xref: /linux/kernel/sched/fair.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
21  */
22 
23 #include <linux/sched/mm.h>
24 #include <linux/sched/topology.h>
25 
26 #include <linux/latencytop.h>
27 #include <linux/cpumask.h>
28 #include <linux/cpuidle.h>
29 #include <linux/slab.h>
30 #include <linux/profile.h>
31 #include <linux/interrupt.h>
32 #include <linux/mempolicy.h>
33 #include <linux/migrate.h>
34 #include <linux/task_work.h>
35 
36 #include <trace/events/sched.h>
37 
38 #include "sched.h"
39 
40 /*
41  * Targeted preemption latency for CPU-bound tasks:
42  *
43  * NOTE: this latency value is not the same as the concept of
44  * 'timeslice length' - timeslices in CFS are of variable length
45  * and have no persistent notion like in traditional, time-slice
46  * based scheduling concepts.
47  *
48  * (to see the precise effective timeslice length of your workload,
49  *  run vmstat and monitor the context-switches (cs) field)
50  *
51  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
52  */
53 unsigned int sysctl_sched_latency			= 6000000ULL;
54 unsigned int normalized_sysctl_sched_latency		= 6000000ULL;
55 
56 /*
57  * The initial- and re-scaling of tunables is configurable
58  *
59  * Options are:
60  *
61  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
62  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
63  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
64  *
65  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
66  */
67 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
68 
69 /*
70  * Minimal preemption granularity for CPU-bound tasks:
71  *
72  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
73  */
74 unsigned int sysctl_sched_min_granularity		= 750000ULL;
75 unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
76 
77 /*
78  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
79  */
80 static unsigned int sched_nr_latency = 8;
81 
82 /*
83  * After fork, child runs first. If set to 0 (default) then
84  * parent will (try to) run first.
85  */
86 unsigned int sysctl_sched_child_runs_first __read_mostly;
87 
88 /*
89  * SCHED_OTHER wake-up granularity.
90  *
91  * This option delays the preemption effects of decoupled workloads
92  * and reduces their over-scheduling. Synchronous workloads will still
93  * have immediate wakeup/sleep latencies.
94  *
95  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
96  */
97 unsigned int sysctl_sched_wakeup_granularity		= 1000000UL;
98 unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
99 
100 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
101 
102 #ifdef CONFIG_SMP
103 /*
104  * For asym packing, by default the lower numbered cpu has higher priority.
105  */
106 int __weak arch_asym_cpu_priority(int cpu)
107 {
108 	return -cpu;
109 }
110 #endif
111 
112 #ifdef CONFIG_CFS_BANDWIDTH
113 /*
114  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
115  * each time a cfs_rq requests quota.
116  *
117  * Note: in the case that the slice exceeds the runtime remaining (either due
118  * to consumption or the quota being specified to be smaller than the slice)
119  * we will always only issue the remaining available time.
120  *
121  * (default: 5 msec, units: microseconds)
122  */
123 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
124 #endif
125 
126 /*
127  * The margin used when comparing utilization with CPU capacity:
128  * util * margin < capacity * 1024
129  *
130  * (default: ~20%)
131  */
132 unsigned int capacity_margin				= 1280;
133 
134 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
135 {
136 	lw->weight += inc;
137 	lw->inv_weight = 0;
138 }
139 
140 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
141 {
142 	lw->weight -= dec;
143 	lw->inv_weight = 0;
144 }
145 
146 static inline void update_load_set(struct load_weight *lw, unsigned long w)
147 {
148 	lw->weight = w;
149 	lw->inv_weight = 0;
150 }
151 
152 /*
153  * Increase the granularity value when there are more CPUs,
154  * because with more CPUs the 'effective latency' as visible
155  * to users decreases. But the relationship is not linear,
156  * so pick a second-best guess by going with the log2 of the
157  * number of CPUs.
158  *
159  * This idea comes from the SD scheduler of Con Kolivas:
160  */
161 static unsigned int get_update_sysctl_factor(void)
162 {
163 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
164 	unsigned int factor;
165 
166 	switch (sysctl_sched_tunable_scaling) {
167 	case SCHED_TUNABLESCALING_NONE:
168 		factor = 1;
169 		break;
170 	case SCHED_TUNABLESCALING_LINEAR:
171 		factor = cpus;
172 		break;
173 	case SCHED_TUNABLESCALING_LOG:
174 	default:
175 		factor = 1 + ilog2(cpus);
176 		break;
177 	}
178 
179 	return factor;
180 }
181 
182 static void update_sysctl(void)
183 {
184 	unsigned int factor = get_update_sysctl_factor();
185 
186 #define SET_SYSCTL(name) \
187 	(sysctl_##name = (factor) * normalized_sysctl_##name)
188 	SET_SYSCTL(sched_min_granularity);
189 	SET_SYSCTL(sched_latency);
190 	SET_SYSCTL(sched_wakeup_granularity);
191 #undef SET_SYSCTL
192 }
193 
194 void sched_init_granularity(void)
195 {
196 	update_sysctl();
197 }
198 
199 #define WMULT_CONST	(~0U)
200 #define WMULT_SHIFT	32
201 
202 static void __update_inv_weight(struct load_weight *lw)
203 {
204 	unsigned long w;
205 
206 	if (likely(lw->inv_weight))
207 		return;
208 
209 	w = scale_load_down(lw->weight);
210 
211 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
212 		lw->inv_weight = 1;
213 	else if (unlikely(!w))
214 		lw->inv_weight = WMULT_CONST;
215 	else
216 		lw->inv_weight = WMULT_CONST / w;
217 }
218 
219 /*
220  * delta_exec * weight / lw.weight
221  *   OR
222  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
223  *
224  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
225  * we're guaranteed shift stays positive because inv_weight is guaranteed to
226  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
227  *
228  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
229  * weight/lw.weight <= 1, and therefore our shift will also be positive.
230  */
231 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
232 {
233 	u64 fact = scale_load_down(weight);
234 	int shift = WMULT_SHIFT;
235 
236 	__update_inv_weight(lw);
237 
238 	if (unlikely(fact >> 32)) {
239 		while (fact >> 32) {
240 			fact >>= 1;
241 			shift--;
242 		}
243 	}
244 
245 	/* hint to use a 32x32->64 mul */
246 	fact = (u64)(u32)fact * lw->inv_weight;
247 
248 	while (fact >> 32) {
249 		fact >>= 1;
250 		shift--;
251 	}
252 
253 	return mul_u64_u32_shr(delta_exec, fact, shift);
254 }
255 
256 
257 const struct sched_class fair_sched_class;
258 
259 /**************************************************************
260  * CFS operations on generic schedulable entities:
261  */
262 
263 #ifdef CONFIG_FAIR_GROUP_SCHED
264 
265 /* cpu runqueue to which this cfs_rq is attached */
266 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
267 {
268 	return cfs_rq->rq;
269 }
270 
271 /* An entity is a task if it doesn't "own" a runqueue */
272 #define entity_is_task(se)	(!se->my_q)
273 
274 static inline struct task_struct *task_of(struct sched_entity *se)
275 {
276 	SCHED_WARN_ON(!entity_is_task(se));
277 	return container_of(se, struct task_struct, se);
278 }
279 
280 /* Walk up scheduling entities hierarchy */
281 #define for_each_sched_entity(se) \
282 		for (; se; se = se->parent)
283 
284 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
285 {
286 	return p->se.cfs_rq;
287 }
288 
289 /* runqueue on which this entity is (to be) queued */
290 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
291 {
292 	return se->cfs_rq;
293 }
294 
295 /* runqueue "owned" by this group */
296 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
297 {
298 	return grp->my_q;
299 }
300 
301 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
302 {
303 	if (!cfs_rq->on_list) {
304 		struct rq *rq = rq_of(cfs_rq);
305 		int cpu = cpu_of(rq);
306 		/*
307 		 * Ensure we either appear before our parent (if already
308 		 * enqueued) or force our parent to appear after us when it is
309 		 * enqueued. The fact that we always enqueue bottom-up
310 		 * reduces this to two cases and a special case for the root
311 		 * cfs_rq. Furthermore, it also means that we will always reset
312 		 * tmp_alone_branch either when the branch is connected
313 		 * to a tree or when we reach the beg of the tree
314 		 */
315 		if (cfs_rq->tg->parent &&
316 		    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
317 			/*
318 			 * If parent is already on the list, we add the child
319 			 * just before. Thanks to circular linked property of
320 			 * the list, this means to put the child at the tail
321 			 * of the list that starts by parent.
322 			 */
323 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
324 				&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
325 			/*
326 			 * The branch is now connected to its tree so we can
327 			 * reset tmp_alone_branch to the beginning of the
328 			 * list.
329 			 */
330 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
331 		} else if (!cfs_rq->tg->parent) {
332 			/*
333 			 * cfs rq without parent should be put
334 			 * at the tail of the list.
335 			 */
336 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 				&rq->leaf_cfs_rq_list);
338 			/*
339 			 * We have reach the beg of a tree so we can reset
340 			 * tmp_alone_branch to the beginning of the list.
341 			 */
342 			rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
343 		} else {
344 			/*
345 			 * The parent has not already been added so we want to
346 			 * make sure that it will be put after us.
347 			 * tmp_alone_branch points to the beg of the branch
348 			 * where we will add parent.
349 			 */
350 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
351 				rq->tmp_alone_branch);
352 			/*
353 			 * update tmp_alone_branch to points to the new beg
354 			 * of the branch
355 			 */
356 			rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
357 		}
358 
359 		cfs_rq->on_list = 1;
360 	}
361 }
362 
363 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
364 {
365 	if (cfs_rq->on_list) {
366 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
367 		cfs_rq->on_list = 0;
368 	}
369 }
370 
371 /* Iterate thr' all leaf cfs_rq's on a runqueue */
372 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
373 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
374 
375 /* Do the two (enqueued) entities belong to the same group ? */
376 static inline struct cfs_rq *
377 is_same_group(struct sched_entity *se, struct sched_entity *pse)
378 {
379 	if (se->cfs_rq == pse->cfs_rq)
380 		return se->cfs_rq;
381 
382 	return NULL;
383 }
384 
385 static inline struct sched_entity *parent_entity(struct sched_entity *se)
386 {
387 	return se->parent;
388 }
389 
390 static void
391 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
392 {
393 	int se_depth, pse_depth;
394 
395 	/*
396 	 * preemption test can be made between sibling entities who are in the
397 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
398 	 * both tasks until we find their ancestors who are siblings of common
399 	 * parent.
400 	 */
401 
402 	/* First walk up until both entities are at same depth */
403 	se_depth = (*se)->depth;
404 	pse_depth = (*pse)->depth;
405 
406 	while (se_depth > pse_depth) {
407 		se_depth--;
408 		*se = parent_entity(*se);
409 	}
410 
411 	while (pse_depth > se_depth) {
412 		pse_depth--;
413 		*pse = parent_entity(*pse);
414 	}
415 
416 	while (!is_same_group(*se, *pse)) {
417 		*se = parent_entity(*se);
418 		*pse = parent_entity(*pse);
419 	}
420 }
421 
422 #else	/* !CONFIG_FAIR_GROUP_SCHED */
423 
424 static inline struct task_struct *task_of(struct sched_entity *se)
425 {
426 	return container_of(se, struct task_struct, se);
427 }
428 
429 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
430 {
431 	return container_of(cfs_rq, struct rq, cfs);
432 }
433 
434 #define entity_is_task(se)	1
435 
436 #define for_each_sched_entity(se) \
437 		for (; se; se = NULL)
438 
439 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
440 {
441 	return &task_rq(p)->cfs;
442 }
443 
444 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
445 {
446 	struct task_struct *p = task_of(se);
447 	struct rq *rq = task_rq(p);
448 
449 	return &rq->cfs;
450 }
451 
452 /* runqueue "owned" by this group */
453 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
454 {
455 	return NULL;
456 }
457 
458 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
459 {
460 }
461 
462 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
463 {
464 }
465 
466 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
467 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
468 
469 static inline struct sched_entity *parent_entity(struct sched_entity *se)
470 {
471 	return NULL;
472 }
473 
474 static inline void
475 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
476 {
477 }
478 
479 #endif	/* CONFIG_FAIR_GROUP_SCHED */
480 
481 static __always_inline
482 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
483 
484 /**************************************************************
485  * Scheduling class tree data structure manipulation methods:
486  */
487 
488 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
489 {
490 	s64 delta = (s64)(vruntime - max_vruntime);
491 	if (delta > 0)
492 		max_vruntime = vruntime;
493 
494 	return max_vruntime;
495 }
496 
497 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
498 {
499 	s64 delta = (s64)(vruntime - min_vruntime);
500 	if (delta < 0)
501 		min_vruntime = vruntime;
502 
503 	return min_vruntime;
504 }
505 
506 static inline int entity_before(struct sched_entity *a,
507 				struct sched_entity *b)
508 {
509 	return (s64)(a->vruntime - b->vruntime) < 0;
510 }
511 
512 static void update_min_vruntime(struct cfs_rq *cfs_rq)
513 {
514 	struct sched_entity *curr = cfs_rq->curr;
515 
516 	u64 vruntime = cfs_rq->min_vruntime;
517 
518 	if (curr) {
519 		if (curr->on_rq)
520 			vruntime = curr->vruntime;
521 		else
522 			curr = NULL;
523 	}
524 
525 	if (cfs_rq->rb_leftmost) {
526 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
527 						   struct sched_entity,
528 						   run_node);
529 
530 		if (!curr)
531 			vruntime = se->vruntime;
532 		else
533 			vruntime = min_vruntime(vruntime, se->vruntime);
534 	}
535 
536 	/* ensure we never gain time by being placed backwards. */
537 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
538 #ifndef CONFIG_64BIT
539 	smp_wmb();
540 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
541 #endif
542 }
543 
544 /*
545  * Enqueue an entity into the rb-tree:
546  */
547 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
548 {
549 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
550 	struct rb_node *parent = NULL;
551 	struct sched_entity *entry;
552 	int leftmost = 1;
553 
554 	/*
555 	 * Find the right place in the rbtree:
556 	 */
557 	while (*link) {
558 		parent = *link;
559 		entry = rb_entry(parent, struct sched_entity, run_node);
560 		/*
561 		 * We dont care about collisions. Nodes with
562 		 * the same key stay together.
563 		 */
564 		if (entity_before(se, entry)) {
565 			link = &parent->rb_left;
566 		} else {
567 			link = &parent->rb_right;
568 			leftmost = 0;
569 		}
570 	}
571 
572 	/*
573 	 * Maintain a cache of leftmost tree entries (it is frequently
574 	 * used):
575 	 */
576 	if (leftmost)
577 		cfs_rq->rb_leftmost = &se->run_node;
578 
579 	rb_link_node(&se->run_node, parent, link);
580 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
581 }
582 
583 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
584 {
585 	if (cfs_rq->rb_leftmost == &se->run_node) {
586 		struct rb_node *next_node;
587 
588 		next_node = rb_next(&se->run_node);
589 		cfs_rq->rb_leftmost = next_node;
590 	}
591 
592 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
593 }
594 
595 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
596 {
597 	struct rb_node *left = cfs_rq->rb_leftmost;
598 
599 	if (!left)
600 		return NULL;
601 
602 	return rb_entry(left, struct sched_entity, run_node);
603 }
604 
605 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
606 {
607 	struct rb_node *next = rb_next(&se->run_node);
608 
609 	if (!next)
610 		return NULL;
611 
612 	return rb_entry(next, struct sched_entity, run_node);
613 }
614 
615 #ifdef CONFIG_SCHED_DEBUG
616 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
617 {
618 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
619 
620 	if (!last)
621 		return NULL;
622 
623 	return rb_entry(last, struct sched_entity, run_node);
624 }
625 
626 /**************************************************************
627  * Scheduling class statistics methods:
628  */
629 
630 int sched_proc_update_handler(struct ctl_table *table, int write,
631 		void __user *buffer, size_t *lenp,
632 		loff_t *ppos)
633 {
634 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
635 	unsigned int factor = get_update_sysctl_factor();
636 
637 	if (ret || !write)
638 		return ret;
639 
640 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
641 					sysctl_sched_min_granularity);
642 
643 #define WRT_SYSCTL(name) \
644 	(normalized_sysctl_##name = sysctl_##name / (factor))
645 	WRT_SYSCTL(sched_min_granularity);
646 	WRT_SYSCTL(sched_latency);
647 	WRT_SYSCTL(sched_wakeup_granularity);
648 #undef WRT_SYSCTL
649 
650 	return 0;
651 }
652 #endif
653 
654 /*
655  * delta /= w
656  */
657 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
658 {
659 	if (unlikely(se->load.weight != NICE_0_LOAD))
660 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
661 
662 	return delta;
663 }
664 
665 /*
666  * The idea is to set a period in which each task runs once.
667  *
668  * When there are too many tasks (sched_nr_latency) we have to stretch
669  * this period because otherwise the slices get too small.
670  *
671  * p = (nr <= nl) ? l : l*nr/nl
672  */
673 static u64 __sched_period(unsigned long nr_running)
674 {
675 	if (unlikely(nr_running > sched_nr_latency))
676 		return nr_running * sysctl_sched_min_granularity;
677 	else
678 		return sysctl_sched_latency;
679 }
680 
681 /*
682  * We calculate the wall-time slice from the period by taking a part
683  * proportional to the weight.
684  *
685  * s = p*P[w/rw]
686  */
687 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
688 {
689 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
690 
691 	for_each_sched_entity(se) {
692 		struct load_weight *load;
693 		struct load_weight lw;
694 
695 		cfs_rq = cfs_rq_of(se);
696 		load = &cfs_rq->load;
697 
698 		if (unlikely(!se->on_rq)) {
699 			lw = cfs_rq->load;
700 
701 			update_load_add(&lw, se->load.weight);
702 			load = &lw;
703 		}
704 		slice = __calc_delta(slice, se->load.weight, load);
705 	}
706 	return slice;
707 }
708 
709 /*
710  * We calculate the vruntime slice of a to-be-inserted task.
711  *
712  * vs = s/w
713  */
714 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
715 {
716 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
717 }
718 
719 #ifdef CONFIG_SMP
720 
721 #include "sched-pelt.h"
722 
723 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
724 static unsigned long task_h_load(struct task_struct *p);
725 
726 /* Give new sched_entity start runnable values to heavy its load in infant time */
727 void init_entity_runnable_average(struct sched_entity *se)
728 {
729 	struct sched_avg *sa = &se->avg;
730 
731 	sa->last_update_time = 0;
732 	/*
733 	 * sched_avg's period_contrib should be strictly less then 1024, so
734 	 * we give it 1023 to make sure it is almost a period (1024us), and
735 	 * will definitely be update (after enqueue).
736 	 */
737 	sa->period_contrib = 1023;
738 	/*
739 	 * Tasks are intialized with full load to be seen as heavy tasks until
740 	 * they get a chance to stabilize to their real load level.
741 	 * Group entities are intialized with zero load to reflect the fact that
742 	 * nothing has been attached to the task group yet.
743 	 */
744 	if (entity_is_task(se))
745 		sa->load_avg = scale_load_down(se->load.weight);
746 	sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
747 	/*
748 	 * At this point, util_avg won't be used in select_task_rq_fair anyway
749 	 */
750 	sa->util_avg = 0;
751 	sa->util_sum = 0;
752 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
753 }
754 
755 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
756 static void attach_entity_cfs_rq(struct sched_entity *se);
757 
758 /*
759  * With new tasks being created, their initial util_avgs are extrapolated
760  * based on the cfs_rq's current util_avg:
761  *
762  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
763  *
764  * However, in many cases, the above util_avg does not give a desired
765  * value. Moreover, the sum of the util_avgs may be divergent, such
766  * as when the series is a harmonic series.
767  *
768  * To solve this problem, we also cap the util_avg of successive tasks to
769  * only 1/2 of the left utilization budget:
770  *
771  *   util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
772  *
773  * where n denotes the nth task.
774  *
775  * For example, a simplest series from the beginning would be like:
776  *
777  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
778  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
779  *
780  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
781  * if util_avg > util_avg_cap.
782  */
783 void post_init_entity_util_avg(struct sched_entity *se)
784 {
785 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
786 	struct sched_avg *sa = &se->avg;
787 	long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
788 
789 	if (cap > 0) {
790 		if (cfs_rq->avg.util_avg != 0) {
791 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
792 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
793 
794 			if (sa->util_avg > cap)
795 				sa->util_avg = cap;
796 		} else {
797 			sa->util_avg = cap;
798 		}
799 		sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
800 	}
801 
802 	if (entity_is_task(se)) {
803 		struct task_struct *p = task_of(se);
804 		if (p->sched_class != &fair_sched_class) {
805 			/*
806 			 * For !fair tasks do:
807 			 *
808 			update_cfs_rq_load_avg(now, cfs_rq, false);
809 			attach_entity_load_avg(cfs_rq, se);
810 			switched_from_fair(rq, p);
811 			 *
812 			 * such that the next switched_to_fair() has the
813 			 * expected state.
814 			 */
815 			se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
816 			return;
817 		}
818 	}
819 
820 	attach_entity_cfs_rq(se);
821 }
822 
823 #else /* !CONFIG_SMP */
824 void init_entity_runnable_average(struct sched_entity *se)
825 {
826 }
827 void post_init_entity_util_avg(struct sched_entity *se)
828 {
829 }
830 static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
831 {
832 }
833 #endif /* CONFIG_SMP */
834 
835 /*
836  * Update the current task's runtime statistics.
837  */
838 static void update_curr(struct cfs_rq *cfs_rq)
839 {
840 	struct sched_entity *curr = cfs_rq->curr;
841 	u64 now = rq_clock_task(rq_of(cfs_rq));
842 	u64 delta_exec;
843 
844 	if (unlikely(!curr))
845 		return;
846 
847 	delta_exec = now - curr->exec_start;
848 	if (unlikely((s64)delta_exec <= 0))
849 		return;
850 
851 	curr->exec_start = now;
852 
853 	schedstat_set(curr->statistics.exec_max,
854 		      max(delta_exec, curr->statistics.exec_max));
855 
856 	curr->sum_exec_runtime += delta_exec;
857 	schedstat_add(cfs_rq->exec_clock, delta_exec);
858 
859 	curr->vruntime += calc_delta_fair(delta_exec, curr);
860 	update_min_vruntime(cfs_rq);
861 
862 	if (entity_is_task(curr)) {
863 		struct task_struct *curtask = task_of(curr);
864 
865 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
866 		cpuacct_charge(curtask, delta_exec);
867 		account_group_exec_runtime(curtask, delta_exec);
868 	}
869 
870 	account_cfs_rq_runtime(cfs_rq, delta_exec);
871 }
872 
873 static void update_curr_fair(struct rq *rq)
874 {
875 	update_curr(cfs_rq_of(&rq->curr->se));
876 }
877 
878 static inline void
879 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
880 {
881 	u64 wait_start, prev_wait_start;
882 
883 	if (!schedstat_enabled())
884 		return;
885 
886 	wait_start = rq_clock(rq_of(cfs_rq));
887 	prev_wait_start = schedstat_val(se->statistics.wait_start);
888 
889 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
890 	    likely(wait_start > prev_wait_start))
891 		wait_start -= prev_wait_start;
892 
893 	schedstat_set(se->statistics.wait_start, wait_start);
894 }
895 
896 static inline void
897 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
898 {
899 	struct task_struct *p;
900 	u64 delta;
901 
902 	if (!schedstat_enabled())
903 		return;
904 
905 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
906 
907 	if (entity_is_task(se)) {
908 		p = task_of(se);
909 		if (task_on_rq_migrating(p)) {
910 			/*
911 			 * Preserve migrating task's wait time so wait_start
912 			 * time stamp can be adjusted to accumulate wait time
913 			 * prior to migration.
914 			 */
915 			schedstat_set(se->statistics.wait_start, delta);
916 			return;
917 		}
918 		trace_sched_stat_wait(p, delta);
919 	}
920 
921 	schedstat_set(se->statistics.wait_max,
922 		      max(schedstat_val(se->statistics.wait_max), delta));
923 	schedstat_inc(se->statistics.wait_count);
924 	schedstat_add(se->statistics.wait_sum, delta);
925 	schedstat_set(se->statistics.wait_start, 0);
926 }
927 
928 static inline void
929 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
930 {
931 	struct task_struct *tsk = NULL;
932 	u64 sleep_start, block_start;
933 
934 	if (!schedstat_enabled())
935 		return;
936 
937 	sleep_start = schedstat_val(se->statistics.sleep_start);
938 	block_start = schedstat_val(se->statistics.block_start);
939 
940 	if (entity_is_task(se))
941 		tsk = task_of(se);
942 
943 	if (sleep_start) {
944 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
945 
946 		if ((s64)delta < 0)
947 			delta = 0;
948 
949 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
950 			schedstat_set(se->statistics.sleep_max, delta);
951 
952 		schedstat_set(se->statistics.sleep_start, 0);
953 		schedstat_add(se->statistics.sum_sleep_runtime, delta);
954 
955 		if (tsk) {
956 			account_scheduler_latency(tsk, delta >> 10, 1);
957 			trace_sched_stat_sleep(tsk, delta);
958 		}
959 	}
960 	if (block_start) {
961 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
962 
963 		if ((s64)delta < 0)
964 			delta = 0;
965 
966 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
967 			schedstat_set(se->statistics.block_max, delta);
968 
969 		schedstat_set(se->statistics.block_start, 0);
970 		schedstat_add(se->statistics.sum_sleep_runtime, delta);
971 
972 		if (tsk) {
973 			if (tsk->in_iowait) {
974 				schedstat_add(se->statistics.iowait_sum, delta);
975 				schedstat_inc(se->statistics.iowait_count);
976 				trace_sched_stat_iowait(tsk, delta);
977 			}
978 
979 			trace_sched_stat_blocked(tsk, delta);
980 
981 			/*
982 			 * Blocking time is in units of nanosecs, so shift by
983 			 * 20 to get a milliseconds-range estimation of the
984 			 * amount of time that the task spent sleeping:
985 			 */
986 			if (unlikely(prof_on == SLEEP_PROFILING)) {
987 				profile_hits(SLEEP_PROFILING,
988 						(void *)get_wchan(tsk),
989 						delta >> 20);
990 			}
991 			account_scheduler_latency(tsk, delta >> 10, 0);
992 		}
993 	}
994 }
995 
996 /*
997  * Task is being enqueued - update stats:
998  */
999 static inline void
1000 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1001 {
1002 	if (!schedstat_enabled())
1003 		return;
1004 
1005 	/*
1006 	 * Are we enqueueing a waiting task? (for current tasks
1007 	 * a dequeue/enqueue event is a NOP)
1008 	 */
1009 	if (se != cfs_rq->curr)
1010 		update_stats_wait_start(cfs_rq, se);
1011 
1012 	if (flags & ENQUEUE_WAKEUP)
1013 		update_stats_enqueue_sleeper(cfs_rq, se);
1014 }
1015 
1016 static inline void
1017 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1018 {
1019 
1020 	if (!schedstat_enabled())
1021 		return;
1022 
1023 	/*
1024 	 * Mark the end of the wait period if dequeueing a
1025 	 * waiting task:
1026 	 */
1027 	if (se != cfs_rq->curr)
1028 		update_stats_wait_end(cfs_rq, se);
1029 
1030 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1031 		struct task_struct *tsk = task_of(se);
1032 
1033 		if (tsk->state & TASK_INTERRUPTIBLE)
1034 			schedstat_set(se->statistics.sleep_start,
1035 				      rq_clock(rq_of(cfs_rq)));
1036 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1037 			schedstat_set(se->statistics.block_start,
1038 				      rq_clock(rq_of(cfs_rq)));
1039 	}
1040 }
1041 
1042 /*
1043  * We are picking a new current task - update its stats:
1044  */
1045 static inline void
1046 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1047 {
1048 	/*
1049 	 * We are starting a new run period:
1050 	 */
1051 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1052 }
1053 
1054 /**************************************************
1055  * Scheduling class queueing methods:
1056  */
1057 
1058 #ifdef CONFIG_NUMA_BALANCING
1059 /*
1060  * Approximate time to scan a full NUMA task in ms. The task scan period is
1061  * calculated based on the tasks virtual memory size and
1062  * numa_balancing_scan_size.
1063  */
1064 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1065 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1066 
1067 /* Portion of address space to scan in MB */
1068 unsigned int sysctl_numa_balancing_scan_size = 256;
1069 
1070 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1071 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1072 
1073 static unsigned int task_nr_scan_windows(struct task_struct *p)
1074 {
1075 	unsigned long rss = 0;
1076 	unsigned long nr_scan_pages;
1077 
1078 	/*
1079 	 * Calculations based on RSS as non-present and empty pages are skipped
1080 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1081 	 * on resident pages
1082 	 */
1083 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1084 	rss = get_mm_rss(p->mm);
1085 	if (!rss)
1086 		rss = nr_scan_pages;
1087 
1088 	rss = round_up(rss, nr_scan_pages);
1089 	return rss / nr_scan_pages;
1090 }
1091 
1092 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1093 #define MAX_SCAN_WINDOW 2560
1094 
1095 static unsigned int task_scan_min(struct task_struct *p)
1096 {
1097 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1098 	unsigned int scan, floor;
1099 	unsigned int windows = 1;
1100 
1101 	if (scan_size < MAX_SCAN_WINDOW)
1102 		windows = MAX_SCAN_WINDOW / scan_size;
1103 	floor = 1000 / windows;
1104 
1105 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1106 	return max_t(unsigned int, floor, scan);
1107 }
1108 
1109 static unsigned int task_scan_max(struct task_struct *p)
1110 {
1111 	unsigned int smin = task_scan_min(p);
1112 	unsigned int smax;
1113 
1114 	/* Watch for min being lower than max due to floor calculations */
1115 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1116 	return max(smin, smax);
1117 }
1118 
1119 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1120 {
1121 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
1122 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1123 }
1124 
1125 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1126 {
1127 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1128 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1129 }
1130 
1131 struct numa_group {
1132 	atomic_t refcount;
1133 
1134 	spinlock_t lock; /* nr_tasks, tasks */
1135 	int nr_tasks;
1136 	pid_t gid;
1137 	int active_nodes;
1138 
1139 	struct rcu_head rcu;
1140 	unsigned long total_faults;
1141 	unsigned long max_faults_cpu;
1142 	/*
1143 	 * Faults_cpu is used to decide whether memory should move
1144 	 * towards the CPU. As a consequence, these stats are weighted
1145 	 * more by CPU use than by memory faults.
1146 	 */
1147 	unsigned long *faults_cpu;
1148 	unsigned long faults[0];
1149 };
1150 
1151 /* Shared or private faults. */
1152 #define NR_NUMA_HINT_FAULT_TYPES 2
1153 
1154 /* Memory and CPU locality */
1155 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1156 
1157 /* Averaged statistics, and temporary buffers. */
1158 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1159 
1160 pid_t task_numa_group_id(struct task_struct *p)
1161 {
1162 	return p->numa_group ? p->numa_group->gid : 0;
1163 }
1164 
1165 /*
1166  * The averaged statistics, shared & private, memory & cpu,
1167  * occupy the first half of the array. The second half of the
1168  * array is for current counters, which are averaged into the
1169  * first set by task_numa_placement.
1170  */
1171 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1172 {
1173 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1174 }
1175 
1176 static inline unsigned long task_faults(struct task_struct *p, int nid)
1177 {
1178 	if (!p->numa_faults)
1179 		return 0;
1180 
1181 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1182 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1183 }
1184 
1185 static inline unsigned long group_faults(struct task_struct *p, int nid)
1186 {
1187 	if (!p->numa_group)
1188 		return 0;
1189 
1190 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1191 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1192 }
1193 
1194 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1195 {
1196 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1197 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1198 }
1199 
1200 /*
1201  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1202  * considered part of a numa group's pseudo-interleaving set. Migrations
1203  * between these nodes are slowed down, to allow things to settle down.
1204  */
1205 #define ACTIVE_NODE_FRACTION 3
1206 
1207 static bool numa_is_active_node(int nid, struct numa_group *ng)
1208 {
1209 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1210 }
1211 
1212 /* Handle placement on systems where not all nodes are directly connected. */
1213 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1214 					int maxdist, bool task)
1215 {
1216 	unsigned long score = 0;
1217 	int node;
1218 
1219 	/*
1220 	 * All nodes are directly connected, and the same distance
1221 	 * from each other. No need for fancy placement algorithms.
1222 	 */
1223 	if (sched_numa_topology_type == NUMA_DIRECT)
1224 		return 0;
1225 
1226 	/*
1227 	 * This code is called for each node, introducing N^2 complexity,
1228 	 * which should be ok given the number of nodes rarely exceeds 8.
1229 	 */
1230 	for_each_online_node(node) {
1231 		unsigned long faults;
1232 		int dist = node_distance(nid, node);
1233 
1234 		/*
1235 		 * The furthest away nodes in the system are not interesting
1236 		 * for placement; nid was already counted.
1237 		 */
1238 		if (dist == sched_max_numa_distance || node == nid)
1239 			continue;
1240 
1241 		/*
1242 		 * On systems with a backplane NUMA topology, compare groups
1243 		 * of nodes, and move tasks towards the group with the most
1244 		 * memory accesses. When comparing two nodes at distance
1245 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1246 		 * of each group. Skip other nodes.
1247 		 */
1248 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1249 					dist > maxdist)
1250 			continue;
1251 
1252 		/* Add up the faults from nearby nodes. */
1253 		if (task)
1254 			faults = task_faults(p, node);
1255 		else
1256 			faults = group_faults(p, node);
1257 
1258 		/*
1259 		 * On systems with a glueless mesh NUMA topology, there are
1260 		 * no fixed "groups of nodes". Instead, nodes that are not
1261 		 * directly connected bounce traffic through intermediate
1262 		 * nodes; a numa_group can occupy any set of nodes.
1263 		 * The further away a node is, the less the faults count.
1264 		 * This seems to result in good task placement.
1265 		 */
1266 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1267 			faults *= (sched_max_numa_distance - dist);
1268 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1269 		}
1270 
1271 		score += faults;
1272 	}
1273 
1274 	return score;
1275 }
1276 
1277 /*
1278  * These return the fraction of accesses done by a particular task, or
1279  * task group, on a particular numa node.  The group weight is given a
1280  * larger multiplier, in order to group tasks together that are almost
1281  * evenly spread out between numa nodes.
1282  */
1283 static inline unsigned long task_weight(struct task_struct *p, int nid,
1284 					int dist)
1285 {
1286 	unsigned long faults, total_faults;
1287 
1288 	if (!p->numa_faults)
1289 		return 0;
1290 
1291 	total_faults = p->total_numa_faults;
1292 
1293 	if (!total_faults)
1294 		return 0;
1295 
1296 	faults = task_faults(p, nid);
1297 	faults += score_nearby_nodes(p, nid, dist, true);
1298 
1299 	return 1000 * faults / total_faults;
1300 }
1301 
1302 static inline unsigned long group_weight(struct task_struct *p, int nid,
1303 					 int dist)
1304 {
1305 	unsigned long faults, total_faults;
1306 
1307 	if (!p->numa_group)
1308 		return 0;
1309 
1310 	total_faults = p->numa_group->total_faults;
1311 
1312 	if (!total_faults)
1313 		return 0;
1314 
1315 	faults = group_faults(p, nid);
1316 	faults += score_nearby_nodes(p, nid, dist, false);
1317 
1318 	return 1000 * faults / total_faults;
1319 }
1320 
1321 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1322 				int src_nid, int dst_cpu)
1323 {
1324 	struct numa_group *ng = p->numa_group;
1325 	int dst_nid = cpu_to_node(dst_cpu);
1326 	int last_cpupid, this_cpupid;
1327 
1328 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1329 
1330 	/*
1331 	 * Multi-stage node selection is used in conjunction with a periodic
1332 	 * migration fault to build a temporal task<->page relation. By using
1333 	 * a two-stage filter we remove short/unlikely relations.
1334 	 *
1335 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1336 	 * a task's usage of a particular page (n_p) per total usage of this
1337 	 * page (n_t) (in a given time-span) to a probability.
1338 	 *
1339 	 * Our periodic faults will sample this probability and getting the
1340 	 * same result twice in a row, given these samples are fully
1341 	 * independent, is then given by P(n)^2, provided our sample period
1342 	 * is sufficiently short compared to the usage pattern.
1343 	 *
1344 	 * This quadric squishes small probabilities, making it less likely we
1345 	 * act on an unlikely task<->page relation.
1346 	 */
1347 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1348 	if (!cpupid_pid_unset(last_cpupid) &&
1349 				cpupid_to_nid(last_cpupid) != dst_nid)
1350 		return false;
1351 
1352 	/* Always allow migrate on private faults */
1353 	if (cpupid_match_pid(p, last_cpupid))
1354 		return true;
1355 
1356 	/* A shared fault, but p->numa_group has not been set up yet. */
1357 	if (!ng)
1358 		return true;
1359 
1360 	/*
1361 	 * Destination node is much more heavily used than the source
1362 	 * node? Allow migration.
1363 	 */
1364 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1365 					ACTIVE_NODE_FRACTION)
1366 		return true;
1367 
1368 	/*
1369 	 * Distribute memory according to CPU & memory use on each node,
1370 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1371 	 *
1372 	 * faults_cpu(dst)   3   faults_cpu(src)
1373 	 * --------------- * - > ---------------
1374 	 * faults_mem(dst)   4   faults_mem(src)
1375 	 */
1376 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1377 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1378 }
1379 
1380 static unsigned long weighted_cpuload(const int cpu);
1381 static unsigned long source_load(int cpu, int type);
1382 static unsigned long target_load(int cpu, int type);
1383 static unsigned long capacity_of(int cpu);
1384 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1385 
1386 /* Cached statistics for all CPUs within a node */
1387 struct numa_stats {
1388 	unsigned long nr_running;
1389 	unsigned long load;
1390 
1391 	/* Total compute capacity of CPUs on a node */
1392 	unsigned long compute_capacity;
1393 
1394 	/* Approximate capacity in terms of runnable tasks on a node */
1395 	unsigned long task_capacity;
1396 	int has_free_capacity;
1397 };
1398 
1399 /*
1400  * XXX borrowed from update_sg_lb_stats
1401  */
1402 static void update_numa_stats(struct numa_stats *ns, int nid)
1403 {
1404 	int smt, cpu, cpus = 0;
1405 	unsigned long capacity;
1406 
1407 	memset(ns, 0, sizeof(*ns));
1408 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1409 		struct rq *rq = cpu_rq(cpu);
1410 
1411 		ns->nr_running += rq->nr_running;
1412 		ns->load += weighted_cpuload(cpu);
1413 		ns->compute_capacity += capacity_of(cpu);
1414 
1415 		cpus++;
1416 	}
1417 
1418 	/*
1419 	 * If we raced with hotplug and there are no CPUs left in our mask
1420 	 * the @ns structure is NULL'ed and task_numa_compare() will
1421 	 * not find this node attractive.
1422 	 *
1423 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1424 	 * imbalance and bail there.
1425 	 */
1426 	if (!cpus)
1427 		return;
1428 
1429 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1430 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1431 	capacity = cpus / smt; /* cores */
1432 
1433 	ns->task_capacity = min_t(unsigned, capacity,
1434 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1435 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1436 }
1437 
1438 struct task_numa_env {
1439 	struct task_struct *p;
1440 
1441 	int src_cpu, src_nid;
1442 	int dst_cpu, dst_nid;
1443 
1444 	struct numa_stats src_stats, dst_stats;
1445 
1446 	int imbalance_pct;
1447 	int dist;
1448 
1449 	struct task_struct *best_task;
1450 	long best_imp;
1451 	int best_cpu;
1452 };
1453 
1454 static void task_numa_assign(struct task_numa_env *env,
1455 			     struct task_struct *p, long imp)
1456 {
1457 	if (env->best_task)
1458 		put_task_struct(env->best_task);
1459 	if (p)
1460 		get_task_struct(p);
1461 
1462 	env->best_task = p;
1463 	env->best_imp = imp;
1464 	env->best_cpu = env->dst_cpu;
1465 }
1466 
1467 static bool load_too_imbalanced(long src_load, long dst_load,
1468 				struct task_numa_env *env)
1469 {
1470 	long imb, old_imb;
1471 	long orig_src_load, orig_dst_load;
1472 	long src_capacity, dst_capacity;
1473 
1474 	/*
1475 	 * The load is corrected for the CPU capacity available on each node.
1476 	 *
1477 	 * src_load        dst_load
1478 	 * ------------ vs ---------
1479 	 * src_capacity    dst_capacity
1480 	 */
1481 	src_capacity = env->src_stats.compute_capacity;
1482 	dst_capacity = env->dst_stats.compute_capacity;
1483 
1484 	/* We care about the slope of the imbalance, not the direction. */
1485 	if (dst_load < src_load)
1486 		swap(dst_load, src_load);
1487 
1488 	/* Is the difference below the threshold? */
1489 	imb = dst_load * src_capacity * 100 -
1490 	      src_load * dst_capacity * env->imbalance_pct;
1491 	if (imb <= 0)
1492 		return false;
1493 
1494 	/*
1495 	 * The imbalance is above the allowed threshold.
1496 	 * Compare it with the old imbalance.
1497 	 */
1498 	orig_src_load = env->src_stats.load;
1499 	orig_dst_load = env->dst_stats.load;
1500 
1501 	if (orig_dst_load < orig_src_load)
1502 		swap(orig_dst_load, orig_src_load);
1503 
1504 	old_imb = orig_dst_load * src_capacity * 100 -
1505 		  orig_src_load * dst_capacity * env->imbalance_pct;
1506 
1507 	/* Would this change make things worse? */
1508 	return (imb > old_imb);
1509 }
1510 
1511 /*
1512  * This checks if the overall compute and NUMA accesses of the system would
1513  * be improved if the source tasks was migrated to the target dst_cpu taking
1514  * into account that it might be best if task running on the dst_cpu should
1515  * be exchanged with the source task
1516  */
1517 static void task_numa_compare(struct task_numa_env *env,
1518 			      long taskimp, long groupimp)
1519 {
1520 	struct rq *src_rq = cpu_rq(env->src_cpu);
1521 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1522 	struct task_struct *cur;
1523 	long src_load, dst_load;
1524 	long load;
1525 	long imp = env->p->numa_group ? groupimp : taskimp;
1526 	long moveimp = imp;
1527 	int dist = env->dist;
1528 
1529 	rcu_read_lock();
1530 	cur = task_rcu_dereference(&dst_rq->curr);
1531 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1532 		cur = NULL;
1533 
1534 	/*
1535 	 * Because we have preemption enabled we can get migrated around and
1536 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1537 	 */
1538 	if (cur == env->p)
1539 		goto unlock;
1540 
1541 	/*
1542 	 * "imp" is the fault differential for the source task between the
1543 	 * source and destination node. Calculate the total differential for
1544 	 * the source task and potential destination task. The more negative
1545 	 * the value is, the more rmeote accesses that would be expected to
1546 	 * be incurred if the tasks were swapped.
1547 	 */
1548 	if (cur) {
1549 		/* Skip this swap candidate if cannot move to the source cpu */
1550 		if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1551 			goto unlock;
1552 
1553 		/*
1554 		 * If dst and source tasks are in the same NUMA group, or not
1555 		 * in any group then look only at task weights.
1556 		 */
1557 		if (cur->numa_group == env->p->numa_group) {
1558 			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1559 			      task_weight(cur, env->dst_nid, dist);
1560 			/*
1561 			 * Add some hysteresis to prevent swapping the
1562 			 * tasks within a group over tiny differences.
1563 			 */
1564 			if (cur->numa_group)
1565 				imp -= imp/16;
1566 		} else {
1567 			/*
1568 			 * Compare the group weights. If a task is all by
1569 			 * itself (not part of a group), use the task weight
1570 			 * instead.
1571 			 */
1572 			if (cur->numa_group)
1573 				imp += group_weight(cur, env->src_nid, dist) -
1574 				       group_weight(cur, env->dst_nid, dist);
1575 			else
1576 				imp += task_weight(cur, env->src_nid, dist) -
1577 				       task_weight(cur, env->dst_nid, dist);
1578 		}
1579 	}
1580 
1581 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1582 		goto unlock;
1583 
1584 	if (!cur) {
1585 		/* Is there capacity at our destination? */
1586 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1587 		    !env->dst_stats.has_free_capacity)
1588 			goto unlock;
1589 
1590 		goto balance;
1591 	}
1592 
1593 	/* Balance doesn't matter much if we're running a task per cpu */
1594 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1595 			dst_rq->nr_running == 1)
1596 		goto assign;
1597 
1598 	/*
1599 	 * In the overloaded case, try and keep the load balanced.
1600 	 */
1601 balance:
1602 	load = task_h_load(env->p);
1603 	dst_load = env->dst_stats.load + load;
1604 	src_load = env->src_stats.load - load;
1605 
1606 	if (moveimp > imp && moveimp > env->best_imp) {
1607 		/*
1608 		 * If the improvement from just moving env->p direction is
1609 		 * better than swapping tasks around, check if a move is
1610 		 * possible. Store a slightly smaller score than moveimp,
1611 		 * so an actually idle CPU will win.
1612 		 */
1613 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1614 			imp = moveimp - 1;
1615 			cur = NULL;
1616 			goto assign;
1617 		}
1618 	}
1619 
1620 	if (imp <= env->best_imp)
1621 		goto unlock;
1622 
1623 	if (cur) {
1624 		load = task_h_load(cur);
1625 		dst_load -= load;
1626 		src_load += load;
1627 	}
1628 
1629 	if (load_too_imbalanced(src_load, dst_load, env))
1630 		goto unlock;
1631 
1632 	/*
1633 	 * One idle CPU per node is evaluated for a task numa move.
1634 	 * Call select_idle_sibling to maybe find a better one.
1635 	 */
1636 	if (!cur) {
1637 		/*
1638 		 * select_idle_siblings() uses an per-cpu cpumask that
1639 		 * can be used from IRQ context.
1640 		 */
1641 		local_irq_disable();
1642 		env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1643 						   env->dst_cpu);
1644 		local_irq_enable();
1645 	}
1646 
1647 assign:
1648 	task_numa_assign(env, cur, imp);
1649 unlock:
1650 	rcu_read_unlock();
1651 }
1652 
1653 static void task_numa_find_cpu(struct task_numa_env *env,
1654 				long taskimp, long groupimp)
1655 {
1656 	int cpu;
1657 
1658 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1659 		/* Skip this CPU if the source task cannot migrate */
1660 		if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1661 			continue;
1662 
1663 		env->dst_cpu = cpu;
1664 		task_numa_compare(env, taskimp, groupimp);
1665 	}
1666 }
1667 
1668 /* Only move tasks to a NUMA node less busy than the current node. */
1669 static bool numa_has_capacity(struct task_numa_env *env)
1670 {
1671 	struct numa_stats *src = &env->src_stats;
1672 	struct numa_stats *dst = &env->dst_stats;
1673 
1674 	if (src->has_free_capacity && !dst->has_free_capacity)
1675 		return false;
1676 
1677 	/*
1678 	 * Only consider a task move if the source has a higher load
1679 	 * than the destination, corrected for CPU capacity on each node.
1680 	 *
1681 	 *      src->load                dst->load
1682 	 * --------------------- vs ---------------------
1683 	 * src->compute_capacity    dst->compute_capacity
1684 	 */
1685 	if (src->load * dst->compute_capacity * env->imbalance_pct >
1686 
1687 	    dst->load * src->compute_capacity * 100)
1688 		return true;
1689 
1690 	return false;
1691 }
1692 
1693 static int task_numa_migrate(struct task_struct *p)
1694 {
1695 	struct task_numa_env env = {
1696 		.p = p,
1697 
1698 		.src_cpu = task_cpu(p),
1699 		.src_nid = task_node(p),
1700 
1701 		.imbalance_pct = 112,
1702 
1703 		.best_task = NULL,
1704 		.best_imp = 0,
1705 		.best_cpu = -1,
1706 	};
1707 	struct sched_domain *sd;
1708 	unsigned long taskweight, groupweight;
1709 	int nid, ret, dist;
1710 	long taskimp, groupimp;
1711 
1712 	/*
1713 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1714 	 * imbalance and would be the first to start moving tasks about.
1715 	 *
1716 	 * And we want to avoid any moving of tasks about, as that would create
1717 	 * random movement of tasks -- counter the numa conditions we're trying
1718 	 * to satisfy here.
1719 	 */
1720 	rcu_read_lock();
1721 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1722 	if (sd)
1723 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1724 	rcu_read_unlock();
1725 
1726 	/*
1727 	 * Cpusets can break the scheduler domain tree into smaller
1728 	 * balance domains, some of which do not cross NUMA boundaries.
1729 	 * Tasks that are "trapped" in such domains cannot be migrated
1730 	 * elsewhere, so there is no point in (re)trying.
1731 	 */
1732 	if (unlikely(!sd)) {
1733 		p->numa_preferred_nid = task_node(p);
1734 		return -EINVAL;
1735 	}
1736 
1737 	env.dst_nid = p->numa_preferred_nid;
1738 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1739 	taskweight = task_weight(p, env.src_nid, dist);
1740 	groupweight = group_weight(p, env.src_nid, dist);
1741 	update_numa_stats(&env.src_stats, env.src_nid);
1742 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1743 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1744 	update_numa_stats(&env.dst_stats, env.dst_nid);
1745 
1746 	/* Try to find a spot on the preferred nid. */
1747 	if (numa_has_capacity(&env))
1748 		task_numa_find_cpu(&env, taskimp, groupimp);
1749 
1750 	/*
1751 	 * Look at other nodes in these cases:
1752 	 * - there is no space available on the preferred_nid
1753 	 * - the task is part of a numa_group that is interleaved across
1754 	 *   multiple NUMA nodes; in order to better consolidate the group,
1755 	 *   we need to check other locations.
1756 	 */
1757 	if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1758 		for_each_online_node(nid) {
1759 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1760 				continue;
1761 
1762 			dist = node_distance(env.src_nid, env.dst_nid);
1763 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1764 						dist != env.dist) {
1765 				taskweight = task_weight(p, env.src_nid, dist);
1766 				groupweight = group_weight(p, env.src_nid, dist);
1767 			}
1768 
1769 			/* Only consider nodes where both task and groups benefit */
1770 			taskimp = task_weight(p, nid, dist) - taskweight;
1771 			groupimp = group_weight(p, nid, dist) - groupweight;
1772 			if (taskimp < 0 && groupimp < 0)
1773 				continue;
1774 
1775 			env.dist = dist;
1776 			env.dst_nid = nid;
1777 			update_numa_stats(&env.dst_stats, env.dst_nid);
1778 			if (numa_has_capacity(&env))
1779 				task_numa_find_cpu(&env, taskimp, groupimp);
1780 		}
1781 	}
1782 
1783 	/*
1784 	 * If the task is part of a workload that spans multiple NUMA nodes,
1785 	 * and is migrating into one of the workload's active nodes, remember
1786 	 * this node as the task's preferred numa node, so the workload can
1787 	 * settle down.
1788 	 * A task that migrated to a second choice node will be better off
1789 	 * trying for a better one later. Do not set the preferred node here.
1790 	 */
1791 	if (p->numa_group) {
1792 		struct numa_group *ng = p->numa_group;
1793 
1794 		if (env.best_cpu == -1)
1795 			nid = env.src_nid;
1796 		else
1797 			nid = env.dst_nid;
1798 
1799 		if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
1800 			sched_setnuma(p, env.dst_nid);
1801 	}
1802 
1803 	/* No better CPU than the current one was found. */
1804 	if (env.best_cpu == -1)
1805 		return -EAGAIN;
1806 
1807 	/*
1808 	 * Reset the scan period if the task is being rescheduled on an
1809 	 * alternative node to recheck if the tasks is now properly placed.
1810 	 */
1811 	p->numa_scan_period = task_scan_min(p);
1812 
1813 	if (env.best_task == NULL) {
1814 		ret = migrate_task_to(p, env.best_cpu);
1815 		if (ret != 0)
1816 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1817 		return ret;
1818 	}
1819 
1820 	ret = migrate_swap(p, env.best_task);
1821 	if (ret != 0)
1822 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1823 	put_task_struct(env.best_task);
1824 	return ret;
1825 }
1826 
1827 /* Attempt to migrate a task to a CPU on the preferred node. */
1828 static void numa_migrate_preferred(struct task_struct *p)
1829 {
1830 	unsigned long interval = HZ;
1831 
1832 	/* This task has no NUMA fault statistics yet */
1833 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1834 		return;
1835 
1836 	/* Periodically retry migrating the task to the preferred node */
1837 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1838 	p->numa_migrate_retry = jiffies + interval;
1839 
1840 	/* Success if task is already running on preferred CPU */
1841 	if (task_node(p) == p->numa_preferred_nid)
1842 		return;
1843 
1844 	/* Otherwise, try migrate to a CPU on the preferred node */
1845 	task_numa_migrate(p);
1846 }
1847 
1848 /*
1849  * Find out how many nodes on the workload is actively running on. Do this by
1850  * tracking the nodes from which NUMA hinting faults are triggered. This can
1851  * be different from the set of nodes where the workload's memory is currently
1852  * located.
1853  */
1854 static void numa_group_count_active_nodes(struct numa_group *numa_group)
1855 {
1856 	unsigned long faults, max_faults = 0;
1857 	int nid, active_nodes = 0;
1858 
1859 	for_each_online_node(nid) {
1860 		faults = group_faults_cpu(numa_group, nid);
1861 		if (faults > max_faults)
1862 			max_faults = faults;
1863 	}
1864 
1865 	for_each_online_node(nid) {
1866 		faults = group_faults_cpu(numa_group, nid);
1867 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
1868 			active_nodes++;
1869 	}
1870 
1871 	numa_group->max_faults_cpu = max_faults;
1872 	numa_group->active_nodes = active_nodes;
1873 }
1874 
1875 /*
1876  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1877  * increments. The more local the fault statistics are, the higher the scan
1878  * period will be for the next scan window. If local/(local+remote) ratio is
1879  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1880  * the scan period will decrease. Aim for 70% local accesses.
1881  */
1882 #define NUMA_PERIOD_SLOTS 10
1883 #define NUMA_PERIOD_THRESHOLD 7
1884 
1885 /*
1886  * Increase the scan period (slow down scanning) if the majority of
1887  * our memory is already on our local node, or if the majority of
1888  * the page accesses are shared with other processes.
1889  * Otherwise, decrease the scan period.
1890  */
1891 static void update_task_scan_period(struct task_struct *p,
1892 			unsigned long shared, unsigned long private)
1893 {
1894 	unsigned int period_slot;
1895 	int ratio;
1896 	int diff;
1897 
1898 	unsigned long remote = p->numa_faults_locality[0];
1899 	unsigned long local = p->numa_faults_locality[1];
1900 
1901 	/*
1902 	 * If there were no record hinting faults then either the task is
1903 	 * completely idle or all activity is areas that are not of interest
1904 	 * to automatic numa balancing. Related to that, if there were failed
1905 	 * migration then it implies we are migrating too quickly or the local
1906 	 * node is overloaded. In either case, scan slower
1907 	 */
1908 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1909 		p->numa_scan_period = min(p->numa_scan_period_max,
1910 			p->numa_scan_period << 1);
1911 
1912 		p->mm->numa_next_scan = jiffies +
1913 			msecs_to_jiffies(p->numa_scan_period);
1914 
1915 		return;
1916 	}
1917 
1918 	/*
1919 	 * Prepare to scale scan period relative to the current period.
1920 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1921 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1922 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1923 	 */
1924 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1925 	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1926 	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1927 		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1928 		if (!slot)
1929 			slot = 1;
1930 		diff = slot * period_slot;
1931 	} else {
1932 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1933 
1934 		/*
1935 		 * Scale scan rate increases based on sharing. There is an
1936 		 * inverse relationship between the degree of sharing and
1937 		 * the adjustment made to the scanning period. Broadly
1938 		 * speaking the intent is that there is little point
1939 		 * scanning faster if shared accesses dominate as it may
1940 		 * simply bounce migrations uselessly
1941 		 */
1942 		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1943 		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1944 	}
1945 
1946 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1947 			task_scan_min(p), task_scan_max(p));
1948 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1949 }
1950 
1951 /*
1952  * Get the fraction of time the task has been running since the last
1953  * NUMA placement cycle. The scheduler keeps similar statistics, but
1954  * decays those on a 32ms period, which is orders of magnitude off
1955  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1956  * stats only if the task is so new there are no NUMA statistics yet.
1957  */
1958 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1959 {
1960 	u64 runtime, delta, now;
1961 	/* Use the start of this time slice to avoid calculations. */
1962 	now = p->se.exec_start;
1963 	runtime = p->se.sum_exec_runtime;
1964 
1965 	if (p->last_task_numa_placement) {
1966 		delta = runtime - p->last_sum_exec_runtime;
1967 		*period = now - p->last_task_numa_placement;
1968 	} else {
1969 		delta = p->se.avg.load_sum / p->se.load.weight;
1970 		*period = LOAD_AVG_MAX;
1971 	}
1972 
1973 	p->last_sum_exec_runtime = runtime;
1974 	p->last_task_numa_placement = now;
1975 
1976 	return delta;
1977 }
1978 
1979 /*
1980  * Determine the preferred nid for a task in a numa_group. This needs to
1981  * be done in a way that produces consistent results with group_weight,
1982  * otherwise workloads might not converge.
1983  */
1984 static int preferred_group_nid(struct task_struct *p, int nid)
1985 {
1986 	nodemask_t nodes;
1987 	int dist;
1988 
1989 	/* Direct connections between all NUMA nodes. */
1990 	if (sched_numa_topology_type == NUMA_DIRECT)
1991 		return nid;
1992 
1993 	/*
1994 	 * On a system with glueless mesh NUMA topology, group_weight
1995 	 * scores nodes according to the number of NUMA hinting faults on
1996 	 * both the node itself, and on nearby nodes.
1997 	 */
1998 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1999 		unsigned long score, max_score = 0;
2000 		int node, max_node = nid;
2001 
2002 		dist = sched_max_numa_distance;
2003 
2004 		for_each_online_node(node) {
2005 			score = group_weight(p, node, dist);
2006 			if (score > max_score) {
2007 				max_score = score;
2008 				max_node = node;
2009 			}
2010 		}
2011 		return max_node;
2012 	}
2013 
2014 	/*
2015 	 * Finding the preferred nid in a system with NUMA backplane
2016 	 * interconnect topology is more involved. The goal is to locate
2017 	 * tasks from numa_groups near each other in the system, and
2018 	 * untangle workloads from different sides of the system. This requires
2019 	 * searching down the hierarchy of node groups, recursively searching
2020 	 * inside the highest scoring group of nodes. The nodemask tricks
2021 	 * keep the complexity of the search down.
2022 	 */
2023 	nodes = node_online_map;
2024 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2025 		unsigned long max_faults = 0;
2026 		nodemask_t max_group = NODE_MASK_NONE;
2027 		int a, b;
2028 
2029 		/* Are there nodes at this distance from each other? */
2030 		if (!find_numa_distance(dist))
2031 			continue;
2032 
2033 		for_each_node_mask(a, nodes) {
2034 			unsigned long faults = 0;
2035 			nodemask_t this_group;
2036 			nodes_clear(this_group);
2037 
2038 			/* Sum group's NUMA faults; includes a==b case. */
2039 			for_each_node_mask(b, nodes) {
2040 				if (node_distance(a, b) < dist) {
2041 					faults += group_faults(p, b);
2042 					node_set(b, this_group);
2043 					node_clear(b, nodes);
2044 				}
2045 			}
2046 
2047 			/* Remember the top group. */
2048 			if (faults > max_faults) {
2049 				max_faults = faults;
2050 				max_group = this_group;
2051 				/*
2052 				 * subtle: at the smallest distance there is
2053 				 * just one node left in each "group", the
2054 				 * winner is the preferred nid.
2055 				 */
2056 				nid = a;
2057 			}
2058 		}
2059 		/* Next round, evaluate the nodes within max_group. */
2060 		if (!max_faults)
2061 			break;
2062 		nodes = max_group;
2063 	}
2064 	return nid;
2065 }
2066 
2067 static void task_numa_placement(struct task_struct *p)
2068 {
2069 	int seq, nid, max_nid = -1, max_group_nid = -1;
2070 	unsigned long max_faults = 0, max_group_faults = 0;
2071 	unsigned long fault_types[2] = { 0, 0 };
2072 	unsigned long total_faults;
2073 	u64 runtime, period;
2074 	spinlock_t *group_lock = NULL;
2075 
2076 	/*
2077 	 * The p->mm->numa_scan_seq field gets updated without
2078 	 * exclusive access. Use READ_ONCE() here to ensure
2079 	 * that the field is read in a single access:
2080 	 */
2081 	seq = READ_ONCE(p->mm->numa_scan_seq);
2082 	if (p->numa_scan_seq == seq)
2083 		return;
2084 	p->numa_scan_seq = seq;
2085 	p->numa_scan_period_max = task_scan_max(p);
2086 
2087 	total_faults = p->numa_faults_locality[0] +
2088 		       p->numa_faults_locality[1];
2089 	runtime = numa_get_avg_runtime(p, &period);
2090 
2091 	/* If the task is part of a group prevent parallel updates to group stats */
2092 	if (p->numa_group) {
2093 		group_lock = &p->numa_group->lock;
2094 		spin_lock_irq(group_lock);
2095 	}
2096 
2097 	/* Find the node with the highest number of faults */
2098 	for_each_online_node(nid) {
2099 		/* Keep track of the offsets in numa_faults array */
2100 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2101 		unsigned long faults = 0, group_faults = 0;
2102 		int priv;
2103 
2104 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2105 			long diff, f_diff, f_weight;
2106 
2107 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2108 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2109 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2110 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2111 
2112 			/* Decay existing window, copy faults since last scan */
2113 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2114 			fault_types[priv] += p->numa_faults[membuf_idx];
2115 			p->numa_faults[membuf_idx] = 0;
2116 
2117 			/*
2118 			 * Normalize the faults_from, so all tasks in a group
2119 			 * count according to CPU use, instead of by the raw
2120 			 * number of faults. Tasks with little runtime have
2121 			 * little over-all impact on throughput, and thus their
2122 			 * faults are less important.
2123 			 */
2124 			f_weight = div64_u64(runtime << 16, period + 1);
2125 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2126 				   (total_faults + 1);
2127 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2128 			p->numa_faults[cpubuf_idx] = 0;
2129 
2130 			p->numa_faults[mem_idx] += diff;
2131 			p->numa_faults[cpu_idx] += f_diff;
2132 			faults += p->numa_faults[mem_idx];
2133 			p->total_numa_faults += diff;
2134 			if (p->numa_group) {
2135 				/*
2136 				 * safe because we can only change our own group
2137 				 *
2138 				 * mem_idx represents the offset for a given
2139 				 * nid and priv in a specific region because it
2140 				 * is at the beginning of the numa_faults array.
2141 				 */
2142 				p->numa_group->faults[mem_idx] += diff;
2143 				p->numa_group->faults_cpu[mem_idx] += f_diff;
2144 				p->numa_group->total_faults += diff;
2145 				group_faults += p->numa_group->faults[mem_idx];
2146 			}
2147 		}
2148 
2149 		if (faults > max_faults) {
2150 			max_faults = faults;
2151 			max_nid = nid;
2152 		}
2153 
2154 		if (group_faults > max_group_faults) {
2155 			max_group_faults = group_faults;
2156 			max_group_nid = nid;
2157 		}
2158 	}
2159 
2160 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2161 
2162 	if (p->numa_group) {
2163 		numa_group_count_active_nodes(p->numa_group);
2164 		spin_unlock_irq(group_lock);
2165 		max_nid = preferred_group_nid(p, max_group_nid);
2166 	}
2167 
2168 	if (max_faults) {
2169 		/* Set the new preferred node */
2170 		if (max_nid != p->numa_preferred_nid)
2171 			sched_setnuma(p, max_nid);
2172 
2173 		if (task_node(p) != p->numa_preferred_nid)
2174 			numa_migrate_preferred(p);
2175 	}
2176 }
2177 
2178 static inline int get_numa_group(struct numa_group *grp)
2179 {
2180 	return atomic_inc_not_zero(&grp->refcount);
2181 }
2182 
2183 static inline void put_numa_group(struct numa_group *grp)
2184 {
2185 	if (atomic_dec_and_test(&grp->refcount))
2186 		kfree_rcu(grp, rcu);
2187 }
2188 
2189 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2190 			int *priv)
2191 {
2192 	struct numa_group *grp, *my_grp;
2193 	struct task_struct *tsk;
2194 	bool join = false;
2195 	int cpu = cpupid_to_cpu(cpupid);
2196 	int i;
2197 
2198 	if (unlikely(!p->numa_group)) {
2199 		unsigned int size = sizeof(struct numa_group) +
2200 				    4*nr_node_ids*sizeof(unsigned long);
2201 
2202 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2203 		if (!grp)
2204 			return;
2205 
2206 		atomic_set(&grp->refcount, 1);
2207 		grp->active_nodes = 1;
2208 		grp->max_faults_cpu = 0;
2209 		spin_lock_init(&grp->lock);
2210 		grp->gid = p->pid;
2211 		/* Second half of the array tracks nids where faults happen */
2212 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2213 						nr_node_ids;
2214 
2215 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2216 			grp->faults[i] = p->numa_faults[i];
2217 
2218 		grp->total_faults = p->total_numa_faults;
2219 
2220 		grp->nr_tasks++;
2221 		rcu_assign_pointer(p->numa_group, grp);
2222 	}
2223 
2224 	rcu_read_lock();
2225 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2226 
2227 	if (!cpupid_match_pid(tsk, cpupid))
2228 		goto no_join;
2229 
2230 	grp = rcu_dereference(tsk->numa_group);
2231 	if (!grp)
2232 		goto no_join;
2233 
2234 	my_grp = p->numa_group;
2235 	if (grp == my_grp)
2236 		goto no_join;
2237 
2238 	/*
2239 	 * Only join the other group if its bigger; if we're the bigger group,
2240 	 * the other task will join us.
2241 	 */
2242 	if (my_grp->nr_tasks > grp->nr_tasks)
2243 		goto no_join;
2244 
2245 	/*
2246 	 * Tie-break on the grp address.
2247 	 */
2248 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2249 		goto no_join;
2250 
2251 	/* Always join threads in the same process. */
2252 	if (tsk->mm == current->mm)
2253 		join = true;
2254 
2255 	/* Simple filter to avoid false positives due to PID collisions */
2256 	if (flags & TNF_SHARED)
2257 		join = true;
2258 
2259 	/* Update priv based on whether false sharing was detected */
2260 	*priv = !join;
2261 
2262 	if (join && !get_numa_group(grp))
2263 		goto no_join;
2264 
2265 	rcu_read_unlock();
2266 
2267 	if (!join)
2268 		return;
2269 
2270 	BUG_ON(irqs_disabled());
2271 	double_lock_irq(&my_grp->lock, &grp->lock);
2272 
2273 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2274 		my_grp->faults[i] -= p->numa_faults[i];
2275 		grp->faults[i] += p->numa_faults[i];
2276 	}
2277 	my_grp->total_faults -= p->total_numa_faults;
2278 	grp->total_faults += p->total_numa_faults;
2279 
2280 	my_grp->nr_tasks--;
2281 	grp->nr_tasks++;
2282 
2283 	spin_unlock(&my_grp->lock);
2284 	spin_unlock_irq(&grp->lock);
2285 
2286 	rcu_assign_pointer(p->numa_group, grp);
2287 
2288 	put_numa_group(my_grp);
2289 	return;
2290 
2291 no_join:
2292 	rcu_read_unlock();
2293 	return;
2294 }
2295 
2296 void task_numa_free(struct task_struct *p)
2297 {
2298 	struct numa_group *grp = p->numa_group;
2299 	void *numa_faults = p->numa_faults;
2300 	unsigned long flags;
2301 	int i;
2302 
2303 	if (grp) {
2304 		spin_lock_irqsave(&grp->lock, flags);
2305 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2306 			grp->faults[i] -= p->numa_faults[i];
2307 		grp->total_faults -= p->total_numa_faults;
2308 
2309 		grp->nr_tasks--;
2310 		spin_unlock_irqrestore(&grp->lock, flags);
2311 		RCU_INIT_POINTER(p->numa_group, NULL);
2312 		put_numa_group(grp);
2313 	}
2314 
2315 	p->numa_faults = NULL;
2316 	kfree(numa_faults);
2317 }
2318 
2319 /*
2320  * Got a PROT_NONE fault for a page on @node.
2321  */
2322 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2323 {
2324 	struct task_struct *p = current;
2325 	bool migrated = flags & TNF_MIGRATED;
2326 	int cpu_node = task_node(current);
2327 	int local = !!(flags & TNF_FAULT_LOCAL);
2328 	struct numa_group *ng;
2329 	int priv;
2330 
2331 	if (!static_branch_likely(&sched_numa_balancing))
2332 		return;
2333 
2334 	/* for example, ksmd faulting in a user's mm */
2335 	if (!p->mm)
2336 		return;
2337 
2338 	/* Allocate buffer to track faults on a per-node basis */
2339 	if (unlikely(!p->numa_faults)) {
2340 		int size = sizeof(*p->numa_faults) *
2341 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2342 
2343 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2344 		if (!p->numa_faults)
2345 			return;
2346 
2347 		p->total_numa_faults = 0;
2348 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2349 	}
2350 
2351 	/*
2352 	 * First accesses are treated as private, otherwise consider accesses
2353 	 * to be private if the accessing pid has not changed
2354 	 */
2355 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2356 		priv = 1;
2357 	} else {
2358 		priv = cpupid_match_pid(p, last_cpupid);
2359 		if (!priv && !(flags & TNF_NO_GROUP))
2360 			task_numa_group(p, last_cpupid, flags, &priv);
2361 	}
2362 
2363 	/*
2364 	 * If a workload spans multiple NUMA nodes, a shared fault that
2365 	 * occurs wholly within the set of nodes that the workload is
2366 	 * actively using should be counted as local. This allows the
2367 	 * scan rate to slow down when a workload has settled down.
2368 	 */
2369 	ng = p->numa_group;
2370 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2371 				numa_is_active_node(cpu_node, ng) &&
2372 				numa_is_active_node(mem_node, ng))
2373 		local = 1;
2374 
2375 	task_numa_placement(p);
2376 
2377 	/*
2378 	 * Retry task to preferred node migration periodically, in case it
2379 	 * case it previously failed, or the scheduler moved us.
2380 	 */
2381 	if (time_after(jiffies, p->numa_migrate_retry))
2382 		numa_migrate_preferred(p);
2383 
2384 	if (migrated)
2385 		p->numa_pages_migrated += pages;
2386 	if (flags & TNF_MIGRATE_FAIL)
2387 		p->numa_faults_locality[2] += pages;
2388 
2389 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2390 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2391 	p->numa_faults_locality[local] += pages;
2392 }
2393 
2394 static void reset_ptenuma_scan(struct task_struct *p)
2395 {
2396 	/*
2397 	 * We only did a read acquisition of the mmap sem, so
2398 	 * p->mm->numa_scan_seq is written to without exclusive access
2399 	 * and the update is not guaranteed to be atomic. That's not
2400 	 * much of an issue though, since this is just used for
2401 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2402 	 * expensive, to avoid any form of compiler optimizations:
2403 	 */
2404 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2405 	p->mm->numa_scan_offset = 0;
2406 }
2407 
2408 /*
2409  * The expensive part of numa migration is done from task_work context.
2410  * Triggered from task_tick_numa().
2411  */
2412 void task_numa_work(struct callback_head *work)
2413 {
2414 	unsigned long migrate, next_scan, now = jiffies;
2415 	struct task_struct *p = current;
2416 	struct mm_struct *mm = p->mm;
2417 	u64 runtime = p->se.sum_exec_runtime;
2418 	struct vm_area_struct *vma;
2419 	unsigned long start, end;
2420 	unsigned long nr_pte_updates = 0;
2421 	long pages, virtpages;
2422 
2423 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2424 
2425 	work->next = work; /* protect against double add */
2426 	/*
2427 	 * Who cares about NUMA placement when they're dying.
2428 	 *
2429 	 * NOTE: make sure not to dereference p->mm before this check,
2430 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2431 	 * without p->mm even though we still had it when we enqueued this
2432 	 * work.
2433 	 */
2434 	if (p->flags & PF_EXITING)
2435 		return;
2436 
2437 	if (!mm->numa_next_scan) {
2438 		mm->numa_next_scan = now +
2439 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2440 	}
2441 
2442 	/*
2443 	 * Enforce maximal scan/migration frequency..
2444 	 */
2445 	migrate = mm->numa_next_scan;
2446 	if (time_before(now, migrate))
2447 		return;
2448 
2449 	if (p->numa_scan_period == 0) {
2450 		p->numa_scan_period_max = task_scan_max(p);
2451 		p->numa_scan_period = task_scan_min(p);
2452 	}
2453 
2454 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2455 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2456 		return;
2457 
2458 	/*
2459 	 * Delay this task enough that another task of this mm will likely win
2460 	 * the next time around.
2461 	 */
2462 	p->node_stamp += 2 * TICK_NSEC;
2463 
2464 	start = mm->numa_scan_offset;
2465 	pages = sysctl_numa_balancing_scan_size;
2466 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2467 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2468 	if (!pages)
2469 		return;
2470 
2471 
2472 	down_read(&mm->mmap_sem);
2473 	vma = find_vma(mm, start);
2474 	if (!vma) {
2475 		reset_ptenuma_scan(p);
2476 		start = 0;
2477 		vma = mm->mmap;
2478 	}
2479 	for (; vma; vma = vma->vm_next) {
2480 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2481 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2482 			continue;
2483 		}
2484 
2485 		/*
2486 		 * Shared library pages mapped by multiple processes are not
2487 		 * migrated as it is expected they are cache replicated. Avoid
2488 		 * hinting faults in read-only file-backed mappings or the vdso
2489 		 * as migrating the pages will be of marginal benefit.
2490 		 */
2491 		if (!vma->vm_mm ||
2492 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2493 			continue;
2494 
2495 		/*
2496 		 * Skip inaccessible VMAs to avoid any confusion between
2497 		 * PROT_NONE and NUMA hinting ptes
2498 		 */
2499 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2500 			continue;
2501 
2502 		do {
2503 			start = max(start, vma->vm_start);
2504 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2505 			end = min(end, vma->vm_end);
2506 			nr_pte_updates = change_prot_numa(vma, start, end);
2507 
2508 			/*
2509 			 * Try to scan sysctl_numa_balancing_size worth of
2510 			 * hpages that have at least one present PTE that
2511 			 * is not already pte-numa. If the VMA contains
2512 			 * areas that are unused or already full of prot_numa
2513 			 * PTEs, scan up to virtpages, to skip through those
2514 			 * areas faster.
2515 			 */
2516 			if (nr_pte_updates)
2517 				pages -= (end - start) >> PAGE_SHIFT;
2518 			virtpages -= (end - start) >> PAGE_SHIFT;
2519 
2520 			start = end;
2521 			if (pages <= 0 || virtpages <= 0)
2522 				goto out;
2523 
2524 			cond_resched();
2525 		} while (end != vma->vm_end);
2526 	}
2527 
2528 out:
2529 	/*
2530 	 * It is possible to reach the end of the VMA list but the last few
2531 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2532 	 * would find the !migratable VMA on the next scan but not reset the
2533 	 * scanner to the start so check it now.
2534 	 */
2535 	if (vma)
2536 		mm->numa_scan_offset = start;
2537 	else
2538 		reset_ptenuma_scan(p);
2539 	up_read(&mm->mmap_sem);
2540 
2541 	/*
2542 	 * Make sure tasks use at least 32x as much time to run other code
2543 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2544 	 * Usually update_task_scan_period slows down scanning enough; on an
2545 	 * overloaded system we need to limit overhead on a per task basis.
2546 	 */
2547 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2548 		u64 diff = p->se.sum_exec_runtime - runtime;
2549 		p->node_stamp += 32 * diff;
2550 	}
2551 }
2552 
2553 /*
2554  * Drive the periodic memory faults..
2555  */
2556 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2557 {
2558 	struct callback_head *work = &curr->numa_work;
2559 	u64 period, now;
2560 
2561 	/*
2562 	 * We don't care about NUMA placement if we don't have memory.
2563 	 */
2564 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2565 		return;
2566 
2567 	/*
2568 	 * Using runtime rather than walltime has the dual advantage that
2569 	 * we (mostly) drive the selection from busy threads and that the
2570 	 * task needs to have done some actual work before we bother with
2571 	 * NUMA placement.
2572 	 */
2573 	now = curr->se.sum_exec_runtime;
2574 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2575 
2576 	if (now > curr->node_stamp + period) {
2577 		if (!curr->node_stamp)
2578 			curr->numa_scan_period = task_scan_min(curr);
2579 		curr->node_stamp += period;
2580 
2581 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2582 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2583 			task_work_add(curr, work, true);
2584 		}
2585 	}
2586 }
2587 #else
2588 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2589 {
2590 }
2591 
2592 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2593 {
2594 }
2595 
2596 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2597 {
2598 }
2599 #endif /* CONFIG_NUMA_BALANCING */
2600 
2601 static void
2602 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2603 {
2604 	update_load_add(&cfs_rq->load, se->load.weight);
2605 	if (!parent_entity(se))
2606 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2607 #ifdef CONFIG_SMP
2608 	if (entity_is_task(se)) {
2609 		struct rq *rq = rq_of(cfs_rq);
2610 
2611 		account_numa_enqueue(rq, task_of(se));
2612 		list_add(&se->group_node, &rq->cfs_tasks);
2613 	}
2614 #endif
2615 	cfs_rq->nr_running++;
2616 }
2617 
2618 static void
2619 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2620 {
2621 	update_load_sub(&cfs_rq->load, se->load.weight);
2622 	if (!parent_entity(se))
2623 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2624 #ifdef CONFIG_SMP
2625 	if (entity_is_task(se)) {
2626 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2627 		list_del_init(&se->group_node);
2628 	}
2629 #endif
2630 	cfs_rq->nr_running--;
2631 }
2632 
2633 #ifdef CONFIG_FAIR_GROUP_SCHED
2634 # ifdef CONFIG_SMP
2635 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2636 {
2637 	long tg_weight, load, shares;
2638 
2639 	/*
2640 	 * This really should be: cfs_rq->avg.load_avg, but instead we use
2641 	 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2642 	 * the shares for small weight interactive tasks.
2643 	 */
2644 	load = scale_load_down(cfs_rq->load.weight);
2645 
2646 	tg_weight = atomic_long_read(&tg->load_avg);
2647 
2648 	/* Ensure tg_weight >= load */
2649 	tg_weight -= cfs_rq->tg_load_avg_contrib;
2650 	tg_weight += load;
2651 
2652 	shares = (tg->shares * load);
2653 	if (tg_weight)
2654 		shares /= tg_weight;
2655 
2656 	/*
2657 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2658 	 * of a group with small tg->shares value. It is a floor value which is
2659 	 * assigned as a minimum load.weight to the sched_entity representing
2660 	 * the group on a CPU.
2661 	 *
2662 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2663 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
2664 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2665 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2666 	 * instead of 0.
2667 	 */
2668 	if (shares < MIN_SHARES)
2669 		shares = MIN_SHARES;
2670 	if (shares > tg->shares)
2671 		shares = tg->shares;
2672 
2673 	return shares;
2674 }
2675 # else /* CONFIG_SMP */
2676 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2677 {
2678 	return tg->shares;
2679 }
2680 # endif /* CONFIG_SMP */
2681 
2682 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2683 			    unsigned long weight)
2684 {
2685 	if (se->on_rq) {
2686 		/* commit outstanding execution time */
2687 		if (cfs_rq->curr == se)
2688 			update_curr(cfs_rq);
2689 		account_entity_dequeue(cfs_rq, se);
2690 	}
2691 
2692 	update_load_set(&se->load, weight);
2693 
2694 	if (se->on_rq)
2695 		account_entity_enqueue(cfs_rq, se);
2696 }
2697 
2698 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2699 
2700 static void update_cfs_shares(struct sched_entity *se)
2701 {
2702 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2703 	struct task_group *tg;
2704 	long shares;
2705 
2706 	if (!cfs_rq)
2707 		return;
2708 
2709 	if (throttled_hierarchy(cfs_rq))
2710 		return;
2711 
2712 	tg = cfs_rq->tg;
2713 
2714 #ifndef CONFIG_SMP
2715 	if (likely(se->load.weight == tg->shares))
2716 		return;
2717 #endif
2718 	shares = calc_cfs_shares(cfs_rq, tg);
2719 
2720 	reweight_entity(cfs_rq_of(se), se, shares);
2721 }
2722 
2723 #else /* CONFIG_FAIR_GROUP_SCHED */
2724 static inline void update_cfs_shares(struct sched_entity *se)
2725 {
2726 }
2727 #endif /* CONFIG_FAIR_GROUP_SCHED */
2728 
2729 #ifdef CONFIG_SMP
2730 /*
2731  * Approximate:
2732  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2733  */
2734 static u64 decay_load(u64 val, u64 n)
2735 {
2736 	unsigned int local_n;
2737 
2738 	if (unlikely(n > LOAD_AVG_PERIOD * 63))
2739 		return 0;
2740 
2741 	/* after bounds checking we can collapse to 32-bit */
2742 	local_n = n;
2743 
2744 	/*
2745 	 * As y^PERIOD = 1/2, we can combine
2746 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2747 	 * With a look-up table which covers y^n (n<PERIOD)
2748 	 *
2749 	 * To achieve constant time decay_load.
2750 	 */
2751 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2752 		val >>= local_n / LOAD_AVG_PERIOD;
2753 		local_n %= LOAD_AVG_PERIOD;
2754 	}
2755 
2756 	val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2757 	return val;
2758 }
2759 
2760 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
2761 {
2762 	u32 c1, c2, c3 = d3; /* y^0 == 1 */
2763 
2764 	/*
2765 	 * c1 = d1 y^p
2766 	 */
2767 	c1 = decay_load((u64)d1, periods);
2768 
2769 	/*
2770 	 *            p-1
2771 	 * c2 = 1024 \Sum y^n
2772 	 *            n=1
2773 	 *
2774 	 *              inf        inf
2775 	 *    = 1024 ( \Sum y^n - \Sum y^n - y^0 )
2776 	 *              n=0        n=p
2777 	 */
2778 	c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
2779 
2780 	return c1 + c2 + c3;
2781 }
2782 
2783 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
2784 
2785 /*
2786  * Accumulate the three separate parts of the sum; d1 the remainder
2787  * of the last (incomplete) period, d2 the span of full periods and d3
2788  * the remainder of the (incomplete) current period.
2789  *
2790  *           d1          d2           d3
2791  *           ^           ^            ^
2792  *           |           |            |
2793  *         |<->|<----------------->|<--->|
2794  * ... |---x---|------| ... |------|-----x (now)
2795  *
2796  *                           p-1
2797  * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
2798  *                           n=1
2799  *
2800  *    = u y^p +					(Step 1)
2801  *
2802  *                     p-1
2803  *      d1 y^p + 1024 \Sum y^n + d3 y^0		(Step 2)
2804  *                     n=1
2805  */
2806 static __always_inline u32
2807 accumulate_sum(u64 delta, int cpu, struct sched_avg *sa,
2808 	       unsigned long weight, int running, struct cfs_rq *cfs_rq)
2809 {
2810 	unsigned long scale_freq, scale_cpu;
2811 	u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
2812 	u64 periods;
2813 
2814 	scale_freq = arch_scale_freq_capacity(NULL, cpu);
2815 	scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2816 
2817 	delta += sa->period_contrib;
2818 	periods = delta / 1024; /* A period is 1024us (~1ms) */
2819 
2820 	/*
2821 	 * Step 1: decay old *_sum if we crossed period boundaries.
2822 	 */
2823 	if (periods) {
2824 		sa->load_sum = decay_load(sa->load_sum, periods);
2825 		if (cfs_rq) {
2826 			cfs_rq->runnable_load_sum =
2827 				decay_load(cfs_rq->runnable_load_sum, periods);
2828 		}
2829 		sa->util_sum = decay_load((u64)(sa->util_sum), periods);
2830 
2831 		/*
2832 		 * Step 2
2833 		 */
2834 		delta %= 1024;
2835 		contrib = __accumulate_pelt_segments(periods,
2836 				1024 - sa->period_contrib, delta);
2837 	}
2838 	sa->period_contrib = delta;
2839 
2840 	contrib = cap_scale(contrib, scale_freq);
2841 	if (weight) {
2842 		sa->load_sum += weight * contrib;
2843 		if (cfs_rq)
2844 			cfs_rq->runnable_load_sum += weight * contrib;
2845 	}
2846 	if (running)
2847 		sa->util_sum += contrib * scale_cpu;
2848 
2849 	return periods;
2850 }
2851 
2852 /*
2853  * We can represent the historical contribution to runnable average as the
2854  * coefficients of a geometric series.  To do this we sub-divide our runnable
2855  * history into segments of approximately 1ms (1024us); label the segment that
2856  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2857  *
2858  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2859  *      p0            p1           p2
2860  *     (now)       (~1ms ago)  (~2ms ago)
2861  *
2862  * Let u_i denote the fraction of p_i that the entity was runnable.
2863  *
2864  * We then designate the fractions u_i as our co-efficients, yielding the
2865  * following representation of historical load:
2866  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2867  *
2868  * We choose y based on the with of a reasonably scheduling period, fixing:
2869  *   y^32 = 0.5
2870  *
2871  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2872  * approximately half as much as the contribution to load within the last ms
2873  * (u_0).
2874  *
2875  * When a period "rolls over" and we have new u_0`, multiplying the previous
2876  * sum again by y is sufficient to update:
2877  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2878  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2879  */
2880 static __always_inline int
2881 ___update_load_avg(u64 now, int cpu, struct sched_avg *sa,
2882 		  unsigned long weight, int running, struct cfs_rq *cfs_rq)
2883 {
2884 	u64 delta;
2885 
2886 	delta = now - sa->last_update_time;
2887 	/*
2888 	 * This should only happen when time goes backwards, which it
2889 	 * unfortunately does during sched clock init when we swap over to TSC.
2890 	 */
2891 	if ((s64)delta < 0) {
2892 		sa->last_update_time = now;
2893 		return 0;
2894 	}
2895 
2896 	/*
2897 	 * Use 1024ns as the unit of measurement since it's a reasonable
2898 	 * approximation of 1us and fast to compute.
2899 	 */
2900 	delta >>= 10;
2901 	if (!delta)
2902 		return 0;
2903 
2904 	sa->last_update_time += delta << 10;
2905 
2906 	/*
2907 	 * Now we know we crossed measurement unit boundaries. The *_avg
2908 	 * accrues by two steps:
2909 	 *
2910 	 * Step 1: accumulate *_sum since last_update_time. If we haven't
2911 	 * crossed period boundaries, finish.
2912 	 */
2913 	if (!accumulate_sum(delta, cpu, sa, weight, running, cfs_rq))
2914 		return 0;
2915 
2916 	/*
2917 	 * Step 2: update *_avg.
2918 	 */
2919 	sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
2920 	if (cfs_rq) {
2921 		cfs_rq->runnable_load_avg =
2922 			div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2923 	}
2924 	sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
2925 
2926 	return 1;
2927 }
2928 
2929 static int
2930 __update_load_avg_blocked_se(u64 now, int cpu, struct sched_entity *se)
2931 {
2932 	return ___update_load_avg(now, cpu, &se->avg, 0, 0, NULL);
2933 }
2934 
2935 static int
2936 __update_load_avg_se(u64 now, int cpu, struct cfs_rq *cfs_rq, struct sched_entity *se)
2937 {
2938 	return ___update_load_avg(now, cpu, &se->avg,
2939 				  se->on_rq * scale_load_down(se->load.weight),
2940 				  cfs_rq->curr == se, NULL);
2941 }
2942 
2943 static int
2944 __update_load_avg_cfs_rq(u64 now, int cpu, struct cfs_rq *cfs_rq)
2945 {
2946 	return ___update_load_avg(now, cpu, &cfs_rq->avg,
2947 			scale_load_down(cfs_rq->load.weight),
2948 			cfs_rq->curr != NULL, cfs_rq);
2949 }
2950 
2951 /*
2952  * Signed add and clamp on underflow.
2953  *
2954  * Explicitly do a load-store to ensure the intermediate value never hits
2955  * memory. This allows lockless observations without ever seeing the negative
2956  * values.
2957  */
2958 #define add_positive(_ptr, _val) do {                           \
2959 	typeof(_ptr) ptr = (_ptr);                              \
2960 	typeof(_val) val = (_val);                              \
2961 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2962 								\
2963 	res = var + val;                                        \
2964 								\
2965 	if (val < 0 && res > var)                               \
2966 		res = 0;                                        \
2967 								\
2968 	WRITE_ONCE(*ptr, res);                                  \
2969 } while (0)
2970 
2971 #ifdef CONFIG_FAIR_GROUP_SCHED
2972 /**
2973  * update_tg_load_avg - update the tg's load avg
2974  * @cfs_rq: the cfs_rq whose avg changed
2975  * @force: update regardless of how small the difference
2976  *
2977  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2978  * However, because tg->load_avg is a global value there are performance
2979  * considerations.
2980  *
2981  * In order to avoid having to look at the other cfs_rq's, we use a
2982  * differential update where we store the last value we propagated. This in
2983  * turn allows skipping updates if the differential is 'small'.
2984  *
2985  * Updating tg's load_avg is necessary before update_cfs_share() (which is
2986  * done) and effective_load() (which is not done because it is too costly).
2987  */
2988 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
2989 {
2990 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
2991 
2992 	/*
2993 	 * No need to update load_avg for root_task_group as it is not used.
2994 	 */
2995 	if (cfs_rq->tg == &root_task_group)
2996 		return;
2997 
2998 	if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2999 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3000 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3001 	}
3002 }
3003 
3004 /*
3005  * Called within set_task_rq() right before setting a task's cpu. The
3006  * caller only guarantees p->pi_lock is held; no other assumptions,
3007  * including the state of rq->lock, should be made.
3008  */
3009 void set_task_rq_fair(struct sched_entity *se,
3010 		      struct cfs_rq *prev, struct cfs_rq *next)
3011 {
3012 	u64 p_last_update_time;
3013 	u64 n_last_update_time;
3014 
3015 	if (!sched_feat(ATTACH_AGE_LOAD))
3016 		return;
3017 
3018 	/*
3019 	 * We are supposed to update the task to "current" time, then its up to
3020 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3021 	 * getting what current time is, so simply throw away the out-of-date
3022 	 * time. This will result in the wakee task is less decayed, but giving
3023 	 * the wakee more load sounds not bad.
3024 	 */
3025 	if (!(se->avg.last_update_time && prev))
3026 		return;
3027 
3028 #ifndef CONFIG_64BIT
3029 	{
3030 		u64 p_last_update_time_copy;
3031 		u64 n_last_update_time_copy;
3032 
3033 		do {
3034 			p_last_update_time_copy = prev->load_last_update_time_copy;
3035 			n_last_update_time_copy = next->load_last_update_time_copy;
3036 
3037 			smp_rmb();
3038 
3039 			p_last_update_time = prev->avg.last_update_time;
3040 			n_last_update_time = next->avg.last_update_time;
3041 
3042 		} while (p_last_update_time != p_last_update_time_copy ||
3043 			 n_last_update_time != n_last_update_time_copy);
3044 	}
3045 #else
3046 	p_last_update_time = prev->avg.last_update_time;
3047 	n_last_update_time = next->avg.last_update_time;
3048 #endif
3049 	__update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3050 	se->avg.last_update_time = n_last_update_time;
3051 }
3052 
3053 /* Take into account change of utilization of a child task group */
3054 static inline void
3055 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se)
3056 {
3057 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3058 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3059 
3060 	/* Nothing to update */
3061 	if (!delta)
3062 		return;
3063 
3064 	/* Set new sched_entity's utilization */
3065 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3066 	se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3067 
3068 	/* Update parent cfs_rq utilization */
3069 	add_positive(&cfs_rq->avg.util_avg, delta);
3070 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3071 }
3072 
3073 /* Take into account change of load of a child task group */
3074 static inline void
3075 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se)
3076 {
3077 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3078 	long delta, load = gcfs_rq->avg.load_avg;
3079 
3080 	/*
3081 	 * If the load of group cfs_rq is null, the load of the
3082 	 * sched_entity will also be null so we can skip the formula
3083 	 */
3084 	if (load) {
3085 		long tg_load;
3086 
3087 		/* Get tg's load and ensure tg_load > 0 */
3088 		tg_load = atomic_long_read(&gcfs_rq->tg->load_avg) + 1;
3089 
3090 		/* Ensure tg_load >= load and updated with current load*/
3091 		tg_load -= gcfs_rq->tg_load_avg_contrib;
3092 		tg_load += load;
3093 
3094 		/*
3095 		 * We need to compute a correction term in the case that the
3096 		 * task group is consuming more CPU than a task of equal
3097 		 * weight. A task with a weight equals to tg->shares will have
3098 		 * a load less or equal to scale_load_down(tg->shares).
3099 		 * Similarly, the sched_entities that represent the task group
3100 		 * at parent level, can't have a load higher than
3101 		 * scale_load_down(tg->shares). And the Sum of sched_entities'
3102 		 * load must be <= scale_load_down(tg->shares).
3103 		 */
3104 		if (tg_load > scale_load_down(gcfs_rq->tg->shares)) {
3105 			/* scale gcfs_rq's load into tg's shares*/
3106 			load *= scale_load_down(gcfs_rq->tg->shares);
3107 			load /= tg_load;
3108 		}
3109 	}
3110 
3111 	delta = load - se->avg.load_avg;
3112 
3113 	/* Nothing to update */
3114 	if (!delta)
3115 		return;
3116 
3117 	/* Set new sched_entity's load */
3118 	se->avg.load_avg = load;
3119 	se->avg.load_sum = se->avg.load_avg * LOAD_AVG_MAX;
3120 
3121 	/* Update parent cfs_rq load */
3122 	add_positive(&cfs_rq->avg.load_avg, delta);
3123 	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * LOAD_AVG_MAX;
3124 
3125 	/*
3126 	 * If the sched_entity is already enqueued, we also have to update the
3127 	 * runnable load avg.
3128 	 */
3129 	if (se->on_rq) {
3130 		/* Update parent cfs_rq runnable_load_avg */
3131 		add_positive(&cfs_rq->runnable_load_avg, delta);
3132 		cfs_rq->runnable_load_sum = cfs_rq->runnable_load_avg * LOAD_AVG_MAX;
3133 	}
3134 }
3135 
3136 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq)
3137 {
3138 	cfs_rq->propagate_avg = 1;
3139 }
3140 
3141 static inline int test_and_clear_tg_cfs_propagate(struct sched_entity *se)
3142 {
3143 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
3144 
3145 	if (!cfs_rq->propagate_avg)
3146 		return 0;
3147 
3148 	cfs_rq->propagate_avg = 0;
3149 	return 1;
3150 }
3151 
3152 /* Update task and its cfs_rq load average */
3153 static inline int propagate_entity_load_avg(struct sched_entity *se)
3154 {
3155 	struct cfs_rq *cfs_rq;
3156 
3157 	if (entity_is_task(se))
3158 		return 0;
3159 
3160 	if (!test_and_clear_tg_cfs_propagate(se))
3161 		return 0;
3162 
3163 	cfs_rq = cfs_rq_of(se);
3164 
3165 	set_tg_cfs_propagate(cfs_rq);
3166 
3167 	update_tg_cfs_util(cfs_rq, se);
3168 	update_tg_cfs_load(cfs_rq, se);
3169 
3170 	return 1;
3171 }
3172 
3173 /*
3174  * Check if we need to update the load and the utilization of a blocked
3175  * group_entity:
3176  */
3177 static inline bool skip_blocked_update(struct sched_entity *se)
3178 {
3179 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3180 
3181 	/*
3182 	 * If sched_entity still have not zero load or utilization, we have to
3183 	 * decay it:
3184 	 */
3185 	if (se->avg.load_avg || se->avg.util_avg)
3186 		return false;
3187 
3188 	/*
3189 	 * If there is a pending propagation, we have to update the load and
3190 	 * the utilization of the sched_entity:
3191 	 */
3192 	if (gcfs_rq->propagate_avg)
3193 		return false;
3194 
3195 	/*
3196 	 * Otherwise, the load and the utilization of the sched_entity is
3197 	 * already zero and there is no pending propagation, so it will be a
3198 	 * waste of time to try to decay it:
3199 	 */
3200 	return true;
3201 }
3202 
3203 #else /* CONFIG_FAIR_GROUP_SCHED */
3204 
3205 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3206 
3207 static inline int propagate_entity_load_avg(struct sched_entity *se)
3208 {
3209 	return 0;
3210 }
3211 
3212 static inline void set_tg_cfs_propagate(struct cfs_rq *cfs_rq) {}
3213 
3214 #endif /* CONFIG_FAIR_GROUP_SCHED */
3215 
3216 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
3217 {
3218 	if (&this_rq()->cfs == cfs_rq) {
3219 		/*
3220 		 * There are a few boundary cases this might miss but it should
3221 		 * get called often enough that that should (hopefully) not be
3222 		 * a real problem -- added to that it only calls on the local
3223 		 * CPU, so if we enqueue remotely we'll miss an update, but
3224 		 * the next tick/schedule should update.
3225 		 *
3226 		 * It will not get called when we go idle, because the idle
3227 		 * thread is a different class (!fair), nor will the utilization
3228 		 * number include things like RT tasks.
3229 		 *
3230 		 * As is, the util number is not freq-invariant (we'd have to
3231 		 * implement arch_scale_freq_capacity() for that).
3232 		 *
3233 		 * See cpu_util().
3234 		 */
3235 		cpufreq_update_util(rq_of(cfs_rq), 0);
3236 	}
3237 }
3238 
3239 /*
3240  * Unsigned subtract and clamp on underflow.
3241  *
3242  * Explicitly do a load-store to ensure the intermediate value never hits
3243  * memory. This allows lockless observations without ever seeing the negative
3244  * values.
3245  */
3246 #define sub_positive(_ptr, _val) do {				\
3247 	typeof(_ptr) ptr = (_ptr);				\
3248 	typeof(*ptr) val = (_val);				\
3249 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3250 	res = var - val;					\
3251 	if (res > var)						\
3252 		res = 0;					\
3253 	WRITE_ONCE(*ptr, res);					\
3254 } while (0)
3255 
3256 /**
3257  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3258  * @now: current time, as per cfs_rq_clock_task()
3259  * @cfs_rq: cfs_rq to update
3260  * @update_freq: should we call cfs_rq_util_change() or will the call do so
3261  *
3262  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3263  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3264  * post_init_entity_util_avg().
3265  *
3266  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3267  *
3268  * Returns true if the load decayed or we removed load.
3269  *
3270  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3271  * call update_tg_load_avg() when this function returns true.
3272  */
3273 static inline int
3274 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3275 {
3276 	struct sched_avg *sa = &cfs_rq->avg;
3277 	int decayed, removed_load = 0, removed_util = 0;
3278 
3279 	if (atomic_long_read(&cfs_rq->removed_load_avg)) {
3280 		s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
3281 		sub_positive(&sa->load_avg, r);
3282 		sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
3283 		removed_load = 1;
3284 		set_tg_cfs_propagate(cfs_rq);
3285 	}
3286 
3287 	if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3288 		long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
3289 		sub_positive(&sa->util_avg, r);
3290 		sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
3291 		removed_util = 1;
3292 		set_tg_cfs_propagate(cfs_rq);
3293 	}
3294 
3295 	decayed = __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3296 
3297 #ifndef CONFIG_64BIT
3298 	smp_wmb();
3299 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3300 #endif
3301 
3302 	if (update_freq && (decayed || removed_util))
3303 		cfs_rq_util_change(cfs_rq);
3304 
3305 	return decayed || removed_load;
3306 }
3307 
3308 /*
3309  * Optional action to be done while updating the load average
3310  */
3311 #define UPDATE_TG	0x1
3312 #define SKIP_AGE_LOAD	0x2
3313 
3314 /* Update task and its cfs_rq load average */
3315 static inline void update_load_avg(struct sched_entity *se, int flags)
3316 {
3317 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3318 	u64 now = cfs_rq_clock_task(cfs_rq);
3319 	struct rq *rq = rq_of(cfs_rq);
3320 	int cpu = cpu_of(rq);
3321 	int decayed;
3322 
3323 	/*
3324 	 * Track task load average for carrying it to new CPU after migrated, and
3325 	 * track group sched_entity load average for task_h_load calc in migration
3326 	 */
3327 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3328 		__update_load_avg_se(now, cpu, cfs_rq, se);
3329 
3330 	decayed  = update_cfs_rq_load_avg(now, cfs_rq, true);
3331 	decayed |= propagate_entity_load_avg(se);
3332 
3333 	if (decayed && (flags & UPDATE_TG))
3334 		update_tg_load_avg(cfs_rq, 0);
3335 }
3336 
3337 /**
3338  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3339  * @cfs_rq: cfs_rq to attach to
3340  * @se: sched_entity to attach
3341  *
3342  * Must call update_cfs_rq_load_avg() before this, since we rely on
3343  * cfs_rq->avg.last_update_time being current.
3344  */
3345 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3346 {
3347 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3348 	cfs_rq->avg.load_avg += se->avg.load_avg;
3349 	cfs_rq->avg.load_sum += se->avg.load_sum;
3350 	cfs_rq->avg.util_avg += se->avg.util_avg;
3351 	cfs_rq->avg.util_sum += se->avg.util_sum;
3352 	set_tg_cfs_propagate(cfs_rq);
3353 
3354 	cfs_rq_util_change(cfs_rq);
3355 }
3356 
3357 /**
3358  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3359  * @cfs_rq: cfs_rq to detach from
3360  * @se: sched_entity to detach
3361  *
3362  * Must call update_cfs_rq_load_avg() before this, since we rely on
3363  * cfs_rq->avg.last_update_time being current.
3364  */
3365 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3366 {
3367 
3368 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3369 	sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3370 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3371 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3372 	set_tg_cfs_propagate(cfs_rq);
3373 
3374 	cfs_rq_util_change(cfs_rq);
3375 }
3376 
3377 /* Add the load generated by se into cfs_rq's load average */
3378 static inline void
3379 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3380 {
3381 	struct sched_avg *sa = &se->avg;
3382 
3383 	cfs_rq->runnable_load_avg += sa->load_avg;
3384 	cfs_rq->runnable_load_sum += sa->load_sum;
3385 
3386 	if (!sa->last_update_time) {
3387 		attach_entity_load_avg(cfs_rq, se);
3388 		update_tg_load_avg(cfs_rq, 0);
3389 	}
3390 }
3391 
3392 /* Remove the runnable load generated by se from cfs_rq's runnable load average */
3393 static inline void
3394 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3395 {
3396 	cfs_rq->runnable_load_avg =
3397 		max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3398 	cfs_rq->runnable_load_sum =
3399 		max_t(s64,  cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
3400 }
3401 
3402 #ifndef CONFIG_64BIT
3403 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3404 {
3405 	u64 last_update_time_copy;
3406 	u64 last_update_time;
3407 
3408 	do {
3409 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3410 		smp_rmb();
3411 		last_update_time = cfs_rq->avg.last_update_time;
3412 	} while (last_update_time != last_update_time_copy);
3413 
3414 	return last_update_time;
3415 }
3416 #else
3417 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3418 {
3419 	return cfs_rq->avg.last_update_time;
3420 }
3421 #endif
3422 
3423 /*
3424  * Synchronize entity load avg of dequeued entity without locking
3425  * the previous rq.
3426  */
3427 void sync_entity_load_avg(struct sched_entity *se)
3428 {
3429 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3430 	u64 last_update_time;
3431 
3432 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3433 	__update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3434 }
3435 
3436 /*
3437  * Task first catches up with cfs_rq, and then subtract
3438  * itself from the cfs_rq (task must be off the queue now).
3439  */
3440 void remove_entity_load_avg(struct sched_entity *se)
3441 {
3442 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3443 
3444 	/*
3445 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3446 	 * post_init_entity_util_avg() which will have added things to the
3447 	 * cfs_rq, so we can remove unconditionally.
3448 	 *
3449 	 * Similarly for groups, they will have passed through
3450 	 * post_init_entity_util_avg() before unregister_sched_fair_group()
3451 	 * calls this.
3452 	 */
3453 
3454 	sync_entity_load_avg(se);
3455 	atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3456 	atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
3457 }
3458 
3459 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3460 {
3461 	return cfs_rq->runnable_load_avg;
3462 }
3463 
3464 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3465 {
3466 	return cfs_rq->avg.load_avg;
3467 }
3468 
3469 static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3470 
3471 #else /* CONFIG_SMP */
3472 
3473 static inline int
3474 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3475 {
3476 	return 0;
3477 }
3478 
3479 #define UPDATE_TG	0x0
3480 #define SKIP_AGE_LOAD	0x0
3481 
3482 static inline void update_load_avg(struct sched_entity *se, int not_used1)
3483 {
3484 	cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
3485 }
3486 
3487 static inline void
3488 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3489 static inline void
3490 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3491 static inline void remove_entity_load_avg(struct sched_entity *se) {}
3492 
3493 static inline void
3494 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3495 static inline void
3496 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3497 
3498 static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3499 {
3500 	return 0;
3501 }
3502 
3503 #endif /* CONFIG_SMP */
3504 
3505 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3506 {
3507 #ifdef CONFIG_SCHED_DEBUG
3508 	s64 d = se->vruntime - cfs_rq->min_vruntime;
3509 
3510 	if (d < 0)
3511 		d = -d;
3512 
3513 	if (d > 3*sysctl_sched_latency)
3514 		schedstat_inc(cfs_rq->nr_spread_over);
3515 #endif
3516 }
3517 
3518 static void
3519 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3520 {
3521 	u64 vruntime = cfs_rq->min_vruntime;
3522 
3523 	/*
3524 	 * The 'current' period is already promised to the current tasks,
3525 	 * however the extra weight of the new task will slow them down a
3526 	 * little, place the new task so that it fits in the slot that
3527 	 * stays open at the end.
3528 	 */
3529 	if (initial && sched_feat(START_DEBIT))
3530 		vruntime += sched_vslice(cfs_rq, se);
3531 
3532 	/* sleeps up to a single latency don't count. */
3533 	if (!initial) {
3534 		unsigned long thresh = sysctl_sched_latency;
3535 
3536 		/*
3537 		 * Halve their sleep time's effect, to allow
3538 		 * for a gentler effect of sleepers:
3539 		 */
3540 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
3541 			thresh >>= 1;
3542 
3543 		vruntime -= thresh;
3544 	}
3545 
3546 	/* ensure we never gain time by being placed backwards. */
3547 	se->vruntime = max_vruntime(se->vruntime, vruntime);
3548 }
3549 
3550 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3551 
3552 static inline void check_schedstat_required(void)
3553 {
3554 #ifdef CONFIG_SCHEDSTATS
3555 	if (schedstat_enabled())
3556 		return;
3557 
3558 	/* Force schedstat enabled if a dependent tracepoint is active */
3559 	if (trace_sched_stat_wait_enabled()    ||
3560 			trace_sched_stat_sleep_enabled()   ||
3561 			trace_sched_stat_iowait_enabled()  ||
3562 			trace_sched_stat_blocked_enabled() ||
3563 			trace_sched_stat_runtime_enabled())  {
3564 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3565 			     "stat_blocked and stat_runtime require the "
3566 			     "kernel parameter schedstats=enabled or "
3567 			     "kernel.sched_schedstats=1\n");
3568 	}
3569 #endif
3570 }
3571 
3572 
3573 /*
3574  * MIGRATION
3575  *
3576  *	dequeue
3577  *	  update_curr()
3578  *	    update_min_vruntime()
3579  *	  vruntime -= min_vruntime
3580  *
3581  *	enqueue
3582  *	  update_curr()
3583  *	    update_min_vruntime()
3584  *	  vruntime += min_vruntime
3585  *
3586  * this way the vruntime transition between RQs is done when both
3587  * min_vruntime are up-to-date.
3588  *
3589  * WAKEUP (remote)
3590  *
3591  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
3592  *	  vruntime -= min_vruntime
3593  *
3594  *	enqueue
3595  *	  update_curr()
3596  *	    update_min_vruntime()
3597  *	  vruntime += min_vruntime
3598  *
3599  * this way we don't have the most up-to-date min_vruntime on the originating
3600  * CPU and an up-to-date min_vruntime on the destination CPU.
3601  */
3602 
3603 static void
3604 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3605 {
3606 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3607 	bool curr = cfs_rq->curr == se;
3608 
3609 	/*
3610 	 * If we're the current task, we must renormalise before calling
3611 	 * update_curr().
3612 	 */
3613 	if (renorm && curr)
3614 		se->vruntime += cfs_rq->min_vruntime;
3615 
3616 	update_curr(cfs_rq);
3617 
3618 	/*
3619 	 * Otherwise, renormalise after, such that we're placed at the current
3620 	 * moment in time, instead of some random moment in the past. Being
3621 	 * placed in the past could significantly boost this task to the
3622 	 * fairness detriment of existing tasks.
3623 	 */
3624 	if (renorm && !curr)
3625 		se->vruntime += cfs_rq->min_vruntime;
3626 
3627 	/*
3628 	 * When enqueuing a sched_entity, we must:
3629 	 *   - Update loads to have both entity and cfs_rq synced with now.
3630 	 *   - Add its load to cfs_rq->runnable_avg
3631 	 *   - For group_entity, update its weight to reflect the new share of
3632 	 *     its group cfs_rq
3633 	 *   - Add its new weight to cfs_rq->load.weight
3634 	 */
3635 	update_load_avg(se, UPDATE_TG);
3636 	enqueue_entity_load_avg(cfs_rq, se);
3637 	update_cfs_shares(se);
3638 	account_entity_enqueue(cfs_rq, se);
3639 
3640 	if (flags & ENQUEUE_WAKEUP)
3641 		place_entity(cfs_rq, se, 0);
3642 
3643 	check_schedstat_required();
3644 	update_stats_enqueue(cfs_rq, se, flags);
3645 	check_spread(cfs_rq, se);
3646 	if (!curr)
3647 		__enqueue_entity(cfs_rq, se);
3648 	se->on_rq = 1;
3649 
3650 	if (cfs_rq->nr_running == 1) {
3651 		list_add_leaf_cfs_rq(cfs_rq);
3652 		check_enqueue_throttle(cfs_rq);
3653 	}
3654 }
3655 
3656 static void __clear_buddies_last(struct sched_entity *se)
3657 {
3658 	for_each_sched_entity(se) {
3659 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3660 		if (cfs_rq->last != se)
3661 			break;
3662 
3663 		cfs_rq->last = NULL;
3664 	}
3665 }
3666 
3667 static void __clear_buddies_next(struct sched_entity *se)
3668 {
3669 	for_each_sched_entity(se) {
3670 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3671 		if (cfs_rq->next != se)
3672 			break;
3673 
3674 		cfs_rq->next = NULL;
3675 	}
3676 }
3677 
3678 static void __clear_buddies_skip(struct sched_entity *se)
3679 {
3680 	for_each_sched_entity(se) {
3681 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3682 		if (cfs_rq->skip != se)
3683 			break;
3684 
3685 		cfs_rq->skip = NULL;
3686 	}
3687 }
3688 
3689 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3690 {
3691 	if (cfs_rq->last == se)
3692 		__clear_buddies_last(se);
3693 
3694 	if (cfs_rq->next == se)
3695 		__clear_buddies_next(se);
3696 
3697 	if (cfs_rq->skip == se)
3698 		__clear_buddies_skip(se);
3699 }
3700 
3701 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3702 
3703 static void
3704 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3705 {
3706 	/*
3707 	 * Update run-time statistics of the 'current'.
3708 	 */
3709 	update_curr(cfs_rq);
3710 
3711 	/*
3712 	 * When dequeuing a sched_entity, we must:
3713 	 *   - Update loads to have both entity and cfs_rq synced with now.
3714 	 *   - Substract its load from the cfs_rq->runnable_avg.
3715 	 *   - Substract its previous weight from cfs_rq->load.weight.
3716 	 *   - For group entity, update its weight to reflect the new share
3717 	 *     of its group cfs_rq.
3718 	 */
3719 	update_load_avg(se, UPDATE_TG);
3720 	dequeue_entity_load_avg(cfs_rq, se);
3721 
3722 	update_stats_dequeue(cfs_rq, se, flags);
3723 
3724 	clear_buddies(cfs_rq, se);
3725 
3726 	if (se != cfs_rq->curr)
3727 		__dequeue_entity(cfs_rq, se);
3728 	se->on_rq = 0;
3729 	account_entity_dequeue(cfs_rq, se);
3730 
3731 	/*
3732 	 * Normalize after update_curr(); which will also have moved
3733 	 * min_vruntime if @se is the one holding it back. But before doing
3734 	 * update_min_vruntime() again, which will discount @se's position and
3735 	 * can move min_vruntime forward still more.
3736 	 */
3737 	if (!(flags & DEQUEUE_SLEEP))
3738 		se->vruntime -= cfs_rq->min_vruntime;
3739 
3740 	/* return excess runtime on last dequeue */
3741 	return_cfs_rq_runtime(cfs_rq);
3742 
3743 	update_cfs_shares(se);
3744 
3745 	/*
3746 	 * Now advance min_vruntime if @se was the entity holding it back,
3747 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
3748 	 * put back on, and if we advance min_vruntime, we'll be placed back
3749 	 * further than we started -- ie. we'll be penalized.
3750 	 */
3751 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
3752 		update_min_vruntime(cfs_rq);
3753 }
3754 
3755 /*
3756  * Preempt the current task with a newly woken task if needed:
3757  */
3758 static void
3759 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3760 {
3761 	unsigned long ideal_runtime, delta_exec;
3762 	struct sched_entity *se;
3763 	s64 delta;
3764 
3765 	ideal_runtime = sched_slice(cfs_rq, curr);
3766 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3767 	if (delta_exec > ideal_runtime) {
3768 		resched_curr(rq_of(cfs_rq));
3769 		/*
3770 		 * The current task ran long enough, ensure it doesn't get
3771 		 * re-elected due to buddy favours.
3772 		 */
3773 		clear_buddies(cfs_rq, curr);
3774 		return;
3775 	}
3776 
3777 	/*
3778 	 * Ensure that a task that missed wakeup preemption by a
3779 	 * narrow margin doesn't have to wait for a full slice.
3780 	 * This also mitigates buddy induced latencies under load.
3781 	 */
3782 	if (delta_exec < sysctl_sched_min_granularity)
3783 		return;
3784 
3785 	se = __pick_first_entity(cfs_rq);
3786 	delta = curr->vruntime - se->vruntime;
3787 
3788 	if (delta < 0)
3789 		return;
3790 
3791 	if (delta > ideal_runtime)
3792 		resched_curr(rq_of(cfs_rq));
3793 }
3794 
3795 static void
3796 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3797 {
3798 	/* 'current' is not kept within the tree. */
3799 	if (se->on_rq) {
3800 		/*
3801 		 * Any task has to be enqueued before it get to execute on
3802 		 * a CPU. So account for the time it spent waiting on the
3803 		 * runqueue.
3804 		 */
3805 		update_stats_wait_end(cfs_rq, se);
3806 		__dequeue_entity(cfs_rq, se);
3807 		update_load_avg(se, UPDATE_TG);
3808 	}
3809 
3810 	update_stats_curr_start(cfs_rq, se);
3811 	cfs_rq->curr = se;
3812 
3813 	/*
3814 	 * Track our maximum slice length, if the CPU's load is at
3815 	 * least twice that of our own weight (i.e. dont track it
3816 	 * when there are only lesser-weight tasks around):
3817 	 */
3818 	if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3819 		schedstat_set(se->statistics.slice_max,
3820 			max((u64)schedstat_val(se->statistics.slice_max),
3821 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
3822 	}
3823 
3824 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3825 }
3826 
3827 static int
3828 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3829 
3830 /*
3831  * Pick the next process, keeping these things in mind, in this order:
3832  * 1) keep things fair between processes/task groups
3833  * 2) pick the "next" process, since someone really wants that to run
3834  * 3) pick the "last" process, for cache locality
3835  * 4) do not run the "skip" process, if something else is available
3836  */
3837 static struct sched_entity *
3838 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3839 {
3840 	struct sched_entity *left = __pick_first_entity(cfs_rq);
3841 	struct sched_entity *se;
3842 
3843 	/*
3844 	 * If curr is set we have to see if its left of the leftmost entity
3845 	 * still in the tree, provided there was anything in the tree at all.
3846 	 */
3847 	if (!left || (curr && entity_before(curr, left)))
3848 		left = curr;
3849 
3850 	se = left; /* ideally we run the leftmost entity */
3851 
3852 	/*
3853 	 * Avoid running the skip buddy, if running something else can
3854 	 * be done without getting too unfair.
3855 	 */
3856 	if (cfs_rq->skip == se) {
3857 		struct sched_entity *second;
3858 
3859 		if (se == curr) {
3860 			second = __pick_first_entity(cfs_rq);
3861 		} else {
3862 			second = __pick_next_entity(se);
3863 			if (!second || (curr && entity_before(curr, second)))
3864 				second = curr;
3865 		}
3866 
3867 		if (second && wakeup_preempt_entity(second, left) < 1)
3868 			se = second;
3869 	}
3870 
3871 	/*
3872 	 * Prefer last buddy, try to return the CPU to a preempted task.
3873 	 */
3874 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3875 		se = cfs_rq->last;
3876 
3877 	/*
3878 	 * Someone really wants this to run. If it's not unfair, run it.
3879 	 */
3880 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3881 		se = cfs_rq->next;
3882 
3883 	clear_buddies(cfs_rq, se);
3884 
3885 	return se;
3886 }
3887 
3888 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3889 
3890 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3891 {
3892 	/*
3893 	 * If still on the runqueue then deactivate_task()
3894 	 * was not called and update_curr() has to be done:
3895 	 */
3896 	if (prev->on_rq)
3897 		update_curr(cfs_rq);
3898 
3899 	/* throttle cfs_rqs exceeding runtime */
3900 	check_cfs_rq_runtime(cfs_rq);
3901 
3902 	check_spread(cfs_rq, prev);
3903 
3904 	if (prev->on_rq) {
3905 		update_stats_wait_start(cfs_rq, prev);
3906 		/* Put 'current' back into the tree. */
3907 		__enqueue_entity(cfs_rq, prev);
3908 		/* in !on_rq case, update occurred at dequeue */
3909 		update_load_avg(prev, 0);
3910 	}
3911 	cfs_rq->curr = NULL;
3912 }
3913 
3914 static void
3915 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3916 {
3917 	/*
3918 	 * Update run-time statistics of the 'current'.
3919 	 */
3920 	update_curr(cfs_rq);
3921 
3922 	/*
3923 	 * Ensure that runnable average is periodically updated.
3924 	 */
3925 	update_load_avg(curr, UPDATE_TG);
3926 	update_cfs_shares(curr);
3927 
3928 #ifdef CONFIG_SCHED_HRTICK
3929 	/*
3930 	 * queued ticks are scheduled to match the slice, so don't bother
3931 	 * validating it and just reschedule.
3932 	 */
3933 	if (queued) {
3934 		resched_curr(rq_of(cfs_rq));
3935 		return;
3936 	}
3937 	/*
3938 	 * don't let the period tick interfere with the hrtick preemption
3939 	 */
3940 	if (!sched_feat(DOUBLE_TICK) &&
3941 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3942 		return;
3943 #endif
3944 
3945 	if (cfs_rq->nr_running > 1)
3946 		check_preempt_tick(cfs_rq, curr);
3947 }
3948 
3949 
3950 /**************************************************
3951  * CFS bandwidth control machinery
3952  */
3953 
3954 #ifdef CONFIG_CFS_BANDWIDTH
3955 
3956 #ifdef HAVE_JUMP_LABEL
3957 static struct static_key __cfs_bandwidth_used;
3958 
3959 static inline bool cfs_bandwidth_used(void)
3960 {
3961 	return static_key_false(&__cfs_bandwidth_used);
3962 }
3963 
3964 void cfs_bandwidth_usage_inc(void)
3965 {
3966 	static_key_slow_inc(&__cfs_bandwidth_used);
3967 }
3968 
3969 void cfs_bandwidth_usage_dec(void)
3970 {
3971 	static_key_slow_dec(&__cfs_bandwidth_used);
3972 }
3973 #else /* HAVE_JUMP_LABEL */
3974 static bool cfs_bandwidth_used(void)
3975 {
3976 	return true;
3977 }
3978 
3979 void cfs_bandwidth_usage_inc(void) {}
3980 void cfs_bandwidth_usage_dec(void) {}
3981 #endif /* HAVE_JUMP_LABEL */
3982 
3983 /*
3984  * default period for cfs group bandwidth.
3985  * default: 0.1s, units: nanoseconds
3986  */
3987 static inline u64 default_cfs_period(void)
3988 {
3989 	return 100000000ULL;
3990 }
3991 
3992 static inline u64 sched_cfs_bandwidth_slice(void)
3993 {
3994 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3995 }
3996 
3997 /*
3998  * Replenish runtime according to assigned quota and update expiration time.
3999  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4000  * additional synchronization around rq->lock.
4001  *
4002  * requires cfs_b->lock
4003  */
4004 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4005 {
4006 	u64 now;
4007 
4008 	if (cfs_b->quota == RUNTIME_INF)
4009 		return;
4010 
4011 	now = sched_clock_cpu(smp_processor_id());
4012 	cfs_b->runtime = cfs_b->quota;
4013 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4014 }
4015 
4016 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4017 {
4018 	return &tg->cfs_bandwidth;
4019 }
4020 
4021 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4022 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4023 {
4024 	if (unlikely(cfs_rq->throttle_count))
4025 		return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4026 
4027 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4028 }
4029 
4030 /* returns 0 on failure to allocate runtime */
4031 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4032 {
4033 	struct task_group *tg = cfs_rq->tg;
4034 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4035 	u64 amount = 0, min_amount, expires;
4036 
4037 	/* note: this is a positive sum as runtime_remaining <= 0 */
4038 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4039 
4040 	raw_spin_lock(&cfs_b->lock);
4041 	if (cfs_b->quota == RUNTIME_INF)
4042 		amount = min_amount;
4043 	else {
4044 		start_cfs_bandwidth(cfs_b);
4045 
4046 		if (cfs_b->runtime > 0) {
4047 			amount = min(cfs_b->runtime, min_amount);
4048 			cfs_b->runtime -= amount;
4049 			cfs_b->idle = 0;
4050 		}
4051 	}
4052 	expires = cfs_b->runtime_expires;
4053 	raw_spin_unlock(&cfs_b->lock);
4054 
4055 	cfs_rq->runtime_remaining += amount;
4056 	/*
4057 	 * we may have advanced our local expiration to account for allowed
4058 	 * spread between our sched_clock and the one on which runtime was
4059 	 * issued.
4060 	 */
4061 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
4062 		cfs_rq->runtime_expires = expires;
4063 
4064 	return cfs_rq->runtime_remaining > 0;
4065 }
4066 
4067 /*
4068  * Note: This depends on the synchronization provided by sched_clock and the
4069  * fact that rq->clock snapshots this value.
4070  */
4071 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4072 {
4073 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4074 
4075 	/* if the deadline is ahead of our clock, nothing to do */
4076 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4077 		return;
4078 
4079 	if (cfs_rq->runtime_remaining < 0)
4080 		return;
4081 
4082 	/*
4083 	 * If the local deadline has passed we have to consider the
4084 	 * possibility that our sched_clock is 'fast' and the global deadline
4085 	 * has not truly expired.
4086 	 *
4087 	 * Fortunately we can check determine whether this the case by checking
4088 	 * whether the global deadline has advanced. It is valid to compare
4089 	 * cfs_b->runtime_expires without any locks since we only care about
4090 	 * exact equality, so a partial write will still work.
4091 	 */
4092 
4093 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
4094 		/* extend local deadline, drift is bounded above by 2 ticks */
4095 		cfs_rq->runtime_expires += TICK_NSEC;
4096 	} else {
4097 		/* global deadline is ahead, expiration has passed */
4098 		cfs_rq->runtime_remaining = 0;
4099 	}
4100 }
4101 
4102 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4103 {
4104 	/* dock delta_exec before expiring quota (as it could span periods) */
4105 	cfs_rq->runtime_remaining -= delta_exec;
4106 	expire_cfs_rq_runtime(cfs_rq);
4107 
4108 	if (likely(cfs_rq->runtime_remaining > 0))
4109 		return;
4110 
4111 	/*
4112 	 * if we're unable to extend our runtime we resched so that the active
4113 	 * hierarchy can be throttled
4114 	 */
4115 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4116 		resched_curr(rq_of(cfs_rq));
4117 }
4118 
4119 static __always_inline
4120 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4121 {
4122 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4123 		return;
4124 
4125 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4126 }
4127 
4128 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4129 {
4130 	return cfs_bandwidth_used() && cfs_rq->throttled;
4131 }
4132 
4133 /* check whether cfs_rq, or any parent, is throttled */
4134 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4135 {
4136 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4137 }
4138 
4139 /*
4140  * Ensure that neither of the group entities corresponding to src_cpu or
4141  * dest_cpu are members of a throttled hierarchy when performing group
4142  * load-balance operations.
4143  */
4144 static inline int throttled_lb_pair(struct task_group *tg,
4145 				    int src_cpu, int dest_cpu)
4146 {
4147 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4148 
4149 	src_cfs_rq = tg->cfs_rq[src_cpu];
4150 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4151 
4152 	return throttled_hierarchy(src_cfs_rq) ||
4153 	       throttled_hierarchy(dest_cfs_rq);
4154 }
4155 
4156 /* updated child weight may affect parent so we have to do this bottom up */
4157 static int tg_unthrottle_up(struct task_group *tg, void *data)
4158 {
4159 	struct rq *rq = data;
4160 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4161 
4162 	cfs_rq->throttle_count--;
4163 	if (!cfs_rq->throttle_count) {
4164 		/* adjust cfs_rq_clock_task() */
4165 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4166 					     cfs_rq->throttled_clock_task;
4167 	}
4168 
4169 	return 0;
4170 }
4171 
4172 static int tg_throttle_down(struct task_group *tg, void *data)
4173 {
4174 	struct rq *rq = data;
4175 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4176 
4177 	/* group is entering throttled state, stop time */
4178 	if (!cfs_rq->throttle_count)
4179 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
4180 	cfs_rq->throttle_count++;
4181 
4182 	return 0;
4183 }
4184 
4185 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4186 {
4187 	struct rq *rq = rq_of(cfs_rq);
4188 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4189 	struct sched_entity *se;
4190 	long task_delta, dequeue = 1;
4191 	bool empty;
4192 
4193 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4194 
4195 	/* freeze hierarchy runnable averages while throttled */
4196 	rcu_read_lock();
4197 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4198 	rcu_read_unlock();
4199 
4200 	task_delta = cfs_rq->h_nr_running;
4201 	for_each_sched_entity(se) {
4202 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4203 		/* throttled entity or throttle-on-deactivate */
4204 		if (!se->on_rq)
4205 			break;
4206 
4207 		if (dequeue)
4208 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4209 		qcfs_rq->h_nr_running -= task_delta;
4210 
4211 		if (qcfs_rq->load.weight)
4212 			dequeue = 0;
4213 	}
4214 
4215 	if (!se)
4216 		sub_nr_running(rq, task_delta);
4217 
4218 	cfs_rq->throttled = 1;
4219 	cfs_rq->throttled_clock = rq_clock(rq);
4220 	raw_spin_lock(&cfs_b->lock);
4221 	empty = list_empty(&cfs_b->throttled_cfs_rq);
4222 
4223 	/*
4224 	 * Add to the _head_ of the list, so that an already-started
4225 	 * distribute_cfs_runtime will not see us
4226 	 */
4227 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4228 
4229 	/*
4230 	 * If we're the first throttled task, make sure the bandwidth
4231 	 * timer is running.
4232 	 */
4233 	if (empty)
4234 		start_cfs_bandwidth(cfs_b);
4235 
4236 	raw_spin_unlock(&cfs_b->lock);
4237 }
4238 
4239 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4240 {
4241 	struct rq *rq = rq_of(cfs_rq);
4242 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4243 	struct sched_entity *se;
4244 	int enqueue = 1;
4245 	long task_delta;
4246 
4247 	se = cfs_rq->tg->se[cpu_of(rq)];
4248 
4249 	cfs_rq->throttled = 0;
4250 
4251 	update_rq_clock(rq);
4252 
4253 	raw_spin_lock(&cfs_b->lock);
4254 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4255 	list_del_rcu(&cfs_rq->throttled_list);
4256 	raw_spin_unlock(&cfs_b->lock);
4257 
4258 	/* update hierarchical throttle state */
4259 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4260 
4261 	if (!cfs_rq->load.weight)
4262 		return;
4263 
4264 	task_delta = cfs_rq->h_nr_running;
4265 	for_each_sched_entity(se) {
4266 		if (se->on_rq)
4267 			enqueue = 0;
4268 
4269 		cfs_rq = cfs_rq_of(se);
4270 		if (enqueue)
4271 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4272 		cfs_rq->h_nr_running += task_delta;
4273 
4274 		if (cfs_rq_throttled(cfs_rq))
4275 			break;
4276 	}
4277 
4278 	if (!se)
4279 		add_nr_running(rq, task_delta);
4280 
4281 	/* determine whether we need to wake up potentially idle cpu */
4282 	if (rq->curr == rq->idle && rq->cfs.nr_running)
4283 		resched_curr(rq);
4284 }
4285 
4286 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4287 		u64 remaining, u64 expires)
4288 {
4289 	struct cfs_rq *cfs_rq;
4290 	u64 runtime;
4291 	u64 starting_runtime = remaining;
4292 
4293 	rcu_read_lock();
4294 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4295 				throttled_list) {
4296 		struct rq *rq = rq_of(cfs_rq);
4297 		struct rq_flags rf;
4298 
4299 		rq_lock(rq, &rf);
4300 		if (!cfs_rq_throttled(cfs_rq))
4301 			goto next;
4302 
4303 		runtime = -cfs_rq->runtime_remaining + 1;
4304 		if (runtime > remaining)
4305 			runtime = remaining;
4306 		remaining -= runtime;
4307 
4308 		cfs_rq->runtime_remaining += runtime;
4309 		cfs_rq->runtime_expires = expires;
4310 
4311 		/* we check whether we're throttled above */
4312 		if (cfs_rq->runtime_remaining > 0)
4313 			unthrottle_cfs_rq(cfs_rq);
4314 
4315 next:
4316 		rq_unlock(rq, &rf);
4317 
4318 		if (!remaining)
4319 			break;
4320 	}
4321 	rcu_read_unlock();
4322 
4323 	return starting_runtime - remaining;
4324 }
4325 
4326 /*
4327  * Responsible for refilling a task_group's bandwidth and unthrottling its
4328  * cfs_rqs as appropriate. If there has been no activity within the last
4329  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4330  * used to track this state.
4331  */
4332 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4333 {
4334 	u64 runtime, runtime_expires;
4335 	int throttled;
4336 
4337 	/* no need to continue the timer with no bandwidth constraint */
4338 	if (cfs_b->quota == RUNTIME_INF)
4339 		goto out_deactivate;
4340 
4341 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4342 	cfs_b->nr_periods += overrun;
4343 
4344 	/*
4345 	 * idle depends on !throttled (for the case of a large deficit), and if
4346 	 * we're going inactive then everything else can be deferred
4347 	 */
4348 	if (cfs_b->idle && !throttled)
4349 		goto out_deactivate;
4350 
4351 	__refill_cfs_bandwidth_runtime(cfs_b);
4352 
4353 	if (!throttled) {
4354 		/* mark as potentially idle for the upcoming period */
4355 		cfs_b->idle = 1;
4356 		return 0;
4357 	}
4358 
4359 	/* account preceding periods in which throttling occurred */
4360 	cfs_b->nr_throttled += overrun;
4361 
4362 	runtime_expires = cfs_b->runtime_expires;
4363 
4364 	/*
4365 	 * This check is repeated as we are holding onto the new bandwidth while
4366 	 * we unthrottle. This can potentially race with an unthrottled group
4367 	 * trying to acquire new bandwidth from the global pool. This can result
4368 	 * in us over-using our runtime if it is all used during this loop, but
4369 	 * only by limited amounts in that extreme case.
4370 	 */
4371 	while (throttled && cfs_b->runtime > 0) {
4372 		runtime = cfs_b->runtime;
4373 		raw_spin_unlock(&cfs_b->lock);
4374 		/* we can't nest cfs_b->lock while distributing bandwidth */
4375 		runtime = distribute_cfs_runtime(cfs_b, runtime,
4376 						 runtime_expires);
4377 		raw_spin_lock(&cfs_b->lock);
4378 
4379 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4380 
4381 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4382 	}
4383 
4384 	/*
4385 	 * While we are ensured activity in the period following an
4386 	 * unthrottle, this also covers the case in which the new bandwidth is
4387 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
4388 	 * timer to remain active while there are any throttled entities.)
4389 	 */
4390 	cfs_b->idle = 0;
4391 
4392 	return 0;
4393 
4394 out_deactivate:
4395 	return 1;
4396 }
4397 
4398 /* a cfs_rq won't donate quota below this amount */
4399 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4400 /* minimum remaining period time to redistribute slack quota */
4401 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4402 /* how long we wait to gather additional slack before distributing */
4403 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4404 
4405 /*
4406  * Are we near the end of the current quota period?
4407  *
4408  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4409  * hrtimer base being cleared by hrtimer_start. In the case of
4410  * migrate_hrtimers, base is never cleared, so we are fine.
4411  */
4412 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4413 {
4414 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
4415 	u64 remaining;
4416 
4417 	/* if the call-back is running a quota refresh is already occurring */
4418 	if (hrtimer_callback_running(refresh_timer))
4419 		return 1;
4420 
4421 	/* is a quota refresh about to occur? */
4422 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4423 	if (remaining < min_expire)
4424 		return 1;
4425 
4426 	return 0;
4427 }
4428 
4429 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4430 {
4431 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4432 
4433 	/* if there's a quota refresh soon don't bother with slack */
4434 	if (runtime_refresh_within(cfs_b, min_left))
4435 		return;
4436 
4437 	hrtimer_start(&cfs_b->slack_timer,
4438 			ns_to_ktime(cfs_bandwidth_slack_period),
4439 			HRTIMER_MODE_REL);
4440 }
4441 
4442 /* we know any runtime found here is valid as update_curr() precedes return */
4443 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4444 {
4445 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4446 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4447 
4448 	if (slack_runtime <= 0)
4449 		return;
4450 
4451 	raw_spin_lock(&cfs_b->lock);
4452 	if (cfs_b->quota != RUNTIME_INF &&
4453 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4454 		cfs_b->runtime += slack_runtime;
4455 
4456 		/* we are under rq->lock, defer unthrottling using a timer */
4457 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4458 		    !list_empty(&cfs_b->throttled_cfs_rq))
4459 			start_cfs_slack_bandwidth(cfs_b);
4460 	}
4461 	raw_spin_unlock(&cfs_b->lock);
4462 
4463 	/* even if it's not valid for return we don't want to try again */
4464 	cfs_rq->runtime_remaining -= slack_runtime;
4465 }
4466 
4467 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4468 {
4469 	if (!cfs_bandwidth_used())
4470 		return;
4471 
4472 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4473 		return;
4474 
4475 	__return_cfs_rq_runtime(cfs_rq);
4476 }
4477 
4478 /*
4479  * This is done with a timer (instead of inline with bandwidth return) since
4480  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4481  */
4482 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4483 {
4484 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4485 	u64 expires;
4486 
4487 	/* confirm we're still not at a refresh boundary */
4488 	raw_spin_lock(&cfs_b->lock);
4489 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4490 		raw_spin_unlock(&cfs_b->lock);
4491 		return;
4492 	}
4493 
4494 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4495 		runtime = cfs_b->runtime;
4496 
4497 	expires = cfs_b->runtime_expires;
4498 	raw_spin_unlock(&cfs_b->lock);
4499 
4500 	if (!runtime)
4501 		return;
4502 
4503 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4504 
4505 	raw_spin_lock(&cfs_b->lock);
4506 	if (expires == cfs_b->runtime_expires)
4507 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
4508 	raw_spin_unlock(&cfs_b->lock);
4509 }
4510 
4511 /*
4512  * When a group wakes up we want to make sure that its quota is not already
4513  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4514  * runtime as update_curr() throttling can not not trigger until it's on-rq.
4515  */
4516 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4517 {
4518 	if (!cfs_bandwidth_used())
4519 		return;
4520 
4521 	/* an active group must be handled by the update_curr()->put() path */
4522 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4523 		return;
4524 
4525 	/* ensure the group is not already throttled */
4526 	if (cfs_rq_throttled(cfs_rq))
4527 		return;
4528 
4529 	/* update runtime allocation */
4530 	account_cfs_rq_runtime(cfs_rq, 0);
4531 	if (cfs_rq->runtime_remaining <= 0)
4532 		throttle_cfs_rq(cfs_rq);
4533 }
4534 
4535 static void sync_throttle(struct task_group *tg, int cpu)
4536 {
4537 	struct cfs_rq *pcfs_rq, *cfs_rq;
4538 
4539 	if (!cfs_bandwidth_used())
4540 		return;
4541 
4542 	if (!tg->parent)
4543 		return;
4544 
4545 	cfs_rq = tg->cfs_rq[cpu];
4546 	pcfs_rq = tg->parent->cfs_rq[cpu];
4547 
4548 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
4549 	cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4550 }
4551 
4552 /* conditionally throttle active cfs_rq's from put_prev_entity() */
4553 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4554 {
4555 	if (!cfs_bandwidth_used())
4556 		return false;
4557 
4558 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4559 		return false;
4560 
4561 	/*
4562 	 * it's possible for a throttled entity to be forced into a running
4563 	 * state (e.g. set_curr_task), in this case we're finished.
4564 	 */
4565 	if (cfs_rq_throttled(cfs_rq))
4566 		return true;
4567 
4568 	throttle_cfs_rq(cfs_rq);
4569 	return true;
4570 }
4571 
4572 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4573 {
4574 	struct cfs_bandwidth *cfs_b =
4575 		container_of(timer, struct cfs_bandwidth, slack_timer);
4576 
4577 	do_sched_cfs_slack_timer(cfs_b);
4578 
4579 	return HRTIMER_NORESTART;
4580 }
4581 
4582 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4583 {
4584 	struct cfs_bandwidth *cfs_b =
4585 		container_of(timer, struct cfs_bandwidth, period_timer);
4586 	int overrun;
4587 	int idle = 0;
4588 
4589 	raw_spin_lock(&cfs_b->lock);
4590 	for (;;) {
4591 		overrun = hrtimer_forward_now(timer, cfs_b->period);
4592 		if (!overrun)
4593 			break;
4594 
4595 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
4596 	}
4597 	if (idle)
4598 		cfs_b->period_active = 0;
4599 	raw_spin_unlock(&cfs_b->lock);
4600 
4601 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4602 }
4603 
4604 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4605 {
4606 	raw_spin_lock_init(&cfs_b->lock);
4607 	cfs_b->runtime = 0;
4608 	cfs_b->quota = RUNTIME_INF;
4609 	cfs_b->period = ns_to_ktime(default_cfs_period());
4610 
4611 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4612 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4613 	cfs_b->period_timer.function = sched_cfs_period_timer;
4614 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4615 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
4616 }
4617 
4618 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4619 {
4620 	cfs_rq->runtime_enabled = 0;
4621 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
4622 }
4623 
4624 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4625 {
4626 	lockdep_assert_held(&cfs_b->lock);
4627 
4628 	if (!cfs_b->period_active) {
4629 		cfs_b->period_active = 1;
4630 		hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4631 		hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4632 	}
4633 }
4634 
4635 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4636 {
4637 	/* init_cfs_bandwidth() was not called */
4638 	if (!cfs_b->throttled_cfs_rq.next)
4639 		return;
4640 
4641 	hrtimer_cancel(&cfs_b->period_timer);
4642 	hrtimer_cancel(&cfs_b->slack_timer);
4643 }
4644 
4645 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4646 {
4647 	struct cfs_rq *cfs_rq;
4648 
4649 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4650 		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4651 
4652 		raw_spin_lock(&cfs_b->lock);
4653 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4654 		raw_spin_unlock(&cfs_b->lock);
4655 	}
4656 }
4657 
4658 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4659 {
4660 	struct cfs_rq *cfs_rq;
4661 
4662 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4663 		if (!cfs_rq->runtime_enabled)
4664 			continue;
4665 
4666 		/*
4667 		 * clock_task is not advancing so we just need to make sure
4668 		 * there's some valid quota amount
4669 		 */
4670 		cfs_rq->runtime_remaining = 1;
4671 		/*
4672 		 * Offline rq is schedulable till cpu is completely disabled
4673 		 * in take_cpu_down(), so we prevent new cfs throttling here.
4674 		 */
4675 		cfs_rq->runtime_enabled = 0;
4676 
4677 		if (cfs_rq_throttled(cfs_rq))
4678 			unthrottle_cfs_rq(cfs_rq);
4679 	}
4680 }
4681 
4682 #else /* CONFIG_CFS_BANDWIDTH */
4683 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4684 {
4685 	return rq_clock_task(rq_of(cfs_rq));
4686 }
4687 
4688 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4689 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4690 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4691 static inline void sync_throttle(struct task_group *tg, int cpu) {}
4692 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4693 
4694 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4695 {
4696 	return 0;
4697 }
4698 
4699 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4700 {
4701 	return 0;
4702 }
4703 
4704 static inline int throttled_lb_pair(struct task_group *tg,
4705 				    int src_cpu, int dest_cpu)
4706 {
4707 	return 0;
4708 }
4709 
4710 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4711 
4712 #ifdef CONFIG_FAIR_GROUP_SCHED
4713 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4714 #endif
4715 
4716 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4717 {
4718 	return NULL;
4719 }
4720 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4721 static inline void update_runtime_enabled(struct rq *rq) {}
4722 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4723 
4724 #endif /* CONFIG_CFS_BANDWIDTH */
4725 
4726 /**************************************************
4727  * CFS operations on tasks:
4728  */
4729 
4730 #ifdef CONFIG_SCHED_HRTICK
4731 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4732 {
4733 	struct sched_entity *se = &p->se;
4734 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4735 
4736 	SCHED_WARN_ON(task_rq(p) != rq);
4737 
4738 	if (rq->cfs.h_nr_running > 1) {
4739 		u64 slice = sched_slice(cfs_rq, se);
4740 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4741 		s64 delta = slice - ran;
4742 
4743 		if (delta < 0) {
4744 			if (rq->curr == p)
4745 				resched_curr(rq);
4746 			return;
4747 		}
4748 		hrtick_start(rq, delta);
4749 	}
4750 }
4751 
4752 /*
4753  * called from enqueue/dequeue and updates the hrtick when the
4754  * current task is from our class and nr_running is low enough
4755  * to matter.
4756  */
4757 static void hrtick_update(struct rq *rq)
4758 {
4759 	struct task_struct *curr = rq->curr;
4760 
4761 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4762 		return;
4763 
4764 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4765 		hrtick_start_fair(rq, curr);
4766 }
4767 #else /* !CONFIG_SCHED_HRTICK */
4768 static inline void
4769 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4770 {
4771 }
4772 
4773 static inline void hrtick_update(struct rq *rq)
4774 {
4775 }
4776 #endif
4777 
4778 /*
4779  * The enqueue_task method is called before nr_running is
4780  * increased. Here we update the fair scheduling stats and
4781  * then put the task into the rbtree:
4782  */
4783 static void
4784 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4785 {
4786 	struct cfs_rq *cfs_rq;
4787 	struct sched_entity *se = &p->se;
4788 
4789 	/*
4790 	 * If in_iowait is set, the code below may not trigger any cpufreq
4791 	 * utilization updates, so do it here explicitly with the IOWAIT flag
4792 	 * passed.
4793 	 */
4794 	if (p->in_iowait)
4795 		cpufreq_update_this_cpu(rq, SCHED_CPUFREQ_IOWAIT);
4796 
4797 	for_each_sched_entity(se) {
4798 		if (se->on_rq)
4799 			break;
4800 		cfs_rq = cfs_rq_of(se);
4801 		enqueue_entity(cfs_rq, se, flags);
4802 
4803 		/*
4804 		 * end evaluation on encountering a throttled cfs_rq
4805 		 *
4806 		 * note: in the case of encountering a throttled cfs_rq we will
4807 		 * post the final h_nr_running increment below.
4808 		 */
4809 		if (cfs_rq_throttled(cfs_rq))
4810 			break;
4811 		cfs_rq->h_nr_running++;
4812 
4813 		flags = ENQUEUE_WAKEUP;
4814 	}
4815 
4816 	for_each_sched_entity(se) {
4817 		cfs_rq = cfs_rq_of(se);
4818 		cfs_rq->h_nr_running++;
4819 
4820 		if (cfs_rq_throttled(cfs_rq))
4821 			break;
4822 
4823 		update_load_avg(se, UPDATE_TG);
4824 		update_cfs_shares(se);
4825 	}
4826 
4827 	if (!se)
4828 		add_nr_running(rq, 1);
4829 
4830 	hrtick_update(rq);
4831 }
4832 
4833 static void set_next_buddy(struct sched_entity *se);
4834 
4835 /*
4836  * The dequeue_task method is called before nr_running is
4837  * decreased. We remove the task from the rbtree and
4838  * update the fair scheduling stats:
4839  */
4840 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4841 {
4842 	struct cfs_rq *cfs_rq;
4843 	struct sched_entity *se = &p->se;
4844 	int task_sleep = flags & DEQUEUE_SLEEP;
4845 
4846 	for_each_sched_entity(se) {
4847 		cfs_rq = cfs_rq_of(se);
4848 		dequeue_entity(cfs_rq, se, flags);
4849 
4850 		/*
4851 		 * end evaluation on encountering a throttled cfs_rq
4852 		 *
4853 		 * note: in the case of encountering a throttled cfs_rq we will
4854 		 * post the final h_nr_running decrement below.
4855 		*/
4856 		if (cfs_rq_throttled(cfs_rq))
4857 			break;
4858 		cfs_rq->h_nr_running--;
4859 
4860 		/* Don't dequeue parent if it has other entities besides us */
4861 		if (cfs_rq->load.weight) {
4862 			/* Avoid re-evaluating load for this entity: */
4863 			se = parent_entity(se);
4864 			/*
4865 			 * Bias pick_next to pick a task from this cfs_rq, as
4866 			 * p is sleeping when it is within its sched_slice.
4867 			 */
4868 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4869 				set_next_buddy(se);
4870 			break;
4871 		}
4872 		flags |= DEQUEUE_SLEEP;
4873 	}
4874 
4875 	for_each_sched_entity(se) {
4876 		cfs_rq = cfs_rq_of(se);
4877 		cfs_rq->h_nr_running--;
4878 
4879 		if (cfs_rq_throttled(cfs_rq))
4880 			break;
4881 
4882 		update_load_avg(se, UPDATE_TG);
4883 		update_cfs_shares(se);
4884 	}
4885 
4886 	if (!se)
4887 		sub_nr_running(rq, 1);
4888 
4889 	hrtick_update(rq);
4890 }
4891 
4892 #ifdef CONFIG_SMP
4893 
4894 /* Working cpumask for: load_balance, load_balance_newidle. */
4895 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
4896 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
4897 
4898 #ifdef CONFIG_NO_HZ_COMMON
4899 /*
4900  * per rq 'load' arrray crap; XXX kill this.
4901  */
4902 
4903 /*
4904  * The exact cpuload calculated at every tick would be:
4905  *
4906  *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4907  *
4908  * If a cpu misses updates for n ticks (as it was idle) and update gets
4909  * called on the n+1-th tick when cpu may be busy, then we have:
4910  *
4911  *   load_n   = (1 - 1/2^i)^n * load_0
4912  *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
4913  *
4914  * decay_load_missed() below does efficient calculation of
4915  *
4916  *   load' = (1 - 1/2^i)^n * load
4917  *
4918  * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4919  * This allows us to precompute the above in said factors, thereby allowing the
4920  * reduction of an arbitrary n in O(log_2 n) steps. (See also
4921  * fixed_power_int())
4922  *
4923  * The calculation is approximated on a 128 point scale.
4924  */
4925 #define DEGRADE_SHIFT		7
4926 
4927 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4928 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4929 	{   0,   0,  0,  0,  0,  0, 0, 0 },
4930 	{  64,  32,  8,  0,  0,  0, 0, 0 },
4931 	{  96,  72, 40, 12,  1,  0, 0, 0 },
4932 	{ 112,  98, 75, 43, 15,  1, 0, 0 },
4933 	{ 120, 112, 98, 76, 45, 16, 2, 0 }
4934 };
4935 
4936 /*
4937  * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4938  * would be when CPU is idle and so we just decay the old load without
4939  * adding any new load.
4940  */
4941 static unsigned long
4942 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4943 {
4944 	int j = 0;
4945 
4946 	if (!missed_updates)
4947 		return load;
4948 
4949 	if (missed_updates >= degrade_zero_ticks[idx])
4950 		return 0;
4951 
4952 	if (idx == 1)
4953 		return load >> missed_updates;
4954 
4955 	while (missed_updates) {
4956 		if (missed_updates % 2)
4957 			load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4958 
4959 		missed_updates >>= 1;
4960 		j++;
4961 	}
4962 	return load;
4963 }
4964 #endif /* CONFIG_NO_HZ_COMMON */
4965 
4966 /**
4967  * __cpu_load_update - update the rq->cpu_load[] statistics
4968  * @this_rq: The rq to update statistics for
4969  * @this_load: The current load
4970  * @pending_updates: The number of missed updates
4971  *
4972  * Update rq->cpu_load[] statistics. This function is usually called every
4973  * scheduler tick (TICK_NSEC).
4974  *
4975  * This function computes a decaying average:
4976  *
4977  *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4978  *
4979  * Because of NOHZ it might not get called on every tick which gives need for
4980  * the @pending_updates argument.
4981  *
4982  *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4983  *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4984  *             = A * (A * load[i]_n-2 + B) + B
4985  *             = A * (A * (A * load[i]_n-3 + B) + B) + B
4986  *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4987  *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4988  *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4989  *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4990  *
4991  * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4992  * any change in load would have resulted in the tick being turned back on.
4993  *
4994  * For regular NOHZ, this reduces to:
4995  *
4996  *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
4997  *
4998  * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
4999  * term.
5000  */
5001 static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5002 			    unsigned long pending_updates)
5003 {
5004 	unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5005 	int i, scale;
5006 
5007 	this_rq->nr_load_updates++;
5008 
5009 	/* Update our load: */
5010 	this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5011 	for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5012 		unsigned long old_load, new_load;
5013 
5014 		/* scale is effectively 1 << i now, and >> i divides by scale */
5015 
5016 		old_load = this_rq->cpu_load[i];
5017 #ifdef CONFIG_NO_HZ_COMMON
5018 		old_load = decay_load_missed(old_load, pending_updates - 1, i);
5019 		if (tickless_load) {
5020 			old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5021 			/*
5022 			 * old_load can never be a negative value because a
5023 			 * decayed tickless_load cannot be greater than the
5024 			 * original tickless_load.
5025 			 */
5026 			old_load += tickless_load;
5027 		}
5028 #endif
5029 		new_load = this_load;
5030 		/*
5031 		 * Round up the averaging division if load is increasing. This
5032 		 * prevents us from getting stuck on 9 if the load is 10, for
5033 		 * example.
5034 		 */
5035 		if (new_load > old_load)
5036 			new_load += scale - 1;
5037 
5038 		this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5039 	}
5040 
5041 	sched_avg_update(this_rq);
5042 }
5043 
5044 /* Used instead of source_load when we know the type == 0 */
5045 static unsigned long weighted_cpuload(const int cpu)
5046 {
5047 	return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
5048 }
5049 
5050 #ifdef CONFIG_NO_HZ_COMMON
5051 /*
5052  * There is no sane way to deal with nohz on smp when using jiffies because the
5053  * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
5054  * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5055  *
5056  * Therefore we need to avoid the delta approach from the regular tick when
5057  * possible since that would seriously skew the load calculation. This is why we
5058  * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5059  * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5060  * loop exit, nohz_idle_balance, nohz full exit...)
5061  *
5062  * This means we might still be one tick off for nohz periods.
5063  */
5064 
5065 static void cpu_load_update_nohz(struct rq *this_rq,
5066 				 unsigned long curr_jiffies,
5067 				 unsigned long load)
5068 {
5069 	unsigned long pending_updates;
5070 
5071 	pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5072 	if (pending_updates) {
5073 		this_rq->last_load_update_tick = curr_jiffies;
5074 		/*
5075 		 * In the regular NOHZ case, we were idle, this means load 0.
5076 		 * In the NOHZ_FULL case, we were non-idle, we should consider
5077 		 * its weighted load.
5078 		 */
5079 		cpu_load_update(this_rq, load, pending_updates);
5080 	}
5081 }
5082 
5083 /*
5084  * Called from nohz_idle_balance() to update the load ratings before doing the
5085  * idle balance.
5086  */
5087 static void cpu_load_update_idle(struct rq *this_rq)
5088 {
5089 	/*
5090 	 * bail if there's load or we're actually up-to-date.
5091 	 */
5092 	if (weighted_cpuload(cpu_of(this_rq)))
5093 		return;
5094 
5095 	cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5096 }
5097 
5098 /*
5099  * Record CPU load on nohz entry so we know the tickless load to account
5100  * on nohz exit. cpu_load[0] happens then to be updated more frequently
5101  * than other cpu_load[idx] but it should be fine as cpu_load readers
5102  * shouldn't rely into synchronized cpu_load[*] updates.
5103  */
5104 void cpu_load_update_nohz_start(void)
5105 {
5106 	struct rq *this_rq = this_rq();
5107 
5108 	/*
5109 	 * This is all lockless but should be fine. If weighted_cpuload changes
5110 	 * concurrently we'll exit nohz. And cpu_load write can race with
5111 	 * cpu_load_update_idle() but both updater would be writing the same.
5112 	 */
5113 	this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
5114 }
5115 
5116 /*
5117  * Account the tickless load in the end of a nohz frame.
5118  */
5119 void cpu_load_update_nohz_stop(void)
5120 {
5121 	unsigned long curr_jiffies = READ_ONCE(jiffies);
5122 	struct rq *this_rq = this_rq();
5123 	unsigned long load;
5124 	struct rq_flags rf;
5125 
5126 	if (curr_jiffies == this_rq->last_load_update_tick)
5127 		return;
5128 
5129 	load = weighted_cpuload(cpu_of(this_rq));
5130 	rq_lock(this_rq, &rf);
5131 	update_rq_clock(this_rq);
5132 	cpu_load_update_nohz(this_rq, curr_jiffies, load);
5133 	rq_unlock(this_rq, &rf);
5134 }
5135 #else /* !CONFIG_NO_HZ_COMMON */
5136 static inline void cpu_load_update_nohz(struct rq *this_rq,
5137 					unsigned long curr_jiffies,
5138 					unsigned long load) { }
5139 #endif /* CONFIG_NO_HZ_COMMON */
5140 
5141 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5142 {
5143 #ifdef CONFIG_NO_HZ_COMMON
5144 	/* See the mess around cpu_load_update_nohz(). */
5145 	this_rq->last_load_update_tick = READ_ONCE(jiffies);
5146 #endif
5147 	cpu_load_update(this_rq, load, 1);
5148 }
5149 
5150 /*
5151  * Called from scheduler_tick()
5152  */
5153 void cpu_load_update_active(struct rq *this_rq)
5154 {
5155 	unsigned long load = weighted_cpuload(cpu_of(this_rq));
5156 
5157 	if (tick_nohz_tick_stopped())
5158 		cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5159 	else
5160 		cpu_load_update_periodic(this_rq, load);
5161 }
5162 
5163 /*
5164  * Return a low guess at the load of a migration-source cpu weighted
5165  * according to the scheduling class and "nice" value.
5166  *
5167  * We want to under-estimate the load of migration sources, to
5168  * balance conservatively.
5169  */
5170 static unsigned long source_load(int cpu, int type)
5171 {
5172 	struct rq *rq = cpu_rq(cpu);
5173 	unsigned long total = weighted_cpuload(cpu);
5174 
5175 	if (type == 0 || !sched_feat(LB_BIAS))
5176 		return total;
5177 
5178 	return min(rq->cpu_load[type-1], total);
5179 }
5180 
5181 /*
5182  * Return a high guess at the load of a migration-target cpu weighted
5183  * according to the scheduling class and "nice" value.
5184  */
5185 static unsigned long target_load(int cpu, int type)
5186 {
5187 	struct rq *rq = cpu_rq(cpu);
5188 	unsigned long total = weighted_cpuload(cpu);
5189 
5190 	if (type == 0 || !sched_feat(LB_BIAS))
5191 		return total;
5192 
5193 	return max(rq->cpu_load[type-1], total);
5194 }
5195 
5196 static unsigned long capacity_of(int cpu)
5197 {
5198 	return cpu_rq(cpu)->cpu_capacity;
5199 }
5200 
5201 static unsigned long capacity_orig_of(int cpu)
5202 {
5203 	return cpu_rq(cpu)->cpu_capacity_orig;
5204 }
5205 
5206 static unsigned long cpu_avg_load_per_task(int cpu)
5207 {
5208 	struct rq *rq = cpu_rq(cpu);
5209 	unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5210 	unsigned long load_avg = weighted_cpuload(cpu);
5211 
5212 	if (nr_running)
5213 		return load_avg / nr_running;
5214 
5215 	return 0;
5216 }
5217 
5218 #ifdef CONFIG_FAIR_GROUP_SCHED
5219 /*
5220  * effective_load() calculates the load change as seen from the root_task_group
5221  *
5222  * Adding load to a group doesn't make a group heavier, but can cause movement
5223  * of group shares between cpus. Assuming the shares were perfectly aligned one
5224  * can calculate the shift in shares.
5225  *
5226  * Calculate the effective load difference if @wl is added (subtracted) to @tg
5227  * on this @cpu and results in a total addition (subtraction) of @wg to the
5228  * total group weight.
5229  *
5230  * Given a runqueue weight distribution (rw_i) we can compute a shares
5231  * distribution (s_i) using:
5232  *
5233  *   s_i = rw_i / \Sum rw_j						(1)
5234  *
5235  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
5236  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
5237  * shares distribution (s_i):
5238  *
5239  *   rw_i = {   2,   4,   1,   0 }
5240  *   s_i  = { 2/7, 4/7, 1/7,   0 }
5241  *
5242  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
5243  * task used to run on and the CPU the waker is running on), we need to
5244  * compute the effect of waking a task on either CPU and, in case of a sync
5245  * wakeup, compute the effect of the current task going to sleep.
5246  *
5247  * So for a change of @wl to the local @cpu with an overall group weight change
5248  * of @wl we can compute the new shares distribution (s'_i) using:
5249  *
5250  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
5251  *
5252  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
5253  * differences in waking a task to CPU 0. The additional task changes the
5254  * weight and shares distributions like:
5255  *
5256  *   rw'_i = {   3,   4,   1,   0 }
5257  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
5258  *
5259  * We can then compute the difference in effective weight by using:
5260  *
5261  *   dw_i = S * (s'_i - s_i)						(3)
5262  *
5263  * Where 'S' is the group weight as seen by its parent.
5264  *
5265  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
5266  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
5267  * 4/7) times the weight of the group.
5268  */
5269 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5270 {
5271 	struct sched_entity *se = tg->se[cpu];
5272 
5273 	if (!tg->parent)	/* the trivial, non-cgroup case */
5274 		return wl;
5275 
5276 	for_each_sched_entity(se) {
5277 		struct cfs_rq *cfs_rq = se->my_q;
5278 		long W, w = cfs_rq_load_avg(cfs_rq);
5279 
5280 		tg = cfs_rq->tg;
5281 
5282 		/*
5283 		 * W = @wg + \Sum rw_j
5284 		 */
5285 		W = wg + atomic_long_read(&tg->load_avg);
5286 
5287 		/* Ensure \Sum rw_j >= rw_i */
5288 		W -= cfs_rq->tg_load_avg_contrib;
5289 		W += w;
5290 
5291 		/*
5292 		 * w = rw_i + @wl
5293 		 */
5294 		w += wl;
5295 
5296 		/*
5297 		 * wl = S * s'_i; see (2)
5298 		 */
5299 		if (W > 0 && w < W)
5300 			wl = (w * (long)scale_load_down(tg->shares)) / W;
5301 		else
5302 			wl = scale_load_down(tg->shares);
5303 
5304 		/*
5305 		 * Per the above, wl is the new se->load.weight value; since
5306 		 * those are clipped to [MIN_SHARES, ...) do so now. See
5307 		 * calc_cfs_shares().
5308 		 */
5309 		if (wl < MIN_SHARES)
5310 			wl = MIN_SHARES;
5311 
5312 		/*
5313 		 * wl = dw_i = S * (s'_i - s_i); see (3)
5314 		 */
5315 		wl -= se->avg.load_avg;
5316 
5317 		/*
5318 		 * Recursively apply this logic to all parent groups to compute
5319 		 * the final effective load change on the root group. Since
5320 		 * only the @tg group gets extra weight, all parent groups can
5321 		 * only redistribute existing shares. @wl is the shift in shares
5322 		 * resulting from this level per the above.
5323 		 */
5324 		wg = 0;
5325 	}
5326 
5327 	return wl;
5328 }
5329 #else
5330 
5331 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
5332 {
5333 	return wl;
5334 }
5335 
5336 #endif
5337 
5338 static void record_wakee(struct task_struct *p)
5339 {
5340 	/*
5341 	 * Only decay a single time; tasks that have less then 1 wakeup per
5342 	 * jiffy will not have built up many flips.
5343 	 */
5344 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5345 		current->wakee_flips >>= 1;
5346 		current->wakee_flip_decay_ts = jiffies;
5347 	}
5348 
5349 	if (current->last_wakee != p) {
5350 		current->last_wakee = p;
5351 		current->wakee_flips++;
5352 	}
5353 }
5354 
5355 /*
5356  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5357  *
5358  * A waker of many should wake a different task than the one last awakened
5359  * at a frequency roughly N times higher than one of its wakees.
5360  *
5361  * In order to determine whether we should let the load spread vs consolidating
5362  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5363  * partner, and a factor of lls_size higher frequency in the other.
5364  *
5365  * With both conditions met, we can be relatively sure that the relationship is
5366  * non-monogamous, with partner count exceeding socket size.
5367  *
5368  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5369  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5370  * socket size.
5371  */
5372 static int wake_wide(struct task_struct *p)
5373 {
5374 	unsigned int master = current->wakee_flips;
5375 	unsigned int slave = p->wakee_flips;
5376 	int factor = this_cpu_read(sd_llc_size);
5377 
5378 	if (master < slave)
5379 		swap(master, slave);
5380 	if (slave < factor || master < slave * factor)
5381 		return 0;
5382 	return 1;
5383 }
5384 
5385 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5386 		       int prev_cpu, int sync)
5387 {
5388 	s64 this_load, load;
5389 	s64 this_eff_load, prev_eff_load;
5390 	int idx, this_cpu;
5391 	struct task_group *tg;
5392 	unsigned long weight;
5393 	int balanced;
5394 
5395 	idx	  = sd->wake_idx;
5396 	this_cpu  = smp_processor_id();
5397 	load	  = source_load(prev_cpu, idx);
5398 	this_load = target_load(this_cpu, idx);
5399 
5400 	/*
5401 	 * If sync wakeup then subtract the (maximum possible)
5402 	 * effect of the currently running task from the load
5403 	 * of the current CPU:
5404 	 */
5405 	if (sync) {
5406 		tg = task_group(current);
5407 		weight = current->se.avg.load_avg;
5408 
5409 		this_load += effective_load(tg, this_cpu, -weight, -weight);
5410 		load += effective_load(tg, prev_cpu, 0, -weight);
5411 	}
5412 
5413 	tg = task_group(p);
5414 	weight = p->se.avg.load_avg;
5415 
5416 	/*
5417 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
5418 	 * due to the sync cause above having dropped this_load to 0, we'll
5419 	 * always have an imbalance, but there's really nothing you can do
5420 	 * about that, so that's good too.
5421 	 *
5422 	 * Otherwise check if either cpus are near enough in load to allow this
5423 	 * task to be woken on this_cpu.
5424 	 */
5425 	this_eff_load = 100;
5426 	this_eff_load *= capacity_of(prev_cpu);
5427 
5428 	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5429 	prev_eff_load *= capacity_of(this_cpu);
5430 
5431 	if (this_load > 0) {
5432 		this_eff_load *= this_load +
5433 			effective_load(tg, this_cpu, weight, weight);
5434 
5435 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
5436 	}
5437 
5438 	balanced = this_eff_load <= prev_eff_load;
5439 
5440 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5441 
5442 	if (!balanced)
5443 		return 0;
5444 
5445 	schedstat_inc(sd->ttwu_move_affine);
5446 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
5447 
5448 	return 1;
5449 }
5450 
5451 static inline int task_util(struct task_struct *p);
5452 static int cpu_util_wake(int cpu, struct task_struct *p);
5453 
5454 static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5455 {
5456 	return capacity_orig_of(cpu) - cpu_util_wake(cpu, p);
5457 }
5458 
5459 /*
5460  * find_idlest_group finds and returns the least busy CPU group within the
5461  * domain.
5462  */
5463 static struct sched_group *
5464 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5465 		  int this_cpu, int sd_flag)
5466 {
5467 	struct sched_group *idlest = NULL, *group = sd->groups;
5468 	struct sched_group *most_spare_sg = NULL;
5469 	unsigned long min_runnable_load = ULONG_MAX, this_runnable_load = 0;
5470 	unsigned long min_avg_load = ULONG_MAX, this_avg_load = 0;
5471 	unsigned long most_spare = 0, this_spare = 0;
5472 	int load_idx = sd->forkexec_idx;
5473 	int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5474 	unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5475 				(sd->imbalance_pct-100) / 100;
5476 
5477 	if (sd_flag & SD_BALANCE_WAKE)
5478 		load_idx = sd->wake_idx;
5479 
5480 	do {
5481 		unsigned long load, avg_load, runnable_load;
5482 		unsigned long spare_cap, max_spare_cap;
5483 		int local_group;
5484 		int i;
5485 
5486 		/* Skip over this group if it has no CPUs allowed */
5487 		if (!cpumask_intersects(sched_group_cpus(group),
5488 					&p->cpus_allowed))
5489 			continue;
5490 
5491 		local_group = cpumask_test_cpu(this_cpu,
5492 					       sched_group_cpus(group));
5493 
5494 		/*
5495 		 * Tally up the load of all CPUs in the group and find
5496 		 * the group containing the CPU with most spare capacity.
5497 		 */
5498 		avg_load = 0;
5499 		runnable_load = 0;
5500 		max_spare_cap = 0;
5501 
5502 		for_each_cpu(i, sched_group_cpus(group)) {
5503 			/* Bias balancing toward cpus of our domain */
5504 			if (local_group)
5505 				load = source_load(i, load_idx);
5506 			else
5507 				load = target_load(i, load_idx);
5508 
5509 			runnable_load += load;
5510 
5511 			avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5512 
5513 			spare_cap = capacity_spare_wake(i, p);
5514 
5515 			if (spare_cap > max_spare_cap)
5516 				max_spare_cap = spare_cap;
5517 		}
5518 
5519 		/* Adjust by relative CPU capacity of the group */
5520 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5521 					group->sgc->capacity;
5522 		runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5523 					group->sgc->capacity;
5524 
5525 		if (local_group) {
5526 			this_runnable_load = runnable_load;
5527 			this_avg_load = avg_load;
5528 			this_spare = max_spare_cap;
5529 		} else {
5530 			if (min_runnable_load > (runnable_load + imbalance)) {
5531 				/*
5532 				 * The runnable load is significantly smaller
5533 				 * so we can pick this new cpu
5534 				 */
5535 				min_runnable_load = runnable_load;
5536 				min_avg_load = avg_load;
5537 				idlest = group;
5538 			} else if ((runnable_load < (min_runnable_load + imbalance)) &&
5539 				   (100*min_avg_load > imbalance_scale*avg_load)) {
5540 				/*
5541 				 * The runnable loads are close so take the
5542 				 * blocked load into account through avg_load.
5543 				 */
5544 				min_avg_load = avg_load;
5545 				idlest = group;
5546 			}
5547 
5548 			if (most_spare < max_spare_cap) {
5549 				most_spare = max_spare_cap;
5550 				most_spare_sg = group;
5551 			}
5552 		}
5553 	} while (group = group->next, group != sd->groups);
5554 
5555 	/*
5556 	 * The cross-over point between using spare capacity or least load
5557 	 * is too conservative for high utilization tasks on partially
5558 	 * utilized systems if we require spare_capacity > task_util(p),
5559 	 * so we allow for some task stuffing by using
5560 	 * spare_capacity > task_util(p)/2.
5561 	 *
5562 	 * Spare capacity can't be used for fork because the utilization has
5563 	 * not been set yet, we must first select a rq to compute the initial
5564 	 * utilization.
5565 	 */
5566 	if (sd_flag & SD_BALANCE_FORK)
5567 		goto skip_spare;
5568 
5569 	if (this_spare > task_util(p) / 2 &&
5570 	    imbalance_scale*this_spare > 100*most_spare)
5571 		return NULL;
5572 
5573 	if (most_spare > task_util(p) / 2)
5574 		return most_spare_sg;
5575 
5576 skip_spare:
5577 	if (!idlest)
5578 		return NULL;
5579 
5580 	if (min_runnable_load > (this_runnable_load + imbalance))
5581 		return NULL;
5582 
5583 	if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5584 	     (100*this_avg_load < imbalance_scale*min_avg_load))
5585 		return NULL;
5586 
5587 	return idlest;
5588 }
5589 
5590 /*
5591  * find_idlest_cpu - find the idlest cpu among the cpus in group.
5592  */
5593 static int
5594 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5595 {
5596 	unsigned long load, min_load = ULONG_MAX;
5597 	unsigned int min_exit_latency = UINT_MAX;
5598 	u64 latest_idle_timestamp = 0;
5599 	int least_loaded_cpu = this_cpu;
5600 	int shallowest_idle_cpu = -1;
5601 	int i;
5602 
5603 	/* Check if we have any choice: */
5604 	if (group->group_weight == 1)
5605 		return cpumask_first(sched_group_cpus(group));
5606 
5607 	/* Traverse only the allowed CPUs */
5608 	for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
5609 		if (idle_cpu(i)) {
5610 			struct rq *rq = cpu_rq(i);
5611 			struct cpuidle_state *idle = idle_get_state(rq);
5612 			if (idle && idle->exit_latency < min_exit_latency) {
5613 				/*
5614 				 * We give priority to a CPU whose idle state
5615 				 * has the smallest exit latency irrespective
5616 				 * of any idle timestamp.
5617 				 */
5618 				min_exit_latency = idle->exit_latency;
5619 				latest_idle_timestamp = rq->idle_stamp;
5620 				shallowest_idle_cpu = i;
5621 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
5622 				   rq->idle_stamp > latest_idle_timestamp) {
5623 				/*
5624 				 * If equal or no active idle state, then
5625 				 * the most recently idled CPU might have
5626 				 * a warmer cache.
5627 				 */
5628 				latest_idle_timestamp = rq->idle_stamp;
5629 				shallowest_idle_cpu = i;
5630 			}
5631 		} else if (shallowest_idle_cpu == -1) {
5632 			load = weighted_cpuload(i);
5633 			if (load < min_load || (load == min_load && i == this_cpu)) {
5634 				min_load = load;
5635 				least_loaded_cpu = i;
5636 			}
5637 		}
5638 	}
5639 
5640 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5641 }
5642 
5643 /*
5644  * Implement a for_each_cpu() variant that starts the scan at a given cpu
5645  * (@start), and wraps around.
5646  *
5647  * This is used to scan for idle CPUs; such that not all CPUs looking for an
5648  * idle CPU find the same CPU. The down-side is that tasks tend to cycle
5649  * through the LLC domain.
5650  *
5651  * Especially tbench is found sensitive to this.
5652  */
5653 
5654 static int cpumask_next_wrap(int n, const struct cpumask *mask, int start, int *wrapped)
5655 {
5656 	int next;
5657 
5658 again:
5659 	next = find_next_bit(cpumask_bits(mask), nr_cpumask_bits, n+1);
5660 
5661 	if (*wrapped) {
5662 		if (next >= start)
5663 			return nr_cpumask_bits;
5664 	} else {
5665 		if (next >= nr_cpumask_bits) {
5666 			*wrapped = 1;
5667 			n = -1;
5668 			goto again;
5669 		}
5670 	}
5671 
5672 	return next;
5673 }
5674 
5675 #define for_each_cpu_wrap(cpu, mask, start, wrap)				\
5676 	for ((wrap) = 0, (cpu) = (start)-1;					\
5677 		(cpu) = cpumask_next_wrap((cpu), (mask), (start), &(wrap)),	\
5678 		(cpu) < nr_cpumask_bits; )
5679 
5680 #ifdef CONFIG_SCHED_SMT
5681 
5682 static inline void set_idle_cores(int cpu, int val)
5683 {
5684 	struct sched_domain_shared *sds;
5685 
5686 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5687 	if (sds)
5688 		WRITE_ONCE(sds->has_idle_cores, val);
5689 }
5690 
5691 static inline bool test_idle_cores(int cpu, bool def)
5692 {
5693 	struct sched_domain_shared *sds;
5694 
5695 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5696 	if (sds)
5697 		return READ_ONCE(sds->has_idle_cores);
5698 
5699 	return def;
5700 }
5701 
5702 /*
5703  * Scans the local SMT mask to see if the entire core is idle, and records this
5704  * information in sd_llc_shared->has_idle_cores.
5705  *
5706  * Since SMT siblings share all cache levels, inspecting this limited remote
5707  * state should be fairly cheap.
5708  */
5709 void __update_idle_core(struct rq *rq)
5710 {
5711 	int core = cpu_of(rq);
5712 	int cpu;
5713 
5714 	rcu_read_lock();
5715 	if (test_idle_cores(core, true))
5716 		goto unlock;
5717 
5718 	for_each_cpu(cpu, cpu_smt_mask(core)) {
5719 		if (cpu == core)
5720 			continue;
5721 
5722 		if (!idle_cpu(cpu))
5723 			goto unlock;
5724 	}
5725 
5726 	set_idle_cores(core, 1);
5727 unlock:
5728 	rcu_read_unlock();
5729 }
5730 
5731 /*
5732  * Scan the entire LLC domain for idle cores; this dynamically switches off if
5733  * there are no idle cores left in the system; tracked through
5734  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5735  */
5736 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5737 {
5738 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5739 	int core, cpu, wrap;
5740 
5741 	if (!static_branch_likely(&sched_smt_present))
5742 		return -1;
5743 
5744 	if (!test_idle_cores(target, false))
5745 		return -1;
5746 
5747 	cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
5748 
5749 	for_each_cpu_wrap(core, cpus, target, wrap) {
5750 		bool idle = true;
5751 
5752 		for_each_cpu(cpu, cpu_smt_mask(core)) {
5753 			cpumask_clear_cpu(cpu, cpus);
5754 			if (!idle_cpu(cpu))
5755 				idle = false;
5756 		}
5757 
5758 		if (idle)
5759 			return core;
5760 	}
5761 
5762 	/*
5763 	 * Failed to find an idle core; stop looking for one.
5764 	 */
5765 	set_idle_cores(target, 0);
5766 
5767 	return -1;
5768 }
5769 
5770 /*
5771  * Scan the local SMT mask for idle CPUs.
5772  */
5773 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5774 {
5775 	int cpu;
5776 
5777 	if (!static_branch_likely(&sched_smt_present))
5778 		return -1;
5779 
5780 	for_each_cpu(cpu, cpu_smt_mask(target)) {
5781 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5782 			continue;
5783 		if (idle_cpu(cpu))
5784 			return cpu;
5785 	}
5786 
5787 	return -1;
5788 }
5789 
5790 #else /* CONFIG_SCHED_SMT */
5791 
5792 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5793 {
5794 	return -1;
5795 }
5796 
5797 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
5798 {
5799 	return -1;
5800 }
5801 
5802 #endif /* CONFIG_SCHED_SMT */
5803 
5804 /*
5805  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
5806  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
5807  * average idle time for this rq (as found in rq->avg_idle).
5808  */
5809 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
5810 {
5811 	struct sched_domain *this_sd;
5812 	u64 avg_cost, avg_idle = this_rq()->avg_idle;
5813 	u64 time, cost;
5814 	s64 delta;
5815 	int cpu, wrap;
5816 
5817 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
5818 	if (!this_sd)
5819 		return -1;
5820 
5821 	avg_cost = this_sd->avg_scan_cost;
5822 
5823 	/*
5824 	 * Due to large variance we need a large fuzz factor; hackbench in
5825 	 * particularly is sensitive here.
5826 	 */
5827 	if (sched_feat(SIS_AVG_CPU) && (avg_idle / 512) < avg_cost)
5828 		return -1;
5829 
5830 	time = local_clock();
5831 
5832 	for_each_cpu_wrap(cpu, sched_domain_span(sd), target, wrap) {
5833 		if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
5834 			continue;
5835 		if (idle_cpu(cpu))
5836 			break;
5837 	}
5838 
5839 	time = local_clock() - time;
5840 	cost = this_sd->avg_scan_cost;
5841 	delta = (s64)(time - cost) / 8;
5842 	this_sd->avg_scan_cost += delta;
5843 
5844 	return cpu;
5845 }
5846 
5847 /*
5848  * Try and locate an idle core/thread in the LLC cache domain.
5849  */
5850 static int select_idle_sibling(struct task_struct *p, int prev, int target)
5851 {
5852 	struct sched_domain *sd;
5853 	int i;
5854 
5855 	if (idle_cpu(target))
5856 		return target;
5857 
5858 	/*
5859 	 * If the previous cpu is cache affine and idle, don't be stupid.
5860 	 */
5861 	if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5862 		return prev;
5863 
5864 	sd = rcu_dereference(per_cpu(sd_llc, target));
5865 	if (!sd)
5866 		return target;
5867 
5868 	i = select_idle_core(p, sd, target);
5869 	if ((unsigned)i < nr_cpumask_bits)
5870 		return i;
5871 
5872 	i = select_idle_cpu(p, sd, target);
5873 	if ((unsigned)i < nr_cpumask_bits)
5874 		return i;
5875 
5876 	i = select_idle_smt(p, sd, target);
5877 	if ((unsigned)i < nr_cpumask_bits)
5878 		return i;
5879 
5880 	return target;
5881 }
5882 
5883 /*
5884  * cpu_util returns the amount of capacity of a CPU that is used by CFS
5885  * tasks. The unit of the return value must be the one of capacity so we can
5886  * compare the utilization with the capacity of the CPU that is available for
5887  * CFS task (ie cpu_capacity).
5888  *
5889  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5890  * recent utilization of currently non-runnable tasks on a CPU. It represents
5891  * the amount of utilization of a CPU in the range [0..capacity_orig] where
5892  * capacity_orig is the cpu_capacity available at the highest frequency
5893  * (arch_scale_freq_capacity()).
5894  * The utilization of a CPU converges towards a sum equal to or less than the
5895  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5896  * the running time on this CPU scaled by capacity_curr.
5897  *
5898  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5899  * higher than capacity_orig because of unfortunate rounding in
5900  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5901  * the average stabilizes with the new running time. We need to check that the
5902  * utilization stays within the range of [0..capacity_orig] and cap it if
5903  * necessary. Without utilization capping, a group could be seen as overloaded
5904  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5905  * available capacity. We allow utilization to overshoot capacity_curr (but not
5906  * capacity_orig) as it useful for predicting the capacity required after task
5907  * migrations (scheduler-driven DVFS).
5908  */
5909 static int cpu_util(int cpu)
5910 {
5911 	unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
5912 	unsigned long capacity = capacity_orig_of(cpu);
5913 
5914 	return (util >= capacity) ? capacity : util;
5915 }
5916 
5917 static inline int task_util(struct task_struct *p)
5918 {
5919 	return p->se.avg.util_avg;
5920 }
5921 
5922 /*
5923  * cpu_util_wake: Compute cpu utilization with any contributions from
5924  * the waking task p removed.
5925  */
5926 static int cpu_util_wake(int cpu, struct task_struct *p)
5927 {
5928 	unsigned long util, capacity;
5929 
5930 	/* Task has no contribution or is new */
5931 	if (cpu != task_cpu(p) || !p->se.avg.last_update_time)
5932 		return cpu_util(cpu);
5933 
5934 	capacity = capacity_orig_of(cpu);
5935 	util = max_t(long, cpu_rq(cpu)->cfs.avg.util_avg - task_util(p), 0);
5936 
5937 	return (util >= capacity) ? capacity : util;
5938 }
5939 
5940 /*
5941  * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5942  * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5943  *
5944  * In that case WAKE_AFFINE doesn't make sense and we'll let
5945  * BALANCE_WAKE sort things out.
5946  */
5947 static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5948 {
5949 	long min_cap, max_cap;
5950 
5951 	min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5952 	max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5953 
5954 	/* Minimum capacity is close to max, no need to abort wake_affine */
5955 	if (max_cap - min_cap < max_cap >> 3)
5956 		return 0;
5957 
5958 	/* Bring task utilization in sync with prev_cpu */
5959 	sync_entity_load_avg(&p->se);
5960 
5961 	return min_cap * 1024 < task_util(p) * capacity_margin;
5962 }
5963 
5964 /*
5965  * select_task_rq_fair: Select target runqueue for the waking task in domains
5966  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5967  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
5968  *
5969  * Balances load by selecting the idlest cpu in the idlest group, or under
5970  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
5971  *
5972  * Returns the target cpu number.
5973  *
5974  * preempt must be disabled.
5975  */
5976 static int
5977 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
5978 {
5979 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
5980 	int cpu = smp_processor_id();
5981 	int new_cpu = prev_cpu;
5982 	int want_affine = 0;
5983 	int sync = wake_flags & WF_SYNC;
5984 
5985 	if (sd_flag & SD_BALANCE_WAKE) {
5986 		record_wakee(p);
5987 		want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5988 			      && cpumask_test_cpu(cpu, &p->cpus_allowed);
5989 	}
5990 
5991 	rcu_read_lock();
5992 	for_each_domain(cpu, tmp) {
5993 		if (!(tmp->flags & SD_LOAD_BALANCE))
5994 			break;
5995 
5996 		/*
5997 		 * If both cpu and prev_cpu are part of this domain,
5998 		 * cpu is a valid SD_WAKE_AFFINE target.
5999 		 */
6000 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6001 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6002 			affine_sd = tmp;
6003 			break;
6004 		}
6005 
6006 		if (tmp->flags & sd_flag)
6007 			sd = tmp;
6008 		else if (!want_affine)
6009 			break;
6010 	}
6011 
6012 	if (affine_sd) {
6013 		sd = NULL; /* Prefer wake_affine over balance flags */
6014 		if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
6015 			new_cpu = cpu;
6016 	}
6017 
6018 	if (!sd) {
6019 		if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
6020 			new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6021 
6022 	} else while (sd) {
6023 		struct sched_group *group;
6024 		int weight;
6025 
6026 		if (!(sd->flags & sd_flag)) {
6027 			sd = sd->child;
6028 			continue;
6029 		}
6030 
6031 		group = find_idlest_group(sd, p, cpu, sd_flag);
6032 		if (!group) {
6033 			sd = sd->child;
6034 			continue;
6035 		}
6036 
6037 		new_cpu = find_idlest_cpu(group, p, cpu);
6038 		if (new_cpu == -1 || new_cpu == cpu) {
6039 			/* Now try balancing at a lower domain level of cpu */
6040 			sd = sd->child;
6041 			continue;
6042 		}
6043 
6044 		/* Now try balancing at a lower domain level of new_cpu */
6045 		cpu = new_cpu;
6046 		weight = sd->span_weight;
6047 		sd = NULL;
6048 		for_each_domain(cpu, tmp) {
6049 			if (weight <= tmp->span_weight)
6050 				break;
6051 			if (tmp->flags & sd_flag)
6052 				sd = tmp;
6053 		}
6054 		/* while loop will break here if sd == NULL */
6055 	}
6056 	rcu_read_unlock();
6057 
6058 	return new_cpu;
6059 }
6060 
6061 /*
6062  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
6063  * cfs_rq_of(p) references at time of call are still valid and identify the
6064  * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6065  */
6066 static void migrate_task_rq_fair(struct task_struct *p)
6067 {
6068 	/*
6069 	 * As blocked tasks retain absolute vruntime the migration needs to
6070 	 * deal with this by subtracting the old and adding the new
6071 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6072 	 * the task on the new runqueue.
6073 	 */
6074 	if (p->state == TASK_WAKING) {
6075 		struct sched_entity *se = &p->se;
6076 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6077 		u64 min_vruntime;
6078 
6079 #ifndef CONFIG_64BIT
6080 		u64 min_vruntime_copy;
6081 
6082 		do {
6083 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6084 			smp_rmb();
6085 			min_vruntime = cfs_rq->min_vruntime;
6086 		} while (min_vruntime != min_vruntime_copy);
6087 #else
6088 		min_vruntime = cfs_rq->min_vruntime;
6089 #endif
6090 
6091 		se->vruntime -= min_vruntime;
6092 	}
6093 
6094 	/*
6095 	 * We are supposed to update the task to "current" time, then its up to date
6096 	 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
6097 	 * what current time is, so simply throw away the out-of-date time. This
6098 	 * will result in the wakee task is less decayed, but giving the wakee more
6099 	 * load sounds not bad.
6100 	 */
6101 	remove_entity_load_avg(&p->se);
6102 
6103 	/* Tell new CPU we are migrated */
6104 	p->se.avg.last_update_time = 0;
6105 
6106 	/* We have migrated, no longer consider this task hot */
6107 	p->se.exec_start = 0;
6108 }
6109 
6110 static void task_dead_fair(struct task_struct *p)
6111 {
6112 	remove_entity_load_avg(&p->se);
6113 }
6114 #endif /* CONFIG_SMP */
6115 
6116 static unsigned long
6117 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
6118 {
6119 	unsigned long gran = sysctl_sched_wakeup_granularity;
6120 
6121 	/*
6122 	 * Since its curr running now, convert the gran from real-time
6123 	 * to virtual-time in his units.
6124 	 *
6125 	 * By using 'se' instead of 'curr' we penalize light tasks, so
6126 	 * they get preempted easier. That is, if 'se' < 'curr' then
6127 	 * the resulting gran will be larger, therefore penalizing the
6128 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
6129 	 * be smaller, again penalizing the lighter task.
6130 	 *
6131 	 * This is especially important for buddies when the leftmost
6132 	 * task is higher priority than the buddy.
6133 	 */
6134 	return calc_delta_fair(gran, se);
6135 }
6136 
6137 /*
6138  * Should 'se' preempt 'curr'.
6139  *
6140  *             |s1
6141  *        |s2
6142  *   |s3
6143  *         g
6144  *      |<--->|c
6145  *
6146  *  w(c, s1) = -1
6147  *  w(c, s2) =  0
6148  *  w(c, s3) =  1
6149  *
6150  */
6151 static int
6152 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6153 {
6154 	s64 gran, vdiff = curr->vruntime - se->vruntime;
6155 
6156 	if (vdiff <= 0)
6157 		return -1;
6158 
6159 	gran = wakeup_gran(curr, se);
6160 	if (vdiff > gran)
6161 		return 1;
6162 
6163 	return 0;
6164 }
6165 
6166 static void set_last_buddy(struct sched_entity *se)
6167 {
6168 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6169 		return;
6170 
6171 	for_each_sched_entity(se)
6172 		cfs_rq_of(se)->last = se;
6173 }
6174 
6175 static void set_next_buddy(struct sched_entity *se)
6176 {
6177 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6178 		return;
6179 
6180 	for_each_sched_entity(se)
6181 		cfs_rq_of(se)->next = se;
6182 }
6183 
6184 static void set_skip_buddy(struct sched_entity *se)
6185 {
6186 	for_each_sched_entity(se)
6187 		cfs_rq_of(se)->skip = se;
6188 }
6189 
6190 /*
6191  * Preempt the current task with a newly woken task if needed:
6192  */
6193 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6194 {
6195 	struct task_struct *curr = rq->curr;
6196 	struct sched_entity *se = &curr->se, *pse = &p->se;
6197 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6198 	int scale = cfs_rq->nr_running >= sched_nr_latency;
6199 	int next_buddy_marked = 0;
6200 
6201 	if (unlikely(se == pse))
6202 		return;
6203 
6204 	/*
6205 	 * This is possible from callers such as attach_tasks(), in which we
6206 	 * unconditionally check_prempt_curr() after an enqueue (which may have
6207 	 * lead to a throttle).  This both saves work and prevents false
6208 	 * next-buddy nomination below.
6209 	 */
6210 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6211 		return;
6212 
6213 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6214 		set_next_buddy(pse);
6215 		next_buddy_marked = 1;
6216 	}
6217 
6218 	/*
6219 	 * We can come here with TIF_NEED_RESCHED already set from new task
6220 	 * wake up path.
6221 	 *
6222 	 * Note: this also catches the edge-case of curr being in a throttled
6223 	 * group (e.g. via set_curr_task), since update_curr() (in the
6224 	 * enqueue of curr) will have resulted in resched being set.  This
6225 	 * prevents us from potentially nominating it as a false LAST_BUDDY
6226 	 * below.
6227 	 */
6228 	if (test_tsk_need_resched(curr))
6229 		return;
6230 
6231 	/* Idle tasks are by definition preempted by non-idle tasks. */
6232 	if (unlikely(curr->policy == SCHED_IDLE) &&
6233 	    likely(p->policy != SCHED_IDLE))
6234 		goto preempt;
6235 
6236 	/*
6237 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
6238 	 * is driven by the tick):
6239 	 */
6240 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6241 		return;
6242 
6243 	find_matching_se(&se, &pse);
6244 	update_curr(cfs_rq_of(se));
6245 	BUG_ON(!pse);
6246 	if (wakeup_preempt_entity(se, pse) == 1) {
6247 		/*
6248 		 * Bias pick_next to pick the sched entity that is
6249 		 * triggering this preemption.
6250 		 */
6251 		if (!next_buddy_marked)
6252 			set_next_buddy(pse);
6253 		goto preempt;
6254 	}
6255 
6256 	return;
6257 
6258 preempt:
6259 	resched_curr(rq);
6260 	/*
6261 	 * Only set the backward buddy when the current task is still
6262 	 * on the rq. This can happen when a wakeup gets interleaved
6263 	 * with schedule on the ->pre_schedule() or idle_balance()
6264 	 * point, either of which can * drop the rq lock.
6265 	 *
6266 	 * Also, during early boot the idle thread is in the fair class,
6267 	 * for obvious reasons its a bad idea to schedule back to it.
6268 	 */
6269 	if (unlikely(!se->on_rq || curr == rq->idle))
6270 		return;
6271 
6272 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6273 		set_last_buddy(se);
6274 }
6275 
6276 static struct task_struct *
6277 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6278 {
6279 	struct cfs_rq *cfs_rq = &rq->cfs;
6280 	struct sched_entity *se;
6281 	struct task_struct *p;
6282 	int new_tasks;
6283 
6284 again:
6285 #ifdef CONFIG_FAIR_GROUP_SCHED
6286 	if (!cfs_rq->nr_running)
6287 		goto idle;
6288 
6289 	if (prev->sched_class != &fair_sched_class)
6290 		goto simple;
6291 
6292 	/*
6293 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6294 	 * likely that a next task is from the same cgroup as the current.
6295 	 *
6296 	 * Therefore attempt to avoid putting and setting the entire cgroup
6297 	 * hierarchy, only change the part that actually changes.
6298 	 */
6299 
6300 	do {
6301 		struct sched_entity *curr = cfs_rq->curr;
6302 
6303 		/*
6304 		 * Since we got here without doing put_prev_entity() we also
6305 		 * have to consider cfs_rq->curr. If it is still a runnable
6306 		 * entity, update_curr() will update its vruntime, otherwise
6307 		 * forget we've ever seen it.
6308 		 */
6309 		if (curr) {
6310 			if (curr->on_rq)
6311 				update_curr(cfs_rq);
6312 			else
6313 				curr = NULL;
6314 
6315 			/*
6316 			 * This call to check_cfs_rq_runtime() will do the
6317 			 * throttle and dequeue its entity in the parent(s).
6318 			 * Therefore the 'simple' nr_running test will indeed
6319 			 * be correct.
6320 			 */
6321 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
6322 				goto simple;
6323 		}
6324 
6325 		se = pick_next_entity(cfs_rq, curr);
6326 		cfs_rq = group_cfs_rq(se);
6327 	} while (cfs_rq);
6328 
6329 	p = task_of(se);
6330 
6331 	/*
6332 	 * Since we haven't yet done put_prev_entity and if the selected task
6333 	 * is a different task than we started out with, try and touch the
6334 	 * least amount of cfs_rqs.
6335 	 */
6336 	if (prev != p) {
6337 		struct sched_entity *pse = &prev->se;
6338 
6339 		while (!(cfs_rq = is_same_group(se, pse))) {
6340 			int se_depth = se->depth;
6341 			int pse_depth = pse->depth;
6342 
6343 			if (se_depth <= pse_depth) {
6344 				put_prev_entity(cfs_rq_of(pse), pse);
6345 				pse = parent_entity(pse);
6346 			}
6347 			if (se_depth >= pse_depth) {
6348 				set_next_entity(cfs_rq_of(se), se);
6349 				se = parent_entity(se);
6350 			}
6351 		}
6352 
6353 		put_prev_entity(cfs_rq, pse);
6354 		set_next_entity(cfs_rq, se);
6355 	}
6356 
6357 	if (hrtick_enabled(rq))
6358 		hrtick_start_fair(rq, p);
6359 
6360 	return p;
6361 simple:
6362 	cfs_rq = &rq->cfs;
6363 #endif
6364 
6365 	if (!cfs_rq->nr_running)
6366 		goto idle;
6367 
6368 	put_prev_task(rq, prev);
6369 
6370 	do {
6371 		se = pick_next_entity(cfs_rq, NULL);
6372 		set_next_entity(cfs_rq, se);
6373 		cfs_rq = group_cfs_rq(se);
6374 	} while (cfs_rq);
6375 
6376 	p = task_of(se);
6377 
6378 	if (hrtick_enabled(rq))
6379 		hrtick_start_fair(rq, p);
6380 
6381 	return p;
6382 
6383 idle:
6384 	new_tasks = idle_balance(rq, rf);
6385 
6386 	/*
6387 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
6388 	 * possible for any higher priority task to appear. In that case we
6389 	 * must re-start the pick_next_entity() loop.
6390 	 */
6391 	if (new_tasks < 0)
6392 		return RETRY_TASK;
6393 
6394 	if (new_tasks > 0)
6395 		goto again;
6396 
6397 	return NULL;
6398 }
6399 
6400 /*
6401  * Account for a descheduled task:
6402  */
6403 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6404 {
6405 	struct sched_entity *se = &prev->se;
6406 	struct cfs_rq *cfs_rq;
6407 
6408 	for_each_sched_entity(se) {
6409 		cfs_rq = cfs_rq_of(se);
6410 		put_prev_entity(cfs_rq, se);
6411 	}
6412 }
6413 
6414 /*
6415  * sched_yield() is very simple
6416  *
6417  * The magic of dealing with the ->skip buddy is in pick_next_entity.
6418  */
6419 static void yield_task_fair(struct rq *rq)
6420 {
6421 	struct task_struct *curr = rq->curr;
6422 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6423 	struct sched_entity *se = &curr->se;
6424 
6425 	/*
6426 	 * Are we the only task in the tree?
6427 	 */
6428 	if (unlikely(rq->nr_running == 1))
6429 		return;
6430 
6431 	clear_buddies(cfs_rq, se);
6432 
6433 	if (curr->policy != SCHED_BATCH) {
6434 		update_rq_clock(rq);
6435 		/*
6436 		 * Update run-time statistics of the 'current'.
6437 		 */
6438 		update_curr(cfs_rq);
6439 		/*
6440 		 * Tell update_rq_clock() that we've just updated,
6441 		 * so we don't do microscopic update in schedule()
6442 		 * and double the fastpath cost.
6443 		 */
6444 		rq_clock_skip_update(rq, true);
6445 	}
6446 
6447 	set_skip_buddy(se);
6448 }
6449 
6450 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6451 {
6452 	struct sched_entity *se = &p->se;
6453 
6454 	/* throttled hierarchies are not runnable */
6455 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6456 		return false;
6457 
6458 	/* Tell the scheduler that we'd really like pse to run next. */
6459 	set_next_buddy(se);
6460 
6461 	yield_task_fair(rq);
6462 
6463 	return true;
6464 }
6465 
6466 #ifdef CONFIG_SMP
6467 /**************************************************
6468  * Fair scheduling class load-balancing methods.
6469  *
6470  * BASICS
6471  *
6472  * The purpose of load-balancing is to achieve the same basic fairness the
6473  * per-cpu scheduler provides, namely provide a proportional amount of compute
6474  * time to each task. This is expressed in the following equation:
6475  *
6476  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
6477  *
6478  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
6479  * W_i,0 is defined as:
6480  *
6481  *   W_i,0 = \Sum_j w_i,j                                             (2)
6482  *
6483  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
6484  * is derived from the nice value as per sched_prio_to_weight[].
6485  *
6486  * The weight average is an exponential decay average of the instantaneous
6487  * weight:
6488  *
6489  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
6490  *
6491  * C_i is the compute capacity of cpu i, typically it is the
6492  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6493  * can also include other factors [XXX].
6494  *
6495  * To achieve this balance we define a measure of imbalance which follows
6496  * directly from (1):
6497  *
6498  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
6499  *
6500  * We them move tasks around to minimize the imbalance. In the continuous
6501  * function space it is obvious this converges, in the discrete case we get
6502  * a few fun cases generally called infeasible weight scenarios.
6503  *
6504  * [XXX expand on:
6505  *     - infeasible weights;
6506  *     - local vs global optima in the discrete case. ]
6507  *
6508  *
6509  * SCHED DOMAINS
6510  *
6511  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6512  * for all i,j solution, we create a tree of cpus that follows the hardware
6513  * topology where each level pairs two lower groups (or better). This results
6514  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
6515  * tree to only the first of the previous level and we decrease the frequency
6516  * of load-balance at each level inv. proportional to the number of cpus in
6517  * the groups.
6518  *
6519  * This yields:
6520  *
6521  *     log_2 n     1     n
6522  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
6523  *     i = 0      2^i   2^i
6524  *                               `- size of each group
6525  *         |         |     `- number of cpus doing load-balance
6526  *         |         `- freq
6527  *         `- sum over all levels
6528  *
6529  * Coupled with a limit on how many tasks we can migrate every balance pass,
6530  * this makes (5) the runtime complexity of the balancer.
6531  *
6532  * An important property here is that each CPU is still (indirectly) connected
6533  * to every other cpu in at most O(log n) steps:
6534  *
6535  * The adjacency matrix of the resulting graph is given by:
6536  *
6537  *             log_2 n
6538  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
6539  *             k = 0
6540  *
6541  * And you'll find that:
6542  *
6543  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
6544  *
6545  * Showing there's indeed a path between every cpu in at most O(log n) steps.
6546  * The task movement gives a factor of O(m), giving a convergence complexity
6547  * of:
6548  *
6549  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
6550  *
6551  *
6552  * WORK CONSERVING
6553  *
6554  * In order to avoid CPUs going idle while there's still work to do, new idle
6555  * balancing is more aggressive and has the newly idle cpu iterate up the domain
6556  * tree itself instead of relying on other CPUs to bring it work.
6557  *
6558  * This adds some complexity to both (5) and (8) but it reduces the total idle
6559  * time.
6560  *
6561  * [XXX more?]
6562  *
6563  *
6564  * CGROUPS
6565  *
6566  * Cgroups make a horror show out of (2), instead of a simple sum we get:
6567  *
6568  *                                s_k,i
6569  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
6570  *                                 S_k
6571  *
6572  * Where
6573  *
6574  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
6575  *
6576  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6577  *
6578  * The big problem is S_k, its a global sum needed to compute a local (W_i)
6579  * property.
6580  *
6581  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6582  *      rewrite all of this once again.]
6583  */
6584 
6585 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6586 
6587 enum fbq_type { regular, remote, all };
6588 
6589 #define LBF_ALL_PINNED	0x01
6590 #define LBF_NEED_BREAK	0x02
6591 #define LBF_DST_PINNED  0x04
6592 #define LBF_SOME_PINNED	0x08
6593 
6594 struct lb_env {
6595 	struct sched_domain	*sd;
6596 
6597 	struct rq		*src_rq;
6598 	int			src_cpu;
6599 
6600 	int			dst_cpu;
6601 	struct rq		*dst_rq;
6602 
6603 	struct cpumask		*dst_grpmask;
6604 	int			new_dst_cpu;
6605 	enum cpu_idle_type	idle;
6606 	long			imbalance;
6607 	/* The set of CPUs under consideration for load-balancing */
6608 	struct cpumask		*cpus;
6609 
6610 	unsigned int		flags;
6611 
6612 	unsigned int		loop;
6613 	unsigned int		loop_break;
6614 	unsigned int		loop_max;
6615 
6616 	enum fbq_type		fbq_type;
6617 	struct list_head	tasks;
6618 };
6619 
6620 /*
6621  * Is this task likely cache-hot:
6622  */
6623 static int task_hot(struct task_struct *p, struct lb_env *env)
6624 {
6625 	s64 delta;
6626 
6627 	lockdep_assert_held(&env->src_rq->lock);
6628 
6629 	if (p->sched_class != &fair_sched_class)
6630 		return 0;
6631 
6632 	if (unlikely(p->policy == SCHED_IDLE))
6633 		return 0;
6634 
6635 	/*
6636 	 * Buddy candidates are cache hot:
6637 	 */
6638 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6639 			(&p->se == cfs_rq_of(&p->se)->next ||
6640 			 &p->se == cfs_rq_of(&p->se)->last))
6641 		return 1;
6642 
6643 	if (sysctl_sched_migration_cost == -1)
6644 		return 1;
6645 	if (sysctl_sched_migration_cost == 0)
6646 		return 0;
6647 
6648 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6649 
6650 	return delta < (s64)sysctl_sched_migration_cost;
6651 }
6652 
6653 #ifdef CONFIG_NUMA_BALANCING
6654 /*
6655  * Returns 1, if task migration degrades locality
6656  * Returns 0, if task migration improves locality i.e migration preferred.
6657  * Returns -1, if task migration is not affected by locality.
6658  */
6659 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6660 {
6661 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
6662 	unsigned long src_faults, dst_faults;
6663 	int src_nid, dst_nid;
6664 
6665 	if (!static_branch_likely(&sched_numa_balancing))
6666 		return -1;
6667 
6668 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
6669 		return -1;
6670 
6671 	src_nid = cpu_to_node(env->src_cpu);
6672 	dst_nid = cpu_to_node(env->dst_cpu);
6673 
6674 	if (src_nid == dst_nid)
6675 		return -1;
6676 
6677 	/* Migrating away from the preferred node is always bad. */
6678 	if (src_nid == p->numa_preferred_nid) {
6679 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6680 			return 1;
6681 		else
6682 			return -1;
6683 	}
6684 
6685 	/* Encourage migration to the preferred node. */
6686 	if (dst_nid == p->numa_preferred_nid)
6687 		return 0;
6688 
6689 	if (numa_group) {
6690 		src_faults = group_faults(p, src_nid);
6691 		dst_faults = group_faults(p, dst_nid);
6692 	} else {
6693 		src_faults = task_faults(p, src_nid);
6694 		dst_faults = task_faults(p, dst_nid);
6695 	}
6696 
6697 	return dst_faults < src_faults;
6698 }
6699 
6700 #else
6701 static inline int migrate_degrades_locality(struct task_struct *p,
6702 					     struct lb_env *env)
6703 {
6704 	return -1;
6705 }
6706 #endif
6707 
6708 /*
6709  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6710  */
6711 static
6712 int can_migrate_task(struct task_struct *p, struct lb_env *env)
6713 {
6714 	int tsk_cache_hot;
6715 
6716 	lockdep_assert_held(&env->src_rq->lock);
6717 
6718 	/*
6719 	 * We do not migrate tasks that are:
6720 	 * 1) throttled_lb_pair, or
6721 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
6722 	 * 3) running (obviously), or
6723 	 * 4) are cache-hot on their current CPU.
6724 	 */
6725 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6726 		return 0;
6727 
6728 	if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
6729 		int cpu;
6730 
6731 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
6732 
6733 		env->flags |= LBF_SOME_PINNED;
6734 
6735 		/*
6736 		 * Remember if this task can be migrated to any other cpu in
6737 		 * our sched_group. We may want to revisit it if we couldn't
6738 		 * meet load balance goals by pulling other tasks on src_cpu.
6739 		 *
6740 		 * Also avoid computing new_dst_cpu if we have already computed
6741 		 * one in current iteration.
6742 		 */
6743 		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
6744 			return 0;
6745 
6746 		/* Prevent to re-select dst_cpu via env's cpus */
6747 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6748 			if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
6749 				env->flags |= LBF_DST_PINNED;
6750 				env->new_dst_cpu = cpu;
6751 				break;
6752 			}
6753 		}
6754 
6755 		return 0;
6756 	}
6757 
6758 	/* Record that we found atleast one task that could run on dst_cpu */
6759 	env->flags &= ~LBF_ALL_PINNED;
6760 
6761 	if (task_running(env->src_rq, p)) {
6762 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
6763 		return 0;
6764 	}
6765 
6766 	/*
6767 	 * Aggressive migration if:
6768 	 * 1) destination numa is preferred
6769 	 * 2) task is cache cold, or
6770 	 * 3) too many balance attempts have failed.
6771 	 */
6772 	tsk_cache_hot = migrate_degrades_locality(p, env);
6773 	if (tsk_cache_hot == -1)
6774 		tsk_cache_hot = task_hot(p, env);
6775 
6776 	if (tsk_cache_hot <= 0 ||
6777 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
6778 		if (tsk_cache_hot == 1) {
6779 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6780 			schedstat_inc(p->se.statistics.nr_forced_migrations);
6781 		}
6782 		return 1;
6783 	}
6784 
6785 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
6786 	return 0;
6787 }
6788 
6789 /*
6790  * detach_task() -- detach the task for the migration specified in env
6791  */
6792 static void detach_task(struct task_struct *p, struct lb_env *env)
6793 {
6794 	lockdep_assert_held(&env->src_rq->lock);
6795 
6796 	p->on_rq = TASK_ON_RQ_MIGRATING;
6797 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
6798 	set_task_cpu(p, env->dst_cpu);
6799 }
6800 
6801 /*
6802  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
6803  * part of active balancing operations within "domain".
6804  *
6805  * Returns a task if successful and NULL otherwise.
6806  */
6807 static struct task_struct *detach_one_task(struct lb_env *env)
6808 {
6809 	struct task_struct *p, *n;
6810 
6811 	lockdep_assert_held(&env->src_rq->lock);
6812 
6813 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
6814 		if (!can_migrate_task(p, env))
6815 			continue;
6816 
6817 		detach_task(p, env);
6818 
6819 		/*
6820 		 * Right now, this is only the second place where
6821 		 * lb_gained[env->idle] is updated (other is detach_tasks)
6822 		 * so we can safely collect stats here rather than
6823 		 * inside detach_tasks().
6824 		 */
6825 		schedstat_inc(env->sd->lb_gained[env->idle]);
6826 		return p;
6827 	}
6828 	return NULL;
6829 }
6830 
6831 static const unsigned int sched_nr_migrate_break = 32;
6832 
6833 /*
6834  * detach_tasks() -- tries to detach up to imbalance weighted load from
6835  * busiest_rq, as part of a balancing operation within domain "sd".
6836  *
6837  * Returns number of detached tasks if successful and 0 otherwise.
6838  */
6839 static int detach_tasks(struct lb_env *env)
6840 {
6841 	struct list_head *tasks = &env->src_rq->cfs_tasks;
6842 	struct task_struct *p;
6843 	unsigned long load;
6844 	int detached = 0;
6845 
6846 	lockdep_assert_held(&env->src_rq->lock);
6847 
6848 	if (env->imbalance <= 0)
6849 		return 0;
6850 
6851 	while (!list_empty(tasks)) {
6852 		/*
6853 		 * We don't want to steal all, otherwise we may be treated likewise,
6854 		 * which could at worst lead to a livelock crash.
6855 		 */
6856 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6857 			break;
6858 
6859 		p = list_first_entry(tasks, struct task_struct, se.group_node);
6860 
6861 		env->loop++;
6862 		/* We've more or less seen every task there is, call it quits */
6863 		if (env->loop > env->loop_max)
6864 			break;
6865 
6866 		/* take a breather every nr_migrate tasks */
6867 		if (env->loop > env->loop_break) {
6868 			env->loop_break += sched_nr_migrate_break;
6869 			env->flags |= LBF_NEED_BREAK;
6870 			break;
6871 		}
6872 
6873 		if (!can_migrate_task(p, env))
6874 			goto next;
6875 
6876 		load = task_h_load(p);
6877 
6878 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
6879 			goto next;
6880 
6881 		if ((load / 2) > env->imbalance)
6882 			goto next;
6883 
6884 		detach_task(p, env);
6885 		list_add(&p->se.group_node, &env->tasks);
6886 
6887 		detached++;
6888 		env->imbalance -= load;
6889 
6890 #ifdef CONFIG_PREEMPT
6891 		/*
6892 		 * NEWIDLE balancing is a source of latency, so preemptible
6893 		 * kernels will stop after the first task is detached to minimize
6894 		 * the critical section.
6895 		 */
6896 		if (env->idle == CPU_NEWLY_IDLE)
6897 			break;
6898 #endif
6899 
6900 		/*
6901 		 * We only want to steal up to the prescribed amount of
6902 		 * weighted load.
6903 		 */
6904 		if (env->imbalance <= 0)
6905 			break;
6906 
6907 		continue;
6908 next:
6909 		list_move_tail(&p->se.group_node, tasks);
6910 	}
6911 
6912 	/*
6913 	 * Right now, this is one of only two places we collect this stat
6914 	 * so we can safely collect detach_one_task() stats here rather
6915 	 * than inside detach_one_task().
6916 	 */
6917 	schedstat_add(env->sd->lb_gained[env->idle], detached);
6918 
6919 	return detached;
6920 }
6921 
6922 /*
6923  * attach_task() -- attach the task detached by detach_task() to its new rq.
6924  */
6925 static void attach_task(struct rq *rq, struct task_struct *p)
6926 {
6927 	lockdep_assert_held(&rq->lock);
6928 
6929 	BUG_ON(task_rq(p) != rq);
6930 	activate_task(rq, p, ENQUEUE_NOCLOCK);
6931 	p->on_rq = TASK_ON_RQ_QUEUED;
6932 	check_preempt_curr(rq, p, 0);
6933 }
6934 
6935 /*
6936  * attach_one_task() -- attaches the task returned from detach_one_task() to
6937  * its new rq.
6938  */
6939 static void attach_one_task(struct rq *rq, struct task_struct *p)
6940 {
6941 	struct rq_flags rf;
6942 
6943 	rq_lock(rq, &rf);
6944 	update_rq_clock(rq);
6945 	attach_task(rq, p);
6946 	rq_unlock(rq, &rf);
6947 }
6948 
6949 /*
6950  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6951  * new rq.
6952  */
6953 static void attach_tasks(struct lb_env *env)
6954 {
6955 	struct list_head *tasks = &env->tasks;
6956 	struct task_struct *p;
6957 	struct rq_flags rf;
6958 
6959 	rq_lock(env->dst_rq, &rf);
6960 	update_rq_clock(env->dst_rq);
6961 
6962 	while (!list_empty(tasks)) {
6963 		p = list_first_entry(tasks, struct task_struct, se.group_node);
6964 		list_del_init(&p->se.group_node);
6965 
6966 		attach_task(env->dst_rq, p);
6967 	}
6968 
6969 	rq_unlock(env->dst_rq, &rf);
6970 }
6971 
6972 #ifdef CONFIG_FAIR_GROUP_SCHED
6973 static void update_blocked_averages(int cpu)
6974 {
6975 	struct rq *rq = cpu_rq(cpu);
6976 	struct cfs_rq *cfs_rq;
6977 	struct rq_flags rf;
6978 
6979 	rq_lock_irqsave(rq, &rf);
6980 	update_rq_clock(rq);
6981 
6982 	/*
6983 	 * Iterates the task_group tree in a bottom up fashion, see
6984 	 * list_add_leaf_cfs_rq() for details.
6985 	 */
6986 	for_each_leaf_cfs_rq(rq, cfs_rq) {
6987 		struct sched_entity *se;
6988 
6989 		/* throttled entities do not contribute to load */
6990 		if (throttled_hierarchy(cfs_rq))
6991 			continue;
6992 
6993 		if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
6994 			update_tg_load_avg(cfs_rq, 0);
6995 
6996 		/* Propagate pending load changes to the parent, if any: */
6997 		se = cfs_rq->tg->se[cpu];
6998 		if (se && !skip_blocked_update(se))
6999 			update_load_avg(se, 0);
7000 	}
7001 	rq_unlock_irqrestore(rq, &rf);
7002 }
7003 
7004 /*
7005  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7006  * This needs to be done in a top-down fashion because the load of a child
7007  * group is a fraction of its parents load.
7008  */
7009 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7010 {
7011 	struct rq *rq = rq_of(cfs_rq);
7012 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7013 	unsigned long now = jiffies;
7014 	unsigned long load;
7015 
7016 	if (cfs_rq->last_h_load_update == now)
7017 		return;
7018 
7019 	cfs_rq->h_load_next = NULL;
7020 	for_each_sched_entity(se) {
7021 		cfs_rq = cfs_rq_of(se);
7022 		cfs_rq->h_load_next = se;
7023 		if (cfs_rq->last_h_load_update == now)
7024 			break;
7025 	}
7026 
7027 	if (!se) {
7028 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7029 		cfs_rq->last_h_load_update = now;
7030 	}
7031 
7032 	while ((se = cfs_rq->h_load_next) != NULL) {
7033 		load = cfs_rq->h_load;
7034 		load = div64_ul(load * se->avg.load_avg,
7035 			cfs_rq_load_avg(cfs_rq) + 1);
7036 		cfs_rq = group_cfs_rq(se);
7037 		cfs_rq->h_load = load;
7038 		cfs_rq->last_h_load_update = now;
7039 	}
7040 }
7041 
7042 static unsigned long task_h_load(struct task_struct *p)
7043 {
7044 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
7045 
7046 	update_cfs_rq_h_load(cfs_rq);
7047 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7048 			cfs_rq_load_avg(cfs_rq) + 1);
7049 }
7050 #else
7051 static inline void update_blocked_averages(int cpu)
7052 {
7053 	struct rq *rq = cpu_rq(cpu);
7054 	struct cfs_rq *cfs_rq = &rq->cfs;
7055 	struct rq_flags rf;
7056 
7057 	rq_lock_irqsave(rq, &rf);
7058 	update_rq_clock(rq);
7059 	update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
7060 	rq_unlock_irqrestore(rq, &rf);
7061 }
7062 
7063 static unsigned long task_h_load(struct task_struct *p)
7064 {
7065 	return p->se.avg.load_avg;
7066 }
7067 #endif
7068 
7069 /********** Helpers for find_busiest_group ************************/
7070 
7071 enum group_type {
7072 	group_other = 0,
7073 	group_imbalanced,
7074 	group_overloaded,
7075 };
7076 
7077 /*
7078  * sg_lb_stats - stats of a sched_group required for load_balancing
7079  */
7080 struct sg_lb_stats {
7081 	unsigned long avg_load; /*Avg load across the CPUs of the group */
7082 	unsigned long group_load; /* Total load over the CPUs of the group */
7083 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7084 	unsigned long load_per_task;
7085 	unsigned long group_capacity;
7086 	unsigned long group_util; /* Total utilization of the group */
7087 	unsigned int sum_nr_running; /* Nr tasks running in the group */
7088 	unsigned int idle_cpus;
7089 	unsigned int group_weight;
7090 	enum group_type group_type;
7091 	int group_no_capacity;
7092 #ifdef CONFIG_NUMA_BALANCING
7093 	unsigned int nr_numa_running;
7094 	unsigned int nr_preferred_running;
7095 #endif
7096 };
7097 
7098 /*
7099  * sd_lb_stats - Structure to store the statistics of a sched_domain
7100  *		 during load balancing.
7101  */
7102 struct sd_lb_stats {
7103 	struct sched_group *busiest;	/* Busiest group in this sd */
7104 	struct sched_group *local;	/* Local group in this sd */
7105 	unsigned long total_load;	/* Total load of all groups in sd */
7106 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
7107 	unsigned long avg_load;	/* Average load across all groups in sd */
7108 
7109 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7110 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
7111 };
7112 
7113 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7114 {
7115 	/*
7116 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7117 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
7118 	 * We must however clear busiest_stat::avg_load because
7119 	 * update_sd_pick_busiest() reads this before assignment.
7120 	 */
7121 	*sds = (struct sd_lb_stats){
7122 		.busiest = NULL,
7123 		.local = NULL,
7124 		.total_load = 0UL,
7125 		.total_capacity = 0UL,
7126 		.busiest_stat = {
7127 			.avg_load = 0UL,
7128 			.sum_nr_running = 0,
7129 			.group_type = group_other,
7130 		},
7131 	};
7132 }
7133 
7134 /**
7135  * get_sd_load_idx - Obtain the load index for a given sched domain.
7136  * @sd: The sched_domain whose load_idx is to be obtained.
7137  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7138  *
7139  * Return: The load index.
7140  */
7141 static inline int get_sd_load_idx(struct sched_domain *sd,
7142 					enum cpu_idle_type idle)
7143 {
7144 	int load_idx;
7145 
7146 	switch (idle) {
7147 	case CPU_NOT_IDLE:
7148 		load_idx = sd->busy_idx;
7149 		break;
7150 
7151 	case CPU_NEWLY_IDLE:
7152 		load_idx = sd->newidle_idx;
7153 		break;
7154 	default:
7155 		load_idx = sd->idle_idx;
7156 		break;
7157 	}
7158 
7159 	return load_idx;
7160 }
7161 
7162 static unsigned long scale_rt_capacity(int cpu)
7163 {
7164 	struct rq *rq = cpu_rq(cpu);
7165 	u64 total, used, age_stamp, avg;
7166 	s64 delta;
7167 
7168 	/*
7169 	 * Since we're reading these variables without serialization make sure
7170 	 * we read them once before doing sanity checks on them.
7171 	 */
7172 	age_stamp = READ_ONCE(rq->age_stamp);
7173 	avg = READ_ONCE(rq->rt_avg);
7174 	delta = __rq_clock_broken(rq) - age_stamp;
7175 
7176 	if (unlikely(delta < 0))
7177 		delta = 0;
7178 
7179 	total = sched_avg_period() + delta;
7180 
7181 	used = div_u64(avg, total);
7182 
7183 	if (likely(used < SCHED_CAPACITY_SCALE))
7184 		return SCHED_CAPACITY_SCALE - used;
7185 
7186 	return 1;
7187 }
7188 
7189 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7190 {
7191 	unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
7192 	struct sched_group *sdg = sd->groups;
7193 
7194 	cpu_rq(cpu)->cpu_capacity_orig = capacity;
7195 
7196 	capacity *= scale_rt_capacity(cpu);
7197 	capacity >>= SCHED_CAPACITY_SHIFT;
7198 
7199 	if (!capacity)
7200 		capacity = 1;
7201 
7202 	cpu_rq(cpu)->cpu_capacity = capacity;
7203 	sdg->sgc->capacity = capacity;
7204 	sdg->sgc->min_capacity = capacity;
7205 }
7206 
7207 void update_group_capacity(struct sched_domain *sd, int cpu)
7208 {
7209 	struct sched_domain *child = sd->child;
7210 	struct sched_group *group, *sdg = sd->groups;
7211 	unsigned long capacity, min_capacity;
7212 	unsigned long interval;
7213 
7214 	interval = msecs_to_jiffies(sd->balance_interval);
7215 	interval = clamp(interval, 1UL, max_load_balance_interval);
7216 	sdg->sgc->next_update = jiffies + interval;
7217 
7218 	if (!child) {
7219 		update_cpu_capacity(sd, cpu);
7220 		return;
7221 	}
7222 
7223 	capacity = 0;
7224 	min_capacity = ULONG_MAX;
7225 
7226 	if (child->flags & SD_OVERLAP) {
7227 		/*
7228 		 * SD_OVERLAP domains cannot assume that child groups
7229 		 * span the current group.
7230 		 */
7231 
7232 		for_each_cpu(cpu, sched_group_cpus(sdg)) {
7233 			struct sched_group_capacity *sgc;
7234 			struct rq *rq = cpu_rq(cpu);
7235 
7236 			/*
7237 			 * build_sched_domains() -> init_sched_groups_capacity()
7238 			 * gets here before we've attached the domains to the
7239 			 * runqueues.
7240 			 *
7241 			 * Use capacity_of(), which is set irrespective of domains
7242 			 * in update_cpu_capacity().
7243 			 *
7244 			 * This avoids capacity from being 0 and
7245 			 * causing divide-by-zero issues on boot.
7246 			 */
7247 			if (unlikely(!rq->sd)) {
7248 				capacity += capacity_of(cpu);
7249 			} else {
7250 				sgc = rq->sd->groups->sgc;
7251 				capacity += sgc->capacity;
7252 			}
7253 
7254 			min_capacity = min(capacity, min_capacity);
7255 		}
7256 	} else  {
7257 		/*
7258 		 * !SD_OVERLAP domains can assume that child groups
7259 		 * span the current group.
7260 		 */
7261 
7262 		group = child->groups;
7263 		do {
7264 			struct sched_group_capacity *sgc = group->sgc;
7265 
7266 			capacity += sgc->capacity;
7267 			min_capacity = min(sgc->min_capacity, min_capacity);
7268 			group = group->next;
7269 		} while (group != child->groups);
7270 	}
7271 
7272 	sdg->sgc->capacity = capacity;
7273 	sdg->sgc->min_capacity = min_capacity;
7274 }
7275 
7276 /*
7277  * Check whether the capacity of the rq has been noticeably reduced by side
7278  * activity. The imbalance_pct is used for the threshold.
7279  * Return true is the capacity is reduced
7280  */
7281 static inline int
7282 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7283 {
7284 	return ((rq->cpu_capacity * sd->imbalance_pct) <
7285 				(rq->cpu_capacity_orig * 100));
7286 }
7287 
7288 /*
7289  * Group imbalance indicates (and tries to solve) the problem where balancing
7290  * groups is inadequate due to ->cpus_allowed constraints.
7291  *
7292  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
7293  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
7294  * Something like:
7295  *
7296  *	{ 0 1 2 3 } { 4 5 6 7 }
7297  *	        *     * * *
7298  *
7299  * If we were to balance group-wise we'd place two tasks in the first group and
7300  * two tasks in the second group. Clearly this is undesired as it will overload
7301  * cpu 3 and leave one of the cpus in the second group unused.
7302  *
7303  * The current solution to this issue is detecting the skew in the first group
7304  * by noticing the lower domain failed to reach balance and had difficulty
7305  * moving tasks due to affinity constraints.
7306  *
7307  * When this is so detected; this group becomes a candidate for busiest; see
7308  * update_sd_pick_busiest(). And calculate_imbalance() and
7309  * find_busiest_group() avoid some of the usual balance conditions to allow it
7310  * to create an effective group imbalance.
7311  *
7312  * This is a somewhat tricky proposition since the next run might not find the
7313  * group imbalance and decide the groups need to be balanced again. A most
7314  * subtle and fragile situation.
7315  */
7316 
7317 static inline int sg_imbalanced(struct sched_group *group)
7318 {
7319 	return group->sgc->imbalance;
7320 }
7321 
7322 /*
7323  * group_has_capacity returns true if the group has spare capacity that could
7324  * be used by some tasks.
7325  * We consider that a group has spare capacity if the  * number of task is
7326  * smaller than the number of CPUs or if the utilization is lower than the
7327  * available capacity for CFS tasks.
7328  * For the latter, we use a threshold to stabilize the state, to take into
7329  * account the variance of the tasks' load and to return true if the available
7330  * capacity in meaningful for the load balancer.
7331  * As an example, an available capacity of 1% can appear but it doesn't make
7332  * any benefit for the load balance.
7333  */
7334 static inline bool
7335 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7336 {
7337 	if (sgs->sum_nr_running < sgs->group_weight)
7338 		return true;
7339 
7340 	if ((sgs->group_capacity * 100) >
7341 			(sgs->group_util * env->sd->imbalance_pct))
7342 		return true;
7343 
7344 	return false;
7345 }
7346 
7347 /*
7348  *  group_is_overloaded returns true if the group has more tasks than it can
7349  *  handle.
7350  *  group_is_overloaded is not equals to !group_has_capacity because a group
7351  *  with the exact right number of tasks, has no more spare capacity but is not
7352  *  overloaded so both group_has_capacity and group_is_overloaded return
7353  *  false.
7354  */
7355 static inline bool
7356 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7357 {
7358 	if (sgs->sum_nr_running <= sgs->group_weight)
7359 		return false;
7360 
7361 	if ((sgs->group_capacity * 100) <
7362 			(sgs->group_util * env->sd->imbalance_pct))
7363 		return true;
7364 
7365 	return false;
7366 }
7367 
7368 /*
7369  * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7370  * per-CPU capacity than sched_group ref.
7371  */
7372 static inline bool
7373 group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7374 {
7375 	return sg->sgc->min_capacity * capacity_margin <
7376 						ref->sgc->min_capacity * 1024;
7377 }
7378 
7379 static inline enum
7380 group_type group_classify(struct sched_group *group,
7381 			  struct sg_lb_stats *sgs)
7382 {
7383 	if (sgs->group_no_capacity)
7384 		return group_overloaded;
7385 
7386 	if (sg_imbalanced(group))
7387 		return group_imbalanced;
7388 
7389 	return group_other;
7390 }
7391 
7392 /**
7393  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7394  * @env: The load balancing environment.
7395  * @group: sched_group whose statistics are to be updated.
7396  * @load_idx: Load index of sched_domain of this_cpu for load calc.
7397  * @local_group: Does group contain this_cpu.
7398  * @sgs: variable to hold the statistics for this group.
7399  * @overload: Indicate more than one runnable task for any CPU.
7400  */
7401 static inline void update_sg_lb_stats(struct lb_env *env,
7402 			struct sched_group *group, int load_idx,
7403 			int local_group, struct sg_lb_stats *sgs,
7404 			bool *overload)
7405 {
7406 	unsigned long load;
7407 	int i, nr_running;
7408 
7409 	memset(sgs, 0, sizeof(*sgs));
7410 
7411 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7412 		struct rq *rq = cpu_rq(i);
7413 
7414 		/* Bias balancing toward cpus of our domain */
7415 		if (local_group)
7416 			load = target_load(i, load_idx);
7417 		else
7418 			load = source_load(i, load_idx);
7419 
7420 		sgs->group_load += load;
7421 		sgs->group_util += cpu_util(i);
7422 		sgs->sum_nr_running += rq->cfs.h_nr_running;
7423 
7424 		nr_running = rq->nr_running;
7425 		if (nr_running > 1)
7426 			*overload = true;
7427 
7428 #ifdef CONFIG_NUMA_BALANCING
7429 		sgs->nr_numa_running += rq->nr_numa_running;
7430 		sgs->nr_preferred_running += rq->nr_preferred_running;
7431 #endif
7432 		sgs->sum_weighted_load += weighted_cpuload(i);
7433 		/*
7434 		 * No need to call idle_cpu() if nr_running is not 0
7435 		 */
7436 		if (!nr_running && idle_cpu(i))
7437 			sgs->idle_cpus++;
7438 	}
7439 
7440 	/* Adjust by relative CPU capacity of the group */
7441 	sgs->group_capacity = group->sgc->capacity;
7442 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7443 
7444 	if (sgs->sum_nr_running)
7445 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7446 
7447 	sgs->group_weight = group->group_weight;
7448 
7449 	sgs->group_no_capacity = group_is_overloaded(env, sgs);
7450 	sgs->group_type = group_classify(group, sgs);
7451 }
7452 
7453 /**
7454  * update_sd_pick_busiest - return 1 on busiest group
7455  * @env: The load balancing environment.
7456  * @sds: sched_domain statistics
7457  * @sg: sched_group candidate to be checked for being the busiest
7458  * @sgs: sched_group statistics
7459  *
7460  * Determine if @sg is a busier group than the previously selected
7461  * busiest group.
7462  *
7463  * Return: %true if @sg is a busier group than the previously selected
7464  * busiest group. %false otherwise.
7465  */
7466 static bool update_sd_pick_busiest(struct lb_env *env,
7467 				   struct sd_lb_stats *sds,
7468 				   struct sched_group *sg,
7469 				   struct sg_lb_stats *sgs)
7470 {
7471 	struct sg_lb_stats *busiest = &sds->busiest_stat;
7472 
7473 	if (sgs->group_type > busiest->group_type)
7474 		return true;
7475 
7476 	if (sgs->group_type < busiest->group_type)
7477 		return false;
7478 
7479 	if (sgs->avg_load <= busiest->avg_load)
7480 		return false;
7481 
7482 	if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7483 		goto asym_packing;
7484 
7485 	/*
7486 	 * Candidate sg has no more than one task per CPU and
7487 	 * has higher per-CPU capacity. Migrating tasks to less
7488 	 * capable CPUs may harm throughput. Maximize throughput,
7489 	 * power/energy consequences are not considered.
7490 	 */
7491 	if (sgs->sum_nr_running <= sgs->group_weight &&
7492 	    group_smaller_cpu_capacity(sds->local, sg))
7493 		return false;
7494 
7495 asym_packing:
7496 	/* This is the busiest node in its class. */
7497 	if (!(env->sd->flags & SD_ASYM_PACKING))
7498 		return true;
7499 
7500 	/* No ASYM_PACKING if target cpu is already busy */
7501 	if (env->idle == CPU_NOT_IDLE)
7502 		return true;
7503 	/*
7504 	 * ASYM_PACKING needs to move all the work to the highest
7505 	 * prority CPUs in the group, therefore mark all groups
7506 	 * of lower priority than ourself as busy.
7507 	 */
7508 	if (sgs->sum_nr_running &&
7509 	    sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7510 		if (!sds->busiest)
7511 			return true;
7512 
7513 		/* Prefer to move from lowest priority cpu's work */
7514 		if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7515 				      sg->asym_prefer_cpu))
7516 			return true;
7517 	}
7518 
7519 	return false;
7520 }
7521 
7522 #ifdef CONFIG_NUMA_BALANCING
7523 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7524 {
7525 	if (sgs->sum_nr_running > sgs->nr_numa_running)
7526 		return regular;
7527 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
7528 		return remote;
7529 	return all;
7530 }
7531 
7532 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7533 {
7534 	if (rq->nr_running > rq->nr_numa_running)
7535 		return regular;
7536 	if (rq->nr_running > rq->nr_preferred_running)
7537 		return remote;
7538 	return all;
7539 }
7540 #else
7541 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7542 {
7543 	return all;
7544 }
7545 
7546 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7547 {
7548 	return regular;
7549 }
7550 #endif /* CONFIG_NUMA_BALANCING */
7551 
7552 /**
7553  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7554  * @env: The load balancing environment.
7555  * @sds: variable to hold the statistics for this sched_domain.
7556  */
7557 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
7558 {
7559 	struct sched_domain *child = env->sd->child;
7560 	struct sched_group *sg = env->sd->groups;
7561 	struct sg_lb_stats *local = &sds->local_stat;
7562 	struct sg_lb_stats tmp_sgs;
7563 	int load_idx, prefer_sibling = 0;
7564 	bool overload = false;
7565 
7566 	if (child && child->flags & SD_PREFER_SIBLING)
7567 		prefer_sibling = 1;
7568 
7569 	load_idx = get_sd_load_idx(env->sd, env->idle);
7570 
7571 	do {
7572 		struct sg_lb_stats *sgs = &tmp_sgs;
7573 		int local_group;
7574 
7575 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
7576 		if (local_group) {
7577 			sds->local = sg;
7578 			sgs = local;
7579 
7580 			if (env->idle != CPU_NEWLY_IDLE ||
7581 			    time_after_eq(jiffies, sg->sgc->next_update))
7582 				update_group_capacity(env->sd, env->dst_cpu);
7583 		}
7584 
7585 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
7586 						&overload);
7587 
7588 		if (local_group)
7589 			goto next_group;
7590 
7591 		/*
7592 		 * In case the child domain prefers tasks go to siblings
7593 		 * first, lower the sg capacity so that we'll try
7594 		 * and move all the excess tasks away. We lower the capacity
7595 		 * of a group only if the local group has the capacity to fit
7596 		 * these excess tasks. The extra check prevents the case where
7597 		 * you always pull from the heaviest group when it is already
7598 		 * under-utilized (possible with a large weight task outweighs
7599 		 * the tasks on the system).
7600 		 */
7601 		if (prefer_sibling && sds->local &&
7602 		    group_has_capacity(env, local) &&
7603 		    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
7604 			sgs->group_no_capacity = 1;
7605 			sgs->group_type = group_classify(sg, sgs);
7606 		}
7607 
7608 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
7609 			sds->busiest = sg;
7610 			sds->busiest_stat = *sgs;
7611 		}
7612 
7613 next_group:
7614 		/* Now, start updating sd_lb_stats */
7615 		sds->total_load += sgs->group_load;
7616 		sds->total_capacity += sgs->group_capacity;
7617 
7618 		sg = sg->next;
7619 	} while (sg != env->sd->groups);
7620 
7621 	if (env->sd->flags & SD_NUMA)
7622 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
7623 
7624 	if (!env->sd->parent) {
7625 		/* update overload indicator if we are at root domain */
7626 		if (env->dst_rq->rd->overload != overload)
7627 			env->dst_rq->rd->overload = overload;
7628 	}
7629 
7630 }
7631 
7632 /**
7633  * check_asym_packing - Check to see if the group is packed into the
7634  *			sched domain.
7635  *
7636  * This is primarily intended to used at the sibling level.  Some
7637  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
7638  * case of POWER7, it can move to lower SMT modes only when higher
7639  * threads are idle.  When in lower SMT modes, the threads will
7640  * perform better since they share less core resources.  Hence when we
7641  * have idle threads, we want them to be the higher ones.
7642  *
7643  * This packing function is run on idle threads.  It checks to see if
7644  * the busiest CPU in this domain (core in the P7 case) has a higher
7645  * CPU number than the packing function is being run on.  Here we are
7646  * assuming lower CPU number will be equivalent to lower a SMT thread
7647  * number.
7648  *
7649  * Return: 1 when packing is required and a task should be moved to
7650  * this CPU.  The amount of the imbalance is returned in *imbalance.
7651  *
7652  * @env: The load balancing environment.
7653  * @sds: Statistics of the sched_domain which is to be packed
7654  */
7655 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
7656 {
7657 	int busiest_cpu;
7658 
7659 	if (!(env->sd->flags & SD_ASYM_PACKING))
7660 		return 0;
7661 
7662 	if (env->idle == CPU_NOT_IDLE)
7663 		return 0;
7664 
7665 	if (!sds->busiest)
7666 		return 0;
7667 
7668 	busiest_cpu = sds->busiest->asym_prefer_cpu;
7669 	if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
7670 		return 0;
7671 
7672 	env->imbalance = DIV_ROUND_CLOSEST(
7673 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
7674 		SCHED_CAPACITY_SCALE);
7675 
7676 	return 1;
7677 }
7678 
7679 /**
7680  * fix_small_imbalance - Calculate the minor imbalance that exists
7681  *			amongst the groups of a sched_domain, during
7682  *			load balancing.
7683  * @env: The load balancing environment.
7684  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
7685  */
7686 static inline
7687 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7688 {
7689 	unsigned long tmp, capa_now = 0, capa_move = 0;
7690 	unsigned int imbn = 2;
7691 	unsigned long scaled_busy_load_per_task;
7692 	struct sg_lb_stats *local, *busiest;
7693 
7694 	local = &sds->local_stat;
7695 	busiest = &sds->busiest_stat;
7696 
7697 	if (!local->sum_nr_running)
7698 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7699 	else if (busiest->load_per_task > local->load_per_task)
7700 		imbn = 1;
7701 
7702 	scaled_busy_load_per_task =
7703 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7704 		busiest->group_capacity;
7705 
7706 	if (busiest->avg_load + scaled_busy_load_per_task >=
7707 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
7708 		env->imbalance = busiest->load_per_task;
7709 		return;
7710 	}
7711 
7712 	/*
7713 	 * OK, we don't have enough imbalance to justify moving tasks,
7714 	 * however we may be able to increase total CPU capacity used by
7715 	 * moving them.
7716 	 */
7717 
7718 	capa_now += busiest->group_capacity *
7719 			min(busiest->load_per_task, busiest->avg_load);
7720 	capa_now += local->group_capacity *
7721 			min(local->load_per_task, local->avg_load);
7722 	capa_now /= SCHED_CAPACITY_SCALE;
7723 
7724 	/* Amount of load we'd subtract */
7725 	if (busiest->avg_load > scaled_busy_load_per_task) {
7726 		capa_move += busiest->group_capacity *
7727 			    min(busiest->load_per_task,
7728 				busiest->avg_load - scaled_busy_load_per_task);
7729 	}
7730 
7731 	/* Amount of load we'd add */
7732 	if (busiest->avg_load * busiest->group_capacity <
7733 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
7734 		tmp = (busiest->avg_load * busiest->group_capacity) /
7735 		      local->group_capacity;
7736 	} else {
7737 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
7738 		      local->group_capacity;
7739 	}
7740 	capa_move += local->group_capacity *
7741 		    min(local->load_per_task, local->avg_load + tmp);
7742 	capa_move /= SCHED_CAPACITY_SCALE;
7743 
7744 	/* Move if we gain throughput */
7745 	if (capa_move > capa_now)
7746 		env->imbalance = busiest->load_per_task;
7747 }
7748 
7749 /**
7750  * calculate_imbalance - Calculate the amount of imbalance present within the
7751  *			 groups of a given sched_domain during load balance.
7752  * @env: load balance environment
7753  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
7754  */
7755 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
7756 {
7757 	unsigned long max_pull, load_above_capacity = ~0UL;
7758 	struct sg_lb_stats *local, *busiest;
7759 
7760 	local = &sds->local_stat;
7761 	busiest = &sds->busiest_stat;
7762 
7763 	if (busiest->group_type == group_imbalanced) {
7764 		/*
7765 		 * In the group_imb case we cannot rely on group-wide averages
7766 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
7767 		 */
7768 		busiest->load_per_task =
7769 			min(busiest->load_per_task, sds->avg_load);
7770 	}
7771 
7772 	/*
7773 	 * Avg load of busiest sg can be less and avg load of local sg can
7774 	 * be greater than avg load across all sgs of sd because avg load
7775 	 * factors in sg capacity and sgs with smaller group_type are
7776 	 * skipped when updating the busiest sg:
7777 	 */
7778 	if (busiest->avg_load <= sds->avg_load ||
7779 	    local->avg_load >= sds->avg_load) {
7780 		env->imbalance = 0;
7781 		return fix_small_imbalance(env, sds);
7782 	}
7783 
7784 	/*
7785 	 * If there aren't any idle cpus, avoid creating some.
7786 	 */
7787 	if (busiest->group_type == group_overloaded &&
7788 	    local->group_type   == group_overloaded) {
7789 		load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
7790 		if (load_above_capacity > busiest->group_capacity) {
7791 			load_above_capacity -= busiest->group_capacity;
7792 			load_above_capacity *= scale_load_down(NICE_0_LOAD);
7793 			load_above_capacity /= busiest->group_capacity;
7794 		} else
7795 			load_above_capacity = ~0UL;
7796 	}
7797 
7798 	/*
7799 	 * We're trying to get all the cpus to the average_load, so we don't
7800 	 * want to push ourselves above the average load, nor do we wish to
7801 	 * reduce the max loaded cpu below the average load. At the same time,
7802 	 * we also don't want to reduce the group load below the group
7803 	 * capacity. Thus we look for the minimum possible imbalance.
7804 	 */
7805 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
7806 
7807 	/* How much load to actually move to equalise the imbalance */
7808 	env->imbalance = min(
7809 		max_pull * busiest->group_capacity,
7810 		(sds->avg_load - local->avg_load) * local->group_capacity
7811 	) / SCHED_CAPACITY_SCALE;
7812 
7813 	/*
7814 	 * if *imbalance is less than the average load per runnable task
7815 	 * there is no guarantee that any tasks will be moved so we'll have
7816 	 * a think about bumping its value to force at least one task to be
7817 	 * moved
7818 	 */
7819 	if (env->imbalance < busiest->load_per_task)
7820 		return fix_small_imbalance(env, sds);
7821 }
7822 
7823 /******* find_busiest_group() helpers end here *********************/
7824 
7825 /**
7826  * find_busiest_group - Returns the busiest group within the sched_domain
7827  * if there is an imbalance.
7828  *
7829  * Also calculates the amount of weighted load which should be moved
7830  * to restore balance.
7831  *
7832  * @env: The load balancing environment.
7833  *
7834  * Return:	- The busiest group if imbalance exists.
7835  */
7836 static struct sched_group *find_busiest_group(struct lb_env *env)
7837 {
7838 	struct sg_lb_stats *local, *busiest;
7839 	struct sd_lb_stats sds;
7840 
7841 	init_sd_lb_stats(&sds);
7842 
7843 	/*
7844 	 * Compute the various statistics relavent for load balancing at
7845 	 * this level.
7846 	 */
7847 	update_sd_lb_stats(env, &sds);
7848 	local = &sds.local_stat;
7849 	busiest = &sds.busiest_stat;
7850 
7851 	/* ASYM feature bypasses nice load balance check */
7852 	if (check_asym_packing(env, &sds))
7853 		return sds.busiest;
7854 
7855 	/* There is no busy sibling group to pull tasks from */
7856 	if (!sds.busiest || busiest->sum_nr_running == 0)
7857 		goto out_balanced;
7858 
7859 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7860 						/ sds.total_capacity;
7861 
7862 	/*
7863 	 * If the busiest group is imbalanced the below checks don't
7864 	 * work because they assume all things are equal, which typically
7865 	 * isn't true due to cpus_allowed constraints and the like.
7866 	 */
7867 	if (busiest->group_type == group_imbalanced)
7868 		goto force_balance;
7869 
7870 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
7871 	if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7872 	    busiest->group_no_capacity)
7873 		goto force_balance;
7874 
7875 	/*
7876 	 * If the local group is busier than the selected busiest group
7877 	 * don't try and pull any tasks.
7878 	 */
7879 	if (local->avg_load >= busiest->avg_load)
7880 		goto out_balanced;
7881 
7882 	/*
7883 	 * Don't pull any tasks if this group is already above the domain
7884 	 * average load.
7885 	 */
7886 	if (local->avg_load >= sds.avg_load)
7887 		goto out_balanced;
7888 
7889 	if (env->idle == CPU_IDLE) {
7890 		/*
7891 		 * This cpu is idle. If the busiest group is not overloaded
7892 		 * and there is no imbalance between this and busiest group
7893 		 * wrt idle cpus, it is balanced. The imbalance becomes
7894 		 * significant if the diff is greater than 1 otherwise we
7895 		 * might end up to just move the imbalance on another group
7896 		 */
7897 		if ((busiest->group_type != group_overloaded) &&
7898 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
7899 			goto out_balanced;
7900 	} else {
7901 		/*
7902 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7903 		 * imbalance_pct to be conservative.
7904 		 */
7905 		if (100 * busiest->avg_load <=
7906 				env->sd->imbalance_pct * local->avg_load)
7907 			goto out_balanced;
7908 	}
7909 
7910 force_balance:
7911 	/* Looks like there is an imbalance. Compute it */
7912 	calculate_imbalance(env, &sds);
7913 	return sds.busiest;
7914 
7915 out_balanced:
7916 	env->imbalance = 0;
7917 	return NULL;
7918 }
7919 
7920 /*
7921  * find_busiest_queue - find the busiest runqueue among the cpus in group.
7922  */
7923 static struct rq *find_busiest_queue(struct lb_env *env,
7924 				     struct sched_group *group)
7925 {
7926 	struct rq *busiest = NULL, *rq;
7927 	unsigned long busiest_load = 0, busiest_capacity = 1;
7928 	int i;
7929 
7930 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
7931 		unsigned long capacity, wl;
7932 		enum fbq_type rt;
7933 
7934 		rq = cpu_rq(i);
7935 		rt = fbq_classify_rq(rq);
7936 
7937 		/*
7938 		 * We classify groups/runqueues into three groups:
7939 		 *  - regular: there are !numa tasks
7940 		 *  - remote:  there are numa tasks that run on the 'wrong' node
7941 		 *  - all:     there is no distinction
7942 		 *
7943 		 * In order to avoid migrating ideally placed numa tasks,
7944 		 * ignore those when there's better options.
7945 		 *
7946 		 * If we ignore the actual busiest queue to migrate another
7947 		 * task, the next balance pass can still reduce the busiest
7948 		 * queue by moving tasks around inside the node.
7949 		 *
7950 		 * If we cannot move enough load due to this classification
7951 		 * the next pass will adjust the group classification and
7952 		 * allow migration of more tasks.
7953 		 *
7954 		 * Both cases only affect the total convergence complexity.
7955 		 */
7956 		if (rt > env->fbq_type)
7957 			continue;
7958 
7959 		capacity = capacity_of(i);
7960 
7961 		wl = weighted_cpuload(i);
7962 
7963 		/*
7964 		 * When comparing with imbalance, use weighted_cpuload()
7965 		 * which is not scaled with the cpu capacity.
7966 		 */
7967 
7968 		if (rq->nr_running == 1 && wl > env->imbalance &&
7969 		    !check_cpu_capacity(rq, env->sd))
7970 			continue;
7971 
7972 		/*
7973 		 * For the load comparisons with the other cpu's, consider
7974 		 * the weighted_cpuload() scaled with the cpu capacity, so
7975 		 * that the load can be moved away from the cpu that is
7976 		 * potentially running at a lower capacity.
7977 		 *
7978 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
7979 		 * multiplication to rid ourselves of the division works out
7980 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
7981 		 * our previous maximum.
7982 		 */
7983 		if (wl * busiest_capacity > busiest_load * capacity) {
7984 			busiest_load = wl;
7985 			busiest_capacity = capacity;
7986 			busiest = rq;
7987 		}
7988 	}
7989 
7990 	return busiest;
7991 }
7992 
7993 /*
7994  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7995  * so long as it is large enough.
7996  */
7997 #define MAX_PINNED_INTERVAL	512
7998 
7999 static int need_active_balance(struct lb_env *env)
8000 {
8001 	struct sched_domain *sd = env->sd;
8002 
8003 	if (env->idle == CPU_NEWLY_IDLE) {
8004 
8005 		/*
8006 		 * ASYM_PACKING needs to force migrate tasks from busy but
8007 		 * lower priority CPUs in order to pack all tasks in the
8008 		 * highest priority CPUs.
8009 		 */
8010 		if ((sd->flags & SD_ASYM_PACKING) &&
8011 		    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8012 			return 1;
8013 	}
8014 
8015 	/*
8016 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8017 	 * It's worth migrating the task if the src_cpu's capacity is reduced
8018 	 * because of other sched_class or IRQs if more capacity stays
8019 	 * available on dst_cpu.
8020 	 */
8021 	if ((env->idle != CPU_NOT_IDLE) &&
8022 	    (env->src_rq->cfs.h_nr_running == 1)) {
8023 		if ((check_cpu_capacity(env->src_rq, sd)) &&
8024 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8025 			return 1;
8026 	}
8027 
8028 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8029 }
8030 
8031 static int active_load_balance_cpu_stop(void *data);
8032 
8033 static int should_we_balance(struct lb_env *env)
8034 {
8035 	struct sched_group *sg = env->sd->groups;
8036 	struct cpumask *sg_cpus, *sg_mask;
8037 	int cpu, balance_cpu = -1;
8038 
8039 	/*
8040 	 * In the newly idle case, we will allow all the cpu's
8041 	 * to do the newly idle load balance.
8042 	 */
8043 	if (env->idle == CPU_NEWLY_IDLE)
8044 		return 1;
8045 
8046 	sg_cpus = sched_group_cpus(sg);
8047 	sg_mask = sched_group_mask(sg);
8048 	/* Try to find first idle cpu */
8049 	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
8050 		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
8051 			continue;
8052 
8053 		balance_cpu = cpu;
8054 		break;
8055 	}
8056 
8057 	if (balance_cpu == -1)
8058 		balance_cpu = group_balance_cpu(sg);
8059 
8060 	/*
8061 	 * First idle cpu or the first cpu(busiest) in this sched group
8062 	 * is eligible for doing load balancing at this and above domains.
8063 	 */
8064 	return balance_cpu == env->dst_cpu;
8065 }
8066 
8067 /*
8068  * Check this_cpu to ensure it is balanced within domain. Attempt to move
8069  * tasks if there is an imbalance.
8070  */
8071 static int load_balance(int this_cpu, struct rq *this_rq,
8072 			struct sched_domain *sd, enum cpu_idle_type idle,
8073 			int *continue_balancing)
8074 {
8075 	int ld_moved, cur_ld_moved, active_balance = 0;
8076 	struct sched_domain *sd_parent = sd->parent;
8077 	struct sched_group *group;
8078 	struct rq *busiest;
8079 	struct rq_flags rf;
8080 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8081 
8082 	struct lb_env env = {
8083 		.sd		= sd,
8084 		.dst_cpu	= this_cpu,
8085 		.dst_rq		= this_rq,
8086 		.dst_grpmask    = sched_group_cpus(sd->groups),
8087 		.idle		= idle,
8088 		.loop_break	= sched_nr_migrate_break,
8089 		.cpus		= cpus,
8090 		.fbq_type	= all,
8091 		.tasks		= LIST_HEAD_INIT(env.tasks),
8092 	};
8093 
8094 	/*
8095 	 * For NEWLY_IDLE load_balancing, we don't need to consider
8096 	 * other cpus in our group
8097 	 */
8098 	if (idle == CPU_NEWLY_IDLE)
8099 		env.dst_grpmask = NULL;
8100 
8101 	cpumask_copy(cpus, cpu_active_mask);
8102 
8103 	schedstat_inc(sd->lb_count[idle]);
8104 
8105 redo:
8106 	if (!should_we_balance(&env)) {
8107 		*continue_balancing = 0;
8108 		goto out_balanced;
8109 	}
8110 
8111 	group = find_busiest_group(&env);
8112 	if (!group) {
8113 		schedstat_inc(sd->lb_nobusyg[idle]);
8114 		goto out_balanced;
8115 	}
8116 
8117 	busiest = find_busiest_queue(&env, group);
8118 	if (!busiest) {
8119 		schedstat_inc(sd->lb_nobusyq[idle]);
8120 		goto out_balanced;
8121 	}
8122 
8123 	BUG_ON(busiest == env.dst_rq);
8124 
8125 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8126 
8127 	env.src_cpu = busiest->cpu;
8128 	env.src_rq = busiest;
8129 
8130 	ld_moved = 0;
8131 	if (busiest->nr_running > 1) {
8132 		/*
8133 		 * Attempt to move tasks. If find_busiest_group has found
8134 		 * an imbalance but busiest->nr_running <= 1, the group is
8135 		 * still unbalanced. ld_moved simply stays zero, so it is
8136 		 * correctly treated as an imbalance.
8137 		 */
8138 		env.flags |= LBF_ALL_PINNED;
8139 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8140 
8141 more_balance:
8142 		rq_lock_irqsave(busiest, &rf);
8143 		update_rq_clock(busiest);
8144 
8145 		/*
8146 		 * cur_ld_moved - load moved in current iteration
8147 		 * ld_moved     - cumulative load moved across iterations
8148 		 */
8149 		cur_ld_moved = detach_tasks(&env);
8150 
8151 		/*
8152 		 * We've detached some tasks from busiest_rq. Every
8153 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8154 		 * unlock busiest->lock, and we are able to be sure
8155 		 * that nobody can manipulate the tasks in parallel.
8156 		 * See task_rq_lock() family for the details.
8157 		 */
8158 
8159 		rq_unlock(busiest, &rf);
8160 
8161 		if (cur_ld_moved) {
8162 			attach_tasks(&env);
8163 			ld_moved += cur_ld_moved;
8164 		}
8165 
8166 		local_irq_restore(rf.flags);
8167 
8168 		if (env.flags & LBF_NEED_BREAK) {
8169 			env.flags &= ~LBF_NEED_BREAK;
8170 			goto more_balance;
8171 		}
8172 
8173 		/*
8174 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8175 		 * us and move them to an alternate dst_cpu in our sched_group
8176 		 * where they can run. The upper limit on how many times we
8177 		 * iterate on same src_cpu is dependent on number of cpus in our
8178 		 * sched_group.
8179 		 *
8180 		 * This changes load balance semantics a bit on who can move
8181 		 * load to a given_cpu. In addition to the given_cpu itself
8182 		 * (or a ilb_cpu acting on its behalf where given_cpu is
8183 		 * nohz-idle), we now have balance_cpu in a position to move
8184 		 * load to given_cpu. In rare situations, this may cause
8185 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8186 		 * _independently_ and at _same_ time to move some load to
8187 		 * given_cpu) causing exceess load to be moved to given_cpu.
8188 		 * This however should not happen so much in practice and
8189 		 * moreover subsequent load balance cycles should correct the
8190 		 * excess load moved.
8191 		 */
8192 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8193 
8194 			/* Prevent to re-select dst_cpu via env's cpus */
8195 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
8196 
8197 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
8198 			env.dst_cpu	 = env.new_dst_cpu;
8199 			env.flags	&= ~LBF_DST_PINNED;
8200 			env.loop	 = 0;
8201 			env.loop_break	 = sched_nr_migrate_break;
8202 
8203 			/*
8204 			 * Go back to "more_balance" rather than "redo" since we
8205 			 * need to continue with same src_cpu.
8206 			 */
8207 			goto more_balance;
8208 		}
8209 
8210 		/*
8211 		 * We failed to reach balance because of affinity.
8212 		 */
8213 		if (sd_parent) {
8214 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8215 
8216 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8217 				*group_imbalance = 1;
8218 		}
8219 
8220 		/* All tasks on this runqueue were pinned by CPU affinity */
8221 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
8222 			cpumask_clear_cpu(cpu_of(busiest), cpus);
8223 			if (!cpumask_empty(cpus)) {
8224 				env.loop = 0;
8225 				env.loop_break = sched_nr_migrate_break;
8226 				goto redo;
8227 			}
8228 			goto out_all_pinned;
8229 		}
8230 	}
8231 
8232 	if (!ld_moved) {
8233 		schedstat_inc(sd->lb_failed[idle]);
8234 		/*
8235 		 * Increment the failure counter only on periodic balance.
8236 		 * We do not want newidle balance, which can be very
8237 		 * frequent, pollute the failure counter causing
8238 		 * excessive cache_hot migrations and active balances.
8239 		 */
8240 		if (idle != CPU_NEWLY_IDLE)
8241 			sd->nr_balance_failed++;
8242 
8243 		if (need_active_balance(&env)) {
8244 			unsigned long flags;
8245 
8246 			raw_spin_lock_irqsave(&busiest->lock, flags);
8247 
8248 			/* don't kick the active_load_balance_cpu_stop,
8249 			 * if the curr task on busiest cpu can't be
8250 			 * moved to this_cpu
8251 			 */
8252 			if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8253 				raw_spin_unlock_irqrestore(&busiest->lock,
8254 							    flags);
8255 				env.flags |= LBF_ALL_PINNED;
8256 				goto out_one_pinned;
8257 			}
8258 
8259 			/*
8260 			 * ->active_balance synchronizes accesses to
8261 			 * ->active_balance_work.  Once set, it's cleared
8262 			 * only after active load balance is finished.
8263 			 */
8264 			if (!busiest->active_balance) {
8265 				busiest->active_balance = 1;
8266 				busiest->push_cpu = this_cpu;
8267 				active_balance = 1;
8268 			}
8269 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
8270 
8271 			if (active_balance) {
8272 				stop_one_cpu_nowait(cpu_of(busiest),
8273 					active_load_balance_cpu_stop, busiest,
8274 					&busiest->active_balance_work);
8275 			}
8276 
8277 			/* We've kicked active balancing, force task migration. */
8278 			sd->nr_balance_failed = sd->cache_nice_tries+1;
8279 		}
8280 	} else
8281 		sd->nr_balance_failed = 0;
8282 
8283 	if (likely(!active_balance)) {
8284 		/* We were unbalanced, so reset the balancing interval */
8285 		sd->balance_interval = sd->min_interval;
8286 	} else {
8287 		/*
8288 		 * If we've begun active balancing, start to back off. This
8289 		 * case may not be covered by the all_pinned logic if there
8290 		 * is only 1 task on the busy runqueue (because we don't call
8291 		 * detach_tasks).
8292 		 */
8293 		if (sd->balance_interval < sd->max_interval)
8294 			sd->balance_interval *= 2;
8295 	}
8296 
8297 	goto out;
8298 
8299 out_balanced:
8300 	/*
8301 	 * We reach balance although we may have faced some affinity
8302 	 * constraints. Clear the imbalance flag if it was set.
8303 	 */
8304 	if (sd_parent) {
8305 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8306 
8307 		if (*group_imbalance)
8308 			*group_imbalance = 0;
8309 	}
8310 
8311 out_all_pinned:
8312 	/*
8313 	 * We reach balance because all tasks are pinned at this level so
8314 	 * we can't migrate them. Let the imbalance flag set so parent level
8315 	 * can try to migrate them.
8316 	 */
8317 	schedstat_inc(sd->lb_balanced[idle]);
8318 
8319 	sd->nr_balance_failed = 0;
8320 
8321 out_one_pinned:
8322 	/* tune up the balancing interval */
8323 	if (((env.flags & LBF_ALL_PINNED) &&
8324 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
8325 			(sd->balance_interval < sd->max_interval))
8326 		sd->balance_interval *= 2;
8327 
8328 	ld_moved = 0;
8329 out:
8330 	return ld_moved;
8331 }
8332 
8333 static inline unsigned long
8334 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8335 {
8336 	unsigned long interval = sd->balance_interval;
8337 
8338 	if (cpu_busy)
8339 		interval *= sd->busy_factor;
8340 
8341 	/* scale ms to jiffies */
8342 	interval = msecs_to_jiffies(interval);
8343 	interval = clamp(interval, 1UL, max_load_balance_interval);
8344 
8345 	return interval;
8346 }
8347 
8348 static inline void
8349 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8350 {
8351 	unsigned long interval, next;
8352 
8353 	/* used by idle balance, so cpu_busy = 0 */
8354 	interval = get_sd_balance_interval(sd, 0);
8355 	next = sd->last_balance + interval;
8356 
8357 	if (time_after(*next_balance, next))
8358 		*next_balance = next;
8359 }
8360 
8361 /*
8362  * idle_balance is called by schedule() if this_cpu is about to become
8363  * idle. Attempts to pull tasks from other CPUs.
8364  */
8365 static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
8366 {
8367 	unsigned long next_balance = jiffies + HZ;
8368 	int this_cpu = this_rq->cpu;
8369 	struct sched_domain *sd;
8370 	int pulled_task = 0;
8371 	u64 curr_cost = 0;
8372 
8373 	/*
8374 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
8375 	 * measure the duration of idle_balance() as idle time.
8376 	 */
8377 	this_rq->idle_stamp = rq_clock(this_rq);
8378 
8379 	/*
8380 	 * This is OK, because current is on_cpu, which avoids it being picked
8381 	 * for load-balance and preemption/IRQs are still disabled avoiding
8382 	 * further scheduler activity on it and we're being very careful to
8383 	 * re-start the picking loop.
8384 	 */
8385 	rq_unpin_lock(this_rq, rf);
8386 
8387 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
8388 	    !this_rq->rd->overload) {
8389 		rcu_read_lock();
8390 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
8391 		if (sd)
8392 			update_next_balance(sd, &next_balance);
8393 		rcu_read_unlock();
8394 
8395 		goto out;
8396 	}
8397 
8398 	raw_spin_unlock(&this_rq->lock);
8399 
8400 	update_blocked_averages(this_cpu);
8401 	rcu_read_lock();
8402 	for_each_domain(this_cpu, sd) {
8403 		int continue_balancing = 1;
8404 		u64 t0, domain_cost;
8405 
8406 		if (!(sd->flags & SD_LOAD_BALANCE))
8407 			continue;
8408 
8409 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
8410 			update_next_balance(sd, &next_balance);
8411 			break;
8412 		}
8413 
8414 		if (sd->flags & SD_BALANCE_NEWIDLE) {
8415 			t0 = sched_clock_cpu(this_cpu);
8416 
8417 			pulled_task = load_balance(this_cpu, this_rq,
8418 						   sd, CPU_NEWLY_IDLE,
8419 						   &continue_balancing);
8420 
8421 			domain_cost = sched_clock_cpu(this_cpu) - t0;
8422 			if (domain_cost > sd->max_newidle_lb_cost)
8423 				sd->max_newidle_lb_cost = domain_cost;
8424 
8425 			curr_cost += domain_cost;
8426 		}
8427 
8428 		update_next_balance(sd, &next_balance);
8429 
8430 		/*
8431 		 * Stop searching for tasks to pull if there are
8432 		 * now runnable tasks on this rq.
8433 		 */
8434 		if (pulled_task || this_rq->nr_running > 0)
8435 			break;
8436 	}
8437 	rcu_read_unlock();
8438 
8439 	raw_spin_lock(&this_rq->lock);
8440 
8441 	if (curr_cost > this_rq->max_idle_balance_cost)
8442 		this_rq->max_idle_balance_cost = curr_cost;
8443 
8444 	/*
8445 	 * While browsing the domains, we released the rq lock, a task could
8446 	 * have been enqueued in the meantime. Since we're not going idle,
8447 	 * pretend we pulled a task.
8448 	 */
8449 	if (this_rq->cfs.h_nr_running && !pulled_task)
8450 		pulled_task = 1;
8451 
8452 out:
8453 	/* Move the next balance forward */
8454 	if (time_after(this_rq->next_balance, next_balance))
8455 		this_rq->next_balance = next_balance;
8456 
8457 	/* Is there a task of a high priority class? */
8458 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
8459 		pulled_task = -1;
8460 
8461 	if (pulled_task)
8462 		this_rq->idle_stamp = 0;
8463 
8464 	rq_repin_lock(this_rq, rf);
8465 
8466 	return pulled_task;
8467 }
8468 
8469 /*
8470  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
8471  * running tasks off the busiest CPU onto idle CPUs. It requires at
8472  * least 1 task to be running on each physical CPU where possible, and
8473  * avoids physical / logical imbalances.
8474  */
8475 static int active_load_balance_cpu_stop(void *data)
8476 {
8477 	struct rq *busiest_rq = data;
8478 	int busiest_cpu = cpu_of(busiest_rq);
8479 	int target_cpu = busiest_rq->push_cpu;
8480 	struct rq *target_rq = cpu_rq(target_cpu);
8481 	struct sched_domain *sd;
8482 	struct task_struct *p = NULL;
8483 	struct rq_flags rf;
8484 
8485 	rq_lock_irq(busiest_rq, &rf);
8486 
8487 	/* make sure the requested cpu hasn't gone down in the meantime */
8488 	if (unlikely(busiest_cpu != smp_processor_id() ||
8489 		     !busiest_rq->active_balance))
8490 		goto out_unlock;
8491 
8492 	/* Is there any task to move? */
8493 	if (busiest_rq->nr_running <= 1)
8494 		goto out_unlock;
8495 
8496 	/*
8497 	 * This condition is "impossible", if it occurs
8498 	 * we need to fix it. Originally reported by
8499 	 * Bjorn Helgaas on a 128-cpu setup.
8500 	 */
8501 	BUG_ON(busiest_rq == target_rq);
8502 
8503 	/* Search for an sd spanning us and the target CPU. */
8504 	rcu_read_lock();
8505 	for_each_domain(target_cpu, sd) {
8506 		if ((sd->flags & SD_LOAD_BALANCE) &&
8507 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8508 				break;
8509 	}
8510 
8511 	if (likely(sd)) {
8512 		struct lb_env env = {
8513 			.sd		= sd,
8514 			.dst_cpu	= target_cpu,
8515 			.dst_rq		= target_rq,
8516 			.src_cpu	= busiest_rq->cpu,
8517 			.src_rq		= busiest_rq,
8518 			.idle		= CPU_IDLE,
8519 		};
8520 
8521 		schedstat_inc(sd->alb_count);
8522 		update_rq_clock(busiest_rq);
8523 
8524 		p = detach_one_task(&env);
8525 		if (p) {
8526 			schedstat_inc(sd->alb_pushed);
8527 			/* Active balancing done, reset the failure counter. */
8528 			sd->nr_balance_failed = 0;
8529 		} else {
8530 			schedstat_inc(sd->alb_failed);
8531 		}
8532 	}
8533 	rcu_read_unlock();
8534 out_unlock:
8535 	busiest_rq->active_balance = 0;
8536 	rq_unlock(busiest_rq, &rf);
8537 
8538 	if (p)
8539 		attach_one_task(target_rq, p);
8540 
8541 	local_irq_enable();
8542 
8543 	return 0;
8544 }
8545 
8546 static inline int on_null_domain(struct rq *rq)
8547 {
8548 	return unlikely(!rcu_dereference_sched(rq->sd));
8549 }
8550 
8551 #ifdef CONFIG_NO_HZ_COMMON
8552 /*
8553  * idle load balancing details
8554  * - When one of the busy CPUs notice that there may be an idle rebalancing
8555  *   needed, they will kick the idle load balancer, which then does idle
8556  *   load balancing for all the idle CPUs.
8557  */
8558 static struct {
8559 	cpumask_var_t idle_cpus_mask;
8560 	atomic_t nr_cpus;
8561 	unsigned long next_balance;     /* in jiffy units */
8562 } nohz ____cacheline_aligned;
8563 
8564 static inline int find_new_ilb(void)
8565 {
8566 	int ilb = cpumask_first(nohz.idle_cpus_mask);
8567 
8568 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
8569 		return ilb;
8570 
8571 	return nr_cpu_ids;
8572 }
8573 
8574 /*
8575  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
8576  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
8577  * CPU (if there is one).
8578  */
8579 static void nohz_balancer_kick(void)
8580 {
8581 	int ilb_cpu;
8582 
8583 	nohz.next_balance++;
8584 
8585 	ilb_cpu = find_new_ilb();
8586 
8587 	if (ilb_cpu >= nr_cpu_ids)
8588 		return;
8589 
8590 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
8591 		return;
8592 	/*
8593 	 * Use smp_send_reschedule() instead of resched_cpu().
8594 	 * This way we generate a sched IPI on the target cpu which
8595 	 * is idle. And the softirq performing nohz idle load balance
8596 	 * will be run before returning from the IPI.
8597 	 */
8598 	smp_send_reschedule(ilb_cpu);
8599 	return;
8600 }
8601 
8602 void nohz_balance_exit_idle(unsigned int cpu)
8603 {
8604 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
8605 		/*
8606 		 * Completely isolated CPUs don't ever set, so we must test.
8607 		 */
8608 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
8609 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
8610 			atomic_dec(&nohz.nr_cpus);
8611 		}
8612 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8613 	}
8614 }
8615 
8616 static inline void set_cpu_sd_state_busy(void)
8617 {
8618 	struct sched_domain *sd;
8619 	int cpu = smp_processor_id();
8620 
8621 	rcu_read_lock();
8622 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
8623 
8624 	if (!sd || !sd->nohz_idle)
8625 		goto unlock;
8626 	sd->nohz_idle = 0;
8627 
8628 	atomic_inc(&sd->shared->nr_busy_cpus);
8629 unlock:
8630 	rcu_read_unlock();
8631 }
8632 
8633 void set_cpu_sd_state_idle(void)
8634 {
8635 	struct sched_domain *sd;
8636 	int cpu = smp_processor_id();
8637 
8638 	rcu_read_lock();
8639 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
8640 
8641 	if (!sd || sd->nohz_idle)
8642 		goto unlock;
8643 	sd->nohz_idle = 1;
8644 
8645 	atomic_dec(&sd->shared->nr_busy_cpus);
8646 unlock:
8647 	rcu_read_unlock();
8648 }
8649 
8650 /*
8651  * This routine will record that the cpu is going idle with tick stopped.
8652  * This info will be used in performing idle load balancing in the future.
8653  */
8654 void nohz_balance_enter_idle(int cpu)
8655 {
8656 	/*
8657 	 * If this cpu is going down, then nothing needs to be done.
8658 	 */
8659 	if (!cpu_active(cpu))
8660 		return;
8661 
8662 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8663 		return;
8664 
8665 	/*
8666 	 * If we're a completely isolated CPU, we don't play.
8667 	 */
8668 	if (on_null_domain(cpu_rq(cpu)))
8669 		return;
8670 
8671 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8672 	atomic_inc(&nohz.nr_cpus);
8673 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
8674 }
8675 #endif
8676 
8677 static DEFINE_SPINLOCK(balancing);
8678 
8679 /*
8680  * Scale the max load_balance interval with the number of CPUs in the system.
8681  * This trades load-balance latency on larger machines for less cross talk.
8682  */
8683 void update_max_interval(void)
8684 {
8685 	max_load_balance_interval = HZ*num_online_cpus()/10;
8686 }
8687 
8688 /*
8689  * It checks each scheduling domain to see if it is due to be balanced,
8690  * and initiates a balancing operation if so.
8691  *
8692  * Balancing parameters are set up in init_sched_domains.
8693  */
8694 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8695 {
8696 	int continue_balancing = 1;
8697 	int cpu = rq->cpu;
8698 	unsigned long interval;
8699 	struct sched_domain *sd;
8700 	/* Earliest time when we have to do rebalance again */
8701 	unsigned long next_balance = jiffies + 60*HZ;
8702 	int update_next_balance = 0;
8703 	int need_serialize, need_decay = 0;
8704 	u64 max_cost = 0;
8705 
8706 	update_blocked_averages(cpu);
8707 
8708 	rcu_read_lock();
8709 	for_each_domain(cpu, sd) {
8710 		/*
8711 		 * Decay the newidle max times here because this is a regular
8712 		 * visit to all the domains. Decay ~1% per second.
8713 		 */
8714 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8715 			sd->max_newidle_lb_cost =
8716 				(sd->max_newidle_lb_cost * 253) / 256;
8717 			sd->next_decay_max_lb_cost = jiffies + HZ;
8718 			need_decay = 1;
8719 		}
8720 		max_cost += sd->max_newidle_lb_cost;
8721 
8722 		if (!(sd->flags & SD_LOAD_BALANCE))
8723 			continue;
8724 
8725 		/*
8726 		 * Stop the load balance at this level. There is another
8727 		 * CPU in our sched group which is doing load balancing more
8728 		 * actively.
8729 		 */
8730 		if (!continue_balancing) {
8731 			if (need_decay)
8732 				continue;
8733 			break;
8734 		}
8735 
8736 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8737 
8738 		need_serialize = sd->flags & SD_SERIALIZE;
8739 		if (need_serialize) {
8740 			if (!spin_trylock(&balancing))
8741 				goto out;
8742 		}
8743 
8744 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
8745 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8746 				/*
8747 				 * The LBF_DST_PINNED logic could have changed
8748 				 * env->dst_cpu, so we can't know our idle
8749 				 * state even if we migrated tasks. Update it.
8750 				 */
8751 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8752 			}
8753 			sd->last_balance = jiffies;
8754 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8755 		}
8756 		if (need_serialize)
8757 			spin_unlock(&balancing);
8758 out:
8759 		if (time_after(next_balance, sd->last_balance + interval)) {
8760 			next_balance = sd->last_balance + interval;
8761 			update_next_balance = 1;
8762 		}
8763 	}
8764 	if (need_decay) {
8765 		/*
8766 		 * Ensure the rq-wide value also decays but keep it at a
8767 		 * reasonable floor to avoid funnies with rq->avg_idle.
8768 		 */
8769 		rq->max_idle_balance_cost =
8770 			max((u64)sysctl_sched_migration_cost, max_cost);
8771 	}
8772 	rcu_read_unlock();
8773 
8774 	/*
8775 	 * next_balance will be updated only when there is a need.
8776 	 * When the cpu is attached to null domain for ex, it will not be
8777 	 * updated.
8778 	 */
8779 	if (likely(update_next_balance)) {
8780 		rq->next_balance = next_balance;
8781 
8782 #ifdef CONFIG_NO_HZ_COMMON
8783 		/*
8784 		 * If this CPU has been elected to perform the nohz idle
8785 		 * balance. Other idle CPUs have already rebalanced with
8786 		 * nohz_idle_balance() and nohz.next_balance has been
8787 		 * updated accordingly. This CPU is now running the idle load
8788 		 * balance for itself and we need to update the
8789 		 * nohz.next_balance accordingly.
8790 		 */
8791 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8792 			nohz.next_balance = rq->next_balance;
8793 #endif
8794 	}
8795 }
8796 
8797 #ifdef CONFIG_NO_HZ_COMMON
8798 /*
8799  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
8800  * rebalancing for all the cpus for whom scheduler ticks are stopped.
8801  */
8802 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
8803 {
8804 	int this_cpu = this_rq->cpu;
8805 	struct rq *rq;
8806 	int balance_cpu;
8807 	/* Earliest time when we have to do rebalance again */
8808 	unsigned long next_balance = jiffies + 60*HZ;
8809 	int update_next_balance = 0;
8810 
8811 	if (idle != CPU_IDLE ||
8812 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8813 		goto end;
8814 
8815 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8816 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
8817 			continue;
8818 
8819 		/*
8820 		 * If this cpu gets work to do, stop the load balancing
8821 		 * work being done for other cpus. Next load
8822 		 * balancing owner will pick it up.
8823 		 */
8824 		if (need_resched())
8825 			break;
8826 
8827 		rq = cpu_rq(balance_cpu);
8828 
8829 		/*
8830 		 * If time for next balance is due,
8831 		 * do the balance.
8832 		 */
8833 		if (time_after_eq(jiffies, rq->next_balance)) {
8834 			struct rq_flags rf;
8835 
8836 			rq_lock_irq(rq, &rf);
8837 			update_rq_clock(rq);
8838 			cpu_load_update_idle(rq);
8839 			rq_unlock_irq(rq, &rf);
8840 
8841 			rebalance_domains(rq, CPU_IDLE);
8842 		}
8843 
8844 		if (time_after(next_balance, rq->next_balance)) {
8845 			next_balance = rq->next_balance;
8846 			update_next_balance = 1;
8847 		}
8848 	}
8849 
8850 	/*
8851 	 * next_balance will be updated only when there is a need.
8852 	 * When the CPU is attached to null domain for ex, it will not be
8853 	 * updated.
8854 	 */
8855 	if (likely(update_next_balance))
8856 		nohz.next_balance = next_balance;
8857 end:
8858 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
8859 }
8860 
8861 /*
8862  * Current heuristic for kicking the idle load balancer in the presence
8863  * of an idle cpu in the system.
8864  *   - This rq has more than one task.
8865  *   - This rq has at least one CFS task and the capacity of the CPU is
8866  *     significantly reduced because of RT tasks or IRQs.
8867  *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
8868  *     multiple busy cpu.
8869  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8870  *     domain span are idle.
8871  */
8872 static inline bool nohz_kick_needed(struct rq *rq)
8873 {
8874 	unsigned long now = jiffies;
8875 	struct sched_domain_shared *sds;
8876 	struct sched_domain *sd;
8877 	int nr_busy, i, cpu = rq->cpu;
8878 	bool kick = false;
8879 
8880 	if (unlikely(rq->idle_balance))
8881 		return false;
8882 
8883        /*
8884 	* We may be recently in ticked or tickless idle mode. At the first
8885 	* busy tick after returning from idle, we will update the busy stats.
8886 	*/
8887 	set_cpu_sd_state_busy();
8888 	nohz_balance_exit_idle(cpu);
8889 
8890 	/*
8891 	 * None are in tickless mode and hence no need for NOHZ idle load
8892 	 * balancing.
8893 	 */
8894 	if (likely(!atomic_read(&nohz.nr_cpus)))
8895 		return false;
8896 
8897 	if (time_before(now, nohz.next_balance))
8898 		return false;
8899 
8900 	if (rq->nr_running >= 2)
8901 		return true;
8902 
8903 	rcu_read_lock();
8904 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
8905 	if (sds) {
8906 		/*
8907 		 * XXX: write a coherent comment on why we do this.
8908 		 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
8909 		 */
8910 		nr_busy = atomic_read(&sds->nr_busy_cpus);
8911 		if (nr_busy > 1) {
8912 			kick = true;
8913 			goto unlock;
8914 		}
8915 
8916 	}
8917 
8918 	sd = rcu_dereference(rq->sd);
8919 	if (sd) {
8920 		if ((rq->cfs.h_nr_running >= 1) &&
8921 				check_cpu_capacity(rq, sd)) {
8922 			kick = true;
8923 			goto unlock;
8924 		}
8925 	}
8926 
8927 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
8928 	if (sd) {
8929 		for_each_cpu(i, sched_domain_span(sd)) {
8930 			if (i == cpu ||
8931 			    !cpumask_test_cpu(i, nohz.idle_cpus_mask))
8932 				continue;
8933 
8934 			if (sched_asym_prefer(i, cpu)) {
8935 				kick = true;
8936 				goto unlock;
8937 			}
8938 		}
8939 	}
8940 unlock:
8941 	rcu_read_unlock();
8942 	return kick;
8943 }
8944 #else
8945 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
8946 #endif
8947 
8948 /*
8949  * run_rebalance_domains is triggered when needed from the scheduler tick.
8950  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8951  */
8952 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
8953 {
8954 	struct rq *this_rq = this_rq();
8955 	enum cpu_idle_type idle = this_rq->idle_balance ?
8956 						CPU_IDLE : CPU_NOT_IDLE;
8957 
8958 	/*
8959 	 * If this cpu has a pending nohz_balance_kick, then do the
8960 	 * balancing on behalf of the other idle cpus whose ticks are
8961 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8962 	 * give the idle cpus a chance to load balance. Else we may
8963 	 * load balance only within the local sched_domain hierarchy
8964 	 * and abort nohz_idle_balance altogether if we pull some load.
8965 	 */
8966 	nohz_idle_balance(this_rq, idle);
8967 	rebalance_domains(this_rq, idle);
8968 }
8969 
8970 /*
8971  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
8972  */
8973 void trigger_load_balance(struct rq *rq)
8974 {
8975 	/* Don't need to rebalance while attached to NULL domain */
8976 	if (unlikely(on_null_domain(rq)))
8977 		return;
8978 
8979 	if (time_after_eq(jiffies, rq->next_balance))
8980 		raise_softirq(SCHED_SOFTIRQ);
8981 #ifdef CONFIG_NO_HZ_COMMON
8982 	if (nohz_kick_needed(rq))
8983 		nohz_balancer_kick();
8984 #endif
8985 }
8986 
8987 static void rq_online_fair(struct rq *rq)
8988 {
8989 	update_sysctl();
8990 
8991 	update_runtime_enabled(rq);
8992 }
8993 
8994 static void rq_offline_fair(struct rq *rq)
8995 {
8996 	update_sysctl();
8997 
8998 	/* Ensure any throttled groups are reachable by pick_next_task */
8999 	unthrottle_offline_cfs_rqs(rq);
9000 }
9001 
9002 #endif /* CONFIG_SMP */
9003 
9004 /*
9005  * scheduler tick hitting a task of our scheduling class:
9006  */
9007 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9008 {
9009 	struct cfs_rq *cfs_rq;
9010 	struct sched_entity *se = &curr->se;
9011 
9012 	for_each_sched_entity(se) {
9013 		cfs_rq = cfs_rq_of(se);
9014 		entity_tick(cfs_rq, se, queued);
9015 	}
9016 
9017 	if (static_branch_unlikely(&sched_numa_balancing))
9018 		task_tick_numa(rq, curr);
9019 }
9020 
9021 /*
9022  * called on fork with the child task as argument from the parent's context
9023  *  - child not yet on the tasklist
9024  *  - preemption disabled
9025  */
9026 static void task_fork_fair(struct task_struct *p)
9027 {
9028 	struct cfs_rq *cfs_rq;
9029 	struct sched_entity *se = &p->se, *curr;
9030 	struct rq *rq = this_rq();
9031 	struct rq_flags rf;
9032 
9033 	rq_lock(rq, &rf);
9034 	update_rq_clock(rq);
9035 
9036 	cfs_rq = task_cfs_rq(current);
9037 	curr = cfs_rq->curr;
9038 	if (curr) {
9039 		update_curr(cfs_rq);
9040 		se->vruntime = curr->vruntime;
9041 	}
9042 	place_entity(cfs_rq, se, 1);
9043 
9044 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9045 		/*
9046 		 * Upon rescheduling, sched_class::put_prev_task() will place
9047 		 * 'current' within the tree based on its new key value.
9048 		 */
9049 		swap(curr->vruntime, se->vruntime);
9050 		resched_curr(rq);
9051 	}
9052 
9053 	se->vruntime -= cfs_rq->min_vruntime;
9054 	rq_unlock(rq, &rf);
9055 }
9056 
9057 /*
9058  * Priority of the task has changed. Check to see if we preempt
9059  * the current task.
9060  */
9061 static void
9062 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9063 {
9064 	if (!task_on_rq_queued(p))
9065 		return;
9066 
9067 	/*
9068 	 * Reschedule if we are currently running on this runqueue and
9069 	 * our priority decreased, or if we are not currently running on
9070 	 * this runqueue and our priority is higher than the current's
9071 	 */
9072 	if (rq->curr == p) {
9073 		if (p->prio > oldprio)
9074 			resched_curr(rq);
9075 	} else
9076 		check_preempt_curr(rq, p, 0);
9077 }
9078 
9079 static inline bool vruntime_normalized(struct task_struct *p)
9080 {
9081 	struct sched_entity *se = &p->se;
9082 
9083 	/*
9084 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9085 	 * the dequeue_entity(.flags=0) will already have normalized the
9086 	 * vruntime.
9087 	 */
9088 	if (p->on_rq)
9089 		return true;
9090 
9091 	/*
9092 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
9093 	 * But there are some cases where it has already been normalized:
9094 	 *
9095 	 * - A forked child which is waiting for being woken up by
9096 	 *   wake_up_new_task().
9097 	 * - A task which has been woken up by try_to_wake_up() and
9098 	 *   waiting for actually being woken up by sched_ttwu_pending().
9099 	 */
9100 	if (!se->sum_exec_runtime || p->state == TASK_WAKING)
9101 		return true;
9102 
9103 	return false;
9104 }
9105 
9106 #ifdef CONFIG_FAIR_GROUP_SCHED
9107 /*
9108  * Propagate the changes of the sched_entity across the tg tree to make it
9109  * visible to the root
9110  */
9111 static void propagate_entity_cfs_rq(struct sched_entity *se)
9112 {
9113 	struct cfs_rq *cfs_rq;
9114 
9115 	/* Start to propagate at parent */
9116 	se = se->parent;
9117 
9118 	for_each_sched_entity(se) {
9119 		cfs_rq = cfs_rq_of(se);
9120 
9121 		if (cfs_rq_throttled(cfs_rq))
9122 			break;
9123 
9124 		update_load_avg(se, UPDATE_TG);
9125 	}
9126 }
9127 #else
9128 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9129 #endif
9130 
9131 static void detach_entity_cfs_rq(struct sched_entity *se)
9132 {
9133 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9134 
9135 	/* Catch up with the cfs_rq and remove our load when we leave */
9136 	update_load_avg(se, 0);
9137 	detach_entity_load_avg(cfs_rq, se);
9138 	update_tg_load_avg(cfs_rq, false);
9139 	propagate_entity_cfs_rq(se);
9140 }
9141 
9142 static void attach_entity_cfs_rq(struct sched_entity *se)
9143 {
9144 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9145 
9146 #ifdef CONFIG_FAIR_GROUP_SCHED
9147 	/*
9148 	 * Since the real-depth could have been changed (only FAIR
9149 	 * class maintain depth value), reset depth properly.
9150 	 */
9151 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9152 #endif
9153 
9154 	/* Synchronize entity with its cfs_rq */
9155 	update_load_avg(se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9156 	attach_entity_load_avg(cfs_rq, se);
9157 	update_tg_load_avg(cfs_rq, false);
9158 	propagate_entity_cfs_rq(se);
9159 }
9160 
9161 static void detach_task_cfs_rq(struct task_struct *p)
9162 {
9163 	struct sched_entity *se = &p->se;
9164 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9165 
9166 	if (!vruntime_normalized(p)) {
9167 		/*
9168 		 * Fix up our vruntime so that the current sleep doesn't
9169 		 * cause 'unlimited' sleep bonus.
9170 		 */
9171 		place_entity(cfs_rq, se, 0);
9172 		se->vruntime -= cfs_rq->min_vruntime;
9173 	}
9174 
9175 	detach_entity_cfs_rq(se);
9176 }
9177 
9178 static void attach_task_cfs_rq(struct task_struct *p)
9179 {
9180 	struct sched_entity *se = &p->se;
9181 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
9182 
9183 	attach_entity_cfs_rq(se);
9184 
9185 	if (!vruntime_normalized(p))
9186 		se->vruntime += cfs_rq->min_vruntime;
9187 }
9188 
9189 static void switched_from_fair(struct rq *rq, struct task_struct *p)
9190 {
9191 	detach_task_cfs_rq(p);
9192 }
9193 
9194 static void switched_to_fair(struct rq *rq, struct task_struct *p)
9195 {
9196 	attach_task_cfs_rq(p);
9197 
9198 	if (task_on_rq_queued(p)) {
9199 		/*
9200 		 * We were most likely switched from sched_rt, so
9201 		 * kick off the schedule if running, otherwise just see
9202 		 * if we can still preempt the current task.
9203 		 */
9204 		if (rq->curr == p)
9205 			resched_curr(rq);
9206 		else
9207 			check_preempt_curr(rq, p, 0);
9208 	}
9209 }
9210 
9211 /* Account for a task changing its policy or group.
9212  *
9213  * This routine is mostly called to set cfs_rq->curr field when a task
9214  * migrates between groups/classes.
9215  */
9216 static void set_curr_task_fair(struct rq *rq)
9217 {
9218 	struct sched_entity *se = &rq->curr->se;
9219 
9220 	for_each_sched_entity(se) {
9221 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
9222 
9223 		set_next_entity(cfs_rq, se);
9224 		/* ensure bandwidth has been allocated on our new cfs_rq */
9225 		account_cfs_rq_runtime(cfs_rq, 0);
9226 	}
9227 }
9228 
9229 void init_cfs_rq(struct cfs_rq *cfs_rq)
9230 {
9231 	cfs_rq->tasks_timeline = RB_ROOT;
9232 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9233 #ifndef CONFIG_64BIT
9234 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9235 #endif
9236 #ifdef CONFIG_SMP
9237 #ifdef CONFIG_FAIR_GROUP_SCHED
9238 	cfs_rq->propagate_avg = 0;
9239 #endif
9240 	atomic_long_set(&cfs_rq->removed_load_avg, 0);
9241 	atomic_long_set(&cfs_rq->removed_util_avg, 0);
9242 #endif
9243 }
9244 
9245 #ifdef CONFIG_FAIR_GROUP_SCHED
9246 static void task_set_group_fair(struct task_struct *p)
9247 {
9248 	struct sched_entity *se = &p->se;
9249 
9250 	set_task_rq(p, task_cpu(p));
9251 	se->depth = se->parent ? se->parent->depth + 1 : 0;
9252 }
9253 
9254 static void task_move_group_fair(struct task_struct *p)
9255 {
9256 	detach_task_cfs_rq(p);
9257 	set_task_rq(p, task_cpu(p));
9258 
9259 #ifdef CONFIG_SMP
9260 	/* Tell se's cfs_rq has been changed -- migrated */
9261 	p->se.avg.last_update_time = 0;
9262 #endif
9263 	attach_task_cfs_rq(p);
9264 }
9265 
9266 static void task_change_group_fair(struct task_struct *p, int type)
9267 {
9268 	switch (type) {
9269 	case TASK_SET_GROUP:
9270 		task_set_group_fair(p);
9271 		break;
9272 
9273 	case TASK_MOVE_GROUP:
9274 		task_move_group_fair(p);
9275 		break;
9276 	}
9277 }
9278 
9279 void free_fair_sched_group(struct task_group *tg)
9280 {
9281 	int i;
9282 
9283 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9284 
9285 	for_each_possible_cpu(i) {
9286 		if (tg->cfs_rq)
9287 			kfree(tg->cfs_rq[i]);
9288 		if (tg->se)
9289 			kfree(tg->se[i]);
9290 	}
9291 
9292 	kfree(tg->cfs_rq);
9293 	kfree(tg->se);
9294 }
9295 
9296 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9297 {
9298 	struct sched_entity *se;
9299 	struct cfs_rq *cfs_rq;
9300 	int i;
9301 
9302 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9303 	if (!tg->cfs_rq)
9304 		goto err;
9305 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9306 	if (!tg->se)
9307 		goto err;
9308 
9309 	tg->shares = NICE_0_LOAD;
9310 
9311 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9312 
9313 	for_each_possible_cpu(i) {
9314 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9315 				      GFP_KERNEL, cpu_to_node(i));
9316 		if (!cfs_rq)
9317 			goto err;
9318 
9319 		se = kzalloc_node(sizeof(struct sched_entity),
9320 				  GFP_KERNEL, cpu_to_node(i));
9321 		if (!se)
9322 			goto err_free_rq;
9323 
9324 		init_cfs_rq(cfs_rq);
9325 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9326 		init_entity_runnable_average(se);
9327 	}
9328 
9329 	return 1;
9330 
9331 err_free_rq:
9332 	kfree(cfs_rq);
9333 err:
9334 	return 0;
9335 }
9336 
9337 void online_fair_sched_group(struct task_group *tg)
9338 {
9339 	struct sched_entity *se;
9340 	struct rq *rq;
9341 	int i;
9342 
9343 	for_each_possible_cpu(i) {
9344 		rq = cpu_rq(i);
9345 		se = tg->se[i];
9346 
9347 		raw_spin_lock_irq(&rq->lock);
9348 		update_rq_clock(rq);
9349 		attach_entity_cfs_rq(se);
9350 		sync_throttle(tg, i);
9351 		raw_spin_unlock_irq(&rq->lock);
9352 	}
9353 }
9354 
9355 void unregister_fair_sched_group(struct task_group *tg)
9356 {
9357 	unsigned long flags;
9358 	struct rq *rq;
9359 	int cpu;
9360 
9361 	for_each_possible_cpu(cpu) {
9362 		if (tg->se[cpu])
9363 			remove_entity_load_avg(tg->se[cpu]);
9364 
9365 		/*
9366 		 * Only empty task groups can be destroyed; so we can speculatively
9367 		 * check on_list without danger of it being re-added.
9368 		 */
9369 		if (!tg->cfs_rq[cpu]->on_list)
9370 			continue;
9371 
9372 		rq = cpu_rq(cpu);
9373 
9374 		raw_spin_lock_irqsave(&rq->lock, flags);
9375 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
9376 		raw_spin_unlock_irqrestore(&rq->lock, flags);
9377 	}
9378 }
9379 
9380 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9381 			struct sched_entity *se, int cpu,
9382 			struct sched_entity *parent)
9383 {
9384 	struct rq *rq = cpu_rq(cpu);
9385 
9386 	cfs_rq->tg = tg;
9387 	cfs_rq->rq = rq;
9388 	init_cfs_rq_runtime(cfs_rq);
9389 
9390 	tg->cfs_rq[cpu] = cfs_rq;
9391 	tg->se[cpu] = se;
9392 
9393 	/* se could be NULL for root_task_group */
9394 	if (!se)
9395 		return;
9396 
9397 	if (!parent) {
9398 		se->cfs_rq = &rq->cfs;
9399 		se->depth = 0;
9400 	} else {
9401 		se->cfs_rq = parent->my_q;
9402 		se->depth = parent->depth + 1;
9403 	}
9404 
9405 	se->my_q = cfs_rq;
9406 	/* guarantee group entities always have weight */
9407 	update_load_set(&se->load, NICE_0_LOAD);
9408 	se->parent = parent;
9409 }
9410 
9411 static DEFINE_MUTEX(shares_mutex);
9412 
9413 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9414 {
9415 	int i;
9416 
9417 	/*
9418 	 * We can't change the weight of the root cgroup.
9419 	 */
9420 	if (!tg->se[0])
9421 		return -EINVAL;
9422 
9423 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
9424 
9425 	mutex_lock(&shares_mutex);
9426 	if (tg->shares == shares)
9427 		goto done;
9428 
9429 	tg->shares = shares;
9430 	for_each_possible_cpu(i) {
9431 		struct rq *rq = cpu_rq(i);
9432 		struct sched_entity *se = tg->se[i];
9433 		struct rq_flags rf;
9434 
9435 		/* Propagate contribution to hierarchy */
9436 		rq_lock_irqsave(rq, &rf);
9437 		update_rq_clock(rq);
9438 		for_each_sched_entity(se) {
9439 			update_load_avg(se, UPDATE_TG);
9440 			update_cfs_shares(se);
9441 		}
9442 		rq_unlock_irqrestore(rq, &rf);
9443 	}
9444 
9445 done:
9446 	mutex_unlock(&shares_mutex);
9447 	return 0;
9448 }
9449 #else /* CONFIG_FAIR_GROUP_SCHED */
9450 
9451 void free_fair_sched_group(struct task_group *tg) { }
9452 
9453 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9454 {
9455 	return 1;
9456 }
9457 
9458 void online_fair_sched_group(struct task_group *tg) { }
9459 
9460 void unregister_fair_sched_group(struct task_group *tg) { }
9461 
9462 #endif /* CONFIG_FAIR_GROUP_SCHED */
9463 
9464 
9465 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
9466 {
9467 	struct sched_entity *se = &task->se;
9468 	unsigned int rr_interval = 0;
9469 
9470 	/*
9471 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
9472 	 * idle runqueue:
9473 	 */
9474 	if (rq->cfs.load.weight)
9475 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
9476 
9477 	return rr_interval;
9478 }
9479 
9480 /*
9481  * All the scheduling class methods:
9482  */
9483 const struct sched_class fair_sched_class = {
9484 	.next			= &idle_sched_class,
9485 	.enqueue_task		= enqueue_task_fair,
9486 	.dequeue_task		= dequeue_task_fair,
9487 	.yield_task		= yield_task_fair,
9488 	.yield_to_task		= yield_to_task_fair,
9489 
9490 	.check_preempt_curr	= check_preempt_wakeup,
9491 
9492 	.pick_next_task		= pick_next_task_fair,
9493 	.put_prev_task		= put_prev_task_fair,
9494 
9495 #ifdef CONFIG_SMP
9496 	.select_task_rq		= select_task_rq_fair,
9497 	.migrate_task_rq	= migrate_task_rq_fair,
9498 
9499 	.rq_online		= rq_online_fair,
9500 	.rq_offline		= rq_offline_fair,
9501 
9502 	.task_dead		= task_dead_fair,
9503 	.set_cpus_allowed	= set_cpus_allowed_common,
9504 #endif
9505 
9506 	.set_curr_task          = set_curr_task_fair,
9507 	.task_tick		= task_tick_fair,
9508 	.task_fork		= task_fork_fair,
9509 
9510 	.prio_changed		= prio_changed_fair,
9511 	.switched_from		= switched_from_fair,
9512 	.switched_to		= switched_to_fair,
9513 
9514 	.get_rr_interval	= get_rr_interval_fair,
9515 
9516 	.update_curr		= update_curr_fair,
9517 
9518 #ifdef CONFIG_FAIR_GROUP_SCHED
9519 	.task_change_group	= task_change_group_fair,
9520 #endif
9521 };
9522 
9523 #ifdef CONFIG_SCHED_DEBUG
9524 void print_cfs_stats(struct seq_file *m, int cpu)
9525 {
9526 	struct cfs_rq *cfs_rq;
9527 
9528 	rcu_read_lock();
9529 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
9530 		print_cfs_rq(m, cpu, cfs_rq);
9531 	rcu_read_unlock();
9532 }
9533 
9534 #ifdef CONFIG_NUMA_BALANCING
9535 void show_numa_stats(struct task_struct *p, struct seq_file *m)
9536 {
9537 	int node;
9538 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
9539 
9540 	for_each_online_node(node) {
9541 		if (p->numa_faults) {
9542 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
9543 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
9544 		}
9545 		if (p->numa_group) {
9546 			gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
9547 			gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
9548 		}
9549 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
9550 	}
9551 }
9552 #endif /* CONFIG_NUMA_BALANCING */
9553 #endif /* CONFIG_SCHED_DEBUG */
9554 
9555 __init void init_sched_fair_class(void)
9556 {
9557 #ifdef CONFIG_SMP
9558 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9559 
9560 #ifdef CONFIG_NO_HZ_COMMON
9561 	nohz.next_balance = jiffies;
9562 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
9563 #endif
9564 #endif /* SMP */
9565 
9566 }
9567