1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 #include <linux/rbtree_augmented.h> 51 52 #include <asm/switch_to.h> 53 54 #include "sched.h" 55 #include "stats.h" 56 #include "autogroup.h" 57 58 /* 59 * The initial- and re-scaling of tunables is configurable 60 * 61 * Options are: 62 * 63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 64 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 66 * 67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 68 */ 69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 70 71 /* 72 * Minimal preemption granularity for CPU-bound tasks: 73 * 74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 75 */ 76 unsigned int sysctl_sched_base_slice = 750000ULL; 77 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 78 79 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 80 81 int sched_thermal_decay_shift; 82 static int __init setup_sched_thermal_decay_shift(char *str) 83 { 84 int _shift = 0; 85 86 if (kstrtoint(str, 0, &_shift)) 87 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n"); 88 89 sched_thermal_decay_shift = clamp(_shift, 0, 10); 90 return 1; 91 } 92 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 93 94 #ifdef CONFIG_SMP 95 /* 96 * For asym packing, by default the lower numbered CPU has higher priority. 97 */ 98 int __weak arch_asym_cpu_priority(int cpu) 99 { 100 return -cpu; 101 } 102 103 /* 104 * The margin used when comparing utilization with CPU capacity. 105 * 106 * (default: ~20%) 107 */ 108 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 109 110 /* 111 * The margin used when comparing CPU capacities. 112 * is 'cap1' noticeably greater than 'cap2' 113 * 114 * (default: ~5%) 115 */ 116 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 117 #endif 118 119 #ifdef CONFIG_CFS_BANDWIDTH 120 /* 121 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 122 * each time a cfs_rq requests quota. 123 * 124 * Note: in the case that the slice exceeds the runtime remaining (either due 125 * to consumption or the quota being specified to be smaller than the slice) 126 * we will always only issue the remaining available time. 127 * 128 * (default: 5 msec, units: microseconds) 129 */ 130 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 131 #endif 132 133 #ifdef CONFIG_NUMA_BALANCING 134 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 135 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 136 #endif 137 138 #ifdef CONFIG_SYSCTL 139 static struct ctl_table sched_fair_sysctls[] = { 140 #ifdef CONFIG_CFS_BANDWIDTH 141 { 142 .procname = "sched_cfs_bandwidth_slice_us", 143 .data = &sysctl_sched_cfs_bandwidth_slice, 144 .maxlen = sizeof(unsigned int), 145 .mode = 0644, 146 .proc_handler = proc_dointvec_minmax, 147 .extra1 = SYSCTL_ONE, 148 }, 149 #endif 150 #ifdef CONFIG_NUMA_BALANCING 151 { 152 .procname = "numa_balancing_promote_rate_limit_MBps", 153 .data = &sysctl_numa_balancing_promote_rate_limit, 154 .maxlen = sizeof(unsigned int), 155 .mode = 0644, 156 .proc_handler = proc_dointvec_minmax, 157 .extra1 = SYSCTL_ZERO, 158 }, 159 #endif /* CONFIG_NUMA_BALANCING */ 160 {} 161 }; 162 163 static int __init sched_fair_sysctl_init(void) 164 { 165 register_sysctl_init("kernel", sched_fair_sysctls); 166 return 0; 167 } 168 late_initcall(sched_fair_sysctl_init); 169 #endif 170 171 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 172 { 173 lw->weight += inc; 174 lw->inv_weight = 0; 175 } 176 177 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 178 { 179 lw->weight -= dec; 180 lw->inv_weight = 0; 181 } 182 183 static inline void update_load_set(struct load_weight *lw, unsigned long w) 184 { 185 lw->weight = w; 186 lw->inv_weight = 0; 187 } 188 189 /* 190 * Increase the granularity value when there are more CPUs, 191 * because with more CPUs the 'effective latency' as visible 192 * to users decreases. But the relationship is not linear, 193 * so pick a second-best guess by going with the log2 of the 194 * number of CPUs. 195 * 196 * This idea comes from the SD scheduler of Con Kolivas: 197 */ 198 static unsigned int get_update_sysctl_factor(void) 199 { 200 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 201 unsigned int factor; 202 203 switch (sysctl_sched_tunable_scaling) { 204 case SCHED_TUNABLESCALING_NONE: 205 factor = 1; 206 break; 207 case SCHED_TUNABLESCALING_LINEAR: 208 factor = cpus; 209 break; 210 case SCHED_TUNABLESCALING_LOG: 211 default: 212 factor = 1 + ilog2(cpus); 213 break; 214 } 215 216 return factor; 217 } 218 219 static void update_sysctl(void) 220 { 221 unsigned int factor = get_update_sysctl_factor(); 222 223 #define SET_SYSCTL(name) \ 224 (sysctl_##name = (factor) * normalized_sysctl_##name) 225 SET_SYSCTL(sched_base_slice); 226 #undef SET_SYSCTL 227 } 228 229 void __init sched_init_granularity(void) 230 { 231 update_sysctl(); 232 } 233 234 #define WMULT_CONST (~0U) 235 #define WMULT_SHIFT 32 236 237 static void __update_inv_weight(struct load_weight *lw) 238 { 239 unsigned long w; 240 241 if (likely(lw->inv_weight)) 242 return; 243 244 w = scale_load_down(lw->weight); 245 246 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 247 lw->inv_weight = 1; 248 else if (unlikely(!w)) 249 lw->inv_weight = WMULT_CONST; 250 else 251 lw->inv_weight = WMULT_CONST / w; 252 } 253 254 /* 255 * delta_exec * weight / lw.weight 256 * OR 257 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 258 * 259 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 260 * we're guaranteed shift stays positive because inv_weight is guaranteed to 261 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 262 * 263 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 264 * weight/lw.weight <= 1, and therefore our shift will also be positive. 265 */ 266 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 267 { 268 u64 fact = scale_load_down(weight); 269 u32 fact_hi = (u32)(fact >> 32); 270 int shift = WMULT_SHIFT; 271 int fs; 272 273 __update_inv_weight(lw); 274 275 if (unlikely(fact_hi)) { 276 fs = fls(fact_hi); 277 shift -= fs; 278 fact >>= fs; 279 } 280 281 fact = mul_u32_u32(fact, lw->inv_weight); 282 283 fact_hi = (u32)(fact >> 32); 284 if (fact_hi) { 285 fs = fls(fact_hi); 286 shift -= fs; 287 fact >>= fs; 288 } 289 290 return mul_u64_u32_shr(delta_exec, fact, shift); 291 } 292 293 /* 294 * delta /= w 295 */ 296 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 297 { 298 if (unlikely(se->load.weight != NICE_0_LOAD)) 299 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 300 301 return delta; 302 } 303 304 const struct sched_class fair_sched_class; 305 306 /************************************************************** 307 * CFS operations on generic schedulable entities: 308 */ 309 310 #ifdef CONFIG_FAIR_GROUP_SCHED 311 312 /* Walk up scheduling entities hierarchy */ 313 #define for_each_sched_entity(se) \ 314 for (; se; se = se->parent) 315 316 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 317 { 318 struct rq *rq = rq_of(cfs_rq); 319 int cpu = cpu_of(rq); 320 321 if (cfs_rq->on_list) 322 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 323 324 cfs_rq->on_list = 1; 325 326 /* 327 * Ensure we either appear before our parent (if already 328 * enqueued) or force our parent to appear after us when it is 329 * enqueued. The fact that we always enqueue bottom-up 330 * reduces this to two cases and a special case for the root 331 * cfs_rq. Furthermore, it also means that we will always reset 332 * tmp_alone_branch either when the branch is connected 333 * to a tree or when we reach the top of the tree 334 */ 335 if (cfs_rq->tg->parent && 336 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 337 /* 338 * If parent is already on the list, we add the child 339 * just before. Thanks to circular linked property of 340 * the list, this means to put the child at the tail 341 * of the list that starts by parent. 342 */ 343 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 344 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 345 /* 346 * The branch is now connected to its tree so we can 347 * reset tmp_alone_branch to the beginning of the 348 * list. 349 */ 350 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 351 return true; 352 } 353 354 if (!cfs_rq->tg->parent) { 355 /* 356 * cfs rq without parent should be put 357 * at the tail of the list. 358 */ 359 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 360 &rq->leaf_cfs_rq_list); 361 /* 362 * We have reach the top of a tree so we can reset 363 * tmp_alone_branch to the beginning of the list. 364 */ 365 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 366 return true; 367 } 368 369 /* 370 * The parent has not already been added so we want to 371 * make sure that it will be put after us. 372 * tmp_alone_branch points to the begin of the branch 373 * where we will add parent. 374 */ 375 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 376 /* 377 * update tmp_alone_branch to points to the new begin 378 * of the branch 379 */ 380 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 381 return false; 382 } 383 384 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 385 { 386 if (cfs_rq->on_list) { 387 struct rq *rq = rq_of(cfs_rq); 388 389 /* 390 * With cfs_rq being unthrottled/throttled during an enqueue, 391 * it can happen the tmp_alone_branch points the a leaf that 392 * we finally want to del. In this case, tmp_alone_branch moves 393 * to the prev element but it will point to rq->leaf_cfs_rq_list 394 * at the end of the enqueue. 395 */ 396 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 397 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 398 399 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 400 cfs_rq->on_list = 0; 401 } 402 } 403 404 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 405 { 406 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 407 } 408 409 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 410 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 411 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 412 leaf_cfs_rq_list) 413 414 /* Do the two (enqueued) entities belong to the same group ? */ 415 static inline struct cfs_rq * 416 is_same_group(struct sched_entity *se, struct sched_entity *pse) 417 { 418 if (se->cfs_rq == pse->cfs_rq) 419 return se->cfs_rq; 420 421 return NULL; 422 } 423 424 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 425 { 426 return se->parent; 427 } 428 429 static void 430 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 431 { 432 int se_depth, pse_depth; 433 434 /* 435 * preemption test can be made between sibling entities who are in the 436 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 437 * both tasks until we find their ancestors who are siblings of common 438 * parent. 439 */ 440 441 /* First walk up until both entities are at same depth */ 442 se_depth = (*se)->depth; 443 pse_depth = (*pse)->depth; 444 445 while (se_depth > pse_depth) { 446 se_depth--; 447 *se = parent_entity(*se); 448 } 449 450 while (pse_depth > se_depth) { 451 pse_depth--; 452 *pse = parent_entity(*pse); 453 } 454 455 while (!is_same_group(*se, *pse)) { 456 *se = parent_entity(*se); 457 *pse = parent_entity(*pse); 458 } 459 } 460 461 static int tg_is_idle(struct task_group *tg) 462 { 463 return tg->idle > 0; 464 } 465 466 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 467 { 468 return cfs_rq->idle > 0; 469 } 470 471 static int se_is_idle(struct sched_entity *se) 472 { 473 if (entity_is_task(se)) 474 return task_has_idle_policy(task_of(se)); 475 return cfs_rq_is_idle(group_cfs_rq(se)); 476 } 477 478 #else /* !CONFIG_FAIR_GROUP_SCHED */ 479 480 #define for_each_sched_entity(se) \ 481 for (; se; se = NULL) 482 483 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 484 { 485 return true; 486 } 487 488 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 489 { 490 } 491 492 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 493 { 494 } 495 496 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 497 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 498 499 static inline struct sched_entity *parent_entity(struct sched_entity *se) 500 { 501 return NULL; 502 } 503 504 static inline void 505 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 506 { 507 } 508 509 static inline int tg_is_idle(struct task_group *tg) 510 { 511 return 0; 512 } 513 514 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 515 { 516 return 0; 517 } 518 519 static int se_is_idle(struct sched_entity *se) 520 { 521 return 0; 522 } 523 524 #endif /* CONFIG_FAIR_GROUP_SCHED */ 525 526 static __always_inline 527 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 528 529 /************************************************************** 530 * Scheduling class tree data structure manipulation methods: 531 */ 532 533 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 534 { 535 s64 delta = (s64)(vruntime - max_vruntime); 536 if (delta > 0) 537 max_vruntime = vruntime; 538 539 return max_vruntime; 540 } 541 542 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 543 { 544 s64 delta = (s64)(vruntime - min_vruntime); 545 if (delta < 0) 546 min_vruntime = vruntime; 547 548 return min_vruntime; 549 } 550 551 static inline bool entity_before(const struct sched_entity *a, 552 const struct sched_entity *b) 553 { 554 /* 555 * Tiebreak on vruntime seems unnecessary since it can 556 * hardly happen. 557 */ 558 return (s64)(a->deadline - b->deadline) < 0; 559 } 560 561 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 562 { 563 return (s64)(se->vruntime - cfs_rq->min_vruntime); 564 } 565 566 #define __node_2_se(node) \ 567 rb_entry((node), struct sched_entity, run_node) 568 569 /* 570 * Compute virtual time from the per-task service numbers: 571 * 572 * Fair schedulers conserve lag: 573 * 574 * \Sum lag_i = 0 575 * 576 * Where lag_i is given by: 577 * 578 * lag_i = S - s_i = w_i * (V - v_i) 579 * 580 * Where S is the ideal service time and V is it's virtual time counterpart. 581 * Therefore: 582 * 583 * \Sum lag_i = 0 584 * \Sum w_i * (V - v_i) = 0 585 * \Sum w_i * V - w_i * v_i = 0 586 * 587 * From which we can solve an expression for V in v_i (which we have in 588 * se->vruntime): 589 * 590 * \Sum v_i * w_i \Sum v_i * w_i 591 * V = -------------- = -------------- 592 * \Sum w_i W 593 * 594 * Specifically, this is the weighted average of all entity virtual runtimes. 595 * 596 * [[ NOTE: this is only equal to the ideal scheduler under the condition 597 * that join/leave operations happen at lag_i = 0, otherwise the 598 * virtual time has non-continguous motion equivalent to: 599 * 600 * V +-= lag_i / W 601 * 602 * Also see the comment in place_entity() that deals with this. ]] 603 * 604 * However, since v_i is u64, and the multiplcation could easily overflow 605 * transform it into a relative form that uses smaller quantities: 606 * 607 * Substitute: v_i == (v_i - v0) + v0 608 * 609 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 610 * V = ---------------------------- = --------------------- + v0 611 * W W 612 * 613 * Which we track using: 614 * 615 * v0 := cfs_rq->min_vruntime 616 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 617 * \Sum w_i := cfs_rq->avg_load 618 * 619 * Since min_vruntime is a monotonic increasing variable that closely tracks 620 * the per-task service, these deltas: (v_i - v), will be in the order of the 621 * maximal (virtual) lag induced in the system due to quantisation. 622 * 623 * Also, we use scale_load_down() to reduce the size. 624 * 625 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 626 */ 627 static void 628 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 629 { 630 unsigned long weight = scale_load_down(se->load.weight); 631 s64 key = entity_key(cfs_rq, se); 632 633 cfs_rq->avg_vruntime += key * weight; 634 cfs_rq->avg_load += weight; 635 } 636 637 static void 638 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 639 { 640 unsigned long weight = scale_load_down(se->load.weight); 641 s64 key = entity_key(cfs_rq, se); 642 643 cfs_rq->avg_vruntime -= key * weight; 644 cfs_rq->avg_load -= weight; 645 } 646 647 static inline 648 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 649 { 650 /* 651 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 652 */ 653 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 654 } 655 656 /* 657 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 658 * For this to be so, the result of this function must have a left bias. 659 */ 660 u64 avg_vruntime(struct cfs_rq *cfs_rq) 661 { 662 struct sched_entity *curr = cfs_rq->curr; 663 s64 avg = cfs_rq->avg_vruntime; 664 long load = cfs_rq->avg_load; 665 666 if (curr && curr->on_rq) { 667 unsigned long weight = scale_load_down(curr->load.weight); 668 669 avg += entity_key(cfs_rq, curr) * weight; 670 load += weight; 671 } 672 673 if (load) { 674 /* sign flips effective floor / ceil */ 675 if (avg < 0) 676 avg -= (load - 1); 677 avg = div_s64(avg, load); 678 } 679 680 return cfs_rq->min_vruntime + avg; 681 } 682 683 /* 684 * lag_i = S - s_i = w_i * (V - v_i) 685 * 686 * However, since V is approximated by the weighted average of all entities it 687 * is possible -- by addition/removal/reweight to the tree -- to move V around 688 * and end up with a larger lag than we started with. 689 * 690 * Limit this to either double the slice length with a minimum of TICK_NSEC 691 * since that is the timing granularity. 692 * 693 * EEVDF gives the following limit for a steady state system: 694 * 695 * -r_max < lag < max(r_max, q) 696 * 697 * XXX could add max_slice to the augmented data to track this. 698 */ 699 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 700 { 701 s64 lag, limit; 702 703 SCHED_WARN_ON(!se->on_rq); 704 lag = avg_vruntime(cfs_rq) - se->vruntime; 705 706 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 707 se->vlag = clamp(lag, -limit, limit); 708 } 709 710 /* 711 * Entity is eligible once it received less service than it ought to have, 712 * eg. lag >= 0. 713 * 714 * lag_i = S - s_i = w_i*(V - v_i) 715 * 716 * lag_i >= 0 -> V >= v_i 717 * 718 * \Sum (v_i - v)*w_i 719 * V = ------------------ + v 720 * \Sum w_i 721 * 722 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 723 * 724 * Note: using 'avg_vruntime() > se->vruntime' is inacurate due 725 * to the loss in precision caused by the division. 726 */ 727 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 728 { 729 struct sched_entity *curr = cfs_rq->curr; 730 s64 avg = cfs_rq->avg_vruntime; 731 long load = cfs_rq->avg_load; 732 733 if (curr && curr->on_rq) { 734 unsigned long weight = scale_load_down(curr->load.weight); 735 736 avg += entity_key(cfs_rq, curr) * weight; 737 load += weight; 738 } 739 740 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 741 } 742 743 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 744 { 745 return vruntime_eligible(cfs_rq, se->vruntime); 746 } 747 748 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 749 { 750 u64 min_vruntime = cfs_rq->min_vruntime; 751 /* 752 * open coded max_vruntime() to allow updating avg_vruntime 753 */ 754 s64 delta = (s64)(vruntime - min_vruntime); 755 if (delta > 0) { 756 avg_vruntime_update(cfs_rq, delta); 757 min_vruntime = vruntime; 758 } 759 return min_vruntime; 760 } 761 762 static void update_min_vruntime(struct cfs_rq *cfs_rq) 763 { 764 struct sched_entity *se = __pick_root_entity(cfs_rq); 765 struct sched_entity *curr = cfs_rq->curr; 766 u64 vruntime = cfs_rq->min_vruntime; 767 768 if (curr) { 769 if (curr->on_rq) 770 vruntime = curr->vruntime; 771 else 772 curr = NULL; 773 } 774 775 if (se) { 776 if (!curr) 777 vruntime = se->min_vruntime; 778 else 779 vruntime = min_vruntime(vruntime, se->min_vruntime); 780 } 781 782 /* ensure we never gain time by being placed backwards. */ 783 u64_u32_store(cfs_rq->min_vruntime, 784 __update_min_vruntime(cfs_rq, vruntime)); 785 } 786 787 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 788 { 789 return entity_before(__node_2_se(a), __node_2_se(b)); 790 } 791 792 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 793 794 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 795 { 796 if (node) { 797 struct sched_entity *rse = __node_2_se(node); 798 if (vruntime_gt(min_vruntime, se, rse)) 799 se->min_vruntime = rse->min_vruntime; 800 } 801 } 802 803 /* 804 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 805 */ 806 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 807 { 808 u64 old_min_vruntime = se->min_vruntime; 809 struct rb_node *node = &se->run_node; 810 811 se->min_vruntime = se->vruntime; 812 __min_vruntime_update(se, node->rb_right); 813 __min_vruntime_update(se, node->rb_left); 814 815 return se->min_vruntime == old_min_vruntime; 816 } 817 818 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 819 run_node, min_vruntime, min_vruntime_update); 820 821 /* 822 * Enqueue an entity into the rb-tree: 823 */ 824 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 825 { 826 avg_vruntime_add(cfs_rq, se); 827 se->min_vruntime = se->vruntime; 828 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 829 __entity_less, &min_vruntime_cb); 830 } 831 832 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 833 { 834 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 835 &min_vruntime_cb); 836 avg_vruntime_sub(cfs_rq, se); 837 } 838 839 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 840 { 841 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 842 843 if (!root) 844 return NULL; 845 846 return __node_2_se(root); 847 } 848 849 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 850 { 851 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 852 853 if (!left) 854 return NULL; 855 856 return __node_2_se(left); 857 } 858 859 /* 860 * Earliest Eligible Virtual Deadline First 861 * 862 * In order to provide latency guarantees for different request sizes 863 * EEVDF selects the best runnable task from two criteria: 864 * 865 * 1) the task must be eligible (must be owed service) 866 * 867 * 2) from those tasks that meet 1), we select the one 868 * with the earliest virtual deadline. 869 * 870 * We can do this in O(log n) time due to an augmented RB-tree. The 871 * tree keeps the entries sorted on deadline, but also functions as a 872 * heap based on the vruntime by keeping: 873 * 874 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 875 * 876 * Which allows tree pruning through eligibility. 877 */ 878 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 879 { 880 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 881 struct sched_entity *se = __pick_first_entity(cfs_rq); 882 struct sched_entity *curr = cfs_rq->curr; 883 struct sched_entity *best = NULL; 884 885 /* 886 * We can safely skip eligibility check if there is only one entity 887 * in this cfs_rq, saving some cycles. 888 */ 889 if (cfs_rq->nr_running == 1) 890 return curr && curr->on_rq ? curr : se; 891 892 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 893 curr = NULL; 894 895 /* 896 * Once selected, run a task until it either becomes non-eligible or 897 * until it gets a new slice. See the HACK in set_next_entity(). 898 */ 899 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 900 return curr; 901 902 /* Pick the leftmost entity if it's eligible */ 903 if (se && entity_eligible(cfs_rq, se)) { 904 best = se; 905 goto found; 906 } 907 908 /* Heap search for the EEVD entity */ 909 while (node) { 910 struct rb_node *left = node->rb_left; 911 912 /* 913 * Eligible entities in left subtree are always better 914 * choices, since they have earlier deadlines. 915 */ 916 if (left && vruntime_eligible(cfs_rq, 917 __node_2_se(left)->min_vruntime)) { 918 node = left; 919 continue; 920 } 921 922 se = __node_2_se(node); 923 924 /* 925 * The left subtree either is empty or has no eligible 926 * entity, so check the current node since it is the one 927 * with earliest deadline that might be eligible. 928 */ 929 if (entity_eligible(cfs_rq, se)) { 930 best = se; 931 break; 932 } 933 934 node = node->rb_right; 935 } 936 found: 937 if (!best || (curr && entity_before(curr, best))) 938 best = curr; 939 940 return best; 941 } 942 943 #ifdef CONFIG_SCHED_DEBUG 944 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 945 { 946 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 947 948 if (!last) 949 return NULL; 950 951 return __node_2_se(last); 952 } 953 954 /************************************************************** 955 * Scheduling class statistics methods: 956 */ 957 #ifdef CONFIG_SMP 958 int sched_update_scaling(void) 959 { 960 unsigned int factor = get_update_sysctl_factor(); 961 962 #define WRT_SYSCTL(name) \ 963 (normalized_sysctl_##name = sysctl_##name / (factor)) 964 WRT_SYSCTL(sched_base_slice); 965 #undef WRT_SYSCTL 966 967 return 0; 968 } 969 #endif 970 #endif 971 972 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 973 974 /* 975 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 976 * this is probably good enough. 977 */ 978 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 979 { 980 if ((s64)(se->vruntime - se->deadline) < 0) 981 return; 982 983 /* 984 * For EEVDF the virtual time slope is determined by w_i (iow. 985 * nice) while the request time r_i is determined by 986 * sysctl_sched_base_slice. 987 */ 988 se->slice = sysctl_sched_base_slice; 989 990 /* 991 * EEVDF: vd_i = ve_i + r_i / w_i 992 */ 993 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 994 995 /* 996 * The task has consumed its request, reschedule. 997 */ 998 if (cfs_rq->nr_running > 1) { 999 resched_curr(rq_of(cfs_rq)); 1000 clear_buddies(cfs_rq, se); 1001 } 1002 } 1003 1004 #include "pelt.h" 1005 #ifdef CONFIG_SMP 1006 1007 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1008 static unsigned long task_h_load(struct task_struct *p); 1009 static unsigned long capacity_of(int cpu); 1010 1011 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1012 void init_entity_runnable_average(struct sched_entity *se) 1013 { 1014 struct sched_avg *sa = &se->avg; 1015 1016 memset(sa, 0, sizeof(*sa)); 1017 1018 /* 1019 * Tasks are initialized with full load to be seen as heavy tasks until 1020 * they get a chance to stabilize to their real load level. 1021 * Group entities are initialized with zero load to reflect the fact that 1022 * nothing has been attached to the task group yet. 1023 */ 1024 if (entity_is_task(se)) 1025 sa->load_avg = scale_load_down(se->load.weight); 1026 1027 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 1028 } 1029 1030 /* 1031 * With new tasks being created, their initial util_avgs are extrapolated 1032 * based on the cfs_rq's current util_avg: 1033 * 1034 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 1035 * 1036 * However, in many cases, the above util_avg does not give a desired 1037 * value. Moreover, the sum of the util_avgs may be divergent, such 1038 * as when the series is a harmonic series. 1039 * 1040 * To solve this problem, we also cap the util_avg of successive tasks to 1041 * only 1/2 of the left utilization budget: 1042 * 1043 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1044 * 1045 * where n denotes the nth task and cpu_scale the CPU capacity. 1046 * 1047 * For example, for a CPU with 1024 of capacity, a simplest series from 1048 * the beginning would be like: 1049 * 1050 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1051 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1052 * 1053 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1054 * if util_avg > util_avg_cap. 1055 */ 1056 void post_init_entity_util_avg(struct task_struct *p) 1057 { 1058 struct sched_entity *se = &p->se; 1059 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1060 struct sched_avg *sa = &se->avg; 1061 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1062 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1063 1064 if (p->sched_class != &fair_sched_class) { 1065 /* 1066 * For !fair tasks do: 1067 * 1068 update_cfs_rq_load_avg(now, cfs_rq); 1069 attach_entity_load_avg(cfs_rq, se); 1070 switched_from_fair(rq, p); 1071 * 1072 * such that the next switched_to_fair() has the 1073 * expected state. 1074 */ 1075 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1076 return; 1077 } 1078 1079 if (cap > 0) { 1080 if (cfs_rq->avg.util_avg != 0) { 1081 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 1082 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1083 1084 if (sa->util_avg > cap) 1085 sa->util_avg = cap; 1086 } else { 1087 sa->util_avg = cap; 1088 } 1089 } 1090 1091 sa->runnable_avg = sa->util_avg; 1092 } 1093 1094 #else /* !CONFIG_SMP */ 1095 void init_entity_runnable_average(struct sched_entity *se) 1096 { 1097 } 1098 void post_init_entity_util_avg(struct task_struct *p) 1099 { 1100 } 1101 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1102 { 1103 } 1104 #endif /* CONFIG_SMP */ 1105 1106 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1107 { 1108 u64 now = rq_clock_task(rq); 1109 s64 delta_exec; 1110 1111 delta_exec = now - curr->exec_start; 1112 if (unlikely(delta_exec <= 0)) 1113 return delta_exec; 1114 1115 curr->exec_start = now; 1116 curr->sum_exec_runtime += delta_exec; 1117 1118 if (schedstat_enabled()) { 1119 struct sched_statistics *stats; 1120 1121 stats = __schedstats_from_se(curr); 1122 __schedstat_set(stats->exec_max, 1123 max(delta_exec, stats->exec_max)); 1124 } 1125 1126 return delta_exec; 1127 } 1128 1129 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1130 { 1131 trace_sched_stat_runtime(p, delta_exec); 1132 account_group_exec_runtime(p, delta_exec); 1133 cgroup_account_cputime(p, delta_exec); 1134 if (p->dl_server) 1135 dl_server_update(p->dl_server, delta_exec); 1136 } 1137 1138 /* 1139 * Used by other classes to account runtime. 1140 */ 1141 s64 update_curr_common(struct rq *rq) 1142 { 1143 struct task_struct *curr = rq->curr; 1144 s64 delta_exec; 1145 1146 delta_exec = update_curr_se(rq, &curr->se); 1147 if (likely(delta_exec > 0)) 1148 update_curr_task(curr, delta_exec); 1149 1150 return delta_exec; 1151 } 1152 1153 /* 1154 * Update the current task's runtime statistics. 1155 */ 1156 static void update_curr(struct cfs_rq *cfs_rq) 1157 { 1158 struct sched_entity *curr = cfs_rq->curr; 1159 s64 delta_exec; 1160 1161 if (unlikely(!curr)) 1162 return; 1163 1164 delta_exec = update_curr_se(rq_of(cfs_rq), curr); 1165 if (unlikely(delta_exec <= 0)) 1166 return; 1167 1168 curr->vruntime += calc_delta_fair(delta_exec, curr); 1169 update_deadline(cfs_rq, curr); 1170 update_min_vruntime(cfs_rq); 1171 1172 if (entity_is_task(curr)) 1173 update_curr_task(task_of(curr), delta_exec); 1174 1175 account_cfs_rq_runtime(cfs_rq, delta_exec); 1176 } 1177 1178 static void update_curr_fair(struct rq *rq) 1179 { 1180 update_curr(cfs_rq_of(&rq->curr->se)); 1181 } 1182 1183 static inline void 1184 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1185 { 1186 struct sched_statistics *stats; 1187 struct task_struct *p = NULL; 1188 1189 if (!schedstat_enabled()) 1190 return; 1191 1192 stats = __schedstats_from_se(se); 1193 1194 if (entity_is_task(se)) 1195 p = task_of(se); 1196 1197 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1198 } 1199 1200 static inline void 1201 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1202 { 1203 struct sched_statistics *stats; 1204 struct task_struct *p = NULL; 1205 1206 if (!schedstat_enabled()) 1207 return; 1208 1209 stats = __schedstats_from_se(se); 1210 1211 /* 1212 * When the sched_schedstat changes from 0 to 1, some sched se 1213 * maybe already in the runqueue, the se->statistics.wait_start 1214 * will be 0.So it will let the delta wrong. We need to avoid this 1215 * scenario. 1216 */ 1217 if (unlikely(!schedstat_val(stats->wait_start))) 1218 return; 1219 1220 if (entity_is_task(se)) 1221 p = task_of(se); 1222 1223 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1224 } 1225 1226 static inline void 1227 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1228 { 1229 struct sched_statistics *stats; 1230 struct task_struct *tsk = NULL; 1231 1232 if (!schedstat_enabled()) 1233 return; 1234 1235 stats = __schedstats_from_se(se); 1236 1237 if (entity_is_task(se)) 1238 tsk = task_of(se); 1239 1240 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1241 } 1242 1243 /* 1244 * Task is being enqueued - update stats: 1245 */ 1246 static inline void 1247 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1248 { 1249 if (!schedstat_enabled()) 1250 return; 1251 1252 /* 1253 * Are we enqueueing a waiting task? (for current tasks 1254 * a dequeue/enqueue event is a NOP) 1255 */ 1256 if (se != cfs_rq->curr) 1257 update_stats_wait_start_fair(cfs_rq, se); 1258 1259 if (flags & ENQUEUE_WAKEUP) 1260 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1261 } 1262 1263 static inline void 1264 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1265 { 1266 1267 if (!schedstat_enabled()) 1268 return; 1269 1270 /* 1271 * Mark the end of the wait period if dequeueing a 1272 * waiting task: 1273 */ 1274 if (se != cfs_rq->curr) 1275 update_stats_wait_end_fair(cfs_rq, se); 1276 1277 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1278 struct task_struct *tsk = task_of(se); 1279 unsigned int state; 1280 1281 /* XXX racy against TTWU */ 1282 state = READ_ONCE(tsk->__state); 1283 if (state & TASK_INTERRUPTIBLE) 1284 __schedstat_set(tsk->stats.sleep_start, 1285 rq_clock(rq_of(cfs_rq))); 1286 if (state & TASK_UNINTERRUPTIBLE) 1287 __schedstat_set(tsk->stats.block_start, 1288 rq_clock(rq_of(cfs_rq))); 1289 } 1290 } 1291 1292 /* 1293 * We are picking a new current task - update its stats: 1294 */ 1295 static inline void 1296 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1297 { 1298 /* 1299 * We are starting a new run period: 1300 */ 1301 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1302 } 1303 1304 /************************************************** 1305 * Scheduling class queueing methods: 1306 */ 1307 1308 static inline bool is_core_idle(int cpu) 1309 { 1310 #ifdef CONFIG_SCHED_SMT 1311 int sibling; 1312 1313 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1314 if (cpu == sibling) 1315 continue; 1316 1317 if (!idle_cpu(sibling)) 1318 return false; 1319 } 1320 #endif 1321 1322 return true; 1323 } 1324 1325 #ifdef CONFIG_NUMA 1326 #define NUMA_IMBALANCE_MIN 2 1327 1328 static inline long 1329 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1330 { 1331 /* 1332 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1333 * threshold. Above this threshold, individual tasks may be contending 1334 * for both memory bandwidth and any shared HT resources. This is an 1335 * approximation as the number of running tasks may not be related to 1336 * the number of busy CPUs due to sched_setaffinity. 1337 */ 1338 if (dst_running > imb_numa_nr) 1339 return imbalance; 1340 1341 /* 1342 * Allow a small imbalance based on a simple pair of communicating 1343 * tasks that remain local when the destination is lightly loaded. 1344 */ 1345 if (imbalance <= NUMA_IMBALANCE_MIN) 1346 return 0; 1347 1348 return imbalance; 1349 } 1350 #endif /* CONFIG_NUMA */ 1351 1352 #ifdef CONFIG_NUMA_BALANCING 1353 /* 1354 * Approximate time to scan a full NUMA task in ms. The task scan period is 1355 * calculated based on the tasks virtual memory size and 1356 * numa_balancing_scan_size. 1357 */ 1358 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1359 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1360 1361 /* Portion of address space to scan in MB */ 1362 unsigned int sysctl_numa_balancing_scan_size = 256; 1363 1364 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1365 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1366 1367 /* The page with hint page fault latency < threshold in ms is considered hot */ 1368 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1369 1370 struct numa_group { 1371 refcount_t refcount; 1372 1373 spinlock_t lock; /* nr_tasks, tasks */ 1374 int nr_tasks; 1375 pid_t gid; 1376 int active_nodes; 1377 1378 struct rcu_head rcu; 1379 unsigned long total_faults; 1380 unsigned long max_faults_cpu; 1381 /* 1382 * faults[] array is split into two regions: faults_mem and faults_cpu. 1383 * 1384 * Faults_cpu is used to decide whether memory should move 1385 * towards the CPU. As a consequence, these stats are weighted 1386 * more by CPU use than by memory faults. 1387 */ 1388 unsigned long faults[]; 1389 }; 1390 1391 /* 1392 * For functions that can be called in multiple contexts that permit reading 1393 * ->numa_group (see struct task_struct for locking rules). 1394 */ 1395 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1396 { 1397 return rcu_dereference_check(p->numa_group, p == current || 1398 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1399 } 1400 1401 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1402 { 1403 return rcu_dereference_protected(p->numa_group, p == current); 1404 } 1405 1406 static inline unsigned long group_faults_priv(struct numa_group *ng); 1407 static inline unsigned long group_faults_shared(struct numa_group *ng); 1408 1409 static unsigned int task_nr_scan_windows(struct task_struct *p) 1410 { 1411 unsigned long rss = 0; 1412 unsigned long nr_scan_pages; 1413 1414 /* 1415 * Calculations based on RSS as non-present and empty pages are skipped 1416 * by the PTE scanner and NUMA hinting faults should be trapped based 1417 * on resident pages 1418 */ 1419 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1420 rss = get_mm_rss(p->mm); 1421 if (!rss) 1422 rss = nr_scan_pages; 1423 1424 rss = round_up(rss, nr_scan_pages); 1425 return rss / nr_scan_pages; 1426 } 1427 1428 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1429 #define MAX_SCAN_WINDOW 2560 1430 1431 static unsigned int task_scan_min(struct task_struct *p) 1432 { 1433 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1434 unsigned int scan, floor; 1435 unsigned int windows = 1; 1436 1437 if (scan_size < MAX_SCAN_WINDOW) 1438 windows = MAX_SCAN_WINDOW / scan_size; 1439 floor = 1000 / windows; 1440 1441 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1442 return max_t(unsigned int, floor, scan); 1443 } 1444 1445 static unsigned int task_scan_start(struct task_struct *p) 1446 { 1447 unsigned long smin = task_scan_min(p); 1448 unsigned long period = smin; 1449 struct numa_group *ng; 1450 1451 /* Scale the maximum scan period with the amount of shared memory. */ 1452 rcu_read_lock(); 1453 ng = rcu_dereference(p->numa_group); 1454 if (ng) { 1455 unsigned long shared = group_faults_shared(ng); 1456 unsigned long private = group_faults_priv(ng); 1457 1458 period *= refcount_read(&ng->refcount); 1459 period *= shared + 1; 1460 period /= private + shared + 1; 1461 } 1462 rcu_read_unlock(); 1463 1464 return max(smin, period); 1465 } 1466 1467 static unsigned int task_scan_max(struct task_struct *p) 1468 { 1469 unsigned long smin = task_scan_min(p); 1470 unsigned long smax; 1471 struct numa_group *ng; 1472 1473 /* Watch for min being lower than max due to floor calculations */ 1474 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1475 1476 /* Scale the maximum scan period with the amount of shared memory. */ 1477 ng = deref_curr_numa_group(p); 1478 if (ng) { 1479 unsigned long shared = group_faults_shared(ng); 1480 unsigned long private = group_faults_priv(ng); 1481 unsigned long period = smax; 1482 1483 period *= refcount_read(&ng->refcount); 1484 period *= shared + 1; 1485 period /= private + shared + 1; 1486 1487 smax = max(smax, period); 1488 } 1489 1490 return max(smin, smax); 1491 } 1492 1493 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1494 { 1495 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1496 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1497 } 1498 1499 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1500 { 1501 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1502 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1503 } 1504 1505 /* Shared or private faults. */ 1506 #define NR_NUMA_HINT_FAULT_TYPES 2 1507 1508 /* Memory and CPU locality */ 1509 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1510 1511 /* Averaged statistics, and temporary buffers. */ 1512 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1513 1514 pid_t task_numa_group_id(struct task_struct *p) 1515 { 1516 struct numa_group *ng; 1517 pid_t gid = 0; 1518 1519 rcu_read_lock(); 1520 ng = rcu_dereference(p->numa_group); 1521 if (ng) 1522 gid = ng->gid; 1523 rcu_read_unlock(); 1524 1525 return gid; 1526 } 1527 1528 /* 1529 * The averaged statistics, shared & private, memory & CPU, 1530 * occupy the first half of the array. The second half of the 1531 * array is for current counters, which are averaged into the 1532 * first set by task_numa_placement. 1533 */ 1534 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1535 { 1536 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1537 } 1538 1539 static inline unsigned long task_faults(struct task_struct *p, int nid) 1540 { 1541 if (!p->numa_faults) 1542 return 0; 1543 1544 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1545 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1546 } 1547 1548 static inline unsigned long group_faults(struct task_struct *p, int nid) 1549 { 1550 struct numa_group *ng = deref_task_numa_group(p); 1551 1552 if (!ng) 1553 return 0; 1554 1555 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1556 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1557 } 1558 1559 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1560 { 1561 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1562 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1563 } 1564 1565 static inline unsigned long group_faults_priv(struct numa_group *ng) 1566 { 1567 unsigned long faults = 0; 1568 int node; 1569 1570 for_each_online_node(node) { 1571 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1572 } 1573 1574 return faults; 1575 } 1576 1577 static inline unsigned long group_faults_shared(struct numa_group *ng) 1578 { 1579 unsigned long faults = 0; 1580 int node; 1581 1582 for_each_online_node(node) { 1583 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1584 } 1585 1586 return faults; 1587 } 1588 1589 /* 1590 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1591 * considered part of a numa group's pseudo-interleaving set. Migrations 1592 * between these nodes are slowed down, to allow things to settle down. 1593 */ 1594 #define ACTIVE_NODE_FRACTION 3 1595 1596 static bool numa_is_active_node(int nid, struct numa_group *ng) 1597 { 1598 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1599 } 1600 1601 /* Handle placement on systems where not all nodes are directly connected. */ 1602 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1603 int lim_dist, bool task) 1604 { 1605 unsigned long score = 0; 1606 int node, max_dist; 1607 1608 /* 1609 * All nodes are directly connected, and the same distance 1610 * from each other. No need for fancy placement algorithms. 1611 */ 1612 if (sched_numa_topology_type == NUMA_DIRECT) 1613 return 0; 1614 1615 /* sched_max_numa_distance may be changed in parallel. */ 1616 max_dist = READ_ONCE(sched_max_numa_distance); 1617 /* 1618 * This code is called for each node, introducing N^2 complexity, 1619 * which should be ok given the number of nodes rarely exceeds 8. 1620 */ 1621 for_each_online_node(node) { 1622 unsigned long faults; 1623 int dist = node_distance(nid, node); 1624 1625 /* 1626 * The furthest away nodes in the system are not interesting 1627 * for placement; nid was already counted. 1628 */ 1629 if (dist >= max_dist || node == nid) 1630 continue; 1631 1632 /* 1633 * On systems with a backplane NUMA topology, compare groups 1634 * of nodes, and move tasks towards the group with the most 1635 * memory accesses. When comparing two nodes at distance 1636 * "hoplimit", only nodes closer by than "hoplimit" are part 1637 * of each group. Skip other nodes. 1638 */ 1639 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1640 continue; 1641 1642 /* Add up the faults from nearby nodes. */ 1643 if (task) 1644 faults = task_faults(p, node); 1645 else 1646 faults = group_faults(p, node); 1647 1648 /* 1649 * On systems with a glueless mesh NUMA topology, there are 1650 * no fixed "groups of nodes". Instead, nodes that are not 1651 * directly connected bounce traffic through intermediate 1652 * nodes; a numa_group can occupy any set of nodes. 1653 * The further away a node is, the less the faults count. 1654 * This seems to result in good task placement. 1655 */ 1656 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1657 faults *= (max_dist - dist); 1658 faults /= (max_dist - LOCAL_DISTANCE); 1659 } 1660 1661 score += faults; 1662 } 1663 1664 return score; 1665 } 1666 1667 /* 1668 * These return the fraction of accesses done by a particular task, or 1669 * task group, on a particular numa node. The group weight is given a 1670 * larger multiplier, in order to group tasks together that are almost 1671 * evenly spread out between numa nodes. 1672 */ 1673 static inline unsigned long task_weight(struct task_struct *p, int nid, 1674 int dist) 1675 { 1676 unsigned long faults, total_faults; 1677 1678 if (!p->numa_faults) 1679 return 0; 1680 1681 total_faults = p->total_numa_faults; 1682 1683 if (!total_faults) 1684 return 0; 1685 1686 faults = task_faults(p, nid); 1687 faults += score_nearby_nodes(p, nid, dist, true); 1688 1689 return 1000 * faults / total_faults; 1690 } 1691 1692 static inline unsigned long group_weight(struct task_struct *p, int nid, 1693 int dist) 1694 { 1695 struct numa_group *ng = deref_task_numa_group(p); 1696 unsigned long faults, total_faults; 1697 1698 if (!ng) 1699 return 0; 1700 1701 total_faults = ng->total_faults; 1702 1703 if (!total_faults) 1704 return 0; 1705 1706 faults = group_faults(p, nid); 1707 faults += score_nearby_nodes(p, nid, dist, false); 1708 1709 return 1000 * faults / total_faults; 1710 } 1711 1712 /* 1713 * If memory tiering mode is enabled, cpupid of slow memory page is 1714 * used to record scan time instead of CPU and PID. When tiering mode 1715 * is disabled at run time, the scan time (in cpupid) will be 1716 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1717 * access out of array bound. 1718 */ 1719 static inline bool cpupid_valid(int cpupid) 1720 { 1721 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1722 } 1723 1724 /* 1725 * For memory tiering mode, if there are enough free pages (more than 1726 * enough watermark defined here) in fast memory node, to take full 1727 * advantage of fast memory capacity, all recently accessed slow 1728 * memory pages will be migrated to fast memory node without 1729 * considering hot threshold. 1730 */ 1731 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1732 { 1733 int z; 1734 unsigned long enough_wmark; 1735 1736 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1737 pgdat->node_present_pages >> 4); 1738 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1739 struct zone *zone = pgdat->node_zones + z; 1740 1741 if (!populated_zone(zone)) 1742 continue; 1743 1744 if (zone_watermark_ok(zone, 0, 1745 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1746 ZONE_MOVABLE, 0)) 1747 return true; 1748 } 1749 return false; 1750 } 1751 1752 /* 1753 * For memory tiering mode, when page tables are scanned, the scan 1754 * time will be recorded in struct page in addition to make page 1755 * PROT_NONE for slow memory page. So when the page is accessed, in 1756 * hint page fault handler, the hint page fault latency is calculated 1757 * via, 1758 * 1759 * hint page fault latency = hint page fault time - scan time 1760 * 1761 * The smaller the hint page fault latency, the higher the possibility 1762 * for the page to be hot. 1763 */ 1764 static int numa_hint_fault_latency(struct folio *folio) 1765 { 1766 int last_time, time; 1767 1768 time = jiffies_to_msecs(jiffies); 1769 last_time = folio_xchg_access_time(folio, time); 1770 1771 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1772 } 1773 1774 /* 1775 * For memory tiering mode, too high promotion/demotion throughput may 1776 * hurt application latency. So we provide a mechanism to rate limit 1777 * the number of pages that are tried to be promoted. 1778 */ 1779 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1780 unsigned long rate_limit, int nr) 1781 { 1782 unsigned long nr_cand; 1783 unsigned int now, start; 1784 1785 now = jiffies_to_msecs(jiffies); 1786 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1787 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1788 start = pgdat->nbp_rl_start; 1789 if (now - start > MSEC_PER_SEC && 1790 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1791 pgdat->nbp_rl_nr_cand = nr_cand; 1792 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1793 return true; 1794 return false; 1795 } 1796 1797 #define NUMA_MIGRATION_ADJUST_STEPS 16 1798 1799 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1800 unsigned long rate_limit, 1801 unsigned int ref_th) 1802 { 1803 unsigned int now, start, th_period, unit_th, th; 1804 unsigned long nr_cand, ref_cand, diff_cand; 1805 1806 now = jiffies_to_msecs(jiffies); 1807 th_period = sysctl_numa_balancing_scan_period_max; 1808 start = pgdat->nbp_th_start; 1809 if (now - start > th_period && 1810 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1811 ref_cand = rate_limit * 1812 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1813 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1814 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1815 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1816 th = pgdat->nbp_threshold ? : ref_th; 1817 if (diff_cand > ref_cand * 11 / 10) 1818 th = max(th - unit_th, unit_th); 1819 else if (diff_cand < ref_cand * 9 / 10) 1820 th = min(th + unit_th, ref_th * 2); 1821 pgdat->nbp_th_nr_cand = nr_cand; 1822 pgdat->nbp_threshold = th; 1823 } 1824 } 1825 1826 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1827 int src_nid, int dst_cpu) 1828 { 1829 struct numa_group *ng = deref_curr_numa_group(p); 1830 int dst_nid = cpu_to_node(dst_cpu); 1831 int last_cpupid, this_cpupid; 1832 1833 /* 1834 * The pages in slow memory node should be migrated according 1835 * to hot/cold instead of private/shared. 1836 */ 1837 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING && 1838 !node_is_toptier(src_nid)) { 1839 struct pglist_data *pgdat; 1840 unsigned long rate_limit; 1841 unsigned int latency, th, def_th; 1842 1843 pgdat = NODE_DATA(dst_nid); 1844 if (pgdat_free_space_enough(pgdat)) { 1845 /* workload changed, reset hot threshold */ 1846 pgdat->nbp_threshold = 0; 1847 return true; 1848 } 1849 1850 def_th = sysctl_numa_balancing_hot_threshold; 1851 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1852 (20 - PAGE_SHIFT); 1853 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1854 1855 th = pgdat->nbp_threshold ? : def_th; 1856 latency = numa_hint_fault_latency(folio); 1857 if (latency >= th) 1858 return false; 1859 1860 return !numa_promotion_rate_limit(pgdat, rate_limit, 1861 folio_nr_pages(folio)); 1862 } 1863 1864 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1865 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1866 1867 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1868 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1869 return false; 1870 1871 /* 1872 * Allow first faults or private faults to migrate immediately early in 1873 * the lifetime of a task. The magic number 4 is based on waiting for 1874 * two full passes of the "multi-stage node selection" test that is 1875 * executed below. 1876 */ 1877 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1878 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1879 return true; 1880 1881 /* 1882 * Multi-stage node selection is used in conjunction with a periodic 1883 * migration fault to build a temporal task<->page relation. By using 1884 * a two-stage filter we remove short/unlikely relations. 1885 * 1886 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1887 * a task's usage of a particular page (n_p) per total usage of this 1888 * page (n_t) (in a given time-span) to a probability. 1889 * 1890 * Our periodic faults will sample this probability and getting the 1891 * same result twice in a row, given these samples are fully 1892 * independent, is then given by P(n)^2, provided our sample period 1893 * is sufficiently short compared to the usage pattern. 1894 * 1895 * This quadric squishes small probabilities, making it less likely we 1896 * act on an unlikely task<->page relation. 1897 */ 1898 if (!cpupid_pid_unset(last_cpupid) && 1899 cpupid_to_nid(last_cpupid) != dst_nid) 1900 return false; 1901 1902 /* Always allow migrate on private faults */ 1903 if (cpupid_match_pid(p, last_cpupid)) 1904 return true; 1905 1906 /* A shared fault, but p->numa_group has not been set up yet. */ 1907 if (!ng) 1908 return true; 1909 1910 /* 1911 * Destination node is much more heavily used than the source 1912 * node? Allow migration. 1913 */ 1914 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1915 ACTIVE_NODE_FRACTION) 1916 return true; 1917 1918 /* 1919 * Distribute memory according to CPU & memory use on each node, 1920 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1921 * 1922 * faults_cpu(dst) 3 faults_cpu(src) 1923 * --------------- * - > --------------- 1924 * faults_mem(dst) 4 faults_mem(src) 1925 */ 1926 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1927 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1928 } 1929 1930 /* 1931 * 'numa_type' describes the node at the moment of load balancing. 1932 */ 1933 enum numa_type { 1934 /* The node has spare capacity that can be used to run more tasks. */ 1935 node_has_spare = 0, 1936 /* 1937 * The node is fully used and the tasks don't compete for more CPU 1938 * cycles. Nevertheless, some tasks might wait before running. 1939 */ 1940 node_fully_busy, 1941 /* 1942 * The node is overloaded and can't provide expected CPU cycles to all 1943 * tasks. 1944 */ 1945 node_overloaded 1946 }; 1947 1948 /* Cached statistics for all CPUs within a node */ 1949 struct numa_stats { 1950 unsigned long load; 1951 unsigned long runnable; 1952 unsigned long util; 1953 /* Total compute capacity of CPUs on a node */ 1954 unsigned long compute_capacity; 1955 unsigned int nr_running; 1956 unsigned int weight; 1957 enum numa_type node_type; 1958 int idle_cpu; 1959 }; 1960 1961 struct task_numa_env { 1962 struct task_struct *p; 1963 1964 int src_cpu, src_nid; 1965 int dst_cpu, dst_nid; 1966 int imb_numa_nr; 1967 1968 struct numa_stats src_stats, dst_stats; 1969 1970 int imbalance_pct; 1971 int dist; 1972 1973 struct task_struct *best_task; 1974 long best_imp; 1975 int best_cpu; 1976 }; 1977 1978 static unsigned long cpu_load(struct rq *rq); 1979 static unsigned long cpu_runnable(struct rq *rq); 1980 1981 static inline enum 1982 numa_type numa_classify(unsigned int imbalance_pct, 1983 struct numa_stats *ns) 1984 { 1985 if ((ns->nr_running > ns->weight) && 1986 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1987 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1988 return node_overloaded; 1989 1990 if ((ns->nr_running < ns->weight) || 1991 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1992 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1993 return node_has_spare; 1994 1995 return node_fully_busy; 1996 } 1997 1998 #ifdef CONFIG_SCHED_SMT 1999 /* Forward declarations of select_idle_sibling helpers */ 2000 static inline bool test_idle_cores(int cpu); 2001 static inline int numa_idle_core(int idle_core, int cpu) 2002 { 2003 if (!static_branch_likely(&sched_smt_present) || 2004 idle_core >= 0 || !test_idle_cores(cpu)) 2005 return idle_core; 2006 2007 /* 2008 * Prefer cores instead of packing HT siblings 2009 * and triggering future load balancing. 2010 */ 2011 if (is_core_idle(cpu)) 2012 idle_core = cpu; 2013 2014 return idle_core; 2015 } 2016 #else 2017 static inline int numa_idle_core(int idle_core, int cpu) 2018 { 2019 return idle_core; 2020 } 2021 #endif 2022 2023 /* 2024 * Gather all necessary information to make NUMA balancing placement 2025 * decisions that are compatible with standard load balancer. This 2026 * borrows code and logic from update_sg_lb_stats but sharing a 2027 * common implementation is impractical. 2028 */ 2029 static void update_numa_stats(struct task_numa_env *env, 2030 struct numa_stats *ns, int nid, 2031 bool find_idle) 2032 { 2033 int cpu, idle_core = -1; 2034 2035 memset(ns, 0, sizeof(*ns)); 2036 ns->idle_cpu = -1; 2037 2038 rcu_read_lock(); 2039 for_each_cpu(cpu, cpumask_of_node(nid)) { 2040 struct rq *rq = cpu_rq(cpu); 2041 2042 ns->load += cpu_load(rq); 2043 ns->runnable += cpu_runnable(rq); 2044 ns->util += cpu_util_cfs(cpu); 2045 ns->nr_running += rq->cfs.h_nr_running; 2046 ns->compute_capacity += capacity_of(cpu); 2047 2048 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2049 if (READ_ONCE(rq->numa_migrate_on) || 2050 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2051 continue; 2052 2053 if (ns->idle_cpu == -1) 2054 ns->idle_cpu = cpu; 2055 2056 idle_core = numa_idle_core(idle_core, cpu); 2057 } 2058 } 2059 rcu_read_unlock(); 2060 2061 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2062 2063 ns->node_type = numa_classify(env->imbalance_pct, ns); 2064 2065 if (idle_core >= 0) 2066 ns->idle_cpu = idle_core; 2067 } 2068 2069 static void task_numa_assign(struct task_numa_env *env, 2070 struct task_struct *p, long imp) 2071 { 2072 struct rq *rq = cpu_rq(env->dst_cpu); 2073 2074 /* Check if run-queue part of active NUMA balance. */ 2075 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2076 int cpu; 2077 int start = env->dst_cpu; 2078 2079 /* Find alternative idle CPU. */ 2080 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2081 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2082 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2083 continue; 2084 } 2085 2086 env->dst_cpu = cpu; 2087 rq = cpu_rq(env->dst_cpu); 2088 if (!xchg(&rq->numa_migrate_on, 1)) 2089 goto assign; 2090 } 2091 2092 /* Failed to find an alternative idle CPU */ 2093 return; 2094 } 2095 2096 assign: 2097 /* 2098 * Clear previous best_cpu/rq numa-migrate flag, since task now 2099 * found a better CPU to move/swap. 2100 */ 2101 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2102 rq = cpu_rq(env->best_cpu); 2103 WRITE_ONCE(rq->numa_migrate_on, 0); 2104 } 2105 2106 if (env->best_task) 2107 put_task_struct(env->best_task); 2108 if (p) 2109 get_task_struct(p); 2110 2111 env->best_task = p; 2112 env->best_imp = imp; 2113 env->best_cpu = env->dst_cpu; 2114 } 2115 2116 static bool load_too_imbalanced(long src_load, long dst_load, 2117 struct task_numa_env *env) 2118 { 2119 long imb, old_imb; 2120 long orig_src_load, orig_dst_load; 2121 long src_capacity, dst_capacity; 2122 2123 /* 2124 * The load is corrected for the CPU capacity available on each node. 2125 * 2126 * src_load dst_load 2127 * ------------ vs --------- 2128 * src_capacity dst_capacity 2129 */ 2130 src_capacity = env->src_stats.compute_capacity; 2131 dst_capacity = env->dst_stats.compute_capacity; 2132 2133 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2134 2135 orig_src_load = env->src_stats.load; 2136 orig_dst_load = env->dst_stats.load; 2137 2138 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2139 2140 /* Would this change make things worse? */ 2141 return (imb > old_imb); 2142 } 2143 2144 /* 2145 * Maximum NUMA importance can be 1998 (2*999); 2146 * SMALLIMP @ 30 would be close to 1998/64. 2147 * Used to deter task migration. 2148 */ 2149 #define SMALLIMP 30 2150 2151 /* 2152 * This checks if the overall compute and NUMA accesses of the system would 2153 * be improved if the source tasks was migrated to the target dst_cpu taking 2154 * into account that it might be best if task running on the dst_cpu should 2155 * be exchanged with the source task 2156 */ 2157 static bool task_numa_compare(struct task_numa_env *env, 2158 long taskimp, long groupimp, bool maymove) 2159 { 2160 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2161 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2162 long imp = p_ng ? groupimp : taskimp; 2163 struct task_struct *cur; 2164 long src_load, dst_load; 2165 int dist = env->dist; 2166 long moveimp = imp; 2167 long load; 2168 bool stopsearch = false; 2169 2170 if (READ_ONCE(dst_rq->numa_migrate_on)) 2171 return false; 2172 2173 rcu_read_lock(); 2174 cur = rcu_dereference(dst_rq->curr); 2175 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2176 cur = NULL; 2177 2178 /* 2179 * Because we have preemption enabled we can get migrated around and 2180 * end try selecting ourselves (current == env->p) as a swap candidate. 2181 */ 2182 if (cur == env->p) { 2183 stopsearch = true; 2184 goto unlock; 2185 } 2186 2187 if (!cur) { 2188 if (maymove && moveimp >= env->best_imp) 2189 goto assign; 2190 else 2191 goto unlock; 2192 } 2193 2194 /* Skip this swap candidate if cannot move to the source cpu. */ 2195 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2196 goto unlock; 2197 2198 /* 2199 * Skip this swap candidate if it is not moving to its preferred 2200 * node and the best task is. 2201 */ 2202 if (env->best_task && 2203 env->best_task->numa_preferred_nid == env->src_nid && 2204 cur->numa_preferred_nid != env->src_nid) { 2205 goto unlock; 2206 } 2207 2208 /* 2209 * "imp" is the fault differential for the source task between the 2210 * source and destination node. Calculate the total differential for 2211 * the source task and potential destination task. The more negative 2212 * the value is, the more remote accesses that would be expected to 2213 * be incurred if the tasks were swapped. 2214 * 2215 * If dst and source tasks are in the same NUMA group, or not 2216 * in any group then look only at task weights. 2217 */ 2218 cur_ng = rcu_dereference(cur->numa_group); 2219 if (cur_ng == p_ng) { 2220 /* 2221 * Do not swap within a group or between tasks that have 2222 * no group if there is spare capacity. Swapping does 2223 * not address the load imbalance and helps one task at 2224 * the cost of punishing another. 2225 */ 2226 if (env->dst_stats.node_type == node_has_spare) 2227 goto unlock; 2228 2229 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2230 task_weight(cur, env->dst_nid, dist); 2231 /* 2232 * Add some hysteresis to prevent swapping the 2233 * tasks within a group over tiny differences. 2234 */ 2235 if (cur_ng) 2236 imp -= imp / 16; 2237 } else { 2238 /* 2239 * Compare the group weights. If a task is all by itself 2240 * (not part of a group), use the task weight instead. 2241 */ 2242 if (cur_ng && p_ng) 2243 imp += group_weight(cur, env->src_nid, dist) - 2244 group_weight(cur, env->dst_nid, dist); 2245 else 2246 imp += task_weight(cur, env->src_nid, dist) - 2247 task_weight(cur, env->dst_nid, dist); 2248 } 2249 2250 /* Discourage picking a task already on its preferred node */ 2251 if (cur->numa_preferred_nid == env->dst_nid) 2252 imp -= imp / 16; 2253 2254 /* 2255 * Encourage picking a task that moves to its preferred node. 2256 * This potentially makes imp larger than it's maximum of 2257 * 1998 (see SMALLIMP and task_weight for why) but in this 2258 * case, it does not matter. 2259 */ 2260 if (cur->numa_preferred_nid == env->src_nid) 2261 imp += imp / 8; 2262 2263 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2264 imp = moveimp; 2265 cur = NULL; 2266 goto assign; 2267 } 2268 2269 /* 2270 * Prefer swapping with a task moving to its preferred node over a 2271 * task that is not. 2272 */ 2273 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2274 env->best_task->numa_preferred_nid != env->src_nid) { 2275 goto assign; 2276 } 2277 2278 /* 2279 * If the NUMA importance is less than SMALLIMP, 2280 * task migration might only result in ping pong 2281 * of tasks and also hurt performance due to cache 2282 * misses. 2283 */ 2284 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2285 goto unlock; 2286 2287 /* 2288 * In the overloaded case, try and keep the load balanced. 2289 */ 2290 load = task_h_load(env->p) - task_h_load(cur); 2291 if (!load) 2292 goto assign; 2293 2294 dst_load = env->dst_stats.load + load; 2295 src_load = env->src_stats.load - load; 2296 2297 if (load_too_imbalanced(src_load, dst_load, env)) 2298 goto unlock; 2299 2300 assign: 2301 /* Evaluate an idle CPU for a task numa move. */ 2302 if (!cur) { 2303 int cpu = env->dst_stats.idle_cpu; 2304 2305 /* Nothing cached so current CPU went idle since the search. */ 2306 if (cpu < 0) 2307 cpu = env->dst_cpu; 2308 2309 /* 2310 * If the CPU is no longer truly idle and the previous best CPU 2311 * is, keep using it. 2312 */ 2313 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2314 idle_cpu(env->best_cpu)) { 2315 cpu = env->best_cpu; 2316 } 2317 2318 env->dst_cpu = cpu; 2319 } 2320 2321 task_numa_assign(env, cur, imp); 2322 2323 /* 2324 * If a move to idle is allowed because there is capacity or load 2325 * balance improves then stop the search. While a better swap 2326 * candidate may exist, a search is not free. 2327 */ 2328 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2329 stopsearch = true; 2330 2331 /* 2332 * If a swap candidate must be identified and the current best task 2333 * moves its preferred node then stop the search. 2334 */ 2335 if (!maymove && env->best_task && 2336 env->best_task->numa_preferred_nid == env->src_nid) { 2337 stopsearch = true; 2338 } 2339 unlock: 2340 rcu_read_unlock(); 2341 2342 return stopsearch; 2343 } 2344 2345 static void task_numa_find_cpu(struct task_numa_env *env, 2346 long taskimp, long groupimp) 2347 { 2348 bool maymove = false; 2349 int cpu; 2350 2351 /* 2352 * If dst node has spare capacity, then check if there is an 2353 * imbalance that would be overruled by the load balancer. 2354 */ 2355 if (env->dst_stats.node_type == node_has_spare) { 2356 unsigned int imbalance; 2357 int src_running, dst_running; 2358 2359 /* 2360 * Would movement cause an imbalance? Note that if src has 2361 * more running tasks that the imbalance is ignored as the 2362 * move improves the imbalance from the perspective of the 2363 * CPU load balancer. 2364 * */ 2365 src_running = env->src_stats.nr_running - 1; 2366 dst_running = env->dst_stats.nr_running + 1; 2367 imbalance = max(0, dst_running - src_running); 2368 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2369 env->imb_numa_nr); 2370 2371 /* Use idle CPU if there is no imbalance */ 2372 if (!imbalance) { 2373 maymove = true; 2374 if (env->dst_stats.idle_cpu >= 0) { 2375 env->dst_cpu = env->dst_stats.idle_cpu; 2376 task_numa_assign(env, NULL, 0); 2377 return; 2378 } 2379 } 2380 } else { 2381 long src_load, dst_load, load; 2382 /* 2383 * If the improvement from just moving env->p direction is better 2384 * than swapping tasks around, check if a move is possible. 2385 */ 2386 load = task_h_load(env->p); 2387 dst_load = env->dst_stats.load + load; 2388 src_load = env->src_stats.load - load; 2389 maymove = !load_too_imbalanced(src_load, dst_load, env); 2390 } 2391 2392 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2393 /* Skip this CPU if the source task cannot migrate */ 2394 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2395 continue; 2396 2397 env->dst_cpu = cpu; 2398 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2399 break; 2400 } 2401 } 2402 2403 static int task_numa_migrate(struct task_struct *p) 2404 { 2405 struct task_numa_env env = { 2406 .p = p, 2407 2408 .src_cpu = task_cpu(p), 2409 .src_nid = task_node(p), 2410 2411 .imbalance_pct = 112, 2412 2413 .best_task = NULL, 2414 .best_imp = 0, 2415 .best_cpu = -1, 2416 }; 2417 unsigned long taskweight, groupweight; 2418 struct sched_domain *sd; 2419 long taskimp, groupimp; 2420 struct numa_group *ng; 2421 struct rq *best_rq; 2422 int nid, ret, dist; 2423 2424 /* 2425 * Pick the lowest SD_NUMA domain, as that would have the smallest 2426 * imbalance and would be the first to start moving tasks about. 2427 * 2428 * And we want to avoid any moving of tasks about, as that would create 2429 * random movement of tasks -- counter the numa conditions we're trying 2430 * to satisfy here. 2431 */ 2432 rcu_read_lock(); 2433 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2434 if (sd) { 2435 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2436 env.imb_numa_nr = sd->imb_numa_nr; 2437 } 2438 rcu_read_unlock(); 2439 2440 /* 2441 * Cpusets can break the scheduler domain tree into smaller 2442 * balance domains, some of which do not cross NUMA boundaries. 2443 * Tasks that are "trapped" in such domains cannot be migrated 2444 * elsewhere, so there is no point in (re)trying. 2445 */ 2446 if (unlikely(!sd)) { 2447 sched_setnuma(p, task_node(p)); 2448 return -EINVAL; 2449 } 2450 2451 env.dst_nid = p->numa_preferred_nid; 2452 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2453 taskweight = task_weight(p, env.src_nid, dist); 2454 groupweight = group_weight(p, env.src_nid, dist); 2455 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2456 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2457 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2458 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2459 2460 /* Try to find a spot on the preferred nid. */ 2461 task_numa_find_cpu(&env, taskimp, groupimp); 2462 2463 /* 2464 * Look at other nodes in these cases: 2465 * - there is no space available on the preferred_nid 2466 * - the task is part of a numa_group that is interleaved across 2467 * multiple NUMA nodes; in order to better consolidate the group, 2468 * we need to check other locations. 2469 */ 2470 ng = deref_curr_numa_group(p); 2471 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2472 for_each_node_state(nid, N_CPU) { 2473 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2474 continue; 2475 2476 dist = node_distance(env.src_nid, env.dst_nid); 2477 if (sched_numa_topology_type == NUMA_BACKPLANE && 2478 dist != env.dist) { 2479 taskweight = task_weight(p, env.src_nid, dist); 2480 groupweight = group_weight(p, env.src_nid, dist); 2481 } 2482 2483 /* Only consider nodes where both task and groups benefit */ 2484 taskimp = task_weight(p, nid, dist) - taskweight; 2485 groupimp = group_weight(p, nid, dist) - groupweight; 2486 if (taskimp < 0 && groupimp < 0) 2487 continue; 2488 2489 env.dist = dist; 2490 env.dst_nid = nid; 2491 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2492 task_numa_find_cpu(&env, taskimp, groupimp); 2493 } 2494 } 2495 2496 /* 2497 * If the task is part of a workload that spans multiple NUMA nodes, 2498 * and is migrating into one of the workload's active nodes, remember 2499 * this node as the task's preferred numa node, so the workload can 2500 * settle down. 2501 * A task that migrated to a second choice node will be better off 2502 * trying for a better one later. Do not set the preferred node here. 2503 */ 2504 if (ng) { 2505 if (env.best_cpu == -1) 2506 nid = env.src_nid; 2507 else 2508 nid = cpu_to_node(env.best_cpu); 2509 2510 if (nid != p->numa_preferred_nid) 2511 sched_setnuma(p, nid); 2512 } 2513 2514 /* No better CPU than the current one was found. */ 2515 if (env.best_cpu == -1) { 2516 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2517 return -EAGAIN; 2518 } 2519 2520 best_rq = cpu_rq(env.best_cpu); 2521 if (env.best_task == NULL) { 2522 ret = migrate_task_to(p, env.best_cpu); 2523 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2524 if (ret != 0) 2525 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2526 return ret; 2527 } 2528 2529 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2530 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2531 2532 if (ret != 0) 2533 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2534 put_task_struct(env.best_task); 2535 return ret; 2536 } 2537 2538 /* Attempt to migrate a task to a CPU on the preferred node. */ 2539 static void numa_migrate_preferred(struct task_struct *p) 2540 { 2541 unsigned long interval = HZ; 2542 2543 /* This task has no NUMA fault statistics yet */ 2544 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2545 return; 2546 2547 /* Periodically retry migrating the task to the preferred node */ 2548 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2549 p->numa_migrate_retry = jiffies + interval; 2550 2551 /* Success if task is already running on preferred CPU */ 2552 if (task_node(p) == p->numa_preferred_nid) 2553 return; 2554 2555 /* Otherwise, try migrate to a CPU on the preferred node */ 2556 task_numa_migrate(p); 2557 } 2558 2559 /* 2560 * Find out how many nodes the workload is actively running on. Do this by 2561 * tracking the nodes from which NUMA hinting faults are triggered. This can 2562 * be different from the set of nodes where the workload's memory is currently 2563 * located. 2564 */ 2565 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2566 { 2567 unsigned long faults, max_faults = 0; 2568 int nid, active_nodes = 0; 2569 2570 for_each_node_state(nid, N_CPU) { 2571 faults = group_faults_cpu(numa_group, nid); 2572 if (faults > max_faults) 2573 max_faults = faults; 2574 } 2575 2576 for_each_node_state(nid, N_CPU) { 2577 faults = group_faults_cpu(numa_group, nid); 2578 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2579 active_nodes++; 2580 } 2581 2582 numa_group->max_faults_cpu = max_faults; 2583 numa_group->active_nodes = active_nodes; 2584 } 2585 2586 /* 2587 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2588 * increments. The more local the fault statistics are, the higher the scan 2589 * period will be for the next scan window. If local/(local+remote) ratio is 2590 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2591 * the scan period will decrease. Aim for 70% local accesses. 2592 */ 2593 #define NUMA_PERIOD_SLOTS 10 2594 #define NUMA_PERIOD_THRESHOLD 7 2595 2596 /* 2597 * Increase the scan period (slow down scanning) if the majority of 2598 * our memory is already on our local node, or if the majority of 2599 * the page accesses are shared with other processes. 2600 * Otherwise, decrease the scan period. 2601 */ 2602 static void update_task_scan_period(struct task_struct *p, 2603 unsigned long shared, unsigned long private) 2604 { 2605 unsigned int period_slot; 2606 int lr_ratio, ps_ratio; 2607 int diff; 2608 2609 unsigned long remote = p->numa_faults_locality[0]; 2610 unsigned long local = p->numa_faults_locality[1]; 2611 2612 /* 2613 * If there were no record hinting faults then either the task is 2614 * completely idle or all activity is in areas that are not of interest 2615 * to automatic numa balancing. Related to that, if there were failed 2616 * migration then it implies we are migrating too quickly or the local 2617 * node is overloaded. In either case, scan slower 2618 */ 2619 if (local + shared == 0 || p->numa_faults_locality[2]) { 2620 p->numa_scan_period = min(p->numa_scan_period_max, 2621 p->numa_scan_period << 1); 2622 2623 p->mm->numa_next_scan = jiffies + 2624 msecs_to_jiffies(p->numa_scan_period); 2625 2626 return; 2627 } 2628 2629 /* 2630 * Prepare to scale scan period relative to the current period. 2631 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2632 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2633 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2634 */ 2635 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2636 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2637 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2638 2639 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2640 /* 2641 * Most memory accesses are local. There is no need to 2642 * do fast NUMA scanning, since memory is already local. 2643 */ 2644 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2645 if (!slot) 2646 slot = 1; 2647 diff = slot * period_slot; 2648 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2649 /* 2650 * Most memory accesses are shared with other tasks. 2651 * There is no point in continuing fast NUMA scanning, 2652 * since other tasks may just move the memory elsewhere. 2653 */ 2654 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2655 if (!slot) 2656 slot = 1; 2657 diff = slot * period_slot; 2658 } else { 2659 /* 2660 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2661 * yet they are not on the local NUMA node. Speed up 2662 * NUMA scanning to get the memory moved over. 2663 */ 2664 int ratio = max(lr_ratio, ps_ratio); 2665 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2666 } 2667 2668 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2669 task_scan_min(p), task_scan_max(p)); 2670 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2671 } 2672 2673 /* 2674 * Get the fraction of time the task has been running since the last 2675 * NUMA placement cycle. The scheduler keeps similar statistics, but 2676 * decays those on a 32ms period, which is orders of magnitude off 2677 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2678 * stats only if the task is so new there are no NUMA statistics yet. 2679 */ 2680 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2681 { 2682 u64 runtime, delta, now; 2683 /* Use the start of this time slice to avoid calculations. */ 2684 now = p->se.exec_start; 2685 runtime = p->se.sum_exec_runtime; 2686 2687 if (p->last_task_numa_placement) { 2688 delta = runtime - p->last_sum_exec_runtime; 2689 *period = now - p->last_task_numa_placement; 2690 2691 /* Avoid time going backwards, prevent potential divide error: */ 2692 if (unlikely((s64)*period < 0)) 2693 *period = 0; 2694 } else { 2695 delta = p->se.avg.load_sum; 2696 *period = LOAD_AVG_MAX; 2697 } 2698 2699 p->last_sum_exec_runtime = runtime; 2700 p->last_task_numa_placement = now; 2701 2702 return delta; 2703 } 2704 2705 /* 2706 * Determine the preferred nid for a task in a numa_group. This needs to 2707 * be done in a way that produces consistent results with group_weight, 2708 * otherwise workloads might not converge. 2709 */ 2710 static int preferred_group_nid(struct task_struct *p, int nid) 2711 { 2712 nodemask_t nodes; 2713 int dist; 2714 2715 /* Direct connections between all NUMA nodes. */ 2716 if (sched_numa_topology_type == NUMA_DIRECT) 2717 return nid; 2718 2719 /* 2720 * On a system with glueless mesh NUMA topology, group_weight 2721 * scores nodes according to the number of NUMA hinting faults on 2722 * both the node itself, and on nearby nodes. 2723 */ 2724 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2725 unsigned long score, max_score = 0; 2726 int node, max_node = nid; 2727 2728 dist = sched_max_numa_distance; 2729 2730 for_each_node_state(node, N_CPU) { 2731 score = group_weight(p, node, dist); 2732 if (score > max_score) { 2733 max_score = score; 2734 max_node = node; 2735 } 2736 } 2737 return max_node; 2738 } 2739 2740 /* 2741 * Finding the preferred nid in a system with NUMA backplane 2742 * interconnect topology is more involved. The goal is to locate 2743 * tasks from numa_groups near each other in the system, and 2744 * untangle workloads from different sides of the system. This requires 2745 * searching down the hierarchy of node groups, recursively searching 2746 * inside the highest scoring group of nodes. The nodemask tricks 2747 * keep the complexity of the search down. 2748 */ 2749 nodes = node_states[N_CPU]; 2750 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2751 unsigned long max_faults = 0; 2752 nodemask_t max_group = NODE_MASK_NONE; 2753 int a, b; 2754 2755 /* Are there nodes at this distance from each other? */ 2756 if (!find_numa_distance(dist)) 2757 continue; 2758 2759 for_each_node_mask(a, nodes) { 2760 unsigned long faults = 0; 2761 nodemask_t this_group; 2762 nodes_clear(this_group); 2763 2764 /* Sum group's NUMA faults; includes a==b case. */ 2765 for_each_node_mask(b, nodes) { 2766 if (node_distance(a, b) < dist) { 2767 faults += group_faults(p, b); 2768 node_set(b, this_group); 2769 node_clear(b, nodes); 2770 } 2771 } 2772 2773 /* Remember the top group. */ 2774 if (faults > max_faults) { 2775 max_faults = faults; 2776 max_group = this_group; 2777 /* 2778 * subtle: at the smallest distance there is 2779 * just one node left in each "group", the 2780 * winner is the preferred nid. 2781 */ 2782 nid = a; 2783 } 2784 } 2785 /* Next round, evaluate the nodes within max_group. */ 2786 if (!max_faults) 2787 break; 2788 nodes = max_group; 2789 } 2790 return nid; 2791 } 2792 2793 static void task_numa_placement(struct task_struct *p) 2794 { 2795 int seq, nid, max_nid = NUMA_NO_NODE; 2796 unsigned long max_faults = 0; 2797 unsigned long fault_types[2] = { 0, 0 }; 2798 unsigned long total_faults; 2799 u64 runtime, period; 2800 spinlock_t *group_lock = NULL; 2801 struct numa_group *ng; 2802 2803 /* 2804 * The p->mm->numa_scan_seq field gets updated without 2805 * exclusive access. Use READ_ONCE() here to ensure 2806 * that the field is read in a single access: 2807 */ 2808 seq = READ_ONCE(p->mm->numa_scan_seq); 2809 if (p->numa_scan_seq == seq) 2810 return; 2811 p->numa_scan_seq = seq; 2812 p->numa_scan_period_max = task_scan_max(p); 2813 2814 total_faults = p->numa_faults_locality[0] + 2815 p->numa_faults_locality[1]; 2816 runtime = numa_get_avg_runtime(p, &period); 2817 2818 /* If the task is part of a group prevent parallel updates to group stats */ 2819 ng = deref_curr_numa_group(p); 2820 if (ng) { 2821 group_lock = &ng->lock; 2822 spin_lock_irq(group_lock); 2823 } 2824 2825 /* Find the node with the highest number of faults */ 2826 for_each_online_node(nid) { 2827 /* Keep track of the offsets in numa_faults array */ 2828 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2829 unsigned long faults = 0, group_faults = 0; 2830 int priv; 2831 2832 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2833 long diff, f_diff, f_weight; 2834 2835 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2836 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2837 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2838 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2839 2840 /* Decay existing window, copy faults since last scan */ 2841 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2842 fault_types[priv] += p->numa_faults[membuf_idx]; 2843 p->numa_faults[membuf_idx] = 0; 2844 2845 /* 2846 * Normalize the faults_from, so all tasks in a group 2847 * count according to CPU use, instead of by the raw 2848 * number of faults. Tasks with little runtime have 2849 * little over-all impact on throughput, and thus their 2850 * faults are less important. 2851 */ 2852 f_weight = div64_u64(runtime << 16, period + 1); 2853 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2854 (total_faults + 1); 2855 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2856 p->numa_faults[cpubuf_idx] = 0; 2857 2858 p->numa_faults[mem_idx] += diff; 2859 p->numa_faults[cpu_idx] += f_diff; 2860 faults += p->numa_faults[mem_idx]; 2861 p->total_numa_faults += diff; 2862 if (ng) { 2863 /* 2864 * safe because we can only change our own group 2865 * 2866 * mem_idx represents the offset for a given 2867 * nid and priv in a specific region because it 2868 * is at the beginning of the numa_faults array. 2869 */ 2870 ng->faults[mem_idx] += diff; 2871 ng->faults[cpu_idx] += f_diff; 2872 ng->total_faults += diff; 2873 group_faults += ng->faults[mem_idx]; 2874 } 2875 } 2876 2877 if (!ng) { 2878 if (faults > max_faults) { 2879 max_faults = faults; 2880 max_nid = nid; 2881 } 2882 } else if (group_faults > max_faults) { 2883 max_faults = group_faults; 2884 max_nid = nid; 2885 } 2886 } 2887 2888 /* Cannot migrate task to CPU-less node */ 2889 max_nid = numa_nearest_node(max_nid, N_CPU); 2890 2891 if (ng) { 2892 numa_group_count_active_nodes(ng); 2893 spin_unlock_irq(group_lock); 2894 max_nid = preferred_group_nid(p, max_nid); 2895 } 2896 2897 if (max_faults) { 2898 /* Set the new preferred node */ 2899 if (max_nid != p->numa_preferred_nid) 2900 sched_setnuma(p, max_nid); 2901 } 2902 2903 update_task_scan_period(p, fault_types[0], fault_types[1]); 2904 } 2905 2906 static inline int get_numa_group(struct numa_group *grp) 2907 { 2908 return refcount_inc_not_zero(&grp->refcount); 2909 } 2910 2911 static inline void put_numa_group(struct numa_group *grp) 2912 { 2913 if (refcount_dec_and_test(&grp->refcount)) 2914 kfree_rcu(grp, rcu); 2915 } 2916 2917 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2918 int *priv) 2919 { 2920 struct numa_group *grp, *my_grp; 2921 struct task_struct *tsk; 2922 bool join = false; 2923 int cpu = cpupid_to_cpu(cpupid); 2924 int i; 2925 2926 if (unlikely(!deref_curr_numa_group(p))) { 2927 unsigned int size = sizeof(struct numa_group) + 2928 NR_NUMA_HINT_FAULT_STATS * 2929 nr_node_ids * sizeof(unsigned long); 2930 2931 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2932 if (!grp) 2933 return; 2934 2935 refcount_set(&grp->refcount, 1); 2936 grp->active_nodes = 1; 2937 grp->max_faults_cpu = 0; 2938 spin_lock_init(&grp->lock); 2939 grp->gid = p->pid; 2940 2941 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2942 grp->faults[i] = p->numa_faults[i]; 2943 2944 grp->total_faults = p->total_numa_faults; 2945 2946 grp->nr_tasks++; 2947 rcu_assign_pointer(p->numa_group, grp); 2948 } 2949 2950 rcu_read_lock(); 2951 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2952 2953 if (!cpupid_match_pid(tsk, cpupid)) 2954 goto no_join; 2955 2956 grp = rcu_dereference(tsk->numa_group); 2957 if (!grp) 2958 goto no_join; 2959 2960 my_grp = deref_curr_numa_group(p); 2961 if (grp == my_grp) 2962 goto no_join; 2963 2964 /* 2965 * Only join the other group if its bigger; if we're the bigger group, 2966 * the other task will join us. 2967 */ 2968 if (my_grp->nr_tasks > grp->nr_tasks) 2969 goto no_join; 2970 2971 /* 2972 * Tie-break on the grp address. 2973 */ 2974 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2975 goto no_join; 2976 2977 /* Always join threads in the same process. */ 2978 if (tsk->mm == current->mm) 2979 join = true; 2980 2981 /* Simple filter to avoid false positives due to PID collisions */ 2982 if (flags & TNF_SHARED) 2983 join = true; 2984 2985 /* Update priv based on whether false sharing was detected */ 2986 *priv = !join; 2987 2988 if (join && !get_numa_group(grp)) 2989 goto no_join; 2990 2991 rcu_read_unlock(); 2992 2993 if (!join) 2994 return; 2995 2996 WARN_ON_ONCE(irqs_disabled()); 2997 double_lock_irq(&my_grp->lock, &grp->lock); 2998 2999 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3000 my_grp->faults[i] -= p->numa_faults[i]; 3001 grp->faults[i] += p->numa_faults[i]; 3002 } 3003 my_grp->total_faults -= p->total_numa_faults; 3004 grp->total_faults += p->total_numa_faults; 3005 3006 my_grp->nr_tasks--; 3007 grp->nr_tasks++; 3008 3009 spin_unlock(&my_grp->lock); 3010 spin_unlock_irq(&grp->lock); 3011 3012 rcu_assign_pointer(p->numa_group, grp); 3013 3014 put_numa_group(my_grp); 3015 return; 3016 3017 no_join: 3018 rcu_read_unlock(); 3019 return; 3020 } 3021 3022 /* 3023 * Get rid of NUMA statistics associated with a task (either current or dead). 3024 * If @final is set, the task is dead and has reached refcount zero, so we can 3025 * safely free all relevant data structures. Otherwise, there might be 3026 * concurrent reads from places like load balancing and procfs, and we should 3027 * reset the data back to default state without freeing ->numa_faults. 3028 */ 3029 void task_numa_free(struct task_struct *p, bool final) 3030 { 3031 /* safe: p either is current or is being freed by current */ 3032 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3033 unsigned long *numa_faults = p->numa_faults; 3034 unsigned long flags; 3035 int i; 3036 3037 if (!numa_faults) 3038 return; 3039 3040 if (grp) { 3041 spin_lock_irqsave(&grp->lock, flags); 3042 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3043 grp->faults[i] -= p->numa_faults[i]; 3044 grp->total_faults -= p->total_numa_faults; 3045 3046 grp->nr_tasks--; 3047 spin_unlock_irqrestore(&grp->lock, flags); 3048 RCU_INIT_POINTER(p->numa_group, NULL); 3049 put_numa_group(grp); 3050 } 3051 3052 if (final) { 3053 p->numa_faults = NULL; 3054 kfree(numa_faults); 3055 } else { 3056 p->total_numa_faults = 0; 3057 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3058 numa_faults[i] = 0; 3059 } 3060 } 3061 3062 /* 3063 * Got a PROT_NONE fault for a page on @node. 3064 */ 3065 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3066 { 3067 struct task_struct *p = current; 3068 bool migrated = flags & TNF_MIGRATED; 3069 int cpu_node = task_node(current); 3070 int local = !!(flags & TNF_FAULT_LOCAL); 3071 struct numa_group *ng; 3072 int priv; 3073 3074 if (!static_branch_likely(&sched_numa_balancing)) 3075 return; 3076 3077 /* for example, ksmd faulting in a user's mm */ 3078 if (!p->mm) 3079 return; 3080 3081 /* 3082 * NUMA faults statistics are unnecessary for the slow memory 3083 * node for memory tiering mode. 3084 */ 3085 if (!node_is_toptier(mem_node) && 3086 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3087 !cpupid_valid(last_cpupid))) 3088 return; 3089 3090 /* Allocate buffer to track faults on a per-node basis */ 3091 if (unlikely(!p->numa_faults)) { 3092 int size = sizeof(*p->numa_faults) * 3093 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3094 3095 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3096 if (!p->numa_faults) 3097 return; 3098 3099 p->total_numa_faults = 0; 3100 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3101 } 3102 3103 /* 3104 * First accesses are treated as private, otherwise consider accesses 3105 * to be private if the accessing pid has not changed 3106 */ 3107 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3108 priv = 1; 3109 } else { 3110 priv = cpupid_match_pid(p, last_cpupid); 3111 if (!priv && !(flags & TNF_NO_GROUP)) 3112 task_numa_group(p, last_cpupid, flags, &priv); 3113 } 3114 3115 /* 3116 * If a workload spans multiple NUMA nodes, a shared fault that 3117 * occurs wholly within the set of nodes that the workload is 3118 * actively using should be counted as local. This allows the 3119 * scan rate to slow down when a workload has settled down. 3120 */ 3121 ng = deref_curr_numa_group(p); 3122 if (!priv && !local && ng && ng->active_nodes > 1 && 3123 numa_is_active_node(cpu_node, ng) && 3124 numa_is_active_node(mem_node, ng)) 3125 local = 1; 3126 3127 /* 3128 * Retry to migrate task to preferred node periodically, in case it 3129 * previously failed, or the scheduler moved us. 3130 */ 3131 if (time_after(jiffies, p->numa_migrate_retry)) { 3132 task_numa_placement(p); 3133 numa_migrate_preferred(p); 3134 } 3135 3136 if (migrated) 3137 p->numa_pages_migrated += pages; 3138 if (flags & TNF_MIGRATE_FAIL) 3139 p->numa_faults_locality[2] += pages; 3140 3141 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3142 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3143 p->numa_faults_locality[local] += pages; 3144 } 3145 3146 static void reset_ptenuma_scan(struct task_struct *p) 3147 { 3148 /* 3149 * We only did a read acquisition of the mmap sem, so 3150 * p->mm->numa_scan_seq is written to without exclusive access 3151 * and the update is not guaranteed to be atomic. That's not 3152 * much of an issue though, since this is just used for 3153 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3154 * expensive, to avoid any form of compiler optimizations: 3155 */ 3156 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3157 p->mm->numa_scan_offset = 0; 3158 } 3159 3160 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3161 { 3162 unsigned long pids; 3163 /* 3164 * Allow unconditional access first two times, so that all the (pages) 3165 * of VMAs get prot_none fault introduced irrespective of accesses. 3166 * This is also done to avoid any side effect of task scanning 3167 * amplifying the unfairness of disjoint set of VMAs' access. 3168 */ 3169 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3170 return true; 3171 3172 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3173 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3174 return true; 3175 3176 /* 3177 * Complete a scan that has already started regardless of PID access, or 3178 * some VMAs may never be scanned in multi-threaded applications: 3179 */ 3180 if (mm->numa_scan_offset > vma->vm_start) { 3181 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3182 return true; 3183 } 3184 3185 return false; 3186 } 3187 3188 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3189 3190 /* 3191 * The expensive part of numa migration is done from task_work context. 3192 * Triggered from task_tick_numa(). 3193 */ 3194 static void task_numa_work(struct callback_head *work) 3195 { 3196 unsigned long migrate, next_scan, now = jiffies; 3197 struct task_struct *p = current; 3198 struct mm_struct *mm = p->mm; 3199 u64 runtime = p->se.sum_exec_runtime; 3200 struct vm_area_struct *vma; 3201 unsigned long start, end; 3202 unsigned long nr_pte_updates = 0; 3203 long pages, virtpages; 3204 struct vma_iterator vmi; 3205 bool vma_pids_skipped; 3206 bool vma_pids_forced = false; 3207 3208 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3209 3210 work->next = work; 3211 /* 3212 * Who cares about NUMA placement when they're dying. 3213 * 3214 * NOTE: make sure not to dereference p->mm before this check, 3215 * exit_task_work() happens _after_ exit_mm() so we could be called 3216 * without p->mm even though we still had it when we enqueued this 3217 * work. 3218 */ 3219 if (p->flags & PF_EXITING) 3220 return; 3221 3222 if (!mm->numa_next_scan) { 3223 mm->numa_next_scan = now + 3224 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3225 } 3226 3227 /* 3228 * Enforce maximal scan/migration frequency.. 3229 */ 3230 migrate = mm->numa_next_scan; 3231 if (time_before(now, migrate)) 3232 return; 3233 3234 if (p->numa_scan_period == 0) { 3235 p->numa_scan_period_max = task_scan_max(p); 3236 p->numa_scan_period = task_scan_start(p); 3237 } 3238 3239 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3240 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3241 return; 3242 3243 /* 3244 * Delay this task enough that another task of this mm will likely win 3245 * the next time around. 3246 */ 3247 p->node_stamp += 2 * TICK_NSEC; 3248 3249 pages = sysctl_numa_balancing_scan_size; 3250 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3251 virtpages = pages * 8; /* Scan up to this much virtual space */ 3252 if (!pages) 3253 return; 3254 3255 3256 if (!mmap_read_trylock(mm)) 3257 return; 3258 3259 /* 3260 * VMAs are skipped if the current PID has not trapped a fault within 3261 * the VMA recently. Allow scanning to be forced if there is no 3262 * suitable VMA remaining. 3263 */ 3264 vma_pids_skipped = false; 3265 3266 retry_pids: 3267 start = mm->numa_scan_offset; 3268 vma_iter_init(&vmi, mm, start); 3269 vma = vma_next(&vmi); 3270 if (!vma) { 3271 reset_ptenuma_scan(p); 3272 start = 0; 3273 vma_iter_set(&vmi, start); 3274 vma = vma_next(&vmi); 3275 } 3276 3277 do { 3278 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3279 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3280 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3281 continue; 3282 } 3283 3284 /* 3285 * Shared library pages mapped by multiple processes are not 3286 * migrated as it is expected they are cache replicated. Avoid 3287 * hinting faults in read-only file-backed mappings or the vdso 3288 * as migrating the pages will be of marginal benefit. 3289 */ 3290 if (!vma->vm_mm || 3291 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3292 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3293 continue; 3294 } 3295 3296 /* 3297 * Skip inaccessible VMAs to avoid any confusion between 3298 * PROT_NONE and NUMA hinting ptes 3299 */ 3300 if (!vma_is_accessible(vma)) { 3301 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3302 continue; 3303 } 3304 3305 /* Initialise new per-VMA NUMAB state. */ 3306 if (!vma->numab_state) { 3307 vma->numab_state = kzalloc(sizeof(struct vma_numab_state), 3308 GFP_KERNEL); 3309 if (!vma->numab_state) 3310 continue; 3311 3312 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3313 3314 vma->numab_state->next_scan = now + 3315 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3316 3317 /* Reset happens after 4 times scan delay of scan start */ 3318 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3319 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3320 3321 /* 3322 * Ensure prev_scan_seq does not match numa_scan_seq, 3323 * to prevent VMAs being skipped prematurely on the 3324 * first scan: 3325 */ 3326 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3327 } 3328 3329 /* 3330 * Scanning the VMA's of short lived tasks add more overhead. So 3331 * delay the scan for new VMAs. 3332 */ 3333 if (mm->numa_scan_seq && time_before(jiffies, 3334 vma->numab_state->next_scan)) { 3335 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3336 continue; 3337 } 3338 3339 /* RESET access PIDs regularly for old VMAs. */ 3340 if (mm->numa_scan_seq && 3341 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3342 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3343 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3344 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3345 vma->numab_state->pids_active[1] = 0; 3346 } 3347 3348 /* Do not rescan VMAs twice within the same sequence. */ 3349 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3350 mm->numa_scan_offset = vma->vm_end; 3351 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3352 continue; 3353 } 3354 3355 /* 3356 * Do not scan the VMA if task has not accessed it, unless no other 3357 * VMA candidate exists. 3358 */ 3359 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3360 vma_pids_skipped = true; 3361 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3362 continue; 3363 } 3364 3365 do { 3366 start = max(start, vma->vm_start); 3367 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3368 end = min(end, vma->vm_end); 3369 nr_pte_updates = change_prot_numa(vma, start, end); 3370 3371 /* 3372 * Try to scan sysctl_numa_balancing_size worth of 3373 * hpages that have at least one present PTE that 3374 * is not already pte-numa. If the VMA contains 3375 * areas that are unused or already full of prot_numa 3376 * PTEs, scan up to virtpages, to skip through those 3377 * areas faster. 3378 */ 3379 if (nr_pte_updates) 3380 pages -= (end - start) >> PAGE_SHIFT; 3381 virtpages -= (end - start) >> PAGE_SHIFT; 3382 3383 start = end; 3384 if (pages <= 0 || virtpages <= 0) 3385 goto out; 3386 3387 cond_resched(); 3388 } while (end != vma->vm_end); 3389 3390 /* VMA scan is complete, do not scan until next sequence. */ 3391 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3392 3393 /* 3394 * Only force scan within one VMA at a time, to limit the 3395 * cost of scanning a potentially uninteresting VMA. 3396 */ 3397 if (vma_pids_forced) 3398 break; 3399 } for_each_vma(vmi, vma); 3400 3401 /* 3402 * If no VMAs are remaining and VMAs were skipped due to the PID 3403 * not accessing the VMA previously, then force a scan to ensure 3404 * forward progress: 3405 */ 3406 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3407 vma_pids_forced = true; 3408 goto retry_pids; 3409 } 3410 3411 out: 3412 /* 3413 * It is possible to reach the end of the VMA list but the last few 3414 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3415 * would find the !migratable VMA on the next scan but not reset the 3416 * scanner to the start so check it now. 3417 */ 3418 if (vma) 3419 mm->numa_scan_offset = start; 3420 else 3421 reset_ptenuma_scan(p); 3422 mmap_read_unlock(mm); 3423 3424 /* 3425 * Make sure tasks use at least 32x as much time to run other code 3426 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3427 * Usually update_task_scan_period slows down scanning enough; on an 3428 * overloaded system we need to limit overhead on a per task basis. 3429 */ 3430 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3431 u64 diff = p->se.sum_exec_runtime - runtime; 3432 p->node_stamp += 32 * diff; 3433 } 3434 } 3435 3436 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3437 { 3438 int mm_users = 0; 3439 struct mm_struct *mm = p->mm; 3440 3441 if (mm) { 3442 mm_users = atomic_read(&mm->mm_users); 3443 if (mm_users == 1) { 3444 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3445 mm->numa_scan_seq = 0; 3446 } 3447 } 3448 p->node_stamp = 0; 3449 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3450 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3451 p->numa_migrate_retry = 0; 3452 /* Protect against double add, see task_tick_numa and task_numa_work */ 3453 p->numa_work.next = &p->numa_work; 3454 p->numa_faults = NULL; 3455 p->numa_pages_migrated = 0; 3456 p->total_numa_faults = 0; 3457 RCU_INIT_POINTER(p->numa_group, NULL); 3458 p->last_task_numa_placement = 0; 3459 p->last_sum_exec_runtime = 0; 3460 3461 init_task_work(&p->numa_work, task_numa_work); 3462 3463 /* New address space, reset the preferred nid */ 3464 if (!(clone_flags & CLONE_VM)) { 3465 p->numa_preferred_nid = NUMA_NO_NODE; 3466 return; 3467 } 3468 3469 /* 3470 * New thread, keep existing numa_preferred_nid which should be copied 3471 * already by arch_dup_task_struct but stagger when scans start. 3472 */ 3473 if (mm) { 3474 unsigned int delay; 3475 3476 delay = min_t(unsigned int, task_scan_max(current), 3477 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3478 delay += 2 * TICK_NSEC; 3479 p->node_stamp = delay; 3480 } 3481 } 3482 3483 /* 3484 * Drive the periodic memory faults.. 3485 */ 3486 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3487 { 3488 struct callback_head *work = &curr->numa_work; 3489 u64 period, now; 3490 3491 /* 3492 * We don't care about NUMA placement if we don't have memory. 3493 */ 3494 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3495 return; 3496 3497 /* 3498 * Using runtime rather than walltime has the dual advantage that 3499 * we (mostly) drive the selection from busy threads and that the 3500 * task needs to have done some actual work before we bother with 3501 * NUMA placement. 3502 */ 3503 now = curr->se.sum_exec_runtime; 3504 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3505 3506 if (now > curr->node_stamp + period) { 3507 if (!curr->node_stamp) 3508 curr->numa_scan_period = task_scan_start(curr); 3509 curr->node_stamp += period; 3510 3511 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3512 task_work_add(curr, work, TWA_RESUME); 3513 } 3514 } 3515 3516 static void update_scan_period(struct task_struct *p, int new_cpu) 3517 { 3518 int src_nid = cpu_to_node(task_cpu(p)); 3519 int dst_nid = cpu_to_node(new_cpu); 3520 3521 if (!static_branch_likely(&sched_numa_balancing)) 3522 return; 3523 3524 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3525 return; 3526 3527 if (src_nid == dst_nid) 3528 return; 3529 3530 /* 3531 * Allow resets if faults have been trapped before one scan 3532 * has completed. This is most likely due to a new task that 3533 * is pulled cross-node due to wakeups or load balancing. 3534 */ 3535 if (p->numa_scan_seq) { 3536 /* 3537 * Avoid scan adjustments if moving to the preferred 3538 * node or if the task was not previously running on 3539 * the preferred node. 3540 */ 3541 if (dst_nid == p->numa_preferred_nid || 3542 (p->numa_preferred_nid != NUMA_NO_NODE && 3543 src_nid != p->numa_preferred_nid)) 3544 return; 3545 } 3546 3547 p->numa_scan_period = task_scan_start(p); 3548 } 3549 3550 #else 3551 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3552 { 3553 } 3554 3555 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3556 { 3557 } 3558 3559 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3560 { 3561 } 3562 3563 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3564 { 3565 } 3566 3567 #endif /* CONFIG_NUMA_BALANCING */ 3568 3569 static void 3570 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3571 { 3572 update_load_add(&cfs_rq->load, se->load.weight); 3573 #ifdef CONFIG_SMP 3574 if (entity_is_task(se)) { 3575 struct rq *rq = rq_of(cfs_rq); 3576 3577 account_numa_enqueue(rq, task_of(se)); 3578 list_add(&se->group_node, &rq->cfs_tasks); 3579 } 3580 #endif 3581 cfs_rq->nr_running++; 3582 if (se_is_idle(se)) 3583 cfs_rq->idle_nr_running++; 3584 } 3585 3586 static void 3587 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3588 { 3589 update_load_sub(&cfs_rq->load, se->load.weight); 3590 #ifdef CONFIG_SMP 3591 if (entity_is_task(se)) { 3592 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3593 list_del_init(&se->group_node); 3594 } 3595 #endif 3596 cfs_rq->nr_running--; 3597 if (se_is_idle(se)) 3598 cfs_rq->idle_nr_running--; 3599 } 3600 3601 /* 3602 * Signed add and clamp on underflow. 3603 * 3604 * Explicitly do a load-store to ensure the intermediate value never hits 3605 * memory. This allows lockless observations without ever seeing the negative 3606 * values. 3607 */ 3608 #define add_positive(_ptr, _val) do { \ 3609 typeof(_ptr) ptr = (_ptr); \ 3610 typeof(_val) val = (_val); \ 3611 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3612 \ 3613 res = var + val; \ 3614 \ 3615 if (val < 0 && res > var) \ 3616 res = 0; \ 3617 \ 3618 WRITE_ONCE(*ptr, res); \ 3619 } while (0) 3620 3621 /* 3622 * Unsigned subtract and clamp on underflow. 3623 * 3624 * Explicitly do a load-store to ensure the intermediate value never hits 3625 * memory. This allows lockless observations without ever seeing the negative 3626 * values. 3627 */ 3628 #define sub_positive(_ptr, _val) do { \ 3629 typeof(_ptr) ptr = (_ptr); \ 3630 typeof(*ptr) val = (_val); \ 3631 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3632 res = var - val; \ 3633 if (res > var) \ 3634 res = 0; \ 3635 WRITE_ONCE(*ptr, res); \ 3636 } while (0) 3637 3638 /* 3639 * Remove and clamp on negative, from a local variable. 3640 * 3641 * A variant of sub_positive(), which does not use explicit load-store 3642 * and is thus optimized for local variable updates. 3643 */ 3644 #define lsub_positive(_ptr, _val) do { \ 3645 typeof(_ptr) ptr = (_ptr); \ 3646 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3647 } while (0) 3648 3649 #ifdef CONFIG_SMP 3650 static inline void 3651 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3652 { 3653 cfs_rq->avg.load_avg += se->avg.load_avg; 3654 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3655 } 3656 3657 static inline void 3658 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3659 { 3660 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3661 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3662 /* See update_cfs_rq_load_avg() */ 3663 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3664 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3665 } 3666 #else 3667 static inline void 3668 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3669 static inline void 3670 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3671 #endif 3672 3673 static void reweight_eevdf(struct cfs_rq *cfs_rq, struct sched_entity *se, 3674 unsigned long weight) 3675 { 3676 unsigned long old_weight = se->load.weight; 3677 u64 avruntime = avg_vruntime(cfs_rq); 3678 s64 vlag, vslice; 3679 3680 /* 3681 * VRUNTIME 3682 * ======== 3683 * 3684 * COROLLARY #1: The virtual runtime of the entity needs to be 3685 * adjusted if re-weight at !0-lag point. 3686 * 3687 * Proof: For contradiction assume this is not true, so we can 3688 * re-weight without changing vruntime at !0-lag point. 3689 * 3690 * Weight VRuntime Avg-VRuntime 3691 * before w v V 3692 * after w' v' V' 3693 * 3694 * Since lag needs to be preserved through re-weight: 3695 * 3696 * lag = (V - v)*w = (V'- v')*w', where v = v' 3697 * ==> V' = (V - v)*w/w' + v (1) 3698 * 3699 * Let W be the total weight of the entities before reweight, 3700 * since V' is the new weighted average of entities: 3701 * 3702 * V' = (WV + w'v - wv) / (W + w' - w) (2) 3703 * 3704 * by using (1) & (2) we obtain: 3705 * 3706 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v 3707 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v 3708 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v 3709 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3) 3710 * 3711 * Since we are doing at !0-lag point which means V != v, we 3712 * can simplify (3): 3713 * 3714 * ==> W / (W + w' - w) = w / w' 3715 * ==> Ww' = Ww + ww' - ww 3716 * ==> W * (w' - w) = w * (w' - w) 3717 * ==> W = w (re-weight indicates w' != w) 3718 * 3719 * So the cfs_rq contains only one entity, hence vruntime of 3720 * the entity @v should always equal to the cfs_rq's weighted 3721 * average vruntime @V, which means we will always re-weight 3722 * at 0-lag point, thus breach assumption. Proof completed. 3723 * 3724 * 3725 * COROLLARY #2: Re-weight does NOT affect weighted average 3726 * vruntime of all the entities. 3727 * 3728 * Proof: According to corollary #1, Eq. (1) should be: 3729 * 3730 * (V - v)*w = (V' - v')*w' 3731 * ==> v' = V' - (V - v)*w/w' (4) 3732 * 3733 * According to the weighted average formula, we have: 3734 * 3735 * V' = (WV - wv + w'v') / (W - w + w') 3736 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w') 3737 * = (WV - wv + w'V' - Vw + wv) / (W - w + w') 3738 * = (WV + w'V' - Vw) / (W - w + w') 3739 * 3740 * ==> V'*(W - w + w') = WV + w'V' - Vw 3741 * ==> V' * (W - w) = (W - w) * V (5) 3742 * 3743 * If the entity is the only one in the cfs_rq, then reweight 3744 * always occurs at 0-lag point, so V won't change. Or else 3745 * there are other entities, hence W != w, then Eq. (5) turns 3746 * into V' = V. So V won't change in either case, proof done. 3747 * 3748 * 3749 * So according to corollary #1 & #2, the effect of re-weight 3750 * on vruntime should be: 3751 * 3752 * v' = V' - (V - v) * w / w' (4) 3753 * = V - (V - v) * w / w' 3754 * = V - vl * w / w' 3755 * = V - vl' 3756 */ 3757 if (avruntime != se->vruntime) { 3758 vlag = (s64)(avruntime - se->vruntime); 3759 vlag = div_s64(vlag * old_weight, weight); 3760 se->vruntime = avruntime - vlag; 3761 } 3762 3763 /* 3764 * DEADLINE 3765 * ======== 3766 * 3767 * When the weight changes, the virtual time slope changes and 3768 * we should adjust the relative virtual deadline accordingly. 3769 * 3770 * d' = v' + (d - v)*w/w' 3771 * = V' - (V - v)*w/w' + (d - v)*w/w' 3772 * = V - (V - v)*w/w' + (d - v)*w/w' 3773 * = V + (d - V)*w/w' 3774 */ 3775 vslice = (s64)(se->deadline - avruntime); 3776 vslice = div_s64(vslice * old_weight, weight); 3777 se->deadline = avruntime + vslice; 3778 } 3779 3780 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3781 unsigned long weight) 3782 { 3783 bool curr = cfs_rq->curr == se; 3784 3785 if (se->on_rq) { 3786 /* commit outstanding execution time */ 3787 if (curr) 3788 update_curr(cfs_rq); 3789 else 3790 __dequeue_entity(cfs_rq, se); 3791 update_load_sub(&cfs_rq->load, se->load.weight); 3792 } 3793 dequeue_load_avg(cfs_rq, se); 3794 3795 if (!se->on_rq) { 3796 /* 3797 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3798 * we need to scale se->vlag when w_i changes. 3799 */ 3800 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3801 } else { 3802 reweight_eevdf(cfs_rq, se, weight); 3803 } 3804 3805 update_load_set(&se->load, weight); 3806 3807 #ifdef CONFIG_SMP 3808 do { 3809 u32 divider = get_pelt_divider(&se->avg); 3810 3811 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3812 } while (0); 3813 #endif 3814 3815 enqueue_load_avg(cfs_rq, se); 3816 if (se->on_rq) { 3817 update_load_add(&cfs_rq->load, se->load.weight); 3818 if (!curr) 3819 __enqueue_entity(cfs_rq, se); 3820 3821 /* 3822 * The entity's vruntime has been adjusted, so let's check 3823 * whether the rq-wide min_vruntime needs updated too. Since 3824 * the calculations above require stable min_vruntime rather 3825 * than up-to-date one, we do the update at the end of the 3826 * reweight process. 3827 */ 3828 update_min_vruntime(cfs_rq); 3829 } 3830 } 3831 3832 void reweight_task(struct task_struct *p, int prio) 3833 { 3834 struct sched_entity *se = &p->se; 3835 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3836 struct load_weight *load = &se->load; 3837 unsigned long weight = scale_load(sched_prio_to_weight[prio]); 3838 3839 reweight_entity(cfs_rq, se, weight); 3840 load->inv_weight = sched_prio_to_wmult[prio]; 3841 } 3842 3843 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3844 3845 #ifdef CONFIG_FAIR_GROUP_SCHED 3846 #ifdef CONFIG_SMP 3847 /* 3848 * All this does is approximate the hierarchical proportion which includes that 3849 * global sum we all love to hate. 3850 * 3851 * That is, the weight of a group entity, is the proportional share of the 3852 * group weight based on the group runqueue weights. That is: 3853 * 3854 * tg->weight * grq->load.weight 3855 * ge->load.weight = ----------------------------- (1) 3856 * \Sum grq->load.weight 3857 * 3858 * Now, because computing that sum is prohibitively expensive to compute (been 3859 * there, done that) we approximate it with this average stuff. The average 3860 * moves slower and therefore the approximation is cheaper and more stable. 3861 * 3862 * So instead of the above, we substitute: 3863 * 3864 * grq->load.weight -> grq->avg.load_avg (2) 3865 * 3866 * which yields the following: 3867 * 3868 * tg->weight * grq->avg.load_avg 3869 * ge->load.weight = ------------------------------ (3) 3870 * tg->load_avg 3871 * 3872 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3873 * 3874 * That is shares_avg, and it is right (given the approximation (2)). 3875 * 3876 * The problem with it is that because the average is slow -- it was designed 3877 * to be exactly that of course -- this leads to transients in boundary 3878 * conditions. In specific, the case where the group was idle and we start the 3879 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3880 * yielding bad latency etc.. 3881 * 3882 * Now, in that special case (1) reduces to: 3883 * 3884 * tg->weight * grq->load.weight 3885 * ge->load.weight = ----------------------------- = tg->weight (4) 3886 * grp->load.weight 3887 * 3888 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3889 * 3890 * So what we do is modify our approximation (3) to approach (4) in the (near) 3891 * UP case, like: 3892 * 3893 * ge->load.weight = 3894 * 3895 * tg->weight * grq->load.weight 3896 * --------------------------------------------------- (5) 3897 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3898 * 3899 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3900 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3901 * 3902 * 3903 * tg->weight * grq->load.weight 3904 * ge->load.weight = ----------------------------- (6) 3905 * tg_load_avg' 3906 * 3907 * Where: 3908 * 3909 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3910 * max(grq->load.weight, grq->avg.load_avg) 3911 * 3912 * And that is shares_weight and is icky. In the (near) UP case it approaches 3913 * (4) while in the normal case it approaches (3). It consistently 3914 * overestimates the ge->load.weight and therefore: 3915 * 3916 * \Sum ge->load.weight >= tg->weight 3917 * 3918 * hence icky! 3919 */ 3920 static long calc_group_shares(struct cfs_rq *cfs_rq) 3921 { 3922 long tg_weight, tg_shares, load, shares; 3923 struct task_group *tg = cfs_rq->tg; 3924 3925 tg_shares = READ_ONCE(tg->shares); 3926 3927 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3928 3929 tg_weight = atomic_long_read(&tg->load_avg); 3930 3931 /* Ensure tg_weight >= load */ 3932 tg_weight -= cfs_rq->tg_load_avg_contrib; 3933 tg_weight += load; 3934 3935 shares = (tg_shares * load); 3936 if (tg_weight) 3937 shares /= tg_weight; 3938 3939 /* 3940 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3941 * of a group with small tg->shares value. It is a floor value which is 3942 * assigned as a minimum load.weight to the sched_entity representing 3943 * the group on a CPU. 3944 * 3945 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3946 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3947 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3948 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3949 * instead of 0. 3950 */ 3951 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3952 } 3953 #endif /* CONFIG_SMP */ 3954 3955 /* 3956 * Recomputes the group entity based on the current state of its group 3957 * runqueue. 3958 */ 3959 static void update_cfs_group(struct sched_entity *se) 3960 { 3961 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3962 long shares; 3963 3964 if (!gcfs_rq) 3965 return; 3966 3967 if (throttled_hierarchy(gcfs_rq)) 3968 return; 3969 3970 #ifndef CONFIG_SMP 3971 shares = READ_ONCE(gcfs_rq->tg->shares); 3972 #else 3973 shares = calc_group_shares(gcfs_rq); 3974 #endif 3975 if (unlikely(se->load.weight != shares)) 3976 reweight_entity(cfs_rq_of(se), se, shares); 3977 } 3978 3979 #else /* CONFIG_FAIR_GROUP_SCHED */ 3980 static inline void update_cfs_group(struct sched_entity *se) 3981 { 3982 } 3983 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3984 3985 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3986 { 3987 struct rq *rq = rq_of(cfs_rq); 3988 3989 if (&rq->cfs == cfs_rq) { 3990 /* 3991 * There are a few boundary cases this might miss but it should 3992 * get called often enough that that should (hopefully) not be 3993 * a real problem. 3994 * 3995 * It will not get called when we go idle, because the idle 3996 * thread is a different class (!fair), nor will the utilization 3997 * number include things like RT tasks. 3998 * 3999 * As is, the util number is not freq-invariant (we'd have to 4000 * implement arch_scale_freq_capacity() for that). 4001 * 4002 * See cpu_util_cfs(). 4003 */ 4004 cpufreq_update_util(rq, flags); 4005 } 4006 } 4007 4008 #ifdef CONFIG_SMP 4009 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4010 { 4011 if (sa->load_sum) 4012 return false; 4013 4014 if (sa->util_sum) 4015 return false; 4016 4017 if (sa->runnable_sum) 4018 return false; 4019 4020 /* 4021 * _avg must be null when _sum are null because _avg = _sum / divider 4022 * Make sure that rounding and/or propagation of PELT values never 4023 * break this. 4024 */ 4025 SCHED_WARN_ON(sa->load_avg || 4026 sa->util_avg || 4027 sa->runnable_avg); 4028 4029 return true; 4030 } 4031 4032 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4033 { 4034 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4035 cfs_rq->last_update_time_copy); 4036 } 4037 #ifdef CONFIG_FAIR_GROUP_SCHED 4038 /* 4039 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4040 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4041 * bottom-up, we only have to test whether the cfs_rq before us on the list 4042 * is our child. 4043 * If cfs_rq is not on the list, test whether a child needs its to be added to 4044 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4045 */ 4046 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4047 { 4048 struct cfs_rq *prev_cfs_rq; 4049 struct list_head *prev; 4050 4051 if (cfs_rq->on_list) { 4052 prev = cfs_rq->leaf_cfs_rq_list.prev; 4053 } else { 4054 struct rq *rq = rq_of(cfs_rq); 4055 4056 prev = rq->tmp_alone_branch; 4057 } 4058 4059 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4060 4061 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4062 } 4063 4064 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4065 { 4066 if (cfs_rq->load.weight) 4067 return false; 4068 4069 if (!load_avg_is_decayed(&cfs_rq->avg)) 4070 return false; 4071 4072 if (child_cfs_rq_on_list(cfs_rq)) 4073 return false; 4074 4075 return true; 4076 } 4077 4078 /** 4079 * update_tg_load_avg - update the tg's load avg 4080 * @cfs_rq: the cfs_rq whose avg changed 4081 * 4082 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4083 * However, because tg->load_avg is a global value there are performance 4084 * considerations. 4085 * 4086 * In order to avoid having to look at the other cfs_rq's, we use a 4087 * differential update where we store the last value we propagated. This in 4088 * turn allows skipping updates if the differential is 'small'. 4089 * 4090 * Updating tg's load_avg is necessary before update_cfs_share(). 4091 */ 4092 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4093 { 4094 long delta; 4095 u64 now; 4096 4097 /* 4098 * No need to update load_avg for root_task_group as it is not used. 4099 */ 4100 if (cfs_rq->tg == &root_task_group) 4101 return; 4102 4103 /* rq has been offline and doesn't contribute to the share anymore: */ 4104 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4105 return; 4106 4107 /* 4108 * For migration heavy workloads, access to tg->load_avg can be 4109 * unbound. Limit the update rate to at most once per ms. 4110 */ 4111 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4112 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4113 return; 4114 4115 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4116 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4117 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4118 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4119 cfs_rq->last_update_tg_load_avg = now; 4120 } 4121 } 4122 4123 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4124 { 4125 long delta; 4126 u64 now; 4127 4128 /* 4129 * No need to update load_avg for root_task_group, as it is not used. 4130 */ 4131 if (cfs_rq->tg == &root_task_group) 4132 return; 4133 4134 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4135 delta = 0 - cfs_rq->tg_load_avg_contrib; 4136 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4137 cfs_rq->tg_load_avg_contrib = 0; 4138 cfs_rq->last_update_tg_load_avg = now; 4139 } 4140 4141 /* CPU offline callback: */ 4142 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4143 { 4144 struct task_group *tg; 4145 4146 lockdep_assert_rq_held(rq); 4147 4148 /* 4149 * The rq clock has already been updated in 4150 * set_rq_offline(), so we should skip updating 4151 * the rq clock again in unthrottle_cfs_rq(). 4152 */ 4153 rq_clock_start_loop_update(rq); 4154 4155 rcu_read_lock(); 4156 list_for_each_entry_rcu(tg, &task_groups, list) { 4157 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4158 4159 clear_tg_load_avg(cfs_rq); 4160 } 4161 rcu_read_unlock(); 4162 4163 rq_clock_stop_loop_update(rq); 4164 } 4165 4166 /* 4167 * Called within set_task_rq() right before setting a task's CPU. The 4168 * caller only guarantees p->pi_lock is held; no other assumptions, 4169 * including the state of rq->lock, should be made. 4170 */ 4171 void set_task_rq_fair(struct sched_entity *se, 4172 struct cfs_rq *prev, struct cfs_rq *next) 4173 { 4174 u64 p_last_update_time; 4175 u64 n_last_update_time; 4176 4177 if (!sched_feat(ATTACH_AGE_LOAD)) 4178 return; 4179 4180 /* 4181 * We are supposed to update the task to "current" time, then its up to 4182 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4183 * getting what current time is, so simply throw away the out-of-date 4184 * time. This will result in the wakee task is less decayed, but giving 4185 * the wakee more load sounds not bad. 4186 */ 4187 if (!(se->avg.last_update_time && prev)) 4188 return; 4189 4190 p_last_update_time = cfs_rq_last_update_time(prev); 4191 n_last_update_time = cfs_rq_last_update_time(next); 4192 4193 __update_load_avg_blocked_se(p_last_update_time, se); 4194 se->avg.last_update_time = n_last_update_time; 4195 } 4196 4197 /* 4198 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4199 * propagate its contribution. The key to this propagation is the invariant 4200 * that for each group: 4201 * 4202 * ge->avg == grq->avg (1) 4203 * 4204 * _IFF_ we look at the pure running and runnable sums. Because they 4205 * represent the very same entity, just at different points in the hierarchy. 4206 * 4207 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4208 * and simply copies the running/runnable sum over (but still wrong, because 4209 * the group entity and group rq do not have their PELT windows aligned). 4210 * 4211 * However, update_tg_cfs_load() is more complex. So we have: 4212 * 4213 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4214 * 4215 * And since, like util, the runnable part should be directly transferable, 4216 * the following would _appear_ to be the straight forward approach: 4217 * 4218 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4219 * 4220 * And per (1) we have: 4221 * 4222 * ge->avg.runnable_avg == grq->avg.runnable_avg 4223 * 4224 * Which gives: 4225 * 4226 * ge->load.weight * grq->avg.load_avg 4227 * ge->avg.load_avg = ----------------------------------- (4) 4228 * grq->load.weight 4229 * 4230 * Except that is wrong! 4231 * 4232 * Because while for entities historical weight is not important and we 4233 * really only care about our future and therefore can consider a pure 4234 * runnable sum, runqueues can NOT do this. 4235 * 4236 * We specifically want runqueues to have a load_avg that includes 4237 * historical weights. Those represent the blocked load, the load we expect 4238 * to (shortly) return to us. This only works by keeping the weights as 4239 * integral part of the sum. We therefore cannot decompose as per (3). 4240 * 4241 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4242 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4243 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4244 * runnable section of these tasks overlap (or not). If they were to perfectly 4245 * align the rq as a whole would be runnable 2/3 of the time. If however we 4246 * always have at least 1 runnable task, the rq as a whole is always runnable. 4247 * 4248 * So we'll have to approximate.. :/ 4249 * 4250 * Given the constraint: 4251 * 4252 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4253 * 4254 * We can construct a rule that adds runnable to a rq by assuming minimal 4255 * overlap. 4256 * 4257 * On removal, we'll assume each task is equally runnable; which yields: 4258 * 4259 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4260 * 4261 * XXX: only do this for the part of runnable > running ? 4262 * 4263 */ 4264 static inline void 4265 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4266 { 4267 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4268 u32 new_sum, divider; 4269 4270 /* Nothing to update */ 4271 if (!delta_avg) 4272 return; 4273 4274 /* 4275 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4276 * See ___update_load_avg() for details. 4277 */ 4278 divider = get_pelt_divider(&cfs_rq->avg); 4279 4280 4281 /* Set new sched_entity's utilization */ 4282 se->avg.util_avg = gcfs_rq->avg.util_avg; 4283 new_sum = se->avg.util_avg * divider; 4284 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4285 se->avg.util_sum = new_sum; 4286 4287 /* Update parent cfs_rq utilization */ 4288 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4289 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4290 4291 /* See update_cfs_rq_load_avg() */ 4292 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4293 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4294 } 4295 4296 static inline void 4297 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4298 { 4299 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4300 u32 new_sum, divider; 4301 4302 /* Nothing to update */ 4303 if (!delta_avg) 4304 return; 4305 4306 /* 4307 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4308 * See ___update_load_avg() for details. 4309 */ 4310 divider = get_pelt_divider(&cfs_rq->avg); 4311 4312 /* Set new sched_entity's runnable */ 4313 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4314 new_sum = se->avg.runnable_avg * divider; 4315 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4316 se->avg.runnable_sum = new_sum; 4317 4318 /* Update parent cfs_rq runnable */ 4319 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4320 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4321 /* See update_cfs_rq_load_avg() */ 4322 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4323 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4324 } 4325 4326 static inline void 4327 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4328 { 4329 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4330 unsigned long load_avg; 4331 u64 load_sum = 0; 4332 s64 delta_sum; 4333 u32 divider; 4334 4335 if (!runnable_sum) 4336 return; 4337 4338 gcfs_rq->prop_runnable_sum = 0; 4339 4340 /* 4341 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4342 * See ___update_load_avg() for details. 4343 */ 4344 divider = get_pelt_divider(&cfs_rq->avg); 4345 4346 if (runnable_sum >= 0) { 4347 /* 4348 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4349 * the CPU is saturated running == runnable. 4350 */ 4351 runnable_sum += se->avg.load_sum; 4352 runnable_sum = min_t(long, runnable_sum, divider); 4353 } else { 4354 /* 4355 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4356 * assuming all tasks are equally runnable. 4357 */ 4358 if (scale_load_down(gcfs_rq->load.weight)) { 4359 load_sum = div_u64(gcfs_rq->avg.load_sum, 4360 scale_load_down(gcfs_rq->load.weight)); 4361 } 4362 4363 /* But make sure to not inflate se's runnable */ 4364 runnable_sum = min(se->avg.load_sum, load_sum); 4365 } 4366 4367 /* 4368 * runnable_sum can't be lower than running_sum 4369 * Rescale running sum to be in the same range as runnable sum 4370 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4371 * runnable_sum is in [0 : LOAD_AVG_MAX] 4372 */ 4373 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4374 runnable_sum = max(runnable_sum, running_sum); 4375 4376 load_sum = se_weight(se) * runnable_sum; 4377 load_avg = div_u64(load_sum, divider); 4378 4379 delta_avg = load_avg - se->avg.load_avg; 4380 if (!delta_avg) 4381 return; 4382 4383 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4384 4385 se->avg.load_sum = runnable_sum; 4386 se->avg.load_avg = load_avg; 4387 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4388 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4389 /* See update_cfs_rq_load_avg() */ 4390 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4391 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4392 } 4393 4394 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4395 { 4396 cfs_rq->propagate = 1; 4397 cfs_rq->prop_runnable_sum += runnable_sum; 4398 } 4399 4400 /* Update task and its cfs_rq load average */ 4401 static inline int propagate_entity_load_avg(struct sched_entity *se) 4402 { 4403 struct cfs_rq *cfs_rq, *gcfs_rq; 4404 4405 if (entity_is_task(se)) 4406 return 0; 4407 4408 gcfs_rq = group_cfs_rq(se); 4409 if (!gcfs_rq->propagate) 4410 return 0; 4411 4412 gcfs_rq->propagate = 0; 4413 4414 cfs_rq = cfs_rq_of(se); 4415 4416 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4417 4418 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4419 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4420 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4421 4422 trace_pelt_cfs_tp(cfs_rq); 4423 trace_pelt_se_tp(se); 4424 4425 return 1; 4426 } 4427 4428 /* 4429 * Check if we need to update the load and the utilization of a blocked 4430 * group_entity: 4431 */ 4432 static inline bool skip_blocked_update(struct sched_entity *se) 4433 { 4434 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4435 4436 /* 4437 * If sched_entity still have not zero load or utilization, we have to 4438 * decay it: 4439 */ 4440 if (se->avg.load_avg || se->avg.util_avg) 4441 return false; 4442 4443 /* 4444 * If there is a pending propagation, we have to update the load and 4445 * the utilization of the sched_entity: 4446 */ 4447 if (gcfs_rq->propagate) 4448 return false; 4449 4450 /* 4451 * Otherwise, the load and the utilization of the sched_entity is 4452 * already zero and there is no pending propagation, so it will be a 4453 * waste of time to try to decay it: 4454 */ 4455 return true; 4456 } 4457 4458 #else /* CONFIG_FAIR_GROUP_SCHED */ 4459 4460 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4461 4462 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4463 4464 static inline int propagate_entity_load_avg(struct sched_entity *se) 4465 { 4466 return 0; 4467 } 4468 4469 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4470 4471 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4472 4473 #ifdef CONFIG_NO_HZ_COMMON 4474 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4475 { 4476 u64 throttled = 0, now, lut; 4477 struct cfs_rq *cfs_rq; 4478 struct rq *rq; 4479 bool is_idle; 4480 4481 if (load_avg_is_decayed(&se->avg)) 4482 return; 4483 4484 cfs_rq = cfs_rq_of(se); 4485 rq = rq_of(cfs_rq); 4486 4487 rcu_read_lock(); 4488 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4489 rcu_read_unlock(); 4490 4491 /* 4492 * The lag estimation comes with a cost we don't want to pay all the 4493 * time. Hence, limiting to the case where the source CPU is idle and 4494 * we know we are at the greatest risk to have an outdated clock. 4495 */ 4496 if (!is_idle) 4497 return; 4498 4499 /* 4500 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4501 * 4502 * last_update_time (the cfs_rq's last_update_time) 4503 * = cfs_rq_clock_pelt()@cfs_rq_idle 4504 * = rq_clock_pelt()@cfs_rq_idle 4505 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4506 * 4507 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4508 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4509 * 4510 * rq_idle_lag (delta between now and rq's update) 4511 * = sched_clock_cpu() - rq_clock()@rq_idle 4512 * 4513 * We can then write: 4514 * 4515 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4516 * sched_clock_cpu() - rq_clock()@rq_idle 4517 * Where: 4518 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4519 * rq_clock()@rq_idle is rq->clock_idle 4520 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4521 * is cfs_rq->throttled_pelt_idle 4522 */ 4523 4524 #ifdef CONFIG_CFS_BANDWIDTH 4525 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4526 /* The clock has been stopped for throttling */ 4527 if (throttled == U64_MAX) 4528 return; 4529 #endif 4530 now = u64_u32_load(rq->clock_pelt_idle); 4531 /* 4532 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4533 * is observed the old clock_pelt_idle value and the new clock_idle, 4534 * which lead to an underestimation. The opposite would lead to an 4535 * overestimation. 4536 */ 4537 smp_rmb(); 4538 lut = cfs_rq_last_update_time(cfs_rq); 4539 4540 now -= throttled; 4541 if (now < lut) 4542 /* 4543 * cfs_rq->avg.last_update_time is more recent than our 4544 * estimation, let's use it. 4545 */ 4546 now = lut; 4547 else 4548 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4549 4550 __update_load_avg_blocked_se(now, se); 4551 } 4552 #else 4553 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4554 #endif 4555 4556 /** 4557 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4558 * @now: current time, as per cfs_rq_clock_pelt() 4559 * @cfs_rq: cfs_rq to update 4560 * 4561 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4562 * avg. The immediate corollary is that all (fair) tasks must be attached. 4563 * 4564 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4565 * 4566 * Return: true if the load decayed or we removed load. 4567 * 4568 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4569 * call update_tg_load_avg() when this function returns true. 4570 */ 4571 static inline int 4572 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4573 { 4574 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4575 struct sched_avg *sa = &cfs_rq->avg; 4576 int decayed = 0; 4577 4578 if (cfs_rq->removed.nr) { 4579 unsigned long r; 4580 u32 divider = get_pelt_divider(&cfs_rq->avg); 4581 4582 raw_spin_lock(&cfs_rq->removed.lock); 4583 swap(cfs_rq->removed.util_avg, removed_util); 4584 swap(cfs_rq->removed.load_avg, removed_load); 4585 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4586 cfs_rq->removed.nr = 0; 4587 raw_spin_unlock(&cfs_rq->removed.lock); 4588 4589 r = removed_load; 4590 sub_positive(&sa->load_avg, r); 4591 sub_positive(&sa->load_sum, r * divider); 4592 /* See sa->util_sum below */ 4593 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4594 4595 r = removed_util; 4596 sub_positive(&sa->util_avg, r); 4597 sub_positive(&sa->util_sum, r * divider); 4598 /* 4599 * Because of rounding, se->util_sum might ends up being +1 more than 4600 * cfs->util_sum. Although this is not a problem by itself, detaching 4601 * a lot of tasks with the rounding problem between 2 updates of 4602 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4603 * cfs_util_avg is not. 4604 * Check that util_sum is still above its lower bound for the new 4605 * util_avg. Given that period_contrib might have moved since the last 4606 * sync, we are only sure that util_sum must be above or equal to 4607 * util_avg * minimum possible divider 4608 */ 4609 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4610 4611 r = removed_runnable; 4612 sub_positive(&sa->runnable_avg, r); 4613 sub_positive(&sa->runnable_sum, r * divider); 4614 /* See sa->util_sum above */ 4615 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4616 sa->runnable_avg * PELT_MIN_DIVIDER); 4617 4618 /* 4619 * removed_runnable is the unweighted version of removed_load so we 4620 * can use it to estimate removed_load_sum. 4621 */ 4622 add_tg_cfs_propagate(cfs_rq, 4623 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4624 4625 decayed = 1; 4626 } 4627 4628 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4629 u64_u32_store_copy(sa->last_update_time, 4630 cfs_rq->last_update_time_copy, 4631 sa->last_update_time); 4632 return decayed; 4633 } 4634 4635 /** 4636 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4637 * @cfs_rq: cfs_rq to attach to 4638 * @se: sched_entity to attach 4639 * 4640 * Must call update_cfs_rq_load_avg() before this, since we rely on 4641 * cfs_rq->avg.last_update_time being current. 4642 */ 4643 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4644 { 4645 /* 4646 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4647 * See ___update_load_avg() for details. 4648 */ 4649 u32 divider = get_pelt_divider(&cfs_rq->avg); 4650 4651 /* 4652 * When we attach the @se to the @cfs_rq, we must align the decay 4653 * window because without that, really weird and wonderful things can 4654 * happen. 4655 * 4656 * XXX illustrate 4657 */ 4658 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4659 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4660 4661 /* 4662 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4663 * period_contrib. This isn't strictly correct, but since we're 4664 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4665 * _sum a little. 4666 */ 4667 se->avg.util_sum = se->avg.util_avg * divider; 4668 4669 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4670 4671 se->avg.load_sum = se->avg.load_avg * divider; 4672 if (se_weight(se) < se->avg.load_sum) 4673 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4674 else 4675 se->avg.load_sum = 1; 4676 4677 enqueue_load_avg(cfs_rq, se); 4678 cfs_rq->avg.util_avg += se->avg.util_avg; 4679 cfs_rq->avg.util_sum += se->avg.util_sum; 4680 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4681 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4682 4683 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4684 4685 cfs_rq_util_change(cfs_rq, 0); 4686 4687 trace_pelt_cfs_tp(cfs_rq); 4688 } 4689 4690 /** 4691 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4692 * @cfs_rq: cfs_rq to detach from 4693 * @se: sched_entity to detach 4694 * 4695 * Must call update_cfs_rq_load_avg() before this, since we rely on 4696 * cfs_rq->avg.last_update_time being current. 4697 */ 4698 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4699 { 4700 dequeue_load_avg(cfs_rq, se); 4701 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4702 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4703 /* See update_cfs_rq_load_avg() */ 4704 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4705 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4706 4707 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4708 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4709 /* See update_cfs_rq_load_avg() */ 4710 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4711 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4712 4713 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4714 4715 cfs_rq_util_change(cfs_rq, 0); 4716 4717 trace_pelt_cfs_tp(cfs_rq); 4718 } 4719 4720 /* 4721 * Optional action to be done while updating the load average 4722 */ 4723 #define UPDATE_TG 0x1 4724 #define SKIP_AGE_LOAD 0x2 4725 #define DO_ATTACH 0x4 4726 #define DO_DETACH 0x8 4727 4728 /* Update task and its cfs_rq load average */ 4729 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4730 { 4731 u64 now = cfs_rq_clock_pelt(cfs_rq); 4732 int decayed; 4733 4734 /* 4735 * Track task load average for carrying it to new CPU after migrated, and 4736 * track group sched_entity load average for task_h_load calc in migration 4737 */ 4738 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4739 __update_load_avg_se(now, cfs_rq, se); 4740 4741 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4742 decayed |= propagate_entity_load_avg(se); 4743 4744 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4745 4746 /* 4747 * DO_ATTACH means we're here from enqueue_entity(). 4748 * !last_update_time means we've passed through 4749 * migrate_task_rq_fair() indicating we migrated. 4750 * 4751 * IOW we're enqueueing a task on a new CPU. 4752 */ 4753 attach_entity_load_avg(cfs_rq, se); 4754 update_tg_load_avg(cfs_rq); 4755 4756 } else if (flags & DO_DETACH) { 4757 /* 4758 * DO_DETACH means we're here from dequeue_entity() 4759 * and we are migrating task out of the CPU. 4760 */ 4761 detach_entity_load_avg(cfs_rq, se); 4762 update_tg_load_avg(cfs_rq); 4763 } else if (decayed) { 4764 cfs_rq_util_change(cfs_rq, 0); 4765 4766 if (flags & UPDATE_TG) 4767 update_tg_load_avg(cfs_rq); 4768 } 4769 } 4770 4771 /* 4772 * Synchronize entity load avg of dequeued entity without locking 4773 * the previous rq. 4774 */ 4775 static void sync_entity_load_avg(struct sched_entity *se) 4776 { 4777 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4778 u64 last_update_time; 4779 4780 last_update_time = cfs_rq_last_update_time(cfs_rq); 4781 __update_load_avg_blocked_se(last_update_time, se); 4782 } 4783 4784 /* 4785 * Task first catches up with cfs_rq, and then subtract 4786 * itself from the cfs_rq (task must be off the queue now). 4787 */ 4788 static void remove_entity_load_avg(struct sched_entity *se) 4789 { 4790 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4791 unsigned long flags; 4792 4793 /* 4794 * tasks cannot exit without having gone through wake_up_new_task() -> 4795 * enqueue_task_fair() which will have added things to the cfs_rq, 4796 * so we can remove unconditionally. 4797 */ 4798 4799 sync_entity_load_avg(se); 4800 4801 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4802 ++cfs_rq->removed.nr; 4803 cfs_rq->removed.util_avg += se->avg.util_avg; 4804 cfs_rq->removed.load_avg += se->avg.load_avg; 4805 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4806 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4807 } 4808 4809 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4810 { 4811 return cfs_rq->avg.runnable_avg; 4812 } 4813 4814 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4815 { 4816 return cfs_rq->avg.load_avg; 4817 } 4818 4819 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf); 4820 4821 static inline unsigned long task_util(struct task_struct *p) 4822 { 4823 return READ_ONCE(p->se.avg.util_avg); 4824 } 4825 4826 static inline unsigned long task_runnable(struct task_struct *p) 4827 { 4828 return READ_ONCE(p->se.avg.runnable_avg); 4829 } 4830 4831 static inline unsigned long _task_util_est(struct task_struct *p) 4832 { 4833 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4834 } 4835 4836 static inline unsigned long task_util_est(struct task_struct *p) 4837 { 4838 return max(task_util(p), _task_util_est(p)); 4839 } 4840 4841 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4842 struct task_struct *p) 4843 { 4844 unsigned int enqueued; 4845 4846 if (!sched_feat(UTIL_EST)) 4847 return; 4848 4849 /* Update root cfs_rq's estimated utilization */ 4850 enqueued = cfs_rq->avg.util_est; 4851 enqueued += _task_util_est(p); 4852 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4853 4854 trace_sched_util_est_cfs_tp(cfs_rq); 4855 } 4856 4857 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4858 struct task_struct *p) 4859 { 4860 unsigned int enqueued; 4861 4862 if (!sched_feat(UTIL_EST)) 4863 return; 4864 4865 /* Update root cfs_rq's estimated utilization */ 4866 enqueued = cfs_rq->avg.util_est; 4867 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4868 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4869 4870 trace_sched_util_est_cfs_tp(cfs_rq); 4871 } 4872 4873 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4874 4875 static inline void util_est_update(struct cfs_rq *cfs_rq, 4876 struct task_struct *p, 4877 bool task_sleep) 4878 { 4879 unsigned int ewma, dequeued, last_ewma_diff; 4880 4881 if (!sched_feat(UTIL_EST)) 4882 return; 4883 4884 /* 4885 * Skip update of task's estimated utilization when the task has not 4886 * yet completed an activation, e.g. being migrated. 4887 */ 4888 if (!task_sleep) 4889 return; 4890 4891 /* Get current estimate of utilization */ 4892 ewma = READ_ONCE(p->se.avg.util_est); 4893 4894 /* 4895 * If the PELT values haven't changed since enqueue time, 4896 * skip the util_est update. 4897 */ 4898 if (ewma & UTIL_AVG_UNCHANGED) 4899 return; 4900 4901 /* Get utilization at dequeue */ 4902 dequeued = task_util(p); 4903 4904 /* 4905 * Reset EWMA on utilization increases, the moving average is used only 4906 * to smooth utilization decreases. 4907 */ 4908 if (ewma <= dequeued) { 4909 ewma = dequeued; 4910 goto done; 4911 } 4912 4913 /* 4914 * Skip update of task's estimated utilization when its members are 4915 * already ~1% close to its last activation value. 4916 */ 4917 last_ewma_diff = ewma - dequeued; 4918 if (last_ewma_diff < UTIL_EST_MARGIN) 4919 goto done; 4920 4921 /* 4922 * To avoid overestimation of actual task utilization, skip updates if 4923 * we cannot grant there is idle time in this CPU. 4924 */ 4925 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)))) 4926 return; 4927 4928 /* 4929 * To avoid underestimate of task utilization, skip updates of EWMA if 4930 * we cannot grant that thread got all CPU time it wanted. 4931 */ 4932 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 4933 goto done; 4934 4935 4936 /* 4937 * Update Task's estimated utilization 4938 * 4939 * When *p completes an activation we can consolidate another sample 4940 * of the task size. This is done by using this value to update the 4941 * Exponential Weighted Moving Average (EWMA): 4942 * 4943 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4944 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4945 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4946 * = w * ( -last_ewma_diff ) + ewma(t-1) 4947 * = w * (-last_ewma_diff + ewma(t-1) / w) 4948 * 4949 * Where 'w' is the weight of new samples, which is configured to be 4950 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4951 */ 4952 ewma <<= UTIL_EST_WEIGHT_SHIFT; 4953 ewma -= last_ewma_diff; 4954 ewma >>= UTIL_EST_WEIGHT_SHIFT; 4955 done: 4956 ewma |= UTIL_AVG_UNCHANGED; 4957 WRITE_ONCE(p->se.avg.util_est, ewma); 4958 4959 trace_sched_util_est_se_tp(&p->se); 4960 } 4961 4962 static inline int util_fits_cpu(unsigned long util, 4963 unsigned long uclamp_min, 4964 unsigned long uclamp_max, 4965 int cpu) 4966 { 4967 unsigned long capacity_orig, capacity_orig_thermal; 4968 unsigned long capacity = capacity_of(cpu); 4969 bool fits, uclamp_max_fits; 4970 4971 /* 4972 * Check if the real util fits without any uclamp boost/cap applied. 4973 */ 4974 fits = fits_capacity(util, capacity); 4975 4976 if (!uclamp_is_used()) 4977 return fits; 4978 4979 /* 4980 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 4981 * uclamp_max. We only care about capacity pressure (by using 4982 * capacity_of()) for comparing against the real util. 4983 * 4984 * If a task is boosted to 1024 for example, we don't want a tiny 4985 * pressure to skew the check whether it fits a CPU or not. 4986 * 4987 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 4988 * should fit a little cpu even if there's some pressure. 4989 * 4990 * Only exception is for thermal pressure since it has a direct impact 4991 * on available OPP of the system. 4992 * 4993 * We honour it for uclamp_min only as a drop in performance level 4994 * could result in not getting the requested minimum performance level. 4995 * 4996 * For uclamp_max, we can tolerate a drop in performance level as the 4997 * goal is to cap the task. So it's okay if it's getting less. 4998 */ 4999 capacity_orig = arch_scale_cpu_capacity(cpu); 5000 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu); 5001 5002 /* 5003 * We want to force a task to fit a cpu as implied by uclamp_max. 5004 * But we do have some corner cases to cater for.. 5005 * 5006 * 5007 * C=z 5008 * | ___ 5009 * | C=y | | 5010 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5011 * | C=x | | | | 5012 * | ___ | | | | 5013 * | | | | | | | (util somewhere in this region) 5014 * | | | | | | | 5015 * | | | | | | | 5016 * +---------------------------------------- 5017 * cpu0 cpu1 cpu2 5018 * 5019 * In the above example if a task is capped to a specific performance 5020 * point, y, then when: 5021 * 5022 * * util = 80% of x then it does not fit on cpu0 and should migrate 5023 * to cpu1 5024 * * util = 80% of y then it is forced to fit on cpu1 to honour 5025 * uclamp_max request. 5026 * 5027 * which is what we're enforcing here. A task always fits if 5028 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5029 * the normal upmigration rules should withhold still. 5030 * 5031 * Only exception is when we are on max capacity, then we need to be 5032 * careful not to block overutilized state. This is so because: 5033 * 5034 * 1. There's no concept of capping at max_capacity! We can't go 5035 * beyond this performance level anyway. 5036 * 2. The system is being saturated when we're operating near 5037 * max capacity, it doesn't make sense to block overutilized. 5038 */ 5039 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5040 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5041 fits = fits || uclamp_max_fits; 5042 5043 /* 5044 * 5045 * C=z 5046 * | ___ (region a, capped, util >= uclamp_max) 5047 * | C=y | | 5048 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5049 * | C=x | | | | 5050 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5051 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5052 * | | | | | | | 5053 * | | | | | | | (region c, boosted, util < uclamp_min) 5054 * +---------------------------------------- 5055 * cpu0 cpu1 cpu2 5056 * 5057 * a) If util > uclamp_max, then we're capped, we don't care about 5058 * actual fitness value here. We only care if uclamp_max fits 5059 * capacity without taking margin/pressure into account. 5060 * See comment above. 5061 * 5062 * b) If uclamp_min <= util <= uclamp_max, then the normal 5063 * fits_capacity() rules apply. Except we need to ensure that we 5064 * enforce we remain within uclamp_max, see comment above. 5065 * 5066 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5067 * need to take into account the boosted value fits the CPU without 5068 * taking margin/pressure into account. 5069 * 5070 * Cases (a) and (b) are handled in the 'fits' variable already. We 5071 * just need to consider an extra check for case (c) after ensuring we 5072 * handle the case uclamp_min > uclamp_max. 5073 */ 5074 uclamp_min = min(uclamp_min, uclamp_max); 5075 if (fits && (util < uclamp_min) && (uclamp_min > capacity_orig_thermal)) 5076 return -1; 5077 5078 return fits; 5079 } 5080 5081 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5082 { 5083 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5084 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5085 unsigned long util = task_util_est(p); 5086 /* 5087 * Return true only if the cpu fully fits the task requirements, which 5088 * include the utilization but also the performance hints. 5089 */ 5090 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5091 } 5092 5093 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5094 { 5095 if (!sched_asym_cpucap_active()) 5096 return; 5097 5098 if (!p || p->nr_cpus_allowed == 1) { 5099 rq->misfit_task_load = 0; 5100 return; 5101 } 5102 5103 if (task_fits_cpu(p, cpu_of(rq))) { 5104 rq->misfit_task_load = 0; 5105 return; 5106 } 5107 5108 /* 5109 * Make sure that misfit_task_load will not be null even if 5110 * task_h_load() returns 0. 5111 */ 5112 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5113 } 5114 5115 #else /* CONFIG_SMP */ 5116 5117 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5118 { 5119 return !cfs_rq->nr_running; 5120 } 5121 5122 #define UPDATE_TG 0x0 5123 #define SKIP_AGE_LOAD 0x0 5124 #define DO_ATTACH 0x0 5125 #define DO_DETACH 0x0 5126 5127 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5128 { 5129 cfs_rq_util_change(cfs_rq, 0); 5130 } 5131 5132 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5133 5134 static inline void 5135 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5136 static inline void 5137 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5138 5139 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf) 5140 { 5141 return 0; 5142 } 5143 5144 static inline void 5145 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5146 5147 static inline void 5148 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5149 5150 static inline void 5151 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5152 bool task_sleep) {} 5153 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5154 5155 #endif /* CONFIG_SMP */ 5156 5157 static void 5158 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5159 { 5160 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5161 s64 lag = 0; 5162 5163 se->slice = sysctl_sched_base_slice; 5164 vslice = calc_delta_fair(se->slice, se); 5165 5166 /* 5167 * Due to how V is constructed as the weighted average of entities, 5168 * adding tasks with positive lag, or removing tasks with negative lag 5169 * will move 'time' backwards, this can screw around with the lag of 5170 * other tasks. 5171 * 5172 * EEVDF: placement strategy #1 / #2 5173 */ 5174 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) { 5175 struct sched_entity *curr = cfs_rq->curr; 5176 unsigned long load; 5177 5178 lag = se->vlag; 5179 5180 /* 5181 * If we want to place a task and preserve lag, we have to 5182 * consider the effect of the new entity on the weighted 5183 * average and compensate for this, otherwise lag can quickly 5184 * evaporate. 5185 * 5186 * Lag is defined as: 5187 * 5188 * lag_i = S - s_i = w_i * (V - v_i) 5189 * 5190 * To avoid the 'w_i' term all over the place, we only track 5191 * the virtual lag: 5192 * 5193 * vl_i = V - v_i <=> v_i = V - vl_i 5194 * 5195 * And we take V to be the weighted average of all v: 5196 * 5197 * V = (\Sum w_j*v_j) / W 5198 * 5199 * Where W is: \Sum w_j 5200 * 5201 * Then, the weighted average after adding an entity with lag 5202 * vl_i is given by: 5203 * 5204 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5205 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5206 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5207 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5208 * = V - w_i*vl_i / (W + w_i) 5209 * 5210 * And the actual lag after adding an entity with vl_i is: 5211 * 5212 * vl'_i = V' - v_i 5213 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5214 * = vl_i - w_i*vl_i / (W + w_i) 5215 * 5216 * Which is strictly less than vl_i. So in order to preserve lag 5217 * we should inflate the lag before placement such that the 5218 * effective lag after placement comes out right. 5219 * 5220 * As such, invert the above relation for vl'_i to get the vl_i 5221 * we need to use such that the lag after placement is the lag 5222 * we computed before dequeue. 5223 * 5224 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5225 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5226 * 5227 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5228 * = W*vl_i 5229 * 5230 * vl_i = (W + w_i)*vl'_i / W 5231 */ 5232 load = cfs_rq->avg_load; 5233 if (curr && curr->on_rq) 5234 load += scale_load_down(curr->load.weight); 5235 5236 lag *= load + scale_load_down(se->load.weight); 5237 if (WARN_ON_ONCE(!load)) 5238 load = 1; 5239 lag = div_s64(lag, load); 5240 } 5241 5242 se->vruntime = vruntime - lag; 5243 5244 /* 5245 * When joining the competition; the exisiting tasks will be, 5246 * on average, halfway through their slice, as such start tasks 5247 * off with half a slice to ease into the competition. 5248 */ 5249 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5250 vslice /= 2; 5251 5252 /* 5253 * EEVDF: vd_i = ve_i + r_i/w_i 5254 */ 5255 se->deadline = se->vruntime + vslice; 5256 } 5257 5258 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5259 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5260 5261 static inline bool cfs_bandwidth_used(void); 5262 5263 static void 5264 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5265 { 5266 bool curr = cfs_rq->curr == se; 5267 5268 /* 5269 * If we're the current task, we must renormalise before calling 5270 * update_curr(). 5271 */ 5272 if (curr) 5273 place_entity(cfs_rq, se, flags); 5274 5275 update_curr(cfs_rq); 5276 5277 /* 5278 * When enqueuing a sched_entity, we must: 5279 * - Update loads to have both entity and cfs_rq synced with now. 5280 * - For group_entity, update its runnable_weight to reflect the new 5281 * h_nr_running of its group cfs_rq. 5282 * - For group_entity, update its weight to reflect the new share of 5283 * its group cfs_rq 5284 * - Add its new weight to cfs_rq->load.weight 5285 */ 5286 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5287 se_update_runnable(se); 5288 /* 5289 * XXX update_load_avg() above will have attached us to the pelt sum; 5290 * but update_cfs_group() here will re-adjust the weight and have to 5291 * undo/redo all that. Seems wasteful. 5292 */ 5293 update_cfs_group(se); 5294 5295 /* 5296 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5297 * we can place the entity. 5298 */ 5299 if (!curr) 5300 place_entity(cfs_rq, se, flags); 5301 5302 account_entity_enqueue(cfs_rq, se); 5303 5304 /* Entity has migrated, no longer consider this task hot */ 5305 if (flags & ENQUEUE_MIGRATED) 5306 se->exec_start = 0; 5307 5308 check_schedstat_required(); 5309 update_stats_enqueue_fair(cfs_rq, se, flags); 5310 if (!curr) 5311 __enqueue_entity(cfs_rq, se); 5312 se->on_rq = 1; 5313 5314 if (cfs_rq->nr_running == 1) { 5315 check_enqueue_throttle(cfs_rq); 5316 if (!throttled_hierarchy(cfs_rq)) { 5317 list_add_leaf_cfs_rq(cfs_rq); 5318 } else { 5319 #ifdef CONFIG_CFS_BANDWIDTH 5320 struct rq *rq = rq_of(cfs_rq); 5321 5322 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5323 cfs_rq->throttled_clock = rq_clock(rq); 5324 if (!cfs_rq->throttled_clock_self) 5325 cfs_rq->throttled_clock_self = rq_clock(rq); 5326 #endif 5327 } 5328 } 5329 } 5330 5331 static void __clear_buddies_next(struct sched_entity *se) 5332 { 5333 for_each_sched_entity(se) { 5334 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5335 if (cfs_rq->next != se) 5336 break; 5337 5338 cfs_rq->next = NULL; 5339 } 5340 } 5341 5342 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5343 { 5344 if (cfs_rq->next == se) 5345 __clear_buddies_next(se); 5346 } 5347 5348 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5349 5350 static void 5351 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5352 { 5353 int action = UPDATE_TG; 5354 5355 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5356 action |= DO_DETACH; 5357 5358 /* 5359 * Update run-time statistics of the 'current'. 5360 */ 5361 update_curr(cfs_rq); 5362 5363 /* 5364 * When dequeuing a sched_entity, we must: 5365 * - Update loads to have both entity and cfs_rq synced with now. 5366 * - For group_entity, update its runnable_weight to reflect the new 5367 * h_nr_running of its group cfs_rq. 5368 * - Subtract its previous weight from cfs_rq->load.weight. 5369 * - For group entity, update its weight to reflect the new share 5370 * of its group cfs_rq. 5371 */ 5372 update_load_avg(cfs_rq, se, action); 5373 se_update_runnable(se); 5374 5375 update_stats_dequeue_fair(cfs_rq, se, flags); 5376 5377 clear_buddies(cfs_rq, se); 5378 5379 update_entity_lag(cfs_rq, se); 5380 if (se != cfs_rq->curr) 5381 __dequeue_entity(cfs_rq, se); 5382 se->on_rq = 0; 5383 account_entity_dequeue(cfs_rq, se); 5384 5385 /* return excess runtime on last dequeue */ 5386 return_cfs_rq_runtime(cfs_rq); 5387 5388 update_cfs_group(se); 5389 5390 /* 5391 * Now advance min_vruntime if @se was the entity holding it back, 5392 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5393 * put back on, and if we advance min_vruntime, we'll be placed back 5394 * further than we started -- ie. we'll be penalized. 5395 */ 5396 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5397 update_min_vruntime(cfs_rq); 5398 5399 if (cfs_rq->nr_running == 0) 5400 update_idle_cfs_rq_clock_pelt(cfs_rq); 5401 } 5402 5403 static void 5404 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5405 { 5406 clear_buddies(cfs_rq, se); 5407 5408 /* 'current' is not kept within the tree. */ 5409 if (se->on_rq) { 5410 /* 5411 * Any task has to be enqueued before it get to execute on 5412 * a CPU. So account for the time it spent waiting on the 5413 * runqueue. 5414 */ 5415 update_stats_wait_end_fair(cfs_rq, se); 5416 __dequeue_entity(cfs_rq, se); 5417 update_load_avg(cfs_rq, se, UPDATE_TG); 5418 /* 5419 * HACK, stash a copy of deadline at the point of pick in vlag, 5420 * which isn't used until dequeue. 5421 */ 5422 se->vlag = se->deadline; 5423 } 5424 5425 update_stats_curr_start(cfs_rq, se); 5426 cfs_rq->curr = se; 5427 5428 /* 5429 * Track our maximum slice length, if the CPU's load is at 5430 * least twice that of our own weight (i.e. dont track it 5431 * when there are only lesser-weight tasks around): 5432 */ 5433 if (schedstat_enabled() && 5434 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5435 struct sched_statistics *stats; 5436 5437 stats = __schedstats_from_se(se); 5438 __schedstat_set(stats->slice_max, 5439 max((u64)stats->slice_max, 5440 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5441 } 5442 5443 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5444 } 5445 5446 /* 5447 * Pick the next process, keeping these things in mind, in this order: 5448 * 1) keep things fair between processes/task groups 5449 * 2) pick the "next" process, since someone really wants that to run 5450 * 3) pick the "last" process, for cache locality 5451 * 4) do not run the "skip" process, if something else is available 5452 */ 5453 static struct sched_entity * 5454 pick_next_entity(struct cfs_rq *cfs_rq) 5455 { 5456 /* 5457 * Enabling NEXT_BUDDY will affect latency but not fairness. 5458 */ 5459 if (sched_feat(NEXT_BUDDY) && 5460 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) 5461 return cfs_rq->next; 5462 5463 return pick_eevdf(cfs_rq); 5464 } 5465 5466 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5467 5468 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5469 { 5470 /* 5471 * If still on the runqueue then deactivate_task() 5472 * was not called and update_curr() has to be done: 5473 */ 5474 if (prev->on_rq) 5475 update_curr(cfs_rq); 5476 5477 /* throttle cfs_rqs exceeding runtime */ 5478 check_cfs_rq_runtime(cfs_rq); 5479 5480 if (prev->on_rq) { 5481 update_stats_wait_start_fair(cfs_rq, prev); 5482 /* Put 'current' back into the tree. */ 5483 __enqueue_entity(cfs_rq, prev); 5484 /* in !on_rq case, update occurred at dequeue */ 5485 update_load_avg(cfs_rq, prev, 0); 5486 } 5487 cfs_rq->curr = NULL; 5488 } 5489 5490 static void 5491 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5492 { 5493 /* 5494 * Update run-time statistics of the 'current'. 5495 */ 5496 update_curr(cfs_rq); 5497 5498 /* 5499 * Ensure that runnable average is periodically updated. 5500 */ 5501 update_load_avg(cfs_rq, curr, UPDATE_TG); 5502 update_cfs_group(curr); 5503 5504 #ifdef CONFIG_SCHED_HRTICK 5505 /* 5506 * queued ticks are scheduled to match the slice, so don't bother 5507 * validating it and just reschedule. 5508 */ 5509 if (queued) { 5510 resched_curr(rq_of(cfs_rq)); 5511 return; 5512 } 5513 /* 5514 * don't let the period tick interfere with the hrtick preemption 5515 */ 5516 if (!sched_feat(DOUBLE_TICK) && 5517 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5518 return; 5519 #endif 5520 } 5521 5522 5523 /************************************************** 5524 * CFS bandwidth control machinery 5525 */ 5526 5527 #ifdef CONFIG_CFS_BANDWIDTH 5528 5529 #ifdef CONFIG_JUMP_LABEL 5530 static struct static_key __cfs_bandwidth_used; 5531 5532 static inline bool cfs_bandwidth_used(void) 5533 { 5534 return static_key_false(&__cfs_bandwidth_used); 5535 } 5536 5537 void cfs_bandwidth_usage_inc(void) 5538 { 5539 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5540 } 5541 5542 void cfs_bandwidth_usage_dec(void) 5543 { 5544 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5545 } 5546 #else /* CONFIG_JUMP_LABEL */ 5547 static bool cfs_bandwidth_used(void) 5548 { 5549 return true; 5550 } 5551 5552 void cfs_bandwidth_usage_inc(void) {} 5553 void cfs_bandwidth_usage_dec(void) {} 5554 #endif /* CONFIG_JUMP_LABEL */ 5555 5556 /* 5557 * default period for cfs group bandwidth. 5558 * default: 0.1s, units: nanoseconds 5559 */ 5560 static inline u64 default_cfs_period(void) 5561 { 5562 return 100000000ULL; 5563 } 5564 5565 static inline u64 sched_cfs_bandwidth_slice(void) 5566 { 5567 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5568 } 5569 5570 /* 5571 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5572 * directly instead of rq->clock to avoid adding additional synchronization 5573 * around rq->lock. 5574 * 5575 * requires cfs_b->lock 5576 */ 5577 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5578 { 5579 s64 runtime; 5580 5581 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5582 return; 5583 5584 cfs_b->runtime += cfs_b->quota; 5585 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5586 if (runtime > 0) { 5587 cfs_b->burst_time += runtime; 5588 cfs_b->nr_burst++; 5589 } 5590 5591 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5592 cfs_b->runtime_snap = cfs_b->runtime; 5593 } 5594 5595 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5596 { 5597 return &tg->cfs_bandwidth; 5598 } 5599 5600 /* returns 0 on failure to allocate runtime */ 5601 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5602 struct cfs_rq *cfs_rq, u64 target_runtime) 5603 { 5604 u64 min_amount, amount = 0; 5605 5606 lockdep_assert_held(&cfs_b->lock); 5607 5608 /* note: this is a positive sum as runtime_remaining <= 0 */ 5609 min_amount = target_runtime - cfs_rq->runtime_remaining; 5610 5611 if (cfs_b->quota == RUNTIME_INF) 5612 amount = min_amount; 5613 else { 5614 start_cfs_bandwidth(cfs_b); 5615 5616 if (cfs_b->runtime > 0) { 5617 amount = min(cfs_b->runtime, min_amount); 5618 cfs_b->runtime -= amount; 5619 cfs_b->idle = 0; 5620 } 5621 } 5622 5623 cfs_rq->runtime_remaining += amount; 5624 5625 return cfs_rq->runtime_remaining > 0; 5626 } 5627 5628 /* returns 0 on failure to allocate runtime */ 5629 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5630 { 5631 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5632 int ret; 5633 5634 raw_spin_lock(&cfs_b->lock); 5635 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5636 raw_spin_unlock(&cfs_b->lock); 5637 5638 return ret; 5639 } 5640 5641 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5642 { 5643 /* dock delta_exec before expiring quota (as it could span periods) */ 5644 cfs_rq->runtime_remaining -= delta_exec; 5645 5646 if (likely(cfs_rq->runtime_remaining > 0)) 5647 return; 5648 5649 if (cfs_rq->throttled) 5650 return; 5651 /* 5652 * if we're unable to extend our runtime we resched so that the active 5653 * hierarchy can be throttled 5654 */ 5655 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5656 resched_curr(rq_of(cfs_rq)); 5657 } 5658 5659 static __always_inline 5660 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5661 { 5662 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5663 return; 5664 5665 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5666 } 5667 5668 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5669 { 5670 return cfs_bandwidth_used() && cfs_rq->throttled; 5671 } 5672 5673 /* check whether cfs_rq, or any parent, is throttled */ 5674 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5675 { 5676 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5677 } 5678 5679 /* 5680 * Ensure that neither of the group entities corresponding to src_cpu or 5681 * dest_cpu are members of a throttled hierarchy when performing group 5682 * load-balance operations. 5683 */ 5684 static inline int throttled_lb_pair(struct task_group *tg, 5685 int src_cpu, int dest_cpu) 5686 { 5687 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5688 5689 src_cfs_rq = tg->cfs_rq[src_cpu]; 5690 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5691 5692 return throttled_hierarchy(src_cfs_rq) || 5693 throttled_hierarchy(dest_cfs_rq); 5694 } 5695 5696 static int tg_unthrottle_up(struct task_group *tg, void *data) 5697 { 5698 struct rq *rq = data; 5699 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5700 5701 cfs_rq->throttle_count--; 5702 if (!cfs_rq->throttle_count) { 5703 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5704 cfs_rq->throttled_clock_pelt; 5705 5706 /* Add cfs_rq with load or one or more already running entities to the list */ 5707 if (!cfs_rq_is_decayed(cfs_rq)) 5708 list_add_leaf_cfs_rq(cfs_rq); 5709 5710 if (cfs_rq->throttled_clock_self) { 5711 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5712 5713 cfs_rq->throttled_clock_self = 0; 5714 5715 if (SCHED_WARN_ON((s64)delta < 0)) 5716 delta = 0; 5717 5718 cfs_rq->throttled_clock_self_time += delta; 5719 } 5720 } 5721 5722 return 0; 5723 } 5724 5725 static int tg_throttle_down(struct task_group *tg, void *data) 5726 { 5727 struct rq *rq = data; 5728 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5729 5730 /* group is entering throttled state, stop time */ 5731 if (!cfs_rq->throttle_count) { 5732 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5733 list_del_leaf_cfs_rq(cfs_rq); 5734 5735 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5736 if (cfs_rq->nr_running) 5737 cfs_rq->throttled_clock_self = rq_clock(rq); 5738 } 5739 cfs_rq->throttle_count++; 5740 5741 return 0; 5742 } 5743 5744 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5745 { 5746 struct rq *rq = rq_of(cfs_rq); 5747 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5748 struct sched_entity *se; 5749 long task_delta, idle_task_delta, dequeue = 1; 5750 5751 raw_spin_lock(&cfs_b->lock); 5752 /* This will start the period timer if necessary */ 5753 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5754 /* 5755 * We have raced with bandwidth becoming available, and if we 5756 * actually throttled the timer might not unthrottle us for an 5757 * entire period. We additionally needed to make sure that any 5758 * subsequent check_cfs_rq_runtime calls agree not to throttle 5759 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5760 * for 1ns of runtime rather than just check cfs_b. 5761 */ 5762 dequeue = 0; 5763 } else { 5764 list_add_tail_rcu(&cfs_rq->throttled_list, 5765 &cfs_b->throttled_cfs_rq); 5766 } 5767 raw_spin_unlock(&cfs_b->lock); 5768 5769 if (!dequeue) 5770 return false; /* Throttle no longer required. */ 5771 5772 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5773 5774 /* freeze hierarchy runnable averages while throttled */ 5775 rcu_read_lock(); 5776 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5777 rcu_read_unlock(); 5778 5779 task_delta = cfs_rq->h_nr_running; 5780 idle_task_delta = cfs_rq->idle_h_nr_running; 5781 for_each_sched_entity(se) { 5782 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5783 /* throttled entity or throttle-on-deactivate */ 5784 if (!se->on_rq) 5785 goto done; 5786 5787 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5788 5789 if (cfs_rq_is_idle(group_cfs_rq(se))) 5790 idle_task_delta = cfs_rq->h_nr_running; 5791 5792 qcfs_rq->h_nr_running -= task_delta; 5793 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5794 5795 if (qcfs_rq->load.weight) { 5796 /* Avoid re-evaluating load for this entity: */ 5797 se = parent_entity(se); 5798 break; 5799 } 5800 } 5801 5802 for_each_sched_entity(se) { 5803 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5804 /* throttled entity or throttle-on-deactivate */ 5805 if (!se->on_rq) 5806 goto done; 5807 5808 update_load_avg(qcfs_rq, se, 0); 5809 se_update_runnable(se); 5810 5811 if (cfs_rq_is_idle(group_cfs_rq(se))) 5812 idle_task_delta = cfs_rq->h_nr_running; 5813 5814 qcfs_rq->h_nr_running -= task_delta; 5815 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5816 } 5817 5818 /* At this point se is NULL and we are at root level*/ 5819 sub_nr_running(rq, task_delta); 5820 5821 done: 5822 /* 5823 * Note: distribution will already see us throttled via the 5824 * throttled-list. rq->lock protects completion. 5825 */ 5826 cfs_rq->throttled = 1; 5827 SCHED_WARN_ON(cfs_rq->throttled_clock); 5828 if (cfs_rq->nr_running) 5829 cfs_rq->throttled_clock = rq_clock(rq); 5830 return true; 5831 } 5832 5833 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5834 { 5835 struct rq *rq = rq_of(cfs_rq); 5836 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5837 struct sched_entity *se; 5838 long task_delta, idle_task_delta; 5839 5840 se = cfs_rq->tg->se[cpu_of(rq)]; 5841 5842 cfs_rq->throttled = 0; 5843 5844 update_rq_clock(rq); 5845 5846 raw_spin_lock(&cfs_b->lock); 5847 if (cfs_rq->throttled_clock) { 5848 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5849 cfs_rq->throttled_clock = 0; 5850 } 5851 list_del_rcu(&cfs_rq->throttled_list); 5852 raw_spin_unlock(&cfs_b->lock); 5853 5854 /* update hierarchical throttle state */ 5855 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5856 5857 if (!cfs_rq->load.weight) { 5858 if (!cfs_rq->on_list) 5859 return; 5860 /* 5861 * Nothing to run but something to decay (on_list)? 5862 * Complete the branch. 5863 */ 5864 for_each_sched_entity(se) { 5865 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5866 break; 5867 } 5868 goto unthrottle_throttle; 5869 } 5870 5871 task_delta = cfs_rq->h_nr_running; 5872 idle_task_delta = cfs_rq->idle_h_nr_running; 5873 for_each_sched_entity(se) { 5874 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5875 5876 if (se->on_rq) 5877 break; 5878 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5879 5880 if (cfs_rq_is_idle(group_cfs_rq(se))) 5881 idle_task_delta = cfs_rq->h_nr_running; 5882 5883 qcfs_rq->h_nr_running += task_delta; 5884 qcfs_rq->idle_h_nr_running += idle_task_delta; 5885 5886 /* end evaluation on encountering a throttled cfs_rq */ 5887 if (cfs_rq_throttled(qcfs_rq)) 5888 goto unthrottle_throttle; 5889 } 5890 5891 for_each_sched_entity(se) { 5892 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5893 5894 update_load_avg(qcfs_rq, se, UPDATE_TG); 5895 se_update_runnable(se); 5896 5897 if (cfs_rq_is_idle(group_cfs_rq(se))) 5898 idle_task_delta = cfs_rq->h_nr_running; 5899 5900 qcfs_rq->h_nr_running += task_delta; 5901 qcfs_rq->idle_h_nr_running += idle_task_delta; 5902 5903 /* end evaluation on encountering a throttled cfs_rq */ 5904 if (cfs_rq_throttled(qcfs_rq)) 5905 goto unthrottle_throttle; 5906 } 5907 5908 /* At this point se is NULL and we are at root level*/ 5909 add_nr_running(rq, task_delta); 5910 5911 unthrottle_throttle: 5912 assert_list_leaf_cfs_rq(rq); 5913 5914 /* Determine whether we need to wake up potentially idle CPU: */ 5915 if (rq->curr == rq->idle && rq->cfs.nr_running) 5916 resched_curr(rq); 5917 } 5918 5919 #ifdef CONFIG_SMP 5920 static void __cfsb_csd_unthrottle(void *arg) 5921 { 5922 struct cfs_rq *cursor, *tmp; 5923 struct rq *rq = arg; 5924 struct rq_flags rf; 5925 5926 rq_lock(rq, &rf); 5927 5928 /* 5929 * Iterating over the list can trigger several call to 5930 * update_rq_clock() in unthrottle_cfs_rq(). 5931 * Do it once and skip the potential next ones. 5932 */ 5933 update_rq_clock(rq); 5934 rq_clock_start_loop_update(rq); 5935 5936 /* 5937 * Since we hold rq lock we're safe from concurrent manipulation of 5938 * the CSD list. However, this RCU critical section annotates the 5939 * fact that we pair with sched_free_group_rcu(), so that we cannot 5940 * race with group being freed in the window between removing it 5941 * from the list and advancing to the next entry in the list. 5942 */ 5943 rcu_read_lock(); 5944 5945 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 5946 throttled_csd_list) { 5947 list_del_init(&cursor->throttled_csd_list); 5948 5949 if (cfs_rq_throttled(cursor)) 5950 unthrottle_cfs_rq(cursor); 5951 } 5952 5953 rcu_read_unlock(); 5954 5955 rq_clock_stop_loop_update(rq); 5956 rq_unlock(rq, &rf); 5957 } 5958 5959 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5960 { 5961 struct rq *rq = rq_of(cfs_rq); 5962 bool first; 5963 5964 if (rq == this_rq()) { 5965 unthrottle_cfs_rq(cfs_rq); 5966 return; 5967 } 5968 5969 /* Already enqueued */ 5970 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 5971 return; 5972 5973 first = list_empty(&rq->cfsb_csd_list); 5974 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 5975 if (first) 5976 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 5977 } 5978 #else 5979 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5980 { 5981 unthrottle_cfs_rq(cfs_rq); 5982 } 5983 #endif 5984 5985 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5986 { 5987 lockdep_assert_rq_held(rq_of(cfs_rq)); 5988 5989 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 5990 cfs_rq->runtime_remaining <= 0)) 5991 return; 5992 5993 __unthrottle_cfs_rq_async(cfs_rq); 5994 } 5995 5996 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 5997 { 5998 int this_cpu = smp_processor_id(); 5999 u64 runtime, remaining = 1; 6000 bool throttled = false; 6001 struct cfs_rq *cfs_rq, *tmp; 6002 struct rq_flags rf; 6003 struct rq *rq; 6004 LIST_HEAD(local_unthrottle); 6005 6006 rcu_read_lock(); 6007 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6008 throttled_list) { 6009 rq = rq_of(cfs_rq); 6010 6011 if (!remaining) { 6012 throttled = true; 6013 break; 6014 } 6015 6016 rq_lock_irqsave(rq, &rf); 6017 if (!cfs_rq_throttled(cfs_rq)) 6018 goto next; 6019 6020 /* Already queued for async unthrottle */ 6021 if (!list_empty(&cfs_rq->throttled_csd_list)) 6022 goto next; 6023 6024 /* By the above checks, this should never be true */ 6025 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 6026 6027 raw_spin_lock(&cfs_b->lock); 6028 runtime = -cfs_rq->runtime_remaining + 1; 6029 if (runtime > cfs_b->runtime) 6030 runtime = cfs_b->runtime; 6031 cfs_b->runtime -= runtime; 6032 remaining = cfs_b->runtime; 6033 raw_spin_unlock(&cfs_b->lock); 6034 6035 cfs_rq->runtime_remaining += runtime; 6036 6037 /* we check whether we're throttled above */ 6038 if (cfs_rq->runtime_remaining > 0) { 6039 if (cpu_of(rq) != this_cpu) { 6040 unthrottle_cfs_rq_async(cfs_rq); 6041 } else { 6042 /* 6043 * We currently only expect to be unthrottling 6044 * a single cfs_rq locally. 6045 */ 6046 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6047 list_add_tail(&cfs_rq->throttled_csd_list, 6048 &local_unthrottle); 6049 } 6050 } else { 6051 throttled = true; 6052 } 6053 6054 next: 6055 rq_unlock_irqrestore(rq, &rf); 6056 } 6057 6058 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6059 throttled_csd_list) { 6060 struct rq *rq = rq_of(cfs_rq); 6061 6062 rq_lock_irqsave(rq, &rf); 6063 6064 list_del_init(&cfs_rq->throttled_csd_list); 6065 6066 if (cfs_rq_throttled(cfs_rq)) 6067 unthrottle_cfs_rq(cfs_rq); 6068 6069 rq_unlock_irqrestore(rq, &rf); 6070 } 6071 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6072 6073 rcu_read_unlock(); 6074 6075 return throttled; 6076 } 6077 6078 /* 6079 * Responsible for refilling a task_group's bandwidth and unthrottling its 6080 * cfs_rqs as appropriate. If there has been no activity within the last 6081 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6082 * used to track this state. 6083 */ 6084 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6085 { 6086 int throttled; 6087 6088 /* no need to continue the timer with no bandwidth constraint */ 6089 if (cfs_b->quota == RUNTIME_INF) 6090 goto out_deactivate; 6091 6092 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6093 cfs_b->nr_periods += overrun; 6094 6095 /* Refill extra burst quota even if cfs_b->idle */ 6096 __refill_cfs_bandwidth_runtime(cfs_b); 6097 6098 /* 6099 * idle depends on !throttled (for the case of a large deficit), and if 6100 * we're going inactive then everything else can be deferred 6101 */ 6102 if (cfs_b->idle && !throttled) 6103 goto out_deactivate; 6104 6105 if (!throttled) { 6106 /* mark as potentially idle for the upcoming period */ 6107 cfs_b->idle = 1; 6108 return 0; 6109 } 6110 6111 /* account preceding periods in which throttling occurred */ 6112 cfs_b->nr_throttled += overrun; 6113 6114 /* 6115 * This check is repeated as we release cfs_b->lock while we unthrottle. 6116 */ 6117 while (throttled && cfs_b->runtime > 0) { 6118 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6119 /* we can't nest cfs_b->lock while distributing bandwidth */ 6120 throttled = distribute_cfs_runtime(cfs_b); 6121 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6122 } 6123 6124 /* 6125 * While we are ensured activity in the period following an 6126 * unthrottle, this also covers the case in which the new bandwidth is 6127 * insufficient to cover the existing bandwidth deficit. (Forcing the 6128 * timer to remain active while there are any throttled entities.) 6129 */ 6130 cfs_b->idle = 0; 6131 6132 return 0; 6133 6134 out_deactivate: 6135 return 1; 6136 } 6137 6138 /* a cfs_rq won't donate quota below this amount */ 6139 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6140 /* minimum remaining period time to redistribute slack quota */ 6141 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6142 /* how long we wait to gather additional slack before distributing */ 6143 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6144 6145 /* 6146 * Are we near the end of the current quota period? 6147 * 6148 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6149 * hrtimer base being cleared by hrtimer_start. In the case of 6150 * migrate_hrtimers, base is never cleared, so we are fine. 6151 */ 6152 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6153 { 6154 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6155 s64 remaining; 6156 6157 /* if the call-back is running a quota refresh is already occurring */ 6158 if (hrtimer_callback_running(refresh_timer)) 6159 return 1; 6160 6161 /* is a quota refresh about to occur? */ 6162 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6163 if (remaining < (s64)min_expire) 6164 return 1; 6165 6166 return 0; 6167 } 6168 6169 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6170 { 6171 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6172 6173 /* if there's a quota refresh soon don't bother with slack */ 6174 if (runtime_refresh_within(cfs_b, min_left)) 6175 return; 6176 6177 /* don't push forwards an existing deferred unthrottle */ 6178 if (cfs_b->slack_started) 6179 return; 6180 cfs_b->slack_started = true; 6181 6182 hrtimer_start(&cfs_b->slack_timer, 6183 ns_to_ktime(cfs_bandwidth_slack_period), 6184 HRTIMER_MODE_REL); 6185 } 6186 6187 /* we know any runtime found here is valid as update_curr() precedes return */ 6188 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6189 { 6190 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6191 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6192 6193 if (slack_runtime <= 0) 6194 return; 6195 6196 raw_spin_lock(&cfs_b->lock); 6197 if (cfs_b->quota != RUNTIME_INF) { 6198 cfs_b->runtime += slack_runtime; 6199 6200 /* we are under rq->lock, defer unthrottling using a timer */ 6201 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6202 !list_empty(&cfs_b->throttled_cfs_rq)) 6203 start_cfs_slack_bandwidth(cfs_b); 6204 } 6205 raw_spin_unlock(&cfs_b->lock); 6206 6207 /* even if it's not valid for return we don't want to try again */ 6208 cfs_rq->runtime_remaining -= slack_runtime; 6209 } 6210 6211 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6212 { 6213 if (!cfs_bandwidth_used()) 6214 return; 6215 6216 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 6217 return; 6218 6219 __return_cfs_rq_runtime(cfs_rq); 6220 } 6221 6222 /* 6223 * This is done with a timer (instead of inline with bandwidth return) since 6224 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6225 */ 6226 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6227 { 6228 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6229 unsigned long flags; 6230 6231 /* confirm we're still not at a refresh boundary */ 6232 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6233 cfs_b->slack_started = false; 6234 6235 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6236 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6237 return; 6238 } 6239 6240 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6241 runtime = cfs_b->runtime; 6242 6243 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6244 6245 if (!runtime) 6246 return; 6247 6248 distribute_cfs_runtime(cfs_b); 6249 } 6250 6251 /* 6252 * When a group wakes up we want to make sure that its quota is not already 6253 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6254 * runtime as update_curr() throttling can not trigger until it's on-rq. 6255 */ 6256 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6257 { 6258 if (!cfs_bandwidth_used()) 6259 return; 6260 6261 /* an active group must be handled by the update_curr()->put() path */ 6262 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6263 return; 6264 6265 /* ensure the group is not already throttled */ 6266 if (cfs_rq_throttled(cfs_rq)) 6267 return; 6268 6269 /* update runtime allocation */ 6270 account_cfs_rq_runtime(cfs_rq, 0); 6271 if (cfs_rq->runtime_remaining <= 0) 6272 throttle_cfs_rq(cfs_rq); 6273 } 6274 6275 static void sync_throttle(struct task_group *tg, int cpu) 6276 { 6277 struct cfs_rq *pcfs_rq, *cfs_rq; 6278 6279 if (!cfs_bandwidth_used()) 6280 return; 6281 6282 if (!tg->parent) 6283 return; 6284 6285 cfs_rq = tg->cfs_rq[cpu]; 6286 pcfs_rq = tg->parent->cfs_rq[cpu]; 6287 6288 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6289 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6290 } 6291 6292 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6293 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6294 { 6295 if (!cfs_bandwidth_used()) 6296 return false; 6297 6298 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6299 return false; 6300 6301 /* 6302 * it's possible for a throttled entity to be forced into a running 6303 * state (e.g. set_curr_task), in this case we're finished. 6304 */ 6305 if (cfs_rq_throttled(cfs_rq)) 6306 return true; 6307 6308 return throttle_cfs_rq(cfs_rq); 6309 } 6310 6311 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6312 { 6313 struct cfs_bandwidth *cfs_b = 6314 container_of(timer, struct cfs_bandwidth, slack_timer); 6315 6316 do_sched_cfs_slack_timer(cfs_b); 6317 6318 return HRTIMER_NORESTART; 6319 } 6320 6321 extern const u64 max_cfs_quota_period; 6322 6323 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6324 { 6325 struct cfs_bandwidth *cfs_b = 6326 container_of(timer, struct cfs_bandwidth, period_timer); 6327 unsigned long flags; 6328 int overrun; 6329 int idle = 0; 6330 int count = 0; 6331 6332 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6333 for (;;) { 6334 overrun = hrtimer_forward_now(timer, cfs_b->period); 6335 if (!overrun) 6336 break; 6337 6338 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6339 6340 if (++count > 3) { 6341 u64 new, old = ktime_to_ns(cfs_b->period); 6342 6343 /* 6344 * Grow period by a factor of 2 to avoid losing precision. 6345 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6346 * to fail. 6347 */ 6348 new = old * 2; 6349 if (new < max_cfs_quota_period) { 6350 cfs_b->period = ns_to_ktime(new); 6351 cfs_b->quota *= 2; 6352 cfs_b->burst *= 2; 6353 6354 pr_warn_ratelimited( 6355 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6356 smp_processor_id(), 6357 div_u64(new, NSEC_PER_USEC), 6358 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6359 } else { 6360 pr_warn_ratelimited( 6361 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6362 smp_processor_id(), 6363 div_u64(old, NSEC_PER_USEC), 6364 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6365 } 6366 6367 /* reset count so we don't come right back in here */ 6368 count = 0; 6369 } 6370 } 6371 if (idle) 6372 cfs_b->period_active = 0; 6373 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6374 6375 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6376 } 6377 6378 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6379 { 6380 raw_spin_lock_init(&cfs_b->lock); 6381 cfs_b->runtime = 0; 6382 cfs_b->quota = RUNTIME_INF; 6383 cfs_b->period = ns_to_ktime(default_cfs_period()); 6384 cfs_b->burst = 0; 6385 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6386 6387 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6388 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6389 cfs_b->period_timer.function = sched_cfs_period_timer; 6390 6391 /* Add a random offset so that timers interleave */ 6392 hrtimer_set_expires(&cfs_b->period_timer, 6393 get_random_u32_below(cfs_b->period)); 6394 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6395 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6396 cfs_b->slack_started = false; 6397 } 6398 6399 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6400 { 6401 cfs_rq->runtime_enabled = 0; 6402 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6403 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6404 } 6405 6406 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6407 { 6408 lockdep_assert_held(&cfs_b->lock); 6409 6410 if (cfs_b->period_active) 6411 return; 6412 6413 cfs_b->period_active = 1; 6414 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6415 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6416 } 6417 6418 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6419 { 6420 int __maybe_unused i; 6421 6422 /* init_cfs_bandwidth() was not called */ 6423 if (!cfs_b->throttled_cfs_rq.next) 6424 return; 6425 6426 hrtimer_cancel(&cfs_b->period_timer); 6427 hrtimer_cancel(&cfs_b->slack_timer); 6428 6429 /* 6430 * It is possible that we still have some cfs_rq's pending on a CSD 6431 * list, though this race is very rare. In order for this to occur, we 6432 * must have raced with the last task leaving the group while there 6433 * exist throttled cfs_rq(s), and the period_timer must have queued the 6434 * CSD item but the remote cpu has not yet processed it. To handle this, 6435 * we can simply flush all pending CSD work inline here. We're 6436 * guaranteed at this point that no additional cfs_rq of this group can 6437 * join a CSD list. 6438 */ 6439 #ifdef CONFIG_SMP 6440 for_each_possible_cpu(i) { 6441 struct rq *rq = cpu_rq(i); 6442 unsigned long flags; 6443 6444 if (list_empty(&rq->cfsb_csd_list)) 6445 continue; 6446 6447 local_irq_save(flags); 6448 __cfsb_csd_unthrottle(rq); 6449 local_irq_restore(flags); 6450 } 6451 #endif 6452 } 6453 6454 /* 6455 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6456 * 6457 * The race is harmless, since modifying bandwidth settings of unhooked group 6458 * bits doesn't do much. 6459 */ 6460 6461 /* cpu online callback */ 6462 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6463 { 6464 struct task_group *tg; 6465 6466 lockdep_assert_rq_held(rq); 6467 6468 rcu_read_lock(); 6469 list_for_each_entry_rcu(tg, &task_groups, list) { 6470 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6471 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6472 6473 raw_spin_lock(&cfs_b->lock); 6474 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6475 raw_spin_unlock(&cfs_b->lock); 6476 } 6477 rcu_read_unlock(); 6478 } 6479 6480 /* cpu offline callback */ 6481 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6482 { 6483 struct task_group *tg; 6484 6485 lockdep_assert_rq_held(rq); 6486 6487 /* 6488 * The rq clock has already been updated in the 6489 * set_rq_offline(), so we should skip updating 6490 * the rq clock again in unthrottle_cfs_rq(). 6491 */ 6492 rq_clock_start_loop_update(rq); 6493 6494 rcu_read_lock(); 6495 list_for_each_entry_rcu(tg, &task_groups, list) { 6496 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6497 6498 if (!cfs_rq->runtime_enabled) 6499 continue; 6500 6501 /* 6502 * clock_task is not advancing so we just need to make sure 6503 * there's some valid quota amount 6504 */ 6505 cfs_rq->runtime_remaining = 1; 6506 /* 6507 * Offline rq is schedulable till CPU is completely disabled 6508 * in take_cpu_down(), so we prevent new cfs throttling here. 6509 */ 6510 cfs_rq->runtime_enabled = 0; 6511 6512 if (cfs_rq_throttled(cfs_rq)) 6513 unthrottle_cfs_rq(cfs_rq); 6514 } 6515 rcu_read_unlock(); 6516 6517 rq_clock_stop_loop_update(rq); 6518 } 6519 6520 bool cfs_task_bw_constrained(struct task_struct *p) 6521 { 6522 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6523 6524 if (!cfs_bandwidth_used()) 6525 return false; 6526 6527 if (cfs_rq->runtime_enabled || 6528 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6529 return true; 6530 6531 return false; 6532 } 6533 6534 #ifdef CONFIG_NO_HZ_FULL 6535 /* called from pick_next_task_fair() */ 6536 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6537 { 6538 int cpu = cpu_of(rq); 6539 6540 if (!sched_feat(HZ_BW) || !cfs_bandwidth_used()) 6541 return; 6542 6543 if (!tick_nohz_full_cpu(cpu)) 6544 return; 6545 6546 if (rq->nr_running != 1) 6547 return; 6548 6549 /* 6550 * We know there is only one task runnable and we've just picked it. The 6551 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6552 * be otherwise able to stop the tick. Just need to check if we are using 6553 * bandwidth control. 6554 */ 6555 if (cfs_task_bw_constrained(p)) 6556 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6557 } 6558 #endif 6559 6560 #else /* CONFIG_CFS_BANDWIDTH */ 6561 6562 static inline bool cfs_bandwidth_used(void) 6563 { 6564 return false; 6565 } 6566 6567 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6568 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6569 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6570 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6571 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6572 6573 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6574 { 6575 return 0; 6576 } 6577 6578 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6579 { 6580 return 0; 6581 } 6582 6583 static inline int throttled_lb_pair(struct task_group *tg, 6584 int src_cpu, int dest_cpu) 6585 { 6586 return 0; 6587 } 6588 6589 #ifdef CONFIG_FAIR_GROUP_SCHED 6590 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6591 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6592 #endif 6593 6594 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6595 { 6596 return NULL; 6597 } 6598 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6599 static inline void update_runtime_enabled(struct rq *rq) {} 6600 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6601 #ifdef CONFIG_CGROUP_SCHED 6602 bool cfs_task_bw_constrained(struct task_struct *p) 6603 { 6604 return false; 6605 } 6606 #endif 6607 #endif /* CONFIG_CFS_BANDWIDTH */ 6608 6609 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6610 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6611 #endif 6612 6613 /************************************************** 6614 * CFS operations on tasks: 6615 */ 6616 6617 #ifdef CONFIG_SCHED_HRTICK 6618 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6619 { 6620 struct sched_entity *se = &p->se; 6621 6622 SCHED_WARN_ON(task_rq(p) != rq); 6623 6624 if (rq->cfs.h_nr_running > 1) { 6625 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6626 u64 slice = se->slice; 6627 s64 delta = slice - ran; 6628 6629 if (delta < 0) { 6630 if (task_current(rq, p)) 6631 resched_curr(rq); 6632 return; 6633 } 6634 hrtick_start(rq, delta); 6635 } 6636 } 6637 6638 /* 6639 * called from enqueue/dequeue and updates the hrtick when the 6640 * current task is from our class and nr_running is low enough 6641 * to matter. 6642 */ 6643 static void hrtick_update(struct rq *rq) 6644 { 6645 struct task_struct *curr = rq->curr; 6646 6647 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6648 return; 6649 6650 hrtick_start_fair(rq, curr); 6651 } 6652 #else /* !CONFIG_SCHED_HRTICK */ 6653 static inline void 6654 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6655 { 6656 } 6657 6658 static inline void hrtick_update(struct rq *rq) 6659 { 6660 } 6661 #endif 6662 6663 #ifdef CONFIG_SMP 6664 static inline bool cpu_overutilized(int cpu) 6665 { 6666 unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6667 unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6668 6669 /* Return true only if the utilization doesn't fit CPU's capacity */ 6670 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6671 } 6672 6673 static inline void update_overutilized_status(struct rq *rq) 6674 { 6675 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) { 6676 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED); 6677 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED); 6678 } 6679 } 6680 #else 6681 static inline void update_overutilized_status(struct rq *rq) { } 6682 #endif 6683 6684 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6685 static int sched_idle_rq(struct rq *rq) 6686 { 6687 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6688 rq->nr_running); 6689 } 6690 6691 #ifdef CONFIG_SMP 6692 static int sched_idle_cpu(int cpu) 6693 { 6694 return sched_idle_rq(cpu_rq(cpu)); 6695 } 6696 #endif 6697 6698 /* 6699 * The enqueue_task method is called before nr_running is 6700 * increased. Here we update the fair scheduling stats and 6701 * then put the task into the rbtree: 6702 */ 6703 static void 6704 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6705 { 6706 struct cfs_rq *cfs_rq; 6707 struct sched_entity *se = &p->se; 6708 int idle_h_nr_running = task_has_idle_policy(p); 6709 int task_new = !(flags & ENQUEUE_WAKEUP); 6710 6711 /* 6712 * The code below (indirectly) updates schedutil which looks at 6713 * the cfs_rq utilization to select a frequency. 6714 * Let's add the task's estimated utilization to the cfs_rq's 6715 * estimated utilization, before we update schedutil. 6716 */ 6717 util_est_enqueue(&rq->cfs, p); 6718 6719 /* 6720 * If in_iowait is set, the code below may not trigger any cpufreq 6721 * utilization updates, so do it here explicitly with the IOWAIT flag 6722 * passed. 6723 */ 6724 if (p->in_iowait) 6725 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6726 6727 for_each_sched_entity(se) { 6728 if (se->on_rq) 6729 break; 6730 cfs_rq = cfs_rq_of(se); 6731 enqueue_entity(cfs_rq, se, flags); 6732 6733 cfs_rq->h_nr_running++; 6734 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6735 6736 if (cfs_rq_is_idle(cfs_rq)) 6737 idle_h_nr_running = 1; 6738 6739 /* end evaluation on encountering a throttled cfs_rq */ 6740 if (cfs_rq_throttled(cfs_rq)) 6741 goto enqueue_throttle; 6742 6743 flags = ENQUEUE_WAKEUP; 6744 } 6745 6746 for_each_sched_entity(se) { 6747 cfs_rq = cfs_rq_of(se); 6748 6749 update_load_avg(cfs_rq, se, UPDATE_TG); 6750 se_update_runnable(se); 6751 update_cfs_group(se); 6752 6753 cfs_rq->h_nr_running++; 6754 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6755 6756 if (cfs_rq_is_idle(cfs_rq)) 6757 idle_h_nr_running = 1; 6758 6759 /* end evaluation on encountering a throttled cfs_rq */ 6760 if (cfs_rq_throttled(cfs_rq)) 6761 goto enqueue_throttle; 6762 } 6763 6764 /* At this point se is NULL and we are at root level*/ 6765 add_nr_running(rq, 1); 6766 6767 /* 6768 * Since new tasks are assigned an initial util_avg equal to 6769 * half of the spare capacity of their CPU, tiny tasks have the 6770 * ability to cross the overutilized threshold, which will 6771 * result in the load balancer ruining all the task placement 6772 * done by EAS. As a way to mitigate that effect, do not account 6773 * for the first enqueue operation of new tasks during the 6774 * overutilized flag detection. 6775 * 6776 * A better way of solving this problem would be to wait for 6777 * the PELT signals of tasks to converge before taking them 6778 * into account, but that is not straightforward to implement, 6779 * and the following generally works well enough in practice. 6780 */ 6781 if (!task_new) 6782 update_overutilized_status(rq); 6783 6784 enqueue_throttle: 6785 assert_list_leaf_cfs_rq(rq); 6786 6787 hrtick_update(rq); 6788 } 6789 6790 static void set_next_buddy(struct sched_entity *se); 6791 6792 /* 6793 * The dequeue_task method is called before nr_running is 6794 * decreased. We remove the task from the rbtree and 6795 * update the fair scheduling stats: 6796 */ 6797 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6798 { 6799 struct cfs_rq *cfs_rq; 6800 struct sched_entity *se = &p->se; 6801 int task_sleep = flags & DEQUEUE_SLEEP; 6802 int idle_h_nr_running = task_has_idle_policy(p); 6803 bool was_sched_idle = sched_idle_rq(rq); 6804 6805 util_est_dequeue(&rq->cfs, p); 6806 6807 for_each_sched_entity(se) { 6808 cfs_rq = cfs_rq_of(se); 6809 dequeue_entity(cfs_rq, se, flags); 6810 6811 cfs_rq->h_nr_running--; 6812 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6813 6814 if (cfs_rq_is_idle(cfs_rq)) 6815 idle_h_nr_running = 1; 6816 6817 /* end evaluation on encountering a throttled cfs_rq */ 6818 if (cfs_rq_throttled(cfs_rq)) 6819 goto dequeue_throttle; 6820 6821 /* Don't dequeue parent if it has other entities besides us */ 6822 if (cfs_rq->load.weight) { 6823 /* Avoid re-evaluating load for this entity: */ 6824 se = parent_entity(se); 6825 /* 6826 * Bias pick_next to pick a task from this cfs_rq, as 6827 * p is sleeping when it is within its sched_slice. 6828 */ 6829 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 6830 set_next_buddy(se); 6831 break; 6832 } 6833 flags |= DEQUEUE_SLEEP; 6834 } 6835 6836 for_each_sched_entity(se) { 6837 cfs_rq = cfs_rq_of(se); 6838 6839 update_load_avg(cfs_rq, se, UPDATE_TG); 6840 se_update_runnable(se); 6841 update_cfs_group(se); 6842 6843 cfs_rq->h_nr_running--; 6844 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6845 6846 if (cfs_rq_is_idle(cfs_rq)) 6847 idle_h_nr_running = 1; 6848 6849 /* end evaluation on encountering a throttled cfs_rq */ 6850 if (cfs_rq_throttled(cfs_rq)) 6851 goto dequeue_throttle; 6852 6853 } 6854 6855 /* At this point se is NULL and we are at root level*/ 6856 sub_nr_running(rq, 1); 6857 6858 /* balance early to pull high priority tasks */ 6859 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 6860 rq->next_balance = jiffies; 6861 6862 dequeue_throttle: 6863 util_est_update(&rq->cfs, p, task_sleep); 6864 hrtick_update(rq); 6865 } 6866 6867 #ifdef CONFIG_SMP 6868 6869 /* Working cpumask for: load_balance, load_balance_newidle. */ 6870 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6871 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 6872 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 6873 6874 #ifdef CONFIG_NO_HZ_COMMON 6875 6876 static struct { 6877 cpumask_var_t idle_cpus_mask; 6878 atomic_t nr_cpus; 6879 int has_blocked; /* Idle CPUS has blocked load */ 6880 int needs_update; /* Newly idle CPUs need their next_balance collated */ 6881 unsigned long next_balance; /* in jiffy units */ 6882 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 6883 } nohz ____cacheline_aligned; 6884 6885 #endif /* CONFIG_NO_HZ_COMMON */ 6886 6887 static unsigned long cpu_load(struct rq *rq) 6888 { 6889 return cfs_rq_load_avg(&rq->cfs); 6890 } 6891 6892 /* 6893 * cpu_load_without - compute CPU load without any contributions from *p 6894 * @cpu: the CPU which load is requested 6895 * @p: the task which load should be discounted 6896 * 6897 * The load of a CPU is defined by the load of tasks currently enqueued on that 6898 * CPU as well as tasks which are currently sleeping after an execution on that 6899 * CPU. 6900 * 6901 * This method returns the load of the specified CPU by discounting the load of 6902 * the specified task, whenever the task is currently contributing to the CPU 6903 * load. 6904 */ 6905 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 6906 { 6907 struct cfs_rq *cfs_rq; 6908 unsigned int load; 6909 6910 /* Task has no contribution or is new */ 6911 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6912 return cpu_load(rq); 6913 6914 cfs_rq = &rq->cfs; 6915 load = READ_ONCE(cfs_rq->avg.load_avg); 6916 6917 /* Discount task's util from CPU's util */ 6918 lsub_positive(&load, task_h_load(p)); 6919 6920 return load; 6921 } 6922 6923 static unsigned long cpu_runnable(struct rq *rq) 6924 { 6925 return cfs_rq_runnable_avg(&rq->cfs); 6926 } 6927 6928 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 6929 { 6930 struct cfs_rq *cfs_rq; 6931 unsigned int runnable; 6932 6933 /* Task has no contribution or is new */ 6934 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6935 return cpu_runnable(rq); 6936 6937 cfs_rq = &rq->cfs; 6938 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 6939 6940 /* Discount task's runnable from CPU's runnable */ 6941 lsub_positive(&runnable, p->se.avg.runnable_avg); 6942 6943 return runnable; 6944 } 6945 6946 static unsigned long capacity_of(int cpu) 6947 { 6948 return cpu_rq(cpu)->cpu_capacity; 6949 } 6950 6951 static void record_wakee(struct task_struct *p) 6952 { 6953 /* 6954 * Only decay a single time; tasks that have less then 1 wakeup per 6955 * jiffy will not have built up many flips. 6956 */ 6957 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 6958 current->wakee_flips >>= 1; 6959 current->wakee_flip_decay_ts = jiffies; 6960 } 6961 6962 if (current->last_wakee != p) { 6963 current->last_wakee = p; 6964 current->wakee_flips++; 6965 } 6966 } 6967 6968 /* 6969 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 6970 * 6971 * A waker of many should wake a different task than the one last awakened 6972 * at a frequency roughly N times higher than one of its wakees. 6973 * 6974 * In order to determine whether we should let the load spread vs consolidating 6975 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 6976 * partner, and a factor of lls_size higher frequency in the other. 6977 * 6978 * With both conditions met, we can be relatively sure that the relationship is 6979 * non-monogamous, with partner count exceeding socket size. 6980 * 6981 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 6982 * whatever is irrelevant, spread criteria is apparent partner count exceeds 6983 * socket size. 6984 */ 6985 static int wake_wide(struct task_struct *p) 6986 { 6987 unsigned int master = current->wakee_flips; 6988 unsigned int slave = p->wakee_flips; 6989 int factor = __this_cpu_read(sd_llc_size); 6990 6991 if (master < slave) 6992 swap(master, slave); 6993 if (slave < factor || master < slave * factor) 6994 return 0; 6995 return 1; 6996 } 6997 6998 /* 6999 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7000 * soonest. For the purpose of speed we only consider the waking and previous 7001 * CPU. 7002 * 7003 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7004 * cache-affine and is (or will be) idle. 7005 * 7006 * wake_affine_weight() - considers the weight to reflect the average 7007 * scheduling latency of the CPUs. This seems to work 7008 * for the overloaded case. 7009 */ 7010 static int 7011 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7012 { 7013 /* 7014 * If this_cpu is idle, it implies the wakeup is from interrupt 7015 * context. Only allow the move if cache is shared. Otherwise an 7016 * interrupt intensive workload could force all tasks onto one 7017 * node depending on the IO topology or IRQ affinity settings. 7018 * 7019 * If the prev_cpu is idle and cache affine then avoid a migration. 7020 * There is no guarantee that the cache hot data from an interrupt 7021 * is more important than cache hot data on the prev_cpu and from 7022 * a cpufreq perspective, it's better to have higher utilisation 7023 * on one CPU. 7024 */ 7025 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7026 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7027 7028 if (sync && cpu_rq(this_cpu)->nr_running == 1) 7029 return this_cpu; 7030 7031 if (available_idle_cpu(prev_cpu)) 7032 return prev_cpu; 7033 7034 return nr_cpumask_bits; 7035 } 7036 7037 static int 7038 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7039 int this_cpu, int prev_cpu, int sync) 7040 { 7041 s64 this_eff_load, prev_eff_load; 7042 unsigned long task_load; 7043 7044 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7045 7046 if (sync) { 7047 unsigned long current_load = task_h_load(current); 7048 7049 if (current_load > this_eff_load) 7050 return this_cpu; 7051 7052 this_eff_load -= current_load; 7053 } 7054 7055 task_load = task_h_load(p); 7056 7057 this_eff_load += task_load; 7058 if (sched_feat(WA_BIAS)) 7059 this_eff_load *= 100; 7060 this_eff_load *= capacity_of(prev_cpu); 7061 7062 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7063 prev_eff_load -= task_load; 7064 if (sched_feat(WA_BIAS)) 7065 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7066 prev_eff_load *= capacity_of(this_cpu); 7067 7068 /* 7069 * If sync, adjust the weight of prev_eff_load such that if 7070 * prev_eff == this_eff that select_idle_sibling() will consider 7071 * stacking the wakee on top of the waker if no other CPU is 7072 * idle. 7073 */ 7074 if (sync) 7075 prev_eff_load += 1; 7076 7077 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7078 } 7079 7080 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7081 int this_cpu, int prev_cpu, int sync) 7082 { 7083 int target = nr_cpumask_bits; 7084 7085 if (sched_feat(WA_IDLE)) 7086 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7087 7088 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7089 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7090 7091 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7092 if (target != this_cpu) 7093 return prev_cpu; 7094 7095 schedstat_inc(sd->ttwu_move_affine); 7096 schedstat_inc(p->stats.nr_wakeups_affine); 7097 return target; 7098 } 7099 7100 static struct sched_group * 7101 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7102 7103 /* 7104 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group. 7105 */ 7106 static int 7107 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7108 { 7109 unsigned long load, min_load = ULONG_MAX; 7110 unsigned int min_exit_latency = UINT_MAX; 7111 u64 latest_idle_timestamp = 0; 7112 int least_loaded_cpu = this_cpu; 7113 int shallowest_idle_cpu = -1; 7114 int i; 7115 7116 /* Check if we have any choice: */ 7117 if (group->group_weight == 1) 7118 return cpumask_first(sched_group_span(group)); 7119 7120 /* Traverse only the allowed CPUs */ 7121 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7122 struct rq *rq = cpu_rq(i); 7123 7124 if (!sched_core_cookie_match(rq, p)) 7125 continue; 7126 7127 if (sched_idle_cpu(i)) 7128 return i; 7129 7130 if (available_idle_cpu(i)) { 7131 struct cpuidle_state *idle = idle_get_state(rq); 7132 if (idle && idle->exit_latency < min_exit_latency) { 7133 /* 7134 * We give priority to a CPU whose idle state 7135 * has the smallest exit latency irrespective 7136 * of any idle timestamp. 7137 */ 7138 min_exit_latency = idle->exit_latency; 7139 latest_idle_timestamp = rq->idle_stamp; 7140 shallowest_idle_cpu = i; 7141 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7142 rq->idle_stamp > latest_idle_timestamp) { 7143 /* 7144 * If equal or no active idle state, then 7145 * the most recently idled CPU might have 7146 * a warmer cache. 7147 */ 7148 latest_idle_timestamp = rq->idle_stamp; 7149 shallowest_idle_cpu = i; 7150 } 7151 } else if (shallowest_idle_cpu == -1) { 7152 load = cpu_load(cpu_rq(i)); 7153 if (load < min_load) { 7154 min_load = load; 7155 least_loaded_cpu = i; 7156 } 7157 } 7158 } 7159 7160 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7161 } 7162 7163 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p, 7164 int cpu, int prev_cpu, int sd_flag) 7165 { 7166 int new_cpu = cpu; 7167 7168 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7169 return prev_cpu; 7170 7171 /* 7172 * We need task's util for cpu_util_without, sync it up to 7173 * prev_cpu's last_update_time. 7174 */ 7175 if (!(sd_flag & SD_BALANCE_FORK)) 7176 sync_entity_load_avg(&p->se); 7177 7178 while (sd) { 7179 struct sched_group *group; 7180 struct sched_domain *tmp; 7181 int weight; 7182 7183 if (!(sd->flags & sd_flag)) { 7184 sd = sd->child; 7185 continue; 7186 } 7187 7188 group = find_idlest_group(sd, p, cpu); 7189 if (!group) { 7190 sd = sd->child; 7191 continue; 7192 } 7193 7194 new_cpu = find_idlest_group_cpu(group, p, cpu); 7195 if (new_cpu == cpu) { 7196 /* Now try balancing at a lower domain level of 'cpu': */ 7197 sd = sd->child; 7198 continue; 7199 } 7200 7201 /* Now try balancing at a lower domain level of 'new_cpu': */ 7202 cpu = new_cpu; 7203 weight = sd->span_weight; 7204 sd = NULL; 7205 for_each_domain(cpu, tmp) { 7206 if (weight <= tmp->span_weight) 7207 break; 7208 if (tmp->flags & sd_flag) 7209 sd = tmp; 7210 } 7211 } 7212 7213 return new_cpu; 7214 } 7215 7216 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7217 { 7218 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7219 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7220 return cpu; 7221 7222 return -1; 7223 } 7224 7225 #ifdef CONFIG_SCHED_SMT 7226 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7227 EXPORT_SYMBOL_GPL(sched_smt_present); 7228 7229 static inline void set_idle_cores(int cpu, int val) 7230 { 7231 struct sched_domain_shared *sds; 7232 7233 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7234 if (sds) 7235 WRITE_ONCE(sds->has_idle_cores, val); 7236 } 7237 7238 static inline bool test_idle_cores(int cpu) 7239 { 7240 struct sched_domain_shared *sds; 7241 7242 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7243 if (sds) 7244 return READ_ONCE(sds->has_idle_cores); 7245 7246 return false; 7247 } 7248 7249 /* 7250 * Scans the local SMT mask to see if the entire core is idle, and records this 7251 * information in sd_llc_shared->has_idle_cores. 7252 * 7253 * Since SMT siblings share all cache levels, inspecting this limited remote 7254 * state should be fairly cheap. 7255 */ 7256 void __update_idle_core(struct rq *rq) 7257 { 7258 int core = cpu_of(rq); 7259 int cpu; 7260 7261 rcu_read_lock(); 7262 if (test_idle_cores(core)) 7263 goto unlock; 7264 7265 for_each_cpu(cpu, cpu_smt_mask(core)) { 7266 if (cpu == core) 7267 continue; 7268 7269 if (!available_idle_cpu(cpu)) 7270 goto unlock; 7271 } 7272 7273 set_idle_cores(core, 1); 7274 unlock: 7275 rcu_read_unlock(); 7276 } 7277 7278 /* 7279 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7280 * there are no idle cores left in the system; tracked through 7281 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7282 */ 7283 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7284 { 7285 bool idle = true; 7286 int cpu; 7287 7288 for_each_cpu(cpu, cpu_smt_mask(core)) { 7289 if (!available_idle_cpu(cpu)) { 7290 idle = false; 7291 if (*idle_cpu == -1) { 7292 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) { 7293 *idle_cpu = cpu; 7294 break; 7295 } 7296 continue; 7297 } 7298 break; 7299 } 7300 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr)) 7301 *idle_cpu = cpu; 7302 } 7303 7304 if (idle) 7305 return core; 7306 7307 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7308 return -1; 7309 } 7310 7311 /* 7312 * Scan the local SMT mask for idle CPUs. 7313 */ 7314 static int select_idle_smt(struct task_struct *p, int target) 7315 { 7316 int cpu; 7317 7318 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7319 if (cpu == target) 7320 continue; 7321 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7322 return cpu; 7323 } 7324 7325 return -1; 7326 } 7327 7328 #else /* CONFIG_SCHED_SMT */ 7329 7330 static inline void set_idle_cores(int cpu, int val) 7331 { 7332 } 7333 7334 static inline bool test_idle_cores(int cpu) 7335 { 7336 return false; 7337 } 7338 7339 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7340 { 7341 return __select_idle_cpu(core, p); 7342 } 7343 7344 static inline int select_idle_smt(struct task_struct *p, int target) 7345 { 7346 return -1; 7347 } 7348 7349 #endif /* CONFIG_SCHED_SMT */ 7350 7351 /* 7352 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7353 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7354 * average idle time for this rq (as found in rq->avg_idle). 7355 */ 7356 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7357 { 7358 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7359 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7360 struct sched_domain_shared *sd_share; 7361 7362 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7363 7364 if (sched_feat(SIS_UTIL)) { 7365 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7366 if (sd_share) { 7367 /* because !--nr is the condition to stop scan */ 7368 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7369 /* overloaded LLC is unlikely to have idle cpu/core */ 7370 if (nr == 1) 7371 return -1; 7372 } 7373 } 7374 7375 if (static_branch_unlikely(&sched_cluster_active)) { 7376 struct sched_group *sg = sd->groups; 7377 7378 if (sg->flags & SD_CLUSTER) { 7379 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7380 if (!cpumask_test_cpu(cpu, cpus)) 7381 continue; 7382 7383 if (has_idle_core) { 7384 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7385 if ((unsigned int)i < nr_cpumask_bits) 7386 return i; 7387 } else { 7388 if (--nr <= 0) 7389 return -1; 7390 idle_cpu = __select_idle_cpu(cpu, p); 7391 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7392 return idle_cpu; 7393 } 7394 } 7395 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7396 } 7397 } 7398 7399 for_each_cpu_wrap(cpu, cpus, target + 1) { 7400 if (has_idle_core) { 7401 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7402 if ((unsigned int)i < nr_cpumask_bits) 7403 return i; 7404 7405 } else { 7406 if (--nr <= 0) 7407 return -1; 7408 idle_cpu = __select_idle_cpu(cpu, p); 7409 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7410 break; 7411 } 7412 } 7413 7414 if (has_idle_core) 7415 set_idle_cores(target, false); 7416 7417 return idle_cpu; 7418 } 7419 7420 /* 7421 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7422 * the task fits. If no CPU is big enough, but there are idle ones, try to 7423 * maximize capacity. 7424 */ 7425 static int 7426 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7427 { 7428 unsigned long task_util, util_min, util_max, best_cap = 0; 7429 int fits, best_fits = 0; 7430 int cpu, best_cpu = -1; 7431 struct cpumask *cpus; 7432 7433 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7434 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7435 7436 task_util = task_util_est(p); 7437 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7438 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7439 7440 for_each_cpu_wrap(cpu, cpus, target) { 7441 unsigned long cpu_cap = capacity_of(cpu); 7442 7443 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7444 continue; 7445 7446 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7447 7448 /* This CPU fits with all requirements */ 7449 if (fits > 0) 7450 return cpu; 7451 /* 7452 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7453 * Look for the CPU with best capacity. 7454 */ 7455 else if (fits < 0) 7456 cpu_cap = arch_scale_cpu_capacity(cpu) - thermal_load_avg(cpu_rq(cpu)); 7457 7458 /* 7459 * First, select CPU which fits better (-1 being better than 0). 7460 * Then, select the one with best capacity at same level. 7461 */ 7462 if ((fits < best_fits) || 7463 ((fits == best_fits) && (cpu_cap > best_cap))) { 7464 best_cap = cpu_cap; 7465 best_cpu = cpu; 7466 best_fits = fits; 7467 } 7468 } 7469 7470 return best_cpu; 7471 } 7472 7473 static inline bool asym_fits_cpu(unsigned long util, 7474 unsigned long util_min, 7475 unsigned long util_max, 7476 int cpu) 7477 { 7478 if (sched_asym_cpucap_active()) 7479 /* 7480 * Return true only if the cpu fully fits the task requirements 7481 * which include the utilization and the performance hints. 7482 */ 7483 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7484 7485 return true; 7486 } 7487 7488 /* 7489 * Try and locate an idle core/thread in the LLC cache domain. 7490 */ 7491 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7492 { 7493 bool has_idle_core = false; 7494 struct sched_domain *sd; 7495 unsigned long task_util, util_min, util_max; 7496 int i, recent_used_cpu, prev_aff = -1; 7497 7498 /* 7499 * On asymmetric system, update task utilization because we will check 7500 * that the task fits with cpu's capacity. 7501 */ 7502 if (sched_asym_cpucap_active()) { 7503 sync_entity_load_avg(&p->se); 7504 task_util = task_util_est(p); 7505 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7506 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7507 } 7508 7509 /* 7510 * per-cpu select_rq_mask usage 7511 */ 7512 lockdep_assert_irqs_disabled(); 7513 7514 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7515 asym_fits_cpu(task_util, util_min, util_max, target)) 7516 return target; 7517 7518 /* 7519 * If the previous CPU is cache affine and idle, don't be stupid: 7520 */ 7521 if (prev != target && cpus_share_cache(prev, target) && 7522 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7523 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7524 7525 if (!static_branch_unlikely(&sched_cluster_active) || 7526 cpus_share_resources(prev, target)) 7527 return prev; 7528 7529 prev_aff = prev; 7530 } 7531 7532 /* 7533 * Allow a per-cpu kthread to stack with the wakee if the 7534 * kworker thread and the tasks previous CPUs are the same. 7535 * The assumption is that the wakee queued work for the 7536 * per-cpu kthread that is now complete and the wakeup is 7537 * essentially a sync wakeup. An obvious example of this 7538 * pattern is IO completions. 7539 */ 7540 if (is_per_cpu_kthread(current) && 7541 in_task() && 7542 prev == smp_processor_id() && 7543 this_rq()->nr_running <= 1 && 7544 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7545 return prev; 7546 } 7547 7548 /* Check a recently used CPU as a potential idle candidate: */ 7549 recent_used_cpu = p->recent_used_cpu; 7550 p->recent_used_cpu = prev; 7551 if (recent_used_cpu != prev && 7552 recent_used_cpu != target && 7553 cpus_share_cache(recent_used_cpu, target) && 7554 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7555 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7556 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7557 7558 if (!static_branch_unlikely(&sched_cluster_active) || 7559 cpus_share_resources(recent_used_cpu, target)) 7560 return recent_used_cpu; 7561 7562 } else { 7563 recent_used_cpu = -1; 7564 } 7565 7566 /* 7567 * For asymmetric CPU capacity systems, our domain of interest is 7568 * sd_asym_cpucapacity rather than sd_llc. 7569 */ 7570 if (sched_asym_cpucap_active()) { 7571 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7572 /* 7573 * On an asymmetric CPU capacity system where an exclusive 7574 * cpuset defines a symmetric island (i.e. one unique 7575 * capacity_orig value through the cpuset), the key will be set 7576 * but the CPUs within that cpuset will not have a domain with 7577 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7578 * capacity path. 7579 */ 7580 if (sd) { 7581 i = select_idle_capacity(p, sd, target); 7582 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7583 } 7584 } 7585 7586 sd = rcu_dereference(per_cpu(sd_llc, target)); 7587 if (!sd) 7588 return target; 7589 7590 if (sched_smt_active()) { 7591 has_idle_core = test_idle_cores(target); 7592 7593 if (!has_idle_core && cpus_share_cache(prev, target)) { 7594 i = select_idle_smt(p, prev); 7595 if ((unsigned int)i < nr_cpumask_bits) 7596 return i; 7597 } 7598 } 7599 7600 i = select_idle_cpu(p, sd, has_idle_core, target); 7601 if ((unsigned)i < nr_cpumask_bits) 7602 return i; 7603 7604 /* 7605 * For cluster machines which have lower sharing cache like L2 or 7606 * LLC Tag, we tend to find an idle CPU in the target's cluster 7607 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7608 * use them if possible when no idle CPU found in select_idle_cpu(). 7609 */ 7610 if ((unsigned int)prev_aff < nr_cpumask_bits) 7611 return prev_aff; 7612 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7613 return recent_used_cpu; 7614 7615 return target; 7616 } 7617 7618 /** 7619 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7620 * @cpu: the CPU to get the utilization for 7621 * @p: task for which the CPU utilization should be predicted or NULL 7622 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7623 * @boost: 1 to enable boosting, otherwise 0 7624 * 7625 * The unit of the return value must be the same as the one of CPU capacity 7626 * so that CPU utilization can be compared with CPU capacity. 7627 * 7628 * CPU utilization is the sum of running time of runnable tasks plus the 7629 * recent utilization of currently non-runnable tasks on that CPU. 7630 * It represents the amount of CPU capacity currently used by CFS tasks in 7631 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7632 * capacity at f_max. 7633 * 7634 * The estimated CPU utilization is defined as the maximum between CPU 7635 * utilization and sum of the estimated utilization of the currently 7636 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7637 * previously-executed tasks, which helps better deduce how busy a CPU will 7638 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7639 * of such a task would be significantly decayed at this point of time. 7640 * 7641 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7642 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7643 * utilization. Boosting is implemented in cpu_util() so that internal 7644 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7645 * latter via cpu_util_cfs_boost(). 7646 * 7647 * CPU utilization can be higher than the current CPU capacity 7648 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7649 * of rounding errors as well as task migrations or wakeups of new tasks. 7650 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7651 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7652 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7653 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7654 * though since this is useful for predicting the CPU capacity required 7655 * after task migrations (scheduler-driven DVFS). 7656 * 7657 * Return: (Boosted) (estimated) utilization for the specified CPU. 7658 */ 7659 static unsigned long 7660 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7661 { 7662 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7663 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7664 unsigned long runnable; 7665 7666 if (boost) { 7667 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7668 util = max(util, runnable); 7669 } 7670 7671 /* 7672 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7673 * contribution. If @p migrates from another CPU to @cpu add its 7674 * contribution. In all the other cases @cpu is not impacted by the 7675 * migration so its util_avg is already correct. 7676 */ 7677 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 7678 lsub_positive(&util, task_util(p)); 7679 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 7680 util += task_util(p); 7681 7682 if (sched_feat(UTIL_EST)) { 7683 unsigned long util_est; 7684 7685 util_est = READ_ONCE(cfs_rq->avg.util_est); 7686 7687 /* 7688 * During wake-up @p isn't enqueued yet and doesn't contribute 7689 * to any cpu_rq(cpu)->cfs.avg.util_est. 7690 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7691 * has been enqueued. 7692 * 7693 * During exec (@dst_cpu = -1) @p is enqueued and does 7694 * contribute to cpu_rq(cpu)->cfs.util_est. 7695 * Remove it to "simulate" cpu_util without @p's contribution. 7696 * 7697 * Despite the task_on_rq_queued(@p) check there is still a 7698 * small window for a possible race when an exec 7699 * select_task_rq_fair() races with LB's detach_task(). 7700 * 7701 * detach_task() 7702 * deactivate_task() 7703 * p->on_rq = TASK_ON_RQ_MIGRATING; 7704 * -------------------------------- A 7705 * dequeue_task() \ 7706 * dequeue_task_fair() + Race Time 7707 * util_est_dequeue() / 7708 * -------------------------------- B 7709 * 7710 * The additional check "current == p" is required to further 7711 * reduce the race window. 7712 */ 7713 if (dst_cpu == cpu) 7714 util_est += _task_util_est(p); 7715 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 7716 lsub_positive(&util_est, _task_util_est(p)); 7717 7718 util = max(util, util_est); 7719 } 7720 7721 return min(util, arch_scale_cpu_capacity(cpu)); 7722 } 7723 7724 unsigned long cpu_util_cfs(int cpu) 7725 { 7726 return cpu_util(cpu, NULL, -1, 0); 7727 } 7728 7729 unsigned long cpu_util_cfs_boost(int cpu) 7730 { 7731 return cpu_util(cpu, NULL, -1, 1); 7732 } 7733 7734 /* 7735 * cpu_util_without: compute cpu utilization without any contributions from *p 7736 * @cpu: the CPU which utilization is requested 7737 * @p: the task which utilization should be discounted 7738 * 7739 * The utilization of a CPU is defined by the utilization of tasks currently 7740 * enqueued on that CPU as well as tasks which are currently sleeping after an 7741 * execution on that CPU. 7742 * 7743 * This method returns the utilization of the specified CPU by discounting the 7744 * utilization of the specified task, whenever the task is currently 7745 * contributing to the CPU utilization. 7746 */ 7747 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7748 { 7749 /* Task has no contribution or is new */ 7750 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7751 p = NULL; 7752 7753 return cpu_util(cpu, p, -1, 0); 7754 } 7755 7756 /* 7757 * energy_env - Utilization landscape for energy estimation. 7758 * @task_busy_time: Utilization contribution by the task for which we test the 7759 * placement. Given by eenv_task_busy_time(). 7760 * @pd_busy_time: Utilization of the whole perf domain without the task 7761 * contribution. Given by eenv_pd_busy_time(). 7762 * @cpu_cap: Maximum CPU capacity for the perf domain. 7763 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 7764 */ 7765 struct energy_env { 7766 unsigned long task_busy_time; 7767 unsigned long pd_busy_time; 7768 unsigned long cpu_cap; 7769 unsigned long pd_cap; 7770 }; 7771 7772 /* 7773 * Compute the task busy time for compute_energy(). This time cannot be 7774 * injected directly into effective_cpu_util() because of the IRQ scaling. 7775 * The latter only makes sense with the most recent CPUs where the task has 7776 * run. 7777 */ 7778 static inline void eenv_task_busy_time(struct energy_env *eenv, 7779 struct task_struct *p, int prev_cpu) 7780 { 7781 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 7782 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 7783 7784 if (unlikely(irq >= max_cap)) 7785 busy_time = max_cap; 7786 else 7787 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 7788 7789 eenv->task_busy_time = busy_time; 7790 } 7791 7792 /* 7793 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 7794 * utilization for each @pd_cpus, it however doesn't take into account 7795 * clamping since the ratio (utilization / cpu_capacity) is already enough to 7796 * scale the EM reported power consumption at the (eventually clamped) 7797 * cpu_capacity. 7798 * 7799 * The contribution of the task @p for which we want to estimate the 7800 * energy cost is removed (by cpu_util()) and must be calculated 7801 * separately (see eenv_task_busy_time). This ensures: 7802 * 7803 * - A stable PD utilization, no matter which CPU of that PD we want to place 7804 * the task on. 7805 * 7806 * - A fair comparison between CPUs as the task contribution (task_util()) 7807 * will always be the same no matter which CPU utilization we rely on 7808 * (util_avg or util_est). 7809 * 7810 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 7811 * exceed @eenv->pd_cap. 7812 */ 7813 static inline void eenv_pd_busy_time(struct energy_env *eenv, 7814 struct cpumask *pd_cpus, 7815 struct task_struct *p) 7816 { 7817 unsigned long busy_time = 0; 7818 int cpu; 7819 7820 for_each_cpu(cpu, pd_cpus) { 7821 unsigned long util = cpu_util(cpu, p, -1, 0); 7822 7823 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 7824 } 7825 7826 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 7827 } 7828 7829 /* 7830 * Compute the maximum utilization for compute_energy() when the task @p 7831 * is placed on the cpu @dst_cpu. 7832 * 7833 * Returns the maximum utilization among @eenv->cpus. This utilization can't 7834 * exceed @eenv->cpu_cap. 7835 */ 7836 static inline unsigned long 7837 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 7838 struct task_struct *p, int dst_cpu) 7839 { 7840 unsigned long max_util = 0; 7841 int cpu; 7842 7843 for_each_cpu(cpu, pd_cpus) { 7844 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 7845 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 7846 unsigned long eff_util, min, max; 7847 7848 /* 7849 * Performance domain frequency: utilization clamping 7850 * must be considered since it affects the selection 7851 * of the performance domain frequency. 7852 * NOTE: in case RT tasks are running, by default the 7853 * FREQUENCY_UTIL's utilization can be max OPP. 7854 */ 7855 eff_util = effective_cpu_util(cpu, util, &min, &max); 7856 7857 /* Task's uclamp can modify min and max value */ 7858 if (tsk && uclamp_is_used()) { 7859 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 7860 7861 /* 7862 * If there is no active max uclamp constraint, 7863 * directly use task's one, otherwise keep max. 7864 */ 7865 if (uclamp_rq_is_idle(cpu_rq(cpu))) 7866 max = uclamp_eff_value(p, UCLAMP_MAX); 7867 else 7868 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 7869 } 7870 7871 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 7872 max_util = max(max_util, eff_util); 7873 } 7874 7875 return min(max_util, eenv->cpu_cap); 7876 } 7877 7878 /* 7879 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 7880 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 7881 * contribution is ignored. 7882 */ 7883 static inline unsigned long 7884 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 7885 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 7886 { 7887 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 7888 unsigned long busy_time = eenv->pd_busy_time; 7889 unsigned long energy; 7890 7891 if (dst_cpu >= 0) 7892 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 7893 7894 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 7895 7896 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 7897 7898 return energy; 7899 } 7900 7901 /* 7902 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 7903 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 7904 * spare capacity in each performance domain and uses it as a potential 7905 * candidate to execute the task. Then, it uses the Energy Model to figure 7906 * out which of the CPU candidates is the most energy-efficient. 7907 * 7908 * The rationale for this heuristic is as follows. In a performance domain, 7909 * all the most energy efficient CPU candidates (according to the Energy 7910 * Model) are those for which we'll request a low frequency. When there are 7911 * several CPUs for which the frequency request will be the same, we don't 7912 * have enough data to break the tie between them, because the Energy Model 7913 * only includes active power costs. With this model, if we assume that 7914 * frequency requests follow utilization (e.g. using schedutil), the CPU with 7915 * the maximum spare capacity in a performance domain is guaranteed to be among 7916 * the best candidates of the performance domain. 7917 * 7918 * In practice, it could be preferable from an energy standpoint to pack 7919 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 7920 * but that could also hurt our chances to go cluster idle, and we have no 7921 * ways to tell with the current Energy Model if this is actually a good 7922 * idea or not. So, find_energy_efficient_cpu() basically favors 7923 * cluster-packing, and spreading inside a cluster. That should at least be 7924 * a good thing for latency, and this is consistent with the idea that most 7925 * of the energy savings of EAS come from the asymmetry of the system, and 7926 * not so much from breaking the tie between identical CPUs. That's also the 7927 * reason why EAS is enabled in the topology code only for systems where 7928 * SD_ASYM_CPUCAPACITY is set. 7929 * 7930 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 7931 * they don't have any useful utilization data yet and it's not possible to 7932 * forecast their impact on energy consumption. Consequently, they will be 7933 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out 7934 * to be energy-inefficient in some use-cases. The alternative would be to 7935 * bias new tasks towards specific types of CPUs first, or to try to infer 7936 * their util_avg from the parent task, but those heuristics could hurt 7937 * other use-cases too. So, until someone finds a better way to solve this, 7938 * let's keep things simple by re-using the existing slow path. 7939 */ 7940 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 7941 { 7942 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7943 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 7944 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 7945 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 7946 struct root_domain *rd = this_rq()->rd; 7947 int cpu, best_energy_cpu, target = -1; 7948 int prev_fits = -1, best_fits = -1; 7949 unsigned long best_thermal_cap = 0; 7950 unsigned long prev_thermal_cap = 0; 7951 struct sched_domain *sd; 7952 struct perf_domain *pd; 7953 struct energy_env eenv; 7954 7955 rcu_read_lock(); 7956 pd = rcu_dereference(rd->pd); 7957 if (!pd || READ_ONCE(rd->overutilized)) 7958 goto unlock; 7959 7960 /* 7961 * Energy-aware wake-up happens on the lowest sched_domain starting 7962 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 7963 */ 7964 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 7965 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 7966 sd = sd->parent; 7967 if (!sd) 7968 goto unlock; 7969 7970 target = prev_cpu; 7971 7972 sync_entity_load_avg(&p->se); 7973 if (!task_util_est(p) && p_util_min == 0) 7974 goto unlock; 7975 7976 eenv_task_busy_time(&eenv, p, prev_cpu); 7977 7978 for (; pd; pd = pd->next) { 7979 unsigned long util_min = p_util_min, util_max = p_util_max; 7980 unsigned long cpu_cap, cpu_thermal_cap, util; 7981 long prev_spare_cap = -1, max_spare_cap = -1; 7982 unsigned long rq_util_min, rq_util_max; 7983 unsigned long cur_delta, base_energy; 7984 int max_spare_cap_cpu = -1; 7985 int fits, max_fits = -1; 7986 7987 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 7988 7989 if (cpumask_empty(cpus)) 7990 continue; 7991 7992 /* Account thermal pressure for the energy estimation */ 7993 cpu = cpumask_first(cpus); 7994 cpu_thermal_cap = arch_scale_cpu_capacity(cpu); 7995 cpu_thermal_cap -= arch_scale_thermal_pressure(cpu); 7996 7997 eenv.cpu_cap = cpu_thermal_cap; 7998 eenv.pd_cap = 0; 7999 8000 for_each_cpu(cpu, cpus) { 8001 struct rq *rq = cpu_rq(cpu); 8002 8003 eenv.pd_cap += cpu_thermal_cap; 8004 8005 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8006 continue; 8007 8008 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8009 continue; 8010 8011 util = cpu_util(cpu, p, cpu, 0); 8012 cpu_cap = capacity_of(cpu); 8013 8014 /* 8015 * Skip CPUs that cannot satisfy the capacity request. 8016 * IOW, placing the task there would make the CPU 8017 * overutilized. Take uclamp into account to see how 8018 * much capacity we can get out of the CPU; this is 8019 * aligned with sched_cpu_util(). 8020 */ 8021 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8022 /* 8023 * Open code uclamp_rq_util_with() except for 8024 * the clamp() part. Ie: apply max aggregation 8025 * only. util_fits_cpu() logic requires to 8026 * operate on non clamped util but must use the 8027 * max-aggregated uclamp_{min, max}. 8028 */ 8029 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8030 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8031 8032 util_min = max(rq_util_min, p_util_min); 8033 util_max = max(rq_util_max, p_util_max); 8034 } 8035 8036 fits = util_fits_cpu(util, util_min, util_max, cpu); 8037 if (!fits) 8038 continue; 8039 8040 lsub_positive(&cpu_cap, util); 8041 8042 if (cpu == prev_cpu) { 8043 /* Always use prev_cpu as a candidate. */ 8044 prev_spare_cap = cpu_cap; 8045 prev_fits = fits; 8046 } else if ((fits > max_fits) || 8047 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8048 /* 8049 * Find the CPU with the maximum spare capacity 8050 * among the remaining CPUs in the performance 8051 * domain. 8052 */ 8053 max_spare_cap = cpu_cap; 8054 max_spare_cap_cpu = cpu; 8055 max_fits = fits; 8056 } 8057 } 8058 8059 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8060 continue; 8061 8062 eenv_pd_busy_time(&eenv, cpus, p); 8063 /* Compute the 'base' energy of the pd, without @p */ 8064 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8065 8066 /* Evaluate the energy impact of using prev_cpu. */ 8067 if (prev_spare_cap > -1) { 8068 prev_delta = compute_energy(&eenv, pd, cpus, p, 8069 prev_cpu); 8070 /* CPU utilization has changed */ 8071 if (prev_delta < base_energy) 8072 goto unlock; 8073 prev_delta -= base_energy; 8074 prev_thermal_cap = cpu_thermal_cap; 8075 best_delta = min(best_delta, prev_delta); 8076 } 8077 8078 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8079 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8080 /* Current best energy cpu fits better */ 8081 if (max_fits < best_fits) 8082 continue; 8083 8084 /* 8085 * Both don't fit performance hint (i.e. uclamp_min) 8086 * but best energy cpu has better capacity. 8087 */ 8088 if ((max_fits < 0) && 8089 (cpu_thermal_cap <= best_thermal_cap)) 8090 continue; 8091 8092 cur_delta = compute_energy(&eenv, pd, cpus, p, 8093 max_spare_cap_cpu); 8094 /* CPU utilization has changed */ 8095 if (cur_delta < base_energy) 8096 goto unlock; 8097 cur_delta -= base_energy; 8098 8099 /* 8100 * Both fit for the task but best energy cpu has lower 8101 * energy impact. 8102 */ 8103 if ((max_fits > 0) && (best_fits > 0) && 8104 (cur_delta >= best_delta)) 8105 continue; 8106 8107 best_delta = cur_delta; 8108 best_energy_cpu = max_spare_cap_cpu; 8109 best_fits = max_fits; 8110 best_thermal_cap = cpu_thermal_cap; 8111 } 8112 } 8113 rcu_read_unlock(); 8114 8115 if ((best_fits > prev_fits) || 8116 ((best_fits > 0) && (best_delta < prev_delta)) || 8117 ((best_fits < 0) && (best_thermal_cap > prev_thermal_cap))) 8118 target = best_energy_cpu; 8119 8120 return target; 8121 8122 unlock: 8123 rcu_read_unlock(); 8124 8125 return target; 8126 } 8127 8128 /* 8129 * select_task_rq_fair: Select target runqueue for the waking task in domains 8130 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8131 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8132 * 8133 * Balances load by selecting the idlest CPU in the idlest group, or under 8134 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8135 * 8136 * Returns the target CPU number. 8137 */ 8138 static int 8139 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8140 { 8141 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8142 struct sched_domain *tmp, *sd = NULL; 8143 int cpu = smp_processor_id(); 8144 int new_cpu = prev_cpu; 8145 int want_affine = 0; 8146 /* SD_flags and WF_flags share the first nibble */ 8147 int sd_flag = wake_flags & 0xF; 8148 8149 /* 8150 * required for stable ->cpus_allowed 8151 */ 8152 lockdep_assert_held(&p->pi_lock); 8153 if (wake_flags & WF_TTWU) { 8154 record_wakee(p); 8155 8156 if ((wake_flags & WF_CURRENT_CPU) && 8157 cpumask_test_cpu(cpu, p->cpus_ptr)) 8158 return cpu; 8159 8160 if (sched_energy_enabled()) { 8161 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8162 if (new_cpu >= 0) 8163 return new_cpu; 8164 new_cpu = prev_cpu; 8165 } 8166 8167 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8168 } 8169 8170 rcu_read_lock(); 8171 for_each_domain(cpu, tmp) { 8172 /* 8173 * If both 'cpu' and 'prev_cpu' are part of this domain, 8174 * cpu is a valid SD_WAKE_AFFINE target. 8175 */ 8176 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8177 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8178 if (cpu != prev_cpu) 8179 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8180 8181 sd = NULL; /* Prefer wake_affine over balance flags */ 8182 break; 8183 } 8184 8185 /* 8186 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8187 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8188 * will usually go to the fast path. 8189 */ 8190 if (tmp->flags & sd_flag) 8191 sd = tmp; 8192 else if (!want_affine) 8193 break; 8194 } 8195 8196 if (unlikely(sd)) { 8197 /* Slow path */ 8198 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag); 8199 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8200 /* Fast path */ 8201 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8202 } 8203 rcu_read_unlock(); 8204 8205 return new_cpu; 8206 } 8207 8208 /* 8209 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8210 * cfs_rq_of(p) references at time of call are still valid and identify the 8211 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8212 */ 8213 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8214 { 8215 struct sched_entity *se = &p->se; 8216 8217 if (!task_on_rq_migrating(p)) { 8218 remove_entity_load_avg(se); 8219 8220 /* 8221 * Here, the task's PELT values have been updated according to 8222 * the current rq's clock. But if that clock hasn't been 8223 * updated in a while, a substantial idle time will be missed, 8224 * leading to an inflation after wake-up on the new rq. 8225 * 8226 * Estimate the missing time from the cfs_rq last_update_time 8227 * and update sched_avg to improve the PELT continuity after 8228 * migration. 8229 */ 8230 migrate_se_pelt_lag(se); 8231 } 8232 8233 /* Tell new CPU we are migrated */ 8234 se->avg.last_update_time = 0; 8235 8236 update_scan_period(p, new_cpu); 8237 } 8238 8239 static void task_dead_fair(struct task_struct *p) 8240 { 8241 remove_entity_load_avg(&p->se); 8242 } 8243 8244 static int 8245 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8246 { 8247 if (rq->nr_running) 8248 return 1; 8249 8250 return newidle_balance(rq, rf) != 0; 8251 } 8252 #endif /* CONFIG_SMP */ 8253 8254 static void set_next_buddy(struct sched_entity *se) 8255 { 8256 for_each_sched_entity(se) { 8257 if (SCHED_WARN_ON(!se->on_rq)) 8258 return; 8259 if (se_is_idle(se)) 8260 return; 8261 cfs_rq_of(se)->next = se; 8262 } 8263 } 8264 8265 /* 8266 * Preempt the current task with a newly woken task if needed: 8267 */ 8268 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8269 { 8270 struct task_struct *curr = rq->curr; 8271 struct sched_entity *se = &curr->se, *pse = &p->se; 8272 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8273 int cse_is_idle, pse_is_idle; 8274 8275 if (unlikely(se == pse)) 8276 return; 8277 8278 /* 8279 * This is possible from callers such as attach_tasks(), in which we 8280 * unconditionally wakeup_preempt() after an enqueue (which may have 8281 * lead to a throttle). This both saves work and prevents false 8282 * next-buddy nomination below. 8283 */ 8284 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8285 return; 8286 8287 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { 8288 set_next_buddy(pse); 8289 } 8290 8291 /* 8292 * We can come here with TIF_NEED_RESCHED already set from new task 8293 * wake up path. 8294 * 8295 * Note: this also catches the edge-case of curr being in a throttled 8296 * group (e.g. via set_curr_task), since update_curr() (in the 8297 * enqueue of curr) will have resulted in resched being set. This 8298 * prevents us from potentially nominating it as a false LAST_BUDDY 8299 * below. 8300 */ 8301 if (test_tsk_need_resched(curr)) 8302 return; 8303 8304 /* Idle tasks are by definition preempted by non-idle tasks. */ 8305 if (unlikely(task_has_idle_policy(curr)) && 8306 likely(!task_has_idle_policy(p))) 8307 goto preempt; 8308 8309 /* 8310 * Batch and idle tasks do not preempt non-idle tasks (their preemption 8311 * is driven by the tick): 8312 */ 8313 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 8314 return; 8315 8316 find_matching_se(&se, &pse); 8317 WARN_ON_ONCE(!pse); 8318 8319 cse_is_idle = se_is_idle(se); 8320 pse_is_idle = se_is_idle(pse); 8321 8322 /* 8323 * Preempt an idle group in favor of a non-idle group (and don't preempt 8324 * in the inverse case). 8325 */ 8326 if (cse_is_idle && !pse_is_idle) 8327 goto preempt; 8328 if (cse_is_idle != pse_is_idle) 8329 return; 8330 8331 cfs_rq = cfs_rq_of(se); 8332 update_curr(cfs_rq); 8333 8334 /* 8335 * XXX pick_eevdf(cfs_rq) != se ? 8336 */ 8337 if (pick_eevdf(cfs_rq) == pse) 8338 goto preempt; 8339 8340 return; 8341 8342 preempt: 8343 resched_curr(rq); 8344 } 8345 8346 #ifdef CONFIG_SMP 8347 static struct task_struct *pick_task_fair(struct rq *rq) 8348 { 8349 struct sched_entity *se; 8350 struct cfs_rq *cfs_rq; 8351 8352 again: 8353 cfs_rq = &rq->cfs; 8354 if (!cfs_rq->nr_running) 8355 return NULL; 8356 8357 do { 8358 struct sched_entity *curr = cfs_rq->curr; 8359 8360 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 8361 if (curr) { 8362 if (curr->on_rq) 8363 update_curr(cfs_rq); 8364 else 8365 curr = NULL; 8366 8367 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8368 goto again; 8369 } 8370 8371 se = pick_next_entity(cfs_rq); 8372 cfs_rq = group_cfs_rq(se); 8373 } while (cfs_rq); 8374 8375 return task_of(se); 8376 } 8377 #endif 8378 8379 struct task_struct * 8380 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8381 { 8382 struct cfs_rq *cfs_rq = &rq->cfs; 8383 struct sched_entity *se; 8384 struct task_struct *p; 8385 int new_tasks; 8386 8387 again: 8388 if (!sched_fair_runnable(rq)) 8389 goto idle; 8390 8391 #ifdef CONFIG_FAIR_GROUP_SCHED 8392 if (!prev || prev->sched_class != &fair_sched_class) 8393 goto simple; 8394 8395 /* 8396 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8397 * likely that a next task is from the same cgroup as the current. 8398 * 8399 * Therefore attempt to avoid putting and setting the entire cgroup 8400 * hierarchy, only change the part that actually changes. 8401 */ 8402 8403 do { 8404 struct sched_entity *curr = cfs_rq->curr; 8405 8406 /* 8407 * Since we got here without doing put_prev_entity() we also 8408 * have to consider cfs_rq->curr. If it is still a runnable 8409 * entity, update_curr() will update its vruntime, otherwise 8410 * forget we've ever seen it. 8411 */ 8412 if (curr) { 8413 if (curr->on_rq) 8414 update_curr(cfs_rq); 8415 else 8416 curr = NULL; 8417 8418 /* 8419 * This call to check_cfs_rq_runtime() will do the 8420 * throttle and dequeue its entity in the parent(s). 8421 * Therefore the nr_running test will indeed 8422 * be correct. 8423 */ 8424 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 8425 cfs_rq = &rq->cfs; 8426 8427 if (!cfs_rq->nr_running) 8428 goto idle; 8429 8430 goto simple; 8431 } 8432 } 8433 8434 se = pick_next_entity(cfs_rq); 8435 cfs_rq = group_cfs_rq(se); 8436 } while (cfs_rq); 8437 8438 p = task_of(se); 8439 8440 /* 8441 * Since we haven't yet done put_prev_entity and if the selected task 8442 * is a different task than we started out with, try and touch the 8443 * least amount of cfs_rqs. 8444 */ 8445 if (prev != p) { 8446 struct sched_entity *pse = &prev->se; 8447 8448 while (!(cfs_rq = is_same_group(se, pse))) { 8449 int se_depth = se->depth; 8450 int pse_depth = pse->depth; 8451 8452 if (se_depth <= pse_depth) { 8453 put_prev_entity(cfs_rq_of(pse), pse); 8454 pse = parent_entity(pse); 8455 } 8456 if (se_depth >= pse_depth) { 8457 set_next_entity(cfs_rq_of(se), se); 8458 se = parent_entity(se); 8459 } 8460 } 8461 8462 put_prev_entity(cfs_rq, pse); 8463 set_next_entity(cfs_rq, se); 8464 } 8465 8466 goto done; 8467 simple: 8468 #endif 8469 if (prev) 8470 put_prev_task(rq, prev); 8471 8472 do { 8473 se = pick_next_entity(cfs_rq); 8474 set_next_entity(cfs_rq, se); 8475 cfs_rq = group_cfs_rq(se); 8476 } while (cfs_rq); 8477 8478 p = task_of(se); 8479 8480 done: __maybe_unused; 8481 #ifdef CONFIG_SMP 8482 /* 8483 * Move the next running task to the front of 8484 * the list, so our cfs_tasks list becomes MRU 8485 * one. 8486 */ 8487 list_move(&p->se.group_node, &rq->cfs_tasks); 8488 #endif 8489 8490 if (hrtick_enabled_fair(rq)) 8491 hrtick_start_fair(rq, p); 8492 8493 update_misfit_status(p, rq); 8494 sched_fair_update_stop_tick(rq, p); 8495 8496 return p; 8497 8498 idle: 8499 if (!rf) 8500 return NULL; 8501 8502 new_tasks = newidle_balance(rq, rf); 8503 8504 /* 8505 * Because newidle_balance() releases (and re-acquires) rq->lock, it is 8506 * possible for any higher priority task to appear. In that case we 8507 * must re-start the pick_next_entity() loop. 8508 */ 8509 if (new_tasks < 0) 8510 return RETRY_TASK; 8511 8512 if (new_tasks > 0) 8513 goto again; 8514 8515 /* 8516 * rq is about to be idle, check if we need to update the 8517 * lost_idle_time of clock_pelt 8518 */ 8519 update_idle_rq_clock_pelt(rq); 8520 8521 return NULL; 8522 } 8523 8524 static struct task_struct *__pick_next_task_fair(struct rq *rq) 8525 { 8526 return pick_next_task_fair(rq, NULL, NULL); 8527 } 8528 8529 /* 8530 * Account for a descheduled task: 8531 */ 8532 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 8533 { 8534 struct sched_entity *se = &prev->se; 8535 struct cfs_rq *cfs_rq; 8536 8537 for_each_sched_entity(se) { 8538 cfs_rq = cfs_rq_of(se); 8539 put_prev_entity(cfs_rq, se); 8540 } 8541 } 8542 8543 /* 8544 * sched_yield() is very simple 8545 */ 8546 static void yield_task_fair(struct rq *rq) 8547 { 8548 struct task_struct *curr = rq->curr; 8549 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8550 struct sched_entity *se = &curr->se; 8551 8552 /* 8553 * Are we the only task in the tree? 8554 */ 8555 if (unlikely(rq->nr_running == 1)) 8556 return; 8557 8558 clear_buddies(cfs_rq, se); 8559 8560 update_rq_clock(rq); 8561 /* 8562 * Update run-time statistics of the 'current'. 8563 */ 8564 update_curr(cfs_rq); 8565 /* 8566 * Tell update_rq_clock() that we've just updated, 8567 * so we don't do microscopic update in schedule() 8568 * and double the fastpath cost. 8569 */ 8570 rq_clock_skip_update(rq); 8571 8572 se->deadline += calc_delta_fair(se->slice, se); 8573 } 8574 8575 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8576 { 8577 struct sched_entity *se = &p->se; 8578 8579 /* throttled hierarchies are not runnable */ 8580 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8581 return false; 8582 8583 /* Tell the scheduler that we'd really like pse to run next. */ 8584 set_next_buddy(se); 8585 8586 yield_task_fair(rq); 8587 8588 return true; 8589 } 8590 8591 #ifdef CONFIG_SMP 8592 /************************************************** 8593 * Fair scheduling class load-balancing methods. 8594 * 8595 * BASICS 8596 * 8597 * The purpose of load-balancing is to achieve the same basic fairness the 8598 * per-CPU scheduler provides, namely provide a proportional amount of compute 8599 * time to each task. This is expressed in the following equation: 8600 * 8601 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 8602 * 8603 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 8604 * W_i,0 is defined as: 8605 * 8606 * W_i,0 = \Sum_j w_i,j (2) 8607 * 8608 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 8609 * is derived from the nice value as per sched_prio_to_weight[]. 8610 * 8611 * The weight average is an exponential decay average of the instantaneous 8612 * weight: 8613 * 8614 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 8615 * 8616 * C_i is the compute capacity of CPU i, typically it is the 8617 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 8618 * can also include other factors [XXX]. 8619 * 8620 * To achieve this balance we define a measure of imbalance which follows 8621 * directly from (1): 8622 * 8623 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 8624 * 8625 * We them move tasks around to minimize the imbalance. In the continuous 8626 * function space it is obvious this converges, in the discrete case we get 8627 * a few fun cases generally called infeasible weight scenarios. 8628 * 8629 * [XXX expand on: 8630 * - infeasible weights; 8631 * - local vs global optima in the discrete case. ] 8632 * 8633 * 8634 * SCHED DOMAINS 8635 * 8636 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 8637 * for all i,j solution, we create a tree of CPUs that follows the hardware 8638 * topology where each level pairs two lower groups (or better). This results 8639 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 8640 * tree to only the first of the previous level and we decrease the frequency 8641 * of load-balance at each level inv. proportional to the number of CPUs in 8642 * the groups. 8643 * 8644 * This yields: 8645 * 8646 * log_2 n 1 n 8647 * \Sum { --- * --- * 2^i } = O(n) (5) 8648 * i = 0 2^i 2^i 8649 * `- size of each group 8650 * | | `- number of CPUs doing load-balance 8651 * | `- freq 8652 * `- sum over all levels 8653 * 8654 * Coupled with a limit on how many tasks we can migrate every balance pass, 8655 * this makes (5) the runtime complexity of the balancer. 8656 * 8657 * An important property here is that each CPU is still (indirectly) connected 8658 * to every other CPU in at most O(log n) steps: 8659 * 8660 * The adjacency matrix of the resulting graph is given by: 8661 * 8662 * log_2 n 8663 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 8664 * k = 0 8665 * 8666 * And you'll find that: 8667 * 8668 * A^(log_2 n)_i,j != 0 for all i,j (7) 8669 * 8670 * Showing there's indeed a path between every CPU in at most O(log n) steps. 8671 * The task movement gives a factor of O(m), giving a convergence complexity 8672 * of: 8673 * 8674 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 8675 * 8676 * 8677 * WORK CONSERVING 8678 * 8679 * In order to avoid CPUs going idle while there's still work to do, new idle 8680 * balancing is more aggressive and has the newly idle CPU iterate up the domain 8681 * tree itself instead of relying on other CPUs to bring it work. 8682 * 8683 * This adds some complexity to both (5) and (8) but it reduces the total idle 8684 * time. 8685 * 8686 * [XXX more?] 8687 * 8688 * 8689 * CGROUPS 8690 * 8691 * Cgroups make a horror show out of (2), instead of a simple sum we get: 8692 * 8693 * s_k,i 8694 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 8695 * S_k 8696 * 8697 * Where 8698 * 8699 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 8700 * 8701 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 8702 * 8703 * The big problem is S_k, its a global sum needed to compute a local (W_i) 8704 * property. 8705 * 8706 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 8707 * rewrite all of this once again.] 8708 */ 8709 8710 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 8711 8712 enum fbq_type { regular, remote, all }; 8713 8714 /* 8715 * 'group_type' describes the group of CPUs at the moment of load balancing. 8716 * 8717 * The enum is ordered by pulling priority, with the group with lowest priority 8718 * first so the group_type can simply be compared when selecting the busiest 8719 * group. See update_sd_pick_busiest(). 8720 */ 8721 enum group_type { 8722 /* The group has spare capacity that can be used to run more tasks. */ 8723 group_has_spare = 0, 8724 /* 8725 * The group is fully used and the tasks don't compete for more CPU 8726 * cycles. Nevertheless, some tasks might wait before running. 8727 */ 8728 group_fully_busy, 8729 /* 8730 * One task doesn't fit with CPU's capacity and must be migrated to a 8731 * more powerful CPU. 8732 */ 8733 group_misfit_task, 8734 /* 8735 * Balance SMT group that's fully busy. Can benefit from migration 8736 * a task on SMT with busy sibling to another CPU on idle core. 8737 */ 8738 group_smt_balance, 8739 /* 8740 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 8741 * and the task should be migrated to it instead of running on the 8742 * current CPU. 8743 */ 8744 group_asym_packing, 8745 /* 8746 * The tasks' affinity constraints previously prevented the scheduler 8747 * from balancing the load across the system. 8748 */ 8749 group_imbalanced, 8750 /* 8751 * The CPU is overloaded and can't provide expected CPU cycles to all 8752 * tasks. 8753 */ 8754 group_overloaded 8755 }; 8756 8757 enum migration_type { 8758 migrate_load = 0, 8759 migrate_util, 8760 migrate_task, 8761 migrate_misfit 8762 }; 8763 8764 #define LBF_ALL_PINNED 0x01 8765 #define LBF_NEED_BREAK 0x02 8766 #define LBF_DST_PINNED 0x04 8767 #define LBF_SOME_PINNED 0x08 8768 #define LBF_ACTIVE_LB 0x10 8769 8770 struct lb_env { 8771 struct sched_domain *sd; 8772 8773 struct rq *src_rq; 8774 int src_cpu; 8775 8776 int dst_cpu; 8777 struct rq *dst_rq; 8778 8779 struct cpumask *dst_grpmask; 8780 int new_dst_cpu; 8781 enum cpu_idle_type idle; 8782 long imbalance; 8783 /* The set of CPUs under consideration for load-balancing */ 8784 struct cpumask *cpus; 8785 8786 unsigned int flags; 8787 8788 unsigned int loop; 8789 unsigned int loop_break; 8790 unsigned int loop_max; 8791 8792 enum fbq_type fbq_type; 8793 enum migration_type migration_type; 8794 struct list_head tasks; 8795 }; 8796 8797 /* 8798 * Is this task likely cache-hot: 8799 */ 8800 static int task_hot(struct task_struct *p, struct lb_env *env) 8801 { 8802 s64 delta; 8803 8804 lockdep_assert_rq_held(env->src_rq); 8805 8806 if (p->sched_class != &fair_sched_class) 8807 return 0; 8808 8809 if (unlikely(task_has_idle_policy(p))) 8810 return 0; 8811 8812 /* SMT siblings share cache */ 8813 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 8814 return 0; 8815 8816 /* 8817 * Buddy candidates are cache hot: 8818 */ 8819 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 8820 (&p->se == cfs_rq_of(&p->se)->next)) 8821 return 1; 8822 8823 if (sysctl_sched_migration_cost == -1) 8824 return 1; 8825 8826 /* 8827 * Don't migrate task if the task's cookie does not match 8828 * with the destination CPU's core cookie. 8829 */ 8830 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 8831 return 1; 8832 8833 if (sysctl_sched_migration_cost == 0) 8834 return 0; 8835 8836 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 8837 8838 return delta < (s64)sysctl_sched_migration_cost; 8839 } 8840 8841 #ifdef CONFIG_NUMA_BALANCING 8842 /* 8843 * Returns 1, if task migration degrades locality 8844 * Returns 0, if task migration improves locality i.e migration preferred. 8845 * Returns -1, if task migration is not affected by locality. 8846 */ 8847 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 8848 { 8849 struct numa_group *numa_group = rcu_dereference(p->numa_group); 8850 unsigned long src_weight, dst_weight; 8851 int src_nid, dst_nid, dist; 8852 8853 if (!static_branch_likely(&sched_numa_balancing)) 8854 return -1; 8855 8856 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 8857 return -1; 8858 8859 src_nid = cpu_to_node(env->src_cpu); 8860 dst_nid = cpu_to_node(env->dst_cpu); 8861 8862 if (src_nid == dst_nid) 8863 return -1; 8864 8865 /* Migrating away from the preferred node is always bad. */ 8866 if (src_nid == p->numa_preferred_nid) { 8867 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 8868 return 1; 8869 else 8870 return -1; 8871 } 8872 8873 /* Encourage migration to the preferred node. */ 8874 if (dst_nid == p->numa_preferred_nid) 8875 return 0; 8876 8877 /* Leaving a core idle is often worse than degrading locality. */ 8878 if (env->idle == CPU_IDLE) 8879 return -1; 8880 8881 dist = node_distance(src_nid, dst_nid); 8882 if (numa_group) { 8883 src_weight = group_weight(p, src_nid, dist); 8884 dst_weight = group_weight(p, dst_nid, dist); 8885 } else { 8886 src_weight = task_weight(p, src_nid, dist); 8887 dst_weight = task_weight(p, dst_nid, dist); 8888 } 8889 8890 return dst_weight < src_weight; 8891 } 8892 8893 #else 8894 static inline int migrate_degrades_locality(struct task_struct *p, 8895 struct lb_env *env) 8896 { 8897 return -1; 8898 } 8899 #endif 8900 8901 /* 8902 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 8903 */ 8904 static 8905 int can_migrate_task(struct task_struct *p, struct lb_env *env) 8906 { 8907 int tsk_cache_hot; 8908 8909 lockdep_assert_rq_held(env->src_rq); 8910 8911 /* 8912 * We do not migrate tasks that are: 8913 * 1) throttled_lb_pair, or 8914 * 2) cannot be migrated to this CPU due to cpus_ptr, or 8915 * 3) running (obviously), or 8916 * 4) are cache-hot on their current CPU. 8917 */ 8918 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 8919 return 0; 8920 8921 /* Disregard pcpu kthreads; they are where they need to be. */ 8922 if (kthread_is_per_cpu(p)) 8923 return 0; 8924 8925 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 8926 int cpu; 8927 8928 schedstat_inc(p->stats.nr_failed_migrations_affine); 8929 8930 env->flags |= LBF_SOME_PINNED; 8931 8932 /* 8933 * Remember if this task can be migrated to any other CPU in 8934 * our sched_group. We may want to revisit it if we couldn't 8935 * meet load balance goals by pulling other tasks on src_cpu. 8936 * 8937 * Avoid computing new_dst_cpu 8938 * - for NEWLY_IDLE 8939 * - if we have already computed one in current iteration 8940 * - if it's an active balance 8941 */ 8942 if (env->idle == CPU_NEWLY_IDLE || 8943 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 8944 return 0; 8945 8946 /* Prevent to re-select dst_cpu via env's CPUs: */ 8947 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 8948 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 8949 env->flags |= LBF_DST_PINNED; 8950 env->new_dst_cpu = cpu; 8951 break; 8952 } 8953 } 8954 8955 return 0; 8956 } 8957 8958 /* Record that we found at least one task that could run on dst_cpu */ 8959 env->flags &= ~LBF_ALL_PINNED; 8960 8961 if (task_on_cpu(env->src_rq, p)) { 8962 schedstat_inc(p->stats.nr_failed_migrations_running); 8963 return 0; 8964 } 8965 8966 /* 8967 * Aggressive migration if: 8968 * 1) active balance 8969 * 2) destination numa is preferred 8970 * 3) task is cache cold, or 8971 * 4) too many balance attempts have failed. 8972 */ 8973 if (env->flags & LBF_ACTIVE_LB) 8974 return 1; 8975 8976 tsk_cache_hot = migrate_degrades_locality(p, env); 8977 if (tsk_cache_hot == -1) 8978 tsk_cache_hot = task_hot(p, env); 8979 8980 if (tsk_cache_hot <= 0 || 8981 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 8982 if (tsk_cache_hot == 1) { 8983 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 8984 schedstat_inc(p->stats.nr_forced_migrations); 8985 } 8986 return 1; 8987 } 8988 8989 schedstat_inc(p->stats.nr_failed_migrations_hot); 8990 return 0; 8991 } 8992 8993 /* 8994 * detach_task() -- detach the task for the migration specified in env 8995 */ 8996 static void detach_task(struct task_struct *p, struct lb_env *env) 8997 { 8998 lockdep_assert_rq_held(env->src_rq); 8999 9000 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9001 set_task_cpu(p, env->dst_cpu); 9002 } 9003 9004 /* 9005 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9006 * part of active balancing operations within "domain". 9007 * 9008 * Returns a task if successful and NULL otherwise. 9009 */ 9010 static struct task_struct *detach_one_task(struct lb_env *env) 9011 { 9012 struct task_struct *p; 9013 9014 lockdep_assert_rq_held(env->src_rq); 9015 9016 list_for_each_entry_reverse(p, 9017 &env->src_rq->cfs_tasks, se.group_node) { 9018 if (!can_migrate_task(p, env)) 9019 continue; 9020 9021 detach_task(p, env); 9022 9023 /* 9024 * Right now, this is only the second place where 9025 * lb_gained[env->idle] is updated (other is detach_tasks) 9026 * so we can safely collect stats here rather than 9027 * inside detach_tasks(). 9028 */ 9029 schedstat_inc(env->sd->lb_gained[env->idle]); 9030 return p; 9031 } 9032 return NULL; 9033 } 9034 9035 /* 9036 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9037 * busiest_rq, as part of a balancing operation within domain "sd". 9038 * 9039 * Returns number of detached tasks if successful and 0 otherwise. 9040 */ 9041 static int detach_tasks(struct lb_env *env) 9042 { 9043 struct list_head *tasks = &env->src_rq->cfs_tasks; 9044 unsigned long util, load; 9045 struct task_struct *p; 9046 int detached = 0; 9047 9048 lockdep_assert_rq_held(env->src_rq); 9049 9050 /* 9051 * Source run queue has been emptied by another CPU, clear 9052 * LBF_ALL_PINNED flag as we will not test any task. 9053 */ 9054 if (env->src_rq->nr_running <= 1) { 9055 env->flags &= ~LBF_ALL_PINNED; 9056 return 0; 9057 } 9058 9059 if (env->imbalance <= 0) 9060 return 0; 9061 9062 while (!list_empty(tasks)) { 9063 /* 9064 * We don't want to steal all, otherwise we may be treated likewise, 9065 * which could at worst lead to a livelock crash. 9066 */ 9067 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 9068 break; 9069 9070 env->loop++; 9071 /* 9072 * We've more or less seen every task there is, call it quits 9073 * unless we haven't found any movable task yet. 9074 */ 9075 if (env->loop > env->loop_max && 9076 !(env->flags & LBF_ALL_PINNED)) 9077 break; 9078 9079 /* take a breather every nr_migrate tasks */ 9080 if (env->loop > env->loop_break) { 9081 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9082 env->flags |= LBF_NEED_BREAK; 9083 break; 9084 } 9085 9086 p = list_last_entry(tasks, struct task_struct, se.group_node); 9087 9088 if (!can_migrate_task(p, env)) 9089 goto next; 9090 9091 switch (env->migration_type) { 9092 case migrate_load: 9093 /* 9094 * Depending of the number of CPUs and tasks and the 9095 * cgroup hierarchy, task_h_load() can return a null 9096 * value. Make sure that env->imbalance decreases 9097 * otherwise detach_tasks() will stop only after 9098 * detaching up to loop_max tasks. 9099 */ 9100 load = max_t(unsigned long, task_h_load(p), 1); 9101 9102 if (sched_feat(LB_MIN) && 9103 load < 16 && !env->sd->nr_balance_failed) 9104 goto next; 9105 9106 /* 9107 * Make sure that we don't migrate too much load. 9108 * Nevertheless, let relax the constraint if 9109 * scheduler fails to find a good waiting task to 9110 * migrate. 9111 */ 9112 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9113 goto next; 9114 9115 env->imbalance -= load; 9116 break; 9117 9118 case migrate_util: 9119 util = task_util_est(p); 9120 9121 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9122 goto next; 9123 9124 env->imbalance -= util; 9125 break; 9126 9127 case migrate_task: 9128 env->imbalance--; 9129 break; 9130 9131 case migrate_misfit: 9132 /* This is not a misfit task */ 9133 if (task_fits_cpu(p, env->src_cpu)) 9134 goto next; 9135 9136 env->imbalance = 0; 9137 break; 9138 } 9139 9140 detach_task(p, env); 9141 list_add(&p->se.group_node, &env->tasks); 9142 9143 detached++; 9144 9145 #ifdef CONFIG_PREEMPTION 9146 /* 9147 * NEWIDLE balancing is a source of latency, so preemptible 9148 * kernels will stop after the first task is detached to minimize 9149 * the critical section. 9150 */ 9151 if (env->idle == CPU_NEWLY_IDLE) 9152 break; 9153 #endif 9154 9155 /* 9156 * We only want to steal up to the prescribed amount of 9157 * load/util/tasks. 9158 */ 9159 if (env->imbalance <= 0) 9160 break; 9161 9162 continue; 9163 next: 9164 list_move(&p->se.group_node, tasks); 9165 } 9166 9167 /* 9168 * Right now, this is one of only two places we collect this stat 9169 * so we can safely collect detach_one_task() stats here rather 9170 * than inside detach_one_task(). 9171 */ 9172 schedstat_add(env->sd->lb_gained[env->idle], detached); 9173 9174 return detached; 9175 } 9176 9177 /* 9178 * attach_task() -- attach the task detached by detach_task() to its new rq. 9179 */ 9180 static void attach_task(struct rq *rq, struct task_struct *p) 9181 { 9182 lockdep_assert_rq_held(rq); 9183 9184 WARN_ON_ONCE(task_rq(p) != rq); 9185 activate_task(rq, p, ENQUEUE_NOCLOCK); 9186 wakeup_preempt(rq, p, 0); 9187 } 9188 9189 /* 9190 * attach_one_task() -- attaches the task returned from detach_one_task() to 9191 * its new rq. 9192 */ 9193 static void attach_one_task(struct rq *rq, struct task_struct *p) 9194 { 9195 struct rq_flags rf; 9196 9197 rq_lock(rq, &rf); 9198 update_rq_clock(rq); 9199 attach_task(rq, p); 9200 rq_unlock(rq, &rf); 9201 } 9202 9203 /* 9204 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9205 * new rq. 9206 */ 9207 static void attach_tasks(struct lb_env *env) 9208 { 9209 struct list_head *tasks = &env->tasks; 9210 struct task_struct *p; 9211 struct rq_flags rf; 9212 9213 rq_lock(env->dst_rq, &rf); 9214 update_rq_clock(env->dst_rq); 9215 9216 while (!list_empty(tasks)) { 9217 p = list_first_entry(tasks, struct task_struct, se.group_node); 9218 list_del_init(&p->se.group_node); 9219 9220 attach_task(env->dst_rq, p); 9221 } 9222 9223 rq_unlock(env->dst_rq, &rf); 9224 } 9225 9226 #ifdef CONFIG_NO_HZ_COMMON 9227 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9228 { 9229 if (cfs_rq->avg.load_avg) 9230 return true; 9231 9232 if (cfs_rq->avg.util_avg) 9233 return true; 9234 9235 return false; 9236 } 9237 9238 static inline bool others_have_blocked(struct rq *rq) 9239 { 9240 if (READ_ONCE(rq->avg_rt.util_avg)) 9241 return true; 9242 9243 if (READ_ONCE(rq->avg_dl.util_avg)) 9244 return true; 9245 9246 if (thermal_load_avg(rq)) 9247 return true; 9248 9249 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 9250 if (READ_ONCE(rq->avg_irq.util_avg)) 9251 return true; 9252 #endif 9253 9254 return false; 9255 } 9256 9257 static inline void update_blocked_load_tick(struct rq *rq) 9258 { 9259 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9260 } 9261 9262 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9263 { 9264 if (!has_blocked) 9265 rq->has_blocked_load = 0; 9266 } 9267 #else 9268 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9269 static inline bool others_have_blocked(struct rq *rq) { return false; } 9270 static inline void update_blocked_load_tick(struct rq *rq) {} 9271 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9272 #endif 9273 9274 static bool __update_blocked_others(struct rq *rq, bool *done) 9275 { 9276 const struct sched_class *curr_class; 9277 u64 now = rq_clock_pelt(rq); 9278 unsigned long thermal_pressure; 9279 bool decayed; 9280 9281 /* 9282 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9283 * DL and IRQ signals have been updated before updating CFS. 9284 */ 9285 curr_class = rq->curr->sched_class; 9286 9287 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq)); 9288 9289 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 9290 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 9291 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) | 9292 update_irq_load_avg(rq, 0); 9293 9294 if (others_have_blocked(rq)) 9295 *done = false; 9296 9297 return decayed; 9298 } 9299 9300 #ifdef CONFIG_FAIR_GROUP_SCHED 9301 9302 static bool __update_blocked_fair(struct rq *rq, bool *done) 9303 { 9304 struct cfs_rq *cfs_rq, *pos; 9305 bool decayed = false; 9306 int cpu = cpu_of(rq); 9307 9308 /* 9309 * Iterates the task_group tree in a bottom up fashion, see 9310 * list_add_leaf_cfs_rq() for details. 9311 */ 9312 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9313 struct sched_entity *se; 9314 9315 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9316 update_tg_load_avg(cfs_rq); 9317 9318 if (cfs_rq->nr_running == 0) 9319 update_idle_cfs_rq_clock_pelt(cfs_rq); 9320 9321 if (cfs_rq == &rq->cfs) 9322 decayed = true; 9323 } 9324 9325 /* Propagate pending load changes to the parent, if any: */ 9326 se = cfs_rq->tg->se[cpu]; 9327 if (se && !skip_blocked_update(se)) 9328 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9329 9330 /* 9331 * There can be a lot of idle CPU cgroups. Don't let fully 9332 * decayed cfs_rqs linger on the list. 9333 */ 9334 if (cfs_rq_is_decayed(cfs_rq)) 9335 list_del_leaf_cfs_rq(cfs_rq); 9336 9337 /* Don't need periodic decay once load/util_avg are null */ 9338 if (cfs_rq_has_blocked(cfs_rq)) 9339 *done = false; 9340 } 9341 9342 return decayed; 9343 } 9344 9345 /* 9346 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9347 * This needs to be done in a top-down fashion because the load of a child 9348 * group is a fraction of its parents load. 9349 */ 9350 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9351 { 9352 struct rq *rq = rq_of(cfs_rq); 9353 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9354 unsigned long now = jiffies; 9355 unsigned long load; 9356 9357 if (cfs_rq->last_h_load_update == now) 9358 return; 9359 9360 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9361 for_each_sched_entity(se) { 9362 cfs_rq = cfs_rq_of(se); 9363 WRITE_ONCE(cfs_rq->h_load_next, se); 9364 if (cfs_rq->last_h_load_update == now) 9365 break; 9366 } 9367 9368 if (!se) { 9369 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9370 cfs_rq->last_h_load_update = now; 9371 } 9372 9373 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9374 load = cfs_rq->h_load; 9375 load = div64_ul(load * se->avg.load_avg, 9376 cfs_rq_load_avg(cfs_rq) + 1); 9377 cfs_rq = group_cfs_rq(se); 9378 cfs_rq->h_load = load; 9379 cfs_rq->last_h_load_update = now; 9380 } 9381 } 9382 9383 static unsigned long task_h_load(struct task_struct *p) 9384 { 9385 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9386 9387 update_cfs_rq_h_load(cfs_rq); 9388 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9389 cfs_rq_load_avg(cfs_rq) + 1); 9390 } 9391 #else 9392 static bool __update_blocked_fair(struct rq *rq, bool *done) 9393 { 9394 struct cfs_rq *cfs_rq = &rq->cfs; 9395 bool decayed; 9396 9397 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9398 if (cfs_rq_has_blocked(cfs_rq)) 9399 *done = false; 9400 9401 return decayed; 9402 } 9403 9404 static unsigned long task_h_load(struct task_struct *p) 9405 { 9406 return p->se.avg.load_avg; 9407 } 9408 #endif 9409 9410 static void update_blocked_averages(int cpu) 9411 { 9412 bool decayed = false, done = true; 9413 struct rq *rq = cpu_rq(cpu); 9414 struct rq_flags rf; 9415 9416 rq_lock_irqsave(rq, &rf); 9417 update_blocked_load_tick(rq); 9418 update_rq_clock(rq); 9419 9420 decayed |= __update_blocked_others(rq, &done); 9421 decayed |= __update_blocked_fair(rq, &done); 9422 9423 update_blocked_load_status(rq, !done); 9424 if (decayed) 9425 cpufreq_update_util(rq, 0); 9426 rq_unlock_irqrestore(rq, &rf); 9427 } 9428 9429 /********** Helpers for find_busiest_group ************************/ 9430 9431 /* 9432 * sg_lb_stats - stats of a sched_group required for load_balancing 9433 */ 9434 struct sg_lb_stats { 9435 unsigned long avg_load; /*Avg load across the CPUs of the group */ 9436 unsigned long group_load; /* Total load over the CPUs of the group */ 9437 unsigned long group_capacity; 9438 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9439 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9440 unsigned int sum_nr_running; /* Nr of tasks running in the group */ 9441 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9442 unsigned int idle_cpus; 9443 unsigned int group_weight; 9444 enum group_type group_type; 9445 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9446 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9447 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9448 #ifdef CONFIG_NUMA_BALANCING 9449 unsigned int nr_numa_running; 9450 unsigned int nr_preferred_running; 9451 #endif 9452 }; 9453 9454 /* 9455 * sd_lb_stats - Structure to store the statistics of a sched_domain 9456 * during load balancing. 9457 */ 9458 struct sd_lb_stats { 9459 struct sched_group *busiest; /* Busiest group in this sd */ 9460 struct sched_group *local; /* Local group in this sd */ 9461 unsigned long total_load; /* Total load of all groups in sd */ 9462 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9463 unsigned long avg_load; /* Average load across all groups in sd */ 9464 unsigned int prefer_sibling; /* tasks should go to sibling first */ 9465 9466 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 9467 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9468 }; 9469 9470 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9471 { 9472 /* 9473 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9474 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9475 * We must however set busiest_stat::group_type and 9476 * busiest_stat::idle_cpus to the worst busiest group because 9477 * update_sd_pick_busiest() reads these before assignment. 9478 */ 9479 *sds = (struct sd_lb_stats){ 9480 .busiest = NULL, 9481 .local = NULL, 9482 .total_load = 0UL, 9483 .total_capacity = 0UL, 9484 .busiest_stat = { 9485 .idle_cpus = UINT_MAX, 9486 .group_type = group_has_spare, 9487 }, 9488 }; 9489 } 9490 9491 static unsigned long scale_rt_capacity(int cpu) 9492 { 9493 struct rq *rq = cpu_rq(cpu); 9494 unsigned long max = arch_scale_cpu_capacity(cpu); 9495 unsigned long used, free; 9496 unsigned long irq; 9497 9498 irq = cpu_util_irq(rq); 9499 9500 if (unlikely(irq >= max)) 9501 return 1; 9502 9503 /* 9504 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9505 * (running and not running) with weights 0 and 1024 respectively. 9506 * avg_thermal.load_avg tracks thermal pressure and the weighted 9507 * average uses the actual delta max capacity(load). 9508 */ 9509 used = READ_ONCE(rq->avg_rt.util_avg); 9510 used += READ_ONCE(rq->avg_dl.util_avg); 9511 used += thermal_load_avg(rq); 9512 9513 if (unlikely(used >= max)) 9514 return 1; 9515 9516 free = max - used; 9517 9518 return scale_irq_capacity(free, irq, max); 9519 } 9520 9521 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9522 { 9523 unsigned long capacity = scale_rt_capacity(cpu); 9524 struct sched_group *sdg = sd->groups; 9525 9526 if (!capacity) 9527 capacity = 1; 9528 9529 cpu_rq(cpu)->cpu_capacity = capacity; 9530 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9531 9532 sdg->sgc->capacity = capacity; 9533 sdg->sgc->min_capacity = capacity; 9534 sdg->sgc->max_capacity = capacity; 9535 } 9536 9537 void update_group_capacity(struct sched_domain *sd, int cpu) 9538 { 9539 struct sched_domain *child = sd->child; 9540 struct sched_group *group, *sdg = sd->groups; 9541 unsigned long capacity, min_capacity, max_capacity; 9542 unsigned long interval; 9543 9544 interval = msecs_to_jiffies(sd->balance_interval); 9545 interval = clamp(interval, 1UL, max_load_balance_interval); 9546 sdg->sgc->next_update = jiffies + interval; 9547 9548 if (!child) { 9549 update_cpu_capacity(sd, cpu); 9550 return; 9551 } 9552 9553 capacity = 0; 9554 min_capacity = ULONG_MAX; 9555 max_capacity = 0; 9556 9557 if (child->flags & SD_OVERLAP) { 9558 /* 9559 * SD_OVERLAP domains cannot assume that child groups 9560 * span the current group. 9561 */ 9562 9563 for_each_cpu(cpu, sched_group_span(sdg)) { 9564 unsigned long cpu_cap = capacity_of(cpu); 9565 9566 capacity += cpu_cap; 9567 min_capacity = min(cpu_cap, min_capacity); 9568 max_capacity = max(cpu_cap, max_capacity); 9569 } 9570 } else { 9571 /* 9572 * !SD_OVERLAP domains can assume that child groups 9573 * span the current group. 9574 */ 9575 9576 group = child->groups; 9577 do { 9578 struct sched_group_capacity *sgc = group->sgc; 9579 9580 capacity += sgc->capacity; 9581 min_capacity = min(sgc->min_capacity, min_capacity); 9582 max_capacity = max(sgc->max_capacity, max_capacity); 9583 group = group->next; 9584 } while (group != child->groups); 9585 } 9586 9587 sdg->sgc->capacity = capacity; 9588 sdg->sgc->min_capacity = min_capacity; 9589 sdg->sgc->max_capacity = max_capacity; 9590 } 9591 9592 /* 9593 * Check whether the capacity of the rq has been noticeably reduced by side 9594 * activity. The imbalance_pct is used for the threshold. 9595 * Return true is the capacity is reduced 9596 */ 9597 static inline int 9598 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 9599 { 9600 return ((rq->cpu_capacity * sd->imbalance_pct) < 9601 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 9602 } 9603 9604 /* 9605 * Check whether a rq has a misfit task and if it looks like we can actually 9606 * help that task: we can migrate the task to a CPU of higher capacity, or 9607 * the task's current CPU is heavily pressured. 9608 */ 9609 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd) 9610 { 9611 return rq->misfit_task_load && 9612 (arch_scale_cpu_capacity(rq->cpu) < rq->rd->max_cpu_capacity || 9613 check_cpu_capacity(rq, sd)); 9614 } 9615 9616 /* 9617 * Group imbalance indicates (and tries to solve) the problem where balancing 9618 * groups is inadequate due to ->cpus_ptr constraints. 9619 * 9620 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9621 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 9622 * Something like: 9623 * 9624 * { 0 1 2 3 } { 4 5 6 7 } 9625 * * * * * 9626 * 9627 * If we were to balance group-wise we'd place two tasks in the first group and 9628 * two tasks in the second group. Clearly this is undesired as it will overload 9629 * cpu 3 and leave one of the CPUs in the second group unused. 9630 * 9631 * The current solution to this issue is detecting the skew in the first group 9632 * by noticing the lower domain failed to reach balance and had difficulty 9633 * moving tasks due to affinity constraints. 9634 * 9635 * When this is so detected; this group becomes a candidate for busiest; see 9636 * update_sd_pick_busiest(). And calculate_imbalance() and 9637 * find_busiest_group() avoid some of the usual balance conditions to allow it 9638 * to create an effective group imbalance. 9639 * 9640 * This is a somewhat tricky proposition since the next run might not find the 9641 * group imbalance and decide the groups need to be balanced again. A most 9642 * subtle and fragile situation. 9643 */ 9644 9645 static inline int sg_imbalanced(struct sched_group *group) 9646 { 9647 return group->sgc->imbalance; 9648 } 9649 9650 /* 9651 * group_has_capacity returns true if the group has spare capacity that could 9652 * be used by some tasks. 9653 * We consider that a group has spare capacity if the number of task is 9654 * smaller than the number of CPUs or if the utilization is lower than the 9655 * available capacity for CFS tasks. 9656 * For the latter, we use a threshold to stabilize the state, to take into 9657 * account the variance of the tasks' load and to return true if the available 9658 * capacity in meaningful for the load balancer. 9659 * As an example, an available capacity of 1% can appear but it doesn't make 9660 * any benefit for the load balance. 9661 */ 9662 static inline bool 9663 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9664 { 9665 if (sgs->sum_nr_running < sgs->group_weight) 9666 return true; 9667 9668 if ((sgs->group_capacity * imbalance_pct) < 9669 (sgs->group_runnable * 100)) 9670 return false; 9671 9672 if ((sgs->group_capacity * 100) > 9673 (sgs->group_util * imbalance_pct)) 9674 return true; 9675 9676 return false; 9677 } 9678 9679 /* 9680 * group_is_overloaded returns true if the group has more tasks than it can 9681 * handle. 9682 * group_is_overloaded is not equals to !group_has_capacity because a group 9683 * with the exact right number of tasks, has no more spare capacity but is not 9684 * overloaded so both group_has_capacity and group_is_overloaded return 9685 * false. 9686 */ 9687 static inline bool 9688 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9689 { 9690 if (sgs->sum_nr_running <= sgs->group_weight) 9691 return false; 9692 9693 if ((sgs->group_capacity * 100) < 9694 (sgs->group_util * imbalance_pct)) 9695 return true; 9696 9697 if ((sgs->group_capacity * imbalance_pct) < 9698 (sgs->group_runnable * 100)) 9699 return true; 9700 9701 return false; 9702 } 9703 9704 static inline enum 9705 group_type group_classify(unsigned int imbalance_pct, 9706 struct sched_group *group, 9707 struct sg_lb_stats *sgs) 9708 { 9709 if (group_is_overloaded(imbalance_pct, sgs)) 9710 return group_overloaded; 9711 9712 if (sg_imbalanced(group)) 9713 return group_imbalanced; 9714 9715 if (sgs->group_asym_packing) 9716 return group_asym_packing; 9717 9718 if (sgs->group_smt_balance) 9719 return group_smt_balance; 9720 9721 if (sgs->group_misfit_task_load) 9722 return group_misfit_task; 9723 9724 if (!group_has_capacity(imbalance_pct, sgs)) 9725 return group_fully_busy; 9726 9727 return group_has_spare; 9728 } 9729 9730 /** 9731 * sched_use_asym_prio - Check whether asym_packing priority must be used 9732 * @sd: The scheduling domain of the load balancing 9733 * @cpu: A CPU 9734 * 9735 * Always use CPU priority when balancing load between SMT siblings. When 9736 * balancing load between cores, it is not sufficient that @cpu is idle. Only 9737 * use CPU priority if the whole core is idle. 9738 * 9739 * Returns: True if the priority of @cpu must be followed. False otherwise. 9740 */ 9741 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 9742 { 9743 if (!sched_smt_active()) 9744 return true; 9745 9746 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 9747 } 9748 9749 /** 9750 * sched_asym - Check if the destination CPU can do asym_packing load balance 9751 * @env: The load balancing environment 9752 * @sds: Load-balancing data with statistics of the local group 9753 * @sgs: Load-balancing statistics of the candidate busiest group 9754 * @group: The candidate busiest group 9755 * 9756 * @env::dst_cpu can do asym_packing if it has higher priority than the 9757 * preferred CPU of @group. 9758 * 9759 * SMT is a special case. If we are balancing load between cores, @env::dst_cpu 9760 * can do asym_packing balance only if all its SMT siblings are idle. Also, it 9761 * can only do it if @group is an SMT group and has exactly on busy CPU. Larger 9762 * imbalances in the number of CPUS are dealt with in find_busiest_group(). 9763 * 9764 * If we are balancing load within an SMT core, or at PKG domain level, always 9765 * proceed. 9766 * 9767 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 9768 * otherwise. 9769 */ 9770 static inline bool 9771 sched_asym(struct lb_env *env, struct sd_lb_stats *sds, struct sg_lb_stats *sgs, 9772 struct sched_group *group) 9773 { 9774 /* Ensure that the whole local core is idle, if applicable. */ 9775 if (!sched_use_asym_prio(env->sd, env->dst_cpu)) 9776 return false; 9777 9778 /* 9779 * CPU priorities does not make sense for SMT cores with more than one 9780 * busy sibling. 9781 */ 9782 if (group->flags & SD_SHARE_CPUCAPACITY) { 9783 if (sgs->group_weight - sgs->idle_cpus != 1) 9784 return false; 9785 } 9786 9787 return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu); 9788 } 9789 9790 /* One group has more than one SMT CPU while the other group does not */ 9791 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 9792 struct sched_group *sg2) 9793 { 9794 if (!sg1 || !sg2) 9795 return false; 9796 9797 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 9798 (sg2->flags & SD_SHARE_CPUCAPACITY); 9799 } 9800 9801 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 9802 struct sched_group *group) 9803 { 9804 if (env->idle == CPU_NOT_IDLE) 9805 return false; 9806 9807 /* 9808 * For SMT source group, it is better to move a task 9809 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 9810 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 9811 * will not be on. 9812 */ 9813 if (group->flags & SD_SHARE_CPUCAPACITY && 9814 sgs->sum_h_nr_running > 1) 9815 return true; 9816 9817 return false; 9818 } 9819 9820 static inline long sibling_imbalance(struct lb_env *env, 9821 struct sd_lb_stats *sds, 9822 struct sg_lb_stats *busiest, 9823 struct sg_lb_stats *local) 9824 { 9825 int ncores_busiest, ncores_local; 9826 long imbalance; 9827 9828 if (env->idle == CPU_NOT_IDLE || !busiest->sum_nr_running) 9829 return 0; 9830 9831 ncores_busiest = sds->busiest->cores; 9832 ncores_local = sds->local->cores; 9833 9834 if (ncores_busiest == ncores_local) { 9835 imbalance = busiest->sum_nr_running; 9836 lsub_positive(&imbalance, local->sum_nr_running); 9837 return imbalance; 9838 } 9839 9840 /* Balance such that nr_running/ncores ratio are same on both groups */ 9841 imbalance = ncores_local * busiest->sum_nr_running; 9842 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 9843 /* Normalize imbalance and do rounding on normalization */ 9844 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 9845 imbalance /= ncores_local + ncores_busiest; 9846 9847 /* Take advantage of resource in an empty sched group */ 9848 if (imbalance <= 1 && local->sum_nr_running == 0 && 9849 busiest->sum_nr_running > 1) 9850 imbalance = 2; 9851 9852 return imbalance; 9853 } 9854 9855 static inline bool 9856 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 9857 { 9858 /* 9859 * When there is more than 1 task, the group_overloaded case already 9860 * takes care of cpu with reduced capacity 9861 */ 9862 if (rq->cfs.h_nr_running != 1) 9863 return false; 9864 9865 return check_cpu_capacity(rq, sd); 9866 } 9867 9868 /** 9869 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 9870 * @env: The load balancing environment. 9871 * @sds: Load-balancing data with statistics of the local group. 9872 * @group: sched_group whose statistics are to be updated. 9873 * @sgs: variable to hold the statistics for this group. 9874 * @sg_status: Holds flag indicating the status of the sched_group 9875 */ 9876 static inline void update_sg_lb_stats(struct lb_env *env, 9877 struct sd_lb_stats *sds, 9878 struct sched_group *group, 9879 struct sg_lb_stats *sgs, 9880 int *sg_status) 9881 { 9882 int i, nr_running, local_group; 9883 9884 memset(sgs, 0, sizeof(*sgs)); 9885 9886 local_group = group == sds->local; 9887 9888 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9889 struct rq *rq = cpu_rq(i); 9890 unsigned long load = cpu_load(rq); 9891 9892 sgs->group_load += load; 9893 sgs->group_util += cpu_util_cfs(i); 9894 sgs->group_runnable += cpu_runnable(rq); 9895 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 9896 9897 nr_running = rq->nr_running; 9898 sgs->sum_nr_running += nr_running; 9899 9900 if (nr_running > 1) 9901 *sg_status |= SG_OVERLOAD; 9902 9903 if (cpu_overutilized(i)) 9904 *sg_status |= SG_OVERUTILIZED; 9905 9906 #ifdef CONFIG_NUMA_BALANCING 9907 sgs->nr_numa_running += rq->nr_numa_running; 9908 sgs->nr_preferred_running += rq->nr_preferred_running; 9909 #endif 9910 /* 9911 * No need to call idle_cpu() if nr_running is not 0 9912 */ 9913 if (!nr_running && idle_cpu(i)) { 9914 sgs->idle_cpus++; 9915 /* Idle cpu can't have misfit task */ 9916 continue; 9917 } 9918 9919 if (local_group) 9920 continue; 9921 9922 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9923 /* Check for a misfit task on the cpu */ 9924 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 9925 sgs->group_misfit_task_load = rq->misfit_task_load; 9926 *sg_status |= SG_OVERLOAD; 9927 } 9928 } else if ((env->idle != CPU_NOT_IDLE) && 9929 sched_reduced_capacity(rq, env->sd)) { 9930 /* Check for a task running on a CPU with reduced capacity */ 9931 if (sgs->group_misfit_task_load < load) 9932 sgs->group_misfit_task_load = load; 9933 } 9934 } 9935 9936 sgs->group_capacity = group->sgc->capacity; 9937 9938 sgs->group_weight = group->group_weight; 9939 9940 /* Check if dst CPU is idle and preferred to this group */ 9941 if (!local_group && env->sd->flags & SD_ASYM_PACKING && 9942 env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running && 9943 sched_asym(env, sds, sgs, group)) { 9944 sgs->group_asym_packing = 1; 9945 } 9946 9947 /* Check for loaded SMT group to be balanced to dst CPU */ 9948 if (!local_group && smt_balance(env, sgs, group)) 9949 sgs->group_smt_balance = 1; 9950 9951 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 9952 9953 /* Computing avg_load makes sense only when group is overloaded */ 9954 if (sgs->group_type == group_overloaded) 9955 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 9956 sgs->group_capacity; 9957 } 9958 9959 /** 9960 * update_sd_pick_busiest - return 1 on busiest group 9961 * @env: The load balancing environment. 9962 * @sds: sched_domain statistics 9963 * @sg: sched_group candidate to be checked for being the busiest 9964 * @sgs: sched_group statistics 9965 * 9966 * Determine if @sg is a busier group than the previously selected 9967 * busiest group. 9968 * 9969 * Return: %true if @sg is a busier group than the previously selected 9970 * busiest group. %false otherwise. 9971 */ 9972 static bool update_sd_pick_busiest(struct lb_env *env, 9973 struct sd_lb_stats *sds, 9974 struct sched_group *sg, 9975 struct sg_lb_stats *sgs) 9976 { 9977 struct sg_lb_stats *busiest = &sds->busiest_stat; 9978 9979 /* Make sure that there is at least one task to pull */ 9980 if (!sgs->sum_h_nr_running) 9981 return false; 9982 9983 /* 9984 * Don't try to pull misfit tasks we can't help. 9985 * We can use max_capacity here as reduction in capacity on some 9986 * CPUs in the group should either be possible to resolve 9987 * internally or be covered by avg_load imbalance (eventually). 9988 */ 9989 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 9990 (sgs->group_type == group_misfit_task) && 9991 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 9992 sds->local_stat.group_type != group_has_spare)) 9993 return false; 9994 9995 if (sgs->group_type > busiest->group_type) 9996 return true; 9997 9998 if (sgs->group_type < busiest->group_type) 9999 return false; 10000 10001 /* 10002 * The candidate and the current busiest group are the same type of 10003 * group. Let check which one is the busiest according to the type. 10004 */ 10005 10006 switch (sgs->group_type) { 10007 case group_overloaded: 10008 /* Select the overloaded group with highest avg_load. */ 10009 if (sgs->avg_load <= busiest->avg_load) 10010 return false; 10011 break; 10012 10013 case group_imbalanced: 10014 /* 10015 * Select the 1st imbalanced group as we don't have any way to 10016 * choose one more than another. 10017 */ 10018 return false; 10019 10020 case group_asym_packing: 10021 /* Prefer to move from lowest priority CPU's work */ 10022 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu)) 10023 return false; 10024 break; 10025 10026 case group_misfit_task: 10027 /* 10028 * If we have more than one misfit sg go with the biggest 10029 * misfit. 10030 */ 10031 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load) 10032 return false; 10033 break; 10034 10035 case group_smt_balance: 10036 /* 10037 * Check if we have spare CPUs on either SMT group to 10038 * choose has spare or fully busy handling. 10039 */ 10040 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10041 goto has_spare; 10042 10043 fallthrough; 10044 10045 case group_fully_busy: 10046 /* 10047 * Select the fully busy group with highest avg_load. In 10048 * theory, there is no need to pull task from such kind of 10049 * group because tasks have all compute capacity that they need 10050 * but we can still improve the overall throughput by reducing 10051 * contention when accessing shared HW resources. 10052 * 10053 * XXX for now avg_load is not computed and always 0 so we 10054 * select the 1st one, except if @sg is composed of SMT 10055 * siblings. 10056 */ 10057 10058 if (sgs->avg_load < busiest->avg_load) 10059 return false; 10060 10061 if (sgs->avg_load == busiest->avg_load) { 10062 /* 10063 * SMT sched groups need more help than non-SMT groups. 10064 * If @sg happens to also be SMT, either choice is good. 10065 */ 10066 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10067 return false; 10068 } 10069 10070 break; 10071 10072 case group_has_spare: 10073 /* 10074 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10075 * as we do not want to pull task off SMT core with one task 10076 * and make the core idle. 10077 */ 10078 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10079 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10080 return false; 10081 else 10082 return true; 10083 } 10084 has_spare: 10085 10086 /* 10087 * Select not overloaded group with lowest number of idle cpus 10088 * and highest number of running tasks. We could also compare 10089 * the spare capacity which is more stable but it can end up 10090 * that the group has less spare capacity but finally more idle 10091 * CPUs which means less opportunity to pull tasks. 10092 */ 10093 if (sgs->idle_cpus > busiest->idle_cpus) 10094 return false; 10095 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10096 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10097 return false; 10098 10099 break; 10100 } 10101 10102 /* 10103 * Candidate sg has no more than one task per CPU and has higher 10104 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10105 * throughput. Maximize throughput, power/energy consequences are not 10106 * considered. 10107 */ 10108 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10109 (sgs->group_type <= group_fully_busy) && 10110 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10111 return false; 10112 10113 return true; 10114 } 10115 10116 #ifdef CONFIG_NUMA_BALANCING 10117 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10118 { 10119 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10120 return regular; 10121 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10122 return remote; 10123 return all; 10124 } 10125 10126 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10127 { 10128 if (rq->nr_running > rq->nr_numa_running) 10129 return regular; 10130 if (rq->nr_running > rq->nr_preferred_running) 10131 return remote; 10132 return all; 10133 } 10134 #else 10135 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10136 { 10137 return all; 10138 } 10139 10140 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10141 { 10142 return regular; 10143 } 10144 #endif /* CONFIG_NUMA_BALANCING */ 10145 10146 10147 struct sg_lb_stats; 10148 10149 /* 10150 * task_running_on_cpu - return 1 if @p is running on @cpu. 10151 */ 10152 10153 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10154 { 10155 /* Task has no contribution or is new */ 10156 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10157 return 0; 10158 10159 if (task_on_rq_queued(p)) 10160 return 1; 10161 10162 return 0; 10163 } 10164 10165 /** 10166 * idle_cpu_without - would a given CPU be idle without p ? 10167 * @cpu: the processor on which idleness is tested. 10168 * @p: task which should be ignored. 10169 * 10170 * Return: 1 if the CPU would be idle. 0 otherwise. 10171 */ 10172 static int idle_cpu_without(int cpu, struct task_struct *p) 10173 { 10174 struct rq *rq = cpu_rq(cpu); 10175 10176 if (rq->curr != rq->idle && rq->curr != p) 10177 return 0; 10178 10179 /* 10180 * rq->nr_running can't be used but an updated version without the 10181 * impact of p on cpu must be used instead. The updated nr_running 10182 * be computed and tested before calling idle_cpu_without(). 10183 */ 10184 10185 #ifdef CONFIG_SMP 10186 if (rq->ttwu_pending) 10187 return 0; 10188 #endif 10189 10190 return 1; 10191 } 10192 10193 /* 10194 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10195 * @sd: The sched_domain level to look for idlest group. 10196 * @group: sched_group whose statistics are to be updated. 10197 * @sgs: variable to hold the statistics for this group. 10198 * @p: The task for which we look for the idlest group/CPU. 10199 */ 10200 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10201 struct sched_group *group, 10202 struct sg_lb_stats *sgs, 10203 struct task_struct *p) 10204 { 10205 int i, nr_running; 10206 10207 memset(sgs, 0, sizeof(*sgs)); 10208 10209 /* Assume that task can't fit any CPU of the group */ 10210 if (sd->flags & SD_ASYM_CPUCAPACITY) 10211 sgs->group_misfit_task_load = 1; 10212 10213 for_each_cpu(i, sched_group_span(group)) { 10214 struct rq *rq = cpu_rq(i); 10215 unsigned int local; 10216 10217 sgs->group_load += cpu_load_without(rq, p); 10218 sgs->group_util += cpu_util_without(i, p); 10219 sgs->group_runnable += cpu_runnable_without(rq, p); 10220 local = task_running_on_cpu(i, p); 10221 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 10222 10223 nr_running = rq->nr_running - local; 10224 sgs->sum_nr_running += nr_running; 10225 10226 /* 10227 * No need to call idle_cpu_without() if nr_running is not 0 10228 */ 10229 if (!nr_running && idle_cpu_without(i, p)) 10230 sgs->idle_cpus++; 10231 10232 /* Check if task fits in the CPU */ 10233 if (sd->flags & SD_ASYM_CPUCAPACITY && 10234 sgs->group_misfit_task_load && 10235 task_fits_cpu(p, i)) 10236 sgs->group_misfit_task_load = 0; 10237 10238 } 10239 10240 sgs->group_capacity = group->sgc->capacity; 10241 10242 sgs->group_weight = group->group_weight; 10243 10244 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10245 10246 /* 10247 * Computing avg_load makes sense only when group is fully busy or 10248 * overloaded 10249 */ 10250 if (sgs->group_type == group_fully_busy || 10251 sgs->group_type == group_overloaded) 10252 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10253 sgs->group_capacity; 10254 } 10255 10256 static bool update_pick_idlest(struct sched_group *idlest, 10257 struct sg_lb_stats *idlest_sgs, 10258 struct sched_group *group, 10259 struct sg_lb_stats *sgs) 10260 { 10261 if (sgs->group_type < idlest_sgs->group_type) 10262 return true; 10263 10264 if (sgs->group_type > idlest_sgs->group_type) 10265 return false; 10266 10267 /* 10268 * The candidate and the current idlest group are the same type of 10269 * group. Let check which one is the idlest according to the type. 10270 */ 10271 10272 switch (sgs->group_type) { 10273 case group_overloaded: 10274 case group_fully_busy: 10275 /* Select the group with lowest avg_load. */ 10276 if (idlest_sgs->avg_load <= sgs->avg_load) 10277 return false; 10278 break; 10279 10280 case group_imbalanced: 10281 case group_asym_packing: 10282 case group_smt_balance: 10283 /* Those types are not used in the slow wakeup path */ 10284 return false; 10285 10286 case group_misfit_task: 10287 /* Select group with the highest max capacity */ 10288 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10289 return false; 10290 break; 10291 10292 case group_has_spare: 10293 /* Select group with most idle CPUs */ 10294 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10295 return false; 10296 10297 /* Select group with lowest group_util */ 10298 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10299 idlest_sgs->group_util <= sgs->group_util) 10300 return false; 10301 10302 break; 10303 } 10304 10305 return true; 10306 } 10307 10308 /* 10309 * find_idlest_group() finds and returns the least busy CPU group within the 10310 * domain. 10311 * 10312 * Assumes p is allowed on at least one CPU in sd. 10313 */ 10314 static struct sched_group * 10315 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10316 { 10317 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10318 struct sg_lb_stats local_sgs, tmp_sgs; 10319 struct sg_lb_stats *sgs; 10320 unsigned long imbalance; 10321 struct sg_lb_stats idlest_sgs = { 10322 .avg_load = UINT_MAX, 10323 .group_type = group_overloaded, 10324 }; 10325 10326 do { 10327 int local_group; 10328 10329 /* Skip over this group if it has no CPUs allowed */ 10330 if (!cpumask_intersects(sched_group_span(group), 10331 p->cpus_ptr)) 10332 continue; 10333 10334 /* Skip over this group if no cookie matched */ 10335 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10336 continue; 10337 10338 local_group = cpumask_test_cpu(this_cpu, 10339 sched_group_span(group)); 10340 10341 if (local_group) { 10342 sgs = &local_sgs; 10343 local = group; 10344 } else { 10345 sgs = &tmp_sgs; 10346 } 10347 10348 update_sg_wakeup_stats(sd, group, sgs, p); 10349 10350 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10351 idlest = group; 10352 idlest_sgs = *sgs; 10353 } 10354 10355 } while (group = group->next, group != sd->groups); 10356 10357 10358 /* There is no idlest group to push tasks to */ 10359 if (!idlest) 10360 return NULL; 10361 10362 /* The local group has been skipped because of CPU affinity */ 10363 if (!local) 10364 return idlest; 10365 10366 /* 10367 * If the local group is idler than the selected idlest group 10368 * don't try and push the task. 10369 */ 10370 if (local_sgs.group_type < idlest_sgs.group_type) 10371 return NULL; 10372 10373 /* 10374 * If the local group is busier than the selected idlest group 10375 * try and push the task. 10376 */ 10377 if (local_sgs.group_type > idlest_sgs.group_type) 10378 return idlest; 10379 10380 switch (local_sgs.group_type) { 10381 case group_overloaded: 10382 case group_fully_busy: 10383 10384 /* Calculate allowed imbalance based on load */ 10385 imbalance = scale_load_down(NICE_0_LOAD) * 10386 (sd->imbalance_pct-100) / 100; 10387 10388 /* 10389 * When comparing groups across NUMA domains, it's possible for 10390 * the local domain to be very lightly loaded relative to the 10391 * remote domains but "imbalance" skews the comparison making 10392 * remote CPUs look much more favourable. When considering 10393 * cross-domain, add imbalance to the load on the remote node 10394 * and consider staying local. 10395 */ 10396 10397 if ((sd->flags & SD_NUMA) && 10398 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10399 return NULL; 10400 10401 /* 10402 * If the local group is less loaded than the selected 10403 * idlest group don't try and push any tasks. 10404 */ 10405 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10406 return NULL; 10407 10408 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10409 return NULL; 10410 break; 10411 10412 case group_imbalanced: 10413 case group_asym_packing: 10414 case group_smt_balance: 10415 /* Those type are not used in the slow wakeup path */ 10416 return NULL; 10417 10418 case group_misfit_task: 10419 /* Select group with the highest max capacity */ 10420 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10421 return NULL; 10422 break; 10423 10424 case group_has_spare: 10425 #ifdef CONFIG_NUMA 10426 if (sd->flags & SD_NUMA) { 10427 int imb_numa_nr = sd->imb_numa_nr; 10428 #ifdef CONFIG_NUMA_BALANCING 10429 int idlest_cpu; 10430 /* 10431 * If there is spare capacity at NUMA, try to select 10432 * the preferred node 10433 */ 10434 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10435 return NULL; 10436 10437 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10438 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10439 return idlest; 10440 #endif /* CONFIG_NUMA_BALANCING */ 10441 /* 10442 * Otherwise, keep the task close to the wakeup source 10443 * and improve locality if the number of running tasks 10444 * would remain below threshold where an imbalance is 10445 * allowed while accounting for the possibility the 10446 * task is pinned to a subset of CPUs. If there is a 10447 * real need of migration, periodic load balance will 10448 * take care of it. 10449 */ 10450 if (p->nr_cpus_allowed != NR_CPUS) { 10451 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10452 10453 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10454 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10455 } 10456 10457 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10458 if (!adjust_numa_imbalance(imbalance, 10459 local_sgs.sum_nr_running + 1, 10460 imb_numa_nr)) { 10461 return NULL; 10462 } 10463 } 10464 #endif /* CONFIG_NUMA */ 10465 10466 /* 10467 * Select group with highest number of idle CPUs. We could also 10468 * compare the utilization which is more stable but it can end 10469 * up that the group has less spare capacity but finally more 10470 * idle CPUs which means more opportunity to run task. 10471 */ 10472 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10473 return NULL; 10474 break; 10475 } 10476 10477 return idlest; 10478 } 10479 10480 static void update_idle_cpu_scan(struct lb_env *env, 10481 unsigned long sum_util) 10482 { 10483 struct sched_domain_shared *sd_share; 10484 int llc_weight, pct; 10485 u64 x, y, tmp; 10486 /* 10487 * Update the number of CPUs to scan in LLC domain, which could 10488 * be used as a hint in select_idle_cpu(). The update of sd_share 10489 * could be expensive because it is within a shared cache line. 10490 * So the write of this hint only occurs during periodic load 10491 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10492 * can fire way more frequently than the former. 10493 */ 10494 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10495 return; 10496 10497 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10498 if (env->sd->span_weight != llc_weight) 10499 return; 10500 10501 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10502 if (!sd_share) 10503 return; 10504 10505 /* 10506 * The number of CPUs to search drops as sum_util increases, when 10507 * sum_util hits 85% or above, the scan stops. 10508 * The reason to choose 85% as the threshold is because this is the 10509 * imbalance_pct(117) when a LLC sched group is overloaded. 10510 * 10511 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10512 * and y'= y / SCHED_CAPACITY_SCALE 10513 * 10514 * x is the ratio of sum_util compared to the CPU capacity: 10515 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10516 * y' is the ratio of CPUs to be scanned in the LLC domain, 10517 * and the number of CPUs to scan is calculated by: 10518 * 10519 * nr_scan = llc_weight * y' [2] 10520 * 10521 * When x hits the threshold of overloaded, AKA, when 10522 * x = 100 / pct, y drops to 0. According to [1], 10523 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10524 * 10525 * Scale x by SCHED_CAPACITY_SCALE: 10526 * x' = sum_util / llc_weight; [3] 10527 * 10528 * and finally [1] becomes: 10529 * y = SCHED_CAPACITY_SCALE - 10530 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10531 * 10532 */ 10533 /* equation [3] */ 10534 x = sum_util; 10535 do_div(x, llc_weight); 10536 10537 /* equation [4] */ 10538 pct = env->sd->imbalance_pct; 10539 tmp = x * x * pct * pct; 10540 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10541 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10542 y = SCHED_CAPACITY_SCALE - tmp; 10543 10544 /* equation [2] */ 10545 y *= llc_weight; 10546 do_div(y, SCHED_CAPACITY_SCALE); 10547 if ((int)y != sd_share->nr_idle_scan) 10548 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10549 } 10550 10551 /** 10552 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10553 * @env: The load balancing environment. 10554 * @sds: variable to hold the statistics for this sched_domain. 10555 */ 10556 10557 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10558 { 10559 struct sched_group *sg = env->sd->groups; 10560 struct sg_lb_stats *local = &sds->local_stat; 10561 struct sg_lb_stats tmp_sgs; 10562 unsigned long sum_util = 0; 10563 int sg_status = 0; 10564 10565 do { 10566 struct sg_lb_stats *sgs = &tmp_sgs; 10567 int local_group; 10568 10569 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10570 if (local_group) { 10571 sds->local = sg; 10572 sgs = local; 10573 10574 if (env->idle != CPU_NEWLY_IDLE || 10575 time_after_eq(jiffies, sg->sgc->next_update)) 10576 update_group_capacity(env->sd, env->dst_cpu); 10577 } 10578 10579 update_sg_lb_stats(env, sds, sg, sgs, &sg_status); 10580 10581 if (local_group) 10582 goto next_group; 10583 10584 10585 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 10586 sds->busiest = sg; 10587 sds->busiest_stat = *sgs; 10588 } 10589 10590 next_group: 10591 /* Now, start updating sd_lb_stats */ 10592 sds->total_load += sgs->group_load; 10593 sds->total_capacity += sgs->group_capacity; 10594 10595 sum_util += sgs->group_util; 10596 sg = sg->next; 10597 } while (sg != env->sd->groups); 10598 10599 /* 10600 * Indicate that the child domain of the busiest group prefers tasks 10601 * go to a child's sibling domains first. NB the flags of a sched group 10602 * are those of the child domain. 10603 */ 10604 if (sds->busiest) 10605 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 10606 10607 10608 if (env->sd->flags & SD_NUMA) 10609 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 10610 10611 if (!env->sd->parent) { 10612 struct root_domain *rd = env->dst_rq->rd; 10613 10614 /* update overload indicator if we are at root domain */ 10615 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD); 10616 10617 /* Update over-utilization (tipping point, U >= 0) indicator */ 10618 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED); 10619 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED); 10620 } else if (sg_status & SG_OVERUTILIZED) { 10621 struct root_domain *rd = env->dst_rq->rd; 10622 10623 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED); 10624 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED); 10625 } 10626 10627 update_idle_cpu_scan(env, sum_util); 10628 } 10629 10630 /** 10631 * calculate_imbalance - Calculate the amount of imbalance present within the 10632 * groups of a given sched_domain during load balance. 10633 * @env: load balance environment 10634 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 10635 */ 10636 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 10637 { 10638 struct sg_lb_stats *local, *busiest; 10639 10640 local = &sds->local_stat; 10641 busiest = &sds->busiest_stat; 10642 10643 if (busiest->group_type == group_misfit_task) { 10644 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10645 /* Set imbalance to allow misfit tasks to be balanced. */ 10646 env->migration_type = migrate_misfit; 10647 env->imbalance = 1; 10648 } else { 10649 /* 10650 * Set load imbalance to allow moving task from cpu 10651 * with reduced capacity. 10652 */ 10653 env->migration_type = migrate_load; 10654 env->imbalance = busiest->group_misfit_task_load; 10655 } 10656 return; 10657 } 10658 10659 if (busiest->group_type == group_asym_packing) { 10660 /* 10661 * In case of asym capacity, we will try to migrate all load to 10662 * the preferred CPU. 10663 */ 10664 env->migration_type = migrate_task; 10665 env->imbalance = busiest->sum_h_nr_running; 10666 return; 10667 } 10668 10669 if (busiest->group_type == group_smt_balance) { 10670 /* Reduce number of tasks sharing CPU capacity */ 10671 env->migration_type = migrate_task; 10672 env->imbalance = 1; 10673 return; 10674 } 10675 10676 if (busiest->group_type == group_imbalanced) { 10677 /* 10678 * In the group_imb case we cannot rely on group-wide averages 10679 * to ensure CPU-load equilibrium, try to move any task to fix 10680 * the imbalance. The next load balance will take care of 10681 * balancing back the system. 10682 */ 10683 env->migration_type = migrate_task; 10684 env->imbalance = 1; 10685 return; 10686 } 10687 10688 /* 10689 * Try to use spare capacity of local group without overloading it or 10690 * emptying busiest. 10691 */ 10692 if (local->group_type == group_has_spare) { 10693 if ((busiest->group_type > group_fully_busy) && 10694 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) { 10695 /* 10696 * If busiest is overloaded, try to fill spare 10697 * capacity. This might end up creating spare capacity 10698 * in busiest or busiest still being overloaded but 10699 * there is no simple way to directly compute the 10700 * amount of load to migrate in order to balance the 10701 * system. 10702 */ 10703 env->migration_type = migrate_util; 10704 env->imbalance = max(local->group_capacity, local->group_util) - 10705 local->group_util; 10706 10707 /* 10708 * In some cases, the group's utilization is max or even 10709 * higher than capacity because of migrations but the 10710 * local CPU is (newly) idle. There is at least one 10711 * waiting task in this overloaded busiest group. Let's 10712 * try to pull it. 10713 */ 10714 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) { 10715 env->migration_type = migrate_task; 10716 env->imbalance = 1; 10717 } 10718 10719 return; 10720 } 10721 10722 if (busiest->group_weight == 1 || sds->prefer_sibling) { 10723 /* 10724 * When prefer sibling, evenly spread running tasks on 10725 * groups. 10726 */ 10727 env->migration_type = migrate_task; 10728 env->imbalance = sibling_imbalance(env, sds, busiest, local); 10729 } else { 10730 10731 /* 10732 * If there is no overload, we just want to even the number of 10733 * idle cpus. 10734 */ 10735 env->migration_type = migrate_task; 10736 env->imbalance = max_t(long, 0, 10737 (local->idle_cpus - busiest->idle_cpus)); 10738 } 10739 10740 #ifdef CONFIG_NUMA 10741 /* Consider allowing a small imbalance between NUMA groups */ 10742 if (env->sd->flags & SD_NUMA) { 10743 env->imbalance = adjust_numa_imbalance(env->imbalance, 10744 local->sum_nr_running + 1, 10745 env->sd->imb_numa_nr); 10746 } 10747 #endif 10748 10749 /* Number of tasks to move to restore balance */ 10750 env->imbalance >>= 1; 10751 10752 return; 10753 } 10754 10755 /* 10756 * Local is fully busy but has to take more load to relieve the 10757 * busiest group 10758 */ 10759 if (local->group_type < group_overloaded) { 10760 /* 10761 * Local will become overloaded so the avg_load metrics are 10762 * finally needed. 10763 */ 10764 10765 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 10766 local->group_capacity; 10767 10768 /* 10769 * If the local group is more loaded than the selected 10770 * busiest group don't try to pull any tasks. 10771 */ 10772 if (local->avg_load >= busiest->avg_load) { 10773 env->imbalance = 0; 10774 return; 10775 } 10776 10777 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 10778 sds->total_capacity; 10779 10780 /* 10781 * If the local group is more loaded than the average system 10782 * load, don't try to pull any tasks. 10783 */ 10784 if (local->avg_load >= sds->avg_load) { 10785 env->imbalance = 0; 10786 return; 10787 } 10788 10789 } 10790 10791 /* 10792 * Both group are or will become overloaded and we're trying to get all 10793 * the CPUs to the average_load, so we don't want to push ourselves 10794 * above the average load, nor do we wish to reduce the max loaded CPU 10795 * below the average load. At the same time, we also don't want to 10796 * reduce the group load below the group capacity. Thus we look for 10797 * the minimum possible imbalance. 10798 */ 10799 env->migration_type = migrate_load; 10800 env->imbalance = min( 10801 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 10802 (sds->avg_load - local->avg_load) * local->group_capacity 10803 ) / SCHED_CAPACITY_SCALE; 10804 } 10805 10806 /******* find_busiest_group() helpers end here *********************/ 10807 10808 /* 10809 * Decision matrix according to the local and busiest group type: 10810 * 10811 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 10812 * has_spare nr_idle balanced N/A N/A balanced balanced 10813 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 10814 * misfit_task force N/A N/A N/A N/A N/A 10815 * asym_packing force force N/A N/A force force 10816 * imbalanced force force N/A N/A force force 10817 * overloaded force force N/A N/A force avg_load 10818 * 10819 * N/A : Not Applicable because already filtered while updating 10820 * statistics. 10821 * balanced : The system is balanced for these 2 groups. 10822 * force : Calculate the imbalance as load migration is probably needed. 10823 * avg_load : Only if imbalance is significant enough. 10824 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 10825 * different in groups. 10826 */ 10827 10828 /** 10829 * find_busiest_group - Returns the busiest group within the sched_domain 10830 * if there is an imbalance. 10831 * @env: The load balancing environment. 10832 * 10833 * Also calculates the amount of runnable load which should be moved 10834 * to restore balance. 10835 * 10836 * Return: - The busiest group if imbalance exists. 10837 */ 10838 static struct sched_group *find_busiest_group(struct lb_env *env) 10839 { 10840 struct sg_lb_stats *local, *busiest; 10841 struct sd_lb_stats sds; 10842 10843 init_sd_lb_stats(&sds); 10844 10845 /* 10846 * Compute the various statistics relevant for load balancing at 10847 * this level. 10848 */ 10849 update_sd_lb_stats(env, &sds); 10850 10851 /* There is no busy sibling group to pull tasks from */ 10852 if (!sds.busiest) 10853 goto out_balanced; 10854 10855 busiest = &sds.busiest_stat; 10856 10857 /* Misfit tasks should be dealt with regardless of the avg load */ 10858 if (busiest->group_type == group_misfit_task) 10859 goto force_balance; 10860 10861 if (sched_energy_enabled()) { 10862 struct root_domain *rd = env->dst_rq->rd; 10863 10864 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)) 10865 goto out_balanced; 10866 } 10867 10868 /* ASYM feature bypasses nice load balance check */ 10869 if (busiest->group_type == group_asym_packing) 10870 goto force_balance; 10871 10872 /* 10873 * If the busiest group is imbalanced the below checks don't 10874 * work because they assume all things are equal, which typically 10875 * isn't true due to cpus_ptr constraints and the like. 10876 */ 10877 if (busiest->group_type == group_imbalanced) 10878 goto force_balance; 10879 10880 local = &sds.local_stat; 10881 /* 10882 * If the local group is busier than the selected busiest group 10883 * don't try and pull any tasks. 10884 */ 10885 if (local->group_type > busiest->group_type) 10886 goto out_balanced; 10887 10888 /* 10889 * When groups are overloaded, use the avg_load to ensure fairness 10890 * between tasks. 10891 */ 10892 if (local->group_type == group_overloaded) { 10893 /* 10894 * If the local group is more loaded than the selected 10895 * busiest group don't try to pull any tasks. 10896 */ 10897 if (local->avg_load >= busiest->avg_load) 10898 goto out_balanced; 10899 10900 /* XXX broken for overlapping NUMA groups */ 10901 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 10902 sds.total_capacity; 10903 10904 /* 10905 * Don't pull any tasks if this group is already above the 10906 * domain average load. 10907 */ 10908 if (local->avg_load >= sds.avg_load) 10909 goto out_balanced; 10910 10911 /* 10912 * If the busiest group is more loaded, use imbalance_pct to be 10913 * conservative. 10914 */ 10915 if (100 * busiest->avg_load <= 10916 env->sd->imbalance_pct * local->avg_load) 10917 goto out_balanced; 10918 } 10919 10920 /* 10921 * Try to move all excess tasks to a sibling domain of the busiest 10922 * group's child domain. 10923 */ 10924 if (sds.prefer_sibling && local->group_type == group_has_spare && 10925 sibling_imbalance(env, &sds, busiest, local) > 1) 10926 goto force_balance; 10927 10928 if (busiest->group_type != group_overloaded) { 10929 if (env->idle == CPU_NOT_IDLE) { 10930 /* 10931 * If the busiest group is not overloaded (and as a 10932 * result the local one too) but this CPU is already 10933 * busy, let another idle CPU try to pull task. 10934 */ 10935 goto out_balanced; 10936 } 10937 10938 if (busiest->group_type == group_smt_balance && 10939 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 10940 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 10941 goto force_balance; 10942 } 10943 10944 if (busiest->group_weight > 1 && 10945 local->idle_cpus <= (busiest->idle_cpus + 1)) { 10946 /* 10947 * If the busiest group is not overloaded 10948 * and there is no imbalance between this and busiest 10949 * group wrt idle CPUs, it is balanced. The imbalance 10950 * becomes significant if the diff is greater than 1 10951 * otherwise we might end up to just move the imbalance 10952 * on another group. Of course this applies only if 10953 * there is more than 1 CPU per group. 10954 */ 10955 goto out_balanced; 10956 } 10957 10958 if (busiest->sum_h_nr_running == 1) { 10959 /* 10960 * busiest doesn't have any tasks waiting to run 10961 */ 10962 goto out_balanced; 10963 } 10964 } 10965 10966 force_balance: 10967 /* Looks like there is an imbalance. Compute it */ 10968 calculate_imbalance(env, &sds); 10969 return env->imbalance ? sds.busiest : NULL; 10970 10971 out_balanced: 10972 env->imbalance = 0; 10973 return NULL; 10974 } 10975 10976 /* 10977 * find_busiest_queue - find the busiest runqueue among the CPUs in the group. 10978 */ 10979 static struct rq *find_busiest_queue(struct lb_env *env, 10980 struct sched_group *group) 10981 { 10982 struct rq *busiest = NULL, *rq; 10983 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 10984 unsigned int busiest_nr = 0; 10985 int i; 10986 10987 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10988 unsigned long capacity, load, util; 10989 unsigned int nr_running; 10990 enum fbq_type rt; 10991 10992 rq = cpu_rq(i); 10993 rt = fbq_classify_rq(rq); 10994 10995 /* 10996 * We classify groups/runqueues into three groups: 10997 * - regular: there are !numa tasks 10998 * - remote: there are numa tasks that run on the 'wrong' node 10999 * - all: there is no distinction 11000 * 11001 * In order to avoid migrating ideally placed numa tasks, 11002 * ignore those when there's better options. 11003 * 11004 * If we ignore the actual busiest queue to migrate another 11005 * task, the next balance pass can still reduce the busiest 11006 * queue by moving tasks around inside the node. 11007 * 11008 * If we cannot move enough load due to this classification 11009 * the next pass will adjust the group classification and 11010 * allow migration of more tasks. 11011 * 11012 * Both cases only affect the total convergence complexity. 11013 */ 11014 if (rt > env->fbq_type) 11015 continue; 11016 11017 nr_running = rq->cfs.h_nr_running; 11018 if (!nr_running) 11019 continue; 11020 11021 capacity = capacity_of(i); 11022 11023 /* 11024 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11025 * eventually lead to active_balancing high->low capacity. 11026 * Higher per-CPU capacity is considered better than balancing 11027 * average load. 11028 */ 11029 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11030 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11031 nr_running == 1) 11032 continue; 11033 11034 /* 11035 * Make sure we only pull tasks from a CPU of lower priority 11036 * when balancing between SMT siblings. 11037 * 11038 * If balancing between cores, let lower priority CPUs help 11039 * SMT cores with more than one busy sibling. 11040 */ 11041 if ((env->sd->flags & SD_ASYM_PACKING) && 11042 sched_use_asym_prio(env->sd, i) && 11043 sched_asym_prefer(i, env->dst_cpu) && 11044 nr_running == 1) 11045 continue; 11046 11047 switch (env->migration_type) { 11048 case migrate_load: 11049 /* 11050 * When comparing with load imbalance, use cpu_load() 11051 * which is not scaled with the CPU capacity. 11052 */ 11053 load = cpu_load(rq); 11054 11055 if (nr_running == 1 && load > env->imbalance && 11056 !check_cpu_capacity(rq, env->sd)) 11057 break; 11058 11059 /* 11060 * For the load comparisons with the other CPUs, 11061 * consider the cpu_load() scaled with the CPU 11062 * capacity, so that the load can be moved away 11063 * from the CPU that is potentially running at a 11064 * lower capacity. 11065 * 11066 * Thus we're looking for max(load_i / capacity_i), 11067 * crosswise multiplication to rid ourselves of the 11068 * division works out to: 11069 * load_i * capacity_j > load_j * capacity_i; 11070 * where j is our previous maximum. 11071 */ 11072 if (load * busiest_capacity > busiest_load * capacity) { 11073 busiest_load = load; 11074 busiest_capacity = capacity; 11075 busiest = rq; 11076 } 11077 break; 11078 11079 case migrate_util: 11080 util = cpu_util_cfs_boost(i); 11081 11082 /* 11083 * Don't try to pull utilization from a CPU with one 11084 * running task. Whatever its utilization, we will fail 11085 * detach the task. 11086 */ 11087 if (nr_running <= 1) 11088 continue; 11089 11090 if (busiest_util < util) { 11091 busiest_util = util; 11092 busiest = rq; 11093 } 11094 break; 11095 11096 case migrate_task: 11097 if (busiest_nr < nr_running) { 11098 busiest_nr = nr_running; 11099 busiest = rq; 11100 } 11101 break; 11102 11103 case migrate_misfit: 11104 /* 11105 * For ASYM_CPUCAPACITY domains with misfit tasks we 11106 * simply seek the "biggest" misfit task. 11107 */ 11108 if (rq->misfit_task_load > busiest_load) { 11109 busiest_load = rq->misfit_task_load; 11110 busiest = rq; 11111 } 11112 11113 break; 11114 11115 } 11116 } 11117 11118 return busiest; 11119 } 11120 11121 /* 11122 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11123 * so long as it is large enough. 11124 */ 11125 #define MAX_PINNED_INTERVAL 512 11126 11127 static inline bool 11128 asym_active_balance(struct lb_env *env) 11129 { 11130 /* 11131 * ASYM_PACKING needs to force migrate tasks from busy but lower 11132 * priority CPUs in order to pack all tasks in the highest priority 11133 * CPUs. When done between cores, do it only if the whole core if the 11134 * whole core is idle. 11135 * 11136 * If @env::src_cpu is an SMT core with busy siblings, let 11137 * the lower priority @env::dst_cpu help it. Do not follow 11138 * CPU priority. 11139 */ 11140 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) && 11141 sched_use_asym_prio(env->sd, env->dst_cpu) && 11142 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11143 !sched_use_asym_prio(env->sd, env->src_cpu)); 11144 } 11145 11146 static inline bool 11147 imbalanced_active_balance(struct lb_env *env) 11148 { 11149 struct sched_domain *sd = env->sd; 11150 11151 /* 11152 * The imbalanced case includes the case of pinned tasks preventing a fair 11153 * distribution of the load on the system but also the even distribution of the 11154 * threads on a system with spare capacity 11155 */ 11156 if ((env->migration_type == migrate_task) && 11157 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11158 return 1; 11159 11160 return 0; 11161 } 11162 11163 static int need_active_balance(struct lb_env *env) 11164 { 11165 struct sched_domain *sd = env->sd; 11166 11167 if (asym_active_balance(env)) 11168 return 1; 11169 11170 if (imbalanced_active_balance(env)) 11171 return 1; 11172 11173 /* 11174 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11175 * It's worth migrating the task if the src_cpu's capacity is reduced 11176 * because of other sched_class or IRQs if more capacity stays 11177 * available on dst_cpu. 11178 */ 11179 if ((env->idle != CPU_NOT_IDLE) && 11180 (env->src_rq->cfs.h_nr_running == 1)) { 11181 if ((check_cpu_capacity(env->src_rq, sd)) && 11182 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11183 return 1; 11184 } 11185 11186 if (env->migration_type == migrate_misfit) 11187 return 1; 11188 11189 return 0; 11190 } 11191 11192 static int active_load_balance_cpu_stop(void *data); 11193 11194 static int should_we_balance(struct lb_env *env) 11195 { 11196 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11197 struct sched_group *sg = env->sd->groups; 11198 int cpu, idle_smt = -1; 11199 11200 /* 11201 * Ensure the balancing environment is consistent; can happen 11202 * when the softirq triggers 'during' hotplug. 11203 */ 11204 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11205 return 0; 11206 11207 /* 11208 * In the newly idle case, we will allow all the CPUs 11209 * to do the newly idle load balance. 11210 * 11211 * However, we bail out if we already have tasks or a wakeup pending, 11212 * to optimize wakeup latency. 11213 */ 11214 if (env->idle == CPU_NEWLY_IDLE) { 11215 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11216 return 0; 11217 return 1; 11218 } 11219 11220 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11221 /* Try to find first idle CPU */ 11222 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11223 if (!idle_cpu(cpu)) 11224 continue; 11225 11226 /* 11227 * Don't balance to idle SMT in busy core right away when 11228 * balancing cores, but remember the first idle SMT CPU for 11229 * later consideration. Find CPU on an idle core first. 11230 */ 11231 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11232 if (idle_smt == -1) 11233 idle_smt = cpu; 11234 /* 11235 * If the core is not idle, and first SMT sibling which is 11236 * idle has been found, then its not needed to check other 11237 * SMT siblings for idleness: 11238 */ 11239 #ifdef CONFIG_SCHED_SMT 11240 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11241 #endif 11242 continue; 11243 } 11244 11245 /* 11246 * Are we the first idle core in a non-SMT domain or higher, 11247 * or the first idle CPU in a SMT domain? 11248 */ 11249 return cpu == env->dst_cpu; 11250 } 11251 11252 /* Are we the first idle CPU with busy siblings? */ 11253 if (idle_smt != -1) 11254 return idle_smt == env->dst_cpu; 11255 11256 /* Are we the first CPU of this group ? */ 11257 return group_balance_cpu(sg) == env->dst_cpu; 11258 } 11259 11260 /* 11261 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11262 * tasks if there is an imbalance. 11263 */ 11264 static int load_balance(int this_cpu, struct rq *this_rq, 11265 struct sched_domain *sd, enum cpu_idle_type idle, 11266 int *continue_balancing) 11267 { 11268 int ld_moved, cur_ld_moved, active_balance = 0; 11269 struct sched_domain *sd_parent = sd->parent; 11270 struct sched_group *group; 11271 struct rq *busiest; 11272 struct rq_flags rf; 11273 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11274 struct lb_env env = { 11275 .sd = sd, 11276 .dst_cpu = this_cpu, 11277 .dst_rq = this_rq, 11278 .dst_grpmask = group_balance_mask(sd->groups), 11279 .idle = idle, 11280 .loop_break = SCHED_NR_MIGRATE_BREAK, 11281 .cpus = cpus, 11282 .fbq_type = all, 11283 .tasks = LIST_HEAD_INIT(env.tasks), 11284 }; 11285 11286 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11287 11288 schedstat_inc(sd->lb_count[idle]); 11289 11290 redo: 11291 if (!should_we_balance(&env)) { 11292 *continue_balancing = 0; 11293 goto out_balanced; 11294 } 11295 11296 group = find_busiest_group(&env); 11297 if (!group) { 11298 schedstat_inc(sd->lb_nobusyg[idle]); 11299 goto out_balanced; 11300 } 11301 11302 busiest = find_busiest_queue(&env, group); 11303 if (!busiest) { 11304 schedstat_inc(sd->lb_nobusyq[idle]); 11305 goto out_balanced; 11306 } 11307 11308 WARN_ON_ONCE(busiest == env.dst_rq); 11309 11310 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 11311 11312 env.src_cpu = busiest->cpu; 11313 env.src_rq = busiest; 11314 11315 ld_moved = 0; 11316 /* Clear this flag as soon as we find a pullable task */ 11317 env.flags |= LBF_ALL_PINNED; 11318 if (busiest->nr_running > 1) { 11319 /* 11320 * Attempt to move tasks. If find_busiest_group has found 11321 * an imbalance but busiest->nr_running <= 1, the group is 11322 * still unbalanced. ld_moved simply stays zero, so it is 11323 * correctly treated as an imbalance. 11324 */ 11325 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11326 11327 more_balance: 11328 rq_lock_irqsave(busiest, &rf); 11329 update_rq_clock(busiest); 11330 11331 /* 11332 * cur_ld_moved - load moved in current iteration 11333 * ld_moved - cumulative load moved across iterations 11334 */ 11335 cur_ld_moved = detach_tasks(&env); 11336 11337 /* 11338 * We've detached some tasks from busiest_rq. Every 11339 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11340 * unlock busiest->lock, and we are able to be sure 11341 * that nobody can manipulate the tasks in parallel. 11342 * See task_rq_lock() family for the details. 11343 */ 11344 11345 rq_unlock(busiest, &rf); 11346 11347 if (cur_ld_moved) { 11348 attach_tasks(&env); 11349 ld_moved += cur_ld_moved; 11350 } 11351 11352 local_irq_restore(rf.flags); 11353 11354 if (env.flags & LBF_NEED_BREAK) { 11355 env.flags &= ~LBF_NEED_BREAK; 11356 /* Stop if we tried all running tasks */ 11357 if (env.loop < busiest->nr_running) 11358 goto more_balance; 11359 } 11360 11361 /* 11362 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11363 * us and move them to an alternate dst_cpu in our sched_group 11364 * where they can run. The upper limit on how many times we 11365 * iterate on same src_cpu is dependent on number of CPUs in our 11366 * sched_group. 11367 * 11368 * This changes load balance semantics a bit on who can move 11369 * load to a given_cpu. In addition to the given_cpu itself 11370 * (or a ilb_cpu acting on its behalf where given_cpu is 11371 * nohz-idle), we now have balance_cpu in a position to move 11372 * load to given_cpu. In rare situations, this may cause 11373 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11374 * _independently_ and at _same_ time to move some load to 11375 * given_cpu) causing excess load to be moved to given_cpu. 11376 * This however should not happen so much in practice and 11377 * moreover subsequent load balance cycles should correct the 11378 * excess load moved. 11379 */ 11380 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11381 11382 /* Prevent to re-select dst_cpu via env's CPUs */ 11383 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11384 11385 env.dst_rq = cpu_rq(env.new_dst_cpu); 11386 env.dst_cpu = env.new_dst_cpu; 11387 env.flags &= ~LBF_DST_PINNED; 11388 env.loop = 0; 11389 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11390 11391 /* 11392 * Go back to "more_balance" rather than "redo" since we 11393 * need to continue with same src_cpu. 11394 */ 11395 goto more_balance; 11396 } 11397 11398 /* 11399 * We failed to reach balance because of affinity. 11400 */ 11401 if (sd_parent) { 11402 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11403 11404 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11405 *group_imbalance = 1; 11406 } 11407 11408 /* All tasks on this runqueue were pinned by CPU affinity */ 11409 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11410 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11411 /* 11412 * Attempting to continue load balancing at the current 11413 * sched_domain level only makes sense if there are 11414 * active CPUs remaining as possible busiest CPUs to 11415 * pull load from which are not contained within the 11416 * destination group that is receiving any migrated 11417 * load. 11418 */ 11419 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11420 env.loop = 0; 11421 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11422 goto redo; 11423 } 11424 goto out_all_pinned; 11425 } 11426 } 11427 11428 if (!ld_moved) { 11429 schedstat_inc(sd->lb_failed[idle]); 11430 /* 11431 * Increment the failure counter only on periodic balance. 11432 * We do not want newidle balance, which can be very 11433 * frequent, pollute the failure counter causing 11434 * excessive cache_hot migrations and active balances. 11435 */ 11436 if (idle != CPU_NEWLY_IDLE) 11437 sd->nr_balance_failed++; 11438 11439 if (need_active_balance(&env)) { 11440 unsigned long flags; 11441 11442 raw_spin_rq_lock_irqsave(busiest, flags); 11443 11444 /* 11445 * Don't kick the active_load_balance_cpu_stop, 11446 * if the curr task on busiest CPU can't be 11447 * moved to this_cpu: 11448 */ 11449 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11450 raw_spin_rq_unlock_irqrestore(busiest, flags); 11451 goto out_one_pinned; 11452 } 11453 11454 /* Record that we found at least one task that could run on this_cpu */ 11455 env.flags &= ~LBF_ALL_PINNED; 11456 11457 /* 11458 * ->active_balance synchronizes accesses to 11459 * ->active_balance_work. Once set, it's cleared 11460 * only after active load balance is finished. 11461 */ 11462 if (!busiest->active_balance) { 11463 busiest->active_balance = 1; 11464 busiest->push_cpu = this_cpu; 11465 active_balance = 1; 11466 } 11467 11468 preempt_disable(); 11469 raw_spin_rq_unlock_irqrestore(busiest, flags); 11470 if (active_balance) { 11471 stop_one_cpu_nowait(cpu_of(busiest), 11472 active_load_balance_cpu_stop, busiest, 11473 &busiest->active_balance_work); 11474 } 11475 preempt_enable(); 11476 } 11477 } else { 11478 sd->nr_balance_failed = 0; 11479 } 11480 11481 if (likely(!active_balance) || need_active_balance(&env)) { 11482 /* We were unbalanced, so reset the balancing interval */ 11483 sd->balance_interval = sd->min_interval; 11484 } 11485 11486 goto out; 11487 11488 out_balanced: 11489 /* 11490 * We reach balance although we may have faced some affinity 11491 * constraints. Clear the imbalance flag only if other tasks got 11492 * a chance to move and fix the imbalance. 11493 */ 11494 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11495 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11496 11497 if (*group_imbalance) 11498 *group_imbalance = 0; 11499 } 11500 11501 out_all_pinned: 11502 /* 11503 * We reach balance because all tasks are pinned at this level so 11504 * we can't migrate them. Let the imbalance flag set so parent level 11505 * can try to migrate them. 11506 */ 11507 schedstat_inc(sd->lb_balanced[idle]); 11508 11509 sd->nr_balance_failed = 0; 11510 11511 out_one_pinned: 11512 ld_moved = 0; 11513 11514 /* 11515 * newidle_balance() disregards balance intervals, so we could 11516 * repeatedly reach this code, which would lead to balance_interval 11517 * skyrocketing in a short amount of time. Skip the balance_interval 11518 * increase logic to avoid that. 11519 */ 11520 if (env.idle == CPU_NEWLY_IDLE) 11521 goto out; 11522 11523 /* tune up the balancing interval */ 11524 if ((env.flags & LBF_ALL_PINNED && 11525 sd->balance_interval < MAX_PINNED_INTERVAL) || 11526 sd->balance_interval < sd->max_interval) 11527 sd->balance_interval *= 2; 11528 out: 11529 return ld_moved; 11530 } 11531 11532 static inline unsigned long 11533 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11534 { 11535 unsigned long interval = sd->balance_interval; 11536 11537 if (cpu_busy) 11538 interval *= sd->busy_factor; 11539 11540 /* scale ms to jiffies */ 11541 interval = msecs_to_jiffies(interval); 11542 11543 /* 11544 * Reduce likelihood of busy balancing at higher domains racing with 11545 * balancing at lower domains by preventing their balancing periods 11546 * from being multiples of each other. 11547 */ 11548 if (cpu_busy) 11549 interval -= 1; 11550 11551 interval = clamp(interval, 1UL, max_load_balance_interval); 11552 11553 return interval; 11554 } 11555 11556 static inline void 11557 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11558 { 11559 unsigned long interval, next; 11560 11561 /* used by idle balance, so cpu_busy = 0 */ 11562 interval = get_sd_balance_interval(sd, 0); 11563 next = sd->last_balance + interval; 11564 11565 if (time_after(*next_balance, next)) 11566 *next_balance = next; 11567 } 11568 11569 /* 11570 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11571 * running tasks off the busiest CPU onto idle CPUs. It requires at 11572 * least 1 task to be running on each physical CPU where possible, and 11573 * avoids physical / logical imbalances. 11574 */ 11575 static int active_load_balance_cpu_stop(void *data) 11576 { 11577 struct rq *busiest_rq = data; 11578 int busiest_cpu = cpu_of(busiest_rq); 11579 int target_cpu = busiest_rq->push_cpu; 11580 struct rq *target_rq = cpu_rq(target_cpu); 11581 struct sched_domain *sd; 11582 struct task_struct *p = NULL; 11583 struct rq_flags rf; 11584 11585 rq_lock_irq(busiest_rq, &rf); 11586 /* 11587 * Between queueing the stop-work and running it is a hole in which 11588 * CPUs can become inactive. We should not move tasks from or to 11589 * inactive CPUs. 11590 */ 11591 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 11592 goto out_unlock; 11593 11594 /* Make sure the requested CPU hasn't gone down in the meantime: */ 11595 if (unlikely(busiest_cpu != smp_processor_id() || 11596 !busiest_rq->active_balance)) 11597 goto out_unlock; 11598 11599 /* Is there any task to move? */ 11600 if (busiest_rq->nr_running <= 1) 11601 goto out_unlock; 11602 11603 /* 11604 * This condition is "impossible", if it occurs 11605 * we need to fix it. Originally reported by 11606 * Bjorn Helgaas on a 128-CPU setup. 11607 */ 11608 WARN_ON_ONCE(busiest_rq == target_rq); 11609 11610 /* Search for an sd spanning us and the target CPU. */ 11611 rcu_read_lock(); 11612 for_each_domain(target_cpu, sd) { 11613 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 11614 break; 11615 } 11616 11617 if (likely(sd)) { 11618 struct lb_env env = { 11619 .sd = sd, 11620 .dst_cpu = target_cpu, 11621 .dst_rq = target_rq, 11622 .src_cpu = busiest_rq->cpu, 11623 .src_rq = busiest_rq, 11624 .idle = CPU_IDLE, 11625 .flags = LBF_ACTIVE_LB, 11626 }; 11627 11628 schedstat_inc(sd->alb_count); 11629 update_rq_clock(busiest_rq); 11630 11631 p = detach_one_task(&env); 11632 if (p) { 11633 schedstat_inc(sd->alb_pushed); 11634 /* Active balancing done, reset the failure counter. */ 11635 sd->nr_balance_failed = 0; 11636 } else { 11637 schedstat_inc(sd->alb_failed); 11638 } 11639 } 11640 rcu_read_unlock(); 11641 out_unlock: 11642 busiest_rq->active_balance = 0; 11643 rq_unlock(busiest_rq, &rf); 11644 11645 if (p) 11646 attach_one_task(target_rq, p); 11647 11648 local_irq_enable(); 11649 11650 return 0; 11651 } 11652 11653 static DEFINE_SPINLOCK(balancing); 11654 11655 /* 11656 * Scale the max load_balance interval with the number of CPUs in the system. 11657 * This trades load-balance latency on larger machines for less cross talk. 11658 */ 11659 void update_max_interval(void) 11660 { 11661 max_load_balance_interval = HZ*num_online_cpus()/10; 11662 } 11663 11664 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 11665 { 11666 if (cost > sd->max_newidle_lb_cost) { 11667 /* 11668 * Track max cost of a domain to make sure to not delay the 11669 * next wakeup on the CPU. 11670 */ 11671 sd->max_newidle_lb_cost = cost; 11672 sd->last_decay_max_lb_cost = jiffies; 11673 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 11674 /* 11675 * Decay the newidle max times by ~1% per second to ensure that 11676 * it is not outdated and the current max cost is actually 11677 * shorter. 11678 */ 11679 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 11680 sd->last_decay_max_lb_cost = jiffies; 11681 11682 return true; 11683 } 11684 11685 return false; 11686 } 11687 11688 /* 11689 * It checks each scheduling domain to see if it is due to be balanced, 11690 * and initiates a balancing operation if so. 11691 * 11692 * Balancing parameters are set up in init_sched_domains. 11693 */ 11694 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 11695 { 11696 int continue_balancing = 1; 11697 int cpu = rq->cpu; 11698 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11699 unsigned long interval; 11700 struct sched_domain *sd; 11701 /* Earliest time when we have to do rebalance again */ 11702 unsigned long next_balance = jiffies + 60*HZ; 11703 int update_next_balance = 0; 11704 int need_serialize, need_decay = 0; 11705 u64 max_cost = 0; 11706 11707 rcu_read_lock(); 11708 for_each_domain(cpu, sd) { 11709 /* 11710 * Decay the newidle max times here because this is a regular 11711 * visit to all the domains. 11712 */ 11713 need_decay = update_newidle_cost(sd, 0); 11714 max_cost += sd->max_newidle_lb_cost; 11715 11716 /* 11717 * Stop the load balance at this level. There is another 11718 * CPU in our sched group which is doing load balancing more 11719 * actively. 11720 */ 11721 if (!continue_balancing) { 11722 if (need_decay) 11723 continue; 11724 break; 11725 } 11726 11727 interval = get_sd_balance_interval(sd, busy); 11728 11729 need_serialize = sd->flags & SD_SERIALIZE; 11730 if (need_serialize) { 11731 if (!spin_trylock(&balancing)) 11732 goto out; 11733 } 11734 11735 if (time_after_eq(jiffies, sd->last_balance + interval)) { 11736 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 11737 /* 11738 * The LBF_DST_PINNED logic could have changed 11739 * env->dst_cpu, so we can't know our idle 11740 * state even if we migrated tasks. Update it. 11741 */ 11742 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 11743 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11744 } 11745 sd->last_balance = jiffies; 11746 interval = get_sd_balance_interval(sd, busy); 11747 } 11748 if (need_serialize) 11749 spin_unlock(&balancing); 11750 out: 11751 if (time_after(next_balance, sd->last_balance + interval)) { 11752 next_balance = sd->last_balance + interval; 11753 update_next_balance = 1; 11754 } 11755 } 11756 if (need_decay) { 11757 /* 11758 * Ensure the rq-wide value also decays but keep it at a 11759 * reasonable floor to avoid funnies with rq->avg_idle. 11760 */ 11761 rq->max_idle_balance_cost = 11762 max((u64)sysctl_sched_migration_cost, max_cost); 11763 } 11764 rcu_read_unlock(); 11765 11766 /* 11767 * next_balance will be updated only when there is a need. 11768 * When the cpu is attached to null domain for ex, it will not be 11769 * updated. 11770 */ 11771 if (likely(update_next_balance)) 11772 rq->next_balance = next_balance; 11773 11774 } 11775 11776 static inline int on_null_domain(struct rq *rq) 11777 { 11778 return unlikely(!rcu_dereference_sched(rq->sd)); 11779 } 11780 11781 #ifdef CONFIG_NO_HZ_COMMON 11782 /* 11783 * NOHZ idle load balancing (ILB) details: 11784 * 11785 * - When one of the busy CPUs notices that there may be an idle rebalancing 11786 * needed, they will kick the idle load balancer, which then does idle 11787 * load balancing for all the idle CPUs. 11788 * 11789 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set 11790 * anywhere yet. 11791 */ 11792 static inline int find_new_ilb(void) 11793 { 11794 const struct cpumask *hk_mask; 11795 int ilb_cpu; 11796 11797 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 11798 11799 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 11800 11801 if (ilb_cpu == smp_processor_id()) 11802 continue; 11803 11804 if (idle_cpu(ilb_cpu)) 11805 return ilb_cpu; 11806 } 11807 11808 return -1; 11809 } 11810 11811 /* 11812 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 11813 * SMP function call (IPI). 11814 * 11815 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 11816 */ 11817 static void kick_ilb(unsigned int flags) 11818 { 11819 int ilb_cpu; 11820 11821 /* 11822 * Increase nohz.next_balance only when if full ilb is triggered but 11823 * not if we only update stats. 11824 */ 11825 if (flags & NOHZ_BALANCE_KICK) 11826 nohz.next_balance = jiffies+1; 11827 11828 ilb_cpu = find_new_ilb(); 11829 if (ilb_cpu < 0) 11830 return; 11831 11832 /* 11833 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 11834 * the first flag owns it; cleared by nohz_csd_func(). 11835 */ 11836 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 11837 if (flags & NOHZ_KICK_MASK) 11838 return; 11839 11840 /* 11841 * This way we generate an IPI on the target CPU which 11842 * is idle, and the softirq performing NOHZ idle load balancing 11843 * will be run before returning from the IPI. 11844 */ 11845 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 11846 } 11847 11848 /* 11849 * Current decision point for kicking the idle load balancer in the presence 11850 * of idle CPUs in the system. 11851 */ 11852 static void nohz_balancer_kick(struct rq *rq) 11853 { 11854 unsigned long now = jiffies; 11855 struct sched_domain_shared *sds; 11856 struct sched_domain *sd; 11857 int nr_busy, i, cpu = rq->cpu; 11858 unsigned int flags = 0; 11859 11860 if (unlikely(rq->idle_balance)) 11861 return; 11862 11863 /* 11864 * We may be recently in ticked or tickless idle mode. At the first 11865 * busy tick after returning from idle, we will update the busy stats. 11866 */ 11867 nohz_balance_exit_idle(rq); 11868 11869 /* 11870 * None are in tickless mode and hence no need for NOHZ idle load 11871 * balancing: 11872 */ 11873 if (likely(!atomic_read(&nohz.nr_cpus))) 11874 return; 11875 11876 if (READ_ONCE(nohz.has_blocked) && 11877 time_after(now, READ_ONCE(nohz.next_blocked))) 11878 flags = NOHZ_STATS_KICK; 11879 11880 if (time_before(now, nohz.next_balance)) 11881 goto out; 11882 11883 if (rq->nr_running >= 2) { 11884 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11885 goto out; 11886 } 11887 11888 rcu_read_lock(); 11889 11890 sd = rcu_dereference(rq->sd); 11891 if (sd) { 11892 /* 11893 * If there's a runnable CFS task and the current CPU has reduced 11894 * capacity, kick the ILB to see if there's a better CPU to run on: 11895 */ 11896 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 11897 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11898 goto unlock; 11899 } 11900 } 11901 11902 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 11903 if (sd) { 11904 /* 11905 * When ASYM_PACKING; see if there's a more preferred CPU 11906 * currently idle; in which case, kick the ILB to move tasks 11907 * around. 11908 * 11909 * When balancing betwen cores, all the SMT siblings of the 11910 * preferred CPU must be idle. 11911 */ 11912 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 11913 if (sched_use_asym_prio(sd, i) && 11914 sched_asym_prefer(i, cpu)) { 11915 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11916 goto unlock; 11917 } 11918 } 11919 } 11920 11921 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 11922 if (sd) { 11923 /* 11924 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 11925 * to run the misfit task on. 11926 */ 11927 if (check_misfit_status(rq, sd)) { 11928 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11929 goto unlock; 11930 } 11931 11932 /* 11933 * For asymmetric systems, we do not want to nicely balance 11934 * cache use, instead we want to embrace asymmetry and only 11935 * ensure tasks have enough CPU capacity. 11936 * 11937 * Skip the LLC logic because it's not relevant in that case. 11938 */ 11939 goto unlock; 11940 } 11941 11942 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 11943 if (sds) { 11944 /* 11945 * If there is an imbalance between LLC domains (IOW we could 11946 * increase the overall cache utilization), we need a less-loaded LLC 11947 * domain to pull some load from. Likewise, we may need to spread 11948 * load within the current LLC domain (e.g. packed SMT cores but 11949 * other CPUs are idle). We can't really know from here how busy 11950 * the others are - so just get a NOHZ balance going if it looks 11951 * like this LLC domain has tasks we could move. 11952 */ 11953 nr_busy = atomic_read(&sds->nr_busy_cpus); 11954 if (nr_busy > 1) { 11955 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11956 goto unlock; 11957 } 11958 } 11959 unlock: 11960 rcu_read_unlock(); 11961 out: 11962 if (READ_ONCE(nohz.needs_update)) 11963 flags |= NOHZ_NEXT_KICK; 11964 11965 if (flags) 11966 kick_ilb(flags); 11967 } 11968 11969 static void set_cpu_sd_state_busy(int cpu) 11970 { 11971 struct sched_domain *sd; 11972 11973 rcu_read_lock(); 11974 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 11975 11976 if (!sd || !sd->nohz_idle) 11977 goto unlock; 11978 sd->nohz_idle = 0; 11979 11980 atomic_inc(&sd->shared->nr_busy_cpus); 11981 unlock: 11982 rcu_read_unlock(); 11983 } 11984 11985 void nohz_balance_exit_idle(struct rq *rq) 11986 { 11987 SCHED_WARN_ON(rq != this_rq()); 11988 11989 if (likely(!rq->nohz_tick_stopped)) 11990 return; 11991 11992 rq->nohz_tick_stopped = 0; 11993 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 11994 atomic_dec(&nohz.nr_cpus); 11995 11996 set_cpu_sd_state_busy(rq->cpu); 11997 } 11998 11999 static void set_cpu_sd_state_idle(int cpu) 12000 { 12001 struct sched_domain *sd; 12002 12003 rcu_read_lock(); 12004 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12005 12006 if (!sd || sd->nohz_idle) 12007 goto unlock; 12008 sd->nohz_idle = 1; 12009 12010 atomic_dec(&sd->shared->nr_busy_cpus); 12011 unlock: 12012 rcu_read_unlock(); 12013 } 12014 12015 /* 12016 * This routine will record that the CPU is going idle with tick stopped. 12017 * This info will be used in performing idle load balancing in the future. 12018 */ 12019 void nohz_balance_enter_idle(int cpu) 12020 { 12021 struct rq *rq = cpu_rq(cpu); 12022 12023 SCHED_WARN_ON(cpu != smp_processor_id()); 12024 12025 /* If this CPU is going down, then nothing needs to be done: */ 12026 if (!cpu_active(cpu)) 12027 return; 12028 12029 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 12030 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 12031 return; 12032 12033 /* 12034 * Can be set safely without rq->lock held 12035 * If a clear happens, it will have evaluated last additions because 12036 * rq->lock is held during the check and the clear 12037 */ 12038 rq->has_blocked_load = 1; 12039 12040 /* 12041 * The tick is still stopped but load could have been added in the 12042 * meantime. We set the nohz.has_blocked flag to trig a check of the 12043 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12044 * of nohz.has_blocked can only happen after checking the new load 12045 */ 12046 if (rq->nohz_tick_stopped) 12047 goto out; 12048 12049 /* If we're a completely isolated CPU, we don't play: */ 12050 if (on_null_domain(rq)) 12051 return; 12052 12053 rq->nohz_tick_stopped = 1; 12054 12055 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12056 atomic_inc(&nohz.nr_cpus); 12057 12058 /* 12059 * Ensures that if nohz_idle_balance() fails to observe our 12060 * @idle_cpus_mask store, it must observe the @has_blocked 12061 * and @needs_update stores. 12062 */ 12063 smp_mb__after_atomic(); 12064 12065 set_cpu_sd_state_idle(cpu); 12066 12067 WRITE_ONCE(nohz.needs_update, 1); 12068 out: 12069 /* 12070 * Each time a cpu enter idle, we assume that it has blocked load and 12071 * enable the periodic update of the load of idle cpus 12072 */ 12073 WRITE_ONCE(nohz.has_blocked, 1); 12074 } 12075 12076 static bool update_nohz_stats(struct rq *rq) 12077 { 12078 unsigned int cpu = rq->cpu; 12079 12080 if (!rq->has_blocked_load) 12081 return false; 12082 12083 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12084 return false; 12085 12086 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12087 return true; 12088 12089 update_blocked_averages(cpu); 12090 12091 return rq->has_blocked_load; 12092 } 12093 12094 /* 12095 * Internal function that runs load balance for all idle cpus. The load balance 12096 * can be a simple update of blocked load or a complete load balance with 12097 * tasks movement depending of flags. 12098 */ 12099 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12100 { 12101 /* Earliest time when we have to do rebalance again */ 12102 unsigned long now = jiffies; 12103 unsigned long next_balance = now + 60*HZ; 12104 bool has_blocked_load = false; 12105 int update_next_balance = 0; 12106 int this_cpu = this_rq->cpu; 12107 int balance_cpu; 12108 struct rq *rq; 12109 12110 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12111 12112 /* 12113 * We assume there will be no idle load after this update and clear 12114 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12115 * set the has_blocked flag and trigger another update of idle load. 12116 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12117 * setting the flag, we are sure to not clear the state and not 12118 * check the load of an idle cpu. 12119 * 12120 * Same applies to idle_cpus_mask vs needs_update. 12121 */ 12122 if (flags & NOHZ_STATS_KICK) 12123 WRITE_ONCE(nohz.has_blocked, 0); 12124 if (flags & NOHZ_NEXT_KICK) 12125 WRITE_ONCE(nohz.needs_update, 0); 12126 12127 /* 12128 * Ensures that if we miss the CPU, we must see the has_blocked 12129 * store from nohz_balance_enter_idle(). 12130 */ 12131 smp_mb(); 12132 12133 /* 12134 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12135 * chance for other idle cpu to pull load. 12136 */ 12137 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12138 if (!idle_cpu(balance_cpu)) 12139 continue; 12140 12141 /* 12142 * If this CPU gets work to do, stop the load balancing 12143 * work being done for other CPUs. Next load 12144 * balancing owner will pick it up. 12145 */ 12146 if (need_resched()) { 12147 if (flags & NOHZ_STATS_KICK) 12148 has_blocked_load = true; 12149 if (flags & NOHZ_NEXT_KICK) 12150 WRITE_ONCE(nohz.needs_update, 1); 12151 goto abort; 12152 } 12153 12154 rq = cpu_rq(balance_cpu); 12155 12156 if (flags & NOHZ_STATS_KICK) 12157 has_blocked_load |= update_nohz_stats(rq); 12158 12159 /* 12160 * If time for next balance is due, 12161 * do the balance. 12162 */ 12163 if (time_after_eq(jiffies, rq->next_balance)) { 12164 struct rq_flags rf; 12165 12166 rq_lock_irqsave(rq, &rf); 12167 update_rq_clock(rq); 12168 rq_unlock_irqrestore(rq, &rf); 12169 12170 if (flags & NOHZ_BALANCE_KICK) 12171 rebalance_domains(rq, CPU_IDLE); 12172 } 12173 12174 if (time_after(next_balance, rq->next_balance)) { 12175 next_balance = rq->next_balance; 12176 update_next_balance = 1; 12177 } 12178 } 12179 12180 /* 12181 * next_balance will be updated only when there is a need. 12182 * When the CPU is attached to null domain for ex, it will not be 12183 * updated. 12184 */ 12185 if (likely(update_next_balance)) 12186 nohz.next_balance = next_balance; 12187 12188 if (flags & NOHZ_STATS_KICK) 12189 WRITE_ONCE(nohz.next_blocked, 12190 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12191 12192 abort: 12193 /* There is still blocked load, enable periodic update */ 12194 if (has_blocked_load) 12195 WRITE_ONCE(nohz.has_blocked, 1); 12196 } 12197 12198 /* 12199 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12200 * rebalancing for all the cpus for whom scheduler ticks are stopped. 12201 */ 12202 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12203 { 12204 unsigned int flags = this_rq->nohz_idle_balance; 12205 12206 if (!flags) 12207 return false; 12208 12209 this_rq->nohz_idle_balance = 0; 12210 12211 if (idle != CPU_IDLE) 12212 return false; 12213 12214 _nohz_idle_balance(this_rq, flags); 12215 12216 return true; 12217 } 12218 12219 /* 12220 * Check if we need to directly run the ILB for updating blocked load before 12221 * entering idle state. Here we run ILB directly without issuing IPIs. 12222 * 12223 * Note that when this function is called, the tick may not yet be stopped on 12224 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12225 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12226 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12227 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12228 * called from this function on (this) CPU that's not yet in the mask. That's 12229 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12230 * updating the blocked load of already idle CPUs without waking up one of 12231 * those idle CPUs and outside the preempt disable / irq off phase of the local 12232 * cpu about to enter idle, because it can take a long time. 12233 */ 12234 void nohz_run_idle_balance(int cpu) 12235 { 12236 unsigned int flags; 12237 12238 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12239 12240 /* 12241 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12242 * (ie NOHZ_STATS_KICK set) and will do the same. 12243 */ 12244 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12245 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12246 } 12247 12248 static void nohz_newidle_balance(struct rq *this_rq) 12249 { 12250 int this_cpu = this_rq->cpu; 12251 12252 /* 12253 * This CPU doesn't want to be disturbed by scheduler 12254 * housekeeping 12255 */ 12256 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 12257 return; 12258 12259 /* Will wake up very soon. No time for doing anything else*/ 12260 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12261 return; 12262 12263 /* Don't need to update blocked load of idle CPUs*/ 12264 if (!READ_ONCE(nohz.has_blocked) || 12265 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12266 return; 12267 12268 /* 12269 * Set the need to trigger ILB in order to update blocked load 12270 * before entering idle state. 12271 */ 12272 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12273 } 12274 12275 #else /* !CONFIG_NO_HZ_COMMON */ 12276 static inline void nohz_balancer_kick(struct rq *rq) { } 12277 12278 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12279 { 12280 return false; 12281 } 12282 12283 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12284 #endif /* CONFIG_NO_HZ_COMMON */ 12285 12286 /* 12287 * newidle_balance is called by schedule() if this_cpu is about to become 12288 * idle. Attempts to pull tasks from other CPUs. 12289 * 12290 * Returns: 12291 * < 0 - we released the lock and there are !fair tasks present 12292 * 0 - failed, no new tasks 12293 * > 0 - success, new (fair) tasks present 12294 */ 12295 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf) 12296 { 12297 unsigned long next_balance = jiffies + HZ; 12298 int this_cpu = this_rq->cpu; 12299 u64 t0, t1, curr_cost = 0; 12300 struct sched_domain *sd; 12301 int pulled_task = 0; 12302 12303 update_misfit_status(NULL, this_rq); 12304 12305 /* 12306 * There is a task waiting to run. No need to search for one. 12307 * Return 0; the task will be enqueued when switching to idle. 12308 */ 12309 if (this_rq->ttwu_pending) 12310 return 0; 12311 12312 /* 12313 * We must set idle_stamp _before_ calling idle_balance(), such that we 12314 * measure the duration of idle_balance() as idle time. 12315 */ 12316 this_rq->idle_stamp = rq_clock(this_rq); 12317 12318 /* 12319 * Do not pull tasks towards !active CPUs... 12320 */ 12321 if (!cpu_active(this_cpu)) 12322 return 0; 12323 12324 /* 12325 * This is OK, because current is on_cpu, which avoids it being picked 12326 * for load-balance and preemption/IRQs are still disabled avoiding 12327 * further scheduler activity on it and we're being very careful to 12328 * re-start the picking loop. 12329 */ 12330 rq_unpin_lock(this_rq, rf); 12331 12332 rcu_read_lock(); 12333 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12334 12335 if (!READ_ONCE(this_rq->rd->overload) || 12336 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12337 12338 if (sd) 12339 update_next_balance(sd, &next_balance); 12340 rcu_read_unlock(); 12341 12342 goto out; 12343 } 12344 rcu_read_unlock(); 12345 12346 raw_spin_rq_unlock(this_rq); 12347 12348 t0 = sched_clock_cpu(this_cpu); 12349 update_blocked_averages(this_cpu); 12350 12351 rcu_read_lock(); 12352 for_each_domain(this_cpu, sd) { 12353 int continue_balancing = 1; 12354 u64 domain_cost; 12355 12356 update_next_balance(sd, &next_balance); 12357 12358 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12359 break; 12360 12361 if (sd->flags & SD_BALANCE_NEWIDLE) { 12362 12363 pulled_task = load_balance(this_cpu, this_rq, 12364 sd, CPU_NEWLY_IDLE, 12365 &continue_balancing); 12366 12367 t1 = sched_clock_cpu(this_cpu); 12368 domain_cost = t1 - t0; 12369 update_newidle_cost(sd, domain_cost); 12370 12371 curr_cost += domain_cost; 12372 t0 = t1; 12373 } 12374 12375 /* 12376 * Stop searching for tasks to pull if there are 12377 * now runnable tasks on this rq. 12378 */ 12379 if (pulled_task || this_rq->nr_running > 0 || 12380 this_rq->ttwu_pending) 12381 break; 12382 } 12383 rcu_read_unlock(); 12384 12385 raw_spin_rq_lock(this_rq); 12386 12387 if (curr_cost > this_rq->max_idle_balance_cost) 12388 this_rq->max_idle_balance_cost = curr_cost; 12389 12390 /* 12391 * While browsing the domains, we released the rq lock, a task could 12392 * have been enqueued in the meantime. Since we're not going idle, 12393 * pretend we pulled a task. 12394 */ 12395 if (this_rq->cfs.h_nr_running && !pulled_task) 12396 pulled_task = 1; 12397 12398 /* Is there a task of a high priority class? */ 12399 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 12400 pulled_task = -1; 12401 12402 out: 12403 /* Move the next balance forward */ 12404 if (time_after(this_rq->next_balance, next_balance)) 12405 this_rq->next_balance = next_balance; 12406 12407 if (pulled_task) 12408 this_rq->idle_stamp = 0; 12409 else 12410 nohz_newidle_balance(this_rq); 12411 12412 rq_repin_lock(this_rq, rf); 12413 12414 return pulled_task; 12415 } 12416 12417 /* 12418 * run_rebalance_domains is triggered when needed from the scheduler tick. 12419 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 12420 */ 12421 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 12422 { 12423 struct rq *this_rq = this_rq(); 12424 enum cpu_idle_type idle = this_rq->idle_balance ? 12425 CPU_IDLE : CPU_NOT_IDLE; 12426 12427 /* 12428 * If this CPU has a pending nohz_balance_kick, then do the 12429 * balancing on behalf of the other idle CPUs whose ticks are 12430 * stopped. Do nohz_idle_balance *before* rebalance_domains to 12431 * give the idle CPUs a chance to load balance. Else we may 12432 * load balance only within the local sched_domain hierarchy 12433 * and abort nohz_idle_balance altogether if we pull some load. 12434 */ 12435 if (nohz_idle_balance(this_rq, idle)) 12436 return; 12437 12438 /* normal load balance */ 12439 update_blocked_averages(this_rq->cpu); 12440 rebalance_domains(this_rq, idle); 12441 } 12442 12443 /* 12444 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12445 */ 12446 void trigger_load_balance(struct rq *rq) 12447 { 12448 /* 12449 * Don't need to rebalance while attached to NULL domain or 12450 * runqueue CPU is not active 12451 */ 12452 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12453 return; 12454 12455 if (time_after_eq(jiffies, rq->next_balance)) 12456 raise_softirq(SCHED_SOFTIRQ); 12457 12458 nohz_balancer_kick(rq); 12459 } 12460 12461 static void rq_online_fair(struct rq *rq) 12462 { 12463 update_sysctl(); 12464 12465 update_runtime_enabled(rq); 12466 } 12467 12468 static void rq_offline_fair(struct rq *rq) 12469 { 12470 update_sysctl(); 12471 12472 /* Ensure any throttled groups are reachable by pick_next_task */ 12473 unthrottle_offline_cfs_rqs(rq); 12474 12475 /* Ensure that we remove rq contribution to group share: */ 12476 clear_tg_offline_cfs_rqs(rq); 12477 } 12478 12479 #endif /* CONFIG_SMP */ 12480 12481 #ifdef CONFIG_SCHED_CORE 12482 static inline bool 12483 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12484 { 12485 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12486 u64 slice = se->slice; 12487 12488 return (rtime * min_nr_tasks > slice); 12489 } 12490 12491 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12492 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12493 { 12494 if (!sched_core_enabled(rq)) 12495 return; 12496 12497 /* 12498 * If runqueue has only one task which used up its slice and 12499 * if the sibling is forced idle, then trigger schedule to 12500 * give forced idle task a chance. 12501 * 12502 * sched_slice() considers only this active rq and it gets the 12503 * whole slice. But during force idle, we have siblings acting 12504 * like a single runqueue and hence we need to consider runnable 12505 * tasks on this CPU and the forced idle CPU. Ideally, we should 12506 * go through the forced idle rq, but that would be a perf hit. 12507 * We can assume that the forced idle CPU has at least 12508 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12509 * if we need to give up the CPU. 12510 */ 12511 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 12512 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12513 resched_curr(rq); 12514 } 12515 12516 /* 12517 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12518 */ 12519 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12520 bool forceidle) 12521 { 12522 for_each_sched_entity(se) { 12523 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12524 12525 if (forceidle) { 12526 if (cfs_rq->forceidle_seq == fi_seq) 12527 break; 12528 cfs_rq->forceidle_seq = fi_seq; 12529 } 12530 12531 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12532 } 12533 } 12534 12535 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12536 { 12537 struct sched_entity *se = &p->se; 12538 12539 if (p->sched_class != &fair_sched_class) 12540 return; 12541 12542 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12543 } 12544 12545 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12546 bool in_fi) 12547 { 12548 struct rq *rq = task_rq(a); 12549 const struct sched_entity *sea = &a->se; 12550 const struct sched_entity *seb = &b->se; 12551 struct cfs_rq *cfs_rqa; 12552 struct cfs_rq *cfs_rqb; 12553 s64 delta; 12554 12555 SCHED_WARN_ON(task_rq(b)->core != rq->core); 12556 12557 #ifdef CONFIG_FAIR_GROUP_SCHED 12558 /* 12559 * Find an se in the hierarchy for tasks a and b, such that the se's 12560 * are immediate siblings. 12561 */ 12562 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12563 int sea_depth = sea->depth; 12564 int seb_depth = seb->depth; 12565 12566 if (sea_depth >= seb_depth) 12567 sea = parent_entity(sea); 12568 if (sea_depth <= seb_depth) 12569 seb = parent_entity(seb); 12570 } 12571 12572 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 12573 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 12574 12575 cfs_rqa = sea->cfs_rq; 12576 cfs_rqb = seb->cfs_rq; 12577 #else 12578 cfs_rqa = &task_rq(a)->cfs; 12579 cfs_rqb = &task_rq(b)->cfs; 12580 #endif 12581 12582 /* 12583 * Find delta after normalizing se's vruntime with its cfs_rq's 12584 * min_vruntime_fi, which would have been updated in prior calls 12585 * to se_fi_update(). 12586 */ 12587 delta = (s64)(sea->vruntime - seb->vruntime) + 12588 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 12589 12590 return delta > 0; 12591 } 12592 12593 static int task_is_throttled_fair(struct task_struct *p, int cpu) 12594 { 12595 struct cfs_rq *cfs_rq; 12596 12597 #ifdef CONFIG_FAIR_GROUP_SCHED 12598 cfs_rq = task_group(p)->cfs_rq[cpu]; 12599 #else 12600 cfs_rq = &cpu_rq(cpu)->cfs; 12601 #endif 12602 return throttled_hierarchy(cfs_rq); 12603 } 12604 #else 12605 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 12606 #endif 12607 12608 /* 12609 * scheduler tick hitting a task of our scheduling class. 12610 * 12611 * NOTE: This function can be called remotely by the tick offload that 12612 * goes along full dynticks. Therefore no local assumption can be made 12613 * and everything must be accessed through the @rq and @curr passed in 12614 * parameters. 12615 */ 12616 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 12617 { 12618 struct cfs_rq *cfs_rq; 12619 struct sched_entity *se = &curr->se; 12620 12621 for_each_sched_entity(se) { 12622 cfs_rq = cfs_rq_of(se); 12623 entity_tick(cfs_rq, se, queued); 12624 } 12625 12626 if (static_branch_unlikely(&sched_numa_balancing)) 12627 task_tick_numa(rq, curr); 12628 12629 update_misfit_status(curr, rq); 12630 update_overutilized_status(task_rq(curr)); 12631 12632 task_tick_core(rq, curr); 12633 } 12634 12635 /* 12636 * called on fork with the child task as argument from the parent's context 12637 * - child not yet on the tasklist 12638 * - preemption disabled 12639 */ 12640 static void task_fork_fair(struct task_struct *p) 12641 { 12642 struct sched_entity *se = &p->se, *curr; 12643 struct cfs_rq *cfs_rq; 12644 struct rq *rq = this_rq(); 12645 struct rq_flags rf; 12646 12647 rq_lock(rq, &rf); 12648 update_rq_clock(rq); 12649 12650 cfs_rq = task_cfs_rq(current); 12651 curr = cfs_rq->curr; 12652 if (curr) 12653 update_curr(cfs_rq); 12654 place_entity(cfs_rq, se, ENQUEUE_INITIAL); 12655 rq_unlock(rq, &rf); 12656 } 12657 12658 /* 12659 * Priority of the task has changed. Check to see if we preempt 12660 * the current task. 12661 */ 12662 static void 12663 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 12664 { 12665 if (!task_on_rq_queued(p)) 12666 return; 12667 12668 if (rq->cfs.nr_running == 1) 12669 return; 12670 12671 /* 12672 * Reschedule if we are currently running on this runqueue and 12673 * our priority decreased, or if we are not currently running on 12674 * this runqueue and our priority is higher than the current's 12675 */ 12676 if (task_current(rq, p)) { 12677 if (p->prio > oldprio) 12678 resched_curr(rq); 12679 } else 12680 wakeup_preempt(rq, p, 0); 12681 } 12682 12683 #ifdef CONFIG_FAIR_GROUP_SCHED 12684 /* 12685 * Propagate the changes of the sched_entity across the tg tree to make it 12686 * visible to the root 12687 */ 12688 static void propagate_entity_cfs_rq(struct sched_entity *se) 12689 { 12690 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12691 12692 if (cfs_rq_throttled(cfs_rq)) 12693 return; 12694 12695 if (!throttled_hierarchy(cfs_rq)) 12696 list_add_leaf_cfs_rq(cfs_rq); 12697 12698 /* Start to propagate at parent */ 12699 se = se->parent; 12700 12701 for_each_sched_entity(se) { 12702 cfs_rq = cfs_rq_of(se); 12703 12704 update_load_avg(cfs_rq, se, UPDATE_TG); 12705 12706 if (cfs_rq_throttled(cfs_rq)) 12707 break; 12708 12709 if (!throttled_hierarchy(cfs_rq)) 12710 list_add_leaf_cfs_rq(cfs_rq); 12711 } 12712 } 12713 #else 12714 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 12715 #endif 12716 12717 static void detach_entity_cfs_rq(struct sched_entity *se) 12718 { 12719 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12720 12721 #ifdef CONFIG_SMP 12722 /* 12723 * In case the task sched_avg hasn't been attached: 12724 * - A forked task which hasn't been woken up by wake_up_new_task(). 12725 * - A task which has been woken up by try_to_wake_up() but is 12726 * waiting for actually being woken up by sched_ttwu_pending(). 12727 */ 12728 if (!se->avg.last_update_time) 12729 return; 12730 #endif 12731 12732 /* Catch up with the cfs_rq and remove our load when we leave */ 12733 update_load_avg(cfs_rq, se, 0); 12734 detach_entity_load_avg(cfs_rq, se); 12735 update_tg_load_avg(cfs_rq); 12736 propagate_entity_cfs_rq(se); 12737 } 12738 12739 static void attach_entity_cfs_rq(struct sched_entity *se) 12740 { 12741 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12742 12743 /* Synchronize entity with its cfs_rq */ 12744 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 12745 attach_entity_load_avg(cfs_rq, se); 12746 update_tg_load_avg(cfs_rq); 12747 propagate_entity_cfs_rq(se); 12748 } 12749 12750 static void detach_task_cfs_rq(struct task_struct *p) 12751 { 12752 struct sched_entity *se = &p->se; 12753 12754 detach_entity_cfs_rq(se); 12755 } 12756 12757 static void attach_task_cfs_rq(struct task_struct *p) 12758 { 12759 struct sched_entity *se = &p->se; 12760 12761 attach_entity_cfs_rq(se); 12762 } 12763 12764 static void switched_from_fair(struct rq *rq, struct task_struct *p) 12765 { 12766 detach_task_cfs_rq(p); 12767 } 12768 12769 static void switched_to_fair(struct rq *rq, struct task_struct *p) 12770 { 12771 attach_task_cfs_rq(p); 12772 12773 if (task_on_rq_queued(p)) { 12774 /* 12775 * We were most likely switched from sched_rt, so 12776 * kick off the schedule if running, otherwise just see 12777 * if we can still preempt the current task. 12778 */ 12779 if (task_current(rq, p)) 12780 resched_curr(rq); 12781 else 12782 wakeup_preempt(rq, p, 0); 12783 } 12784 } 12785 12786 /* Account for a task changing its policy or group. 12787 * 12788 * This routine is mostly called to set cfs_rq->curr field when a task 12789 * migrates between groups/classes. 12790 */ 12791 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 12792 { 12793 struct sched_entity *se = &p->se; 12794 12795 #ifdef CONFIG_SMP 12796 if (task_on_rq_queued(p)) { 12797 /* 12798 * Move the next running task to the front of the list, so our 12799 * cfs_tasks list becomes MRU one. 12800 */ 12801 list_move(&se->group_node, &rq->cfs_tasks); 12802 } 12803 #endif 12804 12805 for_each_sched_entity(se) { 12806 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12807 12808 set_next_entity(cfs_rq, se); 12809 /* ensure bandwidth has been allocated on our new cfs_rq */ 12810 account_cfs_rq_runtime(cfs_rq, 0); 12811 } 12812 } 12813 12814 void init_cfs_rq(struct cfs_rq *cfs_rq) 12815 { 12816 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 12817 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 12818 #ifdef CONFIG_SMP 12819 raw_spin_lock_init(&cfs_rq->removed.lock); 12820 #endif 12821 } 12822 12823 #ifdef CONFIG_FAIR_GROUP_SCHED 12824 static void task_change_group_fair(struct task_struct *p) 12825 { 12826 /* 12827 * We couldn't detach or attach a forked task which 12828 * hasn't been woken up by wake_up_new_task(). 12829 */ 12830 if (READ_ONCE(p->__state) == TASK_NEW) 12831 return; 12832 12833 detach_task_cfs_rq(p); 12834 12835 #ifdef CONFIG_SMP 12836 /* Tell se's cfs_rq has been changed -- migrated */ 12837 p->se.avg.last_update_time = 0; 12838 #endif 12839 set_task_rq(p, task_cpu(p)); 12840 attach_task_cfs_rq(p); 12841 } 12842 12843 void free_fair_sched_group(struct task_group *tg) 12844 { 12845 int i; 12846 12847 for_each_possible_cpu(i) { 12848 if (tg->cfs_rq) 12849 kfree(tg->cfs_rq[i]); 12850 if (tg->se) 12851 kfree(tg->se[i]); 12852 } 12853 12854 kfree(tg->cfs_rq); 12855 kfree(tg->se); 12856 } 12857 12858 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12859 { 12860 struct sched_entity *se; 12861 struct cfs_rq *cfs_rq; 12862 int i; 12863 12864 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 12865 if (!tg->cfs_rq) 12866 goto err; 12867 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 12868 if (!tg->se) 12869 goto err; 12870 12871 tg->shares = NICE_0_LOAD; 12872 12873 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 12874 12875 for_each_possible_cpu(i) { 12876 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 12877 GFP_KERNEL, cpu_to_node(i)); 12878 if (!cfs_rq) 12879 goto err; 12880 12881 se = kzalloc_node(sizeof(struct sched_entity_stats), 12882 GFP_KERNEL, cpu_to_node(i)); 12883 if (!se) 12884 goto err_free_rq; 12885 12886 init_cfs_rq(cfs_rq); 12887 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 12888 init_entity_runnable_average(se); 12889 } 12890 12891 return 1; 12892 12893 err_free_rq: 12894 kfree(cfs_rq); 12895 err: 12896 return 0; 12897 } 12898 12899 void online_fair_sched_group(struct task_group *tg) 12900 { 12901 struct sched_entity *se; 12902 struct rq_flags rf; 12903 struct rq *rq; 12904 int i; 12905 12906 for_each_possible_cpu(i) { 12907 rq = cpu_rq(i); 12908 se = tg->se[i]; 12909 rq_lock_irq(rq, &rf); 12910 update_rq_clock(rq); 12911 attach_entity_cfs_rq(se); 12912 sync_throttle(tg, i); 12913 rq_unlock_irq(rq, &rf); 12914 } 12915 } 12916 12917 void unregister_fair_sched_group(struct task_group *tg) 12918 { 12919 unsigned long flags; 12920 struct rq *rq; 12921 int cpu; 12922 12923 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12924 12925 for_each_possible_cpu(cpu) { 12926 if (tg->se[cpu]) 12927 remove_entity_load_avg(tg->se[cpu]); 12928 12929 /* 12930 * Only empty task groups can be destroyed; so we can speculatively 12931 * check on_list without danger of it being re-added. 12932 */ 12933 if (!tg->cfs_rq[cpu]->on_list) 12934 continue; 12935 12936 rq = cpu_rq(cpu); 12937 12938 raw_spin_rq_lock_irqsave(rq, flags); 12939 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 12940 raw_spin_rq_unlock_irqrestore(rq, flags); 12941 } 12942 } 12943 12944 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 12945 struct sched_entity *se, int cpu, 12946 struct sched_entity *parent) 12947 { 12948 struct rq *rq = cpu_rq(cpu); 12949 12950 cfs_rq->tg = tg; 12951 cfs_rq->rq = rq; 12952 init_cfs_rq_runtime(cfs_rq); 12953 12954 tg->cfs_rq[cpu] = cfs_rq; 12955 tg->se[cpu] = se; 12956 12957 /* se could be NULL for root_task_group */ 12958 if (!se) 12959 return; 12960 12961 if (!parent) { 12962 se->cfs_rq = &rq->cfs; 12963 se->depth = 0; 12964 } else { 12965 se->cfs_rq = parent->my_q; 12966 se->depth = parent->depth + 1; 12967 } 12968 12969 se->my_q = cfs_rq; 12970 /* guarantee group entities always have weight */ 12971 update_load_set(&se->load, NICE_0_LOAD); 12972 se->parent = parent; 12973 } 12974 12975 static DEFINE_MUTEX(shares_mutex); 12976 12977 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 12978 { 12979 int i; 12980 12981 lockdep_assert_held(&shares_mutex); 12982 12983 /* 12984 * We can't change the weight of the root cgroup. 12985 */ 12986 if (!tg->se[0]) 12987 return -EINVAL; 12988 12989 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 12990 12991 if (tg->shares == shares) 12992 return 0; 12993 12994 tg->shares = shares; 12995 for_each_possible_cpu(i) { 12996 struct rq *rq = cpu_rq(i); 12997 struct sched_entity *se = tg->se[i]; 12998 struct rq_flags rf; 12999 13000 /* Propagate contribution to hierarchy */ 13001 rq_lock_irqsave(rq, &rf); 13002 update_rq_clock(rq); 13003 for_each_sched_entity(se) { 13004 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13005 update_cfs_group(se); 13006 } 13007 rq_unlock_irqrestore(rq, &rf); 13008 } 13009 13010 return 0; 13011 } 13012 13013 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13014 { 13015 int ret; 13016 13017 mutex_lock(&shares_mutex); 13018 if (tg_is_idle(tg)) 13019 ret = -EINVAL; 13020 else 13021 ret = __sched_group_set_shares(tg, shares); 13022 mutex_unlock(&shares_mutex); 13023 13024 return ret; 13025 } 13026 13027 int sched_group_set_idle(struct task_group *tg, long idle) 13028 { 13029 int i; 13030 13031 if (tg == &root_task_group) 13032 return -EINVAL; 13033 13034 if (idle < 0 || idle > 1) 13035 return -EINVAL; 13036 13037 mutex_lock(&shares_mutex); 13038 13039 if (tg->idle == idle) { 13040 mutex_unlock(&shares_mutex); 13041 return 0; 13042 } 13043 13044 tg->idle = idle; 13045 13046 for_each_possible_cpu(i) { 13047 struct rq *rq = cpu_rq(i); 13048 struct sched_entity *se = tg->se[i]; 13049 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 13050 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13051 long idle_task_delta; 13052 struct rq_flags rf; 13053 13054 rq_lock_irqsave(rq, &rf); 13055 13056 grp_cfs_rq->idle = idle; 13057 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13058 goto next_cpu; 13059 13060 if (se->on_rq) { 13061 parent_cfs_rq = cfs_rq_of(se); 13062 if (cfs_rq_is_idle(grp_cfs_rq)) 13063 parent_cfs_rq->idle_nr_running++; 13064 else 13065 parent_cfs_rq->idle_nr_running--; 13066 } 13067 13068 idle_task_delta = grp_cfs_rq->h_nr_running - 13069 grp_cfs_rq->idle_h_nr_running; 13070 if (!cfs_rq_is_idle(grp_cfs_rq)) 13071 idle_task_delta *= -1; 13072 13073 for_each_sched_entity(se) { 13074 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13075 13076 if (!se->on_rq) 13077 break; 13078 13079 cfs_rq->idle_h_nr_running += idle_task_delta; 13080 13081 /* Already accounted at parent level and above. */ 13082 if (cfs_rq_is_idle(cfs_rq)) 13083 break; 13084 } 13085 13086 next_cpu: 13087 rq_unlock_irqrestore(rq, &rf); 13088 } 13089 13090 /* Idle groups have minimum weight. */ 13091 if (tg_is_idle(tg)) 13092 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13093 else 13094 __sched_group_set_shares(tg, NICE_0_LOAD); 13095 13096 mutex_unlock(&shares_mutex); 13097 return 0; 13098 } 13099 13100 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13101 13102 13103 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13104 { 13105 struct sched_entity *se = &task->se; 13106 unsigned int rr_interval = 0; 13107 13108 /* 13109 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13110 * idle runqueue: 13111 */ 13112 if (rq->cfs.load.weight) 13113 rr_interval = NS_TO_JIFFIES(se->slice); 13114 13115 return rr_interval; 13116 } 13117 13118 /* 13119 * All the scheduling class methods: 13120 */ 13121 DEFINE_SCHED_CLASS(fair) = { 13122 13123 .enqueue_task = enqueue_task_fair, 13124 .dequeue_task = dequeue_task_fair, 13125 .yield_task = yield_task_fair, 13126 .yield_to_task = yield_to_task_fair, 13127 13128 .wakeup_preempt = check_preempt_wakeup_fair, 13129 13130 .pick_next_task = __pick_next_task_fair, 13131 .put_prev_task = put_prev_task_fair, 13132 .set_next_task = set_next_task_fair, 13133 13134 #ifdef CONFIG_SMP 13135 .balance = balance_fair, 13136 .pick_task = pick_task_fair, 13137 .select_task_rq = select_task_rq_fair, 13138 .migrate_task_rq = migrate_task_rq_fair, 13139 13140 .rq_online = rq_online_fair, 13141 .rq_offline = rq_offline_fair, 13142 13143 .task_dead = task_dead_fair, 13144 .set_cpus_allowed = set_cpus_allowed_common, 13145 #endif 13146 13147 .task_tick = task_tick_fair, 13148 .task_fork = task_fork_fair, 13149 13150 .prio_changed = prio_changed_fair, 13151 .switched_from = switched_from_fair, 13152 .switched_to = switched_to_fair, 13153 13154 .get_rr_interval = get_rr_interval_fair, 13155 13156 .update_curr = update_curr_fair, 13157 13158 #ifdef CONFIG_FAIR_GROUP_SCHED 13159 .task_change_group = task_change_group_fair, 13160 #endif 13161 13162 #ifdef CONFIG_SCHED_CORE 13163 .task_is_throttled = task_is_throttled_fair, 13164 #endif 13165 13166 #ifdef CONFIG_UCLAMP_TASK 13167 .uclamp_enabled = 1, 13168 #endif 13169 }; 13170 13171 #ifdef CONFIG_SCHED_DEBUG 13172 void print_cfs_stats(struct seq_file *m, int cpu) 13173 { 13174 struct cfs_rq *cfs_rq, *pos; 13175 13176 rcu_read_lock(); 13177 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13178 print_cfs_rq(m, cpu, cfs_rq); 13179 rcu_read_unlock(); 13180 } 13181 13182 #ifdef CONFIG_NUMA_BALANCING 13183 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13184 { 13185 int node; 13186 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13187 struct numa_group *ng; 13188 13189 rcu_read_lock(); 13190 ng = rcu_dereference(p->numa_group); 13191 for_each_online_node(node) { 13192 if (p->numa_faults) { 13193 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13194 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13195 } 13196 if (ng) { 13197 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13198 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13199 } 13200 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13201 } 13202 rcu_read_unlock(); 13203 } 13204 #endif /* CONFIG_NUMA_BALANCING */ 13205 #endif /* CONFIG_SCHED_DEBUG */ 13206 13207 __init void init_sched_fair_class(void) 13208 { 13209 #ifdef CONFIG_SMP 13210 int i; 13211 13212 for_each_possible_cpu(i) { 13213 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13214 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13215 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13216 GFP_KERNEL, cpu_to_node(i)); 13217 13218 #ifdef CONFIG_CFS_BANDWIDTH 13219 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13220 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13221 #endif 13222 } 13223 13224 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 13225 13226 #ifdef CONFIG_NO_HZ_COMMON 13227 nohz.next_balance = jiffies; 13228 nohz.next_blocked = jiffies; 13229 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13230 #endif 13231 #endif /* SMP */ 13232 13233 } 13234