1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Linutronix GmbH, Thomas Gleixner <tglx@kernel.org> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/prio.h> 41 42 #include <linux/cpuidle.h> 43 #include <linux/interrupt.h> 44 #include <linux/memory-tiers.h> 45 #include <linux/mempolicy.h> 46 #include <linux/mutex_api.h> 47 #include <linux/profile.h> 48 #include <linux/psi.h> 49 #include <linux/ratelimit.h> 50 #include <linux/task_work.h> 51 #include <linux/rbtree_augmented.h> 52 53 #include <asm/switch_to.h> 54 55 #include <uapi/linux/sched/types.h> 56 57 #include "sched.h" 58 #include "stats.h" 59 #include "autogroup.h" 60 61 /* 62 * The initial- and re-scaling of tunables is configurable 63 * 64 * Options are: 65 * 66 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 67 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) 68 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 69 * 70 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 71 */ 72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 73 74 /* 75 * Minimal preemption granularity for CPU-bound tasks: 76 * 77 * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds) 78 */ 79 unsigned int sysctl_sched_base_slice = 700000ULL; 80 static unsigned int normalized_sysctl_sched_base_slice = 700000ULL; 81 82 __read_mostly unsigned int sysctl_sched_migration_cost = 500000UL; 83 84 static int __init setup_sched_thermal_decay_shift(char *str) 85 { 86 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 87 return 1; 88 } 89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 90 91 /* 92 * For asym packing, by default the lower numbered CPU has higher priority. 93 */ 94 int __weak arch_asym_cpu_priority(int cpu) 95 { 96 return -cpu; 97 } 98 99 /* 100 * The margin used when comparing utilization with CPU capacity. 101 * 102 * (default: ~20%) 103 */ 104 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 105 106 /* 107 * The margin used when comparing CPU capacities. 108 * is 'cap1' noticeably greater than 'cap2' 109 * 110 * (default: ~5%) 111 */ 112 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 113 114 #ifdef CONFIG_CFS_BANDWIDTH 115 /* 116 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 117 * each time a cfs_rq requests quota. 118 * 119 * Note: in the case that the slice exceeds the runtime remaining (either due 120 * to consumption or the quota being specified to be smaller than the slice) 121 * we will always only issue the remaining available time. 122 * 123 * (default: 5 msec, units: microseconds) 124 */ 125 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 126 #endif 127 128 #ifdef CONFIG_NUMA_BALANCING 129 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 130 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 131 #endif 132 133 #ifdef CONFIG_SYSCTL 134 static const struct ctl_table sched_fair_sysctls[] = { 135 #ifdef CONFIG_CFS_BANDWIDTH 136 { 137 .procname = "sched_cfs_bandwidth_slice_us", 138 .data = &sysctl_sched_cfs_bandwidth_slice, 139 .maxlen = sizeof(unsigned int), 140 .mode = 0644, 141 .proc_handler = proc_dointvec_minmax, 142 .extra1 = SYSCTL_ONE, 143 }, 144 #endif 145 #ifdef CONFIG_NUMA_BALANCING 146 { 147 .procname = "numa_balancing_promote_rate_limit_MBps", 148 .data = &sysctl_numa_balancing_promote_rate_limit, 149 .maxlen = sizeof(unsigned int), 150 .mode = 0644, 151 .proc_handler = proc_dointvec_minmax, 152 .extra1 = SYSCTL_ZERO, 153 }, 154 #endif /* CONFIG_NUMA_BALANCING */ 155 }; 156 157 static int __init sched_fair_sysctl_init(void) 158 { 159 register_sysctl_init("kernel", sched_fair_sysctls); 160 return 0; 161 } 162 late_initcall(sched_fair_sysctl_init); 163 #endif /* CONFIG_SYSCTL */ 164 165 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 166 { 167 lw->weight += inc; 168 lw->inv_weight = 0; 169 } 170 171 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 172 { 173 lw->weight -= dec; 174 lw->inv_weight = 0; 175 } 176 177 static inline void update_load_set(struct load_weight *lw, unsigned long w) 178 { 179 lw->weight = w; 180 lw->inv_weight = 0; 181 } 182 183 /* 184 * Increase the granularity value when there are more CPUs, 185 * because with more CPUs the 'effective latency' as visible 186 * to users decreases. But the relationship is not linear, 187 * so pick a second-best guess by going with the log2 of the 188 * number of CPUs. 189 * 190 * This idea comes from the SD scheduler of Con Kolivas: 191 */ 192 static unsigned int get_update_sysctl_factor(void) 193 { 194 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 195 unsigned int factor; 196 197 switch (sysctl_sched_tunable_scaling) { 198 case SCHED_TUNABLESCALING_NONE: 199 factor = 1; 200 break; 201 case SCHED_TUNABLESCALING_LINEAR: 202 factor = cpus; 203 break; 204 case SCHED_TUNABLESCALING_LOG: 205 default: 206 factor = 1 + ilog2(cpus); 207 break; 208 } 209 210 return factor; 211 } 212 213 static void update_sysctl(void) 214 { 215 unsigned int factor = get_update_sysctl_factor(); 216 217 #define SET_SYSCTL(name) \ 218 (sysctl_##name = (factor) * normalized_sysctl_##name) 219 SET_SYSCTL(sched_base_slice); 220 #undef SET_SYSCTL 221 } 222 223 void __init sched_init_granularity(void) 224 { 225 update_sysctl(); 226 } 227 228 #define WMULT_CONST (~0U) 229 #define WMULT_SHIFT 32 230 231 static void __update_inv_weight(struct load_weight *lw) 232 { 233 unsigned long w; 234 235 if (likely(lw->inv_weight)) 236 return; 237 238 w = scale_load_down(lw->weight); 239 240 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 241 lw->inv_weight = 1; 242 else if (unlikely(!w)) 243 lw->inv_weight = WMULT_CONST; 244 else 245 lw->inv_weight = WMULT_CONST / w; 246 } 247 248 /* 249 * delta_exec * weight / lw.weight 250 * OR 251 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 252 * 253 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 254 * we're guaranteed shift stays positive because inv_weight is guaranteed to 255 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 256 * 257 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 258 * weight/lw.weight <= 1, and therefore our shift will also be positive. 259 */ 260 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 261 { 262 u64 fact = scale_load_down(weight); 263 u32 fact_hi = (u32)(fact >> 32); 264 int shift = WMULT_SHIFT; 265 int fs; 266 267 __update_inv_weight(lw); 268 269 if (unlikely(fact_hi)) { 270 fs = fls(fact_hi); 271 shift -= fs; 272 fact >>= fs; 273 } 274 275 fact = mul_u32_u32(fact, lw->inv_weight); 276 277 fact_hi = (u32)(fact >> 32); 278 if (fact_hi) { 279 fs = fls(fact_hi); 280 shift -= fs; 281 fact >>= fs; 282 } 283 284 return mul_u64_u32_shr(delta_exec, fact, shift); 285 } 286 287 /* 288 * delta /= w 289 */ 290 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 291 { 292 if (unlikely(se->load.weight != NICE_0_LOAD)) 293 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 294 295 return delta; 296 } 297 298 const struct sched_class fair_sched_class; 299 300 /************************************************************** 301 * CFS operations on generic schedulable entities: 302 */ 303 304 #ifdef CONFIG_FAIR_GROUP_SCHED 305 306 /* Walk up scheduling entities hierarchy */ 307 #define for_each_sched_entity(se) \ 308 for (; se; se = se->parent) 309 310 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 311 { 312 struct rq *rq = rq_of(cfs_rq); 313 int cpu = cpu_of(rq); 314 315 if (cfs_rq->on_list) 316 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 317 318 cfs_rq->on_list = 1; 319 320 /* 321 * Ensure we either appear before our parent (if already 322 * enqueued) or force our parent to appear after us when it is 323 * enqueued. The fact that we always enqueue bottom-up 324 * reduces this to two cases and a special case for the root 325 * cfs_rq. Furthermore, it also means that we will always reset 326 * tmp_alone_branch either when the branch is connected 327 * to a tree or when we reach the top of the tree 328 */ 329 if (cfs_rq->tg->parent && 330 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 331 /* 332 * If parent is already on the list, we add the child 333 * just before. Thanks to circular linked property of 334 * the list, this means to put the child at the tail 335 * of the list that starts by parent. 336 */ 337 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 338 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 339 /* 340 * The branch is now connected to its tree so we can 341 * reset tmp_alone_branch to the beginning of the 342 * list. 343 */ 344 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 345 return true; 346 } 347 348 if (!cfs_rq->tg->parent) { 349 /* 350 * cfs rq without parent should be put 351 * at the tail of the list. 352 */ 353 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 354 &rq->leaf_cfs_rq_list); 355 /* 356 * We have reach the top of a tree so we can reset 357 * tmp_alone_branch to the beginning of the list. 358 */ 359 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 360 return true; 361 } 362 363 /* 364 * The parent has not already been added so we want to 365 * make sure that it will be put after us. 366 * tmp_alone_branch points to the begin of the branch 367 * where we will add parent. 368 */ 369 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 370 /* 371 * update tmp_alone_branch to points to the new begin 372 * of the branch 373 */ 374 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 375 return false; 376 } 377 378 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 379 { 380 if (cfs_rq->on_list) { 381 struct rq *rq = rq_of(cfs_rq); 382 383 /* 384 * With cfs_rq being unthrottled/throttled during an enqueue, 385 * it can happen the tmp_alone_branch points to the leaf that 386 * we finally want to delete. In this case, tmp_alone_branch moves 387 * to the prev element but it will point to rq->leaf_cfs_rq_list 388 * at the end of the enqueue. 389 */ 390 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 391 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 392 393 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 394 cfs_rq->on_list = 0; 395 } 396 } 397 398 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 399 { 400 WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 401 } 402 403 /* Iterate through all leaf cfs_rq's on a runqueue */ 404 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 405 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 406 leaf_cfs_rq_list) 407 408 /* Do the two (enqueued) entities belong to the same group ? */ 409 static inline struct cfs_rq * 410 is_same_group(struct sched_entity *se, struct sched_entity *pse) 411 { 412 if (se->cfs_rq == pse->cfs_rq) 413 return se->cfs_rq; 414 415 return NULL; 416 } 417 418 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 419 { 420 return se->parent; 421 } 422 423 static void 424 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 425 { 426 int se_depth, pse_depth; 427 428 /* 429 * preemption test can be made between sibling entities who are in the 430 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 431 * both tasks until we find their ancestors who are siblings of common 432 * parent. 433 */ 434 435 /* First walk up until both entities are at same depth */ 436 se_depth = (*se)->depth; 437 pse_depth = (*pse)->depth; 438 439 while (se_depth > pse_depth) { 440 se_depth--; 441 *se = parent_entity(*se); 442 } 443 444 while (pse_depth > se_depth) { 445 pse_depth--; 446 *pse = parent_entity(*pse); 447 } 448 449 while (!is_same_group(*se, *pse)) { 450 *se = parent_entity(*se); 451 *pse = parent_entity(*pse); 452 } 453 } 454 455 static int tg_is_idle(struct task_group *tg) 456 { 457 return tg->idle > 0; 458 } 459 460 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 461 { 462 return cfs_rq->idle > 0; 463 } 464 465 static int se_is_idle(struct sched_entity *se) 466 { 467 if (entity_is_task(se)) 468 return task_has_idle_policy(task_of(se)); 469 return cfs_rq_is_idle(group_cfs_rq(se)); 470 } 471 472 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 473 474 #define for_each_sched_entity(se) \ 475 for (; se; se = NULL) 476 477 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 478 { 479 return true; 480 } 481 482 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 483 { 484 } 485 486 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 487 { 488 } 489 490 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 491 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 492 493 static inline struct sched_entity *parent_entity(struct sched_entity *se) 494 { 495 return NULL; 496 } 497 498 static inline void 499 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 500 { 501 } 502 503 static inline int tg_is_idle(struct task_group *tg) 504 { 505 return 0; 506 } 507 508 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 509 { 510 return 0; 511 } 512 513 static int se_is_idle(struct sched_entity *se) 514 { 515 return task_has_idle_policy(task_of(se)); 516 } 517 518 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 519 520 static __always_inline 521 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 522 523 /************************************************************** 524 * Scheduling class tree data structure manipulation methods: 525 */ 526 527 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime) 528 { 529 s64 delta = (s64)(vruntime - max_vruntime); 530 if (delta > 0) 531 max_vruntime = vruntime; 532 533 return max_vruntime; 534 } 535 536 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime) 537 { 538 s64 delta = (s64)(vruntime - min_vruntime); 539 if (delta < 0) 540 min_vruntime = vruntime; 541 542 return min_vruntime; 543 } 544 545 static inline bool entity_before(const struct sched_entity *a, 546 const struct sched_entity *b) 547 { 548 /* 549 * Tiebreak on vruntime seems unnecessary since it can 550 * hardly happen. 551 */ 552 return (s64)(a->deadline - b->deadline) < 0; 553 } 554 555 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 556 { 557 return (s64)(se->vruntime - cfs_rq->zero_vruntime); 558 } 559 560 #define __node_2_se(node) \ 561 rb_entry((node), struct sched_entity, run_node) 562 563 /* 564 * Compute virtual time from the per-task service numbers: 565 * 566 * Fair schedulers conserve lag: 567 * 568 * \Sum lag_i = 0 569 * 570 * Where lag_i is given by: 571 * 572 * lag_i = S - s_i = w_i * (V - v_i) 573 * 574 * Where S is the ideal service time and V is it's virtual time counterpart. 575 * Therefore: 576 * 577 * \Sum lag_i = 0 578 * \Sum w_i * (V - v_i) = 0 579 * \Sum w_i * V - w_i * v_i = 0 580 * 581 * From which we can solve an expression for V in v_i (which we have in 582 * se->vruntime): 583 * 584 * \Sum v_i * w_i \Sum v_i * w_i 585 * V = -------------- = -------------- 586 * \Sum w_i W 587 * 588 * Specifically, this is the weighted average of all entity virtual runtimes. 589 * 590 * [[ NOTE: this is only equal to the ideal scheduler under the condition 591 * that join/leave operations happen at lag_i = 0, otherwise the 592 * virtual time has non-contiguous motion equivalent to: 593 * 594 * V +-= lag_i / W 595 * 596 * Also see the comment in place_entity() that deals with this. ]] 597 * 598 * However, since v_i is u64, and the multiplication could easily overflow 599 * transform it into a relative form that uses smaller quantities: 600 * 601 * Substitute: v_i == (v_i - v0) + v0 602 * 603 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 604 * V = ---------------------------- = --------------------- + v0 605 * W W 606 * 607 * Which we track using: 608 * 609 * v0 := cfs_rq->zero_vruntime 610 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 611 * \Sum w_i := cfs_rq->avg_load 612 * 613 * Since zero_vruntime closely tracks the per-task service, these 614 * deltas: (v_i - v), will be in the order of the maximal (virtual) lag 615 * induced in the system due to quantisation. 616 * 617 * Also, we use scale_load_down() to reduce the size. 618 * 619 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 620 */ 621 static void 622 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 623 { 624 unsigned long weight = scale_load_down(se->load.weight); 625 s64 key = entity_key(cfs_rq, se); 626 627 cfs_rq->avg_vruntime += key * weight; 628 cfs_rq->avg_load += weight; 629 } 630 631 static void 632 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 633 { 634 unsigned long weight = scale_load_down(se->load.weight); 635 s64 key = entity_key(cfs_rq, se); 636 637 cfs_rq->avg_vruntime -= key * weight; 638 cfs_rq->avg_load -= weight; 639 } 640 641 static inline 642 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 643 { 644 /* 645 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 646 */ 647 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 648 } 649 650 /* 651 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 652 * For this to be so, the result of this function must have a left bias. 653 */ 654 u64 avg_vruntime(struct cfs_rq *cfs_rq) 655 { 656 struct sched_entity *curr = cfs_rq->curr; 657 s64 avg = cfs_rq->avg_vruntime; 658 long load = cfs_rq->avg_load; 659 660 if (curr && curr->on_rq) { 661 unsigned long weight = scale_load_down(curr->load.weight); 662 663 avg += entity_key(cfs_rq, curr) * weight; 664 load += weight; 665 } 666 667 if (load) { 668 /* sign flips effective floor / ceiling */ 669 if (avg < 0) 670 avg -= (load - 1); 671 avg = div_s64(avg, load); 672 } 673 674 return cfs_rq->zero_vruntime + avg; 675 } 676 677 /* 678 * lag_i = S - s_i = w_i * (V - v_i) 679 * 680 * However, since V is approximated by the weighted average of all entities it 681 * is possible -- by addition/removal/reweight to the tree -- to move V around 682 * and end up with a larger lag than we started with. 683 * 684 * Limit this to either double the slice length with a minimum of TICK_NSEC 685 * since that is the timing granularity. 686 * 687 * EEVDF gives the following limit for a steady state system: 688 * 689 * -r_max < lag < max(r_max, q) 690 * 691 * XXX could add max_slice to the augmented data to track this. 692 */ 693 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 694 { 695 s64 vlag, limit; 696 697 WARN_ON_ONCE(!se->on_rq); 698 699 vlag = avg_vruntime(cfs_rq) - se->vruntime; 700 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 701 702 se->vlag = clamp(vlag, -limit, limit); 703 } 704 705 /* 706 * Entity is eligible once it received less service than it ought to have, 707 * eg. lag >= 0. 708 * 709 * lag_i = S - s_i = w_i*(V - v_i) 710 * 711 * lag_i >= 0 -> V >= v_i 712 * 713 * \Sum (v_i - v)*w_i 714 * V = ------------------ + v 715 * \Sum w_i 716 * 717 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 718 * 719 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 720 * to the loss in precision caused by the division. 721 */ 722 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 723 { 724 struct sched_entity *curr = cfs_rq->curr; 725 s64 avg = cfs_rq->avg_vruntime; 726 long load = cfs_rq->avg_load; 727 728 if (curr && curr->on_rq) { 729 unsigned long weight = scale_load_down(curr->load.weight); 730 731 avg += entity_key(cfs_rq, curr) * weight; 732 load += weight; 733 } 734 735 return avg >= (s64)(vruntime - cfs_rq->zero_vruntime) * load; 736 } 737 738 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 739 { 740 return vruntime_eligible(cfs_rq, se->vruntime); 741 } 742 743 static void update_zero_vruntime(struct cfs_rq *cfs_rq) 744 { 745 u64 vruntime = avg_vruntime(cfs_rq); 746 s64 delta = (s64)(vruntime - cfs_rq->zero_vruntime); 747 748 avg_vruntime_update(cfs_rq, delta); 749 750 cfs_rq->zero_vruntime = vruntime; 751 } 752 753 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) 754 { 755 struct sched_entity *root = __pick_root_entity(cfs_rq); 756 struct sched_entity *curr = cfs_rq->curr; 757 u64 min_slice = ~0ULL; 758 759 if (curr && curr->on_rq) 760 min_slice = curr->slice; 761 762 if (root) 763 min_slice = min(min_slice, root->min_slice); 764 765 return min_slice; 766 } 767 768 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 769 { 770 return entity_before(__node_2_se(a), __node_2_se(b)); 771 } 772 773 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 774 775 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 776 { 777 if (node) { 778 struct sched_entity *rse = __node_2_se(node); 779 if (vruntime_gt(min_vruntime, se, rse)) 780 se->min_vruntime = rse->min_vruntime; 781 } 782 } 783 784 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) 785 { 786 if (node) { 787 struct sched_entity *rse = __node_2_se(node); 788 if (rse->min_slice < se->min_slice) 789 se->min_slice = rse->min_slice; 790 } 791 } 792 793 /* 794 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 795 */ 796 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 797 { 798 u64 old_min_vruntime = se->min_vruntime; 799 u64 old_min_slice = se->min_slice; 800 struct rb_node *node = &se->run_node; 801 802 se->min_vruntime = se->vruntime; 803 __min_vruntime_update(se, node->rb_right); 804 __min_vruntime_update(se, node->rb_left); 805 806 se->min_slice = se->slice; 807 __min_slice_update(se, node->rb_right); 808 __min_slice_update(se, node->rb_left); 809 810 return se->min_vruntime == old_min_vruntime && 811 se->min_slice == old_min_slice; 812 } 813 814 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 815 run_node, min_vruntime, min_vruntime_update); 816 817 /* 818 * Enqueue an entity into the rb-tree: 819 */ 820 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 821 { 822 avg_vruntime_add(cfs_rq, se); 823 update_zero_vruntime(cfs_rq); 824 se->min_vruntime = se->vruntime; 825 se->min_slice = se->slice; 826 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 827 __entity_less, &min_vruntime_cb); 828 } 829 830 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 831 { 832 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 833 &min_vruntime_cb); 834 avg_vruntime_sub(cfs_rq, se); 835 update_zero_vruntime(cfs_rq); 836 } 837 838 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 839 { 840 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 841 842 if (!root) 843 return NULL; 844 845 return __node_2_se(root); 846 } 847 848 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 849 { 850 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 851 852 if (!left) 853 return NULL; 854 855 return __node_2_se(left); 856 } 857 858 /* 859 * Set the vruntime up to which an entity can run before looking 860 * for another entity to pick. 861 * In case of run to parity, we use the shortest slice of the enqueued 862 * entities to set the protected period. 863 * When run to parity is disabled, we give a minimum quantum to the running 864 * entity to ensure progress. 865 */ 866 static inline void set_protect_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 867 { 868 u64 slice = normalized_sysctl_sched_base_slice; 869 u64 vprot = se->deadline; 870 871 if (sched_feat(RUN_TO_PARITY)) 872 slice = cfs_rq_min_slice(cfs_rq); 873 874 slice = min(slice, se->slice); 875 if (slice != se->slice) 876 vprot = min_vruntime(vprot, se->vruntime + calc_delta_fair(slice, se)); 877 878 se->vprot = vprot; 879 } 880 881 static inline void update_protect_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 882 { 883 u64 slice = cfs_rq_min_slice(cfs_rq); 884 885 se->vprot = min_vruntime(se->vprot, se->vruntime + calc_delta_fair(slice, se)); 886 } 887 888 static inline bool protect_slice(struct sched_entity *se) 889 { 890 return ((s64)(se->vprot - se->vruntime) > 0); 891 } 892 893 static inline void cancel_protect_slice(struct sched_entity *se) 894 { 895 if (protect_slice(se)) 896 se->vprot = se->vruntime; 897 } 898 899 /* 900 * Earliest Eligible Virtual Deadline First 901 * 902 * In order to provide latency guarantees for different request sizes 903 * EEVDF selects the best runnable task from two criteria: 904 * 905 * 1) the task must be eligible (must be owed service) 906 * 907 * 2) from those tasks that meet 1), we select the one 908 * with the earliest virtual deadline. 909 * 910 * We can do this in O(log n) time due to an augmented RB-tree. The 911 * tree keeps the entries sorted on deadline, but also functions as a 912 * heap based on the vruntime by keeping: 913 * 914 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 915 * 916 * Which allows tree pruning through eligibility. 917 */ 918 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq, bool protect) 919 { 920 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 921 struct sched_entity *se = __pick_first_entity(cfs_rq); 922 struct sched_entity *curr = cfs_rq->curr; 923 struct sched_entity *best = NULL; 924 925 /* 926 * We can safely skip eligibility check if there is only one entity 927 * in this cfs_rq, saving some cycles. 928 */ 929 if (cfs_rq->nr_queued == 1) 930 return curr && curr->on_rq ? curr : se; 931 932 /* 933 * Picking the ->next buddy will affect latency but not fairness. 934 */ 935 if (sched_feat(PICK_BUDDY) && 936 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { 937 /* ->next will never be delayed */ 938 WARN_ON_ONCE(cfs_rq->next->sched_delayed); 939 return cfs_rq->next; 940 } 941 942 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 943 curr = NULL; 944 945 if (curr && protect && protect_slice(curr)) 946 return curr; 947 948 /* Pick the leftmost entity if it's eligible */ 949 if (se && entity_eligible(cfs_rq, se)) { 950 best = se; 951 goto found; 952 } 953 954 /* Heap search for the EEVD entity */ 955 while (node) { 956 struct rb_node *left = node->rb_left; 957 958 /* 959 * Eligible entities in left subtree are always better 960 * choices, since they have earlier deadlines. 961 */ 962 if (left && vruntime_eligible(cfs_rq, 963 __node_2_se(left)->min_vruntime)) { 964 node = left; 965 continue; 966 } 967 968 se = __node_2_se(node); 969 970 /* 971 * The left subtree either is empty or has no eligible 972 * entity, so check the current node since it is the one 973 * with earliest deadline that might be eligible. 974 */ 975 if (entity_eligible(cfs_rq, se)) { 976 best = se; 977 break; 978 } 979 980 node = node->rb_right; 981 } 982 found: 983 if (!best || (curr && entity_before(curr, best))) 984 best = curr; 985 986 return best; 987 } 988 989 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 990 { 991 return __pick_eevdf(cfs_rq, true); 992 } 993 994 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 995 { 996 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 997 998 if (!last) 999 return NULL; 1000 1001 return __node_2_se(last); 1002 } 1003 1004 /************************************************************** 1005 * Scheduling class statistics methods: 1006 */ 1007 int sched_update_scaling(void) 1008 { 1009 unsigned int factor = get_update_sysctl_factor(); 1010 1011 #define WRT_SYSCTL(name) \ 1012 (normalized_sysctl_##name = sysctl_##name / (factor)) 1013 WRT_SYSCTL(sched_base_slice); 1014 #undef WRT_SYSCTL 1015 1016 return 0; 1017 } 1018 1019 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1020 1021 /* 1022 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1023 * this is probably good enough. 1024 */ 1025 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1026 { 1027 if ((s64)(se->vruntime - se->deadline) < 0) 1028 return false; 1029 1030 /* 1031 * For EEVDF the virtual time slope is determined by w_i (iow. 1032 * nice) while the request time r_i is determined by 1033 * sysctl_sched_base_slice. 1034 */ 1035 if (!se->custom_slice) 1036 se->slice = sysctl_sched_base_slice; 1037 1038 /* 1039 * EEVDF: vd_i = ve_i + r_i / w_i 1040 */ 1041 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1042 1043 /* 1044 * The task has consumed its request, reschedule. 1045 */ 1046 return true; 1047 } 1048 1049 #include "pelt.h" 1050 1051 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1052 static unsigned long task_h_load(struct task_struct *p); 1053 static unsigned long capacity_of(int cpu); 1054 1055 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1056 void init_entity_runnable_average(struct sched_entity *se) 1057 { 1058 struct sched_avg *sa = &se->avg; 1059 1060 memset(sa, 0, sizeof(*sa)); 1061 1062 /* 1063 * Tasks are initialized with full load to be seen as heavy tasks until 1064 * they get a chance to stabilize to their real load level. 1065 * Group entities are initialized with zero load to reflect the fact that 1066 * nothing has been attached to the task group yet. 1067 */ 1068 if (entity_is_task(se)) 1069 sa->load_avg = scale_load_down(se->load.weight); 1070 1071 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1072 } 1073 1074 /* 1075 * With new tasks being created, their initial util_avgs are extrapolated 1076 * based on the cfs_rq's current util_avg: 1077 * 1078 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1079 * * se_weight(se) 1080 * 1081 * However, in many cases, the above util_avg does not give a desired 1082 * value. Moreover, the sum of the util_avgs may be divergent, such 1083 * as when the series is a harmonic series. 1084 * 1085 * To solve this problem, we also cap the util_avg of successive tasks to 1086 * only 1/2 of the left utilization budget: 1087 * 1088 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1089 * 1090 * where n denotes the nth task and cpu_scale the CPU capacity. 1091 * 1092 * For example, for a CPU with 1024 of capacity, a simplest series from 1093 * the beginning would be like: 1094 * 1095 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1096 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1097 * 1098 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1099 * if util_avg > util_avg_cap. 1100 */ 1101 void post_init_entity_util_avg(struct task_struct *p) 1102 { 1103 struct sched_entity *se = &p->se; 1104 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1105 struct sched_avg *sa = &se->avg; 1106 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1107 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1108 1109 if (p->sched_class != &fair_sched_class) { 1110 /* 1111 * For !fair tasks do: 1112 * 1113 update_cfs_rq_load_avg(now, cfs_rq); 1114 attach_entity_load_avg(cfs_rq, se); 1115 switched_from_fair(rq, p); 1116 * 1117 * such that the next switched_to_fair() has the 1118 * expected state. 1119 */ 1120 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1121 return; 1122 } 1123 1124 if (cap > 0) { 1125 if (cfs_rq->avg.util_avg != 0) { 1126 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1127 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1128 1129 if (sa->util_avg > cap) 1130 sa->util_avg = cap; 1131 } else { 1132 sa->util_avg = cap; 1133 } 1134 } 1135 1136 sa->runnable_avg = sa->util_avg; 1137 } 1138 1139 static s64 update_se(struct rq *rq, struct sched_entity *se) 1140 { 1141 u64 now = rq_clock_task(rq); 1142 s64 delta_exec; 1143 1144 delta_exec = now - se->exec_start; 1145 if (unlikely(delta_exec <= 0)) 1146 return delta_exec; 1147 1148 se->exec_start = now; 1149 if (entity_is_task(se)) { 1150 struct task_struct *donor = task_of(se); 1151 struct task_struct *running = rq->curr; 1152 /* 1153 * If se is a task, we account the time against the running 1154 * task, as w/ proxy-exec they may not be the same. 1155 */ 1156 running->se.exec_start = now; 1157 running->se.sum_exec_runtime += delta_exec; 1158 1159 trace_sched_stat_runtime(running, delta_exec); 1160 account_group_exec_runtime(running, delta_exec); 1161 1162 /* cgroup time is always accounted against the donor */ 1163 cgroup_account_cputime(donor, delta_exec); 1164 } else { 1165 /* If not task, account the time against donor se */ 1166 se->sum_exec_runtime += delta_exec; 1167 } 1168 1169 if (schedstat_enabled()) { 1170 struct sched_statistics *stats; 1171 1172 stats = __schedstats_from_se(se); 1173 __schedstat_set(stats->exec_max, 1174 max(delta_exec, stats->exec_max)); 1175 } 1176 1177 return delta_exec; 1178 } 1179 1180 static void set_next_buddy(struct sched_entity *se); 1181 1182 /* 1183 * Used by other classes to account runtime. 1184 */ 1185 s64 update_curr_common(struct rq *rq) 1186 { 1187 return update_se(rq, &rq->donor->se); 1188 } 1189 1190 /* 1191 * Update the current task's runtime statistics. 1192 */ 1193 static void update_curr(struct cfs_rq *cfs_rq) 1194 { 1195 /* 1196 * Note: cfs_rq->curr corresponds to the task picked to 1197 * run (ie: rq->donor.se) which due to proxy-exec may 1198 * not necessarily be the actual task running 1199 * (rq->curr.se). This is easy to confuse! 1200 */ 1201 struct sched_entity *curr = cfs_rq->curr; 1202 struct rq *rq = rq_of(cfs_rq); 1203 s64 delta_exec; 1204 bool resched; 1205 1206 if (unlikely(!curr)) 1207 return; 1208 1209 delta_exec = update_se(rq, curr); 1210 if (unlikely(delta_exec <= 0)) 1211 return; 1212 1213 curr->vruntime += calc_delta_fair(delta_exec, curr); 1214 resched = update_deadline(cfs_rq, curr); 1215 1216 if (entity_is_task(curr)) { 1217 /* 1218 * If the fair_server is active, we need to account for the 1219 * fair_server time whether or not the task is running on 1220 * behalf of fair_server or not: 1221 * - If the task is running on behalf of fair_server, we need 1222 * to limit its time based on the assigned runtime. 1223 * - Fair task that runs outside of fair_server should account 1224 * against fair_server such that it can account for this time 1225 * and possibly avoid running this period. 1226 */ 1227 dl_server_update(&rq->fair_server, delta_exec); 1228 } 1229 1230 account_cfs_rq_runtime(cfs_rq, delta_exec); 1231 1232 if (cfs_rq->nr_queued == 1) 1233 return; 1234 1235 if (resched || !protect_slice(curr)) { 1236 resched_curr_lazy(rq); 1237 clear_buddies(cfs_rq, curr); 1238 } 1239 } 1240 1241 static void update_curr_fair(struct rq *rq) 1242 { 1243 update_curr(cfs_rq_of(&rq->donor->se)); 1244 } 1245 1246 static inline void 1247 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1248 { 1249 struct sched_statistics *stats; 1250 struct task_struct *p = NULL; 1251 1252 if (!schedstat_enabled()) 1253 return; 1254 1255 stats = __schedstats_from_se(se); 1256 1257 if (entity_is_task(se)) 1258 p = task_of(se); 1259 1260 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1261 } 1262 1263 static inline void 1264 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1265 { 1266 struct sched_statistics *stats; 1267 struct task_struct *p = NULL; 1268 1269 if (!schedstat_enabled()) 1270 return; 1271 1272 stats = __schedstats_from_se(se); 1273 1274 /* 1275 * When the sched_schedstat changes from 0 to 1, some sched se 1276 * maybe already in the runqueue, the se->statistics.wait_start 1277 * will be 0.So it will let the delta wrong. We need to avoid this 1278 * scenario. 1279 */ 1280 if (unlikely(!schedstat_val(stats->wait_start))) 1281 return; 1282 1283 if (entity_is_task(se)) 1284 p = task_of(se); 1285 1286 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1287 } 1288 1289 static inline void 1290 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1291 { 1292 struct sched_statistics *stats; 1293 struct task_struct *tsk = NULL; 1294 1295 if (!schedstat_enabled()) 1296 return; 1297 1298 stats = __schedstats_from_se(se); 1299 1300 if (entity_is_task(se)) 1301 tsk = task_of(se); 1302 1303 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1304 } 1305 1306 /* 1307 * Task is being enqueued - update stats: 1308 */ 1309 static inline void 1310 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1311 { 1312 if (!schedstat_enabled()) 1313 return; 1314 1315 /* 1316 * Are we enqueueing a waiting task? (for current tasks 1317 * a dequeue/enqueue event is a NOP) 1318 */ 1319 if (se != cfs_rq->curr) 1320 update_stats_wait_start_fair(cfs_rq, se); 1321 1322 if (flags & ENQUEUE_WAKEUP) 1323 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1324 } 1325 1326 static inline void 1327 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1328 { 1329 1330 if (!schedstat_enabled()) 1331 return; 1332 1333 /* 1334 * Mark the end of the wait period if dequeueing a 1335 * waiting task: 1336 */ 1337 if (se != cfs_rq->curr) 1338 update_stats_wait_end_fair(cfs_rq, se); 1339 1340 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1341 struct task_struct *tsk = task_of(se); 1342 unsigned int state; 1343 1344 /* XXX racy against TTWU */ 1345 state = READ_ONCE(tsk->__state); 1346 if (state & TASK_INTERRUPTIBLE) 1347 __schedstat_set(tsk->stats.sleep_start, 1348 rq_clock(rq_of(cfs_rq))); 1349 if (state & TASK_UNINTERRUPTIBLE) 1350 __schedstat_set(tsk->stats.block_start, 1351 rq_clock(rq_of(cfs_rq))); 1352 } 1353 } 1354 1355 /* 1356 * We are picking a new current task - update its stats: 1357 */ 1358 static inline void 1359 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1360 { 1361 /* 1362 * We are starting a new run period: 1363 */ 1364 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1365 } 1366 1367 /************************************************** 1368 * Scheduling class queueing methods: 1369 */ 1370 1371 static inline bool is_core_idle(int cpu) 1372 { 1373 #ifdef CONFIG_SCHED_SMT 1374 int sibling; 1375 1376 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1377 if (cpu == sibling) 1378 continue; 1379 1380 if (!idle_cpu(sibling)) 1381 return false; 1382 } 1383 #endif 1384 1385 return true; 1386 } 1387 1388 #ifdef CONFIG_NUMA 1389 #define NUMA_IMBALANCE_MIN 2 1390 1391 static inline long 1392 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1393 { 1394 /* 1395 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1396 * threshold. Above this threshold, individual tasks may be contending 1397 * for both memory bandwidth and any shared HT resources. This is an 1398 * approximation as the number of running tasks may not be related to 1399 * the number of busy CPUs due to sched_setaffinity. 1400 */ 1401 if (dst_running > imb_numa_nr) 1402 return imbalance; 1403 1404 /* 1405 * Allow a small imbalance based on a simple pair of communicating 1406 * tasks that remain local when the destination is lightly loaded. 1407 */ 1408 if (imbalance <= NUMA_IMBALANCE_MIN) 1409 return 0; 1410 1411 return imbalance; 1412 } 1413 #endif /* CONFIG_NUMA */ 1414 1415 #ifdef CONFIG_NUMA_BALANCING 1416 /* 1417 * Approximate time to scan a full NUMA task in ms. The task scan period is 1418 * calculated based on the tasks virtual memory size and 1419 * numa_balancing_scan_size. 1420 */ 1421 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1422 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1423 1424 /* Portion of address space to scan in MB */ 1425 unsigned int sysctl_numa_balancing_scan_size = 256; 1426 1427 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1428 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1429 1430 /* The page with hint page fault latency < threshold in ms is considered hot */ 1431 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1432 1433 struct numa_group { 1434 refcount_t refcount; 1435 1436 spinlock_t lock; /* nr_tasks, tasks */ 1437 int nr_tasks; 1438 pid_t gid; 1439 int active_nodes; 1440 1441 struct rcu_head rcu; 1442 unsigned long total_faults; 1443 unsigned long max_faults_cpu; 1444 /* 1445 * faults[] array is split into two regions: faults_mem and faults_cpu. 1446 * 1447 * Faults_cpu is used to decide whether memory should move 1448 * towards the CPU. As a consequence, these stats are weighted 1449 * more by CPU use than by memory faults. 1450 */ 1451 unsigned long faults[]; 1452 }; 1453 1454 /* 1455 * For functions that can be called in multiple contexts that permit reading 1456 * ->numa_group (see struct task_struct for locking rules). 1457 */ 1458 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1459 { 1460 return rcu_dereference_check(p->numa_group, p == current || 1461 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1462 } 1463 1464 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1465 { 1466 return rcu_dereference_protected(p->numa_group, p == current); 1467 } 1468 1469 static inline unsigned long group_faults_priv(struct numa_group *ng); 1470 static inline unsigned long group_faults_shared(struct numa_group *ng); 1471 1472 static unsigned int task_nr_scan_windows(struct task_struct *p) 1473 { 1474 unsigned long rss = 0; 1475 unsigned long nr_scan_pages; 1476 1477 /* 1478 * Calculations based on RSS as non-present and empty pages are skipped 1479 * by the PTE scanner and NUMA hinting faults should be trapped based 1480 * on resident pages 1481 */ 1482 nr_scan_pages = MB_TO_PAGES(sysctl_numa_balancing_scan_size); 1483 rss = get_mm_rss(p->mm); 1484 if (!rss) 1485 rss = nr_scan_pages; 1486 1487 rss = round_up(rss, nr_scan_pages); 1488 return rss / nr_scan_pages; 1489 } 1490 1491 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1492 #define MAX_SCAN_WINDOW 2560 1493 1494 static unsigned int task_scan_min(struct task_struct *p) 1495 { 1496 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1497 unsigned int scan, floor; 1498 unsigned int windows = 1; 1499 1500 if (scan_size < MAX_SCAN_WINDOW) 1501 windows = MAX_SCAN_WINDOW / scan_size; 1502 floor = 1000 / windows; 1503 1504 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1505 return max_t(unsigned int, floor, scan); 1506 } 1507 1508 static unsigned int task_scan_start(struct task_struct *p) 1509 { 1510 unsigned long smin = task_scan_min(p); 1511 unsigned long period = smin; 1512 struct numa_group *ng; 1513 1514 /* Scale the maximum scan period with the amount of shared memory. */ 1515 rcu_read_lock(); 1516 ng = rcu_dereference(p->numa_group); 1517 if (ng) { 1518 unsigned long shared = group_faults_shared(ng); 1519 unsigned long private = group_faults_priv(ng); 1520 1521 period *= refcount_read(&ng->refcount); 1522 period *= shared + 1; 1523 period /= private + shared + 1; 1524 } 1525 rcu_read_unlock(); 1526 1527 return max(smin, period); 1528 } 1529 1530 static unsigned int task_scan_max(struct task_struct *p) 1531 { 1532 unsigned long smin = task_scan_min(p); 1533 unsigned long smax; 1534 struct numa_group *ng; 1535 1536 /* Watch for min being lower than max due to floor calculations */ 1537 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1538 1539 /* Scale the maximum scan period with the amount of shared memory. */ 1540 ng = deref_curr_numa_group(p); 1541 if (ng) { 1542 unsigned long shared = group_faults_shared(ng); 1543 unsigned long private = group_faults_priv(ng); 1544 unsigned long period = smax; 1545 1546 period *= refcount_read(&ng->refcount); 1547 period *= shared + 1; 1548 period /= private + shared + 1; 1549 1550 smax = max(smax, period); 1551 } 1552 1553 return max(smin, smax); 1554 } 1555 1556 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1557 { 1558 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1559 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1560 } 1561 1562 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1563 { 1564 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1565 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1566 } 1567 1568 /* Shared or private faults. */ 1569 #define NR_NUMA_HINT_FAULT_TYPES 2 1570 1571 /* Memory and CPU locality */ 1572 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1573 1574 /* Averaged statistics, and temporary buffers. */ 1575 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1576 1577 pid_t task_numa_group_id(struct task_struct *p) 1578 { 1579 struct numa_group *ng; 1580 pid_t gid = 0; 1581 1582 rcu_read_lock(); 1583 ng = rcu_dereference(p->numa_group); 1584 if (ng) 1585 gid = ng->gid; 1586 rcu_read_unlock(); 1587 1588 return gid; 1589 } 1590 1591 /* 1592 * The averaged statistics, shared & private, memory & CPU, 1593 * occupy the first half of the array. The second half of the 1594 * array is for current counters, which are averaged into the 1595 * first set by task_numa_placement. 1596 */ 1597 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1598 { 1599 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1600 } 1601 1602 static inline unsigned long task_faults(struct task_struct *p, int nid) 1603 { 1604 if (!p->numa_faults) 1605 return 0; 1606 1607 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1608 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1609 } 1610 1611 static inline unsigned long group_faults(struct task_struct *p, int nid) 1612 { 1613 struct numa_group *ng = deref_task_numa_group(p); 1614 1615 if (!ng) 1616 return 0; 1617 1618 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1619 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1620 } 1621 1622 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1623 { 1624 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1625 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1626 } 1627 1628 static inline unsigned long group_faults_priv(struct numa_group *ng) 1629 { 1630 unsigned long faults = 0; 1631 int node; 1632 1633 for_each_online_node(node) { 1634 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1635 } 1636 1637 return faults; 1638 } 1639 1640 static inline unsigned long group_faults_shared(struct numa_group *ng) 1641 { 1642 unsigned long faults = 0; 1643 int node; 1644 1645 for_each_online_node(node) { 1646 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1647 } 1648 1649 return faults; 1650 } 1651 1652 /* 1653 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1654 * considered part of a numa group's pseudo-interleaving set. Migrations 1655 * between these nodes are slowed down, to allow things to settle down. 1656 */ 1657 #define ACTIVE_NODE_FRACTION 3 1658 1659 static bool numa_is_active_node(int nid, struct numa_group *ng) 1660 { 1661 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1662 } 1663 1664 /* Handle placement on systems where not all nodes are directly connected. */ 1665 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1666 int lim_dist, bool task) 1667 { 1668 unsigned long score = 0; 1669 int node, max_dist; 1670 1671 /* 1672 * All nodes are directly connected, and the same distance 1673 * from each other. No need for fancy placement algorithms. 1674 */ 1675 if (sched_numa_topology_type == NUMA_DIRECT) 1676 return 0; 1677 1678 /* sched_max_numa_distance may be changed in parallel. */ 1679 max_dist = READ_ONCE(sched_max_numa_distance); 1680 /* 1681 * This code is called for each node, introducing N^2 complexity, 1682 * which should be OK given the number of nodes rarely exceeds 8. 1683 */ 1684 for_each_online_node(node) { 1685 unsigned long faults; 1686 int dist = node_distance(nid, node); 1687 1688 /* 1689 * The furthest away nodes in the system are not interesting 1690 * for placement; nid was already counted. 1691 */ 1692 if (dist >= max_dist || node == nid) 1693 continue; 1694 1695 /* 1696 * On systems with a backplane NUMA topology, compare groups 1697 * of nodes, and move tasks towards the group with the most 1698 * memory accesses. When comparing two nodes at distance 1699 * "hoplimit", only nodes closer by than "hoplimit" are part 1700 * of each group. Skip other nodes. 1701 */ 1702 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1703 continue; 1704 1705 /* Add up the faults from nearby nodes. */ 1706 if (task) 1707 faults = task_faults(p, node); 1708 else 1709 faults = group_faults(p, node); 1710 1711 /* 1712 * On systems with a glueless mesh NUMA topology, there are 1713 * no fixed "groups of nodes". Instead, nodes that are not 1714 * directly connected bounce traffic through intermediate 1715 * nodes; a numa_group can occupy any set of nodes. 1716 * The further away a node is, the less the faults count. 1717 * This seems to result in good task placement. 1718 */ 1719 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1720 faults *= (max_dist - dist); 1721 faults /= (max_dist - LOCAL_DISTANCE); 1722 } 1723 1724 score += faults; 1725 } 1726 1727 return score; 1728 } 1729 1730 /* 1731 * These return the fraction of accesses done by a particular task, or 1732 * task group, on a particular numa node. The group weight is given a 1733 * larger multiplier, in order to group tasks together that are almost 1734 * evenly spread out between numa nodes. 1735 */ 1736 static inline unsigned long task_weight(struct task_struct *p, int nid, 1737 int dist) 1738 { 1739 unsigned long faults, total_faults; 1740 1741 if (!p->numa_faults) 1742 return 0; 1743 1744 total_faults = p->total_numa_faults; 1745 1746 if (!total_faults) 1747 return 0; 1748 1749 faults = task_faults(p, nid); 1750 faults += score_nearby_nodes(p, nid, dist, true); 1751 1752 return 1000 * faults / total_faults; 1753 } 1754 1755 static inline unsigned long group_weight(struct task_struct *p, int nid, 1756 int dist) 1757 { 1758 struct numa_group *ng = deref_task_numa_group(p); 1759 unsigned long faults, total_faults; 1760 1761 if (!ng) 1762 return 0; 1763 1764 total_faults = ng->total_faults; 1765 1766 if (!total_faults) 1767 return 0; 1768 1769 faults = group_faults(p, nid); 1770 faults += score_nearby_nodes(p, nid, dist, false); 1771 1772 return 1000 * faults / total_faults; 1773 } 1774 1775 /* 1776 * If memory tiering mode is enabled, cpupid of slow memory page is 1777 * used to record scan time instead of CPU and PID. When tiering mode 1778 * is disabled at run time, the scan time (in cpupid) will be 1779 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1780 * access out of array bound. 1781 */ 1782 static inline bool cpupid_valid(int cpupid) 1783 { 1784 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1785 } 1786 1787 /* 1788 * For memory tiering mode, if there are enough free pages (more than 1789 * enough watermark defined here) in fast memory node, to take full 1790 * advantage of fast memory capacity, all recently accessed slow 1791 * memory pages will be migrated to fast memory node without 1792 * considering hot threshold. 1793 */ 1794 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1795 { 1796 int z; 1797 unsigned long enough_wmark; 1798 1799 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1800 pgdat->node_present_pages >> 4); 1801 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1802 struct zone *zone = pgdat->node_zones + z; 1803 1804 if (!populated_zone(zone)) 1805 continue; 1806 1807 if (zone_watermark_ok(zone, 0, 1808 promo_wmark_pages(zone) + enough_wmark, 1809 ZONE_MOVABLE, 0)) 1810 return true; 1811 } 1812 return false; 1813 } 1814 1815 /* 1816 * For memory tiering mode, when page tables are scanned, the scan 1817 * time will be recorded in struct page in addition to make page 1818 * PROT_NONE for slow memory page. So when the page is accessed, in 1819 * hint page fault handler, the hint page fault latency is calculated 1820 * via, 1821 * 1822 * hint page fault latency = hint page fault time - scan time 1823 * 1824 * The smaller the hint page fault latency, the higher the possibility 1825 * for the page to be hot. 1826 */ 1827 static int numa_hint_fault_latency(struct folio *folio) 1828 { 1829 int last_time, time; 1830 1831 time = jiffies_to_msecs(jiffies); 1832 last_time = folio_xchg_access_time(folio, time); 1833 1834 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1835 } 1836 1837 /* 1838 * For memory tiering mode, too high promotion/demotion throughput may 1839 * hurt application latency. So we provide a mechanism to rate limit 1840 * the number of pages that are tried to be promoted. 1841 */ 1842 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1843 unsigned long rate_limit, int nr) 1844 { 1845 unsigned long nr_cand; 1846 unsigned int now, start; 1847 1848 now = jiffies_to_msecs(jiffies); 1849 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1850 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1851 start = pgdat->nbp_rl_start; 1852 if (now - start > MSEC_PER_SEC && 1853 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1854 pgdat->nbp_rl_nr_cand = nr_cand; 1855 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1856 return true; 1857 return false; 1858 } 1859 1860 #define NUMA_MIGRATION_ADJUST_STEPS 16 1861 1862 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1863 unsigned long rate_limit, 1864 unsigned int ref_th) 1865 { 1866 unsigned int now, start, th_period, unit_th, th; 1867 unsigned long nr_cand, ref_cand, diff_cand; 1868 1869 now = jiffies_to_msecs(jiffies); 1870 th_period = sysctl_numa_balancing_scan_period_max; 1871 start = pgdat->nbp_th_start; 1872 if (now - start > th_period && 1873 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1874 ref_cand = rate_limit * 1875 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1876 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1877 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1878 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1879 th = pgdat->nbp_threshold ? : ref_th; 1880 if (diff_cand > ref_cand * 11 / 10) 1881 th = max(th - unit_th, unit_th); 1882 else if (diff_cand < ref_cand * 9 / 10) 1883 th = min(th + unit_th, ref_th * 2); 1884 pgdat->nbp_th_nr_cand = nr_cand; 1885 pgdat->nbp_threshold = th; 1886 } 1887 } 1888 1889 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1890 int src_nid, int dst_cpu) 1891 { 1892 struct numa_group *ng = deref_curr_numa_group(p); 1893 int dst_nid = cpu_to_node(dst_cpu); 1894 int last_cpupid, this_cpupid; 1895 1896 /* 1897 * Cannot migrate to memoryless nodes. 1898 */ 1899 if (!node_state(dst_nid, N_MEMORY)) 1900 return false; 1901 1902 /* 1903 * The pages in slow memory node should be migrated according 1904 * to hot/cold instead of private/shared. 1905 */ 1906 if (folio_use_access_time(folio)) { 1907 struct pglist_data *pgdat; 1908 unsigned long rate_limit; 1909 unsigned int latency, th, def_th; 1910 long nr = folio_nr_pages(folio); 1911 1912 pgdat = NODE_DATA(dst_nid); 1913 if (pgdat_free_space_enough(pgdat)) { 1914 /* workload changed, reset hot threshold */ 1915 pgdat->nbp_threshold = 0; 1916 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE_NRL, nr); 1917 return true; 1918 } 1919 1920 def_th = sysctl_numa_balancing_hot_threshold; 1921 rate_limit = MB_TO_PAGES(sysctl_numa_balancing_promote_rate_limit); 1922 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1923 1924 th = pgdat->nbp_threshold ? : def_th; 1925 latency = numa_hint_fault_latency(folio); 1926 if (latency >= th) 1927 return false; 1928 1929 return !numa_promotion_rate_limit(pgdat, rate_limit, nr); 1930 } 1931 1932 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1933 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1934 1935 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1936 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1937 return false; 1938 1939 /* 1940 * Allow first faults or private faults to migrate immediately early in 1941 * the lifetime of a task. The magic number 4 is based on waiting for 1942 * two full passes of the "multi-stage node selection" test that is 1943 * executed below. 1944 */ 1945 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1946 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1947 return true; 1948 1949 /* 1950 * Multi-stage node selection is used in conjunction with a periodic 1951 * migration fault to build a temporal task<->page relation. By using 1952 * a two-stage filter we remove short/unlikely relations. 1953 * 1954 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1955 * a task's usage of a particular page (n_p) per total usage of this 1956 * page (n_t) (in a given time-span) to a probability. 1957 * 1958 * Our periodic faults will sample this probability and getting the 1959 * same result twice in a row, given these samples are fully 1960 * independent, is then given by P(n)^2, provided our sample period 1961 * is sufficiently short compared to the usage pattern. 1962 * 1963 * This quadric squishes small probabilities, making it less likely we 1964 * act on an unlikely task<->page relation. 1965 */ 1966 if (!cpupid_pid_unset(last_cpupid) && 1967 cpupid_to_nid(last_cpupid) != dst_nid) 1968 return false; 1969 1970 /* Always allow migrate on private faults */ 1971 if (cpupid_match_pid(p, last_cpupid)) 1972 return true; 1973 1974 /* A shared fault, but p->numa_group has not been set up yet. */ 1975 if (!ng) 1976 return true; 1977 1978 /* 1979 * Destination node is much more heavily used than the source 1980 * node? Allow migration. 1981 */ 1982 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1983 ACTIVE_NODE_FRACTION) 1984 return true; 1985 1986 /* 1987 * Distribute memory according to CPU & memory use on each node, 1988 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1989 * 1990 * faults_cpu(dst) 3 faults_cpu(src) 1991 * --------------- * - > --------------- 1992 * faults_mem(dst) 4 faults_mem(src) 1993 */ 1994 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1995 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1996 } 1997 1998 /* 1999 * 'numa_type' describes the node at the moment of load balancing. 2000 */ 2001 enum numa_type { 2002 /* The node has spare capacity that can be used to run more tasks. */ 2003 node_has_spare = 0, 2004 /* 2005 * The node is fully used and the tasks don't compete for more CPU 2006 * cycles. Nevertheless, some tasks might wait before running. 2007 */ 2008 node_fully_busy, 2009 /* 2010 * The node is overloaded and can't provide expected CPU cycles to all 2011 * tasks. 2012 */ 2013 node_overloaded 2014 }; 2015 2016 /* Cached statistics for all CPUs within a node */ 2017 struct numa_stats { 2018 unsigned long load; 2019 unsigned long runnable; 2020 unsigned long util; 2021 /* Total compute capacity of CPUs on a node */ 2022 unsigned long compute_capacity; 2023 unsigned int nr_running; 2024 unsigned int weight; 2025 enum numa_type node_type; 2026 int idle_cpu; 2027 }; 2028 2029 struct task_numa_env { 2030 struct task_struct *p; 2031 2032 int src_cpu, src_nid; 2033 int dst_cpu, dst_nid; 2034 int imb_numa_nr; 2035 2036 struct numa_stats src_stats, dst_stats; 2037 2038 int imbalance_pct; 2039 int dist; 2040 2041 struct task_struct *best_task; 2042 long best_imp; 2043 int best_cpu; 2044 }; 2045 2046 static unsigned long cpu_load(struct rq *rq); 2047 static unsigned long cpu_runnable(struct rq *rq); 2048 2049 static inline enum 2050 numa_type numa_classify(unsigned int imbalance_pct, 2051 struct numa_stats *ns) 2052 { 2053 if ((ns->nr_running > ns->weight) && 2054 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2055 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2056 return node_overloaded; 2057 2058 if ((ns->nr_running < ns->weight) || 2059 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2060 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2061 return node_has_spare; 2062 2063 return node_fully_busy; 2064 } 2065 2066 #ifdef CONFIG_SCHED_SMT 2067 /* Forward declarations of select_idle_sibling helpers */ 2068 static inline bool test_idle_cores(int cpu); 2069 static inline int numa_idle_core(int idle_core, int cpu) 2070 { 2071 if (!static_branch_likely(&sched_smt_present) || 2072 idle_core >= 0 || !test_idle_cores(cpu)) 2073 return idle_core; 2074 2075 /* 2076 * Prefer cores instead of packing HT siblings 2077 * and triggering future load balancing. 2078 */ 2079 if (is_core_idle(cpu)) 2080 idle_core = cpu; 2081 2082 return idle_core; 2083 } 2084 #else /* !CONFIG_SCHED_SMT: */ 2085 static inline int numa_idle_core(int idle_core, int cpu) 2086 { 2087 return idle_core; 2088 } 2089 #endif /* !CONFIG_SCHED_SMT */ 2090 2091 /* 2092 * Gather all necessary information to make NUMA balancing placement 2093 * decisions that are compatible with standard load balancer. This 2094 * borrows code and logic from update_sg_lb_stats but sharing a 2095 * common implementation is impractical. 2096 */ 2097 static void update_numa_stats(struct task_numa_env *env, 2098 struct numa_stats *ns, int nid, 2099 bool find_idle) 2100 { 2101 int cpu, idle_core = -1; 2102 2103 memset(ns, 0, sizeof(*ns)); 2104 ns->idle_cpu = -1; 2105 2106 rcu_read_lock(); 2107 for_each_cpu(cpu, cpumask_of_node(nid)) { 2108 struct rq *rq = cpu_rq(cpu); 2109 2110 ns->load += cpu_load(rq); 2111 ns->runnable += cpu_runnable(rq); 2112 ns->util += cpu_util_cfs(cpu); 2113 ns->nr_running += rq->cfs.h_nr_runnable; 2114 ns->compute_capacity += capacity_of(cpu); 2115 2116 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2117 if (READ_ONCE(rq->numa_migrate_on) || 2118 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2119 continue; 2120 2121 if (ns->idle_cpu == -1) 2122 ns->idle_cpu = cpu; 2123 2124 idle_core = numa_idle_core(idle_core, cpu); 2125 } 2126 } 2127 rcu_read_unlock(); 2128 2129 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2130 2131 ns->node_type = numa_classify(env->imbalance_pct, ns); 2132 2133 if (idle_core >= 0) 2134 ns->idle_cpu = idle_core; 2135 } 2136 2137 static void task_numa_assign(struct task_numa_env *env, 2138 struct task_struct *p, long imp) 2139 { 2140 struct rq *rq = cpu_rq(env->dst_cpu); 2141 2142 /* Check if run-queue part of active NUMA balance. */ 2143 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2144 int cpu; 2145 int start = env->dst_cpu; 2146 2147 /* Find alternative idle CPU. */ 2148 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2149 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2150 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2151 continue; 2152 } 2153 2154 env->dst_cpu = cpu; 2155 rq = cpu_rq(env->dst_cpu); 2156 if (!xchg(&rq->numa_migrate_on, 1)) 2157 goto assign; 2158 } 2159 2160 /* Failed to find an alternative idle CPU */ 2161 return; 2162 } 2163 2164 assign: 2165 /* 2166 * Clear previous best_cpu/rq numa-migrate flag, since task now 2167 * found a better CPU to move/swap. 2168 */ 2169 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2170 rq = cpu_rq(env->best_cpu); 2171 WRITE_ONCE(rq->numa_migrate_on, 0); 2172 } 2173 2174 if (env->best_task) 2175 put_task_struct(env->best_task); 2176 if (p) 2177 get_task_struct(p); 2178 2179 env->best_task = p; 2180 env->best_imp = imp; 2181 env->best_cpu = env->dst_cpu; 2182 } 2183 2184 static bool load_too_imbalanced(long src_load, long dst_load, 2185 struct task_numa_env *env) 2186 { 2187 long imb, old_imb; 2188 long orig_src_load, orig_dst_load; 2189 long src_capacity, dst_capacity; 2190 2191 /* 2192 * The load is corrected for the CPU capacity available on each node. 2193 * 2194 * src_load dst_load 2195 * ------------ vs --------- 2196 * src_capacity dst_capacity 2197 */ 2198 src_capacity = env->src_stats.compute_capacity; 2199 dst_capacity = env->dst_stats.compute_capacity; 2200 2201 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2202 2203 orig_src_load = env->src_stats.load; 2204 orig_dst_load = env->dst_stats.load; 2205 2206 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2207 2208 /* Would this change make things worse? */ 2209 return (imb > old_imb); 2210 } 2211 2212 /* 2213 * Maximum NUMA importance can be 1998 (2*999); 2214 * SMALLIMP @ 30 would be close to 1998/64. 2215 * Used to deter task migration. 2216 */ 2217 #define SMALLIMP 30 2218 2219 /* 2220 * This checks if the overall compute and NUMA accesses of the system would 2221 * be improved if the source tasks was migrated to the target dst_cpu taking 2222 * into account that it might be best if task running on the dst_cpu should 2223 * be exchanged with the source task 2224 */ 2225 static bool task_numa_compare(struct task_numa_env *env, 2226 long taskimp, long groupimp, bool maymove) 2227 { 2228 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2229 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2230 long imp = p_ng ? groupimp : taskimp; 2231 struct task_struct *cur; 2232 long src_load, dst_load; 2233 int dist = env->dist; 2234 long moveimp = imp; 2235 long load; 2236 bool stopsearch = false; 2237 2238 if (READ_ONCE(dst_rq->numa_migrate_on)) 2239 return false; 2240 2241 rcu_read_lock(); 2242 cur = rcu_dereference(dst_rq->curr); 2243 if (cur && ((cur->flags & (PF_EXITING | PF_KTHREAD)) || 2244 !cur->mm)) 2245 cur = NULL; 2246 2247 /* 2248 * Because we have preemption enabled we can get migrated around and 2249 * end try selecting ourselves (current == env->p) as a swap candidate. 2250 */ 2251 if (cur == env->p) { 2252 stopsearch = true; 2253 goto unlock; 2254 } 2255 2256 if (!cur) { 2257 if (maymove && moveimp >= env->best_imp) 2258 goto assign; 2259 else 2260 goto unlock; 2261 } 2262 2263 /* Skip this swap candidate if cannot move to the source cpu. */ 2264 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2265 goto unlock; 2266 2267 /* 2268 * Skip this swap candidate if it is not moving to its preferred 2269 * node and the best task is. 2270 */ 2271 if (env->best_task && 2272 env->best_task->numa_preferred_nid == env->src_nid && 2273 cur->numa_preferred_nid != env->src_nid) { 2274 goto unlock; 2275 } 2276 2277 /* 2278 * "imp" is the fault differential for the source task between the 2279 * source and destination node. Calculate the total differential for 2280 * the source task and potential destination task. The more negative 2281 * the value is, the more remote accesses that would be expected to 2282 * be incurred if the tasks were swapped. 2283 * 2284 * If dst and source tasks are in the same NUMA group, or not 2285 * in any group then look only at task weights. 2286 */ 2287 cur_ng = rcu_dereference(cur->numa_group); 2288 if (cur_ng == p_ng) { 2289 /* 2290 * Do not swap within a group or between tasks that have 2291 * no group if there is spare capacity. Swapping does 2292 * not address the load imbalance and helps one task at 2293 * the cost of punishing another. 2294 */ 2295 if (env->dst_stats.node_type == node_has_spare) 2296 goto unlock; 2297 2298 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2299 task_weight(cur, env->dst_nid, dist); 2300 /* 2301 * Add some hysteresis to prevent swapping the 2302 * tasks within a group over tiny differences. 2303 */ 2304 if (cur_ng) 2305 imp -= imp / 16; 2306 } else { 2307 /* 2308 * Compare the group weights. If a task is all by itself 2309 * (not part of a group), use the task weight instead. 2310 */ 2311 if (cur_ng && p_ng) 2312 imp += group_weight(cur, env->src_nid, dist) - 2313 group_weight(cur, env->dst_nid, dist); 2314 else 2315 imp += task_weight(cur, env->src_nid, dist) - 2316 task_weight(cur, env->dst_nid, dist); 2317 } 2318 2319 /* Discourage picking a task already on its preferred node */ 2320 if (cur->numa_preferred_nid == env->dst_nid) 2321 imp -= imp / 16; 2322 2323 /* 2324 * Encourage picking a task that moves to its preferred node. 2325 * This potentially makes imp larger than it's maximum of 2326 * 1998 (see SMALLIMP and task_weight for why) but in this 2327 * case, it does not matter. 2328 */ 2329 if (cur->numa_preferred_nid == env->src_nid) 2330 imp += imp / 8; 2331 2332 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2333 imp = moveimp; 2334 cur = NULL; 2335 goto assign; 2336 } 2337 2338 /* 2339 * Prefer swapping with a task moving to its preferred node over a 2340 * task that is not. 2341 */ 2342 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2343 env->best_task->numa_preferred_nid != env->src_nid) { 2344 goto assign; 2345 } 2346 2347 /* 2348 * If the NUMA importance is less than SMALLIMP, 2349 * task migration might only result in ping pong 2350 * of tasks and also hurt performance due to cache 2351 * misses. 2352 */ 2353 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2354 goto unlock; 2355 2356 /* 2357 * In the overloaded case, try and keep the load balanced. 2358 */ 2359 load = task_h_load(env->p) - task_h_load(cur); 2360 if (!load) 2361 goto assign; 2362 2363 dst_load = env->dst_stats.load + load; 2364 src_load = env->src_stats.load - load; 2365 2366 if (load_too_imbalanced(src_load, dst_load, env)) 2367 goto unlock; 2368 2369 assign: 2370 /* Evaluate an idle CPU for a task numa move. */ 2371 if (!cur) { 2372 int cpu = env->dst_stats.idle_cpu; 2373 2374 /* Nothing cached so current CPU went idle since the search. */ 2375 if (cpu < 0) 2376 cpu = env->dst_cpu; 2377 2378 /* 2379 * If the CPU is no longer truly idle and the previous best CPU 2380 * is, keep using it. 2381 */ 2382 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2383 idle_cpu(env->best_cpu)) { 2384 cpu = env->best_cpu; 2385 } 2386 2387 env->dst_cpu = cpu; 2388 } 2389 2390 task_numa_assign(env, cur, imp); 2391 2392 /* 2393 * If a move to idle is allowed because there is capacity or load 2394 * balance improves then stop the search. While a better swap 2395 * candidate may exist, a search is not free. 2396 */ 2397 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2398 stopsearch = true; 2399 2400 /* 2401 * If a swap candidate must be identified and the current best task 2402 * moves its preferred node then stop the search. 2403 */ 2404 if (!maymove && env->best_task && 2405 env->best_task->numa_preferred_nid == env->src_nid) { 2406 stopsearch = true; 2407 } 2408 unlock: 2409 rcu_read_unlock(); 2410 2411 return stopsearch; 2412 } 2413 2414 static void task_numa_find_cpu(struct task_numa_env *env, 2415 long taskimp, long groupimp) 2416 { 2417 bool maymove = false; 2418 int cpu; 2419 2420 /* 2421 * If dst node has spare capacity, then check if there is an 2422 * imbalance that would be overruled by the load balancer. 2423 */ 2424 if (env->dst_stats.node_type == node_has_spare) { 2425 unsigned int imbalance; 2426 int src_running, dst_running; 2427 2428 /* 2429 * Would movement cause an imbalance? Note that if src has 2430 * more running tasks that the imbalance is ignored as the 2431 * move improves the imbalance from the perspective of the 2432 * CPU load balancer. 2433 * */ 2434 src_running = env->src_stats.nr_running - 1; 2435 dst_running = env->dst_stats.nr_running + 1; 2436 imbalance = max(0, dst_running - src_running); 2437 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2438 env->imb_numa_nr); 2439 2440 /* Use idle CPU if there is no imbalance */ 2441 if (!imbalance) { 2442 maymove = true; 2443 if (env->dst_stats.idle_cpu >= 0) { 2444 env->dst_cpu = env->dst_stats.idle_cpu; 2445 task_numa_assign(env, NULL, 0); 2446 return; 2447 } 2448 } 2449 } else { 2450 long src_load, dst_load, load; 2451 /* 2452 * If the improvement from just moving env->p direction is better 2453 * than swapping tasks around, check if a move is possible. 2454 */ 2455 load = task_h_load(env->p); 2456 dst_load = env->dst_stats.load + load; 2457 src_load = env->src_stats.load - load; 2458 maymove = !load_too_imbalanced(src_load, dst_load, env); 2459 } 2460 2461 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2462 /* Skip this CPU if the source task cannot migrate */ 2463 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2464 continue; 2465 2466 env->dst_cpu = cpu; 2467 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2468 break; 2469 } 2470 } 2471 2472 static int task_numa_migrate(struct task_struct *p) 2473 { 2474 struct task_numa_env env = { 2475 .p = p, 2476 2477 .src_cpu = task_cpu(p), 2478 .src_nid = task_node(p), 2479 2480 .imbalance_pct = 112, 2481 2482 .best_task = NULL, 2483 .best_imp = 0, 2484 .best_cpu = -1, 2485 }; 2486 unsigned long taskweight, groupweight; 2487 struct sched_domain *sd; 2488 long taskimp, groupimp; 2489 struct numa_group *ng; 2490 struct rq *best_rq; 2491 int nid, ret, dist; 2492 2493 /* 2494 * Pick the lowest SD_NUMA domain, as that would have the smallest 2495 * imbalance and would be the first to start moving tasks about. 2496 * 2497 * And we want to avoid any moving of tasks about, as that would create 2498 * random movement of tasks -- counter the numa conditions we're trying 2499 * to satisfy here. 2500 */ 2501 rcu_read_lock(); 2502 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2503 if (sd) { 2504 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2505 env.imb_numa_nr = sd->imb_numa_nr; 2506 } 2507 rcu_read_unlock(); 2508 2509 /* 2510 * Cpusets can break the scheduler domain tree into smaller 2511 * balance domains, some of which do not cross NUMA boundaries. 2512 * Tasks that are "trapped" in such domains cannot be migrated 2513 * elsewhere, so there is no point in (re)trying. 2514 */ 2515 if (unlikely(!sd)) { 2516 sched_setnuma(p, task_node(p)); 2517 return -EINVAL; 2518 } 2519 2520 env.dst_nid = p->numa_preferred_nid; 2521 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2522 taskweight = task_weight(p, env.src_nid, dist); 2523 groupweight = group_weight(p, env.src_nid, dist); 2524 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2525 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2526 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2527 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2528 2529 /* Try to find a spot on the preferred nid. */ 2530 task_numa_find_cpu(&env, taskimp, groupimp); 2531 2532 /* 2533 * Look at other nodes in these cases: 2534 * - there is no space available on the preferred_nid 2535 * - the task is part of a numa_group that is interleaved across 2536 * multiple NUMA nodes; in order to better consolidate the group, 2537 * we need to check other locations. 2538 */ 2539 ng = deref_curr_numa_group(p); 2540 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2541 for_each_node_state(nid, N_CPU) { 2542 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2543 continue; 2544 2545 dist = node_distance(env.src_nid, env.dst_nid); 2546 if (sched_numa_topology_type == NUMA_BACKPLANE && 2547 dist != env.dist) { 2548 taskweight = task_weight(p, env.src_nid, dist); 2549 groupweight = group_weight(p, env.src_nid, dist); 2550 } 2551 2552 /* Only consider nodes where both task and groups benefit */ 2553 taskimp = task_weight(p, nid, dist) - taskweight; 2554 groupimp = group_weight(p, nid, dist) - groupweight; 2555 if (taskimp < 0 && groupimp < 0) 2556 continue; 2557 2558 env.dist = dist; 2559 env.dst_nid = nid; 2560 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2561 task_numa_find_cpu(&env, taskimp, groupimp); 2562 } 2563 } 2564 2565 /* 2566 * If the task is part of a workload that spans multiple NUMA nodes, 2567 * and is migrating into one of the workload's active nodes, remember 2568 * this node as the task's preferred numa node, so the workload can 2569 * settle down. 2570 * A task that migrated to a second choice node will be better off 2571 * trying for a better one later. Do not set the preferred node here. 2572 */ 2573 if (ng) { 2574 if (env.best_cpu == -1) 2575 nid = env.src_nid; 2576 else 2577 nid = cpu_to_node(env.best_cpu); 2578 2579 if (nid != p->numa_preferred_nid) 2580 sched_setnuma(p, nid); 2581 } 2582 2583 /* No better CPU than the current one was found. */ 2584 if (env.best_cpu == -1) { 2585 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2586 return -EAGAIN; 2587 } 2588 2589 best_rq = cpu_rq(env.best_cpu); 2590 if (env.best_task == NULL) { 2591 ret = migrate_task_to(p, env.best_cpu); 2592 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2593 if (ret != 0) 2594 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2595 return ret; 2596 } 2597 2598 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2599 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2600 2601 if (ret != 0) 2602 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2603 put_task_struct(env.best_task); 2604 return ret; 2605 } 2606 2607 /* Attempt to migrate a task to a CPU on the preferred node. */ 2608 static void numa_migrate_preferred(struct task_struct *p) 2609 { 2610 unsigned long interval = HZ; 2611 2612 /* This task has no NUMA fault statistics yet */ 2613 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2614 return; 2615 2616 /* Periodically retry migrating the task to the preferred node */ 2617 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2618 p->numa_migrate_retry = jiffies + interval; 2619 2620 /* Success if task is already running on preferred CPU */ 2621 if (task_node(p) == p->numa_preferred_nid) 2622 return; 2623 2624 /* Otherwise, try migrate to a CPU on the preferred node */ 2625 task_numa_migrate(p); 2626 } 2627 2628 /* 2629 * Find out how many nodes the workload is actively running on. Do this by 2630 * tracking the nodes from which NUMA hinting faults are triggered. This can 2631 * be different from the set of nodes where the workload's memory is currently 2632 * located. 2633 */ 2634 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2635 { 2636 unsigned long faults, max_faults = 0; 2637 int nid, active_nodes = 0; 2638 2639 for_each_node_state(nid, N_CPU) { 2640 faults = group_faults_cpu(numa_group, nid); 2641 if (faults > max_faults) 2642 max_faults = faults; 2643 } 2644 2645 for_each_node_state(nid, N_CPU) { 2646 faults = group_faults_cpu(numa_group, nid); 2647 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2648 active_nodes++; 2649 } 2650 2651 numa_group->max_faults_cpu = max_faults; 2652 numa_group->active_nodes = active_nodes; 2653 } 2654 2655 /* 2656 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2657 * increments. The more local the fault statistics are, the higher the scan 2658 * period will be for the next scan window. If local/(local+remote) ratio is 2659 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2660 * the scan period will decrease. Aim for 70% local accesses. 2661 */ 2662 #define NUMA_PERIOD_SLOTS 10 2663 #define NUMA_PERIOD_THRESHOLD 7 2664 2665 /* 2666 * Increase the scan period (slow down scanning) if the majority of 2667 * our memory is already on our local node, or if the majority of 2668 * the page accesses are shared with other processes. 2669 * Otherwise, decrease the scan period. 2670 */ 2671 static void update_task_scan_period(struct task_struct *p, 2672 unsigned long shared, unsigned long private) 2673 { 2674 unsigned int period_slot; 2675 int lr_ratio, ps_ratio; 2676 int diff; 2677 2678 unsigned long remote = p->numa_faults_locality[0]; 2679 unsigned long local = p->numa_faults_locality[1]; 2680 2681 /* 2682 * If there were no record hinting faults then either the task is 2683 * completely idle or all activity is in areas that are not of interest 2684 * to automatic numa balancing. Related to that, if there were failed 2685 * migration then it implies we are migrating too quickly or the local 2686 * node is overloaded. In either case, scan slower 2687 */ 2688 if (local + shared == 0 || p->numa_faults_locality[2]) { 2689 p->numa_scan_period = min(p->numa_scan_period_max, 2690 p->numa_scan_period << 1); 2691 2692 p->mm->numa_next_scan = jiffies + 2693 msecs_to_jiffies(p->numa_scan_period); 2694 2695 return; 2696 } 2697 2698 /* 2699 * Prepare to scale scan period relative to the current period. 2700 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2701 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2702 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2703 */ 2704 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2705 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2706 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2707 2708 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2709 /* 2710 * Most memory accesses are local. There is no need to 2711 * do fast NUMA scanning, since memory is already local. 2712 */ 2713 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2714 if (!slot) 2715 slot = 1; 2716 diff = slot * period_slot; 2717 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2718 /* 2719 * Most memory accesses are shared with other tasks. 2720 * There is no point in continuing fast NUMA scanning, 2721 * since other tasks may just move the memory elsewhere. 2722 */ 2723 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2724 if (!slot) 2725 slot = 1; 2726 diff = slot * period_slot; 2727 } else { 2728 /* 2729 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2730 * yet they are not on the local NUMA node. Speed up 2731 * NUMA scanning to get the memory moved over. 2732 */ 2733 int ratio = max(lr_ratio, ps_ratio); 2734 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2735 } 2736 2737 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2738 task_scan_min(p), task_scan_max(p)); 2739 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2740 } 2741 2742 /* 2743 * Get the fraction of time the task has been running since the last 2744 * NUMA placement cycle. The scheduler keeps similar statistics, but 2745 * decays those on a 32ms period, which is orders of magnitude off 2746 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2747 * stats only if the task is so new there are no NUMA statistics yet. 2748 */ 2749 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2750 { 2751 u64 runtime, delta, now; 2752 /* Use the start of this time slice to avoid calculations. */ 2753 now = p->se.exec_start; 2754 runtime = p->se.sum_exec_runtime; 2755 2756 if (p->last_task_numa_placement) { 2757 delta = runtime - p->last_sum_exec_runtime; 2758 *period = now - p->last_task_numa_placement; 2759 2760 /* Avoid time going backwards, prevent potential divide error: */ 2761 if (unlikely((s64)*period < 0)) 2762 *period = 0; 2763 } else { 2764 delta = p->se.avg.load_sum; 2765 *period = LOAD_AVG_MAX; 2766 } 2767 2768 p->last_sum_exec_runtime = runtime; 2769 p->last_task_numa_placement = now; 2770 2771 return delta; 2772 } 2773 2774 /* 2775 * Determine the preferred nid for a task in a numa_group. This needs to 2776 * be done in a way that produces consistent results with group_weight, 2777 * otherwise workloads might not converge. 2778 */ 2779 static int preferred_group_nid(struct task_struct *p, int nid) 2780 { 2781 nodemask_t nodes; 2782 int dist; 2783 2784 /* Direct connections between all NUMA nodes. */ 2785 if (sched_numa_topology_type == NUMA_DIRECT) 2786 return nid; 2787 2788 /* 2789 * On a system with glueless mesh NUMA topology, group_weight 2790 * scores nodes according to the number of NUMA hinting faults on 2791 * both the node itself, and on nearby nodes. 2792 */ 2793 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2794 unsigned long score, max_score = 0; 2795 int node, max_node = nid; 2796 2797 dist = sched_max_numa_distance; 2798 2799 for_each_node_state(node, N_CPU) { 2800 score = group_weight(p, node, dist); 2801 if (score > max_score) { 2802 max_score = score; 2803 max_node = node; 2804 } 2805 } 2806 return max_node; 2807 } 2808 2809 /* 2810 * Finding the preferred nid in a system with NUMA backplane 2811 * interconnect topology is more involved. The goal is to locate 2812 * tasks from numa_groups near each other in the system, and 2813 * untangle workloads from different sides of the system. This requires 2814 * searching down the hierarchy of node groups, recursively searching 2815 * inside the highest scoring group of nodes. The nodemask tricks 2816 * keep the complexity of the search down. 2817 */ 2818 nodes = node_states[N_CPU]; 2819 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2820 unsigned long max_faults = 0; 2821 nodemask_t max_group = NODE_MASK_NONE; 2822 int a, b; 2823 2824 /* Are there nodes at this distance from each other? */ 2825 if (!find_numa_distance(dist)) 2826 continue; 2827 2828 for_each_node_mask(a, nodes) { 2829 unsigned long faults = 0; 2830 nodemask_t this_group; 2831 nodes_clear(this_group); 2832 2833 /* Sum group's NUMA faults; includes a==b case. */ 2834 for_each_node_mask(b, nodes) { 2835 if (node_distance(a, b) < dist) { 2836 faults += group_faults(p, b); 2837 node_set(b, this_group); 2838 node_clear(b, nodes); 2839 } 2840 } 2841 2842 /* Remember the top group. */ 2843 if (faults > max_faults) { 2844 max_faults = faults; 2845 max_group = this_group; 2846 /* 2847 * subtle: at the smallest distance there is 2848 * just one node left in each "group", the 2849 * winner is the preferred nid. 2850 */ 2851 nid = a; 2852 } 2853 } 2854 /* Next round, evaluate the nodes within max_group. */ 2855 if (!max_faults) 2856 break; 2857 nodes = max_group; 2858 } 2859 return nid; 2860 } 2861 2862 static void task_numa_placement(struct task_struct *p) 2863 { 2864 int seq, nid, max_nid = NUMA_NO_NODE; 2865 unsigned long max_faults = 0; 2866 unsigned long fault_types[2] = { 0, 0 }; 2867 unsigned long total_faults; 2868 u64 runtime, period; 2869 spinlock_t *group_lock = NULL; 2870 struct numa_group *ng; 2871 2872 /* 2873 * The p->mm->numa_scan_seq field gets updated without 2874 * exclusive access. Use READ_ONCE() here to ensure 2875 * that the field is read in a single access: 2876 */ 2877 seq = READ_ONCE(p->mm->numa_scan_seq); 2878 if (p->numa_scan_seq == seq) 2879 return; 2880 p->numa_scan_seq = seq; 2881 p->numa_scan_period_max = task_scan_max(p); 2882 2883 total_faults = p->numa_faults_locality[0] + 2884 p->numa_faults_locality[1]; 2885 runtime = numa_get_avg_runtime(p, &period); 2886 2887 /* If the task is part of a group prevent parallel updates to group stats */ 2888 ng = deref_curr_numa_group(p); 2889 if (ng) { 2890 group_lock = &ng->lock; 2891 spin_lock_irq(group_lock); 2892 } 2893 2894 /* Find the node with the highest number of faults */ 2895 for_each_online_node(nid) { 2896 /* Keep track of the offsets in numa_faults array */ 2897 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2898 unsigned long faults = 0, group_faults = 0; 2899 int priv; 2900 2901 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2902 long diff, f_diff, f_weight; 2903 2904 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2905 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2906 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2907 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2908 2909 /* Decay existing window, copy faults since last scan */ 2910 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2911 fault_types[priv] += p->numa_faults[membuf_idx]; 2912 p->numa_faults[membuf_idx] = 0; 2913 2914 /* 2915 * Normalize the faults_from, so all tasks in a group 2916 * count according to CPU use, instead of by the raw 2917 * number of faults. Tasks with little runtime have 2918 * little over-all impact on throughput, and thus their 2919 * faults are less important. 2920 */ 2921 f_weight = div64_u64(runtime << 16, period + 1); 2922 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2923 (total_faults + 1); 2924 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2925 p->numa_faults[cpubuf_idx] = 0; 2926 2927 p->numa_faults[mem_idx] += diff; 2928 p->numa_faults[cpu_idx] += f_diff; 2929 faults += p->numa_faults[mem_idx]; 2930 p->total_numa_faults += diff; 2931 if (ng) { 2932 /* 2933 * safe because we can only change our own group 2934 * 2935 * mem_idx represents the offset for a given 2936 * nid and priv in a specific region because it 2937 * is at the beginning of the numa_faults array. 2938 */ 2939 ng->faults[mem_idx] += diff; 2940 ng->faults[cpu_idx] += f_diff; 2941 ng->total_faults += diff; 2942 group_faults += ng->faults[mem_idx]; 2943 } 2944 } 2945 2946 if (!ng) { 2947 if (faults > max_faults) { 2948 max_faults = faults; 2949 max_nid = nid; 2950 } 2951 } else if (group_faults > max_faults) { 2952 max_faults = group_faults; 2953 max_nid = nid; 2954 } 2955 } 2956 2957 /* Cannot migrate task to CPU-less node */ 2958 max_nid = numa_nearest_node(max_nid, N_CPU); 2959 2960 if (ng) { 2961 numa_group_count_active_nodes(ng); 2962 spin_unlock_irq(group_lock); 2963 max_nid = preferred_group_nid(p, max_nid); 2964 } 2965 2966 if (max_faults) { 2967 /* Set the new preferred node */ 2968 if (max_nid != p->numa_preferred_nid) 2969 sched_setnuma(p, max_nid); 2970 } 2971 2972 update_task_scan_period(p, fault_types[0], fault_types[1]); 2973 } 2974 2975 static inline int get_numa_group(struct numa_group *grp) 2976 { 2977 return refcount_inc_not_zero(&grp->refcount); 2978 } 2979 2980 static inline void put_numa_group(struct numa_group *grp) 2981 { 2982 if (refcount_dec_and_test(&grp->refcount)) 2983 kfree_rcu(grp, rcu); 2984 } 2985 2986 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2987 int *priv) 2988 { 2989 struct numa_group *grp, *my_grp; 2990 struct task_struct *tsk; 2991 bool join = false; 2992 int cpu = cpupid_to_cpu(cpupid); 2993 int i; 2994 2995 if (unlikely(!deref_curr_numa_group(p))) { 2996 unsigned int size = sizeof(struct numa_group) + 2997 NR_NUMA_HINT_FAULT_STATS * 2998 nr_node_ids * sizeof(unsigned long); 2999 3000 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 3001 if (!grp) 3002 return; 3003 3004 refcount_set(&grp->refcount, 1); 3005 grp->active_nodes = 1; 3006 grp->max_faults_cpu = 0; 3007 spin_lock_init(&grp->lock); 3008 grp->gid = p->pid; 3009 3010 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3011 grp->faults[i] = p->numa_faults[i]; 3012 3013 grp->total_faults = p->total_numa_faults; 3014 3015 grp->nr_tasks++; 3016 rcu_assign_pointer(p->numa_group, grp); 3017 } 3018 3019 rcu_read_lock(); 3020 tsk = READ_ONCE(cpu_rq(cpu)->curr); 3021 3022 if (!cpupid_match_pid(tsk, cpupid)) 3023 goto no_join; 3024 3025 grp = rcu_dereference(tsk->numa_group); 3026 if (!grp) 3027 goto no_join; 3028 3029 my_grp = deref_curr_numa_group(p); 3030 if (grp == my_grp) 3031 goto no_join; 3032 3033 /* 3034 * Only join the other group if its bigger; if we're the bigger group, 3035 * the other task will join us. 3036 */ 3037 if (my_grp->nr_tasks > grp->nr_tasks) 3038 goto no_join; 3039 3040 /* 3041 * Tie-break on the grp address. 3042 */ 3043 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3044 goto no_join; 3045 3046 /* Always join threads in the same process. */ 3047 if (tsk->mm == current->mm) 3048 join = true; 3049 3050 /* Simple filter to avoid false positives due to PID collisions */ 3051 if (flags & TNF_SHARED) 3052 join = true; 3053 3054 /* Update priv based on whether false sharing was detected */ 3055 *priv = !join; 3056 3057 if (join && !get_numa_group(grp)) 3058 goto no_join; 3059 3060 rcu_read_unlock(); 3061 3062 if (!join) 3063 return; 3064 3065 WARN_ON_ONCE(irqs_disabled()); 3066 double_lock_irq(&my_grp->lock, &grp->lock); 3067 3068 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3069 my_grp->faults[i] -= p->numa_faults[i]; 3070 grp->faults[i] += p->numa_faults[i]; 3071 } 3072 my_grp->total_faults -= p->total_numa_faults; 3073 grp->total_faults += p->total_numa_faults; 3074 3075 my_grp->nr_tasks--; 3076 grp->nr_tasks++; 3077 3078 spin_unlock(&my_grp->lock); 3079 spin_unlock_irq(&grp->lock); 3080 3081 rcu_assign_pointer(p->numa_group, grp); 3082 3083 put_numa_group(my_grp); 3084 return; 3085 3086 no_join: 3087 rcu_read_unlock(); 3088 return; 3089 } 3090 3091 /* 3092 * Get rid of NUMA statistics associated with a task (either current or dead). 3093 * If @final is set, the task is dead and has reached refcount zero, so we can 3094 * safely free all relevant data structures. Otherwise, there might be 3095 * concurrent reads from places like load balancing and procfs, and we should 3096 * reset the data back to default state without freeing ->numa_faults. 3097 */ 3098 void task_numa_free(struct task_struct *p, bool final) 3099 { 3100 /* safe: p either is current or is being freed by current */ 3101 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3102 unsigned long *numa_faults = p->numa_faults; 3103 unsigned long flags; 3104 int i; 3105 3106 if (!numa_faults) 3107 return; 3108 3109 if (grp) { 3110 spin_lock_irqsave(&grp->lock, flags); 3111 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3112 grp->faults[i] -= p->numa_faults[i]; 3113 grp->total_faults -= p->total_numa_faults; 3114 3115 grp->nr_tasks--; 3116 spin_unlock_irqrestore(&grp->lock, flags); 3117 RCU_INIT_POINTER(p->numa_group, NULL); 3118 put_numa_group(grp); 3119 } 3120 3121 if (final) { 3122 p->numa_faults = NULL; 3123 kfree(numa_faults); 3124 } else { 3125 p->total_numa_faults = 0; 3126 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3127 numa_faults[i] = 0; 3128 } 3129 } 3130 3131 /* 3132 * Got a PROT_NONE fault for a page on @node. 3133 */ 3134 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3135 { 3136 struct task_struct *p = current; 3137 bool migrated = flags & TNF_MIGRATED; 3138 int cpu_node = task_node(current); 3139 int local = !!(flags & TNF_FAULT_LOCAL); 3140 struct numa_group *ng; 3141 int priv; 3142 3143 if (!static_branch_likely(&sched_numa_balancing)) 3144 return; 3145 3146 /* for example, ksmd faulting in a user's mm */ 3147 if (!p->mm) 3148 return; 3149 3150 /* 3151 * NUMA faults statistics are unnecessary for the slow memory 3152 * node for memory tiering mode. 3153 */ 3154 if (!node_is_toptier(mem_node) && 3155 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3156 !cpupid_valid(last_cpupid))) 3157 return; 3158 3159 /* Allocate buffer to track faults on a per-node basis */ 3160 if (unlikely(!p->numa_faults)) { 3161 int size = sizeof(*p->numa_faults) * 3162 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3163 3164 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3165 if (!p->numa_faults) 3166 return; 3167 3168 p->total_numa_faults = 0; 3169 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3170 } 3171 3172 /* 3173 * First accesses are treated as private, otherwise consider accesses 3174 * to be private if the accessing pid has not changed 3175 */ 3176 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3177 priv = 1; 3178 } else { 3179 priv = cpupid_match_pid(p, last_cpupid); 3180 if (!priv && !(flags & TNF_NO_GROUP)) 3181 task_numa_group(p, last_cpupid, flags, &priv); 3182 } 3183 3184 /* 3185 * If a workload spans multiple NUMA nodes, a shared fault that 3186 * occurs wholly within the set of nodes that the workload is 3187 * actively using should be counted as local. This allows the 3188 * scan rate to slow down when a workload has settled down. 3189 */ 3190 ng = deref_curr_numa_group(p); 3191 if (!priv && !local && ng && ng->active_nodes > 1 && 3192 numa_is_active_node(cpu_node, ng) && 3193 numa_is_active_node(mem_node, ng)) 3194 local = 1; 3195 3196 /* 3197 * Retry to migrate task to preferred node periodically, in case it 3198 * previously failed, or the scheduler moved us. 3199 */ 3200 if (time_after(jiffies, p->numa_migrate_retry)) { 3201 task_numa_placement(p); 3202 numa_migrate_preferred(p); 3203 } 3204 3205 if (migrated) 3206 p->numa_pages_migrated += pages; 3207 if (flags & TNF_MIGRATE_FAIL) 3208 p->numa_faults_locality[2] += pages; 3209 3210 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3211 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3212 p->numa_faults_locality[local] += pages; 3213 } 3214 3215 static void reset_ptenuma_scan(struct task_struct *p) 3216 { 3217 /* 3218 * We only did a read acquisition of the mmap sem, so 3219 * p->mm->numa_scan_seq is written to without exclusive access 3220 * and the update is not guaranteed to be atomic. That's not 3221 * much of an issue though, since this is just used for 3222 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3223 * expensive, to avoid any form of compiler optimizations: 3224 */ 3225 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3226 p->mm->numa_scan_offset = 0; 3227 } 3228 3229 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3230 { 3231 unsigned long pids; 3232 /* 3233 * Allow unconditional access first two times, so that all the (pages) 3234 * of VMAs get prot_none fault introduced irrespective of accesses. 3235 * This is also done to avoid any side effect of task scanning 3236 * amplifying the unfairness of disjoint set of VMAs' access. 3237 */ 3238 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3239 return true; 3240 3241 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3242 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3243 return true; 3244 3245 /* 3246 * Complete a scan that has already started regardless of PID access, or 3247 * some VMAs may never be scanned in multi-threaded applications: 3248 */ 3249 if (mm->numa_scan_offset > vma->vm_start) { 3250 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3251 return true; 3252 } 3253 3254 /* 3255 * This vma has not been accessed for a while, and if the number 3256 * the threads in the same process is low, which means no other 3257 * threads can help scan this vma, force a vma scan. 3258 */ 3259 if (READ_ONCE(mm->numa_scan_seq) > 3260 (vma->numab_state->prev_scan_seq + get_nr_threads(current))) 3261 return true; 3262 3263 return false; 3264 } 3265 3266 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3267 3268 /* 3269 * The expensive part of numa migration is done from task_work context. 3270 * Triggered from task_tick_numa(). 3271 */ 3272 static void task_numa_work(struct callback_head *work) 3273 { 3274 unsigned long migrate, next_scan, now = jiffies; 3275 struct task_struct *p = current; 3276 struct mm_struct *mm = p->mm; 3277 u64 runtime = p->se.sum_exec_runtime; 3278 struct vm_area_struct *vma; 3279 unsigned long start, end; 3280 unsigned long nr_pte_updates = 0; 3281 long pages, virtpages; 3282 struct vma_iterator vmi; 3283 bool vma_pids_skipped; 3284 bool vma_pids_forced = false; 3285 3286 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 3287 3288 work->next = work; 3289 /* 3290 * Who cares about NUMA placement when they're dying. 3291 * 3292 * NOTE: make sure not to dereference p->mm before this check, 3293 * exit_task_work() happens _after_ exit_mm() so we could be called 3294 * without p->mm even though we still had it when we enqueued this 3295 * work. 3296 */ 3297 if (p->flags & PF_EXITING) 3298 return; 3299 3300 /* 3301 * Memory is pinned to only one NUMA node via cpuset.mems, naturally 3302 * no page can be migrated. 3303 */ 3304 if (cpusets_enabled() && nodes_weight(cpuset_current_mems_allowed) == 1) { 3305 trace_sched_skip_cpuset_numa(current, &cpuset_current_mems_allowed); 3306 return; 3307 } 3308 3309 if (!mm->numa_next_scan) { 3310 mm->numa_next_scan = now + 3311 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3312 } 3313 3314 /* 3315 * Enforce maximal scan/migration frequency.. 3316 */ 3317 migrate = mm->numa_next_scan; 3318 if (time_before(now, migrate)) 3319 return; 3320 3321 if (p->numa_scan_period == 0) { 3322 p->numa_scan_period_max = task_scan_max(p); 3323 p->numa_scan_period = task_scan_start(p); 3324 } 3325 3326 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3327 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3328 return; 3329 3330 /* 3331 * Delay this task enough that another task of this mm will likely win 3332 * the next time around. 3333 */ 3334 p->node_stamp += 2 * TICK_NSEC; 3335 3336 pages = sysctl_numa_balancing_scan_size; 3337 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3338 virtpages = pages * 8; /* Scan up to this much virtual space */ 3339 if (!pages) 3340 return; 3341 3342 3343 if (!mmap_read_trylock(mm)) 3344 return; 3345 3346 /* 3347 * VMAs are skipped if the current PID has not trapped a fault within 3348 * the VMA recently. Allow scanning to be forced if there is no 3349 * suitable VMA remaining. 3350 */ 3351 vma_pids_skipped = false; 3352 3353 retry_pids: 3354 start = mm->numa_scan_offset; 3355 vma_iter_init(&vmi, mm, start); 3356 vma = vma_next(&vmi); 3357 if (!vma) { 3358 reset_ptenuma_scan(p); 3359 start = 0; 3360 vma_iter_set(&vmi, start); 3361 vma = vma_next(&vmi); 3362 } 3363 3364 for (; vma; vma = vma_next(&vmi)) { 3365 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3366 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3367 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3368 continue; 3369 } 3370 3371 /* 3372 * Shared library pages mapped by multiple processes are not 3373 * migrated as it is expected they are cache replicated. Avoid 3374 * hinting faults in read-only file-backed mappings or the vDSO 3375 * as migrating the pages will be of marginal benefit. 3376 */ 3377 if (!vma->vm_mm || 3378 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3379 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3380 continue; 3381 } 3382 3383 /* 3384 * Skip inaccessible VMAs to avoid any confusion between 3385 * PROT_NONE and NUMA hinting PTEs 3386 */ 3387 if (!vma_is_accessible(vma)) { 3388 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3389 continue; 3390 } 3391 3392 /* Initialise new per-VMA NUMAB state. */ 3393 if (!vma->numab_state) { 3394 struct vma_numab_state *ptr; 3395 3396 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL); 3397 if (!ptr) 3398 continue; 3399 3400 if (cmpxchg(&vma->numab_state, NULL, ptr)) { 3401 kfree(ptr); 3402 continue; 3403 } 3404 3405 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3406 3407 vma->numab_state->next_scan = now + 3408 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3409 3410 /* Reset happens after 4 times scan delay of scan start */ 3411 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3412 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3413 3414 /* 3415 * Ensure prev_scan_seq does not match numa_scan_seq, 3416 * to prevent VMAs being skipped prematurely on the 3417 * first scan: 3418 */ 3419 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3420 } 3421 3422 /* 3423 * Scanning the VMAs of short lived tasks add more overhead. So 3424 * delay the scan for new VMAs. 3425 */ 3426 if (mm->numa_scan_seq && time_before(jiffies, 3427 vma->numab_state->next_scan)) { 3428 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3429 continue; 3430 } 3431 3432 /* RESET access PIDs regularly for old VMAs. */ 3433 if (mm->numa_scan_seq && 3434 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3435 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3436 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3437 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3438 vma->numab_state->pids_active[1] = 0; 3439 } 3440 3441 /* Do not rescan VMAs twice within the same sequence. */ 3442 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3443 mm->numa_scan_offset = vma->vm_end; 3444 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3445 continue; 3446 } 3447 3448 /* 3449 * Do not scan the VMA if task has not accessed it, unless no other 3450 * VMA candidate exists. 3451 */ 3452 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3453 vma_pids_skipped = true; 3454 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3455 continue; 3456 } 3457 3458 do { 3459 start = max(start, vma->vm_start); 3460 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3461 end = min(end, vma->vm_end); 3462 nr_pte_updates = change_prot_numa(vma, start, end); 3463 3464 /* 3465 * Try to scan sysctl_numa_balancing_size worth of 3466 * hpages that have at least one present PTE that 3467 * is not already PTE-numa. If the VMA contains 3468 * areas that are unused or already full of prot_numa 3469 * PTEs, scan up to virtpages, to skip through those 3470 * areas faster. 3471 */ 3472 if (nr_pte_updates) 3473 pages -= (end - start) >> PAGE_SHIFT; 3474 virtpages -= (end - start) >> PAGE_SHIFT; 3475 3476 start = end; 3477 if (pages <= 0 || virtpages <= 0) 3478 goto out; 3479 3480 cond_resched(); 3481 } while (end != vma->vm_end); 3482 3483 /* VMA scan is complete, do not scan until next sequence. */ 3484 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3485 3486 /* 3487 * Only force scan within one VMA at a time, to limit the 3488 * cost of scanning a potentially uninteresting VMA. 3489 */ 3490 if (vma_pids_forced) 3491 break; 3492 } 3493 3494 /* 3495 * If no VMAs are remaining and VMAs were skipped due to the PID 3496 * not accessing the VMA previously, then force a scan to ensure 3497 * forward progress: 3498 */ 3499 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3500 vma_pids_forced = true; 3501 goto retry_pids; 3502 } 3503 3504 out: 3505 /* 3506 * It is possible to reach the end of the VMA list but the last few 3507 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3508 * would find the !migratable VMA on the next scan but not reset the 3509 * scanner to the start so check it now. 3510 */ 3511 if (vma) 3512 mm->numa_scan_offset = start; 3513 else 3514 reset_ptenuma_scan(p); 3515 mmap_read_unlock(mm); 3516 3517 /* 3518 * Make sure tasks use at least 32x as much time to run other code 3519 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3520 * Usually update_task_scan_period slows down scanning enough; on an 3521 * overloaded system we need to limit overhead on a per task basis. 3522 */ 3523 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3524 u64 diff = p->se.sum_exec_runtime - runtime; 3525 p->node_stamp += 32 * diff; 3526 } 3527 } 3528 3529 void init_numa_balancing(u64 clone_flags, struct task_struct *p) 3530 { 3531 int mm_users = 0; 3532 struct mm_struct *mm = p->mm; 3533 3534 if (mm) { 3535 mm_users = atomic_read(&mm->mm_users); 3536 if (mm_users == 1) { 3537 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3538 mm->numa_scan_seq = 0; 3539 } 3540 } 3541 p->node_stamp = 0; 3542 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3543 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3544 p->numa_migrate_retry = 0; 3545 /* Protect against double add, see task_tick_numa and task_numa_work */ 3546 p->numa_work.next = &p->numa_work; 3547 p->numa_faults = NULL; 3548 p->numa_pages_migrated = 0; 3549 p->total_numa_faults = 0; 3550 RCU_INIT_POINTER(p->numa_group, NULL); 3551 p->last_task_numa_placement = 0; 3552 p->last_sum_exec_runtime = 0; 3553 3554 init_task_work(&p->numa_work, task_numa_work); 3555 3556 /* New address space, reset the preferred nid */ 3557 if (!(clone_flags & CLONE_VM)) { 3558 p->numa_preferred_nid = NUMA_NO_NODE; 3559 return; 3560 } 3561 3562 /* 3563 * New thread, keep existing numa_preferred_nid which should be copied 3564 * already by arch_dup_task_struct but stagger when scans start. 3565 */ 3566 if (mm) { 3567 unsigned int delay; 3568 3569 delay = min_t(unsigned int, task_scan_max(current), 3570 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3571 delay += 2 * TICK_NSEC; 3572 p->node_stamp = delay; 3573 } 3574 } 3575 3576 /* 3577 * Drive the periodic memory faults.. 3578 */ 3579 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3580 { 3581 struct callback_head *work = &curr->numa_work; 3582 u64 period, now; 3583 3584 /* 3585 * We don't care about NUMA placement if we don't have memory. 3586 */ 3587 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3588 return; 3589 3590 /* 3591 * Using runtime rather than walltime has the dual advantage that 3592 * we (mostly) drive the selection from busy threads and that the 3593 * task needs to have done some actual work before we bother with 3594 * NUMA placement. 3595 */ 3596 now = curr->se.sum_exec_runtime; 3597 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3598 3599 if (now > curr->node_stamp + period) { 3600 if (!curr->node_stamp) 3601 curr->numa_scan_period = task_scan_start(curr); 3602 curr->node_stamp += period; 3603 3604 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3605 task_work_add(curr, work, TWA_RESUME); 3606 } 3607 } 3608 3609 static void update_scan_period(struct task_struct *p, int new_cpu) 3610 { 3611 int src_nid = cpu_to_node(task_cpu(p)); 3612 int dst_nid = cpu_to_node(new_cpu); 3613 3614 if (!static_branch_likely(&sched_numa_balancing)) 3615 return; 3616 3617 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3618 return; 3619 3620 if (src_nid == dst_nid) 3621 return; 3622 3623 /* 3624 * Allow resets if faults have been trapped before one scan 3625 * has completed. This is most likely due to a new task that 3626 * is pulled cross-node due to wakeups or load balancing. 3627 */ 3628 if (p->numa_scan_seq) { 3629 /* 3630 * Avoid scan adjustments if moving to the preferred 3631 * node or if the task was not previously running on 3632 * the preferred node. 3633 */ 3634 if (dst_nid == p->numa_preferred_nid || 3635 (p->numa_preferred_nid != NUMA_NO_NODE && 3636 src_nid != p->numa_preferred_nid)) 3637 return; 3638 } 3639 3640 p->numa_scan_period = task_scan_start(p); 3641 } 3642 3643 #else /* !CONFIG_NUMA_BALANCING: */ 3644 3645 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3646 { 3647 } 3648 3649 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3650 { 3651 } 3652 3653 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3654 { 3655 } 3656 3657 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3658 { 3659 } 3660 3661 #endif /* !CONFIG_NUMA_BALANCING */ 3662 3663 static void 3664 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3665 { 3666 update_load_add(&cfs_rq->load, se->load.weight); 3667 if (entity_is_task(se)) { 3668 struct rq *rq = rq_of(cfs_rq); 3669 3670 account_numa_enqueue(rq, task_of(se)); 3671 list_add(&se->group_node, &rq->cfs_tasks); 3672 } 3673 cfs_rq->nr_queued++; 3674 } 3675 3676 static void 3677 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3678 { 3679 update_load_sub(&cfs_rq->load, se->load.weight); 3680 if (entity_is_task(se)) { 3681 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3682 list_del_init(&se->group_node); 3683 } 3684 cfs_rq->nr_queued--; 3685 } 3686 3687 /* 3688 * Signed add and clamp on underflow. 3689 * 3690 * Explicitly do a load-store to ensure the intermediate value never hits 3691 * memory. This allows lockless observations without ever seeing the negative 3692 * values. 3693 */ 3694 #define add_positive(_ptr, _val) do { \ 3695 typeof(_ptr) ptr = (_ptr); \ 3696 typeof(_val) val = (_val); \ 3697 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3698 \ 3699 res = var + val; \ 3700 \ 3701 if (val < 0 && res > var) \ 3702 res = 0; \ 3703 \ 3704 WRITE_ONCE(*ptr, res); \ 3705 } while (0) 3706 3707 /* 3708 * Unsigned subtract and clamp on underflow. 3709 * 3710 * Explicitly do a load-store to ensure the intermediate value never hits 3711 * memory. This allows lockless observations without ever seeing the negative 3712 * values. 3713 */ 3714 #define sub_positive(_ptr, _val) do { \ 3715 typeof(_ptr) ptr = (_ptr); \ 3716 typeof(*ptr) val = (_val); \ 3717 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3718 res = var - val; \ 3719 if (res > var) \ 3720 res = 0; \ 3721 WRITE_ONCE(*ptr, res); \ 3722 } while (0) 3723 3724 /* 3725 * Remove and clamp on negative, from a local variable. 3726 * 3727 * A variant of sub_positive(), which does not use explicit load-store 3728 * and is thus optimized for local variable updates. 3729 */ 3730 #define lsub_positive(_ptr, _val) do { \ 3731 typeof(_ptr) ptr = (_ptr); \ 3732 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3733 } while (0) 3734 3735 static inline void 3736 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3737 { 3738 cfs_rq->avg.load_avg += se->avg.load_avg; 3739 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3740 } 3741 3742 static inline void 3743 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3744 { 3745 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3746 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3747 /* See update_cfs_rq_load_avg() */ 3748 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3749 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3750 } 3751 3752 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags); 3753 3754 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3755 unsigned long weight) 3756 { 3757 bool curr = cfs_rq->curr == se; 3758 3759 if (se->on_rq) { 3760 /* commit outstanding execution time */ 3761 update_curr(cfs_rq); 3762 update_entity_lag(cfs_rq, se); 3763 se->deadline -= se->vruntime; 3764 se->rel_deadline = 1; 3765 cfs_rq->nr_queued--; 3766 if (!curr) 3767 __dequeue_entity(cfs_rq, se); 3768 update_load_sub(&cfs_rq->load, se->load.weight); 3769 } 3770 dequeue_load_avg(cfs_rq, se); 3771 3772 /* 3773 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3774 * we need to scale se->vlag when w_i changes. 3775 */ 3776 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3777 if (se->rel_deadline) 3778 se->deadline = div_s64(se->deadline * se->load.weight, weight); 3779 3780 update_load_set(&se->load, weight); 3781 3782 do { 3783 u32 divider = get_pelt_divider(&se->avg); 3784 3785 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3786 } while (0); 3787 3788 enqueue_load_avg(cfs_rq, se); 3789 if (se->on_rq) { 3790 place_entity(cfs_rq, se, 0); 3791 update_load_add(&cfs_rq->load, se->load.weight); 3792 if (!curr) 3793 __enqueue_entity(cfs_rq, se); 3794 cfs_rq->nr_queued++; 3795 } 3796 } 3797 3798 static void reweight_task_fair(struct rq *rq, struct task_struct *p, 3799 const struct load_weight *lw) 3800 { 3801 struct sched_entity *se = &p->se; 3802 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3803 struct load_weight *load = &se->load; 3804 3805 reweight_entity(cfs_rq, se, lw->weight); 3806 load->inv_weight = lw->inv_weight; 3807 } 3808 3809 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3810 3811 #ifdef CONFIG_FAIR_GROUP_SCHED 3812 /* 3813 * All this does is approximate the hierarchical proportion which includes that 3814 * global sum we all love to hate. 3815 * 3816 * That is, the weight of a group entity, is the proportional share of the 3817 * group weight based on the group runqueue weights. That is: 3818 * 3819 * tg->weight * grq->load.weight 3820 * ge->load.weight = ----------------------------- (1) 3821 * \Sum grq->load.weight 3822 * 3823 * Now, because computing that sum is prohibitively expensive to compute (been 3824 * there, done that) we approximate it with this average stuff. The average 3825 * moves slower and therefore the approximation is cheaper and more stable. 3826 * 3827 * So instead of the above, we substitute: 3828 * 3829 * grq->load.weight -> grq->avg.load_avg (2) 3830 * 3831 * which yields the following: 3832 * 3833 * tg->weight * grq->avg.load_avg 3834 * ge->load.weight = ------------------------------ (3) 3835 * tg->load_avg 3836 * 3837 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3838 * 3839 * That is shares_avg, and it is right (given the approximation (2)). 3840 * 3841 * The problem with it is that because the average is slow -- it was designed 3842 * to be exactly that of course -- this leads to transients in boundary 3843 * conditions. In specific, the case where the group was idle and we start the 3844 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3845 * yielding bad latency etc.. 3846 * 3847 * Now, in that special case (1) reduces to: 3848 * 3849 * tg->weight * grq->load.weight 3850 * ge->load.weight = ----------------------------- = tg->weight (4) 3851 * grp->load.weight 3852 * 3853 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3854 * 3855 * So what we do is modify our approximation (3) to approach (4) in the (near) 3856 * UP case, like: 3857 * 3858 * ge->load.weight = 3859 * 3860 * tg->weight * grq->load.weight 3861 * --------------------------------------------------- (5) 3862 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3863 * 3864 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3865 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3866 * 3867 * 3868 * tg->weight * grq->load.weight 3869 * ge->load.weight = ----------------------------- (6) 3870 * tg_load_avg' 3871 * 3872 * Where: 3873 * 3874 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3875 * max(grq->load.weight, grq->avg.load_avg) 3876 * 3877 * And that is shares_weight and is icky. In the (near) UP case it approaches 3878 * (4) while in the normal case it approaches (3). It consistently 3879 * overestimates the ge->load.weight and therefore: 3880 * 3881 * \Sum ge->load.weight >= tg->weight 3882 * 3883 * hence icky! 3884 */ 3885 static long calc_group_shares(struct cfs_rq *cfs_rq) 3886 { 3887 long tg_weight, tg_shares, load, shares; 3888 struct task_group *tg = cfs_rq->tg; 3889 3890 tg_shares = READ_ONCE(tg->shares); 3891 3892 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3893 3894 tg_weight = atomic_long_read(&tg->load_avg); 3895 3896 /* Ensure tg_weight >= load */ 3897 tg_weight -= cfs_rq->tg_load_avg_contrib; 3898 tg_weight += load; 3899 3900 shares = (tg_shares * load); 3901 if (tg_weight) 3902 shares /= tg_weight; 3903 3904 /* 3905 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3906 * of a group with small tg->shares value. It is a floor value which is 3907 * assigned as a minimum load.weight to the sched_entity representing 3908 * the group on a CPU. 3909 * 3910 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3911 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3912 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3913 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3914 * instead of 0. 3915 */ 3916 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3917 } 3918 3919 /* 3920 * Recomputes the group entity based on the current state of its group 3921 * runqueue. 3922 */ 3923 static void update_cfs_group(struct sched_entity *se) 3924 { 3925 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3926 long shares; 3927 3928 /* 3929 * When a group becomes empty, preserve its weight. This matters for 3930 * DELAY_DEQUEUE. 3931 */ 3932 if (!gcfs_rq || !gcfs_rq->load.weight) 3933 return; 3934 3935 shares = calc_group_shares(gcfs_rq); 3936 if (unlikely(se->load.weight != shares)) 3937 reweight_entity(cfs_rq_of(se), se, shares); 3938 } 3939 3940 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 3941 static inline void update_cfs_group(struct sched_entity *se) 3942 { 3943 } 3944 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 3945 3946 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3947 { 3948 struct rq *rq = rq_of(cfs_rq); 3949 3950 if (&rq->cfs == cfs_rq) { 3951 /* 3952 * There are a few boundary cases this might miss but it should 3953 * get called often enough that that should (hopefully) not be 3954 * a real problem. 3955 * 3956 * It will not get called when we go idle, because the idle 3957 * thread is a different class (!fair), nor will the utilization 3958 * number include things like RT tasks. 3959 * 3960 * As is, the util number is not freq-invariant (we'd have to 3961 * implement arch_scale_freq_capacity() for that). 3962 * 3963 * See cpu_util_cfs(). 3964 */ 3965 cpufreq_update_util(rq, flags); 3966 } 3967 } 3968 3969 static inline bool load_avg_is_decayed(struct sched_avg *sa) 3970 { 3971 if (sa->load_sum) 3972 return false; 3973 3974 if (sa->util_sum) 3975 return false; 3976 3977 if (sa->runnable_sum) 3978 return false; 3979 3980 /* 3981 * _avg must be null when _sum are null because _avg = _sum / divider 3982 * Make sure that rounding and/or propagation of PELT values never 3983 * break this. 3984 */ 3985 WARN_ON_ONCE(sa->load_avg || 3986 sa->util_avg || 3987 sa->runnable_avg); 3988 3989 return true; 3990 } 3991 3992 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3993 { 3994 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 3995 cfs_rq->last_update_time_copy); 3996 } 3997 #ifdef CONFIG_FAIR_GROUP_SCHED 3998 /* 3999 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4000 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4001 * bottom-up, we only have to test whether the cfs_rq before us on the list 4002 * is our child. 4003 * If cfs_rq is not on the list, test whether a child needs its to be added to 4004 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4005 */ 4006 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4007 { 4008 struct cfs_rq *prev_cfs_rq; 4009 struct list_head *prev; 4010 struct rq *rq = rq_of(cfs_rq); 4011 4012 if (cfs_rq->on_list) { 4013 prev = cfs_rq->leaf_cfs_rq_list.prev; 4014 } else { 4015 prev = rq->tmp_alone_branch; 4016 } 4017 4018 if (prev == &rq->leaf_cfs_rq_list) 4019 return false; 4020 4021 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4022 4023 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4024 } 4025 4026 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4027 { 4028 if (cfs_rq->load.weight) 4029 return false; 4030 4031 if (!load_avg_is_decayed(&cfs_rq->avg)) 4032 return false; 4033 4034 if (child_cfs_rq_on_list(cfs_rq)) 4035 return false; 4036 4037 if (cfs_rq->tg_load_avg_contrib) 4038 return false; 4039 4040 return true; 4041 } 4042 4043 /** 4044 * update_tg_load_avg - update the tg's load avg 4045 * @cfs_rq: the cfs_rq whose avg changed 4046 * 4047 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4048 * However, because tg->load_avg is a global value there are performance 4049 * considerations. 4050 * 4051 * In order to avoid having to look at the other cfs_rq's, we use a 4052 * differential update where we store the last value we propagated. This in 4053 * turn allows skipping updates if the differential is 'small'. 4054 * 4055 * Updating tg's load_avg is necessary before update_cfs_share(). 4056 */ 4057 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4058 { 4059 long delta; 4060 u64 now; 4061 4062 /* 4063 * No need to update load_avg for root_task_group as it is not used. 4064 */ 4065 if (cfs_rq->tg == &root_task_group) 4066 return; 4067 4068 /* rq has been offline and doesn't contribute to the share anymore: */ 4069 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4070 return; 4071 4072 /* 4073 * For migration heavy workloads, access to tg->load_avg can be 4074 * unbound. Limit the update rate to at most once per ms. 4075 */ 4076 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4077 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4078 return; 4079 4080 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4081 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4082 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4083 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4084 cfs_rq->last_update_tg_load_avg = now; 4085 } 4086 } 4087 4088 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4089 { 4090 long delta; 4091 u64 now; 4092 4093 /* 4094 * No need to update load_avg for root_task_group, as it is not used. 4095 */ 4096 if (cfs_rq->tg == &root_task_group) 4097 return; 4098 4099 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4100 delta = 0 - cfs_rq->tg_load_avg_contrib; 4101 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4102 cfs_rq->tg_load_avg_contrib = 0; 4103 cfs_rq->last_update_tg_load_avg = now; 4104 } 4105 4106 /* CPU offline callback: */ 4107 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4108 { 4109 struct task_group *tg; 4110 4111 lockdep_assert_rq_held(rq); 4112 4113 /* 4114 * The rq clock has already been updated in 4115 * set_rq_offline(), so we should skip updating 4116 * the rq clock again in unthrottle_cfs_rq(). 4117 */ 4118 rq_clock_start_loop_update(rq); 4119 4120 rcu_read_lock(); 4121 list_for_each_entry_rcu(tg, &task_groups, list) { 4122 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4123 4124 clear_tg_load_avg(cfs_rq); 4125 } 4126 rcu_read_unlock(); 4127 4128 rq_clock_stop_loop_update(rq); 4129 } 4130 4131 /* 4132 * Called within set_task_rq() right before setting a task's CPU. The 4133 * caller only guarantees p->pi_lock is held; no other assumptions, 4134 * including the state of rq->lock, should be made. 4135 */ 4136 void set_task_rq_fair(struct sched_entity *se, 4137 struct cfs_rq *prev, struct cfs_rq *next) 4138 { 4139 u64 p_last_update_time; 4140 u64 n_last_update_time; 4141 4142 if (!sched_feat(ATTACH_AGE_LOAD)) 4143 return; 4144 4145 /* 4146 * We are supposed to update the task to "current" time, then its up to 4147 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4148 * getting what current time is, so simply throw away the out-of-date 4149 * time. This will result in the wakee task is less decayed, but giving 4150 * the wakee more load sounds not bad. 4151 */ 4152 if (!(se->avg.last_update_time && prev)) 4153 return; 4154 4155 p_last_update_time = cfs_rq_last_update_time(prev); 4156 n_last_update_time = cfs_rq_last_update_time(next); 4157 4158 __update_load_avg_blocked_se(p_last_update_time, se); 4159 se->avg.last_update_time = n_last_update_time; 4160 } 4161 4162 /* 4163 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4164 * propagate its contribution. The key to this propagation is the invariant 4165 * that for each group: 4166 * 4167 * ge->avg == grq->avg (1) 4168 * 4169 * _IFF_ we look at the pure running and runnable sums. Because they 4170 * represent the very same entity, just at different points in the hierarchy. 4171 * 4172 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4173 * and simply copies the running/runnable sum over (but still wrong, because 4174 * the group entity and group rq do not have their PELT windows aligned). 4175 * 4176 * However, update_tg_cfs_load() is more complex. So we have: 4177 * 4178 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4179 * 4180 * And since, like util, the runnable part should be directly transferable, 4181 * the following would _appear_ to be the straight forward approach: 4182 * 4183 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4184 * 4185 * And per (1) we have: 4186 * 4187 * ge->avg.runnable_avg == grq->avg.runnable_avg 4188 * 4189 * Which gives: 4190 * 4191 * ge->load.weight * grq->avg.load_avg 4192 * ge->avg.load_avg = ----------------------------------- (4) 4193 * grq->load.weight 4194 * 4195 * Except that is wrong! 4196 * 4197 * Because while for entities historical weight is not important and we 4198 * really only care about our future and therefore can consider a pure 4199 * runnable sum, runqueues can NOT do this. 4200 * 4201 * We specifically want runqueues to have a load_avg that includes 4202 * historical weights. Those represent the blocked load, the load we expect 4203 * to (shortly) return to us. This only works by keeping the weights as 4204 * integral part of the sum. We therefore cannot decompose as per (3). 4205 * 4206 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4207 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4208 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4209 * runnable section of these tasks overlap (or not). If they were to perfectly 4210 * align the rq as a whole would be runnable 2/3 of the time. If however we 4211 * always have at least 1 runnable task, the rq as a whole is always runnable. 4212 * 4213 * So we'll have to approximate.. :/ 4214 * 4215 * Given the constraint: 4216 * 4217 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4218 * 4219 * We can construct a rule that adds runnable to a rq by assuming minimal 4220 * overlap. 4221 * 4222 * On removal, we'll assume each task is equally runnable; which yields: 4223 * 4224 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4225 * 4226 * XXX: only do this for the part of runnable > running ? 4227 * 4228 */ 4229 static inline void 4230 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4231 { 4232 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4233 u32 new_sum, divider; 4234 4235 /* Nothing to update */ 4236 if (!delta_avg) 4237 return; 4238 4239 /* 4240 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4241 * See ___update_load_avg() for details. 4242 */ 4243 divider = get_pelt_divider(&cfs_rq->avg); 4244 4245 4246 /* Set new sched_entity's utilization */ 4247 se->avg.util_avg = gcfs_rq->avg.util_avg; 4248 new_sum = se->avg.util_avg * divider; 4249 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4250 se->avg.util_sum = new_sum; 4251 4252 /* Update parent cfs_rq utilization */ 4253 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4254 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4255 4256 /* See update_cfs_rq_load_avg() */ 4257 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4258 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4259 } 4260 4261 static inline void 4262 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4263 { 4264 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4265 u32 new_sum, divider; 4266 4267 /* Nothing to update */ 4268 if (!delta_avg) 4269 return; 4270 4271 /* 4272 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4273 * See ___update_load_avg() for details. 4274 */ 4275 divider = get_pelt_divider(&cfs_rq->avg); 4276 4277 /* Set new sched_entity's runnable */ 4278 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4279 new_sum = se->avg.runnable_avg * divider; 4280 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4281 se->avg.runnable_sum = new_sum; 4282 4283 /* Update parent cfs_rq runnable */ 4284 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4285 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4286 /* See update_cfs_rq_load_avg() */ 4287 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4288 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4289 } 4290 4291 static inline void 4292 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4293 { 4294 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4295 unsigned long load_avg; 4296 u64 load_sum = 0; 4297 s64 delta_sum; 4298 u32 divider; 4299 4300 if (!runnable_sum) 4301 return; 4302 4303 gcfs_rq->prop_runnable_sum = 0; 4304 4305 /* 4306 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4307 * See ___update_load_avg() for details. 4308 */ 4309 divider = get_pelt_divider(&cfs_rq->avg); 4310 4311 if (runnable_sum >= 0) { 4312 /* 4313 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4314 * the CPU is saturated running == runnable. 4315 */ 4316 runnable_sum += se->avg.load_sum; 4317 runnable_sum = min_t(long, runnable_sum, divider); 4318 } else { 4319 /* 4320 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4321 * assuming all tasks are equally runnable. 4322 */ 4323 if (scale_load_down(gcfs_rq->load.weight)) { 4324 load_sum = div_u64(gcfs_rq->avg.load_sum, 4325 scale_load_down(gcfs_rq->load.weight)); 4326 } 4327 4328 /* But make sure to not inflate se's runnable */ 4329 runnable_sum = min(se->avg.load_sum, load_sum); 4330 } 4331 4332 /* 4333 * runnable_sum can't be lower than running_sum 4334 * Rescale running sum to be in the same range as runnable sum 4335 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4336 * runnable_sum is in [0 : LOAD_AVG_MAX] 4337 */ 4338 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4339 runnable_sum = max(runnable_sum, running_sum); 4340 4341 load_sum = se_weight(se) * runnable_sum; 4342 load_avg = div_u64(load_sum, divider); 4343 4344 delta_avg = load_avg - se->avg.load_avg; 4345 if (!delta_avg) 4346 return; 4347 4348 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4349 4350 se->avg.load_sum = runnable_sum; 4351 se->avg.load_avg = load_avg; 4352 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4353 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4354 /* See update_cfs_rq_load_avg() */ 4355 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4356 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4357 } 4358 4359 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4360 { 4361 cfs_rq->propagate = 1; 4362 cfs_rq->prop_runnable_sum += runnable_sum; 4363 } 4364 4365 /* Update task and its cfs_rq load average */ 4366 static inline int propagate_entity_load_avg(struct sched_entity *se) 4367 { 4368 struct cfs_rq *cfs_rq, *gcfs_rq; 4369 4370 if (entity_is_task(se)) 4371 return 0; 4372 4373 gcfs_rq = group_cfs_rq(se); 4374 if (!gcfs_rq->propagate) 4375 return 0; 4376 4377 gcfs_rq->propagate = 0; 4378 4379 cfs_rq = cfs_rq_of(se); 4380 4381 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4382 4383 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4384 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4385 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4386 4387 trace_pelt_cfs_tp(cfs_rq); 4388 trace_pelt_se_tp(se); 4389 4390 return 1; 4391 } 4392 4393 /* 4394 * Check if we need to update the load and the utilization of a blocked 4395 * group_entity: 4396 */ 4397 static inline bool skip_blocked_update(struct sched_entity *se) 4398 { 4399 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4400 4401 /* 4402 * If sched_entity still have not zero load or utilization, we have to 4403 * decay it: 4404 */ 4405 if (se->avg.load_avg || se->avg.util_avg) 4406 return false; 4407 4408 /* 4409 * If there is a pending propagation, we have to update the load and 4410 * the utilization of the sched_entity: 4411 */ 4412 if (gcfs_rq->propagate) 4413 return false; 4414 4415 /* 4416 * Otherwise, the load and the utilization of the sched_entity is 4417 * already zero and there is no pending propagation, so it will be a 4418 * waste of time to try to decay it: 4419 */ 4420 return true; 4421 } 4422 4423 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 4424 4425 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4426 4427 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4428 4429 static inline int propagate_entity_load_avg(struct sched_entity *se) 4430 { 4431 return 0; 4432 } 4433 4434 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4435 4436 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 4437 4438 #ifdef CONFIG_NO_HZ_COMMON 4439 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4440 { 4441 u64 throttled = 0, now, lut; 4442 struct cfs_rq *cfs_rq; 4443 struct rq *rq; 4444 bool is_idle; 4445 4446 if (load_avg_is_decayed(&se->avg)) 4447 return; 4448 4449 cfs_rq = cfs_rq_of(se); 4450 rq = rq_of(cfs_rq); 4451 4452 rcu_read_lock(); 4453 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4454 rcu_read_unlock(); 4455 4456 /* 4457 * The lag estimation comes with a cost we don't want to pay all the 4458 * time. Hence, limiting to the case where the source CPU is idle and 4459 * we know we are at the greatest risk to have an outdated clock. 4460 */ 4461 if (!is_idle) 4462 return; 4463 4464 /* 4465 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4466 * 4467 * last_update_time (the cfs_rq's last_update_time) 4468 * = cfs_rq_clock_pelt()@cfs_rq_idle 4469 * = rq_clock_pelt()@cfs_rq_idle 4470 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4471 * 4472 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4473 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4474 * 4475 * rq_idle_lag (delta between now and rq's update) 4476 * = sched_clock_cpu() - rq_clock()@rq_idle 4477 * 4478 * We can then write: 4479 * 4480 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4481 * sched_clock_cpu() - rq_clock()@rq_idle 4482 * Where: 4483 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4484 * rq_clock()@rq_idle is rq->clock_idle 4485 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4486 * is cfs_rq->throttled_pelt_idle 4487 */ 4488 4489 #ifdef CONFIG_CFS_BANDWIDTH 4490 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4491 /* The clock has been stopped for throttling */ 4492 if (throttled == U64_MAX) 4493 return; 4494 #endif 4495 now = u64_u32_load(rq->clock_pelt_idle); 4496 /* 4497 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4498 * is observed the old clock_pelt_idle value and the new clock_idle, 4499 * which lead to an underestimation. The opposite would lead to an 4500 * overestimation. 4501 */ 4502 smp_rmb(); 4503 lut = cfs_rq_last_update_time(cfs_rq); 4504 4505 now -= throttled; 4506 if (now < lut) 4507 /* 4508 * cfs_rq->avg.last_update_time is more recent than our 4509 * estimation, let's use it. 4510 */ 4511 now = lut; 4512 else 4513 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4514 4515 __update_load_avg_blocked_se(now, se); 4516 } 4517 #else /* !CONFIG_NO_HZ_COMMON: */ 4518 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4519 #endif /* !CONFIG_NO_HZ_COMMON */ 4520 4521 /** 4522 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4523 * @now: current time, as per cfs_rq_clock_pelt() 4524 * @cfs_rq: cfs_rq to update 4525 * 4526 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4527 * avg. The immediate corollary is that all (fair) tasks must be attached. 4528 * 4529 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4530 * 4531 * Return: true if the load decayed or we removed load. 4532 * 4533 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4534 * call update_tg_load_avg() when this function returns true. 4535 */ 4536 static inline int 4537 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4538 { 4539 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4540 struct sched_avg *sa = &cfs_rq->avg; 4541 int decayed = 0; 4542 4543 if (cfs_rq->removed.nr) { 4544 unsigned long r; 4545 u32 divider = get_pelt_divider(&cfs_rq->avg); 4546 4547 raw_spin_lock(&cfs_rq->removed.lock); 4548 swap(cfs_rq->removed.util_avg, removed_util); 4549 swap(cfs_rq->removed.load_avg, removed_load); 4550 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4551 cfs_rq->removed.nr = 0; 4552 raw_spin_unlock(&cfs_rq->removed.lock); 4553 4554 r = removed_load; 4555 sub_positive(&sa->load_avg, r); 4556 sub_positive(&sa->load_sum, r * divider); 4557 /* See sa->util_sum below */ 4558 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4559 4560 r = removed_util; 4561 sub_positive(&sa->util_avg, r); 4562 sub_positive(&sa->util_sum, r * divider); 4563 /* 4564 * Because of rounding, se->util_sum might ends up being +1 more than 4565 * cfs->util_sum. Although this is not a problem by itself, detaching 4566 * a lot of tasks with the rounding problem between 2 updates of 4567 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4568 * cfs_util_avg is not. 4569 * Check that util_sum is still above its lower bound for the new 4570 * util_avg. Given that period_contrib might have moved since the last 4571 * sync, we are only sure that util_sum must be above or equal to 4572 * util_avg * minimum possible divider 4573 */ 4574 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4575 4576 r = removed_runnable; 4577 sub_positive(&sa->runnable_avg, r); 4578 sub_positive(&sa->runnable_sum, r * divider); 4579 /* See sa->util_sum above */ 4580 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4581 sa->runnable_avg * PELT_MIN_DIVIDER); 4582 4583 /* 4584 * removed_runnable is the unweighted version of removed_load so we 4585 * can use it to estimate removed_load_sum. 4586 */ 4587 add_tg_cfs_propagate(cfs_rq, 4588 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4589 4590 decayed = 1; 4591 } 4592 4593 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4594 u64_u32_store_copy(sa->last_update_time, 4595 cfs_rq->last_update_time_copy, 4596 sa->last_update_time); 4597 return decayed; 4598 } 4599 4600 /** 4601 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4602 * @cfs_rq: cfs_rq to attach to 4603 * @se: sched_entity to attach 4604 * 4605 * Must call update_cfs_rq_load_avg() before this, since we rely on 4606 * cfs_rq->avg.last_update_time being current. 4607 */ 4608 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4609 { 4610 /* 4611 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4612 * See ___update_load_avg() for details. 4613 */ 4614 u32 divider = get_pelt_divider(&cfs_rq->avg); 4615 4616 /* 4617 * When we attach the @se to the @cfs_rq, we must align the decay 4618 * window because without that, really weird and wonderful things can 4619 * happen. 4620 * 4621 * XXX illustrate 4622 */ 4623 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4624 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4625 4626 /* 4627 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4628 * period_contrib. This isn't strictly correct, but since we're 4629 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4630 * _sum a little. 4631 */ 4632 se->avg.util_sum = se->avg.util_avg * divider; 4633 4634 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4635 4636 se->avg.load_sum = se->avg.load_avg * divider; 4637 if (se_weight(se) < se->avg.load_sum) 4638 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4639 else 4640 se->avg.load_sum = 1; 4641 4642 enqueue_load_avg(cfs_rq, se); 4643 cfs_rq->avg.util_avg += se->avg.util_avg; 4644 cfs_rq->avg.util_sum += se->avg.util_sum; 4645 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4646 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4647 4648 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4649 4650 cfs_rq_util_change(cfs_rq, 0); 4651 4652 trace_pelt_cfs_tp(cfs_rq); 4653 } 4654 4655 /** 4656 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4657 * @cfs_rq: cfs_rq to detach from 4658 * @se: sched_entity to detach 4659 * 4660 * Must call update_cfs_rq_load_avg() before this, since we rely on 4661 * cfs_rq->avg.last_update_time being current. 4662 */ 4663 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4664 { 4665 dequeue_load_avg(cfs_rq, se); 4666 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4667 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4668 /* See update_cfs_rq_load_avg() */ 4669 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4670 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4671 4672 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4673 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4674 /* See update_cfs_rq_load_avg() */ 4675 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4676 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4677 4678 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4679 4680 cfs_rq_util_change(cfs_rq, 0); 4681 4682 trace_pelt_cfs_tp(cfs_rq); 4683 } 4684 4685 /* 4686 * Optional action to be done while updating the load average 4687 */ 4688 #define UPDATE_TG 0x1 4689 #define SKIP_AGE_LOAD 0x2 4690 #define DO_ATTACH 0x4 4691 #define DO_DETACH 0x8 4692 4693 /* Update task and its cfs_rq load average */ 4694 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4695 { 4696 u64 now = cfs_rq_clock_pelt(cfs_rq); 4697 int decayed; 4698 4699 /* 4700 * Track task load average for carrying it to new CPU after migrated, and 4701 * track group sched_entity load average for task_h_load calculation in migration 4702 */ 4703 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4704 __update_load_avg_se(now, cfs_rq, se); 4705 4706 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4707 decayed |= propagate_entity_load_avg(se); 4708 4709 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4710 4711 /* 4712 * DO_ATTACH means we're here from enqueue_entity(). 4713 * !last_update_time means we've passed through 4714 * migrate_task_rq_fair() indicating we migrated. 4715 * 4716 * IOW we're enqueueing a task on a new CPU. 4717 */ 4718 attach_entity_load_avg(cfs_rq, se); 4719 update_tg_load_avg(cfs_rq); 4720 4721 } else if (flags & DO_DETACH) { 4722 /* 4723 * DO_DETACH means we're here from dequeue_entity() 4724 * and we are migrating task out of the CPU. 4725 */ 4726 detach_entity_load_avg(cfs_rq, se); 4727 update_tg_load_avg(cfs_rq); 4728 } else if (decayed) { 4729 cfs_rq_util_change(cfs_rq, 0); 4730 4731 if (flags & UPDATE_TG) 4732 update_tg_load_avg(cfs_rq); 4733 } 4734 } 4735 4736 /* 4737 * Synchronize entity load avg of dequeued entity without locking 4738 * the previous rq. 4739 */ 4740 static void sync_entity_load_avg(struct sched_entity *se) 4741 { 4742 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4743 u64 last_update_time; 4744 4745 last_update_time = cfs_rq_last_update_time(cfs_rq); 4746 __update_load_avg_blocked_se(last_update_time, se); 4747 } 4748 4749 /* 4750 * Task first catches up with cfs_rq, and then subtract 4751 * itself from the cfs_rq (task must be off the queue now). 4752 */ 4753 static void remove_entity_load_avg(struct sched_entity *se) 4754 { 4755 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4756 unsigned long flags; 4757 4758 /* 4759 * tasks cannot exit without having gone through wake_up_new_task() -> 4760 * enqueue_task_fair() which will have added things to the cfs_rq, 4761 * so we can remove unconditionally. 4762 */ 4763 4764 sync_entity_load_avg(se); 4765 4766 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4767 ++cfs_rq->removed.nr; 4768 cfs_rq->removed.util_avg += se->avg.util_avg; 4769 cfs_rq->removed.load_avg += se->avg.load_avg; 4770 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4771 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4772 } 4773 4774 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4775 { 4776 return cfs_rq->avg.runnable_avg; 4777 } 4778 4779 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4780 { 4781 return cfs_rq->avg.load_avg; 4782 } 4783 4784 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4785 4786 static inline unsigned long task_util(struct task_struct *p) 4787 { 4788 return READ_ONCE(p->se.avg.util_avg); 4789 } 4790 4791 static inline unsigned long task_runnable(struct task_struct *p) 4792 { 4793 return READ_ONCE(p->se.avg.runnable_avg); 4794 } 4795 4796 static inline unsigned long _task_util_est(struct task_struct *p) 4797 { 4798 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4799 } 4800 4801 static inline unsigned long task_util_est(struct task_struct *p) 4802 { 4803 return max(task_util(p), _task_util_est(p)); 4804 } 4805 4806 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4807 struct task_struct *p) 4808 { 4809 unsigned int enqueued; 4810 4811 if (!sched_feat(UTIL_EST)) 4812 return; 4813 4814 /* Update root cfs_rq's estimated utilization */ 4815 enqueued = cfs_rq->avg.util_est; 4816 enqueued += _task_util_est(p); 4817 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4818 4819 trace_sched_util_est_cfs_tp(cfs_rq); 4820 } 4821 4822 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4823 struct task_struct *p) 4824 { 4825 unsigned int enqueued; 4826 4827 if (!sched_feat(UTIL_EST)) 4828 return; 4829 4830 /* Update root cfs_rq's estimated utilization */ 4831 enqueued = cfs_rq->avg.util_est; 4832 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4833 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4834 4835 trace_sched_util_est_cfs_tp(cfs_rq); 4836 } 4837 4838 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4839 4840 static inline void util_est_update(struct cfs_rq *cfs_rq, 4841 struct task_struct *p, 4842 bool task_sleep) 4843 { 4844 unsigned int ewma, dequeued, last_ewma_diff; 4845 4846 if (!sched_feat(UTIL_EST)) 4847 return; 4848 4849 /* 4850 * Skip update of task's estimated utilization when the task has not 4851 * yet completed an activation, e.g. being migrated. 4852 */ 4853 if (!task_sleep) 4854 return; 4855 4856 /* Get current estimate of utilization */ 4857 ewma = READ_ONCE(p->se.avg.util_est); 4858 4859 /* 4860 * If the PELT values haven't changed since enqueue time, 4861 * skip the util_est update. 4862 */ 4863 if (ewma & UTIL_AVG_UNCHANGED) 4864 return; 4865 4866 /* Get utilization at dequeue */ 4867 dequeued = task_util(p); 4868 4869 /* 4870 * Reset EWMA on utilization increases, the moving average is used only 4871 * to smooth utilization decreases. 4872 */ 4873 if (ewma <= dequeued) { 4874 ewma = dequeued; 4875 goto done; 4876 } 4877 4878 /* 4879 * Skip update of task's estimated utilization when its members are 4880 * already ~1% close to its last activation value. 4881 */ 4882 last_ewma_diff = ewma - dequeued; 4883 if (last_ewma_diff < UTIL_EST_MARGIN) 4884 goto done; 4885 4886 /* 4887 * To avoid underestimate of task utilization, skip updates of EWMA if 4888 * we cannot grant that thread got all CPU time it wanted. 4889 */ 4890 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 4891 goto done; 4892 4893 4894 /* 4895 * Update Task's estimated utilization 4896 * 4897 * When *p completes an activation we can consolidate another sample 4898 * of the task size. This is done by using this value to update the 4899 * Exponential Weighted Moving Average (EWMA): 4900 * 4901 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4902 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4903 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4904 * = w * ( -last_ewma_diff ) + ewma(t-1) 4905 * = w * (-last_ewma_diff + ewma(t-1) / w) 4906 * 4907 * Where 'w' is the weight of new samples, which is configured to be 4908 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4909 */ 4910 ewma <<= UTIL_EST_WEIGHT_SHIFT; 4911 ewma -= last_ewma_diff; 4912 ewma >>= UTIL_EST_WEIGHT_SHIFT; 4913 done: 4914 ewma |= UTIL_AVG_UNCHANGED; 4915 WRITE_ONCE(p->se.avg.util_est, ewma); 4916 4917 trace_sched_util_est_se_tp(&p->se); 4918 } 4919 4920 static inline unsigned long get_actual_cpu_capacity(int cpu) 4921 { 4922 unsigned long capacity = arch_scale_cpu_capacity(cpu); 4923 4924 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 4925 4926 return capacity; 4927 } 4928 4929 static inline int util_fits_cpu(unsigned long util, 4930 unsigned long uclamp_min, 4931 unsigned long uclamp_max, 4932 int cpu) 4933 { 4934 unsigned long capacity = capacity_of(cpu); 4935 unsigned long capacity_orig; 4936 bool fits, uclamp_max_fits; 4937 4938 /* 4939 * Check if the real util fits without any uclamp boost/cap applied. 4940 */ 4941 fits = fits_capacity(util, capacity); 4942 4943 if (!uclamp_is_used()) 4944 return fits; 4945 4946 /* 4947 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 4948 * uclamp_max. We only care about capacity pressure (by using 4949 * capacity_of()) for comparing against the real util. 4950 * 4951 * If a task is boosted to 1024 for example, we don't want a tiny 4952 * pressure to skew the check whether it fits a CPU or not. 4953 * 4954 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 4955 * should fit a little cpu even if there's some pressure. 4956 * 4957 * Only exception is for HW or cpufreq pressure since it has a direct impact 4958 * on available OPP of the system. 4959 * 4960 * We honour it for uclamp_min only as a drop in performance level 4961 * could result in not getting the requested minimum performance level. 4962 * 4963 * For uclamp_max, we can tolerate a drop in performance level as the 4964 * goal is to cap the task. So it's okay if it's getting less. 4965 */ 4966 capacity_orig = arch_scale_cpu_capacity(cpu); 4967 4968 /* 4969 * We want to force a task to fit a cpu as implied by uclamp_max. 4970 * But we do have some corner cases to cater for.. 4971 * 4972 * 4973 * C=z 4974 * | ___ 4975 * | C=y | | 4976 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 4977 * | C=x | | | | 4978 * | ___ | | | | 4979 * | | | | | | | (util somewhere in this region) 4980 * | | | | | | | 4981 * | | | | | | | 4982 * +---------------------------------------- 4983 * CPU0 CPU1 CPU2 4984 * 4985 * In the above example if a task is capped to a specific performance 4986 * point, y, then when: 4987 * 4988 * * util = 80% of x then it does not fit on CPU0 and should migrate 4989 * to CPU1 4990 * * util = 80% of y then it is forced to fit on CPU1 to honour 4991 * uclamp_max request. 4992 * 4993 * which is what we're enforcing here. A task always fits if 4994 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 4995 * the normal upmigration rules should withhold still. 4996 * 4997 * Only exception is when we are on max capacity, then we need to be 4998 * careful not to block overutilized state. This is so because: 4999 * 5000 * 1. There's no concept of capping at max_capacity! We can't go 5001 * beyond this performance level anyway. 5002 * 2. The system is being saturated when we're operating near 5003 * max capacity, it doesn't make sense to block overutilized. 5004 */ 5005 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5006 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5007 fits = fits || uclamp_max_fits; 5008 5009 /* 5010 * 5011 * C=z 5012 * | ___ (region a, capped, util >= uclamp_max) 5013 * | C=y | | 5014 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5015 * | C=x | | | | 5016 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5017 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5018 * | | | | | | | 5019 * | | | | | | | (region c, boosted, util < uclamp_min) 5020 * +---------------------------------------- 5021 * CPU0 CPU1 CPU2 5022 * 5023 * a) If util > uclamp_max, then we're capped, we don't care about 5024 * actual fitness value here. We only care if uclamp_max fits 5025 * capacity without taking margin/pressure into account. 5026 * See comment above. 5027 * 5028 * b) If uclamp_min <= util <= uclamp_max, then the normal 5029 * fits_capacity() rules apply. Except we need to ensure that we 5030 * enforce we remain within uclamp_max, see comment above. 5031 * 5032 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5033 * need to take into account the boosted value fits the CPU without 5034 * taking margin/pressure into account. 5035 * 5036 * Cases (a) and (b) are handled in the 'fits' variable already. We 5037 * just need to consider an extra check for case (c) after ensuring we 5038 * handle the case uclamp_min > uclamp_max. 5039 */ 5040 uclamp_min = min(uclamp_min, uclamp_max); 5041 if (fits && (util < uclamp_min) && 5042 (uclamp_min > get_actual_cpu_capacity(cpu))) 5043 return -1; 5044 5045 return fits; 5046 } 5047 5048 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5049 { 5050 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5051 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5052 unsigned long util = task_util_est(p); 5053 /* 5054 * Return true only if the cpu fully fits the task requirements, which 5055 * include the utilization but also the performance hints. 5056 */ 5057 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5058 } 5059 5060 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5061 { 5062 int cpu = cpu_of(rq); 5063 5064 if (!sched_asym_cpucap_active()) 5065 return; 5066 5067 /* 5068 * Affinity allows us to go somewhere higher? Or are we on biggest 5069 * available CPU already? Or do we fit into this CPU ? 5070 */ 5071 if (!p || (p->nr_cpus_allowed == 1) || 5072 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5073 task_fits_cpu(p, cpu)) { 5074 5075 rq->misfit_task_load = 0; 5076 return; 5077 } 5078 5079 /* 5080 * Make sure that misfit_task_load will not be null even if 5081 * task_h_load() returns 0. 5082 */ 5083 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5084 } 5085 5086 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr) 5087 { 5088 struct sched_entity *se = &p->se; 5089 5090 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 5091 if (attr->sched_runtime) { 5092 se->custom_slice = 1; 5093 se->slice = clamp_t(u64, attr->sched_runtime, 5094 NSEC_PER_MSEC/10, /* HZ=1000 * 10 */ 5095 NSEC_PER_MSEC*100); /* HZ=100 / 10 */ 5096 } else { 5097 se->custom_slice = 0; 5098 se->slice = sysctl_sched_base_slice; 5099 } 5100 } 5101 5102 static void 5103 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5104 { 5105 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5106 s64 lag = 0; 5107 5108 if (!se->custom_slice) 5109 se->slice = sysctl_sched_base_slice; 5110 vslice = calc_delta_fair(se->slice, se); 5111 5112 /* 5113 * Due to how V is constructed as the weighted average of entities, 5114 * adding tasks with positive lag, or removing tasks with negative lag 5115 * will move 'time' backwards, this can screw around with the lag of 5116 * other tasks. 5117 * 5118 * EEVDF: placement strategy #1 / #2 5119 */ 5120 if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) { 5121 struct sched_entity *curr = cfs_rq->curr; 5122 unsigned long load; 5123 5124 lag = se->vlag; 5125 5126 /* 5127 * If we want to place a task and preserve lag, we have to 5128 * consider the effect of the new entity on the weighted 5129 * average and compensate for this, otherwise lag can quickly 5130 * evaporate. 5131 * 5132 * Lag is defined as: 5133 * 5134 * lag_i = S - s_i = w_i * (V - v_i) 5135 * 5136 * To avoid the 'w_i' term all over the place, we only track 5137 * the virtual lag: 5138 * 5139 * vl_i = V - v_i <=> v_i = V - vl_i 5140 * 5141 * And we take V to be the weighted average of all v: 5142 * 5143 * V = (\Sum w_j*v_j) / W 5144 * 5145 * Where W is: \Sum w_j 5146 * 5147 * Then, the weighted average after adding an entity with lag 5148 * vl_i is given by: 5149 * 5150 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5151 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5152 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5153 * = (V*(W + w_i) - w_i*vl_i) / (W + w_i) 5154 * = V - w_i*vl_i / (W + w_i) 5155 * 5156 * And the actual lag after adding an entity with vl_i is: 5157 * 5158 * vl'_i = V' - v_i 5159 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5160 * = vl_i - w_i*vl_i / (W + w_i) 5161 * 5162 * Which is strictly less than vl_i. So in order to preserve lag 5163 * we should inflate the lag before placement such that the 5164 * effective lag after placement comes out right. 5165 * 5166 * As such, invert the above relation for vl'_i to get the vl_i 5167 * we need to use such that the lag after placement is the lag 5168 * we computed before dequeue. 5169 * 5170 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5171 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5172 * 5173 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5174 * = W*vl_i 5175 * 5176 * vl_i = (W + w_i)*vl'_i / W 5177 */ 5178 load = cfs_rq->avg_load; 5179 if (curr && curr->on_rq) 5180 load += scale_load_down(curr->load.weight); 5181 5182 lag *= load + scale_load_down(se->load.weight); 5183 if (WARN_ON_ONCE(!load)) 5184 load = 1; 5185 lag = div_s64(lag, load); 5186 } 5187 5188 se->vruntime = vruntime - lag; 5189 5190 if (se->rel_deadline) { 5191 se->deadline += se->vruntime; 5192 se->rel_deadline = 0; 5193 return; 5194 } 5195 5196 /* 5197 * When joining the competition; the existing tasks will be, 5198 * on average, halfway through their slice, as such start tasks 5199 * off with half a slice to ease into the competition. 5200 */ 5201 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5202 vslice /= 2; 5203 5204 /* 5205 * EEVDF: vd_i = ve_i + r_i/w_i 5206 */ 5207 se->deadline = se->vruntime + vslice; 5208 } 5209 5210 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5211 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5212 5213 static void 5214 requeue_delayed_entity(struct sched_entity *se); 5215 5216 static void 5217 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5218 { 5219 bool curr = cfs_rq->curr == se; 5220 5221 /* 5222 * If we're the current task, we must renormalise before calling 5223 * update_curr(). 5224 */ 5225 if (curr) 5226 place_entity(cfs_rq, se, flags); 5227 5228 update_curr(cfs_rq); 5229 5230 /* 5231 * When enqueuing a sched_entity, we must: 5232 * - Update loads to have both entity and cfs_rq synced with now. 5233 * - For group_entity, update its runnable_weight to reflect the new 5234 * h_nr_runnable of its group cfs_rq. 5235 * - For group_entity, update its weight to reflect the new share of 5236 * its group cfs_rq 5237 * - Add its new weight to cfs_rq->load.weight 5238 */ 5239 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5240 se_update_runnable(se); 5241 /* 5242 * XXX update_load_avg() above will have attached us to the pelt sum; 5243 * but update_cfs_group() here will re-adjust the weight and have to 5244 * undo/redo all that. Seems wasteful. 5245 */ 5246 update_cfs_group(se); 5247 5248 /* 5249 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5250 * we can place the entity. 5251 */ 5252 if (!curr) 5253 place_entity(cfs_rq, se, flags); 5254 5255 account_entity_enqueue(cfs_rq, se); 5256 5257 /* Entity has migrated, no longer consider this task hot */ 5258 if (flags & ENQUEUE_MIGRATED) 5259 se->exec_start = 0; 5260 5261 check_schedstat_required(); 5262 update_stats_enqueue_fair(cfs_rq, se, flags); 5263 if (!curr) 5264 __enqueue_entity(cfs_rq, se); 5265 se->on_rq = 1; 5266 5267 if (cfs_rq->nr_queued == 1) { 5268 check_enqueue_throttle(cfs_rq); 5269 list_add_leaf_cfs_rq(cfs_rq); 5270 #ifdef CONFIG_CFS_BANDWIDTH 5271 if (cfs_rq->pelt_clock_throttled) { 5272 struct rq *rq = rq_of(cfs_rq); 5273 5274 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5275 cfs_rq->throttled_clock_pelt; 5276 cfs_rq->pelt_clock_throttled = 0; 5277 } 5278 #endif 5279 } 5280 } 5281 5282 static void __clear_buddies_next(struct sched_entity *se) 5283 { 5284 for_each_sched_entity(se) { 5285 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5286 if (cfs_rq->next != se) 5287 break; 5288 5289 cfs_rq->next = NULL; 5290 } 5291 } 5292 5293 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5294 { 5295 if (cfs_rq->next == se) 5296 __clear_buddies_next(se); 5297 } 5298 5299 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5300 5301 static void set_delayed(struct sched_entity *se) 5302 { 5303 se->sched_delayed = 1; 5304 5305 /* 5306 * Delayed se of cfs_rq have no tasks queued on them. 5307 * Do not adjust h_nr_runnable since dequeue_entities() 5308 * will account it for blocked tasks. 5309 */ 5310 if (!entity_is_task(se)) 5311 return; 5312 5313 for_each_sched_entity(se) { 5314 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5315 5316 cfs_rq->h_nr_runnable--; 5317 } 5318 } 5319 5320 static void clear_delayed(struct sched_entity *se) 5321 { 5322 se->sched_delayed = 0; 5323 5324 /* 5325 * Delayed se of cfs_rq have no tasks queued on them. 5326 * Do not adjust h_nr_runnable since a dequeue has 5327 * already accounted for it or an enqueue of a task 5328 * below it will account for it in enqueue_task_fair(). 5329 */ 5330 if (!entity_is_task(se)) 5331 return; 5332 5333 for_each_sched_entity(se) { 5334 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5335 5336 cfs_rq->h_nr_runnable++; 5337 } 5338 } 5339 5340 static inline void finish_delayed_dequeue_entity(struct sched_entity *se) 5341 { 5342 clear_delayed(se); 5343 if (sched_feat(DELAY_ZERO) && se->vlag > 0) 5344 se->vlag = 0; 5345 } 5346 5347 static bool 5348 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5349 { 5350 bool sleep = flags & DEQUEUE_SLEEP; 5351 int action = UPDATE_TG; 5352 5353 update_curr(cfs_rq); 5354 clear_buddies(cfs_rq, se); 5355 5356 if (flags & DEQUEUE_DELAYED) { 5357 WARN_ON_ONCE(!se->sched_delayed); 5358 } else { 5359 bool delay = sleep; 5360 /* 5361 * DELAY_DEQUEUE relies on spurious wakeups, special task 5362 * states must not suffer spurious wakeups, excempt them. 5363 */ 5364 if (flags & (DEQUEUE_SPECIAL | DEQUEUE_THROTTLE)) 5365 delay = false; 5366 5367 WARN_ON_ONCE(delay && se->sched_delayed); 5368 5369 if (sched_feat(DELAY_DEQUEUE) && delay && 5370 !entity_eligible(cfs_rq, se)) { 5371 update_load_avg(cfs_rq, se, 0); 5372 set_delayed(se); 5373 return false; 5374 } 5375 } 5376 5377 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5378 action |= DO_DETACH; 5379 5380 /* 5381 * When dequeuing a sched_entity, we must: 5382 * - Update loads to have both entity and cfs_rq synced with now. 5383 * - For group_entity, update its runnable_weight to reflect the new 5384 * h_nr_runnable of its group cfs_rq. 5385 * - Subtract its previous weight from cfs_rq->load.weight. 5386 * - For group entity, update its weight to reflect the new share 5387 * of its group cfs_rq. 5388 */ 5389 update_load_avg(cfs_rq, se, action); 5390 se_update_runnable(se); 5391 5392 update_stats_dequeue_fair(cfs_rq, se, flags); 5393 5394 update_entity_lag(cfs_rq, se); 5395 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { 5396 se->deadline -= se->vruntime; 5397 se->rel_deadline = 1; 5398 } 5399 5400 if (se != cfs_rq->curr) 5401 __dequeue_entity(cfs_rq, se); 5402 se->on_rq = 0; 5403 account_entity_dequeue(cfs_rq, se); 5404 5405 /* return excess runtime on last dequeue */ 5406 return_cfs_rq_runtime(cfs_rq); 5407 5408 update_cfs_group(se); 5409 5410 if (flags & DEQUEUE_DELAYED) 5411 finish_delayed_dequeue_entity(se); 5412 5413 if (cfs_rq->nr_queued == 0) { 5414 update_idle_cfs_rq_clock_pelt(cfs_rq); 5415 #ifdef CONFIG_CFS_BANDWIDTH 5416 if (throttled_hierarchy(cfs_rq)) { 5417 struct rq *rq = rq_of(cfs_rq); 5418 5419 list_del_leaf_cfs_rq(cfs_rq); 5420 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5421 cfs_rq->pelt_clock_throttled = 1; 5422 } 5423 #endif 5424 } 5425 5426 return true; 5427 } 5428 5429 static void 5430 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5431 { 5432 clear_buddies(cfs_rq, se); 5433 5434 /* 'current' is not kept within the tree. */ 5435 if (se->on_rq) { 5436 /* 5437 * Any task has to be enqueued before it get to execute on 5438 * a CPU. So account for the time it spent waiting on the 5439 * runqueue. 5440 */ 5441 update_stats_wait_end_fair(cfs_rq, se); 5442 __dequeue_entity(cfs_rq, se); 5443 update_load_avg(cfs_rq, se, UPDATE_TG); 5444 5445 set_protect_slice(cfs_rq, se); 5446 } 5447 5448 update_stats_curr_start(cfs_rq, se); 5449 WARN_ON_ONCE(cfs_rq->curr); 5450 cfs_rq->curr = se; 5451 5452 /* 5453 * Track our maximum slice length, if the CPU's load is at 5454 * least twice that of our own weight (i.e. don't track it 5455 * when there are only lesser-weight tasks around): 5456 */ 5457 if (schedstat_enabled() && 5458 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5459 struct sched_statistics *stats; 5460 5461 stats = __schedstats_from_se(se); 5462 __schedstat_set(stats->slice_max, 5463 max((u64)stats->slice_max, 5464 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5465 } 5466 5467 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5468 } 5469 5470 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); 5471 5472 /* 5473 * Pick the next process, keeping these things in mind, in this order: 5474 * 1) keep things fair between processes/task groups 5475 * 2) pick the "next" process, since someone really wants that to run 5476 * 3) pick the "last" process, for cache locality 5477 * 4) do not run the "skip" process, if something else is available 5478 */ 5479 static struct sched_entity * 5480 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) 5481 { 5482 struct sched_entity *se; 5483 5484 se = pick_eevdf(cfs_rq); 5485 if (se->sched_delayed) { 5486 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5487 /* 5488 * Must not reference @se again, see __block_task(). 5489 */ 5490 return NULL; 5491 } 5492 return se; 5493 } 5494 5495 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5496 5497 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5498 { 5499 /* 5500 * If still on the runqueue then deactivate_task() 5501 * was not called and update_curr() has to be done: 5502 */ 5503 if (prev->on_rq) 5504 update_curr(cfs_rq); 5505 5506 /* throttle cfs_rqs exceeding runtime */ 5507 check_cfs_rq_runtime(cfs_rq); 5508 5509 if (prev->on_rq) { 5510 update_stats_wait_start_fair(cfs_rq, prev); 5511 /* Put 'current' back into the tree. */ 5512 __enqueue_entity(cfs_rq, prev); 5513 /* in !on_rq case, update occurred at dequeue */ 5514 update_load_avg(cfs_rq, prev, 0); 5515 } 5516 WARN_ON_ONCE(cfs_rq->curr != prev); 5517 cfs_rq->curr = NULL; 5518 } 5519 5520 static void 5521 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5522 { 5523 /* 5524 * Update run-time statistics of the 'current'. 5525 */ 5526 update_curr(cfs_rq); 5527 5528 /* 5529 * Ensure that runnable average is periodically updated. 5530 */ 5531 update_load_avg(cfs_rq, curr, UPDATE_TG); 5532 update_cfs_group(curr); 5533 5534 #ifdef CONFIG_SCHED_HRTICK 5535 /* 5536 * queued ticks are scheduled to match the slice, so don't bother 5537 * validating it and just reschedule. 5538 */ 5539 if (queued) { 5540 resched_curr_lazy(rq_of(cfs_rq)); 5541 return; 5542 } 5543 #endif 5544 } 5545 5546 5547 /************************************************** 5548 * CFS bandwidth control machinery 5549 */ 5550 5551 #ifdef CONFIG_CFS_BANDWIDTH 5552 5553 #ifdef CONFIG_JUMP_LABEL 5554 static struct static_key __cfs_bandwidth_used; 5555 5556 static inline bool cfs_bandwidth_used(void) 5557 { 5558 return static_key_false(&__cfs_bandwidth_used); 5559 } 5560 5561 void cfs_bandwidth_usage_inc(void) 5562 { 5563 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5564 } 5565 5566 void cfs_bandwidth_usage_dec(void) 5567 { 5568 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5569 } 5570 #else /* !CONFIG_JUMP_LABEL: */ 5571 static bool cfs_bandwidth_used(void) 5572 { 5573 return true; 5574 } 5575 5576 void cfs_bandwidth_usage_inc(void) {} 5577 void cfs_bandwidth_usage_dec(void) {} 5578 #endif /* !CONFIG_JUMP_LABEL */ 5579 5580 static inline u64 sched_cfs_bandwidth_slice(void) 5581 { 5582 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5583 } 5584 5585 /* 5586 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5587 * directly instead of rq->clock to avoid adding additional synchronization 5588 * around rq->lock. 5589 * 5590 * requires cfs_b->lock 5591 */ 5592 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5593 { 5594 s64 runtime; 5595 5596 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5597 return; 5598 5599 cfs_b->runtime += cfs_b->quota; 5600 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5601 if (runtime > 0) { 5602 cfs_b->burst_time += runtime; 5603 cfs_b->nr_burst++; 5604 } 5605 5606 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5607 cfs_b->runtime_snap = cfs_b->runtime; 5608 } 5609 5610 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5611 { 5612 return &tg->cfs_bandwidth; 5613 } 5614 5615 /* returns 0 on failure to allocate runtime */ 5616 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5617 struct cfs_rq *cfs_rq, u64 target_runtime) 5618 { 5619 u64 min_amount, amount = 0; 5620 5621 lockdep_assert_held(&cfs_b->lock); 5622 5623 /* note: this is a positive sum as runtime_remaining <= 0 */ 5624 min_amount = target_runtime - cfs_rq->runtime_remaining; 5625 5626 if (cfs_b->quota == RUNTIME_INF) 5627 amount = min_amount; 5628 else { 5629 start_cfs_bandwidth(cfs_b); 5630 5631 if (cfs_b->runtime > 0) { 5632 amount = min(cfs_b->runtime, min_amount); 5633 cfs_b->runtime -= amount; 5634 cfs_b->idle = 0; 5635 } 5636 } 5637 5638 cfs_rq->runtime_remaining += amount; 5639 5640 return cfs_rq->runtime_remaining > 0; 5641 } 5642 5643 /* returns 0 on failure to allocate runtime */ 5644 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5645 { 5646 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5647 int ret; 5648 5649 raw_spin_lock(&cfs_b->lock); 5650 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5651 raw_spin_unlock(&cfs_b->lock); 5652 5653 return ret; 5654 } 5655 5656 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5657 { 5658 /* dock delta_exec before expiring quota (as it could span periods) */ 5659 cfs_rq->runtime_remaining -= delta_exec; 5660 5661 if (likely(cfs_rq->runtime_remaining > 0)) 5662 return; 5663 5664 if (cfs_rq->throttled) 5665 return; 5666 /* 5667 * if we're unable to extend our runtime we resched so that the active 5668 * hierarchy can be throttled 5669 */ 5670 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5671 resched_curr(rq_of(cfs_rq)); 5672 } 5673 5674 static __always_inline 5675 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5676 { 5677 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5678 return; 5679 5680 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5681 } 5682 5683 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5684 { 5685 return cfs_bandwidth_used() && cfs_rq->throttled; 5686 } 5687 5688 static inline bool cfs_rq_pelt_clock_throttled(struct cfs_rq *cfs_rq) 5689 { 5690 return cfs_bandwidth_used() && cfs_rq->pelt_clock_throttled; 5691 } 5692 5693 /* check whether cfs_rq, or any parent, is throttled */ 5694 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5695 { 5696 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5697 } 5698 5699 static inline int lb_throttled_hierarchy(struct task_struct *p, int dst_cpu) 5700 { 5701 return throttled_hierarchy(task_group(p)->cfs_rq[dst_cpu]); 5702 } 5703 5704 static inline bool task_is_throttled(struct task_struct *p) 5705 { 5706 return cfs_bandwidth_used() && p->throttled; 5707 } 5708 5709 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags); 5710 static void throttle_cfs_rq_work(struct callback_head *work) 5711 { 5712 struct task_struct *p = container_of(work, struct task_struct, sched_throttle_work); 5713 struct sched_entity *se; 5714 struct cfs_rq *cfs_rq; 5715 struct rq *rq; 5716 5717 WARN_ON_ONCE(p != current); 5718 p->sched_throttle_work.next = &p->sched_throttle_work; 5719 5720 /* 5721 * If task is exiting, then there won't be a return to userspace, so we 5722 * don't have to bother with any of this. 5723 */ 5724 if ((p->flags & PF_EXITING)) 5725 return; 5726 5727 scoped_guard(task_rq_lock, p) { 5728 se = &p->se; 5729 cfs_rq = cfs_rq_of(se); 5730 5731 /* Raced, forget */ 5732 if (p->sched_class != &fair_sched_class) 5733 return; 5734 5735 /* 5736 * If not in limbo, then either replenish has happened or this 5737 * task got migrated out of the throttled cfs_rq, move along. 5738 */ 5739 if (!cfs_rq->throttle_count) 5740 return; 5741 rq = scope.rq; 5742 update_rq_clock(rq); 5743 WARN_ON_ONCE(p->throttled || !list_empty(&p->throttle_node)); 5744 dequeue_task_fair(rq, p, DEQUEUE_SLEEP | DEQUEUE_THROTTLE); 5745 list_add(&p->throttle_node, &cfs_rq->throttled_limbo_list); 5746 /* 5747 * Must not set throttled before dequeue or dequeue will 5748 * mistakenly regard this task as an already throttled one. 5749 */ 5750 p->throttled = true; 5751 resched_curr(rq); 5752 } 5753 } 5754 5755 void init_cfs_throttle_work(struct task_struct *p) 5756 { 5757 init_task_work(&p->sched_throttle_work, throttle_cfs_rq_work); 5758 /* Protect against double add, see throttle_cfs_rq() and throttle_cfs_rq_work() */ 5759 p->sched_throttle_work.next = &p->sched_throttle_work; 5760 INIT_LIST_HEAD(&p->throttle_node); 5761 } 5762 5763 /* 5764 * Task is throttled and someone wants to dequeue it again: 5765 * it could be sched/core when core needs to do things like 5766 * task affinity change, task group change, task sched class 5767 * change etc. and in these cases, DEQUEUE_SLEEP is not set; 5768 * or the task is blocked after throttled due to freezer etc. 5769 * and in these cases, DEQUEUE_SLEEP is set. 5770 */ 5771 static void detach_task_cfs_rq(struct task_struct *p); 5772 static void dequeue_throttled_task(struct task_struct *p, int flags) 5773 { 5774 WARN_ON_ONCE(p->se.on_rq); 5775 list_del_init(&p->throttle_node); 5776 5777 /* task blocked after throttled */ 5778 if (flags & DEQUEUE_SLEEP) { 5779 p->throttled = false; 5780 return; 5781 } 5782 5783 /* 5784 * task is migrating off its old cfs_rq, detach 5785 * the task's load from its old cfs_rq. 5786 */ 5787 if (task_on_rq_migrating(p)) 5788 detach_task_cfs_rq(p); 5789 } 5790 5791 static bool enqueue_throttled_task(struct task_struct *p) 5792 { 5793 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se); 5794 5795 /* @p should have gone through dequeue_throttled_task() first */ 5796 WARN_ON_ONCE(!list_empty(&p->throttle_node)); 5797 5798 /* 5799 * If the throttled task @p is enqueued to a throttled cfs_rq, 5800 * take the fast path by directly putting the task on the 5801 * target cfs_rq's limbo list. 5802 * 5803 * Do not do that when @p is current because the following race can 5804 * cause @p's group_node to be incorectly re-insterted in its rq's 5805 * cfs_tasks list, despite being throttled: 5806 * 5807 * cpuX cpuY 5808 * p ret2user 5809 * throttle_cfs_rq_work() sched_move_task(p) 5810 * LOCK task_rq_lock 5811 * dequeue_task_fair(p) 5812 * UNLOCK task_rq_lock 5813 * LOCK task_rq_lock 5814 * task_current_donor(p) == true 5815 * task_on_rq_queued(p) == true 5816 * dequeue_task(p) 5817 * put_prev_task(p) 5818 * sched_change_group() 5819 * enqueue_task(p) -> p's new cfs_rq 5820 * is throttled, go 5821 * fast path and skip 5822 * actual enqueue 5823 * set_next_task(p) 5824 * list_move(&se->group_node, &rq->cfs_tasks); // bug 5825 * schedule() 5826 * 5827 * In the above race case, @p current cfs_rq is in the same rq as 5828 * its previous cfs_rq because sched_move_task() only moves a task 5829 * to a different group from the same rq, so we can use its current 5830 * cfs_rq to derive rq and test if the task is current. 5831 */ 5832 if (throttled_hierarchy(cfs_rq) && 5833 !task_current_donor(rq_of(cfs_rq), p)) { 5834 list_add(&p->throttle_node, &cfs_rq->throttled_limbo_list); 5835 return true; 5836 } 5837 5838 /* we can't take the fast path, do an actual enqueue*/ 5839 p->throttled = false; 5840 return false; 5841 } 5842 5843 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags); 5844 static int tg_unthrottle_up(struct task_group *tg, void *data) 5845 { 5846 struct rq *rq = data; 5847 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5848 struct task_struct *p, *tmp; 5849 5850 if (--cfs_rq->throttle_count) 5851 return 0; 5852 5853 if (cfs_rq->pelt_clock_throttled) { 5854 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5855 cfs_rq->throttled_clock_pelt; 5856 cfs_rq->pelt_clock_throttled = 0; 5857 } 5858 5859 if (cfs_rq->throttled_clock_self) { 5860 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5861 5862 cfs_rq->throttled_clock_self = 0; 5863 5864 if (WARN_ON_ONCE((s64)delta < 0)) 5865 delta = 0; 5866 5867 cfs_rq->throttled_clock_self_time += delta; 5868 } 5869 5870 /* Re-enqueue the tasks that have been throttled at this level. */ 5871 list_for_each_entry_safe(p, tmp, &cfs_rq->throttled_limbo_list, throttle_node) { 5872 list_del_init(&p->throttle_node); 5873 p->throttled = false; 5874 enqueue_task_fair(rq_of(cfs_rq), p, ENQUEUE_WAKEUP); 5875 } 5876 5877 /* Add cfs_rq with load or one or more already running entities to the list */ 5878 if (!cfs_rq_is_decayed(cfs_rq)) 5879 list_add_leaf_cfs_rq(cfs_rq); 5880 5881 return 0; 5882 } 5883 5884 static inline bool task_has_throttle_work(struct task_struct *p) 5885 { 5886 return p->sched_throttle_work.next != &p->sched_throttle_work; 5887 } 5888 5889 static inline void task_throttle_setup_work(struct task_struct *p) 5890 { 5891 if (task_has_throttle_work(p)) 5892 return; 5893 5894 /* 5895 * Kthreads and exiting tasks don't return to userspace, so adding the 5896 * work is pointless 5897 */ 5898 if ((p->flags & (PF_EXITING | PF_KTHREAD))) 5899 return; 5900 5901 task_work_add(p, &p->sched_throttle_work, TWA_RESUME); 5902 } 5903 5904 static void record_throttle_clock(struct cfs_rq *cfs_rq) 5905 { 5906 struct rq *rq = rq_of(cfs_rq); 5907 5908 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5909 cfs_rq->throttled_clock = rq_clock(rq); 5910 5911 if (!cfs_rq->throttled_clock_self) 5912 cfs_rq->throttled_clock_self = rq_clock(rq); 5913 } 5914 5915 static int tg_throttle_down(struct task_group *tg, void *data) 5916 { 5917 struct rq *rq = data; 5918 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5919 5920 if (cfs_rq->throttle_count++) 5921 return 0; 5922 5923 /* 5924 * For cfs_rqs that still have entities enqueued, PELT clock 5925 * stop happens at dequeue time when all entities are dequeued. 5926 */ 5927 if (!cfs_rq->nr_queued) { 5928 list_del_leaf_cfs_rq(cfs_rq); 5929 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5930 cfs_rq->pelt_clock_throttled = 1; 5931 } 5932 5933 WARN_ON_ONCE(cfs_rq->throttled_clock_self); 5934 WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_limbo_list)); 5935 return 0; 5936 } 5937 5938 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5939 { 5940 struct rq *rq = rq_of(cfs_rq); 5941 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5942 int dequeue = 1; 5943 5944 raw_spin_lock(&cfs_b->lock); 5945 /* This will start the period timer if necessary */ 5946 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5947 /* 5948 * We have raced with bandwidth becoming available, and if we 5949 * actually throttled the timer might not unthrottle us for an 5950 * entire period. We additionally needed to make sure that any 5951 * subsequent check_cfs_rq_runtime calls agree not to throttle 5952 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5953 * for 1ns of runtime rather than just check cfs_b. 5954 */ 5955 dequeue = 0; 5956 } else { 5957 list_add_tail_rcu(&cfs_rq->throttled_list, 5958 &cfs_b->throttled_cfs_rq); 5959 } 5960 raw_spin_unlock(&cfs_b->lock); 5961 5962 if (!dequeue) 5963 return false; /* Throttle no longer required. */ 5964 5965 /* freeze hierarchy runnable averages while throttled */ 5966 rcu_read_lock(); 5967 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5968 rcu_read_unlock(); 5969 5970 /* 5971 * Note: distribution will already see us throttled via the 5972 * throttled-list. rq->lock protects completion. 5973 */ 5974 cfs_rq->throttled = 1; 5975 WARN_ON_ONCE(cfs_rq->throttled_clock); 5976 return true; 5977 } 5978 5979 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5980 { 5981 struct rq *rq = rq_of(cfs_rq); 5982 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5983 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 5984 5985 /* 5986 * It's possible we are called with runtime_remaining < 0 due to things 5987 * like async unthrottled us with a positive runtime_remaining but other 5988 * still running entities consumed those runtime before we reached here. 5989 * 5990 * We can't unthrottle this cfs_rq without any runtime remaining because 5991 * any enqueue in tg_unthrottle_up() will immediately trigger a throttle, 5992 * which is not supposed to happen on unthrottle path. 5993 */ 5994 if (cfs_rq->runtime_enabled && cfs_rq->runtime_remaining <= 0) 5995 return; 5996 5997 cfs_rq->throttled = 0; 5998 5999 update_rq_clock(rq); 6000 6001 raw_spin_lock(&cfs_b->lock); 6002 if (cfs_rq->throttled_clock) { 6003 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 6004 cfs_rq->throttled_clock = 0; 6005 } 6006 list_del_rcu(&cfs_rq->throttled_list); 6007 raw_spin_unlock(&cfs_b->lock); 6008 6009 /* update hierarchical throttle state */ 6010 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 6011 6012 if (!cfs_rq->load.weight) { 6013 if (!cfs_rq->on_list) 6014 return; 6015 /* 6016 * Nothing to run but something to decay (on_list)? 6017 * Complete the branch. 6018 */ 6019 for_each_sched_entity(se) { 6020 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 6021 break; 6022 } 6023 } 6024 6025 assert_list_leaf_cfs_rq(rq); 6026 6027 /* Determine whether we need to wake up potentially idle CPU: */ 6028 if (rq->curr == rq->idle && rq->cfs.nr_queued) 6029 resched_curr(rq); 6030 } 6031 6032 static void __cfsb_csd_unthrottle(void *arg) 6033 { 6034 struct cfs_rq *cursor, *tmp; 6035 struct rq *rq = arg; 6036 struct rq_flags rf; 6037 6038 rq_lock(rq, &rf); 6039 6040 /* 6041 * Iterating over the list can trigger several call to 6042 * update_rq_clock() in unthrottle_cfs_rq(). 6043 * Do it once and skip the potential next ones. 6044 */ 6045 update_rq_clock(rq); 6046 rq_clock_start_loop_update(rq); 6047 6048 /* 6049 * Since we hold rq lock we're safe from concurrent manipulation of 6050 * the CSD list. However, this RCU critical section annotates the 6051 * fact that we pair with sched_free_group_rcu(), so that we cannot 6052 * race with group being freed in the window between removing it 6053 * from the list and advancing to the next entry in the list. 6054 */ 6055 rcu_read_lock(); 6056 6057 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 6058 throttled_csd_list) { 6059 list_del_init(&cursor->throttled_csd_list); 6060 6061 if (cfs_rq_throttled(cursor)) 6062 unthrottle_cfs_rq(cursor); 6063 } 6064 6065 rcu_read_unlock(); 6066 6067 rq_clock_stop_loop_update(rq); 6068 rq_unlock(rq, &rf); 6069 } 6070 6071 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6072 { 6073 struct rq *rq = rq_of(cfs_rq); 6074 bool first; 6075 6076 if (rq == this_rq()) { 6077 unthrottle_cfs_rq(cfs_rq); 6078 return; 6079 } 6080 6081 /* Already enqueued */ 6082 if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list))) 6083 return; 6084 6085 first = list_empty(&rq->cfsb_csd_list); 6086 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 6087 if (first) 6088 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 6089 } 6090 6091 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6092 { 6093 lockdep_assert_rq_held(rq_of(cfs_rq)); 6094 6095 if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) || 6096 cfs_rq->runtime_remaining <= 0)) 6097 return; 6098 6099 __unthrottle_cfs_rq_async(cfs_rq); 6100 } 6101 6102 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6103 { 6104 int this_cpu = smp_processor_id(); 6105 u64 runtime, remaining = 1; 6106 bool throttled = false; 6107 struct cfs_rq *cfs_rq, *tmp; 6108 struct rq_flags rf; 6109 struct rq *rq; 6110 LIST_HEAD(local_unthrottle); 6111 6112 rcu_read_lock(); 6113 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6114 throttled_list) { 6115 rq = rq_of(cfs_rq); 6116 6117 if (!remaining) { 6118 throttled = true; 6119 break; 6120 } 6121 6122 rq_lock_irqsave(rq, &rf); 6123 if (!cfs_rq_throttled(cfs_rq)) 6124 goto next; 6125 6126 /* Already queued for async unthrottle */ 6127 if (!list_empty(&cfs_rq->throttled_csd_list)) 6128 goto next; 6129 6130 /* By the above checks, this should never be true */ 6131 WARN_ON_ONCE(cfs_rq->runtime_remaining > 0); 6132 6133 raw_spin_lock(&cfs_b->lock); 6134 runtime = -cfs_rq->runtime_remaining + 1; 6135 if (runtime > cfs_b->runtime) 6136 runtime = cfs_b->runtime; 6137 cfs_b->runtime -= runtime; 6138 remaining = cfs_b->runtime; 6139 raw_spin_unlock(&cfs_b->lock); 6140 6141 cfs_rq->runtime_remaining += runtime; 6142 6143 /* we check whether we're throttled above */ 6144 if (cfs_rq->runtime_remaining > 0) { 6145 if (cpu_of(rq) != this_cpu) { 6146 unthrottle_cfs_rq_async(cfs_rq); 6147 } else { 6148 /* 6149 * We currently only expect to be unthrottling 6150 * a single cfs_rq locally. 6151 */ 6152 WARN_ON_ONCE(!list_empty(&local_unthrottle)); 6153 list_add_tail(&cfs_rq->throttled_csd_list, 6154 &local_unthrottle); 6155 } 6156 } else { 6157 throttled = true; 6158 } 6159 6160 next: 6161 rq_unlock_irqrestore(rq, &rf); 6162 } 6163 6164 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6165 throttled_csd_list) { 6166 struct rq *rq = rq_of(cfs_rq); 6167 6168 rq_lock_irqsave(rq, &rf); 6169 6170 list_del_init(&cfs_rq->throttled_csd_list); 6171 6172 if (cfs_rq_throttled(cfs_rq)) 6173 unthrottle_cfs_rq(cfs_rq); 6174 6175 rq_unlock_irqrestore(rq, &rf); 6176 } 6177 WARN_ON_ONCE(!list_empty(&local_unthrottle)); 6178 6179 rcu_read_unlock(); 6180 6181 return throttled; 6182 } 6183 6184 /* 6185 * Responsible for refilling a task_group's bandwidth and unthrottling its 6186 * cfs_rqs as appropriate. If there has been no activity within the last 6187 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6188 * used to track this state. 6189 */ 6190 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6191 { 6192 int throttled; 6193 6194 /* no need to continue the timer with no bandwidth constraint */ 6195 if (cfs_b->quota == RUNTIME_INF) 6196 goto out_deactivate; 6197 6198 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6199 cfs_b->nr_periods += overrun; 6200 6201 /* Refill extra burst quota even if cfs_b->idle */ 6202 __refill_cfs_bandwidth_runtime(cfs_b); 6203 6204 /* 6205 * idle depends on !throttled (for the case of a large deficit), and if 6206 * we're going inactive then everything else can be deferred 6207 */ 6208 if (cfs_b->idle && !throttled) 6209 goto out_deactivate; 6210 6211 if (!throttled) { 6212 /* mark as potentially idle for the upcoming period */ 6213 cfs_b->idle = 1; 6214 return 0; 6215 } 6216 6217 /* account preceding periods in which throttling occurred */ 6218 cfs_b->nr_throttled += overrun; 6219 6220 /* 6221 * This check is repeated as we release cfs_b->lock while we unthrottle. 6222 */ 6223 while (throttled && cfs_b->runtime > 0) { 6224 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6225 /* we can't nest cfs_b->lock while distributing bandwidth */ 6226 throttled = distribute_cfs_runtime(cfs_b); 6227 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6228 } 6229 6230 /* 6231 * While we are ensured activity in the period following an 6232 * unthrottle, this also covers the case in which the new bandwidth is 6233 * insufficient to cover the existing bandwidth deficit. (Forcing the 6234 * timer to remain active while there are any throttled entities.) 6235 */ 6236 cfs_b->idle = 0; 6237 6238 return 0; 6239 6240 out_deactivate: 6241 return 1; 6242 } 6243 6244 /* a cfs_rq won't donate quota below this amount */ 6245 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6246 /* minimum remaining period time to redistribute slack quota */ 6247 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6248 /* how long we wait to gather additional slack before distributing */ 6249 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6250 6251 /* 6252 * Are we near the end of the current quota period? 6253 * 6254 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6255 * hrtimer base being cleared by hrtimer_start. In the case of 6256 * migrate_hrtimers, base is never cleared, so we are fine. 6257 */ 6258 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6259 { 6260 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6261 s64 remaining; 6262 6263 /* if the call-back is running a quota refresh is already occurring */ 6264 if (hrtimer_callback_running(refresh_timer)) 6265 return 1; 6266 6267 /* is a quota refresh about to occur? */ 6268 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6269 if (remaining < (s64)min_expire) 6270 return 1; 6271 6272 return 0; 6273 } 6274 6275 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6276 { 6277 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6278 6279 /* if there's a quota refresh soon don't bother with slack */ 6280 if (runtime_refresh_within(cfs_b, min_left)) 6281 return; 6282 6283 /* don't push forwards an existing deferred unthrottle */ 6284 if (cfs_b->slack_started) 6285 return; 6286 cfs_b->slack_started = true; 6287 6288 hrtimer_start(&cfs_b->slack_timer, 6289 ns_to_ktime(cfs_bandwidth_slack_period), 6290 HRTIMER_MODE_REL); 6291 } 6292 6293 /* we know any runtime found here is valid as update_curr() precedes return */ 6294 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6295 { 6296 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6297 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6298 6299 if (slack_runtime <= 0) 6300 return; 6301 6302 raw_spin_lock(&cfs_b->lock); 6303 if (cfs_b->quota != RUNTIME_INF) { 6304 cfs_b->runtime += slack_runtime; 6305 6306 /* we are under rq->lock, defer unthrottling using a timer */ 6307 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6308 !list_empty(&cfs_b->throttled_cfs_rq)) 6309 start_cfs_slack_bandwidth(cfs_b); 6310 } 6311 raw_spin_unlock(&cfs_b->lock); 6312 6313 /* even if it's not valid for return we don't want to try again */ 6314 cfs_rq->runtime_remaining -= slack_runtime; 6315 } 6316 6317 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6318 { 6319 if (!cfs_bandwidth_used()) 6320 return; 6321 6322 if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued) 6323 return; 6324 6325 __return_cfs_rq_runtime(cfs_rq); 6326 } 6327 6328 /* 6329 * This is done with a timer (instead of inline with bandwidth return) since 6330 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6331 */ 6332 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6333 { 6334 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6335 unsigned long flags; 6336 6337 /* confirm we're still not at a refresh boundary */ 6338 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6339 cfs_b->slack_started = false; 6340 6341 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6342 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6343 return; 6344 } 6345 6346 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6347 runtime = cfs_b->runtime; 6348 6349 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6350 6351 if (!runtime) 6352 return; 6353 6354 distribute_cfs_runtime(cfs_b); 6355 } 6356 6357 /* 6358 * When a group wakes up we want to make sure that its quota is not already 6359 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6360 * runtime as update_curr() throttling can not trigger until it's on-rq. 6361 */ 6362 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6363 { 6364 if (!cfs_bandwidth_used()) 6365 return; 6366 6367 /* an active group must be handled by the update_curr()->put() path */ 6368 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6369 return; 6370 6371 /* ensure the group is not already throttled */ 6372 if (cfs_rq_throttled(cfs_rq)) 6373 return; 6374 6375 /* update runtime allocation */ 6376 account_cfs_rq_runtime(cfs_rq, 0); 6377 if (cfs_rq->runtime_remaining <= 0) 6378 throttle_cfs_rq(cfs_rq); 6379 } 6380 6381 static void sync_throttle(struct task_group *tg, int cpu) 6382 { 6383 struct cfs_rq *pcfs_rq, *cfs_rq; 6384 6385 if (!cfs_bandwidth_used()) 6386 return; 6387 6388 if (!tg->parent) 6389 return; 6390 6391 cfs_rq = tg->cfs_rq[cpu]; 6392 pcfs_rq = tg->parent->cfs_rq[cpu]; 6393 6394 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6395 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6396 6397 /* 6398 * It is not enough to sync the "pelt_clock_throttled" indicator 6399 * with the parent cfs_rq when the hierarchy is not queued. 6400 * Always join a throttled hierarchy with PELT clock throttled 6401 * and leaf it to the first enqueue, or distribution to 6402 * unthrottle the PELT clock. 6403 */ 6404 if (cfs_rq->throttle_count) 6405 cfs_rq->pelt_clock_throttled = 1; 6406 } 6407 6408 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6409 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6410 { 6411 if (!cfs_bandwidth_used()) 6412 return false; 6413 6414 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6415 return false; 6416 6417 /* 6418 * it's possible for a throttled entity to be forced into a running 6419 * state (e.g. set_curr_task), in this case we're finished. 6420 */ 6421 if (cfs_rq_throttled(cfs_rq)) 6422 return true; 6423 6424 return throttle_cfs_rq(cfs_rq); 6425 } 6426 6427 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6428 { 6429 struct cfs_bandwidth *cfs_b = 6430 container_of(timer, struct cfs_bandwidth, slack_timer); 6431 6432 do_sched_cfs_slack_timer(cfs_b); 6433 6434 return HRTIMER_NORESTART; 6435 } 6436 6437 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6438 { 6439 struct cfs_bandwidth *cfs_b = 6440 container_of(timer, struct cfs_bandwidth, period_timer); 6441 unsigned long flags; 6442 int overrun; 6443 int idle = 0; 6444 int count = 0; 6445 6446 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6447 for (;;) { 6448 overrun = hrtimer_forward_now(timer, cfs_b->period); 6449 if (!overrun) 6450 break; 6451 6452 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6453 6454 if (++count > 3) { 6455 u64 new, old = ktime_to_ns(cfs_b->period); 6456 6457 /* 6458 * Grow period by a factor of 2 to avoid losing precision. 6459 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6460 * to fail. 6461 */ 6462 new = old * 2; 6463 if (new < max_bw_quota_period_us * NSEC_PER_USEC) { 6464 cfs_b->period = ns_to_ktime(new); 6465 cfs_b->quota *= 2; 6466 cfs_b->burst *= 2; 6467 6468 pr_warn_ratelimited( 6469 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6470 smp_processor_id(), 6471 div_u64(new, NSEC_PER_USEC), 6472 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6473 } else { 6474 pr_warn_ratelimited( 6475 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6476 smp_processor_id(), 6477 div_u64(old, NSEC_PER_USEC), 6478 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6479 } 6480 6481 /* reset count so we don't come right back in here */ 6482 count = 0; 6483 } 6484 } 6485 if (idle) 6486 cfs_b->period_active = 0; 6487 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6488 6489 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6490 } 6491 6492 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6493 { 6494 raw_spin_lock_init(&cfs_b->lock); 6495 cfs_b->runtime = 0; 6496 cfs_b->quota = RUNTIME_INF; 6497 cfs_b->period = us_to_ktime(default_bw_period_us()); 6498 cfs_b->burst = 0; 6499 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6500 6501 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6502 hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC, 6503 HRTIMER_MODE_ABS_PINNED); 6504 6505 /* Add a random offset so that timers interleave */ 6506 hrtimer_set_expires(&cfs_b->period_timer, 6507 get_random_u32_below(cfs_b->period)); 6508 hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC, 6509 HRTIMER_MODE_REL); 6510 cfs_b->slack_started = false; 6511 } 6512 6513 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6514 { 6515 cfs_rq->runtime_enabled = 0; 6516 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6517 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6518 INIT_LIST_HEAD(&cfs_rq->throttled_limbo_list); 6519 } 6520 6521 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6522 { 6523 lockdep_assert_held(&cfs_b->lock); 6524 6525 if (cfs_b->period_active) 6526 return; 6527 6528 cfs_b->period_active = 1; 6529 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6530 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6531 } 6532 6533 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6534 { 6535 int __maybe_unused i; 6536 6537 /* init_cfs_bandwidth() was not called */ 6538 if (!cfs_b->throttled_cfs_rq.next) 6539 return; 6540 6541 hrtimer_cancel(&cfs_b->period_timer); 6542 hrtimer_cancel(&cfs_b->slack_timer); 6543 6544 /* 6545 * It is possible that we still have some cfs_rq's pending on a CSD 6546 * list, though this race is very rare. In order for this to occur, we 6547 * must have raced with the last task leaving the group while there 6548 * exist throttled cfs_rq(s), and the period_timer must have queued the 6549 * CSD item but the remote cpu has not yet processed it. To handle this, 6550 * we can simply flush all pending CSD work inline here. We're 6551 * guaranteed at this point that no additional cfs_rq of this group can 6552 * join a CSD list. 6553 */ 6554 for_each_possible_cpu(i) { 6555 struct rq *rq = cpu_rq(i); 6556 unsigned long flags; 6557 6558 if (list_empty(&rq->cfsb_csd_list)) 6559 continue; 6560 6561 local_irq_save(flags); 6562 __cfsb_csd_unthrottle(rq); 6563 local_irq_restore(flags); 6564 } 6565 } 6566 6567 /* 6568 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6569 * 6570 * The race is harmless, since modifying bandwidth settings of unhooked group 6571 * bits doesn't do much. 6572 */ 6573 6574 /* cpu online callback */ 6575 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6576 { 6577 struct task_group *tg; 6578 6579 lockdep_assert_rq_held(rq); 6580 6581 rcu_read_lock(); 6582 list_for_each_entry_rcu(tg, &task_groups, list) { 6583 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6584 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6585 6586 raw_spin_lock(&cfs_b->lock); 6587 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6588 raw_spin_unlock(&cfs_b->lock); 6589 } 6590 rcu_read_unlock(); 6591 } 6592 6593 /* cpu offline callback */ 6594 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6595 { 6596 struct task_group *tg; 6597 6598 lockdep_assert_rq_held(rq); 6599 6600 // Do not unthrottle for an active CPU 6601 if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask)) 6602 return; 6603 6604 /* 6605 * The rq clock has already been updated in the 6606 * set_rq_offline(), so we should skip updating 6607 * the rq clock again in unthrottle_cfs_rq(). 6608 */ 6609 rq_clock_start_loop_update(rq); 6610 6611 rcu_read_lock(); 6612 list_for_each_entry_rcu(tg, &task_groups, list) { 6613 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6614 6615 if (!cfs_rq->runtime_enabled) 6616 continue; 6617 6618 /* 6619 * Offline rq is schedulable till CPU is completely disabled 6620 * in take_cpu_down(), so we prevent new cfs throttling here. 6621 */ 6622 cfs_rq->runtime_enabled = 0; 6623 6624 if (!cfs_rq_throttled(cfs_rq)) 6625 continue; 6626 6627 /* 6628 * clock_task is not advancing so we just need to make sure 6629 * there's some valid quota amount 6630 */ 6631 cfs_rq->runtime_remaining = 1; 6632 unthrottle_cfs_rq(cfs_rq); 6633 } 6634 rcu_read_unlock(); 6635 6636 rq_clock_stop_loop_update(rq); 6637 } 6638 6639 bool cfs_task_bw_constrained(struct task_struct *p) 6640 { 6641 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6642 6643 if (!cfs_bandwidth_used()) 6644 return false; 6645 6646 if (cfs_rq->runtime_enabled || 6647 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6648 return true; 6649 6650 return false; 6651 } 6652 6653 #ifdef CONFIG_NO_HZ_FULL 6654 /* called from pick_next_task_fair() */ 6655 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6656 { 6657 int cpu = cpu_of(rq); 6658 6659 if (!cfs_bandwidth_used()) 6660 return; 6661 6662 if (!tick_nohz_full_cpu(cpu)) 6663 return; 6664 6665 if (rq->nr_running != 1) 6666 return; 6667 6668 /* 6669 * We know there is only one task runnable and we've just picked it. The 6670 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6671 * be otherwise able to stop the tick. Just need to check if we are using 6672 * bandwidth control. 6673 */ 6674 if (cfs_task_bw_constrained(p)) 6675 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6676 } 6677 #endif /* CONFIG_NO_HZ_FULL */ 6678 6679 #else /* !CONFIG_CFS_BANDWIDTH: */ 6680 6681 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6682 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6683 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6684 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6685 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6686 static void task_throttle_setup_work(struct task_struct *p) {} 6687 static bool task_is_throttled(struct task_struct *p) { return false; } 6688 static void dequeue_throttled_task(struct task_struct *p, int flags) {} 6689 static bool enqueue_throttled_task(struct task_struct *p) { return false; } 6690 static void record_throttle_clock(struct cfs_rq *cfs_rq) {} 6691 6692 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6693 { 6694 return 0; 6695 } 6696 6697 static inline bool cfs_rq_pelt_clock_throttled(struct cfs_rq *cfs_rq) 6698 { 6699 return false; 6700 } 6701 6702 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6703 { 6704 return 0; 6705 } 6706 6707 static inline int lb_throttled_hierarchy(struct task_struct *p, int dst_cpu) 6708 { 6709 return 0; 6710 } 6711 6712 #ifdef CONFIG_FAIR_GROUP_SCHED 6713 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6714 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6715 #endif 6716 6717 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6718 { 6719 return NULL; 6720 } 6721 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6722 static inline void update_runtime_enabled(struct rq *rq) {} 6723 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6724 #ifdef CONFIG_CGROUP_SCHED 6725 bool cfs_task_bw_constrained(struct task_struct *p) 6726 { 6727 return false; 6728 } 6729 #endif 6730 #endif /* !CONFIG_CFS_BANDWIDTH */ 6731 6732 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6733 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6734 #endif 6735 6736 /************************************************** 6737 * CFS operations on tasks: 6738 */ 6739 6740 #ifdef CONFIG_SCHED_HRTICK 6741 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6742 { 6743 struct sched_entity *se = &p->se; 6744 6745 WARN_ON_ONCE(task_rq(p) != rq); 6746 6747 if (rq->cfs.h_nr_queued > 1) { 6748 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6749 u64 slice = se->slice; 6750 s64 delta = slice - ran; 6751 6752 if (delta < 0) { 6753 if (task_current_donor(rq, p)) 6754 resched_curr(rq); 6755 return; 6756 } 6757 hrtick_start(rq, delta); 6758 } 6759 } 6760 6761 /* 6762 * called from enqueue/dequeue and updates the hrtick when the 6763 * current task is from our class and nr_running is low enough 6764 * to matter. 6765 */ 6766 static void hrtick_update(struct rq *rq) 6767 { 6768 struct task_struct *donor = rq->donor; 6769 6770 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class) 6771 return; 6772 6773 hrtick_start_fair(rq, donor); 6774 } 6775 #else /* !CONFIG_SCHED_HRTICK: */ 6776 static inline void 6777 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6778 { 6779 } 6780 6781 static inline void hrtick_update(struct rq *rq) 6782 { 6783 } 6784 #endif /* !CONFIG_SCHED_HRTICK */ 6785 6786 static inline bool cpu_overutilized(int cpu) 6787 { 6788 unsigned long rq_util_min, rq_util_max; 6789 6790 if (!sched_energy_enabled()) 6791 return false; 6792 6793 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6794 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6795 6796 /* Return true only if the utilization doesn't fit CPU's capacity */ 6797 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6798 } 6799 6800 /* 6801 * overutilized value make sense only if EAS is enabled 6802 */ 6803 static inline bool is_rd_overutilized(struct root_domain *rd) 6804 { 6805 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6806 } 6807 6808 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6809 { 6810 if (!sched_energy_enabled()) 6811 return; 6812 6813 WRITE_ONCE(rd->overutilized, flag); 6814 trace_sched_overutilized_tp(rd, flag); 6815 } 6816 6817 static inline void check_update_overutilized_status(struct rq *rq) 6818 { 6819 /* 6820 * overutilized field is used for load balancing decisions only 6821 * if energy aware scheduler is being used 6822 */ 6823 6824 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6825 set_rd_overutilized(rq->rd, 1); 6826 } 6827 6828 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6829 static int sched_idle_rq(struct rq *rq) 6830 { 6831 return unlikely(rq->nr_running == rq->cfs.h_nr_idle && 6832 rq->nr_running); 6833 } 6834 6835 static int sched_idle_cpu(int cpu) 6836 { 6837 return sched_idle_rq(cpu_rq(cpu)); 6838 } 6839 6840 static void 6841 requeue_delayed_entity(struct sched_entity *se) 6842 { 6843 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6844 6845 /* 6846 * se->sched_delayed should imply: se->on_rq == 1. 6847 * Because a delayed entity is one that is still on 6848 * the runqueue competing until elegibility. 6849 */ 6850 WARN_ON_ONCE(!se->sched_delayed); 6851 WARN_ON_ONCE(!se->on_rq); 6852 6853 if (sched_feat(DELAY_ZERO)) { 6854 update_entity_lag(cfs_rq, se); 6855 if (se->vlag > 0) { 6856 cfs_rq->nr_queued--; 6857 if (se != cfs_rq->curr) 6858 __dequeue_entity(cfs_rq, se); 6859 se->vlag = 0; 6860 place_entity(cfs_rq, se, 0); 6861 if (se != cfs_rq->curr) 6862 __enqueue_entity(cfs_rq, se); 6863 cfs_rq->nr_queued++; 6864 } 6865 } 6866 6867 update_load_avg(cfs_rq, se, 0); 6868 clear_delayed(se); 6869 } 6870 6871 /* 6872 * The enqueue_task method is called before nr_running is 6873 * increased. Here we update the fair scheduling stats and 6874 * then put the task into the rbtree: 6875 */ 6876 static void 6877 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6878 { 6879 struct cfs_rq *cfs_rq; 6880 struct sched_entity *se = &p->se; 6881 int h_nr_idle = task_has_idle_policy(p); 6882 int h_nr_runnable = 1; 6883 int task_new = !(flags & ENQUEUE_WAKEUP); 6884 int rq_h_nr_queued = rq->cfs.h_nr_queued; 6885 u64 slice = 0; 6886 6887 if (task_is_throttled(p) && enqueue_throttled_task(p)) 6888 return; 6889 6890 /* 6891 * The code below (indirectly) updates schedutil which looks at 6892 * the cfs_rq utilization to select a frequency. 6893 * Let's add the task's estimated utilization to the cfs_rq's 6894 * estimated utilization, before we update schedutil. 6895 */ 6896 if (!p->se.sched_delayed || (flags & ENQUEUE_DELAYED)) 6897 util_est_enqueue(&rq->cfs, p); 6898 6899 if (flags & ENQUEUE_DELAYED) { 6900 requeue_delayed_entity(se); 6901 return; 6902 } 6903 6904 /* 6905 * If in_iowait is set, the code below may not trigger any cpufreq 6906 * utilization updates, so do it here explicitly with the IOWAIT flag 6907 * passed. 6908 */ 6909 if (p->in_iowait) 6910 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6911 6912 if (task_new && se->sched_delayed) 6913 h_nr_runnable = 0; 6914 6915 for_each_sched_entity(se) { 6916 if (se->on_rq) { 6917 if (se->sched_delayed) 6918 requeue_delayed_entity(se); 6919 break; 6920 } 6921 cfs_rq = cfs_rq_of(se); 6922 6923 /* 6924 * Basically set the slice of group entries to the min_slice of 6925 * their respective cfs_rq. This ensures the group can service 6926 * its entities in the desired time-frame. 6927 */ 6928 if (slice) { 6929 se->slice = slice; 6930 se->custom_slice = 1; 6931 } 6932 enqueue_entity(cfs_rq, se, flags); 6933 slice = cfs_rq_min_slice(cfs_rq); 6934 6935 cfs_rq->h_nr_runnable += h_nr_runnable; 6936 cfs_rq->h_nr_queued++; 6937 cfs_rq->h_nr_idle += h_nr_idle; 6938 6939 if (cfs_rq_is_idle(cfs_rq)) 6940 h_nr_idle = 1; 6941 6942 flags = ENQUEUE_WAKEUP; 6943 } 6944 6945 for_each_sched_entity(se) { 6946 cfs_rq = cfs_rq_of(se); 6947 6948 update_load_avg(cfs_rq, se, UPDATE_TG); 6949 se_update_runnable(se); 6950 update_cfs_group(se); 6951 6952 se->slice = slice; 6953 if (se != cfs_rq->curr) 6954 min_vruntime_cb_propagate(&se->run_node, NULL); 6955 slice = cfs_rq_min_slice(cfs_rq); 6956 6957 cfs_rq->h_nr_runnable += h_nr_runnable; 6958 cfs_rq->h_nr_queued++; 6959 cfs_rq->h_nr_idle += h_nr_idle; 6960 6961 if (cfs_rq_is_idle(cfs_rq)) 6962 h_nr_idle = 1; 6963 } 6964 6965 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) 6966 dl_server_start(&rq->fair_server); 6967 6968 /* At this point se is NULL and we are at root level*/ 6969 add_nr_running(rq, 1); 6970 6971 /* 6972 * Since new tasks are assigned an initial util_avg equal to 6973 * half of the spare capacity of their CPU, tiny tasks have the 6974 * ability to cross the overutilized threshold, which will 6975 * result in the load balancer ruining all the task placement 6976 * done by EAS. As a way to mitigate that effect, do not account 6977 * for the first enqueue operation of new tasks during the 6978 * overutilized flag detection. 6979 * 6980 * A better way of solving this problem would be to wait for 6981 * the PELT signals of tasks to converge before taking them 6982 * into account, but that is not straightforward to implement, 6983 * and the following generally works well enough in practice. 6984 */ 6985 if (!task_new) 6986 check_update_overutilized_status(rq); 6987 6988 assert_list_leaf_cfs_rq(rq); 6989 6990 hrtick_update(rq); 6991 } 6992 6993 /* 6994 * Basically dequeue_task_fair(), except it can deal with dequeue_entity() 6995 * failing half-way through and resume the dequeue later. 6996 * 6997 * Returns: 6998 * -1 - dequeue delayed 6999 * 0 - dequeue throttled 7000 * 1 - dequeue complete 7001 */ 7002 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) 7003 { 7004 bool was_sched_idle = sched_idle_rq(rq); 7005 bool task_sleep = flags & DEQUEUE_SLEEP; 7006 bool task_delayed = flags & DEQUEUE_DELAYED; 7007 bool task_throttled = flags & DEQUEUE_THROTTLE; 7008 struct task_struct *p = NULL; 7009 int h_nr_idle = 0; 7010 int h_nr_queued = 0; 7011 int h_nr_runnable = 0; 7012 struct cfs_rq *cfs_rq; 7013 u64 slice = 0; 7014 7015 if (entity_is_task(se)) { 7016 p = task_of(se); 7017 h_nr_queued = 1; 7018 h_nr_idle = task_has_idle_policy(p); 7019 if (task_sleep || task_delayed || !se->sched_delayed) 7020 h_nr_runnable = 1; 7021 } 7022 7023 for_each_sched_entity(se) { 7024 cfs_rq = cfs_rq_of(se); 7025 7026 if (!dequeue_entity(cfs_rq, se, flags)) { 7027 if (p && &p->se == se) 7028 return -1; 7029 7030 slice = cfs_rq_min_slice(cfs_rq); 7031 break; 7032 } 7033 7034 cfs_rq->h_nr_runnable -= h_nr_runnable; 7035 cfs_rq->h_nr_queued -= h_nr_queued; 7036 cfs_rq->h_nr_idle -= h_nr_idle; 7037 7038 if (cfs_rq_is_idle(cfs_rq)) 7039 h_nr_idle = h_nr_queued; 7040 7041 if (throttled_hierarchy(cfs_rq) && task_throttled) 7042 record_throttle_clock(cfs_rq); 7043 7044 /* Don't dequeue parent if it has other entities besides us */ 7045 if (cfs_rq->load.weight) { 7046 slice = cfs_rq_min_slice(cfs_rq); 7047 7048 /* Avoid re-evaluating load for this entity: */ 7049 se = parent_entity(se); 7050 /* 7051 * Bias pick_next to pick a task from this cfs_rq, as 7052 * p is sleeping when it is within its sched_slice. 7053 */ 7054 if (task_sleep && se) 7055 set_next_buddy(se); 7056 break; 7057 } 7058 flags |= DEQUEUE_SLEEP; 7059 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); 7060 } 7061 7062 for_each_sched_entity(se) { 7063 cfs_rq = cfs_rq_of(se); 7064 7065 update_load_avg(cfs_rq, se, UPDATE_TG); 7066 se_update_runnable(se); 7067 update_cfs_group(se); 7068 7069 se->slice = slice; 7070 if (se != cfs_rq->curr) 7071 min_vruntime_cb_propagate(&se->run_node, NULL); 7072 slice = cfs_rq_min_slice(cfs_rq); 7073 7074 cfs_rq->h_nr_runnable -= h_nr_runnable; 7075 cfs_rq->h_nr_queued -= h_nr_queued; 7076 cfs_rq->h_nr_idle -= h_nr_idle; 7077 7078 if (cfs_rq_is_idle(cfs_rq)) 7079 h_nr_idle = h_nr_queued; 7080 7081 if (throttled_hierarchy(cfs_rq) && task_throttled) 7082 record_throttle_clock(cfs_rq); 7083 } 7084 7085 sub_nr_running(rq, h_nr_queued); 7086 7087 /* balance early to pull high priority tasks */ 7088 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 7089 rq->next_balance = jiffies; 7090 7091 if (p && task_delayed) { 7092 WARN_ON_ONCE(!task_sleep); 7093 WARN_ON_ONCE(p->on_rq != 1); 7094 7095 /* Fix-up what dequeue_task_fair() skipped */ 7096 hrtick_update(rq); 7097 7098 /* 7099 * Fix-up what block_task() skipped. 7100 * 7101 * Must be last, @p might not be valid after this. 7102 */ 7103 __block_task(rq, p); 7104 } 7105 7106 return 1; 7107 } 7108 7109 /* 7110 * The dequeue_task method is called before nr_running is 7111 * decreased. We remove the task from the rbtree and 7112 * update the fair scheduling stats: 7113 */ 7114 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 7115 { 7116 if (task_is_throttled(p)) { 7117 dequeue_throttled_task(p, flags); 7118 return true; 7119 } 7120 7121 if (!p->se.sched_delayed) 7122 util_est_dequeue(&rq->cfs, p); 7123 7124 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); 7125 if (dequeue_entities(rq, &p->se, flags) < 0) 7126 return false; 7127 7128 /* 7129 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED). 7130 */ 7131 7132 hrtick_update(rq); 7133 return true; 7134 } 7135 7136 static inline unsigned int cfs_h_nr_delayed(struct rq *rq) 7137 { 7138 return (rq->cfs.h_nr_queued - rq->cfs.h_nr_runnable); 7139 } 7140 7141 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 7142 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7143 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 7144 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 7145 7146 #ifdef CONFIG_NO_HZ_COMMON 7147 7148 static struct { 7149 cpumask_var_t idle_cpus_mask; 7150 atomic_t nr_cpus; 7151 int has_blocked; /* Idle CPUS has blocked load */ 7152 int needs_update; /* Newly idle CPUs need their next_balance collated */ 7153 unsigned long next_balance; /* in jiffy units */ 7154 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 7155 } nohz ____cacheline_aligned; 7156 7157 #endif /* CONFIG_NO_HZ_COMMON */ 7158 7159 static unsigned long cpu_load(struct rq *rq) 7160 { 7161 return cfs_rq_load_avg(&rq->cfs); 7162 } 7163 7164 /* 7165 * cpu_load_without - compute CPU load without any contributions from *p 7166 * @cpu: the CPU which load is requested 7167 * @p: the task which load should be discounted 7168 * 7169 * The load of a CPU is defined by the load of tasks currently enqueued on that 7170 * CPU as well as tasks which are currently sleeping after an execution on that 7171 * CPU. 7172 * 7173 * This method returns the load of the specified CPU by discounting the load of 7174 * the specified task, whenever the task is currently contributing to the CPU 7175 * load. 7176 */ 7177 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 7178 { 7179 struct cfs_rq *cfs_rq; 7180 unsigned int load; 7181 7182 /* Task has no contribution or is new */ 7183 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7184 return cpu_load(rq); 7185 7186 cfs_rq = &rq->cfs; 7187 load = READ_ONCE(cfs_rq->avg.load_avg); 7188 7189 /* Discount task's util from CPU's util */ 7190 lsub_positive(&load, task_h_load(p)); 7191 7192 return load; 7193 } 7194 7195 static unsigned long cpu_runnable(struct rq *rq) 7196 { 7197 return cfs_rq_runnable_avg(&rq->cfs); 7198 } 7199 7200 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 7201 { 7202 struct cfs_rq *cfs_rq; 7203 unsigned int runnable; 7204 7205 /* Task has no contribution or is new */ 7206 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7207 return cpu_runnable(rq); 7208 7209 cfs_rq = &rq->cfs; 7210 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7211 7212 /* Discount task's runnable from CPU's runnable */ 7213 lsub_positive(&runnable, p->se.avg.runnable_avg); 7214 7215 return runnable; 7216 } 7217 7218 static unsigned long capacity_of(int cpu) 7219 { 7220 return cpu_rq(cpu)->cpu_capacity; 7221 } 7222 7223 static void record_wakee(struct task_struct *p) 7224 { 7225 /* 7226 * Only decay a single time; tasks that have less then 1 wakeup per 7227 * jiffy will not have built up many flips. 7228 */ 7229 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7230 current->wakee_flips >>= 1; 7231 current->wakee_flip_decay_ts = jiffies; 7232 } 7233 7234 if (current->last_wakee != p) { 7235 current->last_wakee = p; 7236 current->wakee_flips++; 7237 } 7238 } 7239 7240 /* 7241 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7242 * 7243 * A waker of many should wake a different task than the one last awakened 7244 * at a frequency roughly N times higher than one of its wakees. 7245 * 7246 * In order to determine whether we should let the load spread vs consolidating 7247 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7248 * partner, and a factor of lls_size higher frequency in the other. 7249 * 7250 * With both conditions met, we can be relatively sure that the relationship is 7251 * non-monogamous, with partner count exceeding socket size. 7252 * 7253 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7254 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7255 * socket size. 7256 */ 7257 static int wake_wide(struct task_struct *p) 7258 { 7259 unsigned int master = current->wakee_flips; 7260 unsigned int slave = p->wakee_flips; 7261 int factor = __this_cpu_read(sd_llc_size); 7262 7263 if (master < slave) 7264 swap(master, slave); 7265 if (slave < factor || master < slave * factor) 7266 return 0; 7267 return 1; 7268 } 7269 7270 /* 7271 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7272 * soonest. For the purpose of speed we only consider the waking and previous 7273 * CPU. 7274 * 7275 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7276 * cache-affine and is (or will be) idle. 7277 * 7278 * wake_affine_weight() - considers the weight to reflect the average 7279 * scheduling latency of the CPUs. This seems to work 7280 * for the overloaded case. 7281 */ 7282 static int 7283 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7284 { 7285 /* 7286 * If this_cpu is idle, it implies the wakeup is from interrupt 7287 * context. Only allow the move if cache is shared. Otherwise an 7288 * interrupt intensive workload could force all tasks onto one 7289 * node depending on the IO topology or IRQ affinity settings. 7290 * 7291 * If the prev_cpu is idle and cache affine then avoid a migration. 7292 * There is no guarantee that the cache hot data from an interrupt 7293 * is more important than cache hot data on the prev_cpu and from 7294 * a cpufreq perspective, it's better to have higher utilisation 7295 * on one CPU. 7296 */ 7297 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7298 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7299 7300 if (sync) { 7301 struct rq *rq = cpu_rq(this_cpu); 7302 7303 if ((rq->nr_running - cfs_h_nr_delayed(rq)) == 1) 7304 return this_cpu; 7305 } 7306 7307 if (available_idle_cpu(prev_cpu)) 7308 return prev_cpu; 7309 7310 return nr_cpumask_bits; 7311 } 7312 7313 static int 7314 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7315 int this_cpu, int prev_cpu, int sync) 7316 { 7317 s64 this_eff_load, prev_eff_load; 7318 unsigned long task_load; 7319 7320 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7321 7322 if (sync) { 7323 unsigned long current_load = task_h_load(current); 7324 7325 if (current_load > this_eff_load) 7326 return this_cpu; 7327 7328 this_eff_load -= current_load; 7329 } 7330 7331 task_load = task_h_load(p); 7332 7333 this_eff_load += task_load; 7334 if (sched_feat(WA_BIAS)) 7335 this_eff_load *= 100; 7336 this_eff_load *= capacity_of(prev_cpu); 7337 7338 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7339 prev_eff_load -= task_load; 7340 if (sched_feat(WA_BIAS)) 7341 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7342 prev_eff_load *= capacity_of(this_cpu); 7343 7344 /* 7345 * If sync, adjust the weight of prev_eff_load such that if 7346 * prev_eff == this_eff that select_idle_sibling() will consider 7347 * stacking the wakee on top of the waker if no other CPU is 7348 * idle. 7349 */ 7350 if (sync) 7351 prev_eff_load += 1; 7352 7353 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7354 } 7355 7356 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7357 int this_cpu, int prev_cpu, int sync) 7358 { 7359 int target = nr_cpumask_bits; 7360 7361 if (sched_feat(WA_IDLE)) 7362 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7363 7364 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7365 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7366 7367 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7368 if (target != this_cpu) 7369 return prev_cpu; 7370 7371 schedstat_inc(sd->ttwu_move_affine); 7372 schedstat_inc(p->stats.nr_wakeups_affine); 7373 return target; 7374 } 7375 7376 static struct sched_group * 7377 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7378 7379 /* 7380 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7381 */ 7382 static int 7383 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7384 { 7385 unsigned long load, min_load = ULONG_MAX; 7386 unsigned int min_exit_latency = UINT_MAX; 7387 u64 latest_idle_timestamp = 0; 7388 int least_loaded_cpu = this_cpu; 7389 int shallowest_idle_cpu = -1; 7390 int i; 7391 7392 /* Check if we have any choice: */ 7393 if (group->group_weight == 1) 7394 return cpumask_first(sched_group_span(group)); 7395 7396 /* Traverse only the allowed CPUs */ 7397 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7398 struct rq *rq = cpu_rq(i); 7399 7400 if (!sched_core_cookie_match(rq, p)) 7401 continue; 7402 7403 if (sched_idle_cpu(i)) 7404 return i; 7405 7406 if (available_idle_cpu(i)) { 7407 struct cpuidle_state *idle = idle_get_state(rq); 7408 if (idle && idle->exit_latency < min_exit_latency) { 7409 /* 7410 * We give priority to a CPU whose idle state 7411 * has the smallest exit latency irrespective 7412 * of any idle timestamp. 7413 */ 7414 min_exit_latency = idle->exit_latency; 7415 latest_idle_timestamp = rq->idle_stamp; 7416 shallowest_idle_cpu = i; 7417 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7418 rq->idle_stamp > latest_idle_timestamp) { 7419 /* 7420 * If equal or no active idle state, then 7421 * the most recently idled CPU might have 7422 * a warmer cache. 7423 */ 7424 latest_idle_timestamp = rq->idle_stamp; 7425 shallowest_idle_cpu = i; 7426 } 7427 } else if (shallowest_idle_cpu == -1) { 7428 load = cpu_load(cpu_rq(i)); 7429 if (load < min_load) { 7430 min_load = load; 7431 least_loaded_cpu = i; 7432 } 7433 } 7434 } 7435 7436 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7437 } 7438 7439 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7440 int cpu, int prev_cpu, int sd_flag) 7441 { 7442 int new_cpu = cpu; 7443 7444 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7445 return prev_cpu; 7446 7447 /* 7448 * We need task's util for cpu_util_without, sync it up to 7449 * prev_cpu's last_update_time. 7450 */ 7451 if (!(sd_flag & SD_BALANCE_FORK)) 7452 sync_entity_load_avg(&p->se); 7453 7454 while (sd) { 7455 struct sched_group *group; 7456 struct sched_domain *tmp; 7457 int weight; 7458 7459 if (!(sd->flags & sd_flag)) { 7460 sd = sd->child; 7461 continue; 7462 } 7463 7464 group = sched_balance_find_dst_group(sd, p, cpu); 7465 if (!group) { 7466 sd = sd->child; 7467 continue; 7468 } 7469 7470 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7471 if (new_cpu == cpu) { 7472 /* Now try balancing at a lower domain level of 'cpu': */ 7473 sd = sd->child; 7474 continue; 7475 } 7476 7477 /* Now try balancing at a lower domain level of 'new_cpu': */ 7478 cpu = new_cpu; 7479 weight = sd->span_weight; 7480 sd = NULL; 7481 for_each_domain(cpu, tmp) { 7482 if (weight <= tmp->span_weight) 7483 break; 7484 if (tmp->flags & sd_flag) 7485 sd = tmp; 7486 } 7487 } 7488 7489 return new_cpu; 7490 } 7491 7492 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7493 { 7494 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7495 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7496 return cpu; 7497 7498 return -1; 7499 } 7500 7501 #ifdef CONFIG_SCHED_SMT 7502 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7503 EXPORT_SYMBOL_GPL(sched_smt_present); 7504 7505 static inline void set_idle_cores(int cpu, int val) 7506 { 7507 struct sched_domain_shared *sds; 7508 7509 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7510 if (sds) 7511 WRITE_ONCE(sds->has_idle_cores, val); 7512 } 7513 7514 static inline bool test_idle_cores(int cpu) 7515 { 7516 struct sched_domain_shared *sds; 7517 7518 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7519 if (sds) 7520 return READ_ONCE(sds->has_idle_cores); 7521 7522 return false; 7523 } 7524 7525 /* 7526 * Scans the local SMT mask to see if the entire core is idle, and records this 7527 * information in sd_llc_shared->has_idle_cores. 7528 * 7529 * Since SMT siblings share all cache levels, inspecting this limited remote 7530 * state should be fairly cheap. 7531 */ 7532 void __update_idle_core(struct rq *rq) 7533 { 7534 int core = cpu_of(rq); 7535 int cpu; 7536 7537 rcu_read_lock(); 7538 if (test_idle_cores(core)) 7539 goto unlock; 7540 7541 for_each_cpu(cpu, cpu_smt_mask(core)) { 7542 if (cpu == core) 7543 continue; 7544 7545 if (!available_idle_cpu(cpu)) 7546 goto unlock; 7547 } 7548 7549 set_idle_cores(core, 1); 7550 unlock: 7551 rcu_read_unlock(); 7552 } 7553 7554 /* 7555 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7556 * there are no idle cores left in the system; tracked through 7557 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7558 */ 7559 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7560 { 7561 bool idle = true; 7562 int cpu; 7563 7564 for_each_cpu(cpu, cpu_smt_mask(core)) { 7565 if (!available_idle_cpu(cpu)) { 7566 idle = false; 7567 if (*idle_cpu == -1) { 7568 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7569 *idle_cpu = cpu; 7570 break; 7571 } 7572 continue; 7573 } 7574 break; 7575 } 7576 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7577 *idle_cpu = cpu; 7578 } 7579 7580 if (idle) 7581 return core; 7582 7583 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7584 return -1; 7585 } 7586 7587 /* 7588 * Scan the local SMT mask for idle CPUs. 7589 */ 7590 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7591 { 7592 int cpu; 7593 7594 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7595 if (cpu == target) 7596 continue; 7597 /* 7598 * Check if the CPU is in the LLC scheduling domain of @target. 7599 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7600 */ 7601 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7602 continue; 7603 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7604 return cpu; 7605 } 7606 7607 return -1; 7608 } 7609 7610 #else /* !CONFIG_SCHED_SMT: */ 7611 7612 static inline void set_idle_cores(int cpu, int val) 7613 { 7614 } 7615 7616 static inline bool test_idle_cores(int cpu) 7617 { 7618 return false; 7619 } 7620 7621 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7622 { 7623 return __select_idle_cpu(core, p); 7624 } 7625 7626 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7627 { 7628 return -1; 7629 } 7630 7631 #endif /* !CONFIG_SCHED_SMT */ 7632 7633 /* 7634 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7635 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7636 * average idle time for this rq (as found in rq->avg_idle). 7637 */ 7638 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7639 { 7640 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7641 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7642 struct sched_domain_shared *sd_share; 7643 7644 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7645 7646 if (sched_feat(SIS_UTIL)) { 7647 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7648 if (sd_share) { 7649 /* because !--nr is the condition to stop scan */ 7650 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7651 /* overloaded LLC is unlikely to have idle cpu/core */ 7652 if (nr == 1) 7653 return -1; 7654 } 7655 } 7656 7657 if (static_branch_unlikely(&sched_cluster_active)) { 7658 struct sched_group *sg = sd->groups; 7659 7660 if (sg->flags & SD_CLUSTER) { 7661 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7662 if (!cpumask_test_cpu(cpu, cpus)) 7663 continue; 7664 7665 if (has_idle_core) { 7666 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7667 if ((unsigned int)i < nr_cpumask_bits) 7668 return i; 7669 } else { 7670 if (--nr <= 0) 7671 return -1; 7672 idle_cpu = __select_idle_cpu(cpu, p); 7673 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7674 return idle_cpu; 7675 } 7676 } 7677 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7678 } 7679 } 7680 7681 for_each_cpu_wrap(cpu, cpus, target + 1) { 7682 if (has_idle_core) { 7683 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7684 if ((unsigned int)i < nr_cpumask_bits) 7685 return i; 7686 7687 } else { 7688 if (--nr <= 0) 7689 return -1; 7690 idle_cpu = __select_idle_cpu(cpu, p); 7691 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7692 break; 7693 } 7694 } 7695 7696 if (has_idle_core) 7697 set_idle_cores(target, false); 7698 7699 return idle_cpu; 7700 } 7701 7702 /* 7703 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7704 * the task fits. If no CPU is big enough, but there are idle ones, try to 7705 * maximize capacity. 7706 */ 7707 static int 7708 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7709 { 7710 unsigned long task_util, util_min, util_max, best_cap = 0; 7711 int fits, best_fits = 0; 7712 int cpu, best_cpu = -1; 7713 struct cpumask *cpus; 7714 7715 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7716 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7717 7718 task_util = task_util_est(p); 7719 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7720 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7721 7722 for_each_cpu_wrap(cpu, cpus, target) { 7723 unsigned long cpu_cap = capacity_of(cpu); 7724 7725 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7726 continue; 7727 7728 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7729 7730 /* This CPU fits with all requirements */ 7731 if (fits > 0) 7732 return cpu; 7733 /* 7734 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7735 * Look for the CPU with best capacity. 7736 */ 7737 else if (fits < 0) 7738 cpu_cap = get_actual_cpu_capacity(cpu); 7739 7740 /* 7741 * First, select CPU which fits better (-1 being better than 0). 7742 * Then, select the one with best capacity at same level. 7743 */ 7744 if ((fits < best_fits) || 7745 ((fits == best_fits) && (cpu_cap > best_cap))) { 7746 best_cap = cpu_cap; 7747 best_cpu = cpu; 7748 best_fits = fits; 7749 } 7750 } 7751 7752 return best_cpu; 7753 } 7754 7755 static inline bool asym_fits_cpu(unsigned long util, 7756 unsigned long util_min, 7757 unsigned long util_max, 7758 int cpu) 7759 { 7760 if (sched_asym_cpucap_active()) 7761 /* 7762 * Return true only if the cpu fully fits the task requirements 7763 * which include the utilization and the performance hints. 7764 */ 7765 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7766 7767 return true; 7768 } 7769 7770 /* 7771 * Try and locate an idle core/thread in the LLC cache domain. 7772 */ 7773 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7774 { 7775 bool has_idle_core = false; 7776 struct sched_domain *sd; 7777 unsigned long task_util, util_min, util_max; 7778 int i, recent_used_cpu, prev_aff = -1; 7779 7780 /* 7781 * On asymmetric system, update task utilization because we will check 7782 * that the task fits with CPU's capacity. 7783 */ 7784 if (sched_asym_cpucap_active()) { 7785 sync_entity_load_avg(&p->se); 7786 task_util = task_util_est(p); 7787 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7788 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7789 } 7790 7791 /* 7792 * per-cpu select_rq_mask usage 7793 */ 7794 lockdep_assert_irqs_disabled(); 7795 7796 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7797 asym_fits_cpu(task_util, util_min, util_max, target)) 7798 return target; 7799 7800 /* 7801 * If the previous CPU is cache affine and idle, don't be stupid: 7802 */ 7803 if (prev != target && cpus_share_cache(prev, target) && 7804 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7805 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7806 7807 if (!static_branch_unlikely(&sched_cluster_active) || 7808 cpus_share_resources(prev, target)) 7809 return prev; 7810 7811 prev_aff = prev; 7812 } 7813 7814 /* 7815 * Allow a per-cpu kthread to stack with the wakee if the 7816 * kworker thread and the tasks previous CPUs are the same. 7817 * The assumption is that the wakee queued work for the 7818 * per-cpu kthread that is now complete and the wakeup is 7819 * essentially a sync wakeup. An obvious example of this 7820 * pattern is IO completions. 7821 */ 7822 if (is_per_cpu_kthread(current) && 7823 in_task() && 7824 prev == smp_processor_id() && 7825 this_rq()->nr_running <= 1 && 7826 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7827 return prev; 7828 } 7829 7830 /* Check a recently used CPU as a potential idle candidate: */ 7831 recent_used_cpu = p->recent_used_cpu; 7832 p->recent_used_cpu = prev; 7833 if (recent_used_cpu != prev && 7834 recent_used_cpu != target && 7835 cpus_share_cache(recent_used_cpu, target) && 7836 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7837 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7838 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7839 7840 if (!static_branch_unlikely(&sched_cluster_active) || 7841 cpus_share_resources(recent_used_cpu, target)) 7842 return recent_used_cpu; 7843 7844 } else { 7845 recent_used_cpu = -1; 7846 } 7847 7848 /* 7849 * For asymmetric CPU capacity systems, our domain of interest is 7850 * sd_asym_cpucapacity rather than sd_llc. 7851 */ 7852 if (sched_asym_cpucap_active()) { 7853 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7854 /* 7855 * On an asymmetric CPU capacity system where an exclusive 7856 * cpuset defines a symmetric island (i.e. one unique 7857 * capacity_orig value through the cpuset), the key will be set 7858 * but the CPUs within that cpuset will not have a domain with 7859 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7860 * capacity path. 7861 */ 7862 if (sd) { 7863 i = select_idle_capacity(p, sd, target); 7864 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7865 } 7866 } 7867 7868 sd = rcu_dereference(per_cpu(sd_llc, target)); 7869 if (!sd) 7870 return target; 7871 7872 if (sched_smt_active()) { 7873 has_idle_core = test_idle_cores(target); 7874 7875 if (!has_idle_core && cpus_share_cache(prev, target)) { 7876 i = select_idle_smt(p, sd, prev); 7877 if ((unsigned int)i < nr_cpumask_bits) 7878 return i; 7879 } 7880 } 7881 7882 i = select_idle_cpu(p, sd, has_idle_core, target); 7883 if ((unsigned)i < nr_cpumask_bits) 7884 return i; 7885 7886 /* 7887 * For cluster machines which have lower sharing cache like L2 or 7888 * LLC Tag, we tend to find an idle CPU in the target's cluster 7889 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7890 * use them if possible when no idle CPU found in select_idle_cpu(). 7891 */ 7892 if ((unsigned int)prev_aff < nr_cpumask_bits) 7893 return prev_aff; 7894 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7895 return recent_used_cpu; 7896 7897 return target; 7898 } 7899 7900 /** 7901 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7902 * @cpu: the CPU to get the utilization for 7903 * @p: task for which the CPU utilization should be predicted or NULL 7904 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7905 * @boost: 1 to enable boosting, otherwise 0 7906 * 7907 * The unit of the return value must be the same as the one of CPU capacity 7908 * so that CPU utilization can be compared with CPU capacity. 7909 * 7910 * CPU utilization is the sum of running time of runnable tasks plus the 7911 * recent utilization of currently non-runnable tasks on that CPU. 7912 * It represents the amount of CPU capacity currently used by CFS tasks in 7913 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7914 * capacity at f_max. 7915 * 7916 * The estimated CPU utilization is defined as the maximum between CPU 7917 * utilization and sum of the estimated utilization of the currently 7918 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7919 * previously-executed tasks, which helps better deduce how busy a CPU will 7920 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7921 * of such a task would be significantly decayed at this point of time. 7922 * 7923 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7924 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7925 * utilization. Boosting is implemented in cpu_util() so that internal 7926 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7927 * latter via cpu_util_cfs_boost(). 7928 * 7929 * CPU utilization can be higher than the current CPU capacity 7930 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7931 * of rounding errors as well as task migrations or wakeups of new tasks. 7932 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7933 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7934 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7935 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7936 * though since this is useful for predicting the CPU capacity required 7937 * after task migrations (scheduler-driven DVFS). 7938 * 7939 * Return: (Boosted) (estimated) utilization for the specified CPU. 7940 */ 7941 static unsigned long 7942 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7943 { 7944 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7945 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7946 unsigned long runnable; 7947 7948 if (boost) { 7949 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7950 util = max(util, runnable); 7951 } 7952 7953 /* 7954 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7955 * contribution. If @p migrates from another CPU to @cpu add its 7956 * contribution. In all the other cases @cpu is not impacted by the 7957 * migration so its util_avg is already correct. 7958 */ 7959 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 7960 lsub_positive(&util, task_util(p)); 7961 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 7962 util += task_util(p); 7963 7964 if (sched_feat(UTIL_EST)) { 7965 unsigned long util_est; 7966 7967 util_est = READ_ONCE(cfs_rq->avg.util_est); 7968 7969 /* 7970 * During wake-up @p isn't enqueued yet and doesn't contribute 7971 * to any cpu_rq(cpu)->cfs.avg.util_est. 7972 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7973 * has been enqueued. 7974 * 7975 * During exec (@dst_cpu = -1) @p is enqueued and does 7976 * contribute to cpu_rq(cpu)->cfs.util_est. 7977 * Remove it to "simulate" cpu_util without @p's contribution. 7978 * 7979 * Despite the task_on_rq_queued(@p) check there is still a 7980 * small window for a possible race when an exec 7981 * select_task_rq_fair() races with LB's detach_task(). 7982 * 7983 * detach_task() 7984 * deactivate_task() 7985 * p->on_rq = TASK_ON_RQ_MIGRATING; 7986 * -------------------------------- A 7987 * dequeue_task() \ 7988 * dequeue_task_fair() + Race Time 7989 * util_est_dequeue() / 7990 * -------------------------------- B 7991 * 7992 * The additional check "current == p" is required to further 7993 * reduce the race window. 7994 */ 7995 if (dst_cpu == cpu) 7996 util_est += _task_util_est(p); 7997 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 7998 lsub_positive(&util_est, _task_util_est(p)); 7999 8000 util = max(util, util_est); 8001 } 8002 8003 return min(util, arch_scale_cpu_capacity(cpu)); 8004 } 8005 8006 unsigned long cpu_util_cfs(int cpu) 8007 { 8008 return cpu_util(cpu, NULL, -1, 0); 8009 } 8010 8011 unsigned long cpu_util_cfs_boost(int cpu) 8012 { 8013 return cpu_util(cpu, NULL, -1, 1); 8014 } 8015 8016 /* 8017 * cpu_util_without: compute cpu utilization without any contributions from *p 8018 * @cpu: the CPU which utilization is requested 8019 * @p: the task which utilization should be discounted 8020 * 8021 * The utilization of a CPU is defined by the utilization of tasks currently 8022 * enqueued on that CPU as well as tasks which are currently sleeping after an 8023 * execution on that CPU. 8024 * 8025 * This method returns the utilization of the specified CPU by discounting the 8026 * utilization of the specified task, whenever the task is currently 8027 * contributing to the CPU utilization. 8028 */ 8029 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 8030 { 8031 /* Task has no contribution or is new */ 8032 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8033 p = NULL; 8034 8035 return cpu_util(cpu, p, -1, 0); 8036 } 8037 8038 /* 8039 * This function computes an effective utilization for the given CPU, to be 8040 * used for frequency selection given the linear relation: f = u * f_max. 8041 * 8042 * The scheduler tracks the following metrics: 8043 * 8044 * cpu_util_{cfs,rt,dl,irq}() 8045 * cpu_bw_dl() 8046 * 8047 * Where the cfs,rt and dl util numbers are tracked with the same metric and 8048 * synchronized windows and are thus directly comparable. 8049 * 8050 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 8051 * which excludes things like IRQ and steal-time. These latter are then accrued 8052 * in the IRQ utilization. 8053 * 8054 * The DL bandwidth number OTOH is not a measured metric but a value computed 8055 * based on the task model parameters and gives the minimal utilization 8056 * required to meet deadlines. 8057 */ 8058 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 8059 unsigned long *min, 8060 unsigned long *max) 8061 { 8062 unsigned long util, irq, scale; 8063 struct rq *rq = cpu_rq(cpu); 8064 8065 scale = arch_scale_cpu_capacity(cpu); 8066 8067 /* 8068 * Early check to see if IRQ/steal time saturates the CPU, can be 8069 * because of inaccuracies in how we track these -- see 8070 * update_irq_load_avg(). 8071 */ 8072 irq = cpu_util_irq(rq); 8073 if (unlikely(irq >= scale)) { 8074 if (min) 8075 *min = scale; 8076 if (max) 8077 *max = scale; 8078 return scale; 8079 } 8080 8081 if (min) { 8082 /* 8083 * The minimum utilization returns the highest level between: 8084 * - the computed DL bandwidth needed with the IRQ pressure which 8085 * steals time to the deadline task. 8086 * - The minimum performance requirement for CFS and/or RT. 8087 */ 8088 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); 8089 8090 /* 8091 * When an RT task is runnable and uclamp is not used, we must 8092 * ensure that the task will run at maximum compute capacity. 8093 */ 8094 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) 8095 *min = max(*min, scale); 8096 } 8097 8098 /* 8099 * Because the time spend on RT/DL tasks is visible as 'lost' time to 8100 * CFS tasks and we use the same metric to track the effective 8101 * utilization (PELT windows are synchronized) we can directly add them 8102 * to obtain the CPU's actual utilization. 8103 */ 8104 util = util_cfs + cpu_util_rt(rq); 8105 util += cpu_util_dl(rq); 8106 8107 /* 8108 * The maximum hint is a soft bandwidth requirement, which can be lower 8109 * than the actual utilization because of uclamp_max requirements. 8110 */ 8111 if (max) 8112 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); 8113 8114 if (util >= scale) 8115 return scale; 8116 8117 /* 8118 * There is still idle time; further improve the number by using the 8119 * IRQ metric. Because IRQ/steal time is hidden from the task clock we 8120 * need to scale the task numbers: 8121 * 8122 * max - irq 8123 * U' = irq + --------- * U 8124 * max 8125 */ 8126 util = scale_irq_capacity(util, irq, scale); 8127 util += irq; 8128 8129 return min(scale, util); 8130 } 8131 8132 unsigned long sched_cpu_util(int cpu) 8133 { 8134 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); 8135 } 8136 8137 /* 8138 * energy_env - Utilization landscape for energy estimation. 8139 * @task_busy_time: Utilization contribution by the task for which we test the 8140 * placement. Given by eenv_task_busy_time(). 8141 * @pd_busy_time: Utilization of the whole perf domain without the task 8142 * contribution. Given by eenv_pd_busy_time(). 8143 * @cpu_cap: Maximum CPU capacity for the perf domain. 8144 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 8145 */ 8146 struct energy_env { 8147 unsigned long task_busy_time; 8148 unsigned long pd_busy_time; 8149 unsigned long cpu_cap; 8150 unsigned long pd_cap; 8151 }; 8152 8153 /* 8154 * Compute the task busy time for compute_energy(). This time cannot be 8155 * injected directly into effective_cpu_util() because of the IRQ scaling. 8156 * The latter only makes sense with the most recent CPUs where the task has 8157 * run. 8158 */ 8159 static inline void eenv_task_busy_time(struct energy_env *eenv, 8160 struct task_struct *p, int prev_cpu) 8161 { 8162 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 8163 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 8164 8165 if (unlikely(irq >= max_cap)) 8166 busy_time = max_cap; 8167 else 8168 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 8169 8170 eenv->task_busy_time = busy_time; 8171 } 8172 8173 /* 8174 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 8175 * utilization for each @pd_cpus, it however doesn't take into account 8176 * clamping since the ratio (utilization / cpu_capacity) is already enough to 8177 * scale the EM reported power consumption at the (eventually clamped) 8178 * cpu_capacity. 8179 * 8180 * The contribution of the task @p for which we want to estimate the 8181 * energy cost is removed (by cpu_util()) and must be calculated 8182 * separately (see eenv_task_busy_time). This ensures: 8183 * 8184 * - A stable PD utilization, no matter which CPU of that PD we want to place 8185 * the task on. 8186 * 8187 * - A fair comparison between CPUs as the task contribution (task_util()) 8188 * will always be the same no matter which CPU utilization we rely on 8189 * (util_avg or util_est). 8190 * 8191 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 8192 * exceed @eenv->pd_cap. 8193 */ 8194 static inline void eenv_pd_busy_time(struct energy_env *eenv, 8195 struct cpumask *pd_cpus, 8196 struct task_struct *p) 8197 { 8198 unsigned long busy_time = 0; 8199 int cpu; 8200 8201 for_each_cpu(cpu, pd_cpus) { 8202 unsigned long util = cpu_util(cpu, p, -1, 0); 8203 8204 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 8205 } 8206 8207 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 8208 } 8209 8210 /* 8211 * Compute the maximum utilization for compute_energy() when the task @p 8212 * is placed on the cpu @dst_cpu. 8213 * 8214 * Returns the maximum utilization among @eenv->cpus. This utilization can't 8215 * exceed @eenv->cpu_cap. 8216 */ 8217 static inline unsigned long 8218 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 8219 struct task_struct *p, int dst_cpu) 8220 { 8221 unsigned long max_util = 0; 8222 int cpu; 8223 8224 for_each_cpu(cpu, pd_cpus) { 8225 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 8226 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 8227 unsigned long eff_util, min, max; 8228 8229 /* 8230 * Performance domain frequency: utilization clamping 8231 * must be considered since it affects the selection 8232 * of the performance domain frequency. 8233 * NOTE: in case RT tasks are running, by default the min 8234 * utilization can be max OPP. 8235 */ 8236 eff_util = effective_cpu_util(cpu, util, &min, &max); 8237 8238 /* Task's uclamp can modify min and max value */ 8239 if (tsk && uclamp_is_used()) { 8240 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 8241 8242 /* 8243 * If there is no active max uclamp constraint, 8244 * directly use task's one, otherwise keep max. 8245 */ 8246 if (uclamp_rq_is_idle(cpu_rq(cpu))) 8247 max = uclamp_eff_value(p, UCLAMP_MAX); 8248 else 8249 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 8250 } 8251 8252 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 8253 max_util = max(max_util, eff_util); 8254 } 8255 8256 return min(max_util, eenv->cpu_cap); 8257 } 8258 8259 /* 8260 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 8261 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 8262 * contribution is ignored. 8263 */ 8264 static inline unsigned long 8265 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 8266 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 8267 { 8268 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 8269 unsigned long busy_time = eenv->pd_busy_time; 8270 unsigned long energy; 8271 8272 if (dst_cpu >= 0) 8273 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 8274 8275 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 8276 8277 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 8278 8279 return energy; 8280 } 8281 8282 /* 8283 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 8284 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 8285 * spare capacity in each performance domain and uses it as a potential 8286 * candidate to execute the task. Then, it uses the Energy Model to figure 8287 * out which of the CPU candidates is the most energy-efficient. 8288 * 8289 * The rationale for this heuristic is as follows. In a performance domain, 8290 * all the most energy efficient CPU candidates (according to the Energy 8291 * Model) are those for which we'll request a low frequency. When there are 8292 * several CPUs for which the frequency request will be the same, we don't 8293 * have enough data to break the tie between them, because the Energy Model 8294 * only includes active power costs. With this model, if we assume that 8295 * frequency requests follow utilization (e.g. using schedutil), the CPU with 8296 * the maximum spare capacity in a performance domain is guaranteed to be among 8297 * the best candidates of the performance domain. 8298 * 8299 * In practice, it could be preferable from an energy standpoint to pack 8300 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 8301 * but that could also hurt our chances to go cluster idle, and we have no 8302 * ways to tell with the current Energy Model if this is actually a good 8303 * idea or not. So, find_energy_efficient_cpu() basically favors 8304 * cluster-packing, and spreading inside a cluster. That should at least be 8305 * a good thing for latency, and this is consistent with the idea that most 8306 * of the energy savings of EAS come from the asymmetry of the system, and 8307 * not so much from breaking the tie between identical CPUs. That's also the 8308 * reason why EAS is enabled in the topology code only for systems where 8309 * SD_ASYM_CPUCAPACITY is set. 8310 * 8311 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 8312 * they don't have any useful utilization data yet and it's not possible to 8313 * forecast their impact on energy consumption. Consequently, they will be 8314 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 8315 * to be energy-inefficient in some use-cases. The alternative would be to 8316 * bias new tasks towards specific types of CPUs first, or to try to infer 8317 * their util_avg from the parent task, but those heuristics could hurt 8318 * other use-cases too. So, until someone finds a better way to solve this, 8319 * let's keep things simple by re-using the existing slow path. 8320 */ 8321 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 8322 { 8323 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 8324 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 8325 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 8326 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 8327 struct root_domain *rd = this_rq()->rd; 8328 int cpu, best_energy_cpu, target = -1; 8329 int prev_fits = -1, best_fits = -1; 8330 unsigned long best_actual_cap = 0; 8331 unsigned long prev_actual_cap = 0; 8332 struct sched_domain *sd; 8333 struct perf_domain *pd; 8334 struct energy_env eenv; 8335 8336 rcu_read_lock(); 8337 pd = rcu_dereference(rd->pd); 8338 if (!pd) 8339 goto unlock; 8340 8341 /* 8342 * Energy-aware wake-up happens on the lowest sched_domain starting 8343 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8344 */ 8345 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 8346 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8347 sd = sd->parent; 8348 if (!sd) 8349 goto unlock; 8350 8351 target = prev_cpu; 8352 8353 sync_entity_load_avg(&p->se); 8354 if (!task_util_est(p) && p_util_min == 0) 8355 goto unlock; 8356 8357 eenv_task_busy_time(&eenv, p, prev_cpu); 8358 8359 for (; pd; pd = pd->next) { 8360 unsigned long util_min = p_util_min, util_max = p_util_max; 8361 unsigned long cpu_cap, cpu_actual_cap, util; 8362 long prev_spare_cap = -1, max_spare_cap = -1; 8363 unsigned long rq_util_min, rq_util_max; 8364 unsigned long cur_delta, base_energy; 8365 int max_spare_cap_cpu = -1; 8366 int fits, max_fits = -1; 8367 8368 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8369 8370 if (cpumask_empty(cpus)) 8371 continue; 8372 8373 /* Account external pressure for the energy estimation */ 8374 cpu = cpumask_first(cpus); 8375 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8376 8377 eenv.cpu_cap = cpu_actual_cap; 8378 eenv.pd_cap = 0; 8379 8380 for_each_cpu(cpu, cpus) { 8381 struct rq *rq = cpu_rq(cpu); 8382 8383 eenv.pd_cap += cpu_actual_cap; 8384 8385 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8386 continue; 8387 8388 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8389 continue; 8390 8391 util = cpu_util(cpu, p, cpu, 0); 8392 cpu_cap = capacity_of(cpu); 8393 8394 /* 8395 * Skip CPUs that cannot satisfy the capacity request. 8396 * IOW, placing the task there would make the CPU 8397 * overutilized. Take uclamp into account to see how 8398 * much capacity we can get out of the CPU; this is 8399 * aligned with sched_cpu_util(). 8400 */ 8401 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8402 /* 8403 * Open code uclamp_rq_util_with() except for 8404 * the clamp() part. I.e.: apply max aggregation 8405 * only. util_fits_cpu() logic requires to 8406 * operate on non clamped util but must use the 8407 * max-aggregated uclamp_{min, max}. 8408 */ 8409 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8410 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8411 8412 util_min = max(rq_util_min, p_util_min); 8413 util_max = max(rq_util_max, p_util_max); 8414 } 8415 8416 fits = util_fits_cpu(util, util_min, util_max, cpu); 8417 if (!fits) 8418 continue; 8419 8420 lsub_positive(&cpu_cap, util); 8421 8422 if (cpu == prev_cpu) { 8423 /* Always use prev_cpu as a candidate. */ 8424 prev_spare_cap = cpu_cap; 8425 prev_fits = fits; 8426 } else if ((fits > max_fits) || 8427 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8428 /* 8429 * Find the CPU with the maximum spare capacity 8430 * among the remaining CPUs in the performance 8431 * domain. 8432 */ 8433 max_spare_cap = cpu_cap; 8434 max_spare_cap_cpu = cpu; 8435 max_fits = fits; 8436 } 8437 } 8438 8439 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8440 continue; 8441 8442 eenv_pd_busy_time(&eenv, cpus, p); 8443 /* Compute the 'base' energy of the pd, without @p */ 8444 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8445 8446 /* Evaluate the energy impact of using prev_cpu. */ 8447 if (prev_spare_cap > -1) { 8448 prev_delta = compute_energy(&eenv, pd, cpus, p, 8449 prev_cpu); 8450 /* CPU utilization has changed */ 8451 if (prev_delta < base_energy) 8452 goto unlock; 8453 prev_delta -= base_energy; 8454 prev_actual_cap = cpu_actual_cap; 8455 best_delta = min(best_delta, prev_delta); 8456 } 8457 8458 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8459 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8460 /* Current best energy cpu fits better */ 8461 if (max_fits < best_fits) 8462 continue; 8463 8464 /* 8465 * Both don't fit performance hint (i.e. uclamp_min) 8466 * but best energy cpu has better capacity. 8467 */ 8468 if ((max_fits < 0) && 8469 (cpu_actual_cap <= best_actual_cap)) 8470 continue; 8471 8472 cur_delta = compute_energy(&eenv, pd, cpus, p, 8473 max_spare_cap_cpu); 8474 /* CPU utilization has changed */ 8475 if (cur_delta < base_energy) 8476 goto unlock; 8477 cur_delta -= base_energy; 8478 8479 /* 8480 * Both fit for the task but best energy cpu has lower 8481 * energy impact. 8482 */ 8483 if ((max_fits > 0) && (best_fits > 0) && 8484 (cur_delta >= best_delta)) 8485 continue; 8486 8487 best_delta = cur_delta; 8488 best_energy_cpu = max_spare_cap_cpu; 8489 best_fits = max_fits; 8490 best_actual_cap = cpu_actual_cap; 8491 } 8492 } 8493 rcu_read_unlock(); 8494 8495 if ((best_fits > prev_fits) || 8496 ((best_fits > 0) && (best_delta < prev_delta)) || 8497 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8498 target = best_energy_cpu; 8499 8500 return target; 8501 8502 unlock: 8503 rcu_read_unlock(); 8504 8505 return target; 8506 } 8507 8508 /* 8509 * select_task_rq_fair: Select target runqueue for the waking task in domains 8510 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8511 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8512 * 8513 * Balances load by selecting the idlest CPU in the idlest group, or under 8514 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8515 * 8516 * Returns the target CPU number. 8517 */ 8518 static int 8519 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8520 { 8521 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8522 struct sched_domain *tmp, *sd = NULL; 8523 int cpu = smp_processor_id(); 8524 int new_cpu = prev_cpu; 8525 int want_affine = 0; 8526 /* SD_flags and WF_flags share the first nibble */ 8527 int sd_flag = wake_flags & 0xF; 8528 8529 /* 8530 * required for stable ->cpus_allowed 8531 */ 8532 lockdep_assert_held(&p->pi_lock); 8533 if (wake_flags & WF_TTWU) { 8534 record_wakee(p); 8535 8536 if ((wake_flags & WF_CURRENT_CPU) && 8537 cpumask_test_cpu(cpu, p->cpus_ptr)) 8538 return cpu; 8539 8540 if (!is_rd_overutilized(this_rq()->rd)) { 8541 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8542 if (new_cpu >= 0) 8543 return new_cpu; 8544 new_cpu = prev_cpu; 8545 } 8546 8547 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8548 } 8549 8550 rcu_read_lock(); 8551 for_each_domain(cpu, tmp) { 8552 /* 8553 * If both 'cpu' and 'prev_cpu' are part of this domain, 8554 * cpu is a valid SD_WAKE_AFFINE target. 8555 */ 8556 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8557 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8558 if (cpu != prev_cpu) 8559 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8560 8561 sd = NULL; /* Prefer wake_affine over balance flags */ 8562 break; 8563 } 8564 8565 /* 8566 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8567 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8568 * will usually go to the fast path. 8569 */ 8570 if (tmp->flags & sd_flag) 8571 sd = tmp; 8572 else if (!want_affine) 8573 break; 8574 } 8575 8576 if (unlikely(sd)) { 8577 /* Slow path */ 8578 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8579 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8580 /* Fast path */ 8581 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8582 } 8583 rcu_read_unlock(); 8584 8585 return new_cpu; 8586 } 8587 8588 /* 8589 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8590 * cfs_rq_of(p) references at time of call are still valid and identify the 8591 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8592 */ 8593 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8594 { 8595 struct sched_entity *se = &p->se; 8596 8597 if (!task_on_rq_migrating(p)) { 8598 remove_entity_load_avg(se); 8599 8600 /* 8601 * Here, the task's PELT values have been updated according to 8602 * the current rq's clock. But if that clock hasn't been 8603 * updated in a while, a substantial idle time will be missed, 8604 * leading to an inflation after wake-up on the new rq. 8605 * 8606 * Estimate the missing time from the cfs_rq last_update_time 8607 * and update sched_avg to improve the PELT continuity after 8608 * migration. 8609 */ 8610 migrate_se_pelt_lag(se); 8611 } 8612 8613 /* Tell new CPU we are migrated */ 8614 se->avg.last_update_time = 0; 8615 8616 update_scan_period(p, new_cpu); 8617 } 8618 8619 static void task_dead_fair(struct task_struct *p) 8620 { 8621 struct sched_entity *se = &p->se; 8622 8623 if (se->sched_delayed) { 8624 struct rq_flags rf; 8625 struct rq *rq; 8626 8627 rq = task_rq_lock(p, &rf); 8628 if (se->sched_delayed) { 8629 update_rq_clock(rq); 8630 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 8631 } 8632 task_rq_unlock(rq, p, &rf); 8633 } 8634 8635 remove_entity_load_avg(se); 8636 } 8637 8638 /* 8639 * Set the max capacity the task is allowed to run at for misfit detection. 8640 */ 8641 static void set_task_max_allowed_capacity(struct task_struct *p) 8642 { 8643 struct asym_cap_data *entry; 8644 8645 if (!sched_asym_cpucap_active()) 8646 return; 8647 8648 rcu_read_lock(); 8649 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8650 cpumask_t *cpumask; 8651 8652 cpumask = cpu_capacity_span(entry); 8653 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8654 continue; 8655 8656 p->max_allowed_capacity = entry->capacity; 8657 break; 8658 } 8659 rcu_read_unlock(); 8660 } 8661 8662 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8663 { 8664 set_cpus_allowed_common(p, ctx); 8665 set_task_max_allowed_capacity(p); 8666 } 8667 8668 static void set_next_buddy(struct sched_entity *se) 8669 { 8670 for_each_sched_entity(se) { 8671 if (WARN_ON_ONCE(!se->on_rq)) 8672 return; 8673 if (se_is_idle(se)) 8674 return; 8675 cfs_rq_of(se)->next = se; 8676 } 8677 } 8678 8679 enum preempt_wakeup_action { 8680 PREEMPT_WAKEUP_NONE, /* No preemption. */ 8681 PREEMPT_WAKEUP_SHORT, /* Ignore slice protection. */ 8682 PREEMPT_WAKEUP_PICK, /* Let __pick_eevdf() decide. */ 8683 PREEMPT_WAKEUP_RESCHED, /* Force reschedule. */ 8684 }; 8685 8686 static inline bool 8687 set_preempt_buddy(struct cfs_rq *cfs_rq, int wake_flags, 8688 struct sched_entity *pse, struct sched_entity *se) 8689 { 8690 /* 8691 * Keep existing buddy if the deadline is sooner than pse. 8692 * The older buddy may be cache cold and completely unrelated 8693 * to the current wakeup but that is unpredictable where as 8694 * obeying the deadline is more in line with EEVDF objectives. 8695 */ 8696 if (cfs_rq->next && entity_before(cfs_rq->next, pse)) 8697 return false; 8698 8699 set_next_buddy(pse); 8700 return true; 8701 } 8702 8703 /* 8704 * WF_SYNC|WF_TTWU indicates the waker expects to sleep but it is not 8705 * strictly enforced because the hint is either misunderstood or 8706 * multiple tasks must be woken up. 8707 */ 8708 static inline enum preempt_wakeup_action 8709 preempt_sync(struct rq *rq, int wake_flags, 8710 struct sched_entity *pse, struct sched_entity *se) 8711 { 8712 u64 threshold, delta; 8713 8714 /* 8715 * WF_SYNC without WF_TTWU is not expected so warn if it happens even 8716 * though it is likely harmless. 8717 */ 8718 WARN_ON_ONCE(!(wake_flags & WF_TTWU)); 8719 8720 threshold = sysctl_sched_migration_cost; 8721 delta = rq_clock_task(rq) - se->exec_start; 8722 if ((s64)delta < 0) 8723 delta = 0; 8724 8725 /* 8726 * WF_RQ_SELECTED implies the tasks are stacking on a CPU when they 8727 * could run on other CPUs. Reduce the threshold before preemption is 8728 * allowed to an arbitrary lower value as it is more likely (but not 8729 * guaranteed) the waker requires the wakee to finish. 8730 */ 8731 if (wake_flags & WF_RQ_SELECTED) 8732 threshold >>= 2; 8733 8734 /* 8735 * As WF_SYNC is not strictly obeyed, allow some runtime for batch 8736 * wakeups to be issued. 8737 */ 8738 if (entity_before(pse, se) && delta >= threshold) 8739 return PREEMPT_WAKEUP_RESCHED; 8740 8741 return PREEMPT_WAKEUP_NONE; 8742 } 8743 8744 /* 8745 * Preempt the current task with a newly woken task if needed: 8746 */ 8747 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8748 { 8749 enum preempt_wakeup_action preempt_action = PREEMPT_WAKEUP_PICK; 8750 struct task_struct *donor = rq->donor; 8751 struct sched_entity *se = &donor->se, *pse = &p->se; 8752 struct cfs_rq *cfs_rq = task_cfs_rq(donor); 8753 int cse_is_idle, pse_is_idle; 8754 8755 if (unlikely(se == pse)) 8756 return; 8757 8758 /* 8759 * This is possible from callers such as attach_tasks(), in which we 8760 * unconditionally wakeup_preempt() after an enqueue (which may have 8761 * lead to a throttle). This both saves work and prevents false 8762 * next-buddy nomination below. 8763 */ 8764 if (task_is_throttled(p)) 8765 return; 8766 8767 /* 8768 * We can come here with TIF_NEED_RESCHED already set from new task 8769 * wake up path. 8770 * 8771 * Note: this also catches the edge-case of curr being in a throttled 8772 * group (e.g. via set_curr_task), since update_curr() (in the 8773 * enqueue of curr) will have resulted in resched being set. This 8774 * prevents us from potentially nominating it as a false LAST_BUDDY 8775 * below. 8776 */ 8777 if (test_tsk_need_resched(rq->curr)) 8778 return; 8779 8780 if (!sched_feat(WAKEUP_PREEMPTION)) 8781 return; 8782 8783 find_matching_se(&se, &pse); 8784 WARN_ON_ONCE(!pse); 8785 8786 cse_is_idle = se_is_idle(se); 8787 pse_is_idle = se_is_idle(pse); 8788 8789 /* 8790 * Preempt an idle entity in favor of a non-idle entity (and don't preempt 8791 * in the inverse case). 8792 */ 8793 if (cse_is_idle && !pse_is_idle) { 8794 /* 8795 * When non-idle entity preempt an idle entity, 8796 * don't give idle entity slice protection. 8797 */ 8798 preempt_action = PREEMPT_WAKEUP_SHORT; 8799 goto preempt; 8800 } 8801 8802 if (cse_is_idle != pse_is_idle) 8803 return; 8804 8805 /* 8806 * BATCH and IDLE tasks do not preempt others. 8807 */ 8808 if (unlikely(!normal_policy(p->policy))) 8809 return; 8810 8811 cfs_rq = cfs_rq_of(se); 8812 update_curr(cfs_rq); 8813 /* 8814 * If @p has a shorter slice than current and @p is eligible, override 8815 * current's slice protection in order to allow preemption. 8816 */ 8817 if (sched_feat(PREEMPT_SHORT) && (pse->slice < se->slice)) { 8818 preempt_action = PREEMPT_WAKEUP_SHORT; 8819 goto pick; 8820 } 8821 8822 /* 8823 * Ignore wakee preemption on WF_FORK as it is less likely that 8824 * there is shared data as exec often follow fork. Do not 8825 * preempt for tasks that are sched_delayed as it would violate 8826 * EEVDF to forcibly queue an ineligible task. 8827 */ 8828 if ((wake_flags & WF_FORK) || pse->sched_delayed) 8829 return; 8830 8831 /* Prefer picking wakee soon if appropriate. */ 8832 if (sched_feat(NEXT_BUDDY) && 8833 set_preempt_buddy(cfs_rq, wake_flags, pse, se)) { 8834 8835 /* 8836 * Decide whether to obey WF_SYNC hint for a new buddy. Old 8837 * buddies are ignored as they may not be relevant to the 8838 * waker and less likely to be cache hot. 8839 */ 8840 if (wake_flags & WF_SYNC) 8841 preempt_action = preempt_sync(rq, wake_flags, pse, se); 8842 } 8843 8844 switch (preempt_action) { 8845 case PREEMPT_WAKEUP_NONE: 8846 return; 8847 case PREEMPT_WAKEUP_RESCHED: 8848 goto preempt; 8849 case PREEMPT_WAKEUP_SHORT: 8850 fallthrough; 8851 case PREEMPT_WAKEUP_PICK: 8852 break; 8853 } 8854 8855 pick: 8856 /* 8857 * If @p has become the most eligible task, force preemption. 8858 */ 8859 if (__pick_eevdf(cfs_rq, preempt_action != PREEMPT_WAKEUP_SHORT) == pse) 8860 goto preempt; 8861 8862 if (sched_feat(RUN_TO_PARITY)) 8863 update_protect_slice(cfs_rq, se); 8864 8865 return; 8866 8867 preempt: 8868 if (preempt_action == PREEMPT_WAKEUP_SHORT) 8869 cancel_protect_slice(se); 8870 8871 resched_curr_lazy(rq); 8872 } 8873 8874 static struct task_struct *pick_task_fair(struct rq *rq, struct rq_flags *rf) 8875 { 8876 struct sched_entity *se; 8877 struct cfs_rq *cfs_rq; 8878 struct task_struct *p; 8879 bool throttled; 8880 8881 again: 8882 cfs_rq = &rq->cfs; 8883 if (!cfs_rq->nr_queued) 8884 return NULL; 8885 8886 throttled = false; 8887 8888 do { 8889 /* Might not have done put_prev_entity() */ 8890 if (cfs_rq->curr && cfs_rq->curr->on_rq) 8891 update_curr(cfs_rq); 8892 8893 throttled |= check_cfs_rq_runtime(cfs_rq); 8894 8895 se = pick_next_entity(rq, cfs_rq); 8896 if (!se) 8897 goto again; 8898 cfs_rq = group_cfs_rq(se); 8899 } while (cfs_rq); 8900 8901 p = task_of(se); 8902 if (unlikely(throttled)) 8903 task_throttle_setup_work(p); 8904 return p; 8905 } 8906 8907 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8908 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8909 8910 struct task_struct * 8911 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8912 { 8913 struct sched_entity *se; 8914 struct task_struct *p; 8915 int new_tasks; 8916 8917 again: 8918 p = pick_task_fair(rq, rf); 8919 if (!p) 8920 goto idle; 8921 se = &p->se; 8922 8923 #ifdef CONFIG_FAIR_GROUP_SCHED 8924 if (prev->sched_class != &fair_sched_class) 8925 goto simple; 8926 8927 __put_prev_set_next_dl_server(rq, prev, p); 8928 8929 /* 8930 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8931 * likely that a next task is from the same cgroup as the current. 8932 * 8933 * Therefore attempt to avoid putting and setting the entire cgroup 8934 * hierarchy, only change the part that actually changes. 8935 * 8936 * Since we haven't yet done put_prev_entity and if the selected task 8937 * is a different task than we started out with, try and touch the 8938 * least amount of cfs_rqs. 8939 */ 8940 if (prev != p) { 8941 struct sched_entity *pse = &prev->se; 8942 struct cfs_rq *cfs_rq; 8943 8944 while (!(cfs_rq = is_same_group(se, pse))) { 8945 int se_depth = se->depth; 8946 int pse_depth = pse->depth; 8947 8948 if (se_depth <= pse_depth) { 8949 put_prev_entity(cfs_rq_of(pse), pse); 8950 pse = parent_entity(pse); 8951 } 8952 if (se_depth >= pse_depth) { 8953 set_next_entity(cfs_rq_of(se), se); 8954 se = parent_entity(se); 8955 } 8956 } 8957 8958 put_prev_entity(cfs_rq, pse); 8959 set_next_entity(cfs_rq, se); 8960 8961 __set_next_task_fair(rq, p, true); 8962 } 8963 8964 return p; 8965 8966 simple: 8967 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8968 put_prev_set_next_task(rq, prev, p); 8969 return p; 8970 8971 idle: 8972 if (rf) { 8973 new_tasks = sched_balance_newidle(rq, rf); 8974 8975 /* 8976 * Because sched_balance_newidle() releases (and re-acquires) 8977 * rq->lock, it is possible for any higher priority task to 8978 * appear. In that case we must re-start the pick_next_entity() 8979 * loop. 8980 */ 8981 if (new_tasks < 0) 8982 return RETRY_TASK; 8983 8984 if (new_tasks > 0) 8985 goto again; 8986 } 8987 8988 return NULL; 8989 } 8990 8991 static struct task_struct * 8992 fair_server_pick_task(struct sched_dl_entity *dl_se, struct rq_flags *rf) 8993 { 8994 return pick_task_fair(dl_se->rq, rf); 8995 } 8996 8997 void fair_server_init(struct rq *rq) 8998 { 8999 struct sched_dl_entity *dl_se = &rq->fair_server; 9000 9001 init_dl_entity(dl_se); 9002 9003 dl_server_init(dl_se, rq, fair_server_pick_task); 9004 } 9005 9006 /* 9007 * Account for a descheduled task: 9008 */ 9009 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) 9010 { 9011 struct sched_entity *se = &prev->se; 9012 struct cfs_rq *cfs_rq; 9013 9014 for_each_sched_entity(se) { 9015 cfs_rq = cfs_rq_of(se); 9016 put_prev_entity(cfs_rq, se); 9017 } 9018 } 9019 9020 /* 9021 * sched_yield() is very simple 9022 */ 9023 static void yield_task_fair(struct rq *rq) 9024 { 9025 struct task_struct *curr = rq->donor; 9026 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 9027 struct sched_entity *se = &curr->se; 9028 9029 /* 9030 * Are we the only task in the tree? 9031 */ 9032 if (unlikely(rq->nr_running == 1)) 9033 return; 9034 9035 clear_buddies(cfs_rq, se); 9036 9037 update_rq_clock(rq); 9038 /* 9039 * Update run-time statistics of the 'current'. 9040 */ 9041 update_curr(cfs_rq); 9042 /* 9043 * Tell update_rq_clock() that we've just updated, 9044 * so we don't do microscopic update in schedule() 9045 * and double the fastpath cost. 9046 */ 9047 rq_clock_skip_update(rq); 9048 9049 /* 9050 * Forfeit the remaining vruntime, only if the entity is eligible. This 9051 * condition is necessary because in core scheduling we prefer to run 9052 * ineligible tasks rather than force idling. If this happens we may 9053 * end up in a loop where the core scheduler picks the yielding task, 9054 * which yields immediately again; without the condition the vruntime 9055 * ends up quickly running away. 9056 */ 9057 if (entity_eligible(cfs_rq, se)) { 9058 se->vruntime = se->deadline; 9059 se->deadline += calc_delta_fair(se->slice, se); 9060 } 9061 } 9062 9063 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 9064 { 9065 struct sched_entity *se = &p->se; 9066 9067 /* !se->on_rq also covers throttled task */ 9068 if (!se->on_rq) 9069 return false; 9070 9071 /* Tell the scheduler that we'd really like se to run next. */ 9072 set_next_buddy(se); 9073 9074 yield_task_fair(rq); 9075 9076 return true; 9077 } 9078 9079 /************************************************** 9080 * Fair scheduling class load-balancing methods. 9081 * 9082 * BASICS 9083 * 9084 * The purpose of load-balancing is to achieve the same basic fairness the 9085 * per-CPU scheduler provides, namely provide a proportional amount of compute 9086 * time to each task. This is expressed in the following equation: 9087 * 9088 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 9089 * 9090 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 9091 * W_i,0 is defined as: 9092 * 9093 * W_i,0 = \Sum_j w_i,j (2) 9094 * 9095 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 9096 * is derived from the nice value as per sched_prio_to_weight[]. 9097 * 9098 * The weight average is an exponential decay average of the instantaneous 9099 * weight: 9100 * 9101 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 9102 * 9103 * C_i is the compute capacity of CPU i, typically it is the 9104 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 9105 * can also include other factors [XXX]. 9106 * 9107 * To achieve this balance we define a measure of imbalance which follows 9108 * directly from (1): 9109 * 9110 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 9111 * 9112 * We them move tasks around to minimize the imbalance. In the continuous 9113 * function space it is obvious this converges, in the discrete case we get 9114 * a few fun cases generally called infeasible weight scenarios. 9115 * 9116 * [XXX expand on: 9117 * - infeasible weights; 9118 * - local vs global optima in the discrete case. ] 9119 * 9120 * 9121 * SCHED DOMAINS 9122 * 9123 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 9124 * for all i,j solution, we create a tree of CPUs that follows the hardware 9125 * topology where each level pairs two lower groups (or better). This results 9126 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 9127 * tree to only the first of the previous level and we decrease the frequency 9128 * of load-balance at each level inversely proportional to the number of CPUs in 9129 * the groups. 9130 * 9131 * This yields: 9132 * 9133 * log_2 n 1 n 9134 * \Sum { --- * --- * 2^i } = O(n) (5) 9135 * i = 0 2^i 2^i 9136 * `- size of each group 9137 * | | `- number of CPUs doing load-balance 9138 * | `- freq 9139 * `- sum over all levels 9140 * 9141 * Coupled with a limit on how many tasks we can migrate every balance pass, 9142 * this makes (5) the runtime complexity of the balancer. 9143 * 9144 * An important property here is that each CPU is still (indirectly) connected 9145 * to every other CPU in at most O(log n) steps: 9146 * 9147 * The adjacency matrix of the resulting graph is given by: 9148 * 9149 * log_2 n 9150 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 9151 * k = 0 9152 * 9153 * And you'll find that: 9154 * 9155 * A^(log_2 n)_i,j != 0 for all i,j (7) 9156 * 9157 * Showing there's indeed a path between every CPU in at most O(log n) steps. 9158 * The task movement gives a factor of O(m), giving a convergence complexity 9159 * of: 9160 * 9161 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 9162 * 9163 * 9164 * WORK CONSERVING 9165 * 9166 * In order to avoid CPUs going idle while there's still work to do, new idle 9167 * balancing is more aggressive and has the newly idle CPU iterate up the domain 9168 * tree itself instead of relying on other CPUs to bring it work. 9169 * 9170 * This adds some complexity to both (5) and (8) but it reduces the total idle 9171 * time. 9172 * 9173 * [XXX more?] 9174 * 9175 * 9176 * CGROUPS 9177 * 9178 * Cgroups make a horror show out of (2), instead of a simple sum we get: 9179 * 9180 * s_k,i 9181 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 9182 * S_k 9183 * 9184 * Where 9185 * 9186 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 9187 * 9188 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 9189 * 9190 * The big problem is S_k, its a global sum needed to compute a local (W_i) 9191 * property. 9192 * 9193 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 9194 * rewrite all of this once again.] 9195 */ 9196 9197 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 9198 9199 enum fbq_type { regular, remote, all }; 9200 9201 /* 9202 * 'group_type' describes the group of CPUs at the moment of load balancing. 9203 * 9204 * The enum is ordered by pulling priority, with the group with lowest priority 9205 * first so the group_type can simply be compared when selecting the busiest 9206 * group. See update_sd_pick_busiest(). 9207 */ 9208 enum group_type { 9209 /* The group has spare capacity that can be used to run more tasks. */ 9210 group_has_spare = 0, 9211 /* 9212 * The group is fully used and the tasks don't compete for more CPU 9213 * cycles. Nevertheless, some tasks might wait before running. 9214 */ 9215 group_fully_busy, 9216 /* 9217 * One task doesn't fit with CPU's capacity and must be migrated to a 9218 * more powerful CPU. 9219 */ 9220 group_misfit_task, 9221 /* 9222 * Balance SMT group that's fully busy. Can benefit from migration 9223 * a task on SMT with busy sibling to another CPU on idle core. 9224 */ 9225 group_smt_balance, 9226 /* 9227 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 9228 * and the task should be migrated to it instead of running on the 9229 * current CPU. 9230 */ 9231 group_asym_packing, 9232 /* 9233 * The tasks' affinity constraints previously prevented the scheduler 9234 * from balancing the load across the system. 9235 */ 9236 group_imbalanced, 9237 /* 9238 * The CPU is overloaded and can't provide expected CPU cycles to all 9239 * tasks. 9240 */ 9241 group_overloaded 9242 }; 9243 9244 enum migration_type { 9245 migrate_load = 0, 9246 migrate_util, 9247 migrate_task, 9248 migrate_misfit 9249 }; 9250 9251 #define LBF_ALL_PINNED 0x01 9252 #define LBF_NEED_BREAK 0x02 9253 #define LBF_DST_PINNED 0x04 9254 #define LBF_SOME_PINNED 0x08 9255 #define LBF_ACTIVE_LB 0x10 9256 9257 struct lb_env { 9258 struct sched_domain *sd; 9259 9260 struct rq *src_rq; 9261 int src_cpu; 9262 9263 int dst_cpu; 9264 struct rq *dst_rq; 9265 9266 struct cpumask *dst_grpmask; 9267 int new_dst_cpu; 9268 enum cpu_idle_type idle; 9269 long imbalance; 9270 /* The set of CPUs under consideration for load-balancing */ 9271 struct cpumask *cpus; 9272 9273 unsigned int flags; 9274 9275 unsigned int loop; 9276 unsigned int loop_break; 9277 unsigned int loop_max; 9278 9279 enum fbq_type fbq_type; 9280 enum migration_type migration_type; 9281 struct list_head tasks; 9282 }; 9283 9284 /* 9285 * Is this task likely cache-hot: 9286 */ 9287 static int task_hot(struct task_struct *p, struct lb_env *env) 9288 { 9289 s64 delta; 9290 9291 lockdep_assert_rq_held(env->src_rq); 9292 9293 if (p->sched_class != &fair_sched_class) 9294 return 0; 9295 9296 if (unlikely(task_has_idle_policy(p))) 9297 return 0; 9298 9299 /* SMT siblings share cache */ 9300 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 9301 return 0; 9302 9303 /* 9304 * Buddy candidates are cache hot: 9305 */ 9306 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 9307 (&p->se == cfs_rq_of(&p->se)->next)) 9308 return 1; 9309 9310 if (sysctl_sched_migration_cost == -1) 9311 return 1; 9312 9313 /* 9314 * Don't migrate task if the task's cookie does not match 9315 * with the destination CPU's core cookie. 9316 */ 9317 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 9318 return 1; 9319 9320 if (sysctl_sched_migration_cost == 0) 9321 return 0; 9322 9323 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 9324 9325 return delta < (s64)sysctl_sched_migration_cost; 9326 } 9327 9328 #ifdef CONFIG_NUMA_BALANCING 9329 /* 9330 * Returns a positive value, if task migration degrades locality. 9331 * Returns 0, if task migration is not affected by locality. 9332 * Returns a negative value, if task migration improves locality i.e migration preferred. 9333 */ 9334 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 9335 { 9336 struct numa_group *numa_group = rcu_dereference(p->numa_group); 9337 unsigned long src_weight, dst_weight; 9338 int src_nid, dst_nid, dist; 9339 9340 if (!static_branch_likely(&sched_numa_balancing)) 9341 return 0; 9342 9343 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 9344 return 0; 9345 9346 src_nid = cpu_to_node(env->src_cpu); 9347 dst_nid = cpu_to_node(env->dst_cpu); 9348 9349 if (src_nid == dst_nid) 9350 return 0; 9351 9352 /* Migrating away from the preferred node is always bad. */ 9353 if (src_nid == p->numa_preferred_nid) { 9354 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 9355 return 1; 9356 else 9357 return 0; 9358 } 9359 9360 /* Encourage migration to the preferred node. */ 9361 if (dst_nid == p->numa_preferred_nid) 9362 return -1; 9363 9364 /* Leaving a core idle is often worse than degrading locality. */ 9365 if (env->idle == CPU_IDLE) 9366 return 0; 9367 9368 dist = node_distance(src_nid, dst_nid); 9369 if (numa_group) { 9370 src_weight = group_weight(p, src_nid, dist); 9371 dst_weight = group_weight(p, dst_nid, dist); 9372 } else { 9373 src_weight = task_weight(p, src_nid, dist); 9374 dst_weight = task_weight(p, dst_nid, dist); 9375 } 9376 9377 return src_weight - dst_weight; 9378 } 9379 9380 #else /* !CONFIG_NUMA_BALANCING: */ 9381 static inline long migrate_degrades_locality(struct task_struct *p, 9382 struct lb_env *env) 9383 { 9384 return 0; 9385 } 9386 #endif /* !CONFIG_NUMA_BALANCING */ 9387 9388 /* 9389 * Check whether the task is ineligible on the destination cpu 9390 * 9391 * When the PLACE_LAG scheduling feature is enabled and 9392 * dst_cfs_rq->nr_queued is greater than 1, if the task 9393 * is ineligible, it will also be ineligible when 9394 * it is migrated to the destination cpu. 9395 */ 9396 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu) 9397 { 9398 struct cfs_rq *dst_cfs_rq; 9399 9400 #ifdef CONFIG_FAIR_GROUP_SCHED 9401 dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu]; 9402 #else 9403 dst_cfs_rq = &cpu_rq(dest_cpu)->cfs; 9404 #endif 9405 if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued && 9406 !entity_eligible(task_cfs_rq(p), &p->se)) 9407 return 1; 9408 9409 return 0; 9410 } 9411 9412 /* 9413 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 9414 */ 9415 static 9416 int can_migrate_task(struct task_struct *p, struct lb_env *env) 9417 { 9418 long degrades, hot; 9419 9420 lockdep_assert_rq_held(env->src_rq); 9421 if (p->sched_task_hot) 9422 p->sched_task_hot = 0; 9423 9424 /* 9425 * We do not migrate tasks that are: 9426 * 1) delayed dequeued unless we migrate load, or 9427 * 2) target cfs_rq is in throttled hierarchy, or 9428 * 3) cannot be migrated to this CPU due to cpus_ptr, or 9429 * 4) running (obviously), or 9430 * 5) are cache-hot on their current CPU, or 9431 * 6) are blocked on mutexes (if SCHED_PROXY_EXEC is enabled) 9432 */ 9433 if ((p->se.sched_delayed) && (env->migration_type != migrate_load)) 9434 return 0; 9435 9436 if (lb_throttled_hierarchy(p, env->dst_cpu)) 9437 return 0; 9438 9439 /* 9440 * We want to prioritize the migration of eligible tasks. 9441 * For ineligible tasks we soft-limit them and only allow 9442 * them to migrate when nr_balance_failed is non-zero to 9443 * avoid load-balancing trying very hard to balance the load. 9444 */ 9445 if (!env->sd->nr_balance_failed && 9446 task_is_ineligible_on_dst_cpu(p, env->dst_cpu)) 9447 return 0; 9448 9449 /* Disregard percpu kthreads; they are where they need to be. */ 9450 if (kthread_is_per_cpu(p)) 9451 return 0; 9452 9453 if (task_is_blocked(p)) 9454 return 0; 9455 9456 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9457 int cpu; 9458 9459 schedstat_inc(p->stats.nr_failed_migrations_affine); 9460 9461 env->flags |= LBF_SOME_PINNED; 9462 9463 /* 9464 * Remember if this task can be migrated to any other CPU in 9465 * our sched_group. We may want to revisit it if we couldn't 9466 * meet load balance goals by pulling other tasks on src_cpu. 9467 * 9468 * Avoid computing new_dst_cpu 9469 * - for NEWLY_IDLE 9470 * - if we have already computed one in current iteration 9471 * - if it's an active balance 9472 */ 9473 if (env->idle == CPU_NEWLY_IDLE || 9474 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9475 return 0; 9476 9477 /* Prevent to re-select dst_cpu via env's CPUs: */ 9478 cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr); 9479 9480 if (cpu < nr_cpu_ids) { 9481 env->flags |= LBF_DST_PINNED; 9482 env->new_dst_cpu = cpu; 9483 } 9484 9485 return 0; 9486 } 9487 9488 /* Record that we found at least one task that could run on dst_cpu */ 9489 env->flags &= ~LBF_ALL_PINNED; 9490 9491 if (task_on_cpu(env->src_rq, p) || 9492 task_current_donor(env->src_rq, p)) { 9493 schedstat_inc(p->stats.nr_failed_migrations_running); 9494 return 0; 9495 } 9496 9497 /* 9498 * Aggressive migration if: 9499 * 1) active balance 9500 * 2) destination numa is preferred 9501 * 3) task is cache cold, or 9502 * 4) too many balance attempts have failed. 9503 */ 9504 if (env->flags & LBF_ACTIVE_LB) 9505 return 1; 9506 9507 degrades = migrate_degrades_locality(p, env); 9508 if (!degrades) 9509 hot = task_hot(p, env); 9510 else 9511 hot = degrades > 0; 9512 9513 if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9514 if (hot) 9515 p->sched_task_hot = 1; 9516 return 1; 9517 } 9518 9519 schedstat_inc(p->stats.nr_failed_migrations_hot); 9520 return 0; 9521 } 9522 9523 /* 9524 * detach_task() -- detach the task for the migration specified in env 9525 */ 9526 static void detach_task(struct task_struct *p, struct lb_env *env) 9527 { 9528 lockdep_assert_rq_held(env->src_rq); 9529 9530 if (p->sched_task_hot) { 9531 p->sched_task_hot = 0; 9532 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9533 schedstat_inc(p->stats.nr_forced_migrations); 9534 } 9535 9536 WARN_ON(task_current(env->src_rq, p)); 9537 WARN_ON(task_current_donor(env->src_rq, p)); 9538 9539 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9540 set_task_cpu(p, env->dst_cpu); 9541 } 9542 9543 /* 9544 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9545 * part of active balancing operations within "domain". 9546 * 9547 * Returns a task if successful and NULL otherwise. 9548 */ 9549 static struct task_struct *detach_one_task(struct lb_env *env) 9550 { 9551 struct task_struct *p; 9552 9553 lockdep_assert_rq_held(env->src_rq); 9554 9555 list_for_each_entry_reverse(p, 9556 &env->src_rq->cfs_tasks, se.group_node) { 9557 if (!can_migrate_task(p, env)) 9558 continue; 9559 9560 detach_task(p, env); 9561 9562 /* 9563 * Right now, this is only the second place where 9564 * lb_gained[env->idle] is updated (other is detach_tasks) 9565 * so we can safely collect stats here rather than 9566 * inside detach_tasks(). 9567 */ 9568 schedstat_inc(env->sd->lb_gained[env->idle]); 9569 return p; 9570 } 9571 return NULL; 9572 } 9573 9574 /* 9575 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9576 * busiest_rq, as part of a balancing operation within domain "sd". 9577 * 9578 * Returns number of detached tasks if successful and 0 otherwise. 9579 */ 9580 static int detach_tasks(struct lb_env *env) 9581 { 9582 struct list_head *tasks = &env->src_rq->cfs_tasks; 9583 unsigned long util, load; 9584 struct task_struct *p; 9585 int detached = 0; 9586 9587 lockdep_assert_rq_held(env->src_rq); 9588 9589 /* 9590 * Source run queue has been emptied by another CPU, clear 9591 * LBF_ALL_PINNED flag as we will not test any task. 9592 */ 9593 if (env->src_rq->nr_running <= 1) { 9594 env->flags &= ~LBF_ALL_PINNED; 9595 return 0; 9596 } 9597 9598 if (env->imbalance <= 0) 9599 return 0; 9600 9601 while (!list_empty(tasks)) { 9602 /* 9603 * We don't want to steal all, otherwise we may be treated likewise, 9604 * which could at worst lead to a livelock crash. 9605 */ 9606 if (env->idle && env->src_rq->nr_running <= 1) 9607 break; 9608 9609 env->loop++; 9610 /* We've more or less seen every task there is, call it quits */ 9611 if (env->loop > env->loop_max) 9612 break; 9613 9614 /* take a breather every nr_migrate tasks */ 9615 if (env->loop > env->loop_break) { 9616 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9617 env->flags |= LBF_NEED_BREAK; 9618 break; 9619 } 9620 9621 p = list_last_entry(tasks, struct task_struct, se.group_node); 9622 9623 if (!can_migrate_task(p, env)) 9624 goto next; 9625 9626 switch (env->migration_type) { 9627 case migrate_load: 9628 /* 9629 * Depending of the number of CPUs and tasks and the 9630 * cgroup hierarchy, task_h_load() can return a null 9631 * value. Make sure that env->imbalance decreases 9632 * otherwise detach_tasks() will stop only after 9633 * detaching up to loop_max tasks. 9634 */ 9635 load = max_t(unsigned long, task_h_load(p), 1); 9636 9637 if (sched_feat(LB_MIN) && 9638 load < 16 && !env->sd->nr_balance_failed) 9639 goto next; 9640 9641 /* 9642 * Make sure that we don't migrate too much load. 9643 * Nevertheless, let relax the constraint if 9644 * scheduler fails to find a good waiting task to 9645 * migrate. 9646 */ 9647 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9648 goto next; 9649 9650 env->imbalance -= load; 9651 break; 9652 9653 case migrate_util: 9654 util = task_util_est(p); 9655 9656 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9657 goto next; 9658 9659 env->imbalance -= util; 9660 break; 9661 9662 case migrate_task: 9663 env->imbalance--; 9664 break; 9665 9666 case migrate_misfit: 9667 /* This is not a misfit task */ 9668 if (task_fits_cpu(p, env->src_cpu)) 9669 goto next; 9670 9671 env->imbalance = 0; 9672 break; 9673 } 9674 9675 detach_task(p, env); 9676 list_add(&p->se.group_node, &env->tasks); 9677 9678 detached++; 9679 9680 #ifdef CONFIG_PREEMPTION 9681 /* 9682 * NEWIDLE balancing is a source of latency, so preemptible 9683 * kernels will stop after the first task is detached to minimize 9684 * the critical section. 9685 */ 9686 if (env->idle == CPU_NEWLY_IDLE) 9687 break; 9688 #endif 9689 9690 /* 9691 * We only want to steal up to the prescribed amount of 9692 * load/util/tasks. 9693 */ 9694 if (env->imbalance <= 0) 9695 break; 9696 9697 continue; 9698 next: 9699 if (p->sched_task_hot) 9700 schedstat_inc(p->stats.nr_failed_migrations_hot); 9701 9702 list_move(&p->se.group_node, tasks); 9703 } 9704 9705 /* 9706 * Right now, this is one of only two places we collect this stat 9707 * so we can safely collect detach_one_task() stats here rather 9708 * than inside detach_one_task(). 9709 */ 9710 schedstat_add(env->sd->lb_gained[env->idle], detached); 9711 9712 return detached; 9713 } 9714 9715 /* 9716 * attach_task() -- attach the task detached by detach_task() to its new rq. 9717 */ 9718 static void attach_task(struct rq *rq, struct task_struct *p) 9719 { 9720 lockdep_assert_rq_held(rq); 9721 9722 WARN_ON_ONCE(task_rq(p) != rq); 9723 activate_task(rq, p, ENQUEUE_NOCLOCK); 9724 wakeup_preempt(rq, p, 0); 9725 } 9726 9727 /* 9728 * attach_one_task() -- attaches the task returned from detach_one_task() to 9729 * its new rq. 9730 */ 9731 static void attach_one_task(struct rq *rq, struct task_struct *p) 9732 { 9733 struct rq_flags rf; 9734 9735 rq_lock(rq, &rf); 9736 update_rq_clock(rq); 9737 attach_task(rq, p); 9738 rq_unlock(rq, &rf); 9739 } 9740 9741 /* 9742 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9743 * new rq. 9744 */ 9745 static void attach_tasks(struct lb_env *env) 9746 { 9747 struct list_head *tasks = &env->tasks; 9748 struct task_struct *p; 9749 struct rq_flags rf; 9750 9751 rq_lock(env->dst_rq, &rf); 9752 update_rq_clock(env->dst_rq); 9753 9754 while (!list_empty(tasks)) { 9755 p = list_first_entry(tasks, struct task_struct, se.group_node); 9756 list_del_init(&p->se.group_node); 9757 9758 attach_task(env->dst_rq, p); 9759 } 9760 9761 rq_unlock(env->dst_rq, &rf); 9762 } 9763 9764 #ifdef CONFIG_NO_HZ_COMMON 9765 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9766 { 9767 if (cfs_rq->avg.load_avg) 9768 return true; 9769 9770 if (cfs_rq->avg.util_avg) 9771 return true; 9772 9773 return false; 9774 } 9775 9776 static inline bool others_have_blocked(struct rq *rq) 9777 { 9778 if (cpu_util_rt(rq)) 9779 return true; 9780 9781 if (cpu_util_dl(rq)) 9782 return true; 9783 9784 if (hw_load_avg(rq)) 9785 return true; 9786 9787 if (cpu_util_irq(rq)) 9788 return true; 9789 9790 return false; 9791 } 9792 9793 static inline void update_blocked_load_tick(struct rq *rq) 9794 { 9795 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9796 } 9797 9798 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9799 { 9800 if (!has_blocked) 9801 rq->has_blocked_load = 0; 9802 } 9803 #else /* !CONFIG_NO_HZ_COMMON: */ 9804 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9805 static inline bool others_have_blocked(struct rq *rq) { return false; } 9806 static inline void update_blocked_load_tick(struct rq *rq) {} 9807 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9808 #endif /* !CONFIG_NO_HZ_COMMON */ 9809 9810 static bool __update_blocked_others(struct rq *rq, bool *done) 9811 { 9812 bool updated; 9813 9814 /* 9815 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9816 * DL and IRQ signals have been updated before updating CFS. 9817 */ 9818 updated = update_other_load_avgs(rq); 9819 9820 if (others_have_blocked(rq)) 9821 *done = false; 9822 9823 return updated; 9824 } 9825 9826 #ifdef CONFIG_FAIR_GROUP_SCHED 9827 9828 static bool __update_blocked_fair(struct rq *rq, bool *done) 9829 { 9830 struct cfs_rq *cfs_rq, *pos; 9831 bool decayed = false; 9832 int cpu = cpu_of(rq); 9833 9834 /* 9835 * Iterates the task_group tree in a bottom up fashion, see 9836 * list_add_leaf_cfs_rq() for details. 9837 */ 9838 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9839 struct sched_entity *se; 9840 9841 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9842 update_tg_load_avg(cfs_rq); 9843 9844 if (cfs_rq->nr_queued == 0) 9845 update_idle_cfs_rq_clock_pelt(cfs_rq); 9846 9847 if (cfs_rq == &rq->cfs) 9848 decayed = true; 9849 } 9850 9851 /* Propagate pending load changes to the parent, if any: */ 9852 se = cfs_rq->tg->se[cpu]; 9853 if (se && !skip_blocked_update(se)) 9854 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9855 9856 /* 9857 * There can be a lot of idle CPU cgroups. Don't let fully 9858 * decayed cfs_rqs linger on the list. 9859 */ 9860 if (cfs_rq_is_decayed(cfs_rq)) 9861 list_del_leaf_cfs_rq(cfs_rq); 9862 9863 /* Don't need periodic decay once load/util_avg are null */ 9864 if (cfs_rq_has_blocked(cfs_rq)) 9865 *done = false; 9866 } 9867 9868 return decayed; 9869 } 9870 9871 /* 9872 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9873 * This needs to be done in a top-down fashion because the load of a child 9874 * group is a fraction of its parents load. 9875 */ 9876 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9877 { 9878 struct rq *rq = rq_of(cfs_rq); 9879 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9880 unsigned long now = jiffies; 9881 unsigned long load; 9882 9883 if (cfs_rq->last_h_load_update == now) 9884 return; 9885 9886 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9887 for_each_sched_entity(se) { 9888 cfs_rq = cfs_rq_of(se); 9889 WRITE_ONCE(cfs_rq->h_load_next, se); 9890 if (cfs_rq->last_h_load_update == now) 9891 break; 9892 } 9893 9894 if (!se) { 9895 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9896 cfs_rq->last_h_load_update = now; 9897 } 9898 9899 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9900 load = cfs_rq->h_load; 9901 load = div64_ul(load * se->avg.load_avg, 9902 cfs_rq_load_avg(cfs_rq) + 1); 9903 cfs_rq = group_cfs_rq(se); 9904 cfs_rq->h_load = load; 9905 cfs_rq->last_h_load_update = now; 9906 } 9907 } 9908 9909 static unsigned long task_h_load(struct task_struct *p) 9910 { 9911 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9912 9913 update_cfs_rq_h_load(cfs_rq); 9914 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9915 cfs_rq_load_avg(cfs_rq) + 1); 9916 } 9917 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 9918 static bool __update_blocked_fair(struct rq *rq, bool *done) 9919 { 9920 struct cfs_rq *cfs_rq = &rq->cfs; 9921 bool decayed; 9922 9923 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9924 if (cfs_rq_has_blocked(cfs_rq)) 9925 *done = false; 9926 9927 return decayed; 9928 } 9929 9930 static unsigned long task_h_load(struct task_struct *p) 9931 { 9932 return p->se.avg.load_avg; 9933 } 9934 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 9935 9936 static void sched_balance_update_blocked_averages(int cpu) 9937 { 9938 bool decayed = false, done = true; 9939 struct rq *rq = cpu_rq(cpu); 9940 struct rq_flags rf; 9941 9942 rq_lock_irqsave(rq, &rf); 9943 update_blocked_load_tick(rq); 9944 update_rq_clock(rq); 9945 9946 decayed |= __update_blocked_others(rq, &done); 9947 decayed |= __update_blocked_fair(rq, &done); 9948 9949 update_blocked_load_status(rq, !done); 9950 if (decayed) 9951 cpufreq_update_util(rq, 0); 9952 rq_unlock_irqrestore(rq, &rf); 9953 } 9954 9955 /********** Helpers for sched_balance_find_src_group ************************/ 9956 9957 /* 9958 * sg_lb_stats - stats of a sched_group required for load-balancing: 9959 */ 9960 struct sg_lb_stats { 9961 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9962 unsigned long group_load; /* Total load over the CPUs of the group */ 9963 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9964 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9965 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9966 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9967 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9968 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9969 unsigned int group_weight; 9970 enum group_type group_type; 9971 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9972 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9973 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9974 #ifdef CONFIG_NUMA_BALANCING 9975 unsigned int nr_numa_running; 9976 unsigned int nr_preferred_running; 9977 #endif 9978 }; 9979 9980 /* 9981 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9982 */ 9983 struct sd_lb_stats { 9984 struct sched_group *busiest; /* Busiest group in this sd */ 9985 struct sched_group *local; /* Local group in this sd */ 9986 unsigned long total_load; /* Total load of all groups in sd */ 9987 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9988 unsigned long avg_load; /* Average load across all groups in sd */ 9989 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 9990 9991 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 9992 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9993 }; 9994 9995 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9996 { 9997 /* 9998 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9999 * local_stat because update_sg_lb_stats() does a full clear/assignment. 10000 * We must however set busiest_stat::group_type and 10001 * busiest_stat::idle_cpus to the worst busiest group because 10002 * update_sd_pick_busiest() reads these before assignment. 10003 */ 10004 *sds = (struct sd_lb_stats){ 10005 .busiest = NULL, 10006 .local = NULL, 10007 .total_load = 0UL, 10008 .total_capacity = 0UL, 10009 .busiest_stat = { 10010 .idle_cpus = UINT_MAX, 10011 .group_type = group_has_spare, 10012 }, 10013 }; 10014 } 10015 10016 static unsigned long scale_rt_capacity(int cpu) 10017 { 10018 unsigned long max = get_actual_cpu_capacity(cpu); 10019 struct rq *rq = cpu_rq(cpu); 10020 unsigned long used, free; 10021 unsigned long irq; 10022 10023 irq = cpu_util_irq(rq); 10024 10025 if (unlikely(irq >= max)) 10026 return 1; 10027 10028 /* 10029 * avg_rt.util_avg and avg_dl.util_avg track binary signals 10030 * (running and not running) with weights 0 and 1024 respectively. 10031 */ 10032 used = cpu_util_rt(rq); 10033 used += cpu_util_dl(rq); 10034 10035 if (unlikely(used >= max)) 10036 return 1; 10037 10038 free = max - used; 10039 10040 return scale_irq_capacity(free, irq, max); 10041 } 10042 10043 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 10044 { 10045 unsigned long capacity = scale_rt_capacity(cpu); 10046 struct sched_group *sdg = sd->groups; 10047 10048 if (!capacity) 10049 capacity = 1; 10050 10051 cpu_rq(cpu)->cpu_capacity = capacity; 10052 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 10053 10054 sdg->sgc->capacity = capacity; 10055 sdg->sgc->min_capacity = capacity; 10056 sdg->sgc->max_capacity = capacity; 10057 } 10058 10059 void update_group_capacity(struct sched_domain *sd, int cpu) 10060 { 10061 struct sched_domain *child = sd->child; 10062 struct sched_group *group, *sdg = sd->groups; 10063 unsigned long capacity, min_capacity, max_capacity; 10064 unsigned long interval; 10065 10066 interval = msecs_to_jiffies(sd->balance_interval); 10067 interval = clamp(interval, 1UL, max_load_balance_interval); 10068 sdg->sgc->next_update = jiffies + interval; 10069 10070 if (!child) { 10071 update_cpu_capacity(sd, cpu); 10072 return; 10073 } 10074 10075 capacity = 0; 10076 min_capacity = ULONG_MAX; 10077 max_capacity = 0; 10078 10079 if (child->flags & SD_NUMA) { 10080 /* 10081 * SD_NUMA domains cannot assume that child groups 10082 * span the current group. 10083 */ 10084 10085 for_each_cpu(cpu, sched_group_span(sdg)) { 10086 unsigned long cpu_cap = capacity_of(cpu); 10087 10088 capacity += cpu_cap; 10089 min_capacity = min(cpu_cap, min_capacity); 10090 max_capacity = max(cpu_cap, max_capacity); 10091 } 10092 } else { 10093 /* 10094 * !SD_NUMA domains can assume that child groups 10095 * span the current group. 10096 */ 10097 10098 group = child->groups; 10099 do { 10100 struct sched_group_capacity *sgc = group->sgc; 10101 10102 capacity += sgc->capacity; 10103 min_capacity = min(sgc->min_capacity, min_capacity); 10104 max_capacity = max(sgc->max_capacity, max_capacity); 10105 group = group->next; 10106 } while (group != child->groups); 10107 } 10108 10109 sdg->sgc->capacity = capacity; 10110 sdg->sgc->min_capacity = min_capacity; 10111 sdg->sgc->max_capacity = max_capacity; 10112 } 10113 10114 /* 10115 * Check whether the capacity of the rq has been noticeably reduced by side 10116 * activity. The imbalance_pct is used for the threshold. 10117 * Return true is the capacity is reduced 10118 */ 10119 static inline int 10120 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 10121 { 10122 return ((rq->cpu_capacity * sd->imbalance_pct) < 10123 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 10124 } 10125 10126 /* Check if the rq has a misfit task */ 10127 static inline bool check_misfit_status(struct rq *rq) 10128 { 10129 return rq->misfit_task_load; 10130 } 10131 10132 /* 10133 * Group imbalance indicates (and tries to solve) the problem where balancing 10134 * groups is inadequate due to ->cpus_ptr constraints. 10135 * 10136 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 10137 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 10138 * Something like: 10139 * 10140 * { 0 1 2 3 } { 4 5 6 7 } 10141 * * * * * 10142 * 10143 * If we were to balance group-wise we'd place two tasks in the first group and 10144 * two tasks in the second group. Clearly this is undesired as it will overload 10145 * cpu 3 and leave one of the CPUs in the second group unused. 10146 * 10147 * The current solution to this issue is detecting the skew in the first group 10148 * by noticing the lower domain failed to reach balance and had difficulty 10149 * moving tasks due to affinity constraints. 10150 * 10151 * When this is so detected; this group becomes a candidate for busiest; see 10152 * update_sd_pick_busiest(). And calculate_imbalance() and 10153 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 10154 * to create an effective group imbalance. 10155 * 10156 * This is a somewhat tricky proposition since the next run might not find the 10157 * group imbalance and decide the groups need to be balanced again. A most 10158 * subtle and fragile situation. 10159 */ 10160 10161 static inline int sg_imbalanced(struct sched_group *group) 10162 { 10163 return group->sgc->imbalance; 10164 } 10165 10166 /* 10167 * group_has_capacity returns true if the group has spare capacity that could 10168 * be used by some tasks. 10169 * We consider that a group has spare capacity if the number of task is 10170 * smaller than the number of CPUs or if the utilization is lower than the 10171 * available capacity for CFS tasks. 10172 * For the latter, we use a threshold to stabilize the state, to take into 10173 * account the variance of the tasks' load and to return true if the available 10174 * capacity in meaningful for the load balancer. 10175 * As an example, an available capacity of 1% can appear but it doesn't make 10176 * any benefit for the load balance. 10177 */ 10178 static inline bool 10179 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10180 { 10181 if (sgs->sum_nr_running < sgs->group_weight) 10182 return true; 10183 10184 if ((sgs->group_capacity * imbalance_pct) < 10185 (sgs->group_runnable * 100)) 10186 return false; 10187 10188 if ((sgs->group_capacity * 100) > 10189 (sgs->group_util * imbalance_pct)) 10190 return true; 10191 10192 return false; 10193 } 10194 10195 /* 10196 * group_is_overloaded returns true if the group has more tasks than it can 10197 * handle. 10198 * group_is_overloaded is not equals to !group_has_capacity because a group 10199 * with the exact right number of tasks, has no more spare capacity but is not 10200 * overloaded so both group_has_capacity and group_is_overloaded return 10201 * false. 10202 */ 10203 static inline bool 10204 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10205 { 10206 if (sgs->sum_nr_running <= sgs->group_weight) 10207 return false; 10208 10209 if ((sgs->group_capacity * 100) < 10210 (sgs->group_util * imbalance_pct)) 10211 return true; 10212 10213 if ((sgs->group_capacity * imbalance_pct) < 10214 (sgs->group_runnable * 100)) 10215 return true; 10216 10217 return false; 10218 } 10219 10220 static inline enum 10221 group_type group_classify(unsigned int imbalance_pct, 10222 struct sched_group *group, 10223 struct sg_lb_stats *sgs) 10224 { 10225 if (group_is_overloaded(imbalance_pct, sgs)) 10226 return group_overloaded; 10227 10228 if (sg_imbalanced(group)) 10229 return group_imbalanced; 10230 10231 if (sgs->group_asym_packing) 10232 return group_asym_packing; 10233 10234 if (sgs->group_smt_balance) 10235 return group_smt_balance; 10236 10237 if (sgs->group_misfit_task_load) 10238 return group_misfit_task; 10239 10240 if (!group_has_capacity(imbalance_pct, sgs)) 10241 return group_fully_busy; 10242 10243 return group_has_spare; 10244 } 10245 10246 /** 10247 * sched_use_asym_prio - Check whether asym_packing priority must be used 10248 * @sd: The scheduling domain of the load balancing 10249 * @cpu: A CPU 10250 * 10251 * Always use CPU priority when balancing load between SMT siblings. When 10252 * balancing load between cores, it is not sufficient that @cpu is idle. Only 10253 * use CPU priority if the whole core is idle. 10254 * 10255 * Returns: True if the priority of @cpu must be followed. False otherwise. 10256 */ 10257 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 10258 { 10259 if (!(sd->flags & SD_ASYM_PACKING)) 10260 return false; 10261 10262 if (!sched_smt_active()) 10263 return true; 10264 10265 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 10266 } 10267 10268 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 10269 { 10270 /* 10271 * First check if @dst_cpu can do asym_packing load balance. Only do it 10272 * if it has higher priority than @src_cpu. 10273 */ 10274 return sched_use_asym_prio(sd, dst_cpu) && 10275 sched_asym_prefer(dst_cpu, src_cpu); 10276 } 10277 10278 /** 10279 * sched_group_asym - Check if the destination CPU can do asym_packing balance 10280 * @env: The load balancing environment 10281 * @sgs: Load-balancing statistics of the candidate busiest group 10282 * @group: The candidate busiest group 10283 * 10284 * @env::dst_cpu can do asym_packing if it has higher priority than the 10285 * preferred CPU of @group. 10286 * 10287 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 10288 * otherwise. 10289 */ 10290 static inline bool 10291 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 10292 { 10293 /* 10294 * CPU priorities do not make sense for SMT cores with more than one 10295 * busy sibling. 10296 */ 10297 if ((group->flags & SD_SHARE_CPUCAPACITY) && 10298 (sgs->group_weight - sgs->idle_cpus != 1)) 10299 return false; 10300 10301 return sched_asym(env->sd, env->dst_cpu, READ_ONCE(group->asym_prefer_cpu)); 10302 } 10303 10304 /* One group has more than one SMT CPU while the other group does not */ 10305 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 10306 struct sched_group *sg2) 10307 { 10308 if (!sg1 || !sg2) 10309 return false; 10310 10311 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 10312 (sg2->flags & SD_SHARE_CPUCAPACITY); 10313 } 10314 10315 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 10316 struct sched_group *group) 10317 { 10318 if (!env->idle) 10319 return false; 10320 10321 /* 10322 * For SMT source group, it is better to move a task 10323 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 10324 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 10325 * will not be on. 10326 */ 10327 if (group->flags & SD_SHARE_CPUCAPACITY && 10328 sgs->sum_h_nr_running > 1) 10329 return true; 10330 10331 return false; 10332 } 10333 10334 static inline long sibling_imbalance(struct lb_env *env, 10335 struct sd_lb_stats *sds, 10336 struct sg_lb_stats *busiest, 10337 struct sg_lb_stats *local) 10338 { 10339 int ncores_busiest, ncores_local; 10340 long imbalance; 10341 10342 if (!env->idle || !busiest->sum_nr_running) 10343 return 0; 10344 10345 ncores_busiest = sds->busiest->cores; 10346 ncores_local = sds->local->cores; 10347 10348 if (ncores_busiest == ncores_local) { 10349 imbalance = busiest->sum_nr_running; 10350 lsub_positive(&imbalance, local->sum_nr_running); 10351 return imbalance; 10352 } 10353 10354 /* Balance such that nr_running/ncores ratio are same on both groups */ 10355 imbalance = ncores_local * busiest->sum_nr_running; 10356 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 10357 /* Normalize imbalance and do rounding on normalization */ 10358 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 10359 imbalance /= ncores_local + ncores_busiest; 10360 10361 /* Take advantage of resource in an empty sched group */ 10362 if (imbalance <= 1 && local->sum_nr_running == 0 && 10363 busiest->sum_nr_running > 1) 10364 imbalance = 2; 10365 10366 return imbalance; 10367 } 10368 10369 static inline bool 10370 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 10371 { 10372 /* 10373 * When there is more than 1 task, the group_overloaded case already 10374 * takes care of cpu with reduced capacity 10375 */ 10376 if (rq->cfs.h_nr_runnable != 1) 10377 return false; 10378 10379 return check_cpu_capacity(rq, sd); 10380 } 10381 10382 /** 10383 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 10384 * @env: The load balancing environment. 10385 * @sds: Load-balancing data with statistics of the local group. 10386 * @group: sched_group whose statistics are to be updated. 10387 * @sgs: variable to hold the statistics for this group. 10388 * @sg_overloaded: sched_group is overloaded 10389 * @sg_overutilized: sched_group is overutilized 10390 */ 10391 static inline void update_sg_lb_stats(struct lb_env *env, 10392 struct sd_lb_stats *sds, 10393 struct sched_group *group, 10394 struct sg_lb_stats *sgs, 10395 bool *sg_overloaded, 10396 bool *sg_overutilized) 10397 { 10398 int i, nr_running, local_group, sd_flags = env->sd->flags; 10399 bool balancing_at_rd = !env->sd->parent; 10400 10401 memset(sgs, 0, sizeof(*sgs)); 10402 10403 local_group = group == sds->local; 10404 10405 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10406 struct rq *rq = cpu_rq(i); 10407 unsigned long load = cpu_load(rq); 10408 10409 sgs->group_load += load; 10410 sgs->group_util += cpu_util_cfs(i); 10411 sgs->group_runnable += cpu_runnable(rq); 10412 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable; 10413 10414 nr_running = rq->nr_running; 10415 sgs->sum_nr_running += nr_running; 10416 10417 if (cpu_overutilized(i)) 10418 *sg_overutilized = 1; 10419 10420 /* 10421 * No need to call idle_cpu() if nr_running is not 0 10422 */ 10423 if (!nr_running && idle_cpu(i)) { 10424 sgs->idle_cpus++; 10425 /* Idle cpu can't have misfit task */ 10426 continue; 10427 } 10428 10429 /* Overload indicator is only updated at root domain */ 10430 if (balancing_at_rd && nr_running > 1) 10431 *sg_overloaded = 1; 10432 10433 #ifdef CONFIG_NUMA_BALANCING 10434 /* Only fbq_classify_group() uses this to classify NUMA groups */ 10435 if (sd_flags & SD_NUMA) { 10436 sgs->nr_numa_running += rq->nr_numa_running; 10437 sgs->nr_preferred_running += rq->nr_preferred_running; 10438 } 10439 #endif 10440 if (local_group) 10441 continue; 10442 10443 if (sd_flags & SD_ASYM_CPUCAPACITY) { 10444 /* Check for a misfit task on the cpu */ 10445 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 10446 sgs->group_misfit_task_load = rq->misfit_task_load; 10447 *sg_overloaded = 1; 10448 } 10449 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 10450 /* Check for a task running on a CPU with reduced capacity */ 10451 if (sgs->group_misfit_task_load < load) 10452 sgs->group_misfit_task_load = load; 10453 } 10454 } 10455 10456 sgs->group_capacity = group->sgc->capacity; 10457 10458 sgs->group_weight = group->group_weight; 10459 10460 /* Check if dst CPU is idle and preferred to this group */ 10461 if (!local_group && env->idle && sgs->sum_h_nr_running && 10462 sched_group_asym(env, sgs, group)) 10463 sgs->group_asym_packing = 1; 10464 10465 /* Check for loaded SMT group to be balanced to dst CPU */ 10466 if (!local_group && smt_balance(env, sgs, group)) 10467 sgs->group_smt_balance = 1; 10468 10469 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10470 10471 /* Computing avg_load makes sense only when group is overloaded */ 10472 if (sgs->group_type == group_overloaded) 10473 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10474 sgs->group_capacity; 10475 } 10476 10477 /** 10478 * update_sd_pick_busiest - return 1 on busiest group 10479 * @env: The load balancing environment. 10480 * @sds: sched_domain statistics 10481 * @sg: sched_group candidate to be checked for being the busiest 10482 * @sgs: sched_group statistics 10483 * 10484 * Determine if @sg is a busier group than the previously selected 10485 * busiest group. 10486 * 10487 * Return: %true if @sg is a busier group than the previously selected 10488 * busiest group. %false otherwise. 10489 */ 10490 static bool update_sd_pick_busiest(struct lb_env *env, 10491 struct sd_lb_stats *sds, 10492 struct sched_group *sg, 10493 struct sg_lb_stats *sgs) 10494 { 10495 struct sg_lb_stats *busiest = &sds->busiest_stat; 10496 10497 /* Make sure that there is at least one task to pull */ 10498 if (!sgs->sum_h_nr_running) 10499 return false; 10500 10501 /* 10502 * Don't try to pull misfit tasks we can't help. 10503 * We can use max_capacity here as reduction in capacity on some 10504 * CPUs in the group should either be possible to resolve 10505 * internally or be covered by avg_load imbalance (eventually). 10506 */ 10507 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10508 (sgs->group_type == group_misfit_task) && 10509 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10510 sds->local_stat.group_type != group_has_spare)) 10511 return false; 10512 10513 if (sgs->group_type > busiest->group_type) 10514 return true; 10515 10516 if (sgs->group_type < busiest->group_type) 10517 return false; 10518 10519 /* 10520 * The candidate and the current busiest group are the same type of 10521 * group. Let check which one is the busiest according to the type. 10522 */ 10523 10524 switch (sgs->group_type) { 10525 case group_overloaded: 10526 /* Select the overloaded group with highest avg_load. */ 10527 return sgs->avg_load > busiest->avg_load; 10528 10529 case group_imbalanced: 10530 /* 10531 * Select the 1st imbalanced group as we don't have any way to 10532 * choose one more than another. 10533 */ 10534 return false; 10535 10536 case group_asym_packing: 10537 /* Prefer to move from lowest priority CPU's work */ 10538 return sched_asym_prefer(READ_ONCE(sds->busiest->asym_prefer_cpu), 10539 READ_ONCE(sg->asym_prefer_cpu)); 10540 10541 case group_misfit_task: 10542 /* 10543 * If we have more than one misfit sg go with the biggest 10544 * misfit. 10545 */ 10546 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10547 10548 case group_smt_balance: 10549 /* 10550 * Check if we have spare CPUs on either SMT group to 10551 * choose has spare or fully busy handling. 10552 */ 10553 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10554 goto has_spare; 10555 10556 fallthrough; 10557 10558 case group_fully_busy: 10559 /* 10560 * Select the fully busy group with highest avg_load. In 10561 * theory, there is no need to pull task from such kind of 10562 * group because tasks have all compute capacity that they need 10563 * but we can still improve the overall throughput by reducing 10564 * contention when accessing shared HW resources. 10565 * 10566 * XXX for now avg_load is not computed and always 0 so we 10567 * select the 1st one, except if @sg is composed of SMT 10568 * siblings. 10569 */ 10570 10571 if (sgs->avg_load < busiest->avg_load) 10572 return false; 10573 10574 if (sgs->avg_load == busiest->avg_load) { 10575 /* 10576 * SMT sched groups need more help than non-SMT groups. 10577 * If @sg happens to also be SMT, either choice is good. 10578 */ 10579 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10580 return false; 10581 } 10582 10583 break; 10584 10585 case group_has_spare: 10586 /* 10587 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10588 * as we do not want to pull task off SMT core with one task 10589 * and make the core idle. 10590 */ 10591 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10592 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10593 return false; 10594 else 10595 return true; 10596 } 10597 has_spare: 10598 10599 /* 10600 * Select not overloaded group with lowest number of idle CPUs 10601 * and highest number of running tasks. We could also compare 10602 * the spare capacity which is more stable but it can end up 10603 * that the group has less spare capacity but finally more idle 10604 * CPUs which means less opportunity to pull tasks. 10605 */ 10606 if (sgs->idle_cpus > busiest->idle_cpus) 10607 return false; 10608 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10609 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10610 return false; 10611 10612 break; 10613 } 10614 10615 /* 10616 * Candidate sg has no more than one task per CPU and has higher 10617 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10618 * throughput. Maximize throughput, power/energy consequences are not 10619 * considered. 10620 */ 10621 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10622 (sgs->group_type <= group_fully_busy) && 10623 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10624 return false; 10625 10626 return true; 10627 } 10628 10629 #ifdef CONFIG_NUMA_BALANCING 10630 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10631 { 10632 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10633 return regular; 10634 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10635 return remote; 10636 return all; 10637 } 10638 10639 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10640 { 10641 if (rq->nr_running > rq->nr_numa_running) 10642 return regular; 10643 if (rq->nr_running > rq->nr_preferred_running) 10644 return remote; 10645 return all; 10646 } 10647 #else /* !CONFIG_NUMA_BALANCING: */ 10648 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10649 { 10650 return all; 10651 } 10652 10653 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10654 { 10655 return regular; 10656 } 10657 #endif /* !CONFIG_NUMA_BALANCING */ 10658 10659 10660 struct sg_lb_stats; 10661 10662 /* 10663 * task_running_on_cpu - return 1 if @p is running on @cpu. 10664 */ 10665 10666 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10667 { 10668 /* Task has no contribution or is new */ 10669 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10670 return 0; 10671 10672 if (task_on_rq_queued(p)) 10673 return 1; 10674 10675 return 0; 10676 } 10677 10678 /** 10679 * idle_cpu_without - would a given CPU be idle without p ? 10680 * @cpu: the processor on which idleness is tested. 10681 * @p: task which should be ignored. 10682 * 10683 * Return: 1 if the CPU would be idle. 0 otherwise. 10684 */ 10685 static int idle_cpu_without(int cpu, struct task_struct *p) 10686 { 10687 struct rq *rq = cpu_rq(cpu); 10688 10689 if (rq->curr != rq->idle && rq->curr != p) 10690 return 0; 10691 10692 /* 10693 * rq->nr_running can't be used but an updated version without the 10694 * impact of p on cpu must be used instead. The updated nr_running 10695 * be computed and tested before calling idle_cpu_without(). 10696 */ 10697 10698 if (rq->ttwu_pending) 10699 return 0; 10700 10701 return 1; 10702 } 10703 10704 /* 10705 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10706 * @sd: The sched_domain level to look for idlest group. 10707 * @group: sched_group whose statistics are to be updated. 10708 * @sgs: variable to hold the statistics for this group. 10709 * @p: The task for which we look for the idlest group/CPU. 10710 */ 10711 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10712 struct sched_group *group, 10713 struct sg_lb_stats *sgs, 10714 struct task_struct *p) 10715 { 10716 int i, nr_running; 10717 10718 memset(sgs, 0, sizeof(*sgs)); 10719 10720 /* Assume that task can't fit any CPU of the group */ 10721 if (sd->flags & SD_ASYM_CPUCAPACITY) 10722 sgs->group_misfit_task_load = 1; 10723 10724 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 10725 struct rq *rq = cpu_rq(i); 10726 unsigned int local; 10727 10728 sgs->group_load += cpu_load_without(rq, p); 10729 sgs->group_util += cpu_util_without(i, p); 10730 sgs->group_runnable += cpu_runnable_without(rq, p); 10731 local = task_running_on_cpu(i, p); 10732 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local; 10733 10734 nr_running = rq->nr_running - local; 10735 sgs->sum_nr_running += nr_running; 10736 10737 /* 10738 * No need to call idle_cpu_without() if nr_running is not 0 10739 */ 10740 if (!nr_running && idle_cpu_without(i, p)) 10741 sgs->idle_cpus++; 10742 10743 /* Check if task fits in the CPU */ 10744 if (sd->flags & SD_ASYM_CPUCAPACITY && 10745 sgs->group_misfit_task_load && 10746 task_fits_cpu(p, i)) 10747 sgs->group_misfit_task_load = 0; 10748 10749 } 10750 10751 sgs->group_capacity = group->sgc->capacity; 10752 10753 sgs->group_weight = group->group_weight; 10754 10755 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10756 10757 /* 10758 * Computing avg_load makes sense only when group is fully busy or 10759 * overloaded 10760 */ 10761 if (sgs->group_type == group_fully_busy || 10762 sgs->group_type == group_overloaded) 10763 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10764 sgs->group_capacity; 10765 } 10766 10767 static bool update_pick_idlest(struct sched_group *idlest, 10768 struct sg_lb_stats *idlest_sgs, 10769 struct sched_group *group, 10770 struct sg_lb_stats *sgs) 10771 { 10772 if (sgs->group_type < idlest_sgs->group_type) 10773 return true; 10774 10775 if (sgs->group_type > idlest_sgs->group_type) 10776 return false; 10777 10778 /* 10779 * The candidate and the current idlest group are the same type of 10780 * group. Let check which one is the idlest according to the type. 10781 */ 10782 10783 switch (sgs->group_type) { 10784 case group_overloaded: 10785 case group_fully_busy: 10786 /* Select the group with lowest avg_load. */ 10787 if (idlest_sgs->avg_load <= sgs->avg_load) 10788 return false; 10789 break; 10790 10791 case group_imbalanced: 10792 case group_asym_packing: 10793 case group_smt_balance: 10794 /* Those types are not used in the slow wakeup path */ 10795 return false; 10796 10797 case group_misfit_task: 10798 /* Select group with the highest max capacity */ 10799 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10800 return false; 10801 break; 10802 10803 case group_has_spare: 10804 /* Select group with most idle CPUs */ 10805 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10806 return false; 10807 10808 /* Select group with lowest group_util */ 10809 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10810 idlest_sgs->group_util <= sgs->group_util) 10811 return false; 10812 10813 break; 10814 } 10815 10816 return true; 10817 } 10818 10819 /* 10820 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10821 * domain. 10822 * 10823 * Assumes p is allowed on at least one CPU in sd. 10824 */ 10825 static struct sched_group * 10826 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10827 { 10828 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10829 struct sg_lb_stats local_sgs, tmp_sgs; 10830 struct sg_lb_stats *sgs; 10831 unsigned long imbalance; 10832 struct sg_lb_stats idlest_sgs = { 10833 .avg_load = UINT_MAX, 10834 .group_type = group_overloaded, 10835 }; 10836 10837 do { 10838 int local_group; 10839 10840 /* Skip over this group if it has no CPUs allowed */ 10841 if (!cpumask_intersects(sched_group_span(group), 10842 p->cpus_ptr)) 10843 continue; 10844 10845 /* Skip over this group if no cookie matched */ 10846 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10847 continue; 10848 10849 local_group = cpumask_test_cpu(this_cpu, 10850 sched_group_span(group)); 10851 10852 if (local_group) { 10853 sgs = &local_sgs; 10854 local = group; 10855 } else { 10856 sgs = &tmp_sgs; 10857 } 10858 10859 update_sg_wakeup_stats(sd, group, sgs, p); 10860 10861 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10862 idlest = group; 10863 idlest_sgs = *sgs; 10864 } 10865 10866 } while (group = group->next, group != sd->groups); 10867 10868 10869 /* There is no idlest group to push tasks to */ 10870 if (!idlest) 10871 return NULL; 10872 10873 /* The local group has been skipped because of CPU affinity */ 10874 if (!local) 10875 return idlest; 10876 10877 /* 10878 * If the local group is idler than the selected idlest group 10879 * don't try and push the task. 10880 */ 10881 if (local_sgs.group_type < idlest_sgs.group_type) 10882 return NULL; 10883 10884 /* 10885 * If the local group is busier than the selected idlest group 10886 * try and push the task. 10887 */ 10888 if (local_sgs.group_type > idlest_sgs.group_type) 10889 return idlest; 10890 10891 switch (local_sgs.group_type) { 10892 case group_overloaded: 10893 case group_fully_busy: 10894 10895 /* Calculate allowed imbalance based on load */ 10896 imbalance = scale_load_down(NICE_0_LOAD) * 10897 (sd->imbalance_pct-100) / 100; 10898 10899 /* 10900 * When comparing groups across NUMA domains, it's possible for 10901 * the local domain to be very lightly loaded relative to the 10902 * remote domains but "imbalance" skews the comparison making 10903 * remote CPUs look much more favourable. When considering 10904 * cross-domain, add imbalance to the load on the remote node 10905 * and consider staying local. 10906 */ 10907 10908 if ((sd->flags & SD_NUMA) && 10909 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10910 return NULL; 10911 10912 /* 10913 * If the local group is less loaded than the selected 10914 * idlest group don't try and push any tasks. 10915 */ 10916 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10917 return NULL; 10918 10919 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10920 return NULL; 10921 break; 10922 10923 case group_imbalanced: 10924 case group_asym_packing: 10925 case group_smt_balance: 10926 /* Those type are not used in the slow wakeup path */ 10927 return NULL; 10928 10929 case group_misfit_task: 10930 /* Select group with the highest max capacity */ 10931 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10932 return NULL; 10933 break; 10934 10935 case group_has_spare: 10936 #ifdef CONFIG_NUMA 10937 if (sd->flags & SD_NUMA) { 10938 int imb_numa_nr = sd->imb_numa_nr; 10939 #ifdef CONFIG_NUMA_BALANCING 10940 int idlest_cpu; 10941 /* 10942 * If there is spare capacity at NUMA, try to select 10943 * the preferred node 10944 */ 10945 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10946 return NULL; 10947 10948 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10949 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10950 return idlest; 10951 #endif /* CONFIG_NUMA_BALANCING */ 10952 /* 10953 * Otherwise, keep the task close to the wakeup source 10954 * and improve locality if the number of running tasks 10955 * would remain below threshold where an imbalance is 10956 * allowed while accounting for the possibility the 10957 * task is pinned to a subset of CPUs. If there is a 10958 * real need of migration, periodic load balance will 10959 * take care of it. 10960 */ 10961 if (p->nr_cpus_allowed != NR_CPUS) { 10962 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10963 10964 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10965 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10966 } 10967 10968 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10969 if (!adjust_numa_imbalance(imbalance, 10970 local_sgs.sum_nr_running + 1, 10971 imb_numa_nr)) { 10972 return NULL; 10973 } 10974 } 10975 #endif /* CONFIG_NUMA */ 10976 10977 /* 10978 * Select group with highest number of idle CPUs. We could also 10979 * compare the utilization which is more stable but it can end 10980 * up that the group has less spare capacity but finally more 10981 * idle CPUs which means more opportunity to run task. 10982 */ 10983 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10984 return NULL; 10985 break; 10986 } 10987 10988 return idlest; 10989 } 10990 10991 static void update_idle_cpu_scan(struct lb_env *env, 10992 unsigned long sum_util) 10993 { 10994 struct sched_domain_shared *sd_share; 10995 int llc_weight, pct; 10996 u64 x, y, tmp; 10997 /* 10998 * Update the number of CPUs to scan in LLC domain, which could 10999 * be used as a hint in select_idle_cpu(). The update of sd_share 11000 * could be expensive because it is within a shared cache line. 11001 * So the write of this hint only occurs during periodic load 11002 * balancing, rather than CPU_NEWLY_IDLE, because the latter 11003 * can fire way more frequently than the former. 11004 */ 11005 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 11006 return; 11007 11008 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 11009 if (env->sd->span_weight != llc_weight) 11010 return; 11011 11012 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 11013 if (!sd_share) 11014 return; 11015 11016 /* 11017 * The number of CPUs to search drops as sum_util increases, when 11018 * sum_util hits 85% or above, the scan stops. 11019 * The reason to choose 85% as the threshold is because this is the 11020 * imbalance_pct(117) when a LLC sched group is overloaded. 11021 * 11022 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 11023 * and y'= y / SCHED_CAPACITY_SCALE 11024 * 11025 * x is the ratio of sum_util compared to the CPU capacity: 11026 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 11027 * y' is the ratio of CPUs to be scanned in the LLC domain, 11028 * and the number of CPUs to scan is calculated by: 11029 * 11030 * nr_scan = llc_weight * y' [2] 11031 * 11032 * When x hits the threshold of overloaded, AKA, when 11033 * x = 100 / pct, y drops to 0. According to [1], 11034 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 11035 * 11036 * Scale x by SCHED_CAPACITY_SCALE: 11037 * x' = sum_util / llc_weight; [3] 11038 * 11039 * and finally [1] becomes: 11040 * y = SCHED_CAPACITY_SCALE - 11041 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 11042 * 11043 */ 11044 /* equation [3] */ 11045 x = sum_util; 11046 do_div(x, llc_weight); 11047 11048 /* equation [4] */ 11049 pct = env->sd->imbalance_pct; 11050 tmp = x * x * pct * pct; 11051 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 11052 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 11053 y = SCHED_CAPACITY_SCALE - tmp; 11054 11055 /* equation [2] */ 11056 y *= llc_weight; 11057 do_div(y, SCHED_CAPACITY_SCALE); 11058 if ((int)y != sd_share->nr_idle_scan) 11059 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 11060 } 11061 11062 /** 11063 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 11064 * @env: The load balancing environment. 11065 * @sds: variable to hold the statistics for this sched_domain. 11066 */ 11067 11068 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 11069 { 11070 struct sched_group *sg = env->sd->groups; 11071 struct sg_lb_stats *local = &sds->local_stat; 11072 struct sg_lb_stats tmp_sgs; 11073 unsigned long sum_util = 0; 11074 bool sg_overloaded = 0, sg_overutilized = 0; 11075 11076 do { 11077 struct sg_lb_stats *sgs = &tmp_sgs; 11078 int local_group; 11079 11080 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 11081 if (local_group) { 11082 sds->local = sg; 11083 sgs = local; 11084 11085 if (env->idle != CPU_NEWLY_IDLE || 11086 time_after_eq(jiffies, sg->sgc->next_update)) 11087 update_group_capacity(env->sd, env->dst_cpu); 11088 } 11089 11090 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 11091 11092 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 11093 sds->busiest = sg; 11094 sds->busiest_stat = *sgs; 11095 } 11096 11097 /* Now, start updating sd_lb_stats */ 11098 sds->total_load += sgs->group_load; 11099 sds->total_capacity += sgs->group_capacity; 11100 11101 sum_util += sgs->group_util; 11102 sg = sg->next; 11103 } while (sg != env->sd->groups); 11104 11105 /* 11106 * Indicate that the child domain of the busiest group prefers tasks 11107 * go to a child's sibling domains first. NB the flags of a sched group 11108 * are those of the child domain. 11109 */ 11110 if (sds->busiest) 11111 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 11112 11113 11114 if (env->sd->flags & SD_NUMA) 11115 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 11116 11117 if (!env->sd->parent) { 11118 /* update overload indicator if we are at root domain */ 11119 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 11120 11121 /* Update over-utilization (tipping point, U >= 0) indicator */ 11122 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11123 } else if (sg_overutilized) { 11124 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11125 } 11126 11127 update_idle_cpu_scan(env, sum_util); 11128 } 11129 11130 /** 11131 * calculate_imbalance - Calculate the amount of imbalance present within the 11132 * groups of a given sched_domain during load balance. 11133 * @env: load balance environment 11134 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 11135 */ 11136 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 11137 { 11138 struct sg_lb_stats *local, *busiest; 11139 11140 local = &sds->local_stat; 11141 busiest = &sds->busiest_stat; 11142 11143 if (busiest->group_type == group_misfit_task) { 11144 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 11145 /* Set imbalance to allow misfit tasks to be balanced. */ 11146 env->migration_type = migrate_misfit; 11147 env->imbalance = 1; 11148 } else { 11149 /* 11150 * Set load imbalance to allow moving task from cpu 11151 * with reduced capacity. 11152 */ 11153 env->migration_type = migrate_load; 11154 env->imbalance = busiest->group_misfit_task_load; 11155 } 11156 return; 11157 } 11158 11159 if (busiest->group_type == group_asym_packing) { 11160 /* 11161 * In case of asym capacity, we will try to migrate all load to 11162 * the preferred CPU. 11163 */ 11164 env->migration_type = migrate_task; 11165 env->imbalance = busiest->sum_h_nr_running; 11166 return; 11167 } 11168 11169 if (busiest->group_type == group_smt_balance) { 11170 /* Reduce number of tasks sharing CPU capacity */ 11171 env->migration_type = migrate_task; 11172 env->imbalance = 1; 11173 return; 11174 } 11175 11176 if (busiest->group_type == group_imbalanced) { 11177 /* 11178 * In the group_imb case we cannot rely on group-wide averages 11179 * to ensure CPU-load equilibrium, try to move any task to fix 11180 * the imbalance. The next load balance will take care of 11181 * balancing back the system. 11182 */ 11183 env->migration_type = migrate_task; 11184 env->imbalance = 1; 11185 return; 11186 } 11187 11188 /* 11189 * Try to use spare capacity of local group without overloading it or 11190 * emptying busiest. 11191 */ 11192 if (local->group_type == group_has_spare) { 11193 if ((busiest->group_type > group_fully_busy) && 11194 !(env->sd->flags & SD_SHARE_LLC)) { 11195 /* 11196 * If busiest is overloaded, try to fill spare 11197 * capacity. This might end up creating spare capacity 11198 * in busiest or busiest still being overloaded but 11199 * there is no simple way to directly compute the 11200 * amount of load to migrate in order to balance the 11201 * system. 11202 */ 11203 env->migration_type = migrate_util; 11204 env->imbalance = max(local->group_capacity, local->group_util) - 11205 local->group_util; 11206 11207 /* 11208 * In some cases, the group's utilization is max or even 11209 * higher than capacity because of migrations but the 11210 * local CPU is (newly) idle. There is at least one 11211 * waiting task in this overloaded busiest group. Let's 11212 * try to pull it. 11213 */ 11214 if (env->idle && env->imbalance == 0) { 11215 env->migration_type = migrate_task; 11216 env->imbalance = 1; 11217 } 11218 11219 return; 11220 } 11221 11222 if (busiest->group_weight == 1 || sds->prefer_sibling) { 11223 /* 11224 * When prefer sibling, evenly spread running tasks on 11225 * groups. 11226 */ 11227 env->migration_type = migrate_task; 11228 env->imbalance = sibling_imbalance(env, sds, busiest, local); 11229 } else { 11230 11231 /* 11232 * If there is no overload, we just want to even the number of 11233 * idle CPUs. 11234 */ 11235 env->migration_type = migrate_task; 11236 env->imbalance = max_t(long, 0, 11237 (local->idle_cpus - busiest->idle_cpus)); 11238 } 11239 11240 #ifdef CONFIG_NUMA 11241 /* Consider allowing a small imbalance between NUMA groups */ 11242 if (env->sd->flags & SD_NUMA) { 11243 env->imbalance = adjust_numa_imbalance(env->imbalance, 11244 local->sum_nr_running + 1, 11245 env->sd->imb_numa_nr); 11246 } 11247 #endif 11248 11249 /* Number of tasks to move to restore balance */ 11250 env->imbalance >>= 1; 11251 11252 return; 11253 } 11254 11255 /* 11256 * Local is fully busy but has to take more load to relieve the 11257 * busiest group 11258 */ 11259 if (local->group_type < group_overloaded) { 11260 /* 11261 * Local will become overloaded so the avg_load metrics are 11262 * finally needed. 11263 */ 11264 11265 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 11266 local->group_capacity; 11267 11268 /* 11269 * If the local group is more loaded than the selected 11270 * busiest group don't try to pull any tasks. 11271 */ 11272 if (local->avg_load >= busiest->avg_load) { 11273 env->imbalance = 0; 11274 return; 11275 } 11276 11277 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 11278 sds->total_capacity; 11279 11280 /* 11281 * If the local group is more loaded than the average system 11282 * load, don't try to pull any tasks. 11283 */ 11284 if (local->avg_load >= sds->avg_load) { 11285 env->imbalance = 0; 11286 return; 11287 } 11288 11289 } 11290 11291 /* 11292 * Both group are or will become overloaded and we're trying to get all 11293 * the CPUs to the average_load, so we don't want to push ourselves 11294 * above the average load, nor do we wish to reduce the max loaded CPU 11295 * below the average load. At the same time, we also don't want to 11296 * reduce the group load below the group capacity. Thus we look for 11297 * the minimum possible imbalance. 11298 */ 11299 env->migration_type = migrate_load; 11300 env->imbalance = min( 11301 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 11302 (sds->avg_load - local->avg_load) * local->group_capacity 11303 ) / SCHED_CAPACITY_SCALE; 11304 } 11305 11306 /******* sched_balance_find_src_group() helpers end here *********************/ 11307 11308 /* 11309 * Decision matrix according to the local and busiest group type: 11310 * 11311 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 11312 * has_spare nr_idle balanced N/A N/A balanced balanced 11313 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 11314 * misfit_task force N/A N/A N/A N/A N/A 11315 * asym_packing force force N/A N/A force force 11316 * imbalanced force force N/A N/A force force 11317 * overloaded force force N/A N/A force avg_load 11318 * 11319 * N/A : Not Applicable because already filtered while updating 11320 * statistics. 11321 * balanced : The system is balanced for these 2 groups. 11322 * force : Calculate the imbalance as load migration is probably needed. 11323 * avg_load : Only if imbalance is significant enough. 11324 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 11325 * different in groups. 11326 */ 11327 11328 /** 11329 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 11330 * if there is an imbalance. 11331 * @env: The load balancing environment. 11332 * 11333 * Also calculates the amount of runnable load which should be moved 11334 * to restore balance. 11335 * 11336 * Return: - The busiest group if imbalance exists. 11337 */ 11338 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 11339 { 11340 struct sg_lb_stats *local, *busiest; 11341 struct sd_lb_stats sds; 11342 11343 init_sd_lb_stats(&sds); 11344 11345 /* 11346 * Compute the various statistics relevant for load balancing at 11347 * this level. 11348 */ 11349 update_sd_lb_stats(env, &sds); 11350 11351 /* There is no busy sibling group to pull tasks from */ 11352 if (!sds.busiest) 11353 goto out_balanced; 11354 11355 busiest = &sds.busiest_stat; 11356 11357 /* Misfit tasks should be dealt with regardless of the avg load */ 11358 if (busiest->group_type == group_misfit_task) 11359 goto force_balance; 11360 11361 if (!is_rd_overutilized(env->dst_rq->rd) && 11362 rcu_dereference(env->dst_rq->rd->pd)) 11363 goto out_balanced; 11364 11365 /* ASYM feature bypasses nice load balance check */ 11366 if (busiest->group_type == group_asym_packing) 11367 goto force_balance; 11368 11369 /* 11370 * If the busiest group is imbalanced the below checks don't 11371 * work because they assume all things are equal, which typically 11372 * isn't true due to cpus_ptr constraints and the like. 11373 */ 11374 if (busiest->group_type == group_imbalanced) 11375 goto force_balance; 11376 11377 local = &sds.local_stat; 11378 /* 11379 * If the local group is busier than the selected busiest group 11380 * don't try and pull any tasks. 11381 */ 11382 if (local->group_type > busiest->group_type) 11383 goto out_balanced; 11384 11385 /* 11386 * When groups are overloaded, use the avg_load to ensure fairness 11387 * between tasks. 11388 */ 11389 if (local->group_type == group_overloaded) { 11390 /* 11391 * If the local group is more loaded than the selected 11392 * busiest group don't try to pull any tasks. 11393 */ 11394 if (local->avg_load >= busiest->avg_load) 11395 goto out_balanced; 11396 11397 /* XXX broken for overlapping NUMA groups */ 11398 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 11399 sds.total_capacity; 11400 11401 /* 11402 * Don't pull any tasks if this group is already above the 11403 * domain average load. 11404 */ 11405 if (local->avg_load >= sds.avg_load) 11406 goto out_balanced; 11407 11408 /* 11409 * If the busiest group is more loaded, use imbalance_pct to be 11410 * conservative. 11411 */ 11412 if (100 * busiest->avg_load <= 11413 env->sd->imbalance_pct * local->avg_load) 11414 goto out_balanced; 11415 } 11416 11417 /* 11418 * Try to move all excess tasks to a sibling domain of the busiest 11419 * group's child domain. 11420 */ 11421 if (sds.prefer_sibling && local->group_type == group_has_spare && 11422 sibling_imbalance(env, &sds, busiest, local) > 1) 11423 goto force_balance; 11424 11425 if (busiest->group_type != group_overloaded) { 11426 if (!env->idle) { 11427 /* 11428 * If the busiest group is not overloaded (and as a 11429 * result the local one too) but this CPU is already 11430 * busy, let another idle CPU try to pull task. 11431 */ 11432 goto out_balanced; 11433 } 11434 11435 if (busiest->group_type == group_smt_balance && 11436 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 11437 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 11438 goto force_balance; 11439 } 11440 11441 if (busiest->group_weight > 1 && 11442 local->idle_cpus <= (busiest->idle_cpus + 1)) { 11443 /* 11444 * If the busiest group is not overloaded 11445 * and there is no imbalance between this and busiest 11446 * group wrt idle CPUs, it is balanced. The imbalance 11447 * becomes significant if the diff is greater than 1 11448 * otherwise we might end up to just move the imbalance 11449 * on another group. Of course this applies only if 11450 * there is more than 1 CPU per group. 11451 */ 11452 goto out_balanced; 11453 } 11454 11455 if (busiest->sum_h_nr_running == 1) { 11456 /* 11457 * busiest doesn't have any tasks waiting to run 11458 */ 11459 goto out_balanced; 11460 } 11461 } 11462 11463 force_balance: 11464 /* Looks like there is an imbalance. Compute it */ 11465 calculate_imbalance(env, &sds); 11466 return env->imbalance ? sds.busiest : NULL; 11467 11468 out_balanced: 11469 env->imbalance = 0; 11470 return NULL; 11471 } 11472 11473 /* 11474 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11475 */ 11476 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11477 struct sched_group *group) 11478 { 11479 struct rq *busiest = NULL, *rq; 11480 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11481 unsigned int busiest_nr = 0; 11482 int i; 11483 11484 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11485 unsigned long capacity, load, util; 11486 unsigned int nr_running; 11487 enum fbq_type rt; 11488 11489 rq = cpu_rq(i); 11490 rt = fbq_classify_rq(rq); 11491 11492 /* 11493 * We classify groups/runqueues into three groups: 11494 * - regular: there are !numa tasks 11495 * - remote: there are numa tasks that run on the 'wrong' node 11496 * - all: there is no distinction 11497 * 11498 * In order to avoid migrating ideally placed numa tasks, 11499 * ignore those when there's better options. 11500 * 11501 * If we ignore the actual busiest queue to migrate another 11502 * task, the next balance pass can still reduce the busiest 11503 * queue by moving tasks around inside the node. 11504 * 11505 * If we cannot move enough load due to this classification 11506 * the next pass will adjust the group classification and 11507 * allow migration of more tasks. 11508 * 11509 * Both cases only affect the total convergence complexity. 11510 */ 11511 if (rt > env->fbq_type) 11512 continue; 11513 11514 nr_running = rq->cfs.h_nr_runnable; 11515 if (!nr_running) 11516 continue; 11517 11518 capacity = capacity_of(i); 11519 11520 /* 11521 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11522 * eventually lead to active_balancing high->low capacity. 11523 * Higher per-CPU capacity is considered better than balancing 11524 * average load. 11525 */ 11526 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11527 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11528 nr_running == 1) 11529 continue; 11530 11531 /* 11532 * Make sure we only pull tasks from a CPU of lower priority 11533 * when balancing between SMT siblings. 11534 * 11535 * If balancing between cores, let lower priority CPUs help 11536 * SMT cores with more than one busy sibling. 11537 */ 11538 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11539 continue; 11540 11541 switch (env->migration_type) { 11542 case migrate_load: 11543 /* 11544 * When comparing with load imbalance, use cpu_load() 11545 * which is not scaled with the CPU capacity. 11546 */ 11547 load = cpu_load(rq); 11548 11549 if (nr_running == 1 && load > env->imbalance && 11550 !check_cpu_capacity(rq, env->sd)) 11551 break; 11552 11553 /* 11554 * For the load comparisons with the other CPUs, 11555 * consider the cpu_load() scaled with the CPU 11556 * capacity, so that the load can be moved away 11557 * from the CPU that is potentially running at a 11558 * lower capacity. 11559 * 11560 * Thus we're looking for max(load_i / capacity_i), 11561 * crosswise multiplication to rid ourselves of the 11562 * division works out to: 11563 * load_i * capacity_j > load_j * capacity_i; 11564 * where j is our previous maximum. 11565 */ 11566 if (load * busiest_capacity > busiest_load * capacity) { 11567 busiest_load = load; 11568 busiest_capacity = capacity; 11569 busiest = rq; 11570 } 11571 break; 11572 11573 case migrate_util: 11574 util = cpu_util_cfs_boost(i); 11575 11576 /* 11577 * Don't try to pull utilization from a CPU with one 11578 * running task. Whatever its utilization, we will fail 11579 * detach the task. 11580 */ 11581 if (nr_running <= 1) 11582 continue; 11583 11584 if (busiest_util < util) { 11585 busiest_util = util; 11586 busiest = rq; 11587 } 11588 break; 11589 11590 case migrate_task: 11591 if (busiest_nr < nr_running) { 11592 busiest_nr = nr_running; 11593 busiest = rq; 11594 } 11595 break; 11596 11597 case migrate_misfit: 11598 /* 11599 * For ASYM_CPUCAPACITY domains with misfit tasks we 11600 * simply seek the "biggest" misfit task. 11601 */ 11602 if (rq->misfit_task_load > busiest_load) { 11603 busiest_load = rq->misfit_task_load; 11604 busiest = rq; 11605 } 11606 11607 break; 11608 11609 } 11610 } 11611 11612 return busiest; 11613 } 11614 11615 /* 11616 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11617 * so long as it is large enough. 11618 */ 11619 #define MAX_PINNED_INTERVAL 512 11620 11621 static inline bool 11622 asym_active_balance(struct lb_env *env) 11623 { 11624 /* 11625 * ASYM_PACKING needs to force migrate tasks from busy but lower 11626 * priority CPUs in order to pack all tasks in the highest priority 11627 * CPUs. When done between cores, do it only if the whole core if the 11628 * whole core is idle. 11629 * 11630 * If @env::src_cpu is an SMT core with busy siblings, let 11631 * the lower priority @env::dst_cpu help it. Do not follow 11632 * CPU priority. 11633 */ 11634 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11635 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11636 !sched_use_asym_prio(env->sd, env->src_cpu)); 11637 } 11638 11639 static inline bool 11640 imbalanced_active_balance(struct lb_env *env) 11641 { 11642 struct sched_domain *sd = env->sd; 11643 11644 /* 11645 * The imbalanced case includes the case of pinned tasks preventing a fair 11646 * distribution of the load on the system but also the even distribution of the 11647 * threads on a system with spare capacity 11648 */ 11649 if ((env->migration_type == migrate_task) && 11650 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11651 return 1; 11652 11653 return 0; 11654 } 11655 11656 static int need_active_balance(struct lb_env *env) 11657 { 11658 struct sched_domain *sd = env->sd; 11659 11660 if (asym_active_balance(env)) 11661 return 1; 11662 11663 if (imbalanced_active_balance(env)) 11664 return 1; 11665 11666 /* 11667 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11668 * It's worth migrating the task if the src_cpu's capacity is reduced 11669 * because of other sched_class or IRQs if more capacity stays 11670 * available on dst_cpu. 11671 */ 11672 if (env->idle && 11673 (env->src_rq->cfs.h_nr_runnable == 1)) { 11674 if ((check_cpu_capacity(env->src_rq, sd)) && 11675 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11676 return 1; 11677 } 11678 11679 if (env->migration_type == migrate_misfit) 11680 return 1; 11681 11682 return 0; 11683 } 11684 11685 static int active_load_balance_cpu_stop(void *data); 11686 11687 static int should_we_balance(struct lb_env *env) 11688 { 11689 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11690 struct sched_group *sg = env->sd->groups; 11691 int cpu, idle_smt = -1; 11692 11693 /* 11694 * Ensure the balancing environment is consistent; can happen 11695 * when the softirq triggers 'during' hotplug. 11696 */ 11697 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11698 return 0; 11699 11700 /* 11701 * In the newly idle case, we will allow all the CPUs 11702 * to do the newly idle load balance. 11703 * 11704 * However, we bail out if we already have tasks or a wakeup pending, 11705 * to optimize wakeup latency. 11706 */ 11707 if (env->idle == CPU_NEWLY_IDLE) { 11708 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11709 return 0; 11710 return 1; 11711 } 11712 11713 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11714 /* Try to find first idle CPU */ 11715 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11716 if (!idle_cpu(cpu)) 11717 continue; 11718 11719 /* 11720 * Don't balance to idle SMT in busy core right away when 11721 * balancing cores, but remember the first idle SMT CPU for 11722 * later consideration. Find CPU on an idle core first. 11723 */ 11724 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11725 if (idle_smt == -1) 11726 idle_smt = cpu; 11727 /* 11728 * If the core is not idle, and first SMT sibling which is 11729 * idle has been found, then its not needed to check other 11730 * SMT siblings for idleness: 11731 */ 11732 #ifdef CONFIG_SCHED_SMT 11733 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11734 #endif 11735 continue; 11736 } 11737 11738 /* 11739 * Are we the first idle core in a non-SMT domain or higher, 11740 * or the first idle CPU in a SMT domain? 11741 */ 11742 return cpu == env->dst_cpu; 11743 } 11744 11745 /* Are we the first idle CPU with busy siblings? */ 11746 if (idle_smt != -1) 11747 return idle_smt == env->dst_cpu; 11748 11749 /* Are we the first CPU of this group ? */ 11750 return group_balance_cpu(sg) == env->dst_cpu; 11751 } 11752 11753 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd, 11754 enum cpu_idle_type idle) 11755 { 11756 if (!schedstat_enabled()) 11757 return; 11758 11759 switch (env->migration_type) { 11760 case migrate_load: 11761 __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance); 11762 break; 11763 case migrate_util: 11764 __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance); 11765 break; 11766 case migrate_task: 11767 __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance); 11768 break; 11769 case migrate_misfit: 11770 __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance); 11771 break; 11772 } 11773 } 11774 11775 /* 11776 * This flag serializes load-balancing passes over large domains 11777 * (above the NODE topology level) - only one load-balancing instance 11778 * may run at a time, to reduce overhead on very large systems with 11779 * lots of CPUs and large NUMA distances. 11780 * 11781 * - Note that load-balancing passes triggered while another one 11782 * is executing are skipped and not re-tried. 11783 * 11784 * - Also note that this does not serialize rebalance_domains() 11785 * execution, as non-SD_SERIALIZE domains will still be 11786 * load-balanced in parallel. 11787 */ 11788 static atomic_t sched_balance_running = ATOMIC_INIT(0); 11789 11790 /* 11791 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11792 * tasks if there is an imbalance. 11793 */ 11794 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11795 struct sched_domain *sd, enum cpu_idle_type idle, 11796 int *continue_balancing) 11797 { 11798 int ld_moved, cur_ld_moved, active_balance = 0; 11799 struct sched_domain *sd_parent = sd->parent; 11800 struct sched_group *group; 11801 struct rq *busiest; 11802 struct rq_flags rf; 11803 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11804 struct lb_env env = { 11805 .sd = sd, 11806 .dst_cpu = this_cpu, 11807 .dst_rq = this_rq, 11808 .dst_grpmask = group_balance_mask(sd->groups), 11809 .idle = idle, 11810 .loop_break = SCHED_NR_MIGRATE_BREAK, 11811 .cpus = cpus, 11812 .fbq_type = all, 11813 .tasks = LIST_HEAD_INIT(env.tasks), 11814 }; 11815 bool need_unlock = false; 11816 11817 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11818 11819 schedstat_inc(sd->lb_count[idle]); 11820 11821 redo: 11822 if (!should_we_balance(&env)) { 11823 *continue_balancing = 0; 11824 goto out_balanced; 11825 } 11826 11827 if (!need_unlock && (sd->flags & SD_SERIALIZE)) { 11828 int zero = 0; 11829 if (!atomic_try_cmpxchg_acquire(&sched_balance_running, &zero, 1)) 11830 goto out_balanced; 11831 11832 need_unlock = true; 11833 } 11834 11835 group = sched_balance_find_src_group(&env); 11836 if (!group) { 11837 schedstat_inc(sd->lb_nobusyg[idle]); 11838 goto out_balanced; 11839 } 11840 11841 busiest = sched_balance_find_src_rq(&env, group); 11842 if (!busiest) { 11843 schedstat_inc(sd->lb_nobusyq[idle]); 11844 goto out_balanced; 11845 } 11846 11847 WARN_ON_ONCE(busiest == env.dst_rq); 11848 11849 update_lb_imbalance_stat(&env, sd, idle); 11850 11851 env.src_cpu = busiest->cpu; 11852 env.src_rq = busiest; 11853 11854 ld_moved = 0; 11855 /* Clear this flag as soon as we find a pullable task */ 11856 env.flags |= LBF_ALL_PINNED; 11857 if (busiest->nr_running > 1) { 11858 /* 11859 * Attempt to move tasks. If sched_balance_find_src_group has found 11860 * an imbalance but busiest->nr_running <= 1, the group is 11861 * still unbalanced. ld_moved simply stays zero, so it is 11862 * correctly treated as an imbalance. 11863 */ 11864 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11865 11866 more_balance: 11867 rq_lock_irqsave(busiest, &rf); 11868 update_rq_clock(busiest); 11869 11870 /* 11871 * cur_ld_moved - load moved in current iteration 11872 * ld_moved - cumulative load moved across iterations 11873 */ 11874 cur_ld_moved = detach_tasks(&env); 11875 11876 /* 11877 * We've detached some tasks from busiest_rq. Every 11878 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11879 * unlock busiest->lock, and we are able to be sure 11880 * that nobody can manipulate the tasks in parallel. 11881 * See task_rq_lock() family for the details. 11882 */ 11883 11884 rq_unlock(busiest, &rf); 11885 11886 if (cur_ld_moved) { 11887 attach_tasks(&env); 11888 ld_moved += cur_ld_moved; 11889 } 11890 11891 local_irq_restore(rf.flags); 11892 11893 if (env.flags & LBF_NEED_BREAK) { 11894 env.flags &= ~LBF_NEED_BREAK; 11895 goto more_balance; 11896 } 11897 11898 /* 11899 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11900 * us and move them to an alternate dst_cpu in our sched_group 11901 * where they can run. The upper limit on how many times we 11902 * iterate on same src_cpu is dependent on number of CPUs in our 11903 * sched_group. 11904 * 11905 * This changes load balance semantics a bit on who can move 11906 * load to a given_cpu. In addition to the given_cpu itself 11907 * (or a ilb_cpu acting on its behalf where given_cpu is 11908 * nohz-idle), we now have balance_cpu in a position to move 11909 * load to given_cpu. In rare situations, this may cause 11910 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11911 * _independently_ and at _same_ time to move some load to 11912 * given_cpu) causing excess load to be moved to given_cpu. 11913 * This however should not happen so much in practice and 11914 * moreover subsequent load balance cycles should correct the 11915 * excess load moved. 11916 */ 11917 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11918 11919 /* Prevent to re-select dst_cpu via env's CPUs */ 11920 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11921 11922 env.dst_rq = cpu_rq(env.new_dst_cpu); 11923 env.dst_cpu = env.new_dst_cpu; 11924 env.flags &= ~LBF_DST_PINNED; 11925 env.loop = 0; 11926 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11927 11928 /* 11929 * Go back to "more_balance" rather than "redo" since we 11930 * need to continue with same src_cpu. 11931 */ 11932 goto more_balance; 11933 } 11934 11935 /* 11936 * We failed to reach balance because of affinity. 11937 */ 11938 if (sd_parent) { 11939 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11940 11941 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11942 *group_imbalance = 1; 11943 } 11944 11945 /* All tasks on this runqueue were pinned by CPU affinity */ 11946 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11947 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11948 /* 11949 * Attempting to continue load balancing at the current 11950 * sched_domain level only makes sense if there are 11951 * active CPUs remaining as possible busiest CPUs to 11952 * pull load from which are not contained within the 11953 * destination group that is receiving any migrated 11954 * load. 11955 */ 11956 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11957 env.loop = 0; 11958 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11959 goto redo; 11960 } 11961 goto out_all_pinned; 11962 } 11963 } 11964 11965 if (!ld_moved) { 11966 schedstat_inc(sd->lb_failed[idle]); 11967 /* 11968 * Increment the failure counter only on periodic balance. 11969 * We do not want newidle balance, which can be very 11970 * frequent, pollute the failure counter causing 11971 * excessive cache_hot migrations and active balances. 11972 * 11973 * Similarly for migration_misfit which is not related to 11974 * load/util migration, don't pollute nr_balance_failed. 11975 */ 11976 if (idle != CPU_NEWLY_IDLE && 11977 env.migration_type != migrate_misfit) 11978 sd->nr_balance_failed++; 11979 11980 if (need_active_balance(&env)) { 11981 unsigned long flags; 11982 11983 raw_spin_rq_lock_irqsave(busiest, flags); 11984 11985 /* 11986 * Don't kick the active_load_balance_cpu_stop, 11987 * if the curr task on busiest CPU can't be 11988 * moved to this_cpu: 11989 */ 11990 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11991 raw_spin_rq_unlock_irqrestore(busiest, flags); 11992 goto out_one_pinned; 11993 } 11994 11995 /* Record that we found at least one task that could run on this_cpu */ 11996 env.flags &= ~LBF_ALL_PINNED; 11997 11998 /* 11999 * ->active_balance synchronizes accesses to 12000 * ->active_balance_work. Once set, it's cleared 12001 * only after active load balance is finished. 12002 */ 12003 if (!busiest->active_balance) { 12004 busiest->active_balance = 1; 12005 busiest->push_cpu = this_cpu; 12006 active_balance = 1; 12007 } 12008 12009 preempt_disable(); 12010 raw_spin_rq_unlock_irqrestore(busiest, flags); 12011 if (active_balance) { 12012 stop_one_cpu_nowait(cpu_of(busiest), 12013 active_load_balance_cpu_stop, busiest, 12014 &busiest->active_balance_work); 12015 } 12016 preempt_enable(); 12017 } 12018 } else { 12019 sd->nr_balance_failed = 0; 12020 } 12021 12022 if (likely(!active_balance) || need_active_balance(&env)) { 12023 /* We were unbalanced, so reset the balancing interval */ 12024 sd->balance_interval = sd->min_interval; 12025 } 12026 12027 goto out; 12028 12029 out_balanced: 12030 /* 12031 * We reach balance although we may have faced some affinity 12032 * constraints. Clear the imbalance flag only if other tasks got 12033 * a chance to move and fix the imbalance. 12034 */ 12035 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 12036 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 12037 12038 if (*group_imbalance) 12039 *group_imbalance = 0; 12040 } 12041 12042 out_all_pinned: 12043 /* 12044 * We reach balance because all tasks are pinned at this level so 12045 * we can't migrate them. Let the imbalance flag set so parent level 12046 * can try to migrate them. 12047 */ 12048 schedstat_inc(sd->lb_balanced[idle]); 12049 12050 sd->nr_balance_failed = 0; 12051 12052 out_one_pinned: 12053 ld_moved = 0; 12054 12055 /* 12056 * sched_balance_newidle() disregards balance intervals, so we could 12057 * repeatedly reach this code, which would lead to balance_interval 12058 * skyrocketing in a short amount of time. Skip the balance_interval 12059 * increase logic to avoid that. 12060 * 12061 * Similarly misfit migration which is not necessarily an indication of 12062 * the system being busy and requires lb to backoff to let it settle 12063 * down. 12064 */ 12065 if (env.idle == CPU_NEWLY_IDLE || 12066 env.migration_type == migrate_misfit) 12067 goto out; 12068 12069 /* tune up the balancing interval */ 12070 if ((env.flags & LBF_ALL_PINNED && 12071 sd->balance_interval < MAX_PINNED_INTERVAL) || 12072 sd->balance_interval < sd->max_interval) 12073 sd->balance_interval *= 2; 12074 out: 12075 if (need_unlock) 12076 atomic_set_release(&sched_balance_running, 0); 12077 12078 return ld_moved; 12079 } 12080 12081 static inline unsigned long 12082 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 12083 { 12084 unsigned long interval = sd->balance_interval; 12085 12086 if (cpu_busy) 12087 interval *= sd->busy_factor; 12088 12089 /* scale ms to jiffies */ 12090 interval = msecs_to_jiffies(interval); 12091 12092 /* 12093 * Reduce likelihood of busy balancing at higher domains racing with 12094 * balancing at lower domains by preventing their balancing periods 12095 * from being multiples of each other. 12096 */ 12097 if (cpu_busy) 12098 interval -= 1; 12099 12100 interval = clamp(interval, 1UL, max_load_balance_interval); 12101 12102 return interval; 12103 } 12104 12105 static inline void 12106 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 12107 { 12108 unsigned long interval, next; 12109 12110 /* used by idle balance, so cpu_busy = 0 */ 12111 interval = get_sd_balance_interval(sd, 0); 12112 next = sd->last_balance + interval; 12113 12114 if (time_after(*next_balance, next)) 12115 *next_balance = next; 12116 } 12117 12118 /* 12119 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 12120 * running tasks off the busiest CPU onto idle CPUs. It requires at 12121 * least 1 task to be running on each physical CPU where possible, and 12122 * avoids physical / logical imbalances. 12123 */ 12124 static int active_load_balance_cpu_stop(void *data) 12125 { 12126 struct rq *busiest_rq = data; 12127 int busiest_cpu = cpu_of(busiest_rq); 12128 int target_cpu = busiest_rq->push_cpu; 12129 struct rq *target_rq = cpu_rq(target_cpu); 12130 struct sched_domain *sd; 12131 struct task_struct *p = NULL; 12132 struct rq_flags rf; 12133 12134 rq_lock_irq(busiest_rq, &rf); 12135 /* 12136 * Between queueing the stop-work and running it is a hole in which 12137 * CPUs can become inactive. We should not move tasks from or to 12138 * inactive CPUs. 12139 */ 12140 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 12141 goto out_unlock; 12142 12143 /* Make sure the requested CPU hasn't gone down in the meantime: */ 12144 if (unlikely(busiest_cpu != smp_processor_id() || 12145 !busiest_rq->active_balance)) 12146 goto out_unlock; 12147 12148 /* Is there any task to move? */ 12149 if (busiest_rq->nr_running <= 1) 12150 goto out_unlock; 12151 12152 /* 12153 * This condition is "impossible", if it occurs 12154 * we need to fix it. Originally reported by 12155 * Bjorn Helgaas on a 128-CPU setup. 12156 */ 12157 WARN_ON_ONCE(busiest_rq == target_rq); 12158 12159 /* Search for an sd spanning us and the target CPU. */ 12160 rcu_read_lock(); 12161 for_each_domain(target_cpu, sd) { 12162 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 12163 break; 12164 } 12165 12166 if (likely(sd)) { 12167 struct lb_env env = { 12168 .sd = sd, 12169 .dst_cpu = target_cpu, 12170 .dst_rq = target_rq, 12171 .src_cpu = busiest_rq->cpu, 12172 .src_rq = busiest_rq, 12173 .idle = CPU_IDLE, 12174 .flags = LBF_ACTIVE_LB, 12175 }; 12176 12177 schedstat_inc(sd->alb_count); 12178 update_rq_clock(busiest_rq); 12179 12180 p = detach_one_task(&env); 12181 if (p) { 12182 schedstat_inc(sd->alb_pushed); 12183 /* Active balancing done, reset the failure counter. */ 12184 sd->nr_balance_failed = 0; 12185 } else { 12186 schedstat_inc(sd->alb_failed); 12187 } 12188 } 12189 rcu_read_unlock(); 12190 out_unlock: 12191 busiest_rq->active_balance = 0; 12192 rq_unlock(busiest_rq, &rf); 12193 12194 if (p) 12195 attach_one_task(target_rq, p); 12196 12197 local_irq_enable(); 12198 12199 return 0; 12200 } 12201 12202 /* 12203 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 12204 * This trades load-balance latency on larger machines for less cross talk. 12205 */ 12206 void update_max_interval(void) 12207 { 12208 max_load_balance_interval = HZ*num_online_cpus()/10; 12209 } 12210 12211 static inline void update_newidle_stats(struct sched_domain *sd, unsigned int success) 12212 { 12213 sd->newidle_call++; 12214 sd->newidle_success += success; 12215 12216 if (sd->newidle_call >= 1024) { 12217 sd->newidle_ratio = sd->newidle_success; 12218 sd->newidle_call /= 2; 12219 sd->newidle_success /= 2; 12220 } 12221 } 12222 12223 static inline bool 12224 update_newidle_cost(struct sched_domain *sd, u64 cost, unsigned int success) 12225 { 12226 unsigned long next_decay = sd->last_decay_max_lb_cost + HZ; 12227 unsigned long now = jiffies; 12228 12229 if (cost) 12230 update_newidle_stats(sd, success); 12231 12232 if (cost > sd->max_newidle_lb_cost) { 12233 /* 12234 * Track max cost of a domain to make sure to not delay the 12235 * next wakeup on the CPU. 12236 */ 12237 sd->max_newidle_lb_cost = cost; 12238 sd->last_decay_max_lb_cost = now; 12239 12240 } else if (time_after(now, next_decay)) { 12241 /* 12242 * Decay the newidle max times by ~1% per second to ensure that 12243 * it is not outdated and the current max cost is actually 12244 * shorter. 12245 */ 12246 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 12247 sd->last_decay_max_lb_cost = now; 12248 return true; 12249 } 12250 12251 return false; 12252 } 12253 12254 /* 12255 * It checks each scheduling domain to see if it is due to be balanced, 12256 * and initiates a balancing operation if so. 12257 * 12258 * Balancing parameters are set up in init_sched_domains. 12259 */ 12260 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 12261 { 12262 int continue_balancing = 1; 12263 int cpu = rq->cpu; 12264 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 12265 unsigned long interval; 12266 struct sched_domain *sd; 12267 /* Earliest time when we have to do rebalance again */ 12268 unsigned long next_balance = jiffies + 60*HZ; 12269 int update_next_balance = 0; 12270 int need_decay = 0; 12271 u64 max_cost = 0; 12272 12273 rcu_read_lock(); 12274 for_each_domain(cpu, sd) { 12275 /* 12276 * Decay the newidle max times here because this is a regular 12277 * visit to all the domains. 12278 */ 12279 need_decay = update_newidle_cost(sd, 0, 0); 12280 max_cost += sd->max_newidle_lb_cost; 12281 12282 /* 12283 * Stop the load balance at this level. There is another 12284 * CPU in our sched group which is doing load balancing more 12285 * actively. 12286 */ 12287 if (!continue_balancing) { 12288 if (need_decay) 12289 continue; 12290 break; 12291 } 12292 12293 interval = get_sd_balance_interval(sd, busy); 12294 if (time_after_eq(jiffies, sd->last_balance + interval)) { 12295 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 12296 /* 12297 * The LBF_DST_PINNED logic could have changed 12298 * env->dst_cpu, so we can't know our idle 12299 * state even if we migrated tasks. Update it. 12300 */ 12301 idle = idle_cpu(cpu); 12302 busy = !idle && !sched_idle_cpu(cpu); 12303 } 12304 sd->last_balance = jiffies; 12305 interval = get_sd_balance_interval(sd, busy); 12306 } 12307 if (time_after(next_balance, sd->last_balance + interval)) { 12308 next_balance = sd->last_balance + interval; 12309 update_next_balance = 1; 12310 } 12311 } 12312 if (need_decay) { 12313 /* 12314 * Ensure the rq-wide value also decays but keep it at a 12315 * reasonable floor to avoid funnies with rq->avg_idle. 12316 */ 12317 rq->max_idle_balance_cost = 12318 max((u64)sysctl_sched_migration_cost, max_cost); 12319 } 12320 rcu_read_unlock(); 12321 12322 /* 12323 * next_balance will be updated only when there is a need. 12324 * When the cpu is attached to null domain for ex, it will not be 12325 * updated. 12326 */ 12327 if (likely(update_next_balance)) 12328 rq->next_balance = next_balance; 12329 12330 } 12331 12332 static inline int on_null_domain(struct rq *rq) 12333 { 12334 return unlikely(!rcu_dereference_sched(rq->sd)); 12335 } 12336 12337 #ifdef CONFIG_NO_HZ_COMMON 12338 /* 12339 * NOHZ idle load balancing (ILB) details: 12340 * 12341 * - When one of the busy CPUs notices that there may be an idle rebalancing 12342 * needed, they will kick the idle load balancer, which then does idle 12343 * load balancing for all the idle CPUs. 12344 */ 12345 static inline int find_new_ilb(void) 12346 { 12347 const struct cpumask *hk_mask; 12348 int ilb_cpu; 12349 12350 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 12351 12352 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 12353 12354 if (ilb_cpu == smp_processor_id()) 12355 continue; 12356 12357 if (idle_cpu(ilb_cpu)) 12358 return ilb_cpu; 12359 } 12360 12361 return -1; 12362 } 12363 12364 /* 12365 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 12366 * SMP function call (IPI). 12367 * 12368 * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set 12369 * (if there is one). 12370 */ 12371 static void kick_ilb(unsigned int flags) 12372 { 12373 int ilb_cpu; 12374 12375 /* 12376 * Increase nohz.next_balance only when if full ilb is triggered but 12377 * not if we only update stats. 12378 */ 12379 if (flags & NOHZ_BALANCE_KICK) 12380 nohz.next_balance = jiffies+1; 12381 12382 ilb_cpu = find_new_ilb(); 12383 if (ilb_cpu < 0) 12384 return; 12385 12386 /* 12387 * Don't bother if no new NOHZ balance work items for ilb_cpu, 12388 * i.e. all bits in flags are already set in ilb_cpu. 12389 */ 12390 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) 12391 return; 12392 12393 /* 12394 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 12395 * the first flag owns it; cleared by nohz_csd_func(). 12396 */ 12397 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 12398 if (flags & NOHZ_KICK_MASK) 12399 return; 12400 12401 /* 12402 * This way we generate an IPI on the target CPU which 12403 * is idle, and the softirq performing NOHZ idle load balancing 12404 * will be run before returning from the IPI. 12405 */ 12406 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 12407 } 12408 12409 /* 12410 * Current decision point for kicking the idle load balancer in the presence 12411 * of idle CPUs in the system. 12412 */ 12413 static void nohz_balancer_kick(struct rq *rq) 12414 { 12415 unsigned long now = jiffies; 12416 struct sched_domain_shared *sds; 12417 struct sched_domain *sd; 12418 int nr_busy, i, cpu = rq->cpu; 12419 unsigned int flags = 0; 12420 12421 if (unlikely(rq->idle_balance)) 12422 return; 12423 12424 /* 12425 * We may be recently in ticked or tickless idle mode. At the first 12426 * busy tick after returning from idle, we will update the busy stats. 12427 */ 12428 nohz_balance_exit_idle(rq); 12429 12430 /* 12431 * None are in tickless mode and hence no need for NOHZ idle load 12432 * balancing: 12433 */ 12434 if (likely(!atomic_read(&nohz.nr_cpus))) 12435 return; 12436 12437 if (READ_ONCE(nohz.has_blocked) && 12438 time_after(now, READ_ONCE(nohz.next_blocked))) 12439 flags = NOHZ_STATS_KICK; 12440 12441 if (time_before(now, nohz.next_balance)) 12442 goto out; 12443 12444 if (rq->nr_running >= 2) { 12445 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12446 goto out; 12447 } 12448 12449 rcu_read_lock(); 12450 12451 sd = rcu_dereference(rq->sd); 12452 if (sd) { 12453 /* 12454 * If there's a runnable CFS task and the current CPU has reduced 12455 * capacity, kick the ILB to see if there's a better CPU to run on: 12456 */ 12457 if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) { 12458 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12459 goto unlock; 12460 } 12461 } 12462 12463 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 12464 if (sd) { 12465 /* 12466 * When ASYM_PACKING; see if there's a more preferred CPU 12467 * currently idle; in which case, kick the ILB to move tasks 12468 * around. 12469 * 12470 * When balancing between cores, all the SMT siblings of the 12471 * preferred CPU must be idle. 12472 */ 12473 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 12474 if (sched_asym(sd, i, cpu)) { 12475 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12476 goto unlock; 12477 } 12478 } 12479 } 12480 12481 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 12482 if (sd) { 12483 /* 12484 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 12485 * to run the misfit task on. 12486 */ 12487 if (check_misfit_status(rq)) { 12488 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12489 goto unlock; 12490 } 12491 12492 /* 12493 * For asymmetric systems, we do not want to nicely balance 12494 * cache use, instead we want to embrace asymmetry and only 12495 * ensure tasks have enough CPU capacity. 12496 * 12497 * Skip the LLC logic because it's not relevant in that case. 12498 */ 12499 goto unlock; 12500 } 12501 12502 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 12503 if (sds) { 12504 /* 12505 * If there is an imbalance between LLC domains (IOW we could 12506 * increase the overall cache utilization), we need a less-loaded LLC 12507 * domain to pull some load from. Likewise, we may need to spread 12508 * load within the current LLC domain (e.g. packed SMT cores but 12509 * other CPUs are idle). We can't really know from here how busy 12510 * the others are - so just get a NOHZ balance going if it looks 12511 * like this LLC domain has tasks we could move. 12512 */ 12513 nr_busy = atomic_read(&sds->nr_busy_cpus); 12514 if (nr_busy > 1) { 12515 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12516 goto unlock; 12517 } 12518 } 12519 unlock: 12520 rcu_read_unlock(); 12521 out: 12522 if (READ_ONCE(nohz.needs_update)) 12523 flags |= NOHZ_NEXT_KICK; 12524 12525 if (flags) 12526 kick_ilb(flags); 12527 } 12528 12529 static void set_cpu_sd_state_busy(int cpu) 12530 { 12531 struct sched_domain *sd; 12532 12533 rcu_read_lock(); 12534 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12535 12536 if (!sd || !sd->nohz_idle) 12537 goto unlock; 12538 sd->nohz_idle = 0; 12539 12540 atomic_inc(&sd->shared->nr_busy_cpus); 12541 unlock: 12542 rcu_read_unlock(); 12543 } 12544 12545 void nohz_balance_exit_idle(struct rq *rq) 12546 { 12547 WARN_ON_ONCE(rq != this_rq()); 12548 12549 if (likely(!rq->nohz_tick_stopped)) 12550 return; 12551 12552 rq->nohz_tick_stopped = 0; 12553 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12554 atomic_dec(&nohz.nr_cpus); 12555 12556 set_cpu_sd_state_busy(rq->cpu); 12557 } 12558 12559 static void set_cpu_sd_state_idle(int cpu) 12560 { 12561 struct sched_domain *sd; 12562 12563 rcu_read_lock(); 12564 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12565 12566 if (!sd || sd->nohz_idle) 12567 goto unlock; 12568 sd->nohz_idle = 1; 12569 12570 atomic_dec(&sd->shared->nr_busy_cpus); 12571 unlock: 12572 rcu_read_unlock(); 12573 } 12574 12575 /* 12576 * This routine will record that the CPU is going idle with tick stopped. 12577 * This info will be used in performing idle load balancing in the future. 12578 */ 12579 void nohz_balance_enter_idle(int cpu) 12580 { 12581 struct rq *rq = cpu_rq(cpu); 12582 12583 WARN_ON_ONCE(cpu != smp_processor_id()); 12584 12585 /* If this CPU is going down, then nothing needs to be done: */ 12586 if (!cpu_active(cpu)) 12587 return; 12588 12589 /* 12590 * Can be set safely without rq->lock held 12591 * If a clear happens, it will have evaluated last additions because 12592 * rq->lock is held during the check and the clear 12593 */ 12594 rq->has_blocked_load = 1; 12595 12596 /* 12597 * The tick is still stopped but load could have been added in the 12598 * meantime. We set the nohz.has_blocked flag to trig a check of the 12599 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12600 * of nohz.has_blocked can only happen after checking the new load 12601 */ 12602 if (rq->nohz_tick_stopped) 12603 goto out; 12604 12605 /* If we're a completely isolated CPU, we don't play: */ 12606 if (on_null_domain(rq)) 12607 return; 12608 12609 rq->nohz_tick_stopped = 1; 12610 12611 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12612 atomic_inc(&nohz.nr_cpus); 12613 12614 /* 12615 * Ensures that if nohz_idle_balance() fails to observe our 12616 * @idle_cpus_mask store, it must observe the @has_blocked 12617 * and @needs_update stores. 12618 */ 12619 smp_mb__after_atomic(); 12620 12621 set_cpu_sd_state_idle(cpu); 12622 12623 WRITE_ONCE(nohz.needs_update, 1); 12624 out: 12625 /* 12626 * Each time a cpu enter idle, we assume that it has blocked load and 12627 * enable the periodic update of the load of idle CPUs 12628 */ 12629 WRITE_ONCE(nohz.has_blocked, 1); 12630 } 12631 12632 static bool update_nohz_stats(struct rq *rq) 12633 { 12634 unsigned int cpu = rq->cpu; 12635 12636 if (!rq->has_blocked_load) 12637 return false; 12638 12639 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12640 return false; 12641 12642 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12643 return true; 12644 12645 sched_balance_update_blocked_averages(cpu); 12646 12647 return rq->has_blocked_load; 12648 } 12649 12650 /* 12651 * Internal function that runs load balance for all idle CPUs. The load balance 12652 * can be a simple update of blocked load or a complete load balance with 12653 * tasks movement depending of flags. 12654 */ 12655 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12656 { 12657 /* Earliest time when we have to do rebalance again */ 12658 unsigned long now = jiffies; 12659 unsigned long next_balance = now + 60*HZ; 12660 bool has_blocked_load = false; 12661 int update_next_balance = 0; 12662 int this_cpu = this_rq->cpu; 12663 int balance_cpu; 12664 struct rq *rq; 12665 12666 WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12667 12668 /* 12669 * We assume there will be no idle load after this update and clear 12670 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12671 * set the has_blocked flag and trigger another update of idle load. 12672 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12673 * setting the flag, we are sure to not clear the state and not 12674 * check the load of an idle cpu. 12675 * 12676 * Same applies to idle_cpus_mask vs needs_update. 12677 */ 12678 if (flags & NOHZ_STATS_KICK) 12679 WRITE_ONCE(nohz.has_blocked, 0); 12680 if (flags & NOHZ_NEXT_KICK) 12681 WRITE_ONCE(nohz.needs_update, 0); 12682 12683 /* 12684 * Ensures that if we miss the CPU, we must see the has_blocked 12685 * store from nohz_balance_enter_idle(). 12686 */ 12687 smp_mb(); 12688 12689 /* 12690 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12691 * chance for other idle cpu to pull load. 12692 */ 12693 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12694 if (!idle_cpu(balance_cpu)) 12695 continue; 12696 12697 /* 12698 * If this CPU gets work to do, stop the load balancing 12699 * work being done for other CPUs. Next load 12700 * balancing owner will pick it up. 12701 */ 12702 if (!idle_cpu(this_cpu) && need_resched()) { 12703 if (flags & NOHZ_STATS_KICK) 12704 has_blocked_load = true; 12705 if (flags & NOHZ_NEXT_KICK) 12706 WRITE_ONCE(nohz.needs_update, 1); 12707 goto abort; 12708 } 12709 12710 rq = cpu_rq(balance_cpu); 12711 12712 if (flags & NOHZ_STATS_KICK) 12713 has_blocked_load |= update_nohz_stats(rq); 12714 12715 /* 12716 * If time for next balance is due, 12717 * do the balance. 12718 */ 12719 if (time_after_eq(jiffies, rq->next_balance)) { 12720 struct rq_flags rf; 12721 12722 rq_lock_irqsave(rq, &rf); 12723 update_rq_clock(rq); 12724 rq_unlock_irqrestore(rq, &rf); 12725 12726 if (flags & NOHZ_BALANCE_KICK) 12727 sched_balance_domains(rq, CPU_IDLE); 12728 } 12729 12730 if (time_after(next_balance, rq->next_balance)) { 12731 next_balance = rq->next_balance; 12732 update_next_balance = 1; 12733 } 12734 } 12735 12736 /* 12737 * next_balance will be updated only when there is a need. 12738 * When the CPU is attached to null domain for ex, it will not be 12739 * updated. 12740 */ 12741 if (likely(update_next_balance)) 12742 nohz.next_balance = next_balance; 12743 12744 if (flags & NOHZ_STATS_KICK) 12745 WRITE_ONCE(nohz.next_blocked, 12746 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12747 12748 abort: 12749 /* There is still blocked load, enable periodic update */ 12750 if (has_blocked_load) 12751 WRITE_ONCE(nohz.has_blocked, 1); 12752 } 12753 12754 /* 12755 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12756 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12757 */ 12758 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12759 { 12760 unsigned int flags = this_rq->nohz_idle_balance; 12761 12762 if (!flags) 12763 return false; 12764 12765 this_rq->nohz_idle_balance = 0; 12766 12767 if (idle != CPU_IDLE) 12768 return false; 12769 12770 _nohz_idle_balance(this_rq, flags); 12771 12772 return true; 12773 } 12774 12775 /* 12776 * Check if we need to directly run the ILB for updating blocked load before 12777 * entering idle state. Here we run ILB directly without issuing IPIs. 12778 * 12779 * Note that when this function is called, the tick may not yet be stopped on 12780 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12781 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12782 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12783 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12784 * called from this function on (this) CPU that's not yet in the mask. That's 12785 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12786 * updating the blocked load of already idle CPUs without waking up one of 12787 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12788 * cpu about to enter idle, because it can take a long time. 12789 */ 12790 void nohz_run_idle_balance(int cpu) 12791 { 12792 unsigned int flags; 12793 12794 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12795 12796 /* 12797 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12798 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12799 */ 12800 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12801 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12802 } 12803 12804 static void nohz_newidle_balance(struct rq *this_rq) 12805 { 12806 int this_cpu = this_rq->cpu; 12807 12808 /* Will wake up very soon. No time for doing anything else*/ 12809 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12810 return; 12811 12812 /* Don't need to update blocked load of idle CPUs*/ 12813 if (!READ_ONCE(nohz.has_blocked) || 12814 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12815 return; 12816 12817 /* 12818 * Set the need to trigger ILB in order to update blocked load 12819 * before entering idle state. 12820 */ 12821 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12822 } 12823 12824 #else /* !CONFIG_NO_HZ_COMMON: */ 12825 static inline void nohz_balancer_kick(struct rq *rq) { } 12826 12827 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12828 { 12829 return false; 12830 } 12831 12832 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12833 #endif /* !CONFIG_NO_HZ_COMMON */ 12834 12835 /* 12836 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12837 * idle. Attempts to pull tasks from other CPUs. 12838 * 12839 * Returns: 12840 * < 0 - we released the lock and there are !fair tasks present 12841 * 0 - failed, no new tasks 12842 * > 0 - success, new (fair) tasks present 12843 */ 12844 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12845 { 12846 unsigned long next_balance = jiffies + HZ; 12847 int this_cpu = this_rq->cpu; 12848 int continue_balancing = 1; 12849 u64 t0, t1, curr_cost = 0; 12850 struct sched_domain *sd; 12851 int pulled_task = 0; 12852 12853 update_misfit_status(NULL, this_rq); 12854 12855 /* 12856 * There is a task waiting to run. No need to search for one. 12857 * Return 0; the task will be enqueued when switching to idle. 12858 */ 12859 if (this_rq->ttwu_pending) 12860 return 0; 12861 12862 /* 12863 * We must set idle_stamp _before_ calling sched_balance_rq() 12864 * for CPU_NEWLY_IDLE, such that we measure the this duration 12865 * as idle time. 12866 */ 12867 this_rq->idle_stamp = rq_clock(this_rq); 12868 12869 /* 12870 * Do not pull tasks towards !active CPUs... 12871 */ 12872 if (!cpu_active(this_cpu)) 12873 return 0; 12874 12875 /* 12876 * This is OK, because current is on_cpu, which avoids it being picked 12877 * for load-balance and preemption/IRQs are still disabled avoiding 12878 * further scheduler activity on it and we're being very careful to 12879 * re-start the picking loop. 12880 */ 12881 rq_unpin_lock(this_rq, rf); 12882 12883 rcu_read_lock(); 12884 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12885 if (!sd) { 12886 rcu_read_unlock(); 12887 goto out; 12888 } 12889 12890 if (!get_rd_overloaded(this_rq->rd) || 12891 this_rq->avg_idle < sd->max_newidle_lb_cost) { 12892 12893 update_next_balance(sd, &next_balance); 12894 rcu_read_unlock(); 12895 goto out; 12896 } 12897 rcu_read_unlock(); 12898 12899 rq_modified_clear(this_rq); 12900 raw_spin_rq_unlock(this_rq); 12901 12902 t0 = sched_clock_cpu(this_cpu); 12903 sched_balance_update_blocked_averages(this_cpu); 12904 12905 rcu_read_lock(); 12906 for_each_domain(this_cpu, sd) { 12907 u64 domain_cost; 12908 12909 update_next_balance(sd, &next_balance); 12910 12911 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12912 break; 12913 12914 if (sd->flags & SD_BALANCE_NEWIDLE) { 12915 unsigned int weight = 1; 12916 12917 if (sched_feat(NI_RANDOM)) { 12918 /* 12919 * Throw a 1k sided dice; and only run 12920 * newidle_balance according to the success 12921 * rate. 12922 */ 12923 u32 d1k = sched_rng() % 1024; 12924 weight = 1 + sd->newidle_ratio; 12925 if (d1k > weight) { 12926 update_newidle_stats(sd, 0); 12927 continue; 12928 } 12929 weight = (1024 + weight/2) / weight; 12930 } 12931 12932 pulled_task = sched_balance_rq(this_cpu, this_rq, 12933 sd, CPU_NEWLY_IDLE, 12934 &continue_balancing); 12935 12936 t1 = sched_clock_cpu(this_cpu); 12937 domain_cost = t1 - t0; 12938 curr_cost += domain_cost; 12939 t0 = t1; 12940 12941 /* 12942 * Track max cost of a domain to make sure to not delay the 12943 * next wakeup on the CPU. 12944 */ 12945 update_newidle_cost(sd, domain_cost, weight * !!pulled_task); 12946 } 12947 12948 /* 12949 * Stop searching for tasks to pull if there are 12950 * now runnable tasks on this rq. 12951 */ 12952 if (pulled_task || !continue_balancing) 12953 break; 12954 } 12955 rcu_read_unlock(); 12956 12957 raw_spin_rq_lock(this_rq); 12958 12959 if (curr_cost > this_rq->max_idle_balance_cost) 12960 this_rq->max_idle_balance_cost = curr_cost; 12961 12962 /* 12963 * While browsing the domains, we released the rq lock, a task could 12964 * have been enqueued in the meantime. Since we're not going idle, 12965 * pretend we pulled a task. 12966 */ 12967 if (this_rq->cfs.h_nr_queued && !pulled_task) 12968 pulled_task = 1; 12969 12970 /* If a higher prio class was modified, restart the pick */ 12971 if (rq_modified_above(this_rq, &fair_sched_class)) 12972 pulled_task = -1; 12973 12974 out: 12975 /* Move the next balance forward */ 12976 if (time_after(this_rq->next_balance, next_balance)) 12977 this_rq->next_balance = next_balance; 12978 12979 if (pulled_task) 12980 this_rq->idle_stamp = 0; 12981 else 12982 nohz_newidle_balance(this_rq); 12983 12984 rq_repin_lock(this_rq, rf); 12985 12986 return pulled_task; 12987 } 12988 12989 /* 12990 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 12991 * 12992 * - directly from the local sched_tick() for periodic load balancing 12993 * 12994 * - indirectly from a remote sched_tick() for NOHZ idle balancing 12995 * through the SMP cross-call nohz_csd_func() 12996 */ 12997 static __latent_entropy void sched_balance_softirq(void) 12998 { 12999 struct rq *this_rq = this_rq(); 13000 enum cpu_idle_type idle = this_rq->idle_balance; 13001 /* 13002 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 13003 * balancing on behalf of the other idle CPUs whose ticks are 13004 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 13005 * give the idle CPUs a chance to load balance. Else we may 13006 * load balance only within the local sched_domain hierarchy 13007 * and abort nohz_idle_balance altogether if we pull some load. 13008 */ 13009 if (nohz_idle_balance(this_rq, idle)) 13010 return; 13011 13012 /* normal load balance */ 13013 sched_balance_update_blocked_averages(this_rq->cpu); 13014 sched_balance_domains(this_rq, idle); 13015 } 13016 13017 /* 13018 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 13019 */ 13020 void sched_balance_trigger(struct rq *rq) 13021 { 13022 /* 13023 * Don't need to rebalance while attached to NULL domain or 13024 * runqueue CPU is not active 13025 */ 13026 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 13027 return; 13028 13029 if (time_after_eq(jiffies, rq->next_balance)) 13030 raise_softirq(SCHED_SOFTIRQ); 13031 13032 nohz_balancer_kick(rq); 13033 } 13034 13035 static void rq_online_fair(struct rq *rq) 13036 { 13037 update_sysctl(); 13038 13039 update_runtime_enabled(rq); 13040 } 13041 13042 static void rq_offline_fair(struct rq *rq) 13043 { 13044 update_sysctl(); 13045 13046 /* Ensure any throttled groups are reachable by pick_next_task */ 13047 unthrottle_offline_cfs_rqs(rq); 13048 13049 /* Ensure that we remove rq contribution to group share: */ 13050 clear_tg_offline_cfs_rqs(rq); 13051 } 13052 13053 #ifdef CONFIG_SCHED_CORE 13054 static inline bool 13055 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 13056 { 13057 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 13058 u64 slice = se->slice; 13059 13060 return (rtime * min_nr_tasks > slice); 13061 } 13062 13063 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 13064 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 13065 { 13066 if (!sched_core_enabled(rq)) 13067 return; 13068 13069 /* 13070 * If runqueue has only one task which used up its slice and 13071 * if the sibling is forced idle, then trigger schedule to 13072 * give forced idle task a chance. 13073 * 13074 * sched_slice() considers only this active rq and it gets the 13075 * whole slice. But during force idle, we have siblings acting 13076 * like a single runqueue and hence we need to consider runnable 13077 * tasks on this CPU and the forced idle CPU. Ideally, we should 13078 * go through the forced idle rq, but that would be a perf hit. 13079 * We can assume that the forced idle CPU has at least 13080 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 13081 * if we need to give up the CPU. 13082 */ 13083 if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 && 13084 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 13085 resched_curr(rq); 13086 } 13087 13088 /* 13089 * Consider any infeasible weight scenario. Take for instance two tasks, 13090 * each bound to their respective sibling, one with weight 1 and one with 13091 * weight 2. Then the lower weight task will run ahead of the higher weight 13092 * task without bound. 13093 * 13094 * This utterly destroys the concept of a shared time base. 13095 * 13096 * Remember; all this is about a proportionally fair scheduling, where each 13097 * tasks receives: 13098 * 13099 * w_i 13100 * dt_i = ---------- dt (1) 13101 * \Sum_j w_j 13102 * 13103 * which we do by tracking a virtual time, s_i: 13104 * 13105 * 1 13106 * s_i = --- d[t]_i (2) 13107 * w_i 13108 * 13109 * Where d[t] is a delta of discrete time, while dt is an infinitesimal. 13110 * The immediate corollary is that the ideal schedule S, where (2) to use 13111 * an infinitesimal delta, is: 13112 * 13113 * 1 13114 * S = ---------- dt (3) 13115 * \Sum_i w_i 13116 * 13117 * From which we can define the lag, or deviation from the ideal, as: 13118 * 13119 * lag(i) = S - s_i (4) 13120 * 13121 * And since the one and only purpose is to approximate S, we get that: 13122 * 13123 * \Sum_i w_i lag(i) := 0 (5) 13124 * 13125 * If this were not so, we no longer converge to S, and we can no longer 13126 * claim our scheduler has any of the properties we derive from S. This is 13127 * exactly what you did above, you broke it! 13128 * 13129 * 13130 * Let's continue for a while though; to see if there is anything useful to 13131 * be learned. We can combine (1)-(3) or (4)-(5) and express S in s_i: 13132 * 13133 * \Sum_i w_i s_i 13134 * S = -------------- (6) 13135 * \Sum_i w_i 13136 * 13137 * Which gives us a way to compute S, given our s_i. Now, if you've read 13138 * our code, you know that we do not in fact do this, the reason for this 13139 * is two-fold. Firstly, computing S in that way requires a 64bit division 13140 * for every time we'd use it (see 12), and secondly, this only describes 13141 * the steady-state, it doesn't handle dynamics. 13142 * 13143 * Anyway, in (6): s_i -> x + (s_i - x), to get: 13144 * 13145 * \Sum_i w_i (s_i - x) 13146 * S - x = -------------------- (7) 13147 * \Sum_i w_i 13148 * 13149 * Which shows that S and s_i transform alike (which makes perfect sense 13150 * given that S is basically the (weighted) average of s_i). 13151 * 13152 * So the thing to remember is that the above is strictly UP. It is 13153 * possible to generalize to multiple runqueues -- however it gets really 13154 * yuck when you have to add affinity support, as illustrated by our very 13155 * first counter-example. 13156 * 13157 * Luckily I think we can avoid needing a full multi-queue variant for 13158 * core-scheduling (or load-balancing). The crucial observation is that we 13159 * only actually need this comparison in the presence of forced-idle; only 13160 * then do we need to tell if the stalled rq has higher priority over the 13161 * other. 13162 * 13163 * [XXX assumes SMT2; better consider the more general case, I suspect 13164 * it'll work out because our comparison is always between 2 rqs and the 13165 * answer is only interesting if one of them is forced-idle] 13166 * 13167 * And (under assumption of SMT2) when there is forced-idle, there is only 13168 * a single queue, so everything works like normal. 13169 * 13170 * Let, for our runqueue 'k': 13171 * 13172 * T_k = \Sum_i w_i s_i 13173 * W_k = \Sum_i w_i ; for all i of k (8) 13174 * 13175 * Then we can write (6) like: 13176 * 13177 * T_k 13178 * S_k = --- (9) 13179 * W_k 13180 * 13181 * From which immediately follows that: 13182 * 13183 * T_k + T_l 13184 * S_k+l = --------- (10) 13185 * W_k + W_l 13186 * 13187 * On which we can define a combined lag: 13188 * 13189 * lag_k+l(i) := S_k+l - s_i (11) 13190 * 13191 * And that gives us the tools to compare tasks across a combined runqueue. 13192 * 13193 * 13194 * Combined this gives the following: 13195 * 13196 * a) when a runqueue enters force-idle, sync it against it's sibling rq(s) 13197 * using (7); this only requires storing single 'time'-stamps. 13198 * 13199 * b) when comparing tasks between 2 runqueues of which one is forced-idle, 13200 * compare the combined lag, per (11). 13201 * 13202 * Now, of course cgroups (I so hate them) make this more interesting in 13203 * that a) seems to suggest we need to iterate all cgroup on a CPU at such 13204 * boundaries, but I think we can avoid that. The force-idle is for the 13205 * whole CPU, all it's rqs. So we can mark it in the root and lazily 13206 * propagate downward on demand. 13207 */ 13208 13209 /* 13210 * So this sync is basically a relative reset of S to 0. 13211 * 13212 * So with 2 queues, when one goes idle, we drop them both to 0 and one 13213 * then increases due to not being idle, and the idle one builds up lag to 13214 * get re-elected. So far so simple, right? 13215 * 13216 * When there's 3, we can have the situation where 2 run and one is idle, 13217 * we sync to 0 and let the idle one build up lag to get re-election. Now 13218 * suppose another one also drops idle. At this point dropping all to 0 13219 * again would destroy the built-up lag from the queue that was already 13220 * idle, not good. 13221 * 13222 * So instead of syncing everything, we can: 13223 * 13224 * less := !((s64)(s_a - s_b) <= 0) 13225 * 13226 * (v_a - S_a) - (v_b - S_b) == v_a - v_b - S_a + S_b 13227 * == v_a - (v_b - S_a + S_b) 13228 * 13229 * IOW, we can recast the (lag) comparison to a one-sided difference. 13230 * So if then, instead of syncing the whole queue, sync the idle queue 13231 * against the active queue with S_a + S_b at the point where we sync. 13232 * 13233 * (XXX consider the implication of living in a cyclic group: N / 2^n N) 13234 * 13235 * This gives us means of syncing single queues against the active queue, 13236 * and for already idle queues to preserve their build-up lag. 13237 * 13238 * Of course, then we get the situation where there's 2 active and one 13239 * going idle, who do we pick to sync against? Theory would have us sync 13240 * against the combined S, but as we've already demonstrated, there is no 13241 * such thing in infeasible weight scenarios. 13242 * 13243 * One thing I've considered; and this is where that core_active rudiment 13244 * came from, is having active queues sync up between themselves after 13245 * every tick. This limits the observed divergence due to the work 13246 * conservancy. 13247 * 13248 * On top of that, we can improve upon things by employing (10) here. 13249 */ 13250 13251 /* 13252 * se_fi_update - Update the cfs_rq->zero_vruntime_fi in a CFS hierarchy if needed. 13253 */ 13254 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 13255 bool forceidle) 13256 { 13257 for_each_sched_entity(se) { 13258 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13259 13260 if (forceidle) { 13261 if (cfs_rq->forceidle_seq == fi_seq) 13262 break; 13263 cfs_rq->forceidle_seq = fi_seq; 13264 } 13265 13266 cfs_rq->zero_vruntime_fi = cfs_rq->zero_vruntime; 13267 } 13268 } 13269 13270 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 13271 { 13272 struct sched_entity *se = &p->se; 13273 13274 if (p->sched_class != &fair_sched_class) 13275 return; 13276 13277 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 13278 } 13279 13280 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 13281 bool in_fi) 13282 { 13283 struct rq *rq = task_rq(a); 13284 const struct sched_entity *sea = &a->se; 13285 const struct sched_entity *seb = &b->se; 13286 struct cfs_rq *cfs_rqa; 13287 struct cfs_rq *cfs_rqb; 13288 s64 delta; 13289 13290 WARN_ON_ONCE(task_rq(b)->core != rq->core); 13291 13292 #ifdef CONFIG_FAIR_GROUP_SCHED 13293 /* 13294 * Find an se in the hierarchy for tasks a and b, such that the se's 13295 * are immediate siblings. 13296 */ 13297 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 13298 int sea_depth = sea->depth; 13299 int seb_depth = seb->depth; 13300 13301 if (sea_depth >= seb_depth) 13302 sea = parent_entity(sea); 13303 if (sea_depth <= seb_depth) 13304 seb = parent_entity(seb); 13305 } 13306 13307 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 13308 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 13309 13310 cfs_rqa = sea->cfs_rq; 13311 cfs_rqb = seb->cfs_rq; 13312 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 13313 cfs_rqa = &task_rq(a)->cfs; 13314 cfs_rqb = &task_rq(b)->cfs; 13315 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 13316 13317 /* 13318 * Find delta after normalizing se's vruntime with its cfs_rq's 13319 * zero_vruntime_fi, which would have been updated in prior calls 13320 * to se_fi_update(). 13321 */ 13322 delta = (s64)(sea->vruntime - seb->vruntime) + 13323 (s64)(cfs_rqb->zero_vruntime_fi - cfs_rqa->zero_vruntime_fi); 13324 13325 return delta > 0; 13326 } 13327 13328 static int task_is_throttled_fair(struct task_struct *p, int cpu) 13329 { 13330 struct cfs_rq *cfs_rq; 13331 13332 #ifdef CONFIG_FAIR_GROUP_SCHED 13333 cfs_rq = task_group(p)->cfs_rq[cpu]; 13334 #else 13335 cfs_rq = &cpu_rq(cpu)->cfs; 13336 #endif 13337 return throttled_hierarchy(cfs_rq); 13338 } 13339 #else /* !CONFIG_SCHED_CORE: */ 13340 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 13341 #endif /* !CONFIG_SCHED_CORE */ 13342 13343 /* 13344 * scheduler tick hitting a task of our scheduling class. 13345 * 13346 * NOTE: This function can be called remotely by the tick offload that 13347 * goes along full dynticks. Therefore no local assumption can be made 13348 * and everything must be accessed through the @rq and @curr passed in 13349 * parameters. 13350 */ 13351 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 13352 { 13353 struct cfs_rq *cfs_rq; 13354 struct sched_entity *se = &curr->se; 13355 13356 for_each_sched_entity(se) { 13357 cfs_rq = cfs_rq_of(se); 13358 entity_tick(cfs_rq, se, queued); 13359 } 13360 13361 if (static_branch_unlikely(&sched_numa_balancing)) 13362 task_tick_numa(rq, curr); 13363 13364 update_misfit_status(curr, rq); 13365 check_update_overutilized_status(task_rq(curr)); 13366 13367 task_tick_core(rq, curr); 13368 } 13369 13370 /* 13371 * called on fork with the child task as argument from the parent's context 13372 * - child not yet on the tasklist 13373 * - preemption disabled 13374 */ 13375 static void task_fork_fair(struct task_struct *p) 13376 { 13377 set_task_max_allowed_capacity(p); 13378 } 13379 13380 /* 13381 * Priority of the task has changed. Check to see if we preempt 13382 * the current task. 13383 */ 13384 static void 13385 prio_changed_fair(struct rq *rq, struct task_struct *p, u64 oldprio) 13386 { 13387 if (!task_on_rq_queued(p)) 13388 return; 13389 13390 if (p->prio == oldprio) 13391 return; 13392 13393 if (rq->cfs.nr_queued == 1) 13394 return; 13395 13396 /* 13397 * Reschedule if we are currently running on this runqueue and 13398 * our priority decreased, or if we are not currently running on 13399 * this runqueue and our priority is higher than the current's 13400 */ 13401 if (task_current_donor(rq, p)) { 13402 if (p->prio > oldprio) 13403 resched_curr(rq); 13404 } else { 13405 wakeup_preempt(rq, p, 0); 13406 } 13407 } 13408 13409 #ifdef CONFIG_FAIR_GROUP_SCHED 13410 /* 13411 * Propagate the changes of the sched_entity across the tg tree to make it 13412 * visible to the root 13413 */ 13414 static void propagate_entity_cfs_rq(struct sched_entity *se) 13415 { 13416 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13417 13418 /* 13419 * If a task gets attached to this cfs_rq and before being queued, 13420 * it gets migrated to another CPU due to reasons like affinity 13421 * change, make sure this cfs_rq stays on leaf cfs_rq list to have 13422 * that removed load decayed or it can cause faireness problem. 13423 */ 13424 if (!cfs_rq_pelt_clock_throttled(cfs_rq)) 13425 list_add_leaf_cfs_rq(cfs_rq); 13426 13427 /* Start to propagate at parent */ 13428 se = se->parent; 13429 13430 for_each_sched_entity(se) { 13431 cfs_rq = cfs_rq_of(se); 13432 13433 update_load_avg(cfs_rq, se, UPDATE_TG); 13434 13435 if (!cfs_rq_pelt_clock_throttled(cfs_rq)) 13436 list_add_leaf_cfs_rq(cfs_rq); 13437 } 13438 13439 assert_list_leaf_cfs_rq(rq_of(cfs_rq)); 13440 } 13441 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 13442 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 13443 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 13444 13445 static void detach_entity_cfs_rq(struct sched_entity *se) 13446 { 13447 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13448 13449 /* 13450 * In case the task sched_avg hasn't been attached: 13451 * - A forked task which hasn't been woken up by wake_up_new_task(). 13452 * - A task which has been woken up by try_to_wake_up() but is 13453 * waiting for actually being woken up by sched_ttwu_pending(). 13454 */ 13455 if (!se->avg.last_update_time) 13456 return; 13457 13458 /* Catch up with the cfs_rq and remove our load when we leave */ 13459 update_load_avg(cfs_rq, se, 0); 13460 detach_entity_load_avg(cfs_rq, se); 13461 update_tg_load_avg(cfs_rq); 13462 propagate_entity_cfs_rq(se); 13463 } 13464 13465 static void attach_entity_cfs_rq(struct sched_entity *se) 13466 { 13467 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13468 13469 /* Synchronize entity with its cfs_rq */ 13470 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 13471 attach_entity_load_avg(cfs_rq, se); 13472 update_tg_load_avg(cfs_rq); 13473 propagate_entity_cfs_rq(se); 13474 } 13475 13476 static void detach_task_cfs_rq(struct task_struct *p) 13477 { 13478 struct sched_entity *se = &p->se; 13479 13480 detach_entity_cfs_rq(se); 13481 } 13482 13483 static void attach_task_cfs_rq(struct task_struct *p) 13484 { 13485 struct sched_entity *se = &p->se; 13486 13487 attach_entity_cfs_rq(se); 13488 } 13489 13490 static void switching_from_fair(struct rq *rq, struct task_struct *p) 13491 { 13492 if (p->se.sched_delayed) 13493 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK); 13494 } 13495 13496 static void switched_from_fair(struct rq *rq, struct task_struct *p) 13497 { 13498 detach_task_cfs_rq(p); 13499 } 13500 13501 static void switched_to_fair(struct rq *rq, struct task_struct *p) 13502 { 13503 WARN_ON_ONCE(p->se.sched_delayed); 13504 13505 attach_task_cfs_rq(p); 13506 13507 set_task_max_allowed_capacity(p); 13508 13509 if (task_on_rq_queued(p)) { 13510 /* 13511 * We were most likely switched from sched_rt, so 13512 * kick off the schedule if running, otherwise just see 13513 * if we can still preempt the current task. 13514 */ 13515 if (task_current_donor(rq, p)) 13516 resched_curr(rq); 13517 else 13518 wakeup_preempt(rq, p, 0); 13519 } 13520 } 13521 13522 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13523 { 13524 struct sched_entity *se = &p->se; 13525 13526 if (task_on_rq_queued(p)) { 13527 /* 13528 * Move the next running task to the front of the list, so our 13529 * cfs_tasks list becomes MRU one. 13530 */ 13531 list_move(&se->group_node, &rq->cfs_tasks); 13532 } 13533 if (!first) 13534 return; 13535 13536 WARN_ON_ONCE(se->sched_delayed); 13537 13538 if (hrtick_enabled_fair(rq)) 13539 hrtick_start_fair(rq, p); 13540 13541 update_misfit_status(p, rq); 13542 sched_fair_update_stop_tick(rq, p); 13543 } 13544 13545 /* 13546 * Account for a task changing its policy or group. 13547 * 13548 * This routine is mostly called to set cfs_rq->curr field when a task 13549 * migrates between groups/classes. 13550 */ 13551 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13552 { 13553 struct sched_entity *se = &p->se; 13554 13555 for_each_sched_entity(se) { 13556 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13557 13558 set_next_entity(cfs_rq, se); 13559 /* ensure bandwidth has been allocated on our new cfs_rq */ 13560 account_cfs_rq_runtime(cfs_rq, 0); 13561 } 13562 13563 __set_next_task_fair(rq, p, first); 13564 } 13565 13566 void init_cfs_rq(struct cfs_rq *cfs_rq) 13567 { 13568 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 13569 cfs_rq->zero_vruntime = (u64)(-(1LL << 20)); 13570 raw_spin_lock_init(&cfs_rq->removed.lock); 13571 } 13572 13573 #ifdef CONFIG_FAIR_GROUP_SCHED 13574 static void task_change_group_fair(struct task_struct *p) 13575 { 13576 /* 13577 * We couldn't detach or attach a forked task which 13578 * hasn't been woken up by wake_up_new_task(). 13579 */ 13580 if (READ_ONCE(p->__state) == TASK_NEW) 13581 return; 13582 13583 detach_task_cfs_rq(p); 13584 13585 /* Tell se's cfs_rq has been changed -- migrated */ 13586 p->se.avg.last_update_time = 0; 13587 set_task_rq(p, task_cpu(p)); 13588 attach_task_cfs_rq(p); 13589 } 13590 13591 void free_fair_sched_group(struct task_group *tg) 13592 { 13593 int i; 13594 13595 for_each_possible_cpu(i) { 13596 if (tg->cfs_rq) 13597 kfree(tg->cfs_rq[i]); 13598 if (tg->se) 13599 kfree(tg->se[i]); 13600 } 13601 13602 kfree(tg->cfs_rq); 13603 kfree(tg->se); 13604 } 13605 13606 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 13607 { 13608 struct sched_entity *se; 13609 struct cfs_rq *cfs_rq; 13610 int i; 13611 13612 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 13613 if (!tg->cfs_rq) 13614 goto err; 13615 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 13616 if (!tg->se) 13617 goto err; 13618 13619 tg->shares = NICE_0_LOAD; 13620 13621 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 13622 13623 for_each_possible_cpu(i) { 13624 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 13625 GFP_KERNEL, cpu_to_node(i)); 13626 if (!cfs_rq) 13627 goto err; 13628 13629 se = kzalloc_node(sizeof(struct sched_entity_stats), 13630 GFP_KERNEL, cpu_to_node(i)); 13631 if (!se) 13632 goto err_free_rq; 13633 13634 init_cfs_rq(cfs_rq); 13635 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 13636 init_entity_runnable_average(se); 13637 } 13638 13639 return 1; 13640 13641 err_free_rq: 13642 kfree(cfs_rq); 13643 err: 13644 return 0; 13645 } 13646 13647 void online_fair_sched_group(struct task_group *tg) 13648 { 13649 struct sched_entity *se; 13650 struct rq_flags rf; 13651 struct rq *rq; 13652 int i; 13653 13654 for_each_possible_cpu(i) { 13655 rq = cpu_rq(i); 13656 se = tg->se[i]; 13657 rq_lock_irq(rq, &rf); 13658 update_rq_clock(rq); 13659 attach_entity_cfs_rq(se); 13660 sync_throttle(tg, i); 13661 rq_unlock_irq(rq, &rf); 13662 } 13663 } 13664 13665 void unregister_fair_sched_group(struct task_group *tg) 13666 { 13667 int cpu; 13668 13669 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 13670 13671 for_each_possible_cpu(cpu) { 13672 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 13673 struct sched_entity *se = tg->se[cpu]; 13674 struct rq *rq = cpu_rq(cpu); 13675 13676 if (se) { 13677 if (se->sched_delayed) { 13678 guard(rq_lock_irqsave)(rq); 13679 if (se->sched_delayed) { 13680 update_rq_clock(rq); 13681 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 13682 } 13683 list_del_leaf_cfs_rq(cfs_rq); 13684 } 13685 remove_entity_load_avg(se); 13686 } 13687 13688 /* 13689 * Only empty task groups can be destroyed; so we can speculatively 13690 * check on_list without danger of it being re-added. 13691 */ 13692 if (cfs_rq->on_list) { 13693 guard(rq_lock_irqsave)(rq); 13694 list_del_leaf_cfs_rq(cfs_rq); 13695 } 13696 } 13697 } 13698 13699 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13700 struct sched_entity *se, int cpu, 13701 struct sched_entity *parent) 13702 { 13703 struct rq *rq = cpu_rq(cpu); 13704 13705 cfs_rq->tg = tg; 13706 cfs_rq->rq = rq; 13707 init_cfs_rq_runtime(cfs_rq); 13708 13709 tg->cfs_rq[cpu] = cfs_rq; 13710 tg->se[cpu] = se; 13711 13712 /* se could be NULL for root_task_group */ 13713 if (!se) 13714 return; 13715 13716 if (!parent) { 13717 se->cfs_rq = &rq->cfs; 13718 se->depth = 0; 13719 } else { 13720 se->cfs_rq = parent->my_q; 13721 se->depth = parent->depth + 1; 13722 } 13723 13724 se->my_q = cfs_rq; 13725 /* guarantee group entities always have weight */ 13726 update_load_set(&se->load, NICE_0_LOAD); 13727 se->parent = parent; 13728 } 13729 13730 static DEFINE_MUTEX(shares_mutex); 13731 13732 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13733 { 13734 int i; 13735 13736 lockdep_assert_held(&shares_mutex); 13737 13738 /* 13739 * We can't change the weight of the root cgroup. 13740 */ 13741 if (!tg->se[0]) 13742 return -EINVAL; 13743 13744 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13745 13746 if (tg->shares == shares) 13747 return 0; 13748 13749 tg->shares = shares; 13750 for_each_possible_cpu(i) { 13751 struct rq *rq = cpu_rq(i); 13752 struct sched_entity *se = tg->se[i]; 13753 struct rq_flags rf; 13754 13755 /* Propagate contribution to hierarchy */ 13756 rq_lock_irqsave(rq, &rf); 13757 update_rq_clock(rq); 13758 for_each_sched_entity(se) { 13759 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13760 update_cfs_group(se); 13761 } 13762 rq_unlock_irqrestore(rq, &rf); 13763 } 13764 13765 return 0; 13766 } 13767 13768 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13769 { 13770 int ret; 13771 13772 mutex_lock(&shares_mutex); 13773 if (tg_is_idle(tg)) 13774 ret = -EINVAL; 13775 else 13776 ret = __sched_group_set_shares(tg, shares); 13777 mutex_unlock(&shares_mutex); 13778 13779 return ret; 13780 } 13781 13782 int sched_group_set_idle(struct task_group *tg, long idle) 13783 { 13784 int i; 13785 13786 if (tg == &root_task_group) 13787 return -EINVAL; 13788 13789 if (idle < 0 || idle > 1) 13790 return -EINVAL; 13791 13792 mutex_lock(&shares_mutex); 13793 13794 if (tg->idle == idle) { 13795 mutex_unlock(&shares_mutex); 13796 return 0; 13797 } 13798 13799 tg->idle = idle; 13800 13801 for_each_possible_cpu(i) { 13802 struct rq *rq = cpu_rq(i); 13803 struct sched_entity *se = tg->se[i]; 13804 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i]; 13805 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13806 long idle_task_delta; 13807 struct rq_flags rf; 13808 13809 rq_lock_irqsave(rq, &rf); 13810 13811 grp_cfs_rq->idle = idle; 13812 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13813 goto next_cpu; 13814 13815 idle_task_delta = grp_cfs_rq->h_nr_queued - 13816 grp_cfs_rq->h_nr_idle; 13817 if (!cfs_rq_is_idle(grp_cfs_rq)) 13818 idle_task_delta *= -1; 13819 13820 for_each_sched_entity(se) { 13821 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13822 13823 if (!se->on_rq) 13824 break; 13825 13826 cfs_rq->h_nr_idle += idle_task_delta; 13827 13828 /* Already accounted at parent level and above. */ 13829 if (cfs_rq_is_idle(cfs_rq)) 13830 break; 13831 } 13832 13833 next_cpu: 13834 rq_unlock_irqrestore(rq, &rf); 13835 } 13836 13837 /* Idle groups have minimum weight. */ 13838 if (tg_is_idle(tg)) 13839 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13840 else 13841 __sched_group_set_shares(tg, NICE_0_LOAD); 13842 13843 mutex_unlock(&shares_mutex); 13844 return 0; 13845 } 13846 13847 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13848 13849 13850 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13851 { 13852 struct sched_entity *se = &task->se; 13853 unsigned int rr_interval = 0; 13854 13855 /* 13856 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13857 * idle runqueue: 13858 */ 13859 if (rq->cfs.load.weight) 13860 rr_interval = NS_TO_JIFFIES(se->slice); 13861 13862 return rr_interval; 13863 } 13864 13865 /* 13866 * All the scheduling class methods: 13867 */ 13868 DEFINE_SCHED_CLASS(fair) = { 13869 13870 .queue_mask = 2, 13871 13872 .enqueue_task = enqueue_task_fair, 13873 .dequeue_task = dequeue_task_fair, 13874 .yield_task = yield_task_fair, 13875 .yield_to_task = yield_to_task_fair, 13876 13877 .wakeup_preempt = check_preempt_wakeup_fair, 13878 13879 .pick_task = pick_task_fair, 13880 .pick_next_task = pick_next_task_fair, 13881 .put_prev_task = put_prev_task_fair, 13882 .set_next_task = set_next_task_fair, 13883 13884 .select_task_rq = select_task_rq_fair, 13885 .migrate_task_rq = migrate_task_rq_fair, 13886 13887 .rq_online = rq_online_fair, 13888 .rq_offline = rq_offline_fair, 13889 13890 .task_dead = task_dead_fair, 13891 .set_cpus_allowed = set_cpus_allowed_fair, 13892 13893 .task_tick = task_tick_fair, 13894 .task_fork = task_fork_fair, 13895 13896 .reweight_task = reweight_task_fair, 13897 .prio_changed = prio_changed_fair, 13898 .switching_from = switching_from_fair, 13899 .switched_from = switched_from_fair, 13900 .switched_to = switched_to_fair, 13901 13902 .get_rr_interval = get_rr_interval_fair, 13903 13904 .update_curr = update_curr_fair, 13905 13906 #ifdef CONFIG_FAIR_GROUP_SCHED 13907 .task_change_group = task_change_group_fair, 13908 #endif 13909 13910 #ifdef CONFIG_SCHED_CORE 13911 .task_is_throttled = task_is_throttled_fair, 13912 #endif 13913 13914 #ifdef CONFIG_UCLAMP_TASK 13915 .uclamp_enabled = 1, 13916 #endif 13917 }; 13918 13919 void print_cfs_stats(struct seq_file *m, int cpu) 13920 { 13921 struct cfs_rq *cfs_rq, *pos; 13922 13923 rcu_read_lock(); 13924 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13925 print_cfs_rq(m, cpu, cfs_rq); 13926 rcu_read_unlock(); 13927 } 13928 13929 #ifdef CONFIG_NUMA_BALANCING 13930 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13931 { 13932 int node; 13933 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13934 struct numa_group *ng; 13935 13936 rcu_read_lock(); 13937 ng = rcu_dereference(p->numa_group); 13938 for_each_online_node(node) { 13939 if (p->numa_faults) { 13940 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13941 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13942 } 13943 if (ng) { 13944 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13945 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13946 } 13947 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13948 } 13949 rcu_read_unlock(); 13950 } 13951 #endif /* CONFIG_NUMA_BALANCING */ 13952 13953 __init void init_sched_fair_class(void) 13954 { 13955 int i; 13956 13957 for_each_possible_cpu(i) { 13958 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13959 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13960 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13961 GFP_KERNEL, cpu_to_node(i)); 13962 13963 #ifdef CONFIG_CFS_BANDWIDTH 13964 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13965 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13966 #endif 13967 } 13968 13969 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13970 13971 #ifdef CONFIG_NO_HZ_COMMON 13972 nohz.next_balance = jiffies; 13973 nohz.next_blocked = jiffies; 13974 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13975 #endif 13976 } 13977