1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 21 */ 22 23 #include <linux/sched/mm.h> 24 #include <linux/sched/topology.h> 25 26 #include <linux/latencytop.h> 27 #include <linux/cpumask.h> 28 #include <linux/cpuidle.h> 29 #include <linux/slab.h> 30 #include <linux/profile.h> 31 #include <linux/interrupt.h> 32 #include <linux/mempolicy.h> 33 #include <linux/migrate.h> 34 #include <linux/task_work.h> 35 36 #include <trace/events/sched.h> 37 38 #include "sched.h" 39 40 /* 41 * Targeted preemption latency for CPU-bound tasks: 42 * 43 * NOTE: this latency value is not the same as the concept of 44 * 'timeslice length' - timeslices in CFS are of variable length 45 * and have no persistent notion like in traditional, time-slice 46 * based scheduling concepts. 47 * 48 * (to see the precise effective timeslice length of your workload, 49 * run vmstat and monitor the context-switches (cs) field) 50 * 51 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 52 */ 53 unsigned int sysctl_sched_latency = 6000000ULL; 54 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 55 56 /* 57 * The initial- and re-scaling of tunables is configurable 58 * 59 * Options are: 60 * 61 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 62 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 63 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 64 * 65 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 66 */ 67 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 68 69 /* 70 * Minimal preemption granularity for CPU-bound tasks: 71 * 72 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 73 */ 74 unsigned int sysctl_sched_min_granularity = 750000ULL; 75 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 76 77 /* 78 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity 79 */ 80 static unsigned int sched_nr_latency = 8; 81 82 /* 83 * After fork, child runs first. If set to 0 (default) then 84 * parent will (try to) run first. 85 */ 86 unsigned int sysctl_sched_child_runs_first __read_mostly; 87 88 /* 89 * SCHED_OTHER wake-up granularity. 90 * 91 * This option delays the preemption effects of decoupled workloads 92 * and reduces their over-scheduling. Synchronous workloads will still 93 * have immediate wakeup/sleep latencies. 94 * 95 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 96 */ 97 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 98 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 99 100 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 101 102 #ifdef CONFIG_SMP 103 /* 104 * For asym packing, by default the lower numbered cpu has higher priority. 105 */ 106 int __weak arch_asym_cpu_priority(int cpu) 107 { 108 return -cpu; 109 } 110 #endif 111 112 #ifdef CONFIG_CFS_BANDWIDTH 113 /* 114 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 115 * each time a cfs_rq requests quota. 116 * 117 * Note: in the case that the slice exceeds the runtime remaining (either due 118 * to consumption or the quota being specified to be smaller than the slice) 119 * we will always only issue the remaining available time. 120 * 121 * (default: 5 msec, units: microseconds) 122 */ 123 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 124 #endif 125 126 /* 127 * The margin used when comparing utilization with CPU capacity: 128 * util * margin < capacity * 1024 129 * 130 * (default: ~20%) 131 */ 132 unsigned int capacity_margin = 1280; 133 134 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 135 { 136 lw->weight += inc; 137 lw->inv_weight = 0; 138 } 139 140 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 141 { 142 lw->weight -= dec; 143 lw->inv_weight = 0; 144 } 145 146 static inline void update_load_set(struct load_weight *lw, unsigned long w) 147 { 148 lw->weight = w; 149 lw->inv_weight = 0; 150 } 151 152 /* 153 * Increase the granularity value when there are more CPUs, 154 * because with more CPUs the 'effective latency' as visible 155 * to users decreases. But the relationship is not linear, 156 * so pick a second-best guess by going with the log2 of the 157 * number of CPUs. 158 * 159 * This idea comes from the SD scheduler of Con Kolivas: 160 */ 161 static unsigned int get_update_sysctl_factor(void) 162 { 163 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 164 unsigned int factor; 165 166 switch (sysctl_sched_tunable_scaling) { 167 case SCHED_TUNABLESCALING_NONE: 168 factor = 1; 169 break; 170 case SCHED_TUNABLESCALING_LINEAR: 171 factor = cpus; 172 break; 173 case SCHED_TUNABLESCALING_LOG: 174 default: 175 factor = 1 + ilog2(cpus); 176 break; 177 } 178 179 return factor; 180 } 181 182 static void update_sysctl(void) 183 { 184 unsigned int factor = get_update_sysctl_factor(); 185 186 #define SET_SYSCTL(name) \ 187 (sysctl_##name = (factor) * normalized_sysctl_##name) 188 SET_SYSCTL(sched_min_granularity); 189 SET_SYSCTL(sched_latency); 190 SET_SYSCTL(sched_wakeup_granularity); 191 #undef SET_SYSCTL 192 } 193 194 void sched_init_granularity(void) 195 { 196 update_sysctl(); 197 } 198 199 #define WMULT_CONST (~0U) 200 #define WMULT_SHIFT 32 201 202 static void __update_inv_weight(struct load_weight *lw) 203 { 204 unsigned long w; 205 206 if (likely(lw->inv_weight)) 207 return; 208 209 w = scale_load_down(lw->weight); 210 211 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 212 lw->inv_weight = 1; 213 else if (unlikely(!w)) 214 lw->inv_weight = WMULT_CONST; 215 else 216 lw->inv_weight = WMULT_CONST / w; 217 } 218 219 /* 220 * delta_exec * weight / lw.weight 221 * OR 222 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 223 * 224 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 225 * we're guaranteed shift stays positive because inv_weight is guaranteed to 226 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 227 * 228 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 229 * weight/lw.weight <= 1, and therefore our shift will also be positive. 230 */ 231 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 232 { 233 u64 fact = scale_load_down(weight); 234 int shift = WMULT_SHIFT; 235 236 __update_inv_weight(lw); 237 238 if (unlikely(fact >> 32)) { 239 while (fact >> 32) { 240 fact >>= 1; 241 shift--; 242 } 243 } 244 245 /* hint to use a 32x32->64 mul */ 246 fact = (u64)(u32)fact * lw->inv_weight; 247 248 while (fact >> 32) { 249 fact >>= 1; 250 shift--; 251 } 252 253 return mul_u64_u32_shr(delta_exec, fact, shift); 254 } 255 256 257 const struct sched_class fair_sched_class; 258 259 /************************************************************** 260 * CFS operations on generic schedulable entities: 261 */ 262 263 #ifdef CONFIG_FAIR_GROUP_SCHED 264 265 /* cpu runqueue to which this cfs_rq is attached */ 266 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 267 { 268 return cfs_rq->rq; 269 } 270 271 /* An entity is a task if it doesn't "own" a runqueue */ 272 #define entity_is_task(se) (!se->my_q) 273 274 static inline struct task_struct *task_of(struct sched_entity *se) 275 { 276 SCHED_WARN_ON(!entity_is_task(se)); 277 return container_of(se, struct task_struct, se); 278 } 279 280 /* Walk up scheduling entities hierarchy */ 281 #define for_each_sched_entity(se) \ 282 for (; se; se = se->parent) 283 284 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 285 { 286 return p->se.cfs_rq; 287 } 288 289 /* runqueue on which this entity is (to be) queued */ 290 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 291 { 292 return se->cfs_rq; 293 } 294 295 /* runqueue "owned" by this group */ 296 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 297 { 298 return grp->my_q; 299 } 300 301 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 302 { 303 if (!cfs_rq->on_list) { 304 struct rq *rq = rq_of(cfs_rq); 305 int cpu = cpu_of(rq); 306 /* 307 * Ensure we either appear before our parent (if already 308 * enqueued) or force our parent to appear after us when it is 309 * enqueued. The fact that we always enqueue bottom-up 310 * reduces this to two cases and a special case for the root 311 * cfs_rq. Furthermore, it also means that we will always reset 312 * tmp_alone_branch either when the branch is connected 313 * to a tree or when we reach the beg of the tree 314 */ 315 if (cfs_rq->tg->parent && 316 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 317 /* 318 * If parent is already on the list, we add the child 319 * just before. Thanks to circular linked property of 320 * the list, this means to put the child at the tail 321 * of the list that starts by parent. 322 */ 323 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 324 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 325 /* 326 * The branch is now connected to its tree so we can 327 * reset tmp_alone_branch to the beginning of the 328 * list. 329 */ 330 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 331 } else if (!cfs_rq->tg->parent) { 332 /* 333 * cfs rq without parent should be put 334 * at the tail of the list. 335 */ 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 337 &rq->leaf_cfs_rq_list); 338 /* 339 * We have reach the beg of a tree so we can reset 340 * tmp_alone_branch to the beginning of the list. 341 */ 342 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 343 } else { 344 /* 345 * The parent has not already been added so we want to 346 * make sure that it will be put after us. 347 * tmp_alone_branch points to the beg of the branch 348 * where we will add parent. 349 */ 350 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 351 rq->tmp_alone_branch); 352 /* 353 * update tmp_alone_branch to points to the new beg 354 * of the branch 355 */ 356 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 357 } 358 359 cfs_rq->on_list = 1; 360 } 361 } 362 363 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 364 { 365 if (cfs_rq->on_list) { 366 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 367 cfs_rq->on_list = 0; 368 } 369 } 370 371 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 372 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 373 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 374 375 /* Do the two (enqueued) entities belong to the same group ? */ 376 static inline struct cfs_rq * 377 is_same_group(struct sched_entity *se, struct sched_entity *pse) 378 { 379 if (se->cfs_rq == pse->cfs_rq) 380 return se->cfs_rq; 381 382 return NULL; 383 } 384 385 static inline struct sched_entity *parent_entity(struct sched_entity *se) 386 { 387 return se->parent; 388 } 389 390 static void 391 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 392 { 393 int se_depth, pse_depth; 394 395 /* 396 * preemption test can be made between sibling entities who are in the 397 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 398 * both tasks until we find their ancestors who are siblings of common 399 * parent. 400 */ 401 402 /* First walk up until both entities are at same depth */ 403 se_depth = (*se)->depth; 404 pse_depth = (*pse)->depth; 405 406 while (se_depth > pse_depth) { 407 se_depth--; 408 *se = parent_entity(*se); 409 } 410 411 while (pse_depth > se_depth) { 412 pse_depth--; 413 *pse = parent_entity(*pse); 414 } 415 416 while (!is_same_group(*se, *pse)) { 417 *se = parent_entity(*se); 418 *pse = parent_entity(*pse); 419 } 420 } 421 422 #else /* !CONFIG_FAIR_GROUP_SCHED */ 423 424 static inline struct task_struct *task_of(struct sched_entity *se) 425 { 426 return container_of(se, struct task_struct, se); 427 } 428 429 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 430 { 431 return container_of(cfs_rq, struct rq, cfs); 432 } 433 434 #define entity_is_task(se) 1 435 436 #define for_each_sched_entity(se) \ 437 for (; se; se = NULL) 438 439 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 440 { 441 return &task_rq(p)->cfs; 442 } 443 444 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 445 { 446 struct task_struct *p = task_of(se); 447 struct rq *rq = task_rq(p); 448 449 return &rq->cfs; 450 } 451 452 /* runqueue "owned" by this group */ 453 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 454 { 455 return NULL; 456 } 457 458 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 459 { 460 } 461 462 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 463 { 464 } 465 466 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 467 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 468 469 static inline struct sched_entity *parent_entity(struct sched_entity *se) 470 { 471 return NULL; 472 } 473 474 static inline void 475 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 476 { 477 } 478 479 #endif /* CONFIG_FAIR_GROUP_SCHED */ 480 481 static __always_inline 482 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 483 484 /************************************************************** 485 * Scheduling class tree data structure manipulation methods: 486 */ 487 488 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 489 { 490 s64 delta = (s64)(vruntime - max_vruntime); 491 if (delta > 0) 492 max_vruntime = vruntime; 493 494 return max_vruntime; 495 } 496 497 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 498 { 499 s64 delta = (s64)(vruntime - min_vruntime); 500 if (delta < 0) 501 min_vruntime = vruntime; 502 503 return min_vruntime; 504 } 505 506 static inline int entity_before(struct sched_entity *a, 507 struct sched_entity *b) 508 { 509 return (s64)(a->vruntime - b->vruntime) < 0; 510 } 511 512 static void update_min_vruntime(struct cfs_rq *cfs_rq) 513 { 514 struct sched_entity *curr = cfs_rq->curr; 515 516 u64 vruntime = cfs_rq->min_vruntime; 517 518 if (curr) { 519 if (curr->on_rq) 520 vruntime = curr->vruntime; 521 else 522 curr = NULL; 523 } 524 525 if (cfs_rq->rb_leftmost) { 526 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 527 struct sched_entity, 528 run_node); 529 530 if (!curr) 531 vruntime = se->vruntime; 532 else 533 vruntime = min_vruntime(vruntime, se->vruntime); 534 } 535 536 /* ensure we never gain time by being placed backwards. */ 537 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 538 #ifndef CONFIG_64BIT 539 smp_wmb(); 540 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 541 #endif 542 } 543 544 /* 545 * Enqueue an entity into the rb-tree: 546 */ 547 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 548 { 549 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 550 struct rb_node *parent = NULL; 551 struct sched_entity *entry; 552 int leftmost = 1; 553 554 /* 555 * Find the right place in the rbtree: 556 */ 557 while (*link) { 558 parent = *link; 559 entry = rb_entry(parent, struct sched_entity, run_node); 560 /* 561 * We dont care about collisions. Nodes with 562 * the same key stay together. 563 */ 564 if (entity_before(se, entry)) { 565 link = &parent->rb_left; 566 } else { 567 link = &parent->rb_right; 568 leftmost = 0; 569 } 570 } 571 572 /* 573 * Maintain a cache of leftmost tree entries (it is frequently 574 * used): 575 */ 576 if (leftmost) 577 cfs_rq->rb_leftmost = &se->run_node; 578 579 rb_link_node(&se->run_node, parent, link); 580 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 581 } 582 583 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 584 { 585 if (cfs_rq->rb_leftmost == &se->run_node) { 586 struct rb_node *next_node; 587 588 next_node = rb_next(&se->run_node); 589 cfs_rq->rb_leftmost = next_node; 590 } 591 592 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 593 } 594 595 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 596 { 597 struct rb_node *left = cfs_rq->rb_leftmost; 598 599 if (!left) 600 return NULL; 601 602 return rb_entry(left, struct sched_entity, run_node); 603 } 604 605 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 606 { 607 struct rb_node *next = rb_next(&se->run_node); 608 609 if (!next) 610 return NULL; 611 612 return rb_entry(next, struct sched_entity, run_node); 613 } 614 615 #ifdef CONFIG_SCHED_DEBUG 616 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 617 { 618 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 619 620 if (!last) 621 return NULL; 622 623 return rb_entry(last, struct sched_entity, run_node); 624 } 625 626 /************************************************************** 627 * Scheduling class statistics methods: 628 */ 629 630 int sched_proc_update_handler(struct ctl_table *table, int write, 631 void __user *buffer, size_t *lenp, 632 loff_t *ppos) 633 { 634 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 635 unsigned int factor = get_update_sysctl_factor(); 636 637 if (ret || !write) 638 return ret; 639 640 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 641 sysctl_sched_min_granularity); 642 643 #define WRT_SYSCTL(name) \ 644 (normalized_sysctl_##name = sysctl_##name / (factor)) 645 WRT_SYSCTL(sched_min_granularity); 646 WRT_SYSCTL(sched_latency); 647 WRT_SYSCTL(sched_wakeup_granularity); 648 #undef WRT_SYSCTL 649 650 return 0; 651 } 652 #endif 653 654 /* 655 * delta /= w 656 */ 657 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 658 { 659 if (unlikely(se->load.weight != NICE_0_LOAD)) 660 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 661 662 return delta; 663 } 664 665 /* 666 * The idea is to set a period in which each task runs once. 667 * 668 * When there are too many tasks (sched_nr_latency) we have to stretch 669 * this period because otherwise the slices get too small. 670 * 671 * p = (nr <= nl) ? l : l*nr/nl 672 */ 673 static u64 __sched_period(unsigned long nr_running) 674 { 675 if (unlikely(nr_running > sched_nr_latency)) 676 return nr_running * sysctl_sched_min_granularity; 677 else 678 return sysctl_sched_latency; 679 } 680 681 /* 682 * We calculate the wall-time slice from the period by taking a part 683 * proportional to the weight. 684 * 685 * s = p*P[w/rw] 686 */ 687 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 688 { 689 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 690 691 for_each_sched_entity(se) { 692 struct load_weight *load; 693 struct load_weight lw; 694 695 cfs_rq = cfs_rq_of(se); 696 load = &cfs_rq->load; 697 698 if (unlikely(!se->on_rq)) { 699 lw = cfs_rq->load; 700 701 update_load_add(&lw, se->load.weight); 702 load = &lw; 703 } 704 slice = __calc_delta(slice, se->load.weight, load); 705 } 706 return slice; 707 } 708 709 /* 710 * We calculate the vruntime slice of a to-be-inserted task. 711 * 712 * vs = s/w 713 */ 714 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 715 { 716 return calc_delta_fair(sched_slice(cfs_rq, se), se); 717 } 718 719 #ifdef CONFIG_SMP 720 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 721 static unsigned long task_h_load(struct task_struct *p); 722 723 /* 724 * We choose a half-life close to 1 scheduling period. 725 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are 726 * dependent on this value. 727 */ 728 #define LOAD_AVG_PERIOD 32 729 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 730 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */ 731 732 /* Give new sched_entity start runnable values to heavy its load in infant time */ 733 void init_entity_runnable_average(struct sched_entity *se) 734 { 735 struct sched_avg *sa = &se->avg; 736 737 sa->last_update_time = 0; 738 /* 739 * sched_avg's period_contrib should be strictly less then 1024, so 740 * we give it 1023 to make sure it is almost a period (1024us), and 741 * will definitely be update (after enqueue). 742 */ 743 sa->period_contrib = 1023; 744 /* 745 * Tasks are intialized with full load to be seen as heavy tasks until 746 * they get a chance to stabilize to their real load level. 747 * Group entities are intialized with zero load to reflect the fact that 748 * nothing has been attached to the task group yet. 749 */ 750 if (entity_is_task(se)) 751 sa->load_avg = scale_load_down(se->load.weight); 752 sa->load_sum = sa->load_avg * LOAD_AVG_MAX; 753 /* 754 * At this point, util_avg won't be used in select_task_rq_fair anyway 755 */ 756 sa->util_avg = 0; 757 sa->util_sum = 0; 758 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 759 } 760 761 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 762 static void attach_entity_cfs_rq(struct sched_entity *se); 763 764 /* 765 * With new tasks being created, their initial util_avgs are extrapolated 766 * based on the cfs_rq's current util_avg: 767 * 768 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 769 * 770 * However, in many cases, the above util_avg does not give a desired 771 * value. Moreover, the sum of the util_avgs may be divergent, such 772 * as when the series is a harmonic series. 773 * 774 * To solve this problem, we also cap the util_avg of successive tasks to 775 * only 1/2 of the left utilization budget: 776 * 777 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n 778 * 779 * where n denotes the nth task. 780 * 781 * For example, a simplest series from the beginning would be like: 782 * 783 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 784 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 785 * 786 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 787 * if util_avg > util_avg_cap. 788 */ 789 void post_init_entity_util_avg(struct sched_entity *se) 790 { 791 struct cfs_rq *cfs_rq = cfs_rq_of(se); 792 struct sched_avg *sa = &se->avg; 793 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2; 794 795 if (cap > 0) { 796 if (cfs_rq->avg.util_avg != 0) { 797 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 798 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 799 800 if (sa->util_avg > cap) 801 sa->util_avg = cap; 802 } else { 803 sa->util_avg = cap; 804 } 805 sa->util_sum = sa->util_avg * LOAD_AVG_MAX; 806 } 807 808 if (entity_is_task(se)) { 809 struct task_struct *p = task_of(se); 810 if (p->sched_class != &fair_sched_class) { 811 /* 812 * For !fair tasks do: 813 * 814 update_cfs_rq_load_avg(now, cfs_rq, false); 815 attach_entity_load_avg(cfs_rq, se); 816 switched_from_fair(rq, p); 817 * 818 * such that the next switched_to_fair() has the 819 * expected state. 820 */ 821 se->avg.last_update_time = cfs_rq_clock_task(cfs_rq); 822 return; 823 } 824 } 825 826 attach_entity_cfs_rq(se); 827 } 828 829 #else /* !CONFIG_SMP */ 830 void init_entity_runnable_average(struct sched_entity *se) 831 { 832 } 833 void post_init_entity_util_avg(struct sched_entity *se) 834 { 835 } 836 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 837 { 838 } 839 #endif /* CONFIG_SMP */ 840 841 /* 842 * Update the current task's runtime statistics. 843 */ 844 static void update_curr(struct cfs_rq *cfs_rq) 845 { 846 struct sched_entity *curr = cfs_rq->curr; 847 u64 now = rq_clock_task(rq_of(cfs_rq)); 848 u64 delta_exec; 849 850 if (unlikely(!curr)) 851 return; 852 853 delta_exec = now - curr->exec_start; 854 if (unlikely((s64)delta_exec <= 0)) 855 return; 856 857 curr->exec_start = now; 858 859 schedstat_set(curr->statistics.exec_max, 860 max(delta_exec, curr->statistics.exec_max)); 861 862 curr->sum_exec_runtime += delta_exec; 863 schedstat_add(cfs_rq->exec_clock, delta_exec); 864 865 curr->vruntime += calc_delta_fair(delta_exec, curr); 866 update_min_vruntime(cfs_rq); 867 868 if (entity_is_task(curr)) { 869 struct task_struct *curtask = task_of(curr); 870 871 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 872 cpuacct_charge(curtask, delta_exec); 873 account_group_exec_runtime(curtask, delta_exec); 874 } 875 876 account_cfs_rq_runtime(cfs_rq, delta_exec); 877 } 878 879 static void update_curr_fair(struct rq *rq) 880 { 881 update_curr(cfs_rq_of(&rq->curr->se)); 882 } 883 884 static inline void 885 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 886 { 887 u64 wait_start, prev_wait_start; 888 889 if (!schedstat_enabled()) 890 return; 891 892 wait_start = rq_clock(rq_of(cfs_rq)); 893 prev_wait_start = schedstat_val(se->statistics.wait_start); 894 895 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 896 likely(wait_start > prev_wait_start)) 897 wait_start -= prev_wait_start; 898 899 schedstat_set(se->statistics.wait_start, wait_start); 900 } 901 902 static inline void 903 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 904 { 905 struct task_struct *p; 906 u64 delta; 907 908 if (!schedstat_enabled()) 909 return; 910 911 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start); 912 913 if (entity_is_task(se)) { 914 p = task_of(se); 915 if (task_on_rq_migrating(p)) { 916 /* 917 * Preserve migrating task's wait time so wait_start 918 * time stamp can be adjusted to accumulate wait time 919 * prior to migration. 920 */ 921 schedstat_set(se->statistics.wait_start, delta); 922 return; 923 } 924 trace_sched_stat_wait(p, delta); 925 } 926 927 schedstat_set(se->statistics.wait_max, 928 max(schedstat_val(se->statistics.wait_max), delta)); 929 schedstat_inc(se->statistics.wait_count); 930 schedstat_add(se->statistics.wait_sum, delta); 931 schedstat_set(se->statistics.wait_start, 0); 932 } 933 934 static inline void 935 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 936 { 937 struct task_struct *tsk = NULL; 938 u64 sleep_start, block_start; 939 940 if (!schedstat_enabled()) 941 return; 942 943 sleep_start = schedstat_val(se->statistics.sleep_start); 944 block_start = schedstat_val(se->statistics.block_start); 945 946 if (entity_is_task(se)) 947 tsk = task_of(se); 948 949 if (sleep_start) { 950 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start; 951 952 if ((s64)delta < 0) 953 delta = 0; 954 955 if (unlikely(delta > schedstat_val(se->statistics.sleep_max))) 956 schedstat_set(se->statistics.sleep_max, delta); 957 958 schedstat_set(se->statistics.sleep_start, 0); 959 schedstat_add(se->statistics.sum_sleep_runtime, delta); 960 961 if (tsk) { 962 account_scheduler_latency(tsk, delta >> 10, 1); 963 trace_sched_stat_sleep(tsk, delta); 964 } 965 } 966 if (block_start) { 967 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start; 968 969 if ((s64)delta < 0) 970 delta = 0; 971 972 if (unlikely(delta > schedstat_val(se->statistics.block_max))) 973 schedstat_set(se->statistics.block_max, delta); 974 975 schedstat_set(se->statistics.block_start, 0); 976 schedstat_add(se->statistics.sum_sleep_runtime, delta); 977 978 if (tsk) { 979 if (tsk->in_iowait) { 980 schedstat_add(se->statistics.iowait_sum, delta); 981 schedstat_inc(se->statistics.iowait_count); 982 trace_sched_stat_iowait(tsk, delta); 983 } 984 985 trace_sched_stat_blocked(tsk, delta); 986 987 /* 988 * Blocking time is in units of nanosecs, so shift by 989 * 20 to get a milliseconds-range estimation of the 990 * amount of time that the task spent sleeping: 991 */ 992 if (unlikely(prof_on == SLEEP_PROFILING)) { 993 profile_hits(SLEEP_PROFILING, 994 (void *)get_wchan(tsk), 995 delta >> 20); 996 } 997 account_scheduler_latency(tsk, delta >> 10, 0); 998 } 999 } 1000 } 1001 1002 /* 1003 * Task is being enqueued - update stats: 1004 */ 1005 static inline void 1006 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1007 { 1008 if (!schedstat_enabled()) 1009 return; 1010 1011 /* 1012 * Are we enqueueing a waiting task? (for current tasks 1013 * a dequeue/enqueue event is a NOP) 1014 */ 1015 if (se != cfs_rq->curr) 1016 update_stats_wait_start(cfs_rq, se); 1017 1018 if (flags & ENQUEUE_WAKEUP) 1019 update_stats_enqueue_sleeper(cfs_rq, se); 1020 } 1021 1022 static inline void 1023 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1024 { 1025 1026 if (!schedstat_enabled()) 1027 return; 1028 1029 /* 1030 * Mark the end of the wait period if dequeueing a 1031 * waiting task: 1032 */ 1033 if (se != cfs_rq->curr) 1034 update_stats_wait_end(cfs_rq, se); 1035 1036 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1037 struct task_struct *tsk = task_of(se); 1038 1039 if (tsk->state & TASK_INTERRUPTIBLE) 1040 schedstat_set(se->statistics.sleep_start, 1041 rq_clock(rq_of(cfs_rq))); 1042 if (tsk->state & TASK_UNINTERRUPTIBLE) 1043 schedstat_set(se->statistics.block_start, 1044 rq_clock(rq_of(cfs_rq))); 1045 } 1046 } 1047 1048 /* 1049 * We are picking a new current task - update its stats: 1050 */ 1051 static inline void 1052 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1053 { 1054 /* 1055 * We are starting a new run period: 1056 */ 1057 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1058 } 1059 1060 /************************************************** 1061 * Scheduling class queueing methods: 1062 */ 1063 1064 #ifdef CONFIG_NUMA_BALANCING 1065 /* 1066 * Approximate time to scan a full NUMA task in ms. The task scan period is 1067 * calculated based on the tasks virtual memory size and 1068 * numa_balancing_scan_size. 1069 */ 1070 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1071 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1072 1073 /* Portion of address space to scan in MB */ 1074 unsigned int sysctl_numa_balancing_scan_size = 256; 1075 1076 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1077 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1078 1079 static unsigned int task_nr_scan_windows(struct task_struct *p) 1080 { 1081 unsigned long rss = 0; 1082 unsigned long nr_scan_pages; 1083 1084 /* 1085 * Calculations based on RSS as non-present and empty pages are skipped 1086 * by the PTE scanner and NUMA hinting faults should be trapped based 1087 * on resident pages 1088 */ 1089 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1090 rss = get_mm_rss(p->mm); 1091 if (!rss) 1092 rss = nr_scan_pages; 1093 1094 rss = round_up(rss, nr_scan_pages); 1095 return rss / nr_scan_pages; 1096 } 1097 1098 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1099 #define MAX_SCAN_WINDOW 2560 1100 1101 static unsigned int task_scan_min(struct task_struct *p) 1102 { 1103 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1104 unsigned int scan, floor; 1105 unsigned int windows = 1; 1106 1107 if (scan_size < MAX_SCAN_WINDOW) 1108 windows = MAX_SCAN_WINDOW / scan_size; 1109 floor = 1000 / windows; 1110 1111 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1112 return max_t(unsigned int, floor, scan); 1113 } 1114 1115 static unsigned int task_scan_max(struct task_struct *p) 1116 { 1117 unsigned int smin = task_scan_min(p); 1118 unsigned int smax; 1119 1120 /* Watch for min being lower than max due to floor calculations */ 1121 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1122 return max(smin, smax); 1123 } 1124 1125 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1126 { 1127 rq->nr_numa_running += (p->numa_preferred_nid != -1); 1128 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1129 } 1130 1131 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1132 { 1133 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 1134 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1135 } 1136 1137 struct numa_group { 1138 atomic_t refcount; 1139 1140 spinlock_t lock; /* nr_tasks, tasks */ 1141 int nr_tasks; 1142 pid_t gid; 1143 int active_nodes; 1144 1145 struct rcu_head rcu; 1146 unsigned long total_faults; 1147 unsigned long max_faults_cpu; 1148 /* 1149 * Faults_cpu is used to decide whether memory should move 1150 * towards the CPU. As a consequence, these stats are weighted 1151 * more by CPU use than by memory faults. 1152 */ 1153 unsigned long *faults_cpu; 1154 unsigned long faults[0]; 1155 }; 1156 1157 /* Shared or private faults. */ 1158 #define NR_NUMA_HINT_FAULT_TYPES 2 1159 1160 /* Memory and CPU locality */ 1161 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1162 1163 /* Averaged statistics, and temporary buffers. */ 1164 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1165 1166 pid_t task_numa_group_id(struct task_struct *p) 1167 { 1168 return p->numa_group ? p->numa_group->gid : 0; 1169 } 1170 1171 /* 1172 * The averaged statistics, shared & private, memory & cpu, 1173 * occupy the first half of the array. The second half of the 1174 * array is for current counters, which are averaged into the 1175 * first set by task_numa_placement. 1176 */ 1177 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1178 { 1179 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1180 } 1181 1182 static inline unsigned long task_faults(struct task_struct *p, int nid) 1183 { 1184 if (!p->numa_faults) 1185 return 0; 1186 1187 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1188 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1189 } 1190 1191 static inline unsigned long group_faults(struct task_struct *p, int nid) 1192 { 1193 if (!p->numa_group) 1194 return 0; 1195 1196 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1197 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1198 } 1199 1200 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1201 { 1202 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1203 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1204 } 1205 1206 /* 1207 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1208 * considered part of a numa group's pseudo-interleaving set. Migrations 1209 * between these nodes are slowed down, to allow things to settle down. 1210 */ 1211 #define ACTIVE_NODE_FRACTION 3 1212 1213 static bool numa_is_active_node(int nid, struct numa_group *ng) 1214 { 1215 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1216 } 1217 1218 /* Handle placement on systems where not all nodes are directly connected. */ 1219 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1220 int maxdist, bool task) 1221 { 1222 unsigned long score = 0; 1223 int node; 1224 1225 /* 1226 * All nodes are directly connected, and the same distance 1227 * from each other. No need for fancy placement algorithms. 1228 */ 1229 if (sched_numa_topology_type == NUMA_DIRECT) 1230 return 0; 1231 1232 /* 1233 * This code is called for each node, introducing N^2 complexity, 1234 * which should be ok given the number of nodes rarely exceeds 8. 1235 */ 1236 for_each_online_node(node) { 1237 unsigned long faults; 1238 int dist = node_distance(nid, node); 1239 1240 /* 1241 * The furthest away nodes in the system are not interesting 1242 * for placement; nid was already counted. 1243 */ 1244 if (dist == sched_max_numa_distance || node == nid) 1245 continue; 1246 1247 /* 1248 * On systems with a backplane NUMA topology, compare groups 1249 * of nodes, and move tasks towards the group with the most 1250 * memory accesses. When comparing two nodes at distance 1251 * "hoplimit", only nodes closer by than "hoplimit" are part 1252 * of each group. Skip other nodes. 1253 */ 1254 if (sched_numa_topology_type == NUMA_BACKPLANE && 1255 dist > maxdist) 1256 continue; 1257 1258 /* Add up the faults from nearby nodes. */ 1259 if (task) 1260 faults = task_faults(p, node); 1261 else 1262 faults = group_faults(p, node); 1263 1264 /* 1265 * On systems with a glueless mesh NUMA topology, there are 1266 * no fixed "groups of nodes". Instead, nodes that are not 1267 * directly connected bounce traffic through intermediate 1268 * nodes; a numa_group can occupy any set of nodes. 1269 * The further away a node is, the less the faults count. 1270 * This seems to result in good task placement. 1271 */ 1272 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1273 faults *= (sched_max_numa_distance - dist); 1274 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1275 } 1276 1277 score += faults; 1278 } 1279 1280 return score; 1281 } 1282 1283 /* 1284 * These return the fraction of accesses done by a particular task, or 1285 * task group, on a particular numa node. The group weight is given a 1286 * larger multiplier, in order to group tasks together that are almost 1287 * evenly spread out between numa nodes. 1288 */ 1289 static inline unsigned long task_weight(struct task_struct *p, int nid, 1290 int dist) 1291 { 1292 unsigned long faults, total_faults; 1293 1294 if (!p->numa_faults) 1295 return 0; 1296 1297 total_faults = p->total_numa_faults; 1298 1299 if (!total_faults) 1300 return 0; 1301 1302 faults = task_faults(p, nid); 1303 faults += score_nearby_nodes(p, nid, dist, true); 1304 1305 return 1000 * faults / total_faults; 1306 } 1307 1308 static inline unsigned long group_weight(struct task_struct *p, int nid, 1309 int dist) 1310 { 1311 unsigned long faults, total_faults; 1312 1313 if (!p->numa_group) 1314 return 0; 1315 1316 total_faults = p->numa_group->total_faults; 1317 1318 if (!total_faults) 1319 return 0; 1320 1321 faults = group_faults(p, nid); 1322 faults += score_nearby_nodes(p, nid, dist, false); 1323 1324 return 1000 * faults / total_faults; 1325 } 1326 1327 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1328 int src_nid, int dst_cpu) 1329 { 1330 struct numa_group *ng = p->numa_group; 1331 int dst_nid = cpu_to_node(dst_cpu); 1332 int last_cpupid, this_cpupid; 1333 1334 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1335 1336 /* 1337 * Multi-stage node selection is used in conjunction with a periodic 1338 * migration fault to build a temporal task<->page relation. By using 1339 * a two-stage filter we remove short/unlikely relations. 1340 * 1341 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1342 * a task's usage of a particular page (n_p) per total usage of this 1343 * page (n_t) (in a given time-span) to a probability. 1344 * 1345 * Our periodic faults will sample this probability and getting the 1346 * same result twice in a row, given these samples are fully 1347 * independent, is then given by P(n)^2, provided our sample period 1348 * is sufficiently short compared to the usage pattern. 1349 * 1350 * This quadric squishes small probabilities, making it less likely we 1351 * act on an unlikely task<->page relation. 1352 */ 1353 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1354 if (!cpupid_pid_unset(last_cpupid) && 1355 cpupid_to_nid(last_cpupid) != dst_nid) 1356 return false; 1357 1358 /* Always allow migrate on private faults */ 1359 if (cpupid_match_pid(p, last_cpupid)) 1360 return true; 1361 1362 /* A shared fault, but p->numa_group has not been set up yet. */ 1363 if (!ng) 1364 return true; 1365 1366 /* 1367 * Destination node is much more heavily used than the source 1368 * node? Allow migration. 1369 */ 1370 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1371 ACTIVE_NODE_FRACTION) 1372 return true; 1373 1374 /* 1375 * Distribute memory according to CPU & memory use on each node, 1376 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1377 * 1378 * faults_cpu(dst) 3 faults_cpu(src) 1379 * --------------- * - > --------------- 1380 * faults_mem(dst) 4 faults_mem(src) 1381 */ 1382 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1383 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1384 } 1385 1386 static unsigned long weighted_cpuload(const int cpu); 1387 static unsigned long source_load(int cpu, int type); 1388 static unsigned long target_load(int cpu, int type); 1389 static unsigned long capacity_of(int cpu); 1390 static long effective_load(struct task_group *tg, int cpu, long wl, long wg); 1391 1392 /* Cached statistics for all CPUs within a node */ 1393 struct numa_stats { 1394 unsigned long nr_running; 1395 unsigned long load; 1396 1397 /* Total compute capacity of CPUs on a node */ 1398 unsigned long compute_capacity; 1399 1400 /* Approximate capacity in terms of runnable tasks on a node */ 1401 unsigned long task_capacity; 1402 int has_free_capacity; 1403 }; 1404 1405 /* 1406 * XXX borrowed from update_sg_lb_stats 1407 */ 1408 static void update_numa_stats(struct numa_stats *ns, int nid) 1409 { 1410 int smt, cpu, cpus = 0; 1411 unsigned long capacity; 1412 1413 memset(ns, 0, sizeof(*ns)); 1414 for_each_cpu(cpu, cpumask_of_node(nid)) { 1415 struct rq *rq = cpu_rq(cpu); 1416 1417 ns->nr_running += rq->nr_running; 1418 ns->load += weighted_cpuload(cpu); 1419 ns->compute_capacity += capacity_of(cpu); 1420 1421 cpus++; 1422 } 1423 1424 /* 1425 * If we raced with hotplug and there are no CPUs left in our mask 1426 * the @ns structure is NULL'ed and task_numa_compare() will 1427 * not find this node attractive. 1428 * 1429 * We'll either bail at !has_free_capacity, or we'll detect a huge 1430 * imbalance and bail there. 1431 */ 1432 if (!cpus) 1433 return; 1434 1435 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1436 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1437 capacity = cpus / smt; /* cores */ 1438 1439 ns->task_capacity = min_t(unsigned, capacity, 1440 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1441 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1442 } 1443 1444 struct task_numa_env { 1445 struct task_struct *p; 1446 1447 int src_cpu, src_nid; 1448 int dst_cpu, dst_nid; 1449 1450 struct numa_stats src_stats, dst_stats; 1451 1452 int imbalance_pct; 1453 int dist; 1454 1455 struct task_struct *best_task; 1456 long best_imp; 1457 int best_cpu; 1458 }; 1459 1460 static void task_numa_assign(struct task_numa_env *env, 1461 struct task_struct *p, long imp) 1462 { 1463 if (env->best_task) 1464 put_task_struct(env->best_task); 1465 if (p) 1466 get_task_struct(p); 1467 1468 env->best_task = p; 1469 env->best_imp = imp; 1470 env->best_cpu = env->dst_cpu; 1471 } 1472 1473 static bool load_too_imbalanced(long src_load, long dst_load, 1474 struct task_numa_env *env) 1475 { 1476 long imb, old_imb; 1477 long orig_src_load, orig_dst_load; 1478 long src_capacity, dst_capacity; 1479 1480 /* 1481 * The load is corrected for the CPU capacity available on each node. 1482 * 1483 * src_load dst_load 1484 * ------------ vs --------- 1485 * src_capacity dst_capacity 1486 */ 1487 src_capacity = env->src_stats.compute_capacity; 1488 dst_capacity = env->dst_stats.compute_capacity; 1489 1490 /* We care about the slope of the imbalance, not the direction. */ 1491 if (dst_load < src_load) 1492 swap(dst_load, src_load); 1493 1494 /* Is the difference below the threshold? */ 1495 imb = dst_load * src_capacity * 100 - 1496 src_load * dst_capacity * env->imbalance_pct; 1497 if (imb <= 0) 1498 return false; 1499 1500 /* 1501 * The imbalance is above the allowed threshold. 1502 * Compare it with the old imbalance. 1503 */ 1504 orig_src_load = env->src_stats.load; 1505 orig_dst_load = env->dst_stats.load; 1506 1507 if (orig_dst_load < orig_src_load) 1508 swap(orig_dst_load, orig_src_load); 1509 1510 old_imb = orig_dst_load * src_capacity * 100 - 1511 orig_src_load * dst_capacity * env->imbalance_pct; 1512 1513 /* Would this change make things worse? */ 1514 return (imb > old_imb); 1515 } 1516 1517 /* 1518 * This checks if the overall compute and NUMA accesses of the system would 1519 * be improved if the source tasks was migrated to the target dst_cpu taking 1520 * into account that it might be best if task running on the dst_cpu should 1521 * be exchanged with the source task 1522 */ 1523 static void task_numa_compare(struct task_numa_env *env, 1524 long taskimp, long groupimp) 1525 { 1526 struct rq *src_rq = cpu_rq(env->src_cpu); 1527 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1528 struct task_struct *cur; 1529 long src_load, dst_load; 1530 long load; 1531 long imp = env->p->numa_group ? groupimp : taskimp; 1532 long moveimp = imp; 1533 int dist = env->dist; 1534 1535 rcu_read_lock(); 1536 cur = task_rcu_dereference(&dst_rq->curr); 1537 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 1538 cur = NULL; 1539 1540 /* 1541 * Because we have preemption enabled we can get migrated around and 1542 * end try selecting ourselves (current == env->p) as a swap candidate. 1543 */ 1544 if (cur == env->p) 1545 goto unlock; 1546 1547 /* 1548 * "imp" is the fault differential for the source task between the 1549 * source and destination node. Calculate the total differential for 1550 * the source task and potential destination task. The more negative 1551 * the value is, the more rmeote accesses that would be expected to 1552 * be incurred if the tasks were swapped. 1553 */ 1554 if (cur) { 1555 /* Skip this swap candidate if cannot move to the source cpu */ 1556 if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed)) 1557 goto unlock; 1558 1559 /* 1560 * If dst and source tasks are in the same NUMA group, or not 1561 * in any group then look only at task weights. 1562 */ 1563 if (cur->numa_group == env->p->numa_group) { 1564 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1565 task_weight(cur, env->dst_nid, dist); 1566 /* 1567 * Add some hysteresis to prevent swapping the 1568 * tasks within a group over tiny differences. 1569 */ 1570 if (cur->numa_group) 1571 imp -= imp/16; 1572 } else { 1573 /* 1574 * Compare the group weights. If a task is all by 1575 * itself (not part of a group), use the task weight 1576 * instead. 1577 */ 1578 if (cur->numa_group) 1579 imp += group_weight(cur, env->src_nid, dist) - 1580 group_weight(cur, env->dst_nid, dist); 1581 else 1582 imp += task_weight(cur, env->src_nid, dist) - 1583 task_weight(cur, env->dst_nid, dist); 1584 } 1585 } 1586 1587 if (imp <= env->best_imp && moveimp <= env->best_imp) 1588 goto unlock; 1589 1590 if (!cur) { 1591 /* Is there capacity at our destination? */ 1592 if (env->src_stats.nr_running <= env->src_stats.task_capacity && 1593 !env->dst_stats.has_free_capacity) 1594 goto unlock; 1595 1596 goto balance; 1597 } 1598 1599 /* Balance doesn't matter much if we're running a task per cpu */ 1600 if (imp > env->best_imp && src_rq->nr_running == 1 && 1601 dst_rq->nr_running == 1) 1602 goto assign; 1603 1604 /* 1605 * In the overloaded case, try and keep the load balanced. 1606 */ 1607 balance: 1608 load = task_h_load(env->p); 1609 dst_load = env->dst_stats.load + load; 1610 src_load = env->src_stats.load - load; 1611 1612 if (moveimp > imp && moveimp > env->best_imp) { 1613 /* 1614 * If the improvement from just moving env->p direction is 1615 * better than swapping tasks around, check if a move is 1616 * possible. Store a slightly smaller score than moveimp, 1617 * so an actually idle CPU will win. 1618 */ 1619 if (!load_too_imbalanced(src_load, dst_load, env)) { 1620 imp = moveimp - 1; 1621 cur = NULL; 1622 goto assign; 1623 } 1624 } 1625 1626 if (imp <= env->best_imp) 1627 goto unlock; 1628 1629 if (cur) { 1630 load = task_h_load(cur); 1631 dst_load -= load; 1632 src_load += load; 1633 } 1634 1635 if (load_too_imbalanced(src_load, dst_load, env)) 1636 goto unlock; 1637 1638 /* 1639 * One idle CPU per node is evaluated for a task numa move. 1640 * Call select_idle_sibling to maybe find a better one. 1641 */ 1642 if (!cur) { 1643 /* 1644 * select_idle_siblings() uses an per-cpu cpumask that 1645 * can be used from IRQ context. 1646 */ 1647 local_irq_disable(); 1648 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu, 1649 env->dst_cpu); 1650 local_irq_enable(); 1651 } 1652 1653 assign: 1654 task_numa_assign(env, cur, imp); 1655 unlock: 1656 rcu_read_unlock(); 1657 } 1658 1659 static void task_numa_find_cpu(struct task_numa_env *env, 1660 long taskimp, long groupimp) 1661 { 1662 int cpu; 1663 1664 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1665 /* Skip this CPU if the source task cannot migrate */ 1666 if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed)) 1667 continue; 1668 1669 env->dst_cpu = cpu; 1670 task_numa_compare(env, taskimp, groupimp); 1671 } 1672 } 1673 1674 /* Only move tasks to a NUMA node less busy than the current node. */ 1675 static bool numa_has_capacity(struct task_numa_env *env) 1676 { 1677 struct numa_stats *src = &env->src_stats; 1678 struct numa_stats *dst = &env->dst_stats; 1679 1680 if (src->has_free_capacity && !dst->has_free_capacity) 1681 return false; 1682 1683 /* 1684 * Only consider a task move if the source has a higher load 1685 * than the destination, corrected for CPU capacity on each node. 1686 * 1687 * src->load dst->load 1688 * --------------------- vs --------------------- 1689 * src->compute_capacity dst->compute_capacity 1690 */ 1691 if (src->load * dst->compute_capacity * env->imbalance_pct > 1692 1693 dst->load * src->compute_capacity * 100) 1694 return true; 1695 1696 return false; 1697 } 1698 1699 static int task_numa_migrate(struct task_struct *p) 1700 { 1701 struct task_numa_env env = { 1702 .p = p, 1703 1704 .src_cpu = task_cpu(p), 1705 .src_nid = task_node(p), 1706 1707 .imbalance_pct = 112, 1708 1709 .best_task = NULL, 1710 .best_imp = 0, 1711 .best_cpu = -1, 1712 }; 1713 struct sched_domain *sd; 1714 unsigned long taskweight, groupweight; 1715 int nid, ret, dist; 1716 long taskimp, groupimp; 1717 1718 /* 1719 * Pick the lowest SD_NUMA domain, as that would have the smallest 1720 * imbalance and would be the first to start moving tasks about. 1721 * 1722 * And we want to avoid any moving of tasks about, as that would create 1723 * random movement of tasks -- counter the numa conditions we're trying 1724 * to satisfy here. 1725 */ 1726 rcu_read_lock(); 1727 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1728 if (sd) 1729 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1730 rcu_read_unlock(); 1731 1732 /* 1733 * Cpusets can break the scheduler domain tree into smaller 1734 * balance domains, some of which do not cross NUMA boundaries. 1735 * Tasks that are "trapped" in such domains cannot be migrated 1736 * elsewhere, so there is no point in (re)trying. 1737 */ 1738 if (unlikely(!sd)) { 1739 p->numa_preferred_nid = task_node(p); 1740 return -EINVAL; 1741 } 1742 1743 env.dst_nid = p->numa_preferred_nid; 1744 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1745 taskweight = task_weight(p, env.src_nid, dist); 1746 groupweight = group_weight(p, env.src_nid, dist); 1747 update_numa_stats(&env.src_stats, env.src_nid); 1748 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1749 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1750 update_numa_stats(&env.dst_stats, env.dst_nid); 1751 1752 /* Try to find a spot on the preferred nid. */ 1753 if (numa_has_capacity(&env)) 1754 task_numa_find_cpu(&env, taskimp, groupimp); 1755 1756 /* 1757 * Look at other nodes in these cases: 1758 * - there is no space available on the preferred_nid 1759 * - the task is part of a numa_group that is interleaved across 1760 * multiple NUMA nodes; in order to better consolidate the group, 1761 * we need to check other locations. 1762 */ 1763 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1764 for_each_online_node(nid) { 1765 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1766 continue; 1767 1768 dist = node_distance(env.src_nid, env.dst_nid); 1769 if (sched_numa_topology_type == NUMA_BACKPLANE && 1770 dist != env.dist) { 1771 taskweight = task_weight(p, env.src_nid, dist); 1772 groupweight = group_weight(p, env.src_nid, dist); 1773 } 1774 1775 /* Only consider nodes where both task and groups benefit */ 1776 taskimp = task_weight(p, nid, dist) - taskweight; 1777 groupimp = group_weight(p, nid, dist) - groupweight; 1778 if (taskimp < 0 && groupimp < 0) 1779 continue; 1780 1781 env.dist = dist; 1782 env.dst_nid = nid; 1783 update_numa_stats(&env.dst_stats, env.dst_nid); 1784 if (numa_has_capacity(&env)) 1785 task_numa_find_cpu(&env, taskimp, groupimp); 1786 } 1787 } 1788 1789 /* 1790 * If the task is part of a workload that spans multiple NUMA nodes, 1791 * and is migrating into one of the workload's active nodes, remember 1792 * this node as the task's preferred numa node, so the workload can 1793 * settle down. 1794 * A task that migrated to a second choice node will be better off 1795 * trying for a better one later. Do not set the preferred node here. 1796 */ 1797 if (p->numa_group) { 1798 struct numa_group *ng = p->numa_group; 1799 1800 if (env.best_cpu == -1) 1801 nid = env.src_nid; 1802 else 1803 nid = env.dst_nid; 1804 1805 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng)) 1806 sched_setnuma(p, env.dst_nid); 1807 } 1808 1809 /* No better CPU than the current one was found. */ 1810 if (env.best_cpu == -1) 1811 return -EAGAIN; 1812 1813 /* 1814 * Reset the scan period if the task is being rescheduled on an 1815 * alternative node to recheck if the tasks is now properly placed. 1816 */ 1817 p->numa_scan_period = task_scan_min(p); 1818 1819 if (env.best_task == NULL) { 1820 ret = migrate_task_to(p, env.best_cpu); 1821 if (ret != 0) 1822 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1823 return ret; 1824 } 1825 1826 ret = migrate_swap(p, env.best_task); 1827 if (ret != 0) 1828 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1829 put_task_struct(env.best_task); 1830 return ret; 1831 } 1832 1833 /* Attempt to migrate a task to a CPU on the preferred node. */ 1834 static void numa_migrate_preferred(struct task_struct *p) 1835 { 1836 unsigned long interval = HZ; 1837 1838 /* This task has no NUMA fault statistics yet */ 1839 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1840 return; 1841 1842 /* Periodically retry migrating the task to the preferred node */ 1843 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1844 p->numa_migrate_retry = jiffies + interval; 1845 1846 /* Success if task is already running on preferred CPU */ 1847 if (task_node(p) == p->numa_preferred_nid) 1848 return; 1849 1850 /* Otherwise, try migrate to a CPU on the preferred node */ 1851 task_numa_migrate(p); 1852 } 1853 1854 /* 1855 * Find out how many nodes on the workload is actively running on. Do this by 1856 * tracking the nodes from which NUMA hinting faults are triggered. This can 1857 * be different from the set of nodes where the workload's memory is currently 1858 * located. 1859 */ 1860 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1861 { 1862 unsigned long faults, max_faults = 0; 1863 int nid, active_nodes = 0; 1864 1865 for_each_online_node(nid) { 1866 faults = group_faults_cpu(numa_group, nid); 1867 if (faults > max_faults) 1868 max_faults = faults; 1869 } 1870 1871 for_each_online_node(nid) { 1872 faults = group_faults_cpu(numa_group, nid); 1873 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1874 active_nodes++; 1875 } 1876 1877 numa_group->max_faults_cpu = max_faults; 1878 numa_group->active_nodes = active_nodes; 1879 } 1880 1881 /* 1882 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1883 * increments. The more local the fault statistics are, the higher the scan 1884 * period will be for the next scan window. If local/(local+remote) ratio is 1885 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1886 * the scan period will decrease. Aim for 70% local accesses. 1887 */ 1888 #define NUMA_PERIOD_SLOTS 10 1889 #define NUMA_PERIOD_THRESHOLD 7 1890 1891 /* 1892 * Increase the scan period (slow down scanning) if the majority of 1893 * our memory is already on our local node, or if the majority of 1894 * the page accesses are shared with other processes. 1895 * Otherwise, decrease the scan period. 1896 */ 1897 static void update_task_scan_period(struct task_struct *p, 1898 unsigned long shared, unsigned long private) 1899 { 1900 unsigned int period_slot; 1901 int ratio; 1902 int diff; 1903 1904 unsigned long remote = p->numa_faults_locality[0]; 1905 unsigned long local = p->numa_faults_locality[1]; 1906 1907 /* 1908 * If there were no record hinting faults then either the task is 1909 * completely idle or all activity is areas that are not of interest 1910 * to automatic numa balancing. Related to that, if there were failed 1911 * migration then it implies we are migrating too quickly or the local 1912 * node is overloaded. In either case, scan slower 1913 */ 1914 if (local + shared == 0 || p->numa_faults_locality[2]) { 1915 p->numa_scan_period = min(p->numa_scan_period_max, 1916 p->numa_scan_period << 1); 1917 1918 p->mm->numa_next_scan = jiffies + 1919 msecs_to_jiffies(p->numa_scan_period); 1920 1921 return; 1922 } 1923 1924 /* 1925 * Prepare to scale scan period relative to the current period. 1926 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1927 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1928 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1929 */ 1930 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1931 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1932 if (ratio >= NUMA_PERIOD_THRESHOLD) { 1933 int slot = ratio - NUMA_PERIOD_THRESHOLD; 1934 if (!slot) 1935 slot = 1; 1936 diff = slot * period_slot; 1937 } else { 1938 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1939 1940 /* 1941 * Scale scan rate increases based on sharing. There is an 1942 * inverse relationship between the degree of sharing and 1943 * the adjustment made to the scanning period. Broadly 1944 * speaking the intent is that there is little point 1945 * scanning faster if shared accesses dominate as it may 1946 * simply bounce migrations uselessly 1947 */ 1948 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1)); 1949 diff = (diff * ratio) / NUMA_PERIOD_SLOTS; 1950 } 1951 1952 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1953 task_scan_min(p), task_scan_max(p)); 1954 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1955 } 1956 1957 /* 1958 * Get the fraction of time the task has been running since the last 1959 * NUMA placement cycle. The scheduler keeps similar statistics, but 1960 * decays those on a 32ms period, which is orders of magnitude off 1961 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1962 * stats only if the task is so new there are no NUMA statistics yet. 1963 */ 1964 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 1965 { 1966 u64 runtime, delta, now; 1967 /* Use the start of this time slice to avoid calculations. */ 1968 now = p->se.exec_start; 1969 runtime = p->se.sum_exec_runtime; 1970 1971 if (p->last_task_numa_placement) { 1972 delta = runtime - p->last_sum_exec_runtime; 1973 *period = now - p->last_task_numa_placement; 1974 } else { 1975 delta = p->se.avg.load_sum / p->se.load.weight; 1976 *period = LOAD_AVG_MAX; 1977 } 1978 1979 p->last_sum_exec_runtime = runtime; 1980 p->last_task_numa_placement = now; 1981 1982 return delta; 1983 } 1984 1985 /* 1986 * Determine the preferred nid for a task in a numa_group. This needs to 1987 * be done in a way that produces consistent results with group_weight, 1988 * otherwise workloads might not converge. 1989 */ 1990 static int preferred_group_nid(struct task_struct *p, int nid) 1991 { 1992 nodemask_t nodes; 1993 int dist; 1994 1995 /* Direct connections between all NUMA nodes. */ 1996 if (sched_numa_topology_type == NUMA_DIRECT) 1997 return nid; 1998 1999 /* 2000 * On a system with glueless mesh NUMA topology, group_weight 2001 * scores nodes according to the number of NUMA hinting faults on 2002 * both the node itself, and on nearby nodes. 2003 */ 2004 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2005 unsigned long score, max_score = 0; 2006 int node, max_node = nid; 2007 2008 dist = sched_max_numa_distance; 2009 2010 for_each_online_node(node) { 2011 score = group_weight(p, node, dist); 2012 if (score > max_score) { 2013 max_score = score; 2014 max_node = node; 2015 } 2016 } 2017 return max_node; 2018 } 2019 2020 /* 2021 * Finding the preferred nid in a system with NUMA backplane 2022 * interconnect topology is more involved. The goal is to locate 2023 * tasks from numa_groups near each other in the system, and 2024 * untangle workloads from different sides of the system. This requires 2025 * searching down the hierarchy of node groups, recursively searching 2026 * inside the highest scoring group of nodes. The nodemask tricks 2027 * keep the complexity of the search down. 2028 */ 2029 nodes = node_online_map; 2030 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2031 unsigned long max_faults = 0; 2032 nodemask_t max_group = NODE_MASK_NONE; 2033 int a, b; 2034 2035 /* Are there nodes at this distance from each other? */ 2036 if (!find_numa_distance(dist)) 2037 continue; 2038 2039 for_each_node_mask(a, nodes) { 2040 unsigned long faults = 0; 2041 nodemask_t this_group; 2042 nodes_clear(this_group); 2043 2044 /* Sum group's NUMA faults; includes a==b case. */ 2045 for_each_node_mask(b, nodes) { 2046 if (node_distance(a, b) < dist) { 2047 faults += group_faults(p, b); 2048 node_set(b, this_group); 2049 node_clear(b, nodes); 2050 } 2051 } 2052 2053 /* Remember the top group. */ 2054 if (faults > max_faults) { 2055 max_faults = faults; 2056 max_group = this_group; 2057 /* 2058 * subtle: at the smallest distance there is 2059 * just one node left in each "group", the 2060 * winner is the preferred nid. 2061 */ 2062 nid = a; 2063 } 2064 } 2065 /* Next round, evaluate the nodes within max_group. */ 2066 if (!max_faults) 2067 break; 2068 nodes = max_group; 2069 } 2070 return nid; 2071 } 2072 2073 static void task_numa_placement(struct task_struct *p) 2074 { 2075 int seq, nid, max_nid = -1, max_group_nid = -1; 2076 unsigned long max_faults = 0, max_group_faults = 0; 2077 unsigned long fault_types[2] = { 0, 0 }; 2078 unsigned long total_faults; 2079 u64 runtime, period; 2080 spinlock_t *group_lock = NULL; 2081 2082 /* 2083 * The p->mm->numa_scan_seq field gets updated without 2084 * exclusive access. Use READ_ONCE() here to ensure 2085 * that the field is read in a single access: 2086 */ 2087 seq = READ_ONCE(p->mm->numa_scan_seq); 2088 if (p->numa_scan_seq == seq) 2089 return; 2090 p->numa_scan_seq = seq; 2091 p->numa_scan_period_max = task_scan_max(p); 2092 2093 total_faults = p->numa_faults_locality[0] + 2094 p->numa_faults_locality[1]; 2095 runtime = numa_get_avg_runtime(p, &period); 2096 2097 /* If the task is part of a group prevent parallel updates to group stats */ 2098 if (p->numa_group) { 2099 group_lock = &p->numa_group->lock; 2100 spin_lock_irq(group_lock); 2101 } 2102 2103 /* Find the node with the highest number of faults */ 2104 for_each_online_node(nid) { 2105 /* Keep track of the offsets in numa_faults array */ 2106 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2107 unsigned long faults = 0, group_faults = 0; 2108 int priv; 2109 2110 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2111 long diff, f_diff, f_weight; 2112 2113 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2114 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2115 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2116 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2117 2118 /* Decay existing window, copy faults since last scan */ 2119 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2120 fault_types[priv] += p->numa_faults[membuf_idx]; 2121 p->numa_faults[membuf_idx] = 0; 2122 2123 /* 2124 * Normalize the faults_from, so all tasks in a group 2125 * count according to CPU use, instead of by the raw 2126 * number of faults. Tasks with little runtime have 2127 * little over-all impact on throughput, and thus their 2128 * faults are less important. 2129 */ 2130 f_weight = div64_u64(runtime << 16, period + 1); 2131 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2132 (total_faults + 1); 2133 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2134 p->numa_faults[cpubuf_idx] = 0; 2135 2136 p->numa_faults[mem_idx] += diff; 2137 p->numa_faults[cpu_idx] += f_diff; 2138 faults += p->numa_faults[mem_idx]; 2139 p->total_numa_faults += diff; 2140 if (p->numa_group) { 2141 /* 2142 * safe because we can only change our own group 2143 * 2144 * mem_idx represents the offset for a given 2145 * nid and priv in a specific region because it 2146 * is at the beginning of the numa_faults array. 2147 */ 2148 p->numa_group->faults[mem_idx] += diff; 2149 p->numa_group->faults_cpu[mem_idx] += f_diff; 2150 p->numa_group->total_faults += diff; 2151 group_faults += p->numa_group->faults[mem_idx]; 2152 } 2153 } 2154 2155 if (faults > max_faults) { 2156 max_faults = faults; 2157 max_nid = nid; 2158 } 2159 2160 if (group_faults > max_group_faults) { 2161 max_group_faults = group_faults; 2162 max_group_nid = nid; 2163 } 2164 } 2165 2166 update_task_scan_period(p, fault_types[0], fault_types[1]); 2167 2168 if (p->numa_group) { 2169 numa_group_count_active_nodes(p->numa_group); 2170 spin_unlock_irq(group_lock); 2171 max_nid = preferred_group_nid(p, max_group_nid); 2172 } 2173 2174 if (max_faults) { 2175 /* Set the new preferred node */ 2176 if (max_nid != p->numa_preferred_nid) 2177 sched_setnuma(p, max_nid); 2178 2179 if (task_node(p) != p->numa_preferred_nid) 2180 numa_migrate_preferred(p); 2181 } 2182 } 2183 2184 static inline int get_numa_group(struct numa_group *grp) 2185 { 2186 return atomic_inc_not_zero(&grp->refcount); 2187 } 2188 2189 static inline void put_numa_group(struct numa_group *grp) 2190 { 2191 if (atomic_dec_and_test(&grp->refcount)) 2192 kfree_rcu(grp, rcu); 2193 } 2194 2195 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2196 int *priv) 2197 { 2198 struct numa_group *grp, *my_grp; 2199 struct task_struct *tsk; 2200 bool join = false; 2201 int cpu = cpupid_to_cpu(cpupid); 2202 int i; 2203 2204 if (unlikely(!p->numa_group)) { 2205 unsigned int size = sizeof(struct numa_group) + 2206 4*nr_node_ids*sizeof(unsigned long); 2207 2208 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2209 if (!grp) 2210 return; 2211 2212 atomic_set(&grp->refcount, 1); 2213 grp->active_nodes = 1; 2214 grp->max_faults_cpu = 0; 2215 spin_lock_init(&grp->lock); 2216 grp->gid = p->pid; 2217 /* Second half of the array tracks nids where faults happen */ 2218 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2219 nr_node_ids; 2220 2221 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2222 grp->faults[i] = p->numa_faults[i]; 2223 2224 grp->total_faults = p->total_numa_faults; 2225 2226 grp->nr_tasks++; 2227 rcu_assign_pointer(p->numa_group, grp); 2228 } 2229 2230 rcu_read_lock(); 2231 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2232 2233 if (!cpupid_match_pid(tsk, cpupid)) 2234 goto no_join; 2235 2236 grp = rcu_dereference(tsk->numa_group); 2237 if (!grp) 2238 goto no_join; 2239 2240 my_grp = p->numa_group; 2241 if (grp == my_grp) 2242 goto no_join; 2243 2244 /* 2245 * Only join the other group if its bigger; if we're the bigger group, 2246 * the other task will join us. 2247 */ 2248 if (my_grp->nr_tasks > grp->nr_tasks) 2249 goto no_join; 2250 2251 /* 2252 * Tie-break on the grp address. 2253 */ 2254 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2255 goto no_join; 2256 2257 /* Always join threads in the same process. */ 2258 if (tsk->mm == current->mm) 2259 join = true; 2260 2261 /* Simple filter to avoid false positives due to PID collisions */ 2262 if (flags & TNF_SHARED) 2263 join = true; 2264 2265 /* Update priv based on whether false sharing was detected */ 2266 *priv = !join; 2267 2268 if (join && !get_numa_group(grp)) 2269 goto no_join; 2270 2271 rcu_read_unlock(); 2272 2273 if (!join) 2274 return; 2275 2276 BUG_ON(irqs_disabled()); 2277 double_lock_irq(&my_grp->lock, &grp->lock); 2278 2279 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2280 my_grp->faults[i] -= p->numa_faults[i]; 2281 grp->faults[i] += p->numa_faults[i]; 2282 } 2283 my_grp->total_faults -= p->total_numa_faults; 2284 grp->total_faults += p->total_numa_faults; 2285 2286 my_grp->nr_tasks--; 2287 grp->nr_tasks++; 2288 2289 spin_unlock(&my_grp->lock); 2290 spin_unlock_irq(&grp->lock); 2291 2292 rcu_assign_pointer(p->numa_group, grp); 2293 2294 put_numa_group(my_grp); 2295 return; 2296 2297 no_join: 2298 rcu_read_unlock(); 2299 return; 2300 } 2301 2302 void task_numa_free(struct task_struct *p) 2303 { 2304 struct numa_group *grp = p->numa_group; 2305 void *numa_faults = p->numa_faults; 2306 unsigned long flags; 2307 int i; 2308 2309 if (grp) { 2310 spin_lock_irqsave(&grp->lock, flags); 2311 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2312 grp->faults[i] -= p->numa_faults[i]; 2313 grp->total_faults -= p->total_numa_faults; 2314 2315 grp->nr_tasks--; 2316 spin_unlock_irqrestore(&grp->lock, flags); 2317 RCU_INIT_POINTER(p->numa_group, NULL); 2318 put_numa_group(grp); 2319 } 2320 2321 p->numa_faults = NULL; 2322 kfree(numa_faults); 2323 } 2324 2325 /* 2326 * Got a PROT_NONE fault for a page on @node. 2327 */ 2328 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2329 { 2330 struct task_struct *p = current; 2331 bool migrated = flags & TNF_MIGRATED; 2332 int cpu_node = task_node(current); 2333 int local = !!(flags & TNF_FAULT_LOCAL); 2334 struct numa_group *ng; 2335 int priv; 2336 2337 if (!static_branch_likely(&sched_numa_balancing)) 2338 return; 2339 2340 /* for example, ksmd faulting in a user's mm */ 2341 if (!p->mm) 2342 return; 2343 2344 /* Allocate buffer to track faults on a per-node basis */ 2345 if (unlikely(!p->numa_faults)) { 2346 int size = sizeof(*p->numa_faults) * 2347 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2348 2349 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2350 if (!p->numa_faults) 2351 return; 2352 2353 p->total_numa_faults = 0; 2354 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2355 } 2356 2357 /* 2358 * First accesses are treated as private, otherwise consider accesses 2359 * to be private if the accessing pid has not changed 2360 */ 2361 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2362 priv = 1; 2363 } else { 2364 priv = cpupid_match_pid(p, last_cpupid); 2365 if (!priv && !(flags & TNF_NO_GROUP)) 2366 task_numa_group(p, last_cpupid, flags, &priv); 2367 } 2368 2369 /* 2370 * If a workload spans multiple NUMA nodes, a shared fault that 2371 * occurs wholly within the set of nodes that the workload is 2372 * actively using should be counted as local. This allows the 2373 * scan rate to slow down when a workload has settled down. 2374 */ 2375 ng = p->numa_group; 2376 if (!priv && !local && ng && ng->active_nodes > 1 && 2377 numa_is_active_node(cpu_node, ng) && 2378 numa_is_active_node(mem_node, ng)) 2379 local = 1; 2380 2381 task_numa_placement(p); 2382 2383 /* 2384 * Retry task to preferred node migration periodically, in case it 2385 * case it previously failed, or the scheduler moved us. 2386 */ 2387 if (time_after(jiffies, p->numa_migrate_retry)) 2388 numa_migrate_preferred(p); 2389 2390 if (migrated) 2391 p->numa_pages_migrated += pages; 2392 if (flags & TNF_MIGRATE_FAIL) 2393 p->numa_faults_locality[2] += pages; 2394 2395 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2396 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2397 p->numa_faults_locality[local] += pages; 2398 } 2399 2400 static void reset_ptenuma_scan(struct task_struct *p) 2401 { 2402 /* 2403 * We only did a read acquisition of the mmap sem, so 2404 * p->mm->numa_scan_seq is written to without exclusive access 2405 * and the update is not guaranteed to be atomic. That's not 2406 * much of an issue though, since this is just used for 2407 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2408 * expensive, to avoid any form of compiler optimizations: 2409 */ 2410 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2411 p->mm->numa_scan_offset = 0; 2412 } 2413 2414 /* 2415 * The expensive part of numa migration is done from task_work context. 2416 * Triggered from task_tick_numa(). 2417 */ 2418 void task_numa_work(struct callback_head *work) 2419 { 2420 unsigned long migrate, next_scan, now = jiffies; 2421 struct task_struct *p = current; 2422 struct mm_struct *mm = p->mm; 2423 u64 runtime = p->se.sum_exec_runtime; 2424 struct vm_area_struct *vma; 2425 unsigned long start, end; 2426 unsigned long nr_pte_updates = 0; 2427 long pages, virtpages; 2428 2429 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 2430 2431 work->next = work; /* protect against double add */ 2432 /* 2433 * Who cares about NUMA placement when they're dying. 2434 * 2435 * NOTE: make sure not to dereference p->mm before this check, 2436 * exit_task_work() happens _after_ exit_mm() so we could be called 2437 * without p->mm even though we still had it when we enqueued this 2438 * work. 2439 */ 2440 if (p->flags & PF_EXITING) 2441 return; 2442 2443 if (!mm->numa_next_scan) { 2444 mm->numa_next_scan = now + 2445 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2446 } 2447 2448 /* 2449 * Enforce maximal scan/migration frequency.. 2450 */ 2451 migrate = mm->numa_next_scan; 2452 if (time_before(now, migrate)) 2453 return; 2454 2455 if (p->numa_scan_period == 0) { 2456 p->numa_scan_period_max = task_scan_max(p); 2457 p->numa_scan_period = task_scan_min(p); 2458 } 2459 2460 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2461 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2462 return; 2463 2464 /* 2465 * Delay this task enough that another task of this mm will likely win 2466 * the next time around. 2467 */ 2468 p->node_stamp += 2 * TICK_NSEC; 2469 2470 start = mm->numa_scan_offset; 2471 pages = sysctl_numa_balancing_scan_size; 2472 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2473 virtpages = pages * 8; /* Scan up to this much virtual space */ 2474 if (!pages) 2475 return; 2476 2477 2478 down_read(&mm->mmap_sem); 2479 vma = find_vma(mm, start); 2480 if (!vma) { 2481 reset_ptenuma_scan(p); 2482 start = 0; 2483 vma = mm->mmap; 2484 } 2485 for (; vma; vma = vma->vm_next) { 2486 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2487 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2488 continue; 2489 } 2490 2491 /* 2492 * Shared library pages mapped by multiple processes are not 2493 * migrated as it is expected they are cache replicated. Avoid 2494 * hinting faults in read-only file-backed mappings or the vdso 2495 * as migrating the pages will be of marginal benefit. 2496 */ 2497 if (!vma->vm_mm || 2498 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2499 continue; 2500 2501 /* 2502 * Skip inaccessible VMAs to avoid any confusion between 2503 * PROT_NONE and NUMA hinting ptes 2504 */ 2505 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2506 continue; 2507 2508 do { 2509 start = max(start, vma->vm_start); 2510 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2511 end = min(end, vma->vm_end); 2512 nr_pte_updates = change_prot_numa(vma, start, end); 2513 2514 /* 2515 * Try to scan sysctl_numa_balancing_size worth of 2516 * hpages that have at least one present PTE that 2517 * is not already pte-numa. If the VMA contains 2518 * areas that are unused or already full of prot_numa 2519 * PTEs, scan up to virtpages, to skip through those 2520 * areas faster. 2521 */ 2522 if (nr_pte_updates) 2523 pages -= (end - start) >> PAGE_SHIFT; 2524 virtpages -= (end - start) >> PAGE_SHIFT; 2525 2526 start = end; 2527 if (pages <= 0 || virtpages <= 0) 2528 goto out; 2529 2530 cond_resched(); 2531 } while (end != vma->vm_end); 2532 } 2533 2534 out: 2535 /* 2536 * It is possible to reach the end of the VMA list but the last few 2537 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2538 * would find the !migratable VMA on the next scan but not reset the 2539 * scanner to the start so check it now. 2540 */ 2541 if (vma) 2542 mm->numa_scan_offset = start; 2543 else 2544 reset_ptenuma_scan(p); 2545 up_read(&mm->mmap_sem); 2546 2547 /* 2548 * Make sure tasks use at least 32x as much time to run other code 2549 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2550 * Usually update_task_scan_period slows down scanning enough; on an 2551 * overloaded system we need to limit overhead on a per task basis. 2552 */ 2553 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2554 u64 diff = p->se.sum_exec_runtime - runtime; 2555 p->node_stamp += 32 * diff; 2556 } 2557 } 2558 2559 /* 2560 * Drive the periodic memory faults.. 2561 */ 2562 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2563 { 2564 struct callback_head *work = &curr->numa_work; 2565 u64 period, now; 2566 2567 /* 2568 * We don't care about NUMA placement if we don't have memory. 2569 */ 2570 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2571 return; 2572 2573 /* 2574 * Using runtime rather than walltime has the dual advantage that 2575 * we (mostly) drive the selection from busy threads and that the 2576 * task needs to have done some actual work before we bother with 2577 * NUMA placement. 2578 */ 2579 now = curr->se.sum_exec_runtime; 2580 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2581 2582 if (now > curr->node_stamp + period) { 2583 if (!curr->node_stamp) 2584 curr->numa_scan_period = task_scan_min(curr); 2585 curr->node_stamp += period; 2586 2587 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2588 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2589 task_work_add(curr, work, true); 2590 } 2591 } 2592 } 2593 #else 2594 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2595 { 2596 } 2597 2598 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2599 { 2600 } 2601 2602 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2603 { 2604 } 2605 #endif /* CONFIG_NUMA_BALANCING */ 2606 2607 static void 2608 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2609 { 2610 update_load_add(&cfs_rq->load, se->load.weight); 2611 if (!parent_entity(se)) 2612 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2613 #ifdef CONFIG_SMP 2614 if (entity_is_task(se)) { 2615 struct rq *rq = rq_of(cfs_rq); 2616 2617 account_numa_enqueue(rq, task_of(se)); 2618 list_add(&se->group_node, &rq->cfs_tasks); 2619 } 2620 #endif 2621 cfs_rq->nr_running++; 2622 } 2623 2624 static void 2625 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2626 { 2627 update_load_sub(&cfs_rq->load, se->load.weight); 2628 if (!parent_entity(se)) 2629 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2630 #ifdef CONFIG_SMP 2631 if (entity_is_task(se)) { 2632 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2633 list_del_init(&se->group_node); 2634 } 2635 #endif 2636 cfs_rq->nr_running--; 2637 } 2638 2639 #ifdef CONFIG_FAIR_GROUP_SCHED 2640 # ifdef CONFIG_SMP 2641 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2642 { 2643 long tg_weight, load, shares; 2644 2645 /* 2646 * This really should be: cfs_rq->avg.load_avg, but instead we use 2647 * cfs_rq->load.weight, which is its upper bound. This helps ramp up 2648 * the shares for small weight interactive tasks. 2649 */ 2650 load = scale_load_down(cfs_rq->load.weight); 2651 2652 tg_weight = atomic_long_read(&tg->load_avg); 2653 2654 /* Ensure tg_weight >= load */ 2655 tg_weight -= cfs_rq->tg_load_avg_contrib; 2656 tg_weight += load; 2657 2658 shares = (tg->shares * load); 2659 if (tg_weight) 2660 shares /= tg_weight; 2661 2662 /* 2663 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 2664 * of a group with small tg->shares value. It is a floor value which is 2665 * assigned as a minimum load.weight to the sched_entity representing 2666 * the group on a CPU. 2667 * 2668 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 2669 * on an 8-core system with 8 tasks each runnable on one CPU shares has 2670 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 2671 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 2672 * instead of 0. 2673 */ 2674 if (shares < MIN_SHARES) 2675 shares = MIN_SHARES; 2676 if (shares > tg->shares) 2677 shares = tg->shares; 2678 2679 return shares; 2680 } 2681 # else /* CONFIG_SMP */ 2682 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2683 { 2684 return tg->shares; 2685 } 2686 # endif /* CONFIG_SMP */ 2687 2688 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2689 unsigned long weight) 2690 { 2691 if (se->on_rq) { 2692 /* commit outstanding execution time */ 2693 if (cfs_rq->curr == se) 2694 update_curr(cfs_rq); 2695 account_entity_dequeue(cfs_rq, se); 2696 } 2697 2698 update_load_set(&se->load, weight); 2699 2700 if (se->on_rq) 2701 account_entity_enqueue(cfs_rq, se); 2702 } 2703 2704 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2705 2706 static void update_cfs_shares(struct sched_entity *se) 2707 { 2708 struct cfs_rq *cfs_rq = group_cfs_rq(se); 2709 struct task_group *tg; 2710 long shares; 2711 2712 if (!cfs_rq) 2713 return; 2714 2715 if (throttled_hierarchy(cfs_rq)) 2716 return; 2717 2718 tg = cfs_rq->tg; 2719 2720 #ifndef CONFIG_SMP 2721 if (likely(se->load.weight == tg->shares)) 2722 return; 2723 #endif 2724 shares = calc_cfs_shares(cfs_rq, tg); 2725 2726 reweight_entity(cfs_rq_of(se), se, shares); 2727 } 2728 2729 #else /* CONFIG_FAIR_GROUP_SCHED */ 2730 static inline void update_cfs_shares(struct sched_entity *se) 2731 { 2732 } 2733 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2734 2735 #ifdef CONFIG_SMP 2736 /* Precomputed fixed inverse multiplies for multiplication by y^n */ 2737 static const u32 runnable_avg_yN_inv[] = { 2738 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 2739 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 2740 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 2741 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 2742 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 2743 0x85aac367, 0x82cd8698, 2744 }; 2745 2746 /* 2747 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 2748 * over-estimates when re-combining. 2749 */ 2750 static const u32 runnable_avg_yN_sum[] = { 2751 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 2752 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 2753 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 2754 }; 2755 2756 /* 2757 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to 2758 * lower integers. See Documentation/scheduler/sched-avg.txt how these 2759 * were generated: 2760 */ 2761 static const u32 __accumulated_sum_N32[] = { 2762 0, 23371, 35056, 40899, 43820, 45281, 2763 46011, 46376, 46559, 46650, 46696, 46719, 2764 }; 2765 2766 /* 2767 * Approximate: 2768 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 2769 */ 2770 static __always_inline u64 decay_load(u64 val, u64 n) 2771 { 2772 unsigned int local_n; 2773 2774 if (!n) 2775 return val; 2776 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 2777 return 0; 2778 2779 /* after bounds checking we can collapse to 32-bit */ 2780 local_n = n; 2781 2782 /* 2783 * As y^PERIOD = 1/2, we can combine 2784 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 2785 * With a look-up table which covers y^n (n<PERIOD) 2786 * 2787 * To achieve constant time decay_load. 2788 */ 2789 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 2790 val >>= local_n / LOAD_AVG_PERIOD; 2791 local_n %= LOAD_AVG_PERIOD; 2792 } 2793 2794 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 2795 return val; 2796 } 2797 2798 /* 2799 * For updates fully spanning n periods, the contribution to runnable 2800 * average will be: \Sum 1024*y^n 2801 * 2802 * We can compute this reasonably efficiently by combining: 2803 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 2804 */ 2805 static u32 __compute_runnable_contrib(u64 n) 2806 { 2807 u32 contrib = 0; 2808 2809 if (likely(n <= LOAD_AVG_PERIOD)) 2810 return runnable_avg_yN_sum[n]; 2811 else if (unlikely(n >= LOAD_AVG_MAX_N)) 2812 return LOAD_AVG_MAX; 2813 2814 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */ 2815 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD]; 2816 n %= LOAD_AVG_PERIOD; 2817 contrib = decay_load(contrib, n); 2818 return contrib + runnable_avg_yN_sum[n]; 2819 } 2820 2821 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 2822 2823 /* 2824 * We can represent the historical contribution to runnable average as the 2825 * coefficients of a geometric series. To do this we sub-divide our runnable 2826 * history into segments of approximately 1ms (1024us); label the segment that 2827 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 2828 * 2829 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 2830 * p0 p1 p2 2831 * (now) (~1ms ago) (~2ms ago) 2832 * 2833 * Let u_i denote the fraction of p_i that the entity was runnable. 2834 * 2835 * We then designate the fractions u_i as our co-efficients, yielding the 2836 * following representation of historical load: 2837 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 2838 * 2839 * We choose y based on the with of a reasonably scheduling period, fixing: 2840 * y^32 = 0.5 2841 * 2842 * This means that the contribution to load ~32ms ago (u_32) will be weighted 2843 * approximately half as much as the contribution to load within the last ms 2844 * (u_0). 2845 * 2846 * When a period "rolls over" and we have new u_0`, multiplying the previous 2847 * sum again by y is sufficient to update: 2848 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 2849 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 2850 */ 2851 static __always_inline int 2852 __update_load_avg(u64 now, int cpu, struct sched_avg *sa, 2853 unsigned long weight, int running, struct cfs_rq *cfs_rq) 2854 { 2855 u64 delta, scaled_delta, periods; 2856 u32 contrib; 2857 unsigned int delta_w, scaled_delta_w, decayed = 0; 2858 unsigned long scale_freq, scale_cpu; 2859 2860 delta = now - sa->last_update_time; 2861 /* 2862 * This should only happen when time goes backwards, which it 2863 * unfortunately does during sched clock init when we swap over to TSC. 2864 */ 2865 if ((s64)delta < 0) { 2866 sa->last_update_time = now; 2867 return 0; 2868 } 2869 2870 /* 2871 * Use 1024ns as the unit of measurement since it's a reasonable 2872 * approximation of 1us and fast to compute. 2873 */ 2874 delta >>= 10; 2875 if (!delta) 2876 return 0; 2877 sa->last_update_time = now; 2878 2879 scale_freq = arch_scale_freq_capacity(NULL, cpu); 2880 scale_cpu = arch_scale_cpu_capacity(NULL, cpu); 2881 2882 /* delta_w is the amount already accumulated against our next period */ 2883 delta_w = sa->period_contrib; 2884 if (delta + delta_w >= 1024) { 2885 decayed = 1; 2886 2887 /* how much left for next period will start over, we don't know yet */ 2888 sa->period_contrib = 0; 2889 2890 /* 2891 * Now that we know we're crossing a period boundary, figure 2892 * out how much from delta we need to complete the current 2893 * period and accrue it. 2894 */ 2895 delta_w = 1024 - delta_w; 2896 scaled_delta_w = cap_scale(delta_w, scale_freq); 2897 if (weight) { 2898 sa->load_sum += weight * scaled_delta_w; 2899 if (cfs_rq) { 2900 cfs_rq->runnable_load_sum += 2901 weight * scaled_delta_w; 2902 } 2903 } 2904 if (running) 2905 sa->util_sum += scaled_delta_w * scale_cpu; 2906 2907 delta -= delta_w; 2908 2909 /* Figure out how many additional periods this update spans */ 2910 periods = delta / 1024; 2911 delta %= 1024; 2912 2913 sa->load_sum = decay_load(sa->load_sum, periods + 1); 2914 if (cfs_rq) { 2915 cfs_rq->runnable_load_sum = 2916 decay_load(cfs_rq->runnable_load_sum, periods + 1); 2917 } 2918 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1); 2919 2920 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 2921 contrib = __compute_runnable_contrib(periods); 2922 contrib = cap_scale(contrib, scale_freq); 2923 if (weight) { 2924 sa->load_sum += weight * contrib; 2925 if (cfs_rq) 2926 cfs_rq->runnable_load_sum += weight * contrib; 2927 } 2928 if (running) 2929 sa->util_sum += contrib * scale_cpu; 2930 } 2931 2932 /* Remainder of delta accrued against u_0` */ 2933 scaled_delta = cap_scale(delta, scale_freq); 2934 if (weight) { 2935 sa->load_sum += weight * scaled_delta; 2936 if (cfs_rq) 2937 cfs_rq->runnable_load_sum += weight * scaled_delta; 2938 } 2939 if (running) 2940 sa->util_sum += scaled_delta * scale_cpu; 2941 2942 sa->period_contrib += delta; 2943 2944 if (decayed) { 2945 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX); 2946 if (cfs_rq) { 2947 cfs_rq->runnable_load_avg = 2948 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX); 2949 } 2950 sa->util_avg = sa->util_sum / LOAD_AVG_MAX; 2951 } 2952 2953 return decayed; 2954 } 2955 2956 /* 2957 * Signed add and clamp on underflow. 2958 * 2959 * Explicitly do a load-store to ensure the intermediate value never hits 2960 * memory. This allows lockless observations without ever seeing the negative 2961 * values. 2962 */ 2963 #define add_positive(_ptr, _val) do { \ 2964 typeof(_ptr) ptr = (_ptr); \ 2965 typeof(_val) val = (_val); \ 2966 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2967 \ 2968 res = var + val; \ 2969 \ 2970 if (val < 0 && res > var) \ 2971 res = 0; \ 2972 \ 2973 WRITE_ONCE(*ptr, res); \ 2974 } while (0) 2975 2976 #ifdef CONFIG_FAIR_GROUP_SCHED 2977 /** 2978 * update_tg_load_avg - update the tg's load avg 2979 * @cfs_rq: the cfs_rq whose avg changed 2980 * @force: update regardless of how small the difference 2981 * 2982 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 2983 * However, because tg->load_avg is a global value there are performance 2984 * considerations. 2985 * 2986 * In order to avoid having to look at the other cfs_rq's, we use a 2987 * differential update where we store the last value we propagated. This in 2988 * turn allows skipping updates if the differential is 'small'. 2989 * 2990 * Updating tg's load_avg is necessary before update_cfs_share() (which is 2991 * done) and effective_load() (which is not done because it is too costly). 2992 */ 2993 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 2994 { 2995 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 2996 2997 /* 2998 * No need to update load_avg for root_task_group as it is not used. 2999 */ 3000 if (cfs_rq->tg == &root_task_group) 3001 return; 3002 3003 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 3004 atomic_long_add(delta, &cfs_rq->tg->load_avg); 3005 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 3006 } 3007 } 3008 3009 /* 3010 * Called within set_task_rq() right before setting a task's cpu. The 3011 * caller only guarantees p->pi_lock is held; no other assumptions, 3012 * including the state of rq->lock, should be made. 3013 */ 3014 void set_task_rq_fair(struct sched_entity *se, 3015 struct cfs_rq *prev, struct cfs_rq *next) 3016 { 3017 if (!sched_feat(ATTACH_AGE_LOAD)) 3018 return; 3019 3020 /* 3021 * We are supposed to update the task to "current" time, then its up to 3022 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 3023 * getting what current time is, so simply throw away the out-of-date 3024 * time. This will result in the wakee task is less decayed, but giving 3025 * the wakee more load sounds not bad. 3026 */ 3027 if (se->avg.last_update_time && prev) { 3028 u64 p_last_update_time; 3029 u64 n_last_update_time; 3030 3031 #ifndef CONFIG_64BIT 3032 u64 p_last_update_time_copy; 3033 u64 n_last_update_time_copy; 3034 3035 do { 3036 p_last_update_time_copy = prev->load_last_update_time_copy; 3037 n_last_update_time_copy = next->load_last_update_time_copy; 3038 3039 smp_rmb(); 3040 3041 p_last_update_time = prev->avg.last_update_time; 3042 n_last_update_time = next->avg.last_update_time; 3043 3044 } while (p_last_update_time != p_last_update_time_copy || 3045 n_last_update_time != n_last_update_time_copy); 3046 #else 3047 p_last_update_time = prev->avg.last_update_time; 3048 n_last_update_time = next->avg.last_update_time; 3049 #endif 3050 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)), 3051 &se->avg, 0, 0, NULL); 3052 se->avg.last_update_time = n_last_update_time; 3053 } 3054 } 3055 3056 /* Take into account change of utilization of a child task group */ 3057 static inline void 3058 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se) 3059 { 3060 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3061 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg; 3062 3063 /* Nothing to update */ 3064 if (!delta) 3065 return; 3066 3067 /* Set new sched_entity's utilization */ 3068 se->avg.util_avg = gcfs_rq->avg.util_avg; 3069 se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX; 3070 3071 /* Update parent cfs_rq utilization */ 3072 add_positive(&cfs_rq->avg.util_avg, delta); 3073 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX; 3074 } 3075 3076 /* Take into account change of load of a child task group */ 3077 static inline void 3078 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se) 3079 { 3080 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3081 long delta, load = gcfs_rq->avg.load_avg; 3082 3083 /* 3084 * If the load of group cfs_rq is null, the load of the 3085 * sched_entity will also be null so we can skip the formula 3086 */ 3087 if (load) { 3088 long tg_load; 3089 3090 /* Get tg's load and ensure tg_load > 0 */ 3091 tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1; 3092 3093 /* Ensure tg_load >= load and updated with current load*/ 3094 tg_load -= gcfs_rq->tg_load_avg_contrib; 3095 tg_load += load; 3096 3097 /* 3098 * We need to compute a correction term in the case that the 3099 * task group is consuming more CPU than a task of equal 3100 * weight. A task with a weight equals to tg->shares will have 3101 * a load less or equal to scale_load_down(tg->shares). 3102 * Similarly, the sched_entities that represent the task group 3103 * at parent level, can't have a load higher than 3104 * scale_load_down(tg->shares). And the Sum of sched_entities' 3105 * load must be <= scale_load_down(tg->shares). 3106 */ 3107 if (tg_load > scale_load_down(gcfs_rq->tg->shares)) { 3108 /* scale gcfs_rq's load into tg's shares*/ 3109 load *= scale_load_down(gcfs_rq->tg->shares); 3110 load /= tg_load; 3111 } 3112 } 3113 3114 delta = load - se->avg.load_avg; 3115 3116 /* Nothing to update */ 3117 if (!delta) 3118 return; 3119 3120 /* Set new sched_entity's load */ 3121 se->avg.load_avg = load; 3122 se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX; 3123 3124 /* Update parent cfs_rq load */ 3125 add_positive(&cfs_rq->avg.load_avg, delta); 3126 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX; 3127 3128 /* 3129 * If the sched_entity is already enqueued, we also have to update the 3130 * runnable load avg. 3131 */ 3132 if (se->on_rq) { 3133 /* Update parent cfs_rq runnable_load_avg */ 3134 add_positive(&cfs_rq->runnable_load_avg, delta); 3135 cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX; 3136 } 3137 } 3138 3139 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) 3140 { 3141 cfs_rq->propagate_avg = 1; 3142 } 3143 3144 static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se) 3145 { 3146 struct cfs_rq *cfs_rq = group_cfs_rq(se); 3147 3148 if (!cfs_rq->propagate_avg) 3149 return 0; 3150 3151 cfs_rq->propagate_avg = 0; 3152 return 1; 3153 } 3154 3155 /* Update task and its cfs_rq load average */ 3156 static inline int propagate_entity_load_avg(struct sched_entity *se) 3157 { 3158 struct cfs_rq *cfs_rq; 3159 3160 if (entity_is_task(se)) 3161 return 0; 3162 3163 if (!test_and_clear_tg_cfs_propagate(se)) 3164 return 0; 3165 3166 cfs_rq = cfs_rq_of(se); 3167 3168 set_tg_cfs_propagate(cfs_rq); 3169 3170 update_tg_cfs_util(cfs_rq, se); 3171 update_tg_cfs_load(cfs_rq, se); 3172 3173 return 1; 3174 } 3175 3176 #else /* CONFIG_FAIR_GROUP_SCHED */ 3177 3178 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 3179 3180 static inline int propagate_entity_load_avg(struct sched_entity *se) 3181 { 3182 return 0; 3183 } 3184 3185 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {} 3186 3187 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3188 3189 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq) 3190 { 3191 if (&this_rq()->cfs == cfs_rq) { 3192 /* 3193 * There are a few boundary cases this might miss but it should 3194 * get called often enough that that should (hopefully) not be 3195 * a real problem -- added to that it only calls on the local 3196 * CPU, so if we enqueue remotely we'll miss an update, but 3197 * the next tick/schedule should update. 3198 * 3199 * It will not get called when we go idle, because the idle 3200 * thread is a different class (!fair), nor will the utilization 3201 * number include things like RT tasks. 3202 * 3203 * As is, the util number is not freq-invariant (we'd have to 3204 * implement arch_scale_freq_capacity() for that). 3205 * 3206 * See cpu_util(). 3207 */ 3208 cpufreq_update_util(rq_of(cfs_rq), 0); 3209 } 3210 } 3211 3212 /* 3213 * Unsigned subtract and clamp on underflow. 3214 * 3215 * Explicitly do a load-store to ensure the intermediate value never hits 3216 * memory. This allows lockless observations without ever seeing the negative 3217 * values. 3218 */ 3219 #define sub_positive(_ptr, _val) do { \ 3220 typeof(_ptr) ptr = (_ptr); \ 3221 typeof(*ptr) val = (_val); \ 3222 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3223 res = var - val; \ 3224 if (res > var) \ 3225 res = 0; \ 3226 WRITE_ONCE(*ptr, res); \ 3227 } while (0) 3228 3229 /** 3230 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 3231 * @now: current time, as per cfs_rq_clock_task() 3232 * @cfs_rq: cfs_rq to update 3233 * @update_freq: should we call cfs_rq_util_change() or will the call do so 3234 * 3235 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 3236 * avg. The immediate corollary is that all (fair) tasks must be attached, see 3237 * post_init_entity_util_avg(). 3238 * 3239 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 3240 * 3241 * Returns true if the load decayed or we removed load. 3242 * 3243 * Since both these conditions indicate a changed cfs_rq->avg.load we should 3244 * call update_tg_load_avg() when this function returns true. 3245 */ 3246 static inline int 3247 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq) 3248 { 3249 struct sched_avg *sa = &cfs_rq->avg; 3250 int decayed, removed_load = 0, removed_util = 0; 3251 3252 if (atomic_long_read(&cfs_rq->removed_load_avg)) { 3253 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0); 3254 sub_positive(&sa->load_avg, r); 3255 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX); 3256 removed_load = 1; 3257 set_tg_cfs_propagate(cfs_rq); 3258 } 3259 3260 if (atomic_long_read(&cfs_rq->removed_util_avg)) { 3261 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0); 3262 sub_positive(&sa->util_avg, r); 3263 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX); 3264 removed_util = 1; 3265 set_tg_cfs_propagate(cfs_rq); 3266 } 3267 3268 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, 3269 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq); 3270 3271 #ifndef CONFIG_64BIT 3272 smp_wmb(); 3273 cfs_rq->load_last_update_time_copy = sa->last_update_time; 3274 #endif 3275 3276 if (update_freq && (decayed || removed_util)) 3277 cfs_rq_util_change(cfs_rq); 3278 3279 return decayed || removed_load; 3280 } 3281 3282 /* 3283 * Optional action to be done while updating the load average 3284 */ 3285 #define UPDATE_TG 0x1 3286 #define SKIP_AGE_LOAD 0x2 3287 3288 /* Update task and its cfs_rq load average */ 3289 static inline void update_load_avg(struct sched_entity *se, int flags) 3290 { 3291 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3292 u64 now = cfs_rq_clock_task(cfs_rq); 3293 struct rq *rq = rq_of(cfs_rq); 3294 int cpu = cpu_of(rq); 3295 int decayed; 3296 3297 /* 3298 * Track task load average for carrying it to new CPU after migrated, and 3299 * track group sched_entity load average for task_h_load calc in migration 3300 */ 3301 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) { 3302 __update_load_avg(now, cpu, &se->avg, 3303 se->on_rq * scale_load_down(se->load.weight), 3304 cfs_rq->curr == se, NULL); 3305 } 3306 3307 decayed = update_cfs_rq_load_avg(now, cfs_rq, true); 3308 decayed |= propagate_entity_load_avg(se); 3309 3310 if (decayed && (flags & UPDATE_TG)) 3311 update_tg_load_avg(cfs_rq, 0); 3312 } 3313 3314 /** 3315 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 3316 * @cfs_rq: cfs_rq to attach to 3317 * @se: sched_entity to attach 3318 * 3319 * Must call update_cfs_rq_load_avg() before this, since we rely on 3320 * cfs_rq->avg.last_update_time being current. 3321 */ 3322 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3323 { 3324 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3325 cfs_rq->avg.load_avg += se->avg.load_avg; 3326 cfs_rq->avg.load_sum += se->avg.load_sum; 3327 cfs_rq->avg.util_avg += se->avg.util_avg; 3328 cfs_rq->avg.util_sum += se->avg.util_sum; 3329 set_tg_cfs_propagate(cfs_rq); 3330 3331 cfs_rq_util_change(cfs_rq); 3332 } 3333 3334 /** 3335 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 3336 * @cfs_rq: cfs_rq to detach from 3337 * @se: sched_entity to detach 3338 * 3339 * Must call update_cfs_rq_load_avg() before this, since we rely on 3340 * cfs_rq->avg.last_update_time being current. 3341 */ 3342 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3343 { 3344 3345 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3346 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum); 3347 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3348 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3349 set_tg_cfs_propagate(cfs_rq); 3350 3351 cfs_rq_util_change(cfs_rq); 3352 } 3353 3354 /* Add the load generated by se into cfs_rq's load average */ 3355 static inline void 3356 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3357 { 3358 struct sched_avg *sa = &se->avg; 3359 3360 cfs_rq->runnable_load_avg += sa->load_avg; 3361 cfs_rq->runnable_load_sum += sa->load_sum; 3362 3363 if (!sa->last_update_time) { 3364 attach_entity_load_avg(cfs_rq, se); 3365 update_tg_load_avg(cfs_rq, 0); 3366 } 3367 } 3368 3369 /* Remove the runnable load generated by se from cfs_rq's runnable load average */ 3370 static inline void 3371 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3372 { 3373 cfs_rq->runnable_load_avg = 3374 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0); 3375 cfs_rq->runnable_load_sum = 3376 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0); 3377 } 3378 3379 #ifndef CONFIG_64BIT 3380 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3381 { 3382 u64 last_update_time_copy; 3383 u64 last_update_time; 3384 3385 do { 3386 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3387 smp_rmb(); 3388 last_update_time = cfs_rq->avg.last_update_time; 3389 } while (last_update_time != last_update_time_copy); 3390 3391 return last_update_time; 3392 } 3393 #else 3394 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3395 { 3396 return cfs_rq->avg.last_update_time; 3397 } 3398 #endif 3399 3400 /* 3401 * Synchronize entity load avg of dequeued entity without locking 3402 * the previous rq. 3403 */ 3404 void sync_entity_load_avg(struct sched_entity *se) 3405 { 3406 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3407 u64 last_update_time; 3408 3409 last_update_time = cfs_rq_last_update_time(cfs_rq); 3410 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL); 3411 } 3412 3413 /* 3414 * Task first catches up with cfs_rq, and then subtract 3415 * itself from the cfs_rq (task must be off the queue now). 3416 */ 3417 void remove_entity_load_avg(struct sched_entity *se) 3418 { 3419 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3420 3421 /* 3422 * tasks cannot exit without having gone through wake_up_new_task() -> 3423 * post_init_entity_util_avg() which will have added things to the 3424 * cfs_rq, so we can remove unconditionally. 3425 * 3426 * Similarly for groups, they will have passed through 3427 * post_init_entity_util_avg() before unregister_sched_fair_group() 3428 * calls this. 3429 */ 3430 3431 sync_entity_load_avg(se); 3432 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg); 3433 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg); 3434 } 3435 3436 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3437 { 3438 return cfs_rq->runnable_load_avg; 3439 } 3440 3441 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3442 { 3443 return cfs_rq->avg.load_avg; 3444 } 3445 3446 static int idle_balance(struct rq *this_rq, struct rq_flags *rf); 3447 3448 #else /* CONFIG_SMP */ 3449 3450 static inline int 3451 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq) 3452 { 3453 return 0; 3454 } 3455 3456 #define UPDATE_TG 0x0 3457 #define SKIP_AGE_LOAD 0x0 3458 3459 static inline void update_load_avg(struct sched_entity *se, int not_used1) 3460 { 3461 cpufreq_update_util(rq_of(cfs_rq_of(se)), 0); 3462 } 3463 3464 static inline void 3465 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3466 static inline void 3467 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3468 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3469 3470 static inline void 3471 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3472 static inline void 3473 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3474 3475 static inline int idle_balance(struct rq *rq, struct rq_flags *rf) 3476 { 3477 return 0; 3478 } 3479 3480 #endif /* CONFIG_SMP */ 3481 3482 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3483 { 3484 #ifdef CONFIG_SCHED_DEBUG 3485 s64 d = se->vruntime - cfs_rq->min_vruntime; 3486 3487 if (d < 0) 3488 d = -d; 3489 3490 if (d > 3*sysctl_sched_latency) 3491 schedstat_inc(cfs_rq->nr_spread_over); 3492 #endif 3493 } 3494 3495 static void 3496 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3497 { 3498 u64 vruntime = cfs_rq->min_vruntime; 3499 3500 /* 3501 * The 'current' period is already promised to the current tasks, 3502 * however the extra weight of the new task will slow them down a 3503 * little, place the new task so that it fits in the slot that 3504 * stays open at the end. 3505 */ 3506 if (initial && sched_feat(START_DEBIT)) 3507 vruntime += sched_vslice(cfs_rq, se); 3508 3509 /* sleeps up to a single latency don't count. */ 3510 if (!initial) { 3511 unsigned long thresh = sysctl_sched_latency; 3512 3513 /* 3514 * Halve their sleep time's effect, to allow 3515 * for a gentler effect of sleepers: 3516 */ 3517 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3518 thresh >>= 1; 3519 3520 vruntime -= thresh; 3521 } 3522 3523 /* ensure we never gain time by being placed backwards. */ 3524 se->vruntime = max_vruntime(se->vruntime, vruntime); 3525 } 3526 3527 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3528 3529 static inline void check_schedstat_required(void) 3530 { 3531 #ifdef CONFIG_SCHEDSTATS 3532 if (schedstat_enabled()) 3533 return; 3534 3535 /* Force schedstat enabled if a dependent tracepoint is active */ 3536 if (trace_sched_stat_wait_enabled() || 3537 trace_sched_stat_sleep_enabled() || 3538 trace_sched_stat_iowait_enabled() || 3539 trace_sched_stat_blocked_enabled() || 3540 trace_sched_stat_runtime_enabled()) { 3541 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3542 "stat_blocked and stat_runtime require the " 3543 "kernel parameter schedstats=enabled or " 3544 "kernel.sched_schedstats=1\n"); 3545 } 3546 #endif 3547 } 3548 3549 3550 /* 3551 * MIGRATION 3552 * 3553 * dequeue 3554 * update_curr() 3555 * update_min_vruntime() 3556 * vruntime -= min_vruntime 3557 * 3558 * enqueue 3559 * update_curr() 3560 * update_min_vruntime() 3561 * vruntime += min_vruntime 3562 * 3563 * this way the vruntime transition between RQs is done when both 3564 * min_vruntime are up-to-date. 3565 * 3566 * WAKEUP (remote) 3567 * 3568 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3569 * vruntime -= min_vruntime 3570 * 3571 * enqueue 3572 * update_curr() 3573 * update_min_vruntime() 3574 * vruntime += min_vruntime 3575 * 3576 * this way we don't have the most up-to-date min_vruntime on the originating 3577 * CPU and an up-to-date min_vruntime on the destination CPU. 3578 */ 3579 3580 static void 3581 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3582 { 3583 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3584 bool curr = cfs_rq->curr == se; 3585 3586 /* 3587 * If we're the current task, we must renormalise before calling 3588 * update_curr(). 3589 */ 3590 if (renorm && curr) 3591 se->vruntime += cfs_rq->min_vruntime; 3592 3593 update_curr(cfs_rq); 3594 3595 /* 3596 * Otherwise, renormalise after, such that we're placed at the current 3597 * moment in time, instead of some random moment in the past. Being 3598 * placed in the past could significantly boost this task to the 3599 * fairness detriment of existing tasks. 3600 */ 3601 if (renorm && !curr) 3602 se->vruntime += cfs_rq->min_vruntime; 3603 3604 /* 3605 * When enqueuing a sched_entity, we must: 3606 * - Update loads to have both entity and cfs_rq synced with now. 3607 * - Add its load to cfs_rq->runnable_avg 3608 * - For group_entity, update its weight to reflect the new share of 3609 * its group cfs_rq 3610 * - Add its new weight to cfs_rq->load.weight 3611 */ 3612 update_load_avg(se, UPDATE_TG); 3613 enqueue_entity_load_avg(cfs_rq, se); 3614 update_cfs_shares(se); 3615 account_entity_enqueue(cfs_rq, se); 3616 3617 if (flags & ENQUEUE_WAKEUP) 3618 place_entity(cfs_rq, se, 0); 3619 3620 check_schedstat_required(); 3621 update_stats_enqueue(cfs_rq, se, flags); 3622 check_spread(cfs_rq, se); 3623 if (!curr) 3624 __enqueue_entity(cfs_rq, se); 3625 se->on_rq = 1; 3626 3627 if (cfs_rq->nr_running == 1) { 3628 list_add_leaf_cfs_rq(cfs_rq); 3629 check_enqueue_throttle(cfs_rq); 3630 } 3631 } 3632 3633 static void __clear_buddies_last(struct sched_entity *se) 3634 { 3635 for_each_sched_entity(se) { 3636 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3637 if (cfs_rq->last != se) 3638 break; 3639 3640 cfs_rq->last = NULL; 3641 } 3642 } 3643 3644 static void __clear_buddies_next(struct sched_entity *se) 3645 { 3646 for_each_sched_entity(se) { 3647 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3648 if (cfs_rq->next != se) 3649 break; 3650 3651 cfs_rq->next = NULL; 3652 } 3653 } 3654 3655 static void __clear_buddies_skip(struct sched_entity *se) 3656 { 3657 for_each_sched_entity(se) { 3658 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3659 if (cfs_rq->skip != se) 3660 break; 3661 3662 cfs_rq->skip = NULL; 3663 } 3664 } 3665 3666 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3667 { 3668 if (cfs_rq->last == se) 3669 __clear_buddies_last(se); 3670 3671 if (cfs_rq->next == se) 3672 __clear_buddies_next(se); 3673 3674 if (cfs_rq->skip == se) 3675 __clear_buddies_skip(se); 3676 } 3677 3678 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3679 3680 static void 3681 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3682 { 3683 /* 3684 * Update run-time statistics of the 'current'. 3685 */ 3686 update_curr(cfs_rq); 3687 3688 /* 3689 * When dequeuing a sched_entity, we must: 3690 * - Update loads to have both entity and cfs_rq synced with now. 3691 * - Substract its load from the cfs_rq->runnable_avg. 3692 * - Substract its previous weight from cfs_rq->load.weight. 3693 * - For group entity, update its weight to reflect the new share 3694 * of its group cfs_rq. 3695 */ 3696 update_load_avg(se, UPDATE_TG); 3697 dequeue_entity_load_avg(cfs_rq, se); 3698 3699 update_stats_dequeue(cfs_rq, se, flags); 3700 3701 clear_buddies(cfs_rq, se); 3702 3703 if (se != cfs_rq->curr) 3704 __dequeue_entity(cfs_rq, se); 3705 se->on_rq = 0; 3706 account_entity_dequeue(cfs_rq, se); 3707 3708 /* 3709 * Normalize after update_curr(); which will also have moved 3710 * min_vruntime if @se is the one holding it back. But before doing 3711 * update_min_vruntime() again, which will discount @se's position and 3712 * can move min_vruntime forward still more. 3713 */ 3714 if (!(flags & DEQUEUE_SLEEP)) 3715 se->vruntime -= cfs_rq->min_vruntime; 3716 3717 /* return excess runtime on last dequeue */ 3718 return_cfs_rq_runtime(cfs_rq); 3719 3720 update_cfs_shares(se); 3721 3722 /* 3723 * Now advance min_vruntime if @se was the entity holding it back, 3724 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 3725 * put back on, and if we advance min_vruntime, we'll be placed back 3726 * further than we started -- ie. we'll be penalized. 3727 */ 3728 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE) 3729 update_min_vruntime(cfs_rq); 3730 } 3731 3732 /* 3733 * Preempt the current task with a newly woken task if needed: 3734 */ 3735 static void 3736 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3737 { 3738 unsigned long ideal_runtime, delta_exec; 3739 struct sched_entity *se; 3740 s64 delta; 3741 3742 ideal_runtime = sched_slice(cfs_rq, curr); 3743 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 3744 if (delta_exec > ideal_runtime) { 3745 resched_curr(rq_of(cfs_rq)); 3746 /* 3747 * The current task ran long enough, ensure it doesn't get 3748 * re-elected due to buddy favours. 3749 */ 3750 clear_buddies(cfs_rq, curr); 3751 return; 3752 } 3753 3754 /* 3755 * Ensure that a task that missed wakeup preemption by a 3756 * narrow margin doesn't have to wait for a full slice. 3757 * This also mitigates buddy induced latencies under load. 3758 */ 3759 if (delta_exec < sysctl_sched_min_granularity) 3760 return; 3761 3762 se = __pick_first_entity(cfs_rq); 3763 delta = curr->vruntime - se->vruntime; 3764 3765 if (delta < 0) 3766 return; 3767 3768 if (delta > ideal_runtime) 3769 resched_curr(rq_of(cfs_rq)); 3770 } 3771 3772 static void 3773 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 3774 { 3775 /* 'current' is not kept within the tree. */ 3776 if (se->on_rq) { 3777 /* 3778 * Any task has to be enqueued before it get to execute on 3779 * a CPU. So account for the time it spent waiting on the 3780 * runqueue. 3781 */ 3782 update_stats_wait_end(cfs_rq, se); 3783 __dequeue_entity(cfs_rq, se); 3784 update_load_avg(se, UPDATE_TG); 3785 } 3786 3787 update_stats_curr_start(cfs_rq, se); 3788 cfs_rq->curr = se; 3789 3790 /* 3791 * Track our maximum slice length, if the CPU's load is at 3792 * least twice that of our own weight (i.e. dont track it 3793 * when there are only lesser-weight tasks around): 3794 */ 3795 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 3796 schedstat_set(se->statistics.slice_max, 3797 max((u64)schedstat_val(se->statistics.slice_max), 3798 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 3799 } 3800 3801 se->prev_sum_exec_runtime = se->sum_exec_runtime; 3802 } 3803 3804 static int 3805 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 3806 3807 /* 3808 * Pick the next process, keeping these things in mind, in this order: 3809 * 1) keep things fair between processes/task groups 3810 * 2) pick the "next" process, since someone really wants that to run 3811 * 3) pick the "last" process, for cache locality 3812 * 4) do not run the "skip" process, if something else is available 3813 */ 3814 static struct sched_entity * 3815 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3816 { 3817 struct sched_entity *left = __pick_first_entity(cfs_rq); 3818 struct sched_entity *se; 3819 3820 /* 3821 * If curr is set we have to see if its left of the leftmost entity 3822 * still in the tree, provided there was anything in the tree at all. 3823 */ 3824 if (!left || (curr && entity_before(curr, left))) 3825 left = curr; 3826 3827 se = left; /* ideally we run the leftmost entity */ 3828 3829 /* 3830 * Avoid running the skip buddy, if running something else can 3831 * be done without getting too unfair. 3832 */ 3833 if (cfs_rq->skip == se) { 3834 struct sched_entity *second; 3835 3836 if (se == curr) { 3837 second = __pick_first_entity(cfs_rq); 3838 } else { 3839 second = __pick_next_entity(se); 3840 if (!second || (curr && entity_before(curr, second))) 3841 second = curr; 3842 } 3843 3844 if (second && wakeup_preempt_entity(second, left) < 1) 3845 se = second; 3846 } 3847 3848 /* 3849 * Prefer last buddy, try to return the CPU to a preempted task. 3850 */ 3851 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 3852 se = cfs_rq->last; 3853 3854 /* 3855 * Someone really wants this to run. If it's not unfair, run it. 3856 */ 3857 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 3858 se = cfs_rq->next; 3859 3860 clear_buddies(cfs_rq, se); 3861 3862 return se; 3863 } 3864 3865 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3866 3867 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 3868 { 3869 /* 3870 * If still on the runqueue then deactivate_task() 3871 * was not called and update_curr() has to be done: 3872 */ 3873 if (prev->on_rq) 3874 update_curr(cfs_rq); 3875 3876 /* throttle cfs_rqs exceeding runtime */ 3877 check_cfs_rq_runtime(cfs_rq); 3878 3879 check_spread(cfs_rq, prev); 3880 3881 if (prev->on_rq) { 3882 update_stats_wait_start(cfs_rq, prev); 3883 /* Put 'current' back into the tree. */ 3884 __enqueue_entity(cfs_rq, prev); 3885 /* in !on_rq case, update occurred at dequeue */ 3886 update_load_avg(prev, 0); 3887 } 3888 cfs_rq->curr = NULL; 3889 } 3890 3891 static void 3892 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 3893 { 3894 /* 3895 * Update run-time statistics of the 'current'. 3896 */ 3897 update_curr(cfs_rq); 3898 3899 /* 3900 * Ensure that runnable average is periodically updated. 3901 */ 3902 update_load_avg(curr, UPDATE_TG); 3903 update_cfs_shares(curr); 3904 3905 #ifdef CONFIG_SCHED_HRTICK 3906 /* 3907 * queued ticks are scheduled to match the slice, so don't bother 3908 * validating it and just reschedule. 3909 */ 3910 if (queued) { 3911 resched_curr(rq_of(cfs_rq)); 3912 return; 3913 } 3914 /* 3915 * don't let the period tick interfere with the hrtick preemption 3916 */ 3917 if (!sched_feat(DOUBLE_TICK) && 3918 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 3919 return; 3920 #endif 3921 3922 if (cfs_rq->nr_running > 1) 3923 check_preempt_tick(cfs_rq, curr); 3924 } 3925 3926 3927 /************************************************** 3928 * CFS bandwidth control machinery 3929 */ 3930 3931 #ifdef CONFIG_CFS_BANDWIDTH 3932 3933 #ifdef HAVE_JUMP_LABEL 3934 static struct static_key __cfs_bandwidth_used; 3935 3936 static inline bool cfs_bandwidth_used(void) 3937 { 3938 return static_key_false(&__cfs_bandwidth_used); 3939 } 3940 3941 void cfs_bandwidth_usage_inc(void) 3942 { 3943 static_key_slow_inc(&__cfs_bandwidth_used); 3944 } 3945 3946 void cfs_bandwidth_usage_dec(void) 3947 { 3948 static_key_slow_dec(&__cfs_bandwidth_used); 3949 } 3950 #else /* HAVE_JUMP_LABEL */ 3951 static bool cfs_bandwidth_used(void) 3952 { 3953 return true; 3954 } 3955 3956 void cfs_bandwidth_usage_inc(void) {} 3957 void cfs_bandwidth_usage_dec(void) {} 3958 #endif /* HAVE_JUMP_LABEL */ 3959 3960 /* 3961 * default period for cfs group bandwidth. 3962 * default: 0.1s, units: nanoseconds 3963 */ 3964 static inline u64 default_cfs_period(void) 3965 { 3966 return 100000000ULL; 3967 } 3968 3969 static inline u64 sched_cfs_bandwidth_slice(void) 3970 { 3971 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 3972 } 3973 3974 /* 3975 * Replenish runtime according to assigned quota and update expiration time. 3976 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 3977 * additional synchronization around rq->lock. 3978 * 3979 * requires cfs_b->lock 3980 */ 3981 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 3982 { 3983 u64 now; 3984 3985 if (cfs_b->quota == RUNTIME_INF) 3986 return; 3987 3988 now = sched_clock_cpu(smp_processor_id()); 3989 cfs_b->runtime = cfs_b->quota; 3990 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 3991 } 3992 3993 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3994 { 3995 return &tg->cfs_bandwidth; 3996 } 3997 3998 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 3999 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4000 { 4001 if (unlikely(cfs_rq->throttle_count)) 4002 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time; 4003 4004 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 4005 } 4006 4007 /* returns 0 on failure to allocate runtime */ 4008 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4009 { 4010 struct task_group *tg = cfs_rq->tg; 4011 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 4012 u64 amount = 0, min_amount, expires; 4013 4014 /* note: this is a positive sum as runtime_remaining <= 0 */ 4015 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 4016 4017 raw_spin_lock(&cfs_b->lock); 4018 if (cfs_b->quota == RUNTIME_INF) 4019 amount = min_amount; 4020 else { 4021 start_cfs_bandwidth(cfs_b); 4022 4023 if (cfs_b->runtime > 0) { 4024 amount = min(cfs_b->runtime, min_amount); 4025 cfs_b->runtime -= amount; 4026 cfs_b->idle = 0; 4027 } 4028 } 4029 expires = cfs_b->runtime_expires; 4030 raw_spin_unlock(&cfs_b->lock); 4031 4032 cfs_rq->runtime_remaining += amount; 4033 /* 4034 * we may have advanced our local expiration to account for allowed 4035 * spread between our sched_clock and the one on which runtime was 4036 * issued. 4037 */ 4038 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 4039 cfs_rq->runtime_expires = expires; 4040 4041 return cfs_rq->runtime_remaining > 0; 4042 } 4043 4044 /* 4045 * Note: This depends on the synchronization provided by sched_clock and the 4046 * fact that rq->clock snapshots this value. 4047 */ 4048 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4049 { 4050 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4051 4052 /* if the deadline is ahead of our clock, nothing to do */ 4053 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 4054 return; 4055 4056 if (cfs_rq->runtime_remaining < 0) 4057 return; 4058 4059 /* 4060 * If the local deadline has passed we have to consider the 4061 * possibility that our sched_clock is 'fast' and the global deadline 4062 * has not truly expired. 4063 * 4064 * Fortunately we can check determine whether this the case by checking 4065 * whether the global deadline has advanced. It is valid to compare 4066 * cfs_b->runtime_expires without any locks since we only care about 4067 * exact equality, so a partial write will still work. 4068 */ 4069 4070 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { 4071 /* extend local deadline, drift is bounded above by 2 ticks */ 4072 cfs_rq->runtime_expires += TICK_NSEC; 4073 } else { 4074 /* global deadline is ahead, expiration has passed */ 4075 cfs_rq->runtime_remaining = 0; 4076 } 4077 } 4078 4079 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4080 { 4081 /* dock delta_exec before expiring quota (as it could span periods) */ 4082 cfs_rq->runtime_remaining -= delta_exec; 4083 expire_cfs_rq_runtime(cfs_rq); 4084 4085 if (likely(cfs_rq->runtime_remaining > 0)) 4086 return; 4087 4088 /* 4089 * if we're unable to extend our runtime we resched so that the active 4090 * hierarchy can be throttled 4091 */ 4092 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 4093 resched_curr(rq_of(cfs_rq)); 4094 } 4095 4096 static __always_inline 4097 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 4098 { 4099 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 4100 return; 4101 4102 __account_cfs_rq_runtime(cfs_rq, delta_exec); 4103 } 4104 4105 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4106 { 4107 return cfs_bandwidth_used() && cfs_rq->throttled; 4108 } 4109 4110 /* check whether cfs_rq, or any parent, is throttled */ 4111 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4112 { 4113 return cfs_bandwidth_used() && cfs_rq->throttle_count; 4114 } 4115 4116 /* 4117 * Ensure that neither of the group entities corresponding to src_cpu or 4118 * dest_cpu are members of a throttled hierarchy when performing group 4119 * load-balance operations. 4120 */ 4121 static inline int throttled_lb_pair(struct task_group *tg, 4122 int src_cpu, int dest_cpu) 4123 { 4124 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 4125 4126 src_cfs_rq = tg->cfs_rq[src_cpu]; 4127 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 4128 4129 return throttled_hierarchy(src_cfs_rq) || 4130 throttled_hierarchy(dest_cfs_rq); 4131 } 4132 4133 /* updated child weight may affect parent so we have to do this bottom up */ 4134 static int tg_unthrottle_up(struct task_group *tg, void *data) 4135 { 4136 struct rq *rq = data; 4137 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4138 4139 cfs_rq->throttle_count--; 4140 if (!cfs_rq->throttle_count) { 4141 /* adjust cfs_rq_clock_task() */ 4142 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 4143 cfs_rq->throttled_clock_task; 4144 } 4145 4146 return 0; 4147 } 4148 4149 static int tg_throttle_down(struct task_group *tg, void *data) 4150 { 4151 struct rq *rq = data; 4152 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4153 4154 /* group is entering throttled state, stop time */ 4155 if (!cfs_rq->throttle_count) 4156 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4157 cfs_rq->throttle_count++; 4158 4159 return 0; 4160 } 4161 4162 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 4163 { 4164 struct rq *rq = rq_of(cfs_rq); 4165 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4166 struct sched_entity *se; 4167 long task_delta, dequeue = 1; 4168 bool empty; 4169 4170 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 4171 4172 /* freeze hierarchy runnable averages while throttled */ 4173 rcu_read_lock(); 4174 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 4175 rcu_read_unlock(); 4176 4177 task_delta = cfs_rq->h_nr_running; 4178 for_each_sched_entity(se) { 4179 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 4180 /* throttled entity or throttle-on-deactivate */ 4181 if (!se->on_rq) 4182 break; 4183 4184 if (dequeue) 4185 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 4186 qcfs_rq->h_nr_running -= task_delta; 4187 4188 if (qcfs_rq->load.weight) 4189 dequeue = 0; 4190 } 4191 4192 if (!se) 4193 sub_nr_running(rq, task_delta); 4194 4195 cfs_rq->throttled = 1; 4196 cfs_rq->throttled_clock = rq_clock(rq); 4197 raw_spin_lock(&cfs_b->lock); 4198 empty = list_empty(&cfs_b->throttled_cfs_rq); 4199 4200 /* 4201 * Add to the _head_ of the list, so that an already-started 4202 * distribute_cfs_runtime will not see us 4203 */ 4204 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 4205 4206 /* 4207 * If we're the first throttled task, make sure the bandwidth 4208 * timer is running. 4209 */ 4210 if (empty) 4211 start_cfs_bandwidth(cfs_b); 4212 4213 raw_spin_unlock(&cfs_b->lock); 4214 } 4215 4216 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 4217 { 4218 struct rq *rq = rq_of(cfs_rq); 4219 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4220 struct sched_entity *se; 4221 int enqueue = 1; 4222 long task_delta; 4223 4224 se = cfs_rq->tg->se[cpu_of(rq)]; 4225 4226 cfs_rq->throttled = 0; 4227 4228 update_rq_clock(rq); 4229 4230 raw_spin_lock(&cfs_b->lock); 4231 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 4232 list_del_rcu(&cfs_rq->throttled_list); 4233 raw_spin_unlock(&cfs_b->lock); 4234 4235 /* update hierarchical throttle state */ 4236 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 4237 4238 if (!cfs_rq->load.weight) 4239 return; 4240 4241 task_delta = cfs_rq->h_nr_running; 4242 for_each_sched_entity(se) { 4243 if (se->on_rq) 4244 enqueue = 0; 4245 4246 cfs_rq = cfs_rq_of(se); 4247 if (enqueue) 4248 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 4249 cfs_rq->h_nr_running += task_delta; 4250 4251 if (cfs_rq_throttled(cfs_rq)) 4252 break; 4253 } 4254 4255 if (!se) 4256 add_nr_running(rq, task_delta); 4257 4258 /* determine whether we need to wake up potentially idle cpu */ 4259 if (rq->curr == rq->idle && rq->cfs.nr_running) 4260 resched_curr(rq); 4261 } 4262 4263 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 4264 u64 remaining, u64 expires) 4265 { 4266 struct cfs_rq *cfs_rq; 4267 u64 runtime; 4268 u64 starting_runtime = remaining; 4269 4270 rcu_read_lock(); 4271 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 4272 throttled_list) { 4273 struct rq *rq = rq_of(cfs_rq); 4274 4275 raw_spin_lock(&rq->lock); 4276 if (!cfs_rq_throttled(cfs_rq)) 4277 goto next; 4278 4279 runtime = -cfs_rq->runtime_remaining + 1; 4280 if (runtime > remaining) 4281 runtime = remaining; 4282 remaining -= runtime; 4283 4284 cfs_rq->runtime_remaining += runtime; 4285 cfs_rq->runtime_expires = expires; 4286 4287 /* we check whether we're throttled above */ 4288 if (cfs_rq->runtime_remaining > 0) 4289 unthrottle_cfs_rq(cfs_rq); 4290 4291 next: 4292 raw_spin_unlock(&rq->lock); 4293 4294 if (!remaining) 4295 break; 4296 } 4297 rcu_read_unlock(); 4298 4299 return starting_runtime - remaining; 4300 } 4301 4302 /* 4303 * Responsible for refilling a task_group's bandwidth and unthrottling its 4304 * cfs_rqs as appropriate. If there has been no activity within the last 4305 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4306 * used to track this state. 4307 */ 4308 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 4309 { 4310 u64 runtime, runtime_expires; 4311 int throttled; 4312 4313 /* no need to continue the timer with no bandwidth constraint */ 4314 if (cfs_b->quota == RUNTIME_INF) 4315 goto out_deactivate; 4316 4317 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4318 cfs_b->nr_periods += overrun; 4319 4320 /* 4321 * idle depends on !throttled (for the case of a large deficit), and if 4322 * we're going inactive then everything else can be deferred 4323 */ 4324 if (cfs_b->idle && !throttled) 4325 goto out_deactivate; 4326 4327 __refill_cfs_bandwidth_runtime(cfs_b); 4328 4329 if (!throttled) { 4330 /* mark as potentially idle for the upcoming period */ 4331 cfs_b->idle = 1; 4332 return 0; 4333 } 4334 4335 /* account preceding periods in which throttling occurred */ 4336 cfs_b->nr_throttled += overrun; 4337 4338 runtime_expires = cfs_b->runtime_expires; 4339 4340 /* 4341 * This check is repeated as we are holding onto the new bandwidth while 4342 * we unthrottle. This can potentially race with an unthrottled group 4343 * trying to acquire new bandwidth from the global pool. This can result 4344 * in us over-using our runtime if it is all used during this loop, but 4345 * only by limited amounts in that extreme case. 4346 */ 4347 while (throttled && cfs_b->runtime > 0) { 4348 runtime = cfs_b->runtime; 4349 raw_spin_unlock(&cfs_b->lock); 4350 /* we can't nest cfs_b->lock while distributing bandwidth */ 4351 runtime = distribute_cfs_runtime(cfs_b, runtime, 4352 runtime_expires); 4353 raw_spin_lock(&cfs_b->lock); 4354 4355 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4356 4357 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4358 } 4359 4360 /* 4361 * While we are ensured activity in the period following an 4362 * unthrottle, this also covers the case in which the new bandwidth is 4363 * insufficient to cover the existing bandwidth deficit. (Forcing the 4364 * timer to remain active while there are any throttled entities.) 4365 */ 4366 cfs_b->idle = 0; 4367 4368 return 0; 4369 4370 out_deactivate: 4371 return 1; 4372 } 4373 4374 /* a cfs_rq won't donate quota below this amount */ 4375 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4376 /* minimum remaining period time to redistribute slack quota */ 4377 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4378 /* how long we wait to gather additional slack before distributing */ 4379 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4380 4381 /* 4382 * Are we near the end of the current quota period? 4383 * 4384 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4385 * hrtimer base being cleared by hrtimer_start. In the case of 4386 * migrate_hrtimers, base is never cleared, so we are fine. 4387 */ 4388 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4389 { 4390 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4391 u64 remaining; 4392 4393 /* if the call-back is running a quota refresh is already occurring */ 4394 if (hrtimer_callback_running(refresh_timer)) 4395 return 1; 4396 4397 /* is a quota refresh about to occur? */ 4398 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4399 if (remaining < min_expire) 4400 return 1; 4401 4402 return 0; 4403 } 4404 4405 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4406 { 4407 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4408 4409 /* if there's a quota refresh soon don't bother with slack */ 4410 if (runtime_refresh_within(cfs_b, min_left)) 4411 return; 4412 4413 hrtimer_start(&cfs_b->slack_timer, 4414 ns_to_ktime(cfs_bandwidth_slack_period), 4415 HRTIMER_MODE_REL); 4416 } 4417 4418 /* we know any runtime found here is valid as update_curr() precedes return */ 4419 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4420 { 4421 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4422 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4423 4424 if (slack_runtime <= 0) 4425 return; 4426 4427 raw_spin_lock(&cfs_b->lock); 4428 if (cfs_b->quota != RUNTIME_INF && 4429 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4430 cfs_b->runtime += slack_runtime; 4431 4432 /* we are under rq->lock, defer unthrottling using a timer */ 4433 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4434 !list_empty(&cfs_b->throttled_cfs_rq)) 4435 start_cfs_slack_bandwidth(cfs_b); 4436 } 4437 raw_spin_unlock(&cfs_b->lock); 4438 4439 /* even if it's not valid for return we don't want to try again */ 4440 cfs_rq->runtime_remaining -= slack_runtime; 4441 } 4442 4443 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4444 { 4445 if (!cfs_bandwidth_used()) 4446 return; 4447 4448 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4449 return; 4450 4451 __return_cfs_rq_runtime(cfs_rq); 4452 } 4453 4454 /* 4455 * This is done with a timer (instead of inline with bandwidth return) since 4456 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4457 */ 4458 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4459 { 4460 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4461 u64 expires; 4462 4463 /* confirm we're still not at a refresh boundary */ 4464 raw_spin_lock(&cfs_b->lock); 4465 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4466 raw_spin_unlock(&cfs_b->lock); 4467 return; 4468 } 4469 4470 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4471 runtime = cfs_b->runtime; 4472 4473 expires = cfs_b->runtime_expires; 4474 raw_spin_unlock(&cfs_b->lock); 4475 4476 if (!runtime) 4477 return; 4478 4479 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4480 4481 raw_spin_lock(&cfs_b->lock); 4482 if (expires == cfs_b->runtime_expires) 4483 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4484 raw_spin_unlock(&cfs_b->lock); 4485 } 4486 4487 /* 4488 * When a group wakes up we want to make sure that its quota is not already 4489 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4490 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4491 */ 4492 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4493 { 4494 if (!cfs_bandwidth_used()) 4495 return; 4496 4497 /* an active group must be handled by the update_curr()->put() path */ 4498 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4499 return; 4500 4501 /* ensure the group is not already throttled */ 4502 if (cfs_rq_throttled(cfs_rq)) 4503 return; 4504 4505 /* update runtime allocation */ 4506 account_cfs_rq_runtime(cfs_rq, 0); 4507 if (cfs_rq->runtime_remaining <= 0) 4508 throttle_cfs_rq(cfs_rq); 4509 } 4510 4511 static void sync_throttle(struct task_group *tg, int cpu) 4512 { 4513 struct cfs_rq *pcfs_rq, *cfs_rq; 4514 4515 if (!cfs_bandwidth_used()) 4516 return; 4517 4518 if (!tg->parent) 4519 return; 4520 4521 cfs_rq = tg->cfs_rq[cpu]; 4522 pcfs_rq = tg->parent->cfs_rq[cpu]; 4523 4524 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4525 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu)); 4526 } 4527 4528 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4529 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4530 { 4531 if (!cfs_bandwidth_used()) 4532 return false; 4533 4534 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4535 return false; 4536 4537 /* 4538 * it's possible for a throttled entity to be forced into a running 4539 * state (e.g. set_curr_task), in this case we're finished. 4540 */ 4541 if (cfs_rq_throttled(cfs_rq)) 4542 return true; 4543 4544 throttle_cfs_rq(cfs_rq); 4545 return true; 4546 } 4547 4548 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4549 { 4550 struct cfs_bandwidth *cfs_b = 4551 container_of(timer, struct cfs_bandwidth, slack_timer); 4552 4553 do_sched_cfs_slack_timer(cfs_b); 4554 4555 return HRTIMER_NORESTART; 4556 } 4557 4558 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4559 { 4560 struct cfs_bandwidth *cfs_b = 4561 container_of(timer, struct cfs_bandwidth, period_timer); 4562 int overrun; 4563 int idle = 0; 4564 4565 raw_spin_lock(&cfs_b->lock); 4566 for (;;) { 4567 overrun = hrtimer_forward_now(timer, cfs_b->period); 4568 if (!overrun) 4569 break; 4570 4571 idle = do_sched_cfs_period_timer(cfs_b, overrun); 4572 } 4573 if (idle) 4574 cfs_b->period_active = 0; 4575 raw_spin_unlock(&cfs_b->lock); 4576 4577 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4578 } 4579 4580 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4581 { 4582 raw_spin_lock_init(&cfs_b->lock); 4583 cfs_b->runtime = 0; 4584 cfs_b->quota = RUNTIME_INF; 4585 cfs_b->period = ns_to_ktime(default_cfs_period()); 4586 4587 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4588 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4589 cfs_b->period_timer.function = sched_cfs_period_timer; 4590 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4591 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4592 } 4593 4594 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4595 { 4596 cfs_rq->runtime_enabled = 0; 4597 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4598 } 4599 4600 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4601 { 4602 lockdep_assert_held(&cfs_b->lock); 4603 4604 if (!cfs_b->period_active) { 4605 cfs_b->period_active = 1; 4606 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 4607 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 4608 } 4609 } 4610 4611 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4612 { 4613 /* init_cfs_bandwidth() was not called */ 4614 if (!cfs_b->throttled_cfs_rq.next) 4615 return; 4616 4617 hrtimer_cancel(&cfs_b->period_timer); 4618 hrtimer_cancel(&cfs_b->slack_timer); 4619 } 4620 4621 static void __maybe_unused update_runtime_enabled(struct rq *rq) 4622 { 4623 struct cfs_rq *cfs_rq; 4624 4625 for_each_leaf_cfs_rq(rq, cfs_rq) { 4626 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth; 4627 4628 raw_spin_lock(&cfs_b->lock); 4629 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 4630 raw_spin_unlock(&cfs_b->lock); 4631 } 4632 } 4633 4634 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 4635 { 4636 struct cfs_rq *cfs_rq; 4637 4638 for_each_leaf_cfs_rq(rq, cfs_rq) { 4639 if (!cfs_rq->runtime_enabled) 4640 continue; 4641 4642 /* 4643 * clock_task is not advancing so we just need to make sure 4644 * there's some valid quota amount 4645 */ 4646 cfs_rq->runtime_remaining = 1; 4647 /* 4648 * Offline rq is schedulable till cpu is completely disabled 4649 * in take_cpu_down(), so we prevent new cfs throttling here. 4650 */ 4651 cfs_rq->runtime_enabled = 0; 4652 4653 if (cfs_rq_throttled(cfs_rq)) 4654 unthrottle_cfs_rq(cfs_rq); 4655 } 4656 } 4657 4658 #else /* CONFIG_CFS_BANDWIDTH */ 4659 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4660 { 4661 return rq_clock_task(rq_of(cfs_rq)); 4662 } 4663 4664 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 4665 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 4666 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 4667 static inline void sync_throttle(struct task_group *tg, int cpu) {} 4668 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4669 4670 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4671 { 4672 return 0; 4673 } 4674 4675 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4676 { 4677 return 0; 4678 } 4679 4680 static inline int throttled_lb_pair(struct task_group *tg, 4681 int src_cpu, int dest_cpu) 4682 { 4683 return 0; 4684 } 4685 4686 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4687 4688 #ifdef CONFIG_FAIR_GROUP_SCHED 4689 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4690 #endif 4691 4692 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4693 { 4694 return NULL; 4695 } 4696 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4697 static inline void update_runtime_enabled(struct rq *rq) {} 4698 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 4699 4700 #endif /* CONFIG_CFS_BANDWIDTH */ 4701 4702 /************************************************** 4703 * CFS operations on tasks: 4704 */ 4705 4706 #ifdef CONFIG_SCHED_HRTICK 4707 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 4708 { 4709 struct sched_entity *se = &p->se; 4710 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4711 4712 SCHED_WARN_ON(task_rq(p) != rq); 4713 4714 if (rq->cfs.h_nr_running > 1) { 4715 u64 slice = sched_slice(cfs_rq, se); 4716 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 4717 s64 delta = slice - ran; 4718 4719 if (delta < 0) { 4720 if (rq->curr == p) 4721 resched_curr(rq); 4722 return; 4723 } 4724 hrtick_start(rq, delta); 4725 } 4726 } 4727 4728 /* 4729 * called from enqueue/dequeue and updates the hrtick when the 4730 * current task is from our class and nr_running is low enough 4731 * to matter. 4732 */ 4733 static void hrtick_update(struct rq *rq) 4734 { 4735 struct task_struct *curr = rq->curr; 4736 4737 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 4738 return; 4739 4740 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 4741 hrtick_start_fair(rq, curr); 4742 } 4743 #else /* !CONFIG_SCHED_HRTICK */ 4744 static inline void 4745 hrtick_start_fair(struct rq *rq, struct task_struct *p) 4746 { 4747 } 4748 4749 static inline void hrtick_update(struct rq *rq) 4750 { 4751 } 4752 #endif 4753 4754 /* 4755 * The enqueue_task method is called before nr_running is 4756 * increased. Here we update the fair scheduling stats and 4757 * then put the task into the rbtree: 4758 */ 4759 static void 4760 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4761 { 4762 struct cfs_rq *cfs_rq; 4763 struct sched_entity *se = &p->se; 4764 4765 /* 4766 * If in_iowait is set, the code below may not trigger any cpufreq 4767 * utilization updates, so do it here explicitly with the IOWAIT flag 4768 * passed. 4769 */ 4770 if (p->in_iowait) 4771 cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT); 4772 4773 for_each_sched_entity(se) { 4774 if (se->on_rq) 4775 break; 4776 cfs_rq = cfs_rq_of(se); 4777 enqueue_entity(cfs_rq, se, flags); 4778 4779 /* 4780 * end evaluation on encountering a throttled cfs_rq 4781 * 4782 * note: in the case of encountering a throttled cfs_rq we will 4783 * post the final h_nr_running increment below. 4784 */ 4785 if (cfs_rq_throttled(cfs_rq)) 4786 break; 4787 cfs_rq->h_nr_running++; 4788 4789 flags = ENQUEUE_WAKEUP; 4790 } 4791 4792 for_each_sched_entity(se) { 4793 cfs_rq = cfs_rq_of(se); 4794 cfs_rq->h_nr_running++; 4795 4796 if (cfs_rq_throttled(cfs_rq)) 4797 break; 4798 4799 update_load_avg(se, UPDATE_TG); 4800 update_cfs_shares(se); 4801 } 4802 4803 if (!se) 4804 add_nr_running(rq, 1); 4805 4806 hrtick_update(rq); 4807 } 4808 4809 static void set_next_buddy(struct sched_entity *se); 4810 4811 /* 4812 * The dequeue_task method is called before nr_running is 4813 * decreased. We remove the task from the rbtree and 4814 * update the fair scheduling stats: 4815 */ 4816 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4817 { 4818 struct cfs_rq *cfs_rq; 4819 struct sched_entity *se = &p->se; 4820 int task_sleep = flags & DEQUEUE_SLEEP; 4821 4822 for_each_sched_entity(se) { 4823 cfs_rq = cfs_rq_of(se); 4824 dequeue_entity(cfs_rq, se, flags); 4825 4826 /* 4827 * end evaluation on encountering a throttled cfs_rq 4828 * 4829 * note: in the case of encountering a throttled cfs_rq we will 4830 * post the final h_nr_running decrement below. 4831 */ 4832 if (cfs_rq_throttled(cfs_rq)) 4833 break; 4834 cfs_rq->h_nr_running--; 4835 4836 /* Don't dequeue parent if it has other entities besides us */ 4837 if (cfs_rq->load.weight) { 4838 /* Avoid re-evaluating load for this entity: */ 4839 se = parent_entity(se); 4840 /* 4841 * Bias pick_next to pick a task from this cfs_rq, as 4842 * p is sleeping when it is within its sched_slice. 4843 */ 4844 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 4845 set_next_buddy(se); 4846 break; 4847 } 4848 flags |= DEQUEUE_SLEEP; 4849 } 4850 4851 for_each_sched_entity(se) { 4852 cfs_rq = cfs_rq_of(se); 4853 cfs_rq->h_nr_running--; 4854 4855 if (cfs_rq_throttled(cfs_rq)) 4856 break; 4857 4858 update_load_avg(se, UPDATE_TG); 4859 update_cfs_shares(se); 4860 } 4861 4862 if (!se) 4863 sub_nr_running(rq, 1); 4864 4865 hrtick_update(rq); 4866 } 4867 4868 #ifdef CONFIG_SMP 4869 4870 /* Working cpumask for: load_balance, load_balance_newidle. */ 4871 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 4872 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask); 4873 4874 #ifdef CONFIG_NO_HZ_COMMON 4875 /* 4876 * per rq 'load' arrray crap; XXX kill this. 4877 */ 4878 4879 /* 4880 * The exact cpuload calculated at every tick would be: 4881 * 4882 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 4883 * 4884 * If a cpu misses updates for n ticks (as it was idle) and update gets 4885 * called on the n+1-th tick when cpu may be busy, then we have: 4886 * 4887 * load_n = (1 - 1/2^i)^n * load_0 4888 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 4889 * 4890 * decay_load_missed() below does efficient calculation of 4891 * 4892 * load' = (1 - 1/2^i)^n * load 4893 * 4894 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 4895 * This allows us to precompute the above in said factors, thereby allowing the 4896 * reduction of an arbitrary n in O(log_2 n) steps. (See also 4897 * fixed_power_int()) 4898 * 4899 * The calculation is approximated on a 128 point scale. 4900 */ 4901 #define DEGRADE_SHIFT 7 4902 4903 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 4904 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 4905 { 0, 0, 0, 0, 0, 0, 0, 0 }, 4906 { 64, 32, 8, 0, 0, 0, 0, 0 }, 4907 { 96, 72, 40, 12, 1, 0, 0, 0 }, 4908 { 112, 98, 75, 43, 15, 1, 0, 0 }, 4909 { 120, 112, 98, 76, 45, 16, 2, 0 } 4910 }; 4911 4912 /* 4913 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 4914 * would be when CPU is idle and so we just decay the old load without 4915 * adding any new load. 4916 */ 4917 static unsigned long 4918 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 4919 { 4920 int j = 0; 4921 4922 if (!missed_updates) 4923 return load; 4924 4925 if (missed_updates >= degrade_zero_ticks[idx]) 4926 return 0; 4927 4928 if (idx == 1) 4929 return load >> missed_updates; 4930 4931 while (missed_updates) { 4932 if (missed_updates % 2) 4933 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 4934 4935 missed_updates >>= 1; 4936 j++; 4937 } 4938 return load; 4939 } 4940 #endif /* CONFIG_NO_HZ_COMMON */ 4941 4942 /** 4943 * __cpu_load_update - update the rq->cpu_load[] statistics 4944 * @this_rq: The rq to update statistics for 4945 * @this_load: The current load 4946 * @pending_updates: The number of missed updates 4947 * 4948 * Update rq->cpu_load[] statistics. This function is usually called every 4949 * scheduler tick (TICK_NSEC). 4950 * 4951 * This function computes a decaying average: 4952 * 4953 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 4954 * 4955 * Because of NOHZ it might not get called on every tick which gives need for 4956 * the @pending_updates argument. 4957 * 4958 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 4959 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 4960 * = A * (A * load[i]_n-2 + B) + B 4961 * = A * (A * (A * load[i]_n-3 + B) + B) + B 4962 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 4963 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 4964 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 4965 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 4966 * 4967 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 4968 * any change in load would have resulted in the tick being turned back on. 4969 * 4970 * For regular NOHZ, this reduces to: 4971 * 4972 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 4973 * 4974 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 4975 * term. 4976 */ 4977 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 4978 unsigned long pending_updates) 4979 { 4980 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 4981 int i, scale; 4982 4983 this_rq->nr_load_updates++; 4984 4985 /* Update our load: */ 4986 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 4987 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 4988 unsigned long old_load, new_load; 4989 4990 /* scale is effectively 1 << i now, and >> i divides by scale */ 4991 4992 old_load = this_rq->cpu_load[i]; 4993 #ifdef CONFIG_NO_HZ_COMMON 4994 old_load = decay_load_missed(old_load, pending_updates - 1, i); 4995 if (tickless_load) { 4996 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 4997 /* 4998 * old_load can never be a negative value because a 4999 * decayed tickless_load cannot be greater than the 5000 * original tickless_load. 5001 */ 5002 old_load += tickless_load; 5003 } 5004 #endif 5005 new_load = this_load; 5006 /* 5007 * Round up the averaging division if load is increasing. This 5008 * prevents us from getting stuck on 9 if the load is 10, for 5009 * example. 5010 */ 5011 if (new_load > old_load) 5012 new_load += scale - 1; 5013 5014 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 5015 } 5016 5017 sched_avg_update(this_rq); 5018 } 5019 5020 /* Used instead of source_load when we know the type == 0 */ 5021 static unsigned long weighted_cpuload(const int cpu) 5022 { 5023 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs); 5024 } 5025 5026 #ifdef CONFIG_NO_HZ_COMMON 5027 /* 5028 * There is no sane way to deal with nohz on smp when using jiffies because the 5029 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 5030 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 5031 * 5032 * Therefore we need to avoid the delta approach from the regular tick when 5033 * possible since that would seriously skew the load calculation. This is why we 5034 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 5035 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 5036 * loop exit, nohz_idle_balance, nohz full exit...) 5037 * 5038 * This means we might still be one tick off for nohz periods. 5039 */ 5040 5041 static void cpu_load_update_nohz(struct rq *this_rq, 5042 unsigned long curr_jiffies, 5043 unsigned long load) 5044 { 5045 unsigned long pending_updates; 5046 5047 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 5048 if (pending_updates) { 5049 this_rq->last_load_update_tick = curr_jiffies; 5050 /* 5051 * In the regular NOHZ case, we were idle, this means load 0. 5052 * In the NOHZ_FULL case, we were non-idle, we should consider 5053 * its weighted load. 5054 */ 5055 cpu_load_update(this_rq, load, pending_updates); 5056 } 5057 } 5058 5059 /* 5060 * Called from nohz_idle_balance() to update the load ratings before doing the 5061 * idle balance. 5062 */ 5063 static void cpu_load_update_idle(struct rq *this_rq) 5064 { 5065 /* 5066 * bail if there's load or we're actually up-to-date. 5067 */ 5068 if (weighted_cpuload(cpu_of(this_rq))) 5069 return; 5070 5071 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 5072 } 5073 5074 /* 5075 * Record CPU load on nohz entry so we know the tickless load to account 5076 * on nohz exit. cpu_load[0] happens then to be updated more frequently 5077 * than other cpu_load[idx] but it should be fine as cpu_load readers 5078 * shouldn't rely into synchronized cpu_load[*] updates. 5079 */ 5080 void cpu_load_update_nohz_start(void) 5081 { 5082 struct rq *this_rq = this_rq(); 5083 5084 /* 5085 * This is all lockless but should be fine. If weighted_cpuload changes 5086 * concurrently we'll exit nohz. And cpu_load write can race with 5087 * cpu_load_update_idle() but both updater would be writing the same. 5088 */ 5089 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq)); 5090 } 5091 5092 /* 5093 * Account the tickless load in the end of a nohz frame. 5094 */ 5095 void cpu_load_update_nohz_stop(void) 5096 { 5097 unsigned long curr_jiffies = READ_ONCE(jiffies); 5098 struct rq *this_rq = this_rq(); 5099 unsigned long load; 5100 5101 if (curr_jiffies == this_rq->last_load_update_tick) 5102 return; 5103 5104 load = weighted_cpuload(cpu_of(this_rq)); 5105 raw_spin_lock(&this_rq->lock); 5106 update_rq_clock(this_rq); 5107 cpu_load_update_nohz(this_rq, curr_jiffies, load); 5108 raw_spin_unlock(&this_rq->lock); 5109 } 5110 #else /* !CONFIG_NO_HZ_COMMON */ 5111 static inline void cpu_load_update_nohz(struct rq *this_rq, 5112 unsigned long curr_jiffies, 5113 unsigned long load) { } 5114 #endif /* CONFIG_NO_HZ_COMMON */ 5115 5116 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 5117 { 5118 #ifdef CONFIG_NO_HZ_COMMON 5119 /* See the mess around cpu_load_update_nohz(). */ 5120 this_rq->last_load_update_tick = READ_ONCE(jiffies); 5121 #endif 5122 cpu_load_update(this_rq, load, 1); 5123 } 5124 5125 /* 5126 * Called from scheduler_tick() 5127 */ 5128 void cpu_load_update_active(struct rq *this_rq) 5129 { 5130 unsigned long load = weighted_cpuload(cpu_of(this_rq)); 5131 5132 if (tick_nohz_tick_stopped()) 5133 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 5134 else 5135 cpu_load_update_periodic(this_rq, load); 5136 } 5137 5138 /* 5139 * Return a low guess at the load of a migration-source cpu weighted 5140 * according to the scheduling class and "nice" value. 5141 * 5142 * We want to under-estimate the load of migration sources, to 5143 * balance conservatively. 5144 */ 5145 static unsigned long source_load(int cpu, int type) 5146 { 5147 struct rq *rq = cpu_rq(cpu); 5148 unsigned long total = weighted_cpuload(cpu); 5149 5150 if (type == 0 || !sched_feat(LB_BIAS)) 5151 return total; 5152 5153 return min(rq->cpu_load[type-1], total); 5154 } 5155 5156 /* 5157 * Return a high guess at the load of a migration-target cpu weighted 5158 * according to the scheduling class and "nice" value. 5159 */ 5160 static unsigned long target_load(int cpu, int type) 5161 { 5162 struct rq *rq = cpu_rq(cpu); 5163 unsigned long total = weighted_cpuload(cpu); 5164 5165 if (type == 0 || !sched_feat(LB_BIAS)) 5166 return total; 5167 5168 return max(rq->cpu_load[type-1], total); 5169 } 5170 5171 static unsigned long capacity_of(int cpu) 5172 { 5173 return cpu_rq(cpu)->cpu_capacity; 5174 } 5175 5176 static unsigned long capacity_orig_of(int cpu) 5177 { 5178 return cpu_rq(cpu)->cpu_capacity_orig; 5179 } 5180 5181 static unsigned long cpu_avg_load_per_task(int cpu) 5182 { 5183 struct rq *rq = cpu_rq(cpu); 5184 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 5185 unsigned long load_avg = weighted_cpuload(cpu); 5186 5187 if (nr_running) 5188 return load_avg / nr_running; 5189 5190 return 0; 5191 } 5192 5193 #ifdef CONFIG_FAIR_GROUP_SCHED 5194 /* 5195 * effective_load() calculates the load change as seen from the root_task_group 5196 * 5197 * Adding load to a group doesn't make a group heavier, but can cause movement 5198 * of group shares between cpus. Assuming the shares were perfectly aligned one 5199 * can calculate the shift in shares. 5200 * 5201 * Calculate the effective load difference if @wl is added (subtracted) to @tg 5202 * on this @cpu and results in a total addition (subtraction) of @wg to the 5203 * total group weight. 5204 * 5205 * Given a runqueue weight distribution (rw_i) we can compute a shares 5206 * distribution (s_i) using: 5207 * 5208 * s_i = rw_i / \Sum rw_j (1) 5209 * 5210 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 5211 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 5212 * shares distribution (s_i): 5213 * 5214 * rw_i = { 2, 4, 1, 0 } 5215 * s_i = { 2/7, 4/7, 1/7, 0 } 5216 * 5217 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 5218 * task used to run on and the CPU the waker is running on), we need to 5219 * compute the effect of waking a task on either CPU and, in case of a sync 5220 * wakeup, compute the effect of the current task going to sleep. 5221 * 5222 * So for a change of @wl to the local @cpu with an overall group weight change 5223 * of @wl we can compute the new shares distribution (s'_i) using: 5224 * 5225 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 5226 * 5227 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 5228 * differences in waking a task to CPU 0. The additional task changes the 5229 * weight and shares distributions like: 5230 * 5231 * rw'_i = { 3, 4, 1, 0 } 5232 * s'_i = { 3/8, 4/8, 1/8, 0 } 5233 * 5234 * We can then compute the difference in effective weight by using: 5235 * 5236 * dw_i = S * (s'_i - s_i) (3) 5237 * 5238 * Where 'S' is the group weight as seen by its parent. 5239 * 5240 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 5241 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 5242 * 4/7) times the weight of the group. 5243 */ 5244 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 5245 { 5246 struct sched_entity *se = tg->se[cpu]; 5247 5248 if (!tg->parent) /* the trivial, non-cgroup case */ 5249 return wl; 5250 5251 for_each_sched_entity(se) { 5252 struct cfs_rq *cfs_rq = se->my_q; 5253 long W, w = cfs_rq_load_avg(cfs_rq); 5254 5255 tg = cfs_rq->tg; 5256 5257 /* 5258 * W = @wg + \Sum rw_j 5259 */ 5260 W = wg + atomic_long_read(&tg->load_avg); 5261 5262 /* Ensure \Sum rw_j >= rw_i */ 5263 W -= cfs_rq->tg_load_avg_contrib; 5264 W += w; 5265 5266 /* 5267 * w = rw_i + @wl 5268 */ 5269 w += wl; 5270 5271 /* 5272 * wl = S * s'_i; see (2) 5273 */ 5274 if (W > 0 && w < W) 5275 wl = (w * (long)scale_load_down(tg->shares)) / W; 5276 else 5277 wl = scale_load_down(tg->shares); 5278 5279 /* 5280 * Per the above, wl is the new se->load.weight value; since 5281 * those are clipped to [MIN_SHARES, ...) do so now. See 5282 * calc_cfs_shares(). 5283 */ 5284 if (wl < MIN_SHARES) 5285 wl = MIN_SHARES; 5286 5287 /* 5288 * wl = dw_i = S * (s'_i - s_i); see (3) 5289 */ 5290 wl -= se->avg.load_avg; 5291 5292 /* 5293 * Recursively apply this logic to all parent groups to compute 5294 * the final effective load change on the root group. Since 5295 * only the @tg group gets extra weight, all parent groups can 5296 * only redistribute existing shares. @wl is the shift in shares 5297 * resulting from this level per the above. 5298 */ 5299 wg = 0; 5300 } 5301 5302 return wl; 5303 } 5304 #else 5305 5306 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 5307 { 5308 return wl; 5309 } 5310 5311 #endif 5312 5313 static void record_wakee(struct task_struct *p) 5314 { 5315 /* 5316 * Only decay a single time; tasks that have less then 1 wakeup per 5317 * jiffy will not have built up many flips. 5318 */ 5319 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5320 current->wakee_flips >>= 1; 5321 current->wakee_flip_decay_ts = jiffies; 5322 } 5323 5324 if (current->last_wakee != p) { 5325 current->last_wakee = p; 5326 current->wakee_flips++; 5327 } 5328 } 5329 5330 /* 5331 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5332 * 5333 * A waker of many should wake a different task than the one last awakened 5334 * at a frequency roughly N times higher than one of its wakees. 5335 * 5336 * In order to determine whether we should let the load spread vs consolidating 5337 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5338 * partner, and a factor of lls_size higher frequency in the other. 5339 * 5340 * With both conditions met, we can be relatively sure that the relationship is 5341 * non-monogamous, with partner count exceeding socket size. 5342 * 5343 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5344 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5345 * socket size. 5346 */ 5347 static int wake_wide(struct task_struct *p) 5348 { 5349 unsigned int master = current->wakee_flips; 5350 unsigned int slave = p->wakee_flips; 5351 int factor = this_cpu_read(sd_llc_size); 5352 5353 if (master < slave) 5354 swap(master, slave); 5355 if (slave < factor || master < slave * factor) 5356 return 0; 5357 return 1; 5358 } 5359 5360 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 5361 int prev_cpu, int sync) 5362 { 5363 s64 this_load, load; 5364 s64 this_eff_load, prev_eff_load; 5365 int idx, this_cpu; 5366 struct task_group *tg; 5367 unsigned long weight; 5368 int balanced; 5369 5370 idx = sd->wake_idx; 5371 this_cpu = smp_processor_id(); 5372 load = source_load(prev_cpu, idx); 5373 this_load = target_load(this_cpu, idx); 5374 5375 /* 5376 * If sync wakeup then subtract the (maximum possible) 5377 * effect of the currently running task from the load 5378 * of the current CPU: 5379 */ 5380 if (sync) { 5381 tg = task_group(current); 5382 weight = current->se.avg.load_avg; 5383 5384 this_load += effective_load(tg, this_cpu, -weight, -weight); 5385 load += effective_load(tg, prev_cpu, 0, -weight); 5386 } 5387 5388 tg = task_group(p); 5389 weight = p->se.avg.load_avg; 5390 5391 /* 5392 * In low-load situations, where prev_cpu is idle and this_cpu is idle 5393 * due to the sync cause above having dropped this_load to 0, we'll 5394 * always have an imbalance, but there's really nothing you can do 5395 * about that, so that's good too. 5396 * 5397 * Otherwise check if either cpus are near enough in load to allow this 5398 * task to be woken on this_cpu. 5399 */ 5400 this_eff_load = 100; 5401 this_eff_load *= capacity_of(prev_cpu); 5402 5403 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 5404 prev_eff_load *= capacity_of(this_cpu); 5405 5406 if (this_load > 0) { 5407 this_eff_load *= this_load + 5408 effective_load(tg, this_cpu, weight, weight); 5409 5410 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 5411 } 5412 5413 balanced = this_eff_load <= prev_eff_load; 5414 5415 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts); 5416 5417 if (!balanced) 5418 return 0; 5419 5420 schedstat_inc(sd->ttwu_move_affine); 5421 schedstat_inc(p->se.statistics.nr_wakeups_affine); 5422 5423 return 1; 5424 } 5425 5426 static inline int task_util(struct task_struct *p); 5427 static int cpu_util_wake(int cpu, struct task_struct *p); 5428 5429 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p) 5430 { 5431 return capacity_orig_of(cpu) - cpu_util_wake(cpu, p); 5432 } 5433 5434 /* 5435 * find_idlest_group finds and returns the least busy CPU group within the 5436 * domain. 5437 */ 5438 static struct sched_group * 5439 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5440 int this_cpu, int sd_flag) 5441 { 5442 struct sched_group *idlest = NULL, *group = sd->groups; 5443 struct sched_group *most_spare_sg = NULL; 5444 unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0; 5445 unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0; 5446 unsigned long most_spare = 0, this_spare = 0; 5447 int load_idx = sd->forkexec_idx; 5448 int imbalance_scale = 100 + (sd->imbalance_pct-100)/2; 5449 unsigned long imbalance = scale_load_down(NICE_0_LOAD) * 5450 (sd->imbalance_pct-100) / 100; 5451 5452 if (sd_flag & SD_BALANCE_WAKE) 5453 load_idx = sd->wake_idx; 5454 5455 do { 5456 unsigned long load, avg_load, runnable_load; 5457 unsigned long spare_cap, max_spare_cap; 5458 int local_group; 5459 int i; 5460 5461 /* Skip over this group if it has no CPUs allowed */ 5462 if (!cpumask_intersects(sched_group_cpus(group), 5463 &p->cpus_allowed)) 5464 continue; 5465 5466 local_group = cpumask_test_cpu(this_cpu, 5467 sched_group_cpus(group)); 5468 5469 /* 5470 * Tally up the load of all CPUs in the group and find 5471 * the group containing the CPU with most spare capacity. 5472 */ 5473 avg_load = 0; 5474 runnable_load = 0; 5475 max_spare_cap = 0; 5476 5477 for_each_cpu(i, sched_group_cpus(group)) { 5478 /* Bias balancing toward cpus of our domain */ 5479 if (local_group) 5480 load = source_load(i, load_idx); 5481 else 5482 load = target_load(i, load_idx); 5483 5484 runnable_load += load; 5485 5486 avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs); 5487 5488 spare_cap = capacity_spare_wake(i, p); 5489 5490 if (spare_cap > max_spare_cap) 5491 max_spare_cap = spare_cap; 5492 } 5493 5494 /* Adjust by relative CPU capacity of the group */ 5495 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / 5496 group->sgc->capacity; 5497 runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) / 5498 group->sgc->capacity; 5499 5500 if (local_group) { 5501 this_runnable_load = runnable_load; 5502 this_avg_load = avg_load; 5503 this_spare = max_spare_cap; 5504 } else { 5505 if (min_runnable_load > (runnable_load + imbalance)) { 5506 /* 5507 * The runnable load is significantly smaller 5508 * so we can pick this new cpu 5509 */ 5510 min_runnable_load = runnable_load; 5511 min_avg_load = avg_load; 5512 idlest = group; 5513 } else if ((runnable_load < (min_runnable_load + imbalance)) && 5514 (100*min_avg_load > imbalance_scale*avg_load)) { 5515 /* 5516 * The runnable loads are close so take the 5517 * blocked load into account through avg_load. 5518 */ 5519 min_avg_load = avg_load; 5520 idlest = group; 5521 } 5522 5523 if (most_spare < max_spare_cap) { 5524 most_spare = max_spare_cap; 5525 most_spare_sg = group; 5526 } 5527 } 5528 } while (group = group->next, group != sd->groups); 5529 5530 /* 5531 * The cross-over point between using spare capacity or least load 5532 * is too conservative for high utilization tasks on partially 5533 * utilized systems if we require spare_capacity > task_util(p), 5534 * so we allow for some task stuffing by using 5535 * spare_capacity > task_util(p)/2. 5536 * 5537 * Spare capacity can't be used for fork because the utilization has 5538 * not been set yet, we must first select a rq to compute the initial 5539 * utilization. 5540 */ 5541 if (sd_flag & SD_BALANCE_FORK) 5542 goto skip_spare; 5543 5544 if (this_spare > task_util(p) / 2 && 5545 imbalance_scale*this_spare > 100*most_spare) 5546 return NULL; 5547 5548 if (most_spare > task_util(p) / 2) 5549 return most_spare_sg; 5550 5551 skip_spare: 5552 if (!idlest) 5553 return NULL; 5554 5555 if (min_runnable_load > (this_runnable_load + imbalance)) 5556 return NULL; 5557 5558 if ((this_runnable_load < (min_runnable_load + imbalance)) && 5559 (100*this_avg_load < imbalance_scale*min_avg_load)) 5560 return NULL; 5561 5562 return idlest; 5563 } 5564 5565 /* 5566 * find_idlest_cpu - find the idlest cpu among the cpus in group. 5567 */ 5568 static int 5569 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5570 { 5571 unsigned long load, min_load = ULONG_MAX; 5572 unsigned int min_exit_latency = UINT_MAX; 5573 u64 latest_idle_timestamp = 0; 5574 int least_loaded_cpu = this_cpu; 5575 int shallowest_idle_cpu = -1; 5576 int i; 5577 5578 /* Check if we have any choice: */ 5579 if (group->group_weight == 1) 5580 return cpumask_first(sched_group_cpus(group)); 5581 5582 /* Traverse only the allowed CPUs */ 5583 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) { 5584 if (idle_cpu(i)) { 5585 struct rq *rq = cpu_rq(i); 5586 struct cpuidle_state *idle = idle_get_state(rq); 5587 if (idle && idle->exit_latency < min_exit_latency) { 5588 /* 5589 * We give priority to a CPU whose idle state 5590 * has the smallest exit latency irrespective 5591 * of any idle timestamp. 5592 */ 5593 min_exit_latency = idle->exit_latency; 5594 latest_idle_timestamp = rq->idle_stamp; 5595 shallowest_idle_cpu = i; 5596 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5597 rq->idle_stamp > latest_idle_timestamp) { 5598 /* 5599 * If equal or no active idle state, then 5600 * the most recently idled CPU might have 5601 * a warmer cache. 5602 */ 5603 latest_idle_timestamp = rq->idle_stamp; 5604 shallowest_idle_cpu = i; 5605 } 5606 } else if (shallowest_idle_cpu == -1) { 5607 load = weighted_cpuload(i); 5608 if (load < min_load || (load == min_load && i == this_cpu)) { 5609 min_load = load; 5610 least_loaded_cpu = i; 5611 } 5612 } 5613 } 5614 5615 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5616 } 5617 5618 /* 5619 * Implement a for_each_cpu() variant that starts the scan at a given cpu 5620 * (@start), and wraps around. 5621 * 5622 * This is used to scan for idle CPUs; such that not all CPUs looking for an 5623 * idle CPU find the same CPU. The down-side is that tasks tend to cycle 5624 * through the LLC domain. 5625 * 5626 * Especially tbench is found sensitive to this. 5627 */ 5628 5629 static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped) 5630 { 5631 int next; 5632 5633 again: 5634 next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1); 5635 5636 if (*wrapped) { 5637 if (next >= start) 5638 return nr_cpumask_bits; 5639 } else { 5640 if (next >= nr_cpumask_bits) { 5641 *wrapped = 1; 5642 n = -1; 5643 goto again; 5644 } 5645 } 5646 5647 return next; 5648 } 5649 5650 #define for_each_cpu_wrap(cpu, mask, start, wrap) \ 5651 for ((wrap) = 0, (cpu) = (start)-1; \ 5652 (cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)), \ 5653 (cpu) < nr_cpumask_bits; ) 5654 5655 #ifdef CONFIG_SCHED_SMT 5656 5657 static inline void set_idle_cores(int cpu, int val) 5658 { 5659 struct sched_domain_shared *sds; 5660 5661 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5662 if (sds) 5663 WRITE_ONCE(sds->has_idle_cores, val); 5664 } 5665 5666 static inline bool test_idle_cores(int cpu, bool def) 5667 { 5668 struct sched_domain_shared *sds; 5669 5670 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 5671 if (sds) 5672 return READ_ONCE(sds->has_idle_cores); 5673 5674 return def; 5675 } 5676 5677 /* 5678 * Scans the local SMT mask to see if the entire core is idle, and records this 5679 * information in sd_llc_shared->has_idle_cores. 5680 * 5681 * Since SMT siblings share all cache levels, inspecting this limited remote 5682 * state should be fairly cheap. 5683 */ 5684 void __update_idle_core(struct rq *rq) 5685 { 5686 int core = cpu_of(rq); 5687 int cpu; 5688 5689 rcu_read_lock(); 5690 if (test_idle_cores(core, true)) 5691 goto unlock; 5692 5693 for_each_cpu(cpu, cpu_smt_mask(core)) { 5694 if (cpu == core) 5695 continue; 5696 5697 if (!idle_cpu(cpu)) 5698 goto unlock; 5699 } 5700 5701 set_idle_cores(core, 1); 5702 unlock: 5703 rcu_read_unlock(); 5704 } 5705 5706 /* 5707 * Scan the entire LLC domain for idle cores; this dynamically switches off if 5708 * there are no idle cores left in the system; tracked through 5709 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 5710 */ 5711 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5712 { 5713 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask); 5714 int core, cpu, wrap; 5715 5716 if (!static_branch_likely(&sched_smt_present)) 5717 return -1; 5718 5719 if (!test_idle_cores(target, false)) 5720 return -1; 5721 5722 cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed); 5723 5724 for_each_cpu_wrap(core, cpus, target, wrap) { 5725 bool idle = true; 5726 5727 for_each_cpu(cpu, cpu_smt_mask(core)) { 5728 cpumask_clear_cpu(cpu, cpus); 5729 if (!idle_cpu(cpu)) 5730 idle = false; 5731 } 5732 5733 if (idle) 5734 return core; 5735 } 5736 5737 /* 5738 * Failed to find an idle core; stop looking for one. 5739 */ 5740 set_idle_cores(target, 0); 5741 5742 return -1; 5743 } 5744 5745 /* 5746 * Scan the local SMT mask for idle CPUs. 5747 */ 5748 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 5749 { 5750 int cpu; 5751 5752 if (!static_branch_likely(&sched_smt_present)) 5753 return -1; 5754 5755 for_each_cpu(cpu, cpu_smt_mask(target)) { 5756 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 5757 continue; 5758 if (idle_cpu(cpu)) 5759 return cpu; 5760 } 5761 5762 return -1; 5763 } 5764 5765 #else /* CONFIG_SCHED_SMT */ 5766 5767 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target) 5768 { 5769 return -1; 5770 } 5771 5772 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 5773 { 5774 return -1; 5775 } 5776 5777 #endif /* CONFIG_SCHED_SMT */ 5778 5779 /* 5780 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 5781 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 5782 * average idle time for this rq (as found in rq->avg_idle). 5783 */ 5784 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target) 5785 { 5786 struct sched_domain *this_sd; 5787 u64 avg_cost, avg_idle = this_rq()->avg_idle; 5788 u64 time, cost; 5789 s64 delta; 5790 int cpu, wrap; 5791 5792 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc)); 5793 if (!this_sd) 5794 return -1; 5795 5796 avg_cost = this_sd->avg_scan_cost; 5797 5798 /* 5799 * Due to large variance we need a large fuzz factor; hackbench in 5800 * particularly is sensitive here. 5801 */ 5802 if (sched_feat(SIS_AVG_CPU) && (avg_idle / 512) < avg_cost) 5803 return -1; 5804 5805 time = local_clock(); 5806 5807 for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) { 5808 if (!cpumask_test_cpu(cpu, &p->cpus_allowed)) 5809 continue; 5810 if (idle_cpu(cpu)) 5811 break; 5812 } 5813 5814 time = local_clock() - time; 5815 cost = this_sd->avg_scan_cost; 5816 delta = (s64)(time - cost) / 8; 5817 this_sd->avg_scan_cost += delta; 5818 5819 return cpu; 5820 } 5821 5822 /* 5823 * Try and locate an idle core/thread in the LLC cache domain. 5824 */ 5825 static int select_idle_sibling(struct task_struct *p, int prev, int target) 5826 { 5827 struct sched_domain *sd; 5828 int i; 5829 5830 if (idle_cpu(target)) 5831 return target; 5832 5833 /* 5834 * If the previous cpu is cache affine and idle, don't be stupid. 5835 */ 5836 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev)) 5837 return prev; 5838 5839 sd = rcu_dereference(per_cpu(sd_llc, target)); 5840 if (!sd) 5841 return target; 5842 5843 i = select_idle_core(p, sd, target); 5844 if ((unsigned)i < nr_cpumask_bits) 5845 return i; 5846 5847 i = select_idle_cpu(p, sd, target); 5848 if ((unsigned)i < nr_cpumask_bits) 5849 return i; 5850 5851 i = select_idle_smt(p, sd, target); 5852 if ((unsigned)i < nr_cpumask_bits) 5853 return i; 5854 5855 return target; 5856 } 5857 5858 /* 5859 * cpu_util returns the amount of capacity of a CPU that is used by CFS 5860 * tasks. The unit of the return value must be the one of capacity so we can 5861 * compare the utilization with the capacity of the CPU that is available for 5862 * CFS task (ie cpu_capacity). 5863 * 5864 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 5865 * recent utilization of currently non-runnable tasks on a CPU. It represents 5866 * the amount of utilization of a CPU in the range [0..capacity_orig] where 5867 * capacity_orig is the cpu_capacity available at the highest frequency 5868 * (arch_scale_freq_capacity()). 5869 * The utilization of a CPU converges towards a sum equal to or less than the 5870 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 5871 * the running time on this CPU scaled by capacity_curr. 5872 * 5873 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 5874 * higher than capacity_orig because of unfortunate rounding in 5875 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 5876 * the average stabilizes with the new running time. We need to check that the 5877 * utilization stays within the range of [0..capacity_orig] and cap it if 5878 * necessary. Without utilization capping, a group could be seen as overloaded 5879 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 5880 * available capacity. We allow utilization to overshoot capacity_curr (but not 5881 * capacity_orig) as it useful for predicting the capacity required after task 5882 * migrations (scheduler-driven DVFS). 5883 */ 5884 static int cpu_util(int cpu) 5885 { 5886 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg; 5887 unsigned long capacity = capacity_orig_of(cpu); 5888 5889 return (util >= capacity) ? capacity : util; 5890 } 5891 5892 static inline int task_util(struct task_struct *p) 5893 { 5894 return p->se.avg.util_avg; 5895 } 5896 5897 /* 5898 * cpu_util_wake: Compute cpu utilization with any contributions from 5899 * the waking task p removed. 5900 */ 5901 static int cpu_util_wake(int cpu, struct task_struct *p) 5902 { 5903 unsigned long util, capacity; 5904 5905 /* Task has no contribution or is new */ 5906 if (cpu != task_cpu(p) || !p->se.avg.last_update_time) 5907 return cpu_util(cpu); 5908 5909 capacity = capacity_orig_of(cpu); 5910 util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0); 5911 5912 return (util >= capacity) ? capacity : util; 5913 } 5914 5915 /* 5916 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the 5917 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu. 5918 * 5919 * In that case WAKE_AFFINE doesn't make sense and we'll let 5920 * BALANCE_WAKE sort things out. 5921 */ 5922 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu) 5923 { 5924 long min_cap, max_cap; 5925 5926 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu)); 5927 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity; 5928 5929 /* Minimum capacity is close to max, no need to abort wake_affine */ 5930 if (max_cap - min_cap < max_cap >> 3) 5931 return 0; 5932 5933 /* Bring task utilization in sync with prev_cpu */ 5934 sync_entity_load_avg(&p->se); 5935 5936 return min_cap * 1024 < task_util(p) * capacity_margin; 5937 } 5938 5939 /* 5940 * select_task_rq_fair: Select target runqueue for the waking task in domains 5941 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 5942 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 5943 * 5944 * Balances load by selecting the idlest cpu in the idlest group, or under 5945 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. 5946 * 5947 * Returns the target cpu number. 5948 * 5949 * preempt must be disabled. 5950 */ 5951 static int 5952 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 5953 { 5954 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 5955 int cpu = smp_processor_id(); 5956 int new_cpu = prev_cpu; 5957 int want_affine = 0; 5958 int sync = wake_flags & WF_SYNC; 5959 5960 if (sd_flag & SD_BALANCE_WAKE) { 5961 record_wakee(p); 5962 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu) 5963 && cpumask_test_cpu(cpu, &p->cpus_allowed); 5964 } 5965 5966 rcu_read_lock(); 5967 for_each_domain(cpu, tmp) { 5968 if (!(tmp->flags & SD_LOAD_BALANCE)) 5969 break; 5970 5971 /* 5972 * If both cpu and prev_cpu are part of this domain, 5973 * cpu is a valid SD_WAKE_AFFINE target. 5974 */ 5975 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 5976 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 5977 affine_sd = tmp; 5978 break; 5979 } 5980 5981 if (tmp->flags & sd_flag) 5982 sd = tmp; 5983 else if (!want_affine) 5984 break; 5985 } 5986 5987 if (affine_sd) { 5988 sd = NULL; /* Prefer wake_affine over balance flags */ 5989 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync)) 5990 new_cpu = cpu; 5991 } 5992 5993 if (!sd) { 5994 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */ 5995 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 5996 5997 } else while (sd) { 5998 struct sched_group *group; 5999 int weight; 6000 6001 if (!(sd->flags & sd_flag)) { 6002 sd = sd->child; 6003 continue; 6004 } 6005 6006 group = find_idlest_group(sd, p, cpu, sd_flag); 6007 if (!group) { 6008 sd = sd->child; 6009 continue; 6010 } 6011 6012 new_cpu = find_idlest_cpu(group, p, cpu); 6013 if (new_cpu == -1 || new_cpu == cpu) { 6014 /* Now try balancing at a lower domain level of cpu */ 6015 sd = sd->child; 6016 continue; 6017 } 6018 6019 /* Now try balancing at a lower domain level of new_cpu */ 6020 cpu = new_cpu; 6021 weight = sd->span_weight; 6022 sd = NULL; 6023 for_each_domain(cpu, tmp) { 6024 if (weight <= tmp->span_weight) 6025 break; 6026 if (tmp->flags & sd_flag) 6027 sd = tmp; 6028 } 6029 /* while loop will break here if sd == NULL */ 6030 } 6031 rcu_read_unlock(); 6032 6033 return new_cpu; 6034 } 6035 6036 /* 6037 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 6038 * cfs_rq_of(p) references at time of call are still valid and identify the 6039 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 6040 */ 6041 static void migrate_task_rq_fair(struct task_struct *p) 6042 { 6043 /* 6044 * As blocked tasks retain absolute vruntime the migration needs to 6045 * deal with this by subtracting the old and adding the new 6046 * min_vruntime -- the latter is done by enqueue_entity() when placing 6047 * the task on the new runqueue. 6048 */ 6049 if (p->state == TASK_WAKING) { 6050 struct sched_entity *se = &p->se; 6051 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6052 u64 min_vruntime; 6053 6054 #ifndef CONFIG_64BIT 6055 u64 min_vruntime_copy; 6056 6057 do { 6058 min_vruntime_copy = cfs_rq->min_vruntime_copy; 6059 smp_rmb(); 6060 min_vruntime = cfs_rq->min_vruntime; 6061 } while (min_vruntime != min_vruntime_copy); 6062 #else 6063 min_vruntime = cfs_rq->min_vruntime; 6064 #endif 6065 6066 se->vruntime -= min_vruntime; 6067 } 6068 6069 /* 6070 * We are supposed to update the task to "current" time, then its up to date 6071 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting 6072 * what current time is, so simply throw away the out-of-date time. This 6073 * will result in the wakee task is less decayed, but giving the wakee more 6074 * load sounds not bad. 6075 */ 6076 remove_entity_load_avg(&p->se); 6077 6078 /* Tell new CPU we are migrated */ 6079 p->se.avg.last_update_time = 0; 6080 6081 /* We have migrated, no longer consider this task hot */ 6082 p->se.exec_start = 0; 6083 } 6084 6085 static void task_dead_fair(struct task_struct *p) 6086 { 6087 remove_entity_load_avg(&p->se); 6088 } 6089 #endif /* CONFIG_SMP */ 6090 6091 static unsigned long 6092 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 6093 { 6094 unsigned long gran = sysctl_sched_wakeup_granularity; 6095 6096 /* 6097 * Since its curr running now, convert the gran from real-time 6098 * to virtual-time in his units. 6099 * 6100 * By using 'se' instead of 'curr' we penalize light tasks, so 6101 * they get preempted easier. That is, if 'se' < 'curr' then 6102 * the resulting gran will be larger, therefore penalizing the 6103 * lighter, if otoh 'se' > 'curr' then the resulting gran will 6104 * be smaller, again penalizing the lighter task. 6105 * 6106 * This is especially important for buddies when the leftmost 6107 * task is higher priority than the buddy. 6108 */ 6109 return calc_delta_fair(gran, se); 6110 } 6111 6112 /* 6113 * Should 'se' preempt 'curr'. 6114 * 6115 * |s1 6116 * |s2 6117 * |s3 6118 * g 6119 * |<--->|c 6120 * 6121 * w(c, s1) = -1 6122 * w(c, s2) = 0 6123 * w(c, s3) = 1 6124 * 6125 */ 6126 static int 6127 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 6128 { 6129 s64 gran, vdiff = curr->vruntime - se->vruntime; 6130 6131 if (vdiff <= 0) 6132 return -1; 6133 6134 gran = wakeup_gran(curr, se); 6135 if (vdiff > gran) 6136 return 1; 6137 6138 return 0; 6139 } 6140 6141 static void set_last_buddy(struct sched_entity *se) 6142 { 6143 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6144 return; 6145 6146 for_each_sched_entity(se) 6147 cfs_rq_of(se)->last = se; 6148 } 6149 6150 static void set_next_buddy(struct sched_entity *se) 6151 { 6152 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 6153 return; 6154 6155 for_each_sched_entity(se) 6156 cfs_rq_of(se)->next = se; 6157 } 6158 6159 static void set_skip_buddy(struct sched_entity *se) 6160 { 6161 for_each_sched_entity(se) 6162 cfs_rq_of(se)->skip = se; 6163 } 6164 6165 /* 6166 * Preempt the current task with a newly woken task if needed: 6167 */ 6168 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 6169 { 6170 struct task_struct *curr = rq->curr; 6171 struct sched_entity *se = &curr->se, *pse = &p->se; 6172 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6173 int scale = cfs_rq->nr_running >= sched_nr_latency; 6174 int next_buddy_marked = 0; 6175 6176 if (unlikely(se == pse)) 6177 return; 6178 6179 /* 6180 * This is possible from callers such as attach_tasks(), in which we 6181 * unconditionally check_prempt_curr() after an enqueue (which may have 6182 * lead to a throttle). This both saves work and prevents false 6183 * next-buddy nomination below. 6184 */ 6185 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 6186 return; 6187 6188 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 6189 set_next_buddy(pse); 6190 next_buddy_marked = 1; 6191 } 6192 6193 /* 6194 * We can come here with TIF_NEED_RESCHED already set from new task 6195 * wake up path. 6196 * 6197 * Note: this also catches the edge-case of curr being in a throttled 6198 * group (e.g. via set_curr_task), since update_curr() (in the 6199 * enqueue of curr) will have resulted in resched being set. This 6200 * prevents us from potentially nominating it as a false LAST_BUDDY 6201 * below. 6202 */ 6203 if (test_tsk_need_resched(curr)) 6204 return; 6205 6206 /* Idle tasks are by definition preempted by non-idle tasks. */ 6207 if (unlikely(curr->policy == SCHED_IDLE) && 6208 likely(p->policy != SCHED_IDLE)) 6209 goto preempt; 6210 6211 /* 6212 * Batch and idle tasks do not preempt non-idle tasks (their preemption 6213 * is driven by the tick): 6214 */ 6215 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 6216 return; 6217 6218 find_matching_se(&se, &pse); 6219 update_curr(cfs_rq_of(se)); 6220 BUG_ON(!pse); 6221 if (wakeup_preempt_entity(se, pse) == 1) { 6222 /* 6223 * Bias pick_next to pick the sched entity that is 6224 * triggering this preemption. 6225 */ 6226 if (!next_buddy_marked) 6227 set_next_buddy(pse); 6228 goto preempt; 6229 } 6230 6231 return; 6232 6233 preempt: 6234 resched_curr(rq); 6235 /* 6236 * Only set the backward buddy when the current task is still 6237 * on the rq. This can happen when a wakeup gets interleaved 6238 * with schedule on the ->pre_schedule() or idle_balance() 6239 * point, either of which can * drop the rq lock. 6240 * 6241 * Also, during early boot the idle thread is in the fair class, 6242 * for obvious reasons its a bad idea to schedule back to it. 6243 */ 6244 if (unlikely(!se->on_rq || curr == rq->idle)) 6245 return; 6246 6247 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 6248 set_last_buddy(se); 6249 } 6250 6251 static struct task_struct * 6252 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6253 { 6254 struct cfs_rq *cfs_rq = &rq->cfs; 6255 struct sched_entity *se; 6256 struct task_struct *p; 6257 int new_tasks; 6258 6259 again: 6260 #ifdef CONFIG_FAIR_GROUP_SCHED 6261 if (!cfs_rq->nr_running) 6262 goto idle; 6263 6264 if (prev->sched_class != &fair_sched_class) 6265 goto simple; 6266 6267 /* 6268 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 6269 * likely that a next task is from the same cgroup as the current. 6270 * 6271 * Therefore attempt to avoid putting and setting the entire cgroup 6272 * hierarchy, only change the part that actually changes. 6273 */ 6274 6275 do { 6276 struct sched_entity *curr = cfs_rq->curr; 6277 6278 /* 6279 * Since we got here without doing put_prev_entity() we also 6280 * have to consider cfs_rq->curr. If it is still a runnable 6281 * entity, update_curr() will update its vruntime, otherwise 6282 * forget we've ever seen it. 6283 */ 6284 if (curr) { 6285 if (curr->on_rq) 6286 update_curr(cfs_rq); 6287 else 6288 curr = NULL; 6289 6290 /* 6291 * This call to check_cfs_rq_runtime() will do the 6292 * throttle and dequeue its entity in the parent(s). 6293 * Therefore the 'simple' nr_running test will indeed 6294 * be correct. 6295 */ 6296 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 6297 goto simple; 6298 } 6299 6300 se = pick_next_entity(cfs_rq, curr); 6301 cfs_rq = group_cfs_rq(se); 6302 } while (cfs_rq); 6303 6304 p = task_of(se); 6305 6306 /* 6307 * Since we haven't yet done put_prev_entity and if the selected task 6308 * is a different task than we started out with, try and touch the 6309 * least amount of cfs_rqs. 6310 */ 6311 if (prev != p) { 6312 struct sched_entity *pse = &prev->se; 6313 6314 while (!(cfs_rq = is_same_group(se, pse))) { 6315 int se_depth = se->depth; 6316 int pse_depth = pse->depth; 6317 6318 if (se_depth <= pse_depth) { 6319 put_prev_entity(cfs_rq_of(pse), pse); 6320 pse = parent_entity(pse); 6321 } 6322 if (se_depth >= pse_depth) { 6323 set_next_entity(cfs_rq_of(se), se); 6324 se = parent_entity(se); 6325 } 6326 } 6327 6328 put_prev_entity(cfs_rq, pse); 6329 set_next_entity(cfs_rq, se); 6330 } 6331 6332 if (hrtick_enabled(rq)) 6333 hrtick_start_fair(rq, p); 6334 6335 return p; 6336 simple: 6337 cfs_rq = &rq->cfs; 6338 #endif 6339 6340 if (!cfs_rq->nr_running) 6341 goto idle; 6342 6343 put_prev_task(rq, prev); 6344 6345 do { 6346 se = pick_next_entity(cfs_rq, NULL); 6347 set_next_entity(cfs_rq, se); 6348 cfs_rq = group_cfs_rq(se); 6349 } while (cfs_rq); 6350 6351 p = task_of(se); 6352 6353 if (hrtick_enabled(rq)) 6354 hrtick_start_fair(rq, p); 6355 6356 return p; 6357 6358 idle: 6359 new_tasks = idle_balance(rq, rf); 6360 6361 /* 6362 * Because idle_balance() releases (and re-acquires) rq->lock, it is 6363 * possible for any higher priority task to appear. In that case we 6364 * must re-start the pick_next_entity() loop. 6365 */ 6366 if (new_tasks < 0) 6367 return RETRY_TASK; 6368 6369 if (new_tasks > 0) 6370 goto again; 6371 6372 return NULL; 6373 } 6374 6375 /* 6376 * Account for a descheduled task: 6377 */ 6378 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 6379 { 6380 struct sched_entity *se = &prev->se; 6381 struct cfs_rq *cfs_rq; 6382 6383 for_each_sched_entity(se) { 6384 cfs_rq = cfs_rq_of(se); 6385 put_prev_entity(cfs_rq, se); 6386 } 6387 } 6388 6389 /* 6390 * sched_yield() is very simple 6391 * 6392 * The magic of dealing with the ->skip buddy is in pick_next_entity. 6393 */ 6394 static void yield_task_fair(struct rq *rq) 6395 { 6396 struct task_struct *curr = rq->curr; 6397 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 6398 struct sched_entity *se = &curr->se; 6399 6400 /* 6401 * Are we the only task in the tree? 6402 */ 6403 if (unlikely(rq->nr_running == 1)) 6404 return; 6405 6406 clear_buddies(cfs_rq, se); 6407 6408 if (curr->policy != SCHED_BATCH) { 6409 update_rq_clock(rq); 6410 /* 6411 * Update run-time statistics of the 'current'. 6412 */ 6413 update_curr(cfs_rq); 6414 /* 6415 * Tell update_rq_clock() that we've just updated, 6416 * so we don't do microscopic update in schedule() 6417 * and double the fastpath cost. 6418 */ 6419 rq_clock_skip_update(rq, true); 6420 } 6421 6422 set_skip_buddy(se); 6423 } 6424 6425 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 6426 { 6427 struct sched_entity *se = &p->se; 6428 6429 /* throttled hierarchies are not runnable */ 6430 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 6431 return false; 6432 6433 /* Tell the scheduler that we'd really like pse to run next. */ 6434 set_next_buddy(se); 6435 6436 yield_task_fair(rq); 6437 6438 return true; 6439 } 6440 6441 #ifdef CONFIG_SMP 6442 /************************************************** 6443 * Fair scheduling class load-balancing methods. 6444 * 6445 * BASICS 6446 * 6447 * The purpose of load-balancing is to achieve the same basic fairness the 6448 * per-cpu scheduler provides, namely provide a proportional amount of compute 6449 * time to each task. This is expressed in the following equation: 6450 * 6451 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 6452 * 6453 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 6454 * W_i,0 is defined as: 6455 * 6456 * W_i,0 = \Sum_j w_i,j (2) 6457 * 6458 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 6459 * is derived from the nice value as per sched_prio_to_weight[]. 6460 * 6461 * The weight average is an exponential decay average of the instantaneous 6462 * weight: 6463 * 6464 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 6465 * 6466 * C_i is the compute capacity of cpu i, typically it is the 6467 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 6468 * can also include other factors [XXX]. 6469 * 6470 * To achieve this balance we define a measure of imbalance which follows 6471 * directly from (1): 6472 * 6473 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 6474 * 6475 * We them move tasks around to minimize the imbalance. In the continuous 6476 * function space it is obvious this converges, in the discrete case we get 6477 * a few fun cases generally called infeasible weight scenarios. 6478 * 6479 * [XXX expand on: 6480 * - infeasible weights; 6481 * - local vs global optima in the discrete case. ] 6482 * 6483 * 6484 * SCHED DOMAINS 6485 * 6486 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 6487 * for all i,j solution, we create a tree of cpus that follows the hardware 6488 * topology where each level pairs two lower groups (or better). This results 6489 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 6490 * tree to only the first of the previous level and we decrease the frequency 6491 * of load-balance at each level inv. proportional to the number of cpus in 6492 * the groups. 6493 * 6494 * This yields: 6495 * 6496 * log_2 n 1 n 6497 * \Sum { --- * --- * 2^i } = O(n) (5) 6498 * i = 0 2^i 2^i 6499 * `- size of each group 6500 * | | `- number of cpus doing load-balance 6501 * | `- freq 6502 * `- sum over all levels 6503 * 6504 * Coupled with a limit on how many tasks we can migrate every balance pass, 6505 * this makes (5) the runtime complexity of the balancer. 6506 * 6507 * An important property here is that each CPU is still (indirectly) connected 6508 * to every other cpu in at most O(log n) steps: 6509 * 6510 * The adjacency matrix of the resulting graph is given by: 6511 * 6512 * log_2 n 6513 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 6514 * k = 0 6515 * 6516 * And you'll find that: 6517 * 6518 * A^(log_2 n)_i,j != 0 for all i,j (7) 6519 * 6520 * Showing there's indeed a path between every cpu in at most O(log n) steps. 6521 * The task movement gives a factor of O(m), giving a convergence complexity 6522 * of: 6523 * 6524 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 6525 * 6526 * 6527 * WORK CONSERVING 6528 * 6529 * In order to avoid CPUs going idle while there's still work to do, new idle 6530 * balancing is more aggressive and has the newly idle cpu iterate up the domain 6531 * tree itself instead of relying on other CPUs to bring it work. 6532 * 6533 * This adds some complexity to both (5) and (8) but it reduces the total idle 6534 * time. 6535 * 6536 * [XXX more?] 6537 * 6538 * 6539 * CGROUPS 6540 * 6541 * Cgroups make a horror show out of (2), instead of a simple sum we get: 6542 * 6543 * s_k,i 6544 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 6545 * S_k 6546 * 6547 * Where 6548 * 6549 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 6550 * 6551 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 6552 * 6553 * The big problem is S_k, its a global sum needed to compute a local (W_i) 6554 * property. 6555 * 6556 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 6557 * rewrite all of this once again.] 6558 */ 6559 6560 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 6561 6562 enum fbq_type { regular, remote, all }; 6563 6564 #define LBF_ALL_PINNED 0x01 6565 #define LBF_NEED_BREAK 0x02 6566 #define LBF_DST_PINNED 0x04 6567 #define LBF_SOME_PINNED 0x08 6568 6569 struct lb_env { 6570 struct sched_domain *sd; 6571 6572 struct rq *src_rq; 6573 int src_cpu; 6574 6575 int dst_cpu; 6576 struct rq *dst_rq; 6577 6578 struct cpumask *dst_grpmask; 6579 int new_dst_cpu; 6580 enum cpu_idle_type idle; 6581 long imbalance; 6582 /* The set of CPUs under consideration for load-balancing */ 6583 struct cpumask *cpus; 6584 6585 unsigned int flags; 6586 6587 unsigned int loop; 6588 unsigned int loop_break; 6589 unsigned int loop_max; 6590 6591 enum fbq_type fbq_type; 6592 struct list_head tasks; 6593 }; 6594 6595 /* 6596 * Is this task likely cache-hot: 6597 */ 6598 static int task_hot(struct task_struct *p, struct lb_env *env) 6599 { 6600 s64 delta; 6601 6602 lockdep_assert_held(&env->src_rq->lock); 6603 6604 if (p->sched_class != &fair_sched_class) 6605 return 0; 6606 6607 if (unlikely(p->policy == SCHED_IDLE)) 6608 return 0; 6609 6610 /* 6611 * Buddy candidates are cache hot: 6612 */ 6613 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 6614 (&p->se == cfs_rq_of(&p->se)->next || 6615 &p->se == cfs_rq_of(&p->se)->last)) 6616 return 1; 6617 6618 if (sysctl_sched_migration_cost == -1) 6619 return 1; 6620 if (sysctl_sched_migration_cost == 0) 6621 return 0; 6622 6623 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 6624 6625 return delta < (s64)sysctl_sched_migration_cost; 6626 } 6627 6628 #ifdef CONFIG_NUMA_BALANCING 6629 /* 6630 * Returns 1, if task migration degrades locality 6631 * Returns 0, if task migration improves locality i.e migration preferred. 6632 * Returns -1, if task migration is not affected by locality. 6633 */ 6634 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 6635 { 6636 struct numa_group *numa_group = rcu_dereference(p->numa_group); 6637 unsigned long src_faults, dst_faults; 6638 int src_nid, dst_nid; 6639 6640 if (!static_branch_likely(&sched_numa_balancing)) 6641 return -1; 6642 6643 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 6644 return -1; 6645 6646 src_nid = cpu_to_node(env->src_cpu); 6647 dst_nid = cpu_to_node(env->dst_cpu); 6648 6649 if (src_nid == dst_nid) 6650 return -1; 6651 6652 /* Migrating away from the preferred node is always bad. */ 6653 if (src_nid == p->numa_preferred_nid) { 6654 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 6655 return 1; 6656 else 6657 return -1; 6658 } 6659 6660 /* Encourage migration to the preferred node. */ 6661 if (dst_nid == p->numa_preferred_nid) 6662 return 0; 6663 6664 if (numa_group) { 6665 src_faults = group_faults(p, src_nid); 6666 dst_faults = group_faults(p, dst_nid); 6667 } else { 6668 src_faults = task_faults(p, src_nid); 6669 dst_faults = task_faults(p, dst_nid); 6670 } 6671 6672 return dst_faults < src_faults; 6673 } 6674 6675 #else 6676 static inline int migrate_degrades_locality(struct task_struct *p, 6677 struct lb_env *env) 6678 { 6679 return -1; 6680 } 6681 #endif 6682 6683 /* 6684 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 6685 */ 6686 static 6687 int can_migrate_task(struct task_struct *p, struct lb_env *env) 6688 { 6689 int tsk_cache_hot; 6690 6691 lockdep_assert_held(&env->src_rq->lock); 6692 6693 /* 6694 * We do not migrate tasks that are: 6695 * 1) throttled_lb_pair, or 6696 * 2) cannot be migrated to this CPU due to cpus_allowed, or 6697 * 3) running (obviously), or 6698 * 4) are cache-hot on their current CPU. 6699 */ 6700 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 6701 return 0; 6702 6703 if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) { 6704 int cpu; 6705 6706 schedstat_inc(p->se.statistics.nr_failed_migrations_affine); 6707 6708 env->flags |= LBF_SOME_PINNED; 6709 6710 /* 6711 * Remember if this task can be migrated to any other cpu in 6712 * our sched_group. We may want to revisit it if we couldn't 6713 * meet load balance goals by pulling other tasks on src_cpu. 6714 * 6715 * Also avoid computing new_dst_cpu if we have already computed 6716 * one in current iteration. 6717 */ 6718 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) 6719 return 0; 6720 6721 /* Prevent to re-select dst_cpu via env's cpus */ 6722 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 6723 if (cpumask_test_cpu(cpu, &p->cpus_allowed)) { 6724 env->flags |= LBF_DST_PINNED; 6725 env->new_dst_cpu = cpu; 6726 break; 6727 } 6728 } 6729 6730 return 0; 6731 } 6732 6733 /* Record that we found atleast one task that could run on dst_cpu */ 6734 env->flags &= ~LBF_ALL_PINNED; 6735 6736 if (task_running(env->src_rq, p)) { 6737 schedstat_inc(p->se.statistics.nr_failed_migrations_running); 6738 return 0; 6739 } 6740 6741 /* 6742 * Aggressive migration if: 6743 * 1) destination numa is preferred 6744 * 2) task is cache cold, or 6745 * 3) too many balance attempts have failed. 6746 */ 6747 tsk_cache_hot = migrate_degrades_locality(p, env); 6748 if (tsk_cache_hot == -1) 6749 tsk_cache_hot = task_hot(p, env); 6750 6751 if (tsk_cache_hot <= 0 || 6752 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 6753 if (tsk_cache_hot == 1) { 6754 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 6755 schedstat_inc(p->se.statistics.nr_forced_migrations); 6756 } 6757 return 1; 6758 } 6759 6760 schedstat_inc(p->se.statistics.nr_failed_migrations_hot); 6761 return 0; 6762 } 6763 6764 /* 6765 * detach_task() -- detach the task for the migration specified in env 6766 */ 6767 static void detach_task(struct task_struct *p, struct lb_env *env) 6768 { 6769 lockdep_assert_held(&env->src_rq->lock); 6770 6771 p->on_rq = TASK_ON_RQ_MIGRATING; 6772 deactivate_task(env->src_rq, p, 0); 6773 set_task_cpu(p, env->dst_cpu); 6774 } 6775 6776 /* 6777 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 6778 * part of active balancing operations within "domain". 6779 * 6780 * Returns a task if successful and NULL otherwise. 6781 */ 6782 static struct task_struct *detach_one_task(struct lb_env *env) 6783 { 6784 struct task_struct *p, *n; 6785 6786 lockdep_assert_held(&env->src_rq->lock); 6787 6788 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 6789 if (!can_migrate_task(p, env)) 6790 continue; 6791 6792 detach_task(p, env); 6793 6794 /* 6795 * Right now, this is only the second place where 6796 * lb_gained[env->idle] is updated (other is detach_tasks) 6797 * so we can safely collect stats here rather than 6798 * inside detach_tasks(). 6799 */ 6800 schedstat_inc(env->sd->lb_gained[env->idle]); 6801 return p; 6802 } 6803 return NULL; 6804 } 6805 6806 static const unsigned int sched_nr_migrate_break = 32; 6807 6808 /* 6809 * detach_tasks() -- tries to detach up to imbalance weighted load from 6810 * busiest_rq, as part of a balancing operation within domain "sd". 6811 * 6812 * Returns number of detached tasks if successful and 0 otherwise. 6813 */ 6814 static int detach_tasks(struct lb_env *env) 6815 { 6816 struct list_head *tasks = &env->src_rq->cfs_tasks; 6817 struct task_struct *p; 6818 unsigned long load; 6819 int detached = 0; 6820 6821 lockdep_assert_held(&env->src_rq->lock); 6822 6823 if (env->imbalance <= 0) 6824 return 0; 6825 6826 while (!list_empty(tasks)) { 6827 /* 6828 * We don't want to steal all, otherwise we may be treated likewise, 6829 * which could at worst lead to a livelock crash. 6830 */ 6831 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 6832 break; 6833 6834 p = list_first_entry(tasks, struct task_struct, se.group_node); 6835 6836 env->loop++; 6837 /* We've more or less seen every task there is, call it quits */ 6838 if (env->loop > env->loop_max) 6839 break; 6840 6841 /* take a breather every nr_migrate tasks */ 6842 if (env->loop > env->loop_break) { 6843 env->loop_break += sched_nr_migrate_break; 6844 env->flags |= LBF_NEED_BREAK; 6845 break; 6846 } 6847 6848 if (!can_migrate_task(p, env)) 6849 goto next; 6850 6851 load = task_h_load(p); 6852 6853 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 6854 goto next; 6855 6856 if ((load / 2) > env->imbalance) 6857 goto next; 6858 6859 detach_task(p, env); 6860 list_add(&p->se.group_node, &env->tasks); 6861 6862 detached++; 6863 env->imbalance -= load; 6864 6865 #ifdef CONFIG_PREEMPT 6866 /* 6867 * NEWIDLE balancing is a source of latency, so preemptible 6868 * kernels will stop after the first task is detached to minimize 6869 * the critical section. 6870 */ 6871 if (env->idle == CPU_NEWLY_IDLE) 6872 break; 6873 #endif 6874 6875 /* 6876 * We only want to steal up to the prescribed amount of 6877 * weighted load. 6878 */ 6879 if (env->imbalance <= 0) 6880 break; 6881 6882 continue; 6883 next: 6884 list_move_tail(&p->se.group_node, tasks); 6885 } 6886 6887 /* 6888 * Right now, this is one of only two places we collect this stat 6889 * so we can safely collect detach_one_task() stats here rather 6890 * than inside detach_one_task(). 6891 */ 6892 schedstat_add(env->sd->lb_gained[env->idle], detached); 6893 6894 return detached; 6895 } 6896 6897 /* 6898 * attach_task() -- attach the task detached by detach_task() to its new rq. 6899 */ 6900 static void attach_task(struct rq *rq, struct task_struct *p) 6901 { 6902 lockdep_assert_held(&rq->lock); 6903 6904 BUG_ON(task_rq(p) != rq); 6905 activate_task(rq, p, 0); 6906 p->on_rq = TASK_ON_RQ_QUEUED; 6907 check_preempt_curr(rq, p, 0); 6908 } 6909 6910 /* 6911 * attach_one_task() -- attaches the task returned from detach_one_task() to 6912 * its new rq. 6913 */ 6914 static void attach_one_task(struct rq *rq, struct task_struct *p) 6915 { 6916 raw_spin_lock(&rq->lock); 6917 attach_task(rq, p); 6918 raw_spin_unlock(&rq->lock); 6919 } 6920 6921 /* 6922 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 6923 * new rq. 6924 */ 6925 static void attach_tasks(struct lb_env *env) 6926 { 6927 struct list_head *tasks = &env->tasks; 6928 struct task_struct *p; 6929 6930 raw_spin_lock(&env->dst_rq->lock); 6931 6932 while (!list_empty(tasks)) { 6933 p = list_first_entry(tasks, struct task_struct, se.group_node); 6934 list_del_init(&p->se.group_node); 6935 6936 attach_task(env->dst_rq, p); 6937 } 6938 6939 raw_spin_unlock(&env->dst_rq->lock); 6940 } 6941 6942 #ifdef CONFIG_FAIR_GROUP_SCHED 6943 static void update_blocked_averages(int cpu) 6944 { 6945 struct rq *rq = cpu_rq(cpu); 6946 struct cfs_rq *cfs_rq; 6947 unsigned long flags; 6948 6949 raw_spin_lock_irqsave(&rq->lock, flags); 6950 update_rq_clock(rq); 6951 6952 /* 6953 * Iterates the task_group tree in a bottom up fashion, see 6954 * list_add_leaf_cfs_rq() for details. 6955 */ 6956 for_each_leaf_cfs_rq(rq, cfs_rq) { 6957 /* throttled entities do not contribute to load */ 6958 if (throttled_hierarchy(cfs_rq)) 6959 continue; 6960 6961 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true)) 6962 update_tg_load_avg(cfs_rq, 0); 6963 6964 /* Propagate pending load changes to the parent */ 6965 if (cfs_rq->tg->se[cpu]) 6966 update_load_avg(cfs_rq->tg->se[cpu], 0); 6967 } 6968 raw_spin_unlock_irqrestore(&rq->lock, flags); 6969 } 6970 6971 /* 6972 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 6973 * This needs to be done in a top-down fashion because the load of a child 6974 * group is a fraction of its parents load. 6975 */ 6976 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 6977 { 6978 struct rq *rq = rq_of(cfs_rq); 6979 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 6980 unsigned long now = jiffies; 6981 unsigned long load; 6982 6983 if (cfs_rq->last_h_load_update == now) 6984 return; 6985 6986 cfs_rq->h_load_next = NULL; 6987 for_each_sched_entity(se) { 6988 cfs_rq = cfs_rq_of(se); 6989 cfs_rq->h_load_next = se; 6990 if (cfs_rq->last_h_load_update == now) 6991 break; 6992 } 6993 6994 if (!se) { 6995 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 6996 cfs_rq->last_h_load_update = now; 6997 } 6998 6999 while ((se = cfs_rq->h_load_next) != NULL) { 7000 load = cfs_rq->h_load; 7001 load = div64_ul(load * se->avg.load_avg, 7002 cfs_rq_load_avg(cfs_rq) + 1); 7003 cfs_rq = group_cfs_rq(se); 7004 cfs_rq->h_load = load; 7005 cfs_rq->last_h_load_update = now; 7006 } 7007 } 7008 7009 static unsigned long task_h_load(struct task_struct *p) 7010 { 7011 struct cfs_rq *cfs_rq = task_cfs_rq(p); 7012 7013 update_cfs_rq_h_load(cfs_rq); 7014 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 7015 cfs_rq_load_avg(cfs_rq) + 1); 7016 } 7017 #else 7018 static inline void update_blocked_averages(int cpu) 7019 { 7020 struct rq *rq = cpu_rq(cpu); 7021 struct cfs_rq *cfs_rq = &rq->cfs; 7022 unsigned long flags; 7023 7024 raw_spin_lock_irqsave(&rq->lock, flags); 7025 update_rq_clock(rq); 7026 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true); 7027 raw_spin_unlock_irqrestore(&rq->lock, flags); 7028 } 7029 7030 static unsigned long task_h_load(struct task_struct *p) 7031 { 7032 return p->se.avg.load_avg; 7033 } 7034 #endif 7035 7036 /********** Helpers for find_busiest_group ************************/ 7037 7038 enum group_type { 7039 group_other = 0, 7040 group_imbalanced, 7041 group_overloaded, 7042 }; 7043 7044 /* 7045 * sg_lb_stats - stats of a sched_group required for load_balancing 7046 */ 7047 struct sg_lb_stats { 7048 unsigned long avg_load; /*Avg load across the CPUs of the group */ 7049 unsigned long group_load; /* Total load over the CPUs of the group */ 7050 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 7051 unsigned long load_per_task; 7052 unsigned long group_capacity; 7053 unsigned long group_util; /* Total utilization of the group */ 7054 unsigned int sum_nr_running; /* Nr tasks running in the group */ 7055 unsigned int idle_cpus; 7056 unsigned int group_weight; 7057 enum group_type group_type; 7058 int group_no_capacity; 7059 #ifdef CONFIG_NUMA_BALANCING 7060 unsigned int nr_numa_running; 7061 unsigned int nr_preferred_running; 7062 #endif 7063 }; 7064 7065 /* 7066 * sd_lb_stats - Structure to store the statistics of a sched_domain 7067 * during load balancing. 7068 */ 7069 struct sd_lb_stats { 7070 struct sched_group *busiest; /* Busiest group in this sd */ 7071 struct sched_group *local; /* Local group in this sd */ 7072 unsigned long total_load; /* Total load of all groups in sd */ 7073 unsigned long total_capacity; /* Total capacity of all groups in sd */ 7074 unsigned long avg_load; /* Average load across all groups in sd */ 7075 7076 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 7077 struct sg_lb_stats local_stat; /* Statistics of the local group */ 7078 }; 7079 7080 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 7081 { 7082 /* 7083 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 7084 * local_stat because update_sg_lb_stats() does a full clear/assignment. 7085 * We must however clear busiest_stat::avg_load because 7086 * update_sd_pick_busiest() reads this before assignment. 7087 */ 7088 *sds = (struct sd_lb_stats){ 7089 .busiest = NULL, 7090 .local = NULL, 7091 .total_load = 0UL, 7092 .total_capacity = 0UL, 7093 .busiest_stat = { 7094 .avg_load = 0UL, 7095 .sum_nr_running = 0, 7096 .group_type = group_other, 7097 }, 7098 }; 7099 } 7100 7101 /** 7102 * get_sd_load_idx - Obtain the load index for a given sched domain. 7103 * @sd: The sched_domain whose load_idx is to be obtained. 7104 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 7105 * 7106 * Return: The load index. 7107 */ 7108 static inline int get_sd_load_idx(struct sched_domain *sd, 7109 enum cpu_idle_type idle) 7110 { 7111 int load_idx; 7112 7113 switch (idle) { 7114 case CPU_NOT_IDLE: 7115 load_idx = sd->busy_idx; 7116 break; 7117 7118 case CPU_NEWLY_IDLE: 7119 load_idx = sd->newidle_idx; 7120 break; 7121 default: 7122 load_idx = sd->idle_idx; 7123 break; 7124 } 7125 7126 return load_idx; 7127 } 7128 7129 static unsigned long scale_rt_capacity(int cpu) 7130 { 7131 struct rq *rq = cpu_rq(cpu); 7132 u64 total, used, age_stamp, avg; 7133 s64 delta; 7134 7135 /* 7136 * Since we're reading these variables without serialization make sure 7137 * we read them once before doing sanity checks on them. 7138 */ 7139 age_stamp = READ_ONCE(rq->age_stamp); 7140 avg = READ_ONCE(rq->rt_avg); 7141 delta = __rq_clock_broken(rq) - age_stamp; 7142 7143 if (unlikely(delta < 0)) 7144 delta = 0; 7145 7146 total = sched_avg_period() + delta; 7147 7148 used = div_u64(avg, total); 7149 7150 if (likely(used < SCHED_CAPACITY_SCALE)) 7151 return SCHED_CAPACITY_SCALE - used; 7152 7153 return 1; 7154 } 7155 7156 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 7157 { 7158 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu); 7159 struct sched_group *sdg = sd->groups; 7160 7161 cpu_rq(cpu)->cpu_capacity_orig = capacity; 7162 7163 capacity *= scale_rt_capacity(cpu); 7164 capacity >>= SCHED_CAPACITY_SHIFT; 7165 7166 if (!capacity) 7167 capacity = 1; 7168 7169 cpu_rq(cpu)->cpu_capacity = capacity; 7170 sdg->sgc->capacity = capacity; 7171 sdg->sgc->min_capacity = capacity; 7172 } 7173 7174 void update_group_capacity(struct sched_domain *sd, int cpu) 7175 { 7176 struct sched_domain *child = sd->child; 7177 struct sched_group *group, *sdg = sd->groups; 7178 unsigned long capacity, min_capacity; 7179 unsigned long interval; 7180 7181 interval = msecs_to_jiffies(sd->balance_interval); 7182 interval = clamp(interval, 1UL, max_load_balance_interval); 7183 sdg->sgc->next_update = jiffies + interval; 7184 7185 if (!child) { 7186 update_cpu_capacity(sd, cpu); 7187 return; 7188 } 7189 7190 capacity = 0; 7191 min_capacity = ULONG_MAX; 7192 7193 if (child->flags & SD_OVERLAP) { 7194 /* 7195 * SD_OVERLAP domains cannot assume that child groups 7196 * span the current group. 7197 */ 7198 7199 for_each_cpu(cpu, sched_group_cpus(sdg)) { 7200 struct sched_group_capacity *sgc; 7201 struct rq *rq = cpu_rq(cpu); 7202 7203 /* 7204 * build_sched_domains() -> init_sched_groups_capacity() 7205 * gets here before we've attached the domains to the 7206 * runqueues. 7207 * 7208 * Use capacity_of(), which is set irrespective of domains 7209 * in update_cpu_capacity(). 7210 * 7211 * This avoids capacity from being 0 and 7212 * causing divide-by-zero issues on boot. 7213 */ 7214 if (unlikely(!rq->sd)) { 7215 capacity += capacity_of(cpu); 7216 } else { 7217 sgc = rq->sd->groups->sgc; 7218 capacity += sgc->capacity; 7219 } 7220 7221 min_capacity = min(capacity, min_capacity); 7222 } 7223 } else { 7224 /* 7225 * !SD_OVERLAP domains can assume that child groups 7226 * span the current group. 7227 */ 7228 7229 group = child->groups; 7230 do { 7231 struct sched_group_capacity *sgc = group->sgc; 7232 7233 capacity += sgc->capacity; 7234 min_capacity = min(sgc->min_capacity, min_capacity); 7235 group = group->next; 7236 } while (group != child->groups); 7237 } 7238 7239 sdg->sgc->capacity = capacity; 7240 sdg->sgc->min_capacity = min_capacity; 7241 } 7242 7243 /* 7244 * Check whether the capacity of the rq has been noticeably reduced by side 7245 * activity. The imbalance_pct is used for the threshold. 7246 * Return true is the capacity is reduced 7247 */ 7248 static inline int 7249 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 7250 { 7251 return ((rq->cpu_capacity * sd->imbalance_pct) < 7252 (rq->cpu_capacity_orig * 100)); 7253 } 7254 7255 /* 7256 * Group imbalance indicates (and tries to solve) the problem where balancing 7257 * groups is inadequate due to ->cpus_allowed constraints. 7258 * 7259 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 7260 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 7261 * Something like: 7262 * 7263 * { 0 1 2 3 } { 4 5 6 7 } 7264 * * * * * 7265 * 7266 * If we were to balance group-wise we'd place two tasks in the first group and 7267 * two tasks in the second group. Clearly this is undesired as it will overload 7268 * cpu 3 and leave one of the cpus in the second group unused. 7269 * 7270 * The current solution to this issue is detecting the skew in the first group 7271 * by noticing the lower domain failed to reach balance and had difficulty 7272 * moving tasks due to affinity constraints. 7273 * 7274 * When this is so detected; this group becomes a candidate for busiest; see 7275 * update_sd_pick_busiest(). And calculate_imbalance() and 7276 * find_busiest_group() avoid some of the usual balance conditions to allow it 7277 * to create an effective group imbalance. 7278 * 7279 * This is a somewhat tricky proposition since the next run might not find the 7280 * group imbalance and decide the groups need to be balanced again. A most 7281 * subtle and fragile situation. 7282 */ 7283 7284 static inline int sg_imbalanced(struct sched_group *group) 7285 { 7286 return group->sgc->imbalance; 7287 } 7288 7289 /* 7290 * group_has_capacity returns true if the group has spare capacity that could 7291 * be used by some tasks. 7292 * We consider that a group has spare capacity if the * number of task is 7293 * smaller than the number of CPUs or if the utilization is lower than the 7294 * available capacity for CFS tasks. 7295 * For the latter, we use a threshold to stabilize the state, to take into 7296 * account the variance of the tasks' load and to return true if the available 7297 * capacity in meaningful for the load balancer. 7298 * As an example, an available capacity of 1% can appear but it doesn't make 7299 * any benefit for the load balance. 7300 */ 7301 static inline bool 7302 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 7303 { 7304 if (sgs->sum_nr_running < sgs->group_weight) 7305 return true; 7306 7307 if ((sgs->group_capacity * 100) > 7308 (sgs->group_util * env->sd->imbalance_pct)) 7309 return true; 7310 7311 return false; 7312 } 7313 7314 /* 7315 * group_is_overloaded returns true if the group has more tasks than it can 7316 * handle. 7317 * group_is_overloaded is not equals to !group_has_capacity because a group 7318 * with the exact right number of tasks, has no more spare capacity but is not 7319 * overloaded so both group_has_capacity and group_is_overloaded return 7320 * false. 7321 */ 7322 static inline bool 7323 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 7324 { 7325 if (sgs->sum_nr_running <= sgs->group_weight) 7326 return false; 7327 7328 if ((sgs->group_capacity * 100) < 7329 (sgs->group_util * env->sd->imbalance_pct)) 7330 return true; 7331 7332 return false; 7333 } 7334 7335 /* 7336 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller 7337 * per-CPU capacity than sched_group ref. 7338 */ 7339 static inline bool 7340 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref) 7341 { 7342 return sg->sgc->min_capacity * capacity_margin < 7343 ref->sgc->min_capacity * 1024; 7344 } 7345 7346 static inline enum 7347 group_type group_classify(struct sched_group *group, 7348 struct sg_lb_stats *sgs) 7349 { 7350 if (sgs->group_no_capacity) 7351 return group_overloaded; 7352 7353 if (sg_imbalanced(group)) 7354 return group_imbalanced; 7355 7356 return group_other; 7357 } 7358 7359 /** 7360 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 7361 * @env: The load balancing environment. 7362 * @group: sched_group whose statistics are to be updated. 7363 * @load_idx: Load index of sched_domain of this_cpu for load calc. 7364 * @local_group: Does group contain this_cpu. 7365 * @sgs: variable to hold the statistics for this group. 7366 * @overload: Indicate more than one runnable task for any CPU. 7367 */ 7368 static inline void update_sg_lb_stats(struct lb_env *env, 7369 struct sched_group *group, int load_idx, 7370 int local_group, struct sg_lb_stats *sgs, 7371 bool *overload) 7372 { 7373 unsigned long load; 7374 int i, nr_running; 7375 7376 memset(sgs, 0, sizeof(*sgs)); 7377 7378 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 7379 struct rq *rq = cpu_rq(i); 7380 7381 /* Bias balancing toward cpus of our domain */ 7382 if (local_group) 7383 load = target_load(i, load_idx); 7384 else 7385 load = source_load(i, load_idx); 7386 7387 sgs->group_load += load; 7388 sgs->group_util += cpu_util(i); 7389 sgs->sum_nr_running += rq->cfs.h_nr_running; 7390 7391 nr_running = rq->nr_running; 7392 if (nr_running > 1) 7393 *overload = true; 7394 7395 #ifdef CONFIG_NUMA_BALANCING 7396 sgs->nr_numa_running += rq->nr_numa_running; 7397 sgs->nr_preferred_running += rq->nr_preferred_running; 7398 #endif 7399 sgs->sum_weighted_load += weighted_cpuload(i); 7400 /* 7401 * No need to call idle_cpu() if nr_running is not 0 7402 */ 7403 if (!nr_running && idle_cpu(i)) 7404 sgs->idle_cpus++; 7405 } 7406 7407 /* Adjust by relative CPU capacity of the group */ 7408 sgs->group_capacity = group->sgc->capacity; 7409 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 7410 7411 if (sgs->sum_nr_running) 7412 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 7413 7414 sgs->group_weight = group->group_weight; 7415 7416 sgs->group_no_capacity = group_is_overloaded(env, sgs); 7417 sgs->group_type = group_classify(group, sgs); 7418 } 7419 7420 /** 7421 * update_sd_pick_busiest - return 1 on busiest group 7422 * @env: The load balancing environment. 7423 * @sds: sched_domain statistics 7424 * @sg: sched_group candidate to be checked for being the busiest 7425 * @sgs: sched_group statistics 7426 * 7427 * Determine if @sg is a busier group than the previously selected 7428 * busiest group. 7429 * 7430 * Return: %true if @sg is a busier group than the previously selected 7431 * busiest group. %false otherwise. 7432 */ 7433 static bool update_sd_pick_busiest(struct lb_env *env, 7434 struct sd_lb_stats *sds, 7435 struct sched_group *sg, 7436 struct sg_lb_stats *sgs) 7437 { 7438 struct sg_lb_stats *busiest = &sds->busiest_stat; 7439 7440 if (sgs->group_type > busiest->group_type) 7441 return true; 7442 7443 if (sgs->group_type < busiest->group_type) 7444 return false; 7445 7446 if (sgs->avg_load <= busiest->avg_load) 7447 return false; 7448 7449 if (!(env->sd->flags & SD_ASYM_CPUCAPACITY)) 7450 goto asym_packing; 7451 7452 /* 7453 * Candidate sg has no more than one task per CPU and 7454 * has higher per-CPU capacity. Migrating tasks to less 7455 * capable CPUs may harm throughput. Maximize throughput, 7456 * power/energy consequences are not considered. 7457 */ 7458 if (sgs->sum_nr_running <= sgs->group_weight && 7459 group_smaller_cpu_capacity(sds->local, sg)) 7460 return false; 7461 7462 asym_packing: 7463 /* This is the busiest node in its class. */ 7464 if (!(env->sd->flags & SD_ASYM_PACKING)) 7465 return true; 7466 7467 /* No ASYM_PACKING if target cpu is already busy */ 7468 if (env->idle == CPU_NOT_IDLE) 7469 return true; 7470 /* 7471 * ASYM_PACKING needs to move all the work to the highest 7472 * prority CPUs in the group, therefore mark all groups 7473 * of lower priority than ourself as busy. 7474 */ 7475 if (sgs->sum_nr_running && 7476 sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) { 7477 if (!sds->busiest) 7478 return true; 7479 7480 /* Prefer to move from lowest priority cpu's work */ 7481 if (sched_asym_prefer(sds->busiest->asym_prefer_cpu, 7482 sg->asym_prefer_cpu)) 7483 return true; 7484 } 7485 7486 return false; 7487 } 7488 7489 #ifdef CONFIG_NUMA_BALANCING 7490 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7491 { 7492 if (sgs->sum_nr_running > sgs->nr_numa_running) 7493 return regular; 7494 if (sgs->sum_nr_running > sgs->nr_preferred_running) 7495 return remote; 7496 return all; 7497 } 7498 7499 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7500 { 7501 if (rq->nr_running > rq->nr_numa_running) 7502 return regular; 7503 if (rq->nr_running > rq->nr_preferred_running) 7504 return remote; 7505 return all; 7506 } 7507 #else 7508 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 7509 { 7510 return all; 7511 } 7512 7513 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 7514 { 7515 return regular; 7516 } 7517 #endif /* CONFIG_NUMA_BALANCING */ 7518 7519 /** 7520 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 7521 * @env: The load balancing environment. 7522 * @sds: variable to hold the statistics for this sched_domain. 7523 */ 7524 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 7525 { 7526 struct sched_domain *child = env->sd->child; 7527 struct sched_group *sg = env->sd->groups; 7528 struct sg_lb_stats tmp_sgs; 7529 int load_idx, prefer_sibling = 0; 7530 bool overload = false; 7531 7532 if (child && child->flags & SD_PREFER_SIBLING) 7533 prefer_sibling = 1; 7534 7535 load_idx = get_sd_load_idx(env->sd, env->idle); 7536 7537 do { 7538 struct sg_lb_stats *sgs = &tmp_sgs; 7539 int local_group; 7540 7541 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 7542 if (local_group) { 7543 sds->local = sg; 7544 sgs = &sds->local_stat; 7545 7546 if (env->idle != CPU_NEWLY_IDLE || 7547 time_after_eq(jiffies, sg->sgc->next_update)) 7548 update_group_capacity(env->sd, env->dst_cpu); 7549 } 7550 7551 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 7552 &overload); 7553 7554 if (local_group) 7555 goto next_group; 7556 7557 /* 7558 * In case the child domain prefers tasks go to siblings 7559 * first, lower the sg capacity so that we'll try 7560 * and move all the excess tasks away. We lower the capacity 7561 * of a group only if the local group has the capacity to fit 7562 * these excess tasks. The extra check prevents the case where 7563 * you always pull from the heaviest group when it is already 7564 * under-utilized (possible with a large weight task outweighs 7565 * the tasks on the system). 7566 */ 7567 if (prefer_sibling && sds->local && 7568 group_has_capacity(env, &sds->local_stat) && 7569 (sgs->sum_nr_running > 1)) { 7570 sgs->group_no_capacity = 1; 7571 sgs->group_type = group_classify(sg, sgs); 7572 } 7573 7574 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 7575 sds->busiest = sg; 7576 sds->busiest_stat = *sgs; 7577 } 7578 7579 next_group: 7580 /* Now, start updating sd_lb_stats */ 7581 sds->total_load += sgs->group_load; 7582 sds->total_capacity += sgs->group_capacity; 7583 7584 sg = sg->next; 7585 } while (sg != env->sd->groups); 7586 7587 if (env->sd->flags & SD_NUMA) 7588 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 7589 7590 if (!env->sd->parent) { 7591 /* update overload indicator if we are at root domain */ 7592 if (env->dst_rq->rd->overload != overload) 7593 env->dst_rq->rd->overload = overload; 7594 } 7595 7596 } 7597 7598 /** 7599 * check_asym_packing - Check to see if the group is packed into the 7600 * sched doman. 7601 * 7602 * This is primarily intended to used at the sibling level. Some 7603 * cores like POWER7 prefer to use lower numbered SMT threads. In the 7604 * case of POWER7, it can move to lower SMT modes only when higher 7605 * threads are idle. When in lower SMT modes, the threads will 7606 * perform better since they share less core resources. Hence when we 7607 * have idle threads, we want them to be the higher ones. 7608 * 7609 * This packing function is run on idle threads. It checks to see if 7610 * the busiest CPU in this domain (core in the P7 case) has a higher 7611 * CPU number than the packing function is being run on. Here we are 7612 * assuming lower CPU number will be equivalent to lower a SMT thread 7613 * number. 7614 * 7615 * Return: 1 when packing is required and a task should be moved to 7616 * this CPU. The amount of the imbalance is returned in *imbalance. 7617 * 7618 * @env: The load balancing environment. 7619 * @sds: Statistics of the sched_domain which is to be packed 7620 */ 7621 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 7622 { 7623 int busiest_cpu; 7624 7625 if (!(env->sd->flags & SD_ASYM_PACKING)) 7626 return 0; 7627 7628 if (env->idle == CPU_NOT_IDLE) 7629 return 0; 7630 7631 if (!sds->busiest) 7632 return 0; 7633 7634 busiest_cpu = sds->busiest->asym_prefer_cpu; 7635 if (sched_asym_prefer(busiest_cpu, env->dst_cpu)) 7636 return 0; 7637 7638 env->imbalance = DIV_ROUND_CLOSEST( 7639 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 7640 SCHED_CAPACITY_SCALE); 7641 7642 return 1; 7643 } 7644 7645 /** 7646 * fix_small_imbalance - Calculate the minor imbalance that exists 7647 * amongst the groups of a sched_domain, during 7648 * load balancing. 7649 * @env: The load balancing environment. 7650 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 7651 */ 7652 static inline 7653 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 7654 { 7655 unsigned long tmp, capa_now = 0, capa_move = 0; 7656 unsigned int imbn = 2; 7657 unsigned long scaled_busy_load_per_task; 7658 struct sg_lb_stats *local, *busiest; 7659 7660 local = &sds->local_stat; 7661 busiest = &sds->busiest_stat; 7662 7663 if (!local->sum_nr_running) 7664 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 7665 else if (busiest->load_per_task > local->load_per_task) 7666 imbn = 1; 7667 7668 scaled_busy_load_per_task = 7669 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 7670 busiest->group_capacity; 7671 7672 if (busiest->avg_load + scaled_busy_load_per_task >= 7673 local->avg_load + (scaled_busy_load_per_task * imbn)) { 7674 env->imbalance = busiest->load_per_task; 7675 return; 7676 } 7677 7678 /* 7679 * OK, we don't have enough imbalance to justify moving tasks, 7680 * however we may be able to increase total CPU capacity used by 7681 * moving them. 7682 */ 7683 7684 capa_now += busiest->group_capacity * 7685 min(busiest->load_per_task, busiest->avg_load); 7686 capa_now += local->group_capacity * 7687 min(local->load_per_task, local->avg_load); 7688 capa_now /= SCHED_CAPACITY_SCALE; 7689 7690 /* Amount of load we'd subtract */ 7691 if (busiest->avg_load > scaled_busy_load_per_task) { 7692 capa_move += busiest->group_capacity * 7693 min(busiest->load_per_task, 7694 busiest->avg_load - scaled_busy_load_per_task); 7695 } 7696 7697 /* Amount of load we'd add */ 7698 if (busiest->avg_load * busiest->group_capacity < 7699 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 7700 tmp = (busiest->avg_load * busiest->group_capacity) / 7701 local->group_capacity; 7702 } else { 7703 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 7704 local->group_capacity; 7705 } 7706 capa_move += local->group_capacity * 7707 min(local->load_per_task, local->avg_load + tmp); 7708 capa_move /= SCHED_CAPACITY_SCALE; 7709 7710 /* Move if we gain throughput */ 7711 if (capa_move > capa_now) 7712 env->imbalance = busiest->load_per_task; 7713 } 7714 7715 /** 7716 * calculate_imbalance - Calculate the amount of imbalance present within the 7717 * groups of a given sched_domain during load balance. 7718 * @env: load balance environment 7719 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 7720 */ 7721 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 7722 { 7723 unsigned long max_pull, load_above_capacity = ~0UL; 7724 struct sg_lb_stats *local, *busiest; 7725 7726 local = &sds->local_stat; 7727 busiest = &sds->busiest_stat; 7728 7729 if (busiest->group_type == group_imbalanced) { 7730 /* 7731 * In the group_imb case we cannot rely on group-wide averages 7732 * to ensure cpu-load equilibrium, look at wider averages. XXX 7733 */ 7734 busiest->load_per_task = 7735 min(busiest->load_per_task, sds->avg_load); 7736 } 7737 7738 /* 7739 * Avg load of busiest sg can be less and avg load of local sg can 7740 * be greater than avg load across all sgs of sd because avg load 7741 * factors in sg capacity and sgs with smaller group_type are 7742 * skipped when updating the busiest sg: 7743 */ 7744 if (busiest->avg_load <= sds->avg_load || 7745 local->avg_load >= sds->avg_load) { 7746 env->imbalance = 0; 7747 return fix_small_imbalance(env, sds); 7748 } 7749 7750 /* 7751 * If there aren't any idle cpus, avoid creating some. 7752 */ 7753 if (busiest->group_type == group_overloaded && 7754 local->group_type == group_overloaded) { 7755 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 7756 if (load_above_capacity > busiest->group_capacity) { 7757 load_above_capacity -= busiest->group_capacity; 7758 load_above_capacity *= scale_load_down(NICE_0_LOAD); 7759 load_above_capacity /= busiest->group_capacity; 7760 } else 7761 load_above_capacity = ~0UL; 7762 } 7763 7764 /* 7765 * We're trying to get all the cpus to the average_load, so we don't 7766 * want to push ourselves above the average load, nor do we wish to 7767 * reduce the max loaded cpu below the average load. At the same time, 7768 * we also don't want to reduce the group load below the group 7769 * capacity. Thus we look for the minimum possible imbalance. 7770 */ 7771 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 7772 7773 /* How much load to actually move to equalise the imbalance */ 7774 env->imbalance = min( 7775 max_pull * busiest->group_capacity, 7776 (sds->avg_load - local->avg_load) * local->group_capacity 7777 ) / SCHED_CAPACITY_SCALE; 7778 7779 /* 7780 * if *imbalance is less than the average load per runnable task 7781 * there is no guarantee that any tasks will be moved so we'll have 7782 * a think about bumping its value to force at least one task to be 7783 * moved 7784 */ 7785 if (env->imbalance < busiest->load_per_task) 7786 return fix_small_imbalance(env, sds); 7787 } 7788 7789 /******* find_busiest_group() helpers end here *********************/ 7790 7791 /** 7792 * find_busiest_group - Returns the busiest group within the sched_domain 7793 * if there is an imbalance. 7794 * 7795 * Also calculates the amount of weighted load which should be moved 7796 * to restore balance. 7797 * 7798 * @env: The load balancing environment. 7799 * 7800 * Return: - The busiest group if imbalance exists. 7801 */ 7802 static struct sched_group *find_busiest_group(struct lb_env *env) 7803 { 7804 struct sg_lb_stats *local, *busiest; 7805 struct sd_lb_stats sds; 7806 7807 init_sd_lb_stats(&sds); 7808 7809 /* 7810 * Compute the various statistics relavent for load balancing at 7811 * this level. 7812 */ 7813 update_sd_lb_stats(env, &sds); 7814 local = &sds.local_stat; 7815 busiest = &sds.busiest_stat; 7816 7817 /* ASYM feature bypasses nice load balance check */ 7818 if (check_asym_packing(env, &sds)) 7819 return sds.busiest; 7820 7821 /* There is no busy sibling group to pull tasks from */ 7822 if (!sds.busiest || busiest->sum_nr_running == 0) 7823 goto out_balanced; 7824 7825 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 7826 / sds.total_capacity; 7827 7828 /* 7829 * If the busiest group is imbalanced the below checks don't 7830 * work because they assume all things are equal, which typically 7831 * isn't true due to cpus_allowed constraints and the like. 7832 */ 7833 if (busiest->group_type == group_imbalanced) 7834 goto force_balance; 7835 7836 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 7837 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) && 7838 busiest->group_no_capacity) 7839 goto force_balance; 7840 7841 /* 7842 * If the local group is busier than the selected busiest group 7843 * don't try and pull any tasks. 7844 */ 7845 if (local->avg_load >= busiest->avg_load) 7846 goto out_balanced; 7847 7848 /* 7849 * Don't pull any tasks if this group is already above the domain 7850 * average load. 7851 */ 7852 if (local->avg_load >= sds.avg_load) 7853 goto out_balanced; 7854 7855 if (env->idle == CPU_IDLE) { 7856 /* 7857 * This cpu is idle. If the busiest group is not overloaded 7858 * and there is no imbalance between this and busiest group 7859 * wrt idle cpus, it is balanced. The imbalance becomes 7860 * significant if the diff is greater than 1 otherwise we 7861 * might end up to just move the imbalance on another group 7862 */ 7863 if ((busiest->group_type != group_overloaded) && 7864 (local->idle_cpus <= (busiest->idle_cpus + 1))) 7865 goto out_balanced; 7866 } else { 7867 /* 7868 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 7869 * imbalance_pct to be conservative. 7870 */ 7871 if (100 * busiest->avg_load <= 7872 env->sd->imbalance_pct * local->avg_load) 7873 goto out_balanced; 7874 } 7875 7876 force_balance: 7877 /* Looks like there is an imbalance. Compute it */ 7878 calculate_imbalance(env, &sds); 7879 return sds.busiest; 7880 7881 out_balanced: 7882 env->imbalance = 0; 7883 return NULL; 7884 } 7885 7886 /* 7887 * find_busiest_queue - find the busiest runqueue among the cpus in group. 7888 */ 7889 static struct rq *find_busiest_queue(struct lb_env *env, 7890 struct sched_group *group) 7891 { 7892 struct rq *busiest = NULL, *rq; 7893 unsigned long busiest_load = 0, busiest_capacity = 1; 7894 int i; 7895 7896 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 7897 unsigned long capacity, wl; 7898 enum fbq_type rt; 7899 7900 rq = cpu_rq(i); 7901 rt = fbq_classify_rq(rq); 7902 7903 /* 7904 * We classify groups/runqueues into three groups: 7905 * - regular: there are !numa tasks 7906 * - remote: there are numa tasks that run on the 'wrong' node 7907 * - all: there is no distinction 7908 * 7909 * In order to avoid migrating ideally placed numa tasks, 7910 * ignore those when there's better options. 7911 * 7912 * If we ignore the actual busiest queue to migrate another 7913 * task, the next balance pass can still reduce the busiest 7914 * queue by moving tasks around inside the node. 7915 * 7916 * If we cannot move enough load due to this classification 7917 * the next pass will adjust the group classification and 7918 * allow migration of more tasks. 7919 * 7920 * Both cases only affect the total convergence complexity. 7921 */ 7922 if (rt > env->fbq_type) 7923 continue; 7924 7925 capacity = capacity_of(i); 7926 7927 wl = weighted_cpuload(i); 7928 7929 /* 7930 * When comparing with imbalance, use weighted_cpuload() 7931 * which is not scaled with the cpu capacity. 7932 */ 7933 7934 if (rq->nr_running == 1 && wl > env->imbalance && 7935 !check_cpu_capacity(rq, env->sd)) 7936 continue; 7937 7938 /* 7939 * For the load comparisons with the other cpu's, consider 7940 * the weighted_cpuload() scaled with the cpu capacity, so 7941 * that the load can be moved away from the cpu that is 7942 * potentially running at a lower capacity. 7943 * 7944 * Thus we're looking for max(wl_i / capacity_i), crosswise 7945 * multiplication to rid ourselves of the division works out 7946 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 7947 * our previous maximum. 7948 */ 7949 if (wl * busiest_capacity > busiest_load * capacity) { 7950 busiest_load = wl; 7951 busiest_capacity = capacity; 7952 busiest = rq; 7953 } 7954 } 7955 7956 return busiest; 7957 } 7958 7959 /* 7960 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 7961 * so long as it is large enough. 7962 */ 7963 #define MAX_PINNED_INTERVAL 512 7964 7965 static int need_active_balance(struct lb_env *env) 7966 { 7967 struct sched_domain *sd = env->sd; 7968 7969 if (env->idle == CPU_NEWLY_IDLE) { 7970 7971 /* 7972 * ASYM_PACKING needs to force migrate tasks from busy but 7973 * lower priority CPUs in order to pack all tasks in the 7974 * highest priority CPUs. 7975 */ 7976 if ((sd->flags & SD_ASYM_PACKING) && 7977 sched_asym_prefer(env->dst_cpu, env->src_cpu)) 7978 return 1; 7979 } 7980 7981 /* 7982 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 7983 * It's worth migrating the task if the src_cpu's capacity is reduced 7984 * because of other sched_class or IRQs if more capacity stays 7985 * available on dst_cpu. 7986 */ 7987 if ((env->idle != CPU_NOT_IDLE) && 7988 (env->src_rq->cfs.h_nr_running == 1)) { 7989 if ((check_cpu_capacity(env->src_rq, sd)) && 7990 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 7991 return 1; 7992 } 7993 7994 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 7995 } 7996 7997 static int active_load_balance_cpu_stop(void *data); 7998 7999 static int should_we_balance(struct lb_env *env) 8000 { 8001 struct sched_group *sg = env->sd->groups; 8002 struct cpumask *sg_cpus, *sg_mask; 8003 int cpu, balance_cpu = -1; 8004 8005 /* 8006 * In the newly idle case, we will allow all the cpu's 8007 * to do the newly idle load balance. 8008 */ 8009 if (env->idle == CPU_NEWLY_IDLE) 8010 return 1; 8011 8012 sg_cpus = sched_group_cpus(sg); 8013 sg_mask = sched_group_mask(sg); 8014 /* Try to find first idle cpu */ 8015 for_each_cpu_and(cpu, sg_cpus, env->cpus) { 8016 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) 8017 continue; 8018 8019 balance_cpu = cpu; 8020 break; 8021 } 8022 8023 if (balance_cpu == -1) 8024 balance_cpu = group_balance_cpu(sg); 8025 8026 /* 8027 * First idle cpu or the first cpu(busiest) in this sched group 8028 * is eligible for doing load balancing at this and above domains. 8029 */ 8030 return balance_cpu == env->dst_cpu; 8031 } 8032 8033 /* 8034 * Check this_cpu to ensure it is balanced within domain. Attempt to move 8035 * tasks if there is an imbalance. 8036 */ 8037 static int load_balance(int this_cpu, struct rq *this_rq, 8038 struct sched_domain *sd, enum cpu_idle_type idle, 8039 int *continue_balancing) 8040 { 8041 int ld_moved, cur_ld_moved, active_balance = 0; 8042 struct sched_domain *sd_parent = sd->parent; 8043 struct sched_group *group; 8044 struct rq *busiest; 8045 unsigned long flags; 8046 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 8047 8048 struct lb_env env = { 8049 .sd = sd, 8050 .dst_cpu = this_cpu, 8051 .dst_rq = this_rq, 8052 .dst_grpmask = sched_group_cpus(sd->groups), 8053 .idle = idle, 8054 .loop_break = sched_nr_migrate_break, 8055 .cpus = cpus, 8056 .fbq_type = all, 8057 .tasks = LIST_HEAD_INIT(env.tasks), 8058 }; 8059 8060 /* 8061 * For NEWLY_IDLE load_balancing, we don't need to consider 8062 * other cpus in our group 8063 */ 8064 if (idle == CPU_NEWLY_IDLE) 8065 env.dst_grpmask = NULL; 8066 8067 cpumask_copy(cpus, cpu_active_mask); 8068 8069 schedstat_inc(sd->lb_count[idle]); 8070 8071 redo: 8072 if (!should_we_balance(&env)) { 8073 *continue_balancing = 0; 8074 goto out_balanced; 8075 } 8076 8077 group = find_busiest_group(&env); 8078 if (!group) { 8079 schedstat_inc(sd->lb_nobusyg[idle]); 8080 goto out_balanced; 8081 } 8082 8083 busiest = find_busiest_queue(&env, group); 8084 if (!busiest) { 8085 schedstat_inc(sd->lb_nobusyq[idle]); 8086 goto out_balanced; 8087 } 8088 8089 BUG_ON(busiest == env.dst_rq); 8090 8091 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 8092 8093 env.src_cpu = busiest->cpu; 8094 env.src_rq = busiest; 8095 8096 ld_moved = 0; 8097 if (busiest->nr_running > 1) { 8098 /* 8099 * Attempt to move tasks. If find_busiest_group has found 8100 * an imbalance but busiest->nr_running <= 1, the group is 8101 * still unbalanced. ld_moved simply stays zero, so it is 8102 * correctly treated as an imbalance. 8103 */ 8104 env.flags |= LBF_ALL_PINNED; 8105 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 8106 8107 more_balance: 8108 raw_spin_lock_irqsave(&busiest->lock, flags); 8109 update_rq_clock(busiest); 8110 8111 /* 8112 * cur_ld_moved - load moved in current iteration 8113 * ld_moved - cumulative load moved across iterations 8114 */ 8115 cur_ld_moved = detach_tasks(&env); 8116 8117 /* 8118 * We've detached some tasks from busiest_rq. Every 8119 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 8120 * unlock busiest->lock, and we are able to be sure 8121 * that nobody can manipulate the tasks in parallel. 8122 * See task_rq_lock() family for the details. 8123 */ 8124 8125 raw_spin_unlock(&busiest->lock); 8126 8127 if (cur_ld_moved) { 8128 attach_tasks(&env); 8129 ld_moved += cur_ld_moved; 8130 } 8131 8132 local_irq_restore(flags); 8133 8134 if (env.flags & LBF_NEED_BREAK) { 8135 env.flags &= ~LBF_NEED_BREAK; 8136 goto more_balance; 8137 } 8138 8139 /* 8140 * Revisit (affine) tasks on src_cpu that couldn't be moved to 8141 * us and move them to an alternate dst_cpu in our sched_group 8142 * where they can run. The upper limit on how many times we 8143 * iterate on same src_cpu is dependent on number of cpus in our 8144 * sched_group. 8145 * 8146 * This changes load balance semantics a bit on who can move 8147 * load to a given_cpu. In addition to the given_cpu itself 8148 * (or a ilb_cpu acting on its behalf where given_cpu is 8149 * nohz-idle), we now have balance_cpu in a position to move 8150 * load to given_cpu. In rare situations, this may cause 8151 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 8152 * _independently_ and at _same_ time to move some load to 8153 * given_cpu) causing exceess load to be moved to given_cpu. 8154 * This however should not happen so much in practice and 8155 * moreover subsequent load balance cycles should correct the 8156 * excess load moved. 8157 */ 8158 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 8159 8160 /* Prevent to re-select dst_cpu via env's cpus */ 8161 cpumask_clear_cpu(env.dst_cpu, env.cpus); 8162 8163 env.dst_rq = cpu_rq(env.new_dst_cpu); 8164 env.dst_cpu = env.new_dst_cpu; 8165 env.flags &= ~LBF_DST_PINNED; 8166 env.loop = 0; 8167 env.loop_break = sched_nr_migrate_break; 8168 8169 /* 8170 * Go back to "more_balance" rather than "redo" since we 8171 * need to continue with same src_cpu. 8172 */ 8173 goto more_balance; 8174 } 8175 8176 /* 8177 * We failed to reach balance because of affinity. 8178 */ 8179 if (sd_parent) { 8180 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8181 8182 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 8183 *group_imbalance = 1; 8184 } 8185 8186 /* All tasks on this runqueue were pinned by CPU affinity */ 8187 if (unlikely(env.flags & LBF_ALL_PINNED)) { 8188 cpumask_clear_cpu(cpu_of(busiest), cpus); 8189 if (!cpumask_empty(cpus)) { 8190 env.loop = 0; 8191 env.loop_break = sched_nr_migrate_break; 8192 goto redo; 8193 } 8194 goto out_all_pinned; 8195 } 8196 } 8197 8198 if (!ld_moved) { 8199 schedstat_inc(sd->lb_failed[idle]); 8200 /* 8201 * Increment the failure counter only on periodic balance. 8202 * We do not want newidle balance, which can be very 8203 * frequent, pollute the failure counter causing 8204 * excessive cache_hot migrations and active balances. 8205 */ 8206 if (idle != CPU_NEWLY_IDLE) 8207 sd->nr_balance_failed++; 8208 8209 if (need_active_balance(&env)) { 8210 raw_spin_lock_irqsave(&busiest->lock, flags); 8211 8212 /* don't kick the active_load_balance_cpu_stop, 8213 * if the curr task on busiest cpu can't be 8214 * moved to this_cpu 8215 */ 8216 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) { 8217 raw_spin_unlock_irqrestore(&busiest->lock, 8218 flags); 8219 env.flags |= LBF_ALL_PINNED; 8220 goto out_one_pinned; 8221 } 8222 8223 /* 8224 * ->active_balance synchronizes accesses to 8225 * ->active_balance_work. Once set, it's cleared 8226 * only after active load balance is finished. 8227 */ 8228 if (!busiest->active_balance) { 8229 busiest->active_balance = 1; 8230 busiest->push_cpu = this_cpu; 8231 active_balance = 1; 8232 } 8233 raw_spin_unlock_irqrestore(&busiest->lock, flags); 8234 8235 if (active_balance) { 8236 stop_one_cpu_nowait(cpu_of(busiest), 8237 active_load_balance_cpu_stop, busiest, 8238 &busiest->active_balance_work); 8239 } 8240 8241 /* We've kicked active balancing, force task migration. */ 8242 sd->nr_balance_failed = sd->cache_nice_tries+1; 8243 } 8244 } else 8245 sd->nr_balance_failed = 0; 8246 8247 if (likely(!active_balance)) { 8248 /* We were unbalanced, so reset the balancing interval */ 8249 sd->balance_interval = sd->min_interval; 8250 } else { 8251 /* 8252 * If we've begun active balancing, start to back off. This 8253 * case may not be covered by the all_pinned logic if there 8254 * is only 1 task on the busy runqueue (because we don't call 8255 * detach_tasks). 8256 */ 8257 if (sd->balance_interval < sd->max_interval) 8258 sd->balance_interval *= 2; 8259 } 8260 8261 goto out; 8262 8263 out_balanced: 8264 /* 8265 * We reach balance although we may have faced some affinity 8266 * constraints. Clear the imbalance flag if it was set. 8267 */ 8268 if (sd_parent) { 8269 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 8270 8271 if (*group_imbalance) 8272 *group_imbalance = 0; 8273 } 8274 8275 out_all_pinned: 8276 /* 8277 * We reach balance because all tasks are pinned at this level so 8278 * we can't migrate them. Let the imbalance flag set so parent level 8279 * can try to migrate them. 8280 */ 8281 schedstat_inc(sd->lb_balanced[idle]); 8282 8283 sd->nr_balance_failed = 0; 8284 8285 out_one_pinned: 8286 /* tune up the balancing interval */ 8287 if (((env.flags & LBF_ALL_PINNED) && 8288 sd->balance_interval < MAX_PINNED_INTERVAL) || 8289 (sd->balance_interval < sd->max_interval)) 8290 sd->balance_interval *= 2; 8291 8292 ld_moved = 0; 8293 out: 8294 return ld_moved; 8295 } 8296 8297 static inline unsigned long 8298 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 8299 { 8300 unsigned long interval = sd->balance_interval; 8301 8302 if (cpu_busy) 8303 interval *= sd->busy_factor; 8304 8305 /* scale ms to jiffies */ 8306 interval = msecs_to_jiffies(interval); 8307 interval = clamp(interval, 1UL, max_load_balance_interval); 8308 8309 return interval; 8310 } 8311 8312 static inline void 8313 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 8314 { 8315 unsigned long interval, next; 8316 8317 /* used by idle balance, so cpu_busy = 0 */ 8318 interval = get_sd_balance_interval(sd, 0); 8319 next = sd->last_balance + interval; 8320 8321 if (time_after(*next_balance, next)) 8322 *next_balance = next; 8323 } 8324 8325 /* 8326 * idle_balance is called by schedule() if this_cpu is about to become 8327 * idle. Attempts to pull tasks from other CPUs. 8328 */ 8329 static int idle_balance(struct rq *this_rq, struct rq_flags *rf) 8330 { 8331 unsigned long next_balance = jiffies + HZ; 8332 int this_cpu = this_rq->cpu; 8333 struct sched_domain *sd; 8334 int pulled_task = 0; 8335 u64 curr_cost = 0; 8336 8337 /* 8338 * We must set idle_stamp _before_ calling idle_balance(), such that we 8339 * measure the duration of idle_balance() as idle time. 8340 */ 8341 this_rq->idle_stamp = rq_clock(this_rq); 8342 8343 /* 8344 * This is OK, because current is on_cpu, which avoids it being picked 8345 * for load-balance and preemption/IRQs are still disabled avoiding 8346 * further scheduler activity on it and we're being very careful to 8347 * re-start the picking loop. 8348 */ 8349 rq_unpin_lock(this_rq, rf); 8350 8351 if (this_rq->avg_idle < sysctl_sched_migration_cost || 8352 !this_rq->rd->overload) { 8353 rcu_read_lock(); 8354 sd = rcu_dereference_check_sched_domain(this_rq->sd); 8355 if (sd) 8356 update_next_balance(sd, &next_balance); 8357 rcu_read_unlock(); 8358 8359 goto out; 8360 } 8361 8362 raw_spin_unlock(&this_rq->lock); 8363 8364 update_blocked_averages(this_cpu); 8365 rcu_read_lock(); 8366 for_each_domain(this_cpu, sd) { 8367 int continue_balancing = 1; 8368 u64 t0, domain_cost; 8369 8370 if (!(sd->flags & SD_LOAD_BALANCE)) 8371 continue; 8372 8373 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 8374 update_next_balance(sd, &next_balance); 8375 break; 8376 } 8377 8378 if (sd->flags & SD_BALANCE_NEWIDLE) { 8379 t0 = sched_clock_cpu(this_cpu); 8380 8381 pulled_task = load_balance(this_cpu, this_rq, 8382 sd, CPU_NEWLY_IDLE, 8383 &continue_balancing); 8384 8385 domain_cost = sched_clock_cpu(this_cpu) - t0; 8386 if (domain_cost > sd->max_newidle_lb_cost) 8387 sd->max_newidle_lb_cost = domain_cost; 8388 8389 curr_cost += domain_cost; 8390 } 8391 8392 update_next_balance(sd, &next_balance); 8393 8394 /* 8395 * Stop searching for tasks to pull if there are 8396 * now runnable tasks on this rq. 8397 */ 8398 if (pulled_task || this_rq->nr_running > 0) 8399 break; 8400 } 8401 rcu_read_unlock(); 8402 8403 raw_spin_lock(&this_rq->lock); 8404 8405 if (curr_cost > this_rq->max_idle_balance_cost) 8406 this_rq->max_idle_balance_cost = curr_cost; 8407 8408 /* 8409 * While browsing the domains, we released the rq lock, a task could 8410 * have been enqueued in the meantime. Since we're not going idle, 8411 * pretend we pulled a task. 8412 */ 8413 if (this_rq->cfs.h_nr_running && !pulled_task) 8414 pulled_task = 1; 8415 8416 out: 8417 /* Move the next balance forward */ 8418 if (time_after(this_rq->next_balance, next_balance)) 8419 this_rq->next_balance = next_balance; 8420 8421 /* Is there a task of a high priority class? */ 8422 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 8423 pulled_task = -1; 8424 8425 if (pulled_task) 8426 this_rq->idle_stamp = 0; 8427 8428 rq_repin_lock(this_rq, rf); 8429 8430 return pulled_task; 8431 } 8432 8433 /* 8434 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 8435 * running tasks off the busiest CPU onto idle CPUs. It requires at 8436 * least 1 task to be running on each physical CPU where possible, and 8437 * avoids physical / logical imbalances. 8438 */ 8439 static int active_load_balance_cpu_stop(void *data) 8440 { 8441 struct rq *busiest_rq = data; 8442 int busiest_cpu = cpu_of(busiest_rq); 8443 int target_cpu = busiest_rq->push_cpu; 8444 struct rq *target_rq = cpu_rq(target_cpu); 8445 struct sched_domain *sd; 8446 struct task_struct *p = NULL; 8447 8448 raw_spin_lock_irq(&busiest_rq->lock); 8449 8450 /* make sure the requested cpu hasn't gone down in the meantime */ 8451 if (unlikely(busiest_cpu != smp_processor_id() || 8452 !busiest_rq->active_balance)) 8453 goto out_unlock; 8454 8455 /* Is there any task to move? */ 8456 if (busiest_rq->nr_running <= 1) 8457 goto out_unlock; 8458 8459 /* 8460 * This condition is "impossible", if it occurs 8461 * we need to fix it. Originally reported by 8462 * Bjorn Helgaas on a 128-cpu setup. 8463 */ 8464 BUG_ON(busiest_rq == target_rq); 8465 8466 /* Search for an sd spanning us and the target CPU. */ 8467 rcu_read_lock(); 8468 for_each_domain(target_cpu, sd) { 8469 if ((sd->flags & SD_LOAD_BALANCE) && 8470 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 8471 break; 8472 } 8473 8474 if (likely(sd)) { 8475 struct lb_env env = { 8476 .sd = sd, 8477 .dst_cpu = target_cpu, 8478 .dst_rq = target_rq, 8479 .src_cpu = busiest_rq->cpu, 8480 .src_rq = busiest_rq, 8481 .idle = CPU_IDLE, 8482 }; 8483 8484 schedstat_inc(sd->alb_count); 8485 update_rq_clock(busiest_rq); 8486 8487 p = detach_one_task(&env); 8488 if (p) { 8489 schedstat_inc(sd->alb_pushed); 8490 /* Active balancing done, reset the failure counter. */ 8491 sd->nr_balance_failed = 0; 8492 } else { 8493 schedstat_inc(sd->alb_failed); 8494 } 8495 } 8496 rcu_read_unlock(); 8497 out_unlock: 8498 busiest_rq->active_balance = 0; 8499 raw_spin_unlock(&busiest_rq->lock); 8500 8501 if (p) 8502 attach_one_task(target_rq, p); 8503 8504 local_irq_enable(); 8505 8506 return 0; 8507 } 8508 8509 static inline int on_null_domain(struct rq *rq) 8510 { 8511 return unlikely(!rcu_dereference_sched(rq->sd)); 8512 } 8513 8514 #ifdef CONFIG_NO_HZ_COMMON 8515 /* 8516 * idle load balancing details 8517 * - When one of the busy CPUs notice that there may be an idle rebalancing 8518 * needed, they will kick the idle load balancer, which then does idle 8519 * load balancing for all the idle CPUs. 8520 */ 8521 static struct { 8522 cpumask_var_t idle_cpus_mask; 8523 atomic_t nr_cpus; 8524 unsigned long next_balance; /* in jiffy units */ 8525 } nohz ____cacheline_aligned; 8526 8527 static inline int find_new_ilb(void) 8528 { 8529 int ilb = cpumask_first(nohz.idle_cpus_mask); 8530 8531 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 8532 return ilb; 8533 8534 return nr_cpu_ids; 8535 } 8536 8537 /* 8538 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 8539 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 8540 * CPU (if there is one). 8541 */ 8542 static void nohz_balancer_kick(void) 8543 { 8544 int ilb_cpu; 8545 8546 nohz.next_balance++; 8547 8548 ilb_cpu = find_new_ilb(); 8549 8550 if (ilb_cpu >= nr_cpu_ids) 8551 return; 8552 8553 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 8554 return; 8555 /* 8556 * Use smp_send_reschedule() instead of resched_cpu(). 8557 * This way we generate a sched IPI on the target cpu which 8558 * is idle. And the softirq performing nohz idle load balance 8559 * will be run before returning from the IPI. 8560 */ 8561 smp_send_reschedule(ilb_cpu); 8562 return; 8563 } 8564 8565 void nohz_balance_exit_idle(unsigned int cpu) 8566 { 8567 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 8568 /* 8569 * Completely isolated CPUs don't ever set, so we must test. 8570 */ 8571 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { 8572 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 8573 atomic_dec(&nohz.nr_cpus); 8574 } 8575 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 8576 } 8577 } 8578 8579 static inline void set_cpu_sd_state_busy(void) 8580 { 8581 struct sched_domain *sd; 8582 int cpu = smp_processor_id(); 8583 8584 rcu_read_lock(); 8585 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 8586 8587 if (!sd || !sd->nohz_idle) 8588 goto unlock; 8589 sd->nohz_idle = 0; 8590 8591 atomic_inc(&sd->shared->nr_busy_cpus); 8592 unlock: 8593 rcu_read_unlock(); 8594 } 8595 8596 void set_cpu_sd_state_idle(void) 8597 { 8598 struct sched_domain *sd; 8599 int cpu = smp_processor_id(); 8600 8601 rcu_read_lock(); 8602 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 8603 8604 if (!sd || sd->nohz_idle) 8605 goto unlock; 8606 sd->nohz_idle = 1; 8607 8608 atomic_dec(&sd->shared->nr_busy_cpus); 8609 unlock: 8610 rcu_read_unlock(); 8611 } 8612 8613 /* 8614 * This routine will record that the cpu is going idle with tick stopped. 8615 * This info will be used in performing idle load balancing in the future. 8616 */ 8617 void nohz_balance_enter_idle(int cpu) 8618 { 8619 /* 8620 * If this cpu is going down, then nothing needs to be done. 8621 */ 8622 if (!cpu_active(cpu)) 8623 return; 8624 8625 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 8626 return; 8627 8628 /* 8629 * If we're a completely isolated CPU, we don't play. 8630 */ 8631 if (on_null_domain(cpu_rq(cpu))) 8632 return; 8633 8634 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 8635 atomic_inc(&nohz.nr_cpus); 8636 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 8637 } 8638 #endif 8639 8640 static DEFINE_SPINLOCK(balancing); 8641 8642 /* 8643 * Scale the max load_balance interval with the number of CPUs in the system. 8644 * This trades load-balance latency on larger machines for less cross talk. 8645 */ 8646 void update_max_interval(void) 8647 { 8648 max_load_balance_interval = HZ*num_online_cpus()/10; 8649 } 8650 8651 /* 8652 * It checks each scheduling domain to see if it is due to be balanced, 8653 * and initiates a balancing operation if so. 8654 * 8655 * Balancing parameters are set up in init_sched_domains. 8656 */ 8657 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 8658 { 8659 int continue_balancing = 1; 8660 int cpu = rq->cpu; 8661 unsigned long interval; 8662 struct sched_domain *sd; 8663 /* Earliest time when we have to do rebalance again */ 8664 unsigned long next_balance = jiffies + 60*HZ; 8665 int update_next_balance = 0; 8666 int need_serialize, need_decay = 0; 8667 u64 max_cost = 0; 8668 8669 update_blocked_averages(cpu); 8670 8671 rcu_read_lock(); 8672 for_each_domain(cpu, sd) { 8673 /* 8674 * Decay the newidle max times here because this is a regular 8675 * visit to all the domains. Decay ~1% per second. 8676 */ 8677 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 8678 sd->max_newidle_lb_cost = 8679 (sd->max_newidle_lb_cost * 253) / 256; 8680 sd->next_decay_max_lb_cost = jiffies + HZ; 8681 need_decay = 1; 8682 } 8683 max_cost += sd->max_newidle_lb_cost; 8684 8685 if (!(sd->flags & SD_LOAD_BALANCE)) 8686 continue; 8687 8688 /* 8689 * Stop the load balance at this level. There is another 8690 * CPU in our sched group which is doing load balancing more 8691 * actively. 8692 */ 8693 if (!continue_balancing) { 8694 if (need_decay) 8695 continue; 8696 break; 8697 } 8698 8699 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8700 8701 need_serialize = sd->flags & SD_SERIALIZE; 8702 if (need_serialize) { 8703 if (!spin_trylock(&balancing)) 8704 goto out; 8705 } 8706 8707 if (time_after_eq(jiffies, sd->last_balance + interval)) { 8708 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 8709 /* 8710 * The LBF_DST_PINNED logic could have changed 8711 * env->dst_cpu, so we can't know our idle 8712 * state even if we migrated tasks. Update it. 8713 */ 8714 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 8715 } 8716 sd->last_balance = jiffies; 8717 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8718 } 8719 if (need_serialize) 8720 spin_unlock(&balancing); 8721 out: 8722 if (time_after(next_balance, sd->last_balance + interval)) { 8723 next_balance = sd->last_balance + interval; 8724 update_next_balance = 1; 8725 } 8726 } 8727 if (need_decay) { 8728 /* 8729 * Ensure the rq-wide value also decays but keep it at a 8730 * reasonable floor to avoid funnies with rq->avg_idle. 8731 */ 8732 rq->max_idle_balance_cost = 8733 max((u64)sysctl_sched_migration_cost, max_cost); 8734 } 8735 rcu_read_unlock(); 8736 8737 /* 8738 * next_balance will be updated only when there is a need. 8739 * When the cpu is attached to null domain for ex, it will not be 8740 * updated. 8741 */ 8742 if (likely(update_next_balance)) { 8743 rq->next_balance = next_balance; 8744 8745 #ifdef CONFIG_NO_HZ_COMMON 8746 /* 8747 * If this CPU has been elected to perform the nohz idle 8748 * balance. Other idle CPUs have already rebalanced with 8749 * nohz_idle_balance() and nohz.next_balance has been 8750 * updated accordingly. This CPU is now running the idle load 8751 * balance for itself and we need to update the 8752 * nohz.next_balance accordingly. 8753 */ 8754 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 8755 nohz.next_balance = rq->next_balance; 8756 #endif 8757 } 8758 } 8759 8760 #ifdef CONFIG_NO_HZ_COMMON 8761 /* 8762 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 8763 * rebalancing for all the cpus for whom scheduler ticks are stopped. 8764 */ 8765 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 8766 { 8767 int this_cpu = this_rq->cpu; 8768 struct rq *rq; 8769 int balance_cpu; 8770 /* Earliest time when we have to do rebalance again */ 8771 unsigned long next_balance = jiffies + 60*HZ; 8772 int update_next_balance = 0; 8773 8774 if (idle != CPU_IDLE || 8775 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 8776 goto end; 8777 8778 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 8779 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 8780 continue; 8781 8782 /* 8783 * If this cpu gets work to do, stop the load balancing 8784 * work being done for other cpus. Next load 8785 * balancing owner will pick it up. 8786 */ 8787 if (need_resched()) 8788 break; 8789 8790 rq = cpu_rq(balance_cpu); 8791 8792 /* 8793 * If time for next balance is due, 8794 * do the balance. 8795 */ 8796 if (time_after_eq(jiffies, rq->next_balance)) { 8797 raw_spin_lock_irq(&rq->lock); 8798 update_rq_clock(rq); 8799 cpu_load_update_idle(rq); 8800 raw_spin_unlock_irq(&rq->lock); 8801 rebalance_domains(rq, CPU_IDLE); 8802 } 8803 8804 if (time_after(next_balance, rq->next_balance)) { 8805 next_balance = rq->next_balance; 8806 update_next_balance = 1; 8807 } 8808 } 8809 8810 /* 8811 * next_balance will be updated only when there is a need. 8812 * When the CPU is attached to null domain for ex, it will not be 8813 * updated. 8814 */ 8815 if (likely(update_next_balance)) 8816 nohz.next_balance = next_balance; 8817 end: 8818 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 8819 } 8820 8821 /* 8822 * Current heuristic for kicking the idle load balancer in the presence 8823 * of an idle cpu in the system. 8824 * - This rq has more than one task. 8825 * - This rq has at least one CFS task and the capacity of the CPU is 8826 * significantly reduced because of RT tasks or IRQs. 8827 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 8828 * multiple busy cpu. 8829 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 8830 * domain span are idle. 8831 */ 8832 static inline bool nohz_kick_needed(struct rq *rq) 8833 { 8834 unsigned long now = jiffies; 8835 struct sched_domain_shared *sds; 8836 struct sched_domain *sd; 8837 int nr_busy, i, cpu = rq->cpu; 8838 bool kick = false; 8839 8840 if (unlikely(rq->idle_balance)) 8841 return false; 8842 8843 /* 8844 * We may be recently in ticked or tickless idle mode. At the first 8845 * busy tick after returning from idle, we will update the busy stats. 8846 */ 8847 set_cpu_sd_state_busy(); 8848 nohz_balance_exit_idle(cpu); 8849 8850 /* 8851 * None are in tickless mode and hence no need for NOHZ idle load 8852 * balancing. 8853 */ 8854 if (likely(!atomic_read(&nohz.nr_cpus))) 8855 return false; 8856 8857 if (time_before(now, nohz.next_balance)) 8858 return false; 8859 8860 if (rq->nr_running >= 2) 8861 return true; 8862 8863 rcu_read_lock(); 8864 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 8865 if (sds) { 8866 /* 8867 * XXX: write a coherent comment on why we do this. 8868 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com 8869 */ 8870 nr_busy = atomic_read(&sds->nr_busy_cpus); 8871 if (nr_busy > 1) { 8872 kick = true; 8873 goto unlock; 8874 } 8875 8876 } 8877 8878 sd = rcu_dereference(rq->sd); 8879 if (sd) { 8880 if ((rq->cfs.h_nr_running >= 1) && 8881 check_cpu_capacity(rq, sd)) { 8882 kick = true; 8883 goto unlock; 8884 } 8885 } 8886 8887 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 8888 if (sd) { 8889 for_each_cpu(i, sched_domain_span(sd)) { 8890 if (i == cpu || 8891 !cpumask_test_cpu(i, nohz.idle_cpus_mask)) 8892 continue; 8893 8894 if (sched_asym_prefer(i, cpu)) { 8895 kick = true; 8896 goto unlock; 8897 } 8898 } 8899 } 8900 unlock: 8901 rcu_read_unlock(); 8902 return kick; 8903 } 8904 #else 8905 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 8906 #endif 8907 8908 /* 8909 * run_rebalance_domains is triggered when needed from the scheduler tick. 8910 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 8911 */ 8912 static __latent_entropy void run_rebalance_domains(struct softirq_action *h) 8913 { 8914 struct rq *this_rq = this_rq(); 8915 enum cpu_idle_type idle = this_rq->idle_balance ? 8916 CPU_IDLE : CPU_NOT_IDLE; 8917 8918 /* 8919 * If this cpu has a pending nohz_balance_kick, then do the 8920 * balancing on behalf of the other idle cpus whose ticks are 8921 * stopped. Do nohz_idle_balance *before* rebalance_domains to 8922 * give the idle cpus a chance to load balance. Else we may 8923 * load balance only within the local sched_domain hierarchy 8924 * and abort nohz_idle_balance altogether if we pull some load. 8925 */ 8926 nohz_idle_balance(this_rq, idle); 8927 rebalance_domains(this_rq, idle); 8928 } 8929 8930 /* 8931 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 8932 */ 8933 void trigger_load_balance(struct rq *rq) 8934 { 8935 /* Don't need to rebalance while attached to NULL domain */ 8936 if (unlikely(on_null_domain(rq))) 8937 return; 8938 8939 if (time_after_eq(jiffies, rq->next_balance)) 8940 raise_softirq(SCHED_SOFTIRQ); 8941 #ifdef CONFIG_NO_HZ_COMMON 8942 if (nohz_kick_needed(rq)) 8943 nohz_balancer_kick(); 8944 #endif 8945 } 8946 8947 static void rq_online_fair(struct rq *rq) 8948 { 8949 update_sysctl(); 8950 8951 update_runtime_enabled(rq); 8952 } 8953 8954 static void rq_offline_fair(struct rq *rq) 8955 { 8956 update_sysctl(); 8957 8958 /* Ensure any throttled groups are reachable by pick_next_task */ 8959 unthrottle_offline_cfs_rqs(rq); 8960 } 8961 8962 #endif /* CONFIG_SMP */ 8963 8964 /* 8965 * scheduler tick hitting a task of our scheduling class: 8966 */ 8967 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 8968 { 8969 struct cfs_rq *cfs_rq; 8970 struct sched_entity *se = &curr->se; 8971 8972 for_each_sched_entity(se) { 8973 cfs_rq = cfs_rq_of(se); 8974 entity_tick(cfs_rq, se, queued); 8975 } 8976 8977 if (static_branch_unlikely(&sched_numa_balancing)) 8978 task_tick_numa(rq, curr); 8979 } 8980 8981 /* 8982 * called on fork with the child task as argument from the parent's context 8983 * - child not yet on the tasklist 8984 * - preemption disabled 8985 */ 8986 static void task_fork_fair(struct task_struct *p) 8987 { 8988 struct cfs_rq *cfs_rq; 8989 struct sched_entity *se = &p->se, *curr; 8990 struct rq *rq = this_rq(); 8991 8992 raw_spin_lock(&rq->lock); 8993 update_rq_clock(rq); 8994 8995 cfs_rq = task_cfs_rq(current); 8996 curr = cfs_rq->curr; 8997 if (curr) { 8998 update_curr(cfs_rq); 8999 se->vruntime = curr->vruntime; 9000 } 9001 place_entity(cfs_rq, se, 1); 9002 9003 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 9004 /* 9005 * Upon rescheduling, sched_class::put_prev_task() will place 9006 * 'current' within the tree based on its new key value. 9007 */ 9008 swap(curr->vruntime, se->vruntime); 9009 resched_curr(rq); 9010 } 9011 9012 se->vruntime -= cfs_rq->min_vruntime; 9013 raw_spin_unlock(&rq->lock); 9014 } 9015 9016 /* 9017 * Priority of the task has changed. Check to see if we preempt 9018 * the current task. 9019 */ 9020 static void 9021 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 9022 { 9023 if (!task_on_rq_queued(p)) 9024 return; 9025 9026 /* 9027 * Reschedule if we are currently running on this runqueue and 9028 * our priority decreased, or if we are not currently running on 9029 * this runqueue and our priority is higher than the current's 9030 */ 9031 if (rq->curr == p) { 9032 if (p->prio > oldprio) 9033 resched_curr(rq); 9034 } else 9035 check_preempt_curr(rq, p, 0); 9036 } 9037 9038 static inline bool vruntime_normalized(struct task_struct *p) 9039 { 9040 struct sched_entity *se = &p->se; 9041 9042 /* 9043 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 9044 * the dequeue_entity(.flags=0) will already have normalized the 9045 * vruntime. 9046 */ 9047 if (p->on_rq) 9048 return true; 9049 9050 /* 9051 * When !on_rq, vruntime of the task has usually NOT been normalized. 9052 * But there are some cases where it has already been normalized: 9053 * 9054 * - A forked child which is waiting for being woken up by 9055 * wake_up_new_task(). 9056 * - A task which has been woken up by try_to_wake_up() and 9057 * waiting for actually being woken up by sched_ttwu_pending(). 9058 */ 9059 if (!se->sum_exec_runtime || p->state == TASK_WAKING) 9060 return true; 9061 9062 return false; 9063 } 9064 9065 #ifdef CONFIG_FAIR_GROUP_SCHED 9066 /* 9067 * Propagate the changes of the sched_entity across the tg tree to make it 9068 * visible to the root 9069 */ 9070 static void propagate_entity_cfs_rq(struct sched_entity *se) 9071 { 9072 struct cfs_rq *cfs_rq; 9073 9074 /* Start to propagate at parent */ 9075 se = se->parent; 9076 9077 for_each_sched_entity(se) { 9078 cfs_rq = cfs_rq_of(se); 9079 9080 if (cfs_rq_throttled(cfs_rq)) 9081 break; 9082 9083 update_load_avg(se, UPDATE_TG); 9084 } 9085 } 9086 #else 9087 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 9088 #endif 9089 9090 static void detach_entity_cfs_rq(struct sched_entity *se) 9091 { 9092 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9093 9094 /* Catch up with the cfs_rq and remove our load when we leave */ 9095 update_load_avg(se, 0); 9096 detach_entity_load_avg(cfs_rq, se); 9097 update_tg_load_avg(cfs_rq, false); 9098 propagate_entity_cfs_rq(se); 9099 } 9100 9101 static void attach_entity_cfs_rq(struct sched_entity *se) 9102 { 9103 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9104 9105 #ifdef CONFIG_FAIR_GROUP_SCHED 9106 /* 9107 * Since the real-depth could have been changed (only FAIR 9108 * class maintain depth value), reset depth properly. 9109 */ 9110 se->depth = se->parent ? se->parent->depth + 1 : 0; 9111 #endif 9112 9113 /* Synchronize entity with its cfs_rq */ 9114 update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 9115 attach_entity_load_avg(cfs_rq, se); 9116 update_tg_load_avg(cfs_rq, false); 9117 propagate_entity_cfs_rq(se); 9118 } 9119 9120 static void detach_task_cfs_rq(struct task_struct *p) 9121 { 9122 struct sched_entity *se = &p->se; 9123 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9124 9125 if (!vruntime_normalized(p)) { 9126 /* 9127 * Fix up our vruntime so that the current sleep doesn't 9128 * cause 'unlimited' sleep bonus. 9129 */ 9130 place_entity(cfs_rq, se, 0); 9131 se->vruntime -= cfs_rq->min_vruntime; 9132 } 9133 9134 detach_entity_cfs_rq(se); 9135 } 9136 9137 static void attach_task_cfs_rq(struct task_struct *p) 9138 { 9139 struct sched_entity *se = &p->se; 9140 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9141 9142 attach_entity_cfs_rq(se); 9143 9144 if (!vruntime_normalized(p)) 9145 se->vruntime += cfs_rq->min_vruntime; 9146 } 9147 9148 static void switched_from_fair(struct rq *rq, struct task_struct *p) 9149 { 9150 detach_task_cfs_rq(p); 9151 } 9152 9153 static void switched_to_fair(struct rq *rq, struct task_struct *p) 9154 { 9155 attach_task_cfs_rq(p); 9156 9157 if (task_on_rq_queued(p)) { 9158 /* 9159 * We were most likely switched from sched_rt, so 9160 * kick off the schedule if running, otherwise just see 9161 * if we can still preempt the current task. 9162 */ 9163 if (rq->curr == p) 9164 resched_curr(rq); 9165 else 9166 check_preempt_curr(rq, p, 0); 9167 } 9168 } 9169 9170 /* Account for a task changing its policy or group. 9171 * 9172 * This routine is mostly called to set cfs_rq->curr field when a task 9173 * migrates between groups/classes. 9174 */ 9175 static void set_curr_task_fair(struct rq *rq) 9176 { 9177 struct sched_entity *se = &rq->curr->se; 9178 9179 for_each_sched_entity(se) { 9180 struct cfs_rq *cfs_rq = cfs_rq_of(se); 9181 9182 set_next_entity(cfs_rq, se); 9183 /* ensure bandwidth has been allocated on our new cfs_rq */ 9184 account_cfs_rq_runtime(cfs_rq, 0); 9185 } 9186 } 9187 9188 void init_cfs_rq(struct cfs_rq *cfs_rq) 9189 { 9190 cfs_rq->tasks_timeline = RB_ROOT; 9191 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 9192 #ifndef CONFIG_64BIT 9193 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 9194 #endif 9195 #ifdef CONFIG_SMP 9196 #ifdef CONFIG_FAIR_GROUP_SCHED 9197 cfs_rq->propagate_avg = 0; 9198 #endif 9199 atomic_long_set(&cfs_rq->removed_load_avg, 0); 9200 atomic_long_set(&cfs_rq->removed_util_avg, 0); 9201 #endif 9202 } 9203 9204 #ifdef CONFIG_FAIR_GROUP_SCHED 9205 static void task_set_group_fair(struct task_struct *p) 9206 { 9207 struct sched_entity *se = &p->se; 9208 9209 set_task_rq(p, task_cpu(p)); 9210 se->depth = se->parent ? se->parent->depth + 1 : 0; 9211 } 9212 9213 static void task_move_group_fair(struct task_struct *p) 9214 { 9215 detach_task_cfs_rq(p); 9216 set_task_rq(p, task_cpu(p)); 9217 9218 #ifdef CONFIG_SMP 9219 /* Tell se's cfs_rq has been changed -- migrated */ 9220 p->se.avg.last_update_time = 0; 9221 #endif 9222 attach_task_cfs_rq(p); 9223 } 9224 9225 static void task_change_group_fair(struct task_struct *p, int type) 9226 { 9227 switch (type) { 9228 case TASK_SET_GROUP: 9229 task_set_group_fair(p); 9230 break; 9231 9232 case TASK_MOVE_GROUP: 9233 task_move_group_fair(p); 9234 break; 9235 } 9236 } 9237 9238 void free_fair_sched_group(struct task_group *tg) 9239 { 9240 int i; 9241 9242 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 9243 9244 for_each_possible_cpu(i) { 9245 if (tg->cfs_rq) 9246 kfree(tg->cfs_rq[i]); 9247 if (tg->se) 9248 kfree(tg->se[i]); 9249 } 9250 9251 kfree(tg->cfs_rq); 9252 kfree(tg->se); 9253 } 9254 9255 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 9256 { 9257 struct sched_entity *se; 9258 struct cfs_rq *cfs_rq; 9259 int i; 9260 9261 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 9262 if (!tg->cfs_rq) 9263 goto err; 9264 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 9265 if (!tg->se) 9266 goto err; 9267 9268 tg->shares = NICE_0_LOAD; 9269 9270 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 9271 9272 for_each_possible_cpu(i) { 9273 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 9274 GFP_KERNEL, cpu_to_node(i)); 9275 if (!cfs_rq) 9276 goto err; 9277 9278 se = kzalloc_node(sizeof(struct sched_entity), 9279 GFP_KERNEL, cpu_to_node(i)); 9280 if (!se) 9281 goto err_free_rq; 9282 9283 init_cfs_rq(cfs_rq); 9284 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 9285 init_entity_runnable_average(se); 9286 } 9287 9288 return 1; 9289 9290 err_free_rq: 9291 kfree(cfs_rq); 9292 err: 9293 return 0; 9294 } 9295 9296 void online_fair_sched_group(struct task_group *tg) 9297 { 9298 struct sched_entity *se; 9299 struct rq *rq; 9300 int i; 9301 9302 for_each_possible_cpu(i) { 9303 rq = cpu_rq(i); 9304 se = tg->se[i]; 9305 9306 raw_spin_lock_irq(&rq->lock); 9307 update_rq_clock(rq); 9308 attach_entity_cfs_rq(se); 9309 sync_throttle(tg, i); 9310 raw_spin_unlock_irq(&rq->lock); 9311 } 9312 } 9313 9314 void unregister_fair_sched_group(struct task_group *tg) 9315 { 9316 unsigned long flags; 9317 struct rq *rq; 9318 int cpu; 9319 9320 for_each_possible_cpu(cpu) { 9321 if (tg->se[cpu]) 9322 remove_entity_load_avg(tg->se[cpu]); 9323 9324 /* 9325 * Only empty task groups can be destroyed; so we can speculatively 9326 * check on_list without danger of it being re-added. 9327 */ 9328 if (!tg->cfs_rq[cpu]->on_list) 9329 continue; 9330 9331 rq = cpu_rq(cpu); 9332 9333 raw_spin_lock_irqsave(&rq->lock, flags); 9334 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 9335 raw_spin_unlock_irqrestore(&rq->lock, flags); 9336 } 9337 } 9338 9339 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 9340 struct sched_entity *se, int cpu, 9341 struct sched_entity *parent) 9342 { 9343 struct rq *rq = cpu_rq(cpu); 9344 9345 cfs_rq->tg = tg; 9346 cfs_rq->rq = rq; 9347 init_cfs_rq_runtime(cfs_rq); 9348 9349 tg->cfs_rq[cpu] = cfs_rq; 9350 tg->se[cpu] = se; 9351 9352 /* se could be NULL for root_task_group */ 9353 if (!se) 9354 return; 9355 9356 if (!parent) { 9357 se->cfs_rq = &rq->cfs; 9358 se->depth = 0; 9359 } else { 9360 se->cfs_rq = parent->my_q; 9361 se->depth = parent->depth + 1; 9362 } 9363 9364 se->my_q = cfs_rq; 9365 /* guarantee group entities always have weight */ 9366 update_load_set(&se->load, NICE_0_LOAD); 9367 se->parent = parent; 9368 } 9369 9370 static DEFINE_MUTEX(shares_mutex); 9371 9372 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 9373 { 9374 int i; 9375 unsigned long flags; 9376 9377 /* 9378 * We can't change the weight of the root cgroup. 9379 */ 9380 if (!tg->se[0]) 9381 return -EINVAL; 9382 9383 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 9384 9385 mutex_lock(&shares_mutex); 9386 if (tg->shares == shares) 9387 goto done; 9388 9389 tg->shares = shares; 9390 for_each_possible_cpu(i) { 9391 struct rq *rq = cpu_rq(i); 9392 struct sched_entity *se; 9393 9394 se = tg->se[i]; 9395 /* Propagate contribution to hierarchy */ 9396 raw_spin_lock_irqsave(&rq->lock, flags); 9397 9398 /* Possible calls to update_curr() need rq clock */ 9399 update_rq_clock(rq); 9400 for_each_sched_entity(se) { 9401 update_load_avg(se, UPDATE_TG); 9402 update_cfs_shares(se); 9403 } 9404 raw_spin_unlock_irqrestore(&rq->lock, flags); 9405 } 9406 9407 done: 9408 mutex_unlock(&shares_mutex); 9409 return 0; 9410 } 9411 #else /* CONFIG_FAIR_GROUP_SCHED */ 9412 9413 void free_fair_sched_group(struct task_group *tg) { } 9414 9415 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 9416 { 9417 return 1; 9418 } 9419 9420 void online_fair_sched_group(struct task_group *tg) { } 9421 9422 void unregister_fair_sched_group(struct task_group *tg) { } 9423 9424 #endif /* CONFIG_FAIR_GROUP_SCHED */ 9425 9426 9427 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 9428 { 9429 struct sched_entity *se = &task->se; 9430 unsigned int rr_interval = 0; 9431 9432 /* 9433 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 9434 * idle runqueue: 9435 */ 9436 if (rq->cfs.load.weight) 9437 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 9438 9439 return rr_interval; 9440 } 9441 9442 /* 9443 * All the scheduling class methods: 9444 */ 9445 const struct sched_class fair_sched_class = { 9446 .next = &idle_sched_class, 9447 .enqueue_task = enqueue_task_fair, 9448 .dequeue_task = dequeue_task_fair, 9449 .yield_task = yield_task_fair, 9450 .yield_to_task = yield_to_task_fair, 9451 9452 .check_preempt_curr = check_preempt_wakeup, 9453 9454 .pick_next_task = pick_next_task_fair, 9455 .put_prev_task = put_prev_task_fair, 9456 9457 #ifdef CONFIG_SMP 9458 .select_task_rq = select_task_rq_fair, 9459 .migrate_task_rq = migrate_task_rq_fair, 9460 9461 .rq_online = rq_online_fair, 9462 .rq_offline = rq_offline_fair, 9463 9464 .task_dead = task_dead_fair, 9465 .set_cpus_allowed = set_cpus_allowed_common, 9466 #endif 9467 9468 .set_curr_task = set_curr_task_fair, 9469 .task_tick = task_tick_fair, 9470 .task_fork = task_fork_fair, 9471 9472 .prio_changed = prio_changed_fair, 9473 .switched_from = switched_from_fair, 9474 .switched_to = switched_to_fair, 9475 9476 .get_rr_interval = get_rr_interval_fair, 9477 9478 .update_curr = update_curr_fair, 9479 9480 #ifdef CONFIG_FAIR_GROUP_SCHED 9481 .task_change_group = task_change_group_fair, 9482 #endif 9483 }; 9484 9485 #ifdef CONFIG_SCHED_DEBUG 9486 void print_cfs_stats(struct seq_file *m, int cpu) 9487 { 9488 struct cfs_rq *cfs_rq; 9489 9490 rcu_read_lock(); 9491 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 9492 print_cfs_rq(m, cpu, cfs_rq); 9493 rcu_read_unlock(); 9494 } 9495 9496 #ifdef CONFIG_NUMA_BALANCING 9497 void show_numa_stats(struct task_struct *p, struct seq_file *m) 9498 { 9499 int node; 9500 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 9501 9502 for_each_online_node(node) { 9503 if (p->numa_faults) { 9504 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 9505 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 9506 } 9507 if (p->numa_group) { 9508 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 9509 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 9510 } 9511 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 9512 } 9513 } 9514 #endif /* CONFIG_NUMA_BALANCING */ 9515 #endif /* CONFIG_SCHED_DEBUG */ 9516 9517 __init void init_sched_fair_class(void) 9518 { 9519 #ifdef CONFIG_SMP 9520 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 9521 9522 #ifdef CONFIG_NO_HZ_COMMON 9523 nohz.next_balance = jiffies; 9524 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 9525 #endif 9526 #endif /* SMP */ 9527 9528 } 9529