1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/mempolicy.h> 44 #include <linux/mutex_api.h> 45 #include <linux/profile.h> 46 #include <linux/psi.h> 47 #include <linux/ratelimit.h> 48 #include <linux/task_work.h> 49 50 #include <asm/switch_to.h> 51 52 #include <linux/sched/cond_resched.h> 53 54 #include "sched.h" 55 #include "stats.h" 56 #include "autogroup.h" 57 58 /* 59 * Targeted preemption latency for CPU-bound tasks: 60 * 61 * NOTE: this latency value is not the same as the concept of 62 * 'timeslice length' - timeslices in CFS are of variable length 63 * and have no persistent notion like in traditional, time-slice 64 * based scheduling concepts. 65 * 66 * (to see the precise effective timeslice length of your workload, 67 * run vmstat and monitor the context-switches (cs) field) 68 * 69 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 70 */ 71 unsigned int sysctl_sched_latency = 6000000ULL; 72 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 73 74 /* 75 * The initial- and re-scaling of tunables is configurable 76 * 77 * Options are: 78 * 79 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 80 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 81 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 82 * 83 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 84 */ 85 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 86 87 /* 88 * Minimal preemption granularity for CPU-bound tasks: 89 * 90 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 91 */ 92 unsigned int sysctl_sched_min_granularity = 750000ULL; 93 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 94 95 /* 96 * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks. 97 * Applies only when SCHED_IDLE tasks compete with normal tasks. 98 * 99 * (default: 0.75 msec) 100 */ 101 unsigned int sysctl_sched_idle_min_granularity = 750000ULL; 102 103 /* 104 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 105 */ 106 static unsigned int sched_nr_latency = 8; 107 108 /* 109 * After fork, child runs first. If set to 0 (default) then 110 * parent will (try to) run first. 111 */ 112 unsigned int sysctl_sched_child_runs_first __read_mostly; 113 114 /* 115 * SCHED_OTHER wake-up granularity. 116 * 117 * This option delays the preemption effects of decoupled workloads 118 * and reduces their over-scheduling. Synchronous workloads will still 119 * have immediate wakeup/sleep latencies. 120 * 121 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 122 */ 123 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 124 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 125 126 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 127 128 int sched_thermal_decay_shift; 129 static int __init setup_sched_thermal_decay_shift(char *str) 130 { 131 int _shift = 0; 132 133 if (kstrtoint(str, 0, &_shift)) 134 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 135 136 sched_thermal_decay_shift = clamp(_shift, 0, 10); 137 return 1; 138 } 139 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 140 141 #ifdef CONFIG_SMP 142 /* 143 * For asym packing, by default the lower numbered CPU has higher priority. 144 */ 145 int __weak arch_asym_cpu_priority(int cpu) 146 { 147 return -cpu; 148 } 149 150 /* 151 * The margin used when comparing utilization with CPU capacity. 152 * 153 * (default: ~20%) 154 */ 155 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 156 157 /* 158 * The margin used when comparing CPU capacities. 159 * is 'cap1' noticeably greater than 'cap2' 160 * 161 * (default: ~5%) 162 */ 163 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 164 #endif 165 166 #ifdef CONFIG_CFS_BANDWIDTH 167 /* 168 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 169 * each time a cfs_rq requests quota. 170 * 171 * Note: in the case that the slice exceeds the runtime remaining (either due 172 * to consumption or the quota being specified to be smaller than the slice) 173 * we will always only issue the remaining available time. 174 * 175 * (default: 5 msec, units: microseconds) 176 */ 177 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 178 #endif 179 180 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 181 { 182 lw->weight += inc; 183 lw->inv_weight = 0; 184 } 185 186 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 187 { 188 lw->weight -= dec; 189 lw->inv_weight = 0; 190 } 191 192 static inline void update_load_set(struct load_weight *lw, unsigned long w) 193 { 194 lw->weight = w; 195 lw->inv_weight = 0; 196 } 197 198 /* 199 * Increase the granularity value when there are more CPUs, 200 * because with more CPUs the 'effective latency' as visible 201 * to users decreases. But the relationship is not linear, 202 * so pick a second-best guess by going with the log2 of the 203 * number of CPUs. 204 * 205 * This idea comes from the SD scheduler of Con Kolivas: 206 */ 207 static unsigned int get_update_sysctl_factor(void) 208 { 209 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 210 unsigned int factor; 211 212 switch (sysctl_sched_tunable_scaling) { 213 case SCHED_TUNABLESCALING_NONE: 214 factor = 1; 215 break; 216 case SCHED_TUNABLESCALING_LINEAR: 217 factor = cpus; 218 break; 219 case SCHED_TUNABLESCALING_LOG: 220 default: 221 factor = 1 + ilog2(cpus); 222 break; 223 } 224 225 return factor; 226 } 227 228 static void update_sysctl(void) 229 { 230 unsigned int factor = get_update_sysctl_factor(); 231 232 #define SET_SYSCTL(name) \ 233 (sysctl_##name = (factor) * normalized_sysctl_##name) 234 SET_SYSCTL(sched_min_granularity); 235 SET_SYSCTL(sched_latency); 236 SET_SYSCTL(sched_wakeup_granularity); 237 #undef SET_SYSCTL 238 } 239 240 void __init sched_init_granularity(void) 241 { 242 update_sysctl(); 243 } 244 245 #define WMULT_CONST (~0U) 246 #define WMULT_SHIFT 32 247 248 static void __update_inv_weight(struct load_weight *lw) 249 { 250 unsigned long w; 251 252 if (likely(lw->inv_weight)) 253 return; 254 255 w = scale_load_down(lw->weight); 256 257 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 258 lw->inv_weight = 1; 259 else if (unlikely(!w)) 260 lw->inv_weight = WMULT_CONST; 261 else 262 lw->inv_weight = WMULT_CONST / w; 263 } 264 265 /* 266 * delta_exec * weight / lw.weight 267 * OR 268 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 269 * 270 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 271 * we're guaranteed shift stays positive because inv_weight is guaranteed to 272 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 273 * 274 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 275 * weight/lw.weight <= 1, and therefore our shift will also be positive. 276 */ 277 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 278 { 279 u64 fact = scale_load_down(weight); 280 u32 fact_hi = (u32)(fact >> 32); 281 int shift = WMULT_SHIFT; 282 int fs; 283 284 __update_inv_weight(lw); 285 286 if (unlikely(fact_hi)) { 287 fs = fls(fact_hi); 288 shift -= fs; 289 fact >>= fs; 290 } 291 292 fact = mul_u32_u32(fact, lw->inv_weight); 293 294 fact_hi = (u32)(fact >> 32); 295 if (fact_hi) { 296 fs = fls(fact_hi); 297 shift -= fs; 298 fact >>= fs; 299 } 300 301 return mul_u64_u32_shr(delta_exec, fact, shift); 302 } 303 304 305 const struct sched_class fair_sched_class; 306 307 /************************************************************** 308 * CFS operations on generic schedulable entities: 309 */ 310 311 #ifdef CONFIG_FAIR_GROUP_SCHED 312 313 /* Walk up scheduling entities hierarchy */ 314 #define for_each_sched_entity(se) \ 315 for (; se; se = se->parent) 316 317 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 318 { 319 struct rq *rq = rq_of(cfs_rq); 320 int cpu = cpu_of(rq); 321 322 if (cfs_rq->on_list) 323 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 324 325 cfs_rq->on_list = 1; 326 327 /* 328 * Ensure we either appear before our parent (if already 329 * enqueued) or force our parent to appear after us when it is 330 * enqueued. The fact that we always enqueue bottom-up 331 * reduces this to two cases and a special case for the root 332 * cfs_rq. Furthermore, it also means that we will always reset 333 * tmp_alone_branch either when the branch is connected 334 * to a tree or when we reach the top of the tree 335 */ 336 if (cfs_rq->tg->parent && 337 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 338 /* 339 * If parent is already on the list, we add the child 340 * just before. Thanks to circular linked property of 341 * the list, this means to put the child at the tail 342 * of the list that starts by parent. 343 */ 344 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 345 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 346 /* 347 * The branch is now connected to its tree so we can 348 * reset tmp_alone_branch to the beginning of the 349 * list. 350 */ 351 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 352 return true; 353 } 354 355 if (!cfs_rq->tg->parent) { 356 /* 357 * cfs rq without parent should be put 358 * at the tail of the list. 359 */ 360 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 361 &rq->leaf_cfs_rq_list); 362 /* 363 * We have reach the top of a tree so we can reset 364 * tmp_alone_branch to the beginning of the list. 365 */ 366 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 367 return true; 368 } 369 370 /* 371 * The parent has not already been added so we want to 372 * make sure that it will be put after us. 373 * tmp_alone_branch points to the begin of the branch 374 * where we will add parent. 375 */ 376 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 377 /* 378 * update tmp_alone_branch to points to the new begin 379 * of the branch 380 */ 381 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 382 return false; 383 } 384 385 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 386 { 387 if (cfs_rq->on_list) { 388 struct rq *rq = rq_of(cfs_rq); 389 390 /* 391 * With cfs_rq being unthrottled/throttled during an enqueue, 392 * it can happen the tmp_alone_branch points the a leaf that 393 * we finally want to del. In this case, tmp_alone_branch moves 394 * to the prev element but it will point to rq->leaf_cfs_rq_list 395 * at the end of the enqueue. 396 */ 397 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 398 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 399 400 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 401 cfs_rq->on_list = 0; 402 } 403 } 404 405 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 406 { 407 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 408 } 409 410 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 411 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 412 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 413 leaf_cfs_rq_list) 414 415 /* Do the two (enqueued) entities belong to the same group ? */ 416 static inline struct cfs_rq * 417 is_same_group(struct sched_entity *se, struct sched_entity *pse) 418 { 419 if (se->cfs_rq == pse->cfs_rq) 420 return se->cfs_rq; 421 422 return NULL; 423 } 424 425 static inline struct sched_entity *parent_entity(struct sched_entity *se) 426 { 427 return se->parent; 428 } 429 430 static void 431 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 432 { 433 int se_depth, pse_depth; 434 435 /* 436 * preemption test can be made between sibling entities who are in the 437 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 438 * both tasks until we find their ancestors who are siblings of common 439 * parent. 440 */ 441 442 /* First walk up until both entities are at same depth */ 443 se_depth = (*se)->depth; 444 pse_depth = (*pse)->depth; 445 446 while (se_depth > pse_depth) { 447 se_depth--; 448 *se = parent_entity(*se); 449 } 450 451 while (pse_depth > se_depth) { 452 pse_depth--; 453 *pse = parent_entity(*pse); 454 } 455 456 while (!is_same_group(*se, *pse)) { 457 *se = parent_entity(*se); 458 *pse = parent_entity(*pse); 459 } 460 } 461 462 static int tg_is_idle(struct task_group *tg) 463 { 464 return tg->idle > 0; 465 } 466 467 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 468 { 469 return cfs_rq->idle > 0; 470 } 471 472 static int se_is_idle(struct sched_entity *se) 473 { 474 if (entity_is_task(se)) 475 return task_has_idle_policy(task_of(se)); 476 return cfs_rq_is_idle(group_cfs_rq(se)); 477 } 478 479 #else /* !CONFIG_FAIR_GROUP_SCHED */ 480 481 #define for_each_sched_entity(se) \ 482 for (; se; se = NULL) 483 484 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 485 { 486 return true; 487 } 488 489 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 490 { 491 } 492 493 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 494 { 495 } 496 497 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 498 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 499 500 static inline struct sched_entity *parent_entity(struct sched_entity *se) 501 { 502 return NULL; 503 } 504 505 static inline void 506 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 507 { 508 } 509 510 static inline int tg_is_idle(struct task_group *tg) 511 { 512 return 0; 513 } 514 515 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 516 { 517 return 0; 518 } 519 520 static int se_is_idle(struct sched_entity *se) 521 { 522 return 0; 523 } 524 525 #endif /* CONFIG_FAIR_GROUP_SCHED */ 526 527 static __always_inline 528 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 529 530 /************************************************************** 531 * Scheduling class tree data structure manipulation methods: 532 */ 533 534 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 535 { 536 s64 delta = (s64)(vruntime - max_vruntime); 537 if (delta > 0) 538 max_vruntime = vruntime; 539 540 return max_vruntime; 541 } 542 543 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 544 { 545 s64 delta = (s64)(vruntime - min_vruntime); 546 if (delta < 0) 547 min_vruntime = vruntime; 548 549 return min_vruntime; 550 } 551 552 static inline bool entity_before(struct sched_entity *a, 553 struct sched_entity *b) 554 { 555 return (s64)(a->vruntime - b->vruntime) < 0; 556 } 557 558 #define __node_2_se(node) \ 559 rb_entry((node), struct sched_entity, run_node) 560 561 static void update_min_vruntime(struct cfs_rq *cfs_rq) 562 { 563 struct sched_entity *curr = cfs_rq->curr; 564 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 565 566 u64 vruntime = cfs_rq->min_vruntime; 567 568 if (curr) { 569 if (curr->on_rq) 570 vruntime = curr->vruntime; 571 else 572 curr = NULL; 573 } 574 575 if (leftmost) { /* non-empty tree */ 576 struct sched_entity *se = __node_2_se(leftmost); 577 578 if (!curr) 579 vruntime = se->vruntime; 580 else 581 vruntime = min_vruntime(vruntime, se->vruntime); 582 } 583 584 /* ensure we never gain time by being placed backwards. */ 585 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 586 #ifndef CONFIG_64BIT 587 smp_wmb(); 588 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 589 #endif 590 } 591 592 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 593 { 594 return entity_before(__node_2_se(a), __node_2_se(b)); 595 } 596 597 /* 598 * Enqueue an entity into the rb-tree: 599 */ 600 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 601 { 602 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less); 603 } 604 605 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 606 { 607 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 608 } 609 610 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 611 { 612 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 613 614 if (!left) 615 return NULL; 616 617 return __node_2_se(left); 618 } 619 620 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 621 { 622 struct rb_node *next = rb_next(&se->run_node); 623 624 if (!next) 625 return NULL; 626 627 return __node_2_se(next); 628 } 629 630 #ifdef CONFIG_SCHED_DEBUG 631 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 632 { 633 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 634 635 if (!last) 636 return NULL; 637 638 return __node_2_se(last); 639 } 640 641 /************************************************************** 642 * Scheduling class statistics methods: 643 */ 644 645 int sched_update_scaling(void) 646 { 647 unsigned int factor = get_update_sysctl_factor(); 648 649 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 650 sysctl_sched_min_granularity); 651 652 #define WRT_SYSCTL(name) \ 653 (normalized_sysctl_##name = sysctl_##name / (factor)) 654 WRT_SYSCTL(sched_min_granularity); 655 WRT_SYSCTL(sched_latency); 656 WRT_SYSCTL(sched_wakeup_granularity); 657 #undef WRT_SYSCTL 658 659 return 0; 660 } 661 #endif 662 663 /* 664 * delta /= w 665 */ 666 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 667 { 668 if (unlikely(se->load.weight != NICE_0_LOAD)) 669 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 670 671 return delta; 672 } 673 674 /* 675 * The idea is to set a period in which each task runs once. 676 * 677 * When there are too many tasks (sched_nr_latency) we have to stretch 678 * this period because otherwise the slices get too small. 679 * 680 * p = (nr <= nl) ? l : l*nr/nl 681 */ 682 static u64 __sched_period(unsigned long nr_running) 683 { 684 if (unlikely(nr_running > sched_nr_latency)) 685 return nr_running * sysctl_sched_min_granularity; 686 else 687 return sysctl_sched_latency; 688 } 689 690 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq); 691 692 /* 693 * We calculate the wall-time slice from the period by taking a part 694 * proportional to the weight. 695 * 696 * s = p*P[w/rw] 697 */ 698 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 699 { 700 unsigned int nr_running = cfs_rq->nr_running; 701 struct sched_entity *init_se = se; 702 unsigned int min_gran; 703 u64 slice; 704 705 if (sched_feat(ALT_PERIOD)) 706 nr_running = rq_of(cfs_rq)->cfs.h_nr_running; 707 708 slice = __sched_period(nr_running + !se->on_rq); 709 710 for_each_sched_entity(se) { 711 struct load_weight *load; 712 struct load_weight lw; 713 struct cfs_rq *qcfs_rq; 714 715 qcfs_rq = cfs_rq_of(se); 716 load = &qcfs_rq->load; 717 718 if (unlikely(!se->on_rq)) { 719 lw = qcfs_rq->load; 720 721 update_load_add(&lw, se->load.weight); 722 load = &lw; 723 } 724 slice = __calc_delta(slice, se->load.weight, load); 725 } 726 727 if (sched_feat(BASE_SLICE)) { 728 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq)) 729 min_gran = sysctl_sched_idle_min_granularity; 730 else 731 min_gran = sysctl_sched_min_granularity; 732 733 slice = max_t(u64, slice, min_gran); 734 } 735 736 return slice; 737 } 738 739 /* 740 * We calculate the vruntime slice of a to-be-inserted task. 741 * 742 * vs = s/w 743 */ 744 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 745 { 746 return calc_delta_fair(sched_slice(cfs_rq, se), se); 747 } 748 749 #include "pelt.h" 750 #ifdef CONFIG_SMP 751 752 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 753 static unsigned long task_h_load(struct task_struct *p); 754 static unsigned long capacity_of(int cpu); 755 756 /* Give new sched_entity start runnable values to heavy its load in infant time */ 757 void init_entity_runnable_average(struct sched_entity *se) 758 { 759 struct sched_avg *sa = &se->avg; 760 761 memset(sa, 0, sizeof(*sa)); 762 763 /* 764 * Tasks are initialized with full load to be seen as heavy tasks until 765 * they get a chance to stabilize to their real load level. 766 * Group entities are initialized with zero load to reflect the fact that 767 * nothing has been attached to the task group yet. 768 */ 769 if (entity_is_task(se)) 770 sa->load_avg = scale_load_down(se->load.weight); 771 772 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 773 } 774 775 static void attach_entity_cfs_rq(struct sched_entity *se); 776 777 /* 778 * With new tasks being created, their initial util_avgs are extrapolated 779 * based on the cfs_rq's current util_avg: 780 * 781 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 782 * 783 * However, in many cases, the above util_avg does not give a desired 784 * value. Moreover, the sum of the util_avgs may be divergent, such 785 * as when the series is a harmonic series. 786 * 787 * To solve this problem, we also cap the util_avg of successive tasks to 788 * only 1/2 of the left utilization budget: 789 * 790 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 791 * 792 * where n denotes the nth task and cpu_scale the CPU capacity. 793 * 794 * For example, for a CPU with 1024 of capacity, a simplest series from 795 * the beginning would be like: 796 * 797 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 798 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 799 * 800 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 801 * if util_avg > util_avg_cap. 802 */ 803 void post_init_entity_util_avg(struct task_struct *p) 804 { 805 struct sched_entity *se = &p->se; 806 struct cfs_rq *cfs_rq = cfs_rq_of(se); 807 struct sched_avg *sa = &se->avg; 808 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 809 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 810 811 if (cap > 0) { 812 if (cfs_rq->avg.util_avg != 0) { 813 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 814 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 815 816 if (sa->util_avg > cap) 817 sa->util_avg = cap; 818 } else { 819 sa->util_avg = cap; 820 } 821 } 822 823 sa->runnable_avg = sa->util_avg; 824 825 if (p->sched_class != &fair_sched_class) { 826 /* 827 * For !fair tasks do: 828 * 829 update_cfs_rq_load_avg(now, cfs_rq); 830 attach_entity_load_avg(cfs_rq, se); 831 switched_from_fair(rq, p); 832 * 833 * such that the next switched_to_fair() has the 834 * expected state. 835 */ 836 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 837 return; 838 } 839 840 attach_entity_cfs_rq(se); 841 } 842 843 #else /* !CONFIG_SMP */ 844 void init_entity_runnable_average(struct sched_entity *se) 845 { 846 } 847 void post_init_entity_util_avg(struct task_struct *p) 848 { 849 } 850 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 851 { 852 } 853 #endif /* CONFIG_SMP */ 854 855 /* 856 * Update the current task's runtime statistics. 857 */ 858 static void update_curr(struct cfs_rq *cfs_rq) 859 { 860 struct sched_entity *curr = cfs_rq->curr; 861 u64 now = rq_clock_task(rq_of(cfs_rq)); 862 u64 delta_exec; 863 864 if (unlikely(!curr)) 865 return; 866 867 delta_exec = now - curr->exec_start; 868 if (unlikely((s64)delta_exec <= 0)) 869 return; 870 871 curr->exec_start = now; 872 873 if (schedstat_enabled()) { 874 struct sched_statistics *stats; 875 876 stats = __schedstats_from_se(curr); 877 __schedstat_set(stats->exec_max, 878 max(delta_exec, stats->exec_max)); 879 } 880 881 curr->sum_exec_runtime += delta_exec; 882 schedstat_add(cfs_rq->exec_clock, delta_exec); 883 884 curr->vruntime += calc_delta_fair(delta_exec, curr); 885 update_min_vruntime(cfs_rq); 886 887 if (entity_is_task(curr)) { 888 struct task_struct *curtask = task_of(curr); 889 890 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 891 cgroup_account_cputime(curtask, delta_exec); 892 account_group_exec_runtime(curtask, delta_exec); 893 } 894 895 account_cfs_rq_runtime(cfs_rq, delta_exec); 896 } 897 898 static void update_curr_fair(struct rq *rq) 899 { 900 update_curr(cfs_rq_of(&rq->curr->se)); 901 } 902 903 static inline void 904 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 905 { 906 struct sched_statistics *stats; 907 struct task_struct *p = NULL; 908 909 if (!schedstat_enabled()) 910 return; 911 912 stats = __schedstats_from_se(se); 913 914 if (entity_is_task(se)) 915 p = task_of(se); 916 917 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 918 } 919 920 static inline void 921 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 922 { 923 struct sched_statistics *stats; 924 struct task_struct *p = NULL; 925 926 if (!schedstat_enabled()) 927 return; 928 929 stats = __schedstats_from_se(se); 930 931 /* 932 * When the sched_schedstat changes from 0 to 1, some sched se 933 * maybe already in the runqueue, the se->statistics.wait_start 934 * will be 0.So it will let the delta wrong. We need to avoid this 935 * scenario. 936 */ 937 if (unlikely(!schedstat_val(stats->wait_start))) 938 return; 939 940 if (entity_is_task(se)) 941 p = task_of(se); 942 943 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 944 } 945 946 static inline void 947 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 948 { 949 struct sched_statistics *stats; 950 struct task_struct *tsk = NULL; 951 952 if (!schedstat_enabled()) 953 return; 954 955 stats = __schedstats_from_se(se); 956 957 if (entity_is_task(se)) 958 tsk = task_of(se); 959 960 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 961 } 962 963 /* 964 * Task is being enqueued - update stats: 965 */ 966 static inline void 967 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 968 { 969 if (!schedstat_enabled()) 970 return; 971 972 /* 973 * Are we enqueueing a waiting task? (for current tasks 974 * a dequeue/enqueue event is a NOP) 975 */ 976 if (se != cfs_rq->curr) 977 update_stats_wait_start_fair(cfs_rq, se); 978 979 if (flags & ENQUEUE_WAKEUP) 980 update_stats_enqueue_sleeper_fair(cfs_rq, se); 981 } 982 983 static inline void 984 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 985 { 986 987 if (!schedstat_enabled()) 988 return; 989 990 /* 991 * Mark the end of the wait period if dequeueing a 992 * waiting task: 993 */ 994 if (se != cfs_rq->curr) 995 update_stats_wait_end_fair(cfs_rq, se); 996 997 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 998 struct task_struct *tsk = task_of(se); 999 unsigned int state; 1000 1001 /* XXX racy against TTWU */ 1002 state = READ_ONCE(tsk->__state); 1003 if (state & TASK_INTERRUPTIBLE) 1004 __schedstat_set(tsk->stats.sleep_start, 1005 rq_clock(rq_of(cfs_rq))); 1006 if (state & TASK_UNINTERRUPTIBLE) 1007 __schedstat_set(tsk->stats.block_start, 1008 rq_clock(rq_of(cfs_rq))); 1009 } 1010 } 1011 1012 /* 1013 * We are picking a new current task - update its stats: 1014 */ 1015 static inline void 1016 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1017 { 1018 /* 1019 * We are starting a new run period: 1020 */ 1021 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1022 } 1023 1024 /************************************************** 1025 * Scheduling class queueing methods: 1026 */ 1027 1028 #ifdef CONFIG_NUMA_BALANCING 1029 /* 1030 * Approximate time to scan a full NUMA task in ms. The task scan period is 1031 * calculated based on the tasks virtual memory size and 1032 * numa_balancing_scan_size. 1033 */ 1034 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1035 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1036 1037 /* Portion of address space to scan in MB */ 1038 unsigned int sysctl_numa_balancing_scan_size = 256; 1039 1040 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1041 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1042 1043 struct numa_group { 1044 refcount_t refcount; 1045 1046 spinlock_t lock; /* nr_tasks, tasks */ 1047 int nr_tasks; 1048 pid_t gid; 1049 int active_nodes; 1050 1051 struct rcu_head rcu; 1052 unsigned long total_faults; 1053 unsigned long max_faults_cpu; 1054 /* 1055 * faults[] array is split into two regions: faults_mem and faults_cpu. 1056 * 1057 * Faults_cpu is used to decide whether memory should move 1058 * towards the CPU. As a consequence, these stats are weighted 1059 * more by CPU use than by memory faults. 1060 */ 1061 unsigned long faults[]; 1062 }; 1063 1064 /* 1065 * For functions that can be called in multiple contexts that permit reading 1066 * ->numa_group (see struct task_struct for locking rules). 1067 */ 1068 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1069 { 1070 return rcu_dereference_check(p->numa_group, p == current || 1071 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1072 } 1073 1074 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1075 { 1076 return rcu_dereference_protected(p->numa_group, p == current); 1077 } 1078 1079 static inline unsigned long group_faults_priv(struct numa_group *ng); 1080 static inline unsigned long group_faults_shared(struct numa_group *ng); 1081 1082 static unsigned int task_nr_scan_windows(struct task_struct *p) 1083 { 1084 unsigned long rss = 0; 1085 unsigned long nr_scan_pages; 1086 1087 /* 1088 * Calculations based on RSS as non-present and empty pages are skipped 1089 * by the PTE scanner and NUMA hinting faults should be trapped based 1090 * on resident pages 1091 */ 1092 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1093 rss = get_mm_rss(p->mm); 1094 if (!rss) 1095 rss = nr_scan_pages; 1096 1097 rss = round_up(rss, nr_scan_pages); 1098 return rss / nr_scan_pages; 1099 } 1100 1101 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1102 #define MAX_SCAN_WINDOW 2560 1103 1104 static unsigned int task_scan_min(struct task_struct *p) 1105 { 1106 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1107 unsigned int scan, floor; 1108 unsigned int windows = 1; 1109 1110 if (scan_size < MAX_SCAN_WINDOW) 1111 windows = MAX_SCAN_WINDOW / scan_size; 1112 floor = 1000 / windows; 1113 1114 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1115 return max_t(unsigned int, floor, scan); 1116 } 1117 1118 static unsigned int task_scan_start(struct task_struct *p) 1119 { 1120 unsigned long smin = task_scan_min(p); 1121 unsigned long period = smin; 1122 struct numa_group *ng; 1123 1124 /* Scale the maximum scan period with the amount of shared memory. */ 1125 rcu_read_lock(); 1126 ng = rcu_dereference(p->numa_group); 1127 if (ng) { 1128 unsigned long shared = group_faults_shared(ng); 1129 unsigned long private = group_faults_priv(ng); 1130 1131 period *= refcount_read(&ng->refcount); 1132 period *= shared + 1; 1133 period /= private + shared + 1; 1134 } 1135 rcu_read_unlock(); 1136 1137 return max(smin, period); 1138 } 1139 1140 static unsigned int task_scan_max(struct task_struct *p) 1141 { 1142 unsigned long smin = task_scan_min(p); 1143 unsigned long smax; 1144 struct numa_group *ng; 1145 1146 /* Watch for min being lower than max due to floor calculations */ 1147 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1148 1149 /* Scale the maximum scan period with the amount of shared memory. */ 1150 ng = deref_curr_numa_group(p); 1151 if (ng) { 1152 unsigned long shared = group_faults_shared(ng); 1153 unsigned long private = group_faults_priv(ng); 1154 unsigned long period = smax; 1155 1156 period *= refcount_read(&ng->refcount); 1157 period *= shared + 1; 1158 period /= private + shared + 1; 1159 1160 smax = max(smax, period); 1161 } 1162 1163 return max(smin, smax); 1164 } 1165 1166 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1167 { 1168 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1169 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1170 } 1171 1172 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1173 { 1174 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1175 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1176 } 1177 1178 /* Shared or private faults. */ 1179 #define NR_NUMA_HINT_FAULT_TYPES 2 1180 1181 /* Memory and CPU locality */ 1182 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1183 1184 /* Averaged statistics, and temporary buffers. */ 1185 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1186 1187 pid_t task_numa_group_id(struct task_struct *p) 1188 { 1189 struct numa_group *ng; 1190 pid_t gid = 0; 1191 1192 rcu_read_lock(); 1193 ng = rcu_dereference(p->numa_group); 1194 if (ng) 1195 gid = ng->gid; 1196 rcu_read_unlock(); 1197 1198 return gid; 1199 } 1200 1201 /* 1202 * The averaged statistics, shared & private, memory & CPU, 1203 * occupy the first half of the array. The second half of the 1204 * array is for current counters, which are averaged into the 1205 * first set by task_numa_placement. 1206 */ 1207 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1208 { 1209 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1210 } 1211 1212 static inline unsigned long task_faults(struct task_struct *p, int nid) 1213 { 1214 if (!p->numa_faults) 1215 return 0; 1216 1217 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1218 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1219 } 1220 1221 static inline unsigned long group_faults(struct task_struct *p, int nid) 1222 { 1223 struct numa_group *ng = deref_task_numa_group(p); 1224 1225 if (!ng) 1226 return 0; 1227 1228 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1229 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1230 } 1231 1232 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1233 { 1234 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1235 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1236 } 1237 1238 static inline unsigned long group_faults_priv(struct numa_group *ng) 1239 { 1240 unsigned long faults = 0; 1241 int node; 1242 1243 for_each_online_node(node) { 1244 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1245 } 1246 1247 return faults; 1248 } 1249 1250 static inline unsigned long group_faults_shared(struct numa_group *ng) 1251 { 1252 unsigned long faults = 0; 1253 int node; 1254 1255 for_each_online_node(node) { 1256 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1257 } 1258 1259 return faults; 1260 } 1261 1262 /* 1263 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1264 * considered part of a numa group's pseudo-interleaving set. Migrations 1265 * between these nodes are slowed down, to allow things to settle down. 1266 */ 1267 #define ACTIVE_NODE_FRACTION 3 1268 1269 static bool numa_is_active_node(int nid, struct numa_group *ng) 1270 { 1271 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1272 } 1273 1274 /* Handle placement on systems where not all nodes are directly connected. */ 1275 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1276 int lim_dist, bool task) 1277 { 1278 unsigned long score = 0; 1279 int node, max_dist; 1280 1281 /* 1282 * All nodes are directly connected, and the same distance 1283 * from each other. No need for fancy placement algorithms. 1284 */ 1285 if (sched_numa_topology_type == NUMA_DIRECT) 1286 return 0; 1287 1288 /* sched_max_numa_distance may be changed in parallel. */ 1289 max_dist = READ_ONCE(sched_max_numa_distance); 1290 /* 1291 * This code is called for each node, introducing N^2 complexity, 1292 * which should be ok given the number of nodes rarely exceeds 8. 1293 */ 1294 for_each_online_node(node) { 1295 unsigned long faults; 1296 int dist = node_distance(nid, node); 1297 1298 /* 1299 * The furthest away nodes in the system are not interesting 1300 * for placement; nid was already counted. 1301 */ 1302 if (dist >= max_dist || node == nid) 1303 continue; 1304 1305 /* 1306 * On systems with a backplane NUMA topology, compare groups 1307 * of nodes, and move tasks towards the group with the most 1308 * memory accesses. When comparing two nodes at distance 1309 * "hoplimit", only nodes closer by than "hoplimit" are part 1310 * of each group. Skip other nodes. 1311 */ 1312 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1313 continue; 1314 1315 /* Add up the faults from nearby nodes. */ 1316 if (task) 1317 faults = task_faults(p, node); 1318 else 1319 faults = group_faults(p, node); 1320 1321 /* 1322 * On systems with a glueless mesh NUMA topology, there are 1323 * no fixed "groups of nodes". Instead, nodes that are not 1324 * directly connected bounce traffic through intermediate 1325 * nodes; a numa_group can occupy any set of nodes. 1326 * The further away a node is, the less the faults count. 1327 * This seems to result in good task placement. 1328 */ 1329 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1330 faults *= (max_dist - dist); 1331 faults /= (max_dist - LOCAL_DISTANCE); 1332 } 1333 1334 score += faults; 1335 } 1336 1337 return score; 1338 } 1339 1340 /* 1341 * These return the fraction of accesses done by a particular task, or 1342 * task group, on a particular numa node. The group weight is given a 1343 * larger multiplier, in order to group tasks together that are almost 1344 * evenly spread out between numa nodes. 1345 */ 1346 static inline unsigned long task_weight(struct task_struct *p, int nid, 1347 int dist) 1348 { 1349 unsigned long faults, total_faults; 1350 1351 if (!p->numa_faults) 1352 return 0; 1353 1354 total_faults = p->total_numa_faults; 1355 1356 if (!total_faults) 1357 return 0; 1358 1359 faults = task_faults(p, nid); 1360 faults += score_nearby_nodes(p, nid, dist, true); 1361 1362 return 1000 * faults / total_faults; 1363 } 1364 1365 static inline unsigned long group_weight(struct task_struct *p, int nid, 1366 int dist) 1367 { 1368 struct numa_group *ng = deref_task_numa_group(p); 1369 unsigned long faults, total_faults; 1370 1371 if (!ng) 1372 return 0; 1373 1374 total_faults = ng->total_faults; 1375 1376 if (!total_faults) 1377 return 0; 1378 1379 faults = group_faults(p, nid); 1380 faults += score_nearby_nodes(p, nid, dist, false); 1381 1382 return 1000 * faults / total_faults; 1383 } 1384 1385 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1386 int src_nid, int dst_cpu) 1387 { 1388 struct numa_group *ng = deref_curr_numa_group(p); 1389 int dst_nid = cpu_to_node(dst_cpu); 1390 int last_cpupid, this_cpupid; 1391 1392 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1393 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1394 1395 /* 1396 * Allow first faults or private faults to migrate immediately early in 1397 * the lifetime of a task. The magic number 4 is based on waiting for 1398 * two full passes of the "multi-stage node selection" test that is 1399 * executed below. 1400 */ 1401 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1402 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1403 return true; 1404 1405 /* 1406 * Multi-stage node selection is used in conjunction with a periodic 1407 * migration fault to build a temporal task<->page relation. By using 1408 * a two-stage filter we remove short/unlikely relations. 1409 * 1410 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1411 * a task's usage of a particular page (n_p) per total usage of this 1412 * page (n_t) (in a given time-span) to a probability. 1413 * 1414 * Our periodic faults will sample this probability and getting the 1415 * same result twice in a row, given these samples are fully 1416 * independent, is then given by P(n)^2, provided our sample period 1417 * is sufficiently short compared to the usage pattern. 1418 * 1419 * This quadric squishes small probabilities, making it less likely we 1420 * act on an unlikely task<->page relation. 1421 */ 1422 if (!cpupid_pid_unset(last_cpupid) && 1423 cpupid_to_nid(last_cpupid) != dst_nid) 1424 return false; 1425 1426 /* Always allow migrate on private faults */ 1427 if (cpupid_match_pid(p, last_cpupid)) 1428 return true; 1429 1430 /* A shared fault, but p->numa_group has not been set up yet. */ 1431 if (!ng) 1432 return true; 1433 1434 /* 1435 * Destination node is much more heavily used than the source 1436 * node? Allow migration. 1437 */ 1438 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1439 ACTIVE_NODE_FRACTION) 1440 return true; 1441 1442 /* 1443 * Distribute memory according to CPU & memory use on each node, 1444 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1445 * 1446 * faults_cpu(dst) 3 faults_cpu(src) 1447 * --------------- * - > --------------- 1448 * faults_mem(dst) 4 faults_mem(src) 1449 */ 1450 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1451 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1452 } 1453 1454 /* 1455 * 'numa_type' describes the node at the moment of load balancing. 1456 */ 1457 enum numa_type { 1458 /* The node has spare capacity that can be used to run more tasks. */ 1459 node_has_spare = 0, 1460 /* 1461 * The node is fully used and the tasks don't compete for more CPU 1462 * cycles. Nevertheless, some tasks might wait before running. 1463 */ 1464 node_fully_busy, 1465 /* 1466 * The node is overloaded and can't provide expected CPU cycles to all 1467 * tasks. 1468 */ 1469 node_overloaded 1470 }; 1471 1472 /* Cached statistics for all CPUs within a node */ 1473 struct numa_stats { 1474 unsigned long load; 1475 unsigned long runnable; 1476 unsigned long util; 1477 /* Total compute capacity of CPUs on a node */ 1478 unsigned long compute_capacity; 1479 unsigned int nr_running; 1480 unsigned int weight; 1481 enum numa_type node_type; 1482 int idle_cpu; 1483 }; 1484 1485 static inline bool is_core_idle(int cpu) 1486 { 1487 #ifdef CONFIG_SCHED_SMT 1488 int sibling; 1489 1490 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1491 if (cpu == sibling) 1492 continue; 1493 1494 if (!idle_cpu(sibling)) 1495 return false; 1496 } 1497 #endif 1498 1499 return true; 1500 } 1501 1502 struct task_numa_env { 1503 struct task_struct *p; 1504 1505 int src_cpu, src_nid; 1506 int dst_cpu, dst_nid; 1507 int imb_numa_nr; 1508 1509 struct numa_stats src_stats, dst_stats; 1510 1511 int imbalance_pct; 1512 int dist; 1513 1514 struct task_struct *best_task; 1515 long best_imp; 1516 int best_cpu; 1517 }; 1518 1519 static unsigned long cpu_load(struct rq *rq); 1520 static unsigned long cpu_runnable(struct rq *rq); 1521 static inline long adjust_numa_imbalance(int imbalance, 1522 int dst_running, int imb_numa_nr); 1523 1524 static inline enum 1525 numa_type numa_classify(unsigned int imbalance_pct, 1526 struct numa_stats *ns) 1527 { 1528 if ((ns->nr_running > ns->weight) && 1529 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1530 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1531 return node_overloaded; 1532 1533 if ((ns->nr_running < ns->weight) || 1534 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1535 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1536 return node_has_spare; 1537 1538 return node_fully_busy; 1539 } 1540 1541 #ifdef CONFIG_SCHED_SMT 1542 /* Forward declarations of select_idle_sibling helpers */ 1543 static inline bool test_idle_cores(int cpu, bool def); 1544 static inline int numa_idle_core(int idle_core, int cpu) 1545 { 1546 if (!static_branch_likely(&sched_smt_present) || 1547 idle_core >= 0 || !test_idle_cores(cpu, false)) 1548 return idle_core; 1549 1550 /* 1551 * Prefer cores instead of packing HT siblings 1552 * and triggering future load balancing. 1553 */ 1554 if (is_core_idle(cpu)) 1555 idle_core = cpu; 1556 1557 return idle_core; 1558 } 1559 #else 1560 static inline int numa_idle_core(int idle_core, int cpu) 1561 { 1562 return idle_core; 1563 } 1564 #endif 1565 1566 /* 1567 * Gather all necessary information to make NUMA balancing placement 1568 * decisions that are compatible with standard load balancer. This 1569 * borrows code and logic from update_sg_lb_stats but sharing a 1570 * common implementation is impractical. 1571 */ 1572 static void update_numa_stats(struct task_numa_env *env, 1573 struct numa_stats *ns, int nid, 1574 bool find_idle) 1575 { 1576 int cpu, idle_core = -1; 1577 1578 memset(ns, 0, sizeof(*ns)); 1579 ns->idle_cpu = -1; 1580 1581 rcu_read_lock(); 1582 for_each_cpu(cpu, cpumask_of_node(nid)) { 1583 struct rq *rq = cpu_rq(cpu); 1584 1585 ns->load += cpu_load(rq); 1586 ns->runnable += cpu_runnable(rq); 1587 ns->util += cpu_util_cfs(cpu); 1588 ns->nr_running += rq->cfs.h_nr_running; 1589 ns->compute_capacity += capacity_of(cpu); 1590 1591 if (find_idle && !rq->nr_running && idle_cpu(cpu)) { 1592 if (READ_ONCE(rq->numa_migrate_on) || 1593 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1594 continue; 1595 1596 if (ns->idle_cpu == -1) 1597 ns->idle_cpu = cpu; 1598 1599 idle_core = numa_idle_core(idle_core, cpu); 1600 } 1601 } 1602 rcu_read_unlock(); 1603 1604 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1605 1606 ns->node_type = numa_classify(env->imbalance_pct, ns); 1607 1608 if (idle_core >= 0) 1609 ns->idle_cpu = idle_core; 1610 } 1611 1612 static void task_numa_assign(struct task_numa_env *env, 1613 struct task_struct *p, long imp) 1614 { 1615 struct rq *rq = cpu_rq(env->dst_cpu); 1616 1617 /* Check if run-queue part of active NUMA balance. */ 1618 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1619 int cpu; 1620 int start = env->dst_cpu; 1621 1622 /* Find alternative idle CPU. */ 1623 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) { 1624 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1625 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1626 continue; 1627 } 1628 1629 env->dst_cpu = cpu; 1630 rq = cpu_rq(env->dst_cpu); 1631 if (!xchg(&rq->numa_migrate_on, 1)) 1632 goto assign; 1633 } 1634 1635 /* Failed to find an alternative idle CPU */ 1636 return; 1637 } 1638 1639 assign: 1640 /* 1641 * Clear previous best_cpu/rq numa-migrate flag, since task now 1642 * found a better CPU to move/swap. 1643 */ 1644 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1645 rq = cpu_rq(env->best_cpu); 1646 WRITE_ONCE(rq->numa_migrate_on, 0); 1647 } 1648 1649 if (env->best_task) 1650 put_task_struct(env->best_task); 1651 if (p) 1652 get_task_struct(p); 1653 1654 env->best_task = p; 1655 env->best_imp = imp; 1656 env->best_cpu = env->dst_cpu; 1657 } 1658 1659 static bool load_too_imbalanced(long src_load, long dst_load, 1660 struct task_numa_env *env) 1661 { 1662 long imb, old_imb; 1663 long orig_src_load, orig_dst_load; 1664 long src_capacity, dst_capacity; 1665 1666 /* 1667 * The load is corrected for the CPU capacity available on each node. 1668 * 1669 * src_load dst_load 1670 * ------------ vs --------- 1671 * src_capacity dst_capacity 1672 */ 1673 src_capacity = env->src_stats.compute_capacity; 1674 dst_capacity = env->dst_stats.compute_capacity; 1675 1676 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1677 1678 orig_src_load = env->src_stats.load; 1679 orig_dst_load = env->dst_stats.load; 1680 1681 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1682 1683 /* Would this change make things worse? */ 1684 return (imb > old_imb); 1685 } 1686 1687 /* 1688 * Maximum NUMA importance can be 1998 (2*999); 1689 * SMALLIMP @ 30 would be close to 1998/64. 1690 * Used to deter task migration. 1691 */ 1692 #define SMALLIMP 30 1693 1694 /* 1695 * This checks if the overall compute and NUMA accesses of the system would 1696 * be improved if the source tasks was migrated to the target dst_cpu taking 1697 * into account that it might be best if task running on the dst_cpu should 1698 * be exchanged with the source task 1699 */ 1700 static bool task_numa_compare(struct task_numa_env *env, 1701 long taskimp, long groupimp, bool maymove) 1702 { 1703 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1704 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1705 long imp = p_ng ? groupimp : taskimp; 1706 struct task_struct *cur; 1707 long src_load, dst_load; 1708 int dist = env->dist; 1709 long moveimp = imp; 1710 long load; 1711 bool stopsearch = false; 1712 1713 if (READ_ONCE(dst_rq->numa_migrate_on)) 1714 return false; 1715 1716 rcu_read_lock(); 1717 cur = rcu_dereference(dst_rq->curr); 1718 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1719 cur = NULL; 1720 1721 /* 1722 * Because we have preemption enabled we can get migrated around and 1723 * end try selecting ourselves (current == env->p) as a swap candidate. 1724 */ 1725 if (cur == env->p) { 1726 stopsearch = true; 1727 goto unlock; 1728 } 1729 1730 if (!cur) { 1731 if (maymove && moveimp >= env->best_imp) 1732 goto assign; 1733 else 1734 goto unlock; 1735 } 1736 1737 /* Skip this swap candidate if cannot move to the source cpu. */ 1738 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1739 goto unlock; 1740 1741 /* 1742 * Skip this swap candidate if it is not moving to its preferred 1743 * node and the best task is. 1744 */ 1745 if (env->best_task && 1746 env->best_task->numa_preferred_nid == env->src_nid && 1747 cur->numa_preferred_nid != env->src_nid) { 1748 goto unlock; 1749 } 1750 1751 /* 1752 * "imp" is the fault differential for the source task between the 1753 * source and destination node. Calculate the total differential for 1754 * the source task and potential destination task. The more negative 1755 * the value is, the more remote accesses that would be expected to 1756 * be incurred if the tasks were swapped. 1757 * 1758 * If dst and source tasks are in the same NUMA group, or not 1759 * in any group then look only at task weights. 1760 */ 1761 cur_ng = rcu_dereference(cur->numa_group); 1762 if (cur_ng == p_ng) { 1763 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1764 task_weight(cur, env->dst_nid, dist); 1765 /* 1766 * Add some hysteresis to prevent swapping the 1767 * tasks within a group over tiny differences. 1768 */ 1769 if (cur_ng) 1770 imp -= imp / 16; 1771 } else { 1772 /* 1773 * Compare the group weights. If a task is all by itself 1774 * (not part of a group), use the task weight instead. 1775 */ 1776 if (cur_ng && p_ng) 1777 imp += group_weight(cur, env->src_nid, dist) - 1778 group_weight(cur, env->dst_nid, dist); 1779 else 1780 imp += task_weight(cur, env->src_nid, dist) - 1781 task_weight(cur, env->dst_nid, dist); 1782 } 1783 1784 /* Discourage picking a task already on its preferred node */ 1785 if (cur->numa_preferred_nid == env->dst_nid) 1786 imp -= imp / 16; 1787 1788 /* 1789 * Encourage picking a task that moves to its preferred node. 1790 * This potentially makes imp larger than it's maximum of 1791 * 1998 (see SMALLIMP and task_weight for why) but in this 1792 * case, it does not matter. 1793 */ 1794 if (cur->numa_preferred_nid == env->src_nid) 1795 imp += imp / 8; 1796 1797 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1798 imp = moveimp; 1799 cur = NULL; 1800 goto assign; 1801 } 1802 1803 /* 1804 * Prefer swapping with a task moving to its preferred node over a 1805 * task that is not. 1806 */ 1807 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 1808 env->best_task->numa_preferred_nid != env->src_nid) { 1809 goto assign; 1810 } 1811 1812 /* 1813 * If the NUMA importance is less than SMALLIMP, 1814 * task migration might only result in ping pong 1815 * of tasks and also hurt performance due to cache 1816 * misses. 1817 */ 1818 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1819 goto unlock; 1820 1821 /* 1822 * In the overloaded case, try and keep the load balanced. 1823 */ 1824 load = task_h_load(env->p) - task_h_load(cur); 1825 if (!load) 1826 goto assign; 1827 1828 dst_load = env->dst_stats.load + load; 1829 src_load = env->src_stats.load - load; 1830 1831 if (load_too_imbalanced(src_load, dst_load, env)) 1832 goto unlock; 1833 1834 assign: 1835 /* Evaluate an idle CPU for a task numa move. */ 1836 if (!cur) { 1837 int cpu = env->dst_stats.idle_cpu; 1838 1839 /* Nothing cached so current CPU went idle since the search. */ 1840 if (cpu < 0) 1841 cpu = env->dst_cpu; 1842 1843 /* 1844 * If the CPU is no longer truly idle and the previous best CPU 1845 * is, keep using it. 1846 */ 1847 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 1848 idle_cpu(env->best_cpu)) { 1849 cpu = env->best_cpu; 1850 } 1851 1852 env->dst_cpu = cpu; 1853 } 1854 1855 task_numa_assign(env, cur, imp); 1856 1857 /* 1858 * If a move to idle is allowed because there is capacity or load 1859 * balance improves then stop the search. While a better swap 1860 * candidate may exist, a search is not free. 1861 */ 1862 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 1863 stopsearch = true; 1864 1865 /* 1866 * If a swap candidate must be identified and the current best task 1867 * moves its preferred node then stop the search. 1868 */ 1869 if (!maymove && env->best_task && 1870 env->best_task->numa_preferred_nid == env->src_nid) { 1871 stopsearch = true; 1872 } 1873 unlock: 1874 rcu_read_unlock(); 1875 1876 return stopsearch; 1877 } 1878 1879 static void task_numa_find_cpu(struct task_numa_env *env, 1880 long taskimp, long groupimp) 1881 { 1882 bool maymove = false; 1883 int cpu; 1884 1885 /* 1886 * If dst node has spare capacity, then check if there is an 1887 * imbalance that would be overruled by the load balancer. 1888 */ 1889 if (env->dst_stats.node_type == node_has_spare) { 1890 unsigned int imbalance; 1891 int src_running, dst_running; 1892 1893 /* 1894 * Would movement cause an imbalance? Note that if src has 1895 * more running tasks that the imbalance is ignored as the 1896 * move improves the imbalance from the perspective of the 1897 * CPU load balancer. 1898 * */ 1899 src_running = env->src_stats.nr_running - 1; 1900 dst_running = env->dst_stats.nr_running + 1; 1901 imbalance = max(0, dst_running - src_running); 1902 imbalance = adjust_numa_imbalance(imbalance, dst_running, 1903 env->imb_numa_nr); 1904 1905 /* Use idle CPU if there is no imbalance */ 1906 if (!imbalance) { 1907 maymove = true; 1908 if (env->dst_stats.idle_cpu >= 0) { 1909 env->dst_cpu = env->dst_stats.idle_cpu; 1910 task_numa_assign(env, NULL, 0); 1911 return; 1912 } 1913 } 1914 } else { 1915 long src_load, dst_load, load; 1916 /* 1917 * If the improvement from just moving env->p direction is better 1918 * than swapping tasks around, check if a move is possible. 1919 */ 1920 load = task_h_load(env->p); 1921 dst_load = env->dst_stats.load + load; 1922 src_load = env->src_stats.load - load; 1923 maymove = !load_too_imbalanced(src_load, dst_load, env); 1924 } 1925 1926 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1927 /* Skip this CPU if the source task cannot migrate */ 1928 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1929 continue; 1930 1931 env->dst_cpu = cpu; 1932 if (task_numa_compare(env, taskimp, groupimp, maymove)) 1933 break; 1934 } 1935 } 1936 1937 static int task_numa_migrate(struct task_struct *p) 1938 { 1939 struct task_numa_env env = { 1940 .p = p, 1941 1942 .src_cpu = task_cpu(p), 1943 .src_nid = task_node(p), 1944 1945 .imbalance_pct = 112, 1946 1947 .best_task = NULL, 1948 .best_imp = 0, 1949 .best_cpu = -1, 1950 }; 1951 unsigned long taskweight, groupweight; 1952 struct sched_domain *sd; 1953 long taskimp, groupimp; 1954 struct numa_group *ng; 1955 struct rq *best_rq; 1956 int nid, ret, dist; 1957 1958 /* 1959 * Pick the lowest SD_NUMA domain, as that would have the smallest 1960 * imbalance and would be the first to start moving tasks about. 1961 * 1962 * And we want to avoid any moving of tasks about, as that would create 1963 * random movement of tasks -- counter the numa conditions we're trying 1964 * to satisfy here. 1965 */ 1966 rcu_read_lock(); 1967 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1968 if (sd) { 1969 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1970 env.imb_numa_nr = sd->imb_numa_nr; 1971 } 1972 rcu_read_unlock(); 1973 1974 /* 1975 * Cpusets can break the scheduler domain tree into smaller 1976 * balance domains, some of which do not cross NUMA boundaries. 1977 * Tasks that are "trapped" in such domains cannot be migrated 1978 * elsewhere, so there is no point in (re)trying. 1979 */ 1980 if (unlikely(!sd)) { 1981 sched_setnuma(p, task_node(p)); 1982 return -EINVAL; 1983 } 1984 1985 env.dst_nid = p->numa_preferred_nid; 1986 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1987 taskweight = task_weight(p, env.src_nid, dist); 1988 groupweight = group_weight(p, env.src_nid, dist); 1989 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 1990 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1991 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1992 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 1993 1994 /* Try to find a spot on the preferred nid. */ 1995 task_numa_find_cpu(&env, taskimp, groupimp); 1996 1997 /* 1998 * Look at other nodes in these cases: 1999 * - there is no space available on the preferred_nid 2000 * - the task is part of a numa_group that is interleaved across 2001 * multiple NUMA nodes; in order to better consolidate the group, 2002 * we need to check other locations. 2003 */ 2004 ng = deref_curr_numa_group(p); 2005 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2006 for_each_node_state(nid, N_CPU) { 2007 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2008 continue; 2009 2010 dist = node_distance(env.src_nid, env.dst_nid); 2011 if (sched_numa_topology_type == NUMA_BACKPLANE && 2012 dist != env.dist) { 2013 taskweight = task_weight(p, env.src_nid, dist); 2014 groupweight = group_weight(p, env.src_nid, dist); 2015 } 2016 2017 /* Only consider nodes where both task and groups benefit */ 2018 taskimp = task_weight(p, nid, dist) - taskweight; 2019 groupimp = group_weight(p, nid, dist) - groupweight; 2020 if (taskimp < 0 && groupimp < 0) 2021 continue; 2022 2023 env.dist = dist; 2024 env.dst_nid = nid; 2025 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2026 task_numa_find_cpu(&env, taskimp, groupimp); 2027 } 2028 } 2029 2030 /* 2031 * If the task is part of a workload that spans multiple NUMA nodes, 2032 * and is migrating into one of the workload's active nodes, remember 2033 * this node as the task's preferred numa node, so the workload can 2034 * settle down. 2035 * A task that migrated to a second choice node will be better off 2036 * trying for a better one later. Do not set the preferred node here. 2037 */ 2038 if (ng) { 2039 if (env.best_cpu == -1) 2040 nid = env.src_nid; 2041 else 2042 nid = cpu_to_node(env.best_cpu); 2043 2044 if (nid != p->numa_preferred_nid) 2045 sched_setnuma(p, nid); 2046 } 2047 2048 /* No better CPU than the current one was found. */ 2049 if (env.best_cpu == -1) { 2050 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2051 return -EAGAIN; 2052 } 2053 2054 best_rq = cpu_rq(env.best_cpu); 2055 if (env.best_task == NULL) { 2056 ret = migrate_task_to(p, env.best_cpu); 2057 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2058 if (ret != 0) 2059 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2060 return ret; 2061 } 2062 2063 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2064 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2065 2066 if (ret != 0) 2067 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2068 put_task_struct(env.best_task); 2069 return ret; 2070 } 2071 2072 /* Attempt to migrate a task to a CPU on the preferred node. */ 2073 static void numa_migrate_preferred(struct task_struct *p) 2074 { 2075 unsigned long interval = HZ; 2076 2077 /* This task has no NUMA fault statistics yet */ 2078 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2079 return; 2080 2081 /* Periodically retry migrating the task to the preferred node */ 2082 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2083 p->numa_migrate_retry = jiffies + interval; 2084 2085 /* Success if task is already running on preferred CPU */ 2086 if (task_node(p) == p->numa_preferred_nid) 2087 return; 2088 2089 /* Otherwise, try migrate to a CPU on the preferred node */ 2090 task_numa_migrate(p); 2091 } 2092 2093 /* 2094 * Find out how many nodes the workload is actively running on. Do this by 2095 * tracking the nodes from which NUMA hinting faults are triggered. This can 2096 * be different from the set of nodes where the workload's memory is currently 2097 * located. 2098 */ 2099 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2100 { 2101 unsigned long faults, max_faults = 0; 2102 int nid, active_nodes = 0; 2103 2104 for_each_node_state(nid, N_CPU) { 2105 faults = group_faults_cpu(numa_group, nid); 2106 if (faults > max_faults) 2107 max_faults = faults; 2108 } 2109 2110 for_each_node_state(nid, N_CPU) { 2111 faults = group_faults_cpu(numa_group, nid); 2112 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2113 active_nodes++; 2114 } 2115 2116 numa_group->max_faults_cpu = max_faults; 2117 numa_group->active_nodes = active_nodes; 2118 } 2119 2120 /* 2121 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2122 * increments. The more local the fault statistics are, the higher the scan 2123 * period will be for the next scan window. If local/(local+remote) ratio is 2124 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2125 * the scan period will decrease. Aim for 70% local accesses. 2126 */ 2127 #define NUMA_PERIOD_SLOTS 10 2128 #define NUMA_PERIOD_THRESHOLD 7 2129 2130 /* 2131 * Increase the scan period (slow down scanning) if the majority of 2132 * our memory is already on our local node, or if the majority of 2133 * the page accesses are shared with other processes. 2134 * Otherwise, decrease the scan period. 2135 */ 2136 static void update_task_scan_period(struct task_struct *p, 2137 unsigned long shared, unsigned long private) 2138 { 2139 unsigned int period_slot; 2140 int lr_ratio, ps_ratio; 2141 int diff; 2142 2143 unsigned long remote = p->numa_faults_locality[0]; 2144 unsigned long local = p->numa_faults_locality[1]; 2145 2146 /* 2147 * If there were no record hinting faults then either the task is 2148 * completely idle or all activity is in areas that are not of interest 2149 * to automatic numa balancing. Related to that, if there were failed 2150 * migration then it implies we are migrating too quickly or the local 2151 * node is overloaded. In either case, scan slower 2152 */ 2153 if (local + shared == 0 || p->numa_faults_locality[2]) { 2154 p->numa_scan_period = min(p->numa_scan_period_max, 2155 p->numa_scan_period << 1); 2156 2157 p->mm->numa_next_scan = jiffies + 2158 msecs_to_jiffies(p->numa_scan_period); 2159 2160 return; 2161 } 2162 2163 /* 2164 * Prepare to scale scan period relative to the current period. 2165 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2166 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2167 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2168 */ 2169 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2170 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2171 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2172 2173 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2174 /* 2175 * Most memory accesses are local. There is no need to 2176 * do fast NUMA scanning, since memory is already local. 2177 */ 2178 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2179 if (!slot) 2180 slot = 1; 2181 diff = slot * period_slot; 2182 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2183 /* 2184 * Most memory accesses are shared with other tasks. 2185 * There is no point in continuing fast NUMA scanning, 2186 * since other tasks may just move the memory elsewhere. 2187 */ 2188 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2189 if (!slot) 2190 slot = 1; 2191 diff = slot * period_slot; 2192 } else { 2193 /* 2194 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2195 * yet they are not on the local NUMA node. Speed up 2196 * NUMA scanning to get the memory moved over. 2197 */ 2198 int ratio = max(lr_ratio, ps_ratio); 2199 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2200 } 2201 2202 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2203 task_scan_min(p), task_scan_max(p)); 2204 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2205 } 2206 2207 /* 2208 * Get the fraction of time the task has been running since the last 2209 * NUMA placement cycle. The scheduler keeps similar statistics, but 2210 * decays those on a 32ms period, which is orders of magnitude off 2211 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2212 * stats only if the task is so new there are no NUMA statistics yet. 2213 */ 2214 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2215 { 2216 u64 runtime, delta, now; 2217 /* Use the start of this time slice to avoid calculations. */ 2218 now = p->se.exec_start; 2219 runtime = p->se.sum_exec_runtime; 2220 2221 if (p->last_task_numa_placement) { 2222 delta = runtime - p->last_sum_exec_runtime; 2223 *period = now - p->last_task_numa_placement; 2224 2225 /* Avoid time going backwards, prevent potential divide error: */ 2226 if (unlikely((s64)*period < 0)) 2227 *period = 0; 2228 } else { 2229 delta = p->se.avg.load_sum; 2230 *period = LOAD_AVG_MAX; 2231 } 2232 2233 p->last_sum_exec_runtime = runtime; 2234 p->last_task_numa_placement = now; 2235 2236 return delta; 2237 } 2238 2239 /* 2240 * Determine the preferred nid for a task in a numa_group. This needs to 2241 * be done in a way that produces consistent results with group_weight, 2242 * otherwise workloads might not converge. 2243 */ 2244 static int preferred_group_nid(struct task_struct *p, int nid) 2245 { 2246 nodemask_t nodes; 2247 int dist; 2248 2249 /* Direct connections between all NUMA nodes. */ 2250 if (sched_numa_topology_type == NUMA_DIRECT) 2251 return nid; 2252 2253 /* 2254 * On a system with glueless mesh NUMA topology, group_weight 2255 * scores nodes according to the number of NUMA hinting faults on 2256 * both the node itself, and on nearby nodes. 2257 */ 2258 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2259 unsigned long score, max_score = 0; 2260 int node, max_node = nid; 2261 2262 dist = sched_max_numa_distance; 2263 2264 for_each_node_state(node, N_CPU) { 2265 score = group_weight(p, node, dist); 2266 if (score > max_score) { 2267 max_score = score; 2268 max_node = node; 2269 } 2270 } 2271 return max_node; 2272 } 2273 2274 /* 2275 * Finding the preferred nid in a system with NUMA backplane 2276 * interconnect topology is more involved. The goal is to locate 2277 * tasks from numa_groups near each other in the system, and 2278 * untangle workloads from different sides of the system. This requires 2279 * searching down the hierarchy of node groups, recursively searching 2280 * inside the highest scoring group of nodes. The nodemask tricks 2281 * keep the complexity of the search down. 2282 */ 2283 nodes = node_states[N_CPU]; 2284 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2285 unsigned long max_faults = 0; 2286 nodemask_t max_group = NODE_MASK_NONE; 2287 int a, b; 2288 2289 /* Are there nodes at this distance from each other? */ 2290 if (!find_numa_distance(dist)) 2291 continue; 2292 2293 for_each_node_mask(a, nodes) { 2294 unsigned long faults = 0; 2295 nodemask_t this_group; 2296 nodes_clear(this_group); 2297 2298 /* Sum group's NUMA faults; includes a==b case. */ 2299 for_each_node_mask(b, nodes) { 2300 if (node_distance(a, b) < dist) { 2301 faults += group_faults(p, b); 2302 node_set(b, this_group); 2303 node_clear(b, nodes); 2304 } 2305 } 2306 2307 /* Remember the top group. */ 2308 if (faults > max_faults) { 2309 max_faults = faults; 2310 max_group = this_group; 2311 /* 2312 * subtle: at the smallest distance there is 2313 * just one node left in each "group", the 2314 * winner is the preferred nid. 2315 */ 2316 nid = a; 2317 } 2318 } 2319 /* Next round, evaluate the nodes within max_group. */ 2320 if (!max_faults) 2321 break; 2322 nodes = max_group; 2323 } 2324 return nid; 2325 } 2326 2327 static void task_numa_placement(struct task_struct *p) 2328 { 2329 int seq, nid, max_nid = NUMA_NO_NODE; 2330 unsigned long max_faults = 0; 2331 unsigned long fault_types[2] = { 0, 0 }; 2332 unsigned long total_faults; 2333 u64 runtime, period; 2334 spinlock_t *group_lock = NULL; 2335 struct numa_group *ng; 2336 2337 /* 2338 * The p->mm->numa_scan_seq field gets updated without 2339 * exclusive access. Use READ_ONCE() here to ensure 2340 * that the field is read in a single access: 2341 */ 2342 seq = READ_ONCE(p->mm->numa_scan_seq); 2343 if (p->numa_scan_seq == seq) 2344 return; 2345 p->numa_scan_seq = seq; 2346 p->numa_scan_period_max = task_scan_max(p); 2347 2348 total_faults = p->numa_faults_locality[0] + 2349 p->numa_faults_locality[1]; 2350 runtime = numa_get_avg_runtime(p, &period); 2351 2352 /* If the task is part of a group prevent parallel updates to group stats */ 2353 ng = deref_curr_numa_group(p); 2354 if (ng) { 2355 group_lock = &ng->lock; 2356 spin_lock_irq(group_lock); 2357 } 2358 2359 /* Find the node with the highest number of faults */ 2360 for_each_online_node(nid) { 2361 /* Keep track of the offsets in numa_faults array */ 2362 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2363 unsigned long faults = 0, group_faults = 0; 2364 int priv; 2365 2366 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2367 long diff, f_diff, f_weight; 2368 2369 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2370 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2371 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2372 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2373 2374 /* Decay existing window, copy faults since last scan */ 2375 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2376 fault_types[priv] += p->numa_faults[membuf_idx]; 2377 p->numa_faults[membuf_idx] = 0; 2378 2379 /* 2380 * Normalize the faults_from, so all tasks in a group 2381 * count according to CPU use, instead of by the raw 2382 * number of faults. Tasks with little runtime have 2383 * little over-all impact on throughput, and thus their 2384 * faults are less important. 2385 */ 2386 f_weight = div64_u64(runtime << 16, period + 1); 2387 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2388 (total_faults + 1); 2389 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2390 p->numa_faults[cpubuf_idx] = 0; 2391 2392 p->numa_faults[mem_idx] += diff; 2393 p->numa_faults[cpu_idx] += f_diff; 2394 faults += p->numa_faults[mem_idx]; 2395 p->total_numa_faults += diff; 2396 if (ng) { 2397 /* 2398 * safe because we can only change our own group 2399 * 2400 * mem_idx represents the offset for a given 2401 * nid and priv in a specific region because it 2402 * is at the beginning of the numa_faults array. 2403 */ 2404 ng->faults[mem_idx] += diff; 2405 ng->faults[cpu_idx] += f_diff; 2406 ng->total_faults += diff; 2407 group_faults += ng->faults[mem_idx]; 2408 } 2409 } 2410 2411 if (!ng) { 2412 if (faults > max_faults) { 2413 max_faults = faults; 2414 max_nid = nid; 2415 } 2416 } else if (group_faults > max_faults) { 2417 max_faults = group_faults; 2418 max_nid = nid; 2419 } 2420 } 2421 2422 /* Cannot migrate task to CPU-less node */ 2423 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) { 2424 int near_nid = max_nid; 2425 int distance, near_distance = INT_MAX; 2426 2427 for_each_node_state(nid, N_CPU) { 2428 distance = node_distance(max_nid, nid); 2429 if (distance < near_distance) { 2430 near_nid = nid; 2431 near_distance = distance; 2432 } 2433 } 2434 max_nid = near_nid; 2435 } 2436 2437 if (ng) { 2438 numa_group_count_active_nodes(ng); 2439 spin_unlock_irq(group_lock); 2440 max_nid = preferred_group_nid(p, max_nid); 2441 } 2442 2443 if (max_faults) { 2444 /* Set the new preferred node */ 2445 if (max_nid != p->numa_preferred_nid) 2446 sched_setnuma(p, max_nid); 2447 } 2448 2449 update_task_scan_period(p, fault_types[0], fault_types[1]); 2450 } 2451 2452 static inline int get_numa_group(struct numa_group *grp) 2453 { 2454 return refcount_inc_not_zero(&grp->refcount); 2455 } 2456 2457 static inline void put_numa_group(struct numa_group *grp) 2458 { 2459 if (refcount_dec_and_test(&grp->refcount)) 2460 kfree_rcu(grp, rcu); 2461 } 2462 2463 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2464 int *priv) 2465 { 2466 struct numa_group *grp, *my_grp; 2467 struct task_struct *tsk; 2468 bool join = false; 2469 int cpu = cpupid_to_cpu(cpupid); 2470 int i; 2471 2472 if (unlikely(!deref_curr_numa_group(p))) { 2473 unsigned int size = sizeof(struct numa_group) + 2474 NR_NUMA_HINT_FAULT_STATS * 2475 nr_node_ids * sizeof(unsigned long); 2476 2477 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2478 if (!grp) 2479 return; 2480 2481 refcount_set(&grp->refcount, 1); 2482 grp->active_nodes = 1; 2483 grp->max_faults_cpu = 0; 2484 spin_lock_init(&grp->lock); 2485 grp->gid = p->pid; 2486 2487 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2488 grp->faults[i] = p->numa_faults[i]; 2489 2490 grp->total_faults = p->total_numa_faults; 2491 2492 grp->nr_tasks++; 2493 rcu_assign_pointer(p->numa_group, grp); 2494 } 2495 2496 rcu_read_lock(); 2497 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2498 2499 if (!cpupid_match_pid(tsk, cpupid)) 2500 goto no_join; 2501 2502 grp = rcu_dereference(tsk->numa_group); 2503 if (!grp) 2504 goto no_join; 2505 2506 my_grp = deref_curr_numa_group(p); 2507 if (grp == my_grp) 2508 goto no_join; 2509 2510 /* 2511 * Only join the other group if its bigger; if we're the bigger group, 2512 * the other task will join us. 2513 */ 2514 if (my_grp->nr_tasks > grp->nr_tasks) 2515 goto no_join; 2516 2517 /* 2518 * Tie-break on the grp address. 2519 */ 2520 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2521 goto no_join; 2522 2523 /* Always join threads in the same process. */ 2524 if (tsk->mm == current->mm) 2525 join = true; 2526 2527 /* Simple filter to avoid false positives due to PID collisions */ 2528 if (flags & TNF_SHARED) 2529 join = true; 2530 2531 /* Update priv based on whether false sharing was detected */ 2532 *priv = !join; 2533 2534 if (join && !get_numa_group(grp)) 2535 goto no_join; 2536 2537 rcu_read_unlock(); 2538 2539 if (!join) 2540 return; 2541 2542 BUG_ON(irqs_disabled()); 2543 double_lock_irq(&my_grp->lock, &grp->lock); 2544 2545 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2546 my_grp->faults[i] -= p->numa_faults[i]; 2547 grp->faults[i] += p->numa_faults[i]; 2548 } 2549 my_grp->total_faults -= p->total_numa_faults; 2550 grp->total_faults += p->total_numa_faults; 2551 2552 my_grp->nr_tasks--; 2553 grp->nr_tasks++; 2554 2555 spin_unlock(&my_grp->lock); 2556 spin_unlock_irq(&grp->lock); 2557 2558 rcu_assign_pointer(p->numa_group, grp); 2559 2560 put_numa_group(my_grp); 2561 return; 2562 2563 no_join: 2564 rcu_read_unlock(); 2565 return; 2566 } 2567 2568 /* 2569 * Get rid of NUMA statistics associated with a task (either current or dead). 2570 * If @final is set, the task is dead and has reached refcount zero, so we can 2571 * safely free all relevant data structures. Otherwise, there might be 2572 * concurrent reads from places like load balancing and procfs, and we should 2573 * reset the data back to default state without freeing ->numa_faults. 2574 */ 2575 void task_numa_free(struct task_struct *p, bool final) 2576 { 2577 /* safe: p either is current or is being freed by current */ 2578 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2579 unsigned long *numa_faults = p->numa_faults; 2580 unsigned long flags; 2581 int i; 2582 2583 if (!numa_faults) 2584 return; 2585 2586 if (grp) { 2587 spin_lock_irqsave(&grp->lock, flags); 2588 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2589 grp->faults[i] -= p->numa_faults[i]; 2590 grp->total_faults -= p->total_numa_faults; 2591 2592 grp->nr_tasks--; 2593 spin_unlock_irqrestore(&grp->lock, flags); 2594 RCU_INIT_POINTER(p->numa_group, NULL); 2595 put_numa_group(grp); 2596 } 2597 2598 if (final) { 2599 p->numa_faults = NULL; 2600 kfree(numa_faults); 2601 } else { 2602 p->total_numa_faults = 0; 2603 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2604 numa_faults[i] = 0; 2605 } 2606 } 2607 2608 /* 2609 * Got a PROT_NONE fault for a page on @node. 2610 */ 2611 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2612 { 2613 struct task_struct *p = current; 2614 bool migrated = flags & TNF_MIGRATED; 2615 int cpu_node = task_node(current); 2616 int local = !!(flags & TNF_FAULT_LOCAL); 2617 struct numa_group *ng; 2618 int priv; 2619 2620 if (!static_branch_likely(&sched_numa_balancing)) 2621 return; 2622 2623 /* for example, ksmd faulting in a user's mm */ 2624 if (!p->mm) 2625 return; 2626 2627 /* Allocate buffer to track faults on a per-node basis */ 2628 if (unlikely(!p->numa_faults)) { 2629 int size = sizeof(*p->numa_faults) * 2630 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2631 2632 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2633 if (!p->numa_faults) 2634 return; 2635 2636 p->total_numa_faults = 0; 2637 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2638 } 2639 2640 /* 2641 * First accesses are treated as private, otherwise consider accesses 2642 * to be private if the accessing pid has not changed 2643 */ 2644 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2645 priv = 1; 2646 } else { 2647 priv = cpupid_match_pid(p, last_cpupid); 2648 if (!priv && !(flags & TNF_NO_GROUP)) 2649 task_numa_group(p, last_cpupid, flags, &priv); 2650 } 2651 2652 /* 2653 * If a workload spans multiple NUMA nodes, a shared fault that 2654 * occurs wholly within the set of nodes that the workload is 2655 * actively using should be counted as local. This allows the 2656 * scan rate to slow down when a workload has settled down. 2657 */ 2658 ng = deref_curr_numa_group(p); 2659 if (!priv && !local && ng && ng->active_nodes > 1 && 2660 numa_is_active_node(cpu_node, ng) && 2661 numa_is_active_node(mem_node, ng)) 2662 local = 1; 2663 2664 /* 2665 * Retry to migrate task to preferred node periodically, in case it 2666 * previously failed, or the scheduler moved us. 2667 */ 2668 if (time_after(jiffies, p->numa_migrate_retry)) { 2669 task_numa_placement(p); 2670 numa_migrate_preferred(p); 2671 } 2672 2673 if (migrated) 2674 p->numa_pages_migrated += pages; 2675 if (flags & TNF_MIGRATE_FAIL) 2676 p->numa_faults_locality[2] += pages; 2677 2678 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2679 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2680 p->numa_faults_locality[local] += pages; 2681 } 2682 2683 static void reset_ptenuma_scan(struct task_struct *p) 2684 { 2685 /* 2686 * We only did a read acquisition of the mmap sem, so 2687 * p->mm->numa_scan_seq is written to without exclusive access 2688 * and the update is not guaranteed to be atomic. That's not 2689 * much of an issue though, since this is just used for 2690 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2691 * expensive, to avoid any form of compiler optimizations: 2692 */ 2693 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2694 p->mm->numa_scan_offset = 0; 2695 } 2696 2697 /* 2698 * The expensive part of numa migration is done from task_work context. 2699 * Triggered from task_tick_numa(). 2700 */ 2701 static void task_numa_work(struct callback_head *work) 2702 { 2703 unsigned long migrate, next_scan, now = jiffies; 2704 struct task_struct *p = current; 2705 struct mm_struct *mm = p->mm; 2706 u64 runtime = p->se.sum_exec_runtime; 2707 struct vm_area_struct *vma; 2708 unsigned long start, end; 2709 unsigned long nr_pte_updates = 0; 2710 long pages, virtpages; 2711 2712 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2713 2714 work->next = work; 2715 /* 2716 * Who cares about NUMA placement when they're dying. 2717 * 2718 * NOTE: make sure not to dereference p->mm before this check, 2719 * exit_task_work() happens _after_ exit_mm() so we could be called 2720 * without p->mm even though we still had it when we enqueued this 2721 * work. 2722 */ 2723 if (p->flags & PF_EXITING) 2724 return; 2725 2726 if (!mm->numa_next_scan) { 2727 mm->numa_next_scan = now + 2728 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2729 } 2730 2731 /* 2732 * Enforce maximal scan/migration frequency.. 2733 */ 2734 migrate = mm->numa_next_scan; 2735 if (time_before(now, migrate)) 2736 return; 2737 2738 if (p->numa_scan_period == 0) { 2739 p->numa_scan_period_max = task_scan_max(p); 2740 p->numa_scan_period = task_scan_start(p); 2741 } 2742 2743 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2744 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2745 return; 2746 2747 /* 2748 * Delay this task enough that another task of this mm will likely win 2749 * the next time around. 2750 */ 2751 p->node_stamp += 2 * TICK_NSEC; 2752 2753 start = mm->numa_scan_offset; 2754 pages = sysctl_numa_balancing_scan_size; 2755 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2756 virtpages = pages * 8; /* Scan up to this much virtual space */ 2757 if (!pages) 2758 return; 2759 2760 2761 if (!mmap_read_trylock(mm)) 2762 return; 2763 vma = find_vma(mm, start); 2764 if (!vma) { 2765 reset_ptenuma_scan(p); 2766 start = 0; 2767 vma = mm->mmap; 2768 } 2769 for (; vma; vma = vma->vm_next) { 2770 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2771 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2772 continue; 2773 } 2774 2775 /* 2776 * Shared library pages mapped by multiple processes are not 2777 * migrated as it is expected they are cache replicated. Avoid 2778 * hinting faults in read-only file-backed mappings or the vdso 2779 * as migrating the pages will be of marginal benefit. 2780 */ 2781 if (!vma->vm_mm || 2782 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2783 continue; 2784 2785 /* 2786 * Skip inaccessible VMAs to avoid any confusion between 2787 * PROT_NONE and NUMA hinting ptes 2788 */ 2789 if (!vma_is_accessible(vma)) 2790 continue; 2791 2792 do { 2793 start = max(start, vma->vm_start); 2794 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2795 end = min(end, vma->vm_end); 2796 nr_pte_updates = change_prot_numa(vma, start, end); 2797 2798 /* 2799 * Try to scan sysctl_numa_balancing_size worth of 2800 * hpages that have at least one present PTE that 2801 * is not already pte-numa. If the VMA contains 2802 * areas that are unused or already full of prot_numa 2803 * PTEs, scan up to virtpages, to skip through those 2804 * areas faster. 2805 */ 2806 if (nr_pte_updates) 2807 pages -= (end - start) >> PAGE_SHIFT; 2808 virtpages -= (end - start) >> PAGE_SHIFT; 2809 2810 start = end; 2811 if (pages <= 0 || virtpages <= 0) 2812 goto out; 2813 2814 cond_resched(); 2815 } while (end != vma->vm_end); 2816 } 2817 2818 out: 2819 /* 2820 * It is possible to reach the end of the VMA list but the last few 2821 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2822 * would find the !migratable VMA on the next scan but not reset the 2823 * scanner to the start so check it now. 2824 */ 2825 if (vma) 2826 mm->numa_scan_offset = start; 2827 else 2828 reset_ptenuma_scan(p); 2829 mmap_read_unlock(mm); 2830 2831 /* 2832 * Make sure tasks use at least 32x as much time to run other code 2833 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2834 * Usually update_task_scan_period slows down scanning enough; on an 2835 * overloaded system we need to limit overhead on a per task basis. 2836 */ 2837 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2838 u64 diff = p->se.sum_exec_runtime - runtime; 2839 p->node_stamp += 32 * diff; 2840 } 2841 } 2842 2843 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2844 { 2845 int mm_users = 0; 2846 struct mm_struct *mm = p->mm; 2847 2848 if (mm) { 2849 mm_users = atomic_read(&mm->mm_users); 2850 if (mm_users == 1) { 2851 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2852 mm->numa_scan_seq = 0; 2853 } 2854 } 2855 p->node_stamp = 0; 2856 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2857 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2858 /* Protect against double add, see task_tick_numa and task_numa_work */ 2859 p->numa_work.next = &p->numa_work; 2860 p->numa_faults = NULL; 2861 p->numa_pages_migrated = 0; 2862 p->total_numa_faults = 0; 2863 RCU_INIT_POINTER(p->numa_group, NULL); 2864 p->last_task_numa_placement = 0; 2865 p->last_sum_exec_runtime = 0; 2866 2867 init_task_work(&p->numa_work, task_numa_work); 2868 2869 /* New address space, reset the preferred nid */ 2870 if (!(clone_flags & CLONE_VM)) { 2871 p->numa_preferred_nid = NUMA_NO_NODE; 2872 return; 2873 } 2874 2875 /* 2876 * New thread, keep existing numa_preferred_nid which should be copied 2877 * already by arch_dup_task_struct but stagger when scans start. 2878 */ 2879 if (mm) { 2880 unsigned int delay; 2881 2882 delay = min_t(unsigned int, task_scan_max(current), 2883 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2884 delay += 2 * TICK_NSEC; 2885 p->node_stamp = delay; 2886 } 2887 } 2888 2889 /* 2890 * Drive the periodic memory faults.. 2891 */ 2892 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2893 { 2894 struct callback_head *work = &curr->numa_work; 2895 u64 period, now; 2896 2897 /* 2898 * We don't care about NUMA placement if we don't have memory. 2899 */ 2900 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 2901 return; 2902 2903 /* 2904 * Using runtime rather than walltime has the dual advantage that 2905 * we (mostly) drive the selection from busy threads and that the 2906 * task needs to have done some actual work before we bother with 2907 * NUMA placement. 2908 */ 2909 now = curr->se.sum_exec_runtime; 2910 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2911 2912 if (now > curr->node_stamp + period) { 2913 if (!curr->node_stamp) 2914 curr->numa_scan_period = task_scan_start(curr); 2915 curr->node_stamp += period; 2916 2917 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2918 task_work_add(curr, work, TWA_RESUME); 2919 } 2920 } 2921 2922 static void update_scan_period(struct task_struct *p, int new_cpu) 2923 { 2924 int src_nid = cpu_to_node(task_cpu(p)); 2925 int dst_nid = cpu_to_node(new_cpu); 2926 2927 if (!static_branch_likely(&sched_numa_balancing)) 2928 return; 2929 2930 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2931 return; 2932 2933 if (src_nid == dst_nid) 2934 return; 2935 2936 /* 2937 * Allow resets if faults have been trapped before one scan 2938 * has completed. This is most likely due to a new task that 2939 * is pulled cross-node due to wakeups or load balancing. 2940 */ 2941 if (p->numa_scan_seq) { 2942 /* 2943 * Avoid scan adjustments if moving to the preferred 2944 * node or if the task was not previously running on 2945 * the preferred node. 2946 */ 2947 if (dst_nid == p->numa_preferred_nid || 2948 (p->numa_preferred_nid != NUMA_NO_NODE && 2949 src_nid != p->numa_preferred_nid)) 2950 return; 2951 } 2952 2953 p->numa_scan_period = task_scan_start(p); 2954 } 2955 2956 #else 2957 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2958 { 2959 } 2960 2961 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2962 { 2963 } 2964 2965 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2966 { 2967 } 2968 2969 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2970 { 2971 } 2972 2973 #endif /* CONFIG_NUMA_BALANCING */ 2974 2975 static void 2976 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2977 { 2978 update_load_add(&cfs_rq->load, se->load.weight); 2979 #ifdef CONFIG_SMP 2980 if (entity_is_task(se)) { 2981 struct rq *rq = rq_of(cfs_rq); 2982 2983 account_numa_enqueue(rq, task_of(se)); 2984 list_add(&se->group_node, &rq->cfs_tasks); 2985 } 2986 #endif 2987 cfs_rq->nr_running++; 2988 if (se_is_idle(se)) 2989 cfs_rq->idle_nr_running++; 2990 } 2991 2992 static void 2993 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2994 { 2995 update_load_sub(&cfs_rq->load, se->load.weight); 2996 #ifdef CONFIG_SMP 2997 if (entity_is_task(se)) { 2998 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2999 list_del_init(&se->group_node); 3000 } 3001 #endif 3002 cfs_rq->nr_running--; 3003 if (se_is_idle(se)) 3004 cfs_rq->idle_nr_running--; 3005 } 3006 3007 /* 3008 * Signed add and clamp on underflow. 3009 * 3010 * Explicitly do a load-store to ensure the intermediate value never hits 3011 * memory. This allows lockless observations without ever seeing the negative 3012 * values. 3013 */ 3014 #define add_positive(_ptr, _val) do { \ 3015 typeof(_ptr) ptr = (_ptr); \ 3016 typeof(_val) val = (_val); \ 3017 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3018 \ 3019 res = var + val; \ 3020 \ 3021 if (val < 0 && res > var) \ 3022 res = 0; \ 3023 \ 3024 WRITE_ONCE(*ptr, res); \ 3025 } while (0) 3026 3027 /* 3028 * Unsigned subtract and clamp on underflow. 3029 * 3030 * Explicitly do a load-store to ensure the intermediate value never hits 3031 * memory. This allows lockless observations without ever seeing the negative 3032 * values. 3033 */ 3034 #define sub_positive(_ptr, _val) do { \ 3035 typeof(_ptr) ptr = (_ptr); \ 3036 typeof(*ptr) val = (_val); \ 3037 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3038 res = var - val; \ 3039 if (res > var) \ 3040 res = 0; \ 3041 WRITE_ONCE(*ptr, res); \ 3042 } while (0) 3043 3044 /* 3045 * Remove and clamp on negative, from a local variable. 3046 * 3047 * A variant of sub_positive(), which does not use explicit load-store 3048 * and is thus optimized for local variable updates. 3049 */ 3050 #define lsub_positive(_ptr, _val) do { \ 3051 typeof(_ptr) ptr = (_ptr); \ 3052 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3053 } while (0) 3054 3055 #ifdef CONFIG_SMP 3056 static inline void 3057 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3058 { 3059 cfs_rq->avg.load_avg += se->avg.load_avg; 3060 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3061 } 3062 3063 static inline void 3064 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3065 { 3066 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3067 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3068 /* See update_cfs_rq_load_avg() */ 3069 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3070 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3071 } 3072 #else 3073 static inline void 3074 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3075 static inline void 3076 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3077 #endif 3078 3079 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3080 unsigned long weight) 3081 { 3082 if (se->on_rq) { 3083 /* commit outstanding execution time */ 3084 if (cfs_rq->curr == se) 3085 update_curr(cfs_rq); 3086 update_load_sub(&cfs_rq->load, se->load.weight); 3087 } 3088 dequeue_load_avg(cfs_rq, se); 3089 3090 update_load_set(&se->load, weight); 3091 3092 #ifdef CONFIG_SMP 3093 do { 3094 u32 divider = get_pelt_divider(&se->avg); 3095 3096 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3097 } while (0); 3098 #endif 3099 3100 enqueue_load_avg(cfs_rq, se); 3101 if (se->on_rq) 3102 update_load_add(&cfs_rq->load, se->load.weight); 3103 3104 } 3105 3106 void reweight_task(struct task_struct *p, int prio) 3107 { 3108 struct sched_entity *se = &p->se; 3109 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3110 struct load_weight *load = &se->load; 3111 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3112 3113 reweight_entity(cfs_rq, se, weight); 3114 load->inv_weight = sched_prio_to_wmult[prio]; 3115 } 3116 3117 #ifdef CONFIG_FAIR_GROUP_SCHED 3118 #ifdef CONFIG_SMP 3119 /* 3120 * All this does is approximate the hierarchical proportion which includes that 3121 * global sum we all love to hate. 3122 * 3123 * That is, the weight of a group entity, is the proportional share of the 3124 * group weight based on the group runqueue weights. That is: 3125 * 3126 * tg->weight * grq->load.weight 3127 * ge->load.weight = ----------------------------- (1) 3128 * \Sum grq->load.weight 3129 * 3130 * Now, because computing that sum is prohibitively expensive to compute (been 3131 * there, done that) we approximate it with this average stuff. The average 3132 * moves slower and therefore the approximation is cheaper and more stable. 3133 * 3134 * So instead of the above, we substitute: 3135 * 3136 * grq->load.weight -> grq->avg.load_avg (2) 3137 * 3138 * which yields the following: 3139 * 3140 * tg->weight * grq->avg.load_avg 3141 * ge->load.weight = ------------------------------ (3) 3142 * tg->load_avg 3143 * 3144 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3145 * 3146 * That is shares_avg, and it is right (given the approximation (2)). 3147 * 3148 * The problem with it is that because the average is slow -- it was designed 3149 * to be exactly that of course -- this leads to transients in boundary 3150 * conditions. In specific, the case where the group was idle and we start the 3151 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3152 * yielding bad latency etc.. 3153 * 3154 * Now, in that special case (1) reduces to: 3155 * 3156 * tg->weight * grq->load.weight 3157 * ge->load.weight = ----------------------------- = tg->weight (4) 3158 * grp->load.weight 3159 * 3160 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3161 * 3162 * So what we do is modify our approximation (3) to approach (4) in the (near) 3163 * UP case, like: 3164 * 3165 * ge->load.weight = 3166 * 3167 * tg->weight * grq->load.weight 3168 * --------------------------------------------------- (5) 3169 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3170 * 3171 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3172 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3173 * 3174 * 3175 * tg->weight * grq->load.weight 3176 * ge->load.weight = ----------------------------- (6) 3177 * tg_load_avg' 3178 * 3179 * Where: 3180 * 3181 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3182 * max(grq->load.weight, grq->avg.load_avg) 3183 * 3184 * And that is shares_weight and is icky. In the (near) UP case it approaches 3185 * (4) while in the normal case it approaches (3). It consistently 3186 * overestimates the ge->load.weight and therefore: 3187 * 3188 * \Sum ge->load.weight >= tg->weight 3189 * 3190 * hence icky! 3191 */ 3192 static long calc_group_shares(struct cfs_rq *cfs_rq) 3193 { 3194 long tg_weight, tg_shares, load, shares; 3195 struct task_group *tg = cfs_rq->tg; 3196 3197 tg_shares = READ_ONCE(tg->shares); 3198 3199 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3200 3201 tg_weight = atomic_long_read(&tg->load_avg); 3202 3203 /* Ensure tg_weight >= load */ 3204 tg_weight -= cfs_rq->tg_load_avg_contrib; 3205 tg_weight += load; 3206 3207 shares = (tg_shares * load); 3208 if (tg_weight) 3209 shares /= tg_weight; 3210 3211 /* 3212 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3213 * of a group with small tg->shares value. It is a floor value which is 3214 * assigned as a minimum load.weight to the sched_entity representing 3215 * the group on a CPU. 3216 * 3217 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3218 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3219 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3220 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3221 * instead of 0. 3222 */ 3223 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3224 } 3225 #endif /* CONFIG_SMP */ 3226 3227 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3228 3229 /* 3230 * Recomputes the group entity based on the current state of its group 3231 * runqueue. 3232 */ 3233 static void update_cfs_group(struct sched_entity *se) 3234 { 3235 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3236 long shares; 3237 3238 if (!gcfs_rq) 3239 return; 3240 3241 if (throttled_hierarchy(gcfs_rq)) 3242 return; 3243 3244 #ifndef CONFIG_SMP 3245 shares = READ_ONCE(gcfs_rq->tg->shares); 3246 3247 if (likely(se->load.weight == shares)) 3248 return; 3249 #else 3250 shares = calc_group_shares(gcfs_rq); 3251 #endif 3252 3253 reweight_entity(cfs_rq_of(se), se, shares); 3254 } 3255 3256 #else /* CONFIG_FAIR_GROUP_SCHED */ 3257 static inline void update_cfs_group(struct sched_entity *se) 3258 { 3259 } 3260 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3261 3262 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3263 { 3264 struct rq *rq = rq_of(cfs_rq); 3265 3266 if (&rq->cfs == cfs_rq) { 3267 /* 3268 * There are a few boundary cases this might miss but it should 3269 * get called often enough that that should (hopefully) not be 3270 * a real problem. 3271 * 3272 * It will not get called when we go idle, because the idle 3273 * thread is a different class (!fair), nor will the utilization 3274 * number include things like RT tasks. 3275 * 3276 * As is, the util number is not freq-invariant (we'd have to 3277 * implement arch_scale_freq_capacity() for that). 3278 * 3279 * See cpu_util_cfs(). 3280 */ 3281 cpufreq_update_util(rq, flags); 3282 } 3283 } 3284 3285 #ifdef CONFIG_SMP 3286 #ifdef CONFIG_FAIR_GROUP_SCHED 3287 /* 3288 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 3289 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 3290 * bottom-up, we only have to test whether the cfs_rq before us on the list 3291 * is our child. 3292 * If cfs_rq is not on the list, test whether a child needs its to be added to 3293 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 3294 */ 3295 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 3296 { 3297 struct cfs_rq *prev_cfs_rq; 3298 struct list_head *prev; 3299 3300 if (cfs_rq->on_list) { 3301 prev = cfs_rq->leaf_cfs_rq_list.prev; 3302 } else { 3303 struct rq *rq = rq_of(cfs_rq); 3304 3305 prev = rq->tmp_alone_branch; 3306 } 3307 3308 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 3309 3310 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 3311 } 3312 3313 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 3314 { 3315 if (cfs_rq->load.weight) 3316 return false; 3317 3318 if (cfs_rq->avg.load_sum) 3319 return false; 3320 3321 if (cfs_rq->avg.util_sum) 3322 return false; 3323 3324 if (cfs_rq->avg.runnable_sum) 3325 return false; 3326 3327 if (child_cfs_rq_on_list(cfs_rq)) 3328 return false; 3329 3330 /* 3331 * _avg must be null when _sum are null because _avg = _sum / divider 3332 * Make sure that rounding and/or propagation of PELT values never 3333 * break this. 3334 */ 3335 SCHED_WARN_ON(cfs_rq->avg.load_avg || 3336 cfs_rq->avg.util_avg || 3337 cfs_rq->avg.runnable_avg); 3338 3339 return true; 3340 } 3341 3342 /** 3343 * update_tg_load_avg - update the tg's load avg 3344 * @cfs_rq: the cfs_rq whose avg changed 3345 * 3346 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3347 * However, because tg->load_avg is a global value there are performance 3348 * considerations. 3349 * 3350 * In order to avoid having to look at the other cfs_rq's, we use a 3351 * differential update where we store the last value we propagated. This in 3352 * turn allows skipping updates if the differential is 'small'. 3353 * 3354 * Updating tg's load_avg is necessary before update_cfs_share(). 3355 */ 3356 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3357 { 3358 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3359 3360 /* 3361 * No need to update load_avg for root_task_group as it is not used. 3362 */ 3363 if (cfs_rq->tg == &root_task_group) 3364 return; 3365 3366 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3367 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3368 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3369 } 3370 } 3371 3372 /* 3373 * Called within set_task_rq() right before setting a task's CPU. The 3374 * caller only guarantees p->pi_lock is held; no other assumptions, 3375 * including the state of rq->lock, should be made. 3376 */ 3377 void set_task_rq_fair(struct sched_entity *se, 3378 struct cfs_rq *prev, struct cfs_rq *next) 3379 { 3380 u64 p_last_update_time; 3381 u64 n_last_update_time; 3382 3383 if (!sched_feat(ATTACH_AGE_LOAD)) 3384 return; 3385 3386 /* 3387 * We are supposed to update the task to "current" time, then its up to 3388 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3389 * getting what current time is, so simply throw away the out-of-date 3390 * time. This will result in the wakee task is less decayed, but giving 3391 * the wakee more load sounds not bad. 3392 */ 3393 if (!(se->avg.last_update_time && prev)) 3394 return; 3395 3396 #ifndef CONFIG_64BIT 3397 { 3398 u64 p_last_update_time_copy; 3399 u64 n_last_update_time_copy; 3400 3401 do { 3402 p_last_update_time_copy = prev->load_last_update_time_copy; 3403 n_last_update_time_copy = next->load_last_update_time_copy; 3404 3405 smp_rmb(); 3406 3407 p_last_update_time = prev->avg.last_update_time; 3408 n_last_update_time = next->avg.last_update_time; 3409 3410 } while (p_last_update_time != p_last_update_time_copy || 3411 n_last_update_time != n_last_update_time_copy); 3412 } 3413 #else 3414 p_last_update_time = prev->avg.last_update_time; 3415 n_last_update_time = next->avg.last_update_time; 3416 #endif 3417 __update_load_avg_blocked_se(p_last_update_time, se); 3418 se->avg.last_update_time = n_last_update_time; 3419 } 3420 3421 /* 3422 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3423 * propagate its contribution. The key to this propagation is the invariant 3424 * that for each group: 3425 * 3426 * ge->avg == grq->avg (1) 3427 * 3428 * _IFF_ we look at the pure running and runnable sums. Because they 3429 * represent the very same entity, just at different points in the hierarchy. 3430 * 3431 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3432 * and simply copies the running/runnable sum over (but still wrong, because 3433 * the group entity and group rq do not have their PELT windows aligned). 3434 * 3435 * However, update_tg_cfs_load() is more complex. So we have: 3436 * 3437 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3438 * 3439 * And since, like util, the runnable part should be directly transferable, 3440 * the following would _appear_ to be the straight forward approach: 3441 * 3442 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3443 * 3444 * And per (1) we have: 3445 * 3446 * ge->avg.runnable_avg == grq->avg.runnable_avg 3447 * 3448 * Which gives: 3449 * 3450 * ge->load.weight * grq->avg.load_avg 3451 * ge->avg.load_avg = ----------------------------------- (4) 3452 * grq->load.weight 3453 * 3454 * Except that is wrong! 3455 * 3456 * Because while for entities historical weight is not important and we 3457 * really only care about our future and therefore can consider a pure 3458 * runnable sum, runqueues can NOT do this. 3459 * 3460 * We specifically want runqueues to have a load_avg that includes 3461 * historical weights. Those represent the blocked load, the load we expect 3462 * to (shortly) return to us. This only works by keeping the weights as 3463 * integral part of the sum. We therefore cannot decompose as per (3). 3464 * 3465 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3466 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3467 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3468 * runnable section of these tasks overlap (or not). If they were to perfectly 3469 * align the rq as a whole would be runnable 2/3 of the time. If however we 3470 * always have at least 1 runnable task, the rq as a whole is always runnable. 3471 * 3472 * So we'll have to approximate.. :/ 3473 * 3474 * Given the constraint: 3475 * 3476 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3477 * 3478 * We can construct a rule that adds runnable to a rq by assuming minimal 3479 * overlap. 3480 * 3481 * On removal, we'll assume each task is equally runnable; which yields: 3482 * 3483 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3484 * 3485 * XXX: only do this for the part of runnable > running ? 3486 * 3487 */ 3488 static inline void 3489 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3490 { 3491 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 3492 u32 new_sum, divider; 3493 3494 /* Nothing to update */ 3495 if (!delta_avg) 3496 return; 3497 3498 /* 3499 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3500 * See ___update_load_avg() for details. 3501 */ 3502 divider = get_pelt_divider(&cfs_rq->avg); 3503 3504 3505 /* Set new sched_entity's utilization */ 3506 se->avg.util_avg = gcfs_rq->avg.util_avg; 3507 new_sum = se->avg.util_avg * divider; 3508 delta_sum = (long)new_sum - (long)se->avg.util_sum; 3509 se->avg.util_sum = new_sum; 3510 3511 /* Update parent cfs_rq utilization */ 3512 add_positive(&cfs_rq->avg.util_avg, delta_avg); 3513 add_positive(&cfs_rq->avg.util_sum, delta_sum); 3514 3515 /* See update_cfs_rq_load_avg() */ 3516 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 3517 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 3518 } 3519 3520 static inline void 3521 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3522 { 3523 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3524 u32 new_sum, divider; 3525 3526 /* Nothing to update */ 3527 if (!delta_avg) 3528 return; 3529 3530 /* 3531 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3532 * See ___update_load_avg() for details. 3533 */ 3534 divider = get_pelt_divider(&cfs_rq->avg); 3535 3536 /* Set new sched_entity's runnable */ 3537 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3538 new_sum = se->avg.runnable_avg * divider; 3539 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 3540 se->avg.runnable_sum = new_sum; 3541 3542 /* Update parent cfs_rq runnable */ 3543 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 3544 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 3545 /* See update_cfs_rq_load_avg() */ 3546 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 3547 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 3548 } 3549 3550 static inline void 3551 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3552 { 3553 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3554 unsigned long load_avg; 3555 u64 load_sum = 0; 3556 s64 delta_sum; 3557 u32 divider; 3558 3559 if (!runnable_sum) 3560 return; 3561 3562 gcfs_rq->prop_runnable_sum = 0; 3563 3564 /* 3565 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3566 * See ___update_load_avg() for details. 3567 */ 3568 divider = get_pelt_divider(&cfs_rq->avg); 3569 3570 if (runnable_sum >= 0) { 3571 /* 3572 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3573 * the CPU is saturated running == runnable. 3574 */ 3575 runnable_sum += se->avg.load_sum; 3576 runnable_sum = min_t(long, runnable_sum, divider); 3577 } else { 3578 /* 3579 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3580 * assuming all tasks are equally runnable. 3581 */ 3582 if (scale_load_down(gcfs_rq->load.weight)) { 3583 load_sum = div_u64(gcfs_rq->avg.load_sum, 3584 scale_load_down(gcfs_rq->load.weight)); 3585 } 3586 3587 /* But make sure to not inflate se's runnable */ 3588 runnable_sum = min(se->avg.load_sum, load_sum); 3589 } 3590 3591 /* 3592 * runnable_sum can't be lower than running_sum 3593 * Rescale running sum to be in the same range as runnable sum 3594 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3595 * runnable_sum is in [0 : LOAD_AVG_MAX] 3596 */ 3597 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3598 runnable_sum = max(runnable_sum, running_sum); 3599 3600 load_sum = se_weight(se) * runnable_sum; 3601 load_avg = div_u64(load_sum, divider); 3602 3603 delta_avg = load_avg - se->avg.load_avg; 3604 if (!delta_avg) 3605 return; 3606 3607 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3608 3609 se->avg.load_sum = runnable_sum; 3610 se->avg.load_avg = load_avg; 3611 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3612 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3613 /* See update_cfs_rq_load_avg() */ 3614 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3615 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3616 } 3617 3618 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3619 { 3620 cfs_rq->propagate = 1; 3621 cfs_rq->prop_runnable_sum += runnable_sum; 3622 } 3623 3624 /* Update task and its cfs_rq load average */ 3625 static inline int propagate_entity_load_avg(struct sched_entity *se) 3626 { 3627 struct cfs_rq *cfs_rq, *gcfs_rq; 3628 3629 if (entity_is_task(se)) 3630 return 0; 3631 3632 gcfs_rq = group_cfs_rq(se); 3633 if (!gcfs_rq->propagate) 3634 return 0; 3635 3636 gcfs_rq->propagate = 0; 3637 3638 cfs_rq = cfs_rq_of(se); 3639 3640 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3641 3642 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3643 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3644 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3645 3646 trace_pelt_cfs_tp(cfs_rq); 3647 trace_pelt_se_tp(se); 3648 3649 return 1; 3650 } 3651 3652 /* 3653 * Check if we need to update the load and the utilization of a blocked 3654 * group_entity: 3655 */ 3656 static inline bool skip_blocked_update(struct sched_entity *se) 3657 { 3658 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3659 3660 /* 3661 * If sched_entity still have not zero load or utilization, we have to 3662 * decay it: 3663 */ 3664 if (se->avg.load_avg || se->avg.util_avg) 3665 return false; 3666 3667 /* 3668 * If there is a pending propagation, we have to update the load and 3669 * the utilization of the sched_entity: 3670 */ 3671 if (gcfs_rq->propagate) 3672 return false; 3673 3674 /* 3675 * Otherwise, the load and the utilization of the sched_entity is 3676 * already zero and there is no pending propagation, so it will be a 3677 * waste of time to try to decay it: 3678 */ 3679 return true; 3680 } 3681 3682 #else /* CONFIG_FAIR_GROUP_SCHED */ 3683 3684 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 3685 3686 static inline int propagate_entity_load_avg(struct sched_entity *se) 3687 { 3688 return 0; 3689 } 3690 3691 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3692 3693 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3694 3695 /** 3696 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3697 * @now: current time, as per cfs_rq_clock_pelt() 3698 * @cfs_rq: cfs_rq to update 3699 * 3700 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3701 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3702 * post_init_entity_util_avg(). 3703 * 3704 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3705 * 3706 * Return: true if the load decayed or we removed load. 3707 * 3708 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3709 * call update_tg_load_avg() when this function returns true. 3710 */ 3711 static inline int 3712 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3713 { 3714 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 3715 struct sched_avg *sa = &cfs_rq->avg; 3716 int decayed = 0; 3717 3718 if (cfs_rq->removed.nr) { 3719 unsigned long r; 3720 u32 divider = get_pelt_divider(&cfs_rq->avg); 3721 3722 raw_spin_lock(&cfs_rq->removed.lock); 3723 swap(cfs_rq->removed.util_avg, removed_util); 3724 swap(cfs_rq->removed.load_avg, removed_load); 3725 swap(cfs_rq->removed.runnable_avg, removed_runnable); 3726 cfs_rq->removed.nr = 0; 3727 raw_spin_unlock(&cfs_rq->removed.lock); 3728 3729 r = removed_load; 3730 sub_positive(&sa->load_avg, r); 3731 sub_positive(&sa->load_sum, r * divider); 3732 /* See sa->util_sum below */ 3733 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 3734 3735 r = removed_util; 3736 sub_positive(&sa->util_avg, r); 3737 sub_positive(&sa->util_sum, r * divider); 3738 /* 3739 * Because of rounding, se->util_sum might ends up being +1 more than 3740 * cfs->util_sum. Although this is not a problem by itself, detaching 3741 * a lot of tasks with the rounding problem between 2 updates of 3742 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 3743 * cfs_util_avg is not. 3744 * Check that util_sum is still above its lower bound for the new 3745 * util_avg. Given that period_contrib might have moved since the last 3746 * sync, we are only sure that util_sum must be above or equal to 3747 * util_avg * minimum possible divider 3748 */ 3749 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 3750 3751 r = removed_runnable; 3752 sub_positive(&sa->runnable_avg, r); 3753 sub_positive(&sa->runnable_sum, r * divider); 3754 /* See sa->util_sum above */ 3755 sa->runnable_sum = max_t(u32, sa->runnable_sum, 3756 sa->runnable_avg * PELT_MIN_DIVIDER); 3757 3758 /* 3759 * removed_runnable is the unweighted version of removed_load so we 3760 * can use it to estimate removed_load_sum. 3761 */ 3762 add_tg_cfs_propagate(cfs_rq, 3763 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 3764 3765 decayed = 1; 3766 } 3767 3768 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3769 3770 #ifndef CONFIG_64BIT 3771 smp_wmb(); 3772 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3773 #endif 3774 3775 return decayed; 3776 } 3777 3778 /** 3779 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3780 * @cfs_rq: cfs_rq to attach to 3781 * @se: sched_entity to attach 3782 * 3783 * Must call update_cfs_rq_load_avg() before this, since we rely on 3784 * cfs_rq->avg.last_update_time being current. 3785 */ 3786 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3787 { 3788 /* 3789 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3790 * See ___update_load_avg() for details. 3791 */ 3792 u32 divider = get_pelt_divider(&cfs_rq->avg); 3793 3794 /* 3795 * When we attach the @se to the @cfs_rq, we must align the decay 3796 * window because without that, really weird and wonderful things can 3797 * happen. 3798 * 3799 * XXX illustrate 3800 */ 3801 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3802 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3803 3804 /* 3805 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3806 * period_contrib. This isn't strictly correct, but since we're 3807 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3808 * _sum a little. 3809 */ 3810 se->avg.util_sum = se->avg.util_avg * divider; 3811 3812 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3813 3814 se->avg.load_sum = se->avg.load_avg * divider; 3815 if (se_weight(se) < se->avg.load_sum) 3816 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 3817 else 3818 se->avg.load_sum = 1; 3819 3820 enqueue_load_avg(cfs_rq, se); 3821 cfs_rq->avg.util_avg += se->avg.util_avg; 3822 cfs_rq->avg.util_sum += se->avg.util_sum; 3823 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 3824 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 3825 3826 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3827 3828 cfs_rq_util_change(cfs_rq, 0); 3829 3830 trace_pelt_cfs_tp(cfs_rq); 3831 } 3832 3833 /** 3834 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3835 * @cfs_rq: cfs_rq to detach from 3836 * @se: sched_entity to detach 3837 * 3838 * Must call update_cfs_rq_load_avg() before this, since we rely on 3839 * cfs_rq->avg.last_update_time being current. 3840 */ 3841 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3842 { 3843 dequeue_load_avg(cfs_rq, se); 3844 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3845 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3846 /* See update_cfs_rq_load_avg() */ 3847 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 3848 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 3849 3850 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 3851 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 3852 /* See update_cfs_rq_load_avg() */ 3853 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 3854 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 3855 3856 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3857 3858 cfs_rq_util_change(cfs_rq, 0); 3859 3860 trace_pelt_cfs_tp(cfs_rq); 3861 } 3862 3863 /* 3864 * Optional action to be done while updating the load average 3865 */ 3866 #define UPDATE_TG 0x1 3867 #define SKIP_AGE_LOAD 0x2 3868 #define DO_ATTACH 0x4 3869 3870 /* Update task and its cfs_rq load average */ 3871 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3872 { 3873 u64 now = cfs_rq_clock_pelt(cfs_rq); 3874 int decayed; 3875 3876 /* 3877 * Track task load average for carrying it to new CPU after migrated, and 3878 * track group sched_entity load average for task_h_load calc in migration 3879 */ 3880 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3881 __update_load_avg_se(now, cfs_rq, se); 3882 3883 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3884 decayed |= propagate_entity_load_avg(se); 3885 3886 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3887 3888 /* 3889 * DO_ATTACH means we're here from enqueue_entity(). 3890 * !last_update_time means we've passed through 3891 * migrate_task_rq_fair() indicating we migrated. 3892 * 3893 * IOW we're enqueueing a task on a new CPU. 3894 */ 3895 attach_entity_load_avg(cfs_rq, se); 3896 update_tg_load_avg(cfs_rq); 3897 3898 } else if (decayed) { 3899 cfs_rq_util_change(cfs_rq, 0); 3900 3901 if (flags & UPDATE_TG) 3902 update_tg_load_avg(cfs_rq); 3903 } 3904 } 3905 3906 #ifndef CONFIG_64BIT 3907 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3908 { 3909 u64 last_update_time_copy; 3910 u64 last_update_time; 3911 3912 do { 3913 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3914 smp_rmb(); 3915 last_update_time = cfs_rq->avg.last_update_time; 3916 } while (last_update_time != last_update_time_copy); 3917 3918 return last_update_time; 3919 } 3920 #else 3921 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3922 { 3923 return cfs_rq->avg.last_update_time; 3924 } 3925 #endif 3926 3927 /* 3928 * Synchronize entity load avg of dequeued entity without locking 3929 * the previous rq. 3930 */ 3931 static void sync_entity_load_avg(struct sched_entity *se) 3932 { 3933 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3934 u64 last_update_time; 3935 3936 last_update_time = cfs_rq_last_update_time(cfs_rq); 3937 __update_load_avg_blocked_se(last_update_time, se); 3938 } 3939 3940 /* 3941 * Task first catches up with cfs_rq, and then subtract 3942 * itself from the cfs_rq (task must be off the queue now). 3943 */ 3944 static void remove_entity_load_avg(struct sched_entity *se) 3945 { 3946 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3947 unsigned long flags; 3948 3949 /* 3950 * tasks cannot exit without having gone through wake_up_new_task() -> 3951 * post_init_entity_util_avg() which will have added things to the 3952 * cfs_rq, so we can remove unconditionally. 3953 */ 3954 3955 sync_entity_load_avg(se); 3956 3957 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3958 ++cfs_rq->removed.nr; 3959 cfs_rq->removed.util_avg += se->avg.util_avg; 3960 cfs_rq->removed.load_avg += se->avg.load_avg; 3961 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 3962 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3963 } 3964 3965 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 3966 { 3967 return cfs_rq->avg.runnable_avg; 3968 } 3969 3970 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3971 { 3972 return cfs_rq->avg.load_avg; 3973 } 3974 3975 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 3976 3977 static inline unsigned long task_util(struct task_struct *p) 3978 { 3979 return READ_ONCE(p->se.avg.util_avg); 3980 } 3981 3982 static inline unsigned long _task_util_est(struct task_struct *p) 3983 { 3984 struct util_est ue = READ_ONCE(p->se.avg.util_est); 3985 3986 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 3987 } 3988 3989 static inline unsigned long task_util_est(struct task_struct *p) 3990 { 3991 return max(task_util(p), _task_util_est(p)); 3992 } 3993 3994 #ifdef CONFIG_UCLAMP_TASK 3995 static inline unsigned long uclamp_task_util(struct task_struct *p) 3996 { 3997 return clamp(task_util_est(p), 3998 uclamp_eff_value(p, UCLAMP_MIN), 3999 uclamp_eff_value(p, UCLAMP_MAX)); 4000 } 4001 #else 4002 static inline unsigned long uclamp_task_util(struct task_struct *p) 4003 { 4004 return task_util_est(p); 4005 } 4006 #endif 4007 4008 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4009 struct task_struct *p) 4010 { 4011 unsigned int enqueued; 4012 4013 if (!sched_feat(UTIL_EST)) 4014 return; 4015 4016 /* Update root cfs_rq's estimated utilization */ 4017 enqueued = cfs_rq->avg.util_est.enqueued; 4018 enqueued += _task_util_est(p); 4019 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4020 4021 trace_sched_util_est_cfs_tp(cfs_rq); 4022 } 4023 4024 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4025 struct task_struct *p) 4026 { 4027 unsigned int enqueued; 4028 4029 if (!sched_feat(UTIL_EST)) 4030 return; 4031 4032 /* Update root cfs_rq's estimated utilization */ 4033 enqueued = cfs_rq->avg.util_est.enqueued; 4034 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4035 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4036 4037 trace_sched_util_est_cfs_tp(cfs_rq); 4038 } 4039 4040 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4041 4042 /* 4043 * Check if a (signed) value is within a specified (unsigned) margin, 4044 * based on the observation that: 4045 * 4046 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4047 * 4048 * NOTE: this only works when value + margin < INT_MAX. 4049 */ 4050 static inline bool within_margin(int value, int margin) 4051 { 4052 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4053 } 4054 4055 static inline void util_est_update(struct cfs_rq *cfs_rq, 4056 struct task_struct *p, 4057 bool task_sleep) 4058 { 4059 long last_ewma_diff, last_enqueued_diff; 4060 struct util_est ue; 4061 4062 if (!sched_feat(UTIL_EST)) 4063 return; 4064 4065 /* 4066 * Skip update of task's estimated utilization when the task has not 4067 * yet completed an activation, e.g. being migrated. 4068 */ 4069 if (!task_sleep) 4070 return; 4071 4072 /* 4073 * If the PELT values haven't changed since enqueue time, 4074 * skip the util_est update. 4075 */ 4076 ue = p->se.avg.util_est; 4077 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4078 return; 4079 4080 last_enqueued_diff = ue.enqueued; 4081 4082 /* 4083 * Reset EWMA on utilization increases, the moving average is used only 4084 * to smooth utilization decreases. 4085 */ 4086 ue.enqueued = task_util(p); 4087 if (sched_feat(UTIL_EST_FASTUP)) { 4088 if (ue.ewma < ue.enqueued) { 4089 ue.ewma = ue.enqueued; 4090 goto done; 4091 } 4092 } 4093 4094 /* 4095 * Skip update of task's estimated utilization when its members are 4096 * already ~1% close to its last activation value. 4097 */ 4098 last_ewma_diff = ue.enqueued - ue.ewma; 4099 last_enqueued_diff -= ue.enqueued; 4100 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4101 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4102 goto done; 4103 4104 return; 4105 } 4106 4107 /* 4108 * To avoid overestimation of actual task utilization, skip updates if 4109 * we cannot grant there is idle time in this CPU. 4110 */ 4111 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4112 return; 4113 4114 /* 4115 * Update Task's estimated utilization 4116 * 4117 * When *p completes an activation we can consolidate another sample 4118 * of the task size. This is done by storing the current PELT value 4119 * as ue.enqueued and by using this value to update the Exponential 4120 * Weighted Moving Average (EWMA): 4121 * 4122 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4123 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4124 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4125 * = w * ( last_ewma_diff ) + ewma(t-1) 4126 * = w * (last_ewma_diff + ewma(t-1) / w) 4127 * 4128 * Where 'w' is the weight of new samples, which is configured to be 4129 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4130 */ 4131 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4132 ue.ewma += last_ewma_diff; 4133 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4134 done: 4135 ue.enqueued |= UTIL_AVG_UNCHANGED; 4136 WRITE_ONCE(p->se.avg.util_est, ue); 4137 4138 trace_sched_util_est_se_tp(&p->se); 4139 } 4140 4141 static inline int task_fits_capacity(struct task_struct *p, 4142 unsigned long capacity) 4143 { 4144 return fits_capacity(uclamp_task_util(p), capacity); 4145 } 4146 4147 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4148 { 4149 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 4150 return; 4151 4152 if (!p || p->nr_cpus_allowed == 1) { 4153 rq->misfit_task_load = 0; 4154 return; 4155 } 4156 4157 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 4158 rq->misfit_task_load = 0; 4159 return; 4160 } 4161 4162 /* 4163 * Make sure that misfit_task_load will not be null even if 4164 * task_h_load() returns 0. 4165 */ 4166 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4167 } 4168 4169 #else /* CONFIG_SMP */ 4170 4171 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4172 { 4173 return true; 4174 } 4175 4176 #define UPDATE_TG 0x0 4177 #define SKIP_AGE_LOAD 0x0 4178 #define DO_ATTACH 0x0 4179 4180 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4181 { 4182 cfs_rq_util_change(cfs_rq, 0); 4183 } 4184 4185 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4186 4187 static inline void 4188 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4189 static inline void 4190 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4191 4192 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4193 { 4194 return 0; 4195 } 4196 4197 static inline void 4198 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4199 4200 static inline void 4201 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4202 4203 static inline void 4204 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4205 bool task_sleep) {} 4206 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4207 4208 #endif /* CONFIG_SMP */ 4209 4210 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4211 { 4212 #ifdef CONFIG_SCHED_DEBUG 4213 s64 d = se->vruntime - cfs_rq->min_vruntime; 4214 4215 if (d < 0) 4216 d = -d; 4217 4218 if (d > 3*sysctl_sched_latency) 4219 schedstat_inc(cfs_rq->nr_spread_over); 4220 #endif 4221 } 4222 4223 static void 4224 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4225 { 4226 u64 vruntime = cfs_rq->min_vruntime; 4227 4228 /* 4229 * The 'current' period is already promised to the current tasks, 4230 * however the extra weight of the new task will slow them down a 4231 * little, place the new task so that it fits in the slot that 4232 * stays open at the end. 4233 */ 4234 if (initial && sched_feat(START_DEBIT)) 4235 vruntime += sched_vslice(cfs_rq, se); 4236 4237 /* sleeps up to a single latency don't count. */ 4238 if (!initial) { 4239 unsigned long thresh; 4240 4241 if (se_is_idle(se)) 4242 thresh = sysctl_sched_min_granularity; 4243 else 4244 thresh = sysctl_sched_latency; 4245 4246 /* 4247 * Halve their sleep time's effect, to allow 4248 * for a gentler effect of sleepers: 4249 */ 4250 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4251 thresh >>= 1; 4252 4253 vruntime -= thresh; 4254 } 4255 4256 /* ensure we never gain time by being placed backwards. */ 4257 se->vruntime = max_vruntime(se->vruntime, vruntime); 4258 } 4259 4260 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4261 4262 static inline bool cfs_bandwidth_used(void); 4263 4264 /* 4265 * MIGRATION 4266 * 4267 * dequeue 4268 * update_curr() 4269 * update_min_vruntime() 4270 * vruntime -= min_vruntime 4271 * 4272 * enqueue 4273 * update_curr() 4274 * update_min_vruntime() 4275 * vruntime += min_vruntime 4276 * 4277 * this way the vruntime transition between RQs is done when both 4278 * min_vruntime are up-to-date. 4279 * 4280 * WAKEUP (remote) 4281 * 4282 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4283 * vruntime -= min_vruntime 4284 * 4285 * enqueue 4286 * update_curr() 4287 * update_min_vruntime() 4288 * vruntime += min_vruntime 4289 * 4290 * this way we don't have the most up-to-date min_vruntime on the originating 4291 * CPU and an up-to-date min_vruntime on the destination CPU. 4292 */ 4293 4294 static void 4295 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4296 { 4297 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4298 bool curr = cfs_rq->curr == se; 4299 4300 /* 4301 * If we're the current task, we must renormalise before calling 4302 * update_curr(). 4303 */ 4304 if (renorm && curr) 4305 se->vruntime += cfs_rq->min_vruntime; 4306 4307 update_curr(cfs_rq); 4308 4309 /* 4310 * Otherwise, renormalise after, such that we're placed at the current 4311 * moment in time, instead of some random moment in the past. Being 4312 * placed in the past could significantly boost this task to the 4313 * fairness detriment of existing tasks. 4314 */ 4315 if (renorm && !curr) 4316 se->vruntime += cfs_rq->min_vruntime; 4317 4318 /* 4319 * When enqueuing a sched_entity, we must: 4320 * - Update loads to have both entity and cfs_rq synced with now. 4321 * - Add its load to cfs_rq->runnable_avg 4322 * - For group_entity, update its weight to reflect the new share of 4323 * its group cfs_rq 4324 * - Add its new weight to cfs_rq->load.weight 4325 */ 4326 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4327 se_update_runnable(se); 4328 update_cfs_group(se); 4329 account_entity_enqueue(cfs_rq, se); 4330 4331 if (flags & ENQUEUE_WAKEUP) 4332 place_entity(cfs_rq, se, 0); 4333 4334 check_schedstat_required(); 4335 update_stats_enqueue_fair(cfs_rq, se, flags); 4336 check_spread(cfs_rq, se); 4337 if (!curr) 4338 __enqueue_entity(cfs_rq, se); 4339 se->on_rq = 1; 4340 4341 /* 4342 * When bandwidth control is enabled, cfs might have been removed 4343 * because of a parent been throttled but cfs->nr_running > 1. Try to 4344 * add it unconditionally. 4345 */ 4346 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used()) 4347 list_add_leaf_cfs_rq(cfs_rq); 4348 4349 if (cfs_rq->nr_running == 1) 4350 check_enqueue_throttle(cfs_rq); 4351 } 4352 4353 static void __clear_buddies_last(struct sched_entity *se) 4354 { 4355 for_each_sched_entity(se) { 4356 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4357 if (cfs_rq->last != se) 4358 break; 4359 4360 cfs_rq->last = NULL; 4361 } 4362 } 4363 4364 static void __clear_buddies_next(struct sched_entity *se) 4365 { 4366 for_each_sched_entity(se) { 4367 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4368 if (cfs_rq->next != se) 4369 break; 4370 4371 cfs_rq->next = NULL; 4372 } 4373 } 4374 4375 static void __clear_buddies_skip(struct sched_entity *se) 4376 { 4377 for_each_sched_entity(se) { 4378 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4379 if (cfs_rq->skip != se) 4380 break; 4381 4382 cfs_rq->skip = NULL; 4383 } 4384 } 4385 4386 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4387 { 4388 if (cfs_rq->last == se) 4389 __clear_buddies_last(se); 4390 4391 if (cfs_rq->next == se) 4392 __clear_buddies_next(se); 4393 4394 if (cfs_rq->skip == se) 4395 __clear_buddies_skip(se); 4396 } 4397 4398 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4399 4400 static void 4401 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4402 { 4403 /* 4404 * Update run-time statistics of the 'current'. 4405 */ 4406 update_curr(cfs_rq); 4407 4408 /* 4409 * When dequeuing a sched_entity, we must: 4410 * - Update loads to have both entity and cfs_rq synced with now. 4411 * - Subtract its load from the cfs_rq->runnable_avg. 4412 * - Subtract its previous weight from cfs_rq->load.weight. 4413 * - For group entity, update its weight to reflect the new share 4414 * of its group cfs_rq. 4415 */ 4416 update_load_avg(cfs_rq, se, UPDATE_TG); 4417 se_update_runnable(se); 4418 4419 update_stats_dequeue_fair(cfs_rq, se, flags); 4420 4421 clear_buddies(cfs_rq, se); 4422 4423 if (se != cfs_rq->curr) 4424 __dequeue_entity(cfs_rq, se); 4425 se->on_rq = 0; 4426 account_entity_dequeue(cfs_rq, se); 4427 4428 /* 4429 * Normalize after update_curr(); which will also have moved 4430 * min_vruntime if @se is the one holding it back. But before doing 4431 * update_min_vruntime() again, which will discount @se's position and 4432 * can move min_vruntime forward still more. 4433 */ 4434 if (!(flags & DEQUEUE_SLEEP)) 4435 se->vruntime -= cfs_rq->min_vruntime; 4436 4437 /* return excess runtime on last dequeue */ 4438 return_cfs_rq_runtime(cfs_rq); 4439 4440 update_cfs_group(se); 4441 4442 /* 4443 * Now advance min_vruntime if @se was the entity holding it back, 4444 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4445 * put back on, and if we advance min_vruntime, we'll be placed back 4446 * further than we started -- ie. we'll be penalized. 4447 */ 4448 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4449 update_min_vruntime(cfs_rq); 4450 } 4451 4452 /* 4453 * Preempt the current task with a newly woken task if needed: 4454 */ 4455 static void 4456 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4457 { 4458 unsigned long ideal_runtime, delta_exec; 4459 struct sched_entity *se; 4460 s64 delta; 4461 4462 ideal_runtime = sched_slice(cfs_rq, curr); 4463 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4464 if (delta_exec > ideal_runtime) { 4465 resched_curr(rq_of(cfs_rq)); 4466 /* 4467 * The current task ran long enough, ensure it doesn't get 4468 * re-elected due to buddy favours. 4469 */ 4470 clear_buddies(cfs_rq, curr); 4471 return; 4472 } 4473 4474 /* 4475 * Ensure that a task that missed wakeup preemption by a 4476 * narrow margin doesn't have to wait for a full slice. 4477 * This also mitigates buddy induced latencies under load. 4478 */ 4479 if (delta_exec < sysctl_sched_min_granularity) 4480 return; 4481 4482 se = __pick_first_entity(cfs_rq); 4483 delta = curr->vruntime - se->vruntime; 4484 4485 if (delta < 0) 4486 return; 4487 4488 if (delta > ideal_runtime) 4489 resched_curr(rq_of(cfs_rq)); 4490 } 4491 4492 static void 4493 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4494 { 4495 clear_buddies(cfs_rq, se); 4496 4497 /* 'current' is not kept within the tree. */ 4498 if (se->on_rq) { 4499 /* 4500 * Any task has to be enqueued before it get to execute on 4501 * a CPU. So account for the time it spent waiting on the 4502 * runqueue. 4503 */ 4504 update_stats_wait_end_fair(cfs_rq, se); 4505 __dequeue_entity(cfs_rq, se); 4506 update_load_avg(cfs_rq, se, UPDATE_TG); 4507 } 4508 4509 update_stats_curr_start(cfs_rq, se); 4510 cfs_rq->curr = se; 4511 4512 /* 4513 * Track our maximum slice length, if the CPU's load is at 4514 * least twice that of our own weight (i.e. dont track it 4515 * when there are only lesser-weight tasks around): 4516 */ 4517 if (schedstat_enabled() && 4518 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4519 struct sched_statistics *stats; 4520 4521 stats = __schedstats_from_se(se); 4522 __schedstat_set(stats->slice_max, 4523 max((u64)stats->slice_max, 4524 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4525 } 4526 4527 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4528 } 4529 4530 static int 4531 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4532 4533 /* 4534 * Pick the next process, keeping these things in mind, in this order: 4535 * 1) keep things fair between processes/task groups 4536 * 2) pick the "next" process, since someone really wants that to run 4537 * 3) pick the "last" process, for cache locality 4538 * 4) do not run the "skip" process, if something else is available 4539 */ 4540 static struct sched_entity * 4541 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4542 { 4543 struct sched_entity *left = __pick_first_entity(cfs_rq); 4544 struct sched_entity *se; 4545 4546 /* 4547 * If curr is set we have to see if its left of the leftmost entity 4548 * still in the tree, provided there was anything in the tree at all. 4549 */ 4550 if (!left || (curr && entity_before(curr, left))) 4551 left = curr; 4552 4553 se = left; /* ideally we run the leftmost entity */ 4554 4555 /* 4556 * Avoid running the skip buddy, if running something else can 4557 * be done without getting too unfair. 4558 */ 4559 if (cfs_rq->skip && cfs_rq->skip == se) { 4560 struct sched_entity *second; 4561 4562 if (se == curr) { 4563 second = __pick_first_entity(cfs_rq); 4564 } else { 4565 second = __pick_next_entity(se); 4566 if (!second || (curr && entity_before(curr, second))) 4567 second = curr; 4568 } 4569 4570 if (second && wakeup_preempt_entity(second, left) < 1) 4571 se = second; 4572 } 4573 4574 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { 4575 /* 4576 * Someone really wants this to run. If it's not unfair, run it. 4577 */ 4578 se = cfs_rq->next; 4579 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { 4580 /* 4581 * Prefer last buddy, try to return the CPU to a preempted task. 4582 */ 4583 se = cfs_rq->last; 4584 } 4585 4586 return se; 4587 } 4588 4589 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4590 4591 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4592 { 4593 /* 4594 * If still on the runqueue then deactivate_task() 4595 * was not called and update_curr() has to be done: 4596 */ 4597 if (prev->on_rq) 4598 update_curr(cfs_rq); 4599 4600 /* throttle cfs_rqs exceeding runtime */ 4601 check_cfs_rq_runtime(cfs_rq); 4602 4603 check_spread(cfs_rq, prev); 4604 4605 if (prev->on_rq) { 4606 update_stats_wait_start_fair(cfs_rq, prev); 4607 /* Put 'current' back into the tree. */ 4608 __enqueue_entity(cfs_rq, prev); 4609 /* in !on_rq case, update occurred at dequeue */ 4610 update_load_avg(cfs_rq, prev, 0); 4611 } 4612 cfs_rq->curr = NULL; 4613 } 4614 4615 static void 4616 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4617 { 4618 /* 4619 * Update run-time statistics of the 'current'. 4620 */ 4621 update_curr(cfs_rq); 4622 4623 /* 4624 * Ensure that runnable average is periodically updated. 4625 */ 4626 update_load_avg(cfs_rq, curr, UPDATE_TG); 4627 update_cfs_group(curr); 4628 4629 #ifdef CONFIG_SCHED_HRTICK 4630 /* 4631 * queued ticks are scheduled to match the slice, so don't bother 4632 * validating it and just reschedule. 4633 */ 4634 if (queued) { 4635 resched_curr(rq_of(cfs_rq)); 4636 return; 4637 } 4638 /* 4639 * don't let the period tick interfere with the hrtick preemption 4640 */ 4641 if (!sched_feat(DOUBLE_TICK) && 4642 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4643 return; 4644 #endif 4645 4646 if (cfs_rq->nr_running > 1) 4647 check_preempt_tick(cfs_rq, curr); 4648 } 4649 4650 4651 /************************************************** 4652 * CFS bandwidth control machinery 4653 */ 4654 4655 #ifdef CONFIG_CFS_BANDWIDTH 4656 4657 #ifdef CONFIG_JUMP_LABEL 4658 static struct static_key __cfs_bandwidth_used; 4659 4660 static inline bool cfs_bandwidth_used(void) 4661 { 4662 return static_key_false(&__cfs_bandwidth_used); 4663 } 4664 4665 void cfs_bandwidth_usage_inc(void) 4666 { 4667 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4668 } 4669 4670 void cfs_bandwidth_usage_dec(void) 4671 { 4672 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4673 } 4674 #else /* CONFIG_JUMP_LABEL */ 4675 static bool cfs_bandwidth_used(void) 4676 { 4677 return true; 4678 } 4679 4680 void cfs_bandwidth_usage_inc(void) {} 4681 void cfs_bandwidth_usage_dec(void) {} 4682 #endif /* CONFIG_JUMP_LABEL */ 4683 4684 /* 4685 * default period for cfs group bandwidth. 4686 * default: 0.1s, units: nanoseconds 4687 */ 4688 static inline u64 default_cfs_period(void) 4689 { 4690 return 100000000ULL; 4691 } 4692 4693 static inline u64 sched_cfs_bandwidth_slice(void) 4694 { 4695 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4696 } 4697 4698 /* 4699 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4700 * directly instead of rq->clock to avoid adding additional synchronization 4701 * around rq->lock. 4702 * 4703 * requires cfs_b->lock 4704 */ 4705 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4706 { 4707 s64 runtime; 4708 4709 if (unlikely(cfs_b->quota == RUNTIME_INF)) 4710 return; 4711 4712 cfs_b->runtime += cfs_b->quota; 4713 runtime = cfs_b->runtime_snap - cfs_b->runtime; 4714 if (runtime > 0) { 4715 cfs_b->burst_time += runtime; 4716 cfs_b->nr_burst++; 4717 } 4718 4719 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 4720 cfs_b->runtime_snap = cfs_b->runtime; 4721 } 4722 4723 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4724 { 4725 return &tg->cfs_bandwidth; 4726 } 4727 4728 /* returns 0 on failure to allocate runtime */ 4729 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 4730 struct cfs_rq *cfs_rq, u64 target_runtime) 4731 { 4732 u64 min_amount, amount = 0; 4733 4734 lockdep_assert_held(&cfs_b->lock); 4735 4736 /* note: this is a positive sum as runtime_remaining <= 0 */ 4737 min_amount = target_runtime - cfs_rq->runtime_remaining; 4738 4739 if (cfs_b->quota == RUNTIME_INF) 4740 amount = min_amount; 4741 else { 4742 start_cfs_bandwidth(cfs_b); 4743 4744 if (cfs_b->runtime > 0) { 4745 amount = min(cfs_b->runtime, min_amount); 4746 cfs_b->runtime -= amount; 4747 cfs_b->idle = 0; 4748 } 4749 } 4750 4751 cfs_rq->runtime_remaining += amount; 4752 4753 return cfs_rq->runtime_remaining > 0; 4754 } 4755 4756 /* returns 0 on failure to allocate runtime */ 4757 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4758 { 4759 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4760 int ret; 4761 4762 raw_spin_lock(&cfs_b->lock); 4763 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 4764 raw_spin_unlock(&cfs_b->lock); 4765 4766 return ret; 4767 } 4768 4769 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4770 { 4771 /* dock delta_exec before expiring quota (as it could span periods) */ 4772 cfs_rq->runtime_remaining -= delta_exec; 4773 4774 if (likely(cfs_rq->runtime_remaining > 0)) 4775 return; 4776 4777 if (cfs_rq->throttled) 4778 return; 4779 /* 4780 * if we're unable to extend our runtime we resched so that the active 4781 * hierarchy can be throttled 4782 */ 4783 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4784 resched_curr(rq_of(cfs_rq)); 4785 } 4786 4787 static __always_inline 4788 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4789 { 4790 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4791 return; 4792 4793 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4794 } 4795 4796 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4797 { 4798 return cfs_bandwidth_used() && cfs_rq->throttled; 4799 } 4800 4801 /* check whether cfs_rq, or any parent, is throttled */ 4802 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4803 { 4804 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4805 } 4806 4807 /* 4808 * Ensure that neither of the group entities corresponding to src_cpu or 4809 * dest_cpu are members of a throttled hierarchy when performing group 4810 * load-balance operations. 4811 */ 4812 static inline int throttled_lb_pair(struct task_group *tg, 4813 int src_cpu, int dest_cpu) 4814 { 4815 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4816 4817 src_cfs_rq = tg->cfs_rq[src_cpu]; 4818 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4819 4820 return throttled_hierarchy(src_cfs_rq) || 4821 throttled_hierarchy(dest_cfs_rq); 4822 } 4823 4824 static int tg_unthrottle_up(struct task_group *tg, void *data) 4825 { 4826 struct rq *rq = data; 4827 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4828 4829 cfs_rq->throttle_count--; 4830 if (!cfs_rq->throttle_count) { 4831 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 4832 cfs_rq->throttled_clock_pelt; 4833 4834 /* Add cfs_rq with load or one or more already running entities to the list */ 4835 if (!cfs_rq_is_decayed(cfs_rq)) 4836 list_add_leaf_cfs_rq(cfs_rq); 4837 } 4838 4839 return 0; 4840 } 4841 4842 static int tg_throttle_down(struct task_group *tg, void *data) 4843 { 4844 struct rq *rq = data; 4845 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4846 4847 /* group is entering throttled state, stop time */ 4848 if (!cfs_rq->throttle_count) { 4849 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 4850 list_del_leaf_cfs_rq(cfs_rq); 4851 } 4852 cfs_rq->throttle_count++; 4853 4854 return 0; 4855 } 4856 4857 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 4858 { 4859 struct rq *rq = rq_of(cfs_rq); 4860 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4861 struct sched_entity *se; 4862 long task_delta, idle_task_delta, dequeue = 1; 4863 4864 raw_spin_lock(&cfs_b->lock); 4865 /* This will start the period timer if necessary */ 4866 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 4867 /* 4868 * We have raced with bandwidth becoming available, and if we 4869 * actually throttled the timer might not unthrottle us for an 4870 * entire period. We additionally needed to make sure that any 4871 * subsequent check_cfs_rq_runtime calls agree not to throttle 4872 * us, as we may commit to do cfs put_prev+pick_next, so we ask 4873 * for 1ns of runtime rather than just check cfs_b. 4874 */ 4875 dequeue = 0; 4876 } else { 4877 list_add_tail_rcu(&cfs_rq->throttled_list, 4878 &cfs_b->throttled_cfs_rq); 4879 } 4880 raw_spin_unlock(&cfs_b->lock); 4881 4882 if (!dequeue) 4883 return false; /* Throttle no longer required. */ 4884 4885 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4886 4887 /* freeze hierarchy runnable averages while throttled */ 4888 rcu_read_lock(); 4889 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4890 rcu_read_unlock(); 4891 4892 task_delta = cfs_rq->h_nr_running; 4893 idle_task_delta = cfs_rq->idle_h_nr_running; 4894 for_each_sched_entity(se) { 4895 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4896 /* throttled entity or throttle-on-deactivate */ 4897 if (!se->on_rq) 4898 goto done; 4899 4900 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4901 4902 if (cfs_rq_is_idle(group_cfs_rq(se))) 4903 idle_task_delta = cfs_rq->h_nr_running; 4904 4905 qcfs_rq->h_nr_running -= task_delta; 4906 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4907 4908 if (qcfs_rq->load.weight) { 4909 /* Avoid re-evaluating load for this entity: */ 4910 se = parent_entity(se); 4911 break; 4912 } 4913 } 4914 4915 for_each_sched_entity(se) { 4916 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4917 /* throttled entity or throttle-on-deactivate */ 4918 if (!se->on_rq) 4919 goto done; 4920 4921 update_load_avg(qcfs_rq, se, 0); 4922 se_update_runnable(se); 4923 4924 if (cfs_rq_is_idle(group_cfs_rq(se))) 4925 idle_task_delta = cfs_rq->h_nr_running; 4926 4927 qcfs_rq->h_nr_running -= task_delta; 4928 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4929 } 4930 4931 /* At this point se is NULL and we are at root level*/ 4932 sub_nr_running(rq, task_delta); 4933 4934 done: 4935 /* 4936 * Note: distribution will already see us throttled via the 4937 * throttled-list. rq->lock protects completion. 4938 */ 4939 cfs_rq->throttled = 1; 4940 cfs_rq->throttled_clock = rq_clock(rq); 4941 return true; 4942 } 4943 4944 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4945 { 4946 struct rq *rq = rq_of(cfs_rq); 4947 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4948 struct sched_entity *se; 4949 long task_delta, idle_task_delta; 4950 4951 se = cfs_rq->tg->se[cpu_of(rq)]; 4952 4953 cfs_rq->throttled = 0; 4954 4955 update_rq_clock(rq); 4956 4957 raw_spin_lock(&cfs_b->lock); 4958 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4959 list_del_rcu(&cfs_rq->throttled_list); 4960 raw_spin_unlock(&cfs_b->lock); 4961 4962 /* update hierarchical throttle state */ 4963 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4964 4965 /* Nothing to run but something to decay (on_list)? Complete the branch */ 4966 if (!cfs_rq->load.weight) { 4967 if (cfs_rq->on_list) 4968 goto unthrottle_throttle; 4969 return; 4970 } 4971 4972 task_delta = cfs_rq->h_nr_running; 4973 idle_task_delta = cfs_rq->idle_h_nr_running; 4974 for_each_sched_entity(se) { 4975 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4976 4977 if (se->on_rq) 4978 break; 4979 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 4980 4981 if (cfs_rq_is_idle(group_cfs_rq(se))) 4982 idle_task_delta = cfs_rq->h_nr_running; 4983 4984 qcfs_rq->h_nr_running += task_delta; 4985 qcfs_rq->idle_h_nr_running += idle_task_delta; 4986 4987 /* end evaluation on encountering a throttled cfs_rq */ 4988 if (cfs_rq_throttled(qcfs_rq)) 4989 goto unthrottle_throttle; 4990 } 4991 4992 for_each_sched_entity(se) { 4993 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4994 4995 update_load_avg(qcfs_rq, se, UPDATE_TG); 4996 se_update_runnable(se); 4997 4998 if (cfs_rq_is_idle(group_cfs_rq(se))) 4999 idle_task_delta = cfs_rq->h_nr_running; 5000 5001 qcfs_rq->h_nr_running += task_delta; 5002 qcfs_rq->idle_h_nr_running += idle_task_delta; 5003 5004 /* end evaluation on encountering a throttled cfs_rq */ 5005 if (cfs_rq_throttled(qcfs_rq)) 5006 goto unthrottle_throttle; 5007 5008 /* 5009 * One parent has been throttled and cfs_rq removed from the 5010 * list. Add it back to not break the leaf list. 5011 */ 5012 if (throttled_hierarchy(qcfs_rq)) 5013 list_add_leaf_cfs_rq(qcfs_rq); 5014 } 5015 5016 /* At this point se is NULL and we are at root level*/ 5017 add_nr_running(rq, task_delta); 5018 5019 unthrottle_throttle: 5020 /* 5021 * The cfs_rq_throttled() breaks in the above iteration can result in 5022 * incomplete leaf list maintenance, resulting in triggering the 5023 * assertion below. 5024 */ 5025 for_each_sched_entity(se) { 5026 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5027 5028 if (list_add_leaf_cfs_rq(qcfs_rq)) 5029 break; 5030 } 5031 5032 assert_list_leaf_cfs_rq(rq); 5033 5034 /* Determine whether we need to wake up potentially idle CPU: */ 5035 if (rq->curr == rq->idle && rq->cfs.nr_running) 5036 resched_curr(rq); 5037 } 5038 5039 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5040 { 5041 struct cfs_rq *cfs_rq; 5042 u64 runtime, remaining = 1; 5043 5044 rcu_read_lock(); 5045 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5046 throttled_list) { 5047 struct rq *rq = rq_of(cfs_rq); 5048 struct rq_flags rf; 5049 5050 rq_lock_irqsave(rq, &rf); 5051 if (!cfs_rq_throttled(cfs_rq)) 5052 goto next; 5053 5054 /* By the above check, this should never be true */ 5055 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5056 5057 raw_spin_lock(&cfs_b->lock); 5058 runtime = -cfs_rq->runtime_remaining + 1; 5059 if (runtime > cfs_b->runtime) 5060 runtime = cfs_b->runtime; 5061 cfs_b->runtime -= runtime; 5062 remaining = cfs_b->runtime; 5063 raw_spin_unlock(&cfs_b->lock); 5064 5065 cfs_rq->runtime_remaining += runtime; 5066 5067 /* we check whether we're throttled above */ 5068 if (cfs_rq->runtime_remaining > 0) 5069 unthrottle_cfs_rq(cfs_rq); 5070 5071 next: 5072 rq_unlock_irqrestore(rq, &rf); 5073 5074 if (!remaining) 5075 break; 5076 } 5077 rcu_read_unlock(); 5078 } 5079 5080 /* 5081 * Responsible for refilling a task_group's bandwidth and unthrottling its 5082 * cfs_rqs as appropriate. If there has been no activity within the last 5083 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5084 * used to track this state. 5085 */ 5086 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5087 { 5088 int throttled; 5089 5090 /* no need to continue the timer with no bandwidth constraint */ 5091 if (cfs_b->quota == RUNTIME_INF) 5092 goto out_deactivate; 5093 5094 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5095 cfs_b->nr_periods += overrun; 5096 5097 /* Refill extra burst quota even if cfs_b->idle */ 5098 __refill_cfs_bandwidth_runtime(cfs_b); 5099 5100 /* 5101 * idle depends on !throttled (for the case of a large deficit), and if 5102 * we're going inactive then everything else can be deferred 5103 */ 5104 if (cfs_b->idle && !throttled) 5105 goto out_deactivate; 5106 5107 if (!throttled) { 5108 /* mark as potentially idle for the upcoming period */ 5109 cfs_b->idle = 1; 5110 return 0; 5111 } 5112 5113 /* account preceding periods in which throttling occurred */ 5114 cfs_b->nr_throttled += overrun; 5115 5116 /* 5117 * This check is repeated as we release cfs_b->lock while we unthrottle. 5118 */ 5119 while (throttled && cfs_b->runtime > 0) { 5120 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5121 /* we can't nest cfs_b->lock while distributing bandwidth */ 5122 distribute_cfs_runtime(cfs_b); 5123 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5124 5125 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5126 } 5127 5128 /* 5129 * While we are ensured activity in the period following an 5130 * unthrottle, this also covers the case in which the new bandwidth is 5131 * insufficient to cover the existing bandwidth deficit. (Forcing the 5132 * timer to remain active while there are any throttled entities.) 5133 */ 5134 cfs_b->idle = 0; 5135 5136 return 0; 5137 5138 out_deactivate: 5139 return 1; 5140 } 5141 5142 /* a cfs_rq won't donate quota below this amount */ 5143 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5144 /* minimum remaining period time to redistribute slack quota */ 5145 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5146 /* how long we wait to gather additional slack before distributing */ 5147 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5148 5149 /* 5150 * Are we near the end of the current quota period? 5151 * 5152 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5153 * hrtimer base being cleared by hrtimer_start. In the case of 5154 * migrate_hrtimers, base is never cleared, so we are fine. 5155 */ 5156 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5157 { 5158 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5159 s64 remaining; 5160 5161 /* if the call-back is running a quota refresh is already occurring */ 5162 if (hrtimer_callback_running(refresh_timer)) 5163 return 1; 5164 5165 /* is a quota refresh about to occur? */ 5166 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5167 if (remaining < (s64)min_expire) 5168 return 1; 5169 5170 return 0; 5171 } 5172 5173 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5174 { 5175 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5176 5177 /* if there's a quota refresh soon don't bother with slack */ 5178 if (runtime_refresh_within(cfs_b, min_left)) 5179 return; 5180 5181 /* don't push forwards an existing deferred unthrottle */ 5182 if (cfs_b->slack_started) 5183 return; 5184 cfs_b->slack_started = true; 5185 5186 hrtimer_start(&cfs_b->slack_timer, 5187 ns_to_ktime(cfs_bandwidth_slack_period), 5188 HRTIMER_MODE_REL); 5189 } 5190 5191 /* we know any runtime found here is valid as update_curr() precedes return */ 5192 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5193 { 5194 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5195 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5196 5197 if (slack_runtime <= 0) 5198 return; 5199 5200 raw_spin_lock(&cfs_b->lock); 5201 if (cfs_b->quota != RUNTIME_INF) { 5202 cfs_b->runtime += slack_runtime; 5203 5204 /* we are under rq->lock, defer unthrottling using a timer */ 5205 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5206 !list_empty(&cfs_b->throttled_cfs_rq)) 5207 start_cfs_slack_bandwidth(cfs_b); 5208 } 5209 raw_spin_unlock(&cfs_b->lock); 5210 5211 /* even if it's not valid for return we don't want to try again */ 5212 cfs_rq->runtime_remaining -= slack_runtime; 5213 } 5214 5215 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5216 { 5217 if (!cfs_bandwidth_used()) 5218 return; 5219 5220 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5221 return; 5222 5223 __return_cfs_rq_runtime(cfs_rq); 5224 } 5225 5226 /* 5227 * This is done with a timer (instead of inline with bandwidth return) since 5228 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5229 */ 5230 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5231 { 5232 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5233 unsigned long flags; 5234 5235 /* confirm we're still not at a refresh boundary */ 5236 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5237 cfs_b->slack_started = false; 5238 5239 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5240 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5241 return; 5242 } 5243 5244 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5245 runtime = cfs_b->runtime; 5246 5247 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5248 5249 if (!runtime) 5250 return; 5251 5252 distribute_cfs_runtime(cfs_b); 5253 } 5254 5255 /* 5256 * When a group wakes up we want to make sure that its quota is not already 5257 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5258 * runtime as update_curr() throttling can not trigger until it's on-rq. 5259 */ 5260 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5261 { 5262 if (!cfs_bandwidth_used()) 5263 return; 5264 5265 /* an active group must be handled by the update_curr()->put() path */ 5266 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5267 return; 5268 5269 /* ensure the group is not already throttled */ 5270 if (cfs_rq_throttled(cfs_rq)) 5271 return; 5272 5273 /* update runtime allocation */ 5274 account_cfs_rq_runtime(cfs_rq, 0); 5275 if (cfs_rq->runtime_remaining <= 0) 5276 throttle_cfs_rq(cfs_rq); 5277 } 5278 5279 static void sync_throttle(struct task_group *tg, int cpu) 5280 { 5281 struct cfs_rq *pcfs_rq, *cfs_rq; 5282 5283 if (!cfs_bandwidth_used()) 5284 return; 5285 5286 if (!tg->parent) 5287 return; 5288 5289 cfs_rq = tg->cfs_rq[cpu]; 5290 pcfs_rq = tg->parent->cfs_rq[cpu]; 5291 5292 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5293 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 5294 } 5295 5296 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5297 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5298 { 5299 if (!cfs_bandwidth_used()) 5300 return false; 5301 5302 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5303 return false; 5304 5305 /* 5306 * it's possible for a throttled entity to be forced into a running 5307 * state (e.g. set_curr_task), in this case we're finished. 5308 */ 5309 if (cfs_rq_throttled(cfs_rq)) 5310 return true; 5311 5312 return throttle_cfs_rq(cfs_rq); 5313 } 5314 5315 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5316 { 5317 struct cfs_bandwidth *cfs_b = 5318 container_of(timer, struct cfs_bandwidth, slack_timer); 5319 5320 do_sched_cfs_slack_timer(cfs_b); 5321 5322 return HRTIMER_NORESTART; 5323 } 5324 5325 extern const u64 max_cfs_quota_period; 5326 5327 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5328 { 5329 struct cfs_bandwidth *cfs_b = 5330 container_of(timer, struct cfs_bandwidth, period_timer); 5331 unsigned long flags; 5332 int overrun; 5333 int idle = 0; 5334 int count = 0; 5335 5336 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5337 for (;;) { 5338 overrun = hrtimer_forward_now(timer, cfs_b->period); 5339 if (!overrun) 5340 break; 5341 5342 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5343 5344 if (++count > 3) { 5345 u64 new, old = ktime_to_ns(cfs_b->period); 5346 5347 /* 5348 * Grow period by a factor of 2 to avoid losing precision. 5349 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5350 * to fail. 5351 */ 5352 new = old * 2; 5353 if (new < max_cfs_quota_period) { 5354 cfs_b->period = ns_to_ktime(new); 5355 cfs_b->quota *= 2; 5356 cfs_b->burst *= 2; 5357 5358 pr_warn_ratelimited( 5359 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5360 smp_processor_id(), 5361 div_u64(new, NSEC_PER_USEC), 5362 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5363 } else { 5364 pr_warn_ratelimited( 5365 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5366 smp_processor_id(), 5367 div_u64(old, NSEC_PER_USEC), 5368 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5369 } 5370 5371 /* reset count so we don't come right back in here */ 5372 count = 0; 5373 } 5374 } 5375 if (idle) 5376 cfs_b->period_active = 0; 5377 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5378 5379 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5380 } 5381 5382 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5383 { 5384 raw_spin_lock_init(&cfs_b->lock); 5385 cfs_b->runtime = 0; 5386 cfs_b->quota = RUNTIME_INF; 5387 cfs_b->period = ns_to_ktime(default_cfs_period()); 5388 cfs_b->burst = 0; 5389 5390 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5391 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5392 cfs_b->period_timer.function = sched_cfs_period_timer; 5393 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5394 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5395 cfs_b->slack_started = false; 5396 } 5397 5398 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5399 { 5400 cfs_rq->runtime_enabled = 0; 5401 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5402 } 5403 5404 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5405 { 5406 lockdep_assert_held(&cfs_b->lock); 5407 5408 if (cfs_b->period_active) 5409 return; 5410 5411 cfs_b->period_active = 1; 5412 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5413 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5414 } 5415 5416 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5417 { 5418 /* init_cfs_bandwidth() was not called */ 5419 if (!cfs_b->throttled_cfs_rq.next) 5420 return; 5421 5422 hrtimer_cancel(&cfs_b->period_timer); 5423 hrtimer_cancel(&cfs_b->slack_timer); 5424 } 5425 5426 /* 5427 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5428 * 5429 * The race is harmless, since modifying bandwidth settings of unhooked group 5430 * bits doesn't do much. 5431 */ 5432 5433 /* cpu online callback */ 5434 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5435 { 5436 struct task_group *tg; 5437 5438 lockdep_assert_rq_held(rq); 5439 5440 rcu_read_lock(); 5441 list_for_each_entry_rcu(tg, &task_groups, list) { 5442 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5443 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5444 5445 raw_spin_lock(&cfs_b->lock); 5446 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5447 raw_spin_unlock(&cfs_b->lock); 5448 } 5449 rcu_read_unlock(); 5450 } 5451 5452 /* cpu offline callback */ 5453 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5454 { 5455 struct task_group *tg; 5456 5457 lockdep_assert_rq_held(rq); 5458 5459 rcu_read_lock(); 5460 list_for_each_entry_rcu(tg, &task_groups, list) { 5461 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5462 5463 if (!cfs_rq->runtime_enabled) 5464 continue; 5465 5466 /* 5467 * clock_task is not advancing so we just need to make sure 5468 * there's some valid quota amount 5469 */ 5470 cfs_rq->runtime_remaining = 1; 5471 /* 5472 * Offline rq is schedulable till CPU is completely disabled 5473 * in take_cpu_down(), so we prevent new cfs throttling here. 5474 */ 5475 cfs_rq->runtime_enabled = 0; 5476 5477 if (cfs_rq_throttled(cfs_rq)) 5478 unthrottle_cfs_rq(cfs_rq); 5479 } 5480 rcu_read_unlock(); 5481 } 5482 5483 #else /* CONFIG_CFS_BANDWIDTH */ 5484 5485 static inline bool cfs_bandwidth_used(void) 5486 { 5487 return false; 5488 } 5489 5490 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5491 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5492 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5493 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5494 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5495 5496 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5497 { 5498 return 0; 5499 } 5500 5501 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5502 { 5503 return 0; 5504 } 5505 5506 static inline int throttled_lb_pair(struct task_group *tg, 5507 int src_cpu, int dest_cpu) 5508 { 5509 return 0; 5510 } 5511 5512 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5513 5514 #ifdef CONFIG_FAIR_GROUP_SCHED 5515 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5516 #endif 5517 5518 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5519 { 5520 return NULL; 5521 } 5522 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5523 static inline void update_runtime_enabled(struct rq *rq) {} 5524 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5525 5526 #endif /* CONFIG_CFS_BANDWIDTH */ 5527 5528 /************************************************** 5529 * CFS operations on tasks: 5530 */ 5531 5532 #ifdef CONFIG_SCHED_HRTICK 5533 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5534 { 5535 struct sched_entity *se = &p->se; 5536 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5537 5538 SCHED_WARN_ON(task_rq(p) != rq); 5539 5540 if (rq->cfs.h_nr_running > 1) { 5541 u64 slice = sched_slice(cfs_rq, se); 5542 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5543 s64 delta = slice - ran; 5544 5545 if (delta < 0) { 5546 if (task_current(rq, p)) 5547 resched_curr(rq); 5548 return; 5549 } 5550 hrtick_start(rq, delta); 5551 } 5552 } 5553 5554 /* 5555 * called from enqueue/dequeue and updates the hrtick when the 5556 * current task is from our class and nr_running is low enough 5557 * to matter. 5558 */ 5559 static void hrtick_update(struct rq *rq) 5560 { 5561 struct task_struct *curr = rq->curr; 5562 5563 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 5564 return; 5565 5566 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5567 hrtick_start_fair(rq, curr); 5568 } 5569 #else /* !CONFIG_SCHED_HRTICK */ 5570 static inline void 5571 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5572 { 5573 } 5574 5575 static inline void hrtick_update(struct rq *rq) 5576 { 5577 } 5578 #endif 5579 5580 #ifdef CONFIG_SMP 5581 static inline bool cpu_overutilized(int cpu) 5582 { 5583 return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu)); 5584 } 5585 5586 static inline void update_overutilized_status(struct rq *rq) 5587 { 5588 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5589 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5590 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5591 } 5592 } 5593 #else 5594 static inline void update_overutilized_status(struct rq *rq) { } 5595 #endif 5596 5597 /* Runqueue only has SCHED_IDLE tasks enqueued */ 5598 static int sched_idle_rq(struct rq *rq) 5599 { 5600 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5601 rq->nr_running); 5602 } 5603 5604 /* 5605 * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use 5606 * of idle_nr_running, which does not consider idle descendants of normal 5607 * entities. 5608 */ 5609 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq) 5610 { 5611 return cfs_rq->nr_running && 5612 cfs_rq->nr_running == cfs_rq->idle_nr_running; 5613 } 5614 5615 #ifdef CONFIG_SMP 5616 static int sched_idle_cpu(int cpu) 5617 { 5618 return sched_idle_rq(cpu_rq(cpu)); 5619 } 5620 #endif 5621 5622 /* 5623 * The enqueue_task method is called before nr_running is 5624 * increased. Here we update the fair scheduling stats and 5625 * then put the task into the rbtree: 5626 */ 5627 static void 5628 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5629 { 5630 struct cfs_rq *cfs_rq; 5631 struct sched_entity *se = &p->se; 5632 int idle_h_nr_running = task_has_idle_policy(p); 5633 int task_new = !(flags & ENQUEUE_WAKEUP); 5634 5635 /* 5636 * The code below (indirectly) updates schedutil which looks at 5637 * the cfs_rq utilization to select a frequency. 5638 * Let's add the task's estimated utilization to the cfs_rq's 5639 * estimated utilization, before we update schedutil. 5640 */ 5641 util_est_enqueue(&rq->cfs, p); 5642 5643 /* 5644 * If in_iowait is set, the code below may not trigger any cpufreq 5645 * utilization updates, so do it here explicitly with the IOWAIT flag 5646 * passed. 5647 */ 5648 if (p->in_iowait) 5649 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5650 5651 for_each_sched_entity(se) { 5652 if (se->on_rq) 5653 break; 5654 cfs_rq = cfs_rq_of(se); 5655 enqueue_entity(cfs_rq, se, flags); 5656 5657 cfs_rq->h_nr_running++; 5658 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5659 5660 if (cfs_rq_is_idle(cfs_rq)) 5661 idle_h_nr_running = 1; 5662 5663 /* end evaluation on encountering a throttled cfs_rq */ 5664 if (cfs_rq_throttled(cfs_rq)) 5665 goto enqueue_throttle; 5666 5667 flags = ENQUEUE_WAKEUP; 5668 } 5669 5670 for_each_sched_entity(se) { 5671 cfs_rq = cfs_rq_of(se); 5672 5673 update_load_avg(cfs_rq, se, UPDATE_TG); 5674 se_update_runnable(se); 5675 update_cfs_group(se); 5676 5677 cfs_rq->h_nr_running++; 5678 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5679 5680 if (cfs_rq_is_idle(cfs_rq)) 5681 idle_h_nr_running = 1; 5682 5683 /* end evaluation on encountering a throttled cfs_rq */ 5684 if (cfs_rq_throttled(cfs_rq)) 5685 goto enqueue_throttle; 5686 5687 /* 5688 * One parent has been throttled and cfs_rq removed from the 5689 * list. Add it back to not break the leaf list. 5690 */ 5691 if (throttled_hierarchy(cfs_rq)) 5692 list_add_leaf_cfs_rq(cfs_rq); 5693 } 5694 5695 /* At this point se is NULL and we are at root level*/ 5696 add_nr_running(rq, 1); 5697 5698 /* 5699 * Since new tasks are assigned an initial util_avg equal to 5700 * half of the spare capacity of their CPU, tiny tasks have the 5701 * ability to cross the overutilized threshold, which will 5702 * result in the load balancer ruining all the task placement 5703 * done by EAS. As a way to mitigate that effect, do not account 5704 * for the first enqueue operation of new tasks during the 5705 * overutilized flag detection. 5706 * 5707 * A better way of solving this problem would be to wait for 5708 * the PELT signals of tasks to converge before taking them 5709 * into account, but that is not straightforward to implement, 5710 * and the following generally works well enough in practice. 5711 */ 5712 if (!task_new) 5713 update_overutilized_status(rq); 5714 5715 enqueue_throttle: 5716 if (cfs_bandwidth_used()) { 5717 /* 5718 * When bandwidth control is enabled; the cfs_rq_throttled() 5719 * breaks in the above iteration can result in incomplete 5720 * leaf list maintenance, resulting in triggering the assertion 5721 * below. 5722 */ 5723 for_each_sched_entity(se) { 5724 cfs_rq = cfs_rq_of(se); 5725 5726 if (list_add_leaf_cfs_rq(cfs_rq)) 5727 break; 5728 } 5729 } 5730 5731 assert_list_leaf_cfs_rq(rq); 5732 5733 hrtick_update(rq); 5734 } 5735 5736 static void set_next_buddy(struct sched_entity *se); 5737 5738 /* 5739 * The dequeue_task method is called before nr_running is 5740 * decreased. We remove the task from the rbtree and 5741 * update the fair scheduling stats: 5742 */ 5743 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5744 { 5745 struct cfs_rq *cfs_rq; 5746 struct sched_entity *se = &p->se; 5747 int task_sleep = flags & DEQUEUE_SLEEP; 5748 int idle_h_nr_running = task_has_idle_policy(p); 5749 bool was_sched_idle = sched_idle_rq(rq); 5750 5751 util_est_dequeue(&rq->cfs, p); 5752 5753 for_each_sched_entity(se) { 5754 cfs_rq = cfs_rq_of(se); 5755 dequeue_entity(cfs_rq, se, flags); 5756 5757 cfs_rq->h_nr_running--; 5758 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5759 5760 if (cfs_rq_is_idle(cfs_rq)) 5761 idle_h_nr_running = 1; 5762 5763 /* end evaluation on encountering a throttled cfs_rq */ 5764 if (cfs_rq_throttled(cfs_rq)) 5765 goto dequeue_throttle; 5766 5767 /* Don't dequeue parent if it has other entities besides us */ 5768 if (cfs_rq->load.weight) { 5769 /* Avoid re-evaluating load for this entity: */ 5770 se = parent_entity(se); 5771 /* 5772 * Bias pick_next to pick a task from this cfs_rq, as 5773 * p is sleeping when it is within its sched_slice. 5774 */ 5775 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5776 set_next_buddy(se); 5777 break; 5778 } 5779 flags |= DEQUEUE_SLEEP; 5780 } 5781 5782 for_each_sched_entity(se) { 5783 cfs_rq = cfs_rq_of(se); 5784 5785 update_load_avg(cfs_rq, se, UPDATE_TG); 5786 se_update_runnable(se); 5787 update_cfs_group(se); 5788 5789 cfs_rq->h_nr_running--; 5790 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5791 5792 if (cfs_rq_is_idle(cfs_rq)) 5793 idle_h_nr_running = 1; 5794 5795 /* end evaluation on encountering a throttled cfs_rq */ 5796 if (cfs_rq_throttled(cfs_rq)) 5797 goto dequeue_throttle; 5798 5799 } 5800 5801 /* At this point se is NULL and we are at root level*/ 5802 sub_nr_running(rq, 1); 5803 5804 /* balance early to pull high priority tasks */ 5805 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 5806 rq->next_balance = jiffies; 5807 5808 dequeue_throttle: 5809 util_est_update(&rq->cfs, p, task_sleep); 5810 hrtick_update(rq); 5811 } 5812 5813 #ifdef CONFIG_SMP 5814 5815 /* Working cpumask for: load_balance, load_balance_newidle. */ 5816 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5817 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5818 5819 #ifdef CONFIG_NO_HZ_COMMON 5820 5821 static struct { 5822 cpumask_var_t idle_cpus_mask; 5823 atomic_t nr_cpus; 5824 int has_blocked; /* Idle CPUS has blocked load */ 5825 int needs_update; /* Newly idle CPUs need their next_balance collated */ 5826 unsigned long next_balance; /* in jiffy units */ 5827 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5828 } nohz ____cacheline_aligned; 5829 5830 #endif /* CONFIG_NO_HZ_COMMON */ 5831 5832 static unsigned long cpu_load(struct rq *rq) 5833 { 5834 return cfs_rq_load_avg(&rq->cfs); 5835 } 5836 5837 /* 5838 * cpu_load_without - compute CPU load without any contributions from *p 5839 * @cpu: the CPU which load is requested 5840 * @p: the task which load should be discounted 5841 * 5842 * The load of a CPU is defined by the load of tasks currently enqueued on that 5843 * CPU as well as tasks which are currently sleeping after an execution on that 5844 * CPU. 5845 * 5846 * This method returns the load of the specified CPU by discounting the load of 5847 * the specified task, whenever the task is currently contributing to the CPU 5848 * load. 5849 */ 5850 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 5851 { 5852 struct cfs_rq *cfs_rq; 5853 unsigned int load; 5854 5855 /* Task has no contribution or is new */ 5856 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5857 return cpu_load(rq); 5858 5859 cfs_rq = &rq->cfs; 5860 load = READ_ONCE(cfs_rq->avg.load_avg); 5861 5862 /* Discount task's util from CPU's util */ 5863 lsub_positive(&load, task_h_load(p)); 5864 5865 return load; 5866 } 5867 5868 static unsigned long cpu_runnable(struct rq *rq) 5869 { 5870 return cfs_rq_runnable_avg(&rq->cfs); 5871 } 5872 5873 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 5874 { 5875 struct cfs_rq *cfs_rq; 5876 unsigned int runnable; 5877 5878 /* Task has no contribution or is new */ 5879 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5880 return cpu_runnable(rq); 5881 5882 cfs_rq = &rq->cfs; 5883 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 5884 5885 /* Discount task's runnable from CPU's runnable */ 5886 lsub_positive(&runnable, p->se.avg.runnable_avg); 5887 5888 return runnable; 5889 } 5890 5891 static unsigned long capacity_of(int cpu) 5892 { 5893 return cpu_rq(cpu)->cpu_capacity; 5894 } 5895 5896 static void record_wakee(struct task_struct *p) 5897 { 5898 /* 5899 * Only decay a single time; tasks that have less then 1 wakeup per 5900 * jiffy will not have built up many flips. 5901 */ 5902 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5903 current->wakee_flips >>= 1; 5904 current->wakee_flip_decay_ts = jiffies; 5905 } 5906 5907 if (current->last_wakee != p) { 5908 current->last_wakee = p; 5909 current->wakee_flips++; 5910 } 5911 } 5912 5913 /* 5914 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5915 * 5916 * A waker of many should wake a different task than the one last awakened 5917 * at a frequency roughly N times higher than one of its wakees. 5918 * 5919 * In order to determine whether we should let the load spread vs consolidating 5920 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5921 * partner, and a factor of lls_size higher frequency in the other. 5922 * 5923 * With both conditions met, we can be relatively sure that the relationship is 5924 * non-monogamous, with partner count exceeding socket size. 5925 * 5926 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5927 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5928 * socket size. 5929 */ 5930 static int wake_wide(struct task_struct *p) 5931 { 5932 unsigned int master = current->wakee_flips; 5933 unsigned int slave = p->wakee_flips; 5934 int factor = __this_cpu_read(sd_llc_size); 5935 5936 if (master < slave) 5937 swap(master, slave); 5938 if (slave < factor || master < slave * factor) 5939 return 0; 5940 return 1; 5941 } 5942 5943 /* 5944 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5945 * soonest. For the purpose of speed we only consider the waking and previous 5946 * CPU. 5947 * 5948 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5949 * cache-affine and is (or will be) idle. 5950 * 5951 * wake_affine_weight() - considers the weight to reflect the average 5952 * scheduling latency of the CPUs. This seems to work 5953 * for the overloaded case. 5954 */ 5955 static int 5956 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5957 { 5958 /* 5959 * If this_cpu is idle, it implies the wakeup is from interrupt 5960 * context. Only allow the move if cache is shared. Otherwise an 5961 * interrupt intensive workload could force all tasks onto one 5962 * node depending on the IO topology or IRQ affinity settings. 5963 * 5964 * If the prev_cpu is idle and cache affine then avoid a migration. 5965 * There is no guarantee that the cache hot data from an interrupt 5966 * is more important than cache hot data on the prev_cpu and from 5967 * a cpufreq perspective, it's better to have higher utilisation 5968 * on one CPU. 5969 */ 5970 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5971 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5972 5973 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5974 return this_cpu; 5975 5976 if (available_idle_cpu(prev_cpu)) 5977 return prev_cpu; 5978 5979 return nr_cpumask_bits; 5980 } 5981 5982 static int 5983 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 5984 int this_cpu, int prev_cpu, int sync) 5985 { 5986 s64 this_eff_load, prev_eff_load; 5987 unsigned long task_load; 5988 5989 this_eff_load = cpu_load(cpu_rq(this_cpu)); 5990 5991 if (sync) { 5992 unsigned long current_load = task_h_load(current); 5993 5994 if (current_load > this_eff_load) 5995 return this_cpu; 5996 5997 this_eff_load -= current_load; 5998 } 5999 6000 task_load = task_h_load(p); 6001 6002 this_eff_load += task_load; 6003 if (sched_feat(WA_BIAS)) 6004 this_eff_load *= 100; 6005 this_eff_load *= capacity_of(prev_cpu); 6006 6007 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 6008 prev_eff_load -= task_load; 6009 if (sched_feat(WA_BIAS)) 6010 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 6011 prev_eff_load *= capacity_of(this_cpu); 6012 6013 /* 6014 * If sync, adjust the weight of prev_eff_load such that if 6015 * prev_eff == this_eff that select_idle_sibling() will consider 6016 * stacking the wakee on top of the waker if no other CPU is 6017 * idle. 6018 */ 6019 if (sync) 6020 prev_eff_load += 1; 6021 6022 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 6023 } 6024 6025 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 6026 int this_cpu, int prev_cpu, int sync) 6027 { 6028 int target = nr_cpumask_bits; 6029 6030 if (sched_feat(WA_IDLE)) 6031 target = wake_affine_idle(this_cpu, prev_cpu, sync); 6032 6033 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 6034 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 6035 6036 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 6037 if (target == nr_cpumask_bits) 6038 return prev_cpu; 6039 6040 schedstat_inc(sd->ttwu_move_affine); 6041 schedstat_inc(p->stats.nr_wakeups_affine); 6042 return target; 6043 } 6044 6045 static struct sched_group * 6046 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 6047 6048 /* 6049 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 6050 */ 6051 static int 6052 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 6053 { 6054 unsigned long load, min_load = ULONG_MAX; 6055 unsigned int min_exit_latency = UINT_MAX; 6056 u64 latest_idle_timestamp = 0; 6057 int least_loaded_cpu = this_cpu; 6058 int shallowest_idle_cpu = -1; 6059 int i; 6060 6061 /* Check if we have any choice: */ 6062 if (group->group_weight == 1) 6063 return cpumask_first(sched_group_span(group)); 6064 6065 /* Traverse only the allowed CPUs */ 6066 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 6067 struct rq *rq = cpu_rq(i); 6068 6069 if (!sched_core_cookie_match(rq, p)) 6070 continue; 6071 6072 if (sched_idle_cpu(i)) 6073 return i; 6074 6075 if (available_idle_cpu(i)) { 6076 struct cpuidle_state *idle = idle_get_state(rq); 6077 if (idle && idle->exit_latency < min_exit_latency) { 6078 /* 6079 * We give priority to a CPU whose idle state 6080 * has the smallest exit latency irrespective 6081 * of any idle timestamp. 6082 */ 6083 min_exit_latency = idle->exit_latency; 6084 latest_idle_timestamp = rq->idle_stamp; 6085 shallowest_idle_cpu = i; 6086 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6087 rq->idle_stamp > latest_idle_timestamp) { 6088 /* 6089 * If equal or no active idle state, then 6090 * the most recently idled CPU might have 6091 * a warmer cache. 6092 */ 6093 latest_idle_timestamp = rq->idle_stamp; 6094 shallowest_idle_cpu = i; 6095 } 6096 } else if (shallowest_idle_cpu == -1) { 6097 load = cpu_load(cpu_rq(i)); 6098 if (load < min_load) { 6099 min_load = load; 6100 least_loaded_cpu = i; 6101 } 6102 } 6103 } 6104 6105 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6106 } 6107 6108 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6109 int cpu, int prev_cpu, int sd_flag) 6110 { 6111 int new_cpu = cpu; 6112 6113 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 6114 return prev_cpu; 6115 6116 /* 6117 * We need task's util for cpu_util_without, sync it up to 6118 * prev_cpu's last_update_time. 6119 */ 6120 if (!(sd_flag & SD_BALANCE_FORK)) 6121 sync_entity_load_avg(&p->se); 6122 6123 while (sd) { 6124 struct sched_group *group; 6125 struct sched_domain *tmp; 6126 int weight; 6127 6128 if (!(sd->flags & sd_flag)) { 6129 sd = sd->child; 6130 continue; 6131 } 6132 6133 group = find_idlest_group(sd, p, cpu); 6134 if (!group) { 6135 sd = sd->child; 6136 continue; 6137 } 6138 6139 new_cpu = find_idlest_group_cpu(group, p, cpu); 6140 if (new_cpu == cpu) { 6141 /* Now try balancing at a lower domain level of 'cpu': */ 6142 sd = sd->child; 6143 continue; 6144 } 6145 6146 /* Now try balancing at a lower domain level of 'new_cpu': */ 6147 cpu = new_cpu; 6148 weight = sd->span_weight; 6149 sd = NULL; 6150 for_each_domain(cpu, tmp) { 6151 if (weight <= tmp->span_weight) 6152 break; 6153 if (tmp->flags & sd_flag) 6154 sd = tmp; 6155 } 6156 } 6157 6158 return new_cpu; 6159 } 6160 6161 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 6162 { 6163 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 6164 sched_cpu_cookie_match(cpu_rq(cpu), p)) 6165 return cpu; 6166 6167 return -1; 6168 } 6169 6170 #ifdef CONFIG_SCHED_SMT 6171 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6172 EXPORT_SYMBOL_GPL(sched_smt_present); 6173 6174 static inline void set_idle_cores(int cpu, int val) 6175 { 6176 struct sched_domain_shared *sds; 6177 6178 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6179 if (sds) 6180 WRITE_ONCE(sds->has_idle_cores, val); 6181 } 6182 6183 static inline bool test_idle_cores(int cpu, bool def) 6184 { 6185 struct sched_domain_shared *sds; 6186 6187 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6188 if (sds) 6189 return READ_ONCE(sds->has_idle_cores); 6190 6191 return def; 6192 } 6193 6194 /* 6195 * Scans the local SMT mask to see if the entire core is idle, and records this 6196 * information in sd_llc_shared->has_idle_cores. 6197 * 6198 * Since SMT siblings share all cache levels, inspecting this limited remote 6199 * state should be fairly cheap. 6200 */ 6201 void __update_idle_core(struct rq *rq) 6202 { 6203 int core = cpu_of(rq); 6204 int cpu; 6205 6206 rcu_read_lock(); 6207 if (test_idle_cores(core, true)) 6208 goto unlock; 6209 6210 for_each_cpu(cpu, cpu_smt_mask(core)) { 6211 if (cpu == core) 6212 continue; 6213 6214 if (!available_idle_cpu(cpu)) 6215 goto unlock; 6216 } 6217 6218 set_idle_cores(core, 1); 6219 unlock: 6220 rcu_read_unlock(); 6221 } 6222 6223 /* 6224 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6225 * there are no idle cores left in the system; tracked through 6226 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6227 */ 6228 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6229 { 6230 bool idle = true; 6231 int cpu; 6232 6233 if (!static_branch_likely(&sched_smt_present)) 6234 return __select_idle_cpu(core, p); 6235 6236 for_each_cpu(cpu, cpu_smt_mask(core)) { 6237 if (!available_idle_cpu(cpu)) { 6238 idle = false; 6239 if (*idle_cpu == -1) { 6240 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 6241 *idle_cpu = cpu; 6242 break; 6243 } 6244 continue; 6245 } 6246 break; 6247 } 6248 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 6249 *idle_cpu = cpu; 6250 } 6251 6252 if (idle) 6253 return core; 6254 6255 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6256 return -1; 6257 } 6258 6259 /* 6260 * Scan the local SMT mask for idle CPUs. 6261 */ 6262 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6263 { 6264 int cpu; 6265 6266 for_each_cpu(cpu, cpu_smt_mask(target)) { 6267 if (!cpumask_test_cpu(cpu, p->cpus_ptr) || 6268 !cpumask_test_cpu(cpu, sched_domain_span(sd))) 6269 continue; 6270 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6271 return cpu; 6272 } 6273 6274 return -1; 6275 } 6276 6277 #else /* CONFIG_SCHED_SMT */ 6278 6279 static inline void set_idle_cores(int cpu, int val) 6280 { 6281 } 6282 6283 static inline bool test_idle_cores(int cpu, bool def) 6284 { 6285 return def; 6286 } 6287 6288 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6289 { 6290 return __select_idle_cpu(core, p); 6291 } 6292 6293 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6294 { 6295 return -1; 6296 } 6297 6298 #endif /* CONFIG_SCHED_SMT */ 6299 6300 /* 6301 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6302 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6303 * average idle time for this rq (as found in rq->avg_idle). 6304 */ 6305 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 6306 { 6307 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6308 int i, cpu, idle_cpu = -1, nr = INT_MAX; 6309 struct rq *this_rq = this_rq(); 6310 int this = smp_processor_id(); 6311 struct sched_domain *this_sd; 6312 u64 time = 0; 6313 6314 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6315 if (!this_sd) 6316 return -1; 6317 6318 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6319 6320 if (sched_feat(SIS_PROP) && !has_idle_core) { 6321 u64 avg_cost, avg_idle, span_avg; 6322 unsigned long now = jiffies; 6323 6324 /* 6325 * If we're busy, the assumption that the last idle period 6326 * predicts the future is flawed; age away the remaining 6327 * predicted idle time. 6328 */ 6329 if (unlikely(this_rq->wake_stamp < now)) { 6330 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 6331 this_rq->wake_stamp++; 6332 this_rq->wake_avg_idle >>= 1; 6333 } 6334 } 6335 6336 avg_idle = this_rq->wake_avg_idle; 6337 avg_cost = this_sd->avg_scan_cost + 1; 6338 6339 span_avg = sd->span_weight * avg_idle; 6340 if (span_avg > 4*avg_cost) 6341 nr = div_u64(span_avg, avg_cost); 6342 else 6343 nr = 4; 6344 6345 time = cpu_clock(this); 6346 } 6347 6348 for_each_cpu_wrap(cpu, cpus, target + 1) { 6349 if (has_idle_core) { 6350 i = select_idle_core(p, cpu, cpus, &idle_cpu); 6351 if ((unsigned int)i < nr_cpumask_bits) 6352 return i; 6353 6354 } else { 6355 if (!--nr) 6356 return -1; 6357 idle_cpu = __select_idle_cpu(cpu, p); 6358 if ((unsigned int)idle_cpu < nr_cpumask_bits) 6359 break; 6360 } 6361 } 6362 6363 if (has_idle_core) 6364 set_idle_cores(target, false); 6365 6366 if (sched_feat(SIS_PROP) && !has_idle_core) { 6367 time = cpu_clock(this) - time; 6368 6369 /* 6370 * Account for the scan cost of wakeups against the average 6371 * idle time. 6372 */ 6373 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 6374 6375 update_avg(&this_sd->avg_scan_cost, time); 6376 } 6377 6378 return idle_cpu; 6379 } 6380 6381 /* 6382 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6383 * the task fits. If no CPU is big enough, but there are idle ones, try to 6384 * maximize capacity. 6385 */ 6386 static int 6387 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6388 { 6389 unsigned long task_util, best_cap = 0; 6390 int cpu, best_cpu = -1; 6391 struct cpumask *cpus; 6392 6393 cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6394 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6395 6396 task_util = uclamp_task_util(p); 6397 6398 for_each_cpu_wrap(cpu, cpus, target) { 6399 unsigned long cpu_cap = capacity_of(cpu); 6400 6401 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6402 continue; 6403 if (fits_capacity(task_util, cpu_cap)) 6404 return cpu; 6405 6406 if (cpu_cap > best_cap) { 6407 best_cap = cpu_cap; 6408 best_cpu = cpu; 6409 } 6410 } 6411 6412 return best_cpu; 6413 } 6414 6415 static inline bool asym_fits_capacity(unsigned long task_util, int cpu) 6416 { 6417 if (static_branch_unlikely(&sched_asym_cpucapacity)) 6418 return fits_capacity(task_util, capacity_of(cpu)); 6419 6420 return true; 6421 } 6422 6423 /* 6424 * Try and locate an idle core/thread in the LLC cache domain. 6425 */ 6426 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6427 { 6428 bool has_idle_core = false; 6429 struct sched_domain *sd; 6430 unsigned long task_util; 6431 int i, recent_used_cpu; 6432 6433 /* 6434 * On asymmetric system, update task utilization because we will check 6435 * that the task fits with cpu's capacity. 6436 */ 6437 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6438 sync_entity_load_avg(&p->se); 6439 task_util = uclamp_task_util(p); 6440 } 6441 6442 /* 6443 * per-cpu select_idle_mask usage 6444 */ 6445 lockdep_assert_irqs_disabled(); 6446 6447 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 6448 asym_fits_capacity(task_util, target)) 6449 return target; 6450 6451 /* 6452 * If the previous CPU is cache affine and idle, don't be stupid: 6453 */ 6454 if (prev != target && cpus_share_cache(prev, target) && 6455 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 6456 asym_fits_capacity(task_util, prev)) 6457 return prev; 6458 6459 /* 6460 * Allow a per-cpu kthread to stack with the wakee if the 6461 * kworker thread and the tasks previous CPUs are the same. 6462 * The assumption is that the wakee queued work for the 6463 * per-cpu kthread that is now complete and the wakeup is 6464 * essentially a sync wakeup. An obvious example of this 6465 * pattern is IO completions. 6466 */ 6467 if (is_per_cpu_kthread(current) && 6468 in_task() && 6469 prev == smp_processor_id() && 6470 this_rq()->nr_running <= 1 && 6471 asym_fits_capacity(task_util, prev)) { 6472 return prev; 6473 } 6474 6475 /* Check a recently used CPU as a potential idle candidate: */ 6476 recent_used_cpu = p->recent_used_cpu; 6477 p->recent_used_cpu = prev; 6478 if (recent_used_cpu != prev && 6479 recent_used_cpu != target && 6480 cpus_share_cache(recent_used_cpu, target) && 6481 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6482 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && 6483 asym_fits_capacity(task_util, recent_used_cpu)) { 6484 return recent_used_cpu; 6485 } 6486 6487 /* 6488 * For asymmetric CPU capacity systems, our domain of interest is 6489 * sd_asym_cpucapacity rather than sd_llc. 6490 */ 6491 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6492 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 6493 /* 6494 * On an asymmetric CPU capacity system where an exclusive 6495 * cpuset defines a symmetric island (i.e. one unique 6496 * capacity_orig value through the cpuset), the key will be set 6497 * but the CPUs within that cpuset will not have a domain with 6498 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 6499 * capacity path. 6500 */ 6501 if (sd) { 6502 i = select_idle_capacity(p, sd, target); 6503 return ((unsigned)i < nr_cpumask_bits) ? i : target; 6504 } 6505 } 6506 6507 sd = rcu_dereference(per_cpu(sd_llc, target)); 6508 if (!sd) 6509 return target; 6510 6511 if (sched_smt_active()) { 6512 has_idle_core = test_idle_cores(target, false); 6513 6514 if (!has_idle_core && cpus_share_cache(prev, target)) { 6515 i = select_idle_smt(p, sd, prev); 6516 if ((unsigned int)i < nr_cpumask_bits) 6517 return i; 6518 } 6519 } 6520 6521 i = select_idle_cpu(p, sd, has_idle_core, target); 6522 if ((unsigned)i < nr_cpumask_bits) 6523 return i; 6524 6525 return target; 6526 } 6527 6528 /* 6529 * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu 6530 * (@dst_cpu = -1) or migrated to @dst_cpu. 6531 */ 6532 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6533 { 6534 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6535 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 6536 6537 /* 6538 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 6539 * contribution. If @p migrates from another CPU to @cpu add its 6540 * contribution. In all the other cases @cpu is not impacted by the 6541 * migration so its util_avg is already correct. 6542 */ 6543 if (task_cpu(p) == cpu && dst_cpu != cpu) 6544 lsub_positive(&util, task_util(p)); 6545 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6546 util += task_util(p); 6547 6548 if (sched_feat(UTIL_EST)) { 6549 unsigned long util_est; 6550 6551 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6552 6553 /* 6554 * During wake-up @p isn't enqueued yet and doesn't contribute 6555 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued. 6556 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 6557 * has been enqueued. 6558 * 6559 * During exec (@dst_cpu = -1) @p is enqueued and does 6560 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued. 6561 * Remove it to "simulate" cpu_util without @p's contribution. 6562 * 6563 * Despite the task_on_rq_queued(@p) check there is still a 6564 * small window for a possible race when an exec 6565 * select_task_rq_fair() races with LB's detach_task(). 6566 * 6567 * detach_task() 6568 * deactivate_task() 6569 * p->on_rq = TASK_ON_RQ_MIGRATING; 6570 * -------------------------------- A 6571 * dequeue_task() \ 6572 * dequeue_task_fair() + Race Time 6573 * util_est_dequeue() / 6574 * -------------------------------- B 6575 * 6576 * The additional check "current == p" is required to further 6577 * reduce the race window. 6578 */ 6579 if (dst_cpu == cpu) 6580 util_est += _task_util_est(p); 6581 else if (unlikely(task_on_rq_queued(p) || current == p)) 6582 lsub_positive(&util_est, _task_util_est(p)); 6583 6584 util = max(util, util_est); 6585 } 6586 6587 return min(util, capacity_orig_of(cpu)); 6588 } 6589 6590 /* 6591 * cpu_util_without: compute cpu utilization without any contributions from *p 6592 * @cpu: the CPU which utilization is requested 6593 * @p: the task which utilization should be discounted 6594 * 6595 * The utilization of a CPU is defined by the utilization of tasks currently 6596 * enqueued on that CPU as well as tasks which are currently sleeping after an 6597 * execution on that CPU. 6598 * 6599 * This method returns the utilization of the specified CPU by discounting the 6600 * utilization of the specified task, whenever the task is currently 6601 * contributing to the CPU utilization. 6602 */ 6603 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6604 { 6605 /* Task has no contribution or is new */ 6606 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6607 return cpu_util_cfs(cpu); 6608 6609 return cpu_util_next(cpu, p, -1); 6610 } 6611 6612 /* 6613 * compute_energy(): Estimates the energy that @pd would consume if @p was 6614 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6615 * landscape of @pd's CPUs after the task migration, and uses the Energy Model 6616 * to compute what would be the energy if we decided to actually migrate that 6617 * task. 6618 */ 6619 static long 6620 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6621 { 6622 struct cpumask *pd_mask = perf_domain_span(pd); 6623 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6624 unsigned long max_util = 0, sum_util = 0; 6625 unsigned long _cpu_cap = cpu_cap; 6626 int cpu; 6627 6628 _cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask)); 6629 6630 /* 6631 * The capacity state of CPUs of the current rd can be driven by CPUs 6632 * of another rd if they belong to the same pd. So, account for the 6633 * utilization of these CPUs too by masking pd with cpu_online_mask 6634 * instead of the rd span. 6635 * 6636 * If an entire pd is outside of the current rd, it will not appear in 6637 * its pd list and will not be accounted by compute_energy(). 6638 */ 6639 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6640 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu); 6641 unsigned long cpu_util, util_running = util_freq; 6642 struct task_struct *tsk = NULL; 6643 6644 /* 6645 * When @p is placed on @cpu: 6646 * 6647 * util_running = max(cpu_util, cpu_util_est) + 6648 * max(task_util, _task_util_est) 6649 * 6650 * while cpu_util_next is: max(cpu_util + task_util, 6651 * cpu_util_est + _task_util_est) 6652 */ 6653 if (cpu == dst_cpu) { 6654 tsk = p; 6655 util_running = 6656 cpu_util_next(cpu, p, -1) + task_util_est(p); 6657 } 6658 6659 /* 6660 * Busy time computation: utilization clamping is not 6661 * required since the ratio (sum_util / cpu_capacity) 6662 * is already enough to scale the EM reported power 6663 * consumption at the (eventually clamped) cpu_capacity. 6664 */ 6665 cpu_util = effective_cpu_util(cpu, util_running, cpu_cap, 6666 ENERGY_UTIL, NULL); 6667 6668 sum_util += min(cpu_util, _cpu_cap); 6669 6670 /* 6671 * Performance domain frequency: utilization clamping 6672 * must be considered since it affects the selection 6673 * of the performance domain frequency. 6674 * NOTE: in case RT tasks are running, by default the 6675 * FREQUENCY_UTIL's utilization can be max OPP. 6676 */ 6677 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap, 6678 FREQUENCY_UTIL, tsk); 6679 max_util = max(max_util, min(cpu_util, _cpu_cap)); 6680 } 6681 6682 return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap); 6683 } 6684 6685 /* 6686 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6687 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6688 * spare capacity in each performance domain and uses it as a potential 6689 * candidate to execute the task. Then, it uses the Energy Model to figure 6690 * out which of the CPU candidates is the most energy-efficient. 6691 * 6692 * The rationale for this heuristic is as follows. In a performance domain, 6693 * all the most energy efficient CPU candidates (according to the Energy 6694 * Model) are those for which we'll request a low frequency. When there are 6695 * several CPUs for which the frequency request will be the same, we don't 6696 * have enough data to break the tie between them, because the Energy Model 6697 * only includes active power costs. With this model, if we assume that 6698 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6699 * the maximum spare capacity in a performance domain is guaranteed to be among 6700 * the best candidates of the performance domain. 6701 * 6702 * In practice, it could be preferable from an energy standpoint to pack 6703 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6704 * but that could also hurt our chances to go cluster idle, and we have no 6705 * ways to tell with the current Energy Model if this is actually a good 6706 * idea or not. So, find_energy_efficient_cpu() basically favors 6707 * cluster-packing, and spreading inside a cluster. That should at least be 6708 * a good thing for latency, and this is consistent with the idea that most 6709 * of the energy savings of EAS come from the asymmetry of the system, and 6710 * not so much from breaking the tie between identical CPUs. That's also the 6711 * reason why EAS is enabled in the topology code only for systems where 6712 * SD_ASYM_CPUCAPACITY is set. 6713 * 6714 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6715 * they don't have any useful utilization data yet and it's not possible to 6716 * forecast their impact on energy consumption. Consequently, they will be 6717 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6718 * to be energy-inefficient in some use-cases. The alternative would be to 6719 * bias new tasks towards specific types of CPUs first, or to try to infer 6720 * their util_avg from the parent task, but those heuristics could hurt 6721 * other use-cases too. So, until someone finds a better way to solve this, 6722 * let's keep things simple by re-using the existing slow path. 6723 */ 6724 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6725 { 6726 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6727 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6728 int cpu, best_energy_cpu = prev_cpu, target = -1; 6729 unsigned long cpu_cap, util, base_energy = 0; 6730 struct sched_domain *sd; 6731 struct perf_domain *pd; 6732 6733 rcu_read_lock(); 6734 pd = rcu_dereference(rd->pd); 6735 if (!pd || READ_ONCE(rd->overutilized)) 6736 goto unlock; 6737 6738 /* 6739 * Energy-aware wake-up happens on the lowest sched_domain starting 6740 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6741 */ 6742 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6743 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6744 sd = sd->parent; 6745 if (!sd) 6746 goto unlock; 6747 6748 target = prev_cpu; 6749 6750 sync_entity_load_avg(&p->se); 6751 if (!task_util_est(p)) 6752 goto unlock; 6753 6754 for (; pd; pd = pd->next) { 6755 unsigned long cur_delta, spare_cap, max_spare_cap = 0; 6756 bool compute_prev_delta = false; 6757 unsigned long base_energy_pd; 6758 int max_spare_cap_cpu = -1; 6759 6760 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6761 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6762 continue; 6763 6764 util = cpu_util_next(cpu, p, cpu); 6765 cpu_cap = capacity_of(cpu); 6766 spare_cap = cpu_cap; 6767 lsub_positive(&spare_cap, util); 6768 6769 /* 6770 * Skip CPUs that cannot satisfy the capacity request. 6771 * IOW, placing the task there would make the CPU 6772 * overutilized. Take uclamp into account to see how 6773 * much capacity we can get out of the CPU; this is 6774 * aligned with sched_cpu_util(). 6775 */ 6776 util = uclamp_rq_util_with(cpu_rq(cpu), util, p); 6777 if (!fits_capacity(util, cpu_cap)) 6778 continue; 6779 6780 if (cpu == prev_cpu) { 6781 /* Always use prev_cpu as a candidate. */ 6782 compute_prev_delta = true; 6783 } else if (spare_cap > max_spare_cap) { 6784 /* 6785 * Find the CPU with the maximum spare capacity 6786 * in the performance domain. 6787 */ 6788 max_spare_cap = spare_cap; 6789 max_spare_cap_cpu = cpu; 6790 } 6791 } 6792 6793 if (max_spare_cap_cpu < 0 && !compute_prev_delta) 6794 continue; 6795 6796 /* Compute the 'base' energy of the pd, without @p */ 6797 base_energy_pd = compute_energy(p, -1, pd); 6798 base_energy += base_energy_pd; 6799 6800 /* Evaluate the energy impact of using prev_cpu. */ 6801 if (compute_prev_delta) { 6802 prev_delta = compute_energy(p, prev_cpu, pd); 6803 if (prev_delta < base_energy_pd) 6804 goto unlock; 6805 prev_delta -= base_energy_pd; 6806 best_delta = min(best_delta, prev_delta); 6807 } 6808 6809 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 6810 if (max_spare_cap_cpu >= 0) { 6811 cur_delta = compute_energy(p, max_spare_cap_cpu, pd); 6812 if (cur_delta < base_energy_pd) 6813 goto unlock; 6814 cur_delta -= base_energy_pd; 6815 if (cur_delta < best_delta) { 6816 best_delta = cur_delta; 6817 best_energy_cpu = max_spare_cap_cpu; 6818 } 6819 } 6820 } 6821 rcu_read_unlock(); 6822 6823 /* 6824 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6825 * least 6% of the energy used by prev_cpu. 6826 */ 6827 if ((prev_delta == ULONG_MAX) || 6828 (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) 6829 target = best_energy_cpu; 6830 6831 return target; 6832 6833 unlock: 6834 rcu_read_unlock(); 6835 6836 return target; 6837 } 6838 6839 /* 6840 * select_task_rq_fair: Select target runqueue for the waking task in domains 6841 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 6842 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6843 * 6844 * Balances load by selecting the idlest CPU in the idlest group, or under 6845 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6846 * 6847 * Returns the target CPU number. 6848 */ 6849 static int 6850 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 6851 { 6852 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6853 struct sched_domain *tmp, *sd = NULL; 6854 int cpu = smp_processor_id(); 6855 int new_cpu = prev_cpu; 6856 int want_affine = 0; 6857 /* SD_flags and WF_flags share the first nibble */ 6858 int sd_flag = wake_flags & 0xF; 6859 6860 /* 6861 * required for stable ->cpus_allowed 6862 */ 6863 lockdep_assert_held(&p->pi_lock); 6864 if (wake_flags & WF_TTWU) { 6865 record_wakee(p); 6866 6867 if (sched_energy_enabled()) { 6868 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6869 if (new_cpu >= 0) 6870 return new_cpu; 6871 new_cpu = prev_cpu; 6872 } 6873 6874 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 6875 } 6876 6877 rcu_read_lock(); 6878 for_each_domain(cpu, tmp) { 6879 /* 6880 * If both 'cpu' and 'prev_cpu' are part of this domain, 6881 * cpu is a valid SD_WAKE_AFFINE target. 6882 */ 6883 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6884 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6885 if (cpu != prev_cpu) 6886 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6887 6888 sd = NULL; /* Prefer wake_affine over balance flags */ 6889 break; 6890 } 6891 6892 /* 6893 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 6894 * usually do not have SD_BALANCE_WAKE set. That means wakeup 6895 * will usually go to the fast path. 6896 */ 6897 if (tmp->flags & sd_flag) 6898 sd = tmp; 6899 else if (!want_affine) 6900 break; 6901 } 6902 6903 if (unlikely(sd)) { 6904 /* Slow path */ 6905 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6906 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 6907 /* Fast path */ 6908 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6909 } 6910 rcu_read_unlock(); 6911 6912 return new_cpu; 6913 } 6914 6915 static void detach_entity_cfs_rq(struct sched_entity *se); 6916 6917 /* 6918 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6919 * cfs_rq_of(p) references at time of call are still valid and identify the 6920 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6921 */ 6922 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6923 { 6924 /* 6925 * As blocked tasks retain absolute vruntime the migration needs to 6926 * deal with this by subtracting the old and adding the new 6927 * min_vruntime -- the latter is done by enqueue_entity() when placing 6928 * the task on the new runqueue. 6929 */ 6930 if (READ_ONCE(p->__state) == TASK_WAKING) { 6931 struct sched_entity *se = &p->se; 6932 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6933 u64 min_vruntime; 6934 6935 #ifndef CONFIG_64BIT 6936 u64 min_vruntime_copy; 6937 6938 do { 6939 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6940 smp_rmb(); 6941 min_vruntime = cfs_rq->min_vruntime; 6942 } while (min_vruntime != min_vruntime_copy); 6943 #else 6944 min_vruntime = cfs_rq->min_vruntime; 6945 #endif 6946 6947 se->vruntime -= min_vruntime; 6948 } 6949 6950 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 6951 /* 6952 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 6953 * rq->lock and can modify state directly. 6954 */ 6955 lockdep_assert_rq_held(task_rq(p)); 6956 detach_entity_cfs_rq(&p->se); 6957 6958 } else { 6959 /* 6960 * We are supposed to update the task to "current" time, then 6961 * its up to date and ready to go to new CPU/cfs_rq. But we 6962 * have difficulty in getting what current time is, so simply 6963 * throw away the out-of-date time. This will result in the 6964 * wakee task is less decayed, but giving the wakee more load 6965 * sounds not bad. 6966 */ 6967 remove_entity_load_avg(&p->se); 6968 } 6969 6970 /* Tell new CPU we are migrated */ 6971 p->se.avg.last_update_time = 0; 6972 6973 /* We have migrated, no longer consider this task hot */ 6974 p->se.exec_start = 0; 6975 6976 update_scan_period(p, new_cpu); 6977 } 6978 6979 static void task_dead_fair(struct task_struct *p) 6980 { 6981 remove_entity_load_avg(&p->se); 6982 } 6983 6984 static int 6985 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6986 { 6987 if (rq->nr_running) 6988 return 1; 6989 6990 return newidle_balance(rq, rf) != 0; 6991 } 6992 #endif /* CONFIG_SMP */ 6993 6994 static unsigned long wakeup_gran(struct sched_entity *se) 6995 { 6996 unsigned long gran = sysctl_sched_wakeup_granularity; 6997 6998 /* 6999 * Since its curr running now, convert the gran from real-time 7000 * to virtual-time in his units. 7001 * 7002 * By using 'se' instead of 'curr' we penalize light tasks, so 7003 * they get preempted easier. That is, if 'se' < 'curr' then 7004 * the resulting gran will be larger, therefore penalizing the 7005 * lighter, if otoh 'se' > 'curr' then the resulting gran will 7006 * be smaller, again penalizing the lighter task. 7007 * 7008 * This is especially important for buddies when the leftmost 7009 * task is higher priority than the buddy. 7010 */ 7011 return calc_delta_fair(gran, se); 7012 } 7013 7014 /* 7015 * Should 'se' preempt 'curr'. 7016 * 7017 * |s1 7018 * |s2 7019 * |s3 7020 * g 7021 * |<--->|c 7022 * 7023 * w(c, s1) = -1 7024 * w(c, s2) = 0 7025 * w(c, s3) = 1 7026 * 7027 */ 7028 static int 7029 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 7030 { 7031 s64 gran, vdiff = curr->vruntime - se->vruntime; 7032 7033 if (vdiff <= 0) 7034 return -1; 7035 7036 gran = wakeup_gran(se); 7037 if (vdiff > gran) 7038 return 1; 7039 7040 return 0; 7041 } 7042 7043 static void set_last_buddy(struct sched_entity *se) 7044 { 7045 for_each_sched_entity(se) { 7046 if (SCHED_WARN_ON(!se->on_rq)) 7047 return; 7048 if (se_is_idle(se)) 7049 return; 7050 cfs_rq_of(se)->last = se; 7051 } 7052 } 7053 7054 static void set_next_buddy(struct sched_entity *se) 7055 { 7056 for_each_sched_entity(se) { 7057 if (SCHED_WARN_ON(!se->on_rq)) 7058 return; 7059 if (se_is_idle(se)) 7060 return; 7061 cfs_rq_of(se)->next = se; 7062 } 7063 } 7064 7065 static void set_skip_buddy(struct sched_entity *se) 7066 { 7067 for_each_sched_entity(se) 7068 cfs_rq_of(se)->skip = se; 7069 } 7070 7071 /* 7072 * Preempt the current task with a newly woken task if needed: 7073 */ 7074 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 7075 { 7076 struct task_struct *curr = rq->curr; 7077 struct sched_entity *se = &curr->se, *pse = &p->se; 7078 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7079 int scale = cfs_rq->nr_running >= sched_nr_latency; 7080 int next_buddy_marked = 0; 7081 int cse_is_idle, pse_is_idle; 7082 7083 if (unlikely(se == pse)) 7084 return; 7085 7086 /* 7087 * This is possible from callers such as attach_tasks(), in which we 7088 * unconditionally check_preempt_curr() after an enqueue (which may have 7089 * lead to a throttle). This both saves work and prevents false 7090 * next-buddy nomination below. 7091 */ 7092 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 7093 return; 7094 7095 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 7096 set_next_buddy(pse); 7097 next_buddy_marked = 1; 7098 } 7099 7100 /* 7101 * We can come here with TIF_NEED_RESCHED already set from new task 7102 * wake up path. 7103 * 7104 * Note: this also catches the edge-case of curr being in a throttled 7105 * group (e.g. via set_curr_task), since update_curr() (in the 7106 * enqueue of curr) will have resulted in resched being set. This 7107 * prevents us from potentially nominating it as a false LAST_BUDDY 7108 * below. 7109 */ 7110 if (test_tsk_need_resched(curr)) 7111 return; 7112 7113 /* Idle tasks are by definition preempted by non-idle tasks. */ 7114 if (unlikely(task_has_idle_policy(curr)) && 7115 likely(!task_has_idle_policy(p))) 7116 goto preempt; 7117 7118 /* 7119 * Batch and idle tasks do not preempt non-idle tasks (their preemption 7120 * is driven by the tick): 7121 */ 7122 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 7123 return; 7124 7125 find_matching_se(&se, &pse); 7126 BUG_ON(!pse); 7127 7128 cse_is_idle = se_is_idle(se); 7129 pse_is_idle = se_is_idle(pse); 7130 7131 /* 7132 * Preempt an idle group in favor of a non-idle group (and don't preempt 7133 * in the inverse case). 7134 */ 7135 if (cse_is_idle && !pse_is_idle) 7136 goto preempt; 7137 if (cse_is_idle != pse_is_idle) 7138 return; 7139 7140 update_curr(cfs_rq_of(se)); 7141 if (wakeup_preempt_entity(se, pse) == 1) { 7142 /* 7143 * Bias pick_next to pick the sched entity that is 7144 * triggering this preemption. 7145 */ 7146 if (!next_buddy_marked) 7147 set_next_buddy(pse); 7148 goto preempt; 7149 } 7150 7151 return; 7152 7153 preempt: 7154 resched_curr(rq); 7155 /* 7156 * Only set the backward buddy when the current task is still 7157 * on the rq. This can happen when a wakeup gets interleaved 7158 * with schedule on the ->pre_schedule() or idle_balance() 7159 * point, either of which can * drop the rq lock. 7160 * 7161 * Also, during early boot the idle thread is in the fair class, 7162 * for obvious reasons its a bad idea to schedule back to it. 7163 */ 7164 if (unlikely(!se->on_rq || curr == rq->idle)) 7165 return; 7166 7167 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 7168 set_last_buddy(se); 7169 } 7170 7171 #ifdef CONFIG_SMP 7172 static struct task_struct *pick_task_fair(struct rq *rq) 7173 { 7174 struct sched_entity *se; 7175 struct cfs_rq *cfs_rq; 7176 7177 again: 7178 cfs_rq = &rq->cfs; 7179 if (!cfs_rq->nr_running) 7180 return NULL; 7181 7182 do { 7183 struct sched_entity *curr = cfs_rq->curr; 7184 7185 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 7186 if (curr) { 7187 if (curr->on_rq) 7188 update_curr(cfs_rq); 7189 else 7190 curr = NULL; 7191 7192 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 7193 goto again; 7194 } 7195 7196 se = pick_next_entity(cfs_rq, curr); 7197 cfs_rq = group_cfs_rq(se); 7198 } while (cfs_rq); 7199 7200 return task_of(se); 7201 } 7202 #endif 7203 7204 struct task_struct * 7205 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7206 { 7207 struct cfs_rq *cfs_rq = &rq->cfs; 7208 struct sched_entity *se; 7209 struct task_struct *p; 7210 int new_tasks; 7211 7212 again: 7213 if (!sched_fair_runnable(rq)) 7214 goto idle; 7215 7216 #ifdef CONFIG_FAIR_GROUP_SCHED 7217 if (!prev || prev->sched_class != &fair_sched_class) 7218 goto simple; 7219 7220 /* 7221 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 7222 * likely that a next task is from the same cgroup as the current. 7223 * 7224 * Therefore attempt to avoid putting and setting the entire cgroup 7225 * hierarchy, only change the part that actually changes. 7226 */ 7227 7228 do { 7229 struct sched_entity *curr = cfs_rq->curr; 7230 7231 /* 7232 * Since we got here without doing put_prev_entity() we also 7233 * have to consider cfs_rq->curr. If it is still a runnable 7234 * entity, update_curr() will update its vruntime, otherwise 7235 * forget we've ever seen it. 7236 */ 7237 if (curr) { 7238 if (curr->on_rq) 7239 update_curr(cfs_rq); 7240 else 7241 curr = NULL; 7242 7243 /* 7244 * This call to check_cfs_rq_runtime() will do the 7245 * throttle and dequeue its entity in the parent(s). 7246 * Therefore the nr_running test will indeed 7247 * be correct. 7248 */ 7249 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7250 cfs_rq = &rq->cfs; 7251 7252 if (!cfs_rq->nr_running) 7253 goto idle; 7254 7255 goto simple; 7256 } 7257 } 7258 7259 se = pick_next_entity(cfs_rq, curr); 7260 cfs_rq = group_cfs_rq(se); 7261 } while (cfs_rq); 7262 7263 p = task_of(se); 7264 7265 /* 7266 * Since we haven't yet done put_prev_entity and if the selected task 7267 * is a different task than we started out with, try and touch the 7268 * least amount of cfs_rqs. 7269 */ 7270 if (prev != p) { 7271 struct sched_entity *pse = &prev->se; 7272 7273 while (!(cfs_rq = is_same_group(se, pse))) { 7274 int se_depth = se->depth; 7275 int pse_depth = pse->depth; 7276 7277 if (se_depth <= pse_depth) { 7278 put_prev_entity(cfs_rq_of(pse), pse); 7279 pse = parent_entity(pse); 7280 } 7281 if (se_depth >= pse_depth) { 7282 set_next_entity(cfs_rq_of(se), se); 7283 se = parent_entity(se); 7284 } 7285 } 7286 7287 put_prev_entity(cfs_rq, pse); 7288 set_next_entity(cfs_rq, se); 7289 } 7290 7291 goto done; 7292 simple: 7293 #endif 7294 if (prev) 7295 put_prev_task(rq, prev); 7296 7297 do { 7298 se = pick_next_entity(cfs_rq, NULL); 7299 set_next_entity(cfs_rq, se); 7300 cfs_rq = group_cfs_rq(se); 7301 } while (cfs_rq); 7302 7303 p = task_of(se); 7304 7305 done: __maybe_unused; 7306 #ifdef CONFIG_SMP 7307 /* 7308 * Move the next running task to the front of 7309 * the list, so our cfs_tasks list becomes MRU 7310 * one. 7311 */ 7312 list_move(&p->se.group_node, &rq->cfs_tasks); 7313 #endif 7314 7315 if (hrtick_enabled_fair(rq)) 7316 hrtick_start_fair(rq, p); 7317 7318 update_misfit_status(p, rq); 7319 7320 return p; 7321 7322 idle: 7323 if (!rf) 7324 return NULL; 7325 7326 new_tasks = newidle_balance(rq, rf); 7327 7328 /* 7329 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 7330 * possible for any higher priority task to appear. In that case we 7331 * must re-start the pick_next_entity() loop. 7332 */ 7333 if (new_tasks < 0) 7334 return RETRY_TASK; 7335 7336 if (new_tasks > 0) 7337 goto again; 7338 7339 /* 7340 * rq is about to be idle, check if we need to update the 7341 * lost_idle_time of clock_pelt 7342 */ 7343 update_idle_rq_clock_pelt(rq); 7344 7345 return NULL; 7346 } 7347 7348 static struct task_struct *__pick_next_task_fair(struct rq *rq) 7349 { 7350 return pick_next_task_fair(rq, NULL, NULL); 7351 } 7352 7353 /* 7354 * Account for a descheduled task: 7355 */ 7356 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7357 { 7358 struct sched_entity *se = &prev->se; 7359 struct cfs_rq *cfs_rq; 7360 7361 for_each_sched_entity(se) { 7362 cfs_rq = cfs_rq_of(se); 7363 put_prev_entity(cfs_rq, se); 7364 } 7365 } 7366 7367 /* 7368 * sched_yield() is very simple 7369 * 7370 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7371 */ 7372 static void yield_task_fair(struct rq *rq) 7373 { 7374 struct task_struct *curr = rq->curr; 7375 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7376 struct sched_entity *se = &curr->se; 7377 7378 /* 7379 * Are we the only task in the tree? 7380 */ 7381 if (unlikely(rq->nr_running == 1)) 7382 return; 7383 7384 clear_buddies(cfs_rq, se); 7385 7386 if (curr->policy != SCHED_BATCH) { 7387 update_rq_clock(rq); 7388 /* 7389 * Update run-time statistics of the 'current'. 7390 */ 7391 update_curr(cfs_rq); 7392 /* 7393 * Tell update_rq_clock() that we've just updated, 7394 * so we don't do microscopic update in schedule() 7395 * and double the fastpath cost. 7396 */ 7397 rq_clock_skip_update(rq); 7398 } 7399 7400 set_skip_buddy(se); 7401 } 7402 7403 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 7404 { 7405 struct sched_entity *se = &p->se; 7406 7407 /* throttled hierarchies are not runnable */ 7408 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7409 return false; 7410 7411 /* Tell the scheduler that we'd really like pse to run next. */ 7412 set_next_buddy(se); 7413 7414 yield_task_fair(rq); 7415 7416 return true; 7417 } 7418 7419 #ifdef CONFIG_SMP 7420 /************************************************** 7421 * Fair scheduling class load-balancing methods. 7422 * 7423 * BASICS 7424 * 7425 * The purpose of load-balancing is to achieve the same basic fairness the 7426 * per-CPU scheduler provides, namely provide a proportional amount of compute 7427 * time to each task. This is expressed in the following equation: 7428 * 7429 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7430 * 7431 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7432 * W_i,0 is defined as: 7433 * 7434 * W_i,0 = \Sum_j w_i,j (2) 7435 * 7436 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7437 * is derived from the nice value as per sched_prio_to_weight[]. 7438 * 7439 * The weight average is an exponential decay average of the instantaneous 7440 * weight: 7441 * 7442 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7443 * 7444 * C_i is the compute capacity of CPU i, typically it is the 7445 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7446 * can also include other factors [XXX]. 7447 * 7448 * To achieve this balance we define a measure of imbalance which follows 7449 * directly from (1): 7450 * 7451 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7452 * 7453 * We them move tasks around to minimize the imbalance. In the continuous 7454 * function space it is obvious this converges, in the discrete case we get 7455 * a few fun cases generally called infeasible weight scenarios. 7456 * 7457 * [XXX expand on: 7458 * - infeasible weights; 7459 * - local vs global optima in the discrete case. ] 7460 * 7461 * 7462 * SCHED DOMAINS 7463 * 7464 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7465 * for all i,j solution, we create a tree of CPUs that follows the hardware 7466 * topology where each level pairs two lower groups (or better). This results 7467 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7468 * tree to only the first of the previous level and we decrease the frequency 7469 * of load-balance at each level inv. proportional to the number of CPUs in 7470 * the groups. 7471 * 7472 * This yields: 7473 * 7474 * log_2 n 1 n 7475 * \Sum { --- * --- * 2^i } = O(n) (5) 7476 * i = 0 2^i 2^i 7477 * `- size of each group 7478 * | | `- number of CPUs doing load-balance 7479 * | `- freq 7480 * `- sum over all levels 7481 * 7482 * Coupled with a limit on how many tasks we can migrate every balance pass, 7483 * this makes (5) the runtime complexity of the balancer. 7484 * 7485 * An important property here is that each CPU is still (indirectly) connected 7486 * to every other CPU in at most O(log n) steps: 7487 * 7488 * The adjacency matrix of the resulting graph is given by: 7489 * 7490 * log_2 n 7491 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7492 * k = 0 7493 * 7494 * And you'll find that: 7495 * 7496 * A^(log_2 n)_i,j != 0 for all i,j (7) 7497 * 7498 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7499 * The task movement gives a factor of O(m), giving a convergence complexity 7500 * of: 7501 * 7502 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7503 * 7504 * 7505 * WORK CONSERVING 7506 * 7507 * In order to avoid CPUs going idle while there's still work to do, new idle 7508 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7509 * tree itself instead of relying on other CPUs to bring it work. 7510 * 7511 * This adds some complexity to both (5) and (8) but it reduces the total idle 7512 * time. 7513 * 7514 * [XXX more?] 7515 * 7516 * 7517 * CGROUPS 7518 * 7519 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7520 * 7521 * s_k,i 7522 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7523 * S_k 7524 * 7525 * Where 7526 * 7527 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7528 * 7529 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7530 * 7531 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7532 * property. 7533 * 7534 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7535 * rewrite all of this once again.] 7536 */ 7537 7538 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7539 7540 enum fbq_type { regular, remote, all }; 7541 7542 /* 7543 * 'group_type' describes the group of CPUs at the moment of load balancing. 7544 * 7545 * The enum is ordered by pulling priority, with the group with lowest priority 7546 * first so the group_type can simply be compared when selecting the busiest 7547 * group. See update_sd_pick_busiest(). 7548 */ 7549 enum group_type { 7550 /* The group has spare capacity that can be used to run more tasks. */ 7551 group_has_spare = 0, 7552 /* 7553 * The group is fully used and the tasks don't compete for more CPU 7554 * cycles. Nevertheless, some tasks might wait before running. 7555 */ 7556 group_fully_busy, 7557 /* 7558 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity 7559 * and must be migrated to a more powerful CPU. 7560 */ 7561 group_misfit_task, 7562 /* 7563 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 7564 * and the task should be migrated to it instead of running on the 7565 * current CPU. 7566 */ 7567 group_asym_packing, 7568 /* 7569 * The tasks' affinity constraints previously prevented the scheduler 7570 * from balancing the load across the system. 7571 */ 7572 group_imbalanced, 7573 /* 7574 * The CPU is overloaded and can't provide expected CPU cycles to all 7575 * tasks. 7576 */ 7577 group_overloaded 7578 }; 7579 7580 enum migration_type { 7581 migrate_load = 0, 7582 migrate_util, 7583 migrate_task, 7584 migrate_misfit 7585 }; 7586 7587 #define LBF_ALL_PINNED 0x01 7588 #define LBF_NEED_BREAK 0x02 7589 #define LBF_DST_PINNED 0x04 7590 #define LBF_SOME_PINNED 0x08 7591 #define LBF_ACTIVE_LB 0x10 7592 7593 struct lb_env { 7594 struct sched_domain *sd; 7595 7596 struct rq *src_rq; 7597 int src_cpu; 7598 7599 int dst_cpu; 7600 struct rq *dst_rq; 7601 7602 struct cpumask *dst_grpmask; 7603 int new_dst_cpu; 7604 enum cpu_idle_type idle; 7605 long imbalance; 7606 /* The set of CPUs under consideration for load-balancing */ 7607 struct cpumask *cpus; 7608 7609 unsigned int flags; 7610 7611 unsigned int loop; 7612 unsigned int loop_break; 7613 unsigned int loop_max; 7614 7615 enum fbq_type fbq_type; 7616 enum migration_type migration_type; 7617 struct list_head tasks; 7618 }; 7619 7620 /* 7621 * Is this task likely cache-hot: 7622 */ 7623 static int task_hot(struct task_struct *p, struct lb_env *env) 7624 { 7625 s64 delta; 7626 7627 lockdep_assert_rq_held(env->src_rq); 7628 7629 if (p->sched_class != &fair_sched_class) 7630 return 0; 7631 7632 if (unlikely(task_has_idle_policy(p))) 7633 return 0; 7634 7635 /* SMT siblings share cache */ 7636 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 7637 return 0; 7638 7639 /* 7640 * Buddy candidates are cache hot: 7641 */ 7642 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7643 (&p->se == cfs_rq_of(&p->se)->next || 7644 &p->se == cfs_rq_of(&p->se)->last)) 7645 return 1; 7646 7647 if (sysctl_sched_migration_cost == -1) 7648 return 1; 7649 7650 /* 7651 * Don't migrate task if the task's cookie does not match 7652 * with the destination CPU's core cookie. 7653 */ 7654 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 7655 return 1; 7656 7657 if (sysctl_sched_migration_cost == 0) 7658 return 0; 7659 7660 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7661 7662 return delta < (s64)sysctl_sched_migration_cost; 7663 } 7664 7665 #ifdef CONFIG_NUMA_BALANCING 7666 /* 7667 * Returns 1, if task migration degrades locality 7668 * Returns 0, if task migration improves locality i.e migration preferred. 7669 * Returns -1, if task migration is not affected by locality. 7670 */ 7671 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7672 { 7673 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7674 unsigned long src_weight, dst_weight; 7675 int src_nid, dst_nid, dist; 7676 7677 if (!static_branch_likely(&sched_numa_balancing)) 7678 return -1; 7679 7680 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7681 return -1; 7682 7683 src_nid = cpu_to_node(env->src_cpu); 7684 dst_nid = cpu_to_node(env->dst_cpu); 7685 7686 if (src_nid == dst_nid) 7687 return -1; 7688 7689 /* Migrating away from the preferred node is always bad. */ 7690 if (src_nid == p->numa_preferred_nid) { 7691 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7692 return 1; 7693 else 7694 return -1; 7695 } 7696 7697 /* Encourage migration to the preferred node. */ 7698 if (dst_nid == p->numa_preferred_nid) 7699 return 0; 7700 7701 /* Leaving a core idle is often worse than degrading locality. */ 7702 if (env->idle == CPU_IDLE) 7703 return -1; 7704 7705 dist = node_distance(src_nid, dst_nid); 7706 if (numa_group) { 7707 src_weight = group_weight(p, src_nid, dist); 7708 dst_weight = group_weight(p, dst_nid, dist); 7709 } else { 7710 src_weight = task_weight(p, src_nid, dist); 7711 dst_weight = task_weight(p, dst_nid, dist); 7712 } 7713 7714 return dst_weight < src_weight; 7715 } 7716 7717 #else 7718 static inline int migrate_degrades_locality(struct task_struct *p, 7719 struct lb_env *env) 7720 { 7721 return -1; 7722 } 7723 #endif 7724 7725 /* 7726 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7727 */ 7728 static 7729 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7730 { 7731 int tsk_cache_hot; 7732 7733 lockdep_assert_rq_held(env->src_rq); 7734 7735 /* 7736 * We do not migrate tasks that are: 7737 * 1) throttled_lb_pair, or 7738 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7739 * 3) running (obviously), or 7740 * 4) are cache-hot on their current CPU. 7741 */ 7742 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7743 return 0; 7744 7745 /* Disregard pcpu kthreads; they are where they need to be. */ 7746 if (kthread_is_per_cpu(p)) 7747 return 0; 7748 7749 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7750 int cpu; 7751 7752 schedstat_inc(p->stats.nr_failed_migrations_affine); 7753 7754 env->flags |= LBF_SOME_PINNED; 7755 7756 /* 7757 * Remember if this task can be migrated to any other CPU in 7758 * our sched_group. We may want to revisit it if we couldn't 7759 * meet load balance goals by pulling other tasks on src_cpu. 7760 * 7761 * Avoid computing new_dst_cpu 7762 * - for NEWLY_IDLE 7763 * - if we have already computed one in current iteration 7764 * - if it's an active balance 7765 */ 7766 if (env->idle == CPU_NEWLY_IDLE || 7767 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 7768 return 0; 7769 7770 /* Prevent to re-select dst_cpu via env's CPUs: */ 7771 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7772 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7773 env->flags |= LBF_DST_PINNED; 7774 env->new_dst_cpu = cpu; 7775 break; 7776 } 7777 } 7778 7779 return 0; 7780 } 7781 7782 /* Record that we found at least one task that could run on dst_cpu */ 7783 env->flags &= ~LBF_ALL_PINNED; 7784 7785 if (task_running(env->src_rq, p)) { 7786 schedstat_inc(p->stats.nr_failed_migrations_running); 7787 return 0; 7788 } 7789 7790 /* 7791 * Aggressive migration if: 7792 * 1) active balance 7793 * 2) destination numa is preferred 7794 * 3) task is cache cold, or 7795 * 4) too many balance attempts have failed. 7796 */ 7797 if (env->flags & LBF_ACTIVE_LB) 7798 return 1; 7799 7800 tsk_cache_hot = migrate_degrades_locality(p, env); 7801 if (tsk_cache_hot == -1) 7802 tsk_cache_hot = task_hot(p, env); 7803 7804 if (tsk_cache_hot <= 0 || 7805 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7806 if (tsk_cache_hot == 1) { 7807 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7808 schedstat_inc(p->stats.nr_forced_migrations); 7809 } 7810 return 1; 7811 } 7812 7813 schedstat_inc(p->stats.nr_failed_migrations_hot); 7814 return 0; 7815 } 7816 7817 /* 7818 * detach_task() -- detach the task for the migration specified in env 7819 */ 7820 static void detach_task(struct task_struct *p, struct lb_env *env) 7821 { 7822 lockdep_assert_rq_held(env->src_rq); 7823 7824 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7825 set_task_cpu(p, env->dst_cpu); 7826 } 7827 7828 /* 7829 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7830 * part of active balancing operations within "domain". 7831 * 7832 * Returns a task if successful and NULL otherwise. 7833 */ 7834 static struct task_struct *detach_one_task(struct lb_env *env) 7835 { 7836 struct task_struct *p; 7837 7838 lockdep_assert_rq_held(env->src_rq); 7839 7840 list_for_each_entry_reverse(p, 7841 &env->src_rq->cfs_tasks, se.group_node) { 7842 if (!can_migrate_task(p, env)) 7843 continue; 7844 7845 detach_task(p, env); 7846 7847 /* 7848 * Right now, this is only the second place where 7849 * lb_gained[env->idle] is updated (other is detach_tasks) 7850 * so we can safely collect stats here rather than 7851 * inside detach_tasks(). 7852 */ 7853 schedstat_inc(env->sd->lb_gained[env->idle]); 7854 return p; 7855 } 7856 return NULL; 7857 } 7858 7859 static const unsigned int sched_nr_migrate_break = 32; 7860 7861 /* 7862 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 7863 * busiest_rq, as part of a balancing operation within domain "sd". 7864 * 7865 * Returns number of detached tasks if successful and 0 otherwise. 7866 */ 7867 static int detach_tasks(struct lb_env *env) 7868 { 7869 struct list_head *tasks = &env->src_rq->cfs_tasks; 7870 unsigned long util, load; 7871 struct task_struct *p; 7872 int detached = 0; 7873 7874 lockdep_assert_rq_held(env->src_rq); 7875 7876 /* 7877 * Source run queue has been emptied by another CPU, clear 7878 * LBF_ALL_PINNED flag as we will not test any task. 7879 */ 7880 if (env->src_rq->nr_running <= 1) { 7881 env->flags &= ~LBF_ALL_PINNED; 7882 return 0; 7883 } 7884 7885 if (env->imbalance <= 0) 7886 return 0; 7887 7888 while (!list_empty(tasks)) { 7889 /* 7890 * We don't want to steal all, otherwise we may be treated likewise, 7891 * which could at worst lead to a livelock crash. 7892 */ 7893 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7894 break; 7895 7896 p = list_last_entry(tasks, struct task_struct, se.group_node); 7897 7898 env->loop++; 7899 /* We've more or less seen every task there is, call it quits */ 7900 if (env->loop > env->loop_max) 7901 break; 7902 7903 /* take a breather every nr_migrate tasks */ 7904 if (env->loop > env->loop_break) { 7905 env->loop_break += sched_nr_migrate_break; 7906 env->flags |= LBF_NEED_BREAK; 7907 break; 7908 } 7909 7910 if (!can_migrate_task(p, env)) 7911 goto next; 7912 7913 switch (env->migration_type) { 7914 case migrate_load: 7915 /* 7916 * Depending of the number of CPUs and tasks and the 7917 * cgroup hierarchy, task_h_load() can return a null 7918 * value. Make sure that env->imbalance decreases 7919 * otherwise detach_tasks() will stop only after 7920 * detaching up to loop_max tasks. 7921 */ 7922 load = max_t(unsigned long, task_h_load(p), 1); 7923 7924 if (sched_feat(LB_MIN) && 7925 load < 16 && !env->sd->nr_balance_failed) 7926 goto next; 7927 7928 /* 7929 * Make sure that we don't migrate too much load. 7930 * Nevertheless, let relax the constraint if 7931 * scheduler fails to find a good waiting task to 7932 * migrate. 7933 */ 7934 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 7935 goto next; 7936 7937 env->imbalance -= load; 7938 break; 7939 7940 case migrate_util: 7941 util = task_util_est(p); 7942 7943 if (util > env->imbalance) 7944 goto next; 7945 7946 env->imbalance -= util; 7947 break; 7948 7949 case migrate_task: 7950 env->imbalance--; 7951 break; 7952 7953 case migrate_misfit: 7954 /* This is not a misfit task */ 7955 if (task_fits_capacity(p, capacity_of(env->src_cpu))) 7956 goto next; 7957 7958 env->imbalance = 0; 7959 break; 7960 } 7961 7962 detach_task(p, env); 7963 list_add(&p->se.group_node, &env->tasks); 7964 7965 detached++; 7966 7967 #ifdef CONFIG_PREEMPTION 7968 /* 7969 * NEWIDLE balancing is a source of latency, so preemptible 7970 * kernels will stop after the first task is detached to minimize 7971 * the critical section. 7972 */ 7973 if (env->idle == CPU_NEWLY_IDLE) 7974 break; 7975 #endif 7976 7977 /* 7978 * We only want to steal up to the prescribed amount of 7979 * load/util/tasks. 7980 */ 7981 if (env->imbalance <= 0) 7982 break; 7983 7984 continue; 7985 next: 7986 list_move(&p->se.group_node, tasks); 7987 } 7988 7989 /* 7990 * Right now, this is one of only two places we collect this stat 7991 * so we can safely collect detach_one_task() stats here rather 7992 * than inside detach_one_task(). 7993 */ 7994 schedstat_add(env->sd->lb_gained[env->idle], detached); 7995 7996 return detached; 7997 } 7998 7999 /* 8000 * attach_task() -- attach the task detached by detach_task() to its new rq. 8001 */ 8002 static void attach_task(struct rq *rq, struct task_struct *p) 8003 { 8004 lockdep_assert_rq_held(rq); 8005 8006 BUG_ON(task_rq(p) != rq); 8007 activate_task(rq, p, ENQUEUE_NOCLOCK); 8008 check_preempt_curr(rq, p, 0); 8009 } 8010 8011 /* 8012 * attach_one_task() -- attaches the task returned from detach_one_task() to 8013 * its new rq. 8014 */ 8015 static void attach_one_task(struct rq *rq, struct task_struct *p) 8016 { 8017 struct rq_flags rf; 8018 8019 rq_lock(rq, &rf); 8020 update_rq_clock(rq); 8021 attach_task(rq, p); 8022 rq_unlock(rq, &rf); 8023 } 8024 8025 /* 8026 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 8027 * new rq. 8028 */ 8029 static void attach_tasks(struct lb_env *env) 8030 { 8031 struct list_head *tasks = &env->tasks; 8032 struct task_struct *p; 8033 struct rq_flags rf; 8034 8035 rq_lock(env->dst_rq, &rf); 8036 update_rq_clock(env->dst_rq); 8037 8038 while (!list_empty(tasks)) { 8039 p = list_first_entry(tasks, struct task_struct, se.group_node); 8040 list_del_init(&p->se.group_node); 8041 8042 attach_task(env->dst_rq, p); 8043 } 8044 8045 rq_unlock(env->dst_rq, &rf); 8046 } 8047 8048 #ifdef CONFIG_NO_HZ_COMMON 8049 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 8050 { 8051 if (cfs_rq->avg.load_avg) 8052 return true; 8053 8054 if (cfs_rq->avg.util_avg) 8055 return true; 8056 8057 return false; 8058 } 8059 8060 static inline bool others_have_blocked(struct rq *rq) 8061 { 8062 if (READ_ONCE(rq->avg_rt.util_avg)) 8063 return true; 8064 8065 if (READ_ONCE(rq->avg_dl.util_avg)) 8066 return true; 8067 8068 if (thermal_load_avg(rq)) 8069 return true; 8070 8071 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 8072 if (READ_ONCE(rq->avg_irq.util_avg)) 8073 return true; 8074 #endif 8075 8076 return false; 8077 } 8078 8079 static inline void update_blocked_load_tick(struct rq *rq) 8080 { 8081 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 8082 } 8083 8084 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 8085 { 8086 if (!has_blocked) 8087 rq->has_blocked_load = 0; 8088 } 8089 #else 8090 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 8091 static inline bool others_have_blocked(struct rq *rq) { return false; } 8092 static inline void update_blocked_load_tick(struct rq *rq) {} 8093 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 8094 #endif 8095 8096 static bool __update_blocked_others(struct rq *rq, bool *done) 8097 { 8098 const struct sched_class *curr_class; 8099 u64 now = rq_clock_pelt(rq); 8100 unsigned long thermal_pressure; 8101 bool decayed; 8102 8103 /* 8104 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 8105 * DL and IRQ signals have been updated before updating CFS. 8106 */ 8107 curr_class = rq->curr->sched_class; 8108 8109 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 8110 8111 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 8112 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 8113 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 8114 update_irq_load_avg(rq, 0); 8115 8116 if (others_have_blocked(rq)) 8117 *done = false; 8118 8119 return decayed; 8120 } 8121 8122 #ifdef CONFIG_FAIR_GROUP_SCHED 8123 8124 static bool __update_blocked_fair(struct rq *rq, bool *done) 8125 { 8126 struct cfs_rq *cfs_rq, *pos; 8127 bool decayed = false; 8128 int cpu = cpu_of(rq); 8129 8130 /* 8131 * Iterates the task_group tree in a bottom up fashion, see 8132 * list_add_leaf_cfs_rq() for details. 8133 */ 8134 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 8135 struct sched_entity *se; 8136 8137 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 8138 update_tg_load_avg(cfs_rq); 8139 8140 if (cfs_rq == &rq->cfs) 8141 decayed = true; 8142 } 8143 8144 /* Propagate pending load changes to the parent, if any: */ 8145 se = cfs_rq->tg->se[cpu]; 8146 if (se && !skip_blocked_update(se)) 8147 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 8148 8149 /* 8150 * There can be a lot of idle CPU cgroups. Don't let fully 8151 * decayed cfs_rqs linger on the list. 8152 */ 8153 if (cfs_rq_is_decayed(cfs_rq)) 8154 list_del_leaf_cfs_rq(cfs_rq); 8155 8156 /* Don't need periodic decay once load/util_avg are null */ 8157 if (cfs_rq_has_blocked(cfs_rq)) 8158 *done = false; 8159 } 8160 8161 return decayed; 8162 } 8163 8164 /* 8165 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 8166 * This needs to be done in a top-down fashion because the load of a child 8167 * group is a fraction of its parents load. 8168 */ 8169 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 8170 { 8171 struct rq *rq = rq_of(cfs_rq); 8172 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 8173 unsigned long now = jiffies; 8174 unsigned long load; 8175 8176 if (cfs_rq->last_h_load_update == now) 8177 return; 8178 8179 WRITE_ONCE(cfs_rq->h_load_next, NULL); 8180 for_each_sched_entity(se) { 8181 cfs_rq = cfs_rq_of(se); 8182 WRITE_ONCE(cfs_rq->h_load_next, se); 8183 if (cfs_rq->last_h_load_update == now) 8184 break; 8185 } 8186 8187 if (!se) { 8188 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 8189 cfs_rq->last_h_load_update = now; 8190 } 8191 8192 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 8193 load = cfs_rq->h_load; 8194 load = div64_ul(load * se->avg.load_avg, 8195 cfs_rq_load_avg(cfs_rq) + 1); 8196 cfs_rq = group_cfs_rq(se); 8197 cfs_rq->h_load = load; 8198 cfs_rq->last_h_load_update = now; 8199 } 8200 } 8201 8202 static unsigned long task_h_load(struct task_struct *p) 8203 { 8204 struct cfs_rq *cfs_rq = task_cfs_rq(p); 8205 8206 update_cfs_rq_h_load(cfs_rq); 8207 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 8208 cfs_rq_load_avg(cfs_rq) + 1); 8209 } 8210 #else 8211 static bool __update_blocked_fair(struct rq *rq, bool *done) 8212 { 8213 struct cfs_rq *cfs_rq = &rq->cfs; 8214 bool decayed; 8215 8216 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 8217 if (cfs_rq_has_blocked(cfs_rq)) 8218 *done = false; 8219 8220 return decayed; 8221 } 8222 8223 static unsigned long task_h_load(struct task_struct *p) 8224 { 8225 return p->se.avg.load_avg; 8226 } 8227 #endif 8228 8229 static void update_blocked_averages(int cpu) 8230 { 8231 bool decayed = false, done = true; 8232 struct rq *rq = cpu_rq(cpu); 8233 struct rq_flags rf; 8234 8235 rq_lock_irqsave(rq, &rf); 8236 update_blocked_load_tick(rq); 8237 update_rq_clock(rq); 8238 8239 decayed |= __update_blocked_others(rq, &done); 8240 decayed |= __update_blocked_fair(rq, &done); 8241 8242 update_blocked_load_status(rq, !done); 8243 if (decayed) 8244 cpufreq_update_util(rq, 0); 8245 rq_unlock_irqrestore(rq, &rf); 8246 } 8247 8248 /********** Helpers for find_busiest_group ************************/ 8249 8250 /* 8251 * sg_lb_stats - stats of a sched_group required for load_balancing 8252 */ 8253 struct sg_lb_stats { 8254 unsigned long avg_load; /*Avg load across the CPUs of the group */ 8255 unsigned long group_load; /* Total load over the CPUs of the group */ 8256 unsigned long group_capacity; 8257 unsigned long group_util; /* Total utilization over the CPUs of the group */ 8258 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 8259 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 8260 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 8261 unsigned int idle_cpus; 8262 unsigned int group_weight; 8263 enum group_type group_type; 8264 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 8265 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 8266 #ifdef CONFIG_NUMA_BALANCING 8267 unsigned int nr_numa_running; 8268 unsigned int nr_preferred_running; 8269 #endif 8270 }; 8271 8272 /* 8273 * sd_lb_stats - Structure to store the statistics of a sched_domain 8274 * during load balancing. 8275 */ 8276 struct sd_lb_stats { 8277 struct sched_group *busiest; /* Busiest group in this sd */ 8278 struct sched_group *local; /* Local group in this sd */ 8279 unsigned long total_load; /* Total load of all groups in sd */ 8280 unsigned long total_capacity; /* Total capacity of all groups in sd */ 8281 unsigned long avg_load; /* Average load across all groups in sd */ 8282 unsigned int prefer_sibling; /* tasks should go to sibling first */ 8283 8284 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 8285 struct sg_lb_stats local_stat; /* Statistics of the local group */ 8286 }; 8287 8288 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 8289 { 8290 /* 8291 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 8292 * local_stat because update_sg_lb_stats() does a full clear/assignment. 8293 * We must however set busiest_stat::group_type and 8294 * busiest_stat::idle_cpus to the worst busiest group because 8295 * update_sd_pick_busiest() reads these before assignment. 8296 */ 8297 *sds = (struct sd_lb_stats){ 8298 .busiest = NULL, 8299 .local = NULL, 8300 .total_load = 0UL, 8301 .total_capacity = 0UL, 8302 .busiest_stat = { 8303 .idle_cpus = UINT_MAX, 8304 .group_type = group_has_spare, 8305 }, 8306 }; 8307 } 8308 8309 static unsigned long scale_rt_capacity(int cpu) 8310 { 8311 struct rq *rq = cpu_rq(cpu); 8312 unsigned long max = arch_scale_cpu_capacity(cpu); 8313 unsigned long used, free; 8314 unsigned long irq; 8315 8316 irq = cpu_util_irq(rq); 8317 8318 if (unlikely(irq >= max)) 8319 return 1; 8320 8321 /* 8322 * avg_rt.util_avg and avg_dl.util_avg track binary signals 8323 * (running and not running) with weights 0 and 1024 respectively. 8324 * avg_thermal.load_avg tracks thermal pressure and the weighted 8325 * average uses the actual delta max capacity(load). 8326 */ 8327 used = READ_ONCE(rq->avg_rt.util_avg); 8328 used += READ_ONCE(rq->avg_dl.util_avg); 8329 used += thermal_load_avg(rq); 8330 8331 if (unlikely(used >= max)) 8332 return 1; 8333 8334 free = max - used; 8335 8336 return scale_irq_capacity(free, irq, max); 8337 } 8338 8339 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 8340 { 8341 unsigned long capacity = scale_rt_capacity(cpu); 8342 struct sched_group *sdg = sd->groups; 8343 8344 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 8345 8346 if (!capacity) 8347 capacity = 1; 8348 8349 cpu_rq(cpu)->cpu_capacity = capacity; 8350 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 8351 8352 sdg->sgc->capacity = capacity; 8353 sdg->sgc->min_capacity = capacity; 8354 sdg->sgc->max_capacity = capacity; 8355 } 8356 8357 void update_group_capacity(struct sched_domain *sd, int cpu) 8358 { 8359 struct sched_domain *child = sd->child; 8360 struct sched_group *group, *sdg = sd->groups; 8361 unsigned long capacity, min_capacity, max_capacity; 8362 unsigned long interval; 8363 8364 interval = msecs_to_jiffies(sd->balance_interval); 8365 interval = clamp(interval, 1UL, max_load_balance_interval); 8366 sdg->sgc->next_update = jiffies + interval; 8367 8368 if (!child) { 8369 update_cpu_capacity(sd, cpu); 8370 return; 8371 } 8372 8373 capacity = 0; 8374 min_capacity = ULONG_MAX; 8375 max_capacity = 0; 8376 8377 if (child->flags & SD_OVERLAP) { 8378 /* 8379 * SD_OVERLAP domains cannot assume that child groups 8380 * span the current group. 8381 */ 8382 8383 for_each_cpu(cpu, sched_group_span(sdg)) { 8384 unsigned long cpu_cap = capacity_of(cpu); 8385 8386 capacity += cpu_cap; 8387 min_capacity = min(cpu_cap, min_capacity); 8388 max_capacity = max(cpu_cap, max_capacity); 8389 } 8390 } else { 8391 /* 8392 * !SD_OVERLAP domains can assume that child groups 8393 * span the current group. 8394 */ 8395 8396 group = child->groups; 8397 do { 8398 struct sched_group_capacity *sgc = group->sgc; 8399 8400 capacity += sgc->capacity; 8401 min_capacity = min(sgc->min_capacity, min_capacity); 8402 max_capacity = max(sgc->max_capacity, max_capacity); 8403 group = group->next; 8404 } while (group != child->groups); 8405 } 8406 8407 sdg->sgc->capacity = capacity; 8408 sdg->sgc->min_capacity = min_capacity; 8409 sdg->sgc->max_capacity = max_capacity; 8410 } 8411 8412 /* 8413 * Check whether the capacity of the rq has been noticeably reduced by side 8414 * activity. The imbalance_pct is used for the threshold. 8415 * Return true is the capacity is reduced 8416 */ 8417 static inline int 8418 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8419 { 8420 return ((rq->cpu_capacity * sd->imbalance_pct) < 8421 (rq->cpu_capacity_orig * 100)); 8422 } 8423 8424 /* 8425 * Check whether a rq has a misfit task and if it looks like we can actually 8426 * help that task: we can migrate the task to a CPU of higher capacity, or 8427 * the task's current CPU is heavily pressured. 8428 */ 8429 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8430 { 8431 return rq->misfit_task_load && 8432 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8433 check_cpu_capacity(rq, sd)); 8434 } 8435 8436 /* 8437 * Group imbalance indicates (and tries to solve) the problem where balancing 8438 * groups is inadequate due to ->cpus_ptr constraints. 8439 * 8440 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8441 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8442 * Something like: 8443 * 8444 * { 0 1 2 3 } { 4 5 6 7 } 8445 * * * * * 8446 * 8447 * If we were to balance group-wise we'd place two tasks in the first group and 8448 * two tasks in the second group. Clearly this is undesired as it will overload 8449 * cpu 3 and leave one of the CPUs in the second group unused. 8450 * 8451 * The current solution to this issue is detecting the skew in the first group 8452 * by noticing the lower domain failed to reach balance and had difficulty 8453 * moving tasks due to affinity constraints. 8454 * 8455 * When this is so detected; this group becomes a candidate for busiest; see 8456 * update_sd_pick_busiest(). And calculate_imbalance() and 8457 * find_busiest_group() avoid some of the usual balance conditions to allow it 8458 * to create an effective group imbalance. 8459 * 8460 * This is a somewhat tricky proposition since the next run might not find the 8461 * group imbalance and decide the groups need to be balanced again. A most 8462 * subtle and fragile situation. 8463 */ 8464 8465 static inline int sg_imbalanced(struct sched_group *group) 8466 { 8467 return group->sgc->imbalance; 8468 } 8469 8470 /* 8471 * group_has_capacity returns true if the group has spare capacity that could 8472 * be used by some tasks. 8473 * We consider that a group has spare capacity if the * number of task is 8474 * smaller than the number of CPUs or if the utilization is lower than the 8475 * available capacity for CFS tasks. 8476 * For the latter, we use a threshold to stabilize the state, to take into 8477 * account the variance of the tasks' load and to return true if the available 8478 * capacity in meaningful for the load balancer. 8479 * As an example, an available capacity of 1% can appear but it doesn't make 8480 * any benefit for the load balance. 8481 */ 8482 static inline bool 8483 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8484 { 8485 if (sgs->sum_nr_running < sgs->group_weight) 8486 return true; 8487 8488 if ((sgs->group_capacity * imbalance_pct) < 8489 (sgs->group_runnable * 100)) 8490 return false; 8491 8492 if ((sgs->group_capacity * 100) > 8493 (sgs->group_util * imbalance_pct)) 8494 return true; 8495 8496 return false; 8497 } 8498 8499 /* 8500 * group_is_overloaded returns true if the group has more tasks than it can 8501 * handle. 8502 * group_is_overloaded is not equals to !group_has_capacity because a group 8503 * with the exact right number of tasks, has no more spare capacity but is not 8504 * overloaded so both group_has_capacity and group_is_overloaded return 8505 * false. 8506 */ 8507 static inline bool 8508 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8509 { 8510 if (sgs->sum_nr_running <= sgs->group_weight) 8511 return false; 8512 8513 if ((sgs->group_capacity * 100) < 8514 (sgs->group_util * imbalance_pct)) 8515 return true; 8516 8517 if ((sgs->group_capacity * imbalance_pct) < 8518 (sgs->group_runnable * 100)) 8519 return true; 8520 8521 return false; 8522 } 8523 8524 static inline enum 8525 group_type group_classify(unsigned int imbalance_pct, 8526 struct sched_group *group, 8527 struct sg_lb_stats *sgs) 8528 { 8529 if (group_is_overloaded(imbalance_pct, sgs)) 8530 return group_overloaded; 8531 8532 if (sg_imbalanced(group)) 8533 return group_imbalanced; 8534 8535 if (sgs->group_asym_packing) 8536 return group_asym_packing; 8537 8538 if (sgs->group_misfit_task_load) 8539 return group_misfit_task; 8540 8541 if (!group_has_capacity(imbalance_pct, sgs)) 8542 return group_fully_busy; 8543 8544 return group_has_spare; 8545 } 8546 8547 /** 8548 * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks 8549 * @dst_cpu: Destination CPU of the load balancing 8550 * @sds: Load-balancing data with statistics of the local group 8551 * @sgs: Load-balancing statistics of the candidate busiest group 8552 * @sg: The candidate busiest group 8553 * 8554 * Check the state of the SMT siblings of both @sds::local and @sg and decide 8555 * if @dst_cpu can pull tasks. 8556 * 8557 * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of 8558 * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks 8559 * only if @dst_cpu has higher priority. 8560 * 8561 * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more 8562 * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority. 8563 * Bigger imbalances in the number of busy CPUs will be dealt with in 8564 * update_sd_pick_busiest(). 8565 * 8566 * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings 8567 * of @dst_cpu are idle and @sg has lower priority. 8568 * 8569 * Return: true if @dst_cpu can pull tasks, false otherwise. 8570 */ 8571 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds, 8572 struct sg_lb_stats *sgs, 8573 struct sched_group *sg) 8574 { 8575 #ifdef CONFIG_SCHED_SMT 8576 bool local_is_smt, sg_is_smt; 8577 int sg_busy_cpus; 8578 8579 local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY; 8580 sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY; 8581 8582 sg_busy_cpus = sgs->group_weight - sgs->idle_cpus; 8583 8584 if (!local_is_smt) { 8585 /* 8586 * If we are here, @dst_cpu is idle and does not have SMT 8587 * siblings. Pull tasks if candidate group has two or more 8588 * busy CPUs. 8589 */ 8590 if (sg_busy_cpus >= 2) /* implies sg_is_smt */ 8591 return true; 8592 8593 /* 8594 * @dst_cpu does not have SMT siblings. @sg may have SMT 8595 * siblings and only one is busy. In such case, @dst_cpu 8596 * can help if it has higher priority and is idle (i.e., 8597 * it has no running tasks). 8598 */ 8599 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8600 } 8601 8602 /* @dst_cpu has SMT siblings. */ 8603 8604 if (sg_is_smt) { 8605 int local_busy_cpus = sds->local->group_weight - 8606 sds->local_stat.idle_cpus; 8607 int busy_cpus_delta = sg_busy_cpus - local_busy_cpus; 8608 8609 if (busy_cpus_delta == 1) 8610 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8611 8612 return false; 8613 } 8614 8615 /* 8616 * @sg does not have SMT siblings. Ensure that @sds::local does not end 8617 * up with more than one busy SMT sibling and only pull tasks if there 8618 * are not busy CPUs (i.e., no CPU has running tasks). 8619 */ 8620 if (!sds->local_stat.sum_nr_running) 8621 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8622 8623 return false; 8624 #else 8625 /* Always return false so that callers deal with non-SMT cases. */ 8626 return false; 8627 #endif 8628 } 8629 8630 static inline bool 8631 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 8632 struct sched_group *group) 8633 { 8634 /* Only do SMT checks if either local or candidate have SMT siblings */ 8635 if ((sds->local->flags & SD_SHARE_CPUCAPACITY) || 8636 (group->flags & SD_SHARE_CPUCAPACITY)) 8637 return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group); 8638 8639 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 8640 } 8641 8642 /** 8643 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8644 * @env: The load balancing environment. 8645 * @sds: Load-balancing data with statistics of the local group. 8646 * @group: sched_group whose statistics are to be updated. 8647 * @sgs: variable to hold the statistics for this group. 8648 * @sg_status: Holds flag indicating the status of the sched_group 8649 */ 8650 static inline void update_sg_lb_stats(struct lb_env *env, 8651 struct sd_lb_stats *sds, 8652 struct sched_group *group, 8653 struct sg_lb_stats *sgs, 8654 int *sg_status) 8655 { 8656 int i, nr_running, local_group; 8657 8658 memset(sgs, 0, sizeof(*sgs)); 8659 8660 local_group = group == sds->local; 8661 8662 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8663 struct rq *rq = cpu_rq(i); 8664 8665 sgs->group_load += cpu_load(rq); 8666 sgs->group_util += cpu_util_cfs(i); 8667 sgs->group_runnable += cpu_runnable(rq); 8668 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 8669 8670 nr_running = rq->nr_running; 8671 sgs->sum_nr_running += nr_running; 8672 8673 if (nr_running > 1) 8674 *sg_status |= SG_OVERLOAD; 8675 8676 if (cpu_overutilized(i)) 8677 *sg_status |= SG_OVERUTILIZED; 8678 8679 #ifdef CONFIG_NUMA_BALANCING 8680 sgs->nr_numa_running += rq->nr_numa_running; 8681 sgs->nr_preferred_running += rq->nr_preferred_running; 8682 #endif 8683 /* 8684 * No need to call idle_cpu() if nr_running is not 0 8685 */ 8686 if (!nr_running && idle_cpu(i)) { 8687 sgs->idle_cpus++; 8688 /* Idle cpu can't have misfit task */ 8689 continue; 8690 } 8691 8692 if (local_group) 8693 continue; 8694 8695 /* Check for a misfit task on the cpu */ 8696 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8697 sgs->group_misfit_task_load < rq->misfit_task_load) { 8698 sgs->group_misfit_task_load = rq->misfit_task_load; 8699 *sg_status |= SG_OVERLOAD; 8700 } 8701 } 8702 8703 sgs->group_capacity = group->sgc->capacity; 8704 8705 sgs->group_weight = group->group_weight; 8706 8707 /* Check if dst CPU is idle and preferred to this group */ 8708 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 8709 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 8710 sched_asym(env, sds, sgs, group)) { 8711 sgs->group_asym_packing = 1; 8712 } 8713 8714 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 8715 8716 /* Computing avg_load makes sense only when group is overloaded */ 8717 if (sgs->group_type == group_overloaded) 8718 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8719 sgs->group_capacity; 8720 } 8721 8722 /** 8723 * update_sd_pick_busiest - return 1 on busiest group 8724 * @env: The load balancing environment. 8725 * @sds: sched_domain statistics 8726 * @sg: sched_group candidate to be checked for being the busiest 8727 * @sgs: sched_group statistics 8728 * 8729 * Determine if @sg is a busier group than the previously selected 8730 * busiest group. 8731 * 8732 * Return: %true if @sg is a busier group than the previously selected 8733 * busiest group. %false otherwise. 8734 */ 8735 static bool update_sd_pick_busiest(struct lb_env *env, 8736 struct sd_lb_stats *sds, 8737 struct sched_group *sg, 8738 struct sg_lb_stats *sgs) 8739 { 8740 struct sg_lb_stats *busiest = &sds->busiest_stat; 8741 8742 /* Make sure that there is at least one task to pull */ 8743 if (!sgs->sum_h_nr_running) 8744 return false; 8745 8746 /* 8747 * Don't try to pull misfit tasks we can't help. 8748 * We can use max_capacity here as reduction in capacity on some 8749 * CPUs in the group should either be possible to resolve 8750 * internally or be covered by avg_load imbalance (eventually). 8751 */ 8752 if (sgs->group_type == group_misfit_task && 8753 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 8754 sds->local_stat.group_type != group_has_spare)) 8755 return false; 8756 8757 if (sgs->group_type > busiest->group_type) 8758 return true; 8759 8760 if (sgs->group_type < busiest->group_type) 8761 return false; 8762 8763 /* 8764 * The candidate and the current busiest group are the same type of 8765 * group. Let check which one is the busiest according to the type. 8766 */ 8767 8768 switch (sgs->group_type) { 8769 case group_overloaded: 8770 /* Select the overloaded group with highest avg_load. */ 8771 if (sgs->avg_load <= busiest->avg_load) 8772 return false; 8773 break; 8774 8775 case group_imbalanced: 8776 /* 8777 * Select the 1st imbalanced group as we don't have any way to 8778 * choose one more than another. 8779 */ 8780 return false; 8781 8782 case group_asym_packing: 8783 /* Prefer to move from lowest priority CPU's work */ 8784 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 8785 return false; 8786 break; 8787 8788 case group_misfit_task: 8789 /* 8790 * If we have more than one misfit sg go with the biggest 8791 * misfit. 8792 */ 8793 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8794 return false; 8795 break; 8796 8797 case group_fully_busy: 8798 /* 8799 * Select the fully busy group with highest avg_load. In 8800 * theory, there is no need to pull task from such kind of 8801 * group because tasks have all compute capacity that they need 8802 * but we can still improve the overall throughput by reducing 8803 * contention when accessing shared HW resources. 8804 * 8805 * XXX for now avg_load is not computed and always 0 so we 8806 * select the 1st one. 8807 */ 8808 if (sgs->avg_load <= busiest->avg_load) 8809 return false; 8810 break; 8811 8812 case group_has_spare: 8813 /* 8814 * Select not overloaded group with lowest number of idle cpus 8815 * and highest number of running tasks. We could also compare 8816 * the spare capacity which is more stable but it can end up 8817 * that the group has less spare capacity but finally more idle 8818 * CPUs which means less opportunity to pull tasks. 8819 */ 8820 if (sgs->idle_cpus > busiest->idle_cpus) 8821 return false; 8822 else if ((sgs->idle_cpus == busiest->idle_cpus) && 8823 (sgs->sum_nr_running <= busiest->sum_nr_running)) 8824 return false; 8825 8826 break; 8827 } 8828 8829 /* 8830 * Candidate sg has no more than one task per CPU and has higher 8831 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 8832 * throughput. Maximize throughput, power/energy consequences are not 8833 * considered. 8834 */ 8835 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 8836 (sgs->group_type <= group_fully_busy) && 8837 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 8838 return false; 8839 8840 return true; 8841 } 8842 8843 #ifdef CONFIG_NUMA_BALANCING 8844 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8845 { 8846 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 8847 return regular; 8848 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 8849 return remote; 8850 return all; 8851 } 8852 8853 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8854 { 8855 if (rq->nr_running > rq->nr_numa_running) 8856 return regular; 8857 if (rq->nr_running > rq->nr_preferred_running) 8858 return remote; 8859 return all; 8860 } 8861 #else 8862 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8863 { 8864 return all; 8865 } 8866 8867 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8868 { 8869 return regular; 8870 } 8871 #endif /* CONFIG_NUMA_BALANCING */ 8872 8873 8874 struct sg_lb_stats; 8875 8876 /* 8877 * task_running_on_cpu - return 1 if @p is running on @cpu. 8878 */ 8879 8880 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 8881 { 8882 /* Task has no contribution or is new */ 8883 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8884 return 0; 8885 8886 if (task_on_rq_queued(p)) 8887 return 1; 8888 8889 return 0; 8890 } 8891 8892 /** 8893 * idle_cpu_without - would a given CPU be idle without p ? 8894 * @cpu: the processor on which idleness is tested. 8895 * @p: task which should be ignored. 8896 * 8897 * Return: 1 if the CPU would be idle. 0 otherwise. 8898 */ 8899 static int idle_cpu_without(int cpu, struct task_struct *p) 8900 { 8901 struct rq *rq = cpu_rq(cpu); 8902 8903 if (rq->curr != rq->idle && rq->curr != p) 8904 return 0; 8905 8906 /* 8907 * rq->nr_running can't be used but an updated version without the 8908 * impact of p on cpu must be used instead. The updated nr_running 8909 * be computed and tested before calling idle_cpu_without(). 8910 */ 8911 8912 #ifdef CONFIG_SMP 8913 if (rq->ttwu_pending) 8914 return 0; 8915 #endif 8916 8917 return 1; 8918 } 8919 8920 /* 8921 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 8922 * @sd: The sched_domain level to look for idlest group. 8923 * @group: sched_group whose statistics are to be updated. 8924 * @sgs: variable to hold the statistics for this group. 8925 * @p: The task for which we look for the idlest group/CPU. 8926 */ 8927 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 8928 struct sched_group *group, 8929 struct sg_lb_stats *sgs, 8930 struct task_struct *p) 8931 { 8932 int i, nr_running; 8933 8934 memset(sgs, 0, sizeof(*sgs)); 8935 8936 for_each_cpu(i, sched_group_span(group)) { 8937 struct rq *rq = cpu_rq(i); 8938 unsigned int local; 8939 8940 sgs->group_load += cpu_load_without(rq, p); 8941 sgs->group_util += cpu_util_without(i, p); 8942 sgs->group_runnable += cpu_runnable_without(rq, p); 8943 local = task_running_on_cpu(i, p); 8944 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 8945 8946 nr_running = rq->nr_running - local; 8947 sgs->sum_nr_running += nr_running; 8948 8949 /* 8950 * No need to call idle_cpu_without() if nr_running is not 0 8951 */ 8952 if (!nr_running && idle_cpu_without(i, p)) 8953 sgs->idle_cpus++; 8954 8955 } 8956 8957 /* Check if task fits in the group */ 8958 if (sd->flags & SD_ASYM_CPUCAPACITY && 8959 !task_fits_capacity(p, group->sgc->max_capacity)) { 8960 sgs->group_misfit_task_load = 1; 8961 } 8962 8963 sgs->group_capacity = group->sgc->capacity; 8964 8965 sgs->group_weight = group->group_weight; 8966 8967 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 8968 8969 /* 8970 * Computing avg_load makes sense only when group is fully busy or 8971 * overloaded 8972 */ 8973 if (sgs->group_type == group_fully_busy || 8974 sgs->group_type == group_overloaded) 8975 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8976 sgs->group_capacity; 8977 } 8978 8979 static bool update_pick_idlest(struct sched_group *idlest, 8980 struct sg_lb_stats *idlest_sgs, 8981 struct sched_group *group, 8982 struct sg_lb_stats *sgs) 8983 { 8984 if (sgs->group_type < idlest_sgs->group_type) 8985 return true; 8986 8987 if (sgs->group_type > idlest_sgs->group_type) 8988 return false; 8989 8990 /* 8991 * The candidate and the current idlest group are the same type of 8992 * group. Let check which one is the idlest according to the type. 8993 */ 8994 8995 switch (sgs->group_type) { 8996 case group_overloaded: 8997 case group_fully_busy: 8998 /* Select the group with lowest avg_load. */ 8999 if (idlest_sgs->avg_load <= sgs->avg_load) 9000 return false; 9001 break; 9002 9003 case group_imbalanced: 9004 case group_asym_packing: 9005 /* Those types are not used in the slow wakeup path */ 9006 return false; 9007 9008 case group_misfit_task: 9009 /* Select group with the highest max capacity */ 9010 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 9011 return false; 9012 break; 9013 9014 case group_has_spare: 9015 /* Select group with most idle CPUs */ 9016 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 9017 return false; 9018 9019 /* Select group with lowest group_util */ 9020 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 9021 idlest_sgs->group_util <= sgs->group_util) 9022 return false; 9023 9024 break; 9025 } 9026 9027 return true; 9028 } 9029 9030 /* 9031 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain. 9032 * This is an approximation as the number of running tasks may not be 9033 * related to the number of busy CPUs due to sched_setaffinity. 9034 */ 9035 static inline bool allow_numa_imbalance(int running, int imb_numa_nr) 9036 { 9037 return running <= imb_numa_nr; 9038 } 9039 9040 /* 9041 * find_idlest_group() finds and returns the least busy CPU group within the 9042 * domain. 9043 * 9044 * Assumes p is allowed on at least one CPU in sd. 9045 */ 9046 static struct sched_group * 9047 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 9048 { 9049 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 9050 struct sg_lb_stats local_sgs, tmp_sgs; 9051 struct sg_lb_stats *sgs; 9052 unsigned long imbalance; 9053 struct sg_lb_stats idlest_sgs = { 9054 .avg_load = UINT_MAX, 9055 .group_type = group_overloaded, 9056 }; 9057 9058 do { 9059 int local_group; 9060 9061 /* Skip over this group if it has no CPUs allowed */ 9062 if (!cpumask_intersects(sched_group_span(group), 9063 p->cpus_ptr)) 9064 continue; 9065 9066 /* Skip over this group if no cookie matched */ 9067 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 9068 continue; 9069 9070 local_group = cpumask_test_cpu(this_cpu, 9071 sched_group_span(group)); 9072 9073 if (local_group) { 9074 sgs = &local_sgs; 9075 local = group; 9076 } else { 9077 sgs = &tmp_sgs; 9078 } 9079 9080 update_sg_wakeup_stats(sd, group, sgs, p); 9081 9082 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 9083 idlest = group; 9084 idlest_sgs = *sgs; 9085 } 9086 9087 } while (group = group->next, group != sd->groups); 9088 9089 9090 /* There is no idlest group to push tasks to */ 9091 if (!idlest) 9092 return NULL; 9093 9094 /* The local group has been skipped because of CPU affinity */ 9095 if (!local) 9096 return idlest; 9097 9098 /* 9099 * If the local group is idler than the selected idlest group 9100 * don't try and push the task. 9101 */ 9102 if (local_sgs.group_type < idlest_sgs.group_type) 9103 return NULL; 9104 9105 /* 9106 * If the local group is busier than the selected idlest group 9107 * try and push the task. 9108 */ 9109 if (local_sgs.group_type > idlest_sgs.group_type) 9110 return idlest; 9111 9112 switch (local_sgs.group_type) { 9113 case group_overloaded: 9114 case group_fully_busy: 9115 9116 /* Calculate allowed imbalance based on load */ 9117 imbalance = scale_load_down(NICE_0_LOAD) * 9118 (sd->imbalance_pct-100) / 100; 9119 9120 /* 9121 * When comparing groups across NUMA domains, it's possible for 9122 * the local domain to be very lightly loaded relative to the 9123 * remote domains but "imbalance" skews the comparison making 9124 * remote CPUs look much more favourable. When considering 9125 * cross-domain, add imbalance to the load on the remote node 9126 * and consider staying local. 9127 */ 9128 9129 if ((sd->flags & SD_NUMA) && 9130 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 9131 return NULL; 9132 9133 /* 9134 * If the local group is less loaded than the selected 9135 * idlest group don't try and push any tasks. 9136 */ 9137 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 9138 return NULL; 9139 9140 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 9141 return NULL; 9142 break; 9143 9144 case group_imbalanced: 9145 case group_asym_packing: 9146 /* Those type are not used in the slow wakeup path */ 9147 return NULL; 9148 9149 case group_misfit_task: 9150 /* Select group with the highest max capacity */ 9151 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 9152 return NULL; 9153 break; 9154 9155 case group_has_spare: 9156 if (sd->flags & SD_NUMA) { 9157 #ifdef CONFIG_NUMA_BALANCING 9158 int idlest_cpu; 9159 /* 9160 * If there is spare capacity at NUMA, try to select 9161 * the preferred node 9162 */ 9163 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 9164 return NULL; 9165 9166 idlest_cpu = cpumask_first(sched_group_span(idlest)); 9167 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 9168 return idlest; 9169 #endif 9170 /* 9171 * Otherwise, keep the task close to the wakeup source 9172 * and improve locality if the number of running tasks 9173 * would remain below threshold where an imbalance is 9174 * allowed. If there is a real need of migration, 9175 * periodic load balance will take care of it. 9176 */ 9177 if (allow_numa_imbalance(local_sgs.sum_nr_running + 1, sd->imb_numa_nr)) 9178 return NULL; 9179 } 9180 9181 /* 9182 * Select group with highest number of idle CPUs. We could also 9183 * compare the utilization which is more stable but it can end 9184 * up that the group has less spare capacity but finally more 9185 * idle CPUs which means more opportunity to run task. 9186 */ 9187 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 9188 return NULL; 9189 break; 9190 } 9191 9192 return idlest; 9193 } 9194 9195 /** 9196 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 9197 * @env: The load balancing environment. 9198 * @sds: variable to hold the statistics for this sched_domain. 9199 */ 9200 9201 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 9202 { 9203 struct sched_domain *child = env->sd->child; 9204 struct sched_group *sg = env->sd->groups; 9205 struct sg_lb_stats *local = &sds->local_stat; 9206 struct sg_lb_stats tmp_sgs; 9207 int sg_status = 0; 9208 9209 do { 9210 struct sg_lb_stats *sgs = &tmp_sgs; 9211 int local_group; 9212 9213 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 9214 if (local_group) { 9215 sds->local = sg; 9216 sgs = local; 9217 9218 if (env->idle != CPU_NEWLY_IDLE || 9219 time_after_eq(jiffies, sg->sgc->next_update)) 9220 update_group_capacity(env->sd, env->dst_cpu); 9221 } 9222 9223 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 9224 9225 if (local_group) 9226 goto next_group; 9227 9228 9229 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 9230 sds->busiest = sg; 9231 sds->busiest_stat = *sgs; 9232 } 9233 9234 next_group: 9235 /* Now, start updating sd_lb_stats */ 9236 sds->total_load += sgs->group_load; 9237 sds->total_capacity += sgs->group_capacity; 9238 9239 sg = sg->next; 9240 } while (sg != env->sd->groups); 9241 9242 /* Tag domain that child domain prefers tasks go to siblings first */ 9243 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 9244 9245 9246 if (env->sd->flags & SD_NUMA) 9247 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 9248 9249 if (!env->sd->parent) { 9250 struct root_domain *rd = env->dst_rq->rd; 9251 9252 /* update overload indicator if we are at root domain */ 9253 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 9254 9255 /* Update over-utilization (tipping point, U >= 0) indicator */ 9256 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 9257 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 9258 } else if (sg_status & SG_OVERUTILIZED) { 9259 struct root_domain *rd = env->dst_rq->rd; 9260 9261 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 9262 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 9263 } 9264 } 9265 9266 #define NUMA_IMBALANCE_MIN 2 9267 9268 static inline long adjust_numa_imbalance(int imbalance, 9269 int dst_running, int imb_numa_nr) 9270 { 9271 if (!allow_numa_imbalance(dst_running, imb_numa_nr)) 9272 return imbalance; 9273 9274 /* 9275 * Allow a small imbalance based on a simple pair of communicating 9276 * tasks that remain local when the destination is lightly loaded. 9277 */ 9278 if (imbalance <= NUMA_IMBALANCE_MIN) 9279 return 0; 9280 9281 return imbalance; 9282 } 9283 9284 /** 9285 * calculate_imbalance - Calculate the amount of imbalance present within the 9286 * groups of a given sched_domain during load balance. 9287 * @env: load balance environment 9288 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 9289 */ 9290 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 9291 { 9292 struct sg_lb_stats *local, *busiest; 9293 9294 local = &sds->local_stat; 9295 busiest = &sds->busiest_stat; 9296 9297 if (busiest->group_type == group_misfit_task) { 9298 /* Set imbalance to allow misfit tasks to be balanced. */ 9299 env->migration_type = migrate_misfit; 9300 env->imbalance = 1; 9301 return; 9302 } 9303 9304 if (busiest->group_type == group_asym_packing) { 9305 /* 9306 * In case of asym capacity, we will try to migrate all load to 9307 * the preferred CPU. 9308 */ 9309 env->migration_type = migrate_task; 9310 env->imbalance = busiest->sum_h_nr_running; 9311 return; 9312 } 9313 9314 if (busiest->group_type == group_imbalanced) { 9315 /* 9316 * In the group_imb case we cannot rely on group-wide averages 9317 * to ensure CPU-load equilibrium, try to move any task to fix 9318 * the imbalance. The next load balance will take care of 9319 * balancing back the system. 9320 */ 9321 env->migration_type = migrate_task; 9322 env->imbalance = 1; 9323 return; 9324 } 9325 9326 /* 9327 * Try to use spare capacity of local group without overloading it or 9328 * emptying busiest. 9329 */ 9330 if (local->group_type == group_has_spare) { 9331 if ((busiest->group_type > group_fully_busy) && 9332 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 9333 /* 9334 * If busiest is overloaded, try to fill spare 9335 * capacity. This might end up creating spare capacity 9336 * in busiest or busiest still being overloaded but 9337 * there is no simple way to directly compute the 9338 * amount of load to migrate in order to balance the 9339 * system. 9340 */ 9341 env->migration_type = migrate_util; 9342 env->imbalance = max(local->group_capacity, local->group_util) - 9343 local->group_util; 9344 9345 /* 9346 * In some cases, the group's utilization is max or even 9347 * higher than capacity because of migrations but the 9348 * local CPU is (newly) idle. There is at least one 9349 * waiting task in this overloaded busiest group. Let's 9350 * try to pull it. 9351 */ 9352 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 9353 env->migration_type = migrate_task; 9354 env->imbalance = 1; 9355 } 9356 9357 return; 9358 } 9359 9360 if (busiest->group_weight == 1 || sds->prefer_sibling) { 9361 unsigned int nr_diff = busiest->sum_nr_running; 9362 /* 9363 * When prefer sibling, evenly spread running tasks on 9364 * groups. 9365 */ 9366 env->migration_type = migrate_task; 9367 lsub_positive(&nr_diff, local->sum_nr_running); 9368 env->imbalance = nr_diff >> 1; 9369 } else { 9370 9371 /* 9372 * If there is no overload, we just want to even the number of 9373 * idle cpus. 9374 */ 9375 env->migration_type = migrate_task; 9376 env->imbalance = max_t(long, 0, (local->idle_cpus - 9377 busiest->idle_cpus) >> 1); 9378 } 9379 9380 /* Consider allowing a small imbalance between NUMA groups */ 9381 if (env->sd->flags & SD_NUMA) { 9382 env->imbalance = adjust_numa_imbalance(env->imbalance, 9383 local->sum_nr_running + 1, env->sd->imb_numa_nr); 9384 } 9385 9386 return; 9387 } 9388 9389 /* 9390 * Local is fully busy but has to take more load to relieve the 9391 * busiest group 9392 */ 9393 if (local->group_type < group_overloaded) { 9394 /* 9395 * Local will become overloaded so the avg_load metrics are 9396 * finally needed. 9397 */ 9398 9399 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 9400 local->group_capacity; 9401 9402 /* 9403 * If the local group is more loaded than the selected 9404 * busiest group don't try to pull any tasks. 9405 */ 9406 if (local->avg_load >= busiest->avg_load) { 9407 env->imbalance = 0; 9408 return; 9409 } 9410 9411 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 9412 sds->total_capacity; 9413 } 9414 9415 /* 9416 * Both group are or will become overloaded and we're trying to get all 9417 * the CPUs to the average_load, so we don't want to push ourselves 9418 * above the average load, nor do we wish to reduce the max loaded CPU 9419 * below the average load. At the same time, we also don't want to 9420 * reduce the group load below the group capacity. Thus we look for 9421 * the minimum possible imbalance. 9422 */ 9423 env->migration_type = migrate_load; 9424 env->imbalance = min( 9425 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 9426 (sds->avg_load - local->avg_load) * local->group_capacity 9427 ) / SCHED_CAPACITY_SCALE; 9428 } 9429 9430 /******* find_busiest_group() helpers end here *********************/ 9431 9432 /* 9433 * Decision matrix according to the local and busiest group type: 9434 * 9435 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 9436 * has_spare nr_idle balanced N/A N/A balanced balanced 9437 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 9438 * misfit_task force N/A N/A N/A N/A N/A 9439 * asym_packing force force N/A N/A force force 9440 * imbalanced force force N/A N/A force force 9441 * overloaded force force N/A N/A force avg_load 9442 * 9443 * N/A : Not Applicable because already filtered while updating 9444 * statistics. 9445 * balanced : The system is balanced for these 2 groups. 9446 * force : Calculate the imbalance as load migration is probably needed. 9447 * avg_load : Only if imbalance is significant enough. 9448 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 9449 * different in groups. 9450 */ 9451 9452 /** 9453 * find_busiest_group - Returns the busiest group within the sched_domain 9454 * if there is an imbalance. 9455 * @env: The load balancing environment. 9456 * 9457 * Also calculates the amount of runnable load which should be moved 9458 * to restore balance. 9459 * 9460 * Return: - The busiest group if imbalance exists. 9461 */ 9462 static struct sched_group *find_busiest_group(struct lb_env *env) 9463 { 9464 struct sg_lb_stats *local, *busiest; 9465 struct sd_lb_stats sds; 9466 9467 init_sd_lb_stats(&sds); 9468 9469 /* 9470 * Compute the various statistics relevant for load balancing at 9471 * this level. 9472 */ 9473 update_sd_lb_stats(env, &sds); 9474 9475 if (sched_energy_enabled()) { 9476 struct root_domain *rd = env->dst_rq->rd; 9477 9478 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 9479 goto out_balanced; 9480 } 9481 9482 local = &sds.local_stat; 9483 busiest = &sds.busiest_stat; 9484 9485 /* There is no busy sibling group to pull tasks from */ 9486 if (!sds.busiest) 9487 goto out_balanced; 9488 9489 /* Misfit tasks should be dealt with regardless of the avg load */ 9490 if (busiest->group_type == group_misfit_task) 9491 goto force_balance; 9492 9493 /* ASYM feature bypasses nice load balance check */ 9494 if (busiest->group_type == group_asym_packing) 9495 goto force_balance; 9496 9497 /* 9498 * If the busiest group is imbalanced the below checks don't 9499 * work because they assume all things are equal, which typically 9500 * isn't true due to cpus_ptr constraints and the like. 9501 */ 9502 if (busiest->group_type == group_imbalanced) 9503 goto force_balance; 9504 9505 /* 9506 * If the local group is busier than the selected busiest group 9507 * don't try and pull any tasks. 9508 */ 9509 if (local->group_type > busiest->group_type) 9510 goto out_balanced; 9511 9512 /* 9513 * When groups are overloaded, use the avg_load to ensure fairness 9514 * between tasks. 9515 */ 9516 if (local->group_type == group_overloaded) { 9517 /* 9518 * If the local group is more loaded than the selected 9519 * busiest group don't try to pull any tasks. 9520 */ 9521 if (local->avg_load >= busiest->avg_load) 9522 goto out_balanced; 9523 9524 /* XXX broken for overlapping NUMA groups */ 9525 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 9526 sds.total_capacity; 9527 9528 /* 9529 * Don't pull any tasks if this group is already above the 9530 * domain average load. 9531 */ 9532 if (local->avg_load >= sds.avg_load) 9533 goto out_balanced; 9534 9535 /* 9536 * If the busiest group is more loaded, use imbalance_pct to be 9537 * conservative. 9538 */ 9539 if (100 * busiest->avg_load <= 9540 env->sd->imbalance_pct * local->avg_load) 9541 goto out_balanced; 9542 } 9543 9544 /* Try to move all excess tasks to child's sibling domain */ 9545 if (sds.prefer_sibling && local->group_type == group_has_spare && 9546 busiest->sum_nr_running > local->sum_nr_running + 1) 9547 goto force_balance; 9548 9549 if (busiest->group_type != group_overloaded) { 9550 if (env->idle == CPU_NOT_IDLE) 9551 /* 9552 * If the busiest group is not overloaded (and as a 9553 * result the local one too) but this CPU is already 9554 * busy, let another idle CPU try to pull task. 9555 */ 9556 goto out_balanced; 9557 9558 if (busiest->group_weight > 1 && 9559 local->idle_cpus <= (busiest->idle_cpus + 1)) 9560 /* 9561 * If the busiest group is not overloaded 9562 * and there is no imbalance between this and busiest 9563 * group wrt idle CPUs, it is balanced. The imbalance 9564 * becomes significant if the diff is greater than 1 9565 * otherwise we might end up to just move the imbalance 9566 * on another group. Of course this applies only if 9567 * there is more than 1 CPU per group. 9568 */ 9569 goto out_balanced; 9570 9571 if (busiest->sum_h_nr_running == 1) 9572 /* 9573 * busiest doesn't have any tasks waiting to run 9574 */ 9575 goto out_balanced; 9576 } 9577 9578 force_balance: 9579 /* Looks like there is an imbalance. Compute it */ 9580 calculate_imbalance(env, &sds); 9581 return env->imbalance ? sds.busiest : NULL; 9582 9583 out_balanced: 9584 env->imbalance = 0; 9585 return NULL; 9586 } 9587 9588 /* 9589 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 9590 */ 9591 static struct rq *find_busiest_queue(struct lb_env *env, 9592 struct sched_group *group) 9593 { 9594 struct rq *busiest = NULL, *rq; 9595 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 9596 unsigned int busiest_nr = 0; 9597 int i; 9598 9599 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9600 unsigned long capacity, load, util; 9601 unsigned int nr_running; 9602 enum fbq_type rt; 9603 9604 rq = cpu_rq(i); 9605 rt = fbq_classify_rq(rq); 9606 9607 /* 9608 * We classify groups/runqueues into three groups: 9609 * - regular: there are !numa tasks 9610 * - remote: there are numa tasks that run on the 'wrong' node 9611 * - all: there is no distinction 9612 * 9613 * In order to avoid migrating ideally placed numa tasks, 9614 * ignore those when there's better options. 9615 * 9616 * If we ignore the actual busiest queue to migrate another 9617 * task, the next balance pass can still reduce the busiest 9618 * queue by moving tasks around inside the node. 9619 * 9620 * If we cannot move enough load due to this classification 9621 * the next pass will adjust the group classification and 9622 * allow migration of more tasks. 9623 * 9624 * Both cases only affect the total convergence complexity. 9625 */ 9626 if (rt > env->fbq_type) 9627 continue; 9628 9629 nr_running = rq->cfs.h_nr_running; 9630 if (!nr_running) 9631 continue; 9632 9633 capacity = capacity_of(i); 9634 9635 /* 9636 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 9637 * eventually lead to active_balancing high->low capacity. 9638 * Higher per-CPU capacity is considered better than balancing 9639 * average load. 9640 */ 9641 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 9642 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 9643 nr_running == 1) 9644 continue; 9645 9646 /* Make sure we only pull tasks from a CPU of lower priority */ 9647 if ((env->sd->flags & SD_ASYM_PACKING) && 9648 sched_asym_prefer(i, env->dst_cpu) && 9649 nr_running == 1) 9650 continue; 9651 9652 switch (env->migration_type) { 9653 case migrate_load: 9654 /* 9655 * When comparing with load imbalance, use cpu_load() 9656 * which is not scaled with the CPU capacity. 9657 */ 9658 load = cpu_load(rq); 9659 9660 if (nr_running == 1 && load > env->imbalance && 9661 !check_cpu_capacity(rq, env->sd)) 9662 break; 9663 9664 /* 9665 * For the load comparisons with the other CPUs, 9666 * consider the cpu_load() scaled with the CPU 9667 * capacity, so that the load can be moved away 9668 * from the CPU that is potentially running at a 9669 * lower capacity. 9670 * 9671 * Thus we're looking for max(load_i / capacity_i), 9672 * crosswise multiplication to rid ourselves of the 9673 * division works out to: 9674 * load_i * capacity_j > load_j * capacity_i; 9675 * where j is our previous maximum. 9676 */ 9677 if (load * busiest_capacity > busiest_load * capacity) { 9678 busiest_load = load; 9679 busiest_capacity = capacity; 9680 busiest = rq; 9681 } 9682 break; 9683 9684 case migrate_util: 9685 util = cpu_util_cfs(i); 9686 9687 /* 9688 * Don't try to pull utilization from a CPU with one 9689 * running task. Whatever its utilization, we will fail 9690 * detach the task. 9691 */ 9692 if (nr_running <= 1) 9693 continue; 9694 9695 if (busiest_util < util) { 9696 busiest_util = util; 9697 busiest = rq; 9698 } 9699 break; 9700 9701 case migrate_task: 9702 if (busiest_nr < nr_running) { 9703 busiest_nr = nr_running; 9704 busiest = rq; 9705 } 9706 break; 9707 9708 case migrate_misfit: 9709 /* 9710 * For ASYM_CPUCAPACITY domains with misfit tasks we 9711 * simply seek the "biggest" misfit task. 9712 */ 9713 if (rq->misfit_task_load > busiest_load) { 9714 busiest_load = rq->misfit_task_load; 9715 busiest = rq; 9716 } 9717 9718 break; 9719 9720 } 9721 } 9722 9723 return busiest; 9724 } 9725 9726 /* 9727 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 9728 * so long as it is large enough. 9729 */ 9730 #define MAX_PINNED_INTERVAL 512 9731 9732 static inline bool 9733 asym_active_balance(struct lb_env *env) 9734 { 9735 /* 9736 * ASYM_PACKING needs to force migrate tasks from busy but 9737 * lower priority CPUs in order to pack all tasks in the 9738 * highest priority CPUs. 9739 */ 9740 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 9741 sched_asym_prefer(env->dst_cpu, env->src_cpu); 9742 } 9743 9744 static inline bool 9745 imbalanced_active_balance(struct lb_env *env) 9746 { 9747 struct sched_domain *sd = env->sd; 9748 9749 /* 9750 * The imbalanced case includes the case of pinned tasks preventing a fair 9751 * distribution of the load on the system but also the even distribution of the 9752 * threads on a system with spare capacity 9753 */ 9754 if ((env->migration_type == migrate_task) && 9755 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 9756 return 1; 9757 9758 return 0; 9759 } 9760 9761 static int need_active_balance(struct lb_env *env) 9762 { 9763 struct sched_domain *sd = env->sd; 9764 9765 if (asym_active_balance(env)) 9766 return 1; 9767 9768 if (imbalanced_active_balance(env)) 9769 return 1; 9770 9771 /* 9772 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 9773 * It's worth migrating the task if the src_cpu's capacity is reduced 9774 * because of other sched_class or IRQs if more capacity stays 9775 * available on dst_cpu. 9776 */ 9777 if ((env->idle != CPU_NOT_IDLE) && 9778 (env->src_rq->cfs.h_nr_running == 1)) { 9779 if ((check_cpu_capacity(env->src_rq, sd)) && 9780 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 9781 return 1; 9782 } 9783 9784 if (env->migration_type == migrate_misfit) 9785 return 1; 9786 9787 return 0; 9788 } 9789 9790 static int active_load_balance_cpu_stop(void *data); 9791 9792 static int should_we_balance(struct lb_env *env) 9793 { 9794 struct sched_group *sg = env->sd->groups; 9795 int cpu; 9796 9797 /* 9798 * Ensure the balancing environment is consistent; can happen 9799 * when the softirq triggers 'during' hotplug. 9800 */ 9801 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 9802 return 0; 9803 9804 /* 9805 * In the newly idle case, we will allow all the CPUs 9806 * to do the newly idle load balance. 9807 */ 9808 if (env->idle == CPU_NEWLY_IDLE) 9809 return 1; 9810 9811 /* Try to find first idle CPU */ 9812 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 9813 if (!idle_cpu(cpu)) 9814 continue; 9815 9816 /* Are we the first idle CPU? */ 9817 return cpu == env->dst_cpu; 9818 } 9819 9820 /* Are we the first CPU of this group ? */ 9821 return group_balance_cpu(sg) == env->dst_cpu; 9822 } 9823 9824 /* 9825 * Check this_cpu to ensure it is balanced within domain. Attempt to move 9826 * tasks if there is an imbalance. 9827 */ 9828 static int load_balance(int this_cpu, struct rq *this_rq, 9829 struct sched_domain *sd, enum cpu_idle_type idle, 9830 int *continue_balancing) 9831 { 9832 int ld_moved, cur_ld_moved, active_balance = 0; 9833 struct sched_domain *sd_parent = sd->parent; 9834 struct sched_group *group; 9835 struct rq *busiest; 9836 struct rq_flags rf; 9837 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 9838 9839 struct lb_env env = { 9840 .sd = sd, 9841 .dst_cpu = this_cpu, 9842 .dst_rq = this_rq, 9843 .dst_grpmask = sched_group_span(sd->groups), 9844 .idle = idle, 9845 .loop_break = sched_nr_migrate_break, 9846 .cpus = cpus, 9847 .fbq_type = all, 9848 .tasks = LIST_HEAD_INIT(env.tasks), 9849 }; 9850 9851 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 9852 9853 schedstat_inc(sd->lb_count[idle]); 9854 9855 redo: 9856 if (!should_we_balance(&env)) { 9857 *continue_balancing = 0; 9858 goto out_balanced; 9859 } 9860 9861 group = find_busiest_group(&env); 9862 if (!group) { 9863 schedstat_inc(sd->lb_nobusyg[idle]); 9864 goto out_balanced; 9865 } 9866 9867 busiest = find_busiest_queue(&env, group); 9868 if (!busiest) { 9869 schedstat_inc(sd->lb_nobusyq[idle]); 9870 goto out_balanced; 9871 } 9872 9873 BUG_ON(busiest == env.dst_rq); 9874 9875 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 9876 9877 env.src_cpu = busiest->cpu; 9878 env.src_rq = busiest; 9879 9880 ld_moved = 0; 9881 /* Clear this flag as soon as we find a pullable task */ 9882 env.flags |= LBF_ALL_PINNED; 9883 if (busiest->nr_running > 1) { 9884 /* 9885 * Attempt to move tasks. If find_busiest_group has found 9886 * an imbalance but busiest->nr_running <= 1, the group is 9887 * still unbalanced. ld_moved simply stays zero, so it is 9888 * correctly treated as an imbalance. 9889 */ 9890 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 9891 9892 more_balance: 9893 rq_lock_irqsave(busiest, &rf); 9894 update_rq_clock(busiest); 9895 9896 /* 9897 * cur_ld_moved - load moved in current iteration 9898 * ld_moved - cumulative load moved across iterations 9899 */ 9900 cur_ld_moved = detach_tasks(&env); 9901 9902 /* 9903 * We've detached some tasks from busiest_rq. Every 9904 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 9905 * unlock busiest->lock, and we are able to be sure 9906 * that nobody can manipulate the tasks in parallel. 9907 * See task_rq_lock() family for the details. 9908 */ 9909 9910 rq_unlock(busiest, &rf); 9911 9912 if (cur_ld_moved) { 9913 attach_tasks(&env); 9914 ld_moved += cur_ld_moved; 9915 } 9916 9917 local_irq_restore(rf.flags); 9918 9919 if (env.flags & LBF_NEED_BREAK) { 9920 env.flags &= ~LBF_NEED_BREAK; 9921 goto more_balance; 9922 } 9923 9924 /* 9925 * Revisit (affine) tasks on src_cpu that couldn't be moved to 9926 * us and move them to an alternate dst_cpu in our sched_group 9927 * where they can run. The upper limit on how many times we 9928 * iterate on same src_cpu is dependent on number of CPUs in our 9929 * sched_group. 9930 * 9931 * This changes load balance semantics a bit on who can move 9932 * load to a given_cpu. In addition to the given_cpu itself 9933 * (or a ilb_cpu acting on its behalf where given_cpu is 9934 * nohz-idle), we now have balance_cpu in a position to move 9935 * load to given_cpu. In rare situations, this may cause 9936 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 9937 * _independently_ and at _same_ time to move some load to 9938 * given_cpu) causing excess load to be moved to given_cpu. 9939 * This however should not happen so much in practice and 9940 * moreover subsequent load balance cycles should correct the 9941 * excess load moved. 9942 */ 9943 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 9944 9945 /* Prevent to re-select dst_cpu via env's CPUs */ 9946 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 9947 9948 env.dst_rq = cpu_rq(env.new_dst_cpu); 9949 env.dst_cpu = env.new_dst_cpu; 9950 env.flags &= ~LBF_DST_PINNED; 9951 env.loop = 0; 9952 env.loop_break = sched_nr_migrate_break; 9953 9954 /* 9955 * Go back to "more_balance" rather than "redo" since we 9956 * need to continue with same src_cpu. 9957 */ 9958 goto more_balance; 9959 } 9960 9961 /* 9962 * We failed to reach balance because of affinity. 9963 */ 9964 if (sd_parent) { 9965 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 9966 9967 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 9968 *group_imbalance = 1; 9969 } 9970 9971 /* All tasks on this runqueue were pinned by CPU affinity */ 9972 if (unlikely(env.flags & LBF_ALL_PINNED)) { 9973 __cpumask_clear_cpu(cpu_of(busiest), cpus); 9974 /* 9975 * Attempting to continue load balancing at the current 9976 * sched_domain level only makes sense if there are 9977 * active CPUs remaining as possible busiest CPUs to 9978 * pull load from which are not contained within the 9979 * destination group that is receiving any migrated 9980 * load. 9981 */ 9982 if (!cpumask_subset(cpus, env.dst_grpmask)) { 9983 env.loop = 0; 9984 env.loop_break = sched_nr_migrate_break; 9985 goto redo; 9986 } 9987 goto out_all_pinned; 9988 } 9989 } 9990 9991 if (!ld_moved) { 9992 schedstat_inc(sd->lb_failed[idle]); 9993 /* 9994 * Increment the failure counter only on periodic balance. 9995 * We do not want newidle balance, which can be very 9996 * frequent, pollute the failure counter causing 9997 * excessive cache_hot migrations and active balances. 9998 */ 9999 if (idle != CPU_NEWLY_IDLE) 10000 sd->nr_balance_failed++; 10001 10002 if (need_active_balance(&env)) { 10003 unsigned long flags; 10004 10005 raw_spin_rq_lock_irqsave(busiest, flags); 10006 10007 /* 10008 * Don't kick the active_load_balance_cpu_stop, 10009 * if the curr task on busiest CPU can't be 10010 * moved to this_cpu: 10011 */ 10012 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 10013 raw_spin_rq_unlock_irqrestore(busiest, flags); 10014 goto out_one_pinned; 10015 } 10016 10017 /* Record that we found at least one task that could run on this_cpu */ 10018 env.flags &= ~LBF_ALL_PINNED; 10019 10020 /* 10021 * ->active_balance synchronizes accesses to 10022 * ->active_balance_work. Once set, it's cleared 10023 * only after active load balance is finished. 10024 */ 10025 if (!busiest->active_balance) { 10026 busiest->active_balance = 1; 10027 busiest->push_cpu = this_cpu; 10028 active_balance = 1; 10029 } 10030 raw_spin_rq_unlock_irqrestore(busiest, flags); 10031 10032 if (active_balance) { 10033 stop_one_cpu_nowait(cpu_of(busiest), 10034 active_load_balance_cpu_stop, busiest, 10035 &busiest->active_balance_work); 10036 } 10037 } 10038 } else { 10039 sd->nr_balance_failed = 0; 10040 } 10041 10042 if (likely(!active_balance) || need_active_balance(&env)) { 10043 /* We were unbalanced, so reset the balancing interval */ 10044 sd->balance_interval = sd->min_interval; 10045 } 10046 10047 goto out; 10048 10049 out_balanced: 10050 /* 10051 * We reach balance although we may have faced some affinity 10052 * constraints. Clear the imbalance flag only if other tasks got 10053 * a chance to move and fix the imbalance. 10054 */ 10055 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 10056 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10057 10058 if (*group_imbalance) 10059 *group_imbalance = 0; 10060 } 10061 10062 out_all_pinned: 10063 /* 10064 * We reach balance because all tasks are pinned at this level so 10065 * we can't migrate them. Let the imbalance flag set so parent level 10066 * can try to migrate them. 10067 */ 10068 schedstat_inc(sd->lb_balanced[idle]); 10069 10070 sd->nr_balance_failed = 0; 10071 10072 out_one_pinned: 10073 ld_moved = 0; 10074 10075 /* 10076 * newidle_balance() disregards balance intervals, so we could 10077 * repeatedly reach this code, which would lead to balance_interval 10078 * skyrocketing in a short amount of time. Skip the balance_interval 10079 * increase logic to avoid that. 10080 */ 10081 if (env.idle == CPU_NEWLY_IDLE) 10082 goto out; 10083 10084 /* tune up the balancing interval */ 10085 if ((env.flags & LBF_ALL_PINNED && 10086 sd->balance_interval < MAX_PINNED_INTERVAL) || 10087 sd->balance_interval < sd->max_interval) 10088 sd->balance_interval *= 2; 10089 out: 10090 return ld_moved; 10091 } 10092 10093 static inline unsigned long 10094 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 10095 { 10096 unsigned long interval = sd->balance_interval; 10097 10098 if (cpu_busy) 10099 interval *= sd->busy_factor; 10100 10101 /* scale ms to jiffies */ 10102 interval = msecs_to_jiffies(interval); 10103 10104 /* 10105 * Reduce likelihood of busy balancing at higher domains racing with 10106 * balancing at lower domains by preventing their balancing periods 10107 * from being multiples of each other. 10108 */ 10109 if (cpu_busy) 10110 interval -= 1; 10111 10112 interval = clamp(interval, 1UL, max_load_balance_interval); 10113 10114 return interval; 10115 } 10116 10117 static inline void 10118 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 10119 { 10120 unsigned long interval, next; 10121 10122 /* used by idle balance, so cpu_busy = 0 */ 10123 interval = get_sd_balance_interval(sd, 0); 10124 next = sd->last_balance + interval; 10125 10126 if (time_after(*next_balance, next)) 10127 *next_balance = next; 10128 } 10129 10130 /* 10131 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 10132 * running tasks off the busiest CPU onto idle CPUs. It requires at 10133 * least 1 task to be running on each physical CPU where possible, and 10134 * avoids physical / logical imbalances. 10135 */ 10136 static int active_load_balance_cpu_stop(void *data) 10137 { 10138 struct rq *busiest_rq = data; 10139 int busiest_cpu = cpu_of(busiest_rq); 10140 int target_cpu = busiest_rq->push_cpu; 10141 struct rq *target_rq = cpu_rq(target_cpu); 10142 struct sched_domain *sd; 10143 struct task_struct *p = NULL; 10144 struct rq_flags rf; 10145 10146 rq_lock_irq(busiest_rq, &rf); 10147 /* 10148 * Between queueing the stop-work and running it is a hole in which 10149 * CPUs can become inactive. We should not move tasks from or to 10150 * inactive CPUs. 10151 */ 10152 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 10153 goto out_unlock; 10154 10155 /* Make sure the requested CPU hasn't gone down in the meantime: */ 10156 if (unlikely(busiest_cpu != smp_processor_id() || 10157 !busiest_rq->active_balance)) 10158 goto out_unlock; 10159 10160 /* Is there any task to move? */ 10161 if (busiest_rq->nr_running <= 1) 10162 goto out_unlock; 10163 10164 /* 10165 * This condition is "impossible", if it occurs 10166 * we need to fix it. Originally reported by 10167 * Bjorn Helgaas on a 128-CPU setup. 10168 */ 10169 BUG_ON(busiest_rq == target_rq); 10170 10171 /* Search for an sd spanning us and the target CPU. */ 10172 rcu_read_lock(); 10173 for_each_domain(target_cpu, sd) { 10174 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 10175 break; 10176 } 10177 10178 if (likely(sd)) { 10179 struct lb_env env = { 10180 .sd = sd, 10181 .dst_cpu = target_cpu, 10182 .dst_rq = target_rq, 10183 .src_cpu = busiest_rq->cpu, 10184 .src_rq = busiest_rq, 10185 .idle = CPU_IDLE, 10186 .flags = LBF_ACTIVE_LB, 10187 }; 10188 10189 schedstat_inc(sd->alb_count); 10190 update_rq_clock(busiest_rq); 10191 10192 p = detach_one_task(&env); 10193 if (p) { 10194 schedstat_inc(sd->alb_pushed); 10195 /* Active balancing done, reset the failure counter. */ 10196 sd->nr_balance_failed = 0; 10197 } else { 10198 schedstat_inc(sd->alb_failed); 10199 } 10200 } 10201 rcu_read_unlock(); 10202 out_unlock: 10203 busiest_rq->active_balance = 0; 10204 rq_unlock(busiest_rq, &rf); 10205 10206 if (p) 10207 attach_one_task(target_rq, p); 10208 10209 local_irq_enable(); 10210 10211 return 0; 10212 } 10213 10214 static DEFINE_SPINLOCK(balancing); 10215 10216 /* 10217 * Scale the max load_balance interval with the number of CPUs in the system. 10218 * This trades load-balance latency on larger machines for less cross talk. 10219 */ 10220 void update_max_interval(void) 10221 { 10222 max_load_balance_interval = HZ*num_online_cpus()/10; 10223 } 10224 10225 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 10226 { 10227 if (cost > sd->max_newidle_lb_cost) { 10228 /* 10229 * Track max cost of a domain to make sure to not delay the 10230 * next wakeup on the CPU. 10231 */ 10232 sd->max_newidle_lb_cost = cost; 10233 sd->last_decay_max_lb_cost = jiffies; 10234 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 10235 /* 10236 * Decay the newidle max times by ~1% per second to ensure that 10237 * it is not outdated and the current max cost is actually 10238 * shorter. 10239 */ 10240 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 10241 sd->last_decay_max_lb_cost = jiffies; 10242 10243 return true; 10244 } 10245 10246 return false; 10247 } 10248 10249 /* 10250 * It checks each scheduling domain to see if it is due to be balanced, 10251 * and initiates a balancing operation if so. 10252 * 10253 * Balancing parameters are set up in init_sched_domains. 10254 */ 10255 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 10256 { 10257 int continue_balancing = 1; 10258 int cpu = rq->cpu; 10259 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10260 unsigned long interval; 10261 struct sched_domain *sd; 10262 /* Earliest time when we have to do rebalance again */ 10263 unsigned long next_balance = jiffies + 60*HZ; 10264 int update_next_balance = 0; 10265 int need_serialize, need_decay = 0; 10266 u64 max_cost = 0; 10267 10268 rcu_read_lock(); 10269 for_each_domain(cpu, sd) { 10270 /* 10271 * Decay the newidle max times here because this is a regular 10272 * visit to all the domains. 10273 */ 10274 need_decay = update_newidle_cost(sd, 0); 10275 max_cost += sd->max_newidle_lb_cost; 10276 10277 /* 10278 * Stop the load balance at this level. There is another 10279 * CPU in our sched group which is doing load balancing more 10280 * actively. 10281 */ 10282 if (!continue_balancing) { 10283 if (need_decay) 10284 continue; 10285 break; 10286 } 10287 10288 interval = get_sd_balance_interval(sd, busy); 10289 10290 need_serialize = sd->flags & SD_SERIALIZE; 10291 if (need_serialize) { 10292 if (!spin_trylock(&balancing)) 10293 goto out; 10294 } 10295 10296 if (time_after_eq(jiffies, sd->last_balance + interval)) { 10297 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 10298 /* 10299 * The LBF_DST_PINNED logic could have changed 10300 * env->dst_cpu, so we can't know our idle 10301 * state even if we migrated tasks. Update it. 10302 */ 10303 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 10304 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10305 } 10306 sd->last_balance = jiffies; 10307 interval = get_sd_balance_interval(sd, busy); 10308 } 10309 if (need_serialize) 10310 spin_unlock(&balancing); 10311 out: 10312 if (time_after(next_balance, sd->last_balance + interval)) { 10313 next_balance = sd->last_balance + interval; 10314 update_next_balance = 1; 10315 } 10316 } 10317 if (need_decay) { 10318 /* 10319 * Ensure the rq-wide value also decays but keep it at a 10320 * reasonable floor to avoid funnies with rq->avg_idle. 10321 */ 10322 rq->max_idle_balance_cost = 10323 max((u64)sysctl_sched_migration_cost, max_cost); 10324 } 10325 rcu_read_unlock(); 10326 10327 /* 10328 * next_balance will be updated only when there is a need. 10329 * When the cpu is attached to null domain for ex, it will not be 10330 * updated. 10331 */ 10332 if (likely(update_next_balance)) 10333 rq->next_balance = next_balance; 10334 10335 } 10336 10337 static inline int on_null_domain(struct rq *rq) 10338 { 10339 return unlikely(!rcu_dereference_sched(rq->sd)); 10340 } 10341 10342 #ifdef CONFIG_NO_HZ_COMMON 10343 /* 10344 * idle load balancing details 10345 * - When one of the busy CPUs notice that there may be an idle rebalancing 10346 * needed, they will kick the idle load balancer, which then does idle 10347 * load balancing for all the idle CPUs. 10348 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set 10349 * anywhere yet. 10350 */ 10351 10352 static inline int find_new_ilb(void) 10353 { 10354 int ilb; 10355 const struct cpumask *hk_mask; 10356 10357 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 10358 10359 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) { 10360 10361 if (ilb == smp_processor_id()) 10362 continue; 10363 10364 if (idle_cpu(ilb)) 10365 return ilb; 10366 } 10367 10368 return nr_cpu_ids; 10369 } 10370 10371 /* 10372 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 10373 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 10374 */ 10375 static void kick_ilb(unsigned int flags) 10376 { 10377 int ilb_cpu; 10378 10379 /* 10380 * Increase nohz.next_balance only when if full ilb is triggered but 10381 * not if we only update stats. 10382 */ 10383 if (flags & NOHZ_BALANCE_KICK) 10384 nohz.next_balance = jiffies+1; 10385 10386 ilb_cpu = find_new_ilb(); 10387 10388 if (ilb_cpu >= nr_cpu_ids) 10389 return; 10390 10391 /* 10392 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 10393 * the first flag owns it; cleared by nohz_csd_func(). 10394 */ 10395 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 10396 if (flags & NOHZ_KICK_MASK) 10397 return; 10398 10399 /* 10400 * This way we generate an IPI on the target CPU which 10401 * is idle. And the softirq performing nohz idle load balance 10402 * will be run before returning from the IPI. 10403 */ 10404 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 10405 } 10406 10407 /* 10408 * Current decision point for kicking the idle load balancer in the presence 10409 * of idle CPUs in the system. 10410 */ 10411 static void nohz_balancer_kick(struct rq *rq) 10412 { 10413 unsigned long now = jiffies; 10414 struct sched_domain_shared *sds; 10415 struct sched_domain *sd; 10416 int nr_busy, i, cpu = rq->cpu; 10417 unsigned int flags = 0; 10418 10419 if (unlikely(rq->idle_balance)) 10420 return; 10421 10422 /* 10423 * We may be recently in ticked or tickless idle mode. At the first 10424 * busy tick after returning from idle, we will update the busy stats. 10425 */ 10426 nohz_balance_exit_idle(rq); 10427 10428 /* 10429 * None are in tickless mode and hence no need for NOHZ idle load 10430 * balancing. 10431 */ 10432 if (likely(!atomic_read(&nohz.nr_cpus))) 10433 return; 10434 10435 if (READ_ONCE(nohz.has_blocked) && 10436 time_after(now, READ_ONCE(nohz.next_blocked))) 10437 flags = NOHZ_STATS_KICK; 10438 10439 if (time_before(now, nohz.next_balance)) 10440 goto out; 10441 10442 if (rq->nr_running >= 2) { 10443 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10444 goto out; 10445 } 10446 10447 rcu_read_lock(); 10448 10449 sd = rcu_dereference(rq->sd); 10450 if (sd) { 10451 /* 10452 * If there's a CFS task and the current CPU has reduced 10453 * capacity; kick the ILB to see if there's a better CPU to run 10454 * on. 10455 */ 10456 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 10457 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10458 goto unlock; 10459 } 10460 } 10461 10462 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 10463 if (sd) { 10464 /* 10465 * When ASYM_PACKING; see if there's a more preferred CPU 10466 * currently idle; in which case, kick the ILB to move tasks 10467 * around. 10468 */ 10469 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 10470 if (sched_asym_prefer(i, cpu)) { 10471 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10472 goto unlock; 10473 } 10474 } 10475 } 10476 10477 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 10478 if (sd) { 10479 /* 10480 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 10481 * to run the misfit task on. 10482 */ 10483 if (check_misfit_status(rq, sd)) { 10484 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10485 goto unlock; 10486 } 10487 10488 /* 10489 * For asymmetric systems, we do not want to nicely balance 10490 * cache use, instead we want to embrace asymmetry and only 10491 * ensure tasks have enough CPU capacity. 10492 * 10493 * Skip the LLC logic because it's not relevant in that case. 10494 */ 10495 goto unlock; 10496 } 10497 10498 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 10499 if (sds) { 10500 /* 10501 * If there is an imbalance between LLC domains (IOW we could 10502 * increase the overall cache use), we need some less-loaded LLC 10503 * domain to pull some load. Likewise, we may need to spread 10504 * load within the current LLC domain (e.g. packed SMT cores but 10505 * other CPUs are idle). We can't really know from here how busy 10506 * the others are - so just get a nohz balance going if it looks 10507 * like this LLC domain has tasks we could move. 10508 */ 10509 nr_busy = atomic_read(&sds->nr_busy_cpus); 10510 if (nr_busy > 1) { 10511 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10512 goto unlock; 10513 } 10514 } 10515 unlock: 10516 rcu_read_unlock(); 10517 out: 10518 if (READ_ONCE(nohz.needs_update)) 10519 flags |= NOHZ_NEXT_KICK; 10520 10521 if (flags) 10522 kick_ilb(flags); 10523 } 10524 10525 static void set_cpu_sd_state_busy(int cpu) 10526 { 10527 struct sched_domain *sd; 10528 10529 rcu_read_lock(); 10530 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10531 10532 if (!sd || !sd->nohz_idle) 10533 goto unlock; 10534 sd->nohz_idle = 0; 10535 10536 atomic_inc(&sd->shared->nr_busy_cpus); 10537 unlock: 10538 rcu_read_unlock(); 10539 } 10540 10541 void nohz_balance_exit_idle(struct rq *rq) 10542 { 10543 SCHED_WARN_ON(rq != this_rq()); 10544 10545 if (likely(!rq->nohz_tick_stopped)) 10546 return; 10547 10548 rq->nohz_tick_stopped = 0; 10549 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 10550 atomic_dec(&nohz.nr_cpus); 10551 10552 set_cpu_sd_state_busy(rq->cpu); 10553 } 10554 10555 static void set_cpu_sd_state_idle(int cpu) 10556 { 10557 struct sched_domain *sd; 10558 10559 rcu_read_lock(); 10560 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10561 10562 if (!sd || sd->nohz_idle) 10563 goto unlock; 10564 sd->nohz_idle = 1; 10565 10566 atomic_dec(&sd->shared->nr_busy_cpus); 10567 unlock: 10568 rcu_read_unlock(); 10569 } 10570 10571 /* 10572 * This routine will record that the CPU is going idle with tick stopped. 10573 * This info will be used in performing idle load balancing in the future. 10574 */ 10575 void nohz_balance_enter_idle(int cpu) 10576 { 10577 struct rq *rq = cpu_rq(cpu); 10578 10579 SCHED_WARN_ON(cpu != smp_processor_id()); 10580 10581 /* If this CPU is going down, then nothing needs to be done: */ 10582 if (!cpu_active(cpu)) 10583 return; 10584 10585 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 10586 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 10587 return; 10588 10589 /* 10590 * Can be set safely without rq->lock held 10591 * If a clear happens, it will have evaluated last additions because 10592 * rq->lock is held during the check and the clear 10593 */ 10594 rq->has_blocked_load = 1; 10595 10596 /* 10597 * The tick is still stopped but load could have been added in the 10598 * meantime. We set the nohz.has_blocked flag to trig a check of the 10599 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 10600 * of nohz.has_blocked can only happen after checking the new load 10601 */ 10602 if (rq->nohz_tick_stopped) 10603 goto out; 10604 10605 /* If we're a completely isolated CPU, we don't play: */ 10606 if (on_null_domain(rq)) 10607 return; 10608 10609 rq->nohz_tick_stopped = 1; 10610 10611 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 10612 atomic_inc(&nohz.nr_cpus); 10613 10614 /* 10615 * Ensures that if nohz_idle_balance() fails to observe our 10616 * @idle_cpus_mask store, it must observe the @has_blocked 10617 * and @needs_update stores. 10618 */ 10619 smp_mb__after_atomic(); 10620 10621 set_cpu_sd_state_idle(cpu); 10622 10623 WRITE_ONCE(nohz.needs_update, 1); 10624 out: 10625 /* 10626 * Each time a cpu enter idle, we assume that it has blocked load and 10627 * enable the periodic update of the load of idle cpus 10628 */ 10629 WRITE_ONCE(nohz.has_blocked, 1); 10630 } 10631 10632 static bool update_nohz_stats(struct rq *rq) 10633 { 10634 unsigned int cpu = rq->cpu; 10635 10636 if (!rq->has_blocked_load) 10637 return false; 10638 10639 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 10640 return false; 10641 10642 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 10643 return true; 10644 10645 update_blocked_averages(cpu); 10646 10647 return rq->has_blocked_load; 10648 } 10649 10650 /* 10651 * Internal function that runs load balance for all idle cpus. The load balance 10652 * can be a simple update of blocked load or a complete load balance with 10653 * tasks movement depending of flags. 10654 */ 10655 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 10656 enum cpu_idle_type idle) 10657 { 10658 /* Earliest time when we have to do rebalance again */ 10659 unsigned long now = jiffies; 10660 unsigned long next_balance = now + 60*HZ; 10661 bool has_blocked_load = false; 10662 int update_next_balance = 0; 10663 int this_cpu = this_rq->cpu; 10664 int balance_cpu; 10665 struct rq *rq; 10666 10667 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 10668 10669 /* 10670 * We assume there will be no idle load after this update and clear 10671 * the has_blocked flag. If a cpu enters idle in the mean time, it will 10672 * set the has_blocked flag and trigger another update of idle load. 10673 * Because a cpu that becomes idle, is added to idle_cpus_mask before 10674 * setting the flag, we are sure to not clear the state and not 10675 * check the load of an idle cpu. 10676 * 10677 * Same applies to idle_cpus_mask vs needs_update. 10678 */ 10679 if (flags & NOHZ_STATS_KICK) 10680 WRITE_ONCE(nohz.has_blocked, 0); 10681 if (flags & NOHZ_NEXT_KICK) 10682 WRITE_ONCE(nohz.needs_update, 0); 10683 10684 /* 10685 * Ensures that if we miss the CPU, we must see the has_blocked 10686 * store from nohz_balance_enter_idle(). 10687 */ 10688 smp_mb(); 10689 10690 /* 10691 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 10692 * chance for other idle cpu to pull load. 10693 */ 10694 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 10695 if (!idle_cpu(balance_cpu)) 10696 continue; 10697 10698 /* 10699 * If this CPU gets work to do, stop the load balancing 10700 * work being done for other CPUs. Next load 10701 * balancing owner will pick it up. 10702 */ 10703 if (need_resched()) { 10704 if (flags & NOHZ_STATS_KICK) 10705 has_blocked_load = true; 10706 if (flags & NOHZ_NEXT_KICK) 10707 WRITE_ONCE(nohz.needs_update, 1); 10708 goto abort; 10709 } 10710 10711 rq = cpu_rq(balance_cpu); 10712 10713 if (flags & NOHZ_STATS_KICK) 10714 has_blocked_load |= update_nohz_stats(rq); 10715 10716 /* 10717 * If time for next balance is due, 10718 * do the balance. 10719 */ 10720 if (time_after_eq(jiffies, rq->next_balance)) { 10721 struct rq_flags rf; 10722 10723 rq_lock_irqsave(rq, &rf); 10724 update_rq_clock(rq); 10725 rq_unlock_irqrestore(rq, &rf); 10726 10727 if (flags & NOHZ_BALANCE_KICK) 10728 rebalance_domains(rq, CPU_IDLE); 10729 } 10730 10731 if (time_after(next_balance, rq->next_balance)) { 10732 next_balance = rq->next_balance; 10733 update_next_balance = 1; 10734 } 10735 } 10736 10737 /* 10738 * next_balance will be updated only when there is a need. 10739 * When the CPU is attached to null domain for ex, it will not be 10740 * updated. 10741 */ 10742 if (likely(update_next_balance)) 10743 nohz.next_balance = next_balance; 10744 10745 if (flags & NOHZ_STATS_KICK) 10746 WRITE_ONCE(nohz.next_blocked, 10747 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 10748 10749 abort: 10750 /* There is still blocked load, enable periodic update */ 10751 if (has_blocked_load) 10752 WRITE_ONCE(nohz.has_blocked, 1); 10753 } 10754 10755 /* 10756 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 10757 * rebalancing for all the cpus for whom scheduler ticks are stopped. 10758 */ 10759 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10760 { 10761 unsigned int flags = this_rq->nohz_idle_balance; 10762 10763 if (!flags) 10764 return false; 10765 10766 this_rq->nohz_idle_balance = 0; 10767 10768 if (idle != CPU_IDLE) 10769 return false; 10770 10771 _nohz_idle_balance(this_rq, flags, idle); 10772 10773 return true; 10774 } 10775 10776 /* 10777 * Check if we need to run the ILB for updating blocked load before entering 10778 * idle state. 10779 */ 10780 void nohz_run_idle_balance(int cpu) 10781 { 10782 unsigned int flags; 10783 10784 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 10785 10786 /* 10787 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 10788 * (ie NOHZ_STATS_KICK set) and will do the same. 10789 */ 10790 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 10791 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE); 10792 } 10793 10794 static void nohz_newidle_balance(struct rq *this_rq) 10795 { 10796 int this_cpu = this_rq->cpu; 10797 10798 /* 10799 * This CPU doesn't want to be disturbed by scheduler 10800 * housekeeping 10801 */ 10802 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 10803 return; 10804 10805 /* Will wake up very soon. No time for doing anything else*/ 10806 if (this_rq->avg_idle < sysctl_sched_migration_cost) 10807 return; 10808 10809 /* Don't need to update blocked load of idle CPUs*/ 10810 if (!READ_ONCE(nohz.has_blocked) || 10811 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 10812 return; 10813 10814 /* 10815 * Set the need to trigger ILB in order to update blocked load 10816 * before entering idle state. 10817 */ 10818 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 10819 } 10820 10821 #else /* !CONFIG_NO_HZ_COMMON */ 10822 static inline void nohz_balancer_kick(struct rq *rq) { } 10823 10824 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10825 { 10826 return false; 10827 } 10828 10829 static inline void nohz_newidle_balance(struct rq *this_rq) { } 10830 #endif /* CONFIG_NO_HZ_COMMON */ 10831 10832 /* 10833 * newidle_balance is called by schedule() if this_cpu is about to become 10834 * idle. Attempts to pull tasks from other CPUs. 10835 * 10836 * Returns: 10837 * < 0 - we released the lock and there are !fair tasks present 10838 * 0 - failed, no new tasks 10839 * > 0 - success, new (fair) tasks present 10840 */ 10841 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 10842 { 10843 unsigned long next_balance = jiffies + HZ; 10844 int this_cpu = this_rq->cpu; 10845 u64 t0, t1, curr_cost = 0; 10846 struct sched_domain *sd; 10847 int pulled_task = 0; 10848 10849 update_misfit_status(NULL, this_rq); 10850 10851 /* 10852 * There is a task waiting to run. No need to search for one. 10853 * Return 0; the task will be enqueued when switching to idle. 10854 */ 10855 if (this_rq->ttwu_pending) 10856 return 0; 10857 10858 /* 10859 * We must set idle_stamp _before_ calling idle_balance(), such that we 10860 * measure the duration of idle_balance() as idle time. 10861 */ 10862 this_rq->idle_stamp = rq_clock(this_rq); 10863 10864 /* 10865 * Do not pull tasks towards !active CPUs... 10866 */ 10867 if (!cpu_active(this_cpu)) 10868 return 0; 10869 10870 /* 10871 * This is OK, because current is on_cpu, which avoids it being picked 10872 * for load-balance and preemption/IRQs are still disabled avoiding 10873 * further scheduler activity on it and we're being very careful to 10874 * re-start the picking loop. 10875 */ 10876 rq_unpin_lock(this_rq, rf); 10877 10878 rcu_read_lock(); 10879 sd = rcu_dereference_check_sched_domain(this_rq->sd); 10880 10881 if (!READ_ONCE(this_rq->rd->overload) || 10882 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 10883 10884 if (sd) 10885 update_next_balance(sd, &next_balance); 10886 rcu_read_unlock(); 10887 10888 goto out; 10889 } 10890 rcu_read_unlock(); 10891 10892 raw_spin_rq_unlock(this_rq); 10893 10894 t0 = sched_clock_cpu(this_cpu); 10895 update_blocked_averages(this_cpu); 10896 10897 rcu_read_lock(); 10898 for_each_domain(this_cpu, sd) { 10899 int continue_balancing = 1; 10900 u64 domain_cost; 10901 10902 update_next_balance(sd, &next_balance); 10903 10904 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 10905 break; 10906 10907 if (sd->flags & SD_BALANCE_NEWIDLE) { 10908 10909 pulled_task = load_balance(this_cpu, this_rq, 10910 sd, CPU_NEWLY_IDLE, 10911 &continue_balancing); 10912 10913 t1 = sched_clock_cpu(this_cpu); 10914 domain_cost = t1 - t0; 10915 update_newidle_cost(sd, domain_cost); 10916 10917 curr_cost += domain_cost; 10918 t0 = t1; 10919 } 10920 10921 /* 10922 * Stop searching for tasks to pull if there are 10923 * now runnable tasks on this rq. 10924 */ 10925 if (pulled_task || this_rq->nr_running > 0 || 10926 this_rq->ttwu_pending) 10927 break; 10928 } 10929 rcu_read_unlock(); 10930 10931 raw_spin_rq_lock(this_rq); 10932 10933 if (curr_cost > this_rq->max_idle_balance_cost) 10934 this_rq->max_idle_balance_cost = curr_cost; 10935 10936 /* 10937 * While browsing the domains, we released the rq lock, a task could 10938 * have been enqueued in the meantime. Since we're not going idle, 10939 * pretend we pulled a task. 10940 */ 10941 if (this_rq->cfs.h_nr_running && !pulled_task) 10942 pulled_task = 1; 10943 10944 /* Is there a task of a high priority class? */ 10945 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 10946 pulled_task = -1; 10947 10948 out: 10949 /* Move the next balance forward */ 10950 if (time_after(this_rq->next_balance, next_balance)) 10951 this_rq->next_balance = next_balance; 10952 10953 if (pulled_task) 10954 this_rq->idle_stamp = 0; 10955 else 10956 nohz_newidle_balance(this_rq); 10957 10958 rq_repin_lock(this_rq, rf); 10959 10960 return pulled_task; 10961 } 10962 10963 /* 10964 * run_rebalance_domains is triggered when needed from the scheduler tick. 10965 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 10966 */ 10967 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 10968 { 10969 struct rq *this_rq = this_rq(); 10970 enum cpu_idle_type idle = this_rq->idle_balance ? 10971 CPU_IDLE : CPU_NOT_IDLE; 10972 10973 /* 10974 * If this CPU has a pending nohz_balance_kick, then do the 10975 * balancing on behalf of the other idle CPUs whose ticks are 10976 * stopped. Do nohz_idle_balance *before* rebalance_domains to 10977 * give the idle CPUs a chance to load balance. Else we may 10978 * load balance only within the local sched_domain hierarchy 10979 * and abort nohz_idle_balance altogether if we pull some load. 10980 */ 10981 if (nohz_idle_balance(this_rq, idle)) 10982 return; 10983 10984 /* normal load balance */ 10985 update_blocked_averages(this_rq->cpu); 10986 rebalance_domains(this_rq, idle); 10987 } 10988 10989 /* 10990 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 10991 */ 10992 void trigger_load_balance(struct rq *rq) 10993 { 10994 /* 10995 * Don't need to rebalance while attached to NULL domain or 10996 * runqueue CPU is not active 10997 */ 10998 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 10999 return; 11000 11001 if (time_after_eq(jiffies, rq->next_balance)) 11002 raise_softirq(SCHED_SOFTIRQ); 11003 11004 nohz_balancer_kick(rq); 11005 } 11006 11007 static void rq_online_fair(struct rq *rq) 11008 { 11009 update_sysctl(); 11010 11011 update_runtime_enabled(rq); 11012 } 11013 11014 static void rq_offline_fair(struct rq *rq) 11015 { 11016 update_sysctl(); 11017 11018 /* Ensure any throttled groups are reachable by pick_next_task */ 11019 unthrottle_offline_cfs_rqs(rq); 11020 } 11021 11022 #endif /* CONFIG_SMP */ 11023 11024 #ifdef CONFIG_SCHED_CORE 11025 static inline bool 11026 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 11027 { 11028 u64 slice = sched_slice(cfs_rq_of(se), se); 11029 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 11030 11031 return (rtime * min_nr_tasks > slice); 11032 } 11033 11034 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 11035 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 11036 { 11037 if (!sched_core_enabled(rq)) 11038 return; 11039 11040 /* 11041 * If runqueue has only one task which used up its slice and 11042 * if the sibling is forced idle, then trigger schedule to 11043 * give forced idle task a chance. 11044 * 11045 * sched_slice() considers only this active rq and it gets the 11046 * whole slice. But during force idle, we have siblings acting 11047 * like a single runqueue and hence we need to consider runnable 11048 * tasks on this CPU and the forced idle CPU. Ideally, we should 11049 * go through the forced idle rq, but that would be a perf hit. 11050 * We can assume that the forced idle CPU has at least 11051 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 11052 * if we need to give up the CPU. 11053 */ 11054 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 11055 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 11056 resched_curr(rq); 11057 } 11058 11059 /* 11060 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 11061 */ 11062 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle) 11063 { 11064 for_each_sched_entity(se) { 11065 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11066 11067 if (forceidle) { 11068 if (cfs_rq->forceidle_seq == fi_seq) 11069 break; 11070 cfs_rq->forceidle_seq = fi_seq; 11071 } 11072 11073 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 11074 } 11075 } 11076 11077 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 11078 { 11079 struct sched_entity *se = &p->se; 11080 11081 if (p->sched_class != &fair_sched_class) 11082 return; 11083 11084 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 11085 } 11086 11087 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 11088 { 11089 struct rq *rq = task_rq(a); 11090 struct sched_entity *sea = &a->se; 11091 struct sched_entity *seb = &b->se; 11092 struct cfs_rq *cfs_rqa; 11093 struct cfs_rq *cfs_rqb; 11094 s64 delta; 11095 11096 SCHED_WARN_ON(task_rq(b)->core != rq->core); 11097 11098 #ifdef CONFIG_FAIR_GROUP_SCHED 11099 /* 11100 * Find an se in the hierarchy for tasks a and b, such that the se's 11101 * are immediate siblings. 11102 */ 11103 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 11104 int sea_depth = sea->depth; 11105 int seb_depth = seb->depth; 11106 11107 if (sea_depth >= seb_depth) 11108 sea = parent_entity(sea); 11109 if (sea_depth <= seb_depth) 11110 seb = parent_entity(seb); 11111 } 11112 11113 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 11114 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 11115 11116 cfs_rqa = sea->cfs_rq; 11117 cfs_rqb = seb->cfs_rq; 11118 #else 11119 cfs_rqa = &task_rq(a)->cfs; 11120 cfs_rqb = &task_rq(b)->cfs; 11121 #endif 11122 11123 /* 11124 * Find delta after normalizing se's vruntime with its cfs_rq's 11125 * min_vruntime_fi, which would have been updated in prior calls 11126 * to se_fi_update(). 11127 */ 11128 delta = (s64)(sea->vruntime - seb->vruntime) + 11129 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 11130 11131 return delta > 0; 11132 } 11133 #else 11134 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 11135 #endif 11136 11137 /* 11138 * scheduler tick hitting a task of our scheduling class. 11139 * 11140 * NOTE: This function can be called remotely by the tick offload that 11141 * goes along full dynticks. Therefore no local assumption can be made 11142 * and everything must be accessed through the @rq and @curr passed in 11143 * parameters. 11144 */ 11145 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 11146 { 11147 struct cfs_rq *cfs_rq; 11148 struct sched_entity *se = &curr->se; 11149 11150 for_each_sched_entity(se) { 11151 cfs_rq = cfs_rq_of(se); 11152 entity_tick(cfs_rq, se, queued); 11153 } 11154 11155 if (static_branch_unlikely(&sched_numa_balancing)) 11156 task_tick_numa(rq, curr); 11157 11158 update_misfit_status(curr, rq); 11159 update_overutilized_status(task_rq(curr)); 11160 11161 task_tick_core(rq, curr); 11162 } 11163 11164 /* 11165 * called on fork with the child task as argument from the parent's context 11166 * - child not yet on the tasklist 11167 * - preemption disabled 11168 */ 11169 static void task_fork_fair(struct task_struct *p) 11170 { 11171 struct cfs_rq *cfs_rq; 11172 struct sched_entity *se = &p->se, *curr; 11173 struct rq *rq = this_rq(); 11174 struct rq_flags rf; 11175 11176 rq_lock(rq, &rf); 11177 update_rq_clock(rq); 11178 11179 cfs_rq = task_cfs_rq(current); 11180 curr = cfs_rq->curr; 11181 if (curr) { 11182 update_curr(cfs_rq); 11183 se->vruntime = curr->vruntime; 11184 } 11185 place_entity(cfs_rq, se, 1); 11186 11187 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 11188 /* 11189 * Upon rescheduling, sched_class::put_prev_task() will place 11190 * 'current' within the tree based on its new key value. 11191 */ 11192 swap(curr->vruntime, se->vruntime); 11193 resched_curr(rq); 11194 } 11195 11196 se->vruntime -= cfs_rq->min_vruntime; 11197 rq_unlock(rq, &rf); 11198 } 11199 11200 /* 11201 * Priority of the task has changed. Check to see if we preempt 11202 * the current task. 11203 */ 11204 static void 11205 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 11206 { 11207 if (!task_on_rq_queued(p)) 11208 return; 11209 11210 if (rq->cfs.nr_running == 1) 11211 return; 11212 11213 /* 11214 * Reschedule if we are currently running on this runqueue and 11215 * our priority decreased, or if we are not currently running on 11216 * this runqueue and our priority is higher than the current's 11217 */ 11218 if (task_current(rq, p)) { 11219 if (p->prio > oldprio) 11220 resched_curr(rq); 11221 } else 11222 check_preempt_curr(rq, p, 0); 11223 } 11224 11225 static inline bool vruntime_normalized(struct task_struct *p) 11226 { 11227 struct sched_entity *se = &p->se; 11228 11229 /* 11230 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 11231 * the dequeue_entity(.flags=0) will already have normalized the 11232 * vruntime. 11233 */ 11234 if (p->on_rq) 11235 return true; 11236 11237 /* 11238 * When !on_rq, vruntime of the task has usually NOT been normalized. 11239 * But there are some cases where it has already been normalized: 11240 * 11241 * - A forked child which is waiting for being woken up by 11242 * wake_up_new_task(). 11243 * - A task which has been woken up by try_to_wake_up() and 11244 * waiting for actually being woken up by sched_ttwu_pending(). 11245 */ 11246 if (!se->sum_exec_runtime || 11247 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup)) 11248 return true; 11249 11250 return false; 11251 } 11252 11253 #ifdef CONFIG_FAIR_GROUP_SCHED 11254 /* 11255 * Propagate the changes of the sched_entity across the tg tree to make it 11256 * visible to the root 11257 */ 11258 static void propagate_entity_cfs_rq(struct sched_entity *se) 11259 { 11260 struct cfs_rq *cfs_rq; 11261 11262 list_add_leaf_cfs_rq(cfs_rq_of(se)); 11263 11264 /* Start to propagate at parent */ 11265 se = se->parent; 11266 11267 for_each_sched_entity(se) { 11268 cfs_rq = cfs_rq_of(se); 11269 11270 if (!cfs_rq_throttled(cfs_rq)){ 11271 update_load_avg(cfs_rq, se, UPDATE_TG); 11272 list_add_leaf_cfs_rq(cfs_rq); 11273 continue; 11274 } 11275 11276 if (list_add_leaf_cfs_rq(cfs_rq)) 11277 break; 11278 } 11279 } 11280 #else 11281 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 11282 #endif 11283 11284 static void detach_entity_cfs_rq(struct sched_entity *se) 11285 { 11286 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11287 11288 /* Catch up with the cfs_rq and remove our load when we leave */ 11289 update_load_avg(cfs_rq, se, 0); 11290 detach_entity_load_avg(cfs_rq, se); 11291 update_tg_load_avg(cfs_rq); 11292 propagate_entity_cfs_rq(se); 11293 } 11294 11295 static void attach_entity_cfs_rq(struct sched_entity *se) 11296 { 11297 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11298 11299 #ifdef CONFIG_FAIR_GROUP_SCHED 11300 /* 11301 * Since the real-depth could have been changed (only FAIR 11302 * class maintain depth value), reset depth properly. 11303 */ 11304 se->depth = se->parent ? se->parent->depth + 1 : 0; 11305 #endif 11306 11307 /* Synchronize entity with its cfs_rq */ 11308 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 11309 attach_entity_load_avg(cfs_rq, se); 11310 update_tg_load_avg(cfs_rq); 11311 propagate_entity_cfs_rq(se); 11312 } 11313 11314 static void detach_task_cfs_rq(struct task_struct *p) 11315 { 11316 struct sched_entity *se = &p->se; 11317 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11318 11319 if (!vruntime_normalized(p)) { 11320 /* 11321 * Fix up our vruntime so that the current sleep doesn't 11322 * cause 'unlimited' sleep bonus. 11323 */ 11324 place_entity(cfs_rq, se, 0); 11325 se->vruntime -= cfs_rq->min_vruntime; 11326 } 11327 11328 detach_entity_cfs_rq(se); 11329 } 11330 11331 static void attach_task_cfs_rq(struct task_struct *p) 11332 { 11333 struct sched_entity *se = &p->se; 11334 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11335 11336 attach_entity_cfs_rq(se); 11337 11338 if (!vruntime_normalized(p)) 11339 se->vruntime += cfs_rq->min_vruntime; 11340 } 11341 11342 static void switched_from_fair(struct rq *rq, struct task_struct *p) 11343 { 11344 detach_task_cfs_rq(p); 11345 } 11346 11347 static void switched_to_fair(struct rq *rq, struct task_struct *p) 11348 { 11349 attach_task_cfs_rq(p); 11350 11351 if (task_on_rq_queued(p)) { 11352 /* 11353 * We were most likely switched from sched_rt, so 11354 * kick off the schedule if running, otherwise just see 11355 * if we can still preempt the current task. 11356 */ 11357 if (task_current(rq, p)) 11358 resched_curr(rq); 11359 else 11360 check_preempt_curr(rq, p, 0); 11361 } 11362 } 11363 11364 /* Account for a task changing its policy or group. 11365 * 11366 * This routine is mostly called to set cfs_rq->curr field when a task 11367 * migrates between groups/classes. 11368 */ 11369 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 11370 { 11371 struct sched_entity *se = &p->se; 11372 11373 #ifdef CONFIG_SMP 11374 if (task_on_rq_queued(p)) { 11375 /* 11376 * Move the next running task to the front of the list, so our 11377 * cfs_tasks list becomes MRU one. 11378 */ 11379 list_move(&se->group_node, &rq->cfs_tasks); 11380 } 11381 #endif 11382 11383 for_each_sched_entity(se) { 11384 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11385 11386 set_next_entity(cfs_rq, se); 11387 /* ensure bandwidth has been allocated on our new cfs_rq */ 11388 account_cfs_rq_runtime(cfs_rq, 0); 11389 } 11390 } 11391 11392 void init_cfs_rq(struct cfs_rq *cfs_rq) 11393 { 11394 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 11395 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 11396 #ifndef CONFIG_64BIT 11397 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 11398 #endif 11399 #ifdef CONFIG_SMP 11400 raw_spin_lock_init(&cfs_rq->removed.lock); 11401 #endif 11402 } 11403 11404 #ifdef CONFIG_FAIR_GROUP_SCHED 11405 static void task_set_group_fair(struct task_struct *p) 11406 { 11407 struct sched_entity *se = &p->se; 11408 11409 set_task_rq(p, task_cpu(p)); 11410 se->depth = se->parent ? se->parent->depth + 1 : 0; 11411 } 11412 11413 static void task_move_group_fair(struct task_struct *p) 11414 { 11415 detach_task_cfs_rq(p); 11416 set_task_rq(p, task_cpu(p)); 11417 11418 #ifdef CONFIG_SMP 11419 /* Tell se's cfs_rq has been changed -- migrated */ 11420 p->se.avg.last_update_time = 0; 11421 #endif 11422 attach_task_cfs_rq(p); 11423 } 11424 11425 static void task_change_group_fair(struct task_struct *p, int type) 11426 { 11427 switch (type) { 11428 case TASK_SET_GROUP: 11429 task_set_group_fair(p); 11430 break; 11431 11432 case TASK_MOVE_GROUP: 11433 task_move_group_fair(p); 11434 break; 11435 } 11436 } 11437 11438 void free_fair_sched_group(struct task_group *tg) 11439 { 11440 int i; 11441 11442 for_each_possible_cpu(i) { 11443 if (tg->cfs_rq) 11444 kfree(tg->cfs_rq[i]); 11445 if (tg->se) 11446 kfree(tg->se[i]); 11447 } 11448 11449 kfree(tg->cfs_rq); 11450 kfree(tg->se); 11451 } 11452 11453 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11454 { 11455 struct sched_entity *se; 11456 struct cfs_rq *cfs_rq; 11457 int i; 11458 11459 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 11460 if (!tg->cfs_rq) 11461 goto err; 11462 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 11463 if (!tg->se) 11464 goto err; 11465 11466 tg->shares = NICE_0_LOAD; 11467 11468 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11469 11470 for_each_possible_cpu(i) { 11471 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 11472 GFP_KERNEL, cpu_to_node(i)); 11473 if (!cfs_rq) 11474 goto err; 11475 11476 se = kzalloc_node(sizeof(struct sched_entity_stats), 11477 GFP_KERNEL, cpu_to_node(i)); 11478 if (!se) 11479 goto err_free_rq; 11480 11481 init_cfs_rq(cfs_rq); 11482 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 11483 init_entity_runnable_average(se); 11484 } 11485 11486 return 1; 11487 11488 err_free_rq: 11489 kfree(cfs_rq); 11490 err: 11491 return 0; 11492 } 11493 11494 void online_fair_sched_group(struct task_group *tg) 11495 { 11496 struct sched_entity *se; 11497 struct rq_flags rf; 11498 struct rq *rq; 11499 int i; 11500 11501 for_each_possible_cpu(i) { 11502 rq = cpu_rq(i); 11503 se = tg->se[i]; 11504 rq_lock_irq(rq, &rf); 11505 update_rq_clock(rq); 11506 attach_entity_cfs_rq(se); 11507 sync_throttle(tg, i); 11508 rq_unlock_irq(rq, &rf); 11509 } 11510 } 11511 11512 void unregister_fair_sched_group(struct task_group *tg) 11513 { 11514 unsigned long flags; 11515 struct rq *rq; 11516 int cpu; 11517 11518 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11519 11520 for_each_possible_cpu(cpu) { 11521 if (tg->se[cpu]) 11522 remove_entity_load_avg(tg->se[cpu]); 11523 11524 /* 11525 * Only empty task groups can be destroyed; so we can speculatively 11526 * check on_list without danger of it being re-added. 11527 */ 11528 if (!tg->cfs_rq[cpu]->on_list) 11529 continue; 11530 11531 rq = cpu_rq(cpu); 11532 11533 raw_spin_rq_lock_irqsave(rq, flags); 11534 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 11535 raw_spin_rq_unlock_irqrestore(rq, flags); 11536 } 11537 } 11538 11539 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 11540 struct sched_entity *se, int cpu, 11541 struct sched_entity *parent) 11542 { 11543 struct rq *rq = cpu_rq(cpu); 11544 11545 cfs_rq->tg = tg; 11546 cfs_rq->rq = rq; 11547 init_cfs_rq_runtime(cfs_rq); 11548 11549 tg->cfs_rq[cpu] = cfs_rq; 11550 tg->se[cpu] = se; 11551 11552 /* se could be NULL for root_task_group */ 11553 if (!se) 11554 return; 11555 11556 if (!parent) { 11557 se->cfs_rq = &rq->cfs; 11558 se->depth = 0; 11559 } else { 11560 se->cfs_rq = parent->my_q; 11561 se->depth = parent->depth + 1; 11562 } 11563 11564 se->my_q = cfs_rq; 11565 /* guarantee group entities always have weight */ 11566 update_load_set(&se->load, NICE_0_LOAD); 11567 se->parent = parent; 11568 } 11569 11570 static DEFINE_MUTEX(shares_mutex); 11571 11572 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 11573 { 11574 int i; 11575 11576 lockdep_assert_held(&shares_mutex); 11577 11578 /* 11579 * We can't change the weight of the root cgroup. 11580 */ 11581 if (!tg->se[0]) 11582 return -EINVAL; 11583 11584 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 11585 11586 if (tg->shares == shares) 11587 return 0; 11588 11589 tg->shares = shares; 11590 for_each_possible_cpu(i) { 11591 struct rq *rq = cpu_rq(i); 11592 struct sched_entity *se = tg->se[i]; 11593 struct rq_flags rf; 11594 11595 /* Propagate contribution to hierarchy */ 11596 rq_lock_irqsave(rq, &rf); 11597 update_rq_clock(rq); 11598 for_each_sched_entity(se) { 11599 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 11600 update_cfs_group(se); 11601 } 11602 rq_unlock_irqrestore(rq, &rf); 11603 } 11604 11605 return 0; 11606 } 11607 11608 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 11609 { 11610 int ret; 11611 11612 mutex_lock(&shares_mutex); 11613 if (tg_is_idle(tg)) 11614 ret = -EINVAL; 11615 else 11616 ret = __sched_group_set_shares(tg, shares); 11617 mutex_unlock(&shares_mutex); 11618 11619 return ret; 11620 } 11621 11622 int sched_group_set_idle(struct task_group *tg, long idle) 11623 { 11624 int i; 11625 11626 if (tg == &root_task_group) 11627 return -EINVAL; 11628 11629 if (idle < 0 || idle > 1) 11630 return -EINVAL; 11631 11632 mutex_lock(&shares_mutex); 11633 11634 if (tg->idle == idle) { 11635 mutex_unlock(&shares_mutex); 11636 return 0; 11637 } 11638 11639 tg->idle = idle; 11640 11641 for_each_possible_cpu(i) { 11642 struct rq *rq = cpu_rq(i); 11643 struct sched_entity *se = tg->se[i]; 11644 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 11645 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 11646 long idle_task_delta; 11647 struct rq_flags rf; 11648 11649 rq_lock_irqsave(rq, &rf); 11650 11651 grp_cfs_rq->idle = idle; 11652 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 11653 goto next_cpu; 11654 11655 if (se->on_rq) { 11656 parent_cfs_rq = cfs_rq_of(se); 11657 if (cfs_rq_is_idle(grp_cfs_rq)) 11658 parent_cfs_rq->idle_nr_running++; 11659 else 11660 parent_cfs_rq->idle_nr_running--; 11661 } 11662 11663 idle_task_delta = grp_cfs_rq->h_nr_running - 11664 grp_cfs_rq->idle_h_nr_running; 11665 if (!cfs_rq_is_idle(grp_cfs_rq)) 11666 idle_task_delta *= -1; 11667 11668 for_each_sched_entity(se) { 11669 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11670 11671 if (!se->on_rq) 11672 break; 11673 11674 cfs_rq->idle_h_nr_running += idle_task_delta; 11675 11676 /* Already accounted at parent level and above. */ 11677 if (cfs_rq_is_idle(cfs_rq)) 11678 break; 11679 } 11680 11681 next_cpu: 11682 rq_unlock_irqrestore(rq, &rf); 11683 } 11684 11685 /* Idle groups have minimum weight. */ 11686 if (tg_is_idle(tg)) 11687 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 11688 else 11689 __sched_group_set_shares(tg, NICE_0_LOAD); 11690 11691 mutex_unlock(&shares_mutex); 11692 return 0; 11693 } 11694 11695 #else /* CONFIG_FAIR_GROUP_SCHED */ 11696 11697 void free_fair_sched_group(struct task_group *tg) { } 11698 11699 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11700 { 11701 return 1; 11702 } 11703 11704 void online_fair_sched_group(struct task_group *tg) { } 11705 11706 void unregister_fair_sched_group(struct task_group *tg) { } 11707 11708 #endif /* CONFIG_FAIR_GROUP_SCHED */ 11709 11710 11711 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 11712 { 11713 struct sched_entity *se = &task->se; 11714 unsigned int rr_interval = 0; 11715 11716 /* 11717 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 11718 * idle runqueue: 11719 */ 11720 if (rq->cfs.load.weight) 11721 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 11722 11723 return rr_interval; 11724 } 11725 11726 /* 11727 * All the scheduling class methods: 11728 */ 11729 DEFINE_SCHED_CLASS(fair) = { 11730 11731 .enqueue_task = enqueue_task_fair, 11732 .dequeue_task = dequeue_task_fair, 11733 .yield_task = yield_task_fair, 11734 .yield_to_task = yield_to_task_fair, 11735 11736 .check_preempt_curr = check_preempt_wakeup, 11737 11738 .pick_next_task = __pick_next_task_fair, 11739 .put_prev_task = put_prev_task_fair, 11740 .set_next_task = set_next_task_fair, 11741 11742 #ifdef CONFIG_SMP 11743 .balance = balance_fair, 11744 .pick_task = pick_task_fair, 11745 .select_task_rq = select_task_rq_fair, 11746 .migrate_task_rq = migrate_task_rq_fair, 11747 11748 .rq_online = rq_online_fair, 11749 .rq_offline = rq_offline_fair, 11750 11751 .task_dead = task_dead_fair, 11752 .set_cpus_allowed = set_cpus_allowed_common, 11753 #endif 11754 11755 .task_tick = task_tick_fair, 11756 .task_fork = task_fork_fair, 11757 11758 .prio_changed = prio_changed_fair, 11759 .switched_from = switched_from_fair, 11760 .switched_to = switched_to_fair, 11761 11762 .get_rr_interval = get_rr_interval_fair, 11763 11764 .update_curr = update_curr_fair, 11765 11766 #ifdef CONFIG_FAIR_GROUP_SCHED 11767 .task_change_group = task_change_group_fair, 11768 #endif 11769 11770 #ifdef CONFIG_UCLAMP_TASK 11771 .uclamp_enabled = 1, 11772 #endif 11773 }; 11774 11775 #ifdef CONFIG_SCHED_DEBUG 11776 void print_cfs_stats(struct seq_file *m, int cpu) 11777 { 11778 struct cfs_rq *cfs_rq, *pos; 11779 11780 rcu_read_lock(); 11781 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 11782 print_cfs_rq(m, cpu, cfs_rq); 11783 rcu_read_unlock(); 11784 } 11785 11786 #ifdef CONFIG_NUMA_BALANCING 11787 void show_numa_stats(struct task_struct *p, struct seq_file *m) 11788 { 11789 int node; 11790 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 11791 struct numa_group *ng; 11792 11793 rcu_read_lock(); 11794 ng = rcu_dereference(p->numa_group); 11795 for_each_online_node(node) { 11796 if (p->numa_faults) { 11797 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 11798 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 11799 } 11800 if (ng) { 11801 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 11802 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 11803 } 11804 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 11805 } 11806 rcu_read_unlock(); 11807 } 11808 #endif /* CONFIG_NUMA_BALANCING */ 11809 #endif /* CONFIG_SCHED_DEBUG */ 11810 11811 __init void init_sched_fair_class(void) 11812 { 11813 #ifdef CONFIG_SMP 11814 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 11815 11816 #ifdef CONFIG_NO_HZ_COMMON 11817 nohz.next_balance = jiffies; 11818 nohz.next_blocked = jiffies; 11819 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 11820 #endif 11821 #endif /* SMP */ 11822 11823 } 11824