xref: /linux/kernel/sched/fair.c (revision ff48e05d8d1eefbdeb4504c0275c78654b858046)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51 
52 #include <asm/switch_to.h>
53 
54 #include "sched.h"
55 #include "stats.h"
56 #include "autogroup.h"
57 
58 /*
59  * The initial- and re-scaling of tunables is configurable
60  *
61  * Options are:
62  *
63  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
64  *   SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
65  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66  *
67  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68  */
69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70 
71 /*
72  * Minimal preemption granularity for CPU-bound tasks:
73  *
74  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75  */
76 unsigned int sysctl_sched_base_slice			= 750000ULL;
77 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
78 
79 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
80 
81 static int __init setup_sched_thermal_decay_shift(char *str)
82 {
83 	pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
84 	return 1;
85 }
86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
87 
88 #ifdef CONFIG_SMP
89 /*
90  * For asym packing, by default the lower numbered CPU has higher priority.
91  */
92 int __weak arch_asym_cpu_priority(int cpu)
93 {
94 	return -cpu;
95 }
96 
97 /*
98  * The margin used when comparing utilization with CPU capacity.
99  *
100  * (default: ~20%)
101  */
102 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
103 
104 /*
105  * The margin used when comparing CPU capacities.
106  * is 'cap1' noticeably greater than 'cap2'
107  *
108  * (default: ~5%)
109  */
110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
111 #endif
112 
113 #ifdef CONFIG_CFS_BANDWIDTH
114 /*
115  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
116  * each time a cfs_rq requests quota.
117  *
118  * Note: in the case that the slice exceeds the runtime remaining (either due
119  * to consumption or the quota being specified to be smaller than the slice)
120  * we will always only issue the remaining available time.
121  *
122  * (default: 5 msec, units: microseconds)
123  */
124 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
125 #endif
126 
127 #ifdef CONFIG_NUMA_BALANCING
128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
129 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
130 #endif
131 
132 #ifdef CONFIG_SYSCTL
133 static struct ctl_table sched_fair_sysctls[] = {
134 #ifdef CONFIG_CFS_BANDWIDTH
135 	{
136 		.procname       = "sched_cfs_bandwidth_slice_us",
137 		.data           = &sysctl_sched_cfs_bandwidth_slice,
138 		.maxlen         = sizeof(unsigned int),
139 		.mode           = 0644,
140 		.proc_handler   = proc_dointvec_minmax,
141 		.extra1         = SYSCTL_ONE,
142 	},
143 #endif
144 #ifdef CONFIG_NUMA_BALANCING
145 	{
146 		.procname	= "numa_balancing_promote_rate_limit_MBps",
147 		.data		= &sysctl_numa_balancing_promote_rate_limit,
148 		.maxlen		= sizeof(unsigned int),
149 		.mode		= 0644,
150 		.proc_handler	= proc_dointvec_minmax,
151 		.extra1		= SYSCTL_ZERO,
152 	},
153 #endif /* CONFIG_NUMA_BALANCING */
154 };
155 
156 static int __init sched_fair_sysctl_init(void)
157 {
158 	register_sysctl_init("kernel", sched_fair_sysctls);
159 	return 0;
160 }
161 late_initcall(sched_fair_sysctl_init);
162 #endif
163 
164 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
165 {
166 	lw->weight += inc;
167 	lw->inv_weight = 0;
168 }
169 
170 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
171 {
172 	lw->weight -= dec;
173 	lw->inv_weight = 0;
174 }
175 
176 static inline void update_load_set(struct load_weight *lw, unsigned long w)
177 {
178 	lw->weight = w;
179 	lw->inv_weight = 0;
180 }
181 
182 /*
183  * Increase the granularity value when there are more CPUs,
184  * because with more CPUs the 'effective latency' as visible
185  * to users decreases. But the relationship is not linear,
186  * so pick a second-best guess by going with the log2 of the
187  * number of CPUs.
188  *
189  * This idea comes from the SD scheduler of Con Kolivas:
190  */
191 static unsigned int get_update_sysctl_factor(void)
192 {
193 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
194 	unsigned int factor;
195 
196 	switch (sysctl_sched_tunable_scaling) {
197 	case SCHED_TUNABLESCALING_NONE:
198 		factor = 1;
199 		break;
200 	case SCHED_TUNABLESCALING_LINEAR:
201 		factor = cpus;
202 		break;
203 	case SCHED_TUNABLESCALING_LOG:
204 	default:
205 		factor = 1 + ilog2(cpus);
206 		break;
207 	}
208 
209 	return factor;
210 }
211 
212 static void update_sysctl(void)
213 {
214 	unsigned int factor = get_update_sysctl_factor();
215 
216 #define SET_SYSCTL(name) \
217 	(sysctl_##name = (factor) * normalized_sysctl_##name)
218 	SET_SYSCTL(sched_base_slice);
219 #undef SET_SYSCTL
220 }
221 
222 void __init sched_init_granularity(void)
223 {
224 	update_sysctl();
225 }
226 
227 #define WMULT_CONST	(~0U)
228 #define WMULT_SHIFT	32
229 
230 static void __update_inv_weight(struct load_weight *lw)
231 {
232 	unsigned long w;
233 
234 	if (likely(lw->inv_weight))
235 		return;
236 
237 	w = scale_load_down(lw->weight);
238 
239 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
240 		lw->inv_weight = 1;
241 	else if (unlikely(!w))
242 		lw->inv_weight = WMULT_CONST;
243 	else
244 		lw->inv_weight = WMULT_CONST / w;
245 }
246 
247 /*
248  * delta_exec * weight / lw.weight
249  *   OR
250  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
251  *
252  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
253  * we're guaranteed shift stays positive because inv_weight is guaranteed to
254  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
255  *
256  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
257  * weight/lw.weight <= 1, and therefore our shift will also be positive.
258  */
259 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
260 {
261 	u64 fact = scale_load_down(weight);
262 	u32 fact_hi = (u32)(fact >> 32);
263 	int shift = WMULT_SHIFT;
264 	int fs;
265 
266 	__update_inv_weight(lw);
267 
268 	if (unlikely(fact_hi)) {
269 		fs = fls(fact_hi);
270 		shift -= fs;
271 		fact >>= fs;
272 	}
273 
274 	fact = mul_u32_u32(fact, lw->inv_weight);
275 
276 	fact_hi = (u32)(fact >> 32);
277 	if (fact_hi) {
278 		fs = fls(fact_hi);
279 		shift -= fs;
280 		fact >>= fs;
281 	}
282 
283 	return mul_u64_u32_shr(delta_exec, fact, shift);
284 }
285 
286 /*
287  * delta /= w
288  */
289 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
290 {
291 	if (unlikely(se->load.weight != NICE_0_LOAD))
292 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
293 
294 	return delta;
295 }
296 
297 const struct sched_class fair_sched_class;
298 
299 /**************************************************************
300  * CFS operations on generic schedulable entities:
301  */
302 
303 #ifdef CONFIG_FAIR_GROUP_SCHED
304 
305 /* Walk up scheduling entities hierarchy */
306 #define for_each_sched_entity(se) \
307 		for (; se; se = se->parent)
308 
309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
310 {
311 	struct rq *rq = rq_of(cfs_rq);
312 	int cpu = cpu_of(rq);
313 
314 	if (cfs_rq->on_list)
315 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
316 
317 	cfs_rq->on_list = 1;
318 
319 	/*
320 	 * Ensure we either appear before our parent (if already
321 	 * enqueued) or force our parent to appear after us when it is
322 	 * enqueued. The fact that we always enqueue bottom-up
323 	 * reduces this to two cases and a special case for the root
324 	 * cfs_rq. Furthermore, it also means that we will always reset
325 	 * tmp_alone_branch either when the branch is connected
326 	 * to a tree or when we reach the top of the tree
327 	 */
328 	if (cfs_rq->tg->parent &&
329 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
330 		/*
331 		 * If parent is already on the list, we add the child
332 		 * just before. Thanks to circular linked property of
333 		 * the list, this means to put the child at the tail
334 		 * of the list that starts by parent.
335 		 */
336 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
338 		/*
339 		 * The branch is now connected to its tree so we can
340 		 * reset tmp_alone_branch to the beginning of the
341 		 * list.
342 		 */
343 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
344 		return true;
345 	}
346 
347 	if (!cfs_rq->tg->parent) {
348 		/*
349 		 * cfs rq without parent should be put
350 		 * at the tail of the list.
351 		 */
352 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
353 			&rq->leaf_cfs_rq_list);
354 		/*
355 		 * We have reach the top of a tree so we can reset
356 		 * tmp_alone_branch to the beginning of the list.
357 		 */
358 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
359 		return true;
360 	}
361 
362 	/*
363 	 * The parent has not already been added so we want to
364 	 * make sure that it will be put after us.
365 	 * tmp_alone_branch points to the begin of the branch
366 	 * where we will add parent.
367 	 */
368 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
369 	/*
370 	 * update tmp_alone_branch to points to the new begin
371 	 * of the branch
372 	 */
373 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
374 	return false;
375 }
376 
377 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
378 {
379 	if (cfs_rq->on_list) {
380 		struct rq *rq = rq_of(cfs_rq);
381 
382 		/*
383 		 * With cfs_rq being unthrottled/throttled during an enqueue,
384 		 * it can happen the tmp_alone_branch points to the leaf that
385 		 * we finally want to delete. In this case, tmp_alone_branch moves
386 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
387 		 * at the end of the enqueue.
388 		 */
389 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
390 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
391 
392 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
393 		cfs_rq->on_list = 0;
394 	}
395 }
396 
397 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
398 {
399 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
400 }
401 
402 /* Iterate through all leaf cfs_rq's on a runqueue */
403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
404 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
405 				 leaf_cfs_rq_list)
406 
407 /* Do the two (enqueued) entities belong to the same group ? */
408 static inline struct cfs_rq *
409 is_same_group(struct sched_entity *se, struct sched_entity *pse)
410 {
411 	if (se->cfs_rq == pse->cfs_rq)
412 		return se->cfs_rq;
413 
414 	return NULL;
415 }
416 
417 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
418 {
419 	return se->parent;
420 }
421 
422 static void
423 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
424 {
425 	int se_depth, pse_depth;
426 
427 	/*
428 	 * preemption test can be made between sibling entities who are in the
429 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
430 	 * both tasks until we find their ancestors who are siblings of common
431 	 * parent.
432 	 */
433 
434 	/* First walk up until both entities are at same depth */
435 	se_depth = (*se)->depth;
436 	pse_depth = (*pse)->depth;
437 
438 	while (se_depth > pse_depth) {
439 		se_depth--;
440 		*se = parent_entity(*se);
441 	}
442 
443 	while (pse_depth > se_depth) {
444 		pse_depth--;
445 		*pse = parent_entity(*pse);
446 	}
447 
448 	while (!is_same_group(*se, *pse)) {
449 		*se = parent_entity(*se);
450 		*pse = parent_entity(*pse);
451 	}
452 }
453 
454 static int tg_is_idle(struct task_group *tg)
455 {
456 	return tg->idle > 0;
457 }
458 
459 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
460 {
461 	return cfs_rq->idle > 0;
462 }
463 
464 static int se_is_idle(struct sched_entity *se)
465 {
466 	if (entity_is_task(se))
467 		return task_has_idle_policy(task_of(se));
468 	return cfs_rq_is_idle(group_cfs_rq(se));
469 }
470 
471 #else	/* !CONFIG_FAIR_GROUP_SCHED */
472 
473 #define for_each_sched_entity(se) \
474 		for (; se; se = NULL)
475 
476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
477 {
478 	return true;
479 }
480 
481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
482 {
483 }
484 
485 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
486 {
487 }
488 
489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
490 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
491 
492 static inline struct sched_entity *parent_entity(struct sched_entity *se)
493 {
494 	return NULL;
495 }
496 
497 static inline void
498 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
499 {
500 }
501 
502 static inline int tg_is_idle(struct task_group *tg)
503 {
504 	return 0;
505 }
506 
507 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
508 {
509 	return 0;
510 }
511 
512 static int se_is_idle(struct sched_entity *se)
513 {
514 	return task_has_idle_policy(task_of(se));
515 }
516 
517 #endif	/* CONFIG_FAIR_GROUP_SCHED */
518 
519 static __always_inline
520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
521 
522 /**************************************************************
523  * Scheduling class tree data structure manipulation methods:
524  */
525 
526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
527 {
528 	s64 delta = (s64)(vruntime - max_vruntime);
529 	if (delta > 0)
530 		max_vruntime = vruntime;
531 
532 	return max_vruntime;
533 }
534 
535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
536 {
537 	s64 delta = (s64)(vruntime - min_vruntime);
538 	if (delta < 0)
539 		min_vruntime = vruntime;
540 
541 	return min_vruntime;
542 }
543 
544 static inline bool entity_before(const struct sched_entity *a,
545 				 const struct sched_entity *b)
546 {
547 	/*
548 	 * Tiebreak on vruntime seems unnecessary since it can
549 	 * hardly happen.
550 	 */
551 	return (s64)(a->deadline - b->deadline) < 0;
552 }
553 
554 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
555 {
556 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
557 }
558 
559 #define __node_2_se(node) \
560 	rb_entry((node), struct sched_entity, run_node)
561 
562 /*
563  * Compute virtual time from the per-task service numbers:
564  *
565  * Fair schedulers conserve lag:
566  *
567  *   \Sum lag_i = 0
568  *
569  * Where lag_i is given by:
570  *
571  *   lag_i = S - s_i = w_i * (V - v_i)
572  *
573  * Where S is the ideal service time and V is it's virtual time counterpart.
574  * Therefore:
575  *
576  *   \Sum lag_i = 0
577  *   \Sum w_i * (V - v_i) = 0
578  *   \Sum w_i * V - w_i * v_i = 0
579  *
580  * From which we can solve an expression for V in v_i (which we have in
581  * se->vruntime):
582  *
583  *       \Sum v_i * w_i   \Sum v_i * w_i
584  *   V = -------------- = --------------
585  *          \Sum w_i            W
586  *
587  * Specifically, this is the weighted average of all entity virtual runtimes.
588  *
589  * [[ NOTE: this is only equal to the ideal scheduler under the condition
590  *          that join/leave operations happen at lag_i = 0, otherwise the
591  *          virtual time has non-contiguous motion equivalent to:
592  *
593  *	      V +-= lag_i / W
594  *
595  *	    Also see the comment in place_entity() that deals with this. ]]
596  *
597  * However, since v_i is u64, and the multiplication could easily overflow
598  * transform it into a relative form that uses smaller quantities:
599  *
600  * Substitute: v_i == (v_i - v0) + v0
601  *
602  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
603  * V = ---------------------------- = --------------------- + v0
604  *                  W                            W
605  *
606  * Which we track using:
607  *
608  *                    v0 := cfs_rq->min_vruntime
609  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
610  *              \Sum w_i := cfs_rq->avg_load
611  *
612  * Since min_vruntime is a monotonic increasing variable that closely tracks
613  * the per-task service, these deltas: (v_i - v), will be in the order of the
614  * maximal (virtual) lag induced in the system due to quantisation.
615  *
616  * Also, we use scale_load_down() to reduce the size.
617  *
618  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
619  */
620 static void
621 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
622 {
623 	unsigned long weight = scale_load_down(se->load.weight);
624 	s64 key = entity_key(cfs_rq, se);
625 
626 	cfs_rq->avg_vruntime += key * weight;
627 	cfs_rq->avg_load += weight;
628 }
629 
630 static void
631 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
632 {
633 	unsigned long weight = scale_load_down(se->load.weight);
634 	s64 key = entity_key(cfs_rq, se);
635 
636 	cfs_rq->avg_vruntime -= key * weight;
637 	cfs_rq->avg_load -= weight;
638 }
639 
640 static inline
641 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
642 {
643 	/*
644 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
645 	 */
646 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
647 }
648 
649 /*
650  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
651  * For this to be so, the result of this function must have a left bias.
652  */
653 u64 avg_vruntime(struct cfs_rq *cfs_rq)
654 {
655 	struct sched_entity *curr = cfs_rq->curr;
656 	s64 avg = cfs_rq->avg_vruntime;
657 	long load = cfs_rq->avg_load;
658 
659 	if (curr && curr->on_rq) {
660 		unsigned long weight = scale_load_down(curr->load.weight);
661 
662 		avg += entity_key(cfs_rq, curr) * weight;
663 		load += weight;
664 	}
665 
666 	if (load) {
667 		/* sign flips effective floor / ceiling */
668 		if (avg < 0)
669 			avg -= (load - 1);
670 		avg = div_s64(avg, load);
671 	}
672 
673 	return cfs_rq->min_vruntime + avg;
674 }
675 
676 /*
677  * lag_i = S - s_i = w_i * (V - v_i)
678  *
679  * However, since V is approximated by the weighted average of all entities it
680  * is possible -- by addition/removal/reweight to the tree -- to move V around
681  * and end up with a larger lag than we started with.
682  *
683  * Limit this to either double the slice length with a minimum of TICK_NSEC
684  * since that is the timing granularity.
685  *
686  * EEVDF gives the following limit for a steady state system:
687  *
688  *   -r_max < lag < max(r_max, q)
689  *
690  * XXX could add max_slice to the augmented data to track this.
691  */
692 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
693 {
694 	s64 vlag, limit;
695 
696 	SCHED_WARN_ON(!se->on_rq);
697 
698 	vlag = avg_vruntime(cfs_rq) - se->vruntime;
699 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
700 
701 	se->vlag = clamp(vlag, -limit, limit);
702 }
703 
704 /*
705  * Entity is eligible once it received less service than it ought to have,
706  * eg. lag >= 0.
707  *
708  * lag_i = S - s_i = w_i*(V - v_i)
709  *
710  * lag_i >= 0 -> V >= v_i
711  *
712  *     \Sum (v_i - v)*w_i
713  * V = ------------------ + v
714  *          \Sum w_i
715  *
716  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
717  *
718  * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
719  *       to the loss in precision caused by the division.
720  */
721 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
722 {
723 	struct sched_entity *curr = cfs_rq->curr;
724 	s64 avg = cfs_rq->avg_vruntime;
725 	long load = cfs_rq->avg_load;
726 
727 	if (curr && curr->on_rq) {
728 		unsigned long weight = scale_load_down(curr->load.weight);
729 
730 		avg += entity_key(cfs_rq, curr) * weight;
731 		load += weight;
732 	}
733 
734 	return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
735 }
736 
737 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
738 {
739 	return vruntime_eligible(cfs_rq, se->vruntime);
740 }
741 
742 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
743 {
744 	u64 min_vruntime = cfs_rq->min_vruntime;
745 	/*
746 	 * open coded max_vruntime() to allow updating avg_vruntime
747 	 */
748 	s64 delta = (s64)(vruntime - min_vruntime);
749 	if (delta > 0) {
750 		avg_vruntime_update(cfs_rq, delta);
751 		min_vruntime = vruntime;
752 	}
753 	return min_vruntime;
754 }
755 
756 static void update_min_vruntime(struct cfs_rq *cfs_rq)
757 {
758 	struct sched_entity *se = __pick_root_entity(cfs_rq);
759 	struct sched_entity *curr = cfs_rq->curr;
760 	u64 vruntime = cfs_rq->min_vruntime;
761 
762 	if (curr) {
763 		if (curr->on_rq)
764 			vruntime = curr->vruntime;
765 		else
766 			curr = NULL;
767 	}
768 
769 	if (se) {
770 		if (!curr)
771 			vruntime = se->min_vruntime;
772 		else
773 			vruntime = min_vruntime(vruntime, se->min_vruntime);
774 	}
775 
776 	/* ensure we never gain time by being placed backwards. */
777 	cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
778 }
779 
780 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
781 {
782 	struct sched_entity *root = __pick_root_entity(cfs_rq);
783 	struct sched_entity *curr = cfs_rq->curr;
784 	u64 min_slice = ~0ULL;
785 
786 	if (curr && curr->on_rq)
787 		min_slice = curr->slice;
788 
789 	if (root)
790 		min_slice = min(min_slice, root->min_slice);
791 
792 	return min_slice;
793 }
794 
795 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
796 {
797 	return entity_before(__node_2_se(a), __node_2_se(b));
798 }
799 
800 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
801 
802 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
803 {
804 	if (node) {
805 		struct sched_entity *rse = __node_2_se(node);
806 		if (vruntime_gt(min_vruntime, se, rse))
807 			se->min_vruntime = rse->min_vruntime;
808 	}
809 }
810 
811 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
812 {
813 	if (node) {
814 		struct sched_entity *rse = __node_2_se(node);
815 		if (rse->min_slice < se->min_slice)
816 			se->min_slice = rse->min_slice;
817 	}
818 }
819 
820 /*
821  * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
822  */
823 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
824 {
825 	u64 old_min_vruntime = se->min_vruntime;
826 	u64 old_min_slice = se->min_slice;
827 	struct rb_node *node = &se->run_node;
828 
829 	se->min_vruntime = se->vruntime;
830 	__min_vruntime_update(se, node->rb_right);
831 	__min_vruntime_update(se, node->rb_left);
832 
833 	se->min_slice = se->slice;
834 	__min_slice_update(se, node->rb_right);
835 	__min_slice_update(se, node->rb_left);
836 
837 	return se->min_vruntime == old_min_vruntime &&
838 	       se->min_slice == old_min_slice;
839 }
840 
841 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
842 		     run_node, min_vruntime, min_vruntime_update);
843 
844 /*
845  * Enqueue an entity into the rb-tree:
846  */
847 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
848 {
849 	avg_vruntime_add(cfs_rq, se);
850 	se->min_vruntime = se->vruntime;
851 	se->min_slice = se->slice;
852 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
853 				__entity_less, &min_vruntime_cb);
854 }
855 
856 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
857 {
858 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
859 				  &min_vruntime_cb);
860 	avg_vruntime_sub(cfs_rq, se);
861 }
862 
863 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
864 {
865 	struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
866 
867 	if (!root)
868 		return NULL;
869 
870 	return __node_2_se(root);
871 }
872 
873 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
874 {
875 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
876 
877 	if (!left)
878 		return NULL;
879 
880 	return __node_2_se(left);
881 }
882 
883 /*
884  * Earliest Eligible Virtual Deadline First
885  *
886  * In order to provide latency guarantees for different request sizes
887  * EEVDF selects the best runnable task from two criteria:
888  *
889  *  1) the task must be eligible (must be owed service)
890  *
891  *  2) from those tasks that meet 1), we select the one
892  *     with the earliest virtual deadline.
893  *
894  * We can do this in O(log n) time due to an augmented RB-tree. The
895  * tree keeps the entries sorted on deadline, but also functions as a
896  * heap based on the vruntime by keeping:
897  *
898  *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
899  *
900  * Which allows tree pruning through eligibility.
901  */
902 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
903 {
904 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
905 	struct sched_entity *se = __pick_first_entity(cfs_rq);
906 	struct sched_entity *curr = cfs_rq->curr;
907 	struct sched_entity *best = NULL;
908 
909 	/*
910 	 * We can safely skip eligibility check if there is only one entity
911 	 * in this cfs_rq, saving some cycles.
912 	 */
913 	if (cfs_rq->nr_running == 1)
914 		return curr && curr->on_rq ? curr : se;
915 
916 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
917 		curr = NULL;
918 
919 	/*
920 	 * Once selected, run a task until it either becomes non-eligible or
921 	 * until it gets a new slice. See the HACK in set_next_entity().
922 	 */
923 	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
924 		return curr;
925 
926 	/* Pick the leftmost entity if it's eligible */
927 	if (se && entity_eligible(cfs_rq, se)) {
928 		best = se;
929 		goto found;
930 	}
931 
932 	/* Heap search for the EEVD entity */
933 	while (node) {
934 		struct rb_node *left = node->rb_left;
935 
936 		/*
937 		 * Eligible entities in left subtree are always better
938 		 * choices, since they have earlier deadlines.
939 		 */
940 		if (left && vruntime_eligible(cfs_rq,
941 					__node_2_se(left)->min_vruntime)) {
942 			node = left;
943 			continue;
944 		}
945 
946 		se = __node_2_se(node);
947 
948 		/*
949 		 * The left subtree either is empty or has no eligible
950 		 * entity, so check the current node since it is the one
951 		 * with earliest deadline that might be eligible.
952 		 */
953 		if (entity_eligible(cfs_rq, se)) {
954 			best = se;
955 			break;
956 		}
957 
958 		node = node->rb_right;
959 	}
960 found:
961 	if (!best || (curr && entity_before(curr, best)))
962 		best = curr;
963 
964 	return best;
965 }
966 
967 #ifdef CONFIG_SCHED_DEBUG
968 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
969 {
970 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
971 
972 	if (!last)
973 		return NULL;
974 
975 	return __node_2_se(last);
976 }
977 
978 /**************************************************************
979  * Scheduling class statistics methods:
980  */
981 #ifdef CONFIG_SMP
982 int sched_update_scaling(void)
983 {
984 	unsigned int factor = get_update_sysctl_factor();
985 
986 #define WRT_SYSCTL(name) \
987 	(normalized_sysctl_##name = sysctl_##name / (factor))
988 	WRT_SYSCTL(sched_base_slice);
989 #undef WRT_SYSCTL
990 
991 	return 0;
992 }
993 #endif
994 #endif
995 
996 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
997 
998 /*
999  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1000  * this is probably good enough.
1001  */
1002 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1003 {
1004 	if ((s64)(se->vruntime - se->deadline) < 0)
1005 		return false;
1006 
1007 	/*
1008 	 * For EEVDF the virtual time slope is determined by w_i (iow.
1009 	 * nice) while the request time r_i is determined by
1010 	 * sysctl_sched_base_slice.
1011 	 */
1012 	if (!se->custom_slice)
1013 		se->slice = sysctl_sched_base_slice;
1014 
1015 	/*
1016 	 * EEVDF: vd_i = ve_i + r_i / w_i
1017 	 */
1018 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1019 
1020 	/*
1021 	 * The task has consumed its request, reschedule.
1022 	 */
1023 	return true;
1024 }
1025 
1026 #include "pelt.h"
1027 #ifdef CONFIG_SMP
1028 
1029 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1030 static unsigned long task_h_load(struct task_struct *p);
1031 static unsigned long capacity_of(int cpu);
1032 
1033 /* Give new sched_entity start runnable values to heavy its load in infant time */
1034 void init_entity_runnable_average(struct sched_entity *se)
1035 {
1036 	struct sched_avg *sa = &se->avg;
1037 
1038 	memset(sa, 0, sizeof(*sa));
1039 
1040 	/*
1041 	 * Tasks are initialized with full load to be seen as heavy tasks until
1042 	 * they get a chance to stabilize to their real load level.
1043 	 * Group entities are initialized with zero load to reflect the fact that
1044 	 * nothing has been attached to the task group yet.
1045 	 */
1046 	if (entity_is_task(se))
1047 		sa->load_avg = scale_load_down(se->load.weight);
1048 
1049 	/* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1050 }
1051 
1052 /*
1053  * With new tasks being created, their initial util_avgs are extrapolated
1054  * based on the cfs_rq's current util_avg:
1055  *
1056  *   util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1057  *		* se_weight(se)
1058  *
1059  * However, in many cases, the above util_avg does not give a desired
1060  * value. Moreover, the sum of the util_avgs may be divergent, such
1061  * as when the series is a harmonic series.
1062  *
1063  * To solve this problem, we also cap the util_avg of successive tasks to
1064  * only 1/2 of the left utilization budget:
1065  *
1066  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1067  *
1068  * where n denotes the nth task and cpu_scale the CPU capacity.
1069  *
1070  * For example, for a CPU with 1024 of capacity, a simplest series from
1071  * the beginning would be like:
1072  *
1073  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1074  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1075  *
1076  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1077  * if util_avg > util_avg_cap.
1078  */
1079 void post_init_entity_util_avg(struct task_struct *p)
1080 {
1081 	struct sched_entity *se = &p->se;
1082 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1083 	struct sched_avg *sa = &se->avg;
1084 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1085 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1086 
1087 	if (p->sched_class != &fair_sched_class) {
1088 		/*
1089 		 * For !fair tasks do:
1090 		 *
1091 		update_cfs_rq_load_avg(now, cfs_rq);
1092 		attach_entity_load_avg(cfs_rq, se);
1093 		switched_from_fair(rq, p);
1094 		 *
1095 		 * such that the next switched_to_fair() has the
1096 		 * expected state.
1097 		 */
1098 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1099 		return;
1100 	}
1101 
1102 	if (cap > 0) {
1103 		if (cfs_rq->avg.util_avg != 0) {
1104 			sa->util_avg  = cfs_rq->avg.util_avg * se_weight(se);
1105 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1106 
1107 			if (sa->util_avg > cap)
1108 				sa->util_avg = cap;
1109 		} else {
1110 			sa->util_avg = cap;
1111 		}
1112 	}
1113 
1114 	sa->runnable_avg = sa->util_avg;
1115 }
1116 
1117 #else /* !CONFIG_SMP */
1118 void init_entity_runnable_average(struct sched_entity *se)
1119 {
1120 }
1121 void post_init_entity_util_avg(struct task_struct *p)
1122 {
1123 }
1124 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1125 {
1126 }
1127 #endif /* CONFIG_SMP */
1128 
1129 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1130 {
1131 	u64 now = rq_clock_task(rq);
1132 	s64 delta_exec;
1133 
1134 	delta_exec = now - curr->exec_start;
1135 	if (unlikely(delta_exec <= 0))
1136 		return delta_exec;
1137 
1138 	curr->exec_start = now;
1139 	curr->sum_exec_runtime += delta_exec;
1140 
1141 	if (schedstat_enabled()) {
1142 		struct sched_statistics *stats;
1143 
1144 		stats = __schedstats_from_se(curr);
1145 		__schedstat_set(stats->exec_max,
1146 				max(delta_exec, stats->exec_max));
1147 	}
1148 
1149 	return delta_exec;
1150 }
1151 
1152 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1153 {
1154 	trace_sched_stat_runtime(p, delta_exec);
1155 	account_group_exec_runtime(p, delta_exec);
1156 	cgroup_account_cputime(p, delta_exec);
1157 }
1158 
1159 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1160 {
1161 	if (!sched_feat(PREEMPT_SHORT))
1162 		return false;
1163 
1164 	if (curr->vlag == curr->deadline)
1165 		return false;
1166 
1167 	return !entity_eligible(cfs_rq, curr);
1168 }
1169 
1170 static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
1171 				    struct sched_entity *pse, struct sched_entity *se)
1172 {
1173 	if (!sched_feat(PREEMPT_SHORT))
1174 		return false;
1175 
1176 	if (pse->slice >= se->slice)
1177 		return false;
1178 
1179 	if (!entity_eligible(cfs_rq, pse))
1180 		return false;
1181 
1182 	if (entity_before(pse, se))
1183 		return true;
1184 
1185 	if (!entity_eligible(cfs_rq, se))
1186 		return true;
1187 
1188 	return false;
1189 }
1190 
1191 /*
1192  * Used by other classes to account runtime.
1193  */
1194 s64 update_curr_common(struct rq *rq)
1195 {
1196 	struct task_struct *donor = rq->donor;
1197 	s64 delta_exec;
1198 
1199 	delta_exec = update_curr_se(rq, &donor->se);
1200 	if (likely(delta_exec > 0))
1201 		update_curr_task(donor, delta_exec);
1202 
1203 	return delta_exec;
1204 }
1205 
1206 /*
1207  * Update the current task's runtime statistics.
1208  */
1209 static void update_curr(struct cfs_rq *cfs_rq)
1210 {
1211 	struct sched_entity *curr = cfs_rq->curr;
1212 	struct rq *rq = rq_of(cfs_rq);
1213 	s64 delta_exec;
1214 	bool resched;
1215 
1216 	if (unlikely(!curr))
1217 		return;
1218 
1219 	delta_exec = update_curr_se(rq, curr);
1220 	if (unlikely(delta_exec <= 0))
1221 		return;
1222 
1223 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1224 	resched = update_deadline(cfs_rq, curr);
1225 	update_min_vruntime(cfs_rq);
1226 
1227 	if (entity_is_task(curr)) {
1228 		struct task_struct *p = task_of(curr);
1229 
1230 		update_curr_task(p, delta_exec);
1231 
1232 		/*
1233 		 * If the fair_server is active, we need to account for the
1234 		 * fair_server time whether or not the task is running on
1235 		 * behalf of fair_server or not:
1236 		 *  - If the task is running on behalf of fair_server, we need
1237 		 *    to limit its time based on the assigned runtime.
1238 		 *  - Fair task that runs outside of fair_server should account
1239 		 *    against fair_server such that it can account for this time
1240 		 *    and possibly avoid running this period.
1241 		 */
1242 		if (dl_server_active(&rq->fair_server))
1243 			dl_server_update(&rq->fair_server, delta_exec);
1244 	}
1245 
1246 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1247 
1248 	if (cfs_rq->nr_running == 1)
1249 		return;
1250 
1251 	if (resched || did_preempt_short(cfs_rq, curr)) {
1252 		resched_curr_lazy(rq);
1253 		clear_buddies(cfs_rq, curr);
1254 	}
1255 }
1256 
1257 static void update_curr_fair(struct rq *rq)
1258 {
1259 	update_curr(cfs_rq_of(&rq->donor->se));
1260 }
1261 
1262 static inline void
1263 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1264 {
1265 	struct sched_statistics *stats;
1266 	struct task_struct *p = NULL;
1267 
1268 	if (!schedstat_enabled())
1269 		return;
1270 
1271 	stats = __schedstats_from_se(se);
1272 
1273 	if (entity_is_task(se))
1274 		p = task_of(se);
1275 
1276 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1277 }
1278 
1279 static inline void
1280 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1281 {
1282 	struct sched_statistics *stats;
1283 	struct task_struct *p = NULL;
1284 
1285 	if (!schedstat_enabled())
1286 		return;
1287 
1288 	stats = __schedstats_from_se(se);
1289 
1290 	/*
1291 	 * When the sched_schedstat changes from 0 to 1, some sched se
1292 	 * maybe already in the runqueue, the se->statistics.wait_start
1293 	 * will be 0.So it will let the delta wrong. We need to avoid this
1294 	 * scenario.
1295 	 */
1296 	if (unlikely(!schedstat_val(stats->wait_start)))
1297 		return;
1298 
1299 	if (entity_is_task(se))
1300 		p = task_of(se);
1301 
1302 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1303 }
1304 
1305 static inline void
1306 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1307 {
1308 	struct sched_statistics *stats;
1309 	struct task_struct *tsk = NULL;
1310 
1311 	if (!schedstat_enabled())
1312 		return;
1313 
1314 	stats = __schedstats_from_se(se);
1315 
1316 	if (entity_is_task(se))
1317 		tsk = task_of(se);
1318 
1319 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1320 }
1321 
1322 /*
1323  * Task is being enqueued - update stats:
1324  */
1325 static inline void
1326 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1327 {
1328 	if (!schedstat_enabled())
1329 		return;
1330 
1331 	/*
1332 	 * Are we enqueueing a waiting task? (for current tasks
1333 	 * a dequeue/enqueue event is a NOP)
1334 	 */
1335 	if (se != cfs_rq->curr)
1336 		update_stats_wait_start_fair(cfs_rq, se);
1337 
1338 	if (flags & ENQUEUE_WAKEUP)
1339 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1340 }
1341 
1342 static inline void
1343 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1344 {
1345 
1346 	if (!schedstat_enabled())
1347 		return;
1348 
1349 	/*
1350 	 * Mark the end of the wait period if dequeueing a
1351 	 * waiting task:
1352 	 */
1353 	if (se != cfs_rq->curr)
1354 		update_stats_wait_end_fair(cfs_rq, se);
1355 
1356 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1357 		struct task_struct *tsk = task_of(se);
1358 		unsigned int state;
1359 
1360 		/* XXX racy against TTWU */
1361 		state = READ_ONCE(tsk->__state);
1362 		if (state & TASK_INTERRUPTIBLE)
1363 			__schedstat_set(tsk->stats.sleep_start,
1364 				      rq_clock(rq_of(cfs_rq)));
1365 		if (state & TASK_UNINTERRUPTIBLE)
1366 			__schedstat_set(tsk->stats.block_start,
1367 				      rq_clock(rq_of(cfs_rq)));
1368 	}
1369 }
1370 
1371 /*
1372  * We are picking a new current task - update its stats:
1373  */
1374 static inline void
1375 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1376 {
1377 	/*
1378 	 * We are starting a new run period:
1379 	 */
1380 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1381 }
1382 
1383 /**************************************************
1384  * Scheduling class queueing methods:
1385  */
1386 
1387 static inline bool is_core_idle(int cpu)
1388 {
1389 #ifdef CONFIG_SCHED_SMT
1390 	int sibling;
1391 
1392 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1393 		if (cpu == sibling)
1394 			continue;
1395 
1396 		if (!idle_cpu(sibling))
1397 			return false;
1398 	}
1399 #endif
1400 
1401 	return true;
1402 }
1403 
1404 #ifdef CONFIG_NUMA
1405 #define NUMA_IMBALANCE_MIN 2
1406 
1407 static inline long
1408 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1409 {
1410 	/*
1411 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1412 	 * threshold. Above this threshold, individual tasks may be contending
1413 	 * for both memory bandwidth and any shared HT resources.  This is an
1414 	 * approximation as the number of running tasks may not be related to
1415 	 * the number of busy CPUs due to sched_setaffinity.
1416 	 */
1417 	if (dst_running > imb_numa_nr)
1418 		return imbalance;
1419 
1420 	/*
1421 	 * Allow a small imbalance based on a simple pair of communicating
1422 	 * tasks that remain local when the destination is lightly loaded.
1423 	 */
1424 	if (imbalance <= NUMA_IMBALANCE_MIN)
1425 		return 0;
1426 
1427 	return imbalance;
1428 }
1429 #endif /* CONFIG_NUMA */
1430 
1431 #ifdef CONFIG_NUMA_BALANCING
1432 /*
1433  * Approximate time to scan a full NUMA task in ms. The task scan period is
1434  * calculated based on the tasks virtual memory size and
1435  * numa_balancing_scan_size.
1436  */
1437 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1438 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1439 
1440 /* Portion of address space to scan in MB */
1441 unsigned int sysctl_numa_balancing_scan_size = 256;
1442 
1443 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1444 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1445 
1446 /* The page with hint page fault latency < threshold in ms is considered hot */
1447 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1448 
1449 struct numa_group {
1450 	refcount_t refcount;
1451 
1452 	spinlock_t lock; /* nr_tasks, tasks */
1453 	int nr_tasks;
1454 	pid_t gid;
1455 	int active_nodes;
1456 
1457 	struct rcu_head rcu;
1458 	unsigned long total_faults;
1459 	unsigned long max_faults_cpu;
1460 	/*
1461 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1462 	 *
1463 	 * Faults_cpu is used to decide whether memory should move
1464 	 * towards the CPU. As a consequence, these stats are weighted
1465 	 * more by CPU use than by memory faults.
1466 	 */
1467 	unsigned long faults[];
1468 };
1469 
1470 /*
1471  * For functions that can be called in multiple contexts that permit reading
1472  * ->numa_group (see struct task_struct for locking rules).
1473  */
1474 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1475 {
1476 	return rcu_dereference_check(p->numa_group, p == current ||
1477 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1478 }
1479 
1480 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1481 {
1482 	return rcu_dereference_protected(p->numa_group, p == current);
1483 }
1484 
1485 static inline unsigned long group_faults_priv(struct numa_group *ng);
1486 static inline unsigned long group_faults_shared(struct numa_group *ng);
1487 
1488 static unsigned int task_nr_scan_windows(struct task_struct *p)
1489 {
1490 	unsigned long rss = 0;
1491 	unsigned long nr_scan_pages;
1492 
1493 	/*
1494 	 * Calculations based on RSS as non-present and empty pages are skipped
1495 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1496 	 * on resident pages
1497 	 */
1498 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1499 	rss = get_mm_rss(p->mm);
1500 	if (!rss)
1501 		rss = nr_scan_pages;
1502 
1503 	rss = round_up(rss, nr_scan_pages);
1504 	return rss / nr_scan_pages;
1505 }
1506 
1507 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1508 #define MAX_SCAN_WINDOW 2560
1509 
1510 static unsigned int task_scan_min(struct task_struct *p)
1511 {
1512 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1513 	unsigned int scan, floor;
1514 	unsigned int windows = 1;
1515 
1516 	if (scan_size < MAX_SCAN_WINDOW)
1517 		windows = MAX_SCAN_WINDOW / scan_size;
1518 	floor = 1000 / windows;
1519 
1520 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1521 	return max_t(unsigned int, floor, scan);
1522 }
1523 
1524 static unsigned int task_scan_start(struct task_struct *p)
1525 {
1526 	unsigned long smin = task_scan_min(p);
1527 	unsigned long period = smin;
1528 	struct numa_group *ng;
1529 
1530 	/* Scale the maximum scan period with the amount of shared memory. */
1531 	rcu_read_lock();
1532 	ng = rcu_dereference(p->numa_group);
1533 	if (ng) {
1534 		unsigned long shared = group_faults_shared(ng);
1535 		unsigned long private = group_faults_priv(ng);
1536 
1537 		period *= refcount_read(&ng->refcount);
1538 		period *= shared + 1;
1539 		period /= private + shared + 1;
1540 	}
1541 	rcu_read_unlock();
1542 
1543 	return max(smin, period);
1544 }
1545 
1546 static unsigned int task_scan_max(struct task_struct *p)
1547 {
1548 	unsigned long smin = task_scan_min(p);
1549 	unsigned long smax;
1550 	struct numa_group *ng;
1551 
1552 	/* Watch for min being lower than max due to floor calculations */
1553 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1554 
1555 	/* Scale the maximum scan period with the amount of shared memory. */
1556 	ng = deref_curr_numa_group(p);
1557 	if (ng) {
1558 		unsigned long shared = group_faults_shared(ng);
1559 		unsigned long private = group_faults_priv(ng);
1560 		unsigned long period = smax;
1561 
1562 		period *= refcount_read(&ng->refcount);
1563 		period *= shared + 1;
1564 		period /= private + shared + 1;
1565 
1566 		smax = max(smax, period);
1567 	}
1568 
1569 	return max(smin, smax);
1570 }
1571 
1572 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1573 {
1574 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1575 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1576 }
1577 
1578 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1579 {
1580 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1581 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1582 }
1583 
1584 /* Shared or private faults. */
1585 #define NR_NUMA_HINT_FAULT_TYPES 2
1586 
1587 /* Memory and CPU locality */
1588 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1589 
1590 /* Averaged statistics, and temporary buffers. */
1591 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1592 
1593 pid_t task_numa_group_id(struct task_struct *p)
1594 {
1595 	struct numa_group *ng;
1596 	pid_t gid = 0;
1597 
1598 	rcu_read_lock();
1599 	ng = rcu_dereference(p->numa_group);
1600 	if (ng)
1601 		gid = ng->gid;
1602 	rcu_read_unlock();
1603 
1604 	return gid;
1605 }
1606 
1607 /*
1608  * The averaged statistics, shared & private, memory & CPU,
1609  * occupy the first half of the array. The second half of the
1610  * array is for current counters, which are averaged into the
1611  * first set by task_numa_placement.
1612  */
1613 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1614 {
1615 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1616 }
1617 
1618 static inline unsigned long task_faults(struct task_struct *p, int nid)
1619 {
1620 	if (!p->numa_faults)
1621 		return 0;
1622 
1623 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1624 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1625 }
1626 
1627 static inline unsigned long group_faults(struct task_struct *p, int nid)
1628 {
1629 	struct numa_group *ng = deref_task_numa_group(p);
1630 
1631 	if (!ng)
1632 		return 0;
1633 
1634 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1635 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1636 }
1637 
1638 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1639 {
1640 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1641 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1642 }
1643 
1644 static inline unsigned long group_faults_priv(struct numa_group *ng)
1645 {
1646 	unsigned long faults = 0;
1647 	int node;
1648 
1649 	for_each_online_node(node) {
1650 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1651 	}
1652 
1653 	return faults;
1654 }
1655 
1656 static inline unsigned long group_faults_shared(struct numa_group *ng)
1657 {
1658 	unsigned long faults = 0;
1659 	int node;
1660 
1661 	for_each_online_node(node) {
1662 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1663 	}
1664 
1665 	return faults;
1666 }
1667 
1668 /*
1669  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1670  * considered part of a numa group's pseudo-interleaving set. Migrations
1671  * between these nodes are slowed down, to allow things to settle down.
1672  */
1673 #define ACTIVE_NODE_FRACTION 3
1674 
1675 static bool numa_is_active_node(int nid, struct numa_group *ng)
1676 {
1677 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1678 }
1679 
1680 /* Handle placement on systems where not all nodes are directly connected. */
1681 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1682 					int lim_dist, bool task)
1683 {
1684 	unsigned long score = 0;
1685 	int node, max_dist;
1686 
1687 	/*
1688 	 * All nodes are directly connected, and the same distance
1689 	 * from each other. No need for fancy placement algorithms.
1690 	 */
1691 	if (sched_numa_topology_type == NUMA_DIRECT)
1692 		return 0;
1693 
1694 	/* sched_max_numa_distance may be changed in parallel. */
1695 	max_dist = READ_ONCE(sched_max_numa_distance);
1696 	/*
1697 	 * This code is called for each node, introducing N^2 complexity,
1698 	 * which should be OK given the number of nodes rarely exceeds 8.
1699 	 */
1700 	for_each_online_node(node) {
1701 		unsigned long faults;
1702 		int dist = node_distance(nid, node);
1703 
1704 		/*
1705 		 * The furthest away nodes in the system are not interesting
1706 		 * for placement; nid was already counted.
1707 		 */
1708 		if (dist >= max_dist || node == nid)
1709 			continue;
1710 
1711 		/*
1712 		 * On systems with a backplane NUMA topology, compare groups
1713 		 * of nodes, and move tasks towards the group with the most
1714 		 * memory accesses. When comparing two nodes at distance
1715 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1716 		 * of each group. Skip other nodes.
1717 		 */
1718 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1719 			continue;
1720 
1721 		/* Add up the faults from nearby nodes. */
1722 		if (task)
1723 			faults = task_faults(p, node);
1724 		else
1725 			faults = group_faults(p, node);
1726 
1727 		/*
1728 		 * On systems with a glueless mesh NUMA topology, there are
1729 		 * no fixed "groups of nodes". Instead, nodes that are not
1730 		 * directly connected bounce traffic through intermediate
1731 		 * nodes; a numa_group can occupy any set of nodes.
1732 		 * The further away a node is, the less the faults count.
1733 		 * This seems to result in good task placement.
1734 		 */
1735 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1736 			faults *= (max_dist - dist);
1737 			faults /= (max_dist - LOCAL_DISTANCE);
1738 		}
1739 
1740 		score += faults;
1741 	}
1742 
1743 	return score;
1744 }
1745 
1746 /*
1747  * These return the fraction of accesses done by a particular task, or
1748  * task group, on a particular numa node.  The group weight is given a
1749  * larger multiplier, in order to group tasks together that are almost
1750  * evenly spread out between numa nodes.
1751  */
1752 static inline unsigned long task_weight(struct task_struct *p, int nid,
1753 					int dist)
1754 {
1755 	unsigned long faults, total_faults;
1756 
1757 	if (!p->numa_faults)
1758 		return 0;
1759 
1760 	total_faults = p->total_numa_faults;
1761 
1762 	if (!total_faults)
1763 		return 0;
1764 
1765 	faults = task_faults(p, nid);
1766 	faults += score_nearby_nodes(p, nid, dist, true);
1767 
1768 	return 1000 * faults / total_faults;
1769 }
1770 
1771 static inline unsigned long group_weight(struct task_struct *p, int nid,
1772 					 int dist)
1773 {
1774 	struct numa_group *ng = deref_task_numa_group(p);
1775 	unsigned long faults, total_faults;
1776 
1777 	if (!ng)
1778 		return 0;
1779 
1780 	total_faults = ng->total_faults;
1781 
1782 	if (!total_faults)
1783 		return 0;
1784 
1785 	faults = group_faults(p, nid);
1786 	faults += score_nearby_nodes(p, nid, dist, false);
1787 
1788 	return 1000 * faults / total_faults;
1789 }
1790 
1791 /*
1792  * If memory tiering mode is enabled, cpupid of slow memory page is
1793  * used to record scan time instead of CPU and PID.  When tiering mode
1794  * is disabled at run time, the scan time (in cpupid) will be
1795  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1796  * access out of array bound.
1797  */
1798 static inline bool cpupid_valid(int cpupid)
1799 {
1800 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1801 }
1802 
1803 /*
1804  * For memory tiering mode, if there are enough free pages (more than
1805  * enough watermark defined here) in fast memory node, to take full
1806  * advantage of fast memory capacity, all recently accessed slow
1807  * memory pages will be migrated to fast memory node without
1808  * considering hot threshold.
1809  */
1810 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1811 {
1812 	int z;
1813 	unsigned long enough_wmark;
1814 
1815 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1816 			   pgdat->node_present_pages >> 4);
1817 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1818 		struct zone *zone = pgdat->node_zones + z;
1819 
1820 		if (!populated_zone(zone))
1821 			continue;
1822 
1823 		if (zone_watermark_ok(zone, 0,
1824 				      promo_wmark_pages(zone) + enough_wmark,
1825 				      ZONE_MOVABLE, 0))
1826 			return true;
1827 	}
1828 	return false;
1829 }
1830 
1831 /*
1832  * For memory tiering mode, when page tables are scanned, the scan
1833  * time will be recorded in struct page in addition to make page
1834  * PROT_NONE for slow memory page.  So when the page is accessed, in
1835  * hint page fault handler, the hint page fault latency is calculated
1836  * via,
1837  *
1838  *	hint page fault latency = hint page fault time - scan time
1839  *
1840  * The smaller the hint page fault latency, the higher the possibility
1841  * for the page to be hot.
1842  */
1843 static int numa_hint_fault_latency(struct folio *folio)
1844 {
1845 	int last_time, time;
1846 
1847 	time = jiffies_to_msecs(jiffies);
1848 	last_time = folio_xchg_access_time(folio, time);
1849 
1850 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1851 }
1852 
1853 /*
1854  * For memory tiering mode, too high promotion/demotion throughput may
1855  * hurt application latency.  So we provide a mechanism to rate limit
1856  * the number of pages that are tried to be promoted.
1857  */
1858 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1859 				      unsigned long rate_limit, int nr)
1860 {
1861 	unsigned long nr_cand;
1862 	unsigned int now, start;
1863 
1864 	now = jiffies_to_msecs(jiffies);
1865 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1866 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1867 	start = pgdat->nbp_rl_start;
1868 	if (now - start > MSEC_PER_SEC &&
1869 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1870 		pgdat->nbp_rl_nr_cand = nr_cand;
1871 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1872 		return true;
1873 	return false;
1874 }
1875 
1876 #define NUMA_MIGRATION_ADJUST_STEPS	16
1877 
1878 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1879 					    unsigned long rate_limit,
1880 					    unsigned int ref_th)
1881 {
1882 	unsigned int now, start, th_period, unit_th, th;
1883 	unsigned long nr_cand, ref_cand, diff_cand;
1884 
1885 	now = jiffies_to_msecs(jiffies);
1886 	th_period = sysctl_numa_balancing_scan_period_max;
1887 	start = pgdat->nbp_th_start;
1888 	if (now - start > th_period &&
1889 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1890 		ref_cand = rate_limit *
1891 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1892 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1893 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1894 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1895 		th = pgdat->nbp_threshold ? : ref_th;
1896 		if (diff_cand > ref_cand * 11 / 10)
1897 			th = max(th - unit_th, unit_th);
1898 		else if (diff_cand < ref_cand * 9 / 10)
1899 			th = min(th + unit_th, ref_th * 2);
1900 		pgdat->nbp_th_nr_cand = nr_cand;
1901 		pgdat->nbp_threshold = th;
1902 	}
1903 }
1904 
1905 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1906 				int src_nid, int dst_cpu)
1907 {
1908 	struct numa_group *ng = deref_curr_numa_group(p);
1909 	int dst_nid = cpu_to_node(dst_cpu);
1910 	int last_cpupid, this_cpupid;
1911 
1912 	/*
1913 	 * Cannot migrate to memoryless nodes.
1914 	 */
1915 	if (!node_state(dst_nid, N_MEMORY))
1916 		return false;
1917 
1918 	/*
1919 	 * The pages in slow memory node should be migrated according
1920 	 * to hot/cold instead of private/shared.
1921 	 */
1922 	if (folio_use_access_time(folio)) {
1923 		struct pglist_data *pgdat;
1924 		unsigned long rate_limit;
1925 		unsigned int latency, th, def_th;
1926 
1927 		pgdat = NODE_DATA(dst_nid);
1928 		if (pgdat_free_space_enough(pgdat)) {
1929 			/* workload changed, reset hot threshold */
1930 			pgdat->nbp_threshold = 0;
1931 			return true;
1932 		}
1933 
1934 		def_th = sysctl_numa_balancing_hot_threshold;
1935 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1936 			(20 - PAGE_SHIFT);
1937 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1938 
1939 		th = pgdat->nbp_threshold ? : def_th;
1940 		latency = numa_hint_fault_latency(folio);
1941 		if (latency >= th)
1942 			return false;
1943 
1944 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1945 						  folio_nr_pages(folio));
1946 	}
1947 
1948 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1949 	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1950 
1951 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1952 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1953 		return false;
1954 
1955 	/*
1956 	 * Allow first faults or private faults to migrate immediately early in
1957 	 * the lifetime of a task. The magic number 4 is based on waiting for
1958 	 * two full passes of the "multi-stage node selection" test that is
1959 	 * executed below.
1960 	 */
1961 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1962 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1963 		return true;
1964 
1965 	/*
1966 	 * Multi-stage node selection is used in conjunction with a periodic
1967 	 * migration fault to build a temporal task<->page relation. By using
1968 	 * a two-stage filter we remove short/unlikely relations.
1969 	 *
1970 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1971 	 * a task's usage of a particular page (n_p) per total usage of this
1972 	 * page (n_t) (in a given time-span) to a probability.
1973 	 *
1974 	 * Our periodic faults will sample this probability and getting the
1975 	 * same result twice in a row, given these samples are fully
1976 	 * independent, is then given by P(n)^2, provided our sample period
1977 	 * is sufficiently short compared to the usage pattern.
1978 	 *
1979 	 * This quadric squishes small probabilities, making it less likely we
1980 	 * act on an unlikely task<->page relation.
1981 	 */
1982 	if (!cpupid_pid_unset(last_cpupid) &&
1983 				cpupid_to_nid(last_cpupid) != dst_nid)
1984 		return false;
1985 
1986 	/* Always allow migrate on private faults */
1987 	if (cpupid_match_pid(p, last_cpupid))
1988 		return true;
1989 
1990 	/* A shared fault, but p->numa_group has not been set up yet. */
1991 	if (!ng)
1992 		return true;
1993 
1994 	/*
1995 	 * Destination node is much more heavily used than the source
1996 	 * node? Allow migration.
1997 	 */
1998 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1999 					ACTIVE_NODE_FRACTION)
2000 		return true;
2001 
2002 	/*
2003 	 * Distribute memory according to CPU & memory use on each node,
2004 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2005 	 *
2006 	 * faults_cpu(dst)   3   faults_cpu(src)
2007 	 * --------------- * - > ---------------
2008 	 * faults_mem(dst)   4   faults_mem(src)
2009 	 */
2010 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2011 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2012 }
2013 
2014 /*
2015  * 'numa_type' describes the node at the moment of load balancing.
2016  */
2017 enum numa_type {
2018 	/* The node has spare capacity that can be used to run more tasks.  */
2019 	node_has_spare = 0,
2020 	/*
2021 	 * The node is fully used and the tasks don't compete for more CPU
2022 	 * cycles. Nevertheless, some tasks might wait before running.
2023 	 */
2024 	node_fully_busy,
2025 	/*
2026 	 * The node is overloaded and can't provide expected CPU cycles to all
2027 	 * tasks.
2028 	 */
2029 	node_overloaded
2030 };
2031 
2032 /* Cached statistics for all CPUs within a node */
2033 struct numa_stats {
2034 	unsigned long load;
2035 	unsigned long runnable;
2036 	unsigned long util;
2037 	/* Total compute capacity of CPUs on a node */
2038 	unsigned long compute_capacity;
2039 	unsigned int nr_running;
2040 	unsigned int weight;
2041 	enum numa_type node_type;
2042 	int idle_cpu;
2043 };
2044 
2045 struct task_numa_env {
2046 	struct task_struct *p;
2047 
2048 	int src_cpu, src_nid;
2049 	int dst_cpu, dst_nid;
2050 	int imb_numa_nr;
2051 
2052 	struct numa_stats src_stats, dst_stats;
2053 
2054 	int imbalance_pct;
2055 	int dist;
2056 
2057 	struct task_struct *best_task;
2058 	long best_imp;
2059 	int best_cpu;
2060 };
2061 
2062 static unsigned long cpu_load(struct rq *rq);
2063 static unsigned long cpu_runnable(struct rq *rq);
2064 
2065 static inline enum
2066 numa_type numa_classify(unsigned int imbalance_pct,
2067 			 struct numa_stats *ns)
2068 {
2069 	if ((ns->nr_running > ns->weight) &&
2070 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2071 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2072 		return node_overloaded;
2073 
2074 	if ((ns->nr_running < ns->weight) ||
2075 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2076 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2077 		return node_has_spare;
2078 
2079 	return node_fully_busy;
2080 }
2081 
2082 #ifdef CONFIG_SCHED_SMT
2083 /* Forward declarations of select_idle_sibling helpers */
2084 static inline bool test_idle_cores(int cpu);
2085 static inline int numa_idle_core(int idle_core, int cpu)
2086 {
2087 	if (!static_branch_likely(&sched_smt_present) ||
2088 	    idle_core >= 0 || !test_idle_cores(cpu))
2089 		return idle_core;
2090 
2091 	/*
2092 	 * Prefer cores instead of packing HT siblings
2093 	 * and triggering future load balancing.
2094 	 */
2095 	if (is_core_idle(cpu))
2096 		idle_core = cpu;
2097 
2098 	return idle_core;
2099 }
2100 #else
2101 static inline int numa_idle_core(int idle_core, int cpu)
2102 {
2103 	return idle_core;
2104 }
2105 #endif
2106 
2107 /*
2108  * Gather all necessary information to make NUMA balancing placement
2109  * decisions that are compatible with standard load balancer. This
2110  * borrows code and logic from update_sg_lb_stats but sharing a
2111  * common implementation is impractical.
2112  */
2113 static void update_numa_stats(struct task_numa_env *env,
2114 			      struct numa_stats *ns, int nid,
2115 			      bool find_idle)
2116 {
2117 	int cpu, idle_core = -1;
2118 
2119 	memset(ns, 0, sizeof(*ns));
2120 	ns->idle_cpu = -1;
2121 
2122 	rcu_read_lock();
2123 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2124 		struct rq *rq = cpu_rq(cpu);
2125 
2126 		ns->load += cpu_load(rq);
2127 		ns->runnable += cpu_runnable(rq);
2128 		ns->util += cpu_util_cfs(cpu);
2129 		ns->nr_running += rq->cfs.h_nr_running;
2130 		ns->compute_capacity += capacity_of(cpu);
2131 
2132 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2133 			if (READ_ONCE(rq->numa_migrate_on) ||
2134 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2135 				continue;
2136 
2137 			if (ns->idle_cpu == -1)
2138 				ns->idle_cpu = cpu;
2139 
2140 			idle_core = numa_idle_core(idle_core, cpu);
2141 		}
2142 	}
2143 	rcu_read_unlock();
2144 
2145 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2146 
2147 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2148 
2149 	if (idle_core >= 0)
2150 		ns->idle_cpu = idle_core;
2151 }
2152 
2153 static void task_numa_assign(struct task_numa_env *env,
2154 			     struct task_struct *p, long imp)
2155 {
2156 	struct rq *rq = cpu_rq(env->dst_cpu);
2157 
2158 	/* Check if run-queue part of active NUMA balance. */
2159 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2160 		int cpu;
2161 		int start = env->dst_cpu;
2162 
2163 		/* Find alternative idle CPU. */
2164 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2165 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2166 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2167 				continue;
2168 			}
2169 
2170 			env->dst_cpu = cpu;
2171 			rq = cpu_rq(env->dst_cpu);
2172 			if (!xchg(&rq->numa_migrate_on, 1))
2173 				goto assign;
2174 		}
2175 
2176 		/* Failed to find an alternative idle CPU */
2177 		return;
2178 	}
2179 
2180 assign:
2181 	/*
2182 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2183 	 * found a better CPU to move/swap.
2184 	 */
2185 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2186 		rq = cpu_rq(env->best_cpu);
2187 		WRITE_ONCE(rq->numa_migrate_on, 0);
2188 	}
2189 
2190 	if (env->best_task)
2191 		put_task_struct(env->best_task);
2192 	if (p)
2193 		get_task_struct(p);
2194 
2195 	env->best_task = p;
2196 	env->best_imp = imp;
2197 	env->best_cpu = env->dst_cpu;
2198 }
2199 
2200 static bool load_too_imbalanced(long src_load, long dst_load,
2201 				struct task_numa_env *env)
2202 {
2203 	long imb, old_imb;
2204 	long orig_src_load, orig_dst_load;
2205 	long src_capacity, dst_capacity;
2206 
2207 	/*
2208 	 * The load is corrected for the CPU capacity available on each node.
2209 	 *
2210 	 * src_load        dst_load
2211 	 * ------------ vs ---------
2212 	 * src_capacity    dst_capacity
2213 	 */
2214 	src_capacity = env->src_stats.compute_capacity;
2215 	dst_capacity = env->dst_stats.compute_capacity;
2216 
2217 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2218 
2219 	orig_src_load = env->src_stats.load;
2220 	orig_dst_load = env->dst_stats.load;
2221 
2222 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2223 
2224 	/* Would this change make things worse? */
2225 	return (imb > old_imb);
2226 }
2227 
2228 /*
2229  * Maximum NUMA importance can be 1998 (2*999);
2230  * SMALLIMP @ 30 would be close to 1998/64.
2231  * Used to deter task migration.
2232  */
2233 #define SMALLIMP	30
2234 
2235 /*
2236  * This checks if the overall compute and NUMA accesses of the system would
2237  * be improved if the source tasks was migrated to the target dst_cpu taking
2238  * into account that it might be best if task running on the dst_cpu should
2239  * be exchanged with the source task
2240  */
2241 static bool task_numa_compare(struct task_numa_env *env,
2242 			      long taskimp, long groupimp, bool maymove)
2243 {
2244 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2245 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2246 	long imp = p_ng ? groupimp : taskimp;
2247 	struct task_struct *cur;
2248 	long src_load, dst_load;
2249 	int dist = env->dist;
2250 	long moveimp = imp;
2251 	long load;
2252 	bool stopsearch = false;
2253 
2254 	if (READ_ONCE(dst_rq->numa_migrate_on))
2255 		return false;
2256 
2257 	rcu_read_lock();
2258 	cur = rcu_dereference(dst_rq->curr);
2259 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2260 		cur = NULL;
2261 
2262 	/*
2263 	 * Because we have preemption enabled we can get migrated around and
2264 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2265 	 */
2266 	if (cur == env->p) {
2267 		stopsearch = true;
2268 		goto unlock;
2269 	}
2270 
2271 	if (!cur) {
2272 		if (maymove && moveimp >= env->best_imp)
2273 			goto assign;
2274 		else
2275 			goto unlock;
2276 	}
2277 
2278 	/* Skip this swap candidate if cannot move to the source cpu. */
2279 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2280 		goto unlock;
2281 
2282 	/*
2283 	 * Skip this swap candidate if it is not moving to its preferred
2284 	 * node and the best task is.
2285 	 */
2286 	if (env->best_task &&
2287 	    env->best_task->numa_preferred_nid == env->src_nid &&
2288 	    cur->numa_preferred_nid != env->src_nid) {
2289 		goto unlock;
2290 	}
2291 
2292 	/*
2293 	 * "imp" is the fault differential for the source task between the
2294 	 * source and destination node. Calculate the total differential for
2295 	 * the source task and potential destination task. The more negative
2296 	 * the value is, the more remote accesses that would be expected to
2297 	 * be incurred if the tasks were swapped.
2298 	 *
2299 	 * If dst and source tasks are in the same NUMA group, or not
2300 	 * in any group then look only at task weights.
2301 	 */
2302 	cur_ng = rcu_dereference(cur->numa_group);
2303 	if (cur_ng == p_ng) {
2304 		/*
2305 		 * Do not swap within a group or between tasks that have
2306 		 * no group if there is spare capacity. Swapping does
2307 		 * not address the load imbalance and helps one task at
2308 		 * the cost of punishing another.
2309 		 */
2310 		if (env->dst_stats.node_type == node_has_spare)
2311 			goto unlock;
2312 
2313 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2314 		      task_weight(cur, env->dst_nid, dist);
2315 		/*
2316 		 * Add some hysteresis to prevent swapping the
2317 		 * tasks within a group over tiny differences.
2318 		 */
2319 		if (cur_ng)
2320 			imp -= imp / 16;
2321 	} else {
2322 		/*
2323 		 * Compare the group weights. If a task is all by itself
2324 		 * (not part of a group), use the task weight instead.
2325 		 */
2326 		if (cur_ng && p_ng)
2327 			imp += group_weight(cur, env->src_nid, dist) -
2328 			       group_weight(cur, env->dst_nid, dist);
2329 		else
2330 			imp += task_weight(cur, env->src_nid, dist) -
2331 			       task_weight(cur, env->dst_nid, dist);
2332 	}
2333 
2334 	/* Discourage picking a task already on its preferred node */
2335 	if (cur->numa_preferred_nid == env->dst_nid)
2336 		imp -= imp / 16;
2337 
2338 	/*
2339 	 * Encourage picking a task that moves to its preferred node.
2340 	 * This potentially makes imp larger than it's maximum of
2341 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2342 	 * case, it does not matter.
2343 	 */
2344 	if (cur->numa_preferred_nid == env->src_nid)
2345 		imp += imp / 8;
2346 
2347 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2348 		imp = moveimp;
2349 		cur = NULL;
2350 		goto assign;
2351 	}
2352 
2353 	/*
2354 	 * Prefer swapping with a task moving to its preferred node over a
2355 	 * task that is not.
2356 	 */
2357 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2358 	    env->best_task->numa_preferred_nid != env->src_nid) {
2359 		goto assign;
2360 	}
2361 
2362 	/*
2363 	 * If the NUMA importance is less than SMALLIMP,
2364 	 * task migration might only result in ping pong
2365 	 * of tasks and also hurt performance due to cache
2366 	 * misses.
2367 	 */
2368 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2369 		goto unlock;
2370 
2371 	/*
2372 	 * In the overloaded case, try and keep the load balanced.
2373 	 */
2374 	load = task_h_load(env->p) - task_h_load(cur);
2375 	if (!load)
2376 		goto assign;
2377 
2378 	dst_load = env->dst_stats.load + load;
2379 	src_load = env->src_stats.load - load;
2380 
2381 	if (load_too_imbalanced(src_load, dst_load, env))
2382 		goto unlock;
2383 
2384 assign:
2385 	/* Evaluate an idle CPU for a task numa move. */
2386 	if (!cur) {
2387 		int cpu = env->dst_stats.idle_cpu;
2388 
2389 		/* Nothing cached so current CPU went idle since the search. */
2390 		if (cpu < 0)
2391 			cpu = env->dst_cpu;
2392 
2393 		/*
2394 		 * If the CPU is no longer truly idle and the previous best CPU
2395 		 * is, keep using it.
2396 		 */
2397 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2398 		    idle_cpu(env->best_cpu)) {
2399 			cpu = env->best_cpu;
2400 		}
2401 
2402 		env->dst_cpu = cpu;
2403 	}
2404 
2405 	task_numa_assign(env, cur, imp);
2406 
2407 	/*
2408 	 * If a move to idle is allowed because there is capacity or load
2409 	 * balance improves then stop the search. While a better swap
2410 	 * candidate may exist, a search is not free.
2411 	 */
2412 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2413 		stopsearch = true;
2414 
2415 	/*
2416 	 * If a swap candidate must be identified and the current best task
2417 	 * moves its preferred node then stop the search.
2418 	 */
2419 	if (!maymove && env->best_task &&
2420 	    env->best_task->numa_preferred_nid == env->src_nid) {
2421 		stopsearch = true;
2422 	}
2423 unlock:
2424 	rcu_read_unlock();
2425 
2426 	return stopsearch;
2427 }
2428 
2429 static void task_numa_find_cpu(struct task_numa_env *env,
2430 				long taskimp, long groupimp)
2431 {
2432 	bool maymove = false;
2433 	int cpu;
2434 
2435 	/*
2436 	 * If dst node has spare capacity, then check if there is an
2437 	 * imbalance that would be overruled by the load balancer.
2438 	 */
2439 	if (env->dst_stats.node_type == node_has_spare) {
2440 		unsigned int imbalance;
2441 		int src_running, dst_running;
2442 
2443 		/*
2444 		 * Would movement cause an imbalance? Note that if src has
2445 		 * more running tasks that the imbalance is ignored as the
2446 		 * move improves the imbalance from the perspective of the
2447 		 * CPU load balancer.
2448 		 * */
2449 		src_running = env->src_stats.nr_running - 1;
2450 		dst_running = env->dst_stats.nr_running + 1;
2451 		imbalance = max(0, dst_running - src_running);
2452 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2453 						  env->imb_numa_nr);
2454 
2455 		/* Use idle CPU if there is no imbalance */
2456 		if (!imbalance) {
2457 			maymove = true;
2458 			if (env->dst_stats.idle_cpu >= 0) {
2459 				env->dst_cpu = env->dst_stats.idle_cpu;
2460 				task_numa_assign(env, NULL, 0);
2461 				return;
2462 			}
2463 		}
2464 	} else {
2465 		long src_load, dst_load, load;
2466 		/*
2467 		 * If the improvement from just moving env->p direction is better
2468 		 * than swapping tasks around, check if a move is possible.
2469 		 */
2470 		load = task_h_load(env->p);
2471 		dst_load = env->dst_stats.load + load;
2472 		src_load = env->src_stats.load - load;
2473 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2474 	}
2475 
2476 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2477 		/* Skip this CPU if the source task cannot migrate */
2478 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2479 			continue;
2480 
2481 		env->dst_cpu = cpu;
2482 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2483 			break;
2484 	}
2485 }
2486 
2487 static int task_numa_migrate(struct task_struct *p)
2488 {
2489 	struct task_numa_env env = {
2490 		.p = p,
2491 
2492 		.src_cpu = task_cpu(p),
2493 		.src_nid = task_node(p),
2494 
2495 		.imbalance_pct = 112,
2496 
2497 		.best_task = NULL,
2498 		.best_imp = 0,
2499 		.best_cpu = -1,
2500 	};
2501 	unsigned long taskweight, groupweight;
2502 	struct sched_domain *sd;
2503 	long taskimp, groupimp;
2504 	struct numa_group *ng;
2505 	struct rq *best_rq;
2506 	int nid, ret, dist;
2507 
2508 	/*
2509 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2510 	 * imbalance and would be the first to start moving tasks about.
2511 	 *
2512 	 * And we want to avoid any moving of tasks about, as that would create
2513 	 * random movement of tasks -- counter the numa conditions we're trying
2514 	 * to satisfy here.
2515 	 */
2516 	rcu_read_lock();
2517 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2518 	if (sd) {
2519 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2520 		env.imb_numa_nr = sd->imb_numa_nr;
2521 	}
2522 	rcu_read_unlock();
2523 
2524 	/*
2525 	 * Cpusets can break the scheduler domain tree into smaller
2526 	 * balance domains, some of which do not cross NUMA boundaries.
2527 	 * Tasks that are "trapped" in such domains cannot be migrated
2528 	 * elsewhere, so there is no point in (re)trying.
2529 	 */
2530 	if (unlikely(!sd)) {
2531 		sched_setnuma(p, task_node(p));
2532 		return -EINVAL;
2533 	}
2534 
2535 	env.dst_nid = p->numa_preferred_nid;
2536 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2537 	taskweight = task_weight(p, env.src_nid, dist);
2538 	groupweight = group_weight(p, env.src_nid, dist);
2539 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2540 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2541 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2542 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2543 
2544 	/* Try to find a spot on the preferred nid. */
2545 	task_numa_find_cpu(&env, taskimp, groupimp);
2546 
2547 	/*
2548 	 * Look at other nodes in these cases:
2549 	 * - there is no space available on the preferred_nid
2550 	 * - the task is part of a numa_group that is interleaved across
2551 	 *   multiple NUMA nodes; in order to better consolidate the group,
2552 	 *   we need to check other locations.
2553 	 */
2554 	ng = deref_curr_numa_group(p);
2555 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2556 		for_each_node_state(nid, N_CPU) {
2557 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2558 				continue;
2559 
2560 			dist = node_distance(env.src_nid, env.dst_nid);
2561 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2562 						dist != env.dist) {
2563 				taskweight = task_weight(p, env.src_nid, dist);
2564 				groupweight = group_weight(p, env.src_nid, dist);
2565 			}
2566 
2567 			/* Only consider nodes where both task and groups benefit */
2568 			taskimp = task_weight(p, nid, dist) - taskweight;
2569 			groupimp = group_weight(p, nid, dist) - groupweight;
2570 			if (taskimp < 0 && groupimp < 0)
2571 				continue;
2572 
2573 			env.dist = dist;
2574 			env.dst_nid = nid;
2575 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2576 			task_numa_find_cpu(&env, taskimp, groupimp);
2577 		}
2578 	}
2579 
2580 	/*
2581 	 * If the task is part of a workload that spans multiple NUMA nodes,
2582 	 * and is migrating into one of the workload's active nodes, remember
2583 	 * this node as the task's preferred numa node, so the workload can
2584 	 * settle down.
2585 	 * A task that migrated to a second choice node will be better off
2586 	 * trying for a better one later. Do not set the preferred node here.
2587 	 */
2588 	if (ng) {
2589 		if (env.best_cpu == -1)
2590 			nid = env.src_nid;
2591 		else
2592 			nid = cpu_to_node(env.best_cpu);
2593 
2594 		if (nid != p->numa_preferred_nid)
2595 			sched_setnuma(p, nid);
2596 	}
2597 
2598 	/* No better CPU than the current one was found. */
2599 	if (env.best_cpu == -1) {
2600 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2601 		return -EAGAIN;
2602 	}
2603 
2604 	best_rq = cpu_rq(env.best_cpu);
2605 	if (env.best_task == NULL) {
2606 		ret = migrate_task_to(p, env.best_cpu);
2607 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2608 		if (ret != 0)
2609 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2610 		return ret;
2611 	}
2612 
2613 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2614 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2615 
2616 	if (ret != 0)
2617 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2618 	put_task_struct(env.best_task);
2619 	return ret;
2620 }
2621 
2622 /* Attempt to migrate a task to a CPU on the preferred node. */
2623 static void numa_migrate_preferred(struct task_struct *p)
2624 {
2625 	unsigned long interval = HZ;
2626 
2627 	/* This task has no NUMA fault statistics yet */
2628 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2629 		return;
2630 
2631 	/* Periodically retry migrating the task to the preferred node */
2632 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2633 	p->numa_migrate_retry = jiffies + interval;
2634 
2635 	/* Success if task is already running on preferred CPU */
2636 	if (task_node(p) == p->numa_preferred_nid)
2637 		return;
2638 
2639 	/* Otherwise, try migrate to a CPU on the preferred node */
2640 	task_numa_migrate(p);
2641 }
2642 
2643 /*
2644  * Find out how many nodes the workload is actively running on. Do this by
2645  * tracking the nodes from which NUMA hinting faults are triggered. This can
2646  * be different from the set of nodes where the workload's memory is currently
2647  * located.
2648  */
2649 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2650 {
2651 	unsigned long faults, max_faults = 0;
2652 	int nid, active_nodes = 0;
2653 
2654 	for_each_node_state(nid, N_CPU) {
2655 		faults = group_faults_cpu(numa_group, nid);
2656 		if (faults > max_faults)
2657 			max_faults = faults;
2658 	}
2659 
2660 	for_each_node_state(nid, N_CPU) {
2661 		faults = group_faults_cpu(numa_group, nid);
2662 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2663 			active_nodes++;
2664 	}
2665 
2666 	numa_group->max_faults_cpu = max_faults;
2667 	numa_group->active_nodes = active_nodes;
2668 }
2669 
2670 /*
2671  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2672  * increments. The more local the fault statistics are, the higher the scan
2673  * period will be for the next scan window. If local/(local+remote) ratio is
2674  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2675  * the scan period will decrease. Aim for 70% local accesses.
2676  */
2677 #define NUMA_PERIOD_SLOTS 10
2678 #define NUMA_PERIOD_THRESHOLD 7
2679 
2680 /*
2681  * Increase the scan period (slow down scanning) if the majority of
2682  * our memory is already on our local node, or if the majority of
2683  * the page accesses are shared with other processes.
2684  * Otherwise, decrease the scan period.
2685  */
2686 static void update_task_scan_period(struct task_struct *p,
2687 			unsigned long shared, unsigned long private)
2688 {
2689 	unsigned int period_slot;
2690 	int lr_ratio, ps_ratio;
2691 	int diff;
2692 
2693 	unsigned long remote = p->numa_faults_locality[0];
2694 	unsigned long local = p->numa_faults_locality[1];
2695 
2696 	/*
2697 	 * If there were no record hinting faults then either the task is
2698 	 * completely idle or all activity is in areas that are not of interest
2699 	 * to automatic numa balancing. Related to that, if there were failed
2700 	 * migration then it implies we are migrating too quickly or the local
2701 	 * node is overloaded. In either case, scan slower
2702 	 */
2703 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2704 		p->numa_scan_period = min(p->numa_scan_period_max,
2705 			p->numa_scan_period << 1);
2706 
2707 		p->mm->numa_next_scan = jiffies +
2708 			msecs_to_jiffies(p->numa_scan_period);
2709 
2710 		return;
2711 	}
2712 
2713 	/*
2714 	 * Prepare to scale scan period relative to the current period.
2715 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2716 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2717 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2718 	 */
2719 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2720 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2721 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2722 
2723 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2724 		/*
2725 		 * Most memory accesses are local. There is no need to
2726 		 * do fast NUMA scanning, since memory is already local.
2727 		 */
2728 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2729 		if (!slot)
2730 			slot = 1;
2731 		diff = slot * period_slot;
2732 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2733 		/*
2734 		 * Most memory accesses are shared with other tasks.
2735 		 * There is no point in continuing fast NUMA scanning,
2736 		 * since other tasks may just move the memory elsewhere.
2737 		 */
2738 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2739 		if (!slot)
2740 			slot = 1;
2741 		diff = slot * period_slot;
2742 	} else {
2743 		/*
2744 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2745 		 * yet they are not on the local NUMA node. Speed up
2746 		 * NUMA scanning to get the memory moved over.
2747 		 */
2748 		int ratio = max(lr_ratio, ps_ratio);
2749 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2750 	}
2751 
2752 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2753 			task_scan_min(p), task_scan_max(p));
2754 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2755 }
2756 
2757 /*
2758  * Get the fraction of time the task has been running since the last
2759  * NUMA placement cycle. The scheduler keeps similar statistics, but
2760  * decays those on a 32ms period, which is orders of magnitude off
2761  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2762  * stats only if the task is so new there are no NUMA statistics yet.
2763  */
2764 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2765 {
2766 	u64 runtime, delta, now;
2767 	/* Use the start of this time slice to avoid calculations. */
2768 	now = p->se.exec_start;
2769 	runtime = p->se.sum_exec_runtime;
2770 
2771 	if (p->last_task_numa_placement) {
2772 		delta = runtime - p->last_sum_exec_runtime;
2773 		*period = now - p->last_task_numa_placement;
2774 
2775 		/* Avoid time going backwards, prevent potential divide error: */
2776 		if (unlikely((s64)*period < 0))
2777 			*period = 0;
2778 	} else {
2779 		delta = p->se.avg.load_sum;
2780 		*period = LOAD_AVG_MAX;
2781 	}
2782 
2783 	p->last_sum_exec_runtime = runtime;
2784 	p->last_task_numa_placement = now;
2785 
2786 	return delta;
2787 }
2788 
2789 /*
2790  * Determine the preferred nid for a task in a numa_group. This needs to
2791  * be done in a way that produces consistent results with group_weight,
2792  * otherwise workloads might not converge.
2793  */
2794 static int preferred_group_nid(struct task_struct *p, int nid)
2795 {
2796 	nodemask_t nodes;
2797 	int dist;
2798 
2799 	/* Direct connections between all NUMA nodes. */
2800 	if (sched_numa_topology_type == NUMA_DIRECT)
2801 		return nid;
2802 
2803 	/*
2804 	 * On a system with glueless mesh NUMA topology, group_weight
2805 	 * scores nodes according to the number of NUMA hinting faults on
2806 	 * both the node itself, and on nearby nodes.
2807 	 */
2808 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2809 		unsigned long score, max_score = 0;
2810 		int node, max_node = nid;
2811 
2812 		dist = sched_max_numa_distance;
2813 
2814 		for_each_node_state(node, N_CPU) {
2815 			score = group_weight(p, node, dist);
2816 			if (score > max_score) {
2817 				max_score = score;
2818 				max_node = node;
2819 			}
2820 		}
2821 		return max_node;
2822 	}
2823 
2824 	/*
2825 	 * Finding the preferred nid in a system with NUMA backplane
2826 	 * interconnect topology is more involved. The goal is to locate
2827 	 * tasks from numa_groups near each other in the system, and
2828 	 * untangle workloads from different sides of the system. This requires
2829 	 * searching down the hierarchy of node groups, recursively searching
2830 	 * inside the highest scoring group of nodes. The nodemask tricks
2831 	 * keep the complexity of the search down.
2832 	 */
2833 	nodes = node_states[N_CPU];
2834 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2835 		unsigned long max_faults = 0;
2836 		nodemask_t max_group = NODE_MASK_NONE;
2837 		int a, b;
2838 
2839 		/* Are there nodes at this distance from each other? */
2840 		if (!find_numa_distance(dist))
2841 			continue;
2842 
2843 		for_each_node_mask(a, nodes) {
2844 			unsigned long faults = 0;
2845 			nodemask_t this_group;
2846 			nodes_clear(this_group);
2847 
2848 			/* Sum group's NUMA faults; includes a==b case. */
2849 			for_each_node_mask(b, nodes) {
2850 				if (node_distance(a, b) < dist) {
2851 					faults += group_faults(p, b);
2852 					node_set(b, this_group);
2853 					node_clear(b, nodes);
2854 				}
2855 			}
2856 
2857 			/* Remember the top group. */
2858 			if (faults > max_faults) {
2859 				max_faults = faults;
2860 				max_group = this_group;
2861 				/*
2862 				 * subtle: at the smallest distance there is
2863 				 * just one node left in each "group", the
2864 				 * winner is the preferred nid.
2865 				 */
2866 				nid = a;
2867 			}
2868 		}
2869 		/* Next round, evaluate the nodes within max_group. */
2870 		if (!max_faults)
2871 			break;
2872 		nodes = max_group;
2873 	}
2874 	return nid;
2875 }
2876 
2877 static void task_numa_placement(struct task_struct *p)
2878 {
2879 	int seq, nid, max_nid = NUMA_NO_NODE;
2880 	unsigned long max_faults = 0;
2881 	unsigned long fault_types[2] = { 0, 0 };
2882 	unsigned long total_faults;
2883 	u64 runtime, period;
2884 	spinlock_t *group_lock = NULL;
2885 	struct numa_group *ng;
2886 
2887 	/*
2888 	 * The p->mm->numa_scan_seq field gets updated without
2889 	 * exclusive access. Use READ_ONCE() here to ensure
2890 	 * that the field is read in a single access:
2891 	 */
2892 	seq = READ_ONCE(p->mm->numa_scan_seq);
2893 	if (p->numa_scan_seq == seq)
2894 		return;
2895 	p->numa_scan_seq = seq;
2896 	p->numa_scan_period_max = task_scan_max(p);
2897 
2898 	total_faults = p->numa_faults_locality[0] +
2899 		       p->numa_faults_locality[1];
2900 	runtime = numa_get_avg_runtime(p, &period);
2901 
2902 	/* If the task is part of a group prevent parallel updates to group stats */
2903 	ng = deref_curr_numa_group(p);
2904 	if (ng) {
2905 		group_lock = &ng->lock;
2906 		spin_lock_irq(group_lock);
2907 	}
2908 
2909 	/* Find the node with the highest number of faults */
2910 	for_each_online_node(nid) {
2911 		/* Keep track of the offsets in numa_faults array */
2912 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2913 		unsigned long faults = 0, group_faults = 0;
2914 		int priv;
2915 
2916 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2917 			long diff, f_diff, f_weight;
2918 
2919 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2920 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2921 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2922 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2923 
2924 			/* Decay existing window, copy faults since last scan */
2925 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2926 			fault_types[priv] += p->numa_faults[membuf_idx];
2927 			p->numa_faults[membuf_idx] = 0;
2928 
2929 			/*
2930 			 * Normalize the faults_from, so all tasks in a group
2931 			 * count according to CPU use, instead of by the raw
2932 			 * number of faults. Tasks with little runtime have
2933 			 * little over-all impact on throughput, and thus their
2934 			 * faults are less important.
2935 			 */
2936 			f_weight = div64_u64(runtime << 16, period + 1);
2937 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2938 				   (total_faults + 1);
2939 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2940 			p->numa_faults[cpubuf_idx] = 0;
2941 
2942 			p->numa_faults[mem_idx] += diff;
2943 			p->numa_faults[cpu_idx] += f_diff;
2944 			faults += p->numa_faults[mem_idx];
2945 			p->total_numa_faults += diff;
2946 			if (ng) {
2947 				/*
2948 				 * safe because we can only change our own group
2949 				 *
2950 				 * mem_idx represents the offset for a given
2951 				 * nid and priv in a specific region because it
2952 				 * is at the beginning of the numa_faults array.
2953 				 */
2954 				ng->faults[mem_idx] += diff;
2955 				ng->faults[cpu_idx] += f_diff;
2956 				ng->total_faults += diff;
2957 				group_faults += ng->faults[mem_idx];
2958 			}
2959 		}
2960 
2961 		if (!ng) {
2962 			if (faults > max_faults) {
2963 				max_faults = faults;
2964 				max_nid = nid;
2965 			}
2966 		} else if (group_faults > max_faults) {
2967 			max_faults = group_faults;
2968 			max_nid = nid;
2969 		}
2970 	}
2971 
2972 	/* Cannot migrate task to CPU-less node */
2973 	max_nid = numa_nearest_node(max_nid, N_CPU);
2974 
2975 	if (ng) {
2976 		numa_group_count_active_nodes(ng);
2977 		spin_unlock_irq(group_lock);
2978 		max_nid = preferred_group_nid(p, max_nid);
2979 	}
2980 
2981 	if (max_faults) {
2982 		/* Set the new preferred node */
2983 		if (max_nid != p->numa_preferred_nid)
2984 			sched_setnuma(p, max_nid);
2985 	}
2986 
2987 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2988 }
2989 
2990 static inline int get_numa_group(struct numa_group *grp)
2991 {
2992 	return refcount_inc_not_zero(&grp->refcount);
2993 }
2994 
2995 static inline void put_numa_group(struct numa_group *grp)
2996 {
2997 	if (refcount_dec_and_test(&grp->refcount))
2998 		kfree_rcu(grp, rcu);
2999 }
3000 
3001 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3002 			int *priv)
3003 {
3004 	struct numa_group *grp, *my_grp;
3005 	struct task_struct *tsk;
3006 	bool join = false;
3007 	int cpu = cpupid_to_cpu(cpupid);
3008 	int i;
3009 
3010 	if (unlikely(!deref_curr_numa_group(p))) {
3011 		unsigned int size = sizeof(struct numa_group) +
3012 				    NR_NUMA_HINT_FAULT_STATS *
3013 				    nr_node_ids * sizeof(unsigned long);
3014 
3015 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3016 		if (!grp)
3017 			return;
3018 
3019 		refcount_set(&grp->refcount, 1);
3020 		grp->active_nodes = 1;
3021 		grp->max_faults_cpu = 0;
3022 		spin_lock_init(&grp->lock);
3023 		grp->gid = p->pid;
3024 
3025 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3026 			grp->faults[i] = p->numa_faults[i];
3027 
3028 		grp->total_faults = p->total_numa_faults;
3029 
3030 		grp->nr_tasks++;
3031 		rcu_assign_pointer(p->numa_group, grp);
3032 	}
3033 
3034 	rcu_read_lock();
3035 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
3036 
3037 	if (!cpupid_match_pid(tsk, cpupid))
3038 		goto no_join;
3039 
3040 	grp = rcu_dereference(tsk->numa_group);
3041 	if (!grp)
3042 		goto no_join;
3043 
3044 	my_grp = deref_curr_numa_group(p);
3045 	if (grp == my_grp)
3046 		goto no_join;
3047 
3048 	/*
3049 	 * Only join the other group if its bigger; if we're the bigger group,
3050 	 * the other task will join us.
3051 	 */
3052 	if (my_grp->nr_tasks > grp->nr_tasks)
3053 		goto no_join;
3054 
3055 	/*
3056 	 * Tie-break on the grp address.
3057 	 */
3058 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3059 		goto no_join;
3060 
3061 	/* Always join threads in the same process. */
3062 	if (tsk->mm == current->mm)
3063 		join = true;
3064 
3065 	/* Simple filter to avoid false positives due to PID collisions */
3066 	if (flags & TNF_SHARED)
3067 		join = true;
3068 
3069 	/* Update priv based on whether false sharing was detected */
3070 	*priv = !join;
3071 
3072 	if (join && !get_numa_group(grp))
3073 		goto no_join;
3074 
3075 	rcu_read_unlock();
3076 
3077 	if (!join)
3078 		return;
3079 
3080 	WARN_ON_ONCE(irqs_disabled());
3081 	double_lock_irq(&my_grp->lock, &grp->lock);
3082 
3083 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3084 		my_grp->faults[i] -= p->numa_faults[i];
3085 		grp->faults[i] += p->numa_faults[i];
3086 	}
3087 	my_grp->total_faults -= p->total_numa_faults;
3088 	grp->total_faults += p->total_numa_faults;
3089 
3090 	my_grp->nr_tasks--;
3091 	grp->nr_tasks++;
3092 
3093 	spin_unlock(&my_grp->lock);
3094 	spin_unlock_irq(&grp->lock);
3095 
3096 	rcu_assign_pointer(p->numa_group, grp);
3097 
3098 	put_numa_group(my_grp);
3099 	return;
3100 
3101 no_join:
3102 	rcu_read_unlock();
3103 	return;
3104 }
3105 
3106 /*
3107  * Get rid of NUMA statistics associated with a task (either current or dead).
3108  * If @final is set, the task is dead and has reached refcount zero, so we can
3109  * safely free all relevant data structures. Otherwise, there might be
3110  * concurrent reads from places like load balancing and procfs, and we should
3111  * reset the data back to default state without freeing ->numa_faults.
3112  */
3113 void task_numa_free(struct task_struct *p, bool final)
3114 {
3115 	/* safe: p either is current or is being freed by current */
3116 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3117 	unsigned long *numa_faults = p->numa_faults;
3118 	unsigned long flags;
3119 	int i;
3120 
3121 	if (!numa_faults)
3122 		return;
3123 
3124 	if (grp) {
3125 		spin_lock_irqsave(&grp->lock, flags);
3126 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3127 			grp->faults[i] -= p->numa_faults[i];
3128 		grp->total_faults -= p->total_numa_faults;
3129 
3130 		grp->nr_tasks--;
3131 		spin_unlock_irqrestore(&grp->lock, flags);
3132 		RCU_INIT_POINTER(p->numa_group, NULL);
3133 		put_numa_group(grp);
3134 	}
3135 
3136 	if (final) {
3137 		p->numa_faults = NULL;
3138 		kfree(numa_faults);
3139 	} else {
3140 		p->total_numa_faults = 0;
3141 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3142 			numa_faults[i] = 0;
3143 	}
3144 }
3145 
3146 /*
3147  * Got a PROT_NONE fault for a page on @node.
3148  */
3149 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3150 {
3151 	struct task_struct *p = current;
3152 	bool migrated = flags & TNF_MIGRATED;
3153 	int cpu_node = task_node(current);
3154 	int local = !!(flags & TNF_FAULT_LOCAL);
3155 	struct numa_group *ng;
3156 	int priv;
3157 
3158 	if (!static_branch_likely(&sched_numa_balancing))
3159 		return;
3160 
3161 	/* for example, ksmd faulting in a user's mm */
3162 	if (!p->mm)
3163 		return;
3164 
3165 	/*
3166 	 * NUMA faults statistics are unnecessary for the slow memory
3167 	 * node for memory tiering mode.
3168 	 */
3169 	if (!node_is_toptier(mem_node) &&
3170 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3171 	     !cpupid_valid(last_cpupid)))
3172 		return;
3173 
3174 	/* Allocate buffer to track faults on a per-node basis */
3175 	if (unlikely(!p->numa_faults)) {
3176 		int size = sizeof(*p->numa_faults) *
3177 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3178 
3179 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3180 		if (!p->numa_faults)
3181 			return;
3182 
3183 		p->total_numa_faults = 0;
3184 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3185 	}
3186 
3187 	/*
3188 	 * First accesses are treated as private, otherwise consider accesses
3189 	 * to be private if the accessing pid has not changed
3190 	 */
3191 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3192 		priv = 1;
3193 	} else {
3194 		priv = cpupid_match_pid(p, last_cpupid);
3195 		if (!priv && !(flags & TNF_NO_GROUP))
3196 			task_numa_group(p, last_cpupid, flags, &priv);
3197 	}
3198 
3199 	/*
3200 	 * If a workload spans multiple NUMA nodes, a shared fault that
3201 	 * occurs wholly within the set of nodes that the workload is
3202 	 * actively using should be counted as local. This allows the
3203 	 * scan rate to slow down when a workload has settled down.
3204 	 */
3205 	ng = deref_curr_numa_group(p);
3206 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3207 				numa_is_active_node(cpu_node, ng) &&
3208 				numa_is_active_node(mem_node, ng))
3209 		local = 1;
3210 
3211 	/*
3212 	 * Retry to migrate task to preferred node periodically, in case it
3213 	 * previously failed, or the scheduler moved us.
3214 	 */
3215 	if (time_after(jiffies, p->numa_migrate_retry)) {
3216 		task_numa_placement(p);
3217 		numa_migrate_preferred(p);
3218 	}
3219 
3220 	if (migrated)
3221 		p->numa_pages_migrated += pages;
3222 	if (flags & TNF_MIGRATE_FAIL)
3223 		p->numa_faults_locality[2] += pages;
3224 
3225 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3226 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3227 	p->numa_faults_locality[local] += pages;
3228 }
3229 
3230 static void reset_ptenuma_scan(struct task_struct *p)
3231 {
3232 	/*
3233 	 * We only did a read acquisition of the mmap sem, so
3234 	 * p->mm->numa_scan_seq is written to without exclusive access
3235 	 * and the update is not guaranteed to be atomic. That's not
3236 	 * much of an issue though, since this is just used for
3237 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3238 	 * expensive, to avoid any form of compiler optimizations:
3239 	 */
3240 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3241 	p->mm->numa_scan_offset = 0;
3242 }
3243 
3244 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3245 {
3246 	unsigned long pids;
3247 	/*
3248 	 * Allow unconditional access first two times, so that all the (pages)
3249 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3250 	 * This is also done to avoid any side effect of task scanning
3251 	 * amplifying the unfairness of disjoint set of VMAs' access.
3252 	 */
3253 	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3254 		return true;
3255 
3256 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3257 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3258 		return true;
3259 
3260 	/*
3261 	 * Complete a scan that has already started regardless of PID access, or
3262 	 * some VMAs may never be scanned in multi-threaded applications:
3263 	 */
3264 	if (mm->numa_scan_offset > vma->vm_start) {
3265 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3266 		return true;
3267 	}
3268 
3269 	/*
3270 	 * This vma has not been accessed for a while, and if the number
3271 	 * the threads in the same process is low, which means no other
3272 	 * threads can help scan this vma, force a vma scan.
3273 	 */
3274 	if (READ_ONCE(mm->numa_scan_seq) >
3275 	   (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3276 		return true;
3277 
3278 	return false;
3279 }
3280 
3281 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3282 
3283 /*
3284  * The expensive part of numa migration is done from task_work context.
3285  * Triggered from task_tick_numa().
3286  */
3287 static void task_numa_work(struct callback_head *work)
3288 {
3289 	unsigned long migrate, next_scan, now = jiffies;
3290 	struct task_struct *p = current;
3291 	struct mm_struct *mm = p->mm;
3292 	u64 runtime = p->se.sum_exec_runtime;
3293 	struct vm_area_struct *vma;
3294 	unsigned long start, end;
3295 	unsigned long nr_pte_updates = 0;
3296 	long pages, virtpages;
3297 	struct vma_iterator vmi;
3298 	bool vma_pids_skipped;
3299 	bool vma_pids_forced = false;
3300 
3301 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3302 
3303 	work->next = work;
3304 	/*
3305 	 * Who cares about NUMA placement when they're dying.
3306 	 *
3307 	 * NOTE: make sure not to dereference p->mm before this check,
3308 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3309 	 * without p->mm even though we still had it when we enqueued this
3310 	 * work.
3311 	 */
3312 	if (p->flags & PF_EXITING)
3313 		return;
3314 
3315 	if (!mm->numa_next_scan) {
3316 		mm->numa_next_scan = now +
3317 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3318 	}
3319 
3320 	/*
3321 	 * Enforce maximal scan/migration frequency..
3322 	 */
3323 	migrate = mm->numa_next_scan;
3324 	if (time_before(now, migrate))
3325 		return;
3326 
3327 	if (p->numa_scan_period == 0) {
3328 		p->numa_scan_period_max = task_scan_max(p);
3329 		p->numa_scan_period = task_scan_start(p);
3330 	}
3331 
3332 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3333 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3334 		return;
3335 
3336 	/*
3337 	 * Delay this task enough that another task of this mm will likely win
3338 	 * the next time around.
3339 	 */
3340 	p->node_stamp += 2 * TICK_NSEC;
3341 
3342 	pages = sysctl_numa_balancing_scan_size;
3343 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3344 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3345 	if (!pages)
3346 		return;
3347 
3348 
3349 	if (!mmap_read_trylock(mm))
3350 		return;
3351 
3352 	/*
3353 	 * VMAs are skipped if the current PID has not trapped a fault within
3354 	 * the VMA recently. Allow scanning to be forced if there is no
3355 	 * suitable VMA remaining.
3356 	 */
3357 	vma_pids_skipped = false;
3358 
3359 retry_pids:
3360 	start = mm->numa_scan_offset;
3361 	vma_iter_init(&vmi, mm, start);
3362 	vma = vma_next(&vmi);
3363 	if (!vma) {
3364 		reset_ptenuma_scan(p);
3365 		start = 0;
3366 		vma_iter_set(&vmi, start);
3367 		vma = vma_next(&vmi);
3368 	}
3369 
3370 	for (; vma; vma = vma_next(&vmi)) {
3371 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3372 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3373 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3374 			continue;
3375 		}
3376 
3377 		/*
3378 		 * Shared library pages mapped by multiple processes are not
3379 		 * migrated as it is expected they are cache replicated. Avoid
3380 		 * hinting faults in read-only file-backed mappings or the vDSO
3381 		 * as migrating the pages will be of marginal benefit.
3382 		 */
3383 		if (!vma->vm_mm ||
3384 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3385 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3386 			continue;
3387 		}
3388 
3389 		/*
3390 		 * Skip inaccessible VMAs to avoid any confusion between
3391 		 * PROT_NONE and NUMA hinting PTEs
3392 		 */
3393 		if (!vma_is_accessible(vma)) {
3394 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3395 			continue;
3396 		}
3397 
3398 		/* Initialise new per-VMA NUMAB state. */
3399 		if (!vma->numab_state) {
3400 			struct vma_numab_state *ptr;
3401 
3402 			ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
3403 			if (!ptr)
3404 				continue;
3405 
3406 			if (cmpxchg(&vma->numab_state, NULL, ptr)) {
3407 				kfree(ptr);
3408 				continue;
3409 			}
3410 
3411 			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3412 
3413 			vma->numab_state->next_scan = now +
3414 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3415 
3416 			/* Reset happens after 4 times scan delay of scan start */
3417 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3418 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3419 
3420 			/*
3421 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3422 			 * to prevent VMAs being skipped prematurely on the
3423 			 * first scan:
3424 			 */
3425 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3426 		}
3427 
3428 		/*
3429 		 * Scanning the VMAs of short lived tasks add more overhead. So
3430 		 * delay the scan for new VMAs.
3431 		 */
3432 		if (mm->numa_scan_seq && time_before(jiffies,
3433 						vma->numab_state->next_scan)) {
3434 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3435 			continue;
3436 		}
3437 
3438 		/* RESET access PIDs regularly for old VMAs. */
3439 		if (mm->numa_scan_seq &&
3440 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3441 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3442 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3443 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3444 			vma->numab_state->pids_active[1] = 0;
3445 		}
3446 
3447 		/* Do not rescan VMAs twice within the same sequence. */
3448 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3449 			mm->numa_scan_offset = vma->vm_end;
3450 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3451 			continue;
3452 		}
3453 
3454 		/*
3455 		 * Do not scan the VMA if task has not accessed it, unless no other
3456 		 * VMA candidate exists.
3457 		 */
3458 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3459 			vma_pids_skipped = true;
3460 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3461 			continue;
3462 		}
3463 
3464 		do {
3465 			start = max(start, vma->vm_start);
3466 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3467 			end = min(end, vma->vm_end);
3468 			nr_pte_updates = change_prot_numa(vma, start, end);
3469 
3470 			/*
3471 			 * Try to scan sysctl_numa_balancing_size worth of
3472 			 * hpages that have at least one present PTE that
3473 			 * is not already PTE-numa. If the VMA contains
3474 			 * areas that are unused or already full of prot_numa
3475 			 * PTEs, scan up to virtpages, to skip through those
3476 			 * areas faster.
3477 			 */
3478 			if (nr_pte_updates)
3479 				pages -= (end - start) >> PAGE_SHIFT;
3480 			virtpages -= (end - start) >> PAGE_SHIFT;
3481 
3482 			start = end;
3483 			if (pages <= 0 || virtpages <= 0)
3484 				goto out;
3485 
3486 			cond_resched();
3487 		} while (end != vma->vm_end);
3488 
3489 		/* VMA scan is complete, do not scan until next sequence. */
3490 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3491 
3492 		/*
3493 		 * Only force scan within one VMA at a time, to limit the
3494 		 * cost of scanning a potentially uninteresting VMA.
3495 		 */
3496 		if (vma_pids_forced)
3497 			break;
3498 	}
3499 
3500 	/*
3501 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3502 	 * not accessing the VMA previously, then force a scan to ensure
3503 	 * forward progress:
3504 	 */
3505 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3506 		vma_pids_forced = true;
3507 		goto retry_pids;
3508 	}
3509 
3510 out:
3511 	/*
3512 	 * It is possible to reach the end of the VMA list but the last few
3513 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3514 	 * would find the !migratable VMA on the next scan but not reset the
3515 	 * scanner to the start so check it now.
3516 	 */
3517 	if (vma)
3518 		mm->numa_scan_offset = start;
3519 	else
3520 		reset_ptenuma_scan(p);
3521 	mmap_read_unlock(mm);
3522 
3523 	/*
3524 	 * Make sure tasks use at least 32x as much time to run other code
3525 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3526 	 * Usually update_task_scan_period slows down scanning enough; on an
3527 	 * overloaded system we need to limit overhead on a per task basis.
3528 	 */
3529 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3530 		u64 diff = p->se.sum_exec_runtime - runtime;
3531 		p->node_stamp += 32 * diff;
3532 	}
3533 }
3534 
3535 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3536 {
3537 	int mm_users = 0;
3538 	struct mm_struct *mm = p->mm;
3539 
3540 	if (mm) {
3541 		mm_users = atomic_read(&mm->mm_users);
3542 		if (mm_users == 1) {
3543 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3544 			mm->numa_scan_seq = 0;
3545 		}
3546 	}
3547 	p->node_stamp			= 0;
3548 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3549 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3550 	p->numa_migrate_retry		= 0;
3551 	/* Protect against double add, see task_tick_numa and task_numa_work */
3552 	p->numa_work.next		= &p->numa_work;
3553 	p->numa_faults			= NULL;
3554 	p->numa_pages_migrated		= 0;
3555 	p->total_numa_faults		= 0;
3556 	RCU_INIT_POINTER(p->numa_group, NULL);
3557 	p->last_task_numa_placement	= 0;
3558 	p->last_sum_exec_runtime	= 0;
3559 
3560 	init_task_work(&p->numa_work, task_numa_work);
3561 
3562 	/* New address space, reset the preferred nid */
3563 	if (!(clone_flags & CLONE_VM)) {
3564 		p->numa_preferred_nid = NUMA_NO_NODE;
3565 		return;
3566 	}
3567 
3568 	/*
3569 	 * New thread, keep existing numa_preferred_nid which should be copied
3570 	 * already by arch_dup_task_struct but stagger when scans start.
3571 	 */
3572 	if (mm) {
3573 		unsigned int delay;
3574 
3575 		delay = min_t(unsigned int, task_scan_max(current),
3576 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3577 		delay += 2 * TICK_NSEC;
3578 		p->node_stamp = delay;
3579 	}
3580 }
3581 
3582 /*
3583  * Drive the periodic memory faults..
3584  */
3585 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3586 {
3587 	struct callback_head *work = &curr->numa_work;
3588 	u64 period, now;
3589 
3590 	/*
3591 	 * We don't care about NUMA placement if we don't have memory.
3592 	 */
3593 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3594 		return;
3595 
3596 	/*
3597 	 * Using runtime rather than walltime has the dual advantage that
3598 	 * we (mostly) drive the selection from busy threads and that the
3599 	 * task needs to have done some actual work before we bother with
3600 	 * NUMA placement.
3601 	 */
3602 	now = curr->se.sum_exec_runtime;
3603 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3604 
3605 	if (now > curr->node_stamp + period) {
3606 		if (!curr->node_stamp)
3607 			curr->numa_scan_period = task_scan_start(curr);
3608 		curr->node_stamp += period;
3609 
3610 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3611 			task_work_add(curr, work, TWA_RESUME);
3612 	}
3613 }
3614 
3615 static void update_scan_period(struct task_struct *p, int new_cpu)
3616 {
3617 	int src_nid = cpu_to_node(task_cpu(p));
3618 	int dst_nid = cpu_to_node(new_cpu);
3619 
3620 	if (!static_branch_likely(&sched_numa_balancing))
3621 		return;
3622 
3623 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3624 		return;
3625 
3626 	if (src_nid == dst_nid)
3627 		return;
3628 
3629 	/*
3630 	 * Allow resets if faults have been trapped before one scan
3631 	 * has completed. This is most likely due to a new task that
3632 	 * is pulled cross-node due to wakeups or load balancing.
3633 	 */
3634 	if (p->numa_scan_seq) {
3635 		/*
3636 		 * Avoid scan adjustments if moving to the preferred
3637 		 * node or if the task was not previously running on
3638 		 * the preferred node.
3639 		 */
3640 		if (dst_nid == p->numa_preferred_nid ||
3641 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3642 			src_nid != p->numa_preferred_nid))
3643 			return;
3644 	}
3645 
3646 	p->numa_scan_period = task_scan_start(p);
3647 }
3648 
3649 #else
3650 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3651 {
3652 }
3653 
3654 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3655 {
3656 }
3657 
3658 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3659 {
3660 }
3661 
3662 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3663 {
3664 }
3665 
3666 #endif /* CONFIG_NUMA_BALANCING */
3667 
3668 static void
3669 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3670 {
3671 	update_load_add(&cfs_rq->load, se->load.weight);
3672 #ifdef CONFIG_SMP
3673 	if (entity_is_task(se)) {
3674 		struct rq *rq = rq_of(cfs_rq);
3675 
3676 		account_numa_enqueue(rq, task_of(se));
3677 		list_add(&se->group_node, &rq->cfs_tasks);
3678 	}
3679 #endif
3680 	cfs_rq->nr_running++;
3681 	if (se_is_idle(se))
3682 		cfs_rq->idle_nr_running++;
3683 }
3684 
3685 static void
3686 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3687 {
3688 	update_load_sub(&cfs_rq->load, se->load.weight);
3689 #ifdef CONFIG_SMP
3690 	if (entity_is_task(se)) {
3691 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3692 		list_del_init(&se->group_node);
3693 	}
3694 #endif
3695 	cfs_rq->nr_running--;
3696 	if (se_is_idle(se))
3697 		cfs_rq->idle_nr_running--;
3698 }
3699 
3700 /*
3701  * Signed add and clamp on underflow.
3702  *
3703  * Explicitly do a load-store to ensure the intermediate value never hits
3704  * memory. This allows lockless observations without ever seeing the negative
3705  * values.
3706  */
3707 #define add_positive(_ptr, _val) do {                           \
3708 	typeof(_ptr) ptr = (_ptr);                              \
3709 	typeof(_val) val = (_val);                              \
3710 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3711 								\
3712 	res = var + val;                                        \
3713 								\
3714 	if (val < 0 && res > var)                               \
3715 		res = 0;                                        \
3716 								\
3717 	WRITE_ONCE(*ptr, res);                                  \
3718 } while (0)
3719 
3720 /*
3721  * Unsigned subtract and clamp on underflow.
3722  *
3723  * Explicitly do a load-store to ensure the intermediate value never hits
3724  * memory. This allows lockless observations without ever seeing the negative
3725  * values.
3726  */
3727 #define sub_positive(_ptr, _val) do {				\
3728 	typeof(_ptr) ptr = (_ptr);				\
3729 	typeof(*ptr) val = (_val);				\
3730 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3731 	res = var - val;					\
3732 	if (res > var)						\
3733 		res = 0;					\
3734 	WRITE_ONCE(*ptr, res);					\
3735 } while (0)
3736 
3737 /*
3738  * Remove and clamp on negative, from a local variable.
3739  *
3740  * A variant of sub_positive(), which does not use explicit load-store
3741  * and is thus optimized for local variable updates.
3742  */
3743 #define lsub_positive(_ptr, _val) do {				\
3744 	typeof(_ptr) ptr = (_ptr);				\
3745 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3746 } while (0)
3747 
3748 #ifdef CONFIG_SMP
3749 static inline void
3750 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3751 {
3752 	cfs_rq->avg.load_avg += se->avg.load_avg;
3753 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3754 }
3755 
3756 static inline void
3757 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3758 {
3759 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3760 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3761 	/* See update_cfs_rq_load_avg() */
3762 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3763 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3764 }
3765 #else
3766 static inline void
3767 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3768 static inline void
3769 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3770 #endif
3771 
3772 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags);
3773 
3774 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3775 			    unsigned long weight)
3776 {
3777 	bool curr = cfs_rq->curr == se;
3778 
3779 	if (se->on_rq) {
3780 		/* commit outstanding execution time */
3781 		update_curr(cfs_rq);
3782 		update_entity_lag(cfs_rq, se);
3783 		se->deadline -= se->vruntime;
3784 		se->rel_deadline = 1;
3785 		if (!curr)
3786 			__dequeue_entity(cfs_rq, se);
3787 		update_load_sub(&cfs_rq->load, se->load.weight);
3788 	}
3789 	dequeue_load_avg(cfs_rq, se);
3790 
3791 	/*
3792 	 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3793 	 * we need to scale se->vlag when w_i changes.
3794 	 */
3795 	se->vlag = div_s64(se->vlag * se->load.weight, weight);
3796 	if (se->rel_deadline)
3797 		se->deadline = div_s64(se->deadline * se->load.weight, weight);
3798 
3799 	update_load_set(&se->load, weight);
3800 
3801 #ifdef CONFIG_SMP
3802 	do {
3803 		u32 divider = get_pelt_divider(&se->avg);
3804 
3805 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3806 	} while (0);
3807 #endif
3808 
3809 	enqueue_load_avg(cfs_rq, se);
3810 	if (se->on_rq) {
3811 		update_load_add(&cfs_rq->load, se->load.weight);
3812 		place_entity(cfs_rq, se, 0);
3813 		if (!curr)
3814 			__enqueue_entity(cfs_rq, se);
3815 
3816 		/*
3817 		 * The entity's vruntime has been adjusted, so let's check
3818 		 * whether the rq-wide min_vruntime needs updated too. Since
3819 		 * the calculations above require stable min_vruntime rather
3820 		 * than up-to-date one, we do the update at the end of the
3821 		 * reweight process.
3822 		 */
3823 		update_min_vruntime(cfs_rq);
3824 	}
3825 }
3826 
3827 static void reweight_task_fair(struct rq *rq, struct task_struct *p,
3828 			       const struct load_weight *lw)
3829 {
3830 	struct sched_entity *se = &p->se;
3831 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3832 	struct load_weight *load = &se->load;
3833 
3834 	reweight_entity(cfs_rq, se, lw->weight);
3835 	load->inv_weight = lw->inv_weight;
3836 }
3837 
3838 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3839 
3840 #ifdef CONFIG_FAIR_GROUP_SCHED
3841 #ifdef CONFIG_SMP
3842 /*
3843  * All this does is approximate the hierarchical proportion which includes that
3844  * global sum we all love to hate.
3845  *
3846  * That is, the weight of a group entity, is the proportional share of the
3847  * group weight based on the group runqueue weights. That is:
3848  *
3849  *                     tg->weight * grq->load.weight
3850  *   ge->load.weight = -----------------------------               (1)
3851  *                       \Sum grq->load.weight
3852  *
3853  * Now, because computing that sum is prohibitively expensive to compute (been
3854  * there, done that) we approximate it with this average stuff. The average
3855  * moves slower and therefore the approximation is cheaper and more stable.
3856  *
3857  * So instead of the above, we substitute:
3858  *
3859  *   grq->load.weight -> grq->avg.load_avg                         (2)
3860  *
3861  * which yields the following:
3862  *
3863  *                     tg->weight * grq->avg.load_avg
3864  *   ge->load.weight = ------------------------------              (3)
3865  *                             tg->load_avg
3866  *
3867  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3868  *
3869  * That is shares_avg, and it is right (given the approximation (2)).
3870  *
3871  * The problem with it is that because the average is slow -- it was designed
3872  * to be exactly that of course -- this leads to transients in boundary
3873  * conditions. In specific, the case where the group was idle and we start the
3874  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3875  * yielding bad latency etc..
3876  *
3877  * Now, in that special case (1) reduces to:
3878  *
3879  *                     tg->weight * grq->load.weight
3880  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3881  *                         grp->load.weight
3882  *
3883  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3884  *
3885  * So what we do is modify our approximation (3) to approach (4) in the (near)
3886  * UP case, like:
3887  *
3888  *   ge->load.weight =
3889  *
3890  *              tg->weight * grq->load.weight
3891  *     ---------------------------------------------------         (5)
3892  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3893  *
3894  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3895  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3896  *
3897  *
3898  *                     tg->weight * grq->load.weight
3899  *   ge->load.weight = -----------------------------		   (6)
3900  *                             tg_load_avg'
3901  *
3902  * Where:
3903  *
3904  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3905  *                  max(grq->load.weight, grq->avg.load_avg)
3906  *
3907  * And that is shares_weight and is icky. In the (near) UP case it approaches
3908  * (4) while in the normal case it approaches (3). It consistently
3909  * overestimates the ge->load.weight and therefore:
3910  *
3911  *   \Sum ge->load.weight >= tg->weight
3912  *
3913  * hence icky!
3914  */
3915 static long calc_group_shares(struct cfs_rq *cfs_rq)
3916 {
3917 	long tg_weight, tg_shares, load, shares;
3918 	struct task_group *tg = cfs_rq->tg;
3919 
3920 	tg_shares = READ_ONCE(tg->shares);
3921 
3922 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3923 
3924 	tg_weight = atomic_long_read(&tg->load_avg);
3925 
3926 	/* Ensure tg_weight >= load */
3927 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3928 	tg_weight += load;
3929 
3930 	shares = (tg_shares * load);
3931 	if (tg_weight)
3932 		shares /= tg_weight;
3933 
3934 	/*
3935 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3936 	 * of a group with small tg->shares value. It is a floor value which is
3937 	 * assigned as a minimum load.weight to the sched_entity representing
3938 	 * the group on a CPU.
3939 	 *
3940 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3941 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3942 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3943 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3944 	 * instead of 0.
3945 	 */
3946 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3947 }
3948 #endif /* CONFIG_SMP */
3949 
3950 /*
3951  * Recomputes the group entity based on the current state of its group
3952  * runqueue.
3953  */
3954 static void update_cfs_group(struct sched_entity *se)
3955 {
3956 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3957 	long shares;
3958 
3959 	/*
3960 	 * When a group becomes empty, preserve its weight. This matters for
3961 	 * DELAY_DEQUEUE.
3962 	 */
3963 	if (!gcfs_rq || !gcfs_rq->load.weight)
3964 		return;
3965 
3966 	if (throttled_hierarchy(gcfs_rq))
3967 		return;
3968 
3969 #ifndef CONFIG_SMP
3970 	shares = READ_ONCE(gcfs_rq->tg->shares);
3971 #else
3972 	shares = calc_group_shares(gcfs_rq);
3973 #endif
3974 	if (unlikely(se->load.weight != shares))
3975 		reweight_entity(cfs_rq_of(se), se, shares);
3976 }
3977 
3978 #else /* CONFIG_FAIR_GROUP_SCHED */
3979 static inline void update_cfs_group(struct sched_entity *se)
3980 {
3981 }
3982 #endif /* CONFIG_FAIR_GROUP_SCHED */
3983 
3984 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3985 {
3986 	struct rq *rq = rq_of(cfs_rq);
3987 
3988 	if (&rq->cfs == cfs_rq) {
3989 		/*
3990 		 * There are a few boundary cases this might miss but it should
3991 		 * get called often enough that that should (hopefully) not be
3992 		 * a real problem.
3993 		 *
3994 		 * It will not get called when we go idle, because the idle
3995 		 * thread is a different class (!fair), nor will the utilization
3996 		 * number include things like RT tasks.
3997 		 *
3998 		 * As is, the util number is not freq-invariant (we'd have to
3999 		 * implement arch_scale_freq_capacity() for that).
4000 		 *
4001 		 * See cpu_util_cfs().
4002 		 */
4003 		cpufreq_update_util(rq, flags);
4004 	}
4005 }
4006 
4007 #ifdef CONFIG_SMP
4008 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4009 {
4010 	if (sa->load_sum)
4011 		return false;
4012 
4013 	if (sa->util_sum)
4014 		return false;
4015 
4016 	if (sa->runnable_sum)
4017 		return false;
4018 
4019 	/*
4020 	 * _avg must be null when _sum are null because _avg = _sum / divider
4021 	 * Make sure that rounding and/or propagation of PELT values never
4022 	 * break this.
4023 	 */
4024 	SCHED_WARN_ON(sa->load_avg ||
4025 		      sa->util_avg ||
4026 		      sa->runnable_avg);
4027 
4028 	return true;
4029 }
4030 
4031 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4032 {
4033 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4034 				 cfs_rq->last_update_time_copy);
4035 }
4036 #ifdef CONFIG_FAIR_GROUP_SCHED
4037 /*
4038  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4039  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4040  * bottom-up, we only have to test whether the cfs_rq before us on the list
4041  * is our child.
4042  * If cfs_rq is not on the list, test whether a child needs its to be added to
4043  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4044  */
4045 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4046 {
4047 	struct cfs_rq *prev_cfs_rq;
4048 	struct list_head *prev;
4049 
4050 	if (cfs_rq->on_list) {
4051 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4052 	} else {
4053 		struct rq *rq = rq_of(cfs_rq);
4054 
4055 		prev = rq->tmp_alone_branch;
4056 	}
4057 
4058 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4059 
4060 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4061 }
4062 
4063 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4064 {
4065 	if (cfs_rq->load.weight)
4066 		return false;
4067 
4068 	if (!load_avg_is_decayed(&cfs_rq->avg))
4069 		return false;
4070 
4071 	if (child_cfs_rq_on_list(cfs_rq))
4072 		return false;
4073 
4074 	return true;
4075 }
4076 
4077 /**
4078  * update_tg_load_avg - update the tg's load avg
4079  * @cfs_rq: the cfs_rq whose avg changed
4080  *
4081  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4082  * However, because tg->load_avg is a global value there are performance
4083  * considerations.
4084  *
4085  * In order to avoid having to look at the other cfs_rq's, we use a
4086  * differential update where we store the last value we propagated. This in
4087  * turn allows skipping updates if the differential is 'small'.
4088  *
4089  * Updating tg's load_avg is necessary before update_cfs_share().
4090  */
4091 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4092 {
4093 	long delta;
4094 	u64 now;
4095 
4096 	/*
4097 	 * No need to update load_avg for root_task_group as it is not used.
4098 	 */
4099 	if (cfs_rq->tg == &root_task_group)
4100 		return;
4101 
4102 	/* rq has been offline and doesn't contribute to the share anymore: */
4103 	if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4104 		return;
4105 
4106 	/*
4107 	 * For migration heavy workloads, access to tg->load_avg can be
4108 	 * unbound. Limit the update rate to at most once per ms.
4109 	 */
4110 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4111 	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4112 		return;
4113 
4114 	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4115 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4116 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4117 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4118 		cfs_rq->last_update_tg_load_avg = now;
4119 	}
4120 }
4121 
4122 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4123 {
4124 	long delta;
4125 	u64 now;
4126 
4127 	/*
4128 	 * No need to update load_avg for root_task_group, as it is not used.
4129 	 */
4130 	if (cfs_rq->tg == &root_task_group)
4131 		return;
4132 
4133 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4134 	delta = 0 - cfs_rq->tg_load_avg_contrib;
4135 	atomic_long_add(delta, &cfs_rq->tg->load_avg);
4136 	cfs_rq->tg_load_avg_contrib = 0;
4137 	cfs_rq->last_update_tg_load_avg = now;
4138 }
4139 
4140 /* CPU offline callback: */
4141 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4142 {
4143 	struct task_group *tg;
4144 
4145 	lockdep_assert_rq_held(rq);
4146 
4147 	/*
4148 	 * The rq clock has already been updated in
4149 	 * set_rq_offline(), so we should skip updating
4150 	 * the rq clock again in unthrottle_cfs_rq().
4151 	 */
4152 	rq_clock_start_loop_update(rq);
4153 
4154 	rcu_read_lock();
4155 	list_for_each_entry_rcu(tg, &task_groups, list) {
4156 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4157 
4158 		clear_tg_load_avg(cfs_rq);
4159 	}
4160 	rcu_read_unlock();
4161 
4162 	rq_clock_stop_loop_update(rq);
4163 }
4164 
4165 /*
4166  * Called within set_task_rq() right before setting a task's CPU. The
4167  * caller only guarantees p->pi_lock is held; no other assumptions,
4168  * including the state of rq->lock, should be made.
4169  */
4170 void set_task_rq_fair(struct sched_entity *se,
4171 		      struct cfs_rq *prev, struct cfs_rq *next)
4172 {
4173 	u64 p_last_update_time;
4174 	u64 n_last_update_time;
4175 
4176 	if (!sched_feat(ATTACH_AGE_LOAD))
4177 		return;
4178 
4179 	/*
4180 	 * We are supposed to update the task to "current" time, then its up to
4181 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4182 	 * getting what current time is, so simply throw away the out-of-date
4183 	 * time. This will result in the wakee task is less decayed, but giving
4184 	 * the wakee more load sounds not bad.
4185 	 */
4186 	if (!(se->avg.last_update_time && prev))
4187 		return;
4188 
4189 	p_last_update_time = cfs_rq_last_update_time(prev);
4190 	n_last_update_time = cfs_rq_last_update_time(next);
4191 
4192 	__update_load_avg_blocked_se(p_last_update_time, se);
4193 	se->avg.last_update_time = n_last_update_time;
4194 }
4195 
4196 /*
4197  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4198  * propagate its contribution. The key to this propagation is the invariant
4199  * that for each group:
4200  *
4201  *   ge->avg == grq->avg						(1)
4202  *
4203  * _IFF_ we look at the pure running and runnable sums. Because they
4204  * represent the very same entity, just at different points in the hierarchy.
4205  *
4206  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4207  * and simply copies the running/runnable sum over (but still wrong, because
4208  * the group entity and group rq do not have their PELT windows aligned).
4209  *
4210  * However, update_tg_cfs_load() is more complex. So we have:
4211  *
4212  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4213  *
4214  * And since, like util, the runnable part should be directly transferable,
4215  * the following would _appear_ to be the straight forward approach:
4216  *
4217  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4218  *
4219  * And per (1) we have:
4220  *
4221  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4222  *
4223  * Which gives:
4224  *
4225  *                      ge->load.weight * grq->avg.load_avg
4226  *   ge->avg.load_avg = -----------------------------------		(4)
4227  *                               grq->load.weight
4228  *
4229  * Except that is wrong!
4230  *
4231  * Because while for entities historical weight is not important and we
4232  * really only care about our future and therefore can consider a pure
4233  * runnable sum, runqueues can NOT do this.
4234  *
4235  * We specifically want runqueues to have a load_avg that includes
4236  * historical weights. Those represent the blocked load, the load we expect
4237  * to (shortly) return to us. This only works by keeping the weights as
4238  * integral part of the sum. We therefore cannot decompose as per (3).
4239  *
4240  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4241  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4242  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4243  * runnable section of these tasks overlap (or not). If they were to perfectly
4244  * align the rq as a whole would be runnable 2/3 of the time. If however we
4245  * always have at least 1 runnable task, the rq as a whole is always runnable.
4246  *
4247  * So we'll have to approximate.. :/
4248  *
4249  * Given the constraint:
4250  *
4251  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4252  *
4253  * We can construct a rule that adds runnable to a rq by assuming minimal
4254  * overlap.
4255  *
4256  * On removal, we'll assume each task is equally runnable; which yields:
4257  *
4258  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4259  *
4260  * XXX: only do this for the part of runnable > running ?
4261  *
4262  */
4263 static inline void
4264 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4265 {
4266 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4267 	u32 new_sum, divider;
4268 
4269 	/* Nothing to update */
4270 	if (!delta_avg)
4271 		return;
4272 
4273 	/*
4274 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4275 	 * See ___update_load_avg() for details.
4276 	 */
4277 	divider = get_pelt_divider(&cfs_rq->avg);
4278 
4279 
4280 	/* Set new sched_entity's utilization */
4281 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4282 	new_sum = se->avg.util_avg * divider;
4283 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4284 	se->avg.util_sum = new_sum;
4285 
4286 	/* Update parent cfs_rq utilization */
4287 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4288 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4289 
4290 	/* See update_cfs_rq_load_avg() */
4291 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4292 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4293 }
4294 
4295 static inline void
4296 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4297 {
4298 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4299 	u32 new_sum, divider;
4300 
4301 	/* Nothing to update */
4302 	if (!delta_avg)
4303 		return;
4304 
4305 	/*
4306 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4307 	 * See ___update_load_avg() for details.
4308 	 */
4309 	divider = get_pelt_divider(&cfs_rq->avg);
4310 
4311 	/* Set new sched_entity's runnable */
4312 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4313 	new_sum = se->avg.runnable_avg * divider;
4314 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4315 	se->avg.runnable_sum = new_sum;
4316 
4317 	/* Update parent cfs_rq runnable */
4318 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4319 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4320 	/* See update_cfs_rq_load_avg() */
4321 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4322 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4323 }
4324 
4325 static inline void
4326 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4327 {
4328 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4329 	unsigned long load_avg;
4330 	u64 load_sum = 0;
4331 	s64 delta_sum;
4332 	u32 divider;
4333 
4334 	if (!runnable_sum)
4335 		return;
4336 
4337 	gcfs_rq->prop_runnable_sum = 0;
4338 
4339 	/*
4340 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4341 	 * See ___update_load_avg() for details.
4342 	 */
4343 	divider = get_pelt_divider(&cfs_rq->avg);
4344 
4345 	if (runnable_sum >= 0) {
4346 		/*
4347 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4348 		 * the CPU is saturated running == runnable.
4349 		 */
4350 		runnable_sum += se->avg.load_sum;
4351 		runnable_sum = min_t(long, runnable_sum, divider);
4352 	} else {
4353 		/*
4354 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4355 		 * assuming all tasks are equally runnable.
4356 		 */
4357 		if (scale_load_down(gcfs_rq->load.weight)) {
4358 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4359 				scale_load_down(gcfs_rq->load.weight));
4360 		}
4361 
4362 		/* But make sure to not inflate se's runnable */
4363 		runnable_sum = min(se->avg.load_sum, load_sum);
4364 	}
4365 
4366 	/*
4367 	 * runnable_sum can't be lower than running_sum
4368 	 * Rescale running sum to be in the same range as runnable sum
4369 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4370 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4371 	 */
4372 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4373 	runnable_sum = max(runnable_sum, running_sum);
4374 
4375 	load_sum = se_weight(se) * runnable_sum;
4376 	load_avg = div_u64(load_sum, divider);
4377 
4378 	delta_avg = load_avg - se->avg.load_avg;
4379 	if (!delta_avg)
4380 		return;
4381 
4382 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4383 
4384 	se->avg.load_sum = runnable_sum;
4385 	se->avg.load_avg = load_avg;
4386 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4387 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4388 	/* See update_cfs_rq_load_avg() */
4389 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4390 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4391 }
4392 
4393 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4394 {
4395 	cfs_rq->propagate = 1;
4396 	cfs_rq->prop_runnable_sum += runnable_sum;
4397 }
4398 
4399 /* Update task and its cfs_rq load average */
4400 static inline int propagate_entity_load_avg(struct sched_entity *se)
4401 {
4402 	struct cfs_rq *cfs_rq, *gcfs_rq;
4403 
4404 	if (entity_is_task(se))
4405 		return 0;
4406 
4407 	gcfs_rq = group_cfs_rq(se);
4408 	if (!gcfs_rq->propagate)
4409 		return 0;
4410 
4411 	gcfs_rq->propagate = 0;
4412 
4413 	cfs_rq = cfs_rq_of(se);
4414 
4415 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4416 
4417 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4418 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4419 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4420 
4421 	trace_pelt_cfs_tp(cfs_rq);
4422 	trace_pelt_se_tp(se);
4423 
4424 	return 1;
4425 }
4426 
4427 /*
4428  * Check if we need to update the load and the utilization of a blocked
4429  * group_entity:
4430  */
4431 static inline bool skip_blocked_update(struct sched_entity *se)
4432 {
4433 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4434 
4435 	/*
4436 	 * If sched_entity still have not zero load or utilization, we have to
4437 	 * decay it:
4438 	 */
4439 	if (se->avg.load_avg || se->avg.util_avg)
4440 		return false;
4441 
4442 	/*
4443 	 * If there is a pending propagation, we have to update the load and
4444 	 * the utilization of the sched_entity:
4445 	 */
4446 	if (gcfs_rq->propagate)
4447 		return false;
4448 
4449 	/*
4450 	 * Otherwise, the load and the utilization of the sched_entity is
4451 	 * already zero and there is no pending propagation, so it will be a
4452 	 * waste of time to try to decay it:
4453 	 */
4454 	return true;
4455 }
4456 
4457 #else /* CONFIG_FAIR_GROUP_SCHED */
4458 
4459 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4460 
4461 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4462 
4463 static inline int propagate_entity_load_avg(struct sched_entity *se)
4464 {
4465 	return 0;
4466 }
4467 
4468 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4469 
4470 #endif /* CONFIG_FAIR_GROUP_SCHED */
4471 
4472 #ifdef CONFIG_NO_HZ_COMMON
4473 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4474 {
4475 	u64 throttled = 0, now, lut;
4476 	struct cfs_rq *cfs_rq;
4477 	struct rq *rq;
4478 	bool is_idle;
4479 
4480 	if (load_avg_is_decayed(&se->avg))
4481 		return;
4482 
4483 	cfs_rq = cfs_rq_of(se);
4484 	rq = rq_of(cfs_rq);
4485 
4486 	rcu_read_lock();
4487 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4488 	rcu_read_unlock();
4489 
4490 	/*
4491 	 * The lag estimation comes with a cost we don't want to pay all the
4492 	 * time. Hence, limiting to the case where the source CPU is idle and
4493 	 * we know we are at the greatest risk to have an outdated clock.
4494 	 */
4495 	if (!is_idle)
4496 		return;
4497 
4498 	/*
4499 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4500 	 *
4501 	 *   last_update_time (the cfs_rq's last_update_time)
4502 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4503 	 *      = rq_clock_pelt()@cfs_rq_idle
4504 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4505 	 *
4506 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4507 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4508 	 *
4509 	 *   rq_idle_lag (delta between now and rq's update)
4510 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4511 	 *
4512 	 * We can then write:
4513 	 *
4514 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4515 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4516 	 * Where:
4517 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4518 	 *      rq_clock()@rq_idle      is rq->clock_idle
4519 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4520 	 *                              is cfs_rq->throttled_pelt_idle
4521 	 */
4522 
4523 #ifdef CONFIG_CFS_BANDWIDTH
4524 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4525 	/* The clock has been stopped for throttling */
4526 	if (throttled == U64_MAX)
4527 		return;
4528 #endif
4529 	now = u64_u32_load(rq->clock_pelt_idle);
4530 	/*
4531 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4532 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4533 	 * which lead to an underestimation. The opposite would lead to an
4534 	 * overestimation.
4535 	 */
4536 	smp_rmb();
4537 	lut = cfs_rq_last_update_time(cfs_rq);
4538 
4539 	now -= throttled;
4540 	if (now < lut)
4541 		/*
4542 		 * cfs_rq->avg.last_update_time is more recent than our
4543 		 * estimation, let's use it.
4544 		 */
4545 		now = lut;
4546 	else
4547 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4548 
4549 	__update_load_avg_blocked_se(now, se);
4550 }
4551 #else
4552 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4553 #endif
4554 
4555 /**
4556  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4557  * @now: current time, as per cfs_rq_clock_pelt()
4558  * @cfs_rq: cfs_rq to update
4559  *
4560  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4561  * avg. The immediate corollary is that all (fair) tasks must be attached.
4562  *
4563  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4564  *
4565  * Return: true if the load decayed or we removed load.
4566  *
4567  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4568  * call update_tg_load_avg() when this function returns true.
4569  */
4570 static inline int
4571 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4572 {
4573 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4574 	struct sched_avg *sa = &cfs_rq->avg;
4575 	int decayed = 0;
4576 
4577 	if (cfs_rq->removed.nr) {
4578 		unsigned long r;
4579 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4580 
4581 		raw_spin_lock(&cfs_rq->removed.lock);
4582 		swap(cfs_rq->removed.util_avg, removed_util);
4583 		swap(cfs_rq->removed.load_avg, removed_load);
4584 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4585 		cfs_rq->removed.nr = 0;
4586 		raw_spin_unlock(&cfs_rq->removed.lock);
4587 
4588 		r = removed_load;
4589 		sub_positive(&sa->load_avg, r);
4590 		sub_positive(&sa->load_sum, r * divider);
4591 		/* See sa->util_sum below */
4592 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4593 
4594 		r = removed_util;
4595 		sub_positive(&sa->util_avg, r);
4596 		sub_positive(&sa->util_sum, r * divider);
4597 		/*
4598 		 * Because of rounding, se->util_sum might ends up being +1 more than
4599 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4600 		 * a lot of tasks with the rounding problem between 2 updates of
4601 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4602 		 * cfs_util_avg is not.
4603 		 * Check that util_sum is still above its lower bound for the new
4604 		 * util_avg. Given that period_contrib might have moved since the last
4605 		 * sync, we are only sure that util_sum must be above or equal to
4606 		 *    util_avg * minimum possible divider
4607 		 */
4608 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4609 
4610 		r = removed_runnable;
4611 		sub_positive(&sa->runnable_avg, r);
4612 		sub_positive(&sa->runnable_sum, r * divider);
4613 		/* See sa->util_sum above */
4614 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4615 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4616 
4617 		/*
4618 		 * removed_runnable is the unweighted version of removed_load so we
4619 		 * can use it to estimate removed_load_sum.
4620 		 */
4621 		add_tg_cfs_propagate(cfs_rq,
4622 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4623 
4624 		decayed = 1;
4625 	}
4626 
4627 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4628 	u64_u32_store_copy(sa->last_update_time,
4629 			   cfs_rq->last_update_time_copy,
4630 			   sa->last_update_time);
4631 	return decayed;
4632 }
4633 
4634 /**
4635  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4636  * @cfs_rq: cfs_rq to attach to
4637  * @se: sched_entity to attach
4638  *
4639  * Must call update_cfs_rq_load_avg() before this, since we rely on
4640  * cfs_rq->avg.last_update_time being current.
4641  */
4642 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4643 {
4644 	/*
4645 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4646 	 * See ___update_load_avg() for details.
4647 	 */
4648 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4649 
4650 	/*
4651 	 * When we attach the @se to the @cfs_rq, we must align the decay
4652 	 * window because without that, really weird and wonderful things can
4653 	 * happen.
4654 	 *
4655 	 * XXX illustrate
4656 	 */
4657 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4658 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4659 
4660 	/*
4661 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4662 	 * period_contrib. This isn't strictly correct, but since we're
4663 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4664 	 * _sum a little.
4665 	 */
4666 	se->avg.util_sum = se->avg.util_avg * divider;
4667 
4668 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4669 
4670 	se->avg.load_sum = se->avg.load_avg * divider;
4671 	if (se_weight(se) < se->avg.load_sum)
4672 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4673 	else
4674 		se->avg.load_sum = 1;
4675 
4676 	enqueue_load_avg(cfs_rq, se);
4677 	cfs_rq->avg.util_avg += se->avg.util_avg;
4678 	cfs_rq->avg.util_sum += se->avg.util_sum;
4679 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4680 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4681 
4682 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4683 
4684 	cfs_rq_util_change(cfs_rq, 0);
4685 
4686 	trace_pelt_cfs_tp(cfs_rq);
4687 }
4688 
4689 /**
4690  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4691  * @cfs_rq: cfs_rq to detach from
4692  * @se: sched_entity to detach
4693  *
4694  * Must call update_cfs_rq_load_avg() before this, since we rely on
4695  * cfs_rq->avg.last_update_time being current.
4696  */
4697 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4698 {
4699 	dequeue_load_avg(cfs_rq, se);
4700 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4701 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4702 	/* See update_cfs_rq_load_avg() */
4703 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4704 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4705 
4706 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4707 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4708 	/* See update_cfs_rq_load_avg() */
4709 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4710 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4711 
4712 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4713 
4714 	cfs_rq_util_change(cfs_rq, 0);
4715 
4716 	trace_pelt_cfs_tp(cfs_rq);
4717 }
4718 
4719 /*
4720  * Optional action to be done while updating the load average
4721  */
4722 #define UPDATE_TG	0x1
4723 #define SKIP_AGE_LOAD	0x2
4724 #define DO_ATTACH	0x4
4725 #define DO_DETACH	0x8
4726 
4727 /* Update task and its cfs_rq load average */
4728 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4729 {
4730 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4731 	int decayed;
4732 
4733 	/*
4734 	 * Track task load average for carrying it to new CPU after migrated, and
4735 	 * track group sched_entity load average for task_h_load calculation in migration
4736 	 */
4737 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4738 		__update_load_avg_se(now, cfs_rq, se);
4739 
4740 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4741 	decayed |= propagate_entity_load_avg(se);
4742 
4743 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4744 
4745 		/*
4746 		 * DO_ATTACH means we're here from enqueue_entity().
4747 		 * !last_update_time means we've passed through
4748 		 * migrate_task_rq_fair() indicating we migrated.
4749 		 *
4750 		 * IOW we're enqueueing a task on a new CPU.
4751 		 */
4752 		attach_entity_load_avg(cfs_rq, se);
4753 		update_tg_load_avg(cfs_rq);
4754 
4755 	} else if (flags & DO_DETACH) {
4756 		/*
4757 		 * DO_DETACH means we're here from dequeue_entity()
4758 		 * and we are migrating task out of the CPU.
4759 		 */
4760 		detach_entity_load_avg(cfs_rq, se);
4761 		update_tg_load_avg(cfs_rq);
4762 	} else if (decayed) {
4763 		cfs_rq_util_change(cfs_rq, 0);
4764 
4765 		if (flags & UPDATE_TG)
4766 			update_tg_load_avg(cfs_rq);
4767 	}
4768 }
4769 
4770 /*
4771  * Synchronize entity load avg of dequeued entity without locking
4772  * the previous rq.
4773  */
4774 static void sync_entity_load_avg(struct sched_entity *se)
4775 {
4776 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4777 	u64 last_update_time;
4778 
4779 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4780 	__update_load_avg_blocked_se(last_update_time, se);
4781 }
4782 
4783 /*
4784  * Task first catches up with cfs_rq, and then subtract
4785  * itself from the cfs_rq (task must be off the queue now).
4786  */
4787 static void remove_entity_load_avg(struct sched_entity *se)
4788 {
4789 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4790 	unsigned long flags;
4791 
4792 	/*
4793 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4794 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4795 	 * so we can remove unconditionally.
4796 	 */
4797 
4798 	sync_entity_load_avg(se);
4799 
4800 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4801 	++cfs_rq->removed.nr;
4802 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4803 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4804 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4805 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4806 }
4807 
4808 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4809 {
4810 	return cfs_rq->avg.runnable_avg;
4811 }
4812 
4813 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4814 {
4815 	return cfs_rq->avg.load_avg;
4816 }
4817 
4818 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4819 
4820 static inline unsigned long task_util(struct task_struct *p)
4821 {
4822 	return READ_ONCE(p->se.avg.util_avg);
4823 }
4824 
4825 static inline unsigned long task_runnable(struct task_struct *p)
4826 {
4827 	return READ_ONCE(p->se.avg.runnable_avg);
4828 }
4829 
4830 static inline unsigned long _task_util_est(struct task_struct *p)
4831 {
4832 	return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4833 }
4834 
4835 static inline unsigned long task_util_est(struct task_struct *p)
4836 {
4837 	return max(task_util(p), _task_util_est(p));
4838 }
4839 
4840 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4841 				    struct task_struct *p)
4842 {
4843 	unsigned int enqueued;
4844 
4845 	if (!sched_feat(UTIL_EST))
4846 		return;
4847 
4848 	/* Update root cfs_rq's estimated utilization */
4849 	enqueued  = cfs_rq->avg.util_est;
4850 	enqueued += _task_util_est(p);
4851 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4852 
4853 	trace_sched_util_est_cfs_tp(cfs_rq);
4854 }
4855 
4856 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4857 				    struct task_struct *p)
4858 {
4859 	unsigned int enqueued;
4860 
4861 	if (!sched_feat(UTIL_EST))
4862 		return;
4863 
4864 	/* Update root cfs_rq's estimated utilization */
4865 	enqueued  = cfs_rq->avg.util_est;
4866 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4867 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4868 
4869 	trace_sched_util_est_cfs_tp(cfs_rq);
4870 }
4871 
4872 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4873 
4874 static inline void util_est_update(struct cfs_rq *cfs_rq,
4875 				   struct task_struct *p,
4876 				   bool task_sleep)
4877 {
4878 	unsigned int ewma, dequeued, last_ewma_diff;
4879 
4880 	if (!sched_feat(UTIL_EST))
4881 		return;
4882 
4883 	/*
4884 	 * Skip update of task's estimated utilization when the task has not
4885 	 * yet completed an activation, e.g. being migrated.
4886 	 */
4887 	if (!task_sleep)
4888 		return;
4889 
4890 	/* Get current estimate of utilization */
4891 	ewma = READ_ONCE(p->se.avg.util_est);
4892 
4893 	/*
4894 	 * If the PELT values haven't changed since enqueue time,
4895 	 * skip the util_est update.
4896 	 */
4897 	if (ewma & UTIL_AVG_UNCHANGED)
4898 		return;
4899 
4900 	/* Get utilization at dequeue */
4901 	dequeued = task_util(p);
4902 
4903 	/*
4904 	 * Reset EWMA on utilization increases, the moving average is used only
4905 	 * to smooth utilization decreases.
4906 	 */
4907 	if (ewma <= dequeued) {
4908 		ewma = dequeued;
4909 		goto done;
4910 	}
4911 
4912 	/*
4913 	 * Skip update of task's estimated utilization when its members are
4914 	 * already ~1% close to its last activation value.
4915 	 */
4916 	last_ewma_diff = ewma - dequeued;
4917 	if (last_ewma_diff < UTIL_EST_MARGIN)
4918 		goto done;
4919 
4920 	/*
4921 	 * To avoid overestimation of actual task utilization, skip updates if
4922 	 * we cannot grant there is idle time in this CPU.
4923 	 */
4924 	if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
4925 		return;
4926 
4927 	/*
4928 	 * To avoid underestimate of task utilization, skip updates of EWMA if
4929 	 * we cannot grant that thread got all CPU time it wanted.
4930 	 */
4931 	if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
4932 		goto done;
4933 
4934 
4935 	/*
4936 	 * Update Task's estimated utilization
4937 	 *
4938 	 * When *p completes an activation we can consolidate another sample
4939 	 * of the task size. This is done by using this value to update the
4940 	 * Exponential Weighted Moving Average (EWMA):
4941 	 *
4942 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4943 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4944 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4945 	 *          = w * (      -last_ewma_diff           ) +     ewma(t-1)
4946 	 *          = w * (-last_ewma_diff +  ewma(t-1) / w)
4947 	 *
4948 	 * Where 'w' is the weight of new samples, which is configured to be
4949 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4950 	 */
4951 	ewma <<= UTIL_EST_WEIGHT_SHIFT;
4952 	ewma  -= last_ewma_diff;
4953 	ewma >>= UTIL_EST_WEIGHT_SHIFT;
4954 done:
4955 	ewma |= UTIL_AVG_UNCHANGED;
4956 	WRITE_ONCE(p->se.avg.util_est, ewma);
4957 
4958 	trace_sched_util_est_se_tp(&p->se);
4959 }
4960 
4961 static inline unsigned long get_actual_cpu_capacity(int cpu)
4962 {
4963 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
4964 
4965 	capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
4966 
4967 	return capacity;
4968 }
4969 
4970 static inline int util_fits_cpu(unsigned long util,
4971 				unsigned long uclamp_min,
4972 				unsigned long uclamp_max,
4973 				int cpu)
4974 {
4975 	unsigned long capacity = capacity_of(cpu);
4976 	unsigned long capacity_orig;
4977 	bool fits, uclamp_max_fits;
4978 
4979 	/*
4980 	 * Check if the real util fits without any uclamp boost/cap applied.
4981 	 */
4982 	fits = fits_capacity(util, capacity);
4983 
4984 	if (!uclamp_is_used())
4985 		return fits;
4986 
4987 	/*
4988 	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
4989 	 * uclamp_max. We only care about capacity pressure (by using
4990 	 * capacity_of()) for comparing against the real util.
4991 	 *
4992 	 * If a task is boosted to 1024 for example, we don't want a tiny
4993 	 * pressure to skew the check whether it fits a CPU or not.
4994 	 *
4995 	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
4996 	 * should fit a little cpu even if there's some pressure.
4997 	 *
4998 	 * Only exception is for HW or cpufreq pressure since it has a direct impact
4999 	 * on available OPP of the system.
5000 	 *
5001 	 * We honour it for uclamp_min only as a drop in performance level
5002 	 * could result in not getting the requested minimum performance level.
5003 	 *
5004 	 * For uclamp_max, we can tolerate a drop in performance level as the
5005 	 * goal is to cap the task. So it's okay if it's getting less.
5006 	 */
5007 	capacity_orig = arch_scale_cpu_capacity(cpu);
5008 
5009 	/*
5010 	 * We want to force a task to fit a cpu as implied by uclamp_max.
5011 	 * But we do have some corner cases to cater for..
5012 	 *
5013 	 *
5014 	 *                                 C=z
5015 	 *   |                             ___
5016 	 *   |                  C=y       |   |
5017 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
5018 	 *   |      C=x        |   |      |   |
5019 	 *   |      ___        |   |      |   |
5020 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5021 	 *   |     |   |       |   |      |   |
5022 	 *   |     |   |       |   |      |   |
5023 	 *   +----------------------------------------
5024 	 *         CPU0        CPU1       CPU2
5025 	 *
5026 	 *   In the above example if a task is capped to a specific performance
5027 	 *   point, y, then when:
5028 	 *
5029 	 *   * util = 80% of x then it does not fit on CPU0 and should migrate
5030 	 *     to CPU1
5031 	 *   * util = 80% of y then it is forced to fit on CPU1 to honour
5032 	 *     uclamp_max request.
5033 	 *
5034 	 *   which is what we're enforcing here. A task always fits if
5035 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5036 	 *   the normal upmigration rules should withhold still.
5037 	 *
5038 	 *   Only exception is when we are on max capacity, then we need to be
5039 	 *   careful not to block overutilized state. This is so because:
5040 	 *
5041 	 *     1. There's no concept of capping at max_capacity! We can't go
5042 	 *        beyond this performance level anyway.
5043 	 *     2. The system is being saturated when we're operating near
5044 	 *        max capacity, it doesn't make sense to block overutilized.
5045 	 */
5046 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5047 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5048 	fits = fits || uclamp_max_fits;
5049 
5050 	/*
5051 	 *
5052 	 *                                 C=z
5053 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5054 	 *   |                  C=y       |   |
5055 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5056 	 *   |      C=x        |   |      |   |
5057 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5058 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5059 	 *   |     |   |       |   |      |   |
5060 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5061 	 *   +----------------------------------------
5062 	 *         CPU0        CPU1       CPU2
5063 	 *
5064 	 * a) If util > uclamp_max, then we're capped, we don't care about
5065 	 *    actual fitness value here. We only care if uclamp_max fits
5066 	 *    capacity without taking margin/pressure into account.
5067 	 *    See comment above.
5068 	 *
5069 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5070 	 *    fits_capacity() rules apply. Except we need to ensure that we
5071 	 *    enforce we remain within uclamp_max, see comment above.
5072 	 *
5073 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5074 	 *    need to take into account the boosted value fits the CPU without
5075 	 *    taking margin/pressure into account.
5076 	 *
5077 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5078 	 * just need to consider an extra check for case (c) after ensuring we
5079 	 * handle the case uclamp_min > uclamp_max.
5080 	 */
5081 	uclamp_min = min(uclamp_min, uclamp_max);
5082 	if (fits && (util < uclamp_min) &&
5083 	    (uclamp_min > get_actual_cpu_capacity(cpu)))
5084 		return -1;
5085 
5086 	return fits;
5087 }
5088 
5089 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5090 {
5091 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5092 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5093 	unsigned long util = task_util_est(p);
5094 	/*
5095 	 * Return true only if the cpu fully fits the task requirements, which
5096 	 * include the utilization but also the performance hints.
5097 	 */
5098 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5099 }
5100 
5101 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5102 {
5103 	int cpu = cpu_of(rq);
5104 
5105 	if (!sched_asym_cpucap_active())
5106 		return;
5107 
5108 	/*
5109 	 * Affinity allows us to go somewhere higher?  Or are we on biggest
5110 	 * available CPU already? Or do we fit into this CPU ?
5111 	 */
5112 	if (!p || (p->nr_cpus_allowed == 1) ||
5113 	    (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5114 	    task_fits_cpu(p, cpu)) {
5115 
5116 		rq->misfit_task_load = 0;
5117 		return;
5118 	}
5119 
5120 	/*
5121 	 * Make sure that misfit_task_load will not be null even if
5122 	 * task_h_load() returns 0.
5123 	 */
5124 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5125 }
5126 
5127 #else /* CONFIG_SMP */
5128 
5129 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5130 {
5131 	return !cfs_rq->nr_running;
5132 }
5133 
5134 #define UPDATE_TG	0x0
5135 #define SKIP_AGE_LOAD	0x0
5136 #define DO_ATTACH	0x0
5137 #define DO_DETACH	0x0
5138 
5139 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5140 {
5141 	cfs_rq_util_change(cfs_rq, 0);
5142 }
5143 
5144 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5145 
5146 static inline void
5147 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5148 static inline void
5149 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5150 
5151 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
5152 {
5153 	return 0;
5154 }
5155 
5156 static inline void
5157 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5158 
5159 static inline void
5160 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5161 
5162 static inline void
5163 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5164 		bool task_sleep) {}
5165 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5166 
5167 #endif /* CONFIG_SMP */
5168 
5169 static void
5170 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5171 {
5172 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5173 	s64 lag = 0;
5174 
5175 	if (!se->custom_slice)
5176 		se->slice = sysctl_sched_base_slice;
5177 	vslice = calc_delta_fair(se->slice, se);
5178 
5179 	/*
5180 	 * Due to how V is constructed as the weighted average of entities,
5181 	 * adding tasks with positive lag, or removing tasks with negative lag
5182 	 * will move 'time' backwards, this can screw around with the lag of
5183 	 * other tasks.
5184 	 *
5185 	 * EEVDF: placement strategy #1 / #2
5186 	 */
5187 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running && se->vlag) {
5188 		struct sched_entity *curr = cfs_rq->curr;
5189 		unsigned long load;
5190 
5191 		lag = se->vlag;
5192 
5193 		/*
5194 		 * If we want to place a task and preserve lag, we have to
5195 		 * consider the effect of the new entity on the weighted
5196 		 * average and compensate for this, otherwise lag can quickly
5197 		 * evaporate.
5198 		 *
5199 		 * Lag is defined as:
5200 		 *
5201 		 *   lag_i = S - s_i = w_i * (V - v_i)
5202 		 *
5203 		 * To avoid the 'w_i' term all over the place, we only track
5204 		 * the virtual lag:
5205 		 *
5206 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5207 		 *
5208 		 * And we take V to be the weighted average of all v:
5209 		 *
5210 		 *   V = (\Sum w_j*v_j) / W
5211 		 *
5212 		 * Where W is: \Sum w_j
5213 		 *
5214 		 * Then, the weighted average after adding an entity with lag
5215 		 * vl_i is given by:
5216 		 *
5217 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5218 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5219 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5220 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5221 		 *      = V - w_i*vl_i / (W + w_i)
5222 		 *
5223 		 * And the actual lag after adding an entity with vl_i is:
5224 		 *
5225 		 *   vl'_i = V' - v_i
5226 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5227 		 *         = vl_i - w_i*vl_i / (W + w_i)
5228 		 *
5229 		 * Which is strictly less than vl_i. So in order to preserve lag
5230 		 * we should inflate the lag before placement such that the
5231 		 * effective lag after placement comes out right.
5232 		 *
5233 		 * As such, invert the above relation for vl'_i to get the vl_i
5234 		 * we need to use such that the lag after placement is the lag
5235 		 * we computed before dequeue.
5236 		 *
5237 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5238 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5239 		 *
5240 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5241 		 *                   = W*vl_i
5242 		 *
5243 		 *   vl_i = (W + w_i)*vl'_i / W
5244 		 */
5245 		load = cfs_rq->avg_load;
5246 		if (curr && curr->on_rq)
5247 			load += scale_load_down(curr->load.weight);
5248 
5249 		lag *= load + scale_load_down(se->load.weight);
5250 		if (WARN_ON_ONCE(!load))
5251 			load = 1;
5252 		lag = div_s64(lag, load);
5253 	}
5254 
5255 	se->vruntime = vruntime - lag;
5256 
5257 	if (se->rel_deadline) {
5258 		se->deadline += se->vruntime;
5259 		se->rel_deadline = 0;
5260 		return;
5261 	}
5262 
5263 	/*
5264 	 * When joining the competition; the existing tasks will be,
5265 	 * on average, halfway through their slice, as such start tasks
5266 	 * off with half a slice to ease into the competition.
5267 	 */
5268 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5269 		vslice /= 2;
5270 
5271 	/*
5272 	 * EEVDF: vd_i = ve_i + r_i/w_i
5273 	 */
5274 	se->deadline = se->vruntime + vslice;
5275 }
5276 
5277 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5278 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5279 
5280 static inline bool cfs_bandwidth_used(void);
5281 
5282 static void
5283 requeue_delayed_entity(struct sched_entity *se);
5284 
5285 static void
5286 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5287 {
5288 	bool curr = cfs_rq->curr == se;
5289 
5290 	/*
5291 	 * If we're the current task, we must renormalise before calling
5292 	 * update_curr().
5293 	 */
5294 	if (curr)
5295 		place_entity(cfs_rq, se, flags);
5296 
5297 	update_curr(cfs_rq);
5298 
5299 	/*
5300 	 * When enqueuing a sched_entity, we must:
5301 	 *   - Update loads to have both entity and cfs_rq synced with now.
5302 	 *   - For group_entity, update its runnable_weight to reflect the new
5303 	 *     h_nr_running of its group cfs_rq.
5304 	 *   - For group_entity, update its weight to reflect the new share of
5305 	 *     its group cfs_rq
5306 	 *   - Add its new weight to cfs_rq->load.weight
5307 	 */
5308 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5309 	se_update_runnable(se);
5310 	/*
5311 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5312 	 * but update_cfs_group() here will re-adjust the weight and have to
5313 	 * undo/redo all that. Seems wasteful.
5314 	 */
5315 	update_cfs_group(se);
5316 
5317 	/*
5318 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5319 	 * we can place the entity.
5320 	 */
5321 	if (!curr)
5322 		place_entity(cfs_rq, se, flags);
5323 
5324 	account_entity_enqueue(cfs_rq, se);
5325 
5326 	/* Entity has migrated, no longer consider this task hot */
5327 	if (flags & ENQUEUE_MIGRATED)
5328 		se->exec_start = 0;
5329 
5330 	check_schedstat_required();
5331 	update_stats_enqueue_fair(cfs_rq, se, flags);
5332 	if (!curr)
5333 		__enqueue_entity(cfs_rq, se);
5334 	se->on_rq = 1;
5335 
5336 	if (cfs_rq->nr_running == 1) {
5337 		check_enqueue_throttle(cfs_rq);
5338 		if (!throttled_hierarchy(cfs_rq)) {
5339 			list_add_leaf_cfs_rq(cfs_rq);
5340 		} else {
5341 #ifdef CONFIG_CFS_BANDWIDTH
5342 			struct rq *rq = rq_of(cfs_rq);
5343 
5344 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5345 				cfs_rq->throttled_clock = rq_clock(rq);
5346 			if (!cfs_rq->throttled_clock_self)
5347 				cfs_rq->throttled_clock_self = rq_clock(rq);
5348 #endif
5349 		}
5350 	}
5351 }
5352 
5353 static void __clear_buddies_next(struct sched_entity *se)
5354 {
5355 	for_each_sched_entity(se) {
5356 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5357 		if (cfs_rq->next != se)
5358 			break;
5359 
5360 		cfs_rq->next = NULL;
5361 	}
5362 }
5363 
5364 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5365 {
5366 	if (cfs_rq->next == se)
5367 		__clear_buddies_next(se);
5368 }
5369 
5370 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5371 
5372 static void set_delayed(struct sched_entity *se)
5373 {
5374 	se->sched_delayed = 1;
5375 	for_each_sched_entity(se) {
5376 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5377 
5378 		cfs_rq->h_nr_delayed++;
5379 		if (cfs_rq_throttled(cfs_rq))
5380 			break;
5381 	}
5382 }
5383 
5384 static void clear_delayed(struct sched_entity *se)
5385 {
5386 	se->sched_delayed = 0;
5387 	for_each_sched_entity(se) {
5388 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5389 
5390 		cfs_rq->h_nr_delayed--;
5391 		if (cfs_rq_throttled(cfs_rq))
5392 			break;
5393 	}
5394 }
5395 
5396 static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5397 {
5398 	clear_delayed(se);
5399 	if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5400 		se->vlag = 0;
5401 }
5402 
5403 static bool
5404 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5405 {
5406 	bool sleep = flags & DEQUEUE_SLEEP;
5407 
5408 	update_curr(cfs_rq);
5409 	clear_buddies(cfs_rq, se);
5410 
5411 	if (flags & DEQUEUE_DELAYED) {
5412 		SCHED_WARN_ON(!se->sched_delayed);
5413 	} else {
5414 		bool delay = sleep;
5415 		/*
5416 		 * DELAY_DEQUEUE relies on spurious wakeups, special task
5417 		 * states must not suffer spurious wakeups, excempt them.
5418 		 */
5419 		if (flags & DEQUEUE_SPECIAL)
5420 			delay = false;
5421 
5422 		SCHED_WARN_ON(delay && se->sched_delayed);
5423 
5424 		if (sched_feat(DELAY_DEQUEUE) && delay &&
5425 		    !entity_eligible(cfs_rq, se)) {
5426 			update_load_avg(cfs_rq, se, 0);
5427 			set_delayed(se);
5428 			return false;
5429 		}
5430 	}
5431 
5432 	int action = UPDATE_TG;
5433 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5434 		action |= DO_DETACH;
5435 
5436 	/*
5437 	 * When dequeuing a sched_entity, we must:
5438 	 *   - Update loads to have both entity and cfs_rq synced with now.
5439 	 *   - For group_entity, update its runnable_weight to reflect the new
5440 	 *     h_nr_running of its group cfs_rq.
5441 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5442 	 *   - For group entity, update its weight to reflect the new share
5443 	 *     of its group cfs_rq.
5444 	 */
5445 	update_load_avg(cfs_rq, se, action);
5446 	se_update_runnable(se);
5447 
5448 	update_stats_dequeue_fair(cfs_rq, se, flags);
5449 
5450 	update_entity_lag(cfs_rq, se);
5451 	if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5452 		se->deadline -= se->vruntime;
5453 		se->rel_deadline = 1;
5454 	}
5455 
5456 	if (se != cfs_rq->curr)
5457 		__dequeue_entity(cfs_rq, se);
5458 	se->on_rq = 0;
5459 	account_entity_dequeue(cfs_rq, se);
5460 
5461 	/* return excess runtime on last dequeue */
5462 	return_cfs_rq_runtime(cfs_rq);
5463 
5464 	update_cfs_group(se);
5465 
5466 	/*
5467 	 * Now advance min_vruntime if @se was the entity holding it back,
5468 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5469 	 * put back on, and if we advance min_vruntime, we'll be placed back
5470 	 * further than we started -- i.e. we'll be penalized.
5471 	 */
5472 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5473 		update_min_vruntime(cfs_rq);
5474 
5475 	if (flags & DEQUEUE_DELAYED)
5476 		finish_delayed_dequeue_entity(se);
5477 
5478 	if (cfs_rq->nr_running == 0)
5479 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5480 
5481 	return true;
5482 }
5483 
5484 static void
5485 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5486 {
5487 	clear_buddies(cfs_rq, se);
5488 
5489 	/* 'current' is not kept within the tree. */
5490 	if (se->on_rq) {
5491 		/*
5492 		 * Any task has to be enqueued before it get to execute on
5493 		 * a CPU. So account for the time it spent waiting on the
5494 		 * runqueue.
5495 		 */
5496 		update_stats_wait_end_fair(cfs_rq, se);
5497 		__dequeue_entity(cfs_rq, se);
5498 		update_load_avg(cfs_rq, se, UPDATE_TG);
5499 		/*
5500 		 * HACK, stash a copy of deadline at the point of pick in vlag,
5501 		 * which isn't used until dequeue.
5502 		 */
5503 		se->vlag = se->deadline;
5504 	}
5505 
5506 	update_stats_curr_start(cfs_rq, se);
5507 	SCHED_WARN_ON(cfs_rq->curr);
5508 	cfs_rq->curr = se;
5509 
5510 	/*
5511 	 * Track our maximum slice length, if the CPU's load is at
5512 	 * least twice that of our own weight (i.e. don't track it
5513 	 * when there are only lesser-weight tasks around):
5514 	 */
5515 	if (schedstat_enabled() &&
5516 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5517 		struct sched_statistics *stats;
5518 
5519 		stats = __schedstats_from_se(se);
5520 		__schedstat_set(stats->slice_max,
5521 				max((u64)stats->slice_max,
5522 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5523 	}
5524 
5525 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5526 }
5527 
5528 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5529 
5530 /*
5531  * Pick the next process, keeping these things in mind, in this order:
5532  * 1) keep things fair between processes/task groups
5533  * 2) pick the "next" process, since someone really wants that to run
5534  * 3) pick the "last" process, for cache locality
5535  * 4) do not run the "skip" process, if something else is available
5536  */
5537 static struct sched_entity *
5538 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5539 {
5540 	/*
5541 	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5542 	 */
5543 	if (sched_feat(NEXT_BUDDY) &&
5544 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
5545 		/* ->next will never be delayed */
5546 		SCHED_WARN_ON(cfs_rq->next->sched_delayed);
5547 		return cfs_rq->next;
5548 	}
5549 
5550 	struct sched_entity *se = pick_eevdf(cfs_rq);
5551 	if (se->sched_delayed) {
5552 		dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5553 		/*
5554 		 * Must not reference @se again, see __block_task().
5555 		 */
5556 		return NULL;
5557 	}
5558 	return se;
5559 }
5560 
5561 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5562 
5563 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5564 {
5565 	/*
5566 	 * If still on the runqueue then deactivate_task()
5567 	 * was not called and update_curr() has to be done:
5568 	 */
5569 	if (prev->on_rq)
5570 		update_curr(cfs_rq);
5571 
5572 	/* throttle cfs_rqs exceeding runtime */
5573 	check_cfs_rq_runtime(cfs_rq);
5574 
5575 	if (prev->on_rq) {
5576 		update_stats_wait_start_fair(cfs_rq, prev);
5577 		/* Put 'current' back into the tree. */
5578 		__enqueue_entity(cfs_rq, prev);
5579 		/* in !on_rq case, update occurred at dequeue */
5580 		update_load_avg(cfs_rq, prev, 0);
5581 	}
5582 	SCHED_WARN_ON(cfs_rq->curr != prev);
5583 	cfs_rq->curr = NULL;
5584 }
5585 
5586 static void
5587 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5588 {
5589 	/*
5590 	 * Update run-time statistics of the 'current'.
5591 	 */
5592 	update_curr(cfs_rq);
5593 
5594 	/*
5595 	 * Ensure that runnable average is periodically updated.
5596 	 */
5597 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5598 	update_cfs_group(curr);
5599 
5600 #ifdef CONFIG_SCHED_HRTICK
5601 	/*
5602 	 * queued ticks are scheduled to match the slice, so don't bother
5603 	 * validating it and just reschedule.
5604 	 */
5605 	if (queued) {
5606 		resched_curr_lazy(rq_of(cfs_rq));
5607 		return;
5608 	}
5609 #endif
5610 }
5611 
5612 
5613 /**************************************************
5614  * CFS bandwidth control machinery
5615  */
5616 
5617 #ifdef CONFIG_CFS_BANDWIDTH
5618 
5619 #ifdef CONFIG_JUMP_LABEL
5620 static struct static_key __cfs_bandwidth_used;
5621 
5622 static inline bool cfs_bandwidth_used(void)
5623 {
5624 	return static_key_false(&__cfs_bandwidth_used);
5625 }
5626 
5627 void cfs_bandwidth_usage_inc(void)
5628 {
5629 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5630 }
5631 
5632 void cfs_bandwidth_usage_dec(void)
5633 {
5634 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5635 }
5636 #else /* CONFIG_JUMP_LABEL */
5637 static bool cfs_bandwidth_used(void)
5638 {
5639 	return true;
5640 }
5641 
5642 void cfs_bandwidth_usage_inc(void) {}
5643 void cfs_bandwidth_usage_dec(void) {}
5644 #endif /* CONFIG_JUMP_LABEL */
5645 
5646 /*
5647  * default period for cfs group bandwidth.
5648  * default: 0.1s, units: nanoseconds
5649  */
5650 static inline u64 default_cfs_period(void)
5651 {
5652 	return 100000000ULL;
5653 }
5654 
5655 static inline u64 sched_cfs_bandwidth_slice(void)
5656 {
5657 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5658 }
5659 
5660 /*
5661  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5662  * directly instead of rq->clock to avoid adding additional synchronization
5663  * around rq->lock.
5664  *
5665  * requires cfs_b->lock
5666  */
5667 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5668 {
5669 	s64 runtime;
5670 
5671 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5672 		return;
5673 
5674 	cfs_b->runtime += cfs_b->quota;
5675 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5676 	if (runtime > 0) {
5677 		cfs_b->burst_time += runtime;
5678 		cfs_b->nr_burst++;
5679 	}
5680 
5681 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5682 	cfs_b->runtime_snap = cfs_b->runtime;
5683 }
5684 
5685 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5686 {
5687 	return &tg->cfs_bandwidth;
5688 }
5689 
5690 /* returns 0 on failure to allocate runtime */
5691 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5692 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5693 {
5694 	u64 min_amount, amount = 0;
5695 
5696 	lockdep_assert_held(&cfs_b->lock);
5697 
5698 	/* note: this is a positive sum as runtime_remaining <= 0 */
5699 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5700 
5701 	if (cfs_b->quota == RUNTIME_INF)
5702 		amount = min_amount;
5703 	else {
5704 		start_cfs_bandwidth(cfs_b);
5705 
5706 		if (cfs_b->runtime > 0) {
5707 			amount = min(cfs_b->runtime, min_amount);
5708 			cfs_b->runtime -= amount;
5709 			cfs_b->idle = 0;
5710 		}
5711 	}
5712 
5713 	cfs_rq->runtime_remaining += amount;
5714 
5715 	return cfs_rq->runtime_remaining > 0;
5716 }
5717 
5718 /* returns 0 on failure to allocate runtime */
5719 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5720 {
5721 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5722 	int ret;
5723 
5724 	raw_spin_lock(&cfs_b->lock);
5725 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5726 	raw_spin_unlock(&cfs_b->lock);
5727 
5728 	return ret;
5729 }
5730 
5731 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5732 {
5733 	/* dock delta_exec before expiring quota (as it could span periods) */
5734 	cfs_rq->runtime_remaining -= delta_exec;
5735 
5736 	if (likely(cfs_rq->runtime_remaining > 0))
5737 		return;
5738 
5739 	if (cfs_rq->throttled)
5740 		return;
5741 	/*
5742 	 * if we're unable to extend our runtime we resched so that the active
5743 	 * hierarchy can be throttled
5744 	 */
5745 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5746 		resched_curr(rq_of(cfs_rq));
5747 }
5748 
5749 static __always_inline
5750 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5751 {
5752 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5753 		return;
5754 
5755 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5756 }
5757 
5758 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5759 {
5760 	return cfs_bandwidth_used() && cfs_rq->throttled;
5761 }
5762 
5763 /* check whether cfs_rq, or any parent, is throttled */
5764 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5765 {
5766 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5767 }
5768 
5769 /*
5770  * Ensure that neither of the group entities corresponding to src_cpu or
5771  * dest_cpu are members of a throttled hierarchy when performing group
5772  * load-balance operations.
5773  */
5774 static inline int throttled_lb_pair(struct task_group *tg,
5775 				    int src_cpu, int dest_cpu)
5776 {
5777 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5778 
5779 	src_cfs_rq = tg->cfs_rq[src_cpu];
5780 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5781 
5782 	return throttled_hierarchy(src_cfs_rq) ||
5783 	       throttled_hierarchy(dest_cfs_rq);
5784 }
5785 
5786 static int tg_unthrottle_up(struct task_group *tg, void *data)
5787 {
5788 	struct rq *rq = data;
5789 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5790 
5791 	cfs_rq->throttle_count--;
5792 	if (!cfs_rq->throttle_count) {
5793 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5794 					     cfs_rq->throttled_clock_pelt;
5795 
5796 		/* Add cfs_rq with load or one or more already running entities to the list */
5797 		if (!cfs_rq_is_decayed(cfs_rq))
5798 			list_add_leaf_cfs_rq(cfs_rq);
5799 
5800 		if (cfs_rq->throttled_clock_self) {
5801 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5802 
5803 			cfs_rq->throttled_clock_self = 0;
5804 
5805 			if (SCHED_WARN_ON((s64)delta < 0))
5806 				delta = 0;
5807 
5808 			cfs_rq->throttled_clock_self_time += delta;
5809 		}
5810 	}
5811 
5812 	return 0;
5813 }
5814 
5815 static int tg_throttle_down(struct task_group *tg, void *data)
5816 {
5817 	struct rq *rq = data;
5818 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5819 
5820 	/* group is entering throttled state, stop time */
5821 	if (!cfs_rq->throttle_count) {
5822 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5823 		list_del_leaf_cfs_rq(cfs_rq);
5824 
5825 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5826 		if (cfs_rq->nr_running)
5827 			cfs_rq->throttled_clock_self = rq_clock(rq);
5828 	}
5829 	cfs_rq->throttle_count++;
5830 
5831 	return 0;
5832 }
5833 
5834 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5835 {
5836 	struct rq *rq = rq_of(cfs_rq);
5837 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5838 	struct sched_entity *se;
5839 	long task_delta, idle_task_delta, delayed_delta, dequeue = 1;
5840 	long rq_h_nr_running = rq->cfs.h_nr_running;
5841 
5842 	raw_spin_lock(&cfs_b->lock);
5843 	/* This will start the period timer if necessary */
5844 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5845 		/*
5846 		 * We have raced with bandwidth becoming available, and if we
5847 		 * actually throttled the timer might not unthrottle us for an
5848 		 * entire period. We additionally needed to make sure that any
5849 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5850 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5851 		 * for 1ns of runtime rather than just check cfs_b.
5852 		 */
5853 		dequeue = 0;
5854 	} else {
5855 		list_add_tail_rcu(&cfs_rq->throttled_list,
5856 				  &cfs_b->throttled_cfs_rq);
5857 	}
5858 	raw_spin_unlock(&cfs_b->lock);
5859 
5860 	if (!dequeue)
5861 		return false;  /* Throttle no longer required. */
5862 
5863 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5864 
5865 	/* freeze hierarchy runnable averages while throttled */
5866 	rcu_read_lock();
5867 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5868 	rcu_read_unlock();
5869 
5870 	task_delta = cfs_rq->h_nr_running;
5871 	idle_task_delta = cfs_rq->idle_h_nr_running;
5872 	delayed_delta = cfs_rq->h_nr_delayed;
5873 	for_each_sched_entity(se) {
5874 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5875 		int flags;
5876 
5877 		/* throttled entity or throttle-on-deactivate */
5878 		if (!se->on_rq)
5879 			goto done;
5880 
5881 		/*
5882 		 * Abuse SPECIAL to avoid delayed dequeue in this instance.
5883 		 * This avoids teaching dequeue_entities() about throttled
5884 		 * entities and keeps things relatively simple.
5885 		 */
5886 		flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
5887 		if (se->sched_delayed)
5888 			flags |= DEQUEUE_DELAYED;
5889 		dequeue_entity(qcfs_rq, se, flags);
5890 
5891 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5892 			idle_task_delta = cfs_rq->h_nr_running;
5893 
5894 		qcfs_rq->h_nr_running -= task_delta;
5895 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5896 		qcfs_rq->h_nr_delayed -= delayed_delta;
5897 
5898 		if (qcfs_rq->load.weight) {
5899 			/* Avoid re-evaluating load for this entity: */
5900 			se = parent_entity(se);
5901 			break;
5902 		}
5903 	}
5904 
5905 	for_each_sched_entity(se) {
5906 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5907 		/* throttled entity or throttle-on-deactivate */
5908 		if (!se->on_rq)
5909 			goto done;
5910 
5911 		update_load_avg(qcfs_rq, se, 0);
5912 		se_update_runnable(se);
5913 
5914 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5915 			idle_task_delta = cfs_rq->h_nr_running;
5916 
5917 		qcfs_rq->h_nr_running -= task_delta;
5918 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5919 		qcfs_rq->h_nr_delayed -= delayed_delta;
5920 	}
5921 
5922 	/* At this point se is NULL and we are at root level*/
5923 	sub_nr_running(rq, task_delta);
5924 
5925 	/* Stop the fair server if throttling resulted in no runnable tasks */
5926 	if (rq_h_nr_running && !rq->cfs.h_nr_running)
5927 		dl_server_stop(&rq->fair_server);
5928 done:
5929 	/*
5930 	 * Note: distribution will already see us throttled via the
5931 	 * throttled-list.  rq->lock protects completion.
5932 	 */
5933 	cfs_rq->throttled = 1;
5934 	SCHED_WARN_ON(cfs_rq->throttled_clock);
5935 	if (cfs_rq->nr_running)
5936 		cfs_rq->throttled_clock = rq_clock(rq);
5937 	return true;
5938 }
5939 
5940 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5941 {
5942 	struct rq *rq = rq_of(cfs_rq);
5943 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5944 	struct sched_entity *se;
5945 	long task_delta, idle_task_delta, delayed_delta;
5946 	long rq_h_nr_running = rq->cfs.h_nr_running;
5947 
5948 	se = cfs_rq->tg->se[cpu_of(rq)];
5949 
5950 	cfs_rq->throttled = 0;
5951 
5952 	update_rq_clock(rq);
5953 
5954 	raw_spin_lock(&cfs_b->lock);
5955 	if (cfs_rq->throttled_clock) {
5956 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5957 		cfs_rq->throttled_clock = 0;
5958 	}
5959 	list_del_rcu(&cfs_rq->throttled_list);
5960 	raw_spin_unlock(&cfs_b->lock);
5961 
5962 	/* update hierarchical throttle state */
5963 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5964 
5965 	if (!cfs_rq->load.weight) {
5966 		if (!cfs_rq->on_list)
5967 			return;
5968 		/*
5969 		 * Nothing to run but something to decay (on_list)?
5970 		 * Complete the branch.
5971 		 */
5972 		for_each_sched_entity(se) {
5973 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5974 				break;
5975 		}
5976 		goto unthrottle_throttle;
5977 	}
5978 
5979 	task_delta = cfs_rq->h_nr_running;
5980 	idle_task_delta = cfs_rq->idle_h_nr_running;
5981 	delayed_delta = cfs_rq->h_nr_delayed;
5982 	for_each_sched_entity(se) {
5983 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5984 
5985 		/* Handle any unfinished DELAY_DEQUEUE business first. */
5986 		if (se->sched_delayed) {
5987 			int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED;
5988 
5989 			dequeue_entity(qcfs_rq, se, flags);
5990 		} else if (se->on_rq)
5991 			break;
5992 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5993 
5994 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5995 			idle_task_delta = cfs_rq->h_nr_running;
5996 
5997 		qcfs_rq->h_nr_running += task_delta;
5998 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5999 		qcfs_rq->h_nr_delayed += delayed_delta;
6000 
6001 		/* end evaluation on encountering a throttled cfs_rq */
6002 		if (cfs_rq_throttled(qcfs_rq))
6003 			goto unthrottle_throttle;
6004 	}
6005 
6006 	for_each_sched_entity(se) {
6007 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6008 
6009 		update_load_avg(qcfs_rq, se, UPDATE_TG);
6010 		se_update_runnable(se);
6011 
6012 		if (cfs_rq_is_idle(group_cfs_rq(se)))
6013 			idle_task_delta = cfs_rq->h_nr_running;
6014 
6015 		qcfs_rq->h_nr_running += task_delta;
6016 		qcfs_rq->idle_h_nr_running += idle_task_delta;
6017 		qcfs_rq->h_nr_delayed += delayed_delta;
6018 
6019 		/* end evaluation on encountering a throttled cfs_rq */
6020 		if (cfs_rq_throttled(qcfs_rq))
6021 			goto unthrottle_throttle;
6022 	}
6023 
6024 	/* Start the fair server if un-throttling resulted in new runnable tasks */
6025 	if (!rq_h_nr_running && rq->cfs.h_nr_running)
6026 		dl_server_start(&rq->fair_server);
6027 
6028 	/* At this point se is NULL and we are at root level*/
6029 	add_nr_running(rq, task_delta);
6030 
6031 unthrottle_throttle:
6032 	assert_list_leaf_cfs_rq(rq);
6033 
6034 	/* Determine whether we need to wake up potentially idle CPU: */
6035 	if (rq->curr == rq->idle && rq->cfs.nr_running)
6036 		resched_curr(rq);
6037 }
6038 
6039 #ifdef CONFIG_SMP
6040 static void __cfsb_csd_unthrottle(void *arg)
6041 {
6042 	struct cfs_rq *cursor, *tmp;
6043 	struct rq *rq = arg;
6044 	struct rq_flags rf;
6045 
6046 	rq_lock(rq, &rf);
6047 
6048 	/*
6049 	 * Iterating over the list can trigger several call to
6050 	 * update_rq_clock() in unthrottle_cfs_rq().
6051 	 * Do it once and skip the potential next ones.
6052 	 */
6053 	update_rq_clock(rq);
6054 	rq_clock_start_loop_update(rq);
6055 
6056 	/*
6057 	 * Since we hold rq lock we're safe from concurrent manipulation of
6058 	 * the CSD list. However, this RCU critical section annotates the
6059 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
6060 	 * race with group being freed in the window between removing it
6061 	 * from the list and advancing to the next entry in the list.
6062 	 */
6063 	rcu_read_lock();
6064 
6065 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6066 				 throttled_csd_list) {
6067 		list_del_init(&cursor->throttled_csd_list);
6068 
6069 		if (cfs_rq_throttled(cursor))
6070 			unthrottle_cfs_rq(cursor);
6071 	}
6072 
6073 	rcu_read_unlock();
6074 
6075 	rq_clock_stop_loop_update(rq);
6076 	rq_unlock(rq, &rf);
6077 }
6078 
6079 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6080 {
6081 	struct rq *rq = rq_of(cfs_rq);
6082 	bool first;
6083 
6084 	if (rq == this_rq()) {
6085 		unthrottle_cfs_rq(cfs_rq);
6086 		return;
6087 	}
6088 
6089 	/* Already enqueued */
6090 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
6091 		return;
6092 
6093 	first = list_empty(&rq->cfsb_csd_list);
6094 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6095 	if (first)
6096 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6097 }
6098 #else
6099 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6100 {
6101 	unthrottle_cfs_rq(cfs_rq);
6102 }
6103 #endif
6104 
6105 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6106 {
6107 	lockdep_assert_rq_held(rq_of(cfs_rq));
6108 
6109 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
6110 	    cfs_rq->runtime_remaining <= 0))
6111 		return;
6112 
6113 	__unthrottle_cfs_rq_async(cfs_rq);
6114 }
6115 
6116 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6117 {
6118 	int this_cpu = smp_processor_id();
6119 	u64 runtime, remaining = 1;
6120 	bool throttled = false;
6121 	struct cfs_rq *cfs_rq, *tmp;
6122 	struct rq_flags rf;
6123 	struct rq *rq;
6124 	LIST_HEAD(local_unthrottle);
6125 
6126 	rcu_read_lock();
6127 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6128 				throttled_list) {
6129 		rq = rq_of(cfs_rq);
6130 
6131 		if (!remaining) {
6132 			throttled = true;
6133 			break;
6134 		}
6135 
6136 		rq_lock_irqsave(rq, &rf);
6137 		if (!cfs_rq_throttled(cfs_rq))
6138 			goto next;
6139 
6140 		/* Already queued for async unthrottle */
6141 		if (!list_empty(&cfs_rq->throttled_csd_list))
6142 			goto next;
6143 
6144 		/* By the above checks, this should never be true */
6145 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6146 
6147 		raw_spin_lock(&cfs_b->lock);
6148 		runtime = -cfs_rq->runtime_remaining + 1;
6149 		if (runtime > cfs_b->runtime)
6150 			runtime = cfs_b->runtime;
6151 		cfs_b->runtime -= runtime;
6152 		remaining = cfs_b->runtime;
6153 		raw_spin_unlock(&cfs_b->lock);
6154 
6155 		cfs_rq->runtime_remaining += runtime;
6156 
6157 		/* we check whether we're throttled above */
6158 		if (cfs_rq->runtime_remaining > 0) {
6159 			if (cpu_of(rq) != this_cpu) {
6160 				unthrottle_cfs_rq_async(cfs_rq);
6161 			} else {
6162 				/*
6163 				 * We currently only expect to be unthrottling
6164 				 * a single cfs_rq locally.
6165 				 */
6166 				SCHED_WARN_ON(!list_empty(&local_unthrottle));
6167 				list_add_tail(&cfs_rq->throttled_csd_list,
6168 					      &local_unthrottle);
6169 			}
6170 		} else {
6171 			throttled = true;
6172 		}
6173 
6174 next:
6175 		rq_unlock_irqrestore(rq, &rf);
6176 	}
6177 
6178 	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6179 				 throttled_csd_list) {
6180 		struct rq *rq = rq_of(cfs_rq);
6181 
6182 		rq_lock_irqsave(rq, &rf);
6183 
6184 		list_del_init(&cfs_rq->throttled_csd_list);
6185 
6186 		if (cfs_rq_throttled(cfs_rq))
6187 			unthrottle_cfs_rq(cfs_rq);
6188 
6189 		rq_unlock_irqrestore(rq, &rf);
6190 	}
6191 	SCHED_WARN_ON(!list_empty(&local_unthrottle));
6192 
6193 	rcu_read_unlock();
6194 
6195 	return throttled;
6196 }
6197 
6198 /*
6199  * Responsible for refilling a task_group's bandwidth and unthrottling its
6200  * cfs_rqs as appropriate. If there has been no activity within the last
6201  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6202  * used to track this state.
6203  */
6204 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6205 {
6206 	int throttled;
6207 
6208 	/* no need to continue the timer with no bandwidth constraint */
6209 	if (cfs_b->quota == RUNTIME_INF)
6210 		goto out_deactivate;
6211 
6212 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6213 	cfs_b->nr_periods += overrun;
6214 
6215 	/* Refill extra burst quota even if cfs_b->idle */
6216 	__refill_cfs_bandwidth_runtime(cfs_b);
6217 
6218 	/*
6219 	 * idle depends on !throttled (for the case of a large deficit), and if
6220 	 * we're going inactive then everything else can be deferred
6221 	 */
6222 	if (cfs_b->idle && !throttled)
6223 		goto out_deactivate;
6224 
6225 	if (!throttled) {
6226 		/* mark as potentially idle for the upcoming period */
6227 		cfs_b->idle = 1;
6228 		return 0;
6229 	}
6230 
6231 	/* account preceding periods in which throttling occurred */
6232 	cfs_b->nr_throttled += overrun;
6233 
6234 	/*
6235 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6236 	 */
6237 	while (throttled && cfs_b->runtime > 0) {
6238 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6239 		/* we can't nest cfs_b->lock while distributing bandwidth */
6240 		throttled = distribute_cfs_runtime(cfs_b);
6241 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6242 	}
6243 
6244 	/*
6245 	 * While we are ensured activity in the period following an
6246 	 * unthrottle, this also covers the case in which the new bandwidth is
6247 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6248 	 * timer to remain active while there are any throttled entities.)
6249 	 */
6250 	cfs_b->idle = 0;
6251 
6252 	return 0;
6253 
6254 out_deactivate:
6255 	return 1;
6256 }
6257 
6258 /* a cfs_rq won't donate quota below this amount */
6259 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6260 /* minimum remaining period time to redistribute slack quota */
6261 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6262 /* how long we wait to gather additional slack before distributing */
6263 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6264 
6265 /*
6266  * Are we near the end of the current quota period?
6267  *
6268  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6269  * hrtimer base being cleared by hrtimer_start. In the case of
6270  * migrate_hrtimers, base is never cleared, so we are fine.
6271  */
6272 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6273 {
6274 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6275 	s64 remaining;
6276 
6277 	/* if the call-back is running a quota refresh is already occurring */
6278 	if (hrtimer_callback_running(refresh_timer))
6279 		return 1;
6280 
6281 	/* is a quota refresh about to occur? */
6282 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6283 	if (remaining < (s64)min_expire)
6284 		return 1;
6285 
6286 	return 0;
6287 }
6288 
6289 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6290 {
6291 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6292 
6293 	/* if there's a quota refresh soon don't bother with slack */
6294 	if (runtime_refresh_within(cfs_b, min_left))
6295 		return;
6296 
6297 	/* don't push forwards an existing deferred unthrottle */
6298 	if (cfs_b->slack_started)
6299 		return;
6300 	cfs_b->slack_started = true;
6301 
6302 	hrtimer_start(&cfs_b->slack_timer,
6303 			ns_to_ktime(cfs_bandwidth_slack_period),
6304 			HRTIMER_MODE_REL);
6305 }
6306 
6307 /* we know any runtime found here is valid as update_curr() precedes return */
6308 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6309 {
6310 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6311 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6312 
6313 	if (slack_runtime <= 0)
6314 		return;
6315 
6316 	raw_spin_lock(&cfs_b->lock);
6317 	if (cfs_b->quota != RUNTIME_INF) {
6318 		cfs_b->runtime += slack_runtime;
6319 
6320 		/* we are under rq->lock, defer unthrottling using a timer */
6321 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6322 		    !list_empty(&cfs_b->throttled_cfs_rq))
6323 			start_cfs_slack_bandwidth(cfs_b);
6324 	}
6325 	raw_spin_unlock(&cfs_b->lock);
6326 
6327 	/* even if it's not valid for return we don't want to try again */
6328 	cfs_rq->runtime_remaining -= slack_runtime;
6329 }
6330 
6331 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6332 {
6333 	if (!cfs_bandwidth_used())
6334 		return;
6335 
6336 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6337 		return;
6338 
6339 	__return_cfs_rq_runtime(cfs_rq);
6340 }
6341 
6342 /*
6343  * This is done with a timer (instead of inline with bandwidth return) since
6344  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6345  */
6346 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6347 {
6348 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6349 	unsigned long flags;
6350 
6351 	/* confirm we're still not at a refresh boundary */
6352 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6353 	cfs_b->slack_started = false;
6354 
6355 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6356 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6357 		return;
6358 	}
6359 
6360 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6361 		runtime = cfs_b->runtime;
6362 
6363 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6364 
6365 	if (!runtime)
6366 		return;
6367 
6368 	distribute_cfs_runtime(cfs_b);
6369 }
6370 
6371 /*
6372  * When a group wakes up we want to make sure that its quota is not already
6373  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6374  * runtime as update_curr() throttling can not trigger until it's on-rq.
6375  */
6376 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6377 {
6378 	if (!cfs_bandwidth_used())
6379 		return;
6380 
6381 	/* an active group must be handled by the update_curr()->put() path */
6382 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6383 		return;
6384 
6385 	/* ensure the group is not already throttled */
6386 	if (cfs_rq_throttled(cfs_rq))
6387 		return;
6388 
6389 	/* update runtime allocation */
6390 	account_cfs_rq_runtime(cfs_rq, 0);
6391 	if (cfs_rq->runtime_remaining <= 0)
6392 		throttle_cfs_rq(cfs_rq);
6393 }
6394 
6395 static void sync_throttle(struct task_group *tg, int cpu)
6396 {
6397 	struct cfs_rq *pcfs_rq, *cfs_rq;
6398 
6399 	if (!cfs_bandwidth_used())
6400 		return;
6401 
6402 	if (!tg->parent)
6403 		return;
6404 
6405 	cfs_rq = tg->cfs_rq[cpu];
6406 	pcfs_rq = tg->parent->cfs_rq[cpu];
6407 
6408 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6409 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6410 }
6411 
6412 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6413 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6414 {
6415 	if (!cfs_bandwidth_used())
6416 		return false;
6417 
6418 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6419 		return false;
6420 
6421 	/*
6422 	 * it's possible for a throttled entity to be forced into a running
6423 	 * state (e.g. set_curr_task), in this case we're finished.
6424 	 */
6425 	if (cfs_rq_throttled(cfs_rq))
6426 		return true;
6427 
6428 	return throttle_cfs_rq(cfs_rq);
6429 }
6430 
6431 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6432 {
6433 	struct cfs_bandwidth *cfs_b =
6434 		container_of(timer, struct cfs_bandwidth, slack_timer);
6435 
6436 	do_sched_cfs_slack_timer(cfs_b);
6437 
6438 	return HRTIMER_NORESTART;
6439 }
6440 
6441 extern const u64 max_cfs_quota_period;
6442 
6443 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6444 {
6445 	struct cfs_bandwidth *cfs_b =
6446 		container_of(timer, struct cfs_bandwidth, period_timer);
6447 	unsigned long flags;
6448 	int overrun;
6449 	int idle = 0;
6450 	int count = 0;
6451 
6452 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6453 	for (;;) {
6454 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6455 		if (!overrun)
6456 			break;
6457 
6458 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6459 
6460 		if (++count > 3) {
6461 			u64 new, old = ktime_to_ns(cfs_b->period);
6462 
6463 			/*
6464 			 * Grow period by a factor of 2 to avoid losing precision.
6465 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6466 			 * to fail.
6467 			 */
6468 			new = old * 2;
6469 			if (new < max_cfs_quota_period) {
6470 				cfs_b->period = ns_to_ktime(new);
6471 				cfs_b->quota *= 2;
6472 				cfs_b->burst *= 2;
6473 
6474 				pr_warn_ratelimited(
6475 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6476 					smp_processor_id(),
6477 					div_u64(new, NSEC_PER_USEC),
6478 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6479 			} else {
6480 				pr_warn_ratelimited(
6481 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6482 					smp_processor_id(),
6483 					div_u64(old, NSEC_PER_USEC),
6484 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6485 			}
6486 
6487 			/* reset count so we don't come right back in here */
6488 			count = 0;
6489 		}
6490 	}
6491 	if (idle)
6492 		cfs_b->period_active = 0;
6493 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6494 
6495 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6496 }
6497 
6498 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6499 {
6500 	raw_spin_lock_init(&cfs_b->lock);
6501 	cfs_b->runtime = 0;
6502 	cfs_b->quota = RUNTIME_INF;
6503 	cfs_b->period = ns_to_ktime(default_cfs_period());
6504 	cfs_b->burst = 0;
6505 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6506 
6507 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6508 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6509 	cfs_b->period_timer.function = sched_cfs_period_timer;
6510 
6511 	/* Add a random offset so that timers interleave */
6512 	hrtimer_set_expires(&cfs_b->period_timer,
6513 			    get_random_u32_below(cfs_b->period));
6514 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6515 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6516 	cfs_b->slack_started = false;
6517 }
6518 
6519 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6520 {
6521 	cfs_rq->runtime_enabled = 0;
6522 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6523 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6524 }
6525 
6526 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6527 {
6528 	lockdep_assert_held(&cfs_b->lock);
6529 
6530 	if (cfs_b->period_active)
6531 		return;
6532 
6533 	cfs_b->period_active = 1;
6534 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6535 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6536 }
6537 
6538 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6539 {
6540 	int __maybe_unused i;
6541 
6542 	/* init_cfs_bandwidth() was not called */
6543 	if (!cfs_b->throttled_cfs_rq.next)
6544 		return;
6545 
6546 	hrtimer_cancel(&cfs_b->period_timer);
6547 	hrtimer_cancel(&cfs_b->slack_timer);
6548 
6549 	/*
6550 	 * It is possible that we still have some cfs_rq's pending on a CSD
6551 	 * list, though this race is very rare. In order for this to occur, we
6552 	 * must have raced with the last task leaving the group while there
6553 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6554 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6555 	 * we can simply flush all pending CSD work inline here. We're
6556 	 * guaranteed at this point that no additional cfs_rq of this group can
6557 	 * join a CSD list.
6558 	 */
6559 #ifdef CONFIG_SMP
6560 	for_each_possible_cpu(i) {
6561 		struct rq *rq = cpu_rq(i);
6562 		unsigned long flags;
6563 
6564 		if (list_empty(&rq->cfsb_csd_list))
6565 			continue;
6566 
6567 		local_irq_save(flags);
6568 		__cfsb_csd_unthrottle(rq);
6569 		local_irq_restore(flags);
6570 	}
6571 #endif
6572 }
6573 
6574 /*
6575  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6576  *
6577  * The race is harmless, since modifying bandwidth settings of unhooked group
6578  * bits doesn't do much.
6579  */
6580 
6581 /* cpu online callback */
6582 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6583 {
6584 	struct task_group *tg;
6585 
6586 	lockdep_assert_rq_held(rq);
6587 
6588 	rcu_read_lock();
6589 	list_for_each_entry_rcu(tg, &task_groups, list) {
6590 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6591 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6592 
6593 		raw_spin_lock(&cfs_b->lock);
6594 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6595 		raw_spin_unlock(&cfs_b->lock);
6596 	}
6597 	rcu_read_unlock();
6598 }
6599 
6600 /* cpu offline callback */
6601 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6602 {
6603 	struct task_group *tg;
6604 
6605 	lockdep_assert_rq_held(rq);
6606 
6607 	/*
6608 	 * The rq clock has already been updated in the
6609 	 * set_rq_offline(), so we should skip updating
6610 	 * the rq clock again in unthrottle_cfs_rq().
6611 	 */
6612 	rq_clock_start_loop_update(rq);
6613 
6614 	rcu_read_lock();
6615 	list_for_each_entry_rcu(tg, &task_groups, list) {
6616 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6617 
6618 		if (!cfs_rq->runtime_enabled)
6619 			continue;
6620 
6621 		/*
6622 		 * clock_task is not advancing so we just need to make sure
6623 		 * there's some valid quota amount
6624 		 */
6625 		cfs_rq->runtime_remaining = 1;
6626 		/*
6627 		 * Offline rq is schedulable till CPU is completely disabled
6628 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6629 		 */
6630 		cfs_rq->runtime_enabled = 0;
6631 
6632 		if (cfs_rq_throttled(cfs_rq))
6633 			unthrottle_cfs_rq(cfs_rq);
6634 	}
6635 	rcu_read_unlock();
6636 
6637 	rq_clock_stop_loop_update(rq);
6638 }
6639 
6640 bool cfs_task_bw_constrained(struct task_struct *p)
6641 {
6642 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6643 
6644 	if (!cfs_bandwidth_used())
6645 		return false;
6646 
6647 	if (cfs_rq->runtime_enabled ||
6648 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6649 		return true;
6650 
6651 	return false;
6652 }
6653 
6654 #ifdef CONFIG_NO_HZ_FULL
6655 /* called from pick_next_task_fair() */
6656 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6657 {
6658 	int cpu = cpu_of(rq);
6659 
6660 	if (!cfs_bandwidth_used())
6661 		return;
6662 
6663 	if (!tick_nohz_full_cpu(cpu))
6664 		return;
6665 
6666 	if (rq->nr_running != 1)
6667 		return;
6668 
6669 	/*
6670 	 *  We know there is only one task runnable and we've just picked it. The
6671 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6672 	 *  be otherwise able to stop the tick. Just need to check if we are using
6673 	 *  bandwidth control.
6674 	 */
6675 	if (cfs_task_bw_constrained(p))
6676 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6677 }
6678 #endif
6679 
6680 #else /* CONFIG_CFS_BANDWIDTH */
6681 
6682 static inline bool cfs_bandwidth_used(void)
6683 {
6684 	return false;
6685 }
6686 
6687 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6688 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6689 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6690 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6691 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6692 
6693 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6694 {
6695 	return 0;
6696 }
6697 
6698 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6699 {
6700 	return 0;
6701 }
6702 
6703 static inline int throttled_lb_pair(struct task_group *tg,
6704 				    int src_cpu, int dest_cpu)
6705 {
6706 	return 0;
6707 }
6708 
6709 #ifdef CONFIG_FAIR_GROUP_SCHED
6710 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6711 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6712 #endif
6713 
6714 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6715 {
6716 	return NULL;
6717 }
6718 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6719 static inline void update_runtime_enabled(struct rq *rq) {}
6720 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6721 #ifdef CONFIG_CGROUP_SCHED
6722 bool cfs_task_bw_constrained(struct task_struct *p)
6723 {
6724 	return false;
6725 }
6726 #endif
6727 #endif /* CONFIG_CFS_BANDWIDTH */
6728 
6729 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6730 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6731 #endif
6732 
6733 /**************************************************
6734  * CFS operations on tasks:
6735  */
6736 
6737 #ifdef CONFIG_SCHED_HRTICK
6738 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6739 {
6740 	struct sched_entity *se = &p->se;
6741 
6742 	SCHED_WARN_ON(task_rq(p) != rq);
6743 
6744 	if (rq->cfs.h_nr_running > 1) {
6745 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6746 		u64 slice = se->slice;
6747 		s64 delta = slice - ran;
6748 
6749 		if (delta < 0) {
6750 			if (task_current_donor(rq, p))
6751 				resched_curr(rq);
6752 			return;
6753 		}
6754 		hrtick_start(rq, delta);
6755 	}
6756 }
6757 
6758 /*
6759  * called from enqueue/dequeue and updates the hrtick when the
6760  * current task is from our class and nr_running is low enough
6761  * to matter.
6762  */
6763 static void hrtick_update(struct rq *rq)
6764 {
6765 	struct task_struct *donor = rq->donor;
6766 
6767 	if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class)
6768 		return;
6769 
6770 	hrtick_start_fair(rq, donor);
6771 }
6772 #else /* !CONFIG_SCHED_HRTICK */
6773 static inline void
6774 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6775 {
6776 }
6777 
6778 static inline void hrtick_update(struct rq *rq)
6779 {
6780 }
6781 #endif
6782 
6783 #ifdef CONFIG_SMP
6784 static inline bool cpu_overutilized(int cpu)
6785 {
6786 	unsigned long  rq_util_min, rq_util_max;
6787 
6788 	if (!sched_energy_enabled())
6789 		return false;
6790 
6791 	rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6792 	rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6793 
6794 	/* Return true only if the utilization doesn't fit CPU's capacity */
6795 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6796 }
6797 
6798 /*
6799  * overutilized value make sense only if EAS is enabled
6800  */
6801 static inline bool is_rd_overutilized(struct root_domain *rd)
6802 {
6803 	return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6804 }
6805 
6806 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6807 {
6808 	if (!sched_energy_enabled())
6809 		return;
6810 
6811 	WRITE_ONCE(rd->overutilized, flag);
6812 	trace_sched_overutilized_tp(rd, flag);
6813 }
6814 
6815 static inline void check_update_overutilized_status(struct rq *rq)
6816 {
6817 	/*
6818 	 * overutilized field is used for load balancing decisions only
6819 	 * if energy aware scheduler is being used
6820 	 */
6821 
6822 	if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6823 		set_rd_overutilized(rq->rd, 1);
6824 }
6825 #else
6826 static inline void check_update_overutilized_status(struct rq *rq) { }
6827 #endif
6828 
6829 /* Runqueue only has SCHED_IDLE tasks enqueued */
6830 static int sched_idle_rq(struct rq *rq)
6831 {
6832 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6833 			rq->nr_running);
6834 }
6835 
6836 #ifdef CONFIG_SMP
6837 static int sched_idle_cpu(int cpu)
6838 {
6839 	return sched_idle_rq(cpu_rq(cpu));
6840 }
6841 #endif
6842 
6843 static void
6844 requeue_delayed_entity(struct sched_entity *se)
6845 {
6846 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
6847 
6848 	/*
6849 	 * se->sched_delayed should imply: se->on_rq == 1.
6850 	 * Because a delayed entity is one that is still on
6851 	 * the runqueue competing until elegibility.
6852 	 */
6853 	SCHED_WARN_ON(!se->sched_delayed);
6854 	SCHED_WARN_ON(!se->on_rq);
6855 
6856 	if (sched_feat(DELAY_ZERO)) {
6857 		update_entity_lag(cfs_rq, se);
6858 		if (se->vlag > 0) {
6859 			cfs_rq->nr_running--;
6860 			if (se != cfs_rq->curr)
6861 				__dequeue_entity(cfs_rq, se);
6862 			se->vlag = 0;
6863 			place_entity(cfs_rq, se, 0);
6864 			if (se != cfs_rq->curr)
6865 				__enqueue_entity(cfs_rq, se);
6866 			cfs_rq->nr_running++;
6867 		}
6868 	}
6869 
6870 	update_load_avg(cfs_rq, se, 0);
6871 	clear_delayed(se);
6872 }
6873 
6874 /*
6875  * The enqueue_task method is called before nr_running is
6876  * increased. Here we update the fair scheduling stats and
6877  * then put the task into the rbtree:
6878  */
6879 static void
6880 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6881 {
6882 	struct cfs_rq *cfs_rq;
6883 	struct sched_entity *se = &p->se;
6884 	int idle_h_nr_running = task_has_idle_policy(p);
6885 	int h_nr_delayed = 0;
6886 	int task_new = !(flags & ENQUEUE_WAKEUP);
6887 	int rq_h_nr_running = rq->cfs.h_nr_running;
6888 	u64 slice = 0;
6889 
6890 	/*
6891 	 * The code below (indirectly) updates schedutil which looks at
6892 	 * the cfs_rq utilization to select a frequency.
6893 	 * Let's add the task's estimated utilization to the cfs_rq's
6894 	 * estimated utilization, before we update schedutil.
6895 	 */
6896 	if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE))))
6897 		util_est_enqueue(&rq->cfs, p);
6898 
6899 	if (flags & ENQUEUE_DELAYED) {
6900 		requeue_delayed_entity(se);
6901 		return;
6902 	}
6903 
6904 	/*
6905 	 * If in_iowait is set, the code below may not trigger any cpufreq
6906 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6907 	 * passed.
6908 	 */
6909 	if (p->in_iowait)
6910 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6911 
6912 	if (task_new)
6913 		h_nr_delayed = !!se->sched_delayed;
6914 
6915 	for_each_sched_entity(se) {
6916 		if (se->on_rq) {
6917 			if (se->sched_delayed)
6918 				requeue_delayed_entity(se);
6919 			break;
6920 		}
6921 		cfs_rq = cfs_rq_of(se);
6922 
6923 		/*
6924 		 * Basically set the slice of group entries to the min_slice of
6925 		 * their respective cfs_rq. This ensures the group can service
6926 		 * its entities in the desired time-frame.
6927 		 */
6928 		if (slice) {
6929 			se->slice = slice;
6930 			se->custom_slice = 1;
6931 		}
6932 		enqueue_entity(cfs_rq, se, flags);
6933 		slice = cfs_rq_min_slice(cfs_rq);
6934 
6935 		cfs_rq->h_nr_running++;
6936 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6937 		cfs_rq->h_nr_delayed += h_nr_delayed;
6938 
6939 		if (cfs_rq_is_idle(cfs_rq))
6940 			idle_h_nr_running = 1;
6941 
6942 		/* end evaluation on encountering a throttled cfs_rq */
6943 		if (cfs_rq_throttled(cfs_rq))
6944 			goto enqueue_throttle;
6945 
6946 		flags = ENQUEUE_WAKEUP;
6947 	}
6948 
6949 	for_each_sched_entity(se) {
6950 		cfs_rq = cfs_rq_of(se);
6951 
6952 		update_load_avg(cfs_rq, se, UPDATE_TG);
6953 		se_update_runnable(se);
6954 		update_cfs_group(se);
6955 
6956 		se->slice = slice;
6957 		slice = cfs_rq_min_slice(cfs_rq);
6958 
6959 		cfs_rq->h_nr_running++;
6960 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6961 		cfs_rq->h_nr_delayed += h_nr_delayed;
6962 
6963 		if (cfs_rq_is_idle(cfs_rq))
6964 			idle_h_nr_running = 1;
6965 
6966 		/* end evaluation on encountering a throttled cfs_rq */
6967 		if (cfs_rq_throttled(cfs_rq))
6968 			goto enqueue_throttle;
6969 	}
6970 
6971 	if (!rq_h_nr_running && rq->cfs.h_nr_running) {
6972 		/* Account for idle runtime */
6973 		if (!rq->nr_running)
6974 			dl_server_update_idle_time(rq, rq->curr);
6975 		dl_server_start(&rq->fair_server);
6976 	}
6977 
6978 	/* At this point se is NULL and we are at root level*/
6979 	add_nr_running(rq, 1);
6980 
6981 	/*
6982 	 * Since new tasks are assigned an initial util_avg equal to
6983 	 * half of the spare capacity of their CPU, tiny tasks have the
6984 	 * ability to cross the overutilized threshold, which will
6985 	 * result in the load balancer ruining all the task placement
6986 	 * done by EAS. As a way to mitigate that effect, do not account
6987 	 * for the first enqueue operation of new tasks during the
6988 	 * overutilized flag detection.
6989 	 *
6990 	 * A better way of solving this problem would be to wait for
6991 	 * the PELT signals of tasks to converge before taking them
6992 	 * into account, but that is not straightforward to implement,
6993 	 * and the following generally works well enough in practice.
6994 	 */
6995 	if (!task_new)
6996 		check_update_overutilized_status(rq);
6997 
6998 enqueue_throttle:
6999 	assert_list_leaf_cfs_rq(rq);
7000 
7001 	hrtick_update(rq);
7002 }
7003 
7004 static void set_next_buddy(struct sched_entity *se);
7005 
7006 /*
7007  * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
7008  * failing half-way through and resume the dequeue later.
7009  *
7010  * Returns:
7011  * -1 - dequeue delayed
7012  *  0 - dequeue throttled
7013  *  1 - dequeue complete
7014  */
7015 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
7016 {
7017 	bool was_sched_idle = sched_idle_rq(rq);
7018 	int rq_h_nr_running = rq->cfs.h_nr_running;
7019 	bool task_sleep = flags & DEQUEUE_SLEEP;
7020 	bool task_delayed = flags & DEQUEUE_DELAYED;
7021 	struct task_struct *p = NULL;
7022 	int idle_h_nr_running = 0;
7023 	int h_nr_running = 0;
7024 	int h_nr_delayed = 0;
7025 	struct cfs_rq *cfs_rq;
7026 	u64 slice = 0;
7027 
7028 	if (entity_is_task(se)) {
7029 		p = task_of(se);
7030 		h_nr_running = 1;
7031 		idle_h_nr_running = task_has_idle_policy(p);
7032 		if (!task_sleep && !task_delayed)
7033 			h_nr_delayed = !!se->sched_delayed;
7034 	} else {
7035 		cfs_rq = group_cfs_rq(se);
7036 		slice = cfs_rq_min_slice(cfs_rq);
7037 	}
7038 
7039 	for_each_sched_entity(se) {
7040 		cfs_rq = cfs_rq_of(se);
7041 
7042 		if (!dequeue_entity(cfs_rq, se, flags)) {
7043 			if (p && &p->se == se)
7044 				return -1;
7045 
7046 			break;
7047 		}
7048 
7049 		cfs_rq->h_nr_running -= h_nr_running;
7050 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7051 		cfs_rq->h_nr_delayed -= h_nr_delayed;
7052 
7053 		if (cfs_rq_is_idle(cfs_rq))
7054 			idle_h_nr_running = h_nr_running;
7055 
7056 		/* end evaluation on encountering a throttled cfs_rq */
7057 		if (cfs_rq_throttled(cfs_rq))
7058 			return 0;
7059 
7060 		/* Don't dequeue parent if it has other entities besides us */
7061 		if (cfs_rq->load.weight) {
7062 			slice = cfs_rq_min_slice(cfs_rq);
7063 
7064 			/* Avoid re-evaluating load for this entity: */
7065 			se = parent_entity(se);
7066 			/*
7067 			 * Bias pick_next to pick a task from this cfs_rq, as
7068 			 * p is sleeping when it is within its sched_slice.
7069 			 */
7070 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
7071 				set_next_buddy(se);
7072 			break;
7073 		}
7074 		flags |= DEQUEUE_SLEEP;
7075 		flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7076 	}
7077 
7078 	for_each_sched_entity(se) {
7079 		cfs_rq = cfs_rq_of(se);
7080 
7081 		update_load_avg(cfs_rq, se, UPDATE_TG);
7082 		se_update_runnable(se);
7083 		update_cfs_group(se);
7084 
7085 		se->slice = slice;
7086 		slice = cfs_rq_min_slice(cfs_rq);
7087 
7088 		cfs_rq->h_nr_running -= h_nr_running;
7089 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7090 		cfs_rq->h_nr_delayed -= h_nr_delayed;
7091 
7092 		if (cfs_rq_is_idle(cfs_rq))
7093 			idle_h_nr_running = h_nr_running;
7094 
7095 		/* end evaluation on encountering a throttled cfs_rq */
7096 		if (cfs_rq_throttled(cfs_rq))
7097 			return 0;
7098 	}
7099 
7100 	sub_nr_running(rq, h_nr_running);
7101 
7102 	if (rq_h_nr_running && !rq->cfs.h_nr_running)
7103 		dl_server_stop(&rq->fair_server);
7104 
7105 	/* balance early to pull high priority tasks */
7106 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7107 		rq->next_balance = jiffies;
7108 
7109 	if (p && task_delayed) {
7110 		SCHED_WARN_ON(!task_sleep);
7111 		SCHED_WARN_ON(p->on_rq != 1);
7112 
7113 		/* Fix-up what dequeue_task_fair() skipped */
7114 		hrtick_update(rq);
7115 
7116 		/*
7117 		 * Fix-up what block_task() skipped.
7118 		 *
7119 		 * Must be last, @p might not be valid after this.
7120 		 */
7121 		__block_task(rq, p);
7122 	}
7123 
7124 	return 1;
7125 }
7126 
7127 /*
7128  * The dequeue_task method is called before nr_running is
7129  * decreased. We remove the task from the rbtree and
7130  * update the fair scheduling stats:
7131  */
7132 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7133 {
7134 	if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE))))
7135 		util_est_dequeue(&rq->cfs, p);
7136 
7137 	util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7138 	if (dequeue_entities(rq, &p->se, flags) < 0)
7139 		return false;
7140 
7141 	/*
7142 	 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
7143 	 */
7144 
7145 	hrtick_update(rq);
7146 	return true;
7147 }
7148 
7149 #ifdef CONFIG_SMP
7150 
7151 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7152 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7153 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7154 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7155 
7156 #ifdef CONFIG_NO_HZ_COMMON
7157 
7158 static struct {
7159 	cpumask_var_t idle_cpus_mask;
7160 	atomic_t nr_cpus;
7161 	int has_blocked;		/* Idle CPUS has blocked load */
7162 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
7163 	unsigned long next_balance;     /* in jiffy units */
7164 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
7165 } nohz ____cacheline_aligned;
7166 
7167 #endif /* CONFIG_NO_HZ_COMMON */
7168 
7169 static unsigned long cpu_load(struct rq *rq)
7170 {
7171 	return cfs_rq_load_avg(&rq->cfs);
7172 }
7173 
7174 /*
7175  * cpu_load_without - compute CPU load without any contributions from *p
7176  * @cpu: the CPU which load is requested
7177  * @p: the task which load should be discounted
7178  *
7179  * The load of a CPU is defined by the load of tasks currently enqueued on that
7180  * CPU as well as tasks which are currently sleeping after an execution on that
7181  * CPU.
7182  *
7183  * This method returns the load of the specified CPU by discounting the load of
7184  * the specified task, whenever the task is currently contributing to the CPU
7185  * load.
7186  */
7187 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7188 {
7189 	struct cfs_rq *cfs_rq;
7190 	unsigned int load;
7191 
7192 	/* Task has no contribution or is new */
7193 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7194 		return cpu_load(rq);
7195 
7196 	cfs_rq = &rq->cfs;
7197 	load = READ_ONCE(cfs_rq->avg.load_avg);
7198 
7199 	/* Discount task's util from CPU's util */
7200 	lsub_positive(&load, task_h_load(p));
7201 
7202 	return load;
7203 }
7204 
7205 static unsigned long cpu_runnable(struct rq *rq)
7206 {
7207 	return cfs_rq_runnable_avg(&rq->cfs);
7208 }
7209 
7210 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7211 {
7212 	struct cfs_rq *cfs_rq;
7213 	unsigned int runnable;
7214 
7215 	/* Task has no contribution or is new */
7216 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7217 		return cpu_runnable(rq);
7218 
7219 	cfs_rq = &rq->cfs;
7220 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7221 
7222 	/* Discount task's runnable from CPU's runnable */
7223 	lsub_positive(&runnable, p->se.avg.runnable_avg);
7224 
7225 	return runnable;
7226 }
7227 
7228 static unsigned long capacity_of(int cpu)
7229 {
7230 	return cpu_rq(cpu)->cpu_capacity;
7231 }
7232 
7233 static void record_wakee(struct task_struct *p)
7234 {
7235 	/*
7236 	 * Only decay a single time; tasks that have less then 1 wakeup per
7237 	 * jiffy will not have built up many flips.
7238 	 */
7239 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7240 		current->wakee_flips >>= 1;
7241 		current->wakee_flip_decay_ts = jiffies;
7242 	}
7243 
7244 	if (current->last_wakee != p) {
7245 		current->last_wakee = p;
7246 		current->wakee_flips++;
7247 	}
7248 }
7249 
7250 /*
7251  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7252  *
7253  * A waker of many should wake a different task than the one last awakened
7254  * at a frequency roughly N times higher than one of its wakees.
7255  *
7256  * In order to determine whether we should let the load spread vs consolidating
7257  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7258  * partner, and a factor of lls_size higher frequency in the other.
7259  *
7260  * With both conditions met, we can be relatively sure that the relationship is
7261  * non-monogamous, with partner count exceeding socket size.
7262  *
7263  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7264  * whatever is irrelevant, spread criteria is apparent partner count exceeds
7265  * socket size.
7266  */
7267 static int wake_wide(struct task_struct *p)
7268 {
7269 	unsigned int master = current->wakee_flips;
7270 	unsigned int slave = p->wakee_flips;
7271 	int factor = __this_cpu_read(sd_llc_size);
7272 
7273 	if (master < slave)
7274 		swap(master, slave);
7275 	if (slave < factor || master < slave * factor)
7276 		return 0;
7277 	return 1;
7278 }
7279 
7280 /*
7281  * The purpose of wake_affine() is to quickly determine on which CPU we can run
7282  * soonest. For the purpose of speed we only consider the waking and previous
7283  * CPU.
7284  *
7285  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7286  *			cache-affine and is (or	will be) idle.
7287  *
7288  * wake_affine_weight() - considers the weight to reflect the average
7289  *			  scheduling latency of the CPUs. This seems to work
7290  *			  for the overloaded case.
7291  */
7292 static int
7293 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7294 {
7295 	/*
7296 	 * If this_cpu is idle, it implies the wakeup is from interrupt
7297 	 * context. Only allow the move if cache is shared. Otherwise an
7298 	 * interrupt intensive workload could force all tasks onto one
7299 	 * node depending on the IO topology or IRQ affinity settings.
7300 	 *
7301 	 * If the prev_cpu is idle and cache affine then avoid a migration.
7302 	 * There is no guarantee that the cache hot data from an interrupt
7303 	 * is more important than cache hot data on the prev_cpu and from
7304 	 * a cpufreq perspective, it's better to have higher utilisation
7305 	 * on one CPU.
7306 	 */
7307 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7308 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7309 
7310 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
7311 		return this_cpu;
7312 
7313 	if (available_idle_cpu(prev_cpu))
7314 		return prev_cpu;
7315 
7316 	return nr_cpumask_bits;
7317 }
7318 
7319 static int
7320 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7321 		   int this_cpu, int prev_cpu, int sync)
7322 {
7323 	s64 this_eff_load, prev_eff_load;
7324 	unsigned long task_load;
7325 
7326 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7327 
7328 	if (sync) {
7329 		unsigned long current_load = task_h_load(current);
7330 
7331 		if (current_load > this_eff_load)
7332 			return this_cpu;
7333 
7334 		this_eff_load -= current_load;
7335 	}
7336 
7337 	task_load = task_h_load(p);
7338 
7339 	this_eff_load += task_load;
7340 	if (sched_feat(WA_BIAS))
7341 		this_eff_load *= 100;
7342 	this_eff_load *= capacity_of(prev_cpu);
7343 
7344 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7345 	prev_eff_load -= task_load;
7346 	if (sched_feat(WA_BIAS))
7347 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7348 	prev_eff_load *= capacity_of(this_cpu);
7349 
7350 	/*
7351 	 * If sync, adjust the weight of prev_eff_load such that if
7352 	 * prev_eff == this_eff that select_idle_sibling() will consider
7353 	 * stacking the wakee on top of the waker if no other CPU is
7354 	 * idle.
7355 	 */
7356 	if (sync)
7357 		prev_eff_load += 1;
7358 
7359 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7360 }
7361 
7362 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7363 		       int this_cpu, int prev_cpu, int sync)
7364 {
7365 	int target = nr_cpumask_bits;
7366 
7367 	if (sched_feat(WA_IDLE))
7368 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7369 
7370 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7371 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7372 
7373 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7374 	if (target != this_cpu)
7375 		return prev_cpu;
7376 
7377 	schedstat_inc(sd->ttwu_move_affine);
7378 	schedstat_inc(p->stats.nr_wakeups_affine);
7379 	return target;
7380 }
7381 
7382 static struct sched_group *
7383 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7384 
7385 /*
7386  * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7387  */
7388 static int
7389 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7390 {
7391 	unsigned long load, min_load = ULONG_MAX;
7392 	unsigned int min_exit_latency = UINT_MAX;
7393 	u64 latest_idle_timestamp = 0;
7394 	int least_loaded_cpu = this_cpu;
7395 	int shallowest_idle_cpu = -1;
7396 	int i;
7397 
7398 	/* Check if we have any choice: */
7399 	if (group->group_weight == 1)
7400 		return cpumask_first(sched_group_span(group));
7401 
7402 	/* Traverse only the allowed CPUs */
7403 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7404 		struct rq *rq = cpu_rq(i);
7405 
7406 		if (!sched_core_cookie_match(rq, p))
7407 			continue;
7408 
7409 		if (sched_idle_cpu(i))
7410 			return i;
7411 
7412 		if (available_idle_cpu(i)) {
7413 			struct cpuidle_state *idle = idle_get_state(rq);
7414 			if (idle && idle->exit_latency < min_exit_latency) {
7415 				/*
7416 				 * We give priority to a CPU whose idle state
7417 				 * has the smallest exit latency irrespective
7418 				 * of any idle timestamp.
7419 				 */
7420 				min_exit_latency = idle->exit_latency;
7421 				latest_idle_timestamp = rq->idle_stamp;
7422 				shallowest_idle_cpu = i;
7423 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7424 				   rq->idle_stamp > latest_idle_timestamp) {
7425 				/*
7426 				 * If equal or no active idle state, then
7427 				 * the most recently idled CPU might have
7428 				 * a warmer cache.
7429 				 */
7430 				latest_idle_timestamp = rq->idle_stamp;
7431 				shallowest_idle_cpu = i;
7432 			}
7433 		} else if (shallowest_idle_cpu == -1) {
7434 			load = cpu_load(cpu_rq(i));
7435 			if (load < min_load) {
7436 				min_load = load;
7437 				least_loaded_cpu = i;
7438 			}
7439 		}
7440 	}
7441 
7442 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7443 }
7444 
7445 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7446 				  int cpu, int prev_cpu, int sd_flag)
7447 {
7448 	int new_cpu = cpu;
7449 
7450 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7451 		return prev_cpu;
7452 
7453 	/*
7454 	 * We need task's util for cpu_util_without, sync it up to
7455 	 * prev_cpu's last_update_time.
7456 	 */
7457 	if (!(sd_flag & SD_BALANCE_FORK))
7458 		sync_entity_load_avg(&p->se);
7459 
7460 	while (sd) {
7461 		struct sched_group *group;
7462 		struct sched_domain *tmp;
7463 		int weight;
7464 
7465 		if (!(sd->flags & sd_flag)) {
7466 			sd = sd->child;
7467 			continue;
7468 		}
7469 
7470 		group = sched_balance_find_dst_group(sd, p, cpu);
7471 		if (!group) {
7472 			sd = sd->child;
7473 			continue;
7474 		}
7475 
7476 		new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7477 		if (new_cpu == cpu) {
7478 			/* Now try balancing at a lower domain level of 'cpu': */
7479 			sd = sd->child;
7480 			continue;
7481 		}
7482 
7483 		/* Now try balancing at a lower domain level of 'new_cpu': */
7484 		cpu = new_cpu;
7485 		weight = sd->span_weight;
7486 		sd = NULL;
7487 		for_each_domain(cpu, tmp) {
7488 			if (weight <= tmp->span_weight)
7489 				break;
7490 			if (tmp->flags & sd_flag)
7491 				sd = tmp;
7492 		}
7493 	}
7494 
7495 	return new_cpu;
7496 }
7497 
7498 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7499 {
7500 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7501 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7502 		return cpu;
7503 
7504 	return -1;
7505 }
7506 
7507 #ifdef CONFIG_SCHED_SMT
7508 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7509 EXPORT_SYMBOL_GPL(sched_smt_present);
7510 
7511 static inline void set_idle_cores(int cpu, int val)
7512 {
7513 	struct sched_domain_shared *sds;
7514 
7515 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7516 	if (sds)
7517 		WRITE_ONCE(sds->has_idle_cores, val);
7518 }
7519 
7520 static inline bool test_idle_cores(int cpu)
7521 {
7522 	struct sched_domain_shared *sds;
7523 
7524 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7525 	if (sds)
7526 		return READ_ONCE(sds->has_idle_cores);
7527 
7528 	return false;
7529 }
7530 
7531 /*
7532  * Scans the local SMT mask to see if the entire core is idle, and records this
7533  * information in sd_llc_shared->has_idle_cores.
7534  *
7535  * Since SMT siblings share all cache levels, inspecting this limited remote
7536  * state should be fairly cheap.
7537  */
7538 void __update_idle_core(struct rq *rq)
7539 {
7540 	int core = cpu_of(rq);
7541 	int cpu;
7542 
7543 	rcu_read_lock();
7544 	if (test_idle_cores(core))
7545 		goto unlock;
7546 
7547 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7548 		if (cpu == core)
7549 			continue;
7550 
7551 		if (!available_idle_cpu(cpu))
7552 			goto unlock;
7553 	}
7554 
7555 	set_idle_cores(core, 1);
7556 unlock:
7557 	rcu_read_unlock();
7558 }
7559 
7560 /*
7561  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7562  * there are no idle cores left in the system; tracked through
7563  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7564  */
7565 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7566 {
7567 	bool idle = true;
7568 	int cpu;
7569 
7570 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7571 		if (!available_idle_cpu(cpu)) {
7572 			idle = false;
7573 			if (*idle_cpu == -1) {
7574 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7575 					*idle_cpu = cpu;
7576 					break;
7577 				}
7578 				continue;
7579 			}
7580 			break;
7581 		}
7582 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7583 			*idle_cpu = cpu;
7584 	}
7585 
7586 	if (idle)
7587 		return core;
7588 
7589 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7590 	return -1;
7591 }
7592 
7593 /*
7594  * Scan the local SMT mask for idle CPUs.
7595  */
7596 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7597 {
7598 	int cpu;
7599 
7600 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7601 		if (cpu == target)
7602 			continue;
7603 		/*
7604 		 * Check if the CPU is in the LLC scheduling domain of @target.
7605 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7606 		 */
7607 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7608 			continue;
7609 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7610 			return cpu;
7611 	}
7612 
7613 	return -1;
7614 }
7615 
7616 #else /* CONFIG_SCHED_SMT */
7617 
7618 static inline void set_idle_cores(int cpu, int val)
7619 {
7620 }
7621 
7622 static inline bool test_idle_cores(int cpu)
7623 {
7624 	return false;
7625 }
7626 
7627 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7628 {
7629 	return __select_idle_cpu(core, p);
7630 }
7631 
7632 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7633 {
7634 	return -1;
7635 }
7636 
7637 #endif /* CONFIG_SCHED_SMT */
7638 
7639 /*
7640  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7641  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7642  * average idle time for this rq (as found in rq->avg_idle).
7643  */
7644 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7645 {
7646 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7647 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7648 	struct sched_domain_shared *sd_share;
7649 
7650 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7651 
7652 	if (sched_feat(SIS_UTIL)) {
7653 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7654 		if (sd_share) {
7655 			/* because !--nr is the condition to stop scan */
7656 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7657 			/* overloaded LLC is unlikely to have idle cpu/core */
7658 			if (nr == 1)
7659 				return -1;
7660 		}
7661 	}
7662 
7663 	if (static_branch_unlikely(&sched_cluster_active)) {
7664 		struct sched_group *sg = sd->groups;
7665 
7666 		if (sg->flags & SD_CLUSTER) {
7667 			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7668 				if (!cpumask_test_cpu(cpu, cpus))
7669 					continue;
7670 
7671 				if (has_idle_core) {
7672 					i = select_idle_core(p, cpu, cpus, &idle_cpu);
7673 					if ((unsigned int)i < nr_cpumask_bits)
7674 						return i;
7675 				} else {
7676 					if (--nr <= 0)
7677 						return -1;
7678 					idle_cpu = __select_idle_cpu(cpu, p);
7679 					if ((unsigned int)idle_cpu < nr_cpumask_bits)
7680 						return idle_cpu;
7681 				}
7682 			}
7683 			cpumask_andnot(cpus, cpus, sched_group_span(sg));
7684 		}
7685 	}
7686 
7687 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7688 		if (has_idle_core) {
7689 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7690 			if ((unsigned int)i < nr_cpumask_bits)
7691 				return i;
7692 
7693 		} else {
7694 			if (--nr <= 0)
7695 				return -1;
7696 			idle_cpu = __select_idle_cpu(cpu, p);
7697 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7698 				break;
7699 		}
7700 	}
7701 
7702 	if (has_idle_core)
7703 		set_idle_cores(target, false);
7704 
7705 	return idle_cpu;
7706 }
7707 
7708 /*
7709  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7710  * the task fits. If no CPU is big enough, but there are idle ones, try to
7711  * maximize capacity.
7712  */
7713 static int
7714 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7715 {
7716 	unsigned long task_util, util_min, util_max, best_cap = 0;
7717 	int fits, best_fits = 0;
7718 	int cpu, best_cpu = -1;
7719 	struct cpumask *cpus;
7720 
7721 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7722 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7723 
7724 	task_util = task_util_est(p);
7725 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7726 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7727 
7728 	for_each_cpu_wrap(cpu, cpus, target) {
7729 		unsigned long cpu_cap = capacity_of(cpu);
7730 
7731 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7732 			continue;
7733 
7734 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7735 
7736 		/* This CPU fits with all requirements */
7737 		if (fits > 0)
7738 			return cpu;
7739 		/*
7740 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7741 		 * Look for the CPU with best capacity.
7742 		 */
7743 		else if (fits < 0)
7744 			cpu_cap = get_actual_cpu_capacity(cpu);
7745 
7746 		/*
7747 		 * First, select CPU which fits better (-1 being better than 0).
7748 		 * Then, select the one with best capacity at same level.
7749 		 */
7750 		if ((fits < best_fits) ||
7751 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7752 			best_cap = cpu_cap;
7753 			best_cpu = cpu;
7754 			best_fits = fits;
7755 		}
7756 	}
7757 
7758 	return best_cpu;
7759 }
7760 
7761 static inline bool asym_fits_cpu(unsigned long util,
7762 				 unsigned long util_min,
7763 				 unsigned long util_max,
7764 				 int cpu)
7765 {
7766 	if (sched_asym_cpucap_active())
7767 		/*
7768 		 * Return true only if the cpu fully fits the task requirements
7769 		 * which include the utilization and the performance hints.
7770 		 */
7771 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7772 
7773 	return true;
7774 }
7775 
7776 /*
7777  * Try and locate an idle core/thread in the LLC cache domain.
7778  */
7779 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7780 {
7781 	bool has_idle_core = false;
7782 	struct sched_domain *sd;
7783 	unsigned long task_util, util_min, util_max;
7784 	int i, recent_used_cpu, prev_aff = -1;
7785 
7786 	/*
7787 	 * On asymmetric system, update task utilization because we will check
7788 	 * that the task fits with CPU's capacity.
7789 	 */
7790 	if (sched_asym_cpucap_active()) {
7791 		sync_entity_load_avg(&p->se);
7792 		task_util = task_util_est(p);
7793 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7794 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7795 	}
7796 
7797 	/*
7798 	 * per-cpu select_rq_mask usage
7799 	 */
7800 	lockdep_assert_irqs_disabled();
7801 
7802 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7803 	    asym_fits_cpu(task_util, util_min, util_max, target))
7804 		return target;
7805 
7806 	/*
7807 	 * If the previous CPU is cache affine and idle, don't be stupid:
7808 	 */
7809 	if (prev != target && cpus_share_cache(prev, target) &&
7810 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7811 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7812 
7813 		if (!static_branch_unlikely(&sched_cluster_active) ||
7814 		    cpus_share_resources(prev, target))
7815 			return prev;
7816 
7817 		prev_aff = prev;
7818 	}
7819 
7820 	/*
7821 	 * Allow a per-cpu kthread to stack with the wakee if the
7822 	 * kworker thread and the tasks previous CPUs are the same.
7823 	 * The assumption is that the wakee queued work for the
7824 	 * per-cpu kthread that is now complete and the wakeup is
7825 	 * essentially a sync wakeup. An obvious example of this
7826 	 * pattern is IO completions.
7827 	 */
7828 	if (is_per_cpu_kthread(current) &&
7829 	    in_task() &&
7830 	    prev == smp_processor_id() &&
7831 	    this_rq()->nr_running <= 1 &&
7832 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7833 		return prev;
7834 	}
7835 
7836 	/* Check a recently used CPU as a potential idle candidate: */
7837 	recent_used_cpu = p->recent_used_cpu;
7838 	p->recent_used_cpu = prev;
7839 	if (recent_used_cpu != prev &&
7840 	    recent_used_cpu != target &&
7841 	    cpus_share_cache(recent_used_cpu, target) &&
7842 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7843 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7844 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7845 
7846 		if (!static_branch_unlikely(&sched_cluster_active) ||
7847 		    cpus_share_resources(recent_used_cpu, target))
7848 			return recent_used_cpu;
7849 
7850 	} else {
7851 		recent_used_cpu = -1;
7852 	}
7853 
7854 	/*
7855 	 * For asymmetric CPU capacity systems, our domain of interest is
7856 	 * sd_asym_cpucapacity rather than sd_llc.
7857 	 */
7858 	if (sched_asym_cpucap_active()) {
7859 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7860 		/*
7861 		 * On an asymmetric CPU capacity system where an exclusive
7862 		 * cpuset defines a symmetric island (i.e. one unique
7863 		 * capacity_orig value through the cpuset), the key will be set
7864 		 * but the CPUs within that cpuset will not have a domain with
7865 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7866 		 * capacity path.
7867 		 */
7868 		if (sd) {
7869 			i = select_idle_capacity(p, sd, target);
7870 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7871 		}
7872 	}
7873 
7874 	sd = rcu_dereference(per_cpu(sd_llc, target));
7875 	if (!sd)
7876 		return target;
7877 
7878 	if (sched_smt_active()) {
7879 		has_idle_core = test_idle_cores(target);
7880 
7881 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7882 			i = select_idle_smt(p, sd, prev);
7883 			if ((unsigned int)i < nr_cpumask_bits)
7884 				return i;
7885 		}
7886 	}
7887 
7888 	i = select_idle_cpu(p, sd, has_idle_core, target);
7889 	if ((unsigned)i < nr_cpumask_bits)
7890 		return i;
7891 
7892 	/*
7893 	 * For cluster machines which have lower sharing cache like L2 or
7894 	 * LLC Tag, we tend to find an idle CPU in the target's cluster
7895 	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7896 	 * use them if possible when no idle CPU found in select_idle_cpu().
7897 	 */
7898 	if ((unsigned int)prev_aff < nr_cpumask_bits)
7899 		return prev_aff;
7900 	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7901 		return recent_used_cpu;
7902 
7903 	return target;
7904 }
7905 
7906 /**
7907  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7908  * @cpu: the CPU to get the utilization for
7909  * @p: task for which the CPU utilization should be predicted or NULL
7910  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7911  * @boost: 1 to enable boosting, otherwise 0
7912  *
7913  * The unit of the return value must be the same as the one of CPU capacity
7914  * so that CPU utilization can be compared with CPU capacity.
7915  *
7916  * CPU utilization is the sum of running time of runnable tasks plus the
7917  * recent utilization of currently non-runnable tasks on that CPU.
7918  * It represents the amount of CPU capacity currently used by CFS tasks in
7919  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7920  * capacity at f_max.
7921  *
7922  * The estimated CPU utilization is defined as the maximum between CPU
7923  * utilization and sum of the estimated utilization of the currently
7924  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7925  * previously-executed tasks, which helps better deduce how busy a CPU will
7926  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7927  * of such a task would be significantly decayed at this point of time.
7928  *
7929  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7930  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7931  * utilization. Boosting is implemented in cpu_util() so that internal
7932  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7933  * latter via cpu_util_cfs_boost().
7934  *
7935  * CPU utilization can be higher than the current CPU capacity
7936  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7937  * of rounding errors as well as task migrations or wakeups of new tasks.
7938  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7939  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7940  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7941  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7942  * though since this is useful for predicting the CPU capacity required
7943  * after task migrations (scheduler-driven DVFS).
7944  *
7945  * Return: (Boosted) (estimated) utilization for the specified CPU.
7946  */
7947 static unsigned long
7948 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7949 {
7950 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7951 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7952 	unsigned long runnable;
7953 
7954 	if (boost) {
7955 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7956 		util = max(util, runnable);
7957 	}
7958 
7959 	/*
7960 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7961 	 * contribution. If @p migrates from another CPU to @cpu add its
7962 	 * contribution. In all the other cases @cpu is not impacted by the
7963 	 * migration so its util_avg is already correct.
7964 	 */
7965 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7966 		lsub_positive(&util, task_util(p));
7967 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7968 		util += task_util(p);
7969 
7970 	if (sched_feat(UTIL_EST)) {
7971 		unsigned long util_est;
7972 
7973 		util_est = READ_ONCE(cfs_rq->avg.util_est);
7974 
7975 		/*
7976 		 * During wake-up @p isn't enqueued yet and doesn't contribute
7977 		 * to any cpu_rq(cpu)->cfs.avg.util_est.
7978 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7979 		 * has been enqueued.
7980 		 *
7981 		 * During exec (@dst_cpu = -1) @p is enqueued and does
7982 		 * contribute to cpu_rq(cpu)->cfs.util_est.
7983 		 * Remove it to "simulate" cpu_util without @p's contribution.
7984 		 *
7985 		 * Despite the task_on_rq_queued(@p) check there is still a
7986 		 * small window for a possible race when an exec
7987 		 * select_task_rq_fair() races with LB's detach_task().
7988 		 *
7989 		 *   detach_task()
7990 		 *     deactivate_task()
7991 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7992 		 *       -------------------------------- A
7993 		 *       dequeue_task()                    \
7994 		 *         dequeue_task_fair()              + Race Time
7995 		 *           util_est_dequeue()            /
7996 		 *       -------------------------------- B
7997 		 *
7998 		 * The additional check "current == p" is required to further
7999 		 * reduce the race window.
8000 		 */
8001 		if (dst_cpu == cpu)
8002 			util_est += _task_util_est(p);
8003 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
8004 			lsub_positive(&util_est, _task_util_est(p));
8005 
8006 		util = max(util, util_est);
8007 	}
8008 
8009 	return min(util, arch_scale_cpu_capacity(cpu));
8010 }
8011 
8012 unsigned long cpu_util_cfs(int cpu)
8013 {
8014 	return cpu_util(cpu, NULL, -1, 0);
8015 }
8016 
8017 unsigned long cpu_util_cfs_boost(int cpu)
8018 {
8019 	return cpu_util(cpu, NULL, -1, 1);
8020 }
8021 
8022 /*
8023  * cpu_util_without: compute cpu utilization without any contributions from *p
8024  * @cpu: the CPU which utilization is requested
8025  * @p: the task which utilization should be discounted
8026  *
8027  * The utilization of a CPU is defined by the utilization of tasks currently
8028  * enqueued on that CPU as well as tasks which are currently sleeping after an
8029  * execution on that CPU.
8030  *
8031  * This method returns the utilization of the specified CPU by discounting the
8032  * utilization of the specified task, whenever the task is currently
8033  * contributing to the CPU utilization.
8034  */
8035 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
8036 {
8037 	/* Task has no contribution or is new */
8038 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8039 		p = NULL;
8040 
8041 	return cpu_util(cpu, p, -1, 0);
8042 }
8043 
8044 /*
8045  * This function computes an effective utilization for the given CPU, to be
8046  * used for frequency selection given the linear relation: f = u * f_max.
8047  *
8048  * The scheduler tracks the following metrics:
8049  *
8050  *   cpu_util_{cfs,rt,dl,irq}()
8051  *   cpu_bw_dl()
8052  *
8053  * Where the cfs,rt and dl util numbers are tracked with the same metric and
8054  * synchronized windows and are thus directly comparable.
8055  *
8056  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8057  * which excludes things like IRQ and steal-time. These latter are then accrued
8058  * in the IRQ utilization.
8059  *
8060  * The DL bandwidth number OTOH is not a measured metric but a value computed
8061  * based on the task model parameters and gives the minimal utilization
8062  * required to meet deadlines.
8063  */
8064 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
8065 				 unsigned long *min,
8066 				 unsigned long *max)
8067 {
8068 	unsigned long util, irq, scale;
8069 	struct rq *rq = cpu_rq(cpu);
8070 
8071 	scale = arch_scale_cpu_capacity(cpu);
8072 
8073 	/*
8074 	 * Early check to see if IRQ/steal time saturates the CPU, can be
8075 	 * because of inaccuracies in how we track these -- see
8076 	 * update_irq_load_avg().
8077 	 */
8078 	irq = cpu_util_irq(rq);
8079 	if (unlikely(irq >= scale)) {
8080 		if (min)
8081 			*min = scale;
8082 		if (max)
8083 			*max = scale;
8084 		return scale;
8085 	}
8086 
8087 	if (min) {
8088 		/*
8089 		 * The minimum utilization returns the highest level between:
8090 		 * - the computed DL bandwidth needed with the IRQ pressure which
8091 		 *   steals time to the deadline task.
8092 		 * - The minimum performance requirement for CFS and/or RT.
8093 		 */
8094 		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
8095 
8096 		/*
8097 		 * When an RT task is runnable and uclamp is not used, we must
8098 		 * ensure that the task will run at maximum compute capacity.
8099 		 */
8100 		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
8101 			*min = max(*min, scale);
8102 	}
8103 
8104 	/*
8105 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8106 	 * CFS tasks and we use the same metric to track the effective
8107 	 * utilization (PELT windows are synchronized) we can directly add them
8108 	 * to obtain the CPU's actual utilization.
8109 	 */
8110 	util = util_cfs + cpu_util_rt(rq);
8111 	util += cpu_util_dl(rq);
8112 
8113 	/*
8114 	 * The maximum hint is a soft bandwidth requirement, which can be lower
8115 	 * than the actual utilization because of uclamp_max requirements.
8116 	 */
8117 	if (max)
8118 		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
8119 
8120 	if (util >= scale)
8121 		return scale;
8122 
8123 	/*
8124 	 * There is still idle time; further improve the number by using the
8125 	 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8126 	 * need to scale the task numbers:
8127 	 *
8128 	 *              max - irq
8129 	 *   U' = irq + --------- * U
8130 	 *                 max
8131 	 */
8132 	util = scale_irq_capacity(util, irq, scale);
8133 	util += irq;
8134 
8135 	return min(scale, util);
8136 }
8137 
8138 unsigned long sched_cpu_util(int cpu)
8139 {
8140 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
8141 }
8142 
8143 /*
8144  * energy_env - Utilization landscape for energy estimation.
8145  * @task_busy_time: Utilization contribution by the task for which we test the
8146  *                  placement. Given by eenv_task_busy_time().
8147  * @pd_busy_time:   Utilization of the whole perf domain without the task
8148  *                  contribution. Given by eenv_pd_busy_time().
8149  * @cpu_cap:        Maximum CPU capacity for the perf domain.
8150  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8151  */
8152 struct energy_env {
8153 	unsigned long task_busy_time;
8154 	unsigned long pd_busy_time;
8155 	unsigned long cpu_cap;
8156 	unsigned long pd_cap;
8157 };
8158 
8159 /*
8160  * Compute the task busy time for compute_energy(). This time cannot be
8161  * injected directly into effective_cpu_util() because of the IRQ scaling.
8162  * The latter only makes sense with the most recent CPUs where the task has
8163  * run.
8164  */
8165 static inline void eenv_task_busy_time(struct energy_env *eenv,
8166 				       struct task_struct *p, int prev_cpu)
8167 {
8168 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8169 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8170 
8171 	if (unlikely(irq >= max_cap))
8172 		busy_time = max_cap;
8173 	else
8174 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8175 
8176 	eenv->task_busy_time = busy_time;
8177 }
8178 
8179 /*
8180  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8181  * utilization for each @pd_cpus, it however doesn't take into account
8182  * clamping since the ratio (utilization / cpu_capacity) is already enough to
8183  * scale the EM reported power consumption at the (eventually clamped)
8184  * cpu_capacity.
8185  *
8186  * The contribution of the task @p for which we want to estimate the
8187  * energy cost is removed (by cpu_util()) and must be calculated
8188  * separately (see eenv_task_busy_time). This ensures:
8189  *
8190  *   - A stable PD utilization, no matter which CPU of that PD we want to place
8191  *     the task on.
8192  *
8193  *   - A fair comparison between CPUs as the task contribution (task_util())
8194  *     will always be the same no matter which CPU utilization we rely on
8195  *     (util_avg or util_est).
8196  *
8197  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8198  * exceed @eenv->pd_cap.
8199  */
8200 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8201 				     struct cpumask *pd_cpus,
8202 				     struct task_struct *p)
8203 {
8204 	unsigned long busy_time = 0;
8205 	int cpu;
8206 
8207 	for_each_cpu(cpu, pd_cpus) {
8208 		unsigned long util = cpu_util(cpu, p, -1, 0);
8209 
8210 		busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8211 	}
8212 
8213 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8214 }
8215 
8216 /*
8217  * Compute the maximum utilization for compute_energy() when the task @p
8218  * is placed on the cpu @dst_cpu.
8219  *
8220  * Returns the maximum utilization among @eenv->cpus. This utilization can't
8221  * exceed @eenv->cpu_cap.
8222  */
8223 static inline unsigned long
8224 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8225 		 struct task_struct *p, int dst_cpu)
8226 {
8227 	unsigned long max_util = 0;
8228 	int cpu;
8229 
8230 	for_each_cpu(cpu, pd_cpus) {
8231 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8232 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8233 		unsigned long eff_util, min, max;
8234 
8235 		/*
8236 		 * Performance domain frequency: utilization clamping
8237 		 * must be considered since it affects the selection
8238 		 * of the performance domain frequency.
8239 		 * NOTE: in case RT tasks are running, by default the min
8240 		 * utilization can be max OPP.
8241 		 */
8242 		eff_util = effective_cpu_util(cpu, util, &min, &max);
8243 
8244 		/* Task's uclamp can modify min and max value */
8245 		if (tsk && uclamp_is_used()) {
8246 			min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8247 
8248 			/*
8249 			 * If there is no active max uclamp constraint,
8250 			 * directly use task's one, otherwise keep max.
8251 			 */
8252 			if (uclamp_rq_is_idle(cpu_rq(cpu)))
8253 				max = uclamp_eff_value(p, UCLAMP_MAX);
8254 			else
8255 				max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8256 		}
8257 
8258 		eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8259 		max_util = max(max_util, eff_util);
8260 	}
8261 
8262 	return min(max_util, eenv->cpu_cap);
8263 }
8264 
8265 /*
8266  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8267  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8268  * contribution is ignored.
8269  */
8270 static inline unsigned long
8271 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8272 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8273 {
8274 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8275 	unsigned long busy_time = eenv->pd_busy_time;
8276 	unsigned long energy;
8277 
8278 	if (dst_cpu >= 0)
8279 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8280 
8281 	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8282 
8283 	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8284 
8285 	return energy;
8286 }
8287 
8288 /*
8289  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8290  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8291  * spare capacity in each performance domain and uses it as a potential
8292  * candidate to execute the task. Then, it uses the Energy Model to figure
8293  * out which of the CPU candidates is the most energy-efficient.
8294  *
8295  * The rationale for this heuristic is as follows. In a performance domain,
8296  * all the most energy efficient CPU candidates (according to the Energy
8297  * Model) are those for which we'll request a low frequency. When there are
8298  * several CPUs for which the frequency request will be the same, we don't
8299  * have enough data to break the tie between them, because the Energy Model
8300  * only includes active power costs. With this model, if we assume that
8301  * frequency requests follow utilization (e.g. using schedutil), the CPU with
8302  * the maximum spare capacity in a performance domain is guaranteed to be among
8303  * the best candidates of the performance domain.
8304  *
8305  * In practice, it could be preferable from an energy standpoint to pack
8306  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8307  * but that could also hurt our chances to go cluster idle, and we have no
8308  * ways to tell with the current Energy Model if this is actually a good
8309  * idea or not. So, find_energy_efficient_cpu() basically favors
8310  * cluster-packing, and spreading inside a cluster. That should at least be
8311  * a good thing for latency, and this is consistent with the idea that most
8312  * of the energy savings of EAS come from the asymmetry of the system, and
8313  * not so much from breaking the tie between identical CPUs. That's also the
8314  * reason why EAS is enabled in the topology code only for systems where
8315  * SD_ASYM_CPUCAPACITY is set.
8316  *
8317  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8318  * they don't have any useful utilization data yet and it's not possible to
8319  * forecast their impact on energy consumption. Consequently, they will be
8320  * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8321  * to be energy-inefficient in some use-cases. The alternative would be to
8322  * bias new tasks towards specific types of CPUs first, or to try to infer
8323  * their util_avg from the parent task, but those heuristics could hurt
8324  * other use-cases too. So, until someone finds a better way to solve this,
8325  * let's keep things simple by re-using the existing slow path.
8326  */
8327 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8328 {
8329 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8330 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8331 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8332 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8333 	struct root_domain *rd = this_rq()->rd;
8334 	int cpu, best_energy_cpu, target = -1;
8335 	int prev_fits = -1, best_fits = -1;
8336 	unsigned long best_actual_cap = 0;
8337 	unsigned long prev_actual_cap = 0;
8338 	struct sched_domain *sd;
8339 	struct perf_domain *pd;
8340 	struct energy_env eenv;
8341 
8342 	rcu_read_lock();
8343 	pd = rcu_dereference(rd->pd);
8344 	if (!pd)
8345 		goto unlock;
8346 
8347 	/*
8348 	 * Energy-aware wake-up happens on the lowest sched_domain starting
8349 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8350 	 */
8351 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8352 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8353 		sd = sd->parent;
8354 	if (!sd)
8355 		goto unlock;
8356 
8357 	target = prev_cpu;
8358 
8359 	sync_entity_load_avg(&p->se);
8360 	if (!task_util_est(p) && p_util_min == 0)
8361 		goto unlock;
8362 
8363 	eenv_task_busy_time(&eenv, p, prev_cpu);
8364 
8365 	for (; pd; pd = pd->next) {
8366 		unsigned long util_min = p_util_min, util_max = p_util_max;
8367 		unsigned long cpu_cap, cpu_actual_cap, util;
8368 		long prev_spare_cap = -1, max_spare_cap = -1;
8369 		unsigned long rq_util_min, rq_util_max;
8370 		unsigned long cur_delta, base_energy;
8371 		int max_spare_cap_cpu = -1;
8372 		int fits, max_fits = -1;
8373 
8374 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8375 
8376 		if (cpumask_empty(cpus))
8377 			continue;
8378 
8379 		/* Account external pressure for the energy estimation */
8380 		cpu = cpumask_first(cpus);
8381 		cpu_actual_cap = get_actual_cpu_capacity(cpu);
8382 
8383 		eenv.cpu_cap = cpu_actual_cap;
8384 		eenv.pd_cap = 0;
8385 
8386 		for_each_cpu(cpu, cpus) {
8387 			struct rq *rq = cpu_rq(cpu);
8388 
8389 			eenv.pd_cap += cpu_actual_cap;
8390 
8391 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8392 				continue;
8393 
8394 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8395 				continue;
8396 
8397 			util = cpu_util(cpu, p, cpu, 0);
8398 			cpu_cap = capacity_of(cpu);
8399 
8400 			/*
8401 			 * Skip CPUs that cannot satisfy the capacity request.
8402 			 * IOW, placing the task there would make the CPU
8403 			 * overutilized. Take uclamp into account to see how
8404 			 * much capacity we can get out of the CPU; this is
8405 			 * aligned with sched_cpu_util().
8406 			 */
8407 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8408 				/*
8409 				 * Open code uclamp_rq_util_with() except for
8410 				 * the clamp() part. I.e.: apply max aggregation
8411 				 * only. util_fits_cpu() logic requires to
8412 				 * operate on non clamped util but must use the
8413 				 * max-aggregated uclamp_{min, max}.
8414 				 */
8415 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8416 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8417 
8418 				util_min = max(rq_util_min, p_util_min);
8419 				util_max = max(rq_util_max, p_util_max);
8420 			}
8421 
8422 			fits = util_fits_cpu(util, util_min, util_max, cpu);
8423 			if (!fits)
8424 				continue;
8425 
8426 			lsub_positive(&cpu_cap, util);
8427 
8428 			if (cpu == prev_cpu) {
8429 				/* Always use prev_cpu as a candidate. */
8430 				prev_spare_cap = cpu_cap;
8431 				prev_fits = fits;
8432 			} else if ((fits > max_fits) ||
8433 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8434 				/*
8435 				 * Find the CPU with the maximum spare capacity
8436 				 * among the remaining CPUs in the performance
8437 				 * domain.
8438 				 */
8439 				max_spare_cap = cpu_cap;
8440 				max_spare_cap_cpu = cpu;
8441 				max_fits = fits;
8442 			}
8443 		}
8444 
8445 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8446 			continue;
8447 
8448 		eenv_pd_busy_time(&eenv, cpus, p);
8449 		/* Compute the 'base' energy of the pd, without @p */
8450 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8451 
8452 		/* Evaluate the energy impact of using prev_cpu. */
8453 		if (prev_spare_cap > -1) {
8454 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8455 						    prev_cpu);
8456 			/* CPU utilization has changed */
8457 			if (prev_delta < base_energy)
8458 				goto unlock;
8459 			prev_delta -= base_energy;
8460 			prev_actual_cap = cpu_actual_cap;
8461 			best_delta = min(best_delta, prev_delta);
8462 		}
8463 
8464 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8465 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8466 			/* Current best energy cpu fits better */
8467 			if (max_fits < best_fits)
8468 				continue;
8469 
8470 			/*
8471 			 * Both don't fit performance hint (i.e. uclamp_min)
8472 			 * but best energy cpu has better capacity.
8473 			 */
8474 			if ((max_fits < 0) &&
8475 			    (cpu_actual_cap <= best_actual_cap))
8476 				continue;
8477 
8478 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8479 						   max_spare_cap_cpu);
8480 			/* CPU utilization has changed */
8481 			if (cur_delta < base_energy)
8482 				goto unlock;
8483 			cur_delta -= base_energy;
8484 
8485 			/*
8486 			 * Both fit for the task but best energy cpu has lower
8487 			 * energy impact.
8488 			 */
8489 			if ((max_fits > 0) && (best_fits > 0) &&
8490 			    (cur_delta >= best_delta))
8491 				continue;
8492 
8493 			best_delta = cur_delta;
8494 			best_energy_cpu = max_spare_cap_cpu;
8495 			best_fits = max_fits;
8496 			best_actual_cap = cpu_actual_cap;
8497 		}
8498 	}
8499 	rcu_read_unlock();
8500 
8501 	if ((best_fits > prev_fits) ||
8502 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8503 	    ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8504 		target = best_energy_cpu;
8505 
8506 	return target;
8507 
8508 unlock:
8509 	rcu_read_unlock();
8510 
8511 	return target;
8512 }
8513 
8514 /*
8515  * select_task_rq_fair: Select target runqueue for the waking task in domains
8516  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8517  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8518  *
8519  * Balances load by selecting the idlest CPU in the idlest group, or under
8520  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8521  *
8522  * Returns the target CPU number.
8523  */
8524 static int
8525 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8526 {
8527 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8528 	struct sched_domain *tmp, *sd = NULL;
8529 	int cpu = smp_processor_id();
8530 	int new_cpu = prev_cpu;
8531 	int want_affine = 0;
8532 	/* SD_flags and WF_flags share the first nibble */
8533 	int sd_flag = wake_flags & 0xF;
8534 
8535 	/*
8536 	 * required for stable ->cpus_allowed
8537 	 */
8538 	lockdep_assert_held(&p->pi_lock);
8539 	if (wake_flags & WF_TTWU) {
8540 		record_wakee(p);
8541 
8542 		if ((wake_flags & WF_CURRENT_CPU) &&
8543 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8544 			return cpu;
8545 
8546 		if (!is_rd_overutilized(this_rq()->rd)) {
8547 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8548 			if (new_cpu >= 0)
8549 				return new_cpu;
8550 			new_cpu = prev_cpu;
8551 		}
8552 
8553 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8554 	}
8555 
8556 	rcu_read_lock();
8557 	for_each_domain(cpu, tmp) {
8558 		/*
8559 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8560 		 * cpu is a valid SD_WAKE_AFFINE target.
8561 		 */
8562 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8563 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8564 			if (cpu != prev_cpu)
8565 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8566 
8567 			sd = NULL; /* Prefer wake_affine over balance flags */
8568 			break;
8569 		}
8570 
8571 		/*
8572 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8573 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8574 		 * will usually go to the fast path.
8575 		 */
8576 		if (tmp->flags & sd_flag)
8577 			sd = tmp;
8578 		else if (!want_affine)
8579 			break;
8580 	}
8581 
8582 	if (unlikely(sd)) {
8583 		/* Slow path */
8584 		new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8585 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8586 		/* Fast path */
8587 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8588 	}
8589 	rcu_read_unlock();
8590 
8591 	return new_cpu;
8592 }
8593 
8594 /*
8595  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8596  * cfs_rq_of(p) references at time of call are still valid and identify the
8597  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8598  */
8599 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8600 {
8601 	struct sched_entity *se = &p->se;
8602 
8603 	if (!task_on_rq_migrating(p)) {
8604 		remove_entity_load_avg(se);
8605 
8606 		/*
8607 		 * Here, the task's PELT values have been updated according to
8608 		 * the current rq's clock. But if that clock hasn't been
8609 		 * updated in a while, a substantial idle time will be missed,
8610 		 * leading to an inflation after wake-up on the new rq.
8611 		 *
8612 		 * Estimate the missing time from the cfs_rq last_update_time
8613 		 * and update sched_avg to improve the PELT continuity after
8614 		 * migration.
8615 		 */
8616 		migrate_se_pelt_lag(se);
8617 	}
8618 
8619 	/* Tell new CPU we are migrated */
8620 	se->avg.last_update_time = 0;
8621 
8622 	update_scan_period(p, new_cpu);
8623 }
8624 
8625 static void task_dead_fair(struct task_struct *p)
8626 {
8627 	struct sched_entity *se = &p->se;
8628 
8629 	if (se->sched_delayed) {
8630 		struct rq_flags rf;
8631 		struct rq *rq;
8632 
8633 		rq = task_rq_lock(p, &rf);
8634 		if (se->sched_delayed) {
8635 			update_rq_clock(rq);
8636 			dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8637 		}
8638 		task_rq_unlock(rq, p, &rf);
8639 	}
8640 
8641 	remove_entity_load_avg(se);
8642 }
8643 
8644 /*
8645  * Set the max capacity the task is allowed to run at for misfit detection.
8646  */
8647 static void set_task_max_allowed_capacity(struct task_struct *p)
8648 {
8649 	struct asym_cap_data *entry;
8650 
8651 	if (!sched_asym_cpucap_active())
8652 		return;
8653 
8654 	rcu_read_lock();
8655 	list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8656 		cpumask_t *cpumask;
8657 
8658 		cpumask = cpu_capacity_span(entry);
8659 		if (!cpumask_intersects(p->cpus_ptr, cpumask))
8660 			continue;
8661 
8662 		p->max_allowed_capacity = entry->capacity;
8663 		break;
8664 	}
8665 	rcu_read_unlock();
8666 }
8667 
8668 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8669 {
8670 	set_cpus_allowed_common(p, ctx);
8671 	set_task_max_allowed_capacity(p);
8672 }
8673 
8674 static int
8675 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8676 {
8677 	if (sched_fair_runnable(rq))
8678 		return 1;
8679 
8680 	return sched_balance_newidle(rq, rf) != 0;
8681 }
8682 #else
8683 static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
8684 #endif /* CONFIG_SMP */
8685 
8686 static void set_next_buddy(struct sched_entity *se)
8687 {
8688 	for_each_sched_entity(se) {
8689 		if (SCHED_WARN_ON(!se->on_rq))
8690 			return;
8691 		if (se_is_idle(se))
8692 			return;
8693 		cfs_rq_of(se)->next = se;
8694 	}
8695 }
8696 
8697 /*
8698  * Preempt the current task with a newly woken task if needed:
8699  */
8700 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8701 {
8702 	struct task_struct *donor = rq->donor;
8703 	struct sched_entity *se = &donor->se, *pse = &p->se;
8704 	struct cfs_rq *cfs_rq = task_cfs_rq(donor);
8705 	int cse_is_idle, pse_is_idle;
8706 
8707 	if (unlikely(se == pse))
8708 		return;
8709 
8710 	/*
8711 	 * This is possible from callers such as attach_tasks(), in which we
8712 	 * unconditionally wakeup_preempt() after an enqueue (which may have
8713 	 * lead to a throttle).  This both saves work and prevents false
8714 	 * next-buddy nomination below.
8715 	 */
8716 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8717 		return;
8718 
8719 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) {
8720 		set_next_buddy(pse);
8721 	}
8722 
8723 	/*
8724 	 * We can come here with TIF_NEED_RESCHED already set from new task
8725 	 * wake up path.
8726 	 *
8727 	 * Note: this also catches the edge-case of curr being in a throttled
8728 	 * group (e.g. via set_curr_task), since update_curr() (in the
8729 	 * enqueue of curr) will have resulted in resched being set.  This
8730 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8731 	 * below.
8732 	 */
8733 	if (test_tsk_need_resched(rq->curr))
8734 		return;
8735 
8736 	if (!sched_feat(WAKEUP_PREEMPTION))
8737 		return;
8738 
8739 	find_matching_se(&se, &pse);
8740 	WARN_ON_ONCE(!pse);
8741 
8742 	cse_is_idle = se_is_idle(se);
8743 	pse_is_idle = se_is_idle(pse);
8744 
8745 	/*
8746 	 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8747 	 * in the inverse case).
8748 	 */
8749 	if (cse_is_idle && !pse_is_idle)
8750 		goto preempt;
8751 	if (cse_is_idle != pse_is_idle)
8752 		return;
8753 
8754 	/*
8755 	 * BATCH and IDLE tasks do not preempt others.
8756 	 */
8757 	if (unlikely(!normal_policy(p->policy)))
8758 		return;
8759 
8760 	cfs_rq = cfs_rq_of(se);
8761 	update_curr(cfs_rq);
8762 	/*
8763 	 * If @p has a shorter slice than current and @p is eligible, override
8764 	 * current's slice protection in order to allow preemption.
8765 	 *
8766 	 * Note that even if @p does not turn out to be the most eligible
8767 	 * task at this moment, current's slice protection will be lost.
8768 	 */
8769 	if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline)
8770 		se->vlag = se->deadline + 1;
8771 
8772 	/*
8773 	 * If @p has become the most eligible task, force preemption.
8774 	 */
8775 	if (pick_eevdf(cfs_rq) == pse)
8776 		goto preempt;
8777 
8778 	return;
8779 
8780 preempt:
8781 	resched_curr_lazy(rq);
8782 }
8783 
8784 static struct task_struct *pick_task_fair(struct rq *rq)
8785 {
8786 	struct sched_entity *se;
8787 	struct cfs_rq *cfs_rq;
8788 
8789 again:
8790 	cfs_rq = &rq->cfs;
8791 	if (!cfs_rq->nr_running)
8792 		return NULL;
8793 
8794 	do {
8795 		/* Might not have done put_prev_entity() */
8796 		if (cfs_rq->curr && cfs_rq->curr->on_rq)
8797 			update_curr(cfs_rq);
8798 
8799 		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8800 			goto again;
8801 
8802 		se = pick_next_entity(rq, cfs_rq);
8803 		if (!se)
8804 			goto again;
8805 		cfs_rq = group_cfs_rq(se);
8806 	} while (cfs_rq);
8807 
8808 	return task_of(se);
8809 }
8810 
8811 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8812 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8813 
8814 struct task_struct *
8815 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8816 {
8817 	struct sched_entity *se;
8818 	struct task_struct *p;
8819 	int new_tasks;
8820 
8821 again:
8822 	p = pick_task_fair(rq);
8823 	if (!p)
8824 		goto idle;
8825 	se = &p->se;
8826 
8827 #ifdef CONFIG_FAIR_GROUP_SCHED
8828 	if (prev->sched_class != &fair_sched_class)
8829 		goto simple;
8830 
8831 	__put_prev_set_next_dl_server(rq, prev, p);
8832 
8833 	/*
8834 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8835 	 * likely that a next task is from the same cgroup as the current.
8836 	 *
8837 	 * Therefore attempt to avoid putting and setting the entire cgroup
8838 	 * hierarchy, only change the part that actually changes.
8839 	 *
8840 	 * Since we haven't yet done put_prev_entity and if the selected task
8841 	 * is a different task than we started out with, try and touch the
8842 	 * least amount of cfs_rqs.
8843 	 */
8844 	if (prev != p) {
8845 		struct sched_entity *pse = &prev->se;
8846 		struct cfs_rq *cfs_rq;
8847 
8848 		while (!(cfs_rq = is_same_group(se, pse))) {
8849 			int se_depth = se->depth;
8850 			int pse_depth = pse->depth;
8851 
8852 			if (se_depth <= pse_depth) {
8853 				put_prev_entity(cfs_rq_of(pse), pse);
8854 				pse = parent_entity(pse);
8855 			}
8856 			if (se_depth >= pse_depth) {
8857 				set_next_entity(cfs_rq_of(se), se);
8858 				se = parent_entity(se);
8859 			}
8860 		}
8861 
8862 		put_prev_entity(cfs_rq, pse);
8863 		set_next_entity(cfs_rq, se);
8864 
8865 		__set_next_task_fair(rq, p, true);
8866 	}
8867 
8868 	return p;
8869 
8870 simple:
8871 #endif
8872 	put_prev_set_next_task(rq, prev, p);
8873 	return p;
8874 
8875 idle:
8876 	if (!rf)
8877 		return NULL;
8878 
8879 	new_tasks = sched_balance_newidle(rq, rf);
8880 
8881 	/*
8882 	 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8883 	 * possible for any higher priority task to appear. In that case we
8884 	 * must re-start the pick_next_entity() loop.
8885 	 */
8886 	if (new_tasks < 0)
8887 		return RETRY_TASK;
8888 
8889 	if (new_tasks > 0)
8890 		goto again;
8891 
8892 	/*
8893 	 * rq is about to be idle, check if we need to update the
8894 	 * lost_idle_time of clock_pelt
8895 	 */
8896 	update_idle_rq_clock_pelt(rq);
8897 
8898 	return NULL;
8899 }
8900 
8901 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
8902 {
8903 	return pick_next_task_fair(rq, prev, NULL);
8904 }
8905 
8906 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se)
8907 {
8908 	return !!dl_se->rq->cfs.nr_running;
8909 }
8910 
8911 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
8912 {
8913 	return pick_task_fair(dl_se->rq);
8914 }
8915 
8916 void fair_server_init(struct rq *rq)
8917 {
8918 	struct sched_dl_entity *dl_se = &rq->fair_server;
8919 
8920 	init_dl_entity(dl_se);
8921 
8922 	dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task);
8923 }
8924 
8925 /*
8926  * Account for a descheduled task:
8927  */
8928 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
8929 {
8930 	struct sched_entity *se = &prev->se;
8931 	struct cfs_rq *cfs_rq;
8932 
8933 	for_each_sched_entity(se) {
8934 		cfs_rq = cfs_rq_of(se);
8935 		put_prev_entity(cfs_rq, se);
8936 	}
8937 }
8938 
8939 /*
8940  * sched_yield() is very simple
8941  */
8942 static void yield_task_fair(struct rq *rq)
8943 {
8944 	struct task_struct *curr = rq->curr;
8945 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8946 	struct sched_entity *se = &curr->se;
8947 
8948 	/*
8949 	 * Are we the only task in the tree?
8950 	 */
8951 	if (unlikely(rq->nr_running == 1))
8952 		return;
8953 
8954 	clear_buddies(cfs_rq, se);
8955 
8956 	update_rq_clock(rq);
8957 	/*
8958 	 * Update run-time statistics of the 'current'.
8959 	 */
8960 	update_curr(cfs_rq);
8961 	/*
8962 	 * Tell update_rq_clock() that we've just updated,
8963 	 * so we don't do microscopic update in schedule()
8964 	 * and double the fastpath cost.
8965 	 */
8966 	rq_clock_skip_update(rq);
8967 
8968 	se->deadline += calc_delta_fair(se->slice, se);
8969 }
8970 
8971 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8972 {
8973 	struct sched_entity *se = &p->se;
8974 
8975 	/* throttled hierarchies are not runnable */
8976 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8977 		return false;
8978 
8979 	/* Tell the scheduler that we'd really like se to run next. */
8980 	set_next_buddy(se);
8981 
8982 	yield_task_fair(rq);
8983 
8984 	return true;
8985 }
8986 
8987 #ifdef CONFIG_SMP
8988 /**************************************************
8989  * Fair scheduling class load-balancing methods.
8990  *
8991  * BASICS
8992  *
8993  * The purpose of load-balancing is to achieve the same basic fairness the
8994  * per-CPU scheduler provides, namely provide a proportional amount of compute
8995  * time to each task. This is expressed in the following equation:
8996  *
8997  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8998  *
8999  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
9000  * W_i,0 is defined as:
9001  *
9002  *   W_i,0 = \Sum_j w_i,j                                             (2)
9003  *
9004  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
9005  * is derived from the nice value as per sched_prio_to_weight[].
9006  *
9007  * The weight average is an exponential decay average of the instantaneous
9008  * weight:
9009  *
9010  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
9011  *
9012  * C_i is the compute capacity of CPU i, typically it is the
9013  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
9014  * can also include other factors [XXX].
9015  *
9016  * To achieve this balance we define a measure of imbalance which follows
9017  * directly from (1):
9018  *
9019  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
9020  *
9021  * We them move tasks around to minimize the imbalance. In the continuous
9022  * function space it is obvious this converges, in the discrete case we get
9023  * a few fun cases generally called infeasible weight scenarios.
9024  *
9025  * [XXX expand on:
9026  *     - infeasible weights;
9027  *     - local vs global optima in the discrete case. ]
9028  *
9029  *
9030  * SCHED DOMAINS
9031  *
9032  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
9033  * for all i,j solution, we create a tree of CPUs that follows the hardware
9034  * topology where each level pairs two lower groups (or better). This results
9035  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
9036  * tree to only the first of the previous level and we decrease the frequency
9037  * of load-balance at each level inversely proportional to the number of CPUs in
9038  * the groups.
9039  *
9040  * This yields:
9041  *
9042  *     log_2 n     1     n
9043  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
9044  *     i = 0      2^i   2^i
9045  *                               `- size of each group
9046  *         |         |     `- number of CPUs doing load-balance
9047  *         |         `- freq
9048  *         `- sum over all levels
9049  *
9050  * Coupled with a limit on how many tasks we can migrate every balance pass,
9051  * this makes (5) the runtime complexity of the balancer.
9052  *
9053  * An important property here is that each CPU is still (indirectly) connected
9054  * to every other CPU in at most O(log n) steps:
9055  *
9056  * The adjacency matrix of the resulting graph is given by:
9057  *
9058  *             log_2 n
9059  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
9060  *             k = 0
9061  *
9062  * And you'll find that:
9063  *
9064  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
9065  *
9066  * Showing there's indeed a path between every CPU in at most O(log n) steps.
9067  * The task movement gives a factor of O(m), giving a convergence complexity
9068  * of:
9069  *
9070  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
9071  *
9072  *
9073  * WORK CONSERVING
9074  *
9075  * In order to avoid CPUs going idle while there's still work to do, new idle
9076  * balancing is more aggressive and has the newly idle CPU iterate up the domain
9077  * tree itself instead of relying on other CPUs to bring it work.
9078  *
9079  * This adds some complexity to both (5) and (8) but it reduces the total idle
9080  * time.
9081  *
9082  * [XXX more?]
9083  *
9084  *
9085  * CGROUPS
9086  *
9087  * Cgroups make a horror show out of (2), instead of a simple sum we get:
9088  *
9089  *                                s_k,i
9090  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
9091  *                                 S_k
9092  *
9093  * Where
9094  *
9095  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
9096  *
9097  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9098  *
9099  * The big problem is S_k, its a global sum needed to compute a local (W_i)
9100  * property.
9101  *
9102  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9103  *      rewrite all of this once again.]
9104  */
9105 
9106 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9107 
9108 enum fbq_type { regular, remote, all };
9109 
9110 /*
9111  * 'group_type' describes the group of CPUs at the moment of load balancing.
9112  *
9113  * The enum is ordered by pulling priority, with the group with lowest priority
9114  * first so the group_type can simply be compared when selecting the busiest
9115  * group. See update_sd_pick_busiest().
9116  */
9117 enum group_type {
9118 	/* The group has spare capacity that can be used to run more tasks.  */
9119 	group_has_spare = 0,
9120 	/*
9121 	 * The group is fully used and the tasks don't compete for more CPU
9122 	 * cycles. Nevertheless, some tasks might wait before running.
9123 	 */
9124 	group_fully_busy,
9125 	/*
9126 	 * One task doesn't fit with CPU's capacity and must be migrated to a
9127 	 * more powerful CPU.
9128 	 */
9129 	group_misfit_task,
9130 	/*
9131 	 * Balance SMT group that's fully busy. Can benefit from migration
9132 	 * a task on SMT with busy sibling to another CPU on idle core.
9133 	 */
9134 	group_smt_balance,
9135 	/*
9136 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9137 	 * and the task should be migrated to it instead of running on the
9138 	 * current CPU.
9139 	 */
9140 	group_asym_packing,
9141 	/*
9142 	 * The tasks' affinity constraints previously prevented the scheduler
9143 	 * from balancing the load across the system.
9144 	 */
9145 	group_imbalanced,
9146 	/*
9147 	 * The CPU is overloaded and can't provide expected CPU cycles to all
9148 	 * tasks.
9149 	 */
9150 	group_overloaded
9151 };
9152 
9153 enum migration_type {
9154 	migrate_load = 0,
9155 	migrate_util,
9156 	migrate_task,
9157 	migrate_misfit
9158 };
9159 
9160 #define LBF_ALL_PINNED	0x01
9161 #define LBF_NEED_BREAK	0x02
9162 #define LBF_DST_PINNED  0x04
9163 #define LBF_SOME_PINNED	0x08
9164 #define LBF_ACTIVE_LB	0x10
9165 
9166 struct lb_env {
9167 	struct sched_domain	*sd;
9168 
9169 	struct rq		*src_rq;
9170 	int			src_cpu;
9171 
9172 	int			dst_cpu;
9173 	struct rq		*dst_rq;
9174 
9175 	struct cpumask		*dst_grpmask;
9176 	int			new_dst_cpu;
9177 	enum cpu_idle_type	idle;
9178 	long			imbalance;
9179 	/* The set of CPUs under consideration for load-balancing */
9180 	struct cpumask		*cpus;
9181 
9182 	unsigned int		flags;
9183 
9184 	unsigned int		loop;
9185 	unsigned int		loop_break;
9186 	unsigned int		loop_max;
9187 
9188 	enum fbq_type		fbq_type;
9189 	enum migration_type	migration_type;
9190 	struct list_head	tasks;
9191 };
9192 
9193 /*
9194  * Is this task likely cache-hot:
9195  */
9196 static int task_hot(struct task_struct *p, struct lb_env *env)
9197 {
9198 	s64 delta;
9199 
9200 	lockdep_assert_rq_held(env->src_rq);
9201 
9202 	if (p->sched_class != &fair_sched_class)
9203 		return 0;
9204 
9205 	if (unlikely(task_has_idle_policy(p)))
9206 		return 0;
9207 
9208 	/* SMT siblings share cache */
9209 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9210 		return 0;
9211 
9212 	/*
9213 	 * Buddy candidates are cache hot:
9214 	 */
9215 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9216 	    (&p->se == cfs_rq_of(&p->se)->next))
9217 		return 1;
9218 
9219 	if (sysctl_sched_migration_cost == -1)
9220 		return 1;
9221 
9222 	/*
9223 	 * Don't migrate task if the task's cookie does not match
9224 	 * with the destination CPU's core cookie.
9225 	 */
9226 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9227 		return 1;
9228 
9229 	if (sysctl_sched_migration_cost == 0)
9230 		return 0;
9231 
9232 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9233 
9234 	return delta < (s64)sysctl_sched_migration_cost;
9235 }
9236 
9237 #ifdef CONFIG_NUMA_BALANCING
9238 /*
9239  * Returns 1, if task migration degrades locality
9240  * Returns 0, if task migration improves locality i.e migration preferred.
9241  * Returns -1, if task migration is not affected by locality.
9242  */
9243 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9244 {
9245 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
9246 	unsigned long src_weight, dst_weight;
9247 	int src_nid, dst_nid, dist;
9248 
9249 	if (!static_branch_likely(&sched_numa_balancing))
9250 		return -1;
9251 
9252 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9253 		return -1;
9254 
9255 	src_nid = cpu_to_node(env->src_cpu);
9256 	dst_nid = cpu_to_node(env->dst_cpu);
9257 
9258 	if (src_nid == dst_nid)
9259 		return -1;
9260 
9261 	/* Migrating away from the preferred node is always bad. */
9262 	if (src_nid == p->numa_preferred_nid) {
9263 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9264 			return 1;
9265 		else
9266 			return -1;
9267 	}
9268 
9269 	/* Encourage migration to the preferred node. */
9270 	if (dst_nid == p->numa_preferred_nid)
9271 		return 0;
9272 
9273 	/* Leaving a core idle is often worse than degrading locality. */
9274 	if (env->idle == CPU_IDLE)
9275 		return -1;
9276 
9277 	dist = node_distance(src_nid, dst_nid);
9278 	if (numa_group) {
9279 		src_weight = group_weight(p, src_nid, dist);
9280 		dst_weight = group_weight(p, dst_nid, dist);
9281 	} else {
9282 		src_weight = task_weight(p, src_nid, dist);
9283 		dst_weight = task_weight(p, dst_nid, dist);
9284 	}
9285 
9286 	return dst_weight < src_weight;
9287 }
9288 
9289 #else
9290 static inline int migrate_degrades_locality(struct task_struct *p,
9291 					     struct lb_env *env)
9292 {
9293 	return -1;
9294 }
9295 #endif
9296 
9297 /*
9298  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9299  */
9300 static
9301 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9302 {
9303 	int tsk_cache_hot;
9304 
9305 	lockdep_assert_rq_held(env->src_rq);
9306 
9307 	/*
9308 	 * We do not migrate tasks that are:
9309 	 * 1) throttled_lb_pair, or
9310 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
9311 	 * 3) running (obviously), or
9312 	 * 4) are cache-hot on their current CPU.
9313 	 */
9314 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
9315 		return 0;
9316 
9317 	/* Disregard percpu kthreads; they are where they need to be. */
9318 	if (kthread_is_per_cpu(p))
9319 		return 0;
9320 
9321 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9322 		int cpu;
9323 
9324 		schedstat_inc(p->stats.nr_failed_migrations_affine);
9325 
9326 		env->flags |= LBF_SOME_PINNED;
9327 
9328 		/*
9329 		 * Remember if this task can be migrated to any other CPU in
9330 		 * our sched_group. We may want to revisit it if we couldn't
9331 		 * meet load balance goals by pulling other tasks on src_cpu.
9332 		 *
9333 		 * Avoid computing new_dst_cpu
9334 		 * - for NEWLY_IDLE
9335 		 * - if we have already computed one in current iteration
9336 		 * - if it's an active balance
9337 		 */
9338 		if (env->idle == CPU_NEWLY_IDLE ||
9339 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9340 			return 0;
9341 
9342 		/* Prevent to re-select dst_cpu via env's CPUs: */
9343 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
9344 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
9345 				env->flags |= LBF_DST_PINNED;
9346 				env->new_dst_cpu = cpu;
9347 				break;
9348 			}
9349 		}
9350 
9351 		return 0;
9352 	}
9353 
9354 	/* Record that we found at least one task that could run on dst_cpu */
9355 	env->flags &= ~LBF_ALL_PINNED;
9356 
9357 	if (task_on_cpu(env->src_rq, p)) {
9358 		schedstat_inc(p->stats.nr_failed_migrations_running);
9359 		return 0;
9360 	}
9361 
9362 	/*
9363 	 * Aggressive migration if:
9364 	 * 1) active balance
9365 	 * 2) destination numa is preferred
9366 	 * 3) task is cache cold, or
9367 	 * 4) too many balance attempts have failed.
9368 	 */
9369 	if (env->flags & LBF_ACTIVE_LB)
9370 		return 1;
9371 
9372 	tsk_cache_hot = migrate_degrades_locality(p, env);
9373 	if (tsk_cache_hot == -1)
9374 		tsk_cache_hot = task_hot(p, env);
9375 
9376 	if (tsk_cache_hot <= 0 ||
9377 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9378 		if (tsk_cache_hot == 1) {
9379 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9380 			schedstat_inc(p->stats.nr_forced_migrations);
9381 		}
9382 		return 1;
9383 	}
9384 
9385 	schedstat_inc(p->stats.nr_failed_migrations_hot);
9386 	return 0;
9387 }
9388 
9389 /*
9390  * detach_task() -- detach the task for the migration specified in env
9391  */
9392 static void detach_task(struct task_struct *p, struct lb_env *env)
9393 {
9394 	lockdep_assert_rq_held(env->src_rq);
9395 
9396 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9397 	set_task_cpu(p, env->dst_cpu);
9398 }
9399 
9400 /*
9401  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9402  * part of active balancing operations within "domain".
9403  *
9404  * Returns a task if successful and NULL otherwise.
9405  */
9406 static struct task_struct *detach_one_task(struct lb_env *env)
9407 {
9408 	struct task_struct *p;
9409 
9410 	lockdep_assert_rq_held(env->src_rq);
9411 
9412 	list_for_each_entry_reverse(p,
9413 			&env->src_rq->cfs_tasks, se.group_node) {
9414 		if (!can_migrate_task(p, env))
9415 			continue;
9416 
9417 		detach_task(p, env);
9418 
9419 		/*
9420 		 * Right now, this is only the second place where
9421 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9422 		 * so we can safely collect stats here rather than
9423 		 * inside detach_tasks().
9424 		 */
9425 		schedstat_inc(env->sd->lb_gained[env->idle]);
9426 		return p;
9427 	}
9428 	return NULL;
9429 }
9430 
9431 /*
9432  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9433  * busiest_rq, as part of a balancing operation within domain "sd".
9434  *
9435  * Returns number of detached tasks if successful and 0 otherwise.
9436  */
9437 static int detach_tasks(struct lb_env *env)
9438 {
9439 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9440 	unsigned long util, load;
9441 	struct task_struct *p;
9442 	int detached = 0;
9443 
9444 	lockdep_assert_rq_held(env->src_rq);
9445 
9446 	/*
9447 	 * Source run queue has been emptied by another CPU, clear
9448 	 * LBF_ALL_PINNED flag as we will not test any task.
9449 	 */
9450 	if (env->src_rq->nr_running <= 1) {
9451 		env->flags &= ~LBF_ALL_PINNED;
9452 		return 0;
9453 	}
9454 
9455 	if (env->imbalance <= 0)
9456 		return 0;
9457 
9458 	while (!list_empty(tasks)) {
9459 		/*
9460 		 * We don't want to steal all, otherwise we may be treated likewise,
9461 		 * which could at worst lead to a livelock crash.
9462 		 */
9463 		if (env->idle && env->src_rq->nr_running <= 1)
9464 			break;
9465 
9466 		env->loop++;
9467 		/* We've more or less seen every task there is, call it quits */
9468 		if (env->loop > env->loop_max)
9469 			break;
9470 
9471 		/* take a breather every nr_migrate tasks */
9472 		if (env->loop > env->loop_break) {
9473 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9474 			env->flags |= LBF_NEED_BREAK;
9475 			break;
9476 		}
9477 
9478 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9479 
9480 		if (!can_migrate_task(p, env))
9481 			goto next;
9482 
9483 		switch (env->migration_type) {
9484 		case migrate_load:
9485 			/*
9486 			 * Depending of the number of CPUs and tasks and the
9487 			 * cgroup hierarchy, task_h_load() can return a null
9488 			 * value. Make sure that env->imbalance decreases
9489 			 * otherwise detach_tasks() will stop only after
9490 			 * detaching up to loop_max tasks.
9491 			 */
9492 			load = max_t(unsigned long, task_h_load(p), 1);
9493 
9494 			if (sched_feat(LB_MIN) &&
9495 			    load < 16 && !env->sd->nr_balance_failed)
9496 				goto next;
9497 
9498 			/*
9499 			 * Make sure that we don't migrate too much load.
9500 			 * Nevertheless, let relax the constraint if
9501 			 * scheduler fails to find a good waiting task to
9502 			 * migrate.
9503 			 */
9504 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9505 				goto next;
9506 
9507 			env->imbalance -= load;
9508 			break;
9509 
9510 		case migrate_util:
9511 			util = task_util_est(p);
9512 
9513 			if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9514 				goto next;
9515 
9516 			env->imbalance -= util;
9517 			break;
9518 
9519 		case migrate_task:
9520 			env->imbalance--;
9521 			break;
9522 
9523 		case migrate_misfit:
9524 			/* This is not a misfit task */
9525 			if (task_fits_cpu(p, env->src_cpu))
9526 				goto next;
9527 
9528 			env->imbalance = 0;
9529 			break;
9530 		}
9531 
9532 		detach_task(p, env);
9533 		list_add(&p->se.group_node, &env->tasks);
9534 
9535 		detached++;
9536 
9537 #ifdef CONFIG_PREEMPTION
9538 		/*
9539 		 * NEWIDLE balancing is a source of latency, so preemptible
9540 		 * kernels will stop after the first task is detached to minimize
9541 		 * the critical section.
9542 		 */
9543 		if (env->idle == CPU_NEWLY_IDLE)
9544 			break;
9545 #endif
9546 
9547 		/*
9548 		 * We only want to steal up to the prescribed amount of
9549 		 * load/util/tasks.
9550 		 */
9551 		if (env->imbalance <= 0)
9552 			break;
9553 
9554 		continue;
9555 next:
9556 		list_move(&p->se.group_node, tasks);
9557 	}
9558 
9559 	/*
9560 	 * Right now, this is one of only two places we collect this stat
9561 	 * so we can safely collect detach_one_task() stats here rather
9562 	 * than inside detach_one_task().
9563 	 */
9564 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9565 
9566 	return detached;
9567 }
9568 
9569 /*
9570  * attach_task() -- attach the task detached by detach_task() to its new rq.
9571  */
9572 static void attach_task(struct rq *rq, struct task_struct *p)
9573 {
9574 	lockdep_assert_rq_held(rq);
9575 
9576 	WARN_ON_ONCE(task_rq(p) != rq);
9577 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9578 	wakeup_preempt(rq, p, 0);
9579 }
9580 
9581 /*
9582  * attach_one_task() -- attaches the task returned from detach_one_task() to
9583  * its new rq.
9584  */
9585 static void attach_one_task(struct rq *rq, struct task_struct *p)
9586 {
9587 	struct rq_flags rf;
9588 
9589 	rq_lock(rq, &rf);
9590 	update_rq_clock(rq);
9591 	attach_task(rq, p);
9592 	rq_unlock(rq, &rf);
9593 }
9594 
9595 /*
9596  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9597  * new rq.
9598  */
9599 static void attach_tasks(struct lb_env *env)
9600 {
9601 	struct list_head *tasks = &env->tasks;
9602 	struct task_struct *p;
9603 	struct rq_flags rf;
9604 
9605 	rq_lock(env->dst_rq, &rf);
9606 	update_rq_clock(env->dst_rq);
9607 
9608 	while (!list_empty(tasks)) {
9609 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9610 		list_del_init(&p->se.group_node);
9611 
9612 		attach_task(env->dst_rq, p);
9613 	}
9614 
9615 	rq_unlock(env->dst_rq, &rf);
9616 }
9617 
9618 #ifdef CONFIG_NO_HZ_COMMON
9619 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9620 {
9621 	if (cfs_rq->avg.load_avg)
9622 		return true;
9623 
9624 	if (cfs_rq->avg.util_avg)
9625 		return true;
9626 
9627 	return false;
9628 }
9629 
9630 static inline bool others_have_blocked(struct rq *rq)
9631 {
9632 	if (cpu_util_rt(rq))
9633 		return true;
9634 
9635 	if (cpu_util_dl(rq))
9636 		return true;
9637 
9638 	if (hw_load_avg(rq))
9639 		return true;
9640 
9641 	if (cpu_util_irq(rq))
9642 		return true;
9643 
9644 	return false;
9645 }
9646 
9647 static inline void update_blocked_load_tick(struct rq *rq)
9648 {
9649 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9650 }
9651 
9652 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9653 {
9654 	if (!has_blocked)
9655 		rq->has_blocked_load = 0;
9656 }
9657 #else
9658 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9659 static inline bool others_have_blocked(struct rq *rq) { return false; }
9660 static inline void update_blocked_load_tick(struct rq *rq) {}
9661 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9662 #endif
9663 
9664 static bool __update_blocked_others(struct rq *rq, bool *done)
9665 {
9666 	bool updated;
9667 
9668 	/*
9669 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9670 	 * DL and IRQ signals have been updated before updating CFS.
9671 	 */
9672 	updated = update_other_load_avgs(rq);
9673 
9674 	if (others_have_blocked(rq))
9675 		*done = false;
9676 
9677 	return updated;
9678 }
9679 
9680 #ifdef CONFIG_FAIR_GROUP_SCHED
9681 
9682 static bool __update_blocked_fair(struct rq *rq, bool *done)
9683 {
9684 	struct cfs_rq *cfs_rq, *pos;
9685 	bool decayed = false;
9686 	int cpu = cpu_of(rq);
9687 
9688 	/*
9689 	 * Iterates the task_group tree in a bottom up fashion, see
9690 	 * list_add_leaf_cfs_rq() for details.
9691 	 */
9692 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9693 		struct sched_entity *se;
9694 
9695 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9696 			update_tg_load_avg(cfs_rq);
9697 
9698 			if (cfs_rq->nr_running == 0)
9699 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9700 
9701 			if (cfs_rq == &rq->cfs)
9702 				decayed = true;
9703 		}
9704 
9705 		/* Propagate pending load changes to the parent, if any: */
9706 		se = cfs_rq->tg->se[cpu];
9707 		if (se && !skip_blocked_update(se))
9708 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9709 
9710 		/*
9711 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9712 		 * decayed cfs_rqs linger on the list.
9713 		 */
9714 		if (cfs_rq_is_decayed(cfs_rq))
9715 			list_del_leaf_cfs_rq(cfs_rq);
9716 
9717 		/* Don't need periodic decay once load/util_avg are null */
9718 		if (cfs_rq_has_blocked(cfs_rq))
9719 			*done = false;
9720 	}
9721 
9722 	return decayed;
9723 }
9724 
9725 /*
9726  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9727  * This needs to be done in a top-down fashion because the load of a child
9728  * group is a fraction of its parents load.
9729  */
9730 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9731 {
9732 	struct rq *rq = rq_of(cfs_rq);
9733 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9734 	unsigned long now = jiffies;
9735 	unsigned long load;
9736 
9737 	if (cfs_rq->last_h_load_update == now)
9738 		return;
9739 
9740 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9741 	for_each_sched_entity(se) {
9742 		cfs_rq = cfs_rq_of(se);
9743 		WRITE_ONCE(cfs_rq->h_load_next, se);
9744 		if (cfs_rq->last_h_load_update == now)
9745 			break;
9746 	}
9747 
9748 	if (!se) {
9749 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9750 		cfs_rq->last_h_load_update = now;
9751 	}
9752 
9753 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9754 		load = cfs_rq->h_load;
9755 		load = div64_ul(load * se->avg.load_avg,
9756 			cfs_rq_load_avg(cfs_rq) + 1);
9757 		cfs_rq = group_cfs_rq(se);
9758 		cfs_rq->h_load = load;
9759 		cfs_rq->last_h_load_update = now;
9760 	}
9761 }
9762 
9763 static unsigned long task_h_load(struct task_struct *p)
9764 {
9765 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9766 
9767 	update_cfs_rq_h_load(cfs_rq);
9768 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9769 			cfs_rq_load_avg(cfs_rq) + 1);
9770 }
9771 #else
9772 static bool __update_blocked_fair(struct rq *rq, bool *done)
9773 {
9774 	struct cfs_rq *cfs_rq = &rq->cfs;
9775 	bool decayed;
9776 
9777 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9778 	if (cfs_rq_has_blocked(cfs_rq))
9779 		*done = false;
9780 
9781 	return decayed;
9782 }
9783 
9784 static unsigned long task_h_load(struct task_struct *p)
9785 {
9786 	return p->se.avg.load_avg;
9787 }
9788 #endif
9789 
9790 static void sched_balance_update_blocked_averages(int cpu)
9791 {
9792 	bool decayed = false, done = true;
9793 	struct rq *rq = cpu_rq(cpu);
9794 	struct rq_flags rf;
9795 
9796 	rq_lock_irqsave(rq, &rf);
9797 	update_blocked_load_tick(rq);
9798 	update_rq_clock(rq);
9799 
9800 	decayed |= __update_blocked_others(rq, &done);
9801 	decayed |= __update_blocked_fair(rq, &done);
9802 
9803 	update_blocked_load_status(rq, !done);
9804 	if (decayed)
9805 		cpufreq_update_util(rq, 0);
9806 	rq_unlock_irqrestore(rq, &rf);
9807 }
9808 
9809 /********** Helpers for sched_balance_find_src_group ************************/
9810 
9811 /*
9812  * sg_lb_stats - stats of a sched_group required for load-balancing:
9813  */
9814 struct sg_lb_stats {
9815 	unsigned long avg_load;			/* Avg load            over the CPUs of the group */
9816 	unsigned long group_load;		/* Total load          over the CPUs of the group */
9817 	unsigned long group_capacity;		/* Capacity            over the CPUs of the group */
9818 	unsigned long group_util;		/* Total utilization   over the CPUs of the group */
9819 	unsigned long group_runnable;		/* Total runnable time over the CPUs of the group */
9820 	unsigned int sum_nr_running;		/* Nr of all tasks running in the group */
9821 	unsigned int sum_h_nr_running;		/* Nr of CFS tasks running in the group */
9822 	unsigned int idle_cpus;                 /* Nr of idle CPUs         in the group */
9823 	unsigned int group_weight;
9824 	enum group_type group_type;
9825 	unsigned int group_asym_packing;	/* Tasks should be moved to preferred CPU */
9826 	unsigned int group_smt_balance;		/* Task on busy SMT be moved */
9827 	unsigned long group_misfit_task_load;	/* A CPU has a task too big for its capacity */
9828 #ifdef CONFIG_NUMA_BALANCING
9829 	unsigned int nr_numa_running;
9830 	unsigned int nr_preferred_running;
9831 #endif
9832 };
9833 
9834 /*
9835  * sd_lb_stats - stats of a sched_domain required for load-balancing:
9836  */
9837 struct sd_lb_stats {
9838 	struct sched_group *busiest;		/* Busiest group in this sd */
9839 	struct sched_group *local;		/* Local group in this sd */
9840 	unsigned long total_load;		/* Total load of all groups in sd */
9841 	unsigned long total_capacity;		/* Total capacity of all groups in sd */
9842 	unsigned long avg_load;			/* Average load across all groups in sd */
9843 	unsigned int prefer_sibling;		/* Tasks should go to sibling first */
9844 
9845 	struct sg_lb_stats busiest_stat;	/* Statistics of the busiest group */
9846 	struct sg_lb_stats local_stat;		/* Statistics of the local group */
9847 };
9848 
9849 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9850 {
9851 	/*
9852 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9853 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9854 	 * We must however set busiest_stat::group_type and
9855 	 * busiest_stat::idle_cpus to the worst busiest group because
9856 	 * update_sd_pick_busiest() reads these before assignment.
9857 	 */
9858 	*sds = (struct sd_lb_stats){
9859 		.busiest = NULL,
9860 		.local = NULL,
9861 		.total_load = 0UL,
9862 		.total_capacity = 0UL,
9863 		.busiest_stat = {
9864 			.idle_cpus = UINT_MAX,
9865 			.group_type = group_has_spare,
9866 		},
9867 	};
9868 }
9869 
9870 static unsigned long scale_rt_capacity(int cpu)
9871 {
9872 	unsigned long max = get_actual_cpu_capacity(cpu);
9873 	struct rq *rq = cpu_rq(cpu);
9874 	unsigned long used, free;
9875 	unsigned long irq;
9876 
9877 	irq = cpu_util_irq(rq);
9878 
9879 	if (unlikely(irq >= max))
9880 		return 1;
9881 
9882 	/*
9883 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9884 	 * (running and not running) with weights 0 and 1024 respectively.
9885 	 */
9886 	used = cpu_util_rt(rq);
9887 	used += cpu_util_dl(rq);
9888 
9889 	if (unlikely(used >= max))
9890 		return 1;
9891 
9892 	free = max - used;
9893 
9894 	return scale_irq_capacity(free, irq, max);
9895 }
9896 
9897 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9898 {
9899 	unsigned long capacity = scale_rt_capacity(cpu);
9900 	struct sched_group *sdg = sd->groups;
9901 
9902 	if (!capacity)
9903 		capacity = 1;
9904 
9905 	cpu_rq(cpu)->cpu_capacity = capacity;
9906 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9907 
9908 	sdg->sgc->capacity = capacity;
9909 	sdg->sgc->min_capacity = capacity;
9910 	sdg->sgc->max_capacity = capacity;
9911 }
9912 
9913 void update_group_capacity(struct sched_domain *sd, int cpu)
9914 {
9915 	struct sched_domain *child = sd->child;
9916 	struct sched_group *group, *sdg = sd->groups;
9917 	unsigned long capacity, min_capacity, max_capacity;
9918 	unsigned long interval;
9919 
9920 	interval = msecs_to_jiffies(sd->balance_interval);
9921 	interval = clamp(interval, 1UL, max_load_balance_interval);
9922 	sdg->sgc->next_update = jiffies + interval;
9923 
9924 	if (!child) {
9925 		update_cpu_capacity(sd, cpu);
9926 		return;
9927 	}
9928 
9929 	capacity = 0;
9930 	min_capacity = ULONG_MAX;
9931 	max_capacity = 0;
9932 
9933 	if (child->flags & SD_OVERLAP) {
9934 		/*
9935 		 * SD_OVERLAP domains cannot assume that child groups
9936 		 * span the current group.
9937 		 */
9938 
9939 		for_each_cpu(cpu, sched_group_span(sdg)) {
9940 			unsigned long cpu_cap = capacity_of(cpu);
9941 
9942 			capacity += cpu_cap;
9943 			min_capacity = min(cpu_cap, min_capacity);
9944 			max_capacity = max(cpu_cap, max_capacity);
9945 		}
9946 	} else  {
9947 		/*
9948 		 * !SD_OVERLAP domains can assume that child groups
9949 		 * span the current group.
9950 		 */
9951 
9952 		group = child->groups;
9953 		do {
9954 			struct sched_group_capacity *sgc = group->sgc;
9955 
9956 			capacity += sgc->capacity;
9957 			min_capacity = min(sgc->min_capacity, min_capacity);
9958 			max_capacity = max(sgc->max_capacity, max_capacity);
9959 			group = group->next;
9960 		} while (group != child->groups);
9961 	}
9962 
9963 	sdg->sgc->capacity = capacity;
9964 	sdg->sgc->min_capacity = min_capacity;
9965 	sdg->sgc->max_capacity = max_capacity;
9966 }
9967 
9968 /*
9969  * Check whether the capacity of the rq has been noticeably reduced by side
9970  * activity. The imbalance_pct is used for the threshold.
9971  * Return true is the capacity is reduced
9972  */
9973 static inline int
9974 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9975 {
9976 	return ((rq->cpu_capacity * sd->imbalance_pct) <
9977 				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
9978 }
9979 
9980 /* Check if the rq has a misfit task */
9981 static inline bool check_misfit_status(struct rq *rq)
9982 {
9983 	return rq->misfit_task_load;
9984 }
9985 
9986 /*
9987  * Group imbalance indicates (and tries to solve) the problem where balancing
9988  * groups is inadequate due to ->cpus_ptr constraints.
9989  *
9990  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9991  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9992  * Something like:
9993  *
9994  *	{ 0 1 2 3 } { 4 5 6 7 }
9995  *	        *     * * *
9996  *
9997  * If we were to balance group-wise we'd place two tasks in the first group and
9998  * two tasks in the second group. Clearly this is undesired as it will overload
9999  * cpu 3 and leave one of the CPUs in the second group unused.
10000  *
10001  * The current solution to this issue is detecting the skew in the first group
10002  * by noticing the lower domain failed to reach balance and had difficulty
10003  * moving tasks due to affinity constraints.
10004  *
10005  * When this is so detected; this group becomes a candidate for busiest; see
10006  * update_sd_pick_busiest(). And calculate_imbalance() and
10007  * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10008  * to create an effective group imbalance.
10009  *
10010  * This is a somewhat tricky proposition since the next run might not find the
10011  * group imbalance and decide the groups need to be balanced again. A most
10012  * subtle and fragile situation.
10013  */
10014 
10015 static inline int sg_imbalanced(struct sched_group *group)
10016 {
10017 	return group->sgc->imbalance;
10018 }
10019 
10020 /*
10021  * group_has_capacity returns true if the group has spare capacity that could
10022  * be used by some tasks.
10023  * We consider that a group has spare capacity if the number of task is
10024  * smaller than the number of CPUs or if the utilization is lower than the
10025  * available capacity for CFS tasks.
10026  * For the latter, we use a threshold to stabilize the state, to take into
10027  * account the variance of the tasks' load and to return true if the available
10028  * capacity in meaningful for the load balancer.
10029  * As an example, an available capacity of 1% can appear but it doesn't make
10030  * any benefit for the load balance.
10031  */
10032 static inline bool
10033 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10034 {
10035 	if (sgs->sum_nr_running < sgs->group_weight)
10036 		return true;
10037 
10038 	if ((sgs->group_capacity * imbalance_pct) <
10039 			(sgs->group_runnable * 100))
10040 		return false;
10041 
10042 	if ((sgs->group_capacity * 100) >
10043 			(sgs->group_util * imbalance_pct))
10044 		return true;
10045 
10046 	return false;
10047 }
10048 
10049 /*
10050  *  group_is_overloaded returns true if the group has more tasks than it can
10051  *  handle.
10052  *  group_is_overloaded is not equals to !group_has_capacity because a group
10053  *  with the exact right number of tasks, has no more spare capacity but is not
10054  *  overloaded so both group_has_capacity and group_is_overloaded return
10055  *  false.
10056  */
10057 static inline bool
10058 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10059 {
10060 	if (sgs->sum_nr_running <= sgs->group_weight)
10061 		return false;
10062 
10063 	if ((sgs->group_capacity * 100) <
10064 			(sgs->group_util * imbalance_pct))
10065 		return true;
10066 
10067 	if ((sgs->group_capacity * imbalance_pct) <
10068 			(sgs->group_runnable * 100))
10069 		return true;
10070 
10071 	return false;
10072 }
10073 
10074 static inline enum
10075 group_type group_classify(unsigned int imbalance_pct,
10076 			  struct sched_group *group,
10077 			  struct sg_lb_stats *sgs)
10078 {
10079 	if (group_is_overloaded(imbalance_pct, sgs))
10080 		return group_overloaded;
10081 
10082 	if (sg_imbalanced(group))
10083 		return group_imbalanced;
10084 
10085 	if (sgs->group_asym_packing)
10086 		return group_asym_packing;
10087 
10088 	if (sgs->group_smt_balance)
10089 		return group_smt_balance;
10090 
10091 	if (sgs->group_misfit_task_load)
10092 		return group_misfit_task;
10093 
10094 	if (!group_has_capacity(imbalance_pct, sgs))
10095 		return group_fully_busy;
10096 
10097 	return group_has_spare;
10098 }
10099 
10100 /**
10101  * sched_use_asym_prio - Check whether asym_packing priority must be used
10102  * @sd:		The scheduling domain of the load balancing
10103  * @cpu:	A CPU
10104  *
10105  * Always use CPU priority when balancing load between SMT siblings. When
10106  * balancing load between cores, it is not sufficient that @cpu is idle. Only
10107  * use CPU priority if the whole core is idle.
10108  *
10109  * Returns: True if the priority of @cpu must be followed. False otherwise.
10110  */
10111 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10112 {
10113 	if (!(sd->flags & SD_ASYM_PACKING))
10114 		return false;
10115 
10116 	if (!sched_smt_active())
10117 		return true;
10118 
10119 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10120 }
10121 
10122 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10123 {
10124 	/*
10125 	 * First check if @dst_cpu can do asym_packing load balance. Only do it
10126 	 * if it has higher priority than @src_cpu.
10127 	 */
10128 	return sched_use_asym_prio(sd, dst_cpu) &&
10129 		sched_asym_prefer(dst_cpu, src_cpu);
10130 }
10131 
10132 /**
10133  * sched_group_asym - Check if the destination CPU can do asym_packing balance
10134  * @env:	The load balancing environment
10135  * @sgs:	Load-balancing statistics of the candidate busiest group
10136  * @group:	The candidate busiest group
10137  *
10138  * @env::dst_cpu can do asym_packing if it has higher priority than the
10139  * preferred CPU of @group.
10140  *
10141  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10142  * otherwise.
10143  */
10144 static inline bool
10145 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10146 {
10147 	/*
10148 	 * CPU priorities do not make sense for SMT cores with more than one
10149 	 * busy sibling.
10150 	 */
10151 	if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10152 	    (sgs->group_weight - sgs->idle_cpus != 1))
10153 		return false;
10154 
10155 	return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
10156 }
10157 
10158 /* One group has more than one SMT CPU while the other group does not */
10159 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10160 				    struct sched_group *sg2)
10161 {
10162 	if (!sg1 || !sg2)
10163 		return false;
10164 
10165 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10166 		(sg2->flags & SD_SHARE_CPUCAPACITY);
10167 }
10168 
10169 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10170 			       struct sched_group *group)
10171 {
10172 	if (!env->idle)
10173 		return false;
10174 
10175 	/*
10176 	 * For SMT source group, it is better to move a task
10177 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10178 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10179 	 * will not be on.
10180 	 */
10181 	if (group->flags & SD_SHARE_CPUCAPACITY &&
10182 	    sgs->sum_h_nr_running > 1)
10183 		return true;
10184 
10185 	return false;
10186 }
10187 
10188 static inline long sibling_imbalance(struct lb_env *env,
10189 				    struct sd_lb_stats *sds,
10190 				    struct sg_lb_stats *busiest,
10191 				    struct sg_lb_stats *local)
10192 {
10193 	int ncores_busiest, ncores_local;
10194 	long imbalance;
10195 
10196 	if (!env->idle || !busiest->sum_nr_running)
10197 		return 0;
10198 
10199 	ncores_busiest = sds->busiest->cores;
10200 	ncores_local = sds->local->cores;
10201 
10202 	if (ncores_busiest == ncores_local) {
10203 		imbalance = busiest->sum_nr_running;
10204 		lsub_positive(&imbalance, local->sum_nr_running);
10205 		return imbalance;
10206 	}
10207 
10208 	/* Balance such that nr_running/ncores ratio are same on both groups */
10209 	imbalance = ncores_local * busiest->sum_nr_running;
10210 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10211 	/* Normalize imbalance and do rounding on normalization */
10212 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10213 	imbalance /= ncores_local + ncores_busiest;
10214 
10215 	/* Take advantage of resource in an empty sched group */
10216 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
10217 	    busiest->sum_nr_running > 1)
10218 		imbalance = 2;
10219 
10220 	return imbalance;
10221 }
10222 
10223 static inline bool
10224 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10225 {
10226 	/*
10227 	 * When there is more than 1 task, the group_overloaded case already
10228 	 * takes care of cpu with reduced capacity
10229 	 */
10230 	if (rq->cfs.h_nr_running != 1)
10231 		return false;
10232 
10233 	return check_cpu_capacity(rq, sd);
10234 }
10235 
10236 /**
10237  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10238  * @env: The load balancing environment.
10239  * @sds: Load-balancing data with statistics of the local group.
10240  * @group: sched_group whose statistics are to be updated.
10241  * @sgs: variable to hold the statistics for this group.
10242  * @sg_overloaded: sched_group is overloaded
10243  * @sg_overutilized: sched_group is overutilized
10244  */
10245 static inline void update_sg_lb_stats(struct lb_env *env,
10246 				      struct sd_lb_stats *sds,
10247 				      struct sched_group *group,
10248 				      struct sg_lb_stats *sgs,
10249 				      bool *sg_overloaded,
10250 				      bool *sg_overutilized)
10251 {
10252 	int i, nr_running, local_group;
10253 
10254 	memset(sgs, 0, sizeof(*sgs));
10255 
10256 	local_group = group == sds->local;
10257 
10258 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10259 		struct rq *rq = cpu_rq(i);
10260 		unsigned long load = cpu_load(rq);
10261 
10262 		sgs->group_load += load;
10263 		sgs->group_util += cpu_util_cfs(i);
10264 		sgs->group_runnable += cpu_runnable(rq);
10265 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
10266 
10267 		nr_running = rq->nr_running;
10268 		sgs->sum_nr_running += nr_running;
10269 
10270 		if (nr_running > 1)
10271 			*sg_overloaded = 1;
10272 
10273 		if (cpu_overutilized(i))
10274 			*sg_overutilized = 1;
10275 
10276 #ifdef CONFIG_NUMA_BALANCING
10277 		sgs->nr_numa_running += rq->nr_numa_running;
10278 		sgs->nr_preferred_running += rq->nr_preferred_running;
10279 #endif
10280 		/*
10281 		 * No need to call idle_cpu() if nr_running is not 0
10282 		 */
10283 		if (!nr_running && idle_cpu(i)) {
10284 			sgs->idle_cpus++;
10285 			/* Idle cpu can't have misfit task */
10286 			continue;
10287 		}
10288 
10289 		if (local_group)
10290 			continue;
10291 
10292 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10293 			/* Check for a misfit task on the cpu */
10294 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10295 				sgs->group_misfit_task_load = rq->misfit_task_load;
10296 				*sg_overloaded = 1;
10297 			}
10298 		} else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10299 			/* Check for a task running on a CPU with reduced capacity */
10300 			if (sgs->group_misfit_task_load < load)
10301 				sgs->group_misfit_task_load = load;
10302 		}
10303 	}
10304 
10305 	sgs->group_capacity = group->sgc->capacity;
10306 
10307 	sgs->group_weight = group->group_weight;
10308 
10309 	/* Check if dst CPU is idle and preferred to this group */
10310 	if (!local_group && env->idle && sgs->sum_h_nr_running &&
10311 	    sched_group_asym(env, sgs, group))
10312 		sgs->group_asym_packing = 1;
10313 
10314 	/* Check for loaded SMT group to be balanced to dst CPU */
10315 	if (!local_group && smt_balance(env, sgs, group))
10316 		sgs->group_smt_balance = 1;
10317 
10318 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10319 
10320 	/* Computing avg_load makes sense only when group is overloaded */
10321 	if (sgs->group_type == group_overloaded)
10322 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10323 				sgs->group_capacity;
10324 }
10325 
10326 /**
10327  * update_sd_pick_busiest - return 1 on busiest group
10328  * @env: The load balancing environment.
10329  * @sds: sched_domain statistics
10330  * @sg: sched_group candidate to be checked for being the busiest
10331  * @sgs: sched_group statistics
10332  *
10333  * Determine if @sg is a busier group than the previously selected
10334  * busiest group.
10335  *
10336  * Return: %true if @sg is a busier group than the previously selected
10337  * busiest group. %false otherwise.
10338  */
10339 static bool update_sd_pick_busiest(struct lb_env *env,
10340 				   struct sd_lb_stats *sds,
10341 				   struct sched_group *sg,
10342 				   struct sg_lb_stats *sgs)
10343 {
10344 	struct sg_lb_stats *busiest = &sds->busiest_stat;
10345 
10346 	/* Make sure that there is at least one task to pull */
10347 	if (!sgs->sum_h_nr_running)
10348 		return false;
10349 
10350 	/*
10351 	 * Don't try to pull misfit tasks we can't help.
10352 	 * We can use max_capacity here as reduction in capacity on some
10353 	 * CPUs in the group should either be possible to resolve
10354 	 * internally or be covered by avg_load imbalance (eventually).
10355 	 */
10356 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10357 	    (sgs->group_type == group_misfit_task) &&
10358 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10359 	     sds->local_stat.group_type != group_has_spare))
10360 		return false;
10361 
10362 	if (sgs->group_type > busiest->group_type)
10363 		return true;
10364 
10365 	if (sgs->group_type < busiest->group_type)
10366 		return false;
10367 
10368 	/*
10369 	 * The candidate and the current busiest group are the same type of
10370 	 * group. Let check which one is the busiest according to the type.
10371 	 */
10372 
10373 	switch (sgs->group_type) {
10374 	case group_overloaded:
10375 		/* Select the overloaded group with highest avg_load. */
10376 		return sgs->avg_load > busiest->avg_load;
10377 
10378 	case group_imbalanced:
10379 		/*
10380 		 * Select the 1st imbalanced group as we don't have any way to
10381 		 * choose one more than another.
10382 		 */
10383 		return false;
10384 
10385 	case group_asym_packing:
10386 		/* Prefer to move from lowest priority CPU's work */
10387 		return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
10388 
10389 	case group_misfit_task:
10390 		/*
10391 		 * If we have more than one misfit sg go with the biggest
10392 		 * misfit.
10393 		 */
10394 		return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10395 
10396 	case group_smt_balance:
10397 		/*
10398 		 * Check if we have spare CPUs on either SMT group to
10399 		 * choose has spare or fully busy handling.
10400 		 */
10401 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10402 			goto has_spare;
10403 
10404 		fallthrough;
10405 
10406 	case group_fully_busy:
10407 		/*
10408 		 * Select the fully busy group with highest avg_load. In
10409 		 * theory, there is no need to pull task from such kind of
10410 		 * group because tasks have all compute capacity that they need
10411 		 * but we can still improve the overall throughput by reducing
10412 		 * contention when accessing shared HW resources.
10413 		 *
10414 		 * XXX for now avg_load is not computed and always 0 so we
10415 		 * select the 1st one, except if @sg is composed of SMT
10416 		 * siblings.
10417 		 */
10418 
10419 		if (sgs->avg_load < busiest->avg_load)
10420 			return false;
10421 
10422 		if (sgs->avg_load == busiest->avg_load) {
10423 			/*
10424 			 * SMT sched groups need more help than non-SMT groups.
10425 			 * If @sg happens to also be SMT, either choice is good.
10426 			 */
10427 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10428 				return false;
10429 		}
10430 
10431 		break;
10432 
10433 	case group_has_spare:
10434 		/*
10435 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10436 		 * as we do not want to pull task off SMT core with one task
10437 		 * and make the core idle.
10438 		 */
10439 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10440 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10441 				return false;
10442 			else
10443 				return true;
10444 		}
10445 has_spare:
10446 
10447 		/*
10448 		 * Select not overloaded group with lowest number of idle CPUs
10449 		 * and highest number of running tasks. We could also compare
10450 		 * the spare capacity which is more stable but it can end up
10451 		 * that the group has less spare capacity but finally more idle
10452 		 * CPUs which means less opportunity to pull tasks.
10453 		 */
10454 		if (sgs->idle_cpus > busiest->idle_cpus)
10455 			return false;
10456 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10457 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10458 			return false;
10459 
10460 		break;
10461 	}
10462 
10463 	/*
10464 	 * Candidate sg has no more than one task per CPU and has higher
10465 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10466 	 * throughput. Maximize throughput, power/energy consequences are not
10467 	 * considered.
10468 	 */
10469 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10470 	    (sgs->group_type <= group_fully_busy) &&
10471 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10472 		return false;
10473 
10474 	return true;
10475 }
10476 
10477 #ifdef CONFIG_NUMA_BALANCING
10478 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10479 {
10480 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10481 		return regular;
10482 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10483 		return remote;
10484 	return all;
10485 }
10486 
10487 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10488 {
10489 	if (rq->nr_running > rq->nr_numa_running)
10490 		return regular;
10491 	if (rq->nr_running > rq->nr_preferred_running)
10492 		return remote;
10493 	return all;
10494 }
10495 #else
10496 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10497 {
10498 	return all;
10499 }
10500 
10501 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10502 {
10503 	return regular;
10504 }
10505 #endif /* CONFIG_NUMA_BALANCING */
10506 
10507 
10508 struct sg_lb_stats;
10509 
10510 /*
10511  * task_running_on_cpu - return 1 if @p is running on @cpu.
10512  */
10513 
10514 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10515 {
10516 	/* Task has no contribution or is new */
10517 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10518 		return 0;
10519 
10520 	if (task_on_rq_queued(p))
10521 		return 1;
10522 
10523 	return 0;
10524 }
10525 
10526 /**
10527  * idle_cpu_without - would a given CPU be idle without p ?
10528  * @cpu: the processor on which idleness is tested.
10529  * @p: task which should be ignored.
10530  *
10531  * Return: 1 if the CPU would be idle. 0 otherwise.
10532  */
10533 static int idle_cpu_without(int cpu, struct task_struct *p)
10534 {
10535 	struct rq *rq = cpu_rq(cpu);
10536 
10537 	if (rq->curr != rq->idle && rq->curr != p)
10538 		return 0;
10539 
10540 	/*
10541 	 * rq->nr_running can't be used but an updated version without the
10542 	 * impact of p on cpu must be used instead. The updated nr_running
10543 	 * be computed and tested before calling idle_cpu_without().
10544 	 */
10545 
10546 	if (rq->ttwu_pending)
10547 		return 0;
10548 
10549 	return 1;
10550 }
10551 
10552 /*
10553  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10554  * @sd: The sched_domain level to look for idlest group.
10555  * @group: sched_group whose statistics are to be updated.
10556  * @sgs: variable to hold the statistics for this group.
10557  * @p: The task for which we look for the idlest group/CPU.
10558  */
10559 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10560 					  struct sched_group *group,
10561 					  struct sg_lb_stats *sgs,
10562 					  struct task_struct *p)
10563 {
10564 	int i, nr_running;
10565 
10566 	memset(sgs, 0, sizeof(*sgs));
10567 
10568 	/* Assume that task can't fit any CPU of the group */
10569 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10570 		sgs->group_misfit_task_load = 1;
10571 
10572 	for_each_cpu(i, sched_group_span(group)) {
10573 		struct rq *rq = cpu_rq(i);
10574 		unsigned int local;
10575 
10576 		sgs->group_load += cpu_load_without(rq, p);
10577 		sgs->group_util += cpu_util_without(i, p);
10578 		sgs->group_runnable += cpu_runnable_without(rq, p);
10579 		local = task_running_on_cpu(i, p);
10580 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10581 
10582 		nr_running = rq->nr_running - local;
10583 		sgs->sum_nr_running += nr_running;
10584 
10585 		/*
10586 		 * No need to call idle_cpu_without() if nr_running is not 0
10587 		 */
10588 		if (!nr_running && idle_cpu_without(i, p))
10589 			sgs->idle_cpus++;
10590 
10591 		/* Check if task fits in the CPU */
10592 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10593 		    sgs->group_misfit_task_load &&
10594 		    task_fits_cpu(p, i))
10595 			sgs->group_misfit_task_load = 0;
10596 
10597 	}
10598 
10599 	sgs->group_capacity = group->sgc->capacity;
10600 
10601 	sgs->group_weight = group->group_weight;
10602 
10603 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10604 
10605 	/*
10606 	 * Computing avg_load makes sense only when group is fully busy or
10607 	 * overloaded
10608 	 */
10609 	if (sgs->group_type == group_fully_busy ||
10610 		sgs->group_type == group_overloaded)
10611 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10612 				sgs->group_capacity;
10613 }
10614 
10615 static bool update_pick_idlest(struct sched_group *idlest,
10616 			       struct sg_lb_stats *idlest_sgs,
10617 			       struct sched_group *group,
10618 			       struct sg_lb_stats *sgs)
10619 {
10620 	if (sgs->group_type < idlest_sgs->group_type)
10621 		return true;
10622 
10623 	if (sgs->group_type > idlest_sgs->group_type)
10624 		return false;
10625 
10626 	/*
10627 	 * The candidate and the current idlest group are the same type of
10628 	 * group. Let check which one is the idlest according to the type.
10629 	 */
10630 
10631 	switch (sgs->group_type) {
10632 	case group_overloaded:
10633 	case group_fully_busy:
10634 		/* Select the group with lowest avg_load. */
10635 		if (idlest_sgs->avg_load <= sgs->avg_load)
10636 			return false;
10637 		break;
10638 
10639 	case group_imbalanced:
10640 	case group_asym_packing:
10641 	case group_smt_balance:
10642 		/* Those types are not used in the slow wakeup path */
10643 		return false;
10644 
10645 	case group_misfit_task:
10646 		/* Select group with the highest max capacity */
10647 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10648 			return false;
10649 		break;
10650 
10651 	case group_has_spare:
10652 		/* Select group with most idle CPUs */
10653 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10654 			return false;
10655 
10656 		/* Select group with lowest group_util */
10657 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10658 			idlest_sgs->group_util <= sgs->group_util)
10659 			return false;
10660 
10661 		break;
10662 	}
10663 
10664 	return true;
10665 }
10666 
10667 /*
10668  * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10669  * domain.
10670  *
10671  * Assumes p is allowed on at least one CPU in sd.
10672  */
10673 static struct sched_group *
10674 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10675 {
10676 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10677 	struct sg_lb_stats local_sgs, tmp_sgs;
10678 	struct sg_lb_stats *sgs;
10679 	unsigned long imbalance;
10680 	struct sg_lb_stats idlest_sgs = {
10681 			.avg_load = UINT_MAX,
10682 			.group_type = group_overloaded,
10683 	};
10684 
10685 	do {
10686 		int local_group;
10687 
10688 		/* Skip over this group if it has no CPUs allowed */
10689 		if (!cpumask_intersects(sched_group_span(group),
10690 					p->cpus_ptr))
10691 			continue;
10692 
10693 		/* Skip over this group if no cookie matched */
10694 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10695 			continue;
10696 
10697 		local_group = cpumask_test_cpu(this_cpu,
10698 					       sched_group_span(group));
10699 
10700 		if (local_group) {
10701 			sgs = &local_sgs;
10702 			local = group;
10703 		} else {
10704 			sgs = &tmp_sgs;
10705 		}
10706 
10707 		update_sg_wakeup_stats(sd, group, sgs, p);
10708 
10709 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10710 			idlest = group;
10711 			idlest_sgs = *sgs;
10712 		}
10713 
10714 	} while (group = group->next, group != sd->groups);
10715 
10716 
10717 	/* There is no idlest group to push tasks to */
10718 	if (!idlest)
10719 		return NULL;
10720 
10721 	/* The local group has been skipped because of CPU affinity */
10722 	if (!local)
10723 		return idlest;
10724 
10725 	/*
10726 	 * If the local group is idler than the selected idlest group
10727 	 * don't try and push the task.
10728 	 */
10729 	if (local_sgs.group_type < idlest_sgs.group_type)
10730 		return NULL;
10731 
10732 	/*
10733 	 * If the local group is busier than the selected idlest group
10734 	 * try and push the task.
10735 	 */
10736 	if (local_sgs.group_type > idlest_sgs.group_type)
10737 		return idlest;
10738 
10739 	switch (local_sgs.group_type) {
10740 	case group_overloaded:
10741 	case group_fully_busy:
10742 
10743 		/* Calculate allowed imbalance based on load */
10744 		imbalance = scale_load_down(NICE_0_LOAD) *
10745 				(sd->imbalance_pct-100) / 100;
10746 
10747 		/*
10748 		 * When comparing groups across NUMA domains, it's possible for
10749 		 * the local domain to be very lightly loaded relative to the
10750 		 * remote domains but "imbalance" skews the comparison making
10751 		 * remote CPUs look much more favourable. When considering
10752 		 * cross-domain, add imbalance to the load on the remote node
10753 		 * and consider staying local.
10754 		 */
10755 
10756 		if ((sd->flags & SD_NUMA) &&
10757 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10758 			return NULL;
10759 
10760 		/*
10761 		 * If the local group is less loaded than the selected
10762 		 * idlest group don't try and push any tasks.
10763 		 */
10764 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10765 			return NULL;
10766 
10767 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10768 			return NULL;
10769 		break;
10770 
10771 	case group_imbalanced:
10772 	case group_asym_packing:
10773 	case group_smt_balance:
10774 		/* Those type are not used in the slow wakeup path */
10775 		return NULL;
10776 
10777 	case group_misfit_task:
10778 		/* Select group with the highest max capacity */
10779 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10780 			return NULL;
10781 		break;
10782 
10783 	case group_has_spare:
10784 #ifdef CONFIG_NUMA
10785 		if (sd->flags & SD_NUMA) {
10786 			int imb_numa_nr = sd->imb_numa_nr;
10787 #ifdef CONFIG_NUMA_BALANCING
10788 			int idlest_cpu;
10789 			/*
10790 			 * If there is spare capacity at NUMA, try to select
10791 			 * the preferred node
10792 			 */
10793 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10794 				return NULL;
10795 
10796 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10797 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10798 				return idlest;
10799 #endif /* CONFIG_NUMA_BALANCING */
10800 			/*
10801 			 * Otherwise, keep the task close to the wakeup source
10802 			 * and improve locality if the number of running tasks
10803 			 * would remain below threshold where an imbalance is
10804 			 * allowed while accounting for the possibility the
10805 			 * task is pinned to a subset of CPUs. If there is a
10806 			 * real need of migration, periodic load balance will
10807 			 * take care of it.
10808 			 */
10809 			if (p->nr_cpus_allowed != NR_CPUS) {
10810 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10811 
10812 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10813 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10814 			}
10815 
10816 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10817 			if (!adjust_numa_imbalance(imbalance,
10818 						   local_sgs.sum_nr_running + 1,
10819 						   imb_numa_nr)) {
10820 				return NULL;
10821 			}
10822 		}
10823 #endif /* CONFIG_NUMA */
10824 
10825 		/*
10826 		 * Select group with highest number of idle CPUs. We could also
10827 		 * compare the utilization which is more stable but it can end
10828 		 * up that the group has less spare capacity but finally more
10829 		 * idle CPUs which means more opportunity to run task.
10830 		 */
10831 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10832 			return NULL;
10833 		break;
10834 	}
10835 
10836 	return idlest;
10837 }
10838 
10839 static void update_idle_cpu_scan(struct lb_env *env,
10840 				 unsigned long sum_util)
10841 {
10842 	struct sched_domain_shared *sd_share;
10843 	int llc_weight, pct;
10844 	u64 x, y, tmp;
10845 	/*
10846 	 * Update the number of CPUs to scan in LLC domain, which could
10847 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10848 	 * could be expensive because it is within a shared cache line.
10849 	 * So the write of this hint only occurs during periodic load
10850 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10851 	 * can fire way more frequently than the former.
10852 	 */
10853 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10854 		return;
10855 
10856 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10857 	if (env->sd->span_weight != llc_weight)
10858 		return;
10859 
10860 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10861 	if (!sd_share)
10862 		return;
10863 
10864 	/*
10865 	 * The number of CPUs to search drops as sum_util increases, when
10866 	 * sum_util hits 85% or above, the scan stops.
10867 	 * The reason to choose 85% as the threshold is because this is the
10868 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10869 	 *
10870 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10871 	 * and y'= y / SCHED_CAPACITY_SCALE
10872 	 *
10873 	 * x is the ratio of sum_util compared to the CPU capacity:
10874 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10875 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10876 	 * and the number of CPUs to scan is calculated by:
10877 	 *
10878 	 * nr_scan = llc_weight * y'                                    [2]
10879 	 *
10880 	 * When x hits the threshold of overloaded, AKA, when
10881 	 * x = 100 / pct, y drops to 0. According to [1],
10882 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10883 	 *
10884 	 * Scale x by SCHED_CAPACITY_SCALE:
10885 	 * x' = sum_util / llc_weight;                                  [3]
10886 	 *
10887 	 * and finally [1] becomes:
10888 	 * y = SCHED_CAPACITY_SCALE -
10889 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10890 	 *
10891 	 */
10892 	/* equation [3] */
10893 	x = sum_util;
10894 	do_div(x, llc_weight);
10895 
10896 	/* equation [4] */
10897 	pct = env->sd->imbalance_pct;
10898 	tmp = x * x * pct * pct;
10899 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10900 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10901 	y = SCHED_CAPACITY_SCALE - tmp;
10902 
10903 	/* equation [2] */
10904 	y *= llc_weight;
10905 	do_div(y, SCHED_CAPACITY_SCALE);
10906 	if ((int)y != sd_share->nr_idle_scan)
10907 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10908 }
10909 
10910 /**
10911  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10912  * @env: The load balancing environment.
10913  * @sds: variable to hold the statistics for this sched_domain.
10914  */
10915 
10916 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10917 {
10918 	struct sched_group *sg = env->sd->groups;
10919 	struct sg_lb_stats *local = &sds->local_stat;
10920 	struct sg_lb_stats tmp_sgs;
10921 	unsigned long sum_util = 0;
10922 	bool sg_overloaded = 0, sg_overutilized = 0;
10923 
10924 	do {
10925 		struct sg_lb_stats *sgs = &tmp_sgs;
10926 		int local_group;
10927 
10928 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10929 		if (local_group) {
10930 			sds->local = sg;
10931 			sgs = local;
10932 
10933 			if (env->idle != CPU_NEWLY_IDLE ||
10934 			    time_after_eq(jiffies, sg->sgc->next_update))
10935 				update_group_capacity(env->sd, env->dst_cpu);
10936 		}
10937 
10938 		update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
10939 
10940 		if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
10941 			sds->busiest = sg;
10942 			sds->busiest_stat = *sgs;
10943 		}
10944 
10945 		/* Now, start updating sd_lb_stats */
10946 		sds->total_load += sgs->group_load;
10947 		sds->total_capacity += sgs->group_capacity;
10948 
10949 		sum_util += sgs->group_util;
10950 		sg = sg->next;
10951 	} while (sg != env->sd->groups);
10952 
10953 	/*
10954 	 * Indicate that the child domain of the busiest group prefers tasks
10955 	 * go to a child's sibling domains first. NB the flags of a sched group
10956 	 * are those of the child domain.
10957 	 */
10958 	if (sds->busiest)
10959 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10960 
10961 
10962 	if (env->sd->flags & SD_NUMA)
10963 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10964 
10965 	if (!env->sd->parent) {
10966 		/* update overload indicator if we are at root domain */
10967 		set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
10968 
10969 		/* Update over-utilization (tipping point, U >= 0) indicator */
10970 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
10971 	} else if (sg_overutilized) {
10972 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
10973 	}
10974 
10975 	update_idle_cpu_scan(env, sum_util);
10976 }
10977 
10978 /**
10979  * calculate_imbalance - Calculate the amount of imbalance present within the
10980  *			 groups of a given sched_domain during load balance.
10981  * @env: load balance environment
10982  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10983  */
10984 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10985 {
10986 	struct sg_lb_stats *local, *busiest;
10987 
10988 	local = &sds->local_stat;
10989 	busiest = &sds->busiest_stat;
10990 
10991 	if (busiest->group_type == group_misfit_task) {
10992 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10993 			/* Set imbalance to allow misfit tasks to be balanced. */
10994 			env->migration_type = migrate_misfit;
10995 			env->imbalance = 1;
10996 		} else {
10997 			/*
10998 			 * Set load imbalance to allow moving task from cpu
10999 			 * with reduced capacity.
11000 			 */
11001 			env->migration_type = migrate_load;
11002 			env->imbalance = busiest->group_misfit_task_load;
11003 		}
11004 		return;
11005 	}
11006 
11007 	if (busiest->group_type == group_asym_packing) {
11008 		/*
11009 		 * In case of asym capacity, we will try to migrate all load to
11010 		 * the preferred CPU.
11011 		 */
11012 		env->migration_type = migrate_task;
11013 		env->imbalance = busiest->sum_h_nr_running;
11014 		return;
11015 	}
11016 
11017 	if (busiest->group_type == group_smt_balance) {
11018 		/* Reduce number of tasks sharing CPU capacity */
11019 		env->migration_type = migrate_task;
11020 		env->imbalance = 1;
11021 		return;
11022 	}
11023 
11024 	if (busiest->group_type == group_imbalanced) {
11025 		/*
11026 		 * In the group_imb case we cannot rely on group-wide averages
11027 		 * to ensure CPU-load equilibrium, try to move any task to fix
11028 		 * the imbalance. The next load balance will take care of
11029 		 * balancing back the system.
11030 		 */
11031 		env->migration_type = migrate_task;
11032 		env->imbalance = 1;
11033 		return;
11034 	}
11035 
11036 	/*
11037 	 * Try to use spare capacity of local group without overloading it or
11038 	 * emptying busiest.
11039 	 */
11040 	if (local->group_type == group_has_spare) {
11041 		if ((busiest->group_type > group_fully_busy) &&
11042 		    !(env->sd->flags & SD_SHARE_LLC)) {
11043 			/*
11044 			 * If busiest is overloaded, try to fill spare
11045 			 * capacity. This might end up creating spare capacity
11046 			 * in busiest or busiest still being overloaded but
11047 			 * there is no simple way to directly compute the
11048 			 * amount of load to migrate in order to balance the
11049 			 * system.
11050 			 */
11051 			env->migration_type = migrate_util;
11052 			env->imbalance = max(local->group_capacity, local->group_util) -
11053 					 local->group_util;
11054 
11055 			/*
11056 			 * In some cases, the group's utilization is max or even
11057 			 * higher than capacity because of migrations but the
11058 			 * local CPU is (newly) idle. There is at least one
11059 			 * waiting task in this overloaded busiest group. Let's
11060 			 * try to pull it.
11061 			 */
11062 			if (env->idle && env->imbalance == 0) {
11063 				env->migration_type = migrate_task;
11064 				env->imbalance = 1;
11065 			}
11066 
11067 			return;
11068 		}
11069 
11070 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
11071 			/*
11072 			 * When prefer sibling, evenly spread running tasks on
11073 			 * groups.
11074 			 */
11075 			env->migration_type = migrate_task;
11076 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
11077 		} else {
11078 
11079 			/*
11080 			 * If there is no overload, we just want to even the number of
11081 			 * idle CPUs.
11082 			 */
11083 			env->migration_type = migrate_task;
11084 			env->imbalance = max_t(long, 0,
11085 					       (local->idle_cpus - busiest->idle_cpus));
11086 		}
11087 
11088 #ifdef CONFIG_NUMA
11089 		/* Consider allowing a small imbalance between NUMA groups */
11090 		if (env->sd->flags & SD_NUMA) {
11091 			env->imbalance = adjust_numa_imbalance(env->imbalance,
11092 							       local->sum_nr_running + 1,
11093 							       env->sd->imb_numa_nr);
11094 		}
11095 #endif
11096 
11097 		/* Number of tasks to move to restore balance */
11098 		env->imbalance >>= 1;
11099 
11100 		return;
11101 	}
11102 
11103 	/*
11104 	 * Local is fully busy but has to take more load to relieve the
11105 	 * busiest group
11106 	 */
11107 	if (local->group_type < group_overloaded) {
11108 		/*
11109 		 * Local will become overloaded so the avg_load metrics are
11110 		 * finally needed.
11111 		 */
11112 
11113 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11114 				  local->group_capacity;
11115 
11116 		/*
11117 		 * If the local group is more loaded than the selected
11118 		 * busiest group don't try to pull any tasks.
11119 		 */
11120 		if (local->avg_load >= busiest->avg_load) {
11121 			env->imbalance = 0;
11122 			return;
11123 		}
11124 
11125 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11126 				sds->total_capacity;
11127 
11128 		/*
11129 		 * If the local group is more loaded than the average system
11130 		 * load, don't try to pull any tasks.
11131 		 */
11132 		if (local->avg_load >= sds->avg_load) {
11133 			env->imbalance = 0;
11134 			return;
11135 		}
11136 
11137 	}
11138 
11139 	/*
11140 	 * Both group are or will become overloaded and we're trying to get all
11141 	 * the CPUs to the average_load, so we don't want to push ourselves
11142 	 * above the average load, nor do we wish to reduce the max loaded CPU
11143 	 * below the average load. At the same time, we also don't want to
11144 	 * reduce the group load below the group capacity. Thus we look for
11145 	 * the minimum possible imbalance.
11146 	 */
11147 	env->migration_type = migrate_load;
11148 	env->imbalance = min(
11149 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11150 		(sds->avg_load - local->avg_load) * local->group_capacity
11151 	) / SCHED_CAPACITY_SCALE;
11152 }
11153 
11154 /******* sched_balance_find_src_group() helpers end here *********************/
11155 
11156 /*
11157  * Decision matrix according to the local and busiest group type:
11158  *
11159  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11160  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
11161  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
11162  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
11163  * asym_packing     force     force      N/A    N/A  force      force
11164  * imbalanced       force     force      N/A    N/A  force      force
11165  * overloaded       force     force      N/A    N/A  force      avg_load
11166  *
11167  * N/A :      Not Applicable because already filtered while updating
11168  *            statistics.
11169  * balanced : The system is balanced for these 2 groups.
11170  * force :    Calculate the imbalance as load migration is probably needed.
11171  * avg_load : Only if imbalance is significant enough.
11172  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
11173  *            different in groups.
11174  */
11175 
11176 /**
11177  * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11178  * if there is an imbalance.
11179  * @env: The load balancing environment.
11180  *
11181  * Also calculates the amount of runnable load which should be moved
11182  * to restore balance.
11183  *
11184  * Return:	- The busiest group if imbalance exists.
11185  */
11186 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11187 {
11188 	struct sg_lb_stats *local, *busiest;
11189 	struct sd_lb_stats sds;
11190 
11191 	init_sd_lb_stats(&sds);
11192 
11193 	/*
11194 	 * Compute the various statistics relevant for load balancing at
11195 	 * this level.
11196 	 */
11197 	update_sd_lb_stats(env, &sds);
11198 
11199 	/* There is no busy sibling group to pull tasks from */
11200 	if (!sds.busiest)
11201 		goto out_balanced;
11202 
11203 	busiest = &sds.busiest_stat;
11204 
11205 	/* Misfit tasks should be dealt with regardless of the avg load */
11206 	if (busiest->group_type == group_misfit_task)
11207 		goto force_balance;
11208 
11209 	if (!is_rd_overutilized(env->dst_rq->rd) &&
11210 	    rcu_dereference(env->dst_rq->rd->pd))
11211 		goto out_balanced;
11212 
11213 	/* ASYM feature bypasses nice load balance check */
11214 	if (busiest->group_type == group_asym_packing)
11215 		goto force_balance;
11216 
11217 	/*
11218 	 * If the busiest group is imbalanced the below checks don't
11219 	 * work because they assume all things are equal, which typically
11220 	 * isn't true due to cpus_ptr constraints and the like.
11221 	 */
11222 	if (busiest->group_type == group_imbalanced)
11223 		goto force_balance;
11224 
11225 	local = &sds.local_stat;
11226 	/*
11227 	 * If the local group is busier than the selected busiest group
11228 	 * don't try and pull any tasks.
11229 	 */
11230 	if (local->group_type > busiest->group_type)
11231 		goto out_balanced;
11232 
11233 	/*
11234 	 * When groups are overloaded, use the avg_load to ensure fairness
11235 	 * between tasks.
11236 	 */
11237 	if (local->group_type == group_overloaded) {
11238 		/*
11239 		 * If the local group is more loaded than the selected
11240 		 * busiest group don't try to pull any tasks.
11241 		 */
11242 		if (local->avg_load >= busiest->avg_load)
11243 			goto out_balanced;
11244 
11245 		/* XXX broken for overlapping NUMA groups */
11246 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11247 				sds.total_capacity;
11248 
11249 		/*
11250 		 * Don't pull any tasks if this group is already above the
11251 		 * domain average load.
11252 		 */
11253 		if (local->avg_load >= sds.avg_load)
11254 			goto out_balanced;
11255 
11256 		/*
11257 		 * If the busiest group is more loaded, use imbalance_pct to be
11258 		 * conservative.
11259 		 */
11260 		if (100 * busiest->avg_load <=
11261 				env->sd->imbalance_pct * local->avg_load)
11262 			goto out_balanced;
11263 	}
11264 
11265 	/*
11266 	 * Try to move all excess tasks to a sibling domain of the busiest
11267 	 * group's child domain.
11268 	 */
11269 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
11270 	    sibling_imbalance(env, &sds, busiest, local) > 1)
11271 		goto force_balance;
11272 
11273 	if (busiest->group_type != group_overloaded) {
11274 		if (!env->idle) {
11275 			/*
11276 			 * If the busiest group is not overloaded (and as a
11277 			 * result the local one too) but this CPU is already
11278 			 * busy, let another idle CPU try to pull task.
11279 			 */
11280 			goto out_balanced;
11281 		}
11282 
11283 		if (busiest->group_type == group_smt_balance &&
11284 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11285 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
11286 			goto force_balance;
11287 		}
11288 
11289 		if (busiest->group_weight > 1 &&
11290 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
11291 			/*
11292 			 * If the busiest group is not overloaded
11293 			 * and there is no imbalance between this and busiest
11294 			 * group wrt idle CPUs, it is balanced. The imbalance
11295 			 * becomes significant if the diff is greater than 1
11296 			 * otherwise we might end up to just move the imbalance
11297 			 * on another group. Of course this applies only if
11298 			 * there is more than 1 CPU per group.
11299 			 */
11300 			goto out_balanced;
11301 		}
11302 
11303 		if (busiest->sum_h_nr_running == 1) {
11304 			/*
11305 			 * busiest doesn't have any tasks waiting to run
11306 			 */
11307 			goto out_balanced;
11308 		}
11309 	}
11310 
11311 force_balance:
11312 	/* Looks like there is an imbalance. Compute it */
11313 	calculate_imbalance(env, &sds);
11314 	return env->imbalance ? sds.busiest : NULL;
11315 
11316 out_balanced:
11317 	env->imbalance = 0;
11318 	return NULL;
11319 }
11320 
11321 /*
11322  * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11323  */
11324 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11325 				     struct sched_group *group)
11326 {
11327 	struct rq *busiest = NULL, *rq;
11328 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11329 	unsigned int busiest_nr = 0;
11330 	int i;
11331 
11332 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11333 		unsigned long capacity, load, util;
11334 		unsigned int nr_running;
11335 		enum fbq_type rt;
11336 
11337 		rq = cpu_rq(i);
11338 		rt = fbq_classify_rq(rq);
11339 
11340 		/*
11341 		 * We classify groups/runqueues into three groups:
11342 		 *  - regular: there are !numa tasks
11343 		 *  - remote:  there are numa tasks that run on the 'wrong' node
11344 		 *  - all:     there is no distinction
11345 		 *
11346 		 * In order to avoid migrating ideally placed numa tasks,
11347 		 * ignore those when there's better options.
11348 		 *
11349 		 * If we ignore the actual busiest queue to migrate another
11350 		 * task, the next balance pass can still reduce the busiest
11351 		 * queue by moving tasks around inside the node.
11352 		 *
11353 		 * If we cannot move enough load due to this classification
11354 		 * the next pass will adjust the group classification and
11355 		 * allow migration of more tasks.
11356 		 *
11357 		 * Both cases only affect the total convergence complexity.
11358 		 */
11359 		if (rt > env->fbq_type)
11360 			continue;
11361 
11362 		nr_running = rq->cfs.h_nr_running;
11363 		if (!nr_running)
11364 			continue;
11365 
11366 		capacity = capacity_of(i);
11367 
11368 		/*
11369 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11370 		 * eventually lead to active_balancing high->low capacity.
11371 		 * Higher per-CPU capacity is considered better than balancing
11372 		 * average load.
11373 		 */
11374 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11375 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11376 		    nr_running == 1)
11377 			continue;
11378 
11379 		/*
11380 		 * Make sure we only pull tasks from a CPU of lower priority
11381 		 * when balancing between SMT siblings.
11382 		 *
11383 		 * If balancing between cores, let lower priority CPUs help
11384 		 * SMT cores with more than one busy sibling.
11385 		 */
11386 		if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11387 			continue;
11388 
11389 		switch (env->migration_type) {
11390 		case migrate_load:
11391 			/*
11392 			 * When comparing with load imbalance, use cpu_load()
11393 			 * which is not scaled with the CPU capacity.
11394 			 */
11395 			load = cpu_load(rq);
11396 
11397 			if (nr_running == 1 && load > env->imbalance &&
11398 			    !check_cpu_capacity(rq, env->sd))
11399 				break;
11400 
11401 			/*
11402 			 * For the load comparisons with the other CPUs,
11403 			 * consider the cpu_load() scaled with the CPU
11404 			 * capacity, so that the load can be moved away
11405 			 * from the CPU that is potentially running at a
11406 			 * lower capacity.
11407 			 *
11408 			 * Thus we're looking for max(load_i / capacity_i),
11409 			 * crosswise multiplication to rid ourselves of the
11410 			 * division works out to:
11411 			 * load_i * capacity_j > load_j * capacity_i;
11412 			 * where j is our previous maximum.
11413 			 */
11414 			if (load * busiest_capacity > busiest_load * capacity) {
11415 				busiest_load = load;
11416 				busiest_capacity = capacity;
11417 				busiest = rq;
11418 			}
11419 			break;
11420 
11421 		case migrate_util:
11422 			util = cpu_util_cfs_boost(i);
11423 
11424 			/*
11425 			 * Don't try to pull utilization from a CPU with one
11426 			 * running task. Whatever its utilization, we will fail
11427 			 * detach the task.
11428 			 */
11429 			if (nr_running <= 1)
11430 				continue;
11431 
11432 			if (busiest_util < util) {
11433 				busiest_util = util;
11434 				busiest = rq;
11435 			}
11436 			break;
11437 
11438 		case migrate_task:
11439 			if (busiest_nr < nr_running) {
11440 				busiest_nr = nr_running;
11441 				busiest = rq;
11442 			}
11443 			break;
11444 
11445 		case migrate_misfit:
11446 			/*
11447 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11448 			 * simply seek the "biggest" misfit task.
11449 			 */
11450 			if (rq->misfit_task_load > busiest_load) {
11451 				busiest_load = rq->misfit_task_load;
11452 				busiest = rq;
11453 			}
11454 
11455 			break;
11456 
11457 		}
11458 	}
11459 
11460 	return busiest;
11461 }
11462 
11463 /*
11464  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11465  * so long as it is large enough.
11466  */
11467 #define MAX_PINNED_INTERVAL	512
11468 
11469 static inline bool
11470 asym_active_balance(struct lb_env *env)
11471 {
11472 	/*
11473 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11474 	 * priority CPUs in order to pack all tasks in the highest priority
11475 	 * CPUs. When done between cores, do it only if the whole core if the
11476 	 * whole core is idle.
11477 	 *
11478 	 * If @env::src_cpu is an SMT core with busy siblings, let
11479 	 * the lower priority @env::dst_cpu help it. Do not follow
11480 	 * CPU priority.
11481 	 */
11482 	return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11483 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11484 		!sched_use_asym_prio(env->sd, env->src_cpu));
11485 }
11486 
11487 static inline bool
11488 imbalanced_active_balance(struct lb_env *env)
11489 {
11490 	struct sched_domain *sd = env->sd;
11491 
11492 	/*
11493 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11494 	 * distribution of the load on the system but also the even distribution of the
11495 	 * threads on a system with spare capacity
11496 	 */
11497 	if ((env->migration_type == migrate_task) &&
11498 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11499 		return 1;
11500 
11501 	return 0;
11502 }
11503 
11504 static int need_active_balance(struct lb_env *env)
11505 {
11506 	struct sched_domain *sd = env->sd;
11507 
11508 	if (asym_active_balance(env))
11509 		return 1;
11510 
11511 	if (imbalanced_active_balance(env))
11512 		return 1;
11513 
11514 	/*
11515 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11516 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11517 	 * because of other sched_class or IRQs if more capacity stays
11518 	 * available on dst_cpu.
11519 	 */
11520 	if (env->idle &&
11521 	    (env->src_rq->cfs.h_nr_running == 1)) {
11522 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11523 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11524 			return 1;
11525 	}
11526 
11527 	if (env->migration_type == migrate_misfit)
11528 		return 1;
11529 
11530 	return 0;
11531 }
11532 
11533 static int active_load_balance_cpu_stop(void *data);
11534 
11535 static int should_we_balance(struct lb_env *env)
11536 {
11537 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11538 	struct sched_group *sg = env->sd->groups;
11539 	int cpu, idle_smt = -1;
11540 
11541 	/*
11542 	 * Ensure the balancing environment is consistent; can happen
11543 	 * when the softirq triggers 'during' hotplug.
11544 	 */
11545 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11546 		return 0;
11547 
11548 	/*
11549 	 * In the newly idle case, we will allow all the CPUs
11550 	 * to do the newly idle load balance.
11551 	 *
11552 	 * However, we bail out if we already have tasks or a wakeup pending,
11553 	 * to optimize wakeup latency.
11554 	 */
11555 	if (env->idle == CPU_NEWLY_IDLE) {
11556 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11557 			return 0;
11558 		return 1;
11559 	}
11560 
11561 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11562 	/* Try to find first idle CPU */
11563 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11564 		if (!idle_cpu(cpu))
11565 			continue;
11566 
11567 		/*
11568 		 * Don't balance to idle SMT in busy core right away when
11569 		 * balancing cores, but remember the first idle SMT CPU for
11570 		 * later consideration.  Find CPU on an idle core first.
11571 		 */
11572 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11573 			if (idle_smt == -1)
11574 				idle_smt = cpu;
11575 			/*
11576 			 * If the core is not idle, and first SMT sibling which is
11577 			 * idle has been found, then its not needed to check other
11578 			 * SMT siblings for idleness:
11579 			 */
11580 #ifdef CONFIG_SCHED_SMT
11581 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11582 #endif
11583 			continue;
11584 		}
11585 
11586 		/*
11587 		 * Are we the first idle core in a non-SMT domain or higher,
11588 		 * or the first idle CPU in a SMT domain?
11589 		 */
11590 		return cpu == env->dst_cpu;
11591 	}
11592 
11593 	/* Are we the first idle CPU with busy siblings? */
11594 	if (idle_smt != -1)
11595 		return idle_smt == env->dst_cpu;
11596 
11597 	/* Are we the first CPU of this group ? */
11598 	return group_balance_cpu(sg) == env->dst_cpu;
11599 }
11600 
11601 /*
11602  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11603  * tasks if there is an imbalance.
11604  */
11605 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11606 			struct sched_domain *sd, enum cpu_idle_type idle,
11607 			int *continue_balancing)
11608 {
11609 	int ld_moved, cur_ld_moved, active_balance = 0;
11610 	struct sched_domain *sd_parent = sd->parent;
11611 	struct sched_group *group;
11612 	struct rq *busiest;
11613 	struct rq_flags rf;
11614 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11615 	struct lb_env env = {
11616 		.sd		= sd,
11617 		.dst_cpu	= this_cpu,
11618 		.dst_rq		= this_rq,
11619 		.dst_grpmask    = group_balance_mask(sd->groups),
11620 		.idle		= idle,
11621 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11622 		.cpus		= cpus,
11623 		.fbq_type	= all,
11624 		.tasks		= LIST_HEAD_INIT(env.tasks),
11625 	};
11626 
11627 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11628 
11629 	schedstat_inc(sd->lb_count[idle]);
11630 
11631 redo:
11632 	if (!should_we_balance(&env)) {
11633 		*continue_balancing = 0;
11634 		goto out_balanced;
11635 	}
11636 
11637 	group = sched_balance_find_src_group(&env);
11638 	if (!group) {
11639 		schedstat_inc(sd->lb_nobusyg[idle]);
11640 		goto out_balanced;
11641 	}
11642 
11643 	busiest = sched_balance_find_src_rq(&env, group);
11644 	if (!busiest) {
11645 		schedstat_inc(sd->lb_nobusyq[idle]);
11646 		goto out_balanced;
11647 	}
11648 
11649 	WARN_ON_ONCE(busiest == env.dst_rq);
11650 
11651 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11652 
11653 	env.src_cpu = busiest->cpu;
11654 	env.src_rq = busiest;
11655 
11656 	ld_moved = 0;
11657 	/* Clear this flag as soon as we find a pullable task */
11658 	env.flags |= LBF_ALL_PINNED;
11659 	if (busiest->nr_running > 1) {
11660 		/*
11661 		 * Attempt to move tasks. If sched_balance_find_src_group has found
11662 		 * an imbalance but busiest->nr_running <= 1, the group is
11663 		 * still unbalanced. ld_moved simply stays zero, so it is
11664 		 * correctly treated as an imbalance.
11665 		 */
11666 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11667 
11668 more_balance:
11669 		rq_lock_irqsave(busiest, &rf);
11670 		update_rq_clock(busiest);
11671 
11672 		/*
11673 		 * cur_ld_moved - load moved in current iteration
11674 		 * ld_moved     - cumulative load moved across iterations
11675 		 */
11676 		cur_ld_moved = detach_tasks(&env);
11677 
11678 		/*
11679 		 * We've detached some tasks from busiest_rq. Every
11680 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11681 		 * unlock busiest->lock, and we are able to be sure
11682 		 * that nobody can manipulate the tasks in parallel.
11683 		 * See task_rq_lock() family for the details.
11684 		 */
11685 
11686 		rq_unlock(busiest, &rf);
11687 
11688 		if (cur_ld_moved) {
11689 			attach_tasks(&env);
11690 			ld_moved += cur_ld_moved;
11691 		}
11692 
11693 		local_irq_restore(rf.flags);
11694 
11695 		if (env.flags & LBF_NEED_BREAK) {
11696 			env.flags &= ~LBF_NEED_BREAK;
11697 			goto more_balance;
11698 		}
11699 
11700 		/*
11701 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11702 		 * us and move them to an alternate dst_cpu in our sched_group
11703 		 * where they can run. The upper limit on how many times we
11704 		 * iterate on same src_cpu is dependent on number of CPUs in our
11705 		 * sched_group.
11706 		 *
11707 		 * This changes load balance semantics a bit on who can move
11708 		 * load to a given_cpu. In addition to the given_cpu itself
11709 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11710 		 * nohz-idle), we now have balance_cpu in a position to move
11711 		 * load to given_cpu. In rare situations, this may cause
11712 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11713 		 * _independently_ and at _same_ time to move some load to
11714 		 * given_cpu) causing excess load to be moved to given_cpu.
11715 		 * This however should not happen so much in practice and
11716 		 * moreover subsequent load balance cycles should correct the
11717 		 * excess load moved.
11718 		 */
11719 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11720 
11721 			/* Prevent to re-select dst_cpu via env's CPUs */
11722 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11723 
11724 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11725 			env.dst_cpu	 = env.new_dst_cpu;
11726 			env.flags	&= ~LBF_DST_PINNED;
11727 			env.loop	 = 0;
11728 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11729 
11730 			/*
11731 			 * Go back to "more_balance" rather than "redo" since we
11732 			 * need to continue with same src_cpu.
11733 			 */
11734 			goto more_balance;
11735 		}
11736 
11737 		/*
11738 		 * We failed to reach balance because of affinity.
11739 		 */
11740 		if (sd_parent) {
11741 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11742 
11743 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11744 				*group_imbalance = 1;
11745 		}
11746 
11747 		/* All tasks on this runqueue were pinned by CPU affinity */
11748 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11749 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11750 			/*
11751 			 * Attempting to continue load balancing at the current
11752 			 * sched_domain level only makes sense if there are
11753 			 * active CPUs remaining as possible busiest CPUs to
11754 			 * pull load from which are not contained within the
11755 			 * destination group that is receiving any migrated
11756 			 * load.
11757 			 */
11758 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11759 				env.loop = 0;
11760 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11761 				goto redo;
11762 			}
11763 			goto out_all_pinned;
11764 		}
11765 	}
11766 
11767 	if (!ld_moved) {
11768 		schedstat_inc(sd->lb_failed[idle]);
11769 		/*
11770 		 * Increment the failure counter only on periodic balance.
11771 		 * We do not want newidle balance, which can be very
11772 		 * frequent, pollute the failure counter causing
11773 		 * excessive cache_hot migrations and active balances.
11774 		 *
11775 		 * Similarly for migration_misfit which is not related to
11776 		 * load/util migration, don't pollute nr_balance_failed.
11777 		 */
11778 		if (idle != CPU_NEWLY_IDLE &&
11779 		    env.migration_type != migrate_misfit)
11780 			sd->nr_balance_failed++;
11781 
11782 		if (need_active_balance(&env)) {
11783 			unsigned long flags;
11784 
11785 			raw_spin_rq_lock_irqsave(busiest, flags);
11786 
11787 			/*
11788 			 * Don't kick the active_load_balance_cpu_stop,
11789 			 * if the curr task on busiest CPU can't be
11790 			 * moved to this_cpu:
11791 			 */
11792 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11793 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11794 				goto out_one_pinned;
11795 			}
11796 
11797 			/* Record that we found at least one task that could run on this_cpu */
11798 			env.flags &= ~LBF_ALL_PINNED;
11799 
11800 			/*
11801 			 * ->active_balance synchronizes accesses to
11802 			 * ->active_balance_work.  Once set, it's cleared
11803 			 * only after active load balance is finished.
11804 			 */
11805 			if (!busiest->active_balance) {
11806 				busiest->active_balance = 1;
11807 				busiest->push_cpu = this_cpu;
11808 				active_balance = 1;
11809 			}
11810 
11811 			preempt_disable();
11812 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11813 			if (active_balance) {
11814 				stop_one_cpu_nowait(cpu_of(busiest),
11815 					active_load_balance_cpu_stop, busiest,
11816 					&busiest->active_balance_work);
11817 			}
11818 			preempt_enable();
11819 		}
11820 	} else {
11821 		sd->nr_balance_failed = 0;
11822 	}
11823 
11824 	if (likely(!active_balance) || need_active_balance(&env)) {
11825 		/* We were unbalanced, so reset the balancing interval */
11826 		sd->balance_interval = sd->min_interval;
11827 	}
11828 
11829 	goto out;
11830 
11831 out_balanced:
11832 	/*
11833 	 * We reach balance although we may have faced some affinity
11834 	 * constraints. Clear the imbalance flag only if other tasks got
11835 	 * a chance to move and fix the imbalance.
11836 	 */
11837 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11838 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11839 
11840 		if (*group_imbalance)
11841 			*group_imbalance = 0;
11842 	}
11843 
11844 out_all_pinned:
11845 	/*
11846 	 * We reach balance because all tasks are pinned at this level so
11847 	 * we can't migrate them. Let the imbalance flag set so parent level
11848 	 * can try to migrate them.
11849 	 */
11850 	schedstat_inc(sd->lb_balanced[idle]);
11851 
11852 	sd->nr_balance_failed = 0;
11853 
11854 out_one_pinned:
11855 	ld_moved = 0;
11856 
11857 	/*
11858 	 * sched_balance_newidle() disregards balance intervals, so we could
11859 	 * repeatedly reach this code, which would lead to balance_interval
11860 	 * skyrocketing in a short amount of time. Skip the balance_interval
11861 	 * increase logic to avoid that.
11862 	 *
11863 	 * Similarly misfit migration which is not necessarily an indication of
11864 	 * the system being busy and requires lb to backoff to let it settle
11865 	 * down.
11866 	 */
11867 	if (env.idle == CPU_NEWLY_IDLE ||
11868 	    env.migration_type == migrate_misfit)
11869 		goto out;
11870 
11871 	/* tune up the balancing interval */
11872 	if ((env.flags & LBF_ALL_PINNED &&
11873 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11874 	    sd->balance_interval < sd->max_interval)
11875 		sd->balance_interval *= 2;
11876 out:
11877 	return ld_moved;
11878 }
11879 
11880 static inline unsigned long
11881 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11882 {
11883 	unsigned long interval = sd->balance_interval;
11884 
11885 	if (cpu_busy)
11886 		interval *= sd->busy_factor;
11887 
11888 	/* scale ms to jiffies */
11889 	interval = msecs_to_jiffies(interval);
11890 
11891 	/*
11892 	 * Reduce likelihood of busy balancing at higher domains racing with
11893 	 * balancing at lower domains by preventing their balancing periods
11894 	 * from being multiples of each other.
11895 	 */
11896 	if (cpu_busy)
11897 		interval -= 1;
11898 
11899 	interval = clamp(interval, 1UL, max_load_balance_interval);
11900 
11901 	return interval;
11902 }
11903 
11904 static inline void
11905 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11906 {
11907 	unsigned long interval, next;
11908 
11909 	/* used by idle balance, so cpu_busy = 0 */
11910 	interval = get_sd_balance_interval(sd, 0);
11911 	next = sd->last_balance + interval;
11912 
11913 	if (time_after(*next_balance, next))
11914 		*next_balance = next;
11915 }
11916 
11917 /*
11918  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11919  * running tasks off the busiest CPU onto idle CPUs. It requires at
11920  * least 1 task to be running on each physical CPU where possible, and
11921  * avoids physical / logical imbalances.
11922  */
11923 static int active_load_balance_cpu_stop(void *data)
11924 {
11925 	struct rq *busiest_rq = data;
11926 	int busiest_cpu = cpu_of(busiest_rq);
11927 	int target_cpu = busiest_rq->push_cpu;
11928 	struct rq *target_rq = cpu_rq(target_cpu);
11929 	struct sched_domain *sd;
11930 	struct task_struct *p = NULL;
11931 	struct rq_flags rf;
11932 
11933 	rq_lock_irq(busiest_rq, &rf);
11934 	/*
11935 	 * Between queueing the stop-work and running it is a hole in which
11936 	 * CPUs can become inactive. We should not move tasks from or to
11937 	 * inactive CPUs.
11938 	 */
11939 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11940 		goto out_unlock;
11941 
11942 	/* Make sure the requested CPU hasn't gone down in the meantime: */
11943 	if (unlikely(busiest_cpu != smp_processor_id() ||
11944 		     !busiest_rq->active_balance))
11945 		goto out_unlock;
11946 
11947 	/* Is there any task to move? */
11948 	if (busiest_rq->nr_running <= 1)
11949 		goto out_unlock;
11950 
11951 	/*
11952 	 * This condition is "impossible", if it occurs
11953 	 * we need to fix it. Originally reported by
11954 	 * Bjorn Helgaas on a 128-CPU setup.
11955 	 */
11956 	WARN_ON_ONCE(busiest_rq == target_rq);
11957 
11958 	/* Search for an sd spanning us and the target CPU. */
11959 	rcu_read_lock();
11960 	for_each_domain(target_cpu, sd) {
11961 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11962 			break;
11963 	}
11964 
11965 	if (likely(sd)) {
11966 		struct lb_env env = {
11967 			.sd		= sd,
11968 			.dst_cpu	= target_cpu,
11969 			.dst_rq		= target_rq,
11970 			.src_cpu	= busiest_rq->cpu,
11971 			.src_rq		= busiest_rq,
11972 			.idle		= CPU_IDLE,
11973 			.flags		= LBF_ACTIVE_LB,
11974 		};
11975 
11976 		schedstat_inc(sd->alb_count);
11977 		update_rq_clock(busiest_rq);
11978 
11979 		p = detach_one_task(&env);
11980 		if (p) {
11981 			schedstat_inc(sd->alb_pushed);
11982 			/* Active balancing done, reset the failure counter. */
11983 			sd->nr_balance_failed = 0;
11984 		} else {
11985 			schedstat_inc(sd->alb_failed);
11986 		}
11987 	}
11988 	rcu_read_unlock();
11989 out_unlock:
11990 	busiest_rq->active_balance = 0;
11991 	rq_unlock(busiest_rq, &rf);
11992 
11993 	if (p)
11994 		attach_one_task(target_rq, p);
11995 
11996 	local_irq_enable();
11997 
11998 	return 0;
11999 }
12000 
12001 /*
12002  * This flag serializes load-balancing passes over large domains
12003  * (above the NODE topology level) - only one load-balancing instance
12004  * may run at a time, to reduce overhead on very large systems with
12005  * lots of CPUs and large NUMA distances.
12006  *
12007  * - Note that load-balancing passes triggered while another one
12008  *   is executing are skipped and not re-tried.
12009  *
12010  * - Also note that this does not serialize rebalance_domains()
12011  *   execution, as non-SD_SERIALIZE domains will still be
12012  *   load-balanced in parallel.
12013  */
12014 static atomic_t sched_balance_running = ATOMIC_INIT(0);
12015 
12016 /*
12017  * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12018  * This trades load-balance latency on larger machines for less cross talk.
12019  */
12020 void update_max_interval(void)
12021 {
12022 	max_load_balance_interval = HZ*num_online_cpus()/10;
12023 }
12024 
12025 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
12026 {
12027 	if (cost > sd->max_newidle_lb_cost) {
12028 		/*
12029 		 * Track max cost of a domain to make sure to not delay the
12030 		 * next wakeup on the CPU.
12031 		 */
12032 		sd->max_newidle_lb_cost = cost;
12033 		sd->last_decay_max_lb_cost = jiffies;
12034 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
12035 		/*
12036 		 * Decay the newidle max times by ~1% per second to ensure that
12037 		 * it is not outdated and the current max cost is actually
12038 		 * shorter.
12039 		 */
12040 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12041 		sd->last_decay_max_lb_cost = jiffies;
12042 
12043 		return true;
12044 	}
12045 
12046 	return false;
12047 }
12048 
12049 /*
12050  * It checks each scheduling domain to see if it is due to be balanced,
12051  * and initiates a balancing operation if so.
12052  *
12053  * Balancing parameters are set up in init_sched_domains.
12054  */
12055 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12056 {
12057 	int continue_balancing = 1;
12058 	int cpu = rq->cpu;
12059 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12060 	unsigned long interval;
12061 	struct sched_domain *sd;
12062 	/* Earliest time when we have to do rebalance again */
12063 	unsigned long next_balance = jiffies + 60*HZ;
12064 	int update_next_balance = 0;
12065 	int need_serialize, need_decay = 0;
12066 	u64 max_cost = 0;
12067 
12068 	rcu_read_lock();
12069 	for_each_domain(cpu, sd) {
12070 		/*
12071 		 * Decay the newidle max times here because this is a regular
12072 		 * visit to all the domains.
12073 		 */
12074 		need_decay = update_newidle_cost(sd, 0);
12075 		max_cost += sd->max_newidle_lb_cost;
12076 
12077 		/*
12078 		 * Stop the load balance at this level. There is another
12079 		 * CPU in our sched group which is doing load balancing more
12080 		 * actively.
12081 		 */
12082 		if (!continue_balancing) {
12083 			if (need_decay)
12084 				continue;
12085 			break;
12086 		}
12087 
12088 		interval = get_sd_balance_interval(sd, busy);
12089 
12090 		need_serialize = sd->flags & SD_SERIALIZE;
12091 		if (need_serialize) {
12092 			if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
12093 				goto out;
12094 		}
12095 
12096 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
12097 			if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12098 				/*
12099 				 * The LBF_DST_PINNED logic could have changed
12100 				 * env->dst_cpu, so we can't know our idle
12101 				 * state even if we migrated tasks. Update it.
12102 				 */
12103 				idle = idle_cpu(cpu);
12104 				busy = !idle && !sched_idle_cpu(cpu);
12105 			}
12106 			sd->last_balance = jiffies;
12107 			interval = get_sd_balance_interval(sd, busy);
12108 		}
12109 		if (need_serialize)
12110 			atomic_set_release(&sched_balance_running, 0);
12111 out:
12112 		if (time_after(next_balance, sd->last_balance + interval)) {
12113 			next_balance = sd->last_balance + interval;
12114 			update_next_balance = 1;
12115 		}
12116 	}
12117 	if (need_decay) {
12118 		/*
12119 		 * Ensure the rq-wide value also decays but keep it at a
12120 		 * reasonable floor to avoid funnies with rq->avg_idle.
12121 		 */
12122 		rq->max_idle_balance_cost =
12123 			max((u64)sysctl_sched_migration_cost, max_cost);
12124 	}
12125 	rcu_read_unlock();
12126 
12127 	/*
12128 	 * next_balance will be updated only when there is a need.
12129 	 * When the cpu is attached to null domain for ex, it will not be
12130 	 * updated.
12131 	 */
12132 	if (likely(update_next_balance))
12133 		rq->next_balance = next_balance;
12134 
12135 }
12136 
12137 static inline int on_null_domain(struct rq *rq)
12138 {
12139 	return unlikely(!rcu_dereference_sched(rq->sd));
12140 }
12141 
12142 #ifdef CONFIG_NO_HZ_COMMON
12143 /*
12144  * NOHZ idle load balancing (ILB) details:
12145  *
12146  * - When one of the busy CPUs notices that there may be an idle rebalancing
12147  *   needed, they will kick the idle load balancer, which then does idle
12148  *   load balancing for all the idle CPUs.
12149  *
12150  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
12151  *   anywhere yet.
12152  */
12153 static inline int find_new_ilb(void)
12154 {
12155 	const struct cpumask *hk_mask;
12156 	int ilb_cpu;
12157 
12158 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
12159 
12160 	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12161 
12162 		if (ilb_cpu == smp_processor_id())
12163 			continue;
12164 
12165 		if (idle_cpu(ilb_cpu))
12166 			return ilb_cpu;
12167 	}
12168 
12169 	return -1;
12170 }
12171 
12172 /*
12173  * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12174  * SMP function call (IPI).
12175  *
12176  * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
12177  */
12178 static void kick_ilb(unsigned int flags)
12179 {
12180 	int ilb_cpu;
12181 
12182 	/*
12183 	 * Increase nohz.next_balance only when if full ilb is triggered but
12184 	 * not if we only update stats.
12185 	 */
12186 	if (flags & NOHZ_BALANCE_KICK)
12187 		nohz.next_balance = jiffies+1;
12188 
12189 	ilb_cpu = find_new_ilb();
12190 	if (ilb_cpu < 0)
12191 		return;
12192 
12193 	/*
12194 	 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12195 	 * i.e. all bits in flags are already set in ilb_cpu.
12196 	 */
12197 	if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12198 		return;
12199 
12200 	/*
12201 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12202 	 * the first flag owns it; cleared by nohz_csd_func().
12203 	 */
12204 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12205 	if (flags & NOHZ_KICK_MASK)
12206 		return;
12207 
12208 	/*
12209 	 * This way we generate an IPI on the target CPU which
12210 	 * is idle, and the softirq performing NOHZ idle load balancing
12211 	 * will be run before returning from the IPI.
12212 	 */
12213 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12214 }
12215 
12216 /*
12217  * Current decision point for kicking the idle load balancer in the presence
12218  * of idle CPUs in the system.
12219  */
12220 static void nohz_balancer_kick(struct rq *rq)
12221 {
12222 	unsigned long now = jiffies;
12223 	struct sched_domain_shared *sds;
12224 	struct sched_domain *sd;
12225 	int nr_busy, i, cpu = rq->cpu;
12226 	unsigned int flags = 0;
12227 
12228 	if (unlikely(rq->idle_balance))
12229 		return;
12230 
12231 	/*
12232 	 * We may be recently in ticked or tickless idle mode. At the first
12233 	 * busy tick after returning from idle, we will update the busy stats.
12234 	 */
12235 	nohz_balance_exit_idle(rq);
12236 
12237 	/*
12238 	 * None are in tickless mode and hence no need for NOHZ idle load
12239 	 * balancing:
12240 	 */
12241 	if (likely(!atomic_read(&nohz.nr_cpus)))
12242 		return;
12243 
12244 	if (READ_ONCE(nohz.has_blocked) &&
12245 	    time_after(now, READ_ONCE(nohz.next_blocked)))
12246 		flags = NOHZ_STATS_KICK;
12247 
12248 	if (time_before(now, nohz.next_balance))
12249 		goto out;
12250 
12251 	if (rq->nr_running >= 2) {
12252 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12253 		goto out;
12254 	}
12255 
12256 	rcu_read_lock();
12257 
12258 	sd = rcu_dereference(rq->sd);
12259 	if (sd) {
12260 		/*
12261 		 * If there's a runnable CFS task and the current CPU has reduced
12262 		 * capacity, kick the ILB to see if there's a better CPU to run on:
12263 		 */
12264 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
12265 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12266 			goto unlock;
12267 		}
12268 	}
12269 
12270 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12271 	if (sd) {
12272 		/*
12273 		 * When ASYM_PACKING; see if there's a more preferred CPU
12274 		 * currently idle; in which case, kick the ILB to move tasks
12275 		 * around.
12276 		 *
12277 		 * When balancing between cores, all the SMT siblings of the
12278 		 * preferred CPU must be idle.
12279 		 */
12280 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12281 			if (sched_asym(sd, i, cpu)) {
12282 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12283 				goto unlock;
12284 			}
12285 		}
12286 	}
12287 
12288 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12289 	if (sd) {
12290 		/*
12291 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12292 		 * to run the misfit task on.
12293 		 */
12294 		if (check_misfit_status(rq)) {
12295 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12296 			goto unlock;
12297 		}
12298 
12299 		/*
12300 		 * For asymmetric systems, we do not want to nicely balance
12301 		 * cache use, instead we want to embrace asymmetry and only
12302 		 * ensure tasks have enough CPU capacity.
12303 		 *
12304 		 * Skip the LLC logic because it's not relevant in that case.
12305 		 */
12306 		goto unlock;
12307 	}
12308 
12309 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12310 	if (sds) {
12311 		/*
12312 		 * If there is an imbalance between LLC domains (IOW we could
12313 		 * increase the overall cache utilization), we need a less-loaded LLC
12314 		 * domain to pull some load from. Likewise, we may need to spread
12315 		 * load within the current LLC domain (e.g. packed SMT cores but
12316 		 * other CPUs are idle). We can't really know from here how busy
12317 		 * the others are - so just get a NOHZ balance going if it looks
12318 		 * like this LLC domain has tasks we could move.
12319 		 */
12320 		nr_busy = atomic_read(&sds->nr_busy_cpus);
12321 		if (nr_busy > 1) {
12322 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12323 			goto unlock;
12324 		}
12325 	}
12326 unlock:
12327 	rcu_read_unlock();
12328 out:
12329 	if (READ_ONCE(nohz.needs_update))
12330 		flags |= NOHZ_NEXT_KICK;
12331 
12332 	if (flags)
12333 		kick_ilb(flags);
12334 }
12335 
12336 static void set_cpu_sd_state_busy(int cpu)
12337 {
12338 	struct sched_domain *sd;
12339 
12340 	rcu_read_lock();
12341 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12342 
12343 	if (!sd || !sd->nohz_idle)
12344 		goto unlock;
12345 	sd->nohz_idle = 0;
12346 
12347 	atomic_inc(&sd->shared->nr_busy_cpus);
12348 unlock:
12349 	rcu_read_unlock();
12350 }
12351 
12352 void nohz_balance_exit_idle(struct rq *rq)
12353 {
12354 	SCHED_WARN_ON(rq != this_rq());
12355 
12356 	if (likely(!rq->nohz_tick_stopped))
12357 		return;
12358 
12359 	rq->nohz_tick_stopped = 0;
12360 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12361 	atomic_dec(&nohz.nr_cpus);
12362 
12363 	set_cpu_sd_state_busy(rq->cpu);
12364 }
12365 
12366 static void set_cpu_sd_state_idle(int cpu)
12367 {
12368 	struct sched_domain *sd;
12369 
12370 	rcu_read_lock();
12371 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12372 
12373 	if (!sd || sd->nohz_idle)
12374 		goto unlock;
12375 	sd->nohz_idle = 1;
12376 
12377 	atomic_dec(&sd->shared->nr_busy_cpus);
12378 unlock:
12379 	rcu_read_unlock();
12380 }
12381 
12382 /*
12383  * This routine will record that the CPU is going idle with tick stopped.
12384  * This info will be used in performing idle load balancing in the future.
12385  */
12386 void nohz_balance_enter_idle(int cpu)
12387 {
12388 	struct rq *rq = cpu_rq(cpu);
12389 
12390 	SCHED_WARN_ON(cpu != smp_processor_id());
12391 
12392 	/* If this CPU is going down, then nothing needs to be done: */
12393 	if (!cpu_active(cpu))
12394 		return;
12395 
12396 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
12397 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12398 		return;
12399 
12400 	/*
12401 	 * Can be set safely without rq->lock held
12402 	 * If a clear happens, it will have evaluated last additions because
12403 	 * rq->lock is held during the check and the clear
12404 	 */
12405 	rq->has_blocked_load = 1;
12406 
12407 	/*
12408 	 * The tick is still stopped but load could have been added in the
12409 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12410 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12411 	 * of nohz.has_blocked can only happen after checking the new load
12412 	 */
12413 	if (rq->nohz_tick_stopped)
12414 		goto out;
12415 
12416 	/* If we're a completely isolated CPU, we don't play: */
12417 	if (on_null_domain(rq))
12418 		return;
12419 
12420 	rq->nohz_tick_stopped = 1;
12421 
12422 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12423 	atomic_inc(&nohz.nr_cpus);
12424 
12425 	/*
12426 	 * Ensures that if nohz_idle_balance() fails to observe our
12427 	 * @idle_cpus_mask store, it must observe the @has_blocked
12428 	 * and @needs_update stores.
12429 	 */
12430 	smp_mb__after_atomic();
12431 
12432 	set_cpu_sd_state_idle(cpu);
12433 
12434 	WRITE_ONCE(nohz.needs_update, 1);
12435 out:
12436 	/*
12437 	 * Each time a cpu enter idle, we assume that it has blocked load and
12438 	 * enable the periodic update of the load of idle CPUs
12439 	 */
12440 	WRITE_ONCE(nohz.has_blocked, 1);
12441 }
12442 
12443 static bool update_nohz_stats(struct rq *rq)
12444 {
12445 	unsigned int cpu = rq->cpu;
12446 
12447 	if (!rq->has_blocked_load)
12448 		return false;
12449 
12450 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12451 		return false;
12452 
12453 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12454 		return true;
12455 
12456 	sched_balance_update_blocked_averages(cpu);
12457 
12458 	return rq->has_blocked_load;
12459 }
12460 
12461 /*
12462  * Internal function that runs load balance for all idle CPUs. The load balance
12463  * can be a simple update of blocked load or a complete load balance with
12464  * tasks movement depending of flags.
12465  */
12466 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12467 {
12468 	/* Earliest time when we have to do rebalance again */
12469 	unsigned long now = jiffies;
12470 	unsigned long next_balance = now + 60*HZ;
12471 	bool has_blocked_load = false;
12472 	int update_next_balance = 0;
12473 	int this_cpu = this_rq->cpu;
12474 	int balance_cpu;
12475 	struct rq *rq;
12476 
12477 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12478 
12479 	/*
12480 	 * We assume there will be no idle load after this update and clear
12481 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12482 	 * set the has_blocked flag and trigger another update of idle load.
12483 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12484 	 * setting the flag, we are sure to not clear the state and not
12485 	 * check the load of an idle cpu.
12486 	 *
12487 	 * Same applies to idle_cpus_mask vs needs_update.
12488 	 */
12489 	if (flags & NOHZ_STATS_KICK)
12490 		WRITE_ONCE(nohz.has_blocked, 0);
12491 	if (flags & NOHZ_NEXT_KICK)
12492 		WRITE_ONCE(nohz.needs_update, 0);
12493 
12494 	/*
12495 	 * Ensures that if we miss the CPU, we must see the has_blocked
12496 	 * store from nohz_balance_enter_idle().
12497 	 */
12498 	smp_mb();
12499 
12500 	/*
12501 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12502 	 * chance for other idle cpu to pull load.
12503 	 */
12504 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12505 		if (!idle_cpu(balance_cpu))
12506 			continue;
12507 
12508 		/*
12509 		 * If this CPU gets work to do, stop the load balancing
12510 		 * work being done for other CPUs. Next load
12511 		 * balancing owner will pick it up.
12512 		 */
12513 		if (!idle_cpu(this_cpu) && need_resched()) {
12514 			if (flags & NOHZ_STATS_KICK)
12515 				has_blocked_load = true;
12516 			if (flags & NOHZ_NEXT_KICK)
12517 				WRITE_ONCE(nohz.needs_update, 1);
12518 			goto abort;
12519 		}
12520 
12521 		rq = cpu_rq(balance_cpu);
12522 
12523 		if (flags & NOHZ_STATS_KICK)
12524 			has_blocked_load |= update_nohz_stats(rq);
12525 
12526 		/*
12527 		 * If time for next balance is due,
12528 		 * do the balance.
12529 		 */
12530 		if (time_after_eq(jiffies, rq->next_balance)) {
12531 			struct rq_flags rf;
12532 
12533 			rq_lock_irqsave(rq, &rf);
12534 			update_rq_clock(rq);
12535 			rq_unlock_irqrestore(rq, &rf);
12536 
12537 			if (flags & NOHZ_BALANCE_KICK)
12538 				sched_balance_domains(rq, CPU_IDLE);
12539 		}
12540 
12541 		if (time_after(next_balance, rq->next_balance)) {
12542 			next_balance = rq->next_balance;
12543 			update_next_balance = 1;
12544 		}
12545 	}
12546 
12547 	/*
12548 	 * next_balance will be updated only when there is a need.
12549 	 * When the CPU is attached to null domain for ex, it will not be
12550 	 * updated.
12551 	 */
12552 	if (likely(update_next_balance))
12553 		nohz.next_balance = next_balance;
12554 
12555 	if (flags & NOHZ_STATS_KICK)
12556 		WRITE_ONCE(nohz.next_blocked,
12557 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12558 
12559 abort:
12560 	/* There is still blocked load, enable periodic update */
12561 	if (has_blocked_load)
12562 		WRITE_ONCE(nohz.has_blocked, 1);
12563 }
12564 
12565 /*
12566  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12567  * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12568  */
12569 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12570 {
12571 	unsigned int flags = this_rq->nohz_idle_balance;
12572 
12573 	if (!flags)
12574 		return false;
12575 
12576 	this_rq->nohz_idle_balance = 0;
12577 
12578 	if (idle != CPU_IDLE)
12579 		return false;
12580 
12581 	_nohz_idle_balance(this_rq, flags);
12582 
12583 	return true;
12584 }
12585 
12586 /*
12587  * Check if we need to directly run the ILB for updating blocked load before
12588  * entering idle state. Here we run ILB directly without issuing IPIs.
12589  *
12590  * Note that when this function is called, the tick may not yet be stopped on
12591  * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12592  * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12593  * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12594  * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12595  * called from this function on (this) CPU that's not yet in the mask. That's
12596  * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12597  * updating the blocked load of already idle CPUs without waking up one of
12598  * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12599  * cpu about to enter idle, because it can take a long time.
12600  */
12601 void nohz_run_idle_balance(int cpu)
12602 {
12603 	unsigned int flags;
12604 
12605 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12606 
12607 	/*
12608 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12609 	 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12610 	 */
12611 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12612 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12613 }
12614 
12615 static void nohz_newidle_balance(struct rq *this_rq)
12616 {
12617 	int this_cpu = this_rq->cpu;
12618 
12619 	/*
12620 	 * This CPU doesn't want to be disturbed by scheduler
12621 	 * housekeeping
12622 	 */
12623 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12624 		return;
12625 
12626 	/* Will wake up very soon. No time for doing anything else*/
12627 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12628 		return;
12629 
12630 	/* Don't need to update blocked load of idle CPUs*/
12631 	if (!READ_ONCE(nohz.has_blocked) ||
12632 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12633 		return;
12634 
12635 	/*
12636 	 * Set the need to trigger ILB in order to update blocked load
12637 	 * before entering idle state.
12638 	 */
12639 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12640 }
12641 
12642 #else /* !CONFIG_NO_HZ_COMMON */
12643 static inline void nohz_balancer_kick(struct rq *rq) { }
12644 
12645 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12646 {
12647 	return false;
12648 }
12649 
12650 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12651 #endif /* CONFIG_NO_HZ_COMMON */
12652 
12653 /*
12654  * sched_balance_newidle is called by schedule() if this_cpu is about to become
12655  * idle. Attempts to pull tasks from other CPUs.
12656  *
12657  * Returns:
12658  *   < 0 - we released the lock and there are !fair tasks present
12659  *     0 - failed, no new tasks
12660  *   > 0 - success, new (fair) tasks present
12661  */
12662 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12663 {
12664 	unsigned long next_balance = jiffies + HZ;
12665 	int this_cpu = this_rq->cpu;
12666 	int continue_balancing = 1;
12667 	u64 t0, t1, curr_cost = 0;
12668 	struct sched_domain *sd;
12669 	int pulled_task = 0;
12670 
12671 	update_misfit_status(NULL, this_rq);
12672 
12673 	/*
12674 	 * There is a task waiting to run. No need to search for one.
12675 	 * Return 0; the task will be enqueued when switching to idle.
12676 	 */
12677 	if (this_rq->ttwu_pending)
12678 		return 0;
12679 
12680 	/*
12681 	 * We must set idle_stamp _before_ calling sched_balance_rq()
12682 	 * for CPU_NEWLY_IDLE, such that we measure the this duration
12683 	 * as idle time.
12684 	 */
12685 	this_rq->idle_stamp = rq_clock(this_rq);
12686 
12687 	/*
12688 	 * Do not pull tasks towards !active CPUs...
12689 	 */
12690 	if (!cpu_active(this_cpu))
12691 		return 0;
12692 
12693 	/*
12694 	 * This is OK, because current is on_cpu, which avoids it being picked
12695 	 * for load-balance and preemption/IRQs are still disabled avoiding
12696 	 * further scheduler activity on it and we're being very careful to
12697 	 * re-start the picking loop.
12698 	 */
12699 	rq_unpin_lock(this_rq, rf);
12700 
12701 	rcu_read_lock();
12702 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12703 
12704 	if (!get_rd_overloaded(this_rq->rd) ||
12705 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12706 
12707 		if (sd)
12708 			update_next_balance(sd, &next_balance);
12709 		rcu_read_unlock();
12710 
12711 		goto out;
12712 	}
12713 	rcu_read_unlock();
12714 
12715 	raw_spin_rq_unlock(this_rq);
12716 
12717 	t0 = sched_clock_cpu(this_cpu);
12718 	sched_balance_update_blocked_averages(this_cpu);
12719 
12720 	rcu_read_lock();
12721 	for_each_domain(this_cpu, sd) {
12722 		u64 domain_cost;
12723 
12724 		update_next_balance(sd, &next_balance);
12725 
12726 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12727 			break;
12728 
12729 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12730 
12731 			pulled_task = sched_balance_rq(this_cpu, this_rq,
12732 						   sd, CPU_NEWLY_IDLE,
12733 						   &continue_balancing);
12734 
12735 			t1 = sched_clock_cpu(this_cpu);
12736 			domain_cost = t1 - t0;
12737 			update_newidle_cost(sd, domain_cost);
12738 
12739 			curr_cost += domain_cost;
12740 			t0 = t1;
12741 		}
12742 
12743 		/*
12744 		 * Stop searching for tasks to pull if there are
12745 		 * now runnable tasks on this rq.
12746 		 */
12747 		if (pulled_task || !continue_balancing)
12748 			break;
12749 	}
12750 	rcu_read_unlock();
12751 
12752 	raw_spin_rq_lock(this_rq);
12753 
12754 	if (curr_cost > this_rq->max_idle_balance_cost)
12755 		this_rq->max_idle_balance_cost = curr_cost;
12756 
12757 	/*
12758 	 * While browsing the domains, we released the rq lock, a task could
12759 	 * have been enqueued in the meantime. Since we're not going idle,
12760 	 * pretend we pulled a task.
12761 	 */
12762 	if (this_rq->cfs.h_nr_running && !pulled_task)
12763 		pulled_task = 1;
12764 
12765 	/* Is there a task of a high priority class? */
12766 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12767 		pulled_task = -1;
12768 
12769 out:
12770 	/* Move the next balance forward */
12771 	if (time_after(this_rq->next_balance, next_balance))
12772 		this_rq->next_balance = next_balance;
12773 
12774 	if (pulled_task)
12775 		this_rq->idle_stamp = 0;
12776 	else
12777 		nohz_newidle_balance(this_rq);
12778 
12779 	rq_repin_lock(this_rq, rf);
12780 
12781 	return pulled_task;
12782 }
12783 
12784 /*
12785  * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12786  *
12787  * - directly from the local scheduler_tick() for periodic load balancing
12788  *
12789  * - indirectly from a remote scheduler_tick() for NOHZ idle balancing
12790  *   through the SMP cross-call nohz_csd_func()
12791  */
12792 static __latent_entropy void sched_balance_softirq(void)
12793 {
12794 	struct rq *this_rq = this_rq();
12795 	enum cpu_idle_type idle = this_rq->idle_balance;
12796 	/*
12797 	 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12798 	 * balancing on behalf of the other idle CPUs whose ticks are
12799 	 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12800 	 * give the idle CPUs a chance to load balance. Else we may
12801 	 * load balance only within the local sched_domain hierarchy
12802 	 * and abort nohz_idle_balance altogether if we pull some load.
12803 	 */
12804 	if (nohz_idle_balance(this_rq, idle))
12805 		return;
12806 
12807 	/* normal load balance */
12808 	sched_balance_update_blocked_averages(this_rq->cpu);
12809 	sched_balance_domains(this_rq, idle);
12810 }
12811 
12812 /*
12813  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12814  */
12815 void sched_balance_trigger(struct rq *rq)
12816 {
12817 	/*
12818 	 * Don't need to rebalance while attached to NULL domain or
12819 	 * runqueue CPU is not active
12820 	 */
12821 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12822 		return;
12823 
12824 	if (time_after_eq(jiffies, rq->next_balance))
12825 		raise_softirq(SCHED_SOFTIRQ);
12826 
12827 	nohz_balancer_kick(rq);
12828 }
12829 
12830 static void rq_online_fair(struct rq *rq)
12831 {
12832 	update_sysctl();
12833 
12834 	update_runtime_enabled(rq);
12835 }
12836 
12837 static void rq_offline_fair(struct rq *rq)
12838 {
12839 	update_sysctl();
12840 
12841 	/* Ensure any throttled groups are reachable by pick_next_task */
12842 	unthrottle_offline_cfs_rqs(rq);
12843 
12844 	/* Ensure that we remove rq contribution to group share: */
12845 	clear_tg_offline_cfs_rqs(rq);
12846 }
12847 
12848 #endif /* CONFIG_SMP */
12849 
12850 #ifdef CONFIG_SCHED_CORE
12851 static inline bool
12852 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12853 {
12854 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12855 	u64 slice = se->slice;
12856 
12857 	return (rtime * min_nr_tasks > slice);
12858 }
12859 
12860 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
12861 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12862 {
12863 	if (!sched_core_enabled(rq))
12864 		return;
12865 
12866 	/*
12867 	 * If runqueue has only one task which used up its slice and
12868 	 * if the sibling is forced idle, then trigger schedule to
12869 	 * give forced idle task a chance.
12870 	 *
12871 	 * sched_slice() considers only this active rq and it gets the
12872 	 * whole slice. But during force idle, we have siblings acting
12873 	 * like a single runqueue and hence we need to consider runnable
12874 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12875 	 * go through the forced idle rq, but that would be a perf hit.
12876 	 * We can assume that the forced idle CPU has at least
12877 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12878 	 * if we need to give up the CPU.
12879 	 */
12880 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12881 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12882 		resched_curr(rq);
12883 }
12884 
12885 /*
12886  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12887  */
12888 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12889 			 bool forceidle)
12890 {
12891 	for_each_sched_entity(se) {
12892 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12893 
12894 		if (forceidle) {
12895 			if (cfs_rq->forceidle_seq == fi_seq)
12896 				break;
12897 			cfs_rq->forceidle_seq = fi_seq;
12898 		}
12899 
12900 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12901 	}
12902 }
12903 
12904 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12905 {
12906 	struct sched_entity *se = &p->se;
12907 
12908 	if (p->sched_class != &fair_sched_class)
12909 		return;
12910 
12911 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12912 }
12913 
12914 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12915 			bool in_fi)
12916 {
12917 	struct rq *rq = task_rq(a);
12918 	const struct sched_entity *sea = &a->se;
12919 	const struct sched_entity *seb = &b->se;
12920 	struct cfs_rq *cfs_rqa;
12921 	struct cfs_rq *cfs_rqb;
12922 	s64 delta;
12923 
12924 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12925 
12926 #ifdef CONFIG_FAIR_GROUP_SCHED
12927 	/*
12928 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12929 	 * are immediate siblings.
12930 	 */
12931 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12932 		int sea_depth = sea->depth;
12933 		int seb_depth = seb->depth;
12934 
12935 		if (sea_depth >= seb_depth)
12936 			sea = parent_entity(sea);
12937 		if (sea_depth <= seb_depth)
12938 			seb = parent_entity(seb);
12939 	}
12940 
12941 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12942 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12943 
12944 	cfs_rqa = sea->cfs_rq;
12945 	cfs_rqb = seb->cfs_rq;
12946 #else
12947 	cfs_rqa = &task_rq(a)->cfs;
12948 	cfs_rqb = &task_rq(b)->cfs;
12949 #endif
12950 
12951 	/*
12952 	 * Find delta after normalizing se's vruntime with its cfs_rq's
12953 	 * min_vruntime_fi, which would have been updated in prior calls
12954 	 * to se_fi_update().
12955 	 */
12956 	delta = (s64)(sea->vruntime - seb->vruntime) +
12957 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12958 
12959 	return delta > 0;
12960 }
12961 
12962 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12963 {
12964 	struct cfs_rq *cfs_rq;
12965 
12966 #ifdef CONFIG_FAIR_GROUP_SCHED
12967 	cfs_rq = task_group(p)->cfs_rq[cpu];
12968 #else
12969 	cfs_rq = &cpu_rq(cpu)->cfs;
12970 #endif
12971 	return throttled_hierarchy(cfs_rq);
12972 }
12973 #else
12974 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12975 #endif
12976 
12977 /*
12978  * scheduler tick hitting a task of our scheduling class.
12979  *
12980  * NOTE: This function can be called remotely by the tick offload that
12981  * goes along full dynticks. Therefore no local assumption can be made
12982  * and everything must be accessed through the @rq and @curr passed in
12983  * parameters.
12984  */
12985 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12986 {
12987 	struct cfs_rq *cfs_rq;
12988 	struct sched_entity *se = &curr->se;
12989 
12990 	for_each_sched_entity(se) {
12991 		cfs_rq = cfs_rq_of(se);
12992 		entity_tick(cfs_rq, se, queued);
12993 	}
12994 
12995 	if (static_branch_unlikely(&sched_numa_balancing))
12996 		task_tick_numa(rq, curr);
12997 
12998 	update_misfit_status(curr, rq);
12999 	check_update_overutilized_status(task_rq(curr));
13000 
13001 	task_tick_core(rq, curr);
13002 }
13003 
13004 /*
13005  * called on fork with the child task as argument from the parent's context
13006  *  - child not yet on the tasklist
13007  *  - preemption disabled
13008  */
13009 static void task_fork_fair(struct task_struct *p)
13010 {
13011 	set_task_max_allowed_capacity(p);
13012 }
13013 
13014 /*
13015  * Priority of the task has changed. Check to see if we preempt
13016  * the current task.
13017  */
13018 static void
13019 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
13020 {
13021 	if (!task_on_rq_queued(p))
13022 		return;
13023 
13024 	if (rq->cfs.nr_running == 1)
13025 		return;
13026 
13027 	/*
13028 	 * Reschedule if we are currently running on this runqueue and
13029 	 * our priority decreased, or if we are not currently running on
13030 	 * this runqueue and our priority is higher than the current's
13031 	 */
13032 	if (task_current_donor(rq, p)) {
13033 		if (p->prio > oldprio)
13034 			resched_curr(rq);
13035 	} else
13036 		wakeup_preempt(rq, p, 0);
13037 }
13038 
13039 #ifdef CONFIG_FAIR_GROUP_SCHED
13040 /*
13041  * Propagate the changes of the sched_entity across the tg tree to make it
13042  * visible to the root
13043  */
13044 static void propagate_entity_cfs_rq(struct sched_entity *se)
13045 {
13046 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13047 
13048 	if (cfs_rq_throttled(cfs_rq))
13049 		return;
13050 
13051 	if (!throttled_hierarchy(cfs_rq))
13052 		list_add_leaf_cfs_rq(cfs_rq);
13053 
13054 	/* Start to propagate at parent */
13055 	se = se->parent;
13056 
13057 	for_each_sched_entity(se) {
13058 		cfs_rq = cfs_rq_of(se);
13059 
13060 		update_load_avg(cfs_rq, se, UPDATE_TG);
13061 
13062 		if (cfs_rq_throttled(cfs_rq))
13063 			break;
13064 
13065 		if (!throttled_hierarchy(cfs_rq))
13066 			list_add_leaf_cfs_rq(cfs_rq);
13067 	}
13068 }
13069 #else
13070 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13071 #endif
13072 
13073 static void detach_entity_cfs_rq(struct sched_entity *se)
13074 {
13075 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13076 
13077 #ifdef CONFIG_SMP
13078 	/*
13079 	 * In case the task sched_avg hasn't been attached:
13080 	 * - A forked task which hasn't been woken up by wake_up_new_task().
13081 	 * - A task which has been woken up by try_to_wake_up() but is
13082 	 *   waiting for actually being woken up by sched_ttwu_pending().
13083 	 */
13084 	if (!se->avg.last_update_time)
13085 		return;
13086 #endif
13087 
13088 	/* Catch up with the cfs_rq and remove our load when we leave */
13089 	update_load_avg(cfs_rq, se, 0);
13090 	detach_entity_load_avg(cfs_rq, se);
13091 	update_tg_load_avg(cfs_rq);
13092 	propagate_entity_cfs_rq(se);
13093 }
13094 
13095 static void attach_entity_cfs_rq(struct sched_entity *se)
13096 {
13097 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13098 
13099 	/* Synchronize entity with its cfs_rq */
13100 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13101 	attach_entity_load_avg(cfs_rq, se);
13102 	update_tg_load_avg(cfs_rq);
13103 	propagate_entity_cfs_rq(se);
13104 }
13105 
13106 static void detach_task_cfs_rq(struct task_struct *p)
13107 {
13108 	struct sched_entity *se = &p->se;
13109 
13110 	detach_entity_cfs_rq(se);
13111 }
13112 
13113 static void attach_task_cfs_rq(struct task_struct *p)
13114 {
13115 	struct sched_entity *se = &p->se;
13116 
13117 	attach_entity_cfs_rq(se);
13118 }
13119 
13120 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13121 {
13122 	detach_task_cfs_rq(p);
13123 }
13124 
13125 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13126 {
13127 	SCHED_WARN_ON(p->se.sched_delayed);
13128 
13129 	attach_task_cfs_rq(p);
13130 
13131 	set_task_max_allowed_capacity(p);
13132 
13133 	if (task_on_rq_queued(p)) {
13134 		/*
13135 		 * We were most likely switched from sched_rt, so
13136 		 * kick off the schedule if running, otherwise just see
13137 		 * if we can still preempt the current task.
13138 		 */
13139 		if (task_current_donor(rq, p))
13140 			resched_curr(rq);
13141 		else
13142 			wakeup_preempt(rq, p, 0);
13143 	}
13144 }
13145 
13146 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13147 {
13148 	struct sched_entity *se = &p->se;
13149 
13150 #ifdef CONFIG_SMP
13151 	if (task_on_rq_queued(p)) {
13152 		/*
13153 		 * Move the next running task to the front of the list, so our
13154 		 * cfs_tasks list becomes MRU one.
13155 		 */
13156 		list_move(&se->group_node, &rq->cfs_tasks);
13157 	}
13158 #endif
13159 	if (!first)
13160 		return;
13161 
13162 	SCHED_WARN_ON(se->sched_delayed);
13163 
13164 	if (hrtick_enabled_fair(rq))
13165 		hrtick_start_fair(rq, p);
13166 
13167 	update_misfit_status(p, rq);
13168 	sched_fair_update_stop_tick(rq, p);
13169 }
13170 
13171 /*
13172  * Account for a task changing its policy or group.
13173  *
13174  * This routine is mostly called to set cfs_rq->curr field when a task
13175  * migrates between groups/classes.
13176  */
13177 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13178 {
13179 	struct sched_entity *se = &p->se;
13180 
13181 	for_each_sched_entity(se) {
13182 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
13183 
13184 		set_next_entity(cfs_rq, se);
13185 		/* ensure bandwidth has been allocated on our new cfs_rq */
13186 		account_cfs_rq_runtime(cfs_rq, 0);
13187 	}
13188 
13189 	__set_next_task_fair(rq, p, first);
13190 }
13191 
13192 void init_cfs_rq(struct cfs_rq *cfs_rq)
13193 {
13194 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13195 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
13196 #ifdef CONFIG_SMP
13197 	raw_spin_lock_init(&cfs_rq->removed.lock);
13198 #endif
13199 }
13200 
13201 #ifdef CONFIG_FAIR_GROUP_SCHED
13202 static void task_change_group_fair(struct task_struct *p)
13203 {
13204 	/*
13205 	 * We couldn't detach or attach a forked task which
13206 	 * hasn't been woken up by wake_up_new_task().
13207 	 */
13208 	if (READ_ONCE(p->__state) == TASK_NEW)
13209 		return;
13210 
13211 	detach_task_cfs_rq(p);
13212 
13213 #ifdef CONFIG_SMP
13214 	/* Tell se's cfs_rq has been changed -- migrated */
13215 	p->se.avg.last_update_time = 0;
13216 #endif
13217 	set_task_rq(p, task_cpu(p));
13218 	attach_task_cfs_rq(p);
13219 }
13220 
13221 void free_fair_sched_group(struct task_group *tg)
13222 {
13223 	int i;
13224 
13225 	for_each_possible_cpu(i) {
13226 		if (tg->cfs_rq)
13227 			kfree(tg->cfs_rq[i]);
13228 		if (tg->se)
13229 			kfree(tg->se[i]);
13230 	}
13231 
13232 	kfree(tg->cfs_rq);
13233 	kfree(tg->se);
13234 }
13235 
13236 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13237 {
13238 	struct sched_entity *se;
13239 	struct cfs_rq *cfs_rq;
13240 	int i;
13241 
13242 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13243 	if (!tg->cfs_rq)
13244 		goto err;
13245 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13246 	if (!tg->se)
13247 		goto err;
13248 
13249 	tg->shares = NICE_0_LOAD;
13250 
13251 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13252 
13253 	for_each_possible_cpu(i) {
13254 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13255 				      GFP_KERNEL, cpu_to_node(i));
13256 		if (!cfs_rq)
13257 			goto err;
13258 
13259 		se = kzalloc_node(sizeof(struct sched_entity_stats),
13260 				  GFP_KERNEL, cpu_to_node(i));
13261 		if (!se)
13262 			goto err_free_rq;
13263 
13264 		init_cfs_rq(cfs_rq);
13265 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13266 		init_entity_runnable_average(se);
13267 	}
13268 
13269 	return 1;
13270 
13271 err_free_rq:
13272 	kfree(cfs_rq);
13273 err:
13274 	return 0;
13275 }
13276 
13277 void online_fair_sched_group(struct task_group *tg)
13278 {
13279 	struct sched_entity *se;
13280 	struct rq_flags rf;
13281 	struct rq *rq;
13282 	int i;
13283 
13284 	for_each_possible_cpu(i) {
13285 		rq = cpu_rq(i);
13286 		se = tg->se[i];
13287 		rq_lock_irq(rq, &rf);
13288 		update_rq_clock(rq);
13289 		attach_entity_cfs_rq(se);
13290 		sync_throttle(tg, i);
13291 		rq_unlock_irq(rq, &rf);
13292 	}
13293 }
13294 
13295 void unregister_fair_sched_group(struct task_group *tg)
13296 {
13297 	int cpu;
13298 
13299 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13300 
13301 	for_each_possible_cpu(cpu) {
13302 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13303 		struct sched_entity *se = tg->se[cpu];
13304 		struct rq *rq = cpu_rq(cpu);
13305 
13306 		if (se) {
13307 			if (se->sched_delayed) {
13308 				guard(rq_lock_irqsave)(rq);
13309 				if (se->sched_delayed) {
13310 					update_rq_clock(rq);
13311 					dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13312 				}
13313 				list_del_leaf_cfs_rq(cfs_rq);
13314 			}
13315 			remove_entity_load_avg(se);
13316 		}
13317 
13318 		/*
13319 		 * Only empty task groups can be destroyed; so we can speculatively
13320 		 * check on_list without danger of it being re-added.
13321 		 */
13322 		if (cfs_rq->on_list) {
13323 			guard(rq_lock_irqsave)(rq);
13324 			list_del_leaf_cfs_rq(cfs_rq);
13325 		}
13326 	}
13327 }
13328 
13329 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13330 			struct sched_entity *se, int cpu,
13331 			struct sched_entity *parent)
13332 {
13333 	struct rq *rq = cpu_rq(cpu);
13334 
13335 	cfs_rq->tg = tg;
13336 	cfs_rq->rq = rq;
13337 	init_cfs_rq_runtime(cfs_rq);
13338 
13339 	tg->cfs_rq[cpu] = cfs_rq;
13340 	tg->se[cpu] = se;
13341 
13342 	/* se could be NULL for root_task_group */
13343 	if (!se)
13344 		return;
13345 
13346 	if (!parent) {
13347 		se->cfs_rq = &rq->cfs;
13348 		se->depth = 0;
13349 	} else {
13350 		se->cfs_rq = parent->my_q;
13351 		se->depth = parent->depth + 1;
13352 	}
13353 
13354 	se->my_q = cfs_rq;
13355 	/* guarantee group entities always have weight */
13356 	update_load_set(&se->load, NICE_0_LOAD);
13357 	se->parent = parent;
13358 }
13359 
13360 static DEFINE_MUTEX(shares_mutex);
13361 
13362 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13363 {
13364 	int i;
13365 
13366 	lockdep_assert_held(&shares_mutex);
13367 
13368 	/*
13369 	 * We can't change the weight of the root cgroup.
13370 	 */
13371 	if (!tg->se[0])
13372 		return -EINVAL;
13373 
13374 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13375 
13376 	if (tg->shares == shares)
13377 		return 0;
13378 
13379 	tg->shares = shares;
13380 	for_each_possible_cpu(i) {
13381 		struct rq *rq = cpu_rq(i);
13382 		struct sched_entity *se = tg->se[i];
13383 		struct rq_flags rf;
13384 
13385 		/* Propagate contribution to hierarchy */
13386 		rq_lock_irqsave(rq, &rf);
13387 		update_rq_clock(rq);
13388 		for_each_sched_entity(se) {
13389 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13390 			update_cfs_group(se);
13391 		}
13392 		rq_unlock_irqrestore(rq, &rf);
13393 	}
13394 
13395 	return 0;
13396 }
13397 
13398 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13399 {
13400 	int ret;
13401 
13402 	mutex_lock(&shares_mutex);
13403 	if (tg_is_idle(tg))
13404 		ret = -EINVAL;
13405 	else
13406 		ret = __sched_group_set_shares(tg, shares);
13407 	mutex_unlock(&shares_mutex);
13408 
13409 	return ret;
13410 }
13411 
13412 int sched_group_set_idle(struct task_group *tg, long idle)
13413 {
13414 	int i;
13415 
13416 	if (tg == &root_task_group)
13417 		return -EINVAL;
13418 
13419 	if (idle < 0 || idle > 1)
13420 		return -EINVAL;
13421 
13422 	mutex_lock(&shares_mutex);
13423 
13424 	if (tg->idle == idle) {
13425 		mutex_unlock(&shares_mutex);
13426 		return 0;
13427 	}
13428 
13429 	tg->idle = idle;
13430 
13431 	for_each_possible_cpu(i) {
13432 		struct rq *rq = cpu_rq(i);
13433 		struct sched_entity *se = tg->se[i];
13434 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13435 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13436 		long idle_task_delta;
13437 		struct rq_flags rf;
13438 
13439 		rq_lock_irqsave(rq, &rf);
13440 
13441 		grp_cfs_rq->idle = idle;
13442 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13443 			goto next_cpu;
13444 
13445 		if (se->on_rq) {
13446 			parent_cfs_rq = cfs_rq_of(se);
13447 			if (cfs_rq_is_idle(grp_cfs_rq))
13448 				parent_cfs_rq->idle_nr_running++;
13449 			else
13450 				parent_cfs_rq->idle_nr_running--;
13451 		}
13452 
13453 		idle_task_delta = grp_cfs_rq->h_nr_running -
13454 				  grp_cfs_rq->idle_h_nr_running;
13455 		if (!cfs_rq_is_idle(grp_cfs_rq))
13456 			idle_task_delta *= -1;
13457 
13458 		for_each_sched_entity(se) {
13459 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13460 
13461 			if (!se->on_rq)
13462 				break;
13463 
13464 			cfs_rq->idle_h_nr_running += idle_task_delta;
13465 
13466 			/* Already accounted at parent level and above. */
13467 			if (cfs_rq_is_idle(cfs_rq))
13468 				break;
13469 		}
13470 
13471 next_cpu:
13472 		rq_unlock_irqrestore(rq, &rf);
13473 	}
13474 
13475 	/* Idle groups have minimum weight. */
13476 	if (tg_is_idle(tg))
13477 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13478 	else
13479 		__sched_group_set_shares(tg, NICE_0_LOAD);
13480 
13481 	mutex_unlock(&shares_mutex);
13482 	return 0;
13483 }
13484 
13485 #endif /* CONFIG_FAIR_GROUP_SCHED */
13486 
13487 
13488 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13489 {
13490 	struct sched_entity *se = &task->se;
13491 	unsigned int rr_interval = 0;
13492 
13493 	/*
13494 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13495 	 * idle runqueue:
13496 	 */
13497 	if (rq->cfs.load.weight)
13498 		rr_interval = NS_TO_JIFFIES(se->slice);
13499 
13500 	return rr_interval;
13501 }
13502 
13503 /*
13504  * All the scheduling class methods:
13505  */
13506 DEFINE_SCHED_CLASS(fair) = {
13507 
13508 	.enqueue_task		= enqueue_task_fair,
13509 	.dequeue_task		= dequeue_task_fair,
13510 	.yield_task		= yield_task_fair,
13511 	.yield_to_task		= yield_to_task_fair,
13512 
13513 	.wakeup_preempt		= check_preempt_wakeup_fair,
13514 
13515 	.pick_task		= pick_task_fair,
13516 	.pick_next_task		= __pick_next_task_fair,
13517 	.put_prev_task		= put_prev_task_fair,
13518 	.set_next_task          = set_next_task_fair,
13519 
13520 #ifdef CONFIG_SMP
13521 	.balance		= balance_fair,
13522 	.select_task_rq		= select_task_rq_fair,
13523 	.migrate_task_rq	= migrate_task_rq_fair,
13524 
13525 	.rq_online		= rq_online_fair,
13526 	.rq_offline		= rq_offline_fair,
13527 
13528 	.task_dead		= task_dead_fair,
13529 	.set_cpus_allowed	= set_cpus_allowed_fair,
13530 #endif
13531 
13532 	.task_tick		= task_tick_fair,
13533 	.task_fork		= task_fork_fair,
13534 
13535 	.reweight_task		= reweight_task_fair,
13536 	.prio_changed		= prio_changed_fair,
13537 	.switched_from		= switched_from_fair,
13538 	.switched_to		= switched_to_fair,
13539 
13540 	.get_rr_interval	= get_rr_interval_fair,
13541 
13542 	.update_curr		= update_curr_fair,
13543 
13544 #ifdef CONFIG_FAIR_GROUP_SCHED
13545 	.task_change_group	= task_change_group_fair,
13546 #endif
13547 
13548 #ifdef CONFIG_SCHED_CORE
13549 	.task_is_throttled	= task_is_throttled_fair,
13550 #endif
13551 
13552 #ifdef CONFIG_UCLAMP_TASK
13553 	.uclamp_enabled		= 1,
13554 #endif
13555 };
13556 
13557 #ifdef CONFIG_SCHED_DEBUG
13558 void print_cfs_stats(struct seq_file *m, int cpu)
13559 {
13560 	struct cfs_rq *cfs_rq, *pos;
13561 
13562 	rcu_read_lock();
13563 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13564 		print_cfs_rq(m, cpu, cfs_rq);
13565 	rcu_read_unlock();
13566 }
13567 
13568 #ifdef CONFIG_NUMA_BALANCING
13569 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13570 {
13571 	int node;
13572 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13573 	struct numa_group *ng;
13574 
13575 	rcu_read_lock();
13576 	ng = rcu_dereference(p->numa_group);
13577 	for_each_online_node(node) {
13578 		if (p->numa_faults) {
13579 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13580 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13581 		}
13582 		if (ng) {
13583 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13584 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13585 		}
13586 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13587 	}
13588 	rcu_read_unlock();
13589 }
13590 #endif /* CONFIG_NUMA_BALANCING */
13591 #endif /* CONFIG_SCHED_DEBUG */
13592 
13593 __init void init_sched_fair_class(void)
13594 {
13595 #ifdef CONFIG_SMP
13596 	int i;
13597 
13598 	for_each_possible_cpu(i) {
13599 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13600 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13601 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13602 					GFP_KERNEL, cpu_to_node(i));
13603 
13604 #ifdef CONFIG_CFS_BANDWIDTH
13605 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13606 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13607 #endif
13608 	}
13609 
13610 	open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13611 
13612 #ifdef CONFIG_NO_HZ_COMMON
13613 	nohz.next_balance = jiffies;
13614 	nohz.next_blocked = jiffies;
13615 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13616 #endif
13617 #endif /* SMP */
13618 
13619 }
13620