1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 #include <linux/rbtree_augmented.h> 51 52 #include <asm/switch_to.h> 53 54 #include "sched.h" 55 #include "stats.h" 56 #include "autogroup.h" 57 58 /* 59 * The initial- and re-scaling of tunables is configurable 60 * 61 * Options are: 62 * 63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 64 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) 65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 66 * 67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 68 */ 69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 70 71 /* 72 * Minimal preemption granularity for CPU-bound tasks: 73 * 74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 75 */ 76 unsigned int sysctl_sched_base_slice = 750000ULL; 77 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 78 79 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 80 81 static int __init setup_sched_thermal_decay_shift(char *str) 82 { 83 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 84 return 1; 85 } 86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 87 88 #ifdef CONFIG_SMP 89 /* 90 * For asym packing, by default the lower numbered CPU has higher priority. 91 */ 92 int __weak arch_asym_cpu_priority(int cpu) 93 { 94 return -cpu; 95 } 96 97 /* 98 * The margin used when comparing utilization with CPU capacity. 99 * 100 * (default: ~20%) 101 */ 102 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 103 104 /* 105 * The margin used when comparing CPU capacities. 106 * is 'cap1' noticeably greater than 'cap2' 107 * 108 * (default: ~5%) 109 */ 110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 111 #endif 112 113 #ifdef CONFIG_CFS_BANDWIDTH 114 /* 115 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 116 * each time a cfs_rq requests quota. 117 * 118 * Note: in the case that the slice exceeds the runtime remaining (either due 119 * to consumption or the quota being specified to be smaller than the slice) 120 * we will always only issue the remaining available time. 121 * 122 * (default: 5 msec, units: microseconds) 123 */ 124 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 125 #endif 126 127 #ifdef CONFIG_NUMA_BALANCING 128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 129 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 130 #endif 131 132 #ifdef CONFIG_SYSCTL 133 static struct ctl_table sched_fair_sysctls[] = { 134 #ifdef CONFIG_CFS_BANDWIDTH 135 { 136 .procname = "sched_cfs_bandwidth_slice_us", 137 .data = &sysctl_sched_cfs_bandwidth_slice, 138 .maxlen = sizeof(unsigned int), 139 .mode = 0644, 140 .proc_handler = proc_dointvec_minmax, 141 .extra1 = SYSCTL_ONE, 142 }, 143 #endif 144 #ifdef CONFIG_NUMA_BALANCING 145 { 146 .procname = "numa_balancing_promote_rate_limit_MBps", 147 .data = &sysctl_numa_balancing_promote_rate_limit, 148 .maxlen = sizeof(unsigned int), 149 .mode = 0644, 150 .proc_handler = proc_dointvec_minmax, 151 .extra1 = SYSCTL_ZERO, 152 }, 153 #endif /* CONFIG_NUMA_BALANCING */ 154 }; 155 156 static int __init sched_fair_sysctl_init(void) 157 { 158 register_sysctl_init("kernel", sched_fair_sysctls); 159 return 0; 160 } 161 late_initcall(sched_fair_sysctl_init); 162 #endif 163 164 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 165 { 166 lw->weight += inc; 167 lw->inv_weight = 0; 168 } 169 170 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 171 { 172 lw->weight -= dec; 173 lw->inv_weight = 0; 174 } 175 176 static inline void update_load_set(struct load_weight *lw, unsigned long w) 177 { 178 lw->weight = w; 179 lw->inv_weight = 0; 180 } 181 182 /* 183 * Increase the granularity value when there are more CPUs, 184 * because with more CPUs the 'effective latency' as visible 185 * to users decreases. But the relationship is not linear, 186 * so pick a second-best guess by going with the log2 of the 187 * number of CPUs. 188 * 189 * This idea comes from the SD scheduler of Con Kolivas: 190 */ 191 static unsigned int get_update_sysctl_factor(void) 192 { 193 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 194 unsigned int factor; 195 196 switch (sysctl_sched_tunable_scaling) { 197 case SCHED_TUNABLESCALING_NONE: 198 factor = 1; 199 break; 200 case SCHED_TUNABLESCALING_LINEAR: 201 factor = cpus; 202 break; 203 case SCHED_TUNABLESCALING_LOG: 204 default: 205 factor = 1 + ilog2(cpus); 206 break; 207 } 208 209 return factor; 210 } 211 212 static void update_sysctl(void) 213 { 214 unsigned int factor = get_update_sysctl_factor(); 215 216 #define SET_SYSCTL(name) \ 217 (sysctl_##name = (factor) * normalized_sysctl_##name) 218 SET_SYSCTL(sched_base_slice); 219 #undef SET_SYSCTL 220 } 221 222 void __init sched_init_granularity(void) 223 { 224 update_sysctl(); 225 } 226 227 #define WMULT_CONST (~0U) 228 #define WMULT_SHIFT 32 229 230 static void __update_inv_weight(struct load_weight *lw) 231 { 232 unsigned long w; 233 234 if (likely(lw->inv_weight)) 235 return; 236 237 w = scale_load_down(lw->weight); 238 239 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 240 lw->inv_weight = 1; 241 else if (unlikely(!w)) 242 lw->inv_weight = WMULT_CONST; 243 else 244 lw->inv_weight = WMULT_CONST / w; 245 } 246 247 /* 248 * delta_exec * weight / lw.weight 249 * OR 250 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 251 * 252 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 253 * we're guaranteed shift stays positive because inv_weight is guaranteed to 254 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 255 * 256 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 257 * weight/lw.weight <= 1, and therefore our shift will also be positive. 258 */ 259 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 260 { 261 u64 fact = scale_load_down(weight); 262 u32 fact_hi = (u32)(fact >> 32); 263 int shift = WMULT_SHIFT; 264 int fs; 265 266 __update_inv_weight(lw); 267 268 if (unlikely(fact_hi)) { 269 fs = fls(fact_hi); 270 shift -= fs; 271 fact >>= fs; 272 } 273 274 fact = mul_u32_u32(fact, lw->inv_weight); 275 276 fact_hi = (u32)(fact >> 32); 277 if (fact_hi) { 278 fs = fls(fact_hi); 279 shift -= fs; 280 fact >>= fs; 281 } 282 283 return mul_u64_u32_shr(delta_exec, fact, shift); 284 } 285 286 /* 287 * delta /= w 288 */ 289 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 290 { 291 if (unlikely(se->load.weight != NICE_0_LOAD)) 292 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 293 294 return delta; 295 } 296 297 const struct sched_class fair_sched_class; 298 299 /************************************************************** 300 * CFS operations on generic schedulable entities: 301 */ 302 303 #ifdef CONFIG_FAIR_GROUP_SCHED 304 305 /* Walk up scheduling entities hierarchy */ 306 #define for_each_sched_entity(se) \ 307 for (; se; se = se->parent) 308 309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 310 { 311 struct rq *rq = rq_of(cfs_rq); 312 int cpu = cpu_of(rq); 313 314 if (cfs_rq->on_list) 315 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 316 317 cfs_rq->on_list = 1; 318 319 /* 320 * Ensure we either appear before our parent (if already 321 * enqueued) or force our parent to appear after us when it is 322 * enqueued. The fact that we always enqueue bottom-up 323 * reduces this to two cases and a special case for the root 324 * cfs_rq. Furthermore, it also means that we will always reset 325 * tmp_alone_branch either when the branch is connected 326 * to a tree or when we reach the top of the tree 327 */ 328 if (cfs_rq->tg->parent && 329 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 330 /* 331 * If parent is already on the list, we add the child 332 * just before. Thanks to circular linked property of 333 * the list, this means to put the child at the tail 334 * of the list that starts by parent. 335 */ 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 337 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 338 /* 339 * The branch is now connected to its tree so we can 340 * reset tmp_alone_branch to the beginning of the 341 * list. 342 */ 343 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 344 return true; 345 } 346 347 if (!cfs_rq->tg->parent) { 348 /* 349 * cfs rq without parent should be put 350 * at the tail of the list. 351 */ 352 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 353 &rq->leaf_cfs_rq_list); 354 /* 355 * We have reach the top of a tree so we can reset 356 * tmp_alone_branch to the beginning of the list. 357 */ 358 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 359 return true; 360 } 361 362 /* 363 * The parent has not already been added so we want to 364 * make sure that it will be put after us. 365 * tmp_alone_branch points to the begin of the branch 366 * where we will add parent. 367 */ 368 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 369 /* 370 * update tmp_alone_branch to points to the new begin 371 * of the branch 372 */ 373 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 374 return false; 375 } 376 377 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 378 { 379 if (cfs_rq->on_list) { 380 struct rq *rq = rq_of(cfs_rq); 381 382 /* 383 * With cfs_rq being unthrottled/throttled during an enqueue, 384 * it can happen the tmp_alone_branch points to the leaf that 385 * we finally want to delete. In this case, tmp_alone_branch moves 386 * to the prev element but it will point to rq->leaf_cfs_rq_list 387 * at the end of the enqueue. 388 */ 389 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 390 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 391 392 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 393 cfs_rq->on_list = 0; 394 } 395 } 396 397 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 398 { 399 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 400 } 401 402 /* Iterate through all leaf cfs_rq's on a runqueue */ 403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 404 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 405 leaf_cfs_rq_list) 406 407 /* Do the two (enqueued) entities belong to the same group ? */ 408 static inline struct cfs_rq * 409 is_same_group(struct sched_entity *se, struct sched_entity *pse) 410 { 411 if (se->cfs_rq == pse->cfs_rq) 412 return se->cfs_rq; 413 414 return NULL; 415 } 416 417 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 418 { 419 return se->parent; 420 } 421 422 static void 423 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 424 { 425 int se_depth, pse_depth; 426 427 /* 428 * preemption test can be made between sibling entities who are in the 429 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 430 * both tasks until we find their ancestors who are siblings of common 431 * parent. 432 */ 433 434 /* First walk up until both entities are at same depth */ 435 se_depth = (*se)->depth; 436 pse_depth = (*pse)->depth; 437 438 while (se_depth > pse_depth) { 439 se_depth--; 440 *se = parent_entity(*se); 441 } 442 443 while (pse_depth > se_depth) { 444 pse_depth--; 445 *pse = parent_entity(*pse); 446 } 447 448 while (!is_same_group(*se, *pse)) { 449 *se = parent_entity(*se); 450 *pse = parent_entity(*pse); 451 } 452 } 453 454 static int tg_is_idle(struct task_group *tg) 455 { 456 return tg->idle > 0; 457 } 458 459 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 460 { 461 return cfs_rq->idle > 0; 462 } 463 464 static int se_is_idle(struct sched_entity *se) 465 { 466 if (entity_is_task(se)) 467 return task_has_idle_policy(task_of(se)); 468 return cfs_rq_is_idle(group_cfs_rq(se)); 469 } 470 471 #else /* !CONFIG_FAIR_GROUP_SCHED */ 472 473 #define for_each_sched_entity(se) \ 474 for (; se; se = NULL) 475 476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 477 { 478 return true; 479 } 480 481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 482 { 483 } 484 485 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 486 { 487 } 488 489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 490 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 491 492 static inline struct sched_entity *parent_entity(struct sched_entity *se) 493 { 494 return NULL; 495 } 496 497 static inline void 498 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 499 { 500 } 501 502 static inline int tg_is_idle(struct task_group *tg) 503 { 504 return 0; 505 } 506 507 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 508 { 509 return 0; 510 } 511 512 static int se_is_idle(struct sched_entity *se) 513 { 514 return 0; 515 } 516 517 #endif /* CONFIG_FAIR_GROUP_SCHED */ 518 519 static __always_inline 520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 521 522 /************************************************************** 523 * Scheduling class tree data structure manipulation methods: 524 */ 525 526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 527 { 528 s64 delta = (s64)(vruntime - max_vruntime); 529 if (delta > 0) 530 max_vruntime = vruntime; 531 532 return max_vruntime; 533 } 534 535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 536 { 537 s64 delta = (s64)(vruntime - min_vruntime); 538 if (delta < 0) 539 min_vruntime = vruntime; 540 541 return min_vruntime; 542 } 543 544 static inline bool entity_before(const struct sched_entity *a, 545 const struct sched_entity *b) 546 { 547 /* 548 * Tiebreak on vruntime seems unnecessary since it can 549 * hardly happen. 550 */ 551 return (s64)(a->deadline - b->deadline) < 0; 552 } 553 554 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 555 { 556 return (s64)(se->vruntime - cfs_rq->min_vruntime); 557 } 558 559 #define __node_2_se(node) \ 560 rb_entry((node), struct sched_entity, run_node) 561 562 /* 563 * Compute virtual time from the per-task service numbers: 564 * 565 * Fair schedulers conserve lag: 566 * 567 * \Sum lag_i = 0 568 * 569 * Where lag_i is given by: 570 * 571 * lag_i = S - s_i = w_i * (V - v_i) 572 * 573 * Where S is the ideal service time and V is it's virtual time counterpart. 574 * Therefore: 575 * 576 * \Sum lag_i = 0 577 * \Sum w_i * (V - v_i) = 0 578 * \Sum w_i * V - w_i * v_i = 0 579 * 580 * From which we can solve an expression for V in v_i (which we have in 581 * se->vruntime): 582 * 583 * \Sum v_i * w_i \Sum v_i * w_i 584 * V = -------------- = -------------- 585 * \Sum w_i W 586 * 587 * Specifically, this is the weighted average of all entity virtual runtimes. 588 * 589 * [[ NOTE: this is only equal to the ideal scheduler under the condition 590 * that join/leave operations happen at lag_i = 0, otherwise the 591 * virtual time has non-contiguous motion equivalent to: 592 * 593 * V +-= lag_i / W 594 * 595 * Also see the comment in place_entity() that deals with this. ]] 596 * 597 * However, since v_i is u64, and the multiplication could easily overflow 598 * transform it into a relative form that uses smaller quantities: 599 * 600 * Substitute: v_i == (v_i - v0) + v0 601 * 602 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 603 * V = ---------------------------- = --------------------- + v0 604 * W W 605 * 606 * Which we track using: 607 * 608 * v0 := cfs_rq->min_vruntime 609 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 610 * \Sum w_i := cfs_rq->avg_load 611 * 612 * Since min_vruntime is a monotonic increasing variable that closely tracks 613 * the per-task service, these deltas: (v_i - v), will be in the order of the 614 * maximal (virtual) lag induced in the system due to quantisation. 615 * 616 * Also, we use scale_load_down() to reduce the size. 617 * 618 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 619 */ 620 static void 621 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 622 { 623 unsigned long weight = scale_load_down(se->load.weight); 624 s64 key = entity_key(cfs_rq, se); 625 626 cfs_rq->avg_vruntime += key * weight; 627 cfs_rq->avg_load += weight; 628 } 629 630 static void 631 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 632 { 633 unsigned long weight = scale_load_down(se->load.weight); 634 s64 key = entity_key(cfs_rq, se); 635 636 cfs_rq->avg_vruntime -= key * weight; 637 cfs_rq->avg_load -= weight; 638 } 639 640 static inline 641 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 642 { 643 /* 644 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 645 */ 646 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 647 } 648 649 /* 650 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 651 * For this to be so, the result of this function must have a left bias. 652 */ 653 u64 avg_vruntime(struct cfs_rq *cfs_rq) 654 { 655 struct sched_entity *curr = cfs_rq->curr; 656 s64 avg = cfs_rq->avg_vruntime; 657 long load = cfs_rq->avg_load; 658 659 if (curr && curr->on_rq) { 660 unsigned long weight = scale_load_down(curr->load.weight); 661 662 avg += entity_key(cfs_rq, curr) * weight; 663 load += weight; 664 } 665 666 if (load) { 667 /* sign flips effective floor / ceiling */ 668 if (avg < 0) 669 avg -= (load - 1); 670 avg = div_s64(avg, load); 671 } 672 673 return cfs_rq->min_vruntime + avg; 674 } 675 676 /* 677 * lag_i = S - s_i = w_i * (V - v_i) 678 * 679 * However, since V is approximated by the weighted average of all entities it 680 * is possible -- by addition/removal/reweight to the tree -- to move V around 681 * and end up with a larger lag than we started with. 682 * 683 * Limit this to either double the slice length with a minimum of TICK_NSEC 684 * since that is the timing granularity. 685 * 686 * EEVDF gives the following limit for a steady state system: 687 * 688 * -r_max < lag < max(r_max, q) 689 * 690 * XXX could add max_slice to the augmented data to track this. 691 */ 692 static s64 entity_lag(u64 avruntime, struct sched_entity *se) 693 { 694 s64 vlag, limit; 695 696 vlag = avruntime - se->vruntime; 697 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 698 699 return clamp(vlag, -limit, limit); 700 } 701 702 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 703 { 704 SCHED_WARN_ON(!se->on_rq); 705 706 se->vlag = entity_lag(avg_vruntime(cfs_rq), se); 707 } 708 709 /* 710 * Entity is eligible once it received less service than it ought to have, 711 * eg. lag >= 0. 712 * 713 * lag_i = S - s_i = w_i*(V - v_i) 714 * 715 * lag_i >= 0 -> V >= v_i 716 * 717 * \Sum (v_i - v)*w_i 718 * V = ------------------ + v 719 * \Sum w_i 720 * 721 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 722 * 723 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 724 * to the loss in precision caused by the division. 725 */ 726 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 727 { 728 struct sched_entity *curr = cfs_rq->curr; 729 s64 avg = cfs_rq->avg_vruntime; 730 long load = cfs_rq->avg_load; 731 732 if (curr && curr->on_rq) { 733 unsigned long weight = scale_load_down(curr->load.weight); 734 735 avg += entity_key(cfs_rq, curr) * weight; 736 load += weight; 737 } 738 739 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 740 } 741 742 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 743 { 744 return vruntime_eligible(cfs_rq, se->vruntime); 745 } 746 747 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 748 { 749 u64 min_vruntime = cfs_rq->min_vruntime; 750 /* 751 * open coded max_vruntime() to allow updating avg_vruntime 752 */ 753 s64 delta = (s64)(vruntime - min_vruntime); 754 if (delta > 0) { 755 avg_vruntime_update(cfs_rq, delta); 756 min_vruntime = vruntime; 757 } 758 return min_vruntime; 759 } 760 761 static void update_min_vruntime(struct cfs_rq *cfs_rq) 762 { 763 struct sched_entity *se = __pick_root_entity(cfs_rq); 764 struct sched_entity *curr = cfs_rq->curr; 765 u64 vruntime = cfs_rq->min_vruntime; 766 767 if (curr) { 768 if (curr->on_rq) 769 vruntime = curr->vruntime; 770 else 771 curr = NULL; 772 } 773 774 if (se) { 775 if (!curr) 776 vruntime = se->min_vruntime; 777 else 778 vruntime = min_vruntime(vruntime, se->min_vruntime); 779 } 780 781 /* ensure we never gain time by being placed backwards. */ 782 u64_u32_store(cfs_rq->min_vruntime, 783 __update_min_vruntime(cfs_rq, vruntime)); 784 } 785 786 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 787 { 788 return entity_before(__node_2_se(a), __node_2_se(b)); 789 } 790 791 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 792 793 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 794 { 795 if (node) { 796 struct sched_entity *rse = __node_2_se(node); 797 if (vruntime_gt(min_vruntime, se, rse)) 798 se->min_vruntime = rse->min_vruntime; 799 } 800 } 801 802 /* 803 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 804 */ 805 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 806 { 807 u64 old_min_vruntime = se->min_vruntime; 808 struct rb_node *node = &se->run_node; 809 810 se->min_vruntime = se->vruntime; 811 __min_vruntime_update(se, node->rb_right); 812 __min_vruntime_update(se, node->rb_left); 813 814 return se->min_vruntime == old_min_vruntime; 815 } 816 817 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 818 run_node, min_vruntime, min_vruntime_update); 819 820 /* 821 * Enqueue an entity into the rb-tree: 822 */ 823 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 824 { 825 avg_vruntime_add(cfs_rq, se); 826 se->min_vruntime = se->vruntime; 827 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 828 __entity_less, &min_vruntime_cb); 829 } 830 831 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 832 { 833 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 834 &min_vruntime_cb); 835 avg_vruntime_sub(cfs_rq, se); 836 } 837 838 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 839 { 840 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 841 842 if (!root) 843 return NULL; 844 845 return __node_2_se(root); 846 } 847 848 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 849 { 850 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 851 852 if (!left) 853 return NULL; 854 855 return __node_2_se(left); 856 } 857 858 /* 859 * Earliest Eligible Virtual Deadline First 860 * 861 * In order to provide latency guarantees for different request sizes 862 * EEVDF selects the best runnable task from two criteria: 863 * 864 * 1) the task must be eligible (must be owed service) 865 * 866 * 2) from those tasks that meet 1), we select the one 867 * with the earliest virtual deadline. 868 * 869 * We can do this in O(log n) time due to an augmented RB-tree. The 870 * tree keeps the entries sorted on deadline, but also functions as a 871 * heap based on the vruntime by keeping: 872 * 873 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 874 * 875 * Which allows tree pruning through eligibility. 876 */ 877 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 878 { 879 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 880 struct sched_entity *se = __pick_first_entity(cfs_rq); 881 struct sched_entity *curr = cfs_rq->curr; 882 struct sched_entity *best = NULL; 883 884 /* 885 * We can safely skip eligibility check if there is only one entity 886 * in this cfs_rq, saving some cycles. 887 */ 888 if (cfs_rq->nr_running == 1) 889 return curr && curr->on_rq ? curr : se; 890 891 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 892 curr = NULL; 893 894 /* 895 * Once selected, run a task until it either becomes non-eligible or 896 * until it gets a new slice. See the HACK in set_next_entity(). 897 */ 898 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 899 return curr; 900 901 /* Pick the leftmost entity if it's eligible */ 902 if (se && entity_eligible(cfs_rq, se)) { 903 best = se; 904 goto found; 905 } 906 907 /* Heap search for the EEVD entity */ 908 while (node) { 909 struct rb_node *left = node->rb_left; 910 911 /* 912 * Eligible entities in left subtree are always better 913 * choices, since they have earlier deadlines. 914 */ 915 if (left && vruntime_eligible(cfs_rq, 916 __node_2_se(left)->min_vruntime)) { 917 node = left; 918 continue; 919 } 920 921 se = __node_2_se(node); 922 923 /* 924 * The left subtree either is empty or has no eligible 925 * entity, so check the current node since it is the one 926 * with earliest deadline that might be eligible. 927 */ 928 if (entity_eligible(cfs_rq, se)) { 929 best = se; 930 break; 931 } 932 933 node = node->rb_right; 934 } 935 found: 936 if (!best || (curr && entity_before(curr, best))) 937 best = curr; 938 939 return best; 940 } 941 942 #ifdef CONFIG_SCHED_DEBUG 943 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 944 { 945 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 946 947 if (!last) 948 return NULL; 949 950 return __node_2_se(last); 951 } 952 953 /************************************************************** 954 * Scheduling class statistics methods: 955 */ 956 #ifdef CONFIG_SMP 957 int sched_update_scaling(void) 958 { 959 unsigned int factor = get_update_sysctl_factor(); 960 961 #define WRT_SYSCTL(name) \ 962 (normalized_sysctl_##name = sysctl_##name / (factor)) 963 WRT_SYSCTL(sched_base_slice); 964 #undef WRT_SYSCTL 965 966 return 0; 967 } 968 #endif 969 #endif 970 971 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 972 973 /* 974 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 975 * this is probably good enough. 976 */ 977 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 978 { 979 if ((s64)(se->vruntime - se->deadline) < 0) 980 return; 981 982 /* 983 * For EEVDF the virtual time slope is determined by w_i (iow. 984 * nice) while the request time r_i is determined by 985 * sysctl_sched_base_slice. 986 */ 987 se->slice = sysctl_sched_base_slice; 988 989 /* 990 * EEVDF: vd_i = ve_i + r_i / w_i 991 */ 992 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 993 994 /* 995 * The task has consumed its request, reschedule. 996 */ 997 if (cfs_rq->nr_running > 1) { 998 resched_curr(rq_of(cfs_rq)); 999 clear_buddies(cfs_rq, se); 1000 } 1001 } 1002 1003 #include "pelt.h" 1004 #ifdef CONFIG_SMP 1005 1006 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1007 static unsigned long task_h_load(struct task_struct *p); 1008 static unsigned long capacity_of(int cpu); 1009 1010 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1011 void init_entity_runnable_average(struct sched_entity *se) 1012 { 1013 struct sched_avg *sa = &se->avg; 1014 1015 memset(sa, 0, sizeof(*sa)); 1016 1017 /* 1018 * Tasks are initialized with full load to be seen as heavy tasks until 1019 * they get a chance to stabilize to their real load level. 1020 * Group entities are initialized with zero load to reflect the fact that 1021 * nothing has been attached to the task group yet. 1022 */ 1023 if (entity_is_task(se)) 1024 sa->load_avg = scale_load_down(se->load.weight); 1025 1026 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1027 } 1028 1029 /* 1030 * With new tasks being created, their initial util_avgs are extrapolated 1031 * based on the cfs_rq's current util_avg: 1032 * 1033 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1034 * * se_weight(se) 1035 * 1036 * However, in many cases, the above util_avg does not give a desired 1037 * value. Moreover, the sum of the util_avgs may be divergent, such 1038 * as when the series is a harmonic series. 1039 * 1040 * To solve this problem, we also cap the util_avg of successive tasks to 1041 * only 1/2 of the left utilization budget: 1042 * 1043 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1044 * 1045 * where n denotes the nth task and cpu_scale the CPU capacity. 1046 * 1047 * For example, for a CPU with 1024 of capacity, a simplest series from 1048 * the beginning would be like: 1049 * 1050 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1051 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1052 * 1053 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1054 * if util_avg > util_avg_cap. 1055 */ 1056 void post_init_entity_util_avg(struct task_struct *p) 1057 { 1058 struct sched_entity *se = &p->se; 1059 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1060 struct sched_avg *sa = &se->avg; 1061 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1062 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1063 1064 if (p->sched_class != &fair_sched_class) { 1065 /* 1066 * For !fair tasks do: 1067 * 1068 update_cfs_rq_load_avg(now, cfs_rq); 1069 attach_entity_load_avg(cfs_rq, se); 1070 switched_from_fair(rq, p); 1071 * 1072 * such that the next switched_to_fair() has the 1073 * expected state. 1074 */ 1075 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1076 return; 1077 } 1078 1079 if (cap > 0) { 1080 if (cfs_rq->avg.util_avg != 0) { 1081 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1082 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1083 1084 if (sa->util_avg > cap) 1085 sa->util_avg = cap; 1086 } else { 1087 sa->util_avg = cap; 1088 } 1089 } 1090 1091 sa->runnable_avg = sa->util_avg; 1092 } 1093 1094 #else /* !CONFIG_SMP */ 1095 void init_entity_runnable_average(struct sched_entity *se) 1096 { 1097 } 1098 void post_init_entity_util_avg(struct task_struct *p) 1099 { 1100 } 1101 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1102 { 1103 } 1104 #endif /* CONFIG_SMP */ 1105 1106 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1107 { 1108 u64 now = rq_clock_task(rq); 1109 s64 delta_exec; 1110 1111 delta_exec = now - curr->exec_start; 1112 if (unlikely(delta_exec <= 0)) 1113 return delta_exec; 1114 1115 curr->exec_start = now; 1116 curr->sum_exec_runtime += delta_exec; 1117 1118 if (schedstat_enabled()) { 1119 struct sched_statistics *stats; 1120 1121 stats = __schedstats_from_se(curr); 1122 __schedstat_set(stats->exec_max, 1123 max(delta_exec, stats->exec_max)); 1124 } 1125 1126 return delta_exec; 1127 } 1128 1129 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1130 { 1131 trace_sched_stat_runtime(p, delta_exec); 1132 account_group_exec_runtime(p, delta_exec); 1133 cgroup_account_cputime(p, delta_exec); 1134 if (p->dl_server) 1135 dl_server_update(p->dl_server, delta_exec); 1136 } 1137 1138 /* 1139 * Used by other classes to account runtime. 1140 */ 1141 s64 update_curr_common(struct rq *rq) 1142 { 1143 struct task_struct *curr = rq->curr; 1144 s64 delta_exec; 1145 1146 delta_exec = update_curr_se(rq, &curr->se); 1147 if (likely(delta_exec > 0)) 1148 update_curr_task(curr, delta_exec); 1149 1150 return delta_exec; 1151 } 1152 1153 /* 1154 * Update the current task's runtime statistics. 1155 */ 1156 static void update_curr(struct cfs_rq *cfs_rq) 1157 { 1158 struct sched_entity *curr = cfs_rq->curr; 1159 s64 delta_exec; 1160 1161 if (unlikely(!curr)) 1162 return; 1163 1164 delta_exec = update_curr_se(rq_of(cfs_rq), curr); 1165 if (unlikely(delta_exec <= 0)) 1166 return; 1167 1168 curr->vruntime += calc_delta_fair(delta_exec, curr); 1169 update_deadline(cfs_rq, curr); 1170 update_min_vruntime(cfs_rq); 1171 1172 if (entity_is_task(curr)) 1173 update_curr_task(task_of(curr), delta_exec); 1174 1175 account_cfs_rq_runtime(cfs_rq, delta_exec); 1176 } 1177 1178 static void update_curr_fair(struct rq *rq) 1179 { 1180 update_curr(cfs_rq_of(&rq->curr->se)); 1181 } 1182 1183 static inline void 1184 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1185 { 1186 struct sched_statistics *stats; 1187 struct task_struct *p = NULL; 1188 1189 if (!schedstat_enabled()) 1190 return; 1191 1192 stats = __schedstats_from_se(se); 1193 1194 if (entity_is_task(se)) 1195 p = task_of(se); 1196 1197 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1198 } 1199 1200 static inline void 1201 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1202 { 1203 struct sched_statistics *stats; 1204 struct task_struct *p = NULL; 1205 1206 if (!schedstat_enabled()) 1207 return; 1208 1209 stats = __schedstats_from_se(se); 1210 1211 /* 1212 * When the sched_schedstat changes from 0 to 1, some sched se 1213 * maybe already in the runqueue, the se->statistics.wait_start 1214 * will be 0.So it will let the delta wrong. We need to avoid this 1215 * scenario. 1216 */ 1217 if (unlikely(!schedstat_val(stats->wait_start))) 1218 return; 1219 1220 if (entity_is_task(se)) 1221 p = task_of(se); 1222 1223 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1224 } 1225 1226 static inline void 1227 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1228 { 1229 struct sched_statistics *stats; 1230 struct task_struct *tsk = NULL; 1231 1232 if (!schedstat_enabled()) 1233 return; 1234 1235 stats = __schedstats_from_se(se); 1236 1237 if (entity_is_task(se)) 1238 tsk = task_of(se); 1239 1240 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1241 } 1242 1243 /* 1244 * Task is being enqueued - update stats: 1245 */ 1246 static inline void 1247 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1248 { 1249 if (!schedstat_enabled()) 1250 return; 1251 1252 /* 1253 * Are we enqueueing a waiting task? (for current tasks 1254 * a dequeue/enqueue event is a NOP) 1255 */ 1256 if (se != cfs_rq->curr) 1257 update_stats_wait_start_fair(cfs_rq, se); 1258 1259 if (flags & ENQUEUE_WAKEUP) 1260 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1261 } 1262 1263 static inline void 1264 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1265 { 1266 1267 if (!schedstat_enabled()) 1268 return; 1269 1270 /* 1271 * Mark the end of the wait period if dequeueing a 1272 * waiting task: 1273 */ 1274 if (se != cfs_rq->curr) 1275 update_stats_wait_end_fair(cfs_rq, se); 1276 1277 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1278 struct task_struct *tsk = task_of(se); 1279 unsigned int state; 1280 1281 /* XXX racy against TTWU */ 1282 state = READ_ONCE(tsk->__state); 1283 if (state & TASK_INTERRUPTIBLE) 1284 __schedstat_set(tsk->stats.sleep_start, 1285 rq_clock(rq_of(cfs_rq))); 1286 if (state & TASK_UNINTERRUPTIBLE) 1287 __schedstat_set(tsk->stats.block_start, 1288 rq_clock(rq_of(cfs_rq))); 1289 } 1290 } 1291 1292 /* 1293 * We are picking a new current task - update its stats: 1294 */ 1295 static inline void 1296 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1297 { 1298 /* 1299 * We are starting a new run period: 1300 */ 1301 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1302 } 1303 1304 /************************************************** 1305 * Scheduling class queueing methods: 1306 */ 1307 1308 static inline bool is_core_idle(int cpu) 1309 { 1310 #ifdef CONFIG_SCHED_SMT 1311 int sibling; 1312 1313 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1314 if (cpu == sibling) 1315 continue; 1316 1317 if (!idle_cpu(sibling)) 1318 return false; 1319 } 1320 #endif 1321 1322 return true; 1323 } 1324 1325 #ifdef CONFIG_NUMA 1326 #define NUMA_IMBALANCE_MIN 2 1327 1328 static inline long 1329 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1330 { 1331 /* 1332 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1333 * threshold. Above this threshold, individual tasks may be contending 1334 * for both memory bandwidth and any shared HT resources. This is an 1335 * approximation as the number of running tasks may not be related to 1336 * the number of busy CPUs due to sched_setaffinity. 1337 */ 1338 if (dst_running > imb_numa_nr) 1339 return imbalance; 1340 1341 /* 1342 * Allow a small imbalance based on a simple pair of communicating 1343 * tasks that remain local when the destination is lightly loaded. 1344 */ 1345 if (imbalance <= NUMA_IMBALANCE_MIN) 1346 return 0; 1347 1348 return imbalance; 1349 } 1350 #endif /* CONFIG_NUMA */ 1351 1352 #ifdef CONFIG_NUMA_BALANCING 1353 /* 1354 * Approximate time to scan a full NUMA task in ms. The task scan period is 1355 * calculated based on the tasks virtual memory size and 1356 * numa_balancing_scan_size. 1357 */ 1358 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1359 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1360 1361 /* Portion of address space to scan in MB */ 1362 unsigned int sysctl_numa_balancing_scan_size = 256; 1363 1364 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1365 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1366 1367 /* The page with hint page fault latency < threshold in ms is considered hot */ 1368 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1369 1370 struct numa_group { 1371 refcount_t refcount; 1372 1373 spinlock_t lock; /* nr_tasks, tasks */ 1374 int nr_tasks; 1375 pid_t gid; 1376 int active_nodes; 1377 1378 struct rcu_head rcu; 1379 unsigned long total_faults; 1380 unsigned long max_faults_cpu; 1381 /* 1382 * faults[] array is split into two regions: faults_mem and faults_cpu. 1383 * 1384 * Faults_cpu is used to decide whether memory should move 1385 * towards the CPU. As a consequence, these stats are weighted 1386 * more by CPU use than by memory faults. 1387 */ 1388 unsigned long faults[]; 1389 }; 1390 1391 /* 1392 * For functions that can be called in multiple contexts that permit reading 1393 * ->numa_group (see struct task_struct for locking rules). 1394 */ 1395 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1396 { 1397 return rcu_dereference_check(p->numa_group, p == current || 1398 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1399 } 1400 1401 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1402 { 1403 return rcu_dereference_protected(p->numa_group, p == current); 1404 } 1405 1406 static inline unsigned long group_faults_priv(struct numa_group *ng); 1407 static inline unsigned long group_faults_shared(struct numa_group *ng); 1408 1409 static unsigned int task_nr_scan_windows(struct task_struct *p) 1410 { 1411 unsigned long rss = 0; 1412 unsigned long nr_scan_pages; 1413 1414 /* 1415 * Calculations based on RSS as non-present and empty pages are skipped 1416 * by the PTE scanner and NUMA hinting faults should be trapped based 1417 * on resident pages 1418 */ 1419 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1420 rss = get_mm_rss(p->mm); 1421 if (!rss) 1422 rss = nr_scan_pages; 1423 1424 rss = round_up(rss, nr_scan_pages); 1425 return rss / nr_scan_pages; 1426 } 1427 1428 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1429 #define MAX_SCAN_WINDOW 2560 1430 1431 static unsigned int task_scan_min(struct task_struct *p) 1432 { 1433 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1434 unsigned int scan, floor; 1435 unsigned int windows = 1; 1436 1437 if (scan_size < MAX_SCAN_WINDOW) 1438 windows = MAX_SCAN_WINDOW / scan_size; 1439 floor = 1000 / windows; 1440 1441 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1442 return max_t(unsigned int, floor, scan); 1443 } 1444 1445 static unsigned int task_scan_start(struct task_struct *p) 1446 { 1447 unsigned long smin = task_scan_min(p); 1448 unsigned long period = smin; 1449 struct numa_group *ng; 1450 1451 /* Scale the maximum scan period with the amount of shared memory. */ 1452 rcu_read_lock(); 1453 ng = rcu_dereference(p->numa_group); 1454 if (ng) { 1455 unsigned long shared = group_faults_shared(ng); 1456 unsigned long private = group_faults_priv(ng); 1457 1458 period *= refcount_read(&ng->refcount); 1459 period *= shared + 1; 1460 period /= private + shared + 1; 1461 } 1462 rcu_read_unlock(); 1463 1464 return max(smin, period); 1465 } 1466 1467 static unsigned int task_scan_max(struct task_struct *p) 1468 { 1469 unsigned long smin = task_scan_min(p); 1470 unsigned long smax; 1471 struct numa_group *ng; 1472 1473 /* Watch for min being lower than max due to floor calculations */ 1474 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1475 1476 /* Scale the maximum scan period with the amount of shared memory. */ 1477 ng = deref_curr_numa_group(p); 1478 if (ng) { 1479 unsigned long shared = group_faults_shared(ng); 1480 unsigned long private = group_faults_priv(ng); 1481 unsigned long period = smax; 1482 1483 period *= refcount_read(&ng->refcount); 1484 period *= shared + 1; 1485 period /= private + shared + 1; 1486 1487 smax = max(smax, period); 1488 } 1489 1490 return max(smin, smax); 1491 } 1492 1493 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1494 { 1495 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1496 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1497 } 1498 1499 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1500 { 1501 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1502 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1503 } 1504 1505 /* Shared or private faults. */ 1506 #define NR_NUMA_HINT_FAULT_TYPES 2 1507 1508 /* Memory and CPU locality */ 1509 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1510 1511 /* Averaged statistics, and temporary buffers. */ 1512 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1513 1514 pid_t task_numa_group_id(struct task_struct *p) 1515 { 1516 struct numa_group *ng; 1517 pid_t gid = 0; 1518 1519 rcu_read_lock(); 1520 ng = rcu_dereference(p->numa_group); 1521 if (ng) 1522 gid = ng->gid; 1523 rcu_read_unlock(); 1524 1525 return gid; 1526 } 1527 1528 /* 1529 * The averaged statistics, shared & private, memory & CPU, 1530 * occupy the first half of the array. The second half of the 1531 * array is for current counters, which are averaged into the 1532 * first set by task_numa_placement. 1533 */ 1534 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1535 { 1536 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1537 } 1538 1539 static inline unsigned long task_faults(struct task_struct *p, int nid) 1540 { 1541 if (!p->numa_faults) 1542 return 0; 1543 1544 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1545 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1546 } 1547 1548 static inline unsigned long group_faults(struct task_struct *p, int nid) 1549 { 1550 struct numa_group *ng = deref_task_numa_group(p); 1551 1552 if (!ng) 1553 return 0; 1554 1555 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1556 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1557 } 1558 1559 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1560 { 1561 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1562 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1563 } 1564 1565 static inline unsigned long group_faults_priv(struct numa_group *ng) 1566 { 1567 unsigned long faults = 0; 1568 int node; 1569 1570 for_each_online_node(node) { 1571 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1572 } 1573 1574 return faults; 1575 } 1576 1577 static inline unsigned long group_faults_shared(struct numa_group *ng) 1578 { 1579 unsigned long faults = 0; 1580 int node; 1581 1582 for_each_online_node(node) { 1583 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1584 } 1585 1586 return faults; 1587 } 1588 1589 /* 1590 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1591 * considered part of a numa group's pseudo-interleaving set. Migrations 1592 * between these nodes are slowed down, to allow things to settle down. 1593 */ 1594 #define ACTIVE_NODE_FRACTION 3 1595 1596 static bool numa_is_active_node(int nid, struct numa_group *ng) 1597 { 1598 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1599 } 1600 1601 /* Handle placement on systems where not all nodes are directly connected. */ 1602 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1603 int lim_dist, bool task) 1604 { 1605 unsigned long score = 0; 1606 int node, max_dist; 1607 1608 /* 1609 * All nodes are directly connected, and the same distance 1610 * from each other. No need for fancy placement algorithms. 1611 */ 1612 if (sched_numa_topology_type == NUMA_DIRECT) 1613 return 0; 1614 1615 /* sched_max_numa_distance may be changed in parallel. */ 1616 max_dist = READ_ONCE(sched_max_numa_distance); 1617 /* 1618 * This code is called for each node, introducing N^2 complexity, 1619 * which should be OK given the number of nodes rarely exceeds 8. 1620 */ 1621 for_each_online_node(node) { 1622 unsigned long faults; 1623 int dist = node_distance(nid, node); 1624 1625 /* 1626 * The furthest away nodes in the system are not interesting 1627 * for placement; nid was already counted. 1628 */ 1629 if (dist >= max_dist || node == nid) 1630 continue; 1631 1632 /* 1633 * On systems with a backplane NUMA topology, compare groups 1634 * of nodes, and move tasks towards the group with the most 1635 * memory accesses. When comparing two nodes at distance 1636 * "hoplimit", only nodes closer by than "hoplimit" are part 1637 * of each group. Skip other nodes. 1638 */ 1639 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1640 continue; 1641 1642 /* Add up the faults from nearby nodes. */ 1643 if (task) 1644 faults = task_faults(p, node); 1645 else 1646 faults = group_faults(p, node); 1647 1648 /* 1649 * On systems with a glueless mesh NUMA topology, there are 1650 * no fixed "groups of nodes". Instead, nodes that are not 1651 * directly connected bounce traffic through intermediate 1652 * nodes; a numa_group can occupy any set of nodes. 1653 * The further away a node is, the less the faults count. 1654 * This seems to result in good task placement. 1655 */ 1656 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1657 faults *= (max_dist - dist); 1658 faults /= (max_dist - LOCAL_DISTANCE); 1659 } 1660 1661 score += faults; 1662 } 1663 1664 return score; 1665 } 1666 1667 /* 1668 * These return the fraction of accesses done by a particular task, or 1669 * task group, on a particular numa node. The group weight is given a 1670 * larger multiplier, in order to group tasks together that are almost 1671 * evenly spread out between numa nodes. 1672 */ 1673 static inline unsigned long task_weight(struct task_struct *p, int nid, 1674 int dist) 1675 { 1676 unsigned long faults, total_faults; 1677 1678 if (!p->numa_faults) 1679 return 0; 1680 1681 total_faults = p->total_numa_faults; 1682 1683 if (!total_faults) 1684 return 0; 1685 1686 faults = task_faults(p, nid); 1687 faults += score_nearby_nodes(p, nid, dist, true); 1688 1689 return 1000 * faults / total_faults; 1690 } 1691 1692 static inline unsigned long group_weight(struct task_struct *p, int nid, 1693 int dist) 1694 { 1695 struct numa_group *ng = deref_task_numa_group(p); 1696 unsigned long faults, total_faults; 1697 1698 if (!ng) 1699 return 0; 1700 1701 total_faults = ng->total_faults; 1702 1703 if (!total_faults) 1704 return 0; 1705 1706 faults = group_faults(p, nid); 1707 faults += score_nearby_nodes(p, nid, dist, false); 1708 1709 return 1000 * faults / total_faults; 1710 } 1711 1712 /* 1713 * If memory tiering mode is enabled, cpupid of slow memory page is 1714 * used to record scan time instead of CPU and PID. When tiering mode 1715 * is disabled at run time, the scan time (in cpupid) will be 1716 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1717 * access out of array bound. 1718 */ 1719 static inline bool cpupid_valid(int cpupid) 1720 { 1721 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1722 } 1723 1724 /* 1725 * For memory tiering mode, if there are enough free pages (more than 1726 * enough watermark defined here) in fast memory node, to take full 1727 * advantage of fast memory capacity, all recently accessed slow 1728 * memory pages will be migrated to fast memory node without 1729 * considering hot threshold. 1730 */ 1731 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1732 { 1733 int z; 1734 unsigned long enough_wmark; 1735 1736 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1737 pgdat->node_present_pages >> 4); 1738 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1739 struct zone *zone = pgdat->node_zones + z; 1740 1741 if (!populated_zone(zone)) 1742 continue; 1743 1744 if (zone_watermark_ok(zone, 0, 1745 promo_wmark_pages(zone) + enough_wmark, 1746 ZONE_MOVABLE, 0)) 1747 return true; 1748 } 1749 return false; 1750 } 1751 1752 /* 1753 * For memory tiering mode, when page tables are scanned, the scan 1754 * time will be recorded in struct page in addition to make page 1755 * PROT_NONE for slow memory page. So when the page is accessed, in 1756 * hint page fault handler, the hint page fault latency is calculated 1757 * via, 1758 * 1759 * hint page fault latency = hint page fault time - scan time 1760 * 1761 * The smaller the hint page fault latency, the higher the possibility 1762 * for the page to be hot. 1763 */ 1764 static int numa_hint_fault_latency(struct folio *folio) 1765 { 1766 int last_time, time; 1767 1768 time = jiffies_to_msecs(jiffies); 1769 last_time = folio_xchg_access_time(folio, time); 1770 1771 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1772 } 1773 1774 /* 1775 * For memory tiering mode, too high promotion/demotion throughput may 1776 * hurt application latency. So we provide a mechanism to rate limit 1777 * the number of pages that are tried to be promoted. 1778 */ 1779 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1780 unsigned long rate_limit, int nr) 1781 { 1782 unsigned long nr_cand; 1783 unsigned int now, start; 1784 1785 now = jiffies_to_msecs(jiffies); 1786 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1787 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1788 start = pgdat->nbp_rl_start; 1789 if (now - start > MSEC_PER_SEC && 1790 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1791 pgdat->nbp_rl_nr_cand = nr_cand; 1792 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1793 return true; 1794 return false; 1795 } 1796 1797 #define NUMA_MIGRATION_ADJUST_STEPS 16 1798 1799 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1800 unsigned long rate_limit, 1801 unsigned int ref_th) 1802 { 1803 unsigned int now, start, th_period, unit_th, th; 1804 unsigned long nr_cand, ref_cand, diff_cand; 1805 1806 now = jiffies_to_msecs(jiffies); 1807 th_period = sysctl_numa_balancing_scan_period_max; 1808 start = pgdat->nbp_th_start; 1809 if (now - start > th_period && 1810 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1811 ref_cand = rate_limit * 1812 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1813 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1814 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1815 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1816 th = pgdat->nbp_threshold ? : ref_th; 1817 if (diff_cand > ref_cand * 11 / 10) 1818 th = max(th - unit_th, unit_th); 1819 else if (diff_cand < ref_cand * 9 / 10) 1820 th = min(th + unit_th, ref_th * 2); 1821 pgdat->nbp_th_nr_cand = nr_cand; 1822 pgdat->nbp_threshold = th; 1823 } 1824 } 1825 1826 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1827 int src_nid, int dst_cpu) 1828 { 1829 struct numa_group *ng = deref_curr_numa_group(p); 1830 int dst_nid = cpu_to_node(dst_cpu); 1831 int last_cpupid, this_cpupid; 1832 1833 /* 1834 * Cannot migrate to memoryless nodes. 1835 */ 1836 if (!node_state(dst_nid, N_MEMORY)) 1837 return false; 1838 1839 /* 1840 * The pages in slow memory node should be migrated according 1841 * to hot/cold instead of private/shared. 1842 */ 1843 if (folio_use_access_time(folio)) { 1844 struct pglist_data *pgdat; 1845 unsigned long rate_limit; 1846 unsigned int latency, th, def_th; 1847 1848 pgdat = NODE_DATA(dst_nid); 1849 if (pgdat_free_space_enough(pgdat)) { 1850 /* workload changed, reset hot threshold */ 1851 pgdat->nbp_threshold = 0; 1852 return true; 1853 } 1854 1855 def_th = sysctl_numa_balancing_hot_threshold; 1856 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1857 (20 - PAGE_SHIFT); 1858 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1859 1860 th = pgdat->nbp_threshold ? : def_th; 1861 latency = numa_hint_fault_latency(folio); 1862 if (latency >= th) 1863 return false; 1864 1865 return !numa_promotion_rate_limit(pgdat, rate_limit, 1866 folio_nr_pages(folio)); 1867 } 1868 1869 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1870 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1871 1872 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1873 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1874 return false; 1875 1876 /* 1877 * Allow first faults or private faults to migrate immediately early in 1878 * the lifetime of a task. The magic number 4 is based on waiting for 1879 * two full passes of the "multi-stage node selection" test that is 1880 * executed below. 1881 */ 1882 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1883 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1884 return true; 1885 1886 /* 1887 * Multi-stage node selection is used in conjunction with a periodic 1888 * migration fault to build a temporal task<->page relation. By using 1889 * a two-stage filter we remove short/unlikely relations. 1890 * 1891 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1892 * a task's usage of a particular page (n_p) per total usage of this 1893 * page (n_t) (in a given time-span) to a probability. 1894 * 1895 * Our periodic faults will sample this probability and getting the 1896 * same result twice in a row, given these samples are fully 1897 * independent, is then given by P(n)^2, provided our sample period 1898 * is sufficiently short compared to the usage pattern. 1899 * 1900 * This quadric squishes small probabilities, making it less likely we 1901 * act on an unlikely task<->page relation. 1902 */ 1903 if (!cpupid_pid_unset(last_cpupid) && 1904 cpupid_to_nid(last_cpupid) != dst_nid) 1905 return false; 1906 1907 /* Always allow migrate on private faults */ 1908 if (cpupid_match_pid(p, last_cpupid)) 1909 return true; 1910 1911 /* A shared fault, but p->numa_group has not been set up yet. */ 1912 if (!ng) 1913 return true; 1914 1915 /* 1916 * Destination node is much more heavily used than the source 1917 * node? Allow migration. 1918 */ 1919 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1920 ACTIVE_NODE_FRACTION) 1921 return true; 1922 1923 /* 1924 * Distribute memory according to CPU & memory use on each node, 1925 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1926 * 1927 * faults_cpu(dst) 3 faults_cpu(src) 1928 * --------------- * - > --------------- 1929 * faults_mem(dst) 4 faults_mem(src) 1930 */ 1931 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1932 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1933 } 1934 1935 /* 1936 * 'numa_type' describes the node at the moment of load balancing. 1937 */ 1938 enum numa_type { 1939 /* The node has spare capacity that can be used to run more tasks. */ 1940 node_has_spare = 0, 1941 /* 1942 * The node is fully used and the tasks don't compete for more CPU 1943 * cycles. Nevertheless, some tasks might wait before running. 1944 */ 1945 node_fully_busy, 1946 /* 1947 * The node is overloaded and can't provide expected CPU cycles to all 1948 * tasks. 1949 */ 1950 node_overloaded 1951 }; 1952 1953 /* Cached statistics for all CPUs within a node */ 1954 struct numa_stats { 1955 unsigned long load; 1956 unsigned long runnable; 1957 unsigned long util; 1958 /* Total compute capacity of CPUs on a node */ 1959 unsigned long compute_capacity; 1960 unsigned int nr_running; 1961 unsigned int weight; 1962 enum numa_type node_type; 1963 int idle_cpu; 1964 }; 1965 1966 struct task_numa_env { 1967 struct task_struct *p; 1968 1969 int src_cpu, src_nid; 1970 int dst_cpu, dst_nid; 1971 int imb_numa_nr; 1972 1973 struct numa_stats src_stats, dst_stats; 1974 1975 int imbalance_pct; 1976 int dist; 1977 1978 struct task_struct *best_task; 1979 long best_imp; 1980 int best_cpu; 1981 }; 1982 1983 static unsigned long cpu_load(struct rq *rq); 1984 static unsigned long cpu_runnable(struct rq *rq); 1985 1986 static inline enum 1987 numa_type numa_classify(unsigned int imbalance_pct, 1988 struct numa_stats *ns) 1989 { 1990 if ((ns->nr_running > ns->weight) && 1991 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1992 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1993 return node_overloaded; 1994 1995 if ((ns->nr_running < ns->weight) || 1996 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1997 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1998 return node_has_spare; 1999 2000 return node_fully_busy; 2001 } 2002 2003 #ifdef CONFIG_SCHED_SMT 2004 /* Forward declarations of select_idle_sibling helpers */ 2005 static inline bool test_idle_cores(int cpu); 2006 static inline int numa_idle_core(int idle_core, int cpu) 2007 { 2008 if (!static_branch_likely(&sched_smt_present) || 2009 idle_core >= 0 || !test_idle_cores(cpu)) 2010 return idle_core; 2011 2012 /* 2013 * Prefer cores instead of packing HT siblings 2014 * and triggering future load balancing. 2015 */ 2016 if (is_core_idle(cpu)) 2017 idle_core = cpu; 2018 2019 return idle_core; 2020 } 2021 #else 2022 static inline int numa_idle_core(int idle_core, int cpu) 2023 { 2024 return idle_core; 2025 } 2026 #endif 2027 2028 /* 2029 * Gather all necessary information to make NUMA balancing placement 2030 * decisions that are compatible with standard load balancer. This 2031 * borrows code and logic from update_sg_lb_stats but sharing a 2032 * common implementation is impractical. 2033 */ 2034 static void update_numa_stats(struct task_numa_env *env, 2035 struct numa_stats *ns, int nid, 2036 bool find_idle) 2037 { 2038 int cpu, idle_core = -1; 2039 2040 memset(ns, 0, sizeof(*ns)); 2041 ns->idle_cpu = -1; 2042 2043 rcu_read_lock(); 2044 for_each_cpu(cpu, cpumask_of_node(nid)) { 2045 struct rq *rq = cpu_rq(cpu); 2046 2047 ns->load += cpu_load(rq); 2048 ns->runnable += cpu_runnable(rq); 2049 ns->util += cpu_util_cfs(cpu); 2050 ns->nr_running += rq->cfs.h_nr_running; 2051 ns->compute_capacity += capacity_of(cpu); 2052 2053 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2054 if (READ_ONCE(rq->numa_migrate_on) || 2055 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2056 continue; 2057 2058 if (ns->idle_cpu == -1) 2059 ns->idle_cpu = cpu; 2060 2061 idle_core = numa_idle_core(idle_core, cpu); 2062 } 2063 } 2064 rcu_read_unlock(); 2065 2066 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2067 2068 ns->node_type = numa_classify(env->imbalance_pct, ns); 2069 2070 if (idle_core >= 0) 2071 ns->idle_cpu = idle_core; 2072 } 2073 2074 static void task_numa_assign(struct task_numa_env *env, 2075 struct task_struct *p, long imp) 2076 { 2077 struct rq *rq = cpu_rq(env->dst_cpu); 2078 2079 /* Check if run-queue part of active NUMA balance. */ 2080 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2081 int cpu; 2082 int start = env->dst_cpu; 2083 2084 /* Find alternative idle CPU. */ 2085 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2086 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2087 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2088 continue; 2089 } 2090 2091 env->dst_cpu = cpu; 2092 rq = cpu_rq(env->dst_cpu); 2093 if (!xchg(&rq->numa_migrate_on, 1)) 2094 goto assign; 2095 } 2096 2097 /* Failed to find an alternative idle CPU */ 2098 return; 2099 } 2100 2101 assign: 2102 /* 2103 * Clear previous best_cpu/rq numa-migrate flag, since task now 2104 * found a better CPU to move/swap. 2105 */ 2106 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2107 rq = cpu_rq(env->best_cpu); 2108 WRITE_ONCE(rq->numa_migrate_on, 0); 2109 } 2110 2111 if (env->best_task) 2112 put_task_struct(env->best_task); 2113 if (p) 2114 get_task_struct(p); 2115 2116 env->best_task = p; 2117 env->best_imp = imp; 2118 env->best_cpu = env->dst_cpu; 2119 } 2120 2121 static bool load_too_imbalanced(long src_load, long dst_load, 2122 struct task_numa_env *env) 2123 { 2124 long imb, old_imb; 2125 long orig_src_load, orig_dst_load; 2126 long src_capacity, dst_capacity; 2127 2128 /* 2129 * The load is corrected for the CPU capacity available on each node. 2130 * 2131 * src_load dst_load 2132 * ------------ vs --------- 2133 * src_capacity dst_capacity 2134 */ 2135 src_capacity = env->src_stats.compute_capacity; 2136 dst_capacity = env->dst_stats.compute_capacity; 2137 2138 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2139 2140 orig_src_load = env->src_stats.load; 2141 orig_dst_load = env->dst_stats.load; 2142 2143 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2144 2145 /* Would this change make things worse? */ 2146 return (imb > old_imb); 2147 } 2148 2149 /* 2150 * Maximum NUMA importance can be 1998 (2*999); 2151 * SMALLIMP @ 30 would be close to 1998/64. 2152 * Used to deter task migration. 2153 */ 2154 #define SMALLIMP 30 2155 2156 /* 2157 * This checks if the overall compute and NUMA accesses of the system would 2158 * be improved if the source tasks was migrated to the target dst_cpu taking 2159 * into account that it might be best if task running on the dst_cpu should 2160 * be exchanged with the source task 2161 */ 2162 static bool task_numa_compare(struct task_numa_env *env, 2163 long taskimp, long groupimp, bool maymove) 2164 { 2165 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2166 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2167 long imp = p_ng ? groupimp : taskimp; 2168 struct task_struct *cur; 2169 long src_load, dst_load; 2170 int dist = env->dist; 2171 long moveimp = imp; 2172 long load; 2173 bool stopsearch = false; 2174 2175 if (READ_ONCE(dst_rq->numa_migrate_on)) 2176 return false; 2177 2178 rcu_read_lock(); 2179 cur = rcu_dereference(dst_rq->curr); 2180 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2181 cur = NULL; 2182 2183 /* 2184 * Because we have preemption enabled we can get migrated around and 2185 * end try selecting ourselves (current == env->p) as a swap candidate. 2186 */ 2187 if (cur == env->p) { 2188 stopsearch = true; 2189 goto unlock; 2190 } 2191 2192 if (!cur) { 2193 if (maymove && moveimp >= env->best_imp) 2194 goto assign; 2195 else 2196 goto unlock; 2197 } 2198 2199 /* Skip this swap candidate if cannot move to the source cpu. */ 2200 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2201 goto unlock; 2202 2203 /* 2204 * Skip this swap candidate if it is not moving to its preferred 2205 * node and the best task is. 2206 */ 2207 if (env->best_task && 2208 env->best_task->numa_preferred_nid == env->src_nid && 2209 cur->numa_preferred_nid != env->src_nid) { 2210 goto unlock; 2211 } 2212 2213 /* 2214 * "imp" is the fault differential for the source task between the 2215 * source and destination node. Calculate the total differential for 2216 * the source task and potential destination task. The more negative 2217 * the value is, the more remote accesses that would be expected to 2218 * be incurred if the tasks were swapped. 2219 * 2220 * If dst and source tasks are in the same NUMA group, or not 2221 * in any group then look only at task weights. 2222 */ 2223 cur_ng = rcu_dereference(cur->numa_group); 2224 if (cur_ng == p_ng) { 2225 /* 2226 * Do not swap within a group or between tasks that have 2227 * no group if there is spare capacity. Swapping does 2228 * not address the load imbalance and helps one task at 2229 * the cost of punishing another. 2230 */ 2231 if (env->dst_stats.node_type == node_has_spare) 2232 goto unlock; 2233 2234 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2235 task_weight(cur, env->dst_nid, dist); 2236 /* 2237 * Add some hysteresis to prevent swapping the 2238 * tasks within a group over tiny differences. 2239 */ 2240 if (cur_ng) 2241 imp -= imp / 16; 2242 } else { 2243 /* 2244 * Compare the group weights. If a task is all by itself 2245 * (not part of a group), use the task weight instead. 2246 */ 2247 if (cur_ng && p_ng) 2248 imp += group_weight(cur, env->src_nid, dist) - 2249 group_weight(cur, env->dst_nid, dist); 2250 else 2251 imp += task_weight(cur, env->src_nid, dist) - 2252 task_weight(cur, env->dst_nid, dist); 2253 } 2254 2255 /* Discourage picking a task already on its preferred node */ 2256 if (cur->numa_preferred_nid == env->dst_nid) 2257 imp -= imp / 16; 2258 2259 /* 2260 * Encourage picking a task that moves to its preferred node. 2261 * This potentially makes imp larger than it's maximum of 2262 * 1998 (see SMALLIMP and task_weight for why) but in this 2263 * case, it does not matter. 2264 */ 2265 if (cur->numa_preferred_nid == env->src_nid) 2266 imp += imp / 8; 2267 2268 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2269 imp = moveimp; 2270 cur = NULL; 2271 goto assign; 2272 } 2273 2274 /* 2275 * Prefer swapping with a task moving to its preferred node over a 2276 * task that is not. 2277 */ 2278 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2279 env->best_task->numa_preferred_nid != env->src_nid) { 2280 goto assign; 2281 } 2282 2283 /* 2284 * If the NUMA importance is less than SMALLIMP, 2285 * task migration might only result in ping pong 2286 * of tasks and also hurt performance due to cache 2287 * misses. 2288 */ 2289 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2290 goto unlock; 2291 2292 /* 2293 * In the overloaded case, try and keep the load balanced. 2294 */ 2295 load = task_h_load(env->p) - task_h_load(cur); 2296 if (!load) 2297 goto assign; 2298 2299 dst_load = env->dst_stats.load + load; 2300 src_load = env->src_stats.load - load; 2301 2302 if (load_too_imbalanced(src_load, dst_load, env)) 2303 goto unlock; 2304 2305 assign: 2306 /* Evaluate an idle CPU for a task numa move. */ 2307 if (!cur) { 2308 int cpu = env->dst_stats.idle_cpu; 2309 2310 /* Nothing cached so current CPU went idle since the search. */ 2311 if (cpu < 0) 2312 cpu = env->dst_cpu; 2313 2314 /* 2315 * If the CPU is no longer truly idle and the previous best CPU 2316 * is, keep using it. 2317 */ 2318 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2319 idle_cpu(env->best_cpu)) { 2320 cpu = env->best_cpu; 2321 } 2322 2323 env->dst_cpu = cpu; 2324 } 2325 2326 task_numa_assign(env, cur, imp); 2327 2328 /* 2329 * If a move to idle is allowed because there is capacity or load 2330 * balance improves then stop the search. While a better swap 2331 * candidate may exist, a search is not free. 2332 */ 2333 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2334 stopsearch = true; 2335 2336 /* 2337 * If a swap candidate must be identified and the current best task 2338 * moves its preferred node then stop the search. 2339 */ 2340 if (!maymove && env->best_task && 2341 env->best_task->numa_preferred_nid == env->src_nid) { 2342 stopsearch = true; 2343 } 2344 unlock: 2345 rcu_read_unlock(); 2346 2347 return stopsearch; 2348 } 2349 2350 static void task_numa_find_cpu(struct task_numa_env *env, 2351 long taskimp, long groupimp) 2352 { 2353 bool maymove = false; 2354 int cpu; 2355 2356 /* 2357 * If dst node has spare capacity, then check if there is an 2358 * imbalance that would be overruled by the load balancer. 2359 */ 2360 if (env->dst_stats.node_type == node_has_spare) { 2361 unsigned int imbalance; 2362 int src_running, dst_running; 2363 2364 /* 2365 * Would movement cause an imbalance? Note that if src has 2366 * more running tasks that the imbalance is ignored as the 2367 * move improves the imbalance from the perspective of the 2368 * CPU load balancer. 2369 * */ 2370 src_running = env->src_stats.nr_running - 1; 2371 dst_running = env->dst_stats.nr_running + 1; 2372 imbalance = max(0, dst_running - src_running); 2373 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2374 env->imb_numa_nr); 2375 2376 /* Use idle CPU if there is no imbalance */ 2377 if (!imbalance) { 2378 maymove = true; 2379 if (env->dst_stats.idle_cpu >= 0) { 2380 env->dst_cpu = env->dst_stats.idle_cpu; 2381 task_numa_assign(env, NULL, 0); 2382 return; 2383 } 2384 } 2385 } else { 2386 long src_load, dst_load, load; 2387 /* 2388 * If the improvement from just moving env->p direction is better 2389 * than swapping tasks around, check if a move is possible. 2390 */ 2391 load = task_h_load(env->p); 2392 dst_load = env->dst_stats.load + load; 2393 src_load = env->src_stats.load - load; 2394 maymove = !load_too_imbalanced(src_load, dst_load, env); 2395 } 2396 2397 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2398 /* Skip this CPU if the source task cannot migrate */ 2399 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2400 continue; 2401 2402 env->dst_cpu = cpu; 2403 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2404 break; 2405 } 2406 } 2407 2408 static int task_numa_migrate(struct task_struct *p) 2409 { 2410 struct task_numa_env env = { 2411 .p = p, 2412 2413 .src_cpu = task_cpu(p), 2414 .src_nid = task_node(p), 2415 2416 .imbalance_pct = 112, 2417 2418 .best_task = NULL, 2419 .best_imp = 0, 2420 .best_cpu = -1, 2421 }; 2422 unsigned long taskweight, groupweight; 2423 struct sched_domain *sd; 2424 long taskimp, groupimp; 2425 struct numa_group *ng; 2426 struct rq *best_rq; 2427 int nid, ret, dist; 2428 2429 /* 2430 * Pick the lowest SD_NUMA domain, as that would have the smallest 2431 * imbalance and would be the first to start moving tasks about. 2432 * 2433 * And we want to avoid any moving of tasks about, as that would create 2434 * random movement of tasks -- counter the numa conditions we're trying 2435 * to satisfy here. 2436 */ 2437 rcu_read_lock(); 2438 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2439 if (sd) { 2440 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2441 env.imb_numa_nr = sd->imb_numa_nr; 2442 } 2443 rcu_read_unlock(); 2444 2445 /* 2446 * Cpusets can break the scheduler domain tree into smaller 2447 * balance domains, some of which do not cross NUMA boundaries. 2448 * Tasks that are "trapped" in such domains cannot be migrated 2449 * elsewhere, so there is no point in (re)trying. 2450 */ 2451 if (unlikely(!sd)) { 2452 sched_setnuma(p, task_node(p)); 2453 return -EINVAL; 2454 } 2455 2456 env.dst_nid = p->numa_preferred_nid; 2457 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2458 taskweight = task_weight(p, env.src_nid, dist); 2459 groupweight = group_weight(p, env.src_nid, dist); 2460 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2461 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2462 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2463 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2464 2465 /* Try to find a spot on the preferred nid. */ 2466 task_numa_find_cpu(&env, taskimp, groupimp); 2467 2468 /* 2469 * Look at other nodes in these cases: 2470 * - there is no space available on the preferred_nid 2471 * - the task is part of a numa_group that is interleaved across 2472 * multiple NUMA nodes; in order to better consolidate the group, 2473 * we need to check other locations. 2474 */ 2475 ng = deref_curr_numa_group(p); 2476 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2477 for_each_node_state(nid, N_CPU) { 2478 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2479 continue; 2480 2481 dist = node_distance(env.src_nid, env.dst_nid); 2482 if (sched_numa_topology_type == NUMA_BACKPLANE && 2483 dist != env.dist) { 2484 taskweight = task_weight(p, env.src_nid, dist); 2485 groupweight = group_weight(p, env.src_nid, dist); 2486 } 2487 2488 /* Only consider nodes where both task and groups benefit */ 2489 taskimp = task_weight(p, nid, dist) - taskweight; 2490 groupimp = group_weight(p, nid, dist) - groupweight; 2491 if (taskimp < 0 && groupimp < 0) 2492 continue; 2493 2494 env.dist = dist; 2495 env.dst_nid = nid; 2496 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2497 task_numa_find_cpu(&env, taskimp, groupimp); 2498 } 2499 } 2500 2501 /* 2502 * If the task is part of a workload that spans multiple NUMA nodes, 2503 * and is migrating into one of the workload's active nodes, remember 2504 * this node as the task's preferred numa node, so the workload can 2505 * settle down. 2506 * A task that migrated to a second choice node will be better off 2507 * trying for a better one later. Do not set the preferred node here. 2508 */ 2509 if (ng) { 2510 if (env.best_cpu == -1) 2511 nid = env.src_nid; 2512 else 2513 nid = cpu_to_node(env.best_cpu); 2514 2515 if (nid != p->numa_preferred_nid) 2516 sched_setnuma(p, nid); 2517 } 2518 2519 /* No better CPU than the current one was found. */ 2520 if (env.best_cpu == -1) { 2521 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2522 return -EAGAIN; 2523 } 2524 2525 best_rq = cpu_rq(env.best_cpu); 2526 if (env.best_task == NULL) { 2527 ret = migrate_task_to(p, env.best_cpu); 2528 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2529 if (ret != 0) 2530 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2531 return ret; 2532 } 2533 2534 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2535 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2536 2537 if (ret != 0) 2538 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2539 put_task_struct(env.best_task); 2540 return ret; 2541 } 2542 2543 /* Attempt to migrate a task to a CPU on the preferred node. */ 2544 static void numa_migrate_preferred(struct task_struct *p) 2545 { 2546 unsigned long interval = HZ; 2547 2548 /* This task has no NUMA fault statistics yet */ 2549 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2550 return; 2551 2552 /* Periodically retry migrating the task to the preferred node */ 2553 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2554 p->numa_migrate_retry = jiffies + interval; 2555 2556 /* Success if task is already running on preferred CPU */ 2557 if (task_node(p) == p->numa_preferred_nid) 2558 return; 2559 2560 /* Otherwise, try migrate to a CPU on the preferred node */ 2561 task_numa_migrate(p); 2562 } 2563 2564 /* 2565 * Find out how many nodes the workload is actively running on. Do this by 2566 * tracking the nodes from which NUMA hinting faults are triggered. This can 2567 * be different from the set of nodes where the workload's memory is currently 2568 * located. 2569 */ 2570 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2571 { 2572 unsigned long faults, max_faults = 0; 2573 int nid, active_nodes = 0; 2574 2575 for_each_node_state(nid, N_CPU) { 2576 faults = group_faults_cpu(numa_group, nid); 2577 if (faults > max_faults) 2578 max_faults = faults; 2579 } 2580 2581 for_each_node_state(nid, N_CPU) { 2582 faults = group_faults_cpu(numa_group, nid); 2583 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2584 active_nodes++; 2585 } 2586 2587 numa_group->max_faults_cpu = max_faults; 2588 numa_group->active_nodes = active_nodes; 2589 } 2590 2591 /* 2592 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2593 * increments. The more local the fault statistics are, the higher the scan 2594 * period will be for the next scan window. If local/(local+remote) ratio is 2595 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2596 * the scan period will decrease. Aim for 70% local accesses. 2597 */ 2598 #define NUMA_PERIOD_SLOTS 10 2599 #define NUMA_PERIOD_THRESHOLD 7 2600 2601 /* 2602 * Increase the scan period (slow down scanning) if the majority of 2603 * our memory is already on our local node, or if the majority of 2604 * the page accesses are shared with other processes. 2605 * Otherwise, decrease the scan period. 2606 */ 2607 static void update_task_scan_period(struct task_struct *p, 2608 unsigned long shared, unsigned long private) 2609 { 2610 unsigned int period_slot; 2611 int lr_ratio, ps_ratio; 2612 int diff; 2613 2614 unsigned long remote = p->numa_faults_locality[0]; 2615 unsigned long local = p->numa_faults_locality[1]; 2616 2617 /* 2618 * If there were no record hinting faults then either the task is 2619 * completely idle or all activity is in areas that are not of interest 2620 * to automatic numa balancing. Related to that, if there were failed 2621 * migration then it implies we are migrating too quickly or the local 2622 * node is overloaded. In either case, scan slower 2623 */ 2624 if (local + shared == 0 || p->numa_faults_locality[2]) { 2625 p->numa_scan_period = min(p->numa_scan_period_max, 2626 p->numa_scan_period << 1); 2627 2628 p->mm->numa_next_scan = jiffies + 2629 msecs_to_jiffies(p->numa_scan_period); 2630 2631 return; 2632 } 2633 2634 /* 2635 * Prepare to scale scan period relative to the current period. 2636 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2637 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2638 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2639 */ 2640 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2641 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2642 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2643 2644 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2645 /* 2646 * Most memory accesses are local. There is no need to 2647 * do fast NUMA scanning, since memory is already local. 2648 */ 2649 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2650 if (!slot) 2651 slot = 1; 2652 diff = slot * period_slot; 2653 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2654 /* 2655 * Most memory accesses are shared with other tasks. 2656 * There is no point in continuing fast NUMA scanning, 2657 * since other tasks may just move the memory elsewhere. 2658 */ 2659 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2660 if (!slot) 2661 slot = 1; 2662 diff = slot * period_slot; 2663 } else { 2664 /* 2665 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2666 * yet they are not on the local NUMA node. Speed up 2667 * NUMA scanning to get the memory moved over. 2668 */ 2669 int ratio = max(lr_ratio, ps_ratio); 2670 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2671 } 2672 2673 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2674 task_scan_min(p), task_scan_max(p)); 2675 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2676 } 2677 2678 /* 2679 * Get the fraction of time the task has been running since the last 2680 * NUMA placement cycle. The scheduler keeps similar statistics, but 2681 * decays those on a 32ms period, which is orders of magnitude off 2682 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2683 * stats only if the task is so new there are no NUMA statistics yet. 2684 */ 2685 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2686 { 2687 u64 runtime, delta, now; 2688 /* Use the start of this time slice to avoid calculations. */ 2689 now = p->se.exec_start; 2690 runtime = p->se.sum_exec_runtime; 2691 2692 if (p->last_task_numa_placement) { 2693 delta = runtime - p->last_sum_exec_runtime; 2694 *period = now - p->last_task_numa_placement; 2695 2696 /* Avoid time going backwards, prevent potential divide error: */ 2697 if (unlikely((s64)*period < 0)) 2698 *period = 0; 2699 } else { 2700 delta = p->se.avg.load_sum; 2701 *period = LOAD_AVG_MAX; 2702 } 2703 2704 p->last_sum_exec_runtime = runtime; 2705 p->last_task_numa_placement = now; 2706 2707 return delta; 2708 } 2709 2710 /* 2711 * Determine the preferred nid for a task in a numa_group. This needs to 2712 * be done in a way that produces consistent results with group_weight, 2713 * otherwise workloads might not converge. 2714 */ 2715 static int preferred_group_nid(struct task_struct *p, int nid) 2716 { 2717 nodemask_t nodes; 2718 int dist; 2719 2720 /* Direct connections between all NUMA nodes. */ 2721 if (sched_numa_topology_type == NUMA_DIRECT) 2722 return nid; 2723 2724 /* 2725 * On a system with glueless mesh NUMA topology, group_weight 2726 * scores nodes according to the number of NUMA hinting faults on 2727 * both the node itself, and on nearby nodes. 2728 */ 2729 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2730 unsigned long score, max_score = 0; 2731 int node, max_node = nid; 2732 2733 dist = sched_max_numa_distance; 2734 2735 for_each_node_state(node, N_CPU) { 2736 score = group_weight(p, node, dist); 2737 if (score > max_score) { 2738 max_score = score; 2739 max_node = node; 2740 } 2741 } 2742 return max_node; 2743 } 2744 2745 /* 2746 * Finding the preferred nid in a system with NUMA backplane 2747 * interconnect topology is more involved. The goal is to locate 2748 * tasks from numa_groups near each other in the system, and 2749 * untangle workloads from different sides of the system. This requires 2750 * searching down the hierarchy of node groups, recursively searching 2751 * inside the highest scoring group of nodes. The nodemask tricks 2752 * keep the complexity of the search down. 2753 */ 2754 nodes = node_states[N_CPU]; 2755 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2756 unsigned long max_faults = 0; 2757 nodemask_t max_group = NODE_MASK_NONE; 2758 int a, b; 2759 2760 /* Are there nodes at this distance from each other? */ 2761 if (!find_numa_distance(dist)) 2762 continue; 2763 2764 for_each_node_mask(a, nodes) { 2765 unsigned long faults = 0; 2766 nodemask_t this_group; 2767 nodes_clear(this_group); 2768 2769 /* Sum group's NUMA faults; includes a==b case. */ 2770 for_each_node_mask(b, nodes) { 2771 if (node_distance(a, b) < dist) { 2772 faults += group_faults(p, b); 2773 node_set(b, this_group); 2774 node_clear(b, nodes); 2775 } 2776 } 2777 2778 /* Remember the top group. */ 2779 if (faults > max_faults) { 2780 max_faults = faults; 2781 max_group = this_group; 2782 /* 2783 * subtle: at the smallest distance there is 2784 * just one node left in each "group", the 2785 * winner is the preferred nid. 2786 */ 2787 nid = a; 2788 } 2789 } 2790 /* Next round, evaluate the nodes within max_group. */ 2791 if (!max_faults) 2792 break; 2793 nodes = max_group; 2794 } 2795 return nid; 2796 } 2797 2798 static void task_numa_placement(struct task_struct *p) 2799 { 2800 int seq, nid, max_nid = NUMA_NO_NODE; 2801 unsigned long max_faults = 0; 2802 unsigned long fault_types[2] = { 0, 0 }; 2803 unsigned long total_faults; 2804 u64 runtime, period; 2805 spinlock_t *group_lock = NULL; 2806 struct numa_group *ng; 2807 2808 /* 2809 * The p->mm->numa_scan_seq field gets updated without 2810 * exclusive access. Use READ_ONCE() here to ensure 2811 * that the field is read in a single access: 2812 */ 2813 seq = READ_ONCE(p->mm->numa_scan_seq); 2814 if (p->numa_scan_seq == seq) 2815 return; 2816 p->numa_scan_seq = seq; 2817 p->numa_scan_period_max = task_scan_max(p); 2818 2819 total_faults = p->numa_faults_locality[0] + 2820 p->numa_faults_locality[1]; 2821 runtime = numa_get_avg_runtime(p, &period); 2822 2823 /* If the task is part of a group prevent parallel updates to group stats */ 2824 ng = deref_curr_numa_group(p); 2825 if (ng) { 2826 group_lock = &ng->lock; 2827 spin_lock_irq(group_lock); 2828 } 2829 2830 /* Find the node with the highest number of faults */ 2831 for_each_online_node(nid) { 2832 /* Keep track of the offsets in numa_faults array */ 2833 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2834 unsigned long faults = 0, group_faults = 0; 2835 int priv; 2836 2837 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2838 long diff, f_diff, f_weight; 2839 2840 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2841 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2842 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2843 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2844 2845 /* Decay existing window, copy faults since last scan */ 2846 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2847 fault_types[priv] += p->numa_faults[membuf_idx]; 2848 p->numa_faults[membuf_idx] = 0; 2849 2850 /* 2851 * Normalize the faults_from, so all tasks in a group 2852 * count according to CPU use, instead of by the raw 2853 * number of faults. Tasks with little runtime have 2854 * little over-all impact on throughput, and thus their 2855 * faults are less important. 2856 */ 2857 f_weight = div64_u64(runtime << 16, period + 1); 2858 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2859 (total_faults + 1); 2860 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2861 p->numa_faults[cpubuf_idx] = 0; 2862 2863 p->numa_faults[mem_idx] += diff; 2864 p->numa_faults[cpu_idx] += f_diff; 2865 faults += p->numa_faults[mem_idx]; 2866 p->total_numa_faults += diff; 2867 if (ng) { 2868 /* 2869 * safe because we can only change our own group 2870 * 2871 * mem_idx represents the offset for a given 2872 * nid and priv in a specific region because it 2873 * is at the beginning of the numa_faults array. 2874 */ 2875 ng->faults[mem_idx] += diff; 2876 ng->faults[cpu_idx] += f_diff; 2877 ng->total_faults += diff; 2878 group_faults += ng->faults[mem_idx]; 2879 } 2880 } 2881 2882 if (!ng) { 2883 if (faults > max_faults) { 2884 max_faults = faults; 2885 max_nid = nid; 2886 } 2887 } else if (group_faults > max_faults) { 2888 max_faults = group_faults; 2889 max_nid = nid; 2890 } 2891 } 2892 2893 /* Cannot migrate task to CPU-less node */ 2894 max_nid = numa_nearest_node(max_nid, N_CPU); 2895 2896 if (ng) { 2897 numa_group_count_active_nodes(ng); 2898 spin_unlock_irq(group_lock); 2899 max_nid = preferred_group_nid(p, max_nid); 2900 } 2901 2902 if (max_faults) { 2903 /* Set the new preferred node */ 2904 if (max_nid != p->numa_preferred_nid) 2905 sched_setnuma(p, max_nid); 2906 } 2907 2908 update_task_scan_period(p, fault_types[0], fault_types[1]); 2909 } 2910 2911 static inline int get_numa_group(struct numa_group *grp) 2912 { 2913 return refcount_inc_not_zero(&grp->refcount); 2914 } 2915 2916 static inline void put_numa_group(struct numa_group *grp) 2917 { 2918 if (refcount_dec_and_test(&grp->refcount)) 2919 kfree_rcu(grp, rcu); 2920 } 2921 2922 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2923 int *priv) 2924 { 2925 struct numa_group *grp, *my_grp; 2926 struct task_struct *tsk; 2927 bool join = false; 2928 int cpu = cpupid_to_cpu(cpupid); 2929 int i; 2930 2931 if (unlikely(!deref_curr_numa_group(p))) { 2932 unsigned int size = sizeof(struct numa_group) + 2933 NR_NUMA_HINT_FAULT_STATS * 2934 nr_node_ids * sizeof(unsigned long); 2935 2936 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2937 if (!grp) 2938 return; 2939 2940 refcount_set(&grp->refcount, 1); 2941 grp->active_nodes = 1; 2942 grp->max_faults_cpu = 0; 2943 spin_lock_init(&grp->lock); 2944 grp->gid = p->pid; 2945 2946 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2947 grp->faults[i] = p->numa_faults[i]; 2948 2949 grp->total_faults = p->total_numa_faults; 2950 2951 grp->nr_tasks++; 2952 rcu_assign_pointer(p->numa_group, grp); 2953 } 2954 2955 rcu_read_lock(); 2956 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2957 2958 if (!cpupid_match_pid(tsk, cpupid)) 2959 goto no_join; 2960 2961 grp = rcu_dereference(tsk->numa_group); 2962 if (!grp) 2963 goto no_join; 2964 2965 my_grp = deref_curr_numa_group(p); 2966 if (grp == my_grp) 2967 goto no_join; 2968 2969 /* 2970 * Only join the other group if its bigger; if we're the bigger group, 2971 * the other task will join us. 2972 */ 2973 if (my_grp->nr_tasks > grp->nr_tasks) 2974 goto no_join; 2975 2976 /* 2977 * Tie-break on the grp address. 2978 */ 2979 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2980 goto no_join; 2981 2982 /* Always join threads in the same process. */ 2983 if (tsk->mm == current->mm) 2984 join = true; 2985 2986 /* Simple filter to avoid false positives due to PID collisions */ 2987 if (flags & TNF_SHARED) 2988 join = true; 2989 2990 /* Update priv based on whether false sharing was detected */ 2991 *priv = !join; 2992 2993 if (join && !get_numa_group(grp)) 2994 goto no_join; 2995 2996 rcu_read_unlock(); 2997 2998 if (!join) 2999 return; 3000 3001 WARN_ON_ONCE(irqs_disabled()); 3002 double_lock_irq(&my_grp->lock, &grp->lock); 3003 3004 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3005 my_grp->faults[i] -= p->numa_faults[i]; 3006 grp->faults[i] += p->numa_faults[i]; 3007 } 3008 my_grp->total_faults -= p->total_numa_faults; 3009 grp->total_faults += p->total_numa_faults; 3010 3011 my_grp->nr_tasks--; 3012 grp->nr_tasks++; 3013 3014 spin_unlock(&my_grp->lock); 3015 spin_unlock_irq(&grp->lock); 3016 3017 rcu_assign_pointer(p->numa_group, grp); 3018 3019 put_numa_group(my_grp); 3020 return; 3021 3022 no_join: 3023 rcu_read_unlock(); 3024 return; 3025 } 3026 3027 /* 3028 * Get rid of NUMA statistics associated with a task (either current or dead). 3029 * If @final is set, the task is dead and has reached refcount zero, so we can 3030 * safely free all relevant data structures. Otherwise, there might be 3031 * concurrent reads from places like load balancing and procfs, and we should 3032 * reset the data back to default state without freeing ->numa_faults. 3033 */ 3034 void task_numa_free(struct task_struct *p, bool final) 3035 { 3036 /* safe: p either is current or is being freed by current */ 3037 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3038 unsigned long *numa_faults = p->numa_faults; 3039 unsigned long flags; 3040 int i; 3041 3042 if (!numa_faults) 3043 return; 3044 3045 if (grp) { 3046 spin_lock_irqsave(&grp->lock, flags); 3047 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3048 grp->faults[i] -= p->numa_faults[i]; 3049 grp->total_faults -= p->total_numa_faults; 3050 3051 grp->nr_tasks--; 3052 spin_unlock_irqrestore(&grp->lock, flags); 3053 RCU_INIT_POINTER(p->numa_group, NULL); 3054 put_numa_group(grp); 3055 } 3056 3057 if (final) { 3058 p->numa_faults = NULL; 3059 kfree(numa_faults); 3060 } else { 3061 p->total_numa_faults = 0; 3062 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3063 numa_faults[i] = 0; 3064 } 3065 } 3066 3067 /* 3068 * Got a PROT_NONE fault for a page on @node. 3069 */ 3070 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3071 { 3072 struct task_struct *p = current; 3073 bool migrated = flags & TNF_MIGRATED; 3074 int cpu_node = task_node(current); 3075 int local = !!(flags & TNF_FAULT_LOCAL); 3076 struct numa_group *ng; 3077 int priv; 3078 3079 if (!static_branch_likely(&sched_numa_balancing)) 3080 return; 3081 3082 /* for example, ksmd faulting in a user's mm */ 3083 if (!p->mm) 3084 return; 3085 3086 /* 3087 * NUMA faults statistics are unnecessary for the slow memory 3088 * node for memory tiering mode. 3089 */ 3090 if (!node_is_toptier(mem_node) && 3091 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3092 !cpupid_valid(last_cpupid))) 3093 return; 3094 3095 /* Allocate buffer to track faults on a per-node basis */ 3096 if (unlikely(!p->numa_faults)) { 3097 int size = sizeof(*p->numa_faults) * 3098 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3099 3100 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3101 if (!p->numa_faults) 3102 return; 3103 3104 p->total_numa_faults = 0; 3105 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3106 } 3107 3108 /* 3109 * First accesses are treated as private, otherwise consider accesses 3110 * to be private if the accessing pid has not changed 3111 */ 3112 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3113 priv = 1; 3114 } else { 3115 priv = cpupid_match_pid(p, last_cpupid); 3116 if (!priv && !(flags & TNF_NO_GROUP)) 3117 task_numa_group(p, last_cpupid, flags, &priv); 3118 } 3119 3120 /* 3121 * If a workload spans multiple NUMA nodes, a shared fault that 3122 * occurs wholly within the set of nodes that the workload is 3123 * actively using should be counted as local. This allows the 3124 * scan rate to slow down when a workload has settled down. 3125 */ 3126 ng = deref_curr_numa_group(p); 3127 if (!priv && !local && ng && ng->active_nodes > 1 && 3128 numa_is_active_node(cpu_node, ng) && 3129 numa_is_active_node(mem_node, ng)) 3130 local = 1; 3131 3132 /* 3133 * Retry to migrate task to preferred node periodically, in case it 3134 * previously failed, or the scheduler moved us. 3135 */ 3136 if (time_after(jiffies, p->numa_migrate_retry)) { 3137 task_numa_placement(p); 3138 numa_migrate_preferred(p); 3139 } 3140 3141 if (migrated) 3142 p->numa_pages_migrated += pages; 3143 if (flags & TNF_MIGRATE_FAIL) 3144 p->numa_faults_locality[2] += pages; 3145 3146 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3147 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3148 p->numa_faults_locality[local] += pages; 3149 } 3150 3151 static void reset_ptenuma_scan(struct task_struct *p) 3152 { 3153 /* 3154 * We only did a read acquisition of the mmap sem, so 3155 * p->mm->numa_scan_seq is written to without exclusive access 3156 * and the update is not guaranteed to be atomic. That's not 3157 * much of an issue though, since this is just used for 3158 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3159 * expensive, to avoid any form of compiler optimizations: 3160 */ 3161 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3162 p->mm->numa_scan_offset = 0; 3163 } 3164 3165 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3166 { 3167 unsigned long pids; 3168 /* 3169 * Allow unconditional access first two times, so that all the (pages) 3170 * of VMAs get prot_none fault introduced irrespective of accesses. 3171 * This is also done to avoid any side effect of task scanning 3172 * amplifying the unfairness of disjoint set of VMAs' access. 3173 */ 3174 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3175 return true; 3176 3177 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3178 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3179 return true; 3180 3181 /* 3182 * Complete a scan that has already started regardless of PID access, or 3183 * some VMAs may never be scanned in multi-threaded applications: 3184 */ 3185 if (mm->numa_scan_offset > vma->vm_start) { 3186 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3187 return true; 3188 } 3189 3190 /* 3191 * This vma has not been accessed for a while, and if the number 3192 * the threads in the same process is low, which means no other 3193 * threads can help scan this vma, force a vma scan. 3194 */ 3195 if (READ_ONCE(mm->numa_scan_seq) > 3196 (vma->numab_state->prev_scan_seq + get_nr_threads(current))) 3197 return true; 3198 3199 return false; 3200 } 3201 3202 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3203 3204 /* 3205 * The expensive part of numa migration is done from task_work context. 3206 * Triggered from task_tick_numa(). 3207 */ 3208 static void task_numa_work(struct callback_head *work) 3209 { 3210 unsigned long migrate, next_scan, now = jiffies; 3211 struct task_struct *p = current; 3212 struct mm_struct *mm = p->mm; 3213 u64 runtime = p->se.sum_exec_runtime; 3214 struct vm_area_struct *vma; 3215 unsigned long start, end; 3216 unsigned long nr_pte_updates = 0; 3217 long pages, virtpages; 3218 struct vma_iterator vmi; 3219 bool vma_pids_skipped; 3220 bool vma_pids_forced = false; 3221 3222 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3223 3224 work->next = work; 3225 /* 3226 * Who cares about NUMA placement when they're dying. 3227 * 3228 * NOTE: make sure not to dereference p->mm before this check, 3229 * exit_task_work() happens _after_ exit_mm() so we could be called 3230 * without p->mm even though we still had it when we enqueued this 3231 * work. 3232 */ 3233 if (p->flags & PF_EXITING) 3234 return; 3235 3236 if (!mm->numa_next_scan) { 3237 mm->numa_next_scan = now + 3238 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3239 } 3240 3241 /* 3242 * Enforce maximal scan/migration frequency.. 3243 */ 3244 migrate = mm->numa_next_scan; 3245 if (time_before(now, migrate)) 3246 return; 3247 3248 if (p->numa_scan_period == 0) { 3249 p->numa_scan_period_max = task_scan_max(p); 3250 p->numa_scan_period = task_scan_start(p); 3251 } 3252 3253 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3254 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3255 return; 3256 3257 /* 3258 * Delay this task enough that another task of this mm will likely win 3259 * the next time around. 3260 */ 3261 p->node_stamp += 2 * TICK_NSEC; 3262 3263 pages = sysctl_numa_balancing_scan_size; 3264 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3265 virtpages = pages * 8; /* Scan up to this much virtual space */ 3266 if (!pages) 3267 return; 3268 3269 3270 if (!mmap_read_trylock(mm)) 3271 return; 3272 3273 /* 3274 * VMAs are skipped if the current PID has not trapped a fault within 3275 * the VMA recently. Allow scanning to be forced if there is no 3276 * suitable VMA remaining. 3277 */ 3278 vma_pids_skipped = false; 3279 3280 retry_pids: 3281 start = mm->numa_scan_offset; 3282 vma_iter_init(&vmi, mm, start); 3283 vma = vma_next(&vmi); 3284 if (!vma) { 3285 reset_ptenuma_scan(p); 3286 start = 0; 3287 vma_iter_set(&vmi, start); 3288 vma = vma_next(&vmi); 3289 } 3290 3291 do { 3292 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3293 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3294 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3295 continue; 3296 } 3297 3298 /* 3299 * Shared library pages mapped by multiple processes are not 3300 * migrated as it is expected they are cache replicated. Avoid 3301 * hinting faults in read-only file-backed mappings or the vDSO 3302 * as migrating the pages will be of marginal benefit. 3303 */ 3304 if (!vma->vm_mm || 3305 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3306 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3307 continue; 3308 } 3309 3310 /* 3311 * Skip inaccessible VMAs to avoid any confusion between 3312 * PROT_NONE and NUMA hinting PTEs 3313 */ 3314 if (!vma_is_accessible(vma)) { 3315 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3316 continue; 3317 } 3318 3319 /* Initialise new per-VMA NUMAB state. */ 3320 if (!vma->numab_state) { 3321 vma->numab_state = kzalloc(sizeof(struct vma_numab_state), 3322 GFP_KERNEL); 3323 if (!vma->numab_state) 3324 continue; 3325 3326 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3327 3328 vma->numab_state->next_scan = now + 3329 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3330 3331 /* Reset happens after 4 times scan delay of scan start */ 3332 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3333 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3334 3335 /* 3336 * Ensure prev_scan_seq does not match numa_scan_seq, 3337 * to prevent VMAs being skipped prematurely on the 3338 * first scan: 3339 */ 3340 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3341 } 3342 3343 /* 3344 * Scanning the VMAs of short lived tasks add more overhead. So 3345 * delay the scan for new VMAs. 3346 */ 3347 if (mm->numa_scan_seq && time_before(jiffies, 3348 vma->numab_state->next_scan)) { 3349 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3350 continue; 3351 } 3352 3353 /* RESET access PIDs regularly for old VMAs. */ 3354 if (mm->numa_scan_seq && 3355 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3356 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3357 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3358 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3359 vma->numab_state->pids_active[1] = 0; 3360 } 3361 3362 /* Do not rescan VMAs twice within the same sequence. */ 3363 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3364 mm->numa_scan_offset = vma->vm_end; 3365 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3366 continue; 3367 } 3368 3369 /* 3370 * Do not scan the VMA if task has not accessed it, unless no other 3371 * VMA candidate exists. 3372 */ 3373 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3374 vma_pids_skipped = true; 3375 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3376 continue; 3377 } 3378 3379 do { 3380 start = max(start, vma->vm_start); 3381 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3382 end = min(end, vma->vm_end); 3383 nr_pte_updates = change_prot_numa(vma, start, end); 3384 3385 /* 3386 * Try to scan sysctl_numa_balancing_size worth of 3387 * hpages that have at least one present PTE that 3388 * is not already PTE-numa. If the VMA contains 3389 * areas that are unused or already full of prot_numa 3390 * PTEs, scan up to virtpages, to skip through those 3391 * areas faster. 3392 */ 3393 if (nr_pte_updates) 3394 pages -= (end - start) >> PAGE_SHIFT; 3395 virtpages -= (end - start) >> PAGE_SHIFT; 3396 3397 start = end; 3398 if (pages <= 0 || virtpages <= 0) 3399 goto out; 3400 3401 cond_resched(); 3402 } while (end != vma->vm_end); 3403 3404 /* VMA scan is complete, do not scan until next sequence. */ 3405 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3406 3407 /* 3408 * Only force scan within one VMA at a time, to limit the 3409 * cost of scanning a potentially uninteresting VMA. 3410 */ 3411 if (vma_pids_forced) 3412 break; 3413 } for_each_vma(vmi, vma); 3414 3415 /* 3416 * If no VMAs are remaining and VMAs were skipped due to the PID 3417 * not accessing the VMA previously, then force a scan to ensure 3418 * forward progress: 3419 */ 3420 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3421 vma_pids_forced = true; 3422 goto retry_pids; 3423 } 3424 3425 out: 3426 /* 3427 * It is possible to reach the end of the VMA list but the last few 3428 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3429 * would find the !migratable VMA on the next scan but not reset the 3430 * scanner to the start so check it now. 3431 */ 3432 if (vma) 3433 mm->numa_scan_offset = start; 3434 else 3435 reset_ptenuma_scan(p); 3436 mmap_read_unlock(mm); 3437 3438 /* 3439 * Make sure tasks use at least 32x as much time to run other code 3440 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3441 * Usually update_task_scan_period slows down scanning enough; on an 3442 * overloaded system we need to limit overhead on a per task basis. 3443 */ 3444 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3445 u64 diff = p->se.sum_exec_runtime - runtime; 3446 p->node_stamp += 32 * diff; 3447 } 3448 } 3449 3450 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3451 { 3452 int mm_users = 0; 3453 struct mm_struct *mm = p->mm; 3454 3455 if (mm) { 3456 mm_users = atomic_read(&mm->mm_users); 3457 if (mm_users == 1) { 3458 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3459 mm->numa_scan_seq = 0; 3460 } 3461 } 3462 p->node_stamp = 0; 3463 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3464 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3465 p->numa_migrate_retry = 0; 3466 /* Protect against double add, see task_tick_numa and task_numa_work */ 3467 p->numa_work.next = &p->numa_work; 3468 p->numa_faults = NULL; 3469 p->numa_pages_migrated = 0; 3470 p->total_numa_faults = 0; 3471 RCU_INIT_POINTER(p->numa_group, NULL); 3472 p->last_task_numa_placement = 0; 3473 p->last_sum_exec_runtime = 0; 3474 3475 init_task_work(&p->numa_work, task_numa_work); 3476 3477 /* New address space, reset the preferred nid */ 3478 if (!(clone_flags & CLONE_VM)) { 3479 p->numa_preferred_nid = NUMA_NO_NODE; 3480 return; 3481 } 3482 3483 /* 3484 * New thread, keep existing numa_preferred_nid which should be copied 3485 * already by arch_dup_task_struct but stagger when scans start. 3486 */ 3487 if (mm) { 3488 unsigned int delay; 3489 3490 delay = min_t(unsigned int, task_scan_max(current), 3491 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3492 delay += 2 * TICK_NSEC; 3493 p->node_stamp = delay; 3494 } 3495 } 3496 3497 /* 3498 * Drive the periodic memory faults.. 3499 */ 3500 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3501 { 3502 struct callback_head *work = &curr->numa_work; 3503 u64 period, now; 3504 3505 /* 3506 * We don't care about NUMA placement if we don't have memory. 3507 */ 3508 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3509 return; 3510 3511 /* 3512 * Using runtime rather than walltime has the dual advantage that 3513 * we (mostly) drive the selection from busy threads and that the 3514 * task needs to have done some actual work before we bother with 3515 * NUMA placement. 3516 */ 3517 now = curr->se.sum_exec_runtime; 3518 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3519 3520 if (now > curr->node_stamp + period) { 3521 if (!curr->node_stamp) 3522 curr->numa_scan_period = task_scan_start(curr); 3523 curr->node_stamp += period; 3524 3525 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3526 task_work_add(curr, work, TWA_RESUME); 3527 } 3528 } 3529 3530 static void update_scan_period(struct task_struct *p, int new_cpu) 3531 { 3532 int src_nid = cpu_to_node(task_cpu(p)); 3533 int dst_nid = cpu_to_node(new_cpu); 3534 3535 if (!static_branch_likely(&sched_numa_balancing)) 3536 return; 3537 3538 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3539 return; 3540 3541 if (src_nid == dst_nid) 3542 return; 3543 3544 /* 3545 * Allow resets if faults have been trapped before one scan 3546 * has completed. This is most likely due to a new task that 3547 * is pulled cross-node due to wakeups or load balancing. 3548 */ 3549 if (p->numa_scan_seq) { 3550 /* 3551 * Avoid scan adjustments if moving to the preferred 3552 * node or if the task was not previously running on 3553 * the preferred node. 3554 */ 3555 if (dst_nid == p->numa_preferred_nid || 3556 (p->numa_preferred_nid != NUMA_NO_NODE && 3557 src_nid != p->numa_preferred_nid)) 3558 return; 3559 } 3560 3561 p->numa_scan_period = task_scan_start(p); 3562 } 3563 3564 #else 3565 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3566 { 3567 } 3568 3569 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3570 { 3571 } 3572 3573 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3574 { 3575 } 3576 3577 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3578 { 3579 } 3580 3581 #endif /* CONFIG_NUMA_BALANCING */ 3582 3583 static void 3584 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3585 { 3586 update_load_add(&cfs_rq->load, se->load.weight); 3587 #ifdef CONFIG_SMP 3588 if (entity_is_task(se)) { 3589 struct rq *rq = rq_of(cfs_rq); 3590 3591 account_numa_enqueue(rq, task_of(se)); 3592 list_add(&se->group_node, &rq->cfs_tasks); 3593 } 3594 #endif 3595 cfs_rq->nr_running++; 3596 if (se_is_idle(se)) 3597 cfs_rq->idle_nr_running++; 3598 } 3599 3600 static void 3601 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3602 { 3603 update_load_sub(&cfs_rq->load, se->load.weight); 3604 #ifdef CONFIG_SMP 3605 if (entity_is_task(se)) { 3606 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3607 list_del_init(&se->group_node); 3608 } 3609 #endif 3610 cfs_rq->nr_running--; 3611 if (se_is_idle(se)) 3612 cfs_rq->idle_nr_running--; 3613 } 3614 3615 /* 3616 * Signed add and clamp on underflow. 3617 * 3618 * Explicitly do a load-store to ensure the intermediate value never hits 3619 * memory. This allows lockless observations without ever seeing the negative 3620 * values. 3621 */ 3622 #define add_positive(_ptr, _val) do { \ 3623 typeof(_ptr) ptr = (_ptr); \ 3624 typeof(_val) val = (_val); \ 3625 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3626 \ 3627 res = var + val; \ 3628 \ 3629 if (val < 0 && res > var) \ 3630 res = 0; \ 3631 \ 3632 WRITE_ONCE(*ptr, res); \ 3633 } while (0) 3634 3635 /* 3636 * Unsigned subtract and clamp on underflow. 3637 * 3638 * Explicitly do a load-store to ensure the intermediate value never hits 3639 * memory. This allows lockless observations without ever seeing the negative 3640 * values. 3641 */ 3642 #define sub_positive(_ptr, _val) do { \ 3643 typeof(_ptr) ptr = (_ptr); \ 3644 typeof(*ptr) val = (_val); \ 3645 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3646 res = var - val; \ 3647 if (res > var) \ 3648 res = 0; \ 3649 WRITE_ONCE(*ptr, res); \ 3650 } while (0) 3651 3652 /* 3653 * Remove and clamp on negative, from a local variable. 3654 * 3655 * A variant of sub_positive(), which does not use explicit load-store 3656 * and is thus optimized for local variable updates. 3657 */ 3658 #define lsub_positive(_ptr, _val) do { \ 3659 typeof(_ptr) ptr = (_ptr); \ 3660 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3661 } while (0) 3662 3663 #ifdef CONFIG_SMP 3664 static inline void 3665 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3666 { 3667 cfs_rq->avg.load_avg += se->avg.load_avg; 3668 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3669 } 3670 3671 static inline void 3672 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3673 { 3674 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3675 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3676 /* See update_cfs_rq_load_avg() */ 3677 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3678 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3679 } 3680 #else 3681 static inline void 3682 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3683 static inline void 3684 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3685 #endif 3686 3687 static void reweight_eevdf(struct sched_entity *se, u64 avruntime, 3688 unsigned long weight) 3689 { 3690 unsigned long old_weight = se->load.weight; 3691 s64 vlag, vslice; 3692 3693 /* 3694 * VRUNTIME 3695 * -------- 3696 * 3697 * COROLLARY #1: The virtual runtime of the entity needs to be 3698 * adjusted if re-weight at !0-lag point. 3699 * 3700 * Proof: For contradiction assume this is not true, so we can 3701 * re-weight without changing vruntime at !0-lag point. 3702 * 3703 * Weight VRuntime Avg-VRuntime 3704 * before w v V 3705 * after w' v' V' 3706 * 3707 * Since lag needs to be preserved through re-weight: 3708 * 3709 * lag = (V - v)*w = (V'- v')*w', where v = v' 3710 * ==> V' = (V - v)*w/w' + v (1) 3711 * 3712 * Let W be the total weight of the entities before reweight, 3713 * since V' is the new weighted average of entities: 3714 * 3715 * V' = (WV + w'v - wv) / (W + w' - w) (2) 3716 * 3717 * by using (1) & (2) we obtain: 3718 * 3719 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v 3720 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v 3721 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v 3722 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3) 3723 * 3724 * Since we are doing at !0-lag point which means V != v, we 3725 * can simplify (3): 3726 * 3727 * ==> W / (W + w' - w) = w / w' 3728 * ==> Ww' = Ww + ww' - ww 3729 * ==> W * (w' - w) = w * (w' - w) 3730 * ==> W = w (re-weight indicates w' != w) 3731 * 3732 * So the cfs_rq contains only one entity, hence vruntime of 3733 * the entity @v should always equal to the cfs_rq's weighted 3734 * average vruntime @V, which means we will always re-weight 3735 * at 0-lag point, thus breach assumption. Proof completed. 3736 * 3737 * 3738 * COROLLARY #2: Re-weight does NOT affect weighted average 3739 * vruntime of all the entities. 3740 * 3741 * Proof: According to corollary #1, Eq. (1) should be: 3742 * 3743 * (V - v)*w = (V' - v')*w' 3744 * ==> v' = V' - (V - v)*w/w' (4) 3745 * 3746 * According to the weighted average formula, we have: 3747 * 3748 * V' = (WV - wv + w'v') / (W - w + w') 3749 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w') 3750 * = (WV - wv + w'V' - Vw + wv) / (W - w + w') 3751 * = (WV + w'V' - Vw) / (W - w + w') 3752 * 3753 * ==> V'*(W - w + w') = WV + w'V' - Vw 3754 * ==> V' * (W - w) = (W - w) * V (5) 3755 * 3756 * If the entity is the only one in the cfs_rq, then reweight 3757 * always occurs at 0-lag point, so V won't change. Or else 3758 * there are other entities, hence W != w, then Eq. (5) turns 3759 * into V' = V. So V won't change in either case, proof done. 3760 * 3761 * 3762 * So according to corollary #1 & #2, the effect of re-weight 3763 * on vruntime should be: 3764 * 3765 * v' = V' - (V - v) * w / w' (4) 3766 * = V - (V - v) * w / w' 3767 * = V - vl * w / w' 3768 * = V - vl' 3769 */ 3770 if (avruntime != se->vruntime) { 3771 vlag = entity_lag(avruntime, se); 3772 vlag = div_s64(vlag * old_weight, weight); 3773 se->vruntime = avruntime - vlag; 3774 } 3775 3776 /* 3777 * DEADLINE 3778 * -------- 3779 * 3780 * When the weight changes, the virtual time slope changes and 3781 * we should adjust the relative virtual deadline accordingly. 3782 * 3783 * d' = v' + (d - v)*w/w' 3784 * = V' - (V - v)*w/w' + (d - v)*w/w' 3785 * = V - (V - v)*w/w' + (d - v)*w/w' 3786 * = V + (d - V)*w/w' 3787 */ 3788 vslice = (s64)(se->deadline - avruntime); 3789 vslice = div_s64(vslice * old_weight, weight); 3790 se->deadline = avruntime + vslice; 3791 } 3792 3793 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3794 unsigned long weight) 3795 { 3796 bool curr = cfs_rq->curr == se; 3797 u64 avruntime; 3798 3799 if (se->on_rq) { 3800 /* commit outstanding execution time */ 3801 update_curr(cfs_rq); 3802 avruntime = avg_vruntime(cfs_rq); 3803 if (!curr) 3804 __dequeue_entity(cfs_rq, se); 3805 update_load_sub(&cfs_rq->load, se->load.weight); 3806 } 3807 dequeue_load_avg(cfs_rq, se); 3808 3809 if (se->on_rq) { 3810 reweight_eevdf(se, avruntime, weight); 3811 } else { 3812 /* 3813 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3814 * we need to scale se->vlag when w_i changes. 3815 */ 3816 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3817 } 3818 3819 update_load_set(&se->load, weight); 3820 3821 #ifdef CONFIG_SMP 3822 do { 3823 u32 divider = get_pelt_divider(&se->avg); 3824 3825 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3826 } while (0); 3827 #endif 3828 3829 enqueue_load_avg(cfs_rq, se); 3830 if (se->on_rq) { 3831 update_load_add(&cfs_rq->load, se->load.weight); 3832 if (!curr) 3833 __enqueue_entity(cfs_rq, se); 3834 3835 /* 3836 * The entity's vruntime has been adjusted, so let's check 3837 * whether the rq-wide min_vruntime needs updated too. Since 3838 * the calculations above require stable min_vruntime rather 3839 * than up-to-date one, we do the update at the end of the 3840 * reweight process. 3841 */ 3842 update_min_vruntime(cfs_rq); 3843 } 3844 } 3845 3846 void reweight_task(struct task_struct *p, const struct load_weight *lw) 3847 { 3848 struct sched_entity *se = &p->se; 3849 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3850 struct load_weight *load = &se->load; 3851 3852 reweight_entity(cfs_rq, se, lw->weight); 3853 load->inv_weight = lw->inv_weight; 3854 } 3855 3856 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3857 3858 #ifdef CONFIG_FAIR_GROUP_SCHED 3859 #ifdef CONFIG_SMP 3860 /* 3861 * All this does is approximate the hierarchical proportion which includes that 3862 * global sum we all love to hate. 3863 * 3864 * That is, the weight of a group entity, is the proportional share of the 3865 * group weight based on the group runqueue weights. That is: 3866 * 3867 * tg->weight * grq->load.weight 3868 * ge->load.weight = ----------------------------- (1) 3869 * \Sum grq->load.weight 3870 * 3871 * Now, because computing that sum is prohibitively expensive to compute (been 3872 * there, done that) we approximate it with this average stuff. The average 3873 * moves slower and therefore the approximation is cheaper and more stable. 3874 * 3875 * So instead of the above, we substitute: 3876 * 3877 * grq->load.weight -> grq->avg.load_avg (2) 3878 * 3879 * which yields the following: 3880 * 3881 * tg->weight * grq->avg.load_avg 3882 * ge->load.weight = ------------------------------ (3) 3883 * tg->load_avg 3884 * 3885 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3886 * 3887 * That is shares_avg, and it is right (given the approximation (2)). 3888 * 3889 * The problem with it is that because the average is slow -- it was designed 3890 * to be exactly that of course -- this leads to transients in boundary 3891 * conditions. In specific, the case where the group was idle and we start the 3892 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3893 * yielding bad latency etc.. 3894 * 3895 * Now, in that special case (1) reduces to: 3896 * 3897 * tg->weight * grq->load.weight 3898 * ge->load.weight = ----------------------------- = tg->weight (4) 3899 * grp->load.weight 3900 * 3901 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3902 * 3903 * So what we do is modify our approximation (3) to approach (4) in the (near) 3904 * UP case, like: 3905 * 3906 * ge->load.weight = 3907 * 3908 * tg->weight * grq->load.weight 3909 * --------------------------------------------------- (5) 3910 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3911 * 3912 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3913 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3914 * 3915 * 3916 * tg->weight * grq->load.weight 3917 * ge->load.weight = ----------------------------- (6) 3918 * tg_load_avg' 3919 * 3920 * Where: 3921 * 3922 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3923 * max(grq->load.weight, grq->avg.load_avg) 3924 * 3925 * And that is shares_weight and is icky. In the (near) UP case it approaches 3926 * (4) while in the normal case it approaches (3). It consistently 3927 * overestimates the ge->load.weight and therefore: 3928 * 3929 * \Sum ge->load.weight >= tg->weight 3930 * 3931 * hence icky! 3932 */ 3933 static long calc_group_shares(struct cfs_rq *cfs_rq) 3934 { 3935 long tg_weight, tg_shares, load, shares; 3936 struct task_group *tg = cfs_rq->tg; 3937 3938 tg_shares = READ_ONCE(tg->shares); 3939 3940 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3941 3942 tg_weight = atomic_long_read(&tg->load_avg); 3943 3944 /* Ensure tg_weight >= load */ 3945 tg_weight -= cfs_rq->tg_load_avg_contrib; 3946 tg_weight += load; 3947 3948 shares = (tg_shares * load); 3949 if (tg_weight) 3950 shares /= tg_weight; 3951 3952 /* 3953 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3954 * of a group with small tg->shares value. It is a floor value which is 3955 * assigned as a minimum load.weight to the sched_entity representing 3956 * the group on a CPU. 3957 * 3958 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3959 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3960 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3961 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3962 * instead of 0. 3963 */ 3964 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3965 } 3966 #endif /* CONFIG_SMP */ 3967 3968 /* 3969 * Recomputes the group entity based on the current state of its group 3970 * runqueue. 3971 */ 3972 static void update_cfs_group(struct sched_entity *se) 3973 { 3974 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3975 long shares; 3976 3977 if (!gcfs_rq) 3978 return; 3979 3980 if (throttled_hierarchy(gcfs_rq)) 3981 return; 3982 3983 #ifndef CONFIG_SMP 3984 shares = READ_ONCE(gcfs_rq->tg->shares); 3985 #else 3986 shares = calc_group_shares(gcfs_rq); 3987 #endif 3988 if (unlikely(se->load.weight != shares)) 3989 reweight_entity(cfs_rq_of(se), se, shares); 3990 } 3991 3992 #else /* CONFIG_FAIR_GROUP_SCHED */ 3993 static inline void update_cfs_group(struct sched_entity *se) 3994 { 3995 } 3996 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3997 3998 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3999 { 4000 struct rq *rq = rq_of(cfs_rq); 4001 4002 if (&rq->cfs == cfs_rq) { 4003 /* 4004 * There are a few boundary cases this might miss but it should 4005 * get called often enough that that should (hopefully) not be 4006 * a real problem. 4007 * 4008 * It will not get called when we go idle, because the idle 4009 * thread is a different class (!fair), nor will the utilization 4010 * number include things like RT tasks. 4011 * 4012 * As is, the util number is not freq-invariant (we'd have to 4013 * implement arch_scale_freq_capacity() for that). 4014 * 4015 * See cpu_util_cfs(). 4016 */ 4017 cpufreq_update_util(rq, flags); 4018 } 4019 } 4020 4021 #ifdef CONFIG_SMP 4022 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4023 { 4024 if (sa->load_sum) 4025 return false; 4026 4027 if (sa->util_sum) 4028 return false; 4029 4030 if (sa->runnable_sum) 4031 return false; 4032 4033 /* 4034 * _avg must be null when _sum are null because _avg = _sum / divider 4035 * Make sure that rounding and/or propagation of PELT values never 4036 * break this. 4037 */ 4038 SCHED_WARN_ON(sa->load_avg || 4039 sa->util_avg || 4040 sa->runnable_avg); 4041 4042 return true; 4043 } 4044 4045 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4046 { 4047 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4048 cfs_rq->last_update_time_copy); 4049 } 4050 #ifdef CONFIG_FAIR_GROUP_SCHED 4051 /* 4052 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4053 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4054 * bottom-up, we only have to test whether the cfs_rq before us on the list 4055 * is our child. 4056 * If cfs_rq is not on the list, test whether a child needs its to be added to 4057 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4058 */ 4059 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4060 { 4061 struct cfs_rq *prev_cfs_rq; 4062 struct list_head *prev; 4063 4064 if (cfs_rq->on_list) { 4065 prev = cfs_rq->leaf_cfs_rq_list.prev; 4066 } else { 4067 struct rq *rq = rq_of(cfs_rq); 4068 4069 prev = rq->tmp_alone_branch; 4070 } 4071 4072 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4073 4074 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4075 } 4076 4077 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4078 { 4079 if (cfs_rq->load.weight) 4080 return false; 4081 4082 if (!load_avg_is_decayed(&cfs_rq->avg)) 4083 return false; 4084 4085 if (child_cfs_rq_on_list(cfs_rq)) 4086 return false; 4087 4088 return true; 4089 } 4090 4091 /** 4092 * update_tg_load_avg - update the tg's load avg 4093 * @cfs_rq: the cfs_rq whose avg changed 4094 * 4095 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4096 * However, because tg->load_avg is a global value there are performance 4097 * considerations. 4098 * 4099 * In order to avoid having to look at the other cfs_rq's, we use a 4100 * differential update where we store the last value we propagated. This in 4101 * turn allows skipping updates if the differential is 'small'. 4102 * 4103 * Updating tg's load_avg is necessary before update_cfs_share(). 4104 */ 4105 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4106 { 4107 long delta; 4108 u64 now; 4109 4110 /* 4111 * No need to update load_avg for root_task_group as it is not used. 4112 */ 4113 if (cfs_rq->tg == &root_task_group) 4114 return; 4115 4116 /* rq has been offline and doesn't contribute to the share anymore: */ 4117 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4118 return; 4119 4120 /* 4121 * For migration heavy workloads, access to tg->load_avg can be 4122 * unbound. Limit the update rate to at most once per ms. 4123 */ 4124 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4125 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4126 return; 4127 4128 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4129 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4130 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4131 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4132 cfs_rq->last_update_tg_load_avg = now; 4133 } 4134 } 4135 4136 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4137 { 4138 long delta; 4139 u64 now; 4140 4141 /* 4142 * No need to update load_avg for root_task_group, as it is not used. 4143 */ 4144 if (cfs_rq->tg == &root_task_group) 4145 return; 4146 4147 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4148 delta = 0 - cfs_rq->tg_load_avg_contrib; 4149 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4150 cfs_rq->tg_load_avg_contrib = 0; 4151 cfs_rq->last_update_tg_load_avg = now; 4152 } 4153 4154 /* CPU offline callback: */ 4155 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4156 { 4157 struct task_group *tg; 4158 4159 lockdep_assert_rq_held(rq); 4160 4161 /* 4162 * The rq clock has already been updated in 4163 * set_rq_offline(), so we should skip updating 4164 * the rq clock again in unthrottle_cfs_rq(). 4165 */ 4166 rq_clock_start_loop_update(rq); 4167 4168 rcu_read_lock(); 4169 list_for_each_entry_rcu(tg, &task_groups, list) { 4170 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4171 4172 clear_tg_load_avg(cfs_rq); 4173 } 4174 rcu_read_unlock(); 4175 4176 rq_clock_stop_loop_update(rq); 4177 } 4178 4179 /* 4180 * Called within set_task_rq() right before setting a task's CPU. The 4181 * caller only guarantees p->pi_lock is held; no other assumptions, 4182 * including the state of rq->lock, should be made. 4183 */ 4184 void set_task_rq_fair(struct sched_entity *se, 4185 struct cfs_rq *prev, struct cfs_rq *next) 4186 { 4187 u64 p_last_update_time; 4188 u64 n_last_update_time; 4189 4190 if (!sched_feat(ATTACH_AGE_LOAD)) 4191 return; 4192 4193 /* 4194 * We are supposed to update the task to "current" time, then its up to 4195 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4196 * getting what current time is, so simply throw away the out-of-date 4197 * time. This will result in the wakee task is less decayed, but giving 4198 * the wakee more load sounds not bad. 4199 */ 4200 if (!(se->avg.last_update_time && prev)) 4201 return; 4202 4203 p_last_update_time = cfs_rq_last_update_time(prev); 4204 n_last_update_time = cfs_rq_last_update_time(next); 4205 4206 __update_load_avg_blocked_se(p_last_update_time, se); 4207 se->avg.last_update_time = n_last_update_time; 4208 } 4209 4210 /* 4211 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4212 * propagate its contribution. The key to this propagation is the invariant 4213 * that for each group: 4214 * 4215 * ge->avg == grq->avg (1) 4216 * 4217 * _IFF_ we look at the pure running and runnable sums. Because they 4218 * represent the very same entity, just at different points in the hierarchy. 4219 * 4220 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4221 * and simply copies the running/runnable sum over (but still wrong, because 4222 * the group entity and group rq do not have their PELT windows aligned). 4223 * 4224 * However, update_tg_cfs_load() is more complex. So we have: 4225 * 4226 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4227 * 4228 * And since, like util, the runnable part should be directly transferable, 4229 * the following would _appear_ to be the straight forward approach: 4230 * 4231 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4232 * 4233 * And per (1) we have: 4234 * 4235 * ge->avg.runnable_avg == grq->avg.runnable_avg 4236 * 4237 * Which gives: 4238 * 4239 * ge->load.weight * grq->avg.load_avg 4240 * ge->avg.load_avg = ----------------------------------- (4) 4241 * grq->load.weight 4242 * 4243 * Except that is wrong! 4244 * 4245 * Because while for entities historical weight is not important and we 4246 * really only care about our future and therefore can consider a pure 4247 * runnable sum, runqueues can NOT do this. 4248 * 4249 * We specifically want runqueues to have a load_avg that includes 4250 * historical weights. Those represent the blocked load, the load we expect 4251 * to (shortly) return to us. This only works by keeping the weights as 4252 * integral part of the sum. We therefore cannot decompose as per (3). 4253 * 4254 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4255 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4256 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4257 * runnable section of these tasks overlap (or not). If they were to perfectly 4258 * align the rq as a whole would be runnable 2/3 of the time. If however we 4259 * always have at least 1 runnable task, the rq as a whole is always runnable. 4260 * 4261 * So we'll have to approximate.. :/ 4262 * 4263 * Given the constraint: 4264 * 4265 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4266 * 4267 * We can construct a rule that adds runnable to a rq by assuming minimal 4268 * overlap. 4269 * 4270 * On removal, we'll assume each task is equally runnable; which yields: 4271 * 4272 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4273 * 4274 * XXX: only do this for the part of runnable > running ? 4275 * 4276 */ 4277 static inline void 4278 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4279 { 4280 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4281 u32 new_sum, divider; 4282 4283 /* Nothing to update */ 4284 if (!delta_avg) 4285 return; 4286 4287 /* 4288 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4289 * See ___update_load_avg() for details. 4290 */ 4291 divider = get_pelt_divider(&cfs_rq->avg); 4292 4293 4294 /* Set new sched_entity's utilization */ 4295 se->avg.util_avg = gcfs_rq->avg.util_avg; 4296 new_sum = se->avg.util_avg * divider; 4297 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4298 se->avg.util_sum = new_sum; 4299 4300 /* Update parent cfs_rq utilization */ 4301 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4302 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4303 4304 /* See update_cfs_rq_load_avg() */ 4305 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4306 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4307 } 4308 4309 static inline void 4310 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4311 { 4312 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4313 u32 new_sum, divider; 4314 4315 /* Nothing to update */ 4316 if (!delta_avg) 4317 return; 4318 4319 /* 4320 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4321 * See ___update_load_avg() for details. 4322 */ 4323 divider = get_pelt_divider(&cfs_rq->avg); 4324 4325 /* Set new sched_entity's runnable */ 4326 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4327 new_sum = se->avg.runnable_avg * divider; 4328 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4329 se->avg.runnable_sum = new_sum; 4330 4331 /* Update parent cfs_rq runnable */ 4332 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4333 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4334 /* See update_cfs_rq_load_avg() */ 4335 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4336 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4337 } 4338 4339 static inline void 4340 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4341 { 4342 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4343 unsigned long load_avg; 4344 u64 load_sum = 0; 4345 s64 delta_sum; 4346 u32 divider; 4347 4348 if (!runnable_sum) 4349 return; 4350 4351 gcfs_rq->prop_runnable_sum = 0; 4352 4353 /* 4354 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4355 * See ___update_load_avg() for details. 4356 */ 4357 divider = get_pelt_divider(&cfs_rq->avg); 4358 4359 if (runnable_sum >= 0) { 4360 /* 4361 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4362 * the CPU is saturated running == runnable. 4363 */ 4364 runnable_sum += se->avg.load_sum; 4365 runnable_sum = min_t(long, runnable_sum, divider); 4366 } else { 4367 /* 4368 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4369 * assuming all tasks are equally runnable. 4370 */ 4371 if (scale_load_down(gcfs_rq->load.weight)) { 4372 load_sum = div_u64(gcfs_rq->avg.load_sum, 4373 scale_load_down(gcfs_rq->load.weight)); 4374 } 4375 4376 /* But make sure to not inflate se's runnable */ 4377 runnable_sum = min(se->avg.load_sum, load_sum); 4378 } 4379 4380 /* 4381 * runnable_sum can't be lower than running_sum 4382 * Rescale running sum to be in the same range as runnable sum 4383 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4384 * runnable_sum is in [0 : LOAD_AVG_MAX] 4385 */ 4386 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4387 runnable_sum = max(runnable_sum, running_sum); 4388 4389 load_sum = se_weight(se) * runnable_sum; 4390 load_avg = div_u64(load_sum, divider); 4391 4392 delta_avg = load_avg - se->avg.load_avg; 4393 if (!delta_avg) 4394 return; 4395 4396 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4397 4398 se->avg.load_sum = runnable_sum; 4399 se->avg.load_avg = load_avg; 4400 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4401 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4402 /* See update_cfs_rq_load_avg() */ 4403 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4404 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4405 } 4406 4407 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4408 { 4409 cfs_rq->propagate = 1; 4410 cfs_rq->prop_runnable_sum += runnable_sum; 4411 } 4412 4413 /* Update task and its cfs_rq load average */ 4414 static inline int propagate_entity_load_avg(struct sched_entity *se) 4415 { 4416 struct cfs_rq *cfs_rq, *gcfs_rq; 4417 4418 if (entity_is_task(se)) 4419 return 0; 4420 4421 gcfs_rq = group_cfs_rq(se); 4422 if (!gcfs_rq->propagate) 4423 return 0; 4424 4425 gcfs_rq->propagate = 0; 4426 4427 cfs_rq = cfs_rq_of(se); 4428 4429 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4430 4431 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4432 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4433 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4434 4435 trace_pelt_cfs_tp(cfs_rq); 4436 trace_pelt_se_tp(se); 4437 4438 return 1; 4439 } 4440 4441 /* 4442 * Check if we need to update the load and the utilization of a blocked 4443 * group_entity: 4444 */ 4445 static inline bool skip_blocked_update(struct sched_entity *se) 4446 { 4447 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4448 4449 /* 4450 * If sched_entity still have not zero load or utilization, we have to 4451 * decay it: 4452 */ 4453 if (se->avg.load_avg || se->avg.util_avg) 4454 return false; 4455 4456 /* 4457 * If there is a pending propagation, we have to update the load and 4458 * the utilization of the sched_entity: 4459 */ 4460 if (gcfs_rq->propagate) 4461 return false; 4462 4463 /* 4464 * Otherwise, the load and the utilization of the sched_entity is 4465 * already zero and there is no pending propagation, so it will be a 4466 * waste of time to try to decay it: 4467 */ 4468 return true; 4469 } 4470 4471 #else /* CONFIG_FAIR_GROUP_SCHED */ 4472 4473 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4474 4475 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4476 4477 static inline int propagate_entity_load_avg(struct sched_entity *se) 4478 { 4479 return 0; 4480 } 4481 4482 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4483 4484 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4485 4486 #ifdef CONFIG_NO_HZ_COMMON 4487 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4488 { 4489 u64 throttled = 0, now, lut; 4490 struct cfs_rq *cfs_rq; 4491 struct rq *rq; 4492 bool is_idle; 4493 4494 if (load_avg_is_decayed(&se->avg)) 4495 return; 4496 4497 cfs_rq = cfs_rq_of(se); 4498 rq = rq_of(cfs_rq); 4499 4500 rcu_read_lock(); 4501 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4502 rcu_read_unlock(); 4503 4504 /* 4505 * The lag estimation comes with a cost we don't want to pay all the 4506 * time. Hence, limiting to the case where the source CPU is idle and 4507 * we know we are at the greatest risk to have an outdated clock. 4508 */ 4509 if (!is_idle) 4510 return; 4511 4512 /* 4513 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4514 * 4515 * last_update_time (the cfs_rq's last_update_time) 4516 * = cfs_rq_clock_pelt()@cfs_rq_idle 4517 * = rq_clock_pelt()@cfs_rq_idle 4518 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4519 * 4520 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4521 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4522 * 4523 * rq_idle_lag (delta between now and rq's update) 4524 * = sched_clock_cpu() - rq_clock()@rq_idle 4525 * 4526 * We can then write: 4527 * 4528 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4529 * sched_clock_cpu() - rq_clock()@rq_idle 4530 * Where: 4531 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4532 * rq_clock()@rq_idle is rq->clock_idle 4533 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4534 * is cfs_rq->throttled_pelt_idle 4535 */ 4536 4537 #ifdef CONFIG_CFS_BANDWIDTH 4538 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4539 /* The clock has been stopped for throttling */ 4540 if (throttled == U64_MAX) 4541 return; 4542 #endif 4543 now = u64_u32_load(rq->clock_pelt_idle); 4544 /* 4545 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4546 * is observed the old clock_pelt_idle value and the new clock_idle, 4547 * which lead to an underestimation. The opposite would lead to an 4548 * overestimation. 4549 */ 4550 smp_rmb(); 4551 lut = cfs_rq_last_update_time(cfs_rq); 4552 4553 now -= throttled; 4554 if (now < lut) 4555 /* 4556 * cfs_rq->avg.last_update_time is more recent than our 4557 * estimation, let's use it. 4558 */ 4559 now = lut; 4560 else 4561 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4562 4563 __update_load_avg_blocked_se(now, se); 4564 } 4565 #else 4566 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4567 #endif 4568 4569 /** 4570 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4571 * @now: current time, as per cfs_rq_clock_pelt() 4572 * @cfs_rq: cfs_rq to update 4573 * 4574 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4575 * avg. The immediate corollary is that all (fair) tasks must be attached. 4576 * 4577 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4578 * 4579 * Return: true if the load decayed or we removed load. 4580 * 4581 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4582 * call update_tg_load_avg() when this function returns true. 4583 */ 4584 static inline int 4585 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4586 { 4587 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4588 struct sched_avg *sa = &cfs_rq->avg; 4589 int decayed = 0; 4590 4591 if (cfs_rq->removed.nr) { 4592 unsigned long r; 4593 u32 divider = get_pelt_divider(&cfs_rq->avg); 4594 4595 raw_spin_lock(&cfs_rq->removed.lock); 4596 swap(cfs_rq->removed.util_avg, removed_util); 4597 swap(cfs_rq->removed.load_avg, removed_load); 4598 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4599 cfs_rq->removed.nr = 0; 4600 raw_spin_unlock(&cfs_rq->removed.lock); 4601 4602 r = removed_load; 4603 sub_positive(&sa->load_avg, r); 4604 sub_positive(&sa->load_sum, r * divider); 4605 /* See sa->util_sum below */ 4606 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4607 4608 r = removed_util; 4609 sub_positive(&sa->util_avg, r); 4610 sub_positive(&sa->util_sum, r * divider); 4611 /* 4612 * Because of rounding, se->util_sum might ends up being +1 more than 4613 * cfs->util_sum. Although this is not a problem by itself, detaching 4614 * a lot of tasks with the rounding problem between 2 updates of 4615 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4616 * cfs_util_avg is not. 4617 * Check that util_sum is still above its lower bound for the new 4618 * util_avg. Given that period_contrib might have moved since the last 4619 * sync, we are only sure that util_sum must be above or equal to 4620 * util_avg * minimum possible divider 4621 */ 4622 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4623 4624 r = removed_runnable; 4625 sub_positive(&sa->runnable_avg, r); 4626 sub_positive(&sa->runnable_sum, r * divider); 4627 /* See sa->util_sum above */ 4628 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4629 sa->runnable_avg * PELT_MIN_DIVIDER); 4630 4631 /* 4632 * removed_runnable is the unweighted version of removed_load so we 4633 * can use it to estimate removed_load_sum. 4634 */ 4635 add_tg_cfs_propagate(cfs_rq, 4636 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4637 4638 decayed = 1; 4639 } 4640 4641 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4642 u64_u32_store_copy(sa->last_update_time, 4643 cfs_rq->last_update_time_copy, 4644 sa->last_update_time); 4645 return decayed; 4646 } 4647 4648 /** 4649 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4650 * @cfs_rq: cfs_rq to attach to 4651 * @se: sched_entity to attach 4652 * 4653 * Must call update_cfs_rq_load_avg() before this, since we rely on 4654 * cfs_rq->avg.last_update_time being current. 4655 */ 4656 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4657 { 4658 /* 4659 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4660 * See ___update_load_avg() for details. 4661 */ 4662 u32 divider = get_pelt_divider(&cfs_rq->avg); 4663 4664 /* 4665 * When we attach the @se to the @cfs_rq, we must align the decay 4666 * window because without that, really weird and wonderful things can 4667 * happen. 4668 * 4669 * XXX illustrate 4670 */ 4671 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4672 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4673 4674 /* 4675 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4676 * period_contrib. This isn't strictly correct, but since we're 4677 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4678 * _sum a little. 4679 */ 4680 se->avg.util_sum = se->avg.util_avg * divider; 4681 4682 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4683 4684 se->avg.load_sum = se->avg.load_avg * divider; 4685 if (se_weight(se) < se->avg.load_sum) 4686 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4687 else 4688 se->avg.load_sum = 1; 4689 4690 enqueue_load_avg(cfs_rq, se); 4691 cfs_rq->avg.util_avg += se->avg.util_avg; 4692 cfs_rq->avg.util_sum += se->avg.util_sum; 4693 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4694 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4695 4696 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4697 4698 cfs_rq_util_change(cfs_rq, 0); 4699 4700 trace_pelt_cfs_tp(cfs_rq); 4701 } 4702 4703 /** 4704 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4705 * @cfs_rq: cfs_rq to detach from 4706 * @se: sched_entity to detach 4707 * 4708 * Must call update_cfs_rq_load_avg() before this, since we rely on 4709 * cfs_rq->avg.last_update_time being current. 4710 */ 4711 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4712 { 4713 dequeue_load_avg(cfs_rq, se); 4714 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4715 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4716 /* See update_cfs_rq_load_avg() */ 4717 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4718 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4719 4720 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4721 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4722 /* See update_cfs_rq_load_avg() */ 4723 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4724 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4725 4726 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4727 4728 cfs_rq_util_change(cfs_rq, 0); 4729 4730 trace_pelt_cfs_tp(cfs_rq); 4731 } 4732 4733 /* 4734 * Optional action to be done while updating the load average 4735 */ 4736 #define UPDATE_TG 0x1 4737 #define SKIP_AGE_LOAD 0x2 4738 #define DO_ATTACH 0x4 4739 #define DO_DETACH 0x8 4740 4741 /* Update task and its cfs_rq load average */ 4742 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4743 { 4744 u64 now = cfs_rq_clock_pelt(cfs_rq); 4745 int decayed; 4746 4747 /* 4748 * Track task load average for carrying it to new CPU after migrated, and 4749 * track group sched_entity load average for task_h_load calculation in migration 4750 */ 4751 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4752 __update_load_avg_se(now, cfs_rq, se); 4753 4754 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4755 decayed |= propagate_entity_load_avg(se); 4756 4757 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4758 4759 /* 4760 * DO_ATTACH means we're here from enqueue_entity(). 4761 * !last_update_time means we've passed through 4762 * migrate_task_rq_fair() indicating we migrated. 4763 * 4764 * IOW we're enqueueing a task on a new CPU. 4765 */ 4766 attach_entity_load_avg(cfs_rq, se); 4767 update_tg_load_avg(cfs_rq); 4768 4769 } else if (flags & DO_DETACH) { 4770 /* 4771 * DO_DETACH means we're here from dequeue_entity() 4772 * and we are migrating task out of the CPU. 4773 */ 4774 detach_entity_load_avg(cfs_rq, se); 4775 update_tg_load_avg(cfs_rq); 4776 } else if (decayed) { 4777 cfs_rq_util_change(cfs_rq, 0); 4778 4779 if (flags & UPDATE_TG) 4780 update_tg_load_avg(cfs_rq); 4781 } 4782 } 4783 4784 /* 4785 * Synchronize entity load avg of dequeued entity without locking 4786 * the previous rq. 4787 */ 4788 static void sync_entity_load_avg(struct sched_entity *se) 4789 { 4790 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4791 u64 last_update_time; 4792 4793 last_update_time = cfs_rq_last_update_time(cfs_rq); 4794 __update_load_avg_blocked_se(last_update_time, se); 4795 } 4796 4797 /* 4798 * Task first catches up with cfs_rq, and then subtract 4799 * itself from the cfs_rq (task must be off the queue now). 4800 */ 4801 static void remove_entity_load_avg(struct sched_entity *se) 4802 { 4803 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4804 unsigned long flags; 4805 4806 /* 4807 * tasks cannot exit without having gone through wake_up_new_task() -> 4808 * enqueue_task_fair() which will have added things to the cfs_rq, 4809 * so we can remove unconditionally. 4810 */ 4811 4812 sync_entity_load_avg(se); 4813 4814 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4815 ++cfs_rq->removed.nr; 4816 cfs_rq->removed.util_avg += se->avg.util_avg; 4817 cfs_rq->removed.load_avg += se->avg.load_avg; 4818 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4819 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4820 } 4821 4822 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4823 { 4824 return cfs_rq->avg.runnable_avg; 4825 } 4826 4827 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4828 { 4829 return cfs_rq->avg.load_avg; 4830 } 4831 4832 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4833 4834 static inline unsigned long task_util(struct task_struct *p) 4835 { 4836 return READ_ONCE(p->se.avg.util_avg); 4837 } 4838 4839 static inline unsigned long task_runnable(struct task_struct *p) 4840 { 4841 return READ_ONCE(p->se.avg.runnable_avg); 4842 } 4843 4844 static inline unsigned long _task_util_est(struct task_struct *p) 4845 { 4846 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4847 } 4848 4849 static inline unsigned long task_util_est(struct task_struct *p) 4850 { 4851 return max(task_util(p), _task_util_est(p)); 4852 } 4853 4854 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4855 struct task_struct *p) 4856 { 4857 unsigned int enqueued; 4858 4859 if (!sched_feat(UTIL_EST)) 4860 return; 4861 4862 /* Update root cfs_rq's estimated utilization */ 4863 enqueued = cfs_rq->avg.util_est; 4864 enqueued += _task_util_est(p); 4865 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4866 4867 trace_sched_util_est_cfs_tp(cfs_rq); 4868 } 4869 4870 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4871 struct task_struct *p) 4872 { 4873 unsigned int enqueued; 4874 4875 if (!sched_feat(UTIL_EST)) 4876 return; 4877 4878 /* Update root cfs_rq's estimated utilization */ 4879 enqueued = cfs_rq->avg.util_est; 4880 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4881 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4882 4883 trace_sched_util_est_cfs_tp(cfs_rq); 4884 } 4885 4886 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4887 4888 static inline void util_est_update(struct cfs_rq *cfs_rq, 4889 struct task_struct *p, 4890 bool task_sleep) 4891 { 4892 unsigned int ewma, dequeued, last_ewma_diff; 4893 4894 if (!sched_feat(UTIL_EST)) 4895 return; 4896 4897 /* 4898 * Skip update of task's estimated utilization when the task has not 4899 * yet completed an activation, e.g. being migrated. 4900 */ 4901 if (!task_sleep) 4902 return; 4903 4904 /* Get current estimate of utilization */ 4905 ewma = READ_ONCE(p->se.avg.util_est); 4906 4907 /* 4908 * If the PELT values haven't changed since enqueue time, 4909 * skip the util_est update. 4910 */ 4911 if (ewma & UTIL_AVG_UNCHANGED) 4912 return; 4913 4914 /* Get utilization at dequeue */ 4915 dequeued = task_util(p); 4916 4917 /* 4918 * Reset EWMA on utilization increases, the moving average is used only 4919 * to smooth utilization decreases. 4920 */ 4921 if (ewma <= dequeued) { 4922 ewma = dequeued; 4923 goto done; 4924 } 4925 4926 /* 4927 * Skip update of task's estimated utilization when its members are 4928 * already ~1% close to its last activation value. 4929 */ 4930 last_ewma_diff = ewma - dequeued; 4931 if (last_ewma_diff < UTIL_EST_MARGIN) 4932 goto done; 4933 4934 /* 4935 * To avoid overestimation of actual task utilization, skip updates if 4936 * we cannot grant there is idle time in this CPU. 4937 */ 4938 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)))) 4939 return; 4940 4941 /* 4942 * To avoid underestimate of task utilization, skip updates of EWMA if 4943 * we cannot grant that thread got all CPU time it wanted. 4944 */ 4945 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 4946 goto done; 4947 4948 4949 /* 4950 * Update Task's estimated utilization 4951 * 4952 * When *p completes an activation we can consolidate another sample 4953 * of the task size. This is done by using this value to update the 4954 * Exponential Weighted Moving Average (EWMA): 4955 * 4956 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4957 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4958 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4959 * = w * ( -last_ewma_diff ) + ewma(t-1) 4960 * = w * (-last_ewma_diff + ewma(t-1) / w) 4961 * 4962 * Where 'w' is the weight of new samples, which is configured to be 4963 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4964 */ 4965 ewma <<= UTIL_EST_WEIGHT_SHIFT; 4966 ewma -= last_ewma_diff; 4967 ewma >>= UTIL_EST_WEIGHT_SHIFT; 4968 done: 4969 ewma |= UTIL_AVG_UNCHANGED; 4970 WRITE_ONCE(p->se.avg.util_est, ewma); 4971 4972 trace_sched_util_est_se_tp(&p->se); 4973 } 4974 4975 static inline unsigned long get_actual_cpu_capacity(int cpu) 4976 { 4977 unsigned long capacity = arch_scale_cpu_capacity(cpu); 4978 4979 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 4980 4981 return capacity; 4982 } 4983 4984 static inline int util_fits_cpu(unsigned long util, 4985 unsigned long uclamp_min, 4986 unsigned long uclamp_max, 4987 int cpu) 4988 { 4989 unsigned long capacity = capacity_of(cpu); 4990 unsigned long capacity_orig; 4991 bool fits, uclamp_max_fits; 4992 4993 /* 4994 * Check if the real util fits without any uclamp boost/cap applied. 4995 */ 4996 fits = fits_capacity(util, capacity); 4997 4998 if (!uclamp_is_used()) 4999 return fits; 5000 5001 /* 5002 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 5003 * uclamp_max. We only care about capacity pressure (by using 5004 * capacity_of()) for comparing against the real util. 5005 * 5006 * If a task is boosted to 1024 for example, we don't want a tiny 5007 * pressure to skew the check whether it fits a CPU or not. 5008 * 5009 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 5010 * should fit a little cpu even if there's some pressure. 5011 * 5012 * Only exception is for HW or cpufreq pressure since it has a direct impact 5013 * on available OPP of the system. 5014 * 5015 * We honour it for uclamp_min only as a drop in performance level 5016 * could result in not getting the requested minimum performance level. 5017 * 5018 * For uclamp_max, we can tolerate a drop in performance level as the 5019 * goal is to cap the task. So it's okay if it's getting less. 5020 */ 5021 capacity_orig = arch_scale_cpu_capacity(cpu); 5022 5023 /* 5024 * We want to force a task to fit a cpu as implied by uclamp_max. 5025 * But we do have some corner cases to cater for.. 5026 * 5027 * 5028 * C=z 5029 * | ___ 5030 * | C=y | | 5031 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5032 * | C=x | | | | 5033 * | ___ | | | | 5034 * | | | | | | | (util somewhere in this region) 5035 * | | | | | | | 5036 * | | | | | | | 5037 * +---------------------------------------- 5038 * CPU0 CPU1 CPU2 5039 * 5040 * In the above example if a task is capped to a specific performance 5041 * point, y, then when: 5042 * 5043 * * util = 80% of x then it does not fit on CPU0 and should migrate 5044 * to CPU1 5045 * * util = 80% of y then it is forced to fit on CPU1 to honour 5046 * uclamp_max request. 5047 * 5048 * which is what we're enforcing here. A task always fits if 5049 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5050 * the normal upmigration rules should withhold still. 5051 * 5052 * Only exception is when we are on max capacity, then we need to be 5053 * careful not to block overutilized state. This is so because: 5054 * 5055 * 1. There's no concept of capping at max_capacity! We can't go 5056 * beyond this performance level anyway. 5057 * 2. The system is being saturated when we're operating near 5058 * max capacity, it doesn't make sense to block overutilized. 5059 */ 5060 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5061 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5062 fits = fits || uclamp_max_fits; 5063 5064 /* 5065 * 5066 * C=z 5067 * | ___ (region a, capped, util >= uclamp_max) 5068 * | C=y | | 5069 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5070 * | C=x | | | | 5071 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5072 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5073 * | | | | | | | 5074 * | | | | | | | (region c, boosted, util < uclamp_min) 5075 * +---------------------------------------- 5076 * CPU0 CPU1 CPU2 5077 * 5078 * a) If util > uclamp_max, then we're capped, we don't care about 5079 * actual fitness value here. We only care if uclamp_max fits 5080 * capacity without taking margin/pressure into account. 5081 * See comment above. 5082 * 5083 * b) If uclamp_min <= util <= uclamp_max, then the normal 5084 * fits_capacity() rules apply. Except we need to ensure that we 5085 * enforce we remain within uclamp_max, see comment above. 5086 * 5087 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5088 * need to take into account the boosted value fits the CPU without 5089 * taking margin/pressure into account. 5090 * 5091 * Cases (a) and (b) are handled in the 'fits' variable already. We 5092 * just need to consider an extra check for case (c) after ensuring we 5093 * handle the case uclamp_min > uclamp_max. 5094 */ 5095 uclamp_min = min(uclamp_min, uclamp_max); 5096 if (fits && (util < uclamp_min) && 5097 (uclamp_min > get_actual_cpu_capacity(cpu))) 5098 return -1; 5099 5100 return fits; 5101 } 5102 5103 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5104 { 5105 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5106 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5107 unsigned long util = task_util_est(p); 5108 /* 5109 * Return true only if the cpu fully fits the task requirements, which 5110 * include the utilization but also the performance hints. 5111 */ 5112 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5113 } 5114 5115 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5116 { 5117 int cpu = cpu_of(rq); 5118 5119 if (!sched_asym_cpucap_active()) 5120 return; 5121 5122 /* 5123 * Affinity allows us to go somewhere higher? Or are we on biggest 5124 * available CPU already? Or do we fit into this CPU ? 5125 */ 5126 if (!p || (p->nr_cpus_allowed == 1) || 5127 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5128 task_fits_cpu(p, cpu)) { 5129 5130 rq->misfit_task_load = 0; 5131 return; 5132 } 5133 5134 /* 5135 * Make sure that misfit_task_load will not be null even if 5136 * task_h_load() returns 0. 5137 */ 5138 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5139 } 5140 5141 #else /* CONFIG_SMP */ 5142 5143 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5144 { 5145 return !cfs_rq->nr_running; 5146 } 5147 5148 #define UPDATE_TG 0x0 5149 #define SKIP_AGE_LOAD 0x0 5150 #define DO_ATTACH 0x0 5151 #define DO_DETACH 0x0 5152 5153 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5154 { 5155 cfs_rq_util_change(cfs_rq, 0); 5156 } 5157 5158 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5159 5160 static inline void 5161 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5162 static inline void 5163 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5164 5165 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf) 5166 { 5167 return 0; 5168 } 5169 5170 static inline void 5171 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5172 5173 static inline void 5174 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5175 5176 static inline void 5177 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5178 bool task_sleep) {} 5179 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5180 5181 #endif /* CONFIG_SMP */ 5182 5183 static void 5184 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5185 { 5186 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5187 s64 lag = 0; 5188 5189 se->slice = sysctl_sched_base_slice; 5190 vslice = calc_delta_fair(se->slice, se); 5191 5192 /* 5193 * Due to how V is constructed as the weighted average of entities, 5194 * adding tasks with positive lag, or removing tasks with negative lag 5195 * will move 'time' backwards, this can screw around with the lag of 5196 * other tasks. 5197 * 5198 * EEVDF: placement strategy #1 / #2 5199 */ 5200 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) { 5201 struct sched_entity *curr = cfs_rq->curr; 5202 unsigned long load; 5203 5204 lag = se->vlag; 5205 5206 /* 5207 * If we want to place a task and preserve lag, we have to 5208 * consider the effect of the new entity on the weighted 5209 * average and compensate for this, otherwise lag can quickly 5210 * evaporate. 5211 * 5212 * Lag is defined as: 5213 * 5214 * lag_i = S - s_i = w_i * (V - v_i) 5215 * 5216 * To avoid the 'w_i' term all over the place, we only track 5217 * the virtual lag: 5218 * 5219 * vl_i = V - v_i <=> v_i = V - vl_i 5220 * 5221 * And we take V to be the weighted average of all v: 5222 * 5223 * V = (\Sum w_j*v_j) / W 5224 * 5225 * Where W is: \Sum w_j 5226 * 5227 * Then, the weighted average after adding an entity with lag 5228 * vl_i is given by: 5229 * 5230 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5231 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5232 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5233 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5234 * = V - w_i*vl_i / (W + w_i) 5235 * 5236 * And the actual lag after adding an entity with vl_i is: 5237 * 5238 * vl'_i = V' - v_i 5239 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5240 * = vl_i - w_i*vl_i / (W + w_i) 5241 * 5242 * Which is strictly less than vl_i. So in order to preserve lag 5243 * we should inflate the lag before placement such that the 5244 * effective lag after placement comes out right. 5245 * 5246 * As such, invert the above relation for vl'_i to get the vl_i 5247 * we need to use such that the lag after placement is the lag 5248 * we computed before dequeue. 5249 * 5250 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5251 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5252 * 5253 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5254 * = W*vl_i 5255 * 5256 * vl_i = (W + w_i)*vl'_i / W 5257 */ 5258 load = cfs_rq->avg_load; 5259 if (curr && curr->on_rq) 5260 load += scale_load_down(curr->load.weight); 5261 5262 lag *= load + scale_load_down(se->load.weight); 5263 if (WARN_ON_ONCE(!load)) 5264 load = 1; 5265 lag = div_s64(lag, load); 5266 } 5267 5268 se->vruntime = vruntime - lag; 5269 5270 /* 5271 * When joining the competition; the existing tasks will be, 5272 * on average, halfway through their slice, as such start tasks 5273 * off with half a slice to ease into the competition. 5274 */ 5275 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5276 vslice /= 2; 5277 5278 /* 5279 * EEVDF: vd_i = ve_i + r_i/w_i 5280 */ 5281 se->deadline = se->vruntime + vslice; 5282 } 5283 5284 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5285 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5286 5287 static inline bool cfs_bandwidth_used(void); 5288 5289 static void 5290 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5291 { 5292 bool curr = cfs_rq->curr == se; 5293 5294 /* 5295 * If we're the current task, we must renormalise before calling 5296 * update_curr(). 5297 */ 5298 if (curr) 5299 place_entity(cfs_rq, se, flags); 5300 5301 update_curr(cfs_rq); 5302 5303 /* 5304 * When enqueuing a sched_entity, we must: 5305 * - Update loads to have both entity and cfs_rq synced with now. 5306 * - For group_entity, update its runnable_weight to reflect the new 5307 * h_nr_running of its group cfs_rq. 5308 * - For group_entity, update its weight to reflect the new share of 5309 * its group cfs_rq 5310 * - Add its new weight to cfs_rq->load.weight 5311 */ 5312 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5313 se_update_runnable(se); 5314 /* 5315 * XXX update_load_avg() above will have attached us to the pelt sum; 5316 * but update_cfs_group() here will re-adjust the weight and have to 5317 * undo/redo all that. Seems wasteful. 5318 */ 5319 update_cfs_group(se); 5320 5321 /* 5322 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5323 * we can place the entity. 5324 */ 5325 if (!curr) 5326 place_entity(cfs_rq, se, flags); 5327 5328 account_entity_enqueue(cfs_rq, se); 5329 5330 /* Entity has migrated, no longer consider this task hot */ 5331 if (flags & ENQUEUE_MIGRATED) 5332 se->exec_start = 0; 5333 5334 check_schedstat_required(); 5335 update_stats_enqueue_fair(cfs_rq, se, flags); 5336 if (!curr) 5337 __enqueue_entity(cfs_rq, se); 5338 se->on_rq = 1; 5339 5340 if (cfs_rq->nr_running == 1) { 5341 check_enqueue_throttle(cfs_rq); 5342 if (!throttled_hierarchy(cfs_rq)) { 5343 list_add_leaf_cfs_rq(cfs_rq); 5344 } else { 5345 #ifdef CONFIG_CFS_BANDWIDTH 5346 struct rq *rq = rq_of(cfs_rq); 5347 5348 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5349 cfs_rq->throttled_clock = rq_clock(rq); 5350 if (!cfs_rq->throttled_clock_self) 5351 cfs_rq->throttled_clock_self = rq_clock(rq); 5352 #endif 5353 } 5354 } 5355 } 5356 5357 static void __clear_buddies_next(struct sched_entity *se) 5358 { 5359 for_each_sched_entity(se) { 5360 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5361 if (cfs_rq->next != se) 5362 break; 5363 5364 cfs_rq->next = NULL; 5365 } 5366 } 5367 5368 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5369 { 5370 if (cfs_rq->next == se) 5371 __clear_buddies_next(se); 5372 } 5373 5374 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5375 5376 static void 5377 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5378 { 5379 int action = UPDATE_TG; 5380 5381 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5382 action |= DO_DETACH; 5383 5384 /* 5385 * Update run-time statistics of the 'current'. 5386 */ 5387 update_curr(cfs_rq); 5388 5389 /* 5390 * When dequeuing a sched_entity, we must: 5391 * - Update loads to have both entity and cfs_rq synced with now. 5392 * - For group_entity, update its runnable_weight to reflect the new 5393 * h_nr_running of its group cfs_rq. 5394 * - Subtract its previous weight from cfs_rq->load.weight. 5395 * - For group entity, update its weight to reflect the new share 5396 * of its group cfs_rq. 5397 */ 5398 update_load_avg(cfs_rq, se, action); 5399 se_update_runnable(se); 5400 5401 update_stats_dequeue_fair(cfs_rq, se, flags); 5402 5403 clear_buddies(cfs_rq, se); 5404 5405 update_entity_lag(cfs_rq, se); 5406 if (se != cfs_rq->curr) 5407 __dequeue_entity(cfs_rq, se); 5408 se->on_rq = 0; 5409 account_entity_dequeue(cfs_rq, se); 5410 5411 /* return excess runtime on last dequeue */ 5412 return_cfs_rq_runtime(cfs_rq); 5413 5414 update_cfs_group(se); 5415 5416 /* 5417 * Now advance min_vruntime if @se was the entity holding it back, 5418 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5419 * put back on, and if we advance min_vruntime, we'll be placed back 5420 * further than we started -- i.e. we'll be penalized. 5421 */ 5422 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5423 update_min_vruntime(cfs_rq); 5424 5425 if (cfs_rq->nr_running == 0) 5426 update_idle_cfs_rq_clock_pelt(cfs_rq); 5427 } 5428 5429 static void 5430 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5431 { 5432 clear_buddies(cfs_rq, se); 5433 5434 /* 'current' is not kept within the tree. */ 5435 if (se->on_rq) { 5436 /* 5437 * Any task has to be enqueued before it get to execute on 5438 * a CPU. So account for the time it spent waiting on the 5439 * runqueue. 5440 */ 5441 update_stats_wait_end_fair(cfs_rq, se); 5442 __dequeue_entity(cfs_rq, se); 5443 update_load_avg(cfs_rq, se, UPDATE_TG); 5444 /* 5445 * HACK, stash a copy of deadline at the point of pick in vlag, 5446 * which isn't used until dequeue. 5447 */ 5448 se->vlag = se->deadline; 5449 } 5450 5451 update_stats_curr_start(cfs_rq, se); 5452 cfs_rq->curr = se; 5453 5454 /* 5455 * Track our maximum slice length, if the CPU's load is at 5456 * least twice that of our own weight (i.e. don't track it 5457 * when there are only lesser-weight tasks around): 5458 */ 5459 if (schedstat_enabled() && 5460 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5461 struct sched_statistics *stats; 5462 5463 stats = __schedstats_from_se(se); 5464 __schedstat_set(stats->slice_max, 5465 max((u64)stats->slice_max, 5466 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5467 } 5468 5469 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5470 } 5471 5472 /* 5473 * Pick the next process, keeping these things in mind, in this order: 5474 * 1) keep things fair between processes/task groups 5475 * 2) pick the "next" process, since someone really wants that to run 5476 * 3) pick the "last" process, for cache locality 5477 * 4) do not run the "skip" process, if something else is available 5478 */ 5479 static struct sched_entity * 5480 pick_next_entity(struct cfs_rq *cfs_rq) 5481 { 5482 /* 5483 * Enabling NEXT_BUDDY will affect latency but not fairness. 5484 */ 5485 if (sched_feat(NEXT_BUDDY) && 5486 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) 5487 return cfs_rq->next; 5488 5489 return pick_eevdf(cfs_rq); 5490 } 5491 5492 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5493 5494 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5495 { 5496 /* 5497 * If still on the runqueue then deactivate_task() 5498 * was not called and update_curr() has to be done: 5499 */ 5500 if (prev->on_rq) 5501 update_curr(cfs_rq); 5502 5503 /* throttle cfs_rqs exceeding runtime */ 5504 check_cfs_rq_runtime(cfs_rq); 5505 5506 if (prev->on_rq) { 5507 update_stats_wait_start_fair(cfs_rq, prev); 5508 /* Put 'current' back into the tree. */ 5509 __enqueue_entity(cfs_rq, prev); 5510 /* in !on_rq case, update occurred at dequeue */ 5511 update_load_avg(cfs_rq, prev, 0); 5512 } 5513 cfs_rq->curr = NULL; 5514 } 5515 5516 static void 5517 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5518 { 5519 /* 5520 * Update run-time statistics of the 'current'. 5521 */ 5522 update_curr(cfs_rq); 5523 5524 /* 5525 * Ensure that runnable average is periodically updated. 5526 */ 5527 update_load_avg(cfs_rq, curr, UPDATE_TG); 5528 update_cfs_group(curr); 5529 5530 #ifdef CONFIG_SCHED_HRTICK 5531 /* 5532 * queued ticks are scheduled to match the slice, so don't bother 5533 * validating it and just reschedule. 5534 */ 5535 if (queued) { 5536 resched_curr(rq_of(cfs_rq)); 5537 return; 5538 } 5539 /* 5540 * don't let the period tick interfere with the hrtick preemption 5541 */ 5542 if (!sched_feat(DOUBLE_TICK) && 5543 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5544 return; 5545 #endif 5546 } 5547 5548 5549 /************************************************** 5550 * CFS bandwidth control machinery 5551 */ 5552 5553 #ifdef CONFIG_CFS_BANDWIDTH 5554 5555 #ifdef CONFIG_JUMP_LABEL 5556 static struct static_key __cfs_bandwidth_used; 5557 5558 static inline bool cfs_bandwidth_used(void) 5559 { 5560 return static_key_false(&__cfs_bandwidth_used); 5561 } 5562 5563 void cfs_bandwidth_usage_inc(void) 5564 { 5565 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5566 } 5567 5568 void cfs_bandwidth_usage_dec(void) 5569 { 5570 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5571 } 5572 #else /* CONFIG_JUMP_LABEL */ 5573 static bool cfs_bandwidth_used(void) 5574 { 5575 return true; 5576 } 5577 5578 void cfs_bandwidth_usage_inc(void) {} 5579 void cfs_bandwidth_usage_dec(void) {} 5580 #endif /* CONFIG_JUMP_LABEL */ 5581 5582 /* 5583 * default period for cfs group bandwidth. 5584 * default: 0.1s, units: nanoseconds 5585 */ 5586 static inline u64 default_cfs_period(void) 5587 { 5588 return 100000000ULL; 5589 } 5590 5591 static inline u64 sched_cfs_bandwidth_slice(void) 5592 { 5593 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5594 } 5595 5596 /* 5597 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5598 * directly instead of rq->clock to avoid adding additional synchronization 5599 * around rq->lock. 5600 * 5601 * requires cfs_b->lock 5602 */ 5603 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5604 { 5605 s64 runtime; 5606 5607 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5608 return; 5609 5610 cfs_b->runtime += cfs_b->quota; 5611 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5612 if (runtime > 0) { 5613 cfs_b->burst_time += runtime; 5614 cfs_b->nr_burst++; 5615 } 5616 5617 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5618 cfs_b->runtime_snap = cfs_b->runtime; 5619 } 5620 5621 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5622 { 5623 return &tg->cfs_bandwidth; 5624 } 5625 5626 /* returns 0 on failure to allocate runtime */ 5627 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5628 struct cfs_rq *cfs_rq, u64 target_runtime) 5629 { 5630 u64 min_amount, amount = 0; 5631 5632 lockdep_assert_held(&cfs_b->lock); 5633 5634 /* note: this is a positive sum as runtime_remaining <= 0 */ 5635 min_amount = target_runtime - cfs_rq->runtime_remaining; 5636 5637 if (cfs_b->quota == RUNTIME_INF) 5638 amount = min_amount; 5639 else { 5640 start_cfs_bandwidth(cfs_b); 5641 5642 if (cfs_b->runtime > 0) { 5643 amount = min(cfs_b->runtime, min_amount); 5644 cfs_b->runtime -= amount; 5645 cfs_b->idle = 0; 5646 } 5647 } 5648 5649 cfs_rq->runtime_remaining += amount; 5650 5651 return cfs_rq->runtime_remaining > 0; 5652 } 5653 5654 /* returns 0 on failure to allocate runtime */ 5655 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5656 { 5657 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5658 int ret; 5659 5660 raw_spin_lock(&cfs_b->lock); 5661 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5662 raw_spin_unlock(&cfs_b->lock); 5663 5664 return ret; 5665 } 5666 5667 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5668 { 5669 /* dock delta_exec before expiring quota (as it could span periods) */ 5670 cfs_rq->runtime_remaining -= delta_exec; 5671 5672 if (likely(cfs_rq->runtime_remaining > 0)) 5673 return; 5674 5675 if (cfs_rq->throttled) 5676 return; 5677 /* 5678 * if we're unable to extend our runtime we resched so that the active 5679 * hierarchy can be throttled 5680 */ 5681 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5682 resched_curr(rq_of(cfs_rq)); 5683 } 5684 5685 static __always_inline 5686 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5687 { 5688 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5689 return; 5690 5691 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5692 } 5693 5694 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5695 { 5696 return cfs_bandwidth_used() && cfs_rq->throttled; 5697 } 5698 5699 /* check whether cfs_rq, or any parent, is throttled */ 5700 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5701 { 5702 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5703 } 5704 5705 /* 5706 * Ensure that neither of the group entities corresponding to src_cpu or 5707 * dest_cpu are members of a throttled hierarchy when performing group 5708 * load-balance operations. 5709 */ 5710 static inline int throttled_lb_pair(struct task_group *tg, 5711 int src_cpu, int dest_cpu) 5712 { 5713 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5714 5715 src_cfs_rq = tg->cfs_rq[src_cpu]; 5716 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5717 5718 return throttled_hierarchy(src_cfs_rq) || 5719 throttled_hierarchy(dest_cfs_rq); 5720 } 5721 5722 static int tg_unthrottle_up(struct task_group *tg, void *data) 5723 { 5724 struct rq *rq = data; 5725 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5726 5727 cfs_rq->throttle_count--; 5728 if (!cfs_rq->throttle_count) { 5729 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5730 cfs_rq->throttled_clock_pelt; 5731 5732 /* Add cfs_rq with load or one or more already running entities to the list */ 5733 if (!cfs_rq_is_decayed(cfs_rq)) 5734 list_add_leaf_cfs_rq(cfs_rq); 5735 5736 if (cfs_rq->throttled_clock_self) { 5737 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5738 5739 cfs_rq->throttled_clock_self = 0; 5740 5741 if (SCHED_WARN_ON((s64)delta < 0)) 5742 delta = 0; 5743 5744 cfs_rq->throttled_clock_self_time += delta; 5745 } 5746 } 5747 5748 return 0; 5749 } 5750 5751 static int tg_throttle_down(struct task_group *tg, void *data) 5752 { 5753 struct rq *rq = data; 5754 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5755 5756 /* group is entering throttled state, stop time */ 5757 if (!cfs_rq->throttle_count) { 5758 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5759 list_del_leaf_cfs_rq(cfs_rq); 5760 5761 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5762 if (cfs_rq->nr_running) 5763 cfs_rq->throttled_clock_self = rq_clock(rq); 5764 } 5765 cfs_rq->throttle_count++; 5766 5767 return 0; 5768 } 5769 5770 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5771 { 5772 struct rq *rq = rq_of(cfs_rq); 5773 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5774 struct sched_entity *se; 5775 long task_delta, idle_task_delta, dequeue = 1; 5776 5777 raw_spin_lock(&cfs_b->lock); 5778 /* This will start the period timer if necessary */ 5779 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5780 /* 5781 * We have raced with bandwidth becoming available, and if we 5782 * actually throttled the timer might not unthrottle us for an 5783 * entire period. We additionally needed to make sure that any 5784 * subsequent check_cfs_rq_runtime calls agree not to throttle 5785 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5786 * for 1ns of runtime rather than just check cfs_b. 5787 */ 5788 dequeue = 0; 5789 } else { 5790 list_add_tail_rcu(&cfs_rq->throttled_list, 5791 &cfs_b->throttled_cfs_rq); 5792 } 5793 raw_spin_unlock(&cfs_b->lock); 5794 5795 if (!dequeue) 5796 return false; /* Throttle no longer required. */ 5797 5798 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5799 5800 /* freeze hierarchy runnable averages while throttled */ 5801 rcu_read_lock(); 5802 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5803 rcu_read_unlock(); 5804 5805 task_delta = cfs_rq->h_nr_running; 5806 idle_task_delta = cfs_rq->idle_h_nr_running; 5807 for_each_sched_entity(se) { 5808 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5809 /* throttled entity or throttle-on-deactivate */ 5810 if (!se->on_rq) 5811 goto done; 5812 5813 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5814 5815 if (cfs_rq_is_idle(group_cfs_rq(se))) 5816 idle_task_delta = cfs_rq->h_nr_running; 5817 5818 qcfs_rq->h_nr_running -= task_delta; 5819 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5820 5821 if (qcfs_rq->load.weight) { 5822 /* Avoid re-evaluating load for this entity: */ 5823 se = parent_entity(se); 5824 break; 5825 } 5826 } 5827 5828 for_each_sched_entity(se) { 5829 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5830 /* throttled entity or throttle-on-deactivate */ 5831 if (!se->on_rq) 5832 goto done; 5833 5834 update_load_avg(qcfs_rq, se, 0); 5835 se_update_runnable(se); 5836 5837 if (cfs_rq_is_idle(group_cfs_rq(se))) 5838 idle_task_delta = cfs_rq->h_nr_running; 5839 5840 qcfs_rq->h_nr_running -= task_delta; 5841 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5842 } 5843 5844 /* At this point se is NULL and we are at root level*/ 5845 sub_nr_running(rq, task_delta); 5846 5847 done: 5848 /* 5849 * Note: distribution will already see us throttled via the 5850 * throttled-list. rq->lock protects completion. 5851 */ 5852 cfs_rq->throttled = 1; 5853 SCHED_WARN_ON(cfs_rq->throttled_clock); 5854 if (cfs_rq->nr_running) 5855 cfs_rq->throttled_clock = rq_clock(rq); 5856 return true; 5857 } 5858 5859 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5860 { 5861 struct rq *rq = rq_of(cfs_rq); 5862 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5863 struct sched_entity *se; 5864 long task_delta, idle_task_delta; 5865 5866 se = cfs_rq->tg->se[cpu_of(rq)]; 5867 5868 cfs_rq->throttled = 0; 5869 5870 update_rq_clock(rq); 5871 5872 raw_spin_lock(&cfs_b->lock); 5873 if (cfs_rq->throttled_clock) { 5874 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5875 cfs_rq->throttled_clock = 0; 5876 } 5877 list_del_rcu(&cfs_rq->throttled_list); 5878 raw_spin_unlock(&cfs_b->lock); 5879 5880 /* update hierarchical throttle state */ 5881 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5882 5883 if (!cfs_rq->load.weight) { 5884 if (!cfs_rq->on_list) 5885 return; 5886 /* 5887 * Nothing to run but something to decay (on_list)? 5888 * Complete the branch. 5889 */ 5890 for_each_sched_entity(se) { 5891 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5892 break; 5893 } 5894 goto unthrottle_throttle; 5895 } 5896 5897 task_delta = cfs_rq->h_nr_running; 5898 idle_task_delta = cfs_rq->idle_h_nr_running; 5899 for_each_sched_entity(se) { 5900 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5901 5902 if (se->on_rq) 5903 break; 5904 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5905 5906 if (cfs_rq_is_idle(group_cfs_rq(se))) 5907 idle_task_delta = cfs_rq->h_nr_running; 5908 5909 qcfs_rq->h_nr_running += task_delta; 5910 qcfs_rq->idle_h_nr_running += idle_task_delta; 5911 5912 /* end evaluation on encountering a throttled cfs_rq */ 5913 if (cfs_rq_throttled(qcfs_rq)) 5914 goto unthrottle_throttle; 5915 } 5916 5917 for_each_sched_entity(se) { 5918 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5919 5920 update_load_avg(qcfs_rq, se, UPDATE_TG); 5921 se_update_runnable(se); 5922 5923 if (cfs_rq_is_idle(group_cfs_rq(se))) 5924 idle_task_delta = cfs_rq->h_nr_running; 5925 5926 qcfs_rq->h_nr_running += task_delta; 5927 qcfs_rq->idle_h_nr_running += idle_task_delta; 5928 5929 /* end evaluation on encountering a throttled cfs_rq */ 5930 if (cfs_rq_throttled(qcfs_rq)) 5931 goto unthrottle_throttle; 5932 } 5933 5934 /* At this point se is NULL and we are at root level*/ 5935 add_nr_running(rq, task_delta); 5936 5937 unthrottle_throttle: 5938 assert_list_leaf_cfs_rq(rq); 5939 5940 /* Determine whether we need to wake up potentially idle CPU: */ 5941 if (rq->curr == rq->idle && rq->cfs.nr_running) 5942 resched_curr(rq); 5943 } 5944 5945 #ifdef CONFIG_SMP 5946 static void __cfsb_csd_unthrottle(void *arg) 5947 { 5948 struct cfs_rq *cursor, *tmp; 5949 struct rq *rq = arg; 5950 struct rq_flags rf; 5951 5952 rq_lock(rq, &rf); 5953 5954 /* 5955 * Iterating over the list can trigger several call to 5956 * update_rq_clock() in unthrottle_cfs_rq(). 5957 * Do it once and skip the potential next ones. 5958 */ 5959 update_rq_clock(rq); 5960 rq_clock_start_loop_update(rq); 5961 5962 /* 5963 * Since we hold rq lock we're safe from concurrent manipulation of 5964 * the CSD list. However, this RCU critical section annotates the 5965 * fact that we pair with sched_free_group_rcu(), so that we cannot 5966 * race with group being freed in the window between removing it 5967 * from the list and advancing to the next entry in the list. 5968 */ 5969 rcu_read_lock(); 5970 5971 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 5972 throttled_csd_list) { 5973 list_del_init(&cursor->throttled_csd_list); 5974 5975 if (cfs_rq_throttled(cursor)) 5976 unthrottle_cfs_rq(cursor); 5977 } 5978 5979 rcu_read_unlock(); 5980 5981 rq_clock_stop_loop_update(rq); 5982 rq_unlock(rq, &rf); 5983 } 5984 5985 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5986 { 5987 struct rq *rq = rq_of(cfs_rq); 5988 bool first; 5989 5990 if (rq == this_rq()) { 5991 unthrottle_cfs_rq(cfs_rq); 5992 return; 5993 } 5994 5995 /* Already enqueued */ 5996 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 5997 return; 5998 5999 first = list_empty(&rq->cfsb_csd_list); 6000 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 6001 if (first) 6002 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 6003 } 6004 #else 6005 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6006 { 6007 unthrottle_cfs_rq(cfs_rq); 6008 } 6009 #endif 6010 6011 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6012 { 6013 lockdep_assert_rq_held(rq_of(cfs_rq)); 6014 6015 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 6016 cfs_rq->runtime_remaining <= 0)) 6017 return; 6018 6019 __unthrottle_cfs_rq_async(cfs_rq); 6020 } 6021 6022 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6023 { 6024 int this_cpu = smp_processor_id(); 6025 u64 runtime, remaining = 1; 6026 bool throttled = false; 6027 struct cfs_rq *cfs_rq, *tmp; 6028 struct rq_flags rf; 6029 struct rq *rq; 6030 LIST_HEAD(local_unthrottle); 6031 6032 rcu_read_lock(); 6033 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6034 throttled_list) { 6035 rq = rq_of(cfs_rq); 6036 6037 if (!remaining) { 6038 throttled = true; 6039 break; 6040 } 6041 6042 rq_lock_irqsave(rq, &rf); 6043 if (!cfs_rq_throttled(cfs_rq)) 6044 goto next; 6045 6046 /* Already queued for async unthrottle */ 6047 if (!list_empty(&cfs_rq->throttled_csd_list)) 6048 goto next; 6049 6050 /* By the above checks, this should never be true */ 6051 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 6052 6053 raw_spin_lock(&cfs_b->lock); 6054 runtime = -cfs_rq->runtime_remaining + 1; 6055 if (runtime > cfs_b->runtime) 6056 runtime = cfs_b->runtime; 6057 cfs_b->runtime -= runtime; 6058 remaining = cfs_b->runtime; 6059 raw_spin_unlock(&cfs_b->lock); 6060 6061 cfs_rq->runtime_remaining += runtime; 6062 6063 /* we check whether we're throttled above */ 6064 if (cfs_rq->runtime_remaining > 0) { 6065 if (cpu_of(rq) != this_cpu) { 6066 unthrottle_cfs_rq_async(cfs_rq); 6067 } else { 6068 /* 6069 * We currently only expect to be unthrottling 6070 * a single cfs_rq locally. 6071 */ 6072 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6073 list_add_tail(&cfs_rq->throttled_csd_list, 6074 &local_unthrottle); 6075 } 6076 } else { 6077 throttled = true; 6078 } 6079 6080 next: 6081 rq_unlock_irqrestore(rq, &rf); 6082 } 6083 6084 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6085 throttled_csd_list) { 6086 struct rq *rq = rq_of(cfs_rq); 6087 6088 rq_lock_irqsave(rq, &rf); 6089 6090 list_del_init(&cfs_rq->throttled_csd_list); 6091 6092 if (cfs_rq_throttled(cfs_rq)) 6093 unthrottle_cfs_rq(cfs_rq); 6094 6095 rq_unlock_irqrestore(rq, &rf); 6096 } 6097 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6098 6099 rcu_read_unlock(); 6100 6101 return throttled; 6102 } 6103 6104 /* 6105 * Responsible for refilling a task_group's bandwidth and unthrottling its 6106 * cfs_rqs as appropriate. If there has been no activity within the last 6107 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6108 * used to track this state. 6109 */ 6110 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6111 { 6112 int throttled; 6113 6114 /* no need to continue the timer with no bandwidth constraint */ 6115 if (cfs_b->quota == RUNTIME_INF) 6116 goto out_deactivate; 6117 6118 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6119 cfs_b->nr_periods += overrun; 6120 6121 /* Refill extra burst quota even if cfs_b->idle */ 6122 __refill_cfs_bandwidth_runtime(cfs_b); 6123 6124 /* 6125 * idle depends on !throttled (for the case of a large deficit), and if 6126 * we're going inactive then everything else can be deferred 6127 */ 6128 if (cfs_b->idle && !throttled) 6129 goto out_deactivate; 6130 6131 if (!throttled) { 6132 /* mark as potentially idle for the upcoming period */ 6133 cfs_b->idle = 1; 6134 return 0; 6135 } 6136 6137 /* account preceding periods in which throttling occurred */ 6138 cfs_b->nr_throttled += overrun; 6139 6140 /* 6141 * This check is repeated as we release cfs_b->lock while we unthrottle. 6142 */ 6143 while (throttled && cfs_b->runtime > 0) { 6144 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6145 /* we can't nest cfs_b->lock while distributing bandwidth */ 6146 throttled = distribute_cfs_runtime(cfs_b); 6147 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6148 } 6149 6150 /* 6151 * While we are ensured activity in the period following an 6152 * unthrottle, this also covers the case in which the new bandwidth is 6153 * insufficient to cover the existing bandwidth deficit. (Forcing the 6154 * timer to remain active while there are any throttled entities.) 6155 */ 6156 cfs_b->idle = 0; 6157 6158 return 0; 6159 6160 out_deactivate: 6161 return 1; 6162 } 6163 6164 /* a cfs_rq won't donate quota below this amount */ 6165 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6166 /* minimum remaining period time to redistribute slack quota */ 6167 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6168 /* how long we wait to gather additional slack before distributing */ 6169 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6170 6171 /* 6172 * Are we near the end of the current quota period? 6173 * 6174 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6175 * hrtimer base being cleared by hrtimer_start. In the case of 6176 * migrate_hrtimers, base is never cleared, so we are fine. 6177 */ 6178 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6179 { 6180 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6181 s64 remaining; 6182 6183 /* if the call-back is running a quota refresh is already occurring */ 6184 if (hrtimer_callback_running(refresh_timer)) 6185 return 1; 6186 6187 /* is a quota refresh about to occur? */ 6188 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6189 if (remaining < (s64)min_expire) 6190 return 1; 6191 6192 return 0; 6193 } 6194 6195 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6196 { 6197 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6198 6199 /* if there's a quota refresh soon don't bother with slack */ 6200 if (runtime_refresh_within(cfs_b, min_left)) 6201 return; 6202 6203 /* don't push forwards an existing deferred unthrottle */ 6204 if (cfs_b->slack_started) 6205 return; 6206 cfs_b->slack_started = true; 6207 6208 hrtimer_start(&cfs_b->slack_timer, 6209 ns_to_ktime(cfs_bandwidth_slack_period), 6210 HRTIMER_MODE_REL); 6211 } 6212 6213 /* we know any runtime found here is valid as update_curr() precedes return */ 6214 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6215 { 6216 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6217 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6218 6219 if (slack_runtime <= 0) 6220 return; 6221 6222 raw_spin_lock(&cfs_b->lock); 6223 if (cfs_b->quota != RUNTIME_INF) { 6224 cfs_b->runtime += slack_runtime; 6225 6226 /* we are under rq->lock, defer unthrottling using a timer */ 6227 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6228 !list_empty(&cfs_b->throttled_cfs_rq)) 6229 start_cfs_slack_bandwidth(cfs_b); 6230 } 6231 raw_spin_unlock(&cfs_b->lock); 6232 6233 /* even if it's not valid for return we don't want to try again */ 6234 cfs_rq->runtime_remaining -= slack_runtime; 6235 } 6236 6237 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6238 { 6239 if (!cfs_bandwidth_used()) 6240 return; 6241 6242 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 6243 return; 6244 6245 __return_cfs_rq_runtime(cfs_rq); 6246 } 6247 6248 /* 6249 * This is done with a timer (instead of inline with bandwidth return) since 6250 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6251 */ 6252 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6253 { 6254 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6255 unsigned long flags; 6256 6257 /* confirm we're still not at a refresh boundary */ 6258 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6259 cfs_b->slack_started = false; 6260 6261 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6262 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6263 return; 6264 } 6265 6266 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6267 runtime = cfs_b->runtime; 6268 6269 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6270 6271 if (!runtime) 6272 return; 6273 6274 distribute_cfs_runtime(cfs_b); 6275 } 6276 6277 /* 6278 * When a group wakes up we want to make sure that its quota is not already 6279 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6280 * runtime as update_curr() throttling can not trigger until it's on-rq. 6281 */ 6282 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6283 { 6284 if (!cfs_bandwidth_used()) 6285 return; 6286 6287 /* an active group must be handled by the update_curr()->put() path */ 6288 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6289 return; 6290 6291 /* ensure the group is not already throttled */ 6292 if (cfs_rq_throttled(cfs_rq)) 6293 return; 6294 6295 /* update runtime allocation */ 6296 account_cfs_rq_runtime(cfs_rq, 0); 6297 if (cfs_rq->runtime_remaining <= 0) 6298 throttle_cfs_rq(cfs_rq); 6299 } 6300 6301 static void sync_throttle(struct task_group *tg, int cpu) 6302 { 6303 struct cfs_rq *pcfs_rq, *cfs_rq; 6304 6305 if (!cfs_bandwidth_used()) 6306 return; 6307 6308 if (!tg->parent) 6309 return; 6310 6311 cfs_rq = tg->cfs_rq[cpu]; 6312 pcfs_rq = tg->parent->cfs_rq[cpu]; 6313 6314 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6315 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6316 } 6317 6318 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6319 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6320 { 6321 if (!cfs_bandwidth_used()) 6322 return false; 6323 6324 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6325 return false; 6326 6327 /* 6328 * it's possible for a throttled entity to be forced into a running 6329 * state (e.g. set_curr_task), in this case we're finished. 6330 */ 6331 if (cfs_rq_throttled(cfs_rq)) 6332 return true; 6333 6334 return throttle_cfs_rq(cfs_rq); 6335 } 6336 6337 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6338 { 6339 struct cfs_bandwidth *cfs_b = 6340 container_of(timer, struct cfs_bandwidth, slack_timer); 6341 6342 do_sched_cfs_slack_timer(cfs_b); 6343 6344 return HRTIMER_NORESTART; 6345 } 6346 6347 extern const u64 max_cfs_quota_period; 6348 6349 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6350 { 6351 struct cfs_bandwidth *cfs_b = 6352 container_of(timer, struct cfs_bandwidth, period_timer); 6353 unsigned long flags; 6354 int overrun; 6355 int idle = 0; 6356 int count = 0; 6357 6358 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6359 for (;;) { 6360 overrun = hrtimer_forward_now(timer, cfs_b->period); 6361 if (!overrun) 6362 break; 6363 6364 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6365 6366 if (++count > 3) { 6367 u64 new, old = ktime_to_ns(cfs_b->period); 6368 6369 /* 6370 * Grow period by a factor of 2 to avoid losing precision. 6371 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6372 * to fail. 6373 */ 6374 new = old * 2; 6375 if (new < max_cfs_quota_period) { 6376 cfs_b->period = ns_to_ktime(new); 6377 cfs_b->quota *= 2; 6378 cfs_b->burst *= 2; 6379 6380 pr_warn_ratelimited( 6381 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6382 smp_processor_id(), 6383 div_u64(new, NSEC_PER_USEC), 6384 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6385 } else { 6386 pr_warn_ratelimited( 6387 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6388 smp_processor_id(), 6389 div_u64(old, NSEC_PER_USEC), 6390 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6391 } 6392 6393 /* reset count so we don't come right back in here */ 6394 count = 0; 6395 } 6396 } 6397 if (idle) 6398 cfs_b->period_active = 0; 6399 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6400 6401 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6402 } 6403 6404 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6405 { 6406 raw_spin_lock_init(&cfs_b->lock); 6407 cfs_b->runtime = 0; 6408 cfs_b->quota = RUNTIME_INF; 6409 cfs_b->period = ns_to_ktime(default_cfs_period()); 6410 cfs_b->burst = 0; 6411 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6412 6413 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6414 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6415 cfs_b->period_timer.function = sched_cfs_period_timer; 6416 6417 /* Add a random offset so that timers interleave */ 6418 hrtimer_set_expires(&cfs_b->period_timer, 6419 get_random_u32_below(cfs_b->period)); 6420 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6421 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6422 cfs_b->slack_started = false; 6423 } 6424 6425 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6426 { 6427 cfs_rq->runtime_enabled = 0; 6428 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6429 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6430 } 6431 6432 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6433 { 6434 lockdep_assert_held(&cfs_b->lock); 6435 6436 if (cfs_b->period_active) 6437 return; 6438 6439 cfs_b->period_active = 1; 6440 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6441 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6442 } 6443 6444 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6445 { 6446 int __maybe_unused i; 6447 6448 /* init_cfs_bandwidth() was not called */ 6449 if (!cfs_b->throttled_cfs_rq.next) 6450 return; 6451 6452 hrtimer_cancel(&cfs_b->period_timer); 6453 hrtimer_cancel(&cfs_b->slack_timer); 6454 6455 /* 6456 * It is possible that we still have some cfs_rq's pending on a CSD 6457 * list, though this race is very rare. In order for this to occur, we 6458 * must have raced with the last task leaving the group while there 6459 * exist throttled cfs_rq(s), and the period_timer must have queued the 6460 * CSD item but the remote cpu has not yet processed it. To handle this, 6461 * we can simply flush all pending CSD work inline here. We're 6462 * guaranteed at this point that no additional cfs_rq of this group can 6463 * join a CSD list. 6464 */ 6465 #ifdef CONFIG_SMP 6466 for_each_possible_cpu(i) { 6467 struct rq *rq = cpu_rq(i); 6468 unsigned long flags; 6469 6470 if (list_empty(&rq->cfsb_csd_list)) 6471 continue; 6472 6473 local_irq_save(flags); 6474 __cfsb_csd_unthrottle(rq); 6475 local_irq_restore(flags); 6476 } 6477 #endif 6478 } 6479 6480 /* 6481 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6482 * 6483 * The race is harmless, since modifying bandwidth settings of unhooked group 6484 * bits doesn't do much. 6485 */ 6486 6487 /* cpu online callback */ 6488 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6489 { 6490 struct task_group *tg; 6491 6492 lockdep_assert_rq_held(rq); 6493 6494 rcu_read_lock(); 6495 list_for_each_entry_rcu(tg, &task_groups, list) { 6496 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6497 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6498 6499 raw_spin_lock(&cfs_b->lock); 6500 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6501 raw_spin_unlock(&cfs_b->lock); 6502 } 6503 rcu_read_unlock(); 6504 } 6505 6506 /* cpu offline callback */ 6507 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6508 { 6509 struct task_group *tg; 6510 6511 lockdep_assert_rq_held(rq); 6512 6513 /* 6514 * The rq clock has already been updated in the 6515 * set_rq_offline(), so we should skip updating 6516 * the rq clock again in unthrottle_cfs_rq(). 6517 */ 6518 rq_clock_start_loop_update(rq); 6519 6520 rcu_read_lock(); 6521 list_for_each_entry_rcu(tg, &task_groups, list) { 6522 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6523 6524 if (!cfs_rq->runtime_enabled) 6525 continue; 6526 6527 /* 6528 * clock_task is not advancing so we just need to make sure 6529 * there's some valid quota amount 6530 */ 6531 cfs_rq->runtime_remaining = 1; 6532 /* 6533 * Offline rq is schedulable till CPU is completely disabled 6534 * in take_cpu_down(), so we prevent new cfs throttling here. 6535 */ 6536 cfs_rq->runtime_enabled = 0; 6537 6538 if (cfs_rq_throttled(cfs_rq)) 6539 unthrottle_cfs_rq(cfs_rq); 6540 } 6541 rcu_read_unlock(); 6542 6543 rq_clock_stop_loop_update(rq); 6544 } 6545 6546 bool cfs_task_bw_constrained(struct task_struct *p) 6547 { 6548 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6549 6550 if (!cfs_bandwidth_used()) 6551 return false; 6552 6553 if (cfs_rq->runtime_enabled || 6554 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6555 return true; 6556 6557 return false; 6558 } 6559 6560 #ifdef CONFIG_NO_HZ_FULL 6561 /* called from pick_next_task_fair() */ 6562 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6563 { 6564 int cpu = cpu_of(rq); 6565 6566 if (!sched_feat(HZ_BW) || !cfs_bandwidth_used()) 6567 return; 6568 6569 if (!tick_nohz_full_cpu(cpu)) 6570 return; 6571 6572 if (rq->nr_running != 1) 6573 return; 6574 6575 /* 6576 * We know there is only one task runnable and we've just picked it. The 6577 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6578 * be otherwise able to stop the tick. Just need to check if we are using 6579 * bandwidth control. 6580 */ 6581 if (cfs_task_bw_constrained(p)) 6582 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6583 } 6584 #endif 6585 6586 #else /* CONFIG_CFS_BANDWIDTH */ 6587 6588 static inline bool cfs_bandwidth_used(void) 6589 { 6590 return false; 6591 } 6592 6593 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6594 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6595 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6596 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6597 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6598 6599 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6600 { 6601 return 0; 6602 } 6603 6604 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6605 { 6606 return 0; 6607 } 6608 6609 static inline int throttled_lb_pair(struct task_group *tg, 6610 int src_cpu, int dest_cpu) 6611 { 6612 return 0; 6613 } 6614 6615 #ifdef CONFIG_FAIR_GROUP_SCHED 6616 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6617 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6618 #endif 6619 6620 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6621 { 6622 return NULL; 6623 } 6624 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6625 static inline void update_runtime_enabled(struct rq *rq) {} 6626 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6627 #ifdef CONFIG_CGROUP_SCHED 6628 bool cfs_task_bw_constrained(struct task_struct *p) 6629 { 6630 return false; 6631 } 6632 #endif 6633 #endif /* CONFIG_CFS_BANDWIDTH */ 6634 6635 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6636 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6637 #endif 6638 6639 /************************************************** 6640 * CFS operations on tasks: 6641 */ 6642 6643 #ifdef CONFIG_SCHED_HRTICK 6644 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6645 { 6646 struct sched_entity *se = &p->se; 6647 6648 SCHED_WARN_ON(task_rq(p) != rq); 6649 6650 if (rq->cfs.h_nr_running > 1) { 6651 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6652 u64 slice = se->slice; 6653 s64 delta = slice - ran; 6654 6655 if (delta < 0) { 6656 if (task_current(rq, p)) 6657 resched_curr(rq); 6658 return; 6659 } 6660 hrtick_start(rq, delta); 6661 } 6662 } 6663 6664 /* 6665 * called from enqueue/dequeue and updates the hrtick when the 6666 * current task is from our class and nr_running is low enough 6667 * to matter. 6668 */ 6669 static void hrtick_update(struct rq *rq) 6670 { 6671 struct task_struct *curr = rq->curr; 6672 6673 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6674 return; 6675 6676 hrtick_start_fair(rq, curr); 6677 } 6678 #else /* !CONFIG_SCHED_HRTICK */ 6679 static inline void 6680 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6681 { 6682 } 6683 6684 static inline void hrtick_update(struct rq *rq) 6685 { 6686 } 6687 #endif 6688 6689 #ifdef CONFIG_SMP 6690 static inline bool cpu_overutilized(int cpu) 6691 { 6692 unsigned long rq_util_min, rq_util_max; 6693 6694 if (!sched_energy_enabled()) 6695 return false; 6696 6697 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6698 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6699 6700 /* Return true only if the utilization doesn't fit CPU's capacity */ 6701 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6702 } 6703 6704 /* 6705 * overutilized value make sense only if EAS is enabled 6706 */ 6707 static inline bool is_rd_overutilized(struct root_domain *rd) 6708 { 6709 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6710 } 6711 6712 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6713 { 6714 if (!sched_energy_enabled()) 6715 return; 6716 6717 WRITE_ONCE(rd->overutilized, flag); 6718 trace_sched_overutilized_tp(rd, flag); 6719 } 6720 6721 static inline void check_update_overutilized_status(struct rq *rq) 6722 { 6723 /* 6724 * overutilized field is used for load balancing decisions only 6725 * if energy aware scheduler is being used 6726 */ 6727 6728 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6729 set_rd_overutilized(rq->rd, 1); 6730 } 6731 #else 6732 static inline void check_update_overutilized_status(struct rq *rq) { } 6733 #endif 6734 6735 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6736 static int sched_idle_rq(struct rq *rq) 6737 { 6738 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6739 rq->nr_running); 6740 } 6741 6742 #ifdef CONFIG_SMP 6743 static int sched_idle_cpu(int cpu) 6744 { 6745 return sched_idle_rq(cpu_rq(cpu)); 6746 } 6747 #endif 6748 6749 /* 6750 * The enqueue_task method is called before nr_running is 6751 * increased. Here we update the fair scheduling stats and 6752 * then put the task into the rbtree: 6753 */ 6754 static void 6755 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6756 { 6757 struct cfs_rq *cfs_rq; 6758 struct sched_entity *se = &p->se; 6759 int idle_h_nr_running = task_has_idle_policy(p); 6760 int task_new = !(flags & ENQUEUE_WAKEUP); 6761 6762 /* 6763 * The code below (indirectly) updates schedutil which looks at 6764 * the cfs_rq utilization to select a frequency. 6765 * Let's add the task's estimated utilization to the cfs_rq's 6766 * estimated utilization, before we update schedutil. 6767 */ 6768 util_est_enqueue(&rq->cfs, p); 6769 6770 /* 6771 * If in_iowait is set, the code below may not trigger any cpufreq 6772 * utilization updates, so do it here explicitly with the IOWAIT flag 6773 * passed. 6774 */ 6775 if (p->in_iowait) 6776 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6777 6778 for_each_sched_entity(se) { 6779 if (se->on_rq) 6780 break; 6781 cfs_rq = cfs_rq_of(se); 6782 enqueue_entity(cfs_rq, se, flags); 6783 6784 cfs_rq->h_nr_running++; 6785 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6786 6787 if (cfs_rq_is_idle(cfs_rq)) 6788 idle_h_nr_running = 1; 6789 6790 /* end evaluation on encountering a throttled cfs_rq */ 6791 if (cfs_rq_throttled(cfs_rq)) 6792 goto enqueue_throttle; 6793 6794 flags = ENQUEUE_WAKEUP; 6795 } 6796 6797 for_each_sched_entity(se) { 6798 cfs_rq = cfs_rq_of(se); 6799 6800 update_load_avg(cfs_rq, se, UPDATE_TG); 6801 se_update_runnable(se); 6802 update_cfs_group(se); 6803 6804 cfs_rq->h_nr_running++; 6805 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6806 6807 if (cfs_rq_is_idle(cfs_rq)) 6808 idle_h_nr_running = 1; 6809 6810 /* end evaluation on encountering a throttled cfs_rq */ 6811 if (cfs_rq_throttled(cfs_rq)) 6812 goto enqueue_throttle; 6813 } 6814 6815 /* At this point se is NULL and we are at root level*/ 6816 add_nr_running(rq, 1); 6817 6818 /* 6819 * Since new tasks are assigned an initial util_avg equal to 6820 * half of the spare capacity of their CPU, tiny tasks have the 6821 * ability to cross the overutilized threshold, which will 6822 * result in the load balancer ruining all the task placement 6823 * done by EAS. As a way to mitigate that effect, do not account 6824 * for the first enqueue operation of new tasks during the 6825 * overutilized flag detection. 6826 * 6827 * A better way of solving this problem would be to wait for 6828 * the PELT signals of tasks to converge before taking them 6829 * into account, but that is not straightforward to implement, 6830 * and the following generally works well enough in practice. 6831 */ 6832 if (!task_new) 6833 check_update_overutilized_status(rq); 6834 6835 enqueue_throttle: 6836 assert_list_leaf_cfs_rq(rq); 6837 6838 hrtick_update(rq); 6839 } 6840 6841 static void set_next_buddy(struct sched_entity *se); 6842 6843 /* 6844 * The dequeue_task method is called before nr_running is 6845 * decreased. We remove the task from the rbtree and 6846 * update the fair scheduling stats: 6847 */ 6848 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6849 { 6850 struct cfs_rq *cfs_rq; 6851 struct sched_entity *se = &p->se; 6852 int task_sleep = flags & DEQUEUE_SLEEP; 6853 int idle_h_nr_running = task_has_idle_policy(p); 6854 bool was_sched_idle = sched_idle_rq(rq); 6855 6856 util_est_dequeue(&rq->cfs, p); 6857 6858 for_each_sched_entity(se) { 6859 cfs_rq = cfs_rq_of(se); 6860 dequeue_entity(cfs_rq, se, flags); 6861 6862 cfs_rq->h_nr_running--; 6863 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6864 6865 if (cfs_rq_is_idle(cfs_rq)) 6866 idle_h_nr_running = 1; 6867 6868 /* end evaluation on encountering a throttled cfs_rq */ 6869 if (cfs_rq_throttled(cfs_rq)) 6870 goto dequeue_throttle; 6871 6872 /* Don't dequeue parent if it has other entities besides us */ 6873 if (cfs_rq->load.weight) { 6874 /* Avoid re-evaluating load for this entity: */ 6875 se = parent_entity(se); 6876 /* 6877 * Bias pick_next to pick a task from this cfs_rq, as 6878 * p is sleeping when it is within its sched_slice. 6879 */ 6880 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 6881 set_next_buddy(se); 6882 break; 6883 } 6884 flags |= DEQUEUE_SLEEP; 6885 } 6886 6887 for_each_sched_entity(se) { 6888 cfs_rq = cfs_rq_of(se); 6889 6890 update_load_avg(cfs_rq, se, UPDATE_TG); 6891 se_update_runnable(se); 6892 update_cfs_group(se); 6893 6894 cfs_rq->h_nr_running--; 6895 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6896 6897 if (cfs_rq_is_idle(cfs_rq)) 6898 idle_h_nr_running = 1; 6899 6900 /* end evaluation on encountering a throttled cfs_rq */ 6901 if (cfs_rq_throttled(cfs_rq)) 6902 goto dequeue_throttle; 6903 6904 } 6905 6906 /* At this point se is NULL and we are at root level*/ 6907 sub_nr_running(rq, 1); 6908 6909 /* balance early to pull high priority tasks */ 6910 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 6911 rq->next_balance = jiffies; 6912 6913 dequeue_throttle: 6914 util_est_update(&rq->cfs, p, task_sleep); 6915 hrtick_update(rq); 6916 } 6917 6918 #ifdef CONFIG_SMP 6919 6920 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 6921 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6922 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 6923 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 6924 6925 #ifdef CONFIG_NO_HZ_COMMON 6926 6927 static struct { 6928 cpumask_var_t idle_cpus_mask; 6929 atomic_t nr_cpus; 6930 int has_blocked; /* Idle CPUS has blocked load */ 6931 int needs_update; /* Newly idle CPUs need their next_balance collated */ 6932 unsigned long next_balance; /* in jiffy units */ 6933 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 6934 } nohz ____cacheline_aligned; 6935 6936 #endif /* CONFIG_NO_HZ_COMMON */ 6937 6938 static unsigned long cpu_load(struct rq *rq) 6939 { 6940 return cfs_rq_load_avg(&rq->cfs); 6941 } 6942 6943 /* 6944 * cpu_load_without - compute CPU load without any contributions from *p 6945 * @cpu: the CPU which load is requested 6946 * @p: the task which load should be discounted 6947 * 6948 * The load of a CPU is defined by the load of tasks currently enqueued on that 6949 * CPU as well as tasks which are currently sleeping after an execution on that 6950 * CPU. 6951 * 6952 * This method returns the load of the specified CPU by discounting the load of 6953 * the specified task, whenever the task is currently contributing to the CPU 6954 * load. 6955 */ 6956 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 6957 { 6958 struct cfs_rq *cfs_rq; 6959 unsigned int load; 6960 6961 /* Task has no contribution or is new */ 6962 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6963 return cpu_load(rq); 6964 6965 cfs_rq = &rq->cfs; 6966 load = READ_ONCE(cfs_rq->avg.load_avg); 6967 6968 /* Discount task's util from CPU's util */ 6969 lsub_positive(&load, task_h_load(p)); 6970 6971 return load; 6972 } 6973 6974 static unsigned long cpu_runnable(struct rq *rq) 6975 { 6976 return cfs_rq_runnable_avg(&rq->cfs); 6977 } 6978 6979 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 6980 { 6981 struct cfs_rq *cfs_rq; 6982 unsigned int runnable; 6983 6984 /* Task has no contribution or is new */ 6985 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6986 return cpu_runnable(rq); 6987 6988 cfs_rq = &rq->cfs; 6989 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 6990 6991 /* Discount task's runnable from CPU's runnable */ 6992 lsub_positive(&runnable, p->se.avg.runnable_avg); 6993 6994 return runnable; 6995 } 6996 6997 static unsigned long capacity_of(int cpu) 6998 { 6999 return cpu_rq(cpu)->cpu_capacity; 7000 } 7001 7002 static void record_wakee(struct task_struct *p) 7003 { 7004 /* 7005 * Only decay a single time; tasks that have less then 1 wakeup per 7006 * jiffy will not have built up many flips. 7007 */ 7008 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7009 current->wakee_flips >>= 1; 7010 current->wakee_flip_decay_ts = jiffies; 7011 } 7012 7013 if (current->last_wakee != p) { 7014 current->last_wakee = p; 7015 current->wakee_flips++; 7016 } 7017 } 7018 7019 /* 7020 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7021 * 7022 * A waker of many should wake a different task than the one last awakened 7023 * at a frequency roughly N times higher than one of its wakees. 7024 * 7025 * In order to determine whether we should let the load spread vs consolidating 7026 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7027 * partner, and a factor of lls_size higher frequency in the other. 7028 * 7029 * With both conditions met, we can be relatively sure that the relationship is 7030 * non-monogamous, with partner count exceeding socket size. 7031 * 7032 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7033 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7034 * socket size. 7035 */ 7036 static int wake_wide(struct task_struct *p) 7037 { 7038 unsigned int master = current->wakee_flips; 7039 unsigned int slave = p->wakee_flips; 7040 int factor = __this_cpu_read(sd_llc_size); 7041 7042 if (master < slave) 7043 swap(master, slave); 7044 if (slave < factor || master < slave * factor) 7045 return 0; 7046 return 1; 7047 } 7048 7049 /* 7050 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7051 * soonest. For the purpose of speed we only consider the waking and previous 7052 * CPU. 7053 * 7054 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7055 * cache-affine and is (or will be) idle. 7056 * 7057 * wake_affine_weight() - considers the weight to reflect the average 7058 * scheduling latency of the CPUs. This seems to work 7059 * for the overloaded case. 7060 */ 7061 static int 7062 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7063 { 7064 /* 7065 * If this_cpu is idle, it implies the wakeup is from interrupt 7066 * context. Only allow the move if cache is shared. Otherwise an 7067 * interrupt intensive workload could force all tasks onto one 7068 * node depending on the IO topology or IRQ affinity settings. 7069 * 7070 * If the prev_cpu is idle and cache affine then avoid a migration. 7071 * There is no guarantee that the cache hot data from an interrupt 7072 * is more important than cache hot data on the prev_cpu and from 7073 * a cpufreq perspective, it's better to have higher utilisation 7074 * on one CPU. 7075 */ 7076 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7077 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7078 7079 if (sync && cpu_rq(this_cpu)->nr_running == 1) 7080 return this_cpu; 7081 7082 if (available_idle_cpu(prev_cpu)) 7083 return prev_cpu; 7084 7085 return nr_cpumask_bits; 7086 } 7087 7088 static int 7089 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7090 int this_cpu, int prev_cpu, int sync) 7091 { 7092 s64 this_eff_load, prev_eff_load; 7093 unsigned long task_load; 7094 7095 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7096 7097 if (sync) { 7098 unsigned long current_load = task_h_load(current); 7099 7100 if (current_load > this_eff_load) 7101 return this_cpu; 7102 7103 this_eff_load -= current_load; 7104 } 7105 7106 task_load = task_h_load(p); 7107 7108 this_eff_load += task_load; 7109 if (sched_feat(WA_BIAS)) 7110 this_eff_load *= 100; 7111 this_eff_load *= capacity_of(prev_cpu); 7112 7113 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7114 prev_eff_load -= task_load; 7115 if (sched_feat(WA_BIAS)) 7116 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7117 prev_eff_load *= capacity_of(this_cpu); 7118 7119 /* 7120 * If sync, adjust the weight of prev_eff_load such that if 7121 * prev_eff == this_eff that select_idle_sibling() will consider 7122 * stacking the wakee on top of the waker if no other CPU is 7123 * idle. 7124 */ 7125 if (sync) 7126 prev_eff_load += 1; 7127 7128 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7129 } 7130 7131 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7132 int this_cpu, int prev_cpu, int sync) 7133 { 7134 int target = nr_cpumask_bits; 7135 7136 if (sched_feat(WA_IDLE)) 7137 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7138 7139 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7140 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7141 7142 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7143 if (target != this_cpu) 7144 return prev_cpu; 7145 7146 schedstat_inc(sd->ttwu_move_affine); 7147 schedstat_inc(p->stats.nr_wakeups_affine); 7148 return target; 7149 } 7150 7151 static struct sched_group * 7152 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7153 7154 /* 7155 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7156 */ 7157 static int 7158 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7159 { 7160 unsigned long load, min_load = ULONG_MAX; 7161 unsigned int min_exit_latency = UINT_MAX; 7162 u64 latest_idle_timestamp = 0; 7163 int least_loaded_cpu = this_cpu; 7164 int shallowest_idle_cpu = -1; 7165 int i; 7166 7167 /* Check if we have any choice: */ 7168 if (group->group_weight == 1) 7169 return cpumask_first(sched_group_span(group)); 7170 7171 /* Traverse only the allowed CPUs */ 7172 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7173 struct rq *rq = cpu_rq(i); 7174 7175 if (!sched_core_cookie_match(rq, p)) 7176 continue; 7177 7178 if (sched_idle_cpu(i)) 7179 return i; 7180 7181 if (available_idle_cpu(i)) { 7182 struct cpuidle_state *idle = idle_get_state(rq); 7183 if (idle && idle->exit_latency < min_exit_latency) { 7184 /* 7185 * We give priority to a CPU whose idle state 7186 * has the smallest exit latency irrespective 7187 * of any idle timestamp. 7188 */ 7189 min_exit_latency = idle->exit_latency; 7190 latest_idle_timestamp = rq->idle_stamp; 7191 shallowest_idle_cpu = i; 7192 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7193 rq->idle_stamp > latest_idle_timestamp) { 7194 /* 7195 * If equal or no active idle state, then 7196 * the most recently idled CPU might have 7197 * a warmer cache. 7198 */ 7199 latest_idle_timestamp = rq->idle_stamp; 7200 shallowest_idle_cpu = i; 7201 } 7202 } else if (shallowest_idle_cpu == -1) { 7203 load = cpu_load(cpu_rq(i)); 7204 if (load < min_load) { 7205 min_load = load; 7206 least_loaded_cpu = i; 7207 } 7208 } 7209 } 7210 7211 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7212 } 7213 7214 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7215 int cpu, int prev_cpu, int sd_flag) 7216 { 7217 int new_cpu = cpu; 7218 7219 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7220 return prev_cpu; 7221 7222 /* 7223 * We need task's util for cpu_util_without, sync it up to 7224 * prev_cpu's last_update_time. 7225 */ 7226 if (!(sd_flag & SD_BALANCE_FORK)) 7227 sync_entity_load_avg(&p->se); 7228 7229 while (sd) { 7230 struct sched_group *group; 7231 struct sched_domain *tmp; 7232 int weight; 7233 7234 if (!(sd->flags & sd_flag)) { 7235 sd = sd->child; 7236 continue; 7237 } 7238 7239 group = sched_balance_find_dst_group(sd, p, cpu); 7240 if (!group) { 7241 sd = sd->child; 7242 continue; 7243 } 7244 7245 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7246 if (new_cpu == cpu) { 7247 /* Now try balancing at a lower domain level of 'cpu': */ 7248 sd = sd->child; 7249 continue; 7250 } 7251 7252 /* Now try balancing at a lower domain level of 'new_cpu': */ 7253 cpu = new_cpu; 7254 weight = sd->span_weight; 7255 sd = NULL; 7256 for_each_domain(cpu, tmp) { 7257 if (weight <= tmp->span_weight) 7258 break; 7259 if (tmp->flags & sd_flag) 7260 sd = tmp; 7261 } 7262 } 7263 7264 return new_cpu; 7265 } 7266 7267 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7268 { 7269 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7270 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7271 return cpu; 7272 7273 return -1; 7274 } 7275 7276 #ifdef CONFIG_SCHED_SMT 7277 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7278 EXPORT_SYMBOL_GPL(sched_smt_present); 7279 7280 static inline void set_idle_cores(int cpu, int val) 7281 { 7282 struct sched_domain_shared *sds; 7283 7284 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7285 if (sds) 7286 WRITE_ONCE(sds->has_idle_cores, val); 7287 } 7288 7289 static inline bool test_idle_cores(int cpu) 7290 { 7291 struct sched_domain_shared *sds; 7292 7293 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7294 if (sds) 7295 return READ_ONCE(sds->has_idle_cores); 7296 7297 return false; 7298 } 7299 7300 /* 7301 * Scans the local SMT mask to see if the entire core is idle, and records this 7302 * information in sd_llc_shared->has_idle_cores. 7303 * 7304 * Since SMT siblings share all cache levels, inspecting this limited remote 7305 * state should be fairly cheap. 7306 */ 7307 void __update_idle_core(struct rq *rq) 7308 { 7309 int core = cpu_of(rq); 7310 int cpu; 7311 7312 rcu_read_lock(); 7313 if (test_idle_cores(core)) 7314 goto unlock; 7315 7316 for_each_cpu(cpu, cpu_smt_mask(core)) { 7317 if (cpu == core) 7318 continue; 7319 7320 if (!available_idle_cpu(cpu)) 7321 goto unlock; 7322 } 7323 7324 set_idle_cores(core, 1); 7325 unlock: 7326 rcu_read_unlock(); 7327 } 7328 7329 /* 7330 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7331 * there are no idle cores left in the system; tracked through 7332 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7333 */ 7334 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7335 { 7336 bool idle = true; 7337 int cpu; 7338 7339 for_each_cpu(cpu, cpu_smt_mask(core)) { 7340 if (!available_idle_cpu(cpu)) { 7341 idle = false; 7342 if (*idle_cpu == -1) { 7343 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7344 *idle_cpu = cpu; 7345 break; 7346 } 7347 continue; 7348 } 7349 break; 7350 } 7351 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7352 *idle_cpu = cpu; 7353 } 7354 7355 if (idle) 7356 return core; 7357 7358 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7359 return -1; 7360 } 7361 7362 /* 7363 * Scan the local SMT mask for idle CPUs. 7364 */ 7365 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7366 { 7367 int cpu; 7368 7369 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7370 if (cpu == target) 7371 continue; 7372 /* 7373 * Check if the CPU is in the LLC scheduling domain of @target. 7374 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7375 */ 7376 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7377 continue; 7378 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7379 return cpu; 7380 } 7381 7382 return -1; 7383 } 7384 7385 #else /* CONFIG_SCHED_SMT */ 7386 7387 static inline void set_idle_cores(int cpu, int val) 7388 { 7389 } 7390 7391 static inline bool test_idle_cores(int cpu) 7392 { 7393 return false; 7394 } 7395 7396 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7397 { 7398 return __select_idle_cpu(core, p); 7399 } 7400 7401 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7402 { 7403 return -1; 7404 } 7405 7406 #endif /* CONFIG_SCHED_SMT */ 7407 7408 /* 7409 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7410 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7411 * average idle time for this rq (as found in rq->avg_idle). 7412 */ 7413 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7414 { 7415 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7416 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7417 struct sched_domain_shared *sd_share; 7418 7419 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7420 7421 if (sched_feat(SIS_UTIL)) { 7422 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7423 if (sd_share) { 7424 /* because !--nr is the condition to stop scan */ 7425 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7426 /* overloaded LLC is unlikely to have idle cpu/core */ 7427 if (nr == 1) 7428 return -1; 7429 } 7430 } 7431 7432 if (static_branch_unlikely(&sched_cluster_active)) { 7433 struct sched_group *sg = sd->groups; 7434 7435 if (sg->flags & SD_CLUSTER) { 7436 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7437 if (!cpumask_test_cpu(cpu, cpus)) 7438 continue; 7439 7440 if (has_idle_core) { 7441 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7442 if ((unsigned int)i < nr_cpumask_bits) 7443 return i; 7444 } else { 7445 if (--nr <= 0) 7446 return -1; 7447 idle_cpu = __select_idle_cpu(cpu, p); 7448 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7449 return idle_cpu; 7450 } 7451 } 7452 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7453 } 7454 } 7455 7456 for_each_cpu_wrap(cpu, cpus, target + 1) { 7457 if (has_idle_core) { 7458 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7459 if ((unsigned int)i < nr_cpumask_bits) 7460 return i; 7461 7462 } else { 7463 if (--nr <= 0) 7464 return -1; 7465 idle_cpu = __select_idle_cpu(cpu, p); 7466 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7467 break; 7468 } 7469 } 7470 7471 if (has_idle_core) 7472 set_idle_cores(target, false); 7473 7474 return idle_cpu; 7475 } 7476 7477 /* 7478 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7479 * the task fits. If no CPU is big enough, but there are idle ones, try to 7480 * maximize capacity. 7481 */ 7482 static int 7483 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7484 { 7485 unsigned long task_util, util_min, util_max, best_cap = 0; 7486 int fits, best_fits = 0; 7487 int cpu, best_cpu = -1; 7488 struct cpumask *cpus; 7489 7490 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7491 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7492 7493 task_util = task_util_est(p); 7494 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7495 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7496 7497 for_each_cpu_wrap(cpu, cpus, target) { 7498 unsigned long cpu_cap = capacity_of(cpu); 7499 7500 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7501 continue; 7502 7503 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7504 7505 /* This CPU fits with all requirements */ 7506 if (fits > 0) 7507 return cpu; 7508 /* 7509 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7510 * Look for the CPU with best capacity. 7511 */ 7512 else if (fits < 0) 7513 cpu_cap = get_actual_cpu_capacity(cpu); 7514 7515 /* 7516 * First, select CPU which fits better (-1 being better than 0). 7517 * Then, select the one with best capacity at same level. 7518 */ 7519 if ((fits < best_fits) || 7520 ((fits == best_fits) && (cpu_cap > best_cap))) { 7521 best_cap = cpu_cap; 7522 best_cpu = cpu; 7523 best_fits = fits; 7524 } 7525 } 7526 7527 return best_cpu; 7528 } 7529 7530 static inline bool asym_fits_cpu(unsigned long util, 7531 unsigned long util_min, 7532 unsigned long util_max, 7533 int cpu) 7534 { 7535 if (sched_asym_cpucap_active()) 7536 /* 7537 * Return true only if the cpu fully fits the task requirements 7538 * which include the utilization and the performance hints. 7539 */ 7540 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7541 7542 return true; 7543 } 7544 7545 /* 7546 * Try and locate an idle core/thread in the LLC cache domain. 7547 */ 7548 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7549 { 7550 bool has_idle_core = false; 7551 struct sched_domain *sd; 7552 unsigned long task_util, util_min, util_max; 7553 int i, recent_used_cpu, prev_aff = -1; 7554 7555 /* 7556 * On asymmetric system, update task utilization because we will check 7557 * that the task fits with CPU's capacity. 7558 */ 7559 if (sched_asym_cpucap_active()) { 7560 sync_entity_load_avg(&p->se); 7561 task_util = task_util_est(p); 7562 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7563 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7564 } 7565 7566 /* 7567 * per-cpu select_rq_mask usage 7568 */ 7569 lockdep_assert_irqs_disabled(); 7570 7571 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7572 asym_fits_cpu(task_util, util_min, util_max, target)) 7573 return target; 7574 7575 /* 7576 * If the previous CPU is cache affine and idle, don't be stupid: 7577 */ 7578 if (prev != target && cpus_share_cache(prev, target) && 7579 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7580 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7581 7582 if (!static_branch_unlikely(&sched_cluster_active) || 7583 cpus_share_resources(prev, target)) 7584 return prev; 7585 7586 prev_aff = prev; 7587 } 7588 7589 /* 7590 * Allow a per-cpu kthread to stack with the wakee if the 7591 * kworker thread and the tasks previous CPUs are the same. 7592 * The assumption is that the wakee queued work for the 7593 * per-cpu kthread that is now complete and the wakeup is 7594 * essentially a sync wakeup. An obvious example of this 7595 * pattern is IO completions. 7596 */ 7597 if (is_per_cpu_kthread(current) && 7598 in_task() && 7599 prev == smp_processor_id() && 7600 this_rq()->nr_running <= 1 && 7601 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7602 return prev; 7603 } 7604 7605 /* Check a recently used CPU as a potential idle candidate: */ 7606 recent_used_cpu = p->recent_used_cpu; 7607 p->recent_used_cpu = prev; 7608 if (recent_used_cpu != prev && 7609 recent_used_cpu != target && 7610 cpus_share_cache(recent_used_cpu, target) && 7611 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7612 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7613 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7614 7615 if (!static_branch_unlikely(&sched_cluster_active) || 7616 cpus_share_resources(recent_used_cpu, target)) 7617 return recent_used_cpu; 7618 7619 } else { 7620 recent_used_cpu = -1; 7621 } 7622 7623 /* 7624 * For asymmetric CPU capacity systems, our domain of interest is 7625 * sd_asym_cpucapacity rather than sd_llc. 7626 */ 7627 if (sched_asym_cpucap_active()) { 7628 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7629 /* 7630 * On an asymmetric CPU capacity system where an exclusive 7631 * cpuset defines a symmetric island (i.e. one unique 7632 * capacity_orig value through the cpuset), the key will be set 7633 * but the CPUs within that cpuset will not have a domain with 7634 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7635 * capacity path. 7636 */ 7637 if (sd) { 7638 i = select_idle_capacity(p, sd, target); 7639 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7640 } 7641 } 7642 7643 sd = rcu_dereference(per_cpu(sd_llc, target)); 7644 if (!sd) 7645 return target; 7646 7647 if (sched_smt_active()) { 7648 has_idle_core = test_idle_cores(target); 7649 7650 if (!has_idle_core && cpus_share_cache(prev, target)) { 7651 i = select_idle_smt(p, sd, prev); 7652 if ((unsigned int)i < nr_cpumask_bits) 7653 return i; 7654 } 7655 } 7656 7657 i = select_idle_cpu(p, sd, has_idle_core, target); 7658 if ((unsigned)i < nr_cpumask_bits) 7659 return i; 7660 7661 /* 7662 * For cluster machines which have lower sharing cache like L2 or 7663 * LLC Tag, we tend to find an idle CPU in the target's cluster 7664 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7665 * use them if possible when no idle CPU found in select_idle_cpu(). 7666 */ 7667 if ((unsigned int)prev_aff < nr_cpumask_bits) 7668 return prev_aff; 7669 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7670 return recent_used_cpu; 7671 7672 return target; 7673 } 7674 7675 /** 7676 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7677 * @cpu: the CPU to get the utilization for 7678 * @p: task for which the CPU utilization should be predicted or NULL 7679 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7680 * @boost: 1 to enable boosting, otherwise 0 7681 * 7682 * The unit of the return value must be the same as the one of CPU capacity 7683 * so that CPU utilization can be compared with CPU capacity. 7684 * 7685 * CPU utilization is the sum of running time of runnable tasks plus the 7686 * recent utilization of currently non-runnable tasks on that CPU. 7687 * It represents the amount of CPU capacity currently used by CFS tasks in 7688 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7689 * capacity at f_max. 7690 * 7691 * The estimated CPU utilization is defined as the maximum between CPU 7692 * utilization and sum of the estimated utilization of the currently 7693 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7694 * previously-executed tasks, which helps better deduce how busy a CPU will 7695 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7696 * of such a task would be significantly decayed at this point of time. 7697 * 7698 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7699 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7700 * utilization. Boosting is implemented in cpu_util() so that internal 7701 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7702 * latter via cpu_util_cfs_boost(). 7703 * 7704 * CPU utilization can be higher than the current CPU capacity 7705 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7706 * of rounding errors as well as task migrations or wakeups of new tasks. 7707 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7708 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7709 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7710 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7711 * though since this is useful for predicting the CPU capacity required 7712 * after task migrations (scheduler-driven DVFS). 7713 * 7714 * Return: (Boosted) (estimated) utilization for the specified CPU. 7715 */ 7716 static unsigned long 7717 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7718 { 7719 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7720 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7721 unsigned long runnable; 7722 7723 if (boost) { 7724 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7725 util = max(util, runnable); 7726 } 7727 7728 /* 7729 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7730 * contribution. If @p migrates from another CPU to @cpu add its 7731 * contribution. In all the other cases @cpu is not impacted by the 7732 * migration so its util_avg is already correct. 7733 */ 7734 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 7735 lsub_positive(&util, task_util(p)); 7736 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 7737 util += task_util(p); 7738 7739 if (sched_feat(UTIL_EST)) { 7740 unsigned long util_est; 7741 7742 util_est = READ_ONCE(cfs_rq->avg.util_est); 7743 7744 /* 7745 * During wake-up @p isn't enqueued yet and doesn't contribute 7746 * to any cpu_rq(cpu)->cfs.avg.util_est. 7747 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7748 * has been enqueued. 7749 * 7750 * During exec (@dst_cpu = -1) @p is enqueued and does 7751 * contribute to cpu_rq(cpu)->cfs.util_est. 7752 * Remove it to "simulate" cpu_util without @p's contribution. 7753 * 7754 * Despite the task_on_rq_queued(@p) check there is still a 7755 * small window for a possible race when an exec 7756 * select_task_rq_fair() races with LB's detach_task(). 7757 * 7758 * detach_task() 7759 * deactivate_task() 7760 * p->on_rq = TASK_ON_RQ_MIGRATING; 7761 * -------------------------------- A 7762 * dequeue_task() \ 7763 * dequeue_task_fair() + Race Time 7764 * util_est_dequeue() / 7765 * -------------------------------- B 7766 * 7767 * The additional check "current == p" is required to further 7768 * reduce the race window. 7769 */ 7770 if (dst_cpu == cpu) 7771 util_est += _task_util_est(p); 7772 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 7773 lsub_positive(&util_est, _task_util_est(p)); 7774 7775 util = max(util, util_est); 7776 } 7777 7778 return min(util, arch_scale_cpu_capacity(cpu)); 7779 } 7780 7781 unsigned long cpu_util_cfs(int cpu) 7782 { 7783 return cpu_util(cpu, NULL, -1, 0); 7784 } 7785 7786 unsigned long cpu_util_cfs_boost(int cpu) 7787 { 7788 return cpu_util(cpu, NULL, -1, 1); 7789 } 7790 7791 /* 7792 * cpu_util_without: compute cpu utilization without any contributions from *p 7793 * @cpu: the CPU which utilization is requested 7794 * @p: the task which utilization should be discounted 7795 * 7796 * The utilization of a CPU is defined by the utilization of tasks currently 7797 * enqueued on that CPU as well as tasks which are currently sleeping after an 7798 * execution on that CPU. 7799 * 7800 * This method returns the utilization of the specified CPU by discounting the 7801 * utilization of the specified task, whenever the task is currently 7802 * contributing to the CPU utilization. 7803 */ 7804 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7805 { 7806 /* Task has no contribution or is new */ 7807 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7808 p = NULL; 7809 7810 return cpu_util(cpu, p, -1, 0); 7811 } 7812 7813 /* 7814 * energy_env - Utilization landscape for energy estimation. 7815 * @task_busy_time: Utilization contribution by the task for which we test the 7816 * placement. Given by eenv_task_busy_time(). 7817 * @pd_busy_time: Utilization of the whole perf domain without the task 7818 * contribution. Given by eenv_pd_busy_time(). 7819 * @cpu_cap: Maximum CPU capacity for the perf domain. 7820 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 7821 */ 7822 struct energy_env { 7823 unsigned long task_busy_time; 7824 unsigned long pd_busy_time; 7825 unsigned long cpu_cap; 7826 unsigned long pd_cap; 7827 }; 7828 7829 /* 7830 * Compute the task busy time for compute_energy(). This time cannot be 7831 * injected directly into effective_cpu_util() because of the IRQ scaling. 7832 * The latter only makes sense with the most recent CPUs where the task has 7833 * run. 7834 */ 7835 static inline void eenv_task_busy_time(struct energy_env *eenv, 7836 struct task_struct *p, int prev_cpu) 7837 { 7838 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 7839 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 7840 7841 if (unlikely(irq >= max_cap)) 7842 busy_time = max_cap; 7843 else 7844 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 7845 7846 eenv->task_busy_time = busy_time; 7847 } 7848 7849 /* 7850 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 7851 * utilization for each @pd_cpus, it however doesn't take into account 7852 * clamping since the ratio (utilization / cpu_capacity) is already enough to 7853 * scale the EM reported power consumption at the (eventually clamped) 7854 * cpu_capacity. 7855 * 7856 * The contribution of the task @p for which we want to estimate the 7857 * energy cost is removed (by cpu_util()) and must be calculated 7858 * separately (see eenv_task_busy_time). This ensures: 7859 * 7860 * - A stable PD utilization, no matter which CPU of that PD we want to place 7861 * the task on. 7862 * 7863 * - A fair comparison between CPUs as the task contribution (task_util()) 7864 * will always be the same no matter which CPU utilization we rely on 7865 * (util_avg or util_est). 7866 * 7867 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 7868 * exceed @eenv->pd_cap. 7869 */ 7870 static inline void eenv_pd_busy_time(struct energy_env *eenv, 7871 struct cpumask *pd_cpus, 7872 struct task_struct *p) 7873 { 7874 unsigned long busy_time = 0; 7875 int cpu; 7876 7877 for_each_cpu(cpu, pd_cpus) { 7878 unsigned long util = cpu_util(cpu, p, -1, 0); 7879 7880 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 7881 } 7882 7883 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 7884 } 7885 7886 /* 7887 * Compute the maximum utilization for compute_energy() when the task @p 7888 * is placed on the cpu @dst_cpu. 7889 * 7890 * Returns the maximum utilization among @eenv->cpus. This utilization can't 7891 * exceed @eenv->cpu_cap. 7892 */ 7893 static inline unsigned long 7894 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 7895 struct task_struct *p, int dst_cpu) 7896 { 7897 unsigned long max_util = 0; 7898 int cpu; 7899 7900 for_each_cpu(cpu, pd_cpus) { 7901 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 7902 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 7903 unsigned long eff_util, min, max; 7904 7905 /* 7906 * Performance domain frequency: utilization clamping 7907 * must be considered since it affects the selection 7908 * of the performance domain frequency. 7909 * NOTE: in case RT tasks are running, by default the min 7910 * utilization can be max OPP. 7911 */ 7912 eff_util = effective_cpu_util(cpu, util, &min, &max); 7913 7914 /* Task's uclamp can modify min and max value */ 7915 if (tsk && uclamp_is_used()) { 7916 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 7917 7918 /* 7919 * If there is no active max uclamp constraint, 7920 * directly use task's one, otherwise keep max. 7921 */ 7922 if (uclamp_rq_is_idle(cpu_rq(cpu))) 7923 max = uclamp_eff_value(p, UCLAMP_MAX); 7924 else 7925 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 7926 } 7927 7928 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 7929 max_util = max(max_util, eff_util); 7930 } 7931 7932 return min(max_util, eenv->cpu_cap); 7933 } 7934 7935 /* 7936 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 7937 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 7938 * contribution is ignored. 7939 */ 7940 static inline unsigned long 7941 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 7942 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 7943 { 7944 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 7945 unsigned long busy_time = eenv->pd_busy_time; 7946 unsigned long energy; 7947 7948 if (dst_cpu >= 0) 7949 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 7950 7951 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 7952 7953 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 7954 7955 return energy; 7956 } 7957 7958 /* 7959 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 7960 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 7961 * spare capacity in each performance domain and uses it as a potential 7962 * candidate to execute the task. Then, it uses the Energy Model to figure 7963 * out which of the CPU candidates is the most energy-efficient. 7964 * 7965 * The rationale for this heuristic is as follows. In a performance domain, 7966 * all the most energy efficient CPU candidates (according to the Energy 7967 * Model) are those for which we'll request a low frequency. When there are 7968 * several CPUs for which the frequency request will be the same, we don't 7969 * have enough data to break the tie between them, because the Energy Model 7970 * only includes active power costs. With this model, if we assume that 7971 * frequency requests follow utilization (e.g. using schedutil), the CPU with 7972 * the maximum spare capacity in a performance domain is guaranteed to be among 7973 * the best candidates of the performance domain. 7974 * 7975 * In practice, it could be preferable from an energy standpoint to pack 7976 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 7977 * but that could also hurt our chances to go cluster idle, and we have no 7978 * ways to tell with the current Energy Model if this is actually a good 7979 * idea or not. So, find_energy_efficient_cpu() basically favors 7980 * cluster-packing, and spreading inside a cluster. That should at least be 7981 * a good thing for latency, and this is consistent with the idea that most 7982 * of the energy savings of EAS come from the asymmetry of the system, and 7983 * not so much from breaking the tie between identical CPUs. That's also the 7984 * reason why EAS is enabled in the topology code only for systems where 7985 * SD_ASYM_CPUCAPACITY is set. 7986 * 7987 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 7988 * they don't have any useful utilization data yet and it's not possible to 7989 * forecast their impact on energy consumption. Consequently, they will be 7990 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 7991 * to be energy-inefficient in some use-cases. The alternative would be to 7992 * bias new tasks towards specific types of CPUs first, or to try to infer 7993 * their util_avg from the parent task, but those heuristics could hurt 7994 * other use-cases too. So, until someone finds a better way to solve this, 7995 * let's keep things simple by re-using the existing slow path. 7996 */ 7997 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 7998 { 7999 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 8000 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 8001 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 8002 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 8003 struct root_domain *rd = this_rq()->rd; 8004 int cpu, best_energy_cpu, target = -1; 8005 int prev_fits = -1, best_fits = -1; 8006 unsigned long best_actual_cap = 0; 8007 unsigned long prev_actual_cap = 0; 8008 struct sched_domain *sd; 8009 struct perf_domain *pd; 8010 struct energy_env eenv; 8011 8012 rcu_read_lock(); 8013 pd = rcu_dereference(rd->pd); 8014 if (!pd) 8015 goto unlock; 8016 8017 /* 8018 * Energy-aware wake-up happens on the lowest sched_domain starting 8019 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8020 */ 8021 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 8022 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8023 sd = sd->parent; 8024 if (!sd) 8025 goto unlock; 8026 8027 target = prev_cpu; 8028 8029 sync_entity_load_avg(&p->se); 8030 if (!task_util_est(p) && p_util_min == 0) 8031 goto unlock; 8032 8033 eenv_task_busy_time(&eenv, p, prev_cpu); 8034 8035 for (; pd; pd = pd->next) { 8036 unsigned long util_min = p_util_min, util_max = p_util_max; 8037 unsigned long cpu_cap, cpu_actual_cap, util; 8038 long prev_spare_cap = -1, max_spare_cap = -1; 8039 unsigned long rq_util_min, rq_util_max; 8040 unsigned long cur_delta, base_energy; 8041 int max_spare_cap_cpu = -1; 8042 int fits, max_fits = -1; 8043 8044 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8045 8046 if (cpumask_empty(cpus)) 8047 continue; 8048 8049 /* Account external pressure for the energy estimation */ 8050 cpu = cpumask_first(cpus); 8051 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8052 8053 eenv.cpu_cap = cpu_actual_cap; 8054 eenv.pd_cap = 0; 8055 8056 for_each_cpu(cpu, cpus) { 8057 struct rq *rq = cpu_rq(cpu); 8058 8059 eenv.pd_cap += cpu_actual_cap; 8060 8061 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8062 continue; 8063 8064 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8065 continue; 8066 8067 util = cpu_util(cpu, p, cpu, 0); 8068 cpu_cap = capacity_of(cpu); 8069 8070 /* 8071 * Skip CPUs that cannot satisfy the capacity request. 8072 * IOW, placing the task there would make the CPU 8073 * overutilized. Take uclamp into account to see how 8074 * much capacity we can get out of the CPU; this is 8075 * aligned with sched_cpu_util(). 8076 */ 8077 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8078 /* 8079 * Open code uclamp_rq_util_with() except for 8080 * the clamp() part. I.e.: apply max aggregation 8081 * only. util_fits_cpu() logic requires to 8082 * operate on non clamped util but must use the 8083 * max-aggregated uclamp_{min, max}. 8084 */ 8085 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8086 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8087 8088 util_min = max(rq_util_min, p_util_min); 8089 util_max = max(rq_util_max, p_util_max); 8090 } 8091 8092 fits = util_fits_cpu(util, util_min, util_max, cpu); 8093 if (!fits) 8094 continue; 8095 8096 lsub_positive(&cpu_cap, util); 8097 8098 if (cpu == prev_cpu) { 8099 /* Always use prev_cpu as a candidate. */ 8100 prev_spare_cap = cpu_cap; 8101 prev_fits = fits; 8102 } else if ((fits > max_fits) || 8103 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8104 /* 8105 * Find the CPU with the maximum spare capacity 8106 * among the remaining CPUs in the performance 8107 * domain. 8108 */ 8109 max_spare_cap = cpu_cap; 8110 max_spare_cap_cpu = cpu; 8111 max_fits = fits; 8112 } 8113 } 8114 8115 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8116 continue; 8117 8118 eenv_pd_busy_time(&eenv, cpus, p); 8119 /* Compute the 'base' energy of the pd, without @p */ 8120 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8121 8122 /* Evaluate the energy impact of using prev_cpu. */ 8123 if (prev_spare_cap > -1) { 8124 prev_delta = compute_energy(&eenv, pd, cpus, p, 8125 prev_cpu); 8126 /* CPU utilization has changed */ 8127 if (prev_delta < base_energy) 8128 goto unlock; 8129 prev_delta -= base_energy; 8130 prev_actual_cap = cpu_actual_cap; 8131 best_delta = min(best_delta, prev_delta); 8132 } 8133 8134 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8135 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8136 /* Current best energy cpu fits better */ 8137 if (max_fits < best_fits) 8138 continue; 8139 8140 /* 8141 * Both don't fit performance hint (i.e. uclamp_min) 8142 * but best energy cpu has better capacity. 8143 */ 8144 if ((max_fits < 0) && 8145 (cpu_actual_cap <= best_actual_cap)) 8146 continue; 8147 8148 cur_delta = compute_energy(&eenv, pd, cpus, p, 8149 max_spare_cap_cpu); 8150 /* CPU utilization has changed */ 8151 if (cur_delta < base_energy) 8152 goto unlock; 8153 cur_delta -= base_energy; 8154 8155 /* 8156 * Both fit for the task but best energy cpu has lower 8157 * energy impact. 8158 */ 8159 if ((max_fits > 0) && (best_fits > 0) && 8160 (cur_delta >= best_delta)) 8161 continue; 8162 8163 best_delta = cur_delta; 8164 best_energy_cpu = max_spare_cap_cpu; 8165 best_fits = max_fits; 8166 best_actual_cap = cpu_actual_cap; 8167 } 8168 } 8169 rcu_read_unlock(); 8170 8171 if ((best_fits > prev_fits) || 8172 ((best_fits > 0) && (best_delta < prev_delta)) || 8173 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8174 target = best_energy_cpu; 8175 8176 return target; 8177 8178 unlock: 8179 rcu_read_unlock(); 8180 8181 return target; 8182 } 8183 8184 /* 8185 * select_task_rq_fair: Select target runqueue for the waking task in domains 8186 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8187 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8188 * 8189 * Balances load by selecting the idlest CPU in the idlest group, or under 8190 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8191 * 8192 * Returns the target CPU number. 8193 */ 8194 static int 8195 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8196 { 8197 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8198 struct sched_domain *tmp, *sd = NULL; 8199 int cpu = smp_processor_id(); 8200 int new_cpu = prev_cpu; 8201 int want_affine = 0; 8202 /* SD_flags and WF_flags share the first nibble */ 8203 int sd_flag = wake_flags & 0xF; 8204 8205 /* 8206 * required for stable ->cpus_allowed 8207 */ 8208 lockdep_assert_held(&p->pi_lock); 8209 if (wake_flags & WF_TTWU) { 8210 record_wakee(p); 8211 8212 if ((wake_flags & WF_CURRENT_CPU) && 8213 cpumask_test_cpu(cpu, p->cpus_ptr)) 8214 return cpu; 8215 8216 if (!is_rd_overutilized(this_rq()->rd)) { 8217 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8218 if (new_cpu >= 0) 8219 return new_cpu; 8220 new_cpu = prev_cpu; 8221 } 8222 8223 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8224 } 8225 8226 rcu_read_lock(); 8227 for_each_domain(cpu, tmp) { 8228 /* 8229 * If both 'cpu' and 'prev_cpu' are part of this domain, 8230 * cpu is a valid SD_WAKE_AFFINE target. 8231 */ 8232 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8233 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8234 if (cpu != prev_cpu) 8235 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8236 8237 sd = NULL; /* Prefer wake_affine over balance flags */ 8238 break; 8239 } 8240 8241 /* 8242 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8243 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8244 * will usually go to the fast path. 8245 */ 8246 if (tmp->flags & sd_flag) 8247 sd = tmp; 8248 else if (!want_affine) 8249 break; 8250 } 8251 8252 if (unlikely(sd)) { 8253 /* Slow path */ 8254 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8255 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8256 /* Fast path */ 8257 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8258 } 8259 rcu_read_unlock(); 8260 8261 return new_cpu; 8262 } 8263 8264 /* 8265 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8266 * cfs_rq_of(p) references at time of call are still valid and identify the 8267 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8268 */ 8269 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8270 { 8271 struct sched_entity *se = &p->se; 8272 8273 if (!task_on_rq_migrating(p)) { 8274 remove_entity_load_avg(se); 8275 8276 /* 8277 * Here, the task's PELT values have been updated according to 8278 * the current rq's clock. But if that clock hasn't been 8279 * updated in a while, a substantial idle time will be missed, 8280 * leading to an inflation after wake-up on the new rq. 8281 * 8282 * Estimate the missing time from the cfs_rq last_update_time 8283 * and update sched_avg to improve the PELT continuity after 8284 * migration. 8285 */ 8286 migrate_se_pelt_lag(se); 8287 } 8288 8289 /* Tell new CPU we are migrated */ 8290 se->avg.last_update_time = 0; 8291 8292 update_scan_period(p, new_cpu); 8293 } 8294 8295 static void task_dead_fair(struct task_struct *p) 8296 { 8297 remove_entity_load_avg(&p->se); 8298 } 8299 8300 /* 8301 * Set the max capacity the task is allowed to run at for misfit detection. 8302 */ 8303 static void set_task_max_allowed_capacity(struct task_struct *p) 8304 { 8305 struct asym_cap_data *entry; 8306 8307 if (!sched_asym_cpucap_active()) 8308 return; 8309 8310 rcu_read_lock(); 8311 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8312 cpumask_t *cpumask; 8313 8314 cpumask = cpu_capacity_span(entry); 8315 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8316 continue; 8317 8318 p->max_allowed_capacity = entry->capacity; 8319 break; 8320 } 8321 rcu_read_unlock(); 8322 } 8323 8324 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8325 { 8326 set_cpus_allowed_common(p, ctx); 8327 set_task_max_allowed_capacity(p); 8328 } 8329 8330 static int 8331 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8332 { 8333 if (rq->nr_running) 8334 return 1; 8335 8336 return sched_balance_newidle(rq, rf) != 0; 8337 } 8338 #else 8339 static inline void set_task_max_allowed_capacity(struct task_struct *p) {} 8340 #endif /* CONFIG_SMP */ 8341 8342 static void set_next_buddy(struct sched_entity *se) 8343 { 8344 for_each_sched_entity(se) { 8345 if (SCHED_WARN_ON(!se->on_rq)) 8346 return; 8347 if (se_is_idle(se)) 8348 return; 8349 cfs_rq_of(se)->next = se; 8350 } 8351 } 8352 8353 /* 8354 * Preempt the current task with a newly woken task if needed: 8355 */ 8356 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8357 { 8358 struct task_struct *curr = rq->curr; 8359 struct sched_entity *se = &curr->se, *pse = &p->se; 8360 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8361 int cse_is_idle, pse_is_idle; 8362 8363 if (unlikely(se == pse)) 8364 return; 8365 8366 /* 8367 * This is possible from callers such as attach_tasks(), in which we 8368 * unconditionally wakeup_preempt() after an enqueue (which may have 8369 * lead to a throttle). This both saves work and prevents false 8370 * next-buddy nomination below. 8371 */ 8372 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8373 return; 8374 8375 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { 8376 set_next_buddy(pse); 8377 } 8378 8379 /* 8380 * We can come here with TIF_NEED_RESCHED already set from new task 8381 * wake up path. 8382 * 8383 * Note: this also catches the edge-case of curr being in a throttled 8384 * group (e.g. via set_curr_task), since update_curr() (in the 8385 * enqueue of curr) will have resulted in resched being set. This 8386 * prevents us from potentially nominating it as a false LAST_BUDDY 8387 * below. 8388 */ 8389 if (test_tsk_need_resched(curr)) 8390 return; 8391 8392 /* Idle tasks are by definition preempted by non-idle tasks. */ 8393 if (unlikely(task_has_idle_policy(curr)) && 8394 likely(!task_has_idle_policy(p))) 8395 goto preempt; 8396 8397 /* 8398 * Batch and idle tasks do not preempt non-idle tasks (their preemption 8399 * is driven by the tick): 8400 */ 8401 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 8402 return; 8403 8404 find_matching_se(&se, &pse); 8405 WARN_ON_ONCE(!pse); 8406 8407 cse_is_idle = se_is_idle(se); 8408 pse_is_idle = se_is_idle(pse); 8409 8410 /* 8411 * Preempt an idle group in favor of a non-idle group (and don't preempt 8412 * in the inverse case). 8413 */ 8414 if (cse_is_idle && !pse_is_idle) 8415 goto preempt; 8416 if (cse_is_idle != pse_is_idle) 8417 return; 8418 8419 cfs_rq = cfs_rq_of(se); 8420 update_curr(cfs_rq); 8421 8422 /* 8423 * XXX pick_eevdf(cfs_rq) != se ? 8424 */ 8425 if (pick_eevdf(cfs_rq) == pse) 8426 goto preempt; 8427 8428 return; 8429 8430 preempt: 8431 resched_curr(rq); 8432 } 8433 8434 #ifdef CONFIG_SMP 8435 static struct task_struct *pick_task_fair(struct rq *rq) 8436 { 8437 struct sched_entity *se; 8438 struct cfs_rq *cfs_rq; 8439 8440 again: 8441 cfs_rq = &rq->cfs; 8442 if (!cfs_rq->nr_running) 8443 return NULL; 8444 8445 do { 8446 struct sched_entity *curr = cfs_rq->curr; 8447 8448 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 8449 if (curr) { 8450 if (curr->on_rq) 8451 update_curr(cfs_rq); 8452 else 8453 curr = NULL; 8454 8455 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8456 goto again; 8457 } 8458 8459 se = pick_next_entity(cfs_rq); 8460 cfs_rq = group_cfs_rq(se); 8461 } while (cfs_rq); 8462 8463 return task_of(se); 8464 } 8465 #endif 8466 8467 struct task_struct * 8468 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8469 { 8470 struct cfs_rq *cfs_rq = &rq->cfs; 8471 struct sched_entity *se; 8472 struct task_struct *p; 8473 int new_tasks; 8474 8475 again: 8476 if (!sched_fair_runnable(rq)) 8477 goto idle; 8478 8479 #ifdef CONFIG_FAIR_GROUP_SCHED 8480 if (!prev || prev->sched_class != &fair_sched_class) 8481 goto simple; 8482 8483 /* 8484 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8485 * likely that a next task is from the same cgroup as the current. 8486 * 8487 * Therefore attempt to avoid putting and setting the entire cgroup 8488 * hierarchy, only change the part that actually changes. 8489 */ 8490 8491 do { 8492 struct sched_entity *curr = cfs_rq->curr; 8493 8494 /* 8495 * Since we got here without doing put_prev_entity() we also 8496 * have to consider cfs_rq->curr. If it is still a runnable 8497 * entity, update_curr() will update its vruntime, otherwise 8498 * forget we've ever seen it. 8499 */ 8500 if (curr) { 8501 if (curr->on_rq) 8502 update_curr(cfs_rq); 8503 else 8504 curr = NULL; 8505 8506 /* 8507 * This call to check_cfs_rq_runtime() will do the 8508 * throttle and dequeue its entity in the parent(s). 8509 * Therefore the nr_running test will indeed 8510 * be correct. 8511 */ 8512 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 8513 cfs_rq = &rq->cfs; 8514 8515 if (!cfs_rq->nr_running) 8516 goto idle; 8517 8518 goto simple; 8519 } 8520 } 8521 8522 se = pick_next_entity(cfs_rq); 8523 cfs_rq = group_cfs_rq(se); 8524 } while (cfs_rq); 8525 8526 p = task_of(se); 8527 8528 /* 8529 * Since we haven't yet done put_prev_entity and if the selected task 8530 * is a different task than we started out with, try and touch the 8531 * least amount of cfs_rqs. 8532 */ 8533 if (prev != p) { 8534 struct sched_entity *pse = &prev->se; 8535 8536 while (!(cfs_rq = is_same_group(se, pse))) { 8537 int se_depth = se->depth; 8538 int pse_depth = pse->depth; 8539 8540 if (se_depth <= pse_depth) { 8541 put_prev_entity(cfs_rq_of(pse), pse); 8542 pse = parent_entity(pse); 8543 } 8544 if (se_depth >= pse_depth) { 8545 set_next_entity(cfs_rq_of(se), se); 8546 se = parent_entity(se); 8547 } 8548 } 8549 8550 put_prev_entity(cfs_rq, pse); 8551 set_next_entity(cfs_rq, se); 8552 } 8553 8554 goto done; 8555 simple: 8556 #endif 8557 if (prev) 8558 put_prev_task(rq, prev); 8559 8560 do { 8561 se = pick_next_entity(cfs_rq); 8562 set_next_entity(cfs_rq, se); 8563 cfs_rq = group_cfs_rq(se); 8564 } while (cfs_rq); 8565 8566 p = task_of(se); 8567 8568 done: __maybe_unused; 8569 #ifdef CONFIG_SMP 8570 /* 8571 * Move the next running task to the front of 8572 * the list, so our cfs_tasks list becomes MRU 8573 * one. 8574 */ 8575 list_move(&p->se.group_node, &rq->cfs_tasks); 8576 #endif 8577 8578 if (hrtick_enabled_fair(rq)) 8579 hrtick_start_fair(rq, p); 8580 8581 update_misfit_status(p, rq); 8582 sched_fair_update_stop_tick(rq, p); 8583 8584 return p; 8585 8586 idle: 8587 if (!rf) 8588 return NULL; 8589 8590 new_tasks = sched_balance_newidle(rq, rf); 8591 8592 /* 8593 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is 8594 * possible for any higher priority task to appear. In that case we 8595 * must re-start the pick_next_entity() loop. 8596 */ 8597 if (new_tasks < 0) 8598 return RETRY_TASK; 8599 8600 if (new_tasks > 0) 8601 goto again; 8602 8603 /* 8604 * rq is about to be idle, check if we need to update the 8605 * lost_idle_time of clock_pelt 8606 */ 8607 update_idle_rq_clock_pelt(rq); 8608 8609 return NULL; 8610 } 8611 8612 static struct task_struct *__pick_next_task_fair(struct rq *rq) 8613 { 8614 return pick_next_task_fair(rq, NULL, NULL); 8615 } 8616 8617 /* 8618 * Account for a descheduled task: 8619 */ 8620 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 8621 { 8622 struct sched_entity *se = &prev->se; 8623 struct cfs_rq *cfs_rq; 8624 8625 for_each_sched_entity(se) { 8626 cfs_rq = cfs_rq_of(se); 8627 put_prev_entity(cfs_rq, se); 8628 } 8629 } 8630 8631 /* 8632 * sched_yield() is very simple 8633 */ 8634 static void yield_task_fair(struct rq *rq) 8635 { 8636 struct task_struct *curr = rq->curr; 8637 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8638 struct sched_entity *se = &curr->se; 8639 8640 /* 8641 * Are we the only task in the tree? 8642 */ 8643 if (unlikely(rq->nr_running == 1)) 8644 return; 8645 8646 clear_buddies(cfs_rq, se); 8647 8648 update_rq_clock(rq); 8649 /* 8650 * Update run-time statistics of the 'current'. 8651 */ 8652 update_curr(cfs_rq); 8653 /* 8654 * Tell update_rq_clock() that we've just updated, 8655 * so we don't do microscopic update in schedule() 8656 * and double the fastpath cost. 8657 */ 8658 rq_clock_skip_update(rq); 8659 8660 se->deadline += calc_delta_fair(se->slice, se); 8661 } 8662 8663 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8664 { 8665 struct sched_entity *se = &p->se; 8666 8667 /* throttled hierarchies are not runnable */ 8668 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8669 return false; 8670 8671 /* Tell the scheduler that we'd really like se to run next. */ 8672 set_next_buddy(se); 8673 8674 yield_task_fair(rq); 8675 8676 return true; 8677 } 8678 8679 #ifdef CONFIG_SMP 8680 /************************************************** 8681 * Fair scheduling class load-balancing methods. 8682 * 8683 * BASICS 8684 * 8685 * The purpose of load-balancing is to achieve the same basic fairness the 8686 * per-CPU scheduler provides, namely provide a proportional amount of compute 8687 * time to each task. This is expressed in the following equation: 8688 * 8689 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 8690 * 8691 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 8692 * W_i,0 is defined as: 8693 * 8694 * W_i,0 = \Sum_j w_i,j (2) 8695 * 8696 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 8697 * is derived from the nice value as per sched_prio_to_weight[]. 8698 * 8699 * The weight average is an exponential decay average of the instantaneous 8700 * weight: 8701 * 8702 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 8703 * 8704 * C_i is the compute capacity of CPU i, typically it is the 8705 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 8706 * can also include other factors [XXX]. 8707 * 8708 * To achieve this balance we define a measure of imbalance which follows 8709 * directly from (1): 8710 * 8711 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 8712 * 8713 * We them move tasks around to minimize the imbalance. In the continuous 8714 * function space it is obvious this converges, in the discrete case we get 8715 * a few fun cases generally called infeasible weight scenarios. 8716 * 8717 * [XXX expand on: 8718 * - infeasible weights; 8719 * - local vs global optima in the discrete case. ] 8720 * 8721 * 8722 * SCHED DOMAINS 8723 * 8724 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 8725 * for all i,j solution, we create a tree of CPUs that follows the hardware 8726 * topology where each level pairs two lower groups (or better). This results 8727 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 8728 * tree to only the first of the previous level and we decrease the frequency 8729 * of load-balance at each level inversely proportional to the number of CPUs in 8730 * the groups. 8731 * 8732 * This yields: 8733 * 8734 * log_2 n 1 n 8735 * \Sum { --- * --- * 2^i } = O(n) (5) 8736 * i = 0 2^i 2^i 8737 * `- size of each group 8738 * | | `- number of CPUs doing load-balance 8739 * | `- freq 8740 * `- sum over all levels 8741 * 8742 * Coupled with a limit on how many tasks we can migrate every balance pass, 8743 * this makes (5) the runtime complexity of the balancer. 8744 * 8745 * An important property here is that each CPU is still (indirectly) connected 8746 * to every other CPU in at most O(log n) steps: 8747 * 8748 * The adjacency matrix of the resulting graph is given by: 8749 * 8750 * log_2 n 8751 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 8752 * k = 0 8753 * 8754 * And you'll find that: 8755 * 8756 * A^(log_2 n)_i,j != 0 for all i,j (7) 8757 * 8758 * Showing there's indeed a path between every CPU in at most O(log n) steps. 8759 * The task movement gives a factor of O(m), giving a convergence complexity 8760 * of: 8761 * 8762 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 8763 * 8764 * 8765 * WORK CONSERVING 8766 * 8767 * In order to avoid CPUs going idle while there's still work to do, new idle 8768 * balancing is more aggressive and has the newly idle CPU iterate up the domain 8769 * tree itself instead of relying on other CPUs to bring it work. 8770 * 8771 * This adds some complexity to both (5) and (8) but it reduces the total idle 8772 * time. 8773 * 8774 * [XXX more?] 8775 * 8776 * 8777 * CGROUPS 8778 * 8779 * Cgroups make a horror show out of (2), instead of a simple sum we get: 8780 * 8781 * s_k,i 8782 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 8783 * S_k 8784 * 8785 * Where 8786 * 8787 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 8788 * 8789 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 8790 * 8791 * The big problem is S_k, its a global sum needed to compute a local (W_i) 8792 * property. 8793 * 8794 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 8795 * rewrite all of this once again.] 8796 */ 8797 8798 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 8799 8800 enum fbq_type { regular, remote, all }; 8801 8802 /* 8803 * 'group_type' describes the group of CPUs at the moment of load balancing. 8804 * 8805 * The enum is ordered by pulling priority, with the group with lowest priority 8806 * first so the group_type can simply be compared when selecting the busiest 8807 * group. See update_sd_pick_busiest(). 8808 */ 8809 enum group_type { 8810 /* The group has spare capacity that can be used to run more tasks. */ 8811 group_has_spare = 0, 8812 /* 8813 * The group is fully used and the tasks don't compete for more CPU 8814 * cycles. Nevertheless, some tasks might wait before running. 8815 */ 8816 group_fully_busy, 8817 /* 8818 * One task doesn't fit with CPU's capacity and must be migrated to a 8819 * more powerful CPU. 8820 */ 8821 group_misfit_task, 8822 /* 8823 * Balance SMT group that's fully busy. Can benefit from migration 8824 * a task on SMT with busy sibling to another CPU on idle core. 8825 */ 8826 group_smt_balance, 8827 /* 8828 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 8829 * and the task should be migrated to it instead of running on the 8830 * current CPU. 8831 */ 8832 group_asym_packing, 8833 /* 8834 * The tasks' affinity constraints previously prevented the scheduler 8835 * from balancing the load across the system. 8836 */ 8837 group_imbalanced, 8838 /* 8839 * The CPU is overloaded and can't provide expected CPU cycles to all 8840 * tasks. 8841 */ 8842 group_overloaded 8843 }; 8844 8845 enum migration_type { 8846 migrate_load = 0, 8847 migrate_util, 8848 migrate_task, 8849 migrate_misfit 8850 }; 8851 8852 #define LBF_ALL_PINNED 0x01 8853 #define LBF_NEED_BREAK 0x02 8854 #define LBF_DST_PINNED 0x04 8855 #define LBF_SOME_PINNED 0x08 8856 #define LBF_ACTIVE_LB 0x10 8857 8858 struct lb_env { 8859 struct sched_domain *sd; 8860 8861 struct rq *src_rq; 8862 int src_cpu; 8863 8864 int dst_cpu; 8865 struct rq *dst_rq; 8866 8867 struct cpumask *dst_grpmask; 8868 int new_dst_cpu; 8869 enum cpu_idle_type idle; 8870 long imbalance; 8871 /* The set of CPUs under consideration for load-balancing */ 8872 struct cpumask *cpus; 8873 8874 unsigned int flags; 8875 8876 unsigned int loop; 8877 unsigned int loop_break; 8878 unsigned int loop_max; 8879 8880 enum fbq_type fbq_type; 8881 enum migration_type migration_type; 8882 struct list_head tasks; 8883 }; 8884 8885 /* 8886 * Is this task likely cache-hot: 8887 */ 8888 static int task_hot(struct task_struct *p, struct lb_env *env) 8889 { 8890 s64 delta; 8891 8892 lockdep_assert_rq_held(env->src_rq); 8893 8894 if (p->sched_class != &fair_sched_class) 8895 return 0; 8896 8897 if (unlikely(task_has_idle_policy(p))) 8898 return 0; 8899 8900 /* SMT siblings share cache */ 8901 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 8902 return 0; 8903 8904 /* 8905 * Buddy candidates are cache hot: 8906 */ 8907 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 8908 (&p->se == cfs_rq_of(&p->se)->next)) 8909 return 1; 8910 8911 if (sysctl_sched_migration_cost == -1) 8912 return 1; 8913 8914 /* 8915 * Don't migrate task if the task's cookie does not match 8916 * with the destination CPU's core cookie. 8917 */ 8918 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 8919 return 1; 8920 8921 if (sysctl_sched_migration_cost == 0) 8922 return 0; 8923 8924 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 8925 8926 return delta < (s64)sysctl_sched_migration_cost; 8927 } 8928 8929 #ifdef CONFIG_NUMA_BALANCING 8930 /* 8931 * Returns 1, if task migration degrades locality 8932 * Returns 0, if task migration improves locality i.e migration preferred. 8933 * Returns -1, if task migration is not affected by locality. 8934 */ 8935 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 8936 { 8937 struct numa_group *numa_group = rcu_dereference(p->numa_group); 8938 unsigned long src_weight, dst_weight; 8939 int src_nid, dst_nid, dist; 8940 8941 if (!static_branch_likely(&sched_numa_balancing)) 8942 return -1; 8943 8944 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 8945 return -1; 8946 8947 src_nid = cpu_to_node(env->src_cpu); 8948 dst_nid = cpu_to_node(env->dst_cpu); 8949 8950 if (src_nid == dst_nid) 8951 return -1; 8952 8953 /* Migrating away from the preferred node is always bad. */ 8954 if (src_nid == p->numa_preferred_nid) { 8955 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 8956 return 1; 8957 else 8958 return -1; 8959 } 8960 8961 /* Encourage migration to the preferred node. */ 8962 if (dst_nid == p->numa_preferred_nid) 8963 return 0; 8964 8965 /* Leaving a core idle is often worse than degrading locality. */ 8966 if (env->idle == CPU_IDLE) 8967 return -1; 8968 8969 dist = node_distance(src_nid, dst_nid); 8970 if (numa_group) { 8971 src_weight = group_weight(p, src_nid, dist); 8972 dst_weight = group_weight(p, dst_nid, dist); 8973 } else { 8974 src_weight = task_weight(p, src_nid, dist); 8975 dst_weight = task_weight(p, dst_nid, dist); 8976 } 8977 8978 return dst_weight < src_weight; 8979 } 8980 8981 #else 8982 static inline int migrate_degrades_locality(struct task_struct *p, 8983 struct lb_env *env) 8984 { 8985 return -1; 8986 } 8987 #endif 8988 8989 /* 8990 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 8991 */ 8992 static 8993 int can_migrate_task(struct task_struct *p, struct lb_env *env) 8994 { 8995 int tsk_cache_hot; 8996 8997 lockdep_assert_rq_held(env->src_rq); 8998 8999 /* 9000 * We do not migrate tasks that are: 9001 * 1) throttled_lb_pair, or 9002 * 2) cannot be migrated to this CPU due to cpus_ptr, or 9003 * 3) running (obviously), or 9004 * 4) are cache-hot on their current CPU. 9005 */ 9006 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 9007 return 0; 9008 9009 /* Disregard percpu kthreads; they are where they need to be. */ 9010 if (kthread_is_per_cpu(p)) 9011 return 0; 9012 9013 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9014 int cpu; 9015 9016 schedstat_inc(p->stats.nr_failed_migrations_affine); 9017 9018 env->flags |= LBF_SOME_PINNED; 9019 9020 /* 9021 * Remember if this task can be migrated to any other CPU in 9022 * our sched_group. We may want to revisit it if we couldn't 9023 * meet load balance goals by pulling other tasks on src_cpu. 9024 * 9025 * Avoid computing new_dst_cpu 9026 * - for NEWLY_IDLE 9027 * - if we have already computed one in current iteration 9028 * - if it's an active balance 9029 */ 9030 if (env->idle == CPU_NEWLY_IDLE || 9031 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9032 return 0; 9033 9034 /* Prevent to re-select dst_cpu via env's CPUs: */ 9035 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 9036 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 9037 env->flags |= LBF_DST_PINNED; 9038 env->new_dst_cpu = cpu; 9039 break; 9040 } 9041 } 9042 9043 return 0; 9044 } 9045 9046 /* Record that we found at least one task that could run on dst_cpu */ 9047 env->flags &= ~LBF_ALL_PINNED; 9048 9049 if (task_on_cpu(env->src_rq, p)) { 9050 schedstat_inc(p->stats.nr_failed_migrations_running); 9051 return 0; 9052 } 9053 9054 /* 9055 * Aggressive migration if: 9056 * 1) active balance 9057 * 2) destination numa is preferred 9058 * 3) task is cache cold, or 9059 * 4) too many balance attempts have failed. 9060 */ 9061 if (env->flags & LBF_ACTIVE_LB) 9062 return 1; 9063 9064 tsk_cache_hot = migrate_degrades_locality(p, env); 9065 if (tsk_cache_hot == -1) 9066 tsk_cache_hot = task_hot(p, env); 9067 9068 if (tsk_cache_hot <= 0 || 9069 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9070 if (tsk_cache_hot == 1) { 9071 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9072 schedstat_inc(p->stats.nr_forced_migrations); 9073 } 9074 return 1; 9075 } 9076 9077 schedstat_inc(p->stats.nr_failed_migrations_hot); 9078 return 0; 9079 } 9080 9081 /* 9082 * detach_task() -- detach the task for the migration specified in env 9083 */ 9084 static void detach_task(struct task_struct *p, struct lb_env *env) 9085 { 9086 lockdep_assert_rq_held(env->src_rq); 9087 9088 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9089 set_task_cpu(p, env->dst_cpu); 9090 } 9091 9092 /* 9093 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9094 * part of active balancing operations within "domain". 9095 * 9096 * Returns a task if successful and NULL otherwise. 9097 */ 9098 static struct task_struct *detach_one_task(struct lb_env *env) 9099 { 9100 struct task_struct *p; 9101 9102 lockdep_assert_rq_held(env->src_rq); 9103 9104 list_for_each_entry_reverse(p, 9105 &env->src_rq->cfs_tasks, se.group_node) { 9106 if (!can_migrate_task(p, env)) 9107 continue; 9108 9109 detach_task(p, env); 9110 9111 /* 9112 * Right now, this is only the second place where 9113 * lb_gained[env->idle] is updated (other is detach_tasks) 9114 * so we can safely collect stats here rather than 9115 * inside detach_tasks(). 9116 */ 9117 schedstat_inc(env->sd->lb_gained[env->idle]); 9118 return p; 9119 } 9120 return NULL; 9121 } 9122 9123 /* 9124 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9125 * busiest_rq, as part of a balancing operation within domain "sd". 9126 * 9127 * Returns number of detached tasks if successful and 0 otherwise. 9128 */ 9129 static int detach_tasks(struct lb_env *env) 9130 { 9131 struct list_head *tasks = &env->src_rq->cfs_tasks; 9132 unsigned long util, load; 9133 struct task_struct *p; 9134 int detached = 0; 9135 9136 lockdep_assert_rq_held(env->src_rq); 9137 9138 /* 9139 * Source run queue has been emptied by another CPU, clear 9140 * LBF_ALL_PINNED flag as we will not test any task. 9141 */ 9142 if (env->src_rq->nr_running <= 1) { 9143 env->flags &= ~LBF_ALL_PINNED; 9144 return 0; 9145 } 9146 9147 if (env->imbalance <= 0) 9148 return 0; 9149 9150 while (!list_empty(tasks)) { 9151 /* 9152 * We don't want to steal all, otherwise we may be treated likewise, 9153 * which could at worst lead to a livelock crash. 9154 */ 9155 if (env->idle && env->src_rq->nr_running <= 1) 9156 break; 9157 9158 env->loop++; 9159 /* We've more or less seen every task there is, call it quits */ 9160 if (env->loop > env->loop_max) 9161 break; 9162 9163 /* take a breather every nr_migrate tasks */ 9164 if (env->loop > env->loop_break) { 9165 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9166 env->flags |= LBF_NEED_BREAK; 9167 break; 9168 } 9169 9170 p = list_last_entry(tasks, struct task_struct, se.group_node); 9171 9172 if (!can_migrate_task(p, env)) 9173 goto next; 9174 9175 switch (env->migration_type) { 9176 case migrate_load: 9177 /* 9178 * Depending of the number of CPUs and tasks and the 9179 * cgroup hierarchy, task_h_load() can return a null 9180 * value. Make sure that env->imbalance decreases 9181 * otherwise detach_tasks() will stop only after 9182 * detaching up to loop_max tasks. 9183 */ 9184 load = max_t(unsigned long, task_h_load(p), 1); 9185 9186 if (sched_feat(LB_MIN) && 9187 load < 16 && !env->sd->nr_balance_failed) 9188 goto next; 9189 9190 /* 9191 * Make sure that we don't migrate too much load. 9192 * Nevertheless, let relax the constraint if 9193 * scheduler fails to find a good waiting task to 9194 * migrate. 9195 */ 9196 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9197 goto next; 9198 9199 env->imbalance -= load; 9200 break; 9201 9202 case migrate_util: 9203 util = task_util_est(p); 9204 9205 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9206 goto next; 9207 9208 env->imbalance -= util; 9209 break; 9210 9211 case migrate_task: 9212 env->imbalance--; 9213 break; 9214 9215 case migrate_misfit: 9216 /* This is not a misfit task */ 9217 if (task_fits_cpu(p, env->src_cpu)) 9218 goto next; 9219 9220 env->imbalance = 0; 9221 break; 9222 } 9223 9224 detach_task(p, env); 9225 list_add(&p->se.group_node, &env->tasks); 9226 9227 detached++; 9228 9229 #ifdef CONFIG_PREEMPTION 9230 /* 9231 * NEWIDLE balancing is a source of latency, so preemptible 9232 * kernels will stop after the first task is detached to minimize 9233 * the critical section. 9234 */ 9235 if (env->idle == CPU_NEWLY_IDLE) 9236 break; 9237 #endif 9238 9239 /* 9240 * We only want to steal up to the prescribed amount of 9241 * load/util/tasks. 9242 */ 9243 if (env->imbalance <= 0) 9244 break; 9245 9246 continue; 9247 next: 9248 list_move(&p->se.group_node, tasks); 9249 } 9250 9251 /* 9252 * Right now, this is one of only two places we collect this stat 9253 * so we can safely collect detach_one_task() stats here rather 9254 * than inside detach_one_task(). 9255 */ 9256 schedstat_add(env->sd->lb_gained[env->idle], detached); 9257 9258 return detached; 9259 } 9260 9261 /* 9262 * attach_task() -- attach the task detached by detach_task() to its new rq. 9263 */ 9264 static void attach_task(struct rq *rq, struct task_struct *p) 9265 { 9266 lockdep_assert_rq_held(rq); 9267 9268 WARN_ON_ONCE(task_rq(p) != rq); 9269 activate_task(rq, p, ENQUEUE_NOCLOCK); 9270 wakeup_preempt(rq, p, 0); 9271 } 9272 9273 /* 9274 * attach_one_task() -- attaches the task returned from detach_one_task() to 9275 * its new rq. 9276 */ 9277 static void attach_one_task(struct rq *rq, struct task_struct *p) 9278 { 9279 struct rq_flags rf; 9280 9281 rq_lock(rq, &rf); 9282 update_rq_clock(rq); 9283 attach_task(rq, p); 9284 rq_unlock(rq, &rf); 9285 } 9286 9287 /* 9288 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9289 * new rq. 9290 */ 9291 static void attach_tasks(struct lb_env *env) 9292 { 9293 struct list_head *tasks = &env->tasks; 9294 struct task_struct *p; 9295 struct rq_flags rf; 9296 9297 rq_lock(env->dst_rq, &rf); 9298 update_rq_clock(env->dst_rq); 9299 9300 while (!list_empty(tasks)) { 9301 p = list_first_entry(tasks, struct task_struct, se.group_node); 9302 list_del_init(&p->se.group_node); 9303 9304 attach_task(env->dst_rq, p); 9305 } 9306 9307 rq_unlock(env->dst_rq, &rf); 9308 } 9309 9310 #ifdef CONFIG_NO_HZ_COMMON 9311 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9312 { 9313 if (cfs_rq->avg.load_avg) 9314 return true; 9315 9316 if (cfs_rq->avg.util_avg) 9317 return true; 9318 9319 return false; 9320 } 9321 9322 static inline bool others_have_blocked(struct rq *rq) 9323 { 9324 if (cpu_util_rt(rq)) 9325 return true; 9326 9327 if (cpu_util_dl(rq)) 9328 return true; 9329 9330 if (hw_load_avg(rq)) 9331 return true; 9332 9333 if (cpu_util_irq(rq)) 9334 return true; 9335 9336 return false; 9337 } 9338 9339 static inline void update_blocked_load_tick(struct rq *rq) 9340 { 9341 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9342 } 9343 9344 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9345 { 9346 if (!has_blocked) 9347 rq->has_blocked_load = 0; 9348 } 9349 #else 9350 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9351 static inline bool others_have_blocked(struct rq *rq) { return false; } 9352 static inline void update_blocked_load_tick(struct rq *rq) {} 9353 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9354 #endif 9355 9356 static bool __update_blocked_others(struct rq *rq, bool *done) 9357 { 9358 const struct sched_class *curr_class; 9359 u64 now = rq_clock_pelt(rq); 9360 unsigned long hw_pressure; 9361 bool decayed; 9362 9363 /* 9364 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9365 * DL and IRQ signals have been updated before updating CFS. 9366 */ 9367 curr_class = rq->curr->sched_class; 9368 9369 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 9370 9371 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 9372 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 9373 update_hw_load_avg(now, rq, hw_pressure) | 9374 update_irq_load_avg(rq, 0); 9375 9376 if (others_have_blocked(rq)) 9377 *done = false; 9378 9379 return decayed; 9380 } 9381 9382 #ifdef CONFIG_FAIR_GROUP_SCHED 9383 9384 static bool __update_blocked_fair(struct rq *rq, bool *done) 9385 { 9386 struct cfs_rq *cfs_rq, *pos; 9387 bool decayed = false; 9388 int cpu = cpu_of(rq); 9389 9390 /* 9391 * Iterates the task_group tree in a bottom up fashion, see 9392 * list_add_leaf_cfs_rq() for details. 9393 */ 9394 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9395 struct sched_entity *se; 9396 9397 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9398 update_tg_load_avg(cfs_rq); 9399 9400 if (cfs_rq->nr_running == 0) 9401 update_idle_cfs_rq_clock_pelt(cfs_rq); 9402 9403 if (cfs_rq == &rq->cfs) 9404 decayed = true; 9405 } 9406 9407 /* Propagate pending load changes to the parent, if any: */ 9408 se = cfs_rq->tg->se[cpu]; 9409 if (se && !skip_blocked_update(se)) 9410 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9411 9412 /* 9413 * There can be a lot of idle CPU cgroups. Don't let fully 9414 * decayed cfs_rqs linger on the list. 9415 */ 9416 if (cfs_rq_is_decayed(cfs_rq)) 9417 list_del_leaf_cfs_rq(cfs_rq); 9418 9419 /* Don't need periodic decay once load/util_avg are null */ 9420 if (cfs_rq_has_blocked(cfs_rq)) 9421 *done = false; 9422 } 9423 9424 return decayed; 9425 } 9426 9427 /* 9428 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9429 * This needs to be done in a top-down fashion because the load of a child 9430 * group is a fraction of its parents load. 9431 */ 9432 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9433 { 9434 struct rq *rq = rq_of(cfs_rq); 9435 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9436 unsigned long now = jiffies; 9437 unsigned long load; 9438 9439 if (cfs_rq->last_h_load_update == now) 9440 return; 9441 9442 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9443 for_each_sched_entity(se) { 9444 cfs_rq = cfs_rq_of(se); 9445 WRITE_ONCE(cfs_rq->h_load_next, se); 9446 if (cfs_rq->last_h_load_update == now) 9447 break; 9448 } 9449 9450 if (!se) { 9451 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9452 cfs_rq->last_h_load_update = now; 9453 } 9454 9455 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9456 load = cfs_rq->h_load; 9457 load = div64_ul(load * se->avg.load_avg, 9458 cfs_rq_load_avg(cfs_rq) + 1); 9459 cfs_rq = group_cfs_rq(se); 9460 cfs_rq->h_load = load; 9461 cfs_rq->last_h_load_update = now; 9462 } 9463 } 9464 9465 static unsigned long task_h_load(struct task_struct *p) 9466 { 9467 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9468 9469 update_cfs_rq_h_load(cfs_rq); 9470 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9471 cfs_rq_load_avg(cfs_rq) + 1); 9472 } 9473 #else 9474 static bool __update_blocked_fair(struct rq *rq, bool *done) 9475 { 9476 struct cfs_rq *cfs_rq = &rq->cfs; 9477 bool decayed; 9478 9479 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9480 if (cfs_rq_has_blocked(cfs_rq)) 9481 *done = false; 9482 9483 return decayed; 9484 } 9485 9486 static unsigned long task_h_load(struct task_struct *p) 9487 { 9488 return p->se.avg.load_avg; 9489 } 9490 #endif 9491 9492 static void sched_balance_update_blocked_averages(int cpu) 9493 { 9494 bool decayed = false, done = true; 9495 struct rq *rq = cpu_rq(cpu); 9496 struct rq_flags rf; 9497 9498 rq_lock_irqsave(rq, &rf); 9499 update_blocked_load_tick(rq); 9500 update_rq_clock(rq); 9501 9502 decayed |= __update_blocked_others(rq, &done); 9503 decayed |= __update_blocked_fair(rq, &done); 9504 9505 update_blocked_load_status(rq, !done); 9506 if (decayed) 9507 cpufreq_update_util(rq, 0); 9508 rq_unlock_irqrestore(rq, &rf); 9509 } 9510 9511 /********** Helpers for sched_balance_find_src_group ************************/ 9512 9513 /* 9514 * sg_lb_stats - stats of a sched_group required for load-balancing: 9515 */ 9516 struct sg_lb_stats { 9517 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9518 unsigned long group_load; /* Total load over the CPUs of the group */ 9519 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9520 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9521 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9522 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9523 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9524 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9525 unsigned int group_weight; 9526 enum group_type group_type; 9527 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9528 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9529 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9530 #ifdef CONFIG_NUMA_BALANCING 9531 unsigned int nr_numa_running; 9532 unsigned int nr_preferred_running; 9533 #endif 9534 }; 9535 9536 /* 9537 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9538 */ 9539 struct sd_lb_stats { 9540 struct sched_group *busiest; /* Busiest group in this sd */ 9541 struct sched_group *local; /* Local group in this sd */ 9542 unsigned long total_load; /* Total load of all groups in sd */ 9543 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9544 unsigned long avg_load; /* Average load across all groups in sd */ 9545 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 9546 9547 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 9548 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9549 }; 9550 9551 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9552 { 9553 /* 9554 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9555 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9556 * We must however set busiest_stat::group_type and 9557 * busiest_stat::idle_cpus to the worst busiest group because 9558 * update_sd_pick_busiest() reads these before assignment. 9559 */ 9560 *sds = (struct sd_lb_stats){ 9561 .busiest = NULL, 9562 .local = NULL, 9563 .total_load = 0UL, 9564 .total_capacity = 0UL, 9565 .busiest_stat = { 9566 .idle_cpus = UINT_MAX, 9567 .group_type = group_has_spare, 9568 }, 9569 }; 9570 } 9571 9572 static unsigned long scale_rt_capacity(int cpu) 9573 { 9574 unsigned long max = get_actual_cpu_capacity(cpu); 9575 struct rq *rq = cpu_rq(cpu); 9576 unsigned long used, free; 9577 unsigned long irq; 9578 9579 irq = cpu_util_irq(rq); 9580 9581 if (unlikely(irq >= max)) 9582 return 1; 9583 9584 /* 9585 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9586 * (running and not running) with weights 0 and 1024 respectively. 9587 */ 9588 used = cpu_util_rt(rq); 9589 used += cpu_util_dl(rq); 9590 9591 if (unlikely(used >= max)) 9592 return 1; 9593 9594 free = max - used; 9595 9596 return scale_irq_capacity(free, irq, max); 9597 } 9598 9599 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9600 { 9601 unsigned long capacity = scale_rt_capacity(cpu); 9602 struct sched_group *sdg = sd->groups; 9603 9604 if (!capacity) 9605 capacity = 1; 9606 9607 cpu_rq(cpu)->cpu_capacity = capacity; 9608 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9609 9610 sdg->sgc->capacity = capacity; 9611 sdg->sgc->min_capacity = capacity; 9612 sdg->sgc->max_capacity = capacity; 9613 } 9614 9615 void update_group_capacity(struct sched_domain *sd, int cpu) 9616 { 9617 struct sched_domain *child = sd->child; 9618 struct sched_group *group, *sdg = sd->groups; 9619 unsigned long capacity, min_capacity, max_capacity; 9620 unsigned long interval; 9621 9622 interval = msecs_to_jiffies(sd->balance_interval); 9623 interval = clamp(interval, 1UL, max_load_balance_interval); 9624 sdg->sgc->next_update = jiffies + interval; 9625 9626 if (!child) { 9627 update_cpu_capacity(sd, cpu); 9628 return; 9629 } 9630 9631 capacity = 0; 9632 min_capacity = ULONG_MAX; 9633 max_capacity = 0; 9634 9635 if (child->flags & SD_OVERLAP) { 9636 /* 9637 * SD_OVERLAP domains cannot assume that child groups 9638 * span the current group. 9639 */ 9640 9641 for_each_cpu(cpu, sched_group_span(sdg)) { 9642 unsigned long cpu_cap = capacity_of(cpu); 9643 9644 capacity += cpu_cap; 9645 min_capacity = min(cpu_cap, min_capacity); 9646 max_capacity = max(cpu_cap, max_capacity); 9647 } 9648 } else { 9649 /* 9650 * !SD_OVERLAP domains can assume that child groups 9651 * span the current group. 9652 */ 9653 9654 group = child->groups; 9655 do { 9656 struct sched_group_capacity *sgc = group->sgc; 9657 9658 capacity += sgc->capacity; 9659 min_capacity = min(sgc->min_capacity, min_capacity); 9660 max_capacity = max(sgc->max_capacity, max_capacity); 9661 group = group->next; 9662 } while (group != child->groups); 9663 } 9664 9665 sdg->sgc->capacity = capacity; 9666 sdg->sgc->min_capacity = min_capacity; 9667 sdg->sgc->max_capacity = max_capacity; 9668 } 9669 9670 /* 9671 * Check whether the capacity of the rq has been noticeably reduced by side 9672 * activity. The imbalance_pct is used for the threshold. 9673 * Return true is the capacity is reduced 9674 */ 9675 static inline int 9676 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 9677 { 9678 return ((rq->cpu_capacity * sd->imbalance_pct) < 9679 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 9680 } 9681 9682 /* Check if the rq has a misfit task */ 9683 static inline bool check_misfit_status(struct rq *rq) 9684 { 9685 return rq->misfit_task_load; 9686 } 9687 9688 /* 9689 * Group imbalance indicates (and tries to solve) the problem where balancing 9690 * groups is inadequate due to ->cpus_ptr constraints. 9691 * 9692 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9693 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 9694 * Something like: 9695 * 9696 * { 0 1 2 3 } { 4 5 6 7 } 9697 * * * * * 9698 * 9699 * If we were to balance group-wise we'd place two tasks in the first group and 9700 * two tasks in the second group. Clearly this is undesired as it will overload 9701 * cpu 3 and leave one of the CPUs in the second group unused. 9702 * 9703 * The current solution to this issue is detecting the skew in the first group 9704 * by noticing the lower domain failed to reach balance and had difficulty 9705 * moving tasks due to affinity constraints. 9706 * 9707 * When this is so detected; this group becomes a candidate for busiest; see 9708 * update_sd_pick_busiest(). And calculate_imbalance() and 9709 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 9710 * to create an effective group imbalance. 9711 * 9712 * This is a somewhat tricky proposition since the next run might not find the 9713 * group imbalance and decide the groups need to be balanced again. A most 9714 * subtle and fragile situation. 9715 */ 9716 9717 static inline int sg_imbalanced(struct sched_group *group) 9718 { 9719 return group->sgc->imbalance; 9720 } 9721 9722 /* 9723 * group_has_capacity returns true if the group has spare capacity that could 9724 * be used by some tasks. 9725 * We consider that a group has spare capacity if the number of task is 9726 * smaller than the number of CPUs or if the utilization is lower than the 9727 * available capacity for CFS tasks. 9728 * For the latter, we use a threshold to stabilize the state, to take into 9729 * account the variance of the tasks' load and to return true if the available 9730 * capacity in meaningful for the load balancer. 9731 * As an example, an available capacity of 1% can appear but it doesn't make 9732 * any benefit for the load balance. 9733 */ 9734 static inline bool 9735 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9736 { 9737 if (sgs->sum_nr_running < sgs->group_weight) 9738 return true; 9739 9740 if ((sgs->group_capacity * imbalance_pct) < 9741 (sgs->group_runnable * 100)) 9742 return false; 9743 9744 if ((sgs->group_capacity * 100) > 9745 (sgs->group_util * imbalance_pct)) 9746 return true; 9747 9748 return false; 9749 } 9750 9751 /* 9752 * group_is_overloaded returns true if the group has more tasks than it can 9753 * handle. 9754 * group_is_overloaded is not equals to !group_has_capacity because a group 9755 * with the exact right number of tasks, has no more spare capacity but is not 9756 * overloaded so both group_has_capacity and group_is_overloaded return 9757 * false. 9758 */ 9759 static inline bool 9760 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9761 { 9762 if (sgs->sum_nr_running <= sgs->group_weight) 9763 return false; 9764 9765 if ((sgs->group_capacity * 100) < 9766 (sgs->group_util * imbalance_pct)) 9767 return true; 9768 9769 if ((sgs->group_capacity * imbalance_pct) < 9770 (sgs->group_runnable * 100)) 9771 return true; 9772 9773 return false; 9774 } 9775 9776 static inline enum 9777 group_type group_classify(unsigned int imbalance_pct, 9778 struct sched_group *group, 9779 struct sg_lb_stats *sgs) 9780 { 9781 if (group_is_overloaded(imbalance_pct, sgs)) 9782 return group_overloaded; 9783 9784 if (sg_imbalanced(group)) 9785 return group_imbalanced; 9786 9787 if (sgs->group_asym_packing) 9788 return group_asym_packing; 9789 9790 if (sgs->group_smt_balance) 9791 return group_smt_balance; 9792 9793 if (sgs->group_misfit_task_load) 9794 return group_misfit_task; 9795 9796 if (!group_has_capacity(imbalance_pct, sgs)) 9797 return group_fully_busy; 9798 9799 return group_has_spare; 9800 } 9801 9802 /** 9803 * sched_use_asym_prio - Check whether asym_packing priority must be used 9804 * @sd: The scheduling domain of the load balancing 9805 * @cpu: A CPU 9806 * 9807 * Always use CPU priority when balancing load between SMT siblings. When 9808 * balancing load between cores, it is not sufficient that @cpu is idle. Only 9809 * use CPU priority if the whole core is idle. 9810 * 9811 * Returns: True if the priority of @cpu must be followed. False otherwise. 9812 */ 9813 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 9814 { 9815 if (!(sd->flags & SD_ASYM_PACKING)) 9816 return false; 9817 9818 if (!sched_smt_active()) 9819 return true; 9820 9821 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 9822 } 9823 9824 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 9825 { 9826 /* 9827 * First check if @dst_cpu can do asym_packing load balance. Only do it 9828 * if it has higher priority than @src_cpu. 9829 */ 9830 return sched_use_asym_prio(sd, dst_cpu) && 9831 sched_asym_prefer(dst_cpu, src_cpu); 9832 } 9833 9834 /** 9835 * sched_group_asym - Check if the destination CPU can do asym_packing balance 9836 * @env: The load balancing environment 9837 * @sgs: Load-balancing statistics of the candidate busiest group 9838 * @group: The candidate busiest group 9839 * 9840 * @env::dst_cpu can do asym_packing if it has higher priority than the 9841 * preferred CPU of @group. 9842 * 9843 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 9844 * otherwise. 9845 */ 9846 static inline bool 9847 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 9848 { 9849 /* 9850 * CPU priorities do not make sense for SMT cores with more than one 9851 * busy sibling. 9852 */ 9853 if ((group->flags & SD_SHARE_CPUCAPACITY) && 9854 (sgs->group_weight - sgs->idle_cpus != 1)) 9855 return false; 9856 9857 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu); 9858 } 9859 9860 /* One group has more than one SMT CPU while the other group does not */ 9861 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 9862 struct sched_group *sg2) 9863 { 9864 if (!sg1 || !sg2) 9865 return false; 9866 9867 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 9868 (sg2->flags & SD_SHARE_CPUCAPACITY); 9869 } 9870 9871 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 9872 struct sched_group *group) 9873 { 9874 if (!env->idle) 9875 return false; 9876 9877 /* 9878 * For SMT source group, it is better to move a task 9879 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 9880 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 9881 * will not be on. 9882 */ 9883 if (group->flags & SD_SHARE_CPUCAPACITY && 9884 sgs->sum_h_nr_running > 1) 9885 return true; 9886 9887 return false; 9888 } 9889 9890 static inline long sibling_imbalance(struct lb_env *env, 9891 struct sd_lb_stats *sds, 9892 struct sg_lb_stats *busiest, 9893 struct sg_lb_stats *local) 9894 { 9895 int ncores_busiest, ncores_local; 9896 long imbalance; 9897 9898 if (!env->idle || !busiest->sum_nr_running) 9899 return 0; 9900 9901 ncores_busiest = sds->busiest->cores; 9902 ncores_local = sds->local->cores; 9903 9904 if (ncores_busiest == ncores_local) { 9905 imbalance = busiest->sum_nr_running; 9906 lsub_positive(&imbalance, local->sum_nr_running); 9907 return imbalance; 9908 } 9909 9910 /* Balance such that nr_running/ncores ratio are same on both groups */ 9911 imbalance = ncores_local * busiest->sum_nr_running; 9912 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 9913 /* Normalize imbalance and do rounding on normalization */ 9914 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 9915 imbalance /= ncores_local + ncores_busiest; 9916 9917 /* Take advantage of resource in an empty sched group */ 9918 if (imbalance <= 1 && local->sum_nr_running == 0 && 9919 busiest->sum_nr_running > 1) 9920 imbalance = 2; 9921 9922 return imbalance; 9923 } 9924 9925 static inline bool 9926 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 9927 { 9928 /* 9929 * When there is more than 1 task, the group_overloaded case already 9930 * takes care of cpu with reduced capacity 9931 */ 9932 if (rq->cfs.h_nr_running != 1) 9933 return false; 9934 9935 return check_cpu_capacity(rq, sd); 9936 } 9937 9938 /** 9939 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 9940 * @env: The load balancing environment. 9941 * @sds: Load-balancing data with statistics of the local group. 9942 * @group: sched_group whose statistics are to be updated. 9943 * @sgs: variable to hold the statistics for this group. 9944 * @sg_overloaded: sched_group is overloaded 9945 * @sg_overutilized: sched_group is overutilized 9946 */ 9947 static inline void update_sg_lb_stats(struct lb_env *env, 9948 struct sd_lb_stats *sds, 9949 struct sched_group *group, 9950 struct sg_lb_stats *sgs, 9951 bool *sg_overloaded, 9952 bool *sg_overutilized) 9953 { 9954 int i, nr_running, local_group; 9955 9956 memset(sgs, 0, sizeof(*sgs)); 9957 9958 local_group = group == sds->local; 9959 9960 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9961 struct rq *rq = cpu_rq(i); 9962 unsigned long load = cpu_load(rq); 9963 9964 sgs->group_load += load; 9965 sgs->group_util += cpu_util_cfs(i); 9966 sgs->group_runnable += cpu_runnable(rq); 9967 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 9968 9969 nr_running = rq->nr_running; 9970 sgs->sum_nr_running += nr_running; 9971 9972 if (nr_running > 1) 9973 *sg_overloaded = 1; 9974 9975 if (cpu_overutilized(i)) 9976 *sg_overutilized = 1; 9977 9978 #ifdef CONFIG_NUMA_BALANCING 9979 sgs->nr_numa_running += rq->nr_numa_running; 9980 sgs->nr_preferred_running += rq->nr_preferred_running; 9981 #endif 9982 /* 9983 * No need to call idle_cpu() if nr_running is not 0 9984 */ 9985 if (!nr_running && idle_cpu(i)) { 9986 sgs->idle_cpus++; 9987 /* Idle cpu can't have misfit task */ 9988 continue; 9989 } 9990 9991 if (local_group) 9992 continue; 9993 9994 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9995 /* Check for a misfit task on the cpu */ 9996 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 9997 sgs->group_misfit_task_load = rq->misfit_task_load; 9998 *sg_overloaded = 1; 9999 } 10000 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 10001 /* Check for a task running on a CPU with reduced capacity */ 10002 if (sgs->group_misfit_task_load < load) 10003 sgs->group_misfit_task_load = load; 10004 } 10005 } 10006 10007 sgs->group_capacity = group->sgc->capacity; 10008 10009 sgs->group_weight = group->group_weight; 10010 10011 /* Check if dst CPU is idle and preferred to this group */ 10012 if (!local_group && env->idle && sgs->sum_h_nr_running && 10013 sched_group_asym(env, sgs, group)) 10014 sgs->group_asym_packing = 1; 10015 10016 /* Check for loaded SMT group to be balanced to dst CPU */ 10017 if (!local_group && smt_balance(env, sgs, group)) 10018 sgs->group_smt_balance = 1; 10019 10020 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10021 10022 /* Computing avg_load makes sense only when group is overloaded */ 10023 if (sgs->group_type == group_overloaded) 10024 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10025 sgs->group_capacity; 10026 } 10027 10028 /** 10029 * update_sd_pick_busiest - return 1 on busiest group 10030 * @env: The load balancing environment. 10031 * @sds: sched_domain statistics 10032 * @sg: sched_group candidate to be checked for being the busiest 10033 * @sgs: sched_group statistics 10034 * 10035 * Determine if @sg is a busier group than the previously selected 10036 * busiest group. 10037 * 10038 * Return: %true if @sg is a busier group than the previously selected 10039 * busiest group. %false otherwise. 10040 */ 10041 static bool update_sd_pick_busiest(struct lb_env *env, 10042 struct sd_lb_stats *sds, 10043 struct sched_group *sg, 10044 struct sg_lb_stats *sgs) 10045 { 10046 struct sg_lb_stats *busiest = &sds->busiest_stat; 10047 10048 /* Make sure that there is at least one task to pull */ 10049 if (!sgs->sum_h_nr_running) 10050 return false; 10051 10052 /* 10053 * Don't try to pull misfit tasks we can't help. 10054 * We can use max_capacity here as reduction in capacity on some 10055 * CPUs in the group should either be possible to resolve 10056 * internally or be covered by avg_load imbalance (eventually). 10057 */ 10058 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10059 (sgs->group_type == group_misfit_task) && 10060 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10061 sds->local_stat.group_type != group_has_spare)) 10062 return false; 10063 10064 if (sgs->group_type > busiest->group_type) 10065 return true; 10066 10067 if (sgs->group_type < busiest->group_type) 10068 return false; 10069 10070 /* 10071 * The candidate and the current busiest group are the same type of 10072 * group. Let check which one is the busiest according to the type. 10073 */ 10074 10075 switch (sgs->group_type) { 10076 case group_overloaded: 10077 /* Select the overloaded group with highest avg_load. */ 10078 return sgs->avg_load > busiest->avg_load; 10079 10080 case group_imbalanced: 10081 /* 10082 * Select the 1st imbalanced group as we don't have any way to 10083 * choose one more than another. 10084 */ 10085 return false; 10086 10087 case group_asym_packing: 10088 /* Prefer to move from lowest priority CPU's work */ 10089 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu); 10090 10091 case group_misfit_task: 10092 /* 10093 * If we have more than one misfit sg go with the biggest 10094 * misfit. 10095 */ 10096 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10097 10098 case group_smt_balance: 10099 /* 10100 * Check if we have spare CPUs on either SMT group to 10101 * choose has spare or fully busy handling. 10102 */ 10103 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10104 goto has_spare; 10105 10106 fallthrough; 10107 10108 case group_fully_busy: 10109 /* 10110 * Select the fully busy group with highest avg_load. In 10111 * theory, there is no need to pull task from such kind of 10112 * group because tasks have all compute capacity that they need 10113 * but we can still improve the overall throughput by reducing 10114 * contention when accessing shared HW resources. 10115 * 10116 * XXX for now avg_load is not computed and always 0 so we 10117 * select the 1st one, except if @sg is composed of SMT 10118 * siblings. 10119 */ 10120 10121 if (sgs->avg_load < busiest->avg_load) 10122 return false; 10123 10124 if (sgs->avg_load == busiest->avg_load) { 10125 /* 10126 * SMT sched groups need more help than non-SMT groups. 10127 * If @sg happens to also be SMT, either choice is good. 10128 */ 10129 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10130 return false; 10131 } 10132 10133 break; 10134 10135 case group_has_spare: 10136 /* 10137 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10138 * as we do not want to pull task off SMT core with one task 10139 * and make the core idle. 10140 */ 10141 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10142 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10143 return false; 10144 else 10145 return true; 10146 } 10147 has_spare: 10148 10149 /* 10150 * Select not overloaded group with lowest number of idle CPUs 10151 * and highest number of running tasks. We could also compare 10152 * the spare capacity which is more stable but it can end up 10153 * that the group has less spare capacity but finally more idle 10154 * CPUs which means less opportunity to pull tasks. 10155 */ 10156 if (sgs->idle_cpus > busiest->idle_cpus) 10157 return false; 10158 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10159 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10160 return false; 10161 10162 break; 10163 } 10164 10165 /* 10166 * Candidate sg has no more than one task per CPU and has higher 10167 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10168 * throughput. Maximize throughput, power/energy consequences are not 10169 * considered. 10170 */ 10171 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10172 (sgs->group_type <= group_fully_busy) && 10173 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10174 return false; 10175 10176 return true; 10177 } 10178 10179 #ifdef CONFIG_NUMA_BALANCING 10180 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10181 { 10182 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10183 return regular; 10184 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10185 return remote; 10186 return all; 10187 } 10188 10189 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10190 { 10191 if (rq->nr_running > rq->nr_numa_running) 10192 return regular; 10193 if (rq->nr_running > rq->nr_preferred_running) 10194 return remote; 10195 return all; 10196 } 10197 #else 10198 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10199 { 10200 return all; 10201 } 10202 10203 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10204 { 10205 return regular; 10206 } 10207 #endif /* CONFIG_NUMA_BALANCING */ 10208 10209 10210 struct sg_lb_stats; 10211 10212 /* 10213 * task_running_on_cpu - return 1 if @p is running on @cpu. 10214 */ 10215 10216 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10217 { 10218 /* Task has no contribution or is new */ 10219 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10220 return 0; 10221 10222 if (task_on_rq_queued(p)) 10223 return 1; 10224 10225 return 0; 10226 } 10227 10228 /** 10229 * idle_cpu_without - would a given CPU be idle without p ? 10230 * @cpu: the processor on which idleness is tested. 10231 * @p: task which should be ignored. 10232 * 10233 * Return: 1 if the CPU would be idle. 0 otherwise. 10234 */ 10235 static int idle_cpu_without(int cpu, struct task_struct *p) 10236 { 10237 struct rq *rq = cpu_rq(cpu); 10238 10239 if (rq->curr != rq->idle && rq->curr != p) 10240 return 0; 10241 10242 /* 10243 * rq->nr_running can't be used but an updated version without the 10244 * impact of p on cpu must be used instead. The updated nr_running 10245 * be computed and tested before calling idle_cpu_without(). 10246 */ 10247 10248 if (rq->ttwu_pending) 10249 return 0; 10250 10251 return 1; 10252 } 10253 10254 /* 10255 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10256 * @sd: The sched_domain level to look for idlest group. 10257 * @group: sched_group whose statistics are to be updated. 10258 * @sgs: variable to hold the statistics for this group. 10259 * @p: The task for which we look for the idlest group/CPU. 10260 */ 10261 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10262 struct sched_group *group, 10263 struct sg_lb_stats *sgs, 10264 struct task_struct *p) 10265 { 10266 int i, nr_running; 10267 10268 memset(sgs, 0, sizeof(*sgs)); 10269 10270 /* Assume that task can't fit any CPU of the group */ 10271 if (sd->flags & SD_ASYM_CPUCAPACITY) 10272 sgs->group_misfit_task_load = 1; 10273 10274 for_each_cpu(i, sched_group_span(group)) { 10275 struct rq *rq = cpu_rq(i); 10276 unsigned int local; 10277 10278 sgs->group_load += cpu_load_without(rq, p); 10279 sgs->group_util += cpu_util_without(i, p); 10280 sgs->group_runnable += cpu_runnable_without(rq, p); 10281 local = task_running_on_cpu(i, p); 10282 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 10283 10284 nr_running = rq->nr_running - local; 10285 sgs->sum_nr_running += nr_running; 10286 10287 /* 10288 * No need to call idle_cpu_without() if nr_running is not 0 10289 */ 10290 if (!nr_running && idle_cpu_without(i, p)) 10291 sgs->idle_cpus++; 10292 10293 /* Check if task fits in the CPU */ 10294 if (sd->flags & SD_ASYM_CPUCAPACITY && 10295 sgs->group_misfit_task_load && 10296 task_fits_cpu(p, i)) 10297 sgs->group_misfit_task_load = 0; 10298 10299 } 10300 10301 sgs->group_capacity = group->sgc->capacity; 10302 10303 sgs->group_weight = group->group_weight; 10304 10305 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10306 10307 /* 10308 * Computing avg_load makes sense only when group is fully busy or 10309 * overloaded 10310 */ 10311 if (sgs->group_type == group_fully_busy || 10312 sgs->group_type == group_overloaded) 10313 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10314 sgs->group_capacity; 10315 } 10316 10317 static bool update_pick_idlest(struct sched_group *idlest, 10318 struct sg_lb_stats *idlest_sgs, 10319 struct sched_group *group, 10320 struct sg_lb_stats *sgs) 10321 { 10322 if (sgs->group_type < idlest_sgs->group_type) 10323 return true; 10324 10325 if (sgs->group_type > idlest_sgs->group_type) 10326 return false; 10327 10328 /* 10329 * The candidate and the current idlest group are the same type of 10330 * group. Let check which one is the idlest according to the type. 10331 */ 10332 10333 switch (sgs->group_type) { 10334 case group_overloaded: 10335 case group_fully_busy: 10336 /* Select the group with lowest avg_load. */ 10337 if (idlest_sgs->avg_load <= sgs->avg_load) 10338 return false; 10339 break; 10340 10341 case group_imbalanced: 10342 case group_asym_packing: 10343 case group_smt_balance: 10344 /* Those types are not used in the slow wakeup path */ 10345 return false; 10346 10347 case group_misfit_task: 10348 /* Select group with the highest max capacity */ 10349 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10350 return false; 10351 break; 10352 10353 case group_has_spare: 10354 /* Select group with most idle CPUs */ 10355 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10356 return false; 10357 10358 /* Select group with lowest group_util */ 10359 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10360 idlest_sgs->group_util <= sgs->group_util) 10361 return false; 10362 10363 break; 10364 } 10365 10366 return true; 10367 } 10368 10369 /* 10370 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10371 * domain. 10372 * 10373 * Assumes p is allowed on at least one CPU in sd. 10374 */ 10375 static struct sched_group * 10376 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10377 { 10378 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10379 struct sg_lb_stats local_sgs, tmp_sgs; 10380 struct sg_lb_stats *sgs; 10381 unsigned long imbalance; 10382 struct sg_lb_stats idlest_sgs = { 10383 .avg_load = UINT_MAX, 10384 .group_type = group_overloaded, 10385 }; 10386 10387 do { 10388 int local_group; 10389 10390 /* Skip over this group if it has no CPUs allowed */ 10391 if (!cpumask_intersects(sched_group_span(group), 10392 p->cpus_ptr)) 10393 continue; 10394 10395 /* Skip over this group if no cookie matched */ 10396 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10397 continue; 10398 10399 local_group = cpumask_test_cpu(this_cpu, 10400 sched_group_span(group)); 10401 10402 if (local_group) { 10403 sgs = &local_sgs; 10404 local = group; 10405 } else { 10406 sgs = &tmp_sgs; 10407 } 10408 10409 update_sg_wakeup_stats(sd, group, sgs, p); 10410 10411 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10412 idlest = group; 10413 idlest_sgs = *sgs; 10414 } 10415 10416 } while (group = group->next, group != sd->groups); 10417 10418 10419 /* There is no idlest group to push tasks to */ 10420 if (!idlest) 10421 return NULL; 10422 10423 /* The local group has been skipped because of CPU affinity */ 10424 if (!local) 10425 return idlest; 10426 10427 /* 10428 * If the local group is idler than the selected idlest group 10429 * don't try and push the task. 10430 */ 10431 if (local_sgs.group_type < idlest_sgs.group_type) 10432 return NULL; 10433 10434 /* 10435 * If the local group is busier than the selected idlest group 10436 * try and push the task. 10437 */ 10438 if (local_sgs.group_type > idlest_sgs.group_type) 10439 return idlest; 10440 10441 switch (local_sgs.group_type) { 10442 case group_overloaded: 10443 case group_fully_busy: 10444 10445 /* Calculate allowed imbalance based on load */ 10446 imbalance = scale_load_down(NICE_0_LOAD) * 10447 (sd->imbalance_pct-100) / 100; 10448 10449 /* 10450 * When comparing groups across NUMA domains, it's possible for 10451 * the local domain to be very lightly loaded relative to the 10452 * remote domains but "imbalance" skews the comparison making 10453 * remote CPUs look much more favourable. When considering 10454 * cross-domain, add imbalance to the load on the remote node 10455 * and consider staying local. 10456 */ 10457 10458 if ((sd->flags & SD_NUMA) && 10459 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10460 return NULL; 10461 10462 /* 10463 * If the local group is less loaded than the selected 10464 * idlest group don't try and push any tasks. 10465 */ 10466 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10467 return NULL; 10468 10469 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10470 return NULL; 10471 break; 10472 10473 case group_imbalanced: 10474 case group_asym_packing: 10475 case group_smt_balance: 10476 /* Those type are not used in the slow wakeup path */ 10477 return NULL; 10478 10479 case group_misfit_task: 10480 /* Select group with the highest max capacity */ 10481 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10482 return NULL; 10483 break; 10484 10485 case group_has_spare: 10486 #ifdef CONFIG_NUMA 10487 if (sd->flags & SD_NUMA) { 10488 int imb_numa_nr = sd->imb_numa_nr; 10489 #ifdef CONFIG_NUMA_BALANCING 10490 int idlest_cpu; 10491 /* 10492 * If there is spare capacity at NUMA, try to select 10493 * the preferred node 10494 */ 10495 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10496 return NULL; 10497 10498 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10499 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10500 return idlest; 10501 #endif /* CONFIG_NUMA_BALANCING */ 10502 /* 10503 * Otherwise, keep the task close to the wakeup source 10504 * and improve locality if the number of running tasks 10505 * would remain below threshold where an imbalance is 10506 * allowed while accounting for the possibility the 10507 * task is pinned to a subset of CPUs. If there is a 10508 * real need of migration, periodic load balance will 10509 * take care of it. 10510 */ 10511 if (p->nr_cpus_allowed != NR_CPUS) { 10512 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10513 10514 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10515 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10516 } 10517 10518 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10519 if (!adjust_numa_imbalance(imbalance, 10520 local_sgs.sum_nr_running + 1, 10521 imb_numa_nr)) { 10522 return NULL; 10523 } 10524 } 10525 #endif /* CONFIG_NUMA */ 10526 10527 /* 10528 * Select group with highest number of idle CPUs. We could also 10529 * compare the utilization which is more stable but it can end 10530 * up that the group has less spare capacity but finally more 10531 * idle CPUs which means more opportunity to run task. 10532 */ 10533 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10534 return NULL; 10535 break; 10536 } 10537 10538 return idlest; 10539 } 10540 10541 static void update_idle_cpu_scan(struct lb_env *env, 10542 unsigned long sum_util) 10543 { 10544 struct sched_domain_shared *sd_share; 10545 int llc_weight, pct; 10546 u64 x, y, tmp; 10547 /* 10548 * Update the number of CPUs to scan in LLC domain, which could 10549 * be used as a hint in select_idle_cpu(). The update of sd_share 10550 * could be expensive because it is within a shared cache line. 10551 * So the write of this hint only occurs during periodic load 10552 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10553 * can fire way more frequently than the former. 10554 */ 10555 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10556 return; 10557 10558 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10559 if (env->sd->span_weight != llc_weight) 10560 return; 10561 10562 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10563 if (!sd_share) 10564 return; 10565 10566 /* 10567 * The number of CPUs to search drops as sum_util increases, when 10568 * sum_util hits 85% or above, the scan stops. 10569 * The reason to choose 85% as the threshold is because this is the 10570 * imbalance_pct(117) when a LLC sched group is overloaded. 10571 * 10572 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10573 * and y'= y / SCHED_CAPACITY_SCALE 10574 * 10575 * x is the ratio of sum_util compared to the CPU capacity: 10576 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10577 * y' is the ratio of CPUs to be scanned in the LLC domain, 10578 * and the number of CPUs to scan is calculated by: 10579 * 10580 * nr_scan = llc_weight * y' [2] 10581 * 10582 * When x hits the threshold of overloaded, AKA, when 10583 * x = 100 / pct, y drops to 0. According to [1], 10584 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10585 * 10586 * Scale x by SCHED_CAPACITY_SCALE: 10587 * x' = sum_util / llc_weight; [3] 10588 * 10589 * and finally [1] becomes: 10590 * y = SCHED_CAPACITY_SCALE - 10591 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10592 * 10593 */ 10594 /* equation [3] */ 10595 x = sum_util; 10596 do_div(x, llc_weight); 10597 10598 /* equation [4] */ 10599 pct = env->sd->imbalance_pct; 10600 tmp = x * x * pct * pct; 10601 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10602 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10603 y = SCHED_CAPACITY_SCALE - tmp; 10604 10605 /* equation [2] */ 10606 y *= llc_weight; 10607 do_div(y, SCHED_CAPACITY_SCALE); 10608 if ((int)y != sd_share->nr_idle_scan) 10609 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10610 } 10611 10612 /** 10613 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10614 * @env: The load balancing environment. 10615 * @sds: variable to hold the statistics for this sched_domain. 10616 */ 10617 10618 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10619 { 10620 struct sched_group *sg = env->sd->groups; 10621 struct sg_lb_stats *local = &sds->local_stat; 10622 struct sg_lb_stats tmp_sgs; 10623 unsigned long sum_util = 0; 10624 bool sg_overloaded = 0, sg_overutilized = 0; 10625 10626 do { 10627 struct sg_lb_stats *sgs = &tmp_sgs; 10628 int local_group; 10629 10630 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10631 if (local_group) { 10632 sds->local = sg; 10633 sgs = local; 10634 10635 if (env->idle != CPU_NEWLY_IDLE || 10636 time_after_eq(jiffies, sg->sgc->next_update)) 10637 update_group_capacity(env->sd, env->dst_cpu); 10638 } 10639 10640 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 10641 10642 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 10643 sds->busiest = sg; 10644 sds->busiest_stat = *sgs; 10645 } 10646 10647 /* Now, start updating sd_lb_stats */ 10648 sds->total_load += sgs->group_load; 10649 sds->total_capacity += sgs->group_capacity; 10650 10651 sum_util += sgs->group_util; 10652 sg = sg->next; 10653 } while (sg != env->sd->groups); 10654 10655 /* 10656 * Indicate that the child domain of the busiest group prefers tasks 10657 * go to a child's sibling domains first. NB the flags of a sched group 10658 * are those of the child domain. 10659 */ 10660 if (sds->busiest) 10661 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 10662 10663 10664 if (env->sd->flags & SD_NUMA) 10665 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 10666 10667 if (!env->sd->parent) { 10668 /* update overload indicator if we are at root domain */ 10669 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 10670 10671 /* Update over-utilization (tipping point, U >= 0) indicator */ 10672 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 10673 } else if (sg_overutilized) { 10674 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 10675 } 10676 10677 update_idle_cpu_scan(env, sum_util); 10678 } 10679 10680 /** 10681 * calculate_imbalance - Calculate the amount of imbalance present within the 10682 * groups of a given sched_domain during load balance. 10683 * @env: load balance environment 10684 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 10685 */ 10686 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 10687 { 10688 struct sg_lb_stats *local, *busiest; 10689 10690 local = &sds->local_stat; 10691 busiest = &sds->busiest_stat; 10692 10693 if (busiest->group_type == group_misfit_task) { 10694 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10695 /* Set imbalance to allow misfit tasks to be balanced. */ 10696 env->migration_type = migrate_misfit; 10697 env->imbalance = 1; 10698 } else { 10699 /* 10700 * Set load imbalance to allow moving task from cpu 10701 * with reduced capacity. 10702 */ 10703 env->migration_type = migrate_load; 10704 env->imbalance = busiest->group_misfit_task_load; 10705 } 10706 return; 10707 } 10708 10709 if (busiest->group_type == group_asym_packing) { 10710 /* 10711 * In case of asym capacity, we will try to migrate all load to 10712 * the preferred CPU. 10713 */ 10714 env->migration_type = migrate_task; 10715 env->imbalance = busiest->sum_h_nr_running; 10716 return; 10717 } 10718 10719 if (busiest->group_type == group_smt_balance) { 10720 /* Reduce number of tasks sharing CPU capacity */ 10721 env->migration_type = migrate_task; 10722 env->imbalance = 1; 10723 return; 10724 } 10725 10726 if (busiest->group_type == group_imbalanced) { 10727 /* 10728 * In the group_imb case we cannot rely on group-wide averages 10729 * to ensure CPU-load equilibrium, try to move any task to fix 10730 * the imbalance. The next load balance will take care of 10731 * balancing back the system. 10732 */ 10733 env->migration_type = migrate_task; 10734 env->imbalance = 1; 10735 return; 10736 } 10737 10738 /* 10739 * Try to use spare capacity of local group without overloading it or 10740 * emptying busiest. 10741 */ 10742 if (local->group_type == group_has_spare) { 10743 if ((busiest->group_type > group_fully_busy) && 10744 !(env->sd->flags & SD_SHARE_LLC)) { 10745 /* 10746 * If busiest is overloaded, try to fill spare 10747 * capacity. This might end up creating spare capacity 10748 * in busiest or busiest still being overloaded but 10749 * there is no simple way to directly compute the 10750 * amount of load to migrate in order to balance the 10751 * system. 10752 */ 10753 env->migration_type = migrate_util; 10754 env->imbalance = max(local->group_capacity, local->group_util) - 10755 local->group_util; 10756 10757 /* 10758 * In some cases, the group's utilization is max or even 10759 * higher than capacity because of migrations but the 10760 * local CPU is (newly) idle. There is at least one 10761 * waiting task in this overloaded busiest group. Let's 10762 * try to pull it. 10763 */ 10764 if (env->idle && env->imbalance == 0) { 10765 env->migration_type = migrate_task; 10766 env->imbalance = 1; 10767 } 10768 10769 return; 10770 } 10771 10772 if (busiest->group_weight == 1 || sds->prefer_sibling) { 10773 /* 10774 * When prefer sibling, evenly spread running tasks on 10775 * groups. 10776 */ 10777 env->migration_type = migrate_task; 10778 env->imbalance = sibling_imbalance(env, sds, busiest, local); 10779 } else { 10780 10781 /* 10782 * If there is no overload, we just want to even the number of 10783 * idle CPUs. 10784 */ 10785 env->migration_type = migrate_task; 10786 env->imbalance = max_t(long, 0, 10787 (local->idle_cpus - busiest->idle_cpus)); 10788 } 10789 10790 #ifdef CONFIG_NUMA 10791 /* Consider allowing a small imbalance between NUMA groups */ 10792 if (env->sd->flags & SD_NUMA) { 10793 env->imbalance = adjust_numa_imbalance(env->imbalance, 10794 local->sum_nr_running + 1, 10795 env->sd->imb_numa_nr); 10796 } 10797 #endif 10798 10799 /* Number of tasks to move to restore balance */ 10800 env->imbalance >>= 1; 10801 10802 return; 10803 } 10804 10805 /* 10806 * Local is fully busy but has to take more load to relieve the 10807 * busiest group 10808 */ 10809 if (local->group_type < group_overloaded) { 10810 /* 10811 * Local will become overloaded so the avg_load metrics are 10812 * finally needed. 10813 */ 10814 10815 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 10816 local->group_capacity; 10817 10818 /* 10819 * If the local group is more loaded than the selected 10820 * busiest group don't try to pull any tasks. 10821 */ 10822 if (local->avg_load >= busiest->avg_load) { 10823 env->imbalance = 0; 10824 return; 10825 } 10826 10827 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 10828 sds->total_capacity; 10829 10830 /* 10831 * If the local group is more loaded than the average system 10832 * load, don't try to pull any tasks. 10833 */ 10834 if (local->avg_load >= sds->avg_load) { 10835 env->imbalance = 0; 10836 return; 10837 } 10838 10839 } 10840 10841 /* 10842 * Both group are or will become overloaded and we're trying to get all 10843 * the CPUs to the average_load, so we don't want to push ourselves 10844 * above the average load, nor do we wish to reduce the max loaded CPU 10845 * below the average load. At the same time, we also don't want to 10846 * reduce the group load below the group capacity. Thus we look for 10847 * the minimum possible imbalance. 10848 */ 10849 env->migration_type = migrate_load; 10850 env->imbalance = min( 10851 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 10852 (sds->avg_load - local->avg_load) * local->group_capacity 10853 ) / SCHED_CAPACITY_SCALE; 10854 } 10855 10856 /******* sched_balance_find_src_group() helpers end here *********************/ 10857 10858 /* 10859 * Decision matrix according to the local and busiest group type: 10860 * 10861 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 10862 * has_spare nr_idle balanced N/A N/A balanced balanced 10863 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 10864 * misfit_task force N/A N/A N/A N/A N/A 10865 * asym_packing force force N/A N/A force force 10866 * imbalanced force force N/A N/A force force 10867 * overloaded force force N/A N/A force avg_load 10868 * 10869 * N/A : Not Applicable because already filtered while updating 10870 * statistics. 10871 * balanced : The system is balanced for these 2 groups. 10872 * force : Calculate the imbalance as load migration is probably needed. 10873 * avg_load : Only if imbalance is significant enough. 10874 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 10875 * different in groups. 10876 */ 10877 10878 /** 10879 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 10880 * if there is an imbalance. 10881 * @env: The load balancing environment. 10882 * 10883 * Also calculates the amount of runnable load which should be moved 10884 * to restore balance. 10885 * 10886 * Return: - The busiest group if imbalance exists. 10887 */ 10888 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 10889 { 10890 struct sg_lb_stats *local, *busiest; 10891 struct sd_lb_stats sds; 10892 10893 init_sd_lb_stats(&sds); 10894 10895 /* 10896 * Compute the various statistics relevant for load balancing at 10897 * this level. 10898 */ 10899 update_sd_lb_stats(env, &sds); 10900 10901 /* There is no busy sibling group to pull tasks from */ 10902 if (!sds.busiest) 10903 goto out_balanced; 10904 10905 busiest = &sds.busiest_stat; 10906 10907 /* Misfit tasks should be dealt with regardless of the avg load */ 10908 if (busiest->group_type == group_misfit_task) 10909 goto force_balance; 10910 10911 if (!is_rd_overutilized(env->dst_rq->rd) && 10912 rcu_dereference(env->dst_rq->rd->pd)) 10913 goto out_balanced; 10914 10915 /* ASYM feature bypasses nice load balance check */ 10916 if (busiest->group_type == group_asym_packing) 10917 goto force_balance; 10918 10919 /* 10920 * If the busiest group is imbalanced the below checks don't 10921 * work because they assume all things are equal, which typically 10922 * isn't true due to cpus_ptr constraints and the like. 10923 */ 10924 if (busiest->group_type == group_imbalanced) 10925 goto force_balance; 10926 10927 local = &sds.local_stat; 10928 /* 10929 * If the local group is busier than the selected busiest group 10930 * don't try and pull any tasks. 10931 */ 10932 if (local->group_type > busiest->group_type) 10933 goto out_balanced; 10934 10935 /* 10936 * When groups are overloaded, use the avg_load to ensure fairness 10937 * between tasks. 10938 */ 10939 if (local->group_type == group_overloaded) { 10940 /* 10941 * If the local group is more loaded than the selected 10942 * busiest group don't try to pull any tasks. 10943 */ 10944 if (local->avg_load >= busiest->avg_load) 10945 goto out_balanced; 10946 10947 /* XXX broken for overlapping NUMA groups */ 10948 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 10949 sds.total_capacity; 10950 10951 /* 10952 * Don't pull any tasks if this group is already above the 10953 * domain average load. 10954 */ 10955 if (local->avg_load >= sds.avg_load) 10956 goto out_balanced; 10957 10958 /* 10959 * If the busiest group is more loaded, use imbalance_pct to be 10960 * conservative. 10961 */ 10962 if (100 * busiest->avg_load <= 10963 env->sd->imbalance_pct * local->avg_load) 10964 goto out_balanced; 10965 } 10966 10967 /* 10968 * Try to move all excess tasks to a sibling domain of the busiest 10969 * group's child domain. 10970 */ 10971 if (sds.prefer_sibling && local->group_type == group_has_spare && 10972 sibling_imbalance(env, &sds, busiest, local) > 1) 10973 goto force_balance; 10974 10975 if (busiest->group_type != group_overloaded) { 10976 if (!env->idle) { 10977 /* 10978 * If the busiest group is not overloaded (and as a 10979 * result the local one too) but this CPU is already 10980 * busy, let another idle CPU try to pull task. 10981 */ 10982 goto out_balanced; 10983 } 10984 10985 if (busiest->group_type == group_smt_balance && 10986 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 10987 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 10988 goto force_balance; 10989 } 10990 10991 if (busiest->group_weight > 1 && 10992 local->idle_cpus <= (busiest->idle_cpus + 1)) { 10993 /* 10994 * If the busiest group is not overloaded 10995 * and there is no imbalance between this and busiest 10996 * group wrt idle CPUs, it is balanced. The imbalance 10997 * becomes significant if the diff is greater than 1 10998 * otherwise we might end up to just move the imbalance 10999 * on another group. Of course this applies only if 11000 * there is more than 1 CPU per group. 11001 */ 11002 goto out_balanced; 11003 } 11004 11005 if (busiest->sum_h_nr_running == 1) { 11006 /* 11007 * busiest doesn't have any tasks waiting to run 11008 */ 11009 goto out_balanced; 11010 } 11011 } 11012 11013 force_balance: 11014 /* Looks like there is an imbalance. Compute it */ 11015 calculate_imbalance(env, &sds); 11016 return env->imbalance ? sds.busiest : NULL; 11017 11018 out_balanced: 11019 env->imbalance = 0; 11020 return NULL; 11021 } 11022 11023 /* 11024 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11025 */ 11026 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11027 struct sched_group *group) 11028 { 11029 struct rq *busiest = NULL, *rq; 11030 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11031 unsigned int busiest_nr = 0; 11032 int i; 11033 11034 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11035 unsigned long capacity, load, util; 11036 unsigned int nr_running; 11037 enum fbq_type rt; 11038 11039 rq = cpu_rq(i); 11040 rt = fbq_classify_rq(rq); 11041 11042 /* 11043 * We classify groups/runqueues into three groups: 11044 * - regular: there are !numa tasks 11045 * - remote: there are numa tasks that run on the 'wrong' node 11046 * - all: there is no distinction 11047 * 11048 * In order to avoid migrating ideally placed numa tasks, 11049 * ignore those when there's better options. 11050 * 11051 * If we ignore the actual busiest queue to migrate another 11052 * task, the next balance pass can still reduce the busiest 11053 * queue by moving tasks around inside the node. 11054 * 11055 * If we cannot move enough load due to this classification 11056 * the next pass will adjust the group classification and 11057 * allow migration of more tasks. 11058 * 11059 * Both cases only affect the total convergence complexity. 11060 */ 11061 if (rt > env->fbq_type) 11062 continue; 11063 11064 nr_running = rq->cfs.h_nr_running; 11065 if (!nr_running) 11066 continue; 11067 11068 capacity = capacity_of(i); 11069 11070 /* 11071 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11072 * eventually lead to active_balancing high->low capacity. 11073 * Higher per-CPU capacity is considered better than balancing 11074 * average load. 11075 */ 11076 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11077 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11078 nr_running == 1) 11079 continue; 11080 11081 /* 11082 * Make sure we only pull tasks from a CPU of lower priority 11083 * when balancing between SMT siblings. 11084 * 11085 * If balancing between cores, let lower priority CPUs help 11086 * SMT cores with more than one busy sibling. 11087 */ 11088 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11089 continue; 11090 11091 switch (env->migration_type) { 11092 case migrate_load: 11093 /* 11094 * When comparing with load imbalance, use cpu_load() 11095 * which is not scaled with the CPU capacity. 11096 */ 11097 load = cpu_load(rq); 11098 11099 if (nr_running == 1 && load > env->imbalance && 11100 !check_cpu_capacity(rq, env->sd)) 11101 break; 11102 11103 /* 11104 * For the load comparisons with the other CPUs, 11105 * consider the cpu_load() scaled with the CPU 11106 * capacity, so that the load can be moved away 11107 * from the CPU that is potentially running at a 11108 * lower capacity. 11109 * 11110 * Thus we're looking for max(load_i / capacity_i), 11111 * crosswise multiplication to rid ourselves of the 11112 * division works out to: 11113 * load_i * capacity_j > load_j * capacity_i; 11114 * where j is our previous maximum. 11115 */ 11116 if (load * busiest_capacity > busiest_load * capacity) { 11117 busiest_load = load; 11118 busiest_capacity = capacity; 11119 busiest = rq; 11120 } 11121 break; 11122 11123 case migrate_util: 11124 util = cpu_util_cfs_boost(i); 11125 11126 /* 11127 * Don't try to pull utilization from a CPU with one 11128 * running task. Whatever its utilization, we will fail 11129 * detach the task. 11130 */ 11131 if (nr_running <= 1) 11132 continue; 11133 11134 if (busiest_util < util) { 11135 busiest_util = util; 11136 busiest = rq; 11137 } 11138 break; 11139 11140 case migrate_task: 11141 if (busiest_nr < nr_running) { 11142 busiest_nr = nr_running; 11143 busiest = rq; 11144 } 11145 break; 11146 11147 case migrate_misfit: 11148 /* 11149 * For ASYM_CPUCAPACITY domains with misfit tasks we 11150 * simply seek the "biggest" misfit task. 11151 */ 11152 if (rq->misfit_task_load > busiest_load) { 11153 busiest_load = rq->misfit_task_load; 11154 busiest = rq; 11155 } 11156 11157 break; 11158 11159 } 11160 } 11161 11162 return busiest; 11163 } 11164 11165 /* 11166 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11167 * so long as it is large enough. 11168 */ 11169 #define MAX_PINNED_INTERVAL 512 11170 11171 static inline bool 11172 asym_active_balance(struct lb_env *env) 11173 { 11174 /* 11175 * ASYM_PACKING needs to force migrate tasks from busy but lower 11176 * priority CPUs in order to pack all tasks in the highest priority 11177 * CPUs. When done between cores, do it only if the whole core if the 11178 * whole core is idle. 11179 * 11180 * If @env::src_cpu is an SMT core with busy siblings, let 11181 * the lower priority @env::dst_cpu help it. Do not follow 11182 * CPU priority. 11183 */ 11184 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11185 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11186 !sched_use_asym_prio(env->sd, env->src_cpu)); 11187 } 11188 11189 static inline bool 11190 imbalanced_active_balance(struct lb_env *env) 11191 { 11192 struct sched_domain *sd = env->sd; 11193 11194 /* 11195 * The imbalanced case includes the case of pinned tasks preventing a fair 11196 * distribution of the load on the system but also the even distribution of the 11197 * threads on a system with spare capacity 11198 */ 11199 if ((env->migration_type == migrate_task) && 11200 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11201 return 1; 11202 11203 return 0; 11204 } 11205 11206 static int need_active_balance(struct lb_env *env) 11207 { 11208 struct sched_domain *sd = env->sd; 11209 11210 if (asym_active_balance(env)) 11211 return 1; 11212 11213 if (imbalanced_active_balance(env)) 11214 return 1; 11215 11216 /* 11217 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11218 * It's worth migrating the task if the src_cpu's capacity is reduced 11219 * because of other sched_class or IRQs if more capacity stays 11220 * available on dst_cpu. 11221 */ 11222 if (env->idle && 11223 (env->src_rq->cfs.h_nr_running == 1)) { 11224 if ((check_cpu_capacity(env->src_rq, sd)) && 11225 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11226 return 1; 11227 } 11228 11229 if (env->migration_type == migrate_misfit) 11230 return 1; 11231 11232 return 0; 11233 } 11234 11235 static int active_load_balance_cpu_stop(void *data); 11236 11237 static int should_we_balance(struct lb_env *env) 11238 { 11239 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11240 struct sched_group *sg = env->sd->groups; 11241 int cpu, idle_smt = -1; 11242 11243 /* 11244 * Ensure the balancing environment is consistent; can happen 11245 * when the softirq triggers 'during' hotplug. 11246 */ 11247 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11248 return 0; 11249 11250 /* 11251 * In the newly idle case, we will allow all the CPUs 11252 * to do the newly idle load balance. 11253 * 11254 * However, we bail out if we already have tasks or a wakeup pending, 11255 * to optimize wakeup latency. 11256 */ 11257 if (env->idle == CPU_NEWLY_IDLE) { 11258 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11259 return 0; 11260 return 1; 11261 } 11262 11263 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11264 /* Try to find first idle CPU */ 11265 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11266 if (!idle_cpu(cpu)) 11267 continue; 11268 11269 /* 11270 * Don't balance to idle SMT in busy core right away when 11271 * balancing cores, but remember the first idle SMT CPU for 11272 * later consideration. Find CPU on an idle core first. 11273 */ 11274 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11275 if (idle_smt == -1) 11276 idle_smt = cpu; 11277 /* 11278 * If the core is not idle, and first SMT sibling which is 11279 * idle has been found, then its not needed to check other 11280 * SMT siblings for idleness: 11281 */ 11282 #ifdef CONFIG_SCHED_SMT 11283 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11284 #endif 11285 continue; 11286 } 11287 11288 /* 11289 * Are we the first idle core in a non-SMT domain or higher, 11290 * or the first idle CPU in a SMT domain? 11291 */ 11292 return cpu == env->dst_cpu; 11293 } 11294 11295 /* Are we the first idle CPU with busy siblings? */ 11296 if (idle_smt != -1) 11297 return idle_smt == env->dst_cpu; 11298 11299 /* Are we the first CPU of this group ? */ 11300 return group_balance_cpu(sg) == env->dst_cpu; 11301 } 11302 11303 /* 11304 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11305 * tasks if there is an imbalance. 11306 */ 11307 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11308 struct sched_domain *sd, enum cpu_idle_type idle, 11309 int *continue_balancing) 11310 { 11311 int ld_moved, cur_ld_moved, active_balance = 0; 11312 struct sched_domain *sd_parent = sd->parent; 11313 struct sched_group *group; 11314 struct rq *busiest; 11315 struct rq_flags rf; 11316 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11317 struct lb_env env = { 11318 .sd = sd, 11319 .dst_cpu = this_cpu, 11320 .dst_rq = this_rq, 11321 .dst_grpmask = group_balance_mask(sd->groups), 11322 .idle = idle, 11323 .loop_break = SCHED_NR_MIGRATE_BREAK, 11324 .cpus = cpus, 11325 .fbq_type = all, 11326 .tasks = LIST_HEAD_INIT(env.tasks), 11327 }; 11328 11329 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11330 11331 schedstat_inc(sd->lb_count[idle]); 11332 11333 redo: 11334 if (!should_we_balance(&env)) { 11335 *continue_balancing = 0; 11336 goto out_balanced; 11337 } 11338 11339 group = sched_balance_find_src_group(&env); 11340 if (!group) { 11341 schedstat_inc(sd->lb_nobusyg[idle]); 11342 goto out_balanced; 11343 } 11344 11345 busiest = sched_balance_find_src_rq(&env, group); 11346 if (!busiest) { 11347 schedstat_inc(sd->lb_nobusyq[idle]); 11348 goto out_balanced; 11349 } 11350 11351 WARN_ON_ONCE(busiest == env.dst_rq); 11352 11353 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 11354 11355 env.src_cpu = busiest->cpu; 11356 env.src_rq = busiest; 11357 11358 ld_moved = 0; 11359 /* Clear this flag as soon as we find a pullable task */ 11360 env.flags |= LBF_ALL_PINNED; 11361 if (busiest->nr_running > 1) { 11362 /* 11363 * Attempt to move tasks. If sched_balance_find_src_group has found 11364 * an imbalance but busiest->nr_running <= 1, the group is 11365 * still unbalanced. ld_moved simply stays zero, so it is 11366 * correctly treated as an imbalance. 11367 */ 11368 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11369 11370 more_balance: 11371 rq_lock_irqsave(busiest, &rf); 11372 update_rq_clock(busiest); 11373 11374 /* 11375 * cur_ld_moved - load moved in current iteration 11376 * ld_moved - cumulative load moved across iterations 11377 */ 11378 cur_ld_moved = detach_tasks(&env); 11379 11380 /* 11381 * We've detached some tasks from busiest_rq. Every 11382 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11383 * unlock busiest->lock, and we are able to be sure 11384 * that nobody can manipulate the tasks in parallel. 11385 * See task_rq_lock() family for the details. 11386 */ 11387 11388 rq_unlock(busiest, &rf); 11389 11390 if (cur_ld_moved) { 11391 attach_tasks(&env); 11392 ld_moved += cur_ld_moved; 11393 } 11394 11395 local_irq_restore(rf.flags); 11396 11397 if (env.flags & LBF_NEED_BREAK) { 11398 env.flags &= ~LBF_NEED_BREAK; 11399 goto more_balance; 11400 } 11401 11402 /* 11403 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11404 * us and move them to an alternate dst_cpu in our sched_group 11405 * where they can run. The upper limit on how many times we 11406 * iterate on same src_cpu is dependent on number of CPUs in our 11407 * sched_group. 11408 * 11409 * This changes load balance semantics a bit on who can move 11410 * load to a given_cpu. In addition to the given_cpu itself 11411 * (or a ilb_cpu acting on its behalf where given_cpu is 11412 * nohz-idle), we now have balance_cpu in a position to move 11413 * load to given_cpu. In rare situations, this may cause 11414 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11415 * _independently_ and at _same_ time to move some load to 11416 * given_cpu) causing excess load to be moved to given_cpu. 11417 * This however should not happen so much in practice and 11418 * moreover subsequent load balance cycles should correct the 11419 * excess load moved. 11420 */ 11421 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11422 11423 /* Prevent to re-select dst_cpu via env's CPUs */ 11424 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11425 11426 env.dst_rq = cpu_rq(env.new_dst_cpu); 11427 env.dst_cpu = env.new_dst_cpu; 11428 env.flags &= ~LBF_DST_PINNED; 11429 env.loop = 0; 11430 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11431 11432 /* 11433 * Go back to "more_balance" rather than "redo" since we 11434 * need to continue with same src_cpu. 11435 */ 11436 goto more_balance; 11437 } 11438 11439 /* 11440 * We failed to reach balance because of affinity. 11441 */ 11442 if (sd_parent) { 11443 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11444 11445 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11446 *group_imbalance = 1; 11447 } 11448 11449 /* All tasks on this runqueue were pinned by CPU affinity */ 11450 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11451 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11452 /* 11453 * Attempting to continue load balancing at the current 11454 * sched_domain level only makes sense if there are 11455 * active CPUs remaining as possible busiest CPUs to 11456 * pull load from which are not contained within the 11457 * destination group that is receiving any migrated 11458 * load. 11459 */ 11460 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11461 env.loop = 0; 11462 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11463 goto redo; 11464 } 11465 goto out_all_pinned; 11466 } 11467 } 11468 11469 if (!ld_moved) { 11470 schedstat_inc(sd->lb_failed[idle]); 11471 /* 11472 * Increment the failure counter only on periodic balance. 11473 * We do not want newidle balance, which can be very 11474 * frequent, pollute the failure counter causing 11475 * excessive cache_hot migrations and active balances. 11476 * 11477 * Similarly for migration_misfit which is not related to 11478 * load/util migration, don't pollute nr_balance_failed. 11479 */ 11480 if (idle != CPU_NEWLY_IDLE && 11481 env.migration_type != migrate_misfit) 11482 sd->nr_balance_failed++; 11483 11484 if (need_active_balance(&env)) { 11485 unsigned long flags; 11486 11487 raw_spin_rq_lock_irqsave(busiest, flags); 11488 11489 /* 11490 * Don't kick the active_load_balance_cpu_stop, 11491 * if the curr task on busiest CPU can't be 11492 * moved to this_cpu: 11493 */ 11494 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11495 raw_spin_rq_unlock_irqrestore(busiest, flags); 11496 goto out_one_pinned; 11497 } 11498 11499 /* Record that we found at least one task that could run on this_cpu */ 11500 env.flags &= ~LBF_ALL_PINNED; 11501 11502 /* 11503 * ->active_balance synchronizes accesses to 11504 * ->active_balance_work. Once set, it's cleared 11505 * only after active load balance is finished. 11506 */ 11507 if (!busiest->active_balance) { 11508 busiest->active_balance = 1; 11509 busiest->push_cpu = this_cpu; 11510 active_balance = 1; 11511 } 11512 11513 preempt_disable(); 11514 raw_spin_rq_unlock_irqrestore(busiest, flags); 11515 if (active_balance) { 11516 stop_one_cpu_nowait(cpu_of(busiest), 11517 active_load_balance_cpu_stop, busiest, 11518 &busiest->active_balance_work); 11519 } 11520 preempt_enable(); 11521 } 11522 } else { 11523 sd->nr_balance_failed = 0; 11524 } 11525 11526 if (likely(!active_balance) || need_active_balance(&env)) { 11527 /* We were unbalanced, so reset the balancing interval */ 11528 sd->balance_interval = sd->min_interval; 11529 } 11530 11531 goto out; 11532 11533 out_balanced: 11534 /* 11535 * We reach balance although we may have faced some affinity 11536 * constraints. Clear the imbalance flag only if other tasks got 11537 * a chance to move and fix the imbalance. 11538 */ 11539 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11540 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11541 11542 if (*group_imbalance) 11543 *group_imbalance = 0; 11544 } 11545 11546 out_all_pinned: 11547 /* 11548 * We reach balance because all tasks are pinned at this level so 11549 * we can't migrate them. Let the imbalance flag set so parent level 11550 * can try to migrate them. 11551 */ 11552 schedstat_inc(sd->lb_balanced[idle]); 11553 11554 sd->nr_balance_failed = 0; 11555 11556 out_one_pinned: 11557 ld_moved = 0; 11558 11559 /* 11560 * sched_balance_newidle() disregards balance intervals, so we could 11561 * repeatedly reach this code, which would lead to balance_interval 11562 * skyrocketing in a short amount of time. Skip the balance_interval 11563 * increase logic to avoid that. 11564 * 11565 * Similarly misfit migration which is not necessarily an indication of 11566 * the system being busy and requires lb to backoff to let it settle 11567 * down. 11568 */ 11569 if (env.idle == CPU_NEWLY_IDLE || 11570 env.migration_type == migrate_misfit) 11571 goto out; 11572 11573 /* tune up the balancing interval */ 11574 if ((env.flags & LBF_ALL_PINNED && 11575 sd->balance_interval < MAX_PINNED_INTERVAL) || 11576 sd->balance_interval < sd->max_interval) 11577 sd->balance_interval *= 2; 11578 out: 11579 return ld_moved; 11580 } 11581 11582 static inline unsigned long 11583 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11584 { 11585 unsigned long interval = sd->balance_interval; 11586 11587 if (cpu_busy) 11588 interval *= sd->busy_factor; 11589 11590 /* scale ms to jiffies */ 11591 interval = msecs_to_jiffies(interval); 11592 11593 /* 11594 * Reduce likelihood of busy balancing at higher domains racing with 11595 * balancing at lower domains by preventing their balancing periods 11596 * from being multiples of each other. 11597 */ 11598 if (cpu_busy) 11599 interval -= 1; 11600 11601 interval = clamp(interval, 1UL, max_load_balance_interval); 11602 11603 return interval; 11604 } 11605 11606 static inline void 11607 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11608 { 11609 unsigned long interval, next; 11610 11611 /* used by idle balance, so cpu_busy = 0 */ 11612 interval = get_sd_balance_interval(sd, 0); 11613 next = sd->last_balance + interval; 11614 11615 if (time_after(*next_balance, next)) 11616 *next_balance = next; 11617 } 11618 11619 /* 11620 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11621 * running tasks off the busiest CPU onto idle CPUs. It requires at 11622 * least 1 task to be running on each physical CPU where possible, and 11623 * avoids physical / logical imbalances. 11624 */ 11625 static int active_load_balance_cpu_stop(void *data) 11626 { 11627 struct rq *busiest_rq = data; 11628 int busiest_cpu = cpu_of(busiest_rq); 11629 int target_cpu = busiest_rq->push_cpu; 11630 struct rq *target_rq = cpu_rq(target_cpu); 11631 struct sched_domain *sd; 11632 struct task_struct *p = NULL; 11633 struct rq_flags rf; 11634 11635 rq_lock_irq(busiest_rq, &rf); 11636 /* 11637 * Between queueing the stop-work and running it is a hole in which 11638 * CPUs can become inactive. We should not move tasks from or to 11639 * inactive CPUs. 11640 */ 11641 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 11642 goto out_unlock; 11643 11644 /* Make sure the requested CPU hasn't gone down in the meantime: */ 11645 if (unlikely(busiest_cpu != smp_processor_id() || 11646 !busiest_rq->active_balance)) 11647 goto out_unlock; 11648 11649 /* Is there any task to move? */ 11650 if (busiest_rq->nr_running <= 1) 11651 goto out_unlock; 11652 11653 /* 11654 * This condition is "impossible", if it occurs 11655 * we need to fix it. Originally reported by 11656 * Bjorn Helgaas on a 128-CPU setup. 11657 */ 11658 WARN_ON_ONCE(busiest_rq == target_rq); 11659 11660 /* Search for an sd spanning us and the target CPU. */ 11661 rcu_read_lock(); 11662 for_each_domain(target_cpu, sd) { 11663 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 11664 break; 11665 } 11666 11667 if (likely(sd)) { 11668 struct lb_env env = { 11669 .sd = sd, 11670 .dst_cpu = target_cpu, 11671 .dst_rq = target_rq, 11672 .src_cpu = busiest_rq->cpu, 11673 .src_rq = busiest_rq, 11674 .idle = CPU_IDLE, 11675 .flags = LBF_ACTIVE_LB, 11676 }; 11677 11678 schedstat_inc(sd->alb_count); 11679 update_rq_clock(busiest_rq); 11680 11681 p = detach_one_task(&env); 11682 if (p) { 11683 schedstat_inc(sd->alb_pushed); 11684 /* Active balancing done, reset the failure counter. */ 11685 sd->nr_balance_failed = 0; 11686 } else { 11687 schedstat_inc(sd->alb_failed); 11688 } 11689 } 11690 rcu_read_unlock(); 11691 out_unlock: 11692 busiest_rq->active_balance = 0; 11693 rq_unlock(busiest_rq, &rf); 11694 11695 if (p) 11696 attach_one_task(target_rq, p); 11697 11698 local_irq_enable(); 11699 11700 return 0; 11701 } 11702 11703 /* 11704 * This flag serializes load-balancing passes over large domains 11705 * (above the NODE topology level) - only one load-balancing instance 11706 * may run at a time, to reduce overhead on very large systems with 11707 * lots of CPUs and large NUMA distances. 11708 * 11709 * - Note that load-balancing passes triggered while another one 11710 * is executing are skipped and not re-tried. 11711 * 11712 * - Also note that this does not serialize rebalance_domains() 11713 * execution, as non-SD_SERIALIZE domains will still be 11714 * load-balanced in parallel. 11715 */ 11716 static atomic_t sched_balance_running = ATOMIC_INIT(0); 11717 11718 /* 11719 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 11720 * This trades load-balance latency on larger machines for less cross talk. 11721 */ 11722 void update_max_interval(void) 11723 { 11724 max_load_balance_interval = HZ*num_online_cpus()/10; 11725 } 11726 11727 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 11728 { 11729 if (cost > sd->max_newidle_lb_cost) { 11730 /* 11731 * Track max cost of a domain to make sure to not delay the 11732 * next wakeup on the CPU. 11733 */ 11734 sd->max_newidle_lb_cost = cost; 11735 sd->last_decay_max_lb_cost = jiffies; 11736 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 11737 /* 11738 * Decay the newidle max times by ~1% per second to ensure that 11739 * it is not outdated and the current max cost is actually 11740 * shorter. 11741 */ 11742 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 11743 sd->last_decay_max_lb_cost = jiffies; 11744 11745 return true; 11746 } 11747 11748 return false; 11749 } 11750 11751 /* 11752 * It checks each scheduling domain to see if it is due to be balanced, 11753 * and initiates a balancing operation if so. 11754 * 11755 * Balancing parameters are set up in init_sched_domains. 11756 */ 11757 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 11758 { 11759 int continue_balancing = 1; 11760 int cpu = rq->cpu; 11761 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11762 unsigned long interval; 11763 struct sched_domain *sd; 11764 /* Earliest time when we have to do rebalance again */ 11765 unsigned long next_balance = jiffies + 60*HZ; 11766 int update_next_balance = 0; 11767 int need_serialize, need_decay = 0; 11768 u64 max_cost = 0; 11769 11770 rcu_read_lock(); 11771 for_each_domain(cpu, sd) { 11772 /* 11773 * Decay the newidle max times here because this is a regular 11774 * visit to all the domains. 11775 */ 11776 need_decay = update_newidle_cost(sd, 0); 11777 max_cost += sd->max_newidle_lb_cost; 11778 11779 /* 11780 * Stop the load balance at this level. There is another 11781 * CPU in our sched group which is doing load balancing more 11782 * actively. 11783 */ 11784 if (!continue_balancing) { 11785 if (need_decay) 11786 continue; 11787 break; 11788 } 11789 11790 interval = get_sd_balance_interval(sd, busy); 11791 11792 need_serialize = sd->flags & SD_SERIALIZE; 11793 if (need_serialize) { 11794 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) 11795 goto out; 11796 } 11797 11798 if (time_after_eq(jiffies, sd->last_balance + interval)) { 11799 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 11800 /* 11801 * The LBF_DST_PINNED logic could have changed 11802 * env->dst_cpu, so we can't know our idle 11803 * state even if we migrated tasks. Update it. 11804 */ 11805 idle = idle_cpu(cpu); 11806 busy = !idle && !sched_idle_cpu(cpu); 11807 } 11808 sd->last_balance = jiffies; 11809 interval = get_sd_balance_interval(sd, busy); 11810 } 11811 if (need_serialize) 11812 atomic_set_release(&sched_balance_running, 0); 11813 out: 11814 if (time_after(next_balance, sd->last_balance + interval)) { 11815 next_balance = sd->last_balance + interval; 11816 update_next_balance = 1; 11817 } 11818 } 11819 if (need_decay) { 11820 /* 11821 * Ensure the rq-wide value also decays but keep it at a 11822 * reasonable floor to avoid funnies with rq->avg_idle. 11823 */ 11824 rq->max_idle_balance_cost = 11825 max((u64)sysctl_sched_migration_cost, max_cost); 11826 } 11827 rcu_read_unlock(); 11828 11829 /* 11830 * next_balance will be updated only when there is a need. 11831 * When the cpu is attached to null domain for ex, it will not be 11832 * updated. 11833 */ 11834 if (likely(update_next_balance)) 11835 rq->next_balance = next_balance; 11836 11837 } 11838 11839 static inline int on_null_domain(struct rq *rq) 11840 { 11841 return unlikely(!rcu_dereference_sched(rq->sd)); 11842 } 11843 11844 #ifdef CONFIG_NO_HZ_COMMON 11845 /* 11846 * NOHZ idle load balancing (ILB) details: 11847 * 11848 * - When one of the busy CPUs notices that there may be an idle rebalancing 11849 * needed, they will kick the idle load balancer, which then does idle 11850 * load balancing for all the idle CPUs. 11851 * 11852 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set 11853 * anywhere yet. 11854 */ 11855 static inline int find_new_ilb(void) 11856 { 11857 const struct cpumask *hk_mask; 11858 int ilb_cpu; 11859 11860 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 11861 11862 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 11863 11864 if (ilb_cpu == smp_processor_id()) 11865 continue; 11866 11867 if (idle_cpu(ilb_cpu)) 11868 return ilb_cpu; 11869 } 11870 11871 return -1; 11872 } 11873 11874 /* 11875 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 11876 * SMP function call (IPI). 11877 * 11878 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 11879 */ 11880 static void kick_ilb(unsigned int flags) 11881 { 11882 int ilb_cpu; 11883 11884 /* 11885 * Increase nohz.next_balance only when if full ilb is triggered but 11886 * not if we only update stats. 11887 */ 11888 if (flags & NOHZ_BALANCE_KICK) 11889 nohz.next_balance = jiffies+1; 11890 11891 ilb_cpu = find_new_ilb(); 11892 if (ilb_cpu < 0) 11893 return; 11894 11895 /* 11896 * Don't bother if no new NOHZ balance work items for ilb_cpu, 11897 * i.e. all bits in flags are already set in ilb_cpu. 11898 */ 11899 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) 11900 return; 11901 11902 /* 11903 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 11904 * the first flag owns it; cleared by nohz_csd_func(). 11905 */ 11906 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 11907 if (flags & NOHZ_KICK_MASK) 11908 return; 11909 11910 /* 11911 * This way we generate an IPI on the target CPU which 11912 * is idle, and the softirq performing NOHZ idle load balancing 11913 * will be run before returning from the IPI. 11914 */ 11915 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 11916 } 11917 11918 /* 11919 * Current decision point for kicking the idle load balancer in the presence 11920 * of idle CPUs in the system. 11921 */ 11922 static void nohz_balancer_kick(struct rq *rq) 11923 { 11924 unsigned long now = jiffies; 11925 struct sched_domain_shared *sds; 11926 struct sched_domain *sd; 11927 int nr_busy, i, cpu = rq->cpu; 11928 unsigned int flags = 0; 11929 11930 if (unlikely(rq->idle_balance)) 11931 return; 11932 11933 /* 11934 * We may be recently in ticked or tickless idle mode. At the first 11935 * busy tick after returning from idle, we will update the busy stats. 11936 */ 11937 nohz_balance_exit_idle(rq); 11938 11939 /* 11940 * None are in tickless mode and hence no need for NOHZ idle load 11941 * balancing: 11942 */ 11943 if (likely(!atomic_read(&nohz.nr_cpus))) 11944 return; 11945 11946 if (READ_ONCE(nohz.has_blocked) && 11947 time_after(now, READ_ONCE(nohz.next_blocked))) 11948 flags = NOHZ_STATS_KICK; 11949 11950 if (time_before(now, nohz.next_balance)) 11951 goto out; 11952 11953 if (rq->nr_running >= 2) { 11954 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11955 goto out; 11956 } 11957 11958 rcu_read_lock(); 11959 11960 sd = rcu_dereference(rq->sd); 11961 if (sd) { 11962 /* 11963 * If there's a runnable CFS task and the current CPU has reduced 11964 * capacity, kick the ILB to see if there's a better CPU to run on: 11965 */ 11966 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 11967 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11968 goto unlock; 11969 } 11970 } 11971 11972 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 11973 if (sd) { 11974 /* 11975 * When ASYM_PACKING; see if there's a more preferred CPU 11976 * currently idle; in which case, kick the ILB to move tasks 11977 * around. 11978 * 11979 * When balancing between cores, all the SMT siblings of the 11980 * preferred CPU must be idle. 11981 */ 11982 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 11983 if (sched_asym(sd, i, cpu)) { 11984 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11985 goto unlock; 11986 } 11987 } 11988 } 11989 11990 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 11991 if (sd) { 11992 /* 11993 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 11994 * to run the misfit task on. 11995 */ 11996 if (check_misfit_status(rq)) { 11997 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11998 goto unlock; 11999 } 12000 12001 /* 12002 * For asymmetric systems, we do not want to nicely balance 12003 * cache use, instead we want to embrace asymmetry and only 12004 * ensure tasks have enough CPU capacity. 12005 * 12006 * Skip the LLC logic because it's not relevant in that case. 12007 */ 12008 goto unlock; 12009 } 12010 12011 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 12012 if (sds) { 12013 /* 12014 * If there is an imbalance between LLC domains (IOW we could 12015 * increase the overall cache utilization), we need a less-loaded LLC 12016 * domain to pull some load from. Likewise, we may need to spread 12017 * load within the current LLC domain (e.g. packed SMT cores but 12018 * other CPUs are idle). We can't really know from here how busy 12019 * the others are - so just get a NOHZ balance going if it looks 12020 * like this LLC domain has tasks we could move. 12021 */ 12022 nr_busy = atomic_read(&sds->nr_busy_cpus); 12023 if (nr_busy > 1) { 12024 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12025 goto unlock; 12026 } 12027 } 12028 unlock: 12029 rcu_read_unlock(); 12030 out: 12031 if (READ_ONCE(nohz.needs_update)) 12032 flags |= NOHZ_NEXT_KICK; 12033 12034 if (flags) 12035 kick_ilb(flags); 12036 } 12037 12038 static void set_cpu_sd_state_busy(int cpu) 12039 { 12040 struct sched_domain *sd; 12041 12042 rcu_read_lock(); 12043 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12044 12045 if (!sd || !sd->nohz_idle) 12046 goto unlock; 12047 sd->nohz_idle = 0; 12048 12049 atomic_inc(&sd->shared->nr_busy_cpus); 12050 unlock: 12051 rcu_read_unlock(); 12052 } 12053 12054 void nohz_balance_exit_idle(struct rq *rq) 12055 { 12056 SCHED_WARN_ON(rq != this_rq()); 12057 12058 if (likely(!rq->nohz_tick_stopped)) 12059 return; 12060 12061 rq->nohz_tick_stopped = 0; 12062 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12063 atomic_dec(&nohz.nr_cpus); 12064 12065 set_cpu_sd_state_busy(rq->cpu); 12066 } 12067 12068 static void set_cpu_sd_state_idle(int cpu) 12069 { 12070 struct sched_domain *sd; 12071 12072 rcu_read_lock(); 12073 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12074 12075 if (!sd || sd->nohz_idle) 12076 goto unlock; 12077 sd->nohz_idle = 1; 12078 12079 atomic_dec(&sd->shared->nr_busy_cpus); 12080 unlock: 12081 rcu_read_unlock(); 12082 } 12083 12084 /* 12085 * This routine will record that the CPU is going idle with tick stopped. 12086 * This info will be used in performing idle load balancing in the future. 12087 */ 12088 void nohz_balance_enter_idle(int cpu) 12089 { 12090 struct rq *rq = cpu_rq(cpu); 12091 12092 SCHED_WARN_ON(cpu != smp_processor_id()); 12093 12094 /* If this CPU is going down, then nothing needs to be done: */ 12095 if (!cpu_active(cpu)) 12096 return; 12097 12098 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 12099 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 12100 return; 12101 12102 /* 12103 * Can be set safely without rq->lock held 12104 * If a clear happens, it will have evaluated last additions because 12105 * rq->lock is held during the check and the clear 12106 */ 12107 rq->has_blocked_load = 1; 12108 12109 /* 12110 * The tick is still stopped but load could have been added in the 12111 * meantime. We set the nohz.has_blocked flag to trig a check of the 12112 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12113 * of nohz.has_blocked can only happen after checking the new load 12114 */ 12115 if (rq->nohz_tick_stopped) 12116 goto out; 12117 12118 /* If we're a completely isolated CPU, we don't play: */ 12119 if (on_null_domain(rq)) 12120 return; 12121 12122 rq->nohz_tick_stopped = 1; 12123 12124 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12125 atomic_inc(&nohz.nr_cpus); 12126 12127 /* 12128 * Ensures that if nohz_idle_balance() fails to observe our 12129 * @idle_cpus_mask store, it must observe the @has_blocked 12130 * and @needs_update stores. 12131 */ 12132 smp_mb__after_atomic(); 12133 12134 set_cpu_sd_state_idle(cpu); 12135 12136 WRITE_ONCE(nohz.needs_update, 1); 12137 out: 12138 /* 12139 * Each time a cpu enter idle, we assume that it has blocked load and 12140 * enable the periodic update of the load of idle CPUs 12141 */ 12142 WRITE_ONCE(nohz.has_blocked, 1); 12143 } 12144 12145 static bool update_nohz_stats(struct rq *rq) 12146 { 12147 unsigned int cpu = rq->cpu; 12148 12149 if (!rq->has_blocked_load) 12150 return false; 12151 12152 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12153 return false; 12154 12155 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12156 return true; 12157 12158 sched_balance_update_blocked_averages(cpu); 12159 12160 return rq->has_blocked_load; 12161 } 12162 12163 /* 12164 * Internal function that runs load balance for all idle CPUs. The load balance 12165 * can be a simple update of blocked load or a complete load balance with 12166 * tasks movement depending of flags. 12167 */ 12168 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12169 { 12170 /* Earliest time when we have to do rebalance again */ 12171 unsigned long now = jiffies; 12172 unsigned long next_balance = now + 60*HZ; 12173 bool has_blocked_load = false; 12174 int update_next_balance = 0; 12175 int this_cpu = this_rq->cpu; 12176 int balance_cpu; 12177 struct rq *rq; 12178 12179 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12180 12181 /* 12182 * We assume there will be no idle load after this update and clear 12183 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12184 * set the has_blocked flag and trigger another update of idle load. 12185 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12186 * setting the flag, we are sure to not clear the state and not 12187 * check the load of an idle cpu. 12188 * 12189 * Same applies to idle_cpus_mask vs needs_update. 12190 */ 12191 if (flags & NOHZ_STATS_KICK) 12192 WRITE_ONCE(nohz.has_blocked, 0); 12193 if (flags & NOHZ_NEXT_KICK) 12194 WRITE_ONCE(nohz.needs_update, 0); 12195 12196 /* 12197 * Ensures that if we miss the CPU, we must see the has_blocked 12198 * store from nohz_balance_enter_idle(). 12199 */ 12200 smp_mb(); 12201 12202 /* 12203 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12204 * chance for other idle cpu to pull load. 12205 */ 12206 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12207 if (!idle_cpu(balance_cpu)) 12208 continue; 12209 12210 /* 12211 * If this CPU gets work to do, stop the load balancing 12212 * work being done for other CPUs. Next load 12213 * balancing owner will pick it up. 12214 */ 12215 if (need_resched()) { 12216 if (flags & NOHZ_STATS_KICK) 12217 has_blocked_load = true; 12218 if (flags & NOHZ_NEXT_KICK) 12219 WRITE_ONCE(nohz.needs_update, 1); 12220 goto abort; 12221 } 12222 12223 rq = cpu_rq(balance_cpu); 12224 12225 if (flags & NOHZ_STATS_KICK) 12226 has_blocked_load |= update_nohz_stats(rq); 12227 12228 /* 12229 * If time for next balance is due, 12230 * do the balance. 12231 */ 12232 if (time_after_eq(jiffies, rq->next_balance)) { 12233 struct rq_flags rf; 12234 12235 rq_lock_irqsave(rq, &rf); 12236 update_rq_clock(rq); 12237 rq_unlock_irqrestore(rq, &rf); 12238 12239 if (flags & NOHZ_BALANCE_KICK) 12240 sched_balance_domains(rq, CPU_IDLE); 12241 } 12242 12243 if (time_after(next_balance, rq->next_balance)) { 12244 next_balance = rq->next_balance; 12245 update_next_balance = 1; 12246 } 12247 } 12248 12249 /* 12250 * next_balance will be updated only when there is a need. 12251 * When the CPU is attached to null domain for ex, it will not be 12252 * updated. 12253 */ 12254 if (likely(update_next_balance)) 12255 nohz.next_balance = next_balance; 12256 12257 if (flags & NOHZ_STATS_KICK) 12258 WRITE_ONCE(nohz.next_blocked, 12259 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12260 12261 abort: 12262 /* There is still blocked load, enable periodic update */ 12263 if (has_blocked_load) 12264 WRITE_ONCE(nohz.has_blocked, 1); 12265 } 12266 12267 /* 12268 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12269 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12270 */ 12271 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12272 { 12273 unsigned int flags = this_rq->nohz_idle_balance; 12274 12275 if (!flags) 12276 return false; 12277 12278 this_rq->nohz_idle_balance = 0; 12279 12280 if (idle != CPU_IDLE) 12281 return false; 12282 12283 _nohz_idle_balance(this_rq, flags); 12284 12285 return true; 12286 } 12287 12288 /* 12289 * Check if we need to directly run the ILB for updating blocked load before 12290 * entering idle state. Here we run ILB directly without issuing IPIs. 12291 * 12292 * Note that when this function is called, the tick may not yet be stopped on 12293 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12294 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12295 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12296 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12297 * called from this function on (this) CPU that's not yet in the mask. That's 12298 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12299 * updating the blocked load of already idle CPUs without waking up one of 12300 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12301 * cpu about to enter idle, because it can take a long time. 12302 */ 12303 void nohz_run_idle_balance(int cpu) 12304 { 12305 unsigned int flags; 12306 12307 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12308 12309 /* 12310 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12311 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12312 */ 12313 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12314 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12315 } 12316 12317 static void nohz_newidle_balance(struct rq *this_rq) 12318 { 12319 int this_cpu = this_rq->cpu; 12320 12321 /* 12322 * This CPU doesn't want to be disturbed by scheduler 12323 * housekeeping 12324 */ 12325 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 12326 return; 12327 12328 /* Will wake up very soon. No time for doing anything else*/ 12329 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12330 return; 12331 12332 /* Don't need to update blocked load of idle CPUs*/ 12333 if (!READ_ONCE(nohz.has_blocked) || 12334 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12335 return; 12336 12337 /* 12338 * Set the need to trigger ILB in order to update blocked load 12339 * before entering idle state. 12340 */ 12341 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12342 } 12343 12344 #else /* !CONFIG_NO_HZ_COMMON */ 12345 static inline void nohz_balancer_kick(struct rq *rq) { } 12346 12347 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12348 { 12349 return false; 12350 } 12351 12352 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12353 #endif /* CONFIG_NO_HZ_COMMON */ 12354 12355 /* 12356 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12357 * idle. Attempts to pull tasks from other CPUs. 12358 * 12359 * Returns: 12360 * < 0 - we released the lock and there are !fair tasks present 12361 * 0 - failed, no new tasks 12362 * > 0 - success, new (fair) tasks present 12363 */ 12364 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12365 { 12366 unsigned long next_balance = jiffies + HZ; 12367 int this_cpu = this_rq->cpu; 12368 int continue_balancing = 1; 12369 u64 t0, t1, curr_cost = 0; 12370 struct sched_domain *sd; 12371 int pulled_task = 0; 12372 12373 update_misfit_status(NULL, this_rq); 12374 12375 /* 12376 * There is a task waiting to run. No need to search for one. 12377 * Return 0; the task will be enqueued when switching to idle. 12378 */ 12379 if (this_rq->ttwu_pending) 12380 return 0; 12381 12382 /* 12383 * We must set idle_stamp _before_ calling sched_balance_rq() 12384 * for CPU_NEWLY_IDLE, such that we measure the this duration 12385 * as idle time. 12386 */ 12387 this_rq->idle_stamp = rq_clock(this_rq); 12388 12389 /* 12390 * Do not pull tasks towards !active CPUs... 12391 */ 12392 if (!cpu_active(this_cpu)) 12393 return 0; 12394 12395 /* 12396 * This is OK, because current is on_cpu, which avoids it being picked 12397 * for load-balance and preemption/IRQs are still disabled avoiding 12398 * further scheduler activity on it and we're being very careful to 12399 * re-start the picking loop. 12400 */ 12401 rq_unpin_lock(this_rq, rf); 12402 12403 rcu_read_lock(); 12404 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12405 12406 if (!get_rd_overloaded(this_rq->rd) || 12407 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12408 12409 if (sd) 12410 update_next_balance(sd, &next_balance); 12411 rcu_read_unlock(); 12412 12413 goto out; 12414 } 12415 rcu_read_unlock(); 12416 12417 raw_spin_rq_unlock(this_rq); 12418 12419 t0 = sched_clock_cpu(this_cpu); 12420 sched_balance_update_blocked_averages(this_cpu); 12421 12422 rcu_read_lock(); 12423 for_each_domain(this_cpu, sd) { 12424 u64 domain_cost; 12425 12426 update_next_balance(sd, &next_balance); 12427 12428 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12429 break; 12430 12431 if (sd->flags & SD_BALANCE_NEWIDLE) { 12432 12433 pulled_task = sched_balance_rq(this_cpu, this_rq, 12434 sd, CPU_NEWLY_IDLE, 12435 &continue_balancing); 12436 12437 t1 = sched_clock_cpu(this_cpu); 12438 domain_cost = t1 - t0; 12439 update_newidle_cost(sd, domain_cost); 12440 12441 curr_cost += domain_cost; 12442 t0 = t1; 12443 } 12444 12445 /* 12446 * Stop searching for tasks to pull if there are 12447 * now runnable tasks on this rq. 12448 */ 12449 if (pulled_task || !continue_balancing) 12450 break; 12451 } 12452 rcu_read_unlock(); 12453 12454 raw_spin_rq_lock(this_rq); 12455 12456 if (curr_cost > this_rq->max_idle_balance_cost) 12457 this_rq->max_idle_balance_cost = curr_cost; 12458 12459 /* 12460 * While browsing the domains, we released the rq lock, a task could 12461 * have been enqueued in the meantime. Since we're not going idle, 12462 * pretend we pulled a task. 12463 */ 12464 if (this_rq->cfs.h_nr_running && !pulled_task) 12465 pulled_task = 1; 12466 12467 /* Is there a task of a high priority class? */ 12468 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 12469 pulled_task = -1; 12470 12471 out: 12472 /* Move the next balance forward */ 12473 if (time_after(this_rq->next_balance, next_balance)) 12474 this_rq->next_balance = next_balance; 12475 12476 if (pulled_task) 12477 this_rq->idle_stamp = 0; 12478 else 12479 nohz_newidle_balance(this_rq); 12480 12481 rq_repin_lock(this_rq, rf); 12482 12483 return pulled_task; 12484 } 12485 12486 /* 12487 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 12488 * 12489 * - directly from the local scheduler_tick() for periodic load balancing 12490 * 12491 * - indirectly from a remote scheduler_tick() for NOHZ idle balancing 12492 * through the SMP cross-call nohz_csd_func() 12493 */ 12494 static __latent_entropy void sched_balance_softirq(struct softirq_action *h) 12495 { 12496 struct rq *this_rq = this_rq(); 12497 enum cpu_idle_type idle = this_rq->idle_balance; 12498 /* 12499 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 12500 * balancing on behalf of the other idle CPUs whose ticks are 12501 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 12502 * give the idle CPUs a chance to load balance. Else we may 12503 * load balance only within the local sched_domain hierarchy 12504 * and abort nohz_idle_balance altogether if we pull some load. 12505 */ 12506 if (nohz_idle_balance(this_rq, idle)) 12507 return; 12508 12509 /* normal load balance */ 12510 sched_balance_update_blocked_averages(this_rq->cpu); 12511 sched_balance_domains(this_rq, idle); 12512 } 12513 12514 /* 12515 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12516 */ 12517 void sched_balance_trigger(struct rq *rq) 12518 { 12519 /* 12520 * Don't need to rebalance while attached to NULL domain or 12521 * runqueue CPU is not active 12522 */ 12523 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12524 return; 12525 12526 if (time_after_eq(jiffies, rq->next_balance)) 12527 raise_softirq(SCHED_SOFTIRQ); 12528 12529 nohz_balancer_kick(rq); 12530 } 12531 12532 static void rq_online_fair(struct rq *rq) 12533 { 12534 update_sysctl(); 12535 12536 update_runtime_enabled(rq); 12537 } 12538 12539 static void rq_offline_fair(struct rq *rq) 12540 { 12541 update_sysctl(); 12542 12543 /* Ensure any throttled groups are reachable by pick_next_task */ 12544 unthrottle_offline_cfs_rqs(rq); 12545 12546 /* Ensure that we remove rq contribution to group share: */ 12547 clear_tg_offline_cfs_rqs(rq); 12548 } 12549 12550 #endif /* CONFIG_SMP */ 12551 12552 #ifdef CONFIG_SCHED_CORE 12553 static inline bool 12554 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12555 { 12556 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12557 u64 slice = se->slice; 12558 12559 return (rtime * min_nr_tasks > slice); 12560 } 12561 12562 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12563 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12564 { 12565 if (!sched_core_enabled(rq)) 12566 return; 12567 12568 /* 12569 * If runqueue has only one task which used up its slice and 12570 * if the sibling is forced idle, then trigger schedule to 12571 * give forced idle task a chance. 12572 * 12573 * sched_slice() considers only this active rq and it gets the 12574 * whole slice. But during force idle, we have siblings acting 12575 * like a single runqueue and hence we need to consider runnable 12576 * tasks on this CPU and the forced idle CPU. Ideally, we should 12577 * go through the forced idle rq, but that would be a perf hit. 12578 * We can assume that the forced idle CPU has at least 12579 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12580 * if we need to give up the CPU. 12581 */ 12582 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 12583 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12584 resched_curr(rq); 12585 } 12586 12587 /* 12588 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12589 */ 12590 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12591 bool forceidle) 12592 { 12593 for_each_sched_entity(se) { 12594 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12595 12596 if (forceidle) { 12597 if (cfs_rq->forceidle_seq == fi_seq) 12598 break; 12599 cfs_rq->forceidle_seq = fi_seq; 12600 } 12601 12602 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12603 } 12604 } 12605 12606 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12607 { 12608 struct sched_entity *se = &p->se; 12609 12610 if (p->sched_class != &fair_sched_class) 12611 return; 12612 12613 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12614 } 12615 12616 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12617 bool in_fi) 12618 { 12619 struct rq *rq = task_rq(a); 12620 const struct sched_entity *sea = &a->se; 12621 const struct sched_entity *seb = &b->se; 12622 struct cfs_rq *cfs_rqa; 12623 struct cfs_rq *cfs_rqb; 12624 s64 delta; 12625 12626 SCHED_WARN_ON(task_rq(b)->core != rq->core); 12627 12628 #ifdef CONFIG_FAIR_GROUP_SCHED 12629 /* 12630 * Find an se in the hierarchy for tasks a and b, such that the se's 12631 * are immediate siblings. 12632 */ 12633 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12634 int sea_depth = sea->depth; 12635 int seb_depth = seb->depth; 12636 12637 if (sea_depth >= seb_depth) 12638 sea = parent_entity(sea); 12639 if (sea_depth <= seb_depth) 12640 seb = parent_entity(seb); 12641 } 12642 12643 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 12644 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 12645 12646 cfs_rqa = sea->cfs_rq; 12647 cfs_rqb = seb->cfs_rq; 12648 #else 12649 cfs_rqa = &task_rq(a)->cfs; 12650 cfs_rqb = &task_rq(b)->cfs; 12651 #endif 12652 12653 /* 12654 * Find delta after normalizing se's vruntime with its cfs_rq's 12655 * min_vruntime_fi, which would have been updated in prior calls 12656 * to se_fi_update(). 12657 */ 12658 delta = (s64)(sea->vruntime - seb->vruntime) + 12659 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 12660 12661 return delta > 0; 12662 } 12663 12664 static int task_is_throttled_fair(struct task_struct *p, int cpu) 12665 { 12666 struct cfs_rq *cfs_rq; 12667 12668 #ifdef CONFIG_FAIR_GROUP_SCHED 12669 cfs_rq = task_group(p)->cfs_rq[cpu]; 12670 #else 12671 cfs_rq = &cpu_rq(cpu)->cfs; 12672 #endif 12673 return throttled_hierarchy(cfs_rq); 12674 } 12675 #else 12676 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 12677 #endif 12678 12679 /* 12680 * scheduler tick hitting a task of our scheduling class. 12681 * 12682 * NOTE: This function can be called remotely by the tick offload that 12683 * goes along full dynticks. Therefore no local assumption can be made 12684 * and everything must be accessed through the @rq and @curr passed in 12685 * parameters. 12686 */ 12687 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 12688 { 12689 struct cfs_rq *cfs_rq; 12690 struct sched_entity *se = &curr->se; 12691 12692 for_each_sched_entity(se) { 12693 cfs_rq = cfs_rq_of(se); 12694 entity_tick(cfs_rq, se, queued); 12695 } 12696 12697 if (static_branch_unlikely(&sched_numa_balancing)) 12698 task_tick_numa(rq, curr); 12699 12700 update_misfit_status(curr, rq); 12701 check_update_overutilized_status(task_rq(curr)); 12702 12703 task_tick_core(rq, curr); 12704 } 12705 12706 /* 12707 * called on fork with the child task as argument from the parent's context 12708 * - child not yet on the tasklist 12709 * - preemption disabled 12710 */ 12711 static void task_fork_fair(struct task_struct *p) 12712 { 12713 struct sched_entity *se = &p->se, *curr; 12714 struct cfs_rq *cfs_rq; 12715 struct rq *rq = this_rq(); 12716 struct rq_flags rf; 12717 12718 rq_lock(rq, &rf); 12719 update_rq_clock(rq); 12720 12721 set_task_max_allowed_capacity(p); 12722 12723 cfs_rq = task_cfs_rq(current); 12724 curr = cfs_rq->curr; 12725 if (curr) 12726 update_curr(cfs_rq); 12727 place_entity(cfs_rq, se, ENQUEUE_INITIAL); 12728 rq_unlock(rq, &rf); 12729 } 12730 12731 /* 12732 * Priority of the task has changed. Check to see if we preempt 12733 * the current task. 12734 */ 12735 static void 12736 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 12737 { 12738 if (!task_on_rq_queued(p)) 12739 return; 12740 12741 if (rq->cfs.nr_running == 1) 12742 return; 12743 12744 /* 12745 * Reschedule if we are currently running on this runqueue and 12746 * our priority decreased, or if we are not currently running on 12747 * this runqueue and our priority is higher than the current's 12748 */ 12749 if (task_current(rq, p)) { 12750 if (p->prio > oldprio) 12751 resched_curr(rq); 12752 } else 12753 wakeup_preempt(rq, p, 0); 12754 } 12755 12756 #ifdef CONFIG_FAIR_GROUP_SCHED 12757 /* 12758 * Propagate the changes of the sched_entity across the tg tree to make it 12759 * visible to the root 12760 */ 12761 static void propagate_entity_cfs_rq(struct sched_entity *se) 12762 { 12763 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12764 12765 if (cfs_rq_throttled(cfs_rq)) 12766 return; 12767 12768 if (!throttled_hierarchy(cfs_rq)) 12769 list_add_leaf_cfs_rq(cfs_rq); 12770 12771 /* Start to propagate at parent */ 12772 se = se->parent; 12773 12774 for_each_sched_entity(se) { 12775 cfs_rq = cfs_rq_of(se); 12776 12777 update_load_avg(cfs_rq, se, UPDATE_TG); 12778 12779 if (cfs_rq_throttled(cfs_rq)) 12780 break; 12781 12782 if (!throttled_hierarchy(cfs_rq)) 12783 list_add_leaf_cfs_rq(cfs_rq); 12784 } 12785 } 12786 #else 12787 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 12788 #endif 12789 12790 static void detach_entity_cfs_rq(struct sched_entity *se) 12791 { 12792 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12793 12794 #ifdef CONFIG_SMP 12795 /* 12796 * In case the task sched_avg hasn't been attached: 12797 * - A forked task which hasn't been woken up by wake_up_new_task(). 12798 * - A task which has been woken up by try_to_wake_up() but is 12799 * waiting for actually being woken up by sched_ttwu_pending(). 12800 */ 12801 if (!se->avg.last_update_time) 12802 return; 12803 #endif 12804 12805 /* Catch up with the cfs_rq and remove our load when we leave */ 12806 update_load_avg(cfs_rq, se, 0); 12807 detach_entity_load_avg(cfs_rq, se); 12808 update_tg_load_avg(cfs_rq); 12809 propagate_entity_cfs_rq(se); 12810 } 12811 12812 static void attach_entity_cfs_rq(struct sched_entity *se) 12813 { 12814 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12815 12816 /* Synchronize entity with its cfs_rq */ 12817 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 12818 attach_entity_load_avg(cfs_rq, se); 12819 update_tg_load_avg(cfs_rq); 12820 propagate_entity_cfs_rq(se); 12821 } 12822 12823 static void detach_task_cfs_rq(struct task_struct *p) 12824 { 12825 struct sched_entity *se = &p->se; 12826 12827 detach_entity_cfs_rq(se); 12828 } 12829 12830 static void attach_task_cfs_rq(struct task_struct *p) 12831 { 12832 struct sched_entity *se = &p->se; 12833 12834 attach_entity_cfs_rq(se); 12835 } 12836 12837 static void switched_from_fair(struct rq *rq, struct task_struct *p) 12838 { 12839 detach_task_cfs_rq(p); 12840 } 12841 12842 static void switched_to_fair(struct rq *rq, struct task_struct *p) 12843 { 12844 attach_task_cfs_rq(p); 12845 12846 set_task_max_allowed_capacity(p); 12847 12848 if (task_on_rq_queued(p)) { 12849 /* 12850 * We were most likely switched from sched_rt, so 12851 * kick off the schedule if running, otherwise just see 12852 * if we can still preempt the current task. 12853 */ 12854 if (task_current(rq, p)) 12855 resched_curr(rq); 12856 else 12857 wakeup_preempt(rq, p, 0); 12858 } 12859 } 12860 12861 /* Account for a task changing its policy or group. 12862 * 12863 * This routine is mostly called to set cfs_rq->curr field when a task 12864 * migrates between groups/classes. 12865 */ 12866 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 12867 { 12868 struct sched_entity *se = &p->se; 12869 12870 #ifdef CONFIG_SMP 12871 if (task_on_rq_queued(p)) { 12872 /* 12873 * Move the next running task to the front of the list, so our 12874 * cfs_tasks list becomes MRU one. 12875 */ 12876 list_move(&se->group_node, &rq->cfs_tasks); 12877 } 12878 #endif 12879 12880 for_each_sched_entity(se) { 12881 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12882 12883 set_next_entity(cfs_rq, se); 12884 /* ensure bandwidth has been allocated on our new cfs_rq */ 12885 account_cfs_rq_runtime(cfs_rq, 0); 12886 } 12887 } 12888 12889 void init_cfs_rq(struct cfs_rq *cfs_rq) 12890 { 12891 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 12892 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 12893 #ifdef CONFIG_SMP 12894 raw_spin_lock_init(&cfs_rq->removed.lock); 12895 #endif 12896 } 12897 12898 #ifdef CONFIG_FAIR_GROUP_SCHED 12899 static void task_change_group_fair(struct task_struct *p) 12900 { 12901 /* 12902 * We couldn't detach or attach a forked task which 12903 * hasn't been woken up by wake_up_new_task(). 12904 */ 12905 if (READ_ONCE(p->__state) == TASK_NEW) 12906 return; 12907 12908 detach_task_cfs_rq(p); 12909 12910 #ifdef CONFIG_SMP 12911 /* Tell se's cfs_rq has been changed -- migrated */ 12912 p->se.avg.last_update_time = 0; 12913 #endif 12914 set_task_rq(p, task_cpu(p)); 12915 attach_task_cfs_rq(p); 12916 } 12917 12918 void free_fair_sched_group(struct task_group *tg) 12919 { 12920 int i; 12921 12922 for_each_possible_cpu(i) { 12923 if (tg->cfs_rq) 12924 kfree(tg->cfs_rq[i]); 12925 if (tg->se) 12926 kfree(tg->se[i]); 12927 } 12928 12929 kfree(tg->cfs_rq); 12930 kfree(tg->se); 12931 } 12932 12933 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12934 { 12935 struct sched_entity *se; 12936 struct cfs_rq *cfs_rq; 12937 int i; 12938 12939 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 12940 if (!tg->cfs_rq) 12941 goto err; 12942 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 12943 if (!tg->se) 12944 goto err; 12945 12946 tg->shares = NICE_0_LOAD; 12947 12948 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 12949 12950 for_each_possible_cpu(i) { 12951 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 12952 GFP_KERNEL, cpu_to_node(i)); 12953 if (!cfs_rq) 12954 goto err; 12955 12956 se = kzalloc_node(sizeof(struct sched_entity_stats), 12957 GFP_KERNEL, cpu_to_node(i)); 12958 if (!se) 12959 goto err_free_rq; 12960 12961 init_cfs_rq(cfs_rq); 12962 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 12963 init_entity_runnable_average(se); 12964 } 12965 12966 return 1; 12967 12968 err_free_rq: 12969 kfree(cfs_rq); 12970 err: 12971 return 0; 12972 } 12973 12974 void online_fair_sched_group(struct task_group *tg) 12975 { 12976 struct sched_entity *se; 12977 struct rq_flags rf; 12978 struct rq *rq; 12979 int i; 12980 12981 for_each_possible_cpu(i) { 12982 rq = cpu_rq(i); 12983 se = tg->se[i]; 12984 rq_lock_irq(rq, &rf); 12985 update_rq_clock(rq); 12986 attach_entity_cfs_rq(se); 12987 sync_throttle(tg, i); 12988 rq_unlock_irq(rq, &rf); 12989 } 12990 } 12991 12992 void unregister_fair_sched_group(struct task_group *tg) 12993 { 12994 unsigned long flags; 12995 struct rq *rq; 12996 int cpu; 12997 12998 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12999 13000 for_each_possible_cpu(cpu) { 13001 if (tg->se[cpu]) 13002 remove_entity_load_avg(tg->se[cpu]); 13003 13004 /* 13005 * Only empty task groups can be destroyed; so we can speculatively 13006 * check on_list without danger of it being re-added. 13007 */ 13008 if (!tg->cfs_rq[cpu]->on_list) 13009 continue; 13010 13011 rq = cpu_rq(cpu); 13012 13013 raw_spin_rq_lock_irqsave(rq, flags); 13014 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 13015 raw_spin_rq_unlock_irqrestore(rq, flags); 13016 } 13017 } 13018 13019 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13020 struct sched_entity *se, int cpu, 13021 struct sched_entity *parent) 13022 { 13023 struct rq *rq = cpu_rq(cpu); 13024 13025 cfs_rq->tg = tg; 13026 cfs_rq->rq = rq; 13027 init_cfs_rq_runtime(cfs_rq); 13028 13029 tg->cfs_rq[cpu] = cfs_rq; 13030 tg->se[cpu] = se; 13031 13032 /* se could be NULL for root_task_group */ 13033 if (!se) 13034 return; 13035 13036 if (!parent) { 13037 se->cfs_rq = &rq->cfs; 13038 se->depth = 0; 13039 } else { 13040 se->cfs_rq = parent->my_q; 13041 se->depth = parent->depth + 1; 13042 } 13043 13044 se->my_q = cfs_rq; 13045 /* guarantee group entities always have weight */ 13046 update_load_set(&se->load, NICE_0_LOAD); 13047 se->parent = parent; 13048 } 13049 13050 static DEFINE_MUTEX(shares_mutex); 13051 13052 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13053 { 13054 int i; 13055 13056 lockdep_assert_held(&shares_mutex); 13057 13058 /* 13059 * We can't change the weight of the root cgroup. 13060 */ 13061 if (!tg->se[0]) 13062 return -EINVAL; 13063 13064 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13065 13066 if (tg->shares == shares) 13067 return 0; 13068 13069 tg->shares = shares; 13070 for_each_possible_cpu(i) { 13071 struct rq *rq = cpu_rq(i); 13072 struct sched_entity *se = tg->se[i]; 13073 struct rq_flags rf; 13074 13075 /* Propagate contribution to hierarchy */ 13076 rq_lock_irqsave(rq, &rf); 13077 update_rq_clock(rq); 13078 for_each_sched_entity(se) { 13079 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13080 update_cfs_group(se); 13081 } 13082 rq_unlock_irqrestore(rq, &rf); 13083 } 13084 13085 return 0; 13086 } 13087 13088 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13089 { 13090 int ret; 13091 13092 mutex_lock(&shares_mutex); 13093 if (tg_is_idle(tg)) 13094 ret = -EINVAL; 13095 else 13096 ret = __sched_group_set_shares(tg, shares); 13097 mutex_unlock(&shares_mutex); 13098 13099 return ret; 13100 } 13101 13102 int sched_group_set_idle(struct task_group *tg, long idle) 13103 { 13104 int i; 13105 13106 if (tg == &root_task_group) 13107 return -EINVAL; 13108 13109 if (idle < 0 || idle > 1) 13110 return -EINVAL; 13111 13112 mutex_lock(&shares_mutex); 13113 13114 if (tg->idle == idle) { 13115 mutex_unlock(&shares_mutex); 13116 return 0; 13117 } 13118 13119 tg->idle = idle; 13120 13121 for_each_possible_cpu(i) { 13122 struct rq *rq = cpu_rq(i); 13123 struct sched_entity *se = tg->se[i]; 13124 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 13125 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13126 long idle_task_delta; 13127 struct rq_flags rf; 13128 13129 rq_lock_irqsave(rq, &rf); 13130 13131 grp_cfs_rq->idle = idle; 13132 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13133 goto next_cpu; 13134 13135 if (se->on_rq) { 13136 parent_cfs_rq = cfs_rq_of(se); 13137 if (cfs_rq_is_idle(grp_cfs_rq)) 13138 parent_cfs_rq->idle_nr_running++; 13139 else 13140 parent_cfs_rq->idle_nr_running--; 13141 } 13142 13143 idle_task_delta = grp_cfs_rq->h_nr_running - 13144 grp_cfs_rq->idle_h_nr_running; 13145 if (!cfs_rq_is_idle(grp_cfs_rq)) 13146 idle_task_delta *= -1; 13147 13148 for_each_sched_entity(se) { 13149 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13150 13151 if (!se->on_rq) 13152 break; 13153 13154 cfs_rq->idle_h_nr_running += idle_task_delta; 13155 13156 /* Already accounted at parent level and above. */ 13157 if (cfs_rq_is_idle(cfs_rq)) 13158 break; 13159 } 13160 13161 next_cpu: 13162 rq_unlock_irqrestore(rq, &rf); 13163 } 13164 13165 /* Idle groups have minimum weight. */ 13166 if (tg_is_idle(tg)) 13167 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13168 else 13169 __sched_group_set_shares(tg, NICE_0_LOAD); 13170 13171 mutex_unlock(&shares_mutex); 13172 return 0; 13173 } 13174 13175 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13176 13177 13178 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13179 { 13180 struct sched_entity *se = &task->se; 13181 unsigned int rr_interval = 0; 13182 13183 /* 13184 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13185 * idle runqueue: 13186 */ 13187 if (rq->cfs.load.weight) 13188 rr_interval = NS_TO_JIFFIES(se->slice); 13189 13190 return rr_interval; 13191 } 13192 13193 /* 13194 * All the scheduling class methods: 13195 */ 13196 DEFINE_SCHED_CLASS(fair) = { 13197 13198 .enqueue_task = enqueue_task_fair, 13199 .dequeue_task = dequeue_task_fair, 13200 .yield_task = yield_task_fair, 13201 .yield_to_task = yield_to_task_fair, 13202 13203 .wakeup_preempt = check_preempt_wakeup_fair, 13204 13205 .pick_next_task = __pick_next_task_fair, 13206 .put_prev_task = put_prev_task_fair, 13207 .set_next_task = set_next_task_fair, 13208 13209 #ifdef CONFIG_SMP 13210 .balance = balance_fair, 13211 .pick_task = pick_task_fair, 13212 .select_task_rq = select_task_rq_fair, 13213 .migrate_task_rq = migrate_task_rq_fair, 13214 13215 .rq_online = rq_online_fair, 13216 .rq_offline = rq_offline_fair, 13217 13218 .task_dead = task_dead_fair, 13219 .set_cpus_allowed = set_cpus_allowed_fair, 13220 #endif 13221 13222 .task_tick = task_tick_fair, 13223 .task_fork = task_fork_fair, 13224 13225 .prio_changed = prio_changed_fair, 13226 .switched_from = switched_from_fair, 13227 .switched_to = switched_to_fair, 13228 13229 .get_rr_interval = get_rr_interval_fair, 13230 13231 .update_curr = update_curr_fair, 13232 13233 #ifdef CONFIG_FAIR_GROUP_SCHED 13234 .task_change_group = task_change_group_fair, 13235 #endif 13236 13237 #ifdef CONFIG_SCHED_CORE 13238 .task_is_throttled = task_is_throttled_fair, 13239 #endif 13240 13241 #ifdef CONFIG_UCLAMP_TASK 13242 .uclamp_enabled = 1, 13243 #endif 13244 }; 13245 13246 #ifdef CONFIG_SCHED_DEBUG 13247 void print_cfs_stats(struct seq_file *m, int cpu) 13248 { 13249 struct cfs_rq *cfs_rq, *pos; 13250 13251 rcu_read_lock(); 13252 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13253 print_cfs_rq(m, cpu, cfs_rq); 13254 rcu_read_unlock(); 13255 } 13256 13257 #ifdef CONFIG_NUMA_BALANCING 13258 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13259 { 13260 int node; 13261 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13262 struct numa_group *ng; 13263 13264 rcu_read_lock(); 13265 ng = rcu_dereference(p->numa_group); 13266 for_each_online_node(node) { 13267 if (p->numa_faults) { 13268 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13269 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13270 } 13271 if (ng) { 13272 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13273 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13274 } 13275 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13276 } 13277 rcu_read_unlock(); 13278 } 13279 #endif /* CONFIG_NUMA_BALANCING */ 13280 #endif /* CONFIG_SCHED_DEBUG */ 13281 13282 __init void init_sched_fair_class(void) 13283 { 13284 #ifdef CONFIG_SMP 13285 int i; 13286 13287 for_each_possible_cpu(i) { 13288 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13289 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13290 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13291 GFP_KERNEL, cpu_to_node(i)); 13292 13293 #ifdef CONFIG_CFS_BANDWIDTH 13294 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13295 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13296 #endif 13297 } 13298 13299 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13300 13301 #ifdef CONFIG_NO_HZ_COMMON 13302 nohz.next_balance = jiffies; 13303 nohz.next_blocked = jiffies; 13304 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13305 #endif 13306 #endif /* SMP */ 13307 13308 } 13309