
4206 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4207 		return;
4208 #endif
4209 
4210 	if (cfs_rq->nr_running > 1)
4211 		check_preempt_tick(cfs_rq, curr);
4212 }
4213 
4214 
4215 /**************************************************
4216  * CFS bandwidth control machinery
4217  */
4218 
4219 #ifdef CONFIG_CFS_BANDWIDTH
4220 
4221 #ifdef HAVE_JUMP_LABEL
4222 static struct static_key __cfs_bandwidth_used;
4223 
4224 static inline bool cfs_bandwidth_used(void)
4225 {
4226 	return static_key_false(&__cfs_bandwidth_used);
4227 }
4228 
4229 void cfs_bandwidth_usage_inc(void)
4230 {
4231 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4232 }
4233 
4234 void cfs_bandwidth_usage_dec(void)
4235 {
4236 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4237 }
4238 #else /* HAVE_JUMP_LABEL */
4239 static bool cfs_bandwidth_used(void)
4240 {
4241 	return true;
4242 }
4243 
4244 void cfs_bandwidth_usage_inc(void) {}
4245 void cfs_bandwidth_usage_dec(void) {}
4246 #endif /* HAVE_JUMP_LABEL */
4247 
4248 /*
4249  * default period for cfs group bandwidth.
4250  * default: 0.1s, units: nanoseconds
4251  */
4252 static inline u64 default_cfs_period(void)
4253 {
4254 	return 100000000ULL;
4255 }
4256 
4257 static inline u64 sched_cfs_bandwidth_slice(void)
4258 {
4259 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4260 }
4261 
4262 /*
4263  * Replenish runtime according to assigned quota and update expiration time.
4264  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4265  * additional synchronization around rq->lock.
4266  *
4267  * requires cfs_b->lock
4268  */
4269 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4270 {
4271 	u64 now;
4272 
4273 	if (cfs_b->quota == RUNTIME_INF)
4274 		return;
4275 
4276 	now = sched_clock_cpu(smp_processor_id());
4277 	cfs_b->runtime = cfs_b->quota;
4278 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4279 	cfs_b->expires_seq++;
4280 }
4281 
4282 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4283 {
4284 	return &tg->cfs_bandwidth;
4285 }
4286 
4287 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4288 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4289 {
4290 	if (unlikely(cfs_rq->throttle_count))
4291 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4292 
4293 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4294 }
4295 
4296 /* returns 0 on failure to allocate runtime */
4297 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4298 {
4299 	struct task_group *tg = cfs_rq->tg;
4300 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4301 	u64 amount = 0, min_amount, expires;
4302 	int expires_seq;
4303 
4304 	/* note: this is a positive sum as runtime_remaining <= 0 */
4305 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4306 
4307 	raw_spin_lock(&cfs_b->lock);
4308 	if (cfs_b->quota == RUNTIME_INF)
4309 		amount = min_amount;
4310 	else {
4311 		start_cfs_bandwidth(cfs_b);
4312 
4313 		if (cfs_b->runtime > 0) {
4314 			amount = min(cfs_b->runtime, min_amount);
4315 			cfs_b->runtime -= amount;
4316 			cfs_b->idle = 0;
4317 		}
4318 	}
4319 	expires_seq = cfs_b->expires_seq;
4320 	expires = cfs_b->runtime_expires;
4321 	raw_spin_unlock(&cfs_b->lock);
4322 
4323 	cfs_rq->runtime_remaining += amount;
4324 	/*
4325 	 * we may have advanced our local expiration to account for allowed
4326 	 * spread between our sched_clock and the one on which runtime was
4327 	 * issued.
4328 	 */
4329 	if (cfs_rq->expires_seq != expires_seq) {
4330 		cfs_rq->expires_seq = expires_seq;
4331 		cfs_rq->runtime_expires = expires;
4332 	}
4333 
4334 	return cfs_rq->runtime_remaining > 0;
4335 }
4336 
4337 /*
4338  * Note: This depends on the synchronization provided by sched_clock and the
4339  * fact that rq->clock snapshots this value.
4340  */
4341 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4342 {
4343 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4344 
4345 	/* if the deadline is ahead of our clock, nothing to do */
4346 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4347 		return;
4348 
4349 	if (cfs_rq->runtime_remaining < 0)
4350 		return;
4351 
4352 	/*
4353 	 * If the local deadline has passed we have to consider the
4354 	 * possibility that our sched_clock is 'fast' and the global deadline
4355 	 * has not truly expired.
4356 	 *
4357 	 * Fortunately we can check determine whether this the case by checking
4358 	 * whether the global deadline(cfs_b->expires_seq) has advanced.
4359 	 */
4360 	if (cfs_rq->expires_seq == cfs_b->expires_seq) {
4361 		/* extend local deadline, drift is bounded above by 2 ticks */
4362 		cfs_rq->runtime_expires += TICK_NSEC;
4363 	} else {
4364 		/* global deadline is ahead, expiration has passed */
4365 		cfs_rq->runtime_remaining = 0;
4366 	}
4367 }
4368 
4369 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4370 {
4371 	/* dock delta_exec before expiring quota (as it could span periods) */
4372 	cfs_rq->runtime_remaining -= delta_exec;
4373 	expire_cfs_rq_runtime(cfs_rq);
4374 
4375 	if (likely(cfs_rq->runtime_remaining > 0))
4376 		return;
4377 
4378 	/*
4379 	 * if we're unable to extend our runtime we resched so that the active
4380 	 * hierarchy can be throttled
4381 	 */
4382 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4383 		resched_curr(rq_of(cfs_rq));
4384 }
4385 
4386 static __always_inline
4387 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4388 {
4389 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4390 		return;
4391 
4392 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4393 }
4394 
4395 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4396 {
4397 	return cfs_bandwidth_used() && cfs_rq->throttled;
4398 }
4399 
4400 /* check whether cfs_rq, or any parent, is throttled */
4401 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4402 {
4403 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4404 }
4405 
4406 /*
4407  * Ensure that neither of the group entities corresponding to src_cpu or
4408  * dest_cpu are members of a throttled hierarchy when performing group
4409  * load-balance operations.
4410  */
4411 static inline int throttled_lb_pair(struct task_group *tg,
4412 				    int src_cpu, int dest_cpu)
4413 {
4414 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4415 
4416 	src_cfs_rq = tg->cfs_rq[src_cpu];
4417 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4418 
4419 	return throttled_hierarchy(src_cfs_rq) ||
4420 	       throttled_hierarchy(dest_cfs_rq);
4421 }
4422 
4423 static int tg_unthrottle_up(struct task_group *tg, void *data)
4424 {
4425 	struct rq *rq = data;
4426 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4427 
4428 	cfs_rq->throttle_count--;
4429 	if (!cfs_rq->throttle_count) {
4430 		/* adjust cfs_rq_clock_task() */
4431 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4432 					     cfs_rq->throttled_clock_task;
4433 	}
4434 
4435 	return 0;
4436 }
4437 
4438 static int tg_throttle_down(struct task_group *tg, void *data)
4439 {
4440 	struct rq *rq = data;
4441 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4442 
4443 	/* group is entering throttled state, stop time */
4444 	if (!cfs_rq->throttle_count)
4445 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4446 	cfs_rq->throttle_count++;
4447 
4448 	return 0;
4449 }
4450 
4451 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4452 {
4453 	struct rq *rq = rq_of(cfs_rq);
4454 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4455 	struct sched_entity *se;
4456 	long task_delta, dequeue = 1;
4457 	bool empty;
4458 
4459 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4460 
4461 	/* freeze hierarchy runnable averages while throttled */
4462 	rcu_read_lock();
4463 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4464 	rcu_read_unlock();
4465 
4466 	task_delta = cfs_rq->h_nr_running;
4467 	for_each_sched_entity(se) {
4468 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4469 		/* throttled entity or throttle-on-deactivate */
4470 		if (!se->on_rq)
4471 			break;
4472 
4473 		if (dequeue)
4474 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4475 		qcfs_rq->h_nr_running -= task_delta;
4476 
4477 		if (qcfs_rq->load.weight)
4478 			dequeue = 0;
4479 	}
4480 
4481 	if (!se)
4482 		sub_nr_running(rq, task_delta);
4483 
4484 	cfs_rq->throttled = 1;
4485 	cfs_rq->throttled_clock = rq_clock(rq);
4486 	raw_spin_lock(&cfs_b->lock);
4487 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4488 
4489 	/*
4490 	 * Add to the _head_ of the list, so that an already-started
4491 	 * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4492 	 * not running add to the tail so that later runqueues don't get starved.
4493 	 */
4494 	if (cfs_b->distribute_running)
4495 		list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4496 	else
4497 		list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4498 
4499 	/*
4500 	 * If we're the first throttled task, make sure the bandwidth
4501 	 * timer is running.
4502 	 */
4503 	if (empty)
4504 		start_cfs_bandwidth(cfs_b);
4505 
4506 	raw_spin_unlock(&cfs_b->lock);
4507 }
4508 
4509 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4510 {
4511 	struct rq *rq = rq_of(cfs_rq);
4512 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4513 	struct sched_entity *se;
4514 	int enqueue = 1;
4515 	long task_delta;
4516 
4517 	se = cfs_rq->tg->se[cpu_of(rq)];
4518 
4519 	cfs_rq->throttled = 0;
4520 
4521 	update_rq_clock(rq);
4522 
4523 	raw_spin_lock(&cfs_b->lock);
4524 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4525 	list_del_rcu(&cfs_rq->throttled_list);
4526 	raw_spin_unlock(&cfs_b->lock);
4527 
4528 	/* update hierarchical throttle state */
4529 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4530 
4531 	if (!cfs_rq->load.weight)
4532 		return;
4533 
4534 	task_delta = cfs_rq->h_nr_running;
4535 	for_each_sched_entity(se) {
4536 		if (se->on_rq)
4537 			enqueue = 0;
4538 
4539 		cfs_rq = cfs_rq_of(se);
4540 		if (enqueue)
4541 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4542 		cfs_rq->h_nr_running += task_delta;
4543 
4544 		if (cfs_rq_throttled(cfs_rq))
4545 			break;
4546 	}
4547 
4548 	if (!se)
4549 		add_nr_running(rq, task_delta);
4550 
4551 	/* Determine whether we need to wake up potentially idle CPU: */
4552 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4553 		resched_curr(rq);
4554 }
4555 
4556 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4557 		u64 remaining, u64 expires)
4558 {
4559 	struct cfs_rq *cfs_rq;
4560 	u64 runtime;
4561 	u64 starting_runtime = remaining;
4562 
4563 	rcu_read_lock();
4564 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4565 				throttled_list) {
4566 		struct rq *rq = rq_of(cfs_rq);
4567 		struct rq_flags rf;
4568 
4569 		rq_lock(rq, &rf);
4570 		if (!cfs_rq_throttled(cfs_rq))
4571 			goto next;
4572 
4573 		runtime = -cfs_rq->runtime_remaining + 1;
4574 		if (runtime > remaining)
4575 			runtime = remaining;
4576 		remaining -= runtime;
4577 
4578 		cfs_rq->runtime_remaining += runtime;
4579 		cfs_rq->runtime_expires = expires;
4580 
4581 		/* we check whether we're throttled above */
4582 		if (cfs_rq->runtime_remaining > 0)
4583 			unthrottle_cfs_rq(cfs_rq);
4584 
4585 next:
4586 		rq_unlock(rq, &rf);
4587 
4588 		if (!remaining)
4589 			break;
4590 	}
4591 	rcu_read_unlock();
4592 
4593 	return starting_runtime - remaining;
4594 }
4595 
4596 /*
4597  * Responsible for refilling a task_group's bandwidth and unthrottling its
4598  * cfs_rqs as appropriate. If there has been no activity within the last
4599  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4600  * used to track this state.
4601  */
4602 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4603 {
4604 	u64 runtime, runtime_expires;
4605 	int throttled;
4606 
4607 	/* no need to continue the timer with no bandwidth constraint */
4608 	if (cfs_b->quota == RUNTIME_INF)
4609 		goto out_deactivate;
4610 
4611 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4612 	cfs_b->nr_periods += overrun;
4613 
4614 	/*
4615 	 * idle depends on !throttled (for the case of a large deficit), and if
4616 	 * we're going inactive then everything else can be deferred
4617 	 */
4618 	if (cfs_b->idle && !throttled)
4619 		goto out_deactivate;
4620 
4621 	__refill_cfs_bandwidth_runtime(cfs_b);
4622 
4623 	if (!throttled) {
4624 		/* mark as potentially idle for the upcoming period */
4625 		cfs_b->idle = 1;
4626 		return 0;
4627 	}
4628 
4629 	/* account preceding periods in which throttling occurred */
4630 	cfs_b->nr_throttled += overrun;
4631 
4632 	runtime_expires = cfs_b->runtime_expires;
4633 
4634 	/*
4635 	 * This check is repeated as we are holding onto the new bandwidth while
4636 	 * we unthrottle. This can potentially race with an unthrottled group
4637 	 * trying to acquire new bandwidth from the global pool. This can result
4638 	 * in us over-using our runtime if it is all used during this loop, but
4639 	 * only by limited amounts in that extreme case.
4640 	 */
4641 	while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4642 		runtime = cfs_b->runtime;
4643 		cfs_b->distribute_running = 1;
4644 		raw_spin_unlock(&cfs_b->lock);
4645 		/* we can't nest cfs_b->lock while distributing bandwidth */
4646 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4647 						 runtime_expires);
4648 		raw_spin_lock(&cfs_b->lock);
4649 
4650 		cfs_b->distribute_running = 0;
4651 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4652 
4653 		lsub_positive(&cfs_b->runtime, runtime);
4654 	}
4655 
4656 	/*
4657 	 * While we are ensured activity in the period following an
4658 	 * unthrottle, this also covers the case in which the new bandwidth is
4659 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4660 	 * timer to remain active while there are any throttled entities.)
4661 	 */
4662 	cfs_b->idle = 0;
4663 
4664 	return 0;
4665 
4666 out_deactivate:
4667 	return 1;
4668 }
4669 
4670 /* a cfs_rq won't donate quota below this amount */
4671 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4672 /* minimum remaining period time to redistribute slack quota */
4673 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4674 /* how long we wait to gather additional slack before distributing */
4675 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4676 
4677 /*
4678  * Are we near the end of the current quota period?
4679  *
4680  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4681  * hrtimer base being cleared by hrtimer_start. In the case of
4682  * migrate_hrtimers, base is never cleared, so we are fine.
4683  */
4684 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4685 {
4686 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4687 	u64 remaining;
4688 
4689 	/* if the call-back is running a quota refresh is already occurring */
4690 	if (hrtimer_callback_running(refresh_timer))
4691 		return 1;
4692 
4693 	/* is a quota refresh about to occur? */
4694 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4695 	if (remaining < min_expire)
4696 		return 1;
4697 
4698 	return 0;
4699 }
4700 
4701 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4702 {
4703 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4704 
4705 	/* if there's a quota refresh soon don't bother with slack */
4706 	if (runtime_refresh_within(cfs_b, min_left))
4707 		return;
4708 
4709 	hrtimer_start(&cfs_b->slack_timer,
4710 			ns_to_ktime(cfs_bandwidth_slack_period),
4711 			HRTIMER_MODE_REL);
4712 }
4713 
4714 /* we know any runtime found here is valid as update_curr() precedes return */
4715 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4716 {
4717 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4718 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4719 
4720 	if (slack_runtime <= 0)
4721 		return;
4722 
4723 	raw_spin_lock(&cfs_b->lock);
4724 	if (cfs_b->quota != RUNTIME_INF &&
4725 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4726 		cfs_b->runtime += slack_runtime;
4727 
4728 		/* we are under rq->lock, defer unthrottling using a timer */
4729 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4730 		    !list_empty(&cfs_b->throttled_cfs_rq))
4731 			start_cfs_slack_bandwidth(cfs_b);
4732 	}
4733 	raw_spin_unlock(&cfs_b->lock);
4734 
4735 	/* even if it's not valid for return we don't want to try again */
4736 	cfs_rq->runtime_remaining -= slack_runtime;
4737 }
4738 
4739 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4740 {
4741 	if (!cfs_bandwidth_used())
4742 		return;
4743 
4744 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4745 		return;
4746 
4747 	__return_cfs_rq_runtime(cfs_rq);
4748 }
4749 
4750 /*
4751  * This is done with a timer (instead of inline with bandwidth return) since
4752  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4753  */
4754 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4755 {
4756 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4757 	u64 expires;
4758 
4759 	/* confirm we're still not at a refresh boundary */
4760 	raw_spin_lock(&cfs_b->lock);
4761 	if (cfs_b->distribute_running) {
4762 		raw_spin_unlock(&cfs_b->lock);
4763 		return;
4764 	}
4765 
4766 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4767 		raw_spin_unlock(&cfs_b->lock);
4768 		return;
4769 	}
4770 
4771 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4772 		runtime = cfs_b->runtime;
4773 
4774 	expires = cfs_b->runtime_expires;
4775 	if (runtime)
4776 		cfs_b->distribute_running = 1;
4777 
4778 	raw_spin_unlock(&cfs_b->lock);
4779 
4780 	if (!runtime)
4781 		return;
4782 
4783 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4784 
4785 	raw_spin_lock(&cfs_b->lock);
4786 	if (expires == cfs_b->runtime_expires)
4787 		lsub_positive(&cfs_b->runtime, runtime);
4788 	cfs_b->distribute_running = 0;
4789 	raw_spin_unlock(&cfs_b->lock);
4790 }
4791 
4792 /*
4793  * When a group wakes up we want to make sure that its quota is not already
4794  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4795  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4796  */
4797 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4798 {
4799 	if (!cfs_bandwidth_used())
4800 		return;
4801 
4802 	/* an active group must be handled by the update_curr()->put() path */
4803 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4804 		return;
4805 
4806 	/* ensure the group is not already throttled */
4807 	if (cfs_rq_throttled(cfs_rq))
4808 		return;
4809 
4810 	/* update runtime allocation */
4811 	account_cfs_rq_runtime(cfs_rq, 0);
4812 	if (cfs_rq->runtime_remaining <= 0)
4813 		throttle_cfs_rq(cfs_rq);
4814 }
4815 
4816 static void sync_throttle(struct task_group *tg, int cpu)
4817 {
4818 	struct cfs_rq *pcfs_rq, *cfs_rq;
4819 
4820 	if (!cfs_bandwidth_used())
4821 		return;
4822 
4823 	if (!tg->parent)
4824 		return;
4825 
4826 	cfs_rq = tg->cfs_rq[cpu];
4827 	pcfs_rq = tg->parent->cfs_rq[cpu];
4828 
4829 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4830 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4831 }
4832 
4833 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4834 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4835 {
4836 	if (!cfs_bandwidth_used())
4837 		return false;
4838 
4839 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4840 		return false;
4841 
4842 	/*
4843 	 * it's possible for a throttled entity to be forced into a running
4844 	 * state (e.g. set_curr_task), in this case we're finished.
4845 	 */
4846 	if (cfs_rq_throttled(cfs_rq))
4847 		return true;
4848 
4849 	throttle_cfs_rq(cfs_rq);
4850 	return true;
4851 }
4852 
4853 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4854 {
4855 	struct cfs_bandwidth *cfs_b =
4856 		container_of(timer, struct cfs_bandwidth, slack_timer);
4857 
4858 	do_sched_cfs_slack_timer(cfs_b);
4859 
4860 	return HRTIMER_NORESTART;
4861 }
4862 
4863 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4864 {
4865 	struct cfs_bandwidth *cfs_b =
4866 		container_of(timer, struct cfs_bandwidth, period_timer);
4867 	int overrun;
4868 	int idle = 0;
4869 
4870 	raw_spin_lock(&cfs_b->lock);
4871 	for (;;) {
4872 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4873 		if (!overrun)
4874 			break;
4875 
4876 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
4877 	}
4878 	if (idle)
4879 		cfs_b->period_active = 0;
4880 	raw_spin_unlock(&cfs_b->lock);
4881 
4882 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4883 }
4884 
4885 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4886 {
4887 	raw_spin_lock_init(&cfs_b->lock);
4888 	cfs_b->runtime = 0;
4889 	cfs_b->quota = RUNTIME_INF;
4890 	cfs_b->period = ns_to_ktime(default_cfs_period());
4891 
4892 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4893 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4894 	cfs_b->period_timer.function = sched_cfs_period_timer;
4895 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4896 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4897 	cfs_b->distribute_running = 0;
4898 }
4899 
4900 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4901 {
4902 	cfs_rq->runtime_enabled = 0;
4903 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4904 }
4905 
4906 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4907 {
4908 	u64 overrun;
4909 
4910 	lockdep_assert_held(&cfs_b->lock);
4911 
4912 	if (cfs_b->period_active)
4913 		return;
4914 
4915 	cfs_b->period_active = 1;
4916 	overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4917 	cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
4918 	cfs_b->expires_seq++;
4919 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4920 }
4921 
4922 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4923 {
4924 	/* init_cfs_bandwidth() was not called */
4925 	if (!cfs_b->throttled_cfs_rq.next)
4926 		return;
4927 
4928 	hrtimer_cancel(&cfs_b->period_timer);
4929 	hrtimer_cancel(&cfs_b->slack_timer);
4930 }
4931 
4932 /*
4933  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4934  *
4935  * The race is harmless, since modifying bandwidth settings of unhooked group
4936  * bits doesn't do much.
4937  */
4938 
4939 /* cpu online calback */
4940 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4941 {
4942 	struct task_group *tg;
4943 
4944 	lockdep_assert_held(&rq->lock);
4945 
4946 	rcu_read_lock();
4947 	list_for_each_entry_rcu(tg, &task_groups, list) {
4948 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4949 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4950 
4951 		raw_spin_lock(&cfs_b->lock);
4952 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4953 		raw_spin_unlock(&cfs_b->lock);
4954 	}
4955 	rcu_read_unlock();
4956 }
4957 
4958 /* cpu offline callback */
4959 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4960 {
4961 	struct task_group *tg;
4962 
4963 	lockdep_assert_held(&rq->lock);
4964 
4965 	rcu_read_lock();
4966 	list_for_each_entry_rcu(tg, &task_groups, list) {
4967 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4968 
4969 		if (!cfs_rq->runtime_enabled)
4970 			continue;
4971 
4972 		/*
4973 		 * clock_task is not advancing so we just need to make sure
4974 		 * there's some valid quota amount
4975 		 */
4976 		cfs_rq->runtime_remaining = 1;
4977 		/*
4978 		 * Offline rq is schedulable till CPU is completely disabled
4979 		 * in take_cpu_down(), so we prevent new cfs throttling here.
4980 		 */
4981 		cfs_rq->runtime_enabled = 0;
4982 
4983 		if (cfs_rq_throttled(cfs_rq))
4984 			unthrottle_cfs_rq(cfs_rq);
4985 	}
4986 	rcu_read_unlock();
4987 }
4988 
4989 #else /* CONFIG_CFS_BANDWIDTH */
4990 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4991 {
4992 	return rq_clock_task(rq_of(cfs_rq));
4993 }
4994 
4995 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4996 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4997 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4998 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4999 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5000 
5001 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5002 {
5003 	return 0;
5004 }
5005 
5006 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5007 {
5008 	return 0;
5009 }
5010 
5011 static inline int throttled_lb_pair(struct task_group *tg,
5012 				    int src_cpu, int dest_cpu)
5013 {
5014 	return 0;
5015 }
5016 
5017 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5018 
5019 #ifdef CONFIG_FAIR_GROUP_SCHED
5020 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5021 #endif
5022 
5023 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5024 {
5025 	return NULL;
5026 }
5027 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5028 static inline void update_runtime_enabled(struct rq *rq) {}
5029 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5030 
5031 #endif /* CONFIG_CFS_BANDWIDTH */
5032 
5033 /**************************************************
5034  * CFS operations on tasks:
5035  */
5036 
5037 #ifdef CONFIG_SCHED_HRTICK
5038 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5039 {
5040 	struct sched_entity *se = &p->se;
5041 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5042 
5043 	SCHED_WARN_ON(task_rq(p) != rq);
5044 
5045 	if (rq->cfs.h_nr_running > 1) {
5046 		u64 slice = sched_slice(cfs_rq, se);
5047 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5048 		s64 delta = slice - ran;
5049 
5050 		if (delta < 0) {
5051 			if (rq->curr == p)
5052 				resched_curr(rq);
5053 			return;
5054 		}
5055 		hrtick_start(rq, delta);
5056 	}
5057 }
5058 
5059 /*
5060  * called from enqueue/dequeue and updates the hrtick when the
5061  * current task is from our class and nr_running is low enough
5062  * to matter.
5063  */
5064 static void hrtick_update(struct rq *rq)
5065 {
5066 	struct task_struct *curr = rq->curr;
5067 
5068 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5069 		return;
5070 
5071 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5072 		hrtick_start_fair(rq, curr);
5073 }
5074 #else /* !CONFIG_SCHED_HRTICK */
5075 static inline void
5076 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5077 {
5078 }
5079 
5080 static inline void hrtick_update(struct rq *rq)
5081 {
5082 }
5083 #endif
5084 
5085 #ifdef CONFIG_SMP
5086 static inline unsigned long cpu_util(int cpu);
5087 static unsigned long capacity_of(int cpu);
5088 
5089 static inline bool cpu_overutilized(int cpu)
5090 {
5091 	return (capacity_of(cpu) * 1024) < (cpu_util(cpu) * capacity_margin);
5092 }
5093 
5094 static inline void update_overutilized_status(struct rq *rq)
5095 {
5096 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu))
5097 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5098 }
5099 #else
5100 static inline void update_overutilized_status(struct rq *rq) { }
5101 #endif
5102 
5103 /*
5104  * The enqueue_task method is called before nr_running is
5105  * increased. Here we update the fair scheduling stats and
5106  * then put the task into the rbtree:
5107  */
5108 static void
5109 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5110 {
5111 	struct cfs_rq *cfs_rq;
5112 	struct sched_entity *se = &p->se;
5113 
5114 	/*
5115 	 * The code below (indirectly) updates schedutil which looks at
5116 	 * the cfs_rq utilization to select a frequency.
5117 	 * Let's add the task's estimated utilization to the cfs_rq's
5118 	 * estimated utilization, before we update schedutil.
5119 	 */
5120 	util_est_enqueue(&rq->cfs, p);
5121 
5122 	/*
5123 	 * If in_iowait is set, the code below may not trigger any cpufreq
5124 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5125 	 * passed.
5126 	 */
5127 	if (p->in_iowait)
5128 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5129 
5130 	for_each_sched_entity(se) {
5131 		if (se->on_rq)
5132 			break;
5133 		cfs_rq = cfs_rq_of(se);
5134 		enqueue_entity(cfs_rq, se, flags);
5135 
5136 		/*
5137 		 * end evaluation on encountering a throttled cfs_rq
5138 		 *
5139 		 * note: in the case of encountering a throttled cfs_rq we will
5140 		 * post the final h_nr_running increment below.
5141 		 */
5142 		if (cfs_rq_throttled(cfs_rq))
5143 			break;
5144 		cfs_rq->h_nr_running++;
5145 
5146 		flags = ENQUEUE_WAKEUP;
5147 	}
5148 
5149 	for_each_sched_entity(se) {
5150 		cfs_rq = cfs_rq_of(se);
5151 		cfs_rq->h_nr_running++;
5152 
5153 		if (cfs_rq_throttled(cfs_rq))
5154 			break;
5155 
5156 		update_load_avg(cfs_rq, se, UPDATE_TG);
5157 		update_cfs_group(se);
5158 	}
5159 
5160 	if (!se) {
5161 		add_nr_running(rq, 1);
5162 		/*
5163 		 * Since new tasks are assigned an initial util_avg equal to
5164 		 * half of the spare capacity of their CPU, tiny tasks have the
5165 		 * ability to cross the overutilized threshold, which will
5166 		 * result in the load balancer ruining all the task placement
5167 		 * done by EAS. As a way to mitigate that effect, do not account
5168 		 * for the first enqueue operation of new tasks during the
5169 		 * overutilized flag detection.
5170 		 *
5171 		 * A better way of solving this problem would be to wait for
5172 		 * the PELT signals of tasks to converge before taking them
5173 		 * into account, but that is not straightforward to implement,
5174 		 * and the following generally works well enough in practice.
5175 		 */
5176 		if (flags & ENQUEUE_WAKEUP)
5177 			update_overutilized_status(rq);
5178 
5179 	}
5180 
5181 	hrtick_update(rq);
5182 }
5183 
5184 static void set_next_buddy(struct sched_entity *se);
5185 
5186 /*
5187  * The dequeue_task method is called before nr_running is
5188  * decreased. We remove the task from the rbtree and
5189  * update the fair scheduling stats:
5190  */
5191 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5192 {
5193 	struct cfs_rq *cfs_rq;
5194 	struct sched_entity *se = &p->se;
5195 	int task_sleep = flags & DEQUEUE_SLEEP;
5196 
5197 	for_each_sched_entity(se) {
5198 		cfs_rq = cfs_rq_of(se);
5199 		dequeue_entity(cfs_rq, se, flags);
5200 
5201 		/*
5202 		 * end evaluation on encountering a throttled cfs_rq
5203 		 *
5204 		 * note: in the case of encountering a throttled cfs_rq we will
5205 		 * post the final h_nr_running decrement below.
5206 		*/
5207 		if (cfs_rq_throttled(cfs_rq))
5208 			break;
5209 		cfs_rq->h_nr_running--;
5210 
5211 		/* Don't dequeue parent if it has other entities besides us */
5212 		if (cfs_rq->load.weight) {
5213 			/* Avoid re-evaluating load for this entity: */
5214 			se = parent_entity(se);
5215 			/*
5216 			 * Bias pick_next to pick a task from this cfs_rq, as
5217 			 * p is sleeping when it is within its sched_slice.
5218 			 */
5219 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5220 				set_next_buddy(se);
5221 			break;
5222 		}
5223 		flags |= DEQUEUE_SLEEP;
5224 	}
5225 
5226 	for_each_sched_entity(se) {
5227 		cfs_rq = cfs_rq_of(se);
5228 		cfs_rq->h_nr_running--;
5229 
5230 		if (cfs_rq_throttled(cfs_rq))
5231 			break;
5232 
5233 		update_load_avg(cfs_rq, se, UPDATE_TG);
5234 		update_cfs_group(se);
5235 	}
5236 
5237 	if (!se)
5238 		sub_nr_running(rq, 1);
5239 
5240 	util_est_dequeue(&rq->cfs, p, task_sleep);
5241 	hrtick_update(rq);
5242 }
5243 
5244 #ifdef CONFIG_SMP
5245 
5246 /* Working cpumask for: load_balance, load_balance_newidle. */
5247 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5248 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5249 
5250 #ifdef CONFIG_NO_HZ_COMMON
5251 /*
5252  * per rq 'load' arrray crap; XXX kill this.
5253  */
5254 
5255 /*
5256  * The exact cpuload calculated at every tick would be:
5257  *
5258  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5259  *
5260  * If a CPU misses updates for n ticks (as it was idle) and update gets
5261  * called on the n+1-th tick when CPU may be busy, then we have:
5262  *
5263  *   load_n   = (1 - 1/2^i)^n * load_0
5264  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5265  *
5266  * decay_load_missed() below does efficient calculation of
5267  *
5268  *   load' = (1 - 1/2^i)^n * load
5269  *
5270  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5271  * This allows us to precompute the above in said factors, thereby allowing the
5272  * reduction of an arbitrary n in O(log_2 n) steps. (See also
5273  * fixed_power_int())
5274  *
5275  * The calculation is approximated on a 128 point scale.
5276  */
5277 #define DEGRADE_SHIFT		7
5278 
5279 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5280 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5281 	{   0,   0,  0,  0,  0,  0, 0, 0 },
5282 	{  64,  32,  8,  0,  0,  0, 0, 0 },
5283 	{  96,  72, 40, 12,  1,  0, 0, 0 },
5284 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
5285 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
5286 };
5287 
5288 /*
5289  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5290  * would be when CPU is idle and so we just decay the old load without
5291  * adding any new load.
5292  */
5293 static unsigned long
5294 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5295 {
5296 	int j = 0;
5297 
5298 	if (!missed_updates)
5299 		return load;
5300 
5301 	if (missed_updates >= degrade_zero_ticks[idx])
5302 		return 0;
5303 
5304 	if (idx == 1)
5305 		return load >> missed_updates;
5306 
5307 	while (missed_updates) {
5308 		if (missed_updates % 2)
5309 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5310 
5311 		missed_updates >>= 1;
5312 		j++;
5313 	}
5314 	return load;
5315 }
5316 
5317 static struct {
5318 	cpumask_var_t idle_cpus_mask;
5319 	atomic_t nr_cpus;
5320 	int has_blocked;		/* Idle CPUS has blocked load */
5321 	unsigned long next_balance;     /* in jiffy units */
5322 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5323 } nohz ____cacheline_aligned;
5324 
5325 #endif /* CONFIG_NO_HZ_COMMON */
5326 
5327 /**
5328  * __cpu_load_update - update the rq->cpu_load[] statistics
5329  * @this_rq: The rq to update statistics for
5330  * @this_load: The current load
5331  * @pending_updates: The number of missed updates
5332  *
5333  * Update rq->cpu_load[] statistics. This function is usually called every
5334  * scheduler tick (TICK_NSEC).
5335  *
5336  * This function computes a decaying average:
5337  *
5338  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5339  *
5340  * Because of NOHZ it might not get called on every tick which gives need for
5341  * the @pending_updates argument.
5342  *
5343  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5344  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5345  *             = A * (A * load[i]_n-2 + B) + B
5346  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
5347  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5348  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5349  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5350  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5351  *
5352  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5353  * any change in load would have resulted in the tick being turned back on.
5354  *
5355  * For regular NOHZ, this reduces to:
5356  *
5357  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
5358  *
5359  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5360  * term.
5361  */
5362 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5363 			    unsigned long pending_updates)
5364 {
5365 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5366 	int i, scale;
5367 
5368 	this_rq->nr_load_updates++;
5369 
5370 	/* Update our load: */
5371 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5372 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5373 		unsigned long old_load, new_load;
5374 
5375 		/* scale is effectively 1 << i now, and >> i divides by scale */
5376 
5377 		old_load = this_rq->cpu_load[i];
5378 #ifdef CONFIG_NO_HZ_COMMON
5379 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5380 		if (tickless_load) {
5381 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5382 			/*
5383 			 * old_load can never be a negative value because a
5384 			 * decayed tickless_load cannot be greater than the
5385 			 * original tickless_load.
5386 			 */
5387 			old_load += tickless_load;
5388 		}
5389 #endif
5390 		new_load = this_load;
5391 		/*
5392 		 * Round up the averaging division if load is increasing. This
5393 		 * prevents us from getting stuck on 9 if the load is 10, for
5394 		 * example.
5395 		 */
5396 		if (new_load > old_load)
5397 			new_load += scale - 1;
5398 
5399 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5400 	}
5401 }
5402 
5403 /* Used instead of source_load when we know the type == 0 */
5404 static unsigned long weighted_cpuload(struct rq *rq)
5405 {
5406 	return cfs_rq_runnable_load_avg(&rq->cfs);
5407 }
5408 
5409 #ifdef CONFIG_NO_HZ_COMMON
5410 /*
5411  * There is no sane way to deal with nohz on smp when using jiffies because the
5412  * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5413  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5414  *
5415  * Therefore we need to avoid the delta approach from the regular tick when
5416  * possible since that would seriously skew the load calculation. This is why we
5417  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5418  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5419  * loop exit, nohz_idle_balance, nohz full exit...)
5420  *
5421  * This means we might still be one tick off for nohz periods.
5422  */
5423 
5424 static void cpu_load_update_nohz(struct rq *this_rq,
5425 				 unsigned long curr_jiffies,
5426 				 unsigned long load)
5427 {
5428 	unsigned long pending_updates;
5429 
5430 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5431 	if (pending_updates) {
5432 		this_rq->last_load_update_tick = curr_jiffies;
5433 		/*
5434 		 * In the regular NOHZ case, we were idle, this means load 0.
5435 		 * In the NOHZ_FULL case, we were non-idle, we should consider
5436 		 * its weighted load.
5437 		 */
5438 		cpu_load_update(this_rq, load, pending_updates);
5439 	}
5440 }
5441 
5442 /*
5443  * Called from nohz_idle_balance() to update the load ratings before doing the
5444  * idle balance.
5445  */
5446 static void cpu_load_update_idle(struct rq *this_rq)
5447 {
5448 	/*
5449 	 * bail if there's load or we're actually up-to-date.
5450 	 */
5451 	if (weighted_cpuload(this_rq))
5452 		return;
5453 
5454 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5455 }
5456 
5457 /*
5458  * Record CPU load on nohz entry so we know the tickless load to account
5459  * on nohz exit. cpu_load[0] happens then to be updated more frequently
5460  * than other cpu_load[idx] but it should be fine as cpu_load readers
5461  * shouldn't rely into synchronized cpu_load[*] updates.
5462  */
5463 void cpu_load_update_nohz_start(void)
5464 {
5465 	struct rq *this_rq = this_rq();
5466 
5467 	/*
5468 	 * This is all lockless but should be fine. If weighted_cpuload changes
5469 	 * concurrently we'll exit nohz. And cpu_load write can race with
5470 	 * cpu_load_update_idle() but both updater would be writing the same.
5471 	 */
5472 	this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5473 }
5474 
5475 /*
5476  * Account the tickless load in the end of a nohz frame.
5477  */
5478 void cpu_load_update_nohz_stop(void)
5479 {
5480 	unsigned long curr_jiffies = READ_ONCE(jiffies);
5481 	struct rq *this_rq = this_rq();
5482 	unsigned long load;
5483 	struct rq_flags rf;
5484 
5485 	if (curr_jiffies == this_rq->last_load_update_tick)
5486 		return;
5487 
5488 	load = weighted_cpuload(this_rq);
5489 	rq_lock(this_rq, &rf);
5490 	update_rq_clock(this_rq);
5491 	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5492 	rq_unlock(this_rq, &rf);
5493 }
5494 #else /* !CONFIG_NO_HZ_COMMON */
5495 static inline void cpu_load_update_nohz(struct rq *this_rq,
5496 					unsigned long curr_jiffies,
5497 					unsigned long load) { }
5498 #endif /* CONFIG_NO_HZ_COMMON */
5499 
5500 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5501 {
5502 #ifdef CONFIG_NO_HZ_COMMON
5503 	/* See the mess around cpu_load_update_nohz(). */
5504 	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5505 #endif
5506 	cpu_load_update(this_rq, load, 1);
5507 }
5508 
5509 /*
5510  * Called from scheduler_tick()
5511  */
5512 void cpu_load_update_active(struct rq *this_rq)
5513 {
5514 	unsigned long load = weighted_cpuload(this_rq);
5515 
5516 	if (tick_nohz_tick_stopped())
5517 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5518 	else
5519 		cpu_load_update_periodic(this_rq, load);
5520 }
5521 
5522 /*
5523  * Return a low guess at the load of a migration-source CPU weighted
5524  * according to the scheduling class and "nice" value.
5525  *
5526  * We want to under-estimate the load of migration sources, to
5527  * balance conservatively.
5528  */
5529 static unsigned long source_load(int cpu, int type)
5530 {
5531 	struct rq *rq = cpu_rq(cpu);
5532 	unsigned long total = weighted_cpuload(rq);
5533 
5534 	if (type == 0 || !sched_feat(LB_BIAS))
5535 		return total;
5536 
5537 	return min(rq->cpu_load[type-1], total);
5538 }
5539 
5540 /*
5541  * Return a high guess at the load of a migration-target CPU weighted
5542  * according to the scheduling class and "nice" value.
5543  */
5544 static unsigned long target_load(int cpu, int type)
5545 {
5546 	struct rq *rq = cpu_rq(cpu);
5547 	unsigned long total = weighted_cpuload(rq);
5548 
5549 	if (type == 0 || !sched_feat(LB_BIAS))
5550 		return total;
5551 
5552 	return max(rq->cpu_load[type-1], total);
5553 }
5554 
5555 static unsigned long capacity_of(int cpu)
5556 {
5557 	return cpu_rq(cpu)->cpu_capacity;
5558 }
5559 
5560 static unsigned long capacity_orig_of(int cpu)
5561 {
5562 	return cpu_rq(cpu)->cpu_capacity_orig;
5563 }
5564 
5565 static unsigned long cpu_avg_load_per_task(int cpu)
5566 {
5567 	struct rq *rq = cpu_rq(cpu);
5568 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5569 	unsigned long load_avg = weighted_cpuload(rq);
5570 
5571 	if (nr_running)
5572 		return load_avg / nr_running;
5573 
5574 	return 0;
5575 }
5576 
5577 static void record_wakee(struct task_struct *p)
5578 {
5579 	/*
5580 	 * Only decay a single time; tasks that have less then 1 wakeup per
5581 	 * jiffy will not have built up many flips.
5582 	 */
5583 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5584 		current->wakee_flips >>= 1;
5585 		current->wakee_flip_decay_ts = jiffies;
5586 	}
5587 
5588 	if (current->last_wakee != p) {
5589 		current->last_wakee = p;
5590 		current->wakee_flips++;
5591 	}
5592 }
5593 
5594 /*
5595  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5596  *
5597  * A waker of many should wake a different task than the one last awakened
5598  * at a frequency roughly N times higher than one of its wakees.
5599  *
5600  * In order to determine whether we should let the load spread vs consolidating
5601  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5602  * partner, and a factor of lls_size higher frequency in the other.
5603  *
5604  * With both conditions met, we can be relatively sure that the relationship is
5605  * non-monogamous, with partner count exceeding socket size.
5606  *
5607  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5608  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5609  * socket size.
5610  */
5611 static int wake_wide(struct task_struct *p)
5612 {
5613 	unsigned int master = current->wakee_flips;
5614 	unsigned int slave = p->wakee_flips;
5615 	int factor = this_cpu_read(sd_llc_size);
5616 
5617 	if (master < slave)
5618 		swap(master, slave);
5619 	if (slave < factor || master < slave * factor)
5620 		return 0;
5621 	return 1;
5622 }
5623 
5624 /*
5625  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5626  * soonest. For the purpose of speed we only consider the waking and previous
5627  * CPU.
5628  *
5629  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5630  *			cache-affine and is (or	will be) idle.
5631  *
5632  * wake_affine_weight() - considers the weight to reflect the average
5633  *			  scheduling latency of the CPUs. This seems to work
5634  *			  for the overloaded case.
5635  */
5636 static int
5637 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5638 {
5639 	/*
5640 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5641 	 * context. Only allow the move if cache is shared. Otherwise an
5642 	 * interrupt intensive workload could force all tasks onto one
5643 	 * node depending on the IO topology or IRQ affinity settings.
5644 	 *
5645 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5646 	 * There is no guarantee that the cache hot data from an interrupt
5647 	 * is more important than cache hot data on the prev_cpu and from
5648 	 * a cpufreq perspective, it's better to have higher utilisation
5649 	 * on one CPU.
5650 	 */
5651 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5652 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5653 
5654 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
5655 		return this_cpu;
5656 
5657 	return nr_cpumask_bits;
5658 }
5659 
5660 static int
5661 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5662 		   int this_cpu, int prev_cpu, int sync)
5663 {
5664 	s64 this_eff_load, prev_eff_load;
5665 	unsigned long task_load;
5666 
5667 	this_eff_load = target_load(this_cpu, sd->wake_idx);
5668 
5669 	if (sync) {
5670 		unsigned long current_load = task_h_load(current);
5671 
5672 		if (current_load > this_eff_load)
5673 			return this_cpu;
5674 
5675 		this_eff_load -= current_load;
5676 	}
5677 
5678 	task_load = task_h_load(p);
5679 
5680 	this_eff_load += task_load;
5681 	if (sched_feat(WA_BIAS))
5682 		this_eff_load *= 100;
5683 	this_eff_load *= capacity_of(prev_cpu);
5684 
5685 	prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5686 	prev_eff_load -= task_load;
5687 	if (sched_feat(WA_BIAS))
5688 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5689 	prev_eff_load *= capacity_of(this_cpu);
5690 
5691 	/*
5692 	 * If sync, adjust the weight of prev_eff_load such that if
5693 	 * prev_eff == this_eff that select_idle_sibling() will consider
5694 	 * stacking the wakee on top of the waker if no other CPU is
5695 	 * idle.
5696 	 */
5697 	if (sync)
5698 		prev_eff_load += 1;
5699 
5700 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5701 }
5702 
5703 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5704 		       int this_cpu, int prev_cpu, int sync)
5705 {
5706 	int target = nr_cpumask_bits;
5707 
5708 	if (sched_feat(WA_IDLE))
5709 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
5710 
5711 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5712 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5713 
5714 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5715 	if (target == nr_cpumask_bits)
5716 		return prev_cpu;
5717 
5718 	schedstat_inc(sd->ttwu_move_affine);
5719 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5720 	return target;
5721 }
5722 
5723 static unsigned long cpu_util_without(int cpu, struct task_struct *p);
5724 
5725 static unsigned long capacity_spare_without(int cpu, struct task_struct *p)
5726 {
5727 	return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
5728 }
5729 
5730 /*
5731  * find_idlest_group finds and returns the least busy CPU group within the
5732  * domain.
5733  *
5734  * Assumes p is allowed on at least one CPU in sd.
5735  */
5736 static struct sched_group *
5737 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5738 		  int this_cpu, int sd_flag)
5739 {
5740 	struct sched_group *idlest = NULL, *group = sd->groups;
5741 	struct sched_group *most_spare_sg = NULL;
5742 	unsigned long min_runnable_load = ULONG_MAX;
5743 	unsigned long this_runnable_load = ULONG_MAX;
5744 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5745 	unsigned long most_spare = 0, this_spare = 0;
5746 	int load_idx = sd->forkexec_idx;
5747 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5748 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5749 				(sd->imbalance_pct-100) / 100;
5750 
5751 	if (sd_flag & SD_BALANCE_WAKE)
5752 		load_idx = sd->wake_idx;
5753 
5754 	do {
5755 		unsigned long load, avg_load, runnable_load;
5756 		unsigned long spare_cap, max_spare_cap;
5757 		int local_group;
5758 		int i;
5759 
5760 		/* Skip over this group if it has no CPUs allowed */
5761 		if (!cpumask_intersects(sched_group_span(group),
5762 					&p->cpus_allowed))
5763 			continue;
5764 
5765 		local_group = cpumask_test_cpu(this_cpu,
5766 					       sched_group_span(group));
5767 
5768 		/*
5769 		 * Tally up the load of all CPUs in the group and find
5770 		 * the group containing the CPU with most spare capacity.
5771 		 */
5772 		avg_load = 0;
5773 		runnable_load = 0;
5774 		max_spare_cap = 0;
5775 
5776 		for_each_cpu(i, sched_group_span(group)) {
5777 			/* Bias balancing toward CPUs of our domain */
5778 			if (local_group)
5779 				load = source_load(i, load_idx);
5780 			else
5781 				load = target_load(i, load_idx);
5782 
5783 			runnable_load += load;
5784 
5785 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5786 
5787 			spare_cap = capacity_spare_without(i, p);
5788 
5789 			if (spare_cap > max_spare_cap)
5790 				max_spare_cap = spare_cap;
5791 		}
5792 
5793 		/* Adjust by relative CPU capacity of the group */
5794 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5795 					group->sgc->capacity;
5796 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5797 					group->sgc->capacity;
5798 
5799 		if (local_group) {
5800 			this_runnable_load = runnable_load;
5801 			this_avg_load = avg_load;
5802 			this_spare = max_spare_cap;
5803 		} else {
5804 			if (min_runnable_load > (runnable_load + imbalance)) {
5805 				/*
5806 				 * The runnable load is significantly smaller
5807 				 * so we can pick this new CPU:
5808 				 */
5809 				min_runnable_load = runnable_load;
5810 				min_avg_load = avg_load;
5811 				idlest = group;
5812 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5813 				   (100*min_avg_load > imbalance_scale*avg_load)) {
5814 				/*
5815 				 * The runnable loads are close so take the
5816 				 * blocked load into account through avg_load:
5817 				 */
5818 				min_avg_load = avg_load;
5819 				idlest = group;
5820 			}
5821 
5822 			if (most_spare < max_spare_cap) {
5823 				most_spare = max_spare_cap;
5824 				most_spare_sg = group;
5825 			}
5826 		}
5827 	} while (group = group->next, group != sd->groups);
5828 
5829 	/*
5830 	 * The cross-over point between using spare capacity or least load
5831 	 * is too conservative for high utilization tasks on partially
5832 	 * utilized systems if we require spare_capacity > task_util(p),
5833 	 * so we allow for some task stuffing by using
5834 	 * spare_capacity > task_util(p)/2.
5835 	 *
5836 	 * Spare capacity can't be used for fork because the utilization has
5837 	 * not been set yet, we must first select a rq to compute the initial
5838 	 * utilization.
5839 	 */
5840 	if (sd_flag & SD_BALANCE_FORK)
5841 		goto skip_spare;
5842 
5843 	if (this_spare > task_util(p) / 2 &&
5844 	    imbalance_scale*this_spare > 100*most_spare)
5845 		return NULL;
5846 
5847 	if (most_spare > task_util(p) / 2)
5848 		return most_spare_sg;
5849 
5850 skip_spare:
5851 	if (!idlest)
5852 		return NULL;
5853 
5854 	/*
5855 	 * When comparing groups across NUMA domains, it's possible for the
5856 	 * local domain to be very lightly loaded relative to the remote
5857 	 * domains but "imbalance" skews the comparison making remote CPUs
5858 	 * look much more favourable. When considering cross-domain, add
5859 	 * imbalance to the runnable load on the remote node and consider
5860 	 * staying local.
5861 	 */
5862 	if ((sd->flags & SD_NUMA) &&
5863 	    min_runnable_load + imbalance >= this_runnable_load)
5864 		return NULL;
5865 
5866 	if (min_runnable_load > (this_runnable_load + imbalance))
5867 		return NULL;
5868 
5869 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5870 	     (100*this_avg_load < imbalance_scale*min_avg_load))
5871 		return NULL;
5872 
5873 	return idlest;
5874 }
5875 
5876 /*
5877  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5878  */
5879 static int
5880 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5881 {
5882 	unsigned long load, min_load = ULONG_MAX;
5883 	unsigned int min_exit_latency = UINT_MAX;
5884 	u64 latest_idle_timestamp = 0;
5885 	int least_loaded_cpu = this_cpu;
5886 	int shallowest_idle_cpu = -1;
5887 	int i;
5888 
5889 	/* Check if we have any choice: */
5890 	if (group->group_weight == 1)
5891 		return cpumask_first(sched_group_span(group));
5892 
5893 	/* Traverse only the allowed CPUs */
5894 	for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5895 		if (available_idle_cpu(i)) {
5896 			struct rq *rq = cpu_rq(i);
5897 			struct cpuidle_state *idle = idle_get_state(rq);
5898 			if (idle && idle->exit_latency < min_exit_latency) {
5899 				/*
5900 				 * We give priority to a CPU whose idle state
5901 				 * has the smallest exit latency irrespective
5902 				 * of any idle timestamp.
5903 				 */
5904 				min_exit_latency = idle->exit_latency;
5905 				latest_idle_timestamp = rq->idle_stamp;
5906 				shallowest_idle_cpu = i;
5907 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5908 				   rq->idle_stamp > latest_idle_timestamp) {
5909 				/*
5910 				 * If equal or no active idle state, then
5911 				 * the most recently idled CPU might have
5912 				 * a warmer cache.
5913 				 */
5914 				latest_idle_timestamp = rq->idle_stamp;
5915 				shallowest_idle_cpu = i;
5916 			}
5917 		} else if (shallowest_idle_cpu == -1) {
5918 			load = weighted_cpuload(cpu_rq(i));
5919 			if (load < min_load) {
5920 				min_load = load;
5921 				least_loaded_cpu = i;
5922 			}
5923 		}
5924 	}
5925 
5926 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5927 }
5928 
5929 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5930 				  int cpu, int prev_cpu, int sd_flag)
5931 {
5932 	int new_cpu = cpu;
5933 
5934 	if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
5935 		return prev_cpu;
5936 
5937 	/*
5938 	 * We need task's util for capacity_spare_without, sync it up to
5939 	 * prev_cpu's last_update_time.
5940 	 */
5941 	if (!(sd_flag & SD_BALANCE_FORK))
5942 		sync_entity_load_avg(&p->se);
5943 
5944 	while (sd) {
5945 		struct sched_group *group;
5946 		struct sched_domain *tmp;
5947 		int weight;
5948 
5949 		if (!(sd->flags & sd_flag)) {
5950 			sd = sd->child;
5951 			continue;
5952 		}
5953 
5954 		group = find_idlest_group(sd, p, cpu, sd_flag);
5955 		if (!group) {
5956 			sd = sd->child;
5957 			continue;
5958 		}
5959 
5960 		new_cpu = find_idlest_group_cpu(group, p, cpu);
5961 		if (new_cpu == cpu) {
5962 			/* Now try balancing at a lower domain level of 'cpu': */
5963 			sd = sd->child;
5964 			continue;
5965 		}
5966 
5967 		/* Now try balancing at a lower domain level of 'new_cpu': */
5968 		cpu = new_cpu;
5969 		weight = sd->span_weight;
5970 		sd = NULL;
5971 		for_each_domain(cpu, tmp) {
5972 			if (weight <= tmp->span_weight)
5973 				break;
5974 			if (tmp->flags & sd_flag)
5975 				sd = tmp;
5976 		}
5977 	}
5978 
5979 	return new_cpu;
5980 }
5981 
5982 #ifdef CONFIG_SCHED_SMT
5983 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5984 
5985 static inline void set_idle_cores(int cpu, int val)
5986 {
5987 	struct sched_domain_shared *sds;
5988 
5989 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5990 	if (sds)
5991 		WRITE_ONCE(sds->has_idle_cores, val);
5992 }
5993 
5994 static inline bool test_idle_cores(int cpu, bool def)
5995 {
5996 	struct sched_domain_shared *sds;
5997 
5998 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5999 	if (sds)
6000 		return READ_ONCE(sds->has_idle_cores);
6001 
6002 	return def;
6003 }
6004 
6005 /*
6006  * Scans the local SMT mask to see if the entire core is idle, and records this
6007  * information in sd_llc_shared->has_idle_cores.
6008  *
6009  * Since SMT siblings share all cache levels, inspecting this limited remote
6010  * state should be fairly cheap.
6011  */
6012 void __update_idle_core(struct rq *rq)
6013 {
6014 	int core = cpu_of(rq);
6015 	int cpu;
6016 
6017 	rcu_read_lock();
6018 	if (test_idle_cores(core, true))
6019 		goto unlock;
6020 
6021 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6022 		if (cpu == core)
6023 			continue;
6024 
6025 		if (!available_idle_cpu(cpu))
6026 			goto unlock;
6027 	}
6028 
6029 	set_idle_cores(core, 1);
6030 unlock:
6031 	rcu_read_unlock();
6032 }
6033 
6034 /*
6035  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6036  * there are no idle cores left in the system; tracked through
6037  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6038  */
6039 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6040 {
6041 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6042 	int core, cpu;
6043 
6044 	if (!static_branch_likely(&sched_smt_present))
6045 		return -1;
6046 
6047 	if (!test_idle_cores(target, false))
6048 		return -1;
6049 
6050 	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6051 
6052 	for_each_cpu_wrap(core, cpus, target) {
6053 		bool idle = true;
6054 
6055 		for_each_cpu(cpu, cpu_smt_mask(core)) {
6056 			cpumask_clear_cpu(cpu, cpus);
6057 			if (!available_idle_cpu(cpu))
6058 				idle = false;
6059 		}
6060 
6061 		if (idle)
6062 			return core;
6063 	}
6064 
6065 	/*
6066 	 * Failed to find an idle core; stop looking for one.
6067 	 */
6068 	set_idle_cores(target, 0);
6069 
6070 	return -1;
6071 }
6072 
6073 /*
6074  * Scan the local SMT mask for idle CPUs.
6075  */
6076 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6077 {
6078 	int cpu;
6079 
6080 	if (!static_branch_likely(&sched_smt_present))
6081 		return -1;
6082 
6083 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6084 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6085 			continue;
6086 		if (available_idle_cpu(cpu))
6087 			return cpu;
6088 	}
6089 
6090 	return -1;
6091 }
6092 
6093 #else /* CONFIG_SCHED_SMT */
6094 
6095 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6096 {
6097 	return -1;
6098 }
6099 
6100 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6101 {
6102 	return -1;
6103 }
6104 
6105 #endif /* CONFIG_SCHED_SMT */
6106 
6107 /*
6108  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6109  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6110  * average idle time for this rq (as found in rq->avg_idle).
6111  */
6112 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6113 {
6114 	struct sched_domain *this_sd;
6115 	u64 avg_cost, avg_idle;
6116 	u64 time, cost;
6117 	s64 delta;
6118 	int cpu, nr = INT_MAX;
6119 
6120 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6121 	if (!this_sd)
6122 		return -1;
6123 
6124 	/*
6125 	 * Due to large variance we need a large fuzz factor; hackbench in
6126 	 * particularly is sensitive here.
6127 	 */
6128 	avg_idle = this_rq()->avg_idle / 512;
6129 	avg_cost = this_sd->avg_scan_cost + 1;
6130 
6131 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6132 		return -1;
6133 
6134 	if (sched_feat(SIS_PROP)) {
6135 		u64 span_avg = sd->span_weight * avg_idle;
6136 		if (span_avg > 4*avg_cost)
6137 			nr = div_u64(span_avg, avg_cost);
6138 		else
6139 			nr = 4;
6140 	}
6141 
6142 	time = local_clock();
6143 
6144 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6145 		if (!--nr)
6146 			return -1;
6147 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6148 			continue;
6149 		if (available_idle_cpu(cpu))
6150 			break;
6151 	}
6152 
6153 	time = local_clock() - time;
6154 	cost = this_sd->avg_scan_cost;
6155 	delta = (s64)(time - cost) / 8;
6156 	this_sd->avg_scan_cost += delta;
6157 
6158 	return cpu;
6159 }
6160 
6161 /*
6162  * Try and locate an idle core/thread in the LLC cache domain.
6163  */
6164 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6165 {
6166 	struct sched_domain *sd;
6167 	int i, recent_used_cpu;
6168 
6169 	if (available_idle_cpu(target))
6170 		return target;
6171 
6172 	/*
6173 	 * If the previous CPU is cache affine and idle, don't be stupid:
6174 	 */
6175 	if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6176 		return prev;
6177 
6178 	/* Check a recently used CPU as a potential idle candidate: */
6179 	recent_used_cpu = p->recent_used_cpu;
6180 	if (recent_used_cpu != prev &&
6181 	    recent_used_cpu != target &&
6182 	    cpus_share_cache(recent_used_cpu, target) &&
6183 	    available_idle_cpu(recent_used_cpu) &&
6184 	    cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6185 		/*
6186 		 * Replace recent_used_cpu with prev as it is a potential
6187 		 * candidate for the next wake:
6188 		 */
6189 		p->recent_used_cpu = prev;
6190 		return recent_used_cpu;
6191 	}
6192 
6193 	sd = rcu_dereference(per_cpu(sd_llc, target));
6194 	if (!sd)
6195 		return target;
6196 
6197 	i = select_idle_core(p, sd, target);
6198 	if ((unsigned)i < nr_cpumask_bits)
6199 		return i;
6200 
6201 	i = select_idle_cpu(p, sd, target);
6202 	if ((unsigned)i < nr_cpumask_bits)
6203 		return i;
6204 
6205 	i = select_idle_smt(p, sd, target);
6206 	if ((unsigned)i < nr_cpumask_bits)
6207 		return i;
6208 
6209 	return target;
6210 }
6211 
6212 /**
6213  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6214  * @cpu: the CPU to get the utilization of
6215  *
6216  * The unit of the return value must be the one of capacity so we can compare
6217  * the utilization with the capacity of the CPU that is available for CFS task
6218  * (ie cpu_capacity).
6219  *
6220  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6221  * recent utilization of currently non-runnable tasks on a CPU. It represents
6222  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6223  * capacity_orig is the cpu_capacity available at the highest frequency
6224  * (arch_scale_freq_capacity()).
6225  * The utilization of a CPU converges towards a sum equal to or less than the
6226  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6227  * the running time on this CPU scaled by capacity_curr.
6228  *
6229  * The estimated utilization of a CPU is defined to be the maximum between its
6230  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6231  * currently RUNNABLE on that CPU.
6232  * This allows to properly represent the expected utilization of a CPU which
6233  * has just got a big task running since a long sleep period. At the same time
6234  * however it preserves the benefits of the "blocked utilization" in
6235  * describing the potential for other tasks waking up on the same CPU.
6236  *
6237  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6238  * higher than capacity_orig because of unfortunate rounding in
6239  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6240  * the average stabilizes with the new running time. We need to check that the
6241  * utilization stays within the range of [0..capacity_orig] and cap it if
6242  * necessary. Without utilization capping, a group could be seen as overloaded
6243  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6244  * available capacity. We allow utilization to overshoot capacity_curr (but not
6245  * capacity_orig) as it useful for predicting the capacity required after task
6246  * migrations (scheduler-driven DVFS).
6247  *
6248  * Return: the (estimated) utilization for the specified CPU
6249  */
6250 static inline unsigned long cpu_util(int cpu)
6251 {
6252 	struct cfs_rq *cfs_rq;
6253 	unsigned int util;
6254 
6255 	cfs_rq = &cpu_rq(cpu)->cfs;
6256 	util = READ_ONCE(cfs_rq->avg.util_avg);
6257 
6258 	if (sched_feat(UTIL_EST))
6259 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6260 
6261 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6262 }
6263 
6264 /*
6265  * cpu_util_without: compute cpu utilization without any contributions from *p
6266  * @cpu: the CPU which utilization is requested
6267  * @p: the task which utilization should be discounted
6268  *
6269  * The utilization of a CPU is defined by the utilization of tasks currently
6270  * enqueued on that CPU as well as tasks which are currently sleeping after an
6271  * execution on that CPU.
6272  *
6273  * This method returns the utilization of the specified CPU by discounting the
6274  * utilization of the specified task, whenever the task is currently
6275  * contributing to the CPU utilization.
6276  */
6277 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6278 {
6279 	struct cfs_rq *cfs_rq;
6280 	unsigned int util;
6281 
6282 	/* Task has no contribution or is new */
6283 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6284 		return cpu_util(cpu);
6285 
6286 	cfs_rq = &cpu_rq(cpu)->cfs;
6287 	util = READ_ONCE(cfs_rq->avg.util_avg);
6288 
6289 	/* Discount task's util from CPU's util */
6290 	lsub_positive(&util, task_util(p));
6291 
6292 	/*
6293 	 * Covered cases:
6294 	 *
6295 	 * a) if *p is the only task sleeping on this CPU, then:
6296 	 *      cpu_util (== task_util) > util_est (== 0)
6297 	 *    and thus we return:
6298 	 *      cpu_util_without = (cpu_util - task_util) = 0
6299 	 *
6300 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6301 	 *    IDLE, then:
6302 	 *      cpu_util >= task_util
6303 	 *      cpu_util > util_est (== 0)
6304 	 *    and thus we discount *p's blocked utilization to return:
6305 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6306 	 *
6307 	 * c) if other tasks are RUNNABLE on that CPU and
6308 	 *      util_est > cpu_util
6309 	 *    then we use util_est since it returns a more restrictive
6310 	 *    estimation of the spare capacity on that CPU, by just
6311 	 *    considering the expected utilization of tasks already
6312 	 *    runnable on that CPU.
6313 	 *
6314 	 * Cases a) and b) are covered by the above code, while case c) is
6315 	 * covered by the following code when estimated utilization is
6316 	 * enabled.
6317 	 */
6318 	if (sched_feat(UTIL_EST)) {
6319 		unsigned int estimated =
6320 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6321 
6322 		/*
6323 		 * Despite the following checks we still have a small window
6324 		 * for a possible race, when an execl's select_task_rq_fair()
6325 		 * races with LB's detach_task():
6326 		 *
6327 		 *   detach_task()
6328 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6329 		 *     ---------------------------------- A
6330 		 *     deactivate_task()                   \
6331 		 *       dequeue_task()                     + RaceTime
6332 		 *         util_est_dequeue()              /
6333 		 *     ---------------------------------- B
6334 		 *
6335 		 * The additional check on "current == p" it's required to
6336 		 * properly fix the execl regression and it helps in further
6337 		 * reducing the chances for the above race.
6338 		 */
6339 		if (unlikely(task_on_rq_queued(p) || current == p))
6340 			lsub_positive(&estimated, _task_util_est(p));
6341 
6342 		util = max(util, estimated);
6343 	}
6344 
6345 	/*
6346 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6347 	 * clamp to the maximum CPU capacity to ensure consistency with
6348 	 * the cpu_util call.
6349 	 */
6350 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6351 }
6352 
6353 /*
6354  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6355  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6356  *
6357  * In that case WAKE_AFFINE doesn't make sense and we'll let
6358  * BALANCE_WAKE sort things out.
6359  */
6360 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6361 {
6362 	long min_cap, max_cap;
6363 
6364 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
6365 		return 0;
6366 
6367 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6368 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6369 
6370 	/* Minimum capacity is close to max, no need to abort wake_affine */
6371 	if (max_cap - min_cap < max_cap >> 3)
6372 		return 0;
6373 
6374 	/* Bring task utilization in sync with prev_cpu */
6375 	sync_entity_load_avg(&p->se);
6376 
6377 	return !task_fits_capacity(p, min_cap);
6378 }
6379 
6380 /*
6381  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6382  * to @dst_cpu.
6383  */
6384 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6385 {
6386 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6387 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6388 
6389 	/*
6390 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6391 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6392 	 * the other cases, @cpu is not impacted by the migration, so the
6393 	 * util_avg should already be correct.
6394 	 */
6395 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6396 		sub_positive(&util, task_util(p));
6397 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6398 		util += task_util(p);
6399 
6400 	if (sched_feat(UTIL_EST)) {
6401 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6402 
6403 		/*
6404 		 * During wake-up, the task isn't enqueued yet and doesn't
6405 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6406 		 * so just add it (if needed) to "simulate" what will be
6407 		 * cpu_util() after the task has been enqueued.
6408 		 */
6409 		if (dst_cpu == cpu)
6410 			util_est += _task_util_est(p);
6411 
6412 		util = max(util, util_est);
6413 	}
6414 
6415 	return min(util, capacity_orig_of(cpu));
6416 }
6417 
6418 /*
6419  * compute_energy(): Estimates the energy that would be consumed if @p was
6420  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6421  * landscape of the * CPUs after the task migration, and uses the Energy Model
6422  * to compute what would be the energy if we decided to actually migrate that
6423  * task.
6424  */
6425 static long
6426 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6427 {
6428 	long util, max_util, sum_util, energy = 0;
6429 	int cpu;
6430 
6431 	for (; pd; pd = pd->next) {
6432 		max_util = sum_util = 0;
6433 		/*
6434 		 * The capacity state of CPUs of the current rd can be driven by
6435 		 * CPUs of another rd if they belong to the same performance
6436 		 * domain. So, account for the utilization of these CPUs too
6437 		 * by masking pd with cpu_online_mask instead of the rd span.
6438 		 *
6439 		 * If an entire performance domain is outside of the current rd,
6440 		 * it will not appear in its pd list and will not be accounted
6441 		 * by compute_energy().
6442 		 */
6443 		for_each_cpu_and(cpu, perf_domain_span(pd), cpu_online_mask) {
6444 			util = cpu_util_next(cpu, p, dst_cpu);
6445 			util = schedutil_energy_util(cpu, util);
6446 			max_util = max(util, max_util);
6447 			sum_util += util;
6448 		}
6449 
6450 		energy += em_pd_energy(pd->em_pd, max_util, sum_util);
6451 	}
6452 
6453 	return energy;
6454 }
6455 
6456 /*
6457  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6458  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6459  * spare capacity in each performance domain and uses it as a potential
6460  * candidate to execute the task. Then, it uses the Energy Model to figure
6461  * out which of the CPU candidates is the most energy-efficient.
6462  *
6463  * The rationale for this heuristic is as follows. In a performance domain,
6464  * all the most energy efficient CPU candidates (according to the Energy
6465  * Model) are those for which we'll request a low frequency. When there are
6466  * several CPUs for which the frequency request will be the same, we don't
6467  * have enough data to break the tie between them, because the Energy Model
6468  * only includes active power costs. With this model, if we assume that
6469  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6470  * the maximum spare capacity in a performance domain is guaranteed to be among
6471  * the best candidates of the performance domain.
6472  *
6473  * In practice, it could be preferable from an energy standpoint to pack
6474  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6475  * but that could also hurt our chances to go cluster idle, and we have no
6476  * ways to tell with the current Energy Model if this is actually a good
6477  * idea or not. So, find_energy_efficient_cpu() basically favors
6478  * cluster-packing, and spreading inside a cluster. That should at least be
6479  * a good thing for latency, and this is consistent with the idea that most
6480  * of the energy savings of EAS come from the asymmetry of the system, and
6481  * not so much from breaking the tie between identical CPUs. That's also the
6482  * reason why EAS is enabled in the topology code only for systems where
6483  * SD_ASYM_CPUCAPACITY is set.
6484  *
6485  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6486  * they don't have any useful utilization data yet and it's not possible to
6487  * forecast their impact on energy consumption. Consequently, they will be
6488  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6489  * to be energy-inefficient in some use-cases. The alternative would be to
6490  * bias new tasks towards specific types of CPUs first, or to try to infer
6491  * their util_avg from the parent task, but those heuristics could hurt
6492  * other use-cases too. So, until someone finds a better way to solve this,
6493  * let's keep things simple by re-using the existing slow path.
6494  */
6495 
6496 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6497 {
6498 	unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX;
6499 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6500 	int cpu, best_energy_cpu = prev_cpu;
6501 	struct perf_domain *head, *pd;
6502 	unsigned long cpu_cap, util;
6503 	struct sched_domain *sd;
6504 
6505 	rcu_read_lock();
6506 	pd = rcu_dereference(rd->pd);
6507 	if (!pd || READ_ONCE(rd->overutilized))
6508 		goto fail;
6509 	head = pd;
6510 
6511 	/*
6512 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6513 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6514 	 */
6515 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6516 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6517 		sd = sd->parent;
6518 	if (!sd)
6519 		goto fail;
6520 
6521 	sync_entity_load_avg(&p->se);
6522 	if (!task_util_est(p))
6523 		goto unlock;
6524 
6525 	for (; pd; pd = pd->next) {
6526 		unsigned long cur_energy, spare_cap, max_spare_cap = 0;
6527 		int max_spare_cap_cpu = -1;
6528 
6529 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6530 			if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6531 				continue;
6532 
6533 			/* Skip CPUs that will be overutilized. */
6534 			util = cpu_util_next(cpu, p, cpu);
6535 			cpu_cap = capacity_of(cpu);
6536 			if (cpu_cap * 1024 < util * capacity_margin)
6537 				continue;
6538 
6539 			/* Always use prev_cpu as a candidate. */
6540 			if (cpu == prev_cpu) {
6541 				prev_energy = compute_energy(p, prev_cpu, head);
6542 				best_energy = min(best_energy, prev_energy);
6543 				continue;
6544 			}
6545 
6546 			/*
6547 			 * Find the CPU with the maximum spare capacity in
6548 			 * the performance domain
6549 			 */
6550 			spare_cap = cpu_cap - util;
6551 			if (spare_cap > max_spare_cap) {
6552 				max_spare_cap = spare_cap;
6553 				max_spare_cap_cpu = cpu;
6554 			}
6555 		}
6556 
6557 		/* Evaluate the energy impact of using this CPU. */
6558 		if (max_spare_cap_cpu >= 0) {
6559 			cur_energy = compute_energy(p, max_spare_cap_cpu, head);
6560 			if (cur_energy < best_energy) {
6561 				best_energy = cur_energy;
6562 				best_energy_cpu = max_spare_cap_cpu;
6563 			}
6564 		}
6565 	}
6566 unlock:
6567 	rcu_read_unlock();
6568 
6569 	/*
6570 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6571 	 * least 6% of the energy used by prev_cpu.
6572 	 */
6573 	if (prev_energy == ULONG_MAX)
6574 		return best_energy_cpu;
6575 
6576 	if ((prev_energy - best_energy) > (prev_energy >> 4))
6577 		return best_energy_cpu;
6578 
6579 	return prev_cpu;
6580 
6581 fail:
6582 	rcu_read_unlock();
6583 
6584 	return -1;
6585 }
6586 
6587 /*
6588  * select_task_rq_fair: Select target runqueue for the waking task in domains
6589  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6590  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6591  *
6592  * Balances load by selecting the idlest CPU in the idlest group, or under
6593  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6594  *
6595  * Returns the target CPU number.
6596  *
6597  * preempt must be disabled.
6598  */
6599 static int
6600 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6601 {
6602 	struct sched_domain *tmp, *sd = NULL;
6603 	int cpu = smp_processor_id();
6604 	int new_cpu = prev_cpu;
6605 	int want_affine = 0;
6606 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6607 
6608 	if (sd_flag & SD_BALANCE_WAKE) {
6609 		record_wakee(p);
6610 
6611 		if (static_branch_unlikely(&sched_energy_present)) {
6612 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6613 			if (new_cpu >= 0)
6614 				return new_cpu;
6615 			new_cpu = prev_cpu;
6616 		}
6617 
6618 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) &&
6619 			      cpumask_test_cpu(cpu, &p->cpus_allowed);
6620 	}
6621 
6622 	rcu_read_lock();
6623 	for_each_domain(cpu, tmp) {
6624 		if (!(tmp->flags & SD_LOAD_BALANCE))
6625 			break;
6626 
6627 		/*
6628 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6629 		 * cpu is a valid SD_WAKE_AFFINE target.
6630 		 */
6631 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6632 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6633 			if (cpu != prev_cpu)
6634 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6635 
6636 			sd = NULL; /* Prefer wake_affine over balance flags */
6637 			break;
6638 		}
6639 
6640 		if (tmp->flags & sd_flag)
6641 			sd = tmp;
6642 		else if (!want_affine)
6643 			break;
6644 	}
6645 
6646 	if (unlikely(sd)) {
6647 		/* Slow path */
6648 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6649 	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6650 		/* Fast path */
6651 
6652 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6653 
6654 		if (want_affine)
6655 			current->recent_used_cpu = cpu;
6656 	}
6657 	rcu_read_unlock();
6658 
6659 	return new_cpu;
6660 }
6661 
6662 static void detach_entity_cfs_rq(struct sched_entity *se);
6663 
6664 /*
6665  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6666  * cfs_rq_of(p) references at time of call are still valid and identify the
6667  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6668  */
6669 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6670 {
6671 	/*
6672 	 * As blocked tasks retain absolute vruntime the migration needs to
6673 	 * deal with this by subtracting the old and adding the new
6674 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6675 	 * the task on the new runqueue.
6676 	 */
6677 	if (p->state == TASK_WAKING) {
6678 		struct sched_entity *se = &p->se;
6679 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6680 		u64 min_vruntime;
6681 
6682 #ifndef CONFIG_64BIT
6683 		u64 min_vruntime_copy;
6684 
6685 		do {
6686 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6687 			smp_rmb();
6688 			min_vruntime = cfs_rq->min_vruntime;
6689 		} while (min_vruntime != min_vruntime_copy);
6690 #else
6691 		min_vruntime = cfs_rq->min_vruntime;
6692 #endif
6693 
6694 		se->vruntime -= min_vruntime;
6695 	}
6696 
6697 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6698 		/*
6699 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6700 		 * rq->lock and can modify state directly.
6701 		 */
6702 		lockdep_assert_held(&task_rq(p)->lock);
6703 		detach_entity_cfs_rq(&p->se);
6704 
6705 	} else {
6706 		/*
6707 		 * We are supposed to update the task to "current" time, then
6708 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6709 		 * have difficulty in getting what current time is, so simply
6710 		 * throw away the out-of-date time. This will result in the
6711 		 * wakee task is less decayed, but giving the wakee more load
6712 		 * sounds not bad.
6713 		 */
6714 		remove_entity_load_avg(&p->se);
6715 	}
6716 
6717 	/* Tell new CPU we are migrated */
6718 	p->se.avg.last_update_time = 0;
6719 
6720 	/* We have migrated, no longer consider this task hot */
6721 	p->se.exec_start = 0;
6722 
6723 	update_scan_period(p, new_cpu);
6724 }
6725 
6726 static void task_dead_fair(struct task_struct *p)
6727 {
6728 	remove_entity_load_avg(&p->se);
6729 }
6730 #endif /* CONFIG_SMP */
6731 
6732 static unsigned long wakeup_gran(struct sched_entity *se)
6733 {
6734 	unsigned long gran = sysctl_sched_wakeup_granularity;
6735 
6736 	/*
6737 	 * Since its curr running now, convert the gran from real-time
6738 	 * to virtual-time in his units.
6739 	 *
6740 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6741 	 * they get preempted easier. That is, if 'se' < 'curr' then
6742 	 * the resulting gran will be larger, therefore penalizing the
6743 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6744 	 * be smaller, again penalizing the lighter task.
6745 	 *
6746 	 * This is especially important for buddies when the leftmost
6747 	 * task is higher priority than the buddy.
6748 	 */
6749 	return calc_delta_fair(gran, se);
6750 }
6751 
6752 /*
6753  * Should 'se' preempt 'curr'.
6754  *
6755  *             |s1
6756  *        |s2
6757  *   |s3
6758  *         g
6759  *      |<--->|c
6760  *
6761  *  w(c, s1) = -1
6762  *  w(c, s2) =  0
6763  *  w(c, s3) =  1
6764  *
6765  */
6766 static int
6767 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6768 {
6769 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6770 
6771 	if (vdiff <= 0)
6772 		return -1;
6773 
6774 	gran = wakeup_gran(se);
6775 	if (vdiff > gran)
6776 		return 1;
6777 
6778 	return 0;
6779 }
6780 
6781 static void set_last_buddy(struct sched_entity *se)
6782 {
6783 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6784 		return;
6785 
6786 	for_each_sched_entity(se) {
6787 		if (SCHED_WARN_ON(!se->on_rq))
6788 			return;
6789 		cfs_rq_of(se)->last = se;
6790 	}
6791 }
6792 
6793 static void set_next_buddy(struct sched_entity *se)
6794 {
6795 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
6796 		return;
6797 
6798 	for_each_sched_entity(se) {
6799 		if (SCHED_WARN_ON(!se->on_rq))
6800 			return;
6801 		cfs_rq_of(se)->next = se;
6802 	}
6803 }
6804 
6805 static void set_skip_buddy(struct sched_entity *se)
6806 {
6807 	for_each_sched_entity(se)
6808 		cfs_rq_of(se)->skip = se;
6809 }
6810 
6811 /*
6812  * Preempt the current task with a newly woken task if needed:
6813  */
6814 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6815 {
6816 	struct task_struct *curr = rq->curr;
6817 	struct sched_entity *se = &curr->se, *pse = &p->se;
6818 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6819 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6820 	int next_buddy_marked = 0;
6821 
6822 	if (unlikely(se == pse))
6823 		return;
6824 
6825 	/*
6826 	 * This is possible from callers such as attach_tasks(), in which we
6827 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6828 	 * lead to a throttle).  This both saves work and prevents false
6829 	 * next-buddy nomination below.
6830 	 */
6831 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6832 		return;
6833 
6834 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6835 		set_next_buddy(pse);
6836 		next_buddy_marked = 1;
6837 	}
6838 
6839 	/*
6840 	 * We can come here with TIF_NEED_RESCHED already set from new task
6841 	 * wake up path.
6842 	 *
6843 	 * Note: this also catches the edge-case of curr being in a throttled
6844 	 * group (e.g. via set_curr_task), since update_curr() (in the
6845 	 * enqueue of curr) will have resulted in resched being set.  This
6846 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6847 	 * below.
6848 	 */
6849 	if (test_tsk_need_resched(curr))
6850 		return;
6851 
6852 	/* Idle tasks are by definition preempted by non-idle tasks. */
6853 	if (unlikely(task_has_idle_policy(curr)) &&
6854 	    likely(!task_has_idle_policy(p)))
6855 		goto preempt;
6856 
6857 	/*
6858 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6859 	 * is driven by the tick):
6860 	 */
6861 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6862 		return;
6863 
6864 	find_matching_se(&se, &pse);
6865 	update_curr(cfs_rq_of(se));
6866 	BUG_ON(!pse);
6867 	if (wakeup_preempt_entity(se, pse) == 1) {
6868 		/*
6869 		 * Bias pick_next to pick the sched entity that is
6870 		 * triggering this preemption.
6871 		 */
6872 		if (!next_buddy_marked)
6873 			set_next_buddy(pse);
6874 		goto preempt;
6875 	}
6876 
6877 	return;
6878 
6879 preempt:
6880 	resched_curr(rq);
6881 	/*
6882 	 * Only set the backward buddy when the current task is still
6883 	 * on the rq. This can happen when a wakeup gets interleaved
6884 	 * with schedule on the ->pre_schedule() or idle_balance()
6885 	 * point, either of which can * drop the rq lock.
6886 	 *
6887 	 * Also, during early boot the idle thread is in the fair class,
6888 	 * for obvious reasons its a bad idea to schedule back to it.
6889 	 */
6890 	if (unlikely(!se->on_rq || curr == rq->idle))
6891 		return;
6892 
6893 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6894 		set_last_buddy(se);
6895 }
6896 
6897 static struct task_struct *
6898 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6899 {
6900 	struct cfs_rq *cfs_rq = &rq->cfs;
6901 	struct sched_entity *se;
6902 	struct task_struct *p;
6903 	int new_tasks;
6904 
6905 again:
6906 	if (!cfs_rq->nr_running)
6907 		goto idle;
6908 
6909 #ifdef CONFIG_FAIR_GROUP_SCHED
6910 	if (prev->sched_class != &fair_sched_class)
6911 		goto simple;
6912 
6913 	/*
6914 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6915 	 * likely that a next task is from the same cgroup as the current.
6916 	 *
6917 	 * Therefore attempt to avoid putting and setting the entire cgroup
6918 	 * hierarchy, only change the part that actually changes.
6919 	 */
6920 
6921 	do {
6922 		struct sched_entity *curr = cfs_rq->curr;
6923 
6924 		/*
6925 		 * Since we got here without doing put_prev_entity() we also
6926 		 * have to consider cfs_rq->curr. If it is still a runnable
6927 		 * entity, update_curr() will update its vruntime, otherwise
6928 		 * forget we've ever seen it.
6929 		 */
6930 		if (curr) {
6931 			if (curr->on_rq)
6932 				update_curr(cfs_rq);
6933 			else
6934 				curr = NULL;
6935 
6936 			/*
6937 			 * This call to check_cfs_rq_runtime() will do the
6938 			 * throttle and dequeue its entity in the parent(s).
6939 			 * Therefore the nr_running test will indeed
6940 			 * be correct.
6941 			 */
6942 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6943 				cfs_rq = &rq->cfs;
6944 
6945 				if (!cfs_rq->nr_running)
6946 					goto idle;
6947 
6948 				goto simple;
6949 			}
6950 		}
6951 
6952 		se = pick_next_entity(cfs_rq, curr);
6953 		cfs_rq = group_cfs_rq(se);
6954 	} while (cfs_rq);
6955 
6956 	p = task_of(se);
6957 
6958 	/*
6959 	 * Since we haven't yet done put_prev_entity and if the selected task
6960 	 * is a different task than we started out with, try and touch the
6961 	 * least amount of cfs_rqs.
6962 	 */
6963 	if (prev != p) {
6964 		struct sched_entity *pse = &prev->se;
6965 
6966 		while (!(cfs_rq = is_same_group(se, pse))) {
6967 			int se_depth = se->depth;
6968 			int pse_depth = pse->depth;
6969 
6970 			if (se_depth <= pse_depth) {
6971 				put_prev_entity(cfs_rq_of(pse), pse);
6972 				pse = parent_entity(pse);
6973 			}
6974 			if (se_depth >= pse_depth) {
6975 				set_next_entity(cfs_rq_of(se), se);
6976 				se = parent_entity(se);
6977 			}
6978 		}
6979 
6980 		put_prev_entity(cfs_rq, pse);
6981 		set_next_entity(cfs_rq, se);
6982 	}
6983 
6984 	goto done;
6985 simple:
6986 #endif
6987 
6988 	put_prev_task(rq, prev);
6989 
6990 	do {
6991 		se = pick_next_entity(cfs_rq, NULL);
6992 		set_next_entity(cfs_rq, se);
6993 		cfs_rq = group_cfs_rq(se);
6994 	} while (cfs_rq);
6995 
6996 	p = task_of(se);
6997 
6998 done: __maybe_unused;
6999 #ifdef CONFIG_SMP
7000 	/*
7001 	 * Move the next running task to the front of
7002 	 * the list, so our cfs_tasks list becomes MRU
7003 	 * one.
7004 	 */
7005 	list_move(&p->se.group_node, &rq->cfs_tasks);
7006 #endif
7007 
7008 	if (hrtick_enabled(rq))
7009 		hrtick_start_fair(rq, p);
7010 
7011 	update_misfit_status(p, rq);
7012 
7013 	return p;
7014 
7015 idle:
7016 	update_misfit_status(NULL, rq);
7017 	new_tasks = idle_balance(rq, rf);
7018 
7019 	/*
7020 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
7021 	 * possible for any higher priority task to appear. In that case we
7022 	 * must re-start the pick_next_entity() loop.
7023 	 */
7024 	if (new_tasks < 0)
7025 		return RETRY_TASK;
7026 
7027 	if (new_tasks > 0)
7028 		goto again;
7029 
7030 	return NULL;
7031 }
7032 
7033 /*
7034  * Account for a descheduled task:
7035  */
7036 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7037 {
7038 	struct sched_entity *se = &prev->se;
7039 	struct cfs_rq *cfs_rq;
7040 
7041 	for_each_sched_entity(se) {
7042 		cfs_rq = cfs_rq_of(se);
7043 		put_prev_entity(cfs_rq, se);
7044 	}
7045 }
7046 
7047 /*
7048  * sched_yield() is very simple
7049  *
7050  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7051  */
7052 static void yield_task_fair(struct rq *rq)
7053 {
7054 	struct task_struct *curr = rq->curr;
7055 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7056 	struct sched_entity *se = &curr->se;
7057 
7058 	/*
7059 	 * Are we the only task in the tree?
7060 	 */
7061 	if (unlikely(rq->nr_running == 1))
7062 		return;
7063 
7064 	clear_buddies(cfs_rq, se);
7065 
7066 	if (curr->policy != SCHED_BATCH) {
7067 		update_rq_clock(rq);
7068 		/*
7069 		 * Update run-time statistics of the 'current'.
7070 		 */
7071 		update_curr(cfs_rq);
7072 		/*
7073 		 * Tell update_rq_clock() that we've just updated,
7074 		 * so we don't do microscopic update in schedule()
7075 		 * and double the fastpath cost.
7076 		 */
7077 		rq_clock_skip_update(rq);
7078 	}
7079 
7080 	set_skip_buddy(se);
7081 }
7082 
7083 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
7084 {
7085 	struct sched_entity *se = &p->se;
7086 
7087 	/* throttled hierarchies are not runnable */
7088 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7089 		return false;
7090 
7091 	/* Tell the scheduler that we'd really like pse to run next. */
7092 	set_next_buddy(se);
7093 
7094 	yield_task_fair(rq);
7095 
7096 	return true;
7097 }
7098 
7099 #ifdef CONFIG_SMP
7100 /**************************************************
7101  * Fair scheduling class load-balancing methods.
7102  *
7103  * BASICS
7104  *
7105  * The purpose of load-balancing is to achieve the same basic fairness the
7106  * per-CPU scheduler provides, namely provide a proportional amount of compute
7107  * time to each task. This is expressed in the following equation:
7108  *
7109  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7110  *
7111  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7112  * W_i,0 is defined as:
7113  *
7114  *   W_i,0 = \Sum_j w_i,j                                             (2)
7115  *
7116  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7117  * is derived from the nice value as per sched_prio_to_weight[].
7118  *
7119  * The weight average is an exponential decay average of the instantaneous
7120  * weight:
7121  *
7122  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7123  *
7124  * C_i is the compute capacity of CPU i, typically it is the
7125  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7126  * can also include other factors [XXX].
7127  *
7128  * To achieve this balance we define a measure of imbalance which follows
7129  * directly from (1):
7130  *
7131  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7132  *
7133  * We them move tasks around to minimize the imbalance. In the continuous
7134  * function space it is obvious this converges, in the discrete case we get
7135  * a few fun cases generally called infeasible weight scenarios.
7136  *
7137  * [XXX expand on:
7138  *     - infeasible weights;
7139  *     - local vs global optima in the discrete case. ]
7140  *
7141  *
7142  * SCHED DOMAINS
7143  *
7144  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7145  * for all i,j solution, we create a tree of CPUs that follows the hardware
7146  * topology where each level pairs two lower groups (or better). This results
7147  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7148  * tree to only the first of the previous level and we decrease the frequency
7149  * of load-balance at each level inv. proportional to the number of CPUs in
7150  * the groups.
7151  *
7152  * This yields:
7153  *
7154  *     log_2 n     1     n
7155  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7156  *     i = 0      2^i   2^i
7157  *                               `- size of each group
7158  *         |         |     `- number of CPUs doing load-balance
7159  *         |         `- freq
7160  *         `- sum over all levels
7161  *
7162  * Coupled with a limit on how many tasks we can migrate every balance pass,
7163  * this makes (5) the runtime complexity of the balancer.
7164  *
7165  * An important property here is that each CPU is still (indirectly) connected
7166  * to every other CPU in at most O(log n) steps:
7167  *
7168  * The adjacency matrix of the resulting graph is given by:
7169  *
7170  *             log_2 n
7171  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7172  *             k = 0
7173  *
7174  * And you'll find that:
7175  *
7176  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7177  *
7178  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7179  * The task movement gives a factor of O(m), giving a convergence complexity
7180  * of:
7181  *
7182  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7183  *
7184  *
7185  * WORK CONSERVING
7186  *
7187  * In order to avoid CPUs going idle while there's still work to do, new idle
7188  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7189  * tree itself instead of relying on other CPUs to bring it work.
7190  *
7191  * This adds some complexity to both (5) and (8) but it reduces the total idle
7192  * time.
7193  *
7194  * [XXX more?]
7195  *
7196  *
7197  * CGROUPS
7198  *
7199  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7200  *
7201  *                                s_k,i
7202  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7203  *                                 S_k
7204  *
7205  * Where
7206  *
7207  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7208  *
7209  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7210  *
7211  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7212  * property.
7213  *
7214  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7215  *      rewrite all of this once again.]
7216  */
7217 
7218 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7219 
7220 enum fbq_type { regular, remote, all };
7221 
7222 enum group_type {
7223 	group_other = 0,
7224 	group_misfit_task,
7225 	group_imbalanced,
7226 	group_overloaded,
7227 };
7228 
7229 #define LBF_ALL_PINNED	0x01
7230 #define LBF_NEED_BREAK	0x02
7231 #define LBF_DST_PINNED  0x04
7232 #define LBF_SOME_PINNED	0x08
7233 #define LBF_NOHZ_STATS	0x10
7234 #define LBF_NOHZ_AGAIN	0x20
7235 
7236 struct lb_env {
7237 	struct sched_domain	*sd;
7238 
7239 	struct rq		*src_rq;
7240 	int			src_cpu;
7241 
7242 	int			dst_cpu;
7243 	struct rq		*dst_rq;
7244 
7245 	struct cpumask		*dst_grpmask;
7246 	int			new_dst_cpu;
7247 	enum cpu_idle_type	idle;
7248 	long			imbalance;
7249 	/* The set of CPUs under consideration for load-balancing */
7250 	struct cpumask		*cpus;
7251 
7252 	unsigned int		flags;
7253 
7254 	unsigned int		loop;
7255 	unsigned int		loop_break;
7256 	unsigned int		loop_max;
7257 
7258 	enum fbq_type		fbq_type;
7259 	enum group_type		src_grp_type;
7260 	struct list_head	tasks;
7261 };
7262 
7263 /*
7264  * Is this task likely cache-hot:
7265  */
7266 static int task_hot(struct task_struct *p, struct lb_env *env)
7267 {
7268 	s64 delta;
7269 
7270 	lockdep_assert_held(&env->src_rq->lock);
7271 
7272 	if (p->sched_class != &fair_sched_class)
7273 		return 0;
7274 
7275 	if (unlikely(task_has_idle_policy(p)))
7276 		return 0;
7277 
7278 	/*
7279 	 * Buddy candidates are cache hot:
7280 	 */
7281 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7282 			(&p->se == cfs_rq_of(&p->se)->next ||
7283 			 &p->se == cfs_rq_of(&p->se)->last))
7284 		return 1;
7285 
7286 	if (sysctl_sched_migration_cost == -1)
7287 		return 1;
7288 	if (sysctl_sched_migration_cost == 0)
7289 		return 0;
7290 
7291 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7292 
7293 	return delta < (s64)sysctl_sched_migration_cost;
7294 }
7295 
7296 #ifdef CONFIG_NUMA_BALANCING
7297 /*
7298  * Returns 1, if task migration degrades locality
7299  * Returns 0, if task migration improves locality i.e migration preferred.
7300  * Returns -1, if task migration is not affected by locality.
7301  */
7302 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7303 {
7304 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7305 	unsigned long src_weight, dst_weight;
7306 	int src_nid, dst_nid, dist;
7307 
7308 	if (!static_branch_likely(&sched_numa_balancing))
7309 		return -1;
7310 
7311 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7312 		return -1;
7313 
7314 	src_nid = cpu_to_node(env->src_cpu);
7315 	dst_nid = cpu_to_node(env->dst_cpu);
7316 
7317 	if (src_nid == dst_nid)
7318 		return -1;
7319 
7320 	/* Migrating away from the preferred node is always bad. */
7321 	if (src_nid == p->numa_preferred_nid) {
7322 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7323 			return 1;
7324 		else
7325 			return -1;
7326 	}
7327 
7328 	/* Encourage migration to the preferred node. */
7329 	if (dst_nid == p->numa_preferred_nid)
7330 		return 0;
7331 
7332 	/* Leaving a core idle is often worse than degrading locality. */
7333 	if (env->idle == CPU_IDLE)
7334 		return -1;
7335 
7336 	dist = node_distance(src_nid, dst_nid);
7337 	if (numa_group) {
7338 		src_weight = group_weight(p, src_nid, dist);
7339 		dst_weight = group_weight(p, dst_nid, dist);
7340 	} else {
7341 		src_weight = task_weight(p, src_nid, dist);
7342 		dst_weight = task_weight(p, dst_nid, dist);
7343 	}
7344 
7345 	return dst_weight < src_weight;
7346 }
7347 
7348 #else
7349 static inline int migrate_degrades_locality(struct task_struct *p,
7350 					     struct lb_env *env)
7351 {
7352 	return -1;
7353 }
7354 #endif
7355 
7356 /*
7357  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7358  */
7359 static
7360 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7361 {
7362 	int tsk_cache_hot;
7363 
7364 	lockdep_assert_held(&env->src_rq->lock);
7365 
7366 	/*
7367 	 * We do not migrate tasks that are:
7368 	 * 1) throttled_lb_pair, or
7369 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
7370 	 * 3) running (obviously), or
7371 	 * 4) are cache-hot on their current CPU.
7372 	 */
7373 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7374 		return 0;
7375 
7376 	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7377 		int cpu;
7378 
7379 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7380 
7381 		env->flags |= LBF_SOME_PINNED;
7382 
7383 		/*
7384 		 * Remember if this task can be migrated to any other CPU in
7385 		 * our sched_group. We may want to revisit it if we couldn't
7386 		 * meet load balance goals by pulling other tasks on src_cpu.
7387 		 *
7388 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7389 		 * already computed one in current iteration.
7390 		 */
7391 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7392 			return 0;
7393 
7394 		/* Prevent to re-select dst_cpu via env's CPUs: */
7395 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7396 			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7397 				env->flags |= LBF_DST_PINNED;
7398 				env->new_dst_cpu = cpu;
7399 				break;
7400 			}
7401 		}
7402 
7403 		return 0;
7404 	}
7405 
7406 	/* Record that we found atleast one task that could run on dst_cpu */
7407 	env->flags &= ~LBF_ALL_PINNED;
7408 
7409 	if (task_running(env->src_rq, p)) {
7410 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7411 		return 0;
7412 	}
7413 
7414 	/*
7415 	 * Aggressive migration if:
7416 	 * 1) destination numa is preferred
7417 	 * 2) task is cache cold, or
7418 	 * 3) too many balance attempts have failed.
7419 	 */
7420 	tsk_cache_hot = migrate_degrades_locality(p, env);
7421 	if (tsk_cache_hot == -1)
7422 		tsk_cache_hot = task_hot(p, env);
7423 
7424 	if (tsk_cache_hot <= 0 ||
7425 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7426 		if (tsk_cache_hot == 1) {
7427 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7428 			schedstat_inc(p->se.statistics.nr_forced_migrations);
7429 		}
7430 		return 1;
7431 	}
7432 
7433 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7434 	return 0;
7435 }
7436 
7437 /*
7438  * detach_task() -- detach the task for the migration specified in env
7439  */
7440 static void detach_task(struct task_struct *p, struct lb_env *env)
7441 {
7442 	lockdep_assert_held(&env->src_rq->lock);
7443 
7444 	p->on_rq = TASK_ON_RQ_MIGRATING;
7445 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7446 	set_task_cpu(p, env->dst_cpu);
7447 }
7448 
7449 /*
7450  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7451  * part of active balancing operations within "domain".
7452  *
7453  * Returns a task if successful and NULL otherwise.
7454  */
7455 static struct task_struct *detach_one_task(struct lb_env *env)
7456 {
7457 	struct task_struct *p;
7458 
7459 	lockdep_assert_held(&env->src_rq->lock);
7460 
7461 	list_for_each_entry_reverse(p,
7462 			&env->src_rq->cfs_tasks, se.group_node) {
7463 		if (!can_migrate_task(p, env))
7464 			continue;
7465 
7466 		detach_task(p, env);
7467 
7468 		/*
7469 		 * Right now, this is only the second place where
7470 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7471 		 * so we can safely collect stats here rather than
7472 		 * inside detach_tasks().
7473 		 */
7474 		schedstat_inc(env->sd->lb_gained[env->idle]);
7475 		return p;
7476 	}
7477 	return NULL;
7478 }
7479 
7480 static const unsigned int sched_nr_migrate_break = 32;
7481 
7482 /*
7483  * detach_tasks() -- tries to detach up to imbalance weighted load from
7484  * busiest_rq, as part of a balancing operation within domain "sd".
7485  *
7486  * Returns number of detached tasks if successful and 0 otherwise.
7487  */
7488 static int detach_tasks(struct lb_env *env)
7489 {
7490 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7491 	struct task_struct *p;
7492 	unsigned long load;
7493 	int detached = 0;
7494 
7495 	lockdep_assert_held(&env->src_rq->lock);
7496 
7497 	if (env->imbalance <= 0)
7498 		return 0;
7499 
7500 	while (!list_empty(tasks)) {
7501 		/*
7502 		 * We don't want to steal all, otherwise we may be treated likewise,
7503 		 * which could at worst lead to a livelock crash.
7504 		 */
7505 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7506 			break;
7507 
7508 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7509 
7510 		env->loop++;
7511 		/* We've more or less seen every task there is, call it quits */
7512 		if (env->loop > env->loop_max)
7513 			break;
7514 
7515 		/* take a breather every nr_migrate tasks */
7516 		if (env->loop > env->loop_break) {
7517 			env->loop_break += sched_nr_migrate_break;
7518 			env->flags |= LBF_NEED_BREAK;
7519 			break;
7520 		}
7521 
7522 		if (!can_migrate_task(p, env))
7523 			goto next;
7524 
7525 		load = task_h_load(p);
7526 
7527 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7528 			goto next;
7529 
7530 		if ((load / 2) > env->imbalance)
7531 			goto next;
7532 
7533 		detach_task(p, env);
7534 		list_add(&p->se.group_node, &env->tasks);
7535 
7536 		detached++;
7537 		env->imbalance -= load;
7538 
7539 #ifdef CONFIG_PREEMPT
7540 		/*
7541 		 * NEWIDLE balancing is a source of latency, so preemptible
7542 		 * kernels will stop after the first task is detached to minimize
7543 		 * the critical section.
7544 		 */
7545 		if (env->idle == CPU_NEWLY_IDLE)
7546 			break;
7547 #endif
7548 
7549 		/*
7550 		 * We only want to steal up to the prescribed amount of
7551 		 * weighted load.
7552 		 */
7553 		if (env->imbalance <= 0)
7554 			break;
7555 
7556 		continue;
7557 next:
7558 		list_move(&p->se.group_node, tasks);
7559 	}
7560 
7561 	/*
7562 	 * Right now, this is one of only two places we collect this stat
7563 	 * so we can safely collect detach_one_task() stats here rather
7564 	 * than inside detach_one_task().
7565 	 */
7566 	schedstat_add(env->sd->lb_gained[env->idle], detached);
7567 
7568 	return detached;
7569 }
7570 
7571 /*
7572  * attach_task() -- attach the task detached by detach_task() to its new rq.
7573  */
7574 static void attach_task(struct rq *rq, struct task_struct *p)
7575 {
7576 	lockdep_assert_held(&rq->lock);
7577 
7578 	BUG_ON(task_rq(p) != rq);
7579 	activate_task(rq, p, ENQUEUE_NOCLOCK);
7580 	p->on_rq = TASK_ON_RQ_QUEUED;
7581 	check_preempt_curr(rq, p, 0);
7582 }
7583 
7584 /*
7585  * attach_one_task() -- attaches the task returned from detach_one_task() to
7586  * its new rq.
7587  */
7588 static void attach_one_task(struct rq *rq, struct task_struct *p)
7589 {
7590 	struct rq_flags rf;
7591 
7592 	rq_lock(rq, &rf);
7593 	update_rq_clock(rq);
7594 	attach_task(rq, p);
7595 	rq_unlock(rq, &rf);
7596 }
7597 
7598 /*
7599  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7600  * new rq.
7601  */
7602 static void attach_tasks(struct lb_env *env)
7603 {
7604 	struct list_head *tasks = &env->tasks;
7605 	struct task_struct *p;
7606 	struct rq_flags rf;
7607 
7608 	rq_lock(env->dst_rq, &rf);
7609 	update_rq_clock(env->dst_rq);
7610 
7611 	while (!list_empty(tasks)) {
7612 		p = list_first_entry(tasks, struct task_struct, se.group_node);
7613 		list_del_init(&p->se.group_node);
7614 
7615 		attach_task(env->dst_rq, p);
7616 	}
7617 
7618 	rq_unlock(env->dst_rq, &rf);
7619 }
7620 
7621 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7622 {
7623 	if (cfs_rq->avg.load_avg)
7624 		return true;
7625 
7626 	if (cfs_rq->avg.util_avg)
7627 		return true;
7628 
7629 	return false;
7630 }
7631 
7632 static inline bool others_have_blocked(struct rq *rq)
7633 {
7634 	if (READ_ONCE(rq->avg_rt.util_avg))
7635 		return true;
7636 
7637 	if (READ_ONCE(rq->avg_dl.util_avg))
7638 		return true;
7639 
7640 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
7641 	if (READ_ONCE(rq->avg_irq.util_avg))
7642 		return true;
7643 #endif
7644 
7645 	return false;
7646 }
7647 
7648 #ifdef CONFIG_FAIR_GROUP_SCHED
7649 
7650 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7651 {
7652 	if (cfs_rq->load.weight)
7653 		return false;
7654 
7655 	if (cfs_rq->avg.load_sum)
7656 		return false;
7657 
7658 	if (cfs_rq->avg.util_sum)
7659 		return false;
7660 
7661 	if (cfs_rq->avg.runnable_load_sum)
7662 		return false;
7663 
7664 	return true;
7665 }
7666 
7667 static void update_blocked_averages(int cpu)
7668 {
7669 	struct rq *rq = cpu_rq(cpu);
7670 	struct cfs_rq *cfs_rq, *pos;
7671 	const struct sched_class *curr_class;
7672 	struct rq_flags rf;
7673 	bool done = true;
7674 
7675 	rq_lock_irqsave(rq, &rf);
7676 	update_rq_clock(rq);
7677 
7678 	/*
7679 	 * Iterates the task_group tree in a bottom up fashion, see
7680 	 * list_add_leaf_cfs_rq() for details.
7681 	 */
7682 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7683 		struct sched_entity *se;
7684 
7685 		/* throttled entities do not contribute to load */
7686 		if (throttled_hierarchy(cfs_rq))
7687 			continue;
7688 
7689 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7690 			update_tg_load_avg(cfs_rq, 0);
7691 
7692 		/* Propagate pending load changes to the parent, if any: */
7693 		se = cfs_rq->tg->se[cpu];
7694 		if (se && !skip_blocked_update(se))
7695 			update_load_avg(cfs_rq_of(se), se, 0);
7696 
7697 		/*
7698 		 * There can be a lot of idle CPU cgroups.  Don't let fully
7699 		 * decayed cfs_rqs linger on the list.
7700 		 */
7701 		if (cfs_rq_is_decayed(cfs_rq))
7702 			list_del_leaf_cfs_rq(cfs_rq);
7703 
7704 		/* Don't need periodic decay once load/util_avg are null */
7705 		if (cfs_rq_has_blocked(cfs_rq))
7706 			done = false;
7707 	}
7708 
7709 	curr_class = rq->curr->sched_class;
7710 	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7711 	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7712 	update_irq_load_avg(rq, 0);
7713 	/* Don't need periodic decay once load/util_avg are null */
7714 	if (others_have_blocked(rq))
7715 		done = false;
7716 
7717 #ifdef CONFIG_NO_HZ_COMMON
7718 	rq->last_blocked_load_update_tick = jiffies;
7719 	if (done)
7720 		rq->has_blocked_load = 0;
7721 #endif
7722 	rq_unlock_irqrestore(rq, &rf);
7723 }
7724 
7725 /*
7726  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7727  * This needs to be done in a top-down fashion because the load of a child
7728  * group is a fraction of its parents load.
7729  */
7730 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7731 {
7732 	struct rq *rq = rq_of(cfs_rq);
7733 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7734 	unsigned long now = jiffies;
7735 	unsigned long load;
7736 
7737 	if (cfs_rq->last_h_load_update == now)
7738 		return;
7739 
7740 	cfs_rq->h_load_next = NULL;
7741 	for_each_sched_entity(se) {
7742 		cfs_rq = cfs_rq_of(se);
7743 		cfs_rq->h_load_next = se;
7744 		if (cfs_rq->last_h_load_update == now)
7745 			break;
7746 	}
7747 
7748 	if (!se) {
7749 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7750 		cfs_rq->last_h_load_update = now;
7751 	}
7752 
7753 	while ((se = cfs_rq->h_load_next) != NULL) {
7754 		load = cfs_rq->h_load;
7755 		load = div64_ul(load * se->avg.load_avg,
7756 			cfs_rq_load_avg(cfs_rq) + 1);
7757 		cfs_rq = group_cfs_rq(se);
7758 		cfs_rq->h_load = load;
7759 		cfs_rq->last_h_load_update = now;
7760 	}
7761 }
7762 
7763 static unsigned long task_h_load(struct task_struct *p)
7764 {
7765 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7766 
7767 	update_cfs_rq_h_load(cfs_rq);
7768 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7769 			cfs_rq_load_avg(cfs_rq) + 1);
7770 }
7771 #else
7772 static inline void update_blocked_averages(int cpu)
7773 {
7774 	struct rq *rq = cpu_rq(cpu);
7775 	struct cfs_rq *cfs_rq = &rq->cfs;
7776 	const struct sched_class *curr_class;
7777 	struct rq_flags rf;
7778 
7779 	rq_lock_irqsave(rq, &rf);
7780 	update_rq_clock(rq);
7781 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7782 
7783 	curr_class = rq->curr->sched_class;
7784 	update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7785 	update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7786 	update_irq_load_avg(rq, 0);
7787 #ifdef CONFIG_NO_HZ_COMMON
7788 	rq->last_blocked_load_update_tick = jiffies;
7789 	if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
7790 		rq->has_blocked_load = 0;
7791 #endif
7792 	rq_unlock_irqrestore(rq, &rf);
7793 }
7794 
7795 static unsigned long task_h_load(struct task_struct *p)
7796 {
7797 	return p->se.avg.load_avg;
7798 }
7799 #endif
7800 
7801 /********** Helpers for find_busiest_group ************************/
7802 
7803 /*
7804  * sg_lb_stats - stats of a sched_group required for load_balancing
7805  */
7806 struct sg_lb_stats {
7807 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7808 	unsigned long group_load; /* Total load over the CPUs of the group */
7809 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7810 	unsigned long load_per_task;
7811 	unsigned long group_capacity;
7812 	unsigned long group_util; /* Total utilization of the group */
7813 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7814 	unsigned int idle_cpus;
7815 	unsigned int group_weight;
7816 	enum group_type group_type;
7817 	int group_no_capacity;
7818 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
7819 #ifdef CONFIG_NUMA_BALANCING
7820 	unsigned int nr_numa_running;
7821 	unsigned int nr_preferred_running;
7822 #endif
7823 };
7824 
7825 /*
7826  * sd_lb_stats - Structure to store the statistics of a sched_domain
7827  *		 during load balancing.
7828  */
7829 struct sd_lb_stats {
7830 	struct sched_group *busiest;	/* Busiest group in this sd */
7831 	struct sched_group *local;	/* Local group in this sd */
7832 	unsigned long total_running;
7833 	unsigned long total_load;	/* Total load of all groups in sd */
7834 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7835 	unsigned long avg_load;	/* Average load across all groups in sd */
7836 
7837 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7838 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7839 };
7840 
7841 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7842 {
7843 	/*
7844 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7845 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7846 	 * We must however clear busiest_stat::avg_load because
7847 	 * update_sd_pick_busiest() reads this before assignment.
7848 	 */
7849 	*sds = (struct sd_lb_stats){
7850 		.busiest = NULL,
7851 		.local = NULL,
7852 		.total_running = 0UL,
7853 		.total_load = 0UL,
7854 		.total_capacity = 0UL,
7855 		.busiest_stat = {
7856 			.avg_load = 0UL,
7857 			.sum_nr_running = 0,
7858 			.group_type = group_other,
7859 		},
7860 	};
7861 }
7862 
7863 /**
7864  * get_sd_load_idx - Obtain the load index for a given sched domain.
7865  * @sd: The sched_domain whose load_idx is to be obtained.
7866  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7867  *
7868  * Return: The load index.
7869  */
7870 static inline int get_sd_load_idx(struct sched_domain *sd,
7871 					enum cpu_idle_type idle)
7872 {
7873 	int load_idx;
7874 
7875 	switch (idle) {
7876 	case CPU_NOT_IDLE:
7877 		load_idx = sd->busy_idx;
7878 		break;
7879 
7880 	case CPU_NEWLY_IDLE:
7881 		load_idx = sd->newidle_idx;
7882 		break;
7883 	default:
7884 		load_idx = sd->idle_idx;
7885 		break;
7886 	}
7887 
7888 	return load_idx;
7889 }
7890 
7891 static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7892 {
7893 	struct rq *rq = cpu_rq(cpu);
7894 	unsigned long max = arch_scale_cpu_capacity(sd, cpu);
7895 	unsigned long used, free;
7896 	unsigned long irq;
7897 
7898 	irq = cpu_util_irq(rq);
7899 
7900 	if (unlikely(irq >= max))
7901 		return 1;
7902 
7903 	used = READ_ONCE(rq->avg_rt.util_avg);
7904 	used += READ_ONCE(rq->avg_dl.util_avg);
7905 
7906 	if (unlikely(used >= max))
7907 		return 1;
7908 
7909 	free = max - used;
7910 
7911 	return scale_irq_capacity(free, irq, max);
7912 }
7913 
7914 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7915 {
7916 	unsigned long capacity = scale_rt_capacity(sd, cpu);
7917 	struct sched_group *sdg = sd->groups;
7918 
7919 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
7920 
7921 	if (!capacity)
7922 		capacity = 1;
7923 
7924 	cpu_rq(cpu)->cpu_capacity = capacity;
7925 	sdg->sgc->capacity = capacity;
7926 	sdg->sgc->min_capacity = capacity;
7927 	sdg->sgc->max_capacity = capacity;
7928 }
7929 
7930 void update_group_capacity(struct sched_domain *sd, int cpu)
7931 {
7932 	struct sched_domain *child = sd->child;
7933 	struct sched_group *group, *sdg = sd->groups;
7934 	unsigned long capacity, min_capacity, max_capacity;
7935 	unsigned long interval;
7936 
7937 	interval = msecs_to_jiffies(sd->balance_interval);
7938 	interval = clamp(interval, 1UL, max_load_balance_interval);
7939 	sdg->sgc->next_update = jiffies + interval;
7940 
7941 	if (!child) {
7942 		update_cpu_capacity(sd, cpu);
7943 		return;
7944 	}
7945 
7946 	capacity = 0;
7947 	min_capacity = ULONG_MAX;
7948 	max_capacity = 0;
7949 
7950 	if (child->flags & SD_OVERLAP) {
7951 		/*
7952 		 * SD_OVERLAP domains cannot assume that child groups
7953 		 * span the current group.
7954 		 */
7955 
7956 		for_each_cpu(cpu, sched_group_span(sdg)) {
7957 			struct sched_group_capacity *sgc;
7958 			struct rq *rq = cpu_rq(cpu);
7959 
7960 			/*
7961 			 * build_sched_domains() -> init_sched_groups_capacity()
7962 			 * gets here before we've attached the domains to the
7963 			 * runqueues.
7964 			 *
7965 			 * Use capacity_of(), which is set irrespective of domains
7966 			 * in update_cpu_capacity().
7967 			 *
7968 			 * This avoids capacity from being 0 and
7969 			 * causing divide-by-zero issues on boot.
7970 			 */
7971 			if (unlikely(!rq->sd)) {
7972 				capacity += capacity_of(cpu);
7973 			} else {
7974 				sgc = rq->sd->groups->sgc;
7975 				capacity += sgc->capacity;
7976 			}
7977 
7978 			min_capacity = min(capacity, min_capacity);
7979 			max_capacity = max(capacity, max_capacity);
7980 		}
7981 	} else  {
7982 		/*
7983 		 * !SD_OVERLAP domains can assume that child groups
7984 		 * span the current group.
7985 		 */
7986 
7987 		group = child->groups;
7988 		do {
7989 			struct sched_group_capacity *sgc = group->sgc;
7990 
7991 			capacity += sgc->capacity;
7992 			min_capacity = min(sgc->min_capacity, min_capacity);
7993 			max_capacity = max(sgc->max_capacity, max_capacity);
7994 			group = group->next;
7995 		} while (group != child->groups);
7996 	}
7997 
7998 	sdg->sgc->capacity = capacity;
7999 	sdg->sgc->min_capacity = min_capacity;
8000 	sdg->sgc->max_capacity = max_capacity;
8001 }
8002 
8003 /*
8004  * Check whether the capacity of the rq has been noticeably reduced by side
8005  * activity. The imbalance_pct is used for the threshold.
8006  * Return true is the capacity is reduced
8007  */
8008 static inline int
8009 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8010 {
8011 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8012 				(rq->cpu_capacity_orig * 100));
8013 }
8014 
8015 /*
8016  * Group imbalance indicates (and tries to solve) the problem where balancing
8017  * groups is inadequate due to ->cpus_allowed constraints.
8018  *
8019  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8020  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8021  * Something like:
8022  *
8023  *	{ 0 1 2 3 } { 4 5 6 7 }
8024  *	        *     * * *
8025  *
8026  * If we were to balance group-wise we'd place two tasks in the first group and
8027  * two tasks in the second group. Clearly this is undesired as it will overload
8028  * cpu 3 and leave one of the CPUs in the second group unused.
8029  *
8030  * The current solution to this issue is detecting the skew in the first group
8031  * by noticing the lower domain failed to reach balance and had difficulty
8032  * moving tasks due to affinity constraints.
8033  *
8034  * When this is so detected; this group becomes a candidate for busiest; see
8035  * update_sd_pick_busiest(). And calculate_imbalance() and
8036  * find_busiest_group() avoid some of the usual balance conditions to allow it
8037  * to create an effective group imbalance.
8038  *
8039  * This is a somewhat tricky proposition since the next run might not find the
8040  * group imbalance and decide the groups need to be balanced again. A most
8041  * subtle and fragile situation.
8042  */
8043 
8044 static inline int sg_imbalanced(struct sched_group *group)
8045 {
8046 	return group->sgc->imbalance;
8047 }
8048 
8049 /*
8050  * group_has_capacity returns true if the group has spare capacity that could
8051  * be used by some tasks.
8052  * We consider that a group has spare capacity if the  * number of task is
8053  * smaller than the number of CPUs or if the utilization is lower than the
8054  * available capacity for CFS tasks.
8055  * For the latter, we use a threshold to stabilize the state, to take into
8056  * account the variance of the tasks' load and to return true if the available
8057  * capacity in meaningful for the load balancer.
8058  * As an example, an available capacity of 1% can appear but it doesn't make
8059  * any benefit for the load balance.
8060  */
8061 static inline bool
8062 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
8063 {
8064 	if (sgs->sum_nr_running < sgs->group_weight)
8065 		return true;
8066 
8067 	if ((sgs->group_capacity * 100) >
8068 			(sgs->group_util * env->sd->imbalance_pct))
8069 		return true;
8070 
8071 	return false;
8072 }
8073 
8074 /*
8075  *  group_is_overloaded returns true if the group has more tasks than it can
8076  *  handle.
8077  *  group_is_overloaded is not equals to !group_has_capacity because a group
8078  *  with the exact right number of tasks, has no more spare capacity but is not
8079  *  overloaded so both group_has_capacity and group_is_overloaded return
8080  *  false.
8081  */
8082 static inline bool
8083 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
8084 {
8085 	if (sgs->sum_nr_running <= sgs->group_weight)
8086 		return false;
8087 
8088 	if ((sgs->group_capacity * 100) <
8089 			(sgs->group_util * env->sd->imbalance_pct))
8090 		return true;
8091 
8092 	return false;
8093 }
8094 
8095 /*
8096  * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8097  * per-CPU capacity than sched_group ref.
8098  */
8099 static inline bool
8100 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8101 {
8102 	return sg->sgc->min_capacity * capacity_margin <
8103 						ref->sgc->min_capacity * 1024;
8104 }
8105 
8106 /*
8107  * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8108  * per-CPU capacity_orig than sched_group ref.
8109  */
8110 static inline bool
8111 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8112 {
8113 	return sg->sgc->max_capacity * capacity_margin <
8114 						ref->sgc->max_capacity * 1024;
8115 }
8116 
8117 static inline enum
8118 group_type group_classify(struct sched_group *group,
8119 			  struct sg_lb_stats *sgs)
8120 {
8121 	if (sgs->group_no_capacity)
8122 		return group_overloaded;
8123 
8124 	if (sg_imbalanced(group))
8125 		return group_imbalanced;
8126 
8127 	if (sgs->group_misfit_task_load)
8128 		return group_misfit_task;
8129 
8130 	return group_other;
8131 }
8132 
8133 static bool update_nohz_stats(struct rq *rq, bool force)
8134 {
8135 #ifdef CONFIG_NO_HZ_COMMON
8136 	unsigned int cpu = rq->cpu;
8137 
8138 	if (!rq->has_blocked_load)
8139 		return false;
8140 
8141 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8142 		return false;
8143 
8144 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8145 		return true;
8146 
8147 	update_blocked_averages(cpu);
8148 
8149 	return rq->has_blocked_load;
8150 #else
8151 	return false;
8152 #endif
8153 }
8154 
8155 /**
8156  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8157  * @env: The load balancing environment.
8158  * @group: sched_group whose statistics are to be updated.
8159  * @sgs: variable to hold the statistics for this group.
8160  * @sg_status: Holds flag indicating the status of the sched_group
8161  */
8162 static inline void update_sg_lb_stats(struct lb_env *env,
8163 				      struct sched_group *group,
8164 				      struct sg_lb_stats *sgs,
8165 				      int *sg_status)
8166 {
8167 	int local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8168 	int load_idx = get_sd_load_idx(env->sd, env->idle);
8169 	unsigned long load;
8170 	int i, nr_running;
8171 
8172 	memset(sgs, 0, sizeof(*sgs));
8173 
8174 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8175 		struct rq *rq = cpu_rq(i);
8176 
8177 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8178 			env->flags |= LBF_NOHZ_AGAIN;
8179 
8180 		/* Bias balancing toward CPUs of our domain: */
8181 		if (local_group)
8182 			load = target_load(i, load_idx);
8183 		else
8184 			load = source_load(i, load_idx);
8185 
8186 		sgs->group_load += load;
8187 		sgs->group_util += cpu_util(i);
8188 		sgs->sum_nr_running += rq->cfs.h_nr_running;
8189 
8190 		nr_running = rq->nr_running;
8191 		if (nr_running > 1)
8192 			*sg_status |= SG_OVERLOAD;
8193 
8194 		if (cpu_overutilized(i))
8195 			*sg_status |= SG_OVERUTILIZED;
8196 
8197 #ifdef CONFIG_NUMA_BALANCING
8198 		sgs->nr_numa_running += rq->nr_numa_running;
8199 		sgs->nr_preferred_running += rq->nr_preferred_running;
8200 #endif
8201 		sgs->sum_weighted_load += weighted_cpuload(rq);
8202 		/*
8203 		 * No need to call idle_cpu() if nr_running is not 0
8204 		 */
8205 		if (!nr_running && idle_cpu(i))
8206 			sgs->idle_cpus++;
8207 
8208 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8209 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8210 			sgs->group_misfit_task_load = rq->misfit_task_load;
8211 			*sg_status |= SG_OVERLOAD;
8212 		}
8213 	}
8214 
8215 	/* Adjust by relative CPU capacity of the group */
8216 	sgs->group_capacity = group->sgc->capacity;
8217 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
8218 
8219 	if (sgs->sum_nr_running)
8220 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
8221 
8222 	sgs->group_weight = group->group_weight;
8223 
8224 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
8225 	sgs->group_type = group_classify(group, sgs);
8226 }
8227 
8228 /**
8229  * update_sd_pick_busiest - return 1 on busiest group
8230  * @env: The load balancing environment.
8231  * @sds: sched_domain statistics
8232  * @sg: sched_group candidate to be checked for being the busiest
8233  * @sgs: sched_group statistics
8234  *
8235  * Determine if @sg is a busier group than the previously selected
8236  * busiest group.
8237  *
8238  * Return: %true if @sg is a busier group than the previously selected
8239  * busiest group. %false otherwise.
8240  */
8241 static bool update_sd_pick_busiest(struct lb_env *env,
8242 				   struct sd_lb_stats *sds,
8243 				   struct sched_group *sg,
8244 				   struct sg_lb_stats *sgs)
8245 {
8246 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8247 
8248 	/*
8249 	 * Don't try to pull misfit tasks we can't help.
8250 	 * We can use max_capacity here as reduction in capacity on some
8251 	 * CPUs in the group should either be possible to resolve
8252 	 * internally or be covered by avg_load imbalance (eventually).
8253 	 */
8254 	if (sgs->group_type == group_misfit_task &&
8255 	    (!group_smaller_max_cpu_capacity(sg, sds->local) ||
8256 	     !group_has_capacity(env, &sds->local_stat)))
8257 		return false;
8258 
8259 	if (sgs->group_type > busiest->group_type)
8260 		return true;
8261 
8262 	if (sgs->group_type < busiest->group_type)
8263 		return false;
8264 
8265 	if (sgs->avg_load <= busiest->avg_load)
8266 		return false;
8267 
8268 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
8269 		goto asym_packing;
8270 
8271 	/*
8272 	 * Candidate sg has no more than one task per CPU and
8273 	 * has higher per-CPU capacity. Migrating tasks to less
8274 	 * capable CPUs may harm throughput. Maximize throughput,
8275 	 * power/energy consequences are not considered.
8276 	 */
8277 	if (sgs->sum_nr_running <= sgs->group_weight &&
8278 	    group_smaller_min_cpu_capacity(sds->local, sg))
8279 		return false;
8280 
8281 	/*
8282 	 * If we have more than one misfit sg go with the biggest misfit.
8283 	 */
8284 	if (sgs->group_type == group_misfit_task &&
8285 	    sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8286 		return false;
8287 
8288 asym_packing:
8289 	/* This is the busiest node in its class. */
8290 	if (!(env->sd->flags & SD_ASYM_PACKING))
8291 		return true;
8292 
8293 	/* No ASYM_PACKING if target CPU is already busy */
8294 	if (env->idle == CPU_NOT_IDLE)
8295 		return true;
8296 	/*
8297 	 * ASYM_PACKING needs to move all the work to the highest
8298 	 * prority CPUs in the group, therefore mark all groups
8299 	 * of lower priority than ourself as busy.
8300 	 */
8301 	if (sgs->sum_nr_running &&
8302 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
8303 		if (!sds->busiest)
8304 			return true;
8305 
8306 		/* Prefer to move from lowest priority CPU's work */
8307 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
8308 				      sg->asym_prefer_cpu))
8309 			return true;
8310 	}
8311 
8312 	return false;
8313 }
8314 
8315 #ifdef CONFIG_NUMA_BALANCING
8316 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8317 {
8318 	if (sgs->sum_nr_running > sgs->nr_numa_running)
8319 		return regular;
8320 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
8321 		return remote;
8322 	return all;
8323 }
8324 
8325 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8326 {
8327 	if (rq->nr_running > rq->nr_numa_running)
8328 		return regular;
8329 	if (rq->nr_running > rq->nr_preferred_running)
8330 		return remote;
8331 	return all;
8332 }
8333 #else
8334 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8335 {
8336 	return all;
8337 }
8338 
8339 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8340 {
8341 	return regular;
8342 }
8343 #endif /* CONFIG_NUMA_BALANCING */
8344 
8345 /**
8346  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
8347  * @env: The load balancing environment.
8348  * @sds: variable to hold the statistics for this sched_domain.
8349  */
8350 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8351 {
8352 	struct sched_domain *child = env->sd->child;
8353 	struct sched_group *sg = env->sd->groups;
8354 	struct sg_lb_stats *local = &sds->local_stat;
8355 	struct sg_lb_stats tmp_sgs;
8356 	bool prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
8357 	int sg_status = 0;
8358 
8359 #ifdef CONFIG_NO_HZ_COMMON
8360 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8361 		env->flags |= LBF_NOHZ_STATS;
8362 #endif
8363 
8364 	do {
8365 		struct sg_lb_stats *sgs = &tmp_sgs;
8366 		int local_group;
8367 
8368 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8369 		if (local_group) {
8370 			sds->local = sg;
8371 			sgs = local;
8372 
8373 			if (env->idle != CPU_NEWLY_IDLE ||
8374 			    time_after_eq(jiffies, sg->sgc->next_update))
8375 				update_group_capacity(env->sd, env->dst_cpu);
8376 		}
8377 
8378 		update_sg_lb_stats(env, sg, sgs, &sg_status);
8379 
8380 		if (local_group)
8381 			goto next_group;
8382 
8383 		/*
8384 		 * In case the child domain prefers tasks go to siblings
8385 		 * first, lower the sg capacity so that we'll try
8386 		 * and move all the excess tasks away. We lower the capacity
8387 		 * of a group only if the local group has the capacity to fit
8388 		 * these excess tasks. The extra check prevents the case where
8389 		 * you always pull from the heaviest group when it is already
8390 		 * under-utilized (possible with a large weight task outweighs
8391 		 * the tasks on the system).
8392 		 */
8393 		if (prefer_sibling && sds->local &&
8394 		    group_has_capacity(env, local) &&
8395 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8396 			sgs->group_no_capacity = 1;
8397 			sgs->group_type = group_classify(sg, sgs);
8398 		}
8399 
8400 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8401 			sds->busiest = sg;
8402 			sds->busiest_stat = *sgs;
8403 		}
8404 
8405 next_group:
8406 		/* Now, start updating sd_lb_stats */
8407 		sds->total_running += sgs->sum_nr_running;
8408 		sds->total_load += sgs->group_load;
8409 		sds->total_capacity += sgs->group_capacity;
8410 
8411 		sg = sg->next;
8412 	} while (sg != env->sd->groups);
8413 
8414 #ifdef CONFIG_NO_HZ_COMMON
8415 	if ((env->flags & LBF_NOHZ_AGAIN) &&
8416 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8417 
8418 		WRITE_ONCE(nohz.next_blocked,
8419 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8420 	}
8421 #endif
8422 
8423 	if (env->sd->flags & SD_NUMA)
8424 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8425 
8426 	if (!env->sd->parent) {
8427 		struct root_domain *rd = env->dst_rq->rd;
8428 
8429 		/* update overload indicator if we are at root domain */
8430 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
8431 
8432 		/* Update over-utilization (tipping point, U >= 0) indicator */
8433 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
8434 	} else if (sg_status & SG_OVERUTILIZED) {
8435 		WRITE_ONCE(env->dst_rq->rd->overutilized, SG_OVERUTILIZED);
8436 	}
8437 }
8438 
8439 /**
8440  * check_asym_packing - Check to see if the group is packed into the
8441  *			sched domain.
8442  *
8443  * This is primarily intended to used at the sibling level.  Some
8444  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
8445  * case of POWER7, it can move to lower SMT modes only when higher
8446  * threads are idle.  When in lower SMT modes, the threads will
8447  * perform better since they share less core resources.  Hence when we
8448  * have idle threads, we want them to be the higher ones.
8449  *
8450  * This packing function is run on idle threads.  It checks to see if
8451  * the busiest CPU in this domain (core in the P7 case) has a higher
8452  * CPU number than the packing function is being run on.  Here we are
8453  * assuming lower CPU number will be equivalent to lower a SMT thread
8454  * number.
8455  *
8456  * Return: 1 when packing is required and a task should be moved to
8457  * this CPU.  The amount of the imbalance is returned in env->imbalance.
8458  *
8459  * @env: The load balancing environment.
8460  * @sds: Statistics of the sched_domain which is to be packed
8461  */
8462 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8463 {
8464 	int busiest_cpu;
8465 
8466 	if (!(env->sd->flags & SD_ASYM_PACKING))
8467 		return 0;
8468 
8469 	if (env->idle == CPU_NOT_IDLE)
8470 		return 0;
8471 
8472 	if (!sds->busiest)
8473 		return 0;
8474 
8475 	busiest_cpu = sds->busiest->asym_prefer_cpu;
8476 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8477 		return 0;
8478 
8479 	env->imbalance = DIV_ROUND_CLOSEST(
8480 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8481 		SCHED_CAPACITY_SCALE);
8482 
8483 	return 1;
8484 }
8485 
8486 /**
8487  * fix_small_imbalance - Calculate the minor imbalance that exists
8488  *			amongst the groups of a sched_domain, during
8489  *			load balancing.
8490  * @env: The load balancing environment.
8491  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8492  */
8493 static inline
8494 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8495 {
8496 	unsigned long tmp, capa_now = 0, capa_move = 0;
8497 	unsigned int imbn = 2;
8498 	unsigned long scaled_busy_load_per_task;
8499 	struct sg_lb_stats *local, *busiest;
8500 
8501 	local = &sds->local_stat;
8502 	busiest = &sds->busiest_stat;
8503 
8504 	if (!local->sum_nr_running)
8505 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8506 	else if (busiest->load_per_task > local->load_per_task)
8507 		imbn = 1;
8508 
8509 	scaled_busy_load_per_task =
8510 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8511 		busiest->group_capacity;
8512 
8513 	if (busiest->avg_load + scaled_busy_load_per_task >=
8514 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
8515 		env->imbalance = busiest->load_per_task;
8516 		return;
8517 	}
8518 
8519 	/*
8520 	 * OK, we don't have enough imbalance to justify moving tasks,
8521 	 * however we may be able to increase total CPU capacity used by
8522 	 * moving them.
8523 	 */
8524 
8525 	capa_now += busiest->group_capacity *
8526 			min(busiest->load_per_task, busiest->avg_load);
8527 	capa_now += local->group_capacity *
8528 			min(local->load_per_task, local->avg_load);
8529 	capa_now /= SCHED_CAPACITY_SCALE;
8530 
8531 	/* Amount of load we'd subtract */
8532 	if (busiest->avg_load > scaled_busy_load_per_task) {
8533 		capa_move += busiest->group_capacity *
8534 			    min(busiest->load_per_task,
8535 				busiest->avg_load - scaled_busy_load_per_task);
8536 	}
8537 
8538 	/* Amount of load we'd add */
8539 	if (busiest->avg_load * busiest->group_capacity <
8540 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8541 		tmp = (busiest->avg_load * busiest->group_capacity) /
8542 		      local->group_capacity;
8543 	} else {
8544 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8545 		      local->group_capacity;
8546 	}
8547 	capa_move += local->group_capacity *
8548 		    min(local->load_per_task, local->avg_load + tmp);
8549 	capa_move /= SCHED_CAPACITY_SCALE;
8550 
8551 	/* Move if we gain throughput */
8552 	if (capa_move > capa_now)
8553 		env->imbalance = busiest->load_per_task;
8554 }
8555 
8556 /**
8557  * calculate_imbalance - Calculate the amount of imbalance present within the
8558  *			 groups of a given sched_domain during load balance.
8559  * @env: load balance environment
8560  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8561  */
8562 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8563 {
8564 	unsigned long max_pull, load_above_capacity = ~0UL;
8565 	struct sg_lb_stats *local, *busiest;
8566 
8567 	local = &sds->local_stat;
8568 	busiest = &sds->busiest_stat;
8569 
8570 	if (busiest->group_type == group_imbalanced) {
8571 		/*
8572 		 * In the group_imb case we cannot rely on group-wide averages
8573 		 * to ensure CPU-load equilibrium, look at wider averages. XXX
8574 		 */
8575 		busiest->load_per_task =
8576 			min(busiest->load_per_task, sds->avg_load);
8577 	}
8578 
8579 	/*
8580 	 * Avg load of busiest sg can be less and avg load of local sg can
8581 	 * be greater than avg load across all sgs of sd because avg load
8582 	 * factors in sg capacity and sgs with smaller group_type are
8583 	 * skipped when updating the busiest sg:
8584 	 */
8585 	if (busiest->group_type != group_misfit_task &&
8586 	    (busiest->avg_load <= sds->avg_load ||
8587 	     local->avg_load >= sds->avg_load)) {
8588 		env->imbalance = 0;
8589 		return fix_small_imbalance(env, sds);
8590 	}
8591 
8592 	/*
8593 	 * If there aren't any idle CPUs, avoid creating some.
8594 	 */
8595 	if (busiest->group_type == group_overloaded &&
8596 	    local->group_type   == group_overloaded) {
8597 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8598 		if (load_above_capacity > busiest->group_capacity) {
8599 			load_above_capacity -= busiest->group_capacity;
8600 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
8601 			load_above_capacity /= busiest->group_capacity;
8602 		} else
8603 			load_above_capacity = ~0UL;
8604 	}
8605 
8606 	/*
8607 	 * We're trying to get all the CPUs to the average_load, so we don't
8608 	 * want to push ourselves above the average load, nor do we wish to
8609 	 * reduce the max loaded CPU below the average load. At the same time,
8610 	 * we also don't want to reduce the group load below the group
8611 	 * capacity. Thus we look for the minimum possible imbalance.
8612 	 */
8613 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8614 
8615 	/* How much load to actually move to equalise the imbalance */
8616 	env->imbalance = min(
8617 		max_pull * busiest->group_capacity,
8618 		(sds->avg_load - local->avg_load) * local->group_capacity
8619 	) / SCHED_CAPACITY_SCALE;
8620 
8621 	/* Boost imbalance to allow misfit task to be balanced. */
8622 	if (busiest->group_type == group_misfit_task) {
8623 		env->imbalance = max_t(long, env->imbalance,
8624 				       busiest->group_misfit_task_load);
8625 	}
8626 
8627 	/*
8628 	 * if *imbalance is less than the average load per runnable task
8629 	 * there is no guarantee that any tasks will be moved so we'll have
8630 	 * a think about bumping its value to force at least one task to be
8631 	 * moved
8632 	 */
8633 	if (env->imbalance < busiest->load_per_task)
8634 		return fix_small_imbalance(env, sds);
8635 }
8636 
8637 /******* find_busiest_group() helpers end here *********************/
8638 
8639 /**
8640  * find_busiest_group - Returns the busiest group within the sched_domain
8641  * if there is an imbalance.
8642  *
8643  * Also calculates the amount of weighted load which should be moved
8644  * to restore balance.
8645  *
8646  * @env: The load balancing environment.
8647  *
8648  * Return:	- The busiest group if imbalance exists.
8649  */
8650 static struct sched_group *find_busiest_group(struct lb_env *env)
8651 {
8652 	struct sg_lb_stats *local, *busiest;
8653 	struct sd_lb_stats sds;
8654 
8655 	init_sd_lb_stats(&sds);
8656 
8657 	/*
8658 	 * Compute the various statistics relavent for load balancing at
8659 	 * this level.
8660 	 */
8661 	update_sd_lb_stats(env, &sds);
8662 
8663 	if (static_branch_unlikely(&sched_energy_present)) {
8664 		struct root_domain *rd = env->dst_rq->rd;
8665 
8666 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
8667 			goto out_balanced;
8668 	}
8669 
8670 	local = &sds.local_stat;
8671 	busiest = &sds.busiest_stat;
8672 
8673 	/* ASYM feature bypasses nice load balance check */
8674 	if (check_asym_packing(env, &sds))
8675 		return sds.busiest;
8676 
8677 	/* There is no busy sibling group to pull tasks from */
8678 	if (!sds.busiest || busiest->sum_nr_running == 0)
8679 		goto out_balanced;
8680 
8681 	/* XXX broken for overlapping NUMA groups */
8682 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8683 						/ sds.total_capacity;
8684 
8685 	/*
8686 	 * If the busiest group is imbalanced the below checks don't
8687 	 * work because they assume all things are equal, which typically
8688 	 * isn't true due to cpus_allowed constraints and the like.
8689 	 */
8690 	if (busiest->group_type == group_imbalanced)
8691 		goto force_balance;
8692 
8693 	/*
8694 	 * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8695 	 * capacities from resulting in underutilization due to avg_load.
8696 	 */
8697 	if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8698 	    busiest->group_no_capacity)
8699 		goto force_balance;
8700 
8701 	/* Misfit tasks should be dealt with regardless of the avg load */
8702 	if (busiest->group_type == group_misfit_task)
8703 		goto force_balance;
8704 
8705 	/*
8706 	 * If the local group is busier than the selected busiest group
8707 	 * don't try and pull any tasks.
8708 	 */
8709 	if (local->avg_load >= busiest->avg_load)
8710 		goto out_balanced;
8711 
8712 	/*
8713 	 * Don't pull any tasks if this group is already above the domain
8714 	 * average load.
8715 	 */
8716 	if (local->avg_load >= sds.avg_load)
8717 		goto out_balanced;
8718 
8719 	if (env->idle == CPU_IDLE) {
8720 		/*
8721 		 * This CPU is idle. If the busiest group is not overloaded
8722 		 * and there is no imbalance between this and busiest group
8723 		 * wrt idle CPUs, it is balanced. The imbalance becomes
8724 		 * significant if the diff is greater than 1 otherwise we
8725 		 * might end up to just move the imbalance on another group
8726 		 */
8727 		if ((busiest->group_type != group_overloaded) &&
8728 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
8729 			goto out_balanced;
8730 	} else {
8731 		/*
8732 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8733 		 * imbalance_pct to be conservative.
8734 		 */
8735 		if (100 * busiest->avg_load <=
8736 				env->sd->imbalance_pct * local->avg_load)
8737 			goto out_balanced;
8738 	}
8739 
8740 force_balance:
8741 	/* Looks like there is an imbalance. Compute it */
8742 	env->src_grp_type = busiest->group_type;
8743 	calculate_imbalance(env, &sds);
8744 	return env->imbalance ? sds.busiest : NULL;
8745 
8746 out_balanced:
8747 	env->imbalance = 0;
8748 	return NULL;
8749 }
8750 
8751 /*
8752  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8753  */
8754 static struct rq *find_busiest_queue(struct lb_env *env,
8755 				     struct sched_group *group)
8756 {
8757 	struct rq *busiest = NULL, *rq;
8758 	unsigned long busiest_load = 0, busiest_capacity = 1;
8759 	int i;
8760 
8761 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8762 		unsigned long capacity, wl;
8763 		enum fbq_type rt;
8764 
8765 		rq = cpu_rq(i);
8766 		rt = fbq_classify_rq(rq);
8767 
8768 		/*
8769 		 * We classify groups/runqueues into three groups:
8770 		 *  - regular: there are !numa tasks
8771 		 *  - remote:  there are numa tasks that run on the 'wrong' node
8772 		 *  - all:     there is no distinction
8773 		 *
8774 		 * In order to avoid migrating ideally placed numa tasks,
8775 		 * ignore those when there's better options.
8776 		 *
8777 		 * If we ignore the actual busiest queue to migrate another
8778 		 * task, the next balance pass can still reduce the busiest
8779 		 * queue by moving tasks around inside the node.
8780 		 *
8781 		 * If we cannot move enough load due to this classification
8782 		 * the next pass will adjust the group classification and
8783 		 * allow migration of more tasks.
8784 		 *
8785 		 * Both cases only affect the total convergence complexity.
8786 		 */
8787 		if (rt > env->fbq_type)
8788 			continue;
8789 
8790 		/*
8791 		 * For ASYM_CPUCAPACITY domains with misfit tasks we simply
8792 		 * seek the "biggest" misfit task.
8793 		 */
8794 		if (env->src_grp_type == group_misfit_task) {
8795 			if (rq->misfit_task_load > busiest_load) {
8796 				busiest_load = rq->misfit_task_load;
8797 				busiest = rq;
8798 			}
8799 
8800 			continue;
8801 		}
8802 
8803 		capacity = capacity_of(i);
8804 
8805 		/*
8806 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
8807 		 * eventually lead to active_balancing high->low capacity.
8808 		 * Higher per-CPU capacity is considered better than balancing
8809 		 * average load.
8810 		 */
8811 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8812 		    capacity_of(env->dst_cpu) < capacity &&
8813 		    rq->nr_running == 1)
8814 			continue;
8815 
8816 		wl = weighted_cpuload(rq);
8817 
8818 		/*
8819 		 * When comparing with imbalance, use weighted_cpuload()
8820 		 * which is not scaled with the CPU capacity.
8821 		 */
8822 
8823 		if (rq->nr_running == 1 && wl > env->imbalance &&
8824 		    !check_cpu_capacity(rq, env->sd))
8825 			continue;
8826 
8827 		/*
8828 		 * For the load comparisons with the other CPU's, consider
8829 		 * the weighted_cpuload() scaled with the CPU capacity, so
8830 		 * that the load can be moved away from the CPU that is
8831 		 * potentially running at a lower capacity.
8832 		 *
8833 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
8834 		 * multiplication to rid ourselves of the division works out
8835 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
8836 		 * our previous maximum.
8837 		 */
8838 		if (wl * busiest_capacity > busiest_load * capacity) {
8839 			busiest_load = wl;
8840 			busiest_capacity = capacity;
8841 			busiest = rq;
8842 		}
8843 	}
8844 
8845 	return busiest;
8846 }
8847 
8848 /*
8849  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8850  * so long as it is large enough.
8851  */
8852 #define MAX_PINNED_INTERVAL	512
8853 
8854 static int need_active_balance(struct lb_env *env)
8855 {
8856 	struct sched_domain *sd = env->sd;
8857 
8858 	if (env->idle == CPU_NEWLY_IDLE) {
8859 
8860 		/*
8861 		 * ASYM_PACKING needs to force migrate tasks from busy but
8862 		 * lower priority CPUs in order to pack all tasks in the
8863 		 * highest priority CPUs.
8864 		 */
8865 		if ((sd->flags & SD_ASYM_PACKING) &&
8866 		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8867 			return 1;
8868 	}
8869 
8870 	/*
8871 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8872 	 * It's worth migrating the task if the src_cpu's capacity is reduced
8873 	 * because of other sched_class or IRQs if more capacity stays
8874 	 * available on dst_cpu.
8875 	 */
8876 	if ((env->idle != CPU_NOT_IDLE) &&
8877 	    (env->src_rq->cfs.h_nr_running == 1)) {
8878 		if ((check_cpu_capacity(env->src_rq, sd)) &&
8879 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8880 			return 1;
8881 	}
8882 
8883 	if (env->src_grp_type == group_misfit_task)
8884 		return 1;
8885 
8886 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8887 }
8888 
8889 static int active_load_balance_cpu_stop(void *data);
8890 
8891 static int should_we_balance(struct lb_env *env)
8892 {
8893 	struct sched_group *sg = env->sd->groups;
8894 	int cpu, balance_cpu = -1;
8895 
8896 	/*
8897 	 * Ensure the balancing environment is consistent; can happen
8898 	 * when the softirq triggers 'during' hotplug.
8899 	 */
8900 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8901 		return 0;
8902 
8903 	/*
8904 	 * In the newly idle case, we will allow all the CPUs
8905 	 * to do the newly idle load balance.
8906 	 */
8907 	if (env->idle == CPU_NEWLY_IDLE)
8908 		return 1;
8909 
8910 	/* Try to find first idle CPU */
8911 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8912 		if (!idle_cpu(cpu))
8913 			continue;
8914 
8915 		balance_cpu = cpu;
8916 		break;
8917 	}
8918 
8919 	if (balance_cpu == -1)
8920 		balance_cpu = group_balance_cpu(sg);
8921 
8922 	/*
8923 	 * First idle CPU or the first CPU(busiest) in this sched group
8924 	 * is eligible for doing load balancing at this and above domains.
8925 	 */
8926 	return balance_cpu == env->dst_cpu;
8927 }
8928 
8929 /*
8930  * Check this_cpu to ensure it is balanced within domain. Attempt to move
8931  * tasks if there is an imbalance.
8932  */
8933 static int load_balance(int this_cpu, struct rq *this_rq,
8934 			struct sched_domain *sd, enum cpu_idle_type idle,
8935 			int *continue_balancing)
8936 {
8937 	int ld_moved, cur_ld_moved, active_balance = 0;
8938 	struct sched_domain *sd_parent = sd->parent;
8939 	struct sched_group *group;
8940 	struct rq *busiest;
8941 	struct rq_flags rf;
8942 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8943 
8944 	struct lb_env env = {
8945 		.sd		= sd,
8946 		.dst_cpu	= this_cpu,
8947 		.dst_rq		= this_rq,
8948 		.dst_grpmask    = sched_group_span(sd->groups),
8949 		.idle		= idle,
8950 		.loop_break	= sched_nr_migrate_break,
8951 		.cpus		= cpus,
8952 		.fbq_type	= all,
8953 		.tasks		= LIST_HEAD_INIT(env.tasks),
8954 	};
8955 
8956 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8957 
8958 	schedstat_inc(sd->lb_count[idle]);
8959 
8960 redo:
8961 	if (!should_we_balance(&env)) {
8962 		*continue_balancing = 0;
8963 		goto out_balanced;
8964 	}
8965 
8966 	group = find_busiest_group(&env);
8967 	if (!group) {
8968 		schedstat_inc(sd->lb_nobusyg[idle]);
8969 		goto out_balanced;
8970 	}
8971 
8972 	busiest = find_busiest_queue(&env, group);
8973 	if (!busiest) {
8974 		schedstat_inc(sd->lb_nobusyq[idle]);
8975 		goto out_balanced;
8976 	}
8977 
8978 	BUG_ON(busiest == env.dst_rq);
8979 
8980 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8981 
8982 	env.src_cpu = busiest->cpu;
8983 	env.src_rq = busiest;
8984 
8985 	ld_moved = 0;
8986 	if (busiest->nr_running > 1) {
8987 		/*
8988 		 * Attempt to move tasks. If find_busiest_group has found
8989 		 * an imbalance but busiest->nr_running <= 1, the group is
8990 		 * still unbalanced. ld_moved simply stays zero, so it is
8991 		 * correctly treated as an imbalance.
8992 		 */
8993 		env.flags |= LBF_ALL_PINNED;
8994 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8995 
8996 more_balance:
8997 		rq_lock_irqsave(busiest, &rf);
8998 		update_rq_clock(busiest);
8999 
9000 		/*
9001 		 * cur_ld_moved - load moved in current iteration
9002 		 * ld_moved     - cumulative load moved across iterations
9003 		 */
9004 		cur_ld_moved = detach_tasks(&env);
9005 
9006 		/*
9007 		 * We've detached some tasks from busiest_rq. Every
9008 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9009 		 * unlock busiest->lock, and we are able to be sure
9010 		 * that nobody can manipulate the tasks in parallel.
9011 		 * See task_rq_lock() family for the details.
9012 		 */
9013 
9014 		rq_unlock(busiest, &rf);
9015 
9016 		if (cur_ld_moved) {
9017 			attach_tasks(&env);
9018 			ld_moved += cur_ld_moved;
9019 		}
9020 
9021 		local_irq_restore(rf.flags);
9022 
9023 		if (env.flags & LBF_NEED_BREAK) {
9024 			env.flags &= ~LBF_NEED_BREAK;
9025 			goto more_balance;
9026 		}
9027 
9028 		/*
9029 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9030 		 * us and move them to an alternate dst_cpu in our sched_group
9031 		 * where they can run. The upper limit on how many times we
9032 		 * iterate on same src_cpu is dependent on number of CPUs in our
9033 		 * sched_group.
9034 		 *
9035 		 * This changes load balance semantics a bit on who can move
9036 		 * load to a given_cpu. In addition to the given_cpu itself
9037 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9038 		 * nohz-idle), we now have balance_cpu in a position to move
9039 		 * load to given_cpu. In rare situations, this may cause
9040 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9041 		 * _independently_ and at _same_ time to move some load to
9042 		 * given_cpu) causing exceess load to be moved to given_cpu.
9043 		 * This however should not happen so much in practice and
9044 		 * moreover subsequent load balance cycles should correct the
9045 		 * excess load moved.
9046 		 */
9047 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9048 
9049 			/* Prevent to re-select dst_cpu via env's CPUs */
9050 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
9051 
9052 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
9053 			env.dst_cpu	 = env.new_dst_cpu;
9054 			env.flags	&= ~LBF_DST_PINNED;
9055 			env.loop	 = 0;
9056 			env.loop_break	 = sched_nr_migrate_break;
9057 
9058 			/*
9059 			 * Go back to "more_balance" rather than "redo" since we
9060 			 * need to continue with same src_cpu.
9061 			 */
9062 			goto more_balance;
9063 		}
9064 
9065 		/*
9066 		 * We failed to reach balance because of affinity.
9067 		 */
9068 		if (sd_parent) {
9069 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9070 
9071 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9072 				*group_imbalance = 1;
9073 		}
9074 
9075 		/* All tasks on this runqueue were pinned by CPU affinity */
9076 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
9077 			cpumask_clear_cpu(cpu_of(busiest), cpus);
9078 			/*
9079 			 * Attempting to continue load balancing at the current
9080 			 * sched_domain level only makes sense if there are
9081 			 * active CPUs remaining as possible busiest CPUs to
9082 			 * pull load from which are not contained within the
9083 			 * destination group that is receiving any migrated
9084 			 * load.
9085 			 */
9086 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
9087 				env.loop = 0;
9088 				env.loop_break = sched_nr_migrate_break;
9089 				goto redo;
9090 			}
9091 			goto out_all_pinned;
9092 		}
9093 	}
9094 
9095 	if (!ld_moved) {
9096 		schedstat_inc(sd->lb_failed[idle]);
9097 		/*
9098 		 * Increment the failure counter only on periodic balance.
9099 		 * We do not want newidle balance, which can be very
9100 		 * frequent, pollute the failure counter causing
9101 		 * excessive cache_hot migrations and active balances.
9102 		 */
9103 		if (idle != CPU_NEWLY_IDLE)
9104 			sd->nr_balance_failed++;
9105 
9106 		if (need_active_balance(&env)) {
9107 			unsigned long flags;
9108 
9109 			raw_spin_lock_irqsave(&busiest->lock, flags);
9110 
9111 			/*
9112 			 * Don't kick the active_load_balance_cpu_stop,
9113 			 * if the curr task on busiest CPU can't be
9114 			 * moved to this_cpu:
9115 			 */
9116 			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
9117 				raw_spin_unlock_irqrestore(&busiest->lock,
9118 							    flags);
9119 				env.flags |= LBF_ALL_PINNED;
9120 				goto out_one_pinned;
9121 			}
9122 
9123 			/*
9124 			 * ->active_balance synchronizes accesses to
9125 			 * ->active_balance_work.  Once set, it's cleared
9126 			 * only after active load balance is finished.
9127 			 */
9128 			if (!busiest->active_balance) {
9129 				busiest->active_balance = 1;
9130 				busiest->push_cpu = this_cpu;
9131 				active_balance = 1;
9132 			}
9133 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
9134 
9135 			if (active_balance) {
9136 				stop_one_cpu_nowait(cpu_of(busiest),
9137 					active_load_balance_cpu_stop, busiest,
9138 					&busiest->active_balance_work);
9139 			}
9140 
9141 			/* We've kicked active balancing, force task migration. */
9142 			sd->nr_balance_failed = sd->cache_nice_tries+1;
9143 		}
9144 	} else
9145 		sd->nr_balance_failed = 0;
9146 
9147 	if (likely(!active_balance)) {
9148 		/* We were unbalanced, so reset the balancing interval */
9149 		sd->balance_interval = sd->min_interval;
9150 	} else {
9151 		/*
9152 		 * If we've begun active balancing, start to back off. This
9153 		 * case may not be covered by the all_pinned logic if there
9154 		 * is only 1 task on the busy runqueue (because we don't call
9155 		 * detach_tasks).
9156 		 */
9157 		if (sd->balance_interval < sd->max_interval)
9158 			sd->balance_interval *= 2;
9159 	}
9160 
9161 	goto out;
9162 
9163 out_balanced:
9164 	/*
9165 	 * We reach balance although we may have faced some affinity
9166 	 * constraints. Clear the imbalance flag if it was set.
9167 	 */
9168 	if (sd_parent) {
9169 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9170 
9171 		if (*group_imbalance)
9172 			*group_imbalance = 0;
9173 	}
9174 
9175 out_all_pinned:
9176 	/*
9177 	 * We reach balance because all tasks are pinned at this level so
9178 	 * we can't migrate them. Let the imbalance flag set so parent level
9179 	 * can try to migrate them.
9180 	 */
9181 	schedstat_inc(sd->lb_balanced[idle]);
9182 
9183 	sd->nr_balance_failed = 0;
9184 
9185 out_one_pinned:
9186 	ld_moved = 0;
9187 
9188 	/*
9189 	 * idle_balance() disregards balance intervals, so we could repeatedly
9190 	 * reach this code, which would lead to balance_interval skyrocketting
9191 	 * in a short amount of time. Skip the balance_interval increase logic
9192 	 * to avoid that.
9193 	 */
9194 	if (env.idle == CPU_NEWLY_IDLE)
9195 		goto out;
9196 
9197 	/* tune up the balancing interval */
9198 	if ((env.flags & LBF_ALL_PINNED &&
9199 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
9200 	    sd->balance_interval < sd->max_interval)
9201 		sd->balance_interval *= 2;
9202 out:
9203 	return ld_moved;
9204 }
9205 
9206 static inline unsigned long
9207 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
9208 {
9209 	unsigned long interval = sd->balance_interval;
9210 
9211 	if (cpu_busy)
9212 		interval *= sd->busy_factor;
9213 
9214 	/* scale ms to jiffies */
9215 	interval = msecs_to_jiffies(interval);
9216 	interval = clamp(interval, 1UL, max_load_balance_interval);
9217 
9218 	return interval;
9219 }
9220 
9221 static inline void
9222 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
9223 {
9224 	unsigned long interval, next;
9225 
9226 	/* used by idle balance, so cpu_busy = 0 */
9227 	interval = get_sd_balance_interval(sd, 0);
9228 	next = sd->last_balance + interval;
9229 
9230 	if (time_after(*next_balance, next))
9231 		*next_balance = next;
9232 }
9233 
9234 /*
9235  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
9236  * running tasks off the busiest CPU onto idle CPUs. It requires at
9237  * least 1 task to be running on each physical CPU where possible, and
9238  * avoids physical / logical imbalances.
9239  */
9240 static int active_load_balance_cpu_stop(void *data)
9241 {
9242 	struct rq *busiest_rq = data;
9243 	int busiest_cpu = cpu_of(busiest_rq);
9244 	int target_cpu = busiest_rq->push_cpu;
9245 	struct rq *target_rq = cpu_rq(target_cpu);
9246 	struct sched_domain *sd;
9247 	struct task_struct *p = NULL;
9248 	struct rq_flags rf;
9249 
9250 	rq_lock_irq(busiest_rq, &rf);
9251 	/*
9252 	 * Between queueing the stop-work and running it is a hole in which
9253 	 * CPUs can become inactive. We should not move tasks from or to
9254 	 * inactive CPUs.
9255 	 */
9256 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
9257 		goto out_unlock;
9258 
9259 	/* Make sure the requested CPU hasn't gone down in the meantime: */
9260 	if (unlikely(busiest_cpu != smp_processor_id() ||
9261 		     !busiest_rq->active_balance))
9262 		goto out_unlock;
9263 
9264 	/* Is there any task to move? */
9265 	if (busiest_rq->nr_running <= 1)
9266 		goto out_unlock;
9267 
9268 	/*
9269 	 * This condition is "impossible", if it occurs
9270 	 * we need to fix it. Originally reported by
9271 	 * Bjorn Helgaas on a 128-CPU setup.
9272 	 */
9273 	BUG_ON(busiest_rq == target_rq);
9274 
9275 	/* Search for an sd spanning us and the target CPU. */
9276 	rcu_read_lock();
9277 	for_each_domain(target_cpu, sd) {
9278 		if ((sd->flags & SD_LOAD_BALANCE) &&
9279 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
9280 				break;
9281 	}
9282 
9283 	if (likely(sd)) {
9284 		struct lb_env env = {
9285 			.sd		= sd,
9286 			.dst_cpu	= target_cpu,
9287 			.dst_rq		= target_rq,
9288 			.src_cpu	= busiest_rq->cpu,
9289 			.src_rq		= busiest_rq,
9290 			.idle		= CPU_IDLE,
9291 			/*
9292 			 * can_migrate_task() doesn't need to compute new_dst_cpu
9293 			 * for active balancing. Since we have CPU_IDLE, but no
9294 			 * @dst_grpmask we need to make that test go away with lying
9295 			 * about DST_PINNED.
9296 			 */
9297 			.flags		= LBF_DST_PINNED,
9298 		};
9299 
9300 		schedstat_inc(sd->alb_count);
9301 		update_rq_clock(busiest_rq);
9302 
9303 		p = detach_one_task(&env);
9304 		if (p) {
9305 			schedstat_inc(sd->alb_pushed);
9306 			/* Active balancing done, reset the failure counter. */
9307 			sd->nr_balance_failed = 0;
9308 		} else {
9309 			schedstat_inc(sd->alb_failed);
9310 		}
9311 	}
9312 	rcu_read_unlock();
9313 out_unlock:
9314 	busiest_rq->active_balance = 0;
9315 	rq_unlock(busiest_rq, &rf);
9316 
9317 	if (p)
9318 		attach_one_task(target_rq, p);
9319 
9320 	local_irq_enable();
9321 
9322 	return 0;
9323 }
9324 
9325 static DEFINE_SPINLOCK(balancing);
9326 
9327 /*
9328  * Scale the max load_balance interval with the number of CPUs in the system.
9329  * This trades load-balance latency on larger machines for less cross talk.
9330  */
9331 void update_max_interval(void)
9332 {
9333 	max_load_balance_interval = HZ*num_online_cpus()/10;
9334 }
9335 
9336 /*
9337  * It checks each scheduling domain to see if it is due to be balanced,
9338  * and initiates a balancing operation if so.
9339  *
9340  * Balancing parameters are set up in init_sched_domains.
9341  */
9342 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
9343 {
9344 	int continue_balancing = 1;
9345 	int cpu = rq->cpu;
9346 	unsigned long interval;
9347 	struct sched_domain *sd;
9348 	/* Earliest time when we have to do rebalance again */
9349 	unsigned long next_balance = jiffies + 60*HZ;
9350 	int update_next_balance = 0;
9351 	int need_serialize, need_decay = 0;
9352 	u64 max_cost = 0;
9353 
9354 	rcu_read_lock();
9355 	for_each_domain(cpu, sd) {
9356 		/*
9357 		 * Decay the newidle max times here because this is a regular
9358 		 * visit to all the domains. Decay ~1% per second.
9359 		 */
9360 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
9361 			sd->max_newidle_lb_cost =
9362 				(sd->max_newidle_lb_cost * 253) / 256;
9363 			sd->next_decay_max_lb_cost = jiffies + HZ;
9364 			need_decay = 1;
9365 		}
9366 		max_cost += sd->max_newidle_lb_cost;
9367 
9368 		if (!(sd->flags & SD_LOAD_BALANCE))
9369 			continue;
9370 
9371 		/*
9372 		 * Stop the load balance at this level. There is another
9373 		 * CPU in our sched group which is doing load balancing more
9374 		 * actively.
9375 		 */
9376 		if (!continue_balancing) {
9377 			if (need_decay)
9378 				continue;
9379 			break;
9380 		}
9381 
9382 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9383 
9384 		need_serialize = sd->flags & SD_SERIALIZE;
9385 		if (need_serialize) {
9386 			if (!spin_trylock(&balancing))
9387 				goto out;
9388 		}
9389 
9390 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
9391 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
9392 				/*
9393 				 * The LBF_DST_PINNED logic could have changed
9394 				 * env->dst_cpu, so we can't know our idle
9395 				 * state even if we migrated tasks. Update it.
9396 				 */
9397 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
9398 			}
9399 			sd->last_balance = jiffies;
9400 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
9401 		}
9402 		if (need_serialize)
9403 			spin_unlock(&balancing);
9404 out:
9405 		if (time_after(next_balance, sd->last_balance + interval)) {
9406 			next_balance = sd->last_balance + interval;
9407 			update_next_balance = 1;
9408 		}
9409 	}
9410 	if (need_decay) {
9411 		/*
9412 		 * Ensure the rq-wide value also decays but keep it at a
9413 		 * reasonable floor to avoid funnies with rq->avg_idle.
9414 		 */
9415 		rq->max_idle_balance_cost =
9416 			max((u64)sysctl_sched_migration_cost, max_cost);
9417 	}
9418 	rcu_read_unlock();
9419 
9420 	/*
9421 	 * next_balance will be updated only when there is a need.
9422 	 * When the cpu is attached to null domain for ex, it will not be
9423 	 * updated.
9424 	 */
9425 	if (likely(update_next_balance)) {
9426 		rq->next_balance = next_balance;
9427 
9428 #ifdef CONFIG_NO_HZ_COMMON
9429 		/*
9430 		 * If this CPU has been elected to perform the nohz idle
9431 		 * balance. Other idle CPUs have already rebalanced with
9432 		 * nohz_idle_balance() and nohz.next_balance has been
9433 		 * updated accordingly. This CPU is now running the idle load
9434 		 * balance for itself and we need to update the
9435 		 * nohz.next_balance accordingly.
9436 		 */
9437 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9438 			nohz.next_balance = rq->next_balance;
9439 #endif
9440 	}
9441 }
9442 
9443 static inline int on_null_domain(struct rq *rq)
9444 {
9445 	return unlikely(!rcu_dereference_sched(rq->sd));
9446 }
9447 
9448 #ifdef CONFIG_NO_HZ_COMMON
9449 /*
9450  * idle load balancing details
9451  * - When one of the busy CPUs notice that there may be an idle rebalancing
9452  *   needed, they will kick the idle load balancer, which then does idle
9453  *   load balancing for all the idle CPUs.
9454  */
9455 
9456 static inline int find_new_ilb(void)
9457 {
9458 	int ilb = cpumask_first(nohz.idle_cpus_mask);
9459 
9460 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
9461 		return ilb;
9462 
9463 	return nr_cpu_ids;
9464 }
9465 
9466 /*
9467  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9468  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9469  * CPU (if there is one).
9470  */
9471 static void kick_ilb(unsigned int flags)
9472 {
9473 	int ilb_cpu;
9474 
9475 	nohz.next_balance++;
9476 
9477 	ilb_cpu = find_new_ilb();
9478 
9479 	if (ilb_cpu >= nr_cpu_ids)
9480 		return;
9481 
9482 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9483 	if (flags & NOHZ_KICK_MASK)
9484 		return;
9485 
9486 	/*
9487 	 * Use smp_send_reschedule() instead of resched_cpu().
9488 	 * This way we generate a sched IPI on the target CPU which
9489 	 * is idle. And the softirq performing nohz idle load balance
9490 	 * will be run before returning from the IPI.
9491 	 */
9492 	smp_send_reschedule(ilb_cpu);
9493 }
9494 
9495 /*
9496  * Current heuristic for kicking the idle load balancer in the presence
9497  * of an idle cpu in the system.
9498  *   - This rq has more than one task.
9499  *   - This rq has at least one CFS task and the capacity of the CPU is
9500  *     significantly reduced because of RT tasks or IRQs.
9501  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
9502  *     multiple busy cpu.
9503  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9504  *     domain span are idle.
9505  */
9506 static void nohz_balancer_kick(struct rq *rq)
9507 {
9508 	unsigned long now = jiffies;
9509 	struct sched_domain_shared *sds;
9510 	struct sched_domain *sd;
9511 	int nr_busy, i, cpu = rq->cpu;
9512 	unsigned int flags = 0;
9513 
9514 	if (unlikely(rq->idle_balance))
9515 		return;
9516 
9517 	/*
9518 	 * We may be recently in ticked or tickless idle mode. At the first
9519 	 * busy tick after returning from idle, we will update the busy stats.
9520 	 */
9521 	nohz_balance_exit_idle(rq);
9522 
9523 	/*
9524 	 * None are in tickless mode and hence no need for NOHZ idle load
9525 	 * balancing.
9526 	 */
9527 	if (likely(!atomic_read(&nohz.nr_cpus)))
9528 		return;
9529 
9530 	if (READ_ONCE(nohz.has_blocked) &&
9531 	    time_after(now, READ_ONCE(nohz.next_blocked)))
9532 		flags = NOHZ_STATS_KICK;
9533 
9534 	if (time_before(now, nohz.next_balance))
9535 		goto out;
9536 
9537 	if (rq->nr_running >= 2 || rq->misfit_task_load) {
9538 		flags = NOHZ_KICK_MASK;
9539 		goto out;
9540 	}
9541 
9542 	rcu_read_lock();
9543 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9544 	if (sds) {
9545 		/*
9546 		 * XXX: write a coherent comment on why we do this.
9547 		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9548 		 */
9549 		nr_busy = atomic_read(&sds->nr_busy_cpus);
9550 		if (nr_busy > 1) {
9551 			flags = NOHZ_KICK_MASK;
9552 			goto unlock;
9553 		}
9554 
9555 	}
9556 
9557 	sd = rcu_dereference(rq->sd);
9558 	if (sd) {
9559 		if ((rq->cfs.h_nr_running >= 1) &&
9560 				check_cpu_capacity(rq, sd)) {
9561 			flags = NOHZ_KICK_MASK;
9562 			goto unlock;
9563 		}
9564 	}
9565 
9566 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
9567 	if (sd) {
9568 		for_each_cpu(i, sched_domain_span(sd)) {
9569 			if (i == cpu ||
9570 			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9571 				continue;
9572 
9573 			if (sched_asym_prefer(i, cpu)) {
9574 				flags = NOHZ_KICK_MASK;
9575 				goto unlock;
9576 			}
9577 		}
9578 	}
9579 unlock:
9580 	rcu_read_unlock();
9581 out:
9582 	if (flags)
9583 		kick_ilb(flags);
9584 }
9585 
9586 static void set_cpu_sd_state_busy(int cpu)
9587 {
9588 	struct sched_domain *sd;
9589 
9590 	rcu_read_lock();
9591 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9592 
9593 	if (!sd || !sd->nohz_idle)
9594 		goto unlock;
9595 	sd->nohz_idle = 0;
9596 
9597 	atomic_inc(&sd->shared->nr_busy_cpus);
9598 unlock:
9599 	rcu_read_unlock();
9600 }
9601 
9602 void nohz_balance_exit_idle(struct rq *rq)
9603 {
9604 	SCHED_WARN_ON(rq != this_rq());
9605 
9606 	if (likely(!rq->nohz_tick_stopped))
9607 		return;
9608 
9609 	rq->nohz_tick_stopped = 0;
9610 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9611 	atomic_dec(&nohz.nr_cpus);
9612 
9613 	set_cpu_sd_state_busy(rq->cpu);
9614 }
9615 
9616 static void set_cpu_sd_state_idle(int cpu)
9617 {
9618 	struct sched_domain *sd;
9619 
9620 	rcu_read_lock();
9621 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
9622 
9623 	if (!sd || sd->nohz_idle)
9624 		goto unlock;
9625 	sd->nohz_idle = 1;
9626 
9627 	atomic_dec(&sd->shared->nr_busy_cpus);
9628 unlock:
9629 	rcu_read_unlock();
9630 }
9631 
9632 /*
9633  * This routine will record that the CPU is going idle with tick stopped.
9634  * This info will be used in performing idle load balancing in the future.
9635  */
9636 void nohz_balance_enter_idle(int cpu)
9637 {
9638 	struct rq *rq = cpu_rq(cpu);
9639 
9640 	SCHED_WARN_ON(cpu != smp_processor_id());
9641 
9642 	/* If this CPU is going down, then nothing needs to be done: */
9643 	if (!cpu_active(cpu))
9644 		return;
9645 
9646 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
9647 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9648 		return;
9649 
9650 	/*
9651 	 * Can be set safely without rq->lock held
9652 	 * If a clear happens, it will have evaluated last additions because
9653 	 * rq->lock is held during the check and the clear
9654 	 */
9655 	rq->has_blocked_load = 1;
9656 
9657 	/*
9658 	 * The tick is still stopped but load could have been added in the
9659 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
9660 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9661 	 * of nohz.has_blocked can only happen after checking the new load
9662 	 */
9663 	if (rq->nohz_tick_stopped)
9664 		goto out;
9665 
9666 	/* If we're a completely isolated CPU, we don't play: */
9667 	if (on_null_domain(rq))
9668 		return;
9669 
9670 	rq->nohz_tick_stopped = 1;
9671 
9672 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9673 	atomic_inc(&nohz.nr_cpus);
9674 
9675 	/*
9676 	 * Ensures that if nohz_idle_balance() fails to observe our
9677 	 * @idle_cpus_mask store, it must observe the @has_blocked
9678 	 * store.
9679 	 */
9680 	smp_mb__after_atomic();
9681 
9682 	set_cpu_sd_state_idle(cpu);
9683 
9684 out:
9685 	/*
9686 	 * Each time a cpu enter idle, we assume that it has blocked load and
9687 	 * enable the periodic update of the load of idle cpus
9688 	 */
9689 	WRITE_ONCE(nohz.has_blocked, 1);
9690 }
9691 
9692 /*
9693  * Internal function that runs load balance for all idle cpus. The load balance
9694  * can be a simple update of blocked load or a complete load balance with
9695  * tasks movement depending of flags.
9696  * The function returns false if the loop has stopped before running
9697  * through all idle CPUs.
9698  */
9699 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9700 			       enum cpu_idle_type idle)
9701 {
9702 	/* Earliest time when we have to do rebalance again */
9703 	unsigned long now = jiffies;
9704 	unsigned long next_balance = now + 60*HZ;
9705 	bool has_blocked_load = false;
9706 	int update_next_balance = 0;
9707 	int this_cpu = this_rq->cpu;
9708 	int balance_cpu;
9709 	int ret = false;
9710 	struct rq *rq;
9711 
9712 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9713 
9714 	/*
9715 	 * We assume there will be no idle load after this update and clear
9716 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
9717 	 * set the has_blocked flag and trig another update of idle load.
9718 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
9719 	 * setting the flag, we are sure to not clear the state and not
9720 	 * check the load of an idle cpu.
9721 	 */
9722 	WRITE_ONCE(nohz.has_blocked, 0);
9723 
9724 	/*
9725 	 * Ensures that if we miss the CPU, we must see the has_blocked
9726 	 * store from nohz_balance_enter_idle().
9727 	 */
9728 	smp_mb();
9729 
9730 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9731 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9732 			continue;
9733 
9734 		/*
9735 		 * If this CPU gets work to do, stop the load balancing
9736 		 * work being done for other CPUs. Next load
9737 		 * balancing owner will pick it up.
9738 		 */
9739 		if (need_resched()) {
9740 			has_blocked_load = true;
9741 			goto abort;
9742 		}
9743 
9744 		rq = cpu_rq(balance_cpu);
9745 
9746 		has_blocked_load |= update_nohz_stats(rq, true);
9747 
9748 		/*
9749 		 * If time for next balance is due,
9750 		 * do the balance.
9751 		 */
9752 		if (time_after_eq(jiffies, rq->next_balance)) {
9753 			struct rq_flags rf;
9754 
9755 			rq_lock_irqsave(rq, &rf);
9756 			update_rq_clock(rq);
9757 			cpu_load_update_idle(rq);
9758 			rq_unlock_irqrestore(rq, &rf);
9759 
9760 			if (flags & NOHZ_BALANCE_KICK)
9761 				rebalance_domains(rq, CPU_IDLE);
9762 		}
9763 
9764 		if (time_after(next_balance, rq->next_balance)) {
9765 			next_balance = rq->next_balance;
9766 			update_next_balance = 1;
9767 		}
9768 	}
9769 
9770 	/* Newly idle CPU doesn't need an update */
9771 	if (idle != CPU_NEWLY_IDLE) {
9772 		update_blocked_averages(this_cpu);
9773 		has_blocked_load |= this_rq->has_blocked_load;
9774 	}
9775 
9776 	if (flags & NOHZ_BALANCE_KICK)
9777 		rebalance_domains(this_rq, CPU_IDLE);
9778 
9779 	WRITE_ONCE(nohz.next_blocked,
9780 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9781 
9782 	/* The full idle balance loop has been done */
9783 	ret = true;
9784 
9785 abort:
9786 	/* There is still blocked load, enable periodic update */
9787 	if (has_blocked_load)
9788 		WRITE_ONCE(nohz.has_blocked, 1);
9789 
9790 	/*
9791 	 * next_balance will be updated only when there is a need.
9792 	 * When the CPU is attached to null domain for ex, it will not be
9793 	 * updated.
9794 	 */
9795 	if (likely(update_next_balance))
9796 		nohz.next_balance = next_balance;
9797 
9798 	return ret;
9799 }
9800 
9801 /*
9802  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9803  * rebalancing for all the cpus for whom scheduler ticks are stopped.
9804  */
9805 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9806 {
9807 	int this_cpu = this_rq->cpu;
9808 	unsigned int flags;
9809 
9810 	if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9811 		return false;
9812 
9813 	if (idle != CPU_IDLE) {
9814 		atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9815 		return false;
9816 	}
9817 
9818 	/* could be _relaxed() */
9819 	flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9820 	if (!(flags & NOHZ_KICK_MASK))
9821 		return false;
9822 
9823 	_nohz_idle_balance(this_rq, flags, idle);
9824 
9825 	return true;
9826 }
9827 
9828 static void nohz_newidle_balance(struct rq *this_rq)
9829 {
9830 	int this_cpu = this_rq->cpu;
9831 
9832 	/*
9833 	 * This CPU doesn't want to be disturbed by scheduler
9834 	 * housekeeping
9835 	 */
9836 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9837 		return;
9838 
9839 	/* Will wake up very soon. No time for doing anything else*/
9840 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
9841 		return;
9842 
9843 	/* Don't need to update blocked load of idle CPUs*/
9844 	if (!READ_ONCE(nohz.has_blocked) ||
9845 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9846 		return;
9847 
9848 	raw_spin_unlock(&this_rq->lock);
9849 	/*
9850 	 * This CPU is going to be idle and blocked load of idle CPUs
9851 	 * need to be updated. Run the ilb locally as it is a good
9852 	 * candidate for ilb instead of waking up another idle CPU.
9853 	 * Kick an normal ilb if we failed to do the update.
9854 	 */
9855 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9856 		kick_ilb(NOHZ_STATS_KICK);
9857 	raw_spin_lock(&this_rq->lock);
9858 }
9859 
9860 #else /* !CONFIG_NO_HZ_COMMON */
9861 static inline void nohz_balancer_kick(struct rq *rq) { }
9862 
9863 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9864 {
9865 	return false;
9866 }
9867 
9868 static inline void nohz_newidle_balance(struct rq *this_rq) { }
9869 #endif /* CONFIG_NO_HZ_COMMON */
9870 
9871 /*
9872  * idle_balance is called by schedule() if this_cpu is about to become
9873  * idle. Attempts to pull tasks from other CPUs.
9874  */
9875 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9876 {
9877 	unsigned long next_balance = jiffies + HZ;
9878 	int this_cpu = this_rq->cpu;
9879 	struct sched_domain *sd;
9880 	int pulled_task = 0;
9881 	u64 curr_cost = 0;
9882 
9883 	/*
9884 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
9885 	 * measure the duration of idle_balance() as idle time.
9886 	 */
9887 	this_rq->idle_stamp = rq_clock(this_rq);
9888 
9889 	/*
9890 	 * Do not pull tasks towards !active CPUs...
9891 	 */
9892 	if (!cpu_active(this_cpu))
9893 		return 0;
9894 
9895 	/*
9896 	 * This is OK, because current is on_cpu, which avoids it being picked
9897 	 * for load-balance and preemption/IRQs are still disabled avoiding
9898 	 * further scheduler activity on it and we're being very careful to
9899 	 * re-start the picking loop.
9900 	 */
9901 	rq_unpin_lock(this_rq, rf);
9902 
9903 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
9904 	    !READ_ONCE(this_rq->rd->overload)) {
9905 
9906 		rcu_read_lock();
9907 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
9908 		if (sd)
9909 			update_next_balance(sd, &next_balance);
9910 		rcu_read_unlock();
9911 
9912 		nohz_newidle_balance(this_rq);
9913 
9914 		goto out;
9915 	}
9916 
9917 	raw_spin_unlock(&this_rq->lock);
9918 
9919 	update_blocked_averages(this_cpu);
9920 	rcu_read_lock();
9921 	for_each_domain(this_cpu, sd) {
9922 		int continue_balancing = 1;
9923 		u64 t0, domain_cost;
9924 
9925 		if (!(sd->flags & SD_LOAD_BALANCE))
9926 			continue;
9927 
9928 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9929 			update_next_balance(sd, &next_balance);
9930 			break;
9931 		}
9932 
9933 		if (sd->flags & SD_BALANCE_NEWIDLE) {
9934 			t0 = sched_clock_cpu(this_cpu);
9935 
9936 			pulled_task = load_balance(this_cpu, this_rq,
9937 						   sd, CPU_NEWLY_IDLE,
9938 						   &continue_balancing);
9939 
9940 			domain_cost = sched_clock_cpu(this_cpu) - t0;
9941 			if (domain_cost > sd->max_newidle_lb_cost)
9942 				sd->max_newidle_lb_cost = domain_cost;
9943 
9944 			curr_cost += domain_cost;
9945 		}
9946 
9947 		update_next_balance(sd, &next_balance);
9948 
9949 		/*
9950 		 * Stop searching for tasks to pull if there are
9951 		 * now runnable tasks on this rq.
9952 		 */
9953 		if (pulled_task || this_rq->nr_running > 0)
9954 			break;
9955 	}
9956 	rcu_read_unlock();
9957 
9958 	raw_spin_lock(&this_rq->lock);
9959 
9960 	if (curr_cost > this_rq->max_idle_balance_cost)
9961 		this_rq->max_idle_balance_cost = curr_cost;
9962 
9963 out:
9964 	/*
9965 	 * While browsing the domains, we released the rq lock, a task could
9966 	 * have been enqueued in the meantime. Since we're not going idle,
9967 	 * pretend we pulled a task.
9968 	 */
9969 	if (this_rq->cfs.h_nr_running && !pulled_task)
9970 		pulled_task = 1;
9971 
9972 	/* Move the next balance forward */
9973 	if (time_after(this_rq->next_balance, next_balance))
9974 		this_rq->next_balance = next_balance;
9975 
9976 	/* Is there a task of a high priority class? */
9977 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9978 		pulled_task = -1;
9979 
9980 	if (pulled_task)
9981 		this_rq->idle_stamp = 0;
9982 
9983 	rq_repin_lock(this_rq, rf);
9984 
9985 	return pulled_task;
9986 }
9987 
9988 /*
9989  * run_rebalance_domains is triggered when needed from the scheduler tick.
9990  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9991  */
9992 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9993 {
9994 	struct rq *this_rq = this_rq();
9995 	enum cpu_idle_type idle = this_rq->idle_balance ?
9996 						CPU_IDLE : CPU_NOT_IDLE;
9997 
9998 	/*
9999 	 * If this CPU has a pending nohz_balance_kick, then do the
10000 	 * balancing on behalf of the other idle CPUs whose ticks are
10001 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
10002 	 * give the idle CPUs a chance to load balance. Else we may
10003 	 * load balance only within the local sched_domain hierarchy
10004 	 * and abort nohz_idle_balance altogether if we pull some load.
10005 	 */
10006 	if (nohz_idle_balance(this_rq, idle))
10007 		return;
10008 
10009 	/* normal load balance */
10010 	update_blocked_averages(this_rq->cpu);
10011 	rebalance_domains(this_rq, idle);
10012 }
10013 
10014 /*
10015  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
10016  */
10017 void trigger_load_balance(struct rq *rq)
10018 {
10019 	/* Don't need to rebalance while attached to NULL domain */
10020 	if (unlikely(on_null_domain(rq)))
10021 		return;
10022 
10023 	if (time_after_eq(jiffies, rq->next_balance))
10024 		raise_softirq(SCHED_SOFTIRQ);
10025 
10026 	nohz_balancer_kick(rq);
10027 }
10028 
10029 static void rq_online_fair(struct rq *rq)
10030 {
10031 	update_sysctl();
10032 
10033 	update_runtime_enabled(rq);
10034 }
10035 
10036 static void rq_offline_fair(struct rq *rq)
10037 {
10038 	update_sysctl();
10039 
10040 	/* Ensure any throttled groups are reachable by pick_next_task */
10041 	unthrottle_offline_cfs_rqs(rq);
10042 }
10043 
10044 #endif /* CONFIG_SMP */
10045 
10046 /*
10047  * scheduler tick hitting a task of our scheduling class.
10048  *
10049  * NOTE: This function can be called remotely by the tick offload that
10050  * goes along full dynticks. Therefore no local assumption can be made
10051  * and everything must be accessed through the @rq and @curr passed in
10052  * parameters.
10053  */
10054 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
10055 {
10056 	struct cfs_rq *cfs_rq;
10057 	struct sched_entity *se = &curr->se;
10058 
10059 	for_each_sched_entity(se) {
10060 		cfs_rq = cfs_rq_of(se);
10061 		entity_tick(cfs_rq, se, queued);
10062 	}
10063 
10064 	if (static_branch_unlikely(&sched_numa_balancing))
10065 		task_tick_numa(rq, curr);
10066 
10067 	update_misfit_status(curr, rq);
10068 	update_overutilized_status(task_rq(curr));
10069 }
10070 
10071 /*
10072  * called on fork with the child task as argument from the parent's context
10073  *  - child not yet on the tasklist
10074  *  - preemption disabled
10075  */
10076 static void task_fork_fair(struct task_struct *p)
10077 {
10078 	struct cfs_rq *cfs_rq;
10079 	struct sched_entity *se = &p->se, *curr;
10080 	struct rq *rq = this_rq();
10081 	struct rq_flags rf;
10082 
10083 	rq_lock(rq, &rf);
10084 	update_rq_clock(rq);
10085 
10086 	cfs_rq = task_cfs_rq(current);
10087 	curr = cfs_rq->curr;
10088 	if (curr) {
10089 		update_curr(cfs_rq);
10090 		se->vruntime = curr->vruntime;
10091 	}
10092 	place_entity(cfs_rq, se, 1);
10093 
10094 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
10095 		/*
10096 		 * Upon rescheduling, sched_class::put_prev_task() will place
10097 		 * 'current' within the tree based on its new key value.
10098 		 */
10099 		swap(curr->vruntime, se->vruntime);
10100 		resched_curr(rq);
10101 	}
10102 
10103 	se->vruntime -= cfs_rq->min_vruntime;
10104 	rq_unlock(rq, &rf);
10105 }
10106 
10107 /*
10108  * Priority of the task has changed. Check to see if we preempt
10109  * the current task.
10110  */
10111 static void
10112 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
10113 {
10114 	if (!task_on_rq_queued(p))
10115 		return;
10116 
10117 	/*
10118 	 * Reschedule if we are currently running on this runqueue and
10119 	 * our priority decreased, or if we are not currently running on
10120 	 * this runqueue and our priority is higher than the current's
10121 	 */
10122 	if (rq->curr == p) {
10123 		if (p->prio > oldprio)
10124 			resched_curr(rq);
10125 	} else
10126 		check_preempt_curr(rq, p, 0);
10127 }
10128 
10129 static inline bool vruntime_normalized(struct task_struct *p)
10130 {
10131 	struct sched_entity *se = &p->se;
10132 
10133 	/*
10134 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
10135 	 * the dequeue_entity(.flags=0) will already have normalized the
10136 	 * vruntime.
10137 	 */
10138 	if (p->on_rq)
10139 		return true;
10140 
10141 	/*
10142 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
10143 	 * But there are some cases where it has already been normalized:
10144 	 *
10145 	 * - A forked child which is waiting for being woken up by
10146 	 *   wake_up_new_task().
10147 	 * - A task which has been woken up by try_to_wake_up() and
10148 	 *   waiting for actually being woken up by sched_ttwu_pending().
10149 	 */
10150 	if (!se->sum_exec_runtime ||
10151 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
10152 		return true;
10153 
10154 	return false;
10155 }
10156 
10157 #ifdef CONFIG_FAIR_GROUP_SCHED
10158 /*
10159  * Propagate the changes of the sched_entity across the tg tree to make it
10160  * visible to the root
10161  */
10162 static void propagate_entity_cfs_rq(struct sched_entity *se)
10163 {
10164 	struct cfs_rq *cfs_rq;
10165 
10166 	/* Start to propagate at parent */
10167 	se = se->parent;
10168 
10169 	for_each_sched_entity(se) {
10170 		cfs_rq = cfs_rq_of(se);
10171 
10172 		if (cfs_rq_throttled(cfs_rq))
10173 			break;
10174 
10175 		update_load_avg(cfs_rq, se, UPDATE_TG);
10176 	}
10177 }
10178 #else
10179 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
10180 #endif
10181 
10182 static void detach_entity_cfs_rq(struct sched_entity *se)
10183 {
10184 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10185 
10186 	/* Catch up with the cfs_rq and remove our load when we leave */
10187 	update_load_avg(cfs_rq, se, 0);
10188 	detach_entity_load_avg(cfs_rq, se);
10189 	update_tg_load_avg(cfs_rq, false);
10190 	propagate_entity_cfs_rq(se);
10191 }
10192 
10193 static void attach_entity_cfs_rq(struct sched_entity *se)
10194 {
10195 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10196 
10197 #ifdef CONFIG_FAIR_GROUP_SCHED
10198 	/*
10199 	 * Since the real-depth could have been changed (only FAIR
10200 	 * class maintain depth value), reset depth properly.
10201 	 */
10202 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10203 #endif
10204 
10205 	/* Synchronize entity with its cfs_rq */
10206 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
10207 	attach_entity_load_avg(cfs_rq, se, 0);
10208 	update_tg_load_avg(cfs_rq, false);
10209 	propagate_entity_cfs_rq(se);
10210 }
10211 
10212 static void detach_task_cfs_rq(struct task_struct *p)
10213 {
10214 	struct sched_entity *se = &p->se;
10215 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10216 
10217 	if (!vruntime_normalized(p)) {
10218 		/*
10219 		 * Fix up our vruntime so that the current sleep doesn't
10220 		 * cause 'unlimited' sleep bonus.
10221 		 */
10222 		place_entity(cfs_rq, se, 0);
10223 		se->vruntime -= cfs_rq->min_vruntime;
10224 	}
10225 
10226 	detach_entity_cfs_rq(se);
10227 }
10228 
10229 static void attach_task_cfs_rq(struct task_struct *p)
10230 {
10231 	struct sched_entity *se = &p->se;
10232 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
10233 
10234 	attach_entity_cfs_rq(se);
10235 
10236 	if (!vruntime_normalized(p))
10237 		se->vruntime += cfs_rq->min_vruntime;
10238 }
10239 
10240 static void switched_from_fair(struct rq *rq, struct task_struct *p)
10241 {
10242 	detach_task_cfs_rq(p);
10243 }
10244 
10245 static void switched_to_fair(struct rq *rq, struct task_struct *p)
10246 {
10247 	attach_task_cfs_rq(p);
10248 
10249 	if (task_on_rq_queued(p)) {
10250 		/*
10251 		 * We were most likely switched from sched_rt, so
10252 		 * kick off the schedule if running, otherwise just see
10253 		 * if we can still preempt the current task.
10254 		 */
10255 		if (rq->curr == p)
10256 			resched_curr(rq);
10257 		else
10258 			check_preempt_curr(rq, p, 0);
10259 	}
10260 }
10261 
10262 /* Account for a task changing its policy or group.
10263  *
10264  * This routine is mostly called to set cfs_rq->curr field when a task
10265  * migrates between groups/classes.
10266  */
10267 static void set_curr_task_fair(struct rq *rq)
10268 {
10269 	struct sched_entity *se = &rq->curr->se;
10270 
10271 	for_each_sched_entity(se) {
10272 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
10273 
10274 		set_next_entity(cfs_rq, se);
10275 		/* ensure bandwidth has been allocated on our new cfs_rq */
10276 		account_cfs_rq_runtime(cfs_rq, 0);
10277 	}
10278 }
10279 
10280 void init_cfs_rq(struct cfs_rq *cfs_rq)
10281 {
10282 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
10283 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
10284 #ifndef CONFIG_64BIT
10285 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
10286 #endif
10287 #ifdef CONFIG_SMP
10288 	raw_spin_lock_init(&cfs_rq->removed.lock);
10289 #endif
10290 }
10291 
10292 #ifdef CONFIG_FAIR_GROUP_SCHED
10293 static void task_set_group_fair(struct task_struct *p)
10294 {
10295 	struct sched_entity *se = &p->se;
10296 
10297 	set_task_rq(p, task_cpu(p));
10298 	se->depth = se->parent ? se->parent->depth + 1 : 0;
10299 }
10300 
10301 static void task_move_group_fair(struct task_struct *p)
10302 {
10303 	detach_task_cfs_rq(p);
10304 	set_task_rq(p, task_cpu(p));
10305 
10306 #ifdef CONFIG_SMP
10307 	/* Tell se's cfs_rq has been changed -- migrated */
10308 	p->se.avg.last_update_time = 0;
10309 #endif
10310 	attach_task_cfs_rq(p);
10311 }
10312 
10313 static void task_change_group_fair(struct task_struct *p, int type)
10314 {
10315 	switch (type) {
10316 	case TASK_SET_GROUP:
10317 		task_set_group_fair(p);
10318 		break;
10319 
10320 	case TASK_MOVE_GROUP:
10321 		task_move_group_fair(p);
10322 		break;
10323 	}
10324 }
10325 
10326 void free_fair_sched_group(struct task_group *tg)
10327 {
10328 	int i;
10329 
10330 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
10331 
10332 	for_each_possible_cpu(i) {
10333 		if (tg->cfs_rq)
10334 			kfree(tg->cfs_rq[i]);
10335 		if (tg->se)
10336 			kfree(tg->se[i]);
10337 	}
10338 
10339 	kfree(tg->cfs_rq);
10340 	kfree(tg->se);
10341 }
10342 
10343 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10344 {
10345 	struct sched_entity *se;
10346 	struct cfs_rq *cfs_rq;
10347 	int i;
10348 
10349 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
10350 	if (!tg->cfs_rq)
10351 		goto err;
10352 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
10353 	if (!tg->se)
10354 		goto err;
10355 
10356 	tg->shares = NICE_0_LOAD;
10357 
10358 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
10359 
10360 	for_each_possible_cpu(i) {
10361 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
10362 				      GFP_KERNEL, cpu_to_node(i));
10363 		if (!cfs_rq)
10364 			goto err;
10365 
10366 		se = kzalloc_node(sizeof(struct sched_entity),
10367 				  GFP_KERNEL, cpu_to_node(i));
10368 		if (!se)
10369 			goto err_free_rq;
10370 
10371 		init_cfs_rq(cfs_rq);
10372 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
10373 		init_entity_runnable_average(se);
10374 	}
10375 
10376 	return 1;
10377 
10378 err_free_rq:
10379 	kfree(cfs_rq);
10380 err:
10381 	return 0;
10382 }
10383 
10384 void online_fair_sched_group(struct task_group *tg)
10385 {
10386 	struct sched_entity *se;
10387 	struct rq *rq;
10388 	int i;
10389 
10390 	for_each_possible_cpu(i) {
10391 		rq = cpu_rq(i);
10392 		se = tg->se[i];
10393 
10394 		raw_spin_lock_irq(&rq->lock);
10395 		update_rq_clock(rq);
10396 		attach_entity_cfs_rq(se);
10397 		sync_throttle(tg, i);
10398 		raw_spin_unlock_irq(&rq->lock);
10399 	}
10400 }
10401 
10402 void unregister_fair_sched_group(struct task_group *tg)
10403 {
10404 	unsigned long flags;
10405 	struct rq *rq;
10406 	int cpu;
10407 
10408 	for_each_possible_cpu(cpu) {
10409 		if (tg->se[cpu])
10410 			remove_entity_load_avg(tg->se[cpu]);
10411 
10412 		/*
10413 		 * Only empty task groups can be destroyed; so we can speculatively
10414 		 * check on_list without danger of it being re-added.
10415 		 */
10416 		if (!tg->cfs_rq[cpu]->on_list)
10417 			continue;
10418 
10419 		rq = cpu_rq(cpu);
10420 
10421 		raw_spin_lock_irqsave(&rq->lock, flags);
10422 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10423 		raw_spin_unlock_irqrestore(&rq->lock, flags);
10424 	}
10425 }
10426 
10427 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10428 			struct sched_entity *se, int cpu,
10429 			struct sched_entity *parent)
10430 {
10431 	struct rq *rq = cpu_rq(cpu);
10432 
10433 	cfs_rq->tg = tg;
10434 	cfs_rq->rq = rq;
10435 	init_cfs_rq_runtime(cfs_rq);
10436 
10437 	tg->cfs_rq[cpu] = cfs_rq;
10438 	tg->se[cpu] = se;
10439 
10440 	/* se could be NULL for root_task_group */
10441 	if (!se)
10442 		return;
10443 
10444 	if (!parent) {
10445 		se->cfs_rq = &rq->cfs;
10446 		se->depth = 0;
10447 	} else {
10448 		se->cfs_rq = parent->my_q;
10449 		se->depth = parent->depth + 1;
10450 	}
10451 
10452 	se->my_q = cfs_rq;
10453 	/* guarantee group entities always have weight */
10454 	update_load_set(&se->load, NICE_0_LOAD);
10455 	se->parent = parent;
10456 }
10457 
10458 static DEFINE_MUTEX(shares_mutex);
10459 
10460 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10461 {
10462 	int i;
10463 
10464 	/*
10465 	 * We can't change the weight of the root cgroup.
10466 	 */
10467 	if (!tg->se[0])
10468 		return -EINVAL;
10469 
10470 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10471 
10472 	mutex_lock(&shares_mutex);
10473 	if (tg->shares == shares)
10474 		goto done;
10475 
10476 	tg->shares = shares;
10477 	for_each_possible_cpu(i) {
10478 		struct rq *rq = cpu_rq(i);
10479 		struct sched_entity *se = tg->se[i];
10480 		struct rq_flags rf;
10481 
10482 		/* Propagate contribution to hierarchy */
10483 		rq_lock_irqsave(rq, &rf);
10484 		update_rq_clock(rq);
10485 		for_each_sched_entity(se) {
10486 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10487 			update_cfs_group(se);
10488 		}
10489 		rq_unlock_irqrestore(rq, &rf);
10490 	}
10491 
10492 done:
10493 	mutex_unlock(&shares_mutex);
10494 	return 0;
10495 }
10496 #else /* CONFIG_FAIR_GROUP_SCHED */
10497 
10498 void free_fair_sched_group(struct task_group *tg) { }
10499 
10500 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10501 {
10502 	return 1;
10503 }
10504 
10505 void online_fair_sched_group(struct task_group *tg) { }
10506 
10507 void unregister_fair_sched_group(struct task_group *tg) { }
10508 
10509 #endif /* CONFIG_FAIR_GROUP_SCHED */
10510 
10511 
10512 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10513 {
10514 	struct sched_entity *se = &task->se;
10515 	unsigned int rr_interval = 0;
10516 
10517 	/*
10518 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10519 	 * idle runqueue:
10520 	 */
10521 	if (rq->cfs.load.weight)
10522 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10523 
10524 	return rr_interval;
10525 }
10526 
10527 /*
10528  * All the scheduling class methods:
10529  */
10530 const struct sched_class fair_sched_class = {
10531 	.next			= &idle_sched_class,
10532 	.enqueue_task		= enqueue_task_fair,
10533 	.dequeue_task		= dequeue_task_fair,
10534 	.yield_task		= yield_task_fair,
10535 	.yield_to_task		= yield_to_task_fair,
10536 
10537 	.check_preempt_curr	= check_preempt_wakeup,
10538 
10539 	.pick_next_task		= pick_next_task_fair,
10540 	.put_prev_task		= put_prev_task_fair,
10541 
10542 #ifdef CONFIG_SMP
10543 	.select_task_rq		= select_task_rq_fair,
10544 	.migrate_task_rq	= migrate_task_rq_fair,
10545 
10546 	.rq_online		= rq_online_fair,
10547 	.rq_offline		= rq_offline_fair,
10548 
10549 	.task_dead		= task_dead_fair,
10550 	.set_cpus_allowed	= set_cpus_allowed_common,
10551 #endif
10552 
10553 	.set_curr_task          = set_curr_task_fair,
10554 	.task_tick		= task_tick_fair,
10555 	.task_fork		= task_fork_fair,
10556 
10557 	.prio_changed		= prio_changed_fair,
10558 	.switched_from		= switched_from_fair,
10559 	.switched_to		= switched_to_fair,
10560 
10561 	.get_rr_interval	= get_rr_interval_fair,
10562 
10563 	.update_curr		= update_curr_fair,
10564 
10565 #ifdef CONFIG_FAIR_GROUP_SCHED
10566 	.task_change_group	= task_change_group_fair,
10567 #endif
10568 };
10569 
10570 #ifdef CONFIG_SCHED_DEBUG
10571 void print_cfs_stats(struct seq_file *m, int cpu)
10572 {
10573 	struct cfs_rq *cfs_rq, *pos;
10574 
10575 	rcu_read_lock();
10576 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10577 		print_cfs_rq(m, cpu, cfs_rq);
10578 	rcu_read_unlock();
10579 }
10580 
10581 #ifdef CONFIG_NUMA_BALANCING
10582 void show_numa_stats(struct task_struct *p, struct seq_file *m)
10583 {
10584 	int node;
10585 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10586 
10587 	for_each_online_node(node) {
10588 		if (p->numa_faults) {
10589 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10590 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10591 		}
10592 		if (p->numa_group) {
10593 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10594 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10595 		}
10596 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10597 	}
10598 }
10599 #endif /* CONFIG_NUMA_BALANCING */
10600 #endif /* CONFIG_SCHED_DEBUG */
10601 
10602 __init void init_sched_fair_class(void)
10603 {
10604 #ifdef CONFIG_SMP
10605 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10606 
10607 #ifdef CONFIG_NO_HZ_COMMON
10608 	nohz.next_balance = jiffies;
10609 	nohz.next_blocked = jiffies;
10610 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10611 #endif
10612 #endif /* SMP */
10613 
10614 }
10615