xref: /linux/kernel/sched/fair.c (revision f3c11cf5cae044668f888a50abb37b29600ca197)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51 
52 #include <asm/switch_to.h>
53 
54 #include "sched.h"
55 #include "stats.h"
56 #include "autogroup.h"
57 
58 /*
59  * The initial- and re-scaling of tunables is configurable
60  *
61  * Options are:
62  *
63  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
64  *   SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
65  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66  *
67  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68  */
69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70 
71 /*
72  * Minimal preemption granularity for CPU-bound tasks:
73  *
74  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75  */
76 unsigned int sysctl_sched_base_slice			= 750000ULL;
77 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
78 
79 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
80 
81 static int __init setup_sched_thermal_decay_shift(char *str)
82 {
83 	pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
84 	return 1;
85 }
86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
87 
88 #ifdef CONFIG_SMP
89 /*
90  * For asym packing, by default the lower numbered CPU has higher priority.
91  */
92 int __weak arch_asym_cpu_priority(int cpu)
93 {
94 	return -cpu;
95 }
96 
97 /*
98  * The margin used when comparing utilization with CPU capacity.
99  *
100  * (default: ~20%)
101  */
102 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
103 
104 /*
105  * The margin used when comparing CPU capacities.
106  * is 'cap1' noticeably greater than 'cap2'
107  *
108  * (default: ~5%)
109  */
110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
111 #endif
112 
113 #ifdef CONFIG_CFS_BANDWIDTH
114 /*
115  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
116  * each time a cfs_rq requests quota.
117  *
118  * Note: in the case that the slice exceeds the runtime remaining (either due
119  * to consumption or the quota being specified to be smaller than the slice)
120  * we will always only issue the remaining available time.
121  *
122  * (default: 5 msec, units: microseconds)
123  */
124 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
125 #endif
126 
127 #ifdef CONFIG_NUMA_BALANCING
128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
129 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
130 #endif
131 
132 #ifdef CONFIG_SYSCTL
133 static struct ctl_table sched_fair_sysctls[] = {
134 #ifdef CONFIG_CFS_BANDWIDTH
135 	{
136 		.procname       = "sched_cfs_bandwidth_slice_us",
137 		.data           = &sysctl_sched_cfs_bandwidth_slice,
138 		.maxlen         = sizeof(unsigned int),
139 		.mode           = 0644,
140 		.proc_handler   = proc_dointvec_minmax,
141 		.extra1         = SYSCTL_ONE,
142 	},
143 #endif
144 #ifdef CONFIG_NUMA_BALANCING
145 	{
146 		.procname	= "numa_balancing_promote_rate_limit_MBps",
147 		.data		= &sysctl_numa_balancing_promote_rate_limit,
148 		.maxlen		= sizeof(unsigned int),
149 		.mode		= 0644,
150 		.proc_handler	= proc_dointvec_minmax,
151 		.extra1		= SYSCTL_ZERO,
152 	},
153 #endif /* CONFIG_NUMA_BALANCING */
154 };
155 
156 static int __init sched_fair_sysctl_init(void)
157 {
158 	register_sysctl_init("kernel", sched_fair_sysctls);
159 	return 0;
160 }
161 late_initcall(sched_fair_sysctl_init);
162 #endif
163 
164 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
165 {
166 	lw->weight += inc;
167 	lw->inv_weight = 0;
168 }
169 
170 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
171 {
172 	lw->weight -= dec;
173 	lw->inv_weight = 0;
174 }
175 
176 static inline void update_load_set(struct load_weight *lw, unsigned long w)
177 {
178 	lw->weight = w;
179 	lw->inv_weight = 0;
180 }
181 
182 /*
183  * Increase the granularity value when there are more CPUs,
184  * because with more CPUs the 'effective latency' as visible
185  * to users decreases. But the relationship is not linear,
186  * so pick a second-best guess by going with the log2 of the
187  * number of CPUs.
188  *
189  * This idea comes from the SD scheduler of Con Kolivas:
190  */
191 static unsigned int get_update_sysctl_factor(void)
192 {
193 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
194 	unsigned int factor;
195 
196 	switch (sysctl_sched_tunable_scaling) {
197 	case SCHED_TUNABLESCALING_NONE:
198 		factor = 1;
199 		break;
200 	case SCHED_TUNABLESCALING_LINEAR:
201 		factor = cpus;
202 		break;
203 	case SCHED_TUNABLESCALING_LOG:
204 	default:
205 		factor = 1 + ilog2(cpus);
206 		break;
207 	}
208 
209 	return factor;
210 }
211 
212 static void update_sysctl(void)
213 {
214 	unsigned int factor = get_update_sysctl_factor();
215 
216 #define SET_SYSCTL(name) \
217 	(sysctl_##name = (factor) * normalized_sysctl_##name)
218 	SET_SYSCTL(sched_base_slice);
219 #undef SET_SYSCTL
220 }
221 
222 void __init sched_init_granularity(void)
223 {
224 	update_sysctl();
225 }
226 
227 #define WMULT_CONST	(~0U)
228 #define WMULT_SHIFT	32
229 
230 static void __update_inv_weight(struct load_weight *lw)
231 {
232 	unsigned long w;
233 
234 	if (likely(lw->inv_weight))
235 		return;
236 
237 	w = scale_load_down(lw->weight);
238 
239 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
240 		lw->inv_weight = 1;
241 	else if (unlikely(!w))
242 		lw->inv_weight = WMULT_CONST;
243 	else
244 		lw->inv_weight = WMULT_CONST / w;
245 }
246 
247 /*
248  * delta_exec * weight / lw.weight
249  *   OR
250  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
251  *
252  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
253  * we're guaranteed shift stays positive because inv_weight is guaranteed to
254  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
255  *
256  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
257  * weight/lw.weight <= 1, and therefore our shift will also be positive.
258  */
259 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
260 {
261 	u64 fact = scale_load_down(weight);
262 	u32 fact_hi = (u32)(fact >> 32);
263 	int shift = WMULT_SHIFT;
264 	int fs;
265 
266 	__update_inv_weight(lw);
267 
268 	if (unlikely(fact_hi)) {
269 		fs = fls(fact_hi);
270 		shift -= fs;
271 		fact >>= fs;
272 	}
273 
274 	fact = mul_u32_u32(fact, lw->inv_weight);
275 
276 	fact_hi = (u32)(fact >> 32);
277 	if (fact_hi) {
278 		fs = fls(fact_hi);
279 		shift -= fs;
280 		fact >>= fs;
281 	}
282 
283 	return mul_u64_u32_shr(delta_exec, fact, shift);
284 }
285 
286 /*
287  * delta /= w
288  */
289 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
290 {
291 	if (unlikely(se->load.weight != NICE_0_LOAD))
292 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
293 
294 	return delta;
295 }
296 
297 const struct sched_class fair_sched_class;
298 
299 /**************************************************************
300  * CFS operations on generic schedulable entities:
301  */
302 
303 #ifdef CONFIG_FAIR_GROUP_SCHED
304 
305 /* Walk up scheduling entities hierarchy */
306 #define for_each_sched_entity(se) \
307 		for (; se; se = se->parent)
308 
309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
310 {
311 	struct rq *rq = rq_of(cfs_rq);
312 	int cpu = cpu_of(rq);
313 
314 	if (cfs_rq->on_list)
315 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
316 
317 	cfs_rq->on_list = 1;
318 
319 	/*
320 	 * Ensure we either appear before our parent (if already
321 	 * enqueued) or force our parent to appear after us when it is
322 	 * enqueued. The fact that we always enqueue bottom-up
323 	 * reduces this to two cases and a special case for the root
324 	 * cfs_rq. Furthermore, it also means that we will always reset
325 	 * tmp_alone_branch either when the branch is connected
326 	 * to a tree or when we reach the top of the tree
327 	 */
328 	if (cfs_rq->tg->parent &&
329 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
330 		/*
331 		 * If parent is already on the list, we add the child
332 		 * just before. Thanks to circular linked property of
333 		 * the list, this means to put the child at the tail
334 		 * of the list that starts by parent.
335 		 */
336 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
338 		/*
339 		 * The branch is now connected to its tree so we can
340 		 * reset tmp_alone_branch to the beginning of the
341 		 * list.
342 		 */
343 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
344 		return true;
345 	}
346 
347 	if (!cfs_rq->tg->parent) {
348 		/*
349 		 * cfs rq without parent should be put
350 		 * at the tail of the list.
351 		 */
352 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
353 			&rq->leaf_cfs_rq_list);
354 		/*
355 		 * We have reach the top of a tree so we can reset
356 		 * tmp_alone_branch to the beginning of the list.
357 		 */
358 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
359 		return true;
360 	}
361 
362 	/*
363 	 * The parent has not already been added so we want to
364 	 * make sure that it will be put after us.
365 	 * tmp_alone_branch points to the begin of the branch
366 	 * where we will add parent.
367 	 */
368 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
369 	/*
370 	 * update tmp_alone_branch to points to the new begin
371 	 * of the branch
372 	 */
373 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
374 	return false;
375 }
376 
377 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
378 {
379 	if (cfs_rq->on_list) {
380 		struct rq *rq = rq_of(cfs_rq);
381 
382 		/*
383 		 * With cfs_rq being unthrottled/throttled during an enqueue,
384 		 * it can happen the tmp_alone_branch points to the leaf that
385 		 * we finally want to delete. In this case, tmp_alone_branch moves
386 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
387 		 * at the end of the enqueue.
388 		 */
389 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
390 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
391 
392 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
393 		cfs_rq->on_list = 0;
394 	}
395 }
396 
397 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
398 {
399 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
400 }
401 
402 /* Iterate through all leaf cfs_rq's on a runqueue */
403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
404 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
405 				 leaf_cfs_rq_list)
406 
407 /* Do the two (enqueued) entities belong to the same group ? */
408 static inline struct cfs_rq *
409 is_same_group(struct sched_entity *se, struct sched_entity *pse)
410 {
411 	if (se->cfs_rq == pse->cfs_rq)
412 		return se->cfs_rq;
413 
414 	return NULL;
415 }
416 
417 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
418 {
419 	return se->parent;
420 }
421 
422 static void
423 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
424 {
425 	int se_depth, pse_depth;
426 
427 	/*
428 	 * preemption test can be made between sibling entities who are in the
429 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
430 	 * both tasks until we find their ancestors who are siblings of common
431 	 * parent.
432 	 */
433 
434 	/* First walk up until both entities are at same depth */
435 	se_depth = (*se)->depth;
436 	pse_depth = (*pse)->depth;
437 
438 	while (se_depth > pse_depth) {
439 		se_depth--;
440 		*se = parent_entity(*se);
441 	}
442 
443 	while (pse_depth > se_depth) {
444 		pse_depth--;
445 		*pse = parent_entity(*pse);
446 	}
447 
448 	while (!is_same_group(*se, *pse)) {
449 		*se = parent_entity(*se);
450 		*pse = parent_entity(*pse);
451 	}
452 }
453 
454 static int tg_is_idle(struct task_group *tg)
455 {
456 	return tg->idle > 0;
457 }
458 
459 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
460 {
461 	return cfs_rq->idle > 0;
462 }
463 
464 static int se_is_idle(struct sched_entity *se)
465 {
466 	if (entity_is_task(se))
467 		return task_has_idle_policy(task_of(se));
468 	return cfs_rq_is_idle(group_cfs_rq(se));
469 }
470 
471 #else	/* !CONFIG_FAIR_GROUP_SCHED */
472 
473 #define for_each_sched_entity(se) \
474 		for (; se; se = NULL)
475 
476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
477 {
478 	return true;
479 }
480 
481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
482 {
483 }
484 
485 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
486 {
487 }
488 
489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
490 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
491 
492 static inline struct sched_entity *parent_entity(struct sched_entity *se)
493 {
494 	return NULL;
495 }
496 
497 static inline void
498 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
499 {
500 }
501 
502 static inline int tg_is_idle(struct task_group *tg)
503 {
504 	return 0;
505 }
506 
507 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
508 {
509 	return 0;
510 }
511 
512 static int se_is_idle(struct sched_entity *se)
513 {
514 	return 0;
515 }
516 
517 #endif	/* CONFIG_FAIR_GROUP_SCHED */
518 
519 static __always_inline
520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
521 
522 /**************************************************************
523  * Scheduling class tree data structure manipulation methods:
524  */
525 
526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
527 {
528 	s64 delta = (s64)(vruntime - max_vruntime);
529 	if (delta > 0)
530 		max_vruntime = vruntime;
531 
532 	return max_vruntime;
533 }
534 
535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
536 {
537 	s64 delta = (s64)(vruntime - min_vruntime);
538 	if (delta < 0)
539 		min_vruntime = vruntime;
540 
541 	return min_vruntime;
542 }
543 
544 static inline bool entity_before(const struct sched_entity *a,
545 				 const struct sched_entity *b)
546 {
547 	/*
548 	 * Tiebreak on vruntime seems unnecessary since it can
549 	 * hardly happen.
550 	 */
551 	return (s64)(a->deadline - b->deadline) < 0;
552 }
553 
554 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
555 {
556 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
557 }
558 
559 #define __node_2_se(node) \
560 	rb_entry((node), struct sched_entity, run_node)
561 
562 /*
563  * Compute virtual time from the per-task service numbers:
564  *
565  * Fair schedulers conserve lag:
566  *
567  *   \Sum lag_i = 0
568  *
569  * Where lag_i is given by:
570  *
571  *   lag_i = S - s_i = w_i * (V - v_i)
572  *
573  * Where S is the ideal service time and V is it's virtual time counterpart.
574  * Therefore:
575  *
576  *   \Sum lag_i = 0
577  *   \Sum w_i * (V - v_i) = 0
578  *   \Sum w_i * V - w_i * v_i = 0
579  *
580  * From which we can solve an expression for V in v_i (which we have in
581  * se->vruntime):
582  *
583  *       \Sum v_i * w_i   \Sum v_i * w_i
584  *   V = -------------- = --------------
585  *          \Sum w_i            W
586  *
587  * Specifically, this is the weighted average of all entity virtual runtimes.
588  *
589  * [[ NOTE: this is only equal to the ideal scheduler under the condition
590  *          that join/leave operations happen at lag_i = 0, otherwise the
591  *          virtual time has non-contiguous motion equivalent to:
592  *
593  *	      V +-= lag_i / W
594  *
595  *	    Also see the comment in place_entity() that deals with this. ]]
596  *
597  * However, since v_i is u64, and the multiplication could easily overflow
598  * transform it into a relative form that uses smaller quantities:
599  *
600  * Substitute: v_i == (v_i - v0) + v0
601  *
602  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
603  * V = ---------------------------- = --------------------- + v0
604  *                  W                            W
605  *
606  * Which we track using:
607  *
608  *                    v0 := cfs_rq->min_vruntime
609  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
610  *              \Sum w_i := cfs_rq->avg_load
611  *
612  * Since min_vruntime is a monotonic increasing variable that closely tracks
613  * the per-task service, these deltas: (v_i - v), will be in the order of the
614  * maximal (virtual) lag induced in the system due to quantisation.
615  *
616  * Also, we use scale_load_down() to reduce the size.
617  *
618  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
619  */
620 static void
621 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
622 {
623 	unsigned long weight = scale_load_down(se->load.weight);
624 	s64 key = entity_key(cfs_rq, se);
625 
626 	cfs_rq->avg_vruntime += key * weight;
627 	cfs_rq->avg_load += weight;
628 }
629 
630 static void
631 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
632 {
633 	unsigned long weight = scale_load_down(se->load.weight);
634 	s64 key = entity_key(cfs_rq, se);
635 
636 	cfs_rq->avg_vruntime -= key * weight;
637 	cfs_rq->avg_load -= weight;
638 }
639 
640 static inline
641 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
642 {
643 	/*
644 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
645 	 */
646 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
647 }
648 
649 /*
650  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
651  * For this to be so, the result of this function must have a left bias.
652  */
653 u64 avg_vruntime(struct cfs_rq *cfs_rq)
654 {
655 	struct sched_entity *curr = cfs_rq->curr;
656 	s64 avg = cfs_rq->avg_vruntime;
657 	long load = cfs_rq->avg_load;
658 
659 	if (curr && curr->on_rq) {
660 		unsigned long weight = scale_load_down(curr->load.weight);
661 
662 		avg += entity_key(cfs_rq, curr) * weight;
663 		load += weight;
664 	}
665 
666 	if (load) {
667 		/* sign flips effective floor / ceiling */
668 		if (avg < 0)
669 			avg -= (load - 1);
670 		avg = div_s64(avg, load);
671 	}
672 
673 	return cfs_rq->min_vruntime + avg;
674 }
675 
676 /*
677  * lag_i = S - s_i = w_i * (V - v_i)
678  *
679  * However, since V is approximated by the weighted average of all entities it
680  * is possible -- by addition/removal/reweight to the tree -- to move V around
681  * and end up with a larger lag than we started with.
682  *
683  * Limit this to either double the slice length with a minimum of TICK_NSEC
684  * since that is the timing granularity.
685  *
686  * EEVDF gives the following limit for a steady state system:
687  *
688  *   -r_max < lag < max(r_max, q)
689  *
690  * XXX could add max_slice to the augmented data to track this.
691  */
692 static s64 entity_lag(u64 avruntime, struct sched_entity *se)
693 {
694 	s64 vlag, limit;
695 
696 	vlag = avruntime - se->vruntime;
697 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
698 
699 	return clamp(vlag, -limit, limit);
700 }
701 
702 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
703 {
704 	SCHED_WARN_ON(!se->on_rq);
705 
706 	se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
707 }
708 
709 /*
710  * Entity is eligible once it received less service than it ought to have,
711  * eg. lag >= 0.
712  *
713  * lag_i = S - s_i = w_i*(V - v_i)
714  *
715  * lag_i >= 0 -> V >= v_i
716  *
717  *     \Sum (v_i - v)*w_i
718  * V = ------------------ + v
719  *          \Sum w_i
720  *
721  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
722  *
723  * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
724  *       to the loss in precision caused by the division.
725  */
726 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
727 {
728 	struct sched_entity *curr = cfs_rq->curr;
729 	s64 avg = cfs_rq->avg_vruntime;
730 	long load = cfs_rq->avg_load;
731 
732 	if (curr && curr->on_rq) {
733 		unsigned long weight = scale_load_down(curr->load.weight);
734 
735 		avg += entity_key(cfs_rq, curr) * weight;
736 		load += weight;
737 	}
738 
739 	return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
740 }
741 
742 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
743 {
744 	return vruntime_eligible(cfs_rq, se->vruntime);
745 }
746 
747 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
748 {
749 	u64 min_vruntime = cfs_rq->min_vruntime;
750 	/*
751 	 * open coded max_vruntime() to allow updating avg_vruntime
752 	 */
753 	s64 delta = (s64)(vruntime - min_vruntime);
754 	if (delta > 0) {
755 		avg_vruntime_update(cfs_rq, delta);
756 		min_vruntime = vruntime;
757 	}
758 	return min_vruntime;
759 }
760 
761 static void update_min_vruntime(struct cfs_rq *cfs_rq)
762 {
763 	struct sched_entity *se = __pick_root_entity(cfs_rq);
764 	struct sched_entity *curr = cfs_rq->curr;
765 	u64 vruntime = cfs_rq->min_vruntime;
766 
767 	if (curr) {
768 		if (curr->on_rq)
769 			vruntime = curr->vruntime;
770 		else
771 			curr = NULL;
772 	}
773 
774 	if (se) {
775 		if (!curr)
776 			vruntime = se->min_vruntime;
777 		else
778 			vruntime = min_vruntime(vruntime, se->min_vruntime);
779 	}
780 
781 	/* ensure we never gain time by being placed backwards. */
782 	u64_u32_store(cfs_rq->min_vruntime,
783 		      __update_min_vruntime(cfs_rq, vruntime));
784 }
785 
786 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
787 {
788 	return entity_before(__node_2_se(a), __node_2_se(b));
789 }
790 
791 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
792 
793 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
794 {
795 	if (node) {
796 		struct sched_entity *rse = __node_2_se(node);
797 		if (vruntime_gt(min_vruntime, se, rse))
798 			se->min_vruntime = rse->min_vruntime;
799 	}
800 }
801 
802 /*
803  * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
804  */
805 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
806 {
807 	u64 old_min_vruntime = se->min_vruntime;
808 	struct rb_node *node = &se->run_node;
809 
810 	se->min_vruntime = se->vruntime;
811 	__min_vruntime_update(se, node->rb_right);
812 	__min_vruntime_update(se, node->rb_left);
813 
814 	return se->min_vruntime == old_min_vruntime;
815 }
816 
817 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
818 		     run_node, min_vruntime, min_vruntime_update);
819 
820 /*
821  * Enqueue an entity into the rb-tree:
822  */
823 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
824 {
825 	avg_vruntime_add(cfs_rq, se);
826 	se->min_vruntime = se->vruntime;
827 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
828 				__entity_less, &min_vruntime_cb);
829 }
830 
831 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
832 {
833 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
834 				  &min_vruntime_cb);
835 	avg_vruntime_sub(cfs_rq, se);
836 }
837 
838 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
839 {
840 	struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
841 
842 	if (!root)
843 		return NULL;
844 
845 	return __node_2_se(root);
846 }
847 
848 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
849 {
850 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
851 
852 	if (!left)
853 		return NULL;
854 
855 	return __node_2_se(left);
856 }
857 
858 /*
859  * Earliest Eligible Virtual Deadline First
860  *
861  * In order to provide latency guarantees for different request sizes
862  * EEVDF selects the best runnable task from two criteria:
863  *
864  *  1) the task must be eligible (must be owed service)
865  *
866  *  2) from those tasks that meet 1), we select the one
867  *     with the earliest virtual deadline.
868  *
869  * We can do this in O(log n) time due to an augmented RB-tree. The
870  * tree keeps the entries sorted on deadline, but also functions as a
871  * heap based on the vruntime by keeping:
872  *
873  *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
874  *
875  * Which allows tree pruning through eligibility.
876  */
877 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
878 {
879 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
880 	struct sched_entity *se = __pick_first_entity(cfs_rq);
881 	struct sched_entity *curr = cfs_rq->curr;
882 	struct sched_entity *best = NULL;
883 
884 	/*
885 	 * We can safely skip eligibility check if there is only one entity
886 	 * in this cfs_rq, saving some cycles.
887 	 */
888 	if (cfs_rq->nr_running == 1)
889 		return curr && curr->on_rq ? curr : se;
890 
891 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
892 		curr = NULL;
893 
894 	/*
895 	 * Once selected, run a task until it either becomes non-eligible or
896 	 * until it gets a new slice. See the HACK in set_next_entity().
897 	 */
898 	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
899 		return curr;
900 
901 	/* Pick the leftmost entity if it's eligible */
902 	if (se && entity_eligible(cfs_rq, se)) {
903 		best = se;
904 		goto found;
905 	}
906 
907 	/* Heap search for the EEVD entity */
908 	while (node) {
909 		struct rb_node *left = node->rb_left;
910 
911 		/*
912 		 * Eligible entities in left subtree are always better
913 		 * choices, since they have earlier deadlines.
914 		 */
915 		if (left && vruntime_eligible(cfs_rq,
916 					__node_2_se(left)->min_vruntime)) {
917 			node = left;
918 			continue;
919 		}
920 
921 		se = __node_2_se(node);
922 
923 		/*
924 		 * The left subtree either is empty or has no eligible
925 		 * entity, so check the current node since it is the one
926 		 * with earliest deadline that might be eligible.
927 		 */
928 		if (entity_eligible(cfs_rq, se)) {
929 			best = se;
930 			break;
931 		}
932 
933 		node = node->rb_right;
934 	}
935 found:
936 	if (!best || (curr && entity_before(curr, best)))
937 		best = curr;
938 
939 	return best;
940 }
941 
942 #ifdef CONFIG_SCHED_DEBUG
943 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
944 {
945 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
946 
947 	if (!last)
948 		return NULL;
949 
950 	return __node_2_se(last);
951 }
952 
953 /**************************************************************
954  * Scheduling class statistics methods:
955  */
956 #ifdef CONFIG_SMP
957 int sched_update_scaling(void)
958 {
959 	unsigned int factor = get_update_sysctl_factor();
960 
961 #define WRT_SYSCTL(name) \
962 	(normalized_sysctl_##name = sysctl_##name / (factor))
963 	WRT_SYSCTL(sched_base_slice);
964 #undef WRT_SYSCTL
965 
966 	return 0;
967 }
968 #endif
969 #endif
970 
971 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
972 
973 /*
974  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
975  * this is probably good enough.
976  */
977 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
978 {
979 	if ((s64)(se->vruntime - se->deadline) < 0)
980 		return;
981 
982 	/*
983 	 * For EEVDF the virtual time slope is determined by w_i (iow.
984 	 * nice) while the request time r_i is determined by
985 	 * sysctl_sched_base_slice.
986 	 */
987 	se->slice = sysctl_sched_base_slice;
988 
989 	/*
990 	 * EEVDF: vd_i = ve_i + r_i / w_i
991 	 */
992 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
993 
994 	/*
995 	 * The task has consumed its request, reschedule.
996 	 */
997 	if (cfs_rq->nr_running > 1) {
998 		resched_curr(rq_of(cfs_rq));
999 		clear_buddies(cfs_rq, se);
1000 	}
1001 }
1002 
1003 #include "pelt.h"
1004 #ifdef CONFIG_SMP
1005 
1006 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1007 static unsigned long task_h_load(struct task_struct *p);
1008 static unsigned long capacity_of(int cpu);
1009 
1010 /* Give new sched_entity start runnable values to heavy its load in infant time */
1011 void init_entity_runnable_average(struct sched_entity *se)
1012 {
1013 	struct sched_avg *sa = &se->avg;
1014 
1015 	memset(sa, 0, sizeof(*sa));
1016 
1017 	/*
1018 	 * Tasks are initialized with full load to be seen as heavy tasks until
1019 	 * they get a chance to stabilize to their real load level.
1020 	 * Group entities are initialized with zero load to reflect the fact that
1021 	 * nothing has been attached to the task group yet.
1022 	 */
1023 	if (entity_is_task(se))
1024 		sa->load_avg = scale_load_down(se->load.weight);
1025 
1026 	/* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1027 }
1028 
1029 /*
1030  * With new tasks being created, their initial util_avgs are extrapolated
1031  * based on the cfs_rq's current util_avg:
1032  *
1033  *   util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1034  *		* se_weight(se)
1035  *
1036  * However, in many cases, the above util_avg does not give a desired
1037  * value. Moreover, the sum of the util_avgs may be divergent, such
1038  * as when the series is a harmonic series.
1039  *
1040  * To solve this problem, we also cap the util_avg of successive tasks to
1041  * only 1/2 of the left utilization budget:
1042  *
1043  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1044  *
1045  * where n denotes the nth task and cpu_scale the CPU capacity.
1046  *
1047  * For example, for a CPU with 1024 of capacity, a simplest series from
1048  * the beginning would be like:
1049  *
1050  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1051  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1052  *
1053  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1054  * if util_avg > util_avg_cap.
1055  */
1056 void post_init_entity_util_avg(struct task_struct *p)
1057 {
1058 	struct sched_entity *se = &p->se;
1059 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1060 	struct sched_avg *sa = &se->avg;
1061 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1062 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1063 
1064 	if (p->sched_class != &fair_sched_class) {
1065 		/*
1066 		 * For !fair tasks do:
1067 		 *
1068 		update_cfs_rq_load_avg(now, cfs_rq);
1069 		attach_entity_load_avg(cfs_rq, se);
1070 		switched_from_fair(rq, p);
1071 		 *
1072 		 * such that the next switched_to_fair() has the
1073 		 * expected state.
1074 		 */
1075 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1076 		return;
1077 	}
1078 
1079 	if (cap > 0) {
1080 		if (cfs_rq->avg.util_avg != 0) {
1081 			sa->util_avg  = cfs_rq->avg.util_avg * se_weight(se);
1082 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1083 
1084 			if (sa->util_avg > cap)
1085 				sa->util_avg = cap;
1086 		} else {
1087 			sa->util_avg = cap;
1088 		}
1089 	}
1090 
1091 	sa->runnable_avg = sa->util_avg;
1092 }
1093 
1094 #else /* !CONFIG_SMP */
1095 void init_entity_runnable_average(struct sched_entity *se)
1096 {
1097 }
1098 void post_init_entity_util_avg(struct task_struct *p)
1099 {
1100 }
1101 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1102 {
1103 }
1104 #endif /* CONFIG_SMP */
1105 
1106 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1107 {
1108 	u64 now = rq_clock_task(rq);
1109 	s64 delta_exec;
1110 
1111 	delta_exec = now - curr->exec_start;
1112 	if (unlikely(delta_exec <= 0))
1113 		return delta_exec;
1114 
1115 	curr->exec_start = now;
1116 	curr->sum_exec_runtime += delta_exec;
1117 
1118 	if (schedstat_enabled()) {
1119 		struct sched_statistics *stats;
1120 
1121 		stats = __schedstats_from_se(curr);
1122 		__schedstat_set(stats->exec_max,
1123 				max(delta_exec, stats->exec_max));
1124 	}
1125 
1126 	return delta_exec;
1127 }
1128 
1129 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1130 {
1131 	trace_sched_stat_runtime(p, delta_exec);
1132 	account_group_exec_runtime(p, delta_exec);
1133 	cgroup_account_cputime(p, delta_exec);
1134 	if (p->dl_server)
1135 		dl_server_update(p->dl_server, delta_exec);
1136 }
1137 
1138 /*
1139  * Used by other classes to account runtime.
1140  */
1141 s64 update_curr_common(struct rq *rq)
1142 {
1143 	struct task_struct *curr = rq->curr;
1144 	s64 delta_exec;
1145 
1146 	delta_exec = update_curr_se(rq, &curr->se);
1147 	if (likely(delta_exec > 0))
1148 		update_curr_task(curr, delta_exec);
1149 
1150 	return delta_exec;
1151 }
1152 
1153 /*
1154  * Update the current task's runtime statistics.
1155  */
1156 static void update_curr(struct cfs_rq *cfs_rq)
1157 {
1158 	struct sched_entity *curr = cfs_rq->curr;
1159 	s64 delta_exec;
1160 
1161 	if (unlikely(!curr))
1162 		return;
1163 
1164 	delta_exec = update_curr_se(rq_of(cfs_rq), curr);
1165 	if (unlikely(delta_exec <= 0))
1166 		return;
1167 
1168 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1169 	update_deadline(cfs_rq, curr);
1170 	update_min_vruntime(cfs_rq);
1171 
1172 	if (entity_is_task(curr))
1173 		update_curr_task(task_of(curr), delta_exec);
1174 
1175 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1176 }
1177 
1178 static void update_curr_fair(struct rq *rq)
1179 {
1180 	update_curr(cfs_rq_of(&rq->curr->se));
1181 }
1182 
1183 static inline void
1184 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1185 {
1186 	struct sched_statistics *stats;
1187 	struct task_struct *p = NULL;
1188 
1189 	if (!schedstat_enabled())
1190 		return;
1191 
1192 	stats = __schedstats_from_se(se);
1193 
1194 	if (entity_is_task(se))
1195 		p = task_of(se);
1196 
1197 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1198 }
1199 
1200 static inline void
1201 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1202 {
1203 	struct sched_statistics *stats;
1204 	struct task_struct *p = NULL;
1205 
1206 	if (!schedstat_enabled())
1207 		return;
1208 
1209 	stats = __schedstats_from_se(se);
1210 
1211 	/*
1212 	 * When the sched_schedstat changes from 0 to 1, some sched se
1213 	 * maybe already in the runqueue, the se->statistics.wait_start
1214 	 * will be 0.So it will let the delta wrong. We need to avoid this
1215 	 * scenario.
1216 	 */
1217 	if (unlikely(!schedstat_val(stats->wait_start)))
1218 		return;
1219 
1220 	if (entity_is_task(se))
1221 		p = task_of(se);
1222 
1223 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1224 }
1225 
1226 static inline void
1227 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1228 {
1229 	struct sched_statistics *stats;
1230 	struct task_struct *tsk = NULL;
1231 
1232 	if (!schedstat_enabled())
1233 		return;
1234 
1235 	stats = __schedstats_from_se(se);
1236 
1237 	if (entity_is_task(se))
1238 		tsk = task_of(se);
1239 
1240 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1241 }
1242 
1243 /*
1244  * Task is being enqueued - update stats:
1245  */
1246 static inline void
1247 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1248 {
1249 	if (!schedstat_enabled())
1250 		return;
1251 
1252 	/*
1253 	 * Are we enqueueing a waiting task? (for current tasks
1254 	 * a dequeue/enqueue event is a NOP)
1255 	 */
1256 	if (se != cfs_rq->curr)
1257 		update_stats_wait_start_fair(cfs_rq, se);
1258 
1259 	if (flags & ENQUEUE_WAKEUP)
1260 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1261 }
1262 
1263 static inline void
1264 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1265 {
1266 
1267 	if (!schedstat_enabled())
1268 		return;
1269 
1270 	/*
1271 	 * Mark the end of the wait period if dequeueing a
1272 	 * waiting task:
1273 	 */
1274 	if (se != cfs_rq->curr)
1275 		update_stats_wait_end_fair(cfs_rq, se);
1276 
1277 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1278 		struct task_struct *tsk = task_of(se);
1279 		unsigned int state;
1280 
1281 		/* XXX racy against TTWU */
1282 		state = READ_ONCE(tsk->__state);
1283 		if (state & TASK_INTERRUPTIBLE)
1284 			__schedstat_set(tsk->stats.sleep_start,
1285 				      rq_clock(rq_of(cfs_rq)));
1286 		if (state & TASK_UNINTERRUPTIBLE)
1287 			__schedstat_set(tsk->stats.block_start,
1288 				      rq_clock(rq_of(cfs_rq)));
1289 	}
1290 }
1291 
1292 /*
1293  * We are picking a new current task - update its stats:
1294  */
1295 static inline void
1296 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1297 {
1298 	/*
1299 	 * We are starting a new run period:
1300 	 */
1301 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1302 }
1303 
1304 /**************************************************
1305  * Scheduling class queueing methods:
1306  */
1307 
1308 static inline bool is_core_idle(int cpu)
1309 {
1310 #ifdef CONFIG_SCHED_SMT
1311 	int sibling;
1312 
1313 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1314 		if (cpu == sibling)
1315 			continue;
1316 
1317 		if (!idle_cpu(sibling))
1318 			return false;
1319 	}
1320 #endif
1321 
1322 	return true;
1323 }
1324 
1325 #ifdef CONFIG_NUMA
1326 #define NUMA_IMBALANCE_MIN 2
1327 
1328 static inline long
1329 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1330 {
1331 	/*
1332 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1333 	 * threshold. Above this threshold, individual tasks may be contending
1334 	 * for both memory bandwidth and any shared HT resources.  This is an
1335 	 * approximation as the number of running tasks may not be related to
1336 	 * the number of busy CPUs due to sched_setaffinity.
1337 	 */
1338 	if (dst_running > imb_numa_nr)
1339 		return imbalance;
1340 
1341 	/*
1342 	 * Allow a small imbalance based on a simple pair of communicating
1343 	 * tasks that remain local when the destination is lightly loaded.
1344 	 */
1345 	if (imbalance <= NUMA_IMBALANCE_MIN)
1346 		return 0;
1347 
1348 	return imbalance;
1349 }
1350 #endif /* CONFIG_NUMA */
1351 
1352 #ifdef CONFIG_NUMA_BALANCING
1353 /*
1354  * Approximate time to scan a full NUMA task in ms. The task scan period is
1355  * calculated based on the tasks virtual memory size and
1356  * numa_balancing_scan_size.
1357  */
1358 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1359 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1360 
1361 /* Portion of address space to scan in MB */
1362 unsigned int sysctl_numa_balancing_scan_size = 256;
1363 
1364 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1365 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1366 
1367 /* The page with hint page fault latency < threshold in ms is considered hot */
1368 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1369 
1370 struct numa_group {
1371 	refcount_t refcount;
1372 
1373 	spinlock_t lock; /* nr_tasks, tasks */
1374 	int nr_tasks;
1375 	pid_t gid;
1376 	int active_nodes;
1377 
1378 	struct rcu_head rcu;
1379 	unsigned long total_faults;
1380 	unsigned long max_faults_cpu;
1381 	/*
1382 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1383 	 *
1384 	 * Faults_cpu is used to decide whether memory should move
1385 	 * towards the CPU. As a consequence, these stats are weighted
1386 	 * more by CPU use than by memory faults.
1387 	 */
1388 	unsigned long faults[];
1389 };
1390 
1391 /*
1392  * For functions that can be called in multiple contexts that permit reading
1393  * ->numa_group (see struct task_struct for locking rules).
1394  */
1395 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1396 {
1397 	return rcu_dereference_check(p->numa_group, p == current ||
1398 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1399 }
1400 
1401 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1402 {
1403 	return rcu_dereference_protected(p->numa_group, p == current);
1404 }
1405 
1406 static inline unsigned long group_faults_priv(struct numa_group *ng);
1407 static inline unsigned long group_faults_shared(struct numa_group *ng);
1408 
1409 static unsigned int task_nr_scan_windows(struct task_struct *p)
1410 {
1411 	unsigned long rss = 0;
1412 	unsigned long nr_scan_pages;
1413 
1414 	/*
1415 	 * Calculations based on RSS as non-present and empty pages are skipped
1416 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1417 	 * on resident pages
1418 	 */
1419 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1420 	rss = get_mm_rss(p->mm);
1421 	if (!rss)
1422 		rss = nr_scan_pages;
1423 
1424 	rss = round_up(rss, nr_scan_pages);
1425 	return rss / nr_scan_pages;
1426 }
1427 
1428 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1429 #define MAX_SCAN_WINDOW 2560
1430 
1431 static unsigned int task_scan_min(struct task_struct *p)
1432 {
1433 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1434 	unsigned int scan, floor;
1435 	unsigned int windows = 1;
1436 
1437 	if (scan_size < MAX_SCAN_WINDOW)
1438 		windows = MAX_SCAN_WINDOW / scan_size;
1439 	floor = 1000 / windows;
1440 
1441 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1442 	return max_t(unsigned int, floor, scan);
1443 }
1444 
1445 static unsigned int task_scan_start(struct task_struct *p)
1446 {
1447 	unsigned long smin = task_scan_min(p);
1448 	unsigned long period = smin;
1449 	struct numa_group *ng;
1450 
1451 	/* Scale the maximum scan period with the amount of shared memory. */
1452 	rcu_read_lock();
1453 	ng = rcu_dereference(p->numa_group);
1454 	if (ng) {
1455 		unsigned long shared = group_faults_shared(ng);
1456 		unsigned long private = group_faults_priv(ng);
1457 
1458 		period *= refcount_read(&ng->refcount);
1459 		period *= shared + 1;
1460 		period /= private + shared + 1;
1461 	}
1462 	rcu_read_unlock();
1463 
1464 	return max(smin, period);
1465 }
1466 
1467 static unsigned int task_scan_max(struct task_struct *p)
1468 {
1469 	unsigned long smin = task_scan_min(p);
1470 	unsigned long smax;
1471 	struct numa_group *ng;
1472 
1473 	/* Watch for min being lower than max due to floor calculations */
1474 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1475 
1476 	/* Scale the maximum scan period with the amount of shared memory. */
1477 	ng = deref_curr_numa_group(p);
1478 	if (ng) {
1479 		unsigned long shared = group_faults_shared(ng);
1480 		unsigned long private = group_faults_priv(ng);
1481 		unsigned long period = smax;
1482 
1483 		period *= refcount_read(&ng->refcount);
1484 		period *= shared + 1;
1485 		period /= private + shared + 1;
1486 
1487 		smax = max(smax, period);
1488 	}
1489 
1490 	return max(smin, smax);
1491 }
1492 
1493 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1494 {
1495 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1496 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1497 }
1498 
1499 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1500 {
1501 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1502 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1503 }
1504 
1505 /* Shared or private faults. */
1506 #define NR_NUMA_HINT_FAULT_TYPES 2
1507 
1508 /* Memory and CPU locality */
1509 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1510 
1511 /* Averaged statistics, and temporary buffers. */
1512 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1513 
1514 pid_t task_numa_group_id(struct task_struct *p)
1515 {
1516 	struct numa_group *ng;
1517 	pid_t gid = 0;
1518 
1519 	rcu_read_lock();
1520 	ng = rcu_dereference(p->numa_group);
1521 	if (ng)
1522 		gid = ng->gid;
1523 	rcu_read_unlock();
1524 
1525 	return gid;
1526 }
1527 
1528 /*
1529  * The averaged statistics, shared & private, memory & CPU,
1530  * occupy the first half of the array. The second half of the
1531  * array is for current counters, which are averaged into the
1532  * first set by task_numa_placement.
1533  */
1534 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1535 {
1536 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1537 }
1538 
1539 static inline unsigned long task_faults(struct task_struct *p, int nid)
1540 {
1541 	if (!p->numa_faults)
1542 		return 0;
1543 
1544 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1545 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1546 }
1547 
1548 static inline unsigned long group_faults(struct task_struct *p, int nid)
1549 {
1550 	struct numa_group *ng = deref_task_numa_group(p);
1551 
1552 	if (!ng)
1553 		return 0;
1554 
1555 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1556 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1557 }
1558 
1559 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1560 {
1561 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1562 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1563 }
1564 
1565 static inline unsigned long group_faults_priv(struct numa_group *ng)
1566 {
1567 	unsigned long faults = 0;
1568 	int node;
1569 
1570 	for_each_online_node(node) {
1571 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1572 	}
1573 
1574 	return faults;
1575 }
1576 
1577 static inline unsigned long group_faults_shared(struct numa_group *ng)
1578 {
1579 	unsigned long faults = 0;
1580 	int node;
1581 
1582 	for_each_online_node(node) {
1583 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1584 	}
1585 
1586 	return faults;
1587 }
1588 
1589 /*
1590  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1591  * considered part of a numa group's pseudo-interleaving set. Migrations
1592  * between these nodes are slowed down, to allow things to settle down.
1593  */
1594 #define ACTIVE_NODE_FRACTION 3
1595 
1596 static bool numa_is_active_node(int nid, struct numa_group *ng)
1597 {
1598 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1599 }
1600 
1601 /* Handle placement on systems where not all nodes are directly connected. */
1602 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1603 					int lim_dist, bool task)
1604 {
1605 	unsigned long score = 0;
1606 	int node, max_dist;
1607 
1608 	/*
1609 	 * All nodes are directly connected, and the same distance
1610 	 * from each other. No need for fancy placement algorithms.
1611 	 */
1612 	if (sched_numa_topology_type == NUMA_DIRECT)
1613 		return 0;
1614 
1615 	/* sched_max_numa_distance may be changed in parallel. */
1616 	max_dist = READ_ONCE(sched_max_numa_distance);
1617 	/*
1618 	 * This code is called for each node, introducing N^2 complexity,
1619 	 * which should be OK given the number of nodes rarely exceeds 8.
1620 	 */
1621 	for_each_online_node(node) {
1622 		unsigned long faults;
1623 		int dist = node_distance(nid, node);
1624 
1625 		/*
1626 		 * The furthest away nodes in the system are not interesting
1627 		 * for placement; nid was already counted.
1628 		 */
1629 		if (dist >= max_dist || node == nid)
1630 			continue;
1631 
1632 		/*
1633 		 * On systems with a backplane NUMA topology, compare groups
1634 		 * of nodes, and move tasks towards the group with the most
1635 		 * memory accesses. When comparing two nodes at distance
1636 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1637 		 * of each group. Skip other nodes.
1638 		 */
1639 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1640 			continue;
1641 
1642 		/* Add up the faults from nearby nodes. */
1643 		if (task)
1644 			faults = task_faults(p, node);
1645 		else
1646 			faults = group_faults(p, node);
1647 
1648 		/*
1649 		 * On systems with a glueless mesh NUMA topology, there are
1650 		 * no fixed "groups of nodes". Instead, nodes that are not
1651 		 * directly connected bounce traffic through intermediate
1652 		 * nodes; a numa_group can occupy any set of nodes.
1653 		 * The further away a node is, the less the faults count.
1654 		 * This seems to result in good task placement.
1655 		 */
1656 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1657 			faults *= (max_dist - dist);
1658 			faults /= (max_dist - LOCAL_DISTANCE);
1659 		}
1660 
1661 		score += faults;
1662 	}
1663 
1664 	return score;
1665 }
1666 
1667 /*
1668  * These return the fraction of accesses done by a particular task, or
1669  * task group, on a particular numa node.  The group weight is given a
1670  * larger multiplier, in order to group tasks together that are almost
1671  * evenly spread out between numa nodes.
1672  */
1673 static inline unsigned long task_weight(struct task_struct *p, int nid,
1674 					int dist)
1675 {
1676 	unsigned long faults, total_faults;
1677 
1678 	if (!p->numa_faults)
1679 		return 0;
1680 
1681 	total_faults = p->total_numa_faults;
1682 
1683 	if (!total_faults)
1684 		return 0;
1685 
1686 	faults = task_faults(p, nid);
1687 	faults += score_nearby_nodes(p, nid, dist, true);
1688 
1689 	return 1000 * faults / total_faults;
1690 }
1691 
1692 static inline unsigned long group_weight(struct task_struct *p, int nid,
1693 					 int dist)
1694 {
1695 	struct numa_group *ng = deref_task_numa_group(p);
1696 	unsigned long faults, total_faults;
1697 
1698 	if (!ng)
1699 		return 0;
1700 
1701 	total_faults = ng->total_faults;
1702 
1703 	if (!total_faults)
1704 		return 0;
1705 
1706 	faults = group_faults(p, nid);
1707 	faults += score_nearby_nodes(p, nid, dist, false);
1708 
1709 	return 1000 * faults / total_faults;
1710 }
1711 
1712 /*
1713  * If memory tiering mode is enabled, cpupid of slow memory page is
1714  * used to record scan time instead of CPU and PID.  When tiering mode
1715  * is disabled at run time, the scan time (in cpupid) will be
1716  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1717  * access out of array bound.
1718  */
1719 static inline bool cpupid_valid(int cpupid)
1720 {
1721 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1722 }
1723 
1724 /*
1725  * For memory tiering mode, if there are enough free pages (more than
1726  * enough watermark defined here) in fast memory node, to take full
1727  * advantage of fast memory capacity, all recently accessed slow
1728  * memory pages will be migrated to fast memory node without
1729  * considering hot threshold.
1730  */
1731 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1732 {
1733 	int z;
1734 	unsigned long enough_wmark;
1735 
1736 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1737 			   pgdat->node_present_pages >> 4);
1738 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1739 		struct zone *zone = pgdat->node_zones + z;
1740 
1741 		if (!populated_zone(zone))
1742 			continue;
1743 
1744 		if (zone_watermark_ok(zone, 0,
1745 				      promo_wmark_pages(zone) + enough_wmark,
1746 				      ZONE_MOVABLE, 0))
1747 			return true;
1748 	}
1749 	return false;
1750 }
1751 
1752 /*
1753  * For memory tiering mode, when page tables are scanned, the scan
1754  * time will be recorded in struct page in addition to make page
1755  * PROT_NONE for slow memory page.  So when the page is accessed, in
1756  * hint page fault handler, the hint page fault latency is calculated
1757  * via,
1758  *
1759  *	hint page fault latency = hint page fault time - scan time
1760  *
1761  * The smaller the hint page fault latency, the higher the possibility
1762  * for the page to be hot.
1763  */
1764 static int numa_hint_fault_latency(struct folio *folio)
1765 {
1766 	int last_time, time;
1767 
1768 	time = jiffies_to_msecs(jiffies);
1769 	last_time = folio_xchg_access_time(folio, time);
1770 
1771 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1772 }
1773 
1774 /*
1775  * For memory tiering mode, too high promotion/demotion throughput may
1776  * hurt application latency.  So we provide a mechanism to rate limit
1777  * the number of pages that are tried to be promoted.
1778  */
1779 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1780 				      unsigned long rate_limit, int nr)
1781 {
1782 	unsigned long nr_cand;
1783 	unsigned int now, start;
1784 
1785 	now = jiffies_to_msecs(jiffies);
1786 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1787 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1788 	start = pgdat->nbp_rl_start;
1789 	if (now - start > MSEC_PER_SEC &&
1790 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1791 		pgdat->nbp_rl_nr_cand = nr_cand;
1792 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1793 		return true;
1794 	return false;
1795 }
1796 
1797 #define NUMA_MIGRATION_ADJUST_STEPS	16
1798 
1799 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1800 					    unsigned long rate_limit,
1801 					    unsigned int ref_th)
1802 {
1803 	unsigned int now, start, th_period, unit_th, th;
1804 	unsigned long nr_cand, ref_cand, diff_cand;
1805 
1806 	now = jiffies_to_msecs(jiffies);
1807 	th_period = sysctl_numa_balancing_scan_period_max;
1808 	start = pgdat->nbp_th_start;
1809 	if (now - start > th_period &&
1810 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1811 		ref_cand = rate_limit *
1812 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1813 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1814 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1815 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1816 		th = pgdat->nbp_threshold ? : ref_th;
1817 		if (diff_cand > ref_cand * 11 / 10)
1818 			th = max(th - unit_th, unit_th);
1819 		else if (diff_cand < ref_cand * 9 / 10)
1820 			th = min(th + unit_th, ref_th * 2);
1821 		pgdat->nbp_th_nr_cand = nr_cand;
1822 		pgdat->nbp_threshold = th;
1823 	}
1824 }
1825 
1826 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1827 				int src_nid, int dst_cpu)
1828 {
1829 	struct numa_group *ng = deref_curr_numa_group(p);
1830 	int dst_nid = cpu_to_node(dst_cpu);
1831 	int last_cpupid, this_cpupid;
1832 
1833 	/*
1834 	 * Cannot migrate to memoryless nodes.
1835 	 */
1836 	if (!node_state(dst_nid, N_MEMORY))
1837 		return false;
1838 
1839 	/*
1840 	 * The pages in slow memory node should be migrated according
1841 	 * to hot/cold instead of private/shared.
1842 	 */
1843 	if (folio_use_access_time(folio)) {
1844 		struct pglist_data *pgdat;
1845 		unsigned long rate_limit;
1846 		unsigned int latency, th, def_th;
1847 
1848 		pgdat = NODE_DATA(dst_nid);
1849 		if (pgdat_free_space_enough(pgdat)) {
1850 			/* workload changed, reset hot threshold */
1851 			pgdat->nbp_threshold = 0;
1852 			return true;
1853 		}
1854 
1855 		def_th = sysctl_numa_balancing_hot_threshold;
1856 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1857 			(20 - PAGE_SHIFT);
1858 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1859 
1860 		th = pgdat->nbp_threshold ? : def_th;
1861 		latency = numa_hint_fault_latency(folio);
1862 		if (latency >= th)
1863 			return false;
1864 
1865 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1866 						  folio_nr_pages(folio));
1867 	}
1868 
1869 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1870 	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1871 
1872 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1873 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1874 		return false;
1875 
1876 	/*
1877 	 * Allow first faults or private faults to migrate immediately early in
1878 	 * the lifetime of a task. The magic number 4 is based on waiting for
1879 	 * two full passes of the "multi-stage node selection" test that is
1880 	 * executed below.
1881 	 */
1882 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1883 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1884 		return true;
1885 
1886 	/*
1887 	 * Multi-stage node selection is used in conjunction with a periodic
1888 	 * migration fault to build a temporal task<->page relation. By using
1889 	 * a two-stage filter we remove short/unlikely relations.
1890 	 *
1891 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1892 	 * a task's usage of a particular page (n_p) per total usage of this
1893 	 * page (n_t) (in a given time-span) to a probability.
1894 	 *
1895 	 * Our periodic faults will sample this probability and getting the
1896 	 * same result twice in a row, given these samples are fully
1897 	 * independent, is then given by P(n)^2, provided our sample period
1898 	 * is sufficiently short compared to the usage pattern.
1899 	 *
1900 	 * This quadric squishes small probabilities, making it less likely we
1901 	 * act on an unlikely task<->page relation.
1902 	 */
1903 	if (!cpupid_pid_unset(last_cpupid) &&
1904 				cpupid_to_nid(last_cpupid) != dst_nid)
1905 		return false;
1906 
1907 	/* Always allow migrate on private faults */
1908 	if (cpupid_match_pid(p, last_cpupid))
1909 		return true;
1910 
1911 	/* A shared fault, but p->numa_group has not been set up yet. */
1912 	if (!ng)
1913 		return true;
1914 
1915 	/*
1916 	 * Destination node is much more heavily used than the source
1917 	 * node? Allow migration.
1918 	 */
1919 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1920 					ACTIVE_NODE_FRACTION)
1921 		return true;
1922 
1923 	/*
1924 	 * Distribute memory according to CPU & memory use on each node,
1925 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1926 	 *
1927 	 * faults_cpu(dst)   3   faults_cpu(src)
1928 	 * --------------- * - > ---------------
1929 	 * faults_mem(dst)   4   faults_mem(src)
1930 	 */
1931 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1932 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1933 }
1934 
1935 /*
1936  * 'numa_type' describes the node at the moment of load balancing.
1937  */
1938 enum numa_type {
1939 	/* The node has spare capacity that can be used to run more tasks.  */
1940 	node_has_spare = 0,
1941 	/*
1942 	 * The node is fully used and the tasks don't compete for more CPU
1943 	 * cycles. Nevertheless, some tasks might wait before running.
1944 	 */
1945 	node_fully_busy,
1946 	/*
1947 	 * The node is overloaded and can't provide expected CPU cycles to all
1948 	 * tasks.
1949 	 */
1950 	node_overloaded
1951 };
1952 
1953 /* Cached statistics for all CPUs within a node */
1954 struct numa_stats {
1955 	unsigned long load;
1956 	unsigned long runnable;
1957 	unsigned long util;
1958 	/* Total compute capacity of CPUs on a node */
1959 	unsigned long compute_capacity;
1960 	unsigned int nr_running;
1961 	unsigned int weight;
1962 	enum numa_type node_type;
1963 	int idle_cpu;
1964 };
1965 
1966 struct task_numa_env {
1967 	struct task_struct *p;
1968 
1969 	int src_cpu, src_nid;
1970 	int dst_cpu, dst_nid;
1971 	int imb_numa_nr;
1972 
1973 	struct numa_stats src_stats, dst_stats;
1974 
1975 	int imbalance_pct;
1976 	int dist;
1977 
1978 	struct task_struct *best_task;
1979 	long best_imp;
1980 	int best_cpu;
1981 };
1982 
1983 static unsigned long cpu_load(struct rq *rq);
1984 static unsigned long cpu_runnable(struct rq *rq);
1985 
1986 static inline enum
1987 numa_type numa_classify(unsigned int imbalance_pct,
1988 			 struct numa_stats *ns)
1989 {
1990 	if ((ns->nr_running > ns->weight) &&
1991 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1992 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1993 		return node_overloaded;
1994 
1995 	if ((ns->nr_running < ns->weight) ||
1996 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1997 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1998 		return node_has_spare;
1999 
2000 	return node_fully_busy;
2001 }
2002 
2003 #ifdef CONFIG_SCHED_SMT
2004 /* Forward declarations of select_idle_sibling helpers */
2005 static inline bool test_idle_cores(int cpu);
2006 static inline int numa_idle_core(int idle_core, int cpu)
2007 {
2008 	if (!static_branch_likely(&sched_smt_present) ||
2009 	    idle_core >= 0 || !test_idle_cores(cpu))
2010 		return idle_core;
2011 
2012 	/*
2013 	 * Prefer cores instead of packing HT siblings
2014 	 * and triggering future load balancing.
2015 	 */
2016 	if (is_core_idle(cpu))
2017 		idle_core = cpu;
2018 
2019 	return idle_core;
2020 }
2021 #else
2022 static inline int numa_idle_core(int idle_core, int cpu)
2023 {
2024 	return idle_core;
2025 }
2026 #endif
2027 
2028 /*
2029  * Gather all necessary information to make NUMA balancing placement
2030  * decisions that are compatible with standard load balancer. This
2031  * borrows code and logic from update_sg_lb_stats but sharing a
2032  * common implementation is impractical.
2033  */
2034 static void update_numa_stats(struct task_numa_env *env,
2035 			      struct numa_stats *ns, int nid,
2036 			      bool find_idle)
2037 {
2038 	int cpu, idle_core = -1;
2039 
2040 	memset(ns, 0, sizeof(*ns));
2041 	ns->idle_cpu = -1;
2042 
2043 	rcu_read_lock();
2044 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2045 		struct rq *rq = cpu_rq(cpu);
2046 
2047 		ns->load += cpu_load(rq);
2048 		ns->runnable += cpu_runnable(rq);
2049 		ns->util += cpu_util_cfs(cpu);
2050 		ns->nr_running += rq->cfs.h_nr_running;
2051 		ns->compute_capacity += capacity_of(cpu);
2052 
2053 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2054 			if (READ_ONCE(rq->numa_migrate_on) ||
2055 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2056 				continue;
2057 
2058 			if (ns->idle_cpu == -1)
2059 				ns->idle_cpu = cpu;
2060 
2061 			idle_core = numa_idle_core(idle_core, cpu);
2062 		}
2063 	}
2064 	rcu_read_unlock();
2065 
2066 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2067 
2068 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2069 
2070 	if (idle_core >= 0)
2071 		ns->idle_cpu = idle_core;
2072 }
2073 
2074 static void task_numa_assign(struct task_numa_env *env,
2075 			     struct task_struct *p, long imp)
2076 {
2077 	struct rq *rq = cpu_rq(env->dst_cpu);
2078 
2079 	/* Check if run-queue part of active NUMA balance. */
2080 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2081 		int cpu;
2082 		int start = env->dst_cpu;
2083 
2084 		/* Find alternative idle CPU. */
2085 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2086 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2087 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2088 				continue;
2089 			}
2090 
2091 			env->dst_cpu = cpu;
2092 			rq = cpu_rq(env->dst_cpu);
2093 			if (!xchg(&rq->numa_migrate_on, 1))
2094 				goto assign;
2095 		}
2096 
2097 		/* Failed to find an alternative idle CPU */
2098 		return;
2099 	}
2100 
2101 assign:
2102 	/*
2103 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2104 	 * found a better CPU to move/swap.
2105 	 */
2106 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2107 		rq = cpu_rq(env->best_cpu);
2108 		WRITE_ONCE(rq->numa_migrate_on, 0);
2109 	}
2110 
2111 	if (env->best_task)
2112 		put_task_struct(env->best_task);
2113 	if (p)
2114 		get_task_struct(p);
2115 
2116 	env->best_task = p;
2117 	env->best_imp = imp;
2118 	env->best_cpu = env->dst_cpu;
2119 }
2120 
2121 static bool load_too_imbalanced(long src_load, long dst_load,
2122 				struct task_numa_env *env)
2123 {
2124 	long imb, old_imb;
2125 	long orig_src_load, orig_dst_load;
2126 	long src_capacity, dst_capacity;
2127 
2128 	/*
2129 	 * The load is corrected for the CPU capacity available on each node.
2130 	 *
2131 	 * src_load        dst_load
2132 	 * ------------ vs ---------
2133 	 * src_capacity    dst_capacity
2134 	 */
2135 	src_capacity = env->src_stats.compute_capacity;
2136 	dst_capacity = env->dst_stats.compute_capacity;
2137 
2138 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2139 
2140 	orig_src_load = env->src_stats.load;
2141 	orig_dst_load = env->dst_stats.load;
2142 
2143 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2144 
2145 	/* Would this change make things worse? */
2146 	return (imb > old_imb);
2147 }
2148 
2149 /*
2150  * Maximum NUMA importance can be 1998 (2*999);
2151  * SMALLIMP @ 30 would be close to 1998/64.
2152  * Used to deter task migration.
2153  */
2154 #define SMALLIMP	30
2155 
2156 /*
2157  * This checks if the overall compute and NUMA accesses of the system would
2158  * be improved if the source tasks was migrated to the target dst_cpu taking
2159  * into account that it might be best if task running on the dst_cpu should
2160  * be exchanged with the source task
2161  */
2162 static bool task_numa_compare(struct task_numa_env *env,
2163 			      long taskimp, long groupimp, bool maymove)
2164 {
2165 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2166 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2167 	long imp = p_ng ? groupimp : taskimp;
2168 	struct task_struct *cur;
2169 	long src_load, dst_load;
2170 	int dist = env->dist;
2171 	long moveimp = imp;
2172 	long load;
2173 	bool stopsearch = false;
2174 
2175 	if (READ_ONCE(dst_rq->numa_migrate_on))
2176 		return false;
2177 
2178 	rcu_read_lock();
2179 	cur = rcu_dereference(dst_rq->curr);
2180 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2181 		cur = NULL;
2182 
2183 	/*
2184 	 * Because we have preemption enabled we can get migrated around and
2185 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2186 	 */
2187 	if (cur == env->p) {
2188 		stopsearch = true;
2189 		goto unlock;
2190 	}
2191 
2192 	if (!cur) {
2193 		if (maymove && moveimp >= env->best_imp)
2194 			goto assign;
2195 		else
2196 			goto unlock;
2197 	}
2198 
2199 	/* Skip this swap candidate if cannot move to the source cpu. */
2200 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2201 		goto unlock;
2202 
2203 	/*
2204 	 * Skip this swap candidate if it is not moving to its preferred
2205 	 * node and the best task is.
2206 	 */
2207 	if (env->best_task &&
2208 	    env->best_task->numa_preferred_nid == env->src_nid &&
2209 	    cur->numa_preferred_nid != env->src_nid) {
2210 		goto unlock;
2211 	}
2212 
2213 	/*
2214 	 * "imp" is the fault differential for the source task between the
2215 	 * source and destination node. Calculate the total differential for
2216 	 * the source task and potential destination task. The more negative
2217 	 * the value is, the more remote accesses that would be expected to
2218 	 * be incurred if the tasks were swapped.
2219 	 *
2220 	 * If dst and source tasks are in the same NUMA group, or not
2221 	 * in any group then look only at task weights.
2222 	 */
2223 	cur_ng = rcu_dereference(cur->numa_group);
2224 	if (cur_ng == p_ng) {
2225 		/*
2226 		 * Do not swap within a group or between tasks that have
2227 		 * no group if there is spare capacity. Swapping does
2228 		 * not address the load imbalance and helps one task at
2229 		 * the cost of punishing another.
2230 		 */
2231 		if (env->dst_stats.node_type == node_has_spare)
2232 			goto unlock;
2233 
2234 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2235 		      task_weight(cur, env->dst_nid, dist);
2236 		/*
2237 		 * Add some hysteresis to prevent swapping the
2238 		 * tasks within a group over tiny differences.
2239 		 */
2240 		if (cur_ng)
2241 			imp -= imp / 16;
2242 	} else {
2243 		/*
2244 		 * Compare the group weights. If a task is all by itself
2245 		 * (not part of a group), use the task weight instead.
2246 		 */
2247 		if (cur_ng && p_ng)
2248 			imp += group_weight(cur, env->src_nid, dist) -
2249 			       group_weight(cur, env->dst_nid, dist);
2250 		else
2251 			imp += task_weight(cur, env->src_nid, dist) -
2252 			       task_weight(cur, env->dst_nid, dist);
2253 	}
2254 
2255 	/* Discourage picking a task already on its preferred node */
2256 	if (cur->numa_preferred_nid == env->dst_nid)
2257 		imp -= imp / 16;
2258 
2259 	/*
2260 	 * Encourage picking a task that moves to its preferred node.
2261 	 * This potentially makes imp larger than it's maximum of
2262 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2263 	 * case, it does not matter.
2264 	 */
2265 	if (cur->numa_preferred_nid == env->src_nid)
2266 		imp += imp / 8;
2267 
2268 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2269 		imp = moveimp;
2270 		cur = NULL;
2271 		goto assign;
2272 	}
2273 
2274 	/*
2275 	 * Prefer swapping with a task moving to its preferred node over a
2276 	 * task that is not.
2277 	 */
2278 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2279 	    env->best_task->numa_preferred_nid != env->src_nid) {
2280 		goto assign;
2281 	}
2282 
2283 	/*
2284 	 * If the NUMA importance is less than SMALLIMP,
2285 	 * task migration might only result in ping pong
2286 	 * of tasks and also hurt performance due to cache
2287 	 * misses.
2288 	 */
2289 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2290 		goto unlock;
2291 
2292 	/*
2293 	 * In the overloaded case, try and keep the load balanced.
2294 	 */
2295 	load = task_h_load(env->p) - task_h_load(cur);
2296 	if (!load)
2297 		goto assign;
2298 
2299 	dst_load = env->dst_stats.load + load;
2300 	src_load = env->src_stats.load - load;
2301 
2302 	if (load_too_imbalanced(src_load, dst_load, env))
2303 		goto unlock;
2304 
2305 assign:
2306 	/* Evaluate an idle CPU for a task numa move. */
2307 	if (!cur) {
2308 		int cpu = env->dst_stats.idle_cpu;
2309 
2310 		/* Nothing cached so current CPU went idle since the search. */
2311 		if (cpu < 0)
2312 			cpu = env->dst_cpu;
2313 
2314 		/*
2315 		 * If the CPU is no longer truly idle and the previous best CPU
2316 		 * is, keep using it.
2317 		 */
2318 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2319 		    idle_cpu(env->best_cpu)) {
2320 			cpu = env->best_cpu;
2321 		}
2322 
2323 		env->dst_cpu = cpu;
2324 	}
2325 
2326 	task_numa_assign(env, cur, imp);
2327 
2328 	/*
2329 	 * If a move to idle is allowed because there is capacity or load
2330 	 * balance improves then stop the search. While a better swap
2331 	 * candidate may exist, a search is not free.
2332 	 */
2333 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2334 		stopsearch = true;
2335 
2336 	/*
2337 	 * If a swap candidate must be identified and the current best task
2338 	 * moves its preferred node then stop the search.
2339 	 */
2340 	if (!maymove && env->best_task &&
2341 	    env->best_task->numa_preferred_nid == env->src_nid) {
2342 		stopsearch = true;
2343 	}
2344 unlock:
2345 	rcu_read_unlock();
2346 
2347 	return stopsearch;
2348 }
2349 
2350 static void task_numa_find_cpu(struct task_numa_env *env,
2351 				long taskimp, long groupimp)
2352 {
2353 	bool maymove = false;
2354 	int cpu;
2355 
2356 	/*
2357 	 * If dst node has spare capacity, then check if there is an
2358 	 * imbalance that would be overruled by the load balancer.
2359 	 */
2360 	if (env->dst_stats.node_type == node_has_spare) {
2361 		unsigned int imbalance;
2362 		int src_running, dst_running;
2363 
2364 		/*
2365 		 * Would movement cause an imbalance? Note that if src has
2366 		 * more running tasks that the imbalance is ignored as the
2367 		 * move improves the imbalance from the perspective of the
2368 		 * CPU load balancer.
2369 		 * */
2370 		src_running = env->src_stats.nr_running - 1;
2371 		dst_running = env->dst_stats.nr_running + 1;
2372 		imbalance = max(0, dst_running - src_running);
2373 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2374 						  env->imb_numa_nr);
2375 
2376 		/* Use idle CPU if there is no imbalance */
2377 		if (!imbalance) {
2378 			maymove = true;
2379 			if (env->dst_stats.idle_cpu >= 0) {
2380 				env->dst_cpu = env->dst_stats.idle_cpu;
2381 				task_numa_assign(env, NULL, 0);
2382 				return;
2383 			}
2384 		}
2385 	} else {
2386 		long src_load, dst_load, load;
2387 		/*
2388 		 * If the improvement from just moving env->p direction is better
2389 		 * than swapping tasks around, check if a move is possible.
2390 		 */
2391 		load = task_h_load(env->p);
2392 		dst_load = env->dst_stats.load + load;
2393 		src_load = env->src_stats.load - load;
2394 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2395 	}
2396 
2397 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2398 		/* Skip this CPU if the source task cannot migrate */
2399 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2400 			continue;
2401 
2402 		env->dst_cpu = cpu;
2403 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2404 			break;
2405 	}
2406 }
2407 
2408 static int task_numa_migrate(struct task_struct *p)
2409 {
2410 	struct task_numa_env env = {
2411 		.p = p,
2412 
2413 		.src_cpu = task_cpu(p),
2414 		.src_nid = task_node(p),
2415 
2416 		.imbalance_pct = 112,
2417 
2418 		.best_task = NULL,
2419 		.best_imp = 0,
2420 		.best_cpu = -1,
2421 	};
2422 	unsigned long taskweight, groupweight;
2423 	struct sched_domain *sd;
2424 	long taskimp, groupimp;
2425 	struct numa_group *ng;
2426 	struct rq *best_rq;
2427 	int nid, ret, dist;
2428 
2429 	/*
2430 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2431 	 * imbalance and would be the first to start moving tasks about.
2432 	 *
2433 	 * And we want to avoid any moving of tasks about, as that would create
2434 	 * random movement of tasks -- counter the numa conditions we're trying
2435 	 * to satisfy here.
2436 	 */
2437 	rcu_read_lock();
2438 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2439 	if (sd) {
2440 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2441 		env.imb_numa_nr = sd->imb_numa_nr;
2442 	}
2443 	rcu_read_unlock();
2444 
2445 	/*
2446 	 * Cpusets can break the scheduler domain tree into smaller
2447 	 * balance domains, some of which do not cross NUMA boundaries.
2448 	 * Tasks that are "trapped" in such domains cannot be migrated
2449 	 * elsewhere, so there is no point in (re)trying.
2450 	 */
2451 	if (unlikely(!sd)) {
2452 		sched_setnuma(p, task_node(p));
2453 		return -EINVAL;
2454 	}
2455 
2456 	env.dst_nid = p->numa_preferred_nid;
2457 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2458 	taskweight = task_weight(p, env.src_nid, dist);
2459 	groupweight = group_weight(p, env.src_nid, dist);
2460 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2461 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2462 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2463 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2464 
2465 	/* Try to find a spot on the preferred nid. */
2466 	task_numa_find_cpu(&env, taskimp, groupimp);
2467 
2468 	/*
2469 	 * Look at other nodes in these cases:
2470 	 * - there is no space available on the preferred_nid
2471 	 * - the task is part of a numa_group that is interleaved across
2472 	 *   multiple NUMA nodes; in order to better consolidate the group,
2473 	 *   we need to check other locations.
2474 	 */
2475 	ng = deref_curr_numa_group(p);
2476 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2477 		for_each_node_state(nid, N_CPU) {
2478 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2479 				continue;
2480 
2481 			dist = node_distance(env.src_nid, env.dst_nid);
2482 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2483 						dist != env.dist) {
2484 				taskweight = task_weight(p, env.src_nid, dist);
2485 				groupweight = group_weight(p, env.src_nid, dist);
2486 			}
2487 
2488 			/* Only consider nodes where both task and groups benefit */
2489 			taskimp = task_weight(p, nid, dist) - taskweight;
2490 			groupimp = group_weight(p, nid, dist) - groupweight;
2491 			if (taskimp < 0 && groupimp < 0)
2492 				continue;
2493 
2494 			env.dist = dist;
2495 			env.dst_nid = nid;
2496 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2497 			task_numa_find_cpu(&env, taskimp, groupimp);
2498 		}
2499 	}
2500 
2501 	/*
2502 	 * If the task is part of a workload that spans multiple NUMA nodes,
2503 	 * and is migrating into one of the workload's active nodes, remember
2504 	 * this node as the task's preferred numa node, so the workload can
2505 	 * settle down.
2506 	 * A task that migrated to a second choice node will be better off
2507 	 * trying for a better one later. Do not set the preferred node here.
2508 	 */
2509 	if (ng) {
2510 		if (env.best_cpu == -1)
2511 			nid = env.src_nid;
2512 		else
2513 			nid = cpu_to_node(env.best_cpu);
2514 
2515 		if (nid != p->numa_preferred_nid)
2516 			sched_setnuma(p, nid);
2517 	}
2518 
2519 	/* No better CPU than the current one was found. */
2520 	if (env.best_cpu == -1) {
2521 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2522 		return -EAGAIN;
2523 	}
2524 
2525 	best_rq = cpu_rq(env.best_cpu);
2526 	if (env.best_task == NULL) {
2527 		ret = migrate_task_to(p, env.best_cpu);
2528 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2529 		if (ret != 0)
2530 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2531 		return ret;
2532 	}
2533 
2534 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2535 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2536 
2537 	if (ret != 0)
2538 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2539 	put_task_struct(env.best_task);
2540 	return ret;
2541 }
2542 
2543 /* Attempt to migrate a task to a CPU on the preferred node. */
2544 static void numa_migrate_preferred(struct task_struct *p)
2545 {
2546 	unsigned long interval = HZ;
2547 
2548 	/* This task has no NUMA fault statistics yet */
2549 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2550 		return;
2551 
2552 	/* Periodically retry migrating the task to the preferred node */
2553 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2554 	p->numa_migrate_retry = jiffies + interval;
2555 
2556 	/* Success if task is already running on preferred CPU */
2557 	if (task_node(p) == p->numa_preferred_nid)
2558 		return;
2559 
2560 	/* Otherwise, try migrate to a CPU on the preferred node */
2561 	task_numa_migrate(p);
2562 }
2563 
2564 /*
2565  * Find out how many nodes the workload is actively running on. Do this by
2566  * tracking the nodes from which NUMA hinting faults are triggered. This can
2567  * be different from the set of nodes where the workload's memory is currently
2568  * located.
2569  */
2570 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2571 {
2572 	unsigned long faults, max_faults = 0;
2573 	int nid, active_nodes = 0;
2574 
2575 	for_each_node_state(nid, N_CPU) {
2576 		faults = group_faults_cpu(numa_group, nid);
2577 		if (faults > max_faults)
2578 			max_faults = faults;
2579 	}
2580 
2581 	for_each_node_state(nid, N_CPU) {
2582 		faults = group_faults_cpu(numa_group, nid);
2583 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2584 			active_nodes++;
2585 	}
2586 
2587 	numa_group->max_faults_cpu = max_faults;
2588 	numa_group->active_nodes = active_nodes;
2589 }
2590 
2591 /*
2592  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2593  * increments. The more local the fault statistics are, the higher the scan
2594  * period will be for the next scan window. If local/(local+remote) ratio is
2595  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2596  * the scan period will decrease. Aim for 70% local accesses.
2597  */
2598 #define NUMA_PERIOD_SLOTS 10
2599 #define NUMA_PERIOD_THRESHOLD 7
2600 
2601 /*
2602  * Increase the scan period (slow down scanning) if the majority of
2603  * our memory is already on our local node, or if the majority of
2604  * the page accesses are shared with other processes.
2605  * Otherwise, decrease the scan period.
2606  */
2607 static void update_task_scan_period(struct task_struct *p,
2608 			unsigned long shared, unsigned long private)
2609 {
2610 	unsigned int period_slot;
2611 	int lr_ratio, ps_ratio;
2612 	int diff;
2613 
2614 	unsigned long remote = p->numa_faults_locality[0];
2615 	unsigned long local = p->numa_faults_locality[1];
2616 
2617 	/*
2618 	 * If there were no record hinting faults then either the task is
2619 	 * completely idle or all activity is in areas that are not of interest
2620 	 * to automatic numa balancing. Related to that, if there were failed
2621 	 * migration then it implies we are migrating too quickly or the local
2622 	 * node is overloaded. In either case, scan slower
2623 	 */
2624 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2625 		p->numa_scan_period = min(p->numa_scan_period_max,
2626 			p->numa_scan_period << 1);
2627 
2628 		p->mm->numa_next_scan = jiffies +
2629 			msecs_to_jiffies(p->numa_scan_period);
2630 
2631 		return;
2632 	}
2633 
2634 	/*
2635 	 * Prepare to scale scan period relative to the current period.
2636 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2637 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2638 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2639 	 */
2640 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2641 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2642 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2643 
2644 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2645 		/*
2646 		 * Most memory accesses are local. There is no need to
2647 		 * do fast NUMA scanning, since memory is already local.
2648 		 */
2649 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2650 		if (!slot)
2651 			slot = 1;
2652 		diff = slot * period_slot;
2653 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2654 		/*
2655 		 * Most memory accesses are shared with other tasks.
2656 		 * There is no point in continuing fast NUMA scanning,
2657 		 * since other tasks may just move the memory elsewhere.
2658 		 */
2659 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2660 		if (!slot)
2661 			slot = 1;
2662 		diff = slot * period_slot;
2663 	} else {
2664 		/*
2665 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2666 		 * yet they are not on the local NUMA node. Speed up
2667 		 * NUMA scanning to get the memory moved over.
2668 		 */
2669 		int ratio = max(lr_ratio, ps_ratio);
2670 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2671 	}
2672 
2673 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2674 			task_scan_min(p), task_scan_max(p));
2675 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2676 }
2677 
2678 /*
2679  * Get the fraction of time the task has been running since the last
2680  * NUMA placement cycle. The scheduler keeps similar statistics, but
2681  * decays those on a 32ms period, which is orders of magnitude off
2682  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2683  * stats only if the task is so new there are no NUMA statistics yet.
2684  */
2685 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2686 {
2687 	u64 runtime, delta, now;
2688 	/* Use the start of this time slice to avoid calculations. */
2689 	now = p->se.exec_start;
2690 	runtime = p->se.sum_exec_runtime;
2691 
2692 	if (p->last_task_numa_placement) {
2693 		delta = runtime - p->last_sum_exec_runtime;
2694 		*period = now - p->last_task_numa_placement;
2695 
2696 		/* Avoid time going backwards, prevent potential divide error: */
2697 		if (unlikely((s64)*period < 0))
2698 			*period = 0;
2699 	} else {
2700 		delta = p->se.avg.load_sum;
2701 		*period = LOAD_AVG_MAX;
2702 	}
2703 
2704 	p->last_sum_exec_runtime = runtime;
2705 	p->last_task_numa_placement = now;
2706 
2707 	return delta;
2708 }
2709 
2710 /*
2711  * Determine the preferred nid for a task in a numa_group. This needs to
2712  * be done in a way that produces consistent results with group_weight,
2713  * otherwise workloads might not converge.
2714  */
2715 static int preferred_group_nid(struct task_struct *p, int nid)
2716 {
2717 	nodemask_t nodes;
2718 	int dist;
2719 
2720 	/* Direct connections between all NUMA nodes. */
2721 	if (sched_numa_topology_type == NUMA_DIRECT)
2722 		return nid;
2723 
2724 	/*
2725 	 * On a system with glueless mesh NUMA topology, group_weight
2726 	 * scores nodes according to the number of NUMA hinting faults on
2727 	 * both the node itself, and on nearby nodes.
2728 	 */
2729 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2730 		unsigned long score, max_score = 0;
2731 		int node, max_node = nid;
2732 
2733 		dist = sched_max_numa_distance;
2734 
2735 		for_each_node_state(node, N_CPU) {
2736 			score = group_weight(p, node, dist);
2737 			if (score > max_score) {
2738 				max_score = score;
2739 				max_node = node;
2740 			}
2741 		}
2742 		return max_node;
2743 	}
2744 
2745 	/*
2746 	 * Finding the preferred nid in a system with NUMA backplane
2747 	 * interconnect topology is more involved. The goal is to locate
2748 	 * tasks from numa_groups near each other in the system, and
2749 	 * untangle workloads from different sides of the system. This requires
2750 	 * searching down the hierarchy of node groups, recursively searching
2751 	 * inside the highest scoring group of nodes. The nodemask tricks
2752 	 * keep the complexity of the search down.
2753 	 */
2754 	nodes = node_states[N_CPU];
2755 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2756 		unsigned long max_faults = 0;
2757 		nodemask_t max_group = NODE_MASK_NONE;
2758 		int a, b;
2759 
2760 		/* Are there nodes at this distance from each other? */
2761 		if (!find_numa_distance(dist))
2762 			continue;
2763 
2764 		for_each_node_mask(a, nodes) {
2765 			unsigned long faults = 0;
2766 			nodemask_t this_group;
2767 			nodes_clear(this_group);
2768 
2769 			/* Sum group's NUMA faults; includes a==b case. */
2770 			for_each_node_mask(b, nodes) {
2771 				if (node_distance(a, b) < dist) {
2772 					faults += group_faults(p, b);
2773 					node_set(b, this_group);
2774 					node_clear(b, nodes);
2775 				}
2776 			}
2777 
2778 			/* Remember the top group. */
2779 			if (faults > max_faults) {
2780 				max_faults = faults;
2781 				max_group = this_group;
2782 				/*
2783 				 * subtle: at the smallest distance there is
2784 				 * just one node left in each "group", the
2785 				 * winner is the preferred nid.
2786 				 */
2787 				nid = a;
2788 			}
2789 		}
2790 		/* Next round, evaluate the nodes within max_group. */
2791 		if (!max_faults)
2792 			break;
2793 		nodes = max_group;
2794 	}
2795 	return nid;
2796 }
2797 
2798 static void task_numa_placement(struct task_struct *p)
2799 {
2800 	int seq, nid, max_nid = NUMA_NO_NODE;
2801 	unsigned long max_faults = 0;
2802 	unsigned long fault_types[2] = { 0, 0 };
2803 	unsigned long total_faults;
2804 	u64 runtime, period;
2805 	spinlock_t *group_lock = NULL;
2806 	struct numa_group *ng;
2807 
2808 	/*
2809 	 * The p->mm->numa_scan_seq field gets updated without
2810 	 * exclusive access. Use READ_ONCE() here to ensure
2811 	 * that the field is read in a single access:
2812 	 */
2813 	seq = READ_ONCE(p->mm->numa_scan_seq);
2814 	if (p->numa_scan_seq == seq)
2815 		return;
2816 	p->numa_scan_seq = seq;
2817 	p->numa_scan_period_max = task_scan_max(p);
2818 
2819 	total_faults = p->numa_faults_locality[0] +
2820 		       p->numa_faults_locality[1];
2821 	runtime = numa_get_avg_runtime(p, &period);
2822 
2823 	/* If the task is part of a group prevent parallel updates to group stats */
2824 	ng = deref_curr_numa_group(p);
2825 	if (ng) {
2826 		group_lock = &ng->lock;
2827 		spin_lock_irq(group_lock);
2828 	}
2829 
2830 	/* Find the node with the highest number of faults */
2831 	for_each_online_node(nid) {
2832 		/* Keep track of the offsets in numa_faults array */
2833 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2834 		unsigned long faults = 0, group_faults = 0;
2835 		int priv;
2836 
2837 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2838 			long diff, f_diff, f_weight;
2839 
2840 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2841 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2842 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2843 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2844 
2845 			/* Decay existing window, copy faults since last scan */
2846 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2847 			fault_types[priv] += p->numa_faults[membuf_idx];
2848 			p->numa_faults[membuf_idx] = 0;
2849 
2850 			/*
2851 			 * Normalize the faults_from, so all tasks in a group
2852 			 * count according to CPU use, instead of by the raw
2853 			 * number of faults. Tasks with little runtime have
2854 			 * little over-all impact on throughput, and thus their
2855 			 * faults are less important.
2856 			 */
2857 			f_weight = div64_u64(runtime << 16, period + 1);
2858 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2859 				   (total_faults + 1);
2860 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2861 			p->numa_faults[cpubuf_idx] = 0;
2862 
2863 			p->numa_faults[mem_idx] += diff;
2864 			p->numa_faults[cpu_idx] += f_diff;
2865 			faults += p->numa_faults[mem_idx];
2866 			p->total_numa_faults += diff;
2867 			if (ng) {
2868 				/*
2869 				 * safe because we can only change our own group
2870 				 *
2871 				 * mem_idx represents the offset for a given
2872 				 * nid and priv in a specific region because it
2873 				 * is at the beginning of the numa_faults array.
2874 				 */
2875 				ng->faults[mem_idx] += diff;
2876 				ng->faults[cpu_idx] += f_diff;
2877 				ng->total_faults += diff;
2878 				group_faults += ng->faults[mem_idx];
2879 			}
2880 		}
2881 
2882 		if (!ng) {
2883 			if (faults > max_faults) {
2884 				max_faults = faults;
2885 				max_nid = nid;
2886 			}
2887 		} else if (group_faults > max_faults) {
2888 			max_faults = group_faults;
2889 			max_nid = nid;
2890 		}
2891 	}
2892 
2893 	/* Cannot migrate task to CPU-less node */
2894 	max_nid = numa_nearest_node(max_nid, N_CPU);
2895 
2896 	if (ng) {
2897 		numa_group_count_active_nodes(ng);
2898 		spin_unlock_irq(group_lock);
2899 		max_nid = preferred_group_nid(p, max_nid);
2900 	}
2901 
2902 	if (max_faults) {
2903 		/* Set the new preferred node */
2904 		if (max_nid != p->numa_preferred_nid)
2905 			sched_setnuma(p, max_nid);
2906 	}
2907 
2908 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2909 }
2910 
2911 static inline int get_numa_group(struct numa_group *grp)
2912 {
2913 	return refcount_inc_not_zero(&grp->refcount);
2914 }
2915 
2916 static inline void put_numa_group(struct numa_group *grp)
2917 {
2918 	if (refcount_dec_and_test(&grp->refcount))
2919 		kfree_rcu(grp, rcu);
2920 }
2921 
2922 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2923 			int *priv)
2924 {
2925 	struct numa_group *grp, *my_grp;
2926 	struct task_struct *tsk;
2927 	bool join = false;
2928 	int cpu = cpupid_to_cpu(cpupid);
2929 	int i;
2930 
2931 	if (unlikely(!deref_curr_numa_group(p))) {
2932 		unsigned int size = sizeof(struct numa_group) +
2933 				    NR_NUMA_HINT_FAULT_STATS *
2934 				    nr_node_ids * sizeof(unsigned long);
2935 
2936 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2937 		if (!grp)
2938 			return;
2939 
2940 		refcount_set(&grp->refcount, 1);
2941 		grp->active_nodes = 1;
2942 		grp->max_faults_cpu = 0;
2943 		spin_lock_init(&grp->lock);
2944 		grp->gid = p->pid;
2945 
2946 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2947 			grp->faults[i] = p->numa_faults[i];
2948 
2949 		grp->total_faults = p->total_numa_faults;
2950 
2951 		grp->nr_tasks++;
2952 		rcu_assign_pointer(p->numa_group, grp);
2953 	}
2954 
2955 	rcu_read_lock();
2956 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2957 
2958 	if (!cpupid_match_pid(tsk, cpupid))
2959 		goto no_join;
2960 
2961 	grp = rcu_dereference(tsk->numa_group);
2962 	if (!grp)
2963 		goto no_join;
2964 
2965 	my_grp = deref_curr_numa_group(p);
2966 	if (grp == my_grp)
2967 		goto no_join;
2968 
2969 	/*
2970 	 * Only join the other group if its bigger; if we're the bigger group,
2971 	 * the other task will join us.
2972 	 */
2973 	if (my_grp->nr_tasks > grp->nr_tasks)
2974 		goto no_join;
2975 
2976 	/*
2977 	 * Tie-break on the grp address.
2978 	 */
2979 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2980 		goto no_join;
2981 
2982 	/* Always join threads in the same process. */
2983 	if (tsk->mm == current->mm)
2984 		join = true;
2985 
2986 	/* Simple filter to avoid false positives due to PID collisions */
2987 	if (flags & TNF_SHARED)
2988 		join = true;
2989 
2990 	/* Update priv based on whether false sharing was detected */
2991 	*priv = !join;
2992 
2993 	if (join && !get_numa_group(grp))
2994 		goto no_join;
2995 
2996 	rcu_read_unlock();
2997 
2998 	if (!join)
2999 		return;
3000 
3001 	WARN_ON_ONCE(irqs_disabled());
3002 	double_lock_irq(&my_grp->lock, &grp->lock);
3003 
3004 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3005 		my_grp->faults[i] -= p->numa_faults[i];
3006 		grp->faults[i] += p->numa_faults[i];
3007 	}
3008 	my_grp->total_faults -= p->total_numa_faults;
3009 	grp->total_faults += p->total_numa_faults;
3010 
3011 	my_grp->nr_tasks--;
3012 	grp->nr_tasks++;
3013 
3014 	spin_unlock(&my_grp->lock);
3015 	spin_unlock_irq(&grp->lock);
3016 
3017 	rcu_assign_pointer(p->numa_group, grp);
3018 
3019 	put_numa_group(my_grp);
3020 	return;
3021 
3022 no_join:
3023 	rcu_read_unlock();
3024 	return;
3025 }
3026 
3027 /*
3028  * Get rid of NUMA statistics associated with a task (either current or dead).
3029  * If @final is set, the task is dead and has reached refcount zero, so we can
3030  * safely free all relevant data structures. Otherwise, there might be
3031  * concurrent reads from places like load balancing and procfs, and we should
3032  * reset the data back to default state without freeing ->numa_faults.
3033  */
3034 void task_numa_free(struct task_struct *p, bool final)
3035 {
3036 	/* safe: p either is current or is being freed by current */
3037 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3038 	unsigned long *numa_faults = p->numa_faults;
3039 	unsigned long flags;
3040 	int i;
3041 
3042 	if (!numa_faults)
3043 		return;
3044 
3045 	if (grp) {
3046 		spin_lock_irqsave(&grp->lock, flags);
3047 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3048 			grp->faults[i] -= p->numa_faults[i];
3049 		grp->total_faults -= p->total_numa_faults;
3050 
3051 		grp->nr_tasks--;
3052 		spin_unlock_irqrestore(&grp->lock, flags);
3053 		RCU_INIT_POINTER(p->numa_group, NULL);
3054 		put_numa_group(grp);
3055 	}
3056 
3057 	if (final) {
3058 		p->numa_faults = NULL;
3059 		kfree(numa_faults);
3060 	} else {
3061 		p->total_numa_faults = 0;
3062 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3063 			numa_faults[i] = 0;
3064 	}
3065 }
3066 
3067 /*
3068  * Got a PROT_NONE fault for a page on @node.
3069  */
3070 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3071 {
3072 	struct task_struct *p = current;
3073 	bool migrated = flags & TNF_MIGRATED;
3074 	int cpu_node = task_node(current);
3075 	int local = !!(flags & TNF_FAULT_LOCAL);
3076 	struct numa_group *ng;
3077 	int priv;
3078 
3079 	if (!static_branch_likely(&sched_numa_balancing))
3080 		return;
3081 
3082 	/* for example, ksmd faulting in a user's mm */
3083 	if (!p->mm)
3084 		return;
3085 
3086 	/*
3087 	 * NUMA faults statistics are unnecessary for the slow memory
3088 	 * node for memory tiering mode.
3089 	 */
3090 	if (!node_is_toptier(mem_node) &&
3091 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3092 	     !cpupid_valid(last_cpupid)))
3093 		return;
3094 
3095 	/* Allocate buffer to track faults on a per-node basis */
3096 	if (unlikely(!p->numa_faults)) {
3097 		int size = sizeof(*p->numa_faults) *
3098 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3099 
3100 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3101 		if (!p->numa_faults)
3102 			return;
3103 
3104 		p->total_numa_faults = 0;
3105 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3106 	}
3107 
3108 	/*
3109 	 * First accesses are treated as private, otherwise consider accesses
3110 	 * to be private if the accessing pid has not changed
3111 	 */
3112 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3113 		priv = 1;
3114 	} else {
3115 		priv = cpupid_match_pid(p, last_cpupid);
3116 		if (!priv && !(flags & TNF_NO_GROUP))
3117 			task_numa_group(p, last_cpupid, flags, &priv);
3118 	}
3119 
3120 	/*
3121 	 * If a workload spans multiple NUMA nodes, a shared fault that
3122 	 * occurs wholly within the set of nodes that the workload is
3123 	 * actively using should be counted as local. This allows the
3124 	 * scan rate to slow down when a workload has settled down.
3125 	 */
3126 	ng = deref_curr_numa_group(p);
3127 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3128 				numa_is_active_node(cpu_node, ng) &&
3129 				numa_is_active_node(mem_node, ng))
3130 		local = 1;
3131 
3132 	/*
3133 	 * Retry to migrate task to preferred node periodically, in case it
3134 	 * previously failed, or the scheduler moved us.
3135 	 */
3136 	if (time_after(jiffies, p->numa_migrate_retry)) {
3137 		task_numa_placement(p);
3138 		numa_migrate_preferred(p);
3139 	}
3140 
3141 	if (migrated)
3142 		p->numa_pages_migrated += pages;
3143 	if (flags & TNF_MIGRATE_FAIL)
3144 		p->numa_faults_locality[2] += pages;
3145 
3146 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3147 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3148 	p->numa_faults_locality[local] += pages;
3149 }
3150 
3151 static void reset_ptenuma_scan(struct task_struct *p)
3152 {
3153 	/*
3154 	 * We only did a read acquisition of the mmap sem, so
3155 	 * p->mm->numa_scan_seq is written to without exclusive access
3156 	 * and the update is not guaranteed to be atomic. That's not
3157 	 * much of an issue though, since this is just used for
3158 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3159 	 * expensive, to avoid any form of compiler optimizations:
3160 	 */
3161 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3162 	p->mm->numa_scan_offset = 0;
3163 }
3164 
3165 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3166 {
3167 	unsigned long pids;
3168 	/*
3169 	 * Allow unconditional access first two times, so that all the (pages)
3170 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3171 	 * This is also done to avoid any side effect of task scanning
3172 	 * amplifying the unfairness of disjoint set of VMAs' access.
3173 	 */
3174 	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3175 		return true;
3176 
3177 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3178 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3179 		return true;
3180 
3181 	/*
3182 	 * Complete a scan that has already started regardless of PID access, or
3183 	 * some VMAs may never be scanned in multi-threaded applications:
3184 	 */
3185 	if (mm->numa_scan_offset > vma->vm_start) {
3186 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3187 		return true;
3188 	}
3189 
3190 	/*
3191 	 * This vma has not been accessed for a while, and if the number
3192 	 * the threads in the same process is low, which means no other
3193 	 * threads can help scan this vma, force a vma scan.
3194 	 */
3195 	if (READ_ONCE(mm->numa_scan_seq) >
3196 	   (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3197 		return true;
3198 
3199 	return false;
3200 }
3201 
3202 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3203 
3204 /*
3205  * The expensive part of numa migration is done from task_work context.
3206  * Triggered from task_tick_numa().
3207  */
3208 static void task_numa_work(struct callback_head *work)
3209 {
3210 	unsigned long migrate, next_scan, now = jiffies;
3211 	struct task_struct *p = current;
3212 	struct mm_struct *mm = p->mm;
3213 	u64 runtime = p->se.sum_exec_runtime;
3214 	struct vm_area_struct *vma;
3215 	unsigned long start, end;
3216 	unsigned long nr_pte_updates = 0;
3217 	long pages, virtpages;
3218 	struct vma_iterator vmi;
3219 	bool vma_pids_skipped;
3220 	bool vma_pids_forced = false;
3221 
3222 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3223 
3224 	work->next = work;
3225 	/*
3226 	 * Who cares about NUMA placement when they're dying.
3227 	 *
3228 	 * NOTE: make sure not to dereference p->mm before this check,
3229 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3230 	 * without p->mm even though we still had it when we enqueued this
3231 	 * work.
3232 	 */
3233 	if (p->flags & PF_EXITING)
3234 		return;
3235 
3236 	if (!mm->numa_next_scan) {
3237 		mm->numa_next_scan = now +
3238 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3239 	}
3240 
3241 	/*
3242 	 * Enforce maximal scan/migration frequency..
3243 	 */
3244 	migrate = mm->numa_next_scan;
3245 	if (time_before(now, migrate))
3246 		return;
3247 
3248 	if (p->numa_scan_period == 0) {
3249 		p->numa_scan_period_max = task_scan_max(p);
3250 		p->numa_scan_period = task_scan_start(p);
3251 	}
3252 
3253 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3254 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3255 		return;
3256 
3257 	/*
3258 	 * Delay this task enough that another task of this mm will likely win
3259 	 * the next time around.
3260 	 */
3261 	p->node_stamp += 2 * TICK_NSEC;
3262 
3263 	pages = sysctl_numa_balancing_scan_size;
3264 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3265 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3266 	if (!pages)
3267 		return;
3268 
3269 
3270 	if (!mmap_read_trylock(mm))
3271 		return;
3272 
3273 	/*
3274 	 * VMAs are skipped if the current PID has not trapped a fault within
3275 	 * the VMA recently. Allow scanning to be forced if there is no
3276 	 * suitable VMA remaining.
3277 	 */
3278 	vma_pids_skipped = false;
3279 
3280 retry_pids:
3281 	start = mm->numa_scan_offset;
3282 	vma_iter_init(&vmi, mm, start);
3283 	vma = vma_next(&vmi);
3284 	if (!vma) {
3285 		reset_ptenuma_scan(p);
3286 		start = 0;
3287 		vma_iter_set(&vmi, start);
3288 		vma = vma_next(&vmi);
3289 	}
3290 
3291 	do {
3292 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3293 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3294 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3295 			continue;
3296 		}
3297 
3298 		/*
3299 		 * Shared library pages mapped by multiple processes are not
3300 		 * migrated as it is expected they are cache replicated. Avoid
3301 		 * hinting faults in read-only file-backed mappings or the vDSO
3302 		 * as migrating the pages will be of marginal benefit.
3303 		 */
3304 		if (!vma->vm_mm ||
3305 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3306 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3307 			continue;
3308 		}
3309 
3310 		/*
3311 		 * Skip inaccessible VMAs to avoid any confusion between
3312 		 * PROT_NONE and NUMA hinting PTEs
3313 		 */
3314 		if (!vma_is_accessible(vma)) {
3315 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3316 			continue;
3317 		}
3318 
3319 		/* Initialise new per-VMA NUMAB state. */
3320 		if (!vma->numab_state) {
3321 			vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3322 				GFP_KERNEL);
3323 			if (!vma->numab_state)
3324 				continue;
3325 
3326 			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3327 
3328 			vma->numab_state->next_scan = now +
3329 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3330 
3331 			/* Reset happens after 4 times scan delay of scan start */
3332 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3333 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3334 
3335 			/*
3336 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3337 			 * to prevent VMAs being skipped prematurely on the
3338 			 * first scan:
3339 			 */
3340 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3341 		}
3342 
3343 		/*
3344 		 * Scanning the VMAs of short lived tasks add more overhead. So
3345 		 * delay the scan for new VMAs.
3346 		 */
3347 		if (mm->numa_scan_seq && time_before(jiffies,
3348 						vma->numab_state->next_scan)) {
3349 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3350 			continue;
3351 		}
3352 
3353 		/* RESET access PIDs regularly for old VMAs. */
3354 		if (mm->numa_scan_seq &&
3355 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3356 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3357 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3358 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3359 			vma->numab_state->pids_active[1] = 0;
3360 		}
3361 
3362 		/* Do not rescan VMAs twice within the same sequence. */
3363 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3364 			mm->numa_scan_offset = vma->vm_end;
3365 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3366 			continue;
3367 		}
3368 
3369 		/*
3370 		 * Do not scan the VMA if task has not accessed it, unless no other
3371 		 * VMA candidate exists.
3372 		 */
3373 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3374 			vma_pids_skipped = true;
3375 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3376 			continue;
3377 		}
3378 
3379 		do {
3380 			start = max(start, vma->vm_start);
3381 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3382 			end = min(end, vma->vm_end);
3383 			nr_pte_updates = change_prot_numa(vma, start, end);
3384 
3385 			/*
3386 			 * Try to scan sysctl_numa_balancing_size worth of
3387 			 * hpages that have at least one present PTE that
3388 			 * is not already PTE-numa. If the VMA contains
3389 			 * areas that are unused or already full of prot_numa
3390 			 * PTEs, scan up to virtpages, to skip through those
3391 			 * areas faster.
3392 			 */
3393 			if (nr_pte_updates)
3394 				pages -= (end - start) >> PAGE_SHIFT;
3395 			virtpages -= (end - start) >> PAGE_SHIFT;
3396 
3397 			start = end;
3398 			if (pages <= 0 || virtpages <= 0)
3399 				goto out;
3400 
3401 			cond_resched();
3402 		} while (end != vma->vm_end);
3403 
3404 		/* VMA scan is complete, do not scan until next sequence. */
3405 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3406 
3407 		/*
3408 		 * Only force scan within one VMA at a time, to limit the
3409 		 * cost of scanning a potentially uninteresting VMA.
3410 		 */
3411 		if (vma_pids_forced)
3412 			break;
3413 	} for_each_vma(vmi, vma);
3414 
3415 	/*
3416 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3417 	 * not accessing the VMA previously, then force a scan to ensure
3418 	 * forward progress:
3419 	 */
3420 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3421 		vma_pids_forced = true;
3422 		goto retry_pids;
3423 	}
3424 
3425 out:
3426 	/*
3427 	 * It is possible to reach the end of the VMA list but the last few
3428 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3429 	 * would find the !migratable VMA on the next scan but not reset the
3430 	 * scanner to the start so check it now.
3431 	 */
3432 	if (vma)
3433 		mm->numa_scan_offset = start;
3434 	else
3435 		reset_ptenuma_scan(p);
3436 	mmap_read_unlock(mm);
3437 
3438 	/*
3439 	 * Make sure tasks use at least 32x as much time to run other code
3440 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3441 	 * Usually update_task_scan_period slows down scanning enough; on an
3442 	 * overloaded system we need to limit overhead on a per task basis.
3443 	 */
3444 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3445 		u64 diff = p->se.sum_exec_runtime - runtime;
3446 		p->node_stamp += 32 * diff;
3447 	}
3448 }
3449 
3450 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3451 {
3452 	int mm_users = 0;
3453 	struct mm_struct *mm = p->mm;
3454 
3455 	if (mm) {
3456 		mm_users = atomic_read(&mm->mm_users);
3457 		if (mm_users == 1) {
3458 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3459 			mm->numa_scan_seq = 0;
3460 		}
3461 	}
3462 	p->node_stamp			= 0;
3463 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3464 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3465 	p->numa_migrate_retry		= 0;
3466 	/* Protect against double add, see task_tick_numa and task_numa_work */
3467 	p->numa_work.next		= &p->numa_work;
3468 	p->numa_faults			= NULL;
3469 	p->numa_pages_migrated		= 0;
3470 	p->total_numa_faults		= 0;
3471 	RCU_INIT_POINTER(p->numa_group, NULL);
3472 	p->last_task_numa_placement	= 0;
3473 	p->last_sum_exec_runtime	= 0;
3474 
3475 	init_task_work(&p->numa_work, task_numa_work);
3476 
3477 	/* New address space, reset the preferred nid */
3478 	if (!(clone_flags & CLONE_VM)) {
3479 		p->numa_preferred_nid = NUMA_NO_NODE;
3480 		return;
3481 	}
3482 
3483 	/*
3484 	 * New thread, keep existing numa_preferred_nid which should be copied
3485 	 * already by arch_dup_task_struct but stagger when scans start.
3486 	 */
3487 	if (mm) {
3488 		unsigned int delay;
3489 
3490 		delay = min_t(unsigned int, task_scan_max(current),
3491 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3492 		delay += 2 * TICK_NSEC;
3493 		p->node_stamp = delay;
3494 	}
3495 }
3496 
3497 /*
3498  * Drive the periodic memory faults..
3499  */
3500 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3501 {
3502 	struct callback_head *work = &curr->numa_work;
3503 	u64 period, now;
3504 
3505 	/*
3506 	 * We don't care about NUMA placement if we don't have memory.
3507 	 */
3508 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3509 		return;
3510 
3511 	/*
3512 	 * Using runtime rather than walltime has the dual advantage that
3513 	 * we (mostly) drive the selection from busy threads and that the
3514 	 * task needs to have done some actual work before we bother with
3515 	 * NUMA placement.
3516 	 */
3517 	now = curr->se.sum_exec_runtime;
3518 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3519 
3520 	if (now > curr->node_stamp + period) {
3521 		if (!curr->node_stamp)
3522 			curr->numa_scan_period = task_scan_start(curr);
3523 		curr->node_stamp += period;
3524 
3525 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3526 			task_work_add(curr, work, TWA_RESUME);
3527 	}
3528 }
3529 
3530 static void update_scan_period(struct task_struct *p, int new_cpu)
3531 {
3532 	int src_nid = cpu_to_node(task_cpu(p));
3533 	int dst_nid = cpu_to_node(new_cpu);
3534 
3535 	if (!static_branch_likely(&sched_numa_balancing))
3536 		return;
3537 
3538 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3539 		return;
3540 
3541 	if (src_nid == dst_nid)
3542 		return;
3543 
3544 	/*
3545 	 * Allow resets if faults have been trapped before one scan
3546 	 * has completed. This is most likely due to a new task that
3547 	 * is pulled cross-node due to wakeups or load balancing.
3548 	 */
3549 	if (p->numa_scan_seq) {
3550 		/*
3551 		 * Avoid scan adjustments if moving to the preferred
3552 		 * node or if the task was not previously running on
3553 		 * the preferred node.
3554 		 */
3555 		if (dst_nid == p->numa_preferred_nid ||
3556 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3557 			src_nid != p->numa_preferred_nid))
3558 			return;
3559 	}
3560 
3561 	p->numa_scan_period = task_scan_start(p);
3562 }
3563 
3564 #else
3565 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3566 {
3567 }
3568 
3569 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3570 {
3571 }
3572 
3573 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3574 {
3575 }
3576 
3577 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3578 {
3579 }
3580 
3581 #endif /* CONFIG_NUMA_BALANCING */
3582 
3583 static void
3584 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3585 {
3586 	update_load_add(&cfs_rq->load, se->load.weight);
3587 #ifdef CONFIG_SMP
3588 	if (entity_is_task(se)) {
3589 		struct rq *rq = rq_of(cfs_rq);
3590 
3591 		account_numa_enqueue(rq, task_of(se));
3592 		list_add(&se->group_node, &rq->cfs_tasks);
3593 	}
3594 #endif
3595 	cfs_rq->nr_running++;
3596 	if (se_is_idle(se))
3597 		cfs_rq->idle_nr_running++;
3598 }
3599 
3600 static void
3601 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3602 {
3603 	update_load_sub(&cfs_rq->load, se->load.weight);
3604 #ifdef CONFIG_SMP
3605 	if (entity_is_task(se)) {
3606 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3607 		list_del_init(&se->group_node);
3608 	}
3609 #endif
3610 	cfs_rq->nr_running--;
3611 	if (se_is_idle(se))
3612 		cfs_rq->idle_nr_running--;
3613 }
3614 
3615 /*
3616  * Signed add and clamp on underflow.
3617  *
3618  * Explicitly do a load-store to ensure the intermediate value never hits
3619  * memory. This allows lockless observations without ever seeing the negative
3620  * values.
3621  */
3622 #define add_positive(_ptr, _val) do {                           \
3623 	typeof(_ptr) ptr = (_ptr);                              \
3624 	typeof(_val) val = (_val);                              \
3625 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3626 								\
3627 	res = var + val;                                        \
3628 								\
3629 	if (val < 0 && res > var)                               \
3630 		res = 0;                                        \
3631 								\
3632 	WRITE_ONCE(*ptr, res);                                  \
3633 } while (0)
3634 
3635 /*
3636  * Unsigned subtract and clamp on underflow.
3637  *
3638  * Explicitly do a load-store to ensure the intermediate value never hits
3639  * memory. This allows lockless observations without ever seeing the negative
3640  * values.
3641  */
3642 #define sub_positive(_ptr, _val) do {				\
3643 	typeof(_ptr) ptr = (_ptr);				\
3644 	typeof(*ptr) val = (_val);				\
3645 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3646 	res = var - val;					\
3647 	if (res > var)						\
3648 		res = 0;					\
3649 	WRITE_ONCE(*ptr, res);					\
3650 } while (0)
3651 
3652 /*
3653  * Remove and clamp on negative, from a local variable.
3654  *
3655  * A variant of sub_positive(), which does not use explicit load-store
3656  * and is thus optimized for local variable updates.
3657  */
3658 #define lsub_positive(_ptr, _val) do {				\
3659 	typeof(_ptr) ptr = (_ptr);				\
3660 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3661 } while (0)
3662 
3663 #ifdef CONFIG_SMP
3664 static inline void
3665 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3666 {
3667 	cfs_rq->avg.load_avg += se->avg.load_avg;
3668 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3669 }
3670 
3671 static inline void
3672 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3673 {
3674 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3675 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3676 	/* See update_cfs_rq_load_avg() */
3677 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3678 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3679 }
3680 #else
3681 static inline void
3682 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3683 static inline void
3684 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3685 #endif
3686 
3687 static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
3688 			   unsigned long weight)
3689 {
3690 	unsigned long old_weight = se->load.weight;
3691 	s64 vlag, vslice;
3692 
3693 	/*
3694 	 * VRUNTIME
3695 	 * --------
3696 	 *
3697 	 * COROLLARY #1: The virtual runtime of the entity needs to be
3698 	 * adjusted if re-weight at !0-lag point.
3699 	 *
3700 	 * Proof: For contradiction assume this is not true, so we can
3701 	 * re-weight without changing vruntime at !0-lag point.
3702 	 *
3703 	 *             Weight	VRuntime   Avg-VRuntime
3704 	 *     before    w          v            V
3705 	 *      after    w'         v'           V'
3706 	 *
3707 	 * Since lag needs to be preserved through re-weight:
3708 	 *
3709 	 *	lag = (V - v)*w = (V'- v')*w', where v = v'
3710 	 *	==>	V' = (V - v)*w/w' + v		(1)
3711 	 *
3712 	 * Let W be the total weight of the entities before reweight,
3713 	 * since V' is the new weighted average of entities:
3714 	 *
3715 	 *	V' = (WV + w'v - wv) / (W + w' - w)	(2)
3716 	 *
3717 	 * by using (1) & (2) we obtain:
3718 	 *
3719 	 *	(WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3720 	 *	==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3721 	 *	==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3722 	 *	==>	(V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3723 	 *
3724 	 * Since we are doing at !0-lag point which means V != v, we
3725 	 * can simplify (3):
3726 	 *
3727 	 *	==>	W / (W + w' - w) = w / w'
3728 	 *	==>	Ww' = Ww + ww' - ww
3729 	 *	==>	W * (w' - w) = w * (w' - w)
3730 	 *	==>	W = w	(re-weight indicates w' != w)
3731 	 *
3732 	 * So the cfs_rq contains only one entity, hence vruntime of
3733 	 * the entity @v should always equal to the cfs_rq's weighted
3734 	 * average vruntime @V, which means we will always re-weight
3735 	 * at 0-lag point, thus breach assumption. Proof completed.
3736 	 *
3737 	 *
3738 	 * COROLLARY #2: Re-weight does NOT affect weighted average
3739 	 * vruntime of all the entities.
3740 	 *
3741 	 * Proof: According to corollary #1, Eq. (1) should be:
3742 	 *
3743 	 *	(V - v)*w = (V' - v')*w'
3744 	 *	==>    v' = V' - (V - v)*w/w'		(4)
3745 	 *
3746 	 * According to the weighted average formula, we have:
3747 	 *
3748 	 *	V' = (WV - wv + w'v') / (W - w + w')
3749 	 *	   = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3750 	 *	   = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3751 	 *	   = (WV + w'V' - Vw) / (W - w + w')
3752 	 *
3753 	 *	==>  V'*(W - w + w') = WV + w'V' - Vw
3754 	 *	==>	V' * (W - w) = (W - w) * V	(5)
3755 	 *
3756 	 * If the entity is the only one in the cfs_rq, then reweight
3757 	 * always occurs at 0-lag point, so V won't change. Or else
3758 	 * there are other entities, hence W != w, then Eq. (5) turns
3759 	 * into V' = V. So V won't change in either case, proof done.
3760 	 *
3761 	 *
3762 	 * So according to corollary #1 & #2, the effect of re-weight
3763 	 * on vruntime should be:
3764 	 *
3765 	 *	v' = V' - (V - v) * w / w'		(4)
3766 	 *	   = V  - (V - v) * w / w'
3767 	 *	   = V  - vl * w / w'
3768 	 *	   = V  - vl'
3769 	 */
3770 	if (avruntime != se->vruntime) {
3771 		vlag = entity_lag(avruntime, se);
3772 		vlag = div_s64(vlag * old_weight, weight);
3773 		se->vruntime = avruntime - vlag;
3774 	}
3775 
3776 	/*
3777 	 * DEADLINE
3778 	 * --------
3779 	 *
3780 	 * When the weight changes, the virtual time slope changes and
3781 	 * we should adjust the relative virtual deadline accordingly.
3782 	 *
3783 	 *	d' = v' + (d - v)*w/w'
3784 	 *	   = V' - (V - v)*w/w' + (d - v)*w/w'
3785 	 *	   = V  - (V - v)*w/w' + (d - v)*w/w'
3786 	 *	   = V  + (d - V)*w/w'
3787 	 */
3788 	vslice = (s64)(se->deadline - avruntime);
3789 	vslice = div_s64(vslice * old_weight, weight);
3790 	se->deadline = avruntime + vslice;
3791 }
3792 
3793 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3794 			    unsigned long weight)
3795 {
3796 	bool curr = cfs_rq->curr == se;
3797 	u64 avruntime;
3798 
3799 	if (se->on_rq) {
3800 		/* commit outstanding execution time */
3801 		update_curr(cfs_rq);
3802 		avruntime = avg_vruntime(cfs_rq);
3803 		if (!curr)
3804 			__dequeue_entity(cfs_rq, se);
3805 		update_load_sub(&cfs_rq->load, se->load.weight);
3806 	}
3807 	dequeue_load_avg(cfs_rq, se);
3808 
3809 	if (se->on_rq) {
3810 		reweight_eevdf(se, avruntime, weight);
3811 	} else {
3812 		/*
3813 		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3814 		 * we need to scale se->vlag when w_i changes.
3815 		 */
3816 		se->vlag = div_s64(se->vlag * se->load.weight, weight);
3817 	}
3818 
3819 	update_load_set(&se->load, weight);
3820 
3821 #ifdef CONFIG_SMP
3822 	do {
3823 		u32 divider = get_pelt_divider(&se->avg);
3824 
3825 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3826 	} while (0);
3827 #endif
3828 
3829 	enqueue_load_avg(cfs_rq, se);
3830 	if (se->on_rq) {
3831 		update_load_add(&cfs_rq->load, se->load.weight);
3832 		if (!curr)
3833 			__enqueue_entity(cfs_rq, se);
3834 
3835 		/*
3836 		 * The entity's vruntime has been adjusted, so let's check
3837 		 * whether the rq-wide min_vruntime needs updated too. Since
3838 		 * the calculations above require stable min_vruntime rather
3839 		 * than up-to-date one, we do the update at the end of the
3840 		 * reweight process.
3841 		 */
3842 		update_min_vruntime(cfs_rq);
3843 	}
3844 }
3845 
3846 void reweight_task(struct task_struct *p, const struct load_weight *lw)
3847 {
3848 	struct sched_entity *se = &p->se;
3849 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3850 	struct load_weight *load = &se->load;
3851 
3852 	reweight_entity(cfs_rq, se, lw->weight);
3853 	load->inv_weight = lw->inv_weight;
3854 }
3855 
3856 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3857 
3858 #ifdef CONFIG_FAIR_GROUP_SCHED
3859 #ifdef CONFIG_SMP
3860 /*
3861  * All this does is approximate the hierarchical proportion which includes that
3862  * global sum we all love to hate.
3863  *
3864  * That is, the weight of a group entity, is the proportional share of the
3865  * group weight based on the group runqueue weights. That is:
3866  *
3867  *                     tg->weight * grq->load.weight
3868  *   ge->load.weight = -----------------------------               (1)
3869  *                       \Sum grq->load.weight
3870  *
3871  * Now, because computing that sum is prohibitively expensive to compute (been
3872  * there, done that) we approximate it with this average stuff. The average
3873  * moves slower and therefore the approximation is cheaper and more stable.
3874  *
3875  * So instead of the above, we substitute:
3876  *
3877  *   grq->load.weight -> grq->avg.load_avg                         (2)
3878  *
3879  * which yields the following:
3880  *
3881  *                     tg->weight * grq->avg.load_avg
3882  *   ge->load.weight = ------------------------------              (3)
3883  *                             tg->load_avg
3884  *
3885  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3886  *
3887  * That is shares_avg, and it is right (given the approximation (2)).
3888  *
3889  * The problem with it is that because the average is slow -- it was designed
3890  * to be exactly that of course -- this leads to transients in boundary
3891  * conditions. In specific, the case where the group was idle and we start the
3892  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3893  * yielding bad latency etc..
3894  *
3895  * Now, in that special case (1) reduces to:
3896  *
3897  *                     tg->weight * grq->load.weight
3898  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3899  *                         grp->load.weight
3900  *
3901  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3902  *
3903  * So what we do is modify our approximation (3) to approach (4) in the (near)
3904  * UP case, like:
3905  *
3906  *   ge->load.weight =
3907  *
3908  *              tg->weight * grq->load.weight
3909  *     ---------------------------------------------------         (5)
3910  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3911  *
3912  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3913  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3914  *
3915  *
3916  *                     tg->weight * grq->load.weight
3917  *   ge->load.weight = -----------------------------		   (6)
3918  *                             tg_load_avg'
3919  *
3920  * Where:
3921  *
3922  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3923  *                  max(grq->load.weight, grq->avg.load_avg)
3924  *
3925  * And that is shares_weight and is icky. In the (near) UP case it approaches
3926  * (4) while in the normal case it approaches (3). It consistently
3927  * overestimates the ge->load.weight and therefore:
3928  *
3929  *   \Sum ge->load.weight >= tg->weight
3930  *
3931  * hence icky!
3932  */
3933 static long calc_group_shares(struct cfs_rq *cfs_rq)
3934 {
3935 	long tg_weight, tg_shares, load, shares;
3936 	struct task_group *tg = cfs_rq->tg;
3937 
3938 	tg_shares = READ_ONCE(tg->shares);
3939 
3940 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3941 
3942 	tg_weight = atomic_long_read(&tg->load_avg);
3943 
3944 	/* Ensure tg_weight >= load */
3945 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3946 	tg_weight += load;
3947 
3948 	shares = (tg_shares * load);
3949 	if (tg_weight)
3950 		shares /= tg_weight;
3951 
3952 	/*
3953 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3954 	 * of a group with small tg->shares value. It is a floor value which is
3955 	 * assigned as a minimum load.weight to the sched_entity representing
3956 	 * the group on a CPU.
3957 	 *
3958 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3959 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3960 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3961 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3962 	 * instead of 0.
3963 	 */
3964 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3965 }
3966 #endif /* CONFIG_SMP */
3967 
3968 /*
3969  * Recomputes the group entity based on the current state of its group
3970  * runqueue.
3971  */
3972 static void update_cfs_group(struct sched_entity *se)
3973 {
3974 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3975 	long shares;
3976 
3977 	if (!gcfs_rq)
3978 		return;
3979 
3980 	if (throttled_hierarchy(gcfs_rq))
3981 		return;
3982 
3983 #ifndef CONFIG_SMP
3984 	shares = READ_ONCE(gcfs_rq->tg->shares);
3985 #else
3986 	shares = calc_group_shares(gcfs_rq);
3987 #endif
3988 	if (unlikely(se->load.weight != shares))
3989 		reweight_entity(cfs_rq_of(se), se, shares);
3990 }
3991 
3992 #else /* CONFIG_FAIR_GROUP_SCHED */
3993 static inline void update_cfs_group(struct sched_entity *se)
3994 {
3995 }
3996 #endif /* CONFIG_FAIR_GROUP_SCHED */
3997 
3998 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3999 {
4000 	struct rq *rq = rq_of(cfs_rq);
4001 
4002 	if (&rq->cfs == cfs_rq) {
4003 		/*
4004 		 * There are a few boundary cases this might miss but it should
4005 		 * get called often enough that that should (hopefully) not be
4006 		 * a real problem.
4007 		 *
4008 		 * It will not get called when we go idle, because the idle
4009 		 * thread is a different class (!fair), nor will the utilization
4010 		 * number include things like RT tasks.
4011 		 *
4012 		 * As is, the util number is not freq-invariant (we'd have to
4013 		 * implement arch_scale_freq_capacity() for that).
4014 		 *
4015 		 * See cpu_util_cfs().
4016 		 */
4017 		cpufreq_update_util(rq, flags);
4018 	}
4019 }
4020 
4021 #ifdef CONFIG_SMP
4022 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4023 {
4024 	if (sa->load_sum)
4025 		return false;
4026 
4027 	if (sa->util_sum)
4028 		return false;
4029 
4030 	if (sa->runnable_sum)
4031 		return false;
4032 
4033 	/*
4034 	 * _avg must be null when _sum are null because _avg = _sum / divider
4035 	 * Make sure that rounding and/or propagation of PELT values never
4036 	 * break this.
4037 	 */
4038 	SCHED_WARN_ON(sa->load_avg ||
4039 		      sa->util_avg ||
4040 		      sa->runnable_avg);
4041 
4042 	return true;
4043 }
4044 
4045 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4046 {
4047 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4048 				 cfs_rq->last_update_time_copy);
4049 }
4050 #ifdef CONFIG_FAIR_GROUP_SCHED
4051 /*
4052  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4053  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4054  * bottom-up, we only have to test whether the cfs_rq before us on the list
4055  * is our child.
4056  * If cfs_rq is not on the list, test whether a child needs its to be added to
4057  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4058  */
4059 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4060 {
4061 	struct cfs_rq *prev_cfs_rq;
4062 	struct list_head *prev;
4063 
4064 	if (cfs_rq->on_list) {
4065 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4066 	} else {
4067 		struct rq *rq = rq_of(cfs_rq);
4068 
4069 		prev = rq->tmp_alone_branch;
4070 	}
4071 
4072 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4073 
4074 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4075 }
4076 
4077 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4078 {
4079 	if (cfs_rq->load.weight)
4080 		return false;
4081 
4082 	if (!load_avg_is_decayed(&cfs_rq->avg))
4083 		return false;
4084 
4085 	if (child_cfs_rq_on_list(cfs_rq))
4086 		return false;
4087 
4088 	return true;
4089 }
4090 
4091 /**
4092  * update_tg_load_avg - update the tg's load avg
4093  * @cfs_rq: the cfs_rq whose avg changed
4094  *
4095  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4096  * However, because tg->load_avg is a global value there are performance
4097  * considerations.
4098  *
4099  * In order to avoid having to look at the other cfs_rq's, we use a
4100  * differential update where we store the last value we propagated. This in
4101  * turn allows skipping updates if the differential is 'small'.
4102  *
4103  * Updating tg's load_avg is necessary before update_cfs_share().
4104  */
4105 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4106 {
4107 	long delta;
4108 	u64 now;
4109 
4110 	/*
4111 	 * No need to update load_avg for root_task_group as it is not used.
4112 	 */
4113 	if (cfs_rq->tg == &root_task_group)
4114 		return;
4115 
4116 	/* rq has been offline and doesn't contribute to the share anymore: */
4117 	if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4118 		return;
4119 
4120 	/*
4121 	 * For migration heavy workloads, access to tg->load_avg can be
4122 	 * unbound. Limit the update rate to at most once per ms.
4123 	 */
4124 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4125 	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4126 		return;
4127 
4128 	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4129 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4130 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4131 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4132 		cfs_rq->last_update_tg_load_avg = now;
4133 	}
4134 }
4135 
4136 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4137 {
4138 	long delta;
4139 	u64 now;
4140 
4141 	/*
4142 	 * No need to update load_avg for root_task_group, as it is not used.
4143 	 */
4144 	if (cfs_rq->tg == &root_task_group)
4145 		return;
4146 
4147 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4148 	delta = 0 - cfs_rq->tg_load_avg_contrib;
4149 	atomic_long_add(delta, &cfs_rq->tg->load_avg);
4150 	cfs_rq->tg_load_avg_contrib = 0;
4151 	cfs_rq->last_update_tg_load_avg = now;
4152 }
4153 
4154 /* CPU offline callback: */
4155 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4156 {
4157 	struct task_group *tg;
4158 
4159 	lockdep_assert_rq_held(rq);
4160 
4161 	/*
4162 	 * The rq clock has already been updated in
4163 	 * set_rq_offline(), so we should skip updating
4164 	 * the rq clock again in unthrottle_cfs_rq().
4165 	 */
4166 	rq_clock_start_loop_update(rq);
4167 
4168 	rcu_read_lock();
4169 	list_for_each_entry_rcu(tg, &task_groups, list) {
4170 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4171 
4172 		clear_tg_load_avg(cfs_rq);
4173 	}
4174 	rcu_read_unlock();
4175 
4176 	rq_clock_stop_loop_update(rq);
4177 }
4178 
4179 /*
4180  * Called within set_task_rq() right before setting a task's CPU. The
4181  * caller only guarantees p->pi_lock is held; no other assumptions,
4182  * including the state of rq->lock, should be made.
4183  */
4184 void set_task_rq_fair(struct sched_entity *se,
4185 		      struct cfs_rq *prev, struct cfs_rq *next)
4186 {
4187 	u64 p_last_update_time;
4188 	u64 n_last_update_time;
4189 
4190 	if (!sched_feat(ATTACH_AGE_LOAD))
4191 		return;
4192 
4193 	/*
4194 	 * We are supposed to update the task to "current" time, then its up to
4195 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4196 	 * getting what current time is, so simply throw away the out-of-date
4197 	 * time. This will result in the wakee task is less decayed, but giving
4198 	 * the wakee more load sounds not bad.
4199 	 */
4200 	if (!(se->avg.last_update_time && prev))
4201 		return;
4202 
4203 	p_last_update_time = cfs_rq_last_update_time(prev);
4204 	n_last_update_time = cfs_rq_last_update_time(next);
4205 
4206 	__update_load_avg_blocked_se(p_last_update_time, se);
4207 	se->avg.last_update_time = n_last_update_time;
4208 }
4209 
4210 /*
4211  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4212  * propagate its contribution. The key to this propagation is the invariant
4213  * that for each group:
4214  *
4215  *   ge->avg == grq->avg						(1)
4216  *
4217  * _IFF_ we look at the pure running and runnable sums. Because they
4218  * represent the very same entity, just at different points in the hierarchy.
4219  *
4220  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4221  * and simply copies the running/runnable sum over (but still wrong, because
4222  * the group entity and group rq do not have their PELT windows aligned).
4223  *
4224  * However, update_tg_cfs_load() is more complex. So we have:
4225  *
4226  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4227  *
4228  * And since, like util, the runnable part should be directly transferable,
4229  * the following would _appear_ to be the straight forward approach:
4230  *
4231  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4232  *
4233  * And per (1) we have:
4234  *
4235  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4236  *
4237  * Which gives:
4238  *
4239  *                      ge->load.weight * grq->avg.load_avg
4240  *   ge->avg.load_avg = -----------------------------------		(4)
4241  *                               grq->load.weight
4242  *
4243  * Except that is wrong!
4244  *
4245  * Because while for entities historical weight is not important and we
4246  * really only care about our future and therefore can consider a pure
4247  * runnable sum, runqueues can NOT do this.
4248  *
4249  * We specifically want runqueues to have a load_avg that includes
4250  * historical weights. Those represent the blocked load, the load we expect
4251  * to (shortly) return to us. This only works by keeping the weights as
4252  * integral part of the sum. We therefore cannot decompose as per (3).
4253  *
4254  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4255  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4256  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4257  * runnable section of these tasks overlap (or not). If they were to perfectly
4258  * align the rq as a whole would be runnable 2/3 of the time. If however we
4259  * always have at least 1 runnable task, the rq as a whole is always runnable.
4260  *
4261  * So we'll have to approximate.. :/
4262  *
4263  * Given the constraint:
4264  *
4265  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4266  *
4267  * We can construct a rule that adds runnable to a rq by assuming minimal
4268  * overlap.
4269  *
4270  * On removal, we'll assume each task is equally runnable; which yields:
4271  *
4272  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4273  *
4274  * XXX: only do this for the part of runnable > running ?
4275  *
4276  */
4277 static inline void
4278 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4279 {
4280 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4281 	u32 new_sum, divider;
4282 
4283 	/* Nothing to update */
4284 	if (!delta_avg)
4285 		return;
4286 
4287 	/*
4288 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4289 	 * See ___update_load_avg() for details.
4290 	 */
4291 	divider = get_pelt_divider(&cfs_rq->avg);
4292 
4293 
4294 	/* Set new sched_entity's utilization */
4295 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4296 	new_sum = se->avg.util_avg * divider;
4297 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4298 	se->avg.util_sum = new_sum;
4299 
4300 	/* Update parent cfs_rq utilization */
4301 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4302 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4303 
4304 	/* See update_cfs_rq_load_avg() */
4305 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4306 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4307 }
4308 
4309 static inline void
4310 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4311 {
4312 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4313 	u32 new_sum, divider;
4314 
4315 	/* Nothing to update */
4316 	if (!delta_avg)
4317 		return;
4318 
4319 	/*
4320 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4321 	 * See ___update_load_avg() for details.
4322 	 */
4323 	divider = get_pelt_divider(&cfs_rq->avg);
4324 
4325 	/* Set new sched_entity's runnable */
4326 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4327 	new_sum = se->avg.runnable_avg * divider;
4328 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4329 	se->avg.runnable_sum = new_sum;
4330 
4331 	/* Update parent cfs_rq runnable */
4332 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4333 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4334 	/* See update_cfs_rq_load_avg() */
4335 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4336 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4337 }
4338 
4339 static inline void
4340 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4341 {
4342 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4343 	unsigned long load_avg;
4344 	u64 load_sum = 0;
4345 	s64 delta_sum;
4346 	u32 divider;
4347 
4348 	if (!runnable_sum)
4349 		return;
4350 
4351 	gcfs_rq->prop_runnable_sum = 0;
4352 
4353 	/*
4354 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4355 	 * See ___update_load_avg() for details.
4356 	 */
4357 	divider = get_pelt_divider(&cfs_rq->avg);
4358 
4359 	if (runnable_sum >= 0) {
4360 		/*
4361 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4362 		 * the CPU is saturated running == runnable.
4363 		 */
4364 		runnable_sum += se->avg.load_sum;
4365 		runnable_sum = min_t(long, runnable_sum, divider);
4366 	} else {
4367 		/*
4368 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4369 		 * assuming all tasks are equally runnable.
4370 		 */
4371 		if (scale_load_down(gcfs_rq->load.weight)) {
4372 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4373 				scale_load_down(gcfs_rq->load.weight));
4374 		}
4375 
4376 		/* But make sure to not inflate se's runnable */
4377 		runnable_sum = min(se->avg.load_sum, load_sum);
4378 	}
4379 
4380 	/*
4381 	 * runnable_sum can't be lower than running_sum
4382 	 * Rescale running sum to be in the same range as runnable sum
4383 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4384 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4385 	 */
4386 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4387 	runnable_sum = max(runnable_sum, running_sum);
4388 
4389 	load_sum = se_weight(se) * runnable_sum;
4390 	load_avg = div_u64(load_sum, divider);
4391 
4392 	delta_avg = load_avg - se->avg.load_avg;
4393 	if (!delta_avg)
4394 		return;
4395 
4396 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4397 
4398 	se->avg.load_sum = runnable_sum;
4399 	se->avg.load_avg = load_avg;
4400 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4401 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4402 	/* See update_cfs_rq_load_avg() */
4403 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4404 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4405 }
4406 
4407 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4408 {
4409 	cfs_rq->propagate = 1;
4410 	cfs_rq->prop_runnable_sum += runnable_sum;
4411 }
4412 
4413 /* Update task and its cfs_rq load average */
4414 static inline int propagate_entity_load_avg(struct sched_entity *se)
4415 {
4416 	struct cfs_rq *cfs_rq, *gcfs_rq;
4417 
4418 	if (entity_is_task(se))
4419 		return 0;
4420 
4421 	gcfs_rq = group_cfs_rq(se);
4422 	if (!gcfs_rq->propagate)
4423 		return 0;
4424 
4425 	gcfs_rq->propagate = 0;
4426 
4427 	cfs_rq = cfs_rq_of(se);
4428 
4429 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4430 
4431 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4432 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4433 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4434 
4435 	trace_pelt_cfs_tp(cfs_rq);
4436 	trace_pelt_se_tp(se);
4437 
4438 	return 1;
4439 }
4440 
4441 /*
4442  * Check if we need to update the load and the utilization of a blocked
4443  * group_entity:
4444  */
4445 static inline bool skip_blocked_update(struct sched_entity *se)
4446 {
4447 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4448 
4449 	/*
4450 	 * If sched_entity still have not zero load or utilization, we have to
4451 	 * decay it:
4452 	 */
4453 	if (se->avg.load_avg || se->avg.util_avg)
4454 		return false;
4455 
4456 	/*
4457 	 * If there is a pending propagation, we have to update the load and
4458 	 * the utilization of the sched_entity:
4459 	 */
4460 	if (gcfs_rq->propagate)
4461 		return false;
4462 
4463 	/*
4464 	 * Otherwise, the load and the utilization of the sched_entity is
4465 	 * already zero and there is no pending propagation, so it will be a
4466 	 * waste of time to try to decay it:
4467 	 */
4468 	return true;
4469 }
4470 
4471 #else /* CONFIG_FAIR_GROUP_SCHED */
4472 
4473 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4474 
4475 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4476 
4477 static inline int propagate_entity_load_avg(struct sched_entity *se)
4478 {
4479 	return 0;
4480 }
4481 
4482 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4483 
4484 #endif /* CONFIG_FAIR_GROUP_SCHED */
4485 
4486 #ifdef CONFIG_NO_HZ_COMMON
4487 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4488 {
4489 	u64 throttled = 0, now, lut;
4490 	struct cfs_rq *cfs_rq;
4491 	struct rq *rq;
4492 	bool is_idle;
4493 
4494 	if (load_avg_is_decayed(&se->avg))
4495 		return;
4496 
4497 	cfs_rq = cfs_rq_of(se);
4498 	rq = rq_of(cfs_rq);
4499 
4500 	rcu_read_lock();
4501 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4502 	rcu_read_unlock();
4503 
4504 	/*
4505 	 * The lag estimation comes with a cost we don't want to pay all the
4506 	 * time. Hence, limiting to the case where the source CPU is idle and
4507 	 * we know we are at the greatest risk to have an outdated clock.
4508 	 */
4509 	if (!is_idle)
4510 		return;
4511 
4512 	/*
4513 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4514 	 *
4515 	 *   last_update_time (the cfs_rq's last_update_time)
4516 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4517 	 *      = rq_clock_pelt()@cfs_rq_idle
4518 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4519 	 *
4520 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4521 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4522 	 *
4523 	 *   rq_idle_lag (delta between now and rq's update)
4524 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4525 	 *
4526 	 * We can then write:
4527 	 *
4528 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4529 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4530 	 * Where:
4531 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4532 	 *      rq_clock()@rq_idle      is rq->clock_idle
4533 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4534 	 *                              is cfs_rq->throttled_pelt_idle
4535 	 */
4536 
4537 #ifdef CONFIG_CFS_BANDWIDTH
4538 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4539 	/* The clock has been stopped for throttling */
4540 	if (throttled == U64_MAX)
4541 		return;
4542 #endif
4543 	now = u64_u32_load(rq->clock_pelt_idle);
4544 	/*
4545 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4546 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4547 	 * which lead to an underestimation. The opposite would lead to an
4548 	 * overestimation.
4549 	 */
4550 	smp_rmb();
4551 	lut = cfs_rq_last_update_time(cfs_rq);
4552 
4553 	now -= throttled;
4554 	if (now < lut)
4555 		/*
4556 		 * cfs_rq->avg.last_update_time is more recent than our
4557 		 * estimation, let's use it.
4558 		 */
4559 		now = lut;
4560 	else
4561 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4562 
4563 	__update_load_avg_blocked_se(now, se);
4564 }
4565 #else
4566 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4567 #endif
4568 
4569 /**
4570  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4571  * @now: current time, as per cfs_rq_clock_pelt()
4572  * @cfs_rq: cfs_rq to update
4573  *
4574  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4575  * avg. The immediate corollary is that all (fair) tasks must be attached.
4576  *
4577  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4578  *
4579  * Return: true if the load decayed or we removed load.
4580  *
4581  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4582  * call update_tg_load_avg() when this function returns true.
4583  */
4584 static inline int
4585 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4586 {
4587 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4588 	struct sched_avg *sa = &cfs_rq->avg;
4589 	int decayed = 0;
4590 
4591 	if (cfs_rq->removed.nr) {
4592 		unsigned long r;
4593 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4594 
4595 		raw_spin_lock(&cfs_rq->removed.lock);
4596 		swap(cfs_rq->removed.util_avg, removed_util);
4597 		swap(cfs_rq->removed.load_avg, removed_load);
4598 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4599 		cfs_rq->removed.nr = 0;
4600 		raw_spin_unlock(&cfs_rq->removed.lock);
4601 
4602 		r = removed_load;
4603 		sub_positive(&sa->load_avg, r);
4604 		sub_positive(&sa->load_sum, r * divider);
4605 		/* See sa->util_sum below */
4606 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4607 
4608 		r = removed_util;
4609 		sub_positive(&sa->util_avg, r);
4610 		sub_positive(&sa->util_sum, r * divider);
4611 		/*
4612 		 * Because of rounding, se->util_sum might ends up being +1 more than
4613 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4614 		 * a lot of tasks with the rounding problem between 2 updates of
4615 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4616 		 * cfs_util_avg is not.
4617 		 * Check that util_sum is still above its lower bound for the new
4618 		 * util_avg. Given that period_contrib might have moved since the last
4619 		 * sync, we are only sure that util_sum must be above or equal to
4620 		 *    util_avg * minimum possible divider
4621 		 */
4622 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4623 
4624 		r = removed_runnable;
4625 		sub_positive(&sa->runnable_avg, r);
4626 		sub_positive(&sa->runnable_sum, r * divider);
4627 		/* See sa->util_sum above */
4628 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4629 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4630 
4631 		/*
4632 		 * removed_runnable is the unweighted version of removed_load so we
4633 		 * can use it to estimate removed_load_sum.
4634 		 */
4635 		add_tg_cfs_propagate(cfs_rq,
4636 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4637 
4638 		decayed = 1;
4639 	}
4640 
4641 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4642 	u64_u32_store_copy(sa->last_update_time,
4643 			   cfs_rq->last_update_time_copy,
4644 			   sa->last_update_time);
4645 	return decayed;
4646 }
4647 
4648 /**
4649  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4650  * @cfs_rq: cfs_rq to attach to
4651  * @se: sched_entity to attach
4652  *
4653  * Must call update_cfs_rq_load_avg() before this, since we rely on
4654  * cfs_rq->avg.last_update_time being current.
4655  */
4656 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4657 {
4658 	/*
4659 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4660 	 * See ___update_load_avg() for details.
4661 	 */
4662 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4663 
4664 	/*
4665 	 * When we attach the @se to the @cfs_rq, we must align the decay
4666 	 * window because without that, really weird and wonderful things can
4667 	 * happen.
4668 	 *
4669 	 * XXX illustrate
4670 	 */
4671 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4672 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4673 
4674 	/*
4675 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4676 	 * period_contrib. This isn't strictly correct, but since we're
4677 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4678 	 * _sum a little.
4679 	 */
4680 	se->avg.util_sum = se->avg.util_avg * divider;
4681 
4682 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4683 
4684 	se->avg.load_sum = se->avg.load_avg * divider;
4685 	if (se_weight(se) < se->avg.load_sum)
4686 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4687 	else
4688 		se->avg.load_sum = 1;
4689 
4690 	enqueue_load_avg(cfs_rq, se);
4691 	cfs_rq->avg.util_avg += se->avg.util_avg;
4692 	cfs_rq->avg.util_sum += se->avg.util_sum;
4693 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4694 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4695 
4696 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4697 
4698 	cfs_rq_util_change(cfs_rq, 0);
4699 
4700 	trace_pelt_cfs_tp(cfs_rq);
4701 }
4702 
4703 /**
4704  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4705  * @cfs_rq: cfs_rq to detach from
4706  * @se: sched_entity to detach
4707  *
4708  * Must call update_cfs_rq_load_avg() before this, since we rely on
4709  * cfs_rq->avg.last_update_time being current.
4710  */
4711 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4712 {
4713 	dequeue_load_avg(cfs_rq, se);
4714 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4715 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4716 	/* See update_cfs_rq_load_avg() */
4717 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4718 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4719 
4720 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4721 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4722 	/* See update_cfs_rq_load_avg() */
4723 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4724 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4725 
4726 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4727 
4728 	cfs_rq_util_change(cfs_rq, 0);
4729 
4730 	trace_pelt_cfs_tp(cfs_rq);
4731 }
4732 
4733 /*
4734  * Optional action to be done while updating the load average
4735  */
4736 #define UPDATE_TG	0x1
4737 #define SKIP_AGE_LOAD	0x2
4738 #define DO_ATTACH	0x4
4739 #define DO_DETACH	0x8
4740 
4741 /* Update task and its cfs_rq load average */
4742 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4743 {
4744 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4745 	int decayed;
4746 
4747 	/*
4748 	 * Track task load average for carrying it to new CPU after migrated, and
4749 	 * track group sched_entity load average for task_h_load calculation in migration
4750 	 */
4751 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4752 		__update_load_avg_se(now, cfs_rq, se);
4753 
4754 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4755 	decayed |= propagate_entity_load_avg(se);
4756 
4757 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4758 
4759 		/*
4760 		 * DO_ATTACH means we're here from enqueue_entity().
4761 		 * !last_update_time means we've passed through
4762 		 * migrate_task_rq_fair() indicating we migrated.
4763 		 *
4764 		 * IOW we're enqueueing a task on a new CPU.
4765 		 */
4766 		attach_entity_load_avg(cfs_rq, se);
4767 		update_tg_load_avg(cfs_rq);
4768 
4769 	} else if (flags & DO_DETACH) {
4770 		/*
4771 		 * DO_DETACH means we're here from dequeue_entity()
4772 		 * and we are migrating task out of the CPU.
4773 		 */
4774 		detach_entity_load_avg(cfs_rq, se);
4775 		update_tg_load_avg(cfs_rq);
4776 	} else if (decayed) {
4777 		cfs_rq_util_change(cfs_rq, 0);
4778 
4779 		if (flags & UPDATE_TG)
4780 			update_tg_load_avg(cfs_rq);
4781 	}
4782 }
4783 
4784 /*
4785  * Synchronize entity load avg of dequeued entity without locking
4786  * the previous rq.
4787  */
4788 static void sync_entity_load_avg(struct sched_entity *se)
4789 {
4790 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4791 	u64 last_update_time;
4792 
4793 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4794 	__update_load_avg_blocked_se(last_update_time, se);
4795 }
4796 
4797 /*
4798  * Task first catches up with cfs_rq, and then subtract
4799  * itself from the cfs_rq (task must be off the queue now).
4800  */
4801 static void remove_entity_load_avg(struct sched_entity *se)
4802 {
4803 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4804 	unsigned long flags;
4805 
4806 	/*
4807 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4808 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4809 	 * so we can remove unconditionally.
4810 	 */
4811 
4812 	sync_entity_load_avg(se);
4813 
4814 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4815 	++cfs_rq->removed.nr;
4816 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4817 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4818 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4819 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4820 }
4821 
4822 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4823 {
4824 	return cfs_rq->avg.runnable_avg;
4825 }
4826 
4827 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4828 {
4829 	return cfs_rq->avg.load_avg;
4830 }
4831 
4832 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4833 
4834 static inline unsigned long task_util(struct task_struct *p)
4835 {
4836 	return READ_ONCE(p->se.avg.util_avg);
4837 }
4838 
4839 static inline unsigned long task_runnable(struct task_struct *p)
4840 {
4841 	return READ_ONCE(p->se.avg.runnable_avg);
4842 }
4843 
4844 static inline unsigned long _task_util_est(struct task_struct *p)
4845 {
4846 	return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4847 }
4848 
4849 static inline unsigned long task_util_est(struct task_struct *p)
4850 {
4851 	return max(task_util(p), _task_util_est(p));
4852 }
4853 
4854 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4855 				    struct task_struct *p)
4856 {
4857 	unsigned int enqueued;
4858 
4859 	if (!sched_feat(UTIL_EST))
4860 		return;
4861 
4862 	/* Update root cfs_rq's estimated utilization */
4863 	enqueued  = cfs_rq->avg.util_est;
4864 	enqueued += _task_util_est(p);
4865 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4866 
4867 	trace_sched_util_est_cfs_tp(cfs_rq);
4868 }
4869 
4870 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4871 				    struct task_struct *p)
4872 {
4873 	unsigned int enqueued;
4874 
4875 	if (!sched_feat(UTIL_EST))
4876 		return;
4877 
4878 	/* Update root cfs_rq's estimated utilization */
4879 	enqueued  = cfs_rq->avg.util_est;
4880 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4881 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4882 
4883 	trace_sched_util_est_cfs_tp(cfs_rq);
4884 }
4885 
4886 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4887 
4888 static inline void util_est_update(struct cfs_rq *cfs_rq,
4889 				   struct task_struct *p,
4890 				   bool task_sleep)
4891 {
4892 	unsigned int ewma, dequeued, last_ewma_diff;
4893 
4894 	if (!sched_feat(UTIL_EST))
4895 		return;
4896 
4897 	/*
4898 	 * Skip update of task's estimated utilization when the task has not
4899 	 * yet completed an activation, e.g. being migrated.
4900 	 */
4901 	if (!task_sleep)
4902 		return;
4903 
4904 	/* Get current estimate of utilization */
4905 	ewma = READ_ONCE(p->se.avg.util_est);
4906 
4907 	/*
4908 	 * If the PELT values haven't changed since enqueue time,
4909 	 * skip the util_est update.
4910 	 */
4911 	if (ewma & UTIL_AVG_UNCHANGED)
4912 		return;
4913 
4914 	/* Get utilization at dequeue */
4915 	dequeued = task_util(p);
4916 
4917 	/*
4918 	 * Reset EWMA on utilization increases, the moving average is used only
4919 	 * to smooth utilization decreases.
4920 	 */
4921 	if (ewma <= dequeued) {
4922 		ewma = dequeued;
4923 		goto done;
4924 	}
4925 
4926 	/*
4927 	 * Skip update of task's estimated utilization when its members are
4928 	 * already ~1% close to its last activation value.
4929 	 */
4930 	last_ewma_diff = ewma - dequeued;
4931 	if (last_ewma_diff < UTIL_EST_MARGIN)
4932 		goto done;
4933 
4934 	/*
4935 	 * To avoid overestimation of actual task utilization, skip updates if
4936 	 * we cannot grant there is idle time in this CPU.
4937 	 */
4938 	if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
4939 		return;
4940 
4941 	/*
4942 	 * To avoid underestimate of task utilization, skip updates of EWMA if
4943 	 * we cannot grant that thread got all CPU time it wanted.
4944 	 */
4945 	if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
4946 		goto done;
4947 
4948 
4949 	/*
4950 	 * Update Task's estimated utilization
4951 	 *
4952 	 * When *p completes an activation we can consolidate another sample
4953 	 * of the task size. This is done by using this value to update the
4954 	 * Exponential Weighted Moving Average (EWMA):
4955 	 *
4956 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4957 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4958 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4959 	 *          = w * (      -last_ewma_diff           ) +     ewma(t-1)
4960 	 *          = w * (-last_ewma_diff +  ewma(t-1) / w)
4961 	 *
4962 	 * Where 'w' is the weight of new samples, which is configured to be
4963 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4964 	 */
4965 	ewma <<= UTIL_EST_WEIGHT_SHIFT;
4966 	ewma  -= last_ewma_diff;
4967 	ewma >>= UTIL_EST_WEIGHT_SHIFT;
4968 done:
4969 	ewma |= UTIL_AVG_UNCHANGED;
4970 	WRITE_ONCE(p->se.avg.util_est, ewma);
4971 
4972 	trace_sched_util_est_se_tp(&p->se);
4973 }
4974 
4975 static inline unsigned long get_actual_cpu_capacity(int cpu)
4976 {
4977 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
4978 
4979 	capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
4980 
4981 	return capacity;
4982 }
4983 
4984 static inline int util_fits_cpu(unsigned long util,
4985 				unsigned long uclamp_min,
4986 				unsigned long uclamp_max,
4987 				int cpu)
4988 {
4989 	unsigned long capacity = capacity_of(cpu);
4990 	unsigned long capacity_orig;
4991 	bool fits, uclamp_max_fits;
4992 
4993 	/*
4994 	 * Check if the real util fits without any uclamp boost/cap applied.
4995 	 */
4996 	fits = fits_capacity(util, capacity);
4997 
4998 	if (!uclamp_is_used())
4999 		return fits;
5000 
5001 	/*
5002 	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
5003 	 * uclamp_max. We only care about capacity pressure (by using
5004 	 * capacity_of()) for comparing against the real util.
5005 	 *
5006 	 * If a task is boosted to 1024 for example, we don't want a tiny
5007 	 * pressure to skew the check whether it fits a CPU or not.
5008 	 *
5009 	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
5010 	 * should fit a little cpu even if there's some pressure.
5011 	 *
5012 	 * Only exception is for HW or cpufreq pressure since it has a direct impact
5013 	 * on available OPP of the system.
5014 	 *
5015 	 * We honour it for uclamp_min only as a drop in performance level
5016 	 * could result in not getting the requested minimum performance level.
5017 	 *
5018 	 * For uclamp_max, we can tolerate a drop in performance level as the
5019 	 * goal is to cap the task. So it's okay if it's getting less.
5020 	 */
5021 	capacity_orig = arch_scale_cpu_capacity(cpu);
5022 
5023 	/*
5024 	 * We want to force a task to fit a cpu as implied by uclamp_max.
5025 	 * But we do have some corner cases to cater for..
5026 	 *
5027 	 *
5028 	 *                                 C=z
5029 	 *   |                             ___
5030 	 *   |                  C=y       |   |
5031 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
5032 	 *   |      C=x        |   |      |   |
5033 	 *   |      ___        |   |      |   |
5034 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5035 	 *   |     |   |       |   |      |   |
5036 	 *   |     |   |       |   |      |   |
5037 	 *   +----------------------------------------
5038 	 *         CPU0        CPU1       CPU2
5039 	 *
5040 	 *   In the above example if a task is capped to a specific performance
5041 	 *   point, y, then when:
5042 	 *
5043 	 *   * util = 80% of x then it does not fit on CPU0 and should migrate
5044 	 *     to CPU1
5045 	 *   * util = 80% of y then it is forced to fit on CPU1 to honour
5046 	 *     uclamp_max request.
5047 	 *
5048 	 *   which is what we're enforcing here. A task always fits if
5049 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5050 	 *   the normal upmigration rules should withhold still.
5051 	 *
5052 	 *   Only exception is when we are on max capacity, then we need to be
5053 	 *   careful not to block overutilized state. This is so because:
5054 	 *
5055 	 *     1. There's no concept of capping at max_capacity! We can't go
5056 	 *        beyond this performance level anyway.
5057 	 *     2. The system is being saturated when we're operating near
5058 	 *        max capacity, it doesn't make sense to block overutilized.
5059 	 */
5060 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5061 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5062 	fits = fits || uclamp_max_fits;
5063 
5064 	/*
5065 	 *
5066 	 *                                 C=z
5067 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5068 	 *   |                  C=y       |   |
5069 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5070 	 *   |      C=x        |   |      |   |
5071 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5072 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5073 	 *   |     |   |       |   |      |   |
5074 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5075 	 *   +----------------------------------------
5076 	 *         CPU0        CPU1       CPU2
5077 	 *
5078 	 * a) If util > uclamp_max, then we're capped, we don't care about
5079 	 *    actual fitness value here. We only care if uclamp_max fits
5080 	 *    capacity without taking margin/pressure into account.
5081 	 *    See comment above.
5082 	 *
5083 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5084 	 *    fits_capacity() rules apply. Except we need to ensure that we
5085 	 *    enforce we remain within uclamp_max, see comment above.
5086 	 *
5087 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5088 	 *    need to take into account the boosted value fits the CPU without
5089 	 *    taking margin/pressure into account.
5090 	 *
5091 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5092 	 * just need to consider an extra check for case (c) after ensuring we
5093 	 * handle the case uclamp_min > uclamp_max.
5094 	 */
5095 	uclamp_min = min(uclamp_min, uclamp_max);
5096 	if (fits && (util < uclamp_min) &&
5097 	    (uclamp_min > get_actual_cpu_capacity(cpu)))
5098 		return -1;
5099 
5100 	return fits;
5101 }
5102 
5103 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5104 {
5105 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5106 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5107 	unsigned long util = task_util_est(p);
5108 	/*
5109 	 * Return true only if the cpu fully fits the task requirements, which
5110 	 * include the utilization but also the performance hints.
5111 	 */
5112 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5113 }
5114 
5115 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5116 {
5117 	int cpu = cpu_of(rq);
5118 
5119 	if (!sched_asym_cpucap_active())
5120 		return;
5121 
5122 	/*
5123 	 * Affinity allows us to go somewhere higher?  Or are we on biggest
5124 	 * available CPU already? Or do we fit into this CPU ?
5125 	 */
5126 	if (!p || (p->nr_cpus_allowed == 1) ||
5127 	    (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5128 	    task_fits_cpu(p, cpu)) {
5129 
5130 		rq->misfit_task_load = 0;
5131 		return;
5132 	}
5133 
5134 	/*
5135 	 * Make sure that misfit_task_load will not be null even if
5136 	 * task_h_load() returns 0.
5137 	 */
5138 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5139 }
5140 
5141 #else /* CONFIG_SMP */
5142 
5143 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5144 {
5145 	return !cfs_rq->nr_running;
5146 }
5147 
5148 #define UPDATE_TG	0x0
5149 #define SKIP_AGE_LOAD	0x0
5150 #define DO_ATTACH	0x0
5151 #define DO_DETACH	0x0
5152 
5153 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5154 {
5155 	cfs_rq_util_change(cfs_rq, 0);
5156 }
5157 
5158 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5159 
5160 static inline void
5161 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5162 static inline void
5163 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5164 
5165 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
5166 {
5167 	return 0;
5168 }
5169 
5170 static inline void
5171 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5172 
5173 static inline void
5174 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5175 
5176 static inline void
5177 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5178 		bool task_sleep) {}
5179 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5180 
5181 #endif /* CONFIG_SMP */
5182 
5183 static void
5184 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5185 {
5186 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5187 	s64 lag = 0;
5188 
5189 	se->slice = sysctl_sched_base_slice;
5190 	vslice = calc_delta_fair(se->slice, se);
5191 
5192 	/*
5193 	 * Due to how V is constructed as the weighted average of entities,
5194 	 * adding tasks with positive lag, or removing tasks with negative lag
5195 	 * will move 'time' backwards, this can screw around with the lag of
5196 	 * other tasks.
5197 	 *
5198 	 * EEVDF: placement strategy #1 / #2
5199 	 */
5200 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5201 		struct sched_entity *curr = cfs_rq->curr;
5202 		unsigned long load;
5203 
5204 		lag = se->vlag;
5205 
5206 		/*
5207 		 * If we want to place a task and preserve lag, we have to
5208 		 * consider the effect of the new entity on the weighted
5209 		 * average and compensate for this, otherwise lag can quickly
5210 		 * evaporate.
5211 		 *
5212 		 * Lag is defined as:
5213 		 *
5214 		 *   lag_i = S - s_i = w_i * (V - v_i)
5215 		 *
5216 		 * To avoid the 'w_i' term all over the place, we only track
5217 		 * the virtual lag:
5218 		 *
5219 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5220 		 *
5221 		 * And we take V to be the weighted average of all v:
5222 		 *
5223 		 *   V = (\Sum w_j*v_j) / W
5224 		 *
5225 		 * Where W is: \Sum w_j
5226 		 *
5227 		 * Then, the weighted average after adding an entity with lag
5228 		 * vl_i is given by:
5229 		 *
5230 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5231 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5232 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5233 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5234 		 *      = V - w_i*vl_i / (W + w_i)
5235 		 *
5236 		 * And the actual lag after adding an entity with vl_i is:
5237 		 *
5238 		 *   vl'_i = V' - v_i
5239 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5240 		 *         = vl_i - w_i*vl_i / (W + w_i)
5241 		 *
5242 		 * Which is strictly less than vl_i. So in order to preserve lag
5243 		 * we should inflate the lag before placement such that the
5244 		 * effective lag after placement comes out right.
5245 		 *
5246 		 * As such, invert the above relation for vl'_i to get the vl_i
5247 		 * we need to use such that the lag after placement is the lag
5248 		 * we computed before dequeue.
5249 		 *
5250 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5251 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5252 		 *
5253 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5254 		 *                   = W*vl_i
5255 		 *
5256 		 *   vl_i = (W + w_i)*vl'_i / W
5257 		 */
5258 		load = cfs_rq->avg_load;
5259 		if (curr && curr->on_rq)
5260 			load += scale_load_down(curr->load.weight);
5261 
5262 		lag *= load + scale_load_down(se->load.weight);
5263 		if (WARN_ON_ONCE(!load))
5264 			load = 1;
5265 		lag = div_s64(lag, load);
5266 	}
5267 
5268 	se->vruntime = vruntime - lag;
5269 
5270 	/*
5271 	 * When joining the competition; the existing tasks will be,
5272 	 * on average, halfway through their slice, as such start tasks
5273 	 * off with half a slice to ease into the competition.
5274 	 */
5275 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5276 		vslice /= 2;
5277 
5278 	/*
5279 	 * EEVDF: vd_i = ve_i + r_i/w_i
5280 	 */
5281 	se->deadline = se->vruntime + vslice;
5282 }
5283 
5284 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5285 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5286 
5287 static inline bool cfs_bandwidth_used(void);
5288 
5289 static void
5290 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5291 {
5292 	bool curr = cfs_rq->curr == se;
5293 
5294 	/*
5295 	 * If we're the current task, we must renormalise before calling
5296 	 * update_curr().
5297 	 */
5298 	if (curr)
5299 		place_entity(cfs_rq, se, flags);
5300 
5301 	update_curr(cfs_rq);
5302 
5303 	/*
5304 	 * When enqueuing a sched_entity, we must:
5305 	 *   - Update loads to have both entity and cfs_rq synced with now.
5306 	 *   - For group_entity, update its runnable_weight to reflect the new
5307 	 *     h_nr_running of its group cfs_rq.
5308 	 *   - For group_entity, update its weight to reflect the new share of
5309 	 *     its group cfs_rq
5310 	 *   - Add its new weight to cfs_rq->load.weight
5311 	 */
5312 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5313 	se_update_runnable(se);
5314 	/*
5315 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5316 	 * but update_cfs_group() here will re-adjust the weight and have to
5317 	 * undo/redo all that. Seems wasteful.
5318 	 */
5319 	update_cfs_group(se);
5320 
5321 	/*
5322 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5323 	 * we can place the entity.
5324 	 */
5325 	if (!curr)
5326 		place_entity(cfs_rq, se, flags);
5327 
5328 	account_entity_enqueue(cfs_rq, se);
5329 
5330 	/* Entity has migrated, no longer consider this task hot */
5331 	if (flags & ENQUEUE_MIGRATED)
5332 		se->exec_start = 0;
5333 
5334 	check_schedstat_required();
5335 	update_stats_enqueue_fair(cfs_rq, se, flags);
5336 	if (!curr)
5337 		__enqueue_entity(cfs_rq, se);
5338 	se->on_rq = 1;
5339 
5340 	if (cfs_rq->nr_running == 1) {
5341 		check_enqueue_throttle(cfs_rq);
5342 		if (!throttled_hierarchy(cfs_rq)) {
5343 			list_add_leaf_cfs_rq(cfs_rq);
5344 		} else {
5345 #ifdef CONFIG_CFS_BANDWIDTH
5346 			struct rq *rq = rq_of(cfs_rq);
5347 
5348 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5349 				cfs_rq->throttled_clock = rq_clock(rq);
5350 			if (!cfs_rq->throttled_clock_self)
5351 				cfs_rq->throttled_clock_self = rq_clock(rq);
5352 #endif
5353 		}
5354 	}
5355 }
5356 
5357 static void __clear_buddies_next(struct sched_entity *se)
5358 {
5359 	for_each_sched_entity(se) {
5360 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5361 		if (cfs_rq->next != se)
5362 			break;
5363 
5364 		cfs_rq->next = NULL;
5365 	}
5366 }
5367 
5368 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5369 {
5370 	if (cfs_rq->next == se)
5371 		__clear_buddies_next(se);
5372 }
5373 
5374 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5375 
5376 static void
5377 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5378 {
5379 	int action = UPDATE_TG;
5380 
5381 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5382 		action |= DO_DETACH;
5383 
5384 	/*
5385 	 * Update run-time statistics of the 'current'.
5386 	 */
5387 	update_curr(cfs_rq);
5388 
5389 	/*
5390 	 * When dequeuing a sched_entity, we must:
5391 	 *   - Update loads to have both entity and cfs_rq synced with now.
5392 	 *   - For group_entity, update its runnable_weight to reflect the new
5393 	 *     h_nr_running of its group cfs_rq.
5394 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5395 	 *   - For group entity, update its weight to reflect the new share
5396 	 *     of its group cfs_rq.
5397 	 */
5398 	update_load_avg(cfs_rq, se, action);
5399 	se_update_runnable(se);
5400 
5401 	update_stats_dequeue_fair(cfs_rq, se, flags);
5402 
5403 	clear_buddies(cfs_rq, se);
5404 
5405 	update_entity_lag(cfs_rq, se);
5406 	if (se != cfs_rq->curr)
5407 		__dequeue_entity(cfs_rq, se);
5408 	se->on_rq = 0;
5409 	account_entity_dequeue(cfs_rq, se);
5410 
5411 	/* return excess runtime on last dequeue */
5412 	return_cfs_rq_runtime(cfs_rq);
5413 
5414 	update_cfs_group(se);
5415 
5416 	/*
5417 	 * Now advance min_vruntime if @se was the entity holding it back,
5418 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5419 	 * put back on, and if we advance min_vruntime, we'll be placed back
5420 	 * further than we started -- i.e. we'll be penalized.
5421 	 */
5422 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5423 		update_min_vruntime(cfs_rq);
5424 
5425 	if (cfs_rq->nr_running == 0)
5426 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5427 }
5428 
5429 static void
5430 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5431 {
5432 	clear_buddies(cfs_rq, se);
5433 
5434 	/* 'current' is not kept within the tree. */
5435 	if (se->on_rq) {
5436 		/*
5437 		 * Any task has to be enqueued before it get to execute on
5438 		 * a CPU. So account for the time it spent waiting on the
5439 		 * runqueue.
5440 		 */
5441 		update_stats_wait_end_fair(cfs_rq, se);
5442 		__dequeue_entity(cfs_rq, se);
5443 		update_load_avg(cfs_rq, se, UPDATE_TG);
5444 		/*
5445 		 * HACK, stash a copy of deadline at the point of pick in vlag,
5446 		 * which isn't used until dequeue.
5447 		 */
5448 		se->vlag = se->deadline;
5449 	}
5450 
5451 	update_stats_curr_start(cfs_rq, se);
5452 	cfs_rq->curr = se;
5453 
5454 	/*
5455 	 * Track our maximum slice length, if the CPU's load is at
5456 	 * least twice that of our own weight (i.e. don't track it
5457 	 * when there are only lesser-weight tasks around):
5458 	 */
5459 	if (schedstat_enabled() &&
5460 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5461 		struct sched_statistics *stats;
5462 
5463 		stats = __schedstats_from_se(se);
5464 		__schedstat_set(stats->slice_max,
5465 				max((u64)stats->slice_max,
5466 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5467 	}
5468 
5469 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5470 }
5471 
5472 /*
5473  * Pick the next process, keeping these things in mind, in this order:
5474  * 1) keep things fair between processes/task groups
5475  * 2) pick the "next" process, since someone really wants that to run
5476  * 3) pick the "last" process, for cache locality
5477  * 4) do not run the "skip" process, if something else is available
5478  */
5479 static struct sched_entity *
5480 pick_next_entity(struct cfs_rq *cfs_rq)
5481 {
5482 	/*
5483 	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5484 	 */
5485 	if (sched_feat(NEXT_BUDDY) &&
5486 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5487 		return cfs_rq->next;
5488 
5489 	return pick_eevdf(cfs_rq);
5490 }
5491 
5492 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5493 
5494 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5495 {
5496 	/*
5497 	 * If still on the runqueue then deactivate_task()
5498 	 * was not called and update_curr() has to be done:
5499 	 */
5500 	if (prev->on_rq)
5501 		update_curr(cfs_rq);
5502 
5503 	/* throttle cfs_rqs exceeding runtime */
5504 	check_cfs_rq_runtime(cfs_rq);
5505 
5506 	if (prev->on_rq) {
5507 		update_stats_wait_start_fair(cfs_rq, prev);
5508 		/* Put 'current' back into the tree. */
5509 		__enqueue_entity(cfs_rq, prev);
5510 		/* in !on_rq case, update occurred at dequeue */
5511 		update_load_avg(cfs_rq, prev, 0);
5512 	}
5513 	cfs_rq->curr = NULL;
5514 }
5515 
5516 static void
5517 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5518 {
5519 	/*
5520 	 * Update run-time statistics of the 'current'.
5521 	 */
5522 	update_curr(cfs_rq);
5523 
5524 	/*
5525 	 * Ensure that runnable average is periodically updated.
5526 	 */
5527 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5528 	update_cfs_group(curr);
5529 
5530 #ifdef CONFIG_SCHED_HRTICK
5531 	/*
5532 	 * queued ticks are scheduled to match the slice, so don't bother
5533 	 * validating it and just reschedule.
5534 	 */
5535 	if (queued) {
5536 		resched_curr(rq_of(cfs_rq));
5537 		return;
5538 	}
5539 	/*
5540 	 * don't let the period tick interfere with the hrtick preemption
5541 	 */
5542 	if (!sched_feat(DOUBLE_TICK) &&
5543 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5544 		return;
5545 #endif
5546 }
5547 
5548 
5549 /**************************************************
5550  * CFS bandwidth control machinery
5551  */
5552 
5553 #ifdef CONFIG_CFS_BANDWIDTH
5554 
5555 #ifdef CONFIG_JUMP_LABEL
5556 static struct static_key __cfs_bandwidth_used;
5557 
5558 static inline bool cfs_bandwidth_used(void)
5559 {
5560 	return static_key_false(&__cfs_bandwidth_used);
5561 }
5562 
5563 void cfs_bandwidth_usage_inc(void)
5564 {
5565 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5566 }
5567 
5568 void cfs_bandwidth_usage_dec(void)
5569 {
5570 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5571 }
5572 #else /* CONFIG_JUMP_LABEL */
5573 static bool cfs_bandwidth_used(void)
5574 {
5575 	return true;
5576 }
5577 
5578 void cfs_bandwidth_usage_inc(void) {}
5579 void cfs_bandwidth_usage_dec(void) {}
5580 #endif /* CONFIG_JUMP_LABEL */
5581 
5582 /*
5583  * default period for cfs group bandwidth.
5584  * default: 0.1s, units: nanoseconds
5585  */
5586 static inline u64 default_cfs_period(void)
5587 {
5588 	return 100000000ULL;
5589 }
5590 
5591 static inline u64 sched_cfs_bandwidth_slice(void)
5592 {
5593 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5594 }
5595 
5596 /*
5597  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5598  * directly instead of rq->clock to avoid adding additional synchronization
5599  * around rq->lock.
5600  *
5601  * requires cfs_b->lock
5602  */
5603 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5604 {
5605 	s64 runtime;
5606 
5607 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5608 		return;
5609 
5610 	cfs_b->runtime += cfs_b->quota;
5611 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5612 	if (runtime > 0) {
5613 		cfs_b->burst_time += runtime;
5614 		cfs_b->nr_burst++;
5615 	}
5616 
5617 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5618 	cfs_b->runtime_snap = cfs_b->runtime;
5619 }
5620 
5621 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5622 {
5623 	return &tg->cfs_bandwidth;
5624 }
5625 
5626 /* returns 0 on failure to allocate runtime */
5627 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5628 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5629 {
5630 	u64 min_amount, amount = 0;
5631 
5632 	lockdep_assert_held(&cfs_b->lock);
5633 
5634 	/* note: this is a positive sum as runtime_remaining <= 0 */
5635 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5636 
5637 	if (cfs_b->quota == RUNTIME_INF)
5638 		amount = min_amount;
5639 	else {
5640 		start_cfs_bandwidth(cfs_b);
5641 
5642 		if (cfs_b->runtime > 0) {
5643 			amount = min(cfs_b->runtime, min_amount);
5644 			cfs_b->runtime -= amount;
5645 			cfs_b->idle = 0;
5646 		}
5647 	}
5648 
5649 	cfs_rq->runtime_remaining += amount;
5650 
5651 	return cfs_rq->runtime_remaining > 0;
5652 }
5653 
5654 /* returns 0 on failure to allocate runtime */
5655 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5656 {
5657 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5658 	int ret;
5659 
5660 	raw_spin_lock(&cfs_b->lock);
5661 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5662 	raw_spin_unlock(&cfs_b->lock);
5663 
5664 	return ret;
5665 }
5666 
5667 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5668 {
5669 	/* dock delta_exec before expiring quota (as it could span periods) */
5670 	cfs_rq->runtime_remaining -= delta_exec;
5671 
5672 	if (likely(cfs_rq->runtime_remaining > 0))
5673 		return;
5674 
5675 	if (cfs_rq->throttled)
5676 		return;
5677 	/*
5678 	 * if we're unable to extend our runtime we resched so that the active
5679 	 * hierarchy can be throttled
5680 	 */
5681 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5682 		resched_curr(rq_of(cfs_rq));
5683 }
5684 
5685 static __always_inline
5686 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5687 {
5688 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5689 		return;
5690 
5691 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5692 }
5693 
5694 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5695 {
5696 	return cfs_bandwidth_used() && cfs_rq->throttled;
5697 }
5698 
5699 /* check whether cfs_rq, or any parent, is throttled */
5700 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5701 {
5702 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5703 }
5704 
5705 /*
5706  * Ensure that neither of the group entities corresponding to src_cpu or
5707  * dest_cpu are members of a throttled hierarchy when performing group
5708  * load-balance operations.
5709  */
5710 static inline int throttled_lb_pair(struct task_group *tg,
5711 				    int src_cpu, int dest_cpu)
5712 {
5713 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5714 
5715 	src_cfs_rq = tg->cfs_rq[src_cpu];
5716 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5717 
5718 	return throttled_hierarchy(src_cfs_rq) ||
5719 	       throttled_hierarchy(dest_cfs_rq);
5720 }
5721 
5722 static int tg_unthrottle_up(struct task_group *tg, void *data)
5723 {
5724 	struct rq *rq = data;
5725 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5726 
5727 	cfs_rq->throttle_count--;
5728 	if (!cfs_rq->throttle_count) {
5729 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5730 					     cfs_rq->throttled_clock_pelt;
5731 
5732 		/* Add cfs_rq with load or one or more already running entities to the list */
5733 		if (!cfs_rq_is_decayed(cfs_rq))
5734 			list_add_leaf_cfs_rq(cfs_rq);
5735 
5736 		if (cfs_rq->throttled_clock_self) {
5737 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5738 
5739 			cfs_rq->throttled_clock_self = 0;
5740 
5741 			if (SCHED_WARN_ON((s64)delta < 0))
5742 				delta = 0;
5743 
5744 			cfs_rq->throttled_clock_self_time += delta;
5745 		}
5746 	}
5747 
5748 	return 0;
5749 }
5750 
5751 static int tg_throttle_down(struct task_group *tg, void *data)
5752 {
5753 	struct rq *rq = data;
5754 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5755 
5756 	/* group is entering throttled state, stop time */
5757 	if (!cfs_rq->throttle_count) {
5758 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5759 		list_del_leaf_cfs_rq(cfs_rq);
5760 
5761 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5762 		if (cfs_rq->nr_running)
5763 			cfs_rq->throttled_clock_self = rq_clock(rq);
5764 	}
5765 	cfs_rq->throttle_count++;
5766 
5767 	return 0;
5768 }
5769 
5770 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5771 {
5772 	struct rq *rq = rq_of(cfs_rq);
5773 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5774 	struct sched_entity *se;
5775 	long task_delta, idle_task_delta, dequeue = 1;
5776 
5777 	raw_spin_lock(&cfs_b->lock);
5778 	/* This will start the period timer if necessary */
5779 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5780 		/*
5781 		 * We have raced with bandwidth becoming available, and if we
5782 		 * actually throttled the timer might not unthrottle us for an
5783 		 * entire period. We additionally needed to make sure that any
5784 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5785 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5786 		 * for 1ns of runtime rather than just check cfs_b.
5787 		 */
5788 		dequeue = 0;
5789 	} else {
5790 		list_add_tail_rcu(&cfs_rq->throttled_list,
5791 				  &cfs_b->throttled_cfs_rq);
5792 	}
5793 	raw_spin_unlock(&cfs_b->lock);
5794 
5795 	if (!dequeue)
5796 		return false;  /* Throttle no longer required. */
5797 
5798 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5799 
5800 	/* freeze hierarchy runnable averages while throttled */
5801 	rcu_read_lock();
5802 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5803 	rcu_read_unlock();
5804 
5805 	task_delta = cfs_rq->h_nr_running;
5806 	idle_task_delta = cfs_rq->idle_h_nr_running;
5807 	for_each_sched_entity(se) {
5808 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5809 		/* throttled entity or throttle-on-deactivate */
5810 		if (!se->on_rq)
5811 			goto done;
5812 
5813 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5814 
5815 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5816 			idle_task_delta = cfs_rq->h_nr_running;
5817 
5818 		qcfs_rq->h_nr_running -= task_delta;
5819 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5820 
5821 		if (qcfs_rq->load.weight) {
5822 			/* Avoid re-evaluating load for this entity: */
5823 			se = parent_entity(se);
5824 			break;
5825 		}
5826 	}
5827 
5828 	for_each_sched_entity(se) {
5829 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5830 		/* throttled entity or throttle-on-deactivate */
5831 		if (!se->on_rq)
5832 			goto done;
5833 
5834 		update_load_avg(qcfs_rq, se, 0);
5835 		se_update_runnable(se);
5836 
5837 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5838 			idle_task_delta = cfs_rq->h_nr_running;
5839 
5840 		qcfs_rq->h_nr_running -= task_delta;
5841 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5842 	}
5843 
5844 	/* At this point se is NULL and we are at root level*/
5845 	sub_nr_running(rq, task_delta);
5846 
5847 done:
5848 	/*
5849 	 * Note: distribution will already see us throttled via the
5850 	 * throttled-list.  rq->lock protects completion.
5851 	 */
5852 	cfs_rq->throttled = 1;
5853 	SCHED_WARN_ON(cfs_rq->throttled_clock);
5854 	if (cfs_rq->nr_running)
5855 		cfs_rq->throttled_clock = rq_clock(rq);
5856 	return true;
5857 }
5858 
5859 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5860 {
5861 	struct rq *rq = rq_of(cfs_rq);
5862 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5863 	struct sched_entity *se;
5864 	long task_delta, idle_task_delta;
5865 
5866 	se = cfs_rq->tg->se[cpu_of(rq)];
5867 
5868 	cfs_rq->throttled = 0;
5869 
5870 	update_rq_clock(rq);
5871 
5872 	raw_spin_lock(&cfs_b->lock);
5873 	if (cfs_rq->throttled_clock) {
5874 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5875 		cfs_rq->throttled_clock = 0;
5876 	}
5877 	list_del_rcu(&cfs_rq->throttled_list);
5878 	raw_spin_unlock(&cfs_b->lock);
5879 
5880 	/* update hierarchical throttle state */
5881 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5882 
5883 	if (!cfs_rq->load.weight) {
5884 		if (!cfs_rq->on_list)
5885 			return;
5886 		/*
5887 		 * Nothing to run but something to decay (on_list)?
5888 		 * Complete the branch.
5889 		 */
5890 		for_each_sched_entity(se) {
5891 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5892 				break;
5893 		}
5894 		goto unthrottle_throttle;
5895 	}
5896 
5897 	task_delta = cfs_rq->h_nr_running;
5898 	idle_task_delta = cfs_rq->idle_h_nr_running;
5899 	for_each_sched_entity(se) {
5900 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5901 
5902 		if (se->on_rq)
5903 			break;
5904 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5905 
5906 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5907 			idle_task_delta = cfs_rq->h_nr_running;
5908 
5909 		qcfs_rq->h_nr_running += task_delta;
5910 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5911 
5912 		/* end evaluation on encountering a throttled cfs_rq */
5913 		if (cfs_rq_throttled(qcfs_rq))
5914 			goto unthrottle_throttle;
5915 	}
5916 
5917 	for_each_sched_entity(se) {
5918 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5919 
5920 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5921 		se_update_runnable(se);
5922 
5923 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5924 			idle_task_delta = cfs_rq->h_nr_running;
5925 
5926 		qcfs_rq->h_nr_running += task_delta;
5927 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5928 
5929 		/* end evaluation on encountering a throttled cfs_rq */
5930 		if (cfs_rq_throttled(qcfs_rq))
5931 			goto unthrottle_throttle;
5932 	}
5933 
5934 	/* At this point se is NULL and we are at root level*/
5935 	add_nr_running(rq, task_delta);
5936 
5937 unthrottle_throttle:
5938 	assert_list_leaf_cfs_rq(rq);
5939 
5940 	/* Determine whether we need to wake up potentially idle CPU: */
5941 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5942 		resched_curr(rq);
5943 }
5944 
5945 #ifdef CONFIG_SMP
5946 static void __cfsb_csd_unthrottle(void *arg)
5947 {
5948 	struct cfs_rq *cursor, *tmp;
5949 	struct rq *rq = arg;
5950 	struct rq_flags rf;
5951 
5952 	rq_lock(rq, &rf);
5953 
5954 	/*
5955 	 * Iterating over the list can trigger several call to
5956 	 * update_rq_clock() in unthrottle_cfs_rq().
5957 	 * Do it once and skip the potential next ones.
5958 	 */
5959 	update_rq_clock(rq);
5960 	rq_clock_start_loop_update(rq);
5961 
5962 	/*
5963 	 * Since we hold rq lock we're safe from concurrent manipulation of
5964 	 * the CSD list. However, this RCU critical section annotates the
5965 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
5966 	 * race with group being freed in the window between removing it
5967 	 * from the list and advancing to the next entry in the list.
5968 	 */
5969 	rcu_read_lock();
5970 
5971 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5972 				 throttled_csd_list) {
5973 		list_del_init(&cursor->throttled_csd_list);
5974 
5975 		if (cfs_rq_throttled(cursor))
5976 			unthrottle_cfs_rq(cursor);
5977 	}
5978 
5979 	rcu_read_unlock();
5980 
5981 	rq_clock_stop_loop_update(rq);
5982 	rq_unlock(rq, &rf);
5983 }
5984 
5985 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5986 {
5987 	struct rq *rq = rq_of(cfs_rq);
5988 	bool first;
5989 
5990 	if (rq == this_rq()) {
5991 		unthrottle_cfs_rq(cfs_rq);
5992 		return;
5993 	}
5994 
5995 	/* Already enqueued */
5996 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5997 		return;
5998 
5999 	first = list_empty(&rq->cfsb_csd_list);
6000 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6001 	if (first)
6002 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6003 }
6004 #else
6005 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6006 {
6007 	unthrottle_cfs_rq(cfs_rq);
6008 }
6009 #endif
6010 
6011 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6012 {
6013 	lockdep_assert_rq_held(rq_of(cfs_rq));
6014 
6015 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
6016 	    cfs_rq->runtime_remaining <= 0))
6017 		return;
6018 
6019 	__unthrottle_cfs_rq_async(cfs_rq);
6020 }
6021 
6022 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6023 {
6024 	int this_cpu = smp_processor_id();
6025 	u64 runtime, remaining = 1;
6026 	bool throttled = false;
6027 	struct cfs_rq *cfs_rq, *tmp;
6028 	struct rq_flags rf;
6029 	struct rq *rq;
6030 	LIST_HEAD(local_unthrottle);
6031 
6032 	rcu_read_lock();
6033 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6034 				throttled_list) {
6035 		rq = rq_of(cfs_rq);
6036 
6037 		if (!remaining) {
6038 			throttled = true;
6039 			break;
6040 		}
6041 
6042 		rq_lock_irqsave(rq, &rf);
6043 		if (!cfs_rq_throttled(cfs_rq))
6044 			goto next;
6045 
6046 		/* Already queued for async unthrottle */
6047 		if (!list_empty(&cfs_rq->throttled_csd_list))
6048 			goto next;
6049 
6050 		/* By the above checks, this should never be true */
6051 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6052 
6053 		raw_spin_lock(&cfs_b->lock);
6054 		runtime = -cfs_rq->runtime_remaining + 1;
6055 		if (runtime > cfs_b->runtime)
6056 			runtime = cfs_b->runtime;
6057 		cfs_b->runtime -= runtime;
6058 		remaining = cfs_b->runtime;
6059 		raw_spin_unlock(&cfs_b->lock);
6060 
6061 		cfs_rq->runtime_remaining += runtime;
6062 
6063 		/* we check whether we're throttled above */
6064 		if (cfs_rq->runtime_remaining > 0) {
6065 			if (cpu_of(rq) != this_cpu) {
6066 				unthrottle_cfs_rq_async(cfs_rq);
6067 			} else {
6068 				/*
6069 				 * We currently only expect to be unthrottling
6070 				 * a single cfs_rq locally.
6071 				 */
6072 				SCHED_WARN_ON(!list_empty(&local_unthrottle));
6073 				list_add_tail(&cfs_rq->throttled_csd_list,
6074 					      &local_unthrottle);
6075 			}
6076 		} else {
6077 			throttled = true;
6078 		}
6079 
6080 next:
6081 		rq_unlock_irqrestore(rq, &rf);
6082 	}
6083 
6084 	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6085 				 throttled_csd_list) {
6086 		struct rq *rq = rq_of(cfs_rq);
6087 
6088 		rq_lock_irqsave(rq, &rf);
6089 
6090 		list_del_init(&cfs_rq->throttled_csd_list);
6091 
6092 		if (cfs_rq_throttled(cfs_rq))
6093 			unthrottle_cfs_rq(cfs_rq);
6094 
6095 		rq_unlock_irqrestore(rq, &rf);
6096 	}
6097 	SCHED_WARN_ON(!list_empty(&local_unthrottle));
6098 
6099 	rcu_read_unlock();
6100 
6101 	return throttled;
6102 }
6103 
6104 /*
6105  * Responsible for refilling a task_group's bandwidth and unthrottling its
6106  * cfs_rqs as appropriate. If there has been no activity within the last
6107  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6108  * used to track this state.
6109  */
6110 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6111 {
6112 	int throttled;
6113 
6114 	/* no need to continue the timer with no bandwidth constraint */
6115 	if (cfs_b->quota == RUNTIME_INF)
6116 		goto out_deactivate;
6117 
6118 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6119 	cfs_b->nr_periods += overrun;
6120 
6121 	/* Refill extra burst quota even if cfs_b->idle */
6122 	__refill_cfs_bandwidth_runtime(cfs_b);
6123 
6124 	/*
6125 	 * idle depends on !throttled (for the case of a large deficit), and if
6126 	 * we're going inactive then everything else can be deferred
6127 	 */
6128 	if (cfs_b->idle && !throttled)
6129 		goto out_deactivate;
6130 
6131 	if (!throttled) {
6132 		/* mark as potentially idle for the upcoming period */
6133 		cfs_b->idle = 1;
6134 		return 0;
6135 	}
6136 
6137 	/* account preceding periods in which throttling occurred */
6138 	cfs_b->nr_throttled += overrun;
6139 
6140 	/*
6141 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6142 	 */
6143 	while (throttled && cfs_b->runtime > 0) {
6144 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6145 		/* we can't nest cfs_b->lock while distributing bandwidth */
6146 		throttled = distribute_cfs_runtime(cfs_b);
6147 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6148 	}
6149 
6150 	/*
6151 	 * While we are ensured activity in the period following an
6152 	 * unthrottle, this also covers the case in which the new bandwidth is
6153 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6154 	 * timer to remain active while there are any throttled entities.)
6155 	 */
6156 	cfs_b->idle = 0;
6157 
6158 	return 0;
6159 
6160 out_deactivate:
6161 	return 1;
6162 }
6163 
6164 /* a cfs_rq won't donate quota below this amount */
6165 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6166 /* minimum remaining period time to redistribute slack quota */
6167 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6168 /* how long we wait to gather additional slack before distributing */
6169 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6170 
6171 /*
6172  * Are we near the end of the current quota period?
6173  *
6174  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6175  * hrtimer base being cleared by hrtimer_start. In the case of
6176  * migrate_hrtimers, base is never cleared, so we are fine.
6177  */
6178 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6179 {
6180 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6181 	s64 remaining;
6182 
6183 	/* if the call-back is running a quota refresh is already occurring */
6184 	if (hrtimer_callback_running(refresh_timer))
6185 		return 1;
6186 
6187 	/* is a quota refresh about to occur? */
6188 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6189 	if (remaining < (s64)min_expire)
6190 		return 1;
6191 
6192 	return 0;
6193 }
6194 
6195 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6196 {
6197 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6198 
6199 	/* if there's a quota refresh soon don't bother with slack */
6200 	if (runtime_refresh_within(cfs_b, min_left))
6201 		return;
6202 
6203 	/* don't push forwards an existing deferred unthrottle */
6204 	if (cfs_b->slack_started)
6205 		return;
6206 	cfs_b->slack_started = true;
6207 
6208 	hrtimer_start(&cfs_b->slack_timer,
6209 			ns_to_ktime(cfs_bandwidth_slack_period),
6210 			HRTIMER_MODE_REL);
6211 }
6212 
6213 /* we know any runtime found here is valid as update_curr() precedes return */
6214 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6215 {
6216 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6217 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6218 
6219 	if (slack_runtime <= 0)
6220 		return;
6221 
6222 	raw_spin_lock(&cfs_b->lock);
6223 	if (cfs_b->quota != RUNTIME_INF) {
6224 		cfs_b->runtime += slack_runtime;
6225 
6226 		/* we are under rq->lock, defer unthrottling using a timer */
6227 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6228 		    !list_empty(&cfs_b->throttled_cfs_rq))
6229 			start_cfs_slack_bandwidth(cfs_b);
6230 	}
6231 	raw_spin_unlock(&cfs_b->lock);
6232 
6233 	/* even if it's not valid for return we don't want to try again */
6234 	cfs_rq->runtime_remaining -= slack_runtime;
6235 }
6236 
6237 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6238 {
6239 	if (!cfs_bandwidth_used())
6240 		return;
6241 
6242 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6243 		return;
6244 
6245 	__return_cfs_rq_runtime(cfs_rq);
6246 }
6247 
6248 /*
6249  * This is done with a timer (instead of inline with bandwidth return) since
6250  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6251  */
6252 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6253 {
6254 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6255 	unsigned long flags;
6256 
6257 	/* confirm we're still not at a refresh boundary */
6258 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6259 	cfs_b->slack_started = false;
6260 
6261 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6262 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6263 		return;
6264 	}
6265 
6266 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6267 		runtime = cfs_b->runtime;
6268 
6269 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6270 
6271 	if (!runtime)
6272 		return;
6273 
6274 	distribute_cfs_runtime(cfs_b);
6275 }
6276 
6277 /*
6278  * When a group wakes up we want to make sure that its quota is not already
6279  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6280  * runtime as update_curr() throttling can not trigger until it's on-rq.
6281  */
6282 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6283 {
6284 	if (!cfs_bandwidth_used())
6285 		return;
6286 
6287 	/* an active group must be handled by the update_curr()->put() path */
6288 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6289 		return;
6290 
6291 	/* ensure the group is not already throttled */
6292 	if (cfs_rq_throttled(cfs_rq))
6293 		return;
6294 
6295 	/* update runtime allocation */
6296 	account_cfs_rq_runtime(cfs_rq, 0);
6297 	if (cfs_rq->runtime_remaining <= 0)
6298 		throttle_cfs_rq(cfs_rq);
6299 }
6300 
6301 static void sync_throttle(struct task_group *tg, int cpu)
6302 {
6303 	struct cfs_rq *pcfs_rq, *cfs_rq;
6304 
6305 	if (!cfs_bandwidth_used())
6306 		return;
6307 
6308 	if (!tg->parent)
6309 		return;
6310 
6311 	cfs_rq = tg->cfs_rq[cpu];
6312 	pcfs_rq = tg->parent->cfs_rq[cpu];
6313 
6314 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6315 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6316 }
6317 
6318 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6319 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6320 {
6321 	if (!cfs_bandwidth_used())
6322 		return false;
6323 
6324 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6325 		return false;
6326 
6327 	/*
6328 	 * it's possible for a throttled entity to be forced into a running
6329 	 * state (e.g. set_curr_task), in this case we're finished.
6330 	 */
6331 	if (cfs_rq_throttled(cfs_rq))
6332 		return true;
6333 
6334 	return throttle_cfs_rq(cfs_rq);
6335 }
6336 
6337 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6338 {
6339 	struct cfs_bandwidth *cfs_b =
6340 		container_of(timer, struct cfs_bandwidth, slack_timer);
6341 
6342 	do_sched_cfs_slack_timer(cfs_b);
6343 
6344 	return HRTIMER_NORESTART;
6345 }
6346 
6347 extern const u64 max_cfs_quota_period;
6348 
6349 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6350 {
6351 	struct cfs_bandwidth *cfs_b =
6352 		container_of(timer, struct cfs_bandwidth, period_timer);
6353 	unsigned long flags;
6354 	int overrun;
6355 	int idle = 0;
6356 	int count = 0;
6357 
6358 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6359 	for (;;) {
6360 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6361 		if (!overrun)
6362 			break;
6363 
6364 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6365 
6366 		if (++count > 3) {
6367 			u64 new, old = ktime_to_ns(cfs_b->period);
6368 
6369 			/*
6370 			 * Grow period by a factor of 2 to avoid losing precision.
6371 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6372 			 * to fail.
6373 			 */
6374 			new = old * 2;
6375 			if (new < max_cfs_quota_period) {
6376 				cfs_b->period = ns_to_ktime(new);
6377 				cfs_b->quota *= 2;
6378 				cfs_b->burst *= 2;
6379 
6380 				pr_warn_ratelimited(
6381 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6382 					smp_processor_id(),
6383 					div_u64(new, NSEC_PER_USEC),
6384 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6385 			} else {
6386 				pr_warn_ratelimited(
6387 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6388 					smp_processor_id(),
6389 					div_u64(old, NSEC_PER_USEC),
6390 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6391 			}
6392 
6393 			/* reset count so we don't come right back in here */
6394 			count = 0;
6395 		}
6396 	}
6397 	if (idle)
6398 		cfs_b->period_active = 0;
6399 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6400 
6401 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6402 }
6403 
6404 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6405 {
6406 	raw_spin_lock_init(&cfs_b->lock);
6407 	cfs_b->runtime = 0;
6408 	cfs_b->quota = RUNTIME_INF;
6409 	cfs_b->period = ns_to_ktime(default_cfs_period());
6410 	cfs_b->burst = 0;
6411 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6412 
6413 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6414 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6415 	cfs_b->period_timer.function = sched_cfs_period_timer;
6416 
6417 	/* Add a random offset so that timers interleave */
6418 	hrtimer_set_expires(&cfs_b->period_timer,
6419 			    get_random_u32_below(cfs_b->period));
6420 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6421 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6422 	cfs_b->slack_started = false;
6423 }
6424 
6425 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6426 {
6427 	cfs_rq->runtime_enabled = 0;
6428 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6429 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6430 }
6431 
6432 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6433 {
6434 	lockdep_assert_held(&cfs_b->lock);
6435 
6436 	if (cfs_b->period_active)
6437 		return;
6438 
6439 	cfs_b->period_active = 1;
6440 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6441 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6442 }
6443 
6444 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6445 {
6446 	int __maybe_unused i;
6447 
6448 	/* init_cfs_bandwidth() was not called */
6449 	if (!cfs_b->throttled_cfs_rq.next)
6450 		return;
6451 
6452 	hrtimer_cancel(&cfs_b->period_timer);
6453 	hrtimer_cancel(&cfs_b->slack_timer);
6454 
6455 	/*
6456 	 * It is possible that we still have some cfs_rq's pending on a CSD
6457 	 * list, though this race is very rare. In order for this to occur, we
6458 	 * must have raced with the last task leaving the group while there
6459 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6460 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6461 	 * we can simply flush all pending CSD work inline here. We're
6462 	 * guaranteed at this point that no additional cfs_rq of this group can
6463 	 * join a CSD list.
6464 	 */
6465 #ifdef CONFIG_SMP
6466 	for_each_possible_cpu(i) {
6467 		struct rq *rq = cpu_rq(i);
6468 		unsigned long flags;
6469 
6470 		if (list_empty(&rq->cfsb_csd_list))
6471 			continue;
6472 
6473 		local_irq_save(flags);
6474 		__cfsb_csd_unthrottle(rq);
6475 		local_irq_restore(flags);
6476 	}
6477 #endif
6478 }
6479 
6480 /*
6481  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6482  *
6483  * The race is harmless, since modifying bandwidth settings of unhooked group
6484  * bits doesn't do much.
6485  */
6486 
6487 /* cpu online callback */
6488 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6489 {
6490 	struct task_group *tg;
6491 
6492 	lockdep_assert_rq_held(rq);
6493 
6494 	rcu_read_lock();
6495 	list_for_each_entry_rcu(tg, &task_groups, list) {
6496 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6497 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6498 
6499 		raw_spin_lock(&cfs_b->lock);
6500 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6501 		raw_spin_unlock(&cfs_b->lock);
6502 	}
6503 	rcu_read_unlock();
6504 }
6505 
6506 /* cpu offline callback */
6507 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6508 {
6509 	struct task_group *tg;
6510 
6511 	lockdep_assert_rq_held(rq);
6512 
6513 	/*
6514 	 * The rq clock has already been updated in the
6515 	 * set_rq_offline(), so we should skip updating
6516 	 * the rq clock again in unthrottle_cfs_rq().
6517 	 */
6518 	rq_clock_start_loop_update(rq);
6519 
6520 	rcu_read_lock();
6521 	list_for_each_entry_rcu(tg, &task_groups, list) {
6522 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6523 
6524 		if (!cfs_rq->runtime_enabled)
6525 			continue;
6526 
6527 		/*
6528 		 * clock_task is not advancing so we just need to make sure
6529 		 * there's some valid quota amount
6530 		 */
6531 		cfs_rq->runtime_remaining = 1;
6532 		/*
6533 		 * Offline rq is schedulable till CPU is completely disabled
6534 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6535 		 */
6536 		cfs_rq->runtime_enabled = 0;
6537 
6538 		if (cfs_rq_throttled(cfs_rq))
6539 			unthrottle_cfs_rq(cfs_rq);
6540 	}
6541 	rcu_read_unlock();
6542 
6543 	rq_clock_stop_loop_update(rq);
6544 }
6545 
6546 bool cfs_task_bw_constrained(struct task_struct *p)
6547 {
6548 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6549 
6550 	if (!cfs_bandwidth_used())
6551 		return false;
6552 
6553 	if (cfs_rq->runtime_enabled ||
6554 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6555 		return true;
6556 
6557 	return false;
6558 }
6559 
6560 #ifdef CONFIG_NO_HZ_FULL
6561 /* called from pick_next_task_fair() */
6562 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6563 {
6564 	int cpu = cpu_of(rq);
6565 
6566 	if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6567 		return;
6568 
6569 	if (!tick_nohz_full_cpu(cpu))
6570 		return;
6571 
6572 	if (rq->nr_running != 1)
6573 		return;
6574 
6575 	/*
6576 	 *  We know there is only one task runnable and we've just picked it. The
6577 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6578 	 *  be otherwise able to stop the tick. Just need to check if we are using
6579 	 *  bandwidth control.
6580 	 */
6581 	if (cfs_task_bw_constrained(p))
6582 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6583 }
6584 #endif
6585 
6586 #else /* CONFIG_CFS_BANDWIDTH */
6587 
6588 static inline bool cfs_bandwidth_used(void)
6589 {
6590 	return false;
6591 }
6592 
6593 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6594 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6595 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6596 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6597 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6598 
6599 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6600 {
6601 	return 0;
6602 }
6603 
6604 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6605 {
6606 	return 0;
6607 }
6608 
6609 static inline int throttled_lb_pair(struct task_group *tg,
6610 				    int src_cpu, int dest_cpu)
6611 {
6612 	return 0;
6613 }
6614 
6615 #ifdef CONFIG_FAIR_GROUP_SCHED
6616 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6617 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6618 #endif
6619 
6620 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6621 {
6622 	return NULL;
6623 }
6624 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6625 static inline void update_runtime_enabled(struct rq *rq) {}
6626 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6627 #ifdef CONFIG_CGROUP_SCHED
6628 bool cfs_task_bw_constrained(struct task_struct *p)
6629 {
6630 	return false;
6631 }
6632 #endif
6633 #endif /* CONFIG_CFS_BANDWIDTH */
6634 
6635 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6636 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6637 #endif
6638 
6639 /**************************************************
6640  * CFS operations on tasks:
6641  */
6642 
6643 #ifdef CONFIG_SCHED_HRTICK
6644 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6645 {
6646 	struct sched_entity *se = &p->se;
6647 
6648 	SCHED_WARN_ON(task_rq(p) != rq);
6649 
6650 	if (rq->cfs.h_nr_running > 1) {
6651 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6652 		u64 slice = se->slice;
6653 		s64 delta = slice - ran;
6654 
6655 		if (delta < 0) {
6656 			if (task_current(rq, p))
6657 				resched_curr(rq);
6658 			return;
6659 		}
6660 		hrtick_start(rq, delta);
6661 	}
6662 }
6663 
6664 /*
6665  * called from enqueue/dequeue and updates the hrtick when the
6666  * current task is from our class and nr_running is low enough
6667  * to matter.
6668  */
6669 static void hrtick_update(struct rq *rq)
6670 {
6671 	struct task_struct *curr = rq->curr;
6672 
6673 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6674 		return;
6675 
6676 	hrtick_start_fair(rq, curr);
6677 }
6678 #else /* !CONFIG_SCHED_HRTICK */
6679 static inline void
6680 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6681 {
6682 }
6683 
6684 static inline void hrtick_update(struct rq *rq)
6685 {
6686 }
6687 #endif
6688 
6689 #ifdef CONFIG_SMP
6690 static inline bool cpu_overutilized(int cpu)
6691 {
6692 	unsigned long  rq_util_min, rq_util_max;
6693 
6694 	if (!sched_energy_enabled())
6695 		return false;
6696 
6697 	rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6698 	rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6699 
6700 	/* Return true only if the utilization doesn't fit CPU's capacity */
6701 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6702 }
6703 
6704 /*
6705  * overutilized value make sense only if EAS is enabled
6706  */
6707 static inline bool is_rd_overutilized(struct root_domain *rd)
6708 {
6709 	return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6710 }
6711 
6712 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6713 {
6714 	if (!sched_energy_enabled())
6715 		return;
6716 
6717 	WRITE_ONCE(rd->overutilized, flag);
6718 	trace_sched_overutilized_tp(rd, flag);
6719 }
6720 
6721 static inline void check_update_overutilized_status(struct rq *rq)
6722 {
6723 	/*
6724 	 * overutilized field is used for load balancing decisions only
6725 	 * if energy aware scheduler is being used
6726 	 */
6727 
6728 	if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6729 		set_rd_overutilized(rq->rd, 1);
6730 }
6731 #else
6732 static inline void check_update_overutilized_status(struct rq *rq) { }
6733 #endif
6734 
6735 /* Runqueue only has SCHED_IDLE tasks enqueued */
6736 static int sched_idle_rq(struct rq *rq)
6737 {
6738 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6739 			rq->nr_running);
6740 }
6741 
6742 #ifdef CONFIG_SMP
6743 static int sched_idle_cpu(int cpu)
6744 {
6745 	return sched_idle_rq(cpu_rq(cpu));
6746 }
6747 #endif
6748 
6749 /*
6750  * The enqueue_task method is called before nr_running is
6751  * increased. Here we update the fair scheduling stats and
6752  * then put the task into the rbtree:
6753  */
6754 static void
6755 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6756 {
6757 	struct cfs_rq *cfs_rq;
6758 	struct sched_entity *se = &p->se;
6759 	int idle_h_nr_running = task_has_idle_policy(p);
6760 	int task_new = !(flags & ENQUEUE_WAKEUP);
6761 
6762 	/*
6763 	 * The code below (indirectly) updates schedutil which looks at
6764 	 * the cfs_rq utilization to select a frequency.
6765 	 * Let's add the task's estimated utilization to the cfs_rq's
6766 	 * estimated utilization, before we update schedutil.
6767 	 */
6768 	util_est_enqueue(&rq->cfs, p);
6769 
6770 	/*
6771 	 * If in_iowait is set, the code below may not trigger any cpufreq
6772 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6773 	 * passed.
6774 	 */
6775 	if (p->in_iowait)
6776 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6777 
6778 	for_each_sched_entity(se) {
6779 		if (se->on_rq)
6780 			break;
6781 		cfs_rq = cfs_rq_of(se);
6782 		enqueue_entity(cfs_rq, se, flags);
6783 
6784 		cfs_rq->h_nr_running++;
6785 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6786 
6787 		if (cfs_rq_is_idle(cfs_rq))
6788 			idle_h_nr_running = 1;
6789 
6790 		/* end evaluation on encountering a throttled cfs_rq */
6791 		if (cfs_rq_throttled(cfs_rq))
6792 			goto enqueue_throttle;
6793 
6794 		flags = ENQUEUE_WAKEUP;
6795 	}
6796 
6797 	for_each_sched_entity(se) {
6798 		cfs_rq = cfs_rq_of(se);
6799 
6800 		update_load_avg(cfs_rq, se, UPDATE_TG);
6801 		se_update_runnable(se);
6802 		update_cfs_group(se);
6803 
6804 		cfs_rq->h_nr_running++;
6805 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6806 
6807 		if (cfs_rq_is_idle(cfs_rq))
6808 			idle_h_nr_running = 1;
6809 
6810 		/* end evaluation on encountering a throttled cfs_rq */
6811 		if (cfs_rq_throttled(cfs_rq))
6812 			goto enqueue_throttle;
6813 	}
6814 
6815 	/* At this point se is NULL and we are at root level*/
6816 	add_nr_running(rq, 1);
6817 
6818 	/*
6819 	 * Since new tasks are assigned an initial util_avg equal to
6820 	 * half of the spare capacity of their CPU, tiny tasks have the
6821 	 * ability to cross the overutilized threshold, which will
6822 	 * result in the load balancer ruining all the task placement
6823 	 * done by EAS. As a way to mitigate that effect, do not account
6824 	 * for the first enqueue operation of new tasks during the
6825 	 * overutilized flag detection.
6826 	 *
6827 	 * A better way of solving this problem would be to wait for
6828 	 * the PELT signals of tasks to converge before taking them
6829 	 * into account, but that is not straightforward to implement,
6830 	 * and the following generally works well enough in practice.
6831 	 */
6832 	if (!task_new)
6833 		check_update_overutilized_status(rq);
6834 
6835 enqueue_throttle:
6836 	assert_list_leaf_cfs_rq(rq);
6837 
6838 	hrtick_update(rq);
6839 }
6840 
6841 static void set_next_buddy(struct sched_entity *se);
6842 
6843 /*
6844  * The dequeue_task method is called before nr_running is
6845  * decreased. We remove the task from the rbtree and
6846  * update the fair scheduling stats:
6847  */
6848 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6849 {
6850 	struct cfs_rq *cfs_rq;
6851 	struct sched_entity *se = &p->se;
6852 	int task_sleep = flags & DEQUEUE_SLEEP;
6853 	int idle_h_nr_running = task_has_idle_policy(p);
6854 	bool was_sched_idle = sched_idle_rq(rq);
6855 
6856 	util_est_dequeue(&rq->cfs, p);
6857 
6858 	for_each_sched_entity(se) {
6859 		cfs_rq = cfs_rq_of(se);
6860 		dequeue_entity(cfs_rq, se, flags);
6861 
6862 		cfs_rq->h_nr_running--;
6863 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6864 
6865 		if (cfs_rq_is_idle(cfs_rq))
6866 			idle_h_nr_running = 1;
6867 
6868 		/* end evaluation on encountering a throttled cfs_rq */
6869 		if (cfs_rq_throttled(cfs_rq))
6870 			goto dequeue_throttle;
6871 
6872 		/* Don't dequeue parent if it has other entities besides us */
6873 		if (cfs_rq->load.weight) {
6874 			/* Avoid re-evaluating load for this entity: */
6875 			se = parent_entity(se);
6876 			/*
6877 			 * Bias pick_next to pick a task from this cfs_rq, as
6878 			 * p is sleeping when it is within its sched_slice.
6879 			 */
6880 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6881 				set_next_buddy(se);
6882 			break;
6883 		}
6884 		flags |= DEQUEUE_SLEEP;
6885 	}
6886 
6887 	for_each_sched_entity(se) {
6888 		cfs_rq = cfs_rq_of(se);
6889 
6890 		update_load_avg(cfs_rq, se, UPDATE_TG);
6891 		se_update_runnable(se);
6892 		update_cfs_group(se);
6893 
6894 		cfs_rq->h_nr_running--;
6895 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6896 
6897 		if (cfs_rq_is_idle(cfs_rq))
6898 			idle_h_nr_running = 1;
6899 
6900 		/* end evaluation on encountering a throttled cfs_rq */
6901 		if (cfs_rq_throttled(cfs_rq))
6902 			goto dequeue_throttle;
6903 
6904 	}
6905 
6906 	/* At this point se is NULL and we are at root level*/
6907 	sub_nr_running(rq, 1);
6908 
6909 	/* balance early to pull high priority tasks */
6910 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6911 		rq->next_balance = jiffies;
6912 
6913 dequeue_throttle:
6914 	util_est_update(&rq->cfs, p, task_sleep);
6915 	hrtick_update(rq);
6916 }
6917 
6918 #ifdef CONFIG_SMP
6919 
6920 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
6921 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6922 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6923 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
6924 
6925 #ifdef CONFIG_NO_HZ_COMMON
6926 
6927 static struct {
6928 	cpumask_var_t idle_cpus_mask;
6929 	atomic_t nr_cpus;
6930 	int has_blocked;		/* Idle CPUS has blocked load */
6931 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
6932 	unsigned long next_balance;     /* in jiffy units */
6933 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6934 } nohz ____cacheline_aligned;
6935 
6936 #endif /* CONFIG_NO_HZ_COMMON */
6937 
6938 static unsigned long cpu_load(struct rq *rq)
6939 {
6940 	return cfs_rq_load_avg(&rq->cfs);
6941 }
6942 
6943 /*
6944  * cpu_load_without - compute CPU load without any contributions from *p
6945  * @cpu: the CPU which load is requested
6946  * @p: the task which load should be discounted
6947  *
6948  * The load of a CPU is defined by the load of tasks currently enqueued on that
6949  * CPU as well as tasks which are currently sleeping after an execution on that
6950  * CPU.
6951  *
6952  * This method returns the load of the specified CPU by discounting the load of
6953  * the specified task, whenever the task is currently contributing to the CPU
6954  * load.
6955  */
6956 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6957 {
6958 	struct cfs_rq *cfs_rq;
6959 	unsigned int load;
6960 
6961 	/* Task has no contribution or is new */
6962 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6963 		return cpu_load(rq);
6964 
6965 	cfs_rq = &rq->cfs;
6966 	load = READ_ONCE(cfs_rq->avg.load_avg);
6967 
6968 	/* Discount task's util from CPU's util */
6969 	lsub_positive(&load, task_h_load(p));
6970 
6971 	return load;
6972 }
6973 
6974 static unsigned long cpu_runnable(struct rq *rq)
6975 {
6976 	return cfs_rq_runnable_avg(&rq->cfs);
6977 }
6978 
6979 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6980 {
6981 	struct cfs_rq *cfs_rq;
6982 	unsigned int runnable;
6983 
6984 	/* Task has no contribution or is new */
6985 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6986 		return cpu_runnable(rq);
6987 
6988 	cfs_rq = &rq->cfs;
6989 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6990 
6991 	/* Discount task's runnable from CPU's runnable */
6992 	lsub_positive(&runnable, p->se.avg.runnable_avg);
6993 
6994 	return runnable;
6995 }
6996 
6997 static unsigned long capacity_of(int cpu)
6998 {
6999 	return cpu_rq(cpu)->cpu_capacity;
7000 }
7001 
7002 static void record_wakee(struct task_struct *p)
7003 {
7004 	/*
7005 	 * Only decay a single time; tasks that have less then 1 wakeup per
7006 	 * jiffy will not have built up many flips.
7007 	 */
7008 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7009 		current->wakee_flips >>= 1;
7010 		current->wakee_flip_decay_ts = jiffies;
7011 	}
7012 
7013 	if (current->last_wakee != p) {
7014 		current->last_wakee = p;
7015 		current->wakee_flips++;
7016 	}
7017 }
7018 
7019 /*
7020  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7021  *
7022  * A waker of many should wake a different task than the one last awakened
7023  * at a frequency roughly N times higher than one of its wakees.
7024  *
7025  * In order to determine whether we should let the load spread vs consolidating
7026  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7027  * partner, and a factor of lls_size higher frequency in the other.
7028  *
7029  * With both conditions met, we can be relatively sure that the relationship is
7030  * non-monogamous, with partner count exceeding socket size.
7031  *
7032  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7033  * whatever is irrelevant, spread criteria is apparent partner count exceeds
7034  * socket size.
7035  */
7036 static int wake_wide(struct task_struct *p)
7037 {
7038 	unsigned int master = current->wakee_flips;
7039 	unsigned int slave = p->wakee_flips;
7040 	int factor = __this_cpu_read(sd_llc_size);
7041 
7042 	if (master < slave)
7043 		swap(master, slave);
7044 	if (slave < factor || master < slave * factor)
7045 		return 0;
7046 	return 1;
7047 }
7048 
7049 /*
7050  * The purpose of wake_affine() is to quickly determine on which CPU we can run
7051  * soonest. For the purpose of speed we only consider the waking and previous
7052  * CPU.
7053  *
7054  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7055  *			cache-affine and is (or	will be) idle.
7056  *
7057  * wake_affine_weight() - considers the weight to reflect the average
7058  *			  scheduling latency of the CPUs. This seems to work
7059  *			  for the overloaded case.
7060  */
7061 static int
7062 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7063 {
7064 	/*
7065 	 * If this_cpu is idle, it implies the wakeup is from interrupt
7066 	 * context. Only allow the move if cache is shared. Otherwise an
7067 	 * interrupt intensive workload could force all tasks onto one
7068 	 * node depending on the IO topology or IRQ affinity settings.
7069 	 *
7070 	 * If the prev_cpu is idle and cache affine then avoid a migration.
7071 	 * There is no guarantee that the cache hot data from an interrupt
7072 	 * is more important than cache hot data on the prev_cpu and from
7073 	 * a cpufreq perspective, it's better to have higher utilisation
7074 	 * on one CPU.
7075 	 */
7076 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7077 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7078 
7079 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
7080 		return this_cpu;
7081 
7082 	if (available_idle_cpu(prev_cpu))
7083 		return prev_cpu;
7084 
7085 	return nr_cpumask_bits;
7086 }
7087 
7088 static int
7089 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7090 		   int this_cpu, int prev_cpu, int sync)
7091 {
7092 	s64 this_eff_load, prev_eff_load;
7093 	unsigned long task_load;
7094 
7095 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7096 
7097 	if (sync) {
7098 		unsigned long current_load = task_h_load(current);
7099 
7100 		if (current_load > this_eff_load)
7101 			return this_cpu;
7102 
7103 		this_eff_load -= current_load;
7104 	}
7105 
7106 	task_load = task_h_load(p);
7107 
7108 	this_eff_load += task_load;
7109 	if (sched_feat(WA_BIAS))
7110 		this_eff_load *= 100;
7111 	this_eff_load *= capacity_of(prev_cpu);
7112 
7113 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7114 	prev_eff_load -= task_load;
7115 	if (sched_feat(WA_BIAS))
7116 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7117 	prev_eff_load *= capacity_of(this_cpu);
7118 
7119 	/*
7120 	 * If sync, adjust the weight of prev_eff_load such that if
7121 	 * prev_eff == this_eff that select_idle_sibling() will consider
7122 	 * stacking the wakee on top of the waker if no other CPU is
7123 	 * idle.
7124 	 */
7125 	if (sync)
7126 		prev_eff_load += 1;
7127 
7128 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7129 }
7130 
7131 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7132 		       int this_cpu, int prev_cpu, int sync)
7133 {
7134 	int target = nr_cpumask_bits;
7135 
7136 	if (sched_feat(WA_IDLE))
7137 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7138 
7139 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7140 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7141 
7142 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7143 	if (target != this_cpu)
7144 		return prev_cpu;
7145 
7146 	schedstat_inc(sd->ttwu_move_affine);
7147 	schedstat_inc(p->stats.nr_wakeups_affine);
7148 	return target;
7149 }
7150 
7151 static struct sched_group *
7152 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7153 
7154 /*
7155  * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7156  */
7157 static int
7158 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7159 {
7160 	unsigned long load, min_load = ULONG_MAX;
7161 	unsigned int min_exit_latency = UINT_MAX;
7162 	u64 latest_idle_timestamp = 0;
7163 	int least_loaded_cpu = this_cpu;
7164 	int shallowest_idle_cpu = -1;
7165 	int i;
7166 
7167 	/* Check if we have any choice: */
7168 	if (group->group_weight == 1)
7169 		return cpumask_first(sched_group_span(group));
7170 
7171 	/* Traverse only the allowed CPUs */
7172 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7173 		struct rq *rq = cpu_rq(i);
7174 
7175 		if (!sched_core_cookie_match(rq, p))
7176 			continue;
7177 
7178 		if (sched_idle_cpu(i))
7179 			return i;
7180 
7181 		if (available_idle_cpu(i)) {
7182 			struct cpuidle_state *idle = idle_get_state(rq);
7183 			if (idle && idle->exit_latency < min_exit_latency) {
7184 				/*
7185 				 * We give priority to a CPU whose idle state
7186 				 * has the smallest exit latency irrespective
7187 				 * of any idle timestamp.
7188 				 */
7189 				min_exit_latency = idle->exit_latency;
7190 				latest_idle_timestamp = rq->idle_stamp;
7191 				shallowest_idle_cpu = i;
7192 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7193 				   rq->idle_stamp > latest_idle_timestamp) {
7194 				/*
7195 				 * If equal or no active idle state, then
7196 				 * the most recently idled CPU might have
7197 				 * a warmer cache.
7198 				 */
7199 				latest_idle_timestamp = rq->idle_stamp;
7200 				shallowest_idle_cpu = i;
7201 			}
7202 		} else if (shallowest_idle_cpu == -1) {
7203 			load = cpu_load(cpu_rq(i));
7204 			if (load < min_load) {
7205 				min_load = load;
7206 				least_loaded_cpu = i;
7207 			}
7208 		}
7209 	}
7210 
7211 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7212 }
7213 
7214 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7215 				  int cpu, int prev_cpu, int sd_flag)
7216 {
7217 	int new_cpu = cpu;
7218 
7219 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7220 		return prev_cpu;
7221 
7222 	/*
7223 	 * We need task's util for cpu_util_without, sync it up to
7224 	 * prev_cpu's last_update_time.
7225 	 */
7226 	if (!(sd_flag & SD_BALANCE_FORK))
7227 		sync_entity_load_avg(&p->se);
7228 
7229 	while (sd) {
7230 		struct sched_group *group;
7231 		struct sched_domain *tmp;
7232 		int weight;
7233 
7234 		if (!(sd->flags & sd_flag)) {
7235 			sd = sd->child;
7236 			continue;
7237 		}
7238 
7239 		group = sched_balance_find_dst_group(sd, p, cpu);
7240 		if (!group) {
7241 			sd = sd->child;
7242 			continue;
7243 		}
7244 
7245 		new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7246 		if (new_cpu == cpu) {
7247 			/* Now try balancing at a lower domain level of 'cpu': */
7248 			sd = sd->child;
7249 			continue;
7250 		}
7251 
7252 		/* Now try balancing at a lower domain level of 'new_cpu': */
7253 		cpu = new_cpu;
7254 		weight = sd->span_weight;
7255 		sd = NULL;
7256 		for_each_domain(cpu, tmp) {
7257 			if (weight <= tmp->span_weight)
7258 				break;
7259 			if (tmp->flags & sd_flag)
7260 				sd = tmp;
7261 		}
7262 	}
7263 
7264 	return new_cpu;
7265 }
7266 
7267 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7268 {
7269 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7270 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7271 		return cpu;
7272 
7273 	return -1;
7274 }
7275 
7276 #ifdef CONFIG_SCHED_SMT
7277 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7278 EXPORT_SYMBOL_GPL(sched_smt_present);
7279 
7280 static inline void set_idle_cores(int cpu, int val)
7281 {
7282 	struct sched_domain_shared *sds;
7283 
7284 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7285 	if (sds)
7286 		WRITE_ONCE(sds->has_idle_cores, val);
7287 }
7288 
7289 static inline bool test_idle_cores(int cpu)
7290 {
7291 	struct sched_domain_shared *sds;
7292 
7293 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7294 	if (sds)
7295 		return READ_ONCE(sds->has_idle_cores);
7296 
7297 	return false;
7298 }
7299 
7300 /*
7301  * Scans the local SMT mask to see if the entire core is idle, and records this
7302  * information in sd_llc_shared->has_idle_cores.
7303  *
7304  * Since SMT siblings share all cache levels, inspecting this limited remote
7305  * state should be fairly cheap.
7306  */
7307 void __update_idle_core(struct rq *rq)
7308 {
7309 	int core = cpu_of(rq);
7310 	int cpu;
7311 
7312 	rcu_read_lock();
7313 	if (test_idle_cores(core))
7314 		goto unlock;
7315 
7316 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7317 		if (cpu == core)
7318 			continue;
7319 
7320 		if (!available_idle_cpu(cpu))
7321 			goto unlock;
7322 	}
7323 
7324 	set_idle_cores(core, 1);
7325 unlock:
7326 	rcu_read_unlock();
7327 }
7328 
7329 /*
7330  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7331  * there are no idle cores left in the system; tracked through
7332  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7333  */
7334 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7335 {
7336 	bool idle = true;
7337 	int cpu;
7338 
7339 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7340 		if (!available_idle_cpu(cpu)) {
7341 			idle = false;
7342 			if (*idle_cpu == -1) {
7343 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7344 					*idle_cpu = cpu;
7345 					break;
7346 				}
7347 				continue;
7348 			}
7349 			break;
7350 		}
7351 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7352 			*idle_cpu = cpu;
7353 	}
7354 
7355 	if (idle)
7356 		return core;
7357 
7358 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7359 	return -1;
7360 }
7361 
7362 /*
7363  * Scan the local SMT mask for idle CPUs.
7364  */
7365 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7366 {
7367 	int cpu;
7368 
7369 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7370 		if (cpu == target)
7371 			continue;
7372 		/*
7373 		 * Check if the CPU is in the LLC scheduling domain of @target.
7374 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7375 		 */
7376 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7377 			continue;
7378 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7379 			return cpu;
7380 	}
7381 
7382 	return -1;
7383 }
7384 
7385 #else /* CONFIG_SCHED_SMT */
7386 
7387 static inline void set_idle_cores(int cpu, int val)
7388 {
7389 }
7390 
7391 static inline bool test_idle_cores(int cpu)
7392 {
7393 	return false;
7394 }
7395 
7396 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7397 {
7398 	return __select_idle_cpu(core, p);
7399 }
7400 
7401 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7402 {
7403 	return -1;
7404 }
7405 
7406 #endif /* CONFIG_SCHED_SMT */
7407 
7408 /*
7409  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7410  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7411  * average idle time for this rq (as found in rq->avg_idle).
7412  */
7413 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7414 {
7415 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7416 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7417 	struct sched_domain_shared *sd_share;
7418 
7419 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7420 
7421 	if (sched_feat(SIS_UTIL)) {
7422 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7423 		if (sd_share) {
7424 			/* because !--nr is the condition to stop scan */
7425 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7426 			/* overloaded LLC is unlikely to have idle cpu/core */
7427 			if (nr == 1)
7428 				return -1;
7429 		}
7430 	}
7431 
7432 	if (static_branch_unlikely(&sched_cluster_active)) {
7433 		struct sched_group *sg = sd->groups;
7434 
7435 		if (sg->flags & SD_CLUSTER) {
7436 			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7437 				if (!cpumask_test_cpu(cpu, cpus))
7438 					continue;
7439 
7440 				if (has_idle_core) {
7441 					i = select_idle_core(p, cpu, cpus, &idle_cpu);
7442 					if ((unsigned int)i < nr_cpumask_bits)
7443 						return i;
7444 				} else {
7445 					if (--nr <= 0)
7446 						return -1;
7447 					idle_cpu = __select_idle_cpu(cpu, p);
7448 					if ((unsigned int)idle_cpu < nr_cpumask_bits)
7449 						return idle_cpu;
7450 				}
7451 			}
7452 			cpumask_andnot(cpus, cpus, sched_group_span(sg));
7453 		}
7454 	}
7455 
7456 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7457 		if (has_idle_core) {
7458 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7459 			if ((unsigned int)i < nr_cpumask_bits)
7460 				return i;
7461 
7462 		} else {
7463 			if (--nr <= 0)
7464 				return -1;
7465 			idle_cpu = __select_idle_cpu(cpu, p);
7466 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7467 				break;
7468 		}
7469 	}
7470 
7471 	if (has_idle_core)
7472 		set_idle_cores(target, false);
7473 
7474 	return idle_cpu;
7475 }
7476 
7477 /*
7478  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7479  * the task fits. If no CPU is big enough, but there are idle ones, try to
7480  * maximize capacity.
7481  */
7482 static int
7483 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7484 {
7485 	unsigned long task_util, util_min, util_max, best_cap = 0;
7486 	int fits, best_fits = 0;
7487 	int cpu, best_cpu = -1;
7488 	struct cpumask *cpus;
7489 
7490 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7491 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7492 
7493 	task_util = task_util_est(p);
7494 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7495 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7496 
7497 	for_each_cpu_wrap(cpu, cpus, target) {
7498 		unsigned long cpu_cap = capacity_of(cpu);
7499 
7500 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7501 			continue;
7502 
7503 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7504 
7505 		/* This CPU fits with all requirements */
7506 		if (fits > 0)
7507 			return cpu;
7508 		/*
7509 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7510 		 * Look for the CPU with best capacity.
7511 		 */
7512 		else if (fits < 0)
7513 			cpu_cap = get_actual_cpu_capacity(cpu);
7514 
7515 		/*
7516 		 * First, select CPU which fits better (-1 being better than 0).
7517 		 * Then, select the one with best capacity at same level.
7518 		 */
7519 		if ((fits < best_fits) ||
7520 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7521 			best_cap = cpu_cap;
7522 			best_cpu = cpu;
7523 			best_fits = fits;
7524 		}
7525 	}
7526 
7527 	return best_cpu;
7528 }
7529 
7530 static inline bool asym_fits_cpu(unsigned long util,
7531 				 unsigned long util_min,
7532 				 unsigned long util_max,
7533 				 int cpu)
7534 {
7535 	if (sched_asym_cpucap_active())
7536 		/*
7537 		 * Return true only if the cpu fully fits the task requirements
7538 		 * which include the utilization and the performance hints.
7539 		 */
7540 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7541 
7542 	return true;
7543 }
7544 
7545 /*
7546  * Try and locate an idle core/thread in the LLC cache domain.
7547  */
7548 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7549 {
7550 	bool has_idle_core = false;
7551 	struct sched_domain *sd;
7552 	unsigned long task_util, util_min, util_max;
7553 	int i, recent_used_cpu, prev_aff = -1;
7554 
7555 	/*
7556 	 * On asymmetric system, update task utilization because we will check
7557 	 * that the task fits with CPU's capacity.
7558 	 */
7559 	if (sched_asym_cpucap_active()) {
7560 		sync_entity_load_avg(&p->se);
7561 		task_util = task_util_est(p);
7562 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7563 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7564 	}
7565 
7566 	/*
7567 	 * per-cpu select_rq_mask usage
7568 	 */
7569 	lockdep_assert_irqs_disabled();
7570 
7571 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7572 	    asym_fits_cpu(task_util, util_min, util_max, target))
7573 		return target;
7574 
7575 	/*
7576 	 * If the previous CPU is cache affine and idle, don't be stupid:
7577 	 */
7578 	if (prev != target && cpus_share_cache(prev, target) &&
7579 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7580 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7581 
7582 		if (!static_branch_unlikely(&sched_cluster_active) ||
7583 		    cpus_share_resources(prev, target))
7584 			return prev;
7585 
7586 		prev_aff = prev;
7587 	}
7588 
7589 	/*
7590 	 * Allow a per-cpu kthread to stack with the wakee if the
7591 	 * kworker thread and the tasks previous CPUs are the same.
7592 	 * The assumption is that the wakee queued work for the
7593 	 * per-cpu kthread that is now complete and the wakeup is
7594 	 * essentially a sync wakeup. An obvious example of this
7595 	 * pattern is IO completions.
7596 	 */
7597 	if (is_per_cpu_kthread(current) &&
7598 	    in_task() &&
7599 	    prev == smp_processor_id() &&
7600 	    this_rq()->nr_running <= 1 &&
7601 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7602 		return prev;
7603 	}
7604 
7605 	/* Check a recently used CPU as a potential idle candidate: */
7606 	recent_used_cpu = p->recent_used_cpu;
7607 	p->recent_used_cpu = prev;
7608 	if (recent_used_cpu != prev &&
7609 	    recent_used_cpu != target &&
7610 	    cpus_share_cache(recent_used_cpu, target) &&
7611 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7612 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7613 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7614 
7615 		if (!static_branch_unlikely(&sched_cluster_active) ||
7616 		    cpus_share_resources(recent_used_cpu, target))
7617 			return recent_used_cpu;
7618 
7619 	} else {
7620 		recent_used_cpu = -1;
7621 	}
7622 
7623 	/*
7624 	 * For asymmetric CPU capacity systems, our domain of interest is
7625 	 * sd_asym_cpucapacity rather than sd_llc.
7626 	 */
7627 	if (sched_asym_cpucap_active()) {
7628 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7629 		/*
7630 		 * On an asymmetric CPU capacity system where an exclusive
7631 		 * cpuset defines a symmetric island (i.e. one unique
7632 		 * capacity_orig value through the cpuset), the key will be set
7633 		 * but the CPUs within that cpuset will not have a domain with
7634 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7635 		 * capacity path.
7636 		 */
7637 		if (sd) {
7638 			i = select_idle_capacity(p, sd, target);
7639 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7640 		}
7641 	}
7642 
7643 	sd = rcu_dereference(per_cpu(sd_llc, target));
7644 	if (!sd)
7645 		return target;
7646 
7647 	if (sched_smt_active()) {
7648 		has_idle_core = test_idle_cores(target);
7649 
7650 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7651 			i = select_idle_smt(p, sd, prev);
7652 			if ((unsigned int)i < nr_cpumask_bits)
7653 				return i;
7654 		}
7655 	}
7656 
7657 	i = select_idle_cpu(p, sd, has_idle_core, target);
7658 	if ((unsigned)i < nr_cpumask_bits)
7659 		return i;
7660 
7661 	/*
7662 	 * For cluster machines which have lower sharing cache like L2 or
7663 	 * LLC Tag, we tend to find an idle CPU in the target's cluster
7664 	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7665 	 * use them if possible when no idle CPU found in select_idle_cpu().
7666 	 */
7667 	if ((unsigned int)prev_aff < nr_cpumask_bits)
7668 		return prev_aff;
7669 	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7670 		return recent_used_cpu;
7671 
7672 	return target;
7673 }
7674 
7675 /**
7676  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7677  * @cpu: the CPU to get the utilization for
7678  * @p: task for which the CPU utilization should be predicted or NULL
7679  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7680  * @boost: 1 to enable boosting, otherwise 0
7681  *
7682  * The unit of the return value must be the same as the one of CPU capacity
7683  * so that CPU utilization can be compared with CPU capacity.
7684  *
7685  * CPU utilization is the sum of running time of runnable tasks plus the
7686  * recent utilization of currently non-runnable tasks on that CPU.
7687  * It represents the amount of CPU capacity currently used by CFS tasks in
7688  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7689  * capacity at f_max.
7690  *
7691  * The estimated CPU utilization is defined as the maximum between CPU
7692  * utilization and sum of the estimated utilization of the currently
7693  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7694  * previously-executed tasks, which helps better deduce how busy a CPU will
7695  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7696  * of such a task would be significantly decayed at this point of time.
7697  *
7698  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7699  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7700  * utilization. Boosting is implemented in cpu_util() so that internal
7701  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7702  * latter via cpu_util_cfs_boost().
7703  *
7704  * CPU utilization can be higher than the current CPU capacity
7705  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7706  * of rounding errors as well as task migrations or wakeups of new tasks.
7707  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7708  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7709  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7710  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7711  * though since this is useful for predicting the CPU capacity required
7712  * after task migrations (scheduler-driven DVFS).
7713  *
7714  * Return: (Boosted) (estimated) utilization for the specified CPU.
7715  */
7716 static unsigned long
7717 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7718 {
7719 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7720 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7721 	unsigned long runnable;
7722 
7723 	if (boost) {
7724 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7725 		util = max(util, runnable);
7726 	}
7727 
7728 	/*
7729 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7730 	 * contribution. If @p migrates from another CPU to @cpu add its
7731 	 * contribution. In all the other cases @cpu is not impacted by the
7732 	 * migration so its util_avg is already correct.
7733 	 */
7734 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7735 		lsub_positive(&util, task_util(p));
7736 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7737 		util += task_util(p);
7738 
7739 	if (sched_feat(UTIL_EST)) {
7740 		unsigned long util_est;
7741 
7742 		util_est = READ_ONCE(cfs_rq->avg.util_est);
7743 
7744 		/*
7745 		 * During wake-up @p isn't enqueued yet and doesn't contribute
7746 		 * to any cpu_rq(cpu)->cfs.avg.util_est.
7747 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7748 		 * has been enqueued.
7749 		 *
7750 		 * During exec (@dst_cpu = -1) @p is enqueued and does
7751 		 * contribute to cpu_rq(cpu)->cfs.util_est.
7752 		 * Remove it to "simulate" cpu_util without @p's contribution.
7753 		 *
7754 		 * Despite the task_on_rq_queued(@p) check there is still a
7755 		 * small window for a possible race when an exec
7756 		 * select_task_rq_fair() races with LB's detach_task().
7757 		 *
7758 		 *   detach_task()
7759 		 *     deactivate_task()
7760 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7761 		 *       -------------------------------- A
7762 		 *       dequeue_task()                    \
7763 		 *         dequeue_task_fair()              + Race Time
7764 		 *           util_est_dequeue()            /
7765 		 *       -------------------------------- B
7766 		 *
7767 		 * The additional check "current == p" is required to further
7768 		 * reduce the race window.
7769 		 */
7770 		if (dst_cpu == cpu)
7771 			util_est += _task_util_est(p);
7772 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
7773 			lsub_positive(&util_est, _task_util_est(p));
7774 
7775 		util = max(util, util_est);
7776 	}
7777 
7778 	return min(util, arch_scale_cpu_capacity(cpu));
7779 }
7780 
7781 unsigned long cpu_util_cfs(int cpu)
7782 {
7783 	return cpu_util(cpu, NULL, -1, 0);
7784 }
7785 
7786 unsigned long cpu_util_cfs_boost(int cpu)
7787 {
7788 	return cpu_util(cpu, NULL, -1, 1);
7789 }
7790 
7791 /*
7792  * cpu_util_without: compute cpu utilization without any contributions from *p
7793  * @cpu: the CPU which utilization is requested
7794  * @p: the task which utilization should be discounted
7795  *
7796  * The utilization of a CPU is defined by the utilization of tasks currently
7797  * enqueued on that CPU as well as tasks which are currently sleeping after an
7798  * execution on that CPU.
7799  *
7800  * This method returns the utilization of the specified CPU by discounting the
7801  * utilization of the specified task, whenever the task is currently
7802  * contributing to the CPU utilization.
7803  */
7804 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7805 {
7806 	/* Task has no contribution or is new */
7807 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7808 		p = NULL;
7809 
7810 	return cpu_util(cpu, p, -1, 0);
7811 }
7812 
7813 /*
7814  * energy_env - Utilization landscape for energy estimation.
7815  * @task_busy_time: Utilization contribution by the task for which we test the
7816  *                  placement. Given by eenv_task_busy_time().
7817  * @pd_busy_time:   Utilization of the whole perf domain without the task
7818  *                  contribution. Given by eenv_pd_busy_time().
7819  * @cpu_cap:        Maximum CPU capacity for the perf domain.
7820  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7821  */
7822 struct energy_env {
7823 	unsigned long task_busy_time;
7824 	unsigned long pd_busy_time;
7825 	unsigned long cpu_cap;
7826 	unsigned long pd_cap;
7827 };
7828 
7829 /*
7830  * Compute the task busy time for compute_energy(). This time cannot be
7831  * injected directly into effective_cpu_util() because of the IRQ scaling.
7832  * The latter only makes sense with the most recent CPUs where the task has
7833  * run.
7834  */
7835 static inline void eenv_task_busy_time(struct energy_env *eenv,
7836 				       struct task_struct *p, int prev_cpu)
7837 {
7838 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7839 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7840 
7841 	if (unlikely(irq >= max_cap))
7842 		busy_time = max_cap;
7843 	else
7844 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7845 
7846 	eenv->task_busy_time = busy_time;
7847 }
7848 
7849 /*
7850  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7851  * utilization for each @pd_cpus, it however doesn't take into account
7852  * clamping since the ratio (utilization / cpu_capacity) is already enough to
7853  * scale the EM reported power consumption at the (eventually clamped)
7854  * cpu_capacity.
7855  *
7856  * The contribution of the task @p for which we want to estimate the
7857  * energy cost is removed (by cpu_util()) and must be calculated
7858  * separately (see eenv_task_busy_time). This ensures:
7859  *
7860  *   - A stable PD utilization, no matter which CPU of that PD we want to place
7861  *     the task on.
7862  *
7863  *   - A fair comparison between CPUs as the task contribution (task_util())
7864  *     will always be the same no matter which CPU utilization we rely on
7865  *     (util_avg or util_est).
7866  *
7867  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7868  * exceed @eenv->pd_cap.
7869  */
7870 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7871 				     struct cpumask *pd_cpus,
7872 				     struct task_struct *p)
7873 {
7874 	unsigned long busy_time = 0;
7875 	int cpu;
7876 
7877 	for_each_cpu(cpu, pd_cpus) {
7878 		unsigned long util = cpu_util(cpu, p, -1, 0);
7879 
7880 		busy_time += effective_cpu_util(cpu, util, NULL, NULL);
7881 	}
7882 
7883 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7884 }
7885 
7886 /*
7887  * Compute the maximum utilization for compute_energy() when the task @p
7888  * is placed on the cpu @dst_cpu.
7889  *
7890  * Returns the maximum utilization among @eenv->cpus. This utilization can't
7891  * exceed @eenv->cpu_cap.
7892  */
7893 static inline unsigned long
7894 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7895 		 struct task_struct *p, int dst_cpu)
7896 {
7897 	unsigned long max_util = 0;
7898 	int cpu;
7899 
7900 	for_each_cpu(cpu, pd_cpus) {
7901 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7902 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
7903 		unsigned long eff_util, min, max;
7904 
7905 		/*
7906 		 * Performance domain frequency: utilization clamping
7907 		 * must be considered since it affects the selection
7908 		 * of the performance domain frequency.
7909 		 * NOTE: in case RT tasks are running, by default the min
7910 		 * utilization can be max OPP.
7911 		 */
7912 		eff_util = effective_cpu_util(cpu, util, &min, &max);
7913 
7914 		/* Task's uclamp can modify min and max value */
7915 		if (tsk && uclamp_is_used()) {
7916 			min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
7917 
7918 			/*
7919 			 * If there is no active max uclamp constraint,
7920 			 * directly use task's one, otherwise keep max.
7921 			 */
7922 			if (uclamp_rq_is_idle(cpu_rq(cpu)))
7923 				max = uclamp_eff_value(p, UCLAMP_MAX);
7924 			else
7925 				max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
7926 		}
7927 
7928 		eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
7929 		max_util = max(max_util, eff_util);
7930 	}
7931 
7932 	return min(max_util, eenv->cpu_cap);
7933 }
7934 
7935 /*
7936  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7937  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7938  * contribution is ignored.
7939  */
7940 static inline unsigned long
7941 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7942 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7943 {
7944 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7945 	unsigned long busy_time = eenv->pd_busy_time;
7946 	unsigned long energy;
7947 
7948 	if (dst_cpu >= 0)
7949 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7950 
7951 	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7952 
7953 	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
7954 
7955 	return energy;
7956 }
7957 
7958 /*
7959  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7960  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7961  * spare capacity in each performance domain and uses it as a potential
7962  * candidate to execute the task. Then, it uses the Energy Model to figure
7963  * out which of the CPU candidates is the most energy-efficient.
7964  *
7965  * The rationale for this heuristic is as follows. In a performance domain,
7966  * all the most energy efficient CPU candidates (according to the Energy
7967  * Model) are those for which we'll request a low frequency. When there are
7968  * several CPUs for which the frequency request will be the same, we don't
7969  * have enough data to break the tie between them, because the Energy Model
7970  * only includes active power costs. With this model, if we assume that
7971  * frequency requests follow utilization (e.g. using schedutil), the CPU with
7972  * the maximum spare capacity in a performance domain is guaranteed to be among
7973  * the best candidates of the performance domain.
7974  *
7975  * In practice, it could be preferable from an energy standpoint to pack
7976  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7977  * but that could also hurt our chances to go cluster idle, and we have no
7978  * ways to tell with the current Energy Model if this is actually a good
7979  * idea or not. So, find_energy_efficient_cpu() basically favors
7980  * cluster-packing, and spreading inside a cluster. That should at least be
7981  * a good thing for latency, and this is consistent with the idea that most
7982  * of the energy savings of EAS come from the asymmetry of the system, and
7983  * not so much from breaking the tie between identical CPUs. That's also the
7984  * reason why EAS is enabled in the topology code only for systems where
7985  * SD_ASYM_CPUCAPACITY is set.
7986  *
7987  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7988  * they don't have any useful utilization data yet and it's not possible to
7989  * forecast their impact on energy consumption. Consequently, they will be
7990  * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
7991  * to be energy-inefficient in some use-cases. The alternative would be to
7992  * bias new tasks towards specific types of CPUs first, or to try to infer
7993  * their util_avg from the parent task, but those heuristics could hurt
7994  * other use-cases too. So, until someone finds a better way to solve this,
7995  * let's keep things simple by re-using the existing slow path.
7996  */
7997 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7998 {
7999 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8000 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8001 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8002 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8003 	struct root_domain *rd = this_rq()->rd;
8004 	int cpu, best_energy_cpu, target = -1;
8005 	int prev_fits = -1, best_fits = -1;
8006 	unsigned long best_actual_cap = 0;
8007 	unsigned long prev_actual_cap = 0;
8008 	struct sched_domain *sd;
8009 	struct perf_domain *pd;
8010 	struct energy_env eenv;
8011 
8012 	rcu_read_lock();
8013 	pd = rcu_dereference(rd->pd);
8014 	if (!pd)
8015 		goto unlock;
8016 
8017 	/*
8018 	 * Energy-aware wake-up happens on the lowest sched_domain starting
8019 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8020 	 */
8021 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8022 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8023 		sd = sd->parent;
8024 	if (!sd)
8025 		goto unlock;
8026 
8027 	target = prev_cpu;
8028 
8029 	sync_entity_load_avg(&p->se);
8030 	if (!task_util_est(p) && p_util_min == 0)
8031 		goto unlock;
8032 
8033 	eenv_task_busy_time(&eenv, p, prev_cpu);
8034 
8035 	for (; pd; pd = pd->next) {
8036 		unsigned long util_min = p_util_min, util_max = p_util_max;
8037 		unsigned long cpu_cap, cpu_actual_cap, util;
8038 		long prev_spare_cap = -1, max_spare_cap = -1;
8039 		unsigned long rq_util_min, rq_util_max;
8040 		unsigned long cur_delta, base_energy;
8041 		int max_spare_cap_cpu = -1;
8042 		int fits, max_fits = -1;
8043 
8044 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8045 
8046 		if (cpumask_empty(cpus))
8047 			continue;
8048 
8049 		/* Account external pressure for the energy estimation */
8050 		cpu = cpumask_first(cpus);
8051 		cpu_actual_cap = get_actual_cpu_capacity(cpu);
8052 
8053 		eenv.cpu_cap = cpu_actual_cap;
8054 		eenv.pd_cap = 0;
8055 
8056 		for_each_cpu(cpu, cpus) {
8057 			struct rq *rq = cpu_rq(cpu);
8058 
8059 			eenv.pd_cap += cpu_actual_cap;
8060 
8061 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8062 				continue;
8063 
8064 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8065 				continue;
8066 
8067 			util = cpu_util(cpu, p, cpu, 0);
8068 			cpu_cap = capacity_of(cpu);
8069 
8070 			/*
8071 			 * Skip CPUs that cannot satisfy the capacity request.
8072 			 * IOW, placing the task there would make the CPU
8073 			 * overutilized. Take uclamp into account to see how
8074 			 * much capacity we can get out of the CPU; this is
8075 			 * aligned with sched_cpu_util().
8076 			 */
8077 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8078 				/*
8079 				 * Open code uclamp_rq_util_with() except for
8080 				 * the clamp() part. I.e.: apply max aggregation
8081 				 * only. util_fits_cpu() logic requires to
8082 				 * operate on non clamped util but must use the
8083 				 * max-aggregated uclamp_{min, max}.
8084 				 */
8085 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8086 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8087 
8088 				util_min = max(rq_util_min, p_util_min);
8089 				util_max = max(rq_util_max, p_util_max);
8090 			}
8091 
8092 			fits = util_fits_cpu(util, util_min, util_max, cpu);
8093 			if (!fits)
8094 				continue;
8095 
8096 			lsub_positive(&cpu_cap, util);
8097 
8098 			if (cpu == prev_cpu) {
8099 				/* Always use prev_cpu as a candidate. */
8100 				prev_spare_cap = cpu_cap;
8101 				prev_fits = fits;
8102 			} else if ((fits > max_fits) ||
8103 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8104 				/*
8105 				 * Find the CPU with the maximum spare capacity
8106 				 * among the remaining CPUs in the performance
8107 				 * domain.
8108 				 */
8109 				max_spare_cap = cpu_cap;
8110 				max_spare_cap_cpu = cpu;
8111 				max_fits = fits;
8112 			}
8113 		}
8114 
8115 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8116 			continue;
8117 
8118 		eenv_pd_busy_time(&eenv, cpus, p);
8119 		/* Compute the 'base' energy of the pd, without @p */
8120 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8121 
8122 		/* Evaluate the energy impact of using prev_cpu. */
8123 		if (prev_spare_cap > -1) {
8124 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8125 						    prev_cpu);
8126 			/* CPU utilization has changed */
8127 			if (prev_delta < base_energy)
8128 				goto unlock;
8129 			prev_delta -= base_energy;
8130 			prev_actual_cap = cpu_actual_cap;
8131 			best_delta = min(best_delta, prev_delta);
8132 		}
8133 
8134 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8135 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8136 			/* Current best energy cpu fits better */
8137 			if (max_fits < best_fits)
8138 				continue;
8139 
8140 			/*
8141 			 * Both don't fit performance hint (i.e. uclamp_min)
8142 			 * but best energy cpu has better capacity.
8143 			 */
8144 			if ((max_fits < 0) &&
8145 			    (cpu_actual_cap <= best_actual_cap))
8146 				continue;
8147 
8148 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8149 						   max_spare_cap_cpu);
8150 			/* CPU utilization has changed */
8151 			if (cur_delta < base_energy)
8152 				goto unlock;
8153 			cur_delta -= base_energy;
8154 
8155 			/*
8156 			 * Both fit for the task but best energy cpu has lower
8157 			 * energy impact.
8158 			 */
8159 			if ((max_fits > 0) && (best_fits > 0) &&
8160 			    (cur_delta >= best_delta))
8161 				continue;
8162 
8163 			best_delta = cur_delta;
8164 			best_energy_cpu = max_spare_cap_cpu;
8165 			best_fits = max_fits;
8166 			best_actual_cap = cpu_actual_cap;
8167 		}
8168 	}
8169 	rcu_read_unlock();
8170 
8171 	if ((best_fits > prev_fits) ||
8172 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8173 	    ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8174 		target = best_energy_cpu;
8175 
8176 	return target;
8177 
8178 unlock:
8179 	rcu_read_unlock();
8180 
8181 	return target;
8182 }
8183 
8184 /*
8185  * select_task_rq_fair: Select target runqueue for the waking task in domains
8186  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8187  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8188  *
8189  * Balances load by selecting the idlest CPU in the idlest group, or under
8190  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8191  *
8192  * Returns the target CPU number.
8193  */
8194 static int
8195 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8196 {
8197 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8198 	struct sched_domain *tmp, *sd = NULL;
8199 	int cpu = smp_processor_id();
8200 	int new_cpu = prev_cpu;
8201 	int want_affine = 0;
8202 	/* SD_flags and WF_flags share the first nibble */
8203 	int sd_flag = wake_flags & 0xF;
8204 
8205 	/*
8206 	 * required for stable ->cpus_allowed
8207 	 */
8208 	lockdep_assert_held(&p->pi_lock);
8209 	if (wake_flags & WF_TTWU) {
8210 		record_wakee(p);
8211 
8212 		if ((wake_flags & WF_CURRENT_CPU) &&
8213 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8214 			return cpu;
8215 
8216 		if (!is_rd_overutilized(this_rq()->rd)) {
8217 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8218 			if (new_cpu >= 0)
8219 				return new_cpu;
8220 			new_cpu = prev_cpu;
8221 		}
8222 
8223 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8224 	}
8225 
8226 	rcu_read_lock();
8227 	for_each_domain(cpu, tmp) {
8228 		/*
8229 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8230 		 * cpu is a valid SD_WAKE_AFFINE target.
8231 		 */
8232 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8233 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8234 			if (cpu != prev_cpu)
8235 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8236 
8237 			sd = NULL; /* Prefer wake_affine over balance flags */
8238 			break;
8239 		}
8240 
8241 		/*
8242 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8243 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8244 		 * will usually go to the fast path.
8245 		 */
8246 		if (tmp->flags & sd_flag)
8247 			sd = tmp;
8248 		else if (!want_affine)
8249 			break;
8250 	}
8251 
8252 	if (unlikely(sd)) {
8253 		/* Slow path */
8254 		new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8255 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8256 		/* Fast path */
8257 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8258 	}
8259 	rcu_read_unlock();
8260 
8261 	return new_cpu;
8262 }
8263 
8264 /*
8265  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8266  * cfs_rq_of(p) references at time of call are still valid and identify the
8267  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8268  */
8269 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8270 {
8271 	struct sched_entity *se = &p->se;
8272 
8273 	if (!task_on_rq_migrating(p)) {
8274 		remove_entity_load_avg(se);
8275 
8276 		/*
8277 		 * Here, the task's PELT values have been updated according to
8278 		 * the current rq's clock. But if that clock hasn't been
8279 		 * updated in a while, a substantial idle time will be missed,
8280 		 * leading to an inflation after wake-up on the new rq.
8281 		 *
8282 		 * Estimate the missing time from the cfs_rq last_update_time
8283 		 * and update sched_avg to improve the PELT continuity after
8284 		 * migration.
8285 		 */
8286 		migrate_se_pelt_lag(se);
8287 	}
8288 
8289 	/* Tell new CPU we are migrated */
8290 	se->avg.last_update_time = 0;
8291 
8292 	update_scan_period(p, new_cpu);
8293 }
8294 
8295 static void task_dead_fair(struct task_struct *p)
8296 {
8297 	remove_entity_load_avg(&p->se);
8298 }
8299 
8300 /*
8301  * Set the max capacity the task is allowed to run at for misfit detection.
8302  */
8303 static void set_task_max_allowed_capacity(struct task_struct *p)
8304 {
8305 	struct asym_cap_data *entry;
8306 
8307 	if (!sched_asym_cpucap_active())
8308 		return;
8309 
8310 	rcu_read_lock();
8311 	list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8312 		cpumask_t *cpumask;
8313 
8314 		cpumask = cpu_capacity_span(entry);
8315 		if (!cpumask_intersects(p->cpus_ptr, cpumask))
8316 			continue;
8317 
8318 		p->max_allowed_capacity = entry->capacity;
8319 		break;
8320 	}
8321 	rcu_read_unlock();
8322 }
8323 
8324 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8325 {
8326 	set_cpus_allowed_common(p, ctx);
8327 	set_task_max_allowed_capacity(p);
8328 }
8329 
8330 static int
8331 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8332 {
8333 	if (rq->nr_running)
8334 		return 1;
8335 
8336 	return sched_balance_newidle(rq, rf) != 0;
8337 }
8338 #else
8339 static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
8340 #endif /* CONFIG_SMP */
8341 
8342 static void set_next_buddy(struct sched_entity *se)
8343 {
8344 	for_each_sched_entity(se) {
8345 		if (SCHED_WARN_ON(!se->on_rq))
8346 			return;
8347 		if (se_is_idle(se))
8348 			return;
8349 		cfs_rq_of(se)->next = se;
8350 	}
8351 }
8352 
8353 /*
8354  * Preempt the current task with a newly woken task if needed:
8355  */
8356 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8357 {
8358 	struct task_struct *curr = rq->curr;
8359 	struct sched_entity *se = &curr->se, *pse = &p->se;
8360 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8361 	int cse_is_idle, pse_is_idle;
8362 
8363 	if (unlikely(se == pse))
8364 		return;
8365 
8366 	/*
8367 	 * This is possible from callers such as attach_tasks(), in which we
8368 	 * unconditionally wakeup_preempt() after an enqueue (which may have
8369 	 * lead to a throttle).  This both saves work and prevents false
8370 	 * next-buddy nomination below.
8371 	 */
8372 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8373 		return;
8374 
8375 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8376 		set_next_buddy(pse);
8377 	}
8378 
8379 	/*
8380 	 * We can come here with TIF_NEED_RESCHED already set from new task
8381 	 * wake up path.
8382 	 *
8383 	 * Note: this also catches the edge-case of curr being in a throttled
8384 	 * group (e.g. via set_curr_task), since update_curr() (in the
8385 	 * enqueue of curr) will have resulted in resched being set.  This
8386 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8387 	 * below.
8388 	 */
8389 	if (test_tsk_need_resched(curr))
8390 		return;
8391 
8392 	/* Idle tasks are by definition preempted by non-idle tasks. */
8393 	if (unlikely(task_has_idle_policy(curr)) &&
8394 	    likely(!task_has_idle_policy(p)))
8395 		goto preempt;
8396 
8397 	/*
8398 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
8399 	 * is driven by the tick):
8400 	 */
8401 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
8402 		return;
8403 
8404 	find_matching_se(&se, &pse);
8405 	WARN_ON_ONCE(!pse);
8406 
8407 	cse_is_idle = se_is_idle(se);
8408 	pse_is_idle = se_is_idle(pse);
8409 
8410 	/*
8411 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
8412 	 * in the inverse case).
8413 	 */
8414 	if (cse_is_idle && !pse_is_idle)
8415 		goto preempt;
8416 	if (cse_is_idle != pse_is_idle)
8417 		return;
8418 
8419 	cfs_rq = cfs_rq_of(se);
8420 	update_curr(cfs_rq);
8421 
8422 	/*
8423 	 * XXX pick_eevdf(cfs_rq) != se ?
8424 	 */
8425 	if (pick_eevdf(cfs_rq) == pse)
8426 		goto preempt;
8427 
8428 	return;
8429 
8430 preempt:
8431 	resched_curr(rq);
8432 }
8433 
8434 #ifdef CONFIG_SMP
8435 static struct task_struct *pick_task_fair(struct rq *rq)
8436 {
8437 	struct sched_entity *se;
8438 	struct cfs_rq *cfs_rq;
8439 
8440 again:
8441 	cfs_rq = &rq->cfs;
8442 	if (!cfs_rq->nr_running)
8443 		return NULL;
8444 
8445 	do {
8446 		struct sched_entity *curr = cfs_rq->curr;
8447 
8448 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8449 		if (curr) {
8450 			if (curr->on_rq)
8451 				update_curr(cfs_rq);
8452 			else
8453 				curr = NULL;
8454 
8455 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8456 				goto again;
8457 		}
8458 
8459 		se = pick_next_entity(cfs_rq);
8460 		cfs_rq = group_cfs_rq(se);
8461 	} while (cfs_rq);
8462 
8463 	return task_of(se);
8464 }
8465 #endif
8466 
8467 struct task_struct *
8468 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8469 {
8470 	struct cfs_rq *cfs_rq = &rq->cfs;
8471 	struct sched_entity *se;
8472 	struct task_struct *p;
8473 	int new_tasks;
8474 
8475 again:
8476 	if (!sched_fair_runnable(rq))
8477 		goto idle;
8478 
8479 #ifdef CONFIG_FAIR_GROUP_SCHED
8480 	if (!prev || prev->sched_class != &fair_sched_class)
8481 		goto simple;
8482 
8483 	/*
8484 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8485 	 * likely that a next task is from the same cgroup as the current.
8486 	 *
8487 	 * Therefore attempt to avoid putting and setting the entire cgroup
8488 	 * hierarchy, only change the part that actually changes.
8489 	 */
8490 
8491 	do {
8492 		struct sched_entity *curr = cfs_rq->curr;
8493 
8494 		/*
8495 		 * Since we got here without doing put_prev_entity() we also
8496 		 * have to consider cfs_rq->curr. If it is still a runnable
8497 		 * entity, update_curr() will update its vruntime, otherwise
8498 		 * forget we've ever seen it.
8499 		 */
8500 		if (curr) {
8501 			if (curr->on_rq)
8502 				update_curr(cfs_rq);
8503 			else
8504 				curr = NULL;
8505 
8506 			/*
8507 			 * This call to check_cfs_rq_runtime() will do the
8508 			 * throttle and dequeue its entity in the parent(s).
8509 			 * Therefore the nr_running test will indeed
8510 			 * be correct.
8511 			 */
8512 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8513 				cfs_rq = &rq->cfs;
8514 
8515 				if (!cfs_rq->nr_running)
8516 					goto idle;
8517 
8518 				goto simple;
8519 			}
8520 		}
8521 
8522 		se = pick_next_entity(cfs_rq);
8523 		cfs_rq = group_cfs_rq(se);
8524 	} while (cfs_rq);
8525 
8526 	p = task_of(se);
8527 
8528 	/*
8529 	 * Since we haven't yet done put_prev_entity and if the selected task
8530 	 * is a different task than we started out with, try and touch the
8531 	 * least amount of cfs_rqs.
8532 	 */
8533 	if (prev != p) {
8534 		struct sched_entity *pse = &prev->se;
8535 
8536 		while (!(cfs_rq = is_same_group(se, pse))) {
8537 			int se_depth = se->depth;
8538 			int pse_depth = pse->depth;
8539 
8540 			if (se_depth <= pse_depth) {
8541 				put_prev_entity(cfs_rq_of(pse), pse);
8542 				pse = parent_entity(pse);
8543 			}
8544 			if (se_depth >= pse_depth) {
8545 				set_next_entity(cfs_rq_of(se), se);
8546 				se = parent_entity(se);
8547 			}
8548 		}
8549 
8550 		put_prev_entity(cfs_rq, pse);
8551 		set_next_entity(cfs_rq, se);
8552 	}
8553 
8554 	goto done;
8555 simple:
8556 #endif
8557 	if (prev)
8558 		put_prev_task(rq, prev);
8559 
8560 	do {
8561 		se = pick_next_entity(cfs_rq);
8562 		set_next_entity(cfs_rq, se);
8563 		cfs_rq = group_cfs_rq(se);
8564 	} while (cfs_rq);
8565 
8566 	p = task_of(se);
8567 
8568 done: __maybe_unused;
8569 #ifdef CONFIG_SMP
8570 	/*
8571 	 * Move the next running task to the front of
8572 	 * the list, so our cfs_tasks list becomes MRU
8573 	 * one.
8574 	 */
8575 	list_move(&p->se.group_node, &rq->cfs_tasks);
8576 #endif
8577 
8578 	if (hrtick_enabled_fair(rq))
8579 		hrtick_start_fair(rq, p);
8580 
8581 	update_misfit_status(p, rq);
8582 	sched_fair_update_stop_tick(rq, p);
8583 
8584 	return p;
8585 
8586 idle:
8587 	if (!rf)
8588 		return NULL;
8589 
8590 	new_tasks = sched_balance_newidle(rq, rf);
8591 
8592 	/*
8593 	 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8594 	 * possible for any higher priority task to appear. In that case we
8595 	 * must re-start the pick_next_entity() loop.
8596 	 */
8597 	if (new_tasks < 0)
8598 		return RETRY_TASK;
8599 
8600 	if (new_tasks > 0)
8601 		goto again;
8602 
8603 	/*
8604 	 * rq is about to be idle, check if we need to update the
8605 	 * lost_idle_time of clock_pelt
8606 	 */
8607 	update_idle_rq_clock_pelt(rq);
8608 
8609 	return NULL;
8610 }
8611 
8612 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8613 {
8614 	return pick_next_task_fair(rq, NULL, NULL);
8615 }
8616 
8617 /*
8618  * Account for a descheduled task:
8619  */
8620 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8621 {
8622 	struct sched_entity *se = &prev->se;
8623 	struct cfs_rq *cfs_rq;
8624 
8625 	for_each_sched_entity(se) {
8626 		cfs_rq = cfs_rq_of(se);
8627 		put_prev_entity(cfs_rq, se);
8628 	}
8629 }
8630 
8631 /*
8632  * sched_yield() is very simple
8633  */
8634 static void yield_task_fair(struct rq *rq)
8635 {
8636 	struct task_struct *curr = rq->curr;
8637 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8638 	struct sched_entity *se = &curr->se;
8639 
8640 	/*
8641 	 * Are we the only task in the tree?
8642 	 */
8643 	if (unlikely(rq->nr_running == 1))
8644 		return;
8645 
8646 	clear_buddies(cfs_rq, se);
8647 
8648 	update_rq_clock(rq);
8649 	/*
8650 	 * Update run-time statistics of the 'current'.
8651 	 */
8652 	update_curr(cfs_rq);
8653 	/*
8654 	 * Tell update_rq_clock() that we've just updated,
8655 	 * so we don't do microscopic update in schedule()
8656 	 * and double the fastpath cost.
8657 	 */
8658 	rq_clock_skip_update(rq);
8659 
8660 	se->deadline += calc_delta_fair(se->slice, se);
8661 }
8662 
8663 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8664 {
8665 	struct sched_entity *se = &p->se;
8666 
8667 	/* throttled hierarchies are not runnable */
8668 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8669 		return false;
8670 
8671 	/* Tell the scheduler that we'd really like se to run next. */
8672 	set_next_buddy(se);
8673 
8674 	yield_task_fair(rq);
8675 
8676 	return true;
8677 }
8678 
8679 #ifdef CONFIG_SMP
8680 /**************************************************
8681  * Fair scheduling class load-balancing methods.
8682  *
8683  * BASICS
8684  *
8685  * The purpose of load-balancing is to achieve the same basic fairness the
8686  * per-CPU scheduler provides, namely provide a proportional amount of compute
8687  * time to each task. This is expressed in the following equation:
8688  *
8689  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8690  *
8691  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8692  * W_i,0 is defined as:
8693  *
8694  *   W_i,0 = \Sum_j w_i,j                                             (2)
8695  *
8696  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8697  * is derived from the nice value as per sched_prio_to_weight[].
8698  *
8699  * The weight average is an exponential decay average of the instantaneous
8700  * weight:
8701  *
8702  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
8703  *
8704  * C_i is the compute capacity of CPU i, typically it is the
8705  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8706  * can also include other factors [XXX].
8707  *
8708  * To achieve this balance we define a measure of imbalance which follows
8709  * directly from (1):
8710  *
8711  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
8712  *
8713  * We them move tasks around to minimize the imbalance. In the continuous
8714  * function space it is obvious this converges, in the discrete case we get
8715  * a few fun cases generally called infeasible weight scenarios.
8716  *
8717  * [XXX expand on:
8718  *     - infeasible weights;
8719  *     - local vs global optima in the discrete case. ]
8720  *
8721  *
8722  * SCHED DOMAINS
8723  *
8724  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8725  * for all i,j solution, we create a tree of CPUs that follows the hardware
8726  * topology where each level pairs two lower groups (or better). This results
8727  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8728  * tree to only the first of the previous level and we decrease the frequency
8729  * of load-balance at each level inversely proportional to the number of CPUs in
8730  * the groups.
8731  *
8732  * This yields:
8733  *
8734  *     log_2 n     1     n
8735  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
8736  *     i = 0      2^i   2^i
8737  *                               `- size of each group
8738  *         |         |     `- number of CPUs doing load-balance
8739  *         |         `- freq
8740  *         `- sum over all levels
8741  *
8742  * Coupled with a limit on how many tasks we can migrate every balance pass,
8743  * this makes (5) the runtime complexity of the balancer.
8744  *
8745  * An important property here is that each CPU is still (indirectly) connected
8746  * to every other CPU in at most O(log n) steps:
8747  *
8748  * The adjacency matrix of the resulting graph is given by:
8749  *
8750  *             log_2 n
8751  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
8752  *             k = 0
8753  *
8754  * And you'll find that:
8755  *
8756  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
8757  *
8758  * Showing there's indeed a path between every CPU in at most O(log n) steps.
8759  * The task movement gives a factor of O(m), giving a convergence complexity
8760  * of:
8761  *
8762  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
8763  *
8764  *
8765  * WORK CONSERVING
8766  *
8767  * In order to avoid CPUs going idle while there's still work to do, new idle
8768  * balancing is more aggressive and has the newly idle CPU iterate up the domain
8769  * tree itself instead of relying on other CPUs to bring it work.
8770  *
8771  * This adds some complexity to both (5) and (8) but it reduces the total idle
8772  * time.
8773  *
8774  * [XXX more?]
8775  *
8776  *
8777  * CGROUPS
8778  *
8779  * Cgroups make a horror show out of (2), instead of a simple sum we get:
8780  *
8781  *                                s_k,i
8782  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
8783  *                                 S_k
8784  *
8785  * Where
8786  *
8787  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
8788  *
8789  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8790  *
8791  * The big problem is S_k, its a global sum needed to compute a local (W_i)
8792  * property.
8793  *
8794  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8795  *      rewrite all of this once again.]
8796  */
8797 
8798 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8799 
8800 enum fbq_type { regular, remote, all };
8801 
8802 /*
8803  * 'group_type' describes the group of CPUs at the moment of load balancing.
8804  *
8805  * The enum is ordered by pulling priority, with the group with lowest priority
8806  * first so the group_type can simply be compared when selecting the busiest
8807  * group. See update_sd_pick_busiest().
8808  */
8809 enum group_type {
8810 	/* The group has spare capacity that can be used to run more tasks.  */
8811 	group_has_spare = 0,
8812 	/*
8813 	 * The group is fully used and the tasks don't compete for more CPU
8814 	 * cycles. Nevertheless, some tasks might wait before running.
8815 	 */
8816 	group_fully_busy,
8817 	/*
8818 	 * One task doesn't fit with CPU's capacity and must be migrated to a
8819 	 * more powerful CPU.
8820 	 */
8821 	group_misfit_task,
8822 	/*
8823 	 * Balance SMT group that's fully busy. Can benefit from migration
8824 	 * a task on SMT with busy sibling to another CPU on idle core.
8825 	 */
8826 	group_smt_balance,
8827 	/*
8828 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8829 	 * and the task should be migrated to it instead of running on the
8830 	 * current CPU.
8831 	 */
8832 	group_asym_packing,
8833 	/*
8834 	 * The tasks' affinity constraints previously prevented the scheduler
8835 	 * from balancing the load across the system.
8836 	 */
8837 	group_imbalanced,
8838 	/*
8839 	 * The CPU is overloaded and can't provide expected CPU cycles to all
8840 	 * tasks.
8841 	 */
8842 	group_overloaded
8843 };
8844 
8845 enum migration_type {
8846 	migrate_load = 0,
8847 	migrate_util,
8848 	migrate_task,
8849 	migrate_misfit
8850 };
8851 
8852 #define LBF_ALL_PINNED	0x01
8853 #define LBF_NEED_BREAK	0x02
8854 #define LBF_DST_PINNED  0x04
8855 #define LBF_SOME_PINNED	0x08
8856 #define LBF_ACTIVE_LB	0x10
8857 
8858 struct lb_env {
8859 	struct sched_domain	*sd;
8860 
8861 	struct rq		*src_rq;
8862 	int			src_cpu;
8863 
8864 	int			dst_cpu;
8865 	struct rq		*dst_rq;
8866 
8867 	struct cpumask		*dst_grpmask;
8868 	int			new_dst_cpu;
8869 	enum cpu_idle_type	idle;
8870 	long			imbalance;
8871 	/* The set of CPUs under consideration for load-balancing */
8872 	struct cpumask		*cpus;
8873 
8874 	unsigned int		flags;
8875 
8876 	unsigned int		loop;
8877 	unsigned int		loop_break;
8878 	unsigned int		loop_max;
8879 
8880 	enum fbq_type		fbq_type;
8881 	enum migration_type	migration_type;
8882 	struct list_head	tasks;
8883 };
8884 
8885 /*
8886  * Is this task likely cache-hot:
8887  */
8888 static int task_hot(struct task_struct *p, struct lb_env *env)
8889 {
8890 	s64 delta;
8891 
8892 	lockdep_assert_rq_held(env->src_rq);
8893 
8894 	if (p->sched_class != &fair_sched_class)
8895 		return 0;
8896 
8897 	if (unlikely(task_has_idle_policy(p)))
8898 		return 0;
8899 
8900 	/* SMT siblings share cache */
8901 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8902 		return 0;
8903 
8904 	/*
8905 	 * Buddy candidates are cache hot:
8906 	 */
8907 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8908 	    (&p->se == cfs_rq_of(&p->se)->next))
8909 		return 1;
8910 
8911 	if (sysctl_sched_migration_cost == -1)
8912 		return 1;
8913 
8914 	/*
8915 	 * Don't migrate task if the task's cookie does not match
8916 	 * with the destination CPU's core cookie.
8917 	 */
8918 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8919 		return 1;
8920 
8921 	if (sysctl_sched_migration_cost == 0)
8922 		return 0;
8923 
8924 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8925 
8926 	return delta < (s64)sysctl_sched_migration_cost;
8927 }
8928 
8929 #ifdef CONFIG_NUMA_BALANCING
8930 /*
8931  * Returns 1, if task migration degrades locality
8932  * Returns 0, if task migration improves locality i.e migration preferred.
8933  * Returns -1, if task migration is not affected by locality.
8934  */
8935 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8936 {
8937 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
8938 	unsigned long src_weight, dst_weight;
8939 	int src_nid, dst_nid, dist;
8940 
8941 	if (!static_branch_likely(&sched_numa_balancing))
8942 		return -1;
8943 
8944 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8945 		return -1;
8946 
8947 	src_nid = cpu_to_node(env->src_cpu);
8948 	dst_nid = cpu_to_node(env->dst_cpu);
8949 
8950 	if (src_nid == dst_nid)
8951 		return -1;
8952 
8953 	/* Migrating away from the preferred node is always bad. */
8954 	if (src_nid == p->numa_preferred_nid) {
8955 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8956 			return 1;
8957 		else
8958 			return -1;
8959 	}
8960 
8961 	/* Encourage migration to the preferred node. */
8962 	if (dst_nid == p->numa_preferred_nid)
8963 		return 0;
8964 
8965 	/* Leaving a core idle is often worse than degrading locality. */
8966 	if (env->idle == CPU_IDLE)
8967 		return -1;
8968 
8969 	dist = node_distance(src_nid, dst_nid);
8970 	if (numa_group) {
8971 		src_weight = group_weight(p, src_nid, dist);
8972 		dst_weight = group_weight(p, dst_nid, dist);
8973 	} else {
8974 		src_weight = task_weight(p, src_nid, dist);
8975 		dst_weight = task_weight(p, dst_nid, dist);
8976 	}
8977 
8978 	return dst_weight < src_weight;
8979 }
8980 
8981 #else
8982 static inline int migrate_degrades_locality(struct task_struct *p,
8983 					     struct lb_env *env)
8984 {
8985 	return -1;
8986 }
8987 #endif
8988 
8989 /*
8990  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8991  */
8992 static
8993 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8994 {
8995 	int tsk_cache_hot;
8996 
8997 	lockdep_assert_rq_held(env->src_rq);
8998 
8999 	/*
9000 	 * We do not migrate tasks that are:
9001 	 * 1) throttled_lb_pair, or
9002 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
9003 	 * 3) running (obviously), or
9004 	 * 4) are cache-hot on their current CPU.
9005 	 */
9006 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
9007 		return 0;
9008 
9009 	/* Disregard percpu kthreads; they are where they need to be. */
9010 	if (kthread_is_per_cpu(p))
9011 		return 0;
9012 
9013 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9014 		int cpu;
9015 
9016 		schedstat_inc(p->stats.nr_failed_migrations_affine);
9017 
9018 		env->flags |= LBF_SOME_PINNED;
9019 
9020 		/*
9021 		 * Remember if this task can be migrated to any other CPU in
9022 		 * our sched_group. We may want to revisit it if we couldn't
9023 		 * meet load balance goals by pulling other tasks on src_cpu.
9024 		 *
9025 		 * Avoid computing new_dst_cpu
9026 		 * - for NEWLY_IDLE
9027 		 * - if we have already computed one in current iteration
9028 		 * - if it's an active balance
9029 		 */
9030 		if (env->idle == CPU_NEWLY_IDLE ||
9031 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9032 			return 0;
9033 
9034 		/* Prevent to re-select dst_cpu via env's CPUs: */
9035 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
9036 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
9037 				env->flags |= LBF_DST_PINNED;
9038 				env->new_dst_cpu = cpu;
9039 				break;
9040 			}
9041 		}
9042 
9043 		return 0;
9044 	}
9045 
9046 	/* Record that we found at least one task that could run on dst_cpu */
9047 	env->flags &= ~LBF_ALL_PINNED;
9048 
9049 	if (task_on_cpu(env->src_rq, p)) {
9050 		schedstat_inc(p->stats.nr_failed_migrations_running);
9051 		return 0;
9052 	}
9053 
9054 	/*
9055 	 * Aggressive migration if:
9056 	 * 1) active balance
9057 	 * 2) destination numa is preferred
9058 	 * 3) task is cache cold, or
9059 	 * 4) too many balance attempts have failed.
9060 	 */
9061 	if (env->flags & LBF_ACTIVE_LB)
9062 		return 1;
9063 
9064 	tsk_cache_hot = migrate_degrades_locality(p, env);
9065 	if (tsk_cache_hot == -1)
9066 		tsk_cache_hot = task_hot(p, env);
9067 
9068 	if (tsk_cache_hot <= 0 ||
9069 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9070 		if (tsk_cache_hot == 1) {
9071 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9072 			schedstat_inc(p->stats.nr_forced_migrations);
9073 		}
9074 		return 1;
9075 	}
9076 
9077 	schedstat_inc(p->stats.nr_failed_migrations_hot);
9078 	return 0;
9079 }
9080 
9081 /*
9082  * detach_task() -- detach the task for the migration specified in env
9083  */
9084 static void detach_task(struct task_struct *p, struct lb_env *env)
9085 {
9086 	lockdep_assert_rq_held(env->src_rq);
9087 
9088 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9089 	set_task_cpu(p, env->dst_cpu);
9090 }
9091 
9092 /*
9093  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9094  * part of active balancing operations within "domain".
9095  *
9096  * Returns a task if successful and NULL otherwise.
9097  */
9098 static struct task_struct *detach_one_task(struct lb_env *env)
9099 {
9100 	struct task_struct *p;
9101 
9102 	lockdep_assert_rq_held(env->src_rq);
9103 
9104 	list_for_each_entry_reverse(p,
9105 			&env->src_rq->cfs_tasks, se.group_node) {
9106 		if (!can_migrate_task(p, env))
9107 			continue;
9108 
9109 		detach_task(p, env);
9110 
9111 		/*
9112 		 * Right now, this is only the second place where
9113 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9114 		 * so we can safely collect stats here rather than
9115 		 * inside detach_tasks().
9116 		 */
9117 		schedstat_inc(env->sd->lb_gained[env->idle]);
9118 		return p;
9119 	}
9120 	return NULL;
9121 }
9122 
9123 /*
9124  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9125  * busiest_rq, as part of a balancing operation within domain "sd".
9126  *
9127  * Returns number of detached tasks if successful and 0 otherwise.
9128  */
9129 static int detach_tasks(struct lb_env *env)
9130 {
9131 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9132 	unsigned long util, load;
9133 	struct task_struct *p;
9134 	int detached = 0;
9135 
9136 	lockdep_assert_rq_held(env->src_rq);
9137 
9138 	/*
9139 	 * Source run queue has been emptied by another CPU, clear
9140 	 * LBF_ALL_PINNED flag as we will not test any task.
9141 	 */
9142 	if (env->src_rq->nr_running <= 1) {
9143 		env->flags &= ~LBF_ALL_PINNED;
9144 		return 0;
9145 	}
9146 
9147 	if (env->imbalance <= 0)
9148 		return 0;
9149 
9150 	while (!list_empty(tasks)) {
9151 		/*
9152 		 * We don't want to steal all, otherwise we may be treated likewise,
9153 		 * which could at worst lead to a livelock crash.
9154 		 */
9155 		if (env->idle && env->src_rq->nr_running <= 1)
9156 			break;
9157 
9158 		env->loop++;
9159 		/* We've more or less seen every task there is, call it quits */
9160 		if (env->loop > env->loop_max)
9161 			break;
9162 
9163 		/* take a breather every nr_migrate tasks */
9164 		if (env->loop > env->loop_break) {
9165 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9166 			env->flags |= LBF_NEED_BREAK;
9167 			break;
9168 		}
9169 
9170 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9171 
9172 		if (!can_migrate_task(p, env))
9173 			goto next;
9174 
9175 		switch (env->migration_type) {
9176 		case migrate_load:
9177 			/*
9178 			 * Depending of the number of CPUs and tasks and the
9179 			 * cgroup hierarchy, task_h_load() can return a null
9180 			 * value. Make sure that env->imbalance decreases
9181 			 * otherwise detach_tasks() will stop only after
9182 			 * detaching up to loop_max tasks.
9183 			 */
9184 			load = max_t(unsigned long, task_h_load(p), 1);
9185 
9186 			if (sched_feat(LB_MIN) &&
9187 			    load < 16 && !env->sd->nr_balance_failed)
9188 				goto next;
9189 
9190 			/*
9191 			 * Make sure that we don't migrate too much load.
9192 			 * Nevertheless, let relax the constraint if
9193 			 * scheduler fails to find a good waiting task to
9194 			 * migrate.
9195 			 */
9196 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9197 				goto next;
9198 
9199 			env->imbalance -= load;
9200 			break;
9201 
9202 		case migrate_util:
9203 			util = task_util_est(p);
9204 
9205 			if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9206 				goto next;
9207 
9208 			env->imbalance -= util;
9209 			break;
9210 
9211 		case migrate_task:
9212 			env->imbalance--;
9213 			break;
9214 
9215 		case migrate_misfit:
9216 			/* This is not a misfit task */
9217 			if (task_fits_cpu(p, env->src_cpu))
9218 				goto next;
9219 
9220 			env->imbalance = 0;
9221 			break;
9222 		}
9223 
9224 		detach_task(p, env);
9225 		list_add(&p->se.group_node, &env->tasks);
9226 
9227 		detached++;
9228 
9229 #ifdef CONFIG_PREEMPTION
9230 		/*
9231 		 * NEWIDLE balancing is a source of latency, so preemptible
9232 		 * kernels will stop after the first task is detached to minimize
9233 		 * the critical section.
9234 		 */
9235 		if (env->idle == CPU_NEWLY_IDLE)
9236 			break;
9237 #endif
9238 
9239 		/*
9240 		 * We only want to steal up to the prescribed amount of
9241 		 * load/util/tasks.
9242 		 */
9243 		if (env->imbalance <= 0)
9244 			break;
9245 
9246 		continue;
9247 next:
9248 		list_move(&p->se.group_node, tasks);
9249 	}
9250 
9251 	/*
9252 	 * Right now, this is one of only two places we collect this stat
9253 	 * so we can safely collect detach_one_task() stats here rather
9254 	 * than inside detach_one_task().
9255 	 */
9256 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9257 
9258 	return detached;
9259 }
9260 
9261 /*
9262  * attach_task() -- attach the task detached by detach_task() to its new rq.
9263  */
9264 static void attach_task(struct rq *rq, struct task_struct *p)
9265 {
9266 	lockdep_assert_rq_held(rq);
9267 
9268 	WARN_ON_ONCE(task_rq(p) != rq);
9269 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9270 	wakeup_preempt(rq, p, 0);
9271 }
9272 
9273 /*
9274  * attach_one_task() -- attaches the task returned from detach_one_task() to
9275  * its new rq.
9276  */
9277 static void attach_one_task(struct rq *rq, struct task_struct *p)
9278 {
9279 	struct rq_flags rf;
9280 
9281 	rq_lock(rq, &rf);
9282 	update_rq_clock(rq);
9283 	attach_task(rq, p);
9284 	rq_unlock(rq, &rf);
9285 }
9286 
9287 /*
9288  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9289  * new rq.
9290  */
9291 static void attach_tasks(struct lb_env *env)
9292 {
9293 	struct list_head *tasks = &env->tasks;
9294 	struct task_struct *p;
9295 	struct rq_flags rf;
9296 
9297 	rq_lock(env->dst_rq, &rf);
9298 	update_rq_clock(env->dst_rq);
9299 
9300 	while (!list_empty(tasks)) {
9301 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9302 		list_del_init(&p->se.group_node);
9303 
9304 		attach_task(env->dst_rq, p);
9305 	}
9306 
9307 	rq_unlock(env->dst_rq, &rf);
9308 }
9309 
9310 #ifdef CONFIG_NO_HZ_COMMON
9311 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9312 {
9313 	if (cfs_rq->avg.load_avg)
9314 		return true;
9315 
9316 	if (cfs_rq->avg.util_avg)
9317 		return true;
9318 
9319 	return false;
9320 }
9321 
9322 static inline bool others_have_blocked(struct rq *rq)
9323 {
9324 	if (cpu_util_rt(rq))
9325 		return true;
9326 
9327 	if (cpu_util_dl(rq))
9328 		return true;
9329 
9330 	if (hw_load_avg(rq))
9331 		return true;
9332 
9333 	if (cpu_util_irq(rq))
9334 		return true;
9335 
9336 	return false;
9337 }
9338 
9339 static inline void update_blocked_load_tick(struct rq *rq)
9340 {
9341 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9342 }
9343 
9344 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9345 {
9346 	if (!has_blocked)
9347 		rq->has_blocked_load = 0;
9348 }
9349 #else
9350 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9351 static inline bool others_have_blocked(struct rq *rq) { return false; }
9352 static inline void update_blocked_load_tick(struct rq *rq) {}
9353 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9354 #endif
9355 
9356 static bool __update_blocked_others(struct rq *rq, bool *done)
9357 {
9358 	const struct sched_class *curr_class;
9359 	u64 now = rq_clock_pelt(rq);
9360 	unsigned long hw_pressure;
9361 	bool decayed;
9362 
9363 	/*
9364 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9365 	 * DL and IRQ signals have been updated before updating CFS.
9366 	 */
9367 	curr_class = rq->curr->sched_class;
9368 
9369 	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
9370 
9371 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9372 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
9373 		  update_hw_load_avg(now, rq, hw_pressure) |
9374 		  update_irq_load_avg(rq, 0);
9375 
9376 	if (others_have_blocked(rq))
9377 		*done = false;
9378 
9379 	return decayed;
9380 }
9381 
9382 #ifdef CONFIG_FAIR_GROUP_SCHED
9383 
9384 static bool __update_blocked_fair(struct rq *rq, bool *done)
9385 {
9386 	struct cfs_rq *cfs_rq, *pos;
9387 	bool decayed = false;
9388 	int cpu = cpu_of(rq);
9389 
9390 	/*
9391 	 * Iterates the task_group tree in a bottom up fashion, see
9392 	 * list_add_leaf_cfs_rq() for details.
9393 	 */
9394 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9395 		struct sched_entity *se;
9396 
9397 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9398 			update_tg_load_avg(cfs_rq);
9399 
9400 			if (cfs_rq->nr_running == 0)
9401 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9402 
9403 			if (cfs_rq == &rq->cfs)
9404 				decayed = true;
9405 		}
9406 
9407 		/* Propagate pending load changes to the parent, if any: */
9408 		se = cfs_rq->tg->se[cpu];
9409 		if (se && !skip_blocked_update(se))
9410 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9411 
9412 		/*
9413 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9414 		 * decayed cfs_rqs linger on the list.
9415 		 */
9416 		if (cfs_rq_is_decayed(cfs_rq))
9417 			list_del_leaf_cfs_rq(cfs_rq);
9418 
9419 		/* Don't need periodic decay once load/util_avg are null */
9420 		if (cfs_rq_has_blocked(cfs_rq))
9421 			*done = false;
9422 	}
9423 
9424 	return decayed;
9425 }
9426 
9427 /*
9428  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9429  * This needs to be done in a top-down fashion because the load of a child
9430  * group is a fraction of its parents load.
9431  */
9432 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9433 {
9434 	struct rq *rq = rq_of(cfs_rq);
9435 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9436 	unsigned long now = jiffies;
9437 	unsigned long load;
9438 
9439 	if (cfs_rq->last_h_load_update == now)
9440 		return;
9441 
9442 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9443 	for_each_sched_entity(se) {
9444 		cfs_rq = cfs_rq_of(se);
9445 		WRITE_ONCE(cfs_rq->h_load_next, se);
9446 		if (cfs_rq->last_h_load_update == now)
9447 			break;
9448 	}
9449 
9450 	if (!se) {
9451 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9452 		cfs_rq->last_h_load_update = now;
9453 	}
9454 
9455 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9456 		load = cfs_rq->h_load;
9457 		load = div64_ul(load * se->avg.load_avg,
9458 			cfs_rq_load_avg(cfs_rq) + 1);
9459 		cfs_rq = group_cfs_rq(se);
9460 		cfs_rq->h_load = load;
9461 		cfs_rq->last_h_load_update = now;
9462 	}
9463 }
9464 
9465 static unsigned long task_h_load(struct task_struct *p)
9466 {
9467 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9468 
9469 	update_cfs_rq_h_load(cfs_rq);
9470 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9471 			cfs_rq_load_avg(cfs_rq) + 1);
9472 }
9473 #else
9474 static bool __update_blocked_fair(struct rq *rq, bool *done)
9475 {
9476 	struct cfs_rq *cfs_rq = &rq->cfs;
9477 	bool decayed;
9478 
9479 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9480 	if (cfs_rq_has_blocked(cfs_rq))
9481 		*done = false;
9482 
9483 	return decayed;
9484 }
9485 
9486 static unsigned long task_h_load(struct task_struct *p)
9487 {
9488 	return p->se.avg.load_avg;
9489 }
9490 #endif
9491 
9492 static void sched_balance_update_blocked_averages(int cpu)
9493 {
9494 	bool decayed = false, done = true;
9495 	struct rq *rq = cpu_rq(cpu);
9496 	struct rq_flags rf;
9497 
9498 	rq_lock_irqsave(rq, &rf);
9499 	update_blocked_load_tick(rq);
9500 	update_rq_clock(rq);
9501 
9502 	decayed |= __update_blocked_others(rq, &done);
9503 	decayed |= __update_blocked_fair(rq, &done);
9504 
9505 	update_blocked_load_status(rq, !done);
9506 	if (decayed)
9507 		cpufreq_update_util(rq, 0);
9508 	rq_unlock_irqrestore(rq, &rf);
9509 }
9510 
9511 /********** Helpers for sched_balance_find_src_group ************************/
9512 
9513 /*
9514  * sg_lb_stats - stats of a sched_group required for load-balancing:
9515  */
9516 struct sg_lb_stats {
9517 	unsigned long avg_load;			/* Avg load            over the CPUs of the group */
9518 	unsigned long group_load;		/* Total load          over the CPUs of the group */
9519 	unsigned long group_capacity;		/* Capacity            over the CPUs of the group */
9520 	unsigned long group_util;		/* Total utilization   over the CPUs of the group */
9521 	unsigned long group_runnable;		/* Total runnable time over the CPUs of the group */
9522 	unsigned int sum_nr_running;		/* Nr of all tasks running in the group */
9523 	unsigned int sum_h_nr_running;		/* Nr of CFS tasks running in the group */
9524 	unsigned int idle_cpus;                 /* Nr of idle CPUs         in the group */
9525 	unsigned int group_weight;
9526 	enum group_type group_type;
9527 	unsigned int group_asym_packing;	/* Tasks should be moved to preferred CPU */
9528 	unsigned int group_smt_balance;		/* Task on busy SMT be moved */
9529 	unsigned long group_misfit_task_load;	/* A CPU has a task too big for its capacity */
9530 #ifdef CONFIG_NUMA_BALANCING
9531 	unsigned int nr_numa_running;
9532 	unsigned int nr_preferred_running;
9533 #endif
9534 };
9535 
9536 /*
9537  * sd_lb_stats - stats of a sched_domain required for load-balancing:
9538  */
9539 struct sd_lb_stats {
9540 	struct sched_group *busiest;		/* Busiest group in this sd */
9541 	struct sched_group *local;		/* Local group in this sd */
9542 	unsigned long total_load;		/* Total load of all groups in sd */
9543 	unsigned long total_capacity;		/* Total capacity of all groups in sd */
9544 	unsigned long avg_load;			/* Average load across all groups in sd */
9545 	unsigned int prefer_sibling;		/* Tasks should go to sibling first */
9546 
9547 	struct sg_lb_stats busiest_stat;	/* Statistics of the busiest group */
9548 	struct sg_lb_stats local_stat;		/* Statistics of the local group */
9549 };
9550 
9551 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9552 {
9553 	/*
9554 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9555 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9556 	 * We must however set busiest_stat::group_type and
9557 	 * busiest_stat::idle_cpus to the worst busiest group because
9558 	 * update_sd_pick_busiest() reads these before assignment.
9559 	 */
9560 	*sds = (struct sd_lb_stats){
9561 		.busiest = NULL,
9562 		.local = NULL,
9563 		.total_load = 0UL,
9564 		.total_capacity = 0UL,
9565 		.busiest_stat = {
9566 			.idle_cpus = UINT_MAX,
9567 			.group_type = group_has_spare,
9568 		},
9569 	};
9570 }
9571 
9572 static unsigned long scale_rt_capacity(int cpu)
9573 {
9574 	unsigned long max = get_actual_cpu_capacity(cpu);
9575 	struct rq *rq = cpu_rq(cpu);
9576 	unsigned long used, free;
9577 	unsigned long irq;
9578 
9579 	irq = cpu_util_irq(rq);
9580 
9581 	if (unlikely(irq >= max))
9582 		return 1;
9583 
9584 	/*
9585 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9586 	 * (running and not running) with weights 0 and 1024 respectively.
9587 	 */
9588 	used = cpu_util_rt(rq);
9589 	used += cpu_util_dl(rq);
9590 
9591 	if (unlikely(used >= max))
9592 		return 1;
9593 
9594 	free = max - used;
9595 
9596 	return scale_irq_capacity(free, irq, max);
9597 }
9598 
9599 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9600 {
9601 	unsigned long capacity = scale_rt_capacity(cpu);
9602 	struct sched_group *sdg = sd->groups;
9603 
9604 	if (!capacity)
9605 		capacity = 1;
9606 
9607 	cpu_rq(cpu)->cpu_capacity = capacity;
9608 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9609 
9610 	sdg->sgc->capacity = capacity;
9611 	sdg->sgc->min_capacity = capacity;
9612 	sdg->sgc->max_capacity = capacity;
9613 }
9614 
9615 void update_group_capacity(struct sched_domain *sd, int cpu)
9616 {
9617 	struct sched_domain *child = sd->child;
9618 	struct sched_group *group, *sdg = sd->groups;
9619 	unsigned long capacity, min_capacity, max_capacity;
9620 	unsigned long interval;
9621 
9622 	interval = msecs_to_jiffies(sd->balance_interval);
9623 	interval = clamp(interval, 1UL, max_load_balance_interval);
9624 	sdg->sgc->next_update = jiffies + interval;
9625 
9626 	if (!child) {
9627 		update_cpu_capacity(sd, cpu);
9628 		return;
9629 	}
9630 
9631 	capacity = 0;
9632 	min_capacity = ULONG_MAX;
9633 	max_capacity = 0;
9634 
9635 	if (child->flags & SD_OVERLAP) {
9636 		/*
9637 		 * SD_OVERLAP domains cannot assume that child groups
9638 		 * span the current group.
9639 		 */
9640 
9641 		for_each_cpu(cpu, sched_group_span(sdg)) {
9642 			unsigned long cpu_cap = capacity_of(cpu);
9643 
9644 			capacity += cpu_cap;
9645 			min_capacity = min(cpu_cap, min_capacity);
9646 			max_capacity = max(cpu_cap, max_capacity);
9647 		}
9648 	} else  {
9649 		/*
9650 		 * !SD_OVERLAP domains can assume that child groups
9651 		 * span the current group.
9652 		 */
9653 
9654 		group = child->groups;
9655 		do {
9656 			struct sched_group_capacity *sgc = group->sgc;
9657 
9658 			capacity += sgc->capacity;
9659 			min_capacity = min(sgc->min_capacity, min_capacity);
9660 			max_capacity = max(sgc->max_capacity, max_capacity);
9661 			group = group->next;
9662 		} while (group != child->groups);
9663 	}
9664 
9665 	sdg->sgc->capacity = capacity;
9666 	sdg->sgc->min_capacity = min_capacity;
9667 	sdg->sgc->max_capacity = max_capacity;
9668 }
9669 
9670 /*
9671  * Check whether the capacity of the rq has been noticeably reduced by side
9672  * activity. The imbalance_pct is used for the threshold.
9673  * Return true is the capacity is reduced
9674  */
9675 static inline int
9676 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9677 {
9678 	return ((rq->cpu_capacity * sd->imbalance_pct) <
9679 				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
9680 }
9681 
9682 /* Check if the rq has a misfit task */
9683 static inline bool check_misfit_status(struct rq *rq)
9684 {
9685 	return rq->misfit_task_load;
9686 }
9687 
9688 /*
9689  * Group imbalance indicates (and tries to solve) the problem where balancing
9690  * groups is inadequate due to ->cpus_ptr constraints.
9691  *
9692  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9693  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9694  * Something like:
9695  *
9696  *	{ 0 1 2 3 } { 4 5 6 7 }
9697  *	        *     * * *
9698  *
9699  * If we were to balance group-wise we'd place two tasks in the first group and
9700  * two tasks in the second group. Clearly this is undesired as it will overload
9701  * cpu 3 and leave one of the CPUs in the second group unused.
9702  *
9703  * The current solution to this issue is detecting the skew in the first group
9704  * by noticing the lower domain failed to reach balance and had difficulty
9705  * moving tasks due to affinity constraints.
9706  *
9707  * When this is so detected; this group becomes a candidate for busiest; see
9708  * update_sd_pick_busiest(). And calculate_imbalance() and
9709  * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
9710  * to create an effective group imbalance.
9711  *
9712  * This is a somewhat tricky proposition since the next run might not find the
9713  * group imbalance and decide the groups need to be balanced again. A most
9714  * subtle and fragile situation.
9715  */
9716 
9717 static inline int sg_imbalanced(struct sched_group *group)
9718 {
9719 	return group->sgc->imbalance;
9720 }
9721 
9722 /*
9723  * group_has_capacity returns true if the group has spare capacity that could
9724  * be used by some tasks.
9725  * We consider that a group has spare capacity if the number of task is
9726  * smaller than the number of CPUs or if the utilization is lower than the
9727  * available capacity for CFS tasks.
9728  * For the latter, we use a threshold to stabilize the state, to take into
9729  * account the variance of the tasks' load and to return true if the available
9730  * capacity in meaningful for the load balancer.
9731  * As an example, an available capacity of 1% can appear but it doesn't make
9732  * any benefit for the load balance.
9733  */
9734 static inline bool
9735 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9736 {
9737 	if (sgs->sum_nr_running < sgs->group_weight)
9738 		return true;
9739 
9740 	if ((sgs->group_capacity * imbalance_pct) <
9741 			(sgs->group_runnable * 100))
9742 		return false;
9743 
9744 	if ((sgs->group_capacity * 100) >
9745 			(sgs->group_util * imbalance_pct))
9746 		return true;
9747 
9748 	return false;
9749 }
9750 
9751 /*
9752  *  group_is_overloaded returns true if the group has more tasks than it can
9753  *  handle.
9754  *  group_is_overloaded is not equals to !group_has_capacity because a group
9755  *  with the exact right number of tasks, has no more spare capacity but is not
9756  *  overloaded so both group_has_capacity and group_is_overloaded return
9757  *  false.
9758  */
9759 static inline bool
9760 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9761 {
9762 	if (sgs->sum_nr_running <= sgs->group_weight)
9763 		return false;
9764 
9765 	if ((sgs->group_capacity * 100) <
9766 			(sgs->group_util * imbalance_pct))
9767 		return true;
9768 
9769 	if ((sgs->group_capacity * imbalance_pct) <
9770 			(sgs->group_runnable * 100))
9771 		return true;
9772 
9773 	return false;
9774 }
9775 
9776 static inline enum
9777 group_type group_classify(unsigned int imbalance_pct,
9778 			  struct sched_group *group,
9779 			  struct sg_lb_stats *sgs)
9780 {
9781 	if (group_is_overloaded(imbalance_pct, sgs))
9782 		return group_overloaded;
9783 
9784 	if (sg_imbalanced(group))
9785 		return group_imbalanced;
9786 
9787 	if (sgs->group_asym_packing)
9788 		return group_asym_packing;
9789 
9790 	if (sgs->group_smt_balance)
9791 		return group_smt_balance;
9792 
9793 	if (sgs->group_misfit_task_load)
9794 		return group_misfit_task;
9795 
9796 	if (!group_has_capacity(imbalance_pct, sgs))
9797 		return group_fully_busy;
9798 
9799 	return group_has_spare;
9800 }
9801 
9802 /**
9803  * sched_use_asym_prio - Check whether asym_packing priority must be used
9804  * @sd:		The scheduling domain of the load balancing
9805  * @cpu:	A CPU
9806  *
9807  * Always use CPU priority when balancing load between SMT siblings. When
9808  * balancing load between cores, it is not sufficient that @cpu is idle. Only
9809  * use CPU priority if the whole core is idle.
9810  *
9811  * Returns: True if the priority of @cpu must be followed. False otherwise.
9812  */
9813 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9814 {
9815 	if (!(sd->flags & SD_ASYM_PACKING))
9816 		return false;
9817 
9818 	if (!sched_smt_active())
9819 		return true;
9820 
9821 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9822 }
9823 
9824 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
9825 {
9826 	/*
9827 	 * First check if @dst_cpu can do asym_packing load balance. Only do it
9828 	 * if it has higher priority than @src_cpu.
9829 	 */
9830 	return sched_use_asym_prio(sd, dst_cpu) &&
9831 		sched_asym_prefer(dst_cpu, src_cpu);
9832 }
9833 
9834 /**
9835  * sched_group_asym - Check if the destination CPU can do asym_packing balance
9836  * @env:	The load balancing environment
9837  * @sgs:	Load-balancing statistics of the candidate busiest group
9838  * @group:	The candidate busiest group
9839  *
9840  * @env::dst_cpu can do asym_packing if it has higher priority than the
9841  * preferred CPU of @group.
9842  *
9843  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9844  * otherwise.
9845  */
9846 static inline bool
9847 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
9848 {
9849 	/*
9850 	 * CPU priorities do not make sense for SMT cores with more than one
9851 	 * busy sibling.
9852 	 */
9853 	if ((group->flags & SD_SHARE_CPUCAPACITY) &&
9854 	    (sgs->group_weight - sgs->idle_cpus != 1))
9855 		return false;
9856 
9857 	return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
9858 }
9859 
9860 /* One group has more than one SMT CPU while the other group does not */
9861 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
9862 				    struct sched_group *sg2)
9863 {
9864 	if (!sg1 || !sg2)
9865 		return false;
9866 
9867 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
9868 		(sg2->flags & SD_SHARE_CPUCAPACITY);
9869 }
9870 
9871 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
9872 			       struct sched_group *group)
9873 {
9874 	if (!env->idle)
9875 		return false;
9876 
9877 	/*
9878 	 * For SMT source group, it is better to move a task
9879 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
9880 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
9881 	 * will not be on.
9882 	 */
9883 	if (group->flags & SD_SHARE_CPUCAPACITY &&
9884 	    sgs->sum_h_nr_running > 1)
9885 		return true;
9886 
9887 	return false;
9888 }
9889 
9890 static inline long sibling_imbalance(struct lb_env *env,
9891 				    struct sd_lb_stats *sds,
9892 				    struct sg_lb_stats *busiest,
9893 				    struct sg_lb_stats *local)
9894 {
9895 	int ncores_busiest, ncores_local;
9896 	long imbalance;
9897 
9898 	if (!env->idle || !busiest->sum_nr_running)
9899 		return 0;
9900 
9901 	ncores_busiest = sds->busiest->cores;
9902 	ncores_local = sds->local->cores;
9903 
9904 	if (ncores_busiest == ncores_local) {
9905 		imbalance = busiest->sum_nr_running;
9906 		lsub_positive(&imbalance, local->sum_nr_running);
9907 		return imbalance;
9908 	}
9909 
9910 	/* Balance such that nr_running/ncores ratio are same on both groups */
9911 	imbalance = ncores_local * busiest->sum_nr_running;
9912 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
9913 	/* Normalize imbalance and do rounding on normalization */
9914 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
9915 	imbalance /= ncores_local + ncores_busiest;
9916 
9917 	/* Take advantage of resource in an empty sched group */
9918 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
9919 	    busiest->sum_nr_running > 1)
9920 		imbalance = 2;
9921 
9922 	return imbalance;
9923 }
9924 
9925 static inline bool
9926 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9927 {
9928 	/*
9929 	 * When there is more than 1 task, the group_overloaded case already
9930 	 * takes care of cpu with reduced capacity
9931 	 */
9932 	if (rq->cfs.h_nr_running != 1)
9933 		return false;
9934 
9935 	return check_cpu_capacity(rq, sd);
9936 }
9937 
9938 /**
9939  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9940  * @env: The load balancing environment.
9941  * @sds: Load-balancing data with statistics of the local group.
9942  * @group: sched_group whose statistics are to be updated.
9943  * @sgs: variable to hold the statistics for this group.
9944  * @sg_overloaded: sched_group is overloaded
9945  * @sg_overutilized: sched_group is overutilized
9946  */
9947 static inline void update_sg_lb_stats(struct lb_env *env,
9948 				      struct sd_lb_stats *sds,
9949 				      struct sched_group *group,
9950 				      struct sg_lb_stats *sgs,
9951 				      bool *sg_overloaded,
9952 				      bool *sg_overutilized)
9953 {
9954 	int i, nr_running, local_group;
9955 
9956 	memset(sgs, 0, sizeof(*sgs));
9957 
9958 	local_group = group == sds->local;
9959 
9960 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9961 		struct rq *rq = cpu_rq(i);
9962 		unsigned long load = cpu_load(rq);
9963 
9964 		sgs->group_load += load;
9965 		sgs->group_util += cpu_util_cfs(i);
9966 		sgs->group_runnable += cpu_runnable(rq);
9967 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9968 
9969 		nr_running = rq->nr_running;
9970 		sgs->sum_nr_running += nr_running;
9971 
9972 		if (nr_running > 1)
9973 			*sg_overloaded = 1;
9974 
9975 		if (cpu_overutilized(i))
9976 			*sg_overutilized = 1;
9977 
9978 #ifdef CONFIG_NUMA_BALANCING
9979 		sgs->nr_numa_running += rq->nr_numa_running;
9980 		sgs->nr_preferred_running += rq->nr_preferred_running;
9981 #endif
9982 		/*
9983 		 * No need to call idle_cpu() if nr_running is not 0
9984 		 */
9985 		if (!nr_running && idle_cpu(i)) {
9986 			sgs->idle_cpus++;
9987 			/* Idle cpu can't have misfit task */
9988 			continue;
9989 		}
9990 
9991 		if (local_group)
9992 			continue;
9993 
9994 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9995 			/* Check for a misfit task on the cpu */
9996 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9997 				sgs->group_misfit_task_load = rq->misfit_task_load;
9998 				*sg_overloaded = 1;
9999 			}
10000 		} else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10001 			/* Check for a task running on a CPU with reduced capacity */
10002 			if (sgs->group_misfit_task_load < load)
10003 				sgs->group_misfit_task_load = load;
10004 		}
10005 	}
10006 
10007 	sgs->group_capacity = group->sgc->capacity;
10008 
10009 	sgs->group_weight = group->group_weight;
10010 
10011 	/* Check if dst CPU is idle and preferred to this group */
10012 	if (!local_group && env->idle && sgs->sum_h_nr_running &&
10013 	    sched_group_asym(env, sgs, group))
10014 		sgs->group_asym_packing = 1;
10015 
10016 	/* Check for loaded SMT group to be balanced to dst CPU */
10017 	if (!local_group && smt_balance(env, sgs, group))
10018 		sgs->group_smt_balance = 1;
10019 
10020 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10021 
10022 	/* Computing avg_load makes sense only when group is overloaded */
10023 	if (sgs->group_type == group_overloaded)
10024 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10025 				sgs->group_capacity;
10026 }
10027 
10028 /**
10029  * update_sd_pick_busiest - return 1 on busiest group
10030  * @env: The load balancing environment.
10031  * @sds: sched_domain statistics
10032  * @sg: sched_group candidate to be checked for being the busiest
10033  * @sgs: sched_group statistics
10034  *
10035  * Determine if @sg is a busier group than the previously selected
10036  * busiest group.
10037  *
10038  * Return: %true if @sg is a busier group than the previously selected
10039  * busiest group. %false otherwise.
10040  */
10041 static bool update_sd_pick_busiest(struct lb_env *env,
10042 				   struct sd_lb_stats *sds,
10043 				   struct sched_group *sg,
10044 				   struct sg_lb_stats *sgs)
10045 {
10046 	struct sg_lb_stats *busiest = &sds->busiest_stat;
10047 
10048 	/* Make sure that there is at least one task to pull */
10049 	if (!sgs->sum_h_nr_running)
10050 		return false;
10051 
10052 	/*
10053 	 * Don't try to pull misfit tasks we can't help.
10054 	 * We can use max_capacity here as reduction in capacity on some
10055 	 * CPUs in the group should either be possible to resolve
10056 	 * internally or be covered by avg_load imbalance (eventually).
10057 	 */
10058 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10059 	    (sgs->group_type == group_misfit_task) &&
10060 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10061 	     sds->local_stat.group_type != group_has_spare))
10062 		return false;
10063 
10064 	if (sgs->group_type > busiest->group_type)
10065 		return true;
10066 
10067 	if (sgs->group_type < busiest->group_type)
10068 		return false;
10069 
10070 	/*
10071 	 * The candidate and the current busiest group are the same type of
10072 	 * group. Let check which one is the busiest according to the type.
10073 	 */
10074 
10075 	switch (sgs->group_type) {
10076 	case group_overloaded:
10077 		/* Select the overloaded group with highest avg_load. */
10078 		return sgs->avg_load > busiest->avg_load;
10079 
10080 	case group_imbalanced:
10081 		/*
10082 		 * Select the 1st imbalanced group as we don't have any way to
10083 		 * choose one more than another.
10084 		 */
10085 		return false;
10086 
10087 	case group_asym_packing:
10088 		/* Prefer to move from lowest priority CPU's work */
10089 		return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
10090 
10091 	case group_misfit_task:
10092 		/*
10093 		 * If we have more than one misfit sg go with the biggest
10094 		 * misfit.
10095 		 */
10096 		return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10097 
10098 	case group_smt_balance:
10099 		/*
10100 		 * Check if we have spare CPUs on either SMT group to
10101 		 * choose has spare or fully busy handling.
10102 		 */
10103 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10104 			goto has_spare;
10105 
10106 		fallthrough;
10107 
10108 	case group_fully_busy:
10109 		/*
10110 		 * Select the fully busy group with highest avg_load. In
10111 		 * theory, there is no need to pull task from such kind of
10112 		 * group because tasks have all compute capacity that they need
10113 		 * but we can still improve the overall throughput by reducing
10114 		 * contention when accessing shared HW resources.
10115 		 *
10116 		 * XXX for now avg_load is not computed and always 0 so we
10117 		 * select the 1st one, except if @sg is composed of SMT
10118 		 * siblings.
10119 		 */
10120 
10121 		if (sgs->avg_load < busiest->avg_load)
10122 			return false;
10123 
10124 		if (sgs->avg_load == busiest->avg_load) {
10125 			/*
10126 			 * SMT sched groups need more help than non-SMT groups.
10127 			 * If @sg happens to also be SMT, either choice is good.
10128 			 */
10129 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10130 				return false;
10131 		}
10132 
10133 		break;
10134 
10135 	case group_has_spare:
10136 		/*
10137 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10138 		 * as we do not want to pull task off SMT core with one task
10139 		 * and make the core idle.
10140 		 */
10141 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10142 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10143 				return false;
10144 			else
10145 				return true;
10146 		}
10147 has_spare:
10148 
10149 		/*
10150 		 * Select not overloaded group with lowest number of idle CPUs
10151 		 * and highest number of running tasks. We could also compare
10152 		 * the spare capacity which is more stable but it can end up
10153 		 * that the group has less spare capacity but finally more idle
10154 		 * CPUs which means less opportunity to pull tasks.
10155 		 */
10156 		if (sgs->idle_cpus > busiest->idle_cpus)
10157 			return false;
10158 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10159 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10160 			return false;
10161 
10162 		break;
10163 	}
10164 
10165 	/*
10166 	 * Candidate sg has no more than one task per CPU and has higher
10167 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10168 	 * throughput. Maximize throughput, power/energy consequences are not
10169 	 * considered.
10170 	 */
10171 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10172 	    (sgs->group_type <= group_fully_busy) &&
10173 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10174 		return false;
10175 
10176 	return true;
10177 }
10178 
10179 #ifdef CONFIG_NUMA_BALANCING
10180 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10181 {
10182 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10183 		return regular;
10184 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10185 		return remote;
10186 	return all;
10187 }
10188 
10189 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10190 {
10191 	if (rq->nr_running > rq->nr_numa_running)
10192 		return regular;
10193 	if (rq->nr_running > rq->nr_preferred_running)
10194 		return remote;
10195 	return all;
10196 }
10197 #else
10198 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10199 {
10200 	return all;
10201 }
10202 
10203 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10204 {
10205 	return regular;
10206 }
10207 #endif /* CONFIG_NUMA_BALANCING */
10208 
10209 
10210 struct sg_lb_stats;
10211 
10212 /*
10213  * task_running_on_cpu - return 1 if @p is running on @cpu.
10214  */
10215 
10216 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10217 {
10218 	/* Task has no contribution or is new */
10219 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10220 		return 0;
10221 
10222 	if (task_on_rq_queued(p))
10223 		return 1;
10224 
10225 	return 0;
10226 }
10227 
10228 /**
10229  * idle_cpu_without - would a given CPU be idle without p ?
10230  * @cpu: the processor on which idleness is tested.
10231  * @p: task which should be ignored.
10232  *
10233  * Return: 1 if the CPU would be idle. 0 otherwise.
10234  */
10235 static int idle_cpu_without(int cpu, struct task_struct *p)
10236 {
10237 	struct rq *rq = cpu_rq(cpu);
10238 
10239 	if (rq->curr != rq->idle && rq->curr != p)
10240 		return 0;
10241 
10242 	/*
10243 	 * rq->nr_running can't be used but an updated version without the
10244 	 * impact of p on cpu must be used instead. The updated nr_running
10245 	 * be computed and tested before calling idle_cpu_without().
10246 	 */
10247 
10248 	if (rq->ttwu_pending)
10249 		return 0;
10250 
10251 	return 1;
10252 }
10253 
10254 /*
10255  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10256  * @sd: The sched_domain level to look for idlest group.
10257  * @group: sched_group whose statistics are to be updated.
10258  * @sgs: variable to hold the statistics for this group.
10259  * @p: The task for which we look for the idlest group/CPU.
10260  */
10261 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10262 					  struct sched_group *group,
10263 					  struct sg_lb_stats *sgs,
10264 					  struct task_struct *p)
10265 {
10266 	int i, nr_running;
10267 
10268 	memset(sgs, 0, sizeof(*sgs));
10269 
10270 	/* Assume that task can't fit any CPU of the group */
10271 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10272 		sgs->group_misfit_task_load = 1;
10273 
10274 	for_each_cpu(i, sched_group_span(group)) {
10275 		struct rq *rq = cpu_rq(i);
10276 		unsigned int local;
10277 
10278 		sgs->group_load += cpu_load_without(rq, p);
10279 		sgs->group_util += cpu_util_without(i, p);
10280 		sgs->group_runnable += cpu_runnable_without(rq, p);
10281 		local = task_running_on_cpu(i, p);
10282 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10283 
10284 		nr_running = rq->nr_running - local;
10285 		sgs->sum_nr_running += nr_running;
10286 
10287 		/*
10288 		 * No need to call idle_cpu_without() if nr_running is not 0
10289 		 */
10290 		if (!nr_running && idle_cpu_without(i, p))
10291 			sgs->idle_cpus++;
10292 
10293 		/* Check if task fits in the CPU */
10294 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10295 		    sgs->group_misfit_task_load &&
10296 		    task_fits_cpu(p, i))
10297 			sgs->group_misfit_task_load = 0;
10298 
10299 	}
10300 
10301 	sgs->group_capacity = group->sgc->capacity;
10302 
10303 	sgs->group_weight = group->group_weight;
10304 
10305 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10306 
10307 	/*
10308 	 * Computing avg_load makes sense only when group is fully busy or
10309 	 * overloaded
10310 	 */
10311 	if (sgs->group_type == group_fully_busy ||
10312 		sgs->group_type == group_overloaded)
10313 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10314 				sgs->group_capacity;
10315 }
10316 
10317 static bool update_pick_idlest(struct sched_group *idlest,
10318 			       struct sg_lb_stats *idlest_sgs,
10319 			       struct sched_group *group,
10320 			       struct sg_lb_stats *sgs)
10321 {
10322 	if (sgs->group_type < idlest_sgs->group_type)
10323 		return true;
10324 
10325 	if (sgs->group_type > idlest_sgs->group_type)
10326 		return false;
10327 
10328 	/*
10329 	 * The candidate and the current idlest group are the same type of
10330 	 * group. Let check which one is the idlest according to the type.
10331 	 */
10332 
10333 	switch (sgs->group_type) {
10334 	case group_overloaded:
10335 	case group_fully_busy:
10336 		/* Select the group with lowest avg_load. */
10337 		if (idlest_sgs->avg_load <= sgs->avg_load)
10338 			return false;
10339 		break;
10340 
10341 	case group_imbalanced:
10342 	case group_asym_packing:
10343 	case group_smt_balance:
10344 		/* Those types are not used in the slow wakeup path */
10345 		return false;
10346 
10347 	case group_misfit_task:
10348 		/* Select group with the highest max capacity */
10349 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10350 			return false;
10351 		break;
10352 
10353 	case group_has_spare:
10354 		/* Select group with most idle CPUs */
10355 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10356 			return false;
10357 
10358 		/* Select group with lowest group_util */
10359 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10360 			idlest_sgs->group_util <= sgs->group_util)
10361 			return false;
10362 
10363 		break;
10364 	}
10365 
10366 	return true;
10367 }
10368 
10369 /*
10370  * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10371  * domain.
10372  *
10373  * Assumes p is allowed on at least one CPU in sd.
10374  */
10375 static struct sched_group *
10376 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10377 {
10378 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10379 	struct sg_lb_stats local_sgs, tmp_sgs;
10380 	struct sg_lb_stats *sgs;
10381 	unsigned long imbalance;
10382 	struct sg_lb_stats idlest_sgs = {
10383 			.avg_load = UINT_MAX,
10384 			.group_type = group_overloaded,
10385 	};
10386 
10387 	do {
10388 		int local_group;
10389 
10390 		/* Skip over this group if it has no CPUs allowed */
10391 		if (!cpumask_intersects(sched_group_span(group),
10392 					p->cpus_ptr))
10393 			continue;
10394 
10395 		/* Skip over this group if no cookie matched */
10396 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10397 			continue;
10398 
10399 		local_group = cpumask_test_cpu(this_cpu,
10400 					       sched_group_span(group));
10401 
10402 		if (local_group) {
10403 			sgs = &local_sgs;
10404 			local = group;
10405 		} else {
10406 			sgs = &tmp_sgs;
10407 		}
10408 
10409 		update_sg_wakeup_stats(sd, group, sgs, p);
10410 
10411 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10412 			idlest = group;
10413 			idlest_sgs = *sgs;
10414 		}
10415 
10416 	} while (group = group->next, group != sd->groups);
10417 
10418 
10419 	/* There is no idlest group to push tasks to */
10420 	if (!idlest)
10421 		return NULL;
10422 
10423 	/* The local group has been skipped because of CPU affinity */
10424 	if (!local)
10425 		return idlest;
10426 
10427 	/*
10428 	 * If the local group is idler than the selected idlest group
10429 	 * don't try and push the task.
10430 	 */
10431 	if (local_sgs.group_type < idlest_sgs.group_type)
10432 		return NULL;
10433 
10434 	/*
10435 	 * If the local group is busier than the selected idlest group
10436 	 * try and push the task.
10437 	 */
10438 	if (local_sgs.group_type > idlest_sgs.group_type)
10439 		return idlest;
10440 
10441 	switch (local_sgs.group_type) {
10442 	case group_overloaded:
10443 	case group_fully_busy:
10444 
10445 		/* Calculate allowed imbalance based on load */
10446 		imbalance = scale_load_down(NICE_0_LOAD) *
10447 				(sd->imbalance_pct-100) / 100;
10448 
10449 		/*
10450 		 * When comparing groups across NUMA domains, it's possible for
10451 		 * the local domain to be very lightly loaded relative to the
10452 		 * remote domains but "imbalance" skews the comparison making
10453 		 * remote CPUs look much more favourable. When considering
10454 		 * cross-domain, add imbalance to the load on the remote node
10455 		 * and consider staying local.
10456 		 */
10457 
10458 		if ((sd->flags & SD_NUMA) &&
10459 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10460 			return NULL;
10461 
10462 		/*
10463 		 * If the local group is less loaded than the selected
10464 		 * idlest group don't try and push any tasks.
10465 		 */
10466 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10467 			return NULL;
10468 
10469 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10470 			return NULL;
10471 		break;
10472 
10473 	case group_imbalanced:
10474 	case group_asym_packing:
10475 	case group_smt_balance:
10476 		/* Those type are not used in the slow wakeup path */
10477 		return NULL;
10478 
10479 	case group_misfit_task:
10480 		/* Select group with the highest max capacity */
10481 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10482 			return NULL;
10483 		break;
10484 
10485 	case group_has_spare:
10486 #ifdef CONFIG_NUMA
10487 		if (sd->flags & SD_NUMA) {
10488 			int imb_numa_nr = sd->imb_numa_nr;
10489 #ifdef CONFIG_NUMA_BALANCING
10490 			int idlest_cpu;
10491 			/*
10492 			 * If there is spare capacity at NUMA, try to select
10493 			 * the preferred node
10494 			 */
10495 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10496 				return NULL;
10497 
10498 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10499 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10500 				return idlest;
10501 #endif /* CONFIG_NUMA_BALANCING */
10502 			/*
10503 			 * Otherwise, keep the task close to the wakeup source
10504 			 * and improve locality if the number of running tasks
10505 			 * would remain below threshold where an imbalance is
10506 			 * allowed while accounting for the possibility the
10507 			 * task is pinned to a subset of CPUs. If there is a
10508 			 * real need of migration, periodic load balance will
10509 			 * take care of it.
10510 			 */
10511 			if (p->nr_cpus_allowed != NR_CPUS) {
10512 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10513 
10514 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10515 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10516 			}
10517 
10518 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10519 			if (!adjust_numa_imbalance(imbalance,
10520 						   local_sgs.sum_nr_running + 1,
10521 						   imb_numa_nr)) {
10522 				return NULL;
10523 			}
10524 		}
10525 #endif /* CONFIG_NUMA */
10526 
10527 		/*
10528 		 * Select group with highest number of idle CPUs. We could also
10529 		 * compare the utilization which is more stable but it can end
10530 		 * up that the group has less spare capacity but finally more
10531 		 * idle CPUs which means more opportunity to run task.
10532 		 */
10533 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10534 			return NULL;
10535 		break;
10536 	}
10537 
10538 	return idlest;
10539 }
10540 
10541 static void update_idle_cpu_scan(struct lb_env *env,
10542 				 unsigned long sum_util)
10543 {
10544 	struct sched_domain_shared *sd_share;
10545 	int llc_weight, pct;
10546 	u64 x, y, tmp;
10547 	/*
10548 	 * Update the number of CPUs to scan in LLC domain, which could
10549 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10550 	 * could be expensive because it is within a shared cache line.
10551 	 * So the write of this hint only occurs during periodic load
10552 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10553 	 * can fire way more frequently than the former.
10554 	 */
10555 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10556 		return;
10557 
10558 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10559 	if (env->sd->span_weight != llc_weight)
10560 		return;
10561 
10562 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10563 	if (!sd_share)
10564 		return;
10565 
10566 	/*
10567 	 * The number of CPUs to search drops as sum_util increases, when
10568 	 * sum_util hits 85% or above, the scan stops.
10569 	 * The reason to choose 85% as the threshold is because this is the
10570 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10571 	 *
10572 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10573 	 * and y'= y / SCHED_CAPACITY_SCALE
10574 	 *
10575 	 * x is the ratio of sum_util compared to the CPU capacity:
10576 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10577 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10578 	 * and the number of CPUs to scan is calculated by:
10579 	 *
10580 	 * nr_scan = llc_weight * y'                                    [2]
10581 	 *
10582 	 * When x hits the threshold of overloaded, AKA, when
10583 	 * x = 100 / pct, y drops to 0. According to [1],
10584 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10585 	 *
10586 	 * Scale x by SCHED_CAPACITY_SCALE:
10587 	 * x' = sum_util / llc_weight;                                  [3]
10588 	 *
10589 	 * and finally [1] becomes:
10590 	 * y = SCHED_CAPACITY_SCALE -
10591 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10592 	 *
10593 	 */
10594 	/* equation [3] */
10595 	x = sum_util;
10596 	do_div(x, llc_weight);
10597 
10598 	/* equation [4] */
10599 	pct = env->sd->imbalance_pct;
10600 	tmp = x * x * pct * pct;
10601 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10602 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10603 	y = SCHED_CAPACITY_SCALE - tmp;
10604 
10605 	/* equation [2] */
10606 	y *= llc_weight;
10607 	do_div(y, SCHED_CAPACITY_SCALE);
10608 	if ((int)y != sd_share->nr_idle_scan)
10609 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10610 }
10611 
10612 /**
10613  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10614  * @env: The load balancing environment.
10615  * @sds: variable to hold the statistics for this sched_domain.
10616  */
10617 
10618 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10619 {
10620 	struct sched_group *sg = env->sd->groups;
10621 	struct sg_lb_stats *local = &sds->local_stat;
10622 	struct sg_lb_stats tmp_sgs;
10623 	unsigned long sum_util = 0;
10624 	bool sg_overloaded = 0, sg_overutilized = 0;
10625 
10626 	do {
10627 		struct sg_lb_stats *sgs = &tmp_sgs;
10628 		int local_group;
10629 
10630 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10631 		if (local_group) {
10632 			sds->local = sg;
10633 			sgs = local;
10634 
10635 			if (env->idle != CPU_NEWLY_IDLE ||
10636 			    time_after_eq(jiffies, sg->sgc->next_update))
10637 				update_group_capacity(env->sd, env->dst_cpu);
10638 		}
10639 
10640 		update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
10641 
10642 		if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
10643 			sds->busiest = sg;
10644 			sds->busiest_stat = *sgs;
10645 		}
10646 
10647 		/* Now, start updating sd_lb_stats */
10648 		sds->total_load += sgs->group_load;
10649 		sds->total_capacity += sgs->group_capacity;
10650 
10651 		sum_util += sgs->group_util;
10652 		sg = sg->next;
10653 	} while (sg != env->sd->groups);
10654 
10655 	/*
10656 	 * Indicate that the child domain of the busiest group prefers tasks
10657 	 * go to a child's sibling domains first. NB the flags of a sched group
10658 	 * are those of the child domain.
10659 	 */
10660 	if (sds->busiest)
10661 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10662 
10663 
10664 	if (env->sd->flags & SD_NUMA)
10665 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10666 
10667 	if (!env->sd->parent) {
10668 		/* update overload indicator if we are at root domain */
10669 		set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
10670 
10671 		/* Update over-utilization (tipping point, U >= 0) indicator */
10672 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
10673 	} else if (sg_overutilized) {
10674 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
10675 	}
10676 
10677 	update_idle_cpu_scan(env, sum_util);
10678 }
10679 
10680 /**
10681  * calculate_imbalance - Calculate the amount of imbalance present within the
10682  *			 groups of a given sched_domain during load balance.
10683  * @env: load balance environment
10684  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10685  */
10686 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10687 {
10688 	struct sg_lb_stats *local, *busiest;
10689 
10690 	local = &sds->local_stat;
10691 	busiest = &sds->busiest_stat;
10692 
10693 	if (busiest->group_type == group_misfit_task) {
10694 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10695 			/* Set imbalance to allow misfit tasks to be balanced. */
10696 			env->migration_type = migrate_misfit;
10697 			env->imbalance = 1;
10698 		} else {
10699 			/*
10700 			 * Set load imbalance to allow moving task from cpu
10701 			 * with reduced capacity.
10702 			 */
10703 			env->migration_type = migrate_load;
10704 			env->imbalance = busiest->group_misfit_task_load;
10705 		}
10706 		return;
10707 	}
10708 
10709 	if (busiest->group_type == group_asym_packing) {
10710 		/*
10711 		 * In case of asym capacity, we will try to migrate all load to
10712 		 * the preferred CPU.
10713 		 */
10714 		env->migration_type = migrate_task;
10715 		env->imbalance = busiest->sum_h_nr_running;
10716 		return;
10717 	}
10718 
10719 	if (busiest->group_type == group_smt_balance) {
10720 		/* Reduce number of tasks sharing CPU capacity */
10721 		env->migration_type = migrate_task;
10722 		env->imbalance = 1;
10723 		return;
10724 	}
10725 
10726 	if (busiest->group_type == group_imbalanced) {
10727 		/*
10728 		 * In the group_imb case we cannot rely on group-wide averages
10729 		 * to ensure CPU-load equilibrium, try to move any task to fix
10730 		 * the imbalance. The next load balance will take care of
10731 		 * balancing back the system.
10732 		 */
10733 		env->migration_type = migrate_task;
10734 		env->imbalance = 1;
10735 		return;
10736 	}
10737 
10738 	/*
10739 	 * Try to use spare capacity of local group without overloading it or
10740 	 * emptying busiest.
10741 	 */
10742 	if (local->group_type == group_has_spare) {
10743 		if ((busiest->group_type > group_fully_busy) &&
10744 		    !(env->sd->flags & SD_SHARE_LLC)) {
10745 			/*
10746 			 * If busiest is overloaded, try to fill spare
10747 			 * capacity. This might end up creating spare capacity
10748 			 * in busiest or busiest still being overloaded but
10749 			 * there is no simple way to directly compute the
10750 			 * amount of load to migrate in order to balance the
10751 			 * system.
10752 			 */
10753 			env->migration_type = migrate_util;
10754 			env->imbalance = max(local->group_capacity, local->group_util) -
10755 					 local->group_util;
10756 
10757 			/*
10758 			 * In some cases, the group's utilization is max or even
10759 			 * higher than capacity because of migrations but the
10760 			 * local CPU is (newly) idle. There is at least one
10761 			 * waiting task in this overloaded busiest group. Let's
10762 			 * try to pull it.
10763 			 */
10764 			if (env->idle && env->imbalance == 0) {
10765 				env->migration_type = migrate_task;
10766 				env->imbalance = 1;
10767 			}
10768 
10769 			return;
10770 		}
10771 
10772 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
10773 			/*
10774 			 * When prefer sibling, evenly spread running tasks on
10775 			 * groups.
10776 			 */
10777 			env->migration_type = migrate_task;
10778 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
10779 		} else {
10780 
10781 			/*
10782 			 * If there is no overload, we just want to even the number of
10783 			 * idle CPUs.
10784 			 */
10785 			env->migration_type = migrate_task;
10786 			env->imbalance = max_t(long, 0,
10787 					       (local->idle_cpus - busiest->idle_cpus));
10788 		}
10789 
10790 #ifdef CONFIG_NUMA
10791 		/* Consider allowing a small imbalance between NUMA groups */
10792 		if (env->sd->flags & SD_NUMA) {
10793 			env->imbalance = adjust_numa_imbalance(env->imbalance,
10794 							       local->sum_nr_running + 1,
10795 							       env->sd->imb_numa_nr);
10796 		}
10797 #endif
10798 
10799 		/* Number of tasks to move to restore balance */
10800 		env->imbalance >>= 1;
10801 
10802 		return;
10803 	}
10804 
10805 	/*
10806 	 * Local is fully busy but has to take more load to relieve the
10807 	 * busiest group
10808 	 */
10809 	if (local->group_type < group_overloaded) {
10810 		/*
10811 		 * Local will become overloaded so the avg_load metrics are
10812 		 * finally needed.
10813 		 */
10814 
10815 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10816 				  local->group_capacity;
10817 
10818 		/*
10819 		 * If the local group is more loaded than the selected
10820 		 * busiest group don't try to pull any tasks.
10821 		 */
10822 		if (local->avg_load >= busiest->avg_load) {
10823 			env->imbalance = 0;
10824 			return;
10825 		}
10826 
10827 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10828 				sds->total_capacity;
10829 
10830 		/*
10831 		 * If the local group is more loaded than the average system
10832 		 * load, don't try to pull any tasks.
10833 		 */
10834 		if (local->avg_load >= sds->avg_load) {
10835 			env->imbalance = 0;
10836 			return;
10837 		}
10838 
10839 	}
10840 
10841 	/*
10842 	 * Both group are or will become overloaded and we're trying to get all
10843 	 * the CPUs to the average_load, so we don't want to push ourselves
10844 	 * above the average load, nor do we wish to reduce the max loaded CPU
10845 	 * below the average load. At the same time, we also don't want to
10846 	 * reduce the group load below the group capacity. Thus we look for
10847 	 * the minimum possible imbalance.
10848 	 */
10849 	env->migration_type = migrate_load;
10850 	env->imbalance = min(
10851 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10852 		(sds->avg_load - local->avg_load) * local->group_capacity
10853 	) / SCHED_CAPACITY_SCALE;
10854 }
10855 
10856 /******* sched_balance_find_src_group() helpers end here *********************/
10857 
10858 /*
10859  * Decision matrix according to the local and busiest group type:
10860  *
10861  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10862  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
10863  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
10864  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
10865  * asym_packing     force     force      N/A    N/A  force      force
10866  * imbalanced       force     force      N/A    N/A  force      force
10867  * overloaded       force     force      N/A    N/A  force      avg_load
10868  *
10869  * N/A :      Not Applicable because already filtered while updating
10870  *            statistics.
10871  * balanced : The system is balanced for these 2 groups.
10872  * force :    Calculate the imbalance as load migration is probably needed.
10873  * avg_load : Only if imbalance is significant enough.
10874  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
10875  *            different in groups.
10876  */
10877 
10878 /**
10879  * sched_balance_find_src_group - Returns the busiest group within the sched_domain
10880  * if there is an imbalance.
10881  * @env: The load balancing environment.
10882  *
10883  * Also calculates the amount of runnable load which should be moved
10884  * to restore balance.
10885  *
10886  * Return:	- The busiest group if imbalance exists.
10887  */
10888 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
10889 {
10890 	struct sg_lb_stats *local, *busiest;
10891 	struct sd_lb_stats sds;
10892 
10893 	init_sd_lb_stats(&sds);
10894 
10895 	/*
10896 	 * Compute the various statistics relevant for load balancing at
10897 	 * this level.
10898 	 */
10899 	update_sd_lb_stats(env, &sds);
10900 
10901 	/* There is no busy sibling group to pull tasks from */
10902 	if (!sds.busiest)
10903 		goto out_balanced;
10904 
10905 	busiest = &sds.busiest_stat;
10906 
10907 	/* Misfit tasks should be dealt with regardless of the avg load */
10908 	if (busiest->group_type == group_misfit_task)
10909 		goto force_balance;
10910 
10911 	if (!is_rd_overutilized(env->dst_rq->rd) &&
10912 	    rcu_dereference(env->dst_rq->rd->pd))
10913 		goto out_balanced;
10914 
10915 	/* ASYM feature bypasses nice load balance check */
10916 	if (busiest->group_type == group_asym_packing)
10917 		goto force_balance;
10918 
10919 	/*
10920 	 * If the busiest group is imbalanced the below checks don't
10921 	 * work because they assume all things are equal, which typically
10922 	 * isn't true due to cpus_ptr constraints and the like.
10923 	 */
10924 	if (busiest->group_type == group_imbalanced)
10925 		goto force_balance;
10926 
10927 	local = &sds.local_stat;
10928 	/*
10929 	 * If the local group is busier than the selected busiest group
10930 	 * don't try and pull any tasks.
10931 	 */
10932 	if (local->group_type > busiest->group_type)
10933 		goto out_balanced;
10934 
10935 	/*
10936 	 * When groups are overloaded, use the avg_load to ensure fairness
10937 	 * between tasks.
10938 	 */
10939 	if (local->group_type == group_overloaded) {
10940 		/*
10941 		 * If the local group is more loaded than the selected
10942 		 * busiest group don't try to pull any tasks.
10943 		 */
10944 		if (local->avg_load >= busiest->avg_load)
10945 			goto out_balanced;
10946 
10947 		/* XXX broken for overlapping NUMA groups */
10948 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10949 				sds.total_capacity;
10950 
10951 		/*
10952 		 * Don't pull any tasks if this group is already above the
10953 		 * domain average load.
10954 		 */
10955 		if (local->avg_load >= sds.avg_load)
10956 			goto out_balanced;
10957 
10958 		/*
10959 		 * If the busiest group is more loaded, use imbalance_pct to be
10960 		 * conservative.
10961 		 */
10962 		if (100 * busiest->avg_load <=
10963 				env->sd->imbalance_pct * local->avg_load)
10964 			goto out_balanced;
10965 	}
10966 
10967 	/*
10968 	 * Try to move all excess tasks to a sibling domain of the busiest
10969 	 * group's child domain.
10970 	 */
10971 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
10972 	    sibling_imbalance(env, &sds, busiest, local) > 1)
10973 		goto force_balance;
10974 
10975 	if (busiest->group_type != group_overloaded) {
10976 		if (!env->idle) {
10977 			/*
10978 			 * If the busiest group is not overloaded (and as a
10979 			 * result the local one too) but this CPU is already
10980 			 * busy, let another idle CPU try to pull task.
10981 			 */
10982 			goto out_balanced;
10983 		}
10984 
10985 		if (busiest->group_type == group_smt_balance &&
10986 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
10987 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
10988 			goto force_balance;
10989 		}
10990 
10991 		if (busiest->group_weight > 1 &&
10992 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
10993 			/*
10994 			 * If the busiest group is not overloaded
10995 			 * and there is no imbalance between this and busiest
10996 			 * group wrt idle CPUs, it is balanced. The imbalance
10997 			 * becomes significant if the diff is greater than 1
10998 			 * otherwise we might end up to just move the imbalance
10999 			 * on another group. Of course this applies only if
11000 			 * there is more than 1 CPU per group.
11001 			 */
11002 			goto out_balanced;
11003 		}
11004 
11005 		if (busiest->sum_h_nr_running == 1) {
11006 			/*
11007 			 * busiest doesn't have any tasks waiting to run
11008 			 */
11009 			goto out_balanced;
11010 		}
11011 	}
11012 
11013 force_balance:
11014 	/* Looks like there is an imbalance. Compute it */
11015 	calculate_imbalance(env, &sds);
11016 	return env->imbalance ? sds.busiest : NULL;
11017 
11018 out_balanced:
11019 	env->imbalance = 0;
11020 	return NULL;
11021 }
11022 
11023 /*
11024  * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11025  */
11026 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11027 				     struct sched_group *group)
11028 {
11029 	struct rq *busiest = NULL, *rq;
11030 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11031 	unsigned int busiest_nr = 0;
11032 	int i;
11033 
11034 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11035 		unsigned long capacity, load, util;
11036 		unsigned int nr_running;
11037 		enum fbq_type rt;
11038 
11039 		rq = cpu_rq(i);
11040 		rt = fbq_classify_rq(rq);
11041 
11042 		/*
11043 		 * We classify groups/runqueues into three groups:
11044 		 *  - regular: there are !numa tasks
11045 		 *  - remote:  there are numa tasks that run on the 'wrong' node
11046 		 *  - all:     there is no distinction
11047 		 *
11048 		 * In order to avoid migrating ideally placed numa tasks,
11049 		 * ignore those when there's better options.
11050 		 *
11051 		 * If we ignore the actual busiest queue to migrate another
11052 		 * task, the next balance pass can still reduce the busiest
11053 		 * queue by moving tasks around inside the node.
11054 		 *
11055 		 * If we cannot move enough load due to this classification
11056 		 * the next pass will adjust the group classification and
11057 		 * allow migration of more tasks.
11058 		 *
11059 		 * Both cases only affect the total convergence complexity.
11060 		 */
11061 		if (rt > env->fbq_type)
11062 			continue;
11063 
11064 		nr_running = rq->cfs.h_nr_running;
11065 		if (!nr_running)
11066 			continue;
11067 
11068 		capacity = capacity_of(i);
11069 
11070 		/*
11071 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11072 		 * eventually lead to active_balancing high->low capacity.
11073 		 * Higher per-CPU capacity is considered better than balancing
11074 		 * average load.
11075 		 */
11076 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11077 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11078 		    nr_running == 1)
11079 			continue;
11080 
11081 		/*
11082 		 * Make sure we only pull tasks from a CPU of lower priority
11083 		 * when balancing between SMT siblings.
11084 		 *
11085 		 * If balancing between cores, let lower priority CPUs help
11086 		 * SMT cores with more than one busy sibling.
11087 		 */
11088 		if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11089 			continue;
11090 
11091 		switch (env->migration_type) {
11092 		case migrate_load:
11093 			/*
11094 			 * When comparing with load imbalance, use cpu_load()
11095 			 * which is not scaled with the CPU capacity.
11096 			 */
11097 			load = cpu_load(rq);
11098 
11099 			if (nr_running == 1 && load > env->imbalance &&
11100 			    !check_cpu_capacity(rq, env->sd))
11101 				break;
11102 
11103 			/*
11104 			 * For the load comparisons with the other CPUs,
11105 			 * consider the cpu_load() scaled with the CPU
11106 			 * capacity, so that the load can be moved away
11107 			 * from the CPU that is potentially running at a
11108 			 * lower capacity.
11109 			 *
11110 			 * Thus we're looking for max(load_i / capacity_i),
11111 			 * crosswise multiplication to rid ourselves of the
11112 			 * division works out to:
11113 			 * load_i * capacity_j > load_j * capacity_i;
11114 			 * where j is our previous maximum.
11115 			 */
11116 			if (load * busiest_capacity > busiest_load * capacity) {
11117 				busiest_load = load;
11118 				busiest_capacity = capacity;
11119 				busiest = rq;
11120 			}
11121 			break;
11122 
11123 		case migrate_util:
11124 			util = cpu_util_cfs_boost(i);
11125 
11126 			/*
11127 			 * Don't try to pull utilization from a CPU with one
11128 			 * running task. Whatever its utilization, we will fail
11129 			 * detach the task.
11130 			 */
11131 			if (nr_running <= 1)
11132 				continue;
11133 
11134 			if (busiest_util < util) {
11135 				busiest_util = util;
11136 				busiest = rq;
11137 			}
11138 			break;
11139 
11140 		case migrate_task:
11141 			if (busiest_nr < nr_running) {
11142 				busiest_nr = nr_running;
11143 				busiest = rq;
11144 			}
11145 			break;
11146 
11147 		case migrate_misfit:
11148 			/*
11149 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11150 			 * simply seek the "biggest" misfit task.
11151 			 */
11152 			if (rq->misfit_task_load > busiest_load) {
11153 				busiest_load = rq->misfit_task_load;
11154 				busiest = rq;
11155 			}
11156 
11157 			break;
11158 
11159 		}
11160 	}
11161 
11162 	return busiest;
11163 }
11164 
11165 /*
11166  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11167  * so long as it is large enough.
11168  */
11169 #define MAX_PINNED_INTERVAL	512
11170 
11171 static inline bool
11172 asym_active_balance(struct lb_env *env)
11173 {
11174 	/*
11175 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11176 	 * priority CPUs in order to pack all tasks in the highest priority
11177 	 * CPUs. When done between cores, do it only if the whole core if the
11178 	 * whole core is idle.
11179 	 *
11180 	 * If @env::src_cpu is an SMT core with busy siblings, let
11181 	 * the lower priority @env::dst_cpu help it. Do not follow
11182 	 * CPU priority.
11183 	 */
11184 	return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11185 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11186 		!sched_use_asym_prio(env->sd, env->src_cpu));
11187 }
11188 
11189 static inline bool
11190 imbalanced_active_balance(struct lb_env *env)
11191 {
11192 	struct sched_domain *sd = env->sd;
11193 
11194 	/*
11195 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11196 	 * distribution of the load on the system but also the even distribution of the
11197 	 * threads on a system with spare capacity
11198 	 */
11199 	if ((env->migration_type == migrate_task) &&
11200 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11201 		return 1;
11202 
11203 	return 0;
11204 }
11205 
11206 static int need_active_balance(struct lb_env *env)
11207 {
11208 	struct sched_domain *sd = env->sd;
11209 
11210 	if (asym_active_balance(env))
11211 		return 1;
11212 
11213 	if (imbalanced_active_balance(env))
11214 		return 1;
11215 
11216 	/*
11217 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11218 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11219 	 * because of other sched_class or IRQs if more capacity stays
11220 	 * available on dst_cpu.
11221 	 */
11222 	if (env->idle &&
11223 	    (env->src_rq->cfs.h_nr_running == 1)) {
11224 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11225 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11226 			return 1;
11227 	}
11228 
11229 	if (env->migration_type == migrate_misfit)
11230 		return 1;
11231 
11232 	return 0;
11233 }
11234 
11235 static int active_load_balance_cpu_stop(void *data);
11236 
11237 static int should_we_balance(struct lb_env *env)
11238 {
11239 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11240 	struct sched_group *sg = env->sd->groups;
11241 	int cpu, idle_smt = -1;
11242 
11243 	/*
11244 	 * Ensure the balancing environment is consistent; can happen
11245 	 * when the softirq triggers 'during' hotplug.
11246 	 */
11247 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11248 		return 0;
11249 
11250 	/*
11251 	 * In the newly idle case, we will allow all the CPUs
11252 	 * to do the newly idle load balance.
11253 	 *
11254 	 * However, we bail out if we already have tasks or a wakeup pending,
11255 	 * to optimize wakeup latency.
11256 	 */
11257 	if (env->idle == CPU_NEWLY_IDLE) {
11258 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11259 			return 0;
11260 		return 1;
11261 	}
11262 
11263 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11264 	/* Try to find first idle CPU */
11265 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11266 		if (!idle_cpu(cpu))
11267 			continue;
11268 
11269 		/*
11270 		 * Don't balance to idle SMT in busy core right away when
11271 		 * balancing cores, but remember the first idle SMT CPU for
11272 		 * later consideration.  Find CPU on an idle core first.
11273 		 */
11274 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11275 			if (idle_smt == -1)
11276 				idle_smt = cpu;
11277 			/*
11278 			 * If the core is not idle, and first SMT sibling which is
11279 			 * idle has been found, then its not needed to check other
11280 			 * SMT siblings for idleness:
11281 			 */
11282 #ifdef CONFIG_SCHED_SMT
11283 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11284 #endif
11285 			continue;
11286 		}
11287 
11288 		/*
11289 		 * Are we the first idle core in a non-SMT domain or higher,
11290 		 * or the first idle CPU in a SMT domain?
11291 		 */
11292 		return cpu == env->dst_cpu;
11293 	}
11294 
11295 	/* Are we the first idle CPU with busy siblings? */
11296 	if (idle_smt != -1)
11297 		return idle_smt == env->dst_cpu;
11298 
11299 	/* Are we the first CPU of this group ? */
11300 	return group_balance_cpu(sg) == env->dst_cpu;
11301 }
11302 
11303 /*
11304  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11305  * tasks if there is an imbalance.
11306  */
11307 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11308 			struct sched_domain *sd, enum cpu_idle_type idle,
11309 			int *continue_balancing)
11310 {
11311 	int ld_moved, cur_ld_moved, active_balance = 0;
11312 	struct sched_domain *sd_parent = sd->parent;
11313 	struct sched_group *group;
11314 	struct rq *busiest;
11315 	struct rq_flags rf;
11316 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11317 	struct lb_env env = {
11318 		.sd		= sd,
11319 		.dst_cpu	= this_cpu,
11320 		.dst_rq		= this_rq,
11321 		.dst_grpmask    = group_balance_mask(sd->groups),
11322 		.idle		= idle,
11323 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11324 		.cpus		= cpus,
11325 		.fbq_type	= all,
11326 		.tasks		= LIST_HEAD_INIT(env.tasks),
11327 	};
11328 
11329 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11330 
11331 	schedstat_inc(sd->lb_count[idle]);
11332 
11333 redo:
11334 	if (!should_we_balance(&env)) {
11335 		*continue_balancing = 0;
11336 		goto out_balanced;
11337 	}
11338 
11339 	group = sched_balance_find_src_group(&env);
11340 	if (!group) {
11341 		schedstat_inc(sd->lb_nobusyg[idle]);
11342 		goto out_balanced;
11343 	}
11344 
11345 	busiest = sched_balance_find_src_rq(&env, group);
11346 	if (!busiest) {
11347 		schedstat_inc(sd->lb_nobusyq[idle]);
11348 		goto out_balanced;
11349 	}
11350 
11351 	WARN_ON_ONCE(busiest == env.dst_rq);
11352 
11353 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11354 
11355 	env.src_cpu = busiest->cpu;
11356 	env.src_rq = busiest;
11357 
11358 	ld_moved = 0;
11359 	/* Clear this flag as soon as we find a pullable task */
11360 	env.flags |= LBF_ALL_PINNED;
11361 	if (busiest->nr_running > 1) {
11362 		/*
11363 		 * Attempt to move tasks. If sched_balance_find_src_group has found
11364 		 * an imbalance but busiest->nr_running <= 1, the group is
11365 		 * still unbalanced. ld_moved simply stays zero, so it is
11366 		 * correctly treated as an imbalance.
11367 		 */
11368 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11369 
11370 more_balance:
11371 		rq_lock_irqsave(busiest, &rf);
11372 		update_rq_clock(busiest);
11373 
11374 		/*
11375 		 * cur_ld_moved - load moved in current iteration
11376 		 * ld_moved     - cumulative load moved across iterations
11377 		 */
11378 		cur_ld_moved = detach_tasks(&env);
11379 
11380 		/*
11381 		 * We've detached some tasks from busiest_rq. Every
11382 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11383 		 * unlock busiest->lock, and we are able to be sure
11384 		 * that nobody can manipulate the tasks in parallel.
11385 		 * See task_rq_lock() family for the details.
11386 		 */
11387 
11388 		rq_unlock(busiest, &rf);
11389 
11390 		if (cur_ld_moved) {
11391 			attach_tasks(&env);
11392 			ld_moved += cur_ld_moved;
11393 		}
11394 
11395 		local_irq_restore(rf.flags);
11396 
11397 		if (env.flags & LBF_NEED_BREAK) {
11398 			env.flags &= ~LBF_NEED_BREAK;
11399 			goto more_balance;
11400 		}
11401 
11402 		/*
11403 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11404 		 * us and move them to an alternate dst_cpu in our sched_group
11405 		 * where they can run. The upper limit on how many times we
11406 		 * iterate on same src_cpu is dependent on number of CPUs in our
11407 		 * sched_group.
11408 		 *
11409 		 * This changes load balance semantics a bit on who can move
11410 		 * load to a given_cpu. In addition to the given_cpu itself
11411 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11412 		 * nohz-idle), we now have balance_cpu in a position to move
11413 		 * load to given_cpu. In rare situations, this may cause
11414 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11415 		 * _independently_ and at _same_ time to move some load to
11416 		 * given_cpu) causing excess load to be moved to given_cpu.
11417 		 * This however should not happen so much in practice and
11418 		 * moreover subsequent load balance cycles should correct the
11419 		 * excess load moved.
11420 		 */
11421 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11422 
11423 			/* Prevent to re-select dst_cpu via env's CPUs */
11424 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11425 
11426 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11427 			env.dst_cpu	 = env.new_dst_cpu;
11428 			env.flags	&= ~LBF_DST_PINNED;
11429 			env.loop	 = 0;
11430 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11431 
11432 			/*
11433 			 * Go back to "more_balance" rather than "redo" since we
11434 			 * need to continue with same src_cpu.
11435 			 */
11436 			goto more_balance;
11437 		}
11438 
11439 		/*
11440 		 * We failed to reach balance because of affinity.
11441 		 */
11442 		if (sd_parent) {
11443 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11444 
11445 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11446 				*group_imbalance = 1;
11447 		}
11448 
11449 		/* All tasks on this runqueue were pinned by CPU affinity */
11450 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11451 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11452 			/*
11453 			 * Attempting to continue load balancing at the current
11454 			 * sched_domain level only makes sense if there are
11455 			 * active CPUs remaining as possible busiest CPUs to
11456 			 * pull load from which are not contained within the
11457 			 * destination group that is receiving any migrated
11458 			 * load.
11459 			 */
11460 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11461 				env.loop = 0;
11462 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11463 				goto redo;
11464 			}
11465 			goto out_all_pinned;
11466 		}
11467 	}
11468 
11469 	if (!ld_moved) {
11470 		schedstat_inc(sd->lb_failed[idle]);
11471 		/*
11472 		 * Increment the failure counter only on periodic balance.
11473 		 * We do not want newidle balance, which can be very
11474 		 * frequent, pollute the failure counter causing
11475 		 * excessive cache_hot migrations and active balances.
11476 		 *
11477 		 * Similarly for migration_misfit which is not related to
11478 		 * load/util migration, don't pollute nr_balance_failed.
11479 		 */
11480 		if (idle != CPU_NEWLY_IDLE &&
11481 		    env.migration_type != migrate_misfit)
11482 			sd->nr_balance_failed++;
11483 
11484 		if (need_active_balance(&env)) {
11485 			unsigned long flags;
11486 
11487 			raw_spin_rq_lock_irqsave(busiest, flags);
11488 
11489 			/*
11490 			 * Don't kick the active_load_balance_cpu_stop,
11491 			 * if the curr task on busiest CPU can't be
11492 			 * moved to this_cpu:
11493 			 */
11494 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11495 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11496 				goto out_one_pinned;
11497 			}
11498 
11499 			/* Record that we found at least one task that could run on this_cpu */
11500 			env.flags &= ~LBF_ALL_PINNED;
11501 
11502 			/*
11503 			 * ->active_balance synchronizes accesses to
11504 			 * ->active_balance_work.  Once set, it's cleared
11505 			 * only after active load balance is finished.
11506 			 */
11507 			if (!busiest->active_balance) {
11508 				busiest->active_balance = 1;
11509 				busiest->push_cpu = this_cpu;
11510 				active_balance = 1;
11511 			}
11512 
11513 			preempt_disable();
11514 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11515 			if (active_balance) {
11516 				stop_one_cpu_nowait(cpu_of(busiest),
11517 					active_load_balance_cpu_stop, busiest,
11518 					&busiest->active_balance_work);
11519 			}
11520 			preempt_enable();
11521 		}
11522 	} else {
11523 		sd->nr_balance_failed = 0;
11524 	}
11525 
11526 	if (likely(!active_balance) || need_active_balance(&env)) {
11527 		/* We were unbalanced, so reset the balancing interval */
11528 		sd->balance_interval = sd->min_interval;
11529 	}
11530 
11531 	goto out;
11532 
11533 out_balanced:
11534 	/*
11535 	 * We reach balance although we may have faced some affinity
11536 	 * constraints. Clear the imbalance flag only if other tasks got
11537 	 * a chance to move and fix the imbalance.
11538 	 */
11539 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11540 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11541 
11542 		if (*group_imbalance)
11543 			*group_imbalance = 0;
11544 	}
11545 
11546 out_all_pinned:
11547 	/*
11548 	 * We reach balance because all tasks are pinned at this level so
11549 	 * we can't migrate them. Let the imbalance flag set so parent level
11550 	 * can try to migrate them.
11551 	 */
11552 	schedstat_inc(sd->lb_balanced[idle]);
11553 
11554 	sd->nr_balance_failed = 0;
11555 
11556 out_one_pinned:
11557 	ld_moved = 0;
11558 
11559 	/*
11560 	 * sched_balance_newidle() disregards balance intervals, so we could
11561 	 * repeatedly reach this code, which would lead to balance_interval
11562 	 * skyrocketing in a short amount of time. Skip the balance_interval
11563 	 * increase logic to avoid that.
11564 	 *
11565 	 * Similarly misfit migration which is not necessarily an indication of
11566 	 * the system being busy and requires lb to backoff to let it settle
11567 	 * down.
11568 	 */
11569 	if (env.idle == CPU_NEWLY_IDLE ||
11570 	    env.migration_type == migrate_misfit)
11571 		goto out;
11572 
11573 	/* tune up the balancing interval */
11574 	if ((env.flags & LBF_ALL_PINNED &&
11575 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11576 	    sd->balance_interval < sd->max_interval)
11577 		sd->balance_interval *= 2;
11578 out:
11579 	return ld_moved;
11580 }
11581 
11582 static inline unsigned long
11583 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11584 {
11585 	unsigned long interval = sd->balance_interval;
11586 
11587 	if (cpu_busy)
11588 		interval *= sd->busy_factor;
11589 
11590 	/* scale ms to jiffies */
11591 	interval = msecs_to_jiffies(interval);
11592 
11593 	/*
11594 	 * Reduce likelihood of busy balancing at higher domains racing with
11595 	 * balancing at lower domains by preventing their balancing periods
11596 	 * from being multiples of each other.
11597 	 */
11598 	if (cpu_busy)
11599 		interval -= 1;
11600 
11601 	interval = clamp(interval, 1UL, max_load_balance_interval);
11602 
11603 	return interval;
11604 }
11605 
11606 static inline void
11607 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11608 {
11609 	unsigned long interval, next;
11610 
11611 	/* used by idle balance, so cpu_busy = 0 */
11612 	interval = get_sd_balance_interval(sd, 0);
11613 	next = sd->last_balance + interval;
11614 
11615 	if (time_after(*next_balance, next))
11616 		*next_balance = next;
11617 }
11618 
11619 /*
11620  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11621  * running tasks off the busiest CPU onto idle CPUs. It requires at
11622  * least 1 task to be running on each physical CPU where possible, and
11623  * avoids physical / logical imbalances.
11624  */
11625 static int active_load_balance_cpu_stop(void *data)
11626 {
11627 	struct rq *busiest_rq = data;
11628 	int busiest_cpu = cpu_of(busiest_rq);
11629 	int target_cpu = busiest_rq->push_cpu;
11630 	struct rq *target_rq = cpu_rq(target_cpu);
11631 	struct sched_domain *sd;
11632 	struct task_struct *p = NULL;
11633 	struct rq_flags rf;
11634 
11635 	rq_lock_irq(busiest_rq, &rf);
11636 	/*
11637 	 * Between queueing the stop-work and running it is a hole in which
11638 	 * CPUs can become inactive. We should not move tasks from or to
11639 	 * inactive CPUs.
11640 	 */
11641 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11642 		goto out_unlock;
11643 
11644 	/* Make sure the requested CPU hasn't gone down in the meantime: */
11645 	if (unlikely(busiest_cpu != smp_processor_id() ||
11646 		     !busiest_rq->active_balance))
11647 		goto out_unlock;
11648 
11649 	/* Is there any task to move? */
11650 	if (busiest_rq->nr_running <= 1)
11651 		goto out_unlock;
11652 
11653 	/*
11654 	 * This condition is "impossible", if it occurs
11655 	 * we need to fix it. Originally reported by
11656 	 * Bjorn Helgaas on a 128-CPU setup.
11657 	 */
11658 	WARN_ON_ONCE(busiest_rq == target_rq);
11659 
11660 	/* Search for an sd spanning us and the target CPU. */
11661 	rcu_read_lock();
11662 	for_each_domain(target_cpu, sd) {
11663 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11664 			break;
11665 	}
11666 
11667 	if (likely(sd)) {
11668 		struct lb_env env = {
11669 			.sd		= sd,
11670 			.dst_cpu	= target_cpu,
11671 			.dst_rq		= target_rq,
11672 			.src_cpu	= busiest_rq->cpu,
11673 			.src_rq		= busiest_rq,
11674 			.idle		= CPU_IDLE,
11675 			.flags		= LBF_ACTIVE_LB,
11676 		};
11677 
11678 		schedstat_inc(sd->alb_count);
11679 		update_rq_clock(busiest_rq);
11680 
11681 		p = detach_one_task(&env);
11682 		if (p) {
11683 			schedstat_inc(sd->alb_pushed);
11684 			/* Active balancing done, reset the failure counter. */
11685 			sd->nr_balance_failed = 0;
11686 		} else {
11687 			schedstat_inc(sd->alb_failed);
11688 		}
11689 	}
11690 	rcu_read_unlock();
11691 out_unlock:
11692 	busiest_rq->active_balance = 0;
11693 	rq_unlock(busiest_rq, &rf);
11694 
11695 	if (p)
11696 		attach_one_task(target_rq, p);
11697 
11698 	local_irq_enable();
11699 
11700 	return 0;
11701 }
11702 
11703 /*
11704  * This flag serializes load-balancing passes over large domains
11705  * (above the NODE topology level) - only one load-balancing instance
11706  * may run at a time, to reduce overhead on very large systems with
11707  * lots of CPUs and large NUMA distances.
11708  *
11709  * - Note that load-balancing passes triggered while another one
11710  *   is executing are skipped and not re-tried.
11711  *
11712  * - Also note that this does not serialize rebalance_domains()
11713  *   execution, as non-SD_SERIALIZE domains will still be
11714  *   load-balanced in parallel.
11715  */
11716 static atomic_t sched_balance_running = ATOMIC_INIT(0);
11717 
11718 /*
11719  * Scale the max sched_balance_rq interval with the number of CPUs in the system.
11720  * This trades load-balance latency on larger machines for less cross talk.
11721  */
11722 void update_max_interval(void)
11723 {
11724 	max_load_balance_interval = HZ*num_online_cpus()/10;
11725 }
11726 
11727 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11728 {
11729 	if (cost > sd->max_newidle_lb_cost) {
11730 		/*
11731 		 * Track max cost of a domain to make sure to not delay the
11732 		 * next wakeup on the CPU.
11733 		 */
11734 		sd->max_newidle_lb_cost = cost;
11735 		sd->last_decay_max_lb_cost = jiffies;
11736 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11737 		/*
11738 		 * Decay the newidle max times by ~1% per second to ensure that
11739 		 * it is not outdated and the current max cost is actually
11740 		 * shorter.
11741 		 */
11742 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11743 		sd->last_decay_max_lb_cost = jiffies;
11744 
11745 		return true;
11746 	}
11747 
11748 	return false;
11749 }
11750 
11751 /*
11752  * It checks each scheduling domain to see if it is due to be balanced,
11753  * and initiates a balancing operation if so.
11754  *
11755  * Balancing parameters are set up in init_sched_domains.
11756  */
11757 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
11758 {
11759 	int continue_balancing = 1;
11760 	int cpu = rq->cpu;
11761 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11762 	unsigned long interval;
11763 	struct sched_domain *sd;
11764 	/* Earliest time when we have to do rebalance again */
11765 	unsigned long next_balance = jiffies + 60*HZ;
11766 	int update_next_balance = 0;
11767 	int need_serialize, need_decay = 0;
11768 	u64 max_cost = 0;
11769 
11770 	rcu_read_lock();
11771 	for_each_domain(cpu, sd) {
11772 		/*
11773 		 * Decay the newidle max times here because this is a regular
11774 		 * visit to all the domains.
11775 		 */
11776 		need_decay = update_newidle_cost(sd, 0);
11777 		max_cost += sd->max_newidle_lb_cost;
11778 
11779 		/*
11780 		 * Stop the load balance at this level. There is another
11781 		 * CPU in our sched group which is doing load balancing more
11782 		 * actively.
11783 		 */
11784 		if (!continue_balancing) {
11785 			if (need_decay)
11786 				continue;
11787 			break;
11788 		}
11789 
11790 		interval = get_sd_balance_interval(sd, busy);
11791 
11792 		need_serialize = sd->flags & SD_SERIALIZE;
11793 		if (need_serialize) {
11794 			if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
11795 				goto out;
11796 		}
11797 
11798 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
11799 			if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
11800 				/*
11801 				 * The LBF_DST_PINNED logic could have changed
11802 				 * env->dst_cpu, so we can't know our idle
11803 				 * state even if we migrated tasks. Update it.
11804 				 */
11805 				idle = idle_cpu(cpu);
11806 				busy = !idle && !sched_idle_cpu(cpu);
11807 			}
11808 			sd->last_balance = jiffies;
11809 			interval = get_sd_balance_interval(sd, busy);
11810 		}
11811 		if (need_serialize)
11812 			atomic_set_release(&sched_balance_running, 0);
11813 out:
11814 		if (time_after(next_balance, sd->last_balance + interval)) {
11815 			next_balance = sd->last_balance + interval;
11816 			update_next_balance = 1;
11817 		}
11818 	}
11819 	if (need_decay) {
11820 		/*
11821 		 * Ensure the rq-wide value also decays but keep it at a
11822 		 * reasonable floor to avoid funnies with rq->avg_idle.
11823 		 */
11824 		rq->max_idle_balance_cost =
11825 			max((u64)sysctl_sched_migration_cost, max_cost);
11826 	}
11827 	rcu_read_unlock();
11828 
11829 	/*
11830 	 * next_balance will be updated only when there is a need.
11831 	 * When the cpu is attached to null domain for ex, it will not be
11832 	 * updated.
11833 	 */
11834 	if (likely(update_next_balance))
11835 		rq->next_balance = next_balance;
11836 
11837 }
11838 
11839 static inline int on_null_domain(struct rq *rq)
11840 {
11841 	return unlikely(!rcu_dereference_sched(rq->sd));
11842 }
11843 
11844 #ifdef CONFIG_NO_HZ_COMMON
11845 /*
11846  * NOHZ idle load balancing (ILB) details:
11847  *
11848  * - When one of the busy CPUs notices that there may be an idle rebalancing
11849  *   needed, they will kick the idle load balancer, which then does idle
11850  *   load balancing for all the idle CPUs.
11851  *
11852  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
11853  *   anywhere yet.
11854  */
11855 static inline int find_new_ilb(void)
11856 {
11857 	const struct cpumask *hk_mask;
11858 	int ilb_cpu;
11859 
11860 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11861 
11862 	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
11863 
11864 		if (ilb_cpu == smp_processor_id())
11865 			continue;
11866 
11867 		if (idle_cpu(ilb_cpu))
11868 			return ilb_cpu;
11869 	}
11870 
11871 	return -1;
11872 }
11873 
11874 /*
11875  * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
11876  * SMP function call (IPI).
11877  *
11878  * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11879  */
11880 static void kick_ilb(unsigned int flags)
11881 {
11882 	int ilb_cpu;
11883 
11884 	/*
11885 	 * Increase nohz.next_balance only when if full ilb is triggered but
11886 	 * not if we only update stats.
11887 	 */
11888 	if (flags & NOHZ_BALANCE_KICK)
11889 		nohz.next_balance = jiffies+1;
11890 
11891 	ilb_cpu = find_new_ilb();
11892 	if (ilb_cpu < 0)
11893 		return;
11894 
11895 	/*
11896 	 * Don't bother if no new NOHZ balance work items for ilb_cpu,
11897 	 * i.e. all bits in flags are already set in ilb_cpu.
11898 	 */
11899 	if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
11900 		return;
11901 
11902 	/*
11903 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11904 	 * the first flag owns it; cleared by nohz_csd_func().
11905 	 */
11906 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11907 	if (flags & NOHZ_KICK_MASK)
11908 		return;
11909 
11910 	/*
11911 	 * This way we generate an IPI on the target CPU which
11912 	 * is idle, and the softirq performing NOHZ idle load balancing
11913 	 * will be run before returning from the IPI.
11914 	 */
11915 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11916 }
11917 
11918 /*
11919  * Current decision point for kicking the idle load balancer in the presence
11920  * of idle CPUs in the system.
11921  */
11922 static void nohz_balancer_kick(struct rq *rq)
11923 {
11924 	unsigned long now = jiffies;
11925 	struct sched_domain_shared *sds;
11926 	struct sched_domain *sd;
11927 	int nr_busy, i, cpu = rq->cpu;
11928 	unsigned int flags = 0;
11929 
11930 	if (unlikely(rq->idle_balance))
11931 		return;
11932 
11933 	/*
11934 	 * We may be recently in ticked or tickless idle mode. At the first
11935 	 * busy tick after returning from idle, we will update the busy stats.
11936 	 */
11937 	nohz_balance_exit_idle(rq);
11938 
11939 	/*
11940 	 * None are in tickless mode and hence no need for NOHZ idle load
11941 	 * balancing:
11942 	 */
11943 	if (likely(!atomic_read(&nohz.nr_cpus)))
11944 		return;
11945 
11946 	if (READ_ONCE(nohz.has_blocked) &&
11947 	    time_after(now, READ_ONCE(nohz.next_blocked)))
11948 		flags = NOHZ_STATS_KICK;
11949 
11950 	if (time_before(now, nohz.next_balance))
11951 		goto out;
11952 
11953 	if (rq->nr_running >= 2) {
11954 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11955 		goto out;
11956 	}
11957 
11958 	rcu_read_lock();
11959 
11960 	sd = rcu_dereference(rq->sd);
11961 	if (sd) {
11962 		/*
11963 		 * If there's a runnable CFS task and the current CPU has reduced
11964 		 * capacity, kick the ILB to see if there's a better CPU to run on:
11965 		 */
11966 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11967 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11968 			goto unlock;
11969 		}
11970 	}
11971 
11972 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11973 	if (sd) {
11974 		/*
11975 		 * When ASYM_PACKING; see if there's a more preferred CPU
11976 		 * currently idle; in which case, kick the ILB to move tasks
11977 		 * around.
11978 		 *
11979 		 * When balancing between cores, all the SMT siblings of the
11980 		 * preferred CPU must be idle.
11981 		 */
11982 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11983 			if (sched_asym(sd, i, cpu)) {
11984 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11985 				goto unlock;
11986 			}
11987 		}
11988 	}
11989 
11990 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11991 	if (sd) {
11992 		/*
11993 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11994 		 * to run the misfit task on.
11995 		 */
11996 		if (check_misfit_status(rq)) {
11997 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11998 			goto unlock;
11999 		}
12000 
12001 		/*
12002 		 * For asymmetric systems, we do not want to nicely balance
12003 		 * cache use, instead we want to embrace asymmetry and only
12004 		 * ensure tasks have enough CPU capacity.
12005 		 *
12006 		 * Skip the LLC logic because it's not relevant in that case.
12007 		 */
12008 		goto unlock;
12009 	}
12010 
12011 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12012 	if (sds) {
12013 		/*
12014 		 * If there is an imbalance between LLC domains (IOW we could
12015 		 * increase the overall cache utilization), we need a less-loaded LLC
12016 		 * domain to pull some load from. Likewise, we may need to spread
12017 		 * load within the current LLC domain (e.g. packed SMT cores but
12018 		 * other CPUs are idle). We can't really know from here how busy
12019 		 * the others are - so just get a NOHZ balance going if it looks
12020 		 * like this LLC domain has tasks we could move.
12021 		 */
12022 		nr_busy = atomic_read(&sds->nr_busy_cpus);
12023 		if (nr_busy > 1) {
12024 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12025 			goto unlock;
12026 		}
12027 	}
12028 unlock:
12029 	rcu_read_unlock();
12030 out:
12031 	if (READ_ONCE(nohz.needs_update))
12032 		flags |= NOHZ_NEXT_KICK;
12033 
12034 	if (flags)
12035 		kick_ilb(flags);
12036 }
12037 
12038 static void set_cpu_sd_state_busy(int cpu)
12039 {
12040 	struct sched_domain *sd;
12041 
12042 	rcu_read_lock();
12043 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12044 
12045 	if (!sd || !sd->nohz_idle)
12046 		goto unlock;
12047 	sd->nohz_idle = 0;
12048 
12049 	atomic_inc(&sd->shared->nr_busy_cpus);
12050 unlock:
12051 	rcu_read_unlock();
12052 }
12053 
12054 void nohz_balance_exit_idle(struct rq *rq)
12055 {
12056 	SCHED_WARN_ON(rq != this_rq());
12057 
12058 	if (likely(!rq->nohz_tick_stopped))
12059 		return;
12060 
12061 	rq->nohz_tick_stopped = 0;
12062 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12063 	atomic_dec(&nohz.nr_cpus);
12064 
12065 	set_cpu_sd_state_busy(rq->cpu);
12066 }
12067 
12068 static void set_cpu_sd_state_idle(int cpu)
12069 {
12070 	struct sched_domain *sd;
12071 
12072 	rcu_read_lock();
12073 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12074 
12075 	if (!sd || sd->nohz_idle)
12076 		goto unlock;
12077 	sd->nohz_idle = 1;
12078 
12079 	atomic_dec(&sd->shared->nr_busy_cpus);
12080 unlock:
12081 	rcu_read_unlock();
12082 }
12083 
12084 /*
12085  * This routine will record that the CPU is going idle with tick stopped.
12086  * This info will be used in performing idle load balancing in the future.
12087  */
12088 void nohz_balance_enter_idle(int cpu)
12089 {
12090 	struct rq *rq = cpu_rq(cpu);
12091 
12092 	SCHED_WARN_ON(cpu != smp_processor_id());
12093 
12094 	/* If this CPU is going down, then nothing needs to be done: */
12095 	if (!cpu_active(cpu))
12096 		return;
12097 
12098 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
12099 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12100 		return;
12101 
12102 	/*
12103 	 * Can be set safely without rq->lock held
12104 	 * If a clear happens, it will have evaluated last additions because
12105 	 * rq->lock is held during the check and the clear
12106 	 */
12107 	rq->has_blocked_load = 1;
12108 
12109 	/*
12110 	 * The tick is still stopped but load could have been added in the
12111 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12112 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12113 	 * of nohz.has_blocked can only happen after checking the new load
12114 	 */
12115 	if (rq->nohz_tick_stopped)
12116 		goto out;
12117 
12118 	/* If we're a completely isolated CPU, we don't play: */
12119 	if (on_null_domain(rq))
12120 		return;
12121 
12122 	rq->nohz_tick_stopped = 1;
12123 
12124 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12125 	atomic_inc(&nohz.nr_cpus);
12126 
12127 	/*
12128 	 * Ensures that if nohz_idle_balance() fails to observe our
12129 	 * @idle_cpus_mask store, it must observe the @has_blocked
12130 	 * and @needs_update stores.
12131 	 */
12132 	smp_mb__after_atomic();
12133 
12134 	set_cpu_sd_state_idle(cpu);
12135 
12136 	WRITE_ONCE(nohz.needs_update, 1);
12137 out:
12138 	/*
12139 	 * Each time a cpu enter idle, we assume that it has blocked load and
12140 	 * enable the periodic update of the load of idle CPUs
12141 	 */
12142 	WRITE_ONCE(nohz.has_blocked, 1);
12143 }
12144 
12145 static bool update_nohz_stats(struct rq *rq)
12146 {
12147 	unsigned int cpu = rq->cpu;
12148 
12149 	if (!rq->has_blocked_load)
12150 		return false;
12151 
12152 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12153 		return false;
12154 
12155 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12156 		return true;
12157 
12158 	sched_balance_update_blocked_averages(cpu);
12159 
12160 	return rq->has_blocked_load;
12161 }
12162 
12163 /*
12164  * Internal function that runs load balance for all idle CPUs. The load balance
12165  * can be a simple update of blocked load or a complete load balance with
12166  * tasks movement depending of flags.
12167  */
12168 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12169 {
12170 	/* Earliest time when we have to do rebalance again */
12171 	unsigned long now = jiffies;
12172 	unsigned long next_balance = now + 60*HZ;
12173 	bool has_blocked_load = false;
12174 	int update_next_balance = 0;
12175 	int this_cpu = this_rq->cpu;
12176 	int balance_cpu;
12177 	struct rq *rq;
12178 
12179 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12180 
12181 	/*
12182 	 * We assume there will be no idle load after this update and clear
12183 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12184 	 * set the has_blocked flag and trigger another update of idle load.
12185 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12186 	 * setting the flag, we are sure to not clear the state and not
12187 	 * check the load of an idle cpu.
12188 	 *
12189 	 * Same applies to idle_cpus_mask vs needs_update.
12190 	 */
12191 	if (flags & NOHZ_STATS_KICK)
12192 		WRITE_ONCE(nohz.has_blocked, 0);
12193 	if (flags & NOHZ_NEXT_KICK)
12194 		WRITE_ONCE(nohz.needs_update, 0);
12195 
12196 	/*
12197 	 * Ensures that if we miss the CPU, we must see the has_blocked
12198 	 * store from nohz_balance_enter_idle().
12199 	 */
12200 	smp_mb();
12201 
12202 	/*
12203 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12204 	 * chance for other idle cpu to pull load.
12205 	 */
12206 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12207 		if (!idle_cpu(balance_cpu))
12208 			continue;
12209 
12210 		/*
12211 		 * If this CPU gets work to do, stop the load balancing
12212 		 * work being done for other CPUs. Next load
12213 		 * balancing owner will pick it up.
12214 		 */
12215 		if (need_resched()) {
12216 			if (flags & NOHZ_STATS_KICK)
12217 				has_blocked_load = true;
12218 			if (flags & NOHZ_NEXT_KICK)
12219 				WRITE_ONCE(nohz.needs_update, 1);
12220 			goto abort;
12221 		}
12222 
12223 		rq = cpu_rq(balance_cpu);
12224 
12225 		if (flags & NOHZ_STATS_KICK)
12226 			has_blocked_load |= update_nohz_stats(rq);
12227 
12228 		/*
12229 		 * If time for next balance is due,
12230 		 * do the balance.
12231 		 */
12232 		if (time_after_eq(jiffies, rq->next_balance)) {
12233 			struct rq_flags rf;
12234 
12235 			rq_lock_irqsave(rq, &rf);
12236 			update_rq_clock(rq);
12237 			rq_unlock_irqrestore(rq, &rf);
12238 
12239 			if (flags & NOHZ_BALANCE_KICK)
12240 				sched_balance_domains(rq, CPU_IDLE);
12241 		}
12242 
12243 		if (time_after(next_balance, rq->next_balance)) {
12244 			next_balance = rq->next_balance;
12245 			update_next_balance = 1;
12246 		}
12247 	}
12248 
12249 	/*
12250 	 * next_balance will be updated only when there is a need.
12251 	 * When the CPU is attached to null domain for ex, it will not be
12252 	 * updated.
12253 	 */
12254 	if (likely(update_next_balance))
12255 		nohz.next_balance = next_balance;
12256 
12257 	if (flags & NOHZ_STATS_KICK)
12258 		WRITE_ONCE(nohz.next_blocked,
12259 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12260 
12261 abort:
12262 	/* There is still blocked load, enable periodic update */
12263 	if (has_blocked_load)
12264 		WRITE_ONCE(nohz.has_blocked, 1);
12265 }
12266 
12267 /*
12268  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12269  * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12270  */
12271 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12272 {
12273 	unsigned int flags = this_rq->nohz_idle_balance;
12274 
12275 	if (!flags)
12276 		return false;
12277 
12278 	this_rq->nohz_idle_balance = 0;
12279 
12280 	if (idle != CPU_IDLE)
12281 		return false;
12282 
12283 	_nohz_idle_balance(this_rq, flags);
12284 
12285 	return true;
12286 }
12287 
12288 /*
12289  * Check if we need to directly run the ILB for updating blocked load before
12290  * entering idle state. Here we run ILB directly without issuing IPIs.
12291  *
12292  * Note that when this function is called, the tick may not yet be stopped on
12293  * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12294  * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12295  * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12296  * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12297  * called from this function on (this) CPU that's not yet in the mask. That's
12298  * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12299  * updating the blocked load of already idle CPUs without waking up one of
12300  * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12301  * cpu about to enter idle, because it can take a long time.
12302  */
12303 void nohz_run_idle_balance(int cpu)
12304 {
12305 	unsigned int flags;
12306 
12307 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12308 
12309 	/*
12310 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12311 	 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12312 	 */
12313 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12314 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12315 }
12316 
12317 static void nohz_newidle_balance(struct rq *this_rq)
12318 {
12319 	int this_cpu = this_rq->cpu;
12320 
12321 	/*
12322 	 * This CPU doesn't want to be disturbed by scheduler
12323 	 * housekeeping
12324 	 */
12325 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12326 		return;
12327 
12328 	/* Will wake up very soon. No time for doing anything else*/
12329 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12330 		return;
12331 
12332 	/* Don't need to update blocked load of idle CPUs*/
12333 	if (!READ_ONCE(nohz.has_blocked) ||
12334 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12335 		return;
12336 
12337 	/*
12338 	 * Set the need to trigger ILB in order to update blocked load
12339 	 * before entering idle state.
12340 	 */
12341 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12342 }
12343 
12344 #else /* !CONFIG_NO_HZ_COMMON */
12345 static inline void nohz_balancer_kick(struct rq *rq) { }
12346 
12347 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12348 {
12349 	return false;
12350 }
12351 
12352 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12353 #endif /* CONFIG_NO_HZ_COMMON */
12354 
12355 /*
12356  * sched_balance_newidle is called by schedule() if this_cpu is about to become
12357  * idle. Attempts to pull tasks from other CPUs.
12358  *
12359  * Returns:
12360  *   < 0 - we released the lock and there are !fair tasks present
12361  *     0 - failed, no new tasks
12362  *   > 0 - success, new (fair) tasks present
12363  */
12364 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12365 {
12366 	unsigned long next_balance = jiffies + HZ;
12367 	int this_cpu = this_rq->cpu;
12368 	int continue_balancing = 1;
12369 	u64 t0, t1, curr_cost = 0;
12370 	struct sched_domain *sd;
12371 	int pulled_task = 0;
12372 
12373 	update_misfit_status(NULL, this_rq);
12374 
12375 	/*
12376 	 * There is a task waiting to run. No need to search for one.
12377 	 * Return 0; the task will be enqueued when switching to idle.
12378 	 */
12379 	if (this_rq->ttwu_pending)
12380 		return 0;
12381 
12382 	/*
12383 	 * We must set idle_stamp _before_ calling sched_balance_rq()
12384 	 * for CPU_NEWLY_IDLE, such that we measure the this duration
12385 	 * as idle time.
12386 	 */
12387 	this_rq->idle_stamp = rq_clock(this_rq);
12388 
12389 	/*
12390 	 * Do not pull tasks towards !active CPUs...
12391 	 */
12392 	if (!cpu_active(this_cpu))
12393 		return 0;
12394 
12395 	/*
12396 	 * This is OK, because current is on_cpu, which avoids it being picked
12397 	 * for load-balance and preemption/IRQs are still disabled avoiding
12398 	 * further scheduler activity on it and we're being very careful to
12399 	 * re-start the picking loop.
12400 	 */
12401 	rq_unpin_lock(this_rq, rf);
12402 
12403 	rcu_read_lock();
12404 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12405 
12406 	if (!get_rd_overloaded(this_rq->rd) ||
12407 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12408 
12409 		if (sd)
12410 			update_next_balance(sd, &next_balance);
12411 		rcu_read_unlock();
12412 
12413 		goto out;
12414 	}
12415 	rcu_read_unlock();
12416 
12417 	raw_spin_rq_unlock(this_rq);
12418 
12419 	t0 = sched_clock_cpu(this_cpu);
12420 	sched_balance_update_blocked_averages(this_cpu);
12421 
12422 	rcu_read_lock();
12423 	for_each_domain(this_cpu, sd) {
12424 		u64 domain_cost;
12425 
12426 		update_next_balance(sd, &next_balance);
12427 
12428 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12429 			break;
12430 
12431 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12432 
12433 			pulled_task = sched_balance_rq(this_cpu, this_rq,
12434 						   sd, CPU_NEWLY_IDLE,
12435 						   &continue_balancing);
12436 
12437 			t1 = sched_clock_cpu(this_cpu);
12438 			domain_cost = t1 - t0;
12439 			update_newidle_cost(sd, domain_cost);
12440 
12441 			curr_cost += domain_cost;
12442 			t0 = t1;
12443 		}
12444 
12445 		/*
12446 		 * Stop searching for tasks to pull if there are
12447 		 * now runnable tasks on this rq.
12448 		 */
12449 		if (pulled_task || !continue_balancing)
12450 			break;
12451 	}
12452 	rcu_read_unlock();
12453 
12454 	raw_spin_rq_lock(this_rq);
12455 
12456 	if (curr_cost > this_rq->max_idle_balance_cost)
12457 		this_rq->max_idle_balance_cost = curr_cost;
12458 
12459 	/*
12460 	 * While browsing the domains, we released the rq lock, a task could
12461 	 * have been enqueued in the meantime. Since we're not going idle,
12462 	 * pretend we pulled a task.
12463 	 */
12464 	if (this_rq->cfs.h_nr_running && !pulled_task)
12465 		pulled_task = 1;
12466 
12467 	/* Is there a task of a high priority class? */
12468 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12469 		pulled_task = -1;
12470 
12471 out:
12472 	/* Move the next balance forward */
12473 	if (time_after(this_rq->next_balance, next_balance))
12474 		this_rq->next_balance = next_balance;
12475 
12476 	if (pulled_task)
12477 		this_rq->idle_stamp = 0;
12478 	else
12479 		nohz_newidle_balance(this_rq);
12480 
12481 	rq_repin_lock(this_rq, rf);
12482 
12483 	return pulled_task;
12484 }
12485 
12486 /*
12487  * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12488  *
12489  * - directly from the local scheduler_tick() for periodic load balancing
12490  *
12491  * - indirectly from a remote scheduler_tick() for NOHZ idle balancing
12492  *   through the SMP cross-call nohz_csd_func()
12493  */
12494 static __latent_entropy void sched_balance_softirq(struct softirq_action *h)
12495 {
12496 	struct rq *this_rq = this_rq();
12497 	enum cpu_idle_type idle = this_rq->idle_balance;
12498 	/*
12499 	 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12500 	 * balancing on behalf of the other idle CPUs whose ticks are
12501 	 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12502 	 * give the idle CPUs a chance to load balance. Else we may
12503 	 * load balance only within the local sched_domain hierarchy
12504 	 * and abort nohz_idle_balance altogether if we pull some load.
12505 	 */
12506 	if (nohz_idle_balance(this_rq, idle))
12507 		return;
12508 
12509 	/* normal load balance */
12510 	sched_balance_update_blocked_averages(this_rq->cpu);
12511 	sched_balance_domains(this_rq, idle);
12512 }
12513 
12514 /*
12515  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12516  */
12517 void sched_balance_trigger(struct rq *rq)
12518 {
12519 	/*
12520 	 * Don't need to rebalance while attached to NULL domain or
12521 	 * runqueue CPU is not active
12522 	 */
12523 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12524 		return;
12525 
12526 	if (time_after_eq(jiffies, rq->next_balance))
12527 		raise_softirq(SCHED_SOFTIRQ);
12528 
12529 	nohz_balancer_kick(rq);
12530 }
12531 
12532 static void rq_online_fair(struct rq *rq)
12533 {
12534 	update_sysctl();
12535 
12536 	update_runtime_enabled(rq);
12537 }
12538 
12539 static void rq_offline_fair(struct rq *rq)
12540 {
12541 	update_sysctl();
12542 
12543 	/* Ensure any throttled groups are reachable by pick_next_task */
12544 	unthrottle_offline_cfs_rqs(rq);
12545 
12546 	/* Ensure that we remove rq contribution to group share: */
12547 	clear_tg_offline_cfs_rqs(rq);
12548 }
12549 
12550 #endif /* CONFIG_SMP */
12551 
12552 #ifdef CONFIG_SCHED_CORE
12553 static inline bool
12554 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12555 {
12556 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12557 	u64 slice = se->slice;
12558 
12559 	return (rtime * min_nr_tasks > slice);
12560 }
12561 
12562 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
12563 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12564 {
12565 	if (!sched_core_enabled(rq))
12566 		return;
12567 
12568 	/*
12569 	 * If runqueue has only one task which used up its slice and
12570 	 * if the sibling is forced idle, then trigger schedule to
12571 	 * give forced idle task a chance.
12572 	 *
12573 	 * sched_slice() considers only this active rq and it gets the
12574 	 * whole slice. But during force idle, we have siblings acting
12575 	 * like a single runqueue and hence we need to consider runnable
12576 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12577 	 * go through the forced idle rq, but that would be a perf hit.
12578 	 * We can assume that the forced idle CPU has at least
12579 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12580 	 * if we need to give up the CPU.
12581 	 */
12582 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12583 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12584 		resched_curr(rq);
12585 }
12586 
12587 /*
12588  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12589  */
12590 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12591 			 bool forceidle)
12592 {
12593 	for_each_sched_entity(se) {
12594 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12595 
12596 		if (forceidle) {
12597 			if (cfs_rq->forceidle_seq == fi_seq)
12598 				break;
12599 			cfs_rq->forceidle_seq = fi_seq;
12600 		}
12601 
12602 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12603 	}
12604 }
12605 
12606 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12607 {
12608 	struct sched_entity *se = &p->se;
12609 
12610 	if (p->sched_class != &fair_sched_class)
12611 		return;
12612 
12613 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12614 }
12615 
12616 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12617 			bool in_fi)
12618 {
12619 	struct rq *rq = task_rq(a);
12620 	const struct sched_entity *sea = &a->se;
12621 	const struct sched_entity *seb = &b->se;
12622 	struct cfs_rq *cfs_rqa;
12623 	struct cfs_rq *cfs_rqb;
12624 	s64 delta;
12625 
12626 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12627 
12628 #ifdef CONFIG_FAIR_GROUP_SCHED
12629 	/*
12630 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12631 	 * are immediate siblings.
12632 	 */
12633 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12634 		int sea_depth = sea->depth;
12635 		int seb_depth = seb->depth;
12636 
12637 		if (sea_depth >= seb_depth)
12638 			sea = parent_entity(sea);
12639 		if (sea_depth <= seb_depth)
12640 			seb = parent_entity(seb);
12641 	}
12642 
12643 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12644 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12645 
12646 	cfs_rqa = sea->cfs_rq;
12647 	cfs_rqb = seb->cfs_rq;
12648 #else
12649 	cfs_rqa = &task_rq(a)->cfs;
12650 	cfs_rqb = &task_rq(b)->cfs;
12651 #endif
12652 
12653 	/*
12654 	 * Find delta after normalizing se's vruntime with its cfs_rq's
12655 	 * min_vruntime_fi, which would have been updated in prior calls
12656 	 * to se_fi_update().
12657 	 */
12658 	delta = (s64)(sea->vruntime - seb->vruntime) +
12659 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12660 
12661 	return delta > 0;
12662 }
12663 
12664 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12665 {
12666 	struct cfs_rq *cfs_rq;
12667 
12668 #ifdef CONFIG_FAIR_GROUP_SCHED
12669 	cfs_rq = task_group(p)->cfs_rq[cpu];
12670 #else
12671 	cfs_rq = &cpu_rq(cpu)->cfs;
12672 #endif
12673 	return throttled_hierarchy(cfs_rq);
12674 }
12675 #else
12676 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12677 #endif
12678 
12679 /*
12680  * scheduler tick hitting a task of our scheduling class.
12681  *
12682  * NOTE: This function can be called remotely by the tick offload that
12683  * goes along full dynticks. Therefore no local assumption can be made
12684  * and everything must be accessed through the @rq and @curr passed in
12685  * parameters.
12686  */
12687 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12688 {
12689 	struct cfs_rq *cfs_rq;
12690 	struct sched_entity *se = &curr->se;
12691 
12692 	for_each_sched_entity(se) {
12693 		cfs_rq = cfs_rq_of(se);
12694 		entity_tick(cfs_rq, se, queued);
12695 	}
12696 
12697 	if (static_branch_unlikely(&sched_numa_balancing))
12698 		task_tick_numa(rq, curr);
12699 
12700 	update_misfit_status(curr, rq);
12701 	check_update_overutilized_status(task_rq(curr));
12702 
12703 	task_tick_core(rq, curr);
12704 }
12705 
12706 /*
12707  * called on fork with the child task as argument from the parent's context
12708  *  - child not yet on the tasklist
12709  *  - preemption disabled
12710  */
12711 static void task_fork_fair(struct task_struct *p)
12712 {
12713 	struct sched_entity *se = &p->se, *curr;
12714 	struct cfs_rq *cfs_rq;
12715 	struct rq *rq = this_rq();
12716 	struct rq_flags rf;
12717 
12718 	rq_lock(rq, &rf);
12719 	update_rq_clock(rq);
12720 
12721 	set_task_max_allowed_capacity(p);
12722 
12723 	cfs_rq = task_cfs_rq(current);
12724 	curr = cfs_rq->curr;
12725 	if (curr)
12726 		update_curr(cfs_rq);
12727 	place_entity(cfs_rq, se, ENQUEUE_INITIAL);
12728 	rq_unlock(rq, &rf);
12729 }
12730 
12731 /*
12732  * Priority of the task has changed. Check to see if we preempt
12733  * the current task.
12734  */
12735 static void
12736 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12737 {
12738 	if (!task_on_rq_queued(p))
12739 		return;
12740 
12741 	if (rq->cfs.nr_running == 1)
12742 		return;
12743 
12744 	/*
12745 	 * Reschedule if we are currently running on this runqueue and
12746 	 * our priority decreased, or if we are not currently running on
12747 	 * this runqueue and our priority is higher than the current's
12748 	 */
12749 	if (task_current(rq, p)) {
12750 		if (p->prio > oldprio)
12751 			resched_curr(rq);
12752 	} else
12753 		wakeup_preempt(rq, p, 0);
12754 }
12755 
12756 #ifdef CONFIG_FAIR_GROUP_SCHED
12757 /*
12758  * Propagate the changes of the sched_entity across the tg tree to make it
12759  * visible to the root
12760  */
12761 static void propagate_entity_cfs_rq(struct sched_entity *se)
12762 {
12763 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12764 
12765 	if (cfs_rq_throttled(cfs_rq))
12766 		return;
12767 
12768 	if (!throttled_hierarchy(cfs_rq))
12769 		list_add_leaf_cfs_rq(cfs_rq);
12770 
12771 	/* Start to propagate at parent */
12772 	se = se->parent;
12773 
12774 	for_each_sched_entity(se) {
12775 		cfs_rq = cfs_rq_of(se);
12776 
12777 		update_load_avg(cfs_rq, se, UPDATE_TG);
12778 
12779 		if (cfs_rq_throttled(cfs_rq))
12780 			break;
12781 
12782 		if (!throttled_hierarchy(cfs_rq))
12783 			list_add_leaf_cfs_rq(cfs_rq);
12784 	}
12785 }
12786 #else
12787 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12788 #endif
12789 
12790 static void detach_entity_cfs_rq(struct sched_entity *se)
12791 {
12792 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12793 
12794 #ifdef CONFIG_SMP
12795 	/*
12796 	 * In case the task sched_avg hasn't been attached:
12797 	 * - A forked task which hasn't been woken up by wake_up_new_task().
12798 	 * - A task which has been woken up by try_to_wake_up() but is
12799 	 *   waiting for actually being woken up by sched_ttwu_pending().
12800 	 */
12801 	if (!se->avg.last_update_time)
12802 		return;
12803 #endif
12804 
12805 	/* Catch up with the cfs_rq and remove our load when we leave */
12806 	update_load_avg(cfs_rq, se, 0);
12807 	detach_entity_load_avg(cfs_rq, se);
12808 	update_tg_load_avg(cfs_rq);
12809 	propagate_entity_cfs_rq(se);
12810 }
12811 
12812 static void attach_entity_cfs_rq(struct sched_entity *se)
12813 {
12814 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12815 
12816 	/* Synchronize entity with its cfs_rq */
12817 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12818 	attach_entity_load_avg(cfs_rq, se);
12819 	update_tg_load_avg(cfs_rq);
12820 	propagate_entity_cfs_rq(se);
12821 }
12822 
12823 static void detach_task_cfs_rq(struct task_struct *p)
12824 {
12825 	struct sched_entity *se = &p->se;
12826 
12827 	detach_entity_cfs_rq(se);
12828 }
12829 
12830 static void attach_task_cfs_rq(struct task_struct *p)
12831 {
12832 	struct sched_entity *se = &p->se;
12833 
12834 	attach_entity_cfs_rq(se);
12835 }
12836 
12837 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12838 {
12839 	detach_task_cfs_rq(p);
12840 }
12841 
12842 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12843 {
12844 	attach_task_cfs_rq(p);
12845 
12846 	set_task_max_allowed_capacity(p);
12847 
12848 	if (task_on_rq_queued(p)) {
12849 		/*
12850 		 * We were most likely switched from sched_rt, so
12851 		 * kick off the schedule if running, otherwise just see
12852 		 * if we can still preempt the current task.
12853 		 */
12854 		if (task_current(rq, p))
12855 			resched_curr(rq);
12856 		else
12857 			wakeup_preempt(rq, p, 0);
12858 	}
12859 }
12860 
12861 /* Account for a task changing its policy or group.
12862  *
12863  * This routine is mostly called to set cfs_rq->curr field when a task
12864  * migrates between groups/classes.
12865  */
12866 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12867 {
12868 	struct sched_entity *se = &p->se;
12869 
12870 #ifdef CONFIG_SMP
12871 	if (task_on_rq_queued(p)) {
12872 		/*
12873 		 * Move the next running task to the front of the list, so our
12874 		 * cfs_tasks list becomes MRU one.
12875 		 */
12876 		list_move(&se->group_node, &rq->cfs_tasks);
12877 	}
12878 #endif
12879 
12880 	for_each_sched_entity(se) {
12881 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12882 
12883 		set_next_entity(cfs_rq, se);
12884 		/* ensure bandwidth has been allocated on our new cfs_rq */
12885 		account_cfs_rq_runtime(cfs_rq, 0);
12886 	}
12887 }
12888 
12889 void init_cfs_rq(struct cfs_rq *cfs_rq)
12890 {
12891 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12892 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12893 #ifdef CONFIG_SMP
12894 	raw_spin_lock_init(&cfs_rq->removed.lock);
12895 #endif
12896 }
12897 
12898 #ifdef CONFIG_FAIR_GROUP_SCHED
12899 static void task_change_group_fair(struct task_struct *p)
12900 {
12901 	/*
12902 	 * We couldn't detach or attach a forked task which
12903 	 * hasn't been woken up by wake_up_new_task().
12904 	 */
12905 	if (READ_ONCE(p->__state) == TASK_NEW)
12906 		return;
12907 
12908 	detach_task_cfs_rq(p);
12909 
12910 #ifdef CONFIG_SMP
12911 	/* Tell se's cfs_rq has been changed -- migrated */
12912 	p->se.avg.last_update_time = 0;
12913 #endif
12914 	set_task_rq(p, task_cpu(p));
12915 	attach_task_cfs_rq(p);
12916 }
12917 
12918 void free_fair_sched_group(struct task_group *tg)
12919 {
12920 	int i;
12921 
12922 	for_each_possible_cpu(i) {
12923 		if (tg->cfs_rq)
12924 			kfree(tg->cfs_rq[i]);
12925 		if (tg->se)
12926 			kfree(tg->se[i]);
12927 	}
12928 
12929 	kfree(tg->cfs_rq);
12930 	kfree(tg->se);
12931 }
12932 
12933 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12934 {
12935 	struct sched_entity *se;
12936 	struct cfs_rq *cfs_rq;
12937 	int i;
12938 
12939 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12940 	if (!tg->cfs_rq)
12941 		goto err;
12942 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12943 	if (!tg->se)
12944 		goto err;
12945 
12946 	tg->shares = NICE_0_LOAD;
12947 
12948 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
12949 
12950 	for_each_possible_cpu(i) {
12951 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12952 				      GFP_KERNEL, cpu_to_node(i));
12953 		if (!cfs_rq)
12954 			goto err;
12955 
12956 		se = kzalloc_node(sizeof(struct sched_entity_stats),
12957 				  GFP_KERNEL, cpu_to_node(i));
12958 		if (!se)
12959 			goto err_free_rq;
12960 
12961 		init_cfs_rq(cfs_rq);
12962 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12963 		init_entity_runnable_average(se);
12964 	}
12965 
12966 	return 1;
12967 
12968 err_free_rq:
12969 	kfree(cfs_rq);
12970 err:
12971 	return 0;
12972 }
12973 
12974 void online_fair_sched_group(struct task_group *tg)
12975 {
12976 	struct sched_entity *se;
12977 	struct rq_flags rf;
12978 	struct rq *rq;
12979 	int i;
12980 
12981 	for_each_possible_cpu(i) {
12982 		rq = cpu_rq(i);
12983 		se = tg->se[i];
12984 		rq_lock_irq(rq, &rf);
12985 		update_rq_clock(rq);
12986 		attach_entity_cfs_rq(se);
12987 		sync_throttle(tg, i);
12988 		rq_unlock_irq(rq, &rf);
12989 	}
12990 }
12991 
12992 void unregister_fair_sched_group(struct task_group *tg)
12993 {
12994 	unsigned long flags;
12995 	struct rq *rq;
12996 	int cpu;
12997 
12998 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12999 
13000 	for_each_possible_cpu(cpu) {
13001 		if (tg->se[cpu])
13002 			remove_entity_load_avg(tg->se[cpu]);
13003 
13004 		/*
13005 		 * Only empty task groups can be destroyed; so we can speculatively
13006 		 * check on_list without danger of it being re-added.
13007 		 */
13008 		if (!tg->cfs_rq[cpu]->on_list)
13009 			continue;
13010 
13011 		rq = cpu_rq(cpu);
13012 
13013 		raw_spin_rq_lock_irqsave(rq, flags);
13014 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
13015 		raw_spin_rq_unlock_irqrestore(rq, flags);
13016 	}
13017 }
13018 
13019 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13020 			struct sched_entity *se, int cpu,
13021 			struct sched_entity *parent)
13022 {
13023 	struct rq *rq = cpu_rq(cpu);
13024 
13025 	cfs_rq->tg = tg;
13026 	cfs_rq->rq = rq;
13027 	init_cfs_rq_runtime(cfs_rq);
13028 
13029 	tg->cfs_rq[cpu] = cfs_rq;
13030 	tg->se[cpu] = se;
13031 
13032 	/* se could be NULL for root_task_group */
13033 	if (!se)
13034 		return;
13035 
13036 	if (!parent) {
13037 		se->cfs_rq = &rq->cfs;
13038 		se->depth = 0;
13039 	} else {
13040 		se->cfs_rq = parent->my_q;
13041 		se->depth = parent->depth + 1;
13042 	}
13043 
13044 	se->my_q = cfs_rq;
13045 	/* guarantee group entities always have weight */
13046 	update_load_set(&se->load, NICE_0_LOAD);
13047 	se->parent = parent;
13048 }
13049 
13050 static DEFINE_MUTEX(shares_mutex);
13051 
13052 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13053 {
13054 	int i;
13055 
13056 	lockdep_assert_held(&shares_mutex);
13057 
13058 	/*
13059 	 * We can't change the weight of the root cgroup.
13060 	 */
13061 	if (!tg->se[0])
13062 		return -EINVAL;
13063 
13064 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13065 
13066 	if (tg->shares == shares)
13067 		return 0;
13068 
13069 	tg->shares = shares;
13070 	for_each_possible_cpu(i) {
13071 		struct rq *rq = cpu_rq(i);
13072 		struct sched_entity *se = tg->se[i];
13073 		struct rq_flags rf;
13074 
13075 		/* Propagate contribution to hierarchy */
13076 		rq_lock_irqsave(rq, &rf);
13077 		update_rq_clock(rq);
13078 		for_each_sched_entity(se) {
13079 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13080 			update_cfs_group(se);
13081 		}
13082 		rq_unlock_irqrestore(rq, &rf);
13083 	}
13084 
13085 	return 0;
13086 }
13087 
13088 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13089 {
13090 	int ret;
13091 
13092 	mutex_lock(&shares_mutex);
13093 	if (tg_is_idle(tg))
13094 		ret = -EINVAL;
13095 	else
13096 		ret = __sched_group_set_shares(tg, shares);
13097 	mutex_unlock(&shares_mutex);
13098 
13099 	return ret;
13100 }
13101 
13102 int sched_group_set_idle(struct task_group *tg, long idle)
13103 {
13104 	int i;
13105 
13106 	if (tg == &root_task_group)
13107 		return -EINVAL;
13108 
13109 	if (idle < 0 || idle > 1)
13110 		return -EINVAL;
13111 
13112 	mutex_lock(&shares_mutex);
13113 
13114 	if (tg->idle == idle) {
13115 		mutex_unlock(&shares_mutex);
13116 		return 0;
13117 	}
13118 
13119 	tg->idle = idle;
13120 
13121 	for_each_possible_cpu(i) {
13122 		struct rq *rq = cpu_rq(i);
13123 		struct sched_entity *se = tg->se[i];
13124 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13125 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13126 		long idle_task_delta;
13127 		struct rq_flags rf;
13128 
13129 		rq_lock_irqsave(rq, &rf);
13130 
13131 		grp_cfs_rq->idle = idle;
13132 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13133 			goto next_cpu;
13134 
13135 		if (se->on_rq) {
13136 			parent_cfs_rq = cfs_rq_of(se);
13137 			if (cfs_rq_is_idle(grp_cfs_rq))
13138 				parent_cfs_rq->idle_nr_running++;
13139 			else
13140 				parent_cfs_rq->idle_nr_running--;
13141 		}
13142 
13143 		idle_task_delta = grp_cfs_rq->h_nr_running -
13144 				  grp_cfs_rq->idle_h_nr_running;
13145 		if (!cfs_rq_is_idle(grp_cfs_rq))
13146 			idle_task_delta *= -1;
13147 
13148 		for_each_sched_entity(se) {
13149 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13150 
13151 			if (!se->on_rq)
13152 				break;
13153 
13154 			cfs_rq->idle_h_nr_running += idle_task_delta;
13155 
13156 			/* Already accounted at parent level and above. */
13157 			if (cfs_rq_is_idle(cfs_rq))
13158 				break;
13159 		}
13160 
13161 next_cpu:
13162 		rq_unlock_irqrestore(rq, &rf);
13163 	}
13164 
13165 	/* Idle groups have minimum weight. */
13166 	if (tg_is_idle(tg))
13167 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13168 	else
13169 		__sched_group_set_shares(tg, NICE_0_LOAD);
13170 
13171 	mutex_unlock(&shares_mutex);
13172 	return 0;
13173 }
13174 
13175 #endif /* CONFIG_FAIR_GROUP_SCHED */
13176 
13177 
13178 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13179 {
13180 	struct sched_entity *se = &task->se;
13181 	unsigned int rr_interval = 0;
13182 
13183 	/*
13184 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13185 	 * idle runqueue:
13186 	 */
13187 	if (rq->cfs.load.weight)
13188 		rr_interval = NS_TO_JIFFIES(se->slice);
13189 
13190 	return rr_interval;
13191 }
13192 
13193 /*
13194  * All the scheduling class methods:
13195  */
13196 DEFINE_SCHED_CLASS(fair) = {
13197 
13198 	.enqueue_task		= enqueue_task_fair,
13199 	.dequeue_task		= dequeue_task_fair,
13200 	.yield_task		= yield_task_fair,
13201 	.yield_to_task		= yield_to_task_fair,
13202 
13203 	.wakeup_preempt		= check_preempt_wakeup_fair,
13204 
13205 	.pick_next_task		= __pick_next_task_fair,
13206 	.put_prev_task		= put_prev_task_fair,
13207 	.set_next_task          = set_next_task_fair,
13208 
13209 #ifdef CONFIG_SMP
13210 	.balance		= balance_fair,
13211 	.pick_task		= pick_task_fair,
13212 	.select_task_rq		= select_task_rq_fair,
13213 	.migrate_task_rq	= migrate_task_rq_fair,
13214 
13215 	.rq_online		= rq_online_fair,
13216 	.rq_offline		= rq_offline_fair,
13217 
13218 	.task_dead		= task_dead_fair,
13219 	.set_cpus_allowed	= set_cpus_allowed_fair,
13220 #endif
13221 
13222 	.task_tick		= task_tick_fair,
13223 	.task_fork		= task_fork_fair,
13224 
13225 	.prio_changed		= prio_changed_fair,
13226 	.switched_from		= switched_from_fair,
13227 	.switched_to		= switched_to_fair,
13228 
13229 	.get_rr_interval	= get_rr_interval_fair,
13230 
13231 	.update_curr		= update_curr_fair,
13232 
13233 #ifdef CONFIG_FAIR_GROUP_SCHED
13234 	.task_change_group	= task_change_group_fair,
13235 #endif
13236 
13237 #ifdef CONFIG_SCHED_CORE
13238 	.task_is_throttled	= task_is_throttled_fair,
13239 #endif
13240 
13241 #ifdef CONFIG_UCLAMP_TASK
13242 	.uclamp_enabled		= 1,
13243 #endif
13244 };
13245 
13246 #ifdef CONFIG_SCHED_DEBUG
13247 void print_cfs_stats(struct seq_file *m, int cpu)
13248 {
13249 	struct cfs_rq *cfs_rq, *pos;
13250 
13251 	rcu_read_lock();
13252 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13253 		print_cfs_rq(m, cpu, cfs_rq);
13254 	rcu_read_unlock();
13255 }
13256 
13257 #ifdef CONFIG_NUMA_BALANCING
13258 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13259 {
13260 	int node;
13261 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13262 	struct numa_group *ng;
13263 
13264 	rcu_read_lock();
13265 	ng = rcu_dereference(p->numa_group);
13266 	for_each_online_node(node) {
13267 		if (p->numa_faults) {
13268 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13269 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13270 		}
13271 		if (ng) {
13272 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13273 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13274 		}
13275 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13276 	}
13277 	rcu_read_unlock();
13278 }
13279 #endif /* CONFIG_NUMA_BALANCING */
13280 #endif /* CONFIG_SCHED_DEBUG */
13281 
13282 __init void init_sched_fair_class(void)
13283 {
13284 #ifdef CONFIG_SMP
13285 	int i;
13286 
13287 	for_each_possible_cpu(i) {
13288 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13289 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13290 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13291 					GFP_KERNEL, cpu_to_node(i));
13292 
13293 #ifdef CONFIG_CFS_BANDWIDTH
13294 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13295 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13296 #endif
13297 	}
13298 
13299 	open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13300 
13301 #ifdef CONFIG_NO_HZ_COMMON
13302 	nohz.next_balance = jiffies;
13303 	nohz.next_blocked = jiffies;
13304 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13305 #endif
13306 #endif /* SMP */
13307 
13308 }
13309