1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 40 #include <linux/cpuidle.h> 41 #include <linux/interrupt.h> 42 #include <linux/mempolicy.h> 43 #include <linux/mutex_api.h> 44 #include <linux/profile.h> 45 #include <linux/psi.h> 46 #include <linux/ratelimit.h> 47 #include <linux/task_work.h> 48 49 #include <asm/switch_to.h> 50 51 #include <linux/sched/cond_resched.h> 52 53 #include "sched.h" 54 #include "stats.h" 55 #include "autogroup.h" 56 57 /* 58 * Targeted preemption latency for CPU-bound tasks: 59 * 60 * NOTE: this latency value is not the same as the concept of 61 * 'timeslice length' - timeslices in CFS are of variable length 62 * and have no persistent notion like in traditional, time-slice 63 * based scheduling concepts. 64 * 65 * (to see the precise effective timeslice length of your workload, 66 * run vmstat and monitor the context-switches (cs) field) 67 * 68 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 69 */ 70 unsigned int sysctl_sched_latency = 6000000ULL; 71 static unsigned int normalized_sysctl_sched_latency = 6000000ULL; 72 73 /* 74 * The initial- and re-scaling of tunables is configurable 75 * 76 * Options are: 77 * 78 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 79 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 80 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 81 * 82 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 83 */ 84 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 85 86 /* 87 * Minimal preemption granularity for CPU-bound tasks: 88 * 89 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 90 */ 91 unsigned int sysctl_sched_min_granularity = 750000ULL; 92 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 93 94 /* 95 * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks. 96 * Applies only when SCHED_IDLE tasks compete with normal tasks. 97 * 98 * (default: 0.75 msec) 99 */ 100 unsigned int sysctl_sched_idle_min_granularity = 750000ULL; 101 102 /* 103 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 104 */ 105 static unsigned int sched_nr_latency = 8; 106 107 /* 108 * After fork, child runs first. If set to 0 (default) then 109 * parent will (try to) run first. 110 */ 111 unsigned int sysctl_sched_child_runs_first __read_mostly; 112 113 /* 114 * SCHED_OTHER wake-up granularity. 115 * 116 * This option delays the preemption effects of decoupled workloads 117 * and reduces their over-scheduling. Synchronous workloads will still 118 * have immediate wakeup/sleep latencies. 119 * 120 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 121 */ 122 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 123 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 124 125 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 126 127 int sched_thermal_decay_shift; 128 static int __init setup_sched_thermal_decay_shift(char *str) 129 { 130 int _shift = 0; 131 132 if (kstrtoint(str, 0, &_shift)) 133 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 134 135 sched_thermal_decay_shift = clamp(_shift, 0, 10); 136 return 1; 137 } 138 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 139 140 #ifdef CONFIG_SMP 141 /* 142 * For asym packing, by default the lower numbered CPU has higher priority. 143 */ 144 int __weak arch_asym_cpu_priority(int cpu) 145 { 146 return -cpu; 147 } 148 149 /* 150 * The margin used when comparing utilization with CPU capacity. 151 * 152 * (default: ~20%) 153 */ 154 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 155 156 /* 157 * The margin used when comparing CPU capacities. 158 * is 'cap1' noticeably greater than 'cap2' 159 * 160 * (default: ~5%) 161 */ 162 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 163 #endif 164 165 #ifdef CONFIG_CFS_BANDWIDTH 166 /* 167 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 168 * each time a cfs_rq requests quota. 169 * 170 * Note: in the case that the slice exceeds the runtime remaining (either due 171 * to consumption or the quota being specified to be smaller than the slice) 172 * we will always only issue the remaining available time. 173 * 174 * (default: 5 msec, units: microseconds) 175 */ 176 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 177 #endif 178 179 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 180 { 181 lw->weight += inc; 182 lw->inv_weight = 0; 183 } 184 185 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 186 { 187 lw->weight -= dec; 188 lw->inv_weight = 0; 189 } 190 191 static inline void update_load_set(struct load_weight *lw, unsigned long w) 192 { 193 lw->weight = w; 194 lw->inv_weight = 0; 195 } 196 197 /* 198 * Increase the granularity value when there are more CPUs, 199 * because with more CPUs the 'effective latency' as visible 200 * to users decreases. But the relationship is not linear, 201 * so pick a second-best guess by going with the log2 of the 202 * number of CPUs. 203 * 204 * This idea comes from the SD scheduler of Con Kolivas: 205 */ 206 static unsigned int get_update_sysctl_factor(void) 207 { 208 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 209 unsigned int factor; 210 211 switch (sysctl_sched_tunable_scaling) { 212 case SCHED_TUNABLESCALING_NONE: 213 factor = 1; 214 break; 215 case SCHED_TUNABLESCALING_LINEAR: 216 factor = cpus; 217 break; 218 case SCHED_TUNABLESCALING_LOG: 219 default: 220 factor = 1 + ilog2(cpus); 221 break; 222 } 223 224 return factor; 225 } 226 227 static void update_sysctl(void) 228 { 229 unsigned int factor = get_update_sysctl_factor(); 230 231 #define SET_SYSCTL(name) \ 232 (sysctl_##name = (factor) * normalized_sysctl_##name) 233 SET_SYSCTL(sched_min_granularity); 234 SET_SYSCTL(sched_latency); 235 SET_SYSCTL(sched_wakeup_granularity); 236 #undef SET_SYSCTL 237 } 238 239 void __init sched_init_granularity(void) 240 { 241 update_sysctl(); 242 } 243 244 #define WMULT_CONST (~0U) 245 #define WMULT_SHIFT 32 246 247 static void __update_inv_weight(struct load_weight *lw) 248 { 249 unsigned long w; 250 251 if (likely(lw->inv_weight)) 252 return; 253 254 w = scale_load_down(lw->weight); 255 256 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 257 lw->inv_weight = 1; 258 else if (unlikely(!w)) 259 lw->inv_weight = WMULT_CONST; 260 else 261 lw->inv_weight = WMULT_CONST / w; 262 } 263 264 /* 265 * delta_exec * weight / lw.weight 266 * OR 267 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 268 * 269 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 270 * we're guaranteed shift stays positive because inv_weight is guaranteed to 271 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 272 * 273 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 274 * weight/lw.weight <= 1, and therefore our shift will also be positive. 275 */ 276 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 277 { 278 u64 fact = scale_load_down(weight); 279 u32 fact_hi = (u32)(fact >> 32); 280 int shift = WMULT_SHIFT; 281 int fs; 282 283 __update_inv_weight(lw); 284 285 if (unlikely(fact_hi)) { 286 fs = fls(fact_hi); 287 shift -= fs; 288 fact >>= fs; 289 } 290 291 fact = mul_u32_u32(fact, lw->inv_weight); 292 293 fact_hi = (u32)(fact >> 32); 294 if (fact_hi) { 295 fs = fls(fact_hi); 296 shift -= fs; 297 fact >>= fs; 298 } 299 300 return mul_u64_u32_shr(delta_exec, fact, shift); 301 } 302 303 304 const struct sched_class fair_sched_class; 305 306 /************************************************************** 307 * CFS operations on generic schedulable entities: 308 */ 309 310 #ifdef CONFIG_FAIR_GROUP_SCHED 311 312 /* Walk up scheduling entities hierarchy */ 313 #define for_each_sched_entity(se) \ 314 for (; se; se = se->parent) 315 316 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 317 { 318 if (!path) 319 return; 320 321 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg)) 322 autogroup_path(cfs_rq->tg, path, len); 323 else if (cfs_rq && cfs_rq->tg->css.cgroup) 324 cgroup_path(cfs_rq->tg->css.cgroup, path, len); 325 else 326 strlcpy(path, "(null)", len); 327 } 328 329 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 330 { 331 struct rq *rq = rq_of(cfs_rq); 332 int cpu = cpu_of(rq); 333 334 if (cfs_rq->on_list) 335 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 336 337 cfs_rq->on_list = 1; 338 339 /* 340 * Ensure we either appear before our parent (if already 341 * enqueued) or force our parent to appear after us when it is 342 * enqueued. The fact that we always enqueue bottom-up 343 * reduces this to two cases and a special case for the root 344 * cfs_rq. Furthermore, it also means that we will always reset 345 * tmp_alone_branch either when the branch is connected 346 * to a tree or when we reach the top of the tree 347 */ 348 if (cfs_rq->tg->parent && 349 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 350 /* 351 * If parent is already on the list, we add the child 352 * just before. Thanks to circular linked property of 353 * the list, this means to put the child at the tail 354 * of the list that starts by parent. 355 */ 356 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 357 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 358 /* 359 * The branch is now connected to its tree so we can 360 * reset tmp_alone_branch to the beginning of the 361 * list. 362 */ 363 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 364 return true; 365 } 366 367 if (!cfs_rq->tg->parent) { 368 /* 369 * cfs rq without parent should be put 370 * at the tail of the list. 371 */ 372 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 373 &rq->leaf_cfs_rq_list); 374 /* 375 * We have reach the top of a tree so we can reset 376 * tmp_alone_branch to the beginning of the list. 377 */ 378 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 379 return true; 380 } 381 382 /* 383 * The parent has not already been added so we want to 384 * make sure that it will be put after us. 385 * tmp_alone_branch points to the begin of the branch 386 * where we will add parent. 387 */ 388 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 389 /* 390 * update tmp_alone_branch to points to the new begin 391 * of the branch 392 */ 393 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 394 return false; 395 } 396 397 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 398 { 399 if (cfs_rq->on_list) { 400 struct rq *rq = rq_of(cfs_rq); 401 402 /* 403 * With cfs_rq being unthrottled/throttled during an enqueue, 404 * it can happen the tmp_alone_branch points the a leaf that 405 * we finally want to del. In this case, tmp_alone_branch moves 406 * to the prev element but it will point to rq->leaf_cfs_rq_list 407 * at the end of the enqueue. 408 */ 409 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 410 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 411 412 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 413 cfs_rq->on_list = 0; 414 } 415 } 416 417 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 418 { 419 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 420 } 421 422 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 423 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 424 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 425 leaf_cfs_rq_list) 426 427 /* Do the two (enqueued) entities belong to the same group ? */ 428 static inline struct cfs_rq * 429 is_same_group(struct sched_entity *se, struct sched_entity *pse) 430 { 431 if (se->cfs_rq == pse->cfs_rq) 432 return se->cfs_rq; 433 434 return NULL; 435 } 436 437 static inline struct sched_entity *parent_entity(struct sched_entity *se) 438 { 439 return se->parent; 440 } 441 442 static void 443 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 444 { 445 int se_depth, pse_depth; 446 447 /* 448 * preemption test can be made between sibling entities who are in the 449 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 450 * both tasks until we find their ancestors who are siblings of common 451 * parent. 452 */ 453 454 /* First walk up until both entities are at same depth */ 455 se_depth = (*se)->depth; 456 pse_depth = (*pse)->depth; 457 458 while (se_depth > pse_depth) { 459 se_depth--; 460 *se = parent_entity(*se); 461 } 462 463 while (pse_depth > se_depth) { 464 pse_depth--; 465 *pse = parent_entity(*pse); 466 } 467 468 while (!is_same_group(*se, *pse)) { 469 *se = parent_entity(*se); 470 *pse = parent_entity(*pse); 471 } 472 } 473 474 static int tg_is_idle(struct task_group *tg) 475 { 476 return tg->idle > 0; 477 } 478 479 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 480 { 481 return cfs_rq->idle > 0; 482 } 483 484 static int se_is_idle(struct sched_entity *se) 485 { 486 if (entity_is_task(se)) 487 return task_has_idle_policy(task_of(se)); 488 return cfs_rq_is_idle(group_cfs_rq(se)); 489 } 490 491 #else /* !CONFIG_FAIR_GROUP_SCHED */ 492 493 #define for_each_sched_entity(se) \ 494 for (; se; se = NULL) 495 496 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len) 497 { 498 if (path) 499 strlcpy(path, "(null)", len); 500 } 501 502 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 503 { 504 return true; 505 } 506 507 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 508 { 509 } 510 511 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 512 { 513 } 514 515 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 516 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 517 518 static inline struct sched_entity *parent_entity(struct sched_entity *se) 519 { 520 return NULL; 521 } 522 523 static inline void 524 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 525 { 526 } 527 528 static inline int tg_is_idle(struct task_group *tg) 529 { 530 return 0; 531 } 532 533 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 534 { 535 return 0; 536 } 537 538 static int se_is_idle(struct sched_entity *se) 539 { 540 return 0; 541 } 542 543 #endif /* CONFIG_FAIR_GROUP_SCHED */ 544 545 static __always_inline 546 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 547 548 /************************************************************** 549 * Scheduling class tree data structure manipulation methods: 550 */ 551 552 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 553 { 554 s64 delta = (s64)(vruntime - max_vruntime); 555 if (delta > 0) 556 max_vruntime = vruntime; 557 558 return max_vruntime; 559 } 560 561 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 562 { 563 s64 delta = (s64)(vruntime - min_vruntime); 564 if (delta < 0) 565 min_vruntime = vruntime; 566 567 return min_vruntime; 568 } 569 570 static inline bool entity_before(struct sched_entity *a, 571 struct sched_entity *b) 572 { 573 return (s64)(a->vruntime - b->vruntime) < 0; 574 } 575 576 #define __node_2_se(node) \ 577 rb_entry((node), struct sched_entity, run_node) 578 579 static void update_min_vruntime(struct cfs_rq *cfs_rq) 580 { 581 struct sched_entity *curr = cfs_rq->curr; 582 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline); 583 584 u64 vruntime = cfs_rq->min_vruntime; 585 586 if (curr) { 587 if (curr->on_rq) 588 vruntime = curr->vruntime; 589 else 590 curr = NULL; 591 } 592 593 if (leftmost) { /* non-empty tree */ 594 struct sched_entity *se = __node_2_se(leftmost); 595 596 if (!curr) 597 vruntime = se->vruntime; 598 else 599 vruntime = min_vruntime(vruntime, se->vruntime); 600 } 601 602 /* ensure we never gain time by being placed backwards. */ 603 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 604 #ifndef CONFIG_64BIT 605 smp_wmb(); 606 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 607 #endif 608 } 609 610 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 611 { 612 return entity_before(__node_2_se(a), __node_2_se(b)); 613 } 614 615 /* 616 * Enqueue an entity into the rb-tree: 617 */ 618 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 619 { 620 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less); 621 } 622 623 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 624 { 625 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline); 626 } 627 628 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 629 { 630 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 631 632 if (!left) 633 return NULL; 634 635 return __node_2_se(left); 636 } 637 638 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 639 { 640 struct rb_node *next = rb_next(&se->run_node); 641 642 if (!next) 643 return NULL; 644 645 return __node_2_se(next); 646 } 647 648 #ifdef CONFIG_SCHED_DEBUG 649 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 650 { 651 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 652 653 if (!last) 654 return NULL; 655 656 return __node_2_se(last); 657 } 658 659 /************************************************************** 660 * Scheduling class statistics methods: 661 */ 662 663 int sched_update_scaling(void) 664 { 665 unsigned int factor = get_update_sysctl_factor(); 666 667 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 668 sysctl_sched_min_granularity); 669 670 #define WRT_SYSCTL(name) \ 671 (normalized_sysctl_##name = sysctl_##name / (factor)) 672 WRT_SYSCTL(sched_min_granularity); 673 WRT_SYSCTL(sched_latency); 674 WRT_SYSCTL(sched_wakeup_granularity); 675 #undef WRT_SYSCTL 676 677 return 0; 678 } 679 #endif 680 681 /* 682 * delta /= w 683 */ 684 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 685 { 686 if (unlikely(se->load.weight != NICE_0_LOAD)) 687 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 688 689 return delta; 690 } 691 692 /* 693 * The idea is to set a period in which each task runs once. 694 * 695 * When there are too many tasks (sched_nr_latency) we have to stretch 696 * this period because otherwise the slices get too small. 697 * 698 * p = (nr <= nl) ? l : l*nr/nl 699 */ 700 static u64 __sched_period(unsigned long nr_running) 701 { 702 if (unlikely(nr_running > sched_nr_latency)) 703 return nr_running * sysctl_sched_min_granularity; 704 else 705 return sysctl_sched_latency; 706 } 707 708 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq); 709 710 /* 711 * We calculate the wall-time slice from the period by taking a part 712 * proportional to the weight. 713 * 714 * s = p*P[w/rw] 715 */ 716 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 717 { 718 unsigned int nr_running = cfs_rq->nr_running; 719 struct sched_entity *init_se = se; 720 unsigned int min_gran; 721 u64 slice; 722 723 if (sched_feat(ALT_PERIOD)) 724 nr_running = rq_of(cfs_rq)->cfs.h_nr_running; 725 726 slice = __sched_period(nr_running + !se->on_rq); 727 728 for_each_sched_entity(se) { 729 struct load_weight *load; 730 struct load_weight lw; 731 struct cfs_rq *qcfs_rq; 732 733 qcfs_rq = cfs_rq_of(se); 734 load = &qcfs_rq->load; 735 736 if (unlikely(!se->on_rq)) { 737 lw = qcfs_rq->load; 738 739 update_load_add(&lw, se->load.weight); 740 load = &lw; 741 } 742 slice = __calc_delta(slice, se->load.weight, load); 743 } 744 745 if (sched_feat(BASE_SLICE)) { 746 if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq)) 747 min_gran = sysctl_sched_idle_min_granularity; 748 else 749 min_gran = sysctl_sched_min_granularity; 750 751 slice = max_t(u64, slice, min_gran); 752 } 753 754 return slice; 755 } 756 757 /* 758 * We calculate the vruntime slice of a to-be-inserted task. 759 * 760 * vs = s/w 761 */ 762 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 763 { 764 return calc_delta_fair(sched_slice(cfs_rq, se), se); 765 } 766 767 #include "pelt.h" 768 #ifdef CONFIG_SMP 769 770 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 771 static unsigned long task_h_load(struct task_struct *p); 772 static unsigned long capacity_of(int cpu); 773 774 /* Give new sched_entity start runnable values to heavy its load in infant time */ 775 void init_entity_runnable_average(struct sched_entity *se) 776 { 777 struct sched_avg *sa = &se->avg; 778 779 memset(sa, 0, sizeof(*sa)); 780 781 /* 782 * Tasks are initialized with full load to be seen as heavy tasks until 783 * they get a chance to stabilize to their real load level. 784 * Group entities are initialized with zero load to reflect the fact that 785 * nothing has been attached to the task group yet. 786 */ 787 if (entity_is_task(se)) 788 sa->load_avg = scale_load_down(se->load.weight); 789 790 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 791 } 792 793 static void attach_entity_cfs_rq(struct sched_entity *se); 794 795 /* 796 * With new tasks being created, their initial util_avgs are extrapolated 797 * based on the cfs_rq's current util_avg: 798 * 799 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 800 * 801 * However, in many cases, the above util_avg does not give a desired 802 * value. Moreover, the sum of the util_avgs may be divergent, such 803 * as when the series is a harmonic series. 804 * 805 * To solve this problem, we also cap the util_avg of successive tasks to 806 * only 1/2 of the left utilization budget: 807 * 808 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 809 * 810 * where n denotes the nth task and cpu_scale the CPU capacity. 811 * 812 * For example, for a CPU with 1024 of capacity, a simplest series from 813 * the beginning would be like: 814 * 815 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 816 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 817 * 818 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 819 * if util_avg > util_avg_cap. 820 */ 821 void post_init_entity_util_avg(struct task_struct *p) 822 { 823 struct sched_entity *se = &p->se; 824 struct cfs_rq *cfs_rq = cfs_rq_of(se); 825 struct sched_avg *sa = &se->avg; 826 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 827 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 828 829 if (cap > 0) { 830 if (cfs_rq->avg.util_avg != 0) { 831 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 832 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 833 834 if (sa->util_avg > cap) 835 sa->util_avg = cap; 836 } else { 837 sa->util_avg = cap; 838 } 839 } 840 841 sa->runnable_avg = sa->util_avg; 842 843 if (p->sched_class != &fair_sched_class) { 844 /* 845 * For !fair tasks do: 846 * 847 update_cfs_rq_load_avg(now, cfs_rq); 848 attach_entity_load_avg(cfs_rq, se); 849 switched_from_fair(rq, p); 850 * 851 * such that the next switched_to_fair() has the 852 * expected state. 853 */ 854 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 855 return; 856 } 857 858 attach_entity_cfs_rq(se); 859 } 860 861 #else /* !CONFIG_SMP */ 862 void init_entity_runnable_average(struct sched_entity *se) 863 { 864 } 865 void post_init_entity_util_avg(struct task_struct *p) 866 { 867 } 868 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 869 { 870 } 871 #endif /* CONFIG_SMP */ 872 873 /* 874 * Update the current task's runtime statistics. 875 */ 876 static void update_curr(struct cfs_rq *cfs_rq) 877 { 878 struct sched_entity *curr = cfs_rq->curr; 879 u64 now = rq_clock_task(rq_of(cfs_rq)); 880 u64 delta_exec; 881 882 if (unlikely(!curr)) 883 return; 884 885 delta_exec = now - curr->exec_start; 886 if (unlikely((s64)delta_exec <= 0)) 887 return; 888 889 curr->exec_start = now; 890 891 if (schedstat_enabled()) { 892 struct sched_statistics *stats; 893 894 stats = __schedstats_from_se(curr); 895 __schedstat_set(stats->exec_max, 896 max(delta_exec, stats->exec_max)); 897 } 898 899 curr->sum_exec_runtime += delta_exec; 900 schedstat_add(cfs_rq->exec_clock, delta_exec); 901 902 curr->vruntime += calc_delta_fair(delta_exec, curr); 903 update_min_vruntime(cfs_rq); 904 905 if (entity_is_task(curr)) { 906 struct task_struct *curtask = task_of(curr); 907 908 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 909 cgroup_account_cputime(curtask, delta_exec); 910 account_group_exec_runtime(curtask, delta_exec); 911 } 912 913 account_cfs_rq_runtime(cfs_rq, delta_exec); 914 } 915 916 static void update_curr_fair(struct rq *rq) 917 { 918 update_curr(cfs_rq_of(&rq->curr->se)); 919 } 920 921 static inline void 922 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 923 { 924 struct sched_statistics *stats; 925 struct task_struct *p = NULL; 926 927 if (!schedstat_enabled()) 928 return; 929 930 stats = __schedstats_from_se(se); 931 932 if (entity_is_task(se)) 933 p = task_of(se); 934 935 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 936 } 937 938 static inline void 939 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 940 { 941 struct sched_statistics *stats; 942 struct task_struct *p = NULL; 943 944 if (!schedstat_enabled()) 945 return; 946 947 stats = __schedstats_from_se(se); 948 949 /* 950 * When the sched_schedstat changes from 0 to 1, some sched se 951 * maybe already in the runqueue, the se->statistics.wait_start 952 * will be 0.So it will let the delta wrong. We need to avoid this 953 * scenario. 954 */ 955 if (unlikely(!schedstat_val(stats->wait_start))) 956 return; 957 958 if (entity_is_task(se)) 959 p = task_of(se); 960 961 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 962 } 963 964 static inline void 965 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 966 { 967 struct sched_statistics *stats; 968 struct task_struct *tsk = NULL; 969 970 if (!schedstat_enabled()) 971 return; 972 973 stats = __schedstats_from_se(se); 974 975 if (entity_is_task(se)) 976 tsk = task_of(se); 977 978 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 979 } 980 981 /* 982 * Task is being enqueued - update stats: 983 */ 984 static inline void 985 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 986 { 987 if (!schedstat_enabled()) 988 return; 989 990 /* 991 * Are we enqueueing a waiting task? (for current tasks 992 * a dequeue/enqueue event is a NOP) 993 */ 994 if (se != cfs_rq->curr) 995 update_stats_wait_start_fair(cfs_rq, se); 996 997 if (flags & ENQUEUE_WAKEUP) 998 update_stats_enqueue_sleeper_fair(cfs_rq, se); 999 } 1000 1001 static inline void 1002 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1003 { 1004 1005 if (!schedstat_enabled()) 1006 return; 1007 1008 /* 1009 * Mark the end of the wait period if dequeueing a 1010 * waiting task: 1011 */ 1012 if (se != cfs_rq->curr) 1013 update_stats_wait_end_fair(cfs_rq, se); 1014 1015 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1016 struct task_struct *tsk = task_of(se); 1017 unsigned int state; 1018 1019 /* XXX racy against TTWU */ 1020 state = READ_ONCE(tsk->__state); 1021 if (state & TASK_INTERRUPTIBLE) 1022 __schedstat_set(tsk->stats.sleep_start, 1023 rq_clock(rq_of(cfs_rq))); 1024 if (state & TASK_UNINTERRUPTIBLE) 1025 __schedstat_set(tsk->stats.block_start, 1026 rq_clock(rq_of(cfs_rq))); 1027 } 1028 } 1029 1030 /* 1031 * We are picking a new current task - update its stats: 1032 */ 1033 static inline void 1034 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1035 { 1036 /* 1037 * We are starting a new run period: 1038 */ 1039 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1040 } 1041 1042 /************************************************** 1043 * Scheduling class queueing methods: 1044 */ 1045 1046 #ifdef CONFIG_NUMA_BALANCING 1047 /* 1048 * Approximate time to scan a full NUMA task in ms. The task scan period is 1049 * calculated based on the tasks virtual memory size and 1050 * numa_balancing_scan_size. 1051 */ 1052 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1053 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1054 1055 /* Portion of address space to scan in MB */ 1056 unsigned int sysctl_numa_balancing_scan_size = 256; 1057 1058 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1059 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1060 1061 struct numa_group { 1062 refcount_t refcount; 1063 1064 spinlock_t lock; /* nr_tasks, tasks */ 1065 int nr_tasks; 1066 pid_t gid; 1067 int active_nodes; 1068 1069 struct rcu_head rcu; 1070 unsigned long total_faults; 1071 unsigned long max_faults_cpu; 1072 /* 1073 * faults[] array is split into two regions: faults_mem and faults_cpu. 1074 * 1075 * Faults_cpu is used to decide whether memory should move 1076 * towards the CPU. As a consequence, these stats are weighted 1077 * more by CPU use than by memory faults. 1078 */ 1079 unsigned long faults[]; 1080 }; 1081 1082 /* 1083 * For functions that can be called in multiple contexts that permit reading 1084 * ->numa_group (see struct task_struct for locking rules). 1085 */ 1086 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1087 { 1088 return rcu_dereference_check(p->numa_group, p == current || 1089 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1090 } 1091 1092 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1093 { 1094 return rcu_dereference_protected(p->numa_group, p == current); 1095 } 1096 1097 static inline unsigned long group_faults_priv(struct numa_group *ng); 1098 static inline unsigned long group_faults_shared(struct numa_group *ng); 1099 1100 static unsigned int task_nr_scan_windows(struct task_struct *p) 1101 { 1102 unsigned long rss = 0; 1103 unsigned long nr_scan_pages; 1104 1105 /* 1106 * Calculations based on RSS as non-present and empty pages are skipped 1107 * by the PTE scanner and NUMA hinting faults should be trapped based 1108 * on resident pages 1109 */ 1110 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1111 rss = get_mm_rss(p->mm); 1112 if (!rss) 1113 rss = nr_scan_pages; 1114 1115 rss = round_up(rss, nr_scan_pages); 1116 return rss / nr_scan_pages; 1117 } 1118 1119 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1120 #define MAX_SCAN_WINDOW 2560 1121 1122 static unsigned int task_scan_min(struct task_struct *p) 1123 { 1124 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1125 unsigned int scan, floor; 1126 unsigned int windows = 1; 1127 1128 if (scan_size < MAX_SCAN_WINDOW) 1129 windows = MAX_SCAN_WINDOW / scan_size; 1130 floor = 1000 / windows; 1131 1132 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1133 return max_t(unsigned int, floor, scan); 1134 } 1135 1136 static unsigned int task_scan_start(struct task_struct *p) 1137 { 1138 unsigned long smin = task_scan_min(p); 1139 unsigned long period = smin; 1140 struct numa_group *ng; 1141 1142 /* Scale the maximum scan period with the amount of shared memory. */ 1143 rcu_read_lock(); 1144 ng = rcu_dereference(p->numa_group); 1145 if (ng) { 1146 unsigned long shared = group_faults_shared(ng); 1147 unsigned long private = group_faults_priv(ng); 1148 1149 period *= refcount_read(&ng->refcount); 1150 period *= shared + 1; 1151 period /= private + shared + 1; 1152 } 1153 rcu_read_unlock(); 1154 1155 return max(smin, period); 1156 } 1157 1158 static unsigned int task_scan_max(struct task_struct *p) 1159 { 1160 unsigned long smin = task_scan_min(p); 1161 unsigned long smax; 1162 struct numa_group *ng; 1163 1164 /* Watch for min being lower than max due to floor calculations */ 1165 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1166 1167 /* Scale the maximum scan period with the amount of shared memory. */ 1168 ng = deref_curr_numa_group(p); 1169 if (ng) { 1170 unsigned long shared = group_faults_shared(ng); 1171 unsigned long private = group_faults_priv(ng); 1172 unsigned long period = smax; 1173 1174 period *= refcount_read(&ng->refcount); 1175 period *= shared + 1; 1176 period /= private + shared + 1; 1177 1178 smax = max(smax, period); 1179 } 1180 1181 return max(smin, smax); 1182 } 1183 1184 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1185 { 1186 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1187 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1188 } 1189 1190 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1191 { 1192 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1193 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1194 } 1195 1196 /* Shared or private faults. */ 1197 #define NR_NUMA_HINT_FAULT_TYPES 2 1198 1199 /* Memory and CPU locality */ 1200 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1201 1202 /* Averaged statistics, and temporary buffers. */ 1203 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1204 1205 pid_t task_numa_group_id(struct task_struct *p) 1206 { 1207 struct numa_group *ng; 1208 pid_t gid = 0; 1209 1210 rcu_read_lock(); 1211 ng = rcu_dereference(p->numa_group); 1212 if (ng) 1213 gid = ng->gid; 1214 rcu_read_unlock(); 1215 1216 return gid; 1217 } 1218 1219 /* 1220 * The averaged statistics, shared & private, memory & CPU, 1221 * occupy the first half of the array. The second half of the 1222 * array is for current counters, which are averaged into the 1223 * first set by task_numa_placement. 1224 */ 1225 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1226 { 1227 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1228 } 1229 1230 static inline unsigned long task_faults(struct task_struct *p, int nid) 1231 { 1232 if (!p->numa_faults) 1233 return 0; 1234 1235 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1236 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1237 } 1238 1239 static inline unsigned long group_faults(struct task_struct *p, int nid) 1240 { 1241 struct numa_group *ng = deref_task_numa_group(p); 1242 1243 if (!ng) 1244 return 0; 1245 1246 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1247 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1248 } 1249 1250 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1251 { 1252 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1253 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1254 } 1255 1256 static inline unsigned long group_faults_priv(struct numa_group *ng) 1257 { 1258 unsigned long faults = 0; 1259 int node; 1260 1261 for_each_online_node(node) { 1262 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1263 } 1264 1265 return faults; 1266 } 1267 1268 static inline unsigned long group_faults_shared(struct numa_group *ng) 1269 { 1270 unsigned long faults = 0; 1271 int node; 1272 1273 for_each_online_node(node) { 1274 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1275 } 1276 1277 return faults; 1278 } 1279 1280 /* 1281 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1282 * considered part of a numa group's pseudo-interleaving set. Migrations 1283 * between these nodes are slowed down, to allow things to settle down. 1284 */ 1285 #define ACTIVE_NODE_FRACTION 3 1286 1287 static bool numa_is_active_node(int nid, struct numa_group *ng) 1288 { 1289 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1290 } 1291 1292 /* Handle placement on systems where not all nodes are directly connected. */ 1293 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1294 int lim_dist, bool task) 1295 { 1296 unsigned long score = 0; 1297 int node, max_dist; 1298 1299 /* 1300 * All nodes are directly connected, and the same distance 1301 * from each other. No need for fancy placement algorithms. 1302 */ 1303 if (sched_numa_topology_type == NUMA_DIRECT) 1304 return 0; 1305 1306 /* sched_max_numa_distance may be changed in parallel. */ 1307 max_dist = READ_ONCE(sched_max_numa_distance); 1308 /* 1309 * This code is called for each node, introducing N^2 complexity, 1310 * which should be ok given the number of nodes rarely exceeds 8. 1311 */ 1312 for_each_online_node(node) { 1313 unsigned long faults; 1314 int dist = node_distance(nid, node); 1315 1316 /* 1317 * The furthest away nodes in the system are not interesting 1318 * for placement; nid was already counted. 1319 */ 1320 if (dist >= max_dist || node == nid) 1321 continue; 1322 1323 /* 1324 * On systems with a backplane NUMA topology, compare groups 1325 * of nodes, and move tasks towards the group with the most 1326 * memory accesses. When comparing two nodes at distance 1327 * "hoplimit", only nodes closer by than "hoplimit" are part 1328 * of each group. Skip other nodes. 1329 */ 1330 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1331 continue; 1332 1333 /* Add up the faults from nearby nodes. */ 1334 if (task) 1335 faults = task_faults(p, node); 1336 else 1337 faults = group_faults(p, node); 1338 1339 /* 1340 * On systems with a glueless mesh NUMA topology, there are 1341 * no fixed "groups of nodes". Instead, nodes that are not 1342 * directly connected bounce traffic through intermediate 1343 * nodes; a numa_group can occupy any set of nodes. 1344 * The further away a node is, the less the faults count. 1345 * This seems to result in good task placement. 1346 */ 1347 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1348 faults *= (max_dist - dist); 1349 faults /= (max_dist - LOCAL_DISTANCE); 1350 } 1351 1352 score += faults; 1353 } 1354 1355 return score; 1356 } 1357 1358 /* 1359 * These return the fraction of accesses done by a particular task, or 1360 * task group, on a particular numa node. The group weight is given a 1361 * larger multiplier, in order to group tasks together that are almost 1362 * evenly spread out between numa nodes. 1363 */ 1364 static inline unsigned long task_weight(struct task_struct *p, int nid, 1365 int dist) 1366 { 1367 unsigned long faults, total_faults; 1368 1369 if (!p->numa_faults) 1370 return 0; 1371 1372 total_faults = p->total_numa_faults; 1373 1374 if (!total_faults) 1375 return 0; 1376 1377 faults = task_faults(p, nid); 1378 faults += score_nearby_nodes(p, nid, dist, true); 1379 1380 return 1000 * faults / total_faults; 1381 } 1382 1383 static inline unsigned long group_weight(struct task_struct *p, int nid, 1384 int dist) 1385 { 1386 struct numa_group *ng = deref_task_numa_group(p); 1387 unsigned long faults, total_faults; 1388 1389 if (!ng) 1390 return 0; 1391 1392 total_faults = ng->total_faults; 1393 1394 if (!total_faults) 1395 return 0; 1396 1397 faults = group_faults(p, nid); 1398 faults += score_nearby_nodes(p, nid, dist, false); 1399 1400 return 1000 * faults / total_faults; 1401 } 1402 1403 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1404 int src_nid, int dst_cpu) 1405 { 1406 struct numa_group *ng = deref_curr_numa_group(p); 1407 int dst_nid = cpu_to_node(dst_cpu); 1408 int last_cpupid, this_cpupid; 1409 1410 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1411 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1412 1413 /* 1414 * Allow first faults or private faults to migrate immediately early in 1415 * the lifetime of a task. The magic number 4 is based on waiting for 1416 * two full passes of the "multi-stage node selection" test that is 1417 * executed below. 1418 */ 1419 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1420 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1421 return true; 1422 1423 /* 1424 * Multi-stage node selection is used in conjunction with a periodic 1425 * migration fault to build a temporal task<->page relation. By using 1426 * a two-stage filter we remove short/unlikely relations. 1427 * 1428 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1429 * a task's usage of a particular page (n_p) per total usage of this 1430 * page (n_t) (in a given time-span) to a probability. 1431 * 1432 * Our periodic faults will sample this probability and getting the 1433 * same result twice in a row, given these samples are fully 1434 * independent, is then given by P(n)^2, provided our sample period 1435 * is sufficiently short compared to the usage pattern. 1436 * 1437 * This quadric squishes small probabilities, making it less likely we 1438 * act on an unlikely task<->page relation. 1439 */ 1440 if (!cpupid_pid_unset(last_cpupid) && 1441 cpupid_to_nid(last_cpupid) != dst_nid) 1442 return false; 1443 1444 /* Always allow migrate on private faults */ 1445 if (cpupid_match_pid(p, last_cpupid)) 1446 return true; 1447 1448 /* A shared fault, but p->numa_group has not been set up yet. */ 1449 if (!ng) 1450 return true; 1451 1452 /* 1453 * Destination node is much more heavily used than the source 1454 * node? Allow migration. 1455 */ 1456 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1457 ACTIVE_NODE_FRACTION) 1458 return true; 1459 1460 /* 1461 * Distribute memory according to CPU & memory use on each node, 1462 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1463 * 1464 * faults_cpu(dst) 3 faults_cpu(src) 1465 * --------------- * - > --------------- 1466 * faults_mem(dst) 4 faults_mem(src) 1467 */ 1468 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1469 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1470 } 1471 1472 /* 1473 * 'numa_type' describes the node at the moment of load balancing. 1474 */ 1475 enum numa_type { 1476 /* The node has spare capacity that can be used to run more tasks. */ 1477 node_has_spare = 0, 1478 /* 1479 * The node is fully used and the tasks don't compete for more CPU 1480 * cycles. Nevertheless, some tasks might wait before running. 1481 */ 1482 node_fully_busy, 1483 /* 1484 * The node is overloaded and can't provide expected CPU cycles to all 1485 * tasks. 1486 */ 1487 node_overloaded 1488 }; 1489 1490 /* Cached statistics for all CPUs within a node */ 1491 struct numa_stats { 1492 unsigned long load; 1493 unsigned long runnable; 1494 unsigned long util; 1495 /* Total compute capacity of CPUs on a node */ 1496 unsigned long compute_capacity; 1497 unsigned int nr_running; 1498 unsigned int weight; 1499 enum numa_type node_type; 1500 int idle_cpu; 1501 }; 1502 1503 static inline bool is_core_idle(int cpu) 1504 { 1505 #ifdef CONFIG_SCHED_SMT 1506 int sibling; 1507 1508 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1509 if (cpu == sibling) 1510 continue; 1511 1512 if (!idle_cpu(sibling)) 1513 return false; 1514 } 1515 #endif 1516 1517 return true; 1518 } 1519 1520 struct task_numa_env { 1521 struct task_struct *p; 1522 1523 int src_cpu, src_nid; 1524 int dst_cpu, dst_nid; 1525 int imb_numa_nr; 1526 1527 struct numa_stats src_stats, dst_stats; 1528 1529 int imbalance_pct; 1530 int dist; 1531 1532 struct task_struct *best_task; 1533 long best_imp; 1534 int best_cpu; 1535 }; 1536 1537 static unsigned long cpu_load(struct rq *rq); 1538 static unsigned long cpu_runnable(struct rq *rq); 1539 static inline long adjust_numa_imbalance(int imbalance, 1540 int dst_running, int imb_numa_nr); 1541 1542 static inline enum 1543 numa_type numa_classify(unsigned int imbalance_pct, 1544 struct numa_stats *ns) 1545 { 1546 if ((ns->nr_running > ns->weight) && 1547 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1548 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1549 return node_overloaded; 1550 1551 if ((ns->nr_running < ns->weight) || 1552 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1553 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1554 return node_has_spare; 1555 1556 return node_fully_busy; 1557 } 1558 1559 #ifdef CONFIG_SCHED_SMT 1560 /* Forward declarations of select_idle_sibling helpers */ 1561 static inline bool test_idle_cores(int cpu, bool def); 1562 static inline int numa_idle_core(int idle_core, int cpu) 1563 { 1564 if (!static_branch_likely(&sched_smt_present) || 1565 idle_core >= 0 || !test_idle_cores(cpu, false)) 1566 return idle_core; 1567 1568 /* 1569 * Prefer cores instead of packing HT siblings 1570 * and triggering future load balancing. 1571 */ 1572 if (is_core_idle(cpu)) 1573 idle_core = cpu; 1574 1575 return idle_core; 1576 } 1577 #else 1578 static inline int numa_idle_core(int idle_core, int cpu) 1579 { 1580 return idle_core; 1581 } 1582 #endif 1583 1584 /* 1585 * Gather all necessary information to make NUMA balancing placement 1586 * decisions that are compatible with standard load balancer. This 1587 * borrows code and logic from update_sg_lb_stats but sharing a 1588 * common implementation is impractical. 1589 */ 1590 static void update_numa_stats(struct task_numa_env *env, 1591 struct numa_stats *ns, int nid, 1592 bool find_idle) 1593 { 1594 int cpu, idle_core = -1; 1595 1596 memset(ns, 0, sizeof(*ns)); 1597 ns->idle_cpu = -1; 1598 1599 rcu_read_lock(); 1600 for_each_cpu(cpu, cpumask_of_node(nid)) { 1601 struct rq *rq = cpu_rq(cpu); 1602 1603 ns->load += cpu_load(rq); 1604 ns->runnable += cpu_runnable(rq); 1605 ns->util += cpu_util_cfs(cpu); 1606 ns->nr_running += rq->cfs.h_nr_running; 1607 ns->compute_capacity += capacity_of(cpu); 1608 1609 if (find_idle && !rq->nr_running && idle_cpu(cpu)) { 1610 if (READ_ONCE(rq->numa_migrate_on) || 1611 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1612 continue; 1613 1614 if (ns->idle_cpu == -1) 1615 ns->idle_cpu = cpu; 1616 1617 idle_core = numa_idle_core(idle_core, cpu); 1618 } 1619 } 1620 rcu_read_unlock(); 1621 1622 ns->weight = cpumask_weight(cpumask_of_node(nid)); 1623 1624 ns->node_type = numa_classify(env->imbalance_pct, ns); 1625 1626 if (idle_core >= 0) 1627 ns->idle_cpu = idle_core; 1628 } 1629 1630 static void task_numa_assign(struct task_numa_env *env, 1631 struct task_struct *p, long imp) 1632 { 1633 struct rq *rq = cpu_rq(env->dst_cpu); 1634 1635 /* Check if run-queue part of active NUMA balance. */ 1636 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 1637 int cpu; 1638 int start = env->dst_cpu; 1639 1640 /* Find alternative idle CPU. */ 1641 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) { 1642 if (cpu == env->best_cpu || !idle_cpu(cpu) || 1643 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 1644 continue; 1645 } 1646 1647 env->dst_cpu = cpu; 1648 rq = cpu_rq(env->dst_cpu); 1649 if (!xchg(&rq->numa_migrate_on, 1)) 1650 goto assign; 1651 } 1652 1653 /* Failed to find an alternative idle CPU */ 1654 return; 1655 } 1656 1657 assign: 1658 /* 1659 * Clear previous best_cpu/rq numa-migrate flag, since task now 1660 * found a better CPU to move/swap. 1661 */ 1662 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 1663 rq = cpu_rq(env->best_cpu); 1664 WRITE_ONCE(rq->numa_migrate_on, 0); 1665 } 1666 1667 if (env->best_task) 1668 put_task_struct(env->best_task); 1669 if (p) 1670 get_task_struct(p); 1671 1672 env->best_task = p; 1673 env->best_imp = imp; 1674 env->best_cpu = env->dst_cpu; 1675 } 1676 1677 static bool load_too_imbalanced(long src_load, long dst_load, 1678 struct task_numa_env *env) 1679 { 1680 long imb, old_imb; 1681 long orig_src_load, orig_dst_load; 1682 long src_capacity, dst_capacity; 1683 1684 /* 1685 * The load is corrected for the CPU capacity available on each node. 1686 * 1687 * src_load dst_load 1688 * ------------ vs --------- 1689 * src_capacity dst_capacity 1690 */ 1691 src_capacity = env->src_stats.compute_capacity; 1692 dst_capacity = env->dst_stats.compute_capacity; 1693 1694 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 1695 1696 orig_src_load = env->src_stats.load; 1697 orig_dst_load = env->dst_stats.load; 1698 1699 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 1700 1701 /* Would this change make things worse? */ 1702 return (imb > old_imb); 1703 } 1704 1705 /* 1706 * Maximum NUMA importance can be 1998 (2*999); 1707 * SMALLIMP @ 30 would be close to 1998/64. 1708 * Used to deter task migration. 1709 */ 1710 #define SMALLIMP 30 1711 1712 /* 1713 * This checks if the overall compute and NUMA accesses of the system would 1714 * be improved if the source tasks was migrated to the target dst_cpu taking 1715 * into account that it might be best if task running on the dst_cpu should 1716 * be exchanged with the source task 1717 */ 1718 static bool task_numa_compare(struct task_numa_env *env, 1719 long taskimp, long groupimp, bool maymove) 1720 { 1721 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 1722 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1723 long imp = p_ng ? groupimp : taskimp; 1724 struct task_struct *cur; 1725 long src_load, dst_load; 1726 int dist = env->dist; 1727 long moveimp = imp; 1728 long load; 1729 bool stopsearch = false; 1730 1731 if (READ_ONCE(dst_rq->numa_migrate_on)) 1732 return false; 1733 1734 rcu_read_lock(); 1735 cur = rcu_dereference(dst_rq->curr); 1736 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1737 cur = NULL; 1738 1739 /* 1740 * Because we have preemption enabled we can get migrated around and 1741 * end try selecting ourselves (current == env->p) as a swap candidate. 1742 */ 1743 if (cur == env->p) { 1744 stopsearch = true; 1745 goto unlock; 1746 } 1747 1748 if (!cur) { 1749 if (maymove && moveimp >= env->best_imp) 1750 goto assign; 1751 else 1752 goto unlock; 1753 } 1754 1755 /* Skip this swap candidate if cannot move to the source cpu. */ 1756 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 1757 goto unlock; 1758 1759 /* 1760 * Skip this swap candidate if it is not moving to its preferred 1761 * node and the best task is. 1762 */ 1763 if (env->best_task && 1764 env->best_task->numa_preferred_nid == env->src_nid && 1765 cur->numa_preferred_nid != env->src_nid) { 1766 goto unlock; 1767 } 1768 1769 /* 1770 * "imp" is the fault differential for the source task between the 1771 * source and destination node. Calculate the total differential for 1772 * the source task and potential destination task. The more negative 1773 * the value is, the more remote accesses that would be expected to 1774 * be incurred if the tasks were swapped. 1775 * 1776 * If dst and source tasks are in the same NUMA group, or not 1777 * in any group then look only at task weights. 1778 */ 1779 cur_ng = rcu_dereference(cur->numa_group); 1780 if (cur_ng == p_ng) { 1781 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1782 task_weight(cur, env->dst_nid, dist); 1783 /* 1784 * Add some hysteresis to prevent swapping the 1785 * tasks within a group over tiny differences. 1786 */ 1787 if (cur_ng) 1788 imp -= imp / 16; 1789 } else { 1790 /* 1791 * Compare the group weights. If a task is all by itself 1792 * (not part of a group), use the task weight instead. 1793 */ 1794 if (cur_ng && p_ng) 1795 imp += group_weight(cur, env->src_nid, dist) - 1796 group_weight(cur, env->dst_nid, dist); 1797 else 1798 imp += task_weight(cur, env->src_nid, dist) - 1799 task_weight(cur, env->dst_nid, dist); 1800 } 1801 1802 /* Discourage picking a task already on its preferred node */ 1803 if (cur->numa_preferred_nid == env->dst_nid) 1804 imp -= imp / 16; 1805 1806 /* 1807 * Encourage picking a task that moves to its preferred node. 1808 * This potentially makes imp larger than it's maximum of 1809 * 1998 (see SMALLIMP and task_weight for why) but in this 1810 * case, it does not matter. 1811 */ 1812 if (cur->numa_preferred_nid == env->src_nid) 1813 imp += imp / 8; 1814 1815 if (maymove && moveimp > imp && moveimp > env->best_imp) { 1816 imp = moveimp; 1817 cur = NULL; 1818 goto assign; 1819 } 1820 1821 /* 1822 * Prefer swapping with a task moving to its preferred node over a 1823 * task that is not. 1824 */ 1825 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 1826 env->best_task->numa_preferred_nid != env->src_nid) { 1827 goto assign; 1828 } 1829 1830 /* 1831 * If the NUMA importance is less than SMALLIMP, 1832 * task migration might only result in ping pong 1833 * of tasks and also hurt performance due to cache 1834 * misses. 1835 */ 1836 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 1837 goto unlock; 1838 1839 /* 1840 * In the overloaded case, try and keep the load balanced. 1841 */ 1842 load = task_h_load(env->p) - task_h_load(cur); 1843 if (!load) 1844 goto assign; 1845 1846 dst_load = env->dst_stats.load + load; 1847 src_load = env->src_stats.load - load; 1848 1849 if (load_too_imbalanced(src_load, dst_load, env)) 1850 goto unlock; 1851 1852 assign: 1853 /* Evaluate an idle CPU for a task numa move. */ 1854 if (!cur) { 1855 int cpu = env->dst_stats.idle_cpu; 1856 1857 /* Nothing cached so current CPU went idle since the search. */ 1858 if (cpu < 0) 1859 cpu = env->dst_cpu; 1860 1861 /* 1862 * If the CPU is no longer truly idle and the previous best CPU 1863 * is, keep using it. 1864 */ 1865 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 1866 idle_cpu(env->best_cpu)) { 1867 cpu = env->best_cpu; 1868 } 1869 1870 env->dst_cpu = cpu; 1871 } 1872 1873 task_numa_assign(env, cur, imp); 1874 1875 /* 1876 * If a move to idle is allowed because there is capacity or load 1877 * balance improves then stop the search. While a better swap 1878 * candidate may exist, a search is not free. 1879 */ 1880 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 1881 stopsearch = true; 1882 1883 /* 1884 * If a swap candidate must be identified and the current best task 1885 * moves its preferred node then stop the search. 1886 */ 1887 if (!maymove && env->best_task && 1888 env->best_task->numa_preferred_nid == env->src_nid) { 1889 stopsearch = true; 1890 } 1891 unlock: 1892 rcu_read_unlock(); 1893 1894 return stopsearch; 1895 } 1896 1897 static void task_numa_find_cpu(struct task_numa_env *env, 1898 long taskimp, long groupimp) 1899 { 1900 bool maymove = false; 1901 int cpu; 1902 1903 /* 1904 * If dst node has spare capacity, then check if there is an 1905 * imbalance that would be overruled by the load balancer. 1906 */ 1907 if (env->dst_stats.node_type == node_has_spare) { 1908 unsigned int imbalance; 1909 int src_running, dst_running; 1910 1911 /* 1912 * Would movement cause an imbalance? Note that if src has 1913 * more running tasks that the imbalance is ignored as the 1914 * move improves the imbalance from the perspective of the 1915 * CPU load balancer. 1916 * */ 1917 src_running = env->src_stats.nr_running - 1; 1918 dst_running = env->dst_stats.nr_running + 1; 1919 imbalance = max(0, dst_running - src_running); 1920 imbalance = adjust_numa_imbalance(imbalance, dst_running, 1921 env->imb_numa_nr); 1922 1923 /* Use idle CPU if there is no imbalance */ 1924 if (!imbalance) { 1925 maymove = true; 1926 if (env->dst_stats.idle_cpu >= 0) { 1927 env->dst_cpu = env->dst_stats.idle_cpu; 1928 task_numa_assign(env, NULL, 0); 1929 return; 1930 } 1931 } 1932 } else { 1933 long src_load, dst_load, load; 1934 /* 1935 * If the improvement from just moving env->p direction is better 1936 * than swapping tasks around, check if a move is possible. 1937 */ 1938 load = task_h_load(env->p); 1939 dst_load = env->dst_stats.load + load; 1940 src_load = env->src_stats.load - load; 1941 maymove = !load_too_imbalanced(src_load, dst_load, env); 1942 } 1943 1944 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1945 /* Skip this CPU if the source task cannot migrate */ 1946 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 1947 continue; 1948 1949 env->dst_cpu = cpu; 1950 if (task_numa_compare(env, taskimp, groupimp, maymove)) 1951 break; 1952 } 1953 } 1954 1955 static int task_numa_migrate(struct task_struct *p) 1956 { 1957 struct task_numa_env env = { 1958 .p = p, 1959 1960 .src_cpu = task_cpu(p), 1961 .src_nid = task_node(p), 1962 1963 .imbalance_pct = 112, 1964 1965 .best_task = NULL, 1966 .best_imp = 0, 1967 .best_cpu = -1, 1968 }; 1969 unsigned long taskweight, groupweight; 1970 struct sched_domain *sd; 1971 long taskimp, groupimp; 1972 struct numa_group *ng; 1973 struct rq *best_rq; 1974 int nid, ret, dist; 1975 1976 /* 1977 * Pick the lowest SD_NUMA domain, as that would have the smallest 1978 * imbalance and would be the first to start moving tasks about. 1979 * 1980 * And we want to avoid any moving of tasks about, as that would create 1981 * random movement of tasks -- counter the numa conditions we're trying 1982 * to satisfy here. 1983 */ 1984 rcu_read_lock(); 1985 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1986 if (sd) { 1987 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1988 env.imb_numa_nr = sd->imb_numa_nr; 1989 } 1990 rcu_read_unlock(); 1991 1992 /* 1993 * Cpusets can break the scheduler domain tree into smaller 1994 * balance domains, some of which do not cross NUMA boundaries. 1995 * Tasks that are "trapped" in such domains cannot be migrated 1996 * elsewhere, so there is no point in (re)trying. 1997 */ 1998 if (unlikely(!sd)) { 1999 sched_setnuma(p, task_node(p)); 2000 return -EINVAL; 2001 } 2002 2003 env.dst_nid = p->numa_preferred_nid; 2004 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2005 taskweight = task_weight(p, env.src_nid, dist); 2006 groupweight = group_weight(p, env.src_nid, dist); 2007 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2008 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2009 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2010 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2011 2012 /* Try to find a spot on the preferred nid. */ 2013 task_numa_find_cpu(&env, taskimp, groupimp); 2014 2015 /* 2016 * Look at other nodes in these cases: 2017 * - there is no space available on the preferred_nid 2018 * - the task is part of a numa_group that is interleaved across 2019 * multiple NUMA nodes; in order to better consolidate the group, 2020 * we need to check other locations. 2021 */ 2022 ng = deref_curr_numa_group(p); 2023 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2024 for_each_node_state(nid, N_CPU) { 2025 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2026 continue; 2027 2028 dist = node_distance(env.src_nid, env.dst_nid); 2029 if (sched_numa_topology_type == NUMA_BACKPLANE && 2030 dist != env.dist) { 2031 taskweight = task_weight(p, env.src_nid, dist); 2032 groupweight = group_weight(p, env.src_nid, dist); 2033 } 2034 2035 /* Only consider nodes where both task and groups benefit */ 2036 taskimp = task_weight(p, nid, dist) - taskweight; 2037 groupimp = group_weight(p, nid, dist) - groupweight; 2038 if (taskimp < 0 && groupimp < 0) 2039 continue; 2040 2041 env.dist = dist; 2042 env.dst_nid = nid; 2043 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2044 task_numa_find_cpu(&env, taskimp, groupimp); 2045 } 2046 } 2047 2048 /* 2049 * If the task is part of a workload that spans multiple NUMA nodes, 2050 * and is migrating into one of the workload's active nodes, remember 2051 * this node as the task's preferred numa node, so the workload can 2052 * settle down. 2053 * A task that migrated to a second choice node will be better off 2054 * trying for a better one later. Do not set the preferred node here. 2055 */ 2056 if (ng) { 2057 if (env.best_cpu == -1) 2058 nid = env.src_nid; 2059 else 2060 nid = cpu_to_node(env.best_cpu); 2061 2062 if (nid != p->numa_preferred_nid) 2063 sched_setnuma(p, nid); 2064 } 2065 2066 /* No better CPU than the current one was found. */ 2067 if (env.best_cpu == -1) { 2068 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2069 return -EAGAIN; 2070 } 2071 2072 best_rq = cpu_rq(env.best_cpu); 2073 if (env.best_task == NULL) { 2074 ret = migrate_task_to(p, env.best_cpu); 2075 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2076 if (ret != 0) 2077 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2078 return ret; 2079 } 2080 2081 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2082 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2083 2084 if (ret != 0) 2085 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2086 put_task_struct(env.best_task); 2087 return ret; 2088 } 2089 2090 /* Attempt to migrate a task to a CPU on the preferred node. */ 2091 static void numa_migrate_preferred(struct task_struct *p) 2092 { 2093 unsigned long interval = HZ; 2094 2095 /* This task has no NUMA fault statistics yet */ 2096 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2097 return; 2098 2099 /* Periodically retry migrating the task to the preferred node */ 2100 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2101 p->numa_migrate_retry = jiffies + interval; 2102 2103 /* Success if task is already running on preferred CPU */ 2104 if (task_node(p) == p->numa_preferred_nid) 2105 return; 2106 2107 /* Otherwise, try migrate to a CPU on the preferred node */ 2108 task_numa_migrate(p); 2109 } 2110 2111 /* 2112 * Find out how many nodes the workload is actively running on. Do this by 2113 * tracking the nodes from which NUMA hinting faults are triggered. This can 2114 * be different from the set of nodes where the workload's memory is currently 2115 * located. 2116 */ 2117 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2118 { 2119 unsigned long faults, max_faults = 0; 2120 int nid, active_nodes = 0; 2121 2122 for_each_node_state(nid, N_CPU) { 2123 faults = group_faults_cpu(numa_group, nid); 2124 if (faults > max_faults) 2125 max_faults = faults; 2126 } 2127 2128 for_each_node_state(nid, N_CPU) { 2129 faults = group_faults_cpu(numa_group, nid); 2130 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2131 active_nodes++; 2132 } 2133 2134 numa_group->max_faults_cpu = max_faults; 2135 numa_group->active_nodes = active_nodes; 2136 } 2137 2138 /* 2139 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2140 * increments. The more local the fault statistics are, the higher the scan 2141 * period will be for the next scan window. If local/(local+remote) ratio is 2142 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2143 * the scan period will decrease. Aim for 70% local accesses. 2144 */ 2145 #define NUMA_PERIOD_SLOTS 10 2146 #define NUMA_PERIOD_THRESHOLD 7 2147 2148 /* 2149 * Increase the scan period (slow down scanning) if the majority of 2150 * our memory is already on our local node, or if the majority of 2151 * the page accesses are shared with other processes. 2152 * Otherwise, decrease the scan period. 2153 */ 2154 static void update_task_scan_period(struct task_struct *p, 2155 unsigned long shared, unsigned long private) 2156 { 2157 unsigned int period_slot; 2158 int lr_ratio, ps_ratio; 2159 int diff; 2160 2161 unsigned long remote = p->numa_faults_locality[0]; 2162 unsigned long local = p->numa_faults_locality[1]; 2163 2164 /* 2165 * If there were no record hinting faults then either the task is 2166 * completely idle or all activity is in areas that are not of interest 2167 * to automatic numa balancing. Related to that, if there were failed 2168 * migration then it implies we are migrating too quickly or the local 2169 * node is overloaded. In either case, scan slower 2170 */ 2171 if (local + shared == 0 || p->numa_faults_locality[2]) { 2172 p->numa_scan_period = min(p->numa_scan_period_max, 2173 p->numa_scan_period << 1); 2174 2175 p->mm->numa_next_scan = jiffies + 2176 msecs_to_jiffies(p->numa_scan_period); 2177 2178 return; 2179 } 2180 2181 /* 2182 * Prepare to scale scan period relative to the current period. 2183 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2184 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2185 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2186 */ 2187 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2188 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2189 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2190 2191 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2192 /* 2193 * Most memory accesses are local. There is no need to 2194 * do fast NUMA scanning, since memory is already local. 2195 */ 2196 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2197 if (!slot) 2198 slot = 1; 2199 diff = slot * period_slot; 2200 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2201 /* 2202 * Most memory accesses are shared with other tasks. 2203 * There is no point in continuing fast NUMA scanning, 2204 * since other tasks may just move the memory elsewhere. 2205 */ 2206 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2207 if (!slot) 2208 slot = 1; 2209 diff = slot * period_slot; 2210 } else { 2211 /* 2212 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2213 * yet they are not on the local NUMA node. Speed up 2214 * NUMA scanning to get the memory moved over. 2215 */ 2216 int ratio = max(lr_ratio, ps_ratio); 2217 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2218 } 2219 2220 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2221 task_scan_min(p), task_scan_max(p)); 2222 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2223 } 2224 2225 /* 2226 * Get the fraction of time the task has been running since the last 2227 * NUMA placement cycle. The scheduler keeps similar statistics, but 2228 * decays those on a 32ms period, which is orders of magnitude off 2229 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2230 * stats only if the task is so new there are no NUMA statistics yet. 2231 */ 2232 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2233 { 2234 u64 runtime, delta, now; 2235 /* Use the start of this time slice to avoid calculations. */ 2236 now = p->se.exec_start; 2237 runtime = p->se.sum_exec_runtime; 2238 2239 if (p->last_task_numa_placement) { 2240 delta = runtime - p->last_sum_exec_runtime; 2241 *period = now - p->last_task_numa_placement; 2242 2243 /* Avoid time going backwards, prevent potential divide error: */ 2244 if (unlikely((s64)*period < 0)) 2245 *period = 0; 2246 } else { 2247 delta = p->se.avg.load_sum; 2248 *period = LOAD_AVG_MAX; 2249 } 2250 2251 p->last_sum_exec_runtime = runtime; 2252 p->last_task_numa_placement = now; 2253 2254 return delta; 2255 } 2256 2257 /* 2258 * Determine the preferred nid for a task in a numa_group. This needs to 2259 * be done in a way that produces consistent results with group_weight, 2260 * otherwise workloads might not converge. 2261 */ 2262 static int preferred_group_nid(struct task_struct *p, int nid) 2263 { 2264 nodemask_t nodes; 2265 int dist; 2266 2267 /* Direct connections between all NUMA nodes. */ 2268 if (sched_numa_topology_type == NUMA_DIRECT) 2269 return nid; 2270 2271 /* 2272 * On a system with glueless mesh NUMA topology, group_weight 2273 * scores nodes according to the number of NUMA hinting faults on 2274 * both the node itself, and on nearby nodes. 2275 */ 2276 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2277 unsigned long score, max_score = 0; 2278 int node, max_node = nid; 2279 2280 dist = sched_max_numa_distance; 2281 2282 for_each_node_state(node, N_CPU) { 2283 score = group_weight(p, node, dist); 2284 if (score > max_score) { 2285 max_score = score; 2286 max_node = node; 2287 } 2288 } 2289 return max_node; 2290 } 2291 2292 /* 2293 * Finding the preferred nid in a system with NUMA backplane 2294 * interconnect topology is more involved. The goal is to locate 2295 * tasks from numa_groups near each other in the system, and 2296 * untangle workloads from different sides of the system. This requires 2297 * searching down the hierarchy of node groups, recursively searching 2298 * inside the highest scoring group of nodes. The nodemask tricks 2299 * keep the complexity of the search down. 2300 */ 2301 nodes = node_states[N_CPU]; 2302 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2303 unsigned long max_faults = 0; 2304 nodemask_t max_group = NODE_MASK_NONE; 2305 int a, b; 2306 2307 /* Are there nodes at this distance from each other? */ 2308 if (!find_numa_distance(dist)) 2309 continue; 2310 2311 for_each_node_mask(a, nodes) { 2312 unsigned long faults = 0; 2313 nodemask_t this_group; 2314 nodes_clear(this_group); 2315 2316 /* Sum group's NUMA faults; includes a==b case. */ 2317 for_each_node_mask(b, nodes) { 2318 if (node_distance(a, b) < dist) { 2319 faults += group_faults(p, b); 2320 node_set(b, this_group); 2321 node_clear(b, nodes); 2322 } 2323 } 2324 2325 /* Remember the top group. */ 2326 if (faults > max_faults) { 2327 max_faults = faults; 2328 max_group = this_group; 2329 /* 2330 * subtle: at the smallest distance there is 2331 * just one node left in each "group", the 2332 * winner is the preferred nid. 2333 */ 2334 nid = a; 2335 } 2336 } 2337 /* Next round, evaluate the nodes within max_group. */ 2338 if (!max_faults) 2339 break; 2340 nodes = max_group; 2341 } 2342 return nid; 2343 } 2344 2345 static void task_numa_placement(struct task_struct *p) 2346 { 2347 int seq, nid, max_nid = NUMA_NO_NODE; 2348 unsigned long max_faults = 0; 2349 unsigned long fault_types[2] = { 0, 0 }; 2350 unsigned long total_faults; 2351 u64 runtime, period; 2352 spinlock_t *group_lock = NULL; 2353 struct numa_group *ng; 2354 2355 /* 2356 * The p->mm->numa_scan_seq field gets updated without 2357 * exclusive access. Use READ_ONCE() here to ensure 2358 * that the field is read in a single access: 2359 */ 2360 seq = READ_ONCE(p->mm->numa_scan_seq); 2361 if (p->numa_scan_seq == seq) 2362 return; 2363 p->numa_scan_seq = seq; 2364 p->numa_scan_period_max = task_scan_max(p); 2365 2366 total_faults = p->numa_faults_locality[0] + 2367 p->numa_faults_locality[1]; 2368 runtime = numa_get_avg_runtime(p, &period); 2369 2370 /* If the task is part of a group prevent parallel updates to group stats */ 2371 ng = deref_curr_numa_group(p); 2372 if (ng) { 2373 group_lock = &ng->lock; 2374 spin_lock_irq(group_lock); 2375 } 2376 2377 /* Find the node with the highest number of faults */ 2378 for_each_online_node(nid) { 2379 /* Keep track of the offsets in numa_faults array */ 2380 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2381 unsigned long faults = 0, group_faults = 0; 2382 int priv; 2383 2384 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2385 long diff, f_diff, f_weight; 2386 2387 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2388 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2389 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2390 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2391 2392 /* Decay existing window, copy faults since last scan */ 2393 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2394 fault_types[priv] += p->numa_faults[membuf_idx]; 2395 p->numa_faults[membuf_idx] = 0; 2396 2397 /* 2398 * Normalize the faults_from, so all tasks in a group 2399 * count according to CPU use, instead of by the raw 2400 * number of faults. Tasks with little runtime have 2401 * little over-all impact on throughput, and thus their 2402 * faults are less important. 2403 */ 2404 f_weight = div64_u64(runtime << 16, period + 1); 2405 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2406 (total_faults + 1); 2407 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2408 p->numa_faults[cpubuf_idx] = 0; 2409 2410 p->numa_faults[mem_idx] += diff; 2411 p->numa_faults[cpu_idx] += f_diff; 2412 faults += p->numa_faults[mem_idx]; 2413 p->total_numa_faults += diff; 2414 if (ng) { 2415 /* 2416 * safe because we can only change our own group 2417 * 2418 * mem_idx represents the offset for a given 2419 * nid and priv in a specific region because it 2420 * is at the beginning of the numa_faults array. 2421 */ 2422 ng->faults[mem_idx] += diff; 2423 ng->faults[cpu_idx] += f_diff; 2424 ng->total_faults += diff; 2425 group_faults += ng->faults[mem_idx]; 2426 } 2427 } 2428 2429 if (!ng) { 2430 if (faults > max_faults) { 2431 max_faults = faults; 2432 max_nid = nid; 2433 } 2434 } else if (group_faults > max_faults) { 2435 max_faults = group_faults; 2436 max_nid = nid; 2437 } 2438 } 2439 2440 /* Cannot migrate task to CPU-less node */ 2441 if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) { 2442 int near_nid = max_nid; 2443 int distance, near_distance = INT_MAX; 2444 2445 for_each_node_state(nid, N_CPU) { 2446 distance = node_distance(max_nid, nid); 2447 if (distance < near_distance) { 2448 near_nid = nid; 2449 near_distance = distance; 2450 } 2451 } 2452 max_nid = near_nid; 2453 } 2454 2455 if (ng) { 2456 numa_group_count_active_nodes(ng); 2457 spin_unlock_irq(group_lock); 2458 max_nid = preferred_group_nid(p, max_nid); 2459 } 2460 2461 if (max_faults) { 2462 /* Set the new preferred node */ 2463 if (max_nid != p->numa_preferred_nid) 2464 sched_setnuma(p, max_nid); 2465 } 2466 2467 update_task_scan_period(p, fault_types[0], fault_types[1]); 2468 } 2469 2470 static inline int get_numa_group(struct numa_group *grp) 2471 { 2472 return refcount_inc_not_zero(&grp->refcount); 2473 } 2474 2475 static inline void put_numa_group(struct numa_group *grp) 2476 { 2477 if (refcount_dec_and_test(&grp->refcount)) 2478 kfree_rcu(grp, rcu); 2479 } 2480 2481 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2482 int *priv) 2483 { 2484 struct numa_group *grp, *my_grp; 2485 struct task_struct *tsk; 2486 bool join = false; 2487 int cpu = cpupid_to_cpu(cpupid); 2488 int i; 2489 2490 if (unlikely(!deref_curr_numa_group(p))) { 2491 unsigned int size = sizeof(struct numa_group) + 2492 NR_NUMA_HINT_FAULT_STATS * 2493 nr_node_ids * sizeof(unsigned long); 2494 2495 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2496 if (!grp) 2497 return; 2498 2499 refcount_set(&grp->refcount, 1); 2500 grp->active_nodes = 1; 2501 grp->max_faults_cpu = 0; 2502 spin_lock_init(&grp->lock); 2503 grp->gid = p->pid; 2504 2505 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2506 grp->faults[i] = p->numa_faults[i]; 2507 2508 grp->total_faults = p->total_numa_faults; 2509 2510 grp->nr_tasks++; 2511 rcu_assign_pointer(p->numa_group, grp); 2512 } 2513 2514 rcu_read_lock(); 2515 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2516 2517 if (!cpupid_match_pid(tsk, cpupid)) 2518 goto no_join; 2519 2520 grp = rcu_dereference(tsk->numa_group); 2521 if (!grp) 2522 goto no_join; 2523 2524 my_grp = deref_curr_numa_group(p); 2525 if (grp == my_grp) 2526 goto no_join; 2527 2528 /* 2529 * Only join the other group if its bigger; if we're the bigger group, 2530 * the other task will join us. 2531 */ 2532 if (my_grp->nr_tasks > grp->nr_tasks) 2533 goto no_join; 2534 2535 /* 2536 * Tie-break on the grp address. 2537 */ 2538 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2539 goto no_join; 2540 2541 /* Always join threads in the same process. */ 2542 if (tsk->mm == current->mm) 2543 join = true; 2544 2545 /* Simple filter to avoid false positives due to PID collisions */ 2546 if (flags & TNF_SHARED) 2547 join = true; 2548 2549 /* Update priv based on whether false sharing was detected */ 2550 *priv = !join; 2551 2552 if (join && !get_numa_group(grp)) 2553 goto no_join; 2554 2555 rcu_read_unlock(); 2556 2557 if (!join) 2558 return; 2559 2560 BUG_ON(irqs_disabled()); 2561 double_lock_irq(&my_grp->lock, &grp->lock); 2562 2563 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2564 my_grp->faults[i] -= p->numa_faults[i]; 2565 grp->faults[i] += p->numa_faults[i]; 2566 } 2567 my_grp->total_faults -= p->total_numa_faults; 2568 grp->total_faults += p->total_numa_faults; 2569 2570 my_grp->nr_tasks--; 2571 grp->nr_tasks++; 2572 2573 spin_unlock(&my_grp->lock); 2574 spin_unlock_irq(&grp->lock); 2575 2576 rcu_assign_pointer(p->numa_group, grp); 2577 2578 put_numa_group(my_grp); 2579 return; 2580 2581 no_join: 2582 rcu_read_unlock(); 2583 return; 2584 } 2585 2586 /* 2587 * Get rid of NUMA statistics associated with a task (either current or dead). 2588 * If @final is set, the task is dead and has reached refcount zero, so we can 2589 * safely free all relevant data structures. Otherwise, there might be 2590 * concurrent reads from places like load balancing and procfs, and we should 2591 * reset the data back to default state without freeing ->numa_faults. 2592 */ 2593 void task_numa_free(struct task_struct *p, bool final) 2594 { 2595 /* safe: p either is current or is being freed by current */ 2596 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 2597 unsigned long *numa_faults = p->numa_faults; 2598 unsigned long flags; 2599 int i; 2600 2601 if (!numa_faults) 2602 return; 2603 2604 if (grp) { 2605 spin_lock_irqsave(&grp->lock, flags); 2606 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2607 grp->faults[i] -= p->numa_faults[i]; 2608 grp->total_faults -= p->total_numa_faults; 2609 2610 grp->nr_tasks--; 2611 spin_unlock_irqrestore(&grp->lock, flags); 2612 RCU_INIT_POINTER(p->numa_group, NULL); 2613 put_numa_group(grp); 2614 } 2615 2616 if (final) { 2617 p->numa_faults = NULL; 2618 kfree(numa_faults); 2619 } else { 2620 p->total_numa_faults = 0; 2621 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2622 numa_faults[i] = 0; 2623 } 2624 } 2625 2626 /* 2627 * Got a PROT_NONE fault for a page on @node. 2628 */ 2629 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2630 { 2631 struct task_struct *p = current; 2632 bool migrated = flags & TNF_MIGRATED; 2633 int cpu_node = task_node(current); 2634 int local = !!(flags & TNF_FAULT_LOCAL); 2635 struct numa_group *ng; 2636 int priv; 2637 2638 if (!static_branch_likely(&sched_numa_balancing)) 2639 return; 2640 2641 /* for example, ksmd faulting in a user's mm */ 2642 if (!p->mm) 2643 return; 2644 2645 /* Allocate buffer to track faults on a per-node basis */ 2646 if (unlikely(!p->numa_faults)) { 2647 int size = sizeof(*p->numa_faults) * 2648 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2649 2650 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2651 if (!p->numa_faults) 2652 return; 2653 2654 p->total_numa_faults = 0; 2655 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2656 } 2657 2658 /* 2659 * First accesses are treated as private, otherwise consider accesses 2660 * to be private if the accessing pid has not changed 2661 */ 2662 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2663 priv = 1; 2664 } else { 2665 priv = cpupid_match_pid(p, last_cpupid); 2666 if (!priv && !(flags & TNF_NO_GROUP)) 2667 task_numa_group(p, last_cpupid, flags, &priv); 2668 } 2669 2670 /* 2671 * If a workload spans multiple NUMA nodes, a shared fault that 2672 * occurs wholly within the set of nodes that the workload is 2673 * actively using should be counted as local. This allows the 2674 * scan rate to slow down when a workload has settled down. 2675 */ 2676 ng = deref_curr_numa_group(p); 2677 if (!priv && !local && ng && ng->active_nodes > 1 && 2678 numa_is_active_node(cpu_node, ng) && 2679 numa_is_active_node(mem_node, ng)) 2680 local = 1; 2681 2682 /* 2683 * Retry to migrate task to preferred node periodically, in case it 2684 * previously failed, or the scheduler moved us. 2685 */ 2686 if (time_after(jiffies, p->numa_migrate_retry)) { 2687 task_numa_placement(p); 2688 numa_migrate_preferred(p); 2689 } 2690 2691 if (migrated) 2692 p->numa_pages_migrated += pages; 2693 if (flags & TNF_MIGRATE_FAIL) 2694 p->numa_faults_locality[2] += pages; 2695 2696 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2697 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2698 p->numa_faults_locality[local] += pages; 2699 } 2700 2701 static void reset_ptenuma_scan(struct task_struct *p) 2702 { 2703 /* 2704 * We only did a read acquisition of the mmap sem, so 2705 * p->mm->numa_scan_seq is written to without exclusive access 2706 * and the update is not guaranteed to be atomic. That's not 2707 * much of an issue though, since this is just used for 2708 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2709 * expensive, to avoid any form of compiler optimizations: 2710 */ 2711 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2712 p->mm->numa_scan_offset = 0; 2713 } 2714 2715 /* 2716 * The expensive part of numa migration is done from task_work context. 2717 * Triggered from task_tick_numa(). 2718 */ 2719 static void task_numa_work(struct callback_head *work) 2720 { 2721 unsigned long migrate, next_scan, now = jiffies; 2722 struct task_struct *p = current; 2723 struct mm_struct *mm = p->mm; 2724 u64 runtime = p->se.sum_exec_runtime; 2725 struct vm_area_struct *vma; 2726 unsigned long start, end; 2727 unsigned long nr_pte_updates = 0; 2728 long pages, virtpages; 2729 2730 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2731 2732 work->next = work; 2733 /* 2734 * Who cares about NUMA placement when they're dying. 2735 * 2736 * NOTE: make sure not to dereference p->mm before this check, 2737 * exit_task_work() happens _after_ exit_mm() so we could be called 2738 * without p->mm even though we still had it when we enqueued this 2739 * work. 2740 */ 2741 if (p->flags & PF_EXITING) 2742 return; 2743 2744 if (!mm->numa_next_scan) { 2745 mm->numa_next_scan = now + 2746 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2747 } 2748 2749 /* 2750 * Enforce maximal scan/migration frequency.. 2751 */ 2752 migrate = mm->numa_next_scan; 2753 if (time_before(now, migrate)) 2754 return; 2755 2756 if (p->numa_scan_period == 0) { 2757 p->numa_scan_period_max = task_scan_max(p); 2758 p->numa_scan_period = task_scan_start(p); 2759 } 2760 2761 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2762 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2763 return; 2764 2765 /* 2766 * Delay this task enough that another task of this mm will likely win 2767 * the next time around. 2768 */ 2769 p->node_stamp += 2 * TICK_NSEC; 2770 2771 start = mm->numa_scan_offset; 2772 pages = sysctl_numa_balancing_scan_size; 2773 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2774 virtpages = pages * 8; /* Scan up to this much virtual space */ 2775 if (!pages) 2776 return; 2777 2778 2779 if (!mmap_read_trylock(mm)) 2780 return; 2781 vma = find_vma(mm, start); 2782 if (!vma) { 2783 reset_ptenuma_scan(p); 2784 start = 0; 2785 vma = mm->mmap; 2786 } 2787 for (; vma; vma = vma->vm_next) { 2788 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2789 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2790 continue; 2791 } 2792 2793 /* 2794 * Shared library pages mapped by multiple processes are not 2795 * migrated as it is expected they are cache replicated. Avoid 2796 * hinting faults in read-only file-backed mappings or the vdso 2797 * as migrating the pages will be of marginal benefit. 2798 */ 2799 if (!vma->vm_mm || 2800 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2801 continue; 2802 2803 /* 2804 * Skip inaccessible VMAs to avoid any confusion between 2805 * PROT_NONE and NUMA hinting ptes 2806 */ 2807 if (!vma_is_accessible(vma)) 2808 continue; 2809 2810 do { 2811 start = max(start, vma->vm_start); 2812 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2813 end = min(end, vma->vm_end); 2814 nr_pte_updates = change_prot_numa(vma, start, end); 2815 2816 /* 2817 * Try to scan sysctl_numa_balancing_size worth of 2818 * hpages that have at least one present PTE that 2819 * is not already pte-numa. If the VMA contains 2820 * areas that are unused or already full of prot_numa 2821 * PTEs, scan up to virtpages, to skip through those 2822 * areas faster. 2823 */ 2824 if (nr_pte_updates) 2825 pages -= (end - start) >> PAGE_SHIFT; 2826 virtpages -= (end - start) >> PAGE_SHIFT; 2827 2828 start = end; 2829 if (pages <= 0 || virtpages <= 0) 2830 goto out; 2831 2832 cond_resched(); 2833 } while (end != vma->vm_end); 2834 } 2835 2836 out: 2837 /* 2838 * It is possible to reach the end of the VMA list but the last few 2839 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2840 * would find the !migratable VMA on the next scan but not reset the 2841 * scanner to the start so check it now. 2842 */ 2843 if (vma) 2844 mm->numa_scan_offset = start; 2845 else 2846 reset_ptenuma_scan(p); 2847 mmap_read_unlock(mm); 2848 2849 /* 2850 * Make sure tasks use at least 32x as much time to run other code 2851 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2852 * Usually update_task_scan_period slows down scanning enough; on an 2853 * overloaded system we need to limit overhead on a per task basis. 2854 */ 2855 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2856 u64 diff = p->se.sum_exec_runtime - runtime; 2857 p->node_stamp += 32 * diff; 2858 } 2859 } 2860 2861 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 2862 { 2863 int mm_users = 0; 2864 struct mm_struct *mm = p->mm; 2865 2866 if (mm) { 2867 mm_users = atomic_read(&mm->mm_users); 2868 if (mm_users == 1) { 2869 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2870 mm->numa_scan_seq = 0; 2871 } 2872 } 2873 p->node_stamp = 0; 2874 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 2875 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 2876 /* Protect against double add, see task_tick_numa and task_numa_work */ 2877 p->numa_work.next = &p->numa_work; 2878 p->numa_faults = NULL; 2879 p->numa_pages_migrated = 0; 2880 p->total_numa_faults = 0; 2881 RCU_INIT_POINTER(p->numa_group, NULL); 2882 p->last_task_numa_placement = 0; 2883 p->last_sum_exec_runtime = 0; 2884 2885 init_task_work(&p->numa_work, task_numa_work); 2886 2887 /* New address space, reset the preferred nid */ 2888 if (!(clone_flags & CLONE_VM)) { 2889 p->numa_preferred_nid = NUMA_NO_NODE; 2890 return; 2891 } 2892 2893 /* 2894 * New thread, keep existing numa_preferred_nid which should be copied 2895 * already by arch_dup_task_struct but stagger when scans start. 2896 */ 2897 if (mm) { 2898 unsigned int delay; 2899 2900 delay = min_t(unsigned int, task_scan_max(current), 2901 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 2902 delay += 2 * TICK_NSEC; 2903 p->node_stamp = delay; 2904 } 2905 } 2906 2907 /* 2908 * Drive the periodic memory faults.. 2909 */ 2910 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2911 { 2912 struct callback_head *work = &curr->numa_work; 2913 u64 period, now; 2914 2915 /* 2916 * We don't care about NUMA placement if we don't have memory. 2917 */ 2918 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 2919 return; 2920 2921 /* 2922 * Using runtime rather than walltime has the dual advantage that 2923 * we (mostly) drive the selection from busy threads and that the 2924 * task needs to have done some actual work before we bother with 2925 * NUMA placement. 2926 */ 2927 now = curr->se.sum_exec_runtime; 2928 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2929 2930 if (now > curr->node_stamp + period) { 2931 if (!curr->node_stamp) 2932 curr->numa_scan_period = task_scan_start(curr); 2933 curr->node_stamp += period; 2934 2935 if (!time_before(jiffies, curr->mm->numa_next_scan)) 2936 task_work_add(curr, work, TWA_RESUME); 2937 } 2938 } 2939 2940 static void update_scan_period(struct task_struct *p, int new_cpu) 2941 { 2942 int src_nid = cpu_to_node(task_cpu(p)); 2943 int dst_nid = cpu_to_node(new_cpu); 2944 2945 if (!static_branch_likely(&sched_numa_balancing)) 2946 return; 2947 2948 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 2949 return; 2950 2951 if (src_nid == dst_nid) 2952 return; 2953 2954 /* 2955 * Allow resets if faults have been trapped before one scan 2956 * has completed. This is most likely due to a new task that 2957 * is pulled cross-node due to wakeups or load balancing. 2958 */ 2959 if (p->numa_scan_seq) { 2960 /* 2961 * Avoid scan adjustments if moving to the preferred 2962 * node or if the task was not previously running on 2963 * the preferred node. 2964 */ 2965 if (dst_nid == p->numa_preferred_nid || 2966 (p->numa_preferred_nid != NUMA_NO_NODE && 2967 src_nid != p->numa_preferred_nid)) 2968 return; 2969 } 2970 2971 p->numa_scan_period = task_scan_start(p); 2972 } 2973 2974 #else 2975 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2976 { 2977 } 2978 2979 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2980 { 2981 } 2982 2983 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2984 { 2985 } 2986 2987 static inline void update_scan_period(struct task_struct *p, int new_cpu) 2988 { 2989 } 2990 2991 #endif /* CONFIG_NUMA_BALANCING */ 2992 2993 static void 2994 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2995 { 2996 update_load_add(&cfs_rq->load, se->load.weight); 2997 #ifdef CONFIG_SMP 2998 if (entity_is_task(se)) { 2999 struct rq *rq = rq_of(cfs_rq); 3000 3001 account_numa_enqueue(rq, task_of(se)); 3002 list_add(&se->group_node, &rq->cfs_tasks); 3003 } 3004 #endif 3005 cfs_rq->nr_running++; 3006 if (se_is_idle(se)) 3007 cfs_rq->idle_nr_running++; 3008 } 3009 3010 static void 3011 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3012 { 3013 update_load_sub(&cfs_rq->load, se->load.weight); 3014 #ifdef CONFIG_SMP 3015 if (entity_is_task(se)) { 3016 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3017 list_del_init(&se->group_node); 3018 } 3019 #endif 3020 cfs_rq->nr_running--; 3021 if (se_is_idle(se)) 3022 cfs_rq->idle_nr_running--; 3023 } 3024 3025 /* 3026 * Signed add and clamp on underflow. 3027 * 3028 * Explicitly do a load-store to ensure the intermediate value never hits 3029 * memory. This allows lockless observations without ever seeing the negative 3030 * values. 3031 */ 3032 #define add_positive(_ptr, _val) do { \ 3033 typeof(_ptr) ptr = (_ptr); \ 3034 typeof(_val) val = (_val); \ 3035 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3036 \ 3037 res = var + val; \ 3038 \ 3039 if (val < 0 && res > var) \ 3040 res = 0; \ 3041 \ 3042 WRITE_ONCE(*ptr, res); \ 3043 } while (0) 3044 3045 /* 3046 * Unsigned subtract and clamp on underflow. 3047 * 3048 * Explicitly do a load-store to ensure the intermediate value never hits 3049 * memory. This allows lockless observations without ever seeing the negative 3050 * values. 3051 */ 3052 #define sub_positive(_ptr, _val) do { \ 3053 typeof(_ptr) ptr = (_ptr); \ 3054 typeof(*ptr) val = (_val); \ 3055 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3056 res = var - val; \ 3057 if (res > var) \ 3058 res = 0; \ 3059 WRITE_ONCE(*ptr, res); \ 3060 } while (0) 3061 3062 /* 3063 * Remove and clamp on negative, from a local variable. 3064 * 3065 * A variant of sub_positive(), which does not use explicit load-store 3066 * and is thus optimized for local variable updates. 3067 */ 3068 #define lsub_positive(_ptr, _val) do { \ 3069 typeof(_ptr) ptr = (_ptr); \ 3070 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3071 } while (0) 3072 3073 #ifdef CONFIG_SMP 3074 static inline void 3075 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3076 { 3077 cfs_rq->avg.load_avg += se->avg.load_avg; 3078 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3079 } 3080 3081 static inline void 3082 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3083 { 3084 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3085 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3086 /* See update_cfs_rq_load_avg() */ 3087 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3088 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3089 } 3090 #else 3091 static inline void 3092 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3093 static inline void 3094 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3095 #endif 3096 3097 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3098 unsigned long weight) 3099 { 3100 if (se->on_rq) { 3101 /* commit outstanding execution time */ 3102 if (cfs_rq->curr == se) 3103 update_curr(cfs_rq); 3104 update_load_sub(&cfs_rq->load, se->load.weight); 3105 } 3106 dequeue_load_avg(cfs_rq, se); 3107 3108 update_load_set(&se->load, weight); 3109 3110 #ifdef CONFIG_SMP 3111 do { 3112 u32 divider = get_pelt_divider(&se->avg); 3113 3114 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3115 } while (0); 3116 #endif 3117 3118 enqueue_load_avg(cfs_rq, se); 3119 if (se->on_rq) 3120 update_load_add(&cfs_rq->load, se->load.weight); 3121 3122 } 3123 3124 void reweight_task(struct task_struct *p, int prio) 3125 { 3126 struct sched_entity *se = &p->se; 3127 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3128 struct load_weight *load = &se->load; 3129 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3130 3131 reweight_entity(cfs_rq, se, weight); 3132 load->inv_weight = sched_prio_to_wmult[prio]; 3133 } 3134 3135 #ifdef CONFIG_FAIR_GROUP_SCHED 3136 #ifdef CONFIG_SMP 3137 /* 3138 * All this does is approximate the hierarchical proportion which includes that 3139 * global sum we all love to hate. 3140 * 3141 * That is, the weight of a group entity, is the proportional share of the 3142 * group weight based on the group runqueue weights. That is: 3143 * 3144 * tg->weight * grq->load.weight 3145 * ge->load.weight = ----------------------------- (1) 3146 * \Sum grq->load.weight 3147 * 3148 * Now, because computing that sum is prohibitively expensive to compute (been 3149 * there, done that) we approximate it with this average stuff. The average 3150 * moves slower and therefore the approximation is cheaper and more stable. 3151 * 3152 * So instead of the above, we substitute: 3153 * 3154 * grq->load.weight -> grq->avg.load_avg (2) 3155 * 3156 * which yields the following: 3157 * 3158 * tg->weight * grq->avg.load_avg 3159 * ge->load.weight = ------------------------------ (3) 3160 * tg->load_avg 3161 * 3162 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3163 * 3164 * That is shares_avg, and it is right (given the approximation (2)). 3165 * 3166 * The problem with it is that because the average is slow -- it was designed 3167 * to be exactly that of course -- this leads to transients in boundary 3168 * conditions. In specific, the case where the group was idle and we start the 3169 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3170 * yielding bad latency etc.. 3171 * 3172 * Now, in that special case (1) reduces to: 3173 * 3174 * tg->weight * grq->load.weight 3175 * ge->load.weight = ----------------------------- = tg->weight (4) 3176 * grp->load.weight 3177 * 3178 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3179 * 3180 * So what we do is modify our approximation (3) to approach (4) in the (near) 3181 * UP case, like: 3182 * 3183 * ge->load.weight = 3184 * 3185 * tg->weight * grq->load.weight 3186 * --------------------------------------------------- (5) 3187 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3188 * 3189 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3190 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3191 * 3192 * 3193 * tg->weight * grq->load.weight 3194 * ge->load.weight = ----------------------------- (6) 3195 * tg_load_avg' 3196 * 3197 * Where: 3198 * 3199 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3200 * max(grq->load.weight, grq->avg.load_avg) 3201 * 3202 * And that is shares_weight and is icky. In the (near) UP case it approaches 3203 * (4) while in the normal case it approaches (3). It consistently 3204 * overestimates the ge->load.weight and therefore: 3205 * 3206 * \Sum ge->load.weight >= tg->weight 3207 * 3208 * hence icky! 3209 */ 3210 static long calc_group_shares(struct cfs_rq *cfs_rq) 3211 { 3212 long tg_weight, tg_shares, load, shares; 3213 struct task_group *tg = cfs_rq->tg; 3214 3215 tg_shares = READ_ONCE(tg->shares); 3216 3217 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3218 3219 tg_weight = atomic_long_read(&tg->load_avg); 3220 3221 /* Ensure tg_weight >= load */ 3222 tg_weight -= cfs_rq->tg_load_avg_contrib; 3223 tg_weight += load; 3224 3225 shares = (tg_shares * load); 3226 if (tg_weight) 3227 shares /= tg_weight; 3228 3229 /* 3230 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3231 * of a group with small tg->shares value. It is a floor value which is 3232 * assigned as a minimum load.weight to the sched_entity representing 3233 * the group on a CPU. 3234 * 3235 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3236 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3237 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3238 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3239 * instead of 0. 3240 */ 3241 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3242 } 3243 #endif /* CONFIG_SMP */ 3244 3245 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3246 3247 /* 3248 * Recomputes the group entity based on the current state of its group 3249 * runqueue. 3250 */ 3251 static void update_cfs_group(struct sched_entity *se) 3252 { 3253 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3254 long shares; 3255 3256 if (!gcfs_rq) 3257 return; 3258 3259 if (throttled_hierarchy(gcfs_rq)) 3260 return; 3261 3262 #ifndef CONFIG_SMP 3263 shares = READ_ONCE(gcfs_rq->tg->shares); 3264 3265 if (likely(se->load.weight == shares)) 3266 return; 3267 #else 3268 shares = calc_group_shares(gcfs_rq); 3269 #endif 3270 3271 reweight_entity(cfs_rq_of(se), se, shares); 3272 } 3273 3274 #else /* CONFIG_FAIR_GROUP_SCHED */ 3275 static inline void update_cfs_group(struct sched_entity *se) 3276 { 3277 } 3278 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3279 3280 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3281 { 3282 struct rq *rq = rq_of(cfs_rq); 3283 3284 if (&rq->cfs == cfs_rq) { 3285 /* 3286 * There are a few boundary cases this might miss but it should 3287 * get called often enough that that should (hopefully) not be 3288 * a real problem. 3289 * 3290 * It will not get called when we go idle, because the idle 3291 * thread is a different class (!fair), nor will the utilization 3292 * number include things like RT tasks. 3293 * 3294 * As is, the util number is not freq-invariant (we'd have to 3295 * implement arch_scale_freq_capacity() for that). 3296 * 3297 * See cpu_util_cfs(). 3298 */ 3299 cpufreq_update_util(rq, flags); 3300 } 3301 } 3302 3303 #ifdef CONFIG_SMP 3304 #ifdef CONFIG_FAIR_GROUP_SCHED 3305 /* 3306 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 3307 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 3308 * bottom-up, we only have to test whether the cfs_rq before us on the list 3309 * is our child. 3310 * If cfs_rq is not on the list, test whether a child needs its to be added to 3311 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 3312 */ 3313 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 3314 { 3315 struct cfs_rq *prev_cfs_rq; 3316 struct list_head *prev; 3317 3318 if (cfs_rq->on_list) { 3319 prev = cfs_rq->leaf_cfs_rq_list.prev; 3320 } else { 3321 struct rq *rq = rq_of(cfs_rq); 3322 3323 prev = rq->tmp_alone_branch; 3324 } 3325 3326 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 3327 3328 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 3329 } 3330 3331 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 3332 { 3333 if (cfs_rq->load.weight) 3334 return false; 3335 3336 if (cfs_rq->avg.load_sum) 3337 return false; 3338 3339 if (cfs_rq->avg.util_sum) 3340 return false; 3341 3342 if (cfs_rq->avg.runnable_sum) 3343 return false; 3344 3345 if (child_cfs_rq_on_list(cfs_rq)) 3346 return false; 3347 3348 /* 3349 * _avg must be null when _sum are null because _avg = _sum / divider 3350 * Make sure that rounding and/or propagation of PELT values never 3351 * break this. 3352 */ 3353 SCHED_WARN_ON(cfs_rq->avg.load_avg || 3354 cfs_rq->avg.util_avg || 3355 cfs_rq->avg.runnable_avg); 3356 3357 return true; 3358 } 3359 3360 /** 3361 * update_tg_load_avg - update the tg's load avg 3362 * @cfs_rq: the cfs_rq whose avg changed 3363 * 3364 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 3365 * However, because tg->load_avg is a global value there are performance 3366 * considerations. 3367 * 3368 * In order to avoid having to look at the other cfs_rq's, we use a 3369 * differential update where we store the last value we propagated. This in 3370 * turn allows skipping updates if the differential is 'small'. 3371 * 3372 * Updating tg's load_avg is necessary before update_cfs_share(). 3373 */ 3374 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 3375 { 3376 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 3377 3378 /* 3379 * No need to update load_avg for root_task_group as it is not used. 3380 */ 3381 if (cfs_rq->tg == &root_task_group) 3382 return; 3383 3384 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3385 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3386 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3387 } 3388 } 3389 3390 /* 3391 * Called within set_task_rq() right before setting a task's CPU. The 3392 * caller only guarantees p->pi_lock is held; no other assumptions, 3393 * including the state of rq->lock, should be made. 3394 */ 3395 void set_task_rq_fair(struct sched_entity *se, 3396 struct cfs_rq *prev, struct cfs_rq *next) 3397 { 3398 u64 p_last_update_time; 3399 u64 n_last_update_time; 3400 3401 if (!sched_feat(ATTACH_AGE_LOAD)) 3402 return; 3403 3404 /* 3405 * We are supposed to update the task to "current" time, then its up to 3406 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3407 * getting what current time is, so simply throw away the out-of-date 3408 * time. This will result in the wakee task is less decayed, but giving 3409 * the wakee more load sounds not bad. 3410 */ 3411 if (!(se->avg.last_update_time && prev)) 3412 return; 3413 3414 #ifndef CONFIG_64BIT 3415 { 3416 u64 p_last_update_time_copy; 3417 u64 n_last_update_time_copy; 3418 3419 do { 3420 p_last_update_time_copy = prev->load_last_update_time_copy; 3421 n_last_update_time_copy = next->load_last_update_time_copy; 3422 3423 smp_rmb(); 3424 3425 p_last_update_time = prev->avg.last_update_time; 3426 n_last_update_time = next->avg.last_update_time; 3427 3428 } while (p_last_update_time != p_last_update_time_copy || 3429 n_last_update_time != n_last_update_time_copy); 3430 } 3431 #else 3432 p_last_update_time = prev->avg.last_update_time; 3433 n_last_update_time = next->avg.last_update_time; 3434 #endif 3435 __update_load_avg_blocked_se(p_last_update_time, se); 3436 se->avg.last_update_time = n_last_update_time; 3437 } 3438 3439 /* 3440 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 3441 * propagate its contribution. The key to this propagation is the invariant 3442 * that for each group: 3443 * 3444 * ge->avg == grq->avg (1) 3445 * 3446 * _IFF_ we look at the pure running and runnable sums. Because they 3447 * represent the very same entity, just at different points in the hierarchy. 3448 * 3449 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 3450 * and simply copies the running/runnable sum over (but still wrong, because 3451 * the group entity and group rq do not have their PELT windows aligned). 3452 * 3453 * However, update_tg_cfs_load() is more complex. So we have: 3454 * 3455 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 3456 * 3457 * And since, like util, the runnable part should be directly transferable, 3458 * the following would _appear_ to be the straight forward approach: 3459 * 3460 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 3461 * 3462 * And per (1) we have: 3463 * 3464 * ge->avg.runnable_avg == grq->avg.runnable_avg 3465 * 3466 * Which gives: 3467 * 3468 * ge->load.weight * grq->avg.load_avg 3469 * ge->avg.load_avg = ----------------------------------- (4) 3470 * grq->load.weight 3471 * 3472 * Except that is wrong! 3473 * 3474 * Because while for entities historical weight is not important and we 3475 * really only care about our future and therefore can consider a pure 3476 * runnable sum, runqueues can NOT do this. 3477 * 3478 * We specifically want runqueues to have a load_avg that includes 3479 * historical weights. Those represent the blocked load, the load we expect 3480 * to (shortly) return to us. This only works by keeping the weights as 3481 * integral part of the sum. We therefore cannot decompose as per (3). 3482 * 3483 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 3484 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 3485 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 3486 * runnable section of these tasks overlap (or not). If they were to perfectly 3487 * align the rq as a whole would be runnable 2/3 of the time. If however we 3488 * always have at least 1 runnable task, the rq as a whole is always runnable. 3489 * 3490 * So we'll have to approximate.. :/ 3491 * 3492 * Given the constraint: 3493 * 3494 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 3495 * 3496 * We can construct a rule that adds runnable to a rq by assuming minimal 3497 * overlap. 3498 * 3499 * On removal, we'll assume each task is equally runnable; which yields: 3500 * 3501 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 3502 * 3503 * XXX: only do this for the part of runnable > running ? 3504 * 3505 */ 3506 static inline void 3507 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3508 { 3509 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 3510 u32 new_sum, divider; 3511 3512 /* Nothing to update */ 3513 if (!delta_avg) 3514 return; 3515 3516 /* 3517 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3518 * See ___update_load_avg() for details. 3519 */ 3520 divider = get_pelt_divider(&cfs_rq->avg); 3521 3522 3523 /* Set new sched_entity's utilization */ 3524 se->avg.util_avg = gcfs_rq->avg.util_avg; 3525 new_sum = se->avg.util_avg * divider; 3526 delta_sum = (long)new_sum - (long)se->avg.util_sum; 3527 se->avg.util_sum = new_sum; 3528 3529 /* Update parent cfs_rq utilization */ 3530 add_positive(&cfs_rq->avg.util_avg, delta_avg); 3531 add_positive(&cfs_rq->avg.util_sum, delta_sum); 3532 3533 /* See update_cfs_rq_load_avg() */ 3534 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 3535 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 3536 } 3537 3538 static inline void 3539 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3540 { 3541 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 3542 u32 new_sum, divider; 3543 3544 /* Nothing to update */ 3545 if (!delta_avg) 3546 return; 3547 3548 /* 3549 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3550 * See ___update_load_avg() for details. 3551 */ 3552 divider = get_pelt_divider(&cfs_rq->avg); 3553 3554 /* Set new sched_entity's runnable */ 3555 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 3556 new_sum = se->avg.runnable_avg * divider; 3557 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 3558 se->avg.runnable_sum = new_sum; 3559 3560 /* Update parent cfs_rq runnable */ 3561 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 3562 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 3563 /* See update_cfs_rq_load_avg() */ 3564 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 3565 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 3566 } 3567 3568 static inline void 3569 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 3570 { 3571 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 3572 unsigned long load_avg; 3573 u64 load_sum = 0; 3574 s64 delta_sum; 3575 u32 divider; 3576 3577 if (!runnable_sum) 3578 return; 3579 3580 gcfs_rq->prop_runnable_sum = 0; 3581 3582 /* 3583 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3584 * See ___update_load_avg() for details. 3585 */ 3586 divider = get_pelt_divider(&cfs_rq->avg); 3587 3588 if (runnable_sum >= 0) { 3589 /* 3590 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 3591 * the CPU is saturated running == runnable. 3592 */ 3593 runnable_sum += se->avg.load_sum; 3594 runnable_sum = min_t(long, runnable_sum, divider); 3595 } else { 3596 /* 3597 * Estimate the new unweighted runnable_sum of the gcfs_rq by 3598 * assuming all tasks are equally runnable. 3599 */ 3600 if (scale_load_down(gcfs_rq->load.weight)) { 3601 load_sum = div_u64(gcfs_rq->avg.load_sum, 3602 scale_load_down(gcfs_rq->load.weight)); 3603 } 3604 3605 /* But make sure to not inflate se's runnable */ 3606 runnable_sum = min(se->avg.load_sum, load_sum); 3607 } 3608 3609 /* 3610 * runnable_sum can't be lower than running_sum 3611 * Rescale running sum to be in the same range as runnable sum 3612 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 3613 * runnable_sum is in [0 : LOAD_AVG_MAX] 3614 */ 3615 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 3616 runnable_sum = max(runnable_sum, running_sum); 3617 3618 load_sum = se_weight(se) * runnable_sum; 3619 load_avg = div_u64(load_sum, divider); 3620 3621 delta_avg = load_avg - se->avg.load_avg; 3622 if (!delta_avg) 3623 return; 3624 3625 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 3626 3627 se->avg.load_sum = runnable_sum; 3628 se->avg.load_avg = load_avg; 3629 add_positive(&cfs_rq->avg.load_avg, delta_avg); 3630 add_positive(&cfs_rq->avg.load_sum, delta_sum); 3631 /* See update_cfs_rq_load_avg() */ 3632 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3633 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3634 } 3635 3636 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 3637 { 3638 cfs_rq->propagate = 1; 3639 cfs_rq->prop_runnable_sum += runnable_sum; 3640 } 3641 3642 /* Update task and its cfs_rq load average */ 3643 static inline int propagate_entity_load_avg(struct sched_entity *se) 3644 { 3645 struct cfs_rq *cfs_rq, *gcfs_rq; 3646 3647 if (entity_is_task(se)) 3648 return 0; 3649 3650 gcfs_rq = group_cfs_rq(se); 3651 if (!gcfs_rq->propagate) 3652 return 0; 3653 3654 gcfs_rq->propagate = 0; 3655 3656 cfs_rq = cfs_rq_of(se); 3657 3658 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 3659 3660 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 3661 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 3662 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 3663 3664 trace_pelt_cfs_tp(cfs_rq); 3665 trace_pelt_se_tp(se); 3666 3667 return 1; 3668 } 3669 3670 /* 3671 * Check if we need to update the load and the utilization of a blocked 3672 * group_entity: 3673 */ 3674 static inline bool skip_blocked_update(struct sched_entity *se) 3675 { 3676 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3677 3678 /* 3679 * If sched_entity still have not zero load or utilization, we have to 3680 * decay it: 3681 */ 3682 if (se->avg.load_avg || se->avg.util_avg) 3683 return false; 3684 3685 /* 3686 * If there is a pending propagation, we have to update the load and 3687 * the utilization of the sched_entity: 3688 */ 3689 if (gcfs_rq->propagate) 3690 return false; 3691 3692 /* 3693 * Otherwise, the load and the utilization of the sched_entity is 3694 * already zero and there is no pending propagation, so it will be a 3695 * waste of time to try to decay it: 3696 */ 3697 return true; 3698 } 3699 3700 #else /* CONFIG_FAIR_GROUP_SCHED */ 3701 3702 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 3703 3704 static inline int propagate_entity_load_avg(struct sched_entity *se) 3705 { 3706 return 0; 3707 } 3708 3709 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 3710 3711 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3712 3713 /** 3714 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3715 * @now: current time, as per cfs_rq_clock_pelt() 3716 * @cfs_rq: cfs_rq to update 3717 * 3718 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3719 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3720 * post_init_entity_util_avg(). 3721 * 3722 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3723 * 3724 * Return: true if the load decayed or we removed load. 3725 * 3726 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3727 * call update_tg_load_avg() when this function returns true. 3728 */ 3729 static inline int 3730 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 3731 { 3732 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 3733 struct sched_avg *sa = &cfs_rq->avg; 3734 int decayed = 0; 3735 3736 if (cfs_rq->removed.nr) { 3737 unsigned long r; 3738 u32 divider = get_pelt_divider(&cfs_rq->avg); 3739 3740 raw_spin_lock(&cfs_rq->removed.lock); 3741 swap(cfs_rq->removed.util_avg, removed_util); 3742 swap(cfs_rq->removed.load_avg, removed_load); 3743 swap(cfs_rq->removed.runnable_avg, removed_runnable); 3744 cfs_rq->removed.nr = 0; 3745 raw_spin_unlock(&cfs_rq->removed.lock); 3746 3747 r = removed_load; 3748 sub_positive(&sa->load_avg, r); 3749 sub_positive(&sa->load_sum, r * divider); 3750 /* See sa->util_sum below */ 3751 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 3752 3753 r = removed_util; 3754 sub_positive(&sa->util_avg, r); 3755 sub_positive(&sa->util_sum, r * divider); 3756 /* 3757 * Because of rounding, se->util_sum might ends up being +1 more than 3758 * cfs->util_sum. Although this is not a problem by itself, detaching 3759 * a lot of tasks with the rounding problem between 2 updates of 3760 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 3761 * cfs_util_avg is not. 3762 * Check that util_sum is still above its lower bound for the new 3763 * util_avg. Given that period_contrib might have moved since the last 3764 * sync, we are only sure that util_sum must be above or equal to 3765 * util_avg * minimum possible divider 3766 */ 3767 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 3768 3769 r = removed_runnable; 3770 sub_positive(&sa->runnable_avg, r); 3771 sub_positive(&sa->runnable_sum, r * divider); 3772 /* See sa->util_sum above */ 3773 sa->runnable_sum = max_t(u32, sa->runnable_sum, 3774 sa->runnable_avg * PELT_MIN_DIVIDER); 3775 3776 /* 3777 * removed_runnable is the unweighted version of removed_load so we 3778 * can use it to estimate removed_load_sum. 3779 */ 3780 add_tg_cfs_propagate(cfs_rq, 3781 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 3782 3783 decayed = 1; 3784 } 3785 3786 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 3787 3788 #ifndef CONFIG_64BIT 3789 smp_wmb(); 3790 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3791 #endif 3792 3793 return decayed; 3794 } 3795 3796 /** 3797 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3798 * @cfs_rq: cfs_rq to attach to 3799 * @se: sched_entity to attach 3800 * 3801 * Must call update_cfs_rq_load_avg() before this, since we rely on 3802 * cfs_rq->avg.last_update_time being current. 3803 */ 3804 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3805 { 3806 /* 3807 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 3808 * See ___update_load_avg() for details. 3809 */ 3810 u32 divider = get_pelt_divider(&cfs_rq->avg); 3811 3812 /* 3813 * When we attach the @se to the @cfs_rq, we must align the decay 3814 * window because without that, really weird and wonderful things can 3815 * happen. 3816 * 3817 * XXX illustrate 3818 */ 3819 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3820 se->avg.period_contrib = cfs_rq->avg.period_contrib; 3821 3822 /* 3823 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 3824 * period_contrib. This isn't strictly correct, but since we're 3825 * entirely outside of the PELT hierarchy, nobody cares if we truncate 3826 * _sum a little. 3827 */ 3828 se->avg.util_sum = se->avg.util_avg * divider; 3829 3830 se->avg.runnable_sum = se->avg.runnable_avg * divider; 3831 3832 se->avg.load_sum = divider; 3833 if (se_weight(se)) { 3834 se->avg.load_sum = 3835 div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se)); 3836 } 3837 3838 enqueue_load_avg(cfs_rq, se); 3839 cfs_rq->avg.util_avg += se->avg.util_avg; 3840 cfs_rq->avg.util_sum += se->avg.util_sum; 3841 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 3842 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 3843 3844 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 3845 3846 cfs_rq_util_change(cfs_rq, 0); 3847 3848 trace_pelt_cfs_tp(cfs_rq); 3849 } 3850 3851 /** 3852 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3853 * @cfs_rq: cfs_rq to detach from 3854 * @se: sched_entity to detach 3855 * 3856 * Must call update_cfs_rq_load_avg() before this, since we rely on 3857 * cfs_rq->avg.last_update_time being current. 3858 */ 3859 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3860 { 3861 dequeue_load_avg(cfs_rq, se); 3862 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3863 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3864 /* See update_cfs_rq_load_avg() */ 3865 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 3866 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 3867 3868 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 3869 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 3870 /* See update_cfs_rq_load_avg() */ 3871 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 3872 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 3873 3874 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 3875 3876 cfs_rq_util_change(cfs_rq, 0); 3877 3878 trace_pelt_cfs_tp(cfs_rq); 3879 } 3880 3881 /* 3882 * Optional action to be done while updating the load average 3883 */ 3884 #define UPDATE_TG 0x1 3885 #define SKIP_AGE_LOAD 0x2 3886 #define DO_ATTACH 0x4 3887 3888 /* Update task and its cfs_rq load average */ 3889 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3890 { 3891 u64 now = cfs_rq_clock_pelt(cfs_rq); 3892 int decayed; 3893 3894 /* 3895 * Track task load average for carrying it to new CPU after migrated, and 3896 * track group sched_entity load average for task_h_load calc in migration 3897 */ 3898 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 3899 __update_load_avg_se(now, cfs_rq, se); 3900 3901 decayed = update_cfs_rq_load_avg(now, cfs_rq); 3902 decayed |= propagate_entity_load_avg(se); 3903 3904 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 3905 3906 /* 3907 * DO_ATTACH means we're here from enqueue_entity(). 3908 * !last_update_time means we've passed through 3909 * migrate_task_rq_fair() indicating we migrated. 3910 * 3911 * IOW we're enqueueing a task on a new CPU. 3912 */ 3913 attach_entity_load_avg(cfs_rq, se); 3914 update_tg_load_avg(cfs_rq); 3915 3916 } else if (decayed) { 3917 cfs_rq_util_change(cfs_rq, 0); 3918 3919 if (flags & UPDATE_TG) 3920 update_tg_load_avg(cfs_rq); 3921 } 3922 } 3923 3924 #ifndef CONFIG_64BIT 3925 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3926 { 3927 u64 last_update_time_copy; 3928 u64 last_update_time; 3929 3930 do { 3931 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3932 smp_rmb(); 3933 last_update_time = cfs_rq->avg.last_update_time; 3934 } while (last_update_time != last_update_time_copy); 3935 3936 return last_update_time; 3937 } 3938 #else 3939 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3940 { 3941 return cfs_rq->avg.last_update_time; 3942 } 3943 #endif 3944 3945 /* 3946 * Synchronize entity load avg of dequeued entity without locking 3947 * the previous rq. 3948 */ 3949 static void sync_entity_load_avg(struct sched_entity *se) 3950 { 3951 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3952 u64 last_update_time; 3953 3954 last_update_time = cfs_rq_last_update_time(cfs_rq); 3955 __update_load_avg_blocked_se(last_update_time, se); 3956 } 3957 3958 /* 3959 * Task first catches up with cfs_rq, and then subtract 3960 * itself from the cfs_rq (task must be off the queue now). 3961 */ 3962 static void remove_entity_load_avg(struct sched_entity *se) 3963 { 3964 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3965 unsigned long flags; 3966 3967 /* 3968 * tasks cannot exit without having gone through wake_up_new_task() -> 3969 * post_init_entity_util_avg() which will have added things to the 3970 * cfs_rq, so we can remove unconditionally. 3971 */ 3972 3973 sync_entity_load_avg(se); 3974 3975 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 3976 ++cfs_rq->removed.nr; 3977 cfs_rq->removed.util_avg += se->avg.util_avg; 3978 cfs_rq->removed.load_avg += se->avg.load_avg; 3979 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 3980 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 3981 } 3982 3983 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 3984 { 3985 return cfs_rq->avg.runnable_avg; 3986 } 3987 3988 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3989 { 3990 return cfs_rq->avg.load_avg; 3991 } 3992 3993 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 3994 3995 static inline unsigned long task_util(struct task_struct *p) 3996 { 3997 return READ_ONCE(p->se.avg.util_avg); 3998 } 3999 4000 static inline unsigned long _task_util_est(struct task_struct *p) 4001 { 4002 struct util_est ue = READ_ONCE(p->se.avg.util_est); 4003 4004 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED)); 4005 } 4006 4007 static inline unsigned long task_util_est(struct task_struct *p) 4008 { 4009 return max(task_util(p), _task_util_est(p)); 4010 } 4011 4012 #ifdef CONFIG_UCLAMP_TASK 4013 static inline unsigned long uclamp_task_util(struct task_struct *p) 4014 { 4015 return clamp(task_util_est(p), 4016 uclamp_eff_value(p, UCLAMP_MIN), 4017 uclamp_eff_value(p, UCLAMP_MAX)); 4018 } 4019 #else 4020 static inline unsigned long uclamp_task_util(struct task_struct *p) 4021 { 4022 return task_util_est(p); 4023 } 4024 #endif 4025 4026 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4027 struct task_struct *p) 4028 { 4029 unsigned int enqueued; 4030 4031 if (!sched_feat(UTIL_EST)) 4032 return; 4033 4034 /* Update root cfs_rq's estimated utilization */ 4035 enqueued = cfs_rq->avg.util_est.enqueued; 4036 enqueued += _task_util_est(p); 4037 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4038 4039 trace_sched_util_est_cfs_tp(cfs_rq); 4040 } 4041 4042 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4043 struct task_struct *p) 4044 { 4045 unsigned int enqueued; 4046 4047 if (!sched_feat(UTIL_EST)) 4048 return; 4049 4050 /* Update root cfs_rq's estimated utilization */ 4051 enqueued = cfs_rq->avg.util_est.enqueued; 4052 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4053 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued); 4054 4055 trace_sched_util_est_cfs_tp(cfs_rq); 4056 } 4057 4058 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4059 4060 /* 4061 * Check if a (signed) value is within a specified (unsigned) margin, 4062 * based on the observation that: 4063 * 4064 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1) 4065 * 4066 * NOTE: this only works when value + margin < INT_MAX. 4067 */ 4068 static inline bool within_margin(int value, int margin) 4069 { 4070 return ((unsigned int)(value + margin - 1) < (2 * margin - 1)); 4071 } 4072 4073 static inline void util_est_update(struct cfs_rq *cfs_rq, 4074 struct task_struct *p, 4075 bool task_sleep) 4076 { 4077 long last_ewma_diff, last_enqueued_diff; 4078 struct util_est ue; 4079 4080 if (!sched_feat(UTIL_EST)) 4081 return; 4082 4083 /* 4084 * Skip update of task's estimated utilization when the task has not 4085 * yet completed an activation, e.g. being migrated. 4086 */ 4087 if (!task_sleep) 4088 return; 4089 4090 /* 4091 * If the PELT values haven't changed since enqueue time, 4092 * skip the util_est update. 4093 */ 4094 ue = p->se.avg.util_est; 4095 if (ue.enqueued & UTIL_AVG_UNCHANGED) 4096 return; 4097 4098 last_enqueued_diff = ue.enqueued; 4099 4100 /* 4101 * Reset EWMA on utilization increases, the moving average is used only 4102 * to smooth utilization decreases. 4103 */ 4104 ue.enqueued = task_util(p); 4105 if (sched_feat(UTIL_EST_FASTUP)) { 4106 if (ue.ewma < ue.enqueued) { 4107 ue.ewma = ue.enqueued; 4108 goto done; 4109 } 4110 } 4111 4112 /* 4113 * Skip update of task's estimated utilization when its members are 4114 * already ~1% close to its last activation value. 4115 */ 4116 last_ewma_diff = ue.enqueued - ue.ewma; 4117 last_enqueued_diff -= ue.enqueued; 4118 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) { 4119 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN)) 4120 goto done; 4121 4122 return; 4123 } 4124 4125 /* 4126 * To avoid overestimation of actual task utilization, skip updates if 4127 * we cannot grant there is idle time in this CPU. 4128 */ 4129 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq)))) 4130 return; 4131 4132 /* 4133 * Update Task's estimated utilization 4134 * 4135 * When *p completes an activation we can consolidate another sample 4136 * of the task size. This is done by storing the current PELT value 4137 * as ue.enqueued and by using this value to update the Exponential 4138 * Weighted Moving Average (EWMA): 4139 * 4140 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4141 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4142 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4143 * = w * ( last_ewma_diff ) + ewma(t-1) 4144 * = w * (last_ewma_diff + ewma(t-1) / w) 4145 * 4146 * Where 'w' is the weight of new samples, which is configured to be 4147 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4148 */ 4149 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT; 4150 ue.ewma += last_ewma_diff; 4151 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT; 4152 done: 4153 ue.enqueued |= UTIL_AVG_UNCHANGED; 4154 WRITE_ONCE(p->se.avg.util_est, ue); 4155 4156 trace_sched_util_est_se_tp(&p->se); 4157 } 4158 4159 static inline int task_fits_capacity(struct task_struct *p, 4160 unsigned long capacity) 4161 { 4162 return fits_capacity(uclamp_task_util(p), capacity); 4163 } 4164 4165 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 4166 { 4167 if (!static_branch_unlikely(&sched_asym_cpucapacity)) 4168 return; 4169 4170 if (!p || p->nr_cpus_allowed == 1) { 4171 rq->misfit_task_load = 0; 4172 return; 4173 } 4174 4175 if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) { 4176 rq->misfit_task_load = 0; 4177 return; 4178 } 4179 4180 /* 4181 * Make sure that misfit_task_load will not be null even if 4182 * task_h_load() returns 0. 4183 */ 4184 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 4185 } 4186 4187 #else /* CONFIG_SMP */ 4188 4189 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4190 { 4191 return true; 4192 } 4193 4194 #define UPDATE_TG 0x0 4195 #define SKIP_AGE_LOAD 0x0 4196 #define DO_ATTACH 0x0 4197 4198 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 4199 { 4200 cfs_rq_util_change(cfs_rq, 0); 4201 } 4202 4203 static inline void remove_entity_load_avg(struct sched_entity *se) {} 4204 4205 static inline void 4206 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4207 static inline void 4208 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 4209 4210 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 4211 { 4212 return 0; 4213 } 4214 4215 static inline void 4216 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4217 4218 static inline void 4219 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 4220 4221 static inline void 4222 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 4223 bool task_sleep) {} 4224 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 4225 4226 #endif /* CONFIG_SMP */ 4227 4228 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 4229 { 4230 #ifdef CONFIG_SCHED_DEBUG 4231 s64 d = se->vruntime - cfs_rq->min_vruntime; 4232 4233 if (d < 0) 4234 d = -d; 4235 4236 if (d > 3*sysctl_sched_latency) 4237 schedstat_inc(cfs_rq->nr_spread_over); 4238 #endif 4239 } 4240 4241 static void 4242 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 4243 { 4244 u64 vruntime = cfs_rq->min_vruntime; 4245 4246 /* 4247 * The 'current' period is already promised to the current tasks, 4248 * however the extra weight of the new task will slow them down a 4249 * little, place the new task so that it fits in the slot that 4250 * stays open at the end. 4251 */ 4252 if (initial && sched_feat(START_DEBIT)) 4253 vruntime += sched_vslice(cfs_rq, se); 4254 4255 /* sleeps up to a single latency don't count. */ 4256 if (!initial) { 4257 unsigned long thresh; 4258 4259 if (se_is_idle(se)) 4260 thresh = sysctl_sched_min_granularity; 4261 else 4262 thresh = sysctl_sched_latency; 4263 4264 /* 4265 * Halve their sleep time's effect, to allow 4266 * for a gentler effect of sleepers: 4267 */ 4268 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 4269 thresh >>= 1; 4270 4271 vruntime -= thresh; 4272 } 4273 4274 /* ensure we never gain time by being placed backwards. */ 4275 se->vruntime = max_vruntime(se->vruntime, vruntime); 4276 } 4277 4278 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 4279 4280 static inline bool cfs_bandwidth_used(void); 4281 4282 /* 4283 * MIGRATION 4284 * 4285 * dequeue 4286 * update_curr() 4287 * update_min_vruntime() 4288 * vruntime -= min_vruntime 4289 * 4290 * enqueue 4291 * update_curr() 4292 * update_min_vruntime() 4293 * vruntime += min_vruntime 4294 * 4295 * this way the vruntime transition between RQs is done when both 4296 * min_vruntime are up-to-date. 4297 * 4298 * WAKEUP (remote) 4299 * 4300 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 4301 * vruntime -= min_vruntime 4302 * 4303 * enqueue 4304 * update_curr() 4305 * update_min_vruntime() 4306 * vruntime += min_vruntime 4307 * 4308 * this way we don't have the most up-to-date min_vruntime on the originating 4309 * CPU and an up-to-date min_vruntime on the destination CPU. 4310 */ 4311 4312 static void 4313 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4314 { 4315 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 4316 bool curr = cfs_rq->curr == se; 4317 4318 /* 4319 * If we're the current task, we must renormalise before calling 4320 * update_curr(). 4321 */ 4322 if (renorm && curr) 4323 se->vruntime += cfs_rq->min_vruntime; 4324 4325 update_curr(cfs_rq); 4326 4327 /* 4328 * Otherwise, renormalise after, such that we're placed at the current 4329 * moment in time, instead of some random moment in the past. Being 4330 * placed in the past could significantly boost this task to the 4331 * fairness detriment of existing tasks. 4332 */ 4333 if (renorm && !curr) 4334 se->vruntime += cfs_rq->min_vruntime; 4335 4336 /* 4337 * When enqueuing a sched_entity, we must: 4338 * - Update loads to have both entity and cfs_rq synced with now. 4339 * - Add its load to cfs_rq->runnable_avg 4340 * - For group_entity, update its weight to reflect the new share of 4341 * its group cfs_rq 4342 * - Add its new weight to cfs_rq->load.weight 4343 */ 4344 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 4345 se_update_runnable(se); 4346 update_cfs_group(se); 4347 account_entity_enqueue(cfs_rq, se); 4348 4349 if (flags & ENQUEUE_WAKEUP) 4350 place_entity(cfs_rq, se, 0); 4351 4352 check_schedstat_required(); 4353 update_stats_enqueue_fair(cfs_rq, se, flags); 4354 check_spread(cfs_rq, se); 4355 if (!curr) 4356 __enqueue_entity(cfs_rq, se); 4357 se->on_rq = 1; 4358 4359 /* 4360 * When bandwidth control is enabled, cfs might have been removed 4361 * because of a parent been throttled but cfs->nr_running > 1. Try to 4362 * add it unconditionally. 4363 */ 4364 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used()) 4365 list_add_leaf_cfs_rq(cfs_rq); 4366 4367 if (cfs_rq->nr_running == 1) 4368 check_enqueue_throttle(cfs_rq); 4369 } 4370 4371 static void __clear_buddies_last(struct sched_entity *se) 4372 { 4373 for_each_sched_entity(se) { 4374 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4375 if (cfs_rq->last != se) 4376 break; 4377 4378 cfs_rq->last = NULL; 4379 } 4380 } 4381 4382 static void __clear_buddies_next(struct sched_entity *se) 4383 { 4384 for_each_sched_entity(se) { 4385 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4386 if (cfs_rq->next != se) 4387 break; 4388 4389 cfs_rq->next = NULL; 4390 } 4391 } 4392 4393 static void __clear_buddies_skip(struct sched_entity *se) 4394 { 4395 for_each_sched_entity(se) { 4396 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4397 if (cfs_rq->skip != se) 4398 break; 4399 4400 cfs_rq->skip = NULL; 4401 } 4402 } 4403 4404 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 4405 { 4406 if (cfs_rq->last == se) 4407 __clear_buddies_last(se); 4408 4409 if (cfs_rq->next == se) 4410 __clear_buddies_next(se); 4411 4412 if (cfs_rq->skip == se) 4413 __clear_buddies_skip(se); 4414 } 4415 4416 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4417 4418 static void 4419 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4420 { 4421 /* 4422 * Update run-time statistics of the 'current'. 4423 */ 4424 update_curr(cfs_rq); 4425 4426 /* 4427 * When dequeuing a sched_entity, we must: 4428 * - Update loads to have both entity and cfs_rq synced with now. 4429 * - Subtract its load from the cfs_rq->runnable_avg. 4430 * - Subtract its previous weight from cfs_rq->load.weight. 4431 * - For group entity, update its weight to reflect the new share 4432 * of its group cfs_rq. 4433 */ 4434 update_load_avg(cfs_rq, se, UPDATE_TG); 4435 se_update_runnable(se); 4436 4437 update_stats_dequeue_fair(cfs_rq, se, flags); 4438 4439 clear_buddies(cfs_rq, se); 4440 4441 if (se != cfs_rq->curr) 4442 __dequeue_entity(cfs_rq, se); 4443 se->on_rq = 0; 4444 account_entity_dequeue(cfs_rq, se); 4445 4446 /* 4447 * Normalize after update_curr(); which will also have moved 4448 * min_vruntime if @se is the one holding it back. But before doing 4449 * update_min_vruntime() again, which will discount @se's position and 4450 * can move min_vruntime forward still more. 4451 */ 4452 if (!(flags & DEQUEUE_SLEEP)) 4453 se->vruntime -= cfs_rq->min_vruntime; 4454 4455 /* return excess runtime on last dequeue */ 4456 return_cfs_rq_runtime(cfs_rq); 4457 4458 update_cfs_group(se); 4459 4460 /* 4461 * Now advance min_vruntime if @se was the entity holding it back, 4462 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 4463 * put back on, and if we advance min_vruntime, we'll be placed back 4464 * further than we started -- ie. we'll be penalized. 4465 */ 4466 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 4467 update_min_vruntime(cfs_rq); 4468 } 4469 4470 /* 4471 * Preempt the current task with a newly woken task if needed: 4472 */ 4473 static void 4474 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4475 { 4476 unsigned long ideal_runtime, delta_exec; 4477 struct sched_entity *se; 4478 s64 delta; 4479 4480 ideal_runtime = sched_slice(cfs_rq, curr); 4481 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 4482 if (delta_exec > ideal_runtime) { 4483 resched_curr(rq_of(cfs_rq)); 4484 /* 4485 * The current task ran long enough, ensure it doesn't get 4486 * re-elected due to buddy favours. 4487 */ 4488 clear_buddies(cfs_rq, curr); 4489 return; 4490 } 4491 4492 /* 4493 * Ensure that a task that missed wakeup preemption by a 4494 * narrow margin doesn't have to wait for a full slice. 4495 * This also mitigates buddy induced latencies under load. 4496 */ 4497 if (delta_exec < sysctl_sched_min_granularity) 4498 return; 4499 4500 se = __pick_first_entity(cfs_rq); 4501 delta = curr->vruntime - se->vruntime; 4502 4503 if (delta < 0) 4504 return; 4505 4506 if (delta > ideal_runtime) 4507 resched_curr(rq_of(cfs_rq)); 4508 } 4509 4510 static void 4511 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 4512 { 4513 clear_buddies(cfs_rq, se); 4514 4515 /* 'current' is not kept within the tree. */ 4516 if (se->on_rq) { 4517 /* 4518 * Any task has to be enqueued before it get to execute on 4519 * a CPU. So account for the time it spent waiting on the 4520 * runqueue. 4521 */ 4522 update_stats_wait_end_fair(cfs_rq, se); 4523 __dequeue_entity(cfs_rq, se); 4524 update_load_avg(cfs_rq, se, UPDATE_TG); 4525 } 4526 4527 update_stats_curr_start(cfs_rq, se); 4528 cfs_rq->curr = se; 4529 4530 /* 4531 * Track our maximum slice length, if the CPU's load is at 4532 * least twice that of our own weight (i.e. dont track it 4533 * when there are only lesser-weight tasks around): 4534 */ 4535 if (schedstat_enabled() && 4536 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 4537 struct sched_statistics *stats; 4538 4539 stats = __schedstats_from_se(se); 4540 __schedstat_set(stats->slice_max, 4541 max((u64)stats->slice_max, 4542 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 4543 } 4544 4545 se->prev_sum_exec_runtime = se->sum_exec_runtime; 4546 } 4547 4548 static int 4549 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 4550 4551 /* 4552 * Pick the next process, keeping these things in mind, in this order: 4553 * 1) keep things fair between processes/task groups 4554 * 2) pick the "next" process, since someone really wants that to run 4555 * 3) pick the "last" process, for cache locality 4556 * 4) do not run the "skip" process, if something else is available 4557 */ 4558 static struct sched_entity * 4559 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 4560 { 4561 struct sched_entity *left = __pick_first_entity(cfs_rq); 4562 struct sched_entity *se; 4563 4564 /* 4565 * If curr is set we have to see if its left of the leftmost entity 4566 * still in the tree, provided there was anything in the tree at all. 4567 */ 4568 if (!left || (curr && entity_before(curr, left))) 4569 left = curr; 4570 4571 se = left; /* ideally we run the leftmost entity */ 4572 4573 /* 4574 * Avoid running the skip buddy, if running something else can 4575 * be done without getting too unfair. 4576 */ 4577 if (cfs_rq->skip && cfs_rq->skip == se) { 4578 struct sched_entity *second; 4579 4580 if (se == curr) { 4581 second = __pick_first_entity(cfs_rq); 4582 } else { 4583 second = __pick_next_entity(se); 4584 if (!second || (curr && entity_before(curr, second))) 4585 second = curr; 4586 } 4587 4588 if (second && wakeup_preempt_entity(second, left) < 1) 4589 se = second; 4590 } 4591 4592 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) { 4593 /* 4594 * Someone really wants this to run. If it's not unfair, run it. 4595 */ 4596 se = cfs_rq->next; 4597 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) { 4598 /* 4599 * Prefer last buddy, try to return the CPU to a preempted task. 4600 */ 4601 se = cfs_rq->last; 4602 } 4603 4604 return se; 4605 } 4606 4607 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 4608 4609 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 4610 { 4611 /* 4612 * If still on the runqueue then deactivate_task() 4613 * was not called and update_curr() has to be done: 4614 */ 4615 if (prev->on_rq) 4616 update_curr(cfs_rq); 4617 4618 /* throttle cfs_rqs exceeding runtime */ 4619 check_cfs_rq_runtime(cfs_rq); 4620 4621 check_spread(cfs_rq, prev); 4622 4623 if (prev->on_rq) { 4624 update_stats_wait_start_fair(cfs_rq, prev); 4625 /* Put 'current' back into the tree. */ 4626 __enqueue_entity(cfs_rq, prev); 4627 /* in !on_rq case, update occurred at dequeue */ 4628 update_load_avg(cfs_rq, prev, 0); 4629 } 4630 cfs_rq->curr = NULL; 4631 } 4632 4633 static void 4634 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 4635 { 4636 /* 4637 * Update run-time statistics of the 'current'. 4638 */ 4639 update_curr(cfs_rq); 4640 4641 /* 4642 * Ensure that runnable average is periodically updated. 4643 */ 4644 update_load_avg(cfs_rq, curr, UPDATE_TG); 4645 update_cfs_group(curr); 4646 4647 #ifdef CONFIG_SCHED_HRTICK 4648 /* 4649 * queued ticks are scheduled to match the slice, so don't bother 4650 * validating it and just reschedule. 4651 */ 4652 if (queued) { 4653 resched_curr(rq_of(cfs_rq)); 4654 return; 4655 } 4656 /* 4657 * don't let the period tick interfere with the hrtick preemption 4658 */ 4659 if (!sched_feat(DOUBLE_TICK) && 4660 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 4661 return; 4662 #endif 4663 4664 if (cfs_rq->nr_running > 1) 4665 check_preempt_tick(cfs_rq, curr); 4666 } 4667 4668 4669 /************************************************** 4670 * CFS bandwidth control machinery 4671 */ 4672 4673 #ifdef CONFIG_CFS_BANDWIDTH 4674 4675 #ifdef CONFIG_JUMP_LABEL 4676 static struct static_key __cfs_bandwidth_used; 4677 4678 static inline bool cfs_bandwidth_used(void) 4679 { 4680 return static_key_false(&__cfs_bandwidth_used); 4681 } 4682 4683 void cfs_bandwidth_usage_inc(void) 4684 { 4685 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 4686 } 4687 4688 void cfs_bandwidth_usage_dec(void) 4689 { 4690 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 4691 } 4692 #else /* CONFIG_JUMP_LABEL */ 4693 static bool cfs_bandwidth_used(void) 4694 { 4695 return true; 4696 } 4697 4698 void cfs_bandwidth_usage_inc(void) {} 4699 void cfs_bandwidth_usage_dec(void) {} 4700 #endif /* CONFIG_JUMP_LABEL */ 4701 4702 /* 4703 * default period for cfs group bandwidth. 4704 * default: 0.1s, units: nanoseconds 4705 */ 4706 static inline u64 default_cfs_period(void) 4707 { 4708 return 100000000ULL; 4709 } 4710 4711 static inline u64 sched_cfs_bandwidth_slice(void) 4712 { 4713 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 4714 } 4715 4716 /* 4717 * Replenish runtime according to assigned quota. We use sched_clock_cpu 4718 * directly instead of rq->clock to avoid adding additional synchronization 4719 * around rq->lock. 4720 * 4721 * requires cfs_b->lock 4722 */ 4723 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 4724 { 4725 s64 runtime; 4726 4727 if (unlikely(cfs_b->quota == RUNTIME_INF)) 4728 return; 4729 4730 cfs_b->runtime += cfs_b->quota; 4731 runtime = cfs_b->runtime_snap - cfs_b->runtime; 4732 if (runtime > 0) { 4733 cfs_b->burst_time += runtime; 4734 cfs_b->nr_burst++; 4735 } 4736 4737 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 4738 cfs_b->runtime_snap = cfs_b->runtime; 4739 } 4740 4741 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4742 { 4743 return &tg->cfs_bandwidth; 4744 } 4745 4746 /* returns 0 on failure to allocate runtime */ 4747 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 4748 struct cfs_rq *cfs_rq, u64 target_runtime) 4749 { 4750 u64 min_amount, amount = 0; 4751 4752 lockdep_assert_held(&cfs_b->lock); 4753 4754 /* note: this is a positive sum as runtime_remaining <= 0 */ 4755 min_amount = target_runtime - cfs_rq->runtime_remaining; 4756 4757 if (cfs_b->quota == RUNTIME_INF) 4758 amount = min_amount; 4759 else { 4760 start_cfs_bandwidth(cfs_b); 4761 4762 if (cfs_b->runtime > 0) { 4763 amount = min(cfs_b->runtime, min_amount); 4764 cfs_b->runtime -= amount; 4765 cfs_b->idle = 0; 4766 } 4767 } 4768 4769 cfs_rq->runtime_remaining += amount; 4770 4771 return cfs_rq->runtime_remaining > 0; 4772 } 4773 4774 /* returns 0 on failure to allocate runtime */ 4775 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4776 { 4777 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4778 int ret; 4779 4780 raw_spin_lock(&cfs_b->lock); 4781 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 4782 raw_spin_unlock(&cfs_b->lock); 4783 4784 return ret; 4785 } 4786 4787 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4788 { 4789 /* dock delta_exec before expiring quota (as it could span periods) */ 4790 cfs_rq->runtime_remaining -= delta_exec; 4791 4792 if (likely(cfs_rq->runtime_remaining > 0)) 4793 return; 4794 4795 if (cfs_rq->throttled) 4796 return; 4797 /* 4798 * if we're unable to extend our runtime we resched so that the active 4799 * hierarchy can be throttled 4800 */ 4801 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4802 resched_curr(rq_of(cfs_rq)); 4803 } 4804 4805 static __always_inline 4806 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4807 { 4808 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4809 return; 4810 4811 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4812 } 4813 4814 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4815 { 4816 return cfs_bandwidth_used() && cfs_rq->throttled; 4817 } 4818 4819 /* check whether cfs_rq, or any parent, is throttled */ 4820 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4821 { 4822 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4823 } 4824 4825 /* 4826 * Ensure that neither of the group entities corresponding to src_cpu or 4827 * dest_cpu are members of a throttled hierarchy when performing group 4828 * load-balance operations. 4829 */ 4830 static inline int throttled_lb_pair(struct task_group *tg, 4831 int src_cpu, int dest_cpu) 4832 { 4833 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4834 4835 src_cfs_rq = tg->cfs_rq[src_cpu]; 4836 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4837 4838 return throttled_hierarchy(src_cfs_rq) || 4839 throttled_hierarchy(dest_cfs_rq); 4840 } 4841 4842 static int tg_unthrottle_up(struct task_group *tg, void *data) 4843 { 4844 struct rq *rq = data; 4845 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4846 4847 cfs_rq->throttle_count--; 4848 if (!cfs_rq->throttle_count) { 4849 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4850 cfs_rq->throttled_clock_task; 4851 4852 /* Add cfs_rq with load or one or more already running entities to the list */ 4853 if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running) 4854 list_add_leaf_cfs_rq(cfs_rq); 4855 } 4856 4857 return 0; 4858 } 4859 4860 static int tg_throttle_down(struct task_group *tg, void *data) 4861 { 4862 struct rq *rq = data; 4863 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4864 4865 /* group is entering throttled state, stop time */ 4866 if (!cfs_rq->throttle_count) { 4867 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4868 list_del_leaf_cfs_rq(cfs_rq); 4869 } 4870 cfs_rq->throttle_count++; 4871 4872 return 0; 4873 } 4874 4875 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 4876 { 4877 struct rq *rq = rq_of(cfs_rq); 4878 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4879 struct sched_entity *se; 4880 long task_delta, idle_task_delta, dequeue = 1; 4881 4882 raw_spin_lock(&cfs_b->lock); 4883 /* This will start the period timer if necessary */ 4884 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 4885 /* 4886 * We have raced with bandwidth becoming available, and if we 4887 * actually throttled the timer might not unthrottle us for an 4888 * entire period. We additionally needed to make sure that any 4889 * subsequent check_cfs_rq_runtime calls agree not to throttle 4890 * us, as we may commit to do cfs put_prev+pick_next, so we ask 4891 * for 1ns of runtime rather than just check cfs_b. 4892 */ 4893 dequeue = 0; 4894 } else { 4895 list_add_tail_rcu(&cfs_rq->throttled_list, 4896 &cfs_b->throttled_cfs_rq); 4897 } 4898 raw_spin_unlock(&cfs_b->lock); 4899 4900 if (!dequeue) 4901 return false; /* Throttle no longer required. */ 4902 4903 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4904 4905 /* freeze hierarchy runnable averages while throttled */ 4906 rcu_read_lock(); 4907 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4908 rcu_read_unlock(); 4909 4910 task_delta = cfs_rq->h_nr_running; 4911 idle_task_delta = cfs_rq->idle_h_nr_running; 4912 for_each_sched_entity(se) { 4913 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4914 /* throttled entity or throttle-on-deactivate */ 4915 if (!se->on_rq) 4916 goto done; 4917 4918 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4919 4920 if (cfs_rq_is_idle(group_cfs_rq(se))) 4921 idle_task_delta = cfs_rq->h_nr_running; 4922 4923 qcfs_rq->h_nr_running -= task_delta; 4924 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4925 4926 if (qcfs_rq->load.weight) { 4927 /* Avoid re-evaluating load for this entity: */ 4928 se = parent_entity(se); 4929 break; 4930 } 4931 } 4932 4933 for_each_sched_entity(se) { 4934 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4935 /* throttled entity or throttle-on-deactivate */ 4936 if (!se->on_rq) 4937 goto done; 4938 4939 update_load_avg(qcfs_rq, se, 0); 4940 se_update_runnable(se); 4941 4942 if (cfs_rq_is_idle(group_cfs_rq(se))) 4943 idle_task_delta = cfs_rq->h_nr_running; 4944 4945 qcfs_rq->h_nr_running -= task_delta; 4946 qcfs_rq->idle_h_nr_running -= idle_task_delta; 4947 } 4948 4949 /* At this point se is NULL and we are at root level*/ 4950 sub_nr_running(rq, task_delta); 4951 4952 done: 4953 /* 4954 * Note: distribution will already see us throttled via the 4955 * throttled-list. rq->lock protects completion. 4956 */ 4957 cfs_rq->throttled = 1; 4958 cfs_rq->throttled_clock = rq_clock(rq); 4959 return true; 4960 } 4961 4962 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4963 { 4964 struct rq *rq = rq_of(cfs_rq); 4965 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4966 struct sched_entity *se; 4967 long task_delta, idle_task_delta; 4968 4969 se = cfs_rq->tg->se[cpu_of(rq)]; 4970 4971 cfs_rq->throttled = 0; 4972 4973 update_rq_clock(rq); 4974 4975 raw_spin_lock(&cfs_b->lock); 4976 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4977 list_del_rcu(&cfs_rq->throttled_list); 4978 raw_spin_unlock(&cfs_b->lock); 4979 4980 /* update hierarchical throttle state */ 4981 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4982 4983 /* Nothing to run but something to decay (on_list)? Complete the branch */ 4984 if (!cfs_rq->load.weight) { 4985 if (cfs_rq->on_list) 4986 goto unthrottle_throttle; 4987 return; 4988 } 4989 4990 task_delta = cfs_rq->h_nr_running; 4991 idle_task_delta = cfs_rq->idle_h_nr_running; 4992 for_each_sched_entity(se) { 4993 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4994 4995 if (se->on_rq) 4996 break; 4997 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 4998 4999 if (cfs_rq_is_idle(group_cfs_rq(se))) 5000 idle_task_delta = cfs_rq->h_nr_running; 5001 5002 qcfs_rq->h_nr_running += task_delta; 5003 qcfs_rq->idle_h_nr_running += idle_task_delta; 5004 5005 /* end evaluation on encountering a throttled cfs_rq */ 5006 if (cfs_rq_throttled(qcfs_rq)) 5007 goto unthrottle_throttle; 5008 } 5009 5010 for_each_sched_entity(se) { 5011 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5012 5013 update_load_avg(qcfs_rq, se, UPDATE_TG); 5014 se_update_runnable(se); 5015 5016 if (cfs_rq_is_idle(group_cfs_rq(se))) 5017 idle_task_delta = cfs_rq->h_nr_running; 5018 5019 qcfs_rq->h_nr_running += task_delta; 5020 qcfs_rq->idle_h_nr_running += idle_task_delta; 5021 5022 /* end evaluation on encountering a throttled cfs_rq */ 5023 if (cfs_rq_throttled(qcfs_rq)) 5024 goto unthrottle_throttle; 5025 5026 /* 5027 * One parent has been throttled and cfs_rq removed from the 5028 * list. Add it back to not break the leaf list. 5029 */ 5030 if (throttled_hierarchy(qcfs_rq)) 5031 list_add_leaf_cfs_rq(qcfs_rq); 5032 } 5033 5034 /* At this point se is NULL and we are at root level*/ 5035 add_nr_running(rq, task_delta); 5036 5037 unthrottle_throttle: 5038 /* 5039 * The cfs_rq_throttled() breaks in the above iteration can result in 5040 * incomplete leaf list maintenance, resulting in triggering the 5041 * assertion below. 5042 */ 5043 for_each_sched_entity(se) { 5044 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5045 5046 if (list_add_leaf_cfs_rq(qcfs_rq)) 5047 break; 5048 } 5049 5050 assert_list_leaf_cfs_rq(rq); 5051 5052 /* Determine whether we need to wake up potentially idle CPU: */ 5053 if (rq->curr == rq->idle && rq->cfs.nr_running) 5054 resched_curr(rq); 5055 } 5056 5057 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5058 { 5059 struct cfs_rq *cfs_rq; 5060 u64 runtime, remaining = 1; 5061 5062 rcu_read_lock(); 5063 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 5064 throttled_list) { 5065 struct rq *rq = rq_of(cfs_rq); 5066 struct rq_flags rf; 5067 5068 rq_lock_irqsave(rq, &rf); 5069 if (!cfs_rq_throttled(cfs_rq)) 5070 goto next; 5071 5072 /* By the above check, this should never be true */ 5073 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 5074 5075 raw_spin_lock(&cfs_b->lock); 5076 runtime = -cfs_rq->runtime_remaining + 1; 5077 if (runtime > cfs_b->runtime) 5078 runtime = cfs_b->runtime; 5079 cfs_b->runtime -= runtime; 5080 remaining = cfs_b->runtime; 5081 raw_spin_unlock(&cfs_b->lock); 5082 5083 cfs_rq->runtime_remaining += runtime; 5084 5085 /* we check whether we're throttled above */ 5086 if (cfs_rq->runtime_remaining > 0) 5087 unthrottle_cfs_rq(cfs_rq); 5088 5089 next: 5090 rq_unlock_irqrestore(rq, &rf); 5091 5092 if (!remaining) 5093 break; 5094 } 5095 rcu_read_unlock(); 5096 } 5097 5098 /* 5099 * Responsible for refilling a task_group's bandwidth and unthrottling its 5100 * cfs_rqs as appropriate. If there has been no activity within the last 5101 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 5102 * used to track this state. 5103 */ 5104 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 5105 { 5106 int throttled; 5107 5108 /* no need to continue the timer with no bandwidth constraint */ 5109 if (cfs_b->quota == RUNTIME_INF) 5110 goto out_deactivate; 5111 5112 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5113 cfs_b->nr_periods += overrun; 5114 5115 /* Refill extra burst quota even if cfs_b->idle */ 5116 __refill_cfs_bandwidth_runtime(cfs_b); 5117 5118 /* 5119 * idle depends on !throttled (for the case of a large deficit), and if 5120 * we're going inactive then everything else can be deferred 5121 */ 5122 if (cfs_b->idle && !throttled) 5123 goto out_deactivate; 5124 5125 if (!throttled) { 5126 /* mark as potentially idle for the upcoming period */ 5127 cfs_b->idle = 1; 5128 return 0; 5129 } 5130 5131 /* account preceding periods in which throttling occurred */ 5132 cfs_b->nr_throttled += overrun; 5133 5134 /* 5135 * This check is repeated as we release cfs_b->lock while we unthrottle. 5136 */ 5137 while (throttled && cfs_b->runtime > 0) { 5138 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5139 /* we can't nest cfs_b->lock while distributing bandwidth */ 5140 distribute_cfs_runtime(cfs_b); 5141 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5142 5143 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 5144 } 5145 5146 /* 5147 * While we are ensured activity in the period following an 5148 * unthrottle, this also covers the case in which the new bandwidth is 5149 * insufficient to cover the existing bandwidth deficit. (Forcing the 5150 * timer to remain active while there are any throttled entities.) 5151 */ 5152 cfs_b->idle = 0; 5153 5154 return 0; 5155 5156 out_deactivate: 5157 return 1; 5158 } 5159 5160 /* a cfs_rq won't donate quota below this amount */ 5161 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 5162 /* minimum remaining period time to redistribute slack quota */ 5163 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 5164 /* how long we wait to gather additional slack before distributing */ 5165 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 5166 5167 /* 5168 * Are we near the end of the current quota period? 5169 * 5170 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 5171 * hrtimer base being cleared by hrtimer_start. In the case of 5172 * migrate_hrtimers, base is never cleared, so we are fine. 5173 */ 5174 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 5175 { 5176 struct hrtimer *refresh_timer = &cfs_b->period_timer; 5177 s64 remaining; 5178 5179 /* if the call-back is running a quota refresh is already occurring */ 5180 if (hrtimer_callback_running(refresh_timer)) 5181 return 1; 5182 5183 /* is a quota refresh about to occur? */ 5184 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 5185 if (remaining < (s64)min_expire) 5186 return 1; 5187 5188 return 0; 5189 } 5190 5191 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 5192 { 5193 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 5194 5195 /* if there's a quota refresh soon don't bother with slack */ 5196 if (runtime_refresh_within(cfs_b, min_left)) 5197 return; 5198 5199 /* don't push forwards an existing deferred unthrottle */ 5200 if (cfs_b->slack_started) 5201 return; 5202 cfs_b->slack_started = true; 5203 5204 hrtimer_start(&cfs_b->slack_timer, 5205 ns_to_ktime(cfs_bandwidth_slack_period), 5206 HRTIMER_MODE_REL); 5207 } 5208 5209 /* we know any runtime found here is valid as update_curr() precedes return */ 5210 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5211 { 5212 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5213 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 5214 5215 if (slack_runtime <= 0) 5216 return; 5217 5218 raw_spin_lock(&cfs_b->lock); 5219 if (cfs_b->quota != RUNTIME_INF) { 5220 cfs_b->runtime += slack_runtime; 5221 5222 /* we are under rq->lock, defer unthrottling using a timer */ 5223 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 5224 !list_empty(&cfs_b->throttled_cfs_rq)) 5225 start_cfs_slack_bandwidth(cfs_b); 5226 } 5227 raw_spin_unlock(&cfs_b->lock); 5228 5229 /* even if it's not valid for return we don't want to try again */ 5230 cfs_rq->runtime_remaining -= slack_runtime; 5231 } 5232 5233 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5234 { 5235 if (!cfs_bandwidth_used()) 5236 return; 5237 5238 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 5239 return; 5240 5241 __return_cfs_rq_runtime(cfs_rq); 5242 } 5243 5244 /* 5245 * This is done with a timer (instead of inline with bandwidth return) since 5246 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 5247 */ 5248 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 5249 { 5250 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 5251 unsigned long flags; 5252 5253 /* confirm we're still not at a refresh boundary */ 5254 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5255 cfs_b->slack_started = false; 5256 5257 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 5258 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5259 return; 5260 } 5261 5262 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 5263 runtime = cfs_b->runtime; 5264 5265 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5266 5267 if (!runtime) 5268 return; 5269 5270 distribute_cfs_runtime(cfs_b); 5271 } 5272 5273 /* 5274 * When a group wakes up we want to make sure that its quota is not already 5275 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 5276 * runtime as update_curr() throttling can not trigger until it's on-rq. 5277 */ 5278 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 5279 { 5280 if (!cfs_bandwidth_used()) 5281 return; 5282 5283 /* an active group must be handled by the update_curr()->put() path */ 5284 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 5285 return; 5286 5287 /* ensure the group is not already throttled */ 5288 if (cfs_rq_throttled(cfs_rq)) 5289 return; 5290 5291 /* update runtime allocation */ 5292 account_cfs_rq_runtime(cfs_rq, 0); 5293 if (cfs_rq->runtime_remaining <= 0) 5294 throttle_cfs_rq(cfs_rq); 5295 } 5296 5297 static void sync_throttle(struct task_group *tg, int cpu) 5298 { 5299 struct cfs_rq *pcfs_rq, *cfs_rq; 5300 5301 if (!cfs_bandwidth_used()) 5302 return; 5303 5304 if (!tg->parent) 5305 return; 5306 5307 cfs_rq = tg->cfs_rq[cpu]; 5308 pcfs_rq = tg->parent->cfs_rq[cpu]; 5309 5310 cfs_rq->throttle_count = pcfs_rq->throttle_count; 5311 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 5312 } 5313 5314 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 5315 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5316 { 5317 if (!cfs_bandwidth_used()) 5318 return false; 5319 5320 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 5321 return false; 5322 5323 /* 5324 * it's possible for a throttled entity to be forced into a running 5325 * state (e.g. set_curr_task), in this case we're finished. 5326 */ 5327 if (cfs_rq_throttled(cfs_rq)) 5328 return true; 5329 5330 return throttle_cfs_rq(cfs_rq); 5331 } 5332 5333 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 5334 { 5335 struct cfs_bandwidth *cfs_b = 5336 container_of(timer, struct cfs_bandwidth, slack_timer); 5337 5338 do_sched_cfs_slack_timer(cfs_b); 5339 5340 return HRTIMER_NORESTART; 5341 } 5342 5343 extern const u64 max_cfs_quota_period; 5344 5345 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 5346 { 5347 struct cfs_bandwidth *cfs_b = 5348 container_of(timer, struct cfs_bandwidth, period_timer); 5349 unsigned long flags; 5350 int overrun; 5351 int idle = 0; 5352 int count = 0; 5353 5354 raw_spin_lock_irqsave(&cfs_b->lock, flags); 5355 for (;;) { 5356 overrun = hrtimer_forward_now(timer, cfs_b->period); 5357 if (!overrun) 5358 break; 5359 5360 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 5361 5362 if (++count > 3) { 5363 u64 new, old = ktime_to_ns(cfs_b->period); 5364 5365 /* 5366 * Grow period by a factor of 2 to avoid losing precision. 5367 * Precision loss in the quota/period ratio can cause __cfs_schedulable 5368 * to fail. 5369 */ 5370 new = old * 2; 5371 if (new < max_cfs_quota_period) { 5372 cfs_b->period = ns_to_ktime(new); 5373 cfs_b->quota *= 2; 5374 cfs_b->burst *= 2; 5375 5376 pr_warn_ratelimited( 5377 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5378 smp_processor_id(), 5379 div_u64(new, NSEC_PER_USEC), 5380 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5381 } else { 5382 pr_warn_ratelimited( 5383 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 5384 smp_processor_id(), 5385 div_u64(old, NSEC_PER_USEC), 5386 div_u64(cfs_b->quota, NSEC_PER_USEC)); 5387 } 5388 5389 /* reset count so we don't come right back in here */ 5390 count = 0; 5391 } 5392 } 5393 if (idle) 5394 cfs_b->period_active = 0; 5395 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 5396 5397 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 5398 } 5399 5400 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5401 { 5402 raw_spin_lock_init(&cfs_b->lock); 5403 cfs_b->runtime = 0; 5404 cfs_b->quota = RUNTIME_INF; 5405 cfs_b->period = ns_to_ktime(default_cfs_period()); 5406 cfs_b->burst = 0; 5407 5408 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 5409 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 5410 cfs_b->period_timer.function = sched_cfs_period_timer; 5411 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 5412 cfs_b->slack_timer.function = sched_cfs_slack_timer; 5413 cfs_b->slack_started = false; 5414 } 5415 5416 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5417 { 5418 cfs_rq->runtime_enabled = 0; 5419 INIT_LIST_HEAD(&cfs_rq->throttled_list); 5420 } 5421 5422 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5423 { 5424 lockdep_assert_held(&cfs_b->lock); 5425 5426 if (cfs_b->period_active) 5427 return; 5428 5429 cfs_b->period_active = 1; 5430 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 5431 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 5432 } 5433 5434 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 5435 { 5436 /* init_cfs_bandwidth() was not called */ 5437 if (!cfs_b->throttled_cfs_rq.next) 5438 return; 5439 5440 hrtimer_cancel(&cfs_b->period_timer); 5441 hrtimer_cancel(&cfs_b->slack_timer); 5442 } 5443 5444 /* 5445 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 5446 * 5447 * The race is harmless, since modifying bandwidth settings of unhooked group 5448 * bits doesn't do much. 5449 */ 5450 5451 /* cpu online callback */ 5452 static void __maybe_unused update_runtime_enabled(struct rq *rq) 5453 { 5454 struct task_group *tg; 5455 5456 lockdep_assert_rq_held(rq); 5457 5458 rcu_read_lock(); 5459 list_for_each_entry_rcu(tg, &task_groups, list) { 5460 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 5461 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5462 5463 raw_spin_lock(&cfs_b->lock); 5464 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 5465 raw_spin_unlock(&cfs_b->lock); 5466 } 5467 rcu_read_unlock(); 5468 } 5469 5470 /* cpu offline callback */ 5471 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 5472 { 5473 struct task_group *tg; 5474 5475 lockdep_assert_rq_held(rq); 5476 5477 rcu_read_lock(); 5478 list_for_each_entry_rcu(tg, &task_groups, list) { 5479 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5480 5481 if (!cfs_rq->runtime_enabled) 5482 continue; 5483 5484 /* 5485 * clock_task is not advancing so we just need to make sure 5486 * there's some valid quota amount 5487 */ 5488 cfs_rq->runtime_remaining = 1; 5489 /* 5490 * Offline rq is schedulable till CPU is completely disabled 5491 * in take_cpu_down(), so we prevent new cfs throttling here. 5492 */ 5493 cfs_rq->runtime_enabled = 0; 5494 5495 if (cfs_rq_throttled(cfs_rq)) 5496 unthrottle_cfs_rq(cfs_rq); 5497 } 5498 rcu_read_unlock(); 5499 } 5500 5501 #else /* CONFIG_CFS_BANDWIDTH */ 5502 5503 static inline bool cfs_bandwidth_used(void) 5504 { 5505 return false; 5506 } 5507 5508 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 5509 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 5510 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 5511 static inline void sync_throttle(struct task_group *tg, int cpu) {} 5512 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5513 5514 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5515 { 5516 return 0; 5517 } 5518 5519 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5520 { 5521 return 0; 5522 } 5523 5524 static inline int throttled_lb_pair(struct task_group *tg, 5525 int src_cpu, int dest_cpu) 5526 { 5527 return 0; 5528 } 5529 5530 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5531 5532 #ifdef CONFIG_FAIR_GROUP_SCHED 5533 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 5534 #endif 5535 5536 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5537 { 5538 return NULL; 5539 } 5540 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 5541 static inline void update_runtime_enabled(struct rq *rq) {} 5542 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 5543 5544 #endif /* CONFIG_CFS_BANDWIDTH */ 5545 5546 /************************************************** 5547 * CFS operations on tasks: 5548 */ 5549 5550 #ifdef CONFIG_SCHED_HRTICK 5551 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 5552 { 5553 struct sched_entity *se = &p->se; 5554 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5555 5556 SCHED_WARN_ON(task_rq(p) != rq); 5557 5558 if (rq->cfs.h_nr_running > 1) { 5559 u64 slice = sched_slice(cfs_rq, se); 5560 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 5561 s64 delta = slice - ran; 5562 5563 if (delta < 0) { 5564 if (task_current(rq, p)) 5565 resched_curr(rq); 5566 return; 5567 } 5568 hrtick_start(rq, delta); 5569 } 5570 } 5571 5572 /* 5573 * called from enqueue/dequeue and updates the hrtick when the 5574 * current task is from our class and nr_running is low enough 5575 * to matter. 5576 */ 5577 static void hrtick_update(struct rq *rq) 5578 { 5579 struct task_struct *curr = rq->curr; 5580 5581 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 5582 return; 5583 5584 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 5585 hrtick_start_fair(rq, curr); 5586 } 5587 #else /* !CONFIG_SCHED_HRTICK */ 5588 static inline void 5589 hrtick_start_fair(struct rq *rq, struct task_struct *p) 5590 { 5591 } 5592 5593 static inline void hrtick_update(struct rq *rq) 5594 { 5595 } 5596 #endif 5597 5598 #ifdef CONFIG_SMP 5599 static inline bool cpu_overutilized(int cpu) 5600 { 5601 return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu)); 5602 } 5603 5604 static inline void update_overutilized_status(struct rq *rq) 5605 { 5606 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 5607 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 5608 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 5609 } 5610 } 5611 #else 5612 static inline void update_overutilized_status(struct rq *rq) { } 5613 #endif 5614 5615 /* Runqueue only has SCHED_IDLE tasks enqueued */ 5616 static int sched_idle_rq(struct rq *rq) 5617 { 5618 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 5619 rq->nr_running); 5620 } 5621 5622 /* 5623 * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use 5624 * of idle_nr_running, which does not consider idle descendants of normal 5625 * entities. 5626 */ 5627 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq) 5628 { 5629 return cfs_rq->nr_running && 5630 cfs_rq->nr_running == cfs_rq->idle_nr_running; 5631 } 5632 5633 #ifdef CONFIG_SMP 5634 static int sched_idle_cpu(int cpu) 5635 { 5636 return sched_idle_rq(cpu_rq(cpu)); 5637 } 5638 #endif 5639 5640 /* 5641 * The enqueue_task method is called before nr_running is 5642 * increased. Here we update the fair scheduling stats and 5643 * then put the task into the rbtree: 5644 */ 5645 static void 5646 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5647 { 5648 struct cfs_rq *cfs_rq; 5649 struct sched_entity *se = &p->se; 5650 int idle_h_nr_running = task_has_idle_policy(p); 5651 int task_new = !(flags & ENQUEUE_WAKEUP); 5652 5653 /* 5654 * The code below (indirectly) updates schedutil which looks at 5655 * the cfs_rq utilization to select a frequency. 5656 * Let's add the task's estimated utilization to the cfs_rq's 5657 * estimated utilization, before we update schedutil. 5658 */ 5659 util_est_enqueue(&rq->cfs, p); 5660 5661 /* 5662 * If in_iowait is set, the code below may not trigger any cpufreq 5663 * utilization updates, so do it here explicitly with the IOWAIT flag 5664 * passed. 5665 */ 5666 if (p->in_iowait) 5667 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 5668 5669 for_each_sched_entity(se) { 5670 if (se->on_rq) 5671 break; 5672 cfs_rq = cfs_rq_of(se); 5673 enqueue_entity(cfs_rq, se, flags); 5674 5675 cfs_rq->h_nr_running++; 5676 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5677 5678 if (cfs_rq_is_idle(cfs_rq)) 5679 idle_h_nr_running = 1; 5680 5681 /* end evaluation on encountering a throttled cfs_rq */ 5682 if (cfs_rq_throttled(cfs_rq)) 5683 goto enqueue_throttle; 5684 5685 flags = ENQUEUE_WAKEUP; 5686 } 5687 5688 for_each_sched_entity(se) { 5689 cfs_rq = cfs_rq_of(se); 5690 5691 update_load_avg(cfs_rq, se, UPDATE_TG); 5692 se_update_runnable(se); 5693 update_cfs_group(se); 5694 5695 cfs_rq->h_nr_running++; 5696 cfs_rq->idle_h_nr_running += idle_h_nr_running; 5697 5698 if (cfs_rq_is_idle(cfs_rq)) 5699 idle_h_nr_running = 1; 5700 5701 /* end evaluation on encountering a throttled cfs_rq */ 5702 if (cfs_rq_throttled(cfs_rq)) 5703 goto enqueue_throttle; 5704 5705 /* 5706 * One parent has been throttled and cfs_rq removed from the 5707 * list. Add it back to not break the leaf list. 5708 */ 5709 if (throttled_hierarchy(cfs_rq)) 5710 list_add_leaf_cfs_rq(cfs_rq); 5711 } 5712 5713 /* At this point se is NULL and we are at root level*/ 5714 add_nr_running(rq, 1); 5715 5716 /* 5717 * Since new tasks are assigned an initial util_avg equal to 5718 * half of the spare capacity of their CPU, tiny tasks have the 5719 * ability to cross the overutilized threshold, which will 5720 * result in the load balancer ruining all the task placement 5721 * done by EAS. As a way to mitigate that effect, do not account 5722 * for the first enqueue operation of new tasks during the 5723 * overutilized flag detection. 5724 * 5725 * A better way of solving this problem would be to wait for 5726 * the PELT signals of tasks to converge before taking them 5727 * into account, but that is not straightforward to implement, 5728 * and the following generally works well enough in practice. 5729 */ 5730 if (!task_new) 5731 update_overutilized_status(rq); 5732 5733 enqueue_throttle: 5734 if (cfs_bandwidth_used()) { 5735 /* 5736 * When bandwidth control is enabled; the cfs_rq_throttled() 5737 * breaks in the above iteration can result in incomplete 5738 * leaf list maintenance, resulting in triggering the assertion 5739 * below. 5740 */ 5741 for_each_sched_entity(se) { 5742 cfs_rq = cfs_rq_of(se); 5743 5744 if (list_add_leaf_cfs_rq(cfs_rq)) 5745 break; 5746 } 5747 } 5748 5749 assert_list_leaf_cfs_rq(rq); 5750 5751 hrtick_update(rq); 5752 } 5753 5754 static void set_next_buddy(struct sched_entity *se); 5755 5756 /* 5757 * The dequeue_task method is called before nr_running is 5758 * decreased. We remove the task from the rbtree and 5759 * update the fair scheduling stats: 5760 */ 5761 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 5762 { 5763 struct cfs_rq *cfs_rq; 5764 struct sched_entity *se = &p->se; 5765 int task_sleep = flags & DEQUEUE_SLEEP; 5766 int idle_h_nr_running = task_has_idle_policy(p); 5767 bool was_sched_idle = sched_idle_rq(rq); 5768 5769 util_est_dequeue(&rq->cfs, p); 5770 5771 for_each_sched_entity(se) { 5772 cfs_rq = cfs_rq_of(se); 5773 dequeue_entity(cfs_rq, se, flags); 5774 5775 cfs_rq->h_nr_running--; 5776 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5777 5778 if (cfs_rq_is_idle(cfs_rq)) 5779 idle_h_nr_running = 1; 5780 5781 /* end evaluation on encountering a throttled cfs_rq */ 5782 if (cfs_rq_throttled(cfs_rq)) 5783 goto dequeue_throttle; 5784 5785 /* Don't dequeue parent if it has other entities besides us */ 5786 if (cfs_rq->load.weight) { 5787 /* Avoid re-evaluating load for this entity: */ 5788 se = parent_entity(se); 5789 /* 5790 * Bias pick_next to pick a task from this cfs_rq, as 5791 * p is sleeping when it is within its sched_slice. 5792 */ 5793 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 5794 set_next_buddy(se); 5795 break; 5796 } 5797 flags |= DEQUEUE_SLEEP; 5798 } 5799 5800 for_each_sched_entity(se) { 5801 cfs_rq = cfs_rq_of(se); 5802 5803 update_load_avg(cfs_rq, se, UPDATE_TG); 5804 se_update_runnable(se); 5805 update_cfs_group(se); 5806 5807 cfs_rq->h_nr_running--; 5808 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 5809 5810 if (cfs_rq_is_idle(cfs_rq)) 5811 idle_h_nr_running = 1; 5812 5813 /* end evaluation on encountering a throttled cfs_rq */ 5814 if (cfs_rq_throttled(cfs_rq)) 5815 goto dequeue_throttle; 5816 5817 } 5818 5819 /* At this point se is NULL and we are at root level*/ 5820 sub_nr_running(rq, 1); 5821 5822 /* balance early to pull high priority tasks */ 5823 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 5824 rq->next_balance = jiffies; 5825 5826 dequeue_throttle: 5827 util_est_update(&rq->cfs, p, task_sleep); 5828 hrtick_update(rq); 5829 } 5830 5831 #ifdef CONFIG_SMP 5832 5833 /* Working cpumask for: load_balance, load_balance_newidle. */ 5834 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 5835 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 5836 5837 #ifdef CONFIG_NO_HZ_COMMON 5838 5839 static struct { 5840 cpumask_var_t idle_cpus_mask; 5841 atomic_t nr_cpus; 5842 int has_blocked; /* Idle CPUS has blocked load */ 5843 int needs_update; /* Newly idle CPUs need their next_balance collated */ 5844 unsigned long next_balance; /* in jiffy units */ 5845 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 5846 } nohz ____cacheline_aligned; 5847 5848 #endif /* CONFIG_NO_HZ_COMMON */ 5849 5850 static unsigned long cpu_load(struct rq *rq) 5851 { 5852 return cfs_rq_load_avg(&rq->cfs); 5853 } 5854 5855 /* 5856 * cpu_load_without - compute CPU load without any contributions from *p 5857 * @cpu: the CPU which load is requested 5858 * @p: the task which load should be discounted 5859 * 5860 * The load of a CPU is defined by the load of tasks currently enqueued on that 5861 * CPU as well as tasks which are currently sleeping after an execution on that 5862 * CPU. 5863 * 5864 * This method returns the load of the specified CPU by discounting the load of 5865 * the specified task, whenever the task is currently contributing to the CPU 5866 * load. 5867 */ 5868 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 5869 { 5870 struct cfs_rq *cfs_rq; 5871 unsigned int load; 5872 5873 /* Task has no contribution or is new */ 5874 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5875 return cpu_load(rq); 5876 5877 cfs_rq = &rq->cfs; 5878 load = READ_ONCE(cfs_rq->avg.load_avg); 5879 5880 /* Discount task's util from CPU's util */ 5881 lsub_positive(&load, task_h_load(p)); 5882 5883 return load; 5884 } 5885 5886 static unsigned long cpu_runnable(struct rq *rq) 5887 { 5888 return cfs_rq_runnable_avg(&rq->cfs); 5889 } 5890 5891 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 5892 { 5893 struct cfs_rq *cfs_rq; 5894 unsigned int runnable; 5895 5896 /* Task has no contribution or is new */ 5897 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 5898 return cpu_runnable(rq); 5899 5900 cfs_rq = &rq->cfs; 5901 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 5902 5903 /* Discount task's runnable from CPU's runnable */ 5904 lsub_positive(&runnable, p->se.avg.runnable_avg); 5905 5906 return runnable; 5907 } 5908 5909 static unsigned long capacity_of(int cpu) 5910 { 5911 return cpu_rq(cpu)->cpu_capacity; 5912 } 5913 5914 static void record_wakee(struct task_struct *p) 5915 { 5916 /* 5917 * Only decay a single time; tasks that have less then 1 wakeup per 5918 * jiffy will not have built up many flips. 5919 */ 5920 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5921 current->wakee_flips >>= 1; 5922 current->wakee_flip_decay_ts = jiffies; 5923 } 5924 5925 if (current->last_wakee != p) { 5926 current->last_wakee = p; 5927 current->wakee_flips++; 5928 } 5929 } 5930 5931 /* 5932 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5933 * 5934 * A waker of many should wake a different task than the one last awakened 5935 * at a frequency roughly N times higher than one of its wakees. 5936 * 5937 * In order to determine whether we should let the load spread vs consolidating 5938 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5939 * partner, and a factor of lls_size higher frequency in the other. 5940 * 5941 * With both conditions met, we can be relatively sure that the relationship is 5942 * non-monogamous, with partner count exceeding socket size. 5943 * 5944 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5945 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5946 * socket size. 5947 */ 5948 static int wake_wide(struct task_struct *p) 5949 { 5950 unsigned int master = current->wakee_flips; 5951 unsigned int slave = p->wakee_flips; 5952 int factor = __this_cpu_read(sd_llc_size); 5953 5954 if (master < slave) 5955 swap(master, slave); 5956 if (slave < factor || master < slave * factor) 5957 return 0; 5958 return 1; 5959 } 5960 5961 /* 5962 * The purpose of wake_affine() is to quickly determine on which CPU we can run 5963 * soonest. For the purpose of speed we only consider the waking and previous 5964 * CPU. 5965 * 5966 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 5967 * cache-affine and is (or will be) idle. 5968 * 5969 * wake_affine_weight() - considers the weight to reflect the average 5970 * scheduling latency of the CPUs. This seems to work 5971 * for the overloaded case. 5972 */ 5973 static int 5974 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 5975 { 5976 /* 5977 * If this_cpu is idle, it implies the wakeup is from interrupt 5978 * context. Only allow the move if cache is shared. Otherwise an 5979 * interrupt intensive workload could force all tasks onto one 5980 * node depending on the IO topology or IRQ affinity settings. 5981 * 5982 * If the prev_cpu is idle and cache affine then avoid a migration. 5983 * There is no guarantee that the cache hot data from an interrupt 5984 * is more important than cache hot data on the prev_cpu and from 5985 * a cpufreq perspective, it's better to have higher utilisation 5986 * on one CPU. 5987 */ 5988 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 5989 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 5990 5991 if (sync && cpu_rq(this_cpu)->nr_running == 1) 5992 return this_cpu; 5993 5994 if (available_idle_cpu(prev_cpu)) 5995 return prev_cpu; 5996 5997 return nr_cpumask_bits; 5998 } 5999 6000 static int 6001 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 6002 int this_cpu, int prev_cpu, int sync) 6003 { 6004 s64 this_eff_load, prev_eff_load; 6005 unsigned long task_load; 6006 6007 this_eff_load = cpu_load(cpu_rq(this_cpu)); 6008 6009 if (sync) { 6010 unsigned long current_load = task_h_load(current); 6011 6012 if (current_load > this_eff_load) 6013 return this_cpu; 6014 6015 this_eff_load -= current_load; 6016 } 6017 6018 task_load = task_h_load(p); 6019 6020 this_eff_load += task_load; 6021 if (sched_feat(WA_BIAS)) 6022 this_eff_load *= 100; 6023 this_eff_load *= capacity_of(prev_cpu); 6024 6025 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 6026 prev_eff_load -= task_load; 6027 if (sched_feat(WA_BIAS)) 6028 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 6029 prev_eff_load *= capacity_of(this_cpu); 6030 6031 /* 6032 * If sync, adjust the weight of prev_eff_load such that if 6033 * prev_eff == this_eff that select_idle_sibling() will consider 6034 * stacking the wakee on top of the waker if no other CPU is 6035 * idle. 6036 */ 6037 if (sync) 6038 prev_eff_load += 1; 6039 6040 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 6041 } 6042 6043 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 6044 int this_cpu, int prev_cpu, int sync) 6045 { 6046 int target = nr_cpumask_bits; 6047 6048 if (sched_feat(WA_IDLE)) 6049 target = wake_affine_idle(this_cpu, prev_cpu, sync); 6050 6051 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 6052 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 6053 6054 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 6055 if (target == nr_cpumask_bits) 6056 return prev_cpu; 6057 6058 schedstat_inc(sd->ttwu_move_affine); 6059 schedstat_inc(p->stats.nr_wakeups_affine); 6060 return target; 6061 } 6062 6063 static struct sched_group * 6064 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 6065 6066 /* 6067 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 6068 */ 6069 static int 6070 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 6071 { 6072 unsigned long load, min_load = ULONG_MAX; 6073 unsigned int min_exit_latency = UINT_MAX; 6074 u64 latest_idle_timestamp = 0; 6075 int least_loaded_cpu = this_cpu; 6076 int shallowest_idle_cpu = -1; 6077 int i; 6078 6079 /* Check if we have any choice: */ 6080 if (group->group_weight == 1) 6081 return cpumask_first(sched_group_span(group)); 6082 6083 /* Traverse only the allowed CPUs */ 6084 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 6085 struct rq *rq = cpu_rq(i); 6086 6087 if (!sched_core_cookie_match(rq, p)) 6088 continue; 6089 6090 if (sched_idle_cpu(i)) 6091 return i; 6092 6093 if (available_idle_cpu(i)) { 6094 struct cpuidle_state *idle = idle_get_state(rq); 6095 if (idle && idle->exit_latency < min_exit_latency) { 6096 /* 6097 * We give priority to a CPU whose idle state 6098 * has the smallest exit latency irrespective 6099 * of any idle timestamp. 6100 */ 6101 min_exit_latency = idle->exit_latency; 6102 latest_idle_timestamp = rq->idle_stamp; 6103 shallowest_idle_cpu = i; 6104 } else if ((!idle || idle->exit_latency == min_exit_latency) && 6105 rq->idle_stamp > latest_idle_timestamp) { 6106 /* 6107 * If equal or no active idle state, then 6108 * the most recently idled CPU might have 6109 * a warmer cache. 6110 */ 6111 latest_idle_timestamp = rq->idle_stamp; 6112 shallowest_idle_cpu = i; 6113 } 6114 } else if (shallowest_idle_cpu == -1) { 6115 load = cpu_load(cpu_rq(i)); 6116 if (load < min_load) { 6117 min_load = load; 6118 least_loaded_cpu = i; 6119 } 6120 } 6121 } 6122 6123 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 6124 } 6125 6126 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 6127 int cpu, int prev_cpu, int sd_flag) 6128 { 6129 int new_cpu = cpu; 6130 6131 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 6132 return prev_cpu; 6133 6134 /* 6135 * We need task's util for cpu_util_without, sync it up to 6136 * prev_cpu's last_update_time. 6137 */ 6138 if (!(sd_flag & SD_BALANCE_FORK)) 6139 sync_entity_load_avg(&p->se); 6140 6141 while (sd) { 6142 struct sched_group *group; 6143 struct sched_domain *tmp; 6144 int weight; 6145 6146 if (!(sd->flags & sd_flag)) { 6147 sd = sd->child; 6148 continue; 6149 } 6150 6151 group = find_idlest_group(sd, p, cpu); 6152 if (!group) { 6153 sd = sd->child; 6154 continue; 6155 } 6156 6157 new_cpu = find_idlest_group_cpu(group, p, cpu); 6158 if (new_cpu == cpu) { 6159 /* Now try balancing at a lower domain level of 'cpu': */ 6160 sd = sd->child; 6161 continue; 6162 } 6163 6164 /* Now try balancing at a lower domain level of 'new_cpu': */ 6165 cpu = new_cpu; 6166 weight = sd->span_weight; 6167 sd = NULL; 6168 for_each_domain(cpu, tmp) { 6169 if (weight <= tmp->span_weight) 6170 break; 6171 if (tmp->flags & sd_flag) 6172 sd = tmp; 6173 } 6174 } 6175 6176 return new_cpu; 6177 } 6178 6179 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 6180 { 6181 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 6182 sched_cpu_cookie_match(cpu_rq(cpu), p)) 6183 return cpu; 6184 6185 return -1; 6186 } 6187 6188 #ifdef CONFIG_SCHED_SMT 6189 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 6190 EXPORT_SYMBOL_GPL(sched_smt_present); 6191 6192 static inline void set_idle_cores(int cpu, int val) 6193 { 6194 struct sched_domain_shared *sds; 6195 6196 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6197 if (sds) 6198 WRITE_ONCE(sds->has_idle_cores, val); 6199 } 6200 6201 static inline bool test_idle_cores(int cpu, bool def) 6202 { 6203 struct sched_domain_shared *sds; 6204 6205 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 6206 if (sds) 6207 return READ_ONCE(sds->has_idle_cores); 6208 6209 return def; 6210 } 6211 6212 /* 6213 * Scans the local SMT mask to see if the entire core is idle, and records this 6214 * information in sd_llc_shared->has_idle_cores. 6215 * 6216 * Since SMT siblings share all cache levels, inspecting this limited remote 6217 * state should be fairly cheap. 6218 */ 6219 void __update_idle_core(struct rq *rq) 6220 { 6221 int core = cpu_of(rq); 6222 int cpu; 6223 6224 rcu_read_lock(); 6225 if (test_idle_cores(core, true)) 6226 goto unlock; 6227 6228 for_each_cpu(cpu, cpu_smt_mask(core)) { 6229 if (cpu == core) 6230 continue; 6231 6232 if (!available_idle_cpu(cpu)) 6233 goto unlock; 6234 } 6235 6236 set_idle_cores(core, 1); 6237 unlock: 6238 rcu_read_unlock(); 6239 } 6240 6241 /* 6242 * Scan the entire LLC domain for idle cores; this dynamically switches off if 6243 * there are no idle cores left in the system; tracked through 6244 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 6245 */ 6246 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6247 { 6248 bool idle = true; 6249 int cpu; 6250 6251 if (!static_branch_likely(&sched_smt_present)) 6252 return __select_idle_cpu(core, p); 6253 6254 for_each_cpu(cpu, cpu_smt_mask(core)) { 6255 if (!available_idle_cpu(cpu)) { 6256 idle = false; 6257 if (*idle_cpu == -1) { 6258 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 6259 *idle_cpu = cpu; 6260 break; 6261 } 6262 continue; 6263 } 6264 break; 6265 } 6266 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 6267 *idle_cpu = cpu; 6268 } 6269 6270 if (idle) 6271 return core; 6272 6273 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 6274 return -1; 6275 } 6276 6277 /* 6278 * Scan the local SMT mask for idle CPUs. 6279 */ 6280 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6281 { 6282 int cpu; 6283 6284 for_each_cpu(cpu, cpu_smt_mask(target)) { 6285 if (!cpumask_test_cpu(cpu, p->cpus_ptr) || 6286 !cpumask_test_cpu(cpu, sched_domain_span(sd))) 6287 continue; 6288 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 6289 return cpu; 6290 } 6291 6292 return -1; 6293 } 6294 6295 #else /* CONFIG_SCHED_SMT */ 6296 6297 static inline void set_idle_cores(int cpu, int val) 6298 { 6299 } 6300 6301 static inline bool test_idle_cores(int cpu, bool def) 6302 { 6303 return def; 6304 } 6305 6306 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 6307 { 6308 return __select_idle_cpu(core, p); 6309 } 6310 6311 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 6312 { 6313 return -1; 6314 } 6315 6316 #endif /* CONFIG_SCHED_SMT */ 6317 6318 /* 6319 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 6320 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 6321 * average idle time for this rq (as found in rq->avg_idle). 6322 */ 6323 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 6324 { 6325 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6326 int i, cpu, idle_cpu = -1, nr = INT_MAX; 6327 struct rq *this_rq = this_rq(); 6328 int this = smp_processor_id(); 6329 struct sched_domain *this_sd; 6330 u64 time = 0; 6331 6332 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 6333 if (!this_sd) 6334 return -1; 6335 6336 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6337 6338 if (sched_feat(SIS_PROP) && !has_idle_core) { 6339 u64 avg_cost, avg_idle, span_avg; 6340 unsigned long now = jiffies; 6341 6342 /* 6343 * If we're busy, the assumption that the last idle period 6344 * predicts the future is flawed; age away the remaining 6345 * predicted idle time. 6346 */ 6347 if (unlikely(this_rq->wake_stamp < now)) { 6348 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) { 6349 this_rq->wake_stamp++; 6350 this_rq->wake_avg_idle >>= 1; 6351 } 6352 } 6353 6354 avg_idle = this_rq->wake_avg_idle; 6355 avg_cost = this_sd->avg_scan_cost + 1; 6356 6357 span_avg = sd->span_weight * avg_idle; 6358 if (span_avg > 4*avg_cost) 6359 nr = div_u64(span_avg, avg_cost); 6360 else 6361 nr = 4; 6362 6363 time = cpu_clock(this); 6364 } 6365 6366 for_each_cpu_wrap(cpu, cpus, target + 1) { 6367 if (has_idle_core) { 6368 i = select_idle_core(p, cpu, cpus, &idle_cpu); 6369 if ((unsigned int)i < nr_cpumask_bits) 6370 return i; 6371 6372 } else { 6373 if (!--nr) 6374 return -1; 6375 idle_cpu = __select_idle_cpu(cpu, p); 6376 if ((unsigned int)idle_cpu < nr_cpumask_bits) 6377 break; 6378 } 6379 } 6380 6381 if (has_idle_core) 6382 set_idle_cores(target, false); 6383 6384 if (sched_feat(SIS_PROP) && !has_idle_core) { 6385 time = cpu_clock(this) - time; 6386 6387 /* 6388 * Account for the scan cost of wakeups against the average 6389 * idle time. 6390 */ 6391 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time); 6392 6393 update_avg(&this_sd->avg_scan_cost, time); 6394 } 6395 6396 return idle_cpu; 6397 } 6398 6399 /* 6400 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 6401 * the task fits. If no CPU is big enough, but there are idle ones, try to 6402 * maximize capacity. 6403 */ 6404 static int 6405 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 6406 { 6407 unsigned long task_util, best_cap = 0; 6408 int cpu, best_cpu = -1; 6409 struct cpumask *cpus; 6410 6411 cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 6412 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 6413 6414 task_util = uclamp_task_util(p); 6415 6416 for_each_cpu_wrap(cpu, cpus, target) { 6417 unsigned long cpu_cap = capacity_of(cpu); 6418 6419 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 6420 continue; 6421 if (fits_capacity(task_util, cpu_cap)) 6422 return cpu; 6423 6424 if (cpu_cap > best_cap) { 6425 best_cap = cpu_cap; 6426 best_cpu = cpu; 6427 } 6428 } 6429 6430 return best_cpu; 6431 } 6432 6433 static inline bool asym_fits_capacity(unsigned long task_util, int cpu) 6434 { 6435 if (static_branch_unlikely(&sched_asym_cpucapacity)) 6436 return fits_capacity(task_util, capacity_of(cpu)); 6437 6438 return true; 6439 } 6440 6441 /* 6442 * Try and locate an idle core/thread in the LLC cache domain. 6443 */ 6444 static int select_idle_sibling(struct task_struct *p, int prev, int target) 6445 { 6446 bool has_idle_core = false; 6447 struct sched_domain *sd; 6448 unsigned long task_util; 6449 int i, recent_used_cpu; 6450 6451 /* 6452 * On asymmetric system, update task utilization because we will check 6453 * that the task fits with cpu's capacity. 6454 */ 6455 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6456 sync_entity_load_avg(&p->se); 6457 task_util = uclamp_task_util(p); 6458 } 6459 6460 /* 6461 * per-cpu select_idle_mask usage 6462 */ 6463 lockdep_assert_irqs_disabled(); 6464 6465 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 6466 asym_fits_capacity(task_util, target)) 6467 return target; 6468 6469 /* 6470 * If the previous CPU is cache affine and idle, don't be stupid: 6471 */ 6472 if (prev != target && cpus_share_cache(prev, target) && 6473 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 6474 asym_fits_capacity(task_util, prev)) 6475 return prev; 6476 6477 /* 6478 * Allow a per-cpu kthread to stack with the wakee if the 6479 * kworker thread and the tasks previous CPUs are the same. 6480 * The assumption is that the wakee queued work for the 6481 * per-cpu kthread that is now complete and the wakeup is 6482 * essentially a sync wakeup. An obvious example of this 6483 * pattern is IO completions. 6484 */ 6485 if (is_per_cpu_kthread(current) && 6486 in_task() && 6487 prev == smp_processor_id() && 6488 this_rq()->nr_running <= 1 && 6489 asym_fits_capacity(task_util, prev)) { 6490 return prev; 6491 } 6492 6493 /* Check a recently used CPU as a potential idle candidate: */ 6494 recent_used_cpu = p->recent_used_cpu; 6495 p->recent_used_cpu = prev; 6496 if (recent_used_cpu != prev && 6497 recent_used_cpu != target && 6498 cpus_share_cache(recent_used_cpu, target) && 6499 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 6500 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) && 6501 asym_fits_capacity(task_util, recent_used_cpu)) { 6502 return recent_used_cpu; 6503 } 6504 6505 /* 6506 * For asymmetric CPU capacity systems, our domain of interest is 6507 * sd_asym_cpucapacity rather than sd_llc. 6508 */ 6509 if (static_branch_unlikely(&sched_asym_cpucapacity)) { 6510 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 6511 /* 6512 * On an asymmetric CPU capacity system where an exclusive 6513 * cpuset defines a symmetric island (i.e. one unique 6514 * capacity_orig value through the cpuset), the key will be set 6515 * but the CPUs within that cpuset will not have a domain with 6516 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 6517 * capacity path. 6518 */ 6519 if (sd) { 6520 i = select_idle_capacity(p, sd, target); 6521 return ((unsigned)i < nr_cpumask_bits) ? i : target; 6522 } 6523 } 6524 6525 sd = rcu_dereference(per_cpu(sd_llc, target)); 6526 if (!sd) 6527 return target; 6528 6529 if (sched_smt_active()) { 6530 has_idle_core = test_idle_cores(target, false); 6531 6532 if (!has_idle_core && cpus_share_cache(prev, target)) { 6533 i = select_idle_smt(p, sd, prev); 6534 if ((unsigned int)i < nr_cpumask_bits) 6535 return i; 6536 } 6537 } 6538 6539 i = select_idle_cpu(p, sd, has_idle_core, target); 6540 if ((unsigned)i < nr_cpumask_bits) 6541 return i; 6542 6543 return target; 6544 } 6545 6546 /* 6547 * cpu_util_without: compute cpu utilization without any contributions from *p 6548 * @cpu: the CPU which utilization is requested 6549 * @p: the task which utilization should be discounted 6550 * 6551 * The utilization of a CPU is defined by the utilization of tasks currently 6552 * enqueued on that CPU as well as tasks which are currently sleeping after an 6553 * execution on that CPU. 6554 * 6555 * This method returns the utilization of the specified CPU by discounting the 6556 * utilization of the specified task, whenever the task is currently 6557 * contributing to the CPU utilization. 6558 */ 6559 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 6560 { 6561 struct cfs_rq *cfs_rq; 6562 unsigned int util; 6563 6564 /* Task has no contribution or is new */ 6565 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6566 return cpu_util_cfs(cpu); 6567 6568 cfs_rq = &cpu_rq(cpu)->cfs; 6569 util = READ_ONCE(cfs_rq->avg.util_avg); 6570 6571 /* Discount task's util from CPU's util */ 6572 lsub_positive(&util, task_util(p)); 6573 6574 /* 6575 * Covered cases: 6576 * 6577 * a) if *p is the only task sleeping on this CPU, then: 6578 * cpu_util (== task_util) > util_est (== 0) 6579 * and thus we return: 6580 * cpu_util_without = (cpu_util - task_util) = 0 6581 * 6582 * b) if other tasks are SLEEPING on this CPU, which is now exiting 6583 * IDLE, then: 6584 * cpu_util >= task_util 6585 * cpu_util > util_est (== 0) 6586 * and thus we discount *p's blocked utilization to return: 6587 * cpu_util_without = (cpu_util - task_util) >= 0 6588 * 6589 * c) if other tasks are RUNNABLE on that CPU and 6590 * util_est > cpu_util 6591 * then we use util_est since it returns a more restrictive 6592 * estimation of the spare capacity on that CPU, by just 6593 * considering the expected utilization of tasks already 6594 * runnable on that CPU. 6595 * 6596 * Cases a) and b) are covered by the above code, while case c) is 6597 * covered by the following code when estimated utilization is 6598 * enabled. 6599 */ 6600 if (sched_feat(UTIL_EST)) { 6601 unsigned int estimated = 6602 READ_ONCE(cfs_rq->avg.util_est.enqueued); 6603 6604 /* 6605 * Despite the following checks we still have a small window 6606 * for a possible race, when an execl's select_task_rq_fair() 6607 * races with LB's detach_task(): 6608 * 6609 * detach_task() 6610 * p->on_rq = TASK_ON_RQ_MIGRATING; 6611 * ---------------------------------- A 6612 * deactivate_task() \ 6613 * dequeue_task() + RaceTime 6614 * util_est_dequeue() / 6615 * ---------------------------------- B 6616 * 6617 * The additional check on "current == p" it's required to 6618 * properly fix the execl regression and it helps in further 6619 * reducing the chances for the above race. 6620 */ 6621 if (unlikely(task_on_rq_queued(p) || current == p)) 6622 lsub_positive(&estimated, _task_util_est(p)); 6623 6624 util = max(util, estimated); 6625 } 6626 6627 /* 6628 * Utilization (estimated) can exceed the CPU capacity, thus let's 6629 * clamp to the maximum CPU capacity to ensure consistency with 6630 * cpu_util. 6631 */ 6632 return min_t(unsigned long, util, capacity_orig_of(cpu)); 6633 } 6634 6635 /* 6636 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued) 6637 * to @dst_cpu. 6638 */ 6639 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu) 6640 { 6641 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 6642 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg); 6643 6644 /* 6645 * If @p migrates from @cpu to another, remove its contribution. Or, 6646 * if @p migrates from another CPU to @cpu, add its contribution. In 6647 * the other cases, @cpu is not impacted by the migration, so the 6648 * util_avg should already be correct. 6649 */ 6650 if (task_cpu(p) == cpu && dst_cpu != cpu) 6651 lsub_positive(&util, task_util(p)); 6652 else if (task_cpu(p) != cpu && dst_cpu == cpu) 6653 util += task_util(p); 6654 6655 if (sched_feat(UTIL_EST)) { 6656 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued); 6657 6658 /* 6659 * During wake-up, the task isn't enqueued yet and doesn't 6660 * appear in the cfs_rq->avg.util_est.enqueued of any rq, 6661 * so just add it (if needed) to "simulate" what will be 6662 * cpu_util after the task has been enqueued. 6663 */ 6664 if (dst_cpu == cpu) 6665 util_est += _task_util_est(p); 6666 6667 util = max(util, util_est); 6668 } 6669 6670 return min(util, capacity_orig_of(cpu)); 6671 } 6672 6673 /* 6674 * compute_energy(): Estimates the energy that @pd would consume if @p was 6675 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization 6676 * landscape of @pd's CPUs after the task migration, and uses the Energy Model 6677 * to compute what would be the energy if we decided to actually migrate that 6678 * task. 6679 */ 6680 static long 6681 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd) 6682 { 6683 struct cpumask *pd_mask = perf_domain_span(pd); 6684 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask)); 6685 unsigned long max_util = 0, sum_util = 0; 6686 unsigned long _cpu_cap = cpu_cap; 6687 int cpu; 6688 6689 _cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask)); 6690 6691 /* 6692 * The capacity state of CPUs of the current rd can be driven by CPUs 6693 * of another rd if they belong to the same pd. So, account for the 6694 * utilization of these CPUs too by masking pd with cpu_online_mask 6695 * instead of the rd span. 6696 * 6697 * If an entire pd is outside of the current rd, it will not appear in 6698 * its pd list and will not be accounted by compute_energy(). 6699 */ 6700 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) { 6701 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu); 6702 unsigned long cpu_util, util_running = util_freq; 6703 struct task_struct *tsk = NULL; 6704 6705 /* 6706 * When @p is placed on @cpu: 6707 * 6708 * util_running = max(cpu_util, cpu_util_est) + 6709 * max(task_util, _task_util_est) 6710 * 6711 * while cpu_util_next is: max(cpu_util + task_util, 6712 * cpu_util_est + _task_util_est) 6713 */ 6714 if (cpu == dst_cpu) { 6715 tsk = p; 6716 util_running = 6717 cpu_util_next(cpu, p, -1) + task_util_est(p); 6718 } 6719 6720 /* 6721 * Busy time computation: utilization clamping is not 6722 * required since the ratio (sum_util / cpu_capacity) 6723 * is already enough to scale the EM reported power 6724 * consumption at the (eventually clamped) cpu_capacity. 6725 */ 6726 cpu_util = effective_cpu_util(cpu, util_running, cpu_cap, 6727 ENERGY_UTIL, NULL); 6728 6729 sum_util += min(cpu_util, _cpu_cap); 6730 6731 /* 6732 * Performance domain frequency: utilization clamping 6733 * must be considered since it affects the selection 6734 * of the performance domain frequency. 6735 * NOTE: in case RT tasks are running, by default the 6736 * FREQUENCY_UTIL's utilization can be max OPP. 6737 */ 6738 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap, 6739 FREQUENCY_UTIL, tsk); 6740 max_util = max(max_util, min(cpu_util, _cpu_cap)); 6741 } 6742 6743 return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap); 6744 } 6745 6746 /* 6747 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 6748 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 6749 * spare capacity in each performance domain and uses it as a potential 6750 * candidate to execute the task. Then, it uses the Energy Model to figure 6751 * out which of the CPU candidates is the most energy-efficient. 6752 * 6753 * The rationale for this heuristic is as follows. In a performance domain, 6754 * all the most energy efficient CPU candidates (according to the Energy 6755 * Model) are those for which we'll request a low frequency. When there are 6756 * several CPUs for which the frequency request will be the same, we don't 6757 * have enough data to break the tie between them, because the Energy Model 6758 * only includes active power costs. With this model, if we assume that 6759 * frequency requests follow utilization (e.g. using schedutil), the CPU with 6760 * the maximum spare capacity in a performance domain is guaranteed to be among 6761 * the best candidates of the performance domain. 6762 * 6763 * In practice, it could be preferable from an energy standpoint to pack 6764 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 6765 * but that could also hurt our chances to go cluster idle, and we have no 6766 * ways to tell with the current Energy Model if this is actually a good 6767 * idea or not. So, find_energy_efficient_cpu() basically favors 6768 * cluster-packing, and spreading inside a cluster. That should at least be 6769 * a good thing for latency, and this is consistent with the idea that most 6770 * of the energy savings of EAS come from the asymmetry of the system, and 6771 * not so much from breaking the tie between identical CPUs. That's also the 6772 * reason why EAS is enabled in the topology code only for systems where 6773 * SD_ASYM_CPUCAPACITY is set. 6774 * 6775 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 6776 * they don't have any useful utilization data yet and it's not possible to 6777 * forecast their impact on energy consumption. Consequently, they will be 6778 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 6779 * to be energy-inefficient in some use-cases. The alternative would be to 6780 * bias new tasks towards specific types of CPUs first, or to try to infer 6781 * their util_avg from the parent task, but those heuristics could hurt 6782 * other use-cases too. So, until someone finds a better way to solve this, 6783 * let's keep things simple by re-using the existing slow path. 6784 */ 6785 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 6786 { 6787 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 6788 struct root_domain *rd = cpu_rq(smp_processor_id())->rd; 6789 int cpu, best_energy_cpu = prev_cpu, target = -1; 6790 unsigned long cpu_cap, util, base_energy = 0; 6791 struct sched_domain *sd; 6792 struct perf_domain *pd; 6793 6794 rcu_read_lock(); 6795 pd = rcu_dereference(rd->pd); 6796 if (!pd || READ_ONCE(rd->overutilized)) 6797 goto unlock; 6798 6799 /* 6800 * Energy-aware wake-up happens on the lowest sched_domain starting 6801 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 6802 */ 6803 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 6804 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 6805 sd = sd->parent; 6806 if (!sd) 6807 goto unlock; 6808 6809 target = prev_cpu; 6810 6811 sync_entity_load_avg(&p->se); 6812 if (!task_util_est(p)) 6813 goto unlock; 6814 6815 for (; pd; pd = pd->next) { 6816 unsigned long cur_delta, spare_cap, max_spare_cap = 0; 6817 bool compute_prev_delta = false; 6818 unsigned long base_energy_pd; 6819 int max_spare_cap_cpu = -1; 6820 6821 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) { 6822 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 6823 continue; 6824 6825 util = cpu_util_next(cpu, p, cpu); 6826 cpu_cap = capacity_of(cpu); 6827 spare_cap = cpu_cap; 6828 lsub_positive(&spare_cap, util); 6829 6830 /* 6831 * Skip CPUs that cannot satisfy the capacity request. 6832 * IOW, placing the task there would make the CPU 6833 * overutilized. Take uclamp into account to see how 6834 * much capacity we can get out of the CPU; this is 6835 * aligned with sched_cpu_util(). 6836 */ 6837 util = uclamp_rq_util_with(cpu_rq(cpu), util, p); 6838 if (!fits_capacity(util, cpu_cap)) 6839 continue; 6840 6841 if (cpu == prev_cpu) { 6842 /* Always use prev_cpu as a candidate. */ 6843 compute_prev_delta = true; 6844 } else if (spare_cap > max_spare_cap) { 6845 /* 6846 * Find the CPU with the maximum spare capacity 6847 * in the performance domain. 6848 */ 6849 max_spare_cap = spare_cap; 6850 max_spare_cap_cpu = cpu; 6851 } 6852 } 6853 6854 if (max_spare_cap_cpu < 0 && !compute_prev_delta) 6855 continue; 6856 6857 /* Compute the 'base' energy of the pd, without @p */ 6858 base_energy_pd = compute_energy(p, -1, pd); 6859 base_energy += base_energy_pd; 6860 6861 /* Evaluate the energy impact of using prev_cpu. */ 6862 if (compute_prev_delta) { 6863 prev_delta = compute_energy(p, prev_cpu, pd); 6864 if (prev_delta < base_energy_pd) 6865 goto unlock; 6866 prev_delta -= base_energy_pd; 6867 best_delta = min(best_delta, prev_delta); 6868 } 6869 6870 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 6871 if (max_spare_cap_cpu >= 0) { 6872 cur_delta = compute_energy(p, max_spare_cap_cpu, pd); 6873 if (cur_delta < base_energy_pd) 6874 goto unlock; 6875 cur_delta -= base_energy_pd; 6876 if (cur_delta < best_delta) { 6877 best_delta = cur_delta; 6878 best_energy_cpu = max_spare_cap_cpu; 6879 } 6880 } 6881 } 6882 rcu_read_unlock(); 6883 6884 /* 6885 * Pick the best CPU if prev_cpu cannot be used, or if it saves at 6886 * least 6% of the energy used by prev_cpu. 6887 */ 6888 if ((prev_delta == ULONG_MAX) || 6889 (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4)) 6890 target = best_energy_cpu; 6891 6892 return target; 6893 6894 unlock: 6895 rcu_read_unlock(); 6896 6897 return target; 6898 } 6899 6900 /* 6901 * select_task_rq_fair: Select target runqueue for the waking task in domains 6902 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 6903 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 6904 * 6905 * Balances load by selecting the idlest CPU in the idlest group, or under 6906 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 6907 * 6908 * Returns the target CPU number. 6909 */ 6910 static int 6911 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 6912 { 6913 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 6914 struct sched_domain *tmp, *sd = NULL; 6915 int cpu = smp_processor_id(); 6916 int new_cpu = prev_cpu; 6917 int want_affine = 0; 6918 /* SD_flags and WF_flags share the first nibble */ 6919 int sd_flag = wake_flags & 0xF; 6920 6921 /* 6922 * required for stable ->cpus_allowed 6923 */ 6924 lockdep_assert_held(&p->pi_lock); 6925 if (wake_flags & WF_TTWU) { 6926 record_wakee(p); 6927 6928 if (sched_energy_enabled()) { 6929 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 6930 if (new_cpu >= 0) 6931 return new_cpu; 6932 new_cpu = prev_cpu; 6933 } 6934 6935 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 6936 } 6937 6938 rcu_read_lock(); 6939 for_each_domain(cpu, tmp) { 6940 /* 6941 * If both 'cpu' and 'prev_cpu' are part of this domain, 6942 * cpu is a valid SD_WAKE_AFFINE target. 6943 */ 6944 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 6945 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 6946 if (cpu != prev_cpu) 6947 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 6948 6949 sd = NULL; /* Prefer wake_affine over balance flags */ 6950 break; 6951 } 6952 6953 /* 6954 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 6955 * usually do not have SD_BALANCE_WAKE set. That means wakeup 6956 * will usually go to the fast path. 6957 */ 6958 if (tmp->flags & sd_flag) 6959 sd = tmp; 6960 else if (!want_affine) 6961 break; 6962 } 6963 6964 if (unlikely(sd)) { 6965 /* Slow path */ 6966 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 6967 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 6968 /* Fast path */ 6969 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 6970 } 6971 rcu_read_unlock(); 6972 6973 return new_cpu; 6974 } 6975 6976 static void detach_entity_cfs_rq(struct sched_entity *se); 6977 6978 /* 6979 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 6980 * cfs_rq_of(p) references at time of call are still valid and identify the 6981 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6982 */ 6983 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 6984 { 6985 /* 6986 * As blocked tasks retain absolute vruntime the migration needs to 6987 * deal with this by subtracting the old and adding the new 6988 * min_vruntime -- the latter is done by enqueue_entity() when placing 6989 * the task on the new runqueue. 6990 */ 6991 if (READ_ONCE(p->__state) == TASK_WAKING) { 6992 struct sched_entity *se = &p->se; 6993 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6994 u64 min_vruntime; 6995 6996 #ifndef CONFIG_64BIT 6997 u64 min_vruntime_copy; 6998 6999 do { 7000 min_vruntime_copy = cfs_rq->min_vruntime_copy; 7001 smp_rmb(); 7002 min_vruntime = cfs_rq->min_vruntime; 7003 } while (min_vruntime != min_vruntime_copy); 7004 #else 7005 min_vruntime = cfs_rq->min_vruntime; 7006 #endif 7007 7008 se->vruntime -= min_vruntime; 7009 } 7010 7011 if (p->on_rq == TASK_ON_RQ_MIGRATING) { 7012 /* 7013 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old' 7014 * rq->lock and can modify state directly. 7015 */ 7016 lockdep_assert_rq_held(task_rq(p)); 7017 detach_entity_cfs_rq(&p->se); 7018 7019 } else { 7020 /* 7021 * We are supposed to update the task to "current" time, then 7022 * its up to date and ready to go to new CPU/cfs_rq. But we 7023 * have difficulty in getting what current time is, so simply 7024 * throw away the out-of-date time. This will result in the 7025 * wakee task is less decayed, but giving the wakee more load 7026 * sounds not bad. 7027 */ 7028 remove_entity_load_avg(&p->se); 7029 } 7030 7031 /* Tell new CPU we are migrated */ 7032 p->se.avg.last_update_time = 0; 7033 7034 /* We have migrated, no longer consider this task hot */ 7035 p->se.exec_start = 0; 7036 7037 update_scan_period(p, new_cpu); 7038 } 7039 7040 static void task_dead_fair(struct task_struct *p) 7041 { 7042 remove_entity_load_avg(&p->se); 7043 } 7044 7045 static int 7046 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7047 { 7048 if (rq->nr_running) 7049 return 1; 7050 7051 return newidle_balance(rq, rf) != 0; 7052 } 7053 #endif /* CONFIG_SMP */ 7054 7055 static unsigned long wakeup_gran(struct sched_entity *se) 7056 { 7057 unsigned long gran = sysctl_sched_wakeup_granularity; 7058 7059 /* 7060 * Since its curr running now, convert the gran from real-time 7061 * to virtual-time in his units. 7062 * 7063 * By using 'se' instead of 'curr' we penalize light tasks, so 7064 * they get preempted easier. That is, if 'se' < 'curr' then 7065 * the resulting gran will be larger, therefore penalizing the 7066 * lighter, if otoh 'se' > 'curr' then the resulting gran will 7067 * be smaller, again penalizing the lighter task. 7068 * 7069 * This is especially important for buddies when the leftmost 7070 * task is higher priority than the buddy. 7071 */ 7072 return calc_delta_fair(gran, se); 7073 } 7074 7075 /* 7076 * Should 'se' preempt 'curr'. 7077 * 7078 * |s1 7079 * |s2 7080 * |s3 7081 * g 7082 * |<--->|c 7083 * 7084 * w(c, s1) = -1 7085 * w(c, s2) = 0 7086 * w(c, s3) = 1 7087 * 7088 */ 7089 static int 7090 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 7091 { 7092 s64 gran, vdiff = curr->vruntime - se->vruntime; 7093 7094 if (vdiff <= 0) 7095 return -1; 7096 7097 gran = wakeup_gran(se); 7098 if (vdiff > gran) 7099 return 1; 7100 7101 return 0; 7102 } 7103 7104 static void set_last_buddy(struct sched_entity *se) 7105 { 7106 for_each_sched_entity(se) { 7107 if (SCHED_WARN_ON(!se->on_rq)) 7108 return; 7109 if (se_is_idle(se)) 7110 return; 7111 cfs_rq_of(se)->last = se; 7112 } 7113 } 7114 7115 static void set_next_buddy(struct sched_entity *se) 7116 { 7117 for_each_sched_entity(se) { 7118 if (SCHED_WARN_ON(!se->on_rq)) 7119 return; 7120 if (se_is_idle(se)) 7121 return; 7122 cfs_rq_of(se)->next = se; 7123 } 7124 } 7125 7126 static void set_skip_buddy(struct sched_entity *se) 7127 { 7128 for_each_sched_entity(se) 7129 cfs_rq_of(se)->skip = se; 7130 } 7131 7132 /* 7133 * Preempt the current task with a newly woken task if needed: 7134 */ 7135 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 7136 { 7137 struct task_struct *curr = rq->curr; 7138 struct sched_entity *se = &curr->se, *pse = &p->se; 7139 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7140 int scale = cfs_rq->nr_running >= sched_nr_latency; 7141 int next_buddy_marked = 0; 7142 int cse_is_idle, pse_is_idle; 7143 7144 if (unlikely(se == pse)) 7145 return; 7146 7147 /* 7148 * This is possible from callers such as attach_tasks(), in which we 7149 * unconditionally check_preempt_curr() after an enqueue (which may have 7150 * lead to a throttle). This both saves work and prevents false 7151 * next-buddy nomination below. 7152 */ 7153 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 7154 return; 7155 7156 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 7157 set_next_buddy(pse); 7158 next_buddy_marked = 1; 7159 } 7160 7161 /* 7162 * We can come here with TIF_NEED_RESCHED already set from new task 7163 * wake up path. 7164 * 7165 * Note: this also catches the edge-case of curr being in a throttled 7166 * group (e.g. via set_curr_task), since update_curr() (in the 7167 * enqueue of curr) will have resulted in resched being set. This 7168 * prevents us from potentially nominating it as a false LAST_BUDDY 7169 * below. 7170 */ 7171 if (test_tsk_need_resched(curr)) 7172 return; 7173 7174 /* Idle tasks are by definition preempted by non-idle tasks. */ 7175 if (unlikely(task_has_idle_policy(curr)) && 7176 likely(!task_has_idle_policy(p))) 7177 goto preempt; 7178 7179 /* 7180 * Batch and idle tasks do not preempt non-idle tasks (their preemption 7181 * is driven by the tick): 7182 */ 7183 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 7184 return; 7185 7186 find_matching_se(&se, &pse); 7187 BUG_ON(!pse); 7188 7189 cse_is_idle = se_is_idle(se); 7190 pse_is_idle = se_is_idle(pse); 7191 7192 /* 7193 * Preempt an idle group in favor of a non-idle group (and don't preempt 7194 * in the inverse case). 7195 */ 7196 if (cse_is_idle && !pse_is_idle) 7197 goto preempt; 7198 if (cse_is_idle != pse_is_idle) 7199 return; 7200 7201 update_curr(cfs_rq_of(se)); 7202 if (wakeup_preempt_entity(se, pse) == 1) { 7203 /* 7204 * Bias pick_next to pick the sched entity that is 7205 * triggering this preemption. 7206 */ 7207 if (!next_buddy_marked) 7208 set_next_buddy(pse); 7209 goto preempt; 7210 } 7211 7212 return; 7213 7214 preempt: 7215 resched_curr(rq); 7216 /* 7217 * Only set the backward buddy when the current task is still 7218 * on the rq. This can happen when a wakeup gets interleaved 7219 * with schedule on the ->pre_schedule() or idle_balance() 7220 * point, either of which can * drop the rq lock. 7221 * 7222 * Also, during early boot the idle thread is in the fair class, 7223 * for obvious reasons its a bad idea to schedule back to it. 7224 */ 7225 if (unlikely(!se->on_rq || curr == rq->idle)) 7226 return; 7227 7228 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 7229 set_last_buddy(se); 7230 } 7231 7232 #ifdef CONFIG_SMP 7233 static struct task_struct *pick_task_fair(struct rq *rq) 7234 { 7235 struct sched_entity *se; 7236 struct cfs_rq *cfs_rq; 7237 7238 again: 7239 cfs_rq = &rq->cfs; 7240 if (!cfs_rq->nr_running) 7241 return NULL; 7242 7243 do { 7244 struct sched_entity *curr = cfs_rq->curr; 7245 7246 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 7247 if (curr) { 7248 if (curr->on_rq) 7249 update_curr(cfs_rq); 7250 else 7251 curr = NULL; 7252 7253 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 7254 goto again; 7255 } 7256 7257 se = pick_next_entity(cfs_rq, curr); 7258 cfs_rq = group_cfs_rq(se); 7259 } while (cfs_rq); 7260 7261 return task_of(se); 7262 } 7263 #endif 7264 7265 struct task_struct * 7266 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 7267 { 7268 struct cfs_rq *cfs_rq = &rq->cfs; 7269 struct sched_entity *se; 7270 struct task_struct *p; 7271 int new_tasks; 7272 7273 again: 7274 if (!sched_fair_runnable(rq)) 7275 goto idle; 7276 7277 #ifdef CONFIG_FAIR_GROUP_SCHED 7278 if (!prev || prev->sched_class != &fair_sched_class) 7279 goto simple; 7280 7281 /* 7282 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 7283 * likely that a next task is from the same cgroup as the current. 7284 * 7285 * Therefore attempt to avoid putting and setting the entire cgroup 7286 * hierarchy, only change the part that actually changes. 7287 */ 7288 7289 do { 7290 struct sched_entity *curr = cfs_rq->curr; 7291 7292 /* 7293 * Since we got here without doing put_prev_entity() we also 7294 * have to consider cfs_rq->curr. If it is still a runnable 7295 * entity, update_curr() will update its vruntime, otherwise 7296 * forget we've ever seen it. 7297 */ 7298 if (curr) { 7299 if (curr->on_rq) 7300 update_curr(cfs_rq); 7301 else 7302 curr = NULL; 7303 7304 /* 7305 * This call to check_cfs_rq_runtime() will do the 7306 * throttle and dequeue its entity in the parent(s). 7307 * Therefore the nr_running test will indeed 7308 * be correct. 7309 */ 7310 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 7311 cfs_rq = &rq->cfs; 7312 7313 if (!cfs_rq->nr_running) 7314 goto idle; 7315 7316 goto simple; 7317 } 7318 } 7319 7320 se = pick_next_entity(cfs_rq, curr); 7321 cfs_rq = group_cfs_rq(se); 7322 } while (cfs_rq); 7323 7324 p = task_of(se); 7325 7326 /* 7327 * Since we haven't yet done put_prev_entity and if the selected task 7328 * is a different task than we started out with, try and touch the 7329 * least amount of cfs_rqs. 7330 */ 7331 if (prev != p) { 7332 struct sched_entity *pse = &prev->se; 7333 7334 while (!(cfs_rq = is_same_group(se, pse))) { 7335 int se_depth = se->depth; 7336 int pse_depth = pse->depth; 7337 7338 if (se_depth <= pse_depth) { 7339 put_prev_entity(cfs_rq_of(pse), pse); 7340 pse = parent_entity(pse); 7341 } 7342 if (se_depth >= pse_depth) { 7343 set_next_entity(cfs_rq_of(se), se); 7344 se = parent_entity(se); 7345 } 7346 } 7347 7348 put_prev_entity(cfs_rq, pse); 7349 set_next_entity(cfs_rq, se); 7350 } 7351 7352 goto done; 7353 simple: 7354 #endif 7355 if (prev) 7356 put_prev_task(rq, prev); 7357 7358 do { 7359 se = pick_next_entity(cfs_rq, NULL); 7360 set_next_entity(cfs_rq, se); 7361 cfs_rq = group_cfs_rq(se); 7362 } while (cfs_rq); 7363 7364 p = task_of(se); 7365 7366 done: __maybe_unused; 7367 #ifdef CONFIG_SMP 7368 /* 7369 * Move the next running task to the front of 7370 * the list, so our cfs_tasks list becomes MRU 7371 * one. 7372 */ 7373 list_move(&p->se.group_node, &rq->cfs_tasks); 7374 #endif 7375 7376 if (hrtick_enabled_fair(rq)) 7377 hrtick_start_fair(rq, p); 7378 7379 update_misfit_status(p, rq); 7380 7381 return p; 7382 7383 idle: 7384 if (!rf) 7385 return NULL; 7386 7387 new_tasks = newidle_balance(rq, rf); 7388 7389 /* 7390 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 7391 * possible for any higher priority task to appear. In that case we 7392 * must re-start the pick_next_entity() loop. 7393 */ 7394 if (new_tasks < 0) 7395 return RETRY_TASK; 7396 7397 if (new_tasks > 0) 7398 goto again; 7399 7400 /* 7401 * rq is about to be idle, check if we need to update the 7402 * lost_idle_time of clock_pelt 7403 */ 7404 update_idle_rq_clock_pelt(rq); 7405 7406 return NULL; 7407 } 7408 7409 static struct task_struct *__pick_next_task_fair(struct rq *rq) 7410 { 7411 return pick_next_task_fair(rq, NULL, NULL); 7412 } 7413 7414 /* 7415 * Account for a descheduled task: 7416 */ 7417 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 7418 { 7419 struct sched_entity *se = &prev->se; 7420 struct cfs_rq *cfs_rq; 7421 7422 for_each_sched_entity(se) { 7423 cfs_rq = cfs_rq_of(se); 7424 put_prev_entity(cfs_rq, se); 7425 } 7426 } 7427 7428 /* 7429 * sched_yield() is very simple 7430 * 7431 * The magic of dealing with the ->skip buddy is in pick_next_entity. 7432 */ 7433 static void yield_task_fair(struct rq *rq) 7434 { 7435 struct task_struct *curr = rq->curr; 7436 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 7437 struct sched_entity *se = &curr->se; 7438 7439 /* 7440 * Are we the only task in the tree? 7441 */ 7442 if (unlikely(rq->nr_running == 1)) 7443 return; 7444 7445 clear_buddies(cfs_rq, se); 7446 7447 if (curr->policy != SCHED_BATCH) { 7448 update_rq_clock(rq); 7449 /* 7450 * Update run-time statistics of the 'current'. 7451 */ 7452 update_curr(cfs_rq); 7453 /* 7454 * Tell update_rq_clock() that we've just updated, 7455 * so we don't do microscopic update in schedule() 7456 * and double the fastpath cost. 7457 */ 7458 rq_clock_skip_update(rq); 7459 } 7460 7461 set_skip_buddy(se); 7462 } 7463 7464 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 7465 { 7466 struct sched_entity *se = &p->se; 7467 7468 /* throttled hierarchies are not runnable */ 7469 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 7470 return false; 7471 7472 /* Tell the scheduler that we'd really like pse to run next. */ 7473 set_next_buddy(se); 7474 7475 yield_task_fair(rq); 7476 7477 return true; 7478 } 7479 7480 #ifdef CONFIG_SMP 7481 /************************************************** 7482 * Fair scheduling class load-balancing methods. 7483 * 7484 * BASICS 7485 * 7486 * The purpose of load-balancing is to achieve the same basic fairness the 7487 * per-CPU scheduler provides, namely provide a proportional amount of compute 7488 * time to each task. This is expressed in the following equation: 7489 * 7490 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 7491 * 7492 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 7493 * W_i,0 is defined as: 7494 * 7495 * W_i,0 = \Sum_j w_i,j (2) 7496 * 7497 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 7498 * is derived from the nice value as per sched_prio_to_weight[]. 7499 * 7500 * The weight average is an exponential decay average of the instantaneous 7501 * weight: 7502 * 7503 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 7504 * 7505 * C_i is the compute capacity of CPU i, typically it is the 7506 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 7507 * can also include other factors [XXX]. 7508 * 7509 * To achieve this balance we define a measure of imbalance which follows 7510 * directly from (1): 7511 * 7512 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 7513 * 7514 * We them move tasks around to minimize the imbalance. In the continuous 7515 * function space it is obvious this converges, in the discrete case we get 7516 * a few fun cases generally called infeasible weight scenarios. 7517 * 7518 * [XXX expand on: 7519 * - infeasible weights; 7520 * - local vs global optima in the discrete case. ] 7521 * 7522 * 7523 * SCHED DOMAINS 7524 * 7525 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 7526 * for all i,j solution, we create a tree of CPUs that follows the hardware 7527 * topology where each level pairs two lower groups (or better). This results 7528 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 7529 * tree to only the first of the previous level and we decrease the frequency 7530 * of load-balance at each level inv. proportional to the number of CPUs in 7531 * the groups. 7532 * 7533 * This yields: 7534 * 7535 * log_2 n 1 n 7536 * \Sum { --- * --- * 2^i } = O(n) (5) 7537 * i = 0 2^i 2^i 7538 * `- size of each group 7539 * | | `- number of CPUs doing load-balance 7540 * | `- freq 7541 * `- sum over all levels 7542 * 7543 * Coupled with a limit on how many tasks we can migrate every balance pass, 7544 * this makes (5) the runtime complexity of the balancer. 7545 * 7546 * An important property here is that each CPU is still (indirectly) connected 7547 * to every other CPU in at most O(log n) steps: 7548 * 7549 * The adjacency matrix of the resulting graph is given by: 7550 * 7551 * log_2 n 7552 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 7553 * k = 0 7554 * 7555 * And you'll find that: 7556 * 7557 * A^(log_2 n)_i,j != 0 for all i,j (7) 7558 * 7559 * Showing there's indeed a path between every CPU in at most O(log n) steps. 7560 * The task movement gives a factor of O(m), giving a convergence complexity 7561 * of: 7562 * 7563 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 7564 * 7565 * 7566 * WORK CONSERVING 7567 * 7568 * In order to avoid CPUs going idle while there's still work to do, new idle 7569 * balancing is more aggressive and has the newly idle CPU iterate up the domain 7570 * tree itself instead of relying on other CPUs to bring it work. 7571 * 7572 * This adds some complexity to both (5) and (8) but it reduces the total idle 7573 * time. 7574 * 7575 * [XXX more?] 7576 * 7577 * 7578 * CGROUPS 7579 * 7580 * Cgroups make a horror show out of (2), instead of a simple sum we get: 7581 * 7582 * s_k,i 7583 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 7584 * S_k 7585 * 7586 * Where 7587 * 7588 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 7589 * 7590 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 7591 * 7592 * The big problem is S_k, its a global sum needed to compute a local (W_i) 7593 * property. 7594 * 7595 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 7596 * rewrite all of this once again.] 7597 */ 7598 7599 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 7600 7601 enum fbq_type { regular, remote, all }; 7602 7603 /* 7604 * 'group_type' describes the group of CPUs at the moment of load balancing. 7605 * 7606 * The enum is ordered by pulling priority, with the group with lowest priority 7607 * first so the group_type can simply be compared when selecting the busiest 7608 * group. See update_sd_pick_busiest(). 7609 */ 7610 enum group_type { 7611 /* The group has spare capacity that can be used to run more tasks. */ 7612 group_has_spare = 0, 7613 /* 7614 * The group is fully used and the tasks don't compete for more CPU 7615 * cycles. Nevertheless, some tasks might wait before running. 7616 */ 7617 group_fully_busy, 7618 /* 7619 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity 7620 * and must be migrated to a more powerful CPU. 7621 */ 7622 group_misfit_task, 7623 /* 7624 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 7625 * and the task should be migrated to it instead of running on the 7626 * current CPU. 7627 */ 7628 group_asym_packing, 7629 /* 7630 * The tasks' affinity constraints previously prevented the scheduler 7631 * from balancing the load across the system. 7632 */ 7633 group_imbalanced, 7634 /* 7635 * The CPU is overloaded and can't provide expected CPU cycles to all 7636 * tasks. 7637 */ 7638 group_overloaded 7639 }; 7640 7641 enum migration_type { 7642 migrate_load = 0, 7643 migrate_util, 7644 migrate_task, 7645 migrate_misfit 7646 }; 7647 7648 #define LBF_ALL_PINNED 0x01 7649 #define LBF_NEED_BREAK 0x02 7650 #define LBF_DST_PINNED 0x04 7651 #define LBF_SOME_PINNED 0x08 7652 #define LBF_ACTIVE_LB 0x10 7653 7654 struct lb_env { 7655 struct sched_domain *sd; 7656 7657 struct rq *src_rq; 7658 int src_cpu; 7659 7660 int dst_cpu; 7661 struct rq *dst_rq; 7662 7663 struct cpumask *dst_grpmask; 7664 int new_dst_cpu; 7665 enum cpu_idle_type idle; 7666 long imbalance; 7667 /* The set of CPUs under consideration for load-balancing */ 7668 struct cpumask *cpus; 7669 7670 unsigned int flags; 7671 7672 unsigned int loop; 7673 unsigned int loop_break; 7674 unsigned int loop_max; 7675 7676 enum fbq_type fbq_type; 7677 enum migration_type migration_type; 7678 struct list_head tasks; 7679 }; 7680 7681 /* 7682 * Is this task likely cache-hot: 7683 */ 7684 static int task_hot(struct task_struct *p, struct lb_env *env) 7685 { 7686 s64 delta; 7687 7688 lockdep_assert_rq_held(env->src_rq); 7689 7690 if (p->sched_class != &fair_sched_class) 7691 return 0; 7692 7693 if (unlikely(task_has_idle_policy(p))) 7694 return 0; 7695 7696 /* SMT siblings share cache */ 7697 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 7698 return 0; 7699 7700 /* 7701 * Buddy candidates are cache hot: 7702 */ 7703 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 7704 (&p->se == cfs_rq_of(&p->se)->next || 7705 &p->se == cfs_rq_of(&p->se)->last)) 7706 return 1; 7707 7708 if (sysctl_sched_migration_cost == -1) 7709 return 1; 7710 7711 /* 7712 * Don't migrate task if the task's cookie does not match 7713 * with the destination CPU's core cookie. 7714 */ 7715 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 7716 return 1; 7717 7718 if (sysctl_sched_migration_cost == 0) 7719 return 0; 7720 7721 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 7722 7723 return delta < (s64)sysctl_sched_migration_cost; 7724 } 7725 7726 #ifdef CONFIG_NUMA_BALANCING 7727 /* 7728 * Returns 1, if task migration degrades locality 7729 * Returns 0, if task migration improves locality i.e migration preferred. 7730 * Returns -1, if task migration is not affected by locality. 7731 */ 7732 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 7733 { 7734 struct numa_group *numa_group = rcu_dereference(p->numa_group); 7735 unsigned long src_weight, dst_weight; 7736 int src_nid, dst_nid, dist; 7737 7738 if (!static_branch_likely(&sched_numa_balancing)) 7739 return -1; 7740 7741 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 7742 return -1; 7743 7744 src_nid = cpu_to_node(env->src_cpu); 7745 dst_nid = cpu_to_node(env->dst_cpu); 7746 7747 if (src_nid == dst_nid) 7748 return -1; 7749 7750 /* Migrating away from the preferred node is always bad. */ 7751 if (src_nid == p->numa_preferred_nid) { 7752 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 7753 return 1; 7754 else 7755 return -1; 7756 } 7757 7758 /* Encourage migration to the preferred node. */ 7759 if (dst_nid == p->numa_preferred_nid) 7760 return 0; 7761 7762 /* Leaving a core idle is often worse than degrading locality. */ 7763 if (env->idle == CPU_IDLE) 7764 return -1; 7765 7766 dist = node_distance(src_nid, dst_nid); 7767 if (numa_group) { 7768 src_weight = group_weight(p, src_nid, dist); 7769 dst_weight = group_weight(p, dst_nid, dist); 7770 } else { 7771 src_weight = task_weight(p, src_nid, dist); 7772 dst_weight = task_weight(p, dst_nid, dist); 7773 } 7774 7775 return dst_weight < src_weight; 7776 } 7777 7778 #else 7779 static inline int migrate_degrades_locality(struct task_struct *p, 7780 struct lb_env *env) 7781 { 7782 return -1; 7783 } 7784 #endif 7785 7786 /* 7787 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 7788 */ 7789 static 7790 int can_migrate_task(struct task_struct *p, struct lb_env *env) 7791 { 7792 int tsk_cache_hot; 7793 7794 lockdep_assert_rq_held(env->src_rq); 7795 7796 /* 7797 * We do not migrate tasks that are: 7798 * 1) throttled_lb_pair, or 7799 * 2) cannot be migrated to this CPU due to cpus_ptr, or 7800 * 3) running (obviously), or 7801 * 4) are cache-hot on their current CPU. 7802 */ 7803 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 7804 return 0; 7805 7806 /* Disregard pcpu kthreads; they are where they need to be. */ 7807 if (kthread_is_per_cpu(p)) 7808 return 0; 7809 7810 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 7811 int cpu; 7812 7813 schedstat_inc(p->stats.nr_failed_migrations_affine); 7814 7815 env->flags |= LBF_SOME_PINNED; 7816 7817 /* 7818 * Remember if this task can be migrated to any other CPU in 7819 * our sched_group. We may want to revisit it if we couldn't 7820 * meet load balance goals by pulling other tasks on src_cpu. 7821 * 7822 * Avoid computing new_dst_cpu 7823 * - for NEWLY_IDLE 7824 * - if we have already computed one in current iteration 7825 * - if it's an active balance 7826 */ 7827 if (env->idle == CPU_NEWLY_IDLE || 7828 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 7829 return 0; 7830 7831 /* Prevent to re-select dst_cpu via env's CPUs: */ 7832 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 7833 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 7834 env->flags |= LBF_DST_PINNED; 7835 env->new_dst_cpu = cpu; 7836 break; 7837 } 7838 } 7839 7840 return 0; 7841 } 7842 7843 /* Record that we found at least one task that could run on dst_cpu */ 7844 env->flags &= ~LBF_ALL_PINNED; 7845 7846 if (task_running(env->src_rq, p)) { 7847 schedstat_inc(p->stats.nr_failed_migrations_running); 7848 return 0; 7849 } 7850 7851 /* 7852 * Aggressive migration if: 7853 * 1) active balance 7854 * 2) destination numa is preferred 7855 * 3) task is cache cold, or 7856 * 4) too many balance attempts have failed. 7857 */ 7858 if (env->flags & LBF_ACTIVE_LB) 7859 return 1; 7860 7861 tsk_cache_hot = migrate_degrades_locality(p, env); 7862 if (tsk_cache_hot == -1) 7863 tsk_cache_hot = task_hot(p, env); 7864 7865 if (tsk_cache_hot <= 0 || 7866 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 7867 if (tsk_cache_hot == 1) { 7868 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 7869 schedstat_inc(p->stats.nr_forced_migrations); 7870 } 7871 return 1; 7872 } 7873 7874 schedstat_inc(p->stats.nr_failed_migrations_hot); 7875 return 0; 7876 } 7877 7878 /* 7879 * detach_task() -- detach the task for the migration specified in env 7880 */ 7881 static void detach_task(struct task_struct *p, struct lb_env *env) 7882 { 7883 lockdep_assert_rq_held(env->src_rq); 7884 7885 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 7886 set_task_cpu(p, env->dst_cpu); 7887 } 7888 7889 /* 7890 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 7891 * part of active balancing operations within "domain". 7892 * 7893 * Returns a task if successful and NULL otherwise. 7894 */ 7895 static struct task_struct *detach_one_task(struct lb_env *env) 7896 { 7897 struct task_struct *p; 7898 7899 lockdep_assert_rq_held(env->src_rq); 7900 7901 list_for_each_entry_reverse(p, 7902 &env->src_rq->cfs_tasks, se.group_node) { 7903 if (!can_migrate_task(p, env)) 7904 continue; 7905 7906 detach_task(p, env); 7907 7908 /* 7909 * Right now, this is only the second place where 7910 * lb_gained[env->idle] is updated (other is detach_tasks) 7911 * so we can safely collect stats here rather than 7912 * inside detach_tasks(). 7913 */ 7914 schedstat_inc(env->sd->lb_gained[env->idle]); 7915 return p; 7916 } 7917 return NULL; 7918 } 7919 7920 static const unsigned int sched_nr_migrate_break = 32; 7921 7922 /* 7923 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 7924 * busiest_rq, as part of a balancing operation within domain "sd". 7925 * 7926 * Returns number of detached tasks if successful and 0 otherwise. 7927 */ 7928 static int detach_tasks(struct lb_env *env) 7929 { 7930 struct list_head *tasks = &env->src_rq->cfs_tasks; 7931 unsigned long util, load; 7932 struct task_struct *p; 7933 int detached = 0; 7934 7935 lockdep_assert_rq_held(env->src_rq); 7936 7937 /* 7938 * Source run queue has been emptied by another CPU, clear 7939 * LBF_ALL_PINNED flag as we will not test any task. 7940 */ 7941 if (env->src_rq->nr_running <= 1) { 7942 env->flags &= ~LBF_ALL_PINNED; 7943 return 0; 7944 } 7945 7946 if (env->imbalance <= 0) 7947 return 0; 7948 7949 while (!list_empty(tasks)) { 7950 /* 7951 * We don't want to steal all, otherwise we may be treated likewise, 7952 * which could at worst lead to a livelock crash. 7953 */ 7954 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 7955 break; 7956 7957 p = list_last_entry(tasks, struct task_struct, se.group_node); 7958 7959 env->loop++; 7960 /* We've more or less seen every task there is, call it quits */ 7961 if (env->loop > env->loop_max) 7962 break; 7963 7964 /* take a breather every nr_migrate tasks */ 7965 if (env->loop > env->loop_break) { 7966 env->loop_break += sched_nr_migrate_break; 7967 env->flags |= LBF_NEED_BREAK; 7968 break; 7969 } 7970 7971 if (!can_migrate_task(p, env)) 7972 goto next; 7973 7974 switch (env->migration_type) { 7975 case migrate_load: 7976 /* 7977 * Depending of the number of CPUs and tasks and the 7978 * cgroup hierarchy, task_h_load() can return a null 7979 * value. Make sure that env->imbalance decreases 7980 * otherwise detach_tasks() will stop only after 7981 * detaching up to loop_max tasks. 7982 */ 7983 load = max_t(unsigned long, task_h_load(p), 1); 7984 7985 if (sched_feat(LB_MIN) && 7986 load < 16 && !env->sd->nr_balance_failed) 7987 goto next; 7988 7989 /* 7990 * Make sure that we don't migrate too much load. 7991 * Nevertheless, let relax the constraint if 7992 * scheduler fails to find a good waiting task to 7993 * migrate. 7994 */ 7995 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 7996 goto next; 7997 7998 env->imbalance -= load; 7999 break; 8000 8001 case migrate_util: 8002 util = task_util_est(p); 8003 8004 if (util > env->imbalance) 8005 goto next; 8006 8007 env->imbalance -= util; 8008 break; 8009 8010 case migrate_task: 8011 env->imbalance--; 8012 break; 8013 8014 case migrate_misfit: 8015 /* This is not a misfit task */ 8016 if (task_fits_capacity(p, capacity_of(env->src_cpu))) 8017 goto next; 8018 8019 env->imbalance = 0; 8020 break; 8021 } 8022 8023 detach_task(p, env); 8024 list_add(&p->se.group_node, &env->tasks); 8025 8026 detached++; 8027 8028 #ifdef CONFIG_PREEMPTION 8029 /* 8030 * NEWIDLE balancing is a source of latency, so preemptible 8031 * kernels will stop after the first task is detached to minimize 8032 * the critical section. 8033 */ 8034 if (env->idle == CPU_NEWLY_IDLE) 8035 break; 8036 #endif 8037 8038 /* 8039 * We only want to steal up to the prescribed amount of 8040 * load/util/tasks. 8041 */ 8042 if (env->imbalance <= 0) 8043 break; 8044 8045 continue; 8046 next: 8047 list_move(&p->se.group_node, tasks); 8048 } 8049 8050 /* 8051 * Right now, this is one of only two places we collect this stat 8052 * so we can safely collect detach_one_task() stats here rather 8053 * than inside detach_one_task(). 8054 */ 8055 schedstat_add(env->sd->lb_gained[env->idle], detached); 8056 8057 return detached; 8058 } 8059 8060 /* 8061 * attach_task() -- attach the task detached by detach_task() to its new rq. 8062 */ 8063 static void attach_task(struct rq *rq, struct task_struct *p) 8064 { 8065 lockdep_assert_rq_held(rq); 8066 8067 BUG_ON(task_rq(p) != rq); 8068 activate_task(rq, p, ENQUEUE_NOCLOCK); 8069 check_preempt_curr(rq, p, 0); 8070 } 8071 8072 /* 8073 * attach_one_task() -- attaches the task returned from detach_one_task() to 8074 * its new rq. 8075 */ 8076 static void attach_one_task(struct rq *rq, struct task_struct *p) 8077 { 8078 struct rq_flags rf; 8079 8080 rq_lock(rq, &rf); 8081 update_rq_clock(rq); 8082 attach_task(rq, p); 8083 rq_unlock(rq, &rf); 8084 } 8085 8086 /* 8087 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 8088 * new rq. 8089 */ 8090 static void attach_tasks(struct lb_env *env) 8091 { 8092 struct list_head *tasks = &env->tasks; 8093 struct task_struct *p; 8094 struct rq_flags rf; 8095 8096 rq_lock(env->dst_rq, &rf); 8097 update_rq_clock(env->dst_rq); 8098 8099 while (!list_empty(tasks)) { 8100 p = list_first_entry(tasks, struct task_struct, se.group_node); 8101 list_del_init(&p->se.group_node); 8102 8103 attach_task(env->dst_rq, p); 8104 } 8105 8106 rq_unlock(env->dst_rq, &rf); 8107 } 8108 8109 #ifdef CONFIG_NO_HZ_COMMON 8110 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 8111 { 8112 if (cfs_rq->avg.load_avg) 8113 return true; 8114 8115 if (cfs_rq->avg.util_avg) 8116 return true; 8117 8118 return false; 8119 } 8120 8121 static inline bool others_have_blocked(struct rq *rq) 8122 { 8123 if (READ_ONCE(rq->avg_rt.util_avg)) 8124 return true; 8125 8126 if (READ_ONCE(rq->avg_dl.util_avg)) 8127 return true; 8128 8129 if (thermal_load_avg(rq)) 8130 return true; 8131 8132 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 8133 if (READ_ONCE(rq->avg_irq.util_avg)) 8134 return true; 8135 #endif 8136 8137 return false; 8138 } 8139 8140 static inline void update_blocked_load_tick(struct rq *rq) 8141 { 8142 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 8143 } 8144 8145 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 8146 { 8147 if (!has_blocked) 8148 rq->has_blocked_load = 0; 8149 } 8150 #else 8151 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 8152 static inline bool others_have_blocked(struct rq *rq) { return false; } 8153 static inline void update_blocked_load_tick(struct rq *rq) {} 8154 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 8155 #endif 8156 8157 static bool __update_blocked_others(struct rq *rq, bool *done) 8158 { 8159 const struct sched_class *curr_class; 8160 u64 now = rq_clock_pelt(rq); 8161 unsigned long thermal_pressure; 8162 bool decayed; 8163 8164 /* 8165 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 8166 * DL and IRQ signals have been updated before updating CFS. 8167 */ 8168 curr_class = rq->curr->sched_class; 8169 8170 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 8171 8172 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 8173 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 8174 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 8175 update_irq_load_avg(rq, 0); 8176 8177 if (others_have_blocked(rq)) 8178 *done = false; 8179 8180 return decayed; 8181 } 8182 8183 #ifdef CONFIG_FAIR_GROUP_SCHED 8184 8185 static bool __update_blocked_fair(struct rq *rq, bool *done) 8186 { 8187 struct cfs_rq *cfs_rq, *pos; 8188 bool decayed = false; 8189 int cpu = cpu_of(rq); 8190 8191 /* 8192 * Iterates the task_group tree in a bottom up fashion, see 8193 * list_add_leaf_cfs_rq() for details. 8194 */ 8195 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 8196 struct sched_entity *se; 8197 8198 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 8199 update_tg_load_avg(cfs_rq); 8200 8201 if (cfs_rq == &rq->cfs) 8202 decayed = true; 8203 } 8204 8205 /* Propagate pending load changes to the parent, if any: */ 8206 se = cfs_rq->tg->se[cpu]; 8207 if (se && !skip_blocked_update(se)) 8208 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 8209 8210 /* 8211 * There can be a lot of idle CPU cgroups. Don't let fully 8212 * decayed cfs_rqs linger on the list. 8213 */ 8214 if (cfs_rq_is_decayed(cfs_rq)) 8215 list_del_leaf_cfs_rq(cfs_rq); 8216 8217 /* Don't need periodic decay once load/util_avg are null */ 8218 if (cfs_rq_has_blocked(cfs_rq)) 8219 *done = false; 8220 } 8221 8222 return decayed; 8223 } 8224 8225 /* 8226 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 8227 * This needs to be done in a top-down fashion because the load of a child 8228 * group is a fraction of its parents load. 8229 */ 8230 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 8231 { 8232 struct rq *rq = rq_of(cfs_rq); 8233 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 8234 unsigned long now = jiffies; 8235 unsigned long load; 8236 8237 if (cfs_rq->last_h_load_update == now) 8238 return; 8239 8240 WRITE_ONCE(cfs_rq->h_load_next, NULL); 8241 for_each_sched_entity(se) { 8242 cfs_rq = cfs_rq_of(se); 8243 WRITE_ONCE(cfs_rq->h_load_next, se); 8244 if (cfs_rq->last_h_load_update == now) 8245 break; 8246 } 8247 8248 if (!se) { 8249 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 8250 cfs_rq->last_h_load_update = now; 8251 } 8252 8253 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 8254 load = cfs_rq->h_load; 8255 load = div64_ul(load * se->avg.load_avg, 8256 cfs_rq_load_avg(cfs_rq) + 1); 8257 cfs_rq = group_cfs_rq(se); 8258 cfs_rq->h_load = load; 8259 cfs_rq->last_h_load_update = now; 8260 } 8261 } 8262 8263 static unsigned long task_h_load(struct task_struct *p) 8264 { 8265 struct cfs_rq *cfs_rq = task_cfs_rq(p); 8266 8267 update_cfs_rq_h_load(cfs_rq); 8268 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 8269 cfs_rq_load_avg(cfs_rq) + 1); 8270 } 8271 #else 8272 static bool __update_blocked_fair(struct rq *rq, bool *done) 8273 { 8274 struct cfs_rq *cfs_rq = &rq->cfs; 8275 bool decayed; 8276 8277 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 8278 if (cfs_rq_has_blocked(cfs_rq)) 8279 *done = false; 8280 8281 return decayed; 8282 } 8283 8284 static unsigned long task_h_load(struct task_struct *p) 8285 { 8286 return p->se.avg.load_avg; 8287 } 8288 #endif 8289 8290 static void update_blocked_averages(int cpu) 8291 { 8292 bool decayed = false, done = true; 8293 struct rq *rq = cpu_rq(cpu); 8294 struct rq_flags rf; 8295 8296 rq_lock_irqsave(rq, &rf); 8297 update_blocked_load_tick(rq); 8298 update_rq_clock(rq); 8299 8300 decayed |= __update_blocked_others(rq, &done); 8301 decayed |= __update_blocked_fair(rq, &done); 8302 8303 update_blocked_load_status(rq, !done); 8304 if (decayed) 8305 cpufreq_update_util(rq, 0); 8306 rq_unlock_irqrestore(rq, &rf); 8307 } 8308 8309 /********** Helpers for find_busiest_group ************************/ 8310 8311 /* 8312 * sg_lb_stats - stats of a sched_group required for load_balancing 8313 */ 8314 struct sg_lb_stats { 8315 unsigned long avg_load; /*Avg load across the CPUs of the group */ 8316 unsigned long group_load; /* Total load over the CPUs of the group */ 8317 unsigned long group_capacity; 8318 unsigned long group_util; /* Total utilization over the CPUs of the group */ 8319 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 8320 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 8321 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 8322 unsigned int idle_cpus; 8323 unsigned int group_weight; 8324 enum group_type group_type; 8325 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 8326 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 8327 #ifdef CONFIG_NUMA_BALANCING 8328 unsigned int nr_numa_running; 8329 unsigned int nr_preferred_running; 8330 #endif 8331 }; 8332 8333 /* 8334 * sd_lb_stats - Structure to store the statistics of a sched_domain 8335 * during load balancing. 8336 */ 8337 struct sd_lb_stats { 8338 struct sched_group *busiest; /* Busiest group in this sd */ 8339 struct sched_group *local; /* Local group in this sd */ 8340 unsigned long total_load; /* Total load of all groups in sd */ 8341 unsigned long total_capacity; /* Total capacity of all groups in sd */ 8342 unsigned long avg_load; /* Average load across all groups in sd */ 8343 unsigned int prefer_sibling; /* tasks should go to sibling first */ 8344 8345 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 8346 struct sg_lb_stats local_stat; /* Statistics of the local group */ 8347 }; 8348 8349 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 8350 { 8351 /* 8352 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 8353 * local_stat because update_sg_lb_stats() does a full clear/assignment. 8354 * We must however set busiest_stat::group_type and 8355 * busiest_stat::idle_cpus to the worst busiest group because 8356 * update_sd_pick_busiest() reads these before assignment. 8357 */ 8358 *sds = (struct sd_lb_stats){ 8359 .busiest = NULL, 8360 .local = NULL, 8361 .total_load = 0UL, 8362 .total_capacity = 0UL, 8363 .busiest_stat = { 8364 .idle_cpus = UINT_MAX, 8365 .group_type = group_has_spare, 8366 }, 8367 }; 8368 } 8369 8370 static unsigned long scale_rt_capacity(int cpu) 8371 { 8372 struct rq *rq = cpu_rq(cpu); 8373 unsigned long max = arch_scale_cpu_capacity(cpu); 8374 unsigned long used, free; 8375 unsigned long irq; 8376 8377 irq = cpu_util_irq(rq); 8378 8379 if (unlikely(irq >= max)) 8380 return 1; 8381 8382 /* 8383 * avg_rt.util_avg and avg_dl.util_avg track binary signals 8384 * (running and not running) with weights 0 and 1024 respectively. 8385 * avg_thermal.load_avg tracks thermal pressure and the weighted 8386 * average uses the actual delta max capacity(load). 8387 */ 8388 used = READ_ONCE(rq->avg_rt.util_avg); 8389 used += READ_ONCE(rq->avg_dl.util_avg); 8390 used += thermal_load_avg(rq); 8391 8392 if (unlikely(used >= max)) 8393 return 1; 8394 8395 free = max - used; 8396 8397 return scale_irq_capacity(free, irq, max); 8398 } 8399 8400 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 8401 { 8402 unsigned long capacity = scale_rt_capacity(cpu); 8403 struct sched_group *sdg = sd->groups; 8404 8405 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu); 8406 8407 if (!capacity) 8408 capacity = 1; 8409 8410 cpu_rq(cpu)->cpu_capacity = capacity; 8411 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 8412 8413 sdg->sgc->capacity = capacity; 8414 sdg->sgc->min_capacity = capacity; 8415 sdg->sgc->max_capacity = capacity; 8416 } 8417 8418 void update_group_capacity(struct sched_domain *sd, int cpu) 8419 { 8420 struct sched_domain *child = sd->child; 8421 struct sched_group *group, *sdg = sd->groups; 8422 unsigned long capacity, min_capacity, max_capacity; 8423 unsigned long interval; 8424 8425 interval = msecs_to_jiffies(sd->balance_interval); 8426 interval = clamp(interval, 1UL, max_load_balance_interval); 8427 sdg->sgc->next_update = jiffies + interval; 8428 8429 if (!child) { 8430 update_cpu_capacity(sd, cpu); 8431 return; 8432 } 8433 8434 capacity = 0; 8435 min_capacity = ULONG_MAX; 8436 max_capacity = 0; 8437 8438 if (child->flags & SD_OVERLAP) { 8439 /* 8440 * SD_OVERLAP domains cannot assume that child groups 8441 * span the current group. 8442 */ 8443 8444 for_each_cpu(cpu, sched_group_span(sdg)) { 8445 unsigned long cpu_cap = capacity_of(cpu); 8446 8447 capacity += cpu_cap; 8448 min_capacity = min(cpu_cap, min_capacity); 8449 max_capacity = max(cpu_cap, max_capacity); 8450 } 8451 } else { 8452 /* 8453 * !SD_OVERLAP domains can assume that child groups 8454 * span the current group. 8455 */ 8456 8457 group = child->groups; 8458 do { 8459 struct sched_group_capacity *sgc = group->sgc; 8460 8461 capacity += sgc->capacity; 8462 min_capacity = min(sgc->min_capacity, min_capacity); 8463 max_capacity = max(sgc->max_capacity, max_capacity); 8464 group = group->next; 8465 } while (group != child->groups); 8466 } 8467 8468 sdg->sgc->capacity = capacity; 8469 sdg->sgc->min_capacity = min_capacity; 8470 sdg->sgc->max_capacity = max_capacity; 8471 } 8472 8473 /* 8474 * Check whether the capacity of the rq has been noticeably reduced by side 8475 * activity. The imbalance_pct is used for the threshold. 8476 * Return true is the capacity is reduced 8477 */ 8478 static inline int 8479 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 8480 { 8481 return ((rq->cpu_capacity * sd->imbalance_pct) < 8482 (rq->cpu_capacity_orig * 100)); 8483 } 8484 8485 /* 8486 * Check whether a rq has a misfit task and if it looks like we can actually 8487 * help that task: we can migrate the task to a CPU of higher capacity, or 8488 * the task's current CPU is heavily pressured. 8489 */ 8490 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 8491 { 8492 return rq->misfit_task_load && 8493 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity || 8494 check_cpu_capacity(rq, sd)); 8495 } 8496 8497 /* 8498 * Group imbalance indicates (and tries to solve) the problem where balancing 8499 * groups is inadequate due to ->cpus_ptr constraints. 8500 * 8501 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 8502 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 8503 * Something like: 8504 * 8505 * { 0 1 2 3 } { 4 5 6 7 } 8506 * * * * * 8507 * 8508 * If we were to balance group-wise we'd place two tasks in the first group and 8509 * two tasks in the second group. Clearly this is undesired as it will overload 8510 * cpu 3 and leave one of the CPUs in the second group unused. 8511 * 8512 * The current solution to this issue is detecting the skew in the first group 8513 * by noticing the lower domain failed to reach balance and had difficulty 8514 * moving tasks due to affinity constraints. 8515 * 8516 * When this is so detected; this group becomes a candidate for busiest; see 8517 * update_sd_pick_busiest(). And calculate_imbalance() and 8518 * find_busiest_group() avoid some of the usual balance conditions to allow it 8519 * to create an effective group imbalance. 8520 * 8521 * This is a somewhat tricky proposition since the next run might not find the 8522 * group imbalance and decide the groups need to be balanced again. A most 8523 * subtle and fragile situation. 8524 */ 8525 8526 static inline int sg_imbalanced(struct sched_group *group) 8527 { 8528 return group->sgc->imbalance; 8529 } 8530 8531 /* 8532 * group_has_capacity returns true if the group has spare capacity that could 8533 * be used by some tasks. 8534 * We consider that a group has spare capacity if the * number of task is 8535 * smaller than the number of CPUs or if the utilization is lower than the 8536 * available capacity for CFS tasks. 8537 * For the latter, we use a threshold to stabilize the state, to take into 8538 * account the variance of the tasks' load and to return true if the available 8539 * capacity in meaningful for the load balancer. 8540 * As an example, an available capacity of 1% can appear but it doesn't make 8541 * any benefit for the load balance. 8542 */ 8543 static inline bool 8544 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8545 { 8546 if (sgs->sum_nr_running < sgs->group_weight) 8547 return true; 8548 8549 if ((sgs->group_capacity * imbalance_pct) < 8550 (sgs->group_runnable * 100)) 8551 return false; 8552 8553 if ((sgs->group_capacity * 100) > 8554 (sgs->group_util * imbalance_pct)) 8555 return true; 8556 8557 return false; 8558 } 8559 8560 /* 8561 * group_is_overloaded returns true if the group has more tasks than it can 8562 * handle. 8563 * group_is_overloaded is not equals to !group_has_capacity because a group 8564 * with the exact right number of tasks, has no more spare capacity but is not 8565 * overloaded so both group_has_capacity and group_is_overloaded return 8566 * false. 8567 */ 8568 static inline bool 8569 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 8570 { 8571 if (sgs->sum_nr_running <= sgs->group_weight) 8572 return false; 8573 8574 if ((sgs->group_capacity * 100) < 8575 (sgs->group_util * imbalance_pct)) 8576 return true; 8577 8578 if ((sgs->group_capacity * imbalance_pct) < 8579 (sgs->group_runnable * 100)) 8580 return true; 8581 8582 return false; 8583 } 8584 8585 static inline enum 8586 group_type group_classify(unsigned int imbalance_pct, 8587 struct sched_group *group, 8588 struct sg_lb_stats *sgs) 8589 { 8590 if (group_is_overloaded(imbalance_pct, sgs)) 8591 return group_overloaded; 8592 8593 if (sg_imbalanced(group)) 8594 return group_imbalanced; 8595 8596 if (sgs->group_asym_packing) 8597 return group_asym_packing; 8598 8599 if (sgs->group_misfit_task_load) 8600 return group_misfit_task; 8601 8602 if (!group_has_capacity(imbalance_pct, sgs)) 8603 return group_fully_busy; 8604 8605 return group_has_spare; 8606 } 8607 8608 /** 8609 * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks 8610 * @dst_cpu: Destination CPU of the load balancing 8611 * @sds: Load-balancing data with statistics of the local group 8612 * @sgs: Load-balancing statistics of the candidate busiest group 8613 * @sg: The candidate busiest group 8614 * 8615 * Check the state of the SMT siblings of both @sds::local and @sg and decide 8616 * if @dst_cpu can pull tasks. 8617 * 8618 * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of 8619 * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks 8620 * only if @dst_cpu has higher priority. 8621 * 8622 * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more 8623 * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority. 8624 * Bigger imbalances in the number of busy CPUs will be dealt with in 8625 * update_sd_pick_busiest(). 8626 * 8627 * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings 8628 * of @dst_cpu are idle and @sg has lower priority. 8629 * 8630 * Return: true if @dst_cpu can pull tasks, false otherwise. 8631 */ 8632 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds, 8633 struct sg_lb_stats *sgs, 8634 struct sched_group *sg) 8635 { 8636 #ifdef CONFIG_SCHED_SMT 8637 bool local_is_smt, sg_is_smt; 8638 int sg_busy_cpus; 8639 8640 local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY; 8641 sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY; 8642 8643 sg_busy_cpus = sgs->group_weight - sgs->idle_cpus; 8644 8645 if (!local_is_smt) { 8646 /* 8647 * If we are here, @dst_cpu is idle and does not have SMT 8648 * siblings. Pull tasks if candidate group has two or more 8649 * busy CPUs. 8650 */ 8651 if (sg_busy_cpus >= 2) /* implies sg_is_smt */ 8652 return true; 8653 8654 /* 8655 * @dst_cpu does not have SMT siblings. @sg may have SMT 8656 * siblings and only one is busy. In such case, @dst_cpu 8657 * can help if it has higher priority and is idle (i.e., 8658 * it has no running tasks). 8659 */ 8660 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8661 } 8662 8663 /* @dst_cpu has SMT siblings. */ 8664 8665 if (sg_is_smt) { 8666 int local_busy_cpus = sds->local->group_weight - 8667 sds->local_stat.idle_cpus; 8668 int busy_cpus_delta = sg_busy_cpus - local_busy_cpus; 8669 8670 if (busy_cpus_delta == 1) 8671 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8672 8673 return false; 8674 } 8675 8676 /* 8677 * @sg does not have SMT siblings. Ensure that @sds::local does not end 8678 * up with more than one busy SMT sibling and only pull tasks if there 8679 * are not busy CPUs (i.e., no CPU has running tasks). 8680 */ 8681 if (!sds->local_stat.sum_nr_running) 8682 return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu); 8683 8684 return false; 8685 #else 8686 /* Always return false so that callers deal with non-SMT cases. */ 8687 return false; 8688 #endif 8689 } 8690 8691 static inline bool 8692 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 8693 struct sched_group *group) 8694 { 8695 /* Only do SMT checks if either local or candidate have SMT siblings */ 8696 if ((sds->local->flags & SD_SHARE_CPUCAPACITY) || 8697 (group->flags & SD_SHARE_CPUCAPACITY)) 8698 return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group); 8699 8700 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 8701 } 8702 8703 /** 8704 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 8705 * @env: The load balancing environment. 8706 * @sds: Load-balancing data with statistics of the local group. 8707 * @group: sched_group whose statistics are to be updated. 8708 * @sgs: variable to hold the statistics for this group. 8709 * @sg_status: Holds flag indicating the status of the sched_group 8710 */ 8711 static inline void update_sg_lb_stats(struct lb_env *env, 8712 struct sd_lb_stats *sds, 8713 struct sched_group *group, 8714 struct sg_lb_stats *sgs, 8715 int *sg_status) 8716 { 8717 int i, nr_running, local_group; 8718 8719 memset(sgs, 0, sizeof(*sgs)); 8720 8721 local_group = group == sds->local; 8722 8723 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 8724 struct rq *rq = cpu_rq(i); 8725 8726 sgs->group_load += cpu_load(rq); 8727 sgs->group_util += cpu_util_cfs(i); 8728 sgs->group_runnable += cpu_runnable(rq); 8729 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 8730 8731 nr_running = rq->nr_running; 8732 sgs->sum_nr_running += nr_running; 8733 8734 if (nr_running > 1) 8735 *sg_status |= SG_OVERLOAD; 8736 8737 if (cpu_overutilized(i)) 8738 *sg_status |= SG_OVERUTILIZED; 8739 8740 #ifdef CONFIG_NUMA_BALANCING 8741 sgs->nr_numa_running += rq->nr_numa_running; 8742 sgs->nr_preferred_running += rq->nr_preferred_running; 8743 #endif 8744 /* 8745 * No need to call idle_cpu() if nr_running is not 0 8746 */ 8747 if (!nr_running && idle_cpu(i)) { 8748 sgs->idle_cpus++; 8749 /* Idle cpu can't have misfit task */ 8750 continue; 8751 } 8752 8753 if (local_group) 8754 continue; 8755 8756 /* Check for a misfit task on the cpu */ 8757 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 8758 sgs->group_misfit_task_load < rq->misfit_task_load) { 8759 sgs->group_misfit_task_load = rq->misfit_task_load; 8760 *sg_status |= SG_OVERLOAD; 8761 } 8762 } 8763 8764 sgs->group_capacity = group->sgc->capacity; 8765 8766 sgs->group_weight = group->group_weight; 8767 8768 /* Check if dst CPU is idle and preferred to this group */ 8769 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 8770 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 8771 sched_asym(env, sds, sgs, group)) { 8772 sgs->group_asym_packing = 1; 8773 } 8774 8775 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 8776 8777 /* Computing avg_load makes sense only when group is overloaded */ 8778 if (sgs->group_type == group_overloaded) 8779 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 8780 sgs->group_capacity; 8781 } 8782 8783 /** 8784 * update_sd_pick_busiest - return 1 on busiest group 8785 * @env: The load balancing environment. 8786 * @sds: sched_domain statistics 8787 * @sg: sched_group candidate to be checked for being the busiest 8788 * @sgs: sched_group statistics 8789 * 8790 * Determine if @sg is a busier group than the previously selected 8791 * busiest group. 8792 * 8793 * Return: %true if @sg is a busier group than the previously selected 8794 * busiest group. %false otherwise. 8795 */ 8796 static bool update_sd_pick_busiest(struct lb_env *env, 8797 struct sd_lb_stats *sds, 8798 struct sched_group *sg, 8799 struct sg_lb_stats *sgs) 8800 { 8801 struct sg_lb_stats *busiest = &sds->busiest_stat; 8802 8803 /* Make sure that there is at least one task to pull */ 8804 if (!sgs->sum_h_nr_running) 8805 return false; 8806 8807 /* 8808 * Don't try to pull misfit tasks we can't help. 8809 * We can use max_capacity here as reduction in capacity on some 8810 * CPUs in the group should either be possible to resolve 8811 * internally or be covered by avg_load imbalance (eventually). 8812 */ 8813 if (sgs->group_type == group_misfit_task && 8814 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 8815 sds->local_stat.group_type != group_has_spare)) 8816 return false; 8817 8818 if (sgs->group_type > busiest->group_type) 8819 return true; 8820 8821 if (sgs->group_type < busiest->group_type) 8822 return false; 8823 8824 /* 8825 * The candidate and the current busiest group are the same type of 8826 * group. Let check which one is the busiest according to the type. 8827 */ 8828 8829 switch (sgs->group_type) { 8830 case group_overloaded: 8831 /* Select the overloaded group with highest avg_load. */ 8832 if (sgs->avg_load <= busiest->avg_load) 8833 return false; 8834 break; 8835 8836 case group_imbalanced: 8837 /* 8838 * Select the 1st imbalanced group as we don't have any way to 8839 * choose one more than another. 8840 */ 8841 return false; 8842 8843 case group_asym_packing: 8844 /* Prefer to move from lowest priority CPU's work */ 8845 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 8846 return false; 8847 break; 8848 8849 case group_misfit_task: 8850 /* 8851 * If we have more than one misfit sg go with the biggest 8852 * misfit. 8853 */ 8854 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 8855 return false; 8856 break; 8857 8858 case group_fully_busy: 8859 /* 8860 * Select the fully busy group with highest avg_load. In 8861 * theory, there is no need to pull task from such kind of 8862 * group because tasks have all compute capacity that they need 8863 * but we can still improve the overall throughput by reducing 8864 * contention when accessing shared HW resources. 8865 * 8866 * XXX for now avg_load is not computed and always 0 so we 8867 * select the 1st one. 8868 */ 8869 if (sgs->avg_load <= busiest->avg_load) 8870 return false; 8871 break; 8872 8873 case group_has_spare: 8874 /* 8875 * Select not overloaded group with lowest number of idle cpus 8876 * and highest number of running tasks. We could also compare 8877 * the spare capacity which is more stable but it can end up 8878 * that the group has less spare capacity but finally more idle 8879 * CPUs which means less opportunity to pull tasks. 8880 */ 8881 if (sgs->idle_cpus > busiest->idle_cpus) 8882 return false; 8883 else if ((sgs->idle_cpus == busiest->idle_cpus) && 8884 (sgs->sum_nr_running <= busiest->sum_nr_running)) 8885 return false; 8886 8887 break; 8888 } 8889 8890 /* 8891 * Candidate sg has no more than one task per CPU and has higher 8892 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 8893 * throughput. Maximize throughput, power/energy consequences are not 8894 * considered. 8895 */ 8896 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 8897 (sgs->group_type <= group_fully_busy) && 8898 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 8899 return false; 8900 8901 return true; 8902 } 8903 8904 #ifdef CONFIG_NUMA_BALANCING 8905 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8906 { 8907 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 8908 return regular; 8909 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 8910 return remote; 8911 return all; 8912 } 8913 8914 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8915 { 8916 if (rq->nr_running > rq->nr_numa_running) 8917 return regular; 8918 if (rq->nr_running > rq->nr_preferred_running) 8919 return remote; 8920 return all; 8921 } 8922 #else 8923 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 8924 { 8925 return all; 8926 } 8927 8928 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 8929 { 8930 return regular; 8931 } 8932 #endif /* CONFIG_NUMA_BALANCING */ 8933 8934 8935 struct sg_lb_stats; 8936 8937 /* 8938 * task_running_on_cpu - return 1 if @p is running on @cpu. 8939 */ 8940 8941 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 8942 { 8943 /* Task has no contribution or is new */ 8944 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8945 return 0; 8946 8947 if (task_on_rq_queued(p)) 8948 return 1; 8949 8950 return 0; 8951 } 8952 8953 /** 8954 * idle_cpu_without - would a given CPU be idle without p ? 8955 * @cpu: the processor on which idleness is tested. 8956 * @p: task which should be ignored. 8957 * 8958 * Return: 1 if the CPU would be idle. 0 otherwise. 8959 */ 8960 static int idle_cpu_without(int cpu, struct task_struct *p) 8961 { 8962 struct rq *rq = cpu_rq(cpu); 8963 8964 if (rq->curr != rq->idle && rq->curr != p) 8965 return 0; 8966 8967 /* 8968 * rq->nr_running can't be used but an updated version without the 8969 * impact of p on cpu must be used instead. The updated nr_running 8970 * be computed and tested before calling idle_cpu_without(). 8971 */ 8972 8973 #ifdef CONFIG_SMP 8974 if (rq->ttwu_pending) 8975 return 0; 8976 #endif 8977 8978 return 1; 8979 } 8980 8981 /* 8982 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 8983 * @sd: The sched_domain level to look for idlest group. 8984 * @group: sched_group whose statistics are to be updated. 8985 * @sgs: variable to hold the statistics for this group. 8986 * @p: The task for which we look for the idlest group/CPU. 8987 */ 8988 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 8989 struct sched_group *group, 8990 struct sg_lb_stats *sgs, 8991 struct task_struct *p) 8992 { 8993 int i, nr_running; 8994 8995 memset(sgs, 0, sizeof(*sgs)); 8996 8997 for_each_cpu(i, sched_group_span(group)) { 8998 struct rq *rq = cpu_rq(i); 8999 unsigned int local; 9000 9001 sgs->group_load += cpu_load_without(rq, p); 9002 sgs->group_util += cpu_util_without(i, p); 9003 sgs->group_runnable += cpu_runnable_without(rq, p); 9004 local = task_running_on_cpu(i, p); 9005 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 9006 9007 nr_running = rq->nr_running - local; 9008 sgs->sum_nr_running += nr_running; 9009 9010 /* 9011 * No need to call idle_cpu_without() if nr_running is not 0 9012 */ 9013 if (!nr_running && idle_cpu_without(i, p)) 9014 sgs->idle_cpus++; 9015 9016 } 9017 9018 /* Check if task fits in the group */ 9019 if (sd->flags & SD_ASYM_CPUCAPACITY && 9020 !task_fits_capacity(p, group->sgc->max_capacity)) { 9021 sgs->group_misfit_task_load = 1; 9022 } 9023 9024 sgs->group_capacity = group->sgc->capacity; 9025 9026 sgs->group_weight = group->group_weight; 9027 9028 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 9029 9030 /* 9031 * Computing avg_load makes sense only when group is fully busy or 9032 * overloaded 9033 */ 9034 if (sgs->group_type == group_fully_busy || 9035 sgs->group_type == group_overloaded) 9036 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9037 sgs->group_capacity; 9038 } 9039 9040 static bool update_pick_idlest(struct sched_group *idlest, 9041 struct sg_lb_stats *idlest_sgs, 9042 struct sched_group *group, 9043 struct sg_lb_stats *sgs) 9044 { 9045 if (sgs->group_type < idlest_sgs->group_type) 9046 return true; 9047 9048 if (sgs->group_type > idlest_sgs->group_type) 9049 return false; 9050 9051 /* 9052 * The candidate and the current idlest group are the same type of 9053 * group. Let check which one is the idlest according to the type. 9054 */ 9055 9056 switch (sgs->group_type) { 9057 case group_overloaded: 9058 case group_fully_busy: 9059 /* Select the group with lowest avg_load. */ 9060 if (idlest_sgs->avg_load <= sgs->avg_load) 9061 return false; 9062 break; 9063 9064 case group_imbalanced: 9065 case group_asym_packing: 9066 /* Those types are not used in the slow wakeup path */ 9067 return false; 9068 9069 case group_misfit_task: 9070 /* Select group with the highest max capacity */ 9071 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 9072 return false; 9073 break; 9074 9075 case group_has_spare: 9076 /* Select group with most idle CPUs */ 9077 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 9078 return false; 9079 9080 /* Select group with lowest group_util */ 9081 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 9082 idlest_sgs->group_util <= sgs->group_util) 9083 return false; 9084 9085 break; 9086 } 9087 9088 return true; 9089 } 9090 9091 /* 9092 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain. 9093 * This is an approximation as the number of running tasks may not be 9094 * related to the number of busy CPUs due to sched_setaffinity. 9095 */ 9096 static inline bool allow_numa_imbalance(int running, int imb_numa_nr) 9097 { 9098 return running <= imb_numa_nr; 9099 } 9100 9101 /* 9102 * find_idlest_group() finds and returns the least busy CPU group within the 9103 * domain. 9104 * 9105 * Assumes p is allowed on at least one CPU in sd. 9106 */ 9107 static struct sched_group * 9108 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 9109 { 9110 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 9111 struct sg_lb_stats local_sgs, tmp_sgs; 9112 struct sg_lb_stats *sgs; 9113 unsigned long imbalance; 9114 struct sg_lb_stats idlest_sgs = { 9115 .avg_load = UINT_MAX, 9116 .group_type = group_overloaded, 9117 }; 9118 9119 do { 9120 int local_group; 9121 9122 /* Skip over this group if it has no CPUs allowed */ 9123 if (!cpumask_intersects(sched_group_span(group), 9124 p->cpus_ptr)) 9125 continue; 9126 9127 /* Skip over this group if no cookie matched */ 9128 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 9129 continue; 9130 9131 local_group = cpumask_test_cpu(this_cpu, 9132 sched_group_span(group)); 9133 9134 if (local_group) { 9135 sgs = &local_sgs; 9136 local = group; 9137 } else { 9138 sgs = &tmp_sgs; 9139 } 9140 9141 update_sg_wakeup_stats(sd, group, sgs, p); 9142 9143 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 9144 idlest = group; 9145 idlest_sgs = *sgs; 9146 } 9147 9148 } while (group = group->next, group != sd->groups); 9149 9150 9151 /* There is no idlest group to push tasks to */ 9152 if (!idlest) 9153 return NULL; 9154 9155 /* The local group has been skipped because of CPU affinity */ 9156 if (!local) 9157 return idlest; 9158 9159 /* 9160 * If the local group is idler than the selected idlest group 9161 * don't try and push the task. 9162 */ 9163 if (local_sgs.group_type < idlest_sgs.group_type) 9164 return NULL; 9165 9166 /* 9167 * If the local group is busier than the selected idlest group 9168 * try and push the task. 9169 */ 9170 if (local_sgs.group_type > idlest_sgs.group_type) 9171 return idlest; 9172 9173 switch (local_sgs.group_type) { 9174 case group_overloaded: 9175 case group_fully_busy: 9176 9177 /* Calculate allowed imbalance based on load */ 9178 imbalance = scale_load_down(NICE_0_LOAD) * 9179 (sd->imbalance_pct-100) / 100; 9180 9181 /* 9182 * When comparing groups across NUMA domains, it's possible for 9183 * the local domain to be very lightly loaded relative to the 9184 * remote domains but "imbalance" skews the comparison making 9185 * remote CPUs look much more favourable. When considering 9186 * cross-domain, add imbalance to the load on the remote node 9187 * and consider staying local. 9188 */ 9189 9190 if ((sd->flags & SD_NUMA) && 9191 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 9192 return NULL; 9193 9194 /* 9195 * If the local group is less loaded than the selected 9196 * idlest group don't try and push any tasks. 9197 */ 9198 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 9199 return NULL; 9200 9201 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 9202 return NULL; 9203 break; 9204 9205 case group_imbalanced: 9206 case group_asym_packing: 9207 /* Those type are not used in the slow wakeup path */ 9208 return NULL; 9209 9210 case group_misfit_task: 9211 /* Select group with the highest max capacity */ 9212 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 9213 return NULL; 9214 break; 9215 9216 case group_has_spare: 9217 if (sd->flags & SD_NUMA) { 9218 #ifdef CONFIG_NUMA_BALANCING 9219 int idlest_cpu; 9220 /* 9221 * If there is spare capacity at NUMA, try to select 9222 * the preferred node 9223 */ 9224 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 9225 return NULL; 9226 9227 idlest_cpu = cpumask_first(sched_group_span(idlest)); 9228 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 9229 return idlest; 9230 #endif 9231 /* 9232 * Otherwise, keep the task close to the wakeup source 9233 * and improve locality if the number of running tasks 9234 * would remain below threshold where an imbalance is 9235 * allowed. If there is a real need of migration, 9236 * periodic load balance will take care of it. 9237 */ 9238 if (allow_numa_imbalance(local_sgs.sum_nr_running + 1, sd->imb_numa_nr)) 9239 return NULL; 9240 } 9241 9242 /* 9243 * Select group with highest number of idle CPUs. We could also 9244 * compare the utilization which is more stable but it can end 9245 * up that the group has less spare capacity but finally more 9246 * idle CPUs which means more opportunity to run task. 9247 */ 9248 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 9249 return NULL; 9250 break; 9251 } 9252 9253 return idlest; 9254 } 9255 9256 /** 9257 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 9258 * @env: The load balancing environment. 9259 * @sds: variable to hold the statistics for this sched_domain. 9260 */ 9261 9262 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 9263 { 9264 struct sched_domain *child = env->sd->child; 9265 struct sched_group *sg = env->sd->groups; 9266 struct sg_lb_stats *local = &sds->local_stat; 9267 struct sg_lb_stats tmp_sgs; 9268 int sg_status = 0; 9269 9270 do { 9271 struct sg_lb_stats *sgs = &tmp_sgs; 9272 int local_group; 9273 9274 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 9275 if (local_group) { 9276 sds->local = sg; 9277 sgs = local; 9278 9279 if (env->idle != CPU_NEWLY_IDLE || 9280 time_after_eq(jiffies, sg->sgc->next_update)) 9281 update_group_capacity(env->sd, env->dst_cpu); 9282 } 9283 9284 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 9285 9286 if (local_group) 9287 goto next_group; 9288 9289 9290 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 9291 sds->busiest = sg; 9292 sds->busiest_stat = *sgs; 9293 } 9294 9295 next_group: 9296 /* Now, start updating sd_lb_stats */ 9297 sds->total_load += sgs->group_load; 9298 sds->total_capacity += sgs->group_capacity; 9299 9300 sg = sg->next; 9301 } while (sg != env->sd->groups); 9302 9303 /* Tag domain that child domain prefers tasks go to siblings first */ 9304 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING; 9305 9306 9307 if (env->sd->flags & SD_NUMA) 9308 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 9309 9310 if (!env->sd->parent) { 9311 struct root_domain *rd = env->dst_rq->rd; 9312 9313 /* update overload indicator if we are at root domain */ 9314 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 9315 9316 /* Update over-utilization (tipping point, U >= 0) indicator */ 9317 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 9318 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 9319 } else if (sg_status & SG_OVERUTILIZED) { 9320 struct root_domain *rd = env->dst_rq->rd; 9321 9322 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 9323 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 9324 } 9325 } 9326 9327 #define NUMA_IMBALANCE_MIN 2 9328 9329 static inline long adjust_numa_imbalance(int imbalance, 9330 int dst_running, int imb_numa_nr) 9331 { 9332 if (!allow_numa_imbalance(dst_running, imb_numa_nr)) 9333 return imbalance; 9334 9335 /* 9336 * Allow a small imbalance based on a simple pair of communicating 9337 * tasks that remain local when the destination is lightly loaded. 9338 */ 9339 if (imbalance <= NUMA_IMBALANCE_MIN) 9340 return 0; 9341 9342 return imbalance; 9343 } 9344 9345 /** 9346 * calculate_imbalance - Calculate the amount of imbalance present within the 9347 * groups of a given sched_domain during load balance. 9348 * @env: load balance environment 9349 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 9350 */ 9351 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 9352 { 9353 struct sg_lb_stats *local, *busiest; 9354 9355 local = &sds->local_stat; 9356 busiest = &sds->busiest_stat; 9357 9358 if (busiest->group_type == group_misfit_task) { 9359 /* Set imbalance to allow misfit tasks to be balanced. */ 9360 env->migration_type = migrate_misfit; 9361 env->imbalance = 1; 9362 return; 9363 } 9364 9365 if (busiest->group_type == group_asym_packing) { 9366 /* 9367 * In case of asym capacity, we will try to migrate all load to 9368 * the preferred CPU. 9369 */ 9370 env->migration_type = migrate_task; 9371 env->imbalance = busiest->sum_h_nr_running; 9372 return; 9373 } 9374 9375 if (busiest->group_type == group_imbalanced) { 9376 /* 9377 * In the group_imb case we cannot rely on group-wide averages 9378 * to ensure CPU-load equilibrium, try to move any task to fix 9379 * the imbalance. The next load balance will take care of 9380 * balancing back the system. 9381 */ 9382 env->migration_type = migrate_task; 9383 env->imbalance = 1; 9384 return; 9385 } 9386 9387 /* 9388 * Try to use spare capacity of local group without overloading it or 9389 * emptying busiest. 9390 */ 9391 if (local->group_type == group_has_spare) { 9392 if ((busiest->group_type > group_fully_busy) && 9393 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 9394 /* 9395 * If busiest is overloaded, try to fill spare 9396 * capacity. This might end up creating spare capacity 9397 * in busiest or busiest still being overloaded but 9398 * there is no simple way to directly compute the 9399 * amount of load to migrate in order to balance the 9400 * system. 9401 */ 9402 env->migration_type = migrate_util; 9403 env->imbalance = max(local->group_capacity, local->group_util) - 9404 local->group_util; 9405 9406 /* 9407 * In some cases, the group's utilization is max or even 9408 * higher than capacity because of migrations but the 9409 * local CPU is (newly) idle. There is at least one 9410 * waiting task in this overloaded busiest group. Let's 9411 * try to pull it. 9412 */ 9413 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 9414 env->migration_type = migrate_task; 9415 env->imbalance = 1; 9416 } 9417 9418 return; 9419 } 9420 9421 if (busiest->group_weight == 1 || sds->prefer_sibling) { 9422 unsigned int nr_diff = busiest->sum_nr_running; 9423 /* 9424 * When prefer sibling, evenly spread running tasks on 9425 * groups. 9426 */ 9427 env->migration_type = migrate_task; 9428 lsub_positive(&nr_diff, local->sum_nr_running); 9429 env->imbalance = nr_diff >> 1; 9430 } else { 9431 9432 /* 9433 * If there is no overload, we just want to even the number of 9434 * idle cpus. 9435 */ 9436 env->migration_type = migrate_task; 9437 env->imbalance = max_t(long, 0, (local->idle_cpus - 9438 busiest->idle_cpus) >> 1); 9439 } 9440 9441 /* Consider allowing a small imbalance between NUMA groups */ 9442 if (env->sd->flags & SD_NUMA) { 9443 env->imbalance = adjust_numa_imbalance(env->imbalance, 9444 local->sum_nr_running + 1, env->sd->imb_numa_nr); 9445 } 9446 9447 return; 9448 } 9449 9450 /* 9451 * Local is fully busy but has to take more load to relieve the 9452 * busiest group 9453 */ 9454 if (local->group_type < group_overloaded) { 9455 /* 9456 * Local will become overloaded so the avg_load metrics are 9457 * finally needed. 9458 */ 9459 9460 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 9461 local->group_capacity; 9462 9463 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 9464 sds->total_capacity; 9465 /* 9466 * If the local group is more loaded than the selected 9467 * busiest group don't try to pull any tasks. 9468 */ 9469 if (local->avg_load >= busiest->avg_load) { 9470 env->imbalance = 0; 9471 return; 9472 } 9473 } 9474 9475 /* 9476 * Both group are or will become overloaded and we're trying to get all 9477 * the CPUs to the average_load, so we don't want to push ourselves 9478 * above the average load, nor do we wish to reduce the max loaded CPU 9479 * below the average load. At the same time, we also don't want to 9480 * reduce the group load below the group capacity. Thus we look for 9481 * the minimum possible imbalance. 9482 */ 9483 env->migration_type = migrate_load; 9484 env->imbalance = min( 9485 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 9486 (sds->avg_load - local->avg_load) * local->group_capacity 9487 ) / SCHED_CAPACITY_SCALE; 9488 } 9489 9490 /******* find_busiest_group() helpers end here *********************/ 9491 9492 /* 9493 * Decision matrix according to the local and busiest group type: 9494 * 9495 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 9496 * has_spare nr_idle balanced N/A N/A balanced balanced 9497 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 9498 * misfit_task force N/A N/A N/A force force 9499 * asym_packing force force N/A N/A force force 9500 * imbalanced force force N/A N/A force force 9501 * overloaded force force N/A N/A force avg_load 9502 * 9503 * N/A : Not Applicable because already filtered while updating 9504 * statistics. 9505 * balanced : The system is balanced for these 2 groups. 9506 * force : Calculate the imbalance as load migration is probably needed. 9507 * avg_load : Only if imbalance is significant enough. 9508 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 9509 * different in groups. 9510 */ 9511 9512 /** 9513 * find_busiest_group - Returns the busiest group within the sched_domain 9514 * if there is an imbalance. 9515 * @env: The load balancing environment. 9516 * 9517 * Also calculates the amount of runnable load which should be moved 9518 * to restore balance. 9519 * 9520 * Return: - The busiest group if imbalance exists. 9521 */ 9522 static struct sched_group *find_busiest_group(struct lb_env *env) 9523 { 9524 struct sg_lb_stats *local, *busiest; 9525 struct sd_lb_stats sds; 9526 9527 init_sd_lb_stats(&sds); 9528 9529 /* 9530 * Compute the various statistics relevant for load balancing at 9531 * this level. 9532 */ 9533 update_sd_lb_stats(env, &sds); 9534 9535 if (sched_energy_enabled()) { 9536 struct root_domain *rd = env->dst_rq->rd; 9537 9538 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 9539 goto out_balanced; 9540 } 9541 9542 local = &sds.local_stat; 9543 busiest = &sds.busiest_stat; 9544 9545 /* There is no busy sibling group to pull tasks from */ 9546 if (!sds.busiest) 9547 goto out_balanced; 9548 9549 /* Misfit tasks should be dealt with regardless of the avg load */ 9550 if (busiest->group_type == group_misfit_task) 9551 goto force_balance; 9552 9553 /* ASYM feature bypasses nice load balance check */ 9554 if (busiest->group_type == group_asym_packing) 9555 goto force_balance; 9556 9557 /* 9558 * If the busiest group is imbalanced the below checks don't 9559 * work because they assume all things are equal, which typically 9560 * isn't true due to cpus_ptr constraints and the like. 9561 */ 9562 if (busiest->group_type == group_imbalanced) 9563 goto force_balance; 9564 9565 /* 9566 * If the local group is busier than the selected busiest group 9567 * don't try and pull any tasks. 9568 */ 9569 if (local->group_type > busiest->group_type) 9570 goto out_balanced; 9571 9572 /* 9573 * When groups are overloaded, use the avg_load to ensure fairness 9574 * between tasks. 9575 */ 9576 if (local->group_type == group_overloaded) { 9577 /* 9578 * If the local group is more loaded than the selected 9579 * busiest group don't try to pull any tasks. 9580 */ 9581 if (local->avg_load >= busiest->avg_load) 9582 goto out_balanced; 9583 9584 /* XXX broken for overlapping NUMA groups */ 9585 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 9586 sds.total_capacity; 9587 9588 /* 9589 * Don't pull any tasks if this group is already above the 9590 * domain average load. 9591 */ 9592 if (local->avg_load >= sds.avg_load) 9593 goto out_balanced; 9594 9595 /* 9596 * If the busiest group is more loaded, use imbalance_pct to be 9597 * conservative. 9598 */ 9599 if (100 * busiest->avg_load <= 9600 env->sd->imbalance_pct * local->avg_load) 9601 goto out_balanced; 9602 } 9603 9604 /* Try to move all excess tasks to child's sibling domain */ 9605 if (sds.prefer_sibling && local->group_type == group_has_spare && 9606 busiest->sum_nr_running > local->sum_nr_running + 1) 9607 goto force_balance; 9608 9609 if (busiest->group_type != group_overloaded) { 9610 if (env->idle == CPU_NOT_IDLE) 9611 /* 9612 * If the busiest group is not overloaded (and as a 9613 * result the local one too) but this CPU is already 9614 * busy, let another idle CPU try to pull task. 9615 */ 9616 goto out_balanced; 9617 9618 if (busiest->group_weight > 1 && 9619 local->idle_cpus <= (busiest->idle_cpus + 1)) 9620 /* 9621 * If the busiest group is not overloaded 9622 * and there is no imbalance between this and busiest 9623 * group wrt idle CPUs, it is balanced. The imbalance 9624 * becomes significant if the diff is greater than 1 9625 * otherwise we might end up to just move the imbalance 9626 * on another group. Of course this applies only if 9627 * there is more than 1 CPU per group. 9628 */ 9629 goto out_balanced; 9630 9631 if (busiest->sum_h_nr_running == 1) 9632 /* 9633 * busiest doesn't have any tasks waiting to run 9634 */ 9635 goto out_balanced; 9636 } 9637 9638 force_balance: 9639 /* Looks like there is an imbalance. Compute it */ 9640 calculate_imbalance(env, &sds); 9641 return env->imbalance ? sds.busiest : NULL; 9642 9643 out_balanced: 9644 env->imbalance = 0; 9645 return NULL; 9646 } 9647 9648 /* 9649 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 9650 */ 9651 static struct rq *find_busiest_queue(struct lb_env *env, 9652 struct sched_group *group) 9653 { 9654 struct rq *busiest = NULL, *rq; 9655 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 9656 unsigned int busiest_nr = 0; 9657 int i; 9658 9659 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9660 unsigned long capacity, load, util; 9661 unsigned int nr_running; 9662 enum fbq_type rt; 9663 9664 rq = cpu_rq(i); 9665 rt = fbq_classify_rq(rq); 9666 9667 /* 9668 * We classify groups/runqueues into three groups: 9669 * - regular: there are !numa tasks 9670 * - remote: there are numa tasks that run on the 'wrong' node 9671 * - all: there is no distinction 9672 * 9673 * In order to avoid migrating ideally placed numa tasks, 9674 * ignore those when there's better options. 9675 * 9676 * If we ignore the actual busiest queue to migrate another 9677 * task, the next balance pass can still reduce the busiest 9678 * queue by moving tasks around inside the node. 9679 * 9680 * If we cannot move enough load due to this classification 9681 * the next pass will adjust the group classification and 9682 * allow migration of more tasks. 9683 * 9684 * Both cases only affect the total convergence complexity. 9685 */ 9686 if (rt > env->fbq_type) 9687 continue; 9688 9689 nr_running = rq->cfs.h_nr_running; 9690 if (!nr_running) 9691 continue; 9692 9693 capacity = capacity_of(i); 9694 9695 /* 9696 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 9697 * eventually lead to active_balancing high->low capacity. 9698 * Higher per-CPU capacity is considered better than balancing 9699 * average load. 9700 */ 9701 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 9702 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 9703 nr_running == 1) 9704 continue; 9705 9706 /* Make sure we only pull tasks from a CPU of lower priority */ 9707 if ((env->sd->flags & SD_ASYM_PACKING) && 9708 sched_asym_prefer(i, env->dst_cpu) && 9709 nr_running == 1) 9710 continue; 9711 9712 switch (env->migration_type) { 9713 case migrate_load: 9714 /* 9715 * When comparing with load imbalance, use cpu_load() 9716 * which is not scaled with the CPU capacity. 9717 */ 9718 load = cpu_load(rq); 9719 9720 if (nr_running == 1 && load > env->imbalance && 9721 !check_cpu_capacity(rq, env->sd)) 9722 break; 9723 9724 /* 9725 * For the load comparisons with the other CPUs, 9726 * consider the cpu_load() scaled with the CPU 9727 * capacity, so that the load can be moved away 9728 * from the CPU that is potentially running at a 9729 * lower capacity. 9730 * 9731 * Thus we're looking for max(load_i / capacity_i), 9732 * crosswise multiplication to rid ourselves of the 9733 * division works out to: 9734 * load_i * capacity_j > load_j * capacity_i; 9735 * where j is our previous maximum. 9736 */ 9737 if (load * busiest_capacity > busiest_load * capacity) { 9738 busiest_load = load; 9739 busiest_capacity = capacity; 9740 busiest = rq; 9741 } 9742 break; 9743 9744 case migrate_util: 9745 util = cpu_util_cfs(i); 9746 9747 /* 9748 * Don't try to pull utilization from a CPU with one 9749 * running task. Whatever its utilization, we will fail 9750 * detach the task. 9751 */ 9752 if (nr_running <= 1) 9753 continue; 9754 9755 if (busiest_util < util) { 9756 busiest_util = util; 9757 busiest = rq; 9758 } 9759 break; 9760 9761 case migrate_task: 9762 if (busiest_nr < nr_running) { 9763 busiest_nr = nr_running; 9764 busiest = rq; 9765 } 9766 break; 9767 9768 case migrate_misfit: 9769 /* 9770 * For ASYM_CPUCAPACITY domains with misfit tasks we 9771 * simply seek the "biggest" misfit task. 9772 */ 9773 if (rq->misfit_task_load > busiest_load) { 9774 busiest_load = rq->misfit_task_load; 9775 busiest = rq; 9776 } 9777 9778 break; 9779 9780 } 9781 } 9782 9783 return busiest; 9784 } 9785 9786 /* 9787 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 9788 * so long as it is large enough. 9789 */ 9790 #define MAX_PINNED_INTERVAL 512 9791 9792 static inline bool 9793 asym_active_balance(struct lb_env *env) 9794 { 9795 /* 9796 * ASYM_PACKING needs to force migrate tasks from busy but 9797 * lower priority CPUs in order to pack all tasks in the 9798 * highest priority CPUs. 9799 */ 9800 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 9801 sched_asym_prefer(env->dst_cpu, env->src_cpu); 9802 } 9803 9804 static inline bool 9805 imbalanced_active_balance(struct lb_env *env) 9806 { 9807 struct sched_domain *sd = env->sd; 9808 9809 /* 9810 * The imbalanced case includes the case of pinned tasks preventing a fair 9811 * distribution of the load on the system but also the even distribution of the 9812 * threads on a system with spare capacity 9813 */ 9814 if ((env->migration_type == migrate_task) && 9815 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 9816 return 1; 9817 9818 return 0; 9819 } 9820 9821 static int need_active_balance(struct lb_env *env) 9822 { 9823 struct sched_domain *sd = env->sd; 9824 9825 if (asym_active_balance(env)) 9826 return 1; 9827 9828 if (imbalanced_active_balance(env)) 9829 return 1; 9830 9831 /* 9832 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 9833 * It's worth migrating the task if the src_cpu's capacity is reduced 9834 * because of other sched_class or IRQs if more capacity stays 9835 * available on dst_cpu. 9836 */ 9837 if ((env->idle != CPU_NOT_IDLE) && 9838 (env->src_rq->cfs.h_nr_running == 1)) { 9839 if ((check_cpu_capacity(env->src_rq, sd)) && 9840 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 9841 return 1; 9842 } 9843 9844 if (env->migration_type == migrate_misfit) 9845 return 1; 9846 9847 return 0; 9848 } 9849 9850 static int active_load_balance_cpu_stop(void *data); 9851 9852 static int should_we_balance(struct lb_env *env) 9853 { 9854 struct sched_group *sg = env->sd->groups; 9855 int cpu; 9856 9857 /* 9858 * Ensure the balancing environment is consistent; can happen 9859 * when the softirq triggers 'during' hotplug. 9860 */ 9861 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 9862 return 0; 9863 9864 /* 9865 * In the newly idle case, we will allow all the CPUs 9866 * to do the newly idle load balance. 9867 */ 9868 if (env->idle == CPU_NEWLY_IDLE) 9869 return 1; 9870 9871 /* Try to find first idle CPU */ 9872 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) { 9873 if (!idle_cpu(cpu)) 9874 continue; 9875 9876 /* Are we the first idle CPU? */ 9877 return cpu == env->dst_cpu; 9878 } 9879 9880 /* Are we the first CPU of this group ? */ 9881 return group_balance_cpu(sg) == env->dst_cpu; 9882 } 9883 9884 /* 9885 * Check this_cpu to ensure it is balanced within domain. Attempt to move 9886 * tasks if there is an imbalance. 9887 */ 9888 static int load_balance(int this_cpu, struct rq *this_rq, 9889 struct sched_domain *sd, enum cpu_idle_type idle, 9890 int *continue_balancing) 9891 { 9892 int ld_moved, cur_ld_moved, active_balance = 0; 9893 struct sched_domain *sd_parent = sd->parent; 9894 struct sched_group *group; 9895 struct rq *busiest; 9896 struct rq_flags rf; 9897 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 9898 9899 struct lb_env env = { 9900 .sd = sd, 9901 .dst_cpu = this_cpu, 9902 .dst_rq = this_rq, 9903 .dst_grpmask = sched_group_span(sd->groups), 9904 .idle = idle, 9905 .loop_break = sched_nr_migrate_break, 9906 .cpus = cpus, 9907 .fbq_type = all, 9908 .tasks = LIST_HEAD_INIT(env.tasks), 9909 }; 9910 9911 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 9912 9913 schedstat_inc(sd->lb_count[idle]); 9914 9915 redo: 9916 if (!should_we_balance(&env)) { 9917 *continue_balancing = 0; 9918 goto out_balanced; 9919 } 9920 9921 group = find_busiest_group(&env); 9922 if (!group) { 9923 schedstat_inc(sd->lb_nobusyg[idle]); 9924 goto out_balanced; 9925 } 9926 9927 busiest = find_busiest_queue(&env, group); 9928 if (!busiest) { 9929 schedstat_inc(sd->lb_nobusyq[idle]); 9930 goto out_balanced; 9931 } 9932 9933 BUG_ON(busiest == env.dst_rq); 9934 9935 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 9936 9937 env.src_cpu = busiest->cpu; 9938 env.src_rq = busiest; 9939 9940 ld_moved = 0; 9941 /* Clear this flag as soon as we find a pullable task */ 9942 env.flags |= LBF_ALL_PINNED; 9943 if (busiest->nr_running > 1) { 9944 /* 9945 * Attempt to move tasks. If find_busiest_group has found 9946 * an imbalance but busiest->nr_running <= 1, the group is 9947 * still unbalanced. ld_moved simply stays zero, so it is 9948 * correctly treated as an imbalance. 9949 */ 9950 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 9951 9952 more_balance: 9953 rq_lock_irqsave(busiest, &rf); 9954 update_rq_clock(busiest); 9955 9956 /* 9957 * cur_ld_moved - load moved in current iteration 9958 * ld_moved - cumulative load moved across iterations 9959 */ 9960 cur_ld_moved = detach_tasks(&env); 9961 9962 /* 9963 * We've detached some tasks from busiest_rq. Every 9964 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 9965 * unlock busiest->lock, and we are able to be sure 9966 * that nobody can manipulate the tasks in parallel. 9967 * See task_rq_lock() family for the details. 9968 */ 9969 9970 rq_unlock(busiest, &rf); 9971 9972 if (cur_ld_moved) { 9973 attach_tasks(&env); 9974 ld_moved += cur_ld_moved; 9975 } 9976 9977 local_irq_restore(rf.flags); 9978 9979 if (env.flags & LBF_NEED_BREAK) { 9980 env.flags &= ~LBF_NEED_BREAK; 9981 goto more_balance; 9982 } 9983 9984 /* 9985 * Revisit (affine) tasks on src_cpu that couldn't be moved to 9986 * us and move them to an alternate dst_cpu in our sched_group 9987 * where they can run. The upper limit on how many times we 9988 * iterate on same src_cpu is dependent on number of CPUs in our 9989 * sched_group. 9990 * 9991 * This changes load balance semantics a bit on who can move 9992 * load to a given_cpu. In addition to the given_cpu itself 9993 * (or a ilb_cpu acting on its behalf where given_cpu is 9994 * nohz-idle), we now have balance_cpu in a position to move 9995 * load to given_cpu. In rare situations, this may cause 9996 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 9997 * _independently_ and at _same_ time to move some load to 9998 * given_cpu) causing excess load to be moved to given_cpu. 9999 * This however should not happen so much in practice and 10000 * moreover subsequent load balance cycles should correct the 10001 * excess load moved. 10002 */ 10003 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 10004 10005 /* Prevent to re-select dst_cpu via env's CPUs */ 10006 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 10007 10008 env.dst_rq = cpu_rq(env.new_dst_cpu); 10009 env.dst_cpu = env.new_dst_cpu; 10010 env.flags &= ~LBF_DST_PINNED; 10011 env.loop = 0; 10012 env.loop_break = sched_nr_migrate_break; 10013 10014 /* 10015 * Go back to "more_balance" rather than "redo" since we 10016 * need to continue with same src_cpu. 10017 */ 10018 goto more_balance; 10019 } 10020 10021 /* 10022 * We failed to reach balance because of affinity. 10023 */ 10024 if (sd_parent) { 10025 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10026 10027 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 10028 *group_imbalance = 1; 10029 } 10030 10031 /* All tasks on this runqueue were pinned by CPU affinity */ 10032 if (unlikely(env.flags & LBF_ALL_PINNED)) { 10033 __cpumask_clear_cpu(cpu_of(busiest), cpus); 10034 /* 10035 * Attempting to continue load balancing at the current 10036 * sched_domain level only makes sense if there are 10037 * active CPUs remaining as possible busiest CPUs to 10038 * pull load from which are not contained within the 10039 * destination group that is receiving any migrated 10040 * load. 10041 */ 10042 if (!cpumask_subset(cpus, env.dst_grpmask)) { 10043 env.loop = 0; 10044 env.loop_break = sched_nr_migrate_break; 10045 goto redo; 10046 } 10047 goto out_all_pinned; 10048 } 10049 } 10050 10051 if (!ld_moved) { 10052 schedstat_inc(sd->lb_failed[idle]); 10053 /* 10054 * Increment the failure counter only on periodic balance. 10055 * We do not want newidle balance, which can be very 10056 * frequent, pollute the failure counter causing 10057 * excessive cache_hot migrations and active balances. 10058 */ 10059 if (idle != CPU_NEWLY_IDLE) 10060 sd->nr_balance_failed++; 10061 10062 if (need_active_balance(&env)) { 10063 unsigned long flags; 10064 10065 raw_spin_rq_lock_irqsave(busiest, flags); 10066 10067 /* 10068 * Don't kick the active_load_balance_cpu_stop, 10069 * if the curr task on busiest CPU can't be 10070 * moved to this_cpu: 10071 */ 10072 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 10073 raw_spin_rq_unlock_irqrestore(busiest, flags); 10074 goto out_one_pinned; 10075 } 10076 10077 /* Record that we found at least one task that could run on this_cpu */ 10078 env.flags &= ~LBF_ALL_PINNED; 10079 10080 /* 10081 * ->active_balance synchronizes accesses to 10082 * ->active_balance_work. Once set, it's cleared 10083 * only after active load balance is finished. 10084 */ 10085 if (!busiest->active_balance) { 10086 busiest->active_balance = 1; 10087 busiest->push_cpu = this_cpu; 10088 active_balance = 1; 10089 } 10090 raw_spin_rq_unlock_irqrestore(busiest, flags); 10091 10092 if (active_balance) { 10093 stop_one_cpu_nowait(cpu_of(busiest), 10094 active_load_balance_cpu_stop, busiest, 10095 &busiest->active_balance_work); 10096 } 10097 } 10098 } else { 10099 sd->nr_balance_failed = 0; 10100 } 10101 10102 if (likely(!active_balance) || need_active_balance(&env)) { 10103 /* We were unbalanced, so reset the balancing interval */ 10104 sd->balance_interval = sd->min_interval; 10105 } 10106 10107 goto out; 10108 10109 out_balanced: 10110 /* 10111 * We reach balance although we may have faced some affinity 10112 * constraints. Clear the imbalance flag only if other tasks got 10113 * a chance to move and fix the imbalance. 10114 */ 10115 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 10116 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 10117 10118 if (*group_imbalance) 10119 *group_imbalance = 0; 10120 } 10121 10122 out_all_pinned: 10123 /* 10124 * We reach balance because all tasks are pinned at this level so 10125 * we can't migrate them. Let the imbalance flag set so parent level 10126 * can try to migrate them. 10127 */ 10128 schedstat_inc(sd->lb_balanced[idle]); 10129 10130 sd->nr_balance_failed = 0; 10131 10132 out_one_pinned: 10133 ld_moved = 0; 10134 10135 /* 10136 * newidle_balance() disregards balance intervals, so we could 10137 * repeatedly reach this code, which would lead to balance_interval 10138 * skyrocketing in a short amount of time. Skip the balance_interval 10139 * increase logic to avoid that. 10140 */ 10141 if (env.idle == CPU_NEWLY_IDLE) 10142 goto out; 10143 10144 /* tune up the balancing interval */ 10145 if ((env.flags & LBF_ALL_PINNED && 10146 sd->balance_interval < MAX_PINNED_INTERVAL) || 10147 sd->balance_interval < sd->max_interval) 10148 sd->balance_interval *= 2; 10149 out: 10150 return ld_moved; 10151 } 10152 10153 static inline unsigned long 10154 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 10155 { 10156 unsigned long interval = sd->balance_interval; 10157 10158 if (cpu_busy) 10159 interval *= sd->busy_factor; 10160 10161 /* scale ms to jiffies */ 10162 interval = msecs_to_jiffies(interval); 10163 10164 /* 10165 * Reduce likelihood of busy balancing at higher domains racing with 10166 * balancing at lower domains by preventing their balancing periods 10167 * from being multiples of each other. 10168 */ 10169 if (cpu_busy) 10170 interval -= 1; 10171 10172 interval = clamp(interval, 1UL, max_load_balance_interval); 10173 10174 return interval; 10175 } 10176 10177 static inline void 10178 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 10179 { 10180 unsigned long interval, next; 10181 10182 /* used by idle balance, so cpu_busy = 0 */ 10183 interval = get_sd_balance_interval(sd, 0); 10184 next = sd->last_balance + interval; 10185 10186 if (time_after(*next_balance, next)) 10187 *next_balance = next; 10188 } 10189 10190 /* 10191 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 10192 * running tasks off the busiest CPU onto idle CPUs. It requires at 10193 * least 1 task to be running on each physical CPU where possible, and 10194 * avoids physical / logical imbalances. 10195 */ 10196 static int active_load_balance_cpu_stop(void *data) 10197 { 10198 struct rq *busiest_rq = data; 10199 int busiest_cpu = cpu_of(busiest_rq); 10200 int target_cpu = busiest_rq->push_cpu; 10201 struct rq *target_rq = cpu_rq(target_cpu); 10202 struct sched_domain *sd; 10203 struct task_struct *p = NULL; 10204 struct rq_flags rf; 10205 10206 rq_lock_irq(busiest_rq, &rf); 10207 /* 10208 * Between queueing the stop-work and running it is a hole in which 10209 * CPUs can become inactive. We should not move tasks from or to 10210 * inactive CPUs. 10211 */ 10212 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 10213 goto out_unlock; 10214 10215 /* Make sure the requested CPU hasn't gone down in the meantime: */ 10216 if (unlikely(busiest_cpu != smp_processor_id() || 10217 !busiest_rq->active_balance)) 10218 goto out_unlock; 10219 10220 /* Is there any task to move? */ 10221 if (busiest_rq->nr_running <= 1) 10222 goto out_unlock; 10223 10224 /* 10225 * This condition is "impossible", if it occurs 10226 * we need to fix it. Originally reported by 10227 * Bjorn Helgaas on a 128-CPU setup. 10228 */ 10229 BUG_ON(busiest_rq == target_rq); 10230 10231 /* Search for an sd spanning us and the target CPU. */ 10232 rcu_read_lock(); 10233 for_each_domain(target_cpu, sd) { 10234 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 10235 break; 10236 } 10237 10238 if (likely(sd)) { 10239 struct lb_env env = { 10240 .sd = sd, 10241 .dst_cpu = target_cpu, 10242 .dst_rq = target_rq, 10243 .src_cpu = busiest_rq->cpu, 10244 .src_rq = busiest_rq, 10245 .idle = CPU_IDLE, 10246 .flags = LBF_ACTIVE_LB, 10247 }; 10248 10249 schedstat_inc(sd->alb_count); 10250 update_rq_clock(busiest_rq); 10251 10252 p = detach_one_task(&env); 10253 if (p) { 10254 schedstat_inc(sd->alb_pushed); 10255 /* Active balancing done, reset the failure counter. */ 10256 sd->nr_balance_failed = 0; 10257 } else { 10258 schedstat_inc(sd->alb_failed); 10259 } 10260 } 10261 rcu_read_unlock(); 10262 out_unlock: 10263 busiest_rq->active_balance = 0; 10264 rq_unlock(busiest_rq, &rf); 10265 10266 if (p) 10267 attach_one_task(target_rq, p); 10268 10269 local_irq_enable(); 10270 10271 return 0; 10272 } 10273 10274 static DEFINE_SPINLOCK(balancing); 10275 10276 /* 10277 * Scale the max load_balance interval with the number of CPUs in the system. 10278 * This trades load-balance latency on larger machines for less cross talk. 10279 */ 10280 void update_max_interval(void) 10281 { 10282 max_load_balance_interval = HZ*num_online_cpus()/10; 10283 } 10284 10285 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 10286 { 10287 if (cost > sd->max_newidle_lb_cost) { 10288 /* 10289 * Track max cost of a domain to make sure to not delay the 10290 * next wakeup on the CPU. 10291 */ 10292 sd->max_newidle_lb_cost = cost; 10293 sd->last_decay_max_lb_cost = jiffies; 10294 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 10295 /* 10296 * Decay the newidle max times by ~1% per second to ensure that 10297 * it is not outdated and the current max cost is actually 10298 * shorter. 10299 */ 10300 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 10301 sd->last_decay_max_lb_cost = jiffies; 10302 10303 return true; 10304 } 10305 10306 return false; 10307 } 10308 10309 /* 10310 * It checks each scheduling domain to see if it is due to be balanced, 10311 * and initiates a balancing operation if so. 10312 * 10313 * Balancing parameters are set up in init_sched_domains. 10314 */ 10315 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 10316 { 10317 int continue_balancing = 1; 10318 int cpu = rq->cpu; 10319 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10320 unsigned long interval; 10321 struct sched_domain *sd; 10322 /* Earliest time when we have to do rebalance again */ 10323 unsigned long next_balance = jiffies + 60*HZ; 10324 int update_next_balance = 0; 10325 int need_serialize, need_decay = 0; 10326 u64 max_cost = 0; 10327 10328 rcu_read_lock(); 10329 for_each_domain(cpu, sd) { 10330 /* 10331 * Decay the newidle max times here because this is a regular 10332 * visit to all the domains. 10333 */ 10334 need_decay = update_newidle_cost(sd, 0); 10335 max_cost += sd->max_newidle_lb_cost; 10336 10337 /* 10338 * Stop the load balance at this level. There is another 10339 * CPU in our sched group which is doing load balancing more 10340 * actively. 10341 */ 10342 if (!continue_balancing) { 10343 if (need_decay) 10344 continue; 10345 break; 10346 } 10347 10348 interval = get_sd_balance_interval(sd, busy); 10349 10350 need_serialize = sd->flags & SD_SERIALIZE; 10351 if (need_serialize) { 10352 if (!spin_trylock(&balancing)) 10353 goto out; 10354 } 10355 10356 if (time_after_eq(jiffies, sd->last_balance + interval)) { 10357 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 10358 /* 10359 * The LBF_DST_PINNED logic could have changed 10360 * env->dst_cpu, so we can't know our idle 10361 * state even if we migrated tasks. Update it. 10362 */ 10363 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 10364 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 10365 } 10366 sd->last_balance = jiffies; 10367 interval = get_sd_balance_interval(sd, busy); 10368 } 10369 if (need_serialize) 10370 spin_unlock(&balancing); 10371 out: 10372 if (time_after(next_balance, sd->last_balance + interval)) { 10373 next_balance = sd->last_balance + interval; 10374 update_next_balance = 1; 10375 } 10376 } 10377 if (need_decay) { 10378 /* 10379 * Ensure the rq-wide value also decays but keep it at a 10380 * reasonable floor to avoid funnies with rq->avg_idle. 10381 */ 10382 rq->max_idle_balance_cost = 10383 max((u64)sysctl_sched_migration_cost, max_cost); 10384 } 10385 rcu_read_unlock(); 10386 10387 /* 10388 * next_balance will be updated only when there is a need. 10389 * When the cpu is attached to null domain for ex, it will not be 10390 * updated. 10391 */ 10392 if (likely(update_next_balance)) 10393 rq->next_balance = next_balance; 10394 10395 } 10396 10397 static inline int on_null_domain(struct rq *rq) 10398 { 10399 return unlikely(!rcu_dereference_sched(rq->sd)); 10400 } 10401 10402 #ifdef CONFIG_NO_HZ_COMMON 10403 /* 10404 * idle load balancing details 10405 * - When one of the busy CPUs notice that there may be an idle rebalancing 10406 * needed, they will kick the idle load balancer, which then does idle 10407 * load balancing for all the idle CPUs. 10408 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set 10409 * anywhere yet. 10410 */ 10411 10412 static inline int find_new_ilb(void) 10413 { 10414 int ilb; 10415 const struct cpumask *hk_mask; 10416 10417 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 10418 10419 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) { 10420 10421 if (ilb == smp_processor_id()) 10422 continue; 10423 10424 if (idle_cpu(ilb)) 10425 return ilb; 10426 } 10427 10428 return nr_cpu_ids; 10429 } 10430 10431 /* 10432 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any 10433 * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 10434 */ 10435 static void kick_ilb(unsigned int flags) 10436 { 10437 int ilb_cpu; 10438 10439 /* 10440 * Increase nohz.next_balance only when if full ilb is triggered but 10441 * not if we only update stats. 10442 */ 10443 if (flags & NOHZ_BALANCE_KICK) 10444 nohz.next_balance = jiffies+1; 10445 10446 ilb_cpu = find_new_ilb(); 10447 10448 if (ilb_cpu >= nr_cpu_ids) 10449 return; 10450 10451 /* 10452 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 10453 * the first flag owns it; cleared by nohz_csd_func(). 10454 */ 10455 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 10456 if (flags & NOHZ_KICK_MASK) 10457 return; 10458 10459 /* 10460 * This way we generate an IPI on the target CPU which 10461 * is idle. And the softirq performing nohz idle load balance 10462 * will be run before returning from the IPI. 10463 */ 10464 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 10465 } 10466 10467 /* 10468 * Current decision point for kicking the idle load balancer in the presence 10469 * of idle CPUs in the system. 10470 */ 10471 static void nohz_balancer_kick(struct rq *rq) 10472 { 10473 unsigned long now = jiffies; 10474 struct sched_domain_shared *sds; 10475 struct sched_domain *sd; 10476 int nr_busy, i, cpu = rq->cpu; 10477 unsigned int flags = 0; 10478 10479 if (unlikely(rq->idle_balance)) 10480 return; 10481 10482 /* 10483 * We may be recently in ticked or tickless idle mode. At the first 10484 * busy tick after returning from idle, we will update the busy stats. 10485 */ 10486 nohz_balance_exit_idle(rq); 10487 10488 /* 10489 * None are in tickless mode and hence no need for NOHZ idle load 10490 * balancing. 10491 */ 10492 if (likely(!atomic_read(&nohz.nr_cpus))) 10493 return; 10494 10495 if (READ_ONCE(nohz.has_blocked) && 10496 time_after(now, READ_ONCE(nohz.next_blocked))) 10497 flags = NOHZ_STATS_KICK; 10498 10499 if (time_before(now, nohz.next_balance)) 10500 goto out; 10501 10502 if (rq->nr_running >= 2) { 10503 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10504 goto out; 10505 } 10506 10507 rcu_read_lock(); 10508 10509 sd = rcu_dereference(rq->sd); 10510 if (sd) { 10511 /* 10512 * If there's a CFS task and the current CPU has reduced 10513 * capacity; kick the ILB to see if there's a better CPU to run 10514 * on. 10515 */ 10516 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 10517 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10518 goto unlock; 10519 } 10520 } 10521 10522 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 10523 if (sd) { 10524 /* 10525 * When ASYM_PACKING; see if there's a more preferred CPU 10526 * currently idle; in which case, kick the ILB to move tasks 10527 * around. 10528 */ 10529 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 10530 if (sched_asym_prefer(i, cpu)) { 10531 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10532 goto unlock; 10533 } 10534 } 10535 } 10536 10537 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 10538 if (sd) { 10539 /* 10540 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 10541 * to run the misfit task on. 10542 */ 10543 if (check_misfit_status(rq, sd)) { 10544 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10545 goto unlock; 10546 } 10547 10548 /* 10549 * For asymmetric systems, we do not want to nicely balance 10550 * cache use, instead we want to embrace asymmetry and only 10551 * ensure tasks have enough CPU capacity. 10552 * 10553 * Skip the LLC logic because it's not relevant in that case. 10554 */ 10555 goto unlock; 10556 } 10557 10558 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 10559 if (sds) { 10560 /* 10561 * If there is an imbalance between LLC domains (IOW we could 10562 * increase the overall cache use), we need some less-loaded LLC 10563 * domain to pull some load. Likewise, we may need to spread 10564 * load within the current LLC domain (e.g. packed SMT cores but 10565 * other CPUs are idle). We can't really know from here how busy 10566 * the others are - so just get a nohz balance going if it looks 10567 * like this LLC domain has tasks we could move. 10568 */ 10569 nr_busy = atomic_read(&sds->nr_busy_cpus); 10570 if (nr_busy > 1) { 10571 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 10572 goto unlock; 10573 } 10574 } 10575 unlock: 10576 rcu_read_unlock(); 10577 out: 10578 if (READ_ONCE(nohz.needs_update)) 10579 flags |= NOHZ_NEXT_KICK; 10580 10581 if (flags) 10582 kick_ilb(flags); 10583 } 10584 10585 static void set_cpu_sd_state_busy(int cpu) 10586 { 10587 struct sched_domain *sd; 10588 10589 rcu_read_lock(); 10590 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10591 10592 if (!sd || !sd->nohz_idle) 10593 goto unlock; 10594 sd->nohz_idle = 0; 10595 10596 atomic_inc(&sd->shared->nr_busy_cpus); 10597 unlock: 10598 rcu_read_unlock(); 10599 } 10600 10601 void nohz_balance_exit_idle(struct rq *rq) 10602 { 10603 SCHED_WARN_ON(rq != this_rq()); 10604 10605 if (likely(!rq->nohz_tick_stopped)) 10606 return; 10607 10608 rq->nohz_tick_stopped = 0; 10609 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 10610 atomic_dec(&nohz.nr_cpus); 10611 10612 set_cpu_sd_state_busy(rq->cpu); 10613 } 10614 10615 static void set_cpu_sd_state_idle(int cpu) 10616 { 10617 struct sched_domain *sd; 10618 10619 rcu_read_lock(); 10620 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 10621 10622 if (!sd || sd->nohz_idle) 10623 goto unlock; 10624 sd->nohz_idle = 1; 10625 10626 atomic_dec(&sd->shared->nr_busy_cpus); 10627 unlock: 10628 rcu_read_unlock(); 10629 } 10630 10631 /* 10632 * This routine will record that the CPU is going idle with tick stopped. 10633 * This info will be used in performing idle load balancing in the future. 10634 */ 10635 void nohz_balance_enter_idle(int cpu) 10636 { 10637 struct rq *rq = cpu_rq(cpu); 10638 10639 SCHED_WARN_ON(cpu != smp_processor_id()); 10640 10641 /* If this CPU is going down, then nothing needs to be done: */ 10642 if (!cpu_active(cpu)) 10643 return; 10644 10645 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 10646 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 10647 return; 10648 10649 /* 10650 * Can be set safely without rq->lock held 10651 * If a clear happens, it will have evaluated last additions because 10652 * rq->lock is held during the check and the clear 10653 */ 10654 rq->has_blocked_load = 1; 10655 10656 /* 10657 * The tick is still stopped but load could have been added in the 10658 * meantime. We set the nohz.has_blocked flag to trig a check of the 10659 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 10660 * of nohz.has_blocked can only happen after checking the new load 10661 */ 10662 if (rq->nohz_tick_stopped) 10663 goto out; 10664 10665 /* If we're a completely isolated CPU, we don't play: */ 10666 if (on_null_domain(rq)) 10667 return; 10668 10669 rq->nohz_tick_stopped = 1; 10670 10671 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 10672 atomic_inc(&nohz.nr_cpus); 10673 10674 /* 10675 * Ensures that if nohz_idle_balance() fails to observe our 10676 * @idle_cpus_mask store, it must observe the @has_blocked 10677 * and @needs_update stores. 10678 */ 10679 smp_mb__after_atomic(); 10680 10681 set_cpu_sd_state_idle(cpu); 10682 10683 WRITE_ONCE(nohz.needs_update, 1); 10684 out: 10685 /* 10686 * Each time a cpu enter idle, we assume that it has blocked load and 10687 * enable the periodic update of the load of idle cpus 10688 */ 10689 WRITE_ONCE(nohz.has_blocked, 1); 10690 } 10691 10692 static bool update_nohz_stats(struct rq *rq) 10693 { 10694 unsigned int cpu = rq->cpu; 10695 10696 if (!rq->has_blocked_load) 10697 return false; 10698 10699 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 10700 return false; 10701 10702 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 10703 return true; 10704 10705 update_blocked_averages(cpu); 10706 10707 return rq->has_blocked_load; 10708 } 10709 10710 /* 10711 * Internal function that runs load balance for all idle cpus. The load balance 10712 * can be a simple update of blocked load or a complete load balance with 10713 * tasks movement depending of flags. 10714 */ 10715 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags, 10716 enum cpu_idle_type idle) 10717 { 10718 /* Earliest time when we have to do rebalance again */ 10719 unsigned long now = jiffies; 10720 unsigned long next_balance = now + 60*HZ; 10721 bool has_blocked_load = false; 10722 int update_next_balance = 0; 10723 int this_cpu = this_rq->cpu; 10724 int balance_cpu; 10725 struct rq *rq; 10726 10727 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 10728 10729 /* 10730 * We assume there will be no idle load after this update and clear 10731 * the has_blocked flag. If a cpu enters idle in the mean time, it will 10732 * set the has_blocked flag and trigger another update of idle load. 10733 * Because a cpu that becomes idle, is added to idle_cpus_mask before 10734 * setting the flag, we are sure to not clear the state and not 10735 * check the load of an idle cpu. 10736 * 10737 * Same applies to idle_cpus_mask vs needs_update. 10738 */ 10739 if (flags & NOHZ_STATS_KICK) 10740 WRITE_ONCE(nohz.has_blocked, 0); 10741 if (flags & NOHZ_NEXT_KICK) 10742 WRITE_ONCE(nohz.needs_update, 0); 10743 10744 /* 10745 * Ensures that if we miss the CPU, we must see the has_blocked 10746 * store from nohz_balance_enter_idle(). 10747 */ 10748 smp_mb(); 10749 10750 /* 10751 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 10752 * chance for other idle cpu to pull load. 10753 */ 10754 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 10755 if (!idle_cpu(balance_cpu)) 10756 continue; 10757 10758 /* 10759 * If this CPU gets work to do, stop the load balancing 10760 * work being done for other CPUs. Next load 10761 * balancing owner will pick it up. 10762 */ 10763 if (need_resched()) { 10764 if (flags & NOHZ_STATS_KICK) 10765 has_blocked_load = true; 10766 if (flags & NOHZ_NEXT_KICK) 10767 WRITE_ONCE(nohz.needs_update, 1); 10768 goto abort; 10769 } 10770 10771 rq = cpu_rq(balance_cpu); 10772 10773 if (flags & NOHZ_STATS_KICK) 10774 has_blocked_load |= update_nohz_stats(rq); 10775 10776 /* 10777 * If time for next balance is due, 10778 * do the balance. 10779 */ 10780 if (time_after_eq(jiffies, rq->next_balance)) { 10781 struct rq_flags rf; 10782 10783 rq_lock_irqsave(rq, &rf); 10784 update_rq_clock(rq); 10785 rq_unlock_irqrestore(rq, &rf); 10786 10787 if (flags & NOHZ_BALANCE_KICK) 10788 rebalance_domains(rq, CPU_IDLE); 10789 } 10790 10791 if (time_after(next_balance, rq->next_balance)) { 10792 next_balance = rq->next_balance; 10793 update_next_balance = 1; 10794 } 10795 } 10796 10797 /* 10798 * next_balance will be updated only when there is a need. 10799 * When the CPU is attached to null domain for ex, it will not be 10800 * updated. 10801 */ 10802 if (likely(update_next_balance)) 10803 nohz.next_balance = next_balance; 10804 10805 if (flags & NOHZ_STATS_KICK) 10806 WRITE_ONCE(nohz.next_blocked, 10807 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 10808 10809 abort: 10810 /* There is still blocked load, enable periodic update */ 10811 if (has_blocked_load) 10812 WRITE_ONCE(nohz.has_blocked, 1); 10813 } 10814 10815 /* 10816 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 10817 * rebalancing for all the cpus for whom scheduler ticks are stopped. 10818 */ 10819 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10820 { 10821 unsigned int flags = this_rq->nohz_idle_balance; 10822 10823 if (!flags) 10824 return false; 10825 10826 this_rq->nohz_idle_balance = 0; 10827 10828 if (idle != CPU_IDLE) 10829 return false; 10830 10831 _nohz_idle_balance(this_rq, flags, idle); 10832 10833 return true; 10834 } 10835 10836 /* 10837 * Check if we need to run the ILB for updating blocked load before entering 10838 * idle state. 10839 */ 10840 void nohz_run_idle_balance(int cpu) 10841 { 10842 unsigned int flags; 10843 10844 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 10845 10846 /* 10847 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 10848 * (ie NOHZ_STATS_KICK set) and will do the same. 10849 */ 10850 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 10851 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE); 10852 } 10853 10854 static void nohz_newidle_balance(struct rq *this_rq) 10855 { 10856 int this_cpu = this_rq->cpu; 10857 10858 /* 10859 * This CPU doesn't want to be disturbed by scheduler 10860 * housekeeping 10861 */ 10862 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 10863 return; 10864 10865 /* Will wake up very soon. No time for doing anything else*/ 10866 if (this_rq->avg_idle < sysctl_sched_migration_cost) 10867 return; 10868 10869 /* Don't need to update blocked load of idle CPUs*/ 10870 if (!READ_ONCE(nohz.has_blocked) || 10871 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 10872 return; 10873 10874 /* 10875 * Set the need to trigger ILB in order to update blocked load 10876 * before entering idle state. 10877 */ 10878 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 10879 } 10880 10881 #else /* !CONFIG_NO_HZ_COMMON */ 10882 static inline void nohz_balancer_kick(struct rq *rq) { } 10883 10884 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 10885 { 10886 return false; 10887 } 10888 10889 static inline void nohz_newidle_balance(struct rq *this_rq) { } 10890 #endif /* CONFIG_NO_HZ_COMMON */ 10891 10892 /* 10893 * newidle_balance is called by schedule() if this_cpu is about to become 10894 * idle. Attempts to pull tasks from other CPUs. 10895 * 10896 * Returns: 10897 * < 0 - we released the lock and there are !fair tasks present 10898 * 0 - failed, no new tasks 10899 * > 0 - success, new (fair) tasks present 10900 */ 10901 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 10902 { 10903 unsigned long next_balance = jiffies + HZ; 10904 int this_cpu = this_rq->cpu; 10905 u64 t0, t1, curr_cost = 0; 10906 struct sched_domain *sd; 10907 int pulled_task = 0; 10908 10909 update_misfit_status(NULL, this_rq); 10910 10911 /* 10912 * There is a task waiting to run. No need to search for one. 10913 * Return 0; the task will be enqueued when switching to idle. 10914 */ 10915 if (this_rq->ttwu_pending) 10916 return 0; 10917 10918 /* 10919 * We must set idle_stamp _before_ calling idle_balance(), such that we 10920 * measure the duration of idle_balance() as idle time. 10921 */ 10922 this_rq->idle_stamp = rq_clock(this_rq); 10923 10924 /* 10925 * Do not pull tasks towards !active CPUs... 10926 */ 10927 if (!cpu_active(this_cpu)) 10928 return 0; 10929 10930 /* 10931 * This is OK, because current is on_cpu, which avoids it being picked 10932 * for load-balance and preemption/IRQs are still disabled avoiding 10933 * further scheduler activity on it and we're being very careful to 10934 * re-start the picking loop. 10935 */ 10936 rq_unpin_lock(this_rq, rf); 10937 10938 rcu_read_lock(); 10939 sd = rcu_dereference_check_sched_domain(this_rq->sd); 10940 10941 if (!READ_ONCE(this_rq->rd->overload) || 10942 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 10943 10944 if (sd) 10945 update_next_balance(sd, &next_balance); 10946 rcu_read_unlock(); 10947 10948 goto out; 10949 } 10950 rcu_read_unlock(); 10951 10952 raw_spin_rq_unlock(this_rq); 10953 10954 t0 = sched_clock_cpu(this_cpu); 10955 update_blocked_averages(this_cpu); 10956 10957 rcu_read_lock(); 10958 for_each_domain(this_cpu, sd) { 10959 int continue_balancing = 1; 10960 u64 domain_cost; 10961 10962 update_next_balance(sd, &next_balance); 10963 10964 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 10965 break; 10966 10967 if (sd->flags & SD_BALANCE_NEWIDLE) { 10968 10969 pulled_task = load_balance(this_cpu, this_rq, 10970 sd, CPU_NEWLY_IDLE, 10971 &continue_balancing); 10972 10973 t1 = sched_clock_cpu(this_cpu); 10974 domain_cost = t1 - t0; 10975 update_newidle_cost(sd, domain_cost); 10976 10977 curr_cost += domain_cost; 10978 t0 = t1; 10979 } 10980 10981 /* 10982 * Stop searching for tasks to pull if there are 10983 * now runnable tasks on this rq. 10984 */ 10985 if (pulled_task || this_rq->nr_running > 0 || 10986 this_rq->ttwu_pending) 10987 break; 10988 } 10989 rcu_read_unlock(); 10990 10991 raw_spin_rq_lock(this_rq); 10992 10993 if (curr_cost > this_rq->max_idle_balance_cost) 10994 this_rq->max_idle_balance_cost = curr_cost; 10995 10996 /* 10997 * While browsing the domains, we released the rq lock, a task could 10998 * have been enqueued in the meantime. Since we're not going idle, 10999 * pretend we pulled a task. 11000 */ 11001 if (this_rq->cfs.h_nr_running && !pulled_task) 11002 pulled_task = 1; 11003 11004 /* Is there a task of a high priority class? */ 11005 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 11006 pulled_task = -1; 11007 11008 out: 11009 /* Move the next balance forward */ 11010 if (time_after(this_rq->next_balance, next_balance)) 11011 this_rq->next_balance = next_balance; 11012 11013 if (pulled_task) 11014 this_rq->idle_stamp = 0; 11015 else 11016 nohz_newidle_balance(this_rq); 11017 11018 rq_repin_lock(this_rq, rf); 11019 11020 return pulled_task; 11021 } 11022 11023 /* 11024 * run_rebalance_domains is triggered when needed from the scheduler tick. 11025 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 11026 */ 11027 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 11028 { 11029 struct rq *this_rq = this_rq(); 11030 enum cpu_idle_type idle = this_rq->idle_balance ? 11031 CPU_IDLE : CPU_NOT_IDLE; 11032 11033 /* 11034 * If this CPU has a pending nohz_balance_kick, then do the 11035 * balancing on behalf of the other idle CPUs whose ticks are 11036 * stopped. Do nohz_idle_balance *before* rebalance_domains to 11037 * give the idle CPUs a chance to load balance. Else we may 11038 * load balance only within the local sched_domain hierarchy 11039 * and abort nohz_idle_balance altogether if we pull some load. 11040 */ 11041 if (nohz_idle_balance(this_rq, idle)) 11042 return; 11043 11044 /* normal load balance */ 11045 update_blocked_averages(this_rq->cpu); 11046 rebalance_domains(this_rq, idle); 11047 } 11048 11049 /* 11050 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 11051 */ 11052 void trigger_load_balance(struct rq *rq) 11053 { 11054 /* 11055 * Don't need to rebalance while attached to NULL domain or 11056 * runqueue CPU is not active 11057 */ 11058 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 11059 return; 11060 11061 if (time_after_eq(jiffies, rq->next_balance)) 11062 raise_softirq(SCHED_SOFTIRQ); 11063 11064 nohz_balancer_kick(rq); 11065 } 11066 11067 static void rq_online_fair(struct rq *rq) 11068 { 11069 update_sysctl(); 11070 11071 update_runtime_enabled(rq); 11072 } 11073 11074 static void rq_offline_fair(struct rq *rq) 11075 { 11076 update_sysctl(); 11077 11078 /* Ensure any throttled groups are reachable by pick_next_task */ 11079 unthrottle_offline_cfs_rqs(rq); 11080 } 11081 11082 #endif /* CONFIG_SMP */ 11083 11084 #ifdef CONFIG_SCHED_CORE 11085 static inline bool 11086 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 11087 { 11088 u64 slice = sched_slice(cfs_rq_of(se), se); 11089 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 11090 11091 return (rtime * min_nr_tasks > slice); 11092 } 11093 11094 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 11095 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 11096 { 11097 if (!sched_core_enabled(rq)) 11098 return; 11099 11100 /* 11101 * If runqueue has only one task which used up its slice and 11102 * if the sibling is forced idle, then trigger schedule to 11103 * give forced idle task a chance. 11104 * 11105 * sched_slice() considers only this active rq and it gets the 11106 * whole slice. But during force idle, we have siblings acting 11107 * like a single runqueue and hence we need to consider runnable 11108 * tasks on this CPU and the forced idle CPU. Ideally, we should 11109 * go through the forced idle rq, but that would be a perf hit. 11110 * We can assume that the forced idle CPU has at least 11111 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 11112 * if we need to give up the CPU. 11113 */ 11114 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 11115 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 11116 resched_curr(rq); 11117 } 11118 11119 /* 11120 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 11121 */ 11122 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle) 11123 { 11124 for_each_sched_entity(se) { 11125 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11126 11127 if (forceidle) { 11128 if (cfs_rq->forceidle_seq == fi_seq) 11129 break; 11130 cfs_rq->forceidle_seq = fi_seq; 11131 } 11132 11133 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 11134 } 11135 } 11136 11137 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 11138 { 11139 struct sched_entity *se = &p->se; 11140 11141 if (p->sched_class != &fair_sched_class) 11142 return; 11143 11144 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 11145 } 11146 11147 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi) 11148 { 11149 struct rq *rq = task_rq(a); 11150 struct sched_entity *sea = &a->se; 11151 struct sched_entity *seb = &b->se; 11152 struct cfs_rq *cfs_rqa; 11153 struct cfs_rq *cfs_rqb; 11154 s64 delta; 11155 11156 SCHED_WARN_ON(task_rq(b)->core != rq->core); 11157 11158 #ifdef CONFIG_FAIR_GROUP_SCHED 11159 /* 11160 * Find an se in the hierarchy for tasks a and b, such that the se's 11161 * are immediate siblings. 11162 */ 11163 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 11164 int sea_depth = sea->depth; 11165 int seb_depth = seb->depth; 11166 11167 if (sea_depth >= seb_depth) 11168 sea = parent_entity(sea); 11169 if (sea_depth <= seb_depth) 11170 seb = parent_entity(seb); 11171 } 11172 11173 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 11174 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 11175 11176 cfs_rqa = sea->cfs_rq; 11177 cfs_rqb = seb->cfs_rq; 11178 #else 11179 cfs_rqa = &task_rq(a)->cfs; 11180 cfs_rqb = &task_rq(b)->cfs; 11181 #endif 11182 11183 /* 11184 * Find delta after normalizing se's vruntime with its cfs_rq's 11185 * min_vruntime_fi, which would have been updated in prior calls 11186 * to se_fi_update(). 11187 */ 11188 delta = (s64)(sea->vruntime - seb->vruntime) + 11189 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 11190 11191 return delta > 0; 11192 } 11193 #else 11194 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 11195 #endif 11196 11197 /* 11198 * scheduler tick hitting a task of our scheduling class. 11199 * 11200 * NOTE: This function can be called remotely by the tick offload that 11201 * goes along full dynticks. Therefore no local assumption can be made 11202 * and everything must be accessed through the @rq and @curr passed in 11203 * parameters. 11204 */ 11205 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 11206 { 11207 struct cfs_rq *cfs_rq; 11208 struct sched_entity *se = &curr->se; 11209 11210 for_each_sched_entity(se) { 11211 cfs_rq = cfs_rq_of(se); 11212 entity_tick(cfs_rq, se, queued); 11213 } 11214 11215 if (static_branch_unlikely(&sched_numa_balancing)) 11216 task_tick_numa(rq, curr); 11217 11218 update_misfit_status(curr, rq); 11219 update_overutilized_status(task_rq(curr)); 11220 11221 task_tick_core(rq, curr); 11222 } 11223 11224 /* 11225 * called on fork with the child task as argument from the parent's context 11226 * - child not yet on the tasklist 11227 * - preemption disabled 11228 */ 11229 static void task_fork_fair(struct task_struct *p) 11230 { 11231 struct cfs_rq *cfs_rq; 11232 struct sched_entity *se = &p->se, *curr; 11233 struct rq *rq = this_rq(); 11234 struct rq_flags rf; 11235 11236 rq_lock(rq, &rf); 11237 update_rq_clock(rq); 11238 11239 cfs_rq = task_cfs_rq(current); 11240 curr = cfs_rq->curr; 11241 if (curr) { 11242 update_curr(cfs_rq); 11243 se->vruntime = curr->vruntime; 11244 } 11245 place_entity(cfs_rq, se, 1); 11246 11247 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 11248 /* 11249 * Upon rescheduling, sched_class::put_prev_task() will place 11250 * 'current' within the tree based on its new key value. 11251 */ 11252 swap(curr->vruntime, se->vruntime); 11253 resched_curr(rq); 11254 } 11255 11256 se->vruntime -= cfs_rq->min_vruntime; 11257 rq_unlock(rq, &rf); 11258 } 11259 11260 /* 11261 * Priority of the task has changed. Check to see if we preempt 11262 * the current task. 11263 */ 11264 static void 11265 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 11266 { 11267 if (!task_on_rq_queued(p)) 11268 return; 11269 11270 if (rq->cfs.nr_running == 1) 11271 return; 11272 11273 /* 11274 * Reschedule if we are currently running on this runqueue and 11275 * our priority decreased, or if we are not currently running on 11276 * this runqueue and our priority is higher than the current's 11277 */ 11278 if (task_current(rq, p)) { 11279 if (p->prio > oldprio) 11280 resched_curr(rq); 11281 } else 11282 check_preempt_curr(rq, p, 0); 11283 } 11284 11285 static inline bool vruntime_normalized(struct task_struct *p) 11286 { 11287 struct sched_entity *se = &p->se; 11288 11289 /* 11290 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 11291 * the dequeue_entity(.flags=0) will already have normalized the 11292 * vruntime. 11293 */ 11294 if (p->on_rq) 11295 return true; 11296 11297 /* 11298 * When !on_rq, vruntime of the task has usually NOT been normalized. 11299 * But there are some cases where it has already been normalized: 11300 * 11301 * - A forked child which is waiting for being woken up by 11302 * wake_up_new_task(). 11303 * - A task which has been woken up by try_to_wake_up() and 11304 * waiting for actually being woken up by sched_ttwu_pending(). 11305 */ 11306 if (!se->sum_exec_runtime || 11307 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup)) 11308 return true; 11309 11310 return false; 11311 } 11312 11313 #ifdef CONFIG_FAIR_GROUP_SCHED 11314 /* 11315 * Propagate the changes of the sched_entity across the tg tree to make it 11316 * visible to the root 11317 */ 11318 static void propagate_entity_cfs_rq(struct sched_entity *se) 11319 { 11320 struct cfs_rq *cfs_rq; 11321 11322 list_add_leaf_cfs_rq(cfs_rq_of(se)); 11323 11324 /* Start to propagate at parent */ 11325 se = se->parent; 11326 11327 for_each_sched_entity(se) { 11328 cfs_rq = cfs_rq_of(se); 11329 11330 if (!cfs_rq_throttled(cfs_rq)){ 11331 update_load_avg(cfs_rq, se, UPDATE_TG); 11332 list_add_leaf_cfs_rq(cfs_rq); 11333 continue; 11334 } 11335 11336 if (list_add_leaf_cfs_rq(cfs_rq)) 11337 break; 11338 } 11339 } 11340 #else 11341 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 11342 #endif 11343 11344 static void detach_entity_cfs_rq(struct sched_entity *se) 11345 { 11346 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11347 11348 /* Catch up with the cfs_rq and remove our load when we leave */ 11349 update_load_avg(cfs_rq, se, 0); 11350 detach_entity_load_avg(cfs_rq, se); 11351 update_tg_load_avg(cfs_rq); 11352 propagate_entity_cfs_rq(se); 11353 } 11354 11355 static void attach_entity_cfs_rq(struct sched_entity *se) 11356 { 11357 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11358 11359 #ifdef CONFIG_FAIR_GROUP_SCHED 11360 /* 11361 * Since the real-depth could have been changed (only FAIR 11362 * class maintain depth value), reset depth properly. 11363 */ 11364 se->depth = se->parent ? se->parent->depth + 1 : 0; 11365 #endif 11366 11367 /* Synchronize entity with its cfs_rq */ 11368 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 11369 attach_entity_load_avg(cfs_rq, se); 11370 update_tg_load_avg(cfs_rq); 11371 propagate_entity_cfs_rq(se); 11372 } 11373 11374 static void detach_task_cfs_rq(struct task_struct *p) 11375 { 11376 struct sched_entity *se = &p->se; 11377 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11378 11379 if (!vruntime_normalized(p)) { 11380 /* 11381 * Fix up our vruntime so that the current sleep doesn't 11382 * cause 'unlimited' sleep bonus. 11383 */ 11384 place_entity(cfs_rq, se, 0); 11385 se->vruntime -= cfs_rq->min_vruntime; 11386 } 11387 11388 detach_entity_cfs_rq(se); 11389 } 11390 11391 static void attach_task_cfs_rq(struct task_struct *p) 11392 { 11393 struct sched_entity *se = &p->se; 11394 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11395 11396 attach_entity_cfs_rq(se); 11397 11398 if (!vruntime_normalized(p)) 11399 se->vruntime += cfs_rq->min_vruntime; 11400 } 11401 11402 static void switched_from_fair(struct rq *rq, struct task_struct *p) 11403 { 11404 detach_task_cfs_rq(p); 11405 } 11406 11407 static void switched_to_fair(struct rq *rq, struct task_struct *p) 11408 { 11409 attach_task_cfs_rq(p); 11410 11411 if (task_on_rq_queued(p)) { 11412 /* 11413 * We were most likely switched from sched_rt, so 11414 * kick off the schedule if running, otherwise just see 11415 * if we can still preempt the current task. 11416 */ 11417 if (task_current(rq, p)) 11418 resched_curr(rq); 11419 else 11420 check_preempt_curr(rq, p, 0); 11421 } 11422 } 11423 11424 /* Account for a task changing its policy or group. 11425 * 11426 * This routine is mostly called to set cfs_rq->curr field when a task 11427 * migrates between groups/classes. 11428 */ 11429 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 11430 { 11431 struct sched_entity *se = &p->se; 11432 11433 #ifdef CONFIG_SMP 11434 if (task_on_rq_queued(p)) { 11435 /* 11436 * Move the next running task to the front of the list, so our 11437 * cfs_tasks list becomes MRU one. 11438 */ 11439 list_move(&se->group_node, &rq->cfs_tasks); 11440 } 11441 #endif 11442 11443 for_each_sched_entity(se) { 11444 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11445 11446 set_next_entity(cfs_rq, se); 11447 /* ensure bandwidth has been allocated on our new cfs_rq */ 11448 account_cfs_rq_runtime(cfs_rq, 0); 11449 } 11450 } 11451 11452 void init_cfs_rq(struct cfs_rq *cfs_rq) 11453 { 11454 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 11455 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 11456 #ifndef CONFIG_64BIT 11457 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 11458 #endif 11459 #ifdef CONFIG_SMP 11460 raw_spin_lock_init(&cfs_rq->removed.lock); 11461 #endif 11462 } 11463 11464 #ifdef CONFIG_FAIR_GROUP_SCHED 11465 static void task_set_group_fair(struct task_struct *p) 11466 { 11467 struct sched_entity *se = &p->se; 11468 11469 set_task_rq(p, task_cpu(p)); 11470 se->depth = se->parent ? se->parent->depth + 1 : 0; 11471 } 11472 11473 static void task_move_group_fair(struct task_struct *p) 11474 { 11475 detach_task_cfs_rq(p); 11476 set_task_rq(p, task_cpu(p)); 11477 11478 #ifdef CONFIG_SMP 11479 /* Tell se's cfs_rq has been changed -- migrated */ 11480 p->se.avg.last_update_time = 0; 11481 #endif 11482 attach_task_cfs_rq(p); 11483 } 11484 11485 static void task_change_group_fair(struct task_struct *p, int type) 11486 { 11487 switch (type) { 11488 case TASK_SET_GROUP: 11489 task_set_group_fair(p); 11490 break; 11491 11492 case TASK_MOVE_GROUP: 11493 task_move_group_fair(p); 11494 break; 11495 } 11496 } 11497 11498 void free_fair_sched_group(struct task_group *tg) 11499 { 11500 int i; 11501 11502 for_each_possible_cpu(i) { 11503 if (tg->cfs_rq) 11504 kfree(tg->cfs_rq[i]); 11505 if (tg->se) 11506 kfree(tg->se[i]); 11507 } 11508 11509 kfree(tg->cfs_rq); 11510 kfree(tg->se); 11511 } 11512 11513 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11514 { 11515 struct sched_entity *se; 11516 struct cfs_rq *cfs_rq; 11517 int i; 11518 11519 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 11520 if (!tg->cfs_rq) 11521 goto err; 11522 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 11523 if (!tg->se) 11524 goto err; 11525 11526 tg->shares = NICE_0_LOAD; 11527 11528 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11529 11530 for_each_possible_cpu(i) { 11531 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 11532 GFP_KERNEL, cpu_to_node(i)); 11533 if (!cfs_rq) 11534 goto err; 11535 11536 se = kzalloc_node(sizeof(struct sched_entity_stats), 11537 GFP_KERNEL, cpu_to_node(i)); 11538 if (!se) 11539 goto err_free_rq; 11540 11541 init_cfs_rq(cfs_rq); 11542 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 11543 init_entity_runnable_average(se); 11544 } 11545 11546 return 1; 11547 11548 err_free_rq: 11549 kfree(cfs_rq); 11550 err: 11551 return 0; 11552 } 11553 11554 void online_fair_sched_group(struct task_group *tg) 11555 { 11556 struct sched_entity *se; 11557 struct rq_flags rf; 11558 struct rq *rq; 11559 int i; 11560 11561 for_each_possible_cpu(i) { 11562 rq = cpu_rq(i); 11563 se = tg->se[i]; 11564 rq_lock_irq(rq, &rf); 11565 update_rq_clock(rq); 11566 attach_entity_cfs_rq(se); 11567 sync_throttle(tg, i); 11568 rq_unlock_irq(rq, &rf); 11569 } 11570 } 11571 11572 void unregister_fair_sched_group(struct task_group *tg) 11573 { 11574 unsigned long flags; 11575 struct rq *rq; 11576 int cpu; 11577 11578 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 11579 11580 for_each_possible_cpu(cpu) { 11581 if (tg->se[cpu]) 11582 remove_entity_load_avg(tg->se[cpu]); 11583 11584 /* 11585 * Only empty task groups can be destroyed; so we can speculatively 11586 * check on_list without danger of it being re-added. 11587 */ 11588 if (!tg->cfs_rq[cpu]->on_list) 11589 continue; 11590 11591 rq = cpu_rq(cpu); 11592 11593 raw_spin_rq_lock_irqsave(rq, flags); 11594 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 11595 raw_spin_rq_unlock_irqrestore(rq, flags); 11596 } 11597 } 11598 11599 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 11600 struct sched_entity *se, int cpu, 11601 struct sched_entity *parent) 11602 { 11603 struct rq *rq = cpu_rq(cpu); 11604 11605 cfs_rq->tg = tg; 11606 cfs_rq->rq = rq; 11607 init_cfs_rq_runtime(cfs_rq); 11608 11609 tg->cfs_rq[cpu] = cfs_rq; 11610 tg->se[cpu] = se; 11611 11612 /* se could be NULL for root_task_group */ 11613 if (!se) 11614 return; 11615 11616 if (!parent) { 11617 se->cfs_rq = &rq->cfs; 11618 se->depth = 0; 11619 } else { 11620 se->cfs_rq = parent->my_q; 11621 se->depth = parent->depth + 1; 11622 } 11623 11624 se->my_q = cfs_rq; 11625 /* guarantee group entities always have weight */ 11626 update_load_set(&se->load, NICE_0_LOAD); 11627 se->parent = parent; 11628 } 11629 11630 static DEFINE_MUTEX(shares_mutex); 11631 11632 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 11633 { 11634 int i; 11635 11636 lockdep_assert_held(&shares_mutex); 11637 11638 /* 11639 * We can't change the weight of the root cgroup. 11640 */ 11641 if (!tg->se[0]) 11642 return -EINVAL; 11643 11644 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 11645 11646 if (tg->shares == shares) 11647 return 0; 11648 11649 tg->shares = shares; 11650 for_each_possible_cpu(i) { 11651 struct rq *rq = cpu_rq(i); 11652 struct sched_entity *se = tg->se[i]; 11653 struct rq_flags rf; 11654 11655 /* Propagate contribution to hierarchy */ 11656 rq_lock_irqsave(rq, &rf); 11657 update_rq_clock(rq); 11658 for_each_sched_entity(se) { 11659 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 11660 update_cfs_group(se); 11661 } 11662 rq_unlock_irqrestore(rq, &rf); 11663 } 11664 11665 return 0; 11666 } 11667 11668 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 11669 { 11670 int ret; 11671 11672 mutex_lock(&shares_mutex); 11673 if (tg_is_idle(tg)) 11674 ret = -EINVAL; 11675 else 11676 ret = __sched_group_set_shares(tg, shares); 11677 mutex_unlock(&shares_mutex); 11678 11679 return ret; 11680 } 11681 11682 int sched_group_set_idle(struct task_group *tg, long idle) 11683 { 11684 int i; 11685 11686 if (tg == &root_task_group) 11687 return -EINVAL; 11688 11689 if (idle < 0 || idle > 1) 11690 return -EINVAL; 11691 11692 mutex_lock(&shares_mutex); 11693 11694 if (tg->idle == idle) { 11695 mutex_unlock(&shares_mutex); 11696 return 0; 11697 } 11698 11699 tg->idle = idle; 11700 11701 for_each_possible_cpu(i) { 11702 struct rq *rq = cpu_rq(i); 11703 struct sched_entity *se = tg->se[i]; 11704 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 11705 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 11706 long idle_task_delta; 11707 struct rq_flags rf; 11708 11709 rq_lock_irqsave(rq, &rf); 11710 11711 grp_cfs_rq->idle = idle; 11712 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 11713 goto next_cpu; 11714 11715 if (se->on_rq) { 11716 parent_cfs_rq = cfs_rq_of(se); 11717 if (cfs_rq_is_idle(grp_cfs_rq)) 11718 parent_cfs_rq->idle_nr_running++; 11719 else 11720 parent_cfs_rq->idle_nr_running--; 11721 } 11722 11723 idle_task_delta = grp_cfs_rq->h_nr_running - 11724 grp_cfs_rq->idle_h_nr_running; 11725 if (!cfs_rq_is_idle(grp_cfs_rq)) 11726 idle_task_delta *= -1; 11727 11728 for_each_sched_entity(se) { 11729 struct cfs_rq *cfs_rq = cfs_rq_of(se); 11730 11731 if (!se->on_rq) 11732 break; 11733 11734 cfs_rq->idle_h_nr_running += idle_task_delta; 11735 11736 /* Already accounted at parent level and above. */ 11737 if (cfs_rq_is_idle(cfs_rq)) 11738 break; 11739 } 11740 11741 next_cpu: 11742 rq_unlock_irqrestore(rq, &rf); 11743 } 11744 11745 /* Idle groups have minimum weight. */ 11746 if (tg_is_idle(tg)) 11747 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 11748 else 11749 __sched_group_set_shares(tg, NICE_0_LOAD); 11750 11751 mutex_unlock(&shares_mutex); 11752 return 0; 11753 } 11754 11755 #else /* CONFIG_FAIR_GROUP_SCHED */ 11756 11757 void free_fair_sched_group(struct task_group *tg) { } 11758 11759 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 11760 { 11761 return 1; 11762 } 11763 11764 void online_fair_sched_group(struct task_group *tg) { } 11765 11766 void unregister_fair_sched_group(struct task_group *tg) { } 11767 11768 #endif /* CONFIG_FAIR_GROUP_SCHED */ 11769 11770 11771 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 11772 { 11773 struct sched_entity *se = &task->se; 11774 unsigned int rr_interval = 0; 11775 11776 /* 11777 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 11778 * idle runqueue: 11779 */ 11780 if (rq->cfs.load.weight) 11781 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 11782 11783 return rr_interval; 11784 } 11785 11786 /* 11787 * All the scheduling class methods: 11788 */ 11789 DEFINE_SCHED_CLASS(fair) = { 11790 11791 .enqueue_task = enqueue_task_fair, 11792 .dequeue_task = dequeue_task_fair, 11793 .yield_task = yield_task_fair, 11794 .yield_to_task = yield_to_task_fair, 11795 11796 .check_preempt_curr = check_preempt_wakeup, 11797 11798 .pick_next_task = __pick_next_task_fair, 11799 .put_prev_task = put_prev_task_fair, 11800 .set_next_task = set_next_task_fair, 11801 11802 #ifdef CONFIG_SMP 11803 .balance = balance_fair, 11804 .pick_task = pick_task_fair, 11805 .select_task_rq = select_task_rq_fair, 11806 .migrate_task_rq = migrate_task_rq_fair, 11807 11808 .rq_online = rq_online_fair, 11809 .rq_offline = rq_offline_fair, 11810 11811 .task_dead = task_dead_fair, 11812 .set_cpus_allowed = set_cpus_allowed_common, 11813 #endif 11814 11815 .task_tick = task_tick_fair, 11816 .task_fork = task_fork_fair, 11817 11818 .prio_changed = prio_changed_fair, 11819 .switched_from = switched_from_fair, 11820 .switched_to = switched_to_fair, 11821 11822 .get_rr_interval = get_rr_interval_fair, 11823 11824 .update_curr = update_curr_fair, 11825 11826 #ifdef CONFIG_FAIR_GROUP_SCHED 11827 .task_change_group = task_change_group_fair, 11828 #endif 11829 11830 #ifdef CONFIG_UCLAMP_TASK 11831 .uclamp_enabled = 1, 11832 #endif 11833 }; 11834 11835 #ifdef CONFIG_SCHED_DEBUG 11836 void print_cfs_stats(struct seq_file *m, int cpu) 11837 { 11838 struct cfs_rq *cfs_rq, *pos; 11839 11840 rcu_read_lock(); 11841 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 11842 print_cfs_rq(m, cpu, cfs_rq); 11843 rcu_read_unlock(); 11844 } 11845 11846 #ifdef CONFIG_NUMA_BALANCING 11847 void show_numa_stats(struct task_struct *p, struct seq_file *m) 11848 { 11849 int node; 11850 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 11851 struct numa_group *ng; 11852 11853 rcu_read_lock(); 11854 ng = rcu_dereference(p->numa_group); 11855 for_each_online_node(node) { 11856 if (p->numa_faults) { 11857 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 11858 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 11859 } 11860 if (ng) { 11861 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 11862 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 11863 } 11864 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 11865 } 11866 rcu_read_unlock(); 11867 } 11868 #endif /* CONFIG_NUMA_BALANCING */ 11869 #endif /* CONFIG_SCHED_DEBUG */ 11870 11871 __init void init_sched_fair_class(void) 11872 { 11873 #ifdef CONFIG_SMP 11874 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 11875 11876 #ifdef CONFIG_NO_HZ_COMMON 11877 nohz.next_balance = jiffies; 11878 nohz.next_blocked = jiffies; 11879 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 11880 #endif 11881 #endif /* SMP */ 11882 11883 } 11884 11885 /* 11886 * Helper functions to facilitate extracting info from tracepoints. 11887 */ 11888 11889 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq) 11890 { 11891 #ifdef CONFIG_SMP 11892 return cfs_rq ? &cfs_rq->avg : NULL; 11893 #else 11894 return NULL; 11895 #endif 11896 } 11897 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg); 11898 11899 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len) 11900 { 11901 if (!cfs_rq) { 11902 if (str) 11903 strlcpy(str, "(null)", len); 11904 else 11905 return NULL; 11906 } 11907 11908 cfs_rq_tg_path(cfs_rq, str, len); 11909 return str; 11910 } 11911 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path); 11912 11913 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq) 11914 { 11915 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1; 11916 } 11917 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu); 11918 11919 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq) 11920 { 11921 #ifdef CONFIG_SMP 11922 return rq ? &rq->avg_rt : NULL; 11923 #else 11924 return NULL; 11925 #endif 11926 } 11927 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt); 11928 11929 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq) 11930 { 11931 #ifdef CONFIG_SMP 11932 return rq ? &rq->avg_dl : NULL; 11933 #else 11934 return NULL; 11935 #endif 11936 } 11937 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl); 11938 11939 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq) 11940 { 11941 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ) 11942 return rq ? &rq->avg_irq : NULL; 11943 #else 11944 return NULL; 11945 #endif 11946 } 11947 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq); 11948 11949 int sched_trace_rq_cpu(struct rq *rq) 11950 { 11951 return rq ? cpu_of(rq) : -1; 11952 } 11953 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu); 11954 11955 int sched_trace_rq_cpu_capacity(struct rq *rq) 11956 { 11957 return rq ? 11958 #ifdef CONFIG_SMP 11959 rq->cpu_capacity 11960 #else 11961 SCHED_CAPACITY_SCALE 11962 #endif 11963 : -1; 11964 } 11965 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity); 11966 11967 const struct cpumask *sched_trace_rd_span(struct root_domain *rd) 11968 { 11969 #ifdef CONFIG_SMP 11970 return rd ? rd->span : NULL; 11971 #else 11972 return NULL; 11973 #endif 11974 } 11975 EXPORT_SYMBOL_GPL(sched_trace_rd_span); 11976 11977 int sched_trace_rq_nr_running(struct rq *rq) 11978 { 11979 return rq ? rq->nr_running : -1; 11980 } 11981 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running); 11982