xref: /linux/kernel/sched/fair.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51 
52 #include <asm/switch_to.h>
53 
54 #include "sched.h"
55 #include "stats.h"
56 #include "autogroup.h"
57 
58 /*
59  * The initial- and re-scaling of tunables is configurable
60  *
61  * Options are:
62  *
63  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
64  *   SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
65  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66  *
67  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68  */
69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70 
71 /*
72  * Minimal preemption granularity for CPU-bound tasks:
73  *
74  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75  */
76 unsigned int sysctl_sched_base_slice			= 750000ULL;
77 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
78 
79 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
80 
81 static int __init setup_sched_thermal_decay_shift(char *str)
82 {
83 	pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
84 	return 1;
85 }
86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
87 
88 #ifdef CONFIG_SMP
89 /*
90  * For asym packing, by default the lower numbered CPU has higher priority.
91  */
92 int __weak arch_asym_cpu_priority(int cpu)
93 {
94 	return -cpu;
95 }
96 
97 /*
98  * The margin used when comparing utilization with CPU capacity.
99  *
100  * (default: ~20%)
101  */
102 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
103 
104 /*
105  * The margin used when comparing CPU capacities.
106  * is 'cap1' noticeably greater than 'cap2'
107  *
108  * (default: ~5%)
109  */
110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
111 #endif
112 
113 #ifdef CONFIG_CFS_BANDWIDTH
114 /*
115  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
116  * each time a cfs_rq requests quota.
117  *
118  * Note: in the case that the slice exceeds the runtime remaining (either due
119  * to consumption or the quota being specified to be smaller than the slice)
120  * we will always only issue the remaining available time.
121  *
122  * (default: 5 msec, units: microseconds)
123  */
124 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
125 #endif
126 
127 #ifdef CONFIG_NUMA_BALANCING
128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
129 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
130 #endif
131 
132 #ifdef CONFIG_SYSCTL
133 static struct ctl_table sched_fair_sysctls[] = {
134 #ifdef CONFIG_CFS_BANDWIDTH
135 	{
136 		.procname       = "sched_cfs_bandwidth_slice_us",
137 		.data           = &sysctl_sched_cfs_bandwidth_slice,
138 		.maxlen         = sizeof(unsigned int),
139 		.mode           = 0644,
140 		.proc_handler   = proc_dointvec_minmax,
141 		.extra1         = SYSCTL_ONE,
142 	},
143 #endif
144 #ifdef CONFIG_NUMA_BALANCING
145 	{
146 		.procname	= "numa_balancing_promote_rate_limit_MBps",
147 		.data		= &sysctl_numa_balancing_promote_rate_limit,
148 		.maxlen		= sizeof(unsigned int),
149 		.mode		= 0644,
150 		.proc_handler	= proc_dointvec_minmax,
151 		.extra1		= SYSCTL_ZERO,
152 	},
153 #endif /* CONFIG_NUMA_BALANCING */
154 };
155 
156 static int __init sched_fair_sysctl_init(void)
157 {
158 	register_sysctl_init("kernel", sched_fair_sysctls);
159 	return 0;
160 }
161 late_initcall(sched_fair_sysctl_init);
162 #endif
163 
164 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
165 {
166 	lw->weight += inc;
167 	lw->inv_weight = 0;
168 }
169 
170 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
171 {
172 	lw->weight -= dec;
173 	lw->inv_weight = 0;
174 }
175 
176 static inline void update_load_set(struct load_weight *lw, unsigned long w)
177 {
178 	lw->weight = w;
179 	lw->inv_weight = 0;
180 }
181 
182 /*
183  * Increase the granularity value when there are more CPUs,
184  * because with more CPUs the 'effective latency' as visible
185  * to users decreases. But the relationship is not linear,
186  * so pick a second-best guess by going with the log2 of the
187  * number of CPUs.
188  *
189  * This idea comes from the SD scheduler of Con Kolivas:
190  */
191 static unsigned int get_update_sysctl_factor(void)
192 {
193 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
194 	unsigned int factor;
195 
196 	switch (sysctl_sched_tunable_scaling) {
197 	case SCHED_TUNABLESCALING_NONE:
198 		factor = 1;
199 		break;
200 	case SCHED_TUNABLESCALING_LINEAR:
201 		factor = cpus;
202 		break;
203 	case SCHED_TUNABLESCALING_LOG:
204 	default:
205 		factor = 1 + ilog2(cpus);
206 		break;
207 	}
208 
209 	return factor;
210 }
211 
212 static void update_sysctl(void)
213 {
214 	unsigned int factor = get_update_sysctl_factor();
215 
216 #define SET_SYSCTL(name) \
217 	(sysctl_##name = (factor) * normalized_sysctl_##name)
218 	SET_SYSCTL(sched_base_slice);
219 #undef SET_SYSCTL
220 }
221 
222 void __init sched_init_granularity(void)
223 {
224 	update_sysctl();
225 }
226 
227 #define WMULT_CONST	(~0U)
228 #define WMULT_SHIFT	32
229 
230 static void __update_inv_weight(struct load_weight *lw)
231 {
232 	unsigned long w;
233 
234 	if (likely(lw->inv_weight))
235 		return;
236 
237 	w = scale_load_down(lw->weight);
238 
239 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
240 		lw->inv_weight = 1;
241 	else if (unlikely(!w))
242 		lw->inv_weight = WMULT_CONST;
243 	else
244 		lw->inv_weight = WMULT_CONST / w;
245 }
246 
247 /*
248  * delta_exec * weight / lw.weight
249  *   OR
250  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
251  *
252  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
253  * we're guaranteed shift stays positive because inv_weight is guaranteed to
254  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
255  *
256  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
257  * weight/lw.weight <= 1, and therefore our shift will also be positive.
258  */
259 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
260 {
261 	u64 fact = scale_load_down(weight);
262 	u32 fact_hi = (u32)(fact >> 32);
263 	int shift = WMULT_SHIFT;
264 	int fs;
265 
266 	__update_inv_weight(lw);
267 
268 	if (unlikely(fact_hi)) {
269 		fs = fls(fact_hi);
270 		shift -= fs;
271 		fact >>= fs;
272 	}
273 
274 	fact = mul_u32_u32(fact, lw->inv_weight);
275 
276 	fact_hi = (u32)(fact >> 32);
277 	if (fact_hi) {
278 		fs = fls(fact_hi);
279 		shift -= fs;
280 		fact >>= fs;
281 	}
282 
283 	return mul_u64_u32_shr(delta_exec, fact, shift);
284 }
285 
286 /*
287  * delta /= w
288  */
289 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
290 {
291 	if (unlikely(se->load.weight != NICE_0_LOAD))
292 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
293 
294 	return delta;
295 }
296 
297 const struct sched_class fair_sched_class;
298 
299 /**************************************************************
300  * CFS operations on generic schedulable entities:
301  */
302 
303 #ifdef CONFIG_FAIR_GROUP_SCHED
304 
305 /* Walk up scheduling entities hierarchy */
306 #define for_each_sched_entity(se) \
307 		for (; se; se = se->parent)
308 
309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
310 {
311 	struct rq *rq = rq_of(cfs_rq);
312 	int cpu = cpu_of(rq);
313 
314 	if (cfs_rq->on_list)
315 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
316 
317 	cfs_rq->on_list = 1;
318 
319 	/*
320 	 * Ensure we either appear before our parent (if already
321 	 * enqueued) or force our parent to appear after us when it is
322 	 * enqueued. The fact that we always enqueue bottom-up
323 	 * reduces this to two cases and a special case for the root
324 	 * cfs_rq. Furthermore, it also means that we will always reset
325 	 * tmp_alone_branch either when the branch is connected
326 	 * to a tree or when we reach the top of the tree
327 	 */
328 	if (cfs_rq->tg->parent &&
329 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
330 		/*
331 		 * If parent is already on the list, we add the child
332 		 * just before. Thanks to circular linked property of
333 		 * the list, this means to put the child at the tail
334 		 * of the list that starts by parent.
335 		 */
336 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
338 		/*
339 		 * The branch is now connected to its tree so we can
340 		 * reset tmp_alone_branch to the beginning of the
341 		 * list.
342 		 */
343 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
344 		return true;
345 	}
346 
347 	if (!cfs_rq->tg->parent) {
348 		/*
349 		 * cfs rq without parent should be put
350 		 * at the tail of the list.
351 		 */
352 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
353 			&rq->leaf_cfs_rq_list);
354 		/*
355 		 * We have reach the top of a tree so we can reset
356 		 * tmp_alone_branch to the beginning of the list.
357 		 */
358 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
359 		return true;
360 	}
361 
362 	/*
363 	 * The parent has not already been added so we want to
364 	 * make sure that it will be put after us.
365 	 * tmp_alone_branch points to the begin of the branch
366 	 * where we will add parent.
367 	 */
368 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
369 	/*
370 	 * update tmp_alone_branch to points to the new begin
371 	 * of the branch
372 	 */
373 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
374 	return false;
375 }
376 
377 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
378 {
379 	if (cfs_rq->on_list) {
380 		struct rq *rq = rq_of(cfs_rq);
381 
382 		/*
383 		 * With cfs_rq being unthrottled/throttled during an enqueue,
384 		 * it can happen the tmp_alone_branch points to the leaf that
385 		 * we finally want to delete. In this case, tmp_alone_branch moves
386 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
387 		 * at the end of the enqueue.
388 		 */
389 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
390 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
391 
392 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
393 		cfs_rq->on_list = 0;
394 	}
395 }
396 
397 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
398 {
399 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
400 }
401 
402 /* Iterate through all leaf cfs_rq's on a runqueue */
403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
404 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
405 				 leaf_cfs_rq_list)
406 
407 /* Do the two (enqueued) entities belong to the same group ? */
408 static inline struct cfs_rq *
409 is_same_group(struct sched_entity *se, struct sched_entity *pse)
410 {
411 	if (se->cfs_rq == pse->cfs_rq)
412 		return se->cfs_rq;
413 
414 	return NULL;
415 }
416 
417 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
418 {
419 	return se->parent;
420 }
421 
422 static void
423 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
424 {
425 	int se_depth, pse_depth;
426 
427 	/*
428 	 * preemption test can be made between sibling entities who are in the
429 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
430 	 * both tasks until we find their ancestors who are siblings of common
431 	 * parent.
432 	 */
433 
434 	/* First walk up until both entities are at same depth */
435 	se_depth = (*se)->depth;
436 	pse_depth = (*pse)->depth;
437 
438 	while (se_depth > pse_depth) {
439 		se_depth--;
440 		*se = parent_entity(*se);
441 	}
442 
443 	while (pse_depth > se_depth) {
444 		pse_depth--;
445 		*pse = parent_entity(*pse);
446 	}
447 
448 	while (!is_same_group(*se, *pse)) {
449 		*se = parent_entity(*se);
450 		*pse = parent_entity(*pse);
451 	}
452 }
453 
454 static int tg_is_idle(struct task_group *tg)
455 {
456 	return tg->idle > 0;
457 }
458 
459 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
460 {
461 	return cfs_rq->idle > 0;
462 }
463 
464 static int se_is_idle(struct sched_entity *se)
465 {
466 	if (entity_is_task(se))
467 		return task_has_idle_policy(task_of(se));
468 	return cfs_rq_is_idle(group_cfs_rq(se));
469 }
470 
471 #else	/* !CONFIG_FAIR_GROUP_SCHED */
472 
473 #define for_each_sched_entity(se) \
474 		for (; se; se = NULL)
475 
476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
477 {
478 	return true;
479 }
480 
481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
482 {
483 }
484 
485 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
486 {
487 }
488 
489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
490 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
491 
492 static inline struct sched_entity *parent_entity(struct sched_entity *se)
493 {
494 	return NULL;
495 }
496 
497 static inline void
498 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
499 {
500 }
501 
502 static inline int tg_is_idle(struct task_group *tg)
503 {
504 	return 0;
505 }
506 
507 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
508 {
509 	return 0;
510 }
511 
512 static int se_is_idle(struct sched_entity *se)
513 {
514 	return task_has_idle_policy(task_of(se));
515 }
516 
517 #endif	/* CONFIG_FAIR_GROUP_SCHED */
518 
519 static __always_inline
520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
521 
522 /**************************************************************
523  * Scheduling class tree data structure manipulation methods:
524  */
525 
526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
527 {
528 	s64 delta = (s64)(vruntime - max_vruntime);
529 	if (delta > 0)
530 		max_vruntime = vruntime;
531 
532 	return max_vruntime;
533 }
534 
535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
536 {
537 	s64 delta = (s64)(vruntime - min_vruntime);
538 	if (delta < 0)
539 		min_vruntime = vruntime;
540 
541 	return min_vruntime;
542 }
543 
544 static inline bool entity_before(const struct sched_entity *a,
545 				 const struct sched_entity *b)
546 {
547 	/*
548 	 * Tiebreak on vruntime seems unnecessary since it can
549 	 * hardly happen.
550 	 */
551 	return (s64)(a->deadline - b->deadline) < 0;
552 }
553 
554 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
555 {
556 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
557 }
558 
559 #define __node_2_se(node) \
560 	rb_entry((node), struct sched_entity, run_node)
561 
562 /*
563  * Compute virtual time from the per-task service numbers:
564  *
565  * Fair schedulers conserve lag:
566  *
567  *   \Sum lag_i = 0
568  *
569  * Where lag_i is given by:
570  *
571  *   lag_i = S - s_i = w_i * (V - v_i)
572  *
573  * Where S is the ideal service time and V is it's virtual time counterpart.
574  * Therefore:
575  *
576  *   \Sum lag_i = 0
577  *   \Sum w_i * (V - v_i) = 0
578  *   \Sum w_i * V - w_i * v_i = 0
579  *
580  * From which we can solve an expression for V in v_i (which we have in
581  * se->vruntime):
582  *
583  *       \Sum v_i * w_i   \Sum v_i * w_i
584  *   V = -------------- = --------------
585  *          \Sum w_i            W
586  *
587  * Specifically, this is the weighted average of all entity virtual runtimes.
588  *
589  * [[ NOTE: this is only equal to the ideal scheduler under the condition
590  *          that join/leave operations happen at lag_i = 0, otherwise the
591  *          virtual time has non-contiguous motion equivalent to:
592  *
593  *	      V +-= lag_i / W
594  *
595  *	    Also see the comment in place_entity() that deals with this. ]]
596  *
597  * However, since v_i is u64, and the multiplication could easily overflow
598  * transform it into a relative form that uses smaller quantities:
599  *
600  * Substitute: v_i == (v_i - v0) + v0
601  *
602  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
603  * V = ---------------------------- = --------------------- + v0
604  *                  W                            W
605  *
606  * Which we track using:
607  *
608  *                    v0 := cfs_rq->min_vruntime
609  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
610  *              \Sum w_i := cfs_rq->avg_load
611  *
612  * Since min_vruntime is a monotonic increasing variable that closely tracks
613  * the per-task service, these deltas: (v_i - v), will be in the order of the
614  * maximal (virtual) lag induced in the system due to quantisation.
615  *
616  * Also, we use scale_load_down() to reduce the size.
617  *
618  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
619  */
620 static void
621 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
622 {
623 	unsigned long weight = scale_load_down(se->load.weight);
624 	s64 key = entity_key(cfs_rq, se);
625 
626 	cfs_rq->avg_vruntime += key * weight;
627 	cfs_rq->avg_load += weight;
628 }
629 
630 static void
631 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
632 {
633 	unsigned long weight = scale_load_down(se->load.weight);
634 	s64 key = entity_key(cfs_rq, se);
635 
636 	cfs_rq->avg_vruntime -= key * weight;
637 	cfs_rq->avg_load -= weight;
638 }
639 
640 static inline
641 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
642 {
643 	/*
644 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
645 	 */
646 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
647 }
648 
649 /*
650  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
651  * For this to be so, the result of this function must have a left bias.
652  */
653 u64 avg_vruntime(struct cfs_rq *cfs_rq)
654 {
655 	struct sched_entity *curr = cfs_rq->curr;
656 	s64 avg = cfs_rq->avg_vruntime;
657 	long load = cfs_rq->avg_load;
658 
659 	if (curr && curr->on_rq) {
660 		unsigned long weight = scale_load_down(curr->load.weight);
661 
662 		avg += entity_key(cfs_rq, curr) * weight;
663 		load += weight;
664 	}
665 
666 	if (load) {
667 		/* sign flips effective floor / ceiling */
668 		if (avg < 0)
669 			avg -= (load - 1);
670 		avg = div_s64(avg, load);
671 	}
672 
673 	return cfs_rq->min_vruntime + avg;
674 }
675 
676 /*
677  * lag_i = S - s_i = w_i * (V - v_i)
678  *
679  * However, since V is approximated by the weighted average of all entities it
680  * is possible -- by addition/removal/reweight to the tree -- to move V around
681  * and end up with a larger lag than we started with.
682  *
683  * Limit this to either double the slice length with a minimum of TICK_NSEC
684  * since that is the timing granularity.
685  *
686  * EEVDF gives the following limit for a steady state system:
687  *
688  *   -r_max < lag < max(r_max, q)
689  *
690  * XXX could add max_slice to the augmented data to track this.
691  */
692 static s64 entity_lag(u64 avruntime, struct sched_entity *se)
693 {
694 	s64 vlag, limit;
695 
696 	vlag = avruntime - se->vruntime;
697 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
698 
699 	return clamp(vlag, -limit, limit);
700 }
701 
702 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
703 {
704 	SCHED_WARN_ON(!se->on_rq);
705 
706 	se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
707 }
708 
709 /*
710  * Entity is eligible once it received less service than it ought to have,
711  * eg. lag >= 0.
712  *
713  * lag_i = S - s_i = w_i*(V - v_i)
714  *
715  * lag_i >= 0 -> V >= v_i
716  *
717  *     \Sum (v_i - v)*w_i
718  * V = ------------------ + v
719  *          \Sum w_i
720  *
721  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
722  *
723  * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
724  *       to the loss in precision caused by the division.
725  */
726 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
727 {
728 	struct sched_entity *curr = cfs_rq->curr;
729 	s64 avg = cfs_rq->avg_vruntime;
730 	long load = cfs_rq->avg_load;
731 
732 	if (curr && curr->on_rq) {
733 		unsigned long weight = scale_load_down(curr->load.weight);
734 
735 		avg += entity_key(cfs_rq, curr) * weight;
736 		load += weight;
737 	}
738 
739 	return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
740 }
741 
742 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
743 {
744 	return vruntime_eligible(cfs_rq, se->vruntime);
745 }
746 
747 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
748 {
749 	u64 min_vruntime = cfs_rq->min_vruntime;
750 	/*
751 	 * open coded max_vruntime() to allow updating avg_vruntime
752 	 */
753 	s64 delta = (s64)(vruntime - min_vruntime);
754 	if (delta > 0) {
755 		avg_vruntime_update(cfs_rq, delta);
756 		min_vruntime = vruntime;
757 	}
758 	return min_vruntime;
759 }
760 
761 static void update_min_vruntime(struct cfs_rq *cfs_rq)
762 {
763 	struct sched_entity *se = __pick_root_entity(cfs_rq);
764 	struct sched_entity *curr = cfs_rq->curr;
765 	u64 vruntime = cfs_rq->min_vruntime;
766 
767 	if (curr) {
768 		if (curr->on_rq)
769 			vruntime = curr->vruntime;
770 		else
771 			curr = NULL;
772 	}
773 
774 	if (se) {
775 		if (!curr)
776 			vruntime = se->min_vruntime;
777 		else
778 			vruntime = min_vruntime(vruntime, se->min_vruntime);
779 	}
780 
781 	/* ensure we never gain time by being placed backwards. */
782 	cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
783 }
784 
785 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
786 {
787 	struct sched_entity *root = __pick_root_entity(cfs_rq);
788 	struct sched_entity *curr = cfs_rq->curr;
789 	u64 min_slice = ~0ULL;
790 
791 	if (curr && curr->on_rq)
792 		min_slice = curr->slice;
793 
794 	if (root)
795 		min_slice = min(min_slice, root->min_slice);
796 
797 	return min_slice;
798 }
799 
800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
801 {
802 	return entity_before(__node_2_se(a), __node_2_se(b));
803 }
804 
805 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
806 
807 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
808 {
809 	if (node) {
810 		struct sched_entity *rse = __node_2_se(node);
811 		if (vruntime_gt(min_vruntime, se, rse))
812 			se->min_vruntime = rse->min_vruntime;
813 	}
814 }
815 
816 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
817 {
818 	if (node) {
819 		struct sched_entity *rse = __node_2_se(node);
820 		if (rse->min_slice < se->min_slice)
821 			se->min_slice = rse->min_slice;
822 	}
823 }
824 
825 /*
826  * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
827  */
828 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
829 {
830 	u64 old_min_vruntime = se->min_vruntime;
831 	u64 old_min_slice = se->min_slice;
832 	struct rb_node *node = &se->run_node;
833 
834 	se->min_vruntime = se->vruntime;
835 	__min_vruntime_update(se, node->rb_right);
836 	__min_vruntime_update(se, node->rb_left);
837 
838 	se->min_slice = se->slice;
839 	__min_slice_update(se, node->rb_right);
840 	__min_slice_update(se, node->rb_left);
841 
842 	return se->min_vruntime == old_min_vruntime &&
843 	       se->min_slice == old_min_slice;
844 }
845 
846 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
847 		     run_node, min_vruntime, min_vruntime_update);
848 
849 /*
850  * Enqueue an entity into the rb-tree:
851  */
852 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
853 {
854 	avg_vruntime_add(cfs_rq, se);
855 	se->min_vruntime = se->vruntime;
856 	se->min_slice = se->slice;
857 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
858 				__entity_less, &min_vruntime_cb);
859 }
860 
861 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
862 {
863 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
864 				  &min_vruntime_cb);
865 	avg_vruntime_sub(cfs_rq, se);
866 }
867 
868 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
869 {
870 	struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
871 
872 	if (!root)
873 		return NULL;
874 
875 	return __node_2_se(root);
876 }
877 
878 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
879 {
880 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
881 
882 	if (!left)
883 		return NULL;
884 
885 	return __node_2_se(left);
886 }
887 
888 /*
889  * Earliest Eligible Virtual Deadline First
890  *
891  * In order to provide latency guarantees for different request sizes
892  * EEVDF selects the best runnable task from two criteria:
893  *
894  *  1) the task must be eligible (must be owed service)
895  *
896  *  2) from those tasks that meet 1), we select the one
897  *     with the earliest virtual deadline.
898  *
899  * We can do this in O(log n) time due to an augmented RB-tree. The
900  * tree keeps the entries sorted on deadline, but also functions as a
901  * heap based on the vruntime by keeping:
902  *
903  *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
904  *
905  * Which allows tree pruning through eligibility.
906  */
907 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
908 {
909 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
910 	struct sched_entity *se = __pick_first_entity(cfs_rq);
911 	struct sched_entity *curr = cfs_rq->curr;
912 	struct sched_entity *best = NULL;
913 
914 	/*
915 	 * We can safely skip eligibility check if there is only one entity
916 	 * in this cfs_rq, saving some cycles.
917 	 */
918 	if (cfs_rq->nr_running == 1)
919 		return curr && curr->on_rq ? curr : se;
920 
921 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
922 		curr = NULL;
923 
924 	/*
925 	 * Once selected, run a task until it either becomes non-eligible or
926 	 * until it gets a new slice. See the HACK in set_next_entity().
927 	 */
928 	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
929 		return curr;
930 
931 	/* Pick the leftmost entity if it's eligible */
932 	if (se && entity_eligible(cfs_rq, se)) {
933 		best = se;
934 		goto found;
935 	}
936 
937 	/* Heap search for the EEVD entity */
938 	while (node) {
939 		struct rb_node *left = node->rb_left;
940 
941 		/*
942 		 * Eligible entities in left subtree are always better
943 		 * choices, since they have earlier deadlines.
944 		 */
945 		if (left && vruntime_eligible(cfs_rq,
946 					__node_2_se(left)->min_vruntime)) {
947 			node = left;
948 			continue;
949 		}
950 
951 		se = __node_2_se(node);
952 
953 		/*
954 		 * The left subtree either is empty or has no eligible
955 		 * entity, so check the current node since it is the one
956 		 * with earliest deadline that might be eligible.
957 		 */
958 		if (entity_eligible(cfs_rq, se)) {
959 			best = se;
960 			break;
961 		}
962 
963 		node = node->rb_right;
964 	}
965 found:
966 	if (!best || (curr && entity_before(curr, best)))
967 		best = curr;
968 
969 	return best;
970 }
971 
972 #ifdef CONFIG_SCHED_DEBUG
973 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
974 {
975 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
976 
977 	if (!last)
978 		return NULL;
979 
980 	return __node_2_se(last);
981 }
982 
983 /**************************************************************
984  * Scheduling class statistics methods:
985  */
986 #ifdef CONFIG_SMP
987 int sched_update_scaling(void)
988 {
989 	unsigned int factor = get_update_sysctl_factor();
990 
991 #define WRT_SYSCTL(name) \
992 	(normalized_sysctl_##name = sysctl_##name / (factor))
993 	WRT_SYSCTL(sched_base_slice);
994 #undef WRT_SYSCTL
995 
996 	return 0;
997 }
998 #endif
999 #endif
1000 
1001 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1002 
1003 /*
1004  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1005  * this is probably good enough.
1006  */
1007 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1008 {
1009 	if ((s64)(se->vruntime - se->deadline) < 0)
1010 		return false;
1011 
1012 	/*
1013 	 * For EEVDF the virtual time slope is determined by w_i (iow.
1014 	 * nice) while the request time r_i is determined by
1015 	 * sysctl_sched_base_slice.
1016 	 */
1017 	if (!se->custom_slice)
1018 		se->slice = sysctl_sched_base_slice;
1019 
1020 	/*
1021 	 * EEVDF: vd_i = ve_i + r_i / w_i
1022 	 */
1023 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1024 
1025 	/*
1026 	 * The task has consumed its request, reschedule.
1027 	 */
1028 	return true;
1029 }
1030 
1031 #include "pelt.h"
1032 #ifdef CONFIG_SMP
1033 
1034 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1035 static unsigned long task_h_load(struct task_struct *p);
1036 static unsigned long capacity_of(int cpu);
1037 
1038 /* Give new sched_entity start runnable values to heavy its load in infant time */
1039 void init_entity_runnable_average(struct sched_entity *se)
1040 {
1041 	struct sched_avg *sa = &se->avg;
1042 
1043 	memset(sa, 0, sizeof(*sa));
1044 
1045 	/*
1046 	 * Tasks are initialized with full load to be seen as heavy tasks until
1047 	 * they get a chance to stabilize to their real load level.
1048 	 * Group entities are initialized with zero load to reflect the fact that
1049 	 * nothing has been attached to the task group yet.
1050 	 */
1051 	if (entity_is_task(se))
1052 		sa->load_avg = scale_load_down(se->load.weight);
1053 
1054 	/* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1055 }
1056 
1057 /*
1058  * With new tasks being created, their initial util_avgs are extrapolated
1059  * based on the cfs_rq's current util_avg:
1060  *
1061  *   util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1062  *		* se_weight(se)
1063  *
1064  * However, in many cases, the above util_avg does not give a desired
1065  * value. Moreover, the sum of the util_avgs may be divergent, such
1066  * as when the series is a harmonic series.
1067  *
1068  * To solve this problem, we also cap the util_avg of successive tasks to
1069  * only 1/2 of the left utilization budget:
1070  *
1071  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1072  *
1073  * where n denotes the nth task and cpu_scale the CPU capacity.
1074  *
1075  * For example, for a CPU with 1024 of capacity, a simplest series from
1076  * the beginning would be like:
1077  *
1078  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1079  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1080  *
1081  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1082  * if util_avg > util_avg_cap.
1083  */
1084 void post_init_entity_util_avg(struct task_struct *p)
1085 {
1086 	struct sched_entity *se = &p->se;
1087 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1088 	struct sched_avg *sa = &se->avg;
1089 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1090 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1091 
1092 	if (p->sched_class != &fair_sched_class) {
1093 		/*
1094 		 * For !fair tasks do:
1095 		 *
1096 		update_cfs_rq_load_avg(now, cfs_rq);
1097 		attach_entity_load_avg(cfs_rq, se);
1098 		switched_from_fair(rq, p);
1099 		 *
1100 		 * such that the next switched_to_fair() has the
1101 		 * expected state.
1102 		 */
1103 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1104 		return;
1105 	}
1106 
1107 	if (cap > 0) {
1108 		if (cfs_rq->avg.util_avg != 0) {
1109 			sa->util_avg  = cfs_rq->avg.util_avg * se_weight(se);
1110 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1111 
1112 			if (sa->util_avg > cap)
1113 				sa->util_avg = cap;
1114 		} else {
1115 			sa->util_avg = cap;
1116 		}
1117 	}
1118 
1119 	sa->runnable_avg = sa->util_avg;
1120 }
1121 
1122 #else /* !CONFIG_SMP */
1123 void init_entity_runnable_average(struct sched_entity *se)
1124 {
1125 }
1126 void post_init_entity_util_avg(struct task_struct *p)
1127 {
1128 }
1129 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1130 {
1131 }
1132 #endif /* CONFIG_SMP */
1133 
1134 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1135 {
1136 	u64 now = rq_clock_task(rq);
1137 	s64 delta_exec;
1138 
1139 	delta_exec = now - curr->exec_start;
1140 	if (unlikely(delta_exec <= 0))
1141 		return delta_exec;
1142 
1143 	curr->exec_start = now;
1144 	curr->sum_exec_runtime += delta_exec;
1145 
1146 	if (schedstat_enabled()) {
1147 		struct sched_statistics *stats;
1148 
1149 		stats = __schedstats_from_se(curr);
1150 		__schedstat_set(stats->exec_max,
1151 				max(delta_exec, stats->exec_max));
1152 	}
1153 
1154 	return delta_exec;
1155 }
1156 
1157 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1158 {
1159 	trace_sched_stat_runtime(p, delta_exec);
1160 	account_group_exec_runtime(p, delta_exec);
1161 	cgroup_account_cputime(p, delta_exec);
1162 	if (p->dl_server)
1163 		dl_server_update(p->dl_server, delta_exec);
1164 }
1165 
1166 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1167 {
1168 	if (!sched_feat(PREEMPT_SHORT))
1169 		return false;
1170 
1171 	if (curr->vlag == curr->deadline)
1172 		return false;
1173 
1174 	return !entity_eligible(cfs_rq, curr);
1175 }
1176 
1177 static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
1178 				    struct sched_entity *pse, struct sched_entity *se)
1179 {
1180 	if (!sched_feat(PREEMPT_SHORT))
1181 		return false;
1182 
1183 	if (pse->slice >= se->slice)
1184 		return false;
1185 
1186 	if (!entity_eligible(cfs_rq, pse))
1187 		return false;
1188 
1189 	if (entity_before(pse, se))
1190 		return true;
1191 
1192 	if (!entity_eligible(cfs_rq, se))
1193 		return true;
1194 
1195 	return false;
1196 }
1197 
1198 /*
1199  * Used by other classes to account runtime.
1200  */
1201 s64 update_curr_common(struct rq *rq)
1202 {
1203 	struct task_struct *donor = rq->donor;
1204 	s64 delta_exec;
1205 
1206 	delta_exec = update_curr_se(rq, &donor->se);
1207 	if (likely(delta_exec > 0))
1208 		update_curr_task(donor, delta_exec);
1209 
1210 	return delta_exec;
1211 }
1212 
1213 /*
1214  * Update the current task's runtime statistics.
1215  */
1216 static void update_curr(struct cfs_rq *cfs_rq)
1217 {
1218 	struct sched_entity *curr = cfs_rq->curr;
1219 	struct rq *rq = rq_of(cfs_rq);
1220 	s64 delta_exec;
1221 	bool resched;
1222 
1223 	if (unlikely(!curr))
1224 		return;
1225 
1226 	delta_exec = update_curr_se(rq, curr);
1227 	if (unlikely(delta_exec <= 0))
1228 		return;
1229 
1230 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1231 	resched = update_deadline(cfs_rq, curr);
1232 	update_min_vruntime(cfs_rq);
1233 
1234 	if (entity_is_task(curr)) {
1235 		struct task_struct *p = task_of(curr);
1236 
1237 		update_curr_task(p, delta_exec);
1238 
1239 		/*
1240 		 * Any fair task that runs outside of fair_server should
1241 		 * account against fair_server such that it can account for
1242 		 * this time and possibly avoid running this period.
1243 		 */
1244 		if (p->dl_server != &rq->fair_server)
1245 			dl_server_update(&rq->fair_server, delta_exec);
1246 	}
1247 
1248 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1249 
1250 	if (cfs_rq->nr_running == 1)
1251 		return;
1252 
1253 	if (resched || did_preempt_short(cfs_rq, curr)) {
1254 		resched_curr_lazy(rq);
1255 		clear_buddies(cfs_rq, curr);
1256 	}
1257 }
1258 
1259 static void update_curr_fair(struct rq *rq)
1260 {
1261 	update_curr(cfs_rq_of(&rq->donor->se));
1262 }
1263 
1264 static inline void
1265 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1266 {
1267 	struct sched_statistics *stats;
1268 	struct task_struct *p = NULL;
1269 
1270 	if (!schedstat_enabled())
1271 		return;
1272 
1273 	stats = __schedstats_from_se(se);
1274 
1275 	if (entity_is_task(se))
1276 		p = task_of(se);
1277 
1278 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1279 }
1280 
1281 static inline void
1282 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1283 {
1284 	struct sched_statistics *stats;
1285 	struct task_struct *p = NULL;
1286 
1287 	if (!schedstat_enabled())
1288 		return;
1289 
1290 	stats = __schedstats_from_se(se);
1291 
1292 	/*
1293 	 * When the sched_schedstat changes from 0 to 1, some sched se
1294 	 * maybe already in the runqueue, the se->statistics.wait_start
1295 	 * will be 0.So it will let the delta wrong. We need to avoid this
1296 	 * scenario.
1297 	 */
1298 	if (unlikely(!schedstat_val(stats->wait_start)))
1299 		return;
1300 
1301 	if (entity_is_task(se))
1302 		p = task_of(se);
1303 
1304 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1305 }
1306 
1307 static inline void
1308 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1309 {
1310 	struct sched_statistics *stats;
1311 	struct task_struct *tsk = NULL;
1312 
1313 	if (!schedstat_enabled())
1314 		return;
1315 
1316 	stats = __schedstats_from_se(se);
1317 
1318 	if (entity_is_task(se))
1319 		tsk = task_of(se);
1320 
1321 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1322 }
1323 
1324 /*
1325  * Task is being enqueued - update stats:
1326  */
1327 static inline void
1328 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1329 {
1330 	if (!schedstat_enabled())
1331 		return;
1332 
1333 	/*
1334 	 * Are we enqueueing a waiting task? (for current tasks
1335 	 * a dequeue/enqueue event is a NOP)
1336 	 */
1337 	if (se != cfs_rq->curr)
1338 		update_stats_wait_start_fair(cfs_rq, se);
1339 
1340 	if (flags & ENQUEUE_WAKEUP)
1341 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1342 }
1343 
1344 static inline void
1345 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1346 {
1347 
1348 	if (!schedstat_enabled())
1349 		return;
1350 
1351 	/*
1352 	 * Mark the end of the wait period if dequeueing a
1353 	 * waiting task:
1354 	 */
1355 	if (se != cfs_rq->curr)
1356 		update_stats_wait_end_fair(cfs_rq, se);
1357 
1358 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1359 		struct task_struct *tsk = task_of(se);
1360 		unsigned int state;
1361 
1362 		/* XXX racy against TTWU */
1363 		state = READ_ONCE(tsk->__state);
1364 		if (state & TASK_INTERRUPTIBLE)
1365 			__schedstat_set(tsk->stats.sleep_start,
1366 				      rq_clock(rq_of(cfs_rq)));
1367 		if (state & TASK_UNINTERRUPTIBLE)
1368 			__schedstat_set(tsk->stats.block_start,
1369 				      rq_clock(rq_of(cfs_rq)));
1370 	}
1371 }
1372 
1373 /*
1374  * We are picking a new current task - update its stats:
1375  */
1376 static inline void
1377 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1378 {
1379 	/*
1380 	 * We are starting a new run period:
1381 	 */
1382 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1383 }
1384 
1385 /**************************************************
1386  * Scheduling class queueing methods:
1387  */
1388 
1389 static inline bool is_core_idle(int cpu)
1390 {
1391 #ifdef CONFIG_SCHED_SMT
1392 	int sibling;
1393 
1394 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1395 		if (cpu == sibling)
1396 			continue;
1397 
1398 		if (!idle_cpu(sibling))
1399 			return false;
1400 	}
1401 #endif
1402 
1403 	return true;
1404 }
1405 
1406 #ifdef CONFIG_NUMA
1407 #define NUMA_IMBALANCE_MIN 2
1408 
1409 static inline long
1410 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1411 {
1412 	/*
1413 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1414 	 * threshold. Above this threshold, individual tasks may be contending
1415 	 * for both memory bandwidth and any shared HT resources.  This is an
1416 	 * approximation as the number of running tasks may not be related to
1417 	 * the number of busy CPUs due to sched_setaffinity.
1418 	 */
1419 	if (dst_running > imb_numa_nr)
1420 		return imbalance;
1421 
1422 	/*
1423 	 * Allow a small imbalance based on a simple pair of communicating
1424 	 * tasks that remain local when the destination is lightly loaded.
1425 	 */
1426 	if (imbalance <= NUMA_IMBALANCE_MIN)
1427 		return 0;
1428 
1429 	return imbalance;
1430 }
1431 #endif /* CONFIG_NUMA */
1432 
1433 #ifdef CONFIG_NUMA_BALANCING
1434 /*
1435  * Approximate time to scan a full NUMA task in ms. The task scan period is
1436  * calculated based on the tasks virtual memory size and
1437  * numa_balancing_scan_size.
1438  */
1439 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1440 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1441 
1442 /* Portion of address space to scan in MB */
1443 unsigned int sysctl_numa_balancing_scan_size = 256;
1444 
1445 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1446 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1447 
1448 /* The page with hint page fault latency < threshold in ms is considered hot */
1449 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1450 
1451 struct numa_group {
1452 	refcount_t refcount;
1453 
1454 	spinlock_t lock; /* nr_tasks, tasks */
1455 	int nr_tasks;
1456 	pid_t gid;
1457 	int active_nodes;
1458 
1459 	struct rcu_head rcu;
1460 	unsigned long total_faults;
1461 	unsigned long max_faults_cpu;
1462 	/*
1463 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1464 	 *
1465 	 * Faults_cpu is used to decide whether memory should move
1466 	 * towards the CPU. As a consequence, these stats are weighted
1467 	 * more by CPU use than by memory faults.
1468 	 */
1469 	unsigned long faults[];
1470 };
1471 
1472 /*
1473  * For functions that can be called in multiple contexts that permit reading
1474  * ->numa_group (see struct task_struct for locking rules).
1475  */
1476 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1477 {
1478 	return rcu_dereference_check(p->numa_group, p == current ||
1479 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1480 }
1481 
1482 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1483 {
1484 	return rcu_dereference_protected(p->numa_group, p == current);
1485 }
1486 
1487 static inline unsigned long group_faults_priv(struct numa_group *ng);
1488 static inline unsigned long group_faults_shared(struct numa_group *ng);
1489 
1490 static unsigned int task_nr_scan_windows(struct task_struct *p)
1491 {
1492 	unsigned long rss = 0;
1493 	unsigned long nr_scan_pages;
1494 
1495 	/*
1496 	 * Calculations based on RSS as non-present and empty pages are skipped
1497 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1498 	 * on resident pages
1499 	 */
1500 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1501 	rss = get_mm_rss(p->mm);
1502 	if (!rss)
1503 		rss = nr_scan_pages;
1504 
1505 	rss = round_up(rss, nr_scan_pages);
1506 	return rss / nr_scan_pages;
1507 }
1508 
1509 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1510 #define MAX_SCAN_WINDOW 2560
1511 
1512 static unsigned int task_scan_min(struct task_struct *p)
1513 {
1514 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1515 	unsigned int scan, floor;
1516 	unsigned int windows = 1;
1517 
1518 	if (scan_size < MAX_SCAN_WINDOW)
1519 		windows = MAX_SCAN_WINDOW / scan_size;
1520 	floor = 1000 / windows;
1521 
1522 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1523 	return max_t(unsigned int, floor, scan);
1524 }
1525 
1526 static unsigned int task_scan_start(struct task_struct *p)
1527 {
1528 	unsigned long smin = task_scan_min(p);
1529 	unsigned long period = smin;
1530 	struct numa_group *ng;
1531 
1532 	/* Scale the maximum scan period with the amount of shared memory. */
1533 	rcu_read_lock();
1534 	ng = rcu_dereference(p->numa_group);
1535 	if (ng) {
1536 		unsigned long shared = group_faults_shared(ng);
1537 		unsigned long private = group_faults_priv(ng);
1538 
1539 		period *= refcount_read(&ng->refcount);
1540 		period *= shared + 1;
1541 		period /= private + shared + 1;
1542 	}
1543 	rcu_read_unlock();
1544 
1545 	return max(smin, period);
1546 }
1547 
1548 static unsigned int task_scan_max(struct task_struct *p)
1549 {
1550 	unsigned long smin = task_scan_min(p);
1551 	unsigned long smax;
1552 	struct numa_group *ng;
1553 
1554 	/* Watch for min being lower than max due to floor calculations */
1555 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1556 
1557 	/* Scale the maximum scan period with the amount of shared memory. */
1558 	ng = deref_curr_numa_group(p);
1559 	if (ng) {
1560 		unsigned long shared = group_faults_shared(ng);
1561 		unsigned long private = group_faults_priv(ng);
1562 		unsigned long period = smax;
1563 
1564 		period *= refcount_read(&ng->refcount);
1565 		period *= shared + 1;
1566 		period /= private + shared + 1;
1567 
1568 		smax = max(smax, period);
1569 	}
1570 
1571 	return max(smin, smax);
1572 }
1573 
1574 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1575 {
1576 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1577 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1578 }
1579 
1580 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1581 {
1582 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1583 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1584 }
1585 
1586 /* Shared or private faults. */
1587 #define NR_NUMA_HINT_FAULT_TYPES 2
1588 
1589 /* Memory and CPU locality */
1590 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1591 
1592 /* Averaged statistics, and temporary buffers. */
1593 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1594 
1595 pid_t task_numa_group_id(struct task_struct *p)
1596 {
1597 	struct numa_group *ng;
1598 	pid_t gid = 0;
1599 
1600 	rcu_read_lock();
1601 	ng = rcu_dereference(p->numa_group);
1602 	if (ng)
1603 		gid = ng->gid;
1604 	rcu_read_unlock();
1605 
1606 	return gid;
1607 }
1608 
1609 /*
1610  * The averaged statistics, shared & private, memory & CPU,
1611  * occupy the first half of the array. The second half of the
1612  * array is for current counters, which are averaged into the
1613  * first set by task_numa_placement.
1614  */
1615 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1616 {
1617 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1618 }
1619 
1620 static inline unsigned long task_faults(struct task_struct *p, int nid)
1621 {
1622 	if (!p->numa_faults)
1623 		return 0;
1624 
1625 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1626 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1627 }
1628 
1629 static inline unsigned long group_faults(struct task_struct *p, int nid)
1630 {
1631 	struct numa_group *ng = deref_task_numa_group(p);
1632 
1633 	if (!ng)
1634 		return 0;
1635 
1636 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1637 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1638 }
1639 
1640 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1641 {
1642 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1643 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1644 }
1645 
1646 static inline unsigned long group_faults_priv(struct numa_group *ng)
1647 {
1648 	unsigned long faults = 0;
1649 	int node;
1650 
1651 	for_each_online_node(node) {
1652 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1653 	}
1654 
1655 	return faults;
1656 }
1657 
1658 static inline unsigned long group_faults_shared(struct numa_group *ng)
1659 {
1660 	unsigned long faults = 0;
1661 	int node;
1662 
1663 	for_each_online_node(node) {
1664 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1665 	}
1666 
1667 	return faults;
1668 }
1669 
1670 /*
1671  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1672  * considered part of a numa group's pseudo-interleaving set. Migrations
1673  * between these nodes are slowed down, to allow things to settle down.
1674  */
1675 #define ACTIVE_NODE_FRACTION 3
1676 
1677 static bool numa_is_active_node(int nid, struct numa_group *ng)
1678 {
1679 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1680 }
1681 
1682 /* Handle placement on systems where not all nodes are directly connected. */
1683 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1684 					int lim_dist, bool task)
1685 {
1686 	unsigned long score = 0;
1687 	int node, max_dist;
1688 
1689 	/*
1690 	 * All nodes are directly connected, and the same distance
1691 	 * from each other. No need for fancy placement algorithms.
1692 	 */
1693 	if (sched_numa_topology_type == NUMA_DIRECT)
1694 		return 0;
1695 
1696 	/* sched_max_numa_distance may be changed in parallel. */
1697 	max_dist = READ_ONCE(sched_max_numa_distance);
1698 	/*
1699 	 * This code is called for each node, introducing N^2 complexity,
1700 	 * which should be OK given the number of nodes rarely exceeds 8.
1701 	 */
1702 	for_each_online_node(node) {
1703 		unsigned long faults;
1704 		int dist = node_distance(nid, node);
1705 
1706 		/*
1707 		 * The furthest away nodes in the system are not interesting
1708 		 * for placement; nid was already counted.
1709 		 */
1710 		if (dist >= max_dist || node == nid)
1711 			continue;
1712 
1713 		/*
1714 		 * On systems with a backplane NUMA topology, compare groups
1715 		 * of nodes, and move tasks towards the group with the most
1716 		 * memory accesses. When comparing two nodes at distance
1717 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1718 		 * of each group. Skip other nodes.
1719 		 */
1720 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1721 			continue;
1722 
1723 		/* Add up the faults from nearby nodes. */
1724 		if (task)
1725 			faults = task_faults(p, node);
1726 		else
1727 			faults = group_faults(p, node);
1728 
1729 		/*
1730 		 * On systems with a glueless mesh NUMA topology, there are
1731 		 * no fixed "groups of nodes". Instead, nodes that are not
1732 		 * directly connected bounce traffic through intermediate
1733 		 * nodes; a numa_group can occupy any set of nodes.
1734 		 * The further away a node is, the less the faults count.
1735 		 * This seems to result in good task placement.
1736 		 */
1737 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1738 			faults *= (max_dist - dist);
1739 			faults /= (max_dist - LOCAL_DISTANCE);
1740 		}
1741 
1742 		score += faults;
1743 	}
1744 
1745 	return score;
1746 }
1747 
1748 /*
1749  * These return the fraction of accesses done by a particular task, or
1750  * task group, on a particular numa node.  The group weight is given a
1751  * larger multiplier, in order to group tasks together that are almost
1752  * evenly spread out between numa nodes.
1753  */
1754 static inline unsigned long task_weight(struct task_struct *p, int nid,
1755 					int dist)
1756 {
1757 	unsigned long faults, total_faults;
1758 
1759 	if (!p->numa_faults)
1760 		return 0;
1761 
1762 	total_faults = p->total_numa_faults;
1763 
1764 	if (!total_faults)
1765 		return 0;
1766 
1767 	faults = task_faults(p, nid);
1768 	faults += score_nearby_nodes(p, nid, dist, true);
1769 
1770 	return 1000 * faults / total_faults;
1771 }
1772 
1773 static inline unsigned long group_weight(struct task_struct *p, int nid,
1774 					 int dist)
1775 {
1776 	struct numa_group *ng = deref_task_numa_group(p);
1777 	unsigned long faults, total_faults;
1778 
1779 	if (!ng)
1780 		return 0;
1781 
1782 	total_faults = ng->total_faults;
1783 
1784 	if (!total_faults)
1785 		return 0;
1786 
1787 	faults = group_faults(p, nid);
1788 	faults += score_nearby_nodes(p, nid, dist, false);
1789 
1790 	return 1000 * faults / total_faults;
1791 }
1792 
1793 /*
1794  * If memory tiering mode is enabled, cpupid of slow memory page is
1795  * used to record scan time instead of CPU and PID.  When tiering mode
1796  * is disabled at run time, the scan time (in cpupid) will be
1797  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1798  * access out of array bound.
1799  */
1800 static inline bool cpupid_valid(int cpupid)
1801 {
1802 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1803 }
1804 
1805 /*
1806  * For memory tiering mode, if there are enough free pages (more than
1807  * enough watermark defined here) in fast memory node, to take full
1808  * advantage of fast memory capacity, all recently accessed slow
1809  * memory pages will be migrated to fast memory node without
1810  * considering hot threshold.
1811  */
1812 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1813 {
1814 	int z;
1815 	unsigned long enough_wmark;
1816 
1817 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1818 			   pgdat->node_present_pages >> 4);
1819 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1820 		struct zone *zone = pgdat->node_zones + z;
1821 
1822 		if (!populated_zone(zone))
1823 			continue;
1824 
1825 		if (zone_watermark_ok(zone, 0,
1826 				      promo_wmark_pages(zone) + enough_wmark,
1827 				      ZONE_MOVABLE, 0))
1828 			return true;
1829 	}
1830 	return false;
1831 }
1832 
1833 /*
1834  * For memory tiering mode, when page tables are scanned, the scan
1835  * time will be recorded in struct page in addition to make page
1836  * PROT_NONE for slow memory page.  So when the page is accessed, in
1837  * hint page fault handler, the hint page fault latency is calculated
1838  * via,
1839  *
1840  *	hint page fault latency = hint page fault time - scan time
1841  *
1842  * The smaller the hint page fault latency, the higher the possibility
1843  * for the page to be hot.
1844  */
1845 static int numa_hint_fault_latency(struct folio *folio)
1846 {
1847 	int last_time, time;
1848 
1849 	time = jiffies_to_msecs(jiffies);
1850 	last_time = folio_xchg_access_time(folio, time);
1851 
1852 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1853 }
1854 
1855 /*
1856  * For memory tiering mode, too high promotion/demotion throughput may
1857  * hurt application latency.  So we provide a mechanism to rate limit
1858  * the number of pages that are tried to be promoted.
1859  */
1860 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1861 				      unsigned long rate_limit, int nr)
1862 {
1863 	unsigned long nr_cand;
1864 	unsigned int now, start;
1865 
1866 	now = jiffies_to_msecs(jiffies);
1867 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1868 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1869 	start = pgdat->nbp_rl_start;
1870 	if (now - start > MSEC_PER_SEC &&
1871 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1872 		pgdat->nbp_rl_nr_cand = nr_cand;
1873 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1874 		return true;
1875 	return false;
1876 }
1877 
1878 #define NUMA_MIGRATION_ADJUST_STEPS	16
1879 
1880 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1881 					    unsigned long rate_limit,
1882 					    unsigned int ref_th)
1883 {
1884 	unsigned int now, start, th_period, unit_th, th;
1885 	unsigned long nr_cand, ref_cand, diff_cand;
1886 
1887 	now = jiffies_to_msecs(jiffies);
1888 	th_period = sysctl_numa_balancing_scan_period_max;
1889 	start = pgdat->nbp_th_start;
1890 	if (now - start > th_period &&
1891 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1892 		ref_cand = rate_limit *
1893 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1894 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1895 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1896 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1897 		th = pgdat->nbp_threshold ? : ref_th;
1898 		if (diff_cand > ref_cand * 11 / 10)
1899 			th = max(th - unit_th, unit_th);
1900 		else if (diff_cand < ref_cand * 9 / 10)
1901 			th = min(th + unit_th, ref_th * 2);
1902 		pgdat->nbp_th_nr_cand = nr_cand;
1903 		pgdat->nbp_threshold = th;
1904 	}
1905 }
1906 
1907 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1908 				int src_nid, int dst_cpu)
1909 {
1910 	struct numa_group *ng = deref_curr_numa_group(p);
1911 	int dst_nid = cpu_to_node(dst_cpu);
1912 	int last_cpupid, this_cpupid;
1913 
1914 	/*
1915 	 * Cannot migrate to memoryless nodes.
1916 	 */
1917 	if (!node_state(dst_nid, N_MEMORY))
1918 		return false;
1919 
1920 	/*
1921 	 * The pages in slow memory node should be migrated according
1922 	 * to hot/cold instead of private/shared.
1923 	 */
1924 	if (folio_use_access_time(folio)) {
1925 		struct pglist_data *pgdat;
1926 		unsigned long rate_limit;
1927 		unsigned int latency, th, def_th;
1928 
1929 		pgdat = NODE_DATA(dst_nid);
1930 		if (pgdat_free_space_enough(pgdat)) {
1931 			/* workload changed, reset hot threshold */
1932 			pgdat->nbp_threshold = 0;
1933 			return true;
1934 		}
1935 
1936 		def_th = sysctl_numa_balancing_hot_threshold;
1937 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1938 			(20 - PAGE_SHIFT);
1939 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1940 
1941 		th = pgdat->nbp_threshold ? : def_th;
1942 		latency = numa_hint_fault_latency(folio);
1943 		if (latency >= th)
1944 			return false;
1945 
1946 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1947 						  folio_nr_pages(folio));
1948 	}
1949 
1950 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1951 	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1952 
1953 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1954 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1955 		return false;
1956 
1957 	/*
1958 	 * Allow first faults or private faults to migrate immediately early in
1959 	 * the lifetime of a task. The magic number 4 is based on waiting for
1960 	 * two full passes of the "multi-stage node selection" test that is
1961 	 * executed below.
1962 	 */
1963 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1964 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1965 		return true;
1966 
1967 	/*
1968 	 * Multi-stage node selection is used in conjunction with a periodic
1969 	 * migration fault to build a temporal task<->page relation. By using
1970 	 * a two-stage filter we remove short/unlikely relations.
1971 	 *
1972 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1973 	 * a task's usage of a particular page (n_p) per total usage of this
1974 	 * page (n_t) (in a given time-span) to a probability.
1975 	 *
1976 	 * Our periodic faults will sample this probability and getting the
1977 	 * same result twice in a row, given these samples are fully
1978 	 * independent, is then given by P(n)^2, provided our sample period
1979 	 * is sufficiently short compared to the usage pattern.
1980 	 *
1981 	 * This quadric squishes small probabilities, making it less likely we
1982 	 * act on an unlikely task<->page relation.
1983 	 */
1984 	if (!cpupid_pid_unset(last_cpupid) &&
1985 				cpupid_to_nid(last_cpupid) != dst_nid)
1986 		return false;
1987 
1988 	/* Always allow migrate on private faults */
1989 	if (cpupid_match_pid(p, last_cpupid))
1990 		return true;
1991 
1992 	/* A shared fault, but p->numa_group has not been set up yet. */
1993 	if (!ng)
1994 		return true;
1995 
1996 	/*
1997 	 * Destination node is much more heavily used than the source
1998 	 * node? Allow migration.
1999 	 */
2000 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
2001 					ACTIVE_NODE_FRACTION)
2002 		return true;
2003 
2004 	/*
2005 	 * Distribute memory according to CPU & memory use on each node,
2006 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2007 	 *
2008 	 * faults_cpu(dst)   3   faults_cpu(src)
2009 	 * --------------- * - > ---------------
2010 	 * faults_mem(dst)   4   faults_mem(src)
2011 	 */
2012 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2013 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2014 }
2015 
2016 /*
2017  * 'numa_type' describes the node at the moment of load balancing.
2018  */
2019 enum numa_type {
2020 	/* The node has spare capacity that can be used to run more tasks.  */
2021 	node_has_spare = 0,
2022 	/*
2023 	 * The node is fully used and the tasks don't compete for more CPU
2024 	 * cycles. Nevertheless, some tasks might wait before running.
2025 	 */
2026 	node_fully_busy,
2027 	/*
2028 	 * The node is overloaded and can't provide expected CPU cycles to all
2029 	 * tasks.
2030 	 */
2031 	node_overloaded
2032 };
2033 
2034 /* Cached statistics for all CPUs within a node */
2035 struct numa_stats {
2036 	unsigned long load;
2037 	unsigned long runnable;
2038 	unsigned long util;
2039 	/* Total compute capacity of CPUs on a node */
2040 	unsigned long compute_capacity;
2041 	unsigned int nr_running;
2042 	unsigned int weight;
2043 	enum numa_type node_type;
2044 	int idle_cpu;
2045 };
2046 
2047 struct task_numa_env {
2048 	struct task_struct *p;
2049 
2050 	int src_cpu, src_nid;
2051 	int dst_cpu, dst_nid;
2052 	int imb_numa_nr;
2053 
2054 	struct numa_stats src_stats, dst_stats;
2055 
2056 	int imbalance_pct;
2057 	int dist;
2058 
2059 	struct task_struct *best_task;
2060 	long best_imp;
2061 	int best_cpu;
2062 };
2063 
2064 static unsigned long cpu_load(struct rq *rq);
2065 static unsigned long cpu_runnable(struct rq *rq);
2066 
2067 static inline enum
2068 numa_type numa_classify(unsigned int imbalance_pct,
2069 			 struct numa_stats *ns)
2070 {
2071 	if ((ns->nr_running > ns->weight) &&
2072 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2073 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2074 		return node_overloaded;
2075 
2076 	if ((ns->nr_running < ns->weight) ||
2077 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2078 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2079 		return node_has_spare;
2080 
2081 	return node_fully_busy;
2082 }
2083 
2084 #ifdef CONFIG_SCHED_SMT
2085 /* Forward declarations of select_idle_sibling helpers */
2086 static inline bool test_idle_cores(int cpu);
2087 static inline int numa_idle_core(int idle_core, int cpu)
2088 {
2089 	if (!static_branch_likely(&sched_smt_present) ||
2090 	    idle_core >= 0 || !test_idle_cores(cpu))
2091 		return idle_core;
2092 
2093 	/*
2094 	 * Prefer cores instead of packing HT siblings
2095 	 * and triggering future load balancing.
2096 	 */
2097 	if (is_core_idle(cpu))
2098 		idle_core = cpu;
2099 
2100 	return idle_core;
2101 }
2102 #else
2103 static inline int numa_idle_core(int idle_core, int cpu)
2104 {
2105 	return idle_core;
2106 }
2107 #endif
2108 
2109 /*
2110  * Gather all necessary information to make NUMA balancing placement
2111  * decisions that are compatible with standard load balancer. This
2112  * borrows code and logic from update_sg_lb_stats but sharing a
2113  * common implementation is impractical.
2114  */
2115 static void update_numa_stats(struct task_numa_env *env,
2116 			      struct numa_stats *ns, int nid,
2117 			      bool find_idle)
2118 {
2119 	int cpu, idle_core = -1;
2120 
2121 	memset(ns, 0, sizeof(*ns));
2122 	ns->idle_cpu = -1;
2123 
2124 	rcu_read_lock();
2125 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2126 		struct rq *rq = cpu_rq(cpu);
2127 
2128 		ns->load += cpu_load(rq);
2129 		ns->runnable += cpu_runnable(rq);
2130 		ns->util += cpu_util_cfs(cpu);
2131 		ns->nr_running += rq->cfs.h_nr_running;
2132 		ns->compute_capacity += capacity_of(cpu);
2133 
2134 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2135 			if (READ_ONCE(rq->numa_migrate_on) ||
2136 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2137 				continue;
2138 
2139 			if (ns->idle_cpu == -1)
2140 				ns->idle_cpu = cpu;
2141 
2142 			idle_core = numa_idle_core(idle_core, cpu);
2143 		}
2144 	}
2145 	rcu_read_unlock();
2146 
2147 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2148 
2149 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2150 
2151 	if (idle_core >= 0)
2152 		ns->idle_cpu = idle_core;
2153 }
2154 
2155 static void task_numa_assign(struct task_numa_env *env,
2156 			     struct task_struct *p, long imp)
2157 {
2158 	struct rq *rq = cpu_rq(env->dst_cpu);
2159 
2160 	/* Check if run-queue part of active NUMA balance. */
2161 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2162 		int cpu;
2163 		int start = env->dst_cpu;
2164 
2165 		/* Find alternative idle CPU. */
2166 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2167 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2168 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2169 				continue;
2170 			}
2171 
2172 			env->dst_cpu = cpu;
2173 			rq = cpu_rq(env->dst_cpu);
2174 			if (!xchg(&rq->numa_migrate_on, 1))
2175 				goto assign;
2176 		}
2177 
2178 		/* Failed to find an alternative idle CPU */
2179 		return;
2180 	}
2181 
2182 assign:
2183 	/*
2184 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2185 	 * found a better CPU to move/swap.
2186 	 */
2187 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2188 		rq = cpu_rq(env->best_cpu);
2189 		WRITE_ONCE(rq->numa_migrate_on, 0);
2190 	}
2191 
2192 	if (env->best_task)
2193 		put_task_struct(env->best_task);
2194 	if (p)
2195 		get_task_struct(p);
2196 
2197 	env->best_task = p;
2198 	env->best_imp = imp;
2199 	env->best_cpu = env->dst_cpu;
2200 }
2201 
2202 static bool load_too_imbalanced(long src_load, long dst_load,
2203 				struct task_numa_env *env)
2204 {
2205 	long imb, old_imb;
2206 	long orig_src_load, orig_dst_load;
2207 	long src_capacity, dst_capacity;
2208 
2209 	/*
2210 	 * The load is corrected for the CPU capacity available on each node.
2211 	 *
2212 	 * src_load        dst_load
2213 	 * ------------ vs ---------
2214 	 * src_capacity    dst_capacity
2215 	 */
2216 	src_capacity = env->src_stats.compute_capacity;
2217 	dst_capacity = env->dst_stats.compute_capacity;
2218 
2219 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2220 
2221 	orig_src_load = env->src_stats.load;
2222 	orig_dst_load = env->dst_stats.load;
2223 
2224 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2225 
2226 	/* Would this change make things worse? */
2227 	return (imb > old_imb);
2228 }
2229 
2230 /*
2231  * Maximum NUMA importance can be 1998 (2*999);
2232  * SMALLIMP @ 30 would be close to 1998/64.
2233  * Used to deter task migration.
2234  */
2235 #define SMALLIMP	30
2236 
2237 /*
2238  * This checks if the overall compute and NUMA accesses of the system would
2239  * be improved if the source tasks was migrated to the target dst_cpu taking
2240  * into account that it might be best if task running on the dst_cpu should
2241  * be exchanged with the source task
2242  */
2243 static bool task_numa_compare(struct task_numa_env *env,
2244 			      long taskimp, long groupimp, bool maymove)
2245 {
2246 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2247 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2248 	long imp = p_ng ? groupimp : taskimp;
2249 	struct task_struct *cur;
2250 	long src_load, dst_load;
2251 	int dist = env->dist;
2252 	long moveimp = imp;
2253 	long load;
2254 	bool stopsearch = false;
2255 
2256 	if (READ_ONCE(dst_rq->numa_migrate_on))
2257 		return false;
2258 
2259 	rcu_read_lock();
2260 	cur = rcu_dereference(dst_rq->curr);
2261 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2262 		cur = NULL;
2263 
2264 	/*
2265 	 * Because we have preemption enabled we can get migrated around and
2266 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2267 	 */
2268 	if (cur == env->p) {
2269 		stopsearch = true;
2270 		goto unlock;
2271 	}
2272 
2273 	if (!cur) {
2274 		if (maymove && moveimp >= env->best_imp)
2275 			goto assign;
2276 		else
2277 			goto unlock;
2278 	}
2279 
2280 	/* Skip this swap candidate if cannot move to the source cpu. */
2281 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2282 		goto unlock;
2283 
2284 	/*
2285 	 * Skip this swap candidate if it is not moving to its preferred
2286 	 * node and the best task is.
2287 	 */
2288 	if (env->best_task &&
2289 	    env->best_task->numa_preferred_nid == env->src_nid &&
2290 	    cur->numa_preferred_nid != env->src_nid) {
2291 		goto unlock;
2292 	}
2293 
2294 	/*
2295 	 * "imp" is the fault differential for the source task between the
2296 	 * source and destination node. Calculate the total differential for
2297 	 * the source task and potential destination task. The more negative
2298 	 * the value is, the more remote accesses that would be expected to
2299 	 * be incurred if the tasks were swapped.
2300 	 *
2301 	 * If dst and source tasks are in the same NUMA group, or not
2302 	 * in any group then look only at task weights.
2303 	 */
2304 	cur_ng = rcu_dereference(cur->numa_group);
2305 	if (cur_ng == p_ng) {
2306 		/*
2307 		 * Do not swap within a group or between tasks that have
2308 		 * no group if there is spare capacity. Swapping does
2309 		 * not address the load imbalance and helps one task at
2310 		 * the cost of punishing another.
2311 		 */
2312 		if (env->dst_stats.node_type == node_has_spare)
2313 			goto unlock;
2314 
2315 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2316 		      task_weight(cur, env->dst_nid, dist);
2317 		/*
2318 		 * Add some hysteresis to prevent swapping the
2319 		 * tasks within a group over tiny differences.
2320 		 */
2321 		if (cur_ng)
2322 			imp -= imp / 16;
2323 	} else {
2324 		/*
2325 		 * Compare the group weights. If a task is all by itself
2326 		 * (not part of a group), use the task weight instead.
2327 		 */
2328 		if (cur_ng && p_ng)
2329 			imp += group_weight(cur, env->src_nid, dist) -
2330 			       group_weight(cur, env->dst_nid, dist);
2331 		else
2332 			imp += task_weight(cur, env->src_nid, dist) -
2333 			       task_weight(cur, env->dst_nid, dist);
2334 	}
2335 
2336 	/* Discourage picking a task already on its preferred node */
2337 	if (cur->numa_preferred_nid == env->dst_nid)
2338 		imp -= imp / 16;
2339 
2340 	/*
2341 	 * Encourage picking a task that moves to its preferred node.
2342 	 * This potentially makes imp larger than it's maximum of
2343 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2344 	 * case, it does not matter.
2345 	 */
2346 	if (cur->numa_preferred_nid == env->src_nid)
2347 		imp += imp / 8;
2348 
2349 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2350 		imp = moveimp;
2351 		cur = NULL;
2352 		goto assign;
2353 	}
2354 
2355 	/*
2356 	 * Prefer swapping with a task moving to its preferred node over a
2357 	 * task that is not.
2358 	 */
2359 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2360 	    env->best_task->numa_preferred_nid != env->src_nid) {
2361 		goto assign;
2362 	}
2363 
2364 	/*
2365 	 * If the NUMA importance is less than SMALLIMP,
2366 	 * task migration might only result in ping pong
2367 	 * of tasks and also hurt performance due to cache
2368 	 * misses.
2369 	 */
2370 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2371 		goto unlock;
2372 
2373 	/*
2374 	 * In the overloaded case, try and keep the load balanced.
2375 	 */
2376 	load = task_h_load(env->p) - task_h_load(cur);
2377 	if (!load)
2378 		goto assign;
2379 
2380 	dst_load = env->dst_stats.load + load;
2381 	src_load = env->src_stats.load - load;
2382 
2383 	if (load_too_imbalanced(src_load, dst_load, env))
2384 		goto unlock;
2385 
2386 assign:
2387 	/* Evaluate an idle CPU for a task numa move. */
2388 	if (!cur) {
2389 		int cpu = env->dst_stats.idle_cpu;
2390 
2391 		/* Nothing cached so current CPU went idle since the search. */
2392 		if (cpu < 0)
2393 			cpu = env->dst_cpu;
2394 
2395 		/*
2396 		 * If the CPU is no longer truly idle and the previous best CPU
2397 		 * is, keep using it.
2398 		 */
2399 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2400 		    idle_cpu(env->best_cpu)) {
2401 			cpu = env->best_cpu;
2402 		}
2403 
2404 		env->dst_cpu = cpu;
2405 	}
2406 
2407 	task_numa_assign(env, cur, imp);
2408 
2409 	/*
2410 	 * If a move to idle is allowed because there is capacity or load
2411 	 * balance improves then stop the search. While a better swap
2412 	 * candidate may exist, a search is not free.
2413 	 */
2414 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2415 		stopsearch = true;
2416 
2417 	/*
2418 	 * If a swap candidate must be identified and the current best task
2419 	 * moves its preferred node then stop the search.
2420 	 */
2421 	if (!maymove && env->best_task &&
2422 	    env->best_task->numa_preferred_nid == env->src_nid) {
2423 		stopsearch = true;
2424 	}
2425 unlock:
2426 	rcu_read_unlock();
2427 
2428 	return stopsearch;
2429 }
2430 
2431 static void task_numa_find_cpu(struct task_numa_env *env,
2432 				long taskimp, long groupimp)
2433 {
2434 	bool maymove = false;
2435 	int cpu;
2436 
2437 	/*
2438 	 * If dst node has spare capacity, then check if there is an
2439 	 * imbalance that would be overruled by the load balancer.
2440 	 */
2441 	if (env->dst_stats.node_type == node_has_spare) {
2442 		unsigned int imbalance;
2443 		int src_running, dst_running;
2444 
2445 		/*
2446 		 * Would movement cause an imbalance? Note that if src has
2447 		 * more running tasks that the imbalance is ignored as the
2448 		 * move improves the imbalance from the perspective of the
2449 		 * CPU load balancer.
2450 		 * */
2451 		src_running = env->src_stats.nr_running - 1;
2452 		dst_running = env->dst_stats.nr_running + 1;
2453 		imbalance = max(0, dst_running - src_running);
2454 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2455 						  env->imb_numa_nr);
2456 
2457 		/* Use idle CPU if there is no imbalance */
2458 		if (!imbalance) {
2459 			maymove = true;
2460 			if (env->dst_stats.idle_cpu >= 0) {
2461 				env->dst_cpu = env->dst_stats.idle_cpu;
2462 				task_numa_assign(env, NULL, 0);
2463 				return;
2464 			}
2465 		}
2466 	} else {
2467 		long src_load, dst_load, load;
2468 		/*
2469 		 * If the improvement from just moving env->p direction is better
2470 		 * than swapping tasks around, check if a move is possible.
2471 		 */
2472 		load = task_h_load(env->p);
2473 		dst_load = env->dst_stats.load + load;
2474 		src_load = env->src_stats.load - load;
2475 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2476 	}
2477 
2478 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2479 		/* Skip this CPU if the source task cannot migrate */
2480 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2481 			continue;
2482 
2483 		env->dst_cpu = cpu;
2484 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2485 			break;
2486 	}
2487 }
2488 
2489 static int task_numa_migrate(struct task_struct *p)
2490 {
2491 	struct task_numa_env env = {
2492 		.p = p,
2493 
2494 		.src_cpu = task_cpu(p),
2495 		.src_nid = task_node(p),
2496 
2497 		.imbalance_pct = 112,
2498 
2499 		.best_task = NULL,
2500 		.best_imp = 0,
2501 		.best_cpu = -1,
2502 	};
2503 	unsigned long taskweight, groupweight;
2504 	struct sched_domain *sd;
2505 	long taskimp, groupimp;
2506 	struct numa_group *ng;
2507 	struct rq *best_rq;
2508 	int nid, ret, dist;
2509 
2510 	/*
2511 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2512 	 * imbalance and would be the first to start moving tasks about.
2513 	 *
2514 	 * And we want to avoid any moving of tasks about, as that would create
2515 	 * random movement of tasks -- counter the numa conditions we're trying
2516 	 * to satisfy here.
2517 	 */
2518 	rcu_read_lock();
2519 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2520 	if (sd) {
2521 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2522 		env.imb_numa_nr = sd->imb_numa_nr;
2523 	}
2524 	rcu_read_unlock();
2525 
2526 	/*
2527 	 * Cpusets can break the scheduler domain tree into smaller
2528 	 * balance domains, some of which do not cross NUMA boundaries.
2529 	 * Tasks that are "trapped" in such domains cannot be migrated
2530 	 * elsewhere, so there is no point in (re)trying.
2531 	 */
2532 	if (unlikely(!sd)) {
2533 		sched_setnuma(p, task_node(p));
2534 		return -EINVAL;
2535 	}
2536 
2537 	env.dst_nid = p->numa_preferred_nid;
2538 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2539 	taskweight = task_weight(p, env.src_nid, dist);
2540 	groupweight = group_weight(p, env.src_nid, dist);
2541 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2542 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2543 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2544 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2545 
2546 	/* Try to find a spot on the preferred nid. */
2547 	task_numa_find_cpu(&env, taskimp, groupimp);
2548 
2549 	/*
2550 	 * Look at other nodes in these cases:
2551 	 * - there is no space available on the preferred_nid
2552 	 * - the task is part of a numa_group that is interleaved across
2553 	 *   multiple NUMA nodes; in order to better consolidate the group,
2554 	 *   we need to check other locations.
2555 	 */
2556 	ng = deref_curr_numa_group(p);
2557 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2558 		for_each_node_state(nid, N_CPU) {
2559 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2560 				continue;
2561 
2562 			dist = node_distance(env.src_nid, env.dst_nid);
2563 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2564 						dist != env.dist) {
2565 				taskweight = task_weight(p, env.src_nid, dist);
2566 				groupweight = group_weight(p, env.src_nid, dist);
2567 			}
2568 
2569 			/* Only consider nodes where both task and groups benefit */
2570 			taskimp = task_weight(p, nid, dist) - taskweight;
2571 			groupimp = group_weight(p, nid, dist) - groupweight;
2572 			if (taskimp < 0 && groupimp < 0)
2573 				continue;
2574 
2575 			env.dist = dist;
2576 			env.dst_nid = nid;
2577 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2578 			task_numa_find_cpu(&env, taskimp, groupimp);
2579 		}
2580 	}
2581 
2582 	/*
2583 	 * If the task is part of a workload that spans multiple NUMA nodes,
2584 	 * and is migrating into one of the workload's active nodes, remember
2585 	 * this node as the task's preferred numa node, so the workload can
2586 	 * settle down.
2587 	 * A task that migrated to a second choice node will be better off
2588 	 * trying for a better one later. Do not set the preferred node here.
2589 	 */
2590 	if (ng) {
2591 		if (env.best_cpu == -1)
2592 			nid = env.src_nid;
2593 		else
2594 			nid = cpu_to_node(env.best_cpu);
2595 
2596 		if (nid != p->numa_preferred_nid)
2597 			sched_setnuma(p, nid);
2598 	}
2599 
2600 	/* No better CPU than the current one was found. */
2601 	if (env.best_cpu == -1) {
2602 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2603 		return -EAGAIN;
2604 	}
2605 
2606 	best_rq = cpu_rq(env.best_cpu);
2607 	if (env.best_task == NULL) {
2608 		ret = migrate_task_to(p, env.best_cpu);
2609 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2610 		if (ret != 0)
2611 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2612 		return ret;
2613 	}
2614 
2615 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2616 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2617 
2618 	if (ret != 0)
2619 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2620 	put_task_struct(env.best_task);
2621 	return ret;
2622 }
2623 
2624 /* Attempt to migrate a task to a CPU on the preferred node. */
2625 static void numa_migrate_preferred(struct task_struct *p)
2626 {
2627 	unsigned long interval = HZ;
2628 
2629 	/* This task has no NUMA fault statistics yet */
2630 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2631 		return;
2632 
2633 	/* Periodically retry migrating the task to the preferred node */
2634 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2635 	p->numa_migrate_retry = jiffies + interval;
2636 
2637 	/* Success if task is already running on preferred CPU */
2638 	if (task_node(p) == p->numa_preferred_nid)
2639 		return;
2640 
2641 	/* Otherwise, try migrate to a CPU on the preferred node */
2642 	task_numa_migrate(p);
2643 }
2644 
2645 /*
2646  * Find out how many nodes the workload is actively running on. Do this by
2647  * tracking the nodes from which NUMA hinting faults are triggered. This can
2648  * be different from the set of nodes where the workload's memory is currently
2649  * located.
2650  */
2651 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2652 {
2653 	unsigned long faults, max_faults = 0;
2654 	int nid, active_nodes = 0;
2655 
2656 	for_each_node_state(nid, N_CPU) {
2657 		faults = group_faults_cpu(numa_group, nid);
2658 		if (faults > max_faults)
2659 			max_faults = faults;
2660 	}
2661 
2662 	for_each_node_state(nid, N_CPU) {
2663 		faults = group_faults_cpu(numa_group, nid);
2664 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2665 			active_nodes++;
2666 	}
2667 
2668 	numa_group->max_faults_cpu = max_faults;
2669 	numa_group->active_nodes = active_nodes;
2670 }
2671 
2672 /*
2673  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2674  * increments. The more local the fault statistics are, the higher the scan
2675  * period will be for the next scan window. If local/(local+remote) ratio is
2676  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2677  * the scan period will decrease. Aim for 70% local accesses.
2678  */
2679 #define NUMA_PERIOD_SLOTS 10
2680 #define NUMA_PERIOD_THRESHOLD 7
2681 
2682 /*
2683  * Increase the scan period (slow down scanning) if the majority of
2684  * our memory is already on our local node, or if the majority of
2685  * the page accesses are shared with other processes.
2686  * Otherwise, decrease the scan period.
2687  */
2688 static void update_task_scan_period(struct task_struct *p,
2689 			unsigned long shared, unsigned long private)
2690 {
2691 	unsigned int period_slot;
2692 	int lr_ratio, ps_ratio;
2693 	int diff;
2694 
2695 	unsigned long remote = p->numa_faults_locality[0];
2696 	unsigned long local = p->numa_faults_locality[1];
2697 
2698 	/*
2699 	 * If there were no record hinting faults then either the task is
2700 	 * completely idle or all activity is in areas that are not of interest
2701 	 * to automatic numa balancing. Related to that, if there were failed
2702 	 * migration then it implies we are migrating too quickly or the local
2703 	 * node is overloaded. In either case, scan slower
2704 	 */
2705 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2706 		p->numa_scan_period = min(p->numa_scan_period_max,
2707 			p->numa_scan_period << 1);
2708 
2709 		p->mm->numa_next_scan = jiffies +
2710 			msecs_to_jiffies(p->numa_scan_period);
2711 
2712 		return;
2713 	}
2714 
2715 	/*
2716 	 * Prepare to scale scan period relative to the current period.
2717 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2718 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2719 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2720 	 */
2721 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2722 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2723 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2724 
2725 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2726 		/*
2727 		 * Most memory accesses are local. There is no need to
2728 		 * do fast NUMA scanning, since memory is already local.
2729 		 */
2730 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2731 		if (!slot)
2732 			slot = 1;
2733 		diff = slot * period_slot;
2734 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2735 		/*
2736 		 * Most memory accesses are shared with other tasks.
2737 		 * There is no point in continuing fast NUMA scanning,
2738 		 * since other tasks may just move the memory elsewhere.
2739 		 */
2740 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2741 		if (!slot)
2742 			slot = 1;
2743 		diff = slot * period_slot;
2744 	} else {
2745 		/*
2746 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2747 		 * yet they are not on the local NUMA node. Speed up
2748 		 * NUMA scanning to get the memory moved over.
2749 		 */
2750 		int ratio = max(lr_ratio, ps_ratio);
2751 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2752 	}
2753 
2754 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2755 			task_scan_min(p), task_scan_max(p));
2756 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2757 }
2758 
2759 /*
2760  * Get the fraction of time the task has been running since the last
2761  * NUMA placement cycle. The scheduler keeps similar statistics, but
2762  * decays those on a 32ms period, which is orders of magnitude off
2763  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2764  * stats only if the task is so new there are no NUMA statistics yet.
2765  */
2766 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2767 {
2768 	u64 runtime, delta, now;
2769 	/* Use the start of this time slice to avoid calculations. */
2770 	now = p->se.exec_start;
2771 	runtime = p->se.sum_exec_runtime;
2772 
2773 	if (p->last_task_numa_placement) {
2774 		delta = runtime - p->last_sum_exec_runtime;
2775 		*period = now - p->last_task_numa_placement;
2776 
2777 		/* Avoid time going backwards, prevent potential divide error: */
2778 		if (unlikely((s64)*period < 0))
2779 			*period = 0;
2780 	} else {
2781 		delta = p->se.avg.load_sum;
2782 		*period = LOAD_AVG_MAX;
2783 	}
2784 
2785 	p->last_sum_exec_runtime = runtime;
2786 	p->last_task_numa_placement = now;
2787 
2788 	return delta;
2789 }
2790 
2791 /*
2792  * Determine the preferred nid for a task in a numa_group. This needs to
2793  * be done in a way that produces consistent results with group_weight,
2794  * otherwise workloads might not converge.
2795  */
2796 static int preferred_group_nid(struct task_struct *p, int nid)
2797 {
2798 	nodemask_t nodes;
2799 	int dist;
2800 
2801 	/* Direct connections between all NUMA nodes. */
2802 	if (sched_numa_topology_type == NUMA_DIRECT)
2803 		return nid;
2804 
2805 	/*
2806 	 * On a system with glueless mesh NUMA topology, group_weight
2807 	 * scores nodes according to the number of NUMA hinting faults on
2808 	 * both the node itself, and on nearby nodes.
2809 	 */
2810 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2811 		unsigned long score, max_score = 0;
2812 		int node, max_node = nid;
2813 
2814 		dist = sched_max_numa_distance;
2815 
2816 		for_each_node_state(node, N_CPU) {
2817 			score = group_weight(p, node, dist);
2818 			if (score > max_score) {
2819 				max_score = score;
2820 				max_node = node;
2821 			}
2822 		}
2823 		return max_node;
2824 	}
2825 
2826 	/*
2827 	 * Finding the preferred nid in a system with NUMA backplane
2828 	 * interconnect topology is more involved. The goal is to locate
2829 	 * tasks from numa_groups near each other in the system, and
2830 	 * untangle workloads from different sides of the system. This requires
2831 	 * searching down the hierarchy of node groups, recursively searching
2832 	 * inside the highest scoring group of nodes. The nodemask tricks
2833 	 * keep the complexity of the search down.
2834 	 */
2835 	nodes = node_states[N_CPU];
2836 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2837 		unsigned long max_faults = 0;
2838 		nodemask_t max_group = NODE_MASK_NONE;
2839 		int a, b;
2840 
2841 		/* Are there nodes at this distance from each other? */
2842 		if (!find_numa_distance(dist))
2843 			continue;
2844 
2845 		for_each_node_mask(a, nodes) {
2846 			unsigned long faults = 0;
2847 			nodemask_t this_group;
2848 			nodes_clear(this_group);
2849 
2850 			/* Sum group's NUMA faults; includes a==b case. */
2851 			for_each_node_mask(b, nodes) {
2852 				if (node_distance(a, b) < dist) {
2853 					faults += group_faults(p, b);
2854 					node_set(b, this_group);
2855 					node_clear(b, nodes);
2856 				}
2857 			}
2858 
2859 			/* Remember the top group. */
2860 			if (faults > max_faults) {
2861 				max_faults = faults;
2862 				max_group = this_group;
2863 				/*
2864 				 * subtle: at the smallest distance there is
2865 				 * just one node left in each "group", the
2866 				 * winner is the preferred nid.
2867 				 */
2868 				nid = a;
2869 			}
2870 		}
2871 		/* Next round, evaluate the nodes within max_group. */
2872 		if (!max_faults)
2873 			break;
2874 		nodes = max_group;
2875 	}
2876 	return nid;
2877 }
2878 
2879 static void task_numa_placement(struct task_struct *p)
2880 {
2881 	int seq, nid, max_nid = NUMA_NO_NODE;
2882 	unsigned long max_faults = 0;
2883 	unsigned long fault_types[2] = { 0, 0 };
2884 	unsigned long total_faults;
2885 	u64 runtime, period;
2886 	spinlock_t *group_lock = NULL;
2887 	struct numa_group *ng;
2888 
2889 	/*
2890 	 * The p->mm->numa_scan_seq field gets updated without
2891 	 * exclusive access. Use READ_ONCE() here to ensure
2892 	 * that the field is read in a single access:
2893 	 */
2894 	seq = READ_ONCE(p->mm->numa_scan_seq);
2895 	if (p->numa_scan_seq == seq)
2896 		return;
2897 	p->numa_scan_seq = seq;
2898 	p->numa_scan_period_max = task_scan_max(p);
2899 
2900 	total_faults = p->numa_faults_locality[0] +
2901 		       p->numa_faults_locality[1];
2902 	runtime = numa_get_avg_runtime(p, &period);
2903 
2904 	/* If the task is part of a group prevent parallel updates to group stats */
2905 	ng = deref_curr_numa_group(p);
2906 	if (ng) {
2907 		group_lock = &ng->lock;
2908 		spin_lock_irq(group_lock);
2909 	}
2910 
2911 	/* Find the node with the highest number of faults */
2912 	for_each_online_node(nid) {
2913 		/* Keep track of the offsets in numa_faults array */
2914 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2915 		unsigned long faults = 0, group_faults = 0;
2916 		int priv;
2917 
2918 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2919 			long diff, f_diff, f_weight;
2920 
2921 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2922 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2923 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2924 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2925 
2926 			/* Decay existing window, copy faults since last scan */
2927 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2928 			fault_types[priv] += p->numa_faults[membuf_idx];
2929 			p->numa_faults[membuf_idx] = 0;
2930 
2931 			/*
2932 			 * Normalize the faults_from, so all tasks in a group
2933 			 * count according to CPU use, instead of by the raw
2934 			 * number of faults. Tasks with little runtime have
2935 			 * little over-all impact on throughput, and thus their
2936 			 * faults are less important.
2937 			 */
2938 			f_weight = div64_u64(runtime << 16, period + 1);
2939 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2940 				   (total_faults + 1);
2941 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2942 			p->numa_faults[cpubuf_idx] = 0;
2943 
2944 			p->numa_faults[mem_idx] += diff;
2945 			p->numa_faults[cpu_idx] += f_diff;
2946 			faults += p->numa_faults[mem_idx];
2947 			p->total_numa_faults += diff;
2948 			if (ng) {
2949 				/*
2950 				 * safe because we can only change our own group
2951 				 *
2952 				 * mem_idx represents the offset for a given
2953 				 * nid and priv in a specific region because it
2954 				 * is at the beginning of the numa_faults array.
2955 				 */
2956 				ng->faults[mem_idx] += diff;
2957 				ng->faults[cpu_idx] += f_diff;
2958 				ng->total_faults += diff;
2959 				group_faults += ng->faults[mem_idx];
2960 			}
2961 		}
2962 
2963 		if (!ng) {
2964 			if (faults > max_faults) {
2965 				max_faults = faults;
2966 				max_nid = nid;
2967 			}
2968 		} else if (group_faults > max_faults) {
2969 			max_faults = group_faults;
2970 			max_nid = nid;
2971 		}
2972 	}
2973 
2974 	/* Cannot migrate task to CPU-less node */
2975 	max_nid = numa_nearest_node(max_nid, N_CPU);
2976 
2977 	if (ng) {
2978 		numa_group_count_active_nodes(ng);
2979 		spin_unlock_irq(group_lock);
2980 		max_nid = preferred_group_nid(p, max_nid);
2981 	}
2982 
2983 	if (max_faults) {
2984 		/* Set the new preferred node */
2985 		if (max_nid != p->numa_preferred_nid)
2986 			sched_setnuma(p, max_nid);
2987 	}
2988 
2989 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2990 }
2991 
2992 static inline int get_numa_group(struct numa_group *grp)
2993 {
2994 	return refcount_inc_not_zero(&grp->refcount);
2995 }
2996 
2997 static inline void put_numa_group(struct numa_group *grp)
2998 {
2999 	if (refcount_dec_and_test(&grp->refcount))
3000 		kfree_rcu(grp, rcu);
3001 }
3002 
3003 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3004 			int *priv)
3005 {
3006 	struct numa_group *grp, *my_grp;
3007 	struct task_struct *tsk;
3008 	bool join = false;
3009 	int cpu = cpupid_to_cpu(cpupid);
3010 	int i;
3011 
3012 	if (unlikely(!deref_curr_numa_group(p))) {
3013 		unsigned int size = sizeof(struct numa_group) +
3014 				    NR_NUMA_HINT_FAULT_STATS *
3015 				    nr_node_ids * sizeof(unsigned long);
3016 
3017 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3018 		if (!grp)
3019 			return;
3020 
3021 		refcount_set(&grp->refcount, 1);
3022 		grp->active_nodes = 1;
3023 		grp->max_faults_cpu = 0;
3024 		spin_lock_init(&grp->lock);
3025 		grp->gid = p->pid;
3026 
3027 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3028 			grp->faults[i] = p->numa_faults[i];
3029 
3030 		grp->total_faults = p->total_numa_faults;
3031 
3032 		grp->nr_tasks++;
3033 		rcu_assign_pointer(p->numa_group, grp);
3034 	}
3035 
3036 	rcu_read_lock();
3037 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
3038 
3039 	if (!cpupid_match_pid(tsk, cpupid))
3040 		goto no_join;
3041 
3042 	grp = rcu_dereference(tsk->numa_group);
3043 	if (!grp)
3044 		goto no_join;
3045 
3046 	my_grp = deref_curr_numa_group(p);
3047 	if (grp == my_grp)
3048 		goto no_join;
3049 
3050 	/*
3051 	 * Only join the other group if its bigger; if we're the bigger group,
3052 	 * the other task will join us.
3053 	 */
3054 	if (my_grp->nr_tasks > grp->nr_tasks)
3055 		goto no_join;
3056 
3057 	/*
3058 	 * Tie-break on the grp address.
3059 	 */
3060 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3061 		goto no_join;
3062 
3063 	/* Always join threads in the same process. */
3064 	if (tsk->mm == current->mm)
3065 		join = true;
3066 
3067 	/* Simple filter to avoid false positives due to PID collisions */
3068 	if (flags & TNF_SHARED)
3069 		join = true;
3070 
3071 	/* Update priv based on whether false sharing was detected */
3072 	*priv = !join;
3073 
3074 	if (join && !get_numa_group(grp))
3075 		goto no_join;
3076 
3077 	rcu_read_unlock();
3078 
3079 	if (!join)
3080 		return;
3081 
3082 	WARN_ON_ONCE(irqs_disabled());
3083 	double_lock_irq(&my_grp->lock, &grp->lock);
3084 
3085 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3086 		my_grp->faults[i] -= p->numa_faults[i];
3087 		grp->faults[i] += p->numa_faults[i];
3088 	}
3089 	my_grp->total_faults -= p->total_numa_faults;
3090 	grp->total_faults += p->total_numa_faults;
3091 
3092 	my_grp->nr_tasks--;
3093 	grp->nr_tasks++;
3094 
3095 	spin_unlock(&my_grp->lock);
3096 	spin_unlock_irq(&grp->lock);
3097 
3098 	rcu_assign_pointer(p->numa_group, grp);
3099 
3100 	put_numa_group(my_grp);
3101 	return;
3102 
3103 no_join:
3104 	rcu_read_unlock();
3105 	return;
3106 }
3107 
3108 /*
3109  * Get rid of NUMA statistics associated with a task (either current or dead).
3110  * If @final is set, the task is dead and has reached refcount zero, so we can
3111  * safely free all relevant data structures. Otherwise, there might be
3112  * concurrent reads from places like load balancing and procfs, and we should
3113  * reset the data back to default state without freeing ->numa_faults.
3114  */
3115 void task_numa_free(struct task_struct *p, bool final)
3116 {
3117 	/* safe: p either is current or is being freed by current */
3118 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3119 	unsigned long *numa_faults = p->numa_faults;
3120 	unsigned long flags;
3121 	int i;
3122 
3123 	if (!numa_faults)
3124 		return;
3125 
3126 	if (grp) {
3127 		spin_lock_irqsave(&grp->lock, flags);
3128 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3129 			grp->faults[i] -= p->numa_faults[i];
3130 		grp->total_faults -= p->total_numa_faults;
3131 
3132 		grp->nr_tasks--;
3133 		spin_unlock_irqrestore(&grp->lock, flags);
3134 		RCU_INIT_POINTER(p->numa_group, NULL);
3135 		put_numa_group(grp);
3136 	}
3137 
3138 	if (final) {
3139 		p->numa_faults = NULL;
3140 		kfree(numa_faults);
3141 	} else {
3142 		p->total_numa_faults = 0;
3143 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3144 			numa_faults[i] = 0;
3145 	}
3146 }
3147 
3148 /*
3149  * Got a PROT_NONE fault for a page on @node.
3150  */
3151 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3152 {
3153 	struct task_struct *p = current;
3154 	bool migrated = flags & TNF_MIGRATED;
3155 	int cpu_node = task_node(current);
3156 	int local = !!(flags & TNF_FAULT_LOCAL);
3157 	struct numa_group *ng;
3158 	int priv;
3159 
3160 	if (!static_branch_likely(&sched_numa_balancing))
3161 		return;
3162 
3163 	/* for example, ksmd faulting in a user's mm */
3164 	if (!p->mm)
3165 		return;
3166 
3167 	/*
3168 	 * NUMA faults statistics are unnecessary for the slow memory
3169 	 * node for memory tiering mode.
3170 	 */
3171 	if (!node_is_toptier(mem_node) &&
3172 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3173 	     !cpupid_valid(last_cpupid)))
3174 		return;
3175 
3176 	/* Allocate buffer to track faults on a per-node basis */
3177 	if (unlikely(!p->numa_faults)) {
3178 		int size = sizeof(*p->numa_faults) *
3179 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3180 
3181 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3182 		if (!p->numa_faults)
3183 			return;
3184 
3185 		p->total_numa_faults = 0;
3186 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3187 	}
3188 
3189 	/*
3190 	 * First accesses are treated as private, otherwise consider accesses
3191 	 * to be private if the accessing pid has not changed
3192 	 */
3193 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3194 		priv = 1;
3195 	} else {
3196 		priv = cpupid_match_pid(p, last_cpupid);
3197 		if (!priv && !(flags & TNF_NO_GROUP))
3198 			task_numa_group(p, last_cpupid, flags, &priv);
3199 	}
3200 
3201 	/*
3202 	 * If a workload spans multiple NUMA nodes, a shared fault that
3203 	 * occurs wholly within the set of nodes that the workload is
3204 	 * actively using should be counted as local. This allows the
3205 	 * scan rate to slow down when a workload has settled down.
3206 	 */
3207 	ng = deref_curr_numa_group(p);
3208 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3209 				numa_is_active_node(cpu_node, ng) &&
3210 				numa_is_active_node(mem_node, ng))
3211 		local = 1;
3212 
3213 	/*
3214 	 * Retry to migrate task to preferred node periodically, in case it
3215 	 * previously failed, or the scheduler moved us.
3216 	 */
3217 	if (time_after(jiffies, p->numa_migrate_retry)) {
3218 		task_numa_placement(p);
3219 		numa_migrate_preferred(p);
3220 	}
3221 
3222 	if (migrated)
3223 		p->numa_pages_migrated += pages;
3224 	if (flags & TNF_MIGRATE_FAIL)
3225 		p->numa_faults_locality[2] += pages;
3226 
3227 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3228 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3229 	p->numa_faults_locality[local] += pages;
3230 }
3231 
3232 static void reset_ptenuma_scan(struct task_struct *p)
3233 {
3234 	/*
3235 	 * We only did a read acquisition of the mmap sem, so
3236 	 * p->mm->numa_scan_seq is written to without exclusive access
3237 	 * and the update is not guaranteed to be atomic. That's not
3238 	 * much of an issue though, since this is just used for
3239 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3240 	 * expensive, to avoid any form of compiler optimizations:
3241 	 */
3242 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3243 	p->mm->numa_scan_offset = 0;
3244 }
3245 
3246 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3247 {
3248 	unsigned long pids;
3249 	/*
3250 	 * Allow unconditional access first two times, so that all the (pages)
3251 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3252 	 * This is also done to avoid any side effect of task scanning
3253 	 * amplifying the unfairness of disjoint set of VMAs' access.
3254 	 */
3255 	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3256 		return true;
3257 
3258 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3259 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3260 		return true;
3261 
3262 	/*
3263 	 * Complete a scan that has already started regardless of PID access, or
3264 	 * some VMAs may never be scanned in multi-threaded applications:
3265 	 */
3266 	if (mm->numa_scan_offset > vma->vm_start) {
3267 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3268 		return true;
3269 	}
3270 
3271 	/*
3272 	 * This vma has not been accessed for a while, and if the number
3273 	 * the threads in the same process is low, which means no other
3274 	 * threads can help scan this vma, force a vma scan.
3275 	 */
3276 	if (READ_ONCE(mm->numa_scan_seq) >
3277 	   (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3278 		return true;
3279 
3280 	return false;
3281 }
3282 
3283 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3284 
3285 /*
3286  * The expensive part of numa migration is done from task_work context.
3287  * Triggered from task_tick_numa().
3288  */
3289 static void task_numa_work(struct callback_head *work)
3290 {
3291 	unsigned long migrate, next_scan, now = jiffies;
3292 	struct task_struct *p = current;
3293 	struct mm_struct *mm = p->mm;
3294 	u64 runtime = p->se.sum_exec_runtime;
3295 	struct vm_area_struct *vma;
3296 	unsigned long start, end;
3297 	unsigned long nr_pte_updates = 0;
3298 	long pages, virtpages;
3299 	struct vma_iterator vmi;
3300 	bool vma_pids_skipped;
3301 	bool vma_pids_forced = false;
3302 
3303 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3304 
3305 	work->next = work;
3306 	/*
3307 	 * Who cares about NUMA placement when they're dying.
3308 	 *
3309 	 * NOTE: make sure not to dereference p->mm before this check,
3310 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3311 	 * without p->mm even though we still had it when we enqueued this
3312 	 * work.
3313 	 */
3314 	if (p->flags & PF_EXITING)
3315 		return;
3316 
3317 	if (!mm->numa_next_scan) {
3318 		mm->numa_next_scan = now +
3319 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3320 	}
3321 
3322 	/*
3323 	 * Enforce maximal scan/migration frequency..
3324 	 */
3325 	migrate = mm->numa_next_scan;
3326 	if (time_before(now, migrate))
3327 		return;
3328 
3329 	if (p->numa_scan_period == 0) {
3330 		p->numa_scan_period_max = task_scan_max(p);
3331 		p->numa_scan_period = task_scan_start(p);
3332 	}
3333 
3334 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3335 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3336 		return;
3337 
3338 	/*
3339 	 * Delay this task enough that another task of this mm will likely win
3340 	 * the next time around.
3341 	 */
3342 	p->node_stamp += 2 * TICK_NSEC;
3343 
3344 	pages = sysctl_numa_balancing_scan_size;
3345 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3346 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3347 	if (!pages)
3348 		return;
3349 
3350 
3351 	if (!mmap_read_trylock(mm))
3352 		return;
3353 
3354 	/*
3355 	 * VMAs are skipped if the current PID has not trapped a fault within
3356 	 * the VMA recently. Allow scanning to be forced if there is no
3357 	 * suitable VMA remaining.
3358 	 */
3359 	vma_pids_skipped = false;
3360 
3361 retry_pids:
3362 	start = mm->numa_scan_offset;
3363 	vma_iter_init(&vmi, mm, start);
3364 	vma = vma_next(&vmi);
3365 	if (!vma) {
3366 		reset_ptenuma_scan(p);
3367 		start = 0;
3368 		vma_iter_set(&vmi, start);
3369 		vma = vma_next(&vmi);
3370 	}
3371 
3372 	for (; vma; vma = vma_next(&vmi)) {
3373 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3374 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3375 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3376 			continue;
3377 		}
3378 
3379 		/*
3380 		 * Shared library pages mapped by multiple processes are not
3381 		 * migrated as it is expected they are cache replicated. Avoid
3382 		 * hinting faults in read-only file-backed mappings or the vDSO
3383 		 * as migrating the pages will be of marginal benefit.
3384 		 */
3385 		if (!vma->vm_mm ||
3386 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3387 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3388 			continue;
3389 		}
3390 
3391 		/*
3392 		 * Skip inaccessible VMAs to avoid any confusion between
3393 		 * PROT_NONE and NUMA hinting PTEs
3394 		 */
3395 		if (!vma_is_accessible(vma)) {
3396 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3397 			continue;
3398 		}
3399 
3400 		/* Initialise new per-VMA NUMAB state. */
3401 		if (!vma->numab_state) {
3402 			vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3403 				GFP_KERNEL);
3404 			if (!vma->numab_state)
3405 				continue;
3406 
3407 			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3408 
3409 			vma->numab_state->next_scan = now +
3410 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3411 
3412 			/* Reset happens after 4 times scan delay of scan start */
3413 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3414 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3415 
3416 			/*
3417 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3418 			 * to prevent VMAs being skipped prematurely on the
3419 			 * first scan:
3420 			 */
3421 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3422 		}
3423 
3424 		/*
3425 		 * Scanning the VMAs of short lived tasks add more overhead. So
3426 		 * delay the scan for new VMAs.
3427 		 */
3428 		if (mm->numa_scan_seq && time_before(jiffies,
3429 						vma->numab_state->next_scan)) {
3430 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3431 			continue;
3432 		}
3433 
3434 		/* RESET access PIDs regularly for old VMAs. */
3435 		if (mm->numa_scan_seq &&
3436 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3437 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3438 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3439 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3440 			vma->numab_state->pids_active[1] = 0;
3441 		}
3442 
3443 		/* Do not rescan VMAs twice within the same sequence. */
3444 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3445 			mm->numa_scan_offset = vma->vm_end;
3446 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3447 			continue;
3448 		}
3449 
3450 		/*
3451 		 * Do not scan the VMA if task has not accessed it, unless no other
3452 		 * VMA candidate exists.
3453 		 */
3454 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3455 			vma_pids_skipped = true;
3456 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3457 			continue;
3458 		}
3459 
3460 		do {
3461 			start = max(start, vma->vm_start);
3462 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3463 			end = min(end, vma->vm_end);
3464 			nr_pte_updates = change_prot_numa(vma, start, end);
3465 
3466 			/*
3467 			 * Try to scan sysctl_numa_balancing_size worth of
3468 			 * hpages that have at least one present PTE that
3469 			 * is not already PTE-numa. If the VMA contains
3470 			 * areas that are unused or already full of prot_numa
3471 			 * PTEs, scan up to virtpages, to skip through those
3472 			 * areas faster.
3473 			 */
3474 			if (nr_pte_updates)
3475 				pages -= (end - start) >> PAGE_SHIFT;
3476 			virtpages -= (end - start) >> PAGE_SHIFT;
3477 
3478 			start = end;
3479 			if (pages <= 0 || virtpages <= 0)
3480 				goto out;
3481 
3482 			cond_resched();
3483 		} while (end != vma->vm_end);
3484 
3485 		/* VMA scan is complete, do not scan until next sequence. */
3486 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3487 
3488 		/*
3489 		 * Only force scan within one VMA at a time, to limit the
3490 		 * cost of scanning a potentially uninteresting VMA.
3491 		 */
3492 		if (vma_pids_forced)
3493 			break;
3494 	}
3495 
3496 	/*
3497 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3498 	 * not accessing the VMA previously, then force a scan to ensure
3499 	 * forward progress:
3500 	 */
3501 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3502 		vma_pids_forced = true;
3503 		goto retry_pids;
3504 	}
3505 
3506 out:
3507 	/*
3508 	 * It is possible to reach the end of the VMA list but the last few
3509 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3510 	 * would find the !migratable VMA on the next scan but not reset the
3511 	 * scanner to the start so check it now.
3512 	 */
3513 	if (vma)
3514 		mm->numa_scan_offset = start;
3515 	else
3516 		reset_ptenuma_scan(p);
3517 	mmap_read_unlock(mm);
3518 
3519 	/*
3520 	 * Make sure tasks use at least 32x as much time to run other code
3521 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3522 	 * Usually update_task_scan_period slows down scanning enough; on an
3523 	 * overloaded system we need to limit overhead on a per task basis.
3524 	 */
3525 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3526 		u64 diff = p->se.sum_exec_runtime - runtime;
3527 		p->node_stamp += 32 * diff;
3528 	}
3529 }
3530 
3531 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3532 {
3533 	int mm_users = 0;
3534 	struct mm_struct *mm = p->mm;
3535 
3536 	if (mm) {
3537 		mm_users = atomic_read(&mm->mm_users);
3538 		if (mm_users == 1) {
3539 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3540 			mm->numa_scan_seq = 0;
3541 		}
3542 	}
3543 	p->node_stamp			= 0;
3544 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3545 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3546 	p->numa_migrate_retry		= 0;
3547 	/* Protect against double add, see task_tick_numa and task_numa_work */
3548 	p->numa_work.next		= &p->numa_work;
3549 	p->numa_faults			= NULL;
3550 	p->numa_pages_migrated		= 0;
3551 	p->total_numa_faults		= 0;
3552 	RCU_INIT_POINTER(p->numa_group, NULL);
3553 	p->last_task_numa_placement	= 0;
3554 	p->last_sum_exec_runtime	= 0;
3555 
3556 	init_task_work(&p->numa_work, task_numa_work);
3557 
3558 	/* New address space, reset the preferred nid */
3559 	if (!(clone_flags & CLONE_VM)) {
3560 		p->numa_preferred_nid = NUMA_NO_NODE;
3561 		return;
3562 	}
3563 
3564 	/*
3565 	 * New thread, keep existing numa_preferred_nid which should be copied
3566 	 * already by arch_dup_task_struct but stagger when scans start.
3567 	 */
3568 	if (mm) {
3569 		unsigned int delay;
3570 
3571 		delay = min_t(unsigned int, task_scan_max(current),
3572 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3573 		delay += 2 * TICK_NSEC;
3574 		p->node_stamp = delay;
3575 	}
3576 }
3577 
3578 /*
3579  * Drive the periodic memory faults..
3580  */
3581 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3582 {
3583 	struct callback_head *work = &curr->numa_work;
3584 	u64 period, now;
3585 
3586 	/*
3587 	 * We don't care about NUMA placement if we don't have memory.
3588 	 */
3589 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3590 		return;
3591 
3592 	/*
3593 	 * Using runtime rather than walltime has the dual advantage that
3594 	 * we (mostly) drive the selection from busy threads and that the
3595 	 * task needs to have done some actual work before we bother with
3596 	 * NUMA placement.
3597 	 */
3598 	now = curr->se.sum_exec_runtime;
3599 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3600 
3601 	if (now > curr->node_stamp + period) {
3602 		if (!curr->node_stamp)
3603 			curr->numa_scan_period = task_scan_start(curr);
3604 		curr->node_stamp += period;
3605 
3606 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3607 			task_work_add(curr, work, TWA_RESUME);
3608 	}
3609 }
3610 
3611 static void update_scan_period(struct task_struct *p, int new_cpu)
3612 {
3613 	int src_nid = cpu_to_node(task_cpu(p));
3614 	int dst_nid = cpu_to_node(new_cpu);
3615 
3616 	if (!static_branch_likely(&sched_numa_balancing))
3617 		return;
3618 
3619 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3620 		return;
3621 
3622 	if (src_nid == dst_nid)
3623 		return;
3624 
3625 	/*
3626 	 * Allow resets if faults have been trapped before one scan
3627 	 * has completed. This is most likely due to a new task that
3628 	 * is pulled cross-node due to wakeups or load balancing.
3629 	 */
3630 	if (p->numa_scan_seq) {
3631 		/*
3632 		 * Avoid scan adjustments if moving to the preferred
3633 		 * node or if the task was not previously running on
3634 		 * the preferred node.
3635 		 */
3636 		if (dst_nid == p->numa_preferred_nid ||
3637 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3638 			src_nid != p->numa_preferred_nid))
3639 			return;
3640 	}
3641 
3642 	p->numa_scan_period = task_scan_start(p);
3643 }
3644 
3645 #else
3646 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3647 {
3648 }
3649 
3650 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3651 {
3652 }
3653 
3654 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3655 {
3656 }
3657 
3658 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3659 {
3660 }
3661 
3662 #endif /* CONFIG_NUMA_BALANCING */
3663 
3664 static void
3665 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3666 {
3667 	update_load_add(&cfs_rq->load, se->load.weight);
3668 #ifdef CONFIG_SMP
3669 	if (entity_is_task(se)) {
3670 		struct rq *rq = rq_of(cfs_rq);
3671 
3672 		account_numa_enqueue(rq, task_of(se));
3673 		list_add(&se->group_node, &rq->cfs_tasks);
3674 	}
3675 #endif
3676 	cfs_rq->nr_running++;
3677 	if (se_is_idle(se))
3678 		cfs_rq->idle_nr_running++;
3679 }
3680 
3681 static void
3682 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3683 {
3684 	update_load_sub(&cfs_rq->load, se->load.weight);
3685 #ifdef CONFIG_SMP
3686 	if (entity_is_task(se)) {
3687 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3688 		list_del_init(&se->group_node);
3689 	}
3690 #endif
3691 	cfs_rq->nr_running--;
3692 	if (se_is_idle(se))
3693 		cfs_rq->idle_nr_running--;
3694 }
3695 
3696 /*
3697  * Signed add and clamp on underflow.
3698  *
3699  * Explicitly do a load-store to ensure the intermediate value never hits
3700  * memory. This allows lockless observations without ever seeing the negative
3701  * values.
3702  */
3703 #define add_positive(_ptr, _val) do {                           \
3704 	typeof(_ptr) ptr = (_ptr);                              \
3705 	typeof(_val) val = (_val);                              \
3706 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3707 								\
3708 	res = var + val;                                        \
3709 								\
3710 	if (val < 0 && res > var)                               \
3711 		res = 0;                                        \
3712 								\
3713 	WRITE_ONCE(*ptr, res);                                  \
3714 } while (0)
3715 
3716 /*
3717  * Unsigned subtract and clamp on underflow.
3718  *
3719  * Explicitly do a load-store to ensure the intermediate value never hits
3720  * memory. This allows lockless observations without ever seeing the negative
3721  * values.
3722  */
3723 #define sub_positive(_ptr, _val) do {				\
3724 	typeof(_ptr) ptr = (_ptr);				\
3725 	typeof(*ptr) val = (_val);				\
3726 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3727 	res = var - val;					\
3728 	if (res > var)						\
3729 		res = 0;					\
3730 	WRITE_ONCE(*ptr, res);					\
3731 } while (0)
3732 
3733 /*
3734  * Remove and clamp on negative, from a local variable.
3735  *
3736  * A variant of sub_positive(), which does not use explicit load-store
3737  * and is thus optimized for local variable updates.
3738  */
3739 #define lsub_positive(_ptr, _val) do {				\
3740 	typeof(_ptr) ptr = (_ptr);				\
3741 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3742 } while (0)
3743 
3744 #ifdef CONFIG_SMP
3745 static inline void
3746 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3747 {
3748 	cfs_rq->avg.load_avg += se->avg.load_avg;
3749 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3750 }
3751 
3752 static inline void
3753 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3754 {
3755 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3756 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3757 	/* See update_cfs_rq_load_avg() */
3758 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3759 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3760 }
3761 #else
3762 static inline void
3763 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3764 static inline void
3765 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3766 #endif
3767 
3768 static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
3769 			   unsigned long weight)
3770 {
3771 	unsigned long old_weight = se->load.weight;
3772 	s64 vlag, vslice;
3773 
3774 	/*
3775 	 * VRUNTIME
3776 	 * --------
3777 	 *
3778 	 * COROLLARY #1: The virtual runtime of the entity needs to be
3779 	 * adjusted if re-weight at !0-lag point.
3780 	 *
3781 	 * Proof: For contradiction assume this is not true, so we can
3782 	 * re-weight without changing vruntime at !0-lag point.
3783 	 *
3784 	 *             Weight	VRuntime   Avg-VRuntime
3785 	 *     before    w          v            V
3786 	 *      after    w'         v'           V'
3787 	 *
3788 	 * Since lag needs to be preserved through re-weight:
3789 	 *
3790 	 *	lag = (V - v)*w = (V'- v')*w', where v = v'
3791 	 *	==>	V' = (V - v)*w/w' + v		(1)
3792 	 *
3793 	 * Let W be the total weight of the entities before reweight,
3794 	 * since V' is the new weighted average of entities:
3795 	 *
3796 	 *	V' = (WV + w'v - wv) / (W + w' - w)	(2)
3797 	 *
3798 	 * by using (1) & (2) we obtain:
3799 	 *
3800 	 *	(WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3801 	 *	==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3802 	 *	==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3803 	 *	==>	(V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3804 	 *
3805 	 * Since we are doing at !0-lag point which means V != v, we
3806 	 * can simplify (3):
3807 	 *
3808 	 *	==>	W / (W + w' - w) = w / w'
3809 	 *	==>	Ww' = Ww + ww' - ww
3810 	 *	==>	W * (w' - w) = w * (w' - w)
3811 	 *	==>	W = w	(re-weight indicates w' != w)
3812 	 *
3813 	 * So the cfs_rq contains only one entity, hence vruntime of
3814 	 * the entity @v should always equal to the cfs_rq's weighted
3815 	 * average vruntime @V, which means we will always re-weight
3816 	 * at 0-lag point, thus breach assumption. Proof completed.
3817 	 *
3818 	 *
3819 	 * COROLLARY #2: Re-weight does NOT affect weighted average
3820 	 * vruntime of all the entities.
3821 	 *
3822 	 * Proof: According to corollary #1, Eq. (1) should be:
3823 	 *
3824 	 *	(V - v)*w = (V' - v')*w'
3825 	 *	==>    v' = V' - (V - v)*w/w'		(4)
3826 	 *
3827 	 * According to the weighted average formula, we have:
3828 	 *
3829 	 *	V' = (WV - wv + w'v') / (W - w + w')
3830 	 *	   = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3831 	 *	   = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3832 	 *	   = (WV + w'V' - Vw) / (W - w + w')
3833 	 *
3834 	 *	==>  V'*(W - w + w') = WV + w'V' - Vw
3835 	 *	==>	V' * (W - w) = (W - w) * V	(5)
3836 	 *
3837 	 * If the entity is the only one in the cfs_rq, then reweight
3838 	 * always occurs at 0-lag point, so V won't change. Or else
3839 	 * there are other entities, hence W != w, then Eq. (5) turns
3840 	 * into V' = V. So V won't change in either case, proof done.
3841 	 *
3842 	 *
3843 	 * So according to corollary #1 & #2, the effect of re-weight
3844 	 * on vruntime should be:
3845 	 *
3846 	 *	v' = V' - (V - v) * w / w'		(4)
3847 	 *	   = V  - (V - v) * w / w'
3848 	 *	   = V  - vl * w / w'
3849 	 *	   = V  - vl'
3850 	 */
3851 	if (avruntime != se->vruntime) {
3852 		vlag = entity_lag(avruntime, se);
3853 		vlag = div_s64(vlag * old_weight, weight);
3854 		se->vruntime = avruntime - vlag;
3855 	}
3856 
3857 	/*
3858 	 * DEADLINE
3859 	 * --------
3860 	 *
3861 	 * When the weight changes, the virtual time slope changes and
3862 	 * we should adjust the relative virtual deadline accordingly.
3863 	 *
3864 	 *	d' = v' + (d - v)*w/w'
3865 	 *	   = V' - (V - v)*w/w' + (d - v)*w/w'
3866 	 *	   = V  - (V - v)*w/w' + (d - v)*w/w'
3867 	 *	   = V  + (d - V)*w/w'
3868 	 */
3869 	vslice = (s64)(se->deadline - avruntime);
3870 	vslice = div_s64(vslice * old_weight, weight);
3871 	se->deadline = avruntime + vslice;
3872 }
3873 
3874 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3875 			    unsigned long weight)
3876 {
3877 	bool curr = cfs_rq->curr == se;
3878 	u64 avruntime;
3879 
3880 	if (se->on_rq) {
3881 		/* commit outstanding execution time */
3882 		update_curr(cfs_rq);
3883 		avruntime = avg_vruntime(cfs_rq);
3884 		if (!curr)
3885 			__dequeue_entity(cfs_rq, se);
3886 		update_load_sub(&cfs_rq->load, se->load.weight);
3887 	}
3888 	dequeue_load_avg(cfs_rq, se);
3889 
3890 	if (se->on_rq) {
3891 		reweight_eevdf(se, avruntime, weight);
3892 	} else {
3893 		/*
3894 		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3895 		 * we need to scale se->vlag when w_i changes.
3896 		 */
3897 		se->vlag = div_s64(se->vlag * se->load.weight, weight);
3898 	}
3899 
3900 	update_load_set(&se->load, weight);
3901 
3902 #ifdef CONFIG_SMP
3903 	do {
3904 		u32 divider = get_pelt_divider(&se->avg);
3905 
3906 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3907 	} while (0);
3908 #endif
3909 
3910 	enqueue_load_avg(cfs_rq, se);
3911 	if (se->on_rq) {
3912 		update_load_add(&cfs_rq->load, se->load.weight);
3913 		if (!curr)
3914 			__enqueue_entity(cfs_rq, se);
3915 
3916 		/*
3917 		 * The entity's vruntime has been adjusted, so let's check
3918 		 * whether the rq-wide min_vruntime needs updated too. Since
3919 		 * the calculations above require stable min_vruntime rather
3920 		 * than up-to-date one, we do the update at the end of the
3921 		 * reweight process.
3922 		 */
3923 		update_min_vruntime(cfs_rq);
3924 	}
3925 }
3926 
3927 static void reweight_task_fair(struct rq *rq, struct task_struct *p,
3928 			       const struct load_weight *lw)
3929 {
3930 	struct sched_entity *se = &p->se;
3931 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3932 	struct load_weight *load = &se->load;
3933 
3934 	reweight_entity(cfs_rq, se, lw->weight);
3935 	load->inv_weight = lw->inv_weight;
3936 }
3937 
3938 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3939 
3940 #ifdef CONFIG_FAIR_GROUP_SCHED
3941 #ifdef CONFIG_SMP
3942 /*
3943  * All this does is approximate the hierarchical proportion which includes that
3944  * global sum we all love to hate.
3945  *
3946  * That is, the weight of a group entity, is the proportional share of the
3947  * group weight based on the group runqueue weights. That is:
3948  *
3949  *                     tg->weight * grq->load.weight
3950  *   ge->load.weight = -----------------------------               (1)
3951  *                       \Sum grq->load.weight
3952  *
3953  * Now, because computing that sum is prohibitively expensive to compute (been
3954  * there, done that) we approximate it with this average stuff. The average
3955  * moves slower and therefore the approximation is cheaper and more stable.
3956  *
3957  * So instead of the above, we substitute:
3958  *
3959  *   grq->load.weight -> grq->avg.load_avg                         (2)
3960  *
3961  * which yields the following:
3962  *
3963  *                     tg->weight * grq->avg.load_avg
3964  *   ge->load.weight = ------------------------------              (3)
3965  *                             tg->load_avg
3966  *
3967  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3968  *
3969  * That is shares_avg, and it is right (given the approximation (2)).
3970  *
3971  * The problem with it is that because the average is slow -- it was designed
3972  * to be exactly that of course -- this leads to transients in boundary
3973  * conditions. In specific, the case where the group was idle and we start the
3974  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3975  * yielding bad latency etc..
3976  *
3977  * Now, in that special case (1) reduces to:
3978  *
3979  *                     tg->weight * grq->load.weight
3980  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3981  *                         grp->load.weight
3982  *
3983  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3984  *
3985  * So what we do is modify our approximation (3) to approach (4) in the (near)
3986  * UP case, like:
3987  *
3988  *   ge->load.weight =
3989  *
3990  *              tg->weight * grq->load.weight
3991  *     ---------------------------------------------------         (5)
3992  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3993  *
3994  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3995  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3996  *
3997  *
3998  *                     tg->weight * grq->load.weight
3999  *   ge->load.weight = -----------------------------		   (6)
4000  *                             tg_load_avg'
4001  *
4002  * Where:
4003  *
4004  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
4005  *                  max(grq->load.weight, grq->avg.load_avg)
4006  *
4007  * And that is shares_weight and is icky. In the (near) UP case it approaches
4008  * (4) while in the normal case it approaches (3). It consistently
4009  * overestimates the ge->load.weight and therefore:
4010  *
4011  *   \Sum ge->load.weight >= tg->weight
4012  *
4013  * hence icky!
4014  */
4015 static long calc_group_shares(struct cfs_rq *cfs_rq)
4016 {
4017 	long tg_weight, tg_shares, load, shares;
4018 	struct task_group *tg = cfs_rq->tg;
4019 
4020 	tg_shares = READ_ONCE(tg->shares);
4021 
4022 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
4023 
4024 	tg_weight = atomic_long_read(&tg->load_avg);
4025 
4026 	/* Ensure tg_weight >= load */
4027 	tg_weight -= cfs_rq->tg_load_avg_contrib;
4028 	tg_weight += load;
4029 
4030 	shares = (tg_shares * load);
4031 	if (tg_weight)
4032 		shares /= tg_weight;
4033 
4034 	/*
4035 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
4036 	 * of a group with small tg->shares value. It is a floor value which is
4037 	 * assigned as a minimum load.weight to the sched_entity representing
4038 	 * the group on a CPU.
4039 	 *
4040 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
4041 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
4042 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
4043 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
4044 	 * instead of 0.
4045 	 */
4046 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
4047 }
4048 #endif /* CONFIG_SMP */
4049 
4050 /*
4051  * Recomputes the group entity based on the current state of its group
4052  * runqueue.
4053  */
4054 static void update_cfs_group(struct sched_entity *se)
4055 {
4056 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4057 	long shares;
4058 
4059 	if (!gcfs_rq)
4060 		return;
4061 
4062 	if (throttled_hierarchy(gcfs_rq))
4063 		return;
4064 
4065 #ifndef CONFIG_SMP
4066 	shares = READ_ONCE(gcfs_rq->tg->shares);
4067 #else
4068 	shares = calc_group_shares(gcfs_rq);
4069 #endif
4070 	if (unlikely(se->load.weight != shares))
4071 		reweight_entity(cfs_rq_of(se), se, shares);
4072 }
4073 
4074 #else /* CONFIG_FAIR_GROUP_SCHED */
4075 static inline void update_cfs_group(struct sched_entity *se)
4076 {
4077 }
4078 #endif /* CONFIG_FAIR_GROUP_SCHED */
4079 
4080 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
4081 {
4082 	struct rq *rq = rq_of(cfs_rq);
4083 
4084 	if (&rq->cfs == cfs_rq) {
4085 		/*
4086 		 * There are a few boundary cases this might miss but it should
4087 		 * get called often enough that that should (hopefully) not be
4088 		 * a real problem.
4089 		 *
4090 		 * It will not get called when we go idle, because the idle
4091 		 * thread is a different class (!fair), nor will the utilization
4092 		 * number include things like RT tasks.
4093 		 *
4094 		 * As is, the util number is not freq-invariant (we'd have to
4095 		 * implement arch_scale_freq_capacity() for that).
4096 		 *
4097 		 * See cpu_util_cfs().
4098 		 */
4099 		cpufreq_update_util(rq, flags);
4100 	}
4101 }
4102 
4103 #ifdef CONFIG_SMP
4104 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4105 {
4106 	if (sa->load_sum)
4107 		return false;
4108 
4109 	if (sa->util_sum)
4110 		return false;
4111 
4112 	if (sa->runnable_sum)
4113 		return false;
4114 
4115 	/*
4116 	 * _avg must be null when _sum are null because _avg = _sum / divider
4117 	 * Make sure that rounding and/or propagation of PELT values never
4118 	 * break this.
4119 	 */
4120 	SCHED_WARN_ON(sa->load_avg ||
4121 		      sa->util_avg ||
4122 		      sa->runnable_avg);
4123 
4124 	return true;
4125 }
4126 
4127 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4128 {
4129 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4130 				 cfs_rq->last_update_time_copy);
4131 }
4132 #ifdef CONFIG_FAIR_GROUP_SCHED
4133 /*
4134  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4135  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4136  * bottom-up, we only have to test whether the cfs_rq before us on the list
4137  * is our child.
4138  * If cfs_rq is not on the list, test whether a child needs its to be added to
4139  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4140  */
4141 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4142 {
4143 	struct cfs_rq *prev_cfs_rq;
4144 	struct list_head *prev;
4145 
4146 	if (cfs_rq->on_list) {
4147 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4148 	} else {
4149 		struct rq *rq = rq_of(cfs_rq);
4150 
4151 		prev = rq->tmp_alone_branch;
4152 	}
4153 
4154 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4155 
4156 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4157 }
4158 
4159 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4160 {
4161 	if (cfs_rq->load.weight)
4162 		return false;
4163 
4164 	if (!load_avg_is_decayed(&cfs_rq->avg))
4165 		return false;
4166 
4167 	if (child_cfs_rq_on_list(cfs_rq))
4168 		return false;
4169 
4170 	return true;
4171 }
4172 
4173 /**
4174  * update_tg_load_avg - update the tg's load avg
4175  * @cfs_rq: the cfs_rq whose avg changed
4176  *
4177  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4178  * However, because tg->load_avg is a global value there are performance
4179  * considerations.
4180  *
4181  * In order to avoid having to look at the other cfs_rq's, we use a
4182  * differential update where we store the last value we propagated. This in
4183  * turn allows skipping updates if the differential is 'small'.
4184  *
4185  * Updating tg's load_avg is necessary before update_cfs_share().
4186  */
4187 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4188 {
4189 	long delta;
4190 	u64 now;
4191 
4192 	/*
4193 	 * No need to update load_avg for root_task_group as it is not used.
4194 	 */
4195 	if (cfs_rq->tg == &root_task_group)
4196 		return;
4197 
4198 	/* rq has been offline and doesn't contribute to the share anymore: */
4199 	if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4200 		return;
4201 
4202 	/*
4203 	 * For migration heavy workloads, access to tg->load_avg can be
4204 	 * unbound. Limit the update rate to at most once per ms.
4205 	 */
4206 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4207 	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4208 		return;
4209 
4210 	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4211 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4212 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4213 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4214 		cfs_rq->last_update_tg_load_avg = now;
4215 	}
4216 }
4217 
4218 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4219 {
4220 	long delta;
4221 	u64 now;
4222 
4223 	/*
4224 	 * No need to update load_avg for root_task_group, as it is not used.
4225 	 */
4226 	if (cfs_rq->tg == &root_task_group)
4227 		return;
4228 
4229 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4230 	delta = 0 - cfs_rq->tg_load_avg_contrib;
4231 	atomic_long_add(delta, &cfs_rq->tg->load_avg);
4232 	cfs_rq->tg_load_avg_contrib = 0;
4233 	cfs_rq->last_update_tg_load_avg = now;
4234 }
4235 
4236 /* CPU offline callback: */
4237 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4238 {
4239 	struct task_group *tg;
4240 
4241 	lockdep_assert_rq_held(rq);
4242 
4243 	/*
4244 	 * The rq clock has already been updated in
4245 	 * set_rq_offline(), so we should skip updating
4246 	 * the rq clock again in unthrottle_cfs_rq().
4247 	 */
4248 	rq_clock_start_loop_update(rq);
4249 
4250 	rcu_read_lock();
4251 	list_for_each_entry_rcu(tg, &task_groups, list) {
4252 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4253 
4254 		clear_tg_load_avg(cfs_rq);
4255 	}
4256 	rcu_read_unlock();
4257 
4258 	rq_clock_stop_loop_update(rq);
4259 }
4260 
4261 /*
4262  * Called within set_task_rq() right before setting a task's CPU. The
4263  * caller only guarantees p->pi_lock is held; no other assumptions,
4264  * including the state of rq->lock, should be made.
4265  */
4266 void set_task_rq_fair(struct sched_entity *se,
4267 		      struct cfs_rq *prev, struct cfs_rq *next)
4268 {
4269 	u64 p_last_update_time;
4270 	u64 n_last_update_time;
4271 
4272 	if (!sched_feat(ATTACH_AGE_LOAD))
4273 		return;
4274 
4275 	/*
4276 	 * We are supposed to update the task to "current" time, then its up to
4277 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4278 	 * getting what current time is, so simply throw away the out-of-date
4279 	 * time. This will result in the wakee task is less decayed, but giving
4280 	 * the wakee more load sounds not bad.
4281 	 */
4282 	if (!(se->avg.last_update_time && prev))
4283 		return;
4284 
4285 	p_last_update_time = cfs_rq_last_update_time(prev);
4286 	n_last_update_time = cfs_rq_last_update_time(next);
4287 
4288 	__update_load_avg_blocked_se(p_last_update_time, se);
4289 	se->avg.last_update_time = n_last_update_time;
4290 }
4291 
4292 /*
4293  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4294  * propagate its contribution. The key to this propagation is the invariant
4295  * that for each group:
4296  *
4297  *   ge->avg == grq->avg						(1)
4298  *
4299  * _IFF_ we look at the pure running and runnable sums. Because they
4300  * represent the very same entity, just at different points in the hierarchy.
4301  *
4302  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4303  * and simply copies the running/runnable sum over (but still wrong, because
4304  * the group entity and group rq do not have their PELT windows aligned).
4305  *
4306  * However, update_tg_cfs_load() is more complex. So we have:
4307  *
4308  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4309  *
4310  * And since, like util, the runnable part should be directly transferable,
4311  * the following would _appear_ to be the straight forward approach:
4312  *
4313  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4314  *
4315  * And per (1) we have:
4316  *
4317  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4318  *
4319  * Which gives:
4320  *
4321  *                      ge->load.weight * grq->avg.load_avg
4322  *   ge->avg.load_avg = -----------------------------------		(4)
4323  *                               grq->load.weight
4324  *
4325  * Except that is wrong!
4326  *
4327  * Because while for entities historical weight is not important and we
4328  * really only care about our future and therefore can consider a pure
4329  * runnable sum, runqueues can NOT do this.
4330  *
4331  * We specifically want runqueues to have a load_avg that includes
4332  * historical weights. Those represent the blocked load, the load we expect
4333  * to (shortly) return to us. This only works by keeping the weights as
4334  * integral part of the sum. We therefore cannot decompose as per (3).
4335  *
4336  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4337  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4338  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4339  * runnable section of these tasks overlap (or not). If they were to perfectly
4340  * align the rq as a whole would be runnable 2/3 of the time. If however we
4341  * always have at least 1 runnable task, the rq as a whole is always runnable.
4342  *
4343  * So we'll have to approximate.. :/
4344  *
4345  * Given the constraint:
4346  *
4347  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4348  *
4349  * We can construct a rule that adds runnable to a rq by assuming minimal
4350  * overlap.
4351  *
4352  * On removal, we'll assume each task is equally runnable; which yields:
4353  *
4354  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4355  *
4356  * XXX: only do this for the part of runnable > running ?
4357  *
4358  */
4359 static inline void
4360 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4361 {
4362 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4363 	u32 new_sum, divider;
4364 
4365 	/* Nothing to update */
4366 	if (!delta_avg)
4367 		return;
4368 
4369 	/*
4370 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4371 	 * See ___update_load_avg() for details.
4372 	 */
4373 	divider = get_pelt_divider(&cfs_rq->avg);
4374 
4375 
4376 	/* Set new sched_entity's utilization */
4377 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4378 	new_sum = se->avg.util_avg * divider;
4379 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4380 	se->avg.util_sum = new_sum;
4381 
4382 	/* Update parent cfs_rq utilization */
4383 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4384 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4385 
4386 	/* See update_cfs_rq_load_avg() */
4387 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4388 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4389 }
4390 
4391 static inline void
4392 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4393 {
4394 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4395 	u32 new_sum, divider;
4396 
4397 	/* Nothing to update */
4398 	if (!delta_avg)
4399 		return;
4400 
4401 	/*
4402 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4403 	 * See ___update_load_avg() for details.
4404 	 */
4405 	divider = get_pelt_divider(&cfs_rq->avg);
4406 
4407 	/* Set new sched_entity's runnable */
4408 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4409 	new_sum = se->avg.runnable_avg * divider;
4410 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4411 	se->avg.runnable_sum = new_sum;
4412 
4413 	/* Update parent cfs_rq runnable */
4414 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4415 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4416 	/* See update_cfs_rq_load_avg() */
4417 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4418 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4419 }
4420 
4421 static inline void
4422 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4423 {
4424 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4425 	unsigned long load_avg;
4426 	u64 load_sum = 0;
4427 	s64 delta_sum;
4428 	u32 divider;
4429 
4430 	if (!runnable_sum)
4431 		return;
4432 
4433 	gcfs_rq->prop_runnable_sum = 0;
4434 
4435 	/*
4436 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4437 	 * See ___update_load_avg() for details.
4438 	 */
4439 	divider = get_pelt_divider(&cfs_rq->avg);
4440 
4441 	if (runnable_sum >= 0) {
4442 		/*
4443 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4444 		 * the CPU is saturated running == runnable.
4445 		 */
4446 		runnable_sum += se->avg.load_sum;
4447 		runnable_sum = min_t(long, runnable_sum, divider);
4448 	} else {
4449 		/*
4450 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4451 		 * assuming all tasks are equally runnable.
4452 		 */
4453 		if (scale_load_down(gcfs_rq->load.weight)) {
4454 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4455 				scale_load_down(gcfs_rq->load.weight));
4456 		}
4457 
4458 		/* But make sure to not inflate se's runnable */
4459 		runnable_sum = min(se->avg.load_sum, load_sum);
4460 	}
4461 
4462 	/*
4463 	 * runnable_sum can't be lower than running_sum
4464 	 * Rescale running sum to be in the same range as runnable sum
4465 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4466 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4467 	 */
4468 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4469 	runnable_sum = max(runnable_sum, running_sum);
4470 
4471 	load_sum = se_weight(se) * runnable_sum;
4472 	load_avg = div_u64(load_sum, divider);
4473 
4474 	delta_avg = load_avg - se->avg.load_avg;
4475 	if (!delta_avg)
4476 		return;
4477 
4478 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4479 
4480 	se->avg.load_sum = runnable_sum;
4481 	se->avg.load_avg = load_avg;
4482 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4483 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4484 	/* See update_cfs_rq_load_avg() */
4485 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4486 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4487 }
4488 
4489 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4490 {
4491 	cfs_rq->propagate = 1;
4492 	cfs_rq->prop_runnable_sum += runnable_sum;
4493 }
4494 
4495 /* Update task and its cfs_rq load average */
4496 static inline int propagate_entity_load_avg(struct sched_entity *se)
4497 {
4498 	struct cfs_rq *cfs_rq, *gcfs_rq;
4499 
4500 	if (entity_is_task(se))
4501 		return 0;
4502 
4503 	gcfs_rq = group_cfs_rq(se);
4504 	if (!gcfs_rq->propagate)
4505 		return 0;
4506 
4507 	gcfs_rq->propagate = 0;
4508 
4509 	cfs_rq = cfs_rq_of(se);
4510 
4511 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4512 
4513 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4514 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4515 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4516 
4517 	trace_pelt_cfs_tp(cfs_rq);
4518 	trace_pelt_se_tp(se);
4519 
4520 	return 1;
4521 }
4522 
4523 /*
4524  * Check if we need to update the load and the utilization of a blocked
4525  * group_entity:
4526  */
4527 static inline bool skip_blocked_update(struct sched_entity *se)
4528 {
4529 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4530 
4531 	/*
4532 	 * If sched_entity still have not zero load or utilization, we have to
4533 	 * decay it:
4534 	 */
4535 	if (se->avg.load_avg || se->avg.util_avg)
4536 		return false;
4537 
4538 	/*
4539 	 * If there is a pending propagation, we have to update the load and
4540 	 * the utilization of the sched_entity:
4541 	 */
4542 	if (gcfs_rq->propagate)
4543 		return false;
4544 
4545 	/*
4546 	 * Otherwise, the load and the utilization of the sched_entity is
4547 	 * already zero and there is no pending propagation, so it will be a
4548 	 * waste of time to try to decay it:
4549 	 */
4550 	return true;
4551 }
4552 
4553 #else /* CONFIG_FAIR_GROUP_SCHED */
4554 
4555 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4556 
4557 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4558 
4559 static inline int propagate_entity_load_avg(struct sched_entity *se)
4560 {
4561 	return 0;
4562 }
4563 
4564 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4565 
4566 #endif /* CONFIG_FAIR_GROUP_SCHED */
4567 
4568 #ifdef CONFIG_NO_HZ_COMMON
4569 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4570 {
4571 	u64 throttled = 0, now, lut;
4572 	struct cfs_rq *cfs_rq;
4573 	struct rq *rq;
4574 	bool is_idle;
4575 
4576 	if (load_avg_is_decayed(&se->avg))
4577 		return;
4578 
4579 	cfs_rq = cfs_rq_of(se);
4580 	rq = rq_of(cfs_rq);
4581 
4582 	rcu_read_lock();
4583 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4584 	rcu_read_unlock();
4585 
4586 	/*
4587 	 * The lag estimation comes with a cost we don't want to pay all the
4588 	 * time. Hence, limiting to the case where the source CPU is idle and
4589 	 * we know we are at the greatest risk to have an outdated clock.
4590 	 */
4591 	if (!is_idle)
4592 		return;
4593 
4594 	/*
4595 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4596 	 *
4597 	 *   last_update_time (the cfs_rq's last_update_time)
4598 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4599 	 *      = rq_clock_pelt()@cfs_rq_idle
4600 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4601 	 *
4602 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4603 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4604 	 *
4605 	 *   rq_idle_lag (delta between now and rq's update)
4606 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4607 	 *
4608 	 * We can then write:
4609 	 *
4610 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4611 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4612 	 * Where:
4613 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4614 	 *      rq_clock()@rq_idle      is rq->clock_idle
4615 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4616 	 *                              is cfs_rq->throttled_pelt_idle
4617 	 */
4618 
4619 #ifdef CONFIG_CFS_BANDWIDTH
4620 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4621 	/* The clock has been stopped for throttling */
4622 	if (throttled == U64_MAX)
4623 		return;
4624 #endif
4625 	now = u64_u32_load(rq->clock_pelt_idle);
4626 	/*
4627 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4628 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4629 	 * which lead to an underestimation. The opposite would lead to an
4630 	 * overestimation.
4631 	 */
4632 	smp_rmb();
4633 	lut = cfs_rq_last_update_time(cfs_rq);
4634 
4635 	now -= throttled;
4636 	if (now < lut)
4637 		/*
4638 		 * cfs_rq->avg.last_update_time is more recent than our
4639 		 * estimation, let's use it.
4640 		 */
4641 		now = lut;
4642 	else
4643 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4644 
4645 	__update_load_avg_blocked_se(now, se);
4646 }
4647 #else
4648 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4649 #endif
4650 
4651 /**
4652  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4653  * @now: current time, as per cfs_rq_clock_pelt()
4654  * @cfs_rq: cfs_rq to update
4655  *
4656  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4657  * avg. The immediate corollary is that all (fair) tasks must be attached.
4658  *
4659  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4660  *
4661  * Return: true if the load decayed or we removed load.
4662  *
4663  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4664  * call update_tg_load_avg() when this function returns true.
4665  */
4666 static inline int
4667 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4668 {
4669 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4670 	struct sched_avg *sa = &cfs_rq->avg;
4671 	int decayed = 0;
4672 
4673 	if (cfs_rq->removed.nr) {
4674 		unsigned long r;
4675 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4676 
4677 		raw_spin_lock(&cfs_rq->removed.lock);
4678 		swap(cfs_rq->removed.util_avg, removed_util);
4679 		swap(cfs_rq->removed.load_avg, removed_load);
4680 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4681 		cfs_rq->removed.nr = 0;
4682 		raw_spin_unlock(&cfs_rq->removed.lock);
4683 
4684 		r = removed_load;
4685 		sub_positive(&sa->load_avg, r);
4686 		sub_positive(&sa->load_sum, r * divider);
4687 		/* See sa->util_sum below */
4688 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4689 
4690 		r = removed_util;
4691 		sub_positive(&sa->util_avg, r);
4692 		sub_positive(&sa->util_sum, r * divider);
4693 		/*
4694 		 * Because of rounding, se->util_sum might ends up being +1 more than
4695 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4696 		 * a lot of tasks with the rounding problem between 2 updates of
4697 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4698 		 * cfs_util_avg is not.
4699 		 * Check that util_sum is still above its lower bound for the new
4700 		 * util_avg. Given that period_contrib might have moved since the last
4701 		 * sync, we are only sure that util_sum must be above or equal to
4702 		 *    util_avg * minimum possible divider
4703 		 */
4704 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4705 
4706 		r = removed_runnable;
4707 		sub_positive(&sa->runnable_avg, r);
4708 		sub_positive(&sa->runnable_sum, r * divider);
4709 		/* See sa->util_sum above */
4710 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4711 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4712 
4713 		/*
4714 		 * removed_runnable is the unweighted version of removed_load so we
4715 		 * can use it to estimate removed_load_sum.
4716 		 */
4717 		add_tg_cfs_propagate(cfs_rq,
4718 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4719 
4720 		decayed = 1;
4721 	}
4722 
4723 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4724 	u64_u32_store_copy(sa->last_update_time,
4725 			   cfs_rq->last_update_time_copy,
4726 			   sa->last_update_time);
4727 	return decayed;
4728 }
4729 
4730 /**
4731  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4732  * @cfs_rq: cfs_rq to attach to
4733  * @se: sched_entity to attach
4734  *
4735  * Must call update_cfs_rq_load_avg() before this, since we rely on
4736  * cfs_rq->avg.last_update_time being current.
4737  */
4738 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4739 {
4740 	/*
4741 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4742 	 * See ___update_load_avg() for details.
4743 	 */
4744 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4745 
4746 	/*
4747 	 * When we attach the @se to the @cfs_rq, we must align the decay
4748 	 * window because without that, really weird and wonderful things can
4749 	 * happen.
4750 	 *
4751 	 * XXX illustrate
4752 	 */
4753 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4754 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4755 
4756 	/*
4757 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4758 	 * period_contrib. This isn't strictly correct, but since we're
4759 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4760 	 * _sum a little.
4761 	 */
4762 	se->avg.util_sum = se->avg.util_avg * divider;
4763 
4764 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4765 
4766 	se->avg.load_sum = se->avg.load_avg * divider;
4767 	if (se_weight(se) < se->avg.load_sum)
4768 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4769 	else
4770 		se->avg.load_sum = 1;
4771 
4772 	enqueue_load_avg(cfs_rq, se);
4773 	cfs_rq->avg.util_avg += se->avg.util_avg;
4774 	cfs_rq->avg.util_sum += se->avg.util_sum;
4775 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4776 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4777 
4778 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4779 
4780 	cfs_rq_util_change(cfs_rq, 0);
4781 
4782 	trace_pelt_cfs_tp(cfs_rq);
4783 }
4784 
4785 /**
4786  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4787  * @cfs_rq: cfs_rq to detach from
4788  * @se: sched_entity to detach
4789  *
4790  * Must call update_cfs_rq_load_avg() before this, since we rely on
4791  * cfs_rq->avg.last_update_time being current.
4792  */
4793 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4794 {
4795 	dequeue_load_avg(cfs_rq, se);
4796 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4797 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4798 	/* See update_cfs_rq_load_avg() */
4799 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4800 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4801 
4802 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4803 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4804 	/* See update_cfs_rq_load_avg() */
4805 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4806 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4807 
4808 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4809 
4810 	cfs_rq_util_change(cfs_rq, 0);
4811 
4812 	trace_pelt_cfs_tp(cfs_rq);
4813 }
4814 
4815 /*
4816  * Optional action to be done while updating the load average
4817  */
4818 #define UPDATE_TG	0x1
4819 #define SKIP_AGE_LOAD	0x2
4820 #define DO_ATTACH	0x4
4821 #define DO_DETACH	0x8
4822 
4823 /* Update task and its cfs_rq load average */
4824 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4825 {
4826 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4827 	int decayed;
4828 
4829 	/*
4830 	 * Track task load average for carrying it to new CPU after migrated, and
4831 	 * track group sched_entity load average for task_h_load calculation in migration
4832 	 */
4833 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4834 		__update_load_avg_se(now, cfs_rq, se);
4835 
4836 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4837 	decayed |= propagate_entity_load_avg(se);
4838 
4839 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4840 
4841 		/*
4842 		 * DO_ATTACH means we're here from enqueue_entity().
4843 		 * !last_update_time means we've passed through
4844 		 * migrate_task_rq_fair() indicating we migrated.
4845 		 *
4846 		 * IOW we're enqueueing a task on a new CPU.
4847 		 */
4848 		attach_entity_load_avg(cfs_rq, se);
4849 		update_tg_load_avg(cfs_rq);
4850 
4851 	} else if (flags & DO_DETACH) {
4852 		/*
4853 		 * DO_DETACH means we're here from dequeue_entity()
4854 		 * and we are migrating task out of the CPU.
4855 		 */
4856 		detach_entity_load_avg(cfs_rq, se);
4857 		update_tg_load_avg(cfs_rq);
4858 	} else if (decayed) {
4859 		cfs_rq_util_change(cfs_rq, 0);
4860 
4861 		if (flags & UPDATE_TG)
4862 			update_tg_load_avg(cfs_rq);
4863 	}
4864 }
4865 
4866 /*
4867  * Synchronize entity load avg of dequeued entity without locking
4868  * the previous rq.
4869  */
4870 static void sync_entity_load_avg(struct sched_entity *se)
4871 {
4872 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4873 	u64 last_update_time;
4874 
4875 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4876 	__update_load_avg_blocked_se(last_update_time, se);
4877 }
4878 
4879 /*
4880  * Task first catches up with cfs_rq, and then subtract
4881  * itself from the cfs_rq (task must be off the queue now).
4882  */
4883 static void remove_entity_load_avg(struct sched_entity *se)
4884 {
4885 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4886 	unsigned long flags;
4887 
4888 	/*
4889 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4890 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4891 	 * so we can remove unconditionally.
4892 	 */
4893 
4894 	sync_entity_load_avg(se);
4895 
4896 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4897 	++cfs_rq->removed.nr;
4898 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4899 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4900 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4901 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4902 }
4903 
4904 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4905 {
4906 	return cfs_rq->avg.runnable_avg;
4907 }
4908 
4909 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4910 {
4911 	return cfs_rq->avg.load_avg;
4912 }
4913 
4914 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4915 
4916 static inline unsigned long task_util(struct task_struct *p)
4917 {
4918 	return READ_ONCE(p->se.avg.util_avg);
4919 }
4920 
4921 static inline unsigned long task_runnable(struct task_struct *p)
4922 {
4923 	return READ_ONCE(p->se.avg.runnable_avg);
4924 }
4925 
4926 static inline unsigned long _task_util_est(struct task_struct *p)
4927 {
4928 	return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4929 }
4930 
4931 static inline unsigned long task_util_est(struct task_struct *p)
4932 {
4933 	return max(task_util(p), _task_util_est(p));
4934 }
4935 
4936 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4937 				    struct task_struct *p)
4938 {
4939 	unsigned int enqueued;
4940 
4941 	if (!sched_feat(UTIL_EST))
4942 		return;
4943 
4944 	/* Update root cfs_rq's estimated utilization */
4945 	enqueued  = cfs_rq->avg.util_est;
4946 	enqueued += _task_util_est(p);
4947 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4948 
4949 	trace_sched_util_est_cfs_tp(cfs_rq);
4950 }
4951 
4952 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4953 				    struct task_struct *p)
4954 {
4955 	unsigned int enqueued;
4956 
4957 	if (!sched_feat(UTIL_EST))
4958 		return;
4959 
4960 	/* Update root cfs_rq's estimated utilization */
4961 	enqueued  = cfs_rq->avg.util_est;
4962 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4963 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4964 
4965 	trace_sched_util_est_cfs_tp(cfs_rq);
4966 }
4967 
4968 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4969 
4970 static inline void util_est_update(struct cfs_rq *cfs_rq,
4971 				   struct task_struct *p,
4972 				   bool task_sleep)
4973 {
4974 	unsigned int ewma, dequeued, last_ewma_diff;
4975 
4976 	if (!sched_feat(UTIL_EST))
4977 		return;
4978 
4979 	/*
4980 	 * Skip update of task's estimated utilization when the task has not
4981 	 * yet completed an activation, e.g. being migrated.
4982 	 */
4983 	if (!task_sleep)
4984 		return;
4985 
4986 	/* Get current estimate of utilization */
4987 	ewma = READ_ONCE(p->se.avg.util_est);
4988 
4989 	/*
4990 	 * If the PELT values haven't changed since enqueue time,
4991 	 * skip the util_est update.
4992 	 */
4993 	if (ewma & UTIL_AVG_UNCHANGED)
4994 		return;
4995 
4996 	/* Get utilization at dequeue */
4997 	dequeued = task_util(p);
4998 
4999 	/*
5000 	 * Reset EWMA on utilization increases, the moving average is used only
5001 	 * to smooth utilization decreases.
5002 	 */
5003 	if (ewma <= dequeued) {
5004 		ewma = dequeued;
5005 		goto done;
5006 	}
5007 
5008 	/*
5009 	 * Skip update of task's estimated utilization when its members are
5010 	 * already ~1% close to its last activation value.
5011 	 */
5012 	last_ewma_diff = ewma - dequeued;
5013 	if (last_ewma_diff < UTIL_EST_MARGIN)
5014 		goto done;
5015 
5016 	/*
5017 	 * To avoid overestimation of actual task utilization, skip updates if
5018 	 * we cannot grant there is idle time in this CPU.
5019 	 */
5020 	if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
5021 		return;
5022 
5023 	/*
5024 	 * To avoid underestimate of task utilization, skip updates of EWMA if
5025 	 * we cannot grant that thread got all CPU time it wanted.
5026 	 */
5027 	if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
5028 		goto done;
5029 
5030 
5031 	/*
5032 	 * Update Task's estimated utilization
5033 	 *
5034 	 * When *p completes an activation we can consolidate another sample
5035 	 * of the task size. This is done by using this value to update the
5036 	 * Exponential Weighted Moving Average (EWMA):
5037 	 *
5038 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
5039 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
5040 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
5041 	 *          = w * (      -last_ewma_diff           ) +     ewma(t-1)
5042 	 *          = w * (-last_ewma_diff +  ewma(t-1) / w)
5043 	 *
5044 	 * Where 'w' is the weight of new samples, which is configured to be
5045 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
5046 	 */
5047 	ewma <<= UTIL_EST_WEIGHT_SHIFT;
5048 	ewma  -= last_ewma_diff;
5049 	ewma >>= UTIL_EST_WEIGHT_SHIFT;
5050 done:
5051 	ewma |= UTIL_AVG_UNCHANGED;
5052 	WRITE_ONCE(p->se.avg.util_est, ewma);
5053 
5054 	trace_sched_util_est_se_tp(&p->se);
5055 }
5056 
5057 static inline unsigned long get_actual_cpu_capacity(int cpu)
5058 {
5059 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
5060 
5061 	capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
5062 
5063 	return capacity;
5064 }
5065 
5066 static inline int util_fits_cpu(unsigned long util,
5067 				unsigned long uclamp_min,
5068 				unsigned long uclamp_max,
5069 				int cpu)
5070 {
5071 	unsigned long capacity = capacity_of(cpu);
5072 	unsigned long capacity_orig;
5073 	bool fits, uclamp_max_fits;
5074 
5075 	/*
5076 	 * Check if the real util fits without any uclamp boost/cap applied.
5077 	 */
5078 	fits = fits_capacity(util, capacity);
5079 
5080 	if (!uclamp_is_used())
5081 		return fits;
5082 
5083 	/*
5084 	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
5085 	 * uclamp_max. We only care about capacity pressure (by using
5086 	 * capacity_of()) for comparing against the real util.
5087 	 *
5088 	 * If a task is boosted to 1024 for example, we don't want a tiny
5089 	 * pressure to skew the check whether it fits a CPU or not.
5090 	 *
5091 	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
5092 	 * should fit a little cpu even if there's some pressure.
5093 	 *
5094 	 * Only exception is for HW or cpufreq pressure since it has a direct impact
5095 	 * on available OPP of the system.
5096 	 *
5097 	 * We honour it for uclamp_min only as a drop in performance level
5098 	 * could result in not getting the requested minimum performance level.
5099 	 *
5100 	 * For uclamp_max, we can tolerate a drop in performance level as the
5101 	 * goal is to cap the task. So it's okay if it's getting less.
5102 	 */
5103 	capacity_orig = arch_scale_cpu_capacity(cpu);
5104 
5105 	/*
5106 	 * We want to force a task to fit a cpu as implied by uclamp_max.
5107 	 * But we do have some corner cases to cater for..
5108 	 *
5109 	 *
5110 	 *                                 C=z
5111 	 *   |                             ___
5112 	 *   |                  C=y       |   |
5113 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
5114 	 *   |      C=x        |   |      |   |
5115 	 *   |      ___        |   |      |   |
5116 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5117 	 *   |     |   |       |   |      |   |
5118 	 *   |     |   |       |   |      |   |
5119 	 *   +----------------------------------------
5120 	 *         CPU0        CPU1       CPU2
5121 	 *
5122 	 *   In the above example if a task is capped to a specific performance
5123 	 *   point, y, then when:
5124 	 *
5125 	 *   * util = 80% of x then it does not fit on CPU0 and should migrate
5126 	 *     to CPU1
5127 	 *   * util = 80% of y then it is forced to fit on CPU1 to honour
5128 	 *     uclamp_max request.
5129 	 *
5130 	 *   which is what we're enforcing here. A task always fits if
5131 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5132 	 *   the normal upmigration rules should withhold still.
5133 	 *
5134 	 *   Only exception is when we are on max capacity, then we need to be
5135 	 *   careful not to block overutilized state. This is so because:
5136 	 *
5137 	 *     1. There's no concept of capping at max_capacity! We can't go
5138 	 *        beyond this performance level anyway.
5139 	 *     2. The system is being saturated when we're operating near
5140 	 *        max capacity, it doesn't make sense to block overutilized.
5141 	 */
5142 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5143 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5144 	fits = fits || uclamp_max_fits;
5145 
5146 	/*
5147 	 *
5148 	 *                                 C=z
5149 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5150 	 *   |                  C=y       |   |
5151 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5152 	 *   |      C=x        |   |      |   |
5153 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5154 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5155 	 *   |     |   |       |   |      |   |
5156 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5157 	 *   +----------------------------------------
5158 	 *         CPU0        CPU1       CPU2
5159 	 *
5160 	 * a) If util > uclamp_max, then we're capped, we don't care about
5161 	 *    actual fitness value here. We only care if uclamp_max fits
5162 	 *    capacity without taking margin/pressure into account.
5163 	 *    See comment above.
5164 	 *
5165 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5166 	 *    fits_capacity() rules apply. Except we need to ensure that we
5167 	 *    enforce we remain within uclamp_max, see comment above.
5168 	 *
5169 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5170 	 *    need to take into account the boosted value fits the CPU without
5171 	 *    taking margin/pressure into account.
5172 	 *
5173 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5174 	 * just need to consider an extra check for case (c) after ensuring we
5175 	 * handle the case uclamp_min > uclamp_max.
5176 	 */
5177 	uclamp_min = min(uclamp_min, uclamp_max);
5178 	if (fits && (util < uclamp_min) &&
5179 	    (uclamp_min > get_actual_cpu_capacity(cpu)))
5180 		return -1;
5181 
5182 	return fits;
5183 }
5184 
5185 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5186 {
5187 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5188 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5189 	unsigned long util = task_util_est(p);
5190 	/*
5191 	 * Return true only if the cpu fully fits the task requirements, which
5192 	 * include the utilization but also the performance hints.
5193 	 */
5194 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5195 }
5196 
5197 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5198 {
5199 	int cpu = cpu_of(rq);
5200 
5201 	if (!sched_asym_cpucap_active())
5202 		return;
5203 
5204 	/*
5205 	 * Affinity allows us to go somewhere higher?  Or are we on biggest
5206 	 * available CPU already? Or do we fit into this CPU ?
5207 	 */
5208 	if (!p || (p->nr_cpus_allowed == 1) ||
5209 	    (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5210 	    task_fits_cpu(p, cpu)) {
5211 
5212 		rq->misfit_task_load = 0;
5213 		return;
5214 	}
5215 
5216 	/*
5217 	 * Make sure that misfit_task_load will not be null even if
5218 	 * task_h_load() returns 0.
5219 	 */
5220 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5221 }
5222 
5223 #else /* CONFIG_SMP */
5224 
5225 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5226 {
5227 	return !cfs_rq->nr_running;
5228 }
5229 
5230 #define UPDATE_TG	0x0
5231 #define SKIP_AGE_LOAD	0x0
5232 #define DO_ATTACH	0x0
5233 #define DO_DETACH	0x0
5234 
5235 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5236 {
5237 	cfs_rq_util_change(cfs_rq, 0);
5238 }
5239 
5240 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5241 
5242 static inline void
5243 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5244 static inline void
5245 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5246 
5247 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
5248 {
5249 	return 0;
5250 }
5251 
5252 static inline void
5253 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5254 
5255 static inline void
5256 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5257 
5258 static inline void
5259 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5260 		bool task_sleep) {}
5261 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5262 
5263 #endif /* CONFIG_SMP */
5264 
5265 static void
5266 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5267 {
5268 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5269 	s64 lag = 0;
5270 
5271 	if (!se->custom_slice)
5272 		se->slice = sysctl_sched_base_slice;
5273 	vslice = calc_delta_fair(se->slice, se);
5274 
5275 	/*
5276 	 * Due to how V is constructed as the weighted average of entities,
5277 	 * adding tasks with positive lag, or removing tasks with negative lag
5278 	 * will move 'time' backwards, this can screw around with the lag of
5279 	 * other tasks.
5280 	 *
5281 	 * EEVDF: placement strategy #1 / #2
5282 	 */
5283 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running && se->vlag) {
5284 		struct sched_entity *curr = cfs_rq->curr;
5285 		unsigned long load;
5286 
5287 		lag = se->vlag;
5288 
5289 		/*
5290 		 * If we want to place a task and preserve lag, we have to
5291 		 * consider the effect of the new entity on the weighted
5292 		 * average and compensate for this, otherwise lag can quickly
5293 		 * evaporate.
5294 		 *
5295 		 * Lag is defined as:
5296 		 *
5297 		 *   lag_i = S - s_i = w_i * (V - v_i)
5298 		 *
5299 		 * To avoid the 'w_i' term all over the place, we only track
5300 		 * the virtual lag:
5301 		 *
5302 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5303 		 *
5304 		 * And we take V to be the weighted average of all v:
5305 		 *
5306 		 *   V = (\Sum w_j*v_j) / W
5307 		 *
5308 		 * Where W is: \Sum w_j
5309 		 *
5310 		 * Then, the weighted average after adding an entity with lag
5311 		 * vl_i is given by:
5312 		 *
5313 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5314 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5315 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5316 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5317 		 *      = V - w_i*vl_i / (W + w_i)
5318 		 *
5319 		 * And the actual lag after adding an entity with vl_i is:
5320 		 *
5321 		 *   vl'_i = V' - v_i
5322 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5323 		 *         = vl_i - w_i*vl_i / (W + w_i)
5324 		 *
5325 		 * Which is strictly less than vl_i. So in order to preserve lag
5326 		 * we should inflate the lag before placement such that the
5327 		 * effective lag after placement comes out right.
5328 		 *
5329 		 * As such, invert the above relation for vl'_i to get the vl_i
5330 		 * we need to use such that the lag after placement is the lag
5331 		 * we computed before dequeue.
5332 		 *
5333 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5334 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5335 		 *
5336 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5337 		 *                   = W*vl_i
5338 		 *
5339 		 *   vl_i = (W + w_i)*vl'_i / W
5340 		 */
5341 		load = cfs_rq->avg_load;
5342 		if (curr && curr->on_rq)
5343 			load += scale_load_down(curr->load.weight);
5344 
5345 		lag *= load + scale_load_down(se->load.weight);
5346 		if (WARN_ON_ONCE(!load))
5347 			load = 1;
5348 		lag = div_s64(lag, load);
5349 	}
5350 
5351 	se->vruntime = vruntime - lag;
5352 
5353 	if (sched_feat(PLACE_REL_DEADLINE) && se->rel_deadline) {
5354 		se->deadline += se->vruntime;
5355 		se->rel_deadline = 0;
5356 		return;
5357 	}
5358 
5359 	/*
5360 	 * When joining the competition; the existing tasks will be,
5361 	 * on average, halfway through their slice, as such start tasks
5362 	 * off with half a slice to ease into the competition.
5363 	 */
5364 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5365 		vslice /= 2;
5366 
5367 	/*
5368 	 * EEVDF: vd_i = ve_i + r_i/w_i
5369 	 */
5370 	se->deadline = se->vruntime + vslice;
5371 }
5372 
5373 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5374 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5375 
5376 static inline bool cfs_bandwidth_used(void);
5377 
5378 static void
5379 requeue_delayed_entity(struct sched_entity *se);
5380 
5381 static void
5382 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5383 {
5384 	bool curr = cfs_rq->curr == se;
5385 
5386 	/*
5387 	 * If we're the current task, we must renormalise before calling
5388 	 * update_curr().
5389 	 */
5390 	if (curr)
5391 		place_entity(cfs_rq, se, flags);
5392 
5393 	update_curr(cfs_rq);
5394 
5395 	/*
5396 	 * When enqueuing a sched_entity, we must:
5397 	 *   - Update loads to have both entity and cfs_rq synced with now.
5398 	 *   - For group_entity, update its runnable_weight to reflect the new
5399 	 *     h_nr_running of its group cfs_rq.
5400 	 *   - For group_entity, update its weight to reflect the new share of
5401 	 *     its group cfs_rq
5402 	 *   - Add its new weight to cfs_rq->load.weight
5403 	 */
5404 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5405 	se_update_runnable(se);
5406 	/*
5407 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5408 	 * but update_cfs_group() here will re-adjust the weight and have to
5409 	 * undo/redo all that. Seems wasteful.
5410 	 */
5411 	update_cfs_group(se);
5412 
5413 	/*
5414 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5415 	 * we can place the entity.
5416 	 */
5417 	if (!curr)
5418 		place_entity(cfs_rq, se, flags);
5419 
5420 	account_entity_enqueue(cfs_rq, se);
5421 
5422 	/* Entity has migrated, no longer consider this task hot */
5423 	if (flags & ENQUEUE_MIGRATED)
5424 		se->exec_start = 0;
5425 
5426 	check_schedstat_required();
5427 	update_stats_enqueue_fair(cfs_rq, se, flags);
5428 	if (!curr)
5429 		__enqueue_entity(cfs_rq, se);
5430 	se->on_rq = 1;
5431 
5432 	if (cfs_rq->nr_running == 1) {
5433 		check_enqueue_throttle(cfs_rq);
5434 		if (!throttled_hierarchy(cfs_rq)) {
5435 			list_add_leaf_cfs_rq(cfs_rq);
5436 		} else {
5437 #ifdef CONFIG_CFS_BANDWIDTH
5438 			struct rq *rq = rq_of(cfs_rq);
5439 
5440 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5441 				cfs_rq->throttled_clock = rq_clock(rq);
5442 			if (!cfs_rq->throttled_clock_self)
5443 				cfs_rq->throttled_clock_self = rq_clock(rq);
5444 #endif
5445 		}
5446 	}
5447 }
5448 
5449 static void __clear_buddies_next(struct sched_entity *se)
5450 {
5451 	for_each_sched_entity(se) {
5452 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5453 		if (cfs_rq->next != se)
5454 			break;
5455 
5456 		cfs_rq->next = NULL;
5457 	}
5458 }
5459 
5460 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5461 {
5462 	if (cfs_rq->next == se)
5463 		__clear_buddies_next(se);
5464 }
5465 
5466 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5467 
5468 static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5469 {
5470 	se->sched_delayed = 0;
5471 	if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5472 		se->vlag = 0;
5473 }
5474 
5475 static bool
5476 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5477 {
5478 	bool sleep = flags & DEQUEUE_SLEEP;
5479 
5480 	update_curr(cfs_rq);
5481 
5482 	if (flags & DEQUEUE_DELAYED) {
5483 		SCHED_WARN_ON(!se->sched_delayed);
5484 	} else {
5485 		bool delay = sleep;
5486 		/*
5487 		 * DELAY_DEQUEUE relies on spurious wakeups, special task
5488 		 * states must not suffer spurious wakeups, excempt them.
5489 		 */
5490 		if (flags & DEQUEUE_SPECIAL)
5491 			delay = false;
5492 
5493 		SCHED_WARN_ON(delay && se->sched_delayed);
5494 
5495 		if (sched_feat(DELAY_DEQUEUE) && delay &&
5496 		    !entity_eligible(cfs_rq, se)) {
5497 			if (cfs_rq->next == se)
5498 				cfs_rq->next = NULL;
5499 			update_load_avg(cfs_rq, se, 0);
5500 			se->sched_delayed = 1;
5501 			return false;
5502 		}
5503 	}
5504 
5505 	int action = UPDATE_TG;
5506 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5507 		action |= DO_DETACH;
5508 
5509 	/*
5510 	 * When dequeuing a sched_entity, we must:
5511 	 *   - Update loads to have both entity and cfs_rq synced with now.
5512 	 *   - For group_entity, update its runnable_weight to reflect the new
5513 	 *     h_nr_running of its group cfs_rq.
5514 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5515 	 *   - For group entity, update its weight to reflect the new share
5516 	 *     of its group cfs_rq.
5517 	 */
5518 	update_load_avg(cfs_rq, se, action);
5519 	se_update_runnable(se);
5520 
5521 	update_stats_dequeue_fair(cfs_rq, se, flags);
5522 
5523 	clear_buddies(cfs_rq, se);
5524 
5525 	update_entity_lag(cfs_rq, se);
5526 	if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5527 		se->deadline -= se->vruntime;
5528 		se->rel_deadline = 1;
5529 	}
5530 
5531 	if (se != cfs_rq->curr)
5532 		__dequeue_entity(cfs_rq, se);
5533 	se->on_rq = 0;
5534 	account_entity_dequeue(cfs_rq, se);
5535 
5536 	/* return excess runtime on last dequeue */
5537 	return_cfs_rq_runtime(cfs_rq);
5538 
5539 	update_cfs_group(se);
5540 
5541 	/*
5542 	 * Now advance min_vruntime if @se was the entity holding it back,
5543 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5544 	 * put back on, and if we advance min_vruntime, we'll be placed back
5545 	 * further than we started -- i.e. we'll be penalized.
5546 	 */
5547 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5548 		update_min_vruntime(cfs_rq);
5549 
5550 	if (flags & DEQUEUE_DELAYED)
5551 		finish_delayed_dequeue_entity(se);
5552 
5553 	if (cfs_rq->nr_running == 0)
5554 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5555 
5556 	return true;
5557 }
5558 
5559 static void
5560 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5561 {
5562 	clear_buddies(cfs_rq, se);
5563 
5564 	/* 'current' is not kept within the tree. */
5565 	if (se->on_rq) {
5566 		/*
5567 		 * Any task has to be enqueued before it get to execute on
5568 		 * a CPU. So account for the time it spent waiting on the
5569 		 * runqueue.
5570 		 */
5571 		update_stats_wait_end_fair(cfs_rq, se);
5572 		__dequeue_entity(cfs_rq, se);
5573 		update_load_avg(cfs_rq, se, UPDATE_TG);
5574 		/*
5575 		 * HACK, stash a copy of deadline at the point of pick in vlag,
5576 		 * which isn't used until dequeue.
5577 		 */
5578 		se->vlag = se->deadline;
5579 	}
5580 
5581 	update_stats_curr_start(cfs_rq, se);
5582 	SCHED_WARN_ON(cfs_rq->curr);
5583 	cfs_rq->curr = se;
5584 
5585 	/*
5586 	 * Track our maximum slice length, if the CPU's load is at
5587 	 * least twice that of our own weight (i.e. don't track it
5588 	 * when there are only lesser-weight tasks around):
5589 	 */
5590 	if (schedstat_enabled() &&
5591 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5592 		struct sched_statistics *stats;
5593 
5594 		stats = __schedstats_from_se(se);
5595 		__schedstat_set(stats->slice_max,
5596 				max((u64)stats->slice_max,
5597 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5598 	}
5599 
5600 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5601 }
5602 
5603 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5604 
5605 /*
5606  * Pick the next process, keeping these things in mind, in this order:
5607  * 1) keep things fair between processes/task groups
5608  * 2) pick the "next" process, since someone really wants that to run
5609  * 3) pick the "last" process, for cache locality
5610  * 4) do not run the "skip" process, if something else is available
5611  */
5612 static struct sched_entity *
5613 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5614 {
5615 	/*
5616 	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5617 	 */
5618 	if (sched_feat(NEXT_BUDDY) &&
5619 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
5620 		/* ->next will never be delayed */
5621 		SCHED_WARN_ON(cfs_rq->next->sched_delayed);
5622 		return cfs_rq->next;
5623 	}
5624 
5625 	struct sched_entity *se = pick_eevdf(cfs_rq);
5626 	if (se->sched_delayed) {
5627 		dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5628 		/*
5629 		 * Must not reference @se again, see __block_task().
5630 		 */
5631 		return NULL;
5632 	}
5633 	return se;
5634 }
5635 
5636 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5637 
5638 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5639 {
5640 	/*
5641 	 * If still on the runqueue then deactivate_task()
5642 	 * was not called and update_curr() has to be done:
5643 	 */
5644 	if (prev->on_rq)
5645 		update_curr(cfs_rq);
5646 
5647 	/* throttle cfs_rqs exceeding runtime */
5648 	check_cfs_rq_runtime(cfs_rq);
5649 
5650 	if (prev->on_rq) {
5651 		update_stats_wait_start_fair(cfs_rq, prev);
5652 		/* Put 'current' back into the tree. */
5653 		__enqueue_entity(cfs_rq, prev);
5654 		/* in !on_rq case, update occurred at dequeue */
5655 		update_load_avg(cfs_rq, prev, 0);
5656 	}
5657 	SCHED_WARN_ON(cfs_rq->curr != prev);
5658 	cfs_rq->curr = NULL;
5659 }
5660 
5661 static void
5662 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5663 {
5664 	/*
5665 	 * Update run-time statistics of the 'current'.
5666 	 */
5667 	update_curr(cfs_rq);
5668 
5669 	/*
5670 	 * Ensure that runnable average is periodically updated.
5671 	 */
5672 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5673 	update_cfs_group(curr);
5674 
5675 #ifdef CONFIG_SCHED_HRTICK
5676 	/*
5677 	 * queued ticks are scheduled to match the slice, so don't bother
5678 	 * validating it and just reschedule.
5679 	 */
5680 	if (queued) {
5681 		resched_curr_lazy(rq_of(cfs_rq));
5682 		return;
5683 	}
5684 #endif
5685 }
5686 
5687 
5688 /**************************************************
5689  * CFS bandwidth control machinery
5690  */
5691 
5692 #ifdef CONFIG_CFS_BANDWIDTH
5693 
5694 #ifdef CONFIG_JUMP_LABEL
5695 static struct static_key __cfs_bandwidth_used;
5696 
5697 static inline bool cfs_bandwidth_used(void)
5698 {
5699 	return static_key_false(&__cfs_bandwidth_used);
5700 }
5701 
5702 void cfs_bandwidth_usage_inc(void)
5703 {
5704 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5705 }
5706 
5707 void cfs_bandwidth_usage_dec(void)
5708 {
5709 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5710 }
5711 #else /* CONFIG_JUMP_LABEL */
5712 static bool cfs_bandwidth_used(void)
5713 {
5714 	return true;
5715 }
5716 
5717 void cfs_bandwidth_usage_inc(void) {}
5718 void cfs_bandwidth_usage_dec(void) {}
5719 #endif /* CONFIG_JUMP_LABEL */
5720 
5721 /*
5722  * default period for cfs group bandwidth.
5723  * default: 0.1s, units: nanoseconds
5724  */
5725 static inline u64 default_cfs_period(void)
5726 {
5727 	return 100000000ULL;
5728 }
5729 
5730 static inline u64 sched_cfs_bandwidth_slice(void)
5731 {
5732 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5733 }
5734 
5735 /*
5736  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5737  * directly instead of rq->clock to avoid adding additional synchronization
5738  * around rq->lock.
5739  *
5740  * requires cfs_b->lock
5741  */
5742 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5743 {
5744 	s64 runtime;
5745 
5746 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5747 		return;
5748 
5749 	cfs_b->runtime += cfs_b->quota;
5750 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5751 	if (runtime > 0) {
5752 		cfs_b->burst_time += runtime;
5753 		cfs_b->nr_burst++;
5754 	}
5755 
5756 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5757 	cfs_b->runtime_snap = cfs_b->runtime;
5758 }
5759 
5760 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5761 {
5762 	return &tg->cfs_bandwidth;
5763 }
5764 
5765 /* returns 0 on failure to allocate runtime */
5766 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5767 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5768 {
5769 	u64 min_amount, amount = 0;
5770 
5771 	lockdep_assert_held(&cfs_b->lock);
5772 
5773 	/* note: this is a positive sum as runtime_remaining <= 0 */
5774 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5775 
5776 	if (cfs_b->quota == RUNTIME_INF)
5777 		amount = min_amount;
5778 	else {
5779 		start_cfs_bandwidth(cfs_b);
5780 
5781 		if (cfs_b->runtime > 0) {
5782 			amount = min(cfs_b->runtime, min_amount);
5783 			cfs_b->runtime -= amount;
5784 			cfs_b->idle = 0;
5785 		}
5786 	}
5787 
5788 	cfs_rq->runtime_remaining += amount;
5789 
5790 	return cfs_rq->runtime_remaining > 0;
5791 }
5792 
5793 /* returns 0 on failure to allocate runtime */
5794 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5795 {
5796 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5797 	int ret;
5798 
5799 	raw_spin_lock(&cfs_b->lock);
5800 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5801 	raw_spin_unlock(&cfs_b->lock);
5802 
5803 	return ret;
5804 }
5805 
5806 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5807 {
5808 	/* dock delta_exec before expiring quota (as it could span periods) */
5809 	cfs_rq->runtime_remaining -= delta_exec;
5810 
5811 	if (likely(cfs_rq->runtime_remaining > 0))
5812 		return;
5813 
5814 	if (cfs_rq->throttled)
5815 		return;
5816 	/*
5817 	 * if we're unable to extend our runtime we resched so that the active
5818 	 * hierarchy can be throttled
5819 	 */
5820 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5821 		resched_curr(rq_of(cfs_rq));
5822 }
5823 
5824 static __always_inline
5825 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5826 {
5827 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5828 		return;
5829 
5830 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5831 }
5832 
5833 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5834 {
5835 	return cfs_bandwidth_used() && cfs_rq->throttled;
5836 }
5837 
5838 /* check whether cfs_rq, or any parent, is throttled */
5839 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5840 {
5841 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5842 }
5843 
5844 /*
5845  * Ensure that neither of the group entities corresponding to src_cpu or
5846  * dest_cpu are members of a throttled hierarchy when performing group
5847  * load-balance operations.
5848  */
5849 static inline int throttled_lb_pair(struct task_group *tg,
5850 				    int src_cpu, int dest_cpu)
5851 {
5852 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5853 
5854 	src_cfs_rq = tg->cfs_rq[src_cpu];
5855 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5856 
5857 	return throttled_hierarchy(src_cfs_rq) ||
5858 	       throttled_hierarchy(dest_cfs_rq);
5859 }
5860 
5861 static int tg_unthrottle_up(struct task_group *tg, void *data)
5862 {
5863 	struct rq *rq = data;
5864 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5865 
5866 	cfs_rq->throttle_count--;
5867 	if (!cfs_rq->throttle_count) {
5868 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5869 					     cfs_rq->throttled_clock_pelt;
5870 
5871 		/* Add cfs_rq with load or one or more already running entities to the list */
5872 		if (!cfs_rq_is_decayed(cfs_rq))
5873 			list_add_leaf_cfs_rq(cfs_rq);
5874 
5875 		if (cfs_rq->throttled_clock_self) {
5876 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5877 
5878 			cfs_rq->throttled_clock_self = 0;
5879 
5880 			if (SCHED_WARN_ON((s64)delta < 0))
5881 				delta = 0;
5882 
5883 			cfs_rq->throttled_clock_self_time += delta;
5884 		}
5885 	}
5886 
5887 	return 0;
5888 }
5889 
5890 static int tg_throttle_down(struct task_group *tg, void *data)
5891 {
5892 	struct rq *rq = data;
5893 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5894 
5895 	/* group is entering throttled state, stop time */
5896 	if (!cfs_rq->throttle_count) {
5897 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5898 		list_del_leaf_cfs_rq(cfs_rq);
5899 
5900 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5901 		if (cfs_rq->nr_running)
5902 			cfs_rq->throttled_clock_self = rq_clock(rq);
5903 	}
5904 	cfs_rq->throttle_count++;
5905 
5906 	return 0;
5907 }
5908 
5909 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5910 {
5911 	struct rq *rq = rq_of(cfs_rq);
5912 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5913 	struct sched_entity *se;
5914 	long task_delta, idle_task_delta, dequeue = 1;
5915 	long rq_h_nr_running = rq->cfs.h_nr_running;
5916 
5917 	raw_spin_lock(&cfs_b->lock);
5918 	/* This will start the period timer if necessary */
5919 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5920 		/*
5921 		 * We have raced with bandwidth becoming available, and if we
5922 		 * actually throttled the timer might not unthrottle us for an
5923 		 * entire period. We additionally needed to make sure that any
5924 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5925 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5926 		 * for 1ns of runtime rather than just check cfs_b.
5927 		 */
5928 		dequeue = 0;
5929 	} else {
5930 		list_add_tail_rcu(&cfs_rq->throttled_list,
5931 				  &cfs_b->throttled_cfs_rq);
5932 	}
5933 	raw_spin_unlock(&cfs_b->lock);
5934 
5935 	if (!dequeue)
5936 		return false;  /* Throttle no longer required. */
5937 
5938 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5939 
5940 	/* freeze hierarchy runnable averages while throttled */
5941 	rcu_read_lock();
5942 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5943 	rcu_read_unlock();
5944 
5945 	task_delta = cfs_rq->h_nr_running;
5946 	idle_task_delta = cfs_rq->idle_h_nr_running;
5947 	for_each_sched_entity(se) {
5948 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5949 		int flags;
5950 
5951 		/* throttled entity or throttle-on-deactivate */
5952 		if (!se->on_rq)
5953 			goto done;
5954 
5955 		/*
5956 		 * Abuse SPECIAL to avoid delayed dequeue in this instance.
5957 		 * This avoids teaching dequeue_entities() about throttled
5958 		 * entities and keeps things relatively simple.
5959 		 */
5960 		flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
5961 		if (se->sched_delayed)
5962 			flags |= DEQUEUE_DELAYED;
5963 		dequeue_entity(qcfs_rq, se, flags);
5964 
5965 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5966 			idle_task_delta = cfs_rq->h_nr_running;
5967 
5968 		qcfs_rq->h_nr_running -= task_delta;
5969 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5970 
5971 		if (qcfs_rq->load.weight) {
5972 			/* Avoid re-evaluating load for this entity: */
5973 			se = parent_entity(se);
5974 			break;
5975 		}
5976 	}
5977 
5978 	for_each_sched_entity(se) {
5979 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5980 		/* throttled entity or throttle-on-deactivate */
5981 		if (!se->on_rq)
5982 			goto done;
5983 
5984 		update_load_avg(qcfs_rq, se, 0);
5985 		se_update_runnable(se);
5986 
5987 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5988 			idle_task_delta = cfs_rq->h_nr_running;
5989 
5990 		qcfs_rq->h_nr_running -= task_delta;
5991 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5992 	}
5993 
5994 	/* At this point se is NULL and we are at root level*/
5995 	sub_nr_running(rq, task_delta);
5996 
5997 	/* Stop the fair server if throttling resulted in no runnable tasks */
5998 	if (rq_h_nr_running && !rq->cfs.h_nr_running)
5999 		dl_server_stop(&rq->fair_server);
6000 done:
6001 	/*
6002 	 * Note: distribution will already see us throttled via the
6003 	 * throttled-list.  rq->lock protects completion.
6004 	 */
6005 	cfs_rq->throttled = 1;
6006 	SCHED_WARN_ON(cfs_rq->throttled_clock);
6007 	if (cfs_rq->nr_running)
6008 		cfs_rq->throttled_clock = rq_clock(rq);
6009 	return true;
6010 }
6011 
6012 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
6013 {
6014 	struct rq *rq = rq_of(cfs_rq);
6015 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6016 	struct sched_entity *se;
6017 	long task_delta, idle_task_delta;
6018 	long rq_h_nr_running = rq->cfs.h_nr_running;
6019 
6020 	se = cfs_rq->tg->se[cpu_of(rq)];
6021 
6022 	cfs_rq->throttled = 0;
6023 
6024 	update_rq_clock(rq);
6025 
6026 	raw_spin_lock(&cfs_b->lock);
6027 	if (cfs_rq->throttled_clock) {
6028 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
6029 		cfs_rq->throttled_clock = 0;
6030 	}
6031 	list_del_rcu(&cfs_rq->throttled_list);
6032 	raw_spin_unlock(&cfs_b->lock);
6033 
6034 	/* update hierarchical throttle state */
6035 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
6036 
6037 	if (!cfs_rq->load.weight) {
6038 		if (!cfs_rq->on_list)
6039 			return;
6040 		/*
6041 		 * Nothing to run but something to decay (on_list)?
6042 		 * Complete the branch.
6043 		 */
6044 		for_each_sched_entity(se) {
6045 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
6046 				break;
6047 		}
6048 		goto unthrottle_throttle;
6049 	}
6050 
6051 	task_delta = cfs_rq->h_nr_running;
6052 	idle_task_delta = cfs_rq->idle_h_nr_running;
6053 	for_each_sched_entity(se) {
6054 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6055 
6056 		/* Handle any unfinished DELAY_DEQUEUE business first. */
6057 		if (se->sched_delayed) {
6058 			int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED;
6059 
6060 			dequeue_entity(qcfs_rq, se, flags);
6061 		} else if (se->on_rq)
6062 			break;
6063 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
6064 
6065 		if (cfs_rq_is_idle(group_cfs_rq(se)))
6066 			idle_task_delta = cfs_rq->h_nr_running;
6067 
6068 		qcfs_rq->h_nr_running += task_delta;
6069 		qcfs_rq->idle_h_nr_running += idle_task_delta;
6070 
6071 		/* end evaluation on encountering a throttled cfs_rq */
6072 		if (cfs_rq_throttled(qcfs_rq))
6073 			goto unthrottle_throttle;
6074 	}
6075 
6076 	for_each_sched_entity(se) {
6077 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6078 
6079 		update_load_avg(qcfs_rq, se, UPDATE_TG);
6080 		se_update_runnable(se);
6081 
6082 		if (cfs_rq_is_idle(group_cfs_rq(se)))
6083 			idle_task_delta = cfs_rq->h_nr_running;
6084 
6085 		qcfs_rq->h_nr_running += task_delta;
6086 		qcfs_rq->idle_h_nr_running += idle_task_delta;
6087 
6088 		/* end evaluation on encountering a throttled cfs_rq */
6089 		if (cfs_rq_throttled(qcfs_rq))
6090 			goto unthrottle_throttle;
6091 	}
6092 
6093 	/* Start the fair server if un-throttling resulted in new runnable tasks */
6094 	if (!rq_h_nr_running && rq->cfs.h_nr_running)
6095 		dl_server_start(&rq->fair_server);
6096 
6097 	/* At this point se is NULL and we are at root level*/
6098 	add_nr_running(rq, task_delta);
6099 
6100 unthrottle_throttle:
6101 	assert_list_leaf_cfs_rq(rq);
6102 
6103 	/* Determine whether we need to wake up potentially idle CPU: */
6104 	if (rq->curr == rq->idle && rq->cfs.nr_running)
6105 		resched_curr(rq);
6106 }
6107 
6108 #ifdef CONFIG_SMP
6109 static void __cfsb_csd_unthrottle(void *arg)
6110 {
6111 	struct cfs_rq *cursor, *tmp;
6112 	struct rq *rq = arg;
6113 	struct rq_flags rf;
6114 
6115 	rq_lock(rq, &rf);
6116 
6117 	/*
6118 	 * Iterating over the list can trigger several call to
6119 	 * update_rq_clock() in unthrottle_cfs_rq().
6120 	 * Do it once and skip the potential next ones.
6121 	 */
6122 	update_rq_clock(rq);
6123 	rq_clock_start_loop_update(rq);
6124 
6125 	/*
6126 	 * Since we hold rq lock we're safe from concurrent manipulation of
6127 	 * the CSD list. However, this RCU critical section annotates the
6128 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
6129 	 * race with group being freed in the window between removing it
6130 	 * from the list and advancing to the next entry in the list.
6131 	 */
6132 	rcu_read_lock();
6133 
6134 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6135 				 throttled_csd_list) {
6136 		list_del_init(&cursor->throttled_csd_list);
6137 
6138 		if (cfs_rq_throttled(cursor))
6139 			unthrottle_cfs_rq(cursor);
6140 	}
6141 
6142 	rcu_read_unlock();
6143 
6144 	rq_clock_stop_loop_update(rq);
6145 	rq_unlock(rq, &rf);
6146 }
6147 
6148 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6149 {
6150 	struct rq *rq = rq_of(cfs_rq);
6151 	bool first;
6152 
6153 	if (rq == this_rq()) {
6154 		unthrottle_cfs_rq(cfs_rq);
6155 		return;
6156 	}
6157 
6158 	/* Already enqueued */
6159 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
6160 		return;
6161 
6162 	first = list_empty(&rq->cfsb_csd_list);
6163 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6164 	if (first)
6165 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6166 }
6167 #else
6168 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6169 {
6170 	unthrottle_cfs_rq(cfs_rq);
6171 }
6172 #endif
6173 
6174 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6175 {
6176 	lockdep_assert_rq_held(rq_of(cfs_rq));
6177 
6178 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
6179 	    cfs_rq->runtime_remaining <= 0))
6180 		return;
6181 
6182 	__unthrottle_cfs_rq_async(cfs_rq);
6183 }
6184 
6185 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6186 {
6187 	int this_cpu = smp_processor_id();
6188 	u64 runtime, remaining = 1;
6189 	bool throttled = false;
6190 	struct cfs_rq *cfs_rq, *tmp;
6191 	struct rq_flags rf;
6192 	struct rq *rq;
6193 	LIST_HEAD(local_unthrottle);
6194 
6195 	rcu_read_lock();
6196 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6197 				throttled_list) {
6198 		rq = rq_of(cfs_rq);
6199 
6200 		if (!remaining) {
6201 			throttled = true;
6202 			break;
6203 		}
6204 
6205 		rq_lock_irqsave(rq, &rf);
6206 		if (!cfs_rq_throttled(cfs_rq))
6207 			goto next;
6208 
6209 		/* Already queued for async unthrottle */
6210 		if (!list_empty(&cfs_rq->throttled_csd_list))
6211 			goto next;
6212 
6213 		/* By the above checks, this should never be true */
6214 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6215 
6216 		raw_spin_lock(&cfs_b->lock);
6217 		runtime = -cfs_rq->runtime_remaining + 1;
6218 		if (runtime > cfs_b->runtime)
6219 			runtime = cfs_b->runtime;
6220 		cfs_b->runtime -= runtime;
6221 		remaining = cfs_b->runtime;
6222 		raw_spin_unlock(&cfs_b->lock);
6223 
6224 		cfs_rq->runtime_remaining += runtime;
6225 
6226 		/* we check whether we're throttled above */
6227 		if (cfs_rq->runtime_remaining > 0) {
6228 			if (cpu_of(rq) != this_cpu) {
6229 				unthrottle_cfs_rq_async(cfs_rq);
6230 			} else {
6231 				/*
6232 				 * We currently only expect to be unthrottling
6233 				 * a single cfs_rq locally.
6234 				 */
6235 				SCHED_WARN_ON(!list_empty(&local_unthrottle));
6236 				list_add_tail(&cfs_rq->throttled_csd_list,
6237 					      &local_unthrottle);
6238 			}
6239 		} else {
6240 			throttled = true;
6241 		}
6242 
6243 next:
6244 		rq_unlock_irqrestore(rq, &rf);
6245 	}
6246 
6247 	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6248 				 throttled_csd_list) {
6249 		struct rq *rq = rq_of(cfs_rq);
6250 
6251 		rq_lock_irqsave(rq, &rf);
6252 
6253 		list_del_init(&cfs_rq->throttled_csd_list);
6254 
6255 		if (cfs_rq_throttled(cfs_rq))
6256 			unthrottle_cfs_rq(cfs_rq);
6257 
6258 		rq_unlock_irqrestore(rq, &rf);
6259 	}
6260 	SCHED_WARN_ON(!list_empty(&local_unthrottle));
6261 
6262 	rcu_read_unlock();
6263 
6264 	return throttled;
6265 }
6266 
6267 /*
6268  * Responsible for refilling a task_group's bandwidth and unthrottling its
6269  * cfs_rqs as appropriate. If there has been no activity within the last
6270  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6271  * used to track this state.
6272  */
6273 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6274 {
6275 	int throttled;
6276 
6277 	/* no need to continue the timer with no bandwidth constraint */
6278 	if (cfs_b->quota == RUNTIME_INF)
6279 		goto out_deactivate;
6280 
6281 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6282 	cfs_b->nr_periods += overrun;
6283 
6284 	/* Refill extra burst quota even if cfs_b->idle */
6285 	__refill_cfs_bandwidth_runtime(cfs_b);
6286 
6287 	/*
6288 	 * idle depends on !throttled (for the case of a large deficit), and if
6289 	 * we're going inactive then everything else can be deferred
6290 	 */
6291 	if (cfs_b->idle && !throttled)
6292 		goto out_deactivate;
6293 
6294 	if (!throttled) {
6295 		/* mark as potentially idle for the upcoming period */
6296 		cfs_b->idle = 1;
6297 		return 0;
6298 	}
6299 
6300 	/* account preceding periods in which throttling occurred */
6301 	cfs_b->nr_throttled += overrun;
6302 
6303 	/*
6304 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6305 	 */
6306 	while (throttled && cfs_b->runtime > 0) {
6307 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6308 		/* we can't nest cfs_b->lock while distributing bandwidth */
6309 		throttled = distribute_cfs_runtime(cfs_b);
6310 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6311 	}
6312 
6313 	/*
6314 	 * While we are ensured activity in the period following an
6315 	 * unthrottle, this also covers the case in which the new bandwidth is
6316 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6317 	 * timer to remain active while there are any throttled entities.)
6318 	 */
6319 	cfs_b->idle = 0;
6320 
6321 	return 0;
6322 
6323 out_deactivate:
6324 	return 1;
6325 }
6326 
6327 /* a cfs_rq won't donate quota below this amount */
6328 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6329 /* minimum remaining period time to redistribute slack quota */
6330 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6331 /* how long we wait to gather additional slack before distributing */
6332 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6333 
6334 /*
6335  * Are we near the end of the current quota period?
6336  *
6337  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6338  * hrtimer base being cleared by hrtimer_start. In the case of
6339  * migrate_hrtimers, base is never cleared, so we are fine.
6340  */
6341 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6342 {
6343 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6344 	s64 remaining;
6345 
6346 	/* if the call-back is running a quota refresh is already occurring */
6347 	if (hrtimer_callback_running(refresh_timer))
6348 		return 1;
6349 
6350 	/* is a quota refresh about to occur? */
6351 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6352 	if (remaining < (s64)min_expire)
6353 		return 1;
6354 
6355 	return 0;
6356 }
6357 
6358 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6359 {
6360 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6361 
6362 	/* if there's a quota refresh soon don't bother with slack */
6363 	if (runtime_refresh_within(cfs_b, min_left))
6364 		return;
6365 
6366 	/* don't push forwards an existing deferred unthrottle */
6367 	if (cfs_b->slack_started)
6368 		return;
6369 	cfs_b->slack_started = true;
6370 
6371 	hrtimer_start(&cfs_b->slack_timer,
6372 			ns_to_ktime(cfs_bandwidth_slack_period),
6373 			HRTIMER_MODE_REL);
6374 }
6375 
6376 /* we know any runtime found here is valid as update_curr() precedes return */
6377 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6378 {
6379 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6380 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6381 
6382 	if (slack_runtime <= 0)
6383 		return;
6384 
6385 	raw_spin_lock(&cfs_b->lock);
6386 	if (cfs_b->quota != RUNTIME_INF) {
6387 		cfs_b->runtime += slack_runtime;
6388 
6389 		/* we are under rq->lock, defer unthrottling using a timer */
6390 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6391 		    !list_empty(&cfs_b->throttled_cfs_rq))
6392 			start_cfs_slack_bandwidth(cfs_b);
6393 	}
6394 	raw_spin_unlock(&cfs_b->lock);
6395 
6396 	/* even if it's not valid for return we don't want to try again */
6397 	cfs_rq->runtime_remaining -= slack_runtime;
6398 }
6399 
6400 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6401 {
6402 	if (!cfs_bandwidth_used())
6403 		return;
6404 
6405 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6406 		return;
6407 
6408 	__return_cfs_rq_runtime(cfs_rq);
6409 }
6410 
6411 /*
6412  * This is done with a timer (instead of inline with bandwidth return) since
6413  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6414  */
6415 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6416 {
6417 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6418 	unsigned long flags;
6419 
6420 	/* confirm we're still not at a refresh boundary */
6421 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6422 	cfs_b->slack_started = false;
6423 
6424 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6425 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6426 		return;
6427 	}
6428 
6429 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6430 		runtime = cfs_b->runtime;
6431 
6432 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6433 
6434 	if (!runtime)
6435 		return;
6436 
6437 	distribute_cfs_runtime(cfs_b);
6438 }
6439 
6440 /*
6441  * When a group wakes up we want to make sure that its quota is not already
6442  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6443  * runtime as update_curr() throttling can not trigger until it's on-rq.
6444  */
6445 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6446 {
6447 	if (!cfs_bandwidth_used())
6448 		return;
6449 
6450 	/* an active group must be handled by the update_curr()->put() path */
6451 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6452 		return;
6453 
6454 	/* ensure the group is not already throttled */
6455 	if (cfs_rq_throttled(cfs_rq))
6456 		return;
6457 
6458 	/* update runtime allocation */
6459 	account_cfs_rq_runtime(cfs_rq, 0);
6460 	if (cfs_rq->runtime_remaining <= 0)
6461 		throttle_cfs_rq(cfs_rq);
6462 }
6463 
6464 static void sync_throttle(struct task_group *tg, int cpu)
6465 {
6466 	struct cfs_rq *pcfs_rq, *cfs_rq;
6467 
6468 	if (!cfs_bandwidth_used())
6469 		return;
6470 
6471 	if (!tg->parent)
6472 		return;
6473 
6474 	cfs_rq = tg->cfs_rq[cpu];
6475 	pcfs_rq = tg->parent->cfs_rq[cpu];
6476 
6477 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6478 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6479 }
6480 
6481 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6482 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6483 {
6484 	if (!cfs_bandwidth_used())
6485 		return false;
6486 
6487 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6488 		return false;
6489 
6490 	/*
6491 	 * it's possible for a throttled entity to be forced into a running
6492 	 * state (e.g. set_curr_task), in this case we're finished.
6493 	 */
6494 	if (cfs_rq_throttled(cfs_rq))
6495 		return true;
6496 
6497 	return throttle_cfs_rq(cfs_rq);
6498 }
6499 
6500 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6501 {
6502 	struct cfs_bandwidth *cfs_b =
6503 		container_of(timer, struct cfs_bandwidth, slack_timer);
6504 
6505 	do_sched_cfs_slack_timer(cfs_b);
6506 
6507 	return HRTIMER_NORESTART;
6508 }
6509 
6510 extern const u64 max_cfs_quota_period;
6511 
6512 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6513 {
6514 	struct cfs_bandwidth *cfs_b =
6515 		container_of(timer, struct cfs_bandwidth, period_timer);
6516 	unsigned long flags;
6517 	int overrun;
6518 	int idle = 0;
6519 	int count = 0;
6520 
6521 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6522 	for (;;) {
6523 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6524 		if (!overrun)
6525 			break;
6526 
6527 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6528 
6529 		if (++count > 3) {
6530 			u64 new, old = ktime_to_ns(cfs_b->period);
6531 
6532 			/*
6533 			 * Grow period by a factor of 2 to avoid losing precision.
6534 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6535 			 * to fail.
6536 			 */
6537 			new = old * 2;
6538 			if (new < max_cfs_quota_period) {
6539 				cfs_b->period = ns_to_ktime(new);
6540 				cfs_b->quota *= 2;
6541 				cfs_b->burst *= 2;
6542 
6543 				pr_warn_ratelimited(
6544 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6545 					smp_processor_id(),
6546 					div_u64(new, NSEC_PER_USEC),
6547 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6548 			} else {
6549 				pr_warn_ratelimited(
6550 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6551 					smp_processor_id(),
6552 					div_u64(old, NSEC_PER_USEC),
6553 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6554 			}
6555 
6556 			/* reset count so we don't come right back in here */
6557 			count = 0;
6558 		}
6559 	}
6560 	if (idle)
6561 		cfs_b->period_active = 0;
6562 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6563 
6564 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6565 }
6566 
6567 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6568 {
6569 	raw_spin_lock_init(&cfs_b->lock);
6570 	cfs_b->runtime = 0;
6571 	cfs_b->quota = RUNTIME_INF;
6572 	cfs_b->period = ns_to_ktime(default_cfs_period());
6573 	cfs_b->burst = 0;
6574 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6575 
6576 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6577 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6578 	cfs_b->period_timer.function = sched_cfs_period_timer;
6579 
6580 	/* Add a random offset so that timers interleave */
6581 	hrtimer_set_expires(&cfs_b->period_timer,
6582 			    get_random_u32_below(cfs_b->period));
6583 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6584 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6585 	cfs_b->slack_started = false;
6586 }
6587 
6588 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6589 {
6590 	cfs_rq->runtime_enabled = 0;
6591 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6592 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6593 }
6594 
6595 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6596 {
6597 	lockdep_assert_held(&cfs_b->lock);
6598 
6599 	if (cfs_b->period_active)
6600 		return;
6601 
6602 	cfs_b->period_active = 1;
6603 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6604 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6605 }
6606 
6607 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6608 {
6609 	int __maybe_unused i;
6610 
6611 	/* init_cfs_bandwidth() was not called */
6612 	if (!cfs_b->throttled_cfs_rq.next)
6613 		return;
6614 
6615 	hrtimer_cancel(&cfs_b->period_timer);
6616 	hrtimer_cancel(&cfs_b->slack_timer);
6617 
6618 	/*
6619 	 * It is possible that we still have some cfs_rq's pending on a CSD
6620 	 * list, though this race is very rare. In order for this to occur, we
6621 	 * must have raced with the last task leaving the group while there
6622 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6623 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6624 	 * we can simply flush all pending CSD work inline here. We're
6625 	 * guaranteed at this point that no additional cfs_rq of this group can
6626 	 * join a CSD list.
6627 	 */
6628 #ifdef CONFIG_SMP
6629 	for_each_possible_cpu(i) {
6630 		struct rq *rq = cpu_rq(i);
6631 		unsigned long flags;
6632 
6633 		if (list_empty(&rq->cfsb_csd_list))
6634 			continue;
6635 
6636 		local_irq_save(flags);
6637 		__cfsb_csd_unthrottle(rq);
6638 		local_irq_restore(flags);
6639 	}
6640 #endif
6641 }
6642 
6643 /*
6644  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6645  *
6646  * The race is harmless, since modifying bandwidth settings of unhooked group
6647  * bits doesn't do much.
6648  */
6649 
6650 /* cpu online callback */
6651 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6652 {
6653 	struct task_group *tg;
6654 
6655 	lockdep_assert_rq_held(rq);
6656 
6657 	rcu_read_lock();
6658 	list_for_each_entry_rcu(tg, &task_groups, list) {
6659 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6660 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6661 
6662 		raw_spin_lock(&cfs_b->lock);
6663 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6664 		raw_spin_unlock(&cfs_b->lock);
6665 	}
6666 	rcu_read_unlock();
6667 }
6668 
6669 /* cpu offline callback */
6670 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6671 {
6672 	struct task_group *tg;
6673 
6674 	lockdep_assert_rq_held(rq);
6675 
6676 	/*
6677 	 * The rq clock has already been updated in the
6678 	 * set_rq_offline(), so we should skip updating
6679 	 * the rq clock again in unthrottle_cfs_rq().
6680 	 */
6681 	rq_clock_start_loop_update(rq);
6682 
6683 	rcu_read_lock();
6684 	list_for_each_entry_rcu(tg, &task_groups, list) {
6685 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6686 
6687 		if (!cfs_rq->runtime_enabled)
6688 			continue;
6689 
6690 		/*
6691 		 * clock_task is not advancing so we just need to make sure
6692 		 * there's some valid quota amount
6693 		 */
6694 		cfs_rq->runtime_remaining = 1;
6695 		/*
6696 		 * Offline rq is schedulable till CPU is completely disabled
6697 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6698 		 */
6699 		cfs_rq->runtime_enabled = 0;
6700 
6701 		if (cfs_rq_throttled(cfs_rq))
6702 			unthrottle_cfs_rq(cfs_rq);
6703 	}
6704 	rcu_read_unlock();
6705 
6706 	rq_clock_stop_loop_update(rq);
6707 }
6708 
6709 bool cfs_task_bw_constrained(struct task_struct *p)
6710 {
6711 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6712 
6713 	if (!cfs_bandwidth_used())
6714 		return false;
6715 
6716 	if (cfs_rq->runtime_enabled ||
6717 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6718 		return true;
6719 
6720 	return false;
6721 }
6722 
6723 #ifdef CONFIG_NO_HZ_FULL
6724 /* called from pick_next_task_fair() */
6725 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6726 {
6727 	int cpu = cpu_of(rq);
6728 
6729 	if (!cfs_bandwidth_used())
6730 		return;
6731 
6732 	if (!tick_nohz_full_cpu(cpu))
6733 		return;
6734 
6735 	if (rq->nr_running != 1)
6736 		return;
6737 
6738 	/*
6739 	 *  We know there is only one task runnable and we've just picked it. The
6740 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6741 	 *  be otherwise able to stop the tick. Just need to check if we are using
6742 	 *  bandwidth control.
6743 	 */
6744 	if (cfs_task_bw_constrained(p))
6745 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6746 }
6747 #endif
6748 
6749 #else /* CONFIG_CFS_BANDWIDTH */
6750 
6751 static inline bool cfs_bandwidth_used(void)
6752 {
6753 	return false;
6754 }
6755 
6756 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6757 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6758 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6759 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6760 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6761 
6762 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6763 {
6764 	return 0;
6765 }
6766 
6767 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6768 {
6769 	return 0;
6770 }
6771 
6772 static inline int throttled_lb_pair(struct task_group *tg,
6773 				    int src_cpu, int dest_cpu)
6774 {
6775 	return 0;
6776 }
6777 
6778 #ifdef CONFIG_FAIR_GROUP_SCHED
6779 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6780 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6781 #endif
6782 
6783 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6784 {
6785 	return NULL;
6786 }
6787 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6788 static inline void update_runtime_enabled(struct rq *rq) {}
6789 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6790 #ifdef CONFIG_CGROUP_SCHED
6791 bool cfs_task_bw_constrained(struct task_struct *p)
6792 {
6793 	return false;
6794 }
6795 #endif
6796 #endif /* CONFIG_CFS_BANDWIDTH */
6797 
6798 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6799 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6800 #endif
6801 
6802 /**************************************************
6803  * CFS operations on tasks:
6804  */
6805 
6806 #ifdef CONFIG_SCHED_HRTICK
6807 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6808 {
6809 	struct sched_entity *se = &p->se;
6810 
6811 	SCHED_WARN_ON(task_rq(p) != rq);
6812 
6813 	if (rq->cfs.h_nr_running > 1) {
6814 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6815 		u64 slice = se->slice;
6816 		s64 delta = slice - ran;
6817 
6818 		if (delta < 0) {
6819 			if (task_current_donor(rq, p))
6820 				resched_curr(rq);
6821 			return;
6822 		}
6823 		hrtick_start(rq, delta);
6824 	}
6825 }
6826 
6827 /*
6828  * called from enqueue/dequeue and updates the hrtick when the
6829  * current task is from our class and nr_running is low enough
6830  * to matter.
6831  */
6832 static void hrtick_update(struct rq *rq)
6833 {
6834 	struct task_struct *donor = rq->donor;
6835 
6836 	if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class)
6837 		return;
6838 
6839 	hrtick_start_fair(rq, donor);
6840 }
6841 #else /* !CONFIG_SCHED_HRTICK */
6842 static inline void
6843 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6844 {
6845 }
6846 
6847 static inline void hrtick_update(struct rq *rq)
6848 {
6849 }
6850 #endif
6851 
6852 #ifdef CONFIG_SMP
6853 static inline bool cpu_overutilized(int cpu)
6854 {
6855 	unsigned long  rq_util_min, rq_util_max;
6856 
6857 	if (!sched_energy_enabled())
6858 		return false;
6859 
6860 	rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6861 	rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6862 
6863 	/* Return true only if the utilization doesn't fit CPU's capacity */
6864 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6865 }
6866 
6867 /*
6868  * overutilized value make sense only if EAS is enabled
6869  */
6870 static inline bool is_rd_overutilized(struct root_domain *rd)
6871 {
6872 	return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6873 }
6874 
6875 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6876 {
6877 	if (!sched_energy_enabled())
6878 		return;
6879 
6880 	WRITE_ONCE(rd->overutilized, flag);
6881 	trace_sched_overutilized_tp(rd, flag);
6882 }
6883 
6884 static inline void check_update_overutilized_status(struct rq *rq)
6885 {
6886 	/*
6887 	 * overutilized field is used for load balancing decisions only
6888 	 * if energy aware scheduler is being used
6889 	 */
6890 
6891 	if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6892 		set_rd_overutilized(rq->rd, 1);
6893 }
6894 #else
6895 static inline void check_update_overutilized_status(struct rq *rq) { }
6896 #endif
6897 
6898 /* Runqueue only has SCHED_IDLE tasks enqueued */
6899 static int sched_idle_rq(struct rq *rq)
6900 {
6901 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6902 			rq->nr_running);
6903 }
6904 
6905 #ifdef CONFIG_SMP
6906 static int sched_idle_cpu(int cpu)
6907 {
6908 	return sched_idle_rq(cpu_rq(cpu));
6909 }
6910 #endif
6911 
6912 static void
6913 requeue_delayed_entity(struct sched_entity *se)
6914 {
6915 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
6916 
6917 	/*
6918 	 * se->sched_delayed should imply: se->on_rq == 1.
6919 	 * Because a delayed entity is one that is still on
6920 	 * the runqueue competing until elegibility.
6921 	 */
6922 	SCHED_WARN_ON(!se->sched_delayed);
6923 	SCHED_WARN_ON(!se->on_rq);
6924 
6925 	if (sched_feat(DELAY_ZERO)) {
6926 		update_entity_lag(cfs_rq, se);
6927 		if (se->vlag > 0) {
6928 			cfs_rq->nr_running--;
6929 			if (se != cfs_rq->curr)
6930 				__dequeue_entity(cfs_rq, se);
6931 			se->vlag = 0;
6932 			place_entity(cfs_rq, se, 0);
6933 			if (se != cfs_rq->curr)
6934 				__enqueue_entity(cfs_rq, se);
6935 			cfs_rq->nr_running++;
6936 		}
6937 	}
6938 
6939 	update_load_avg(cfs_rq, se, 0);
6940 	se->sched_delayed = 0;
6941 }
6942 
6943 /*
6944  * The enqueue_task method is called before nr_running is
6945  * increased. Here we update the fair scheduling stats and
6946  * then put the task into the rbtree:
6947  */
6948 static void
6949 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6950 {
6951 	struct cfs_rq *cfs_rq;
6952 	struct sched_entity *se = &p->se;
6953 	int idle_h_nr_running = task_has_idle_policy(p);
6954 	int task_new = !(flags & ENQUEUE_WAKEUP);
6955 	int rq_h_nr_running = rq->cfs.h_nr_running;
6956 	u64 slice = 0;
6957 
6958 	/*
6959 	 * The code below (indirectly) updates schedutil which looks at
6960 	 * the cfs_rq utilization to select a frequency.
6961 	 * Let's add the task's estimated utilization to the cfs_rq's
6962 	 * estimated utilization, before we update schedutil.
6963 	 */
6964 	if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE))))
6965 		util_est_enqueue(&rq->cfs, p);
6966 
6967 	if (flags & ENQUEUE_DELAYED) {
6968 		requeue_delayed_entity(se);
6969 		return;
6970 	}
6971 
6972 	/*
6973 	 * If in_iowait is set, the code below may not trigger any cpufreq
6974 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6975 	 * passed.
6976 	 */
6977 	if (p->in_iowait)
6978 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6979 
6980 	for_each_sched_entity(se) {
6981 		if (se->on_rq) {
6982 			if (se->sched_delayed)
6983 				requeue_delayed_entity(se);
6984 			break;
6985 		}
6986 		cfs_rq = cfs_rq_of(se);
6987 
6988 		/*
6989 		 * Basically set the slice of group entries to the min_slice of
6990 		 * their respective cfs_rq. This ensures the group can service
6991 		 * its entities in the desired time-frame.
6992 		 */
6993 		if (slice) {
6994 			se->slice = slice;
6995 			se->custom_slice = 1;
6996 		}
6997 		enqueue_entity(cfs_rq, se, flags);
6998 		slice = cfs_rq_min_slice(cfs_rq);
6999 
7000 		cfs_rq->h_nr_running++;
7001 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
7002 
7003 		if (cfs_rq_is_idle(cfs_rq))
7004 			idle_h_nr_running = 1;
7005 
7006 		/* end evaluation on encountering a throttled cfs_rq */
7007 		if (cfs_rq_throttled(cfs_rq))
7008 			goto enqueue_throttle;
7009 
7010 		flags = ENQUEUE_WAKEUP;
7011 	}
7012 
7013 	for_each_sched_entity(se) {
7014 		cfs_rq = cfs_rq_of(se);
7015 
7016 		update_load_avg(cfs_rq, se, UPDATE_TG);
7017 		se_update_runnable(se);
7018 		update_cfs_group(se);
7019 
7020 		se->slice = slice;
7021 		slice = cfs_rq_min_slice(cfs_rq);
7022 
7023 		cfs_rq->h_nr_running++;
7024 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
7025 
7026 		if (cfs_rq_is_idle(cfs_rq))
7027 			idle_h_nr_running = 1;
7028 
7029 		/* end evaluation on encountering a throttled cfs_rq */
7030 		if (cfs_rq_throttled(cfs_rq))
7031 			goto enqueue_throttle;
7032 	}
7033 
7034 	if (!rq_h_nr_running && rq->cfs.h_nr_running) {
7035 		/* Account for idle runtime */
7036 		if (!rq->nr_running)
7037 			dl_server_update_idle_time(rq, rq->curr);
7038 		dl_server_start(&rq->fair_server);
7039 	}
7040 
7041 	/* At this point se is NULL and we are at root level*/
7042 	add_nr_running(rq, 1);
7043 
7044 	/*
7045 	 * Since new tasks are assigned an initial util_avg equal to
7046 	 * half of the spare capacity of their CPU, tiny tasks have the
7047 	 * ability to cross the overutilized threshold, which will
7048 	 * result in the load balancer ruining all the task placement
7049 	 * done by EAS. As a way to mitigate that effect, do not account
7050 	 * for the first enqueue operation of new tasks during the
7051 	 * overutilized flag detection.
7052 	 *
7053 	 * A better way of solving this problem would be to wait for
7054 	 * the PELT signals of tasks to converge before taking them
7055 	 * into account, but that is not straightforward to implement,
7056 	 * and the following generally works well enough in practice.
7057 	 */
7058 	if (!task_new)
7059 		check_update_overutilized_status(rq);
7060 
7061 enqueue_throttle:
7062 	assert_list_leaf_cfs_rq(rq);
7063 
7064 	hrtick_update(rq);
7065 }
7066 
7067 static void set_next_buddy(struct sched_entity *se);
7068 
7069 /*
7070  * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
7071  * failing half-way through and resume the dequeue later.
7072  *
7073  * Returns:
7074  * -1 - dequeue delayed
7075  *  0 - dequeue throttled
7076  *  1 - dequeue complete
7077  */
7078 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
7079 {
7080 	bool was_sched_idle = sched_idle_rq(rq);
7081 	int rq_h_nr_running = rq->cfs.h_nr_running;
7082 	bool task_sleep = flags & DEQUEUE_SLEEP;
7083 	bool task_delayed = flags & DEQUEUE_DELAYED;
7084 	struct task_struct *p = NULL;
7085 	int idle_h_nr_running = 0;
7086 	int h_nr_running = 0;
7087 	struct cfs_rq *cfs_rq;
7088 	u64 slice = 0;
7089 
7090 	if (entity_is_task(se)) {
7091 		p = task_of(se);
7092 		h_nr_running = 1;
7093 		idle_h_nr_running = task_has_idle_policy(p);
7094 	} else {
7095 		cfs_rq = group_cfs_rq(se);
7096 		slice = cfs_rq_min_slice(cfs_rq);
7097 	}
7098 
7099 	for_each_sched_entity(se) {
7100 		cfs_rq = cfs_rq_of(se);
7101 
7102 		if (!dequeue_entity(cfs_rq, se, flags)) {
7103 			if (p && &p->se == se)
7104 				return -1;
7105 
7106 			break;
7107 		}
7108 
7109 		cfs_rq->h_nr_running -= h_nr_running;
7110 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7111 
7112 		if (cfs_rq_is_idle(cfs_rq))
7113 			idle_h_nr_running = h_nr_running;
7114 
7115 		/* end evaluation on encountering a throttled cfs_rq */
7116 		if (cfs_rq_throttled(cfs_rq))
7117 			return 0;
7118 
7119 		/* Don't dequeue parent if it has other entities besides us */
7120 		if (cfs_rq->load.weight) {
7121 			slice = cfs_rq_min_slice(cfs_rq);
7122 
7123 			/* Avoid re-evaluating load for this entity: */
7124 			se = parent_entity(se);
7125 			/*
7126 			 * Bias pick_next to pick a task from this cfs_rq, as
7127 			 * p is sleeping when it is within its sched_slice.
7128 			 */
7129 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
7130 				set_next_buddy(se);
7131 			break;
7132 		}
7133 		flags |= DEQUEUE_SLEEP;
7134 		flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7135 	}
7136 
7137 	for_each_sched_entity(se) {
7138 		cfs_rq = cfs_rq_of(se);
7139 
7140 		update_load_avg(cfs_rq, se, UPDATE_TG);
7141 		se_update_runnable(se);
7142 		update_cfs_group(se);
7143 
7144 		se->slice = slice;
7145 		slice = cfs_rq_min_slice(cfs_rq);
7146 
7147 		cfs_rq->h_nr_running -= h_nr_running;
7148 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7149 
7150 		if (cfs_rq_is_idle(cfs_rq))
7151 			idle_h_nr_running = h_nr_running;
7152 
7153 		/* end evaluation on encountering a throttled cfs_rq */
7154 		if (cfs_rq_throttled(cfs_rq))
7155 			return 0;
7156 	}
7157 
7158 	sub_nr_running(rq, h_nr_running);
7159 
7160 	if (rq_h_nr_running && !rq->cfs.h_nr_running)
7161 		dl_server_stop(&rq->fair_server);
7162 
7163 	/* balance early to pull high priority tasks */
7164 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7165 		rq->next_balance = jiffies;
7166 
7167 	if (p && task_delayed) {
7168 		SCHED_WARN_ON(!task_sleep);
7169 		SCHED_WARN_ON(p->on_rq != 1);
7170 
7171 		/* Fix-up what dequeue_task_fair() skipped */
7172 		hrtick_update(rq);
7173 
7174 		/*
7175 		 * Fix-up what block_task() skipped.
7176 		 *
7177 		 * Must be last, @p might not be valid after this.
7178 		 */
7179 		__block_task(rq, p);
7180 	}
7181 
7182 	return 1;
7183 }
7184 
7185 /*
7186  * The dequeue_task method is called before nr_running is
7187  * decreased. We remove the task from the rbtree and
7188  * update the fair scheduling stats:
7189  */
7190 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7191 {
7192 	if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE))))
7193 		util_est_dequeue(&rq->cfs, p);
7194 
7195 	util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7196 	if (dequeue_entities(rq, &p->se, flags) < 0)
7197 		return false;
7198 
7199 	/*
7200 	 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
7201 	 */
7202 
7203 	hrtick_update(rq);
7204 	return true;
7205 }
7206 
7207 #ifdef CONFIG_SMP
7208 
7209 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7210 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7211 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7212 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7213 
7214 #ifdef CONFIG_NO_HZ_COMMON
7215 
7216 static struct {
7217 	cpumask_var_t idle_cpus_mask;
7218 	atomic_t nr_cpus;
7219 	int has_blocked;		/* Idle CPUS has blocked load */
7220 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
7221 	unsigned long next_balance;     /* in jiffy units */
7222 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
7223 } nohz ____cacheline_aligned;
7224 
7225 #endif /* CONFIG_NO_HZ_COMMON */
7226 
7227 static unsigned long cpu_load(struct rq *rq)
7228 {
7229 	return cfs_rq_load_avg(&rq->cfs);
7230 }
7231 
7232 /*
7233  * cpu_load_without - compute CPU load without any contributions from *p
7234  * @cpu: the CPU which load is requested
7235  * @p: the task which load should be discounted
7236  *
7237  * The load of a CPU is defined by the load of tasks currently enqueued on that
7238  * CPU as well as tasks which are currently sleeping after an execution on that
7239  * CPU.
7240  *
7241  * This method returns the load of the specified CPU by discounting the load of
7242  * the specified task, whenever the task is currently contributing to the CPU
7243  * load.
7244  */
7245 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7246 {
7247 	struct cfs_rq *cfs_rq;
7248 	unsigned int load;
7249 
7250 	/* Task has no contribution or is new */
7251 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7252 		return cpu_load(rq);
7253 
7254 	cfs_rq = &rq->cfs;
7255 	load = READ_ONCE(cfs_rq->avg.load_avg);
7256 
7257 	/* Discount task's util from CPU's util */
7258 	lsub_positive(&load, task_h_load(p));
7259 
7260 	return load;
7261 }
7262 
7263 static unsigned long cpu_runnable(struct rq *rq)
7264 {
7265 	return cfs_rq_runnable_avg(&rq->cfs);
7266 }
7267 
7268 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7269 {
7270 	struct cfs_rq *cfs_rq;
7271 	unsigned int runnable;
7272 
7273 	/* Task has no contribution or is new */
7274 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7275 		return cpu_runnable(rq);
7276 
7277 	cfs_rq = &rq->cfs;
7278 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7279 
7280 	/* Discount task's runnable from CPU's runnable */
7281 	lsub_positive(&runnable, p->se.avg.runnable_avg);
7282 
7283 	return runnable;
7284 }
7285 
7286 static unsigned long capacity_of(int cpu)
7287 {
7288 	return cpu_rq(cpu)->cpu_capacity;
7289 }
7290 
7291 static void record_wakee(struct task_struct *p)
7292 {
7293 	/*
7294 	 * Only decay a single time; tasks that have less then 1 wakeup per
7295 	 * jiffy will not have built up many flips.
7296 	 */
7297 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7298 		current->wakee_flips >>= 1;
7299 		current->wakee_flip_decay_ts = jiffies;
7300 	}
7301 
7302 	if (current->last_wakee != p) {
7303 		current->last_wakee = p;
7304 		current->wakee_flips++;
7305 	}
7306 }
7307 
7308 /*
7309  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7310  *
7311  * A waker of many should wake a different task than the one last awakened
7312  * at a frequency roughly N times higher than one of its wakees.
7313  *
7314  * In order to determine whether we should let the load spread vs consolidating
7315  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7316  * partner, and a factor of lls_size higher frequency in the other.
7317  *
7318  * With both conditions met, we can be relatively sure that the relationship is
7319  * non-monogamous, with partner count exceeding socket size.
7320  *
7321  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7322  * whatever is irrelevant, spread criteria is apparent partner count exceeds
7323  * socket size.
7324  */
7325 static int wake_wide(struct task_struct *p)
7326 {
7327 	unsigned int master = current->wakee_flips;
7328 	unsigned int slave = p->wakee_flips;
7329 	int factor = __this_cpu_read(sd_llc_size);
7330 
7331 	if (master < slave)
7332 		swap(master, slave);
7333 	if (slave < factor || master < slave * factor)
7334 		return 0;
7335 	return 1;
7336 }
7337 
7338 /*
7339  * The purpose of wake_affine() is to quickly determine on which CPU we can run
7340  * soonest. For the purpose of speed we only consider the waking and previous
7341  * CPU.
7342  *
7343  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7344  *			cache-affine and is (or	will be) idle.
7345  *
7346  * wake_affine_weight() - considers the weight to reflect the average
7347  *			  scheduling latency of the CPUs. This seems to work
7348  *			  for the overloaded case.
7349  */
7350 static int
7351 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7352 {
7353 	/*
7354 	 * If this_cpu is idle, it implies the wakeup is from interrupt
7355 	 * context. Only allow the move if cache is shared. Otherwise an
7356 	 * interrupt intensive workload could force all tasks onto one
7357 	 * node depending on the IO topology or IRQ affinity settings.
7358 	 *
7359 	 * If the prev_cpu is idle and cache affine then avoid a migration.
7360 	 * There is no guarantee that the cache hot data from an interrupt
7361 	 * is more important than cache hot data on the prev_cpu and from
7362 	 * a cpufreq perspective, it's better to have higher utilisation
7363 	 * on one CPU.
7364 	 */
7365 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7366 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7367 
7368 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
7369 		return this_cpu;
7370 
7371 	if (available_idle_cpu(prev_cpu))
7372 		return prev_cpu;
7373 
7374 	return nr_cpumask_bits;
7375 }
7376 
7377 static int
7378 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7379 		   int this_cpu, int prev_cpu, int sync)
7380 {
7381 	s64 this_eff_load, prev_eff_load;
7382 	unsigned long task_load;
7383 
7384 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7385 
7386 	if (sync) {
7387 		unsigned long current_load = task_h_load(current);
7388 
7389 		if (current_load > this_eff_load)
7390 			return this_cpu;
7391 
7392 		this_eff_load -= current_load;
7393 	}
7394 
7395 	task_load = task_h_load(p);
7396 
7397 	this_eff_load += task_load;
7398 	if (sched_feat(WA_BIAS))
7399 		this_eff_load *= 100;
7400 	this_eff_load *= capacity_of(prev_cpu);
7401 
7402 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7403 	prev_eff_load -= task_load;
7404 	if (sched_feat(WA_BIAS))
7405 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7406 	prev_eff_load *= capacity_of(this_cpu);
7407 
7408 	/*
7409 	 * If sync, adjust the weight of prev_eff_load such that if
7410 	 * prev_eff == this_eff that select_idle_sibling() will consider
7411 	 * stacking the wakee on top of the waker if no other CPU is
7412 	 * idle.
7413 	 */
7414 	if (sync)
7415 		prev_eff_load += 1;
7416 
7417 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7418 }
7419 
7420 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7421 		       int this_cpu, int prev_cpu, int sync)
7422 {
7423 	int target = nr_cpumask_bits;
7424 
7425 	if (sched_feat(WA_IDLE))
7426 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7427 
7428 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7429 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7430 
7431 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7432 	if (target != this_cpu)
7433 		return prev_cpu;
7434 
7435 	schedstat_inc(sd->ttwu_move_affine);
7436 	schedstat_inc(p->stats.nr_wakeups_affine);
7437 	return target;
7438 }
7439 
7440 static struct sched_group *
7441 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7442 
7443 /*
7444  * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7445  */
7446 static int
7447 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7448 {
7449 	unsigned long load, min_load = ULONG_MAX;
7450 	unsigned int min_exit_latency = UINT_MAX;
7451 	u64 latest_idle_timestamp = 0;
7452 	int least_loaded_cpu = this_cpu;
7453 	int shallowest_idle_cpu = -1;
7454 	int i;
7455 
7456 	/* Check if we have any choice: */
7457 	if (group->group_weight == 1)
7458 		return cpumask_first(sched_group_span(group));
7459 
7460 	/* Traverse only the allowed CPUs */
7461 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7462 		struct rq *rq = cpu_rq(i);
7463 
7464 		if (!sched_core_cookie_match(rq, p))
7465 			continue;
7466 
7467 		if (sched_idle_cpu(i))
7468 			return i;
7469 
7470 		if (available_idle_cpu(i)) {
7471 			struct cpuidle_state *idle = idle_get_state(rq);
7472 			if (idle && idle->exit_latency < min_exit_latency) {
7473 				/*
7474 				 * We give priority to a CPU whose idle state
7475 				 * has the smallest exit latency irrespective
7476 				 * of any idle timestamp.
7477 				 */
7478 				min_exit_latency = idle->exit_latency;
7479 				latest_idle_timestamp = rq->idle_stamp;
7480 				shallowest_idle_cpu = i;
7481 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7482 				   rq->idle_stamp > latest_idle_timestamp) {
7483 				/*
7484 				 * If equal or no active idle state, then
7485 				 * the most recently idled CPU might have
7486 				 * a warmer cache.
7487 				 */
7488 				latest_idle_timestamp = rq->idle_stamp;
7489 				shallowest_idle_cpu = i;
7490 			}
7491 		} else if (shallowest_idle_cpu == -1) {
7492 			load = cpu_load(cpu_rq(i));
7493 			if (load < min_load) {
7494 				min_load = load;
7495 				least_loaded_cpu = i;
7496 			}
7497 		}
7498 	}
7499 
7500 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7501 }
7502 
7503 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7504 				  int cpu, int prev_cpu, int sd_flag)
7505 {
7506 	int new_cpu = cpu;
7507 
7508 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7509 		return prev_cpu;
7510 
7511 	/*
7512 	 * We need task's util for cpu_util_without, sync it up to
7513 	 * prev_cpu's last_update_time.
7514 	 */
7515 	if (!(sd_flag & SD_BALANCE_FORK))
7516 		sync_entity_load_avg(&p->se);
7517 
7518 	while (sd) {
7519 		struct sched_group *group;
7520 		struct sched_domain *tmp;
7521 		int weight;
7522 
7523 		if (!(sd->flags & sd_flag)) {
7524 			sd = sd->child;
7525 			continue;
7526 		}
7527 
7528 		group = sched_balance_find_dst_group(sd, p, cpu);
7529 		if (!group) {
7530 			sd = sd->child;
7531 			continue;
7532 		}
7533 
7534 		new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7535 		if (new_cpu == cpu) {
7536 			/* Now try balancing at a lower domain level of 'cpu': */
7537 			sd = sd->child;
7538 			continue;
7539 		}
7540 
7541 		/* Now try balancing at a lower domain level of 'new_cpu': */
7542 		cpu = new_cpu;
7543 		weight = sd->span_weight;
7544 		sd = NULL;
7545 		for_each_domain(cpu, tmp) {
7546 			if (weight <= tmp->span_weight)
7547 				break;
7548 			if (tmp->flags & sd_flag)
7549 				sd = tmp;
7550 		}
7551 	}
7552 
7553 	return new_cpu;
7554 }
7555 
7556 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7557 {
7558 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7559 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7560 		return cpu;
7561 
7562 	return -1;
7563 }
7564 
7565 #ifdef CONFIG_SCHED_SMT
7566 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7567 EXPORT_SYMBOL_GPL(sched_smt_present);
7568 
7569 static inline void set_idle_cores(int cpu, int val)
7570 {
7571 	struct sched_domain_shared *sds;
7572 
7573 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7574 	if (sds)
7575 		WRITE_ONCE(sds->has_idle_cores, val);
7576 }
7577 
7578 static inline bool test_idle_cores(int cpu)
7579 {
7580 	struct sched_domain_shared *sds;
7581 
7582 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7583 	if (sds)
7584 		return READ_ONCE(sds->has_idle_cores);
7585 
7586 	return false;
7587 }
7588 
7589 /*
7590  * Scans the local SMT mask to see if the entire core is idle, and records this
7591  * information in sd_llc_shared->has_idle_cores.
7592  *
7593  * Since SMT siblings share all cache levels, inspecting this limited remote
7594  * state should be fairly cheap.
7595  */
7596 void __update_idle_core(struct rq *rq)
7597 {
7598 	int core = cpu_of(rq);
7599 	int cpu;
7600 
7601 	rcu_read_lock();
7602 	if (test_idle_cores(core))
7603 		goto unlock;
7604 
7605 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7606 		if (cpu == core)
7607 			continue;
7608 
7609 		if (!available_idle_cpu(cpu))
7610 			goto unlock;
7611 	}
7612 
7613 	set_idle_cores(core, 1);
7614 unlock:
7615 	rcu_read_unlock();
7616 }
7617 
7618 /*
7619  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7620  * there are no idle cores left in the system; tracked through
7621  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7622  */
7623 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7624 {
7625 	bool idle = true;
7626 	int cpu;
7627 
7628 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7629 		if (!available_idle_cpu(cpu)) {
7630 			idle = false;
7631 			if (*idle_cpu == -1) {
7632 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7633 					*idle_cpu = cpu;
7634 					break;
7635 				}
7636 				continue;
7637 			}
7638 			break;
7639 		}
7640 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7641 			*idle_cpu = cpu;
7642 	}
7643 
7644 	if (idle)
7645 		return core;
7646 
7647 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7648 	return -1;
7649 }
7650 
7651 /*
7652  * Scan the local SMT mask for idle CPUs.
7653  */
7654 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7655 {
7656 	int cpu;
7657 
7658 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7659 		if (cpu == target)
7660 			continue;
7661 		/*
7662 		 * Check if the CPU is in the LLC scheduling domain of @target.
7663 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7664 		 */
7665 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7666 			continue;
7667 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7668 			return cpu;
7669 	}
7670 
7671 	return -1;
7672 }
7673 
7674 #else /* CONFIG_SCHED_SMT */
7675 
7676 static inline void set_idle_cores(int cpu, int val)
7677 {
7678 }
7679 
7680 static inline bool test_idle_cores(int cpu)
7681 {
7682 	return false;
7683 }
7684 
7685 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7686 {
7687 	return __select_idle_cpu(core, p);
7688 }
7689 
7690 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7691 {
7692 	return -1;
7693 }
7694 
7695 #endif /* CONFIG_SCHED_SMT */
7696 
7697 /*
7698  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7699  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7700  * average idle time for this rq (as found in rq->avg_idle).
7701  */
7702 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7703 {
7704 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7705 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7706 	struct sched_domain_shared *sd_share;
7707 
7708 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7709 
7710 	if (sched_feat(SIS_UTIL)) {
7711 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7712 		if (sd_share) {
7713 			/* because !--nr is the condition to stop scan */
7714 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7715 			/* overloaded LLC is unlikely to have idle cpu/core */
7716 			if (nr == 1)
7717 				return -1;
7718 		}
7719 	}
7720 
7721 	if (static_branch_unlikely(&sched_cluster_active)) {
7722 		struct sched_group *sg = sd->groups;
7723 
7724 		if (sg->flags & SD_CLUSTER) {
7725 			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7726 				if (!cpumask_test_cpu(cpu, cpus))
7727 					continue;
7728 
7729 				if (has_idle_core) {
7730 					i = select_idle_core(p, cpu, cpus, &idle_cpu);
7731 					if ((unsigned int)i < nr_cpumask_bits)
7732 						return i;
7733 				} else {
7734 					if (--nr <= 0)
7735 						return -1;
7736 					idle_cpu = __select_idle_cpu(cpu, p);
7737 					if ((unsigned int)idle_cpu < nr_cpumask_bits)
7738 						return idle_cpu;
7739 				}
7740 			}
7741 			cpumask_andnot(cpus, cpus, sched_group_span(sg));
7742 		}
7743 	}
7744 
7745 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7746 		if (has_idle_core) {
7747 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7748 			if ((unsigned int)i < nr_cpumask_bits)
7749 				return i;
7750 
7751 		} else {
7752 			if (--nr <= 0)
7753 				return -1;
7754 			idle_cpu = __select_idle_cpu(cpu, p);
7755 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7756 				break;
7757 		}
7758 	}
7759 
7760 	if (has_idle_core)
7761 		set_idle_cores(target, false);
7762 
7763 	return idle_cpu;
7764 }
7765 
7766 /*
7767  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7768  * the task fits. If no CPU is big enough, but there are idle ones, try to
7769  * maximize capacity.
7770  */
7771 static int
7772 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7773 {
7774 	unsigned long task_util, util_min, util_max, best_cap = 0;
7775 	int fits, best_fits = 0;
7776 	int cpu, best_cpu = -1;
7777 	struct cpumask *cpus;
7778 
7779 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7780 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7781 
7782 	task_util = task_util_est(p);
7783 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7784 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7785 
7786 	for_each_cpu_wrap(cpu, cpus, target) {
7787 		unsigned long cpu_cap = capacity_of(cpu);
7788 
7789 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7790 			continue;
7791 
7792 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7793 
7794 		/* This CPU fits with all requirements */
7795 		if (fits > 0)
7796 			return cpu;
7797 		/*
7798 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7799 		 * Look for the CPU with best capacity.
7800 		 */
7801 		else if (fits < 0)
7802 			cpu_cap = get_actual_cpu_capacity(cpu);
7803 
7804 		/*
7805 		 * First, select CPU which fits better (-1 being better than 0).
7806 		 * Then, select the one with best capacity at same level.
7807 		 */
7808 		if ((fits < best_fits) ||
7809 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7810 			best_cap = cpu_cap;
7811 			best_cpu = cpu;
7812 			best_fits = fits;
7813 		}
7814 	}
7815 
7816 	return best_cpu;
7817 }
7818 
7819 static inline bool asym_fits_cpu(unsigned long util,
7820 				 unsigned long util_min,
7821 				 unsigned long util_max,
7822 				 int cpu)
7823 {
7824 	if (sched_asym_cpucap_active())
7825 		/*
7826 		 * Return true only if the cpu fully fits the task requirements
7827 		 * which include the utilization and the performance hints.
7828 		 */
7829 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7830 
7831 	return true;
7832 }
7833 
7834 /*
7835  * Try and locate an idle core/thread in the LLC cache domain.
7836  */
7837 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7838 {
7839 	bool has_idle_core = false;
7840 	struct sched_domain *sd;
7841 	unsigned long task_util, util_min, util_max;
7842 	int i, recent_used_cpu, prev_aff = -1;
7843 
7844 	/*
7845 	 * On asymmetric system, update task utilization because we will check
7846 	 * that the task fits with CPU's capacity.
7847 	 */
7848 	if (sched_asym_cpucap_active()) {
7849 		sync_entity_load_avg(&p->se);
7850 		task_util = task_util_est(p);
7851 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7852 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7853 	}
7854 
7855 	/*
7856 	 * per-cpu select_rq_mask usage
7857 	 */
7858 	lockdep_assert_irqs_disabled();
7859 
7860 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7861 	    asym_fits_cpu(task_util, util_min, util_max, target))
7862 		return target;
7863 
7864 	/*
7865 	 * If the previous CPU is cache affine and idle, don't be stupid:
7866 	 */
7867 	if (prev != target && cpus_share_cache(prev, target) &&
7868 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7869 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7870 
7871 		if (!static_branch_unlikely(&sched_cluster_active) ||
7872 		    cpus_share_resources(prev, target))
7873 			return prev;
7874 
7875 		prev_aff = prev;
7876 	}
7877 
7878 	/*
7879 	 * Allow a per-cpu kthread to stack with the wakee if the
7880 	 * kworker thread and the tasks previous CPUs are the same.
7881 	 * The assumption is that the wakee queued work for the
7882 	 * per-cpu kthread that is now complete and the wakeup is
7883 	 * essentially a sync wakeup. An obvious example of this
7884 	 * pattern is IO completions.
7885 	 */
7886 	if (is_per_cpu_kthread(current) &&
7887 	    in_task() &&
7888 	    prev == smp_processor_id() &&
7889 	    this_rq()->nr_running <= 1 &&
7890 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7891 		return prev;
7892 	}
7893 
7894 	/* Check a recently used CPU as a potential idle candidate: */
7895 	recent_used_cpu = p->recent_used_cpu;
7896 	p->recent_used_cpu = prev;
7897 	if (recent_used_cpu != prev &&
7898 	    recent_used_cpu != target &&
7899 	    cpus_share_cache(recent_used_cpu, target) &&
7900 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7901 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7902 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7903 
7904 		if (!static_branch_unlikely(&sched_cluster_active) ||
7905 		    cpus_share_resources(recent_used_cpu, target))
7906 			return recent_used_cpu;
7907 
7908 	} else {
7909 		recent_used_cpu = -1;
7910 	}
7911 
7912 	/*
7913 	 * For asymmetric CPU capacity systems, our domain of interest is
7914 	 * sd_asym_cpucapacity rather than sd_llc.
7915 	 */
7916 	if (sched_asym_cpucap_active()) {
7917 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7918 		/*
7919 		 * On an asymmetric CPU capacity system where an exclusive
7920 		 * cpuset defines a symmetric island (i.e. one unique
7921 		 * capacity_orig value through the cpuset), the key will be set
7922 		 * but the CPUs within that cpuset will not have a domain with
7923 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7924 		 * capacity path.
7925 		 */
7926 		if (sd) {
7927 			i = select_idle_capacity(p, sd, target);
7928 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7929 		}
7930 	}
7931 
7932 	sd = rcu_dereference(per_cpu(sd_llc, target));
7933 	if (!sd)
7934 		return target;
7935 
7936 	if (sched_smt_active()) {
7937 		has_idle_core = test_idle_cores(target);
7938 
7939 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7940 			i = select_idle_smt(p, sd, prev);
7941 			if ((unsigned int)i < nr_cpumask_bits)
7942 				return i;
7943 		}
7944 	}
7945 
7946 	i = select_idle_cpu(p, sd, has_idle_core, target);
7947 	if ((unsigned)i < nr_cpumask_bits)
7948 		return i;
7949 
7950 	/*
7951 	 * For cluster machines which have lower sharing cache like L2 or
7952 	 * LLC Tag, we tend to find an idle CPU in the target's cluster
7953 	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7954 	 * use them if possible when no idle CPU found in select_idle_cpu().
7955 	 */
7956 	if ((unsigned int)prev_aff < nr_cpumask_bits)
7957 		return prev_aff;
7958 	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7959 		return recent_used_cpu;
7960 
7961 	return target;
7962 }
7963 
7964 /**
7965  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7966  * @cpu: the CPU to get the utilization for
7967  * @p: task for which the CPU utilization should be predicted or NULL
7968  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7969  * @boost: 1 to enable boosting, otherwise 0
7970  *
7971  * The unit of the return value must be the same as the one of CPU capacity
7972  * so that CPU utilization can be compared with CPU capacity.
7973  *
7974  * CPU utilization is the sum of running time of runnable tasks plus the
7975  * recent utilization of currently non-runnable tasks on that CPU.
7976  * It represents the amount of CPU capacity currently used by CFS tasks in
7977  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7978  * capacity at f_max.
7979  *
7980  * The estimated CPU utilization is defined as the maximum between CPU
7981  * utilization and sum of the estimated utilization of the currently
7982  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7983  * previously-executed tasks, which helps better deduce how busy a CPU will
7984  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7985  * of such a task would be significantly decayed at this point of time.
7986  *
7987  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7988  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7989  * utilization. Boosting is implemented in cpu_util() so that internal
7990  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7991  * latter via cpu_util_cfs_boost().
7992  *
7993  * CPU utilization can be higher than the current CPU capacity
7994  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7995  * of rounding errors as well as task migrations or wakeups of new tasks.
7996  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7997  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7998  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7999  * capacity. CPU utilization is allowed to overshoot current CPU capacity
8000  * though since this is useful for predicting the CPU capacity required
8001  * after task migrations (scheduler-driven DVFS).
8002  *
8003  * Return: (Boosted) (estimated) utilization for the specified CPU.
8004  */
8005 static unsigned long
8006 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
8007 {
8008 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
8009 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
8010 	unsigned long runnable;
8011 
8012 	if (boost) {
8013 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
8014 		util = max(util, runnable);
8015 	}
8016 
8017 	/*
8018 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
8019 	 * contribution. If @p migrates from another CPU to @cpu add its
8020 	 * contribution. In all the other cases @cpu is not impacted by the
8021 	 * migration so its util_avg is already correct.
8022 	 */
8023 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
8024 		lsub_positive(&util, task_util(p));
8025 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
8026 		util += task_util(p);
8027 
8028 	if (sched_feat(UTIL_EST)) {
8029 		unsigned long util_est;
8030 
8031 		util_est = READ_ONCE(cfs_rq->avg.util_est);
8032 
8033 		/*
8034 		 * During wake-up @p isn't enqueued yet and doesn't contribute
8035 		 * to any cpu_rq(cpu)->cfs.avg.util_est.
8036 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
8037 		 * has been enqueued.
8038 		 *
8039 		 * During exec (@dst_cpu = -1) @p is enqueued and does
8040 		 * contribute to cpu_rq(cpu)->cfs.util_est.
8041 		 * Remove it to "simulate" cpu_util without @p's contribution.
8042 		 *
8043 		 * Despite the task_on_rq_queued(@p) check there is still a
8044 		 * small window for a possible race when an exec
8045 		 * select_task_rq_fair() races with LB's detach_task().
8046 		 *
8047 		 *   detach_task()
8048 		 *     deactivate_task()
8049 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
8050 		 *       -------------------------------- A
8051 		 *       dequeue_task()                    \
8052 		 *         dequeue_task_fair()              + Race Time
8053 		 *           util_est_dequeue()            /
8054 		 *       -------------------------------- B
8055 		 *
8056 		 * The additional check "current == p" is required to further
8057 		 * reduce the race window.
8058 		 */
8059 		if (dst_cpu == cpu)
8060 			util_est += _task_util_est(p);
8061 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
8062 			lsub_positive(&util_est, _task_util_est(p));
8063 
8064 		util = max(util, util_est);
8065 	}
8066 
8067 	return min(util, arch_scale_cpu_capacity(cpu));
8068 }
8069 
8070 unsigned long cpu_util_cfs(int cpu)
8071 {
8072 	return cpu_util(cpu, NULL, -1, 0);
8073 }
8074 
8075 unsigned long cpu_util_cfs_boost(int cpu)
8076 {
8077 	return cpu_util(cpu, NULL, -1, 1);
8078 }
8079 
8080 /*
8081  * cpu_util_without: compute cpu utilization without any contributions from *p
8082  * @cpu: the CPU which utilization is requested
8083  * @p: the task which utilization should be discounted
8084  *
8085  * The utilization of a CPU is defined by the utilization of tasks currently
8086  * enqueued on that CPU as well as tasks which are currently sleeping after an
8087  * execution on that CPU.
8088  *
8089  * This method returns the utilization of the specified CPU by discounting the
8090  * utilization of the specified task, whenever the task is currently
8091  * contributing to the CPU utilization.
8092  */
8093 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
8094 {
8095 	/* Task has no contribution or is new */
8096 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8097 		p = NULL;
8098 
8099 	return cpu_util(cpu, p, -1, 0);
8100 }
8101 
8102 /*
8103  * This function computes an effective utilization for the given CPU, to be
8104  * used for frequency selection given the linear relation: f = u * f_max.
8105  *
8106  * The scheduler tracks the following metrics:
8107  *
8108  *   cpu_util_{cfs,rt,dl,irq}()
8109  *   cpu_bw_dl()
8110  *
8111  * Where the cfs,rt and dl util numbers are tracked with the same metric and
8112  * synchronized windows and are thus directly comparable.
8113  *
8114  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8115  * which excludes things like IRQ and steal-time. These latter are then accrued
8116  * in the IRQ utilization.
8117  *
8118  * The DL bandwidth number OTOH is not a measured metric but a value computed
8119  * based on the task model parameters and gives the minimal utilization
8120  * required to meet deadlines.
8121  */
8122 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
8123 				 unsigned long *min,
8124 				 unsigned long *max)
8125 {
8126 	unsigned long util, irq, scale;
8127 	struct rq *rq = cpu_rq(cpu);
8128 
8129 	scale = arch_scale_cpu_capacity(cpu);
8130 
8131 	/*
8132 	 * Early check to see if IRQ/steal time saturates the CPU, can be
8133 	 * because of inaccuracies in how we track these -- see
8134 	 * update_irq_load_avg().
8135 	 */
8136 	irq = cpu_util_irq(rq);
8137 	if (unlikely(irq >= scale)) {
8138 		if (min)
8139 			*min = scale;
8140 		if (max)
8141 			*max = scale;
8142 		return scale;
8143 	}
8144 
8145 	if (min) {
8146 		/*
8147 		 * The minimum utilization returns the highest level between:
8148 		 * - the computed DL bandwidth needed with the IRQ pressure which
8149 		 *   steals time to the deadline task.
8150 		 * - The minimum performance requirement for CFS and/or RT.
8151 		 */
8152 		*min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
8153 
8154 		/*
8155 		 * When an RT task is runnable and uclamp is not used, we must
8156 		 * ensure that the task will run at maximum compute capacity.
8157 		 */
8158 		if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
8159 			*min = max(*min, scale);
8160 	}
8161 
8162 	/*
8163 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8164 	 * CFS tasks and we use the same metric to track the effective
8165 	 * utilization (PELT windows are synchronized) we can directly add them
8166 	 * to obtain the CPU's actual utilization.
8167 	 */
8168 	util = util_cfs + cpu_util_rt(rq);
8169 	util += cpu_util_dl(rq);
8170 
8171 	/*
8172 	 * The maximum hint is a soft bandwidth requirement, which can be lower
8173 	 * than the actual utilization because of uclamp_max requirements.
8174 	 */
8175 	if (max)
8176 		*max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
8177 
8178 	if (util >= scale)
8179 		return scale;
8180 
8181 	/*
8182 	 * There is still idle time; further improve the number by using the
8183 	 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8184 	 * need to scale the task numbers:
8185 	 *
8186 	 *              max - irq
8187 	 *   U' = irq + --------- * U
8188 	 *                 max
8189 	 */
8190 	util = scale_irq_capacity(util, irq, scale);
8191 	util += irq;
8192 
8193 	return min(scale, util);
8194 }
8195 
8196 unsigned long sched_cpu_util(int cpu)
8197 {
8198 	return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
8199 }
8200 
8201 /*
8202  * energy_env - Utilization landscape for energy estimation.
8203  * @task_busy_time: Utilization contribution by the task for which we test the
8204  *                  placement. Given by eenv_task_busy_time().
8205  * @pd_busy_time:   Utilization of the whole perf domain without the task
8206  *                  contribution. Given by eenv_pd_busy_time().
8207  * @cpu_cap:        Maximum CPU capacity for the perf domain.
8208  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8209  */
8210 struct energy_env {
8211 	unsigned long task_busy_time;
8212 	unsigned long pd_busy_time;
8213 	unsigned long cpu_cap;
8214 	unsigned long pd_cap;
8215 };
8216 
8217 /*
8218  * Compute the task busy time for compute_energy(). This time cannot be
8219  * injected directly into effective_cpu_util() because of the IRQ scaling.
8220  * The latter only makes sense with the most recent CPUs where the task has
8221  * run.
8222  */
8223 static inline void eenv_task_busy_time(struct energy_env *eenv,
8224 				       struct task_struct *p, int prev_cpu)
8225 {
8226 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8227 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8228 
8229 	if (unlikely(irq >= max_cap))
8230 		busy_time = max_cap;
8231 	else
8232 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8233 
8234 	eenv->task_busy_time = busy_time;
8235 }
8236 
8237 /*
8238  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8239  * utilization for each @pd_cpus, it however doesn't take into account
8240  * clamping since the ratio (utilization / cpu_capacity) is already enough to
8241  * scale the EM reported power consumption at the (eventually clamped)
8242  * cpu_capacity.
8243  *
8244  * The contribution of the task @p for which we want to estimate the
8245  * energy cost is removed (by cpu_util()) and must be calculated
8246  * separately (see eenv_task_busy_time). This ensures:
8247  *
8248  *   - A stable PD utilization, no matter which CPU of that PD we want to place
8249  *     the task on.
8250  *
8251  *   - A fair comparison between CPUs as the task contribution (task_util())
8252  *     will always be the same no matter which CPU utilization we rely on
8253  *     (util_avg or util_est).
8254  *
8255  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8256  * exceed @eenv->pd_cap.
8257  */
8258 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8259 				     struct cpumask *pd_cpus,
8260 				     struct task_struct *p)
8261 {
8262 	unsigned long busy_time = 0;
8263 	int cpu;
8264 
8265 	for_each_cpu(cpu, pd_cpus) {
8266 		unsigned long util = cpu_util(cpu, p, -1, 0);
8267 
8268 		busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8269 	}
8270 
8271 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8272 }
8273 
8274 /*
8275  * Compute the maximum utilization for compute_energy() when the task @p
8276  * is placed on the cpu @dst_cpu.
8277  *
8278  * Returns the maximum utilization among @eenv->cpus. This utilization can't
8279  * exceed @eenv->cpu_cap.
8280  */
8281 static inline unsigned long
8282 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8283 		 struct task_struct *p, int dst_cpu)
8284 {
8285 	unsigned long max_util = 0;
8286 	int cpu;
8287 
8288 	for_each_cpu(cpu, pd_cpus) {
8289 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8290 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8291 		unsigned long eff_util, min, max;
8292 
8293 		/*
8294 		 * Performance domain frequency: utilization clamping
8295 		 * must be considered since it affects the selection
8296 		 * of the performance domain frequency.
8297 		 * NOTE: in case RT tasks are running, by default the min
8298 		 * utilization can be max OPP.
8299 		 */
8300 		eff_util = effective_cpu_util(cpu, util, &min, &max);
8301 
8302 		/* Task's uclamp can modify min and max value */
8303 		if (tsk && uclamp_is_used()) {
8304 			min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8305 
8306 			/*
8307 			 * If there is no active max uclamp constraint,
8308 			 * directly use task's one, otherwise keep max.
8309 			 */
8310 			if (uclamp_rq_is_idle(cpu_rq(cpu)))
8311 				max = uclamp_eff_value(p, UCLAMP_MAX);
8312 			else
8313 				max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8314 		}
8315 
8316 		eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8317 		max_util = max(max_util, eff_util);
8318 	}
8319 
8320 	return min(max_util, eenv->cpu_cap);
8321 }
8322 
8323 /*
8324  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8325  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8326  * contribution is ignored.
8327  */
8328 static inline unsigned long
8329 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8330 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8331 {
8332 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8333 	unsigned long busy_time = eenv->pd_busy_time;
8334 	unsigned long energy;
8335 
8336 	if (dst_cpu >= 0)
8337 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8338 
8339 	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8340 
8341 	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8342 
8343 	return energy;
8344 }
8345 
8346 /*
8347  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8348  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8349  * spare capacity in each performance domain and uses it as a potential
8350  * candidate to execute the task. Then, it uses the Energy Model to figure
8351  * out which of the CPU candidates is the most energy-efficient.
8352  *
8353  * The rationale for this heuristic is as follows. In a performance domain,
8354  * all the most energy efficient CPU candidates (according to the Energy
8355  * Model) are those for which we'll request a low frequency. When there are
8356  * several CPUs for which the frequency request will be the same, we don't
8357  * have enough data to break the tie between them, because the Energy Model
8358  * only includes active power costs. With this model, if we assume that
8359  * frequency requests follow utilization (e.g. using schedutil), the CPU with
8360  * the maximum spare capacity in a performance domain is guaranteed to be among
8361  * the best candidates of the performance domain.
8362  *
8363  * In practice, it could be preferable from an energy standpoint to pack
8364  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8365  * but that could also hurt our chances to go cluster idle, and we have no
8366  * ways to tell with the current Energy Model if this is actually a good
8367  * idea or not. So, find_energy_efficient_cpu() basically favors
8368  * cluster-packing, and spreading inside a cluster. That should at least be
8369  * a good thing for latency, and this is consistent with the idea that most
8370  * of the energy savings of EAS come from the asymmetry of the system, and
8371  * not so much from breaking the tie between identical CPUs. That's also the
8372  * reason why EAS is enabled in the topology code only for systems where
8373  * SD_ASYM_CPUCAPACITY is set.
8374  *
8375  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8376  * they don't have any useful utilization data yet and it's not possible to
8377  * forecast their impact on energy consumption. Consequently, they will be
8378  * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8379  * to be energy-inefficient in some use-cases. The alternative would be to
8380  * bias new tasks towards specific types of CPUs first, or to try to infer
8381  * their util_avg from the parent task, but those heuristics could hurt
8382  * other use-cases too. So, until someone finds a better way to solve this,
8383  * let's keep things simple by re-using the existing slow path.
8384  */
8385 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8386 {
8387 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8388 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8389 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8390 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8391 	struct root_domain *rd = this_rq()->rd;
8392 	int cpu, best_energy_cpu, target = -1;
8393 	int prev_fits = -1, best_fits = -1;
8394 	unsigned long best_actual_cap = 0;
8395 	unsigned long prev_actual_cap = 0;
8396 	struct sched_domain *sd;
8397 	struct perf_domain *pd;
8398 	struct energy_env eenv;
8399 
8400 	rcu_read_lock();
8401 	pd = rcu_dereference(rd->pd);
8402 	if (!pd)
8403 		goto unlock;
8404 
8405 	/*
8406 	 * Energy-aware wake-up happens on the lowest sched_domain starting
8407 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8408 	 */
8409 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8410 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8411 		sd = sd->parent;
8412 	if (!sd)
8413 		goto unlock;
8414 
8415 	target = prev_cpu;
8416 
8417 	sync_entity_load_avg(&p->se);
8418 	if (!task_util_est(p) && p_util_min == 0)
8419 		goto unlock;
8420 
8421 	eenv_task_busy_time(&eenv, p, prev_cpu);
8422 
8423 	for (; pd; pd = pd->next) {
8424 		unsigned long util_min = p_util_min, util_max = p_util_max;
8425 		unsigned long cpu_cap, cpu_actual_cap, util;
8426 		long prev_spare_cap = -1, max_spare_cap = -1;
8427 		unsigned long rq_util_min, rq_util_max;
8428 		unsigned long cur_delta, base_energy;
8429 		int max_spare_cap_cpu = -1;
8430 		int fits, max_fits = -1;
8431 
8432 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8433 
8434 		if (cpumask_empty(cpus))
8435 			continue;
8436 
8437 		/* Account external pressure for the energy estimation */
8438 		cpu = cpumask_first(cpus);
8439 		cpu_actual_cap = get_actual_cpu_capacity(cpu);
8440 
8441 		eenv.cpu_cap = cpu_actual_cap;
8442 		eenv.pd_cap = 0;
8443 
8444 		for_each_cpu(cpu, cpus) {
8445 			struct rq *rq = cpu_rq(cpu);
8446 
8447 			eenv.pd_cap += cpu_actual_cap;
8448 
8449 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8450 				continue;
8451 
8452 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8453 				continue;
8454 
8455 			util = cpu_util(cpu, p, cpu, 0);
8456 			cpu_cap = capacity_of(cpu);
8457 
8458 			/*
8459 			 * Skip CPUs that cannot satisfy the capacity request.
8460 			 * IOW, placing the task there would make the CPU
8461 			 * overutilized. Take uclamp into account to see how
8462 			 * much capacity we can get out of the CPU; this is
8463 			 * aligned with sched_cpu_util().
8464 			 */
8465 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8466 				/*
8467 				 * Open code uclamp_rq_util_with() except for
8468 				 * the clamp() part. I.e.: apply max aggregation
8469 				 * only. util_fits_cpu() logic requires to
8470 				 * operate on non clamped util but must use the
8471 				 * max-aggregated uclamp_{min, max}.
8472 				 */
8473 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8474 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8475 
8476 				util_min = max(rq_util_min, p_util_min);
8477 				util_max = max(rq_util_max, p_util_max);
8478 			}
8479 
8480 			fits = util_fits_cpu(util, util_min, util_max, cpu);
8481 			if (!fits)
8482 				continue;
8483 
8484 			lsub_positive(&cpu_cap, util);
8485 
8486 			if (cpu == prev_cpu) {
8487 				/* Always use prev_cpu as a candidate. */
8488 				prev_spare_cap = cpu_cap;
8489 				prev_fits = fits;
8490 			} else if ((fits > max_fits) ||
8491 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8492 				/*
8493 				 * Find the CPU with the maximum spare capacity
8494 				 * among the remaining CPUs in the performance
8495 				 * domain.
8496 				 */
8497 				max_spare_cap = cpu_cap;
8498 				max_spare_cap_cpu = cpu;
8499 				max_fits = fits;
8500 			}
8501 		}
8502 
8503 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8504 			continue;
8505 
8506 		eenv_pd_busy_time(&eenv, cpus, p);
8507 		/* Compute the 'base' energy of the pd, without @p */
8508 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8509 
8510 		/* Evaluate the energy impact of using prev_cpu. */
8511 		if (prev_spare_cap > -1) {
8512 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8513 						    prev_cpu);
8514 			/* CPU utilization has changed */
8515 			if (prev_delta < base_energy)
8516 				goto unlock;
8517 			prev_delta -= base_energy;
8518 			prev_actual_cap = cpu_actual_cap;
8519 			best_delta = min(best_delta, prev_delta);
8520 		}
8521 
8522 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8523 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8524 			/* Current best energy cpu fits better */
8525 			if (max_fits < best_fits)
8526 				continue;
8527 
8528 			/*
8529 			 * Both don't fit performance hint (i.e. uclamp_min)
8530 			 * but best energy cpu has better capacity.
8531 			 */
8532 			if ((max_fits < 0) &&
8533 			    (cpu_actual_cap <= best_actual_cap))
8534 				continue;
8535 
8536 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8537 						   max_spare_cap_cpu);
8538 			/* CPU utilization has changed */
8539 			if (cur_delta < base_energy)
8540 				goto unlock;
8541 			cur_delta -= base_energy;
8542 
8543 			/*
8544 			 * Both fit for the task but best energy cpu has lower
8545 			 * energy impact.
8546 			 */
8547 			if ((max_fits > 0) && (best_fits > 0) &&
8548 			    (cur_delta >= best_delta))
8549 				continue;
8550 
8551 			best_delta = cur_delta;
8552 			best_energy_cpu = max_spare_cap_cpu;
8553 			best_fits = max_fits;
8554 			best_actual_cap = cpu_actual_cap;
8555 		}
8556 	}
8557 	rcu_read_unlock();
8558 
8559 	if ((best_fits > prev_fits) ||
8560 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8561 	    ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8562 		target = best_energy_cpu;
8563 
8564 	return target;
8565 
8566 unlock:
8567 	rcu_read_unlock();
8568 
8569 	return target;
8570 }
8571 
8572 /*
8573  * select_task_rq_fair: Select target runqueue for the waking task in domains
8574  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8575  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8576  *
8577  * Balances load by selecting the idlest CPU in the idlest group, or under
8578  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8579  *
8580  * Returns the target CPU number.
8581  */
8582 static int
8583 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8584 {
8585 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8586 	struct sched_domain *tmp, *sd = NULL;
8587 	int cpu = smp_processor_id();
8588 	int new_cpu = prev_cpu;
8589 	int want_affine = 0;
8590 	/* SD_flags and WF_flags share the first nibble */
8591 	int sd_flag = wake_flags & 0xF;
8592 
8593 	/*
8594 	 * required for stable ->cpus_allowed
8595 	 */
8596 	lockdep_assert_held(&p->pi_lock);
8597 	if (wake_flags & WF_TTWU) {
8598 		record_wakee(p);
8599 
8600 		if ((wake_flags & WF_CURRENT_CPU) &&
8601 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8602 			return cpu;
8603 
8604 		if (!is_rd_overutilized(this_rq()->rd)) {
8605 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8606 			if (new_cpu >= 0)
8607 				return new_cpu;
8608 			new_cpu = prev_cpu;
8609 		}
8610 
8611 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8612 	}
8613 
8614 	rcu_read_lock();
8615 	for_each_domain(cpu, tmp) {
8616 		/*
8617 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8618 		 * cpu is a valid SD_WAKE_AFFINE target.
8619 		 */
8620 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8621 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8622 			if (cpu != prev_cpu)
8623 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8624 
8625 			sd = NULL; /* Prefer wake_affine over balance flags */
8626 			break;
8627 		}
8628 
8629 		/*
8630 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8631 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8632 		 * will usually go to the fast path.
8633 		 */
8634 		if (tmp->flags & sd_flag)
8635 			sd = tmp;
8636 		else if (!want_affine)
8637 			break;
8638 	}
8639 
8640 	if (unlikely(sd)) {
8641 		/* Slow path */
8642 		new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8643 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8644 		/* Fast path */
8645 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8646 	}
8647 	rcu_read_unlock();
8648 
8649 	return new_cpu;
8650 }
8651 
8652 /*
8653  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8654  * cfs_rq_of(p) references at time of call are still valid and identify the
8655  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8656  */
8657 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8658 {
8659 	struct sched_entity *se = &p->se;
8660 
8661 	if (!task_on_rq_migrating(p)) {
8662 		remove_entity_load_avg(se);
8663 
8664 		/*
8665 		 * Here, the task's PELT values have been updated according to
8666 		 * the current rq's clock. But if that clock hasn't been
8667 		 * updated in a while, a substantial idle time will be missed,
8668 		 * leading to an inflation after wake-up on the new rq.
8669 		 *
8670 		 * Estimate the missing time from the cfs_rq last_update_time
8671 		 * and update sched_avg to improve the PELT continuity after
8672 		 * migration.
8673 		 */
8674 		migrate_se_pelt_lag(se);
8675 	}
8676 
8677 	/* Tell new CPU we are migrated */
8678 	se->avg.last_update_time = 0;
8679 
8680 	update_scan_period(p, new_cpu);
8681 }
8682 
8683 static void task_dead_fair(struct task_struct *p)
8684 {
8685 	struct sched_entity *se = &p->se;
8686 
8687 	if (se->sched_delayed) {
8688 		struct rq_flags rf;
8689 		struct rq *rq;
8690 
8691 		rq = task_rq_lock(p, &rf);
8692 		if (se->sched_delayed) {
8693 			update_rq_clock(rq);
8694 			dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8695 		}
8696 		task_rq_unlock(rq, p, &rf);
8697 	}
8698 
8699 	remove_entity_load_avg(se);
8700 }
8701 
8702 /*
8703  * Set the max capacity the task is allowed to run at for misfit detection.
8704  */
8705 static void set_task_max_allowed_capacity(struct task_struct *p)
8706 {
8707 	struct asym_cap_data *entry;
8708 
8709 	if (!sched_asym_cpucap_active())
8710 		return;
8711 
8712 	rcu_read_lock();
8713 	list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8714 		cpumask_t *cpumask;
8715 
8716 		cpumask = cpu_capacity_span(entry);
8717 		if (!cpumask_intersects(p->cpus_ptr, cpumask))
8718 			continue;
8719 
8720 		p->max_allowed_capacity = entry->capacity;
8721 		break;
8722 	}
8723 	rcu_read_unlock();
8724 }
8725 
8726 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8727 {
8728 	set_cpus_allowed_common(p, ctx);
8729 	set_task_max_allowed_capacity(p);
8730 }
8731 
8732 static int
8733 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8734 {
8735 	if (sched_fair_runnable(rq))
8736 		return 1;
8737 
8738 	return sched_balance_newidle(rq, rf) != 0;
8739 }
8740 #else
8741 static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
8742 #endif /* CONFIG_SMP */
8743 
8744 static void set_next_buddy(struct sched_entity *se)
8745 {
8746 	for_each_sched_entity(se) {
8747 		if (SCHED_WARN_ON(!se->on_rq))
8748 			return;
8749 		if (se_is_idle(se))
8750 			return;
8751 		cfs_rq_of(se)->next = se;
8752 	}
8753 }
8754 
8755 /*
8756  * Preempt the current task with a newly woken task if needed:
8757  */
8758 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8759 {
8760 	struct task_struct *donor = rq->donor;
8761 	struct sched_entity *se = &donor->se, *pse = &p->se;
8762 	struct cfs_rq *cfs_rq = task_cfs_rq(donor);
8763 	int cse_is_idle, pse_is_idle;
8764 
8765 	if (unlikely(se == pse))
8766 		return;
8767 
8768 	/*
8769 	 * This is possible from callers such as attach_tasks(), in which we
8770 	 * unconditionally wakeup_preempt() after an enqueue (which may have
8771 	 * lead to a throttle).  This both saves work and prevents false
8772 	 * next-buddy nomination below.
8773 	 */
8774 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8775 		return;
8776 
8777 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8778 		set_next_buddy(pse);
8779 	}
8780 
8781 	/*
8782 	 * We can come here with TIF_NEED_RESCHED already set from new task
8783 	 * wake up path.
8784 	 *
8785 	 * Note: this also catches the edge-case of curr being in a throttled
8786 	 * group (e.g. via set_curr_task), since update_curr() (in the
8787 	 * enqueue of curr) will have resulted in resched being set.  This
8788 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8789 	 * below.
8790 	 */
8791 	if (test_tsk_need_resched(rq->curr))
8792 		return;
8793 
8794 	if (!sched_feat(WAKEUP_PREEMPTION))
8795 		return;
8796 
8797 	find_matching_se(&se, &pse);
8798 	WARN_ON_ONCE(!pse);
8799 
8800 	cse_is_idle = se_is_idle(se);
8801 	pse_is_idle = se_is_idle(pse);
8802 
8803 	/*
8804 	 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8805 	 * in the inverse case).
8806 	 */
8807 	if (cse_is_idle && !pse_is_idle)
8808 		goto preempt;
8809 	if (cse_is_idle != pse_is_idle)
8810 		return;
8811 
8812 	/*
8813 	 * BATCH and IDLE tasks do not preempt others.
8814 	 */
8815 	if (unlikely(!normal_policy(p->policy)))
8816 		return;
8817 
8818 	cfs_rq = cfs_rq_of(se);
8819 	update_curr(cfs_rq);
8820 	/*
8821 	 * If @p has a shorter slice than current and @p is eligible, override
8822 	 * current's slice protection in order to allow preemption.
8823 	 *
8824 	 * Note that even if @p does not turn out to be the most eligible
8825 	 * task at this moment, current's slice protection will be lost.
8826 	 */
8827 	if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline)
8828 		se->vlag = se->deadline + 1;
8829 
8830 	/*
8831 	 * If @p has become the most eligible task, force preemption.
8832 	 */
8833 	if (pick_eevdf(cfs_rq) == pse)
8834 		goto preempt;
8835 
8836 	return;
8837 
8838 preempt:
8839 	resched_curr_lazy(rq);
8840 }
8841 
8842 static struct task_struct *pick_task_fair(struct rq *rq)
8843 {
8844 	struct sched_entity *se;
8845 	struct cfs_rq *cfs_rq;
8846 
8847 again:
8848 	cfs_rq = &rq->cfs;
8849 	if (!cfs_rq->nr_running)
8850 		return NULL;
8851 
8852 	do {
8853 		/* Might not have done put_prev_entity() */
8854 		if (cfs_rq->curr && cfs_rq->curr->on_rq)
8855 			update_curr(cfs_rq);
8856 
8857 		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8858 			goto again;
8859 
8860 		se = pick_next_entity(rq, cfs_rq);
8861 		if (!se)
8862 			goto again;
8863 		cfs_rq = group_cfs_rq(se);
8864 	} while (cfs_rq);
8865 
8866 	return task_of(se);
8867 }
8868 
8869 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8870 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8871 
8872 struct task_struct *
8873 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8874 {
8875 	struct sched_entity *se;
8876 	struct task_struct *p;
8877 	int new_tasks;
8878 
8879 again:
8880 	p = pick_task_fair(rq);
8881 	if (!p)
8882 		goto idle;
8883 	se = &p->se;
8884 
8885 #ifdef CONFIG_FAIR_GROUP_SCHED
8886 	if (prev->sched_class != &fair_sched_class)
8887 		goto simple;
8888 
8889 	__put_prev_set_next_dl_server(rq, prev, p);
8890 
8891 	/*
8892 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8893 	 * likely that a next task is from the same cgroup as the current.
8894 	 *
8895 	 * Therefore attempt to avoid putting and setting the entire cgroup
8896 	 * hierarchy, only change the part that actually changes.
8897 	 *
8898 	 * Since we haven't yet done put_prev_entity and if the selected task
8899 	 * is a different task than we started out with, try and touch the
8900 	 * least amount of cfs_rqs.
8901 	 */
8902 	if (prev != p) {
8903 		struct sched_entity *pse = &prev->se;
8904 		struct cfs_rq *cfs_rq;
8905 
8906 		while (!(cfs_rq = is_same_group(se, pse))) {
8907 			int se_depth = se->depth;
8908 			int pse_depth = pse->depth;
8909 
8910 			if (se_depth <= pse_depth) {
8911 				put_prev_entity(cfs_rq_of(pse), pse);
8912 				pse = parent_entity(pse);
8913 			}
8914 			if (se_depth >= pse_depth) {
8915 				set_next_entity(cfs_rq_of(se), se);
8916 				se = parent_entity(se);
8917 			}
8918 		}
8919 
8920 		put_prev_entity(cfs_rq, pse);
8921 		set_next_entity(cfs_rq, se);
8922 
8923 		__set_next_task_fair(rq, p, true);
8924 	}
8925 
8926 	return p;
8927 
8928 simple:
8929 #endif
8930 	put_prev_set_next_task(rq, prev, p);
8931 	return p;
8932 
8933 idle:
8934 	if (!rf)
8935 		return NULL;
8936 
8937 	new_tasks = sched_balance_newidle(rq, rf);
8938 
8939 	/*
8940 	 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8941 	 * possible for any higher priority task to appear. In that case we
8942 	 * must re-start the pick_next_entity() loop.
8943 	 */
8944 	if (new_tasks < 0)
8945 		return RETRY_TASK;
8946 
8947 	if (new_tasks > 0)
8948 		goto again;
8949 
8950 	/*
8951 	 * rq is about to be idle, check if we need to update the
8952 	 * lost_idle_time of clock_pelt
8953 	 */
8954 	update_idle_rq_clock_pelt(rq);
8955 
8956 	return NULL;
8957 }
8958 
8959 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
8960 {
8961 	return pick_next_task_fair(rq, prev, NULL);
8962 }
8963 
8964 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se)
8965 {
8966 	return !!dl_se->rq->cfs.nr_running;
8967 }
8968 
8969 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
8970 {
8971 	return pick_task_fair(dl_se->rq);
8972 }
8973 
8974 void fair_server_init(struct rq *rq)
8975 {
8976 	struct sched_dl_entity *dl_se = &rq->fair_server;
8977 
8978 	init_dl_entity(dl_se);
8979 
8980 	dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task);
8981 }
8982 
8983 /*
8984  * Account for a descheduled task:
8985  */
8986 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
8987 {
8988 	struct sched_entity *se = &prev->se;
8989 	struct cfs_rq *cfs_rq;
8990 
8991 	for_each_sched_entity(se) {
8992 		cfs_rq = cfs_rq_of(se);
8993 		put_prev_entity(cfs_rq, se);
8994 	}
8995 }
8996 
8997 /*
8998  * sched_yield() is very simple
8999  */
9000 static void yield_task_fair(struct rq *rq)
9001 {
9002 	struct task_struct *curr = rq->curr;
9003 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
9004 	struct sched_entity *se = &curr->se;
9005 
9006 	/*
9007 	 * Are we the only task in the tree?
9008 	 */
9009 	if (unlikely(rq->nr_running == 1))
9010 		return;
9011 
9012 	clear_buddies(cfs_rq, se);
9013 
9014 	update_rq_clock(rq);
9015 	/*
9016 	 * Update run-time statistics of the 'current'.
9017 	 */
9018 	update_curr(cfs_rq);
9019 	/*
9020 	 * Tell update_rq_clock() that we've just updated,
9021 	 * so we don't do microscopic update in schedule()
9022 	 * and double the fastpath cost.
9023 	 */
9024 	rq_clock_skip_update(rq);
9025 
9026 	se->deadline += calc_delta_fair(se->slice, se);
9027 }
9028 
9029 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
9030 {
9031 	struct sched_entity *se = &p->se;
9032 
9033 	/* throttled hierarchies are not runnable */
9034 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
9035 		return false;
9036 
9037 	/* Tell the scheduler that we'd really like se to run next. */
9038 	set_next_buddy(se);
9039 
9040 	yield_task_fair(rq);
9041 
9042 	return true;
9043 }
9044 
9045 #ifdef CONFIG_SMP
9046 /**************************************************
9047  * Fair scheduling class load-balancing methods.
9048  *
9049  * BASICS
9050  *
9051  * The purpose of load-balancing is to achieve the same basic fairness the
9052  * per-CPU scheduler provides, namely provide a proportional amount of compute
9053  * time to each task. This is expressed in the following equation:
9054  *
9055  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
9056  *
9057  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
9058  * W_i,0 is defined as:
9059  *
9060  *   W_i,0 = \Sum_j w_i,j                                             (2)
9061  *
9062  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
9063  * is derived from the nice value as per sched_prio_to_weight[].
9064  *
9065  * The weight average is an exponential decay average of the instantaneous
9066  * weight:
9067  *
9068  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
9069  *
9070  * C_i is the compute capacity of CPU i, typically it is the
9071  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
9072  * can also include other factors [XXX].
9073  *
9074  * To achieve this balance we define a measure of imbalance which follows
9075  * directly from (1):
9076  *
9077  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
9078  *
9079  * We them move tasks around to minimize the imbalance. In the continuous
9080  * function space it is obvious this converges, in the discrete case we get
9081  * a few fun cases generally called infeasible weight scenarios.
9082  *
9083  * [XXX expand on:
9084  *     - infeasible weights;
9085  *     - local vs global optima in the discrete case. ]
9086  *
9087  *
9088  * SCHED DOMAINS
9089  *
9090  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
9091  * for all i,j solution, we create a tree of CPUs that follows the hardware
9092  * topology where each level pairs two lower groups (or better). This results
9093  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
9094  * tree to only the first of the previous level and we decrease the frequency
9095  * of load-balance at each level inversely proportional to the number of CPUs in
9096  * the groups.
9097  *
9098  * This yields:
9099  *
9100  *     log_2 n     1     n
9101  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
9102  *     i = 0      2^i   2^i
9103  *                               `- size of each group
9104  *         |         |     `- number of CPUs doing load-balance
9105  *         |         `- freq
9106  *         `- sum over all levels
9107  *
9108  * Coupled with a limit on how many tasks we can migrate every balance pass,
9109  * this makes (5) the runtime complexity of the balancer.
9110  *
9111  * An important property here is that each CPU is still (indirectly) connected
9112  * to every other CPU in at most O(log n) steps:
9113  *
9114  * The adjacency matrix of the resulting graph is given by:
9115  *
9116  *             log_2 n
9117  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
9118  *             k = 0
9119  *
9120  * And you'll find that:
9121  *
9122  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
9123  *
9124  * Showing there's indeed a path between every CPU in at most O(log n) steps.
9125  * The task movement gives a factor of O(m), giving a convergence complexity
9126  * of:
9127  *
9128  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
9129  *
9130  *
9131  * WORK CONSERVING
9132  *
9133  * In order to avoid CPUs going idle while there's still work to do, new idle
9134  * balancing is more aggressive and has the newly idle CPU iterate up the domain
9135  * tree itself instead of relying on other CPUs to bring it work.
9136  *
9137  * This adds some complexity to both (5) and (8) but it reduces the total idle
9138  * time.
9139  *
9140  * [XXX more?]
9141  *
9142  *
9143  * CGROUPS
9144  *
9145  * Cgroups make a horror show out of (2), instead of a simple sum we get:
9146  *
9147  *                                s_k,i
9148  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
9149  *                                 S_k
9150  *
9151  * Where
9152  *
9153  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
9154  *
9155  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9156  *
9157  * The big problem is S_k, its a global sum needed to compute a local (W_i)
9158  * property.
9159  *
9160  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9161  *      rewrite all of this once again.]
9162  */
9163 
9164 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9165 
9166 enum fbq_type { regular, remote, all };
9167 
9168 /*
9169  * 'group_type' describes the group of CPUs at the moment of load balancing.
9170  *
9171  * The enum is ordered by pulling priority, with the group with lowest priority
9172  * first so the group_type can simply be compared when selecting the busiest
9173  * group. See update_sd_pick_busiest().
9174  */
9175 enum group_type {
9176 	/* The group has spare capacity that can be used to run more tasks.  */
9177 	group_has_spare = 0,
9178 	/*
9179 	 * The group is fully used and the tasks don't compete for more CPU
9180 	 * cycles. Nevertheless, some tasks might wait before running.
9181 	 */
9182 	group_fully_busy,
9183 	/*
9184 	 * One task doesn't fit with CPU's capacity and must be migrated to a
9185 	 * more powerful CPU.
9186 	 */
9187 	group_misfit_task,
9188 	/*
9189 	 * Balance SMT group that's fully busy. Can benefit from migration
9190 	 * a task on SMT with busy sibling to another CPU on idle core.
9191 	 */
9192 	group_smt_balance,
9193 	/*
9194 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9195 	 * and the task should be migrated to it instead of running on the
9196 	 * current CPU.
9197 	 */
9198 	group_asym_packing,
9199 	/*
9200 	 * The tasks' affinity constraints previously prevented the scheduler
9201 	 * from balancing the load across the system.
9202 	 */
9203 	group_imbalanced,
9204 	/*
9205 	 * The CPU is overloaded and can't provide expected CPU cycles to all
9206 	 * tasks.
9207 	 */
9208 	group_overloaded
9209 };
9210 
9211 enum migration_type {
9212 	migrate_load = 0,
9213 	migrate_util,
9214 	migrate_task,
9215 	migrate_misfit
9216 };
9217 
9218 #define LBF_ALL_PINNED	0x01
9219 #define LBF_NEED_BREAK	0x02
9220 #define LBF_DST_PINNED  0x04
9221 #define LBF_SOME_PINNED	0x08
9222 #define LBF_ACTIVE_LB	0x10
9223 
9224 struct lb_env {
9225 	struct sched_domain	*sd;
9226 
9227 	struct rq		*src_rq;
9228 	int			src_cpu;
9229 
9230 	int			dst_cpu;
9231 	struct rq		*dst_rq;
9232 
9233 	struct cpumask		*dst_grpmask;
9234 	int			new_dst_cpu;
9235 	enum cpu_idle_type	idle;
9236 	long			imbalance;
9237 	/* The set of CPUs under consideration for load-balancing */
9238 	struct cpumask		*cpus;
9239 
9240 	unsigned int		flags;
9241 
9242 	unsigned int		loop;
9243 	unsigned int		loop_break;
9244 	unsigned int		loop_max;
9245 
9246 	enum fbq_type		fbq_type;
9247 	enum migration_type	migration_type;
9248 	struct list_head	tasks;
9249 };
9250 
9251 /*
9252  * Is this task likely cache-hot:
9253  */
9254 static int task_hot(struct task_struct *p, struct lb_env *env)
9255 {
9256 	s64 delta;
9257 
9258 	lockdep_assert_rq_held(env->src_rq);
9259 
9260 	if (p->sched_class != &fair_sched_class)
9261 		return 0;
9262 
9263 	if (unlikely(task_has_idle_policy(p)))
9264 		return 0;
9265 
9266 	/* SMT siblings share cache */
9267 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9268 		return 0;
9269 
9270 	/*
9271 	 * Buddy candidates are cache hot:
9272 	 */
9273 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9274 	    (&p->se == cfs_rq_of(&p->se)->next))
9275 		return 1;
9276 
9277 	if (sysctl_sched_migration_cost == -1)
9278 		return 1;
9279 
9280 	/*
9281 	 * Don't migrate task if the task's cookie does not match
9282 	 * with the destination CPU's core cookie.
9283 	 */
9284 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9285 		return 1;
9286 
9287 	if (sysctl_sched_migration_cost == 0)
9288 		return 0;
9289 
9290 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9291 
9292 	return delta < (s64)sysctl_sched_migration_cost;
9293 }
9294 
9295 #ifdef CONFIG_NUMA_BALANCING
9296 /*
9297  * Returns 1, if task migration degrades locality
9298  * Returns 0, if task migration improves locality i.e migration preferred.
9299  * Returns -1, if task migration is not affected by locality.
9300  */
9301 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9302 {
9303 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
9304 	unsigned long src_weight, dst_weight;
9305 	int src_nid, dst_nid, dist;
9306 
9307 	if (!static_branch_likely(&sched_numa_balancing))
9308 		return -1;
9309 
9310 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9311 		return -1;
9312 
9313 	src_nid = cpu_to_node(env->src_cpu);
9314 	dst_nid = cpu_to_node(env->dst_cpu);
9315 
9316 	if (src_nid == dst_nid)
9317 		return -1;
9318 
9319 	/* Migrating away from the preferred node is always bad. */
9320 	if (src_nid == p->numa_preferred_nid) {
9321 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9322 			return 1;
9323 		else
9324 			return -1;
9325 	}
9326 
9327 	/* Encourage migration to the preferred node. */
9328 	if (dst_nid == p->numa_preferred_nid)
9329 		return 0;
9330 
9331 	/* Leaving a core idle is often worse than degrading locality. */
9332 	if (env->idle == CPU_IDLE)
9333 		return -1;
9334 
9335 	dist = node_distance(src_nid, dst_nid);
9336 	if (numa_group) {
9337 		src_weight = group_weight(p, src_nid, dist);
9338 		dst_weight = group_weight(p, dst_nid, dist);
9339 	} else {
9340 		src_weight = task_weight(p, src_nid, dist);
9341 		dst_weight = task_weight(p, dst_nid, dist);
9342 	}
9343 
9344 	return dst_weight < src_weight;
9345 }
9346 
9347 #else
9348 static inline int migrate_degrades_locality(struct task_struct *p,
9349 					     struct lb_env *env)
9350 {
9351 	return -1;
9352 }
9353 #endif
9354 
9355 /*
9356  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9357  */
9358 static
9359 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9360 {
9361 	int tsk_cache_hot;
9362 
9363 	lockdep_assert_rq_held(env->src_rq);
9364 
9365 	/*
9366 	 * We do not migrate tasks that are:
9367 	 * 1) throttled_lb_pair, or
9368 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
9369 	 * 3) running (obviously), or
9370 	 * 4) are cache-hot on their current CPU.
9371 	 */
9372 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
9373 		return 0;
9374 
9375 	/* Disregard percpu kthreads; they are where they need to be. */
9376 	if (kthread_is_per_cpu(p))
9377 		return 0;
9378 
9379 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9380 		int cpu;
9381 
9382 		schedstat_inc(p->stats.nr_failed_migrations_affine);
9383 
9384 		env->flags |= LBF_SOME_PINNED;
9385 
9386 		/*
9387 		 * Remember if this task can be migrated to any other CPU in
9388 		 * our sched_group. We may want to revisit it if we couldn't
9389 		 * meet load balance goals by pulling other tasks on src_cpu.
9390 		 *
9391 		 * Avoid computing new_dst_cpu
9392 		 * - for NEWLY_IDLE
9393 		 * - if we have already computed one in current iteration
9394 		 * - if it's an active balance
9395 		 */
9396 		if (env->idle == CPU_NEWLY_IDLE ||
9397 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9398 			return 0;
9399 
9400 		/* Prevent to re-select dst_cpu via env's CPUs: */
9401 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
9402 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
9403 				env->flags |= LBF_DST_PINNED;
9404 				env->new_dst_cpu = cpu;
9405 				break;
9406 			}
9407 		}
9408 
9409 		return 0;
9410 	}
9411 
9412 	/* Record that we found at least one task that could run on dst_cpu */
9413 	env->flags &= ~LBF_ALL_PINNED;
9414 
9415 	if (task_on_cpu(env->src_rq, p)) {
9416 		schedstat_inc(p->stats.nr_failed_migrations_running);
9417 		return 0;
9418 	}
9419 
9420 	/*
9421 	 * Aggressive migration if:
9422 	 * 1) active balance
9423 	 * 2) destination numa is preferred
9424 	 * 3) task is cache cold, or
9425 	 * 4) too many balance attempts have failed.
9426 	 */
9427 	if (env->flags & LBF_ACTIVE_LB)
9428 		return 1;
9429 
9430 	tsk_cache_hot = migrate_degrades_locality(p, env);
9431 	if (tsk_cache_hot == -1)
9432 		tsk_cache_hot = task_hot(p, env);
9433 
9434 	if (tsk_cache_hot <= 0 ||
9435 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9436 		if (tsk_cache_hot == 1) {
9437 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9438 			schedstat_inc(p->stats.nr_forced_migrations);
9439 		}
9440 		return 1;
9441 	}
9442 
9443 	schedstat_inc(p->stats.nr_failed_migrations_hot);
9444 	return 0;
9445 }
9446 
9447 /*
9448  * detach_task() -- detach the task for the migration specified in env
9449  */
9450 static void detach_task(struct task_struct *p, struct lb_env *env)
9451 {
9452 	lockdep_assert_rq_held(env->src_rq);
9453 
9454 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9455 	set_task_cpu(p, env->dst_cpu);
9456 }
9457 
9458 /*
9459  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9460  * part of active balancing operations within "domain".
9461  *
9462  * Returns a task if successful and NULL otherwise.
9463  */
9464 static struct task_struct *detach_one_task(struct lb_env *env)
9465 {
9466 	struct task_struct *p;
9467 
9468 	lockdep_assert_rq_held(env->src_rq);
9469 
9470 	list_for_each_entry_reverse(p,
9471 			&env->src_rq->cfs_tasks, se.group_node) {
9472 		if (!can_migrate_task(p, env))
9473 			continue;
9474 
9475 		detach_task(p, env);
9476 
9477 		/*
9478 		 * Right now, this is only the second place where
9479 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9480 		 * so we can safely collect stats here rather than
9481 		 * inside detach_tasks().
9482 		 */
9483 		schedstat_inc(env->sd->lb_gained[env->idle]);
9484 		return p;
9485 	}
9486 	return NULL;
9487 }
9488 
9489 /*
9490  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9491  * busiest_rq, as part of a balancing operation within domain "sd".
9492  *
9493  * Returns number of detached tasks if successful and 0 otherwise.
9494  */
9495 static int detach_tasks(struct lb_env *env)
9496 {
9497 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9498 	unsigned long util, load;
9499 	struct task_struct *p;
9500 	int detached = 0;
9501 
9502 	lockdep_assert_rq_held(env->src_rq);
9503 
9504 	/*
9505 	 * Source run queue has been emptied by another CPU, clear
9506 	 * LBF_ALL_PINNED flag as we will not test any task.
9507 	 */
9508 	if (env->src_rq->nr_running <= 1) {
9509 		env->flags &= ~LBF_ALL_PINNED;
9510 		return 0;
9511 	}
9512 
9513 	if (env->imbalance <= 0)
9514 		return 0;
9515 
9516 	while (!list_empty(tasks)) {
9517 		/*
9518 		 * We don't want to steal all, otherwise we may be treated likewise,
9519 		 * which could at worst lead to a livelock crash.
9520 		 */
9521 		if (env->idle && env->src_rq->nr_running <= 1)
9522 			break;
9523 
9524 		env->loop++;
9525 		/* We've more or less seen every task there is, call it quits */
9526 		if (env->loop > env->loop_max)
9527 			break;
9528 
9529 		/* take a breather every nr_migrate tasks */
9530 		if (env->loop > env->loop_break) {
9531 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9532 			env->flags |= LBF_NEED_BREAK;
9533 			break;
9534 		}
9535 
9536 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9537 
9538 		if (!can_migrate_task(p, env))
9539 			goto next;
9540 
9541 		switch (env->migration_type) {
9542 		case migrate_load:
9543 			/*
9544 			 * Depending of the number of CPUs and tasks and the
9545 			 * cgroup hierarchy, task_h_load() can return a null
9546 			 * value. Make sure that env->imbalance decreases
9547 			 * otherwise detach_tasks() will stop only after
9548 			 * detaching up to loop_max tasks.
9549 			 */
9550 			load = max_t(unsigned long, task_h_load(p), 1);
9551 
9552 			if (sched_feat(LB_MIN) &&
9553 			    load < 16 && !env->sd->nr_balance_failed)
9554 				goto next;
9555 
9556 			/*
9557 			 * Make sure that we don't migrate too much load.
9558 			 * Nevertheless, let relax the constraint if
9559 			 * scheduler fails to find a good waiting task to
9560 			 * migrate.
9561 			 */
9562 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9563 				goto next;
9564 
9565 			env->imbalance -= load;
9566 			break;
9567 
9568 		case migrate_util:
9569 			util = task_util_est(p);
9570 
9571 			if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9572 				goto next;
9573 
9574 			env->imbalance -= util;
9575 			break;
9576 
9577 		case migrate_task:
9578 			env->imbalance--;
9579 			break;
9580 
9581 		case migrate_misfit:
9582 			/* This is not a misfit task */
9583 			if (task_fits_cpu(p, env->src_cpu))
9584 				goto next;
9585 
9586 			env->imbalance = 0;
9587 			break;
9588 		}
9589 
9590 		detach_task(p, env);
9591 		list_add(&p->se.group_node, &env->tasks);
9592 
9593 		detached++;
9594 
9595 #ifdef CONFIG_PREEMPTION
9596 		/*
9597 		 * NEWIDLE balancing is a source of latency, so preemptible
9598 		 * kernels will stop after the first task is detached to minimize
9599 		 * the critical section.
9600 		 */
9601 		if (env->idle == CPU_NEWLY_IDLE)
9602 			break;
9603 #endif
9604 
9605 		/*
9606 		 * We only want to steal up to the prescribed amount of
9607 		 * load/util/tasks.
9608 		 */
9609 		if (env->imbalance <= 0)
9610 			break;
9611 
9612 		continue;
9613 next:
9614 		list_move(&p->se.group_node, tasks);
9615 	}
9616 
9617 	/*
9618 	 * Right now, this is one of only two places we collect this stat
9619 	 * so we can safely collect detach_one_task() stats here rather
9620 	 * than inside detach_one_task().
9621 	 */
9622 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9623 
9624 	return detached;
9625 }
9626 
9627 /*
9628  * attach_task() -- attach the task detached by detach_task() to its new rq.
9629  */
9630 static void attach_task(struct rq *rq, struct task_struct *p)
9631 {
9632 	lockdep_assert_rq_held(rq);
9633 
9634 	WARN_ON_ONCE(task_rq(p) != rq);
9635 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9636 	wakeup_preempt(rq, p, 0);
9637 }
9638 
9639 /*
9640  * attach_one_task() -- attaches the task returned from detach_one_task() to
9641  * its new rq.
9642  */
9643 static void attach_one_task(struct rq *rq, struct task_struct *p)
9644 {
9645 	struct rq_flags rf;
9646 
9647 	rq_lock(rq, &rf);
9648 	update_rq_clock(rq);
9649 	attach_task(rq, p);
9650 	rq_unlock(rq, &rf);
9651 }
9652 
9653 /*
9654  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9655  * new rq.
9656  */
9657 static void attach_tasks(struct lb_env *env)
9658 {
9659 	struct list_head *tasks = &env->tasks;
9660 	struct task_struct *p;
9661 	struct rq_flags rf;
9662 
9663 	rq_lock(env->dst_rq, &rf);
9664 	update_rq_clock(env->dst_rq);
9665 
9666 	while (!list_empty(tasks)) {
9667 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9668 		list_del_init(&p->se.group_node);
9669 
9670 		attach_task(env->dst_rq, p);
9671 	}
9672 
9673 	rq_unlock(env->dst_rq, &rf);
9674 }
9675 
9676 #ifdef CONFIG_NO_HZ_COMMON
9677 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9678 {
9679 	if (cfs_rq->avg.load_avg)
9680 		return true;
9681 
9682 	if (cfs_rq->avg.util_avg)
9683 		return true;
9684 
9685 	return false;
9686 }
9687 
9688 static inline bool others_have_blocked(struct rq *rq)
9689 {
9690 	if (cpu_util_rt(rq))
9691 		return true;
9692 
9693 	if (cpu_util_dl(rq))
9694 		return true;
9695 
9696 	if (hw_load_avg(rq))
9697 		return true;
9698 
9699 	if (cpu_util_irq(rq))
9700 		return true;
9701 
9702 	return false;
9703 }
9704 
9705 static inline void update_blocked_load_tick(struct rq *rq)
9706 {
9707 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9708 }
9709 
9710 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9711 {
9712 	if (!has_blocked)
9713 		rq->has_blocked_load = 0;
9714 }
9715 #else
9716 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9717 static inline bool others_have_blocked(struct rq *rq) { return false; }
9718 static inline void update_blocked_load_tick(struct rq *rq) {}
9719 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9720 #endif
9721 
9722 static bool __update_blocked_others(struct rq *rq, bool *done)
9723 {
9724 	bool updated;
9725 
9726 	/*
9727 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9728 	 * DL and IRQ signals have been updated before updating CFS.
9729 	 */
9730 	updated = update_other_load_avgs(rq);
9731 
9732 	if (others_have_blocked(rq))
9733 		*done = false;
9734 
9735 	return updated;
9736 }
9737 
9738 #ifdef CONFIG_FAIR_GROUP_SCHED
9739 
9740 static bool __update_blocked_fair(struct rq *rq, bool *done)
9741 {
9742 	struct cfs_rq *cfs_rq, *pos;
9743 	bool decayed = false;
9744 	int cpu = cpu_of(rq);
9745 
9746 	/*
9747 	 * Iterates the task_group tree in a bottom up fashion, see
9748 	 * list_add_leaf_cfs_rq() for details.
9749 	 */
9750 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9751 		struct sched_entity *se;
9752 
9753 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9754 			update_tg_load_avg(cfs_rq);
9755 
9756 			if (cfs_rq->nr_running == 0)
9757 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9758 
9759 			if (cfs_rq == &rq->cfs)
9760 				decayed = true;
9761 		}
9762 
9763 		/* Propagate pending load changes to the parent, if any: */
9764 		se = cfs_rq->tg->se[cpu];
9765 		if (se && !skip_blocked_update(se))
9766 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9767 
9768 		/*
9769 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9770 		 * decayed cfs_rqs linger on the list.
9771 		 */
9772 		if (cfs_rq_is_decayed(cfs_rq))
9773 			list_del_leaf_cfs_rq(cfs_rq);
9774 
9775 		/* Don't need periodic decay once load/util_avg are null */
9776 		if (cfs_rq_has_blocked(cfs_rq))
9777 			*done = false;
9778 	}
9779 
9780 	return decayed;
9781 }
9782 
9783 /*
9784  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9785  * This needs to be done in a top-down fashion because the load of a child
9786  * group is a fraction of its parents load.
9787  */
9788 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9789 {
9790 	struct rq *rq = rq_of(cfs_rq);
9791 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9792 	unsigned long now = jiffies;
9793 	unsigned long load;
9794 
9795 	if (cfs_rq->last_h_load_update == now)
9796 		return;
9797 
9798 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9799 	for_each_sched_entity(se) {
9800 		cfs_rq = cfs_rq_of(se);
9801 		WRITE_ONCE(cfs_rq->h_load_next, se);
9802 		if (cfs_rq->last_h_load_update == now)
9803 			break;
9804 	}
9805 
9806 	if (!se) {
9807 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9808 		cfs_rq->last_h_load_update = now;
9809 	}
9810 
9811 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9812 		load = cfs_rq->h_load;
9813 		load = div64_ul(load * se->avg.load_avg,
9814 			cfs_rq_load_avg(cfs_rq) + 1);
9815 		cfs_rq = group_cfs_rq(se);
9816 		cfs_rq->h_load = load;
9817 		cfs_rq->last_h_load_update = now;
9818 	}
9819 }
9820 
9821 static unsigned long task_h_load(struct task_struct *p)
9822 {
9823 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9824 
9825 	update_cfs_rq_h_load(cfs_rq);
9826 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9827 			cfs_rq_load_avg(cfs_rq) + 1);
9828 }
9829 #else
9830 static bool __update_blocked_fair(struct rq *rq, bool *done)
9831 {
9832 	struct cfs_rq *cfs_rq = &rq->cfs;
9833 	bool decayed;
9834 
9835 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9836 	if (cfs_rq_has_blocked(cfs_rq))
9837 		*done = false;
9838 
9839 	return decayed;
9840 }
9841 
9842 static unsigned long task_h_load(struct task_struct *p)
9843 {
9844 	return p->se.avg.load_avg;
9845 }
9846 #endif
9847 
9848 static void sched_balance_update_blocked_averages(int cpu)
9849 {
9850 	bool decayed = false, done = true;
9851 	struct rq *rq = cpu_rq(cpu);
9852 	struct rq_flags rf;
9853 
9854 	rq_lock_irqsave(rq, &rf);
9855 	update_blocked_load_tick(rq);
9856 	update_rq_clock(rq);
9857 
9858 	decayed |= __update_blocked_others(rq, &done);
9859 	decayed |= __update_blocked_fair(rq, &done);
9860 
9861 	update_blocked_load_status(rq, !done);
9862 	if (decayed)
9863 		cpufreq_update_util(rq, 0);
9864 	rq_unlock_irqrestore(rq, &rf);
9865 }
9866 
9867 /********** Helpers for sched_balance_find_src_group ************************/
9868 
9869 /*
9870  * sg_lb_stats - stats of a sched_group required for load-balancing:
9871  */
9872 struct sg_lb_stats {
9873 	unsigned long avg_load;			/* Avg load            over the CPUs of the group */
9874 	unsigned long group_load;		/* Total load          over the CPUs of the group */
9875 	unsigned long group_capacity;		/* Capacity            over the CPUs of the group */
9876 	unsigned long group_util;		/* Total utilization   over the CPUs of the group */
9877 	unsigned long group_runnable;		/* Total runnable time over the CPUs of the group */
9878 	unsigned int sum_nr_running;		/* Nr of all tasks running in the group */
9879 	unsigned int sum_h_nr_running;		/* Nr of CFS tasks running in the group */
9880 	unsigned int idle_cpus;                 /* Nr of idle CPUs         in the group */
9881 	unsigned int group_weight;
9882 	enum group_type group_type;
9883 	unsigned int group_asym_packing;	/* Tasks should be moved to preferred CPU */
9884 	unsigned int group_smt_balance;		/* Task on busy SMT be moved */
9885 	unsigned long group_misfit_task_load;	/* A CPU has a task too big for its capacity */
9886 #ifdef CONFIG_NUMA_BALANCING
9887 	unsigned int nr_numa_running;
9888 	unsigned int nr_preferred_running;
9889 #endif
9890 };
9891 
9892 /*
9893  * sd_lb_stats - stats of a sched_domain required for load-balancing:
9894  */
9895 struct sd_lb_stats {
9896 	struct sched_group *busiest;		/* Busiest group in this sd */
9897 	struct sched_group *local;		/* Local group in this sd */
9898 	unsigned long total_load;		/* Total load of all groups in sd */
9899 	unsigned long total_capacity;		/* Total capacity of all groups in sd */
9900 	unsigned long avg_load;			/* Average load across all groups in sd */
9901 	unsigned int prefer_sibling;		/* Tasks should go to sibling first */
9902 
9903 	struct sg_lb_stats busiest_stat;	/* Statistics of the busiest group */
9904 	struct sg_lb_stats local_stat;		/* Statistics of the local group */
9905 };
9906 
9907 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9908 {
9909 	/*
9910 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9911 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9912 	 * We must however set busiest_stat::group_type and
9913 	 * busiest_stat::idle_cpus to the worst busiest group because
9914 	 * update_sd_pick_busiest() reads these before assignment.
9915 	 */
9916 	*sds = (struct sd_lb_stats){
9917 		.busiest = NULL,
9918 		.local = NULL,
9919 		.total_load = 0UL,
9920 		.total_capacity = 0UL,
9921 		.busiest_stat = {
9922 			.idle_cpus = UINT_MAX,
9923 			.group_type = group_has_spare,
9924 		},
9925 	};
9926 }
9927 
9928 static unsigned long scale_rt_capacity(int cpu)
9929 {
9930 	unsigned long max = get_actual_cpu_capacity(cpu);
9931 	struct rq *rq = cpu_rq(cpu);
9932 	unsigned long used, free;
9933 	unsigned long irq;
9934 
9935 	irq = cpu_util_irq(rq);
9936 
9937 	if (unlikely(irq >= max))
9938 		return 1;
9939 
9940 	/*
9941 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9942 	 * (running and not running) with weights 0 and 1024 respectively.
9943 	 */
9944 	used = cpu_util_rt(rq);
9945 	used += cpu_util_dl(rq);
9946 
9947 	if (unlikely(used >= max))
9948 		return 1;
9949 
9950 	free = max - used;
9951 
9952 	return scale_irq_capacity(free, irq, max);
9953 }
9954 
9955 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9956 {
9957 	unsigned long capacity = scale_rt_capacity(cpu);
9958 	struct sched_group *sdg = sd->groups;
9959 
9960 	if (!capacity)
9961 		capacity = 1;
9962 
9963 	cpu_rq(cpu)->cpu_capacity = capacity;
9964 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9965 
9966 	sdg->sgc->capacity = capacity;
9967 	sdg->sgc->min_capacity = capacity;
9968 	sdg->sgc->max_capacity = capacity;
9969 }
9970 
9971 void update_group_capacity(struct sched_domain *sd, int cpu)
9972 {
9973 	struct sched_domain *child = sd->child;
9974 	struct sched_group *group, *sdg = sd->groups;
9975 	unsigned long capacity, min_capacity, max_capacity;
9976 	unsigned long interval;
9977 
9978 	interval = msecs_to_jiffies(sd->balance_interval);
9979 	interval = clamp(interval, 1UL, max_load_balance_interval);
9980 	sdg->sgc->next_update = jiffies + interval;
9981 
9982 	if (!child) {
9983 		update_cpu_capacity(sd, cpu);
9984 		return;
9985 	}
9986 
9987 	capacity = 0;
9988 	min_capacity = ULONG_MAX;
9989 	max_capacity = 0;
9990 
9991 	if (child->flags & SD_OVERLAP) {
9992 		/*
9993 		 * SD_OVERLAP domains cannot assume that child groups
9994 		 * span the current group.
9995 		 */
9996 
9997 		for_each_cpu(cpu, sched_group_span(sdg)) {
9998 			unsigned long cpu_cap = capacity_of(cpu);
9999 
10000 			capacity += cpu_cap;
10001 			min_capacity = min(cpu_cap, min_capacity);
10002 			max_capacity = max(cpu_cap, max_capacity);
10003 		}
10004 	} else  {
10005 		/*
10006 		 * !SD_OVERLAP domains can assume that child groups
10007 		 * span the current group.
10008 		 */
10009 
10010 		group = child->groups;
10011 		do {
10012 			struct sched_group_capacity *sgc = group->sgc;
10013 
10014 			capacity += sgc->capacity;
10015 			min_capacity = min(sgc->min_capacity, min_capacity);
10016 			max_capacity = max(sgc->max_capacity, max_capacity);
10017 			group = group->next;
10018 		} while (group != child->groups);
10019 	}
10020 
10021 	sdg->sgc->capacity = capacity;
10022 	sdg->sgc->min_capacity = min_capacity;
10023 	sdg->sgc->max_capacity = max_capacity;
10024 }
10025 
10026 /*
10027  * Check whether the capacity of the rq has been noticeably reduced by side
10028  * activity. The imbalance_pct is used for the threshold.
10029  * Return true is the capacity is reduced
10030  */
10031 static inline int
10032 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
10033 {
10034 	return ((rq->cpu_capacity * sd->imbalance_pct) <
10035 				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
10036 }
10037 
10038 /* Check if the rq has a misfit task */
10039 static inline bool check_misfit_status(struct rq *rq)
10040 {
10041 	return rq->misfit_task_load;
10042 }
10043 
10044 /*
10045  * Group imbalance indicates (and tries to solve) the problem where balancing
10046  * groups is inadequate due to ->cpus_ptr constraints.
10047  *
10048  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
10049  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
10050  * Something like:
10051  *
10052  *	{ 0 1 2 3 } { 4 5 6 7 }
10053  *	        *     * * *
10054  *
10055  * If we were to balance group-wise we'd place two tasks in the first group and
10056  * two tasks in the second group. Clearly this is undesired as it will overload
10057  * cpu 3 and leave one of the CPUs in the second group unused.
10058  *
10059  * The current solution to this issue is detecting the skew in the first group
10060  * by noticing the lower domain failed to reach balance and had difficulty
10061  * moving tasks due to affinity constraints.
10062  *
10063  * When this is so detected; this group becomes a candidate for busiest; see
10064  * update_sd_pick_busiest(). And calculate_imbalance() and
10065  * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10066  * to create an effective group imbalance.
10067  *
10068  * This is a somewhat tricky proposition since the next run might not find the
10069  * group imbalance and decide the groups need to be balanced again. A most
10070  * subtle and fragile situation.
10071  */
10072 
10073 static inline int sg_imbalanced(struct sched_group *group)
10074 {
10075 	return group->sgc->imbalance;
10076 }
10077 
10078 /*
10079  * group_has_capacity returns true if the group has spare capacity that could
10080  * be used by some tasks.
10081  * We consider that a group has spare capacity if the number of task is
10082  * smaller than the number of CPUs or if the utilization is lower than the
10083  * available capacity for CFS tasks.
10084  * For the latter, we use a threshold to stabilize the state, to take into
10085  * account the variance of the tasks' load and to return true if the available
10086  * capacity in meaningful for the load balancer.
10087  * As an example, an available capacity of 1% can appear but it doesn't make
10088  * any benefit for the load balance.
10089  */
10090 static inline bool
10091 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10092 {
10093 	if (sgs->sum_nr_running < sgs->group_weight)
10094 		return true;
10095 
10096 	if ((sgs->group_capacity * imbalance_pct) <
10097 			(sgs->group_runnable * 100))
10098 		return false;
10099 
10100 	if ((sgs->group_capacity * 100) >
10101 			(sgs->group_util * imbalance_pct))
10102 		return true;
10103 
10104 	return false;
10105 }
10106 
10107 /*
10108  *  group_is_overloaded returns true if the group has more tasks than it can
10109  *  handle.
10110  *  group_is_overloaded is not equals to !group_has_capacity because a group
10111  *  with the exact right number of tasks, has no more spare capacity but is not
10112  *  overloaded so both group_has_capacity and group_is_overloaded return
10113  *  false.
10114  */
10115 static inline bool
10116 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10117 {
10118 	if (sgs->sum_nr_running <= sgs->group_weight)
10119 		return false;
10120 
10121 	if ((sgs->group_capacity * 100) <
10122 			(sgs->group_util * imbalance_pct))
10123 		return true;
10124 
10125 	if ((sgs->group_capacity * imbalance_pct) <
10126 			(sgs->group_runnable * 100))
10127 		return true;
10128 
10129 	return false;
10130 }
10131 
10132 static inline enum
10133 group_type group_classify(unsigned int imbalance_pct,
10134 			  struct sched_group *group,
10135 			  struct sg_lb_stats *sgs)
10136 {
10137 	if (group_is_overloaded(imbalance_pct, sgs))
10138 		return group_overloaded;
10139 
10140 	if (sg_imbalanced(group))
10141 		return group_imbalanced;
10142 
10143 	if (sgs->group_asym_packing)
10144 		return group_asym_packing;
10145 
10146 	if (sgs->group_smt_balance)
10147 		return group_smt_balance;
10148 
10149 	if (sgs->group_misfit_task_load)
10150 		return group_misfit_task;
10151 
10152 	if (!group_has_capacity(imbalance_pct, sgs))
10153 		return group_fully_busy;
10154 
10155 	return group_has_spare;
10156 }
10157 
10158 /**
10159  * sched_use_asym_prio - Check whether asym_packing priority must be used
10160  * @sd:		The scheduling domain of the load balancing
10161  * @cpu:	A CPU
10162  *
10163  * Always use CPU priority when balancing load between SMT siblings. When
10164  * balancing load between cores, it is not sufficient that @cpu is idle. Only
10165  * use CPU priority if the whole core is idle.
10166  *
10167  * Returns: True if the priority of @cpu must be followed. False otherwise.
10168  */
10169 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10170 {
10171 	if (!(sd->flags & SD_ASYM_PACKING))
10172 		return false;
10173 
10174 	if (!sched_smt_active())
10175 		return true;
10176 
10177 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10178 }
10179 
10180 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10181 {
10182 	/*
10183 	 * First check if @dst_cpu can do asym_packing load balance. Only do it
10184 	 * if it has higher priority than @src_cpu.
10185 	 */
10186 	return sched_use_asym_prio(sd, dst_cpu) &&
10187 		sched_asym_prefer(dst_cpu, src_cpu);
10188 }
10189 
10190 /**
10191  * sched_group_asym - Check if the destination CPU can do asym_packing balance
10192  * @env:	The load balancing environment
10193  * @sgs:	Load-balancing statistics of the candidate busiest group
10194  * @group:	The candidate busiest group
10195  *
10196  * @env::dst_cpu can do asym_packing if it has higher priority than the
10197  * preferred CPU of @group.
10198  *
10199  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10200  * otherwise.
10201  */
10202 static inline bool
10203 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10204 {
10205 	/*
10206 	 * CPU priorities do not make sense for SMT cores with more than one
10207 	 * busy sibling.
10208 	 */
10209 	if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10210 	    (sgs->group_weight - sgs->idle_cpus != 1))
10211 		return false;
10212 
10213 	return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
10214 }
10215 
10216 /* One group has more than one SMT CPU while the other group does not */
10217 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10218 				    struct sched_group *sg2)
10219 {
10220 	if (!sg1 || !sg2)
10221 		return false;
10222 
10223 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10224 		(sg2->flags & SD_SHARE_CPUCAPACITY);
10225 }
10226 
10227 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10228 			       struct sched_group *group)
10229 {
10230 	if (!env->idle)
10231 		return false;
10232 
10233 	/*
10234 	 * For SMT source group, it is better to move a task
10235 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10236 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10237 	 * will not be on.
10238 	 */
10239 	if (group->flags & SD_SHARE_CPUCAPACITY &&
10240 	    sgs->sum_h_nr_running > 1)
10241 		return true;
10242 
10243 	return false;
10244 }
10245 
10246 static inline long sibling_imbalance(struct lb_env *env,
10247 				    struct sd_lb_stats *sds,
10248 				    struct sg_lb_stats *busiest,
10249 				    struct sg_lb_stats *local)
10250 {
10251 	int ncores_busiest, ncores_local;
10252 	long imbalance;
10253 
10254 	if (!env->idle || !busiest->sum_nr_running)
10255 		return 0;
10256 
10257 	ncores_busiest = sds->busiest->cores;
10258 	ncores_local = sds->local->cores;
10259 
10260 	if (ncores_busiest == ncores_local) {
10261 		imbalance = busiest->sum_nr_running;
10262 		lsub_positive(&imbalance, local->sum_nr_running);
10263 		return imbalance;
10264 	}
10265 
10266 	/* Balance such that nr_running/ncores ratio are same on both groups */
10267 	imbalance = ncores_local * busiest->sum_nr_running;
10268 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10269 	/* Normalize imbalance and do rounding on normalization */
10270 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10271 	imbalance /= ncores_local + ncores_busiest;
10272 
10273 	/* Take advantage of resource in an empty sched group */
10274 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
10275 	    busiest->sum_nr_running > 1)
10276 		imbalance = 2;
10277 
10278 	return imbalance;
10279 }
10280 
10281 static inline bool
10282 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10283 {
10284 	/*
10285 	 * When there is more than 1 task, the group_overloaded case already
10286 	 * takes care of cpu with reduced capacity
10287 	 */
10288 	if (rq->cfs.h_nr_running != 1)
10289 		return false;
10290 
10291 	return check_cpu_capacity(rq, sd);
10292 }
10293 
10294 /**
10295  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10296  * @env: The load balancing environment.
10297  * @sds: Load-balancing data with statistics of the local group.
10298  * @group: sched_group whose statistics are to be updated.
10299  * @sgs: variable to hold the statistics for this group.
10300  * @sg_overloaded: sched_group is overloaded
10301  * @sg_overutilized: sched_group is overutilized
10302  */
10303 static inline void update_sg_lb_stats(struct lb_env *env,
10304 				      struct sd_lb_stats *sds,
10305 				      struct sched_group *group,
10306 				      struct sg_lb_stats *sgs,
10307 				      bool *sg_overloaded,
10308 				      bool *sg_overutilized)
10309 {
10310 	int i, nr_running, local_group;
10311 
10312 	memset(sgs, 0, sizeof(*sgs));
10313 
10314 	local_group = group == sds->local;
10315 
10316 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10317 		struct rq *rq = cpu_rq(i);
10318 		unsigned long load = cpu_load(rq);
10319 
10320 		sgs->group_load += load;
10321 		sgs->group_util += cpu_util_cfs(i);
10322 		sgs->group_runnable += cpu_runnable(rq);
10323 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
10324 
10325 		nr_running = rq->nr_running;
10326 		sgs->sum_nr_running += nr_running;
10327 
10328 		if (nr_running > 1)
10329 			*sg_overloaded = 1;
10330 
10331 		if (cpu_overutilized(i))
10332 			*sg_overutilized = 1;
10333 
10334 #ifdef CONFIG_NUMA_BALANCING
10335 		sgs->nr_numa_running += rq->nr_numa_running;
10336 		sgs->nr_preferred_running += rq->nr_preferred_running;
10337 #endif
10338 		/*
10339 		 * No need to call idle_cpu() if nr_running is not 0
10340 		 */
10341 		if (!nr_running && idle_cpu(i)) {
10342 			sgs->idle_cpus++;
10343 			/* Idle cpu can't have misfit task */
10344 			continue;
10345 		}
10346 
10347 		if (local_group)
10348 			continue;
10349 
10350 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10351 			/* Check for a misfit task on the cpu */
10352 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10353 				sgs->group_misfit_task_load = rq->misfit_task_load;
10354 				*sg_overloaded = 1;
10355 			}
10356 		} else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10357 			/* Check for a task running on a CPU with reduced capacity */
10358 			if (sgs->group_misfit_task_load < load)
10359 				sgs->group_misfit_task_load = load;
10360 		}
10361 	}
10362 
10363 	sgs->group_capacity = group->sgc->capacity;
10364 
10365 	sgs->group_weight = group->group_weight;
10366 
10367 	/* Check if dst CPU is idle and preferred to this group */
10368 	if (!local_group && env->idle && sgs->sum_h_nr_running &&
10369 	    sched_group_asym(env, sgs, group))
10370 		sgs->group_asym_packing = 1;
10371 
10372 	/* Check for loaded SMT group to be balanced to dst CPU */
10373 	if (!local_group && smt_balance(env, sgs, group))
10374 		sgs->group_smt_balance = 1;
10375 
10376 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10377 
10378 	/* Computing avg_load makes sense only when group is overloaded */
10379 	if (sgs->group_type == group_overloaded)
10380 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10381 				sgs->group_capacity;
10382 }
10383 
10384 /**
10385  * update_sd_pick_busiest - return 1 on busiest group
10386  * @env: The load balancing environment.
10387  * @sds: sched_domain statistics
10388  * @sg: sched_group candidate to be checked for being the busiest
10389  * @sgs: sched_group statistics
10390  *
10391  * Determine if @sg is a busier group than the previously selected
10392  * busiest group.
10393  *
10394  * Return: %true if @sg is a busier group than the previously selected
10395  * busiest group. %false otherwise.
10396  */
10397 static bool update_sd_pick_busiest(struct lb_env *env,
10398 				   struct sd_lb_stats *sds,
10399 				   struct sched_group *sg,
10400 				   struct sg_lb_stats *sgs)
10401 {
10402 	struct sg_lb_stats *busiest = &sds->busiest_stat;
10403 
10404 	/* Make sure that there is at least one task to pull */
10405 	if (!sgs->sum_h_nr_running)
10406 		return false;
10407 
10408 	/*
10409 	 * Don't try to pull misfit tasks we can't help.
10410 	 * We can use max_capacity here as reduction in capacity on some
10411 	 * CPUs in the group should either be possible to resolve
10412 	 * internally or be covered by avg_load imbalance (eventually).
10413 	 */
10414 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10415 	    (sgs->group_type == group_misfit_task) &&
10416 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10417 	     sds->local_stat.group_type != group_has_spare))
10418 		return false;
10419 
10420 	if (sgs->group_type > busiest->group_type)
10421 		return true;
10422 
10423 	if (sgs->group_type < busiest->group_type)
10424 		return false;
10425 
10426 	/*
10427 	 * The candidate and the current busiest group are the same type of
10428 	 * group. Let check which one is the busiest according to the type.
10429 	 */
10430 
10431 	switch (sgs->group_type) {
10432 	case group_overloaded:
10433 		/* Select the overloaded group with highest avg_load. */
10434 		return sgs->avg_load > busiest->avg_load;
10435 
10436 	case group_imbalanced:
10437 		/*
10438 		 * Select the 1st imbalanced group as we don't have any way to
10439 		 * choose one more than another.
10440 		 */
10441 		return false;
10442 
10443 	case group_asym_packing:
10444 		/* Prefer to move from lowest priority CPU's work */
10445 		return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
10446 
10447 	case group_misfit_task:
10448 		/*
10449 		 * If we have more than one misfit sg go with the biggest
10450 		 * misfit.
10451 		 */
10452 		return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10453 
10454 	case group_smt_balance:
10455 		/*
10456 		 * Check if we have spare CPUs on either SMT group to
10457 		 * choose has spare or fully busy handling.
10458 		 */
10459 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10460 			goto has_spare;
10461 
10462 		fallthrough;
10463 
10464 	case group_fully_busy:
10465 		/*
10466 		 * Select the fully busy group with highest avg_load. In
10467 		 * theory, there is no need to pull task from such kind of
10468 		 * group because tasks have all compute capacity that they need
10469 		 * but we can still improve the overall throughput by reducing
10470 		 * contention when accessing shared HW resources.
10471 		 *
10472 		 * XXX for now avg_load is not computed and always 0 so we
10473 		 * select the 1st one, except if @sg is composed of SMT
10474 		 * siblings.
10475 		 */
10476 
10477 		if (sgs->avg_load < busiest->avg_load)
10478 			return false;
10479 
10480 		if (sgs->avg_load == busiest->avg_load) {
10481 			/*
10482 			 * SMT sched groups need more help than non-SMT groups.
10483 			 * If @sg happens to also be SMT, either choice is good.
10484 			 */
10485 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10486 				return false;
10487 		}
10488 
10489 		break;
10490 
10491 	case group_has_spare:
10492 		/*
10493 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10494 		 * as we do not want to pull task off SMT core with one task
10495 		 * and make the core idle.
10496 		 */
10497 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10498 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10499 				return false;
10500 			else
10501 				return true;
10502 		}
10503 has_spare:
10504 
10505 		/*
10506 		 * Select not overloaded group with lowest number of idle CPUs
10507 		 * and highest number of running tasks. We could also compare
10508 		 * the spare capacity which is more stable but it can end up
10509 		 * that the group has less spare capacity but finally more idle
10510 		 * CPUs which means less opportunity to pull tasks.
10511 		 */
10512 		if (sgs->idle_cpus > busiest->idle_cpus)
10513 			return false;
10514 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10515 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10516 			return false;
10517 
10518 		break;
10519 	}
10520 
10521 	/*
10522 	 * Candidate sg has no more than one task per CPU and has higher
10523 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10524 	 * throughput. Maximize throughput, power/energy consequences are not
10525 	 * considered.
10526 	 */
10527 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10528 	    (sgs->group_type <= group_fully_busy) &&
10529 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10530 		return false;
10531 
10532 	return true;
10533 }
10534 
10535 #ifdef CONFIG_NUMA_BALANCING
10536 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10537 {
10538 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10539 		return regular;
10540 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10541 		return remote;
10542 	return all;
10543 }
10544 
10545 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10546 {
10547 	if (rq->nr_running > rq->nr_numa_running)
10548 		return regular;
10549 	if (rq->nr_running > rq->nr_preferred_running)
10550 		return remote;
10551 	return all;
10552 }
10553 #else
10554 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10555 {
10556 	return all;
10557 }
10558 
10559 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10560 {
10561 	return regular;
10562 }
10563 #endif /* CONFIG_NUMA_BALANCING */
10564 
10565 
10566 struct sg_lb_stats;
10567 
10568 /*
10569  * task_running_on_cpu - return 1 if @p is running on @cpu.
10570  */
10571 
10572 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10573 {
10574 	/* Task has no contribution or is new */
10575 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10576 		return 0;
10577 
10578 	if (task_on_rq_queued(p))
10579 		return 1;
10580 
10581 	return 0;
10582 }
10583 
10584 /**
10585  * idle_cpu_without - would a given CPU be idle without p ?
10586  * @cpu: the processor on which idleness is tested.
10587  * @p: task which should be ignored.
10588  *
10589  * Return: 1 if the CPU would be idle. 0 otherwise.
10590  */
10591 static int idle_cpu_without(int cpu, struct task_struct *p)
10592 {
10593 	struct rq *rq = cpu_rq(cpu);
10594 
10595 	if (rq->curr != rq->idle && rq->curr != p)
10596 		return 0;
10597 
10598 	/*
10599 	 * rq->nr_running can't be used but an updated version without the
10600 	 * impact of p on cpu must be used instead. The updated nr_running
10601 	 * be computed and tested before calling idle_cpu_without().
10602 	 */
10603 
10604 	if (rq->ttwu_pending)
10605 		return 0;
10606 
10607 	return 1;
10608 }
10609 
10610 /*
10611  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10612  * @sd: The sched_domain level to look for idlest group.
10613  * @group: sched_group whose statistics are to be updated.
10614  * @sgs: variable to hold the statistics for this group.
10615  * @p: The task for which we look for the idlest group/CPU.
10616  */
10617 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10618 					  struct sched_group *group,
10619 					  struct sg_lb_stats *sgs,
10620 					  struct task_struct *p)
10621 {
10622 	int i, nr_running;
10623 
10624 	memset(sgs, 0, sizeof(*sgs));
10625 
10626 	/* Assume that task can't fit any CPU of the group */
10627 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10628 		sgs->group_misfit_task_load = 1;
10629 
10630 	for_each_cpu(i, sched_group_span(group)) {
10631 		struct rq *rq = cpu_rq(i);
10632 		unsigned int local;
10633 
10634 		sgs->group_load += cpu_load_without(rq, p);
10635 		sgs->group_util += cpu_util_without(i, p);
10636 		sgs->group_runnable += cpu_runnable_without(rq, p);
10637 		local = task_running_on_cpu(i, p);
10638 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10639 
10640 		nr_running = rq->nr_running - local;
10641 		sgs->sum_nr_running += nr_running;
10642 
10643 		/*
10644 		 * No need to call idle_cpu_without() if nr_running is not 0
10645 		 */
10646 		if (!nr_running && idle_cpu_without(i, p))
10647 			sgs->idle_cpus++;
10648 
10649 		/* Check if task fits in the CPU */
10650 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10651 		    sgs->group_misfit_task_load &&
10652 		    task_fits_cpu(p, i))
10653 			sgs->group_misfit_task_load = 0;
10654 
10655 	}
10656 
10657 	sgs->group_capacity = group->sgc->capacity;
10658 
10659 	sgs->group_weight = group->group_weight;
10660 
10661 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10662 
10663 	/*
10664 	 * Computing avg_load makes sense only when group is fully busy or
10665 	 * overloaded
10666 	 */
10667 	if (sgs->group_type == group_fully_busy ||
10668 		sgs->group_type == group_overloaded)
10669 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10670 				sgs->group_capacity;
10671 }
10672 
10673 static bool update_pick_idlest(struct sched_group *idlest,
10674 			       struct sg_lb_stats *idlest_sgs,
10675 			       struct sched_group *group,
10676 			       struct sg_lb_stats *sgs)
10677 {
10678 	if (sgs->group_type < idlest_sgs->group_type)
10679 		return true;
10680 
10681 	if (sgs->group_type > idlest_sgs->group_type)
10682 		return false;
10683 
10684 	/*
10685 	 * The candidate and the current idlest group are the same type of
10686 	 * group. Let check which one is the idlest according to the type.
10687 	 */
10688 
10689 	switch (sgs->group_type) {
10690 	case group_overloaded:
10691 	case group_fully_busy:
10692 		/* Select the group with lowest avg_load. */
10693 		if (idlest_sgs->avg_load <= sgs->avg_load)
10694 			return false;
10695 		break;
10696 
10697 	case group_imbalanced:
10698 	case group_asym_packing:
10699 	case group_smt_balance:
10700 		/* Those types are not used in the slow wakeup path */
10701 		return false;
10702 
10703 	case group_misfit_task:
10704 		/* Select group with the highest max capacity */
10705 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10706 			return false;
10707 		break;
10708 
10709 	case group_has_spare:
10710 		/* Select group with most idle CPUs */
10711 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10712 			return false;
10713 
10714 		/* Select group with lowest group_util */
10715 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10716 			idlest_sgs->group_util <= sgs->group_util)
10717 			return false;
10718 
10719 		break;
10720 	}
10721 
10722 	return true;
10723 }
10724 
10725 /*
10726  * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10727  * domain.
10728  *
10729  * Assumes p is allowed on at least one CPU in sd.
10730  */
10731 static struct sched_group *
10732 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10733 {
10734 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10735 	struct sg_lb_stats local_sgs, tmp_sgs;
10736 	struct sg_lb_stats *sgs;
10737 	unsigned long imbalance;
10738 	struct sg_lb_stats idlest_sgs = {
10739 			.avg_load = UINT_MAX,
10740 			.group_type = group_overloaded,
10741 	};
10742 
10743 	do {
10744 		int local_group;
10745 
10746 		/* Skip over this group if it has no CPUs allowed */
10747 		if (!cpumask_intersects(sched_group_span(group),
10748 					p->cpus_ptr))
10749 			continue;
10750 
10751 		/* Skip over this group if no cookie matched */
10752 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10753 			continue;
10754 
10755 		local_group = cpumask_test_cpu(this_cpu,
10756 					       sched_group_span(group));
10757 
10758 		if (local_group) {
10759 			sgs = &local_sgs;
10760 			local = group;
10761 		} else {
10762 			sgs = &tmp_sgs;
10763 		}
10764 
10765 		update_sg_wakeup_stats(sd, group, sgs, p);
10766 
10767 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10768 			idlest = group;
10769 			idlest_sgs = *sgs;
10770 		}
10771 
10772 	} while (group = group->next, group != sd->groups);
10773 
10774 
10775 	/* There is no idlest group to push tasks to */
10776 	if (!idlest)
10777 		return NULL;
10778 
10779 	/* The local group has been skipped because of CPU affinity */
10780 	if (!local)
10781 		return idlest;
10782 
10783 	/*
10784 	 * If the local group is idler than the selected idlest group
10785 	 * don't try and push the task.
10786 	 */
10787 	if (local_sgs.group_type < idlest_sgs.group_type)
10788 		return NULL;
10789 
10790 	/*
10791 	 * If the local group is busier than the selected idlest group
10792 	 * try and push the task.
10793 	 */
10794 	if (local_sgs.group_type > idlest_sgs.group_type)
10795 		return idlest;
10796 
10797 	switch (local_sgs.group_type) {
10798 	case group_overloaded:
10799 	case group_fully_busy:
10800 
10801 		/* Calculate allowed imbalance based on load */
10802 		imbalance = scale_load_down(NICE_0_LOAD) *
10803 				(sd->imbalance_pct-100) / 100;
10804 
10805 		/*
10806 		 * When comparing groups across NUMA domains, it's possible for
10807 		 * the local domain to be very lightly loaded relative to the
10808 		 * remote domains but "imbalance" skews the comparison making
10809 		 * remote CPUs look much more favourable. When considering
10810 		 * cross-domain, add imbalance to the load on the remote node
10811 		 * and consider staying local.
10812 		 */
10813 
10814 		if ((sd->flags & SD_NUMA) &&
10815 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10816 			return NULL;
10817 
10818 		/*
10819 		 * If the local group is less loaded than the selected
10820 		 * idlest group don't try and push any tasks.
10821 		 */
10822 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10823 			return NULL;
10824 
10825 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10826 			return NULL;
10827 		break;
10828 
10829 	case group_imbalanced:
10830 	case group_asym_packing:
10831 	case group_smt_balance:
10832 		/* Those type are not used in the slow wakeup path */
10833 		return NULL;
10834 
10835 	case group_misfit_task:
10836 		/* Select group with the highest max capacity */
10837 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10838 			return NULL;
10839 		break;
10840 
10841 	case group_has_spare:
10842 #ifdef CONFIG_NUMA
10843 		if (sd->flags & SD_NUMA) {
10844 			int imb_numa_nr = sd->imb_numa_nr;
10845 #ifdef CONFIG_NUMA_BALANCING
10846 			int idlest_cpu;
10847 			/*
10848 			 * If there is spare capacity at NUMA, try to select
10849 			 * the preferred node
10850 			 */
10851 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10852 				return NULL;
10853 
10854 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10855 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10856 				return idlest;
10857 #endif /* CONFIG_NUMA_BALANCING */
10858 			/*
10859 			 * Otherwise, keep the task close to the wakeup source
10860 			 * and improve locality if the number of running tasks
10861 			 * would remain below threshold where an imbalance is
10862 			 * allowed while accounting for the possibility the
10863 			 * task is pinned to a subset of CPUs. If there is a
10864 			 * real need of migration, periodic load balance will
10865 			 * take care of it.
10866 			 */
10867 			if (p->nr_cpus_allowed != NR_CPUS) {
10868 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10869 
10870 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10871 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10872 			}
10873 
10874 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10875 			if (!adjust_numa_imbalance(imbalance,
10876 						   local_sgs.sum_nr_running + 1,
10877 						   imb_numa_nr)) {
10878 				return NULL;
10879 			}
10880 		}
10881 #endif /* CONFIG_NUMA */
10882 
10883 		/*
10884 		 * Select group with highest number of idle CPUs. We could also
10885 		 * compare the utilization which is more stable but it can end
10886 		 * up that the group has less spare capacity but finally more
10887 		 * idle CPUs which means more opportunity to run task.
10888 		 */
10889 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10890 			return NULL;
10891 		break;
10892 	}
10893 
10894 	return idlest;
10895 }
10896 
10897 static void update_idle_cpu_scan(struct lb_env *env,
10898 				 unsigned long sum_util)
10899 {
10900 	struct sched_domain_shared *sd_share;
10901 	int llc_weight, pct;
10902 	u64 x, y, tmp;
10903 	/*
10904 	 * Update the number of CPUs to scan in LLC domain, which could
10905 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10906 	 * could be expensive because it is within a shared cache line.
10907 	 * So the write of this hint only occurs during periodic load
10908 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10909 	 * can fire way more frequently than the former.
10910 	 */
10911 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10912 		return;
10913 
10914 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10915 	if (env->sd->span_weight != llc_weight)
10916 		return;
10917 
10918 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10919 	if (!sd_share)
10920 		return;
10921 
10922 	/*
10923 	 * The number of CPUs to search drops as sum_util increases, when
10924 	 * sum_util hits 85% or above, the scan stops.
10925 	 * The reason to choose 85% as the threshold is because this is the
10926 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10927 	 *
10928 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10929 	 * and y'= y / SCHED_CAPACITY_SCALE
10930 	 *
10931 	 * x is the ratio of sum_util compared to the CPU capacity:
10932 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10933 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10934 	 * and the number of CPUs to scan is calculated by:
10935 	 *
10936 	 * nr_scan = llc_weight * y'                                    [2]
10937 	 *
10938 	 * When x hits the threshold of overloaded, AKA, when
10939 	 * x = 100 / pct, y drops to 0. According to [1],
10940 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10941 	 *
10942 	 * Scale x by SCHED_CAPACITY_SCALE:
10943 	 * x' = sum_util / llc_weight;                                  [3]
10944 	 *
10945 	 * and finally [1] becomes:
10946 	 * y = SCHED_CAPACITY_SCALE -
10947 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10948 	 *
10949 	 */
10950 	/* equation [3] */
10951 	x = sum_util;
10952 	do_div(x, llc_weight);
10953 
10954 	/* equation [4] */
10955 	pct = env->sd->imbalance_pct;
10956 	tmp = x * x * pct * pct;
10957 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10958 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10959 	y = SCHED_CAPACITY_SCALE - tmp;
10960 
10961 	/* equation [2] */
10962 	y *= llc_weight;
10963 	do_div(y, SCHED_CAPACITY_SCALE);
10964 	if ((int)y != sd_share->nr_idle_scan)
10965 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10966 }
10967 
10968 /**
10969  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10970  * @env: The load balancing environment.
10971  * @sds: variable to hold the statistics for this sched_domain.
10972  */
10973 
10974 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10975 {
10976 	struct sched_group *sg = env->sd->groups;
10977 	struct sg_lb_stats *local = &sds->local_stat;
10978 	struct sg_lb_stats tmp_sgs;
10979 	unsigned long sum_util = 0;
10980 	bool sg_overloaded = 0, sg_overutilized = 0;
10981 
10982 	do {
10983 		struct sg_lb_stats *sgs = &tmp_sgs;
10984 		int local_group;
10985 
10986 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10987 		if (local_group) {
10988 			sds->local = sg;
10989 			sgs = local;
10990 
10991 			if (env->idle != CPU_NEWLY_IDLE ||
10992 			    time_after_eq(jiffies, sg->sgc->next_update))
10993 				update_group_capacity(env->sd, env->dst_cpu);
10994 		}
10995 
10996 		update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
10997 
10998 		if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
10999 			sds->busiest = sg;
11000 			sds->busiest_stat = *sgs;
11001 		}
11002 
11003 		/* Now, start updating sd_lb_stats */
11004 		sds->total_load += sgs->group_load;
11005 		sds->total_capacity += sgs->group_capacity;
11006 
11007 		sum_util += sgs->group_util;
11008 		sg = sg->next;
11009 	} while (sg != env->sd->groups);
11010 
11011 	/*
11012 	 * Indicate that the child domain of the busiest group prefers tasks
11013 	 * go to a child's sibling domains first. NB the flags of a sched group
11014 	 * are those of the child domain.
11015 	 */
11016 	if (sds->busiest)
11017 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
11018 
11019 
11020 	if (env->sd->flags & SD_NUMA)
11021 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
11022 
11023 	if (!env->sd->parent) {
11024 		/* update overload indicator if we are at root domain */
11025 		set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
11026 
11027 		/* Update over-utilization (tipping point, U >= 0) indicator */
11028 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11029 	} else if (sg_overutilized) {
11030 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11031 	}
11032 
11033 	update_idle_cpu_scan(env, sum_util);
11034 }
11035 
11036 /**
11037  * calculate_imbalance - Calculate the amount of imbalance present within the
11038  *			 groups of a given sched_domain during load balance.
11039  * @env: load balance environment
11040  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
11041  */
11042 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
11043 {
11044 	struct sg_lb_stats *local, *busiest;
11045 
11046 	local = &sds->local_stat;
11047 	busiest = &sds->busiest_stat;
11048 
11049 	if (busiest->group_type == group_misfit_task) {
11050 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
11051 			/* Set imbalance to allow misfit tasks to be balanced. */
11052 			env->migration_type = migrate_misfit;
11053 			env->imbalance = 1;
11054 		} else {
11055 			/*
11056 			 * Set load imbalance to allow moving task from cpu
11057 			 * with reduced capacity.
11058 			 */
11059 			env->migration_type = migrate_load;
11060 			env->imbalance = busiest->group_misfit_task_load;
11061 		}
11062 		return;
11063 	}
11064 
11065 	if (busiest->group_type == group_asym_packing) {
11066 		/*
11067 		 * In case of asym capacity, we will try to migrate all load to
11068 		 * the preferred CPU.
11069 		 */
11070 		env->migration_type = migrate_task;
11071 		env->imbalance = busiest->sum_h_nr_running;
11072 		return;
11073 	}
11074 
11075 	if (busiest->group_type == group_smt_balance) {
11076 		/* Reduce number of tasks sharing CPU capacity */
11077 		env->migration_type = migrate_task;
11078 		env->imbalance = 1;
11079 		return;
11080 	}
11081 
11082 	if (busiest->group_type == group_imbalanced) {
11083 		/*
11084 		 * In the group_imb case we cannot rely on group-wide averages
11085 		 * to ensure CPU-load equilibrium, try to move any task to fix
11086 		 * the imbalance. The next load balance will take care of
11087 		 * balancing back the system.
11088 		 */
11089 		env->migration_type = migrate_task;
11090 		env->imbalance = 1;
11091 		return;
11092 	}
11093 
11094 	/*
11095 	 * Try to use spare capacity of local group without overloading it or
11096 	 * emptying busiest.
11097 	 */
11098 	if (local->group_type == group_has_spare) {
11099 		if ((busiest->group_type > group_fully_busy) &&
11100 		    !(env->sd->flags & SD_SHARE_LLC)) {
11101 			/*
11102 			 * If busiest is overloaded, try to fill spare
11103 			 * capacity. This might end up creating spare capacity
11104 			 * in busiest or busiest still being overloaded but
11105 			 * there is no simple way to directly compute the
11106 			 * amount of load to migrate in order to balance the
11107 			 * system.
11108 			 */
11109 			env->migration_type = migrate_util;
11110 			env->imbalance = max(local->group_capacity, local->group_util) -
11111 					 local->group_util;
11112 
11113 			/*
11114 			 * In some cases, the group's utilization is max or even
11115 			 * higher than capacity because of migrations but the
11116 			 * local CPU is (newly) idle. There is at least one
11117 			 * waiting task in this overloaded busiest group. Let's
11118 			 * try to pull it.
11119 			 */
11120 			if (env->idle && env->imbalance == 0) {
11121 				env->migration_type = migrate_task;
11122 				env->imbalance = 1;
11123 			}
11124 
11125 			return;
11126 		}
11127 
11128 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
11129 			/*
11130 			 * When prefer sibling, evenly spread running tasks on
11131 			 * groups.
11132 			 */
11133 			env->migration_type = migrate_task;
11134 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
11135 		} else {
11136 
11137 			/*
11138 			 * If there is no overload, we just want to even the number of
11139 			 * idle CPUs.
11140 			 */
11141 			env->migration_type = migrate_task;
11142 			env->imbalance = max_t(long, 0,
11143 					       (local->idle_cpus - busiest->idle_cpus));
11144 		}
11145 
11146 #ifdef CONFIG_NUMA
11147 		/* Consider allowing a small imbalance between NUMA groups */
11148 		if (env->sd->flags & SD_NUMA) {
11149 			env->imbalance = adjust_numa_imbalance(env->imbalance,
11150 							       local->sum_nr_running + 1,
11151 							       env->sd->imb_numa_nr);
11152 		}
11153 #endif
11154 
11155 		/* Number of tasks to move to restore balance */
11156 		env->imbalance >>= 1;
11157 
11158 		return;
11159 	}
11160 
11161 	/*
11162 	 * Local is fully busy but has to take more load to relieve the
11163 	 * busiest group
11164 	 */
11165 	if (local->group_type < group_overloaded) {
11166 		/*
11167 		 * Local will become overloaded so the avg_load metrics are
11168 		 * finally needed.
11169 		 */
11170 
11171 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11172 				  local->group_capacity;
11173 
11174 		/*
11175 		 * If the local group is more loaded than the selected
11176 		 * busiest group don't try to pull any tasks.
11177 		 */
11178 		if (local->avg_load >= busiest->avg_load) {
11179 			env->imbalance = 0;
11180 			return;
11181 		}
11182 
11183 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11184 				sds->total_capacity;
11185 
11186 		/*
11187 		 * If the local group is more loaded than the average system
11188 		 * load, don't try to pull any tasks.
11189 		 */
11190 		if (local->avg_load >= sds->avg_load) {
11191 			env->imbalance = 0;
11192 			return;
11193 		}
11194 
11195 	}
11196 
11197 	/*
11198 	 * Both group are or will become overloaded and we're trying to get all
11199 	 * the CPUs to the average_load, so we don't want to push ourselves
11200 	 * above the average load, nor do we wish to reduce the max loaded CPU
11201 	 * below the average load. At the same time, we also don't want to
11202 	 * reduce the group load below the group capacity. Thus we look for
11203 	 * the minimum possible imbalance.
11204 	 */
11205 	env->migration_type = migrate_load;
11206 	env->imbalance = min(
11207 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11208 		(sds->avg_load - local->avg_load) * local->group_capacity
11209 	) / SCHED_CAPACITY_SCALE;
11210 }
11211 
11212 /******* sched_balance_find_src_group() helpers end here *********************/
11213 
11214 /*
11215  * Decision matrix according to the local and busiest group type:
11216  *
11217  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11218  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
11219  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
11220  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
11221  * asym_packing     force     force      N/A    N/A  force      force
11222  * imbalanced       force     force      N/A    N/A  force      force
11223  * overloaded       force     force      N/A    N/A  force      avg_load
11224  *
11225  * N/A :      Not Applicable because already filtered while updating
11226  *            statistics.
11227  * balanced : The system is balanced for these 2 groups.
11228  * force :    Calculate the imbalance as load migration is probably needed.
11229  * avg_load : Only if imbalance is significant enough.
11230  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
11231  *            different in groups.
11232  */
11233 
11234 /**
11235  * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11236  * if there is an imbalance.
11237  * @env: The load balancing environment.
11238  *
11239  * Also calculates the amount of runnable load which should be moved
11240  * to restore balance.
11241  *
11242  * Return:	- The busiest group if imbalance exists.
11243  */
11244 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11245 {
11246 	struct sg_lb_stats *local, *busiest;
11247 	struct sd_lb_stats sds;
11248 
11249 	init_sd_lb_stats(&sds);
11250 
11251 	/*
11252 	 * Compute the various statistics relevant for load balancing at
11253 	 * this level.
11254 	 */
11255 	update_sd_lb_stats(env, &sds);
11256 
11257 	/* There is no busy sibling group to pull tasks from */
11258 	if (!sds.busiest)
11259 		goto out_balanced;
11260 
11261 	busiest = &sds.busiest_stat;
11262 
11263 	/* Misfit tasks should be dealt with regardless of the avg load */
11264 	if (busiest->group_type == group_misfit_task)
11265 		goto force_balance;
11266 
11267 	if (!is_rd_overutilized(env->dst_rq->rd) &&
11268 	    rcu_dereference(env->dst_rq->rd->pd))
11269 		goto out_balanced;
11270 
11271 	/* ASYM feature bypasses nice load balance check */
11272 	if (busiest->group_type == group_asym_packing)
11273 		goto force_balance;
11274 
11275 	/*
11276 	 * If the busiest group is imbalanced the below checks don't
11277 	 * work because they assume all things are equal, which typically
11278 	 * isn't true due to cpus_ptr constraints and the like.
11279 	 */
11280 	if (busiest->group_type == group_imbalanced)
11281 		goto force_balance;
11282 
11283 	local = &sds.local_stat;
11284 	/*
11285 	 * If the local group is busier than the selected busiest group
11286 	 * don't try and pull any tasks.
11287 	 */
11288 	if (local->group_type > busiest->group_type)
11289 		goto out_balanced;
11290 
11291 	/*
11292 	 * When groups are overloaded, use the avg_load to ensure fairness
11293 	 * between tasks.
11294 	 */
11295 	if (local->group_type == group_overloaded) {
11296 		/*
11297 		 * If the local group is more loaded than the selected
11298 		 * busiest group don't try to pull any tasks.
11299 		 */
11300 		if (local->avg_load >= busiest->avg_load)
11301 			goto out_balanced;
11302 
11303 		/* XXX broken for overlapping NUMA groups */
11304 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11305 				sds.total_capacity;
11306 
11307 		/*
11308 		 * Don't pull any tasks if this group is already above the
11309 		 * domain average load.
11310 		 */
11311 		if (local->avg_load >= sds.avg_load)
11312 			goto out_balanced;
11313 
11314 		/*
11315 		 * If the busiest group is more loaded, use imbalance_pct to be
11316 		 * conservative.
11317 		 */
11318 		if (100 * busiest->avg_load <=
11319 				env->sd->imbalance_pct * local->avg_load)
11320 			goto out_balanced;
11321 	}
11322 
11323 	/*
11324 	 * Try to move all excess tasks to a sibling domain of the busiest
11325 	 * group's child domain.
11326 	 */
11327 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
11328 	    sibling_imbalance(env, &sds, busiest, local) > 1)
11329 		goto force_balance;
11330 
11331 	if (busiest->group_type != group_overloaded) {
11332 		if (!env->idle) {
11333 			/*
11334 			 * If the busiest group is not overloaded (and as a
11335 			 * result the local one too) but this CPU is already
11336 			 * busy, let another idle CPU try to pull task.
11337 			 */
11338 			goto out_balanced;
11339 		}
11340 
11341 		if (busiest->group_type == group_smt_balance &&
11342 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11343 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
11344 			goto force_balance;
11345 		}
11346 
11347 		if (busiest->group_weight > 1 &&
11348 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
11349 			/*
11350 			 * If the busiest group is not overloaded
11351 			 * and there is no imbalance between this and busiest
11352 			 * group wrt idle CPUs, it is balanced. The imbalance
11353 			 * becomes significant if the diff is greater than 1
11354 			 * otherwise we might end up to just move the imbalance
11355 			 * on another group. Of course this applies only if
11356 			 * there is more than 1 CPU per group.
11357 			 */
11358 			goto out_balanced;
11359 		}
11360 
11361 		if (busiest->sum_h_nr_running == 1) {
11362 			/*
11363 			 * busiest doesn't have any tasks waiting to run
11364 			 */
11365 			goto out_balanced;
11366 		}
11367 	}
11368 
11369 force_balance:
11370 	/* Looks like there is an imbalance. Compute it */
11371 	calculate_imbalance(env, &sds);
11372 	return env->imbalance ? sds.busiest : NULL;
11373 
11374 out_balanced:
11375 	env->imbalance = 0;
11376 	return NULL;
11377 }
11378 
11379 /*
11380  * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11381  */
11382 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11383 				     struct sched_group *group)
11384 {
11385 	struct rq *busiest = NULL, *rq;
11386 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11387 	unsigned int busiest_nr = 0;
11388 	int i;
11389 
11390 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11391 		unsigned long capacity, load, util;
11392 		unsigned int nr_running;
11393 		enum fbq_type rt;
11394 
11395 		rq = cpu_rq(i);
11396 		rt = fbq_classify_rq(rq);
11397 
11398 		/*
11399 		 * We classify groups/runqueues into three groups:
11400 		 *  - regular: there are !numa tasks
11401 		 *  - remote:  there are numa tasks that run on the 'wrong' node
11402 		 *  - all:     there is no distinction
11403 		 *
11404 		 * In order to avoid migrating ideally placed numa tasks,
11405 		 * ignore those when there's better options.
11406 		 *
11407 		 * If we ignore the actual busiest queue to migrate another
11408 		 * task, the next balance pass can still reduce the busiest
11409 		 * queue by moving tasks around inside the node.
11410 		 *
11411 		 * If we cannot move enough load due to this classification
11412 		 * the next pass will adjust the group classification and
11413 		 * allow migration of more tasks.
11414 		 *
11415 		 * Both cases only affect the total convergence complexity.
11416 		 */
11417 		if (rt > env->fbq_type)
11418 			continue;
11419 
11420 		nr_running = rq->cfs.h_nr_running;
11421 		if (!nr_running)
11422 			continue;
11423 
11424 		capacity = capacity_of(i);
11425 
11426 		/*
11427 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11428 		 * eventually lead to active_balancing high->low capacity.
11429 		 * Higher per-CPU capacity is considered better than balancing
11430 		 * average load.
11431 		 */
11432 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11433 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11434 		    nr_running == 1)
11435 			continue;
11436 
11437 		/*
11438 		 * Make sure we only pull tasks from a CPU of lower priority
11439 		 * when balancing between SMT siblings.
11440 		 *
11441 		 * If balancing between cores, let lower priority CPUs help
11442 		 * SMT cores with more than one busy sibling.
11443 		 */
11444 		if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11445 			continue;
11446 
11447 		switch (env->migration_type) {
11448 		case migrate_load:
11449 			/*
11450 			 * When comparing with load imbalance, use cpu_load()
11451 			 * which is not scaled with the CPU capacity.
11452 			 */
11453 			load = cpu_load(rq);
11454 
11455 			if (nr_running == 1 && load > env->imbalance &&
11456 			    !check_cpu_capacity(rq, env->sd))
11457 				break;
11458 
11459 			/*
11460 			 * For the load comparisons with the other CPUs,
11461 			 * consider the cpu_load() scaled with the CPU
11462 			 * capacity, so that the load can be moved away
11463 			 * from the CPU that is potentially running at a
11464 			 * lower capacity.
11465 			 *
11466 			 * Thus we're looking for max(load_i / capacity_i),
11467 			 * crosswise multiplication to rid ourselves of the
11468 			 * division works out to:
11469 			 * load_i * capacity_j > load_j * capacity_i;
11470 			 * where j is our previous maximum.
11471 			 */
11472 			if (load * busiest_capacity > busiest_load * capacity) {
11473 				busiest_load = load;
11474 				busiest_capacity = capacity;
11475 				busiest = rq;
11476 			}
11477 			break;
11478 
11479 		case migrate_util:
11480 			util = cpu_util_cfs_boost(i);
11481 
11482 			/*
11483 			 * Don't try to pull utilization from a CPU with one
11484 			 * running task. Whatever its utilization, we will fail
11485 			 * detach the task.
11486 			 */
11487 			if (nr_running <= 1)
11488 				continue;
11489 
11490 			if (busiest_util < util) {
11491 				busiest_util = util;
11492 				busiest = rq;
11493 			}
11494 			break;
11495 
11496 		case migrate_task:
11497 			if (busiest_nr < nr_running) {
11498 				busiest_nr = nr_running;
11499 				busiest = rq;
11500 			}
11501 			break;
11502 
11503 		case migrate_misfit:
11504 			/*
11505 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11506 			 * simply seek the "biggest" misfit task.
11507 			 */
11508 			if (rq->misfit_task_load > busiest_load) {
11509 				busiest_load = rq->misfit_task_load;
11510 				busiest = rq;
11511 			}
11512 
11513 			break;
11514 
11515 		}
11516 	}
11517 
11518 	return busiest;
11519 }
11520 
11521 /*
11522  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11523  * so long as it is large enough.
11524  */
11525 #define MAX_PINNED_INTERVAL	512
11526 
11527 static inline bool
11528 asym_active_balance(struct lb_env *env)
11529 {
11530 	/*
11531 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11532 	 * priority CPUs in order to pack all tasks in the highest priority
11533 	 * CPUs. When done between cores, do it only if the whole core if the
11534 	 * whole core is idle.
11535 	 *
11536 	 * If @env::src_cpu is an SMT core with busy siblings, let
11537 	 * the lower priority @env::dst_cpu help it. Do not follow
11538 	 * CPU priority.
11539 	 */
11540 	return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11541 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11542 		!sched_use_asym_prio(env->sd, env->src_cpu));
11543 }
11544 
11545 static inline bool
11546 imbalanced_active_balance(struct lb_env *env)
11547 {
11548 	struct sched_domain *sd = env->sd;
11549 
11550 	/*
11551 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11552 	 * distribution of the load on the system but also the even distribution of the
11553 	 * threads on a system with spare capacity
11554 	 */
11555 	if ((env->migration_type == migrate_task) &&
11556 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11557 		return 1;
11558 
11559 	return 0;
11560 }
11561 
11562 static int need_active_balance(struct lb_env *env)
11563 {
11564 	struct sched_domain *sd = env->sd;
11565 
11566 	if (asym_active_balance(env))
11567 		return 1;
11568 
11569 	if (imbalanced_active_balance(env))
11570 		return 1;
11571 
11572 	/*
11573 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11574 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11575 	 * because of other sched_class or IRQs if more capacity stays
11576 	 * available on dst_cpu.
11577 	 */
11578 	if (env->idle &&
11579 	    (env->src_rq->cfs.h_nr_running == 1)) {
11580 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11581 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11582 			return 1;
11583 	}
11584 
11585 	if (env->migration_type == migrate_misfit)
11586 		return 1;
11587 
11588 	return 0;
11589 }
11590 
11591 static int active_load_balance_cpu_stop(void *data);
11592 
11593 static int should_we_balance(struct lb_env *env)
11594 {
11595 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11596 	struct sched_group *sg = env->sd->groups;
11597 	int cpu, idle_smt = -1;
11598 
11599 	/*
11600 	 * Ensure the balancing environment is consistent; can happen
11601 	 * when the softirq triggers 'during' hotplug.
11602 	 */
11603 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11604 		return 0;
11605 
11606 	/*
11607 	 * In the newly idle case, we will allow all the CPUs
11608 	 * to do the newly idle load balance.
11609 	 *
11610 	 * However, we bail out if we already have tasks or a wakeup pending,
11611 	 * to optimize wakeup latency.
11612 	 */
11613 	if (env->idle == CPU_NEWLY_IDLE) {
11614 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11615 			return 0;
11616 		return 1;
11617 	}
11618 
11619 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11620 	/* Try to find first idle CPU */
11621 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11622 		if (!idle_cpu(cpu))
11623 			continue;
11624 
11625 		/*
11626 		 * Don't balance to idle SMT in busy core right away when
11627 		 * balancing cores, but remember the first idle SMT CPU for
11628 		 * later consideration.  Find CPU on an idle core first.
11629 		 */
11630 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11631 			if (idle_smt == -1)
11632 				idle_smt = cpu;
11633 			/*
11634 			 * If the core is not idle, and first SMT sibling which is
11635 			 * idle has been found, then its not needed to check other
11636 			 * SMT siblings for idleness:
11637 			 */
11638 #ifdef CONFIG_SCHED_SMT
11639 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11640 #endif
11641 			continue;
11642 		}
11643 
11644 		/*
11645 		 * Are we the first idle core in a non-SMT domain or higher,
11646 		 * or the first idle CPU in a SMT domain?
11647 		 */
11648 		return cpu == env->dst_cpu;
11649 	}
11650 
11651 	/* Are we the first idle CPU with busy siblings? */
11652 	if (idle_smt != -1)
11653 		return idle_smt == env->dst_cpu;
11654 
11655 	/* Are we the first CPU of this group ? */
11656 	return group_balance_cpu(sg) == env->dst_cpu;
11657 }
11658 
11659 /*
11660  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11661  * tasks if there is an imbalance.
11662  */
11663 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11664 			struct sched_domain *sd, enum cpu_idle_type idle,
11665 			int *continue_balancing)
11666 {
11667 	int ld_moved, cur_ld_moved, active_balance = 0;
11668 	struct sched_domain *sd_parent = sd->parent;
11669 	struct sched_group *group;
11670 	struct rq *busiest;
11671 	struct rq_flags rf;
11672 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11673 	struct lb_env env = {
11674 		.sd		= sd,
11675 		.dst_cpu	= this_cpu,
11676 		.dst_rq		= this_rq,
11677 		.dst_grpmask    = group_balance_mask(sd->groups),
11678 		.idle		= idle,
11679 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11680 		.cpus		= cpus,
11681 		.fbq_type	= all,
11682 		.tasks		= LIST_HEAD_INIT(env.tasks),
11683 	};
11684 
11685 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11686 
11687 	schedstat_inc(sd->lb_count[idle]);
11688 
11689 redo:
11690 	if (!should_we_balance(&env)) {
11691 		*continue_balancing = 0;
11692 		goto out_balanced;
11693 	}
11694 
11695 	group = sched_balance_find_src_group(&env);
11696 	if (!group) {
11697 		schedstat_inc(sd->lb_nobusyg[idle]);
11698 		goto out_balanced;
11699 	}
11700 
11701 	busiest = sched_balance_find_src_rq(&env, group);
11702 	if (!busiest) {
11703 		schedstat_inc(sd->lb_nobusyq[idle]);
11704 		goto out_balanced;
11705 	}
11706 
11707 	WARN_ON_ONCE(busiest == env.dst_rq);
11708 
11709 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11710 
11711 	env.src_cpu = busiest->cpu;
11712 	env.src_rq = busiest;
11713 
11714 	ld_moved = 0;
11715 	/* Clear this flag as soon as we find a pullable task */
11716 	env.flags |= LBF_ALL_PINNED;
11717 	if (busiest->nr_running > 1) {
11718 		/*
11719 		 * Attempt to move tasks. If sched_balance_find_src_group has found
11720 		 * an imbalance but busiest->nr_running <= 1, the group is
11721 		 * still unbalanced. ld_moved simply stays zero, so it is
11722 		 * correctly treated as an imbalance.
11723 		 */
11724 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11725 
11726 more_balance:
11727 		rq_lock_irqsave(busiest, &rf);
11728 		update_rq_clock(busiest);
11729 
11730 		/*
11731 		 * cur_ld_moved - load moved in current iteration
11732 		 * ld_moved     - cumulative load moved across iterations
11733 		 */
11734 		cur_ld_moved = detach_tasks(&env);
11735 
11736 		/*
11737 		 * We've detached some tasks from busiest_rq. Every
11738 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11739 		 * unlock busiest->lock, and we are able to be sure
11740 		 * that nobody can manipulate the tasks in parallel.
11741 		 * See task_rq_lock() family for the details.
11742 		 */
11743 
11744 		rq_unlock(busiest, &rf);
11745 
11746 		if (cur_ld_moved) {
11747 			attach_tasks(&env);
11748 			ld_moved += cur_ld_moved;
11749 		}
11750 
11751 		local_irq_restore(rf.flags);
11752 
11753 		if (env.flags & LBF_NEED_BREAK) {
11754 			env.flags &= ~LBF_NEED_BREAK;
11755 			goto more_balance;
11756 		}
11757 
11758 		/*
11759 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11760 		 * us and move them to an alternate dst_cpu in our sched_group
11761 		 * where they can run. The upper limit on how many times we
11762 		 * iterate on same src_cpu is dependent on number of CPUs in our
11763 		 * sched_group.
11764 		 *
11765 		 * This changes load balance semantics a bit on who can move
11766 		 * load to a given_cpu. In addition to the given_cpu itself
11767 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11768 		 * nohz-idle), we now have balance_cpu in a position to move
11769 		 * load to given_cpu. In rare situations, this may cause
11770 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11771 		 * _independently_ and at _same_ time to move some load to
11772 		 * given_cpu) causing excess load to be moved to given_cpu.
11773 		 * This however should not happen so much in practice and
11774 		 * moreover subsequent load balance cycles should correct the
11775 		 * excess load moved.
11776 		 */
11777 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11778 
11779 			/* Prevent to re-select dst_cpu via env's CPUs */
11780 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11781 
11782 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11783 			env.dst_cpu	 = env.new_dst_cpu;
11784 			env.flags	&= ~LBF_DST_PINNED;
11785 			env.loop	 = 0;
11786 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11787 
11788 			/*
11789 			 * Go back to "more_balance" rather than "redo" since we
11790 			 * need to continue with same src_cpu.
11791 			 */
11792 			goto more_balance;
11793 		}
11794 
11795 		/*
11796 		 * We failed to reach balance because of affinity.
11797 		 */
11798 		if (sd_parent) {
11799 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11800 
11801 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11802 				*group_imbalance = 1;
11803 		}
11804 
11805 		/* All tasks on this runqueue were pinned by CPU affinity */
11806 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11807 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11808 			/*
11809 			 * Attempting to continue load balancing at the current
11810 			 * sched_domain level only makes sense if there are
11811 			 * active CPUs remaining as possible busiest CPUs to
11812 			 * pull load from which are not contained within the
11813 			 * destination group that is receiving any migrated
11814 			 * load.
11815 			 */
11816 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11817 				env.loop = 0;
11818 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11819 				goto redo;
11820 			}
11821 			goto out_all_pinned;
11822 		}
11823 	}
11824 
11825 	if (!ld_moved) {
11826 		schedstat_inc(sd->lb_failed[idle]);
11827 		/*
11828 		 * Increment the failure counter only on periodic balance.
11829 		 * We do not want newidle balance, which can be very
11830 		 * frequent, pollute the failure counter causing
11831 		 * excessive cache_hot migrations and active balances.
11832 		 *
11833 		 * Similarly for migration_misfit which is not related to
11834 		 * load/util migration, don't pollute nr_balance_failed.
11835 		 */
11836 		if (idle != CPU_NEWLY_IDLE &&
11837 		    env.migration_type != migrate_misfit)
11838 			sd->nr_balance_failed++;
11839 
11840 		if (need_active_balance(&env)) {
11841 			unsigned long flags;
11842 
11843 			raw_spin_rq_lock_irqsave(busiest, flags);
11844 
11845 			/*
11846 			 * Don't kick the active_load_balance_cpu_stop,
11847 			 * if the curr task on busiest CPU can't be
11848 			 * moved to this_cpu:
11849 			 */
11850 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11851 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11852 				goto out_one_pinned;
11853 			}
11854 
11855 			/* Record that we found at least one task that could run on this_cpu */
11856 			env.flags &= ~LBF_ALL_PINNED;
11857 
11858 			/*
11859 			 * ->active_balance synchronizes accesses to
11860 			 * ->active_balance_work.  Once set, it's cleared
11861 			 * only after active load balance is finished.
11862 			 */
11863 			if (!busiest->active_balance) {
11864 				busiest->active_balance = 1;
11865 				busiest->push_cpu = this_cpu;
11866 				active_balance = 1;
11867 			}
11868 
11869 			preempt_disable();
11870 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11871 			if (active_balance) {
11872 				stop_one_cpu_nowait(cpu_of(busiest),
11873 					active_load_balance_cpu_stop, busiest,
11874 					&busiest->active_balance_work);
11875 			}
11876 			preempt_enable();
11877 		}
11878 	} else {
11879 		sd->nr_balance_failed = 0;
11880 	}
11881 
11882 	if (likely(!active_balance) || need_active_balance(&env)) {
11883 		/* We were unbalanced, so reset the balancing interval */
11884 		sd->balance_interval = sd->min_interval;
11885 	}
11886 
11887 	goto out;
11888 
11889 out_balanced:
11890 	/*
11891 	 * We reach balance although we may have faced some affinity
11892 	 * constraints. Clear the imbalance flag only if other tasks got
11893 	 * a chance to move and fix the imbalance.
11894 	 */
11895 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11896 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11897 
11898 		if (*group_imbalance)
11899 			*group_imbalance = 0;
11900 	}
11901 
11902 out_all_pinned:
11903 	/*
11904 	 * We reach balance because all tasks are pinned at this level so
11905 	 * we can't migrate them. Let the imbalance flag set so parent level
11906 	 * can try to migrate them.
11907 	 */
11908 	schedstat_inc(sd->lb_balanced[idle]);
11909 
11910 	sd->nr_balance_failed = 0;
11911 
11912 out_one_pinned:
11913 	ld_moved = 0;
11914 
11915 	/*
11916 	 * sched_balance_newidle() disregards balance intervals, so we could
11917 	 * repeatedly reach this code, which would lead to balance_interval
11918 	 * skyrocketing in a short amount of time. Skip the balance_interval
11919 	 * increase logic to avoid that.
11920 	 *
11921 	 * Similarly misfit migration which is not necessarily an indication of
11922 	 * the system being busy and requires lb to backoff to let it settle
11923 	 * down.
11924 	 */
11925 	if (env.idle == CPU_NEWLY_IDLE ||
11926 	    env.migration_type == migrate_misfit)
11927 		goto out;
11928 
11929 	/* tune up the balancing interval */
11930 	if ((env.flags & LBF_ALL_PINNED &&
11931 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11932 	    sd->balance_interval < sd->max_interval)
11933 		sd->balance_interval *= 2;
11934 out:
11935 	return ld_moved;
11936 }
11937 
11938 static inline unsigned long
11939 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11940 {
11941 	unsigned long interval = sd->balance_interval;
11942 
11943 	if (cpu_busy)
11944 		interval *= sd->busy_factor;
11945 
11946 	/* scale ms to jiffies */
11947 	interval = msecs_to_jiffies(interval);
11948 
11949 	/*
11950 	 * Reduce likelihood of busy balancing at higher domains racing with
11951 	 * balancing at lower domains by preventing their balancing periods
11952 	 * from being multiples of each other.
11953 	 */
11954 	if (cpu_busy)
11955 		interval -= 1;
11956 
11957 	interval = clamp(interval, 1UL, max_load_balance_interval);
11958 
11959 	return interval;
11960 }
11961 
11962 static inline void
11963 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11964 {
11965 	unsigned long interval, next;
11966 
11967 	/* used by idle balance, so cpu_busy = 0 */
11968 	interval = get_sd_balance_interval(sd, 0);
11969 	next = sd->last_balance + interval;
11970 
11971 	if (time_after(*next_balance, next))
11972 		*next_balance = next;
11973 }
11974 
11975 /*
11976  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11977  * running tasks off the busiest CPU onto idle CPUs. It requires at
11978  * least 1 task to be running on each physical CPU where possible, and
11979  * avoids physical / logical imbalances.
11980  */
11981 static int active_load_balance_cpu_stop(void *data)
11982 {
11983 	struct rq *busiest_rq = data;
11984 	int busiest_cpu = cpu_of(busiest_rq);
11985 	int target_cpu = busiest_rq->push_cpu;
11986 	struct rq *target_rq = cpu_rq(target_cpu);
11987 	struct sched_domain *sd;
11988 	struct task_struct *p = NULL;
11989 	struct rq_flags rf;
11990 
11991 	rq_lock_irq(busiest_rq, &rf);
11992 	/*
11993 	 * Between queueing the stop-work and running it is a hole in which
11994 	 * CPUs can become inactive. We should not move tasks from or to
11995 	 * inactive CPUs.
11996 	 */
11997 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11998 		goto out_unlock;
11999 
12000 	/* Make sure the requested CPU hasn't gone down in the meantime: */
12001 	if (unlikely(busiest_cpu != smp_processor_id() ||
12002 		     !busiest_rq->active_balance))
12003 		goto out_unlock;
12004 
12005 	/* Is there any task to move? */
12006 	if (busiest_rq->nr_running <= 1)
12007 		goto out_unlock;
12008 
12009 	/*
12010 	 * This condition is "impossible", if it occurs
12011 	 * we need to fix it. Originally reported by
12012 	 * Bjorn Helgaas on a 128-CPU setup.
12013 	 */
12014 	WARN_ON_ONCE(busiest_rq == target_rq);
12015 
12016 	/* Search for an sd spanning us and the target CPU. */
12017 	rcu_read_lock();
12018 	for_each_domain(target_cpu, sd) {
12019 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
12020 			break;
12021 	}
12022 
12023 	if (likely(sd)) {
12024 		struct lb_env env = {
12025 			.sd		= sd,
12026 			.dst_cpu	= target_cpu,
12027 			.dst_rq		= target_rq,
12028 			.src_cpu	= busiest_rq->cpu,
12029 			.src_rq		= busiest_rq,
12030 			.idle		= CPU_IDLE,
12031 			.flags		= LBF_ACTIVE_LB,
12032 		};
12033 
12034 		schedstat_inc(sd->alb_count);
12035 		update_rq_clock(busiest_rq);
12036 
12037 		p = detach_one_task(&env);
12038 		if (p) {
12039 			schedstat_inc(sd->alb_pushed);
12040 			/* Active balancing done, reset the failure counter. */
12041 			sd->nr_balance_failed = 0;
12042 		} else {
12043 			schedstat_inc(sd->alb_failed);
12044 		}
12045 	}
12046 	rcu_read_unlock();
12047 out_unlock:
12048 	busiest_rq->active_balance = 0;
12049 	rq_unlock(busiest_rq, &rf);
12050 
12051 	if (p)
12052 		attach_one_task(target_rq, p);
12053 
12054 	local_irq_enable();
12055 
12056 	return 0;
12057 }
12058 
12059 /*
12060  * This flag serializes load-balancing passes over large domains
12061  * (above the NODE topology level) - only one load-balancing instance
12062  * may run at a time, to reduce overhead on very large systems with
12063  * lots of CPUs and large NUMA distances.
12064  *
12065  * - Note that load-balancing passes triggered while another one
12066  *   is executing are skipped and not re-tried.
12067  *
12068  * - Also note that this does not serialize rebalance_domains()
12069  *   execution, as non-SD_SERIALIZE domains will still be
12070  *   load-balanced in parallel.
12071  */
12072 static atomic_t sched_balance_running = ATOMIC_INIT(0);
12073 
12074 /*
12075  * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12076  * This trades load-balance latency on larger machines for less cross talk.
12077  */
12078 void update_max_interval(void)
12079 {
12080 	max_load_balance_interval = HZ*num_online_cpus()/10;
12081 }
12082 
12083 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
12084 {
12085 	if (cost > sd->max_newidle_lb_cost) {
12086 		/*
12087 		 * Track max cost of a domain to make sure to not delay the
12088 		 * next wakeup on the CPU.
12089 		 */
12090 		sd->max_newidle_lb_cost = cost;
12091 		sd->last_decay_max_lb_cost = jiffies;
12092 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
12093 		/*
12094 		 * Decay the newidle max times by ~1% per second to ensure that
12095 		 * it is not outdated and the current max cost is actually
12096 		 * shorter.
12097 		 */
12098 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12099 		sd->last_decay_max_lb_cost = jiffies;
12100 
12101 		return true;
12102 	}
12103 
12104 	return false;
12105 }
12106 
12107 /*
12108  * It checks each scheduling domain to see if it is due to be balanced,
12109  * and initiates a balancing operation if so.
12110  *
12111  * Balancing parameters are set up in init_sched_domains.
12112  */
12113 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12114 {
12115 	int continue_balancing = 1;
12116 	int cpu = rq->cpu;
12117 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12118 	unsigned long interval;
12119 	struct sched_domain *sd;
12120 	/* Earliest time when we have to do rebalance again */
12121 	unsigned long next_balance = jiffies + 60*HZ;
12122 	int update_next_balance = 0;
12123 	int need_serialize, need_decay = 0;
12124 	u64 max_cost = 0;
12125 
12126 	rcu_read_lock();
12127 	for_each_domain(cpu, sd) {
12128 		/*
12129 		 * Decay the newidle max times here because this is a regular
12130 		 * visit to all the domains.
12131 		 */
12132 		need_decay = update_newidle_cost(sd, 0);
12133 		max_cost += sd->max_newidle_lb_cost;
12134 
12135 		/*
12136 		 * Stop the load balance at this level. There is another
12137 		 * CPU in our sched group which is doing load balancing more
12138 		 * actively.
12139 		 */
12140 		if (!continue_balancing) {
12141 			if (need_decay)
12142 				continue;
12143 			break;
12144 		}
12145 
12146 		interval = get_sd_balance_interval(sd, busy);
12147 
12148 		need_serialize = sd->flags & SD_SERIALIZE;
12149 		if (need_serialize) {
12150 			if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
12151 				goto out;
12152 		}
12153 
12154 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
12155 			if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12156 				/*
12157 				 * The LBF_DST_PINNED logic could have changed
12158 				 * env->dst_cpu, so we can't know our idle
12159 				 * state even if we migrated tasks. Update it.
12160 				 */
12161 				idle = idle_cpu(cpu);
12162 				busy = !idle && !sched_idle_cpu(cpu);
12163 			}
12164 			sd->last_balance = jiffies;
12165 			interval = get_sd_balance_interval(sd, busy);
12166 		}
12167 		if (need_serialize)
12168 			atomic_set_release(&sched_balance_running, 0);
12169 out:
12170 		if (time_after(next_balance, sd->last_balance + interval)) {
12171 			next_balance = sd->last_balance + interval;
12172 			update_next_balance = 1;
12173 		}
12174 	}
12175 	if (need_decay) {
12176 		/*
12177 		 * Ensure the rq-wide value also decays but keep it at a
12178 		 * reasonable floor to avoid funnies with rq->avg_idle.
12179 		 */
12180 		rq->max_idle_balance_cost =
12181 			max((u64)sysctl_sched_migration_cost, max_cost);
12182 	}
12183 	rcu_read_unlock();
12184 
12185 	/*
12186 	 * next_balance will be updated only when there is a need.
12187 	 * When the cpu is attached to null domain for ex, it will not be
12188 	 * updated.
12189 	 */
12190 	if (likely(update_next_balance))
12191 		rq->next_balance = next_balance;
12192 
12193 }
12194 
12195 static inline int on_null_domain(struct rq *rq)
12196 {
12197 	return unlikely(!rcu_dereference_sched(rq->sd));
12198 }
12199 
12200 #ifdef CONFIG_NO_HZ_COMMON
12201 /*
12202  * NOHZ idle load balancing (ILB) details:
12203  *
12204  * - When one of the busy CPUs notices that there may be an idle rebalancing
12205  *   needed, they will kick the idle load balancer, which then does idle
12206  *   load balancing for all the idle CPUs.
12207  *
12208  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
12209  *   anywhere yet.
12210  */
12211 static inline int find_new_ilb(void)
12212 {
12213 	const struct cpumask *hk_mask;
12214 	int ilb_cpu;
12215 
12216 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
12217 
12218 	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12219 
12220 		if (ilb_cpu == smp_processor_id())
12221 			continue;
12222 
12223 		if (idle_cpu(ilb_cpu))
12224 			return ilb_cpu;
12225 	}
12226 
12227 	return -1;
12228 }
12229 
12230 /*
12231  * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12232  * SMP function call (IPI).
12233  *
12234  * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
12235  */
12236 static void kick_ilb(unsigned int flags)
12237 {
12238 	int ilb_cpu;
12239 
12240 	/*
12241 	 * Increase nohz.next_balance only when if full ilb is triggered but
12242 	 * not if we only update stats.
12243 	 */
12244 	if (flags & NOHZ_BALANCE_KICK)
12245 		nohz.next_balance = jiffies+1;
12246 
12247 	ilb_cpu = find_new_ilb();
12248 	if (ilb_cpu < 0)
12249 		return;
12250 
12251 	/*
12252 	 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12253 	 * i.e. all bits in flags are already set in ilb_cpu.
12254 	 */
12255 	if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12256 		return;
12257 
12258 	/*
12259 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12260 	 * the first flag owns it; cleared by nohz_csd_func().
12261 	 */
12262 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12263 	if (flags & NOHZ_KICK_MASK)
12264 		return;
12265 
12266 	/*
12267 	 * This way we generate an IPI on the target CPU which
12268 	 * is idle, and the softirq performing NOHZ idle load balancing
12269 	 * will be run before returning from the IPI.
12270 	 */
12271 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12272 }
12273 
12274 /*
12275  * Current decision point for kicking the idle load balancer in the presence
12276  * of idle CPUs in the system.
12277  */
12278 static void nohz_balancer_kick(struct rq *rq)
12279 {
12280 	unsigned long now = jiffies;
12281 	struct sched_domain_shared *sds;
12282 	struct sched_domain *sd;
12283 	int nr_busy, i, cpu = rq->cpu;
12284 	unsigned int flags = 0;
12285 
12286 	if (unlikely(rq->idle_balance))
12287 		return;
12288 
12289 	/*
12290 	 * We may be recently in ticked or tickless idle mode. At the first
12291 	 * busy tick after returning from idle, we will update the busy stats.
12292 	 */
12293 	nohz_balance_exit_idle(rq);
12294 
12295 	/*
12296 	 * None are in tickless mode and hence no need for NOHZ idle load
12297 	 * balancing:
12298 	 */
12299 	if (likely(!atomic_read(&nohz.nr_cpus)))
12300 		return;
12301 
12302 	if (READ_ONCE(nohz.has_blocked) &&
12303 	    time_after(now, READ_ONCE(nohz.next_blocked)))
12304 		flags = NOHZ_STATS_KICK;
12305 
12306 	if (time_before(now, nohz.next_balance))
12307 		goto out;
12308 
12309 	if (rq->nr_running >= 2) {
12310 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12311 		goto out;
12312 	}
12313 
12314 	rcu_read_lock();
12315 
12316 	sd = rcu_dereference(rq->sd);
12317 	if (sd) {
12318 		/*
12319 		 * If there's a runnable CFS task and the current CPU has reduced
12320 		 * capacity, kick the ILB to see if there's a better CPU to run on:
12321 		 */
12322 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
12323 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12324 			goto unlock;
12325 		}
12326 	}
12327 
12328 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12329 	if (sd) {
12330 		/*
12331 		 * When ASYM_PACKING; see if there's a more preferred CPU
12332 		 * currently idle; in which case, kick the ILB to move tasks
12333 		 * around.
12334 		 *
12335 		 * When balancing between cores, all the SMT siblings of the
12336 		 * preferred CPU must be idle.
12337 		 */
12338 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12339 			if (sched_asym(sd, i, cpu)) {
12340 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12341 				goto unlock;
12342 			}
12343 		}
12344 	}
12345 
12346 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12347 	if (sd) {
12348 		/*
12349 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12350 		 * to run the misfit task on.
12351 		 */
12352 		if (check_misfit_status(rq)) {
12353 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12354 			goto unlock;
12355 		}
12356 
12357 		/*
12358 		 * For asymmetric systems, we do not want to nicely balance
12359 		 * cache use, instead we want to embrace asymmetry and only
12360 		 * ensure tasks have enough CPU capacity.
12361 		 *
12362 		 * Skip the LLC logic because it's not relevant in that case.
12363 		 */
12364 		goto unlock;
12365 	}
12366 
12367 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12368 	if (sds) {
12369 		/*
12370 		 * If there is an imbalance between LLC domains (IOW we could
12371 		 * increase the overall cache utilization), we need a less-loaded LLC
12372 		 * domain to pull some load from. Likewise, we may need to spread
12373 		 * load within the current LLC domain (e.g. packed SMT cores but
12374 		 * other CPUs are idle). We can't really know from here how busy
12375 		 * the others are - so just get a NOHZ balance going if it looks
12376 		 * like this LLC domain has tasks we could move.
12377 		 */
12378 		nr_busy = atomic_read(&sds->nr_busy_cpus);
12379 		if (nr_busy > 1) {
12380 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12381 			goto unlock;
12382 		}
12383 	}
12384 unlock:
12385 	rcu_read_unlock();
12386 out:
12387 	if (READ_ONCE(nohz.needs_update))
12388 		flags |= NOHZ_NEXT_KICK;
12389 
12390 	if (flags)
12391 		kick_ilb(flags);
12392 }
12393 
12394 static void set_cpu_sd_state_busy(int cpu)
12395 {
12396 	struct sched_domain *sd;
12397 
12398 	rcu_read_lock();
12399 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12400 
12401 	if (!sd || !sd->nohz_idle)
12402 		goto unlock;
12403 	sd->nohz_idle = 0;
12404 
12405 	atomic_inc(&sd->shared->nr_busy_cpus);
12406 unlock:
12407 	rcu_read_unlock();
12408 }
12409 
12410 void nohz_balance_exit_idle(struct rq *rq)
12411 {
12412 	SCHED_WARN_ON(rq != this_rq());
12413 
12414 	if (likely(!rq->nohz_tick_stopped))
12415 		return;
12416 
12417 	rq->nohz_tick_stopped = 0;
12418 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12419 	atomic_dec(&nohz.nr_cpus);
12420 
12421 	set_cpu_sd_state_busy(rq->cpu);
12422 }
12423 
12424 static void set_cpu_sd_state_idle(int cpu)
12425 {
12426 	struct sched_domain *sd;
12427 
12428 	rcu_read_lock();
12429 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12430 
12431 	if (!sd || sd->nohz_idle)
12432 		goto unlock;
12433 	sd->nohz_idle = 1;
12434 
12435 	atomic_dec(&sd->shared->nr_busy_cpus);
12436 unlock:
12437 	rcu_read_unlock();
12438 }
12439 
12440 /*
12441  * This routine will record that the CPU is going idle with tick stopped.
12442  * This info will be used in performing idle load balancing in the future.
12443  */
12444 void nohz_balance_enter_idle(int cpu)
12445 {
12446 	struct rq *rq = cpu_rq(cpu);
12447 
12448 	SCHED_WARN_ON(cpu != smp_processor_id());
12449 
12450 	/* If this CPU is going down, then nothing needs to be done: */
12451 	if (!cpu_active(cpu))
12452 		return;
12453 
12454 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
12455 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12456 		return;
12457 
12458 	/*
12459 	 * Can be set safely without rq->lock held
12460 	 * If a clear happens, it will have evaluated last additions because
12461 	 * rq->lock is held during the check and the clear
12462 	 */
12463 	rq->has_blocked_load = 1;
12464 
12465 	/*
12466 	 * The tick is still stopped but load could have been added in the
12467 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12468 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12469 	 * of nohz.has_blocked can only happen after checking the new load
12470 	 */
12471 	if (rq->nohz_tick_stopped)
12472 		goto out;
12473 
12474 	/* If we're a completely isolated CPU, we don't play: */
12475 	if (on_null_domain(rq))
12476 		return;
12477 
12478 	rq->nohz_tick_stopped = 1;
12479 
12480 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12481 	atomic_inc(&nohz.nr_cpus);
12482 
12483 	/*
12484 	 * Ensures that if nohz_idle_balance() fails to observe our
12485 	 * @idle_cpus_mask store, it must observe the @has_blocked
12486 	 * and @needs_update stores.
12487 	 */
12488 	smp_mb__after_atomic();
12489 
12490 	set_cpu_sd_state_idle(cpu);
12491 
12492 	WRITE_ONCE(nohz.needs_update, 1);
12493 out:
12494 	/*
12495 	 * Each time a cpu enter idle, we assume that it has blocked load and
12496 	 * enable the periodic update of the load of idle CPUs
12497 	 */
12498 	WRITE_ONCE(nohz.has_blocked, 1);
12499 }
12500 
12501 static bool update_nohz_stats(struct rq *rq)
12502 {
12503 	unsigned int cpu = rq->cpu;
12504 
12505 	if (!rq->has_blocked_load)
12506 		return false;
12507 
12508 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12509 		return false;
12510 
12511 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12512 		return true;
12513 
12514 	sched_balance_update_blocked_averages(cpu);
12515 
12516 	return rq->has_blocked_load;
12517 }
12518 
12519 /*
12520  * Internal function that runs load balance for all idle CPUs. The load balance
12521  * can be a simple update of blocked load or a complete load balance with
12522  * tasks movement depending of flags.
12523  */
12524 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12525 {
12526 	/* Earliest time when we have to do rebalance again */
12527 	unsigned long now = jiffies;
12528 	unsigned long next_balance = now + 60*HZ;
12529 	bool has_blocked_load = false;
12530 	int update_next_balance = 0;
12531 	int this_cpu = this_rq->cpu;
12532 	int balance_cpu;
12533 	struct rq *rq;
12534 
12535 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12536 
12537 	/*
12538 	 * We assume there will be no idle load after this update and clear
12539 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12540 	 * set the has_blocked flag and trigger another update of idle load.
12541 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12542 	 * setting the flag, we are sure to not clear the state and not
12543 	 * check the load of an idle cpu.
12544 	 *
12545 	 * Same applies to idle_cpus_mask vs needs_update.
12546 	 */
12547 	if (flags & NOHZ_STATS_KICK)
12548 		WRITE_ONCE(nohz.has_blocked, 0);
12549 	if (flags & NOHZ_NEXT_KICK)
12550 		WRITE_ONCE(nohz.needs_update, 0);
12551 
12552 	/*
12553 	 * Ensures that if we miss the CPU, we must see the has_blocked
12554 	 * store from nohz_balance_enter_idle().
12555 	 */
12556 	smp_mb();
12557 
12558 	/*
12559 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12560 	 * chance for other idle cpu to pull load.
12561 	 */
12562 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12563 		if (!idle_cpu(balance_cpu))
12564 			continue;
12565 
12566 		/*
12567 		 * If this CPU gets work to do, stop the load balancing
12568 		 * work being done for other CPUs. Next load
12569 		 * balancing owner will pick it up.
12570 		 */
12571 		if (need_resched()) {
12572 			if (flags & NOHZ_STATS_KICK)
12573 				has_blocked_load = true;
12574 			if (flags & NOHZ_NEXT_KICK)
12575 				WRITE_ONCE(nohz.needs_update, 1);
12576 			goto abort;
12577 		}
12578 
12579 		rq = cpu_rq(balance_cpu);
12580 
12581 		if (flags & NOHZ_STATS_KICK)
12582 			has_blocked_load |= update_nohz_stats(rq);
12583 
12584 		/*
12585 		 * If time for next balance is due,
12586 		 * do the balance.
12587 		 */
12588 		if (time_after_eq(jiffies, rq->next_balance)) {
12589 			struct rq_flags rf;
12590 
12591 			rq_lock_irqsave(rq, &rf);
12592 			update_rq_clock(rq);
12593 			rq_unlock_irqrestore(rq, &rf);
12594 
12595 			if (flags & NOHZ_BALANCE_KICK)
12596 				sched_balance_domains(rq, CPU_IDLE);
12597 		}
12598 
12599 		if (time_after(next_balance, rq->next_balance)) {
12600 			next_balance = rq->next_balance;
12601 			update_next_balance = 1;
12602 		}
12603 	}
12604 
12605 	/*
12606 	 * next_balance will be updated only when there is a need.
12607 	 * When the CPU is attached to null domain for ex, it will not be
12608 	 * updated.
12609 	 */
12610 	if (likely(update_next_balance))
12611 		nohz.next_balance = next_balance;
12612 
12613 	if (flags & NOHZ_STATS_KICK)
12614 		WRITE_ONCE(nohz.next_blocked,
12615 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12616 
12617 abort:
12618 	/* There is still blocked load, enable periodic update */
12619 	if (has_blocked_load)
12620 		WRITE_ONCE(nohz.has_blocked, 1);
12621 }
12622 
12623 /*
12624  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12625  * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12626  */
12627 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12628 {
12629 	unsigned int flags = this_rq->nohz_idle_balance;
12630 
12631 	if (!flags)
12632 		return false;
12633 
12634 	this_rq->nohz_idle_balance = 0;
12635 
12636 	if (idle != CPU_IDLE)
12637 		return false;
12638 
12639 	_nohz_idle_balance(this_rq, flags);
12640 
12641 	return true;
12642 }
12643 
12644 /*
12645  * Check if we need to directly run the ILB for updating blocked load before
12646  * entering idle state. Here we run ILB directly without issuing IPIs.
12647  *
12648  * Note that when this function is called, the tick may not yet be stopped on
12649  * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12650  * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12651  * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12652  * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12653  * called from this function on (this) CPU that's not yet in the mask. That's
12654  * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12655  * updating the blocked load of already idle CPUs without waking up one of
12656  * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12657  * cpu about to enter idle, because it can take a long time.
12658  */
12659 void nohz_run_idle_balance(int cpu)
12660 {
12661 	unsigned int flags;
12662 
12663 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12664 
12665 	/*
12666 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12667 	 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12668 	 */
12669 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12670 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12671 }
12672 
12673 static void nohz_newidle_balance(struct rq *this_rq)
12674 {
12675 	int this_cpu = this_rq->cpu;
12676 
12677 	/*
12678 	 * This CPU doesn't want to be disturbed by scheduler
12679 	 * housekeeping
12680 	 */
12681 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12682 		return;
12683 
12684 	/* Will wake up very soon. No time for doing anything else*/
12685 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12686 		return;
12687 
12688 	/* Don't need to update blocked load of idle CPUs*/
12689 	if (!READ_ONCE(nohz.has_blocked) ||
12690 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12691 		return;
12692 
12693 	/*
12694 	 * Set the need to trigger ILB in order to update blocked load
12695 	 * before entering idle state.
12696 	 */
12697 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12698 }
12699 
12700 #else /* !CONFIG_NO_HZ_COMMON */
12701 static inline void nohz_balancer_kick(struct rq *rq) { }
12702 
12703 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12704 {
12705 	return false;
12706 }
12707 
12708 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12709 #endif /* CONFIG_NO_HZ_COMMON */
12710 
12711 /*
12712  * sched_balance_newidle is called by schedule() if this_cpu is about to become
12713  * idle. Attempts to pull tasks from other CPUs.
12714  *
12715  * Returns:
12716  *   < 0 - we released the lock and there are !fair tasks present
12717  *     0 - failed, no new tasks
12718  *   > 0 - success, new (fair) tasks present
12719  */
12720 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12721 {
12722 	unsigned long next_balance = jiffies + HZ;
12723 	int this_cpu = this_rq->cpu;
12724 	int continue_balancing = 1;
12725 	u64 t0, t1, curr_cost = 0;
12726 	struct sched_domain *sd;
12727 	int pulled_task = 0;
12728 
12729 	update_misfit_status(NULL, this_rq);
12730 
12731 	/*
12732 	 * There is a task waiting to run. No need to search for one.
12733 	 * Return 0; the task will be enqueued when switching to idle.
12734 	 */
12735 	if (this_rq->ttwu_pending)
12736 		return 0;
12737 
12738 	/*
12739 	 * We must set idle_stamp _before_ calling sched_balance_rq()
12740 	 * for CPU_NEWLY_IDLE, such that we measure the this duration
12741 	 * as idle time.
12742 	 */
12743 	this_rq->idle_stamp = rq_clock(this_rq);
12744 
12745 	/*
12746 	 * Do not pull tasks towards !active CPUs...
12747 	 */
12748 	if (!cpu_active(this_cpu))
12749 		return 0;
12750 
12751 	/*
12752 	 * This is OK, because current is on_cpu, which avoids it being picked
12753 	 * for load-balance and preemption/IRQs are still disabled avoiding
12754 	 * further scheduler activity on it and we're being very careful to
12755 	 * re-start the picking loop.
12756 	 */
12757 	rq_unpin_lock(this_rq, rf);
12758 
12759 	rcu_read_lock();
12760 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12761 
12762 	if (!get_rd_overloaded(this_rq->rd) ||
12763 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12764 
12765 		if (sd)
12766 			update_next_balance(sd, &next_balance);
12767 		rcu_read_unlock();
12768 
12769 		goto out;
12770 	}
12771 	rcu_read_unlock();
12772 
12773 	raw_spin_rq_unlock(this_rq);
12774 
12775 	t0 = sched_clock_cpu(this_cpu);
12776 	sched_balance_update_blocked_averages(this_cpu);
12777 
12778 	rcu_read_lock();
12779 	for_each_domain(this_cpu, sd) {
12780 		u64 domain_cost;
12781 
12782 		update_next_balance(sd, &next_balance);
12783 
12784 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12785 			break;
12786 
12787 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12788 
12789 			pulled_task = sched_balance_rq(this_cpu, this_rq,
12790 						   sd, CPU_NEWLY_IDLE,
12791 						   &continue_balancing);
12792 
12793 			t1 = sched_clock_cpu(this_cpu);
12794 			domain_cost = t1 - t0;
12795 			update_newidle_cost(sd, domain_cost);
12796 
12797 			curr_cost += domain_cost;
12798 			t0 = t1;
12799 		}
12800 
12801 		/*
12802 		 * Stop searching for tasks to pull if there are
12803 		 * now runnable tasks on this rq.
12804 		 */
12805 		if (pulled_task || !continue_balancing)
12806 			break;
12807 	}
12808 	rcu_read_unlock();
12809 
12810 	raw_spin_rq_lock(this_rq);
12811 
12812 	if (curr_cost > this_rq->max_idle_balance_cost)
12813 		this_rq->max_idle_balance_cost = curr_cost;
12814 
12815 	/*
12816 	 * While browsing the domains, we released the rq lock, a task could
12817 	 * have been enqueued in the meantime. Since we're not going idle,
12818 	 * pretend we pulled a task.
12819 	 */
12820 	if (this_rq->cfs.h_nr_running && !pulled_task)
12821 		pulled_task = 1;
12822 
12823 	/* Is there a task of a high priority class? */
12824 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12825 		pulled_task = -1;
12826 
12827 out:
12828 	/* Move the next balance forward */
12829 	if (time_after(this_rq->next_balance, next_balance))
12830 		this_rq->next_balance = next_balance;
12831 
12832 	if (pulled_task)
12833 		this_rq->idle_stamp = 0;
12834 	else
12835 		nohz_newidle_balance(this_rq);
12836 
12837 	rq_repin_lock(this_rq, rf);
12838 
12839 	return pulled_task;
12840 }
12841 
12842 /*
12843  * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12844  *
12845  * - directly from the local scheduler_tick() for periodic load balancing
12846  *
12847  * - indirectly from a remote scheduler_tick() for NOHZ idle balancing
12848  *   through the SMP cross-call nohz_csd_func()
12849  */
12850 static __latent_entropy void sched_balance_softirq(void)
12851 {
12852 	struct rq *this_rq = this_rq();
12853 	enum cpu_idle_type idle = this_rq->idle_balance;
12854 	/*
12855 	 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12856 	 * balancing on behalf of the other idle CPUs whose ticks are
12857 	 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12858 	 * give the idle CPUs a chance to load balance. Else we may
12859 	 * load balance only within the local sched_domain hierarchy
12860 	 * and abort nohz_idle_balance altogether if we pull some load.
12861 	 */
12862 	if (nohz_idle_balance(this_rq, idle))
12863 		return;
12864 
12865 	/* normal load balance */
12866 	sched_balance_update_blocked_averages(this_rq->cpu);
12867 	sched_balance_domains(this_rq, idle);
12868 }
12869 
12870 /*
12871  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12872  */
12873 void sched_balance_trigger(struct rq *rq)
12874 {
12875 	/*
12876 	 * Don't need to rebalance while attached to NULL domain or
12877 	 * runqueue CPU is not active
12878 	 */
12879 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12880 		return;
12881 
12882 	if (time_after_eq(jiffies, rq->next_balance))
12883 		raise_softirq(SCHED_SOFTIRQ);
12884 
12885 	nohz_balancer_kick(rq);
12886 }
12887 
12888 static void rq_online_fair(struct rq *rq)
12889 {
12890 	update_sysctl();
12891 
12892 	update_runtime_enabled(rq);
12893 }
12894 
12895 static void rq_offline_fair(struct rq *rq)
12896 {
12897 	update_sysctl();
12898 
12899 	/* Ensure any throttled groups are reachable by pick_next_task */
12900 	unthrottle_offline_cfs_rqs(rq);
12901 
12902 	/* Ensure that we remove rq contribution to group share: */
12903 	clear_tg_offline_cfs_rqs(rq);
12904 }
12905 
12906 #endif /* CONFIG_SMP */
12907 
12908 #ifdef CONFIG_SCHED_CORE
12909 static inline bool
12910 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12911 {
12912 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12913 	u64 slice = se->slice;
12914 
12915 	return (rtime * min_nr_tasks > slice);
12916 }
12917 
12918 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
12919 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12920 {
12921 	if (!sched_core_enabled(rq))
12922 		return;
12923 
12924 	/*
12925 	 * If runqueue has only one task which used up its slice and
12926 	 * if the sibling is forced idle, then trigger schedule to
12927 	 * give forced idle task a chance.
12928 	 *
12929 	 * sched_slice() considers only this active rq and it gets the
12930 	 * whole slice. But during force idle, we have siblings acting
12931 	 * like a single runqueue and hence we need to consider runnable
12932 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12933 	 * go through the forced idle rq, but that would be a perf hit.
12934 	 * We can assume that the forced idle CPU has at least
12935 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12936 	 * if we need to give up the CPU.
12937 	 */
12938 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12939 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12940 		resched_curr(rq);
12941 }
12942 
12943 /*
12944  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12945  */
12946 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12947 			 bool forceidle)
12948 {
12949 	for_each_sched_entity(se) {
12950 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12951 
12952 		if (forceidle) {
12953 			if (cfs_rq->forceidle_seq == fi_seq)
12954 				break;
12955 			cfs_rq->forceidle_seq = fi_seq;
12956 		}
12957 
12958 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12959 	}
12960 }
12961 
12962 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12963 {
12964 	struct sched_entity *se = &p->se;
12965 
12966 	if (p->sched_class != &fair_sched_class)
12967 		return;
12968 
12969 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12970 }
12971 
12972 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12973 			bool in_fi)
12974 {
12975 	struct rq *rq = task_rq(a);
12976 	const struct sched_entity *sea = &a->se;
12977 	const struct sched_entity *seb = &b->se;
12978 	struct cfs_rq *cfs_rqa;
12979 	struct cfs_rq *cfs_rqb;
12980 	s64 delta;
12981 
12982 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12983 
12984 #ifdef CONFIG_FAIR_GROUP_SCHED
12985 	/*
12986 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12987 	 * are immediate siblings.
12988 	 */
12989 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12990 		int sea_depth = sea->depth;
12991 		int seb_depth = seb->depth;
12992 
12993 		if (sea_depth >= seb_depth)
12994 			sea = parent_entity(sea);
12995 		if (sea_depth <= seb_depth)
12996 			seb = parent_entity(seb);
12997 	}
12998 
12999 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
13000 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
13001 
13002 	cfs_rqa = sea->cfs_rq;
13003 	cfs_rqb = seb->cfs_rq;
13004 #else
13005 	cfs_rqa = &task_rq(a)->cfs;
13006 	cfs_rqb = &task_rq(b)->cfs;
13007 #endif
13008 
13009 	/*
13010 	 * Find delta after normalizing se's vruntime with its cfs_rq's
13011 	 * min_vruntime_fi, which would have been updated in prior calls
13012 	 * to se_fi_update().
13013 	 */
13014 	delta = (s64)(sea->vruntime - seb->vruntime) +
13015 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
13016 
13017 	return delta > 0;
13018 }
13019 
13020 static int task_is_throttled_fair(struct task_struct *p, int cpu)
13021 {
13022 	struct cfs_rq *cfs_rq;
13023 
13024 #ifdef CONFIG_FAIR_GROUP_SCHED
13025 	cfs_rq = task_group(p)->cfs_rq[cpu];
13026 #else
13027 	cfs_rq = &cpu_rq(cpu)->cfs;
13028 #endif
13029 	return throttled_hierarchy(cfs_rq);
13030 }
13031 #else
13032 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
13033 #endif
13034 
13035 /*
13036  * scheduler tick hitting a task of our scheduling class.
13037  *
13038  * NOTE: This function can be called remotely by the tick offload that
13039  * goes along full dynticks. Therefore no local assumption can be made
13040  * and everything must be accessed through the @rq and @curr passed in
13041  * parameters.
13042  */
13043 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13044 {
13045 	struct cfs_rq *cfs_rq;
13046 	struct sched_entity *se = &curr->se;
13047 
13048 	for_each_sched_entity(se) {
13049 		cfs_rq = cfs_rq_of(se);
13050 		entity_tick(cfs_rq, se, queued);
13051 	}
13052 
13053 	if (static_branch_unlikely(&sched_numa_balancing))
13054 		task_tick_numa(rq, curr);
13055 
13056 	update_misfit_status(curr, rq);
13057 	check_update_overutilized_status(task_rq(curr));
13058 
13059 	task_tick_core(rq, curr);
13060 }
13061 
13062 /*
13063  * called on fork with the child task as argument from the parent's context
13064  *  - child not yet on the tasklist
13065  *  - preemption disabled
13066  */
13067 static void task_fork_fair(struct task_struct *p)
13068 {
13069 	set_task_max_allowed_capacity(p);
13070 }
13071 
13072 /*
13073  * Priority of the task has changed. Check to see if we preempt
13074  * the current task.
13075  */
13076 static void
13077 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
13078 {
13079 	if (!task_on_rq_queued(p))
13080 		return;
13081 
13082 	if (rq->cfs.nr_running == 1)
13083 		return;
13084 
13085 	/*
13086 	 * Reschedule if we are currently running on this runqueue and
13087 	 * our priority decreased, or if we are not currently running on
13088 	 * this runqueue and our priority is higher than the current's
13089 	 */
13090 	if (task_current_donor(rq, p)) {
13091 		if (p->prio > oldprio)
13092 			resched_curr(rq);
13093 	} else
13094 		wakeup_preempt(rq, p, 0);
13095 }
13096 
13097 #ifdef CONFIG_FAIR_GROUP_SCHED
13098 /*
13099  * Propagate the changes of the sched_entity across the tg tree to make it
13100  * visible to the root
13101  */
13102 static void propagate_entity_cfs_rq(struct sched_entity *se)
13103 {
13104 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13105 
13106 	if (cfs_rq_throttled(cfs_rq))
13107 		return;
13108 
13109 	if (!throttled_hierarchy(cfs_rq))
13110 		list_add_leaf_cfs_rq(cfs_rq);
13111 
13112 	/* Start to propagate at parent */
13113 	se = se->parent;
13114 
13115 	for_each_sched_entity(se) {
13116 		cfs_rq = cfs_rq_of(se);
13117 
13118 		update_load_avg(cfs_rq, se, UPDATE_TG);
13119 
13120 		if (cfs_rq_throttled(cfs_rq))
13121 			break;
13122 
13123 		if (!throttled_hierarchy(cfs_rq))
13124 			list_add_leaf_cfs_rq(cfs_rq);
13125 	}
13126 }
13127 #else
13128 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13129 #endif
13130 
13131 static void detach_entity_cfs_rq(struct sched_entity *se)
13132 {
13133 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13134 
13135 #ifdef CONFIG_SMP
13136 	/*
13137 	 * In case the task sched_avg hasn't been attached:
13138 	 * - A forked task which hasn't been woken up by wake_up_new_task().
13139 	 * - A task which has been woken up by try_to_wake_up() but is
13140 	 *   waiting for actually being woken up by sched_ttwu_pending().
13141 	 */
13142 	if (!se->avg.last_update_time)
13143 		return;
13144 #endif
13145 
13146 	/* Catch up with the cfs_rq and remove our load when we leave */
13147 	update_load_avg(cfs_rq, se, 0);
13148 	detach_entity_load_avg(cfs_rq, se);
13149 	update_tg_load_avg(cfs_rq);
13150 	propagate_entity_cfs_rq(se);
13151 }
13152 
13153 static void attach_entity_cfs_rq(struct sched_entity *se)
13154 {
13155 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
13156 
13157 	/* Synchronize entity with its cfs_rq */
13158 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13159 	attach_entity_load_avg(cfs_rq, se);
13160 	update_tg_load_avg(cfs_rq);
13161 	propagate_entity_cfs_rq(se);
13162 }
13163 
13164 static void detach_task_cfs_rq(struct task_struct *p)
13165 {
13166 	struct sched_entity *se = &p->se;
13167 
13168 	detach_entity_cfs_rq(se);
13169 }
13170 
13171 static void attach_task_cfs_rq(struct task_struct *p)
13172 {
13173 	struct sched_entity *se = &p->se;
13174 
13175 	attach_entity_cfs_rq(se);
13176 }
13177 
13178 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13179 {
13180 	detach_task_cfs_rq(p);
13181 }
13182 
13183 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13184 {
13185 	SCHED_WARN_ON(p->se.sched_delayed);
13186 
13187 	attach_task_cfs_rq(p);
13188 
13189 	set_task_max_allowed_capacity(p);
13190 
13191 	if (task_on_rq_queued(p)) {
13192 		/*
13193 		 * We were most likely switched from sched_rt, so
13194 		 * kick off the schedule if running, otherwise just see
13195 		 * if we can still preempt the current task.
13196 		 */
13197 		if (task_current_donor(rq, p))
13198 			resched_curr(rq);
13199 		else
13200 			wakeup_preempt(rq, p, 0);
13201 	}
13202 }
13203 
13204 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13205 {
13206 	struct sched_entity *se = &p->se;
13207 
13208 #ifdef CONFIG_SMP
13209 	if (task_on_rq_queued(p)) {
13210 		/*
13211 		 * Move the next running task to the front of the list, so our
13212 		 * cfs_tasks list becomes MRU one.
13213 		 */
13214 		list_move(&se->group_node, &rq->cfs_tasks);
13215 	}
13216 #endif
13217 	if (!first)
13218 		return;
13219 
13220 	SCHED_WARN_ON(se->sched_delayed);
13221 
13222 	if (hrtick_enabled_fair(rq))
13223 		hrtick_start_fair(rq, p);
13224 
13225 	update_misfit_status(p, rq);
13226 	sched_fair_update_stop_tick(rq, p);
13227 }
13228 
13229 /*
13230  * Account for a task changing its policy or group.
13231  *
13232  * This routine is mostly called to set cfs_rq->curr field when a task
13233  * migrates between groups/classes.
13234  */
13235 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13236 {
13237 	struct sched_entity *se = &p->se;
13238 
13239 	for_each_sched_entity(se) {
13240 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
13241 
13242 		set_next_entity(cfs_rq, se);
13243 		/* ensure bandwidth has been allocated on our new cfs_rq */
13244 		account_cfs_rq_runtime(cfs_rq, 0);
13245 	}
13246 
13247 	__set_next_task_fair(rq, p, first);
13248 }
13249 
13250 void init_cfs_rq(struct cfs_rq *cfs_rq)
13251 {
13252 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13253 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
13254 #ifdef CONFIG_SMP
13255 	raw_spin_lock_init(&cfs_rq->removed.lock);
13256 #endif
13257 }
13258 
13259 #ifdef CONFIG_FAIR_GROUP_SCHED
13260 static void task_change_group_fair(struct task_struct *p)
13261 {
13262 	/*
13263 	 * We couldn't detach or attach a forked task which
13264 	 * hasn't been woken up by wake_up_new_task().
13265 	 */
13266 	if (READ_ONCE(p->__state) == TASK_NEW)
13267 		return;
13268 
13269 	detach_task_cfs_rq(p);
13270 
13271 #ifdef CONFIG_SMP
13272 	/* Tell se's cfs_rq has been changed -- migrated */
13273 	p->se.avg.last_update_time = 0;
13274 #endif
13275 	set_task_rq(p, task_cpu(p));
13276 	attach_task_cfs_rq(p);
13277 }
13278 
13279 void free_fair_sched_group(struct task_group *tg)
13280 {
13281 	int i;
13282 
13283 	for_each_possible_cpu(i) {
13284 		if (tg->cfs_rq)
13285 			kfree(tg->cfs_rq[i]);
13286 		if (tg->se)
13287 			kfree(tg->se[i]);
13288 	}
13289 
13290 	kfree(tg->cfs_rq);
13291 	kfree(tg->se);
13292 }
13293 
13294 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13295 {
13296 	struct sched_entity *se;
13297 	struct cfs_rq *cfs_rq;
13298 	int i;
13299 
13300 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13301 	if (!tg->cfs_rq)
13302 		goto err;
13303 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13304 	if (!tg->se)
13305 		goto err;
13306 
13307 	tg->shares = NICE_0_LOAD;
13308 
13309 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13310 
13311 	for_each_possible_cpu(i) {
13312 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13313 				      GFP_KERNEL, cpu_to_node(i));
13314 		if (!cfs_rq)
13315 			goto err;
13316 
13317 		se = kzalloc_node(sizeof(struct sched_entity_stats),
13318 				  GFP_KERNEL, cpu_to_node(i));
13319 		if (!se)
13320 			goto err_free_rq;
13321 
13322 		init_cfs_rq(cfs_rq);
13323 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13324 		init_entity_runnable_average(se);
13325 	}
13326 
13327 	return 1;
13328 
13329 err_free_rq:
13330 	kfree(cfs_rq);
13331 err:
13332 	return 0;
13333 }
13334 
13335 void online_fair_sched_group(struct task_group *tg)
13336 {
13337 	struct sched_entity *se;
13338 	struct rq_flags rf;
13339 	struct rq *rq;
13340 	int i;
13341 
13342 	for_each_possible_cpu(i) {
13343 		rq = cpu_rq(i);
13344 		se = tg->se[i];
13345 		rq_lock_irq(rq, &rf);
13346 		update_rq_clock(rq);
13347 		attach_entity_cfs_rq(se);
13348 		sync_throttle(tg, i);
13349 		rq_unlock_irq(rq, &rf);
13350 	}
13351 }
13352 
13353 void unregister_fair_sched_group(struct task_group *tg)
13354 {
13355 	int cpu;
13356 
13357 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13358 
13359 	for_each_possible_cpu(cpu) {
13360 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13361 		struct sched_entity *se = tg->se[cpu];
13362 		struct rq *rq = cpu_rq(cpu);
13363 
13364 		if (se) {
13365 			if (se->sched_delayed) {
13366 				guard(rq_lock_irqsave)(rq);
13367 				if (se->sched_delayed) {
13368 					update_rq_clock(rq);
13369 					dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13370 				}
13371 				list_del_leaf_cfs_rq(cfs_rq);
13372 			}
13373 			remove_entity_load_avg(se);
13374 		}
13375 
13376 		/*
13377 		 * Only empty task groups can be destroyed; so we can speculatively
13378 		 * check on_list without danger of it being re-added.
13379 		 */
13380 		if (cfs_rq->on_list) {
13381 			guard(rq_lock_irqsave)(rq);
13382 			list_del_leaf_cfs_rq(cfs_rq);
13383 		}
13384 	}
13385 }
13386 
13387 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13388 			struct sched_entity *se, int cpu,
13389 			struct sched_entity *parent)
13390 {
13391 	struct rq *rq = cpu_rq(cpu);
13392 
13393 	cfs_rq->tg = tg;
13394 	cfs_rq->rq = rq;
13395 	init_cfs_rq_runtime(cfs_rq);
13396 
13397 	tg->cfs_rq[cpu] = cfs_rq;
13398 	tg->se[cpu] = se;
13399 
13400 	/* se could be NULL for root_task_group */
13401 	if (!se)
13402 		return;
13403 
13404 	if (!parent) {
13405 		se->cfs_rq = &rq->cfs;
13406 		se->depth = 0;
13407 	} else {
13408 		se->cfs_rq = parent->my_q;
13409 		se->depth = parent->depth + 1;
13410 	}
13411 
13412 	se->my_q = cfs_rq;
13413 	/* guarantee group entities always have weight */
13414 	update_load_set(&se->load, NICE_0_LOAD);
13415 	se->parent = parent;
13416 }
13417 
13418 static DEFINE_MUTEX(shares_mutex);
13419 
13420 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13421 {
13422 	int i;
13423 
13424 	lockdep_assert_held(&shares_mutex);
13425 
13426 	/*
13427 	 * We can't change the weight of the root cgroup.
13428 	 */
13429 	if (!tg->se[0])
13430 		return -EINVAL;
13431 
13432 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13433 
13434 	if (tg->shares == shares)
13435 		return 0;
13436 
13437 	tg->shares = shares;
13438 	for_each_possible_cpu(i) {
13439 		struct rq *rq = cpu_rq(i);
13440 		struct sched_entity *se = tg->se[i];
13441 		struct rq_flags rf;
13442 
13443 		/* Propagate contribution to hierarchy */
13444 		rq_lock_irqsave(rq, &rf);
13445 		update_rq_clock(rq);
13446 		for_each_sched_entity(se) {
13447 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13448 			update_cfs_group(se);
13449 		}
13450 		rq_unlock_irqrestore(rq, &rf);
13451 	}
13452 
13453 	return 0;
13454 }
13455 
13456 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13457 {
13458 	int ret;
13459 
13460 	mutex_lock(&shares_mutex);
13461 	if (tg_is_idle(tg))
13462 		ret = -EINVAL;
13463 	else
13464 		ret = __sched_group_set_shares(tg, shares);
13465 	mutex_unlock(&shares_mutex);
13466 
13467 	return ret;
13468 }
13469 
13470 int sched_group_set_idle(struct task_group *tg, long idle)
13471 {
13472 	int i;
13473 
13474 	if (tg == &root_task_group)
13475 		return -EINVAL;
13476 
13477 	if (idle < 0 || idle > 1)
13478 		return -EINVAL;
13479 
13480 	mutex_lock(&shares_mutex);
13481 
13482 	if (tg->idle == idle) {
13483 		mutex_unlock(&shares_mutex);
13484 		return 0;
13485 	}
13486 
13487 	tg->idle = idle;
13488 
13489 	for_each_possible_cpu(i) {
13490 		struct rq *rq = cpu_rq(i);
13491 		struct sched_entity *se = tg->se[i];
13492 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13493 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13494 		long idle_task_delta;
13495 		struct rq_flags rf;
13496 
13497 		rq_lock_irqsave(rq, &rf);
13498 
13499 		grp_cfs_rq->idle = idle;
13500 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13501 			goto next_cpu;
13502 
13503 		if (se->on_rq) {
13504 			parent_cfs_rq = cfs_rq_of(se);
13505 			if (cfs_rq_is_idle(grp_cfs_rq))
13506 				parent_cfs_rq->idle_nr_running++;
13507 			else
13508 				parent_cfs_rq->idle_nr_running--;
13509 		}
13510 
13511 		idle_task_delta = grp_cfs_rq->h_nr_running -
13512 				  grp_cfs_rq->idle_h_nr_running;
13513 		if (!cfs_rq_is_idle(grp_cfs_rq))
13514 			idle_task_delta *= -1;
13515 
13516 		for_each_sched_entity(se) {
13517 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13518 
13519 			if (!se->on_rq)
13520 				break;
13521 
13522 			cfs_rq->idle_h_nr_running += idle_task_delta;
13523 
13524 			/* Already accounted at parent level and above. */
13525 			if (cfs_rq_is_idle(cfs_rq))
13526 				break;
13527 		}
13528 
13529 next_cpu:
13530 		rq_unlock_irqrestore(rq, &rf);
13531 	}
13532 
13533 	/* Idle groups have minimum weight. */
13534 	if (tg_is_idle(tg))
13535 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13536 	else
13537 		__sched_group_set_shares(tg, NICE_0_LOAD);
13538 
13539 	mutex_unlock(&shares_mutex);
13540 	return 0;
13541 }
13542 
13543 #endif /* CONFIG_FAIR_GROUP_SCHED */
13544 
13545 
13546 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13547 {
13548 	struct sched_entity *se = &task->se;
13549 	unsigned int rr_interval = 0;
13550 
13551 	/*
13552 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13553 	 * idle runqueue:
13554 	 */
13555 	if (rq->cfs.load.weight)
13556 		rr_interval = NS_TO_JIFFIES(se->slice);
13557 
13558 	return rr_interval;
13559 }
13560 
13561 /*
13562  * All the scheduling class methods:
13563  */
13564 DEFINE_SCHED_CLASS(fair) = {
13565 
13566 	.enqueue_task		= enqueue_task_fair,
13567 	.dequeue_task		= dequeue_task_fair,
13568 	.yield_task		= yield_task_fair,
13569 	.yield_to_task		= yield_to_task_fair,
13570 
13571 	.wakeup_preempt		= check_preempt_wakeup_fair,
13572 
13573 	.pick_task		= pick_task_fair,
13574 	.pick_next_task		= __pick_next_task_fair,
13575 	.put_prev_task		= put_prev_task_fair,
13576 	.set_next_task          = set_next_task_fair,
13577 
13578 #ifdef CONFIG_SMP
13579 	.balance		= balance_fair,
13580 	.select_task_rq		= select_task_rq_fair,
13581 	.migrate_task_rq	= migrate_task_rq_fair,
13582 
13583 	.rq_online		= rq_online_fair,
13584 	.rq_offline		= rq_offline_fair,
13585 
13586 	.task_dead		= task_dead_fair,
13587 	.set_cpus_allowed	= set_cpus_allowed_fair,
13588 #endif
13589 
13590 	.task_tick		= task_tick_fair,
13591 	.task_fork		= task_fork_fair,
13592 
13593 	.reweight_task		= reweight_task_fair,
13594 	.prio_changed		= prio_changed_fair,
13595 	.switched_from		= switched_from_fair,
13596 	.switched_to		= switched_to_fair,
13597 
13598 	.get_rr_interval	= get_rr_interval_fair,
13599 
13600 	.update_curr		= update_curr_fair,
13601 
13602 #ifdef CONFIG_FAIR_GROUP_SCHED
13603 	.task_change_group	= task_change_group_fair,
13604 #endif
13605 
13606 #ifdef CONFIG_SCHED_CORE
13607 	.task_is_throttled	= task_is_throttled_fair,
13608 #endif
13609 
13610 #ifdef CONFIG_UCLAMP_TASK
13611 	.uclamp_enabled		= 1,
13612 #endif
13613 };
13614 
13615 #ifdef CONFIG_SCHED_DEBUG
13616 void print_cfs_stats(struct seq_file *m, int cpu)
13617 {
13618 	struct cfs_rq *cfs_rq, *pos;
13619 
13620 	rcu_read_lock();
13621 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13622 		print_cfs_rq(m, cpu, cfs_rq);
13623 	rcu_read_unlock();
13624 }
13625 
13626 #ifdef CONFIG_NUMA_BALANCING
13627 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13628 {
13629 	int node;
13630 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13631 	struct numa_group *ng;
13632 
13633 	rcu_read_lock();
13634 	ng = rcu_dereference(p->numa_group);
13635 	for_each_online_node(node) {
13636 		if (p->numa_faults) {
13637 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13638 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13639 		}
13640 		if (ng) {
13641 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13642 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13643 		}
13644 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13645 	}
13646 	rcu_read_unlock();
13647 }
13648 #endif /* CONFIG_NUMA_BALANCING */
13649 #endif /* CONFIG_SCHED_DEBUG */
13650 
13651 __init void init_sched_fair_class(void)
13652 {
13653 #ifdef CONFIG_SMP
13654 	int i;
13655 
13656 	for_each_possible_cpu(i) {
13657 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13658 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13659 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13660 					GFP_KERNEL, cpu_to_node(i));
13661 
13662 #ifdef CONFIG_CFS_BANDWIDTH
13663 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13664 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13665 #endif
13666 	}
13667 
13668 	open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13669 
13670 #ifdef CONFIG_NO_HZ_COMMON
13671 	nohz.next_balance = jiffies;
13672 	nohz.next_blocked = jiffies;
13673 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13674 #endif
13675 #endif /* SMP */
13676 
13677 }
13678