1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 21 */ 22 23 #include <linux/sched.h> 24 #include <linux/latencytop.h> 25 #include <linux/cpumask.h> 26 #include <linux/cpuidle.h> 27 #include <linux/slab.h> 28 #include <linux/profile.h> 29 #include <linux/interrupt.h> 30 #include <linux/mempolicy.h> 31 #include <linux/migrate.h> 32 #include <linux/task_work.h> 33 34 #include <trace/events/sched.h> 35 36 #include "sched.h" 37 38 /* 39 * Targeted preemption latency for CPU-bound tasks: 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 41 * 42 * NOTE: this latency value is not the same as the concept of 43 * 'timeslice length' - timeslices in CFS are of variable length 44 * and have no persistent notion like in traditional, time-slice 45 * based scheduling concepts. 46 * 47 * (to see the precise effective timeslice length of your workload, 48 * run vmstat and monitor the context-switches (cs) field) 49 */ 50 unsigned int sysctl_sched_latency = 6000000ULL; 51 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 52 53 /* 54 * The initial- and re-scaling of tunables is configurable 55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 56 * 57 * Options are: 58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 61 */ 62 enum sched_tunable_scaling sysctl_sched_tunable_scaling 63 = SCHED_TUNABLESCALING_LOG; 64 65 /* 66 * Minimal preemption granularity for CPU-bound tasks: 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 68 */ 69 unsigned int sysctl_sched_min_granularity = 750000ULL; 70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 71 72 /* 73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 74 */ 75 static unsigned int sched_nr_latency = 8; 76 77 /* 78 * After fork, child runs first. If set to 0 (default) then 79 * parent will (try to) run first. 80 */ 81 unsigned int sysctl_sched_child_runs_first __read_mostly; 82 83 /* 84 * SCHED_OTHER wake-up granularity. 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 86 * 87 * This option delays the preemption effects of decoupled workloads 88 * and reduces their over-scheduling. Synchronous workloads will still 89 * have immediate wakeup/sleep latencies. 90 */ 91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 93 94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 95 96 /* 97 * The exponential sliding window over which load is averaged for shares 98 * distribution. 99 * (default: 10msec) 100 */ 101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 102 103 #ifdef CONFIG_CFS_BANDWIDTH 104 /* 105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 106 * each time a cfs_rq requests quota. 107 * 108 * Note: in the case that the slice exceeds the runtime remaining (either due 109 * to consumption or the quota being specified to be smaller than the slice) 110 * we will always only issue the remaining available time. 111 * 112 * default: 5 msec, units: microseconds 113 */ 114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 115 #endif 116 117 /* 118 * The margin used when comparing utilization with CPU capacity: 119 * util * 1024 < capacity * margin 120 */ 121 unsigned int capacity_margin = 1280; /* ~20% */ 122 123 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 124 { 125 lw->weight += inc; 126 lw->inv_weight = 0; 127 } 128 129 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 130 { 131 lw->weight -= dec; 132 lw->inv_weight = 0; 133 } 134 135 static inline void update_load_set(struct load_weight *lw, unsigned long w) 136 { 137 lw->weight = w; 138 lw->inv_weight = 0; 139 } 140 141 /* 142 * Increase the granularity value when there are more CPUs, 143 * because with more CPUs the 'effective latency' as visible 144 * to users decreases. But the relationship is not linear, 145 * so pick a second-best guess by going with the log2 of the 146 * number of CPUs. 147 * 148 * This idea comes from the SD scheduler of Con Kolivas: 149 */ 150 static unsigned int get_update_sysctl_factor(void) 151 { 152 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 153 unsigned int factor; 154 155 switch (sysctl_sched_tunable_scaling) { 156 case SCHED_TUNABLESCALING_NONE: 157 factor = 1; 158 break; 159 case SCHED_TUNABLESCALING_LINEAR: 160 factor = cpus; 161 break; 162 case SCHED_TUNABLESCALING_LOG: 163 default: 164 factor = 1 + ilog2(cpus); 165 break; 166 } 167 168 return factor; 169 } 170 171 static void update_sysctl(void) 172 { 173 unsigned int factor = get_update_sysctl_factor(); 174 175 #define SET_SYSCTL(name) \ 176 (sysctl_##name = (factor) * normalized_sysctl_##name) 177 SET_SYSCTL(sched_min_granularity); 178 SET_SYSCTL(sched_latency); 179 SET_SYSCTL(sched_wakeup_granularity); 180 #undef SET_SYSCTL 181 } 182 183 void sched_init_granularity(void) 184 { 185 update_sysctl(); 186 } 187 188 #define WMULT_CONST (~0U) 189 #define WMULT_SHIFT 32 190 191 static void __update_inv_weight(struct load_weight *lw) 192 { 193 unsigned long w; 194 195 if (likely(lw->inv_weight)) 196 return; 197 198 w = scale_load_down(lw->weight); 199 200 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 201 lw->inv_weight = 1; 202 else if (unlikely(!w)) 203 lw->inv_weight = WMULT_CONST; 204 else 205 lw->inv_weight = WMULT_CONST / w; 206 } 207 208 /* 209 * delta_exec * weight / lw.weight 210 * OR 211 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 212 * 213 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 214 * we're guaranteed shift stays positive because inv_weight is guaranteed to 215 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 216 * 217 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 218 * weight/lw.weight <= 1, and therefore our shift will also be positive. 219 */ 220 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 221 { 222 u64 fact = scale_load_down(weight); 223 int shift = WMULT_SHIFT; 224 225 __update_inv_weight(lw); 226 227 if (unlikely(fact >> 32)) { 228 while (fact >> 32) { 229 fact >>= 1; 230 shift--; 231 } 232 } 233 234 /* hint to use a 32x32->64 mul */ 235 fact = (u64)(u32)fact * lw->inv_weight; 236 237 while (fact >> 32) { 238 fact >>= 1; 239 shift--; 240 } 241 242 return mul_u64_u32_shr(delta_exec, fact, shift); 243 } 244 245 246 const struct sched_class fair_sched_class; 247 248 /************************************************************** 249 * CFS operations on generic schedulable entities: 250 */ 251 252 #ifdef CONFIG_FAIR_GROUP_SCHED 253 254 /* cpu runqueue to which this cfs_rq is attached */ 255 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 256 { 257 return cfs_rq->rq; 258 } 259 260 /* An entity is a task if it doesn't "own" a runqueue */ 261 #define entity_is_task(se) (!se->my_q) 262 263 static inline struct task_struct *task_of(struct sched_entity *se) 264 { 265 SCHED_WARN_ON(!entity_is_task(se)); 266 return container_of(se, struct task_struct, se); 267 } 268 269 /* Walk up scheduling entities hierarchy */ 270 #define for_each_sched_entity(se) \ 271 for (; se; se = se->parent) 272 273 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 274 { 275 return p->se.cfs_rq; 276 } 277 278 /* runqueue on which this entity is (to be) queued */ 279 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 280 { 281 return se->cfs_rq; 282 } 283 284 /* runqueue "owned" by this group */ 285 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 286 { 287 return grp->my_q; 288 } 289 290 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 291 { 292 if (!cfs_rq->on_list) { 293 /* 294 * Ensure we either appear before our parent (if already 295 * enqueued) or force our parent to appear after us when it is 296 * enqueued. The fact that we always enqueue bottom-up 297 * reduces this to two cases. 298 */ 299 if (cfs_rq->tg->parent && 300 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 301 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 302 &rq_of(cfs_rq)->leaf_cfs_rq_list); 303 } else { 304 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 305 &rq_of(cfs_rq)->leaf_cfs_rq_list); 306 } 307 308 cfs_rq->on_list = 1; 309 } 310 } 311 312 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 313 { 314 if (cfs_rq->on_list) { 315 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 316 cfs_rq->on_list = 0; 317 } 318 } 319 320 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 321 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 322 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 323 324 /* Do the two (enqueued) entities belong to the same group ? */ 325 static inline struct cfs_rq * 326 is_same_group(struct sched_entity *se, struct sched_entity *pse) 327 { 328 if (se->cfs_rq == pse->cfs_rq) 329 return se->cfs_rq; 330 331 return NULL; 332 } 333 334 static inline struct sched_entity *parent_entity(struct sched_entity *se) 335 { 336 return se->parent; 337 } 338 339 static void 340 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 341 { 342 int se_depth, pse_depth; 343 344 /* 345 * preemption test can be made between sibling entities who are in the 346 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 347 * both tasks until we find their ancestors who are siblings of common 348 * parent. 349 */ 350 351 /* First walk up until both entities are at same depth */ 352 se_depth = (*se)->depth; 353 pse_depth = (*pse)->depth; 354 355 while (se_depth > pse_depth) { 356 se_depth--; 357 *se = parent_entity(*se); 358 } 359 360 while (pse_depth > se_depth) { 361 pse_depth--; 362 *pse = parent_entity(*pse); 363 } 364 365 while (!is_same_group(*se, *pse)) { 366 *se = parent_entity(*se); 367 *pse = parent_entity(*pse); 368 } 369 } 370 371 #else /* !CONFIG_FAIR_GROUP_SCHED */ 372 373 static inline struct task_struct *task_of(struct sched_entity *se) 374 { 375 return container_of(se, struct task_struct, se); 376 } 377 378 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 379 { 380 return container_of(cfs_rq, struct rq, cfs); 381 } 382 383 #define entity_is_task(se) 1 384 385 #define for_each_sched_entity(se) \ 386 for (; se; se = NULL) 387 388 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 389 { 390 return &task_rq(p)->cfs; 391 } 392 393 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 394 { 395 struct task_struct *p = task_of(se); 396 struct rq *rq = task_rq(p); 397 398 return &rq->cfs; 399 } 400 401 /* runqueue "owned" by this group */ 402 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 403 { 404 return NULL; 405 } 406 407 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 408 { 409 } 410 411 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 412 { 413 } 414 415 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 416 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 417 418 static inline struct sched_entity *parent_entity(struct sched_entity *se) 419 { 420 return NULL; 421 } 422 423 static inline void 424 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 425 { 426 } 427 428 #endif /* CONFIG_FAIR_GROUP_SCHED */ 429 430 static __always_inline 431 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 432 433 /************************************************************** 434 * Scheduling class tree data structure manipulation methods: 435 */ 436 437 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 438 { 439 s64 delta = (s64)(vruntime - max_vruntime); 440 if (delta > 0) 441 max_vruntime = vruntime; 442 443 return max_vruntime; 444 } 445 446 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 447 { 448 s64 delta = (s64)(vruntime - min_vruntime); 449 if (delta < 0) 450 min_vruntime = vruntime; 451 452 return min_vruntime; 453 } 454 455 static inline int entity_before(struct sched_entity *a, 456 struct sched_entity *b) 457 { 458 return (s64)(a->vruntime - b->vruntime) < 0; 459 } 460 461 static void update_min_vruntime(struct cfs_rq *cfs_rq) 462 { 463 struct sched_entity *curr = cfs_rq->curr; 464 465 u64 vruntime = cfs_rq->min_vruntime; 466 467 if (curr) { 468 if (curr->on_rq) 469 vruntime = curr->vruntime; 470 else 471 curr = NULL; 472 } 473 474 if (cfs_rq->rb_leftmost) { 475 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 476 struct sched_entity, 477 run_node); 478 479 if (!curr) 480 vruntime = se->vruntime; 481 else 482 vruntime = min_vruntime(vruntime, se->vruntime); 483 } 484 485 /* ensure we never gain time by being placed backwards. */ 486 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 487 #ifndef CONFIG_64BIT 488 smp_wmb(); 489 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 490 #endif 491 } 492 493 /* 494 * Enqueue an entity into the rb-tree: 495 */ 496 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 497 { 498 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 499 struct rb_node *parent = NULL; 500 struct sched_entity *entry; 501 int leftmost = 1; 502 503 /* 504 * Find the right place in the rbtree: 505 */ 506 while (*link) { 507 parent = *link; 508 entry = rb_entry(parent, struct sched_entity, run_node); 509 /* 510 * We dont care about collisions. Nodes with 511 * the same key stay together. 512 */ 513 if (entity_before(se, entry)) { 514 link = &parent->rb_left; 515 } else { 516 link = &parent->rb_right; 517 leftmost = 0; 518 } 519 } 520 521 /* 522 * Maintain a cache of leftmost tree entries (it is frequently 523 * used): 524 */ 525 if (leftmost) 526 cfs_rq->rb_leftmost = &se->run_node; 527 528 rb_link_node(&se->run_node, parent, link); 529 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 530 } 531 532 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 533 { 534 if (cfs_rq->rb_leftmost == &se->run_node) { 535 struct rb_node *next_node; 536 537 next_node = rb_next(&se->run_node); 538 cfs_rq->rb_leftmost = next_node; 539 } 540 541 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 542 } 543 544 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 545 { 546 struct rb_node *left = cfs_rq->rb_leftmost; 547 548 if (!left) 549 return NULL; 550 551 return rb_entry(left, struct sched_entity, run_node); 552 } 553 554 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 555 { 556 struct rb_node *next = rb_next(&se->run_node); 557 558 if (!next) 559 return NULL; 560 561 return rb_entry(next, struct sched_entity, run_node); 562 } 563 564 #ifdef CONFIG_SCHED_DEBUG 565 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 566 { 567 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 568 569 if (!last) 570 return NULL; 571 572 return rb_entry(last, struct sched_entity, run_node); 573 } 574 575 /************************************************************** 576 * Scheduling class statistics methods: 577 */ 578 579 int sched_proc_update_handler(struct ctl_table *table, int write, 580 void __user *buffer, size_t *lenp, 581 loff_t *ppos) 582 { 583 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 584 unsigned int factor = get_update_sysctl_factor(); 585 586 if (ret || !write) 587 return ret; 588 589 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 590 sysctl_sched_min_granularity); 591 592 #define WRT_SYSCTL(name) \ 593 (normalized_sysctl_##name = sysctl_##name / (factor)) 594 WRT_SYSCTL(sched_min_granularity); 595 WRT_SYSCTL(sched_latency); 596 WRT_SYSCTL(sched_wakeup_granularity); 597 #undef WRT_SYSCTL 598 599 return 0; 600 } 601 #endif 602 603 /* 604 * delta /= w 605 */ 606 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 607 { 608 if (unlikely(se->load.weight != NICE_0_LOAD)) 609 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 610 611 return delta; 612 } 613 614 /* 615 * The idea is to set a period in which each task runs once. 616 * 617 * When there are too many tasks (sched_nr_latency) we have to stretch 618 * this period because otherwise the slices get too small. 619 * 620 * p = (nr <= nl) ? l : l*nr/nl 621 */ 622 static u64 __sched_period(unsigned long nr_running) 623 { 624 if (unlikely(nr_running > sched_nr_latency)) 625 return nr_running * sysctl_sched_min_granularity; 626 else 627 return sysctl_sched_latency; 628 } 629 630 /* 631 * We calculate the wall-time slice from the period by taking a part 632 * proportional to the weight. 633 * 634 * s = p*P[w/rw] 635 */ 636 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 637 { 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 639 640 for_each_sched_entity(se) { 641 struct load_weight *load; 642 struct load_weight lw; 643 644 cfs_rq = cfs_rq_of(se); 645 load = &cfs_rq->load; 646 647 if (unlikely(!se->on_rq)) { 648 lw = cfs_rq->load; 649 650 update_load_add(&lw, se->load.weight); 651 load = &lw; 652 } 653 slice = __calc_delta(slice, se->load.weight, load); 654 } 655 return slice; 656 } 657 658 /* 659 * We calculate the vruntime slice of a to-be-inserted task. 660 * 661 * vs = s/w 662 */ 663 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 664 { 665 return calc_delta_fair(sched_slice(cfs_rq, se), se); 666 } 667 668 #ifdef CONFIG_SMP 669 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 670 static unsigned long task_h_load(struct task_struct *p); 671 672 /* 673 * We choose a half-life close to 1 scheduling period. 674 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are 675 * dependent on this value. 676 */ 677 #define LOAD_AVG_PERIOD 32 678 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 679 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */ 680 681 /* Give new sched_entity start runnable values to heavy its load in infant time */ 682 void init_entity_runnable_average(struct sched_entity *se) 683 { 684 struct sched_avg *sa = &se->avg; 685 686 sa->last_update_time = 0; 687 /* 688 * sched_avg's period_contrib should be strictly less then 1024, so 689 * we give it 1023 to make sure it is almost a period (1024us), and 690 * will definitely be update (after enqueue). 691 */ 692 sa->period_contrib = 1023; 693 /* 694 * Tasks are intialized with full load to be seen as heavy tasks until 695 * they get a chance to stabilize to their real load level. 696 * Group entities are intialized with zero load to reflect the fact that 697 * nothing has been attached to the task group yet. 698 */ 699 if (entity_is_task(se)) 700 sa->load_avg = scale_load_down(se->load.weight); 701 sa->load_sum = sa->load_avg * LOAD_AVG_MAX; 702 /* 703 * At this point, util_avg won't be used in select_task_rq_fair anyway 704 */ 705 sa->util_avg = 0; 706 sa->util_sum = 0; 707 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 708 } 709 710 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 711 static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq); 712 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force); 713 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se); 714 715 /* 716 * With new tasks being created, their initial util_avgs are extrapolated 717 * based on the cfs_rq's current util_avg: 718 * 719 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 720 * 721 * However, in many cases, the above util_avg does not give a desired 722 * value. Moreover, the sum of the util_avgs may be divergent, such 723 * as when the series is a harmonic series. 724 * 725 * To solve this problem, we also cap the util_avg of successive tasks to 726 * only 1/2 of the left utilization budget: 727 * 728 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n 729 * 730 * where n denotes the nth task. 731 * 732 * For example, a simplest series from the beginning would be like: 733 * 734 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 735 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 736 * 737 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 738 * if util_avg > util_avg_cap. 739 */ 740 void post_init_entity_util_avg(struct sched_entity *se) 741 { 742 struct cfs_rq *cfs_rq = cfs_rq_of(se); 743 struct sched_avg *sa = &se->avg; 744 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2; 745 u64 now = cfs_rq_clock_task(cfs_rq); 746 747 if (cap > 0) { 748 if (cfs_rq->avg.util_avg != 0) { 749 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 750 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 751 752 if (sa->util_avg > cap) 753 sa->util_avg = cap; 754 } else { 755 sa->util_avg = cap; 756 } 757 sa->util_sum = sa->util_avg * LOAD_AVG_MAX; 758 } 759 760 if (entity_is_task(se)) { 761 struct task_struct *p = task_of(se); 762 if (p->sched_class != &fair_sched_class) { 763 /* 764 * For !fair tasks do: 765 * 766 update_cfs_rq_load_avg(now, cfs_rq, false); 767 attach_entity_load_avg(cfs_rq, se); 768 switched_from_fair(rq, p); 769 * 770 * such that the next switched_to_fair() has the 771 * expected state. 772 */ 773 se->avg.last_update_time = now; 774 return; 775 } 776 } 777 778 update_cfs_rq_load_avg(now, cfs_rq, false); 779 attach_entity_load_avg(cfs_rq, se); 780 update_tg_load_avg(cfs_rq, false); 781 } 782 783 #else /* !CONFIG_SMP */ 784 void init_entity_runnable_average(struct sched_entity *se) 785 { 786 } 787 void post_init_entity_util_avg(struct sched_entity *se) 788 { 789 } 790 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 791 { 792 } 793 #endif /* CONFIG_SMP */ 794 795 /* 796 * Update the current task's runtime statistics. 797 */ 798 static void update_curr(struct cfs_rq *cfs_rq) 799 { 800 struct sched_entity *curr = cfs_rq->curr; 801 u64 now = rq_clock_task(rq_of(cfs_rq)); 802 u64 delta_exec; 803 804 if (unlikely(!curr)) 805 return; 806 807 delta_exec = now - curr->exec_start; 808 if (unlikely((s64)delta_exec <= 0)) 809 return; 810 811 curr->exec_start = now; 812 813 schedstat_set(curr->statistics.exec_max, 814 max(delta_exec, curr->statistics.exec_max)); 815 816 curr->sum_exec_runtime += delta_exec; 817 schedstat_add(cfs_rq->exec_clock, delta_exec); 818 819 curr->vruntime += calc_delta_fair(delta_exec, curr); 820 update_min_vruntime(cfs_rq); 821 822 if (entity_is_task(curr)) { 823 struct task_struct *curtask = task_of(curr); 824 825 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 826 cpuacct_charge(curtask, delta_exec); 827 account_group_exec_runtime(curtask, delta_exec); 828 } 829 830 account_cfs_rq_runtime(cfs_rq, delta_exec); 831 } 832 833 static void update_curr_fair(struct rq *rq) 834 { 835 update_curr(cfs_rq_of(&rq->curr->se)); 836 } 837 838 static inline void 839 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 840 { 841 u64 wait_start, prev_wait_start; 842 843 if (!schedstat_enabled()) 844 return; 845 846 wait_start = rq_clock(rq_of(cfs_rq)); 847 prev_wait_start = schedstat_val(se->statistics.wait_start); 848 849 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 850 likely(wait_start > prev_wait_start)) 851 wait_start -= prev_wait_start; 852 853 schedstat_set(se->statistics.wait_start, wait_start); 854 } 855 856 static inline void 857 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 858 { 859 struct task_struct *p; 860 u64 delta; 861 862 if (!schedstat_enabled()) 863 return; 864 865 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 866 867 if (entity_is_task(se)) { 868 p = task_of(se); 869 if (task_on_rq_migrating(p)) { 870 /* 871 * Preserve migrating task's wait time so wait_start 872 * time stamp can be adjusted to accumulate wait time 873 * prior to migration. 874 */ 875 schedstat_set(se->statistics.wait_start, delta); 876 return; 877 } 878 trace_sched_stat_wait(p, delta); 879 } 880 881 schedstat_set(se->statistics.wait_max, 882 max(schedstat_val(se->statistics.wait_max), delta)); 883 schedstat_inc(se->statistics.wait_count); 884 schedstat_add(se->statistics.wait_sum, delta); 885 schedstat_set(se->statistics.wait_start, 0); 886 } 887 888 static inline void 889 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 890 { 891 struct task_struct *tsk = NULL; 892 u64 sleep_start, block_start; 893 894 if (!schedstat_enabled()) 895 return; 896 897 sleep_start = schedstat_val(se->statistics.sleep_start); 898 block_start = schedstat_val(se->statistics.block_start); 899 900 if (entity_is_task(se)) 901 tsk = task_of(se); 902 903 if (sleep_start) { 904 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 905 906 if ((s64)delta < 0) 907 delta = 0; 908 909 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 910 schedstat_set(se->statistics.sleep_max, delta); 911 912 schedstat_set(se->statistics.sleep_start, 0); 913 schedstat_add(se->statistics.sum_sleep_runtime, delta); 914 915 if (tsk) { 916 account_scheduler_latency(tsk, delta >> 10, 1); 917 trace_sched_stat_sleep(tsk, delta); 918 } 919 } 920 if (block_start) { 921 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 922 923 if ((s64)delta < 0) 924 delta = 0; 925 926 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 927 schedstat_set(se->statistics.block_max, delta); 928 929 schedstat_set(se->statistics.block_start, 0); 930 schedstat_add(se->statistics.sum_sleep_runtime, delta); 931 932 if (tsk) { 933 if (tsk->in_iowait) { 934 schedstat_add(se->statistics.iowait_sum, delta); 935 schedstat_inc(se->statistics.iowait_count); 936 trace_sched_stat_iowait(tsk, delta); 937 } 938 939 trace_sched_stat_blocked(tsk, delta); 940 941 /* 942 * Blocking time is in units of nanosecs, so shift by 943 * 20 to get a milliseconds-range estimation of the 944 * amount of time that the task spent sleeping: 945 */ 946 if (unlikely(prof_on == SLEEP_PROFILING)) { 947 profile_hits(SLEEP_PROFILING, 948 (void *)get_wchan(tsk), 949 delta >> 20); 950 } 951 account_scheduler_latency(tsk, delta >> 10, 0); 952 } 953 } 954 } 955 956 /* 957 * Task is being enqueued - update stats: 958 */ 959 static inline void 960 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 961 { 962 if (!schedstat_enabled()) 963 return; 964 965 /* 966 * Are we enqueueing a waiting task? (for current tasks 967 * a dequeue/enqueue event is a NOP) 968 */ 969 if (se != cfs_rq->curr) 970 update_stats_wait_start(cfs_rq, se); 971 972 if (flags & ENQUEUE_WAKEUP) 973 update_stats_enqueue_sleeper(cfs_rq, se); 974 } 975 976 static inline void 977 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 978 { 979 980 if (!schedstat_enabled()) 981 return; 982 983 /* 984 * Mark the end of the wait period if dequeueing a 985 * waiting task: 986 */ 987 if (se != cfs_rq->curr) 988 update_stats_wait_end(cfs_rq, se); 989 990 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 991 struct task_struct *tsk = task_of(se); 992 993 if (tsk->state & TASK_INTERRUPTIBLE) 994 schedstat_set(se->statistics.sleep_start, 995 rq_clock(rq_of(cfs_rq))); 996 if (tsk->state & TASK_UNINTERRUPTIBLE) 997 schedstat_set(se->statistics.block_start, 998 rq_clock(rq_of(cfs_rq))); 999 } 1000 } 1001 1002 /* 1003 * We are picking a new current task - update its stats: 1004 */ 1005 static inline void 1006 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1007 { 1008 /* 1009 * We are starting a new run period: 1010 */ 1011 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1012 } 1013 1014 /************************************************** 1015 * Scheduling class queueing methods: 1016 */ 1017 1018 #ifdef CONFIG_NUMA_BALANCING 1019 /* 1020 * Approximate time to scan a full NUMA task in ms. The task scan period is 1021 * calculated based on the tasks virtual memory size and 1022 * numa_balancing_scan_size. 1023 */ 1024 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1025 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1026 1027 /* Portion of address space to scan in MB */ 1028 unsigned int sysctl_numa_balancing_scan_size = 256; 1029 1030 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1031 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1032 1033 static unsigned int task_nr_scan_windows(struct task_struct *p) 1034 { 1035 unsigned long rss = 0; 1036 unsigned long nr_scan_pages; 1037 1038 /* 1039 * Calculations based on RSS as non-present and empty pages are skipped 1040 * by the PTE scanner and NUMA hinting faults should be trapped based 1041 * on resident pages 1042 */ 1043 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1044 rss = get_mm_rss(p->mm); 1045 if (!rss) 1046 rss = nr_scan_pages; 1047 1048 rss = round_up(rss, nr_scan_pages); 1049 return rss / nr_scan_pages; 1050 } 1051 1052 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1053 #define MAX_SCAN_WINDOW 2560 1054 1055 static unsigned int task_scan_min(struct task_struct *p) 1056 { 1057 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1058 unsigned int scan, floor; 1059 unsigned int windows = 1; 1060 1061 if (scan_size < MAX_SCAN_WINDOW) 1062 windows = MAX_SCAN_WINDOW / scan_size; 1063 floor = 1000 / windows; 1064 1065 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1066 return max_t(unsigned int, floor, scan); 1067 } 1068 1069 static unsigned int task_scan_max(struct task_struct *p) 1070 { 1071 unsigned int smin = task_scan_min(p); 1072 unsigned int smax; 1073 1074 /* Watch for min being lower than max due to floor calculations */ 1075 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1076 return max(smin, smax); 1077 } 1078 1079 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1080 { 1081 rq->nr_numa_running += (p->numa_preferred_nid != -1); 1082 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1083 } 1084 1085 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1086 { 1087 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 1088 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1089 } 1090 1091 struct numa_group { 1092 atomic_t refcount; 1093 1094 spinlock_t lock; /* nr_tasks, tasks */ 1095 int nr_tasks; 1096 pid_t gid; 1097 int active_nodes; 1098 1099 struct rcu_head rcu; 1100 unsigned long total_faults; 1101 unsigned long max_faults_cpu; 1102 /* 1103 * Faults_cpu is used to decide whether memory should move 1104 * towards the CPU. As a consequence, these stats are weighted 1105 * more by CPU use than by memory faults. 1106 */ 1107 unsigned long *faults_cpu; 1108 unsigned long faults[0]; 1109 }; 1110 1111 /* Shared or private faults. */ 1112 #define NR_NUMA_HINT_FAULT_TYPES 2 1113 1114 /* Memory and CPU locality */ 1115 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1116 1117 /* Averaged statistics, and temporary buffers. */ 1118 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1119 1120 pid_t task_numa_group_id(struct task_struct *p) 1121 { 1122 return p->numa_group ? p->numa_group->gid : 0; 1123 } 1124 1125 /* 1126 * The averaged statistics, shared & private, memory & cpu, 1127 * occupy the first half of the array. The second half of the 1128 * array is for current counters, which are averaged into the 1129 * first set by task_numa_placement. 1130 */ 1131 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1132 { 1133 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1134 } 1135 1136 static inline unsigned long task_faults(struct task_struct *p, int nid) 1137 { 1138 if (!p->numa_faults) 1139 return 0; 1140 1141 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1142 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1143 } 1144 1145 static inline unsigned long group_faults(struct task_struct *p, int nid) 1146 { 1147 if (!p->numa_group) 1148 return 0; 1149 1150 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1151 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1152 } 1153 1154 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1155 { 1156 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1157 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1158 } 1159 1160 /* 1161 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1162 * considered part of a numa group's pseudo-interleaving set. Migrations 1163 * between these nodes are slowed down, to allow things to settle down. 1164 */ 1165 #define ACTIVE_NODE_FRACTION 3 1166 1167 static bool numa_is_active_node(int nid, struct numa_group *ng) 1168 { 1169 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1170 } 1171 1172 /* Handle placement on systems where not all nodes are directly connected. */ 1173 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1174 int maxdist, bool task) 1175 { 1176 unsigned long score = 0; 1177 int node; 1178 1179 /* 1180 * All nodes are directly connected, and the same distance 1181 * from each other. No need for fancy placement algorithms. 1182 */ 1183 if (sched_numa_topology_type == NUMA_DIRECT) 1184 return 0; 1185 1186 /* 1187 * This code is called for each node, introducing N^2 complexity, 1188 * which should be ok given the number of nodes rarely exceeds 8. 1189 */ 1190 for_each_online_node(node) { 1191 unsigned long faults; 1192 int dist = node_distance(nid, node); 1193 1194 /* 1195 * The furthest away nodes in the system are not interesting 1196 * for placement; nid was already counted. 1197 */ 1198 if (dist == sched_max_numa_distance || node == nid) 1199 continue; 1200 1201 /* 1202 * On systems with a backplane NUMA topology, compare groups 1203 * of nodes, and move tasks towards the group with the most 1204 * memory accesses. When comparing two nodes at distance 1205 * "hoplimit", only nodes closer by than "hoplimit" are part 1206 * of each group. Skip other nodes. 1207 */ 1208 if (sched_numa_topology_type == NUMA_BACKPLANE && 1209 dist > maxdist) 1210 continue; 1211 1212 /* Add up the faults from nearby nodes. */ 1213 if (task) 1214 faults = task_faults(p, node); 1215 else 1216 faults = group_faults(p, node); 1217 1218 /* 1219 * On systems with a glueless mesh NUMA topology, there are 1220 * no fixed "groups of nodes". Instead, nodes that are not 1221 * directly connected bounce traffic through intermediate 1222 * nodes; a numa_group can occupy any set of nodes. 1223 * The further away a node is, the less the faults count. 1224 * This seems to result in good task placement. 1225 */ 1226 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1227 faults *= (sched_max_numa_distance - dist); 1228 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1229 } 1230 1231 score += faults; 1232 } 1233 1234 return score; 1235 } 1236 1237 /* 1238 * These return the fraction of accesses done by a particular task, or 1239 * task group, on a particular numa node. The group weight is given a 1240 * larger multiplier, in order to group tasks together that are almost 1241 * evenly spread out between numa nodes. 1242 */ 1243 static inline unsigned long task_weight(struct task_struct *p, int nid, 1244 int dist) 1245 { 1246 unsigned long faults, total_faults; 1247 1248 if (!p->numa_faults) 1249 return 0; 1250 1251 total_faults = p->total_numa_faults; 1252 1253 if (!total_faults) 1254 return 0; 1255 1256 faults = task_faults(p, nid); 1257 faults += score_nearby_nodes(p, nid, dist, true); 1258 1259 return 1000 * faults / total_faults; 1260 } 1261 1262 static inline unsigned long group_weight(struct task_struct *p, int nid, 1263 int dist) 1264 { 1265 unsigned long faults, total_faults; 1266 1267 if (!p->numa_group) 1268 return 0; 1269 1270 total_faults = p->numa_group->total_faults; 1271 1272 if (!total_faults) 1273 return 0; 1274 1275 faults = group_faults(p, nid); 1276 faults += score_nearby_nodes(p, nid, dist, false); 1277 1278 return 1000 * faults / total_faults; 1279 } 1280 1281 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1282 int src_nid, int dst_cpu) 1283 { 1284 struct numa_group *ng = p->numa_group; 1285 int dst_nid = cpu_to_node(dst_cpu); 1286 int last_cpupid, this_cpupid; 1287 1288 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1289 1290 /* 1291 * Multi-stage node selection is used in conjunction with a periodic 1292 * migration fault to build a temporal task<->page relation. By using 1293 * a two-stage filter we remove short/unlikely relations. 1294 * 1295 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1296 * a task's usage of a particular page (n_p) per total usage of this 1297 * page (n_t) (in a given time-span) to a probability. 1298 * 1299 * Our periodic faults will sample this probability and getting the 1300 * same result twice in a row, given these samples are fully 1301 * independent, is then given by P(n)^2, provided our sample period 1302 * is sufficiently short compared to the usage pattern. 1303 * 1304 * This quadric squishes small probabilities, making it less likely we 1305 * act on an unlikely task<->page relation. 1306 */ 1307 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1308 if (!cpupid_pid_unset(last_cpupid) && 1309 cpupid_to_nid(last_cpupid) != dst_nid) 1310 return false; 1311 1312 /* Always allow migrate on private faults */ 1313 if (cpupid_match_pid(p, last_cpupid)) 1314 return true; 1315 1316 /* A shared fault, but p->numa_group has not been set up yet. */ 1317 if (!ng) 1318 return true; 1319 1320 /* 1321 * Destination node is much more heavily used than the source 1322 * node? Allow migration. 1323 */ 1324 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1325 ACTIVE_NODE_FRACTION) 1326 return true; 1327 1328 /* 1329 * Distribute memory according to CPU & memory use on each node, 1330 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1331 * 1332 * faults_cpu(dst) 3 faults_cpu(src) 1333 * --------------- * - > --------------- 1334 * faults_mem(dst) 4 faults_mem(src) 1335 */ 1336 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1337 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1338 } 1339 1340 static unsigned long weighted_cpuload(const int cpu); 1341 static unsigned long source_load(int cpu, int type); 1342 static unsigned long target_load(int cpu, int type); 1343 static unsigned long capacity_of(int cpu); 1344 static long effective_load(struct task_group *tg, int cpu, long wl, long wg); 1345 1346 /* Cached statistics for all CPUs within a node */ 1347 struct numa_stats { 1348 unsigned long nr_running; 1349 unsigned long load; 1350 1351 /* Total compute capacity of CPUs on a node */ 1352 unsigned long compute_capacity; 1353 1354 /* Approximate capacity in terms of runnable tasks on a node */ 1355 unsigned long task_capacity; 1356 int has_free_capacity; 1357 }; 1358 1359 /* 1360 * XXX borrowed from update_sg_lb_stats 1361 */ 1362 static void update_numa_stats(struct numa_stats *ns, int nid) 1363 { 1364 int smt, cpu, cpus = 0; 1365 unsigned long capacity; 1366 1367 memset(ns, 0, sizeof(*ns)); 1368 for_each_cpu(cpu, cpumask_of_node(nid)) { 1369 struct rq *rq = cpu_rq(cpu); 1370 1371 ns->nr_running += rq->nr_running; 1372 ns->load += weighted_cpuload(cpu); 1373 ns->compute_capacity += capacity_of(cpu); 1374 1375 cpus++; 1376 } 1377 1378 /* 1379 * If we raced with hotplug and there are no CPUs left in our mask 1380 * the @ns structure is NULL'ed and task_numa_compare() will 1381 * not find this node attractive. 1382 * 1383 * We'll either bail at !has_free_capacity, or we'll detect a huge 1384 * imbalance and bail there. 1385 */ 1386 if (!cpus) 1387 return; 1388 1389 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1390 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1391 capacity = cpus / smt; /* cores */ 1392 1393 ns->task_capacity = min_t(unsigned, capacity, 1394 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1395 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1396 } 1397 1398 struct task_numa_env { 1399 struct task_struct *p; 1400 1401 int src_cpu, src_nid; 1402 int dst_cpu, dst_nid; 1403 1404 struct numa_stats src_stats, dst_stats; 1405 1406 int imbalance_pct; 1407 int dist; 1408 1409 struct task_struct *best_task; 1410 long best_imp; 1411 int best_cpu; 1412 }; 1413 1414 static void task_numa_assign(struct task_numa_env *env, 1415 struct task_struct *p, long imp) 1416 { 1417 if (env->best_task) 1418 put_task_struct(env->best_task); 1419 if (p) 1420 get_task_struct(p); 1421 1422 env->best_task = p; 1423 env->best_imp = imp; 1424 env->best_cpu = env->dst_cpu; 1425 } 1426 1427 static bool load_too_imbalanced(long src_load, long dst_load, 1428 struct task_numa_env *env) 1429 { 1430 long imb, old_imb; 1431 long orig_src_load, orig_dst_load; 1432 long src_capacity, dst_capacity; 1433 1434 /* 1435 * The load is corrected for the CPU capacity available on each node. 1436 * 1437 * src_load dst_load 1438 * ------------ vs --------- 1439 * src_capacity dst_capacity 1440 */ 1441 src_capacity = env->src_stats.compute_capacity; 1442 dst_capacity = env->dst_stats.compute_capacity; 1443 1444 /* We care about the slope of the imbalance, not the direction. */ 1445 if (dst_load < src_load) 1446 swap(dst_load, src_load); 1447 1448 /* Is the difference below the threshold? */ 1449 imb = dst_load * src_capacity * 100 - 1450 src_load * dst_capacity * env->imbalance_pct; 1451 if (imb <= 0) 1452 return false; 1453 1454 /* 1455 * The imbalance is above the allowed threshold. 1456 * Compare it with the old imbalance. 1457 */ 1458 orig_src_load = env->src_stats.load; 1459 orig_dst_load = env->dst_stats.load; 1460 1461 if (orig_dst_load < orig_src_load) 1462 swap(orig_dst_load, orig_src_load); 1463 1464 old_imb = orig_dst_load * src_capacity * 100 - 1465 orig_src_load * dst_capacity * env->imbalance_pct; 1466 1467 /* Would this change make things worse? */ 1468 return (imb > old_imb); 1469 } 1470 1471 /* 1472 * This checks if the overall compute and NUMA accesses of the system would 1473 * be improved if the source tasks was migrated to the target dst_cpu taking 1474 * into account that it might be best if task running on the dst_cpu should 1475 * be exchanged with the source task 1476 */ 1477 static void task_numa_compare(struct task_numa_env *env, 1478 long taskimp, long groupimp) 1479 { 1480 struct rq *src_rq = cpu_rq(env->src_cpu); 1481 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1482 struct task_struct *cur; 1483 long src_load, dst_load; 1484 long load; 1485 long imp = env->p->numa_group ? groupimp : taskimp; 1486 long moveimp = imp; 1487 int dist = env->dist; 1488 1489 rcu_read_lock(); 1490 cur = task_rcu_dereference(&dst_rq->curr); 1491 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1492 cur = NULL; 1493 1494 /* 1495 * Because we have preemption enabled we can get migrated around and 1496 * end try selecting ourselves (current == env->p) as a swap candidate. 1497 */ 1498 if (cur == env->p) 1499 goto unlock; 1500 1501 /* 1502 * "imp" is the fault differential for the source task between the 1503 * source and destination node. Calculate the total differential for 1504 * the source task and potential destination task. The more negative 1505 * the value is, the more rmeote accesses that would be expected to 1506 * be incurred if the tasks were swapped. 1507 */ 1508 if (cur) { 1509 /* Skip this swap candidate if cannot move to the source cpu */ 1510 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) 1511 goto unlock; 1512 1513 /* 1514 * If dst and source tasks are in the same NUMA group, or not 1515 * in any group then look only at task weights. 1516 */ 1517 if (cur->numa_group == env->p->numa_group) { 1518 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1519 task_weight(cur, env->dst_nid, dist); 1520 /* 1521 * Add some hysteresis to prevent swapping the 1522 * tasks within a group over tiny differences. 1523 */ 1524 if (cur->numa_group) 1525 imp -= imp/16; 1526 } else { 1527 /* 1528 * Compare the group weights. If a task is all by 1529 * itself (not part of a group), use the task weight 1530 * instead. 1531 */ 1532 if (cur->numa_group) 1533 imp += group_weight(cur, env->src_nid, dist) - 1534 group_weight(cur, env->dst_nid, dist); 1535 else 1536 imp += task_weight(cur, env->src_nid, dist) - 1537 task_weight(cur, env->dst_nid, dist); 1538 } 1539 } 1540 1541 if (imp <= env->best_imp && moveimp <= env->best_imp) 1542 goto unlock; 1543 1544 if (!cur) { 1545 /* Is there capacity at our destination? */ 1546 if (env->src_stats.nr_running <= env->src_stats.task_capacity && 1547 !env->dst_stats.has_free_capacity) 1548 goto unlock; 1549 1550 goto balance; 1551 } 1552 1553 /* Balance doesn't matter much if we're running a task per cpu */ 1554 if (imp > env->best_imp && src_rq->nr_running == 1 && 1555 dst_rq->nr_running == 1) 1556 goto assign; 1557 1558 /* 1559 * In the overloaded case, try and keep the load balanced. 1560 */ 1561 balance: 1562 load = task_h_load(env->p); 1563 dst_load = env->dst_stats.load + load; 1564 src_load = env->src_stats.load - load; 1565 1566 if (moveimp > imp && moveimp > env->best_imp) { 1567 /* 1568 * If the improvement from just moving env->p direction is 1569 * better than swapping tasks around, check if a move is 1570 * possible. Store a slightly smaller score than moveimp, 1571 * so an actually idle CPU will win. 1572 */ 1573 if (!load_too_imbalanced(src_load, dst_load, env)) { 1574 imp = moveimp - 1; 1575 cur = NULL; 1576 goto assign; 1577 } 1578 } 1579 1580 if (imp <= env->best_imp) 1581 goto unlock; 1582 1583 if (cur) { 1584 load = task_h_load(cur); 1585 dst_load -= load; 1586 src_load += load; 1587 } 1588 1589 if (load_too_imbalanced(src_load, dst_load, env)) 1590 goto unlock; 1591 1592 /* 1593 * One idle CPU per node is evaluated for a task numa move. 1594 * Call select_idle_sibling to maybe find a better one. 1595 */ 1596 if (!cur) { 1597 /* 1598 * select_idle_siblings() uses an per-cpu cpumask that 1599 * can be used from IRQ context. 1600 */ 1601 local_irq_disable(); 1602 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1603 env->dst_cpu); 1604 local_irq_enable(); 1605 } 1606 1607 assign: 1608 task_numa_assign(env, cur, imp); 1609 unlock: 1610 rcu_read_unlock(); 1611 } 1612 1613 static void task_numa_find_cpu(struct task_numa_env *env, 1614 long taskimp, long groupimp) 1615 { 1616 int cpu; 1617 1618 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1619 /* Skip this CPU if the source task cannot migrate */ 1620 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) 1621 continue; 1622 1623 env->dst_cpu = cpu; 1624 task_numa_compare(env, taskimp, groupimp); 1625 } 1626 } 1627 1628 /* Only move tasks to a NUMA node less busy than the current node. */ 1629 static bool numa_has_capacity(struct task_numa_env *env) 1630 { 1631 struct numa_stats *src = &env->src_stats; 1632 struct numa_stats *dst = &env->dst_stats; 1633 1634 if (src->has_free_capacity && !dst->has_free_capacity) 1635 return false; 1636 1637 /* 1638 * Only consider a task move if the source has a higher load 1639 * than the destination, corrected for CPU capacity on each node. 1640 * 1641 * src->load dst->load 1642 * --------------------- vs --------------------- 1643 * src->compute_capacity dst->compute_capacity 1644 */ 1645 if (src->load * dst->compute_capacity * env->imbalance_pct > 1646 1647 dst->load * src->compute_capacity * 100) 1648 return true; 1649 1650 return false; 1651 } 1652 1653 static int task_numa_migrate(struct task_struct *p) 1654 { 1655 struct task_numa_env env = { 1656 .p = p, 1657 1658 .src_cpu = task_cpu(p), 1659 .src_nid = task_node(p), 1660 1661 .imbalance_pct = 112, 1662 1663 .best_task = NULL, 1664 .best_imp = 0, 1665 .best_cpu = -1, 1666 }; 1667 struct sched_domain *sd; 1668 unsigned long taskweight, groupweight; 1669 int nid, ret, dist; 1670 long taskimp, groupimp; 1671 1672 /* 1673 * Pick the lowest SD_NUMA domain, as that would have the smallest 1674 * imbalance and would be the first to start moving tasks about. 1675 * 1676 * And we want to avoid any moving of tasks about, as that would create 1677 * random movement of tasks -- counter the numa conditions we're trying 1678 * to satisfy here. 1679 */ 1680 rcu_read_lock(); 1681 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1682 if (sd) 1683 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1684 rcu_read_unlock(); 1685 1686 /* 1687 * Cpusets can break the scheduler domain tree into smaller 1688 * balance domains, some of which do not cross NUMA boundaries. 1689 * Tasks that are "trapped" in such domains cannot be migrated 1690 * elsewhere, so there is no point in (re)trying. 1691 */ 1692 if (unlikely(!sd)) { 1693 p->numa_preferred_nid = task_node(p); 1694 return -EINVAL; 1695 } 1696 1697 env.dst_nid = p->numa_preferred_nid; 1698 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1699 taskweight = task_weight(p, env.src_nid, dist); 1700 groupweight = group_weight(p, env.src_nid, dist); 1701 update_numa_stats(&env.src_stats, env.src_nid); 1702 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1703 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1704 update_numa_stats(&env.dst_stats, env.dst_nid); 1705 1706 /* Try to find a spot on the preferred nid. */ 1707 if (numa_has_capacity(&env)) 1708 task_numa_find_cpu(&env, taskimp, groupimp); 1709 1710 /* 1711 * Look at other nodes in these cases: 1712 * - there is no space available on the preferred_nid 1713 * - the task is part of a numa_group that is interleaved across 1714 * multiple NUMA nodes; in order to better consolidate the group, 1715 * we need to check other locations. 1716 */ 1717 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1718 for_each_online_node(nid) { 1719 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1720 continue; 1721 1722 dist = node_distance(env.src_nid, env.dst_nid); 1723 if (sched_numa_topology_type == NUMA_BACKPLANE && 1724 dist != env.dist) { 1725 taskweight = task_weight(p, env.src_nid, dist); 1726 groupweight = group_weight(p, env.src_nid, dist); 1727 } 1728 1729 /* Only consider nodes where both task and groups benefit */ 1730 taskimp = task_weight(p, nid, dist) - taskweight; 1731 groupimp = group_weight(p, nid, dist) - groupweight; 1732 if (taskimp < 0 && groupimp < 0) 1733 continue; 1734 1735 env.dist = dist; 1736 env.dst_nid = nid; 1737 update_numa_stats(&env.dst_stats, env.dst_nid); 1738 if (numa_has_capacity(&env)) 1739 task_numa_find_cpu(&env, taskimp, groupimp); 1740 } 1741 } 1742 1743 /* 1744 * If the task is part of a workload that spans multiple NUMA nodes, 1745 * and is migrating into one of the workload's active nodes, remember 1746 * this node as the task's preferred numa node, so the workload can 1747 * settle down. 1748 * A task that migrated to a second choice node will be better off 1749 * trying for a better one later. Do not set the preferred node here. 1750 */ 1751 if (p->numa_group) { 1752 struct numa_group *ng = p->numa_group; 1753 1754 if (env.best_cpu == -1) 1755 nid = env.src_nid; 1756 else 1757 nid = env.dst_nid; 1758 1759 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng)) 1760 sched_setnuma(p, env.dst_nid); 1761 } 1762 1763 /* No better CPU than the current one was found. */ 1764 if (env.best_cpu == -1) 1765 return -EAGAIN; 1766 1767 /* 1768 * Reset the scan period if the task is being rescheduled on an 1769 * alternative node to recheck if the tasks is now properly placed. 1770 */ 1771 p->numa_scan_period = task_scan_min(p); 1772 1773 if (env.best_task == NULL) { 1774 ret = migrate_task_to(p, env.best_cpu); 1775 if (ret != 0) 1776 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1777 return ret; 1778 } 1779 1780 ret = migrate_swap(p, env.best_task); 1781 if (ret != 0) 1782 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1783 put_task_struct(env.best_task); 1784 return ret; 1785 } 1786 1787 /* Attempt to migrate a task to a CPU on the preferred node. */ 1788 static void numa_migrate_preferred(struct task_struct *p) 1789 { 1790 unsigned long interval = HZ; 1791 1792 /* This task has no NUMA fault statistics yet */ 1793 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1794 return; 1795 1796 /* Periodically retry migrating the task to the preferred node */ 1797 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1798 p->numa_migrate_retry = jiffies + interval; 1799 1800 /* Success if task is already running on preferred CPU */ 1801 if (task_node(p) == p->numa_preferred_nid) 1802 return; 1803 1804 /* Otherwise, try migrate to a CPU on the preferred node */ 1805 task_numa_migrate(p); 1806 } 1807 1808 /* 1809 * Find out how many nodes on the workload is actively running on. Do this by 1810 * tracking the nodes from which NUMA hinting faults are triggered. This can 1811 * be different from the set of nodes where the workload's memory is currently 1812 * located. 1813 */ 1814 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1815 { 1816 unsigned long faults, max_faults = 0; 1817 int nid, active_nodes = 0; 1818 1819 for_each_online_node(nid) { 1820 faults = group_faults_cpu(numa_group, nid); 1821 if (faults > max_faults) 1822 max_faults = faults; 1823 } 1824 1825 for_each_online_node(nid) { 1826 faults = group_faults_cpu(numa_group, nid); 1827 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1828 active_nodes++; 1829 } 1830 1831 numa_group->max_faults_cpu = max_faults; 1832 numa_group->active_nodes = active_nodes; 1833 } 1834 1835 /* 1836 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1837 * increments. The more local the fault statistics are, the higher the scan 1838 * period will be for the next scan window. If local/(local+remote) ratio is 1839 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1840 * the scan period will decrease. Aim for 70% local accesses. 1841 */ 1842 #define NUMA_PERIOD_SLOTS 10 1843 #define NUMA_PERIOD_THRESHOLD 7 1844 1845 /* 1846 * Increase the scan period (slow down scanning) if the majority of 1847 * our memory is already on our local node, or if the majority of 1848 * the page accesses are shared with other processes. 1849 * Otherwise, decrease the scan period. 1850 */ 1851 static void update_task_scan_period(struct task_struct *p, 1852 unsigned long shared, unsigned long private) 1853 { 1854 unsigned int period_slot; 1855 int ratio; 1856 int diff; 1857 1858 unsigned long remote = p->numa_faults_locality[0]; 1859 unsigned long local = p->numa_faults_locality[1]; 1860 1861 /* 1862 * If there were no record hinting faults then either the task is 1863 * completely idle or all activity is areas that are not of interest 1864 * to automatic numa balancing. Related to that, if there were failed 1865 * migration then it implies we are migrating too quickly or the local 1866 * node is overloaded. In either case, scan slower 1867 */ 1868 if (local + shared == 0 || p->numa_faults_locality[2]) { 1869 p->numa_scan_period = min(p->numa_scan_period_max, 1870 p->numa_scan_period << 1); 1871 1872 p->mm->numa_next_scan = jiffies + 1873 msecs_to_jiffies(p->numa_scan_period); 1874 1875 return; 1876 } 1877 1878 /* 1879 * Prepare to scale scan period relative to the current period. 1880 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1881 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1882 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1883 */ 1884 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1885 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1886 if (ratio >= NUMA_PERIOD_THRESHOLD) { 1887 int slot = ratio - NUMA_PERIOD_THRESHOLD; 1888 if (!slot) 1889 slot = 1; 1890 diff = slot * period_slot; 1891 } else { 1892 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1893 1894 /* 1895 * Scale scan rate increases based on sharing. There is an 1896 * inverse relationship between the degree of sharing and 1897 * the adjustment made to the scanning period. Broadly 1898 * speaking the intent is that there is little point 1899 * scanning faster if shared accesses dominate as it may 1900 * simply bounce migrations uselessly 1901 */ 1902 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1)); 1903 diff = (diff * ratio) / NUMA_PERIOD_SLOTS; 1904 } 1905 1906 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1907 task_scan_min(p), task_scan_max(p)); 1908 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1909 } 1910 1911 /* 1912 * Get the fraction of time the task has been running since the last 1913 * NUMA placement cycle. The scheduler keeps similar statistics, but 1914 * decays those on a 32ms period, which is orders of magnitude off 1915 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1916 * stats only if the task is so new there are no NUMA statistics yet. 1917 */ 1918 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 1919 { 1920 u64 runtime, delta, now; 1921 /* Use the start of this time slice to avoid calculations. */ 1922 now = p->se.exec_start; 1923 runtime = p->se.sum_exec_runtime; 1924 1925 if (p->last_task_numa_placement) { 1926 delta = runtime - p->last_sum_exec_runtime; 1927 *period = now - p->last_task_numa_placement; 1928 } else { 1929 delta = p->se.avg.load_sum / p->se.load.weight; 1930 *period = LOAD_AVG_MAX; 1931 } 1932 1933 p->last_sum_exec_runtime = runtime; 1934 p->last_task_numa_placement = now; 1935 1936 return delta; 1937 } 1938 1939 /* 1940 * Determine the preferred nid for a task in a numa_group. This needs to 1941 * be done in a way that produces consistent results with group_weight, 1942 * otherwise workloads might not converge. 1943 */ 1944 static int preferred_group_nid(struct task_struct *p, int nid) 1945 { 1946 nodemask_t nodes; 1947 int dist; 1948 1949 /* Direct connections between all NUMA nodes. */ 1950 if (sched_numa_topology_type == NUMA_DIRECT) 1951 return nid; 1952 1953 /* 1954 * On a system with glueless mesh NUMA topology, group_weight 1955 * scores nodes according to the number of NUMA hinting faults on 1956 * both the node itself, and on nearby nodes. 1957 */ 1958 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1959 unsigned long score, max_score = 0; 1960 int node, max_node = nid; 1961 1962 dist = sched_max_numa_distance; 1963 1964 for_each_online_node(node) { 1965 score = group_weight(p, node, dist); 1966 if (score > max_score) { 1967 max_score = score; 1968 max_node = node; 1969 } 1970 } 1971 return max_node; 1972 } 1973 1974 /* 1975 * Finding the preferred nid in a system with NUMA backplane 1976 * interconnect topology is more involved. The goal is to locate 1977 * tasks from numa_groups near each other in the system, and 1978 * untangle workloads from different sides of the system. This requires 1979 * searching down the hierarchy of node groups, recursively searching 1980 * inside the highest scoring group of nodes. The nodemask tricks 1981 * keep the complexity of the search down. 1982 */ 1983 nodes = node_online_map; 1984 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 1985 unsigned long max_faults = 0; 1986 nodemask_t max_group = NODE_MASK_NONE; 1987 int a, b; 1988 1989 /* Are there nodes at this distance from each other? */ 1990 if (!find_numa_distance(dist)) 1991 continue; 1992 1993 for_each_node_mask(a, nodes) { 1994 unsigned long faults = 0; 1995 nodemask_t this_group; 1996 nodes_clear(this_group); 1997 1998 /* Sum group's NUMA faults; includes a==b case. */ 1999 for_each_node_mask(b, nodes) { 2000 if (node_distance(a, b) < dist) { 2001 faults += group_faults(p, b); 2002 node_set(b, this_group); 2003 node_clear(b, nodes); 2004 } 2005 } 2006 2007 /* Remember the top group. */ 2008 if (faults > max_faults) { 2009 max_faults = faults; 2010 max_group = this_group; 2011 /* 2012 * subtle: at the smallest distance there is 2013 * just one node left in each "group", the 2014 * winner is the preferred nid. 2015 */ 2016 nid = a; 2017 } 2018 } 2019 /* Next round, evaluate the nodes within max_group. */ 2020 if (!max_faults) 2021 break; 2022 nodes = max_group; 2023 } 2024 return nid; 2025 } 2026 2027 static void task_numa_placement(struct task_struct *p) 2028 { 2029 int seq, nid, max_nid = -1, max_group_nid = -1; 2030 unsigned long max_faults = 0, max_group_faults = 0; 2031 unsigned long fault_types[2] = { 0, 0 }; 2032 unsigned long total_faults; 2033 u64 runtime, period; 2034 spinlock_t *group_lock = NULL; 2035 2036 /* 2037 * The p->mm->numa_scan_seq field gets updated without 2038 * exclusive access. Use READ_ONCE() here to ensure 2039 * that the field is read in a single access: 2040 */ 2041 seq = READ_ONCE(p->mm->numa_scan_seq); 2042 if (p->numa_scan_seq == seq) 2043 return; 2044 p->numa_scan_seq = seq; 2045 p->numa_scan_period_max = task_scan_max(p); 2046 2047 total_faults = p->numa_faults_locality[0] + 2048 p->numa_faults_locality[1]; 2049 runtime = numa_get_avg_runtime(p, &period); 2050 2051 /* If the task is part of a group prevent parallel updates to group stats */ 2052 if (p->numa_group) { 2053 group_lock = &p->numa_group->lock; 2054 spin_lock_irq(group_lock); 2055 } 2056 2057 /* Find the node with the highest number of faults */ 2058 for_each_online_node(nid) { 2059 /* Keep track of the offsets in numa_faults array */ 2060 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2061 unsigned long faults = 0, group_faults = 0; 2062 int priv; 2063 2064 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2065 long diff, f_diff, f_weight; 2066 2067 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2068 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2069 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2070 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2071 2072 /* Decay existing window, copy faults since last scan */ 2073 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2074 fault_types[priv] += p->numa_faults[membuf_idx]; 2075 p->numa_faults[membuf_idx] = 0; 2076 2077 /* 2078 * Normalize the faults_from, so all tasks in a group 2079 * count according to CPU use, instead of by the raw 2080 * number of faults. Tasks with little runtime have 2081 * little over-all impact on throughput, and thus their 2082 * faults are less important. 2083 */ 2084 f_weight = div64_u64(runtime << 16, period + 1); 2085 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2086 (total_faults + 1); 2087 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2088 p->numa_faults[cpubuf_idx] = 0; 2089 2090 p->numa_faults[mem_idx] += diff; 2091 p->numa_faults[cpu_idx] += f_diff; 2092 faults += p->numa_faults[mem_idx]; 2093 p->total_numa_faults += diff; 2094 if (p->numa_group) { 2095 /* 2096 * safe because we can only change our own group 2097 * 2098 * mem_idx represents the offset for a given 2099 * nid and priv in a specific region because it 2100 * is at the beginning of the numa_faults array. 2101 */ 2102 p->numa_group->faults[mem_idx] += diff; 2103 p->numa_group->faults_cpu[mem_idx] += f_diff; 2104 p->numa_group->total_faults += diff; 2105 group_faults += p->numa_group->faults[mem_idx]; 2106 } 2107 } 2108 2109 if (faults > max_faults) { 2110 max_faults = faults; 2111 max_nid = nid; 2112 } 2113 2114 if (group_faults > max_group_faults) { 2115 max_group_faults = group_faults; 2116 max_group_nid = nid; 2117 } 2118 } 2119 2120 update_task_scan_period(p, fault_types[0], fault_types[1]); 2121 2122 if (p->numa_group) { 2123 numa_group_count_active_nodes(p->numa_group); 2124 spin_unlock_irq(group_lock); 2125 max_nid = preferred_group_nid(p, max_group_nid); 2126 } 2127 2128 if (max_faults) { 2129 /* Set the new preferred node */ 2130 if (max_nid != p->numa_preferred_nid) 2131 sched_setnuma(p, max_nid); 2132 2133 if (task_node(p) != p->numa_preferred_nid) 2134 numa_migrate_preferred(p); 2135 } 2136 } 2137 2138 static inline int get_numa_group(struct numa_group *grp) 2139 { 2140 return atomic_inc_not_zero(&grp->refcount); 2141 } 2142 2143 static inline void put_numa_group(struct numa_group *grp) 2144 { 2145 if (atomic_dec_and_test(&grp->refcount)) 2146 kfree_rcu(grp, rcu); 2147 } 2148 2149 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2150 int *priv) 2151 { 2152 struct numa_group *grp, *my_grp; 2153 struct task_struct *tsk; 2154 bool join = false; 2155 int cpu = cpupid_to_cpu(cpupid); 2156 int i; 2157 2158 if (unlikely(!p->numa_group)) { 2159 unsigned int size = sizeof(struct numa_group) + 2160 4*nr_node_ids*sizeof(unsigned long); 2161 2162 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2163 if (!grp) 2164 return; 2165 2166 atomic_set(&grp->refcount, 1); 2167 grp->active_nodes = 1; 2168 grp->max_faults_cpu = 0; 2169 spin_lock_init(&grp->lock); 2170 grp->gid = p->pid; 2171 /* Second half of the array tracks nids where faults happen */ 2172 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2173 nr_node_ids; 2174 2175 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2176 grp->faults[i] = p->numa_faults[i]; 2177 2178 grp->total_faults = p->total_numa_faults; 2179 2180 grp->nr_tasks++; 2181 rcu_assign_pointer(p->numa_group, grp); 2182 } 2183 2184 rcu_read_lock(); 2185 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2186 2187 if (!cpupid_match_pid(tsk, cpupid)) 2188 goto no_join; 2189 2190 grp = rcu_dereference(tsk->numa_group); 2191 if (!grp) 2192 goto no_join; 2193 2194 my_grp = p->numa_group; 2195 if (grp == my_grp) 2196 goto no_join; 2197 2198 /* 2199 * Only join the other group if its bigger; if we're the bigger group, 2200 * the other task will join us. 2201 */ 2202 if (my_grp->nr_tasks > grp->nr_tasks) 2203 goto no_join; 2204 2205 /* 2206 * Tie-break on the grp address. 2207 */ 2208 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2209 goto no_join; 2210 2211 /* Always join threads in the same process. */ 2212 if (tsk->mm == current->mm) 2213 join = true; 2214 2215 /* Simple filter to avoid false positives due to PID collisions */ 2216 if (flags & TNF_SHARED) 2217 join = true; 2218 2219 /* Update priv based on whether false sharing was detected */ 2220 *priv = !join; 2221 2222 if (join && !get_numa_group(grp)) 2223 goto no_join; 2224 2225 rcu_read_unlock(); 2226 2227 if (!join) 2228 return; 2229 2230 BUG_ON(irqs_disabled()); 2231 double_lock_irq(&my_grp->lock, &grp->lock); 2232 2233 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2234 my_grp->faults[i] -= p->numa_faults[i]; 2235 grp->faults[i] += p->numa_faults[i]; 2236 } 2237 my_grp->total_faults -= p->total_numa_faults; 2238 grp->total_faults += p->total_numa_faults; 2239 2240 my_grp->nr_tasks--; 2241 grp->nr_tasks++; 2242 2243 spin_unlock(&my_grp->lock); 2244 spin_unlock_irq(&grp->lock); 2245 2246 rcu_assign_pointer(p->numa_group, grp); 2247 2248 put_numa_group(my_grp); 2249 return; 2250 2251 no_join: 2252 rcu_read_unlock(); 2253 return; 2254 } 2255 2256 void task_numa_free(struct task_struct *p) 2257 { 2258 struct numa_group *grp = p->numa_group; 2259 void *numa_faults = p->numa_faults; 2260 unsigned long flags; 2261 int i; 2262 2263 if (grp) { 2264 spin_lock_irqsave(&grp->lock, flags); 2265 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2266 grp->faults[i] -= p->numa_faults[i]; 2267 grp->total_faults -= p->total_numa_faults; 2268 2269 grp->nr_tasks--; 2270 spin_unlock_irqrestore(&grp->lock, flags); 2271 RCU_INIT_POINTER(p->numa_group, NULL); 2272 put_numa_group(grp); 2273 } 2274 2275 p->numa_faults = NULL; 2276 kfree(numa_faults); 2277 } 2278 2279 /* 2280 * Got a PROT_NONE fault for a page on @node. 2281 */ 2282 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2283 { 2284 struct task_struct *p = current; 2285 bool migrated = flags & TNF_MIGRATED; 2286 int cpu_node = task_node(current); 2287 int local = !!(flags & TNF_FAULT_LOCAL); 2288 struct numa_group *ng; 2289 int priv; 2290 2291 if (!static_branch_likely(&sched_numa_balancing)) 2292 return; 2293 2294 /* for example, ksmd faulting in a user's mm */ 2295 if (!p->mm) 2296 return; 2297 2298 /* Allocate buffer to track faults on a per-node basis */ 2299 if (unlikely(!p->numa_faults)) { 2300 int size = sizeof(*p->numa_faults) * 2301 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2302 2303 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2304 if (!p->numa_faults) 2305 return; 2306 2307 p->total_numa_faults = 0; 2308 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2309 } 2310 2311 /* 2312 * First accesses are treated as private, otherwise consider accesses 2313 * to be private if the accessing pid has not changed 2314 */ 2315 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2316 priv = 1; 2317 } else { 2318 priv = cpupid_match_pid(p, last_cpupid); 2319 if (!priv && !(flags & TNF_NO_GROUP)) 2320 task_numa_group(p, last_cpupid, flags, &priv); 2321 } 2322 2323 /* 2324 * If a workload spans multiple NUMA nodes, a shared fault that 2325 * occurs wholly within the set of nodes that the workload is 2326 * actively using should be counted as local. This allows the 2327 * scan rate to slow down when a workload has settled down. 2328 */ 2329 ng = p->numa_group; 2330 if (!priv && !local && ng && ng->active_nodes > 1 && 2331 numa_is_active_node(cpu_node, ng) && 2332 numa_is_active_node(mem_node, ng)) 2333 local = 1; 2334 2335 task_numa_placement(p); 2336 2337 /* 2338 * Retry task to preferred node migration periodically, in case it 2339 * case it previously failed, or the scheduler moved us. 2340 */ 2341 if (time_after(jiffies, p->numa_migrate_retry)) 2342 numa_migrate_preferred(p); 2343 2344 if (migrated) 2345 p->numa_pages_migrated += pages; 2346 if (flags & TNF_MIGRATE_FAIL) 2347 p->numa_faults_locality[2] += pages; 2348 2349 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2350 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2351 p->numa_faults_locality[local] += pages; 2352 } 2353 2354 static void reset_ptenuma_scan(struct task_struct *p) 2355 { 2356 /* 2357 * We only did a read acquisition of the mmap sem, so 2358 * p->mm->numa_scan_seq is written to without exclusive access 2359 * and the update is not guaranteed to be atomic. That's not 2360 * much of an issue though, since this is just used for 2361 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2362 * expensive, to avoid any form of compiler optimizations: 2363 */ 2364 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2365 p->mm->numa_scan_offset = 0; 2366 } 2367 2368 /* 2369 * The expensive part of numa migration is done from task_work context. 2370 * Triggered from task_tick_numa(). 2371 */ 2372 void task_numa_work(struct callback_head *work) 2373 { 2374 unsigned long migrate, next_scan, now = jiffies; 2375 struct task_struct *p = current; 2376 struct mm_struct *mm = p->mm; 2377 u64 runtime = p->se.sum_exec_runtime; 2378 struct vm_area_struct *vma; 2379 unsigned long start, end; 2380 unsigned long nr_pte_updates = 0; 2381 long pages, virtpages; 2382 2383 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2384 2385 work->next = work; /* protect against double add */ 2386 /* 2387 * Who cares about NUMA placement when they're dying. 2388 * 2389 * NOTE: make sure not to dereference p->mm before this check, 2390 * exit_task_work() happens _after_ exit_mm() so we could be called 2391 * without p->mm even though we still had it when we enqueued this 2392 * work. 2393 */ 2394 if (p->flags & PF_EXITING) 2395 return; 2396 2397 if (!mm->numa_next_scan) { 2398 mm->numa_next_scan = now + 2399 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2400 } 2401 2402 /* 2403 * Enforce maximal scan/migration frequency.. 2404 */ 2405 migrate = mm->numa_next_scan; 2406 if (time_before(now, migrate)) 2407 return; 2408 2409 if (p->numa_scan_period == 0) { 2410 p->numa_scan_period_max = task_scan_max(p); 2411 p->numa_scan_period = task_scan_min(p); 2412 } 2413 2414 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2415 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2416 return; 2417 2418 /* 2419 * Delay this task enough that another task of this mm will likely win 2420 * the next time around. 2421 */ 2422 p->node_stamp += 2 * TICK_NSEC; 2423 2424 start = mm->numa_scan_offset; 2425 pages = sysctl_numa_balancing_scan_size; 2426 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2427 virtpages = pages * 8; /* Scan up to this much virtual space */ 2428 if (!pages) 2429 return; 2430 2431 2432 down_read(&mm->mmap_sem); 2433 vma = find_vma(mm, start); 2434 if (!vma) { 2435 reset_ptenuma_scan(p); 2436 start = 0; 2437 vma = mm->mmap; 2438 } 2439 for (; vma; vma = vma->vm_next) { 2440 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2441 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2442 continue; 2443 } 2444 2445 /* 2446 * Shared library pages mapped by multiple processes are not 2447 * migrated as it is expected they are cache replicated. Avoid 2448 * hinting faults in read-only file-backed mappings or the vdso 2449 * as migrating the pages will be of marginal benefit. 2450 */ 2451 if (!vma->vm_mm || 2452 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2453 continue; 2454 2455 /* 2456 * Skip inaccessible VMAs to avoid any confusion between 2457 * PROT_NONE and NUMA hinting ptes 2458 */ 2459 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2460 continue; 2461 2462 do { 2463 start = max(start, vma->vm_start); 2464 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2465 end = min(end, vma->vm_end); 2466 nr_pte_updates = change_prot_numa(vma, start, end); 2467 2468 /* 2469 * Try to scan sysctl_numa_balancing_size worth of 2470 * hpages that have at least one present PTE that 2471 * is not already pte-numa. If the VMA contains 2472 * areas that are unused or already full of prot_numa 2473 * PTEs, scan up to virtpages, to skip through those 2474 * areas faster. 2475 */ 2476 if (nr_pte_updates) 2477 pages -= (end - start) >> PAGE_SHIFT; 2478 virtpages -= (end - start) >> PAGE_SHIFT; 2479 2480 start = end; 2481 if (pages <= 0 || virtpages <= 0) 2482 goto out; 2483 2484 cond_resched(); 2485 } while (end != vma->vm_end); 2486 } 2487 2488 out: 2489 /* 2490 * It is possible to reach the end of the VMA list but the last few 2491 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2492 * would find the !migratable VMA on the next scan but not reset the 2493 * scanner to the start so check it now. 2494 */ 2495 if (vma) 2496 mm->numa_scan_offset = start; 2497 else 2498 reset_ptenuma_scan(p); 2499 up_read(&mm->mmap_sem); 2500 2501 /* 2502 * Make sure tasks use at least 32x as much time to run other code 2503 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2504 * Usually update_task_scan_period slows down scanning enough; on an 2505 * overloaded system we need to limit overhead on a per task basis. 2506 */ 2507 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2508 u64 diff = p->se.sum_exec_runtime - runtime; 2509 p->node_stamp += 32 * diff; 2510 } 2511 } 2512 2513 /* 2514 * Drive the periodic memory faults.. 2515 */ 2516 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2517 { 2518 struct callback_head *work = &curr->numa_work; 2519 u64 period, now; 2520 2521 /* 2522 * We don't care about NUMA placement if we don't have memory. 2523 */ 2524 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2525 return; 2526 2527 /* 2528 * Using runtime rather than walltime has the dual advantage that 2529 * we (mostly) drive the selection from busy threads and that the 2530 * task needs to have done some actual work before we bother with 2531 * NUMA placement. 2532 */ 2533 now = curr->se.sum_exec_runtime; 2534 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2535 2536 if (now > curr->node_stamp + period) { 2537 if (!curr->node_stamp) 2538 curr->numa_scan_period = task_scan_min(curr); 2539 curr->node_stamp += period; 2540 2541 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2542 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2543 task_work_add(curr, work, true); 2544 } 2545 } 2546 } 2547 #else 2548 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2549 { 2550 } 2551 2552 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2553 { 2554 } 2555 2556 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2557 { 2558 } 2559 #endif /* CONFIG_NUMA_BALANCING */ 2560 2561 static void 2562 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2563 { 2564 update_load_add(&cfs_rq->load, se->load.weight); 2565 if (!parent_entity(se)) 2566 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2567 #ifdef CONFIG_SMP 2568 if (entity_is_task(se)) { 2569 struct rq *rq = rq_of(cfs_rq); 2570 2571 account_numa_enqueue(rq, task_of(se)); 2572 list_add(&se->group_node, &rq->cfs_tasks); 2573 } 2574 #endif 2575 cfs_rq->nr_running++; 2576 } 2577 2578 static void 2579 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2580 { 2581 update_load_sub(&cfs_rq->load, se->load.weight); 2582 if (!parent_entity(se)) 2583 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2584 #ifdef CONFIG_SMP 2585 if (entity_is_task(se)) { 2586 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2587 list_del_init(&se->group_node); 2588 } 2589 #endif 2590 cfs_rq->nr_running--; 2591 } 2592 2593 #ifdef CONFIG_FAIR_GROUP_SCHED 2594 # ifdef CONFIG_SMP 2595 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2596 { 2597 long tg_weight, load, shares; 2598 2599 /* 2600 * This really should be: cfs_rq->avg.load_avg, but instead we use 2601 * cfs_rq->load.weight, which is its upper bound. This helps ramp up 2602 * the shares for small weight interactive tasks. 2603 */ 2604 load = scale_load_down(cfs_rq->load.weight); 2605 2606 tg_weight = atomic_long_read(&tg->load_avg); 2607 2608 /* Ensure tg_weight >= load */ 2609 tg_weight -= cfs_rq->tg_load_avg_contrib; 2610 tg_weight += load; 2611 2612 shares = (tg->shares * load); 2613 if (tg_weight) 2614 shares /= tg_weight; 2615 2616 if (shares < MIN_SHARES) 2617 shares = MIN_SHARES; 2618 if (shares > tg->shares) 2619 shares = tg->shares; 2620 2621 return shares; 2622 } 2623 # else /* CONFIG_SMP */ 2624 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2625 { 2626 return tg->shares; 2627 } 2628 # endif /* CONFIG_SMP */ 2629 2630 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2631 unsigned long weight) 2632 { 2633 if (se->on_rq) { 2634 /* commit outstanding execution time */ 2635 if (cfs_rq->curr == se) 2636 update_curr(cfs_rq); 2637 account_entity_dequeue(cfs_rq, se); 2638 } 2639 2640 update_load_set(&se->load, weight); 2641 2642 if (se->on_rq) 2643 account_entity_enqueue(cfs_rq, se); 2644 } 2645 2646 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2647 2648 static void update_cfs_shares(struct cfs_rq *cfs_rq) 2649 { 2650 struct task_group *tg; 2651 struct sched_entity *se; 2652 long shares; 2653 2654 tg = cfs_rq->tg; 2655 se = tg->se[cpu_of(rq_of(cfs_rq))]; 2656 if (!se || throttled_hierarchy(cfs_rq)) 2657 return; 2658 #ifndef CONFIG_SMP 2659 if (likely(se->load.weight == tg->shares)) 2660 return; 2661 #endif 2662 shares = calc_cfs_shares(cfs_rq, tg); 2663 2664 reweight_entity(cfs_rq_of(se), se, shares); 2665 } 2666 #else /* CONFIG_FAIR_GROUP_SCHED */ 2667 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 2668 { 2669 } 2670 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2671 2672 #ifdef CONFIG_SMP 2673 /* Precomputed fixed inverse multiplies for multiplication by y^n */ 2674 static const u32 runnable_avg_yN_inv[] = { 2675 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 2676 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 2677 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 2678 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 2679 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 2680 0x85aac367, 0x82cd8698, 2681 }; 2682 2683 /* 2684 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 2685 * over-estimates when re-combining. 2686 */ 2687 static const u32 runnable_avg_yN_sum[] = { 2688 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 2689 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 2690 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 2691 }; 2692 2693 /* 2694 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to 2695 * lower integers. See Documentation/scheduler/sched-avg.txt how these 2696 * were generated: 2697 */ 2698 static const u32 __accumulated_sum_N32[] = { 2699 0, 23371, 35056, 40899, 43820, 45281, 2700 46011, 46376, 46559, 46650, 46696, 46719, 2701 }; 2702 2703 /* 2704 * Approximate: 2705 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 2706 */ 2707 static __always_inline u64 decay_load(u64 val, u64 n) 2708 { 2709 unsigned int local_n; 2710 2711 if (!n) 2712 return val; 2713 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 2714 return 0; 2715 2716 /* after bounds checking we can collapse to 32-bit */ 2717 local_n = n; 2718 2719 /* 2720 * As y^PERIOD = 1/2, we can combine 2721 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 2722 * With a look-up table which covers y^n (n<PERIOD) 2723 * 2724 * To achieve constant time decay_load. 2725 */ 2726 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 2727 val >>= local_n / LOAD_AVG_PERIOD; 2728 local_n %= LOAD_AVG_PERIOD; 2729 } 2730 2731 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 2732 return val; 2733 } 2734 2735 /* 2736 * For updates fully spanning n periods, the contribution to runnable 2737 * average will be: \Sum 1024*y^n 2738 * 2739 * We can compute this reasonably efficiently by combining: 2740 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 2741 */ 2742 static u32 __compute_runnable_contrib(u64 n) 2743 { 2744 u32 contrib = 0; 2745 2746 if (likely(n <= LOAD_AVG_PERIOD)) 2747 return runnable_avg_yN_sum[n]; 2748 else if (unlikely(n >= LOAD_AVG_MAX_N)) 2749 return LOAD_AVG_MAX; 2750 2751 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */ 2752 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD]; 2753 n %= LOAD_AVG_PERIOD; 2754 contrib = decay_load(contrib, n); 2755 return contrib + runnable_avg_yN_sum[n]; 2756 } 2757 2758 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 2759 2760 /* 2761 * We can represent the historical contribution to runnable average as the 2762 * coefficients of a geometric series. To do this we sub-divide our runnable 2763 * history into segments of approximately 1ms (1024us); label the segment that 2764 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 2765 * 2766 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 2767 * p0 p1 p2 2768 * (now) (~1ms ago) (~2ms ago) 2769 * 2770 * Let u_i denote the fraction of p_i that the entity was runnable. 2771 * 2772 * We then designate the fractions u_i as our co-efficients, yielding the 2773 * following representation of historical load: 2774 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 2775 * 2776 * We choose y based on the with of a reasonably scheduling period, fixing: 2777 * y^32 = 0.5 2778 * 2779 * This means that the contribution to load ~32ms ago (u_32) will be weighted 2780 * approximately half as much as the contribution to load within the last ms 2781 * (u_0). 2782 * 2783 * When a period "rolls over" and we have new u_0`, multiplying the previous 2784 * sum again by y is sufficient to update: 2785 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 2786 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 2787 */ 2788 static __always_inline int 2789 __update_load_avg(u64 now, int cpu, struct sched_avg *sa, 2790 unsigned long weight, int running, struct cfs_rq *cfs_rq) 2791 { 2792 u64 delta, scaled_delta, periods; 2793 u32 contrib; 2794 unsigned int delta_w, scaled_delta_w, decayed = 0; 2795 unsigned long scale_freq, scale_cpu; 2796 2797 delta = now - sa->last_update_time; 2798 /* 2799 * This should only happen when time goes backwards, which it 2800 * unfortunately does during sched clock init when we swap over to TSC. 2801 */ 2802 if ((s64)delta < 0) { 2803 sa->last_update_time = now; 2804 return 0; 2805 } 2806 2807 /* 2808 * Use 1024ns as the unit of measurement since it's a reasonable 2809 * approximation of 1us and fast to compute. 2810 */ 2811 delta >>= 10; 2812 if (!delta) 2813 return 0; 2814 sa->last_update_time = now; 2815 2816 scale_freq = arch_scale_freq_capacity(NULL, cpu); 2817 scale_cpu = arch_scale_cpu_capacity(NULL, cpu); 2818 2819 /* delta_w is the amount already accumulated against our next period */ 2820 delta_w = sa->period_contrib; 2821 if (delta + delta_w >= 1024) { 2822 decayed = 1; 2823 2824 /* how much left for next period will start over, we don't know yet */ 2825 sa->period_contrib = 0; 2826 2827 /* 2828 * Now that we know we're crossing a period boundary, figure 2829 * out how much from delta we need to complete the current 2830 * period and accrue it. 2831 */ 2832 delta_w = 1024 - delta_w; 2833 scaled_delta_w = cap_scale(delta_w, scale_freq); 2834 if (weight) { 2835 sa->load_sum += weight * scaled_delta_w; 2836 if (cfs_rq) { 2837 cfs_rq->runnable_load_sum += 2838 weight * scaled_delta_w; 2839 } 2840 } 2841 if (running) 2842 sa->util_sum += scaled_delta_w * scale_cpu; 2843 2844 delta -= delta_w; 2845 2846 /* Figure out how many additional periods this update spans */ 2847 periods = delta / 1024; 2848 delta %= 1024; 2849 2850 sa->load_sum = decay_load(sa->load_sum, periods + 1); 2851 if (cfs_rq) { 2852 cfs_rq->runnable_load_sum = 2853 decay_load(cfs_rq->runnable_load_sum, periods + 1); 2854 } 2855 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1); 2856 2857 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 2858 contrib = __compute_runnable_contrib(periods); 2859 contrib = cap_scale(contrib, scale_freq); 2860 if (weight) { 2861 sa->load_sum += weight * contrib; 2862 if (cfs_rq) 2863 cfs_rq->runnable_load_sum += weight * contrib; 2864 } 2865 if (running) 2866 sa->util_sum += contrib * scale_cpu; 2867 } 2868 2869 /* Remainder of delta accrued against u_0` */ 2870 scaled_delta = cap_scale(delta, scale_freq); 2871 if (weight) { 2872 sa->load_sum += weight * scaled_delta; 2873 if (cfs_rq) 2874 cfs_rq->runnable_load_sum += weight * scaled_delta; 2875 } 2876 if (running) 2877 sa->util_sum += scaled_delta * scale_cpu; 2878 2879 sa->period_contrib += delta; 2880 2881 if (decayed) { 2882 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX); 2883 if (cfs_rq) { 2884 cfs_rq->runnable_load_avg = 2885 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX); 2886 } 2887 sa->util_avg = sa->util_sum / LOAD_AVG_MAX; 2888 } 2889 2890 return decayed; 2891 } 2892 2893 #ifdef CONFIG_FAIR_GROUP_SCHED 2894 /** 2895 * update_tg_load_avg - update the tg's load avg 2896 * @cfs_rq: the cfs_rq whose avg changed 2897 * @force: update regardless of how small the difference 2898 * 2899 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 2900 * However, because tg->load_avg is a global value there are performance 2901 * considerations. 2902 * 2903 * In order to avoid having to look at the other cfs_rq's, we use a 2904 * differential update where we store the last value we propagated. This in 2905 * turn allows skipping updates if the differential is 'small'. 2906 * 2907 * Updating tg's load_avg is necessary before update_cfs_share() (which is 2908 * done) and effective_load() (which is not done because it is too costly). 2909 */ 2910 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 2911 { 2912 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 2913 2914 /* 2915 * No need to update load_avg for root_task_group as it is not used. 2916 */ 2917 if (cfs_rq->tg == &root_task_group) 2918 return; 2919 2920 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 2921 atomic_long_add(delta, &cfs_rq->tg->load_avg); 2922 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 2923 } 2924 } 2925 2926 /* 2927 * Called within set_task_rq() right before setting a task's cpu. The 2928 * caller only guarantees p->pi_lock is held; no other assumptions, 2929 * including the state of rq->lock, should be made. 2930 */ 2931 void set_task_rq_fair(struct sched_entity *se, 2932 struct cfs_rq *prev, struct cfs_rq *next) 2933 { 2934 if (!sched_feat(ATTACH_AGE_LOAD)) 2935 return; 2936 2937 /* 2938 * We are supposed to update the task to "current" time, then its up to 2939 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 2940 * getting what current time is, so simply throw away the out-of-date 2941 * time. This will result in the wakee task is less decayed, but giving 2942 * the wakee more load sounds not bad. 2943 */ 2944 if (se->avg.last_update_time && prev) { 2945 u64 p_last_update_time; 2946 u64 n_last_update_time; 2947 2948 #ifndef CONFIG_64BIT 2949 u64 p_last_update_time_copy; 2950 u64 n_last_update_time_copy; 2951 2952 do { 2953 p_last_update_time_copy = prev->load_last_update_time_copy; 2954 n_last_update_time_copy = next->load_last_update_time_copy; 2955 2956 smp_rmb(); 2957 2958 p_last_update_time = prev->avg.last_update_time; 2959 n_last_update_time = next->avg.last_update_time; 2960 2961 } while (p_last_update_time != p_last_update_time_copy || 2962 n_last_update_time != n_last_update_time_copy); 2963 #else 2964 p_last_update_time = prev->avg.last_update_time; 2965 n_last_update_time = next->avg.last_update_time; 2966 #endif 2967 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)), 2968 &se->avg, 0, 0, NULL); 2969 se->avg.last_update_time = n_last_update_time; 2970 } 2971 } 2972 #else /* CONFIG_FAIR_GROUP_SCHED */ 2973 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 2974 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2975 2976 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq) 2977 { 2978 if (&this_rq()->cfs == cfs_rq) { 2979 /* 2980 * There are a few boundary cases this might miss but it should 2981 * get called often enough that that should (hopefully) not be 2982 * a real problem -- added to that it only calls on the local 2983 * CPU, so if we enqueue remotely we'll miss an update, but 2984 * the next tick/schedule should update. 2985 * 2986 * It will not get called when we go idle, because the idle 2987 * thread is a different class (!fair), nor will the utilization 2988 * number include things like RT tasks. 2989 * 2990 * As is, the util number is not freq-invariant (we'd have to 2991 * implement arch_scale_freq_capacity() for that). 2992 * 2993 * See cpu_util(). 2994 */ 2995 cpufreq_update_util(rq_of(cfs_rq), 0); 2996 } 2997 } 2998 2999 /* 3000 * Unsigned subtract and clamp on underflow. 3001 * 3002 * Explicitly do a load-store to ensure the intermediate value never hits 3003 * memory. This allows lockless observations without ever seeing the negative 3004 * values. 3005 */ 3006 #define sub_positive(_ptr, _val) do { \ 3007 typeof(_ptr) ptr = (_ptr); \ 3008 typeof(*ptr) val = (_val); \ 3009 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3010 res = var - val; \ 3011 if (res > var) \ 3012 res = 0; \ 3013 WRITE_ONCE(*ptr, res); \ 3014 } while (0) 3015 3016 /** 3017 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3018 * @now: current time, as per cfs_rq_clock_task() 3019 * @cfs_rq: cfs_rq to update 3020 * @update_freq: should we call cfs_rq_util_change() or will the call do so 3021 * 3022 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3023 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3024 * post_init_entity_util_avg(). 3025 * 3026 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3027 * 3028 * Returns true if the load decayed or we removed load. 3029 * 3030 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3031 * call update_tg_load_avg() when this function returns true. 3032 */ 3033 static inline int 3034 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq) 3035 { 3036 struct sched_avg *sa = &cfs_rq->avg; 3037 int decayed, removed_load = 0, removed_util = 0; 3038 3039 if (atomic_long_read(&cfs_rq->removed_load_avg)) { 3040 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0); 3041 sub_positive(&sa->load_avg, r); 3042 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX); 3043 removed_load = 1; 3044 } 3045 3046 if (atomic_long_read(&cfs_rq->removed_util_avg)) { 3047 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0); 3048 sub_positive(&sa->util_avg, r); 3049 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX); 3050 removed_util = 1; 3051 } 3052 3053 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, 3054 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq); 3055 3056 #ifndef CONFIG_64BIT 3057 smp_wmb(); 3058 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3059 #endif 3060 3061 if (update_freq && (decayed || removed_util)) 3062 cfs_rq_util_change(cfs_rq); 3063 3064 return decayed || removed_load; 3065 } 3066 3067 /* Update task and its cfs_rq load average */ 3068 static inline void update_load_avg(struct sched_entity *se, int update_tg) 3069 { 3070 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3071 u64 now = cfs_rq_clock_task(cfs_rq); 3072 struct rq *rq = rq_of(cfs_rq); 3073 int cpu = cpu_of(rq); 3074 3075 /* 3076 * Track task load average for carrying it to new CPU after migrated, and 3077 * track group sched_entity load average for task_h_load calc in migration 3078 */ 3079 __update_load_avg(now, cpu, &se->avg, 3080 se->on_rq * scale_load_down(se->load.weight), 3081 cfs_rq->curr == se, NULL); 3082 3083 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg) 3084 update_tg_load_avg(cfs_rq, 0); 3085 } 3086 3087 /** 3088 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3089 * @cfs_rq: cfs_rq to attach to 3090 * @se: sched_entity to attach 3091 * 3092 * Must call update_cfs_rq_load_avg() before this, since we rely on 3093 * cfs_rq->avg.last_update_time being current. 3094 */ 3095 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3096 { 3097 if (!sched_feat(ATTACH_AGE_LOAD)) 3098 goto skip_aging; 3099 3100 /* 3101 * If we got migrated (either between CPUs or between cgroups) we'll 3102 * have aged the average right before clearing @last_update_time. 3103 * 3104 * Or we're fresh through post_init_entity_util_avg(). 3105 */ 3106 if (se->avg.last_update_time) { 3107 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)), 3108 &se->avg, 0, 0, NULL); 3109 3110 /* 3111 * XXX: we could have just aged the entire load away if we've been 3112 * absent from the fair class for too long. 3113 */ 3114 } 3115 3116 skip_aging: 3117 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3118 cfs_rq->avg.load_avg += se->avg.load_avg; 3119 cfs_rq->avg.load_sum += se->avg.load_sum; 3120 cfs_rq->avg.util_avg += se->avg.util_avg; 3121 cfs_rq->avg.util_sum += se->avg.util_sum; 3122 3123 cfs_rq_util_change(cfs_rq); 3124 } 3125 3126 /** 3127 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3128 * @cfs_rq: cfs_rq to detach from 3129 * @se: sched_entity to detach 3130 * 3131 * Must call update_cfs_rq_load_avg() before this, since we rely on 3132 * cfs_rq->avg.last_update_time being current. 3133 */ 3134 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3135 { 3136 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)), 3137 &se->avg, se->on_rq * scale_load_down(se->load.weight), 3138 cfs_rq->curr == se, NULL); 3139 3140 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3141 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum); 3142 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3143 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3144 3145 cfs_rq_util_change(cfs_rq); 3146 } 3147 3148 /* Add the load generated by se into cfs_rq's load average */ 3149 static inline void 3150 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3151 { 3152 struct sched_avg *sa = &se->avg; 3153 u64 now = cfs_rq_clock_task(cfs_rq); 3154 int migrated, decayed; 3155 3156 migrated = !sa->last_update_time; 3157 if (!migrated) { 3158 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, 3159 se->on_rq * scale_load_down(se->load.weight), 3160 cfs_rq->curr == se, NULL); 3161 } 3162 3163 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated); 3164 3165 cfs_rq->runnable_load_avg += sa->load_avg; 3166 cfs_rq->runnable_load_sum += sa->load_sum; 3167 3168 if (migrated) 3169 attach_entity_load_avg(cfs_rq, se); 3170 3171 if (decayed || migrated) 3172 update_tg_load_avg(cfs_rq, 0); 3173 } 3174 3175 /* Remove the runnable load generated by se from cfs_rq's runnable load average */ 3176 static inline void 3177 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3178 { 3179 update_load_avg(se, 1); 3180 3181 cfs_rq->runnable_load_avg = 3182 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0); 3183 cfs_rq->runnable_load_sum = 3184 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0); 3185 } 3186 3187 #ifndef CONFIG_64BIT 3188 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3189 { 3190 u64 last_update_time_copy; 3191 u64 last_update_time; 3192 3193 do { 3194 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3195 smp_rmb(); 3196 last_update_time = cfs_rq->avg.last_update_time; 3197 } while (last_update_time != last_update_time_copy); 3198 3199 return last_update_time; 3200 } 3201 #else 3202 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3203 { 3204 return cfs_rq->avg.last_update_time; 3205 } 3206 #endif 3207 3208 /* 3209 * Task first catches up with cfs_rq, and then subtract 3210 * itself from the cfs_rq (task must be off the queue now). 3211 */ 3212 void remove_entity_load_avg(struct sched_entity *se) 3213 { 3214 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3215 u64 last_update_time; 3216 3217 /* 3218 * tasks cannot exit without having gone through wake_up_new_task() -> 3219 * post_init_entity_util_avg() which will have added things to the 3220 * cfs_rq, so we can remove unconditionally. 3221 * 3222 * Similarly for groups, they will have passed through 3223 * post_init_entity_util_avg() before unregister_sched_fair_group() 3224 * calls this. 3225 */ 3226 3227 last_update_time = cfs_rq_last_update_time(cfs_rq); 3228 3229 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL); 3230 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg); 3231 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg); 3232 } 3233 3234 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3235 { 3236 return cfs_rq->runnable_load_avg; 3237 } 3238 3239 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3240 { 3241 return cfs_rq->avg.load_avg; 3242 } 3243 3244 static int idle_balance(struct rq *this_rq); 3245 3246 #else /* CONFIG_SMP */ 3247 3248 static inline int 3249 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq) 3250 { 3251 return 0; 3252 } 3253 3254 static inline void update_load_avg(struct sched_entity *se, int not_used) 3255 { 3256 cpufreq_update_util(rq_of(cfs_rq_of(se)), 0); 3257 } 3258 3259 static inline void 3260 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3261 static inline void 3262 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3263 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3264 3265 static inline void 3266 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3267 static inline void 3268 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3269 3270 static inline int idle_balance(struct rq *rq) 3271 { 3272 return 0; 3273 } 3274 3275 #endif /* CONFIG_SMP */ 3276 3277 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3278 { 3279 #ifdef CONFIG_SCHED_DEBUG 3280 s64 d = se->vruntime - cfs_rq->min_vruntime; 3281 3282 if (d < 0) 3283 d = -d; 3284 3285 if (d > 3*sysctl_sched_latency) 3286 schedstat_inc(cfs_rq->nr_spread_over); 3287 #endif 3288 } 3289 3290 static void 3291 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3292 { 3293 u64 vruntime = cfs_rq->min_vruntime; 3294 3295 /* 3296 * The 'current' period is already promised to the current tasks, 3297 * however the extra weight of the new task will slow them down a 3298 * little, place the new task so that it fits in the slot that 3299 * stays open at the end. 3300 */ 3301 if (initial && sched_feat(START_DEBIT)) 3302 vruntime += sched_vslice(cfs_rq, se); 3303 3304 /* sleeps up to a single latency don't count. */ 3305 if (!initial) { 3306 unsigned long thresh = sysctl_sched_latency; 3307 3308 /* 3309 * Halve their sleep time's effect, to allow 3310 * for a gentler effect of sleepers: 3311 */ 3312 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3313 thresh >>= 1; 3314 3315 vruntime -= thresh; 3316 } 3317 3318 /* ensure we never gain time by being placed backwards. */ 3319 se->vruntime = max_vruntime(se->vruntime, vruntime); 3320 } 3321 3322 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3323 3324 static inline void check_schedstat_required(void) 3325 { 3326 #ifdef CONFIG_SCHEDSTATS 3327 if (schedstat_enabled()) 3328 return; 3329 3330 /* Force schedstat enabled if a dependent tracepoint is active */ 3331 if (trace_sched_stat_wait_enabled() || 3332 trace_sched_stat_sleep_enabled() || 3333 trace_sched_stat_iowait_enabled() || 3334 trace_sched_stat_blocked_enabled() || 3335 trace_sched_stat_runtime_enabled()) { 3336 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3337 "stat_blocked and stat_runtime require the " 3338 "kernel parameter schedstats=enabled or " 3339 "kernel.sched_schedstats=1\n"); 3340 } 3341 #endif 3342 } 3343 3344 3345 /* 3346 * MIGRATION 3347 * 3348 * dequeue 3349 * update_curr() 3350 * update_min_vruntime() 3351 * vruntime -= min_vruntime 3352 * 3353 * enqueue 3354 * update_curr() 3355 * update_min_vruntime() 3356 * vruntime += min_vruntime 3357 * 3358 * this way the vruntime transition between RQs is done when both 3359 * min_vruntime are up-to-date. 3360 * 3361 * WAKEUP (remote) 3362 * 3363 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3364 * vruntime -= min_vruntime 3365 * 3366 * enqueue 3367 * update_curr() 3368 * update_min_vruntime() 3369 * vruntime += min_vruntime 3370 * 3371 * this way we don't have the most up-to-date min_vruntime on the originating 3372 * CPU and an up-to-date min_vruntime on the destination CPU. 3373 */ 3374 3375 static void 3376 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3377 { 3378 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3379 bool curr = cfs_rq->curr == se; 3380 3381 /* 3382 * If we're the current task, we must renormalise before calling 3383 * update_curr(). 3384 */ 3385 if (renorm && curr) 3386 se->vruntime += cfs_rq->min_vruntime; 3387 3388 update_curr(cfs_rq); 3389 3390 /* 3391 * Otherwise, renormalise after, such that we're placed at the current 3392 * moment in time, instead of some random moment in the past. Being 3393 * placed in the past could significantly boost this task to the 3394 * fairness detriment of existing tasks. 3395 */ 3396 if (renorm && !curr) 3397 se->vruntime += cfs_rq->min_vruntime; 3398 3399 enqueue_entity_load_avg(cfs_rq, se); 3400 account_entity_enqueue(cfs_rq, se); 3401 update_cfs_shares(cfs_rq); 3402 3403 if (flags & ENQUEUE_WAKEUP) 3404 place_entity(cfs_rq, se, 0); 3405 3406 check_schedstat_required(); 3407 update_stats_enqueue(cfs_rq, se, flags); 3408 check_spread(cfs_rq, se); 3409 if (!curr) 3410 __enqueue_entity(cfs_rq, se); 3411 se->on_rq = 1; 3412 3413 if (cfs_rq->nr_running == 1) { 3414 list_add_leaf_cfs_rq(cfs_rq); 3415 check_enqueue_throttle(cfs_rq); 3416 } 3417 } 3418 3419 static void __clear_buddies_last(struct sched_entity *se) 3420 { 3421 for_each_sched_entity(se) { 3422 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3423 if (cfs_rq->last != se) 3424 break; 3425 3426 cfs_rq->last = NULL; 3427 } 3428 } 3429 3430 static void __clear_buddies_next(struct sched_entity *se) 3431 { 3432 for_each_sched_entity(se) { 3433 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3434 if (cfs_rq->next != se) 3435 break; 3436 3437 cfs_rq->next = NULL; 3438 } 3439 } 3440 3441 static void __clear_buddies_skip(struct sched_entity *se) 3442 { 3443 for_each_sched_entity(se) { 3444 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3445 if (cfs_rq->skip != se) 3446 break; 3447 3448 cfs_rq->skip = NULL; 3449 } 3450 } 3451 3452 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3453 { 3454 if (cfs_rq->last == se) 3455 __clear_buddies_last(se); 3456 3457 if (cfs_rq->next == se) 3458 __clear_buddies_next(se); 3459 3460 if (cfs_rq->skip == se) 3461 __clear_buddies_skip(se); 3462 } 3463 3464 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3465 3466 static void 3467 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3468 { 3469 /* 3470 * Update run-time statistics of the 'current'. 3471 */ 3472 update_curr(cfs_rq); 3473 dequeue_entity_load_avg(cfs_rq, se); 3474 3475 update_stats_dequeue(cfs_rq, se, flags); 3476 3477 clear_buddies(cfs_rq, se); 3478 3479 if (se != cfs_rq->curr) 3480 __dequeue_entity(cfs_rq, se); 3481 se->on_rq = 0; 3482 account_entity_dequeue(cfs_rq, se); 3483 3484 /* 3485 * Normalize after update_curr(); which will also have moved 3486 * min_vruntime if @se is the one holding it back. But before doing 3487 * update_min_vruntime() again, which will discount @se's position and 3488 * can move min_vruntime forward still more. 3489 */ 3490 if (!(flags & DEQUEUE_SLEEP)) 3491 se->vruntime -= cfs_rq->min_vruntime; 3492 3493 /* return excess runtime on last dequeue */ 3494 return_cfs_rq_runtime(cfs_rq); 3495 3496 update_cfs_shares(cfs_rq); 3497 3498 /* 3499 * Now advance min_vruntime if @se was the entity holding it back, 3500 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 3501 * put back on, and if we advance min_vruntime, we'll be placed back 3502 * further than we started -- ie. we'll be penalized. 3503 */ 3504 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 3505 update_min_vruntime(cfs_rq); 3506 } 3507 3508 /* 3509 * Preempt the current task with a newly woken task if needed: 3510 */ 3511 static void 3512 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3513 { 3514 unsigned long ideal_runtime, delta_exec; 3515 struct sched_entity *se; 3516 s64 delta; 3517 3518 ideal_runtime = sched_slice(cfs_rq, curr); 3519 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 3520 if (delta_exec > ideal_runtime) { 3521 resched_curr(rq_of(cfs_rq)); 3522 /* 3523 * The current task ran long enough, ensure it doesn't get 3524 * re-elected due to buddy favours. 3525 */ 3526 clear_buddies(cfs_rq, curr); 3527 return; 3528 } 3529 3530 /* 3531 * Ensure that a task that missed wakeup preemption by a 3532 * narrow margin doesn't have to wait for a full slice. 3533 * This also mitigates buddy induced latencies under load. 3534 */ 3535 if (delta_exec < sysctl_sched_min_granularity) 3536 return; 3537 3538 se = __pick_first_entity(cfs_rq); 3539 delta = curr->vruntime - se->vruntime; 3540 3541 if (delta < 0) 3542 return; 3543 3544 if (delta > ideal_runtime) 3545 resched_curr(rq_of(cfs_rq)); 3546 } 3547 3548 static void 3549 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 3550 { 3551 /* 'current' is not kept within the tree. */ 3552 if (se->on_rq) { 3553 /* 3554 * Any task has to be enqueued before it get to execute on 3555 * a CPU. So account for the time it spent waiting on the 3556 * runqueue. 3557 */ 3558 update_stats_wait_end(cfs_rq, se); 3559 __dequeue_entity(cfs_rq, se); 3560 update_load_avg(se, 1); 3561 } 3562 3563 update_stats_curr_start(cfs_rq, se); 3564 cfs_rq->curr = se; 3565 3566 /* 3567 * Track our maximum slice length, if the CPU's load is at 3568 * least twice that of our own weight (i.e. dont track it 3569 * when there are only lesser-weight tasks around): 3570 */ 3571 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 3572 schedstat_set(se->statistics.slice_max, 3573 max((u64)schedstat_val(se->statistics.slice_max), 3574 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 3575 } 3576 3577 se->prev_sum_exec_runtime = se->sum_exec_runtime; 3578 } 3579 3580 static int 3581 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 3582 3583 /* 3584 * Pick the next process, keeping these things in mind, in this order: 3585 * 1) keep things fair between processes/task groups 3586 * 2) pick the "next" process, since someone really wants that to run 3587 * 3) pick the "last" process, for cache locality 3588 * 4) do not run the "skip" process, if something else is available 3589 */ 3590 static struct sched_entity * 3591 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3592 { 3593 struct sched_entity *left = __pick_first_entity(cfs_rq); 3594 struct sched_entity *se; 3595 3596 /* 3597 * If curr is set we have to see if its left of the leftmost entity 3598 * still in the tree, provided there was anything in the tree at all. 3599 */ 3600 if (!left || (curr && entity_before(curr, left))) 3601 left = curr; 3602 3603 se = left; /* ideally we run the leftmost entity */ 3604 3605 /* 3606 * Avoid running the skip buddy, if running something else can 3607 * be done without getting too unfair. 3608 */ 3609 if (cfs_rq->skip == se) { 3610 struct sched_entity *second; 3611 3612 if (se == curr) { 3613 second = __pick_first_entity(cfs_rq); 3614 } else { 3615 second = __pick_next_entity(se); 3616 if (!second || (curr && entity_before(curr, second))) 3617 second = curr; 3618 } 3619 3620 if (second && wakeup_preempt_entity(second, left) < 1) 3621 se = second; 3622 } 3623 3624 /* 3625 * Prefer last buddy, try to return the CPU to a preempted task. 3626 */ 3627 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 3628 se = cfs_rq->last; 3629 3630 /* 3631 * Someone really wants this to run. If it's not unfair, run it. 3632 */ 3633 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 3634 se = cfs_rq->next; 3635 3636 clear_buddies(cfs_rq, se); 3637 3638 return se; 3639 } 3640 3641 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3642 3643 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 3644 { 3645 /* 3646 * If still on the runqueue then deactivate_task() 3647 * was not called and update_curr() has to be done: 3648 */ 3649 if (prev->on_rq) 3650 update_curr(cfs_rq); 3651 3652 /* throttle cfs_rqs exceeding runtime */ 3653 check_cfs_rq_runtime(cfs_rq); 3654 3655 check_spread(cfs_rq, prev); 3656 3657 if (prev->on_rq) { 3658 update_stats_wait_start(cfs_rq, prev); 3659 /* Put 'current' back into the tree. */ 3660 __enqueue_entity(cfs_rq, prev); 3661 /* in !on_rq case, update occurred at dequeue */ 3662 update_load_avg(prev, 0); 3663 } 3664 cfs_rq->curr = NULL; 3665 } 3666 3667 static void 3668 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 3669 { 3670 /* 3671 * Update run-time statistics of the 'current'. 3672 */ 3673 update_curr(cfs_rq); 3674 3675 /* 3676 * Ensure that runnable average is periodically updated. 3677 */ 3678 update_load_avg(curr, 1); 3679 update_cfs_shares(cfs_rq); 3680 3681 #ifdef CONFIG_SCHED_HRTICK 3682 /* 3683 * queued ticks are scheduled to match the slice, so don't bother 3684 * validating it and just reschedule. 3685 */ 3686 if (queued) { 3687 resched_curr(rq_of(cfs_rq)); 3688 return; 3689 } 3690 /* 3691 * don't let the period tick interfere with the hrtick preemption 3692 */ 3693 if (!sched_feat(DOUBLE_TICK) && 3694 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 3695 return; 3696 #endif 3697 3698 if (cfs_rq->nr_running > 1) 3699 check_preempt_tick(cfs_rq, curr); 3700 } 3701 3702 3703 /************************************************** 3704 * CFS bandwidth control machinery 3705 */ 3706 3707 #ifdef CONFIG_CFS_BANDWIDTH 3708 3709 #ifdef HAVE_JUMP_LABEL 3710 static struct static_key __cfs_bandwidth_used; 3711 3712 static inline bool cfs_bandwidth_used(void) 3713 { 3714 return static_key_false(&__cfs_bandwidth_used); 3715 } 3716 3717 void cfs_bandwidth_usage_inc(void) 3718 { 3719 static_key_slow_inc(&__cfs_bandwidth_used); 3720 } 3721 3722 void cfs_bandwidth_usage_dec(void) 3723 { 3724 static_key_slow_dec(&__cfs_bandwidth_used); 3725 } 3726 #else /* HAVE_JUMP_LABEL */ 3727 static bool cfs_bandwidth_used(void) 3728 { 3729 return true; 3730 } 3731 3732 void cfs_bandwidth_usage_inc(void) {} 3733 void cfs_bandwidth_usage_dec(void) {} 3734 #endif /* HAVE_JUMP_LABEL */ 3735 3736 /* 3737 * default period for cfs group bandwidth. 3738 * default: 0.1s, units: nanoseconds 3739 */ 3740 static inline u64 default_cfs_period(void) 3741 { 3742 return 100000000ULL; 3743 } 3744 3745 static inline u64 sched_cfs_bandwidth_slice(void) 3746 { 3747 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 3748 } 3749 3750 /* 3751 * Replenish runtime according to assigned quota and update expiration time. 3752 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 3753 * additional synchronization around rq->lock. 3754 * 3755 * requires cfs_b->lock 3756 */ 3757 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 3758 { 3759 u64 now; 3760 3761 if (cfs_b->quota == RUNTIME_INF) 3762 return; 3763 3764 now = sched_clock_cpu(smp_processor_id()); 3765 cfs_b->runtime = cfs_b->quota; 3766 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 3767 } 3768 3769 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3770 { 3771 return &tg->cfs_bandwidth; 3772 } 3773 3774 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 3775 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3776 { 3777 if (unlikely(cfs_rq->throttle_count)) 3778 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 3779 3780 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 3781 } 3782 3783 /* returns 0 on failure to allocate runtime */ 3784 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3785 { 3786 struct task_group *tg = cfs_rq->tg; 3787 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 3788 u64 amount = 0, min_amount, expires; 3789 3790 /* note: this is a positive sum as runtime_remaining <= 0 */ 3791 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 3792 3793 raw_spin_lock(&cfs_b->lock); 3794 if (cfs_b->quota == RUNTIME_INF) 3795 amount = min_amount; 3796 else { 3797 start_cfs_bandwidth(cfs_b); 3798 3799 if (cfs_b->runtime > 0) { 3800 amount = min(cfs_b->runtime, min_amount); 3801 cfs_b->runtime -= amount; 3802 cfs_b->idle = 0; 3803 } 3804 } 3805 expires = cfs_b->runtime_expires; 3806 raw_spin_unlock(&cfs_b->lock); 3807 3808 cfs_rq->runtime_remaining += amount; 3809 /* 3810 * we may have advanced our local expiration to account for allowed 3811 * spread between our sched_clock and the one on which runtime was 3812 * issued. 3813 */ 3814 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 3815 cfs_rq->runtime_expires = expires; 3816 3817 return cfs_rq->runtime_remaining > 0; 3818 } 3819 3820 /* 3821 * Note: This depends on the synchronization provided by sched_clock and the 3822 * fact that rq->clock snapshots this value. 3823 */ 3824 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3825 { 3826 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3827 3828 /* if the deadline is ahead of our clock, nothing to do */ 3829 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 3830 return; 3831 3832 if (cfs_rq->runtime_remaining < 0) 3833 return; 3834 3835 /* 3836 * If the local deadline has passed we have to consider the 3837 * possibility that our sched_clock is 'fast' and the global deadline 3838 * has not truly expired. 3839 * 3840 * Fortunately we can check determine whether this the case by checking 3841 * whether the global deadline has advanced. It is valid to compare 3842 * cfs_b->runtime_expires without any locks since we only care about 3843 * exact equality, so a partial write will still work. 3844 */ 3845 3846 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { 3847 /* extend local deadline, drift is bounded above by 2 ticks */ 3848 cfs_rq->runtime_expires += TICK_NSEC; 3849 } else { 3850 /* global deadline is ahead, expiration has passed */ 3851 cfs_rq->runtime_remaining = 0; 3852 } 3853 } 3854 3855 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3856 { 3857 /* dock delta_exec before expiring quota (as it could span periods) */ 3858 cfs_rq->runtime_remaining -= delta_exec; 3859 expire_cfs_rq_runtime(cfs_rq); 3860 3861 if (likely(cfs_rq->runtime_remaining > 0)) 3862 return; 3863 3864 /* 3865 * if we're unable to extend our runtime we resched so that the active 3866 * hierarchy can be throttled 3867 */ 3868 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 3869 resched_curr(rq_of(cfs_rq)); 3870 } 3871 3872 static __always_inline 3873 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3874 { 3875 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 3876 return; 3877 3878 __account_cfs_rq_runtime(cfs_rq, delta_exec); 3879 } 3880 3881 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3882 { 3883 return cfs_bandwidth_used() && cfs_rq->throttled; 3884 } 3885 3886 /* check whether cfs_rq, or any parent, is throttled */ 3887 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3888 { 3889 return cfs_bandwidth_used() && cfs_rq->throttle_count; 3890 } 3891 3892 /* 3893 * Ensure that neither of the group entities corresponding to src_cpu or 3894 * dest_cpu are members of a throttled hierarchy when performing group 3895 * load-balance operations. 3896 */ 3897 static inline int throttled_lb_pair(struct task_group *tg, 3898 int src_cpu, int dest_cpu) 3899 { 3900 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 3901 3902 src_cfs_rq = tg->cfs_rq[src_cpu]; 3903 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 3904 3905 return throttled_hierarchy(src_cfs_rq) || 3906 throttled_hierarchy(dest_cfs_rq); 3907 } 3908 3909 /* updated child weight may affect parent so we have to do this bottom up */ 3910 static int tg_unthrottle_up(struct task_group *tg, void *data) 3911 { 3912 struct rq *rq = data; 3913 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3914 3915 cfs_rq->throttle_count--; 3916 if (!cfs_rq->throttle_count) { 3917 /* adjust cfs_rq_clock_task() */ 3918 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 3919 cfs_rq->throttled_clock_task; 3920 } 3921 3922 return 0; 3923 } 3924 3925 static int tg_throttle_down(struct task_group *tg, void *data) 3926 { 3927 struct rq *rq = data; 3928 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3929 3930 /* group is entering throttled state, stop time */ 3931 if (!cfs_rq->throttle_count) 3932 cfs_rq->throttled_clock_task = rq_clock_task(rq); 3933 cfs_rq->throttle_count++; 3934 3935 return 0; 3936 } 3937 3938 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 3939 { 3940 struct rq *rq = rq_of(cfs_rq); 3941 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3942 struct sched_entity *se; 3943 long task_delta, dequeue = 1; 3944 bool empty; 3945 3946 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 3947 3948 /* freeze hierarchy runnable averages while throttled */ 3949 rcu_read_lock(); 3950 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 3951 rcu_read_unlock(); 3952 3953 task_delta = cfs_rq->h_nr_running; 3954 for_each_sched_entity(se) { 3955 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 3956 /* throttled entity or throttle-on-deactivate */ 3957 if (!se->on_rq) 3958 break; 3959 3960 if (dequeue) 3961 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 3962 qcfs_rq->h_nr_running -= task_delta; 3963 3964 if (qcfs_rq->load.weight) 3965 dequeue = 0; 3966 } 3967 3968 if (!se) 3969 sub_nr_running(rq, task_delta); 3970 3971 cfs_rq->throttled = 1; 3972 cfs_rq->throttled_clock = rq_clock(rq); 3973 raw_spin_lock(&cfs_b->lock); 3974 empty = list_empty(&cfs_b->throttled_cfs_rq); 3975 3976 /* 3977 * Add to the _head_ of the list, so that an already-started 3978 * distribute_cfs_runtime will not see us 3979 */ 3980 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 3981 3982 /* 3983 * If we're the first throttled task, make sure the bandwidth 3984 * timer is running. 3985 */ 3986 if (empty) 3987 start_cfs_bandwidth(cfs_b); 3988 3989 raw_spin_unlock(&cfs_b->lock); 3990 } 3991 3992 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 3993 { 3994 struct rq *rq = rq_of(cfs_rq); 3995 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3996 struct sched_entity *se; 3997 int enqueue = 1; 3998 long task_delta; 3999 4000 se = cfs_rq->tg->se[cpu_of(rq)]; 4001 4002 cfs_rq->throttled = 0; 4003 4004 update_rq_clock(rq); 4005 4006 raw_spin_lock(&cfs_b->lock); 4007 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4008 list_del_rcu(&cfs_rq->throttled_list); 4009 raw_spin_unlock(&cfs_b->lock); 4010 4011 /* update hierarchical throttle state */ 4012 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4013 4014 if (!cfs_rq->load.weight) 4015 return; 4016 4017 task_delta = cfs_rq->h_nr_running; 4018 for_each_sched_entity(se) { 4019 if (se->on_rq) 4020 enqueue = 0; 4021 4022 cfs_rq = cfs_rq_of(se); 4023 if (enqueue) 4024 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4025 cfs_rq->h_nr_running += task_delta; 4026 4027 if (cfs_rq_throttled(cfs_rq)) 4028 break; 4029 } 4030 4031 if (!se) 4032 add_nr_running(rq, task_delta); 4033 4034 /* determine whether we need to wake up potentially idle cpu */ 4035 if (rq->curr == rq->idle && rq->cfs.nr_running) 4036 resched_curr(rq); 4037 } 4038 4039 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 4040 u64 remaining, u64 expires) 4041 { 4042 struct cfs_rq *cfs_rq; 4043 u64 runtime; 4044 u64 starting_runtime = remaining; 4045 4046 rcu_read_lock(); 4047 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4048 throttled_list) { 4049 struct rq *rq = rq_of(cfs_rq); 4050 4051 raw_spin_lock(&rq->lock); 4052 if (!cfs_rq_throttled(cfs_rq)) 4053 goto next; 4054 4055 runtime = -cfs_rq->runtime_remaining + 1; 4056 if (runtime > remaining) 4057 runtime = remaining; 4058 remaining -= runtime; 4059 4060 cfs_rq->runtime_remaining += runtime; 4061 cfs_rq->runtime_expires = expires; 4062 4063 /* we check whether we're throttled above */ 4064 if (cfs_rq->runtime_remaining > 0) 4065 unthrottle_cfs_rq(cfs_rq); 4066 4067 next: 4068 raw_spin_unlock(&rq->lock); 4069 4070 if (!remaining) 4071 break; 4072 } 4073 rcu_read_unlock(); 4074 4075 return starting_runtime - remaining; 4076 } 4077 4078 /* 4079 * Responsible for refilling a task_group's bandwidth and unthrottling its 4080 * cfs_rqs as appropriate. If there has been no activity within the last 4081 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4082 * used to track this state. 4083 */ 4084 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 4085 { 4086 u64 runtime, runtime_expires; 4087 int throttled; 4088 4089 /* no need to continue the timer with no bandwidth constraint */ 4090 if (cfs_b->quota == RUNTIME_INF) 4091 goto out_deactivate; 4092 4093 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4094 cfs_b->nr_periods += overrun; 4095 4096 /* 4097 * idle depends on !throttled (for the case of a large deficit), and if 4098 * we're going inactive then everything else can be deferred 4099 */ 4100 if (cfs_b->idle && !throttled) 4101 goto out_deactivate; 4102 4103 __refill_cfs_bandwidth_runtime(cfs_b); 4104 4105 if (!throttled) { 4106 /* mark as potentially idle for the upcoming period */ 4107 cfs_b->idle = 1; 4108 return 0; 4109 } 4110 4111 /* account preceding periods in which throttling occurred */ 4112 cfs_b->nr_throttled += overrun; 4113 4114 runtime_expires = cfs_b->runtime_expires; 4115 4116 /* 4117 * This check is repeated as we are holding onto the new bandwidth while 4118 * we unthrottle. This can potentially race with an unthrottled group 4119 * trying to acquire new bandwidth from the global pool. This can result 4120 * in us over-using our runtime if it is all used during this loop, but 4121 * only by limited amounts in that extreme case. 4122 */ 4123 while (throttled && cfs_b->runtime > 0) { 4124 runtime = cfs_b->runtime; 4125 raw_spin_unlock(&cfs_b->lock); 4126 /* we can't nest cfs_b->lock while distributing bandwidth */ 4127 runtime = distribute_cfs_runtime(cfs_b, runtime, 4128 runtime_expires); 4129 raw_spin_lock(&cfs_b->lock); 4130 4131 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4132 4133 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4134 } 4135 4136 /* 4137 * While we are ensured activity in the period following an 4138 * unthrottle, this also covers the case in which the new bandwidth is 4139 * insufficient to cover the existing bandwidth deficit. (Forcing the 4140 * timer to remain active while there are any throttled entities.) 4141 */ 4142 cfs_b->idle = 0; 4143 4144 return 0; 4145 4146 out_deactivate: 4147 return 1; 4148 } 4149 4150 /* a cfs_rq won't donate quota below this amount */ 4151 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4152 /* minimum remaining period time to redistribute slack quota */ 4153 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4154 /* how long we wait to gather additional slack before distributing */ 4155 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4156 4157 /* 4158 * Are we near the end of the current quota period? 4159 * 4160 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4161 * hrtimer base being cleared by hrtimer_start. In the case of 4162 * migrate_hrtimers, base is never cleared, so we are fine. 4163 */ 4164 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4165 { 4166 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4167 u64 remaining; 4168 4169 /* if the call-back is running a quota refresh is already occurring */ 4170 if (hrtimer_callback_running(refresh_timer)) 4171 return 1; 4172 4173 /* is a quota refresh about to occur? */ 4174 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4175 if (remaining < min_expire) 4176 return 1; 4177 4178 return 0; 4179 } 4180 4181 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4182 { 4183 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4184 4185 /* if there's a quota refresh soon don't bother with slack */ 4186 if (runtime_refresh_within(cfs_b, min_left)) 4187 return; 4188 4189 hrtimer_start(&cfs_b->slack_timer, 4190 ns_to_ktime(cfs_bandwidth_slack_period), 4191 HRTIMER_MODE_REL); 4192 } 4193 4194 /* we know any runtime found here is valid as update_curr() precedes return */ 4195 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4196 { 4197 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4198 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4199 4200 if (slack_runtime <= 0) 4201 return; 4202 4203 raw_spin_lock(&cfs_b->lock); 4204 if (cfs_b->quota != RUNTIME_INF && 4205 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4206 cfs_b->runtime += slack_runtime; 4207 4208 /* we are under rq->lock, defer unthrottling using a timer */ 4209 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4210 !list_empty(&cfs_b->throttled_cfs_rq)) 4211 start_cfs_slack_bandwidth(cfs_b); 4212 } 4213 raw_spin_unlock(&cfs_b->lock); 4214 4215 /* even if it's not valid for return we don't want to try again */ 4216 cfs_rq->runtime_remaining -= slack_runtime; 4217 } 4218 4219 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4220 { 4221 if (!cfs_bandwidth_used()) 4222 return; 4223 4224 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4225 return; 4226 4227 __return_cfs_rq_runtime(cfs_rq); 4228 } 4229 4230 /* 4231 * This is done with a timer (instead of inline with bandwidth return) since 4232 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4233 */ 4234 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4235 { 4236 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4237 u64 expires; 4238 4239 /* confirm we're still not at a refresh boundary */ 4240 raw_spin_lock(&cfs_b->lock); 4241 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4242 raw_spin_unlock(&cfs_b->lock); 4243 return; 4244 } 4245 4246 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4247 runtime = cfs_b->runtime; 4248 4249 expires = cfs_b->runtime_expires; 4250 raw_spin_unlock(&cfs_b->lock); 4251 4252 if (!runtime) 4253 return; 4254 4255 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4256 4257 raw_spin_lock(&cfs_b->lock); 4258 if (expires == cfs_b->runtime_expires) 4259 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4260 raw_spin_unlock(&cfs_b->lock); 4261 } 4262 4263 /* 4264 * When a group wakes up we want to make sure that its quota is not already 4265 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4266 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4267 */ 4268 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4269 { 4270 if (!cfs_bandwidth_used()) 4271 return; 4272 4273 /* an active group must be handled by the update_curr()->put() path */ 4274 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4275 return; 4276 4277 /* ensure the group is not already throttled */ 4278 if (cfs_rq_throttled(cfs_rq)) 4279 return; 4280 4281 /* update runtime allocation */ 4282 account_cfs_rq_runtime(cfs_rq, 0); 4283 if (cfs_rq->runtime_remaining <= 0) 4284 throttle_cfs_rq(cfs_rq); 4285 } 4286 4287 static void sync_throttle(struct task_group *tg, int cpu) 4288 { 4289 struct cfs_rq *pcfs_rq, *cfs_rq; 4290 4291 if (!cfs_bandwidth_used()) 4292 return; 4293 4294 if (!tg->parent) 4295 return; 4296 4297 cfs_rq = tg->cfs_rq[cpu]; 4298 pcfs_rq = tg->parent->cfs_rq[cpu]; 4299 4300 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4301 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4302 } 4303 4304 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4305 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4306 { 4307 if (!cfs_bandwidth_used()) 4308 return false; 4309 4310 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4311 return false; 4312 4313 /* 4314 * it's possible for a throttled entity to be forced into a running 4315 * state (e.g. set_curr_task), in this case we're finished. 4316 */ 4317 if (cfs_rq_throttled(cfs_rq)) 4318 return true; 4319 4320 throttle_cfs_rq(cfs_rq); 4321 return true; 4322 } 4323 4324 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4325 { 4326 struct cfs_bandwidth *cfs_b = 4327 container_of(timer, struct cfs_bandwidth, slack_timer); 4328 4329 do_sched_cfs_slack_timer(cfs_b); 4330 4331 return HRTIMER_NORESTART; 4332 } 4333 4334 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4335 { 4336 struct cfs_bandwidth *cfs_b = 4337 container_of(timer, struct cfs_bandwidth, period_timer); 4338 int overrun; 4339 int idle = 0; 4340 4341 raw_spin_lock(&cfs_b->lock); 4342 for (;;) { 4343 overrun = hrtimer_forward_now(timer, cfs_b->period); 4344 if (!overrun) 4345 break; 4346 4347 idle = do_sched_cfs_period_timer(cfs_b, overrun); 4348 } 4349 if (idle) 4350 cfs_b->period_active = 0; 4351 raw_spin_unlock(&cfs_b->lock); 4352 4353 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4354 } 4355 4356 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4357 { 4358 raw_spin_lock_init(&cfs_b->lock); 4359 cfs_b->runtime = 0; 4360 cfs_b->quota = RUNTIME_INF; 4361 cfs_b->period = ns_to_ktime(default_cfs_period()); 4362 4363 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4364 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4365 cfs_b->period_timer.function = sched_cfs_period_timer; 4366 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4367 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4368 } 4369 4370 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4371 { 4372 cfs_rq->runtime_enabled = 0; 4373 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4374 } 4375 4376 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4377 { 4378 lockdep_assert_held(&cfs_b->lock); 4379 4380 if (!cfs_b->period_active) { 4381 cfs_b->period_active = 1; 4382 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 4383 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 4384 } 4385 } 4386 4387 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4388 { 4389 /* init_cfs_bandwidth() was not called */ 4390 if (!cfs_b->throttled_cfs_rq.next) 4391 return; 4392 4393 hrtimer_cancel(&cfs_b->period_timer); 4394 hrtimer_cancel(&cfs_b->slack_timer); 4395 } 4396 4397 static void __maybe_unused update_runtime_enabled(struct rq *rq) 4398 { 4399 struct cfs_rq *cfs_rq; 4400 4401 for_each_leaf_cfs_rq(rq, cfs_rq) { 4402 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth; 4403 4404 raw_spin_lock(&cfs_b->lock); 4405 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 4406 raw_spin_unlock(&cfs_b->lock); 4407 } 4408 } 4409 4410 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 4411 { 4412 struct cfs_rq *cfs_rq; 4413 4414 for_each_leaf_cfs_rq(rq, cfs_rq) { 4415 if (!cfs_rq->runtime_enabled) 4416 continue; 4417 4418 /* 4419 * clock_task is not advancing so we just need to make sure 4420 * there's some valid quota amount 4421 */ 4422 cfs_rq->runtime_remaining = 1; 4423 /* 4424 * Offline rq is schedulable till cpu is completely disabled 4425 * in take_cpu_down(), so we prevent new cfs throttling here. 4426 */ 4427 cfs_rq->runtime_enabled = 0; 4428 4429 if (cfs_rq_throttled(cfs_rq)) 4430 unthrottle_cfs_rq(cfs_rq); 4431 } 4432 } 4433 4434 #else /* CONFIG_CFS_BANDWIDTH */ 4435 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4436 { 4437 return rq_clock_task(rq_of(cfs_rq)); 4438 } 4439 4440 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 4441 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 4442 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 4443 static inline void sync_throttle(struct task_group *tg, int cpu) {} 4444 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4445 4446 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4447 { 4448 return 0; 4449 } 4450 4451 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4452 { 4453 return 0; 4454 } 4455 4456 static inline int throttled_lb_pair(struct task_group *tg, 4457 int src_cpu, int dest_cpu) 4458 { 4459 return 0; 4460 } 4461 4462 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4463 4464 #ifdef CONFIG_FAIR_GROUP_SCHED 4465 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4466 #endif 4467 4468 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4469 { 4470 return NULL; 4471 } 4472 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4473 static inline void update_runtime_enabled(struct rq *rq) {} 4474 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 4475 4476 #endif /* CONFIG_CFS_BANDWIDTH */ 4477 4478 /************************************************** 4479 * CFS operations on tasks: 4480 */ 4481 4482 #ifdef CONFIG_SCHED_HRTICK 4483 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 4484 { 4485 struct sched_entity *se = &p->se; 4486 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4487 4488 SCHED_WARN_ON(task_rq(p) != rq); 4489 4490 if (rq->cfs.h_nr_running > 1) { 4491 u64 slice = sched_slice(cfs_rq, se); 4492 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 4493 s64 delta = slice - ran; 4494 4495 if (delta < 0) { 4496 if (rq->curr == p) 4497 resched_curr(rq); 4498 return; 4499 } 4500 hrtick_start(rq, delta); 4501 } 4502 } 4503 4504 /* 4505 * called from enqueue/dequeue and updates the hrtick when the 4506 * current task is from our class and nr_running is low enough 4507 * to matter. 4508 */ 4509 static void hrtick_update(struct rq *rq) 4510 { 4511 struct task_struct *curr = rq->curr; 4512 4513 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 4514 return; 4515 4516 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 4517 hrtick_start_fair(rq, curr); 4518 } 4519 #else /* !CONFIG_SCHED_HRTICK */ 4520 static inline void 4521 hrtick_start_fair(struct rq *rq, struct task_struct *p) 4522 { 4523 } 4524 4525 static inline void hrtick_update(struct rq *rq) 4526 { 4527 } 4528 #endif 4529 4530 /* 4531 * The enqueue_task method is called before nr_running is 4532 * increased. Here we update the fair scheduling stats and 4533 * then put the task into the rbtree: 4534 */ 4535 static void 4536 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4537 { 4538 struct cfs_rq *cfs_rq; 4539 struct sched_entity *se = &p->se; 4540 4541 /* 4542 * If in_iowait is set, the code below may not trigger any cpufreq 4543 * utilization updates, so do it here explicitly with the IOWAIT flag 4544 * passed. 4545 */ 4546 if (p->in_iowait) 4547 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT); 4548 4549 for_each_sched_entity(se) { 4550 if (se->on_rq) 4551 break; 4552 cfs_rq = cfs_rq_of(se); 4553 enqueue_entity(cfs_rq, se, flags); 4554 4555 /* 4556 * end evaluation on encountering a throttled cfs_rq 4557 * 4558 * note: in the case of encountering a throttled cfs_rq we will 4559 * post the final h_nr_running increment below. 4560 */ 4561 if (cfs_rq_throttled(cfs_rq)) 4562 break; 4563 cfs_rq->h_nr_running++; 4564 4565 flags = ENQUEUE_WAKEUP; 4566 } 4567 4568 for_each_sched_entity(se) { 4569 cfs_rq = cfs_rq_of(se); 4570 cfs_rq->h_nr_running++; 4571 4572 if (cfs_rq_throttled(cfs_rq)) 4573 break; 4574 4575 update_load_avg(se, 1); 4576 update_cfs_shares(cfs_rq); 4577 } 4578 4579 if (!se) 4580 add_nr_running(rq, 1); 4581 4582 hrtick_update(rq); 4583 } 4584 4585 static void set_next_buddy(struct sched_entity *se); 4586 4587 /* 4588 * The dequeue_task method is called before nr_running is 4589 * decreased. We remove the task from the rbtree and 4590 * update the fair scheduling stats: 4591 */ 4592 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4593 { 4594 struct cfs_rq *cfs_rq; 4595 struct sched_entity *se = &p->se; 4596 int task_sleep = flags & DEQUEUE_SLEEP; 4597 4598 for_each_sched_entity(se) { 4599 cfs_rq = cfs_rq_of(se); 4600 dequeue_entity(cfs_rq, se, flags); 4601 4602 /* 4603 * end evaluation on encountering a throttled cfs_rq 4604 * 4605 * note: in the case of encountering a throttled cfs_rq we will 4606 * post the final h_nr_running decrement below. 4607 */ 4608 if (cfs_rq_throttled(cfs_rq)) 4609 break; 4610 cfs_rq->h_nr_running--; 4611 4612 /* Don't dequeue parent if it has other entities besides us */ 4613 if (cfs_rq->load.weight) { 4614 /* Avoid re-evaluating load for this entity: */ 4615 se = parent_entity(se); 4616 /* 4617 * Bias pick_next to pick a task from this cfs_rq, as 4618 * p is sleeping when it is within its sched_slice. 4619 */ 4620 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 4621 set_next_buddy(se); 4622 break; 4623 } 4624 flags |= DEQUEUE_SLEEP; 4625 } 4626 4627 for_each_sched_entity(se) { 4628 cfs_rq = cfs_rq_of(se); 4629 cfs_rq->h_nr_running--; 4630 4631 if (cfs_rq_throttled(cfs_rq)) 4632 break; 4633 4634 update_load_avg(se, 1); 4635 update_cfs_shares(cfs_rq); 4636 } 4637 4638 if (!se) 4639 sub_nr_running(rq, 1); 4640 4641 hrtick_update(rq); 4642 } 4643 4644 #ifdef CONFIG_SMP 4645 4646 /* Working cpumask for: load_balance, load_balance_newidle. */ 4647 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 4648 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 4649 4650 #ifdef CONFIG_NO_HZ_COMMON 4651 /* 4652 * per rq 'load' arrray crap; XXX kill this. 4653 */ 4654 4655 /* 4656 * The exact cpuload calculated at every tick would be: 4657 * 4658 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 4659 * 4660 * If a cpu misses updates for n ticks (as it was idle) and update gets 4661 * called on the n+1-th tick when cpu may be busy, then we have: 4662 * 4663 * load_n = (1 - 1/2^i)^n * load_0 4664 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 4665 * 4666 * decay_load_missed() below does efficient calculation of 4667 * 4668 * load' = (1 - 1/2^i)^n * load 4669 * 4670 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 4671 * This allows us to precompute the above in said factors, thereby allowing the 4672 * reduction of an arbitrary n in O(log_2 n) steps. (See also 4673 * fixed_power_int()) 4674 * 4675 * The calculation is approximated on a 128 point scale. 4676 */ 4677 #define DEGRADE_SHIFT 7 4678 4679 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 4680 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 4681 { 0, 0, 0, 0, 0, 0, 0, 0 }, 4682 { 64, 32, 8, 0, 0, 0, 0, 0 }, 4683 { 96, 72, 40, 12, 1, 0, 0, 0 }, 4684 { 112, 98, 75, 43, 15, 1, 0, 0 }, 4685 { 120, 112, 98, 76, 45, 16, 2, 0 } 4686 }; 4687 4688 /* 4689 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 4690 * would be when CPU is idle and so we just decay the old load without 4691 * adding any new load. 4692 */ 4693 static unsigned long 4694 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 4695 { 4696 int j = 0; 4697 4698 if (!missed_updates) 4699 return load; 4700 4701 if (missed_updates >= degrade_zero_ticks[idx]) 4702 return 0; 4703 4704 if (idx == 1) 4705 return load >> missed_updates; 4706 4707 while (missed_updates) { 4708 if (missed_updates % 2) 4709 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 4710 4711 missed_updates >>= 1; 4712 j++; 4713 } 4714 return load; 4715 } 4716 #endif /* CONFIG_NO_HZ_COMMON */ 4717 4718 /** 4719 * __cpu_load_update - update the rq->cpu_load[] statistics 4720 * @this_rq: The rq to update statistics for 4721 * @this_load: The current load 4722 * @pending_updates: The number of missed updates 4723 * 4724 * Update rq->cpu_load[] statistics. This function is usually called every 4725 * scheduler tick (TICK_NSEC). 4726 * 4727 * This function computes a decaying average: 4728 * 4729 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 4730 * 4731 * Because of NOHZ it might not get called on every tick which gives need for 4732 * the @pending_updates argument. 4733 * 4734 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 4735 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 4736 * = A * (A * load[i]_n-2 + B) + B 4737 * = A * (A * (A * load[i]_n-3 + B) + B) + B 4738 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 4739 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 4740 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 4741 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 4742 * 4743 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 4744 * any change in load would have resulted in the tick being turned back on. 4745 * 4746 * For regular NOHZ, this reduces to: 4747 * 4748 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 4749 * 4750 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 4751 * term. 4752 */ 4753 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 4754 unsigned long pending_updates) 4755 { 4756 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 4757 int i, scale; 4758 4759 this_rq->nr_load_updates++; 4760 4761 /* Update our load: */ 4762 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 4763 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 4764 unsigned long old_load, new_load; 4765 4766 /* scale is effectively 1 << i now, and >> i divides by scale */ 4767 4768 old_load = this_rq->cpu_load[i]; 4769 #ifdef CONFIG_NO_HZ_COMMON 4770 old_load = decay_load_missed(old_load, pending_updates - 1, i); 4771 if (tickless_load) { 4772 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 4773 /* 4774 * old_load can never be a negative value because a 4775 * decayed tickless_load cannot be greater than the 4776 * original tickless_load. 4777 */ 4778 old_load += tickless_load; 4779 } 4780 #endif 4781 new_load = this_load; 4782 /* 4783 * Round up the averaging division if load is increasing. This 4784 * prevents us from getting stuck on 9 if the load is 10, for 4785 * example. 4786 */ 4787 if (new_load > old_load) 4788 new_load += scale - 1; 4789 4790 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 4791 } 4792 4793 sched_avg_update(this_rq); 4794 } 4795 4796 /* Used instead of source_load when we know the type == 0 */ 4797 static unsigned long weighted_cpuload(const int cpu) 4798 { 4799 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs); 4800 } 4801 4802 #ifdef CONFIG_NO_HZ_COMMON 4803 /* 4804 * There is no sane way to deal with nohz on smp when using jiffies because the 4805 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 4806 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 4807 * 4808 * Therefore we need to avoid the delta approach from the regular tick when 4809 * possible since that would seriously skew the load calculation. This is why we 4810 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 4811 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 4812 * loop exit, nohz_idle_balance, nohz full exit...) 4813 * 4814 * This means we might still be one tick off for nohz periods. 4815 */ 4816 4817 static void cpu_load_update_nohz(struct rq *this_rq, 4818 unsigned long curr_jiffies, 4819 unsigned long load) 4820 { 4821 unsigned long pending_updates; 4822 4823 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 4824 if (pending_updates) { 4825 this_rq->last_load_update_tick = curr_jiffies; 4826 /* 4827 * In the regular NOHZ case, we were idle, this means load 0. 4828 * In the NOHZ_FULL case, we were non-idle, we should consider 4829 * its weighted load. 4830 */ 4831 cpu_load_update(this_rq, load, pending_updates); 4832 } 4833 } 4834 4835 /* 4836 * Called from nohz_idle_balance() to update the load ratings before doing the 4837 * idle balance. 4838 */ 4839 static void cpu_load_update_idle(struct rq *this_rq) 4840 { 4841 /* 4842 * bail if there's load or we're actually up-to-date. 4843 */ 4844 if (weighted_cpuload(cpu_of(this_rq))) 4845 return; 4846 4847 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 4848 } 4849 4850 /* 4851 * Record CPU load on nohz entry so we know the tickless load to account 4852 * on nohz exit. cpu_load[0] happens then to be updated more frequently 4853 * than other cpu_load[idx] but it should be fine as cpu_load readers 4854 * shouldn't rely into synchronized cpu_load[*] updates. 4855 */ 4856 void cpu_load_update_nohz_start(void) 4857 { 4858 struct rq *this_rq = this_rq(); 4859 4860 /* 4861 * This is all lockless but should be fine. If weighted_cpuload changes 4862 * concurrently we'll exit nohz. And cpu_load write can race with 4863 * cpu_load_update_idle() but both updater would be writing the same. 4864 */ 4865 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq)); 4866 } 4867 4868 /* 4869 * Account the tickless load in the end of a nohz frame. 4870 */ 4871 void cpu_load_update_nohz_stop(void) 4872 { 4873 unsigned long curr_jiffies = READ_ONCE(jiffies); 4874 struct rq *this_rq = this_rq(); 4875 unsigned long load; 4876 4877 if (curr_jiffies == this_rq->last_load_update_tick) 4878 return; 4879 4880 load = weighted_cpuload(cpu_of(this_rq)); 4881 raw_spin_lock(&this_rq->lock); 4882 update_rq_clock(this_rq); 4883 cpu_load_update_nohz(this_rq, curr_jiffies, load); 4884 raw_spin_unlock(&this_rq->lock); 4885 } 4886 #else /* !CONFIG_NO_HZ_COMMON */ 4887 static inline void cpu_load_update_nohz(struct rq *this_rq, 4888 unsigned long curr_jiffies, 4889 unsigned long load) { } 4890 #endif /* CONFIG_NO_HZ_COMMON */ 4891 4892 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 4893 { 4894 #ifdef CONFIG_NO_HZ_COMMON 4895 /* See the mess around cpu_load_update_nohz(). */ 4896 this_rq->last_load_update_tick = READ_ONCE(jiffies); 4897 #endif 4898 cpu_load_update(this_rq, load, 1); 4899 } 4900 4901 /* 4902 * Called from scheduler_tick() 4903 */ 4904 void cpu_load_update_active(struct rq *this_rq) 4905 { 4906 unsigned long load = weighted_cpuload(cpu_of(this_rq)); 4907 4908 if (tick_nohz_tick_stopped()) 4909 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 4910 else 4911 cpu_load_update_periodic(this_rq, load); 4912 } 4913 4914 /* 4915 * Return a low guess at the load of a migration-source cpu weighted 4916 * according to the scheduling class and "nice" value. 4917 * 4918 * We want to under-estimate the load of migration sources, to 4919 * balance conservatively. 4920 */ 4921 static unsigned long source_load(int cpu, int type) 4922 { 4923 struct rq *rq = cpu_rq(cpu); 4924 unsigned long total = weighted_cpuload(cpu); 4925 4926 if (type == 0 || !sched_feat(LB_BIAS)) 4927 return total; 4928 4929 return min(rq->cpu_load[type-1], total); 4930 } 4931 4932 /* 4933 * Return a high guess at the load of a migration-target cpu weighted 4934 * according to the scheduling class and "nice" value. 4935 */ 4936 static unsigned long target_load(int cpu, int type) 4937 { 4938 struct rq *rq = cpu_rq(cpu); 4939 unsigned long total = weighted_cpuload(cpu); 4940 4941 if (type == 0 || !sched_feat(LB_BIAS)) 4942 return total; 4943 4944 return max(rq->cpu_load[type-1], total); 4945 } 4946 4947 static unsigned long capacity_of(int cpu) 4948 { 4949 return cpu_rq(cpu)->cpu_capacity; 4950 } 4951 4952 static unsigned long capacity_orig_of(int cpu) 4953 { 4954 return cpu_rq(cpu)->cpu_capacity_orig; 4955 } 4956 4957 static unsigned long cpu_avg_load_per_task(int cpu) 4958 { 4959 struct rq *rq = cpu_rq(cpu); 4960 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 4961 unsigned long load_avg = weighted_cpuload(cpu); 4962 4963 if (nr_running) 4964 return load_avg / nr_running; 4965 4966 return 0; 4967 } 4968 4969 #ifdef CONFIG_FAIR_GROUP_SCHED 4970 /* 4971 * effective_load() calculates the load change as seen from the root_task_group 4972 * 4973 * Adding load to a group doesn't make a group heavier, but can cause movement 4974 * of group shares between cpus. Assuming the shares were perfectly aligned one 4975 * can calculate the shift in shares. 4976 * 4977 * Calculate the effective load difference if @wl is added (subtracted) to @tg 4978 * on this @cpu and results in a total addition (subtraction) of @wg to the 4979 * total group weight. 4980 * 4981 * Given a runqueue weight distribution (rw_i) we can compute a shares 4982 * distribution (s_i) using: 4983 * 4984 * s_i = rw_i / \Sum rw_j (1) 4985 * 4986 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 4987 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 4988 * shares distribution (s_i): 4989 * 4990 * rw_i = { 2, 4, 1, 0 } 4991 * s_i = { 2/7, 4/7, 1/7, 0 } 4992 * 4993 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 4994 * task used to run on and the CPU the waker is running on), we need to 4995 * compute the effect of waking a task on either CPU and, in case of a sync 4996 * wakeup, compute the effect of the current task going to sleep. 4997 * 4998 * So for a change of @wl to the local @cpu with an overall group weight change 4999 * of @wl we can compute the new shares distribution (s'_i) using: 5000 * 5001 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 5002 * 5003 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 5004 * differences in waking a task to CPU 0. The additional task changes the 5005 * weight and shares distributions like: 5006 * 5007 * rw'_i = { 3, 4, 1, 0 } 5008 * s'_i = { 3/8, 4/8, 1/8, 0 } 5009 * 5010 * We can then compute the difference in effective weight by using: 5011 * 5012 * dw_i = S * (s'_i - s_i) (3) 5013 * 5014 * Where 'S' is the group weight as seen by its parent. 5015 * 5016 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 5017 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 5018 * 4/7) times the weight of the group. 5019 */ 5020 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 5021 { 5022 struct sched_entity *se = tg->se[cpu]; 5023 5024 if (!tg->parent) /* the trivial, non-cgroup case */ 5025 return wl; 5026 5027 for_each_sched_entity(se) { 5028 struct cfs_rq *cfs_rq = se->my_q; 5029 long W, w = cfs_rq_load_avg(cfs_rq); 5030 5031 tg = cfs_rq->tg; 5032 5033 /* 5034 * W = @wg + \Sum rw_j 5035 */ 5036 W = wg + atomic_long_read(&tg->load_avg); 5037 5038 /* Ensure \Sum rw_j >= rw_i */ 5039 W -= cfs_rq->tg_load_avg_contrib; 5040 W += w; 5041 5042 /* 5043 * w = rw_i + @wl 5044 */ 5045 w += wl; 5046 5047 /* 5048 * wl = S * s'_i; see (2) 5049 */ 5050 if (W > 0 && w < W) 5051 wl = (w * (long)scale_load_down(tg->shares)) / W; 5052 else 5053 wl = scale_load_down(tg->shares); 5054 5055 /* 5056 * Per the above, wl is the new se->load.weight value; since 5057 * those are clipped to [MIN_SHARES, ...) do so now. See 5058 * calc_cfs_shares(). 5059 */ 5060 if (wl < MIN_SHARES) 5061 wl = MIN_SHARES; 5062 5063 /* 5064 * wl = dw_i = S * (s'_i - s_i); see (3) 5065 */ 5066 wl -= se->avg.load_avg; 5067 5068 /* 5069 * Recursively apply this logic to all parent groups to compute 5070 * the final effective load change on the root group. Since 5071 * only the @tg group gets extra weight, all parent groups can 5072 * only redistribute existing shares. @wl is the shift in shares 5073 * resulting from this level per the above. 5074 */ 5075 wg = 0; 5076 } 5077 5078 return wl; 5079 } 5080 #else 5081 5082 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 5083 { 5084 return wl; 5085 } 5086 5087 #endif 5088 5089 static void record_wakee(struct task_struct *p) 5090 { 5091 /* 5092 * Only decay a single time; tasks that have less then 1 wakeup per 5093 * jiffy will not have built up many flips. 5094 */ 5095 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5096 current->wakee_flips >>= 1; 5097 current->wakee_flip_decay_ts = jiffies; 5098 } 5099 5100 if (current->last_wakee != p) { 5101 current->last_wakee = p; 5102 current->wakee_flips++; 5103 } 5104 } 5105 5106 /* 5107 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5108 * 5109 * A waker of many should wake a different task than the one last awakened 5110 * at a frequency roughly N times higher than one of its wakees. 5111 * 5112 * In order to determine whether we should let the load spread vs consolidating 5113 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5114 * partner, and a factor of lls_size higher frequency in the other. 5115 * 5116 * With both conditions met, we can be relatively sure that the relationship is 5117 * non-monogamous, with partner count exceeding socket size. 5118 * 5119 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5120 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5121 * socket size. 5122 */ 5123 static int wake_wide(struct task_struct *p) 5124 { 5125 unsigned int master = current->wakee_flips; 5126 unsigned int slave = p->wakee_flips; 5127 int factor = this_cpu_read(sd_llc_size); 5128 5129 if (master < slave) 5130 swap(master, slave); 5131 if (slave < factor || master < slave * factor) 5132 return 0; 5133 return 1; 5134 } 5135 5136 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5137 int prev_cpu, int sync) 5138 { 5139 s64 this_load, load; 5140 s64 this_eff_load, prev_eff_load; 5141 int idx, this_cpu; 5142 struct task_group *tg; 5143 unsigned long weight; 5144 int balanced; 5145 5146 idx = sd->wake_idx; 5147 this_cpu = smp_processor_id(); 5148 load = source_load(prev_cpu, idx); 5149 this_load = target_load(this_cpu, idx); 5150 5151 /* 5152 * If sync wakeup then subtract the (maximum possible) 5153 * effect of the currently running task from the load 5154 * of the current CPU: 5155 */ 5156 if (sync) { 5157 tg = task_group(current); 5158 weight = current->se.avg.load_avg; 5159 5160 this_load += effective_load(tg, this_cpu, -weight, -weight); 5161 load += effective_load(tg, prev_cpu, 0, -weight); 5162 } 5163 5164 tg = task_group(p); 5165 weight = p->se.avg.load_avg; 5166 5167 /* 5168 * In low-load situations, where prev_cpu is idle and this_cpu is idle 5169 * due to the sync cause above having dropped this_load to 0, we'll 5170 * always have an imbalance, but there's really nothing you can do 5171 * about that, so that's good too. 5172 * 5173 * Otherwise check if either cpus are near enough in load to allow this 5174 * task to be woken on this_cpu. 5175 */ 5176 this_eff_load = 100; 5177 this_eff_load *= capacity_of(prev_cpu); 5178 5179 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 5180 prev_eff_load *= capacity_of(this_cpu); 5181 5182 if (this_load > 0) { 5183 this_eff_load *= this_load + 5184 effective_load(tg, this_cpu, weight, weight); 5185 5186 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 5187 } 5188 5189 balanced = this_eff_load <= prev_eff_load; 5190 5191 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5192 5193 if (!balanced) 5194 return 0; 5195 5196 schedstat_inc(sd->ttwu_move_affine); 5197 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5198 5199 return 1; 5200 } 5201 5202 /* 5203 * find_idlest_group finds and returns the least busy CPU group within the 5204 * domain. 5205 */ 5206 static struct sched_group * 5207 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5208 int this_cpu, int sd_flag) 5209 { 5210 struct sched_group *idlest = NULL, *group = sd->groups; 5211 unsigned long min_load = ULONG_MAX, this_load = 0; 5212 int load_idx = sd->forkexec_idx; 5213 int imbalance = 100 + (sd->imbalance_pct-100)/2; 5214 5215 if (sd_flag & SD_BALANCE_WAKE) 5216 load_idx = sd->wake_idx; 5217 5218 do { 5219 unsigned long load, avg_load; 5220 int local_group; 5221 int i; 5222 5223 /* Skip over this group if it has no CPUs allowed */ 5224 if (!cpumask_intersects(sched_group_cpus(group), 5225 tsk_cpus_allowed(p))) 5226 continue; 5227 5228 local_group = cpumask_test_cpu(this_cpu, 5229 sched_group_cpus(group)); 5230 5231 /* Tally up the load of all CPUs in the group */ 5232 avg_load = 0; 5233 5234 for_each_cpu(i, sched_group_cpus(group)) { 5235 /* Bias balancing toward cpus of our domain */ 5236 if (local_group) 5237 load = source_load(i, load_idx); 5238 else 5239 load = target_load(i, load_idx); 5240 5241 avg_load += load; 5242 } 5243 5244 /* Adjust by relative CPU capacity of the group */ 5245 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity; 5246 5247 if (local_group) { 5248 this_load = avg_load; 5249 } else if (avg_load < min_load) { 5250 min_load = avg_load; 5251 idlest = group; 5252 } 5253 } while (group = group->next, group != sd->groups); 5254 5255 if (!idlest || 100*this_load < imbalance*min_load) 5256 return NULL; 5257 return idlest; 5258 } 5259 5260 /* 5261 * find_idlest_cpu - find the idlest cpu among the cpus in group. 5262 */ 5263 static int 5264 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5265 { 5266 unsigned long load, min_load = ULONG_MAX; 5267 unsigned int min_exit_latency = UINT_MAX; 5268 u64 latest_idle_timestamp = 0; 5269 int least_loaded_cpu = this_cpu; 5270 int shallowest_idle_cpu = -1; 5271 int i; 5272 5273 /* Check if we have any choice: */ 5274 if (group->group_weight == 1) 5275 return cpumask_first(sched_group_cpus(group)); 5276 5277 /* Traverse only the allowed CPUs */ 5278 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 5279 if (idle_cpu(i)) { 5280 struct rq *rq = cpu_rq(i); 5281 struct cpuidle_state *idle = idle_get_state(rq); 5282 if (idle && idle->exit_latency < min_exit_latency) { 5283 /* 5284 * We give priority to a CPU whose idle state 5285 * has the smallest exit latency irrespective 5286 * of any idle timestamp. 5287 */ 5288 min_exit_latency = idle->exit_latency; 5289 latest_idle_timestamp = rq->idle_stamp; 5290 shallowest_idle_cpu = i; 5291 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5292 rq->idle_stamp > latest_idle_timestamp) { 5293 /* 5294 * If equal or no active idle state, then 5295 * the most recently idled CPU might have 5296 * a warmer cache. 5297 */ 5298 latest_idle_timestamp = rq->idle_stamp; 5299 shallowest_idle_cpu = i; 5300 } 5301 } else if (shallowest_idle_cpu == -1) { 5302 load = weighted_cpuload(i); 5303 if (load < min_load || (load == min_load && i == this_cpu)) { 5304 min_load = load; 5305 least_loaded_cpu = i; 5306 } 5307 } 5308 } 5309 5310 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5311 } 5312 5313 /* 5314 * Implement a for_each_cpu() variant that starts the scan at a given cpu 5315 * (@start), and wraps around. 5316 * 5317 * This is used to scan for idle CPUs; such that not all CPUs looking for an 5318 * idle CPU find the same CPU. The down-side is that tasks tend to cycle 5319 * through the LLC domain. 5320 * 5321 * Especially tbench is found sensitive to this. 5322 */ 5323 5324 static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped) 5325 { 5326 int next; 5327 5328 again: 5329 next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1); 5330 5331 if (*wrapped) { 5332 if (next >= start) 5333 return nr_cpumask_bits; 5334 } else { 5335 if (next >= nr_cpumask_bits) { 5336 *wrapped = 1; 5337 n = -1; 5338 goto again; 5339 } 5340 } 5341 5342 return next; 5343 } 5344 5345 #define for_each_cpu_wrap(cpu, mask, start, wrap) \ 5346 for ((wrap) = 0, (cpu) = (start)-1; \ 5347 (cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)), \ 5348 (cpu) < nr_cpumask_bits; ) 5349 5350 #ifdef CONFIG_SCHED_SMT 5351 5352 static inline void set_idle_cores(int cpu, int val) 5353 { 5354 struct sched_domain_shared *sds; 5355 5356 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5357 if (sds) 5358 WRITE_ONCE(sds->has_idle_cores, val); 5359 } 5360 5361 static inline bool test_idle_cores(int cpu, bool def) 5362 { 5363 struct sched_domain_shared *sds; 5364 5365 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5366 if (sds) 5367 return READ_ONCE(sds->has_idle_cores); 5368 5369 return def; 5370 } 5371 5372 /* 5373 * Scans the local SMT mask to see if the entire core is idle, and records this 5374 * information in sd_llc_shared->has_idle_cores. 5375 * 5376 * Since SMT siblings share all cache levels, inspecting this limited remote 5377 * state should be fairly cheap. 5378 */ 5379 void __update_idle_core(struct rq *rq) 5380 { 5381 int core = cpu_of(rq); 5382 int cpu; 5383 5384 rcu_read_lock(); 5385 if (test_idle_cores(core, true)) 5386 goto unlock; 5387 5388 for_each_cpu(cpu, cpu_smt_mask(core)) { 5389 if (cpu == core) 5390 continue; 5391 5392 if (!idle_cpu(cpu)) 5393 goto unlock; 5394 } 5395 5396 set_idle_cores(core, 1); 5397 unlock: 5398 rcu_read_unlock(); 5399 } 5400 5401 /* 5402 * Scan the entire LLC domain for idle cores; this dynamically switches off if 5403 * there are no idle cores left in the system; tracked through 5404 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 5405 */ 5406 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5407 { 5408 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 5409 int core, cpu, wrap; 5410 5411 if (!static_branch_likely(&sched_smt_present)) 5412 return -1; 5413 5414 if (!test_idle_cores(target, false)) 5415 return -1; 5416 5417 cpumask_and(cpus, sched_domain_span(sd), tsk_cpus_allowed(p)); 5418 5419 for_each_cpu_wrap(core, cpus, target, wrap) { 5420 bool idle = true; 5421 5422 for_each_cpu(cpu, cpu_smt_mask(core)) { 5423 cpumask_clear_cpu(cpu, cpus); 5424 if (!idle_cpu(cpu)) 5425 idle = false; 5426 } 5427 5428 if (idle) 5429 return core; 5430 } 5431 5432 /* 5433 * Failed to find an idle core; stop looking for one. 5434 */ 5435 set_idle_cores(target, 0); 5436 5437 return -1; 5438 } 5439 5440 /* 5441 * Scan the local SMT mask for idle CPUs. 5442 */ 5443 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 5444 { 5445 int cpu; 5446 5447 if (!static_branch_likely(&sched_smt_present)) 5448 return -1; 5449 5450 for_each_cpu(cpu, cpu_smt_mask(target)) { 5451 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 5452 continue; 5453 if (idle_cpu(cpu)) 5454 return cpu; 5455 } 5456 5457 return -1; 5458 } 5459 5460 #else /* CONFIG_SCHED_SMT */ 5461 5462 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5463 { 5464 return -1; 5465 } 5466 5467 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 5468 { 5469 return -1; 5470 } 5471 5472 #endif /* CONFIG_SCHED_SMT */ 5473 5474 /* 5475 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 5476 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 5477 * average idle time for this rq (as found in rq->avg_idle). 5478 */ 5479 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 5480 { 5481 struct sched_domain *this_sd; 5482 u64 avg_cost, avg_idle = this_rq()->avg_idle; 5483 u64 time, cost; 5484 s64 delta; 5485 int cpu, wrap; 5486 5487 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 5488 if (!this_sd) 5489 return -1; 5490 5491 avg_cost = this_sd->avg_scan_cost; 5492 5493 /* 5494 * Due to large variance we need a large fuzz factor; hackbench in 5495 * particularly is sensitive here. 5496 */ 5497 if ((avg_idle / 512) < avg_cost) 5498 return -1; 5499 5500 time = local_clock(); 5501 5502 for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) { 5503 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) 5504 continue; 5505 if (idle_cpu(cpu)) 5506 break; 5507 } 5508 5509 time = local_clock() - time; 5510 cost = this_sd->avg_scan_cost; 5511 delta = (s64)(time - cost) / 8; 5512 this_sd->avg_scan_cost += delta; 5513 5514 return cpu; 5515 } 5516 5517 /* 5518 * Try and locate an idle core/thread in the LLC cache domain. 5519 */ 5520 static int select_idle_sibling(struct task_struct *p, int prev, int target) 5521 { 5522 struct sched_domain *sd; 5523 int i; 5524 5525 if (idle_cpu(target)) 5526 return target; 5527 5528 /* 5529 * If the previous cpu is cache affine and idle, don't be stupid. 5530 */ 5531 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev)) 5532 return prev; 5533 5534 sd = rcu_dereference(per_cpu(sd_llc, target)); 5535 if (!sd) 5536 return target; 5537 5538 i = select_idle_core(p, sd, target); 5539 if ((unsigned)i < nr_cpumask_bits) 5540 return i; 5541 5542 i = select_idle_cpu(p, sd, target); 5543 if ((unsigned)i < nr_cpumask_bits) 5544 return i; 5545 5546 i = select_idle_smt(p, sd, target); 5547 if ((unsigned)i < nr_cpumask_bits) 5548 return i; 5549 5550 return target; 5551 } 5552 5553 /* 5554 * cpu_util returns the amount of capacity of a CPU that is used by CFS 5555 * tasks. The unit of the return value must be the one of capacity so we can 5556 * compare the utilization with the capacity of the CPU that is available for 5557 * CFS task (ie cpu_capacity). 5558 * 5559 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 5560 * recent utilization of currently non-runnable tasks on a CPU. It represents 5561 * the amount of utilization of a CPU in the range [0..capacity_orig] where 5562 * capacity_orig is the cpu_capacity available at the highest frequency 5563 * (arch_scale_freq_capacity()). 5564 * The utilization of a CPU converges towards a sum equal to or less than the 5565 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 5566 * the running time on this CPU scaled by capacity_curr. 5567 * 5568 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 5569 * higher than capacity_orig because of unfortunate rounding in 5570 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 5571 * the average stabilizes with the new running time. We need to check that the 5572 * utilization stays within the range of [0..capacity_orig] and cap it if 5573 * necessary. Without utilization capping, a group could be seen as overloaded 5574 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 5575 * available capacity. We allow utilization to overshoot capacity_curr (but not 5576 * capacity_orig) as it useful for predicting the capacity required after task 5577 * migrations (scheduler-driven DVFS). 5578 */ 5579 static int cpu_util(int cpu) 5580 { 5581 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg; 5582 unsigned long capacity = capacity_orig_of(cpu); 5583 5584 return (util >= capacity) ? capacity : util; 5585 } 5586 5587 static inline int task_util(struct task_struct *p) 5588 { 5589 return p->se.avg.util_avg; 5590 } 5591 5592 /* 5593 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 5594 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 5595 * 5596 * In that case WAKE_AFFINE doesn't make sense and we'll let 5597 * BALANCE_WAKE sort things out. 5598 */ 5599 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 5600 { 5601 long min_cap, max_cap; 5602 5603 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 5604 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 5605 5606 /* Minimum capacity is close to max, no need to abort wake_affine */ 5607 if (max_cap - min_cap < max_cap >> 3) 5608 return 0; 5609 5610 return min_cap * 1024 < task_util(p) * capacity_margin; 5611 } 5612 5613 /* 5614 * select_task_rq_fair: Select target runqueue for the waking task in domains 5615 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 5616 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 5617 * 5618 * Balances load by selecting the idlest cpu in the idlest group, or under 5619 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. 5620 * 5621 * Returns the target cpu number. 5622 * 5623 * preempt must be disabled. 5624 */ 5625 static int 5626 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 5627 { 5628 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 5629 int cpu = smp_processor_id(); 5630 int new_cpu = prev_cpu; 5631 int want_affine = 0; 5632 int sync = wake_flags & WF_SYNC; 5633 5634 if (sd_flag & SD_BALANCE_WAKE) { 5635 record_wakee(p); 5636 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) 5637 && cpumask_test_cpu(cpu, tsk_cpus_allowed(p)); 5638 } 5639 5640 rcu_read_lock(); 5641 for_each_domain(cpu, tmp) { 5642 if (!(tmp->flags & SD_LOAD_BALANCE)) 5643 break; 5644 5645 /* 5646 * If both cpu and prev_cpu are part of this domain, 5647 * cpu is a valid SD_WAKE_AFFINE target. 5648 */ 5649 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 5650 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 5651 affine_sd = tmp; 5652 break; 5653 } 5654 5655 if (tmp->flags & sd_flag) 5656 sd = tmp; 5657 else if (!want_affine) 5658 break; 5659 } 5660 5661 if (affine_sd) { 5662 sd = NULL; /* Prefer wake_affine over balance flags */ 5663 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync)) 5664 new_cpu = cpu; 5665 } 5666 5667 if (!sd) { 5668 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */ 5669 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 5670 5671 } else while (sd) { 5672 struct sched_group *group; 5673 int weight; 5674 5675 if (!(sd->flags & sd_flag)) { 5676 sd = sd->child; 5677 continue; 5678 } 5679 5680 group = find_idlest_group(sd, p, cpu, sd_flag); 5681 if (!group) { 5682 sd = sd->child; 5683 continue; 5684 } 5685 5686 new_cpu = find_idlest_cpu(group, p, cpu); 5687 if (new_cpu == -1 || new_cpu == cpu) { 5688 /* Now try balancing at a lower domain level of cpu */ 5689 sd = sd->child; 5690 continue; 5691 } 5692 5693 /* Now try balancing at a lower domain level of new_cpu */ 5694 cpu = new_cpu; 5695 weight = sd->span_weight; 5696 sd = NULL; 5697 for_each_domain(cpu, tmp) { 5698 if (weight <= tmp->span_weight) 5699 break; 5700 if (tmp->flags & sd_flag) 5701 sd = tmp; 5702 } 5703 /* while loop will break here if sd == NULL */ 5704 } 5705 rcu_read_unlock(); 5706 5707 return new_cpu; 5708 } 5709 5710 /* 5711 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 5712 * cfs_rq_of(p) references at time of call are still valid and identify the 5713 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 5714 */ 5715 static void migrate_task_rq_fair(struct task_struct *p) 5716 { 5717 /* 5718 * As blocked tasks retain absolute vruntime the migration needs to 5719 * deal with this by subtracting the old and adding the new 5720 * min_vruntime -- the latter is done by enqueue_entity() when placing 5721 * the task on the new runqueue. 5722 */ 5723 if (p->state == TASK_WAKING) { 5724 struct sched_entity *se = &p->se; 5725 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5726 u64 min_vruntime; 5727 5728 #ifndef CONFIG_64BIT 5729 u64 min_vruntime_copy; 5730 5731 do { 5732 min_vruntime_copy = cfs_rq->min_vruntime_copy; 5733 smp_rmb(); 5734 min_vruntime = cfs_rq->min_vruntime; 5735 } while (min_vruntime != min_vruntime_copy); 5736 #else 5737 min_vruntime = cfs_rq->min_vruntime; 5738 #endif 5739 5740 se->vruntime -= min_vruntime; 5741 } 5742 5743 /* 5744 * We are supposed to update the task to "current" time, then its up to date 5745 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting 5746 * what current time is, so simply throw away the out-of-date time. This 5747 * will result in the wakee task is less decayed, but giving the wakee more 5748 * load sounds not bad. 5749 */ 5750 remove_entity_load_avg(&p->se); 5751 5752 /* Tell new CPU we are migrated */ 5753 p->se.avg.last_update_time = 0; 5754 5755 /* We have migrated, no longer consider this task hot */ 5756 p->se.exec_start = 0; 5757 } 5758 5759 static void task_dead_fair(struct task_struct *p) 5760 { 5761 remove_entity_load_avg(&p->se); 5762 } 5763 #endif /* CONFIG_SMP */ 5764 5765 static unsigned long 5766 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 5767 { 5768 unsigned long gran = sysctl_sched_wakeup_granularity; 5769 5770 /* 5771 * Since its curr running now, convert the gran from real-time 5772 * to virtual-time in his units. 5773 * 5774 * By using 'se' instead of 'curr' we penalize light tasks, so 5775 * they get preempted easier. That is, if 'se' < 'curr' then 5776 * the resulting gran will be larger, therefore penalizing the 5777 * lighter, if otoh 'se' > 'curr' then the resulting gran will 5778 * be smaller, again penalizing the lighter task. 5779 * 5780 * This is especially important for buddies when the leftmost 5781 * task is higher priority than the buddy. 5782 */ 5783 return calc_delta_fair(gran, se); 5784 } 5785 5786 /* 5787 * Should 'se' preempt 'curr'. 5788 * 5789 * |s1 5790 * |s2 5791 * |s3 5792 * g 5793 * |<--->|c 5794 * 5795 * w(c, s1) = -1 5796 * w(c, s2) = 0 5797 * w(c, s3) = 1 5798 * 5799 */ 5800 static int 5801 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 5802 { 5803 s64 gran, vdiff = curr->vruntime - se->vruntime; 5804 5805 if (vdiff <= 0) 5806 return -1; 5807 5808 gran = wakeup_gran(curr, se); 5809 if (vdiff > gran) 5810 return 1; 5811 5812 return 0; 5813 } 5814 5815 static void set_last_buddy(struct sched_entity *se) 5816 { 5817 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 5818 return; 5819 5820 for_each_sched_entity(se) 5821 cfs_rq_of(se)->last = se; 5822 } 5823 5824 static void set_next_buddy(struct sched_entity *se) 5825 { 5826 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 5827 return; 5828 5829 for_each_sched_entity(se) 5830 cfs_rq_of(se)->next = se; 5831 } 5832 5833 static void set_skip_buddy(struct sched_entity *se) 5834 { 5835 for_each_sched_entity(se) 5836 cfs_rq_of(se)->skip = se; 5837 } 5838 5839 /* 5840 * Preempt the current task with a newly woken task if needed: 5841 */ 5842 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 5843 { 5844 struct task_struct *curr = rq->curr; 5845 struct sched_entity *se = &curr->se, *pse = &p->se; 5846 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 5847 int scale = cfs_rq->nr_running >= sched_nr_latency; 5848 int next_buddy_marked = 0; 5849 5850 if (unlikely(se == pse)) 5851 return; 5852 5853 /* 5854 * This is possible from callers such as attach_tasks(), in which we 5855 * unconditionally check_prempt_curr() after an enqueue (which may have 5856 * lead to a throttle). This both saves work and prevents false 5857 * next-buddy nomination below. 5858 */ 5859 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 5860 return; 5861 5862 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 5863 set_next_buddy(pse); 5864 next_buddy_marked = 1; 5865 } 5866 5867 /* 5868 * We can come here with TIF_NEED_RESCHED already set from new task 5869 * wake up path. 5870 * 5871 * Note: this also catches the edge-case of curr being in a throttled 5872 * group (e.g. via set_curr_task), since update_curr() (in the 5873 * enqueue of curr) will have resulted in resched being set. This 5874 * prevents us from potentially nominating it as a false LAST_BUDDY 5875 * below. 5876 */ 5877 if (test_tsk_need_resched(curr)) 5878 return; 5879 5880 /* Idle tasks are by definition preempted by non-idle tasks. */ 5881 if (unlikely(curr->policy == SCHED_IDLE) && 5882 likely(p->policy != SCHED_IDLE)) 5883 goto preempt; 5884 5885 /* 5886 * Batch and idle tasks do not preempt non-idle tasks (their preemption 5887 * is driven by the tick): 5888 */ 5889 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 5890 return; 5891 5892 find_matching_se(&se, &pse); 5893 update_curr(cfs_rq_of(se)); 5894 BUG_ON(!pse); 5895 if (wakeup_preempt_entity(se, pse) == 1) { 5896 /* 5897 * Bias pick_next to pick the sched entity that is 5898 * triggering this preemption. 5899 */ 5900 if (!next_buddy_marked) 5901 set_next_buddy(pse); 5902 goto preempt; 5903 } 5904 5905 return; 5906 5907 preempt: 5908 resched_curr(rq); 5909 /* 5910 * Only set the backward buddy when the current task is still 5911 * on the rq. This can happen when a wakeup gets interleaved 5912 * with schedule on the ->pre_schedule() or idle_balance() 5913 * point, either of which can * drop the rq lock. 5914 * 5915 * Also, during early boot the idle thread is in the fair class, 5916 * for obvious reasons its a bad idea to schedule back to it. 5917 */ 5918 if (unlikely(!se->on_rq || curr == rq->idle)) 5919 return; 5920 5921 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 5922 set_last_buddy(se); 5923 } 5924 5925 static struct task_struct * 5926 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie) 5927 { 5928 struct cfs_rq *cfs_rq = &rq->cfs; 5929 struct sched_entity *se; 5930 struct task_struct *p; 5931 int new_tasks; 5932 5933 again: 5934 #ifdef CONFIG_FAIR_GROUP_SCHED 5935 if (!cfs_rq->nr_running) 5936 goto idle; 5937 5938 if (prev->sched_class != &fair_sched_class) 5939 goto simple; 5940 5941 /* 5942 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 5943 * likely that a next task is from the same cgroup as the current. 5944 * 5945 * Therefore attempt to avoid putting and setting the entire cgroup 5946 * hierarchy, only change the part that actually changes. 5947 */ 5948 5949 do { 5950 struct sched_entity *curr = cfs_rq->curr; 5951 5952 /* 5953 * Since we got here without doing put_prev_entity() we also 5954 * have to consider cfs_rq->curr. If it is still a runnable 5955 * entity, update_curr() will update its vruntime, otherwise 5956 * forget we've ever seen it. 5957 */ 5958 if (curr) { 5959 if (curr->on_rq) 5960 update_curr(cfs_rq); 5961 else 5962 curr = NULL; 5963 5964 /* 5965 * This call to check_cfs_rq_runtime() will do the 5966 * throttle and dequeue its entity in the parent(s). 5967 * Therefore the 'simple' nr_running test will indeed 5968 * be correct. 5969 */ 5970 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 5971 goto simple; 5972 } 5973 5974 se = pick_next_entity(cfs_rq, curr); 5975 cfs_rq = group_cfs_rq(se); 5976 } while (cfs_rq); 5977 5978 p = task_of(se); 5979 5980 /* 5981 * Since we haven't yet done put_prev_entity and if the selected task 5982 * is a different task than we started out with, try and touch the 5983 * least amount of cfs_rqs. 5984 */ 5985 if (prev != p) { 5986 struct sched_entity *pse = &prev->se; 5987 5988 while (!(cfs_rq = is_same_group(se, pse))) { 5989 int se_depth = se->depth; 5990 int pse_depth = pse->depth; 5991 5992 if (se_depth <= pse_depth) { 5993 put_prev_entity(cfs_rq_of(pse), pse); 5994 pse = parent_entity(pse); 5995 } 5996 if (se_depth >= pse_depth) { 5997 set_next_entity(cfs_rq_of(se), se); 5998 se = parent_entity(se); 5999 } 6000 } 6001 6002 put_prev_entity(cfs_rq, pse); 6003 set_next_entity(cfs_rq, se); 6004 } 6005 6006 if (hrtick_enabled(rq)) 6007 hrtick_start_fair(rq, p); 6008 6009 return p; 6010 simple: 6011 cfs_rq = &rq->cfs; 6012 #endif 6013 6014 if (!cfs_rq->nr_running) 6015 goto idle; 6016 6017 put_prev_task(rq, prev); 6018 6019 do { 6020 se = pick_next_entity(cfs_rq, NULL); 6021 set_next_entity(cfs_rq, se); 6022 cfs_rq = group_cfs_rq(se); 6023 } while (cfs_rq); 6024 6025 p = task_of(se); 6026 6027 if (hrtick_enabled(rq)) 6028 hrtick_start_fair(rq, p); 6029 6030 return p; 6031 6032 idle: 6033 /* 6034 * This is OK, because current is on_cpu, which avoids it being picked 6035 * for load-balance and preemption/IRQs are still disabled avoiding 6036 * further scheduler activity on it and we're being very careful to 6037 * re-start the picking loop. 6038 */ 6039 lockdep_unpin_lock(&rq->lock, cookie); 6040 new_tasks = idle_balance(rq); 6041 lockdep_repin_lock(&rq->lock, cookie); 6042 /* 6043 * Because idle_balance() releases (and re-acquires) rq->lock, it is 6044 * possible for any higher priority task to appear. In that case we 6045 * must re-start the pick_next_entity() loop. 6046 */ 6047 if (new_tasks < 0) 6048 return RETRY_TASK; 6049 6050 if (new_tasks > 0) 6051 goto again; 6052 6053 return NULL; 6054 } 6055 6056 /* 6057 * Account for a descheduled task: 6058 */ 6059 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 6060 { 6061 struct sched_entity *se = &prev->se; 6062 struct cfs_rq *cfs_rq; 6063 6064 for_each_sched_entity(se) { 6065 cfs_rq = cfs_rq_of(se); 6066 put_prev_entity(cfs_rq, se); 6067 } 6068 } 6069 6070 /* 6071 * sched_yield() is very simple 6072 * 6073 * The magic of dealing with the ->skip buddy is in pick_next_entity. 6074 */ 6075 static void yield_task_fair(struct rq *rq) 6076 { 6077 struct task_struct *curr = rq->curr; 6078 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6079 struct sched_entity *se = &curr->se; 6080 6081 /* 6082 * Are we the only task in the tree? 6083 */ 6084 if (unlikely(rq->nr_running == 1)) 6085 return; 6086 6087 clear_buddies(cfs_rq, se); 6088 6089 if (curr->policy != SCHED_BATCH) { 6090 update_rq_clock(rq); 6091 /* 6092 * Update run-time statistics of the 'current'. 6093 */ 6094 update_curr(cfs_rq); 6095 /* 6096 * Tell update_rq_clock() that we've just updated, 6097 * so we don't do microscopic update in schedule() 6098 * and double the fastpath cost. 6099 */ 6100 rq_clock_skip_update(rq, true); 6101 } 6102 6103 set_skip_buddy(se); 6104 } 6105 6106 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 6107 { 6108 struct sched_entity *se = &p->se; 6109 6110 /* throttled hierarchies are not runnable */ 6111 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 6112 return false; 6113 6114 /* Tell the scheduler that we'd really like pse to run next. */ 6115 set_next_buddy(se); 6116 6117 yield_task_fair(rq); 6118 6119 return true; 6120 } 6121 6122 #ifdef CONFIG_SMP 6123 /************************************************** 6124 * Fair scheduling class load-balancing methods. 6125 * 6126 * BASICS 6127 * 6128 * The purpose of load-balancing is to achieve the same basic fairness the 6129 * per-cpu scheduler provides, namely provide a proportional amount of compute 6130 * time to each task. This is expressed in the following equation: 6131 * 6132 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 6133 * 6134 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 6135 * W_i,0 is defined as: 6136 * 6137 * W_i,0 = \Sum_j w_i,j (2) 6138 * 6139 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 6140 * is derived from the nice value as per sched_prio_to_weight[]. 6141 * 6142 * The weight average is an exponential decay average of the instantaneous 6143 * weight: 6144 * 6145 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 6146 * 6147 * C_i is the compute capacity of cpu i, typically it is the 6148 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 6149 * can also include other factors [XXX]. 6150 * 6151 * To achieve this balance we define a measure of imbalance which follows 6152 * directly from (1): 6153 * 6154 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 6155 * 6156 * We them move tasks around to minimize the imbalance. In the continuous 6157 * function space it is obvious this converges, in the discrete case we get 6158 * a few fun cases generally called infeasible weight scenarios. 6159 * 6160 * [XXX expand on: 6161 * - infeasible weights; 6162 * - local vs global optima in the discrete case. ] 6163 * 6164 * 6165 * SCHED DOMAINS 6166 * 6167 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 6168 * for all i,j solution, we create a tree of cpus that follows the hardware 6169 * topology where each level pairs two lower groups (or better). This results 6170 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 6171 * tree to only the first of the previous level and we decrease the frequency 6172 * of load-balance at each level inv. proportional to the number of cpus in 6173 * the groups. 6174 * 6175 * This yields: 6176 * 6177 * log_2 n 1 n 6178 * \Sum { --- * --- * 2^i } = O(n) (5) 6179 * i = 0 2^i 2^i 6180 * `- size of each group 6181 * | | `- number of cpus doing load-balance 6182 * | `- freq 6183 * `- sum over all levels 6184 * 6185 * Coupled with a limit on how many tasks we can migrate every balance pass, 6186 * this makes (5) the runtime complexity of the balancer. 6187 * 6188 * An important property here is that each CPU is still (indirectly) connected 6189 * to every other cpu in at most O(log n) steps: 6190 * 6191 * The adjacency matrix of the resulting graph is given by: 6192 * 6193 * log_2 n 6194 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 6195 * k = 0 6196 * 6197 * And you'll find that: 6198 * 6199 * A^(log_2 n)_i,j != 0 for all i,j (7) 6200 * 6201 * Showing there's indeed a path between every cpu in at most O(log n) steps. 6202 * The task movement gives a factor of O(m), giving a convergence complexity 6203 * of: 6204 * 6205 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 6206 * 6207 * 6208 * WORK CONSERVING 6209 * 6210 * In order to avoid CPUs going idle while there's still work to do, new idle 6211 * balancing is more aggressive and has the newly idle cpu iterate up the domain 6212 * tree itself instead of relying on other CPUs to bring it work. 6213 * 6214 * This adds some complexity to both (5) and (8) but it reduces the total idle 6215 * time. 6216 * 6217 * [XXX more?] 6218 * 6219 * 6220 * CGROUPS 6221 * 6222 * Cgroups make a horror show out of (2), instead of a simple sum we get: 6223 * 6224 * s_k,i 6225 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 6226 * S_k 6227 * 6228 * Where 6229 * 6230 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 6231 * 6232 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 6233 * 6234 * The big problem is S_k, its a global sum needed to compute a local (W_i) 6235 * property. 6236 * 6237 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 6238 * rewrite all of this once again.] 6239 */ 6240 6241 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 6242 6243 enum fbq_type { regular, remote, all }; 6244 6245 #define LBF_ALL_PINNED 0x01 6246 #define LBF_NEED_BREAK 0x02 6247 #define LBF_DST_PINNED 0x04 6248 #define LBF_SOME_PINNED 0x08 6249 6250 struct lb_env { 6251 struct sched_domain *sd; 6252 6253 struct rq *src_rq; 6254 int src_cpu; 6255 6256 int dst_cpu; 6257 struct rq *dst_rq; 6258 6259 struct cpumask *dst_grpmask; 6260 int new_dst_cpu; 6261 enum cpu_idle_type idle; 6262 long imbalance; 6263 /* The set of CPUs under consideration for load-balancing */ 6264 struct cpumask *cpus; 6265 6266 unsigned int flags; 6267 6268 unsigned int loop; 6269 unsigned int loop_break; 6270 unsigned int loop_max; 6271 6272 enum fbq_type fbq_type; 6273 struct list_head tasks; 6274 }; 6275 6276 /* 6277 * Is this task likely cache-hot: 6278 */ 6279 static int task_hot(struct task_struct *p, struct lb_env *env) 6280 { 6281 s64 delta; 6282 6283 lockdep_assert_held(&env->src_rq->lock); 6284 6285 if (p->sched_class != &fair_sched_class) 6286 return 0; 6287 6288 if (unlikely(p->policy == SCHED_IDLE)) 6289 return 0; 6290 6291 /* 6292 * Buddy candidates are cache hot: 6293 */ 6294 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 6295 (&p->se == cfs_rq_of(&p->se)->next || 6296 &p->se == cfs_rq_of(&p->se)->last)) 6297 return 1; 6298 6299 if (sysctl_sched_migration_cost == -1) 6300 return 1; 6301 if (sysctl_sched_migration_cost == 0) 6302 return 0; 6303 6304 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 6305 6306 return delta < (s64)sysctl_sched_migration_cost; 6307 } 6308 6309 #ifdef CONFIG_NUMA_BALANCING 6310 /* 6311 * Returns 1, if task migration degrades locality 6312 * Returns 0, if task migration improves locality i.e migration preferred. 6313 * Returns -1, if task migration is not affected by locality. 6314 */ 6315 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 6316 { 6317 struct numa_group *numa_group = rcu_dereference(p->numa_group); 6318 unsigned long src_faults, dst_faults; 6319 int src_nid, dst_nid; 6320 6321 if (!static_branch_likely(&sched_numa_balancing)) 6322 return -1; 6323 6324 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 6325 return -1; 6326 6327 src_nid = cpu_to_node(env->src_cpu); 6328 dst_nid = cpu_to_node(env->dst_cpu); 6329 6330 if (src_nid == dst_nid) 6331 return -1; 6332 6333 /* Migrating away from the preferred node is always bad. */ 6334 if (src_nid == p->numa_preferred_nid) { 6335 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 6336 return 1; 6337 else 6338 return -1; 6339 } 6340 6341 /* Encourage migration to the preferred node. */ 6342 if (dst_nid == p->numa_preferred_nid) 6343 return 0; 6344 6345 if (numa_group) { 6346 src_faults = group_faults(p, src_nid); 6347 dst_faults = group_faults(p, dst_nid); 6348 } else { 6349 src_faults = task_faults(p, src_nid); 6350 dst_faults = task_faults(p, dst_nid); 6351 } 6352 6353 return dst_faults < src_faults; 6354 } 6355 6356 #else 6357 static inline int migrate_degrades_locality(struct task_struct *p, 6358 struct lb_env *env) 6359 { 6360 return -1; 6361 } 6362 #endif 6363 6364 /* 6365 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 6366 */ 6367 static 6368 int can_migrate_task(struct task_struct *p, struct lb_env *env) 6369 { 6370 int tsk_cache_hot; 6371 6372 lockdep_assert_held(&env->src_rq->lock); 6373 6374 /* 6375 * We do not migrate tasks that are: 6376 * 1) throttled_lb_pair, or 6377 * 2) cannot be migrated to this CPU due to cpus_allowed, or 6378 * 3) running (obviously), or 6379 * 4) are cache-hot on their current CPU. 6380 */ 6381 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 6382 return 0; 6383 6384 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 6385 int cpu; 6386 6387 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 6388 6389 env->flags |= LBF_SOME_PINNED; 6390 6391 /* 6392 * Remember if this task can be migrated to any other cpu in 6393 * our sched_group. We may want to revisit it if we couldn't 6394 * meet load balance goals by pulling other tasks on src_cpu. 6395 * 6396 * Also avoid computing new_dst_cpu if we have already computed 6397 * one in current iteration. 6398 */ 6399 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) 6400 return 0; 6401 6402 /* Prevent to re-select dst_cpu via env's cpus */ 6403 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 6404 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { 6405 env->flags |= LBF_DST_PINNED; 6406 env->new_dst_cpu = cpu; 6407 break; 6408 } 6409 } 6410 6411 return 0; 6412 } 6413 6414 /* Record that we found atleast one task that could run on dst_cpu */ 6415 env->flags &= ~LBF_ALL_PINNED; 6416 6417 if (task_running(env->src_rq, p)) { 6418 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 6419 return 0; 6420 } 6421 6422 /* 6423 * Aggressive migration if: 6424 * 1) destination numa is preferred 6425 * 2) task is cache cold, or 6426 * 3) too many balance attempts have failed. 6427 */ 6428 tsk_cache_hot = migrate_degrades_locality(p, env); 6429 if (tsk_cache_hot == -1) 6430 tsk_cache_hot = task_hot(p, env); 6431 6432 if (tsk_cache_hot <= 0 || 6433 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 6434 if (tsk_cache_hot == 1) { 6435 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 6436 schedstat_inc(p->se.statistics.nr_forced_migrations); 6437 } 6438 return 1; 6439 } 6440 6441 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 6442 return 0; 6443 } 6444 6445 /* 6446 * detach_task() -- detach the task for the migration specified in env 6447 */ 6448 static void detach_task(struct task_struct *p, struct lb_env *env) 6449 { 6450 lockdep_assert_held(&env->src_rq->lock); 6451 6452 p->on_rq = TASK_ON_RQ_MIGRATING; 6453 deactivate_task(env->src_rq, p, 0); 6454 set_task_cpu(p, env->dst_cpu); 6455 } 6456 6457 /* 6458 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 6459 * part of active balancing operations within "domain". 6460 * 6461 * Returns a task if successful and NULL otherwise. 6462 */ 6463 static struct task_struct *detach_one_task(struct lb_env *env) 6464 { 6465 struct task_struct *p, *n; 6466 6467 lockdep_assert_held(&env->src_rq->lock); 6468 6469 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 6470 if (!can_migrate_task(p, env)) 6471 continue; 6472 6473 detach_task(p, env); 6474 6475 /* 6476 * Right now, this is only the second place where 6477 * lb_gained[env->idle] is updated (other is detach_tasks) 6478 * so we can safely collect stats here rather than 6479 * inside detach_tasks(). 6480 */ 6481 schedstat_inc(env->sd->lb_gained[env->idle]); 6482 return p; 6483 } 6484 return NULL; 6485 } 6486 6487 static const unsigned int sched_nr_migrate_break = 32; 6488 6489 /* 6490 * detach_tasks() -- tries to detach up to imbalance weighted load from 6491 * busiest_rq, as part of a balancing operation within domain "sd". 6492 * 6493 * Returns number of detached tasks if successful and 0 otherwise. 6494 */ 6495 static int detach_tasks(struct lb_env *env) 6496 { 6497 struct list_head *tasks = &env->src_rq->cfs_tasks; 6498 struct task_struct *p; 6499 unsigned long load; 6500 int detached = 0; 6501 6502 lockdep_assert_held(&env->src_rq->lock); 6503 6504 if (env->imbalance <= 0) 6505 return 0; 6506 6507 while (!list_empty(tasks)) { 6508 /* 6509 * We don't want to steal all, otherwise we may be treated likewise, 6510 * which could at worst lead to a livelock crash. 6511 */ 6512 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 6513 break; 6514 6515 p = list_first_entry(tasks, struct task_struct, se.group_node); 6516 6517 env->loop++; 6518 /* We've more or less seen every task there is, call it quits */ 6519 if (env->loop > env->loop_max) 6520 break; 6521 6522 /* take a breather every nr_migrate tasks */ 6523 if (env->loop > env->loop_break) { 6524 env->loop_break += sched_nr_migrate_break; 6525 env->flags |= LBF_NEED_BREAK; 6526 break; 6527 } 6528 6529 if (!can_migrate_task(p, env)) 6530 goto next; 6531 6532 load = task_h_load(p); 6533 6534 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 6535 goto next; 6536 6537 if ((load / 2) > env->imbalance) 6538 goto next; 6539 6540 detach_task(p, env); 6541 list_add(&p->se.group_node, &env->tasks); 6542 6543 detached++; 6544 env->imbalance -= load; 6545 6546 #ifdef CONFIG_PREEMPT 6547 /* 6548 * NEWIDLE balancing is a source of latency, so preemptible 6549 * kernels will stop after the first task is detached to minimize 6550 * the critical section. 6551 */ 6552 if (env->idle == CPU_NEWLY_IDLE) 6553 break; 6554 #endif 6555 6556 /* 6557 * We only want to steal up to the prescribed amount of 6558 * weighted load. 6559 */ 6560 if (env->imbalance <= 0) 6561 break; 6562 6563 continue; 6564 next: 6565 list_move_tail(&p->se.group_node, tasks); 6566 } 6567 6568 /* 6569 * Right now, this is one of only two places we collect this stat 6570 * so we can safely collect detach_one_task() stats here rather 6571 * than inside detach_one_task(). 6572 */ 6573 schedstat_add(env->sd->lb_gained[env->idle], detached); 6574 6575 return detached; 6576 } 6577 6578 /* 6579 * attach_task() -- attach the task detached by detach_task() to its new rq. 6580 */ 6581 static void attach_task(struct rq *rq, struct task_struct *p) 6582 { 6583 lockdep_assert_held(&rq->lock); 6584 6585 BUG_ON(task_rq(p) != rq); 6586 activate_task(rq, p, 0); 6587 p->on_rq = TASK_ON_RQ_QUEUED; 6588 check_preempt_curr(rq, p, 0); 6589 } 6590 6591 /* 6592 * attach_one_task() -- attaches the task returned from detach_one_task() to 6593 * its new rq. 6594 */ 6595 static void attach_one_task(struct rq *rq, struct task_struct *p) 6596 { 6597 raw_spin_lock(&rq->lock); 6598 attach_task(rq, p); 6599 raw_spin_unlock(&rq->lock); 6600 } 6601 6602 /* 6603 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 6604 * new rq. 6605 */ 6606 static void attach_tasks(struct lb_env *env) 6607 { 6608 struct list_head *tasks = &env->tasks; 6609 struct task_struct *p; 6610 6611 raw_spin_lock(&env->dst_rq->lock); 6612 6613 while (!list_empty(tasks)) { 6614 p = list_first_entry(tasks, struct task_struct, se.group_node); 6615 list_del_init(&p->se.group_node); 6616 6617 attach_task(env->dst_rq, p); 6618 } 6619 6620 raw_spin_unlock(&env->dst_rq->lock); 6621 } 6622 6623 #ifdef CONFIG_FAIR_GROUP_SCHED 6624 static void update_blocked_averages(int cpu) 6625 { 6626 struct rq *rq = cpu_rq(cpu); 6627 struct cfs_rq *cfs_rq; 6628 unsigned long flags; 6629 6630 raw_spin_lock_irqsave(&rq->lock, flags); 6631 update_rq_clock(rq); 6632 6633 /* 6634 * Iterates the task_group tree in a bottom up fashion, see 6635 * list_add_leaf_cfs_rq() for details. 6636 */ 6637 for_each_leaf_cfs_rq(rq, cfs_rq) { 6638 /* throttled entities do not contribute to load */ 6639 if (throttled_hierarchy(cfs_rq)) 6640 continue; 6641 6642 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true)) 6643 update_tg_load_avg(cfs_rq, 0); 6644 } 6645 raw_spin_unlock_irqrestore(&rq->lock, flags); 6646 } 6647 6648 /* 6649 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 6650 * This needs to be done in a top-down fashion because the load of a child 6651 * group is a fraction of its parents load. 6652 */ 6653 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 6654 { 6655 struct rq *rq = rq_of(cfs_rq); 6656 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 6657 unsigned long now = jiffies; 6658 unsigned long load; 6659 6660 if (cfs_rq->last_h_load_update == now) 6661 return; 6662 6663 cfs_rq->h_load_next = NULL; 6664 for_each_sched_entity(se) { 6665 cfs_rq = cfs_rq_of(se); 6666 cfs_rq->h_load_next = se; 6667 if (cfs_rq->last_h_load_update == now) 6668 break; 6669 } 6670 6671 if (!se) { 6672 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 6673 cfs_rq->last_h_load_update = now; 6674 } 6675 6676 while ((se = cfs_rq->h_load_next) != NULL) { 6677 load = cfs_rq->h_load; 6678 load = div64_ul(load * se->avg.load_avg, 6679 cfs_rq_load_avg(cfs_rq) + 1); 6680 cfs_rq = group_cfs_rq(se); 6681 cfs_rq->h_load = load; 6682 cfs_rq->last_h_load_update = now; 6683 } 6684 } 6685 6686 static unsigned long task_h_load(struct task_struct *p) 6687 { 6688 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6689 6690 update_cfs_rq_h_load(cfs_rq); 6691 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 6692 cfs_rq_load_avg(cfs_rq) + 1); 6693 } 6694 #else 6695 static inline void update_blocked_averages(int cpu) 6696 { 6697 struct rq *rq = cpu_rq(cpu); 6698 struct cfs_rq *cfs_rq = &rq->cfs; 6699 unsigned long flags; 6700 6701 raw_spin_lock_irqsave(&rq->lock, flags); 6702 update_rq_clock(rq); 6703 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true); 6704 raw_spin_unlock_irqrestore(&rq->lock, flags); 6705 } 6706 6707 static unsigned long task_h_load(struct task_struct *p) 6708 { 6709 return p->se.avg.load_avg; 6710 } 6711 #endif 6712 6713 /********** Helpers for find_busiest_group ************************/ 6714 6715 enum group_type { 6716 group_other = 0, 6717 group_imbalanced, 6718 group_overloaded, 6719 }; 6720 6721 /* 6722 * sg_lb_stats - stats of a sched_group required for load_balancing 6723 */ 6724 struct sg_lb_stats { 6725 unsigned long avg_load; /*Avg load across the CPUs of the group */ 6726 unsigned long group_load; /* Total load over the CPUs of the group */ 6727 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 6728 unsigned long load_per_task; 6729 unsigned long group_capacity; 6730 unsigned long group_util; /* Total utilization of the group */ 6731 unsigned int sum_nr_running; /* Nr tasks running in the group */ 6732 unsigned int idle_cpus; 6733 unsigned int group_weight; 6734 enum group_type group_type; 6735 int group_no_capacity; 6736 #ifdef CONFIG_NUMA_BALANCING 6737 unsigned int nr_numa_running; 6738 unsigned int nr_preferred_running; 6739 #endif 6740 }; 6741 6742 /* 6743 * sd_lb_stats - Structure to store the statistics of a sched_domain 6744 * during load balancing. 6745 */ 6746 struct sd_lb_stats { 6747 struct sched_group *busiest; /* Busiest group in this sd */ 6748 struct sched_group *local; /* Local group in this sd */ 6749 unsigned long total_load; /* Total load of all groups in sd */ 6750 unsigned long total_capacity; /* Total capacity of all groups in sd */ 6751 unsigned long avg_load; /* Average load across all groups in sd */ 6752 6753 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 6754 struct sg_lb_stats local_stat; /* Statistics of the local group */ 6755 }; 6756 6757 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 6758 { 6759 /* 6760 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 6761 * local_stat because update_sg_lb_stats() does a full clear/assignment. 6762 * We must however clear busiest_stat::avg_load because 6763 * update_sd_pick_busiest() reads this before assignment. 6764 */ 6765 *sds = (struct sd_lb_stats){ 6766 .busiest = NULL, 6767 .local = NULL, 6768 .total_load = 0UL, 6769 .total_capacity = 0UL, 6770 .busiest_stat = { 6771 .avg_load = 0UL, 6772 .sum_nr_running = 0, 6773 .group_type = group_other, 6774 }, 6775 }; 6776 } 6777 6778 /** 6779 * get_sd_load_idx - Obtain the load index for a given sched domain. 6780 * @sd: The sched_domain whose load_idx is to be obtained. 6781 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 6782 * 6783 * Return: The load index. 6784 */ 6785 static inline int get_sd_load_idx(struct sched_domain *sd, 6786 enum cpu_idle_type idle) 6787 { 6788 int load_idx; 6789 6790 switch (idle) { 6791 case CPU_NOT_IDLE: 6792 load_idx = sd->busy_idx; 6793 break; 6794 6795 case CPU_NEWLY_IDLE: 6796 load_idx = sd->newidle_idx; 6797 break; 6798 default: 6799 load_idx = sd->idle_idx; 6800 break; 6801 } 6802 6803 return load_idx; 6804 } 6805 6806 static unsigned long scale_rt_capacity(int cpu) 6807 { 6808 struct rq *rq = cpu_rq(cpu); 6809 u64 total, used, age_stamp, avg; 6810 s64 delta; 6811 6812 /* 6813 * Since we're reading these variables without serialization make sure 6814 * we read them once before doing sanity checks on them. 6815 */ 6816 age_stamp = READ_ONCE(rq->age_stamp); 6817 avg = READ_ONCE(rq->rt_avg); 6818 delta = __rq_clock_broken(rq) - age_stamp; 6819 6820 if (unlikely(delta < 0)) 6821 delta = 0; 6822 6823 total = sched_avg_period() + delta; 6824 6825 used = div_u64(avg, total); 6826 6827 if (likely(used < SCHED_CAPACITY_SCALE)) 6828 return SCHED_CAPACITY_SCALE - used; 6829 6830 return 1; 6831 } 6832 6833 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 6834 { 6835 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu); 6836 struct sched_group *sdg = sd->groups; 6837 6838 cpu_rq(cpu)->cpu_capacity_orig = capacity; 6839 6840 capacity *= scale_rt_capacity(cpu); 6841 capacity >>= SCHED_CAPACITY_SHIFT; 6842 6843 if (!capacity) 6844 capacity = 1; 6845 6846 cpu_rq(cpu)->cpu_capacity = capacity; 6847 sdg->sgc->capacity = capacity; 6848 } 6849 6850 void update_group_capacity(struct sched_domain *sd, int cpu) 6851 { 6852 struct sched_domain *child = sd->child; 6853 struct sched_group *group, *sdg = sd->groups; 6854 unsigned long capacity; 6855 unsigned long interval; 6856 6857 interval = msecs_to_jiffies(sd->balance_interval); 6858 interval = clamp(interval, 1UL, max_load_balance_interval); 6859 sdg->sgc->next_update = jiffies + interval; 6860 6861 if (!child) { 6862 update_cpu_capacity(sd, cpu); 6863 return; 6864 } 6865 6866 capacity = 0; 6867 6868 if (child->flags & SD_OVERLAP) { 6869 /* 6870 * SD_OVERLAP domains cannot assume that child groups 6871 * span the current group. 6872 */ 6873 6874 for_each_cpu(cpu, sched_group_cpus(sdg)) { 6875 struct sched_group_capacity *sgc; 6876 struct rq *rq = cpu_rq(cpu); 6877 6878 /* 6879 * build_sched_domains() -> init_sched_groups_capacity() 6880 * gets here before we've attached the domains to the 6881 * runqueues. 6882 * 6883 * Use capacity_of(), which is set irrespective of domains 6884 * in update_cpu_capacity(). 6885 * 6886 * This avoids capacity from being 0 and 6887 * causing divide-by-zero issues on boot. 6888 */ 6889 if (unlikely(!rq->sd)) { 6890 capacity += capacity_of(cpu); 6891 continue; 6892 } 6893 6894 sgc = rq->sd->groups->sgc; 6895 capacity += sgc->capacity; 6896 } 6897 } else { 6898 /* 6899 * !SD_OVERLAP domains can assume that child groups 6900 * span the current group. 6901 */ 6902 6903 group = child->groups; 6904 do { 6905 capacity += group->sgc->capacity; 6906 group = group->next; 6907 } while (group != child->groups); 6908 } 6909 6910 sdg->sgc->capacity = capacity; 6911 } 6912 6913 /* 6914 * Check whether the capacity of the rq has been noticeably reduced by side 6915 * activity. The imbalance_pct is used for the threshold. 6916 * Return true is the capacity is reduced 6917 */ 6918 static inline int 6919 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 6920 { 6921 return ((rq->cpu_capacity * sd->imbalance_pct) < 6922 (rq->cpu_capacity_orig * 100)); 6923 } 6924 6925 /* 6926 * Group imbalance indicates (and tries to solve) the problem where balancing 6927 * groups is inadequate due to tsk_cpus_allowed() constraints. 6928 * 6929 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 6930 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 6931 * Something like: 6932 * 6933 * { 0 1 2 3 } { 4 5 6 7 } 6934 * * * * * 6935 * 6936 * If we were to balance group-wise we'd place two tasks in the first group and 6937 * two tasks in the second group. Clearly this is undesired as it will overload 6938 * cpu 3 and leave one of the cpus in the second group unused. 6939 * 6940 * The current solution to this issue is detecting the skew in the first group 6941 * by noticing the lower domain failed to reach balance and had difficulty 6942 * moving tasks due to affinity constraints. 6943 * 6944 * When this is so detected; this group becomes a candidate for busiest; see 6945 * update_sd_pick_busiest(). And calculate_imbalance() and 6946 * find_busiest_group() avoid some of the usual balance conditions to allow it 6947 * to create an effective group imbalance. 6948 * 6949 * This is a somewhat tricky proposition since the next run might not find the 6950 * group imbalance and decide the groups need to be balanced again. A most 6951 * subtle and fragile situation. 6952 */ 6953 6954 static inline int sg_imbalanced(struct sched_group *group) 6955 { 6956 return group->sgc->imbalance; 6957 } 6958 6959 /* 6960 * group_has_capacity returns true if the group has spare capacity that could 6961 * be used by some tasks. 6962 * We consider that a group has spare capacity if the * number of task is 6963 * smaller than the number of CPUs or if the utilization is lower than the 6964 * available capacity for CFS tasks. 6965 * For the latter, we use a threshold to stabilize the state, to take into 6966 * account the variance of the tasks' load and to return true if the available 6967 * capacity in meaningful for the load balancer. 6968 * As an example, an available capacity of 1% can appear but it doesn't make 6969 * any benefit for the load balance. 6970 */ 6971 static inline bool 6972 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 6973 { 6974 if (sgs->sum_nr_running < sgs->group_weight) 6975 return true; 6976 6977 if ((sgs->group_capacity * 100) > 6978 (sgs->group_util * env->sd->imbalance_pct)) 6979 return true; 6980 6981 return false; 6982 } 6983 6984 /* 6985 * group_is_overloaded returns true if the group has more tasks than it can 6986 * handle. 6987 * group_is_overloaded is not equals to !group_has_capacity because a group 6988 * with the exact right number of tasks, has no more spare capacity but is not 6989 * overloaded so both group_has_capacity and group_is_overloaded return 6990 * false. 6991 */ 6992 static inline bool 6993 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 6994 { 6995 if (sgs->sum_nr_running <= sgs->group_weight) 6996 return false; 6997 6998 if ((sgs->group_capacity * 100) < 6999 (sgs->group_util * env->sd->imbalance_pct)) 7000 return true; 7001 7002 return false; 7003 } 7004 7005 static inline enum 7006 group_type group_classify(struct sched_group *group, 7007 struct sg_lb_stats *sgs) 7008 { 7009 if (sgs->group_no_capacity) 7010 return group_overloaded; 7011 7012 if (sg_imbalanced(group)) 7013 return group_imbalanced; 7014 7015 return group_other; 7016 } 7017 7018 /** 7019 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 7020 * @env: The load balancing environment. 7021 * @group: sched_group whose statistics are to be updated. 7022 * @load_idx: Load index of sched_domain of this_cpu for load calc. 7023 * @local_group: Does group contain this_cpu. 7024 * @sgs: variable to hold the statistics for this group. 7025 * @overload: Indicate more than one runnable task for any CPU. 7026 */ 7027 static inline void update_sg_lb_stats(struct lb_env *env, 7028 struct sched_group *group, int load_idx, 7029 int local_group, struct sg_lb_stats *sgs, 7030 bool *overload) 7031 { 7032 unsigned long load; 7033 int i, nr_running; 7034 7035 memset(sgs, 0, sizeof(*sgs)); 7036 7037 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 7038 struct rq *rq = cpu_rq(i); 7039 7040 /* Bias balancing toward cpus of our domain */ 7041 if (local_group) 7042 load = target_load(i, load_idx); 7043 else 7044 load = source_load(i, load_idx); 7045 7046 sgs->group_load += load; 7047 sgs->group_util += cpu_util(i); 7048 sgs->sum_nr_running += rq->cfs.h_nr_running; 7049 7050 nr_running = rq->nr_running; 7051 if (nr_running > 1) 7052 *overload = true; 7053 7054 #ifdef CONFIG_NUMA_BALANCING 7055 sgs->nr_numa_running += rq->nr_numa_running; 7056 sgs->nr_preferred_running += rq->nr_preferred_running; 7057 #endif 7058 sgs->sum_weighted_load += weighted_cpuload(i); 7059 /* 7060 * No need to call idle_cpu() if nr_running is not 0 7061 */ 7062 if (!nr_running && idle_cpu(i)) 7063 sgs->idle_cpus++; 7064 } 7065 7066 /* Adjust by relative CPU capacity of the group */ 7067 sgs->group_capacity = group->sgc->capacity; 7068 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 7069 7070 if (sgs->sum_nr_running) 7071 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 7072 7073 sgs->group_weight = group->group_weight; 7074 7075 sgs->group_no_capacity = group_is_overloaded(env, sgs); 7076 sgs->group_type = group_classify(group, sgs); 7077 } 7078 7079 /** 7080 * update_sd_pick_busiest - return 1 on busiest group 7081 * @env: The load balancing environment. 7082 * @sds: sched_domain statistics 7083 * @sg: sched_group candidate to be checked for being the busiest 7084 * @sgs: sched_group statistics 7085 * 7086 * Determine if @sg is a busier group than the previously selected 7087 * busiest group. 7088 * 7089 * Return: %true if @sg is a busier group than the previously selected 7090 * busiest group. %false otherwise. 7091 */ 7092 static bool update_sd_pick_busiest(struct lb_env *env, 7093 struct sd_lb_stats *sds, 7094 struct sched_group *sg, 7095 struct sg_lb_stats *sgs) 7096 { 7097 struct sg_lb_stats *busiest = &sds->busiest_stat; 7098 7099 if (sgs->group_type > busiest->group_type) 7100 return true; 7101 7102 if (sgs->group_type < busiest->group_type) 7103 return false; 7104 7105 if (sgs->avg_load <= busiest->avg_load) 7106 return false; 7107 7108 /* This is the busiest node in its class. */ 7109 if (!(env->sd->flags & SD_ASYM_PACKING)) 7110 return true; 7111 7112 /* No ASYM_PACKING if target cpu is already busy */ 7113 if (env->idle == CPU_NOT_IDLE) 7114 return true; 7115 /* 7116 * ASYM_PACKING needs to move all the work to the lowest 7117 * numbered CPUs in the group, therefore mark all groups 7118 * higher than ourself as busy. 7119 */ 7120 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) { 7121 if (!sds->busiest) 7122 return true; 7123 7124 /* Prefer to move from highest possible cpu's work */ 7125 if (group_first_cpu(sds->busiest) < group_first_cpu(sg)) 7126 return true; 7127 } 7128 7129 return false; 7130 } 7131 7132 #ifdef CONFIG_NUMA_BALANCING 7133 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7134 { 7135 if (sgs->sum_nr_running > sgs->nr_numa_running) 7136 return regular; 7137 if (sgs->sum_nr_running > sgs->nr_preferred_running) 7138 return remote; 7139 return all; 7140 } 7141 7142 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7143 { 7144 if (rq->nr_running > rq->nr_numa_running) 7145 return regular; 7146 if (rq->nr_running > rq->nr_preferred_running) 7147 return remote; 7148 return all; 7149 } 7150 #else 7151 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7152 { 7153 return all; 7154 } 7155 7156 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7157 { 7158 return regular; 7159 } 7160 #endif /* CONFIG_NUMA_BALANCING */ 7161 7162 /** 7163 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 7164 * @env: The load balancing environment. 7165 * @sds: variable to hold the statistics for this sched_domain. 7166 */ 7167 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 7168 { 7169 struct sched_domain *child = env->sd->child; 7170 struct sched_group *sg = env->sd->groups; 7171 struct sg_lb_stats tmp_sgs; 7172 int load_idx, prefer_sibling = 0; 7173 bool overload = false; 7174 7175 if (child && child->flags & SD_PREFER_SIBLING) 7176 prefer_sibling = 1; 7177 7178 load_idx = get_sd_load_idx(env->sd, env->idle); 7179 7180 do { 7181 struct sg_lb_stats *sgs = &tmp_sgs; 7182 int local_group; 7183 7184 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 7185 if (local_group) { 7186 sds->local = sg; 7187 sgs = &sds->local_stat; 7188 7189 if (env->idle != CPU_NEWLY_IDLE || 7190 time_after_eq(jiffies, sg->sgc->next_update)) 7191 update_group_capacity(env->sd, env->dst_cpu); 7192 } 7193 7194 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 7195 &overload); 7196 7197 if (local_group) 7198 goto next_group; 7199 7200 /* 7201 * In case the child domain prefers tasks go to siblings 7202 * first, lower the sg capacity so that we'll try 7203 * and move all the excess tasks away. We lower the capacity 7204 * of a group only if the local group has the capacity to fit 7205 * these excess tasks. The extra check prevents the case where 7206 * you always pull from the heaviest group when it is already 7207 * under-utilized (possible with a large weight task outweighs 7208 * the tasks on the system). 7209 */ 7210 if (prefer_sibling && sds->local && 7211 group_has_capacity(env, &sds->local_stat) && 7212 (sgs->sum_nr_running > 1)) { 7213 sgs->group_no_capacity = 1; 7214 sgs->group_type = group_classify(sg, sgs); 7215 } 7216 7217 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 7218 sds->busiest = sg; 7219 sds->busiest_stat = *sgs; 7220 } 7221 7222 next_group: 7223 /* Now, start updating sd_lb_stats */ 7224 sds->total_load += sgs->group_load; 7225 sds->total_capacity += sgs->group_capacity; 7226 7227 sg = sg->next; 7228 } while (sg != env->sd->groups); 7229 7230 if (env->sd->flags & SD_NUMA) 7231 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 7232 7233 if (!env->sd->parent) { 7234 /* update overload indicator if we are at root domain */ 7235 if (env->dst_rq->rd->overload != overload) 7236 env->dst_rq->rd->overload = overload; 7237 } 7238 7239 } 7240 7241 /** 7242 * check_asym_packing - Check to see if the group is packed into the 7243 * sched doman. 7244 * 7245 * This is primarily intended to used at the sibling level. Some 7246 * cores like POWER7 prefer to use lower numbered SMT threads. In the 7247 * case of POWER7, it can move to lower SMT modes only when higher 7248 * threads are idle. When in lower SMT modes, the threads will 7249 * perform better since they share less core resources. Hence when we 7250 * have idle threads, we want them to be the higher ones. 7251 * 7252 * This packing function is run on idle threads. It checks to see if 7253 * the busiest CPU in this domain (core in the P7 case) has a higher 7254 * CPU number than the packing function is being run on. Here we are 7255 * assuming lower CPU number will be equivalent to lower a SMT thread 7256 * number. 7257 * 7258 * Return: 1 when packing is required and a task should be moved to 7259 * this CPU. The amount of the imbalance is returned in *imbalance. 7260 * 7261 * @env: The load balancing environment. 7262 * @sds: Statistics of the sched_domain which is to be packed 7263 */ 7264 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 7265 { 7266 int busiest_cpu; 7267 7268 if (!(env->sd->flags & SD_ASYM_PACKING)) 7269 return 0; 7270 7271 if (env->idle == CPU_NOT_IDLE) 7272 return 0; 7273 7274 if (!sds->busiest) 7275 return 0; 7276 7277 busiest_cpu = group_first_cpu(sds->busiest); 7278 if (env->dst_cpu > busiest_cpu) 7279 return 0; 7280 7281 env->imbalance = DIV_ROUND_CLOSEST( 7282 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 7283 SCHED_CAPACITY_SCALE); 7284 7285 return 1; 7286 } 7287 7288 /** 7289 * fix_small_imbalance - Calculate the minor imbalance that exists 7290 * amongst the groups of a sched_domain, during 7291 * load balancing. 7292 * @env: The load balancing environment. 7293 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 7294 */ 7295 static inline 7296 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 7297 { 7298 unsigned long tmp, capa_now = 0, capa_move = 0; 7299 unsigned int imbn = 2; 7300 unsigned long scaled_busy_load_per_task; 7301 struct sg_lb_stats *local, *busiest; 7302 7303 local = &sds->local_stat; 7304 busiest = &sds->busiest_stat; 7305 7306 if (!local->sum_nr_running) 7307 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 7308 else if (busiest->load_per_task > local->load_per_task) 7309 imbn = 1; 7310 7311 scaled_busy_load_per_task = 7312 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 7313 busiest->group_capacity; 7314 7315 if (busiest->avg_load + scaled_busy_load_per_task >= 7316 local->avg_load + (scaled_busy_load_per_task * imbn)) { 7317 env->imbalance = busiest->load_per_task; 7318 return; 7319 } 7320 7321 /* 7322 * OK, we don't have enough imbalance to justify moving tasks, 7323 * however we may be able to increase total CPU capacity used by 7324 * moving them. 7325 */ 7326 7327 capa_now += busiest->group_capacity * 7328 min(busiest->load_per_task, busiest->avg_load); 7329 capa_now += local->group_capacity * 7330 min(local->load_per_task, local->avg_load); 7331 capa_now /= SCHED_CAPACITY_SCALE; 7332 7333 /* Amount of load we'd subtract */ 7334 if (busiest->avg_load > scaled_busy_load_per_task) { 7335 capa_move += busiest->group_capacity * 7336 min(busiest->load_per_task, 7337 busiest->avg_load - scaled_busy_load_per_task); 7338 } 7339 7340 /* Amount of load we'd add */ 7341 if (busiest->avg_load * busiest->group_capacity < 7342 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 7343 tmp = (busiest->avg_load * busiest->group_capacity) / 7344 local->group_capacity; 7345 } else { 7346 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 7347 local->group_capacity; 7348 } 7349 capa_move += local->group_capacity * 7350 min(local->load_per_task, local->avg_load + tmp); 7351 capa_move /= SCHED_CAPACITY_SCALE; 7352 7353 /* Move if we gain throughput */ 7354 if (capa_move > capa_now) 7355 env->imbalance = busiest->load_per_task; 7356 } 7357 7358 /** 7359 * calculate_imbalance - Calculate the amount of imbalance present within the 7360 * groups of a given sched_domain during load balance. 7361 * @env: load balance environment 7362 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 7363 */ 7364 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 7365 { 7366 unsigned long max_pull, load_above_capacity = ~0UL; 7367 struct sg_lb_stats *local, *busiest; 7368 7369 local = &sds->local_stat; 7370 busiest = &sds->busiest_stat; 7371 7372 if (busiest->group_type == group_imbalanced) { 7373 /* 7374 * In the group_imb case we cannot rely on group-wide averages 7375 * to ensure cpu-load equilibrium, look at wider averages. XXX 7376 */ 7377 busiest->load_per_task = 7378 min(busiest->load_per_task, sds->avg_load); 7379 } 7380 7381 /* 7382 * Avg load of busiest sg can be less and avg load of local sg can 7383 * be greater than avg load across all sgs of sd because avg load 7384 * factors in sg capacity and sgs with smaller group_type are 7385 * skipped when updating the busiest sg: 7386 */ 7387 if (busiest->avg_load <= sds->avg_load || 7388 local->avg_load >= sds->avg_load) { 7389 env->imbalance = 0; 7390 return fix_small_imbalance(env, sds); 7391 } 7392 7393 /* 7394 * If there aren't any idle cpus, avoid creating some. 7395 */ 7396 if (busiest->group_type == group_overloaded && 7397 local->group_type == group_overloaded) { 7398 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 7399 if (load_above_capacity > busiest->group_capacity) { 7400 load_above_capacity -= busiest->group_capacity; 7401 load_above_capacity *= scale_load_down(NICE_0_LOAD); 7402 load_above_capacity /= busiest->group_capacity; 7403 } else 7404 load_above_capacity = ~0UL; 7405 } 7406 7407 /* 7408 * We're trying to get all the cpus to the average_load, so we don't 7409 * want to push ourselves above the average load, nor do we wish to 7410 * reduce the max loaded cpu below the average load. At the same time, 7411 * we also don't want to reduce the group load below the group 7412 * capacity. Thus we look for the minimum possible imbalance. 7413 */ 7414 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 7415 7416 /* How much load to actually move to equalise the imbalance */ 7417 env->imbalance = min( 7418 max_pull * busiest->group_capacity, 7419 (sds->avg_load - local->avg_load) * local->group_capacity 7420 ) / SCHED_CAPACITY_SCALE; 7421 7422 /* 7423 * if *imbalance is less than the average load per runnable task 7424 * there is no guarantee that any tasks will be moved so we'll have 7425 * a think about bumping its value to force at least one task to be 7426 * moved 7427 */ 7428 if (env->imbalance < busiest->load_per_task) 7429 return fix_small_imbalance(env, sds); 7430 } 7431 7432 /******* find_busiest_group() helpers end here *********************/ 7433 7434 /** 7435 * find_busiest_group - Returns the busiest group within the sched_domain 7436 * if there is an imbalance. 7437 * 7438 * Also calculates the amount of weighted load which should be moved 7439 * to restore balance. 7440 * 7441 * @env: The load balancing environment. 7442 * 7443 * Return: - The busiest group if imbalance exists. 7444 */ 7445 static struct sched_group *find_busiest_group(struct lb_env *env) 7446 { 7447 struct sg_lb_stats *local, *busiest; 7448 struct sd_lb_stats sds; 7449 7450 init_sd_lb_stats(&sds); 7451 7452 /* 7453 * Compute the various statistics relavent for load balancing at 7454 * this level. 7455 */ 7456 update_sd_lb_stats(env, &sds); 7457 local = &sds.local_stat; 7458 busiest = &sds.busiest_stat; 7459 7460 /* ASYM feature bypasses nice load balance check */ 7461 if (check_asym_packing(env, &sds)) 7462 return sds.busiest; 7463 7464 /* There is no busy sibling group to pull tasks from */ 7465 if (!sds.busiest || busiest->sum_nr_running == 0) 7466 goto out_balanced; 7467 7468 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 7469 / sds.total_capacity; 7470 7471 /* 7472 * If the busiest group is imbalanced the below checks don't 7473 * work because they assume all things are equal, which typically 7474 * isn't true due to cpus_allowed constraints and the like. 7475 */ 7476 if (busiest->group_type == group_imbalanced) 7477 goto force_balance; 7478 7479 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 7480 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) && 7481 busiest->group_no_capacity) 7482 goto force_balance; 7483 7484 /* 7485 * If the local group is busier than the selected busiest group 7486 * don't try and pull any tasks. 7487 */ 7488 if (local->avg_load >= busiest->avg_load) 7489 goto out_balanced; 7490 7491 /* 7492 * Don't pull any tasks if this group is already above the domain 7493 * average load. 7494 */ 7495 if (local->avg_load >= sds.avg_load) 7496 goto out_balanced; 7497 7498 if (env->idle == CPU_IDLE) { 7499 /* 7500 * This cpu is idle. If the busiest group is not overloaded 7501 * and there is no imbalance between this and busiest group 7502 * wrt idle cpus, it is balanced. The imbalance becomes 7503 * significant if the diff is greater than 1 otherwise we 7504 * might end up to just move the imbalance on another group 7505 */ 7506 if ((busiest->group_type != group_overloaded) && 7507 (local->idle_cpus <= (busiest->idle_cpus + 1))) 7508 goto out_balanced; 7509 } else { 7510 /* 7511 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 7512 * imbalance_pct to be conservative. 7513 */ 7514 if (100 * busiest->avg_load <= 7515 env->sd->imbalance_pct * local->avg_load) 7516 goto out_balanced; 7517 } 7518 7519 force_balance: 7520 /* Looks like there is an imbalance. Compute it */ 7521 calculate_imbalance(env, &sds); 7522 return sds.busiest; 7523 7524 out_balanced: 7525 env->imbalance = 0; 7526 return NULL; 7527 } 7528 7529 /* 7530 * find_busiest_queue - find the busiest runqueue among the cpus in group. 7531 */ 7532 static struct rq *find_busiest_queue(struct lb_env *env, 7533 struct sched_group *group) 7534 { 7535 struct rq *busiest = NULL, *rq; 7536 unsigned long busiest_load = 0, busiest_capacity = 1; 7537 int i; 7538 7539 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 7540 unsigned long capacity, wl; 7541 enum fbq_type rt; 7542 7543 rq = cpu_rq(i); 7544 rt = fbq_classify_rq(rq); 7545 7546 /* 7547 * We classify groups/runqueues into three groups: 7548 * - regular: there are !numa tasks 7549 * - remote: there are numa tasks that run on the 'wrong' node 7550 * - all: there is no distinction 7551 * 7552 * In order to avoid migrating ideally placed numa tasks, 7553 * ignore those when there's better options. 7554 * 7555 * If we ignore the actual busiest queue to migrate another 7556 * task, the next balance pass can still reduce the busiest 7557 * queue by moving tasks around inside the node. 7558 * 7559 * If we cannot move enough load due to this classification 7560 * the next pass will adjust the group classification and 7561 * allow migration of more tasks. 7562 * 7563 * Both cases only affect the total convergence complexity. 7564 */ 7565 if (rt > env->fbq_type) 7566 continue; 7567 7568 capacity = capacity_of(i); 7569 7570 wl = weighted_cpuload(i); 7571 7572 /* 7573 * When comparing with imbalance, use weighted_cpuload() 7574 * which is not scaled with the cpu capacity. 7575 */ 7576 7577 if (rq->nr_running == 1 && wl > env->imbalance && 7578 !check_cpu_capacity(rq, env->sd)) 7579 continue; 7580 7581 /* 7582 * For the load comparisons with the other cpu's, consider 7583 * the weighted_cpuload() scaled with the cpu capacity, so 7584 * that the load can be moved away from the cpu that is 7585 * potentially running at a lower capacity. 7586 * 7587 * Thus we're looking for max(wl_i / capacity_i), crosswise 7588 * multiplication to rid ourselves of the division works out 7589 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 7590 * our previous maximum. 7591 */ 7592 if (wl * busiest_capacity > busiest_load * capacity) { 7593 busiest_load = wl; 7594 busiest_capacity = capacity; 7595 busiest = rq; 7596 } 7597 } 7598 7599 return busiest; 7600 } 7601 7602 /* 7603 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 7604 * so long as it is large enough. 7605 */ 7606 #define MAX_PINNED_INTERVAL 512 7607 7608 static int need_active_balance(struct lb_env *env) 7609 { 7610 struct sched_domain *sd = env->sd; 7611 7612 if (env->idle == CPU_NEWLY_IDLE) { 7613 7614 /* 7615 * ASYM_PACKING needs to force migrate tasks from busy but 7616 * higher numbered CPUs in order to pack all tasks in the 7617 * lowest numbered CPUs. 7618 */ 7619 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 7620 return 1; 7621 } 7622 7623 /* 7624 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 7625 * It's worth migrating the task if the src_cpu's capacity is reduced 7626 * because of other sched_class or IRQs if more capacity stays 7627 * available on dst_cpu. 7628 */ 7629 if ((env->idle != CPU_NOT_IDLE) && 7630 (env->src_rq->cfs.h_nr_running == 1)) { 7631 if ((check_cpu_capacity(env->src_rq, sd)) && 7632 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 7633 return 1; 7634 } 7635 7636 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 7637 } 7638 7639 static int active_load_balance_cpu_stop(void *data); 7640 7641 static int should_we_balance(struct lb_env *env) 7642 { 7643 struct sched_group *sg = env->sd->groups; 7644 struct cpumask *sg_cpus, *sg_mask; 7645 int cpu, balance_cpu = -1; 7646 7647 /* 7648 * In the newly idle case, we will allow all the cpu's 7649 * to do the newly idle load balance. 7650 */ 7651 if (env->idle == CPU_NEWLY_IDLE) 7652 return 1; 7653 7654 sg_cpus = sched_group_cpus(sg); 7655 sg_mask = sched_group_mask(sg); 7656 /* Try to find first idle cpu */ 7657 for_each_cpu_and(cpu, sg_cpus, env->cpus) { 7658 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) 7659 continue; 7660 7661 balance_cpu = cpu; 7662 break; 7663 } 7664 7665 if (balance_cpu == -1) 7666 balance_cpu = group_balance_cpu(sg); 7667 7668 /* 7669 * First idle cpu or the first cpu(busiest) in this sched group 7670 * is eligible for doing load balancing at this and above domains. 7671 */ 7672 return balance_cpu == env->dst_cpu; 7673 } 7674 7675 /* 7676 * Check this_cpu to ensure it is balanced within domain. Attempt to move 7677 * tasks if there is an imbalance. 7678 */ 7679 static int load_balance(int this_cpu, struct rq *this_rq, 7680 struct sched_domain *sd, enum cpu_idle_type idle, 7681 int *continue_balancing) 7682 { 7683 int ld_moved, cur_ld_moved, active_balance = 0; 7684 struct sched_domain *sd_parent = sd->parent; 7685 struct sched_group *group; 7686 struct rq *busiest; 7687 unsigned long flags; 7688 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 7689 7690 struct lb_env env = { 7691 .sd = sd, 7692 .dst_cpu = this_cpu, 7693 .dst_rq = this_rq, 7694 .dst_grpmask = sched_group_cpus(sd->groups), 7695 .idle = idle, 7696 .loop_break = sched_nr_migrate_break, 7697 .cpus = cpus, 7698 .fbq_type = all, 7699 .tasks = LIST_HEAD_INIT(env.tasks), 7700 }; 7701 7702 /* 7703 * For NEWLY_IDLE load_balancing, we don't need to consider 7704 * other cpus in our group 7705 */ 7706 if (idle == CPU_NEWLY_IDLE) 7707 env.dst_grpmask = NULL; 7708 7709 cpumask_copy(cpus, cpu_active_mask); 7710 7711 schedstat_inc(sd->lb_count[idle]); 7712 7713 redo: 7714 if (!should_we_balance(&env)) { 7715 *continue_balancing = 0; 7716 goto out_balanced; 7717 } 7718 7719 group = find_busiest_group(&env); 7720 if (!group) { 7721 schedstat_inc(sd->lb_nobusyg[idle]); 7722 goto out_balanced; 7723 } 7724 7725 busiest = find_busiest_queue(&env, group); 7726 if (!busiest) { 7727 schedstat_inc(sd->lb_nobusyq[idle]); 7728 goto out_balanced; 7729 } 7730 7731 BUG_ON(busiest == env.dst_rq); 7732 7733 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 7734 7735 env.src_cpu = busiest->cpu; 7736 env.src_rq = busiest; 7737 7738 ld_moved = 0; 7739 if (busiest->nr_running > 1) { 7740 /* 7741 * Attempt to move tasks. If find_busiest_group has found 7742 * an imbalance but busiest->nr_running <= 1, the group is 7743 * still unbalanced. ld_moved simply stays zero, so it is 7744 * correctly treated as an imbalance. 7745 */ 7746 env.flags |= LBF_ALL_PINNED; 7747 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 7748 7749 more_balance: 7750 raw_spin_lock_irqsave(&busiest->lock, flags); 7751 7752 /* 7753 * cur_ld_moved - load moved in current iteration 7754 * ld_moved - cumulative load moved across iterations 7755 */ 7756 cur_ld_moved = detach_tasks(&env); 7757 7758 /* 7759 * We've detached some tasks from busiest_rq. Every 7760 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 7761 * unlock busiest->lock, and we are able to be sure 7762 * that nobody can manipulate the tasks in parallel. 7763 * See task_rq_lock() family for the details. 7764 */ 7765 7766 raw_spin_unlock(&busiest->lock); 7767 7768 if (cur_ld_moved) { 7769 attach_tasks(&env); 7770 ld_moved += cur_ld_moved; 7771 } 7772 7773 local_irq_restore(flags); 7774 7775 if (env.flags & LBF_NEED_BREAK) { 7776 env.flags &= ~LBF_NEED_BREAK; 7777 goto more_balance; 7778 } 7779 7780 /* 7781 * Revisit (affine) tasks on src_cpu that couldn't be moved to 7782 * us and move them to an alternate dst_cpu in our sched_group 7783 * where they can run. The upper limit on how many times we 7784 * iterate on same src_cpu is dependent on number of cpus in our 7785 * sched_group. 7786 * 7787 * This changes load balance semantics a bit on who can move 7788 * load to a given_cpu. In addition to the given_cpu itself 7789 * (or a ilb_cpu acting on its behalf where given_cpu is 7790 * nohz-idle), we now have balance_cpu in a position to move 7791 * load to given_cpu. In rare situations, this may cause 7792 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 7793 * _independently_ and at _same_ time to move some load to 7794 * given_cpu) causing exceess load to be moved to given_cpu. 7795 * This however should not happen so much in practice and 7796 * moreover subsequent load balance cycles should correct the 7797 * excess load moved. 7798 */ 7799 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 7800 7801 /* Prevent to re-select dst_cpu via env's cpus */ 7802 cpumask_clear_cpu(env.dst_cpu, env.cpus); 7803 7804 env.dst_rq = cpu_rq(env.new_dst_cpu); 7805 env.dst_cpu = env.new_dst_cpu; 7806 env.flags &= ~LBF_DST_PINNED; 7807 env.loop = 0; 7808 env.loop_break = sched_nr_migrate_break; 7809 7810 /* 7811 * Go back to "more_balance" rather than "redo" since we 7812 * need to continue with same src_cpu. 7813 */ 7814 goto more_balance; 7815 } 7816 7817 /* 7818 * We failed to reach balance because of affinity. 7819 */ 7820 if (sd_parent) { 7821 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 7822 7823 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 7824 *group_imbalance = 1; 7825 } 7826 7827 /* All tasks on this runqueue were pinned by CPU affinity */ 7828 if (unlikely(env.flags & LBF_ALL_PINNED)) { 7829 cpumask_clear_cpu(cpu_of(busiest), cpus); 7830 if (!cpumask_empty(cpus)) { 7831 env.loop = 0; 7832 env.loop_break = sched_nr_migrate_break; 7833 goto redo; 7834 } 7835 goto out_all_pinned; 7836 } 7837 } 7838 7839 if (!ld_moved) { 7840 schedstat_inc(sd->lb_failed[idle]); 7841 /* 7842 * Increment the failure counter only on periodic balance. 7843 * We do not want newidle balance, which can be very 7844 * frequent, pollute the failure counter causing 7845 * excessive cache_hot migrations and active balances. 7846 */ 7847 if (idle != CPU_NEWLY_IDLE) 7848 sd->nr_balance_failed++; 7849 7850 if (need_active_balance(&env)) { 7851 raw_spin_lock_irqsave(&busiest->lock, flags); 7852 7853 /* don't kick the active_load_balance_cpu_stop, 7854 * if the curr task on busiest cpu can't be 7855 * moved to this_cpu 7856 */ 7857 if (!cpumask_test_cpu(this_cpu, 7858 tsk_cpus_allowed(busiest->curr))) { 7859 raw_spin_unlock_irqrestore(&busiest->lock, 7860 flags); 7861 env.flags |= LBF_ALL_PINNED; 7862 goto out_one_pinned; 7863 } 7864 7865 /* 7866 * ->active_balance synchronizes accesses to 7867 * ->active_balance_work. Once set, it's cleared 7868 * only after active load balance is finished. 7869 */ 7870 if (!busiest->active_balance) { 7871 busiest->active_balance = 1; 7872 busiest->push_cpu = this_cpu; 7873 active_balance = 1; 7874 } 7875 raw_spin_unlock_irqrestore(&busiest->lock, flags); 7876 7877 if (active_balance) { 7878 stop_one_cpu_nowait(cpu_of(busiest), 7879 active_load_balance_cpu_stop, busiest, 7880 &busiest->active_balance_work); 7881 } 7882 7883 /* We've kicked active balancing, force task migration. */ 7884 sd->nr_balance_failed = sd->cache_nice_tries+1; 7885 } 7886 } else 7887 sd->nr_balance_failed = 0; 7888 7889 if (likely(!active_balance)) { 7890 /* We were unbalanced, so reset the balancing interval */ 7891 sd->balance_interval = sd->min_interval; 7892 } else { 7893 /* 7894 * If we've begun active balancing, start to back off. This 7895 * case may not be covered by the all_pinned logic if there 7896 * is only 1 task on the busy runqueue (because we don't call 7897 * detach_tasks). 7898 */ 7899 if (sd->balance_interval < sd->max_interval) 7900 sd->balance_interval *= 2; 7901 } 7902 7903 goto out; 7904 7905 out_balanced: 7906 /* 7907 * We reach balance although we may have faced some affinity 7908 * constraints. Clear the imbalance flag if it was set. 7909 */ 7910 if (sd_parent) { 7911 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 7912 7913 if (*group_imbalance) 7914 *group_imbalance = 0; 7915 } 7916 7917 out_all_pinned: 7918 /* 7919 * We reach balance because all tasks are pinned at this level so 7920 * we can't migrate them. Let the imbalance flag set so parent level 7921 * can try to migrate them. 7922 */ 7923 schedstat_inc(sd->lb_balanced[idle]); 7924 7925 sd->nr_balance_failed = 0; 7926 7927 out_one_pinned: 7928 /* tune up the balancing interval */ 7929 if (((env.flags & LBF_ALL_PINNED) && 7930 sd->balance_interval < MAX_PINNED_INTERVAL) || 7931 (sd->balance_interval < sd->max_interval)) 7932 sd->balance_interval *= 2; 7933 7934 ld_moved = 0; 7935 out: 7936 return ld_moved; 7937 } 7938 7939 static inline unsigned long 7940 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 7941 { 7942 unsigned long interval = sd->balance_interval; 7943 7944 if (cpu_busy) 7945 interval *= sd->busy_factor; 7946 7947 /* scale ms to jiffies */ 7948 interval = msecs_to_jiffies(interval); 7949 interval = clamp(interval, 1UL, max_load_balance_interval); 7950 7951 return interval; 7952 } 7953 7954 static inline void 7955 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 7956 { 7957 unsigned long interval, next; 7958 7959 /* used by idle balance, so cpu_busy = 0 */ 7960 interval = get_sd_balance_interval(sd, 0); 7961 next = sd->last_balance + interval; 7962 7963 if (time_after(*next_balance, next)) 7964 *next_balance = next; 7965 } 7966 7967 /* 7968 * idle_balance is called by schedule() if this_cpu is about to become 7969 * idle. Attempts to pull tasks from other CPUs. 7970 */ 7971 static int idle_balance(struct rq *this_rq) 7972 { 7973 unsigned long next_balance = jiffies + HZ; 7974 int this_cpu = this_rq->cpu; 7975 struct sched_domain *sd; 7976 int pulled_task = 0; 7977 u64 curr_cost = 0; 7978 7979 /* 7980 * We must set idle_stamp _before_ calling idle_balance(), such that we 7981 * measure the duration of idle_balance() as idle time. 7982 */ 7983 this_rq->idle_stamp = rq_clock(this_rq); 7984 7985 if (this_rq->avg_idle < sysctl_sched_migration_cost || 7986 !this_rq->rd->overload) { 7987 rcu_read_lock(); 7988 sd = rcu_dereference_check_sched_domain(this_rq->sd); 7989 if (sd) 7990 update_next_balance(sd, &next_balance); 7991 rcu_read_unlock(); 7992 7993 goto out; 7994 } 7995 7996 raw_spin_unlock(&this_rq->lock); 7997 7998 update_blocked_averages(this_cpu); 7999 rcu_read_lock(); 8000 for_each_domain(this_cpu, sd) { 8001 int continue_balancing = 1; 8002 u64 t0, domain_cost; 8003 8004 if (!(sd->flags & SD_LOAD_BALANCE)) 8005 continue; 8006 8007 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 8008 update_next_balance(sd, &next_balance); 8009 break; 8010 } 8011 8012 if (sd->flags & SD_BALANCE_NEWIDLE) { 8013 t0 = sched_clock_cpu(this_cpu); 8014 8015 pulled_task = load_balance(this_cpu, this_rq, 8016 sd, CPU_NEWLY_IDLE, 8017 &continue_balancing); 8018 8019 domain_cost = sched_clock_cpu(this_cpu) - t0; 8020 if (domain_cost > sd->max_newidle_lb_cost) 8021 sd->max_newidle_lb_cost = domain_cost; 8022 8023 curr_cost += domain_cost; 8024 } 8025 8026 update_next_balance(sd, &next_balance); 8027 8028 /* 8029 * Stop searching for tasks to pull if there are 8030 * now runnable tasks on this rq. 8031 */ 8032 if (pulled_task || this_rq->nr_running > 0) 8033 break; 8034 } 8035 rcu_read_unlock(); 8036 8037 raw_spin_lock(&this_rq->lock); 8038 8039 if (curr_cost > this_rq->max_idle_balance_cost) 8040 this_rq->max_idle_balance_cost = curr_cost; 8041 8042 /* 8043 * While browsing the domains, we released the rq lock, a task could 8044 * have been enqueued in the meantime. Since we're not going idle, 8045 * pretend we pulled a task. 8046 */ 8047 if (this_rq->cfs.h_nr_running && !pulled_task) 8048 pulled_task = 1; 8049 8050 out: 8051 /* Move the next balance forward */ 8052 if (time_after(this_rq->next_balance, next_balance)) 8053 this_rq->next_balance = next_balance; 8054 8055 /* Is there a task of a high priority class? */ 8056 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 8057 pulled_task = -1; 8058 8059 if (pulled_task) 8060 this_rq->idle_stamp = 0; 8061 8062 return pulled_task; 8063 } 8064 8065 /* 8066 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 8067 * running tasks off the busiest CPU onto idle CPUs. It requires at 8068 * least 1 task to be running on each physical CPU where possible, and 8069 * avoids physical / logical imbalances. 8070 */ 8071 static int active_load_balance_cpu_stop(void *data) 8072 { 8073 struct rq *busiest_rq = data; 8074 int busiest_cpu = cpu_of(busiest_rq); 8075 int target_cpu = busiest_rq->push_cpu; 8076 struct rq *target_rq = cpu_rq(target_cpu); 8077 struct sched_domain *sd; 8078 struct task_struct *p = NULL; 8079 8080 raw_spin_lock_irq(&busiest_rq->lock); 8081 8082 /* make sure the requested cpu hasn't gone down in the meantime */ 8083 if (unlikely(busiest_cpu != smp_processor_id() || 8084 !busiest_rq->active_balance)) 8085 goto out_unlock; 8086 8087 /* Is there any task to move? */ 8088 if (busiest_rq->nr_running <= 1) 8089 goto out_unlock; 8090 8091 /* 8092 * This condition is "impossible", if it occurs 8093 * we need to fix it. Originally reported by 8094 * Bjorn Helgaas on a 128-cpu setup. 8095 */ 8096 BUG_ON(busiest_rq == target_rq); 8097 8098 /* Search for an sd spanning us and the target CPU. */ 8099 rcu_read_lock(); 8100 for_each_domain(target_cpu, sd) { 8101 if ((sd->flags & SD_LOAD_BALANCE) && 8102 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 8103 break; 8104 } 8105 8106 if (likely(sd)) { 8107 struct lb_env env = { 8108 .sd = sd, 8109 .dst_cpu = target_cpu, 8110 .dst_rq = target_rq, 8111 .src_cpu = busiest_rq->cpu, 8112 .src_rq = busiest_rq, 8113 .idle = CPU_IDLE, 8114 }; 8115 8116 schedstat_inc(sd->alb_count); 8117 8118 p = detach_one_task(&env); 8119 if (p) { 8120 schedstat_inc(sd->alb_pushed); 8121 /* Active balancing done, reset the failure counter. */ 8122 sd->nr_balance_failed = 0; 8123 } else { 8124 schedstat_inc(sd->alb_failed); 8125 } 8126 } 8127 rcu_read_unlock(); 8128 out_unlock: 8129 busiest_rq->active_balance = 0; 8130 raw_spin_unlock(&busiest_rq->lock); 8131 8132 if (p) 8133 attach_one_task(target_rq, p); 8134 8135 local_irq_enable(); 8136 8137 return 0; 8138 } 8139 8140 static inline int on_null_domain(struct rq *rq) 8141 { 8142 return unlikely(!rcu_dereference_sched(rq->sd)); 8143 } 8144 8145 #ifdef CONFIG_NO_HZ_COMMON 8146 /* 8147 * idle load balancing details 8148 * - When one of the busy CPUs notice that there may be an idle rebalancing 8149 * needed, they will kick the idle load balancer, which then does idle 8150 * load balancing for all the idle CPUs. 8151 */ 8152 static struct { 8153 cpumask_var_t idle_cpus_mask; 8154 atomic_t nr_cpus; 8155 unsigned long next_balance; /* in jiffy units */ 8156 } nohz ____cacheline_aligned; 8157 8158 static inline int find_new_ilb(void) 8159 { 8160 int ilb = cpumask_first(nohz.idle_cpus_mask); 8161 8162 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 8163 return ilb; 8164 8165 return nr_cpu_ids; 8166 } 8167 8168 /* 8169 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 8170 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 8171 * CPU (if there is one). 8172 */ 8173 static void nohz_balancer_kick(void) 8174 { 8175 int ilb_cpu; 8176 8177 nohz.next_balance++; 8178 8179 ilb_cpu = find_new_ilb(); 8180 8181 if (ilb_cpu >= nr_cpu_ids) 8182 return; 8183 8184 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 8185 return; 8186 /* 8187 * Use smp_send_reschedule() instead of resched_cpu(). 8188 * This way we generate a sched IPI on the target cpu which 8189 * is idle. And the softirq performing nohz idle load balance 8190 * will be run before returning from the IPI. 8191 */ 8192 smp_send_reschedule(ilb_cpu); 8193 return; 8194 } 8195 8196 void nohz_balance_exit_idle(unsigned int cpu) 8197 { 8198 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 8199 /* 8200 * Completely isolated CPUs don't ever set, so we must test. 8201 */ 8202 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { 8203 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 8204 atomic_dec(&nohz.nr_cpus); 8205 } 8206 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 8207 } 8208 } 8209 8210 static inline void set_cpu_sd_state_busy(void) 8211 { 8212 struct sched_domain *sd; 8213 int cpu = smp_processor_id(); 8214 8215 rcu_read_lock(); 8216 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 8217 8218 if (!sd || !sd->nohz_idle) 8219 goto unlock; 8220 sd->nohz_idle = 0; 8221 8222 atomic_inc(&sd->shared->nr_busy_cpus); 8223 unlock: 8224 rcu_read_unlock(); 8225 } 8226 8227 void set_cpu_sd_state_idle(void) 8228 { 8229 struct sched_domain *sd; 8230 int cpu = smp_processor_id(); 8231 8232 rcu_read_lock(); 8233 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 8234 8235 if (!sd || sd->nohz_idle) 8236 goto unlock; 8237 sd->nohz_idle = 1; 8238 8239 atomic_dec(&sd->shared->nr_busy_cpus); 8240 unlock: 8241 rcu_read_unlock(); 8242 } 8243 8244 /* 8245 * This routine will record that the cpu is going idle with tick stopped. 8246 * This info will be used in performing idle load balancing in the future. 8247 */ 8248 void nohz_balance_enter_idle(int cpu) 8249 { 8250 /* 8251 * If this cpu is going down, then nothing needs to be done. 8252 */ 8253 if (!cpu_active(cpu)) 8254 return; 8255 8256 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 8257 return; 8258 8259 /* 8260 * If we're a completely isolated CPU, we don't play. 8261 */ 8262 if (on_null_domain(cpu_rq(cpu))) 8263 return; 8264 8265 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 8266 atomic_inc(&nohz.nr_cpus); 8267 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 8268 } 8269 #endif 8270 8271 static DEFINE_SPINLOCK(balancing); 8272 8273 /* 8274 * Scale the max load_balance interval with the number of CPUs in the system. 8275 * This trades load-balance latency on larger machines for less cross talk. 8276 */ 8277 void update_max_interval(void) 8278 { 8279 max_load_balance_interval = HZ*num_online_cpus()/10; 8280 } 8281 8282 /* 8283 * It checks each scheduling domain to see if it is due to be balanced, 8284 * and initiates a balancing operation if so. 8285 * 8286 * Balancing parameters are set up in init_sched_domains. 8287 */ 8288 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 8289 { 8290 int continue_balancing = 1; 8291 int cpu = rq->cpu; 8292 unsigned long interval; 8293 struct sched_domain *sd; 8294 /* Earliest time when we have to do rebalance again */ 8295 unsigned long next_balance = jiffies + 60*HZ; 8296 int update_next_balance = 0; 8297 int need_serialize, need_decay = 0; 8298 u64 max_cost = 0; 8299 8300 update_blocked_averages(cpu); 8301 8302 rcu_read_lock(); 8303 for_each_domain(cpu, sd) { 8304 /* 8305 * Decay the newidle max times here because this is a regular 8306 * visit to all the domains. Decay ~1% per second. 8307 */ 8308 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 8309 sd->max_newidle_lb_cost = 8310 (sd->max_newidle_lb_cost * 253) / 256; 8311 sd->next_decay_max_lb_cost = jiffies + HZ; 8312 need_decay = 1; 8313 } 8314 max_cost += sd->max_newidle_lb_cost; 8315 8316 if (!(sd->flags & SD_LOAD_BALANCE)) 8317 continue; 8318 8319 /* 8320 * Stop the load balance at this level. There is another 8321 * CPU in our sched group which is doing load balancing more 8322 * actively. 8323 */ 8324 if (!continue_balancing) { 8325 if (need_decay) 8326 continue; 8327 break; 8328 } 8329 8330 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8331 8332 need_serialize = sd->flags & SD_SERIALIZE; 8333 if (need_serialize) { 8334 if (!spin_trylock(&balancing)) 8335 goto out; 8336 } 8337 8338 if (time_after_eq(jiffies, sd->last_balance + interval)) { 8339 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 8340 /* 8341 * The LBF_DST_PINNED logic could have changed 8342 * env->dst_cpu, so we can't know our idle 8343 * state even if we migrated tasks. Update it. 8344 */ 8345 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 8346 } 8347 sd->last_balance = jiffies; 8348 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8349 } 8350 if (need_serialize) 8351 spin_unlock(&balancing); 8352 out: 8353 if (time_after(next_balance, sd->last_balance + interval)) { 8354 next_balance = sd->last_balance + interval; 8355 update_next_balance = 1; 8356 } 8357 } 8358 if (need_decay) { 8359 /* 8360 * Ensure the rq-wide value also decays but keep it at a 8361 * reasonable floor to avoid funnies with rq->avg_idle. 8362 */ 8363 rq->max_idle_balance_cost = 8364 max((u64)sysctl_sched_migration_cost, max_cost); 8365 } 8366 rcu_read_unlock(); 8367 8368 /* 8369 * next_balance will be updated only when there is a need. 8370 * When the cpu is attached to null domain for ex, it will not be 8371 * updated. 8372 */ 8373 if (likely(update_next_balance)) { 8374 rq->next_balance = next_balance; 8375 8376 #ifdef CONFIG_NO_HZ_COMMON 8377 /* 8378 * If this CPU has been elected to perform the nohz idle 8379 * balance. Other idle CPUs have already rebalanced with 8380 * nohz_idle_balance() and nohz.next_balance has been 8381 * updated accordingly. This CPU is now running the idle load 8382 * balance for itself and we need to update the 8383 * nohz.next_balance accordingly. 8384 */ 8385 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 8386 nohz.next_balance = rq->next_balance; 8387 #endif 8388 } 8389 } 8390 8391 #ifdef CONFIG_NO_HZ_COMMON 8392 /* 8393 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 8394 * rebalancing for all the cpus for whom scheduler ticks are stopped. 8395 */ 8396 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 8397 { 8398 int this_cpu = this_rq->cpu; 8399 struct rq *rq; 8400 int balance_cpu; 8401 /* Earliest time when we have to do rebalance again */ 8402 unsigned long next_balance = jiffies + 60*HZ; 8403 int update_next_balance = 0; 8404 8405 if (idle != CPU_IDLE || 8406 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 8407 goto end; 8408 8409 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 8410 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 8411 continue; 8412 8413 /* 8414 * If this cpu gets work to do, stop the load balancing 8415 * work being done for other cpus. Next load 8416 * balancing owner will pick it up. 8417 */ 8418 if (need_resched()) 8419 break; 8420 8421 rq = cpu_rq(balance_cpu); 8422 8423 /* 8424 * If time for next balance is due, 8425 * do the balance. 8426 */ 8427 if (time_after_eq(jiffies, rq->next_balance)) { 8428 raw_spin_lock_irq(&rq->lock); 8429 update_rq_clock(rq); 8430 cpu_load_update_idle(rq); 8431 raw_spin_unlock_irq(&rq->lock); 8432 rebalance_domains(rq, CPU_IDLE); 8433 } 8434 8435 if (time_after(next_balance, rq->next_balance)) { 8436 next_balance = rq->next_balance; 8437 update_next_balance = 1; 8438 } 8439 } 8440 8441 /* 8442 * next_balance will be updated only when there is a need. 8443 * When the CPU is attached to null domain for ex, it will not be 8444 * updated. 8445 */ 8446 if (likely(update_next_balance)) 8447 nohz.next_balance = next_balance; 8448 end: 8449 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 8450 } 8451 8452 /* 8453 * Current heuristic for kicking the idle load balancer in the presence 8454 * of an idle cpu in the system. 8455 * - This rq has more than one task. 8456 * - This rq has at least one CFS task and the capacity of the CPU is 8457 * significantly reduced because of RT tasks or IRQs. 8458 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 8459 * multiple busy cpu. 8460 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 8461 * domain span are idle. 8462 */ 8463 static inline bool nohz_kick_needed(struct rq *rq) 8464 { 8465 unsigned long now = jiffies; 8466 struct sched_domain_shared *sds; 8467 struct sched_domain *sd; 8468 int nr_busy, cpu = rq->cpu; 8469 bool kick = false; 8470 8471 if (unlikely(rq->idle_balance)) 8472 return false; 8473 8474 /* 8475 * We may be recently in ticked or tickless idle mode. At the first 8476 * busy tick after returning from idle, we will update the busy stats. 8477 */ 8478 set_cpu_sd_state_busy(); 8479 nohz_balance_exit_idle(cpu); 8480 8481 /* 8482 * None are in tickless mode and hence no need for NOHZ idle load 8483 * balancing. 8484 */ 8485 if (likely(!atomic_read(&nohz.nr_cpus))) 8486 return false; 8487 8488 if (time_before(now, nohz.next_balance)) 8489 return false; 8490 8491 if (rq->nr_running >= 2) 8492 return true; 8493 8494 rcu_read_lock(); 8495 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 8496 if (sds) { 8497 /* 8498 * XXX: write a coherent comment on why we do this. 8499 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com 8500 */ 8501 nr_busy = atomic_read(&sds->nr_busy_cpus); 8502 if (nr_busy > 1) { 8503 kick = true; 8504 goto unlock; 8505 } 8506 8507 } 8508 8509 sd = rcu_dereference(rq->sd); 8510 if (sd) { 8511 if ((rq->cfs.h_nr_running >= 1) && 8512 check_cpu_capacity(rq, sd)) { 8513 kick = true; 8514 goto unlock; 8515 } 8516 } 8517 8518 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 8519 if (sd && (cpumask_first_and(nohz.idle_cpus_mask, 8520 sched_domain_span(sd)) < cpu)) { 8521 kick = true; 8522 goto unlock; 8523 } 8524 8525 unlock: 8526 rcu_read_unlock(); 8527 return kick; 8528 } 8529 #else 8530 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 8531 #endif 8532 8533 /* 8534 * run_rebalance_domains is triggered when needed from the scheduler tick. 8535 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 8536 */ 8537 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 8538 { 8539 struct rq *this_rq = this_rq(); 8540 enum cpu_idle_type idle = this_rq->idle_balance ? 8541 CPU_IDLE : CPU_NOT_IDLE; 8542 8543 /* 8544 * If this cpu has a pending nohz_balance_kick, then do the 8545 * balancing on behalf of the other idle cpus whose ticks are 8546 * stopped. Do nohz_idle_balance *before* rebalance_domains to 8547 * give the idle cpus a chance to load balance. Else we may 8548 * load balance only within the local sched_domain hierarchy 8549 * and abort nohz_idle_balance altogether if we pull some load. 8550 */ 8551 nohz_idle_balance(this_rq, idle); 8552 rebalance_domains(this_rq, idle); 8553 } 8554 8555 /* 8556 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 8557 */ 8558 void trigger_load_balance(struct rq *rq) 8559 { 8560 /* Don't need to rebalance while attached to NULL domain */ 8561 if (unlikely(on_null_domain(rq))) 8562 return; 8563 8564 if (time_after_eq(jiffies, rq->next_balance)) 8565 raise_softirq(SCHED_SOFTIRQ); 8566 #ifdef CONFIG_NO_HZ_COMMON 8567 if (nohz_kick_needed(rq)) 8568 nohz_balancer_kick(); 8569 #endif 8570 } 8571 8572 static void rq_online_fair(struct rq *rq) 8573 { 8574 update_sysctl(); 8575 8576 update_runtime_enabled(rq); 8577 } 8578 8579 static void rq_offline_fair(struct rq *rq) 8580 { 8581 update_sysctl(); 8582 8583 /* Ensure any throttled groups are reachable by pick_next_task */ 8584 unthrottle_offline_cfs_rqs(rq); 8585 } 8586 8587 #endif /* CONFIG_SMP */ 8588 8589 /* 8590 * scheduler tick hitting a task of our scheduling class: 8591 */ 8592 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 8593 { 8594 struct cfs_rq *cfs_rq; 8595 struct sched_entity *se = &curr->se; 8596 8597 for_each_sched_entity(se) { 8598 cfs_rq = cfs_rq_of(se); 8599 entity_tick(cfs_rq, se, queued); 8600 } 8601 8602 if (static_branch_unlikely(&sched_numa_balancing)) 8603 task_tick_numa(rq, curr); 8604 } 8605 8606 /* 8607 * called on fork with the child task as argument from the parent's context 8608 * - child not yet on the tasklist 8609 * - preemption disabled 8610 */ 8611 static void task_fork_fair(struct task_struct *p) 8612 { 8613 struct cfs_rq *cfs_rq; 8614 struct sched_entity *se = &p->se, *curr; 8615 struct rq *rq = this_rq(); 8616 8617 raw_spin_lock(&rq->lock); 8618 update_rq_clock(rq); 8619 8620 cfs_rq = task_cfs_rq(current); 8621 curr = cfs_rq->curr; 8622 if (curr) { 8623 update_curr(cfs_rq); 8624 se->vruntime = curr->vruntime; 8625 } 8626 place_entity(cfs_rq, se, 1); 8627 8628 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 8629 /* 8630 * Upon rescheduling, sched_class::put_prev_task() will place 8631 * 'current' within the tree based on its new key value. 8632 */ 8633 swap(curr->vruntime, se->vruntime); 8634 resched_curr(rq); 8635 } 8636 8637 se->vruntime -= cfs_rq->min_vruntime; 8638 raw_spin_unlock(&rq->lock); 8639 } 8640 8641 /* 8642 * Priority of the task has changed. Check to see if we preempt 8643 * the current task. 8644 */ 8645 static void 8646 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 8647 { 8648 if (!task_on_rq_queued(p)) 8649 return; 8650 8651 /* 8652 * Reschedule if we are currently running on this runqueue and 8653 * our priority decreased, or if we are not currently running on 8654 * this runqueue and our priority is higher than the current's 8655 */ 8656 if (rq->curr == p) { 8657 if (p->prio > oldprio) 8658 resched_curr(rq); 8659 } else 8660 check_preempt_curr(rq, p, 0); 8661 } 8662 8663 static inline bool vruntime_normalized(struct task_struct *p) 8664 { 8665 struct sched_entity *se = &p->se; 8666 8667 /* 8668 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 8669 * the dequeue_entity(.flags=0) will already have normalized the 8670 * vruntime. 8671 */ 8672 if (p->on_rq) 8673 return true; 8674 8675 /* 8676 * When !on_rq, vruntime of the task has usually NOT been normalized. 8677 * But there are some cases where it has already been normalized: 8678 * 8679 * - A forked child which is waiting for being woken up by 8680 * wake_up_new_task(). 8681 * - A task which has been woken up by try_to_wake_up() and 8682 * waiting for actually being woken up by sched_ttwu_pending(). 8683 */ 8684 if (!se->sum_exec_runtime || p->state == TASK_WAKING) 8685 return true; 8686 8687 return false; 8688 } 8689 8690 static void detach_task_cfs_rq(struct task_struct *p) 8691 { 8692 struct sched_entity *se = &p->se; 8693 struct cfs_rq *cfs_rq = cfs_rq_of(se); 8694 u64 now = cfs_rq_clock_task(cfs_rq); 8695 8696 if (!vruntime_normalized(p)) { 8697 /* 8698 * Fix up our vruntime so that the current sleep doesn't 8699 * cause 'unlimited' sleep bonus. 8700 */ 8701 place_entity(cfs_rq, se, 0); 8702 se->vruntime -= cfs_rq->min_vruntime; 8703 } 8704 8705 /* Catch up with the cfs_rq and remove our load when we leave */ 8706 update_cfs_rq_load_avg(now, cfs_rq, false); 8707 detach_entity_load_avg(cfs_rq, se); 8708 update_tg_load_avg(cfs_rq, false); 8709 } 8710 8711 static void attach_task_cfs_rq(struct task_struct *p) 8712 { 8713 struct sched_entity *se = &p->se; 8714 struct cfs_rq *cfs_rq = cfs_rq_of(se); 8715 u64 now = cfs_rq_clock_task(cfs_rq); 8716 8717 #ifdef CONFIG_FAIR_GROUP_SCHED 8718 /* 8719 * Since the real-depth could have been changed (only FAIR 8720 * class maintain depth value), reset depth properly. 8721 */ 8722 se->depth = se->parent ? se->parent->depth + 1 : 0; 8723 #endif 8724 8725 /* Synchronize task with its cfs_rq */ 8726 update_cfs_rq_load_avg(now, cfs_rq, false); 8727 attach_entity_load_avg(cfs_rq, se); 8728 update_tg_load_avg(cfs_rq, false); 8729 8730 if (!vruntime_normalized(p)) 8731 se->vruntime += cfs_rq->min_vruntime; 8732 } 8733 8734 static void switched_from_fair(struct rq *rq, struct task_struct *p) 8735 { 8736 detach_task_cfs_rq(p); 8737 } 8738 8739 static void switched_to_fair(struct rq *rq, struct task_struct *p) 8740 { 8741 attach_task_cfs_rq(p); 8742 8743 if (task_on_rq_queued(p)) { 8744 /* 8745 * We were most likely switched from sched_rt, so 8746 * kick off the schedule if running, otherwise just see 8747 * if we can still preempt the current task. 8748 */ 8749 if (rq->curr == p) 8750 resched_curr(rq); 8751 else 8752 check_preempt_curr(rq, p, 0); 8753 } 8754 } 8755 8756 /* Account for a task changing its policy or group. 8757 * 8758 * This routine is mostly called to set cfs_rq->curr field when a task 8759 * migrates between groups/classes. 8760 */ 8761 static void set_curr_task_fair(struct rq *rq) 8762 { 8763 struct sched_entity *se = &rq->curr->se; 8764 8765 for_each_sched_entity(se) { 8766 struct cfs_rq *cfs_rq = cfs_rq_of(se); 8767 8768 set_next_entity(cfs_rq, se); 8769 /* ensure bandwidth has been allocated on our new cfs_rq */ 8770 account_cfs_rq_runtime(cfs_rq, 0); 8771 } 8772 } 8773 8774 void init_cfs_rq(struct cfs_rq *cfs_rq) 8775 { 8776 cfs_rq->tasks_timeline = RB_ROOT; 8777 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 8778 #ifndef CONFIG_64BIT 8779 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 8780 #endif 8781 #ifdef CONFIG_SMP 8782 atomic_long_set(&cfs_rq->removed_load_avg, 0); 8783 atomic_long_set(&cfs_rq->removed_util_avg, 0); 8784 #endif 8785 } 8786 8787 #ifdef CONFIG_FAIR_GROUP_SCHED 8788 static void task_set_group_fair(struct task_struct *p) 8789 { 8790 struct sched_entity *se = &p->se; 8791 8792 set_task_rq(p, task_cpu(p)); 8793 se->depth = se->parent ? se->parent->depth + 1 : 0; 8794 } 8795 8796 static void task_move_group_fair(struct task_struct *p) 8797 { 8798 detach_task_cfs_rq(p); 8799 set_task_rq(p, task_cpu(p)); 8800 8801 #ifdef CONFIG_SMP 8802 /* Tell se's cfs_rq has been changed -- migrated */ 8803 p->se.avg.last_update_time = 0; 8804 #endif 8805 attach_task_cfs_rq(p); 8806 } 8807 8808 static void task_change_group_fair(struct task_struct *p, int type) 8809 { 8810 switch (type) { 8811 case TASK_SET_GROUP: 8812 task_set_group_fair(p); 8813 break; 8814 8815 case TASK_MOVE_GROUP: 8816 task_move_group_fair(p); 8817 break; 8818 } 8819 } 8820 8821 void free_fair_sched_group(struct task_group *tg) 8822 { 8823 int i; 8824 8825 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 8826 8827 for_each_possible_cpu(i) { 8828 if (tg->cfs_rq) 8829 kfree(tg->cfs_rq[i]); 8830 if (tg->se) 8831 kfree(tg->se[i]); 8832 } 8833 8834 kfree(tg->cfs_rq); 8835 kfree(tg->se); 8836 } 8837 8838 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8839 { 8840 struct sched_entity *se; 8841 struct cfs_rq *cfs_rq; 8842 int i; 8843 8844 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 8845 if (!tg->cfs_rq) 8846 goto err; 8847 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 8848 if (!tg->se) 8849 goto err; 8850 8851 tg->shares = NICE_0_LOAD; 8852 8853 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 8854 8855 for_each_possible_cpu(i) { 8856 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 8857 GFP_KERNEL, cpu_to_node(i)); 8858 if (!cfs_rq) 8859 goto err; 8860 8861 se = kzalloc_node(sizeof(struct sched_entity), 8862 GFP_KERNEL, cpu_to_node(i)); 8863 if (!se) 8864 goto err_free_rq; 8865 8866 init_cfs_rq(cfs_rq); 8867 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 8868 init_entity_runnable_average(se); 8869 } 8870 8871 return 1; 8872 8873 err_free_rq: 8874 kfree(cfs_rq); 8875 err: 8876 return 0; 8877 } 8878 8879 void online_fair_sched_group(struct task_group *tg) 8880 { 8881 struct sched_entity *se; 8882 struct rq *rq; 8883 int i; 8884 8885 for_each_possible_cpu(i) { 8886 rq = cpu_rq(i); 8887 se = tg->se[i]; 8888 8889 raw_spin_lock_irq(&rq->lock); 8890 post_init_entity_util_avg(se); 8891 sync_throttle(tg, i); 8892 raw_spin_unlock_irq(&rq->lock); 8893 } 8894 } 8895 8896 void unregister_fair_sched_group(struct task_group *tg) 8897 { 8898 unsigned long flags; 8899 struct rq *rq; 8900 int cpu; 8901 8902 for_each_possible_cpu(cpu) { 8903 if (tg->se[cpu]) 8904 remove_entity_load_avg(tg->se[cpu]); 8905 8906 /* 8907 * Only empty task groups can be destroyed; so we can speculatively 8908 * check on_list without danger of it being re-added. 8909 */ 8910 if (!tg->cfs_rq[cpu]->on_list) 8911 continue; 8912 8913 rq = cpu_rq(cpu); 8914 8915 raw_spin_lock_irqsave(&rq->lock, flags); 8916 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 8917 raw_spin_unlock_irqrestore(&rq->lock, flags); 8918 } 8919 } 8920 8921 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 8922 struct sched_entity *se, int cpu, 8923 struct sched_entity *parent) 8924 { 8925 struct rq *rq = cpu_rq(cpu); 8926 8927 cfs_rq->tg = tg; 8928 cfs_rq->rq = rq; 8929 init_cfs_rq_runtime(cfs_rq); 8930 8931 tg->cfs_rq[cpu] = cfs_rq; 8932 tg->se[cpu] = se; 8933 8934 /* se could be NULL for root_task_group */ 8935 if (!se) 8936 return; 8937 8938 if (!parent) { 8939 se->cfs_rq = &rq->cfs; 8940 se->depth = 0; 8941 } else { 8942 se->cfs_rq = parent->my_q; 8943 se->depth = parent->depth + 1; 8944 } 8945 8946 se->my_q = cfs_rq; 8947 /* guarantee group entities always have weight */ 8948 update_load_set(&se->load, NICE_0_LOAD); 8949 se->parent = parent; 8950 } 8951 8952 static DEFINE_MUTEX(shares_mutex); 8953 8954 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 8955 { 8956 int i; 8957 unsigned long flags; 8958 8959 /* 8960 * We can't change the weight of the root cgroup. 8961 */ 8962 if (!tg->se[0]) 8963 return -EINVAL; 8964 8965 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 8966 8967 mutex_lock(&shares_mutex); 8968 if (tg->shares == shares) 8969 goto done; 8970 8971 tg->shares = shares; 8972 for_each_possible_cpu(i) { 8973 struct rq *rq = cpu_rq(i); 8974 struct sched_entity *se; 8975 8976 se = tg->se[i]; 8977 /* Propagate contribution to hierarchy */ 8978 raw_spin_lock_irqsave(&rq->lock, flags); 8979 8980 /* Possible calls to update_curr() need rq clock */ 8981 update_rq_clock(rq); 8982 for_each_sched_entity(se) 8983 update_cfs_shares(group_cfs_rq(se)); 8984 raw_spin_unlock_irqrestore(&rq->lock, flags); 8985 } 8986 8987 done: 8988 mutex_unlock(&shares_mutex); 8989 return 0; 8990 } 8991 #else /* CONFIG_FAIR_GROUP_SCHED */ 8992 8993 void free_fair_sched_group(struct task_group *tg) { } 8994 8995 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8996 { 8997 return 1; 8998 } 8999 9000 void online_fair_sched_group(struct task_group *tg) { } 9001 9002 void unregister_fair_sched_group(struct task_group *tg) { } 9003 9004 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9005 9006 9007 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 9008 { 9009 struct sched_entity *se = &task->se; 9010 unsigned int rr_interval = 0; 9011 9012 /* 9013 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 9014 * idle runqueue: 9015 */ 9016 if (rq->cfs.load.weight) 9017 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 9018 9019 return rr_interval; 9020 } 9021 9022 /* 9023 * All the scheduling class methods: 9024 */ 9025 const struct sched_class fair_sched_class = { 9026 .next = &idle_sched_class, 9027 .enqueue_task = enqueue_task_fair, 9028 .dequeue_task = dequeue_task_fair, 9029 .yield_task = yield_task_fair, 9030 .yield_to_task = yield_to_task_fair, 9031 9032 .check_preempt_curr = check_preempt_wakeup, 9033 9034 .pick_next_task = pick_next_task_fair, 9035 .put_prev_task = put_prev_task_fair, 9036 9037 #ifdef CONFIG_SMP 9038 .select_task_rq = select_task_rq_fair, 9039 .migrate_task_rq = migrate_task_rq_fair, 9040 9041 .rq_online = rq_online_fair, 9042 .rq_offline = rq_offline_fair, 9043 9044 .task_dead = task_dead_fair, 9045 .set_cpus_allowed = set_cpus_allowed_common, 9046 #endif 9047 9048 .set_curr_task = set_curr_task_fair, 9049 .task_tick = task_tick_fair, 9050 .task_fork = task_fork_fair, 9051 9052 .prio_changed = prio_changed_fair, 9053 .switched_from = switched_from_fair, 9054 .switched_to = switched_to_fair, 9055 9056 .get_rr_interval = get_rr_interval_fair, 9057 9058 .update_curr = update_curr_fair, 9059 9060 #ifdef CONFIG_FAIR_GROUP_SCHED 9061 .task_change_group = task_change_group_fair, 9062 #endif 9063 }; 9064 9065 #ifdef CONFIG_SCHED_DEBUG 9066 void print_cfs_stats(struct seq_file *m, int cpu) 9067 { 9068 struct cfs_rq *cfs_rq; 9069 9070 rcu_read_lock(); 9071 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 9072 print_cfs_rq(m, cpu, cfs_rq); 9073 rcu_read_unlock(); 9074 } 9075 9076 #ifdef CONFIG_NUMA_BALANCING 9077 void show_numa_stats(struct task_struct *p, struct seq_file *m) 9078 { 9079 int node; 9080 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 9081 9082 for_each_online_node(node) { 9083 if (p->numa_faults) { 9084 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 9085 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 9086 } 9087 if (p->numa_group) { 9088 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 9089 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 9090 } 9091 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 9092 } 9093 } 9094 #endif /* CONFIG_NUMA_BALANCING */ 9095 #endif /* CONFIG_SCHED_DEBUG */ 9096 9097 __init void init_sched_fair_class(void) 9098 { 9099 #ifdef CONFIG_SMP 9100 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 9101 9102 #ifdef CONFIG_NO_HZ_COMMON 9103 nohz.next_balance = jiffies; 9104 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 9105 #endif 9106 #endif /* SMP */ 9107 9108 } 9109