1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/prio.h> 41 42 #include <linux/cpuidle.h> 43 #include <linux/interrupt.h> 44 #include <linux/memory-tiers.h> 45 #include <linux/mempolicy.h> 46 #include <linux/mutex_api.h> 47 #include <linux/profile.h> 48 #include <linux/psi.h> 49 #include <linux/ratelimit.h> 50 #include <linux/task_work.h> 51 #include <linux/rbtree_augmented.h> 52 53 #include <asm/switch_to.h> 54 55 #include <uapi/linux/sched/types.h> 56 57 #include "sched.h" 58 #include "stats.h" 59 #include "autogroup.h" 60 61 /* 62 * The initial- and re-scaling of tunables is configurable 63 * 64 * Options are: 65 * 66 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 67 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) 68 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 69 * 70 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 71 */ 72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 73 74 /* 75 * Minimal preemption granularity for CPU-bound tasks: 76 * 77 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 78 */ 79 unsigned int sysctl_sched_base_slice = 750000ULL; 80 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 81 82 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 83 84 static int __init setup_sched_thermal_decay_shift(char *str) 85 { 86 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 87 return 1; 88 } 89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 90 91 #ifdef CONFIG_SMP 92 /* 93 * For asym packing, by default the lower numbered CPU has higher priority. 94 */ 95 int __weak arch_asym_cpu_priority(int cpu) 96 { 97 return -cpu; 98 } 99 100 /* 101 * The margin used when comparing utilization with CPU capacity. 102 * 103 * (default: ~20%) 104 */ 105 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 106 107 /* 108 * The margin used when comparing CPU capacities. 109 * is 'cap1' noticeably greater than 'cap2' 110 * 111 * (default: ~5%) 112 */ 113 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 114 #endif 115 116 #ifdef CONFIG_CFS_BANDWIDTH 117 /* 118 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 119 * each time a cfs_rq requests quota. 120 * 121 * Note: in the case that the slice exceeds the runtime remaining (either due 122 * to consumption or the quota being specified to be smaller than the slice) 123 * we will always only issue the remaining available time. 124 * 125 * (default: 5 msec, units: microseconds) 126 */ 127 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 128 #endif 129 130 #ifdef CONFIG_NUMA_BALANCING 131 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 132 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 133 #endif 134 135 #ifdef CONFIG_SYSCTL 136 static const struct ctl_table sched_fair_sysctls[] = { 137 #ifdef CONFIG_CFS_BANDWIDTH 138 { 139 .procname = "sched_cfs_bandwidth_slice_us", 140 .data = &sysctl_sched_cfs_bandwidth_slice, 141 .maxlen = sizeof(unsigned int), 142 .mode = 0644, 143 .proc_handler = proc_dointvec_minmax, 144 .extra1 = SYSCTL_ONE, 145 }, 146 #endif 147 #ifdef CONFIG_NUMA_BALANCING 148 { 149 .procname = "numa_balancing_promote_rate_limit_MBps", 150 .data = &sysctl_numa_balancing_promote_rate_limit, 151 .maxlen = sizeof(unsigned int), 152 .mode = 0644, 153 .proc_handler = proc_dointvec_minmax, 154 .extra1 = SYSCTL_ZERO, 155 }, 156 #endif /* CONFIG_NUMA_BALANCING */ 157 }; 158 159 static int __init sched_fair_sysctl_init(void) 160 { 161 register_sysctl_init("kernel", sched_fair_sysctls); 162 return 0; 163 } 164 late_initcall(sched_fair_sysctl_init); 165 #endif 166 167 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 168 { 169 lw->weight += inc; 170 lw->inv_weight = 0; 171 } 172 173 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 174 { 175 lw->weight -= dec; 176 lw->inv_weight = 0; 177 } 178 179 static inline void update_load_set(struct load_weight *lw, unsigned long w) 180 { 181 lw->weight = w; 182 lw->inv_weight = 0; 183 } 184 185 /* 186 * Increase the granularity value when there are more CPUs, 187 * because with more CPUs the 'effective latency' as visible 188 * to users decreases. But the relationship is not linear, 189 * so pick a second-best guess by going with the log2 of the 190 * number of CPUs. 191 * 192 * This idea comes from the SD scheduler of Con Kolivas: 193 */ 194 static unsigned int get_update_sysctl_factor(void) 195 { 196 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 197 unsigned int factor; 198 199 switch (sysctl_sched_tunable_scaling) { 200 case SCHED_TUNABLESCALING_NONE: 201 factor = 1; 202 break; 203 case SCHED_TUNABLESCALING_LINEAR: 204 factor = cpus; 205 break; 206 case SCHED_TUNABLESCALING_LOG: 207 default: 208 factor = 1 + ilog2(cpus); 209 break; 210 } 211 212 return factor; 213 } 214 215 static void update_sysctl(void) 216 { 217 unsigned int factor = get_update_sysctl_factor(); 218 219 #define SET_SYSCTL(name) \ 220 (sysctl_##name = (factor) * normalized_sysctl_##name) 221 SET_SYSCTL(sched_base_slice); 222 #undef SET_SYSCTL 223 } 224 225 void __init sched_init_granularity(void) 226 { 227 update_sysctl(); 228 } 229 230 #define WMULT_CONST (~0U) 231 #define WMULT_SHIFT 32 232 233 static void __update_inv_weight(struct load_weight *lw) 234 { 235 unsigned long w; 236 237 if (likely(lw->inv_weight)) 238 return; 239 240 w = scale_load_down(lw->weight); 241 242 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 243 lw->inv_weight = 1; 244 else if (unlikely(!w)) 245 lw->inv_weight = WMULT_CONST; 246 else 247 lw->inv_weight = WMULT_CONST / w; 248 } 249 250 /* 251 * delta_exec * weight / lw.weight 252 * OR 253 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 254 * 255 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 256 * we're guaranteed shift stays positive because inv_weight is guaranteed to 257 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 258 * 259 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 260 * weight/lw.weight <= 1, and therefore our shift will also be positive. 261 */ 262 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 263 { 264 u64 fact = scale_load_down(weight); 265 u32 fact_hi = (u32)(fact >> 32); 266 int shift = WMULT_SHIFT; 267 int fs; 268 269 __update_inv_weight(lw); 270 271 if (unlikely(fact_hi)) { 272 fs = fls(fact_hi); 273 shift -= fs; 274 fact >>= fs; 275 } 276 277 fact = mul_u32_u32(fact, lw->inv_weight); 278 279 fact_hi = (u32)(fact >> 32); 280 if (fact_hi) { 281 fs = fls(fact_hi); 282 shift -= fs; 283 fact >>= fs; 284 } 285 286 return mul_u64_u32_shr(delta_exec, fact, shift); 287 } 288 289 /* 290 * delta /= w 291 */ 292 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 293 { 294 if (unlikely(se->load.weight != NICE_0_LOAD)) 295 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 296 297 return delta; 298 } 299 300 const struct sched_class fair_sched_class; 301 302 /************************************************************** 303 * CFS operations on generic schedulable entities: 304 */ 305 306 #ifdef CONFIG_FAIR_GROUP_SCHED 307 308 /* Walk up scheduling entities hierarchy */ 309 #define for_each_sched_entity(se) \ 310 for (; se; se = se->parent) 311 312 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 313 { 314 struct rq *rq = rq_of(cfs_rq); 315 int cpu = cpu_of(rq); 316 317 if (cfs_rq->on_list) 318 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 319 320 cfs_rq->on_list = 1; 321 322 /* 323 * Ensure we either appear before our parent (if already 324 * enqueued) or force our parent to appear after us when it is 325 * enqueued. The fact that we always enqueue bottom-up 326 * reduces this to two cases and a special case for the root 327 * cfs_rq. Furthermore, it also means that we will always reset 328 * tmp_alone_branch either when the branch is connected 329 * to a tree or when we reach the top of the tree 330 */ 331 if (cfs_rq->tg->parent && 332 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 333 /* 334 * If parent is already on the list, we add the child 335 * just before. Thanks to circular linked property of 336 * the list, this means to put the child at the tail 337 * of the list that starts by parent. 338 */ 339 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 340 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 341 /* 342 * The branch is now connected to its tree so we can 343 * reset tmp_alone_branch to the beginning of the 344 * list. 345 */ 346 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 347 return true; 348 } 349 350 if (!cfs_rq->tg->parent) { 351 /* 352 * cfs rq without parent should be put 353 * at the tail of the list. 354 */ 355 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 356 &rq->leaf_cfs_rq_list); 357 /* 358 * We have reach the top of a tree so we can reset 359 * tmp_alone_branch to the beginning of the list. 360 */ 361 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 362 return true; 363 } 364 365 /* 366 * The parent has not already been added so we want to 367 * make sure that it will be put after us. 368 * tmp_alone_branch points to the begin of the branch 369 * where we will add parent. 370 */ 371 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 372 /* 373 * update tmp_alone_branch to points to the new begin 374 * of the branch 375 */ 376 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 377 return false; 378 } 379 380 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 381 { 382 if (cfs_rq->on_list) { 383 struct rq *rq = rq_of(cfs_rq); 384 385 /* 386 * With cfs_rq being unthrottled/throttled during an enqueue, 387 * it can happen the tmp_alone_branch points to the leaf that 388 * we finally want to delete. In this case, tmp_alone_branch moves 389 * to the prev element but it will point to rq->leaf_cfs_rq_list 390 * at the end of the enqueue. 391 */ 392 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 393 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 394 395 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 396 cfs_rq->on_list = 0; 397 } 398 } 399 400 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 401 { 402 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 403 } 404 405 /* Iterate through all leaf cfs_rq's on a runqueue */ 406 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 407 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 408 leaf_cfs_rq_list) 409 410 /* Do the two (enqueued) entities belong to the same group ? */ 411 static inline struct cfs_rq * 412 is_same_group(struct sched_entity *se, struct sched_entity *pse) 413 { 414 if (se->cfs_rq == pse->cfs_rq) 415 return se->cfs_rq; 416 417 return NULL; 418 } 419 420 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 421 { 422 return se->parent; 423 } 424 425 static void 426 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 427 { 428 int se_depth, pse_depth; 429 430 /* 431 * preemption test can be made between sibling entities who are in the 432 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 433 * both tasks until we find their ancestors who are siblings of common 434 * parent. 435 */ 436 437 /* First walk up until both entities are at same depth */ 438 se_depth = (*se)->depth; 439 pse_depth = (*pse)->depth; 440 441 while (se_depth > pse_depth) { 442 se_depth--; 443 *se = parent_entity(*se); 444 } 445 446 while (pse_depth > se_depth) { 447 pse_depth--; 448 *pse = parent_entity(*pse); 449 } 450 451 while (!is_same_group(*se, *pse)) { 452 *se = parent_entity(*se); 453 *pse = parent_entity(*pse); 454 } 455 } 456 457 static int tg_is_idle(struct task_group *tg) 458 { 459 return tg->idle > 0; 460 } 461 462 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 463 { 464 return cfs_rq->idle > 0; 465 } 466 467 static int se_is_idle(struct sched_entity *se) 468 { 469 if (entity_is_task(se)) 470 return task_has_idle_policy(task_of(se)); 471 return cfs_rq_is_idle(group_cfs_rq(se)); 472 } 473 474 #else /* !CONFIG_FAIR_GROUP_SCHED */ 475 476 #define for_each_sched_entity(se) \ 477 for (; se; se = NULL) 478 479 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 480 { 481 return true; 482 } 483 484 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 485 { 486 } 487 488 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 489 { 490 } 491 492 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 493 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 494 495 static inline struct sched_entity *parent_entity(struct sched_entity *se) 496 { 497 return NULL; 498 } 499 500 static inline void 501 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 502 { 503 } 504 505 static inline int tg_is_idle(struct task_group *tg) 506 { 507 return 0; 508 } 509 510 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 511 { 512 return 0; 513 } 514 515 static int se_is_idle(struct sched_entity *se) 516 { 517 return task_has_idle_policy(task_of(se)); 518 } 519 520 #endif /* CONFIG_FAIR_GROUP_SCHED */ 521 522 static __always_inline 523 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 524 525 /************************************************************** 526 * Scheduling class tree data structure manipulation methods: 527 */ 528 529 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime) 530 { 531 s64 delta = (s64)(vruntime - max_vruntime); 532 if (delta > 0) 533 max_vruntime = vruntime; 534 535 return max_vruntime; 536 } 537 538 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime) 539 { 540 s64 delta = (s64)(vruntime - min_vruntime); 541 if (delta < 0) 542 min_vruntime = vruntime; 543 544 return min_vruntime; 545 } 546 547 static inline bool entity_before(const struct sched_entity *a, 548 const struct sched_entity *b) 549 { 550 /* 551 * Tiebreak on vruntime seems unnecessary since it can 552 * hardly happen. 553 */ 554 return (s64)(a->deadline - b->deadline) < 0; 555 } 556 557 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 558 { 559 return (s64)(se->vruntime - cfs_rq->min_vruntime); 560 } 561 562 #define __node_2_se(node) \ 563 rb_entry((node), struct sched_entity, run_node) 564 565 /* 566 * Compute virtual time from the per-task service numbers: 567 * 568 * Fair schedulers conserve lag: 569 * 570 * \Sum lag_i = 0 571 * 572 * Where lag_i is given by: 573 * 574 * lag_i = S - s_i = w_i * (V - v_i) 575 * 576 * Where S is the ideal service time and V is it's virtual time counterpart. 577 * Therefore: 578 * 579 * \Sum lag_i = 0 580 * \Sum w_i * (V - v_i) = 0 581 * \Sum w_i * V - w_i * v_i = 0 582 * 583 * From which we can solve an expression for V in v_i (which we have in 584 * se->vruntime): 585 * 586 * \Sum v_i * w_i \Sum v_i * w_i 587 * V = -------------- = -------------- 588 * \Sum w_i W 589 * 590 * Specifically, this is the weighted average of all entity virtual runtimes. 591 * 592 * [[ NOTE: this is only equal to the ideal scheduler under the condition 593 * that join/leave operations happen at lag_i = 0, otherwise the 594 * virtual time has non-contiguous motion equivalent to: 595 * 596 * V +-= lag_i / W 597 * 598 * Also see the comment in place_entity() that deals with this. ]] 599 * 600 * However, since v_i is u64, and the multiplication could easily overflow 601 * transform it into a relative form that uses smaller quantities: 602 * 603 * Substitute: v_i == (v_i - v0) + v0 604 * 605 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 606 * V = ---------------------------- = --------------------- + v0 607 * W W 608 * 609 * Which we track using: 610 * 611 * v0 := cfs_rq->min_vruntime 612 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 613 * \Sum w_i := cfs_rq->avg_load 614 * 615 * Since min_vruntime is a monotonic increasing variable that closely tracks 616 * the per-task service, these deltas: (v_i - v), will be in the order of the 617 * maximal (virtual) lag induced in the system due to quantisation. 618 * 619 * Also, we use scale_load_down() to reduce the size. 620 * 621 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 622 */ 623 static void 624 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 625 { 626 unsigned long weight = scale_load_down(se->load.weight); 627 s64 key = entity_key(cfs_rq, se); 628 629 cfs_rq->avg_vruntime += key * weight; 630 cfs_rq->avg_load += weight; 631 } 632 633 static void 634 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 635 { 636 unsigned long weight = scale_load_down(se->load.weight); 637 s64 key = entity_key(cfs_rq, se); 638 639 cfs_rq->avg_vruntime -= key * weight; 640 cfs_rq->avg_load -= weight; 641 } 642 643 static inline 644 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 645 { 646 /* 647 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 648 */ 649 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 650 } 651 652 /* 653 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 654 * For this to be so, the result of this function must have a left bias. 655 */ 656 u64 avg_vruntime(struct cfs_rq *cfs_rq) 657 { 658 struct sched_entity *curr = cfs_rq->curr; 659 s64 avg = cfs_rq->avg_vruntime; 660 long load = cfs_rq->avg_load; 661 662 if (curr && curr->on_rq) { 663 unsigned long weight = scale_load_down(curr->load.weight); 664 665 avg += entity_key(cfs_rq, curr) * weight; 666 load += weight; 667 } 668 669 if (load) { 670 /* sign flips effective floor / ceiling */ 671 if (avg < 0) 672 avg -= (load - 1); 673 avg = div_s64(avg, load); 674 } 675 676 return cfs_rq->min_vruntime + avg; 677 } 678 679 /* 680 * lag_i = S - s_i = w_i * (V - v_i) 681 * 682 * However, since V is approximated by the weighted average of all entities it 683 * is possible -- by addition/removal/reweight to the tree -- to move V around 684 * and end up with a larger lag than we started with. 685 * 686 * Limit this to either double the slice length with a minimum of TICK_NSEC 687 * since that is the timing granularity. 688 * 689 * EEVDF gives the following limit for a steady state system: 690 * 691 * -r_max < lag < max(r_max, q) 692 * 693 * XXX could add max_slice to the augmented data to track this. 694 */ 695 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 696 { 697 s64 vlag, limit; 698 699 SCHED_WARN_ON(!se->on_rq); 700 701 vlag = avg_vruntime(cfs_rq) - se->vruntime; 702 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 703 704 se->vlag = clamp(vlag, -limit, limit); 705 } 706 707 /* 708 * Entity is eligible once it received less service than it ought to have, 709 * eg. lag >= 0. 710 * 711 * lag_i = S - s_i = w_i*(V - v_i) 712 * 713 * lag_i >= 0 -> V >= v_i 714 * 715 * \Sum (v_i - v)*w_i 716 * V = ------------------ + v 717 * \Sum w_i 718 * 719 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 720 * 721 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 722 * to the loss in precision caused by the division. 723 */ 724 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 725 { 726 struct sched_entity *curr = cfs_rq->curr; 727 s64 avg = cfs_rq->avg_vruntime; 728 long load = cfs_rq->avg_load; 729 730 if (curr && curr->on_rq) { 731 unsigned long weight = scale_load_down(curr->load.weight); 732 733 avg += entity_key(cfs_rq, curr) * weight; 734 load += weight; 735 } 736 737 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 738 } 739 740 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 741 { 742 return vruntime_eligible(cfs_rq, se->vruntime); 743 } 744 745 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 746 { 747 u64 min_vruntime = cfs_rq->min_vruntime; 748 /* 749 * open coded max_vruntime() to allow updating avg_vruntime 750 */ 751 s64 delta = (s64)(vruntime - min_vruntime); 752 if (delta > 0) { 753 avg_vruntime_update(cfs_rq, delta); 754 min_vruntime = vruntime; 755 } 756 return min_vruntime; 757 } 758 759 static void update_min_vruntime(struct cfs_rq *cfs_rq) 760 { 761 struct sched_entity *se = __pick_root_entity(cfs_rq); 762 struct sched_entity *curr = cfs_rq->curr; 763 u64 vruntime = cfs_rq->min_vruntime; 764 765 if (curr) { 766 if (curr->on_rq) 767 vruntime = curr->vruntime; 768 else 769 curr = NULL; 770 } 771 772 if (se) { 773 if (!curr) 774 vruntime = se->min_vruntime; 775 else 776 vruntime = min_vruntime(vruntime, se->min_vruntime); 777 } 778 779 /* ensure we never gain time by being placed backwards. */ 780 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime); 781 } 782 783 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) 784 { 785 struct sched_entity *root = __pick_root_entity(cfs_rq); 786 struct sched_entity *curr = cfs_rq->curr; 787 u64 min_slice = ~0ULL; 788 789 if (curr && curr->on_rq) 790 min_slice = curr->slice; 791 792 if (root) 793 min_slice = min(min_slice, root->min_slice); 794 795 return min_slice; 796 } 797 798 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 799 { 800 return entity_before(__node_2_se(a), __node_2_se(b)); 801 } 802 803 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 804 805 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 806 { 807 if (node) { 808 struct sched_entity *rse = __node_2_se(node); 809 if (vruntime_gt(min_vruntime, se, rse)) 810 se->min_vruntime = rse->min_vruntime; 811 } 812 } 813 814 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) 815 { 816 if (node) { 817 struct sched_entity *rse = __node_2_se(node); 818 if (rse->min_slice < se->min_slice) 819 se->min_slice = rse->min_slice; 820 } 821 } 822 823 /* 824 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 825 */ 826 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 827 { 828 u64 old_min_vruntime = se->min_vruntime; 829 u64 old_min_slice = se->min_slice; 830 struct rb_node *node = &se->run_node; 831 832 se->min_vruntime = se->vruntime; 833 __min_vruntime_update(se, node->rb_right); 834 __min_vruntime_update(se, node->rb_left); 835 836 se->min_slice = se->slice; 837 __min_slice_update(se, node->rb_right); 838 __min_slice_update(se, node->rb_left); 839 840 return se->min_vruntime == old_min_vruntime && 841 se->min_slice == old_min_slice; 842 } 843 844 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 845 run_node, min_vruntime, min_vruntime_update); 846 847 /* 848 * Enqueue an entity into the rb-tree: 849 */ 850 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 851 { 852 avg_vruntime_add(cfs_rq, se); 853 se->min_vruntime = se->vruntime; 854 se->min_slice = se->slice; 855 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 856 __entity_less, &min_vruntime_cb); 857 } 858 859 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 860 { 861 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 862 &min_vruntime_cb); 863 avg_vruntime_sub(cfs_rq, se); 864 } 865 866 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 867 { 868 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 869 870 if (!root) 871 return NULL; 872 873 return __node_2_se(root); 874 } 875 876 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 877 { 878 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 879 880 if (!left) 881 return NULL; 882 883 return __node_2_se(left); 884 } 885 886 /* 887 * Earliest Eligible Virtual Deadline First 888 * 889 * In order to provide latency guarantees for different request sizes 890 * EEVDF selects the best runnable task from two criteria: 891 * 892 * 1) the task must be eligible (must be owed service) 893 * 894 * 2) from those tasks that meet 1), we select the one 895 * with the earliest virtual deadline. 896 * 897 * We can do this in O(log n) time due to an augmented RB-tree. The 898 * tree keeps the entries sorted on deadline, but also functions as a 899 * heap based on the vruntime by keeping: 900 * 901 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 902 * 903 * Which allows tree pruning through eligibility. 904 */ 905 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 906 { 907 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 908 struct sched_entity *se = __pick_first_entity(cfs_rq); 909 struct sched_entity *curr = cfs_rq->curr; 910 struct sched_entity *best = NULL; 911 912 /* 913 * We can safely skip eligibility check if there is only one entity 914 * in this cfs_rq, saving some cycles. 915 */ 916 if (cfs_rq->nr_queued == 1) 917 return curr && curr->on_rq ? curr : se; 918 919 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 920 curr = NULL; 921 922 /* 923 * Once selected, run a task until it either becomes non-eligible or 924 * until it gets a new slice. See the HACK in set_next_entity(). 925 */ 926 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 927 return curr; 928 929 /* Pick the leftmost entity if it's eligible */ 930 if (se && entity_eligible(cfs_rq, se)) { 931 best = se; 932 goto found; 933 } 934 935 /* Heap search for the EEVD entity */ 936 while (node) { 937 struct rb_node *left = node->rb_left; 938 939 /* 940 * Eligible entities in left subtree are always better 941 * choices, since they have earlier deadlines. 942 */ 943 if (left && vruntime_eligible(cfs_rq, 944 __node_2_se(left)->min_vruntime)) { 945 node = left; 946 continue; 947 } 948 949 se = __node_2_se(node); 950 951 /* 952 * The left subtree either is empty or has no eligible 953 * entity, so check the current node since it is the one 954 * with earliest deadline that might be eligible. 955 */ 956 if (entity_eligible(cfs_rq, se)) { 957 best = se; 958 break; 959 } 960 961 node = node->rb_right; 962 } 963 found: 964 if (!best || (curr && entity_before(curr, best))) 965 best = curr; 966 967 return best; 968 } 969 970 #ifdef CONFIG_SCHED_DEBUG 971 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 972 { 973 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 974 975 if (!last) 976 return NULL; 977 978 return __node_2_se(last); 979 } 980 981 /************************************************************** 982 * Scheduling class statistics methods: 983 */ 984 #ifdef CONFIG_SMP 985 int sched_update_scaling(void) 986 { 987 unsigned int factor = get_update_sysctl_factor(); 988 989 #define WRT_SYSCTL(name) \ 990 (normalized_sysctl_##name = sysctl_##name / (factor)) 991 WRT_SYSCTL(sched_base_slice); 992 #undef WRT_SYSCTL 993 994 return 0; 995 } 996 #endif 997 #endif 998 999 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1000 1001 /* 1002 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1003 * this is probably good enough. 1004 */ 1005 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1006 { 1007 if ((s64)(se->vruntime - se->deadline) < 0) 1008 return false; 1009 1010 /* 1011 * For EEVDF the virtual time slope is determined by w_i (iow. 1012 * nice) while the request time r_i is determined by 1013 * sysctl_sched_base_slice. 1014 */ 1015 if (!se->custom_slice) 1016 se->slice = sysctl_sched_base_slice; 1017 1018 /* 1019 * EEVDF: vd_i = ve_i + r_i / w_i 1020 */ 1021 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1022 1023 /* 1024 * The task has consumed its request, reschedule. 1025 */ 1026 return true; 1027 } 1028 1029 #include "pelt.h" 1030 #ifdef CONFIG_SMP 1031 1032 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1033 static unsigned long task_h_load(struct task_struct *p); 1034 static unsigned long capacity_of(int cpu); 1035 1036 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1037 void init_entity_runnable_average(struct sched_entity *se) 1038 { 1039 struct sched_avg *sa = &se->avg; 1040 1041 memset(sa, 0, sizeof(*sa)); 1042 1043 /* 1044 * Tasks are initialized with full load to be seen as heavy tasks until 1045 * they get a chance to stabilize to their real load level. 1046 * Group entities are initialized with zero load to reflect the fact that 1047 * nothing has been attached to the task group yet. 1048 */ 1049 if (entity_is_task(se)) 1050 sa->load_avg = scale_load_down(se->load.weight); 1051 1052 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1053 } 1054 1055 /* 1056 * With new tasks being created, their initial util_avgs are extrapolated 1057 * based on the cfs_rq's current util_avg: 1058 * 1059 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1060 * * se_weight(se) 1061 * 1062 * However, in many cases, the above util_avg does not give a desired 1063 * value. Moreover, the sum of the util_avgs may be divergent, such 1064 * as when the series is a harmonic series. 1065 * 1066 * To solve this problem, we also cap the util_avg of successive tasks to 1067 * only 1/2 of the left utilization budget: 1068 * 1069 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1070 * 1071 * where n denotes the nth task and cpu_scale the CPU capacity. 1072 * 1073 * For example, for a CPU with 1024 of capacity, a simplest series from 1074 * the beginning would be like: 1075 * 1076 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1077 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1078 * 1079 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1080 * if util_avg > util_avg_cap. 1081 */ 1082 void post_init_entity_util_avg(struct task_struct *p) 1083 { 1084 struct sched_entity *se = &p->se; 1085 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1086 struct sched_avg *sa = &se->avg; 1087 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1088 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1089 1090 if (p->sched_class != &fair_sched_class) { 1091 /* 1092 * For !fair tasks do: 1093 * 1094 update_cfs_rq_load_avg(now, cfs_rq); 1095 attach_entity_load_avg(cfs_rq, se); 1096 switched_from_fair(rq, p); 1097 * 1098 * such that the next switched_to_fair() has the 1099 * expected state. 1100 */ 1101 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1102 return; 1103 } 1104 1105 if (cap > 0) { 1106 if (cfs_rq->avg.util_avg != 0) { 1107 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1108 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1109 1110 if (sa->util_avg > cap) 1111 sa->util_avg = cap; 1112 } else { 1113 sa->util_avg = cap; 1114 } 1115 } 1116 1117 sa->runnable_avg = sa->util_avg; 1118 } 1119 1120 #else /* !CONFIG_SMP */ 1121 void init_entity_runnable_average(struct sched_entity *se) 1122 { 1123 } 1124 void post_init_entity_util_avg(struct task_struct *p) 1125 { 1126 } 1127 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1128 { 1129 } 1130 #endif /* CONFIG_SMP */ 1131 1132 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1133 { 1134 u64 now = rq_clock_task(rq); 1135 s64 delta_exec; 1136 1137 delta_exec = now - curr->exec_start; 1138 if (unlikely(delta_exec <= 0)) 1139 return delta_exec; 1140 1141 curr->exec_start = now; 1142 curr->sum_exec_runtime += delta_exec; 1143 1144 if (schedstat_enabled()) { 1145 struct sched_statistics *stats; 1146 1147 stats = __schedstats_from_se(curr); 1148 __schedstat_set(stats->exec_max, 1149 max(delta_exec, stats->exec_max)); 1150 } 1151 1152 return delta_exec; 1153 } 1154 1155 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1156 { 1157 trace_sched_stat_runtime(p, delta_exec); 1158 account_group_exec_runtime(p, delta_exec); 1159 cgroup_account_cputime(p, delta_exec); 1160 } 1161 1162 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1163 { 1164 if (!sched_feat(PREEMPT_SHORT)) 1165 return false; 1166 1167 if (curr->vlag == curr->deadline) 1168 return false; 1169 1170 return !entity_eligible(cfs_rq, curr); 1171 } 1172 1173 static inline bool do_preempt_short(struct cfs_rq *cfs_rq, 1174 struct sched_entity *pse, struct sched_entity *se) 1175 { 1176 if (!sched_feat(PREEMPT_SHORT)) 1177 return false; 1178 1179 if (pse->slice >= se->slice) 1180 return false; 1181 1182 if (!entity_eligible(cfs_rq, pse)) 1183 return false; 1184 1185 if (entity_before(pse, se)) 1186 return true; 1187 1188 if (!entity_eligible(cfs_rq, se)) 1189 return true; 1190 1191 return false; 1192 } 1193 1194 /* 1195 * Used by other classes to account runtime. 1196 */ 1197 s64 update_curr_common(struct rq *rq) 1198 { 1199 struct task_struct *donor = rq->donor; 1200 s64 delta_exec; 1201 1202 delta_exec = update_curr_se(rq, &donor->se); 1203 if (likely(delta_exec > 0)) 1204 update_curr_task(donor, delta_exec); 1205 1206 return delta_exec; 1207 } 1208 1209 /* 1210 * Update the current task's runtime statistics. 1211 */ 1212 static void update_curr(struct cfs_rq *cfs_rq) 1213 { 1214 struct sched_entity *curr = cfs_rq->curr; 1215 struct rq *rq = rq_of(cfs_rq); 1216 s64 delta_exec; 1217 bool resched; 1218 1219 if (unlikely(!curr)) 1220 return; 1221 1222 delta_exec = update_curr_se(rq, curr); 1223 if (unlikely(delta_exec <= 0)) 1224 return; 1225 1226 curr->vruntime += calc_delta_fair(delta_exec, curr); 1227 resched = update_deadline(cfs_rq, curr); 1228 update_min_vruntime(cfs_rq); 1229 1230 if (entity_is_task(curr)) { 1231 struct task_struct *p = task_of(curr); 1232 1233 update_curr_task(p, delta_exec); 1234 1235 /* 1236 * If the fair_server is active, we need to account for the 1237 * fair_server time whether or not the task is running on 1238 * behalf of fair_server or not: 1239 * - If the task is running on behalf of fair_server, we need 1240 * to limit its time based on the assigned runtime. 1241 * - Fair task that runs outside of fair_server should account 1242 * against fair_server such that it can account for this time 1243 * and possibly avoid running this period. 1244 */ 1245 if (dl_server_active(&rq->fair_server)) 1246 dl_server_update(&rq->fair_server, delta_exec); 1247 } 1248 1249 account_cfs_rq_runtime(cfs_rq, delta_exec); 1250 1251 if (cfs_rq->nr_queued == 1) 1252 return; 1253 1254 if (resched || did_preempt_short(cfs_rq, curr)) { 1255 resched_curr_lazy(rq); 1256 clear_buddies(cfs_rq, curr); 1257 } 1258 } 1259 1260 static void update_curr_fair(struct rq *rq) 1261 { 1262 update_curr(cfs_rq_of(&rq->donor->se)); 1263 } 1264 1265 static inline void 1266 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1267 { 1268 struct sched_statistics *stats; 1269 struct task_struct *p = NULL; 1270 1271 if (!schedstat_enabled()) 1272 return; 1273 1274 stats = __schedstats_from_se(se); 1275 1276 if (entity_is_task(se)) 1277 p = task_of(se); 1278 1279 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1280 } 1281 1282 static inline void 1283 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1284 { 1285 struct sched_statistics *stats; 1286 struct task_struct *p = NULL; 1287 1288 if (!schedstat_enabled()) 1289 return; 1290 1291 stats = __schedstats_from_se(se); 1292 1293 /* 1294 * When the sched_schedstat changes from 0 to 1, some sched se 1295 * maybe already in the runqueue, the se->statistics.wait_start 1296 * will be 0.So it will let the delta wrong. We need to avoid this 1297 * scenario. 1298 */ 1299 if (unlikely(!schedstat_val(stats->wait_start))) 1300 return; 1301 1302 if (entity_is_task(se)) 1303 p = task_of(se); 1304 1305 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1306 } 1307 1308 static inline void 1309 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1310 { 1311 struct sched_statistics *stats; 1312 struct task_struct *tsk = NULL; 1313 1314 if (!schedstat_enabled()) 1315 return; 1316 1317 stats = __schedstats_from_se(se); 1318 1319 if (entity_is_task(se)) 1320 tsk = task_of(se); 1321 1322 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1323 } 1324 1325 /* 1326 * Task is being enqueued - update stats: 1327 */ 1328 static inline void 1329 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1330 { 1331 if (!schedstat_enabled()) 1332 return; 1333 1334 /* 1335 * Are we enqueueing a waiting task? (for current tasks 1336 * a dequeue/enqueue event is a NOP) 1337 */ 1338 if (se != cfs_rq->curr) 1339 update_stats_wait_start_fair(cfs_rq, se); 1340 1341 if (flags & ENQUEUE_WAKEUP) 1342 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1343 } 1344 1345 static inline void 1346 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1347 { 1348 1349 if (!schedstat_enabled()) 1350 return; 1351 1352 /* 1353 * Mark the end of the wait period if dequeueing a 1354 * waiting task: 1355 */ 1356 if (se != cfs_rq->curr) 1357 update_stats_wait_end_fair(cfs_rq, se); 1358 1359 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1360 struct task_struct *tsk = task_of(se); 1361 unsigned int state; 1362 1363 /* XXX racy against TTWU */ 1364 state = READ_ONCE(tsk->__state); 1365 if (state & TASK_INTERRUPTIBLE) 1366 __schedstat_set(tsk->stats.sleep_start, 1367 rq_clock(rq_of(cfs_rq))); 1368 if (state & TASK_UNINTERRUPTIBLE) 1369 __schedstat_set(tsk->stats.block_start, 1370 rq_clock(rq_of(cfs_rq))); 1371 } 1372 } 1373 1374 /* 1375 * We are picking a new current task - update its stats: 1376 */ 1377 static inline void 1378 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1379 { 1380 /* 1381 * We are starting a new run period: 1382 */ 1383 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1384 } 1385 1386 /************************************************** 1387 * Scheduling class queueing methods: 1388 */ 1389 1390 static inline bool is_core_idle(int cpu) 1391 { 1392 #ifdef CONFIG_SCHED_SMT 1393 int sibling; 1394 1395 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1396 if (cpu == sibling) 1397 continue; 1398 1399 if (!idle_cpu(sibling)) 1400 return false; 1401 } 1402 #endif 1403 1404 return true; 1405 } 1406 1407 #ifdef CONFIG_NUMA 1408 #define NUMA_IMBALANCE_MIN 2 1409 1410 static inline long 1411 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1412 { 1413 /* 1414 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1415 * threshold. Above this threshold, individual tasks may be contending 1416 * for both memory bandwidth and any shared HT resources. This is an 1417 * approximation as the number of running tasks may not be related to 1418 * the number of busy CPUs due to sched_setaffinity. 1419 */ 1420 if (dst_running > imb_numa_nr) 1421 return imbalance; 1422 1423 /* 1424 * Allow a small imbalance based on a simple pair of communicating 1425 * tasks that remain local when the destination is lightly loaded. 1426 */ 1427 if (imbalance <= NUMA_IMBALANCE_MIN) 1428 return 0; 1429 1430 return imbalance; 1431 } 1432 #endif /* CONFIG_NUMA */ 1433 1434 #ifdef CONFIG_NUMA_BALANCING 1435 /* 1436 * Approximate time to scan a full NUMA task in ms. The task scan period is 1437 * calculated based on the tasks virtual memory size and 1438 * numa_balancing_scan_size. 1439 */ 1440 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1441 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1442 1443 /* Portion of address space to scan in MB */ 1444 unsigned int sysctl_numa_balancing_scan_size = 256; 1445 1446 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1447 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1448 1449 /* The page with hint page fault latency < threshold in ms is considered hot */ 1450 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1451 1452 struct numa_group { 1453 refcount_t refcount; 1454 1455 spinlock_t lock; /* nr_tasks, tasks */ 1456 int nr_tasks; 1457 pid_t gid; 1458 int active_nodes; 1459 1460 struct rcu_head rcu; 1461 unsigned long total_faults; 1462 unsigned long max_faults_cpu; 1463 /* 1464 * faults[] array is split into two regions: faults_mem and faults_cpu. 1465 * 1466 * Faults_cpu is used to decide whether memory should move 1467 * towards the CPU. As a consequence, these stats are weighted 1468 * more by CPU use than by memory faults. 1469 */ 1470 unsigned long faults[]; 1471 }; 1472 1473 /* 1474 * For functions that can be called in multiple contexts that permit reading 1475 * ->numa_group (see struct task_struct for locking rules). 1476 */ 1477 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1478 { 1479 return rcu_dereference_check(p->numa_group, p == current || 1480 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1481 } 1482 1483 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1484 { 1485 return rcu_dereference_protected(p->numa_group, p == current); 1486 } 1487 1488 static inline unsigned long group_faults_priv(struct numa_group *ng); 1489 static inline unsigned long group_faults_shared(struct numa_group *ng); 1490 1491 static unsigned int task_nr_scan_windows(struct task_struct *p) 1492 { 1493 unsigned long rss = 0; 1494 unsigned long nr_scan_pages; 1495 1496 /* 1497 * Calculations based on RSS as non-present and empty pages are skipped 1498 * by the PTE scanner and NUMA hinting faults should be trapped based 1499 * on resident pages 1500 */ 1501 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1502 rss = get_mm_rss(p->mm); 1503 if (!rss) 1504 rss = nr_scan_pages; 1505 1506 rss = round_up(rss, nr_scan_pages); 1507 return rss / nr_scan_pages; 1508 } 1509 1510 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1511 #define MAX_SCAN_WINDOW 2560 1512 1513 static unsigned int task_scan_min(struct task_struct *p) 1514 { 1515 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1516 unsigned int scan, floor; 1517 unsigned int windows = 1; 1518 1519 if (scan_size < MAX_SCAN_WINDOW) 1520 windows = MAX_SCAN_WINDOW / scan_size; 1521 floor = 1000 / windows; 1522 1523 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1524 return max_t(unsigned int, floor, scan); 1525 } 1526 1527 static unsigned int task_scan_start(struct task_struct *p) 1528 { 1529 unsigned long smin = task_scan_min(p); 1530 unsigned long period = smin; 1531 struct numa_group *ng; 1532 1533 /* Scale the maximum scan period with the amount of shared memory. */ 1534 rcu_read_lock(); 1535 ng = rcu_dereference(p->numa_group); 1536 if (ng) { 1537 unsigned long shared = group_faults_shared(ng); 1538 unsigned long private = group_faults_priv(ng); 1539 1540 period *= refcount_read(&ng->refcount); 1541 period *= shared + 1; 1542 period /= private + shared + 1; 1543 } 1544 rcu_read_unlock(); 1545 1546 return max(smin, period); 1547 } 1548 1549 static unsigned int task_scan_max(struct task_struct *p) 1550 { 1551 unsigned long smin = task_scan_min(p); 1552 unsigned long smax; 1553 struct numa_group *ng; 1554 1555 /* Watch for min being lower than max due to floor calculations */ 1556 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1557 1558 /* Scale the maximum scan period with the amount of shared memory. */ 1559 ng = deref_curr_numa_group(p); 1560 if (ng) { 1561 unsigned long shared = group_faults_shared(ng); 1562 unsigned long private = group_faults_priv(ng); 1563 unsigned long period = smax; 1564 1565 period *= refcount_read(&ng->refcount); 1566 period *= shared + 1; 1567 period /= private + shared + 1; 1568 1569 smax = max(smax, period); 1570 } 1571 1572 return max(smin, smax); 1573 } 1574 1575 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1576 { 1577 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1578 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1579 } 1580 1581 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1582 { 1583 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1584 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1585 } 1586 1587 /* Shared or private faults. */ 1588 #define NR_NUMA_HINT_FAULT_TYPES 2 1589 1590 /* Memory and CPU locality */ 1591 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1592 1593 /* Averaged statistics, and temporary buffers. */ 1594 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1595 1596 pid_t task_numa_group_id(struct task_struct *p) 1597 { 1598 struct numa_group *ng; 1599 pid_t gid = 0; 1600 1601 rcu_read_lock(); 1602 ng = rcu_dereference(p->numa_group); 1603 if (ng) 1604 gid = ng->gid; 1605 rcu_read_unlock(); 1606 1607 return gid; 1608 } 1609 1610 /* 1611 * The averaged statistics, shared & private, memory & CPU, 1612 * occupy the first half of the array. The second half of the 1613 * array is for current counters, which are averaged into the 1614 * first set by task_numa_placement. 1615 */ 1616 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1617 { 1618 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1619 } 1620 1621 static inline unsigned long task_faults(struct task_struct *p, int nid) 1622 { 1623 if (!p->numa_faults) 1624 return 0; 1625 1626 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1627 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1628 } 1629 1630 static inline unsigned long group_faults(struct task_struct *p, int nid) 1631 { 1632 struct numa_group *ng = deref_task_numa_group(p); 1633 1634 if (!ng) 1635 return 0; 1636 1637 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1638 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1639 } 1640 1641 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1642 { 1643 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1644 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1645 } 1646 1647 static inline unsigned long group_faults_priv(struct numa_group *ng) 1648 { 1649 unsigned long faults = 0; 1650 int node; 1651 1652 for_each_online_node(node) { 1653 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1654 } 1655 1656 return faults; 1657 } 1658 1659 static inline unsigned long group_faults_shared(struct numa_group *ng) 1660 { 1661 unsigned long faults = 0; 1662 int node; 1663 1664 for_each_online_node(node) { 1665 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1666 } 1667 1668 return faults; 1669 } 1670 1671 /* 1672 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1673 * considered part of a numa group's pseudo-interleaving set. Migrations 1674 * between these nodes are slowed down, to allow things to settle down. 1675 */ 1676 #define ACTIVE_NODE_FRACTION 3 1677 1678 static bool numa_is_active_node(int nid, struct numa_group *ng) 1679 { 1680 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1681 } 1682 1683 /* Handle placement on systems where not all nodes are directly connected. */ 1684 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1685 int lim_dist, bool task) 1686 { 1687 unsigned long score = 0; 1688 int node, max_dist; 1689 1690 /* 1691 * All nodes are directly connected, and the same distance 1692 * from each other. No need for fancy placement algorithms. 1693 */ 1694 if (sched_numa_topology_type == NUMA_DIRECT) 1695 return 0; 1696 1697 /* sched_max_numa_distance may be changed in parallel. */ 1698 max_dist = READ_ONCE(sched_max_numa_distance); 1699 /* 1700 * This code is called for each node, introducing N^2 complexity, 1701 * which should be OK given the number of nodes rarely exceeds 8. 1702 */ 1703 for_each_online_node(node) { 1704 unsigned long faults; 1705 int dist = node_distance(nid, node); 1706 1707 /* 1708 * The furthest away nodes in the system are not interesting 1709 * for placement; nid was already counted. 1710 */ 1711 if (dist >= max_dist || node == nid) 1712 continue; 1713 1714 /* 1715 * On systems with a backplane NUMA topology, compare groups 1716 * of nodes, and move tasks towards the group with the most 1717 * memory accesses. When comparing two nodes at distance 1718 * "hoplimit", only nodes closer by than "hoplimit" are part 1719 * of each group. Skip other nodes. 1720 */ 1721 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1722 continue; 1723 1724 /* Add up the faults from nearby nodes. */ 1725 if (task) 1726 faults = task_faults(p, node); 1727 else 1728 faults = group_faults(p, node); 1729 1730 /* 1731 * On systems with a glueless mesh NUMA topology, there are 1732 * no fixed "groups of nodes". Instead, nodes that are not 1733 * directly connected bounce traffic through intermediate 1734 * nodes; a numa_group can occupy any set of nodes. 1735 * The further away a node is, the less the faults count. 1736 * This seems to result in good task placement. 1737 */ 1738 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1739 faults *= (max_dist - dist); 1740 faults /= (max_dist - LOCAL_DISTANCE); 1741 } 1742 1743 score += faults; 1744 } 1745 1746 return score; 1747 } 1748 1749 /* 1750 * These return the fraction of accesses done by a particular task, or 1751 * task group, on a particular numa node. The group weight is given a 1752 * larger multiplier, in order to group tasks together that are almost 1753 * evenly spread out between numa nodes. 1754 */ 1755 static inline unsigned long task_weight(struct task_struct *p, int nid, 1756 int dist) 1757 { 1758 unsigned long faults, total_faults; 1759 1760 if (!p->numa_faults) 1761 return 0; 1762 1763 total_faults = p->total_numa_faults; 1764 1765 if (!total_faults) 1766 return 0; 1767 1768 faults = task_faults(p, nid); 1769 faults += score_nearby_nodes(p, nid, dist, true); 1770 1771 return 1000 * faults / total_faults; 1772 } 1773 1774 static inline unsigned long group_weight(struct task_struct *p, int nid, 1775 int dist) 1776 { 1777 struct numa_group *ng = deref_task_numa_group(p); 1778 unsigned long faults, total_faults; 1779 1780 if (!ng) 1781 return 0; 1782 1783 total_faults = ng->total_faults; 1784 1785 if (!total_faults) 1786 return 0; 1787 1788 faults = group_faults(p, nid); 1789 faults += score_nearby_nodes(p, nid, dist, false); 1790 1791 return 1000 * faults / total_faults; 1792 } 1793 1794 /* 1795 * If memory tiering mode is enabled, cpupid of slow memory page is 1796 * used to record scan time instead of CPU and PID. When tiering mode 1797 * is disabled at run time, the scan time (in cpupid) will be 1798 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1799 * access out of array bound. 1800 */ 1801 static inline bool cpupid_valid(int cpupid) 1802 { 1803 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1804 } 1805 1806 /* 1807 * For memory tiering mode, if there are enough free pages (more than 1808 * enough watermark defined here) in fast memory node, to take full 1809 * advantage of fast memory capacity, all recently accessed slow 1810 * memory pages will be migrated to fast memory node without 1811 * considering hot threshold. 1812 */ 1813 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1814 { 1815 int z; 1816 unsigned long enough_wmark; 1817 1818 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1819 pgdat->node_present_pages >> 4); 1820 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1821 struct zone *zone = pgdat->node_zones + z; 1822 1823 if (!populated_zone(zone)) 1824 continue; 1825 1826 if (zone_watermark_ok(zone, 0, 1827 promo_wmark_pages(zone) + enough_wmark, 1828 ZONE_MOVABLE, 0)) 1829 return true; 1830 } 1831 return false; 1832 } 1833 1834 /* 1835 * For memory tiering mode, when page tables are scanned, the scan 1836 * time will be recorded in struct page in addition to make page 1837 * PROT_NONE for slow memory page. So when the page is accessed, in 1838 * hint page fault handler, the hint page fault latency is calculated 1839 * via, 1840 * 1841 * hint page fault latency = hint page fault time - scan time 1842 * 1843 * The smaller the hint page fault latency, the higher the possibility 1844 * for the page to be hot. 1845 */ 1846 static int numa_hint_fault_latency(struct folio *folio) 1847 { 1848 int last_time, time; 1849 1850 time = jiffies_to_msecs(jiffies); 1851 last_time = folio_xchg_access_time(folio, time); 1852 1853 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1854 } 1855 1856 /* 1857 * For memory tiering mode, too high promotion/demotion throughput may 1858 * hurt application latency. So we provide a mechanism to rate limit 1859 * the number of pages that are tried to be promoted. 1860 */ 1861 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1862 unsigned long rate_limit, int nr) 1863 { 1864 unsigned long nr_cand; 1865 unsigned int now, start; 1866 1867 now = jiffies_to_msecs(jiffies); 1868 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1869 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1870 start = pgdat->nbp_rl_start; 1871 if (now - start > MSEC_PER_SEC && 1872 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1873 pgdat->nbp_rl_nr_cand = nr_cand; 1874 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1875 return true; 1876 return false; 1877 } 1878 1879 #define NUMA_MIGRATION_ADJUST_STEPS 16 1880 1881 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1882 unsigned long rate_limit, 1883 unsigned int ref_th) 1884 { 1885 unsigned int now, start, th_period, unit_th, th; 1886 unsigned long nr_cand, ref_cand, diff_cand; 1887 1888 now = jiffies_to_msecs(jiffies); 1889 th_period = sysctl_numa_balancing_scan_period_max; 1890 start = pgdat->nbp_th_start; 1891 if (now - start > th_period && 1892 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1893 ref_cand = rate_limit * 1894 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1895 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1896 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1897 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1898 th = pgdat->nbp_threshold ? : ref_th; 1899 if (diff_cand > ref_cand * 11 / 10) 1900 th = max(th - unit_th, unit_th); 1901 else if (diff_cand < ref_cand * 9 / 10) 1902 th = min(th + unit_th, ref_th * 2); 1903 pgdat->nbp_th_nr_cand = nr_cand; 1904 pgdat->nbp_threshold = th; 1905 } 1906 } 1907 1908 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1909 int src_nid, int dst_cpu) 1910 { 1911 struct numa_group *ng = deref_curr_numa_group(p); 1912 int dst_nid = cpu_to_node(dst_cpu); 1913 int last_cpupid, this_cpupid; 1914 1915 /* 1916 * Cannot migrate to memoryless nodes. 1917 */ 1918 if (!node_state(dst_nid, N_MEMORY)) 1919 return false; 1920 1921 /* 1922 * The pages in slow memory node should be migrated according 1923 * to hot/cold instead of private/shared. 1924 */ 1925 if (folio_use_access_time(folio)) { 1926 struct pglist_data *pgdat; 1927 unsigned long rate_limit; 1928 unsigned int latency, th, def_th; 1929 1930 pgdat = NODE_DATA(dst_nid); 1931 if (pgdat_free_space_enough(pgdat)) { 1932 /* workload changed, reset hot threshold */ 1933 pgdat->nbp_threshold = 0; 1934 return true; 1935 } 1936 1937 def_th = sysctl_numa_balancing_hot_threshold; 1938 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1939 (20 - PAGE_SHIFT); 1940 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1941 1942 th = pgdat->nbp_threshold ? : def_th; 1943 latency = numa_hint_fault_latency(folio); 1944 if (latency >= th) 1945 return false; 1946 1947 return !numa_promotion_rate_limit(pgdat, rate_limit, 1948 folio_nr_pages(folio)); 1949 } 1950 1951 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1952 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1953 1954 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1955 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1956 return false; 1957 1958 /* 1959 * Allow first faults or private faults to migrate immediately early in 1960 * the lifetime of a task. The magic number 4 is based on waiting for 1961 * two full passes of the "multi-stage node selection" test that is 1962 * executed below. 1963 */ 1964 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1965 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1966 return true; 1967 1968 /* 1969 * Multi-stage node selection is used in conjunction with a periodic 1970 * migration fault to build a temporal task<->page relation. By using 1971 * a two-stage filter we remove short/unlikely relations. 1972 * 1973 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1974 * a task's usage of a particular page (n_p) per total usage of this 1975 * page (n_t) (in a given time-span) to a probability. 1976 * 1977 * Our periodic faults will sample this probability and getting the 1978 * same result twice in a row, given these samples are fully 1979 * independent, is then given by P(n)^2, provided our sample period 1980 * is sufficiently short compared to the usage pattern. 1981 * 1982 * This quadric squishes small probabilities, making it less likely we 1983 * act on an unlikely task<->page relation. 1984 */ 1985 if (!cpupid_pid_unset(last_cpupid) && 1986 cpupid_to_nid(last_cpupid) != dst_nid) 1987 return false; 1988 1989 /* Always allow migrate on private faults */ 1990 if (cpupid_match_pid(p, last_cpupid)) 1991 return true; 1992 1993 /* A shared fault, but p->numa_group has not been set up yet. */ 1994 if (!ng) 1995 return true; 1996 1997 /* 1998 * Destination node is much more heavily used than the source 1999 * node? Allow migration. 2000 */ 2001 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 2002 ACTIVE_NODE_FRACTION) 2003 return true; 2004 2005 /* 2006 * Distribute memory according to CPU & memory use on each node, 2007 * with 3/4 hysteresis to avoid unnecessary memory migrations: 2008 * 2009 * faults_cpu(dst) 3 faults_cpu(src) 2010 * --------------- * - > --------------- 2011 * faults_mem(dst) 4 faults_mem(src) 2012 */ 2013 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 2014 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 2015 } 2016 2017 /* 2018 * 'numa_type' describes the node at the moment of load balancing. 2019 */ 2020 enum numa_type { 2021 /* The node has spare capacity that can be used to run more tasks. */ 2022 node_has_spare = 0, 2023 /* 2024 * The node is fully used and the tasks don't compete for more CPU 2025 * cycles. Nevertheless, some tasks might wait before running. 2026 */ 2027 node_fully_busy, 2028 /* 2029 * The node is overloaded and can't provide expected CPU cycles to all 2030 * tasks. 2031 */ 2032 node_overloaded 2033 }; 2034 2035 /* Cached statistics for all CPUs within a node */ 2036 struct numa_stats { 2037 unsigned long load; 2038 unsigned long runnable; 2039 unsigned long util; 2040 /* Total compute capacity of CPUs on a node */ 2041 unsigned long compute_capacity; 2042 unsigned int nr_running; 2043 unsigned int weight; 2044 enum numa_type node_type; 2045 int idle_cpu; 2046 }; 2047 2048 struct task_numa_env { 2049 struct task_struct *p; 2050 2051 int src_cpu, src_nid; 2052 int dst_cpu, dst_nid; 2053 int imb_numa_nr; 2054 2055 struct numa_stats src_stats, dst_stats; 2056 2057 int imbalance_pct; 2058 int dist; 2059 2060 struct task_struct *best_task; 2061 long best_imp; 2062 int best_cpu; 2063 }; 2064 2065 static unsigned long cpu_load(struct rq *rq); 2066 static unsigned long cpu_runnable(struct rq *rq); 2067 2068 static inline enum 2069 numa_type numa_classify(unsigned int imbalance_pct, 2070 struct numa_stats *ns) 2071 { 2072 if ((ns->nr_running > ns->weight) && 2073 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2074 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2075 return node_overloaded; 2076 2077 if ((ns->nr_running < ns->weight) || 2078 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2079 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2080 return node_has_spare; 2081 2082 return node_fully_busy; 2083 } 2084 2085 #ifdef CONFIG_SCHED_SMT 2086 /* Forward declarations of select_idle_sibling helpers */ 2087 static inline bool test_idle_cores(int cpu); 2088 static inline int numa_idle_core(int idle_core, int cpu) 2089 { 2090 if (!static_branch_likely(&sched_smt_present) || 2091 idle_core >= 0 || !test_idle_cores(cpu)) 2092 return idle_core; 2093 2094 /* 2095 * Prefer cores instead of packing HT siblings 2096 * and triggering future load balancing. 2097 */ 2098 if (is_core_idle(cpu)) 2099 idle_core = cpu; 2100 2101 return idle_core; 2102 } 2103 #else 2104 static inline int numa_idle_core(int idle_core, int cpu) 2105 { 2106 return idle_core; 2107 } 2108 #endif 2109 2110 /* 2111 * Gather all necessary information to make NUMA balancing placement 2112 * decisions that are compatible with standard load balancer. This 2113 * borrows code and logic from update_sg_lb_stats but sharing a 2114 * common implementation is impractical. 2115 */ 2116 static void update_numa_stats(struct task_numa_env *env, 2117 struct numa_stats *ns, int nid, 2118 bool find_idle) 2119 { 2120 int cpu, idle_core = -1; 2121 2122 memset(ns, 0, sizeof(*ns)); 2123 ns->idle_cpu = -1; 2124 2125 rcu_read_lock(); 2126 for_each_cpu(cpu, cpumask_of_node(nid)) { 2127 struct rq *rq = cpu_rq(cpu); 2128 2129 ns->load += cpu_load(rq); 2130 ns->runnable += cpu_runnable(rq); 2131 ns->util += cpu_util_cfs(cpu); 2132 ns->nr_running += rq->cfs.h_nr_runnable; 2133 ns->compute_capacity += capacity_of(cpu); 2134 2135 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2136 if (READ_ONCE(rq->numa_migrate_on) || 2137 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2138 continue; 2139 2140 if (ns->idle_cpu == -1) 2141 ns->idle_cpu = cpu; 2142 2143 idle_core = numa_idle_core(idle_core, cpu); 2144 } 2145 } 2146 rcu_read_unlock(); 2147 2148 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2149 2150 ns->node_type = numa_classify(env->imbalance_pct, ns); 2151 2152 if (idle_core >= 0) 2153 ns->idle_cpu = idle_core; 2154 } 2155 2156 static void task_numa_assign(struct task_numa_env *env, 2157 struct task_struct *p, long imp) 2158 { 2159 struct rq *rq = cpu_rq(env->dst_cpu); 2160 2161 /* Check if run-queue part of active NUMA balance. */ 2162 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2163 int cpu; 2164 int start = env->dst_cpu; 2165 2166 /* Find alternative idle CPU. */ 2167 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2168 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2169 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2170 continue; 2171 } 2172 2173 env->dst_cpu = cpu; 2174 rq = cpu_rq(env->dst_cpu); 2175 if (!xchg(&rq->numa_migrate_on, 1)) 2176 goto assign; 2177 } 2178 2179 /* Failed to find an alternative idle CPU */ 2180 return; 2181 } 2182 2183 assign: 2184 /* 2185 * Clear previous best_cpu/rq numa-migrate flag, since task now 2186 * found a better CPU to move/swap. 2187 */ 2188 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2189 rq = cpu_rq(env->best_cpu); 2190 WRITE_ONCE(rq->numa_migrate_on, 0); 2191 } 2192 2193 if (env->best_task) 2194 put_task_struct(env->best_task); 2195 if (p) 2196 get_task_struct(p); 2197 2198 env->best_task = p; 2199 env->best_imp = imp; 2200 env->best_cpu = env->dst_cpu; 2201 } 2202 2203 static bool load_too_imbalanced(long src_load, long dst_load, 2204 struct task_numa_env *env) 2205 { 2206 long imb, old_imb; 2207 long orig_src_load, orig_dst_load; 2208 long src_capacity, dst_capacity; 2209 2210 /* 2211 * The load is corrected for the CPU capacity available on each node. 2212 * 2213 * src_load dst_load 2214 * ------------ vs --------- 2215 * src_capacity dst_capacity 2216 */ 2217 src_capacity = env->src_stats.compute_capacity; 2218 dst_capacity = env->dst_stats.compute_capacity; 2219 2220 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2221 2222 orig_src_load = env->src_stats.load; 2223 orig_dst_load = env->dst_stats.load; 2224 2225 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2226 2227 /* Would this change make things worse? */ 2228 return (imb > old_imb); 2229 } 2230 2231 /* 2232 * Maximum NUMA importance can be 1998 (2*999); 2233 * SMALLIMP @ 30 would be close to 1998/64. 2234 * Used to deter task migration. 2235 */ 2236 #define SMALLIMP 30 2237 2238 /* 2239 * This checks if the overall compute and NUMA accesses of the system would 2240 * be improved if the source tasks was migrated to the target dst_cpu taking 2241 * into account that it might be best if task running on the dst_cpu should 2242 * be exchanged with the source task 2243 */ 2244 static bool task_numa_compare(struct task_numa_env *env, 2245 long taskimp, long groupimp, bool maymove) 2246 { 2247 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2248 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2249 long imp = p_ng ? groupimp : taskimp; 2250 struct task_struct *cur; 2251 long src_load, dst_load; 2252 int dist = env->dist; 2253 long moveimp = imp; 2254 long load; 2255 bool stopsearch = false; 2256 2257 if (READ_ONCE(dst_rq->numa_migrate_on)) 2258 return false; 2259 2260 rcu_read_lock(); 2261 cur = rcu_dereference(dst_rq->curr); 2262 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2263 cur = NULL; 2264 2265 /* 2266 * Because we have preemption enabled we can get migrated around and 2267 * end try selecting ourselves (current == env->p) as a swap candidate. 2268 */ 2269 if (cur == env->p) { 2270 stopsearch = true; 2271 goto unlock; 2272 } 2273 2274 if (!cur) { 2275 if (maymove && moveimp >= env->best_imp) 2276 goto assign; 2277 else 2278 goto unlock; 2279 } 2280 2281 /* Skip this swap candidate if cannot move to the source cpu. */ 2282 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2283 goto unlock; 2284 2285 /* 2286 * Skip this swap candidate if it is not moving to its preferred 2287 * node and the best task is. 2288 */ 2289 if (env->best_task && 2290 env->best_task->numa_preferred_nid == env->src_nid && 2291 cur->numa_preferred_nid != env->src_nid) { 2292 goto unlock; 2293 } 2294 2295 /* 2296 * "imp" is the fault differential for the source task between the 2297 * source and destination node. Calculate the total differential for 2298 * the source task and potential destination task. The more negative 2299 * the value is, the more remote accesses that would be expected to 2300 * be incurred if the tasks were swapped. 2301 * 2302 * If dst and source tasks are in the same NUMA group, or not 2303 * in any group then look only at task weights. 2304 */ 2305 cur_ng = rcu_dereference(cur->numa_group); 2306 if (cur_ng == p_ng) { 2307 /* 2308 * Do not swap within a group or between tasks that have 2309 * no group if there is spare capacity. Swapping does 2310 * not address the load imbalance and helps one task at 2311 * the cost of punishing another. 2312 */ 2313 if (env->dst_stats.node_type == node_has_spare) 2314 goto unlock; 2315 2316 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2317 task_weight(cur, env->dst_nid, dist); 2318 /* 2319 * Add some hysteresis to prevent swapping the 2320 * tasks within a group over tiny differences. 2321 */ 2322 if (cur_ng) 2323 imp -= imp / 16; 2324 } else { 2325 /* 2326 * Compare the group weights. If a task is all by itself 2327 * (not part of a group), use the task weight instead. 2328 */ 2329 if (cur_ng && p_ng) 2330 imp += group_weight(cur, env->src_nid, dist) - 2331 group_weight(cur, env->dst_nid, dist); 2332 else 2333 imp += task_weight(cur, env->src_nid, dist) - 2334 task_weight(cur, env->dst_nid, dist); 2335 } 2336 2337 /* Discourage picking a task already on its preferred node */ 2338 if (cur->numa_preferred_nid == env->dst_nid) 2339 imp -= imp / 16; 2340 2341 /* 2342 * Encourage picking a task that moves to its preferred node. 2343 * This potentially makes imp larger than it's maximum of 2344 * 1998 (see SMALLIMP and task_weight for why) but in this 2345 * case, it does not matter. 2346 */ 2347 if (cur->numa_preferred_nid == env->src_nid) 2348 imp += imp / 8; 2349 2350 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2351 imp = moveimp; 2352 cur = NULL; 2353 goto assign; 2354 } 2355 2356 /* 2357 * Prefer swapping with a task moving to its preferred node over a 2358 * task that is not. 2359 */ 2360 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2361 env->best_task->numa_preferred_nid != env->src_nid) { 2362 goto assign; 2363 } 2364 2365 /* 2366 * If the NUMA importance is less than SMALLIMP, 2367 * task migration might only result in ping pong 2368 * of tasks and also hurt performance due to cache 2369 * misses. 2370 */ 2371 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2372 goto unlock; 2373 2374 /* 2375 * In the overloaded case, try and keep the load balanced. 2376 */ 2377 load = task_h_load(env->p) - task_h_load(cur); 2378 if (!load) 2379 goto assign; 2380 2381 dst_load = env->dst_stats.load + load; 2382 src_load = env->src_stats.load - load; 2383 2384 if (load_too_imbalanced(src_load, dst_load, env)) 2385 goto unlock; 2386 2387 assign: 2388 /* Evaluate an idle CPU for a task numa move. */ 2389 if (!cur) { 2390 int cpu = env->dst_stats.idle_cpu; 2391 2392 /* Nothing cached so current CPU went idle since the search. */ 2393 if (cpu < 0) 2394 cpu = env->dst_cpu; 2395 2396 /* 2397 * If the CPU is no longer truly idle and the previous best CPU 2398 * is, keep using it. 2399 */ 2400 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2401 idle_cpu(env->best_cpu)) { 2402 cpu = env->best_cpu; 2403 } 2404 2405 env->dst_cpu = cpu; 2406 } 2407 2408 task_numa_assign(env, cur, imp); 2409 2410 /* 2411 * If a move to idle is allowed because there is capacity or load 2412 * balance improves then stop the search. While a better swap 2413 * candidate may exist, a search is not free. 2414 */ 2415 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2416 stopsearch = true; 2417 2418 /* 2419 * If a swap candidate must be identified and the current best task 2420 * moves its preferred node then stop the search. 2421 */ 2422 if (!maymove && env->best_task && 2423 env->best_task->numa_preferred_nid == env->src_nid) { 2424 stopsearch = true; 2425 } 2426 unlock: 2427 rcu_read_unlock(); 2428 2429 return stopsearch; 2430 } 2431 2432 static void task_numa_find_cpu(struct task_numa_env *env, 2433 long taskimp, long groupimp) 2434 { 2435 bool maymove = false; 2436 int cpu; 2437 2438 /* 2439 * If dst node has spare capacity, then check if there is an 2440 * imbalance that would be overruled by the load balancer. 2441 */ 2442 if (env->dst_stats.node_type == node_has_spare) { 2443 unsigned int imbalance; 2444 int src_running, dst_running; 2445 2446 /* 2447 * Would movement cause an imbalance? Note that if src has 2448 * more running tasks that the imbalance is ignored as the 2449 * move improves the imbalance from the perspective of the 2450 * CPU load balancer. 2451 * */ 2452 src_running = env->src_stats.nr_running - 1; 2453 dst_running = env->dst_stats.nr_running + 1; 2454 imbalance = max(0, dst_running - src_running); 2455 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2456 env->imb_numa_nr); 2457 2458 /* Use idle CPU if there is no imbalance */ 2459 if (!imbalance) { 2460 maymove = true; 2461 if (env->dst_stats.idle_cpu >= 0) { 2462 env->dst_cpu = env->dst_stats.idle_cpu; 2463 task_numa_assign(env, NULL, 0); 2464 return; 2465 } 2466 } 2467 } else { 2468 long src_load, dst_load, load; 2469 /* 2470 * If the improvement from just moving env->p direction is better 2471 * than swapping tasks around, check if a move is possible. 2472 */ 2473 load = task_h_load(env->p); 2474 dst_load = env->dst_stats.load + load; 2475 src_load = env->src_stats.load - load; 2476 maymove = !load_too_imbalanced(src_load, dst_load, env); 2477 } 2478 2479 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2480 /* Skip this CPU if the source task cannot migrate */ 2481 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2482 continue; 2483 2484 env->dst_cpu = cpu; 2485 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2486 break; 2487 } 2488 } 2489 2490 static int task_numa_migrate(struct task_struct *p) 2491 { 2492 struct task_numa_env env = { 2493 .p = p, 2494 2495 .src_cpu = task_cpu(p), 2496 .src_nid = task_node(p), 2497 2498 .imbalance_pct = 112, 2499 2500 .best_task = NULL, 2501 .best_imp = 0, 2502 .best_cpu = -1, 2503 }; 2504 unsigned long taskweight, groupweight; 2505 struct sched_domain *sd; 2506 long taskimp, groupimp; 2507 struct numa_group *ng; 2508 struct rq *best_rq; 2509 int nid, ret, dist; 2510 2511 /* 2512 * Pick the lowest SD_NUMA domain, as that would have the smallest 2513 * imbalance and would be the first to start moving tasks about. 2514 * 2515 * And we want to avoid any moving of tasks about, as that would create 2516 * random movement of tasks -- counter the numa conditions we're trying 2517 * to satisfy here. 2518 */ 2519 rcu_read_lock(); 2520 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2521 if (sd) { 2522 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2523 env.imb_numa_nr = sd->imb_numa_nr; 2524 } 2525 rcu_read_unlock(); 2526 2527 /* 2528 * Cpusets can break the scheduler domain tree into smaller 2529 * balance domains, some of which do not cross NUMA boundaries. 2530 * Tasks that are "trapped" in such domains cannot be migrated 2531 * elsewhere, so there is no point in (re)trying. 2532 */ 2533 if (unlikely(!sd)) { 2534 sched_setnuma(p, task_node(p)); 2535 return -EINVAL; 2536 } 2537 2538 env.dst_nid = p->numa_preferred_nid; 2539 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2540 taskweight = task_weight(p, env.src_nid, dist); 2541 groupweight = group_weight(p, env.src_nid, dist); 2542 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2543 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2544 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2545 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2546 2547 /* Try to find a spot on the preferred nid. */ 2548 task_numa_find_cpu(&env, taskimp, groupimp); 2549 2550 /* 2551 * Look at other nodes in these cases: 2552 * - there is no space available on the preferred_nid 2553 * - the task is part of a numa_group that is interleaved across 2554 * multiple NUMA nodes; in order to better consolidate the group, 2555 * we need to check other locations. 2556 */ 2557 ng = deref_curr_numa_group(p); 2558 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2559 for_each_node_state(nid, N_CPU) { 2560 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2561 continue; 2562 2563 dist = node_distance(env.src_nid, env.dst_nid); 2564 if (sched_numa_topology_type == NUMA_BACKPLANE && 2565 dist != env.dist) { 2566 taskweight = task_weight(p, env.src_nid, dist); 2567 groupweight = group_weight(p, env.src_nid, dist); 2568 } 2569 2570 /* Only consider nodes where both task and groups benefit */ 2571 taskimp = task_weight(p, nid, dist) - taskweight; 2572 groupimp = group_weight(p, nid, dist) - groupweight; 2573 if (taskimp < 0 && groupimp < 0) 2574 continue; 2575 2576 env.dist = dist; 2577 env.dst_nid = nid; 2578 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2579 task_numa_find_cpu(&env, taskimp, groupimp); 2580 } 2581 } 2582 2583 /* 2584 * If the task is part of a workload that spans multiple NUMA nodes, 2585 * and is migrating into one of the workload's active nodes, remember 2586 * this node as the task's preferred numa node, so the workload can 2587 * settle down. 2588 * A task that migrated to a second choice node will be better off 2589 * trying for a better one later. Do not set the preferred node here. 2590 */ 2591 if (ng) { 2592 if (env.best_cpu == -1) 2593 nid = env.src_nid; 2594 else 2595 nid = cpu_to_node(env.best_cpu); 2596 2597 if (nid != p->numa_preferred_nid) 2598 sched_setnuma(p, nid); 2599 } 2600 2601 /* No better CPU than the current one was found. */ 2602 if (env.best_cpu == -1) { 2603 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2604 return -EAGAIN; 2605 } 2606 2607 best_rq = cpu_rq(env.best_cpu); 2608 if (env.best_task == NULL) { 2609 ret = migrate_task_to(p, env.best_cpu); 2610 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2611 if (ret != 0) 2612 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2613 return ret; 2614 } 2615 2616 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2617 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2618 2619 if (ret != 0) 2620 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2621 put_task_struct(env.best_task); 2622 return ret; 2623 } 2624 2625 /* Attempt to migrate a task to a CPU on the preferred node. */ 2626 static void numa_migrate_preferred(struct task_struct *p) 2627 { 2628 unsigned long interval = HZ; 2629 2630 /* This task has no NUMA fault statistics yet */ 2631 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2632 return; 2633 2634 /* Periodically retry migrating the task to the preferred node */ 2635 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2636 p->numa_migrate_retry = jiffies + interval; 2637 2638 /* Success if task is already running on preferred CPU */ 2639 if (task_node(p) == p->numa_preferred_nid) 2640 return; 2641 2642 /* Otherwise, try migrate to a CPU on the preferred node */ 2643 task_numa_migrate(p); 2644 } 2645 2646 /* 2647 * Find out how many nodes the workload is actively running on. Do this by 2648 * tracking the nodes from which NUMA hinting faults are triggered. This can 2649 * be different from the set of nodes where the workload's memory is currently 2650 * located. 2651 */ 2652 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2653 { 2654 unsigned long faults, max_faults = 0; 2655 int nid, active_nodes = 0; 2656 2657 for_each_node_state(nid, N_CPU) { 2658 faults = group_faults_cpu(numa_group, nid); 2659 if (faults > max_faults) 2660 max_faults = faults; 2661 } 2662 2663 for_each_node_state(nid, N_CPU) { 2664 faults = group_faults_cpu(numa_group, nid); 2665 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2666 active_nodes++; 2667 } 2668 2669 numa_group->max_faults_cpu = max_faults; 2670 numa_group->active_nodes = active_nodes; 2671 } 2672 2673 /* 2674 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2675 * increments. The more local the fault statistics are, the higher the scan 2676 * period will be for the next scan window. If local/(local+remote) ratio is 2677 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2678 * the scan period will decrease. Aim for 70% local accesses. 2679 */ 2680 #define NUMA_PERIOD_SLOTS 10 2681 #define NUMA_PERIOD_THRESHOLD 7 2682 2683 /* 2684 * Increase the scan period (slow down scanning) if the majority of 2685 * our memory is already on our local node, or if the majority of 2686 * the page accesses are shared with other processes. 2687 * Otherwise, decrease the scan period. 2688 */ 2689 static void update_task_scan_period(struct task_struct *p, 2690 unsigned long shared, unsigned long private) 2691 { 2692 unsigned int period_slot; 2693 int lr_ratio, ps_ratio; 2694 int diff; 2695 2696 unsigned long remote = p->numa_faults_locality[0]; 2697 unsigned long local = p->numa_faults_locality[1]; 2698 2699 /* 2700 * If there were no record hinting faults then either the task is 2701 * completely idle or all activity is in areas that are not of interest 2702 * to automatic numa balancing. Related to that, if there were failed 2703 * migration then it implies we are migrating too quickly or the local 2704 * node is overloaded. In either case, scan slower 2705 */ 2706 if (local + shared == 0 || p->numa_faults_locality[2]) { 2707 p->numa_scan_period = min(p->numa_scan_period_max, 2708 p->numa_scan_period << 1); 2709 2710 p->mm->numa_next_scan = jiffies + 2711 msecs_to_jiffies(p->numa_scan_period); 2712 2713 return; 2714 } 2715 2716 /* 2717 * Prepare to scale scan period relative to the current period. 2718 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2719 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2720 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2721 */ 2722 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2723 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2724 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2725 2726 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2727 /* 2728 * Most memory accesses are local. There is no need to 2729 * do fast NUMA scanning, since memory is already local. 2730 */ 2731 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2732 if (!slot) 2733 slot = 1; 2734 diff = slot * period_slot; 2735 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2736 /* 2737 * Most memory accesses are shared with other tasks. 2738 * There is no point in continuing fast NUMA scanning, 2739 * since other tasks may just move the memory elsewhere. 2740 */ 2741 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2742 if (!slot) 2743 slot = 1; 2744 diff = slot * period_slot; 2745 } else { 2746 /* 2747 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2748 * yet they are not on the local NUMA node. Speed up 2749 * NUMA scanning to get the memory moved over. 2750 */ 2751 int ratio = max(lr_ratio, ps_ratio); 2752 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2753 } 2754 2755 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2756 task_scan_min(p), task_scan_max(p)); 2757 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2758 } 2759 2760 /* 2761 * Get the fraction of time the task has been running since the last 2762 * NUMA placement cycle. The scheduler keeps similar statistics, but 2763 * decays those on a 32ms period, which is orders of magnitude off 2764 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2765 * stats only if the task is so new there are no NUMA statistics yet. 2766 */ 2767 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2768 { 2769 u64 runtime, delta, now; 2770 /* Use the start of this time slice to avoid calculations. */ 2771 now = p->se.exec_start; 2772 runtime = p->se.sum_exec_runtime; 2773 2774 if (p->last_task_numa_placement) { 2775 delta = runtime - p->last_sum_exec_runtime; 2776 *period = now - p->last_task_numa_placement; 2777 2778 /* Avoid time going backwards, prevent potential divide error: */ 2779 if (unlikely((s64)*period < 0)) 2780 *period = 0; 2781 } else { 2782 delta = p->se.avg.load_sum; 2783 *period = LOAD_AVG_MAX; 2784 } 2785 2786 p->last_sum_exec_runtime = runtime; 2787 p->last_task_numa_placement = now; 2788 2789 return delta; 2790 } 2791 2792 /* 2793 * Determine the preferred nid for a task in a numa_group. This needs to 2794 * be done in a way that produces consistent results with group_weight, 2795 * otherwise workloads might not converge. 2796 */ 2797 static int preferred_group_nid(struct task_struct *p, int nid) 2798 { 2799 nodemask_t nodes; 2800 int dist; 2801 2802 /* Direct connections between all NUMA nodes. */ 2803 if (sched_numa_topology_type == NUMA_DIRECT) 2804 return nid; 2805 2806 /* 2807 * On a system with glueless mesh NUMA topology, group_weight 2808 * scores nodes according to the number of NUMA hinting faults on 2809 * both the node itself, and on nearby nodes. 2810 */ 2811 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2812 unsigned long score, max_score = 0; 2813 int node, max_node = nid; 2814 2815 dist = sched_max_numa_distance; 2816 2817 for_each_node_state(node, N_CPU) { 2818 score = group_weight(p, node, dist); 2819 if (score > max_score) { 2820 max_score = score; 2821 max_node = node; 2822 } 2823 } 2824 return max_node; 2825 } 2826 2827 /* 2828 * Finding the preferred nid in a system with NUMA backplane 2829 * interconnect topology is more involved. The goal is to locate 2830 * tasks from numa_groups near each other in the system, and 2831 * untangle workloads from different sides of the system. This requires 2832 * searching down the hierarchy of node groups, recursively searching 2833 * inside the highest scoring group of nodes. The nodemask tricks 2834 * keep the complexity of the search down. 2835 */ 2836 nodes = node_states[N_CPU]; 2837 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2838 unsigned long max_faults = 0; 2839 nodemask_t max_group = NODE_MASK_NONE; 2840 int a, b; 2841 2842 /* Are there nodes at this distance from each other? */ 2843 if (!find_numa_distance(dist)) 2844 continue; 2845 2846 for_each_node_mask(a, nodes) { 2847 unsigned long faults = 0; 2848 nodemask_t this_group; 2849 nodes_clear(this_group); 2850 2851 /* Sum group's NUMA faults; includes a==b case. */ 2852 for_each_node_mask(b, nodes) { 2853 if (node_distance(a, b) < dist) { 2854 faults += group_faults(p, b); 2855 node_set(b, this_group); 2856 node_clear(b, nodes); 2857 } 2858 } 2859 2860 /* Remember the top group. */ 2861 if (faults > max_faults) { 2862 max_faults = faults; 2863 max_group = this_group; 2864 /* 2865 * subtle: at the smallest distance there is 2866 * just one node left in each "group", the 2867 * winner is the preferred nid. 2868 */ 2869 nid = a; 2870 } 2871 } 2872 /* Next round, evaluate the nodes within max_group. */ 2873 if (!max_faults) 2874 break; 2875 nodes = max_group; 2876 } 2877 return nid; 2878 } 2879 2880 static void task_numa_placement(struct task_struct *p) 2881 { 2882 int seq, nid, max_nid = NUMA_NO_NODE; 2883 unsigned long max_faults = 0; 2884 unsigned long fault_types[2] = { 0, 0 }; 2885 unsigned long total_faults; 2886 u64 runtime, period; 2887 spinlock_t *group_lock = NULL; 2888 struct numa_group *ng; 2889 2890 /* 2891 * The p->mm->numa_scan_seq field gets updated without 2892 * exclusive access. Use READ_ONCE() here to ensure 2893 * that the field is read in a single access: 2894 */ 2895 seq = READ_ONCE(p->mm->numa_scan_seq); 2896 if (p->numa_scan_seq == seq) 2897 return; 2898 p->numa_scan_seq = seq; 2899 p->numa_scan_period_max = task_scan_max(p); 2900 2901 total_faults = p->numa_faults_locality[0] + 2902 p->numa_faults_locality[1]; 2903 runtime = numa_get_avg_runtime(p, &period); 2904 2905 /* If the task is part of a group prevent parallel updates to group stats */ 2906 ng = deref_curr_numa_group(p); 2907 if (ng) { 2908 group_lock = &ng->lock; 2909 spin_lock_irq(group_lock); 2910 } 2911 2912 /* Find the node with the highest number of faults */ 2913 for_each_online_node(nid) { 2914 /* Keep track of the offsets in numa_faults array */ 2915 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2916 unsigned long faults = 0, group_faults = 0; 2917 int priv; 2918 2919 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2920 long diff, f_diff, f_weight; 2921 2922 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2923 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2924 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2925 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2926 2927 /* Decay existing window, copy faults since last scan */ 2928 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2929 fault_types[priv] += p->numa_faults[membuf_idx]; 2930 p->numa_faults[membuf_idx] = 0; 2931 2932 /* 2933 * Normalize the faults_from, so all tasks in a group 2934 * count according to CPU use, instead of by the raw 2935 * number of faults. Tasks with little runtime have 2936 * little over-all impact on throughput, and thus their 2937 * faults are less important. 2938 */ 2939 f_weight = div64_u64(runtime << 16, period + 1); 2940 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2941 (total_faults + 1); 2942 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2943 p->numa_faults[cpubuf_idx] = 0; 2944 2945 p->numa_faults[mem_idx] += diff; 2946 p->numa_faults[cpu_idx] += f_diff; 2947 faults += p->numa_faults[mem_idx]; 2948 p->total_numa_faults += diff; 2949 if (ng) { 2950 /* 2951 * safe because we can only change our own group 2952 * 2953 * mem_idx represents the offset for a given 2954 * nid and priv in a specific region because it 2955 * is at the beginning of the numa_faults array. 2956 */ 2957 ng->faults[mem_idx] += diff; 2958 ng->faults[cpu_idx] += f_diff; 2959 ng->total_faults += diff; 2960 group_faults += ng->faults[mem_idx]; 2961 } 2962 } 2963 2964 if (!ng) { 2965 if (faults > max_faults) { 2966 max_faults = faults; 2967 max_nid = nid; 2968 } 2969 } else if (group_faults > max_faults) { 2970 max_faults = group_faults; 2971 max_nid = nid; 2972 } 2973 } 2974 2975 /* Cannot migrate task to CPU-less node */ 2976 max_nid = numa_nearest_node(max_nid, N_CPU); 2977 2978 if (ng) { 2979 numa_group_count_active_nodes(ng); 2980 spin_unlock_irq(group_lock); 2981 max_nid = preferred_group_nid(p, max_nid); 2982 } 2983 2984 if (max_faults) { 2985 /* Set the new preferred node */ 2986 if (max_nid != p->numa_preferred_nid) 2987 sched_setnuma(p, max_nid); 2988 } 2989 2990 update_task_scan_period(p, fault_types[0], fault_types[1]); 2991 } 2992 2993 static inline int get_numa_group(struct numa_group *grp) 2994 { 2995 return refcount_inc_not_zero(&grp->refcount); 2996 } 2997 2998 static inline void put_numa_group(struct numa_group *grp) 2999 { 3000 if (refcount_dec_and_test(&grp->refcount)) 3001 kfree_rcu(grp, rcu); 3002 } 3003 3004 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 3005 int *priv) 3006 { 3007 struct numa_group *grp, *my_grp; 3008 struct task_struct *tsk; 3009 bool join = false; 3010 int cpu = cpupid_to_cpu(cpupid); 3011 int i; 3012 3013 if (unlikely(!deref_curr_numa_group(p))) { 3014 unsigned int size = sizeof(struct numa_group) + 3015 NR_NUMA_HINT_FAULT_STATS * 3016 nr_node_ids * sizeof(unsigned long); 3017 3018 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 3019 if (!grp) 3020 return; 3021 3022 refcount_set(&grp->refcount, 1); 3023 grp->active_nodes = 1; 3024 grp->max_faults_cpu = 0; 3025 spin_lock_init(&grp->lock); 3026 grp->gid = p->pid; 3027 3028 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3029 grp->faults[i] = p->numa_faults[i]; 3030 3031 grp->total_faults = p->total_numa_faults; 3032 3033 grp->nr_tasks++; 3034 rcu_assign_pointer(p->numa_group, grp); 3035 } 3036 3037 rcu_read_lock(); 3038 tsk = READ_ONCE(cpu_rq(cpu)->curr); 3039 3040 if (!cpupid_match_pid(tsk, cpupid)) 3041 goto no_join; 3042 3043 grp = rcu_dereference(tsk->numa_group); 3044 if (!grp) 3045 goto no_join; 3046 3047 my_grp = deref_curr_numa_group(p); 3048 if (grp == my_grp) 3049 goto no_join; 3050 3051 /* 3052 * Only join the other group if its bigger; if we're the bigger group, 3053 * the other task will join us. 3054 */ 3055 if (my_grp->nr_tasks > grp->nr_tasks) 3056 goto no_join; 3057 3058 /* 3059 * Tie-break on the grp address. 3060 */ 3061 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3062 goto no_join; 3063 3064 /* Always join threads in the same process. */ 3065 if (tsk->mm == current->mm) 3066 join = true; 3067 3068 /* Simple filter to avoid false positives due to PID collisions */ 3069 if (flags & TNF_SHARED) 3070 join = true; 3071 3072 /* Update priv based on whether false sharing was detected */ 3073 *priv = !join; 3074 3075 if (join && !get_numa_group(grp)) 3076 goto no_join; 3077 3078 rcu_read_unlock(); 3079 3080 if (!join) 3081 return; 3082 3083 WARN_ON_ONCE(irqs_disabled()); 3084 double_lock_irq(&my_grp->lock, &grp->lock); 3085 3086 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3087 my_grp->faults[i] -= p->numa_faults[i]; 3088 grp->faults[i] += p->numa_faults[i]; 3089 } 3090 my_grp->total_faults -= p->total_numa_faults; 3091 grp->total_faults += p->total_numa_faults; 3092 3093 my_grp->nr_tasks--; 3094 grp->nr_tasks++; 3095 3096 spin_unlock(&my_grp->lock); 3097 spin_unlock_irq(&grp->lock); 3098 3099 rcu_assign_pointer(p->numa_group, grp); 3100 3101 put_numa_group(my_grp); 3102 return; 3103 3104 no_join: 3105 rcu_read_unlock(); 3106 return; 3107 } 3108 3109 /* 3110 * Get rid of NUMA statistics associated with a task (either current or dead). 3111 * If @final is set, the task is dead and has reached refcount zero, so we can 3112 * safely free all relevant data structures. Otherwise, there might be 3113 * concurrent reads from places like load balancing and procfs, and we should 3114 * reset the data back to default state without freeing ->numa_faults. 3115 */ 3116 void task_numa_free(struct task_struct *p, bool final) 3117 { 3118 /* safe: p either is current or is being freed by current */ 3119 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3120 unsigned long *numa_faults = p->numa_faults; 3121 unsigned long flags; 3122 int i; 3123 3124 if (!numa_faults) 3125 return; 3126 3127 if (grp) { 3128 spin_lock_irqsave(&grp->lock, flags); 3129 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3130 grp->faults[i] -= p->numa_faults[i]; 3131 grp->total_faults -= p->total_numa_faults; 3132 3133 grp->nr_tasks--; 3134 spin_unlock_irqrestore(&grp->lock, flags); 3135 RCU_INIT_POINTER(p->numa_group, NULL); 3136 put_numa_group(grp); 3137 } 3138 3139 if (final) { 3140 p->numa_faults = NULL; 3141 kfree(numa_faults); 3142 } else { 3143 p->total_numa_faults = 0; 3144 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3145 numa_faults[i] = 0; 3146 } 3147 } 3148 3149 /* 3150 * Got a PROT_NONE fault for a page on @node. 3151 */ 3152 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3153 { 3154 struct task_struct *p = current; 3155 bool migrated = flags & TNF_MIGRATED; 3156 int cpu_node = task_node(current); 3157 int local = !!(flags & TNF_FAULT_LOCAL); 3158 struct numa_group *ng; 3159 int priv; 3160 3161 if (!static_branch_likely(&sched_numa_balancing)) 3162 return; 3163 3164 /* for example, ksmd faulting in a user's mm */ 3165 if (!p->mm) 3166 return; 3167 3168 /* 3169 * NUMA faults statistics are unnecessary for the slow memory 3170 * node for memory tiering mode. 3171 */ 3172 if (!node_is_toptier(mem_node) && 3173 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3174 !cpupid_valid(last_cpupid))) 3175 return; 3176 3177 /* Allocate buffer to track faults on a per-node basis */ 3178 if (unlikely(!p->numa_faults)) { 3179 int size = sizeof(*p->numa_faults) * 3180 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3181 3182 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3183 if (!p->numa_faults) 3184 return; 3185 3186 p->total_numa_faults = 0; 3187 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3188 } 3189 3190 /* 3191 * First accesses are treated as private, otherwise consider accesses 3192 * to be private if the accessing pid has not changed 3193 */ 3194 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3195 priv = 1; 3196 } else { 3197 priv = cpupid_match_pid(p, last_cpupid); 3198 if (!priv && !(flags & TNF_NO_GROUP)) 3199 task_numa_group(p, last_cpupid, flags, &priv); 3200 } 3201 3202 /* 3203 * If a workload spans multiple NUMA nodes, a shared fault that 3204 * occurs wholly within the set of nodes that the workload is 3205 * actively using should be counted as local. This allows the 3206 * scan rate to slow down when a workload has settled down. 3207 */ 3208 ng = deref_curr_numa_group(p); 3209 if (!priv && !local && ng && ng->active_nodes > 1 && 3210 numa_is_active_node(cpu_node, ng) && 3211 numa_is_active_node(mem_node, ng)) 3212 local = 1; 3213 3214 /* 3215 * Retry to migrate task to preferred node periodically, in case it 3216 * previously failed, or the scheduler moved us. 3217 */ 3218 if (time_after(jiffies, p->numa_migrate_retry)) { 3219 task_numa_placement(p); 3220 numa_migrate_preferred(p); 3221 } 3222 3223 if (migrated) 3224 p->numa_pages_migrated += pages; 3225 if (flags & TNF_MIGRATE_FAIL) 3226 p->numa_faults_locality[2] += pages; 3227 3228 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3229 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3230 p->numa_faults_locality[local] += pages; 3231 } 3232 3233 static void reset_ptenuma_scan(struct task_struct *p) 3234 { 3235 /* 3236 * We only did a read acquisition of the mmap sem, so 3237 * p->mm->numa_scan_seq is written to without exclusive access 3238 * and the update is not guaranteed to be atomic. That's not 3239 * much of an issue though, since this is just used for 3240 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3241 * expensive, to avoid any form of compiler optimizations: 3242 */ 3243 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3244 p->mm->numa_scan_offset = 0; 3245 } 3246 3247 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3248 { 3249 unsigned long pids; 3250 /* 3251 * Allow unconditional access first two times, so that all the (pages) 3252 * of VMAs get prot_none fault introduced irrespective of accesses. 3253 * This is also done to avoid any side effect of task scanning 3254 * amplifying the unfairness of disjoint set of VMAs' access. 3255 */ 3256 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3257 return true; 3258 3259 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3260 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3261 return true; 3262 3263 /* 3264 * Complete a scan that has already started regardless of PID access, or 3265 * some VMAs may never be scanned in multi-threaded applications: 3266 */ 3267 if (mm->numa_scan_offset > vma->vm_start) { 3268 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3269 return true; 3270 } 3271 3272 /* 3273 * This vma has not been accessed for a while, and if the number 3274 * the threads in the same process is low, which means no other 3275 * threads can help scan this vma, force a vma scan. 3276 */ 3277 if (READ_ONCE(mm->numa_scan_seq) > 3278 (vma->numab_state->prev_scan_seq + get_nr_threads(current))) 3279 return true; 3280 3281 return false; 3282 } 3283 3284 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3285 3286 /* 3287 * The expensive part of numa migration is done from task_work context. 3288 * Triggered from task_tick_numa(). 3289 */ 3290 static void task_numa_work(struct callback_head *work) 3291 { 3292 unsigned long migrate, next_scan, now = jiffies; 3293 struct task_struct *p = current; 3294 struct mm_struct *mm = p->mm; 3295 u64 runtime = p->se.sum_exec_runtime; 3296 struct vm_area_struct *vma; 3297 unsigned long start, end; 3298 unsigned long nr_pte_updates = 0; 3299 long pages, virtpages; 3300 struct vma_iterator vmi; 3301 bool vma_pids_skipped; 3302 bool vma_pids_forced = false; 3303 3304 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3305 3306 work->next = work; 3307 /* 3308 * Who cares about NUMA placement when they're dying. 3309 * 3310 * NOTE: make sure not to dereference p->mm before this check, 3311 * exit_task_work() happens _after_ exit_mm() so we could be called 3312 * without p->mm even though we still had it when we enqueued this 3313 * work. 3314 */ 3315 if (p->flags & PF_EXITING) 3316 return; 3317 3318 if (!mm->numa_next_scan) { 3319 mm->numa_next_scan = now + 3320 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3321 } 3322 3323 /* 3324 * Enforce maximal scan/migration frequency.. 3325 */ 3326 migrate = mm->numa_next_scan; 3327 if (time_before(now, migrate)) 3328 return; 3329 3330 if (p->numa_scan_period == 0) { 3331 p->numa_scan_period_max = task_scan_max(p); 3332 p->numa_scan_period = task_scan_start(p); 3333 } 3334 3335 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3336 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3337 return; 3338 3339 /* 3340 * Delay this task enough that another task of this mm will likely win 3341 * the next time around. 3342 */ 3343 p->node_stamp += 2 * TICK_NSEC; 3344 3345 pages = sysctl_numa_balancing_scan_size; 3346 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3347 virtpages = pages * 8; /* Scan up to this much virtual space */ 3348 if (!pages) 3349 return; 3350 3351 3352 if (!mmap_read_trylock(mm)) 3353 return; 3354 3355 /* 3356 * VMAs are skipped if the current PID has not trapped a fault within 3357 * the VMA recently. Allow scanning to be forced if there is no 3358 * suitable VMA remaining. 3359 */ 3360 vma_pids_skipped = false; 3361 3362 retry_pids: 3363 start = mm->numa_scan_offset; 3364 vma_iter_init(&vmi, mm, start); 3365 vma = vma_next(&vmi); 3366 if (!vma) { 3367 reset_ptenuma_scan(p); 3368 start = 0; 3369 vma_iter_set(&vmi, start); 3370 vma = vma_next(&vmi); 3371 } 3372 3373 for (; vma; vma = vma_next(&vmi)) { 3374 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3375 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3376 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3377 continue; 3378 } 3379 3380 /* 3381 * Shared library pages mapped by multiple processes are not 3382 * migrated as it is expected they are cache replicated. Avoid 3383 * hinting faults in read-only file-backed mappings or the vDSO 3384 * as migrating the pages will be of marginal benefit. 3385 */ 3386 if (!vma->vm_mm || 3387 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3388 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3389 continue; 3390 } 3391 3392 /* 3393 * Skip inaccessible VMAs to avoid any confusion between 3394 * PROT_NONE and NUMA hinting PTEs 3395 */ 3396 if (!vma_is_accessible(vma)) { 3397 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3398 continue; 3399 } 3400 3401 /* Initialise new per-VMA NUMAB state. */ 3402 if (!vma->numab_state) { 3403 struct vma_numab_state *ptr; 3404 3405 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL); 3406 if (!ptr) 3407 continue; 3408 3409 if (cmpxchg(&vma->numab_state, NULL, ptr)) { 3410 kfree(ptr); 3411 continue; 3412 } 3413 3414 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3415 3416 vma->numab_state->next_scan = now + 3417 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3418 3419 /* Reset happens after 4 times scan delay of scan start */ 3420 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3421 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3422 3423 /* 3424 * Ensure prev_scan_seq does not match numa_scan_seq, 3425 * to prevent VMAs being skipped prematurely on the 3426 * first scan: 3427 */ 3428 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3429 } 3430 3431 /* 3432 * Scanning the VMAs of short lived tasks add more overhead. So 3433 * delay the scan for new VMAs. 3434 */ 3435 if (mm->numa_scan_seq && time_before(jiffies, 3436 vma->numab_state->next_scan)) { 3437 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3438 continue; 3439 } 3440 3441 /* RESET access PIDs regularly for old VMAs. */ 3442 if (mm->numa_scan_seq && 3443 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3444 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3445 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3446 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3447 vma->numab_state->pids_active[1] = 0; 3448 } 3449 3450 /* Do not rescan VMAs twice within the same sequence. */ 3451 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3452 mm->numa_scan_offset = vma->vm_end; 3453 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3454 continue; 3455 } 3456 3457 /* 3458 * Do not scan the VMA if task has not accessed it, unless no other 3459 * VMA candidate exists. 3460 */ 3461 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3462 vma_pids_skipped = true; 3463 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3464 continue; 3465 } 3466 3467 do { 3468 start = max(start, vma->vm_start); 3469 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3470 end = min(end, vma->vm_end); 3471 nr_pte_updates = change_prot_numa(vma, start, end); 3472 3473 /* 3474 * Try to scan sysctl_numa_balancing_size worth of 3475 * hpages that have at least one present PTE that 3476 * is not already PTE-numa. If the VMA contains 3477 * areas that are unused or already full of prot_numa 3478 * PTEs, scan up to virtpages, to skip through those 3479 * areas faster. 3480 */ 3481 if (nr_pte_updates) 3482 pages -= (end - start) >> PAGE_SHIFT; 3483 virtpages -= (end - start) >> PAGE_SHIFT; 3484 3485 start = end; 3486 if (pages <= 0 || virtpages <= 0) 3487 goto out; 3488 3489 cond_resched(); 3490 } while (end != vma->vm_end); 3491 3492 /* VMA scan is complete, do not scan until next sequence. */ 3493 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3494 3495 /* 3496 * Only force scan within one VMA at a time, to limit the 3497 * cost of scanning a potentially uninteresting VMA. 3498 */ 3499 if (vma_pids_forced) 3500 break; 3501 } 3502 3503 /* 3504 * If no VMAs are remaining and VMAs were skipped due to the PID 3505 * not accessing the VMA previously, then force a scan to ensure 3506 * forward progress: 3507 */ 3508 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3509 vma_pids_forced = true; 3510 goto retry_pids; 3511 } 3512 3513 out: 3514 /* 3515 * It is possible to reach the end of the VMA list but the last few 3516 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3517 * would find the !migratable VMA on the next scan but not reset the 3518 * scanner to the start so check it now. 3519 */ 3520 if (vma) 3521 mm->numa_scan_offset = start; 3522 else 3523 reset_ptenuma_scan(p); 3524 mmap_read_unlock(mm); 3525 3526 /* 3527 * Make sure tasks use at least 32x as much time to run other code 3528 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3529 * Usually update_task_scan_period slows down scanning enough; on an 3530 * overloaded system we need to limit overhead on a per task basis. 3531 */ 3532 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3533 u64 diff = p->se.sum_exec_runtime - runtime; 3534 p->node_stamp += 32 * diff; 3535 } 3536 } 3537 3538 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3539 { 3540 int mm_users = 0; 3541 struct mm_struct *mm = p->mm; 3542 3543 if (mm) { 3544 mm_users = atomic_read(&mm->mm_users); 3545 if (mm_users == 1) { 3546 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3547 mm->numa_scan_seq = 0; 3548 } 3549 } 3550 p->node_stamp = 0; 3551 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3552 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3553 p->numa_migrate_retry = 0; 3554 /* Protect against double add, see task_tick_numa and task_numa_work */ 3555 p->numa_work.next = &p->numa_work; 3556 p->numa_faults = NULL; 3557 p->numa_pages_migrated = 0; 3558 p->total_numa_faults = 0; 3559 RCU_INIT_POINTER(p->numa_group, NULL); 3560 p->last_task_numa_placement = 0; 3561 p->last_sum_exec_runtime = 0; 3562 3563 init_task_work(&p->numa_work, task_numa_work); 3564 3565 /* New address space, reset the preferred nid */ 3566 if (!(clone_flags & CLONE_VM)) { 3567 p->numa_preferred_nid = NUMA_NO_NODE; 3568 return; 3569 } 3570 3571 /* 3572 * New thread, keep existing numa_preferred_nid which should be copied 3573 * already by arch_dup_task_struct but stagger when scans start. 3574 */ 3575 if (mm) { 3576 unsigned int delay; 3577 3578 delay = min_t(unsigned int, task_scan_max(current), 3579 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3580 delay += 2 * TICK_NSEC; 3581 p->node_stamp = delay; 3582 } 3583 } 3584 3585 /* 3586 * Drive the periodic memory faults.. 3587 */ 3588 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3589 { 3590 struct callback_head *work = &curr->numa_work; 3591 u64 period, now; 3592 3593 /* 3594 * We don't care about NUMA placement if we don't have memory. 3595 */ 3596 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3597 return; 3598 3599 /* 3600 * Using runtime rather than walltime has the dual advantage that 3601 * we (mostly) drive the selection from busy threads and that the 3602 * task needs to have done some actual work before we bother with 3603 * NUMA placement. 3604 */ 3605 now = curr->se.sum_exec_runtime; 3606 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3607 3608 if (now > curr->node_stamp + period) { 3609 if (!curr->node_stamp) 3610 curr->numa_scan_period = task_scan_start(curr); 3611 curr->node_stamp += period; 3612 3613 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3614 task_work_add(curr, work, TWA_RESUME); 3615 } 3616 } 3617 3618 static void update_scan_period(struct task_struct *p, int new_cpu) 3619 { 3620 int src_nid = cpu_to_node(task_cpu(p)); 3621 int dst_nid = cpu_to_node(new_cpu); 3622 3623 if (!static_branch_likely(&sched_numa_balancing)) 3624 return; 3625 3626 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3627 return; 3628 3629 if (src_nid == dst_nid) 3630 return; 3631 3632 /* 3633 * Allow resets if faults have been trapped before one scan 3634 * has completed. This is most likely due to a new task that 3635 * is pulled cross-node due to wakeups or load balancing. 3636 */ 3637 if (p->numa_scan_seq) { 3638 /* 3639 * Avoid scan adjustments if moving to the preferred 3640 * node or if the task was not previously running on 3641 * the preferred node. 3642 */ 3643 if (dst_nid == p->numa_preferred_nid || 3644 (p->numa_preferred_nid != NUMA_NO_NODE && 3645 src_nid != p->numa_preferred_nid)) 3646 return; 3647 } 3648 3649 p->numa_scan_period = task_scan_start(p); 3650 } 3651 3652 #else 3653 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3654 { 3655 } 3656 3657 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3658 { 3659 } 3660 3661 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3662 { 3663 } 3664 3665 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3666 { 3667 } 3668 3669 #endif /* CONFIG_NUMA_BALANCING */ 3670 3671 static void 3672 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3673 { 3674 update_load_add(&cfs_rq->load, se->load.weight); 3675 #ifdef CONFIG_SMP 3676 if (entity_is_task(se)) { 3677 struct rq *rq = rq_of(cfs_rq); 3678 3679 account_numa_enqueue(rq, task_of(se)); 3680 list_add(&se->group_node, &rq->cfs_tasks); 3681 } 3682 #endif 3683 cfs_rq->nr_queued++; 3684 } 3685 3686 static void 3687 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3688 { 3689 update_load_sub(&cfs_rq->load, se->load.weight); 3690 #ifdef CONFIG_SMP 3691 if (entity_is_task(se)) { 3692 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3693 list_del_init(&se->group_node); 3694 } 3695 #endif 3696 cfs_rq->nr_queued--; 3697 } 3698 3699 /* 3700 * Signed add and clamp on underflow. 3701 * 3702 * Explicitly do a load-store to ensure the intermediate value never hits 3703 * memory. This allows lockless observations without ever seeing the negative 3704 * values. 3705 */ 3706 #define add_positive(_ptr, _val) do { \ 3707 typeof(_ptr) ptr = (_ptr); \ 3708 typeof(_val) val = (_val); \ 3709 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3710 \ 3711 res = var + val; \ 3712 \ 3713 if (val < 0 && res > var) \ 3714 res = 0; \ 3715 \ 3716 WRITE_ONCE(*ptr, res); \ 3717 } while (0) 3718 3719 /* 3720 * Unsigned subtract and clamp on underflow. 3721 * 3722 * Explicitly do a load-store to ensure the intermediate value never hits 3723 * memory. This allows lockless observations without ever seeing the negative 3724 * values. 3725 */ 3726 #define sub_positive(_ptr, _val) do { \ 3727 typeof(_ptr) ptr = (_ptr); \ 3728 typeof(*ptr) val = (_val); \ 3729 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3730 res = var - val; \ 3731 if (res > var) \ 3732 res = 0; \ 3733 WRITE_ONCE(*ptr, res); \ 3734 } while (0) 3735 3736 /* 3737 * Remove and clamp on negative, from a local variable. 3738 * 3739 * A variant of sub_positive(), which does not use explicit load-store 3740 * and is thus optimized for local variable updates. 3741 */ 3742 #define lsub_positive(_ptr, _val) do { \ 3743 typeof(_ptr) ptr = (_ptr); \ 3744 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3745 } while (0) 3746 3747 #ifdef CONFIG_SMP 3748 static inline void 3749 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3750 { 3751 cfs_rq->avg.load_avg += se->avg.load_avg; 3752 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3753 } 3754 3755 static inline void 3756 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3757 { 3758 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3759 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3760 /* See update_cfs_rq_load_avg() */ 3761 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3762 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3763 } 3764 #else 3765 static inline void 3766 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3767 static inline void 3768 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3769 #endif 3770 3771 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags); 3772 3773 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3774 unsigned long weight) 3775 { 3776 bool curr = cfs_rq->curr == se; 3777 3778 if (se->on_rq) { 3779 /* commit outstanding execution time */ 3780 update_curr(cfs_rq); 3781 update_entity_lag(cfs_rq, se); 3782 se->deadline -= se->vruntime; 3783 se->rel_deadline = 1; 3784 if (!curr) 3785 __dequeue_entity(cfs_rq, se); 3786 update_load_sub(&cfs_rq->load, se->load.weight); 3787 } 3788 dequeue_load_avg(cfs_rq, se); 3789 3790 /* 3791 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3792 * we need to scale se->vlag when w_i changes. 3793 */ 3794 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3795 if (se->rel_deadline) 3796 se->deadline = div_s64(se->deadline * se->load.weight, weight); 3797 3798 update_load_set(&se->load, weight); 3799 3800 #ifdef CONFIG_SMP 3801 do { 3802 u32 divider = get_pelt_divider(&se->avg); 3803 3804 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3805 } while (0); 3806 #endif 3807 3808 enqueue_load_avg(cfs_rq, se); 3809 if (se->on_rq) { 3810 update_load_add(&cfs_rq->load, se->load.weight); 3811 place_entity(cfs_rq, se, 0); 3812 if (!curr) 3813 __enqueue_entity(cfs_rq, se); 3814 3815 /* 3816 * The entity's vruntime has been adjusted, so let's check 3817 * whether the rq-wide min_vruntime needs updated too. Since 3818 * the calculations above require stable min_vruntime rather 3819 * than up-to-date one, we do the update at the end of the 3820 * reweight process. 3821 */ 3822 update_min_vruntime(cfs_rq); 3823 } 3824 } 3825 3826 static void reweight_task_fair(struct rq *rq, struct task_struct *p, 3827 const struct load_weight *lw) 3828 { 3829 struct sched_entity *se = &p->se; 3830 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3831 struct load_weight *load = &se->load; 3832 3833 reweight_entity(cfs_rq, se, lw->weight); 3834 load->inv_weight = lw->inv_weight; 3835 } 3836 3837 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3838 3839 #ifdef CONFIG_FAIR_GROUP_SCHED 3840 #ifdef CONFIG_SMP 3841 /* 3842 * All this does is approximate the hierarchical proportion which includes that 3843 * global sum we all love to hate. 3844 * 3845 * That is, the weight of a group entity, is the proportional share of the 3846 * group weight based on the group runqueue weights. That is: 3847 * 3848 * tg->weight * grq->load.weight 3849 * ge->load.weight = ----------------------------- (1) 3850 * \Sum grq->load.weight 3851 * 3852 * Now, because computing that sum is prohibitively expensive to compute (been 3853 * there, done that) we approximate it with this average stuff. The average 3854 * moves slower and therefore the approximation is cheaper and more stable. 3855 * 3856 * So instead of the above, we substitute: 3857 * 3858 * grq->load.weight -> grq->avg.load_avg (2) 3859 * 3860 * which yields the following: 3861 * 3862 * tg->weight * grq->avg.load_avg 3863 * ge->load.weight = ------------------------------ (3) 3864 * tg->load_avg 3865 * 3866 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3867 * 3868 * That is shares_avg, and it is right (given the approximation (2)). 3869 * 3870 * The problem with it is that because the average is slow -- it was designed 3871 * to be exactly that of course -- this leads to transients in boundary 3872 * conditions. In specific, the case where the group was idle and we start the 3873 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3874 * yielding bad latency etc.. 3875 * 3876 * Now, in that special case (1) reduces to: 3877 * 3878 * tg->weight * grq->load.weight 3879 * ge->load.weight = ----------------------------- = tg->weight (4) 3880 * grp->load.weight 3881 * 3882 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3883 * 3884 * So what we do is modify our approximation (3) to approach (4) in the (near) 3885 * UP case, like: 3886 * 3887 * ge->load.weight = 3888 * 3889 * tg->weight * grq->load.weight 3890 * --------------------------------------------------- (5) 3891 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3892 * 3893 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3894 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3895 * 3896 * 3897 * tg->weight * grq->load.weight 3898 * ge->load.weight = ----------------------------- (6) 3899 * tg_load_avg' 3900 * 3901 * Where: 3902 * 3903 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3904 * max(grq->load.weight, grq->avg.load_avg) 3905 * 3906 * And that is shares_weight and is icky. In the (near) UP case it approaches 3907 * (4) while in the normal case it approaches (3). It consistently 3908 * overestimates the ge->load.weight and therefore: 3909 * 3910 * \Sum ge->load.weight >= tg->weight 3911 * 3912 * hence icky! 3913 */ 3914 static long calc_group_shares(struct cfs_rq *cfs_rq) 3915 { 3916 long tg_weight, tg_shares, load, shares; 3917 struct task_group *tg = cfs_rq->tg; 3918 3919 tg_shares = READ_ONCE(tg->shares); 3920 3921 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3922 3923 tg_weight = atomic_long_read(&tg->load_avg); 3924 3925 /* Ensure tg_weight >= load */ 3926 tg_weight -= cfs_rq->tg_load_avg_contrib; 3927 tg_weight += load; 3928 3929 shares = (tg_shares * load); 3930 if (tg_weight) 3931 shares /= tg_weight; 3932 3933 /* 3934 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3935 * of a group with small tg->shares value. It is a floor value which is 3936 * assigned as a minimum load.weight to the sched_entity representing 3937 * the group on a CPU. 3938 * 3939 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3940 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3941 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3942 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3943 * instead of 0. 3944 */ 3945 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3946 } 3947 #endif /* CONFIG_SMP */ 3948 3949 /* 3950 * Recomputes the group entity based on the current state of its group 3951 * runqueue. 3952 */ 3953 static void update_cfs_group(struct sched_entity *se) 3954 { 3955 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3956 long shares; 3957 3958 /* 3959 * When a group becomes empty, preserve its weight. This matters for 3960 * DELAY_DEQUEUE. 3961 */ 3962 if (!gcfs_rq || !gcfs_rq->load.weight) 3963 return; 3964 3965 if (throttled_hierarchy(gcfs_rq)) 3966 return; 3967 3968 #ifndef CONFIG_SMP 3969 shares = READ_ONCE(gcfs_rq->tg->shares); 3970 #else 3971 shares = calc_group_shares(gcfs_rq); 3972 #endif 3973 if (unlikely(se->load.weight != shares)) 3974 reweight_entity(cfs_rq_of(se), se, shares); 3975 } 3976 3977 #else /* CONFIG_FAIR_GROUP_SCHED */ 3978 static inline void update_cfs_group(struct sched_entity *se) 3979 { 3980 } 3981 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3982 3983 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3984 { 3985 struct rq *rq = rq_of(cfs_rq); 3986 3987 if (&rq->cfs == cfs_rq) { 3988 /* 3989 * There are a few boundary cases this might miss but it should 3990 * get called often enough that that should (hopefully) not be 3991 * a real problem. 3992 * 3993 * It will not get called when we go idle, because the idle 3994 * thread is a different class (!fair), nor will the utilization 3995 * number include things like RT tasks. 3996 * 3997 * As is, the util number is not freq-invariant (we'd have to 3998 * implement arch_scale_freq_capacity() for that). 3999 * 4000 * See cpu_util_cfs(). 4001 */ 4002 cpufreq_update_util(rq, flags); 4003 } 4004 } 4005 4006 #ifdef CONFIG_SMP 4007 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4008 { 4009 if (sa->load_sum) 4010 return false; 4011 4012 if (sa->util_sum) 4013 return false; 4014 4015 if (sa->runnable_sum) 4016 return false; 4017 4018 /* 4019 * _avg must be null when _sum are null because _avg = _sum / divider 4020 * Make sure that rounding and/or propagation of PELT values never 4021 * break this. 4022 */ 4023 SCHED_WARN_ON(sa->load_avg || 4024 sa->util_avg || 4025 sa->runnable_avg); 4026 4027 return true; 4028 } 4029 4030 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4031 { 4032 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4033 cfs_rq->last_update_time_copy); 4034 } 4035 #ifdef CONFIG_FAIR_GROUP_SCHED 4036 /* 4037 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4038 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4039 * bottom-up, we only have to test whether the cfs_rq before us on the list 4040 * is our child. 4041 * If cfs_rq is not on the list, test whether a child needs its to be added to 4042 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4043 */ 4044 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4045 { 4046 struct cfs_rq *prev_cfs_rq; 4047 struct list_head *prev; 4048 4049 if (cfs_rq->on_list) { 4050 prev = cfs_rq->leaf_cfs_rq_list.prev; 4051 } else { 4052 struct rq *rq = rq_of(cfs_rq); 4053 4054 prev = rq->tmp_alone_branch; 4055 } 4056 4057 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4058 4059 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4060 } 4061 4062 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4063 { 4064 if (cfs_rq->load.weight) 4065 return false; 4066 4067 if (!load_avg_is_decayed(&cfs_rq->avg)) 4068 return false; 4069 4070 if (child_cfs_rq_on_list(cfs_rq)) 4071 return false; 4072 4073 return true; 4074 } 4075 4076 /** 4077 * update_tg_load_avg - update the tg's load avg 4078 * @cfs_rq: the cfs_rq whose avg changed 4079 * 4080 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4081 * However, because tg->load_avg is a global value there are performance 4082 * considerations. 4083 * 4084 * In order to avoid having to look at the other cfs_rq's, we use a 4085 * differential update where we store the last value we propagated. This in 4086 * turn allows skipping updates if the differential is 'small'. 4087 * 4088 * Updating tg's load_avg is necessary before update_cfs_share(). 4089 */ 4090 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4091 { 4092 long delta; 4093 u64 now; 4094 4095 /* 4096 * No need to update load_avg for root_task_group as it is not used. 4097 */ 4098 if (cfs_rq->tg == &root_task_group) 4099 return; 4100 4101 /* rq has been offline and doesn't contribute to the share anymore: */ 4102 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4103 return; 4104 4105 /* 4106 * For migration heavy workloads, access to tg->load_avg can be 4107 * unbound. Limit the update rate to at most once per ms. 4108 */ 4109 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4110 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4111 return; 4112 4113 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4114 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4115 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4116 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4117 cfs_rq->last_update_tg_load_avg = now; 4118 } 4119 } 4120 4121 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4122 { 4123 long delta; 4124 u64 now; 4125 4126 /* 4127 * No need to update load_avg for root_task_group, as it is not used. 4128 */ 4129 if (cfs_rq->tg == &root_task_group) 4130 return; 4131 4132 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4133 delta = 0 - cfs_rq->tg_load_avg_contrib; 4134 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4135 cfs_rq->tg_load_avg_contrib = 0; 4136 cfs_rq->last_update_tg_load_avg = now; 4137 } 4138 4139 /* CPU offline callback: */ 4140 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4141 { 4142 struct task_group *tg; 4143 4144 lockdep_assert_rq_held(rq); 4145 4146 /* 4147 * The rq clock has already been updated in 4148 * set_rq_offline(), so we should skip updating 4149 * the rq clock again in unthrottle_cfs_rq(). 4150 */ 4151 rq_clock_start_loop_update(rq); 4152 4153 rcu_read_lock(); 4154 list_for_each_entry_rcu(tg, &task_groups, list) { 4155 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4156 4157 clear_tg_load_avg(cfs_rq); 4158 } 4159 rcu_read_unlock(); 4160 4161 rq_clock_stop_loop_update(rq); 4162 } 4163 4164 /* 4165 * Called within set_task_rq() right before setting a task's CPU. The 4166 * caller only guarantees p->pi_lock is held; no other assumptions, 4167 * including the state of rq->lock, should be made. 4168 */ 4169 void set_task_rq_fair(struct sched_entity *se, 4170 struct cfs_rq *prev, struct cfs_rq *next) 4171 { 4172 u64 p_last_update_time; 4173 u64 n_last_update_time; 4174 4175 if (!sched_feat(ATTACH_AGE_LOAD)) 4176 return; 4177 4178 /* 4179 * We are supposed to update the task to "current" time, then its up to 4180 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4181 * getting what current time is, so simply throw away the out-of-date 4182 * time. This will result in the wakee task is less decayed, but giving 4183 * the wakee more load sounds not bad. 4184 */ 4185 if (!(se->avg.last_update_time && prev)) 4186 return; 4187 4188 p_last_update_time = cfs_rq_last_update_time(prev); 4189 n_last_update_time = cfs_rq_last_update_time(next); 4190 4191 __update_load_avg_blocked_se(p_last_update_time, se); 4192 se->avg.last_update_time = n_last_update_time; 4193 } 4194 4195 /* 4196 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4197 * propagate its contribution. The key to this propagation is the invariant 4198 * that for each group: 4199 * 4200 * ge->avg == grq->avg (1) 4201 * 4202 * _IFF_ we look at the pure running and runnable sums. Because they 4203 * represent the very same entity, just at different points in the hierarchy. 4204 * 4205 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4206 * and simply copies the running/runnable sum over (but still wrong, because 4207 * the group entity and group rq do not have their PELT windows aligned). 4208 * 4209 * However, update_tg_cfs_load() is more complex. So we have: 4210 * 4211 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4212 * 4213 * And since, like util, the runnable part should be directly transferable, 4214 * the following would _appear_ to be the straight forward approach: 4215 * 4216 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4217 * 4218 * And per (1) we have: 4219 * 4220 * ge->avg.runnable_avg == grq->avg.runnable_avg 4221 * 4222 * Which gives: 4223 * 4224 * ge->load.weight * grq->avg.load_avg 4225 * ge->avg.load_avg = ----------------------------------- (4) 4226 * grq->load.weight 4227 * 4228 * Except that is wrong! 4229 * 4230 * Because while for entities historical weight is not important and we 4231 * really only care about our future and therefore can consider a pure 4232 * runnable sum, runqueues can NOT do this. 4233 * 4234 * We specifically want runqueues to have a load_avg that includes 4235 * historical weights. Those represent the blocked load, the load we expect 4236 * to (shortly) return to us. This only works by keeping the weights as 4237 * integral part of the sum. We therefore cannot decompose as per (3). 4238 * 4239 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4240 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4241 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4242 * runnable section of these tasks overlap (or not). If they were to perfectly 4243 * align the rq as a whole would be runnable 2/3 of the time. If however we 4244 * always have at least 1 runnable task, the rq as a whole is always runnable. 4245 * 4246 * So we'll have to approximate.. :/ 4247 * 4248 * Given the constraint: 4249 * 4250 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4251 * 4252 * We can construct a rule that adds runnable to a rq by assuming minimal 4253 * overlap. 4254 * 4255 * On removal, we'll assume each task is equally runnable; which yields: 4256 * 4257 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4258 * 4259 * XXX: only do this for the part of runnable > running ? 4260 * 4261 */ 4262 static inline void 4263 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4264 { 4265 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4266 u32 new_sum, divider; 4267 4268 /* Nothing to update */ 4269 if (!delta_avg) 4270 return; 4271 4272 /* 4273 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4274 * See ___update_load_avg() for details. 4275 */ 4276 divider = get_pelt_divider(&cfs_rq->avg); 4277 4278 4279 /* Set new sched_entity's utilization */ 4280 se->avg.util_avg = gcfs_rq->avg.util_avg; 4281 new_sum = se->avg.util_avg * divider; 4282 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4283 se->avg.util_sum = new_sum; 4284 4285 /* Update parent cfs_rq utilization */ 4286 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4287 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4288 4289 /* See update_cfs_rq_load_avg() */ 4290 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4291 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4292 } 4293 4294 static inline void 4295 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4296 { 4297 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4298 u32 new_sum, divider; 4299 4300 /* Nothing to update */ 4301 if (!delta_avg) 4302 return; 4303 4304 /* 4305 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4306 * See ___update_load_avg() for details. 4307 */ 4308 divider = get_pelt_divider(&cfs_rq->avg); 4309 4310 /* Set new sched_entity's runnable */ 4311 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4312 new_sum = se->avg.runnable_avg * divider; 4313 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4314 se->avg.runnable_sum = new_sum; 4315 4316 /* Update parent cfs_rq runnable */ 4317 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4318 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4319 /* See update_cfs_rq_load_avg() */ 4320 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4321 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4322 } 4323 4324 static inline void 4325 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4326 { 4327 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4328 unsigned long load_avg; 4329 u64 load_sum = 0; 4330 s64 delta_sum; 4331 u32 divider; 4332 4333 if (!runnable_sum) 4334 return; 4335 4336 gcfs_rq->prop_runnable_sum = 0; 4337 4338 /* 4339 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4340 * See ___update_load_avg() for details. 4341 */ 4342 divider = get_pelt_divider(&cfs_rq->avg); 4343 4344 if (runnable_sum >= 0) { 4345 /* 4346 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4347 * the CPU is saturated running == runnable. 4348 */ 4349 runnable_sum += se->avg.load_sum; 4350 runnable_sum = min_t(long, runnable_sum, divider); 4351 } else { 4352 /* 4353 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4354 * assuming all tasks are equally runnable. 4355 */ 4356 if (scale_load_down(gcfs_rq->load.weight)) { 4357 load_sum = div_u64(gcfs_rq->avg.load_sum, 4358 scale_load_down(gcfs_rq->load.weight)); 4359 } 4360 4361 /* But make sure to not inflate se's runnable */ 4362 runnable_sum = min(se->avg.load_sum, load_sum); 4363 } 4364 4365 /* 4366 * runnable_sum can't be lower than running_sum 4367 * Rescale running sum to be in the same range as runnable sum 4368 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4369 * runnable_sum is in [0 : LOAD_AVG_MAX] 4370 */ 4371 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4372 runnable_sum = max(runnable_sum, running_sum); 4373 4374 load_sum = se_weight(se) * runnable_sum; 4375 load_avg = div_u64(load_sum, divider); 4376 4377 delta_avg = load_avg - se->avg.load_avg; 4378 if (!delta_avg) 4379 return; 4380 4381 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4382 4383 se->avg.load_sum = runnable_sum; 4384 se->avg.load_avg = load_avg; 4385 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4386 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4387 /* See update_cfs_rq_load_avg() */ 4388 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4389 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4390 } 4391 4392 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4393 { 4394 cfs_rq->propagate = 1; 4395 cfs_rq->prop_runnable_sum += runnable_sum; 4396 } 4397 4398 /* Update task and its cfs_rq load average */ 4399 static inline int propagate_entity_load_avg(struct sched_entity *se) 4400 { 4401 struct cfs_rq *cfs_rq, *gcfs_rq; 4402 4403 if (entity_is_task(se)) 4404 return 0; 4405 4406 gcfs_rq = group_cfs_rq(se); 4407 if (!gcfs_rq->propagate) 4408 return 0; 4409 4410 gcfs_rq->propagate = 0; 4411 4412 cfs_rq = cfs_rq_of(se); 4413 4414 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4415 4416 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4417 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4418 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4419 4420 trace_pelt_cfs_tp(cfs_rq); 4421 trace_pelt_se_tp(se); 4422 4423 return 1; 4424 } 4425 4426 /* 4427 * Check if we need to update the load and the utilization of a blocked 4428 * group_entity: 4429 */ 4430 static inline bool skip_blocked_update(struct sched_entity *se) 4431 { 4432 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4433 4434 /* 4435 * If sched_entity still have not zero load or utilization, we have to 4436 * decay it: 4437 */ 4438 if (se->avg.load_avg || se->avg.util_avg) 4439 return false; 4440 4441 /* 4442 * If there is a pending propagation, we have to update the load and 4443 * the utilization of the sched_entity: 4444 */ 4445 if (gcfs_rq->propagate) 4446 return false; 4447 4448 /* 4449 * Otherwise, the load and the utilization of the sched_entity is 4450 * already zero and there is no pending propagation, so it will be a 4451 * waste of time to try to decay it: 4452 */ 4453 return true; 4454 } 4455 4456 #else /* CONFIG_FAIR_GROUP_SCHED */ 4457 4458 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4459 4460 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4461 4462 static inline int propagate_entity_load_avg(struct sched_entity *se) 4463 { 4464 return 0; 4465 } 4466 4467 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4468 4469 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4470 4471 #ifdef CONFIG_NO_HZ_COMMON 4472 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4473 { 4474 u64 throttled = 0, now, lut; 4475 struct cfs_rq *cfs_rq; 4476 struct rq *rq; 4477 bool is_idle; 4478 4479 if (load_avg_is_decayed(&se->avg)) 4480 return; 4481 4482 cfs_rq = cfs_rq_of(se); 4483 rq = rq_of(cfs_rq); 4484 4485 rcu_read_lock(); 4486 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4487 rcu_read_unlock(); 4488 4489 /* 4490 * The lag estimation comes with a cost we don't want to pay all the 4491 * time. Hence, limiting to the case where the source CPU is idle and 4492 * we know we are at the greatest risk to have an outdated clock. 4493 */ 4494 if (!is_idle) 4495 return; 4496 4497 /* 4498 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4499 * 4500 * last_update_time (the cfs_rq's last_update_time) 4501 * = cfs_rq_clock_pelt()@cfs_rq_idle 4502 * = rq_clock_pelt()@cfs_rq_idle 4503 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4504 * 4505 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4506 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4507 * 4508 * rq_idle_lag (delta between now and rq's update) 4509 * = sched_clock_cpu() - rq_clock()@rq_idle 4510 * 4511 * We can then write: 4512 * 4513 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4514 * sched_clock_cpu() - rq_clock()@rq_idle 4515 * Where: 4516 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4517 * rq_clock()@rq_idle is rq->clock_idle 4518 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4519 * is cfs_rq->throttled_pelt_idle 4520 */ 4521 4522 #ifdef CONFIG_CFS_BANDWIDTH 4523 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4524 /* The clock has been stopped for throttling */ 4525 if (throttled == U64_MAX) 4526 return; 4527 #endif 4528 now = u64_u32_load(rq->clock_pelt_idle); 4529 /* 4530 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4531 * is observed the old clock_pelt_idle value and the new clock_idle, 4532 * which lead to an underestimation. The opposite would lead to an 4533 * overestimation. 4534 */ 4535 smp_rmb(); 4536 lut = cfs_rq_last_update_time(cfs_rq); 4537 4538 now -= throttled; 4539 if (now < lut) 4540 /* 4541 * cfs_rq->avg.last_update_time is more recent than our 4542 * estimation, let's use it. 4543 */ 4544 now = lut; 4545 else 4546 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4547 4548 __update_load_avg_blocked_se(now, se); 4549 } 4550 #else 4551 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4552 #endif 4553 4554 /** 4555 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4556 * @now: current time, as per cfs_rq_clock_pelt() 4557 * @cfs_rq: cfs_rq to update 4558 * 4559 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4560 * avg. The immediate corollary is that all (fair) tasks must be attached. 4561 * 4562 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4563 * 4564 * Return: true if the load decayed or we removed load. 4565 * 4566 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4567 * call update_tg_load_avg() when this function returns true. 4568 */ 4569 static inline int 4570 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4571 { 4572 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4573 struct sched_avg *sa = &cfs_rq->avg; 4574 int decayed = 0; 4575 4576 if (cfs_rq->removed.nr) { 4577 unsigned long r; 4578 u32 divider = get_pelt_divider(&cfs_rq->avg); 4579 4580 raw_spin_lock(&cfs_rq->removed.lock); 4581 swap(cfs_rq->removed.util_avg, removed_util); 4582 swap(cfs_rq->removed.load_avg, removed_load); 4583 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4584 cfs_rq->removed.nr = 0; 4585 raw_spin_unlock(&cfs_rq->removed.lock); 4586 4587 r = removed_load; 4588 sub_positive(&sa->load_avg, r); 4589 sub_positive(&sa->load_sum, r * divider); 4590 /* See sa->util_sum below */ 4591 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4592 4593 r = removed_util; 4594 sub_positive(&sa->util_avg, r); 4595 sub_positive(&sa->util_sum, r * divider); 4596 /* 4597 * Because of rounding, se->util_sum might ends up being +1 more than 4598 * cfs->util_sum. Although this is not a problem by itself, detaching 4599 * a lot of tasks with the rounding problem between 2 updates of 4600 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4601 * cfs_util_avg is not. 4602 * Check that util_sum is still above its lower bound for the new 4603 * util_avg. Given that period_contrib might have moved since the last 4604 * sync, we are only sure that util_sum must be above or equal to 4605 * util_avg * minimum possible divider 4606 */ 4607 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4608 4609 r = removed_runnable; 4610 sub_positive(&sa->runnable_avg, r); 4611 sub_positive(&sa->runnable_sum, r * divider); 4612 /* See sa->util_sum above */ 4613 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4614 sa->runnable_avg * PELT_MIN_DIVIDER); 4615 4616 /* 4617 * removed_runnable is the unweighted version of removed_load so we 4618 * can use it to estimate removed_load_sum. 4619 */ 4620 add_tg_cfs_propagate(cfs_rq, 4621 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4622 4623 decayed = 1; 4624 } 4625 4626 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4627 u64_u32_store_copy(sa->last_update_time, 4628 cfs_rq->last_update_time_copy, 4629 sa->last_update_time); 4630 return decayed; 4631 } 4632 4633 /** 4634 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4635 * @cfs_rq: cfs_rq to attach to 4636 * @se: sched_entity to attach 4637 * 4638 * Must call update_cfs_rq_load_avg() before this, since we rely on 4639 * cfs_rq->avg.last_update_time being current. 4640 */ 4641 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4642 { 4643 /* 4644 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4645 * See ___update_load_avg() for details. 4646 */ 4647 u32 divider = get_pelt_divider(&cfs_rq->avg); 4648 4649 /* 4650 * When we attach the @se to the @cfs_rq, we must align the decay 4651 * window because without that, really weird and wonderful things can 4652 * happen. 4653 * 4654 * XXX illustrate 4655 */ 4656 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4657 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4658 4659 /* 4660 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4661 * period_contrib. This isn't strictly correct, but since we're 4662 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4663 * _sum a little. 4664 */ 4665 se->avg.util_sum = se->avg.util_avg * divider; 4666 4667 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4668 4669 se->avg.load_sum = se->avg.load_avg * divider; 4670 if (se_weight(se) < se->avg.load_sum) 4671 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4672 else 4673 se->avg.load_sum = 1; 4674 4675 enqueue_load_avg(cfs_rq, se); 4676 cfs_rq->avg.util_avg += se->avg.util_avg; 4677 cfs_rq->avg.util_sum += se->avg.util_sum; 4678 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4679 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4680 4681 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4682 4683 cfs_rq_util_change(cfs_rq, 0); 4684 4685 trace_pelt_cfs_tp(cfs_rq); 4686 } 4687 4688 /** 4689 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4690 * @cfs_rq: cfs_rq to detach from 4691 * @se: sched_entity to detach 4692 * 4693 * Must call update_cfs_rq_load_avg() before this, since we rely on 4694 * cfs_rq->avg.last_update_time being current. 4695 */ 4696 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4697 { 4698 dequeue_load_avg(cfs_rq, se); 4699 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4700 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4701 /* See update_cfs_rq_load_avg() */ 4702 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4703 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4704 4705 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4706 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4707 /* See update_cfs_rq_load_avg() */ 4708 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4709 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4710 4711 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4712 4713 cfs_rq_util_change(cfs_rq, 0); 4714 4715 trace_pelt_cfs_tp(cfs_rq); 4716 } 4717 4718 /* 4719 * Optional action to be done while updating the load average 4720 */ 4721 #define UPDATE_TG 0x1 4722 #define SKIP_AGE_LOAD 0x2 4723 #define DO_ATTACH 0x4 4724 #define DO_DETACH 0x8 4725 4726 /* Update task and its cfs_rq load average */ 4727 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4728 { 4729 u64 now = cfs_rq_clock_pelt(cfs_rq); 4730 int decayed; 4731 4732 /* 4733 * Track task load average for carrying it to new CPU after migrated, and 4734 * track group sched_entity load average for task_h_load calculation in migration 4735 */ 4736 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4737 __update_load_avg_se(now, cfs_rq, se); 4738 4739 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4740 decayed |= propagate_entity_load_avg(se); 4741 4742 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4743 4744 /* 4745 * DO_ATTACH means we're here from enqueue_entity(). 4746 * !last_update_time means we've passed through 4747 * migrate_task_rq_fair() indicating we migrated. 4748 * 4749 * IOW we're enqueueing a task on a new CPU. 4750 */ 4751 attach_entity_load_avg(cfs_rq, se); 4752 update_tg_load_avg(cfs_rq); 4753 4754 } else if (flags & DO_DETACH) { 4755 /* 4756 * DO_DETACH means we're here from dequeue_entity() 4757 * and we are migrating task out of the CPU. 4758 */ 4759 detach_entity_load_avg(cfs_rq, se); 4760 update_tg_load_avg(cfs_rq); 4761 } else if (decayed) { 4762 cfs_rq_util_change(cfs_rq, 0); 4763 4764 if (flags & UPDATE_TG) 4765 update_tg_load_avg(cfs_rq); 4766 } 4767 } 4768 4769 /* 4770 * Synchronize entity load avg of dequeued entity without locking 4771 * the previous rq. 4772 */ 4773 static void sync_entity_load_avg(struct sched_entity *se) 4774 { 4775 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4776 u64 last_update_time; 4777 4778 last_update_time = cfs_rq_last_update_time(cfs_rq); 4779 __update_load_avg_blocked_se(last_update_time, se); 4780 } 4781 4782 /* 4783 * Task first catches up with cfs_rq, and then subtract 4784 * itself from the cfs_rq (task must be off the queue now). 4785 */ 4786 static void remove_entity_load_avg(struct sched_entity *se) 4787 { 4788 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4789 unsigned long flags; 4790 4791 /* 4792 * tasks cannot exit without having gone through wake_up_new_task() -> 4793 * enqueue_task_fair() which will have added things to the cfs_rq, 4794 * so we can remove unconditionally. 4795 */ 4796 4797 sync_entity_load_avg(se); 4798 4799 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4800 ++cfs_rq->removed.nr; 4801 cfs_rq->removed.util_avg += se->avg.util_avg; 4802 cfs_rq->removed.load_avg += se->avg.load_avg; 4803 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4804 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4805 } 4806 4807 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4808 { 4809 return cfs_rq->avg.runnable_avg; 4810 } 4811 4812 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4813 { 4814 return cfs_rq->avg.load_avg; 4815 } 4816 4817 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4818 4819 static inline unsigned long task_util(struct task_struct *p) 4820 { 4821 return READ_ONCE(p->se.avg.util_avg); 4822 } 4823 4824 static inline unsigned long task_runnable(struct task_struct *p) 4825 { 4826 return READ_ONCE(p->se.avg.runnable_avg); 4827 } 4828 4829 static inline unsigned long _task_util_est(struct task_struct *p) 4830 { 4831 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4832 } 4833 4834 static inline unsigned long task_util_est(struct task_struct *p) 4835 { 4836 return max(task_util(p), _task_util_est(p)); 4837 } 4838 4839 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4840 struct task_struct *p) 4841 { 4842 unsigned int enqueued; 4843 4844 if (!sched_feat(UTIL_EST)) 4845 return; 4846 4847 /* Update root cfs_rq's estimated utilization */ 4848 enqueued = cfs_rq->avg.util_est; 4849 enqueued += _task_util_est(p); 4850 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4851 4852 trace_sched_util_est_cfs_tp(cfs_rq); 4853 } 4854 4855 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4856 struct task_struct *p) 4857 { 4858 unsigned int enqueued; 4859 4860 if (!sched_feat(UTIL_EST)) 4861 return; 4862 4863 /* Update root cfs_rq's estimated utilization */ 4864 enqueued = cfs_rq->avg.util_est; 4865 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4866 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4867 4868 trace_sched_util_est_cfs_tp(cfs_rq); 4869 } 4870 4871 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4872 4873 static inline void util_est_update(struct cfs_rq *cfs_rq, 4874 struct task_struct *p, 4875 bool task_sleep) 4876 { 4877 unsigned int ewma, dequeued, last_ewma_diff; 4878 4879 if (!sched_feat(UTIL_EST)) 4880 return; 4881 4882 /* 4883 * Skip update of task's estimated utilization when the task has not 4884 * yet completed an activation, e.g. being migrated. 4885 */ 4886 if (!task_sleep) 4887 return; 4888 4889 /* Get current estimate of utilization */ 4890 ewma = READ_ONCE(p->se.avg.util_est); 4891 4892 /* 4893 * If the PELT values haven't changed since enqueue time, 4894 * skip the util_est update. 4895 */ 4896 if (ewma & UTIL_AVG_UNCHANGED) 4897 return; 4898 4899 /* Get utilization at dequeue */ 4900 dequeued = task_util(p); 4901 4902 /* 4903 * Reset EWMA on utilization increases, the moving average is used only 4904 * to smooth utilization decreases. 4905 */ 4906 if (ewma <= dequeued) { 4907 ewma = dequeued; 4908 goto done; 4909 } 4910 4911 /* 4912 * Skip update of task's estimated utilization when its members are 4913 * already ~1% close to its last activation value. 4914 */ 4915 last_ewma_diff = ewma - dequeued; 4916 if (last_ewma_diff < UTIL_EST_MARGIN) 4917 goto done; 4918 4919 /* 4920 * To avoid overestimation of actual task utilization, skip updates if 4921 * we cannot grant there is idle time in this CPU. 4922 */ 4923 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)))) 4924 return; 4925 4926 /* 4927 * To avoid underestimate of task utilization, skip updates of EWMA if 4928 * we cannot grant that thread got all CPU time it wanted. 4929 */ 4930 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 4931 goto done; 4932 4933 4934 /* 4935 * Update Task's estimated utilization 4936 * 4937 * When *p completes an activation we can consolidate another sample 4938 * of the task size. This is done by using this value to update the 4939 * Exponential Weighted Moving Average (EWMA): 4940 * 4941 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4942 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4943 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4944 * = w * ( -last_ewma_diff ) + ewma(t-1) 4945 * = w * (-last_ewma_diff + ewma(t-1) / w) 4946 * 4947 * Where 'w' is the weight of new samples, which is configured to be 4948 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4949 */ 4950 ewma <<= UTIL_EST_WEIGHT_SHIFT; 4951 ewma -= last_ewma_diff; 4952 ewma >>= UTIL_EST_WEIGHT_SHIFT; 4953 done: 4954 ewma |= UTIL_AVG_UNCHANGED; 4955 WRITE_ONCE(p->se.avg.util_est, ewma); 4956 4957 trace_sched_util_est_se_tp(&p->se); 4958 } 4959 4960 static inline unsigned long get_actual_cpu_capacity(int cpu) 4961 { 4962 unsigned long capacity = arch_scale_cpu_capacity(cpu); 4963 4964 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 4965 4966 return capacity; 4967 } 4968 4969 static inline int util_fits_cpu(unsigned long util, 4970 unsigned long uclamp_min, 4971 unsigned long uclamp_max, 4972 int cpu) 4973 { 4974 unsigned long capacity = capacity_of(cpu); 4975 unsigned long capacity_orig; 4976 bool fits, uclamp_max_fits; 4977 4978 /* 4979 * Check if the real util fits without any uclamp boost/cap applied. 4980 */ 4981 fits = fits_capacity(util, capacity); 4982 4983 if (!uclamp_is_used()) 4984 return fits; 4985 4986 /* 4987 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 4988 * uclamp_max. We only care about capacity pressure (by using 4989 * capacity_of()) for comparing against the real util. 4990 * 4991 * If a task is boosted to 1024 for example, we don't want a tiny 4992 * pressure to skew the check whether it fits a CPU or not. 4993 * 4994 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 4995 * should fit a little cpu even if there's some pressure. 4996 * 4997 * Only exception is for HW or cpufreq pressure since it has a direct impact 4998 * on available OPP of the system. 4999 * 5000 * We honour it for uclamp_min only as a drop in performance level 5001 * could result in not getting the requested minimum performance level. 5002 * 5003 * For uclamp_max, we can tolerate a drop in performance level as the 5004 * goal is to cap the task. So it's okay if it's getting less. 5005 */ 5006 capacity_orig = arch_scale_cpu_capacity(cpu); 5007 5008 /* 5009 * We want to force a task to fit a cpu as implied by uclamp_max. 5010 * But we do have some corner cases to cater for.. 5011 * 5012 * 5013 * C=z 5014 * | ___ 5015 * | C=y | | 5016 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5017 * | C=x | | | | 5018 * | ___ | | | | 5019 * | | | | | | | (util somewhere in this region) 5020 * | | | | | | | 5021 * | | | | | | | 5022 * +---------------------------------------- 5023 * CPU0 CPU1 CPU2 5024 * 5025 * In the above example if a task is capped to a specific performance 5026 * point, y, then when: 5027 * 5028 * * util = 80% of x then it does not fit on CPU0 and should migrate 5029 * to CPU1 5030 * * util = 80% of y then it is forced to fit on CPU1 to honour 5031 * uclamp_max request. 5032 * 5033 * which is what we're enforcing here. A task always fits if 5034 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5035 * the normal upmigration rules should withhold still. 5036 * 5037 * Only exception is when we are on max capacity, then we need to be 5038 * careful not to block overutilized state. This is so because: 5039 * 5040 * 1. There's no concept of capping at max_capacity! We can't go 5041 * beyond this performance level anyway. 5042 * 2. The system is being saturated when we're operating near 5043 * max capacity, it doesn't make sense to block overutilized. 5044 */ 5045 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5046 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5047 fits = fits || uclamp_max_fits; 5048 5049 /* 5050 * 5051 * C=z 5052 * | ___ (region a, capped, util >= uclamp_max) 5053 * | C=y | | 5054 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5055 * | C=x | | | | 5056 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5057 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5058 * | | | | | | | 5059 * | | | | | | | (region c, boosted, util < uclamp_min) 5060 * +---------------------------------------- 5061 * CPU0 CPU1 CPU2 5062 * 5063 * a) If util > uclamp_max, then we're capped, we don't care about 5064 * actual fitness value here. We only care if uclamp_max fits 5065 * capacity without taking margin/pressure into account. 5066 * See comment above. 5067 * 5068 * b) If uclamp_min <= util <= uclamp_max, then the normal 5069 * fits_capacity() rules apply. Except we need to ensure that we 5070 * enforce we remain within uclamp_max, see comment above. 5071 * 5072 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5073 * need to take into account the boosted value fits the CPU without 5074 * taking margin/pressure into account. 5075 * 5076 * Cases (a) and (b) are handled in the 'fits' variable already. We 5077 * just need to consider an extra check for case (c) after ensuring we 5078 * handle the case uclamp_min > uclamp_max. 5079 */ 5080 uclamp_min = min(uclamp_min, uclamp_max); 5081 if (fits && (util < uclamp_min) && 5082 (uclamp_min > get_actual_cpu_capacity(cpu))) 5083 return -1; 5084 5085 return fits; 5086 } 5087 5088 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5089 { 5090 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5091 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5092 unsigned long util = task_util_est(p); 5093 /* 5094 * Return true only if the cpu fully fits the task requirements, which 5095 * include the utilization but also the performance hints. 5096 */ 5097 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5098 } 5099 5100 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5101 { 5102 int cpu = cpu_of(rq); 5103 5104 if (!sched_asym_cpucap_active()) 5105 return; 5106 5107 /* 5108 * Affinity allows us to go somewhere higher? Or are we on biggest 5109 * available CPU already? Or do we fit into this CPU ? 5110 */ 5111 if (!p || (p->nr_cpus_allowed == 1) || 5112 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5113 task_fits_cpu(p, cpu)) { 5114 5115 rq->misfit_task_load = 0; 5116 return; 5117 } 5118 5119 /* 5120 * Make sure that misfit_task_load will not be null even if 5121 * task_h_load() returns 0. 5122 */ 5123 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5124 } 5125 5126 #else /* CONFIG_SMP */ 5127 5128 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5129 { 5130 return !cfs_rq->nr_queued; 5131 } 5132 5133 #define UPDATE_TG 0x0 5134 #define SKIP_AGE_LOAD 0x0 5135 #define DO_ATTACH 0x0 5136 #define DO_DETACH 0x0 5137 5138 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5139 { 5140 cfs_rq_util_change(cfs_rq, 0); 5141 } 5142 5143 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5144 5145 static inline void 5146 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5147 static inline void 5148 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5149 5150 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf) 5151 { 5152 return 0; 5153 } 5154 5155 static inline void 5156 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5157 5158 static inline void 5159 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5160 5161 static inline void 5162 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5163 bool task_sleep) {} 5164 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5165 5166 #endif /* CONFIG_SMP */ 5167 5168 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr) 5169 { 5170 struct sched_entity *se = &p->se; 5171 5172 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 5173 if (attr->sched_runtime) { 5174 se->custom_slice = 1; 5175 se->slice = clamp_t(u64, attr->sched_runtime, 5176 NSEC_PER_MSEC/10, /* HZ=1000 * 10 */ 5177 NSEC_PER_MSEC*100); /* HZ=100 / 10 */ 5178 } else { 5179 se->custom_slice = 0; 5180 se->slice = sysctl_sched_base_slice; 5181 } 5182 } 5183 5184 static void 5185 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5186 { 5187 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5188 s64 lag = 0; 5189 5190 if (!se->custom_slice) 5191 se->slice = sysctl_sched_base_slice; 5192 vslice = calc_delta_fair(se->slice, se); 5193 5194 /* 5195 * Due to how V is constructed as the weighted average of entities, 5196 * adding tasks with positive lag, or removing tasks with negative lag 5197 * will move 'time' backwards, this can screw around with the lag of 5198 * other tasks. 5199 * 5200 * EEVDF: placement strategy #1 / #2 5201 */ 5202 if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) { 5203 struct sched_entity *curr = cfs_rq->curr; 5204 unsigned long load; 5205 5206 lag = se->vlag; 5207 5208 /* 5209 * If we want to place a task and preserve lag, we have to 5210 * consider the effect of the new entity on the weighted 5211 * average and compensate for this, otherwise lag can quickly 5212 * evaporate. 5213 * 5214 * Lag is defined as: 5215 * 5216 * lag_i = S - s_i = w_i * (V - v_i) 5217 * 5218 * To avoid the 'w_i' term all over the place, we only track 5219 * the virtual lag: 5220 * 5221 * vl_i = V - v_i <=> v_i = V - vl_i 5222 * 5223 * And we take V to be the weighted average of all v: 5224 * 5225 * V = (\Sum w_j*v_j) / W 5226 * 5227 * Where W is: \Sum w_j 5228 * 5229 * Then, the weighted average after adding an entity with lag 5230 * vl_i is given by: 5231 * 5232 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5233 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5234 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5235 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5236 * = V - w_i*vl_i / (W + w_i) 5237 * 5238 * And the actual lag after adding an entity with vl_i is: 5239 * 5240 * vl'_i = V' - v_i 5241 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5242 * = vl_i - w_i*vl_i / (W + w_i) 5243 * 5244 * Which is strictly less than vl_i. So in order to preserve lag 5245 * we should inflate the lag before placement such that the 5246 * effective lag after placement comes out right. 5247 * 5248 * As such, invert the above relation for vl'_i to get the vl_i 5249 * we need to use such that the lag after placement is the lag 5250 * we computed before dequeue. 5251 * 5252 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5253 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5254 * 5255 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5256 * = W*vl_i 5257 * 5258 * vl_i = (W + w_i)*vl'_i / W 5259 */ 5260 load = cfs_rq->avg_load; 5261 if (curr && curr->on_rq) 5262 load += scale_load_down(curr->load.weight); 5263 5264 lag *= load + scale_load_down(se->load.weight); 5265 if (WARN_ON_ONCE(!load)) 5266 load = 1; 5267 lag = div_s64(lag, load); 5268 } 5269 5270 se->vruntime = vruntime - lag; 5271 5272 if (se->rel_deadline) { 5273 se->deadline += se->vruntime; 5274 se->rel_deadline = 0; 5275 return; 5276 } 5277 5278 /* 5279 * When joining the competition; the existing tasks will be, 5280 * on average, halfway through their slice, as such start tasks 5281 * off with half a slice to ease into the competition. 5282 */ 5283 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5284 vslice /= 2; 5285 5286 /* 5287 * EEVDF: vd_i = ve_i + r_i/w_i 5288 */ 5289 se->deadline = se->vruntime + vslice; 5290 } 5291 5292 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5293 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5294 5295 static void 5296 requeue_delayed_entity(struct sched_entity *se); 5297 5298 static void 5299 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5300 { 5301 bool curr = cfs_rq->curr == se; 5302 5303 /* 5304 * If we're the current task, we must renormalise before calling 5305 * update_curr(). 5306 */ 5307 if (curr) 5308 place_entity(cfs_rq, se, flags); 5309 5310 update_curr(cfs_rq); 5311 5312 /* 5313 * When enqueuing a sched_entity, we must: 5314 * - Update loads to have both entity and cfs_rq synced with now. 5315 * - For group_entity, update its runnable_weight to reflect the new 5316 * h_nr_runnable of its group cfs_rq. 5317 * - For group_entity, update its weight to reflect the new share of 5318 * its group cfs_rq 5319 * - Add its new weight to cfs_rq->load.weight 5320 */ 5321 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5322 se_update_runnable(se); 5323 /* 5324 * XXX update_load_avg() above will have attached us to the pelt sum; 5325 * but update_cfs_group() here will re-adjust the weight and have to 5326 * undo/redo all that. Seems wasteful. 5327 */ 5328 update_cfs_group(se); 5329 5330 /* 5331 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5332 * we can place the entity. 5333 */ 5334 if (!curr) 5335 place_entity(cfs_rq, se, flags); 5336 5337 account_entity_enqueue(cfs_rq, se); 5338 5339 /* Entity has migrated, no longer consider this task hot */ 5340 if (flags & ENQUEUE_MIGRATED) 5341 se->exec_start = 0; 5342 5343 check_schedstat_required(); 5344 update_stats_enqueue_fair(cfs_rq, se, flags); 5345 if (!curr) 5346 __enqueue_entity(cfs_rq, se); 5347 se->on_rq = 1; 5348 5349 if (cfs_rq->nr_queued == 1) { 5350 check_enqueue_throttle(cfs_rq); 5351 if (!throttled_hierarchy(cfs_rq)) { 5352 list_add_leaf_cfs_rq(cfs_rq); 5353 } else { 5354 #ifdef CONFIG_CFS_BANDWIDTH 5355 struct rq *rq = rq_of(cfs_rq); 5356 5357 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5358 cfs_rq->throttled_clock = rq_clock(rq); 5359 if (!cfs_rq->throttled_clock_self) 5360 cfs_rq->throttled_clock_self = rq_clock(rq); 5361 #endif 5362 } 5363 } 5364 } 5365 5366 static void __clear_buddies_next(struct sched_entity *se) 5367 { 5368 for_each_sched_entity(se) { 5369 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5370 if (cfs_rq->next != se) 5371 break; 5372 5373 cfs_rq->next = NULL; 5374 } 5375 } 5376 5377 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5378 { 5379 if (cfs_rq->next == se) 5380 __clear_buddies_next(se); 5381 } 5382 5383 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5384 5385 static void set_delayed(struct sched_entity *se) 5386 { 5387 se->sched_delayed = 1; 5388 5389 /* 5390 * Delayed se of cfs_rq have no tasks queued on them. 5391 * Do not adjust h_nr_runnable since dequeue_entities() 5392 * will account it for blocked tasks. 5393 */ 5394 if (!entity_is_task(se)) 5395 return; 5396 5397 for_each_sched_entity(se) { 5398 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5399 5400 cfs_rq->h_nr_runnable--; 5401 if (cfs_rq_throttled(cfs_rq)) 5402 break; 5403 } 5404 } 5405 5406 static void clear_delayed(struct sched_entity *se) 5407 { 5408 se->sched_delayed = 0; 5409 5410 /* 5411 * Delayed se of cfs_rq have no tasks queued on them. 5412 * Do not adjust h_nr_runnable since a dequeue has 5413 * already accounted for it or an enqueue of a task 5414 * below it will account for it in enqueue_task_fair(). 5415 */ 5416 if (!entity_is_task(se)) 5417 return; 5418 5419 for_each_sched_entity(se) { 5420 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5421 5422 cfs_rq->h_nr_runnable++; 5423 if (cfs_rq_throttled(cfs_rq)) 5424 break; 5425 } 5426 } 5427 5428 static inline void finish_delayed_dequeue_entity(struct sched_entity *se) 5429 { 5430 clear_delayed(se); 5431 if (sched_feat(DELAY_ZERO) && se->vlag > 0) 5432 se->vlag = 0; 5433 } 5434 5435 static bool 5436 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5437 { 5438 bool sleep = flags & DEQUEUE_SLEEP; 5439 int action = UPDATE_TG; 5440 5441 update_curr(cfs_rq); 5442 clear_buddies(cfs_rq, se); 5443 5444 if (flags & DEQUEUE_DELAYED) { 5445 SCHED_WARN_ON(!se->sched_delayed); 5446 } else { 5447 bool delay = sleep; 5448 /* 5449 * DELAY_DEQUEUE relies on spurious wakeups, special task 5450 * states must not suffer spurious wakeups, excempt them. 5451 */ 5452 if (flags & DEQUEUE_SPECIAL) 5453 delay = false; 5454 5455 SCHED_WARN_ON(delay && se->sched_delayed); 5456 5457 if (sched_feat(DELAY_DEQUEUE) && delay && 5458 !entity_eligible(cfs_rq, se)) { 5459 update_load_avg(cfs_rq, se, 0); 5460 set_delayed(se); 5461 return false; 5462 } 5463 } 5464 5465 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5466 action |= DO_DETACH; 5467 5468 /* 5469 * When dequeuing a sched_entity, we must: 5470 * - Update loads to have both entity and cfs_rq synced with now. 5471 * - For group_entity, update its runnable_weight to reflect the new 5472 * h_nr_runnable of its group cfs_rq. 5473 * - Subtract its previous weight from cfs_rq->load.weight. 5474 * - For group entity, update its weight to reflect the new share 5475 * of its group cfs_rq. 5476 */ 5477 update_load_avg(cfs_rq, se, action); 5478 se_update_runnable(se); 5479 5480 update_stats_dequeue_fair(cfs_rq, se, flags); 5481 5482 update_entity_lag(cfs_rq, se); 5483 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { 5484 se->deadline -= se->vruntime; 5485 se->rel_deadline = 1; 5486 } 5487 5488 if (se != cfs_rq->curr) 5489 __dequeue_entity(cfs_rq, se); 5490 se->on_rq = 0; 5491 account_entity_dequeue(cfs_rq, se); 5492 5493 /* return excess runtime on last dequeue */ 5494 return_cfs_rq_runtime(cfs_rq); 5495 5496 update_cfs_group(se); 5497 5498 /* 5499 * Now advance min_vruntime if @se was the entity holding it back, 5500 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5501 * put back on, and if we advance min_vruntime, we'll be placed back 5502 * further than we started -- i.e. we'll be penalized. 5503 */ 5504 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5505 update_min_vruntime(cfs_rq); 5506 5507 if (flags & DEQUEUE_DELAYED) 5508 finish_delayed_dequeue_entity(se); 5509 5510 if (cfs_rq->nr_queued == 0) 5511 update_idle_cfs_rq_clock_pelt(cfs_rq); 5512 5513 return true; 5514 } 5515 5516 static void 5517 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5518 { 5519 clear_buddies(cfs_rq, se); 5520 5521 /* 'current' is not kept within the tree. */ 5522 if (se->on_rq) { 5523 /* 5524 * Any task has to be enqueued before it get to execute on 5525 * a CPU. So account for the time it spent waiting on the 5526 * runqueue. 5527 */ 5528 update_stats_wait_end_fair(cfs_rq, se); 5529 __dequeue_entity(cfs_rq, se); 5530 update_load_avg(cfs_rq, se, UPDATE_TG); 5531 /* 5532 * HACK, stash a copy of deadline at the point of pick in vlag, 5533 * which isn't used until dequeue. 5534 */ 5535 se->vlag = se->deadline; 5536 } 5537 5538 update_stats_curr_start(cfs_rq, se); 5539 SCHED_WARN_ON(cfs_rq->curr); 5540 cfs_rq->curr = se; 5541 5542 /* 5543 * Track our maximum slice length, if the CPU's load is at 5544 * least twice that of our own weight (i.e. don't track it 5545 * when there are only lesser-weight tasks around): 5546 */ 5547 if (schedstat_enabled() && 5548 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5549 struct sched_statistics *stats; 5550 5551 stats = __schedstats_from_se(se); 5552 __schedstat_set(stats->slice_max, 5553 max((u64)stats->slice_max, 5554 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5555 } 5556 5557 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5558 } 5559 5560 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); 5561 5562 /* 5563 * Pick the next process, keeping these things in mind, in this order: 5564 * 1) keep things fair between processes/task groups 5565 * 2) pick the "next" process, since someone really wants that to run 5566 * 3) pick the "last" process, for cache locality 5567 * 4) do not run the "skip" process, if something else is available 5568 */ 5569 static struct sched_entity * 5570 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) 5571 { 5572 struct sched_entity *se; 5573 5574 /* 5575 * Picking the ->next buddy will affect latency but not fairness. 5576 */ 5577 if (sched_feat(PICK_BUDDY) && 5578 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { 5579 /* ->next will never be delayed */ 5580 SCHED_WARN_ON(cfs_rq->next->sched_delayed); 5581 return cfs_rq->next; 5582 } 5583 5584 se = pick_eevdf(cfs_rq); 5585 if (se->sched_delayed) { 5586 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5587 /* 5588 * Must not reference @se again, see __block_task(). 5589 */ 5590 return NULL; 5591 } 5592 return se; 5593 } 5594 5595 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5596 5597 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5598 { 5599 /* 5600 * If still on the runqueue then deactivate_task() 5601 * was not called and update_curr() has to be done: 5602 */ 5603 if (prev->on_rq) 5604 update_curr(cfs_rq); 5605 5606 /* throttle cfs_rqs exceeding runtime */ 5607 check_cfs_rq_runtime(cfs_rq); 5608 5609 if (prev->on_rq) { 5610 update_stats_wait_start_fair(cfs_rq, prev); 5611 /* Put 'current' back into the tree. */ 5612 __enqueue_entity(cfs_rq, prev); 5613 /* in !on_rq case, update occurred at dequeue */ 5614 update_load_avg(cfs_rq, prev, 0); 5615 } 5616 SCHED_WARN_ON(cfs_rq->curr != prev); 5617 cfs_rq->curr = NULL; 5618 } 5619 5620 static void 5621 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5622 { 5623 /* 5624 * Update run-time statistics of the 'current'. 5625 */ 5626 update_curr(cfs_rq); 5627 5628 /* 5629 * Ensure that runnable average is periodically updated. 5630 */ 5631 update_load_avg(cfs_rq, curr, UPDATE_TG); 5632 update_cfs_group(curr); 5633 5634 #ifdef CONFIG_SCHED_HRTICK 5635 /* 5636 * queued ticks are scheduled to match the slice, so don't bother 5637 * validating it and just reschedule. 5638 */ 5639 if (queued) { 5640 resched_curr_lazy(rq_of(cfs_rq)); 5641 return; 5642 } 5643 #endif 5644 } 5645 5646 5647 /************************************************** 5648 * CFS bandwidth control machinery 5649 */ 5650 5651 #ifdef CONFIG_CFS_BANDWIDTH 5652 5653 #ifdef CONFIG_JUMP_LABEL 5654 static struct static_key __cfs_bandwidth_used; 5655 5656 static inline bool cfs_bandwidth_used(void) 5657 { 5658 return static_key_false(&__cfs_bandwidth_used); 5659 } 5660 5661 void cfs_bandwidth_usage_inc(void) 5662 { 5663 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5664 } 5665 5666 void cfs_bandwidth_usage_dec(void) 5667 { 5668 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5669 } 5670 #else /* CONFIG_JUMP_LABEL */ 5671 static bool cfs_bandwidth_used(void) 5672 { 5673 return true; 5674 } 5675 5676 void cfs_bandwidth_usage_inc(void) {} 5677 void cfs_bandwidth_usage_dec(void) {} 5678 #endif /* CONFIG_JUMP_LABEL */ 5679 5680 /* 5681 * default period for cfs group bandwidth. 5682 * default: 0.1s, units: nanoseconds 5683 */ 5684 static inline u64 default_cfs_period(void) 5685 { 5686 return 100000000ULL; 5687 } 5688 5689 static inline u64 sched_cfs_bandwidth_slice(void) 5690 { 5691 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5692 } 5693 5694 /* 5695 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5696 * directly instead of rq->clock to avoid adding additional synchronization 5697 * around rq->lock. 5698 * 5699 * requires cfs_b->lock 5700 */ 5701 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5702 { 5703 s64 runtime; 5704 5705 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5706 return; 5707 5708 cfs_b->runtime += cfs_b->quota; 5709 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5710 if (runtime > 0) { 5711 cfs_b->burst_time += runtime; 5712 cfs_b->nr_burst++; 5713 } 5714 5715 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5716 cfs_b->runtime_snap = cfs_b->runtime; 5717 } 5718 5719 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5720 { 5721 return &tg->cfs_bandwidth; 5722 } 5723 5724 /* returns 0 on failure to allocate runtime */ 5725 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5726 struct cfs_rq *cfs_rq, u64 target_runtime) 5727 { 5728 u64 min_amount, amount = 0; 5729 5730 lockdep_assert_held(&cfs_b->lock); 5731 5732 /* note: this is a positive sum as runtime_remaining <= 0 */ 5733 min_amount = target_runtime - cfs_rq->runtime_remaining; 5734 5735 if (cfs_b->quota == RUNTIME_INF) 5736 amount = min_amount; 5737 else { 5738 start_cfs_bandwidth(cfs_b); 5739 5740 if (cfs_b->runtime > 0) { 5741 amount = min(cfs_b->runtime, min_amount); 5742 cfs_b->runtime -= amount; 5743 cfs_b->idle = 0; 5744 } 5745 } 5746 5747 cfs_rq->runtime_remaining += amount; 5748 5749 return cfs_rq->runtime_remaining > 0; 5750 } 5751 5752 /* returns 0 on failure to allocate runtime */ 5753 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5754 { 5755 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5756 int ret; 5757 5758 raw_spin_lock(&cfs_b->lock); 5759 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5760 raw_spin_unlock(&cfs_b->lock); 5761 5762 return ret; 5763 } 5764 5765 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5766 { 5767 /* dock delta_exec before expiring quota (as it could span periods) */ 5768 cfs_rq->runtime_remaining -= delta_exec; 5769 5770 if (likely(cfs_rq->runtime_remaining > 0)) 5771 return; 5772 5773 if (cfs_rq->throttled) 5774 return; 5775 /* 5776 * if we're unable to extend our runtime we resched so that the active 5777 * hierarchy can be throttled 5778 */ 5779 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5780 resched_curr(rq_of(cfs_rq)); 5781 } 5782 5783 static __always_inline 5784 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5785 { 5786 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5787 return; 5788 5789 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5790 } 5791 5792 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5793 { 5794 return cfs_bandwidth_used() && cfs_rq->throttled; 5795 } 5796 5797 /* check whether cfs_rq, or any parent, is throttled */ 5798 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5799 { 5800 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5801 } 5802 5803 /* 5804 * Ensure that neither of the group entities corresponding to src_cpu or 5805 * dest_cpu are members of a throttled hierarchy when performing group 5806 * load-balance operations. 5807 */ 5808 static inline int throttled_lb_pair(struct task_group *tg, 5809 int src_cpu, int dest_cpu) 5810 { 5811 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5812 5813 src_cfs_rq = tg->cfs_rq[src_cpu]; 5814 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5815 5816 return throttled_hierarchy(src_cfs_rq) || 5817 throttled_hierarchy(dest_cfs_rq); 5818 } 5819 5820 static int tg_unthrottle_up(struct task_group *tg, void *data) 5821 { 5822 struct rq *rq = data; 5823 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5824 5825 cfs_rq->throttle_count--; 5826 if (!cfs_rq->throttle_count) { 5827 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5828 cfs_rq->throttled_clock_pelt; 5829 5830 /* Add cfs_rq with load or one or more already running entities to the list */ 5831 if (!cfs_rq_is_decayed(cfs_rq)) 5832 list_add_leaf_cfs_rq(cfs_rq); 5833 5834 if (cfs_rq->throttled_clock_self) { 5835 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5836 5837 cfs_rq->throttled_clock_self = 0; 5838 5839 if (SCHED_WARN_ON((s64)delta < 0)) 5840 delta = 0; 5841 5842 cfs_rq->throttled_clock_self_time += delta; 5843 } 5844 } 5845 5846 return 0; 5847 } 5848 5849 static int tg_throttle_down(struct task_group *tg, void *data) 5850 { 5851 struct rq *rq = data; 5852 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5853 5854 /* group is entering throttled state, stop time */ 5855 if (!cfs_rq->throttle_count) { 5856 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5857 list_del_leaf_cfs_rq(cfs_rq); 5858 5859 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5860 if (cfs_rq->nr_queued) 5861 cfs_rq->throttled_clock_self = rq_clock(rq); 5862 } 5863 cfs_rq->throttle_count++; 5864 5865 return 0; 5866 } 5867 5868 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5869 { 5870 struct rq *rq = rq_of(cfs_rq); 5871 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5872 struct sched_entity *se; 5873 long queued_delta, runnable_delta, idle_delta, dequeue = 1; 5874 long rq_h_nr_queued = rq->cfs.h_nr_queued; 5875 5876 raw_spin_lock(&cfs_b->lock); 5877 /* This will start the period timer if necessary */ 5878 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5879 /* 5880 * We have raced with bandwidth becoming available, and if we 5881 * actually throttled the timer might not unthrottle us for an 5882 * entire period. We additionally needed to make sure that any 5883 * subsequent check_cfs_rq_runtime calls agree not to throttle 5884 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5885 * for 1ns of runtime rather than just check cfs_b. 5886 */ 5887 dequeue = 0; 5888 } else { 5889 list_add_tail_rcu(&cfs_rq->throttled_list, 5890 &cfs_b->throttled_cfs_rq); 5891 } 5892 raw_spin_unlock(&cfs_b->lock); 5893 5894 if (!dequeue) 5895 return false; /* Throttle no longer required. */ 5896 5897 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5898 5899 /* freeze hierarchy runnable averages while throttled */ 5900 rcu_read_lock(); 5901 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5902 rcu_read_unlock(); 5903 5904 queued_delta = cfs_rq->h_nr_queued; 5905 runnable_delta = cfs_rq->h_nr_runnable; 5906 idle_delta = cfs_rq->h_nr_idle; 5907 for_each_sched_entity(se) { 5908 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5909 int flags; 5910 5911 /* throttled entity or throttle-on-deactivate */ 5912 if (!se->on_rq) 5913 goto done; 5914 5915 /* 5916 * Abuse SPECIAL to avoid delayed dequeue in this instance. 5917 * This avoids teaching dequeue_entities() about throttled 5918 * entities and keeps things relatively simple. 5919 */ 5920 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL; 5921 if (se->sched_delayed) 5922 flags |= DEQUEUE_DELAYED; 5923 dequeue_entity(qcfs_rq, se, flags); 5924 5925 if (cfs_rq_is_idle(group_cfs_rq(se))) 5926 idle_delta = cfs_rq->h_nr_queued; 5927 5928 qcfs_rq->h_nr_queued -= queued_delta; 5929 qcfs_rq->h_nr_runnable -= runnable_delta; 5930 qcfs_rq->h_nr_idle -= idle_delta; 5931 5932 if (qcfs_rq->load.weight) { 5933 /* Avoid re-evaluating load for this entity: */ 5934 se = parent_entity(se); 5935 break; 5936 } 5937 } 5938 5939 for_each_sched_entity(se) { 5940 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5941 /* throttled entity or throttle-on-deactivate */ 5942 if (!se->on_rq) 5943 goto done; 5944 5945 update_load_avg(qcfs_rq, se, 0); 5946 se_update_runnable(se); 5947 5948 if (cfs_rq_is_idle(group_cfs_rq(se))) 5949 idle_delta = cfs_rq->h_nr_queued; 5950 5951 qcfs_rq->h_nr_queued -= queued_delta; 5952 qcfs_rq->h_nr_runnable -= runnable_delta; 5953 qcfs_rq->h_nr_idle -= idle_delta; 5954 } 5955 5956 /* At this point se is NULL and we are at root level*/ 5957 sub_nr_running(rq, queued_delta); 5958 5959 /* Stop the fair server if throttling resulted in no runnable tasks */ 5960 if (rq_h_nr_queued && !rq->cfs.h_nr_queued) 5961 dl_server_stop(&rq->fair_server); 5962 done: 5963 /* 5964 * Note: distribution will already see us throttled via the 5965 * throttled-list. rq->lock protects completion. 5966 */ 5967 cfs_rq->throttled = 1; 5968 SCHED_WARN_ON(cfs_rq->throttled_clock); 5969 if (cfs_rq->nr_queued) 5970 cfs_rq->throttled_clock = rq_clock(rq); 5971 return true; 5972 } 5973 5974 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5975 { 5976 struct rq *rq = rq_of(cfs_rq); 5977 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5978 struct sched_entity *se; 5979 long queued_delta, runnable_delta, idle_delta; 5980 long rq_h_nr_queued = rq->cfs.h_nr_queued; 5981 5982 se = cfs_rq->tg->se[cpu_of(rq)]; 5983 5984 cfs_rq->throttled = 0; 5985 5986 update_rq_clock(rq); 5987 5988 raw_spin_lock(&cfs_b->lock); 5989 if (cfs_rq->throttled_clock) { 5990 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5991 cfs_rq->throttled_clock = 0; 5992 } 5993 list_del_rcu(&cfs_rq->throttled_list); 5994 raw_spin_unlock(&cfs_b->lock); 5995 5996 /* update hierarchical throttle state */ 5997 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5998 5999 if (!cfs_rq->load.weight) { 6000 if (!cfs_rq->on_list) 6001 return; 6002 /* 6003 * Nothing to run but something to decay (on_list)? 6004 * Complete the branch. 6005 */ 6006 for_each_sched_entity(se) { 6007 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 6008 break; 6009 } 6010 goto unthrottle_throttle; 6011 } 6012 6013 queued_delta = cfs_rq->h_nr_queued; 6014 runnable_delta = cfs_rq->h_nr_runnable; 6015 idle_delta = cfs_rq->h_nr_idle; 6016 for_each_sched_entity(se) { 6017 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6018 6019 /* Handle any unfinished DELAY_DEQUEUE business first. */ 6020 if (se->sched_delayed) { 6021 int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED; 6022 6023 dequeue_entity(qcfs_rq, se, flags); 6024 } else if (se->on_rq) 6025 break; 6026 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 6027 6028 if (cfs_rq_is_idle(group_cfs_rq(se))) 6029 idle_delta = cfs_rq->h_nr_queued; 6030 6031 qcfs_rq->h_nr_queued += queued_delta; 6032 qcfs_rq->h_nr_runnable += runnable_delta; 6033 qcfs_rq->h_nr_idle += idle_delta; 6034 6035 /* end evaluation on encountering a throttled cfs_rq */ 6036 if (cfs_rq_throttled(qcfs_rq)) 6037 goto unthrottle_throttle; 6038 } 6039 6040 for_each_sched_entity(se) { 6041 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6042 6043 update_load_avg(qcfs_rq, se, UPDATE_TG); 6044 se_update_runnable(se); 6045 6046 if (cfs_rq_is_idle(group_cfs_rq(se))) 6047 idle_delta = cfs_rq->h_nr_queued; 6048 6049 qcfs_rq->h_nr_queued += queued_delta; 6050 qcfs_rq->h_nr_runnable += runnable_delta; 6051 qcfs_rq->h_nr_idle += idle_delta; 6052 6053 /* end evaluation on encountering a throttled cfs_rq */ 6054 if (cfs_rq_throttled(qcfs_rq)) 6055 goto unthrottle_throttle; 6056 } 6057 6058 /* Start the fair server if un-throttling resulted in new runnable tasks */ 6059 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) 6060 dl_server_start(&rq->fair_server); 6061 6062 /* At this point se is NULL and we are at root level*/ 6063 add_nr_running(rq, queued_delta); 6064 6065 unthrottle_throttle: 6066 assert_list_leaf_cfs_rq(rq); 6067 6068 /* Determine whether we need to wake up potentially idle CPU: */ 6069 if (rq->curr == rq->idle && rq->cfs.nr_queued) 6070 resched_curr(rq); 6071 } 6072 6073 #ifdef CONFIG_SMP 6074 static void __cfsb_csd_unthrottle(void *arg) 6075 { 6076 struct cfs_rq *cursor, *tmp; 6077 struct rq *rq = arg; 6078 struct rq_flags rf; 6079 6080 rq_lock(rq, &rf); 6081 6082 /* 6083 * Iterating over the list can trigger several call to 6084 * update_rq_clock() in unthrottle_cfs_rq(). 6085 * Do it once and skip the potential next ones. 6086 */ 6087 update_rq_clock(rq); 6088 rq_clock_start_loop_update(rq); 6089 6090 /* 6091 * Since we hold rq lock we're safe from concurrent manipulation of 6092 * the CSD list. However, this RCU critical section annotates the 6093 * fact that we pair with sched_free_group_rcu(), so that we cannot 6094 * race with group being freed in the window between removing it 6095 * from the list and advancing to the next entry in the list. 6096 */ 6097 rcu_read_lock(); 6098 6099 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 6100 throttled_csd_list) { 6101 list_del_init(&cursor->throttled_csd_list); 6102 6103 if (cfs_rq_throttled(cursor)) 6104 unthrottle_cfs_rq(cursor); 6105 } 6106 6107 rcu_read_unlock(); 6108 6109 rq_clock_stop_loop_update(rq); 6110 rq_unlock(rq, &rf); 6111 } 6112 6113 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6114 { 6115 struct rq *rq = rq_of(cfs_rq); 6116 bool first; 6117 6118 if (rq == this_rq()) { 6119 unthrottle_cfs_rq(cfs_rq); 6120 return; 6121 } 6122 6123 /* Already enqueued */ 6124 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 6125 return; 6126 6127 first = list_empty(&rq->cfsb_csd_list); 6128 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 6129 if (first) 6130 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 6131 } 6132 #else 6133 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6134 { 6135 unthrottle_cfs_rq(cfs_rq); 6136 } 6137 #endif 6138 6139 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6140 { 6141 lockdep_assert_rq_held(rq_of(cfs_rq)); 6142 6143 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 6144 cfs_rq->runtime_remaining <= 0)) 6145 return; 6146 6147 __unthrottle_cfs_rq_async(cfs_rq); 6148 } 6149 6150 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6151 { 6152 int this_cpu = smp_processor_id(); 6153 u64 runtime, remaining = 1; 6154 bool throttled = false; 6155 struct cfs_rq *cfs_rq, *tmp; 6156 struct rq_flags rf; 6157 struct rq *rq; 6158 LIST_HEAD(local_unthrottle); 6159 6160 rcu_read_lock(); 6161 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6162 throttled_list) { 6163 rq = rq_of(cfs_rq); 6164 6165 if (!remaining) { 6166 throttled = true; 6167 break; 6168 } 6169 6170 rq_lock_irqsave(rq, &rf); 6171 if (!cfs_rq_throttled(cfs_rq)) 6172 goto next; 6173 6174 /* Already queued for async unthrottle */ 6175 if (!list_empty(&cfs_rq->throttled_csd_list)) 6176 goto next; 6177 6178 /* By the above checks, this should never be true */ 6179 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 6180 6181 raw_spin_lock(&cfs_b->lock); 6182 runtime = -cfs_rq->runtime_remaining + 1; 6183 if (runtime > cfs_b->runtime) 6184 runtime = cfs_b->runtime; 6185 cfs_b->runtime -= runtime; 6186 remaining = cfs_b->runtime; 6187 raw_spin_unlock(&cfs_b->lock); 6188 6189 cfs_rq->runtime_remaining += runtime; 6190 6191 /* we check whether we're throttled above */ 6192 if (cfs_rq->runtime_remaining > 0) { 6193 if (cpu_of(rq) != this_cpu) { 6194 unthrottle_cfs_rq_async(cfs_rq); 6195 } else { 6196 /* 6197 * We currently only expect to be unthrottling 6198 * a single cfs_rq locally. 6199 */ 6200 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6201 list_add_tail(&cfs_rq->throttled_csd_list, 6202 &local_unthrottle); 6203 } 6204 } else { 6205 throttled = true; 6206 } 6207 6208 next: 6209 rq_unlock_irqrestore(rq, &rf); 6210 } 6211 6212 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6213 throttled_csd_list) { 6214 struct rq *rq = rq_of(cfs_rq); 6215 6216 rq_lock_irqsave(rq, &rf); 6217 6218 list_del_init(&cfs_rq->throttled_csd_list); 6219 6220 if (cfs_rq_throttled(cfs_rq)) 6221 unthrottle_cfs_rq(cfs_rq); 6222 6223 rq_unlock_irqrestore(rq, &rf); 6224 } 6225 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6226 6227 rcu_read_unlock(); 6228 6229 return throttled; 6230 } 6231 6232 /* 6233 * Responsible for refilling a task_group's bandwidth and unthrottling its 6234 * cfs_rqs as appropriate. If there has been no activity within the last 6235 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6236 * used to track this state. 6237 */ 6238 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6239 { 6240 int throttled; 6241 6242 /* no need to continue the timer with no bandwidth constraint */ 6243 if (cfs_b->quota == RUNTIME_INF) 6244 goto out_deactivate; 6245 6246 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6247 cfs_b->nr_periods += overrun; 6248 6249 /* Refill extra burst quota even if cfs_b->idle */ 6250 __refill_cfs_bandwidth_runtime(cfs_b); 6251 6252 /* 6253 * idle depends on !throttled (for the case of a large deficit), and if 6254 * we're going inactive then everything else can be deferred 6255 */ 6256 if (cfs_b->idle && !throttled) 6257 goto out_deactivate; 6258 6259 if (!throttled) { 6260 /* mark as potentially idle for the upcoming period */ 6261 cfs_b->idle = 1; 6262 return 0; 6263 } 6264 6265 /* account preceding periods in which throttling occurred */ 6266 cfs_b->nr_throttled += overrun; 6267 6268 /* 6269 * This check is repeated as we release cfs_b->lock while we unthrottle. 6270 */ 6271 while (throttled && cfs_b->runtime > 0) { 6272 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6273 /* we can't nest cfs_b->lock while distributing bandwidth */ 6274 throttled = distribute_cfs_runtime(cfs_b); 6275 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6276 } 6277 6278 /* 6279 * While we are ensured activity in the period following an 6280 * unthrottle, this also covers the case in which the new bandwidth is 6281 * insufficient to cover the existing bandwidth deficit. (Forcing the 6282 * timer to remain active while there are any throttled entities.) 6283 */ 6284 cfs_b->idle = 0; 6285 6286 return 0; 6287 6288 out_deactivate: 6289 return 1; 6290 } 6291 6292 /* a cfs_rq won't donate quota below this amount */ 6293 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6294 /* minimum remaining period time to redistribute slack quota */ 6295 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6296 /* how long we wait to gather additional slack before distributing */ 6297 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6298 6299 /* 6300 * Are we near the end of the current quota period? 6301 * 6302 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6303 * hrtimer base being cleared by hrtimer_start. In the case of 6304 * migrate_hrtimers, base is never cleared, so we are fine. 6305 */ 6306 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6307 { 6308 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6309 s64 remaining; 6310 6311 /* if the call-back is running a quota refresh is already occurring */ 6312 if (hrtimer_callback_running(refresh_timer)) 6313 return 1; 6314 6315 /* is a quota refresh about to occur? */ 6316 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6317 if (remaining < (s64)min_expire) 6318 return 1; 6319 6320 return 0; 6321 } 6322 6323 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6324 { 6325 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6326 6327 /* if there's a quota refresh soon don't bother with slack */ 6328 if (runtime_refresh_within(cfs_b, min_left)) 6329 return; 6330 6331 /* don't push forwards an existing deferred unthrottle */ 6332 if (cfs_b->slack_started) 6333 return; 6334 cfs_b->slack_started = true; 6335 6336 hrtimer_start(&cfs_b->slack_timer, 6337 ns_to_ktime(cfs_bandwidth_slack_period), 6338 HRTIMER_MODE_REL); 6339 } 6340 6341 /* we know any runtime found here is valid as update_curr() precedes return */ 6342 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6343 { 6344 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6345 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6346 6347 if (slack_runtime <= 0) 6348 return; 6349 6350 raw_spin_lock(&cfs_b->lock); 6351 if (cfs_b->quota != RUNTIME_INF) { 6352 cfs_b->runtime += slack_runtime; 6353 6354 /* we are under rq->lock, defer unthrottling using a timer */ 6355 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6356 !list_empty(&cfs_b->throttled_cfs_rq)) 6357 start_cfs_slack_bandwidth(cfs_b); 6358 } 6359 raw_spin_unlock(&cfs_b->lock); 6360 6361 /* even if it's not valid for return we don't want to try again */ 6362 cfs_rq->runtime_remaining -= slack_runtime; 6363 } 6364 6365 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6366 { 6367 if (!cfs_bandwidth_used()) 6368 return; 6369 6370 if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued) 6371 return; 6372 6373 __return_cfs_rq_runtime(cfs_rq); 6374 } 6375 6376 /* 6377 * This is done with a timer (instead of inline with bandwidth return) since 6378 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6379 */ 6380 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6381 { 6382 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6383 unsigned long flags; 6384 6385 /* confirm we're still not at a refresh boundary */ 6386 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6387 cfs_b->slack_started = false; 6388 6389 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6390 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6391 return; 6392 } 6393 6394 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6395 runtime = cfs_b->runtime; 6396 6397 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6398 6399 if (!runtime) 6400 return; 6401 6402 distribute_cfs_runtime(cfs_b); 6403 } 6404 6405 /* 6406 * When a group wakes up we want to make sure that its quota is not already 6407 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6408 * runtime as update_curr() throttling can not trigger until it's on-rq. 6409 */ 6410 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6411 { 6412 if (!cfs_bandwidth_used()) 6413 return; 6414 6415 /* an active group must be handled by the update_curr()->put() path */ 6416 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6417 return; 6418 6419 /* ensure the group is not already throttled */ 6420 if (cfs_rq_throttled(cfs_rq)) 6421 return; 6422 6423 /* update runtime allocation */ 6424 account_cfs_rq_runtime(cfs_rq, 0); 6425 if (cfs_rq->runtime_remaining <= 0) 6426 throttle_cfs_rq(cfs_rq); 6427 } 6428 6429 static void sync_throttle(struct task_group *tg, int cpu) 6430 { 6431 struct cfs_rq *pcfs_rq, *cfs_rq; 6432 6433 if (!cfs_bandwidth_used()) 6434 return; 6435 6436 if (!tg->parent) 6437 return; 6438 6439 cfs_rq = tg->cfs_rq[cpu]; 6440 pcfs_rq = tg->parent->cfs_rq[cpu]; 6441 6442 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6443 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6444 } 6445 6446 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6447 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6448 { 6449 if (!cfs_bandwidth_used()) 6450 return false; 6451 6452 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6453 return false; 6454 6455 /* 6456 * it's possible for a throttled entity to be forced into a running 6457 * state (e.g. set_curr_task), in this case we're finished. 6458 */ 6459 if (cfs_rq_throttled(cfs_rq)) 6460 return true; 6461 6462 return throttle_cfs_rq(cfs_rq); 6463 } 6464 6465 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6466 { 6467 struct cfs_bandwidth *cfs_b = 6468 container_of(timer, struct cfs_bandwidth, slack_timer); 6469 6470 do_sched_cfs_slack_timer(cfs_b); 6471 6472 return HRTIMER_NORESTART; 6473 } 6474 6475 extern const u64 max_cfs_quota_period; 6476 6477 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6478 { 6479 struct cfs_bandwidth *cfs_b = 6480 container_of(timer, struct cfs_bandwidth, period_timer); 6481 unsigned long flags; 6482 int overrun; 6483 int idle = 0; 6484 int count = 0; 6485 6486 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6487 for (;;) { 6488 overrun = hrtimer_forward_now(timer, cfs_b->period); 6489 if (!overrun) 6490 break; 6491 6492 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6493 6494 if (++count > 3) { 6495 u64 new, old = ktime_to_ns(cfs_b->period); 6496 6497 /* 6498 * Grow period by a factor of 2 to avoid losing precision. 6499 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6500 * to fail. 6501 */ 6502 new = old * 2; 6503 if (new < max_cfs_quota_period) { 6504 cfs_b->period = ns_to_ktime(new); 6505 cfs_b->quota *= 2; 6506 cfs_b->burst *= 2; 6507 6508 pr_warn_ratelimited( 6509 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6510 smp_processor_id(), 6511 div_u64(new, NSEC_PER_USEC), 6512 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6513 } else { 6514 pr_warn_ratelimited( 6515 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6516 smp_processor_id(), 6517 div_u64(old, NSEC_PER_USEC), 6518 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6519 } 6520 6521 /* reset count so we don't come right back in here */ 6522 count = 0; 6523 } 6524 } 6525 if (idle) 6526 cfs_b->period_active = 0; 6527 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6528 6529 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6530 } 6531 6532 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6533 { 6534 raw_spin_lock_init(&cfs_b->lock); 6535 cfs_b->runtime = 0; 6536 cfs_b->quota = RUNTIME_INF; 6537 cfs_b->period = ns_to_ktime(default_cfs_period()); 6538 cfs_b->burst = 0; 6539 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6540 6541 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6542 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6543 cfs_b->period_timer.function = sched_cfs_period_timer; 6544 6545 /* Add a random offset so that timers interleave */ 6546 hrtimer_set_expires(&cfs_b->period_timer, 6547 get_random_u32_below(cfs_b->period)); 6548 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6549 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6550 cfs_b->slack_started = false; 6551 } 6552 6553 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6554 { 6555 cfs_rq->runtime_enabled = 0; 6556 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6557 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6558 } 6559 6560 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6561 { 6562 lockdep_assert_held(&cfs_b->lock); 6563 6564 if (cfs_b->period_active) 6565 return; 6566 6567 cfs_b->period_active = 1; 6568 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6569 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6570 } 6571 6572 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6573 { 6574 int __maybe_unused i; 6575 6576 /* init_cfs_bandwidth() was not called */ 6577 if (!cfs_b->throttled_cfs_rq.next) 6578 return; 6579 6580 hrtimer_cancel(&cfs_b->period_timer); 6581 hrtimer_cancel(&cfs_b->slack_timer); 6582 6583 /* 6584 * It is possible that we still have some cfs_rq's pending on a CSD 6585 * list, though this race is very rare. In order for this to occur, we 6586 * must have raced with the last task leaving the group while there 6587 * exist throttled cfs_rq(s), and the period_timer must have queued the 6588 * CSD item but the remote cpu has not yet processed it. To handle this, 6589 * we can simply flush all pending CSD work inline here. We're 6590 * guaranteed at this point that no additional cfs_rq of this group can 6591 * join a CSD list. 6592 */ 6593 #ifdef CONFIG_SMP 6594 for_each_possible_cpu(i) { 6595 struct rq *rq = cpu_rq(i); 6596 unsigned long flags; 6597 6598 if (list_empty(&rq->cfsb_csd_list)) 6599 continue; 6600 6601 local_irq_save(flags); 6602 __cfsb_csd_unthrottle(rq); 6603 local_irq_restore(flags); 6604 } 6605 #endif 6606 } 6607 6608 /* 6609 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6610 * 6611 * The race is harmless, since modifying bandwidth settings of unhooked group 6612 * bits doesn't do much. 6613 */ 6614 6615 /* cpu online callback */ 6616 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6617 { 6618 struct task_group *tg; 6619 6620 lockdep_assert_rq_held(rq); 6621 6622 rcu_read_lock(); 6623 list_for_each_entry_rcu(tg, &task_groups, list) { 6624 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6625 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6626 6627 raw_spin_lock(&cfs_b->lock); 6628 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6629 raw_spin_unlock(&cfs_b->lock); 6630 } 6631 rcu_read_unlock(); 6632 } 6633 6634 /* cpu offline callback */ 6635 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6636 { 6637 struct task_group *tg; 6638 6639 lockdep_assert_rq_held(rq); 6640 6641 // Do not unthrottle for an active CPU 6642 if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask)) 6643 return; 6644 6645 /* 6646 * The rq clock has already been updated in the 6647 * set_rq_offline(), so we should skip updating 6648 * the rq clock again in unthrottle_cfs_rq(). 6649 */ 6650 rq_clock_start_loop_update(rq); 6651 6652 rcu_read_lock(); 6653 list_for_each_entry_rcu(tg, &task_groups, list) { 6654 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6655 6656 if (!cfs_rq->runtime_enabled) 6657 continue; 6658 6659 /* 6660 * Offline rq is schedulable till CPU is completely disabled 6661 * in take_cpu_down(), so we prevent new cfs throttling here. 6662 */ 6663 cfs_rq->runtime_enabled = 0; 6664 6665 if (!cfs_rq_throttled(cfs_rq)) 6666 continue; 6667 6668 /* 6669 * clock_task is not advancing so we just need to make sure 6670 * there's some valid quota amount 6671 */ 6672 cfs_rq->runtime_remaining = 1; 6673 unthrottle_cfs_rq(cfs_rq); 6674 } 6675 rcu_read_unlock(); 6676 6677 rq_clock_stop_loop_update(rq); 6678 } 6679 6680 bool cfs_task_bw_constrained(struct task_struct *p) 6681 { 6682 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6683 6684 if (!cfs_bandwidth_used()) 6685 return false; 6686 6687 if (cfs_rq->runtime_enabled || 6688 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6689 return true; 6690 6691 return false; 6692 } 6693 6694 #ifdef CONFIG_NO_HZ_FULL 6695 /* called from pick_next_task_fair() */ 6696 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6697 { 6698 int cpu = cpu_of(rq); 6699 6700 if (!cfs_bandwidth_used()) 6701 return; 6702 6703 if (!tick_nohz_full_cpu(cpu)) 6704 return; 6705 6706 if (rq->nr_running != 1) 6707 return; 6708 6709 /* 6710 * We know there is only one task runnable and we've just picked it. The 6711 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6712 * be otherwise able to stop the tick. Just need to check if we are using 6713 * bandwidth control. 6714 */ 6715 if (cfs_task_bw_constrained(p)) 6716 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6717 } 6718 #endif 6719 6720 #else /* CONFIG_CFS_BANDWIDTH */ 6721 6722 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6723 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6724 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6725 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6726 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6727 6728 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6729 { 6730 return 0; 6731 } 6732 6733 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6734 { 6735 return 0; 6736 } 6737 6738 static inline int throttled_lb_pair(struct task_group *tg, 6739 int src_cpu, int dest_cpu) 6740 { 6741 return 0; 6742 } 6743 6744 #ifdef CONFIG_FAIR_GROUP_SCHED 6745 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6746 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6747 #endif 6748 6749 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6750 { 6751 return NULL; 6752 } 6753 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6754 static inline void update_runtime_enabled(struct rq *rq) {} 6755 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6756 #ifdef CONFIG_CGROUP_SCHED 6757 bool cfs_task_bw_constrained(struct task_struct *p) 6758 { 6759 return false; 6760 } 6761 #endif 6762 #endif /* CONFIG_CFS_BANDWIDTH */ 6763 6764 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6765 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6766 #endif 6767 6768 /************************************************** 6769 * CFS operations on tasks: 6770 */ 6771 6772 #ifdef CONFIG_SCHED_HRTICK 6773 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6774 { 6775 struct sched_entity *se = &p->se; 6776 6777 SCHED_WARN_ON(task_rq(p) != rq); 6778 6779 if (rq->cfs.h_nr_queued > 1) { 6780 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6781 u64 slice = se->slice; 6782 s64 delta = slice - ran; 6783 6784 if (delta < 0) { 6785 if (task_current_donor(rq, p)) 6786 resched_curr(rq); 6787 return; 6788 } 6789 hrtick_start(rq, delta); 6790 } 6791 } 6792 6793 /* 6794 * called from enqueue/dequeue and updates the hrtick when the 6795 * current task is from our class and nr_running is low enough 6796 * to matter. 6797 */ 6798 static void hrtick_update(struct rq *rq) 6799 { 6800 struct task_struct *donor = rq->donor; 6801 6802 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class) 6803 return; 6804 6805 hrtick_start_fair(rq, donor); 6806 } 6807 #else /* !CONFIG_SCHED_HRTICK */ 6808 static inline void 6809 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6810 { 6811 } 6812 6813 static inline void hrtick_update(struct rq *rq) 6814 { 6815 } 6816 #endif 6817 6818 #ifdef CONFIG_SMP 6819 static inline bool cpu_overutilized(int cpu) 6820 { 6821 unsigned long rq_util_min, rq_util_max; 6822 6823 if (!sched_energy_enabled()) 6824 return false; 6825 6826 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6827 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6828 6829 /* Return true only if the utilization doesn't fit CPU's capacity */ 6830 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6831 } 6832 6833 /* 6834 * overutilized value make sense only if EAS is enabled 6835 */ 6836 static inline bool is_rd_overutilized(struct root_domain *rd) 6837 { 6838 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6839 } 6840 6841 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6842 { 6843 if (!sched_energy_enabled()) 6844 return; 6845 6846 WRITE_ONCE(rd->overutilized, flag); 6847 trace_sched_overutilized_tp(rd, flag); 6848 } 6849 6850 static inline void check_update_overutilized_status(struct rq *rq) 6851 { 6852 /* 6853 * overutilized field is used for load balancing decisions only 6854 * if energy aware scheduler is being used 6855 */ 6856 6857 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6858 set_rd_overutilized(rq->rd, 1); 6859 } 6860 #else 6861 static inline void check_update_overutilized_status(struct rq *rq) { } 6862 #endif 6863 6864 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6865 static int sched_idle_rq(struct rq *rq) 6866 { 6867 return unlikely(rq->nr_running == rq->cfs.h_nr_idle && 6868 rq->nr_running); 6869 } 6870 6871 #ifdef CONFIG_SMP 6872 static int sched_idle_cpu(int cpu) 6873 { 6874 return sched_idle_rq(cpu_rq(cpu)); 6875 } 6876 #endif 6877 6878 static void 6879 requeue_delayed_entity(struct sched_entity *se) 6880 { 6881 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6882 6883 /* 6884 * se->sched_delayed should imply: se->on_rq == 1. 6885 * Because a delayed entity is one that is still on 6886 * the runqueue competing until elegibility. 6887 */ 6888 SCHED_WARN_ON(!se->sched_delayed); 6889 SCHED_WARN_ON(!se->on_rq); 6890 6891 if (sched_feat(DELAY_ZERO)) { 6892 update_entity_lag(cfs_rq, se); 6893 if (se->vlag > 0) { 6894 cfs_rq->nr_queued--; 6895 if (se != cfs_rq->curr) 6896 __dequeue_entity(cfs_rq, se); 6897 se->vlag = 0; 6898 place_entity(cfs_rq, se, 0); 6899 if (se != cfs_rq->curr) 6900 __enqueue_entity(cfs_rq, se); 6901 cfs_rq->nr_queued++; 6902 } 6903 } 6904 6905 update_load_avg(cfs_rq, se, 0); 6906 clear_delayed(se); 6907 } 6908 6909 /* 6910 * The enqueue_task method is called before nr_running is 6911 * increased. Here we update the fair scheduling stats and 6912 * then put the task into the rbtree: 6913 */ 6914 static void 6915 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6916 { 6917 struct cfs_rq *cfs_rq; 6918 struct sched_entity *se = &p->se; 6919 int h_nr_idle = task_has_idle_policy(p); 6920 int h_nr_runnable = 1; 6921 int task_new = !(flags & ENQUEUE_WAKEUP); 6922 int rq_h_nr_queued = rq->cfs.h_nr_queued; 6923 u64 slice = 0; 6924 6925 /* 6926 * The code below (indirectly) updates schedutil which looks at 6927 * the cfs_rq utilization to select a frequency. 6928 * Let's add the task's estimated utilization to the cfs_rq's 6929 * estimated utilization, before we update schedutil. 6930 */ 6931 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE)))) 6932 util_est_enqueue(&rq->cfs, p); 6933 6934 if (flags & ENQUEUE_DELAYED) { 6935 requeue_delayed_entity(se); 6936 return; 6937 } 6938 6939 /* 6940 * If in_iowait is set, the code below may not trigger any cpufreq 6941 * utilization updates, so do it here explicitly with the IOWAIT flag 6942 * passed. 6943 */ 6944 if (p->in_iowait) 6945 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6946 6947 if (task_new && se->sched_delayed) 6948 h_nr_runnable = 0; 6949 6950 for_each_sched_entity(se) { 6951 if (se->on_rq) { 6952 if (se->sched_delayed) 6953 requeue_delayed_entity(se); 6954 break; 6955 } 6956 cfs_rq = cfs_rq_of(se); 6957 6958 /* 6959 * Basically set the slice of group entries to the min_slice of 6960 * their respective cfs_rq. This ensures the group can service 6961 * its entities in the desired time-frame. 6962 */ 6963 if (slice) { 6964 se->slice = slice; 6965 se->custom_slice = 1; 6966 } 6967 enqueue_entity(cfs_rq, se, flags); 6968 slice = cfs_rq_min_slice(cfs_rq); 6969 6970 cfs_rq->h_nr_runnable += h_nr_runnable; 6971 cfs_rq->h_nr_queued++; 6972 cfs_rq->h_nr_idle += h_nr_idle; 6973 6974 if (cfs_rq_is_idle(cfs_rq)) 6975 h_nr_idle = 1; 6976 6977 /* end evaluation on encountering a throttled cfs_rq */ 6978 if (cfs_rq_throttled(cfs_rq)) 6979 goto enqueue_throttle; 6980 6981 flags = ENQUEUE_WAKEUP; 6982 } 6983 6984 for_each_sched_entity(se) { 6985 cfs_rq = cfs_rq_of(se); 6986 6987 update_load_avg(cfs_rq, se, UPDATE_TG); 6988 se_update_runnable(se); 6989 update_cfs_group(se); 6990 6991 se->slice = slice; 6992 slice = cfs_rq_min_slice(cfs_rq); 6993 6994 cfs_rq->h_nr_runnable += h_nr_runnable; 6995 cfs_rq->h_nr_queued++; 6996 cfs_rq->h_nr_idle += h_nr_idle; 6997 6998 if (cfs_rq_is_idle(cfs_rq)) 6999 h_nr_idle = 1; 7000 7001 /* end evaluation on encountering a throttled cfs_rq */ 7002 if (cfs_rq_throttled(cfs_rq)) 7003 goto enqueue_throttle; 7004 } 7005 7006 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) { 7007 /* Account for idle runtime */ 7008 if (!rq->nr_running) 7009 dl_server_update_idle_time(rq, rq->curr); 7010 dl_server_start(&rq->fair_server); 7011 } 7012 7013 /* At this point se is NULL and we are at root level*/ 7014 add_nr_running(rq, 1); 7015 7016 /* 7017 * Since new tasks are assigned an initial util_avg equal to 7018 * half of the spare capacity of their CPU, tiny tasks have the 7019 * ability to cross the overutilized threshold, which will 7020 * result in the load balancer ruining all the task placement 7021 * done by EAS. As a way to mitigate that effect, do not account 7022 * for the first enqueue operation of new tasks during the 7023 * overutilized flag detection. 7024 * 7025 * A better way of solving this problem would be to wait for 7026 * the PELT signals of tasks to converge before taking them 7027 * into account, but that is not straightforward to implement, 7028 * and the following generally works well enough in practice. 7029 */ 7030 if (!task_new) 7031 check_update_overutilized_status(rq); 7032 7033 enqueue_throttle: 7034 assert_list_leaf_cfs_rq(rq); 7035 7036 hrtick_update(rq); 7037 } 7038 7039 static void set_next_buddy(struct sched_entity *se); 7040 7041 /* 7042 * Basically dequeue_task_fair(), except it can deal with dequeue_entity() 7043 * failing half-way through and resume the dequeue later. 7044 * 7045 * Returns: 7046 * -1 - dequeue delayed 7047 * 0 - dequeue throttled 7048 * 1 - dequeue complete 7049 */ 7050 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) 7051 { 7052 bool was_sched_idle = sched_idle_rq(rq); 7053 int rq_h_nr_queued = rq->cfs.h_nr_queued; 7054 bool task_sleep = flags & DEQUEUE_SLEEP; 7055 bool task_delayed = flags & DEQUEUE_DELAYED; 7056 struct task_struct *p = NULL; 7057 int h_nr_idle = 0; 7058 int h_nr_queued = 0; 7059 int h_nr_runnable = 0; 7060 struct cfs_rq *cfs_rq; 7061 u64 slice = 0; 7062 7063 if (entity_is_task(se)) { 7064 p = task_of(se); 7065 h_nr_queued = 1; 7066 h_nr_idle = task_has_idle_policy(p); 7067 if (task_sleep || task_delayed || !se->sched_delayed) 7068 h_nr_runnable = 1; 7069 } else { 7070 cfs_rq = group_cfs_rq(se); 7071 slice = cfs_rq_min_slice(cfs_rq); 7072 } 7073 7074 for_each_sched_entity(se) { 7075 cfs_rq = cfs_rq_of(se); 7076 7077 if (!dequeue_entity(cfs_rq, se, flags)) { 7078 if (p && &p->se == se) 7079 return -1; 7080 7081 break; 7082 } 7083 7084 cfs_rq->h_nr_runnable -= h_nr_runnable; 7085 cfs_rq->h_nr_queued -= h_nr_queued; 7086 cfs_rq->h_nr_idle -= h_nr_idle; 7087 7088 if (cfs_rq_is_idle(cfs_rq)) 7089 h_nr_idle = h_nr_queued; 7090 7091 /* end evaluation on encountering a throttled cfs_rq */ 7092 if (cfs_rq_throttled(cfs_rq)) 7093 return 0; 7094 7095 /* Don't dequeue parent if it has other entities besides us */ 7096 if (cfs_rq->load.weight) { 7097 slice = cfs_rq_min_slice(cfs_rq); 7098 7099 /* Avoid re-evaluating load for this entity: */ 7100 se = parent_entity(se); 7101 /* 7102 * Bias pick_next to pick a task from this cfs_rq, as 7103 * p is sleeping when it is within its sched_slice. 7104 */ 7105 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 7106 set_next_buddy(se); 7107 break; 7108 } 7109 flags |= DEQUEUE_SLEEP; 7110 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); 7111 } 7112 7113 for_each_sched_entity(se) { 7114 cfs_rq = cfs_rq_of(se); 7115 7116 update_load_avg(cfs_rq, se, UPDATE_TG); 7117 se_update_runnable(se); 7118 update_cfs_group(se); 7119 7120 se->slice = slice; 7121 slice = cfs_rq_min_slice(cfs_rq); 7122 7123 cfs_rq->h_nr_runnable -= h_nr_runnable; 7124 cfs_rq->h_nr_queued -= h_nr_queued; 7125 cfs_rq->h_nr_idle -= h_nr_idle; 7126 7127 if (cfs_rq_is_idle(cfs_rq)) 7128 h_nr_idle = h_nr_queued; 7129 7130 /* end evaluation on encountering a throttled cfs_rq */ 7131 if (cfs_rq_throttled(cfs_rq)) 7132 return 0; 7133 } 7134 7135 sub_nr_running(rq, h_nr_queued); 7136 7137 if (rq_h_nr_queued && !rq->cfs.h_nr_queued) 7138 dl_server_stop(&rq->fair_server); 7139 7140 /* balance early to pull high priority tasks */ 7141 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 7142 rq->next_balance = jiffies; 7143 7144 if (p && task_delayed) { 7145 SCHED_WARN_ON(!task_sleep); 7146 SCHED_WARN_ON(p->on_rq != 1); 7147 7148 /* Fix-up what dequeue_task_fair() skipped */ 7149 hrtick_update(rq); 7150 7151 /* 7152 * Fix-up what block_task() skipped. 7153 * 7154 * Must be last, @p might not be valid after this. 7155 */ 7156 __block_task(rq, p); 7157 } 7158 7159 return 1; 7160 } 7161 7162 /* 7163 * The dequeue_task method is called before nr_running is 7164 * decreased. We remove the task from the rbtree and 7165 * update the fair scheduling stats: 7166 */ 7167 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 7168 { 7169 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE)))) 7170 util_est_dequeue(&rq->cfs, p); 7171 7172 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); 7173 if (dequeue_entities(rq, &p->se, flags) < 0) 7174 return false; 7175 7176 /* 7177 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED). 7178 */ 7179 7180 hrtick_update(rq); 7181 return true; 7182 } 7183 7184 #ifdef CONFIG_SMP 7185 7186 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 7187 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7188 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 7189 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 7190 7191 #ifdef CONFIG_NO_HZ_COMMON 7192 7193 static struct { 7194 cpumask_var_t idle_cpus_mask; 7195 atomic_t nr_cpus; 7196 int has_blocked; /* Idle CPUS has blocked load */ 7197 int needs_update; /* Newly idle CPUs need their next_balance collated */ 7198 unsigned long next_balance; /* in jiffy units */ 7199 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 7200 } nohz ____cacheline_aligned; 7201 7202 #endif /* CONFIG_NO_HZ_COMMON */ 7203 7204 static unsigned long cpu_load(struct rq *rq) 7205 { 7206 return cfs_rq_load_avg(&rq->cfs); 7207 } 7208 7209 /* 7210 * cpu_load_without - compute CPU load without any contributions from *p 7211 * @cpu: the CPU which load is requested 7212 * @p: the task which load should be discounted 7213 * 7214 * The load of a CPU is defined by the load of tasks currently enqueued on that 7215 * CPU as well as tasks which are currently sleeping after an execution on that 7216 * CPU. 7217 * 7218 * This method returns the load of the specified CPU by discounting the load of 7219 * the specified task, whenever the task is currently contributing to the CPU 7220 * load. 7221 */ 7222 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 7223 { 7224 struct cfs_rq *cfs_rq; 7225 unsigned int load; 7226 7227 /* Task has no contribution or is new */ 7228 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7229 return cpu_load(rq); 7230 7231 cfs_rq = &rq->cfs; 7232 load = READ_ONCE(cfs_rq->avg.load_avg); 7233 7234 /* Discount task's util from CPU's util */ 7235 lsub_positive(&load, task_h_load(p)); 7236 7237 return load; 7238 } 7239 7240 static unsigned long cpu_runnable(struct rq *rq) 7241 { 7242 return cfs_rq_runnable_avg(&rq->cfs); 7243 } 7244 7245 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 7246 { 7247 struct cfs_rq *cfs_rq; 7248 unsigned int runnable; 7249 7250 /* Task has no contribution or is new */ 7251 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7252 return cpu_runnable(rq); 7253 7254 cfs_rq = &rq->cfs; 7255 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7256 7257 /* Discount task's runnable from CPU's runnable */ 7258 lsub_positive(&runnable, p->se.avg.runnable_avg); 7259 7260 return runnable; 7261 } 7262 7263 static unsigned long capacity_of(int cpu) 7264 { 7265 return cpu_rq(cpu)->cpu_capacity; 7266 } 7267 7268 static void record_wakee(struct task_struct *p) 7269 { 7270 /* 7271 * Only decay a single time; tasks that have less then 1 wakeup per 7272 * jiffy will not have built up many flips. 7273 */ 7274 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7275 current->wakee_flips >>= 1; 7276 current->wakee_flip_decay_ts = jiffies; 7277 } 7278 7279 if (current->last_wakee != p) { 7280 current->last_wakee = p; 7281 current->wakee_flips++; 7282 } 7283 } 7284 7285 /* 7286 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7287 * 7288 * A waker of many should wake a different task than the one last awakened 7289 * at a frequency roughly N times higher than one of its wakees. 7290 * 7291 * In order to determine whether we should let the load spread vs consolidating 7292 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7293 * partner, and a factor of lls_size higher frequency in the other. 7294 * 7295 * With both conditions met, we can be relatively sure that the relationship is 7296 * non-monogamous, with partner count exceeding socket size. 7297 * 7298 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7299 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7300 * socket size. 7301 */ 7302 static int wake_wide(struct task_struct *p) 7303 { 7304 unsigned int master = current->wakee_flips; 7305 unsigned int slave = p->wakee_flips; 7306 int factor = __this_cpu_read(sd_llc_size); 7307 7308 if (master < slave) 7309 swap(master, slave); 7310 if (slave < factor || master < slave * factor) 7311 return 0; 7312 return 1; 7313 } 7314 7315 /* 7316 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7317 * soonest. For the purpose of speed we only consider the waking and previous 7318 * CPU. 7319 * 7320 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7321 * cache-affine and is (or will be) idle. 7322 * 7323 * wake_affine_weight() - considers the weight to reflect the average 7324 * scheduling latency of the CPUs. This seems to work 7325 * for the overloaded case. 7326 */ 7327 static int 7328 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7329 { 7330 /* 7331 * If this_cpu is idle, it implies the wakeup is from interrupt 7332 * context. Only allow the move if cache is shared. Otherwise an 7333 * interrupt intensive workload could force all tasks onto one 7334 * node depending on the IO topology or IRQ affinity settings. 7335 * 7336 * If the prev_cpu is idle and cache affine then avoid a migration. 7337 * There is no guarantee that the cache hot data from an interrupt 7338 * is more important than cache hot data on the prev_cpu and from 7339 * a cpufreq perspective, it's better to have higher utilisation 7340 * on one CPU. 7341 */ 7342 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7343 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7344 7345 if (sync && cpu_rq(this_cpu)->nr_running == 1) 7346 return this_cpu; 7347 7348 if (available_idle_cpu(prev_cpu)) 7349 return prev_cpu; 7350 7351 return nr_cpumask_bits; 7352 } 7353 7354 static int 7355 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7356 int this_cpu, int prev_cpu, int sync) 7357 { 7358 s64 this_eff_load, prev_eff_load; 7359 unsigned long task_load; 7360 7361 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7362 7363 if (sync) { 7364 unsigned long current_load = task_h_load(current); 7365 7366 if (current_load > this_eff_load) 7367 return this_cpu; 7368 7369 this_eff_load -= current_load; 7370 } 7371 7372 task_load = task_h_load(p); 7373 7374 this_eff_load += task_load; 7375 if (sched_feat(WA_BIAS)) 7376 this_eff_load *= 100; 7377 this_eff_load *= capacity_of(prev_cpu); 7378 7379 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7380 prev_eff_load -= task_load; 7381 if (sched_feat(WA_BIAS)) 7382 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7383 prev_eff_load *= capacity_of(this_cpu); 7384 7385 /* 7386 * If sync, adjust the weight of prev_eff_load such that if 7387 * prev_eff == this_eff that select_idle_sibling() will consider 7388 * stacking the wakee on top of the waker if no other CPU is 7389 * idle. 7390 */ 7391 if (sync) 7392 prev_eff_load += 1; 7393 7394 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7395 } 7396 7397 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7398 int this_cpu, int prev_cpu, int sync) 7399 { 7400 int target = nr_cpumask_bits; 7401 7402 if (sched_feat(WA_IDLE)) 7403 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7404 7405 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7406 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7407 7408 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7409 if (target != this_cpu) 7410 return prev_cpu; 7411 7412 schedstat_inc(sd->ttwu_move_affine); 7413 schedstat_inc(p->stats.nr_wakeups_affine); 7414 return target; 7415 } 7416 7417 static struct sched_group * 7418 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7419 7420 /* 7421 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7422 */ 7423 static int 7424 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7425 { 7426 unsigned long load, min_load = ULONG_MAX; 7427 unsigned int min_exit_latency = UINT_MAX; 7428 u64 latest_idle_timestamp = 0; 7429 int least_loaded_cpu = this_cpu; 7430 int shallowest_idle_cpu = -1; 7431 int i; 7432 7433 /* Check if we have any choice: */ 7434 if (group->group_weight == 1) 7435 return cpumask_first(sched_group_span(group)); 7436 7437 /* Traverse only the allowed CPUs */ 7438 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7439 struct rq *rq = cpu_rq(i); 7440 7441 if (!sched_core_cookie_match(rq, p)) 7442 continue; 7443 7444 if (sched_idle_cpu(i)) 7445 return i; 7446 7447 if (available_idle_cpu(i)) { 7448 struct cpuidle_state *idle = idle_get_state(rq); 7449 if (idle && idle->exit_latency < min_exit_latency) { 7450 /* 7451 * We give priority to a CPU whose idle state 7452 * has the smallest exit latency irrespective 7453 * of any idle timestamp. 7454 */ 7455 min_exit_latency = idle->exit_latency; 7456 latest_idle_timestamp = rq->idle_stamp; 7457 shallowest_idle_cpu = i; 7458 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7459 rq->idle_stamp > latest_idle_timestamp) { 7460 /* 7461 * If equal or no active idle state, then 7462 * the most recently idled CPU might have 7463 * a warmer cache. 7464 */ 7465 latest_idle_timestamp = rq->idle_stamp; 7466 shallowest_idle_cpu = i; 7467 } 7468 } else if (shallowest_idle_cpu == -1) { 7469 load = cpu_load(cpu_rq(i)); 7470 if (load < min_load) { 7471 min_load = load; 7472 least_loaded_cpu = i; 7473 } 7474 } 7475 } 7476 7477 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7478 } 7479 7480 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7481 int cpu, int prev_cpu, int sd_flag) 7482 { 7483 int new_cpu = cpu; 7484 7485 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7486 return prev_cpu; 7487 7488 /* 7489 * We need task's util for cpu_util_without, sync it up to 7490 * prev_cpu's last_update_time. 7491 */ 7492 if (!(sd_flag & SD_BALANCE_FORK)) 7493 sync_entity_load_avg(&p->se); 7494 7495 while (sd) { 7496 struct sched_group *group; 7497 struct sched_domain *tmp; 7498 int weight; 7499 7500 if (!(sd->flags & sd_flag)) { 7501 sd = sd->child; 7502 continue; 7503 } 7504 7505 group = sched_balance_find_dst_group(sd, p, cpu); 7506 if (!group) { 7507 sd = sd->child; 7508 continue; 7509 } 7510 7511 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7512 if (new_cpu == cpu) { 7513 /* Now try balancing at a lower domain level of 'cpu': */ 7514 sd = sd->child; 7515 continue; 7516 } 7517 7518 /* Now try balancing at a lower domain level of 'new_cpu': */ 7519 cpu = new_cpu; 7520 weight = sd->span_weight; 7521 sd = NULL; 7522 for_each_domain(cpu, tmp) { 7523 if (weight <= tmp->span_weight) 7524 break; 7525 if (tmp->flags & sd_flag) 7526 sd = tmp; 7527 } 7528 } 7529 7530 return new_cpu; 7531 } 7532 7533 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7534 { 7535 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7536 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7537 return cpu; 7538 7539 return -1; 7540 } 7541 7542 #ifdef CONFIG_SCHED_SMT 7543 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7544 EXPORT_SYMBOL_GPL(sched_smt_present); 7545 7546 static inline void set_idle_cores(int cpu, int val) 7547 { 7548 struct sched_domain_shared *sds; 7549 7550 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7551 if (sds) 7552 WRITE_ONCE(sds->has_idle_cores, val); 7553 } 7554 7555 static inline bool test_idle_cores(int cpu) 7556 { 7557 struct sched_domain_shared *sds; 7558 7559 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7560 if (sds) 7561 return READ_ONCE(sds->has_idle_cores); 7562 7563 return false; 7564 } 7565 7566 /* 7567 * Scans the local SMT mask to see if the entire core is idle, and records this 7568 * information in sd_llc_shared->has_idle_cores. 7569 * 7570 * Since SMT siblings share all cache levels, inspecting this limited remote 7571 * state should be fairly cheap. 7572 */ 7573 void __update_idle_core(struct rq *rq) 7574 { 7575 int core = cpu_of(rq); 7576 int cpu; 7577 7578 rcu_read_lock(); 7579 if (test_idle_cores(core)) 7580 goto unlock; 7581 7582 for_each_cpu(cpu, cpu_smt_mask(core)) { 7583 if (cpu == core) 7584 continue; 7585 7586 if (!available_idle_cpu(cpu)) 7587 goto unlock; 7588 } 7589 7590 set_idle_cores(core, 1); 7591 unlock: 7592 rcu_read_unlock(); 7593 } 7594 7595 /* 7596 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7597 * there are no idle cores left in the system; tracked through 7598 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7599 */ 7600 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7601 { 7602 bool idle = true; 7603 int cpu; 7604 7605 for_each_cpu(cpu, cpu_smt_mask(core)) { 7606 if (!available_idle_cpu(cpu)) { 7607 idle = false; 7608 if (*idle_cpu == -1) { 7609 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7610 *idle_cpu = cpu; 7611 break; 7612 } 7613 continue; 7614 } 7615 break; 7616 } 7617 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7618 *idle_cpu = cpu; 7619 } 7620 7621 if (idle) 7622 return core; 7623 7624 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7625 return -1; 7626 } 7627 7628 /* 7629 * Scan the local SMT mask for idle CPUs. 7630 */ 7631 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7632 { 7633 int cpu; 7634 7635 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7636 if (cpu == target) 7637 continue; 7638 /* 7639 * Check if the CPU is in the LLC scheduling domain of @target. 7640 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7641 */ 7642 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7643 continue; 7644 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7645 return cpu; 7646 } 7647 7648 return -1; 7649 } 7650 7651 #else /* CONFIG_SCHED_SMT */ 7652 7653 static inline void set_idle_cores(int cpu, int val) 7654 { 7655 } 7656 7657 static inline bool test_idle_cores(int cpu) 7658 { 7659 return false; 7660 } 7661 7662 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7663 { 7664 return __select_idle_cpu(core, p); 7665 } 7666 7667 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7668 { 7669 return -1; 7670 } 7671 7672 #endif /* CONFIG_SCHED_SMT */ 7673 7674 /* 7675 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7676 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7677 * average idle time for this rq (as found in rq->avg_idle). 7678 */ 7679 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7680 { 7681 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7682 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7683 struct sched_domain_shared *sd_share; 7684 7685 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7686 7687 if (sched_feat(SIS_UTIL)) { 7688 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7689 if (sd_share) { 7690 /* because !--nr is the condition to stop scan */ 7691 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7692 /* overloaded LLC is unlikely to have idle cpu/core */ 7693 if (nr == 1) 7694 return -1; 7695 } 7696 } 7697 7698 if (static_branch_unlikely(&sched_cluster_active)) { 7699 struct sched_group *sg = sd->groups; 7700 7701 if (sg->flags & SD_CLUSTER) { 7702 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7703 if (!cpumask_test_cpu(cpu, cpus)) 7704 continue; 7705 7706 if (has_idle_core) { 7707 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7708 if ((unsigned int)i < nr_cpumask_bits) 7709 return i; 7710 } else { 7711 if (--nr <= 0) 7712 return -1; 7713 idle_cpu = __select_idle_cpu(cpu, p); 7714 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7715 return idle_cpu; 7716 } 7717 } 7718 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7719 } 7720 } 7721 7722 for_each_cpu_wrap(cpu, cpus, target + 1) { 7723 if (has_idle_core) { 7724 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7725 if ((unsigned int)i < nr_cpumask_bits) 7726 return i; 7727 7728 } else { 7729 if (--nr <= 0) 7730 return -1; 7731 idle_cpu = __select_idle_cpu(cpu, p); 7732 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7733 break; 7734 } 7735 } 7736 7737 if (has_idle_core) 7738 set_idle_cores(target, false); 7739 7740 return idle_cpu; 7741 } 7742 7743 /* 7744 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7745 * the task fits. If no CPU is big enough, but there are idle ones, try to 7746 * maximize capacity. 7747 */ 7748 static int 7749 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7750 { 7751 unsigned long task_util, util_min, util_max, best_cap = 0; 7752 int fits, best_fits = 0; 7753 int cpu, best_cpu = -1; 7754 struct cpumask *cpus; 7755 7756 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7757 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7758 7759 task_util = task_util_est(p); 7760 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7761 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7762 7763 for_each_cpu_wrap(cpu, cpus, target) { 7764 unsigned long cpu_cap = capacity_of(cpu); 7765 7766 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7767 continue; 7768 7769 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7770 7771 /* This CPU fits with all requirements */ 7772 if (fits > 0) 7773 return cpu; 7774 /* 7775 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7776 * Look for the CPU with best capacity. 7777 */ 7778 else if (fits < 0) 7779 cpu_cap = get_actual_cpu_capacity(cpu); 7780 7781 /* 7782 * First, select CPU which fits better (-1 being better than 0). 7783 * Then, select the one with best capacity at same level. 7784 */ 7785 if ((fits < best_fits) || 7786 ((fits == best_fits) && (cpu_cap > best_cap))) { 7787 best_cap = cpu_cap; 7788 best_cpu = cpu; 7789 best_fits = fits; 7790 } 7791 } 7792 7793 return best_cpu; 7794 } 7795 7796 static inline bool asym_fits_cpu(unsigned long util, 7797 unsigned long util_min, 7798 unsigned long util_max, 7799 int cpu) 7800 { 7801 if (sched_asym_cpucap_active()) 7802 /* 7803 * Return true only if the cpu fully fits the task requirements 7804 * which include the utilization and the performance hints. 7805 */ 7806 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7807 7808 return true; 7809 } 7810 7811 /* 7812 * Try and locate an idle core/thread in the LLC cache domain. 7813 */ 7814 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7815 { 7816 bool has_idle_core = false; 7817 struct sched_domain *sd; 7818 unsigned long task_util, util_min, util_max; 7819 int i, recent_used_cpu, prev_aff = -1; 7820 7821 /* 7822 * On asymmetric system, update task utilization because we will check 7823 * that the task fits with CPU's capacity. 7824 */ 7825 if (sched_asym_cpucap_active()) { 7826 sync_entity_load_avg(&p->se); 7827 task_util = task_util_est(p); 7828 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7829 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7830 } 7831 7832 /* 7833 * per-cpu select_rq_mask usage 7834 */ 7835 lockdep_assert_irqs_disabled(); 7836 7837 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7838 asym_fits_cpu(task_util, util_min, util_max, target)) 7839 return target; 7840 7841 /* 7842 * If the previous CPU is cache affine and idle, don't be stupid: 7843 */ 7844 if (prev != target && cpus_share_cache(prev, target) && 7845 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7846 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7847 7848 if (!static_branch_unlikely(&sched_cluster_active) || 7849 cpus_share_resources(prev, target)) 7850 return prev; 7851 7852 prev_aff = prev; 7853 } 7854 7855 /* 7856 * Allow a per-cpu kthread to stack with the wakee if the 7857 * kworker thread and the tasks previous CPUs are the same. 7858 * The assumption is that the wakee queued work for the 7859 * per-cpu kthread that is now complete and the wakeup is 7860 * essentially a sync wakeup. An obvious example of this 7861 * pattern is IO completions. 7862 */ 7863 if (is_per_cpu_kthread(current) && 7864 in_task() && 7865 prev == smp_processor_id() && 7866 this_rq()->nr_running <= 1 && 7867 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7868 return prev; 7869 } 7870 7871 /* Check a recently used CPU as a potential idle candidate: */ 7872 recent_used_cpu = p->recent_used_cpu; 7873 p->recent_used_cpu = prev; 7874 if (recent_used_cpu != prev && 7875 recent_used_cpu != target && 7876 cpus_share_cache(recent_used_cpu, target) && 7877 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7878 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7879 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7880 7881 if (!static_branch_unlikely(&sched_cluster_active) || 7882 cpus_share_resources(recent_used_cpu, target)) 7883 return recent_used_cpu; 7884 7885 } else { 7886 recent_used_cpu = -1; 7887 } 7888 7889 /* 7890 * For asymmetric CPU capacity systems, our domain of interest is 7891 * sd_asym_cpucapacity rather than sd_llc. 7892 */ 7893 if (sched_asym_cpucap_active()) { 7894 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7895 /* 7896 * On an asymmetric CPU capacity system where an exclusive 7897 * cpuset defines a symmetric island (i.e. one unique 7898 * capacity_orig value through the cpuset), the key will be set 7899 * but the CPUs within that cpuset will not have a domain with 7900 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7901 * capacity path. 7902 */ 7903 if (sd) { 7904 i = select_idle_capacity(p, sd, target); 7905 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7906 } 7907 } 7908 7909 sd = rcu_dereference(per_cpu(sd_llc, target)); 7910 if (!sd) 7911 return target; 7912 7913 if (sched_smt_active()) { 7914 has_idle_core = test_idle_cores(target); 7915 7916 if (!has_idle_core && cpus_share_cache(prev, target)) { 7917 i = select_idle_smt(p, sd, prev); 7918 if ((unsigned int)i < nr_cpumask_bits) 7919 return i; 7920 } 7921 } 7922 7923 i = select_idle_cpu(p, sd, has_idle_core, target); 7924 if ((unsigned)i < nr_cpumask_bits) 7925 return i; 7926 7927 /* 7928 * For cluster machines which have lower sharing cache like L2 or 7929 * LLC Tag, we tend to find an idle CPU in the target's cluster 7930 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7931 * use them if possible when no idle CPU found in select_idle_cpu(). 7932 */ 7933 if ((unsigned int)prev_aff < nr_cpumask_bits) 7934 return prev_aff; 7935 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7936 return recent_used_cpu; 7937 7938 return target; 7939 } 7940 7941 /** 7942 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7943 * @cpu: the CPU to get the utilization for 7944 * @p: task for which the CPU utilization should be predicted or NULL 7945 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7946 * @boost: 1 to enable boosting, otherwise 0 7947 * 7948 * The unit of the return value must be the same as the one of CPU capacity 7949 * so that CPU utilization can be compared with CPU capacity. 7950 * 7951 * CPU utilization is the sum of running time of runnable tasks plus the 7952 * recent utilization of currently non-runnable tasks on that CPU. 7953 * It represents the amount of CPU capacity currently used by CFS tasks in 7954 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7955 * capacity at f_max. 7956 * 7957 * The estimated CPU utilization is defined as the maximum between CPU 7958 * utilization and sum of the estimated utilization of the currently 7959 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7960 * previously-executed tasks, which helps better deduce how busy a CPU will 7961 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7962 * of such a task would be significantly decayed at this point of time. 7963 * 7964 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7965 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7966 * utilization. Boosting is implemented in cpu_util() so that internal 7967 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7968 * latter via cpu_util_cfs_boost(). 7969 * 7970 * CPU utilization can be higher than the current CPU capacity 7971 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7972 * of rounding errors as well as task migrations or wakeups of new tasks. 7973 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7974 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7975 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7976 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7977 * though since this is useful for predicting the CPU capacity required 7978 * after task migrations (scheduler-driven DVFS). 7979 * 7980 * Return: (Boosted) (estimated) utilization for the specified CPU. 7981 */ 7982 static unsigned long 7983 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7984 { 7985 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7986 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7987 unsigned long runnable; 7988 7989 if (boost) { 7990 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7991 util = max(util, runnable); 7992 } 7993 7994 /* 7995 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7996 * contribution. If @p migrates from another CPU to @cpu add its 7997 * contribution. In all the other cases @cpu is not impacted by the 7998 * migration so its util_avg is already correct. 7999 */ 8000 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 8001 lsub_positive(&util, task_util(p)); 8002 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 8003 util += task_util(p); 8004 8005 if (sched_feat(UTIL_EST)) { 8006 unsigned long util_est; 8007 8008 util_est = READ_ONCE(cfs_rq->avg.util_est); 8009 8010 /* 8011 * During wake-up @p isn't enqueued yet and doesn't contribute 8012 * to any cpu_rq(cpu)->cfs.avg.util_est. 8013 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 8014 * has been enqueued. 8015 * 8016 * During exec (@dst_cpu = -1) @p is enqueued and does 8017 * contribute to cpu_rq(cpu)->cfs.util_est. 8018 * Remove it to "simulate" cpu_util without @p's contribution. 8019 * 8020 * Despite the task_on_rq_queued(@p) check there is still a 8021 * small window for a possible race when an exec 8022 * select_task_rq_fair() races with LB's detach_task(). 8023 * 8024 * detach_task() 8025 * deactivate_task() 8026 * p->on_rq = TASK_ON_RQ_MIGRATING; 8027 * -------------------------------- A 8028 * dequeue_task() \ 8029 * dequeue_task_fair() + Race Time 8030 * util_est_dequeue() / 8031 * -------------------------------- B 8032 * 8033 * The additional check "current == p" is required to further 8034 * reduce the race window. 8035 */ 8036 if (dst_cpu == cpu) 8037 util_est += _task_util_est(p); 8038 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 8039 lsub_positive(&util_est, _task_util_est(p)); 8040 8041 util = max(util, util_est); 8042 } 8043 8044 return min(util, arch_scale_cpu_capacity(cpu)); 8045 } 8046 8047 unsigned long cpu_util_cfs(int cpu) 8048 { 8049 return cpu_util(cpu, NULL, -1, 0); 8050 } 8051 8052 unsigned long cpu_util_cfs_boost(int cpu) 8053 { 8054 return cpu_util(cpu, NULL, -1, 1); 8055 } 8056 8057 /* 8058 * cpu_util_without: compute cpu utilization without any contributions from *p 8059 * @cpu: the CPU which utilization is requested 8060 * @p: the task which utilization should be discounted 8061 * 8062 * The utilization of a CPU is defined by the utilization of tasks currently 8063 * enqueued on that CPU as well as tasks which are currently sleeping after an 8064 * execution on that CPU. 8065 * 8066 * This method returns the utilization of the specified CPU by discounting the 8067 * utilization of the specified task, whenever the task is currently 8068 * contributing to the CPU utilization. 8069 */ 8070 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 8071 { 8072 /* Task has no contribution or is new */ 8073 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8074 p = NULL; 8075 8076 return cpu_util(cpu, p, -1, 0); 8077 } 8078 8079 /* 8080 * This function computes an effective utilization for the given CPU, to be 8081 * used for frequency selection given the linear relation: f = u * f_max. 8082 * 8083 * The scheduler tracks the following metrics: 8084 * 8085 * cpu_util_{cfs,rt,dl,irq}() 8086 * cpu_bw_dl() 8087 * 8088 * Where the cfs,rt and dl util numbers are tracked with the same metric and 8089 * synchronized windows and are thus directly comparable. 8090 * 8091 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 8092 * which excludes things like IRQ and steal-time. These latter are then accrued 8093 * in the IRQ utilization. 8094 * 8095 * The DL bandwidth number OTOH is not a measured metric but a value computed 8096 * based on the task model parameters and gives the minimal utilization 8097 * required to meet deadlines. 8098 */ 8099 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 8100 unsigned long *min, 8101 unsigned long *max) 8102 { 8103 unsigned long util, irq, scale; 8104 struct rq *rq = cpu_rq(cpu); 8105 8106 scale = arch_scale_cpu_capacity(cpu); 8107 8108 /* 8109 * Early check to see if IRQ/steal time saturates the CPU, can be 8110 * because of inaccuracies in how we track these -- see 8111 * update_irq_load_avg(). 8112 */ 8113 irq = cpu_util_irq(rq); 8114 if (unlikely(irq >= scale)) { 8115 if (min) 8116 *min = scale; 8117 if (max) 8118 *max = scale; 8119 return scale; 8120 } 8121 8122 if (min) { 8123 /* 8124 * The minimum utilization returns the highest level between: 8125 * - the computed DL bandwidth needed with the IRQ pressure which 8126 * steals time to the deadline task. 8127 * - The minimum performance requirement for CFS and/or RT. 8128 */ 8129 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); 8130 8131 /* 8132 * When an RT task is runnable and uclamp is not used, we must 8133 * ensure that the task will run at maximum compute capacity. 8134 */ 8135 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) 8136 *min = max(*min, scale); 8137 } 8138 8139 /* 8140 * Because the time spend on RT/DL tasks is visible as 'lost' time to 8141 * CFS tasks and we use the same metric to track the effective 8142 * utilization (PELT windows are synchronized) we can directly add them 8143 * to obtain the CPU's actual utilization. 8144 */ 8145 util = util_cfs + cpu_util_rt(rq); 8146 util += cpu_util_dl(rq); 8147 8148 /* 8149 * The maximum hint is a soft bandwidth requirement, which can be lower 8150 * than the actual utilization because of uclamp_max requirements. 8151 */ 8152 if (max) 8153 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); 8154 8155 if (util >= scale) 8156 return scale; 8157 8158 /* 8159 * There is still idle time; further improve the number by using the 8160 * IRQ metric. Because IRQ/steal time is hidden from the task clock we 8161 * need to scale the task numbers: 8162 * 8163 * max - irq 8164 * U' = irq + --------- * U 8165 * max 8166 */ 8167 util = scale_irq_capacity(util, irq, scale); 8168 util += irq; 8169 8170 return min(scale, util); 8171 } 8172 8173 unsigned long sched_cpu_util(int cpu) 8174 { 8175 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); 8176 } 8177 8178 /* 8179 * energy_env - Utilization landscape for energy estimation. 8180 * @task_busy_time: Utilization contribution by the task for which we test the 8181 * placement. Given by eenv_task_busy_time(). 8182 * @pd_busy_time: Utilization of the whole perf domain without the task 8183 * contribution. Given by eenv_pd_busy_time(). 8184 * @cpu_cap: Maximum CPU capacity for the perf domain. 8185 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 8186 */ 8187 struct energy_env { 8188 unsigned long task_busy_time; 8189 unsigned long pd_busy_time; 8190 unsigned long cpu_cap; 8191 unsigned long pd_cap; 8192 }; 8193 8194 /* 8195 * Compute the task busy time for compute_energy(). This time cannot be 8196 * injected directly into effective_cpu_util() because of the IRQ scaling. 8197 * The latter only makes sense with the most recent CPUs where the task has 8198 * run. 8199 */ 8200 static inline void eenv_task_busy_time(struct energy_env *eenv, 8201 struct task_struct *p, int prev_cpu) 8202 { 8203 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 8204 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 8205 8206 if (unlikely(irq >= max_cap)) 8207 busy_time = max_cap; 8208 else 8209 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 8210 8211 eenv->task_busy_time = busy_time; 8212 } 8213 8214 /* 8215 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 8216 * utilization for each @pd_cpus, it however doesn't take into account 8217 * clamping since the ratio (utilization / cpu_capacity) is already enough to 8218 * scale the EM reported power consumption at the (eventually clamped) 8219 * cpu_capacity. 8220 * 8221 * The contribution of the task @p for which we want to estimate the 8222 * energy cost is removed (by cpu_util()) and must be calculated 8223 * separately (see eenv_task_busy_time). This ensures: 8224 * 8225 * - A stable PD utilization, no matter which CPU of that PD we want to place 8226 * the task on. 8227 * 8228 * - A fair comparison between CPUs as the task contribution (task_util()) 8229 * will always be the same no matter which CPU utilization we rely on 8230 * (util_avg or util_est). 8231 * 8232 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 8233 * exceed @eenv->pd_cap. 8234 */ 8235 static inline void eenv_pd_busy_time(struct energy_env *eenv, 8236 struct cpumask *pd_cpus, 8237 struct task_struct *p) 8238 { 8239 unsigned long busy_time = 0; 8240 int cpu; 8241 8242 for_each_cpu(cpu, pd_cpus) { 8243 unsigned long util = cpu_util(cpu, p, -1, 0); 8244 8245 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 8246 } 8247 8248 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 8249 } 8250 8251 /* 8252 * Compute the maximum utilization for compute_energy() when the task @p 8253 * is placed on the cpu @dst_cpu. 8254 * 8255 * Returns the maximum utilization among @eenv->cpus. This utilization can't 8256 * exceed @eenv->cpu_cap. 8257 */ 8258 static inline unsigned long 8259 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 8260 struct task_struct *p, int dst_cpu) 8261 { 8262 unsigned long max_util = 0; 8263 int cpu; 8264 8265 for_each_cpu(cpu, pd_cpus) { 8266 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 8267 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 8268 unsigned long eff_util, min, max; 8269 8270 /* 8271 * Performance domain frequency: utilization clamping 8272 * must be considered since it affects the selection 8273 * of the performance domain frequency. 8274 * NOTE: in case RT tasks are running, by default the min 8275 * utilization can be max OPP. 8276 */ 8277 eff_util = effective_cpu_util(cpu, util, &min, &max); 8278 8279 /* Task's uclamp can modify min and max value */ 8280 if (tsk && uclamp_is_used()) { 8281 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 8282 8283 /* 8284 * If there is no active max uclamp constraint, 8285 * directly use task's one, otherwise keep max. 8286 */ 8287 if (uclamp_rq_is_idle(cpu_rq(cpu))) 8288 max = uclamp_eff_value(p, UCLAMP_MAX); 8289 else 8290 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 8291 } 8292 8293 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 8294 max_util = max(max_util, eff_util); 8295 } 8296 8297 return min(max_util, eenv->cpu_cap); 8298 } 8299 8300 /* 8301 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 8302 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 8303 * contribution is ignored. 8304 */ 8305 static inline unsigned long 8306 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 8307 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 8308 { 8309 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 8310 unsigned long busy_time = eenv->pd_busy_time; 8311 unsigned long energy; 8312 8313 if (dst_cpu >= 0) 8314 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 8315 8316 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 8317 8318 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 8319 8320 return energy; 8321 } 8322 8323 /* 8324 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 8325 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 8326 * spare capacity in each performance domain and uses it as a potential 8327 * candidate to execute the task. Then, it uses the Energy Model to figure 8328 * out which of the CPU candidates is the most energy-efficient. 8329 * 8330 * The rationale for this heuristic is as follows. In a performance domain, 8331 * all the most energy efficient CPU candidates (according to the Energy 8332 * Model) are those for which we'll request a low frequency. When there are 8333 * several CPUs for which the frequency request will be the same, we don't 8334 * have enough data to break the tie between them, because the Energy Model 8335 * only includes active power costs. With this model, if we assume that 8336 * frequency requests follow utilization (e.g. using schedutil), the CPU with 8337 * the maximum spare capacity in a performance domain is guaranteed to be among 8338 * the best candidates of the performance domain. 8339 * 8340 * In practice, it could be preferable from an energy standpoint to pack 8341 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 8342 * but that could also hurt our chances to go cluster idle, and we have no 8343 * ways to tell with the current Energy Model if this is actually a good 8344 * idea or not. So, find_energy_efficient_cpu() basically favors 8345 * cluster-packing, and spreading inside a cluster. That should at least be 8346 * a good thing for latency, and this is consistent with the idea that most 8347 * of the energy savings of EAS come from the asymmetry of the system, and 8348 * not so much from breaking the tie between identical CPUs. That's also the 8349 * reason why EAS is enabled in the topology code only for systems where 8350 * SD_ASYM_CPUCAPACITY is set. 8351 * 8352 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 8353 * they don't have any useful utilization data yet and it's not possible to 8354 * forecast their impact on energy consumption. Consequently, they will be 8355 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 8356 * to be energy-inefficient in some use-cases. The alternative would be to 8357 * bias new tasks towards specific types of CPUs first, or to try to infer 8358 * their util_avg from the parent task, but those heuristics could hurt 8359 * other use-cases too. So, until someone finds a better way to solve this, 8360 * let's keep things simple by re-using the existing slow path. 8361 */ 8362 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 8363 { 8364 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 8365 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 8366 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 8367 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 8368 struct root_domain *rd = this_rq()->rd; 8369 int cpu, best_energy_cpu, target = -1; 8370 int prev_fits = -1, best_fits = -1; 8371 unsigned long best_actual_cap = 0; 8372 unsigned long prev_actual_cap = 0; 8373 struct sched_domain *sd; 8374 struct perf_domain *pd; 8375 struct energy_env eenv; 8376 8377 rcu_read_lock(); 8378 pd = rcu_dereference(rd->pd); 8379 if (!pd) 8380 goto unlock; 8381 8382 /* 8383 * Energy-aware wake-up happens on the lowest sched_domain starting 8384 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8385 */ 8386 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 8387 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8388 sd = sd->parent; 8389 if (!sd) 8390 goto unlock; 8391 8392 target = prev_cpu; 8393 8394 sync_entity_load_avg(&p->se); 8395 if (!task_util_est(p) && p_util_min == 0) 8396 goto unlock; 8397 8398 eenv_task_busy_time(&eenv, p, prev_cpu); 8399 8400 for (; pd; pd = pd->next) { 8401 unsigned long util_min = p_util_min, util_max = p_util_max; 8402 unsigned long cpu_cap, cpu_actual_cap, util; 8403 long prev_spare_cap = -1, max_spare_cap = -1; 8404 unsigned long rq_util_min, rq_util_max; 8405 unsigned long cur_delta, base_energy; 8406 int max_spare_cap_cpu = -1; 8407 int fits, max_fits = -1; 8408 8409 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8410 8411 if (cpumask_empty(cpus)) 8412 continue; 8413 8414 /* Account external pressure for the energy estimation */ 8415 cpu = cpumask_first(cpus); 8416 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8417 8418 eenv.cpu_cap = cpu_actual_cap; 8419 eenv.pd_cap = 0; 8420 8421 for_each_cpu(cpu, cpus) { 8422 struct rq *rq = cpu_rq(cpu); 8423 8424 eenv.pd_cap += cpu_actual_cap; 8425 8426 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8427 continue; 8428 8429 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8430 continue; 8431 8432 util = cpu_util(cpu, p, cpu, 0); 8433 cpu_cap = capacity_of(cpu); 8434 8435 /* 8436 * Skip CPUs that cannot satisfy the capacity request. 8437 * IOW, placing the task there would make the CPU 8438 * overutilized. Take uclamp into account to see how 8439 * much capacity we can get out of the CPU; this is 8440 * aligned with sched_cpu_util(). 8441 */ 8442 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8443 /* 8444 * Open code uclamp_rq_util_with() except for 8445 * the clamp() part. I.e.: apply max aggregation 8446 * only. util_fits_cpu() logic requires to 8447 * operate on non clamped util but must use the 8448 * max-aggregated uclamp_{min, max}. 8449 */ 8450 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8451 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8452 8453 util_min = max(rq_util_min, p_util_min); 8454 util_max = max(rq_util_max, p_util_max); 8455 } 8456 8457 fits = util_fits_cpu(util, util_min, util_max, cpu); 8458 if (!fits) 8459 continue; 8460 8461 lsub_positive(&cpu_cap, util); 8462 8463 if (cpu == prev_cpu) { 8464 /* Always use prev_cpu as a candidate. */ 8465 prev_spare_cap = cpu_cap; 8466 prev_fits = fits; 8467 } else if ((fits > max_fits) || 8468 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8469 /* 8470 * Find the CPU with the maximum spare capacity 8471 * among the remaining CPUs in the performance 8472 * domain. 8473 */ 8474 max_spare_cap = cpu_cap; 8475 max_spare_cap_cpu = cpu; 8476 max_fits = fits; 8477 } 8478 } 8479 8480 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8481 continue; 8482 8483 eenv_pd_busy_time(&eenv, cpus, p); 8484 /* Compute the 'base' energy of the pd, without @p */ 8485 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8486 8487 /* Evaluate the energy impact of using prev_cpu. */ 8488 if (prev_spare_cap > -1) { 8489 prev_delta = compute_energy(&eenv, pd, cpus, p, 8490 prev_cpu); 8491 /* CPU utilization has changed */ 8492 if (prev_delta < base_energy) 8493 goto unlock; 8494 prev_delta -= base_energy; 8495 prev_actual_cap = cpu_actual_cap; 8496 best_delta = min(best_delta, prev_delta); 8497 } 8498 8499 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8500 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8501 /* Current best energy cpu fits better */ 8502 if (max_fits < best_fits) 8503 continue; 8504 8505 /* 8506 * Both don't fit performance hint (i.e. uclamp_min) 8507 * but best energy cpu has better capacity. 8508 */ 8509 if ((max_fits < 0) && 8510 (cpu_actual_cap <= best_actual_cap)) 8511 continue; 8512 8513 cur_delta = compute_energy(&eenv, pd, cpus, p, 8514 max_spare_cap_cpu); 8515 /* CPU utilization has changed */ 8516 if (cur_delta < base_energy) 8517 goto unlock; 8518 cur_delta -= base_energy; 8519 8520 /* 8521 * Both fit for the task but best energy cpu has lower 8522 * energy impact. 8523 */ 8524 if ((max_fits > 0) && (best_fits > 0) && 8525 (cur_delta >= best_delta)) 8526 continue; 8527 8528 best_delta = cur_delta; 8529 best_energy_cpu = max_spare_cap_cpu; 8530 best_fits = max_fits; 8531 best_actual_cap = cpu_actual_cap; 8532 } 8533 } 8534 rcu_read_unlock(); 8535 8536 if ((best_fits > prev_fits) || 8537 ((best_fits > 0) && (best_delta < prev_delta)) || 8538 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8539 target = best_energy_cpu; 8540 8541 return target; 8542 8543 unlock: 8544 rcu_read_unlock(); 8545 8546 return target; 8547 } 8548 8549 /* 8550 * select_task_rq_fair: Select target runqueue for the waking task in domains 8551 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8552 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8553 * 8554 * Balances load by selecting the idlest CPU in the idlest group, or under 8555 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8556 * 8557 * Returns the target CPU number. 8558 */ 8559 static int 8560 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8561 { 8562 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8563 struct sched_domain *tmp, *sd = NULL; 8564 int cpu = smp_processor_id(); 8565 int new_cpu = prev_cpu; 8566 int want_affine = 0; 8567 /* SD_flags and WF_flags share the first nibble */ 8568 int sd_flag = wake_flags & 0xF; 8569 8570 /* 8571 * required for stable ->cpus_allowed 8572 */ 8573 lockdep_assert_held(&p->pi_lock); 8574 if (wake_flags & WF_TTWU) { 8575 record_wakee(p); 8576 8577 if ((wake_flags & WF_CURRENT_CPU) && 8578 cpumask_test_cpu(cpu, p->cpus_ptr)) 8579 return cpu; 8580 8581 if (!is_rd_overutilized(this_rq()->rd)) { 8582 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8583 if (new_cpu >= 0) 8584 return new_cpu; 8585 new_cpu = prev_cpu; 8586 } 8587 8588 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8589 } 8590 8591 rcu_read_lock(); 8592 for_each_domain(cpu, tmp) { 8593 /* 8594 * If both 'cpu' and 'prev_cpu' are part of this domain, 8595 * cpu is a valid SD_WAKE_AFFINE target. 8596 */ 8597 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8598 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8599 if (cpu != prev_cpu) 8600 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8601 8602 sd = NULL; /* Prefer wake_affine over balance flags */ 8603 break; 8604 } 8605 8606 /* 8607 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8608 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8609 * will usually go to the fast path. 8610 */ 8611 if (tmp->flags & sd_flag) 8612 sd = tmp; 8613 else if (!want_affine) 8614 break; 8615 } 8616 8617 if (unlikely(sd)) { 8618 /* Slow path */ 8619 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8620 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8621 /* Fast path */ 8622 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8623 } 8624 rcu_read_unlock(); 8625 8626 return new_cpu; 8627 } 8628 8629 /* 8630 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8631 * cfs_rq_of(p) references at time of call are still valid and identify the 8632 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8633 */ 8634 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8635 { 8636 struct sched_entity *se = &p->se; 8637 8638 if (!task_on_rq_migrating(p)) { 8639 remove_entity_load_avg(se); 8640 8641 /* 8642 * Here, the task's PELT values have been updated according to 8643 * the current rq's clock. But if that clock hasn't been 8644 * updated in a while, a substantial idle time will be missed, 8645 * leading to an inflation after wake-up on the new rq. 8646 * 8647 * Estimate the missing time from the cfs_rq last_update_time 8648 * and update sched_avg to improve the PELT continuity after 8649 * migration. 8650 */ 8651 migrate_se_pelt_lag(se); 8652 } 8653 8654 /* Tell new CPU we are migrated */ 8655 se->avg.last_update_time = 0; 8656 8657 update_scan_period(p, new_cpu); 8658 } 8659 8660 static void task_dead_fair(struct task_struct *p) 8661 { 8662 struct sched_entity *se = &p->se; 8663 8664 if (se->sched_delayed) { 8665 struct rq_flags rf; 8666 struct rq *rq; 8667 8668 rq = task_rq_lock(p, &rf); 8669 if (se->sched_delayed) { 8670 update_rq_clock(rq); 8671 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 8672 } 8673 task_rq_unlock(rq, p, &rf); 8674 } 8675 8676 remove_entity_load_avg(se); 8677 } 8678 8679 /* 8680 * Set the max capacity the task is allowed to run at for misfit detection. 8681 */ 8682 static void set_task_max_allowed_capacity(struct task_struct *p) 8683 { 8684 struct asym_cap_data *entry; 8685 8686 if (!sched_asym_cpucap_active()) 8687 return; 8688 8689 rcu_read_lock(); 8690 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8691 cpumask_t *cpumask; 8692 8693 cpumask = cpu_capacity_span(entry); 8694 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8695 continue; 8696 8697 p->max_allowed_capacity = entry->capacity; 8698 break; 8699 } 8700 rcu_read_unlock(); 8701 } 8702 8703 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8704 { 8705 set_cpus_allowed_common(p, ctx); 8706 set_task_max_allowed_capacity(p); 8707 } 8708 8709 static int 8710 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8711 { 8712 if (sched_fair_runnable(rq)) 8713 return 1; 8714 8715 return sched_balance_newidle(rq, rf) != 0; 8716 } 8717 #else 8718 static inline void set_task_max_allowed_capacity(struct task_struct *p) {} 8719 #endif /* CONFIG_SMP */ 8720 8721 static void set_next_buddy(struct sched_entity *se) 8722 { 8723 for_each_sched_entity(se) { 8724 if (SCHED_WARN_ON(!se->on_rq)) 8725 return; 8726 if (se_is_idle(se)) 8727 return; 8728 cfs_rq_of(se)->next = se; 8729 } 8730 } 8731 8732 /* 8733 * Preempt the current task with a newly woken task if needed: 8734 */ 8735 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8736 { 8737 struct task_struct *donor = rq->donor; 8738 struct sched_entity *se = &donor->se, *pse = &p->se; 8739 struct cfs_rq *cfs_rq = task_cfs_rq(donor); 8740 int cse_is_idle, pse_is_idle; 8741 8742 if (unlikely(se == pse)) 8743 return; 8744 8745 /* 8746 * This is possible from callers such as attach_tasks(), in which we 8747 * unconditionally wakeup_preempt() after an enqueue (which may have 8748 * lead to a throttle). This both saves work and prevents false 8749 * next-buddy nomination below. 8750 */ 8751 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8752 return; 8753 8754 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) { 8755 set_next_buddy(pse); 8756 } 8757 8758 /* 8759 * We can come here with TIF_NEED_RESCHED already set from new task 8760 * wake up path. 8761 * 8762 * Note: this also catches the edge-case of curr being in a throttled 8763 * group (e.g. via set_curr_task), since update_curr() (in the 8764 * enqueue of curr) will have resulted in resched being set. This 8765 * prevents us from potentially nominating it as a false LAST_BUDDY 8766 * below. 8767 */ 8768 if (test_tsk_need_resched(rq->curr)) 8769 return; 8770 8771 if (!sched_feat(WAKEUP_PREEMPTION)) 8772 return; 8773 8774 find_matching_se(&se, &pse); 8775 WARN_ON_ONCE(!pse); 8776 8777 cse_is_idle = se_is_idle(se); 8778 pse_is_idle = se_is_idle(pse); 8779 8780 /* 8781 * Preempt an idle entity in favor of a non-idle entity (and don't preempt 8782 * in the inverse case). 8783 */ 8784 if (cse_is_idle && !pse_is_idle) 8785 goto preempt; 8786 if (cse_is_idle != pse_is_idle) 8787 return; 8788 8789 /* 8790 * BATCH and IDLE tasks do not preempt others. 8791 */ 8792 if (unlikely(!normal_policy(p->policy))) 8793 return; 8794 8795 cfs_rq = cfs_rq_of(se); 8796 update_curr(cfs_rq); 8797 /* 8798 * If @p has a shorter slice than current and @p is eligible, override 8799 * current's slice protection in order to allow preemption. 8800 * 8801 * Note that even if @p does not turn out to be the most eligible 8802 * task at this moment, current's slice protection will be lost. 8803 */ 8804 if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline) 8805 se->vlag = se->deadline + 1; 8806 8807 /* 8808 * If @p has become the most eligible task, force preemption. 8809 */ 8810 if (pick_eevdf(cfs_rq) == pse) 8811 goto preempt; 8812 8813 return; 8814 8815 preempt: 8816 resched_curr_lazy(rq); 8817 } 8818 8819 static struct task_struct *pick_task_fair(struct rq *rq) 8820 { 8821 struct sched_entity *se; 8822 struct cfs_rq *cfs_rq; 8823 8824 again: 8825 cfs_rq = &rq->cfs; 8826 if (!cfs_rq->nr_queued) 8827 return NULL; 8828 8829 do { 8830 /* Might not have done put_prev_entity() */ 8831 if (cfs_rq->curr && cfs_rq->curr->on_rq) 8832 update_curr(cfs_rq); 8833 8834 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8835 goto again; 8836 8837 se = pick_next_entity(rq, cfs_rq); 8838 if (!se) 8839 goto again; 8840 cfs_rq = group_cfs_rq(se); 8841 } while (cfs_rq); 8842 8843 return task_of(se); 8844 } 8845 8846 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8847 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8848 8849 struct task_struct * 8850 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8851 { 8852 struct sched_entity *se; 8853 struct task_struct *p; 8854 int new_tasks; 8855 8856 again: 8857 p = pick_task_fair(rq); 8858 if (!p) 8859 goto idle; 8860 se = &p->se; 8861 8862 #ifdef CONFIG_FAIR_GROUP_SCHED 8863 if (prev->sched_class != &fair_sched_class) 8864 goto simple; 8865 8866 __put_prev_set_next_dl_server(rq, prev, p); 8867 8868 /* 8869 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8870 * likely that a next task is from the same cgroup as the current. 8871 * 8872 * Therefore attempt to avoid putting and setting the entire cgroup 8873 * hierarchy, only change the part that actually changes. 8874 * 8875 * Since we haven't yet done put_prev_entity and if the selected task 8876 * is a different task than we started out with, try and touch the 8877 * least amount of cfs_rqs. 8878 */ 8879 if (prev != p) { 8880 struct sched_entity *pse = &prev->se; 8881 struct cfs_rq *cfs_rq; 8882 8883 while (!(cfs_rq = is_same_group(se, pse))) { 8884 int se_depth = se->depth; 8885 int pse_depth = pse->depth; 8886 8887 if (se_depth <= pse_depth) { 8888 put_prev_entity(cfs_rq_of(pse), pse); 8889 pse = parent_entity(pse); 8890 } 8891 if (se_depth >= pse_depth) { 8892 set_next_entity(cfs_rq_of(se), se); 8893 se = parent_entity(se); 8894 } 8895 } 8896 8897 put_prev_entity(cfs_rq, pse); 8898 set_next_entity(cfs_rq, se); 8899 8900 __set_next_task_fair(rq, p, true); 8901 } 8902 8903 return p; 8904 8905 simple: 8906 #endif 8907 put_prev_set_next_task(rq, prev, p); 8908 return p; 8909 8910 idle: 8911 if (!rf) 8912 return NULL; 8913 8914 new_tasks = sched_balance_newidle(rq, rf); 8915 8916 /* 8917 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is 8918 * possible for any higher priority task to appear. In that case we 8919 * must re-start the pick_next_entity() loop. 8920 */ 8921 if (new_tasks < 0) 8922 return RETRY_TASK; 8923 8924 if (new_tasks > 0) 8925 goto again; 8926 8927 /* 8928 * rq is about to be idle, check if we need to update the 8929 * lost_idle_time of clock_pelt 8930 */ 8931 update_idle_rq_clock_pelt(rq); 8932 8933 return NULL; 8934 } 8935 8936 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev) 8937 { 8938 return pick_next_task_fair(rq, prev, NULL); 8939 } 8940 8941 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se) 8942 { 8943 return !!dl_se->rq->cfs.nr_queued; 8944 } 8945 8946 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se) 8947 { 8948 return pick_task_fair(dl_se->rq); 8949 } 8950 8951 void fair_server_init(struct rq *rq) 8952 { 8953 struct sched_dl_entity *dl_se = &rq->fair_server; 8954 8955 init_dl_entity(dl_se); 8956 8957 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task); 8958 } 8959 8960 /* 8961 * Account for a descheduled task: 8962 */ 8963 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) 8964 { 8965 struct sched_entity *se = &prev->se; 8966 struct cfs_rq *cfs_rq; 8967 8968 for_each_sched_entity(se) { 8969 cfs_rq = cfs_rq_of(se); 8970 put_prev_entity(cfs_rq, se); 8971 } 8972 } 8973 8974 /* 8975 * sched_yield() is very simple 8976 */ 8977 static void yield_task_fair(struct rq *rq) 8978 { 8979 struct task_struct *curr = rq->curr; 8980 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8981 struct sched_entity *se = &curr->se; 8982 8983 /* 8984 * Are we the only task in the tree? 8985 */ 8986 if (unlikely(rq->nr_running == 1)) 8987 return; 8988 8989 clear_buddies(cfs_rq, se); 8990 8991 update_rq_clock(rq); 8992 /* 8993 * Update run-time statistics of the 'current'. 8994 */ 8995 update_curr(cfs_rq); 8996 /* 8997 * Tell update_rq_clock() that we've just updated, 8998 * so we don't do microscopic update in schedule() 8999 * and double the fastpath cost. 9000 */ 9001 rq_clock_skip_update(rq); 9002 9003 se->deadline += calc_delta_fair(se->slice, se); 9004 } 9005 9006 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 9007 { 9008 struct sched_entity *se = &p->se; 9009 9010 /* throttled hierarchies are not runnable */ 9011 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 9012 return false; 9013 9014 /* Tell the scheduler that we'd really like se to run next. */ 9015 set_next_buddy(se); 9016 9017 yield_task_fair(rq); 9018 9019 return true; 9020 } 9021 9022 #ifdef CONFIG_SMP 9023 /************************************************** 9024 * Fair scheduling class load-balancing methods. 9025 * 9026 * BASICS 9027 * 9028 * The purpose of load-balancing is to achieve the same basic fairness the 9029 * per-CPU scheduler provides, namely provide a proportional amount of compute 9030 * time to each task. This is expressed in the following equation: 9031 * 9032 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 9033 * 9034 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 9035 * W_i,0 is defined as: 9036 * 9037 * W_i,0 = \Sum_j w_i,j (2) 9038 * 9039 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 9040 * is derived from the nice value as per sched_prio_to_weight[]. 9041 * 9042 * The weight average is an exponential decay average of the instantaneous 9043 * weight: 9044 * 9045 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 9046 * 9047 * C_i is the compute capacity of CPU i, typically it is the 9048 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 9049 * can also include other factors [XXX]. 9050 * 9051 * To achieve this balance we define a measure of imbalance which follows 9052 * directly from (1): 9053 * 9054 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 9055 * 9056 * We them move tasks around to minimize the imbalance. In the continuous 9057 * function space it is obvious this converges, in the discrete case we get 9058 * a few fun cases generally called infeasible weight scenarios. 9059 * 9060 * [XXX expand on: 9061 * - infeasible weights; 9062 * - local vs global optima in the discrete case. ] 9063 * 9064 * 9065 * SCHED DOMAINS 9066 * 9067 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 9068 * for all i,j solution, we create a tree of CPUs that follows the hardware 9069 * topology where each level pairs two lower groups (or better). This results 9070 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 9071 * tree to only the first of the previous level and we decrease the frequency 9072 * of load-balance at each level inversely proportional to the number of CPUs in 9073 * the groups. 9074 * 9075 * This yields: 9076 * 9077 * log_2 n 1 n 9078 * \Sum { --- * --- * 2^i } = O(n) (5) 9079 * i = 0 2^i 2^i 9080 * `- size of each group 9081 * | | `- number of CPUs doing load-balance 9082 * | `- freq 9083 * `- sum over all levels 9084 * 9085 * Coupled with a limit on how many tasks we can migrate every balance pass, 9086 * this makes (5) the runtime complexity of the balancer. 9087 * 9088 * An important property here is that each CPU is still (indirectly) connected 9089 * to every other CPU in at most O(log n) steps: 9090 * 9091 * The adjacency matrix of the resulting graph is given by: 9092 * 9093 * log_2 n 9094 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 9095 * k = 0 9096 * 9097 * And you'll find that: 9098 * 9099 * A^(log_2 n)_i,j != 0 for all i,j (7) 9100 * 9101 * Showing there's indeed a path between every CPU in at most O(log n) steps. 9102 * The task movement gives a factor of O(m), giving a convergence complexity 9103 * of: 9104 * 9105 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 9106 * 9107 * 9108 * WORK CONSERVING 9109 * 9110 * In order to avoid CPUs going idle while there's still work to do, new idle 9111 * balancing is more aggressive and has the newly idle CPU iterate up the domain 9112 * tree itself instead of relying on other CPUs to bring it work. 9113 * 9114 * This adds some complexity to both (5) and (8) but it reduces the total idle 9115 * time. 9116 * 9117 * [XXX more?] 9118 * 9119 * 9120 * CGROUPS 9121 * 9122 * Cgroups make a horror show out of (2), instead of a simple sum we get: 9123 * 9124 * s_k,i 9125 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 9126 * S_k 9127 * 9128 * Where 9129 * 9130 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 9131 * 9132 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 9133 * 9134 * The big problem is S_k, its a global sum needed to compute a local (W_i) 9135 * property. 9136 * 9137 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 9138 * rewrite all of this once again.] 9139 */ 9140 9141 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 9142 9143 enum fbq_type { regular, remote, all }; 9144 9145 /* 9146 * 'group_type' describes the group of CPUs at the moment of load balancing. 9147 * 9148 * The enum is ordered by pulling priority, with the group with lowest priority 9149 * first so the group_type can simply be compared when selecting the busiest 9150 * group. See update_sd_pick_busiest(). 9151 */ 9152 enum group_type { 9153 /* The group has spare capacity that can be used to run more tasks. */ 9154 group_has_spare = 0, 9155 /* 9156 * The group is fully used and the tasks don't compete for more CPU 9157 * cycles. Nevertheless, some tasks might wait before running. 9158 */ 9159 group_fully_busy, 9160 /* 9161 * One task doesn't fit with CPU's capacity and must be migrated to a 9162 * more powerful CPU. 9163 */ 9164 group_misfit_task, 9165 /* 9166 * Balance SMT group that's fully busy. Can benefit from migration 9167 * a task on SMT with busy sibling to another CPU on idle core. 9168 */ 9169 group_smt_balance, 9170 /* 9171 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 9172 * and the task should be migrated to it instead of running on the 9173 * current CPU. 9174 */ 9175 group_asym_packing, 9176 /* 9177 * The tasks' affinity constraints previously prevented the scheduler 9178 * from balancing the load across the system. 9179 */ 9180 group_imbalanced, 9181 /* 9182 * The CPU is overloaded and can't provide expected CPU cycles to all 9183 * tasks. 9184 */ 9185 group_overloaded 9186 }; 9187 9188 enum migration_type { 9189 migrate_load = 0, 9190 migrate_util, 9191 migrate_task, 9192 migrate_misfit 9193 }; 9194 9195 #define LBF_ALL_PINNED 0x01 9196 #define LBF_NEED_BREAK 0x02 9197 #define LBF_DST_PINNED 0x04 9198 #define LBF_SOME_PINNED 0x08 9199 #define LBF_ACTIVE_LB 0x10 9200 9201 struct lb_env { 9202 struct sched_domain *sd; 9203 9204 struct rq *src_rq; 9205 int src_cpu; 9206 9207 int dst_cpu; 9208 struct rq *dst_rq; 9209 9210 struct cpumask *dst_grpmask; 9211 int new_dst_cpu; 9212 enum cpu_idle_type idle; 9213 long imbalance; 9214 /* The set of CPUs under consideration for load-balancing */ 9215 struct cpumask *cpus; 9216 9217 unsigned int flags; 9218 9219 unsigned int loop; 9220 unsigned int loop_break; 9221 unsigned int loop_max; 9222 9223 enum fbq_type fbq_type; 9224 enum migration_type migration_type; 9225 struct list_head tasks; 9226 }; 9227 9228 /* 9229 * Is this task likely cache-hot: 9230 */ 9231 static int task_hot(struct task_struct *p, struct lb_env *env) 9232 { 9233 s64 delta; 9234 9235 lockdep_assert_rq_held(env->src_rq); 9236 9237 if (p->sched_class != &fair_sched_class) 9238 return 0; 9239 9240 if (unlikely(task_has_idle_policy(p))) 9241 return 0; 9242 9243 /* SMT siblings share cache */ 9244 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 9245 return 0; 9246 9247 /* 9248 * Buddy candidates are cache hot: 9249 */ 9250 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 9251 (&p->se == cfs_rq_of(&p->se)->next)) 9252 return 1; 9253 9254 if (sysctl_sched_migration_cost == -1) 9255 return 1; 9256 9257 /* 9258 * Don't migrate task if the task's cookie does not match 9259 * with the destination CPU's core cookie. 9260 */ 9261 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 9262 return 1; 9263 9264 if (sysctl_sched_migration_cost == 0) 9265 return 0; 9266 9267 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 9268 9269 return delta < (s64)sysctl_sched_migration_cost; 9270 } 9271 9272 #ifdef CONFIG_NUMA_BALANCING 9273 /* 9274 * Returns a positive value, if task migration degrades locality. 9275 * Returns 0, if task migration is not affected by locality. 9276 * Returns a negative value, if task migration improves locality i.e migration preferred. 9277 */ 9278 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 9279 { 9280 struct numa_group *numa_group = rcu_dereference(p->numa_group); 9281 unsigned long src_weight, dst_weight; 9282 int src_nid, dst_nid, dist; 9283 9284 if (!static_branch_likely(&sched_numa_balancing)) 9285 return 0; 9286 9287 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 9288 return 0; 9289 9290 src_nid = cpu_to_node(env->src_cpu); 9291 dst_nid = cpu_to_node(env->dst_cpu); 9292 9293 if (src_nid == dst_nid) 9294 return 0; 9295 9296 /* Migrating away from the preferred node is always bad. */ 9297 if (src_nid == p->numa_preferred_nid) { 9298 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 9299 return 1; 9300 else 9301 return 0; 9302 } 9303 9304 /* Encourage migration to the preferred node. */ 9305 if (dst_nid == p->numa_preferred_nid) 9306 return -1; 9307 9308 /* Leaving a core idle is often worse than degrading locality. */ 9309 if (env->idle == CPU_IDLE) 9310 return 0; 9311 9312 dist = node_distance(src_nid, dst_nid); 9313 if (numa_group) { 9314 src_weight = group_weight(p, src_nid, dist); 9315 dst_weight = group_weight(p, dst_nid, dist); 9316 } else { 9317 src_weight = task_weight(p, src_nid, dist); 9318 dst_weight = task_weight(p, dst_nid, dist); 9319 } 9320 9321 return src_weight - dst_weight; 9322 } 9323 9324 #else 9325 static inline long migrate_degrades_locality(struct task_struct *p, 9326 struct lb_env *env) 9327 { 9328 return 0; 9329 } 9330 #endif 9331 9332 /* 9333 * Check whether the task is ineligible on the destination cpu 9334 * 9335 * When the PLACE_LAG scheduling feature is enabled and 9336 * dst_cfs_rq->nr_queued is greater than 1, if the task 9337 * is ineligible, it will also be ineligible when 9338 * it is migrated to the destination cpu. 9339 */ 9340 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu) 9341 { 9342 struct cfs_rq *dst_cfs_rq; 9343 9344 #ifdef CONFIG_FAIR_GROUP_SCHED 9345 dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu]; 9346 #else 9347 dst_cfs_rq = &cpu_rq(dest_cpu)->cfs; 9348 #endif 9349 if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued && 9350 !entity_eligible(task_cfs_rq(p), &p->se)) 9351 return 1; 9352 9353 return 0; 9354 } 9355 9356 /* 9357 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 9358 */ 9359 static 9360 int can_migrate_task(struct task_struct *p, struct lb_env *env) 9361 { 9362 long degrades, hot; 9363 9364 lockdep_assert_rq_held(env->src_rq); 9365 if (p->sched_task_hot) 9366 p->sched_task_hot = 0; 9367 9368 /* 9369 * We do not migrate tasks that are: 9370 * 1) delayed dequeued unless we migrate load, or 9371 * 2) throttled_lb_pair, or 9372 * 3) cannot be migrated to this CPU due to cpus_ptr, or 9373 * 4) running (obviously), or 9374 * 5) are cache-hot on their current CPU. 9375 */ 9376 if ((p->se.sched_delayed) && (env->migration_type != migrate_load)) 9377 return 0; 9378 9379 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 9380 return 0; 9381 9382 /* 9383 * We want to prioritize the migration of eligible tasks. 9384 * For ineligible tasks we soft-limit them and only allow 9385 * them to migrate when nr_balance_failed is non-zero to 9386 * avoid load-balancing trying very hard to balance the load. 9387 */ 9388 if (!env->sd->nr_balance_failed && 9389 task_is_ineligible_on_dst_cpu(p, env->dst_cpu)) 9390 return 0; 9391 9392 /* Disregard percpu kthreads; they are where they need to be. */ 9393 if (kthread_is_per_cpu(p)) 9394 return 0; 9395 9396 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9397 int cpu; 9398 9399 schedstat_inc(p->stats.nr_failed_migrations_affine); 9400 9401 env->flags |= LBF_SOME_PINNED; 9402 9403 /* 9404 * Remember if this task can be migrated to any other CPU in 9405 * our sched_group. We may want to revisit it if we couldn't 9406 * meet load balance goals by pulling other tasks on src_cpu. 9407 * 9408 * Avoid computing new_dst_cpu 9409 * - for NEWLY_IDLE 9410 * - if we have already computed one in current iteration 9411 * - if it's an active balance 9412 */ 9413 if (env->idle == CPU_NEWLY_IDLE || 9414 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9415 return 0; 9416 9417 /* Prevent to re-select dst_cpu via env's CPUs: */ 9418 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 9419 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 9420 env->flags |= LBF_DST_PINNED; 9421 env->new_dst_cpu = cpu; 9422 break; 9423 } 9424 } 9425 9426 return 0; 9427 } 9428 9429 /* Record that we found at least one task that could run on dst_cpu */ 9430 env->flags &= ~LBF_ALL_PINNED; 9431 9432 if (task_on_cpu(env->src_rq, p)) { 9433 schedstat_inc(p->stats.nr_failed_migrations_running); 9434 return 0; 9435 } 9436 9437 /* 9438 * Aggressive migration if: 9439 * 1) active balance 9440 * 2) destination numa is preferred 9441 * 3) task is cache cold, or 9442 * 4) too many balance attempts have failed. 9443 */ 9444 if (env->flags & LBF_ACTIVE_LB) 9445 return 1; 9446 9447 degrades = migrate_degrades_locality(p, env); 9448 if (!degrades) 9449 hot = task_hot(p, env); 9450 else 9451 hot = degrades > 0; 9452 9453 if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9454 if (hot) 9455 p->sched_task_hot = 1; 9456 return 1; 9457 } 9458 9459 schedstat_inc(p->stats.nr_failed_migrations_hot); 9460 return 0; 9461 } 9462 9463 /* 9464 * detach_task() -- detach the task for the migration specified in env 9465 */ 9466 static void detach_task(struct task_struct *p, struct lb_env *env) 9467 { 9468 lockdep_assert_rq_held(env->src_rq); 9469 9470 if (p->sched_task_hot) { 9471 p->sched_task_hot = 0; 9472 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9473 schedstat_inc(p->stats.nr_forced_migrations); 9474 } 9475 9476 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9477 set_task_cpu(p, env->dst_cpu); 9478 } 9479 9480 /* 9481 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9482 * part of active balancing operations within "domain". 9483 * 9484 * Returns a task if successful and NULL otherwise. 9485 */ 9486 static struct task_struct *detach_one_task(struct lb_env *env) 9487 { 9488 struct task_struct *p; 9489 9490 lockdep_assert_rq_held(env->src_rq); 9491 9492 list_for_each_entry_reverse(p, 9493 &env->src_rq->cfs_tasks, se.group_node) { 9494 if (!can_migrate_task(p, env)) 9495 continue; 9496 9497 detach_task(p, env); 9498 9499 /* 9500 * Right now, this is only the second place where 9501 * lb_gained[env->idle] is updated (other is detach_tasks) 9502 * so we can safely collect stats here rather than 9503 * inside detach_tasks(). 9504 */ 9505 schedstat_inc(env->sd->lb_gained[env->idle]); 9506 return p; 9507 } 9508 return NULL; 9509 } 9510 9511 /* 9512 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9513 * busiest_rq, as part of a balancing operation within domain "sd". 9514 * 9515 * Returns number of detached tasks if successful and 0 otherwise. 9516 */ 9517 static int detach_tasks(struct lb_env *env) 9518 { 9519 struct list_head *tasks = &env->src_rq->cfs_tasks; 9520 unsigned long util, load; 9521 struct task_struct *p; 9522 int detached = 0; 9523 9524 lockdep_assert_rq_held(env->src_rq); 9525 9526 /* 9527 * Source run queue has been emptied by another CPU, clear 9528 * LBF_ALL_PINNED flag as we will not test any task. 9529 */ 9530 if (env->src_rq->nr_running <= 1) { 9531 env->flags &= ~LBF_ALL_PINNED; 9532 return 0; 9533 } 9534 9535 if (env->imbalance <= 0) 9536 return 0; 9537 9538 while (!list_empty(tasks)) { 9539 /* 9540 * We don't want to steal all, otherwise we may be treated likewise, 9541 * which could at worst lead to a livelock crash. 9542 */ 9543 if (env->idle && env->src_rq->nr_running <= 1) 9544 break; 9545 9546 env->loop++; 9547 /* We've more or less seen every task there is, call it quits */ 9548 if (env->loop > env->loop_max) 9549 break; 9550 9551 /* take a breather every nr_migrate tasks */ 9552 if (env->loop > env->loop_break) { 9553 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9554 env->flags |= LBF_NEED_BREAK; 9555 break; 9556 } 9557 9558 p = list_last_entry(tasks, struct task_struct, se.group_node); 9559 9560 if (!can_migrate_task(p, env)) 9561 goto next; 9562 9563 switch (env->migration_type) { 9564 case migrate_load: 9565 /* 9566 * Depending of the number of CPUs and tasks and the 9567 * cgroup hierarchy, task_h_load() can return a null 9568 * value. Make sure that env->imbalance decreases 9569 * otherwise detach_tasks() will stop only after 9570 * detaching up to loop_max tasks. 9571 */ 9572 load = max_t(unsigned long, task_h_load(p), 1); 9573 9574 if (sched_feat(LB_MIN) && 9575 load < 16 && !env->sd->nr_balance_failed) 9576 goto next; 9577 9578 /* 9579 * Make sure that we don't migrate too much load. 9580 * Nevertheless, let relax the constraint if 9581 * scheduler fails to find a good waiting task to 9582 * migrate. 9583 */ 9584 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9585 goto next; 9586 9587 env->imbalance -= load; 9588 break; 9589 9590 case migrate_util: 9591 util = task_util_est(p); 9592 9593 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9594 goto next; 9595 9596 env->imbalance -= util; 9597 break; 9598 9599 case migrate_task: 9600 env->imbalance--; 9601 break; 9602 9603 case migrate_misfit: 9604 /* This is not a misfit task */ 9605 if (task_fits_cpu(p, env->src_cpu)) 9606 goto next; 9607 9608 env->imbalance = 0; 9609 break; 9610 } 9611 9612 detach_task(p, env); 9613 list_add(&p->se.group_node, &env->tasks); 9614 9615 detached++; 9616 9617 #ifdef CONFIG_PREEMPTION 9618 /* 9619 * NEWIDLE balancing is a source of latency, so preemptible 9620 * kernels will stop after the first task is detached to minimize 9621 * the critical section. 9622 */ 9623 if (env->idle == CPU_NEWLY_IDLE) 9624 break; 9625 #endif 9626 9627 /* 9628 * We only want to steal up to the prescribed amount of 9629 * load/util/tasks. 9630 */ 9631 if (env->imbalance <= 0) 9632 break; 9633 9634 continue; 9635 next: 9636 if (p->sched_task_hot) 9637 schedstat_inc(p->stats.nr_failed_migrations_hot); 9638 9639 list_move(&p->se.group_node, tasks); 9640 } 9641 9642 /* 9643 * Right now, this is one of only two places we collect this stat 9644 * so we can safely collect detach_one_task() stats here rather 9645 * than inside detach_one_task(). 9646 */ 9647 schedstat_add(env->sd->lb_gained[env->idle], detached); 9648 9649 return detached; 9650 } 9651 9652 /* 9653 * attach_task() -- attach the task detached by detach_task() to its new rq. 9654 */ 9655 static void attach_task(struct rq *rq, struct task_struct *p) 9656 { 9657 lockdep_assert_rq_held(rq); 9658 9659 WARN_ON_ONCE(task_rq(p) != rq); 9660 activate_task(rq, p, ENQUEUE_NOCLOCK); 9661 wakeup_preempt(rq, p, 0); 9662 } 9663 9664 /* 9665 * attach_one_task() -- attaches the task returned from detach_one_task() to 9666 * its new rq. 9667 */ 9668 static void attach_one_task(struct rq *rq, struct task_struct *p) 9669 { 9670 struct rq_flags rf; 9671 9672 rq_lock(rq, &rf); 9673 update_rq_clock(rq); 9674 attach_task(rq, p); 9675 rq_unlock(rq, &rf); 9676 } 9677 9678 /* 9679 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9680 * new rq. 9681 */ 9682 static void attach_tasks(struct lb_env *env) 9683 { 9684 struct list_head *tasks = &env->tasks; 9685 struct task_struct *p; 9686 struct rq_flags rf; 9687 9688 rq_lock(env->dst_rq, &rf); 9689 update_rq_clock(env->dst_rq); 9690 9691 while (!list_empty(tasks)) { 9692 p = list_first_entry(tasks, struct task_struct, se.group_node); 9693 list_del_init(&p->se.group_node); 9694 9695 attach_task(env->dst_rq, p); 9696 } 9697 9698 rq_unlock(env->dst_rq, &rf); 9699 } 9700 9701 #ifdef CONFIG_NO_HZ_COMMON 9702 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9703 { 9704 if (cfs_rq->avg.load_avg) 9705 return true; 9706 9707 if (cfs_rq->avg.util_avg) 9708 return true; 9709 9710 return false; 9711 } 9712 9713 static inline bool others_have_blocked(struct rq *rq) 9714 { 9715 if (cpu_util_rt(rq)) 9716 return true; 9717 9718 if (cpu_util_dl(rq)) 9719 return true; 9720 9721 if (hw_load_avg(rq)) 9722 return true; 9723 9724 if (cpu_util_irq(rq)) 9725 return true; 9726 9727 return false; 9728 } 9729 9730 static inline void update_blocked_load_tick(struct rq *rq) 9731 { 9732 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9733 } 9734 9735 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9736 { 9737 if (!has_blocked) 9738 rq->has_blocked_load = 0; 9739 } 9740 #else 9741 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9742 static inline bool others_have_blocked(struct rq *rq) { return false; } 9743 static inline void update_blocked_load_tick(struct rq *rq) {} 9744 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9745 #endif 9746 9747 static bool __update_blocked_others(struct rq *rq, bool *done) 9748 { 9749 bool updated; 9750 9751 /* 9752 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9753 * DL and IRQ signals have been updated before updating CFS. 9754 */ 9755 updated = update_other_load_avgs(rq); 9756 9757 if (others_have_blocked(rq)) 9758 *done = false; 9759 9760 return updated; 9761 } 9762 9763 #ifdef CONFIG_FAIR_GROUP_SCHED 9764 9765 static bool __update_blocked_fair(struct rq *rq, bool *done) 9766 { 9767 struct cfs_rq *cfs_rq, *pos; 9768 bool decayed = false; 9769 int cpu = cpu_of(rq); 9770 9771 /* 9772 * Iterates the task_group tree in a bottom up fashion, see 9773 * list_add_leaf_cfs_rq() for details. 9774 */ 9775 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9776 struct sched_entity *se; 9777 9778 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9779 update_tg_load_avg(cfs_rq); 9780 9781 if (cfs_rq->nr_queued == 0) 9782 update_idle_cfs_rq_clock_pelt(cfs_rq); 9783 9784 if (cfs_rq == &rq->cfs) 9785 decayed = true; 9786 } 9787 9788 /* Propagate pending load changes to the parent, if any: */ 9789 se = cfs_rq->tg->se[cpu]; 9790 if (se && !skip_blocked_update(se)) 9791 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9792 9793 /* 9794 * There can be a lot of idle CPU cgroups. Don't let fully 9795 * decayed cfs_rqs linger on the list. 9796 */ 9797 if (cfs_rq_is_decayed(cfs_rq)) 9798 list_del_leaf_cfs_rq(cfs_rq); 9799 9800 /* Don't need periodic decay once load/util_avg are null */ 9801 if (cfs_rq_has_blocked(cfs_rq)) 9802 *done = false; 9803 } 9804 9805 return decayed; 9806 } 9807 9808 /* 9809 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9810 * This needs to be done in a top-down fashion because the load of a child 9811 * group is a fraction of its parents load. 9812 */ 9813 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9814 { 9815 struct rq *rq = rq_of(cfs_rq); 9816 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9817 unsigned long now = jiffies; 9818 unsigned long load; 9819 9820 if (cfs_rq->last_h_load_update == now) 9821 return; 9822 9823 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9824 for_each_sched_entity(se) { 9825 cfs_rq = cfs_rq_of(se); 9826 WRITE_ONCE(cfs_rq->h_load_next, se); 9827 if (cfs_rq->last_h_load_update == now) 9828 break; 9829 } 9830 9831 if (!se) { 9832 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9833 cfs_rq->last_h_load_update = now; 9834 } 9835 9836 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9837 load = cfs_rq->h_load; 9838 load = div64_ul(load * se->avg.load_avg, 9839 cfs_rq_load_avg(cfs_rq) + 1); 9840 cfs_rq = group_cfs_rq(se); 9841 cfs_rq->h_load = load; 9842 cfs_rq->last_h_load_update = now; 9843 } 9844 } 9845 9846 static unsigned long task_h_load(struct task_struct *p) 9847 { 9848 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9849 9850 update_cfs_rq_h_load(cfs_rq); 9851 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9852 cfs_rq_load_avg(cfs_rq) + 1); 9853 } 9854 #else 9855 static bool __update_blocked_fair(struct rq *rq, bool *done) 9856 { 9857 struct cfs_rq *cfs_rq = &rq->cfs; 9858 bool decayed; 9859 9860 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9861 if (cfs_rq_has_blocked(cfs_rq)) 9862 *done = false; 9863 9864 return decayed; 9865 } 9866 9867 static unsigned long task_h_load(struct task_struct *p) 9868 { 9869 return p->se.avg.load_avg; 9870 } 9871 #endif 9872 9873 static void sched_balance_update_blocked_averages(int cpu) 9874 { 9875 bool decayed = false, done = true; 9876 struct rq *rq = cpu_rq(cpu); 9877 struct rq_flags rf; 9878 9879 rq_lock_irqsave(rq, &rf); 9880 update_blocked_load_tick(rq); 9881 update_rq_clock(rq); 9882 9883 decayed |= __update_blocked_others(rq, &done); 9884 decayed |= __update_blocked_fair(rq, &done); 9885 9886 update_blocked_load_status(rq, !done); 9887 if (decayed) 9888 cpufreq_update_util(rq, 0); 9889 rq_unlock_irqrestore(rq, &rf); 9890 } 9891 9892 /********** Helpers for sched_balance_find_src_group ************************/ 9893 9894 /* 9895 * sg_lb_stats - stats of a sched_group required for load-balancing: 9896 */ 9897 struct sg_lb_stats { 9898 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9899 unsigned long group_load; /* Total load over the CPUs of the group */ 9900 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9901 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9902 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9903 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9904 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9905 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9906 unsigned int group_weight; 9907 enum group_type group_type; 9908 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9909 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9910 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9911 #ifdef CONFIG_NUMA_BALANCING 9912 unsigned int nr_numa_running; 9913 unsigned int nr_preferred_running; 9914 #endif 9915 }; 9916 9917 /* 9918 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9919 */ 9920 struct sd_lb_stats { 9921 struct sched_group *busiest; /* Busiest group in this sd */ 9922 struct sched_group *local; /* Local group in this sd */ 9923 unsigned long total_load; /* Total load of all groups in sd */ 9924 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9925 unsigned long avg_load; /* Average load across all groups in sd */ 9926 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 9927 9928 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 9929 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9930 }; 9931 9932 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9933 { 9934 /* 9935 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9936 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9937 * We must however set busiest_stat::group_type and 9938 * busiest_stat::idle_cpus to the worst busiest group because 9939 * update_sd_pick_busiest() reads these before assignment. 9940 */ 9941 *sds = (struct sd_lb_stats){ 9942 .busiest = NULL, 9943 .local = NULL, 9944 .total_load = 0UL, 9945 .total_capacity = 0UL, 9946 .busiest_stat = { 9947 .idle_cpus = UINT_MAX, 9948 .group_type = group_has_spare, 9949 }, 9950 }; 9951 } 9952 9953 static unsigned long scale_rt_capacity(int cpu) 9954 { 9955 unsigned long max = get_actual_cpu_capacity(cpu); 9956 struct rq *rq = cpu_rq(cpu); 9957 unsigned long used, free; 9958 unsigned long irq; 9959 9960 irq = cpu_util_irq(rq); 9961 9962 if (unlikely(irq >= max)) 9963 return 1; 9964 9965 /* 9966 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9967 * (running and not running) with weights 0 and 1024 respectively. 9968 */ 9969 used = cpu_util_rt(rq); 9970 used += cpu_util_dl(rq); 9971 9972 if (unlikely(used >= max)) 9973 return 1; 9974 9975 free = max - used; 9976 9977 return scale_irq_capacity(free, irq, max); 9978 } 9979 9980 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9981 { 9982 unsigned long capacity = scale_rt_capacity(cpu); 9983 struct sched_group *sdg = sd->groups; 9984 9985 if (!capacity) 9986 capacity = 1; 9987 9988 cpu_rq(cpu)->cpu_capacity = capacity; 9989 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9990 9991 sdg->sgc->capacity = capacity; 9992 sdg->sgc->min_capacity = capacity; 9993 sdg->sgc->max_capacity = capacity; 9994 } 9995 9996 void update_group_capacity(struct sched_domain *sd, int cpu) 9997 { 9998 struct sched_domain *child = sd->child; 9999 struct sched_group *group, *sdg = sd->groups; 10000 unsigned long capacity, min_capacity, max_capacity; 10001 unsigned long interval; 10002 10003 interval = msecs_to_jiffies(sd->balance_interval); 10004 interval = clamp(interval, 1UL, max_load_balance_interval); 10005 sdg->sgc->next_update = jiffies + interval; 10006 10007 if (!child) { 10008 update_cpu_capacity(sd, cpu); 10009 return; 10010 } 10011 10012 capacity = 0; 10013 min_capacity = ULONG_MAX; 10014 max_capacity = 0; 10015 10016 if (child->flags & SD_OVERLAP) { 10017 /* 10018 * SD_OVERLAP domains cannot assume that child groups 10019 * span the current group. 10020 */ 10021 10022 for_each_cpu(cpu, sched_group_span(sdg)) { 10023 unsigned long cpu_cap = capacity_of(cpu); 10024 10025 capacity += cpu_cap; 10026 min_capacity = min(cpu_cap, min_capacity); 10027 max_capacity = max(cpu_cap, max_capacity); 10028 } 10029 } else { 10030 /* 10031 * !SD_OVERLAP domains can assume that child groups 10032 * span the current group. 10033 */ 10034 10035 group = child->groups; 10036 do { 10037 struct sched_group_capacity *sgc = group->sgc; 10038 10039 capacity += sgc->capacity; 10040 min_capacity = min(sgc->min_capacity, min_capacity); 10041 max_capacity = max(sgc->max_capacity, max_capacity); 10042 group = group->next; 10043 } while (group != child->groups); 10044 } 10045 10046 sdg->sgc->capacity = capacity; 10047 sdg->sgc->min_capacity = min_capacity; 10048 sdg->sgc->max_capacity = max_capacity; 10049 } 10050 10051 /* 10052 * Check whether the capacity of the rq has been noticeably reduced by side 10053 * activity. The imbalance_pct is used for the threshold. 10054 * Return true is the capacity is reduced 10055 */ 10056 static inline int 10057 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 10058 { 10059 return ((rq->cpu_capacity * sd->imbalance_pct) < 10060 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 10061 } 10062 10063 /* Check if the rq has a misfit task */ 10064 static inline bool check_misfit_status(struct rq *rq) 10065 { 10066 return rq->misfit_task_load; 10067 } 10068 10069 /* 10070 * Group imbalance indicates (and tries to solve) the problem where balancing 10071 * groups is inadequate due to ->cpus_ptr constraints. 10072 * 10073 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 10074 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 10075 * Something like: 10076 * 10077 * { 0 1 2 3 } { 4 5 6 7 } 10078 * * * * * 10079 * 10080 * If we were to balance group-wise we'd place two tasks in the first group and 10081 * two tasks in the second group. Clearly this is undesired as it will overload 10082 * cpu 3 and leave one of the CPUs in the second group unused. 10083 * 10084 * The current solution to this issue is detecting the skew in the first group 10085 * by noticing the lower domain failed to reach balance and had difficulty 10086 * moving tasks due to affinity constraints. 10087 * 10088 * When this is so detected; this group becomes a candidate for busiest; see 10089 * update_sd_pick_busiest(). And calculate_imbalance() and 10090 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 10091 * to create an effective group imbalance. 10092 * 10093 * This is a somewhat tricky proposition since the next run might not find the 10094 * group imbalance and decide the groups need to be balanced again. A most 10095 * subtle and fragile situation. 10096 */ 10097 10098 static inline int sg_imbalanced(struct sched_group *group) 10099 { 10100 return group->sgc->imbalance; 10101 } 10102 10103 /* 10104 * group_has_capacity returns true if the group has spare capacity that could 10105 * be used by some tasks. 10106 * We consider that a group has spare capacity if the number of task is 10107 * smaller than the number of CPUs or if the utilization is lower than the 10108 * available capacity for CFS tasks. 10109 * For the latter, we use a threshold to stabilize the state, to take into 10110 * account the variance of the tasks' load and to return true if the available 10111 * capacity in meaningful for the load balancer. 10112 * As an example, an available capacity of 1% can appear but it doesn't make 10113 * any benefit for the load balance. 10114 */ 10115 static inline bool 10116 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10117 { 10118 if (sgs->sum_nr_running < sgs->group_weight) 10119 return true; 10120 10121 if ((sgs->group_capacity * imbalance_pct) < 10122 (sgs->group_runnable * 100)) 10123 return false; 10124 10125 if ((sgs->group_capacity * 100) > 10126 (sgs->group_util * imbalance_pct)) 10127 return true; 10128 10129 return false; 10130 } 10131 10132 /* 10133 * group_is_overloaded returns true if the group has more tasks than it can 10134 * handle. 10135 * group_is_overloaded is not equals to !group_has_capacity because a group 10136 * with the exact right number of tasks, has no more spare capacity but is not 10137 * overloaded so both group_has_capacity and group_is_overloaded return 10138 * false. 10139 */ 10140 static inline bool 10141 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10142 { 10143 if (sgs->sum_nr_running <= sgs->group_weight) 10144 return false; 10145 10146 if ((sgs->group_capacity * 100) < 10147 (sgs->group_util * imbalance_pct)) 10148 return true; 10149 10150 if ((sgs->group_capacity * imbalance_pct) < 10151 (sgs->group_runnable * 100)) 10152 return true; 10153 10154 return false; 10155 } 10156 10157 static inline enum 10158 group_type group_classify(unsigned int imbalance_pct, 10159 struct sched_group *group, 10160 struct sg_lb_stats *sgs) 10161 { 10162 if (group_is_overloaded(imbalance_pct, sgs)) 10163 return group_overloaded; 10164 10165 if (sg_imbalanced(group)) 10166 return group_imbalanced; 10167 10168 if (sgs->group_asym_packing) 10169 return group_asym_packing; 10170 10171 if (sgs->group_smt_balance) 10172 return group_smt_balance; 10173 10174 if (sgs->group_misfit_task_load) 10175 return group_misfit_task; 10176 10177 if (!group_has_capacity(imbalance_pct, sgs)) 10178 return group_fully_busy; 10179 10180 return group_has_spare; 10181 } 10182 10183 /** 10184 * sched_use_asym_prio - Check whether asym_packing priority must be used 10185 * @sd: The scheduling domain of the load balancing 10186 * @cpu: A CPU 10187 * 10188 * Always use CPU priority when balancing load between SMT siblings. When 10189 * balancing load between cores, it is not sufficient that @cpu is idle. Only 10190 * use CPU priority if the whole core is idle. 10191 * 10192 * Returns: True if the priority of @cpu must be followed. False otherwise. 10193 */ 10194 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 10195 { 10196 if (!(sd->flags & SD_ASYM_PACKING)) 10197 return false; 10198 10199 if (!sched_smt_active()) 10200 return true; 10201 10202 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 10203 } 10204 10205 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 10206 { 10207 /* 10208 * First check if @dst_cpu can do asym_packing load balance. Only do it 10209 * if it has higher priority than @src_cpu. 10210 */ 10211 return sched_use_asym_prio(sd, dst_cpu) && 10212 sched_asym_prefer(dst_cpu, src_cpu); 10213 } 10214 10215 /** 10216 * sched_group_asym - Check if the destination CPU can do asym_packing balance 10217 * @env: The load balancing environment 10218 * @sgs: Load-balancing statistics of the candidate busiest group 10219 * @group: The candidate busiest group 10220 * 10221 * @env::dst_cpu can do asym_packing if it has higher priority than the 10222 * preferred CPU of @group. 10223 * 10224 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 10225 * otherwise. 10226 */ 10227 static inline bool 10228 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 10229 { 10230 /* 10231 * CPU priorities do not make sense for SMT cores with more than one 10232 * busy sibling. 10233 */ 10234 if ((group->flags & SD_SHARE_CPUCAPACITY) && 10235 (sgs->group_weight - sgs->idle_cpus != 1)) 10236 return false; 10237 10238 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu); 10239 } 10240 10241 /* One group has more than one SMT CPU while the other group does not */ 10242 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 10243 struct sched_group *sg2) 10244 { 10245 if (!sg1 || !sg2) 10246 return false; 10247 10248 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 10249 (sg2->flags & SD_SHARE_CPUCAPACITY); 10250 } 10251 10252 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 10253 struct sched_group *group) 10254 { 10255 if (!env->idle) 10256 return false; 10257 10258 /* 10259 * For SMT source group, it is better to move a task 10260 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 10261 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 10262 * will not be on. 10263 */ 10264 if (group->flags & SD_SHARE_CPUCAPACITY && 10265 sgs->sum_h_nr_running > 1) 10266 return true; 10267 10268 return false; 10269 } 10270 10271 static inline long sibling_imbalance(struct lb_env *env, 10272 struct sd_lb_stats *sds, 10273 struct sg_lb_stats *busiest, 10274 struct sg_lb_stats *local) 10275 { 10276 int ncores_busiest, ncores_local; 10277 long imbalance; 10278 10279 if (!env->idle || !busiest->sum_nr_running) 10280 return 0; 10281 10282 ncores_busiest = sds->busiest->cores; 10283 ncores_local = sds->local->cores; 10284 10285 if (ncores_busiest == ncores_local) { 10286 imbalance = busiest->sum_nr_running; 10287 lsub_positive(&imbalance, local->sum_nr_running); 10288 return imbalance; 10289 } 10290 10291 /* Balance such that nr_running/ncores ratio are same on both groups */ 10292 imbalance = ncores_local * busiest->sum_nr_running; 10293 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 10294 /* Normalize imbalance and do rounding on normalization */ 10295 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 10296 imbalance /= ncores_local + ncores_busiest; 10297 10298 /* Take advantage of resource in an empty sched group */ 10299 if (imbalance <= 1 && local->sum_nr_running == 0 && 10300 busiest->sum_nr_running > 1) 10301 imbalance = 2; 10302 10303 return imbalance; 10304 } 10305 10306 static inline bool 10307 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 10308 { 10309 /* 10310 * When there is more than 1 task, the group_overloaded case already 10311 * takes care of cpu with reduced capacity 10312 */ 10313 if (rq->cfs.h_nr_runnable != 1) 10314 return false; 10315 10316 return check_cpu_capacity(rq, sd); 10317 } 10318 10319 /** 10320 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 10321 * @env: The load balancing environment. 10322 * @sds: Load-balancing data with statistics of the local group. 10323 * @group: sched_group whose statistics are to be updated. 10324 * @sgs: variable to hold the statistics for this group. 10325 * @sg_overloaded: sched_group is overloaded 10326 * @sg_overutilized: sched_group is overutilized 10327 */ 10328 static inline void update_sg_lb_stats(struct lb_env *env, 10329 struct sd_lb_stats *sds, 10330 struct sched_group *group, 10331 struct sg_lb_stats *sgs, 10332 bool *sg_overloaded, 10333 bool *sg_overutilized) 10334 { 10335 int i, nr_running, local_group, sd_flags = env->sd->flags; 10336 bool balancing_at_rd = !env->sd->parent; 10337 10338 memset(sgs, 0, sizeof(*sgs)); 10339 10340 local_group = group == sds->local; 10341 10342 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10343 struct rq *rq = cpu_rq(i); 10344 unsigned long load = cpu_load(rq); 10345 10346 sgs->group_load += load; 10347 sgs->group_util += cpu_util_cfs(i); 10348 sgs->group_runnable += cpu_runnable(rq); 10349 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable; 10350 10351 nr_running = rq->nr_running; 10352 sgs->sum_nr_running += nr_running; 10353 10354 if (cpu_overutilized(i)) 10355 *sg_overutilized = 1; 10356 10357 /* 10358 * No need to call idle_cpu() if nr_running is not 0 10359 */ 10360 if (!nr_running && idle_cpu(i)) { 10361 sgs->idle_cpus++; 10362 /* Idle cpu can't have misfit task */ 10363 continue; 10364 } 10365 10366 /* Overload indicator is only updated at root domain */ 10367 if (balancing_at_rd && nr_running > 1) 10368 *sg_overloaded = 1; 10369 10370 #ifdef CONFIG_NUMA_BALANCING 10371 /* Only fbq_classify_group() uses this to classify NUMA groups */ 10372 if (sd_flags & SD_NUMA) { 10373 sgs->nr_numa_running += rq->nr_numa_running; 10374 sgs->nr_preferred_running += rq->nr_preferred_running; 10375 } 10376 #endif 10377 if (local_group) 10378 continue; 10379 10380 if (sd_flags & SD_ASYM_CPUCAPACITY) { 10381 /* Check for a misfit task on the cpu */ 10382 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 10383 sgs->group_misfit_task_load = rq->misfit_task_load; 10384 *sg_overloaded = 1; 10385 } 10386 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 10387 /* Check for a task running on a CPU with reduced capacity */ 10388 if (sgs->group_misfit_task_load < load) 10389 sgs->group_misfit_task_load = load; 10390 } 10391 } 10392 10393 sgs->group_capacity = group->sgc->capacity; 10394 10395 sgs->group_weight = group->group_weight; 10396 10397 /* Check if dst CPU is idle and preferred to this group */ 10398 if (!local_group && env->idle && sgs->sum_h_nr_running && 10399 sched_group_asym(env, sgs, group)) 10400 sgs->group_asym_packing = 1; 10401 10402 /* Check for loaded SMT group to be balanced to dst CPU */ 10403 if (!local_group && smt_balance(env, sgs, group)) 10404 sgs->group_smt_balance = 1; 10405 10406 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10407 10408 /* Computing avg_load makes sense only when group is overloaded */ 10409 if (sgs->group_type == group_overloaded) 10410 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10411 sgs->group_capacity; 10412 } 10413 10414 /** 10415 * update_sd_pick_busiest - return 1 on busiest group 10416 * @env: The load balancing environment. 10417 * @sds: sched_domain statistics 10418 * @sg: sched_group candidate to be checked for being the busiest 10419 * @sgs: sched_group statistics 10420 * 10421 * Determine if @sg is a busier group than the previously selected 10422 * busiest group. 10423 * 10424 * Return: %true if @sg is a busier group than the previously selected 10425 * busiest group. %false otherwise. 10426 */ 10427 static bool update_sd_pick_busiest(struct lb_env *env, 10428 struct sd_lb_stats *sds, 10429 struct sched_group *sg, 10430 struct sg_lb_stats *sgs) 10431 { 10432 struct sg_lb_stats *busiest = &sds->busiest_stat; 10433 10434 /* Make sure that there is at least one task to pull */ 10435 if (!sgs->sum_h_nr_running) 10436 return false; 10437 10438 /* 10439 * Don't try to pull misfit tasks we can't help. 10440 * We can use max_capacity here as reduction in capacity on some 10441 * CPUs in the group should either be possible to resolve 10442 * internally or be covered by avg_load imbalance (eventually). 10443 */ 10444 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10445 (sgs->group_type == group_misfit_task) && 10446 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10447 sds->local_stat.group_type != group_has_spare)) 10448 return false; 10449 10450 if (sgs->group_type > busiest->group_type) 10451 return true; 10452 10453 if (sgs->group_type < busiest->group_type) 10454 return false; 10455 10456 /* 10457 * The candidate and the current busiest group are the same type of 10458 * group. Let check which one is the busiest according to the type. 10459 */ 10460 10461 switch (sgs->group_type) { 10462 case group_overloaded: 10463 /* Select the overloaded group with highest avg_load. */ 10464 return sgs->avg_load > busiest->avg_load; 10465 10466 case group_imbalanced: 10467 /* 10468 * Select the 1st imbalanced group as we don't have any way to 10469 * choose one more than another. 10470 */ 10471 return false; 10472 10473 case group_asym_packing: 10474 /* Prefer to move from lowest priority CPU's work */ 10475 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu); 10476 10477 case group_misfit_task: 10478 /* 10479 * If we have more than one misfit sg go with the biggest 10480 * misfit. 10481 */ 10482 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10483 10484 case group_smt_balance: 10485 /* 10486 * Check if we have spare CPUs on either SMT group to 10487 * choose has spare or fully busy handling. 10488 */ 10489 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10490 goto has_spare; 10491 10492 fallthrough; 10493 10494 case group_fully_busy: 10495 /* 10496 * Select the fully busy group with highest avg_load. In 10497 * theory, there is no need to pull task from such kind of 10498 * group because tasks have all compute capacity that they need 10499 * but we can still improve the overall throughput by reducing 10500 * contention when accessing shared HW resources. 10501 * 10502 * XXX for now avg_load is not computed and always 0 so we 10503 * select the 1st one, except if @sg is composed of SMT 10504 * siblings. 10505 */ 10506 10507 if (sgs->avg_load < busiest->avg_load) 10508 return false; 10509 10510 if (sgs->avg_load == busiest->avg_load) { 10511 /* 10512 * SMT sched groups need more help than non-SMT groups. 10513 * If @sg happens to also be SMT, either choice is good. 10514 */ 10515 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10516 return false; 10517 } 10518 10519 break; 10520 10521 case group_has_spare: 10522 /* 10523 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10524 * as we do not want to pull task off SMT core with one task 10525 * and make the core idle. 10526 */ 10527 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10528 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10529 return false; 10530 else 10531 return true; 10532 } 10533 has_spare: 10534 10535 /* 10536 * Select not overloaded group with lowest number of idle CPUs 10537 * and highest number of running tasks. We could also compare 10538 * the spare capacity which is more stable but it can end up 10539 * that the group has less spare capacity but finally more idle 10540 * CPUs which means less opportunity to pull tasks. 10541 */ 10542 if (sgs->idle_cpus > busiest->idle_cpus) 10543 return false; 10544 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10545 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10546 return false; 10547 10548 break; 10549 } 10550 10551 /* 10552 * Candidate sg has no more than one task per CPU and has higher 10553 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10554 * throughput. Maximize throughput, power/energy consequences are not 10555 * considered. 10556 */ 10557 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10558 (sgs->group_type <= group_fully_busy) && 10559 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10560 return false; 10561 10562 return true; 10563 } 10564 10565 #ifdef CONFIG_NUMA_BALANCING 10566 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10567 { 10568 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10569 return regular; 10570 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10571 return remote; 10572 return all; 10573 } 10574 10575 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10576 { 10577 if (rq->nr_running > rq->nr_numa_running) 10578 return regular; 10579 if (rq->nr_running > rq->nr_preferred_running) 10580 return remote; 10581 return all; 10582 } 10583 #else 10584 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10585 { 10586 return all; 10587 } 10588 10589 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10590 { 10591 return regular; 10592 } 10593 #endif /* CONFIG_NUMA_BALANCING */ 10594 10595 10596 struct sg_lb_stats; 10597 10598 /* 10599 * task_running_on_cpu - return 1 if @p is running on @cpu. 10600 */ 10601 10602 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10603 { 10604 /* Task has no contribution or is new */ 10605 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10606 return 0; 10607 10608 if (task_on_rq_queued(p)) 10609 return 1; 10610 10611 return 0; 10612 } 10613 10614 /** 10615 * idle_cpu_without - would a given CPU be idle without p ? 10616 * @cpu: the processor on which idleness is tested. 10617 * @p: task which should be ignored. 10618 * 10619 * Return: 1 if the CPU would be idle. 0 otherwise. 10620 */ 10621 static int idle_cpu_without(int cpu, struct task_struct *p) 10622 { 10623 struct rq *rq = cpu_rq(cpu); 10624 10625 if (rq->curr != rq->idle && rq->curr != p) 10626 return 0; 10627 10628 /* 10629 * rq->nr_running can't be used but an updated version without the 10630 * impact of p on cpu must be used instead. The updated nr_running 10631 * be computed and tested before calling idle_cpu_without(). 10632 */ 10633 10634 if (rq->ttwu_pending) 10635 return 0; 10636 10637 return 1; 10638 } 10639 10640 /* 10641 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10642 * @sd: The sched_domain level to look for idlest group. 10643 * @group: sched_group whose statistics are to be updated. 10644 * @sgs: variable to hold the statistics for this group. 10645 * @p: The task for which we look for the idlest group/CPU. 10646 */ 10647 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10648 struct sched_group *group, 10649 struct sg_lb_stats *sgs, 10650 struct task_struct *p) 10651 { 10652 int i, nr_running; 10653 10654 memset(sgs, 0, sizeof(*sgs)); 10655 10656 /* Assume that task can't fit any CPU of the group */ 10657 if (sd->flags & SD_ASYM_CPUCAPACITY) 10658 sgs->group_misfit_task_load = 1; 10659 10660 for_each_cpu(i, sched_group_span(group)) { 10661 struct rq *rq = cpu_rq(i); 10662 unsigned int local; 10663 10664 sgs->group_load += cpu_load_without(rq, p); 10665 sgs->group_util += cpu_util_without(i, p); 10666 sgs->group_runnable += cpu_runnable_without(rq, p); 10667 local = task_running_on_cpu(i, p); 10668 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local; 10669 10670 nr_running = rq->nr_running - local; 10671 sgs->sum_nr_running += nr_running; 10672 10673 /* 10674 * No need to call idle_cpu_without() if nr_running is not 0 10675 */ 10676 if (!nr_running && idle_cpu_without(i, p)) 10677 sgs->idle_cpus++; 10678 10679 /* Check if task fits in the CPU */ 10680 if (sd->flags & SD_ASYM_CPUCAPACITY && 10681 sgs->group_misfit_task_load && 10682 task_fits_cpu(p, i)) 10683 sgs->group_misfit_task_load = 0; 10684 10685 } 10686 10687 sgs->group_capacity = group->sgc->capacity; 10688 10689 sgs->group_weight = group->group_weight; 10690 10691 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10692 10693 /* 10694 * Computing avg_load makes sense only when group is fully busy or 10695 * overloaded 10696 */ 10697 if (sgs->group_type == group_fully_busy || 10698 sgs->group_type == group_overloaded) 10699 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10700 sgs->group_capacity; 10701 } 10702 10703 static bool update_pick_idlest(struct sched_group *idlest, 10704 struct sg_lb_stats *idlest_sgs, 10705 struct sched_group *group, 10706 struct sg_lb_stats *sgs) 10707 { 10708 if (sgs->group_type < idlest_sgs->group_type) 10709 return true; 10710 10711 if (sgs->group_type > idlest_sgs->group_type) 10712 return false; 10713 10714 /* 10715 * The candidate and the current idlest group are the same type of 10716 * group. Let check which one is the idlest according to the type. 10717 */ 10718 10719 switch (sgs->group_type) { 10720 case group_overloaded: 10721 case group_fully_busy: 10722 /* Select the group with lowest avg_load. */ 10723 if (idlest_sgs->avg_load <= sgs->avg_load) 10724 return false; 10725 break; 10726 10727 case group_imbalanced: 10728 case group_asym_packing: 10729 case group_smt_balance: 10730 /* Those types are not used in the slow wakeup path */ 10731 return false; 10732 10733 case group_misfit_task: 10734 /* Select group with the highest max capacity */ 10735 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10736 return false; 10737 break; 10738 10739 case group_has_spare: 10740 /* Select group with most idle CPUs */ 10741 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10742 return false; 10743 10744 /* Select group with lowest group_util */ 10745 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10746 idlest_sgs->group_util <= sgs->group_util) 10747 return false; 10748 10749 break; 10750 } 10751 10752 return true; 10753 } 10754 10755 /* 10756 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10757 * domain. 10758 * 10759 * Assumes p is allowed on at least one CPU in sd. 10760 */ 10761 static struct sched_group * 10762 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10763 { 10764 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10765 struct sg_lb_stats local_sgs, tmp_sgs; 10766 struct sg_lb_stats *sgs; 10767 unsigned long imbalance; 10768 struct sg_lb_stats idlest_sgs = { 10769 .avg_load = UINT_MAX, 10770 .group_type = group_overloaded, 10771 }; 10772 10773 do { 10774 int local_group; 10775 10776 /* Skip over this group if it has no CPUs allowed */ 10777 if (!cpumask_intersects(sched_group_span(group), 10778 p->cpus_ptr)) 10779 continue; 10780 10781 /* Skip over this group if no cookie matched */ 10782 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10783 continue; 10784 10785 local_group = cpumask_test_cpu(this_cpu, 10786 sched_group_span(group)); 10787 10788 if (local_group) { 10789 sgs = &local_sgs; 10790 local = group; 10791 } else { 10792 sgs = &tmp_sgs; 10793 } 10794 10795 update_sg_wakeup_stats(sd, group, sgs, p); 10796 10797 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10798 idlest = group; 10799 idlest_sgs = *sgs; 10800 } 10801 10802 } while (group = group->next, group != sd->groups); 10803 10804 10805 /* There is no idlest group to push tasks to */ 10806 if (!idlest) 10807 return NULL; 10808 10809 /* The local group has been skipped because of CPU affinity */ 10810 if (!local) 10811 return idlest; 10812 10813 /* 10814 * If the local group is idler than the selected idlest group 10815 * don't try and push the task. 10816 */ 10817 if (local_sgs.group_type < idlest_sgs.group_type) 10818 return NULL; 10819 10820 /* 10821 * If the local group is busier than the selected idlest group 10822 * try and push the task. 10823 */ 10824 if (local_sgs.group_type > idlest_sgs.group_type) 10825 return idlest; 10826 10827 switch (local_sgs.group_type) { 10828 case group_overloaded: 10829 case group_fully_busy: 10830 10831 /* Calculate allowed imbalance based on load */ 10832 imbalance = scale_load_down(NICE_0_LOAD) * 10833 (sd->imbalance_pct-100) / 100; 10834 10835 /* 10836 * When comparing groups across NUMA domains, it's possible for 10837 * the local domain to be very lightly loaded relative to the 10838 * remote domains but "imbalance" skews the comparison making 10839 * remote CPUs look much more favourable. When considering 10840 * cross-domain, add imbalance to the load on the remote node 10841 * and consider staying local. 10842 */ 10843 10844 if ((sd->flags & SD_NUMA) && 10845 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10846 return NULL; 10847 10848 /* 10849 * If the local group is less loaded than the selected 10850 * idlest group don't try and push any tasks. 10851 */ 10852 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10853 return NULL; 10854 10855 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10856 return NULL; 10857 break; 10858 10859 case group_imbalanced: 10860 case group_asym_packing: 10861 case group_smt_balance: 10862 /* Those type are not used in the slow wakeup path */ 10863 return NULL; 10864 10865 case group_misfit_task: 10866 /* Select group with the highest max capacity */ 10867 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10868 return NULL; 10869 break; 10870 10871 case group_has_spare: 10872 #ifdef CONFIG_NUMA 10873 if (sd->flags & SD_NUMA) { 10874 int imb_numa_nr = sd->imb_numa_nr; 10875 #ifdef CONFIG_NUMA_BALANCING 10876 int idlest_cpu; 10877 /* 10878 * If there is spare capacity at NUMA, try to select 10879 * the preferred node 10880 */ 10881 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10882 return NULL; 10883 10884 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10885 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10886 return idlest; 10887 #endif /* CONFIG_NUMA_BALANCING */ 10888 /* 10889 * Otherwise, keep the task close to the wakeup source 10890 * and improve locality if the number of running tasks 10891 * would remain below threshold where an imbalance is 10892 * allowed while accounting for the possibility the 10893 * task is pinned to a subset of CPUs. If there is a 10894 * real need of migration, periodic load balance will 10895 * take care of it. 10896 */ 10897 if (p->nr_cpus_allowed != NR_CPUS) { 10898 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10899 10900 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10901 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10902 } 10903 10904 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10905 if (!adjust_numa_imbalance(imbalance, 10906 local_sgs.sum_nr_running + 1, 10907 imb_numa_nr)) { 10908 return NULL; 10909 } 10910 } 10911 #endif /* CONFIG_NUMA */ 10912 10913 /* 10914 * Select group with highest number of idle CPUs. We could also 10915 * compare the utilization which is more stable but it can end 10916 * up that the group has less spare capacity but finally more 10917 * idle CPUs which means more opportunity to run task. 10918 */ 10919 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10920 return NULL; 10921 break; 10922 } 10923 10924 return idlest; 10925 } 10926 10927 static void update_idle_cpu_scan(struct lb_env *env, 10928 unsigned long sum_util) 10929 { 10930 struct sched_domain_shared *sd_share; 10931 int llc_weight, pct; 10932 u64 x, y, tmp; 10933 /* 10934 * Update the number of CPUs to scan in LLC domain, which could 10935 * be used as a hint in select_idle_cpu(). The update of sd_share 10936 * could be expensive because it is within a shared cache line. 10937 * So the write of this hint only occurs during periodic load 10938 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10939 * can fire way more frequently than the former. 10940 */ 10941 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10942 return; 10943 10944 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10945 if (env->sd->span_weight != llc_weight) 10946 return; 10947 10948 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10949 if (!sd_share) 10950 return; 10951 10952 /* 10953 * The number of CPUs to search drops as sum_util increases, when 10954 * sum_util hits 85% or above, the scan stops. 10955 * The reason to choose 85% as the threshold is because this is the 10956 * imbalance_pct(117) when a LLC sched group is overloaded. 10957 * 10958 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10959 * and y'= y / SCHED_CAPACITY_SCALE 10960 * 10961 * x is the ratio of sum_util compared to the CPU capacity: 10962 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10963 * y' is the ratio of CPUs to be scanned in the LLC domain, 10964 * and the number of CPUs to scan is calculated by: 10965 * 10966 * nr_scan = llc_weight * y' [2] 10967 * 10968 * When x hits the threshold of overloaded, AKA, when 10969 * x = 100 / pct, y drops to 0. According to [1], 10970 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10971 * 10972 * Scale x by SCHED_CAPACITY_SCALE: 10973 * x' = sum_util / llc_weight; [3] 10974 * 10975 * and finally [1] becomes: 10976 * y = SCHED_CAPACITY_SCALE - 10977 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10978 * 10979 */ 10980 /* equation [3] */ 10981 x = sum_util; 10982 do_div(x, llc_weight); 10983 10984 /* equation [4] */ 10985 pct = env->sd->imbalance_pct; 10986 tmp = x * x * pct * pct; 10987 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10988 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10989 y = SCHED_CAPACITY_SCALE - tmp; 10990 10991 /* equation [2] */ 10992 y *= llc_weight; 10993 do_div(y, SCHED_CAPACITY_SCALE); 10994 if ((int)y != sd_share->nr_idle_scan) 10995 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10996 } 10997 10998 /** 10999 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 11000 * @env: The load balancing environment. 11001 * @sds: variable to hold the statistics for this sched_domain. 11002 */ 11003 11004 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 11005 { 11006 struct sched_group *sg = env->sd->groups; 11007 struct sg_lb_stats *local = &sds->local_stat; 11008 struct sg_lb_stats tmp_sgs; 11009 unsigned long sum_util = 0; 11010 bool sg_overloaded = 0, sg_overutilized = 0; 11011 11012 do { 11013 struct sg_lb_stats *sgs = &tmp_sgs; 11014 int local_group; 11015 11016 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 11017 if (local_group) { 11018 sds->local = sg; 11019 sgs = local; 11020 11021 if (env->idle != CPU_NEWLY_IDLE || 11022 time_after_eq(jiffies, sg->sgc->next_update)) 11023 update_group_capacity(env->sd, env->dst_cpu); 11024 } 11025 11026 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 11027 11028 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 11029 sds->busiest = sg; 11030 sds->busiest_stat = *sgs; 11031 } 11032 11033 /* Now, start updating sd_lb_stats */ 11034 sds->total_load += sgs->group_load; 11035 sds->total_capacity += sgs->group_capacity; 11036 11037 sum_util += sgs->group_util; 11038 sg = sg->next; 11039 } while (sg != env->sd->groups); 11040 11041 /* 11042 * Indicate that the child domain of the busiest group prefers tasks 11043 * go to a child's sibling domains first. NB the flags of a sched group 11044 * are those of the child domain. 11045 */ 11046 if (sds->busiest) 11047 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 11048 11049 11050 if (env->sd->flags & SD_NUMA) 11051 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 11052 11053 if (!env->sd->parent) { 11054 /* update overload indicator if we are at root domain */ 11055 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 11056 11057 /* Update over-utilization (tipping point, U >= 0) indicator */ 11058 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11059 } else if (sg_overutilized) { 11060 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11061 } 11062 11063 update_idle_cpu_scan(env, sum_util); 11064 } 11065 11066 /** 11067 * calculate_imbalance - Calculate the amount of imbalance present within the 11068 * groups of a given sched_domain during load balance. 11069 * @env: load balance environment 11070 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 11071 */ 11072 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 11073 { 11074 struct sg_lb_stats *local, *busiest; 11075 11076 local = &sds->local_stat; 11077 busiest = &sds->busiest_stat; 11078 11079 if (busiest->group_type == group_misfit_task) { 11080 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 11081 /* Set imbalance to allow misfit tasks to be balanced. */ 11082 env->migration_type = migrate_misfit; 11083 env->imbalance = 1; 11084 } else { 11085 /* 11086 * Set load imbalance to allow moving task from cpu 11087 * with reduced capacity. 11088 */ 11089 env->migration_type = migrate_load; 11090 env->imbalance = busiest->group_misfit_task_load; 11091 } 11092 return; 11093 } 11094 11095 if (busiest->group_type == group_asym_packing) { 11096 /* 11097 * In case of asym capacity, we will try to migrate all load to 11098 * the preferred CPU. 11099 */ 11100 env->migration_type = migrate_task; 11101 env->imbalance = busiest->sum_h_nr_running; 11102 return; 11103 } 11104 11105 if (busiest->group_type == group_smt_balance) { 11106 /* Reduce number of tasks sharing CPU capacity */ 11107 env->migration_type = migrate_task; 11108 env->imbalance = 1; 11109 return; 11110 } 11111 11112 if (busiest->group_type == group_imbalanced) { 11113 /* 11114 * In the group_imb case we cannot rely on group-wide averages 11115 * to ensure CPU-load equilibrium, try to move any task to fix 11116 * the imbalance. The next load balance will take care of 11117 * balancing back the system. 11118 */ 11119 env->migration_type = migrate_task; 11120 env->imbalance = 1; 11121 return; 11122 } 11123 11124 /* 11125 * Try to use spare capacity of local group without overloading it or 11126 * emptying busiest. 11127 */ 11128 if (local->group_type == group_has_spare) { 11129 if ((busiest->group_type > group_fully_busy) && 11130 !(env->sd->flags & SD_SHARE_LLC)) { 11131 /* 11132 * If busiest is overloaded, try to fill spare 11133 * capacity. This might end up creating spare capacity 11134 * in busiest or busiest still being overloaded but 11135 * there is no simple way to directly compute the 11136 * amount of load to migrate in order to balance the 11137 * system. 11138 */ 11139 env->migration_type = migrate_util; 11140 env->imbalance = max(local->group_capacity, local->group_util) - 11141 local->group_util; 11142 11143 /* 11144 * In some cases, the group's utilization is max or even 11145 * higher than capacity because of migrations but the 11146 * local CPU is (newly) idle. There is at least one 11147 * waiting task in this overloaded busiest group. Let's 11148 * try to pull it. 11149 */ 11150 if (env->idle && env->imbalance == 0) { 11151 env->migration_type = migrate_task; 11152 env->imbalance = 1; 11153 } 11154 11155 return; 11156 } 11157 11158 if (busiest->group_weight == 1 || sds->prefer_sibling) { 11159 /* 11160 * When prefer sibling, evenly spread running tasks on 11161 * groups. 11162 */ 11163 env->migration_type = migrate_task; 11164 env->imbalance = sibling_imbalance(env, sds, busiest, local); 11165 } else { 11166 11167 /* 11168 * If there is no overload, we just want to even the number of 11169 * idle CPUs. 11170 */ 11171 env->migration_type = migrate_task; 11172 env->imbalance = max_t(long, 0, 11173 (local->idle_cpus - busiest->idle_cpus)); 11174 } 11175 11176 #ifdef CONFIG_NUMA 11177 /* Consider allowing a small imbalance between NUMA groups */ 11178 if (env->sd->flags & SD_NUMA) { 11179 env->imbalance = adjust_numa_imbalance(env->imbalance, 11180 local->sum_nr_running + 1, 11181 env->sd->imb_numa_nr); 11182 } 11183 #endif 11184 11185 /* Number of tasks to move to restore balance */ 11186 env->imbalance >>= 1; 11187 11188 return; 11189 } 11190 11191 /* 11192 * Local is fully busy but has to take more load to relieve the 11193 * busiest group 11194 */ 11195 if (local->group_type < group_overloaded) { 11196 /* 11197 * Local will become overloaded so the avg_load metrics are 11198 * finally needed. 11199 */ 11200 11201 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 11202 local->group_capacity; 11203 11204 /* 11205 * If the local group is more loaded than the selected 11206 * busiest group don't try to pull any tasks. 11207 */ 11208 if (local->avg_load >= busiest->avg_load) { 11209 env->imbalance = 0; 11210 return; 11211 } 11212 11213 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 11214 sds->total_capacity; 11215 11216 /* 11217 * If the local group is more loaded than the average system 11218 * load, don't try to pull any tasks. 11219 */ 11220 if (local->avg_load >= sds->avg_load) { 11221 env->imbalance = 0; 11222 return; 11223 } 11224 11225 } 11226 11227 /* 11228 * Both group are or will become overloaded and we're trying to get all 11229 * the CPUs to the average_load, so we don't want to push ourselves 11230 * above the average load, nor do we wish to reduce the max loaded CPU 11231 * below the average load. At the same time, we also don't want to 11232 * reduce the group load below the group capacity. Thus we look for 11233 * the minimum possible imbalance. 11234 */ 11235 env->migration_type = migrate_load; 11236 env->imbalance = min( 11237 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 11238 (sds->avg_load - local->avg_load) * local->group_capacity 11239 ) / SCHED_CAPACITY_SCALE; 11240 } 11241 11242 /******* sched_balance_find_src_group() helpers end here *********************/ 11243 11244 /* 11245 * Decision matrix according to the local and busiest group type: 11246 * 11247 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 11248 * has_spare nr_idle balanced N/A N/A balanced balanced 11249 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 11250 * misfit_task force N/A N/A N/A N/A N/A 11251 * asym_packing force force N/A N/A force force 11252 * imbalanced force force N/A N/A force force 11253 * overloaded force force N/A N/A force avg_load 11254 * 11255 * N/A : Not Applicable because already filtered while updating 11256 * statistics. 11257 * balanced : The system is balanced for these 2 groups. 11258 * force : Calculate the imbalance as load migration is probably needed. 11259 * avg_load : Only if imbalance is significant enough. 11260 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 11261 * different in groups. 11262 */ 11263 11264 /** 11265 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 11266 * if there is an imbalance. 11267 * @env: The load balancing environment. 11268 * 11269 * Also calculates the amount of runnable load which should be moved 11270 * to restore balance. 11271 * 11272 * Return: - The busiest group if imbalance exists. 11273 */ 11274 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 11275 { 11276 struct sg_lb_stats *local, *busiest; 11277 struct sd_lb_stats sds; 11278 11279 init_sd_lb_stats(&sds); 11280 11281 /* 11282 * Compute the various statistics relevant for load balancing at 11283 * this level. 11284 */ 11285 update_sd_lb_stats(env, &sds); 11286 11287 /* There is no busy sibling group to pull tasks from */ 11288 if (!sds.busiest) 11289 goto out_balanced; 11290 11291 busiest = &sds.busiest_stat; 11292 11293 /* Misfit tasks should be dealt with regardless of the avg load */ 11294 if (busiest->group_type == group_misfit_task) 11295 goto force_balance; 11296 11297 if (!is_rd_overutilized(env->dst_rq->rd) && 11298 rcu_dereference(env->dst_rq->rd->pd)) 11299 goto out_balanced; 11300 11301 /* ASYM feature bypasses nice load balance check */ 11302 if (busiest->group_type == group_asym_packing) 11303 goto force_balance; 11304 11305 /* 11306 * If the busiest group is imbalanced the below checks don't 11307 * work because they assume all things are equal, which typically 11308 * isn't true due to cpus_ptr constraints and the like. 11309 */ 11310 if (busiest->group_type == group_imbalanced) 11311 goto force_balance; 11312 11313 local = &sds.local_stat; 11314 /* 11315 * If the local group is busier than the selected busiest group 11316 * don't try and pull any tasks. 11317 */ 11318 if (local->group_type > busiest->group_type) 11319 goto out_balanced; 11320 11321 /* 11322 * When groups are overloaded, use the avg_load to ensure fairness 11323 * between tasks. 11324 */ 11325 if (local->group_type == group_overloaded) { 11326 /* 11327 * If the local group is more loaded than the selected 11328 * busiest group don't try to pull any tasks. 11329 */ 11330 if (local->avg_load >= busiest->avg_load) 11331 goto out_balanced; 11332 11333 /* XXX broken for overlapping NUMA groups */ 11334 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 11335 sds.total_capacity; 11336 11337 /* 11338 * Don't pull any tasks if this group is already above the 11339 * domain average load. 11340 */ 11341 if (local->avg_load >= sds.avg_load) 11342 goto out_balanced; 11343 11344 /* 11345 * If the busiest group is more loaded, use imbalance_pct to be 11346 * conservative. 11347 */ 11348 if (100 * busiest->avg_load <= 11349 env->sd->imbalance_pct * local->avg_load) 11350 goto out_balanced; 11351 } 11352 11353 /* 11354 * Try to move all excess tasks to a sibling domain of the busiest 11355 * group's child domain. 11356 */ 11357 if (sds.prefer_sibling && local->group_type == group_has_spare && 11358 sibling_imbalance(env, &sds, busiest, local) > 1) 11359 goto force_balance; 11360 11361 if (busiest->group_type != group_overloaded) { 11362 if (!env->idle) { 11363 /* 11364 * If the busiest group is not overloaded (and as a 11365 * result the local one too) but this CPU is already 11366 * busy, let another idle CPU try to pull task. 11367 */ 11368 goto out_balanced; 11369 } 11370 11371 if (busiest->group_type == group_smt_balance && 11372 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 11373 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 11374 goto force_balance; 11375 } 11376 11377 if (busiest->group_weight > 1 && 11378 local->idle_cpus <= (busiest->idle_cpus + 1)) { 11379 /* 11380 * If the busiest group is not overloaded 11381 * and there is no imbalance between this and busiest 11382 * group wrt idle CPUs, it is balanced. The imbalance 11383 * becomes significant if the diff is greater than 1 11384 * otherwise we might end up to just move the imbalance 11385 * on another group. Of course this applies only if 11386 * there is more than 1 CPU per group. 11387 */ 11388 goto out_balanced; 11389 } 11390 11391 if (busiest->sum_h_nr_running == 1) { 11392 /* 11393 * busiest doesn't have any tasks waiting to run 11394 */ 11395 goto out_balanced; 11396 } 11397 } 11398 11399 force_balance: 11400 /* Looks like there is an imbalance. Compute it */ 11401 calculate_imbalance(env, &sds); 11402 return env->imbalance ? sds.busiest : NULL; 11403 11404 out_balanced: 11405 env->imbalance = 0; 11406 return NULL; 11407 } 11408 11409 /* 11410 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11411 */ 11412 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11413 struct sched_group *group) 11414 { 11415 struct rq *busiest = NULL, *rq; 11416 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11417 unsigned int busiest_nr = 0; 11418 int i; 11419 11420 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11421 unsigned long capacity, load, util; 11422 unsigned int nr_running; 11423 enum fbq_type rt; 11424 11425 rq = cpu_rq(i); 11426 rt = fbq_classify_rq(rq); 11427 11428 /* 11429 * We classify groups/runqueues into three groups: 11430 * - regular: there are !numa tasks 11431 * - remote: there are numa tasks that run on the 'wrong' node 11432 * - all: there is no distinction 11433 * 11434 * In order to avoid migrating ideally placed numa tasks, 11435 * ignore those when there's better options. 11436 * 11437 * If we ignore the actual busiest queue to migrate another 11438 * task, the next balance pass can still reduce the busiest 11439 * queue by moving tasks around inside the node. 11440 * 11441 * If we cannot move enough load due to this classification 11442 * the next pass will adjust the group classification and 11443 * allow migration of more tasks. 11444 * 11445 * Both cases only affect the total convergence complexity. 11446 */ 11447 if (rt > env->fbq_type) 11448 continue; 11449 11450 nr_running = rq->cfs.h_nr_runnable; 11451 if (!nr_running) 11452 continue; 11453 11454 capacity = capacity_of(i); 11455 11456 /* 11457 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11458 * eventually lead to active_balancing high->low capacity. 11459 * Higher per-CPU capacity is considered better than balancing 11460 * average load. 11461 */ 11462 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11463 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11464 nr_running == 1) 11465 continue; 11466 11467 /* 11468 * Make sure we only pull tasks from a CPU of lower priority 11469 * when balancing between SMT siblings. 11470 * 11471 * If balancing between cores, let lower priority CPUs help 11472 * SMT cores with more than one busy sibling. 11473 */ 11474 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11475 continue; 11476 11477 switch (env->migration_type) { 11478 case migrate_load: 11479 /* 11480 * When comparing with load imbalance, use cpu_load() 11481 * which is not scaled with the CPU capacity. 11482 */ 11483 load = cpu_load(rq); 11484 11485 if (nr_running == 1 && load > env->imbalance && 11486 !check_cpu_capacity(rq, env->sd)) 11487 break; 11488 11489 /* 11490 * For the load comparisons with the other CPUs, 11491 * consider the cpu_load() scaled with the CPU 11492 * capacity, so that the load can be moved away 11493 * from the CPU that is potentially running at a 11494 * lower capacity. 11495 * 11496 * Thus we're looking for max(load_i / capacity_i), 11497 * crosswise multiplication to rid ourselves of the 11498 * division works out to: 11499 * load_i * capacity_j > load_j * capacity_i; 11500 * where j is our previous maximum. 11501 */ 11502 if (load * busiest_capacity > busiest_load * capacity) { 11503 busiest_load = load; 11504 busiest_capacity = capacity; 11505 busiest = rq; 11506 } 11507 break; 11508 11509 case migrate_util: 11510 util = cpu_util_cfs_boost(i); 11511 11512 /* 11513 * Don't try to pull utilization from a CPU with one 11514 * running task. Whatever its utilization, we will fail 11515 * detach the task. 11516 */ 11517 if (nr_running <= 1) 11518 continue; 11519 11520 if (busiest_util < util) { 11521 busiest_util = util; 11522 busiest = rq; 11523 } 11524 break; 11525 11526 case migrate_task: 11527 if (busiest_nr < nr_running) { 11528 busiest_nr = nr_running; 11529 busiest = rq; 11530 } 11531 break; 11532 11533 case migrate_misfit: 11534 /* 11535 * For ASYM_CPUCAPACITY domains with misfit tasks we 11536 * simply seek the "biggest" misfit task. 11537 */ 11538 if (rq->misfit_task_load > busiest_load) { 11539 busiest_load = rq->misfit_task_load; 11540 busiest = rq; 11541 } 11542 11543 break; 11544 11545 } 11546 } 11547 11548 return busiest; 11549 } 11550 11551 /* 11552 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11553 * so long as it is large enough. 11554 */ 11555 #define MAX_PINNED_INTERVAL 512 11556 11557 static inline bool 11558 asym_active_balance(struct lb_env *env) 11559 { 11560 /* 11561 * ASYM_PACKING needs to force migrate tasks from busy but lower 11562 * priority CPUs in order to pack all tasks in the highest priority 11563 * CPUs. When done between cores, do it only if the whole core if the 11564 * whole core is idle. 11565 * 11566 * If @env::src_cpu is an SMT core with busy siblings, let 11567 * the lower priority @env::dst_cpu help it. Do not follow 11568 * CPU priority. 11569 */ 11570 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11571 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11572 !sched_use_asym_prio(env->sd, env->src_cpu)); 11573 } 11574 11575 static inline bool 11576 imbalanced_active_balance(struct lb_env *env) 11577 { 11578 struct sched_domain *sd = env->sd; 11579 11580 /* 11581 * The imbalanced case includes the case of pinned tasks preventing a fair 11582 * distribution of the load on the system but also the even distribution of the 11583 * threads on a system with spare capacity 11584 */ 11585 if ((env->migration_type == migrate_task) && 11586 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11587 return 1; 11588 11589 return 0; 11590 } 11591 11592 static int need_active_balance(struct lb_env *env) 11593 { 11594 struct sched_domain *sd = env->sd; 11595 11596 if (asym_active_balance(env)) 11597 return 1; 11598 11599 if (imbalanced_active_balance(env)) 11600 return 1; 11601 11602 /* 11603 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11604 * It's worth migrating the task if the src_cpu's capacity is reduced 11605 * because of other sched_class or IRQs if more capacity stays 11606 * available on dst_cpu. 11607 */ 11608 if (env->idle && 11609 (env->src_rq->cfs.h_nr_runnable == 1)) { 11610 if ((check_cpu_capacity(env->src_rq, sd)) && 11611 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11612 return 1; 11613 } 11614 11615 if (env->migration_type == migrate_misfit) 11616 return 1; 11617 11618 return 0; 11619 } 11620 11621 static int active_load_balance_cpu_stop(void *data); 11622 11623 static int should_we_balance(struct lb_env *env) 11624 { 11625 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11626 struct sched_group *sg = env->sd->groups; 11627 int cpu, idle_smt = -1; 11628 11629 /* 11630 * Ensure the balancing environment is consistent; can happen 11631 * when the softirq triggers 'during' hotplug. 11632 */ 11633 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11634 return 0; 11635 11636 /* 11637 * In the newly idle case, we will allow all the CPUs 11638 * to do the newly idle load balance. 11639 * 11640 * However, we bail out if we already have tasks or a wakeup pending, 11641 * to optimize wakeup latency. 11642 */ 11643 if (env->idle == CPU_NEWLY_IDLE) { 11644 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11645 return 0; 11646 return 1; 11647 } 11648 11649 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11650 /* Try to find first idle CPU */ 11651 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11652 if (!idle_cpu(cpu)) 11653 continue; 11654 11655 /* 11656 * Don't balance to idle SMT in busy core right away when 11657 * balancing cores, but remember the first idle SMT CPU for 11658 * later consideration. Find CPU on an idle core first. 11659 */ 11660 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11661 if (idle_smt == -1) 11662 idle_smt = cpu; 11663 /* 11664 * If the core is not idle, and first SMT sibling which is 11665 * idle has been found, then its not needed to check other 11666 * SMT siblings for idleness: 11667 */ 11668 #ifdef CONFIG_SCHED_SMT 11669 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11670 #endif 11671 continue; 11672 } 11673 11674 /* 11675 * Are we the first idle core in a non-SMT domain or higher, 11676 * or the first idle CPU in a SMT domain? 11677 */ 11678 return cpu == env->dst_cpu; 11679 } 11680 11681 /* Are we the first idle CPU with busy siblings? */ 11682 if (idle_smt != -1) 11683 return idle_smt == env->dst_cpu; 11684 11685 /* Are we the first CPU of this group ? */ 11686 return group_balance_cpu(sg) == env->dst_cpu; 11687 } 11688 11689 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd, 11690 enum cpu_idle_type idle) 11691 { 11692 if (!schedstat_enabled()) 11693 return; 11694 11695 switch (env->migration_type) { 11696 case migrate_load: 11697 __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance); 11698 break; 11699 case migrate_util: 11700 __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance); 11701 break; 11702 case migrate_task: 11703 __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance); 11704 break; 11705 case migrate_misfit: 11706 __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance); 11707 break; 11708 } 11709 } 11710 11711 /* 11712 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11713 * tasks if there is an imbalance. 11714 */ 11715 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11716 struct sched_domain *sd, enum cpu_idle_type idle, 11717 int *continue_balancing) 11718 { 11719 int ld_moved, cur_ld_moved, active_balance = 0; 11720 struct sched_domain *sd_parent = sd->parent; 11721 struct sched_group *group; 11722 struct rq *busiest; 11723 struct rq_flags rf; 11724 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11725 struct lb_env env = { 11726 .sd = sd, 11727 .dst_cpu = this_cpu, 11728 .dst_rq = this_rq, 11729 .dst_grpmask = group_balance_mask(sd->groups), 11730 .idle = idle, 11731 .loop_break = SCHED_NR_MIGRATE_BREAK, 11732 .cpus = cpus, 11733 .fbq_type = all, 11734 .tasks = LIST_HEAD_INIT(env.tasks), 11735 }; 11736 11737 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11738 11739 schedstat_inc(sd->lb_count[idle]); 11740 11741 redo: 11742 if (!should_we_balance(&env)) { 11743 *continue_balancing = 0; 11744 goto out_balanced; 11745 } 11746 11747 group = sched_balance_find_src_group(&env); 11748 if (!group) { 11749 schedstat_inc(sd->lb_nobusyg[idle]); 11750 goto out_balanced; 11751 } 11752 11753 busiest = sched_balance_find_src_rq(&env, group); 11754 if (!busiest) { 11755 schedstat_inc(sd->lb_nobusyq[idle]); 11756 goto out_balanced; 11757 } 11758 11759 WARN_ON_ONCE(busiest == env.dst_rq); 11760 11761 update_lb_imbalance_stat(&env, sd, idle); 11762 11763 env.src_cpu = busiest->cpu; 11764 env.src_rq = busiest; 11765 11766 ld_moved = 0; 11767 /* Clear this flag as soon as we find a pullable task */ 11768 env.flags |= LBF_ALL_PINNED; 11769 if (busiest->nr_running > 1) { 11770 /* 11771 * Attempt to move tasks. If sched_balance_find_src_group has found 11772 * an imbalance but busiest->nr_running <= 1, the group is 11773 * still unbalanced. ld_moved simply stays zero, so it is 11774 * correctly treated as an imbalance. 11775 */ 11776 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11777 11778 more_balance: 11779 rq_lock_irqsave(busiest, &rf); 11780 update_rq_clock(busiest); 11781 11782 /* 11783 * cur_ld_moved - load moved in current iteration 11784 * ld_moved - cumulative load moved across iterations 11785 */ 11786 cur_ld_moved = detach_tasks(&env); 11787 11788 /* 11789 * We've detached some tasks from busiest_rq. Every 11790 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11791 * unlock busiest->lock, and we are able to be sure 11792 * that nobody can manipulate the tasks in parallel. 11793 * See task_rq_lock() family for the details. 11794 */ 11795 11796 rq_unlock(busiest, &rf); 11797 11798 if (cur_ld_moved) { 11799 attach_tasks(&env); 11800 ld_moved += cur_ld_moved; 11801 } 11802 11803 local_irq_restore(rf.flags); 11804 11805 if (env.flags & LBF_NEED_BREAK) { 11806 env.flags &= ~LBF_NEED_BREAK; 11807 goto more_balance; 11808 } 11809 11810 /* 11811 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11812 * us and move them to an alternate dst_cpu in our sched_group 11813 * where they can run. The upper limit on how many times we 11814 * iterate on same src_cpu is dependent on number of CPUs in our 11815 * sched_group. 11816 * 11817 * This changes load balance semantics a bit on who can move 11818 * load to a given_cpu. In addition to the given_cpu itself 11819 * (or a ilb_cpu acting on its behalf where given_cpu is 11820 * nohz-idle), we now have balance_cpu in a position to move 11821 * load to given_cpu. In rare situations, this may cause 11822 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11823 * _independently_ and at _same_ time to move some load to 11824 * given_cpu) causing excess load to be moved to given_cpu. 11825 * This however should not happen so much in practice and 11826 * moreover subsequent load balance cycles should correct the 11827 * excess load moved. 11828 */ 11829 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11830 11831 /* Prevent to re-select dst_cpu via env's CPUs */ 11832 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11833 11834 env.dst_rq = cpu_rq(env.new_dst_cpu); 11835 env.dst_cpu = env.new_dst_cpu; 11836 env.flags &= ~LBF_DST_PINNED; 11837 env.loop = 0; 11838 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11839 11840 /* 11841 * Go back to "more_balance" rather than "redo" since we 11842 * need to continue with same src_cpu. 11843 */ 11844 goto more_balance; 11845 } 11846 11847 /* 11848 * We failed to reach balance because of affinity. 11849 */ 11850 if (sd_parent) { 11851 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11852 11853 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11854 *group_imbalance = 1; 11855 } 11856 11857 /* All tasks on this runqueue were pinned by CPU affinity */ 11858 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11859 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11860 /* 11861 * Attempting to continue load balancing at the current 11862 * sched_domain level only makes sense if there are 11863 * active CPUs remaining as possible busiest CPUs to 11864 * pull load from which are not contained within the 11865 * destination group that is receiving any migrated 11866 * load. 11867 */ 11868 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11869 env.loop = 0; 11870 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11871 goto redo; 11872 } 11873 goto out_all_pinned; 11874 } 11875 } 11876 11877 if (!ld_moved) { 11878 schedstat_inc(sd->lb_failed[idle]); 11879 /* 11880 * Increment the failure counter only on periodic balance. 11881 * We do not want newidle balance, which can be very 11882 * frequent, pollute the failure counter causing 11883 * excessive cache_hot migrations and active balances. 11884 * 11885 * Similarly for migration_misfit which is not related to 11886 * load/util migration, don't pollute nr_balance_failed. 11887 */ 11888 if (idle != CPU_NEWLY_IDLE && 11889 env.migration_type != migrate_misfit) 11890 sd->nr_balance_failed++; 11891 11892 if (need_active_balance(&env)) { 11893 unsigned long flags; 11894 11895 raw_spin_rq_lock_irqsave(busiest, flags); 11896 11897 /* 11898 * Don't kick the active_load_balance_cpu_stop, 11899 * if the curr task on busiest CPU can't be 11900 * moved to this_cpu: 11901 */ 11902 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11903 raw_spin_rq_unlock_irqrestore(busiest, flags); 11904 goto out_one_pinned; 11905 } 11906 11907 /* Record that we found at least one task that could run on this_cpu */ 11908 env.flags &= ~LBF_ALL_PINNED; 11909 11910 /* 11911 * ->active_balance synchronizes accesses to 11912 * ->active_balance_work. Once set, it's cleared 11913 * only after active load balance is finished. 11914 */ 11915 if (!busiest->active_balance) { 11916 busiest->active_balance = 1; 11917 busiest->push_cpu = this_cpu; 11918 active_balance = 1; 11919 } 11920 11921 preempt_disable(); 11922 raw_spin_rq_unlock_irqrestore(busiest, flags); 11923 if (active_balance) { 11924 stop_one_cpu_nowait(cpu_of(busiest), 11925 active_load_balance_cpu_stop, busiest, 11926 &busiest->active_balance_work); 11927 } 11928 preempt_enable(); 11929 } 11930 } else { 11931 sd->nr_balance_failed = 0; 11932 } 11933 11934 if (likely(!active_balance) || need_active_balance(&env)) { 11935 /* We were unbalanced, so reset the balancing interval */ 11936 sd->balance_interval = sd->min_interval; 11937 } 11938 11939 goto out; 11940 11941 out_balanced: 11942 /* 11943 * We reach balance although we may have faced some affinity 11944 * constraints. Clear the imbalance flag only if other tasks got 11945 * a chance to move and fix the imbalance. 11946 */ 11947 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11948 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11949 11950 if (*group_imbalance) 11951 *group_imbalance = 0; 11952 } 11953 11954 out_all_pinned: 11955 /* 11956 * We reach balance because all tasks are pinned at this level so 11957 * we can't migrate them. Let the imbalance flag set so parent level 11958 * can try to migrate them. 11959 */ 11960 schedstat_inc(sd->lb_balanced[idle]); 11961 11962 sd->nr_balance_failed = 0; 11963 11964 out_one_pinned: 11965 ld_moved = 0; 11966 11967 /* 11968 * sched_balance_newidle() disregards balance intervals, so we could 11969 * repeatedly reach this code, which would lead to balance_interval 11970 * skyrocketing in a short amount of time. Skip the balance_interval 11971 * increase logic to avoid that. 11972 * 11973 * Similarly misfit migration which is not necessarily an indication of 11974 * the system being busy and requires lb to backoff to let it settle 11975 * down. 11976 */ 11977 if (env.idle == CPU_NEWLY_IDLE || 11978 env.migration_type == migrate_misfit) 11979 goto out; 11980 11981 /* tune up the balancing interval */ 11982 if ((env.flags & LBF_ALL_PINNED && 11983 sd->balance_interval < MAX_PINNED_INTERVAL) || 11984 sd->balance_interval < sd->max_interval) 11985 sd->balance_interval *= 2; 11986 out: 11987 return ld_moved; 11988 } 11989 11990 static inline unsigned long 11991 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11992 { 11993 unsigned long interval = sd->balance_interval; 11994 11995 if (cpu_busy) 11996 interval *= sd->busy_factor; 11997 11998 /* scale ms to jiffies */ 11999 interval = msecs_to_jiffies(interval); 12000 12001 /* 12002 * Reduce likelihood of busy balancing at higher domains racing with 12003 * balancing at lower domains by preventing their balancing periods 12004 * from being multiples of each other. 12005 */ 12006 if (cpu_busy) 12007 interval -= 1; 12008 12009 interval = clamp(interval, 1UL, max_load_balance_interval); 12010 12011 return interval; 12012 } 12013 12014 static inline void 12015 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 12016 { 12017 unsigned long interval, next; 12018 12019 /* used by idle balance, so cpu_busy = 0 */ 12020 interval = get_sd_balance_interval(sd, 0); 12021 next = sd->last_balance + interval; 12022 12023 if (time_after(*next_balance, next)) 12024 *next_balance = next; 12025 } 12026 12027 /* 12028 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 12029 * running tasks off the busiest CPU onto idle CPUs. It requires at 12030 * least 1 task to be running on each physical CPU where possible, and 12031 * avoids physical / logical imbalances. 12032 */ 12033 static int active_load_balance_cpu_stop(void *data) 12034 { 12035 struct rq *busiest_rq = data; 12036 int busiest_cpu = cpu_of(busiest_rq); 12037 int target_cpu = busiest_rq->push_cpu; 12038 struct rq *target_rq = cpu_rq(target_cpu); 12039 struct sched_domain *sd; 12040 struct task_struct *p = NULL; 12041 struct rq_flags rf; 12042 12043 rq_lock_irq(busiest_rq, &rf); 12044 /* 12045 * Between queueing the stop-work and running it is a hole in which 12046 * CPUs can become inactive. We should not move tasks from or to 12047 * inactive CPUs. 12048 */ 12049 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 12050 goto out_unlock; 12051 12052 /* Make sure the requested CPU hasn't gone down in the meantime: */ 12053 if (unlikely(busiest_cpu != smp_processor_id() || 12054 !busiest_rq->active_balance)) 12055 goto out_unlock; 12056 12057 /* Is there any task to move? */ 12058 if (busiest_rq->nr_running <= 1) 12059 goto out_unlock; 12060 12061 /* 12062 * This condition is "impossible", if it occurs 12063 * we need to fix it. Originally reported by 12064 * Bjorn Helgaas on a 128-CPU setup. 12065 */ 12066 WARN_ON_ONCE(busiest_rq == target_rq); 12067 12068 /* Search for an sd spanning us and the target CPU. */ 12069 rcu_read_lock(); 12070 for_each_domain(target_cpu, sd) { 12071 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 12072 break; 12073 } 12074 12075 if (likely(sd)) { 12076 struct lb_env env = { 12077 .sd = sd, 12078 .dst_cpu = target_cpu, 12079 .dst_rq = target_rq, 12080 .src_cpu = busiest_rq->cpu, 12081 .src_rq = busiest_rq, 12082 .idle = CPU_IDLE, 12083 .flags = LBF_ACTIVE_LB, 12084 }; 12085 12086 schedstat_inc(sd->alb_count); 12087 update_rq_clock(busiest_rq); 12088 12089 p = detach_one_task(&env); 12090 if (p) { 12091 schedstat_inc(sd->alb_pushed); 12092 /* Active balancing done, reset the failure counter. */ 12093 sd->nr_balance_failed = 0; 12094 } else { 12095 schedstat_inc(sd->alb_failed); 12096 } 12097 } 12098 rcu_read_unlock(); 12099 out_unlock: 12100 busiest_rq->active_balance = 0; 12101 rq_unlock(busiest_rq, &rf); 12102 12103 if (p) 12104 attach_one_task(target_rq, p); 12105 12106 local_irq_enable(); 12107 12108 return 0; 12109 } 12110 12111 /* 12112 * This flag serializes load-balancing passes over large domains 12113 * (above the NODE topology level) - only one load-balancing instance 12114 * may run at a time, to reduce overhead on very large systems with 12115 * lots of CPUs and large NUMA distances. 12116 * 12117 * - Note that load-balancing passes triggered while another one 12118 * is executing are skipped and not re-tried. 12119 * 12120 * - Also note that this does not serialize rebalance_domains() 12121 * execution, as non-SD_SERIALIZE domains will still be 12122 * load-balanced in parallel. 12123 */ 12124 static atomic_t sched_balance_running = ATOMIC_INIT(0); 12125 12126 /* 12127 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 12128 * This trades load-balance latency on larger machines for less cross talk. 12129 */ 12130 void update_max_interval(void) 12131 { 12132 max_load_balance_interval = HZ*num_online_cpus()/10; 12133 } 12134 12135 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 12136 { 12137 if (cost > sd->max_newidle_lb_cost) { 12138 /* 12139 * Track max cost of a domain to make sure to not delay the 12140 * next wakeup on the CPU. 12141 */ 12142 sd->max_newidle_lb_cost = cost; 12143 sd->last_decay_max_lb_cost = jiffies; 12144 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 12145 /* 12146 * Decay the newidle max times by ~1% per second to ensure that 12147 * it is not outdated and the current max cost is actually 12148 * shorter. 12149 */ 12150 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 12151 sd->last_decay_max_lb_cost = jiffies; 12152 12153 return true; 12154 } 12155 12156 return false; 12157 } 12158 12159 /* 12160 * It checks each scheduling domain to see if it is due to be balanced, 12161 * and initiates a balancing operation if so. 12162 * 12163 * Balancing parameters are set up in init_sched_domains. 12164 */ 12165 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 12166 { 12167 int continue_balancing = 1; 12168 int cpu = rq->cpu; 12169 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 12170 unsigned long interval; 12171 struct sched_domain *sd; 12172 /* Earliest time when we have to do rebalance again */ 12173 unsigned long next_balance = jiffies + 60*HZ; 12174 int update_next_balance = 0; 12175 int need_serialize, need_decay = 0; 12176 u64 max_cost = 0; 12177 12178 rcu_read_lock(); 12179 for_each_domain(cpu, sd) { 12180 /* 12181 * Decay the newidle max times here because this is a regular 12182 * visit to all the domains. 12183 */ 12184 need_decay = update_newidle_cost(sd, 0); 12185 max_cost += sd->max_newidle_lb_cost; 12186 12187 /* 12188 * Stop the load balance at this level. There is another 12189 * CPU in our sched group which is doing load balancing more 12190 * actively. 12191 */ 12192 if (!continue_balancing) { 12193 if (need_decay) 12194 continue; 12195 break; 12196 } 12197 12198 interval = get_sd_balance_interval(sd, busy); 12199 12200 need_serialize = sd->flags & SD_SERIALIZE; 12201 if (need_serialize) { 12202 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) 12203 goto out; 12204 } 12205 12206 if (time_after_eq(jiffies, sd->last_balance + interval)) { 12207 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 12208 /* 12209 * The LBF_DST_PINNED logic could have changed 12210 * env->dst_cpu, so we can't know our idle 12211 * state even if we migrated tasks. Update it. 12212 */ 12213 idle = idle_cpu(cpu); 12214 busy = !idle && !sched_idle_cpu(cpu); 12215 } 12216 sd->last_balance = jiffies; 12217 interval = get_sd_balance_interval(sd, busy); 12218 } 12219 if (need_serialize) 12220 atomic_set_release(&sched_balance_running, 0); 12221 out: 12222 if (time_after(next_balance, sd->last_balance + interval)) { 12223 next_balance = sd->last_balance + interval; 12224 update_next_balance = 1; 12225 } 12226 } 12227 if (need_decay) { 12228 /* 12229 * Ensure the rq-wide value also decays but keep it at a 12230 * reasonable floor to avoid funnies with rq->avg_idle. 12231 */ 12232 rq->max_idle_balance_cost = 12233 max((u64)sysctl_sched_migration_cost, max_cost); 12234 } 12235 rcu_read_unlock(); 12236 12237 /* 12238 * next_balance will be updated only when there is a need. 12239 * When the cpu is attached to null domain for ex, it will not be 12240 * updated. 12241 */ 12242 if (likely(update_next_balance)) 12243 rq->next_balance = next_balance; 12244 12245 } 12246 12247 static inline int on_null_domain(struct rq *rq) 12248 { 12249 return unlikely(!rcu_dereference_sched(rq->sd)); 12250 } 12251 12252 #ifdef CONFIG_NO_HZ_COMMON 12253 /* 12254 * NOHZ idle load balancing (ILB) details: 12255 * 12256 * - When one of the busy CPUs notices that there may be an idle rebalancing 12257 * needed, they will kick the idle load balancer, which then does idle 12258 * load balancing for all the idle CPUs. 12259 */ 12260 static inline int find_new_ilb(void) 12261 { 12262 const struct cpumask *hk_mask; 12263 int ilb_cpu; 12264 12265 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 12266 12267 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 12268 12269 if (ilb_cpu == smp_processor_id()) 12270 continue; 12271 12272 if (idle_cpu(ilb_cpu)) 12273 return ilb_cpu; 12274 } 12275 12276 return -1; 12277 } 12278 12279 /* 12280 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 12281 * SMP function call (IPI). 12282 * 12283 * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set 12284 * (if there is one). 12285 */ 12286 static void kick_ilb(unsigned int flags) 12287 { 12288 int ilb_cpu; 12289 12290 /* 12291 * Increase nohz.next_balance only when if full ilb is triggered but 12292 * not if we only update stats. 12293 */ 12294 if (flags & NOHZ_BALANCE_KICK) 12295 nohz.next_balance = jiffies+1; 12296 12297 ilb_cpu = find_new_ilb(); 12298 if (ilb_cpu < 0) 12299 return; 12300 12301 /* 12302 * Don't bother if no new NOHZ balance work items for ilb_cpu, 12303 * i.e. all bits in flags are already set in ilb_cpu. 12304 */ 12305 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) 12306 return; 12307 12308 /* 12309 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 12310 * the first flag owns it; cleared by nohz_csd_func(). 12311 */ 12312 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 12313 if (flags & NOHZ_KICK_MASK) 12314 return; 12315 12316 /* 12317 * This way we generate an IPI on the target CPU which 12318 * is idle, and the softirq performing NOHZ idle load balancing 12319 * will be run before returning from the IPI. 12320 */ 12321 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 12322 } 12323 12324 /* 12325 * Current decision point for kicking the idle load balancer in the presence 12326 * of idle CPUs in the system. 12327 */ 12328 static void nohz_balancer_kick(struct rq *rq) 12329 { 12330 unsigned long now = jiffies; 12331 struct sched_domain_shared *sds; 12332 struct sched_domain *sd; 12333 int nr_busy, i, cpu = rq->cpu; 12334 unsigned int flags = 0; 12335 12336 if (unlikely(rq->idle_balance)) 12337 return; 12338 12339 /* 12340 * We may be recently in ticked or tickless idle mode. At the first 12341 * busy tick after returning from idle, we will update the busy stats. 12342 */ 12343 nohz_balance_exit_idle(rq); 12344 12345 /* 12346 * None are in tickless mode and hence no need for NOHZ idle load 12347 * balancing: 12348 */ 12349 if (likely(!atomic_read(&nohz.nr_cpus))) 12350 return; 12351 12352 if (READ_ONCE(nohz.has_blocked) && 12353 time_after(now, READ_ONCE(nohz.next_blocked))) 12354 flags = NOHZ_STATS_KICK; 12355 12356 if (time_before(now, nohz.next_balance)) 12357 goto out; 12358 12359 if (rq->nr_running >= 2) { 12360 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12361 goto out; 12362 } 12363 12364 rcu_read_lock(); 12365 12366 sd = rcu_dereference(rq->sd); 12367 if (sd) { 12368 /* 12369 * If there's a runnable CFS task and the current CPU has reduced 12370 * capacity, kick the ILB to see if there's a better CPU to run on: 12371 */ 12372 if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) { 12373 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12374 goto unlock; 12375 } 12376 } 12377 12378 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 12379 if (sd) { 12380 /* 12381 * When ASYM_PACKING; see if there's a more preferred CPU 12382 * currently idle; in which case, kick the ILB to move tasks 12383 * around. 12384 * 12385 * When balancing between cores, all the SMT siblings of the 12386 * preferred CPU must be idle. 12387 */ 12388 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 12389 if (sched_asym(sd, i, cpu)) { 12390 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12391 goto unlock; 12392 } 12393 } 12394 } 12395 12396 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 12397 if (sd) { 12398 /* 12399 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 12400 * to run the misfit task on. 12401 */ 12402 if (check_misfit_status(rq)) { 12403 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12404 goto unlock; 12405 } 12406 12407 /* 12408 * For asymmetric systems, we do not want to nicely balance 12409 * cache use, instead we want to embrace asymmetry and only 12410 * ensure tasks have enough CPU capacity. 12411 * 12412 * Skip the LLC logic because it's not relevant in that case. 12413 */ 12414 goto unlock; 12415 } 12416 12417 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 12418 if (sds) { 12419 /* 12420 * If there is an imbalance between LLC domains (IOW we could 12421 * increase the overall cache utilization), we need a less-loaded LLC 12422 * domain to pull some load from. Likewise, we may need to spread 12423 * load within the current LLC domain (e.g. packed SMT cores but 12424 * other CPUs are idle). We can't really know from here how busy 12425 * the others are - so just get a NOHZ balance going if it looks 12426 * like this LLC domain has tasks we could move. 12427 */ 12428 nr_busy = atomic_read(&sds->nr_busy_cpus); 12429 if (nr_busy > 1) { 12430 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12431 goto unlock; 12432 } 12433 } 12434 unlock: 12435 rcu_read_unlock(); 12436 out: 12437 if (READ_ONCE(nohz.needs_update)) 12438 flags |= NOHZ_NEXT_KICK; 12439 12440 if (flags) 12441 kick_ilb(flags); 12442 } 12443 12444 static void set_cpu_sd_state_busy(int cpu) 12445 { 12446 struct sched_domain *sd; 12447 12448 rcu_read_lock(); 12449 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12450 12451 if (!sd || !sd->nohz_idle) 12452 goto unlock; 12453 sd->nohz_idle = 0; 12454 12455 atomic_inc(&sd->shared->nr_busy_cpus); 12456 unlock: 12457 rcu_read_unlock(); 12458 } 12459 12460 void nohz_balance_exit_idle(struct rq *rq) 12461 { 12462 SCHED_WARN_ON(rq != this_rq()); 12463 12464 if (likely(!rq->nohz_tick_stopped)) 12465 return; 12466 12467 rq->nohz_tick_stopped = 0; 12468 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12469 atomic_dec(&nohz.nr_cpus); 12470 12471 set_cpu_sd_state_busy(rq->cpu); 12472 } 12473 12474 static void set_cpu_sd_state_idle(int cpu) 12475 { 12476 struct sched_domain *sd; 12477 12478 rcu_read_lock(); 12479 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12480 12481 if (!sd || sd->nohz_idle) 12482 goto unlock; 12483 sd->nohz_idle = 1; 12484 12485 atomic_dec(&sd->shared->nr_busy_cpus); 12486 unlock: 12487 rcu_read_unlock(); 12488 } 12489 12490 /* 12491 * This routine will record that the CPU is going idle with tick stopped. 12492 * This info will be used in performing idle load balancing in the future. 12493 */ 12494 void nohz_balance_enter_idle(int cpu) 12495 { 12496 struct rq *rq = cpu_rq(cpu); 12497 12498 SCHED_WARN_ON(cpu != smp_processor_id()); 12499 12500 /* If this CPU is going down, then nothing needs to be done: */ 12501 if (!cpu_active(cpu)) 12502 return; 12503 12504 /* 12505 * Can be set safely without rq->lock held 12506 * If a clear happens, it will have evaluated last additions because 12507 * rq->lock is held during the check and the clear 12508 */ 12509 rq->has_blocked_load = 1; 12510 12511 /* 12512 * The tick is still stopped but load could have been added in the 12513 * meantime. We set the nohz.has_blocked flag to trig a check of the 12514 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12515 * of nohz.has_blocked can only happen after checking the new load 12516 */ 12517 if (rq->nohz_tick_stopped) 12518 goto out; 12519 12520 /* If we're a completely isolated CPU, we don't play: */ 12521 if (on_null_domain(rq)) 12522 return; 12523 12524 rq->nohz_tick_stopped = 1; 12525 12526 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12527 atomic_inc(&nohz.nr_cpus); 12528 12529 /* 12530 * Ensures that if nohz_idle_balance() fails to observe our 12531 * @idle_cpus_mask store, it must observe the @has_blocked 12532 * and @needs_update stores. 12533 */ 12534 smp_mb__after_atomic(); 12535 12536 set_cpu_sd_state_idle(cpu); 12537 12538 WRITE_ONCE(nohz.needs_update, 1); 12539 out: 12540 /* 12541 * Each time a cpu enter idle, we assume that it has blocked load and 12542 * enable the periodic update of the load of idle CPUs 12543 */ 12544 WRITE_ONCE(nohz.has_blocked, 1); 12545 } 12546 12547 static bool update_nohz_stats(struct rq *rq) 12548 { 12549 unsigned int cpu = rq->cpu; 12550 12551 if (!rq->has_blocked_load) 12552 return false; 12553 12554 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12555 return false; 12556 12557 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12558 return true; 12559 12560 sched_balance_update_blocked_averages(cpu); 12561 12562 return rq->has_blocked_load; 12563 } 12564 12565 /* 12566 * Internal function that runs load balance for all idle CPUs. The load balance 12567 * can be a simple update of blocked load or a complete load balance with 12568 * tasks movement depending of flags. 12569 */ 12570 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12571 { 12572 /* Earliest time when we have to do rebalance again */ 12573 unsigned long now = jiffies; 12574 unsigned long next_balance = now + 60*HZ; 12575 bool has_blocked_load = false; 12576 int update_next_balance = 0; 12577 int this_cpu = this_rq->cpu; 12578 int balance_cpu; 12579 struct rq *rq; 12580 12581 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12582 12583 /* 12584 * We assume there will be no idle load after this update and clear 12585 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12586 * set the has_blocked flag and trigger another update of idle load. 12587 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12588 * setting the flag, we are sure to not clear the state and not 12589 * check the load of an idle cpu. 12590 * 12591 * Same applies to idle_cpus_mask vs needs_update. 12592 */ 12593 if (flags & NOHZ_STATS_KICK) 12594 WRITE_ONCE(nohz.has_blocked, 0); 12595 if (flags & NOHZ_NEXT_KICK) 12596 WRITE_ONCE(nohz.needs_update, 0); 12597 12598 /* 12599 * Ensures that if we miss the CPU, we must see the has_blocked 12600 * store from nohz_balance_enter_idle(). 12601 */ 12602 smp_mb(); 12603 12604 /* 12605 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12606 * chance for other idle cpu to pull load. 12607 */ 12608 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12609 if (!idle_cpu(balance_cpu)) 12610 continue; 12611 12612 /* 12613 * If this CPU gets work to do, stop the load balancing 12614 * work being done for other CPUs. Next load 12615 * balancing owner will pick it up. 12616 */ 12617 if (!idle_cpu(this_cpu) && need_resched()) { 12618 if (flags & NOHZ_STATS_KICK) 12619 has_blocked_load = true; 12620 if (flags & NOHZ_NEXT_KICK) 12621 WRITE_ONCE(nohz.needs_update, 1); 12622 goto abort; 12623 } 12624 12625 rq = cpu_rq(balance_cpu); 12626 12627 if (flags & NOHZ_STATS_KICK) 12628 has_blocked_load |= update_nohz_stats(rq); 12629 12630 /* 12631 * If time for next balance is due, 12632 * do the balance. 12633 */ 12634 if (time_after_eq(jiffies, rq->next_balance)) { 12635 struct rq_flags rf; 12636 12637 rq_lock_irqsave(rq, &rf); 12638 update_rq_clock(rq); 12639 rq_unlock_irqrestore(rq, &rf); 12640 12641 if (flags & NOHZ_BALANCE_KICK) 12642 sched_balance_domains(rq, CPU_IDLE); 12643 } 12644 12645 if (time_after(next_balance, rq->next_balance)) { 12646 next_balance = rq->next_balance; 12647 update_next_balance = 1; 12648 } 12649 } 12650 12651 /* 12652 * next_balance will be updated only when there is a need. 12653 * When the CPU is attached to null domain for ex, it will not be 12654 * updated. 12655 */ 12656 if (likely(update_next_balance)) 12657 nohz.next_balance = next_balance; 12658 12659 if (flags & NOHZ_STATS_KICK) 12660 WRITE_ONCE(nohz.next_blocked, 12661 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12662 12663 abort: 12664 /* There is still blocked load, enable periodic update */ 12665 if (has_blocked_load) 12666 WRITE_ONCE(nohz.has_blocked, 1); 12667 } 12668 12669 /* 12670 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12671 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12672 */ 12673 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12674 { 12675 unsigned int flags = this_rq->nohz_idle_balance; 12676 12677 if (!flags) 12678 return false; 12679 12680 this_rq->nohz_idle_balance = 0; 12681 12682 if (idle != CPU_IDLE) 12683 return false; 12684 12685 _nohz_idle_balance(this_rq, flags); 12686 12687 return true; 12688 } 12689 12690 /* 12691 * Check if we need to directly run the ILB for updating blocked load before 12692 * entering idle state. Here we run ILB directly without issuing IPIs. 12693 * 12694 * Note that when this function is called, the tick may not yet be stopped on 12695 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12696 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12697 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12698 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12699 * called from this function on (this) CPU that's not yet in the mask. That's 12700 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12701 * updating the blocked load of already idle CPUs without waking up one of 12702 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12703 * cpu about to enter idle, because it can take a long time. 12704 */ 12705 void nohz_run_idle_balance(int cpu) 12706 { 12707 unsigned int flags; 12708 12709 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12710 12711 /* 12712 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12713 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12714 */ 12715 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12716 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12717 } 12718 12719 static void nohz_newidle_balance(struct rq *this_rq) 12720 { 12721 int this_cpu = this_rq->cpu; 12722 12723 /* Will wake up very soon. No time for doing anything else*/ 12724 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12725 return; 12726 12727 /* Don't need to update blocked load of idle CPUs*/ 12728 if (!READ_ONCE(nohz.has_blocked) || 12729 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12730 return; 12731 12732 /* 12733 * Set the need to trigger ILB in order to update blocked load 12734 * before entering idle state. 12735 */ 12736 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12737 } 12738 12739 #else /* !CONFIG_NO_HZ_COMMON */ 12740 static inline void nohz_balancer_kick(struct rq *rq) { } 12741 12742 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12743 { 12744 return false; 12745 } 12746 12747 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12748 #endif /* CONFIG_NO_HZ_COMMON */ 12749 12750 /* 12751 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12752 * idle. Attempts to pull tasks from other CPUs. 12753 * 12754 * Returns: 12755 * < 0 - we released the lock and there are !fair tasks present 12756 * 0 - failed, no new tasks 12757 * > 0 - success, new (fair) tasks present 12758 */ 12759 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12760 { 12761 unsigned long next_balance = jiffies + HZ; 12762 int this_cpu = this_rq->cpu; 12763 int continue_balancing = 1; 12764 u64 t0, t1, curr_cost = 0; 12765 struct sched_domain *sd; 12766 int pulled_task = 0; 12767 12768 update_misfit_status(NULL, this_rq); 12769 12770 /* 12771 * There is a task waiting to run. No need to search for one. 12772 * Return 0; the task will be enqueued when switching to idle. 12773 */ 12774 if (this_rq->ttwu_pending) 12775 return 0; 12776 12777 /* 12778 * We must set idle_stamp _before_ calling sched_balance_rq() 12779 * for CPU_NEWLY_IDLE, such that we measure the this duration 12780 * as idle time. 12781 */ 12782 this_rq->idle_stamp = rq_clock(this_rq); 12783 12784 /* 12785 * Do not pull tasks towards !active CPUs... 12786 */ 12787 if (!cpu_active(this_cpu)) 12788 return 0; 12789 12790 /* 12791 * This is OK, because current is on_cpu, which avoids it being picked 12792 * for load-balance and preemption/IRQs are still disabled avoiding 12793 * further scheduler activity on it and we're being very careful to 12794 * re-start the picking loop. 12795 */ 12796 rq_unpin_lock(this_rq, rf); 12797 12798 rcu_read_lock(); 12799 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12800 12801 if (!get_rd_overloaded(this_rq->rd) || 12802 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12803 12804 if (sd) 12805 update_next_balance(sd, &next_balance); 12806 rcu_read_unlock(); 12807 12808 goto out; 12809 } 12810 rcu_read_unlock(); 12811 12812 raw_spin_rq_unlock(this_rq); 12813 12814 t0 = sched_clock_cpu(this_cpu); 12815 sched_balance_update_blocked_averages(this_cpu); 12816 12817 rcu_read_lock(); 12818 for_each_domain(this_cpu, sd) { 12819 u64 domain_cost; 12820 12821 update_next_balance(sd, &next_balance); 12822 12823 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12824 break; 12825 12826 if (sd->flags & SD_BALANCE_NEWIDLE) { 12827 12828 pulled_task = sched_balance_rq(this_cpu, this_rq, 12829 sd, CPU_NEWLY_IDLE, 12830 &continue_balancing); 12831 12832 t1 = sched_clock_cpu(this_cpu); 12833 domain_cost = t1 - t0; 12834 update_newidle_cost(sd, domain_cost); 12835 12836 curr_cost += domain_cost; 12837 t0 = t1; 12838 } 12839 12840 /* 12841 * Stop searching for tasks to pull if there are 12842 * now runnable tasks on this rq. 12843 */ 12844 if (pulled_task || !continue_balancing) 12845 break; 12846 } 12847 rcu_read_unlock(); 12848 12849 raw_spin_rq_lock(this_rq); 12850 12851 if (curr_cost > this_rq->max_idle_balance_cost) 12852 this_rq->max_idle_balance_cost = curr_cost; 12853 12854 /* 12855 * While browsing the domains, we released the rq lock, a task could 12856 * have been enqueued in the meantime. Since we're not going idle, 12857 * pretend we pulled a task. 12858 */ 12859 if (this_rq->cfs.h_nr_queued && !pulled_task) 12860 pulled_task = 1; 12861 12862 /* Is there a task of a high priority class? */ 12863 if (this_rq->nr_running != this_rq->cfs.h_nr_queued) 12864 pulled_task = -1; 12865 12866 out: 12867 /* Move the next balance forward */ 12868 if (time_after(this_rq->next_balance, next_balance)) 12869 this_rq->next_balance = next_balance; 12870 12871 if (pulled_task) 12872 this_rq->idle_stamp = 0; 12873 else 12874 nohz_newidle_balance(this_rq); 12875 12876 rq_repin_lock(this_rq, rf); 12877 12878 return pulled_task; 12879 } 12880 12881 /* 12882 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 12883 * 12884 * - directly from the local sched_tick() for periodic load balancing 12885 * 12886 * - indirectly from a remote sched_tick() for NOHZ idle balancing 12887 * through the SMP cross-call nohz_csd_func() 12888 */ 12889 static __latent_entropy void sched_balance_softirq(void) 12890 { 12891 struct rq *this_rq = this_rq(); 12892 enum cpu_idle_type idle = this_rq->idle_balance; 12893 /* 12894 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 12895 * balancing on behalf of the other idle CPUs whose ticks are 12896 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 12897 * give the idle CPUs a chance to load balance. Else we may 12898 * load balance only within the local sched_domain hierarchy 12899 * and abort nohz_idle_balance altogether if we pull some load. 12900 */ 12901 if (nohz_idle_balance(this_rq, idle)) 12902 return; 12903 12904 /* normal load balance */ 12905 sched_balance_update_blocked_averages(this_rq->cpu); 12906 sched_balance_domains(this_rq, idle); 12907 } 12908 12909 /* 12910 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12911 */ 12912 void sched_balance_trigger(struct rq *rq) 12913 { 12914 /* 12915 * Don't need to rebalance while attached to NULL domain or 12916 * runqueue CPU is not active 12917 */ 12918 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12919 return; 12920 12921 if (time_after_eq(jiffies, rq->next_balance)) 12922 raise_softirq(SCHED_SOFTIRQ); 12923 12924 nohz_balancer_kick(rq); 12925 } 12926 12927 static void rq_online_fair(struct rq *rq) 12928 { 12929 update_sysctl(); 12930 12931 update_runtime_enabled(rq); 12932 } 12933 12934 static void rq_offline_fair(struct rq *rq) 12935 { 12936 update_sysctl(); 12937 12938 /* Ensure any throttled groups are reachable by pick_next_task */ 12939 unthrottle_offline_cfs_rqs(rq); 12940 12941 /* Ensure that we remove rq contribution to group share: */ 12942 clear_tg_offline_cfs_rqs(rq); 12943 } 12944 12945 #endif /* CONFIG_SMP */ 12946 12947 #ifdef CONFIG_SCHED_CORE 12948 static inline bool 12949 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12950 { 12951 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12952 u64 slice = se->slice; 12953 12954 return (rtime * min_nr_tasks > slice); 12955 } 12956 12957 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12958 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12959 { 12960 if (!sched_core_enabled(rq)) 12961 return; 12962 12963 /* 12964 * If runqueue has only one task which used up its slice and 12965 * if the sibling is forced idle, then trigger schedule to 12966 * give forced idle task a chance. 12967 * 12968 * sched_slice() considers only this active rq and it gets the 12969 * whole slice. But during force idle, we have siblings acting 12970 * like a single runqueue and hence we need to consider runnable 12971 * tasks on this CPU and the forced idle CPU. Ideally, we should 12972 * go through the forced idle rq, but that would be a perf hit. 12973 * We can assume that the forced idle CPU has at least 12974 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12975 * if we need to give up the CPU. 12976 */ 12977 if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 && 12978 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12979 resched_curr(rq); 12980 } 12981 12982 /* 12983 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12984 */ 12985 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12986 bool forceidle) 12987 { 12988 for_each_sched_entity(se) { 12989 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12990 12991 if (forceidle) { 12992 if (cfs_rq->forceidle_seq == fi_seq) 12993 break; 12994 cfs_rq->forceidle_seq = fi_seq; 12995 } 12996 12997 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12998 } 12999 } 13000 13001 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 13002 { 13003 struct sched_entity *se = &p->se; 13004 13005 if (p->sched_class != &fair_sched_class) 13006 return; 13007 13008 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 13009 } 13010 13011 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 13012 bool in_fi) 13013 { 13014 struct rq *rq = task_rq(a); 13015 const struct sched_entity *sea = &a->se; 13016 const struct sched_entity *seb = &b->se; 13017 struct cfs_rq *cfs_rqa; 13018 struct cfs_rq *cfs_rqb; 13019 s64 delta; 13020 13021 SCHED_WARN_ON(task_rq(b)->core != rq->core); 13022 13023 #ifdef CONFIG_FAIR_GROUP_SCHED 13024 /* 13025 * Find an se in the hierarchy for tasks a and b, such that the se's 13026 * are immediate siblings. 13027 */ 13028 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 13029 int sea_depth = sea->depth; 13030 int seb_depth = seb->depth; 13031 13032 if (sea_depth >= seb_depth) 13033 sea = parent_entity(sea); 13034 if (sea_depth <= seb_depth) 13035 seb = parent_entity(seb); 13036 } 13037 13038 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 13039 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 13040 13041 cfs_rqa = sea->cfs_rq; 13042 cfs_rqb = seb->cfs_rq; 13043 #else 13044 cfs_rqa = &task_rq(a)->cfs; 13045 cfs_rqb = &task_rq(b)->cfs; 13046 #endif 13047 13048 /* 13049 * Find delta after normalizing se's vruntime with its cfs_rq's 13050 * min_vruntime_fi, which would have been updated in prior calls 13051 * to se_fi_update(). 13052 */ 13053 delta = (s64)(sea->vruntime - seb->vruntime) + 13054 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 13055 13056 return delta > 0; 13057 } 13058 13059 static int task_is_throttled_fair(struct task_struct *p, int cpu) 13060 { 13061 struct cfs_rq *cfs_rq; 13062 13063 #ifdef CONFIG_FAIR_GROUP_SCHED 13064 cfs_rq = task_group(p)->cfs_rq[cpu]; 13065 #else 13066 cfs_rq = &cpu_rq(cpu)->cfs; 13067 #endif 13068 return throttled_hierarchy(cfs_rq); 13069 } 13070 #else 13071 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 13072 #endif 13073 13074 /* 13075 * scheduler tick hitting a task of our scheduling class. 13076 * 13077 * NOTE: This function can be called remotely by the tick offload that 13078 * goes along full dynticks. Therefore no local assumption can be made 13079 * and everything must be accessed through the @rq and @curr passed in 13080 * parameters. 13081 */ 13082 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 13083 { 13084 struct cfs_rq *cfs_rq; 13085 struct sched_entity *se = &curr->se; 13086 13087 for_each_sched_entity(se) { 13088 cfs_rq = cfs_rq_of(se); 13089 entity_tick(cfs_rq, se, queued); 13090 } 13091 13092 if (static_branch_unlikely(&sched_numa_balancing)) 13093 task_tick_numa(rq, curr); 13094 13095 update_misfit_status(curr, rq); 13096 check_update_overutilized_status(task_rq(curr)); 13097 13098 task_tick_core(rq, curr); 13099 } 13100 13101 /* 13102 * called on fork with the child task as argument from the parent's context 13103 * - child not yet on the tasklist 13104 * - preemption disabled 13105 */ 13106 static void task_fork_fair(struct task_struct *p) 13107 { 13108 set_task_max_allowed_capacity(p); 13109 } 13110 13111 /* 13112 * Priority of the task has changed. Check to see if we preempt 13113 * the current task. 13114 */ 13115 static void 13116 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 13117 { 13118 if (!task_on_rq_queued(p)) 13119 return; 13120 13121 if (rq->cfs.nr_queued == 1) 13122 return; 13123 13124 /* 13125 * Reschedule if we are currently running on this runqueue and 13126 * our priority decreased, or if we are not currently running on 13127 * this runqueue and our priority is higher than the current's 13128 */ 13129 if (task_current_donor(rq, p)) { 13130 if (p->prio > oldprio) 13131 resched_curr(rq); 13132 } else 13133 wakeup_preempt(rq, p, 0); 13134 } 13135 13136 #ifdef CONFIG_FAIR_GROUP_SCHED 13137 /* 13138 * Propagate the changes of the sched_entity across the tg tree to make it 13139 * visible to the root 13140 */ 13141 static void propagate_entity_cfs_rq(struct sched_entity *se) 13142 { 13143 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13144 13145 if (cfs_rq_throttled(cfs_rq)) 13146 return; 13147 13148 if (!throttled_hierarchy(cfs_rq)) 13149 list_add_leaf_cfs_rq(cfs_rq); 13150 13151 /* Start to propagate at parent */ 13152 se = se->parent; 13153 13154 for_each_sched_entity(se) { 13155 cfs_rq = cfs_rq_of(se); 13156 13157 update_load_avg(cfs_rq, se, UPDATE_TG); 13158 13159 if (cfs_rq_throttled(cfs_rq)) 13160 break; 13161 13162 if (!throttled_hierarchy(cfs_rq)) 13163 list_add_leaf_cfs_rq(cfs_rq); 13164 } 13165 } 13166 #else 13167 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 13168 #endif 13169 13170 static void detach_entity_cfs_rq(struct sched_entity *se) 13171 { 13172 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13173 13174 #ifdef CONFIG_SMP 13175 /* 13176 * In case the task sched_avg hasn't been attached: 13177 * - A forked task which hasn't been woken up by wake_up_new_task(). 13178 * - A task which has been woken up by try_to_wake_up() but is 13179 * waiting for actually being woken up by sched_ttwu_pending(). 13180 */ 13181 if (!se->avg.last_update_time) 13182 return; 13183 #endif 13184 13185 /* Catch up with the cfs_rq and remove our load when we leave */ 13186 update_load_avg(cfs_rq, se, 0); 13187 detach_entity_load_avg(cfs_rq, se); 13188 update_tg_load_avg(cfs_rq); 13189 propagate_entity_cfs_rq(se); 13190 } 13191 13192 static void attach_entity_cfs_rq(struct sched_entity *se) 13193 { 13194 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13195 13196 /* Synchronize entity with its cfs_rq */ 13197 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 13198 attach_entity_load_avg(cfs_rq, se); 13199 update_tg_load_avg(cfs_rq); 13200 propagate_entity_cfs_rq(se); 13201 } 13202 13203 static void detach_task_cfs_rq(struct task_struct *p) 13204 { 13205 struct sched_entity *se = &p->se; 13206 13207 detach_entity_cfs_rq(se); 13208 } 13209 13210 static void attach_task_cfs_rq(struct task_struct *p) 13211 { 13212 struct sched_entity *se = &p->se; 13213 13214 attach_entity_cfs_rq(se); 13215 } 13216 13217 static void switched_from_fair(struct rq *rq, struct task_struct *p) 13218 { 13219 detach_task_cfs_rq(p); 13220 } 13221 13222 static void switched_to_fair(struct rq *rq, struct task_struct *p) 13223 { 13224 SCHED_WARN_ON(p->se.sched_delayed); 13225 13226 attach_task_cfs_rq(p); 13227 13228 set_task_max_allowed_capacity(p); 13229 13230 if (task_on_rq_queued(p)) { 13231 /* 13232 * We were most likely switched from sched_rt, so 13233 * kick off the schedule if running, otherwise just see 13234 * if we can still preempt the current task. 13235 */ 13236 if (task_current_donor(rq, p)) 13237 resched_curr(rq); 13238 else 13239 wakeup_preempt(rq, p, 0); 13240 } 13241 } 13242 13243 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13244 { 13245 struct sched_entity *se = &p->se; 13246 13247 #ifdef CONFIG_SMP 13248 if (task_on_rq_queued(p)) { 13249 /* 13250 * Move the next running task to the front of the list, so our 13251 * cfs_tasks list becomes MRU one. 13252 */ 13253 list_move(&se->group_node, &rq->cfs_tasks); 13254 } 13255 #endif 13256 if (!first) 13257 return; 13258 13259 SCHED_WARN_ON(se->sched_delayed); 13260 13261 if (hrtick_enabled_fair(rq)) 13262 hrtick_start_fair(rq, p); 13263 13264 update_misfit_status(p, rq); 13265 sched_fair_update_stop_tick(rq, p); 13266 } 13267 13268 /* 13269 * Account for a task changing its policy or group. 13270 * 13271 * This routine is mostly called to set cfs_rq->curr field when a task 13272 * migrates between groups/classes. 13273 */ 13274 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13275 { 13276 struct sched_entity *se = &p->se; 13277 13278 for_each_sched_entity(se) { 13279 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13280 13281 set_next_entity(cfs_rq, se); 13282 /* ensure bandwidth has been allocated on our new cfs_rq */ 13283 account_cfs_rq_runtime(cfs_rq, 0); 13284 } 13285 13286 __set_next_task_fair(rq, p, first); 13287 } 13288 13289 void init_cfs_rq(struct cfs_rq *cfs_rq) 13290 { 13291 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 13292 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 13293 #ifdef CONFIG_SMP 13294 raw_spin_lock_init(&cfs_rq->removed.lock); 13295 #endif 13296 } 13297 13298 #ifdef CONFIG_FAIR_GROUP_SCHED 13299 static void task_change_group_fair(struct task_struct *p) 13300 { 13301 /* 13302 * We couldn't detach or attach a forked task which 13303 * hasn't been woken up by wake_up_new_task(). 13304 */ 13305 if (READ_ONCE(p->__state) == TASK_NEW) 13306 return; 13307 13308 detach_task_cfs_rq(p); 13309 13310 #ifdef CONFIG_SMP 13311 /* Tell se's cfs_rq has been changed -- migrated */ 13312 p->se.avg.last_update_time = 0; 13313 #endif 13314 set_task_rq(p, task_cpu(p)); 13315 attach_task_cfs_rq(p); 13316 } 13317 13318 void free_fair_sched_group(struct task_group *tg) 13319 { 13320 int i; 13321 13322 for_each_possible_cpu(i) { 13323 if (tg->cfs_rq) 13324 kfree(tg->cfs_rq[i]); 13325 if (tg->se) 13326 kfree(tg->se[i]); 13327 } 13328 13329 kfree(tg->cfs_rq); 13330 kfree(tg->se); 13331 } 13332 13333 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 13334 { 13335 struct sched_entity *se; 13336 struct cfs_rq *cfs_rq; 13337 int i; 13338 13339 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 13340 if (!tg->cfs_rq) 13341 goto err; 13342 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 13343 if (!tg->se) 13344 goto err; 13345 13346 tg->shares = NICE_0_LOAD; 13347 13348 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 13349 13350 for_each_possible_cpu(i) { 13351 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 13352 GFP_KERNEL, cpu_to_node(i)); 13353 if (!cfs_rq) 13354 goto err; 13355 13356 se = kzalloc_node(sizeof(struct sched_entity_stats), 13357 GFP_KERNEL, cpu_to_node(i)); 13358 if (!se) 13359 goto err_free_rq; 13360 13361 init_cfs_rq(cfs_rq); 13362 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 13363 init_entity_runnable_average(se); 13364 } 13365 13366 return 1; 13367 13368 err_free_rq: 13369 kfree(cfs_rq); 13370 err: 13371 return 0; 13372 } 13373 13374 void online_fair_sched_group(struct task_group *tg) 13375 { 13376 struct sched_entity *se; 13377 struct rq_flags rf; 13378 struct rq *rq; 13379 int i; 13380 13381 for_each_possible_cpu(i) { 13382 rq = cpu_rq(i); 13383 se = tg->se[i]; 13384 rq_lock_irq(rq, &rf); 13385 update_rq_clock(rq); 13386 attach_entity_cfs_rq(se); 13387 sync_throttle(tg, i); 13388 rq_unlock_irq(rq, &rf); 13389 } 13390 } 13391 13392 void unregister_fair_sched_group(struct task_group *tg) 13393 { 13394 int cpu; 13395 13396 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 13397 13398 for_each_possible_cpu(cpu) { 13399 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 13400 struct sched_entity *se = tg->se[cpu]; 13401 struct rq *rq = cpu_rq(cpu); 13402 13403 if (se) { 13404 if (se->sched_delayed) { 13405 guard(rq_lock_irqsave)(rq); 13406 if (se->sched_delayed) { 13407 update_rq_clock(rq); 13408 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 13409 } 13410 list_del_leaf_cfs_rq(cfs_rq); 13411 } 13412 remove_entity_load_avg(se); 13413 } 13414 13415 /* 13416 * Only empty task groups can be destroyed; so we can speculatively 13417 * check on_list without danger of it being re-added. 13418 */ 13419 if (cfs_rq->on_list) { 13420 guard(rq_lock_irqsave)(rq); 13421 list_del_leaf_cfs_rq(cfs_rq); 13422 } 13423 } 13424 } 13425 13426 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13427 struct sched_entity *se, int cpu, 13428 struct sched_entity *parent) 13429 { 13430 struct rq *rq = cpu_rq(cpu); 13431 13432 cfs_rq->tg = tg; 13433 cfs_rq->rq = rq; 13434 init_cfs_rq_runtime(cfs_rq); 13435 13436 tg->cfs_rq[cpu] = cfs_rq; 13437 tg->se[cpu] = se; 13438 13439 /* se could be NULL for root_task_group */ 13440 if (!se) 13441 return; 13442 13443 if (!parent) { 13444 se->cfs_rq = &rq->cfs; 13445 se->depth = 0; 13446 } else { 13447 se->cfs_rq = parent->my_q; 13448 se->depth = parent->depth + 1; 13449 } 13450 13451 se->my_q = cfs_rq; 13452 /* guarantee group entities always have weight */ 13453 update_load_set(&se->load, NICE_0_LOAD); 13454 se->parent = parent; 13455 } 13456 13457 static DEFINE_MUTEX(shares_mutex); 13458 13459 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13460 { 13461 int i; 13462 13463 lockdep_assert_held(&shares_mutex); 13464 13465 /* 13466 * We can't change the weight of the root cgroup. 13467 */ 13468 if (!tg->se[0]) 13469 return -EINVAL; 13470 13471 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13472 13473 if (tg->shares == shares) 13474 return 0; 13475 13476 tg->shares = shares; 13477 for_each_possible_cpu(i) { 13478 struct rq *rq = cpu_rq(i); 13479 struct sched_entity *se = tg->se[i]; 13480 struct rq_flags rf; 13481 13482 /* Propagate contribution to hierarchy */ 13483 rq_lock_irqsave(rq, &rf); 13484 update_rq_clock(rq); 13485 for_each_sched_entity(se) { 13486 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13487 update_cfs_group(se); 13488 } 13489 rq_unlock_irqrestore(rq, &rf); 13490 } 13491 13492 return 0; 13493 } 13494 13495 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13496 { 13497 int ret; 13498 13499 mutex_lock(&shares_mutex); 13500 if (tg_is_idle(tg)) 13501 ret = -EINVAL; 13502 else 13503 ret = __sched_group_set_shares(tg, shares); 13504 mutex_unlock(&shares_mutex); 13505 13506 return ret; 13507 } 13508 13509 int sched_group_set_idle(struct task_group *tg, long idle) 13510 { 13511 int i; 13512 13513 if (tg == &root_task_group) 13514 return -EINVAL; 13515 13516 if (idle < 0 || idle > 1) 13517 return -EINVAL; 13518 13519 mutex_lock(&shares_mutex); 13520 13521 if (tg->idle == idle) { 13522 mutex_unlock(&shares_mutex); 13523 return 0; 13524 } 13525 13526 tg->idle = idle; 13527 13528 for_each_possible_cpu(i) { 13529 struct rq *rq = cpu_rq(i); 13530 struct sched_entity *se = tg->se[i]; 13531 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i]; 13532 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13533 long idle_task_delta; 13534 struct rq_flags rf; 13535 13536 rq_lock_irqsave(rq, &rf); 13537 13538 grp_cfs_rq->idle = idle; 13539 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13540 goto next_cpu; 13541 13542 idle_task_delta = grp_cfs_rq->h_nr_queued - 13543 grp_cfs_rq->h_nr_idle; 13544 if (!cfs_rq_is_idle(grp_cfs_rq)) 13545 idle_task_delta *= -1; 13546 13547 for_each_sched_entity(se) { 13548 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13549 13550 if (!se->on_rq) 13551 break; 13552 13553 cfs_rq->h_nr_idle += idle_task_delta; 13554 13555 /* Already accounted at parent level and above. */ 13556 if (cfs_rq_is_idle(cfs_rq)) 13557 break; 13558 } 13559 13560 next_cpu: 13561 rq_unlock_irqrestore(rq, &rf); 13562 } 13563 13564 /* Idle groups have minimum weight. */ 13565 if (tg_is_idle(tg)) 13566 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13567 else 13568 __sched_group_set_shares(tg, NICE_0_LOAD); 13569 13570 mutex_unlock(&shares_mutex); 13571 return 0; 13572 } 13573 13574 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13575 13576 13577 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13578 { 13579 struct sched_entity *se = &task->se; 13580 unsigned int rr_interval = 0; 13581 13582 /* 13583 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13584 * idle runqueue: 13585 */ 13586 if (rq->cfs.load.weight) 13587 rr_interval = NS_TO_JIFFIES(se->slice); 13588 13589 return rr_interval; 13590 } 13591 13592 /* 13593 * All the scheduling class methods: 13594 */ 13595 DEFINE_SCHED_CLASS(fair) = { 13596 13597 .enqueue_task = enqueue_task_fair, 13598 .dequeue_task = dequeue_task_fair, 13599 .yield_task = yield_task_fair, 13600 .yield_to_task = yield_to_task_fair, 13601 13602 .wakeup_preempt = check_preempt_wakeup_fair, 13603 13604 .pick_task = pick_task_fair, 13605 .pick_next_task = __pick_next_task_fair, 13606 .put_prev_task = put_prev_task_fair, 13607 .set_next_task = set_next_task_fair, 13608 13609 #ifdef CONFIG_SMP 13610 .balance = balance_fair, 13611 .select_task_rq = select_task_rq_fair, 13612 .migrate_task_rq = migrate_task_rq_fair, 13613 13614 .rq_online = rq_online_fair, 13615 .rq_offline = rq_offline_fair, 13616 13617 .task_dead = task_dead_fair, 13618 .set_cpus_allowed = set_cpus_allowed_fair, 13619 #endif 13620 13621 .task_tick = task_tick_fair, 13622 .task_fork = task_fork_fair, 13623 13624 .reweight_task = reweight_task_fair, 13625 .prio_changed = prio_changed_fair, 13626 .switched_from = switched_from_fair, 13627 .switched_to = switched_to_fair, 13628 13629 .get_rr_interval = get_rr_interval_fair, 13630 13631 .update_curr = update_curr_fair, 13632 13633 #ifdef CONFIG_FAIR_GROUP_SCHED 13634 .task_change_group = task_change_group_fair, 13635 #endif 13636 13637 #ifdef CONFIG_SCHED_CORE 13638 .task_is_throttled = task_is_throttled_fair, 13639 #endif 13640 13641 #ifdef CONFIG_UCLAMP_TASK 13642 .uclamp_enabled = 1, 13643 #endif 13644 }; 13645 13646 #ifdef CONFIG_SCHED_DEBUG 13647 void print_cfs_stats(struct seq_file *m, int cpu) 13648 { 13649 struct cfs_rq *cfs_rq, *pos; 13650 13651 rcu_read_lock(); 13652 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13653 print_cfs_rq(m, cpu, cfs_rq); 13654 rcu_read_unlock(); 13655 } 13656 13657 #ifdef CONFIG_NUMA_BALANCING 13658 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13659 { 13660 int node; 13661 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13662 struct numa_group *ng; 13663 13664 rcu_read_lock(); 13665 ng = rcu_dereference(p->numa_group); 13666 for_each_online_node(node) { 13667 if (p->numa_faults) { 13668 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13669 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13670 } 13671 if (ng) { 13672 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13673 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13674 } 13675 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13676 } 13677 rcu_read_unlock(); 13678 } 13679 #endif /* CONFIG_NUMA_BALANCING */ 13680 #endif /* CONFIG_SCHED_DEBUG */ 13681 13682 __init void init_sched_fair_class(void) 13683 { 13684 #ifdef CONFIG_SMP 13685 int i; 13686 13687 for_each_possible_cpu(i) { 13688 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13689 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13690 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13691 GFP_KERNEL, cpu_to_node(i)); 13692 13693 #ifdef CONFIG_CFS_BANDWIDTH 13694 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13695 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13696 #endif 13697 } 13698 13699 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13700 13701 #ifdef CONFIG_NO_HZ_COMMON 13702 nohz.next_balance = jiffies; 13703 nohz.next_blocked = jiffies; 13704 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13705 #endif 13706 #endif /* SMP */ 13707 13708 } 13709