1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/prio.h> 41 42 #include <linux/cpuidle.h> 43 #include <linux/interrupt.h> 44 #include <linux/memory-tiers.h> 45 #include <linux/mempolicy.h> 46 #include <linux/mutex_api.h> 47 #include <linux/profile.h> 48 #include <linux/psi.h> 49 #include <linux/ratelimit.h> 50 #include <linux/task_work.h> 51 #include <linux/rbtree_augmented.h> 52 53 #include <asm/switch_to.h> 54 55 #include <uapi/linux/sched/types.h> 56 57 #include "sched.h" 58 #include "stats.h" 59 #include "autogroup.h" 60 61 /* 62 * The initial- and re-scaling of tunables is configurable 63 * 64 * Options are: 65 * 66 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 67 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) 68 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 69 * 70 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 71 */ 72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 73 74 /* 75 * Minimal preemption granularity for CPU-bound tasks: 76 * 77 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 78 */ 79 unsigned int sysctl_sched_base_slice = 750000ULL; 80 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 81 82 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 83 84 static int __init setup_sched_thermal_decay_shift(char *str) 85 { 86 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 87 return 1; 88 } 89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 90 91 #ifdef CONFIG_SMP 92 /* 93 * For asym packing, by default the lower numbered CPU has higher priority. 94 */ 95 int __weak arch_asym_cpu_priority(int cpu) 96 { 97 return -cpu; 98 } 99 100 /* 101 * The margin used when comparing utilization with CPU capacity. 102 * 103 * (default: ~20%) 104 */ 105 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 106 107 /* 108 * The margin used when comparing CPU capacities. 109 * is 'cap1' noticeably greater than 'cap2' 110 * 111 * (default: ~5%) 112 */ 113 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 114 #endif 115 116 #ifdef CONFIG_CFS_BANDWIDTH 117 /* 118 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 119 * each time a cfs_rq requests quota. 120 * 121 * Note: in the case that the slice exceeds the runtime remaining (either due 122 * to consumption or the quota being specified to be smaller than the slice) 123 * we will always only issue the remaining available time. 124 * 125 * (default: 5 msec, units: microseconds) 126 */ 127 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 128 #endif 129 130 #ifdef CONFIG_NUMA_BALANCING 131 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 132 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 133 #endif 134 135 #ifdef CONFIG_SYSCTL 136 static struct ctl_table sched_fair_sysctls[] = { 137 #ifdef CONFIG_CFS_BANDWIDTH 138 { 139 .procname = "sched_cfs_bandwidth_slice_us", 140 .data = &sysctl_sched_cfs_bandwidth_slice, 141 .maxlen = sizeof(unsigned int), 142 .mode = 0644, 143 .proc_handler = proc_dointvec_minmax, 144 .extra1 = SYSCTL_ONE, 145 }, 146 #endif 147 #ifdef CONFIG_NUMA_BALANCING 148 { 149 .procname = "numa_balancing_promote_rate_limit_MBps", 150 .data = &sysctl_numa_balancing_promote_rate_limit, 151 .maxlen = sizeof(unsigned int), 152 .mode = 0644, 153 .proc_handler = proc_dointvec_minmax, 154 .extra1 = SYSCTL_ZERO, 155 }, 156 #endif /* CONFIG_NUMA_BALANCING */ 157 }; 158 159 static int __init sched_fair_sysctl_init(void) 160 { 161 register_sysctl_init("kernel", sched_fair_sysctls); 162 return 0; 163 } 164 late_initcall(sched_fair_sysctl_init); 165 #endif 166 167 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 168 { 169 lw->weight += inc; 170 lw->inv_weight = 0; 171 } 172 173 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 174 { 175 lw->weight -= dec; 176 lw->inv_weight = 0; 177 } 178 179 static inline void update_load_set(struct load_weight *lw, unsigned long w) 180 { 181 lw->weight = w; 182 lw->inv_weight = 0; 183 } 184 185 /* 186 * Increase the granularity value when there are more CPUs, 187 * because with more CPUs the 'effective latency' as visible 188 * to users decreases. But the relationship is not linear, 189 * so pick a second-best guess by going with the log2 of the 190 * number of CPUs. 191 * 192 * This idea comes from the SD scheduler of Con Kolivas: 193 */ 194 static unsigned int get_update_sysctl_factor(void) 195 { 196 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 197 unsigned int factor; 198 199 switch (sysctl_sched_tunable_scaling) { 200 case SCHED_TUNABLESCALING_NONE: 201 factor = 1; 202 break; 203 case SCHED_TUNABLESCALING_LINEAR: 204 factor = cpus; 205 break; 206 case SCHED_TUNABLESCALING_LOG: 207 default: 208 factor = 1 + ilog2(cpus); 209 break; 210 } 211 212 return factor; 213 } 214 215 static void update_sysctl(void) 216 { 217 unsigned int factor = get_update_sysctl_factor(); 218 219 #define SET_SYSCTL(name) \ 220 (sysctl_##name = (factor) * normalized_sysctl_##name) 221 SET_SYSCTL(sched_base_slice); 222 #undef SET_SYSCTL 223 } 224 225 void __init sched_init_granularity(void) 226 { 227 update_sysctl(); 228 } 229 230 #define WMULT_CONST (~0U) 231 #define WMULT_SHIFT 32 232 233 static void __update_inv_weight(struct load_weight *lw) 234 { 235 unsigned long w; 236 237 if (likely(lw->inv_weight)) 238 return; 239 240 w = scale_load_down(lw->weight); 241 242 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 243 lw->inv_weight = 1; 244 else if (unlikely(!w)) 245 lw->inv_weight = WMULT_CONST; 246 else 247 lw->inv_weight = WMULT_CONST / w; 248 } 249 250 /* 251 * delta_exec * weight / lw.weight 252 * OR 253 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 254 * 255 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 256 * we're guaranteed shift stays positive because inv_weight is guaranteed to 257 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 258 * 259 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 260 * weight/lw.weight <= 1, and therefore our shift will also be positive. 261 */ 262 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 263 { 264 u64 fact = scale_load_down(weight); 265 u32 fact_hi = (u32)(fact >> 32); 266 int shift = WMULT_SHIFT; 267 int fs; 268 269 __update_inv_weight(lw); 270 271 if (unlikely(fact_hi)) { 272 fs = fls(fact_hi); 273 shift -= fs; 274 fact >>= fs; 275 } 276 277 fact = mul_u32_u32(fact, lw->inv_weight); 278 279 fact_hi = (u32)(fact >> 32); 280 if (fact_hi) { 281 fs = fls(fact_hi); 282 shift -= fs; 283 fact >>= fs; 284 } 285 286 return mul_u64_u32_shr(delta_exec, fact, shift); 287 } 288 289 /* 290 * delta /= w 291 */ 292 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 293 { 294 if (unlikely(se->load.weight != NICE_0_LOAD)) 295 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 296 297 return delta; 298 } 299 300 const struct sched_class fair_sched_class; 301 302 /************************************************************** 303 * CFS operations on generic schedulable entities: 304 */ 305 306 #ifdef CONFIG_FAIR_GROUP_SCHED 307 308 /* Walk up scheduling entities hierarchy */ 309 #define for_each_sched_entity(se) \ 310 for (; se; se = se->parent) 311 312 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 313 { 314 struct rq *rq = rq_of(cfs_rq); 315 int cpu = cpu_of(rq); 316 317 if (cfs_rq->on_list) 318 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 319 320 cfs_rq->on_list = 1; 321 322 /* 323 * Ensure we either appear before our parent (if already 324 * enqueued) or force our parent to appear after us when it is 325 * enqueued. The fact that we always enqueue bottom-up 326 * reduces this to two cases and a special case for the root 327 * cfs_rq. Furthermore, it also means that we will always reset 328 * tmp_alone_branch either when the branch is connected 329 * to a tree or when we reach the top of the tree 330 */ 331 if (cfs_rq->tg->parent && 332 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 333 /* 334 * If parent is already on the list, we add the child 335 * just before. Thanks to circular linked property of 336 * the list, this means to put the child at the tail 337 * of the list that starts by parent. 338 */ 339 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 340 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 341 /* 342 * The branch is now connected to its tree so we can 343 * reset tmp_alone_branch to the beginning of the 344 * list. 345 */ 346 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 347 return true; 348 } 349 350 if (!cfs_rq->tg->parent) { 351 /* 352 * cfs rq without parent should be put 353 * at the tail of the list. 354 */ 355 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 356 &rq->leaf_cfs_rq_list); 357 /* 358 * We have reach the top of a tree so we can reset 359 * tmp_alone_branch to the beginning of the list. 360 */ 361 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 362 return true; 363 } 364 365 /* 366 * The parent has not already been added so we want to 367 * make sure that it will be put after us. 368 * tmp_alone_branch points to the begin of the branch 369 * where we will add parent. 370 */ 371 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 372 /* 373 * update tmp_alone_branch to points to the new begin 374 * of the branch 375 */ 376 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 377 return false; 378 } 379 380 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 381 { 382 if (cfs_rq->on_list) { 383 struct rq *rq = rq_of(cfs_rq); 384 385 /* 386 * With cfs_rq being unthrottled/throttled during an enqueue, 387 * it can happen the tmp_alone_branch points to the leaf that 388 * we finally want to delete. In this case, tmp_alone_branch moves 389 * to the prev element but it will point to rq->leaf_cfs_rq_list 390 * at the end of the enqueue. 391 */ 392 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 393 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 394 395 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 396 cfs_rq->on_list = 0; 397 } 398 } 399 400 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 401 { 402 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 403 } 404 405 /* Iterate through all leaf cfs_rq's on a runqueue */ 406 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 407 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 408 leaf_cfs_rq_list) 409 410 /* Do the two (enqueued) entities belong to the same group ? */ 411 static inline struct cfs_rq * 412 is_same_group(struct sched_entity *se, struct sched_entity *pse) 413 { 414 if (se->cfs_rq == pse->cfs_rq) 415 return se->cfs_rq; 416 417 return NULL; 418 } 419 420 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 421 { 422 return se->parent; 423 } 424 425 static void 426 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 427 { 428 int se_depth, pse_depth; 429 430 /* 431 * preemption test can be made between sibling entities who are in the 432 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 433 * both tasks until we find their ancestors who are siblings of common 434 * parent. 435 */ 436 437 /* First walk up until both entities are at same depth */ 438 se_depth = (*se)->depth; 439 pse_depth = (*pse)->depth; 440 441 while (se_depth > pse_depth) { 442 se_depth--; 443 *se = parent_entity(*se); 444 } 445 446 while (pse_depth > se_depth) { 447 pse_depth--; 448 *pse = parent_entity(*pse); 449 } 450 451 while (!is_same_group(*se, *pse)) { 452 *se = parent_entity(*se); 453 *pse = parent_entity(*pse); 454 } 455 } 456 457 static int tg_is_idle(struct task_group *tg) 458 { 459 return tg->idle > 0; 460 } 461 462 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 463 { 464 return cfs_rq->idle > 0; 465 } 466 467 static int se_is_idle(struct sched_entity *se) 468 { 469 if (entity_is_task(se)) 470 return task_has_idle_policy(task_of(se)); 471 return cfs_rq_is_idle(group_cfs_rq(se)); 472 } 473 474 #else /* !CONFIG_FAIR_GROUP_SCHED */ 475 476 #define for_each_sched_entity(se) \ 477 for (; se; se = NULL) 478 479 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 480 { 481 return true; 482 } 483 484 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 485 { 486 } 487 488 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 489 { 490 } 491 492 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 493 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 494 495 static inline struct sched_entity *parent_entity(struct sched_entity *se) 496 { 497 return NULL; 498 } 499 500 static inline void 501 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 502 { 503 } 504 505 static inline int tg_is_idle(struct task_group *tg) 506 { 507 return 0; 508 } 509 510 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 511 { 512 return 0; 513 } 514 515 static int se_is_idle(struct sched_entity *se) 516 { 517 return task_has_idle_policy(task_of(se)); 518 } 519 520 #endif /* CONFIG_FAIR_GROUP_SCHED */ 521 522 static __always_inline 523 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 524 525 /************************************************************** 526 * Scheduling class tree data structure manipulation methods: 527 */ 528 529 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime) 530 { 531 s64 delta = (s64)(vruntime - max_vruntime); 532 if (delta > 0) 533 max_vruntime = vruntime; 534 535 return max_vruntime; 536 } 537 538 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime) 539 { 540 s64 delta = (s64)(vruntime - min_vruntime); 541 if (delta < 0) 542 min_vruntime = vruntime; 543 544 return min_vruntime; 545 } 546 547 static inline bool entity_before(const struct sched_entity *a, 548 const struct sched_entity *b) 549 { 550 /* 551 * Tiebreak on vruntime seems unnecessary since it can 552 * hardly happen. 553 */ 554 return (s64)(a->deadline - b->deadline) < 0; 555 } 556 557 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 558 { 559 return (s64)(se->vruntime - cfs_rq->min_vruntime); 560 } 561 562 #define __node_2_se(node) \ 563 rb_entry((node), struct sched_entity, run_node) 564 565 /* 566 * Compute virtual time from the per-task service numbers: 567 * 568 * Fair schedulers conserve lag: 569 * 570 * \Sum lag_i = 0 571 * 572 * Where lag_i is given by: 573 * 574 * lag_i = S - s_i = w_i * (V - v_i) 575 * 576 * Where S is the ideal service time and V is it's virtual time counterpart. 577 * Therefore: 578 * 579 * \Sum lag_i = 0 580 * \Sum w_i * (V - v_i) = 0 581 * \Sum w_i * V - w_i * v_i = 0 582 * 583 * From which we can solve an expression for V in v_i (which we have in 584 * se->vruntime): 585 * 586 * \Sum v_i * w_i \Sum v_i * w_i 587 * V = -------------- = -------------- 588 * \Sum w_i W 589 * 590 * Specifically, this is the weighted average of all entity virtual runtimes. 591 * 592 * [[ NOTE: this is only equal to the ideal scheduler under the condition 593 * that join/leave operations happen at lag_i = 0, otherwise the 594 * virtual time has non-contiguous motion equivalent to: 595 * 596 * V +-= lag_i / W 597 * 598 * Also see the comment in place_entity() that deals with this. ]] 599 * 600 * However, since v_i is u64, and the multiplication could easily overflow 601 * transform it into a relative form that uses smaller quantities: 602 * 603 * Substitute: v_i == (v_i - v0) + v0 604 * 605 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 606 * V = ---------------------------- = --------------------- + v0 607 * W W 608 * 609 * Which we track using: 610 * 611 * v0 := cfs_rq->min_vruntime 612 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 613 * \Sum w_i := cfs_rq->avg_load 614 * 615 * Since min_vruntime is a monotonic increasing variable that closely tracks 616 * the per-task service, these deltas: (v_i - v), will be in the order of the 617 * maximal (virtual) lag induced in the system due to quantisation. 618 * 619 * Also, we use scale_load_down() to reduce the size. 620 * 621 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 622 */ 623 static void 624 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 625 { 626 unsigned long weight = scale_load_down(se->load.weight); 627 s64 key = entity_key(cfs_rq, se); 628 629 cfs_rq->avg_vruntime += key * weight; 630 cfs_rq->avg_load += weight; 631 } 632 633 static void 634 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 635 { 636 unsigned long weight = scale_load_down(se->load.weight); 637 s64 key = entity_key(cfs_rq, se); 638 639 cfs_rq->avg_vruntime -= key * weight; 640 cfs_rq->avg_load -= weight; 641 } 642 643 static inline 644 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 645 { 646 /* 647 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 648 */ 649 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 650 } 651 652 /* 653 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 654 * For this to be so, the result of this function must have a left bias. 655 */ 656 u64 avg_vruntime(struct cfs_rq *cfs_rq) 657 { 658 struct sched_entity *curr = cfs_rq->curr; 659 s64 avg = cfs_rq->avg_vruntime; 660 long load = cfs_rq->avg_load; 661 662 if (curr && curr->on_rq) { 663 unsigned long weight = scale_load_down(curr->load.weight); 664 665 avg += entity_key(cfs_rq, curr) * weight; 666 load += weight; 667 } 668 669 if (load) { 670 /* sign flips effective floor / ceiling */ 671 if (avg < 0) 672 avg -= (load - 1); 673 avg = div_s64(avg, load); 674 } 675 676 return cfs_rq->min_vruntime + avg; 677 } 678 679 /* 680 * lag_i = S - s_i = w_i * (V - v_i) 681 * 682 * However, since V is approximated by the weighted average of all entities it 683 * is possible -- by addition/removal/reweight to the tree -- to move V around 684 * and end up with a larger lag than we started with. 685 * 686 * Limit this to either double the slice length with a minimum of TICK_NSEC 687 * since that is the timing granularity. 688 * 689 * EEVDF gives the following limit for a steady state system: 690 * 691 * -r_max < lag < max(r_max, q) 692 * 693 * XXX could add max_slice to the augmented data to track this. 694 */ 695 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 696 { 697 s64 vlag, limit; 698 699 SCHED_WARN_ON(!se->on_rq); 700 701 vlag = avg_vruntime(cfs_rq) - se->vruntime; 702 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 703 704 se->vlag = clamp(vlag, -limit, limit); 705 } 706 707 /* 708 * Entity is eligible once it received less service than it ought to have, 709 * eg. lag >= 0. 710 * 711 * lag_i = S - s_i = w_i*(V - v_i) 712 * 713 * lag_i >= 0 -> V >= v_i 714 * 715 * \Sum (v_i - v)*w_i 716 * V = ------------------ + v 717 * \Sum w_i 718 * 719 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 720 * 721 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 722 * to the loss in precision caused by the division. 723 */ 724 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 725 { 726 struct sched_entity *curr = cfs_rq->curr; 727 s64 avg = cfs_rq->avg_vruntime; 728 long load = cfs_rq->avg_load; 729 730 if (curr && curr->on_rq) { 731 unsigned long weight = scale_load_down(curr->load.weight); 732 733 avg += entity_key(cfs_rq, curr) * weight; 734 load += weight; 735 } 736 737 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 738 } 739 740 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 741 { 742 return vruntime_eligible(cfs_rq, se->vruntime); 743 } 744 745 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 746 { 747 u64 min_vruntime = cfs_rq->min_vruntime; 748 /* 749 * open coded max_vruntime() to allow updating avg_vruntime 750 */ 751 s64 delta = (s64)(vruntime - min_vruntime); 752 if (delta > 0) { 753 avg_vruntime_update(cfs_rq, delta); 754 min_vruntime = vruntime; 755 } 756 return min_vruntime; 757 } 758 759 static void update_min_vruntime(struct cfs_rq *cfs_rq) 760 { 761 struct sched_entity *se = __pick_root_entity(cfs_rq); 762 struct sched_entity *curr = cfs_rq->curr; 763 u64 vruntime = cfs_rq->min_vruntime; 764 765 if (curr) { 766 if (curr->on_rq) 767 vruntime = curr->vruntime; 768 else 769 curr = NULL; 770 } 771 772 if (se) { 773 if (!curr) 774 vruntime = se->min_vruntime; 775 else 776 vruntime = min_vruntime(vruntime, se->min_vruntime); 777 } 778 779 /* ensure we never gain time by being placed backwards. */ 780 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime); 781 } 782 783 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq) 784 { 785 struct sched_entity *root = __pick_root_entity(cfs_rq); 786 struct sched_entity *curr = cfs_rq->curr; 787 u64 min_slice = ~0ULL; 788 789 if (curr && curr->on_rq) 790 min_slice = curr->slice; 791 792 if (root) 793 min_slice = min(min_slice, root->min_slice); 794 795 return min_slice; 796 } 797 798 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 799 { 800 return entity_before(__node_2_se(a), __node_2_se(b)); 801 } 802 803 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 804 805 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 806 { 807 if (node) { 808 struct sched_entity *rse = __node_2_se(node); 809 if (vruntime_gt(min_vruntime, se, rse)) 810 se->min_vruntime = rse->min_vruntime; 811 } 812 } 813 814 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node) 815 { 816 if (node) { 817 struct sched_entity *rse = __node_2_se(node); 818 if (rse->min_slice < se->min_slice) 819 se->min_slice = rse->min_slice; 820 } 821 } 822 823 /* 824 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 825 */ 826 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 827 { 828 u64 old_min_vruntime = se->min_vruntime; 829 u64 old_min_slice = se->min_slice; 830 struct rb_node *node = &se->run_node; 831 832 se->min_vruntime = se->vruntime; 833 __min_vruntime_update(se, node->rb_right); 834 __min_vruntime_update(se, node->rb_left); 835 836 se->min_slice = se->slice; 837 __min_slice_update(se, node->rb_right); 838 __min_slice_update(se, node->rb_left); 839 840 return se->min_vruntime == old_min_vruntime && 841 se->min_slice == old_min_slice; 842 } 843 844 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 845 run_node, min_vruntime, min_vruntime_update); 846 847 /* 848 * Enqueue an entity into the rb-tree: 849 */ 850 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 851 { 852 avg_vruntime_add(cfs_rq, se); 853 se->min_vruntime = se->vruntime; 854 se->min_slice = se->slice; 855 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 856 __entity_less, &min_vruntime_cb); 857 } 858 859 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 860 { 861 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 862 &min_vruntime_cb); 863 avg_vruntime_sub(cfs_rq, se); 864 } 865 866 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 867 { 868 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 869 870 if (!root) 871 return NULL; 872 873 return __node_2_se(root); 874 } 875 876 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 877 { 878 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 879 880 if (!left) 881 return NULL; 882 883 return __node_2_se(left); 884 } 885 886 /* 887 * Earliest Eligible Virtual Deadline First 888 * 889 * In order to provide latency guarantees for different request sizes 890 * EEVDF selects the best runnable task from two criteria: 891 * 892 * 1) the task must be eligible (must be owed service) 893 * 894 * 2) from those tasks that meet 1), we select the one 895 * with the earliest virtual deadline. 896 * 897 * We can do this in O(log n) time due to an augmented RB-tree. The 898 * tree keeps the entries sorted on deadline, but also functions as a 899 * heap based on the vruntime by keeping: 900 * 901 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 902 * 903 * Which allows tree pruning through eligibility. 904 */ 905 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 906 { 907 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 908 struct sched_entity *se = __pick_first_entity(cfs_rq); 909 struct sched_entity *curr = cfs_rq->curr; 910 struct sched_entity *best = NULL; 911 912 /* 913 * We can safely skip eligibility check if there is only one entity 914 * in this cfs_rq, saving some cycles. 915 */ 916 if (cfs_rq->nr_queued == 1) 917 return curr && curr->on_rq ? curr : se; 918 919 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 920 curr = NULL; 921 922 /* 923 * Once selected, run a task until it either becomes non-eligible or 924 * until it gets a new slice. See the HACK in set_next_entity(). 925 */ 926 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 927 return curr; 928 929 /* Pick the leftmost entity if it's eligible */ 930 if (se && entity_eligible(cfs_rq, se)) { 931 best = se; 932 goto found; 933 } 934 935 /* Heap search for the EEVD entity */ 936 while (node) { 937 struct rb_node *left = node->rb_left; 938 939 /* 940 * Eligible entities in left subtree are always better 941 * choices, since they have earlier deadlines. 942 */ 943 if (left && vruntime_eligible(cfs_rq, 944 __node_2_se(left)->min_vruntime)) { 945 node = left; 946 continue; 947 } 948 949 se = __node_2_se(node); 950 951 /* 952 * The left subtree either is empty or has no eligible 953 * entity, so check the current node since it is the one 954 * with earliest deadline that might be eligible. 955 */ 956 if (entity_eligible(cfs_rq, se)) { 957 best = se; 958 break; 959 } 960 961 node = node->rb_right; 962 } 963 found: 964 if (!best || (curr && entity_before(curr, best))) 965 best = curr; 966 967 return best; 968 } 969 970 #ifdef CONFIG_SCHED_DEBUG 971 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 972 { 973 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 974 975 if (!last) 976 return NULL; 977 978 return __node_2_se(last); 979 } 980 981 /************************************************************** 982 * Scheduling class statistics methods: 983 */ 984 #ifdef CONFIG_SMP 985 int sched_update_scaling(void) 986 { 987 unsigned int factor = get_update_sysctl_factor(); 988 989 #define WRT_SYSCTL(name) \ 990 (normalized_sysctl_##name = sysctl_##name / (factor)) 991 WRT_SYSCTL(sched_base_slice); 992 #undef WRT_SYSCTL 993 994 return 0; 995 } 996 #endif 997 #endif 998 999 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 1000 1001 /* 1002 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 1003 * this is probably good enough. 1004 */ 1005 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 1006 { 1007 if ((s64)(se->vruntime - se->deadline) < 0) 1008 return false; 1009 1010 /* 1011 * For EEVDF the virtual time slope is determined by w_i (iow. 1012 * nice) while the request time r_i is determined by 1013 * sysctl_sched_base_slice. 1014 */ 1015 if (!se->custom_slice) 1016 se->slice = sysctl_sched_base_slice; 1017 1018 /* 1019 * EEVDF: vd_i = ve_i + r_i / w_i 1020 */ 1021 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 1022 1023 /* 1024 * The task has consumed its request, reschedule. 1025 */ 1026 return true; 1027 } 1028 1029 #include "pelt.h" 1030 #ifdef CONFIG_SMP 1031 1032 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1033 static unsigned long task_h_load(struct task_struct *p); 1034 static unsigned long capacity_of(int cpu); 1035 1036 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1037 void init_entity_runnable_average(struct sched_entity *se) 1038 { 1039 struct sched_avg *sa = &se->avg; 1040 1041 memset(sa, 0, sizeof(*sa)); 1042 1043 /* 1044 * Tasks are initialized with full load to be seen as heavy tasks until 1045 * they get a chance to stabilize to their real load level. 1046 * Group entities are initialized with zero load to reflect the fact that 1047 * nothing has been attached to the task group yet. 1048 */ 1049 if (entity_is_task(se)) 1050 sa->load_avg = scale_load_down(se->load.weight); 1051 1052 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1053 } 1054 1055 /* 1056 * With new tasks being created, their initial util_avgs are extrapolated 1057 * based on the cfs_rq's current util_avg: 1058 * 1059 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1060 * * se_weight(se) 1061 * 1062 * However, in many cases, the above util_avg does not give a desired 1063 * value. Moreover, the sum of the util_avgs may be divergent, such 1064 * as when the series is a harmonic series. 1065 * 1066 * To solve this problem, we also cap the util_avg of successive tasks to 1067 * only 1/2 of the left utilization budget: 1068 * 1069 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1070 * 1071 * where n denotes the nth task and cpu_scale the CPU capacity. 1072 * 1073 * For example, for a CPU with 1024 of capacity, a simplest series from 1074 * the beginning would be like: 1075 * 1076 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1077 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1078 * 1079 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1080 * if util_avg > util_avg_cap. 1081 */ 1082 void post_init_entity_util_avg(struct task_struct *p) 1083 { 1084 struct sched_entity *se = &p->se; 1085 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1086 struct sched_avg *sa = &se->avg; 1087 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1088 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1089 1090 if (p->sched_class != &fair_sched_class) { 1091 /* 1092 * For !fair tasks do: 1093 * 1094 update_cfs_rq_load_avg(now, cfs_rq); 1095 attach_entity_load_avg(cfs_rq, se); 1096 switched_from_fair(rq, p); 1097 * 1098 * such that the next switched_to_fair() has the 1099 * expected state. 1100 */ 1101 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1102 return; 1103 } 1104 1105 if (cap > 0) { 1106 if (cfs_rq->avg.util_avg != 0) { 1107 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1108 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1109 1110 if (sa->util_avg > cap) 1111 sa->util_avg = cap; 1112 } else { 1113 sa->util_avg = cap; 1114 } 1115 } 1116 1117 sa->runnable_avg = sa->util_avg; 1118 } 1119 1120 #else /* !CONFIG_SMP */ 1121 void init_entity_runnable_average(struct sched_entity *se) 1122 { 1123 } 1124 void post_init_entity_util_avg(struct task_struct *p) 1125 { 1126 } 1127 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1128 { 1129 } 1130 #endif /* CONFIG_SMP */ 1131 1132 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1133 { 1134 u64 now = rq_clock_task(rq); 1135 s64 delta_exec; 1136 1137 delta_exec = now - curr->exec_start; 1138 if (unlikely(delta_exec <= 0)) 1139 return delta_exec; 1140 1141 curr->exec_start = now; 1142 curr->sum_exec_runtime += delta_exec; 1143 1144 if (schedstat_enabled()) { 1145 struct sched_statistics *stats; 1146 1147 stats = __schedstats_from_se(curr); 1148 __schedstat_set(stats->exec_max, 1149 max(delta_exec, stats->exec_max)); 1150 } 1151 1152 return delta_exec; 1153 } 1154 1155 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1156 { 1157 trace_sched_stat_runtime(p, delta_exec); 1158 account_group_exec_runtime(p, delta_exec); 1159 cgroup_account_cputime(p, delta_exec); 1160 } 1161 1162 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr) 1163 { 1164 if (!sched_feat(PREEMPT_SHORT)) 1165 return false; 1166 1167 if (curr->vlag == curr->deadline) 1168 return false; 1169 1170 return !entity_eligible(cfs_rq, curr); 1171 } 1172 1173 static inline bool do_preempt_short(struct cfs_rq *cfs_rq, 1174 struct sched_entity *pse, struct sched_entity *se) 1175 { 1176 if (!sched_feat(PREEMPT_SHORT)) 1177 return false; 1178 1179 if (pse->slice >= se->slice) 1180 return false; 1181 1182 if (!entity_eligible(cfs_rq, pse)) 1183 return false; 1184 1185 if (entity_before(pse, se)) 1186 return true; 1187 1188 if (!entity_eligible(cfs_rq, se)) 1189 return true; 1190 1191 return false; 1192 } 1193 1194 /* 1195 * Used by other classes to account runtime. 1196 */ 1197 s64 update_curr_common(struct rq *rq) 1198 { 1199 struct task_struct *donor = rq->donor; 1200 s64 delta_exec; 1201 1202 delta_exec = update_curr_se(rq, &donor->se); 1203 if (likely(delta_exec > 0)) 1204 update_curr_task(donor, delta_exec); 1205 1206 return delta_exec; 1207 } 1208 1209 /* 1210 * Update the current task's runtime statistics. 1211 */ 1212 static void update_curr(struct cfs_rq *cfs_rq) 1213 { 1214 struct sched_entity *curr = cfs_rq->curr; 1215 struct rq *rq = rq_of(cfs_rq); 1216 s64 delta_exec; 1217 bool resched; 1218 1219 if (unlikely(!curr)) 1220 return; 1221 1222 delta_exec = update_curr_se(rq, curr); 1223 if (unlikely(delta_exec <= 0)) 1224 return; 1225 1226 curr->vruntime += calc_delta_fair(delta_exec, curr); 1227 resched = update_deadline(cfs_rq, curr); 1228 update_min_vruntime(cfs_rq); 1229 1230 if (entity_is_task(curr)) { 1231 struct task_struct *p = task_of(curr); 1232 1233 update_curr_task(p, delta_exec); 1234 1235 /* 1236 * If the fair_server is active, we need to account for the 1237 * fair_server time whether or not the task is running on 1238 * behalf of fair_server or not: 1239 * - If the task is running on behalf of fair_server, we need 1240 * to limit its time based on the assigned runtime. 1241 * - Fair task that runs outside of fair_server should account 1242 * against fair_server such that it can account for this time 1243 * and possibly avoid running this period. 1244 */ 1245 if (dl_server_active(&rq->fair_server)) 1246 dl_server_update(&rq->fair_server, delta_exec); 1247 } 1248 1249 account_cfs_rq_runtime(cfs_rq, delta_exec); 1250 1251 if (cfs_rq->nr_queued == 1) 1252 return; 1253 1254 if (resched || did_preempt_short(cfs_rq, curr)) { 1255 resched_curr_lazy(rq); 1256 clear_buddies(cfs_rq, curr); 1257 } 1258 } 1259 1260 static void update_curr_fair(struct rq *rq) 1261 { 1262 update_curr(cfs_rq_of(&rq->donor->se)); 1263 } 1264 1265 static inline void 1266 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1267 { 1268 struct sched_statistics *stats; 1269 struct task_struct *p = NULL; 1270 1271 if (!schedstat_enabled()) 1272 return; 1273 1274 stats = __schedstats_from_se(se); 1275 1276 if (entity_is_task(se)) 1277 p = task_of(se); 1278 1279 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1280 } 1281 1282 static inline void 1283 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1284 { 1285 struct sched_statistics *stats; 1286 struct task_struct *p = NULL; 1287 1288 if (!schedstat_enabled()) 1289 return; 1290 1291 stats = __schedstats_from_se(se); 1292 1293 /* 1294 * When the sched_schedstat changes from 0 to 1, some sched se 1295 * maybe already in the runqueue, the se->statistics.wait_start 1296 * will be 0.So it will let the delta wrong. We need to avoid this 1297 * scenario. 1298 */ 1299 if (unlikely(!schedstat_val(stats->wait_start))) 1300 return; 1301 1302 if (entity_is_task(se)) 1303 p = task_of(se); 1304 1305 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1306 } 1307 1308 static inline void 1309 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1310 { 1311 struct sched_statistics *stats; 1312 struct task_struct *tsk = NULL; 1313 1314 if (!schedstat_enabled()) 1315 return; 1316 1317 stats = __schedstats_from_se(se); 1318 1319 if (entity_is_task(se)) 1320 tsk = task_of(se); 1321 1322 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1323 } 1324 1325 /* 1326 * Task is being enqueued - update stats: 1327 */ 1328 static inline void 1329 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1330 { 1331 if (!schedstat_enabled()) 1332 return; 1333 1334 /* 1335 * Are we enqueueing a waiting task? (for current tasks 1336 * a dequeue/enqueue event is a NOP) 1337 */ 1338 if (se != cfs_rq->curr) 1339 update_stats_wait_start_fair(cfs_rq, se); 1340 1341 if (flags & ENQUEUE_WAKEUP) 1342 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1343 } 1344 1345 static inline void 1346 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1347 { 1348 1349 if (!schedstat_enabled()) 1350 return; 1351 1352 /* 1353 * Mark the end of the wait period if dequeueing a 1354 * waiting task: 1355 */ 1356 if (se != cfs_rq->curr) 1357 update_stats_wait_end_fair(cfs_rq, se); 1358 1359 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1360 struct task_struct *tsk = task_of(se); 1361 unsigned int state; 1362 1363 /* XXX racy against TTWU */ 1364 state = READ_ONCE(tsk->__state); 1365 if (state & TASK_INTERRUPTIBLE) 1366 __schedstat_set(tsk->stats.sleep_start, 1367 rq_clock(rq_of(cfs_rq))); 1368 if (state & TASK_UNINTERRUPTIBLE) 1369 __schedstat_set(tsk->stats.block_start, 1370 rq_clock(rq_of(cfs_rq))); 1371 } 1372 } 1373 1374 /* 1375 * We are picking a new current task - update its stats: 1376 */ 1377 static inline void 1378 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1379 { 1380 /* 1381 * We are starting a new run period: 1382 */ 1383 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1384 } 1385 1386 /************************************************** 1387 * Scheduling class queueing methods: 1388 */ 1389 1390 static inline bool is_core_idle(int cpu) 1391 { 1392 #ifdef CONFIG_SCHED_SMT 1393 int sibling; 1394 1395 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1396 if (cpu == sibling) 1397 continue; 1398 1399 if (!idle_cpu(sibling)) 1400 return false; 1401 } 1402 #endif 1403 1404 return true; 1405 } 1406 1407 #ifdef CONFIG_NUMA 1408 #define NUMA_IMBALANCE_MIN 2 1409 1410 static inline long 1411 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1412 { 1413 /* 1414 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1415 * threshold. Above this threshold, individual tasks may be contending 1416 * for both memory bandwidth and any shared HT resources. This is an 1417 * approximation as the number of running tasks may not be related to 1418 * the number of busy CPUs due to sched_setaffinity. 1419 */ 1420 if (dst_running > imb_numa_nr) 1421 return imbalance; 1422 1423 /* 1424 * Allow a small imbalance based on a simple pair of communicating 1425 * tasks that remain local when the destination is lightly loaded. 1426 */ 1427 if (imbalance <= NUMA_IMBALANCE_MIN) 1428 return 0; 1429 1430 return imbalance; 1431 } 1432 #endif /* CONFIG_NUMA */ 1433 1434 #ifdef CONFIG_NUMA_BALANCING 1435 /* 1436 * Approximate time to scan a full NUMA task in ms. The task scan period is 1437 * calculated based on the tasks virtual memory size and 1438 * numa_balancing_scan_size. 1439 */ 1440 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1441 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1442 1443 /* Portion of address space to scan in MB */ 1444 unsigned int sysctl_numa_balancing_scan_size = 256; 1445 1446 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1447 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1448 1449 /* The page with hint page fault latency < threshold in ms is considered hot */ 1450 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1451 1452 struct numa_group { 1453 refcount_t refcount; 1454 1455 spinlock_t lock; /* nr_tasks, tasks */ 1456 int nr_tasks; 1457 pid_t gid; 1458 int active_nodes; 1459 1460 struct rcu_head rcu; 1461 unsigned long total_faults; 1462 unsigned long max_faults_cpu; 1463 /* 1464 * faults[] array is split into two regions: faults_mem and faults_cpu. 1465 * 1466 * Faults_cpu is used to decide whether memory should move 1467 * towards the CPU. As a consequence, these stats are weighted 1468 * more by CPU use than by memory faults. 1469 */ 1470 unsigned long faults[]; 1471 }; 1472 1473 /* 1474 * For functions that can be called in multiple contexts that permit reading 1475 * ->numa_group (see struct task_struct for locking rules). 1476 */ 1477 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1478 { 1479 return rcu_dereference_check(p->numa_group, p == current || 1480 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1481 } 1482 1483 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1484 { 1485 return rcu_dereference_protected(p->numa_group, p == current); 1486 } 1487 1488 static inline unsigned long group_faults_priv(struct numa_group *ng); 1489 static inline unsigned long group_faults_shared(struct numa_group *ng); 1490 1491 static unsigned int task_nr_scan_windows(struct task_struct *p) 1492 { 1493 unsigned long rss = 0; 1494 unsigned long nr_scan_pages; 1495 1496 /* 1497 * Calculations based on RSS as non-present and empty pages are skipped 1498 * by the PTE scanner and NUMA hinting faults should be trapped based 1499 * on resident pages 1500 */ 1501 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1502 rss = get_mm_rss(p->mm); 1503 if (!rss) 1504 rss = nr_scan_pages; 1505 1506 rss = round_up(rss, nr_scan_pages); 1507 return rss / nr_scan_pages; 1508 } 1509 1510 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1511 #define MAX_SCAN_WINDOW 2560 1512 1513 static unsigned int task_scan_min(struct task_struct *p) 1514 { 1515 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1516 unsigned int scan, floor; 1517 unsigned int windows = 1; 1518 1519 if (scan_size < MAX_SCAN_WINDOW) 1520 windows = MAX_SCAN_WINDOW / scan_size; 1521 floor = 1000 / windows; 1522 1523 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1524 return max_t(unsigned int, floor, scan); 1525 } 1526 1527 static unsigned int task_scan_start(struct task_struct *p) 1528 { 1529 unsigned long smin = task_scan_min(p); 1530 unsigned long period = smin; 1531 struct numa_group *ng; 1532 1533 /* Scale the maximum scan period with the amount of shared memory. */ 1534 rcu_read_lock(); 1535 ng = rcu_dereference(p->numa_group); 1536 if (ng) { 1537 unsigned long shared = group_faults_shared(ng); 1538 unsigned long private = group_faults_priv(ng); 1539 1540 period *= refcount_read(&ng->refcount); 1541 period *= shared + 1; 1542 period /= private + shared + 1; 1543 } 1544 rcu_read_unlock(); 1545 1546 return max(smin, period); 1547 } 1548 1549 static unsigned int task_scan_max(struct task_struct *p) 1550 { 1551 unsigned long smin = task_scan_min(p); 1552 unsigned long smax; 1553 struct numa_group *ng; 1554 1555 /* Watch for min being lower than max due to floor calculations */ 1556 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1557 1558 /* Scale the maximum scan period with the amount of shared memory. */ 1559 ng = deref_curr_numa_group(p); 1560 if (ng) { 1561 unsigned long shared = group_faults_shared(ng); 1562 unsigned long private = group_faults_priv(ng); 1563 unsigned long period = smax; 1564 1565 period *= refcount_read(&ng->refcount); 1566 period *= shared + 1; 1567 period /= private + shared + 1; 1568 1569 smax = max(smax, period); 1570 } 1571 1572 return max(smin, smax); 1573 } 1574 1575 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1576 { 1577 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1578 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1579 } 1580 1581 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1582 { 1583 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1584 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1585 } 1586 1587 /* Shared or private faults. */ 1588 #define NR_NUMA_HINT_FAULT_TYPES 2 1589 1590 /* Memory and CPU locality */ 1591 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1592 1593 /* Averaged statistics, and temporary buffers. */ 1594 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1595 1596 pid_t task_numa_group_id(struct task_struct *p) 1597 { 1598 struct numa_group *ng; 1599 pid_t gid = 0; 1600 1601 rcu_read_lock(); 1602 ng = rcu_dereference(p->numa_group); 1603 if (ng) 1604 gid = ng->gid; 1605 rcu_read_unlock(); 1606 1607 return gid; 1608 } 1609 1610 /* 1611 * The averaged statistics, shared & private, memory & CPU, 1612 * occupy the first half of the array. The second half of the 1613 * array is for current counters, which are averaged into the 1614 * first set by task_numa_placement. 1615 */ 1616 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1617 { 1618 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1619 } 1620 1621 static inline unsigned long task_faults(struct task_struct *p, int nid) 1622 { 1623 if (!p->numa_faults) 1624 return 0; 1625 1626 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1627 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1628 } 1629 1630 static inline unsigned long group_faults(struct task_struct *p, int nid) 1631 { 1632 struct numa_group *ng = deref_task_numa_group(p); 1633 1634 if (!ng) 1635 return 0; 1636 1637 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1638 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1639 } 1640 1641 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1642 { 1643 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1644 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1645 } 1646 1647 static inline unsigned long group_faults_priv(struct numa_group *ng) 1648 { 1649 unsigned long faults = 0; 1650 int node; 1651 1652 for_each_online_node(node) { 1653 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1654 } 1655 1656 return faults; 1657 } 1658 1659 static inline unsigned long group_faults_shared(struct numa_group *ng) 1660 { 1661 unsigned long faults = 0; 1662 int node; 1663 1664 for_each_online_node(node) { 1665 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1666 } 1667 1668 return faults; 1669 } 1670 1671 /* 1672 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1673 * considered part of a numa group's pseudo-interleaving set. Migrations 1674 * between these nodes are slowed down, to allow things to settle down. 1675 */ 1676 #define ACTIVE_NODE_FRACTION 3 1677 1678 static bool numa_is_active_node(int nid, struct numa_group *ng) 1679 { 1680 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1681 } 1682 1683 /* Handle placement on systems where not all nodes are directly connected. */ 1684 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1685 int lim_dist, bool task) 1686 { 1687 unsigned long score = 0; 1688 int node, max_dist; 1689 1690 /* 1691 * All nodes are directly connected, and the same distance 1692 * from each other. No need for fancy placement algorithms. 1693 */ 1694 if (sched_numa_topology_type == NUMA_DIRECT) 1695 return 0; 1696 1697 /* sched_max_numa_distance may be changed in parallel. */ 1698 max_dist = READ_ONCE(sched_max_numa_distance); 1699 /* 1700 * This code is called for each node, introducing N^2 complexity, 1701 * which should be OK given the number of nodes rarely exceeds 8. 1702 */ 1703 for_each_online_node(node) { 1704 unsigned long faults; 1705 int dist = node_distance(nid, node); 1706 1707 /* 1708 * The furthest away nodes in the system are not interesting 1709 * for placement; nid was already counted. 1710 */ 1711 if (dist >= max_dist || node == nid) 1712 continue; 1713 1714 /* 1715 * On systems with a backplane NUMA topology, compare groups 1716 * of nodes, and move tasks towards the group with the most 1717 * memory accesses. When comparing two nodes at distance 1718 * "hoplimit", only nodes closer by than "hoplimit" are part 1719 * of each group. Skip other nodes. 1720 */ 1721 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1722 continue; 1723 1724 /* Add up the faults from nearby nodes. */ 1725 if (task) 1726 faults = task_faults(p, node); 1727 else 1728 faults = group_faults(p, node); 1729 1730 /* 1731 * On systems with a glueless mesh NUMA topology, there are 1732 * no fixed "groups of nodes". Instead, nodes that are not 1733 * directly connected bounce traffic through intermediate 1734 * nodes; a numa_group can occupy any set of nodes. 1735 * The further away a node is, the less the faults count. 1736 * This seems to result in good task placement. 1737 */ 1738 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1739 faults *= (max_dist - dist); 1740 faults /= (max_dist - LOCAL_DISTANCE); 1741 } 1742 1743 score += faults; 1744 } 1745 1746 return score; 1747 } 1748 1749 /* 1750 * These return the fraction of accesses done by a particular task, or 1751 * task group, on a particular numa node. The group weight is given a 1752 * larger multiplier, in order to group tasks together that are almost 1753 * evenly spread out between numa nodes. 1754 */ 1755 static inline unsigned long task_weight(struct task_struct *p, int nid, 1756 int dist) 1757 { 1758 unsigned long faults, total_faults; 1759 1760 if (!p->numa_faults) 1761 return 0; 1762 1763 total_faults = p->total_numa_faults; 1764 1765 if (!total_faults) 1766 return 0; 1767 1768 faults = task_faults(p, nid); 1769 faults += score_nearby_nodes(p, nid, dist, true); 1770 1771 return 1000 * faults / total_faults; 1772 } 1773 1774 static inline unsigned long group_weight(struct task_struct *p, int nid, 1775 int dist) 1776 { 1777 struct numa_group *ng = deref_task_numa_group(p); 1778 unsigned long faults, total_faults; 1779 1780 if (!ng) 1781 return 0; 1782 1783 total_faults = ng->total_faults; 1784 1785 if (!total_faults) 1786 return 0; 1787 1788 faults = group_faults(p, nid); 1789 faults += score_nearby_nodes(p, nid, dist, false); 1790 1791 return 1000 * faults / total_faults; 1792 } 1793 1794 /* 1795 * If memory tiering mode is enabled, cpupid of slow memory page is 1796 * used to record scan time instead of CPU and PID. When tiering mode 1797 * is disabled at run time, the scan time (in cpupid) will be 1798 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1799 * access out of array bound. 1800 */ 1801 static inline bool cpupid_valid(int cpupid) 1802 { 1803 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1804 } 1805 1806 /* 1807 * For memory tiering mode, if there are enough free pages (more than 1808 * enough watermark defined here) in fast memory node, to take full 1809 * advantage of fast memory capacity, all recently accessed slow 1810 * memory pages will be migrated to fast memory node without 1811 * considering hot threshold. 1812 */ 1813 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1814 { 1815 int z; 1816 unsigned long enough_wmark; 1817 1818 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1819 pgdat->node_present_pages >> 4); 1820 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1821 struct zone *zone = pgdat->node_zones + z; 1822 1823 if (!populated_zone(zone)) 1824 continue; 1825 1826 if (zone_watermark_ok(zone, 0, 1827 promo_wmark_pages(zone) + enough_wmark, 1828 ZONE_MOVABLE, 0)) 1829 return true; 1830 } 1831 return false; 1832 } 1833 1834 /* 1835 * For memory tiering mode, when page tables are scanned, the scan 1836 * time will be recorded in struct page in addition to make page 1837 * PROT_NONE for slow memory page. So when the page is accessed, in 1838 * hint page fault handler, the hint page fault latency is calculated 1839 * via, 1840 * 1841 * hint page fault latency = hint page fault time - scan time 1842 * 1843 * The smaller the hint page fault latency, the higher the possibility 1844 * for the page to be hot. 1845 */ 1846 static int numa_hint_fault_latency(struct folio *folio) 1847 { 1848 int last_time, time; 1849 1850 time = jiffies_to_msecs(jiffies); 1851 last_time = folio_xchg_access_time(folio, time); 1852 1853 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1854 } 1855 1856 /* 1857 * For memory tiering mode, too high promotion/demotion throughput may 1858 * hurt application latency. So we provide a mechanism to rate limit 1859 * the number of pages that are tried to be promoted. 1860 */ 1861 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1862 unsigned long rate_limit, int nr) 1863 { 1864 unsigned long nr_cand; 1865 unsigned int now, start; 1866 1867 now = jiffies_to_msecs(jiffies); 1868 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1869 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1870 start = pgdat->nbp_rl_start; 1871 if (now - start > MSEC_PER_SEC && 1872 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1873 pgdat->nbp_rl_nr_cand = nr_cand; 1874 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1875 return true; 1876 return false; 1877 } 1878 1879 #define NUMA_MIGRATION_ADJUST_STEPS 16 1880 1881 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1882 unsigned long rate_limit, 1883 unsigned int ref_th) 1884 { 1885 unsigned int now, start, th_period, unit_th, th; 1886 unsigned long nr_cand, ref_cand, diff_cand; 1887 1888 now = jiffies_to_msecs(jiffies); 1889 th_period = sysctl_numa_balancing_scan_period_max; 1890 start = pgdat->nbp_th_start; 1891 if (now - start > th_period && 1892 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1893 ref_cand = rate_limit * 1894 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1895 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1896 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1897 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1898 th = pgdat->nbp_threshold ? : ref_th; 1899 if (diff_cand > ref_cand * 11 / 10) 1900 th = max(th - unit_th, unit_th); 1901 else if (diff_cand < ref_cand * 9 / 10) 1902 th = min(th + unit_th, ref_th * 2); 1903 pgdat->nbp_th_nr_cand = nr_cand; 1904 pgdat->nbp_threshold = th; 1905 } 1906 } 1907 1908 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1909 int src_nid, int dst_cpu) 1910 { 1911 struct numa_group *ng = deref_curr_numa_group(p); 1912 int dst_nid = cpu_to_node(dst_cpu); 1913 int last_cpupid, this_cpupid; 1914 1915 /* 1916 * Cannot migrate to memoryless nodes. 1917 */ 1918 if (!node_state(dst_nid, N_MEMORY)) 1919 return false; 1920 1921 /* 1922 * The pages in slow memory node should be migrated according 1923 * to hot/cold instead of private/shared. 1924 */ 1925 if (folio_use_access_time(folio)) { 1926 struct pglist_data *pgdat; 1927 unsigned long rate_limit; 1928 unsigned int latency, th, def_th; 1929 1930 pgdat = NODE_DATA(dst_nid); 1931 if (pgdat_free_space_enough(pgdat)) { 1932 /* workload changed, reset hot threshold */ 1933 pgdat->nbp_threshold = 0; 1934 return true; 1935 } 1936 1937 def_th = sysctl_numa_balancing_hot_threshold; 1938 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1939 (20 - PAGE_SHIFT); 1940 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1941 1942 th = pgdat->nbp_threshold ? : def_th; 1943 latency = numa_hint_fault_latency(folio); 1944 if (latency >= th) 1945 return false; 1946 1947 return !numa_promotion_rate_limit(pgdat, rate_limit, 1948 folio_nr_pages(folio)); 1949 } 1950 1951 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1952 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1953 1954 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1955 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1956 return false; 1957 1958 /* 1959 * Allow first faults or private faults to migrate immediately early in 1960 * the lifetime of a task. The magic number 4 is based on waiting for 1961 * two full passes of the "multi-stage node selection" test that is 1962 * executed below. 1963 */ 1964 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1965 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1966 return true; 1967 1968 /* 1969 * Multi-stage node selection is used in conjunction with a periodic 1970 * migration fault to build a temporal task<->page relation. By using 1971 * a two-stage filter we remove short/unlikely relations. 1972 * 1973 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1974 * a task's usage of a particular page (n_p) per total usage of this 1975 * page (n_t) (in a given time-span) to a probability. 1976 * 1977 * Our periodic faults will sample this probability and getting the 1978 * same result twice in a row, given these samples are fully 1979 * independent, is then given by P(n)^2, provided our sample period 1980 * is sufficiently short compared to the usage pattern. 1981 * 1982 * This quadric squishes small probabilities, making it less likely we 1983 * act on an unlikely task<->page relation. 1984 */ 1985 if (!cpupid_pid_unset(last_cpupid) && 1986 cpupid_to_nid(last_cpupid) != dst_nid) 1987 return false; 1988 1989 /* Always allow migrate on private faults */ 1990 if (cpupid_match_pid(p, last_cpupid)) 1991 return true; 1992 1993 /* A shared fault, but p->numa_group has not been set up yet. */ 1994 if (!ng) 1995 return true; 1996 1997 /* 1998 * Destination node is much more heavily used than the source 1999 * node? Allow migration. 2000 */ 2001 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 2002 ACTIVE_NODE_FRACTION) 2003 return true; 2004 2005 /* 2006 * Distribute memory according to CPU & memory use on each node, 2007 * with 3/4 hysteresis to avoid unnecessary memory migrations: 2008 * 2009 * faults_cpu(dst) 3 faults_cpu(src) 2010 * --------------- * - > --------------- 2011 * faults_mem(dst) 4 faults_mem(src) 2012 */ 2013 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 2014 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 2015 } 2016 2017 /* 2018 * 'numa_type' describes the node at the moment of load balancing. 2019 */ 2020 enum numa_type { 2021 /* The node has spare capacity that can be used to run more tasks. */ 2022 node_has_spare = 0, 2023 /* 2024 * The node is fully used and the tasks don't compete for more CPU 2025 * cycles. Nevertheless, some tasks might wait before running. 2026 */ 2027 node_fully_busy, 2028 /* 2029 * The node is overloaded and can't provide expected CPU cycles to all 2030 * tasks. 2031 */ 2032 node_overloaded 2033 }; 2034 2035 /* Cached statistics for all CPUs within a node */ 2036 struct numa_stats { 2037 unsigned long load; 2038 unsigned long runnable; 2039 unsigned long util; 2040 /* Total compute capacity of CPUs on a node */ 2041 unsigned long compute_capacity; 2042 unsigned int nr_running; 2043 unsigned int weight; 2044 enum numa_type node_type; 2045 int idle_cpu; 2046 }; 2047 2048 struct task_numa_env { 2049 struct task_struct *p; 2050 2051 int src_cpu, src_nid; 2052 int dst_cpu, dst_nid; 2053 int imb_numa_nr; 2054 2055 struct numa_stats src_stats, dst_stats; 2056 2057 int imbalance_pct; 2058 int dist; 2059 2060 struct task_struct *best_task; 2061 long best_imp; 2062 int best_cpu; 2063 }; 2064 2065 static unsigned long cpu_load(struct rq *rq); 2066 static unsigned long cpu_runnable(struct rq *rq); 2067 2068 static inline enum 2069 numa_type numa_classify(unsigned int imbalance_pct, 2070 struct numa_stats *ns) 2071 { 2072 if ((ns->nr_running > ns->weight) && 2073 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 2074 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 2075 return node_overloaded; 2076 2077 if ((ns->nr_running < ns->weight) || 2078 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 2079 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 2080 return node_has_spare; 2081 2082 return node_fully_busy; 2083 } 2084 2085 #ifdef CONFIG_SCHED_SMT 2086 /* Forward declarations of select_idle_sibling helpers */ 2087 static inline bool test_idle_cores(int cpu); 2088 static inline int numa_idle_core(int idle_core, int cpu) 2089 { 2090 if (!static_branch_likely(&sched_smt_present) || 2091 idle_core >= 0 || !test_idle_cores(cpu)) 2092 return idle_core; 2093 2094 /* 2095 * Prefer cores instead of packing HT siblings 2096 * and triggering future load balancing. 2097 */ 2098 if (is_core_idle(cpu)) 2099 idle_core = cpu; 2100 2101 return idle_core; 2102 } 2103 #else 2104 static inline int numa_idle_core(int idle_core, int cpu) 2105 { 2106 return idle_core; 2107 } 2108 #endif 2109 2110 /* 2111 * Gather all necessary information to make NUMA balancing placement 2112 * decisions that are compatible with standard load balancer. This 2113 * borrows code and logic from update_sg_lb_stats but sharing a 2114 * common implementation is impractical. 2115 */ 2116 static void update_numa_stats(struct task_numa_env *env, 2117 struct numa_stats *ns, int nid, 2118 bool find_idle) 2119 { 2120 int cpu, idle_core = -1; 2121 2122 memset(ns, 0, sizeof(*ns)); 2123 ns->idle_cpu = -1; 2124 2125 rcu_read_lock(); 2126 for_each_cpu(cpu, cpumask_of_node(nid)) { 2127 struct rq *rq = cpu_rq(cpu); 2128 2129 ns->load += cpu_load(rq); 2130 ns->runnable += cpu_runnable(rq); 2131 ns->util += cpu_util_cfs(cpu); 2132 ns->nr_running += rq->cfs.h_nr_runnable; 2133 ns->compute_capacity += capacity_of(cpu); 2134 2135 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2136 if (READ_ONCE(rq->numa_migrate_on) || 2137 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2138 continue; 2139 2140 if (ns->idle_cpu == -1) 2141 ns->idle_cpu = cpu; 2142 2143 idle_core = numa_idle_core(idle_core, cpu); 2144 } 2145 } 2146 rcu_read_unlock(); 2147 2148 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2149 2150 ns->node_type = numa_classify(env->imbalance_pct, ns); 2151 2152 if (idle_core >= 0) 2153 ns->idle_cpu = idle_core; 2154 } 2155 2156 static void task_numa_assign(struct task_numa_env *env, 2157 struct task_struct *p, long imp) 2158 { 2159 struct rq *rq = cpu_rq(env->dst_cpu); 2160 2161 /* Check if run-queue part of active NUMA balance. */ 2162 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2163 int cpu; 2164 int start = env->dst_cpu; 2165 2166 /* Find alternative idle CPU. */ 2167 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2168 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2169 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2170 continue; 2171 } 2172 2173 env->dst_cpu = cpu; 2174 rq = cpu_rq(env->dst_cpu); 2175 if (!xchg(&rq->numa_migrate_on, 1)) 2176 goto assign; 2177 } 2178 2179 /* Failed to find an alternative idle CPU */ 2180 return; 2181 } 2182 2183 assign: 2184 /* 2185 * Clear previous best_cpu/rq numa-migrate flag, since task now 2186 * found a better CPU to move/swap. 2187 */ 2188 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2189 rq = cpu_rq(env->best_cpu); 2190 WRITE_ONCE(rq->numa_migrate_on, 0); 2191 } 2192 2193 if (env->best_task) 2194 put_task_struct(env->best_task); 2195 if (p) 2196 get_task_struct(p); 2197 2198 env->best_task = p; 2199 env->best_imp = imp; 2200 env->best_cpu = env->dst_cpu; 2201 } 2202 2203 static bool load_too_imbalanced(long src_load, long dst_load, 2204 struct task_numa_env *env) 2205 { 2206 long imb, old_imb; 2207 long orig_src_load, orig_dst_load; 2208 long src_capacity, dst_capacity; 2209 2210 /* 2211 * The load is corrected for the CPU capacity available on each node. 2212 * 2213 * src_load dst_load 2214 * ------------ vs --------- 2215 * src_capacity dst_capacity 2216 */ 2217 src_capacity = env->src_stats.compute_capacity; 2218 dst_capacity = env->dst_stats.compute_capacity; 2219 2220 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2221 2222 orig_src_load = env->src_stats.load; 2223 orig_dst_load = env->dst_stats.load; 2224 2225 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2226 2227 /* Would this change make things worse? */ 2228 return (imb > old_imb); 2229 } 2230 2231 /* 2232 * Maximum NUMA importance can be 1998 (2*999); 2233 * SMALLIMP @ 30 would be close to 1998/64. 2234 * Used to deter task migration. 2235 */ 2236 #define SMALLIMP 30 2237 2238 /* 2239 * This checks if the overall compute and NUMA accesses of the system would 2240 * be improved if the source tasks was migrated to the target dst_cpu taking 2241 * into account that it might be best if task running on the dst_cpu should 2242 * be exchanged with the source task 2243 */ 2244 static bool task_numa_compare(struct task_numa_env *env, 2245 long taskimp, long groupimp, bool maymove) 2246 { 2247 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2248 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2249 long imp = p_ng ? groupimp : taskimp; 2250 struct task_struct *cur; 2251 long src_load, dst_load; 2252 int dist = env->dist; 2253 long moveimp = imp; 2254 long load; 2255 bool stopsearch = false; 2256 2257 if (READ_ONCE(dst_rq->numa_migrate_on)) 2258 return false; 2259 2260 rcu_read_lock(); 2261 cur = rcu_dereference(dst_rq->curr); 2262 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2263 cur = NULL; 2264 2265 /* 2266 * Because we have preemption enabled we can get migrated around and 2267 * end try selecting ourselves (current == env->p) as a swap candidate. 2268 */ 2269 if (cur == env->p) { 2270 stopsearch = true; 2271 goto unlock; 2272 } 2273 2274 if (!cur) { 2275 if (maymove && moveimp >= env->best_imp) 2276 goto assign; 2277 else 2278 goto unlock; 2279 } 2280 2281 /* Skip this swap candidate if cannot move to the source cpu. */ 2282 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2283 goto unlock; 2284 2285 /* 2286 * Skip this swap candidate if it is not moving to its preferred 2287 * node and the best task is. 2288 */ 2289 if (env->best_task && 2290 env->best_task->numa_preferred_nid == env->src_nid && 2291 cur->numa_preferred_nid != env->src_nid) { 2292 goto unlock; 2293 } 2294 2295 /* 2296 * "imp" is the fault differential for the source task between the 2297 * source and destination node. Calculate the total differential for 2298 * the source task and potential destination task. The more negative 2299 * the value is, the more remote accesses that would be expected to 2300 * be incurred if the tasks were swapped. 2301 * 2302 * If dst and source tasks are in the same NUMA group, or not 2303 * in any group then look only at task weights. 2304 */ 2305 cur_ng = rcu_dereference(cur->numa_group); 2306 if (cur_ng == p_ng) { 2307 /* 2308 * Do not swap within a group or between tasks that have 2309 * no group if there is spare capacity. Swapping does 2310 * not address the load imbalance and helps one task at 2311 * the cost of punishing another. 2312 */ 2313 if (env->dst_stats.node_type == node_has_spare) 2314 goto unlock; 2315 2316 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2317 task_weight(cur, env->dst_nid, dist); 2318 /* 2319 * Add some hysteresis to prevent swapping the 2320 * tasks within a group over tiny differences. 2321 */ 2322 if (cur_ng) 2323 imp -= imp / 16; 2324 } else { 2325 /* 2326 * Compare the group weights. If a task is all by itself 2327 * (not part of a group), use the task weight instead. 2328 */ 2329 if (cur_ng && p_ng) 2330 imp += group_weight(cur, env->src_nid, dist) - 2331 group_weight(cur, env->dst_nid, dist); 2332 else 2333 imp += task_weight(cur, env->src_nid, dist) - 2334 task_weight(cur, env->dst_nid, dist); 2335 } 2336 2337 /* Discourage picking a task already on its preferred node */ 2338 if (cur->numa_preferred_nid == env->dst_nid) 2339 imp -= imp / 16; 2340 2341 /* 2342 * Encourage picking a task that moves to its preferred node. 2343 * This potentially makes imp larger than it's maximum of 2344 * 1998 (see SMALLIMP and task_weight for why) but in this 2345 * case, it does not matter. 2346 */ 2347 if (cur->numa_preferred_nid == env->src_nid) 2348 imp += imp / 8; 2349 2350 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2351 imp = moveimp; 2352 cur = NULL; 2353 goto assign; 2354 } 2355 2356 /* 2357 * Prefer swapping with a task moving to its preferred node over a 2358 * task that is not. 2359 */ 2360 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2361 env->best_task->numa_preferred_nid != env->src_nid) { 2362 goto assign; 2363 } 2364 2365 /* 2366 * If the NUMA importance is less than SMALLIMP, 2367 * task migration might only result in ping pong 2368 * of tasks and also hurt performance due to cache 2369 * misses. 2370 */ 2371 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2372 goto unlock; 2373 2374 /* 2375 * In the overloaded case, try and keep the load balanced. 2376 */ 2377 load = task_h_load(env->p) - task_h_load(cur); 2378 if (!load) 2379 goto assign; 2380 2381 dst_load = env->dst_stats.load + load; 2382 src_load = env->src_stats.load - load; 2383 2384 if (load_too_imbalanced(src_load, dst_load, env)) 2385 goto unlock; 2386 2387 assign: 2388 /* Evaluate an idle CPU for a task numa move. */ 2389 if (!cur) { 2390 int cpu = env->dst_stats.idle_cpu; 2391 2392 /* Nothing cached so current CPU went idle since the search. */ 2393 if (cpu < 0) 2394 cpu = env->dst_cpu; 2395 2396 /* 2397 * If the CPU is no longer truly idle and the previous best CPU 2398 * is, keep using it. 2399 */ 2400 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2401 idle_cpu(env->best_cpu)) { 2402 cpu = env->best_cpu; 2403 } 2404 2405 env->dst_cpu = cpu; 2406 } 2407 2408 task_numa_assign(env, cur, imp); 2409 2410 /* 2411 * If a move to idle is allowed because there is capacity or load 2412 * balance improves then stop the search. While a better swap 2413 * candidate may exist, a search is not free. 2414 */ 2415 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2416 stopsearch = true; 2417 2418 /* 2419 * If a swap candidate must be identified and the current best task 2420 * moves its preferred node then stop the search. 2421 */ 2422 if (!maymove && env->best_task && 2423 env->best_task->numa_preferred_nid == env->src_nid) { 2424 stopsearch = true; 2425 } 2426 unlock: 2427 rcu_read_unlock(); 2428 2429 return stopsearch; 2430 } 2431 2432 static void task_numa_find_cpu(struct task_numa_env *env, 2433 long taskimp, long groupimp) 2434 { 2435 bool maymove = false; 2436 int cpu; 2437 2438 /* 2439 * If dst node has spare capacity, then check if there is an 2440 * imbalance that would be overruled by the load balancer. 2441 */ 2442 if (env->dst_stats.node_type == node_has_spare) { 2443 unsigned int imbalance; 2444 int src_running, dst_running; 2445 2446 /* 2447 * Would movement cause an imbalance? Note that if src has 2448 * more running tasks that the imbalance is ignored as the 2449 * move improves the imbalance from the perspective of the 2450 * CPU load balancer. 2451 * */ 2452 src_running = env->src_stats.nr_running - 1; 2453 dst_running = env->dst_stats.nr_running + 1; 2454 imbalance = max(0, dst_running - src_running); 2455 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2456 env->imb_numa_nr); 2457 2458 /* Use idle CPU if there is no imbalance */ 2459 if (!imbalance) { 2460 maymove = true; 2461 if (env->dst_stats.idle_cpu >= 0) { 2462 env->dst_cpu = env->dst_stats.idle_cpu; 2463 task_numa_assign(env, NULL, 0); 2464 return; 2465 } 2466 } 2467 } else { 2468 long src_load, dst_load, load; 2469 /* 2470 * If the improvement from just moving env->p direction is better 2471 * than swapping tasks around, check if a move is possible. 2472 */ 2473 load = task_h_load(env->p); 2474 dst_load = env->dst_stats.load + load; 2475 src_load = env->src_stats.load - load; 2476 maymove = !load_too_imbalanced(src_load, dst_load, env); 2477 } 2478 2479 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2480 /* Skip this CPU if the source task cannot migrate */ 2481 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2482 continue; 2483 2484 env->dst_cpu = cpu; 2485 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2486 break; 2487 } 2488 } 2489 2490 static int task_numa_migrate(struct task_struct *p) 2491 { 2492 struct task_numa_env env = { 2493 .p = p, 2494 2495 .src_cpu = task_cpu(p), 2496 .src_nid = task_node(p), 2497 2498 .imbalance_pct = 112, 2499 2500 .best_task = NULL, 2501 .best_imp = 0, 2502 .best_cpu = -1, 2503 }; 2504 unsigned long taskweight, groupweight; 2505 struct sched_domain *sd; 2506 long taskimp, groupimp; 2507 struct numa_group *ng; 2508 struct rq *best_rq; 2509 int nid, ret, dist; 2510 2511 /* 2512 * Pick the lowest SD_NUMA domain, as that would have the smallest 2513 * imbalance and would be the first to start moving tasks about. 2514 * 2515 * And we want to avoid any moving of tasks about, as that would create 2516 * random movement of tasks -- counter the numa conditions we're trying 2517 * to satisfy here. 2518 */ 2519 rcu_read_lock(); 2520 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2521 if (sd) { 2522 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2523 env.imb_numa_nr = sd->imb_numa_nr; 2524 } 2525 rcu_read_unlock(); 2526 2527 /* 2528 * Cpusets can break the scheduler domain tree into smaller 2529 * balance domains, some of which do not cross NUMA boundaries. 2530 * Tasks that are "trapped" in such domains cannot be migrated 2531 * elsewhere, so there is no point in (re)trying. 2532 */ 2533 if (unlikely(!sd)) { 2534 sched_setnuma(p, task_node(p)); 2535 return -EINVAL; 2536 } 2537 2538 env.dst_nid = p->numa_preferred_nid; 2539 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2540 taskweight = task_weight(p, env.src_nid, dist); 2541 groupweight = group_weight(p, env.src_nid, dist); 2542 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2543 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2544 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2545 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2546 2547 /* Try to find a spot on the preferred nid. */ 2548 task_numa_find_cpu(&env, taskimp, groupimp); 2549 2550 /* 2551 * Look at other nodes in these cases: 2552 * - there is no space available on the preferred_nid 2553 * - the task is part of a numa_group that is interleaved across 2554 * multiple NUMA nodes; in order to better consolidate the group, 2555 * we need to check other locations. 2556 */ 2557 ng = deref_curr_numa_group(p); 2558 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2559 for_each_node_state(nid, N_CPU) { 2560 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2561 continue; 2562 2563 dist = node_distance(env.src_nid, env.dst_nid); 2564 if (sched_numa_topology_type == NUMA_BACKPLANE && 2565 dist != env.dist) { 2566 taskweight = task_weight(p, env.src_nid, dist); 2567 groupweight = group_weight(p, env.src_nid, dist); 2568 } 2569 2570 /* Only consider nodes where both task and groups benefit */ 2571 taskimp = task_weight(p, nid, dist) - taskweight; 2572 groupimp = group_weight(p, nid, dist) - groupweight; 2573 if (taskimp < 0 && groupimp < 0) 2574 continue; 2575 2576 env.dist = dist; 2577 env.dst_nid = nid; 2578 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2579 task_numa_find_cpu(&env, taskimp, groupimp); 2580 } 2581 } 2582 2583 /* 2584 * If the task is part of a workload that spans multiple NUMA nodes, 2585 * and is migrating into one of the workload's active nodes, remember 2586 * this node as the task's preferred numa node, so the workload can 2587 * settle down. 2588 * A task that migrated to a second choice node will be better off 2589 * trying for a better one later. Do not set the preferred node here. 2590 */ 2591 if (ng) { 2592 if (env.best_cpu == -1) 2593 nid = env.src_nid; 2594 else 2595 nid = cpu_to_node(env.best_cpu); 2596 2597 if (nid != p->numa_preferred_nid) 2598 sched_setnuma(p, nid); 2599 } 2600 2601 /* No better CPU than the current one was found. */ 2602 if (env.best_cpu == -1) { 2603 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2604 return -EAGAIN; 2605 } 2606 2607 best_rq = cpu_rq(env.best_cpu); 2608 if (env.best_task == NULL) { 2609 ret = migrate_task_to(p, env.best_cpu); 2610 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2611 if (ret != 0) 2612 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2613 return ret; 2614 } 2615 2616 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2617 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2618 2619 if (ret != 0) 2620 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2621 put_task_struct(env.best_task); 2622 return ret; 2623 } 2624 2625 /* Attempt to migrate a task to a CPU on the preferred node. */ 2626 static void numa_migrate_preferred(struct task_struct *p) 2627 { 2628 unsigned long interval = HZ; 2629 2630 /* This task has no NUMA fault statistics yet */ 2631 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2632 return; 2633 2634 /* Periodically retry migrating the task to the preferred node */ 2635 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2636 p->numa_migrate_retry = jiffies + interval; 2637 2638 /* Success if task is already running on preferred CPU */ 2639 if (task_node(p) == p->numa_preferred_nid) 2640 return; 2641 2642 /* Otherwise, try migrate to a CPU on the preferred node */ 2643 task_numa_migrate(p); 2644 } 2645 2646 /* 2647 * Find out how many nodes the workload is actively running on. Do this by 2648 * tracking the nodes from which NUMA hinting faults are triggered. This can 2649 * be different from the set of nodes where the workload's memory is currently 2650 * located. 2651 */ 2652 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2653 { 2654 unsigned long faults, max_faults = 0; 2655 int nid, active_nodes = 0; 2656 2657 for_each_node_state(nid, N_CPU) { 2658 faults = group_faults_cpu(numa_group, nid); 2659 if (faults > max_faults) 2660 max_faults = faults; 2661 } 2662 2663 for_each_node_state(nid, N_CPU) { 2664 faults = group_faults_cpu(numa_group, nid); 2665 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2666 active_nodes++; 2667 } 2668 2669 numa_group->max_faults_cpu = max_faults; 2670 numa_group->active_nodes = active_nodes; 2671 } 2672 2673 /* 2674 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2675 * increments. The more local the fault statistics are, the higher the scan 2676 * period will be for the next scan window. If local/(local+remote) ratio is 2677 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2678 * the scan period will decrease. Aim for 70% local accesses. 2679 */ 2680 #define NUMA_PERIOD_SLOTS 10 2681 #define NUMA_PERIOD_THRESHOLD 7 2682 2683 /* 2684 * Increase the scan period (slow down scanning) if the majority of 2685 * our memory is already on our local node, or if the majority of 2686 * the page accesses are shared with other processes. 2687 * Otherwise, decrease the scan period. 2688 */ 2689 static void update_task_scan_period(struct task_struct *p, 2690 unsigned long shared, unsigned long private) 2691 { 2692 unsigned int period_slot; 2693 int lr_ratio, ps_ratio; 2694 int diff; 2695 2696 unsigned long remote = p->numa_faults_locality[0]; 2697 unsigned long local = p->numa_faults_locality[1]; 2698 2699 /* 2700 * If there were no record hinting faults then either the task is 2701 * completely idle or all activity is in areas that are not of interest 2702 * to automatic numa balancing. Related to that, if there were failed 2703 * migration then it implies we are migrating too quickly or the local 2704 * node is overloaded. In either case, scan slower 2705 */ 2706 if (local + shared == 0 || p->numa_faults_locality[2]) { 2707 p->numa_scan_period = min(p->numa_scan_period_max, 2708 p->numa_scan_period << 1); 2709 2710 p->mm->numa_next_scan = jiffies + 2711 msecs_to_jiffies(p->numa_scan_period); 2712 2713 return; 2714 } 2715 2716 /* 2717 * Prepare to scale scan period relative to the current period. 2718 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2719 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2720 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2721 */ 2722 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2723 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2724 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2725 2726 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2727 /* 2728 * Most memory accesses are local. There is no need to 2729 * do fast NUMA scanning, since memory is already local. 2730 */ 2731 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2732 if (!slot) 2733 slot = 1; 2734 diff = slot * period_slot; 2735 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2736 /* 2737 * Most memory accesses are shared with other tasks. 2738 * There is no point in continuing fast NUMA scanning, 2739 * since other tasks may just move the memory elsewhere. 2740 */ 2741 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2742 if (!slot) 2743 slot = 1; 2744 diff = slot * period_slot; 2745 } else { 2746 /* 2747 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2748 * yet they are not on the local NUMA node. Speed up 2749 * NUMA scanning to get the memory moved over. 2750 */ 2751 int ratio = max(lr_ratio, ps_ratio); 2752 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2753 } 2754 2755 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2756 task_scan_min(p), task_scan_max(p)); 2757 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2758 } 2759 2760 /* 2761 * Get the fraction of time the task has been running since the last 2762 * NUMA placement cycle. The scheduler keeps similar statistics, but 2763 * decays those on a 32ms period, which is orders of magnitude off 2764 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2765 * stats only if the task is so new there are no NUMA statistics yet. 2766 */ 2767 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2768 { 2769 u64 runtime, delta, now; 2770 /* Use the start of this time slice to avoid calculations. */ 2771 now = p->se.exec_start; 2772 runtime = p->se.sum_exec_runtime; 2773 2774 if (p->last_task_numa_placement) { 2775 delta = runtime - p->last_sum_exec_runtime; 2776 *period = now - p->last_task_numa_placement; 2777 2778 /* Avoid time going backwards, prevent potential divide error: */ 2779 if (unlikely((s64)*period < 0)) 2780 *period = 0; 2781 } else { 2782 delta = p->se.avg.load_sum; 2783 *period = LOAD_AVG_MAX; 2784 } 2785 2786 p->last_sum_exec_runtime = runtime; 2787 p->last_task_numa_placement = now; 2788 2789 return delta; 2790 } 2791 2792 /* 2793 * Determine the preferred nid for a task in a numa_group. This needs to 2794 * be done in a way that produces consistent results with group_weight, 2795 * otherwise workloads might not converge. 2796 */ 2797 static int preferred_group_nid(struct task_struct *p, int nid) 2798 { 2799 nodemask_t nodes; 2800 int dist; 2801 2802 /* Direct connections between all NUMA nodes. */ 2803 if (sched_numa_topology_type == NUMA_DIRECT) 2804 return nid; 2805 2806 /* 2807 * On a system with glueless mesh NUMA topology, group_weight 2808 * scores nodes according to the number of NUMA hinting faults on 2809 * both the node itself, and on nearby nodes. 2810 */ 2811 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2812 unsigned long score, max_score = 0; 2813 int node, max_node = nid; 2814 2815 dist = sched_max_numa_distance; 2816 2817 for_each_node_state(node, N_CPU) { 2818 score = group_weight(p, node, dist); 2819 if (score > max_score) { 2820 max_score = score; 2821 max_node = node; 2822 } 2823 } 2824 return max_node; 2825 } 2826 2827 /* 2828 * Finding the preferred nid in a system with NUMA backplane 2829 * interconnect topology is more involved. The goal is to locate 2830 * tasks from numa_groups near each other in the system, and 2831 * untangle workloads from different sides of the system. This requires 2832 * searching down the hierarchy of node groups, recursively searching 2833 * inside the highest scoring group of nodes. The nodemask tricks 2834 * keep the complexity of the search down. 2835 */ 2836 nodes = node_states[N_CPU]; 2837 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2838 unsigned long max_faults = 0; 2839 nodemask_t max_group = NODE_MASK_NONE; 2840 int a, b; 2841 2842 /* Are there nodes at this distance from each other? */ 2843 if (!find_numa_distance(dist)) 2844 continue; 2845 2846 for_each_node_mask(a, nodes) { 2847 unsigned long faults = 0; 2848 nodemask_t this_group; 2849 nodes_clear(this_group); 2850 2851 /* Sum group's NUMA faults; includes a==b case. */ 2852 for_each_node_mask(b, nodes) { 2853 if (node_distance(a, b) < dist) { 2854 faults += group_faults(p, b); 2855 node_set(b, this_group); 2856 node_clear(b, nodes); 2857 } 2858 } 2859 2860 /* Remember the top group. */ 2861 if (faults > max_faults) { 2862 max_faults = faults; 2863 max_group = this_group; 2864 /* 2865 * subtle: at the smallest distance there is 2866 * just one node left in each "group", the 2867 * winner is the preferred nid. 2868 */ 2869 nid = a; 2870 } 2871 } 2872 /* Next round, evaluate the nodes within max_group. */ 2873 if (!max_faults) 2874 break; 2875 nodes = max_group; 2876 } 2877 return nid; 2878 } 2879 2880 static void task_numa_placement(struct task_struct *p) 2881 { 2882 int seq, nid, max_nid = NUMA_NO_NODE; 2883 unsigned long max_faults = 0; 2884 unsigned long fault_types[2] = { 0, 0 }; 2885 unsigned long total_faults; 2886 u64 runtime, period; 2887 spinlock_t *group_lock = NULL; 2888 struct numa_group *ng; 2889 2890 /* 2891 * The p->mm->numa_scan_seq field gets updated without 2892 * exclusive access. Use READ_ONCE() here to ensure 2893 * that the field is read in a single access: 2894 */ 2895 seq = READ_ONCE(p->mm->numa_scan_seq); 2896 if (p->numa_scan_seq == seq) 2897 return; 2898 p->numa_scan_seq = seq; 2899 p->numa_scan_period_max = task_scan_max(p); 2900 2901 total_faults = p->numa_faults_locality[0] + 2902 p->numa_faults_locality[1]; 2903 runtime = numa_get_avg_runtime(p, &period); 2904 2905 /* If the task is part of a group prevent parallel updates to group stats */ 2906 ng = deref_curr_numa_group(p); 2907 if (ng) { 2908 group_lock = &ng->lock; 2909 spin_lock_irq(group_lock); 2910 } 2911 2912 /* Find the node with the highest number of faults */ 2913 for_each_online_node(nid) { 2914 /* Keep track of the offsets in numa_faults array */ 2915 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2916 unsigned long faults = 0, group_faults = 0; 2917 int priv; 2918 2919 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2920 long diff, f_diff, f_weight; 2921 2922 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2923 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2924 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2925 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2926 2927 /* Decay existing window, copy faults since last scan */ 2928 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2929 fault_types[priv] += p->numa_faults[membuf_idx]; 2930 p->numa_faults[membuf_idx] = 0; 2931 2932 /* 2933 * Normalize the faults_from, so all tasks in a group 2934 * count according to CPU use, instead of by the raw 2935 * number of faults. Tasks with little runtime have 2936 * little over-all impact on throughput, and thus their 2937 * faults are less important. 2938 */ 2939 f_weight = div64_u64(runtime << 16, period + 1); 2940 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2941 (total_faults + 1); 2942 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2943 p->numa_faults[cpubuf_idx] = 0; 2944 2945 p->numa_faults[mem_idx] += diff; 2946 p->numa_faults[cpu_idx] += f_diff; 2947 faults += p->numa_faults[mem_idx]; 2948 p->total_numa_faults += diff; 2949 if (ng) { 2950 /* 2951 * safe because we can only change our own group 2952 * 2953 * mem_idx represents the offset for a given 2954 * nid and priv in a specific region because it 2955 * is at the beginning of the numa_faults array. 2956 */ 2957 ng->faults[mem_idx] += diff; 2958 ng->faults[cpu_idx] += f_diff; 2959 ng->total_faults += diff; 2960 group_faults += ng->faults[mem_idx]; 2961 } 2962 } 2963 2964 if (!ng) { 2965 if (faults > max_faults) { 2966 max_faults = faults; 2967 max_nid = nid; 2968 } 2969 } else if (group_faults > max_faults) { 2970 max_faults = group_faults; 2971 max_nid = nid; 2972 } 2973 } 2974 2975 /* Cannot migrate task to CPU-less node */ 2976 max_nid = numa_nearest_node(max_nid, N_CPU); 2977 2978 if (ng) { 2979 numa_group_count_active_nodes(ng); 2980 spin_unlock_irq(group_lock); 2981 max_nid = preferred_group_nid(p, max_nid); 2982 } 2983 2984 if (max_faults) { 2985 /* Set the new preferred node */ 2986 if (max_nid != p->numa_preferred_nid) 2987 sched_setnuma(p, max_nid); 2988 } 2989 2990 update_task_scan_period(p, fault_types[0], fault_types[1]); 2991 } 2992 2993 static inline int get_numa_group(struct numa_group *grp) 2994 { 2995 return refcount_inc_not_zero(&grp->refcount); 2996 } 2997 2998 static inline void put_numa_group(struct numa_group *grp) 2999 { 3000 if (refcount_dec_and_test(&grp->refcount)) 3001 kfree_rcu(grp, rcu); 3002 } 3003 3004 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 3005 int *priv) 3006 { 3007 struct numa_group *grp, *my_grp; 3008 struct task_struct *tsk; 3009 bool join = false; 3010 int cpu = cpupid_to_cpu(cpupid); 3011 int i; 3012 3013 if (unlikely(!deref_curr_numa_group(p))) { 3014 unsigned int size = sizeof(struct numa_group) + 3015 NR_NUMA_HINT_FAULT_STATS * 3016 nr_node_ids * sizeof(unsigned long); 3017 3018 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 3019 if (!grp) 3020 return; 3021 3022 refcount_set(&grp->refcount, 1); 3023 grp->active_nodes = 1; 3024 grp->max_faults_cpu = 0; 3025 spin_lock_init(&grp->lock); 3026 grp->gid = p->pid; 3027 3028 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3029 grp->faults[i] = p->numa_faults[i]; 3030 3031 grp->total_faults = p->total_numa_faults; 3032 3033 grp->nr_tasks++; 3034 rcu_assign_pointer(p->numa_group, grp); 3035 } 3036 3037 rcu_read_lock(); 3038 tsk = READ_ONCE(cpu_rq(cpu)->curr); 3039 3040 if (!cpupid_match_pid(tsk, cpupid)) 3041 goto no_join; 3042 3043 grp = rcu_dereference(tsk->numa_group); 3044 if (!grp) 3045 goto no_join; 3046 3047 my_grp = deref_curr_numa_group(p); 3048 if (grp == my_grp) 3049 goto no_join; 3050 3051 /* 3052 * Only join the other group if its bigger; if we're the bigger group, 3053 * the other task will join us. 3054 */ 3055 if (my_grp->nr_tasks > grp->nr_tasks) 3056 goto no_join; 3057 3058 /* 3059 * Tie-break on the grp address. 3060 */ 3061 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 3062 goto no_join; 3063 3064 /* Always join threads in the same process. */ 3065 if (tsk->mm == current->mm) 3066 join = true; 3067 3068 /* Simple filter to avoid false positives due to PID collisions */ 3069 if (flags & TNF_SHARED) 3070 join = true; 3071 3072 /* Update priv based on whether false sharing was detected */ 3073 *priv = !join; 3074 3075 if (join && !get_numa_group(grp)) 3076 goto no_join; 3077 3078 rcu_read_unlock(); 3079 3080 if (!join) 3081 return; 3082 3083 WARN_ON_ONCE(irqs_disabled()); 3084 double_lock_irq(&my_grp->lock, &grp->lock); 3085 3086 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3087 my_grp->faults[i] -= p->numa_faults[i]; 3088 grp->faults[i] += p->numa_faults[i]; 3089 } 3090 my_grp->total_faults -= p->total_numa_faults; 3091 grp->total_faults += p->total_numa_faults; 3092 3093 my_grp->nr_tasks--; 3094 grp->nr_tasks++; 3095 3096 spin_unlock(&my_grp->lock); 3097 spin_unlock_irq(&grp->lock); 3098 3099 rcu_assign_pointer(p->numa_group, grp); 3100 3101 put_numa_group(my_grp); 3102 return; 3103 3104 no_join: 3105 rcu_read_unlock(); 3106 return; 3107 } 3108 3109 /* 3110 * Get rid of NUMA statistics associated with a task (either current or dead). 3111 * If @final is set, the task is dead and has reached refcount zero, so we can 3112 * safely free all relevant data structures. Otherwise, there might be 3113 * concurrent reads from places like load balancing and procfs, and we should 3114 * reset the data back to default state without freeing ->numa_faults. 3115 */ 3116 void task_numa_free(struct task_struct *p, bool final) 3117 { 3118 /* safe: p either is current or is being freed by current */ 3119 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3120 unsigned long *numa_faults = p->numa_faults; 3121 unsigned long flags; 3122 int i; 3123 3124 if (!numa_faults) 3125 return; 3126 3127 if (grp) { 3128 spin_lock_irqsave(&grp->lock, flags); 3129 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3130 grp->faults[i] -= p->numa_faults[i]; 3131 grp->total_faults -= p->total_numa_faults; 3132 3133 grp->nr_tasks--; 3134 spin_unlock_irqrestore(&grp->lock, flags); 3135 RCU_INIT_POINTER(p->numa_group, NULL); 3136 put_numa_group(grp); 3137 } 3138 3139 if (final) { 3140 p->numa_faults = NULL; 3141 kfree(numa_faults); 3142 } else { 3143 p->total_numa_faults = 0; 3144 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3145 numa_faults[i] = 0; 3146 } 3147 } 3148 3149 /* 3150 * Got a PROT_NONE fault for a page on @node. 3151 */ 3152 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3153 { 3154 struct task_struct *p = current; 3155 bool migrated = flags & TNF_MIGRATED; 3156 int cpu_node = task_node(current); 3157 int local = !!(flags & TNF_FAULT_LOCAL); 3158 struct numa_group *ng; 3159 int priv; 3160 3161 if (!static_branch_likely(&sched_numa_balancing)) 3162 return; 3163 3164 /* for example, ksmd faulting in a user's mm */ 3165 if (!p->mm) 3166 return; 3167 3168 /* 3169 * NUMA faults statistics are unnecessary for the slow memory 3170 * node for memory tiering mode. 3171 */ 3172 if (!node_is_toptier(mem_node) && 3173 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3174 !cpupid_valid(last_cpupid))) 3175 return; 3176 3177 /* Allocate buffer to track faults on a per-node basis */ 3178 if (unlikely(!p->numa_faults)) { 3179 int size = sizeof(*p->numa_faults) * 3180 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3181 3182 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3183 if (!p->numa_faults) 3184 return; 3185 3186 p->total_numa_faults = 0; 3187 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3188 } 3189 3190 /* 3191 * First accesses are treated as private, otherwise consider accesses 3192 * to be private if the accessing pid has not changed 3193 */ 3194 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3195 priv = 1; 3196 } else { 3197 priv = cpupid_match_pid(p, last_cpupid); 3198 if (!priv && !(flags & TNF_NO_GROUP)) 3199 task_numa_group(p, last_cpupid, flags, &priv); 3200 } 3201 3202 /* 3203 * If a workload spans multiple NUMA nodes, a shared fault that 3204 * occurs wholly within the set of nodes that the workload is 3205 * actively using should be counted as local. This allows the 3206 * scan rate to slow down when a workload has settled down. 3207 */ 3208 ng = deref_curr_numa_group(p); 3209 if (!priv && !local && ng && ng->active_nodes > 1 && 3210 numa_is_active_node(cpu_node, ng) && 3211 numa_is_active_node(mem_node, ng)) 3212 local = 1; 3213 3214 /* 3215 * Retry to migrate task to preferred node periodically, in case it 3216 * previously failed, or the scheduler moved us. 3217 */ 3218 if (time_after(jiffies, p->numa_migrate_retry)) { 3219 task_numa_placement(p); 3220 numa_migrate_preferred(p); 3221 } 3222 3223 if (migrated) 3224 p->numa_pages_migrated += pages; 3225 if (flags & TNF_MIGRATE_FAIL) 3226 p->numa_faults_locality[2] += pages; 3227 3228 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3229 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3230 p->numa_faults_locality[local] += pages; 3231 } 3232 3233 static void reset_ptenuma_scan(struct task_struct *p) 3234 { 3235 /* 3236 * We only did a read acquisition of the mmap sem, so 3237 * p->mm->numa_scan_seq is written to without exclusive access 3238 * and the update is not guaranteed to be atomic. That's not 3239 * much of an issue though, since this is just used for 3240 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3241 * expensive, to avoid any form of compiler optimizations: 3242 */ 3243 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3244 p->mm->numa_scan_offset = 0; 3245 } 3246 3247 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3248 { 3249 unsigned long pids; 3250 /* 3251 * Allow unconditional access first two times, so that all the (pages) 3252 * of VMAs get prot_none fault introduced irrespective of accesses. 3253 * This is also done to avoid any side effect of task scanning 3254 * amplifying the unfairness of disjoint set of VMAs' access. 3255 */ 3256 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3257 return true; 3258 3259 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3260 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3261 return true; 3262 3263 /* 3264 * Complete a scan that has already started regardless of PID access, or 3265 * some VMAs may never be scanned in multi-threaded applications: 3266 */ 3267 if (mm->numa_scan_offset > vma->vm_start) { 3268 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3269 return true; 3270 } 3271 3272 /* 3273 * This vma has not been accessed for a while, and if the number 3274 * the threads in the same process is low, which means no other 3275 * threads can help scan this vma, force a vma scan. 3276 */ 3277 if (READ_ONCE(mm->numa_scan_seq) > 3278 (vma->numab_state->prev_scan_seq + get_nr_threads(current))) 3279 return true; 3280 3281 return false; 3282 } 3283 3284 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3285 3286 /* 3287 * The expensive part of numa migration is done from task_work context. 3288 * Triggered from task_tick_numa(). 3289 */ 3290 static void task_numa_work(struct callback_head *work) 3291 { 3292 unsigned long migrate, next_scan, now = jiffies; 3293 struct task_struct *p = current; 3294 struct mm_struct *mm = p->mm; 3295 u64 runtime = p->se.sum_exec_runtime; 3296 struct vm_area_struct *vma; 3297 unsigned long start, end; 3298 unsigned long nr_pte_updates = 0; 3299 long pages, virtpages; 3300 struct vma_iterator vmi; 3301 bool vma_pids_skipped; 3302 bool vma_pids_forced = false; 3303 3304 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3305 3306 work->next = work; 3307 /* 3308 * Who cares about NUMA placement when they're dying. 3309 * 3310 * NOTE: make sure not to dereference p->mm before this check, 3311 * exit_task_work() happens _after_ exit_mm() so we could be called 3312 * without p->mm even though we still had it when we enqueued this 3313 * work. 3314 */ 3315 if (p->flags & PF_EXITING) 3316 return; 3317 3318 if (!mm->numa_next_scan) { 3319 mm->numa_next_scan = now + 3320 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3321 } 3322 3323 /* 3324 * Enforce maximal scan/migration frequency.. 3325 */ 3326 migrate = mm->numa_next_scan; 3327 if (time_before(now, migrate)) 3328 return; 3329 3330 if (p->numa_scan_period == 0) { 3331 p->numa_scan_period_max = task_scan_max(p); 3332 p->numa_scan_period = task_scan_start(p); 3333 } 3334 3335 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3336 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3337 return; 3338 3339 /* 3340 * Delay this task enough that another task of this mm will likely win 3341 * the next time around. 3342 */ 3343 p->node_stamp += 2 * TICK_NSEC; 3344 3345 pages = sysctl_numa_balancing_scan_size; 3346 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3347 virtpages = pages * 8; /* Scan up to this much virtual space */ 3348 if (!pages) 3349 return; 3350 3351 3352 if (!mmap_read_trylock(mm)) 3353 return; 3354 3355 /* 3356 * VMAs are skipped if the current PID has not trapped a fault within 3357 * the VMA recently. Allow scanning to be forced if there is no 3358 * suitable VMA remaining. 3359 */ 3360 vma_pids_skipped = false; 3361 3362 retry_pids: 3363 start = mm->numa_scan_offset; 3364 vma_iter_init(&vmi, mm, start); 3365 vma = vma_next(&vmi); 3366 if (!vma) { 3367 reset_ptenuma_scan(p); 3368 start = 0; 3369 vma_iter_set(&vmi, start); 3370 vma = vma_next(&vmi); 3371 } 3372 3373 for (; vma; vma = vma_next(&vmi)) { 3374 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3375 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3376 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3377 continue; 3378 } 3379 3380 /* 3381 * Shared library pages mapped by multiple processes are not 3382 * migrated as it is expected they are cache replicated. Avoid 3383 * hinting faults in read-only file-backed mappings or the vDSO 3384 * as migrating the pages will be of marginal benefit. 3385 */ 3386 if (!vma->vm_mm || 3387 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3388 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3389 continue; 3390 } 3391 3392 /* 3393 * Skip inaccessible VMAs to avoid any confusion between 3394 * PROT_NONE and NUMA hinting PTEs 3395 */ 3396 if (!vma_is_accessible(vma)) { 3397 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3398 continue; 3399 } 3400 3401 /* Initialise new per-VMA NUMAB state. */ 3402 if (!vma->numab_state) { 3403 struct vma_numab_state *ptr; 3404 3405 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL); 3406 if (!ptr) 3407 continue; 3408 3409 if (cmpxchg(&vma->numab_state, NULL, ptr)) { 3410 kfree(ptr); 3411 continue; 3412 } 3413 3414 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3415 3416 vma->numab_state->next_scan = now + 3417 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3418 3419 /* Reset happens after 4 times scan delay of scan start */ 3420 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3421 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3422 3423 /* 3424 * Ensure prev_scan_seq does not match numa_scan_seq, 3425 * to prevent VMAs being skipped prematurely on the 3426 * first scan: 3427 */ 3428 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3429 } 3430 3431 /* 3432 * Scanning the VMAs of short lived tasks add more overhead. So 3433 * delay the scan for new VMAs. 3434 */ 3435 if (mm->numa_scan_seq && time_before(jiffies, 3436 vma->numab_state->next_scan)) { 3437 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3438 continue; 3439 } 3440 3441 /* RESET access PIDs regularly for old VMAs. */ 3442 if (mm->numa_scan_seq && 3443 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3444 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3445 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3446 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3447 vma->numab_state->pids_active[1] = 0; 3448 } 3449 3450 /* Do not rescan VMAs twice within the same sequence. */ 3451 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3452 mm->numa_scan_offset = vma->vm_end; 3453 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3454 continue; 3455 } 3456 3457 /* 3458 * Do not scan the VMA if task has not accessed it, unless no other 3459 * VMA candidate exists. 3460 */ 3461 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3462 vma_pids_skipped = true; 3463 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3464 continue; 3465 } 3466 3467 do { 3468 start = max(start, vma->vm_start); 3469 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3470 end = min(end, vma->vm_end); 3471 nr_pte_updates = change_prot_numa(vma, start, end); 3472 3473 /* 3474 * Try to scan sysctl_numa_balancing_size worth of 3475 * hpages that have at least one present PTE that 3476 * is not already PTE-numa. If the VMA contains 3477 * areas that are unused or already full of prot_numa 3478 * PTEs, scan up to virtpages, to skip through those 3479 * areas faster. 3480 */ 3481 if (nr_pte_updates) 3482 pages -= (end - start) >> PAGE_SHIFT; 3483 virtpages -= (end - start) >> PAGE_SHIFT; 3484 3485 start = end; 3486 if (pages <= 0 || virtpages <= 0) 3487 goto out; 3488 3489 cond_resched(); 3490 } while (end != vma->vm_end); 3491 3492 /* VMA scan is complete, do not scan until next sequence. */ 3493 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3494 3495 /* 3496 * Only force scan within one VMA at a time, to limit the 3497 * cost of scanning a potentially uninteresting VMA. 3498 */ 3499 if (vma_pids_forced) 3500 break; 3501 } 3502 3503 /* 3504 * If no VMAs are remaining and VMAs were skipped due to the PID 3505 * not accessing the VMA previously, then force a scan to ensure 3506 * forward progress: 3507 */ 3508 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3509 vma_pids_forced = true; 3510 goto retry_pids; 3511 } 3512 3513 out: 3514 /* 3515 * It is possible to reach the end of the VMA list but the last few 3516 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3517 * would find the !migratable VMA on the next scan but not reset the 3518 * scanner to the start so check it now. 3519 */ 3520 if (vma) 3521 mm->numa_scan_offset = start; 3522 else 3523 reset_ptenuma_scan(p); 3524 mmap_read_unlock(mm); 3525 3526 /* 3527 * Make sure tasks use at least 32x as much time to run other code 3528 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3529 * Usually update_task_scan_period slows down scanning enough; on an 3530 * overloaded system we need to limit overhead on a per task basis. 3531 */ 3532 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3533 u64 diff = p->se.sum_exec_runtime - runtime; 3534 p->node_stamp += 32 * diff; 3535 } 3536 } 3537 3538 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3539 { 3540 int mm_users = 0; 3541 struct mm_struct *mm = p->mm; 3542 3543 if (mm) { 3544 mm_users = atomic_read(&mm->mm_users); 3545 if (mm_users == 1) { 3546 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3547 mm->numa_scan_seq = 0; 3548 } 3549 } 3550 p->node_stamp = 0; 3551 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3552 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3553 p->numa_migrate_retry = 0; 3554 /* Protect against double add, see task_tick_numa and task_numa_work */ 3555 p->numa_work.next = &p->numa_work; 3556 p->numa_faults = NULL; 3557 p->numa_pages_migrated = 0; 3558 p->total_numa_faults = 0; 3559 RCU_INIT_POINTER(p->numa_group, NULL); 3560 p->last_task_numa_placement = 0; 3561 p->last_sum_exec_runtime = 0; 3562 3563 init_task_work(&p->numa_work, task_numa_work); 3564 3565 /* New address space, reset the preferred nid */ 3566 if (!(clone_flags & CLONE_VM)) { 3567 p->numa_preferred_nid = NUMA_NO_NODE; 3568 return; 3569 } 3570 3571 /* 3572 * New thread, keep existing numa_preferred_nid which should be copied 3573 * already by arch_dup_task_struct but stagger when scans start. 3574 */ 3575 if (mm) { 3576 unsigned int delay; 3577 3578 delay = min_t(unsigned int, task_scan_max(current), 3579 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3580 delay += 2 * TICK_NSEC; 3581 p->node_stamp = delay; 3582 } 3583 } 3584 3585 /* 3586 * Drive the periodic memory faults.. 3587 */ 3588 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3589 { 3590 struct callback_head *work = &curr->numa_work; 3591 u64 period, now; 3592 3593 /* 3594 * We don't care about NUMA placement if we don't have memory. 3595 */ 3596 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3597 return; 3598 3599 /* 3600 * Using runtime rather than walltime has the dual advantage that 3601 * we (mostly) drive the selection from busy threads and that the 3602 * task needs to have done some actual work before we bother with 3603 * NUMA placement. 3604 */ 3605 now = curr->se.sum_exec_runtime; 3606 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3607 3608 if (now > curr->node_stamp + period) { 3609 if (!curr->node_stamp) 3610 curr->numa_scan_period = task_scan_start(curr); 3611 curr->node_stamp += period; 3612 3613 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3614 task_work_add(curr, work, TWA_RESUME); 3615 } 3616 } 3617 3618 static void update_scan_period(struct task_struct *p, int new_cpu) 3619 { 3620 int src_nid = cpu_to_node(task_cpu(p)); 3621 int dst_nid = cpu_to_node(new_cpu); 3622 3623 if (!static_branch_likely(&sched_numa_balancing)) 3624 return; 3625 3626 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3627 return; 3628 3629 if (src_nid == dst_nid) 3630 return; 3631 3632 /* 3633 * Allow resets if faults have been trapped before one scan 3634 * has completed. This is most likely due to a new task that 3635 * is pulled cross-node due to wakeups or load balancing. 3636 */ 3637 if (p->numa_scan_seq) { 3638 /* 3639 * Avoid scan adjustments if moving to the preferred 3640 * node or if the task was not previously running on 3641 * the preferred node. 3642 */ 3643 if (dst_nid == p->numa_preferred_nid || 3644 (p->numa_preferred_nid != NUMA_NO_NODE && 3645 src_nid != p->numa_preferred_nid)) 3646 return; 3647 } 3648 3649 p->numa_scan_period = task_scan_start(p); 3650 } 3651 3652 #else 3653 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3654 { 3655 } 3656 3657 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3658 { 3659 } 3660 3661 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3662 { 3663 } 3664 3665 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3666 { 3667 } 3668 3669 #endif /* CONFIG_NUMA_BALANCING */ 3670 3671 static void 3672 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3673 { 3674 update_load_add(&cfs_rq->load, se->load.weight); 3675 #ifdef CONFIG_SMP 3676 if (entity_is_task(se)) { 3677 struct rq *rq = rq_of(cfs_rq); 3678 3679 account_numa_enqueue(rq, task_of(se)); 3680 list_add(&se->group_node, &rq->cfs_tasks); 3681 } 3682 #endif 3683 cfs_rq->nr_queued++; 3684 } 3685 3686 static void 3687 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3688 { 3689 update_load_sub(&cfs_rq->load, se->load.weight); 3690 #ifdef CONFIG_SMP 3691 if (entity_is_task(se)) { 3692 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3693 list_del_init(&se->group_node); 3694 } 3695 #endif 3696 cfs_rq->nr_queued--; 3697 } 3698 3699 /* 3700 * Signed add and clamp on underflow. 3701 * 3702 * Explicitly do a load-store to ensure the intermediate value never hits 3703 * memory. This allows lockless observations without ever seeing the negative 3704 * values. 3705 */ 3706 #define add_positive(_ptr, _val) do { \ 3707 typeof(_ptr) ptr = (_ptr); \ 3708 typeof(_val) val = (_val); \ 3709 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3710 \ 3711 res = var + val; \ 3712 \ 3713 if (val < 0 && res > var) \ 3714 res = 0; \ 3715 \ 3716 WRITE_ONCE(*ptr, res); \ 3717 } while (0) 3718 3719 /* 3720 * Unsigned subtract and clamp on underflow. 3721 * 3722 * Explicitly do a load-store to ensure the intermediate value never hits 3723 * memory. This allows lockless observations without ever seeing the negative 3724 * values. 3725 */ 3726 #define sub_positive(_ptr, _val) do { \ 3727 typeof(_ptr) ptr = (_ptr); \ 3728 typeof(*ptr) val = (_val); \ 3729 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3730 res = var - val; \ 3731 if (res > var) \ 3732 res = 0; \ 3733 WRITE_ONCE(*ptr, res); \ 3734 } while (0) 3735 3736 /* 3737 * Remove and clamp on negative, from a local variable. 3738 * 3739 * A variant of sub_positive(), which does not use explicit load-store 3740 * and is thus optimized for local variable updates. 3741 */ 3742 #define lsub_positive(_ptr, _val) do { \ 3743 typeof(_ptr) ptr = (_ptr); \ 3744 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3745 } while (0) 3746 3747 #ifdef CONFIG_SMP 3748 static inline void 3749 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3750 { 3751 cfs_rq->avg.load_avg += se->avg.load_avg; 3752 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3753 } 3754 3755 static inline void 3756 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3757 { 3758 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3759 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3760 /* See update_cfs_rq_load_avg() */ 3761 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3762 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3763 } 3764 #else 3765 static inline void 3766 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3767 static inline void 3768 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3769 #endif 3770 3771 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags); 3772 3773 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3774 unsigned long weight) 3775 { 3776 bool curr = cfs_rq->curr == se; 3777 3778 if (se->on_rq) { 3779 /* commit outstanding execution time */ 3780 update_curr(cfs_rq); 3781 update_entity_lag(cfs_rq, se); 3782 se->deadline -= se->vruntime; 3783 se->rel_deadline = 1; 3784 if (!curr) 3785 __dequeue_entity(cfs_rq, se); 3786 update_load_sub(&cfs_rq->load, se->load.weight); 3787 } 3788 dequeue_load_avg(cfs_rq, se); 3789 3790 /* 3791 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3792 * we need to scale se->vlag when w_i changes. 3793 */ 3794 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3795 if (se->rel_deadline) 3796 se->deadline = div_s64(se->deadline * se->load.weight, weight); 3797 3798 update_load_set(&se->load, weight); 3799 3800 #ifdef CONFIG_SMP 3801 do { 3802 u32 divider = get_pelt_divider(&se->avg); 3803 3804 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3805 } while (0); 3806 #endif 3807 3808 enqueue_load_avg(cfs_rq, se); 3809 if (se->on_rq) { 3810 update_load_add(&cfs_rq->load, se->load.weight); 3811 place_entity(cfs_rq, se, 0); 3812 if (!curr) 3813 __enqueue_entity(cfs_rq, se); 3814 3815 /* 3816 * The entity's vruntime has been adjusted, so let's check 3817 * whether the rq-wide min_vruntime needs updated too. Since 3818 * the calculations above require stable min_vruntime rather 3819 * than up-to-date one, we do the update at the end of the 3820 * reweight process. 3821 */ 3822 update_min_vruntime(cfs_rq); 3823 } 3824 } 3825 3826 static void reweight_task_fair(struct rq *rq, struct task_struct *p, 3827 const struct load_weight *lw) 3828 { 3829 struct sched_entity *se = &p->se; 3830 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3831 struct load_weight *load = &se->load; 3832 3833 reweight_entity(cfs_rq, se, lw->weight); 3834 load->inv_weight = lw->inv_weight; 3835 } 3836 3837 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3838 3839 #ifdef CONFIG_FAIR_GROUP_SCHED 3840 #ifdef CONFIG_SMP 3841 /* 3842 * All this does is approximate the hierarchical proportion which includes that 3843 * global sum we all love to hate. 3844 * 3845 * That is, the weight of a group entity, is the proportional share of the 3846 * group weight based on the group runqueue weights. That is: 3847 * 3848 * tg->weight * grq->load.weight 3849 * ge->load.weight = ----------------------------- (1) 3850 * \Sum grq->load.weight 3851 * 3852 * Now, because computing that sum is prohibitively expensive to compute (been 3853 * there, done that) we approximate it with this average stuff. The average 3854 * moves slower and therefore the approximation is cheaper and more stable. 3855 * 3856 * So instead of the above, we substitute: 3857 * 3858 * grq->load.weight -> grq->avg.load_avg (2) 3859 * 3860 * which yields the following: 3861 * 3862 * tg->weight * grq->avg.load_avg 3863 * ge->load.weight = ------------------------------ (3) 3864 * tg->load_avg 3865 * 3866 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3867 * 3868 * That is shares_avg, and it is right (given the approximation (2)). 3869 * 3870 * The problem with it is that because the average is slow -- it was designed 3871 * to be exactly that of course -- this leads to transients in boundary 3872 * conditions. In specific, the case where the group was idle and we start the 3873 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3874 * yielding bad latency etc.. 3875 * 3876 * Now, in that special case (1) reduces to: 3877 * 3878 * tg->weight * grq->load.weight 3879 * ge->load.weight = ----------------------------- = tg->weight (4) 3880 * grp->load.weight 3881 * 3882 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3883 * 3884 * So what we do is modify our approximation (3) to approach (4) in the (near) 3885 * UP case, like: 3886 * 3887 * ge->load.weight = 3888 * 3889 * tg->weight * grq->load.weight 3890 * --------------------------------------------------- (5) 3891 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3892 * 3893 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3894 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3895 * 3896 * 3897 * tg->weight * grq->load.weight 3898 * ge->load.weight = ----------------------------- (6) 3899 * tg_load_avg' 3900 * 3901 * Where: 3902 * 3903 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3904 * max(grq->load.weight, grq->avg.load_avg) 3905 * 3906 * And that is shares_weight and is icky. In the (near) UP case it approaches 3907 * (4) while in the normal case it approaches (3). It consistently 3908 * overestimates the ge->load.weight and therefore: 3909 * 3910 * \Sum ge->load.weight >= tg->weight 3911 * 3912 * hence icky! 3913 */ 3914 static long calc_group_shares(struct cfs_rq *cfs_rq) 3915 { 3916 long tg_weight, tg_shares, load, shares; 3917 struct task_group *tg = cfs_rq->tg; 3918 3919 tg_shares = READ_ONCE(tg->shares); 3920 3921 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3922 3923 tg_weight = atomic_long_read(&tg->load_avg); 3924 3925 /* Ensure tg_weight >= load */ 3926 tg_weight -= cfs_rq->tg_load_avg_contrib; 3927 tg_weight += load; 3928 3929 shares = (tg_shares * load); 3930 if (tg_weight) 3931 shares /= tg_weight; 3932 3933 /* 3934 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3935 * of a group with small tg->shares value. It is a floor value which is 3936 * assigned as a minimum load.weight to the sched_entity representing 3937 * the group on a CPU. 3938 * 3939 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3940 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3941 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3942 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3943 * instead of 0. 3944 */ 3945 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3946 } 3947 #endif /* CONFIG_SMP */ 3948 3949 /* 3950 * Recomputes the group entity based on the current state of its group 3951 * runqueue. 3952 */ 3953 static void update_cfs_group(struct sched_entity *se) 3954 { 3955 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3956 long shares; 3957 3958 /* 3959 * When a group becomes empty, preserve its weight. This matters for 3960 * DELAY_DEQUEUE. 3961 */ 3962 if (!gcfs_rq || !gcfs_rq->load.weight) 3963 return; 3964 3965 if (throttled_hierarchy(gcfs_rq)) 3966 return; 3967 3968 #ifndef CONFIG_SMP 3969 shares = READ_ONCE(gcfs_rq->tg->shares); 3970 #else 3971 shares = calc_group_shares(gcfs_rq); 3972 #endif 3973 if (unlikely(se->load.weight != shares)) 3974 reweight_entity(cfs_rq_of(se), se, shares); 3975 } 3976 3977 #else /* CONFIG_FAIR_GROUP_SCHED */ 3978 static inline void update_cfs_group(struct sched_entity *se) 3979 { 3980 } 3981 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3982 3983 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3984 { 3985 struct rq *rq = rq_of(cfs_rq); 3986 3987 if (&rq->cfs == cfs_rq) { 3988 /* 3989 * There are a few boundary cases this might miss but it should 3990 * get called often enough that that should (hopefully) not be 3991 * a real problem. 3992 * 3993 * It will not get called when we go idle, because the idle 3994 * thread is a different class (!fair), nor will the utilization 3995 * number include things like RT tasks. 3996 * 3997 * As is, the util number is not freq-invariant (we'd have to 3998 * implement arch_scale_freq_capacity() for that). 3999 * 4000 * See cpu_util_cfs(). 4001 */ 4002 cpufreq_update_util(rq, flags); 4003 } 4004 } 4005 4006 #ifdef CONFIG_SMP 4007 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4008 { 4009 if (sa->load_sum) 4010 return false; 4011 4012 if (sa->util_sum) 4013 return false; 4014 4015 if (sa->runnable_sum) 4016 return false; 4017 4018 /* 4019 * _avg must be null when _sum are null because _avg = _sum / divider 4020 * Make sure that rounding and/or propagation of PELT values never 4021 * break this. 4022 */ 4023 SCHED_WARN_ON(sa->load_avg || 4024 sa->util_avg || 4025 sa->runnable_avg); 4026 4027 return true; 4028 } 4029 4030 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4031 { 4032 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4033 cfs_rq->last_update_time_copy); 4034 } 4035 #ifdef CONFIG_FAIR_GROUP_SCHED 4036 /* 4037 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4038 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4039 * bottom-up, we only have to test whether the cfs_rq before us on the list 4040 * is our child. 4041 * If cfs_rq is not on the list, test whether a child needs its to be added to 4042 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4043 */ 4044 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4045 { 4046 struct cfs_rq *prev_cfs_rq; 4047 struct list_head *prev; 4048 4049 if (cfs_rq->on_list) { 4050 prev = cfs_rq->leaf_cfs_rq_list.prev; 4051 } else { 4052 struct rq *rq = rq_of(cfs_rq); 4053 4054 prev = rq->tmp_alone_branch; 4055 } 4056 4057 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4058 4059 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4060 } 4061 4062 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4063 { 4064 if (cfs_rq->load.weight) 4065 return false; 4066 4067 if (!load_avg_is_decayed(&cfs_rq->avg)) 4068 return false; 4069 4070 if (child_cfs_rq_on_list(cfs_rq)) 4071 return false; 4072 4073 return true; 4074 } 4075 4076 /** 4077 * update_tg_load_avg - update the tg's load avg 4078 * @cfs_rq: the cfs_rq whose avg changed 4079 * 4080 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4081 * However, because tg->load_avg is a global value there are performance 4082 * considerations. 4083 * 4084 * In order to avoid having to look at the other cfs_rq's, we use a 4085 * differential update where we store the last value we propagated. This in 4086 * turn allows skipping updates if the differential is 'small'. 4087 * 4088 * Updating tg's load_avg is necessary before update_cfs_share(). 4089 */ 4090 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4091 { 4092 long delta; 4093 u64 now; 4094 4095 /* 4096 * No need to update load_avg for root_task_group as it is not used. 4097 */ 4098 if (cfs_rq->tg == &root_task_group) 4099 return; 4100 4101 /* rq has been offline and doesn't contribute to the share anymore: */ 4102 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4103 return; 4104 4105 /* 4106 * For migration heavy workloads, access to tg->load_avg can be 4107 * unbound. Limit the update rate to at most once per ms. 4108 */ 4109 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4110 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4111 return; 4112 4113 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4114 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4115 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4116 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4117 cfs_rq->last_update_tg_load_avg = now; 4118 } 4119 } 4120 4121 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4122 { 4123 long delta; 4124 u64 now; 4125 4126 /* 4127 * No need to update load_avg for root_task_group, as it is not used. 4128 */ 4129 if (cfs_rq->tg == &root_task_group) 4130 return; 4131 4132 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4133 delta = 0 - cfs_rq->tg_load_avg_contrib; 4134 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4135 cfs_rq->tg_load_avg_contrib = 0; 4136 cfs_rq->last_update_tg_load_avg = now; 4137 } 4138 4139 /* CPU offline callback: */ 4140 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4141 { 4142 struct task_group *tg; 4143 4144 lockdep_assert_rq_held(rq); 4145 4146 /* 4147 * The rq clock has already been updated in 4148 * set_rq_offline(), so we should skip updating 4149 * the rq clock again in unthrottle_cfs_rq(). 4150 */ 4151 rq_clock_start_loop_update(rq); 4152 4153 rcu_read_lock(); 4154 list_for_each_entry_rcu(tg, &task_groups, list) { 4155 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4156 4157 clear_tg_load_avg(cfs_rq); 4158 } 4159 rcu_read_unlock(); 4160 4161 rq_clock_stop_loop_update(rq); 4162 } 4163 4164 /* 4165 * Called within set_task_rq() right before setting a task's CPU. The 4166 * caller only guarantees p->pi_lock is held; no other assumptions, 4167 * including the state of rq->lock, should be made. 4168 */ 4169 void set_task_rq_fair(struct sched_entity *se, 4170 struct cfs_rq *prev, struct cfs_rq *next) 4171 { 4172 u64 p_last_update_time; 4173 u64 n_last_update_time; 4174 4175 if (!sched_feat(ATTACH_AGE_LOAD)) 4176 return; 4177 4178 /* 4179 * We are supposed to update the task to "current" time, then its up to 4180 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4181 * getting what current time is, so simply throw away the out-of-date 4182 * time. This will result in the wakee task is less decayed, but giving 4183 * the wakee more load sounds not bad. 4184 */ 4185 if (!(se->avg.last_update_time && prev)) 4186 return; 4187 4188 p_last_update_time = cfs_rq_last_update_time(prev); 4189 n_last_update_time = cfs_rq_last_update_time(next); 4190 4191 __update_load_avg_blocked_se(p_last_update_time, se); 4192 se->avg.last_update_time = n_last_update_time; 4193 } 4194 4195 /* 4196 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4197 * propagate its contribution. The key to this propagation is the invariant 4198 * that for each group: 4199 * 4200 * ge->avg == grq->avg (1) 4201 * 4202 * _IFF_ we look at the pure running and runnable sums. Because they 4203 * represent the very same entity, just at different points in the hierarchy. 4204 * 4205 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4206 * and simply copies the running/runnable sum over (but still wrong, because 4207 * the group entity and group rq do not have their PELT windows aligned). 4208 * 4209 * However, update_tg_cfs_load() is more complex. So we have: 4210 * 4211 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4212 * 4213 * And since, like util, the runnable part should be directly transferable, 4214 * the following would _appear_ to be the straight forward approach: 4215 * 4216 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4217 * 4218 * And per (1) we have: 4219 * 4220 * ge->avg.runnable_avg == grq->avg.runnable_avg 4221 * 4222 * Which gives: 4223 * 4224 * ge->load.weight * grq->avg.load_avg 4225 * ge->avg.load_avg = ----------------------------------- (4) 4226 * grq->load.weight 4227 * 4228 * Except that is wrong! 4229 * 4230 * Because while for entities historical weight is not important and we 4231 * really only care about our future and therefore can consider a pure 4232 * runnable sum, runqueues can NOT do this. 4233 * 4234 * We specifically want runqueues to have a load_avg that includes 4235 * historical weights. Those represent the blocked load, the load we expect 4236 * to (shortly) return to us. This only works by keeping the weights as 4237 * integral part of the sum. We therefore cannot decompose as per (3). 4238 * 4239 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4240 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4241 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4242 * runnable section of these tasks overlap (or not). If they were to perfectly 4243 * align the rq as a whole would be runnable 2/3 of the time. If however we 4244 * always have at least 1 runnable task, the rq as a whole is always runnable. 4245 * 4246 * So we'll have to approximate.. :/ 4247 * 4248 * Given the constraint: 4249 * 4250 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4251 * 4252 * We can construct a rule that adds runnable to a rq by assuming minimal 4253 * overlap. 4254 * 4255 * On removal, we'll assume each task is equally runnable; which yields: 4256 * 4257 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4258 * 4259 * XXX: only do this for the part of runnable > running ? 4260 * 4261 */ 4262 static inline void 4263 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4264 { 4265 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4266 u32 new_sum, divider; 4267 4268 /* Nothing to update */ 4269 if (!delta_avg) 4270 return; 4271 4272 /* 4273 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4274 * See ___update_load_avg() for details. 4275 */ 4276 divider = get_pelt_divider(&cfs_rq->avg); 4277 4278 4279 /* Set new sched_entity's utilization */ 4280 se->avg.util_avg = gcfs_rq->avg.util_avg; 4281 new_sum = se->avg.util_avg * divider; 4282 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4283 se->avg.util_sum = new_sum; 4284 4285 /* Update parent cfs_rq utilization */ 4286 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4287 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4288 4289 /* See update_cfs_rq_load_avg() */ 4290 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4291 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4292 } 4293 4294 static inline void 4295 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4296 { 4297 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4298 u32 new_sum, divider; 4299 4300 /* Nothing to update */ 4301 if (!delta_avg) 4302 return; 4303 4304 /* 4305 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4306 * See ___update_load_avg() for details. 4307 */ 4308 divider = get_pelt_divider(&cfs_rq->avg); 4309 4310 /* Set new sched_entity's runnable */ 4311 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4312 new_sum = se->avg.runnable_avg * divider; 4313 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4314 se->avg.runnable_sum = new_sum; 4315 4316 /* Update parent cfs_rq runnable */ 4317 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4318 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4319 /* See update_cfs_rq_load_avg() */ 4320 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4321 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4322 } 4323 4324 static inline void 4325 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4326 { 4327 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4328 unsigned long load_avg; 4329 u64 load_sum = 0; 4330 s64 delta_sum; 4331 u32 divider; 4332 4333 if (!runnable_sum) 4334 return; 4335 4336 gcfs_rq->prop_runnable_sum = 0; 4337 4338 /* 4339 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4340 * See ___update_load_avg() for details. 4341 */ 4342 divider = get_pelt_divider(&cfs_rq->avg); 4343 4344 if (runnable_sum >= 0) { 4345 /* 4346 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4347 * the CPU is saturated running == runnable. 4348 */ 4349 runnable_sum += se->avg.load_sum; 4350 runnable_sum = min_t(long, runnable_sum, divider); 4351 } else { 4352 /* 4353 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4354 * assuming all tasks are equally runnable. 4355 */ 4356 if (scale_load_down(gcfs_rq->load.weight)) { 4357 load_sum = div_u64(gcfs_rq->avg.load_sum, 4358 scale_load_down(gcfs_rq->load.weight)); 4359 } 4360 4361 /* But make sure to not inflate se's runnable */ 4362 runnable_sum = min(se->avg.load_sum, load_sum); 4363 } 4364 4365 /* 4366 * runnable_sum can't be lower than running_sum 4367 * Rescale running sum to be in the same range as runnable sum 4368 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4369 * runnable_sum is in [0 : LOAD_AVG_MAX] 4370 */ 4371 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4372 runnable_sum = max(runnable_sum, running_sum); 4373 4374 load_sum = se_weight(se) * runnable_sum; 4375 load_avg = div_u64(load_sum, divider); 4376 4377 delta_avg = load_avg - se->avg.load_avg; 4378 if (!delta_avg) 4379 return; 4380 4381 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4382 4383 se->avg.load_sum = runnable_sum; 4384 se->avg.load_avg = load_avg; 4385 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4386 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4387 /* See update_cfs_rq_load_avg() */ 4388 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4389 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4390 } 4391 4392 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4393 { 4394 cfs_rq->propagate = 1; 4395 cfs_rq->prop_runnable_sum += runnable_sum; 4396 } 4397 4398 /* Update task and its cfs_rq load average */ 4399 static inline int propagate_entity_load_avg(struct sched_entity *se) 4400 { 4401 struct cfs_rq *cfs_rq, *gcfs_rq; 4402 4403 if (entity_is_task(se)) 4404 return 0; 4405 4406 gcfs_rq = group_cfs_rq(se); 4407 if (!gcfs_rq->propagate) 4408 return 0; 4409 4410 gcfs_rq->propagate = 0; 4411 4412 cfs_rq = cfs_rq_of(se); 4413 4414 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4415 4416 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4417 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4418 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4419 4420 trace_pelt_cfs_tp(cfs_rq); 4421 trace_pelt_se_tp(se); 4422 4423 return 1; 4424 } 4425 4426 /* 4427 * Check if we need to update the load and the utilization of a blocked 4428 * group_entity: 4429 */ 4430 static inline bool skip_blocked_update(struct sched_entity *se) 4431 { 4432 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4433 4434 /* 4435 * If sched_entity still have not zero load or utilization, we have to 4436 * decay it: 4437 */ 4438 if (se->avg.load_avg || se->avg.util_avg) 4439 return false; 4440 4441 /* 4442 * If there is a pending propagation, we have to update the load and 4443 * the utilization of the sched_entity: 4444 */ 4445 if (gcfs_rq->propagate) 4446 return false; 4447 4448 /* 4449 * Otherwise, the load and the utilization of the sched_entity is 4450 * already zero and there is no pending propagation, so it will be a 4451 * waste of time to try to decay it: 4452 */ 4453 return true; 4454 } 4455 4456 #else /* CONFIG_FAIR_GROUP_SCHED */ 4457 4458 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4459 4460 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4461 4462 static inline int propagate_entity_load_avg(struct sched_entity *se) 4463 { 4464 return 0; 4465 } 4466 4467 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4468 4469 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4470 4471 #ifdef CONFIG_NO_HZ_COMMON 4472 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4473 { 4474 u64 throttled = 0, now, lut; 4475 struct cfs_rq *cfs_rq; 4476 struct rq *rq; 4477 bool is_idle; 4478 4479 if (load_avg_is_decayed(&se->avg)) 4480 return; 4481 4482 cfs_rq = cfs_rq_of(se); 4483 rq = rq_of(cfs_rq); 4484 4485 rcu_read_lock(); 4486 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4487 rcu_read_unlock(); 4488 4489 /* 4490 * The lag estimation comes with a cost we don't want to pay all the 4491 * time. Hence, limiting to the case where the source CPU is idle and 4492 * we know we are at the greatest risk to have an outdated clock. 4493 */ 4494 if (!is_idle) 4495 return; 4496 4497 /* 4498 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4499 * 4500 * last_update_time (the cfs_rq's last_update_time) 4501 * = cfs_rq_clock_pelt()@cfs_rq_idle 4502 * = rq_clock_pelt()@cfs_rq_idle 4503 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4504 * 4505 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4506 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4507 * 4508 * rq_idle_lag (delta between now and rq's update) 4509 * = sched_clock_cpu() - rq_clock()@rq_idle 4510 * 4511 * We can then write: 4512 * 4513 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4514 * sched_clock_cpu() - rq_clock()@rq_idle 4515 * Where: 4516 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4517 * rq_clock()@rq_idle is rq->clock_idle 4518 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4519 * is cfs_rq->throttled_pelt_idle 4520 */ 4521 4522 #ifdef CONFIG_CFS_BANDWIDTH 4523 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4524 /* The clock has been stopped for throttling */ 4525 if (throttled == U64_MAX) 4526 return; 4527 #endif 4528 now = u64_u32_load(rq->clock_pelt_idle); 4529 /* 4530 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4531 * is observed the old clock_pelt_idle value and the new clock_idle, 4532 * which lead to an underestimation. The opposite would lead to an 4533 * overestimation. 4534 */ 4535 smp_rmb(); 4536 lut = cfs_rq_last_update_time(cfs_rq); 4537 4538 now -= throttled; 4539 if (now < lut) 4540 /* 4541 * cfs_rq->avg.last_update_time is more recent than our 4542 * estimation, let's use it. 4543 */ 4544 now = lut; 4545 else 4546 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4547 4548 __update_load_avg_blocked_se(now, se); 4549 } 4550 #else 4551 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4552 #endif 4553 4554 /** 4555 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4556 * @now: current time, as per cfs_rq_clock_pelt() 4557 * @cfs_rq: cfs_rq to update 4558 * 4559 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4560 * avg. The immediate corollary is that all (fair) tasks must be attached. 4561 * 4562 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4563 * 4564 * Return: true if the load decayed or we removed load. 4565 * 4566 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4567 * call update_tg_load_avg() when this function returns true. 4568 */ 4569 static inline int 4570 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4571 { 4572 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4573 struct sched_avg *sa = &cfs_rq->avg; 4574 int decayed = 0; 4575 4576 if (cfs_rq->removed.nr) { 4577 unsigned long r; 4578 u32 divider = get_pelt_divider(&cfs_rq->avg); 4579 4580 raw_spin_lock(&cfs_rq->removed.lock); 4581 swap(cfs_rq->removed.util_avg, removed_util); 4582 swap(cfs_rq->removed.load_avg, removed_load); 4583 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4584 cfs_rq->removed.nr = 0; 4585 raw_spin_unlock(&cfs_rq->removed.lock); 4586 4587 r = removed_load; 4588 sub_positive(&sa->load_avg, r); 4589 sub_positive(&sa->load_sum, r * divider); 4590 /* See sa->util_sum below */ 4591 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4592 4593 r = removed_util; 4594 sub_positive(&sa->util_avg, r); 4595 sub_positive(&sa->util_sum, r * divider); 4596 /* 4597 * Because of rounding, se->util_sum might ends up being +1 more than 4598 * cfs->util_sum. Although this is not a problem by itself, detaching 4599 * a lot of tasks with the rounding problem between 2 updates of 4600 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4601 * cfs_util_avg is not. 4602 * Check that util_sum is still above its lower bound for the new 4603 * util_avg. Given that period_contrib might have moved since the last 4604 * sync, we are only sure that util_sum must be above or equal to 4605 * util_avg * minimum possible divider 4606 */ 4607 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4608 4609 r = removed_runnable; 4610 sub_positive(&sa->runnable_avg, r); 4611 sub_positive(&sa->runnable_sum, r * divider); 4612 /* See sa->util_sum above */ 4613 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4614 sa->runnable_avg * PELT_MIN_DIVIDER); 4615 4616 /* 4617 * removed_runnable is the unweighted version of removed_load so we 4618 * can use it to estimate removed_load_sum. 4619 */ 4620 add_tg_cfs_propagate(cfs_rq, 4621 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4622 4623 decayed = 1; 4624 } 4625 4626 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4627 u64_u32_store_copy(sa->last_update_time, 4628 cfs_rq->last_update_time_copy, 4629 sa->last_update_time); 4630 return decayed; 4631 } 4632 4633 /** 4634 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4635 * @cfs_rq: cfs_rq to attach to 4636 * @se: sched_entity to attach 4637 * 4638 * Must call update_cfs_rq_load_avg() before this, since we rely on 4639 * cfs_rq->avg.last_update_time being current. 4640 */ 4641 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4642 { 4643 /* 4644 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4645 * See ___update_load_avg() for details. 4646 */ 4647 u32 divider = get_pelt_divider(&cfs_rq->avg); 4648 4649 /* 4650 * When we attach the @se to the @cfs_rq, we must align the decay 4651 * window because without that, really weird and wonderful things can 4652 * happen. 4653 * 4654 * XXX illustrate 4655 */ 4656 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4657 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4658 4659 /* 4660 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4661 * period_contrib. This isn't strictly correct, but since we're 4662 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4663 * _sum a little. 4664 */ 4665 se->avg.util_sum = se->avg.util_avg * divider; 4666 4667 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4668 4669 se->avg.load_sum = se->avg.load_avg * divider; 4670 if (se_weight(se) < se->avg.load_sum) 4671 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4672 else 4673 se->avg.load_sum = 1; 4674 4675 enqueue_load_avg(cfs_rq, se); 4676 cfs_rq->avg.util_avg += se->avg.util_avg; 4677 cfs_rq->avg.util_sum += se->avg.util_sum; 4678 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4679 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4680 4681 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4682 4683 cfs_rq_util_change(cfs_rq, 0); 4684 4685 trace_pelt_cfs_tp(cfs_rq); 4686 } 4687 4688 /** 4689 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4690 * @cfs_rq: cfs_rq to detach from 4691 * @se: sched_entity to detach 4692 * 4693 * Must call update_cfs_rq_load_avg() before this, since we rely on 4694 * cfs_rq->avg.last_update_time being current. 4695 */ 4696 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4697 { 4698 dequeue_load_avg(cfs_rq, se); 4699 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4700 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4701 /* See update_cfs_rq_load_avg() */ 4702 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4703 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4704 4705 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4706 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4707 /* See update_cfs_rq_load_avg() */ 4708 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4709 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4710 4711 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4712 4713 cfs_rq_util_change(cfs_rq, 0); 4714 4715 trace_pelt_cfs_tp(cfs_rq); 4716 } 4717 4718 /* 4719 * Optional action to be done while updating the load average 4720 */ 4721 #define UPDATE_TG 0x1 4722 #define SKIP_AGE_LOAD 0x2 4723 #define DO_ATTACH 0x4 4724 #define DO_DETACH 0x8 4725 4726 /* Update task and its cfs_rq load average */ 4727 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4728 { 4729 u64 now = cfs_rq_clock_pelt(cfs_rq); 4730 int decayed; 4731 4732 /* 4733 * Track task load average for carrying it to new CPU after migrated, and 4734 * track group sched_entity load average for task_h_load calculation in migration 4735 */ 4736 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4737 __update_load_avg_se(now, cfs_rq, se); 4738 4739 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4740 decayed |= propagate_entity_load_avg(se); 4741 4742 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4743 4744 /* 4745 * DO_ATTACH means we're here from enqueue_entity(). 4746 * !last_update_time means we've passed through 4747 * migrate_task_rq_fair() indicating we migrated. 4748 * 4749 * IOW we're enqueueing a task on a new CPU. 4750 */ 4751 attach_entity_load_avg(cfs_rq, se); 4752 update_tg_load_avg(cfs_rq); 4753 4754 } else if (flags & DO_DETACH) { 4755 /* 4756 * DO_DETACH means we're here from dequeue_entity() 4757 * and we are migrating task out of the CPU. 4758 */ 4759 detach_entity_load_avg(cfs_rq, se); 4760 update_tg_load_avg(cfs_rq); 4761 } else if (decayed) { 4762 cfs_rq_util_change(cfs_rq, 0); 4763 4764 if (flags & UPDATE_TG) 4765 update_tg_load_avg(cfs_rq); 4766 } 4767 } 4768 4769 /* 4770 * Synchronize entity load avg of dequeued entity without locking 4771 * the previous rq. 4772 */ 4773 static void sync_entity_load_avg(struct sched_entity *se) 4774 { 4775 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4776 u64 last_update_time; 4777 4778 last_update_time = cfs_rq_last_update_time(cfs_rq); 4779 __update_load_avg_blocked_se(last_update_time, se); 4780 } 4781 4782 /* 4783 * Task first catches up with cfs_rq, and then subtract 4784 * itself from the cfs_rq (task must be off the queue now). 4785 */ 4786 static void remove_entity_load_avg(struct sched_entity *se) 4787 { 4788 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4789 unsigned long flags; 4790 4791 /* 4792 * tasks cannot exit without having gone through wake_up_new_task() -> 4793 * enqueue_task_fair() which will have added things to the cfs_rq, 4794 * so we can remove unconditionally. 4795 */ 4796 4797 sync_entity_load_avg(se); 4798 4799 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4800 ++cfs_rq->removed.nr; 4801 cfs_rq->removed.util_avg += se->avg.util_avg; 4802 cfs_rq->removed.load_avg += se->avg.load_avg; 4803 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4804 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4805 } 4806 4807 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4808 { 4809 return cfs_rq->avg.runnable_avg; 4810 } 4811 4812 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4813 { 4814 return cfs_rq->avg.load_avg; 4815 } 4816 4817 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4818 4819 static inline unsigned long task_util(struct task_struct *p) 4820 { 4821 return READ_ONCE(p->se.avg.util_avg); 4822 } 4823 4824 static inline unsigned long task_runnable(struct task_struct *p) 4825 { 4826 return READ_ONCE(p->se.avg.runnable_avg); 4827 } 4828 4829 static inline unsigned long _task_util_est(struct task_struct *p) 4830 { 4831 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4832 } 4833 4834 static inline unsigned long task_util_est(struct task_struct *p) 4835 { 4836 return max(task_util(p), _task_util_est(p)); 4837 } 4838 4839 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4840 struct task_struct *p) 4841 { 4842 unsigned int enqueued; 4843 4844 if (!sched_feat(UTIL_EST)) 4845 return; 4846 4847 /* Update root cfs_rq's estimated utilization */ 4848 enqueued = cfs_rq->avg.util_est; 4849 enqueued += _task_util_est(p); 4850 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4851 4852 trace_sched_util_est_cfs_tp(cfs_rq); 4853 } 4854 4855 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4856 struct task_struct *p) 4857 { 4858 unsigned int enqueued; 4859 4860 if (!sched_feat(UTIL_EST)) 4861 return; 4862 4863 /* Update root cfs_rq's estimated utilization */ 4864 enqueued = cfs_rq->avg.util_est; 4865 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4866 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4867 4868 trace_sched_util_est_cfs_tp(cfs_rq); 4869 } 4870 4871 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4872 4873 static inline void util_est_update(struct cfs_rq *cfs_rq, 4874 struct task_struct *p, 4875 bool task_sleep) 4876 { 4877 unsigned int ewma, dequeued, last_ewma_diff; 4878 4879 if (!sched_feat(UTIL_EST)) 4880 return; 4881 4882 /* 4883 * Skip update of task's estimated utilization when the task has not 4884 * yet completed an activation, e.g. being migrated. 4885 */ 4886 if (!task_sleep) 4887 return; 4888 4889 /* Get current estimate of utilization */ 4890 ewma = READ_ONCE(p->se.avg.util_est); 4891 4892 /* 4893 * If the PELT values haven't changed since enqueue time, 4894 * skip the util_est update. 4895 */ 4896 if (ewma & UTIL_AVG_UNCHANGED) 4897 return; 4898 4899 /* Get utilization at dequeue */ 4900 dequeued = task_util(p); 4901 4902 /* 4903 * Reset EWMA on utilization increases, the moving average is used only 4904 * to smooth utilization decreases. 4905 */ 4906 if (ewma <= dequeued) { 4907 ewma = dequeued; 4908 goto done; 4909 } 4910 4911 /* 4912 * Skip update of task's estimated utilization when its members are 4913 * already ~1% close to its last activation value. 4914 */ 4915 last_ewma_diff = ewma - dequeued; 4916 if (last_ewma_diff < UTIL_EST_MARGIN) 4917 goto done; 4918 4919 /* 4920 * To avoid overestimation of actual task utilization, skip updates if 4921 * we cannot grant there is idle time in this CPU. 4922 */ 4923 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)))) 4924 return; 4925 4926 /* 4927 * To avoid underestimate of task utilization, skip updates of EWMA if 4928 * we cannot grant that thread got all CPU time it wanted. 4929 */ 4930 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 4931 goto done; 4932 4933 4934 /* 4935 * Update Task's estimated utilization 4936 * 4937 * When *p completes an activation we can consolidate another sample 4938 * of the task size. This is done by using this value to update the 4939 * Exponential Weighted Moving Average (EWMA): 4940 * 4941 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4942 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4943 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4944 * = w * ( -last_ewma_diff ) + ewma(t-1) 4945 * = w * (-last_ewma_diff + ewma(t-1) / w) 4946 * 4947 * Where 'w' is the weight of new samples, which is configured to be 4948 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4949 */ 4950 ewma <<= UTIL_EST_WEIGHT_SHIFT; 4951 ewma -= last_ewma_diff; 4952 ewma >>= UTIL_EST_WEIGHT_SHIFT; 4953 done: 4954 ewma |= UTIL_AVG_UNCHANGED; 4955 WRITE_ONCE(p->se.avg.util_est, ewma); 4956 4957 trace_sched_util_est_se_tp(&p->se); 4958 } 4959 4960 static inline unsigned long get_actual_cpu_capacity(int cpu) 4961 { 4962 unsigned long capacity = arch_scale_cpu_capacity(cpu); 4963 4964 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 4965 4966 return capacity; 4967 } 4968 4969 static inline int util_fits_cpu(unsigned long util, 4970 unsigned long uclamp_min, 4971 unsigned long uclamp_max, 4972 int cpu) 4973 { 4974 unsigned long capacity = capacity_of(cpu); 4975 unsigned long capacity_orig; 4976 bool fits, uclamp_max_fits; 4977 4978 /* 4979 * Check if the real util fits without any uclamp boost/cap applied. 4980 */ 4981 fits = fits_capacity(util, capacity); 4982 4983 if (!uclamp_is_used()) 4984 return fits; 4985 4986 /* 4987 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 4988 * uclamp_max. We only care about capacity pressure (by using 4989 * capacity_of()) for comparing against the real util. 4990 * 4991 * If a task is boosted to 1024 for example, we don't want a tiny 4992 * pressure to skew the check whether it fits a CPU or not. 4993 * 4994 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 4995 * should fit a little cpu even if there's some pressure. 4996 * 4997 * Only exception is for HW or cpufreq pressure since it has a direct impact 4998 * on available OPP of the system. 4999 * 5000 * We honour it for uclamp_min only as a drop in performance level 5001 * could result in not getting the requested minimum performance level. 5002 * 5003 * For uclamp_max, we can tolerate a drop in performance level as the 5004 * goal is to cap the task. So it's okay if it's getting less. 5005 */ 5006 capacity_orig = arch_scale_cpu_capacity(cpu); 5007 5008 /* 5009 * We want to force a task to fit a cpu as implied by uclamp_max. 5010 * But we do have some corner cases to cater for.. 5011 * 5012 * 5013 * C=z 5014 * | ___ 5015 * | C=y | | 5016 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5017 * | C=x | | | | 5018 * | ___ | | | | 5019 * | | | | | | | (util somewhere in this region) 5020 * | | | | | | | 5021 * | | | | | | | 5022 * +---------------------------------------- 5023 * CPU0 CPU1 CPU2 5024 * 5025 * In the above example if a task is capped to a specific performance 5026 * point, y, then when: 5027 * 5028 * * util = 80% of x then it does not fit on CPU0 and should migrate 5029 * to CPU1 5030 * * util = 80% of y then it is forced to fit on CPU1 to honour 5031 * uclamp_max request. 5032 * 5033 * which is what we're enforcing here. A task always fits if 5034 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5035 * the normal upmigration rules should withhold still. 5036 * 5037 * Only exception is when we are on max capacity, then we need to be 5038 * careful not to block overutilized state. This is so because: 5039 * 5040 * 1. There's no concept of capping at max_capacity! We can't go 5041 * beyond this performance level anyway. 5042 * 2. The system is being saturated when we're operating near 5043 * max capacity, it doesn't make sense to block overutilized. 5044 */ 5045 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5046 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5047 fits = fits || uclamp_max_fits; 5048 5049 /* 5050 * 5051 * C=z 5052 * | ___ (region a, capped, util >= uclamp_max) 5053 * | C=y | | 5054 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5055 * | C=x | | | | 5056 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5057 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5058 * | | | | | | | 5059 * | | | | | | | (region c, boosted, util < uclamp_min) 5060 * +---------------------------------------- 5061 * CPU0 CPU1 CPU2 5062 * 5063 * a) If util > uclamp_max, then we're capped, we don't care about 5064 * actual fitness value here. We only care if uclamp_max fits 5065 * capacity without taking margin/pressure into account. 5066 * See comment above. 5067 * 5068 * b) If uclamp_min <= util <= uclamp_max, then the normal 5069 * fits_capacity() rules apply. Except we need to ensure that we 5070 * enforce we remain within uclamp_max, see comment above. 5071 * 5072 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5073 * need to take into account the boosted value fits the CPU without 5074 * taking margin/pressure into account. 5075 * 5076 * Cases (a) and (b) are handled in the 'fits' variable already. We 5077 * just need to consider an extra check for case (c) after ensuring we 5078 * handle the case uclamp_min > uclamp_max. 5079 */ 5080 uclamp_min = min(uclamp_min, uclamp_max); 5081 if (fits && (util < uclamp_min) && 5082 (uclamp_min > get_actual_cpu_capacity(cpu))) 5083 return -1; 5084 5085 return fits; 5086 } 5087 5088 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5089 { 5090 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5091 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5092 unsigned long util = task_util_est(p); 5093 /* 5094 * Return true only if the cpu fully fits the task requirements, which 5095 * include the utilization but also the performance hints. 5096 */ 5097 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5098 } 5099 5100 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5101 { 5102 int cpu = cpu_of(rq); 5103 5104 if (!sched_asym_cpucap_active()) 5105 return; 5106 5107 /* 5108 * Affinity allows us to go somewhere higher? Or are we on biggest 5109 * available CPU already? Or do we fit into this CPU ? 5110 */ 5111 if (!p || (p->nr_cpus_allowed == 1) || 5112 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5113 task_fits_cpu(p, cpu)) { 5114 5115 rq->misfit_task_load = 0; 5116 return; 5117 } 5118 5119 /* 5120 * Make sure that misfit_task_load will not be null even if 5121 * task_h_load() returns 0. 5122 */ 5123 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5124 } 5125 5126 #else /* CONFIG_SMP */ 5127 5128 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5129 { 5130 return !cfs_rq->nr_queued; 5131 } 5132 5133 #define UPDATE_TG 0x0 5134 #define SKIP_AGE_LOAD 0x0 5135 #define DO_ATTACH 0x0 5136 #define DO_DETACH 0x0 5137 5138 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5139 { 5140 cfs_rq_util_change(cfs_rq, 0); 5141 } 5142 5143 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5144 5145 static inline void 5146 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5147 static inline void 5148 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5149 5150 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf) 5151 { 5152 return 0; 5153 } 5154 5155 static inline void 5156 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5157 5158 static inline void 5159 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5160 5161 static inline void 5162 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5163 bool task_sleep) {} 5164 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5165 5166 #endif /* CONFIG_SMP */ 5167 5168 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr) 5169 { 5170 struct sched_entity *se = &p->se; 5171 5172 p->static_prio = NICE_TO_PRIO(attr->sched_nice); 5173 if (attr->sched_runtime) { 5174 se->custom_slice = 1; 5175 se->slice = clamp_t(u64, attr->sched_runtime, 5176 NSEC_PER_MSEC/10, /* HZ=1000 * 10 */ 5177 NSEC_PER_MSEC*100); /* HZ=100 / 10 */ 5178 } else { 5179 se->custom_slice = 0; 5180 se->slice = sysctl_sched_base_slice; 5181 } 5182 } 5183 5184 static void 5185 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5186 { 5187 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5188 s64 lag = 0; 5189 5190 if (!se->custom_slice) 5191 se->slice = sysctl_sched_base_slice; 5192 vslice = calc_delta_fair(se->slice, se); 5193 5194 /* 5195 * Due to how V is constructed as the weighted average of entities, 5196 * adding tasks with positive lag, or removing tasks with negative lag 5197 * will move 'time' backwards, this can screw around with the lag of 5198 * other tasks. 5199 * 5200 * EEVDF: placement strategy #1 / #2 5201 */ 5202 if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) { 5203 struct sched_entity *curr = cfs_rq->curr; 5204 unsigned long load; 5205 5206 lag = se->vlag; 5207 5208 /* 5209 * If we want to place a task and preserve lag, we have to 5210 * consider the effect of the new entity on the weighted 5211 * average and compensate for this, otherwise lag can quickly 5212 * evaporate. 5213 * 5214 * Lag is defined as: 5215 * 5216 * lag_i = S - s_i = w_i * (V - v_i) 5217 * 5218 * To avoid the 'w_i' term all over the place, we only track 5219 * the virtual lag: 5220 * 5221 * vl_i = V - v_i <=> v_i = V - vl_i 5222 * 5223 * And we take V to be the weighted average of all v: 5224 * 5225 * V = (\Sum w_j*v_j) / W 5226 * 5227 * Where W is: \Sum w_j 5228 * 5229 * Then, the weighted average after adding an entity with lag 5230 * vl_i is given by: 5231 * 5232 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5233 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5234 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5235 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5236 * = V - w_i*vl_i / (W + w_i) 5237 * 5238 * And the actual lag after adding an entity with vl_i is: 5239 * 5240 * vl'_i = V' - v_i 5241 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5242 * = vl_i - w_i*vl_i / (W + w_i) 5243 * 5244 * Which is strictly less than vl_i. So in order to preserve lag 5245 * we should inflate the lag before placement such that the 5246 * effective lag after placement comes out right. 5247 * 5248 * As such, invert the above relation for vl'_i to get the vl_i 5249 * we need to use such that the lag after placement is the lag 5250 * we computed before dequeue. 5251 * 5252 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5253 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5254 * 5255 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5256 * = W*vl_i 5257 * 5258 * vl_i = (W + w_i)*vl'_i / W 5259 */ 5260 load = cfs_rq->avg_load; 5261 if (curr && curr->on_rq) 5262 load += scale_load_down(curr->load.weight); 5263 5264 lag *= load + scale_load_down(se->load.weight); 5265 if (WARN_ON_ONCE(!load)) 5266 load = 1; 5267 lag = div_s64(lag, load); 5268 } 5269 5270 se->vruntime = vruntime - lag; 5271 5272 if (se->rel_deadline) { 5273 se->deadline += se->vruntime; 5274 se->rel_deadline = 0; 5275 return; 5276 } 5277 5278 /* 5279 * When joining the competition; the existing tasks will be, 5280 * on average, halfway through their slice, as such start tasks 5281 * off with half a slice to ease into the competition. 5282 */ 5283 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5284 vslice /= 2; 5285 5286 /* 5287 * EEVDF: vd_i = ve_i + r_i/w_i 5288 */ 5289 se->deadline = se->vruntime + vslice; 5290 } 5291 5292 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5293 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5294 5295 static void 5296 requeue_delayed_entity(struct sched_entity *se); 5297 5298 static void 5299 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5300 { 5301 bool curr = cfs_rq->curr == se; 5302 5303 /* 5304 * If we're the current task, we must renormalise before calling 5305 * update_curr(). 5306 */ 5307 if (curr) 5308 place_entity(cfs_rq, se, flags); 5309 5310 update_curr(cfs_rq); 5311 5312 /* 5313 * When enqueuing a sched_entity, we must: 5314 * - Update loads to have both entity and cfs_rq synced with now. 5315 * - For group_entity, update its runnable_weight to reflect the new 5316 * h_nr_runnable of its group cfs_rq. 5317 * - For group_entity, update its weight to reflect the new share of 5318 * its group cfs_rq 5319 * - Add its new weight to cfs_rq->load.weight 5320 */ 5321 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5322 se_update_runnable(se); 5323 /* 5324 * XXX update_load_avg() above will have attached us to the pelt sum; 5325 * but update_cfs_group() here will re-adjust the weight and have to 5326 * undo/redo all that. Seems wasteful. 5327 */ 5328 update_cfs_group(se); 5329 5330 /* 5331 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5332 * we can place the entity. 5333 */ 5334 if (!curr) 5335 place_entity(cfs_rq, se, flags); 5336 5337 account_entity_enqueue(cfs_rq, se); 5338 5339 /* Entity has migrated, no longer consider this task hot */ 5340 if (flags & ENQUEUE_MIGRATED) 5341 se->exec_start = 0; 5342 5343 check_schedstat_required(); 5344 update_stats_enqueue_fair(cfs_rq, se, flags); 5345 if (!curr) 5346 __enqueue_entity(cfs_rq, se); 5347 se->on_rq = 1; 5348 5349 if (cfs_rq->nr_queued == 1) { 5350 check_enqueue_throttle(cfs_rq); 5351 if (!throttled_hierarchy(cfs_rq)) { 5352 list_add_leaf_cfs_rq(cfs_rq); 5353 } else { 5354 #ifdef CONFIG_CFS_BANDWIDTH 5355 struct rq *rq = rq_of(cfs_rq); 5356 5357 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5358 cfs_rq->throttled_clock = rq_clock(rq); 5359 if (!cfs_rq->throttled_clock_self) 5360 cfs_rq->throttled_clock_self = rq_clock(rq); 5361 #endif 5362 } 5363 } 5364 } 5365 5366 static void __clear_buddies_next(struct sched_entity *se) 5367 { 5368 for_each_sched_entity(se) { 5369 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5370 if (cfs_rq->next != se) 5371 break; 5372 5373 cfs_rq->next = NULL; 5374 } 5375 } 5376 5377 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5378 { 5379 if (cfs_rq->next == se) 5380 __clear_buddies_next(se); 5381 } 5382 5383 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5384 5385 static void set_delayed(struct sched_entity *se) 5386 { 5387 se->sched_delayed = 1; 5388 for_each_sched_entity(se) { 5389 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5390 5391 cfs_rq->h_nr_runnable--; 5392 if (cfs_rq_throttled(cfs_rq)) 5393 break; 5394 } 5395 } 5396 5397 static void clear_delayed(struct sched_entity *se) 5398 { 5399 se->sched_delayed = 0; 5400 for_each_sched_entity(se) { 5401 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5402 5403 cfs_rq->h_nr_runnable++; 5404 if (cfs_rq_throttled(cfs_rq)) 5405 break; 5406 } 5407 } 5408 5409 static inline void finish_delayed_dequeue_entity(struct sched_entity *se) 5410 { 5411 clear_delayed(se); 5412 if (sched_feat(DELAY_ZERO) && se->vlag > 0) 5413 se->vlag = 0; 5414 } 5415 5416 static bool 5417 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5418 { 5419 bool sleep = flags & DEQUEUE_SLEEP; 5420 int action = UPDATE_TG; 5421 5422 update_curr(cfs_rq); 5423 clear_buddies(cfs_rq, se); 5424 5425 if (flags & DEQUEUE_DELAYED) { 5426 SCHED_WARN_ON(!se->sched_delayed); 5427 } else { 5428 bool delay = sleep; 5429 /* 5430 * DELAY_DEQUEUE relies on spurious wakeups, special task 5431 * states must not suffer spurious wakeups, excempt them. 5432 */ 5433 if (flags & DEQUEUE_SPECIAL) 5434 delay = false; 5435 5436 SCHED_WARN_ON(delay && se->sched_delayed); 5437 5438 if (sched_feat(DELAY_DEQUEUE) && delay && 5439 !entity_eligible(cfs_rq, se)) { 5440 update_load_avg(cfs_rq, se, 0); 5441 set_delayed(se); 5442 return false; 5443 } 5444 } 5445 5446 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5447 action |= DO_DETACH; 5448 5449 /* 5450 * When dequeuing a sched_entity, we must: 5451 * - Update loads to have both entity and cfs_rq synced with now. 5452 * - For group_entity, update its runnable_weight to reflect the new 5453 * h_nr_runnable of its group cfs_rq. 5454 * - Subtract its previous weight from cfs_rq->load.weight. 5455 * - For group entity, update its weight to reflect the new share 5456 * of its group cfs_rq. 5457 */ 5458 update_load_avg(cfs_rq, se, action); 5459 se_update_runnable(se); 5460 5461 update_stats_dequeue_fair(cfs_rq, se, flags); 5462 5463 update_entity_lag(cfs_rq, se); 5464 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) { 5465 se->deadline -= se->vruntime; 5466 se->rel_deadline = 1; 5467 } 5468 5469 if (se != cfs_rq->curr) 5470 __dequeue_entity(cfs_rq, se); 5471 se->on_rq = 0; 5472 account_entity_dequeue(cfs_rq, se); 5473 5474 /* return excess runtime on last dequeue */ 5475 return_cfs_rq_runtime(cfs_rq); 5476 5477 update_cfs_group(se); 5478 5479 /* 5480 * Now advance min_vruntime if @se was the entity holding it back, 5481 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5482 * put back on, and if we advance min_vruntime, we'll be placed back 5483 * further than we started -- i.e. we'll be penalized. 5484 */ 5485 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5486 update_min_vruntime(cfs_rq); 5487 5488 if (flags & DEQUEUE_DELAYED) 5489 finish_delayed_dequeue_entity(se); 5490 5491 if (cfs_rq->nr_queued == 0) 5492 update_idle_cfs_rq_clock_pelt(cfs_rq); 5493 5494 return true; 5495 } 5496 5497 static void 5498 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5499 { 5500 clear_buddies(cfs_rq, se); 5501 5502 /* 'current' is not kept within the tree. */ 5503 if (se->on_rq) { 5504 /* 5505 * Any task has to be enqueued before it get to execute on 5506 * a CPU. So account for the time it spent waiting on the 5507 * runqueue. 5508 */ 5509 update_stats_wait_end_fair(cfs_rq, se); 5510 __dequeue_entity(cfs_rq, se); 5511 update_load_avg(cfs_rq, se, UPDATE_TG); 5512 /* 5513 * HACK, stash a copy of deadline at the point of pick in vlag, 5514 * which isn't used until dequeue. 5515 */ 5516 se->vlag = se->deadline; 5517 } 5518 5519 update_stats_curr_start(cfs_rq, se); 5520 SCHED_WARN_ON(cfs_rq->curr); 5521 cfs_rq->curr = se; 5522 5523 /* 5524 * Track our maximum slice length, if the CPU's load is at 5525 * least twice that of our own weight (i.e. don't track it 5526 * when there are only lesser-weight tasks around): 5527 */ 5528 if (schedstat_enabled() && 5529 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5530 struct sched_statistics *stats; 5531 5532 stats = __schedstats_from_se(se); 5533 __schedstat_set(stats->slice_max, 5534 max((u64)stats->slice_max, 5535 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5536 } 5537 5538 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5539 } 5540 5541 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags); 5542 5543 /* 5544 * Pick the next process, keeping these things in mind, in this order: 5545 * 1) keep things fair between processes/task groups 5546 * 2) pick the "next" process, since someone really wants that to run 5547 * 3) pick the "last" process, for cache locality 5548 * 4) do not run the "skip" process, if something else is available 5549 */ 5550 static struct sched_entity * 5551 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq) 5552 { 5553 struct sched_entity *se; 5554 5555 /* 5556 * Picking the ->next buddy will affect latency but not fairness. 5557 */ 5558 if (sched_feat(PICK_BUDDY) && 5559 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) { 5560 /* ->next will never be delayed */ 5561 SCHED_WARN_ON(cfs_rq->next->sched_delayed); 5562 return cfs_rq->next; 5563 } 5564 5565 se = pick_eevdf(cfs_rq); 5566 if (se->sched_delayed) { 5567 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5568 /* 5569 * Must not reference @se again, see __block_task(). 5570 */ 5571 return NULL; 5572 } 5573 return se; 5574 } 5575 5576 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5577 5578 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5579 { 5580 /* 5581 * If still on the runqueue then deactivate_task() 5582 * was not called and update_curr() has to be done: 5583 */ 5584 if (prev->on_rq) 5585 update_curr(cfs_rq); 5586 5587 /* throttle cfs_rqs exceeding runtime */ 5588 check_cfs_rq_runtime(cfs_rq); 5589 5590 if (prev->on_rq) { 5591 update_stats_wait_start_fair(cfs_rq, prev); 5592 /* Put 'current' back into the tree. */ 5593 __enqueue_entity(cfs_rq, prev); 5594 /* in !on_rq case, update occurred at dequeue */ 5595 update_load_avg(cfs_rq, prev, 0); 5596 } 5597 SCHED_WARN_ON(cfs_rq->curr != prev); 5598 cfs_rq->curr = NULL; 5599 } 5600 5601 static void 5602 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5603 { 5604 /* 5605 * Update run-time statistics of the 'current'. 5606 */ 5607 update_curr(cfs_rq); 5608 5609 /* 5610 * Ensure that runnable average is periodically updated. 5611 */ 5612 update_load_avg(cfs_rq, curr, UPDATE_TG); 5613 update_cfs_group(curr); 5614 5615 #ifdef CONFIG_SCHED_HRTICK 5616 /* 5617 * queued ticks are scheduled to match the slice, so don't bother 5618 * validating it and just reschedule. 5619 */ 5620 if (queued) { 5621 resched_curr_lazy(rq_of(cfs_rq)); 5622 return; 5623 } 5624 #endif 5625 } 5626 5627 5628 /************************************************** 5629 * CFS bandwidth control machinery 5630 */ 5631 5632 #ifdef CONFIG_CFS_BANDWIDTH 5633 5634 #ifdef CONFIG_JUMP_LABEL 5635 static struct static_key __cfs_bandwidth_used; 5636 5637 static inline bool cfs_bandwidth_used(void) 5638 { 5639 return static_key_false(&__cfs_bandwidth_used); 5640 } 5641 5642 void cfs_bandwidth_usage_inc(void) 5643 { 5644 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5645 } 5646 5647 void cfs_bandwidth_usage_dec(void) 5648 { 5649 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5650 } 5651 #else /* CONFIG_JUMP_LABEL */ 5652 static bool cfs_bandwidth_used(void) 5653 { 5654 return true; 5655 } 5656 5657 void cfs_bandwidth_usage_inc(void) {} 5658 void cfs_bandwidth_usage_dec(void) {} 5659 #endif /* CONFIG_JUMP_LABEL */ 5660 5661 /* 5662 * default period for cfs group bandwidth. 5663 * default: 0.1s, units: nanoseconds 5664 */ 5665 static inline u64 default_cfs_period(void) 5666 { 5667 return 100000000ULL; 5668 } 5669 5670 static inline u64 sched_cfs_bandwidth_slice(void) 5671 { 5672 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5673 } 5674 5675 /* 5676 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5677 * directly instead of rq->clock to avoid adding additional synchronization 5678 * around rq->lock. 5679 * 5680 * requires cfs_b->lock 5681 */ 5682 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5683 { 5684 s64 runtime; 5685 5686 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5687 return; 5688 5689 cfs_b->runtime += cfs_b->quota; 5690 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5691 if (runtime > 0) { 5692 cfs_b->burst_time += runtime; 5693 cfs_b->nr_burst++; 5694 } 5695 5696 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5697 cfs_b->runtime_snap = cfs_b->runtime; 5698 } 5699 5700 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5701 { 5702 return &tg->cfs_bandwidth; 5703 } 5704 5705 /* returns 0 on failure to allocate runtime */ 5706 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5707 struct cfs_rq *cfs_rq, u64 target_runtime) 5708 { 5709 u64 min_amount, amount = 0; 5710 5711 lockdep_assert_held(&cfs_b->lock); 5712 5713 /* note: this is a positive sum as runtime_remaining <= 0 */ 5714 min_amount = target_runtime - cfs_rq->runtime_remaining; 5715 5716 if (cfs_b->quota == RUNTIME_INF) 5717 amount = min_amount; 5718 else { 5719 start_cfs_bandwidth(cfs_b); 5720 5721 if (cfs_b->runtime > 0) { 5722 amount = min(cfs_b->runtime, min_amount); 5723 cfs_b->runtime -= amount; 5724 cfs_b->idle = 0; 5725 } 5726 } 5727 5728 cfs_rq->runtime_remaining += amount; 5729 5730 return cfs_rq->runtime_remaining > 0; 5731 } 5732 5733 /* returns 0 on failure to allocate runtime */ 5734 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5735 { 5736 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5737 int ret; 5738 5739 raw_spin_lock(&cfs_b->lock); 5740 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5741 raw_spin_unlock(&cfs_b->lock); 5742 5743 return ret; 5744 } 5745 5746 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5747 { 5748 /* dock delta_exec before expiring quota (as it could span periods) */ 5749 cfs_rq->runtime_remaining -= delta_exec; 5750 5751 if (likely(cfs_rq->runtime_remaining > 0)) 5752 return; 5753 5754 if (cfs_rq->throttled) 5755 return; 5756 /* 5757 * if we're unable to extend our runtime we resched so that the active 5758 * hierarchy can be throttled 5759 */ 5760 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5761 resched_curr(rq_of(cfs_rq)); 5762 } 5763 5764 static __always_inline 5765 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5766 { 5767 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5768 return; 5769 5770 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5771 } 5772 5773 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5774 { 5775 return cfs_bandwidth_used() && cfs_rq->throttled; 5776 } 5777 5778 /* check whether cfs_rq, or any parent, is throttled */ 5779 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5780 { 5781 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5782 } 5783 5784 /* 5785 * Ensure that neither of the group entities corresponding to src_cpu or 5786 * dest_cpu are members of a throttled hierarchy when performing group 5787 * load-balance operations. 5788 */ 5789 static inline int throttled_lb_pair(struct task_group *tg, 5790 int src_cpu, int dest_cpu) 5791 { 5792 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5793 5794 src_cfs_rq = tg->cfs_rq[src_cpu]; 5795 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5796 5797 return throttled_hierarchy(src_cfs_rq) || 5798 throttled_hierarchy(dest_cfs_rq); 5799 } 5800 5801 static int tg_unthrottle_up(struct task_group *tg, void *data) 5802 { 5803 struct rq *rq = data; 5804 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5805 5806 cfs_rq->throttle_count--; 5807 if (!cfs_rq->throttle_count) { 5808 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5809 cfs_rq->throttled_clock_pelt; 5810 5811 /* Add cfs_rq with load or one or more already running entities to the list */ 5812 if (!cfs_rq_is_decayed(cfs_rq)) 5813 list_add_leaf_cfs_rq(cfs_rq); 5814 5815 if (cfs_rq->throttled_clock_self) { 5816 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5817 5818 cfs_rq->throttled_clock_self = 0; 5819 5820 if (SCHED_WARN_ON((s64)delta < 0)) 5821 delta = 0; 5822 5823 cfs_rq->throttled_clock_self_time += delta; 5824 } 5825 } 5826 5827 return 0; 5828 } 5829 5830 static int tg_throttle_down(struct task_group *tg, void *data) 5831 { 5832 struct rq *rq = data; 5833 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5834 5835 /* group is entering throttled state, stop time */ 5836 if (!cfs_rq->throttle_count) { 5837 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5838 list_del_leaf_cfs_rq(cfs_rq); 5839 5840 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5841 if (cfs_rq->nr_queued) 5842 cfs_rq->throttled_clock_self = rq_clock(rq); 5843 } 5844 cfs_rq->throttle_count++; 5845 5846 return 0; 5847 } 5848 5849 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5850 { 5851 struct rq *rq = rq_of(cfs_rq); 5852 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5853 struct sched_entity *se; 5854 long queued_delta, runnable_delta, idle_delta, dequeue = 1; 5855 long rq_h_nr_queued = rq->cfs.h_nr_queued; 5856 5857 raw_spin_lock(&cfs_b->lock); 5858 /* This will start the period timer if necessary */ 5859 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5860 /* 5861 * We have raced with bandwidth becoming available, and if we 5862 * actually throttled the timer might not unthrottle us for an 5863 * entire period. We additionally needed to make sure that any 5864 * subsequent check_cfs_rq_runtime calls agree not to throttle 5865 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5866 * for 1ns of runtime rather than just check cfs_b. 5867 */ 5868 dequeue = 0; 5869 } else { 5870 list_add_tail_rcu(&cfs_rq->throttled_list, 5871 &cfs_b->throttled_cfs_rq); 5872 } 5873 raw_spin_unlock(&cfs_b->lock); 5874 5875 if (!dequeue) 5876 return false; /* Throttle no longer required. */ 5877 5878 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5879 5880 /* freeze hierarchy runnable averages while throttled */ 5881 rcu_read_lock(); 5882 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5883 rcu_read_unlock(); 5884 5885 queued_delta = cfs_rq->h_nr_queued; 5886 runnable_delta = cfs_rq->h_nr_runnable; 5887 idle_delta = cfs_rq->h_nr_idle; 5888 for_each_sched_entity(se) { 5889 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5890 int flags; 5891 5892 /* throttled entity or throttle-on-deactivate */ 5893 if (!se->on_rq) 5894 goto done; 5895 5896 /* 5897 * Abuse SPECIAL to avoid delayed dequeue in this instance. 5898 * This avoids teaching dequeue_entities() about throttled 5899 * entities and keeps things relatively simple. 5900 */ 5901 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL; 5902 if (se->sched_delayed) 5903 flags |= DEQUEUE_DELAYED; 5904 dequeue_entity(qcfs_rq, se, flags); 5905 5906 if (cfs_rq_is_idle(group_cfs_rq(se))) 5907 idle_delta = cfs_rq->h_nr_queued; 5908 5909 qcfs_rq->h_nr_queued -= queued_delta; 5910 qcfs_rq->h_nr_runnable -= runnable_delta; 5911 qcfs_rq->h_nr_idle -= idle_delta; 5912 5913 if (qcfs_rq->load.weight) { 5914 /* Avoid re-evaluating load for this entity: */ 5915 se = parent_entity(se); 5916 break; 5917 } 5918 } 5919 5920 for_each_sched_entity(se) { 5921 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5922 /* throttled entity or throttle-on-deactivate */ 5923 if (!se->on_rq) 5924 goto done; 5925 5926 update_load_avg(qcfs_rq, se, 0); 5927 se_update_runnable(se); 5928 5929 if (cfs_rq_is_idle(group_cfs_rq(se))) 5930 idle_delta = cfs_rq->h_nr_queued; 5931 5932 qcfs_rq->h_nr_queued -= queued_delta; 5933 qcfs_rq->h_nr_runnable -= runnable_delta; 5934 qcfs_rq->h_nr_idle -= idle_delta; 5935 } 5936 5937 /* At this point se is NULL and we are at root level*/ 5938 sub_nr_running(rq, queued_delta); 5939 5940 /* Stop the fair server if throttling resulted in no runnable tasks */ 5941 if (rq_h_nr_queued && !rq->cfs.h_nr_queued) 5942 dl_server_stop(&rq->fair_server); 5943 done: 5944 /* 5945 * Note: distribution will already see us throttled via the 5946 * throttled-list. rq->lock protects completion. 5947 */ 5948 cfs_rq->throttled = 1; 5949 SCHED_WARN_ON(cfs_rq->throttled_clock); 5950 if (cfs_rq->nr_queued) 5951 cfs_rq->throttled_clock = rq_clock(rq); 5952 return true; 5953 } 5954 5955 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5956 { 5957 struct rq *rq = rq_of(cfs_rq); 5958 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5959 struct sched_entity *se; 5960 long queued_delta, runnable_delta, idle_delta; 5961 long rq_h_nr_queued = rq->cfs.h_nr_queued; 5962 5963 se = cfs_rq->tg->se[cpu_of(rq)]; 5964 5965 cfs_rq->throttled = 0; 5966 5967 update_rq_clock(rq); 5968 5969 raw_spin_lock(&cfs_b->lock); 5970 if (cfs_rq->throttled_clock) { 5971 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5972 cfs_rq->throttled_clock = 0; 5973 } 5974 list_del_rcu(&cfs_rq->throttled_list); 5975 raw_spin_unlock(&cfs_b->lock); 5976 5977 /* update hierarchical throttle state */ 5978 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5979 5980 if (!cfs_rq->load.weight) { 5981 if (!cfs_rq->on_list) 5982 return; 5983 /* 5984 * Nothing to run but something to decay (on_list)? 5985 * Complete the branch. 5986 */ 5987 for_each_sched_entity(se) { 5988 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5989 break; 5990 } 5991 goto unthrottle_throttle; 5992 } 5993 5994 queued_delta = cfs_rq->h_nr_queued; 5995 runnable_delta = cfs_rq->h_nr_runnable; 5996 idle_delta = cfs_rq->h_nr_idle; 5997 for_each_sched_entity(se) { 5998 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5999 6000 /* Handle any unfinished DELAY_DEQUEUE business first. */ 6001 if (se->sched_delayed) { 6002 int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED; 6003 6004 dequeue_entity(qcfs_rq, se, flags); 6005 } else if (se->on_rq) 6006 break; 6007 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 6008 6009 if (cfs_rq_is_idle(group_cfs_rq(se))) 6010 idle_delta = cfs_rq->h_nr_queued; 6011 6012 qcfs_rq->h_nr_queued += queued_delta; 6013 qcfs_rq->h_nr_runnable += runnable_delta; 6014 qcfs_rq->h_nr_idle += idle_delta; 6015 6016 /* end evaluation on encountering a throttled cfs_rq */ 6017 if (cfs_rq_throttled(qcfs_rq)) 6018 goto unthrottle_throttle; 6019 } 6020 6021 for_each_sched_entity(se) { 6022 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 6023 6024 update_load_avg(qcfs_rq, se, UPDATE_TG); 6025 se_update_runnable(se); 6026 6027 if (cfs_rq_is_idle(group_cfs_rq(se))) 6028 idle_delta = cfs_rq->h_nr_queued; 6029 6030 qcfs_rq->h_nr_queued += queued_delta; 6031 qcfs_rq->h_nr_runnable += runnable_delta; 6032 qcfs_rq->h_nr_idle += idle_delta; 6033 6034 /* end evaluation on encountering a throttled cfs_rq */ 6035 if (cfs_rq_throttled(qcfs_rq)) 6036 goto unthrottle_throttle; 6037 } 6038 6039 /* Start the fair server if un-throttling resulted in new runnable tasks */ 6040 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) 6041 dl_server_start(&rq->fair_server); 6042 6043 /* At this point se is NULL and we are at root level*/ 6044 add_nr_running(rq, queued_delta); 6045 6046 unthrottle_throttle: 6047 assert_list_leaf_cfs_rq(rq); 6048 6049 /* Determine whether we need to wake up potentially idle CPU: */ 6050 if (rq->curr == rq->idle && rq->cfs.nr_queued) 6051 resched_curr(rq); 6052 } 6053 6054 #ifdef CONFIG_SMP 6055 static void __cfsb_csd_unthrottle(void *arg) 6056 { 6057 struct cfs_rq *cursor, *tmp; 6058 struct rq *rq = arg; 6059 struct rq_flags rf; 6060 6061 rq_lock(rq, &rf); 6062 6063 /* 6064 * Iterating over the list can trigger several call to 6065 * update_rq_clock() in unthrottle_cfs_rq(). 6066 * Do it once and skip the potential next ones. 6067 */ 6068 update_rq_clock(rq); 6069 rq_clock_start_loop_update(rq); 6070 6071 /* 6072 * Since we hold rq lock we're safe from concurrent manipulation of 6073 * the CSD list. However, this RCU critical section annotates the 6074 * fact that we pair with sched_free_group_rcu(), so that we cannot 6075 * race with group being freed in the window between removing it 6076 * from the list and advancing to the next entry in the list. 6077 */ 6078 rcu_read_lock(); 6079 6080 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 6081 throttled_csd_list) { 6082 list_del_init(&cursor->throttled_csd_list); 6083 6084 if (cfs_rq_throttled(cursor)) 6085 unthrottle_cfs_rq(cursor); 6086 } 6087 6088 rcu_read_unlock(); 6089 6090 rq_clock_stop_loop_update(rq); 6091 rq_unlock(rq, &rf); 6092 } 6093 6094 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6095 { 6096 struct rq *rq = rq_of(cfs_rq); 6097 bool first; 6098 6099 if (rq == this_rq()) { 6100 unthrottle_cfs_rq(cfs_rq); 6101 return; 6102 } 6103 6104 /* Already enqueued */ 6105 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 6106 return; 6107 6108 first = list_empty(&rq->cfsb_csd_list); 6109 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 6110 if (first) 6111 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 6112 } 6113 #else 6114 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6115 { 6116 unthrottle_cfs_rq(cfs_rq); 6117 } 6118 #endif 6119 6120 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6121 { 6122 lockdep_assert_rq_held(rq_of(cfs_rq)); 6123 6124 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 6125 cfs_rq->runtime_remaining <= 0)) 6126 return; 6127 6128 __unthrottle_cfs_rq_async(cfs_rq); 6129 } 6130 6131 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6132 { 6133 int this_cpu = smp_processor_id(); 6134 u64 runtime, remaining = 1; 6135 bool throttled = false; 6136 struct cfs_rq *cfs_rq, *tmp; 6137 struct rq_flags rf; 6138 struct rq *rq; 6139 LIST_HEAD(local_unthrottle); 6140 6141 rcu_read_lock(); 6142 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6143 throttled_list) { 6144 rq = rq_of(cfs_rq); 6145 6146 if (!remaining) { 6147 throttled = true; 6148 break; 6149 } 6150 6151 rq_lock_irqsave(rq, &rf); 6152 if (!cfs_rq_throttled(cfs_rq)) 6153 goto next; 6154 6155 /* Already queued for async unthrottle */ 6156 if (!list_empty(&cfs_rq->throttled_csd_list)) 6157 goto next; 6158 6159 /* By the above checks, this should never be true */ 6160 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 6161 6162 raw_spin_lock(&cfs_b->lock); 6163 runtime = -cfs_rq->runtime_remaining + 1; 6164 if (runtime > cfs_b->runtime) 6165 runtime = cfs_b->runtime; 6166 cfs_b->runtime -= runtime; 6167 remaining = cfs_b->runtime; 6168 raw_spin_unlock(&cfs_b->lock); 6169 6170 cfs_rq->runtime_remaining += runtime; 6171 6172 /* we check whether we're throttled above */ 6173 if (cfs_rq->runtime_remaining > 0) { 6174 if (cpu_of(rq) != this_cpu) { 6175 unthrottle_cfs_rq_async(cfs_rq); 6176 } else { 6177 /* 6178 * We currently only expect to be unthrottling 6179 * a single cfs_rq locally. 6180 */ 6181 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6182 list_add_tail(&cfs_rq->throttled_csd_list, 6183 &local_unthrottle); 6184 } 6185 } else { 6186 throttled = true; 6187 } 6188 6189 next: 6190 rq_unlock_irqrestore(rq, &rf); 6191 } 6192 6193 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6194 throttled_csd_list) { 6195 struct rq *rq = rq_of(cfs_rq); 6196 6197 rq_lock_irqsave(rq, &rf); 6198 6199 list_del_init(&cfs_rq->throttled_csd_list); 6200 6201 if (cfs_rq_throttled(cfs_rq)) 6202 unthrottle_cfs_rq(cfs_rq); 6203 6204 rq_unlock_irqrestore(rq, &rf); 6205 } 6206 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6207 6208 rcu_read_unlock(); 6209 6210 return throttled; 6211 } 6212 6213 /* 6214 * Responsible for refilling a task_group's bandwidth and unthrottling its 6215 * cfs_rqs as appropriate. If there has been no activity within the last 6216 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6217 * used to track this state. 6218 */ 6219 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6220 { 6221 int throttled; 6222 6223 /* no need to continue the timer with no bandwidth constraint */ 6224 if (cfs_b->quota == RUNTIME_INF) 6225 goto out_deactivate; 6226 6227 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6228 cfs_b->nr_periods += overrun; 6229 6230 /* Refill extra burst quota even if cfs_b->idle */ 6231 __refill_cfs_bandwidth_runtime(cfs_b); 6232 6233 /* 6234 * idle depends on !throttled (for the case of a large deficit), and if 6235 * we're going inactive then everything else can be deferred 6236 */ 6237 if (cfs_b->idle && !throttled) 6238 goto out_deactivate; 6239 6240 if (!throttled) { 6241 /* mark as potentially idle for the upcoming period */ 6242 cfs_b->idle = 1; 6243 return 0; 6244 } 6245 6246 /* account preceding periods in which throttling occurred */ 6247 cfs_b->nr_throttled += overrun; 6248 6249 /* 6250 * This check is repeated as we release cfs_b->lock while we unthrottle. 6251 */ 6252 while (throttled && cfs_b->runtime > 0) { 6253 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6254 /* we can't nest cfs_b->lock while distributing bandwidth */ 6255 throttled = distribute_cfs_runtime(cfs_b); 6256 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6257 } 6258 6259 /* 6260 * While we are ensured activity in the period following an 6261 * unthrottle, this also covers the case in which the new bandwidth is 6262 * insufficient to cover the existing bandwidth deficit. (Forcing the 6263 * timer to remain active while there are any throttled entities.) 6264 */ 6265 cfs_b->idle = 0; 6266 6267 return 0; 6268 6269 out_deactivate: 6270 return 1; 6271 } 6272 6273 /* a cfs_rq won't donate quota below this amount */ 6274 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6275 /* minimum remaining period time to redistribute slack quota */ 6276 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6277 /* how long we wait to gather additional slack before distributing */ 6278 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6279 6280 /* 6281 * Are we near the end of the current quota period? 6282 * 6283 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6284 * hrtimer base being cleared by hrtimer_start. In the case of 6285 * migrate_hrtimers, base is never cleared, so we are fine. 6286 */ 6287 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6288 { 6289 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6290 s64 remaining; 6291 6292 /* if the call-back is running a quota refresh is already occurring */ 6293 if (hrtimer_callback_running(refresh_timer)) 6294 return 1; 6295 6296 /* is a quota refresh about to occur? */ 6297 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6298 if (remaining < (s64)min_expire) 6299 return 1; 6300 6301 return 0; 6302 } 6303 6304 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6305 { 6306 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6307 6308 /* if there's a quota refresh soon don't bother with slack */ 6309 if (runtime_refresh_within(cfs_b, min_left)) 6310 return; 6311 6312 /* don't push forwards an existing deferred unthrottle */ 6313 if (cfs_b->slack_started) 6314 return; 6315 cfs_b->slack_started = true; 6316 6317 hrtimer_start(&cfs_b->slack_timer, 6318 ns_to_ktime(cfs_bandwidth_slack_period), 6319 HRTIMER_MODE_REL); 6320 } 6321 6322 /* we know any runtime found here is valid as update_curr() precedes return */ 6323 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6324 { 6325 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6326 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6327 6328 if (slack_runtime <= 0) 6329 return; 6330 6331 raw_spin_lock(&cfs_b->lock); 6332 if (cfs_b->quota != RUNTIME_INF) { 6333 cfs_b->runtime += slack_runtime; 6334 6335 /* we are under rq->lock, defer unthrottling using a timer */ 6336 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6337 !list_empty(&cfs_b->throttled_cfs_rq)) 6338 start_cfs_slack_bandwidth(cfs_b); 6339 } 6340 raw_spin_unlock(&cfs_b->lock); 6341 6342 /* even if it's not valid for return we don't want to try again */ 6343 cfs_rq->runtime_remaining -= slack_runtime; 6344 } 6345 6346 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6347 { 6348 if (!cfs_bandwidth_used()) 6349 return; 6350 6351 if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued) 6352 return; 6353 6354 __return_cfs_rq_runtime(cfs_rq); 6355 } 6356 6357 /* 6358 * This is done with a timer (instead of inline with bandwidth return) since 6359 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6360 */ 6361 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6362 { 6363 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6364 unsigned long flags; 6365 6366 /* confirm we're still not at a refresh boundary */ 6367 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6368 cfs_b->slack_started = false; 6369 6370 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6371 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6372 return; 6373 } 6374 6375 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6376 runtime = cfs_b->runtime; 6377 6378 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6379 6380 if (!runtime) 6381 return; 6382 6383 distribute_cfs_runtime(cfs_b); 6384 } 6385 6386 /* 6387 * When a group wakes up we want to make sure that its quota is not already 6388 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6389 * runtime as update_curr() throttling can not trigger until it's on-rq. 6390 */ 6391 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6392 { 6393 if (!cfs_bandwidth_used()) 6394 return; 6395 6396 /* an active group must be handled by the update_curr()->put() path */ 6397 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6398 return; 6399 6400 /* ensure the group is not already throttled */ 6401 if (cfs_rq_throttled(cfs_rq)) 6402 return; 6403 6404 /* update runtime allocation */ 6405 account_cfs_rq_runtime(cfs_rq, 0); 6406 if (cfs_rq->runtime_remaining <= 0) 6407 throttle_cfs_rq(cfs_rq); 6408 } 6409 6410 static void sync_throttle(struct task_group *tg, int cpu) 6411 { 6412 struct cfs_rq *pcfs_rq, *cfs_rq; 6413 6414 if (!cfs_bandwidth_used()) 6415 return; 6416 6417 if (!tg->parent) 6418 return; 6419 6420 cfs_rq = tg->cfs_rq[cpu]; 6421 pcfs_rq = tg->parent->cfs_rq[cpu]; 6422 6423 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6424 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6425 } 6426 6427 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6428 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6429 { 6430 if (!cfs_bandwidth_used()) 6431 return false; 6432 6433 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6434 return false; 6435 6436 /* 6437 * it's possible for a throttled entity to be forced into a running 6438 * state (e.g. set_curr_task), in this case we're finished. 6439 */ 6440 if (cfs_rq_throttled(cfs_rq)) 6441 return true; 6442 6443 return throttle_cfs_rq(cfs_rq); 6444 } 6445 6446 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6447 { 6448 struct cfs_bandwidth *cfs_b = 6449 container_of(timer, struct cfs_bandwidth, slack_timer); 6450 6451 do_sched_cfs_slack_timer(cfs_b); 6452 6453 return HRTIMER_NORESTART; 6454 } 6455 6456 extern const u64 max_cfs_quota_period; 6457 6458 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6459 { 6460 struct cfs_bandwidth *cfs_b = 6461 container_of(timer, struct cfs_bandwidth, period_timer); 6462 unsigned long flags; 6463 int overrun; 6464 int idle = 0; 6465 int count = 0; 6466 6467 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6468 for (;;) { 6469 overrun = hrtimer_forward_now(timer, cfs_b->period); 6470 if (!overrun) 6471 break; 6472 6473 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6474 6475 if (++count > 3) { 6476 u64 new, old = ktime_to_ns(cfs_b->period); 6477 6478 /* 6479 * Grow period by a factor of 2 to avoid losing precision. 6480 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6481 * to fail. 6482 */ 6483 new = old * 2; 6484 if (new < max_cfs_quota_period) { 6485 cfs_b->period = ns_to_ktime(new); 6486 cfs_b->quota *= 2; 6487 cfs_b->burst *= 2; 6488 6489 pr_warn_ratelimited( 6490 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6491 smp_processor_id(), 6492 div_u64(new, NSEC_PER_USEC), 6493 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6494 } else { 6495 pr_warn_ratelimited( 6496 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6497 smp_processor_id(), 6498 div_u64(old, NSEC_PER_USEC), 6499 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6500 } 6501 6502 /* reset count so we don't come right back in here */ 6503 count = 0; 6504 } 6505 } 6506 if (idle) 6507 cfs_b->period_active = 0; 6508 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6509 6510 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6511 } 6512 6513 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6514 { 6515 raw_spin_lock_init(&cfs_b->lock); 6516 cfs_b->runtime = 0; 6517 cfs_b->quota = RUNTIME_INF; 6518 cfs_b->period = ns_to_ktime(default_cfs_period()); 6519 cfs_b->burst = 0; 6520 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6521 6522 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6523 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6524 cfs_b->period_timer.function = sched_cfs_period_timer; 6525 6526 /* Add a random offset so that timers interleave */ 6527 hrtimer_set_expires(&cfs_b->period_timer, 6528 get_random_u32_below(cfs_b->period)); 6529 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6530 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6531 cfs_b->slack_started = false; 6532 } 6533 6534 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6535 { 6536 cfs_rq->runtime_enabled = 0; 6537 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6538 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6539 } 6540 6541 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6542 { 6543 lockdep_assert_held(&cfs_b->lock); 6544 6545 if (cfs_b->period_active) 6546 return; 6547 6548 cfs_b->period_active = 1; 6549 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6550 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6551 } 6552 6553 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6554 { 6555 int __maybe_unused i; 6556 6557 /* init_cfs_bandwidth() was not called */ 6558 if (!cfs_b->throttled_cfs_rq.next) 6559 return; 6560 6561 hrtimer_cancel(&cfs_b->period_timer); 6562 hrtimer_cancel(&cfs_b->slack_timer); 6563 6564 /* 6565 * It is possible that we still have some cfs_rq's pending on a CSD 6566 * list, though this race is very rare. In order for this to occur, we 6567 * must have raced with the last task leaving the group while there 6568 * exist throttled cfs_rq(s), and the period_timer must have queued the 6569 * CSD item but the remote cpu has not yet processed it. To handle this, 6570 * we can simply flush all pending CSD work inline here. We're 6571 * guaranteed at this point that no additional cfs_rq of this group can 6572 * join a CSD list. 6573 */ 6574 #ifdef CONFIG_SMP 6575 for_each_possible_cpu(i) { 6576 struct rq *rq = cpu_rq(i); 6577 unsigned long flags; 6578 6579 if (list_empty(&rq->cfsb_csd_list)) 6580 continue; 6581 6582 local_irq_save(flags); 6583 __cfsb_csd_unthrottle(rq); 6584 local_irq_restore(flags); 6585 } 6586 #endif 6587 } 6588 6589 /* 6590 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6591 * 6592 * The race is harmless, since modifying bandwidth settings of unhooked group 6593 * bits doesn't do much. 6594 */ 6595 6596 /* cpu online callback */ 6597 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6598 { 6599 struct task_group *tg; 6600 6601 lockdep_assert_rq_held(rq); 6602 6603 rcu_read_lock(); 6604 list_for_each_entry_rcu(tg, &task_groups, list) { 6605 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6606 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6607 6608 raw_spin_lock(&cfs_b->lock); 6609 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6610 raw_spin_unlock(&cfs_b->lock); 6611 } 6612 rcu_read_unlock(); 6613 } 6614 6615 /* cpu offline callback */ 6616 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6617 { 6618 struct task_group *tg; 6619 6620 lockdep_assert_rq_held(rq); 6621 6622 // Do not unthrottle for an active CPU 6623 if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask)) 6624 return; 6625 6626 /* 6627 * The rq clock has already been updated in the 6628 * set_rq_offline(), so we should skip updating 6629 * the rq clock again in unthrottle_cfs_rq(). 6630 */ 6631 rq_clock_start_loop_update(rq); 6632 6633 rcu_read_lock(); 6634 list_for_each_entry_rcu(tg, &task_groups, list) { 6635 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6636 6637 if (!cfs_rq->runtime_enabled) 6638 continue; 6639 6640 /* 6641 * Offline rq is schedulable till CPU is completely disabled 6642 * in take_cpu_down(), so we prevent new cfs throttling here. 6643 */ 6644 cfs_rq->runtime_enabled = 0; 6645 6646 if (!cfs_rq_throttled(cfs_rq)) 6647 continue; 6648 6649 /* 6650 * clock_task is not advancing so we just need to make sure 6651 * there's some valid quota amount 6652 */ 6653 cfs_rq->runtime_remaining = 1; 6654 unthrottle_cfs_rq(cfs_rq); 6655 } 6656 rcu_read_unlock(); 6657 6658 rq_clock_stop_loop_update(rq); 6659 } 6660 6661 bool cfs_task_bw_constrained(struct task_struct *p) 6662 { 6663 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6664 6665 if (!cfs_bandwidth_used()) 6666 return false; 6667 6668 if (cfs_rq->runtime_enabled || 6669 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6670 return true; 6671 6672 return false; 6673 } 6674 6675 #ifdef CONFIG_NO_HZ_FULL 6676 /* called from pick_next_task_fair() */ 6677 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6678 { 6679 int cpu = cpu_of(rq); 6680 6681 if (!cfs_bandwidth_used()) 6682 return; 6683 6684 if (!tick_nohz_full_cpu(cpu)) 6685 return; 6686 6687 if (rq->nr_running != 1) 6688 return; 6689 6690 /* 6691 * We know there is only one task runnable and we've just picked it. The 6692 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6693 * be otherwise able to stop the tick. Just need to check if we are using 6694 * bandwidth control. 6695 */ 6696 if (cfs_task_bw_constrained(p)) 6697 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6698 } 6699 #endif 6700 6701 #else /* CONFIG_CFS_BANDWIDTH */ 6702 6703 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6704 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6705 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6706 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6707 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6708 6709 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6710 { 6711 return 0; 6712 } 6713 6714 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6715 { 6716 return 0; 6717 } 6718 6719 static inline int throttled_lb_pair(struct task_group *tg, 6720 int src_cpu, int dest_cpu) 6721 { 6722 return 0; 6723 } 6724 6725 #ifdef CONFIG_FAIR_GROUP_SCHED 6726 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6727 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6728 #endif 6729 6730 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6731 { 6732 return NULL; 6733 } 6734 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6735 static inline void update_runtime_enabled(struct rq *rq) {} 6736 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6737 #ifdef CONFIG_CGROUP_SCHED 6738 bool cfs_task_bw_constrained(struct task_struct *p) 6739 { 6740 return false; 6741 } 6742 #endif 6743 #endif /* CONFIG_CFS_BANDWIDTH */ 6744 6745 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6746 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6747 #endif 6748 6749 /************************************************** 6750 * CFS operations on tasks: 6751 */ 6752 6753 #ifdef CONFIG_SCHED_HRTICK 6754 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6755 { 6756 struct sched_entity *se = &p->se; 6757 6758 SCHED_WARN_ON(task_rq(p) != rq); 6759 6760 if (rq->cfs.h_nr_queued > 1) { 6761 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6762 u64 slice = se->slice; 6763 s64 delta = slice - ran; 6764 6765 if (delta < 0) { 6766 if (task_current_donor(rq, p)) 6767 resched_curr(rq); 6768 return; 6769 } 6770 hrtick_start(rq, delta); 6771 } 6772 } 6773 6774 /* 6775 * called from enqueue/dequeue and updates the hrtick when the 6776 * current task is from our class and nr_running is low enough 6777 * to matter. 6778 */ 6779 static void hrtick_update(struct rq *rq) 6780 { 6781 struct task_struct *donor = rq->donor; 6782 6783 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class) 6784 return; 6785 6786 hrtick_start_fair(rq, donor); 6787 } 6788 #else /* !CONFIG_SCHED_HRTICK */ 6789 static inline void 6790 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6791 { 6792 } 6793 6794 static inline void hrtick_update(struct rq *rq) 6795 { 6796 } 6797 #endif 6798 6799 #ifdef CONFIG_SMP 6800 static inline bool cpu_overutilized(int cpu) 6801 { 6802 unsigned long rq_util_min, rq_util_max; 6803 6804 if (!sched_energy_enabled()) 6805 return false; 6806 6807 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6808 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6809 6810 /* Return true only if the utilization doesn't fit CPU's capacity */ 6811 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6812 } 6813 6814 /* 6815 * overutilized value make sense only if EAS is enabled 6816 */ 6817 static inline bool is_rd_overutilized(struct root_domain *rd) 6818 { 6819 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6820 } 6821 6822 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6823 { 6824 if (!sched_energy_enabled()) 6825 return; 6826 6827 WRITE_ONCE(rd->overutilized, flag); 6828 trace_sched_overutilized_tp(rd, flag); 6829 } 6830 6831 static inline void check_update_overutilized_status(struct rq *rq) 6832 { 6833 /* 6834 * overutilized field is used for load balancing decisions only 6835 * if energy aware scheduler is being used 6836 */ 6837 6838 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6839 set_rd_overutilized(rq->rd, 1); 6840 } 6841 #else 6842 static inline void check_update_overutilized_status(struct rq *rq) { } 6843 #endif 6844 6845 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6846 static int sched_idle_rq(struct rq *rq) 6847 { 6848 return unlikely(rq->nr_running == rq->cfs.h_nr_idle && 6849 rq->nr_running); 6850 } 6851 6852 #ifdef CONFIG_SMP 6853 static int sched_idle_cpu(int cpu) 6854 { 6855 return sched_idle_rq(cpu_rq(cpu)); 6856 } 6857 #endif 6858 6859 static void 6860 requeue_delayed_entity(struct sched_entity *se) 6861 { 6862 struct cfs_rq *cfs_rq = cfs_rq_of(se); 6863 6864 /* 6865 * se->sched_delayed should imply: se->on_rq == 1. 6866 * Because a delayed entity is one that is still on 6867 * the runqueue competing until elegibility. 6868 */ 6869 SCHED_WARN_ON(!se->sched_delayed); 6870 SCHED_WARN_ON(!se->on_rq); 6871 6872 if (sched_feat(DELAY_ZERO)) { 6873 update_entity_lag(cfs_rq, se); 6874 if (se->vlag > 0) { 6875 cfs_rq->nr_queued--; 6876 if (se != cfs_rq->curr) 6877 __dequeue_entity(cfs_rq, se); 6878 se->vlag = 0; 6879 place_entity(cfs_rq, se, 0); 6880 if (se != cfs_rq->curr) 6881 __enqueue_entity(cfs_rq, se); 6882 cfs_rq->nr_queued++; 6883 } 6884 } 6885 6886 update_load_avg(cfs_rq, se, 0); 6887 clear_delayed(se); 6888 } 6889 6890 /* 6891 * The enqueue_task method is called before nr_running is 6892 * increased. Here we update the fair scheduling stats and 6893 * then put the task into the rbtree: 6894 */ 6895 static void 6896 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6897 { 6898 struct cfs_rq *cfs_rq; 6899 struct sched_entity *se = &p->se; 6900 int h_nr_idle = task_has_idle_policy(p); 6901 int h_nr_runnable = 1; 6902 int task_new = !(flags & ENQUEUE_WAKEUP); 6903 int rq_h_nr_queued = rq->cfs.h_nr_queued; 6904 u64 slice = 0; 6905 6906 /* 6907 * The code below (indirectly) updates schedutil which looks at 6908 * the cfs_rq utilization to select a frequency. 6909 * Let's add the task's estimated utilization to the cfs_rq's 6910 * estimated utilization, before we update schedutil. 6911 */ 6912 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE)))) 6913 util_est_enqueue(&rq->cfs, p); 6914 6915 if (flags & ENQUEUE_DELAYED) { 6916 requeue_delayed_entity(se); 6917 return; 6918 } 6919 6920 /* 6921 * If in_iowait is set, the code below may not trigger any cpufreq 6922 * utilization updates, so do it here explicitly with the IOWAIT flag 6923 * passed. 6924 */ 6925 if (p->in_iowait) 6926 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6927 6928 if (task_new && se->sched_delayed) 6929 h_nr_runnable = 0; 6930 6931 for_each_sched_entity(se) { 6932 if (se->on_rq) { 6933 if (se->sched_delayed) 6934 requeue_delayed_entity(se); 6935 break; 6936 } 6937 cfs_rq = cfs_rq_of(se); 6938 6939 /* 6940 * Basically set the slice of group entries to the min_slice of 6941 * their respective cfs_rq. This ensures the group can service 6942 * its entities in the desired time-frame. 6943 */ 6944 if (slice) { 6945 se->slice = slice; 6946 se->custom_slice = 1; 6947 } 6948 enqueue_entity(cfs_rq, se, flags); 6949 slice = cfs_rq_min_slice(cfs_rq); 6950 6951 cfs_rq->h_nr_runnable += h_nr_runnable; 6952 cfs_rq->h_nr_queued++; 6953 cfs_rq->h_nr_idle += h_nr_idle; 6954 6955 if (cfs_rq_is_idle(cfs_rq)) 6956 h_nr_idle = 1; 6957 6958 /* end evaluation on encountering a throttled cfs_rq */ 6959 if (cfs_rq_throttled(cfs_rq)) 6960 goto enqueue_throttle; 6961 6962 flags = ENQUEUE_WAKEUP; 6963 } 6964 6965 for_each_sched_entity(se) { 6966 cfs_rq = cfs_rq_of(se); 6967 6968 update_load_avg(cfs_rq, se, UPDATE_TG); 6969 se_update_runnable(se); 6970 update_cfs_group(se); 6971 6972 se->slice = slice; 6973 slice = cfs_rq_min_slice(cfs_rq); 6974 6975 cfs_rq->h_nr_runnable += h_nr_runnable; 6976 cfs_rq->h_nr_queued++; 6977 cfs_rq->h_nr_idle += h_nr_idle; 6978 6979 if (cfs_rq_is_idle(cfs_rq)) 6980 h_nr_idle = 1; 6981 6982 /* end evaluation on encountering a throttled cfs_rq */ 6983 if (cfs_rq_throttled(cfs_rq)) 6984 goto enqueue_throttle; 6985 } 6986 6987 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) { 6988 /* Account for idle runtime */ 6989 if (!rq->nr_running) 6990 dl_server_update_idle_time(rq, rq->curr); 6991 dl_server_start(&rq->fair_server); 6992 } 6993 6994 /* At this point se is NULL and we are at root level*/ 6995 add_nr_running(rq, 1); 6996 6997 /* 6998 * Since new tasks are assigned an initial util_avg equal to 6999 * half of the spare capacity of their CPU, tiny tasks have the 7000 * ability to cross the overutilized threshold, which will 7001 * result in the load balancer ruining all the task placement 7002 * done by EAS. As a way to mitigate that effect, do not account 7003 * for the first enqueue operation of new tasks during the 7004 * overutilized flag detection. 7005 * 7006 * A better way of solving this problem would be to wait for 7007 * the PELT signals of tasks to converge before taking them 7008 * into account, but that is not straightforward to implement, 7009 * and the following generally works well enough in practice. 7010 */ 7011 if (!task_new) 7012 check_update_overutilized_status(rq); 7013 7014 enqueue_throttle: 7015 assert_list_leaf_cfs_rq(rq); 7016 7017 hrtick_update(rq); 7018 } 7019 7020 static void set_next_buddy(struct sched_entity *se); 7021 7022 /* 7023 * Basically dequeue_task_fair(), except it can deal with dequeue_entity() 7024 * failing half-way through and resume the dequeue later. 7025 * 7026 * Returns: 7027 * -1 - dequeue delayed 7028 * 0 - dequeue throttled 7029 * 1 - dequeue complete 7030 */ 7031 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags) 7032 { 7033 bool was_sched_idle = sched_idle_rq(rq); 7034 int rq_h_nr_queued = rq->cfs.h_nr_queued; 7035 bool task_sleep = flags & DEQUEUE_SLEEP; 7036 bool task_delayed = flags & DEQUEUE_DELAYED; 7037 struct task_struct *p = NULL; 7038 int h_nr_idle = 0; 7039 int h_nr_queued = 0; 7040 int h_nr_runnable = 0; 7041 struct cfs_rq *cfs_rq; 7042 u64 slice = 0; 7043 7044 if (entity_is_task(se)) { 7045 p = task_of(se); 7046 h_nr_queued = 1; 7047 h_nr_idle = task_has_idle_policy(p); 7048 if (task_sleep || task_delayed || !se->sched_delayed) 7049 h_nr_runnable = 1; 7050 } else { 7051 cfs_rq = group_cfs_rq(se); 7052 slice = cfs_rq_min_slice(cfs_rq); 7053 } 7054 7055 for_each_sched_entity(se) { 7056 cfs_rq = cfs_rq_of(se); 7057 7058 if (!dequeue_entity(cfs_rq, se, flags)) { 7059 if (p && &p->se == se) 7060 return -1; 7061 7062 break; 7063 } 7064 7065 cfs_rq->h_nr_runnable -= h_nr_runnable; 7066 cfs_rq->h_nr_queued -= h_nr_queued; 7067 cfs_rq->h_nr_idle -= h_nr_idle; 7068 7069 if (cfs_rq_is_idle(cfs_rq)) 7070 h_nr_idle = h_nr_queued; 7071 7072 /* end evaluation on encountering a throttled cfs_rq */ 7073 if (cfs_rq_throttled(cfs_rq)) 7074 return 0; 7075 7076 /* Don't dequeue parent if it has other entities besides us */ 7077 if (cfs_rq->load.weight) { 7078 slice = cfs_rq_min_slice(cfs_rq); 7079 7080 /* Avoid re-evaluating load for this entity: */ 7081 se = parent_entity(se); 7082 /* 7083 * Bias pick_next to pick a task from this cfs_rq, as 7084 * p is sleeping when it is within its sched_slice. 7085 */ 7086 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 7087 set_next_buddy(se); 7088 break; 7089 } 7090 flags |= DEQUEUE_SLEEP; 7091 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL); 7092 } 7093 7094 for_each_sched_entity(se) { 7095 cfs_rq = cfs_rq_of(se); 7096 7097 update_load_avg(cfs_rq, se, UPDATE_TG); 7098 se_update_runnable(se); 7099 update_cfs_group(se); 7100 7101 se->slice = slice; 7102 slice = cfs_rq_min_slice(cfs_rq); 7103 7104 cfs_rq->h_nr_runnable -= h_nr_runnable; 7105 cfs_rq->h_nr_queued -= h_nr_queued; 7106 cfs_rq->h_nr_idle -= h_nr_idle; 7107 7108 if (cfs_rq_is_idle(cfs_rq)) 7109 h_nr_idle = h_nr_queued; 7110 7111 /* end evaluation on encountering a throttled cfs_rq */ 7112 if (cfs_rq_throttled(cfs_rq)) 7113 return 0; 7114 } 7115 7116 sub_nr_running(rq, h_nr_queued); 7117 7118 if (rq_h_nr_queued && !rq->cfs.h_nr_queued) 7119 dl_server_stop(&rq->fair_server); 7120 7121 /* balance early to pull high priority tasks */ 7122 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 7123 rq->next_balance = jiffies; 7124 7125 if (p && task_delayed) { 7126 SCHED_WARN_ON(!task_sleep); 7127 SCHED_WARN_ON(p->on_rq != 1); 7128 7129 /* Fix-up what dequeue_task_fair() skipped */ 7130 hrtick_update(rq); 7131 7132 /* 7133 * Fix-up what block_task() skipped. 7134 * 7135 * Must be last, @p might not be valid after this. 7136 */ 7137 __block_task(rq, p); 7138 } 7139 7140 return 1; 7141 } 7142 7143 /* 7144 * The dequeue_task method is called before nr_running is 7145 * decreased. We remove the task from the rbtree and 7146 * update the fair scheduling stats: 7147 */ 7148 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 7149 { 7150 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE)))) 7151 util_est_dequeue(&rq->cfs, p); 7152 7153 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP); 7154 if (dequeue_entities(rq, &p->se, flags) < 0) 7155 return false; 7156 7157 /* 7158 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED). 7159 */ 7160 7161 hrtick_update(rq); 7162 return true; 7163 } 7164 7165 #ifdef CONFIG_SMP 7166 7167 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 7168 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7169 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 7170 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 7171 7172 #ifdef CONFIG_NO_HZ_COMMON 7173 7174 static struct { 7175 cpumask_var_t idle_cpus_mask; 7176 atomic_t nr_cpus; 7177 int has_blocked; /* Idle CPUS has blocked load */ 7178 int needs_update; /* Newly idle CPUs need their next_balance collated */ 7179 unsigned long next_balance; /* in jiffy units */ 7180 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 7181 } nohz ____cacheline_aligned; 7182 7183 #endif /* CONFIG_NO_HZ_COMMON */ 7184 7185 static unsigned long cpu_load(struct rq *rq) 7186 { 7187 return cfs_rq_load_avg(&rq->cfs); 7188 } 7189 7190 /* 7191 * cpu_load_without - compute CPU load without any contributions from *p 7192 * @cpu: the CPU which load is requested 7193 * @p: the task which load should be discounted 7194 * 7195 * The load of a CPU is defined by the load of tasks currently enqueued on that 7196 * CPU as well as tasks which are currently sleeping after an execution on that 7197 * CPU. 7198 * 7199 * This method returns the load of the specified CPU by discounting the load of 7200 * the specified task, whenever the task is currently contributing to the CPU 7201 * load. 7202 */ 7203 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 7204 { 7205 struct cfs_rq *cfs_rq; 7206 unsigned int load; 7207 7208 /* Task has no contribution or is new */ 7209 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7210 return cpu_load(rq); 7211 7212 cfs_rq = &rq->cfs; 7213 load = READ_ONCE(cfs_rq->avg.load_avg); 7214 7215 /* Discount task's util from CPU's util */ 7216 lsub_positive(&load, task_h_load(p)); 7217 7218 return load; 7219 } 7220 7221 static unsigned long cpu_runnable(struct rq *rq) 7222 { 7223 return cfs_rq_runnable_avg(&rq->cfs); 7224 } 7225 7226 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 7227 { 7228 struct cfs_rq *cfs_rq; 7229 unsigned int runnable; 7230 7231 /* Task has no contribution or is new */ 7232 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7233 return cpu_runnable(rq); 7234 7235 cfs_rq = &rq->cfs; 7236 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7237 7238 /* Discount task's runnable from CPU's runnable */ 7239 lsub_positive(&runnable, p->se.avg.runnable_avg); 7240 7241 return runnable; 7242 } 7243 7244 static unsigned long capacity_of(int cpu) 7245 { 7246 return cpu_rq(cpu)->cpu_capacity; 7247 } 7248 7249 static void record_wakee(struct task_struct *p) 7250 { 7251 /* 7252 * Only decay a single time; tasks that have less then 1 wakeup per 7253 * jiffy will not have built up many flips. 7254 */ 7255 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7256 current->wakee_flips >>= 1; 7257 current->wakee_flip_decay_ts = jiffies; 7258 } 7259 7260 if (current->last_wakee != p) { 7261 current->last_wakee = p; 7262 current->wakee_flips++; 7263 } 7264 } 7265 7266 /* 7267 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7268 * 7269 * A waker of many should wake a different task than the one last awakened 7270 * at a frequency roughly N times higher than one of its wakees. 7271 * 7272 * In order to determine whether we should let the load spread vs consolidating 7273 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7274 * partner, and a factor of lls_size higher frequency in the other. 7275 * 7276 * With both conditions met, we can be relatively sure that the relationship is 7277 * non-monogamous, with partner count exceeding socket size. 7278 * 7279 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7280 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7281 * socket size. 7282 */ 7283 static int wake_wide(struct task_struct *p) 7284 { 7285 unsigned int master = current->wakee_flips; 7286 unsigned int slave = p->wakee_flips; 7287 int factor = __this_cpu_read(sd_llc_size); 7288 7289 if (master < slave) 7290 swap(master, slave); 7291 if (slave < factor || master < slave * factor) 7292 return 0; 7293 return 1; 7294 } 7295 7296 /* 7297 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7298 * soonest. For the purpose of speed we only consider the waking and previous 7299 * CPU. 7300 * 7301 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7302 * cache-affine and is (or will be) idle. 7303 * 7304 * wake_affine_weight() - considers the weight to reflect the average 7305 * scheduling latency of the CPUs. This seems to work 7306 * for the overloaded case. 7307 */ 7308 static int 7309 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7310 { 7311 /* 7312 * If this_cpu is idle, it implies the wakeup is from interrupt 7313 * context. Only allow the move if cache is shared. Otherwise an 7314 * interrupt intensive workload could force all tasks onto one 7315 * node depending on the IO topology or IRQ affinity settings. 7316 * 7317 * If the prev_cpu is idle and cache affine then avoid a migration. 7318 * There is no guarantee that the cache hot data from an interrupt 7319 * is more important than cache hot data on the prev_cpu and from 7320 * a cpufreq perspective, it's better to have higher utilisation 7321 * on one CPU. 7322 */ 7323 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7324 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7325 7326 if (sync && cpu_rq(this_cpu)->nr_running == 1) 7327 return this_cpu; 7328 7329 if (available_idle_cpu(prev_cpu)) 7330 return prev_cpu; 7331 7332 return nr_cpumask_bits; 7333 } 7334 7335 static int 7336 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7337 int this_cpu, int prev_cpu, int sync) 7338 { 7339 s64 this_eff_load, prev_eff_load; 7340 unsigned long task_load; 7341 7342 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7343 7344 if (sync) { 7345 unsigned long current_load = task_h_load(current); 7346 7347 if (current_load > this_eff_load) 7348 return this_cpu; 7349 7350 this_eff_load -= current_load; 7351 } 7352 7353 task_load = task_h_load(p); 7354 7355 this_eff_load += task_load; 7356 if (sched_feat(WA_BIAS)) 7357 this_eff_load *= 100; 7358 this_eff_load *= capacity_of(prev_cpu); 7359 7360 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7361 prev_eff_load -= task_load; 7362 if (sched_feat(WA_BIAS)) 7363 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7364 prev_eff_load *= capacity_of(this_cpu); 7365 7366 /* 7367 * If sync, adjust the weight of prev_eff_load such that if 7368 * prev_eff == this_eff that select_idle_sibling() will consider 7369 * stacking the wakee on top of the waker if no other CPU is 7370 * idle. 7371 */ 7372 if (sync) 7373 prev_eff_load += 1; 7374 7375 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7376 } 7377 7378 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7379 int this_cpu, int prev_cpu, int sync) 7380 { 7381 int target = nr_cpumask_bits; 7382 7383 if (sched_feat(WA_IDLE)) 7384 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7385 7386 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7387 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7388 7389 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7390 if (target != this_cpu) 7391 return prev_cpu; 7392 7393 schedstat_inc(sd->ttwu_move_affine); 7394 schedstat_inc(p->stats.nr_wakeups_affine); 7395 return target; 7396 } 7397 7398 static struct sched_group * 7399 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7400 7401 /* 7402 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7403 */ 7404 static int 7405 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7406 { 7407 unsigned long load, min_load = ULONG_MAX; 7408 unsigned int min_exit_latency = UINT_MAX; 7409 u64 latest_idle_timestamp = 0; 7410 int least_loaded_cpu = this_cpu; 7411 int shallowest_idle_cpu = -1; 7412 int i; 7413 7414 /* Check if we have any choice: */ 7415 if (group->group_weight == 1) 7416 return cpumask_first(sched_group_span(group)); 7417 7418 /* Traverse only the allowed CPUs */ 7419 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7420 struct rq *rq = cpu_rq(i); 7421 7422 if (!sched_core_cookie_match(rq, p)) 7423 continue; 7424 7425 if (sched_idle_cpu(i)) 7426 return i; 7427 7428 if (available_idle_cpu(i)) { 7429 struct cpuidle_state *idle = idle_get_state(rq); 7430 if (idle && idle->exit_latency < min_exit_latency) { 7431 /* 7432 * We give priority to a CPU whose idle state 7433 * has the smallest exit latency irrespective 7434 * of any idle timestamp. 7435 */ 7436 min_exit_latency = idle->exit_latency; 7437 latest_idle_timestamp = rq->idle_stamp; 7438 shallowest_idle_cpu = i; 7439 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7440 rq->idle_stamp > latest_idle_timestamp) { 7441 /* 7442 * If equal or no active idle state, then 7443 * the most recently idled CPU might have 7444 * a warmer cache. 7445 */ 7446 latest_idle_timestamp = rq->idle_stamp; 7447 shallowest_idle_cpu = i; 7448 } 7449 } else if (shallowest_idle_cpu == -1) { 7450 load = cpu_load(cpu_rq(i)); 7451 if (load < min_load) { 7452 min_load = load; 7453 least_loaded_cpu = i; 7454 } 7455 } 7456 } 7457 7458 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7459 } 7460 7461 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7462 int cpu, int prev_cpu, int sd_flag) 7463 { 7464 int new_cpu = cpu; 7465 7466 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7467 return prev_cpu; 7468 7469 /* 7470 * We need task's util for cpu_util_without, sync it up to 7471 * prev_cpu's last_update_time. 7472 */ 7473 if (!(sd_flag & SD_BALANCE_FORK)) 7474 sync_entity_load_avg(&p->se); 7475 7476 while (sd) { 7477 struct sched_group *group; 7478 struct sched_domain *tmp; 7479 int weight; 7480 7481 if (!(sd->flags & sd_flag)) { 7482 sd = sd->child; 7483 continue; 7484 } 7485 7486 group = sched_balance_find_dst_group(sd, p, cpu); 7487 if (!group) { 7488 sd = sd->child; 7489 continue; 7490 } 7491 7492 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7493 if (new_cpu == cpu) { 7494 /* Now try balancing at a lower domain level of 'cpu': */ 7495 sd = sd->child; 7496 continue; 7497 } 7498 7499 /* Now try balancing at a lower domain level of 'new_cpu': */ 7500 cpu = new_cpu; 7501 weight = sd->span_weight; 7502 sd = NULL; 7503 for_each_domain(cpu, tmp) { 7504 if (weight <= tmp->span_weight) 7505 break; 7506 if (tmp->flags & sd_flag) 7507 sd = tmp; 7508 } 7509 } 7510 7511 return new_cpu; 7512 } 7513 7514 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7515 { 7516 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7517 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7518 return cpu; 7519 7520 return -1; 7521 } 7522 7523 #ifdef CONFIG_SCHED_SMT 7524 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7525 EXPORT_SYMBOL_GPL(sched_smt_present); 7526 7527 static inline void set_idle_cores(int cpu, int val) 7528 { 7529 struct sched_domain_shared *sds; 7530 7531 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7532 if (sds) 7533 WRITE_ONCE(sds->has_idle_cores, val); 7534 } 7535 7536 static inline bool test_idle_cores(int cpu) 7537 { 7538 struct sched_domain_shared *sds; 7539 7540 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7541 if (sds) 7542 return READ_ONCE(sds->has_idle_cores); 7543 7544 return false; 7545 } 7546 7547 /* 7548 * Scans the local SMT mask to see if the entire core is idle, and records this 7549 * information in sd_llc_shared->has_idle_cores. 7550 * 7551 * Since SMT siblings share all cache levels, inspecting this limited remote 7552 * state should be fairly cheap. 7553 */ 7554 void __update_idle_core(struct rq *rq) 7555 { 7556 int core = cpu_of(rq); 7557 int cpu; 7558 7559 rcu_read_lock(); 7560 if (test_idle_cores(core)) 7561 goto unlock; 7562 7563 for_each_cpu(cpu, cpu_smt_mask(core)) { 7564 if (cpu == core) 7565 continue; 7566 7567 if (!available_idle_cpu(cpu)) 7568 goto unlock; 7569 } 7570 7571 set_idle_cores(core, 1); 7572 unlock: 7573 rcu_read_unlock(); 7574 } 7575 7576 /* 7577 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7578 * there are no idle cores left in the system; tracked through 7579 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7580 */ 7581 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7582 { 7583 bool idle = true; 7584 int cpu; 7585 7586 for_each_cpu(cpu, cpu_smt_mask(core)) { 7587 if (!available_idle_cpu(cpu)) { 7588 idle = false; 7589 if (*idle_cpu == -1) { 7590 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7591 *idle_cpu = cpu; 7592 break; 7593 } 7594 continue; 7595 } 7596 break; 7597 } 7598 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7599 *idle_cpu = cpu; 7600 } 7601 7602 if (idle) 7603 return core; 7604 7605 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7606 return -1; 7607 } 7608 7609 /* 7610 * Scan the local SMT mask for idle CPUs. 7611 */ 7612 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7613 { 7614 int cpu; 7615 7616 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7617 if (cpu == target) 7618 continue; 7619 /* 7620 * Check if the CPU is in the LLC scheduling domain of @target. 7621 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7622 */ 7623 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7624 continue; 7625 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7626 return cpu; 7627 } 7628 7629 return -1; 7630 } 7631 7632 #else /* CONFIG_SCHED_SMT */ 7633 7634 static inline void set_idle_cores(int cpu, int val) 7635 { 7636 } 7637 7638 static inline bool test_idle_cores(int cpu) 7639 { 7640 return false; 7641 } 7642 7643 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7644 { 7645 return __select_idle_cpu(core, p); 7646 } 7647 7648 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7649 { 7650 return -1; 7651 } 7652 7653 #endif /* CONFIG_SCHED_SMT */ 7654 7655 /* 7656 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7657 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7658 * average idle time for this rq (as found in rq->avg_idle). 7659 */ 7660 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7661 { 7662 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7663 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7664 struct sched_domain_shared *sd_share; 7665 7666 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7667 7668 if (sched_feat(SIS_UTIL)) { 7669 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7670 if (sd_share) { 7671 /* because !--nr is the condition to stop scan */ 7672 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7673 /* overloaded LLC is unlikely to have idle cpu/core */ 7674 if (nr == 1) 7675 return -1; 7676 } 7677 } 7678 7679 if (static_branch_unlikely(&sched_cluster_active)) { 7680 struct sched_group *sg = sd->groups; 7681 7682 if (sg->flags & SD_CLUSTER) { 7683 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7684 if (!cpumask_test_cpu(cpu, cpus)) 7685 continue; 7686 7687 if (has_idle_core) { 7688 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7689 if ((unsigned int)i < nr_cpumask_bits) 7690 return i; 7691 } else { 7692 if (--nr <= 0) 7693 return -1; 7694 idle_cpu = __select_idle_cpu(cpu, p); 7695 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7696 return idle_cpu; 7697 } 7698 } 7699 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7700 } 7701 } 7702 7703 for_each_cpu_wrap(cpu, cpus, target + 1) { 7704 if (has_idle_core) { 7705 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7706 if ((unsigned int)i < nr_cpumask_bits) 7707 return i; 7708 7709 } else { 7710 if (--nr <= 0) 7711 return -1; 7712 idle_cpu = __select_idle_cpu(cpu, p); 7713 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7714 break; 7715 } 7716 } 7717 7718 if (has_idle_core) 7719 set_idle_cores(target, false); 7720 7721 return idle_cpu; 7722 } 7723 7724 /* 7725 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7726 * the task fits. If no CPU is big enough, but there are idle ones, try to 7727 * maximize capacity. 7728 */ 7729 static int 7730 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7731 { 7732 unsigned long task_util, util_min, util_max, best_cap = 0; 7733 int fits, best_fits = 0; 7734 int cpu, best_cpu = -1; 7735 struct cpumask *cpus; 7736 7737 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7738 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7739 7740 task_util = task_util_est(p); 7741 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7742 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7743 7744 for_each_cpu_wrap(cpu, cpus, target) { 7745 unsigned long cpu_cap = capacity_of(cpu); 7746 7747 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7748 continue; 7749 7750 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7751 7752 /* This CPU fits with all requirements */ 7753 if (fits > 0) 7754 return cpu; 7755 /* 7756 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7757 * Look for the CPU with best capacity. 7758 */ 7759 else if (fits < 0) 7760 cpu_cap = get_actual_cpu_capacity(cpu); 7761 7762 /* 7763 * First, select CPU which fits better (-1 being better than 0). 7764 * Then, select the one with best capacity at same level. 7765 */ 7766 if ((fits < best_fits) || 7767 ((fits == best_fits) && (cpu_cap > best_cap))) { 7768 best_cap = cpu_cap; 7769 best_cpu = cpu; 7770 best_fits = fits; 7771 } 7772 } 7773 7774 return best_cpu; 7775 } 7776 7777 static inline bool asym_fits_cpu(unsigned long util, 7778 unsigned long util_min, 7779 unsigned long util_max, 7780 int cpu) 7781 { 7782 if (sched_asym_cpucap_active()) 7783 /* 7784 * Return true only if the cpu fully fits the task requirements 7785 * which include the utilization and the performance hints. 7786 */ 7787 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7788 7789 return true; 7790 } 7791 7792 /* 7793 * Try and locate an idle core/thread in the LLC cache domain. 7794 */ 7795 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7796 { 7797 bool has_idle_core = false; 7798 struct sched_domain *sd; 7799 unsigned long task_util, util_min, util_max; 7800 int i, recent_used_cpu, prev_aff = -1; 7801 7802 /* 7803 * On asymmetric system, update task utilization because we will check 7804 * that the task fits with CPU's capacity. 7805 */ 7806 if (sched_asym_cpucap_active()) { 7807 sync_entity_load_avg(&p->se); 7808 task_util = task_util_est(p); 7809 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7810 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7811 } 7812 7813 /* 7814 * per-cpu select_rq_mask usage 7815 */ 7816 lockdep_assert_irqs_disabled(); 7817 7818 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7819 asym_fits_cpu(task_util, util_min, util_max, target)) 7820 return target; 7821 7822 /* 7823 * If the previous CPU is cache affine and idle, don't be stupid: 7824 */ 7825 if (prev != target && cpus_share_cache(prev, target) && 7826 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7827 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7828 7829 if (!static_branch_unlikely(&sched_cluster_active) || 7830 cpus_share_resources(prev, target)) 7831 return prev; 7832 7833 prev_aff = prev; 7834 } 7835 7836 /* 7837 * Allow a per-cpu kthread to stack with the wakee if the 7838 * kworker thread and the tasks previous CPUs are the same. 7839 * The assumption is that the wakee queued work for the 7840 * per-cpu kthread that is now complete and the wakeup is 7841 * essentially a sync wakeup. An obvious example of this 7842 * pattern is IO completions. 7843 */ 7844 if (is_per_cpu_kthread(current) && 7845 in_task() && 7846 prev == smp_processor_id() && 7847 this_rq()->nr_running <= 1 && 7848 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7849 return prev; 7850 } 7851 7852 /* Check a recently used CPU as a potential idle candidate: */ 7853 recent_used_cpu = p->recent_used_cpu; 7854 p->recent_used_cpu = prev; 7855 if (recent_used_cpu != prev && 7856 recent_used_cpu != target && 7857 cpus_share_cache(recent_used_cpu, target) && 7858 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7859 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7860 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7861 7862 if (!static_branch_unlikely(&sched_cluster_active) || 7863 cpus_share_resources(recent_used_cpu, target)) 7864 return recent_used_cpu; 7865 7866 } else { 7867 recent_used_cpu = -1; 7868 } 7869 7870 /* 7871 * For asymmetric CPU capacity systems, our domain of interest is 7872 * sd_asym_cpucapacity rather than sd_llc. 7873 */ 7874 if (sched_asym_cpucap_active()) { 7875 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7876 /* 7877 * On an asymmetric CPU capacity system where an exclusive 7878 * cpuset defines a symmetric island (i.e. one unique 7879 * capacity_orig value through the cpuset), the key will be set 7880 * but the CPUs within that cpuset will not have a domain with 7881 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7882 * capacity path. 7883 */ 7884 if (sd) { 7885 i = select_idle_capacity(p, sd, target); 7886 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7887 } 7888 } 7889 7890 sd = rcu_dereference(per_cpu(sd_llc, target)); 7891 if (!sd) 7892 return target; 7893 7894 if (sched_smt_active()) { 7895 has_idle_core = test_idle_cores(target); 7896 7897 if (!has_idle_core && cpus_share_cache(prev, target)) { 7898 i = select_idle_smt(p, sd, prev); 7899 if ((unsigned int)i < nr_cpumask_bits) 7900 return i; 7901 } 7902 } 7903 7904 i = select_idle_cpu(p, sd, has_idle_core, target); 7905 if ((unsigned)i < nr_cpumask_bits) 7906 return i; 7907 7908 /* 7909 * For cluster machines which have lower sharing cache like L2 or 7910 * LLC Tag, we tend to find an idle CPU in the target's cluster 7911 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7912 * use them if possible when no idle CPU found in select_idle_cpu(). 7913 */ 7914 if ((unsigned int)prev_aff < nr_cpumask_bits) 7915 return prev_aff; 7916 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7917 return recent_used_cpu; 7918 7919 return target; 7920 } 7921 7922 /** 7923 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7924 * @cpu: the CPU to get the utilization for 7925 * @p: task for which the CPU utilization should be predicted or NULL 7926 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7927 * @boost: 1 to enable boosting, otherwise 0 7928 * 7929 * The unit of the return value must be the same as the one of CPU capacity 7930 * so that CPU utilization can be compared with CPU capacity. 7931 * 7932 * CPU utilization is the sum of running time of runnable tasks plus the 7933 * recent utilization of currently non-runnable tasks on that CPU. 7934 * It represents the amount of CPU capacity currently used by CFS tasks in 7935 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7936 * capacity at f_max. 7937 * 7938 * The estimated CPU utilization is defined as the maximum between CPU 7939 * utilization and sum of the estimated utilization of the currently 7940 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7941 * previously-executed tasks, which helps better deduce how busy a CPU will 7942 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7943 * of such a task would be significantly decayed at this point of time. 7944 * 7945 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7946 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7947 * utilization. Boosting is implemented in cpu_util() so that internal 7948 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7949 * latter via cpu_util_cfs_boost(). 7950 * 7951 * CPU utilization can be higher than the current CPU capacity 7952 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7953 * of rounding errors as well as task migrations or wakeups of new tasks. 7954 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7955 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7956 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7957 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7958 * though since this is useful for predicting the CPU capacity required 7959 * after task migrations (scheduler-driven DVFS). 7960 * 7961 * Return: (Boosted) (estimated) utilization for the specified CPU. 7962 */ 7963 static unsigned long 7964 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7965 { 7966 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7967 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7968 unsigned long runnable; 7969 7970 if (boost) { 7971 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7972 util = max(util, runnable); 7973 } 7974 7975 /* 7976 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7977 * contribution. If @p migrates from another CPU to @cpu add its 7978 * contribution. In all the other cases @cpu is not impacted by the 7979 * migration so its util_avg is already correct. 7980 */ 7981 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 7982 lsub_positive(&util, task_util(p)); 7983 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 7984 util += task_util(p); 7985 7986 if (sched_feat(UTIL_EST)) { 7987 unsigned long util_est; 7988 7989 util_est = READ_ONCE(cfs_rq->avg.util_est); 7990 7991 /* 7992 * During wake-up @p isn't enqueued yet and doesn't contribute 7993 * to any cpu_rq(cpu)->cfs.avg.util_est. 7994 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7995 * has been enqueued. 7996 * 7997 * During exec (@dst_cpu = -1) @p is enqueued and does 7998 * contribute to cpu_rq(cpu)->cfs.util_est. 7999 * Remove it to "simulate" cpu_util without @p's contribution. 8000 * 8001 * Despite the task_on_rq_queued(@p) check there is still a 8002 * small window for a possible race when an exec 8003 * select_task_rq_fair() races with LB's detach_task(). 8004 * 8005 * detach_task() 8006 * deactivate_task() 8007 * p->on_rq = TASK_ON_RQ_MIGRATING; 8008 * -------------------------------- A 8009 * dequeue_task() \ 8010 * dequeue_task_fair() + Race Time 8011 * util_est_dequeue() / 8012 * -------------------------------- B 8013 * 8014 * The additional check "current == p" is required to further 8015 * reduce the race window. 8016 */ 8017 if (dst_cpu == cpu) 8018 util_est += _task_util_est(p); 8019 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 8020 lsub_positive(&util_est, _task_util_est(p)); 8021 8022 util = max(util, util_est); 8023 } 8024 8025 return min(util, arch_scale_cpu_capacity(cpu)); 8026 } 8027 8028 unsigned long cpu_util_cfs(int cpu) 8029 { 8030 return cpu_util(cpu, NULL, -1, 0); 8031 } 8032 8033 unsigned long cpu_util_cfs_boost(int cpu) 8034 { 8035 return cpu_util(cpu, NULL, -1, 1); 8036 } 8037 8038 /* 8039 * cpu_util_without: compute cpu utilization without any contributions from *p 8040 * @cpu: the CPU which utilization is requested 8041 * @p: the task which utilization should be discounted 8042 * 8043 * The utilization of a CPU is defined by the utilization of tasks currently 8044 * enqueued on that CPU as well as tasks which are currently sleeping after an 8045 * execution on that CPU. 8046 * 8047 * This method returns the utilization of the specified CPU by discounting the 8048 * utilization of the specified task, whenever the task is currently 8049 * contributing to the CPU utilization. 8050 */ 8051 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 8052 { 8053 /* Task has no contribution or is new */ 8054 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 8055 p = NULL; 8056 8057 return cpu_util(cpu, p, -1, 0); 8058 } 8059 8060 /* 8061 * This function computes an effective utilization for the given CPU, to be 8062 * used for frequency selection given the linear relation: f = u * f_max. 8063 * 8064 * The scheduler tracks the following metrics: 8065 * 8066 * cpu_util_{cfs,rt,dl,irq}() 8067 * cpu_bw_dl() 8068 * 8069 * Where the cfs,rt and dl util numbers are tracked with the same metric and 8070 * synchronized windows and are thus directly comparable. 8071 * 8072 * The cfs,rt,dl utilization are the running times measured with rq->clock_task 8073 * which excludes things like IRQ and steal-time. These latter are then accrued 8074 * in the IRQ utilization. 8075 * 8076 * The DL bandwidth number OTOH is not a measured metric but a value computed 8077 * based on the task model parameters and gives the minimal utilization 8078 * required to meet deadlines. 8079 */ 8080 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 8081 unsigned long *min, 8082 unsigned long *max) 8083 { 8084 unsigned long util, irq, scale; 8085 struct rq *rq = cpu_rq(cpu); 8086 8087 scale = arch_scale_cpu_capacity(cpu); 8088 8089 /* 8090 * Early check to see if IRQ/steal time saturates the CPU, can be 8091 * because of inaccuracies in how we track these -- see 8092 * update_irq_load_avg(). 8093 */ 8094 irq = cpu_util_irq(rq); 8095 if (unlikely(irq >= scale)) { 8096 if (min) 8097 *min = scale; 8098 if (max) 8099 *max = scale; 8100 return scale; 8101 } 8102 8103 if (min) { 8104 /* 8105 * The minimum utilization returns the highest level between: 8106 * - the computed DL bandwidth needed with the IRQ pressure which 8107 * steals time to the deadline task. 8108 * - The minimum performance requirement for CFS and/or RT. 8109 */ 8110 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN)); 8111 8112 /* 8113 * When an RT task is runnable and uclamp is not used, we must 8114 * ensure that the task will run at maximum compute capacity. 8115 */ 8116 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt)) 8117 *min = max(*min, scale); 8118 } 8119 8120 /* 8121 * Because the time spend on RT/DL tasks is visible as 'lost' time to 8122 * CFS tasks and we use the same metric to track the effective 8123 * utilization (PELT windows are synchronized) we can directly add them 8124 * to obtain the CPU's actual utilization. 8125 */ 8126 util = util_cfs + cpu_util_rt(rq); 8127 util += cpu_util_dl(rq); 8128 8129 /* 8130 * The maximum hint is a soft bandwidth requirement, which can be lower 8131 * than the actual utilization because of uclamp_max requirements. 8132 */ 8133 if (max) 8134 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX)); 8135 8136 if (util >= scale) 8137 return scale; 8138 8139 /* 8140 * There is still idle time; further improve the number by using the 8141 * IRQ metric. Because IRQ/steal time is hidden from the task clock we 8142 * need to scale the task numbers: 8143 * 8144 * max - irq 8145 * U' = irq + --------- * U 8146 * max 8147 */ 8148 util = scale_irq_capacity(util, irq, scale); 8149 util += irq; 8150 8151 return min(scale, util); 8152 } 8153 8154 unsigned long sched_cpu_util(int cpu) 8155 { 8156 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL); 8157 } 8158 8159 /* 8160 * energy_env - Utilization landscape for energy estimation. 8161 * @task_busy_time: Utilization contribution by the task for which we test the 8162 * placement. Given by eenv_task_busy_time(). 8163 * @pd_busy_time: Utilization of the whole perf domain without the task 8164 * contribution. Given by eenv_pd_busy_time(). 8165 * @cpu_cap: Maximum CPU capacity for the perf domain. 8166 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 8167 */ 8168 struct energy_env { 8169 unsigned long task_busy_time; 8170 unsigned long pd_busy_time; 8171 unsigned long cpu_cap; 8172 unsigned long pd_cap; 8173 }; 8174 8175 /* 8176 * Compute the task busy time for compute_energy(). This time cannot be 8177 * injected directly into effective_cpu_util() because of the IRQ scaling. 8178 * The latter only makes sense with the most recent CPUs where the task has 8179 * run. 8180 */ 8181 static inline void eenv_task_busy_time(struct energy_env *eenv, 8182 struct task_struct *p, int prev_cpu) 8183 { 8184 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 8185 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 8186 8187 if (unlikely(irq >= max_cap)) 8188 busy_time = max_cap; 8189 else 8190 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 8191 8192 eenv->task_busy_time = busy_time; 8193 } 8194 8195 /* 8196 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 8197 * utilization for each @pd_cpus, it however doesn't take into account 8198 * clamping since the ratio (utilization / cpu_capacity) is already enough to 8199 * scale the EM reported power consumption at the (eventually clamped) 8200 * cpu_capacity. 8201 * 8202 * The contribution of the task @p for which we want to estimate the 8203 * energy cost is removed (by cpu_util()) and must be calculated 8204 * separately (see eenv_task_busy_time). This ensures: 8205 * 8206 * - A stable PD utilization, no matter which CPU of that PD we want to place 8207 * the task on. 8208 * 8209 * - A fair comparison between CPUs as the task contribution (task_util()) 8210 * will always be the same no matter which CPU utilization we rely on 8211 * (util_avg or util_est). 8212 * 8213 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 8214 * exceed @eenv->pd_cap. 8215 */ 8216 static inline void eenv_pd_busy_time(struct energy_env *eenv, 8217 struct cpumask *pd_cpus, 8218 struct task_struct *p) 8219 { 8220 unsigned long busy_time = 0; 8221 int cpu; 8222 8223 for_each_cpu(cpu, pd_cpus) { 8224 unsigned long util = cpu_util(cpu, p, -1, 0); 8225 8226 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 8227 } 8228 8229 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 8230 } 8231 8232 /* 8233 * Compute the maximum utilization for compute_energy() when the task @p 8234 * is placed on the cpu @dst_cpu. 8235 * 8236 * Returns the maximum utilization among @eenv->cpus. This utilization can't 8237 * exceed @eenv->cpu_cap. 8238 */ 8239 static inline unsigned long 8240 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 8241 struct task_struct *p, int dst_cpu) 8242 { 8243 unsigned long max_util = 0; 8244 int cpu; 8245 8246 for_each_cpu(cpu, pd_cpus) { 8247 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 8248 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 8249 unsigned long eff_util, min, max; 8250 8251 /* 8252 * Performance domain frequency: utilization clamping 8253 * must be considered since it affects the selection 8254 * of the performance domain frequency. 8255 * NOTE: in case RT tasks are running, by default the min 8256 * utilization can be max OPP. 8257 */ 8258 eff_util = effective_cpu_util(cpu, util, &min, &max); 8259 8260 /* Task's uclamp can modify min and max value */ 8261 if (tsk && uclamp_is_used()) { 8262 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 8263 8264 /* 8265 * If there is no active max uclamp constraint, 8266 * directly use task's one, otherwise keep max. 8267 */ 8268 if (uclamp_rq_is_idle(cpu_rq(cpu))) 8269 max = uclamp_eff_value(p, UCLAMP_MAX); 8270 else 8271 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 8272 } 8273 8274 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 8275 max_util = max(max_util, eff_util); 8276 } 8277 8278 return min(max_util, eenv->cpu_cap); 8279 } 8280 8281 /* 8282 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 8283 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 8284 * contribution is ignored. 8285 */ 8286 static inline unsigned long 8287 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 8288 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 8289 { 8290 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 8291 unsigned long busy_time = eenv->pd_busy_time; 8292 unsigned long energy; 8293 8294 if (dst_cpu >= 0) 8295 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 8296 8297 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 8298 8299 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 8300 8301 return energy; 8302 } 8303 8304 /* 8305 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 8306 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 8307 * spare capacity in each performance domain and uses it as a potential 8308 * candidate to execute the task. Then, it uses the Energy Model to figure 8309 * out which of the CPU candidates is the most energy-efficient. 8310 * 8311 * The rationale for this heuristic is as follows. In a performance domain, 8312 * all the most energy efficient CPU candidates (according to the Energy 8313 * Model) are those for which we'll request a low frequency. When there are 8314 * several CPUs for which the frequency request will be the same, we don't 8315 * have enough data to break the tie between them, because the Energy Model 8316 * only includes active power costs. With this model, if we assume that 8317 * frequency requests follow utilization (e.g. using schedutil), the CPU with 8318 * the maximum spare capacity in a performance domain is guaranteed to be among 8319 * the best candidates of the performance domain. 8320 * 8321 * In practice, it could be preferable from an energy standpoint to pack 8322 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 8323 * but that could also hurt our chances to go cluster idle, and we have no 8324 * ways to tell with the current Energy Model if this is actually a good 8325 * idea or not. So, find_energy_efficient_cpu() basically favors 8326 * cluster-packing, and spreading inside a cluster. That should at least be 8327 * a good thing for latency, and this is consistent with the idea that most 8328 * of the energy savings of EAS come from the asymmetry of the system, and 8329 * not so much from breaking the tie between identical CPUs. That's also the 8330 * reason why EAS is enabled in the topology code only for systems where 8331 * SD_ASYM_CPUCAPACITY is set. 8332 * 8333 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 8334 * they don't have any useful utilization data yet and it's not possible to 8335 * forecast their impact on energy consumption. Consequently, they will be 8336 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 8337 * to be energy-inefficient in some use-cases. The alternative would be to 8338 * bias new tasks towards specific types of CPUs first, or to try to infer 8339 * their util_avg from the parent task, but those heuristics could hurt 8340 * other use-cases too. So, until someone finds a better way to solve this, 8341 * let's keep things simple by re-using the existing slow path. 8342 */ 8343 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 8344 { 8345 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 8346 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 8347 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 8348 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 8349 struct root_domain *rd = this_rq()->rd; 8350 int cpu, best_energy_cpu, target = -1; 8351 int prev_fits = -1, best_fits = -1; 8352 unsigned long best_actual_cap = 0; 8353 unsigned long prev_actual_cap = 0; 8354 struct sched_domain *sd; 8355 struct perf_domain *pd; 8356 struct energy_env eenv; 8357 8358 rcu_read_lock(); 8359 pd = rcu_dereference(rd->pd); 8360 if (!pd) 8361 goto unlock; 8362 8363 /* 8364 * Energy-aware wake-up happens on the lowest sched_domain starting 8365 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8366 */ 8367 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 8368 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8369 sd = sd->parent; 8370 if (!sd) 8371 goto unlock; 8372 8373 target = prev_cpu; 8374 8375 sync_entity_load_avg(&p->se); 8376 if (!task_util_est(p) && p_util_min == 0) 8377 goto unlock; 8378 8379 eenv_task_busy_time(&eenv, p, prev_cpu); 8380 8381 for (; pd; pd = pd->next) { 8382 unsigned long util_min = p_util_min, util_max = p_util_max; 8383 unsigned long cpu_cap, cpu_actual_cap, util; 8384 long prev_spare_cap = -1, max_spare_cap = -1; 8385 unsigned long rq_util_min, rq_util_max; 8386 unsigned long cur_delta, base_energy; 8387 int max_spare_cap_cpu = -1; 8388 int fits, max_fits = -1; 8389 8390 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8391 8392 if (cpumask_empty(cpus)) 8393 continue; 8394 8395 /* Account external pressure for the energy estimation */ 8396 cpu = cpumask_first(cpus); 8397 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8398 8399 eenv.cpu_cap = cpu_actual_cap; 8400 eenv.pd_cap = 0; 8401 8402 for_each_cpu(cpu, cpus) { 8403 struct rq *rq = cpu_rq(cpu); 8404 8405 eenv.pd_cap += cpu_actual_cap; 8406 8407 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8408 continue; 8409 8410 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8411 continue; 8412 8413 util = cpu_util(cpu, p, cpu, 0); 8414 cpu_cap = capacity_of(cpu); 8415 8416 /* 8417 * Skip CPUs that cannot satisfy the capacity request. 8418 * IOW, placing the task there would make the CPU 8419 * overutilized. Take uclamp into account to see how 8420 * much capacity we can get out of the CPU; this is 8421 * aligned with sched_cpu_util(). 8422 */ 8423 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8424 /* 8425 * Open code uclamp_rq_util_with() except for 8426 * the clamp() part. I.e.: apply max aggregation 8427 * only. util_fits_cpu() logic requires to 8428 * operate on non clamped util but must use the 8429 * max-aggregated uclamp_{min, max}. 8430 */ 8431 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8432 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8433 8434 util_min = max(rq_util_min, p_util_min); 8435 util_max = max(rq_util_max, p_util_max); 8436 } 8437 8438 fits = util_fits_cpu(util, util_min, util_max, cpu); 8439 if (!fits) 8440 continue; 8441 8442 lsub_positive(&cpu_cap, util); 8443 8444 if (cpu == prev_cpu) { 8445 /* Always use prev_cpu as a candidate. */ 8446 prev_spare_cap = cpu_cap; 8447 prev_fits = fits; 8448 } else if ((fits > max_fits) || 8449 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8450 /* 8451 * Find the CPU with the maximum spare capacity 8452 * among the remaining CPUs in the performance 8453 * domain. 8454 */ 8455 max_spare_cap = cpu_cap; 8456 max_spare_cap_cpu = cpu; 8457 max_fits = fits; 8458 } 8459 } 8460 8461 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8462 continue; 8463 8464 eenv_pd_busy_time(&eenv, cpus, p); 8465 /* Compute the 'base' energy of the pd, without @p */ 8466 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8467 8468 /* Evaluate the energy impact of using prev_cpu. */ 8469 if (prev_spare_cap > -1) { 8470 prev_delta = compute_energy(&eenv, pd, cpus, p, 8471 prev_cpu); 8472 /* CPU utilization has changed */ 8473 if (prev_delta < base_energy) 8474 goto unlock; 8475 prev_delta -= base_energy; 8476 prev_actual_cap = cpu_actual_cap; 8477 best_delta = min(best_delta, prev_delta); 8478 } 8479 8480 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8481 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8482 /* Current best energy cpu fits better */ 8483 if (max_fits < best_fits) 8484 continue; 8485 8486 /* 8487 * Both don't fit performance hint (i.e. uclamp_min) 8488 * but best energy cpu has better capacity. 8489 */ 8490 if ((max_fits < 0) && 8491 (cpu_actual_cap <= best_actual_cap)) 8492 continue; 8493 8494 cur_delta = compute_energy(&eenv, pd, cpus, p, 8495 max_spare_cap_cpu); 8496 /* CPU utilization has changed */ 8497 if (cur_delta < base_energy) 8498 goto unlock; 8499 cur_delta -= base_energy; 8500 8501 /* 8502 * Both fit for the task but best energy cpu has lower 8503 * energy impact. 8504 */ 8505 if ((max_fits > 0) && (best_fits > 0) && 8506 (cur_delta >= best_delta)) 8507 continue; 8508 8509 best_delta = cur_delta; 8510 best_energy_cpu = max_spare_cap_cpu; 8511 best_fits = max_fits; 8512 best_actual_cap = cpu_actual_cap; 8513 } 8514 } 8515 rcu_read_unlock(); 8516 8517 if ((best_fits > prev_fits) || 8518 ((best_fits > 0) && (best_delta < prev_delta)) || 8519 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8520 target = best_energy_cpu; 8521 8522 return target; 8523 8524 unlock: 8525 rcu_read_unlock(); 8526 8527 return target; 8528 } 8529 8530 /* 8531 * select_task_rq_fair: Select target runqueue for the waking task in domains 8532 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8533 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8534 * 8535 * Balances load by selecting the idlest CPU in the idlest group, or under 8536 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8537 * 8538 * Returns the target CPU number. 8539 */ 8540 static int 8541 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8542 { 8543 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8544 struct sched_domain *tmp, *sd = NULL; 8545 int cpu = smp_processor_id(); 8546 int new_cpu = prev_cpu; 8547 int want_affine = 0; 8548 /* SD_flags and WF_flags share the first nibble */ 8549 int sd_flag = wake_flags & 0xF; 8550 8551 /* 8552 * required for stable ->cpus_allowed 8553 */ 8554 lockdep_assert_held(&p->pi_lock); 8555 if (wake_flags & WF_TTWU) { 8556 record_wakee(p); 8557 8558 if ((wake_flags & WF_CURRENT_CPU) && 8559 cpumask_test_cpu(cpu, p->cpus_ptr)) 8560 return cpu; 8561 8562 if (!is_rd_overutilized(this_rq()->rd)) { 8563 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8564 if (new_cpu >= 0) 8565 return new_cpu; 8566 new_cpu = prev_cpu; 8567 } 8568 8569 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8570 } 8571 8572 rcu_read_lock(); 8573 for_each_domain(cpu, tmp) { 8574 /* 8575 * If both 'cpu' and 'prev_cpu' are part of this domain, 8576 * cpu is a valid SD_WAKE_AFFINE target. 8577 */ 8578 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8579 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8580 if (cpu != prev_cpu) 8581 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8582 8583 sd = NULL; /* Prefer wake_affine over balance flags */ 8584 break; 8585 } 8586 8587 /* 8588 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8589 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8590 * will usually go to the fast path. 8591 */ 8592 if (tmp->flags & sd_flag) 8593 sd = tmp; 8594 else if (!want_affine) 8595 break; 8596 } 8597 8598 if (unlikely(sd)) { 8599 /* Slow path */ 8600 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8601 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8602 /* Fast path */ 8603 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8604 } 8605 rcu_read_unlock(); 8606 8607 return new_cpu; 8608 } 8609 8610 /* 8611 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8612 * cfs_rq_of(p) references at time of call are still valid and identify the 8613 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8614 */ 8615 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8616 { 8617 struct sched_entity *se = &p->se; 8618 8619 if (!task_on_rq_migrating(p)) { 8620 remove_entity_load_avg(se); 8621 8622 /* 8623 * Here, the task's PELT values have been updated according to 8624 * the current rq's clock. But if that clock hasn't been 8625 * updated in a while, a substantial idle time will be missed, 8626 * leading to an inflation after wake-up on the new rq. 8627 * 8628 * Estimate the missing time from the cfs_rq last_update_time 8629 * and update sched_avg to improve the PELT continuity after 8630 * migration. 8631 */ 8632 migrate_se_pelt_lag(se); 8633 } 8634 8635 /* Tell new CPU we are migrated */ 8636 se->avg.last_update_time = 0; 8637 8638 update_scan_period(p, new_cpu); 8639 } 8640 8641 static void task_dead_fair(struct task_struct *p) 8642 { 8643 struct sched_entity *se = &p->se; 8644 8645 if (se->sched_delayed) { 8646 struct rq_flags rf; 8647 struct rq *rq; 8648 8649 rq = task_rq_lock(p, &rf); 8650 if (se->sched_delayed) { 8651 update_rq_clock(rq); 8652 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 8653 } 8654 task_rq_unlock(rq, p, &rf); 8655 } 8656 8657 remove_entity_load_avg(se); 8658 } 8659 8660 /* 8661 * Set the max capacity the task is allowed to run at for misfit detection. 8662 */ 8663 static void set_task_max_allowed_capacity(struct task_struct *p) 8664 { 8665 struct asym_cap_data *entry; 8666 8667 if (!sched_asym_cpucap_active()) 8668 return; 8669 8670 rcu_read_lock(); 8671 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8672 cpumask_t *cpumask; 8673 8674 cpumask = cpu_capacity_span(entry); 8675 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8676 continue; 8677 8678 p->max_allowed_capacity = entry->capacity; 8679 break; 8680 } 8681 rcu_read_unlock(); 8682 } 8683 8684 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8685 { 8686 set_cpus_allowed_common(p, ctx); 8687 set_task_max_allowed_capacity(p); 8688 } 8689 8690 static int 8691 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8692 { 8693 if (sched_fair_runnable(rq)) 8694 return 1; 8695 8696 return sched_balance_newidle(rq, rf) != 0; 8697 } 8698 #else 8699 static inline void set_task_max_allowed_capacity(struct task_struct *p) {} 8700 #endif /* CONFIG_SMP */ 8701 8702 static void set_next_buddy(struct sched_entity *se) 8703 { 8704 for_each_sched_entity(se) { 8705 if (SCHED_WARN_ON(!se->on_rq)) 8706 return; 8707 if (se_is_idle(se)) 8708 return; 8709 cfs_rq_of(se)->next = se; 8710 } 8711 } 8712 8713 /* 8714 * Preempt the current task with a newly woken task if needed: 8715 */ 8716 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8717 { 8718 struct task_struct *donor = rq->donor; 8719 struct sched_entity *se = &donor->se, *pse = &p->se; 8720 struct cfs_rq *cfs_rq = task_cfs_rq(donor); 8721 int cse_is_idle, pse_is_idle; 8722 8723 if (unlikely(se == pse)) 8724 return; 8725 8726 /* 8727 * This is possible from callers such as attach_tasks(), in which we 8728 * unconditionally wakeup_preempt() after an enqueue (which may have 8729 * lead to a throttle). This both saves work and prevents false 8730 * next-buddy nomination below. 8731 */ 8732 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8733 return; 8734 8735 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) { 8736 set_next_buddy(pse); 8737 } 8738 8739 /* 8740 * We can come here with TIF_NEED_RESCHED already set from new task 8741 * wake up path. 8742 * 8743 * Note: this also catches the edge-case of curr being in a throttled 8744 * group (e.g. via set_curr_task), since update_curr() (in the 8745 * enqueue of curr) will have resulted in resched being set. This 8746 * prevents us from potentially nominating it as a false LAST_BUDDY 8747 * below. 8748 */ 8749 if (test_tsk_need_resched(rq->curr)) 8750 return; 8751 8752 if (!sched_feat(WAKEUP_PREEMPTION)) 8753 return; 8754 8755 find_matching_se(&se, &pse); 8756 WARN_ON_ONCE(!pse); 8757 8758 cse_is_idle = se_is_idle(se); 8759 pse_is_idle = se_is_idle(pse); 8760 8761 /* 8762 * Preempt an idle entity in favor of a non-idle entity (and don't preempt 8763 * in the inverse case). 8764 */ 8765 if (cse_is_idle && !pse_is_idle) 8766 goto preempt; 8767 if (cse_is_idle != pse_is_idle) 8768 return; 8769 8770 /* 8771 * BATCH and IDLE tasks do not preempt others. 8772 */ 8773 if (unlikely(!normal_policy(p->policy))) 8774 return; 8775 8776 cfs_rq = cfs_rq_of(se); 8777 update_curr(cfs_rq); 8778 /* 8779 * If @p has a shorter slice than current and @p is eligible, override 8780 * current's slice protection in order to allow preemption. 8781 * 8782 * Note that even if @p does not turn out to be the most eligible 8783 * task at this moment, current's slice protection will be lost. 8784 */ 8785 if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline) 8786 se->vlag = se->deadline + 1; 8787 8788 /* 8789 * If @p has become the most eligible task, force preemption. 8790 */ 8791 if (pick_eevdf(cfs_rq) == pse) 8792 goto preempt; 8793 8794 return; 8795 8796 preempt: 8797 resched_curr_lazy(rq); 8798 } 8799 8800 static struct task_struct *pick_task_fair(struct rq *rq) 8801 { 8802 struct sched_entity *se; 8803 struct cfs_rq *cfs_rq; 8804 8805 again: 8806 cfs_rq = &rq->cfs; 8807 if (!cfs_rq->nr_queued) 8808 return NULL; 8809 8810 do { 8811 /* Might not have done put_prev_entity() */ 8812 if (cfs_rq->curr && cfs_rq->curr->on_rq) 8813 update_curr(cfs_rq); 8814 8815 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8816 goto again; 8817 8818 se = pick_next_entity(rq, cfs_rq); 8819 if (!se) 8820 goto again; 8821 cfs_rq = group_cfs_rq(se); 8822 } while (cfs_rq); 8823 8824 return task_of(se); 8825 } 8826 8827 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8828 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first); 8829 8830 struct task_struct * 8831 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8832 { 8833 struct sched_entity *se; 8834 struct task_struct *p; 8835 int new_tasks; 8836 8837 again: 8838 p = pick_task_fair(rq); 8839 if (!p) 8840 goto idle; 8841 se = &p->se; 8842 8843 #ifdef CONFIG_FAIR_GROUP_SCHED 8844 if (prev->sched_class != &fair_sched_class) 8845 goto simple; 8846 8847 __put_prev_set_next_dl_server(rq, prev, p); 8848 8849 /* 8850 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8851 * likely that a next task is from the same cgroup as the current. 8852 * 8853 * Therefore attempt to avoid putting and setting the entire cgroup 8854 * hierarchy, only change the part that actually changes. 8855 * 8856 * Since we haven't yet done put_prev_entity and if the selected task 8857 * is a different task than we started out with, try and touch the 8858 * least amount of cfs_rqs. 8859 */ 8860 if (prev != p) { 8861 struct sched_entity *pse = &prev->se; 8862 struct cfs_rq *cfs_rq; 8863 8864 while (!(cfs_rq = is_same_group(se, pse))) { 8865 int se_depth = se->depth; 8866 int pse_depth = pse->depth; 8867 8868 if (se_depth <= pse_depth) { 8869 put_prev_entity(cfs_rq_of(pse), pse); 8870 pse = parent_entity(pse); 8871 } 8872 if (se_depth >= pse_depth) { 8873 set_next_entity(cfs_rq_of(se), se); 8874 se = parent_entity(se); 8875 } 8876 } 8877 8878 put_prev_entity(cfs_rq, pse); 8879 set_next_entity(cfs_rq, se); 8880 8881 __set_next_task_fair(rq, p, true); 8882 } 8883 8884 return p; 8885 8886 simple: 8887 #endif 8888 put_prev_set_next_task(rq, prev, p); 8889 return p; 8890 8891 idle: 8892 if (!rf) 8893 return NULL; 8894 8895 new_tasks = sched_balance_newidle(rq, rf); 8896 8897 /* 8898 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is 8899 * possible for any higher priority task to appear. In that case we 8900 * must re-start the pick_next_entity() loop. 8901 */ 8902 if (new_tasks < 0) 8903 return RETRY_TASK; 8904 8905 if (new_tasks > 0) 8906 goto again; 8907 8908 /* 8909 * rq is about to be idle, check if we need to update the 8910 * lost_idle_time of clock_pelt 8911 */ 8912 update_idle_rq_clock_pelt(rq); 8913 8914 return NULL; 8915 } 8916 8917 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev) 8918 { 8919 return pick_next_task_fair(rq, prev, NULL); 8920 } 8921 8922 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se) 8923 { 8924 return !!dl_se->rq->cfs.nr_queued; 8925 } 8926 8927 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se) 8928 { 8929 return pick_task_fair(dl_se->rq); 8930 } 8931 8932 void fair_server_init(struct rq *rq) 8933 { 8934 struct sched_dl_entity *dl_se = &rq->fair_server; 8935 8936 init_dl_entity(dl_se); 8937 8938 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task); 8939 } 8940 8941 /* 8942 * Account for a descheduled task: 8943 */ 8944 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next) 8945 { 8946 struct sched_entity *se = &prev->se; 8947 struct cfs_rq *cfs_rq; 8948 8949 for_each_sched_entity(se) { 8950 cfs_rq = cfs_rq_of(se); 8951 put_prev_entity(cfs_rq, se); 8952 } 8953 } 8954 8955 /* 8956 * sched_yield() is very simple 8957 */ 8958 static void yield_task_fair(struct rq *rq) 8959 { 8960 struct task_struct *curr = rq->curr; 8961 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8962 struct sched_entity *se = &curr->se; 8963 8964 /* 8965 * Are we the only task in the tree? 8966 */ 8967 if (unlikely(rq->nr_running == 1)) 8968 return; 8969 8970 clear_buddies(cfs_rq, se); 8971 8972 update_rq_clock(rq); 8973 /* 8974 * Update run-time statistics of the 'current'. 8975 */ 8976 update_curr(cfs_rq); 8977 /* 8978 * Tell update_rq_clock() that we've just updated, 8979 * so we don't do microscopic update in schedule() 8980 * and double the fastpath cost. 8981 */ 8982 rq_clock_skip_update(rq); 8983 8984 se->deadline += calc_delta_fair(se->slice, se); 8985 } 8986 8987 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8988 { 8989 struct sched_entity *se = &p->se; 8990 8991 /* throttled hierarchies are not runnable */ 8992 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8993 return false; 8994 8995 /* Tell the scheduler that we'd really like se to run next. */ 8996 set_next_buddy(se); 8997 8998 yield_task_fair(rq); 8999 9000 return true; 9001 } 9002 9003 #ifdef CONFIG_SMP 9004 /************************************************** 9005 * Fair scheduling class load-balancing methods. 9006 * 9007 * BASICS 9008 * 9009 * The purpose of load-balancing is to achieve the same basic fairness the 9010 * per-CPU scheduler provides, namely provide a proportional amount of compute 9011 * time to each task. This is expressed in the following equation: 9012 * 9013 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 9014 * 9015 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 9016 * W_i,0 is defined as: 9017 * 9018 * W_i,0 = \Sum_j w_i,j (2) 9019 * 9020 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 9021 * is derived from the nice value as per sched_prio_to_weight[]. 9022 * 9023 * The weight average is an exponential decay average of the instantaneous 9024 * weight: 9025 * 9026 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 9027 * 9028 * C_i is the compute capacity of CPU i, typically it is the 9029 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 9030 * can also include other factors [XXX]. 9031 * 9032 * To achieve this balance we define a measure of imbalance which follows 9033 * directly from (1): 9034 * 9035 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 9036 * 9037 * We them move tasks around to minimize the imbalance. In the continuous 9038 * function space it is obvious this converges, in the discrete case we get 9039 * a few fun cases generally called infeasible weight scenarios. 9040 * 9041 * [XXX expand on: 9042 * - infeasible weights; 9043 * - local vs global optima in the discrete case. ] 9044 * 9045 * 9046 * SCHED DOMAINS 9047 * 9048 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 9049 * for all i,j solution, we create a tree of CPUs that follows the hardware 9050 * topology where each level pairs two lower groups (or better). This results 9051 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 9052 * tree to only the first of the previous level and we decrease the frequency 9053 * of load-balance at each level inversely proportional to the number of CPUs in 9054 * the groups. 9055 * 9056 * This yields: 9057 * 9058 * log_2 n 1 n 9059 * \Sum { --- * --- * 2^i } = O(n) (5) 9060 * i = 0 2^i 2^i 9061 * `- size of each group 9062 * | | `- number of CPUs doing load-balance 9063 * | `- freq 9064 * `- sum over all levels 9065 * 9066 * Coupled with a limit on how many tasks we can migrate every balance pass, 9067 * this makes (5) the runtime complexity of the balancer. 9068 * 9069 * An important property here is that each CPU is still (indirectly) connected 9070 * to every other CPU in at most O(log n) steps: 9071 * 9072 * The adjacency matrix of the resulting graph is given by: 9073 * 9074 * log_2 n 9075 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 9076 * k = 0 9077 * 9078 * And you'll find that: 9079 * 9080 * A^(log_2 n)_i,j != 0 for all i,j (7) 9081 * 9082 * Showing there's indeed a path between every CPU in at most O(log n) steps. 9083 * The task movement gives a factor of O(m), giving a convergence complexity 9084 * of: 9085 * 9086 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 9087 * 9088 * 9089 * WORK CONSERVING 9090 * 9091 * In order to avoid CPUs going idle while there's still work to do, new idle 9092 * balancing is more aggressive and has the newly idle CPU iterate up the domain 9093 * tree itself instead of relying on other CPUs to bring it work. 9094 * 9095 * This adds some complexity to both (5) and (8) but it reduces the total idle 9096 * time. 9097 * 9098 * [XXX more?] 9099 * 9100 * 9101 * CGROUPS 9102 * 9103 * Cgroups make a horror show out of (2), instead of a simple sum we get: 9104 * 9105 * s_k,i 9106 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 9107 * S_k 9108 * 9109 * Where 9110 * 9111 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 9112 * 9113 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 9114 * 9115 * The big problem is S_k, its a global sum needed to compute a local (W_i) 9116 * property. 9117 * 9118 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 9119 * rewrite all of this once again.] 9120 */ 9121 9122 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 9123 9124 enum fbq_type { regular, remote, all }; 9125 9126 /* 9127 * 'group_type' describes the group of CPUs at the moment of load balancing. 9128 * 9129 * The enum is ordered by pulling priority, with the group with lowest priority 9130 * first so the group_type can simply be compared when selecting the busiest 9131 * group. See update_sd_pick_busiest(). 9132 */ 9133 enum group_type { 9134 /* The group has spare capacity that can be used to run more tasks. */ 9135 group_has_spare = 0, 9136 /* 9137 * The group is fully used and the tasks don't compete for more CPU 9138 * cycles. Nevertheless, some tasks might wait before running. 9139 */ 9140 group_fully_busy, 9141 /* 9142 * One task doesn't fit with CPU's capacity and must be migrated to a 9143 * more powerful CPU. 9144 */ 9145 group_misfit_task, 9146 /* 9147 * Balance SMT group that's fully busy. Can benefit from migration 9148 * a task on SMT with busy sibling to another CPU on idle core. 9149 */ 9150 group_smt_balance, 9151 /* 9152 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 9153 * and the task should be migrated to it instead of running on the 9154 * current CPU. 9155 */ 9156 group_asym_packing, 9157 /* 9158 * The tasks' affinity constraints previously prevented the scheduler 9159 * from balancing the load across the system. 9160 */ 9161 group_imbalanced, 9162 /* 9163 * The CPU is overloaded and can't provide expected CPU cycles to all 9164 * tasks. 9165 */ 9166 group_overloaded 9167 }; 9168 9169 enum migration_type { 9170 migrate_load = 0, 9171 migrate_util, 9172 migrate_task, 9173 migrate_misfit 9174 }; 9175 9176 #define LBF_ALL_PINNED 0x01 9177 #define LBF_NEED_BREAK 0x02 9178 #define LBF_DST_PINNED 0x04 9179 #define LBF_SOME_PINNED 0x08 9180 #define LBF_ACTIVE_LB 0x10 9181 9182 struct lb_env { 9183 struct sched_domain *sd; 9184 9185 struct rq *src_rq; 9186 int src_cpu; 9187 9188 int dst_cpu; 9189 struct rq *dst_rq; 9190 9191 struct cpumask *dst_grpmask; 9192 int new_dst_cpu; 9193 enum cpu_idle_type idle; 9194 long imbalance; 9195 /* The set of CPUs under consideration for load-balancing */ 9196 struct cpumask *cpus; 9197 9198 unsigned int flags; 9199 9200 unsigned int loop; 9201 unsigned int loop_break; 9202 unsigned int loop_max; 9203 9204 enum fbq_type fbq_type; 9205 enum migration_type migration_type; 9206 struct list_head tasks; 9207 }; 9208 9209 /* 9210 * Is this task likely cache-hot: 9211 */ 9212 static int task_hot(struct task_struct *p, struct lb_env *env) 9213 { 9214 s64 delta; 9215 9216 lockdep_assert_rq_held(env->src_rq); 9217 9218 if (p->sched_class != &fair_sched_class) 9219 return 0; 9220 9221 if (unlikely(task_has_idle_policy(p))) 9222 return 0; 9223 9224 /* SMT siblings share cache */ 9225 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 9226 return 0; 9227 9228 /* 9229 * Buddy candidates are cache hot: 9230 */ 9231 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 9232 (&p->se == cfs_rq_of(&p->se)->next)) 9233 return 1; 9234 9235 if (sysctl_sched_migration_cost == -1) 9236 return 1; 9237 9238 /* 9239 * Don't migrate task if the task's cookie does not match 9240 * with the destination CPU's core cookie. 9241 */ 9242 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 9243 return 1; 9244 9245 if (sysctl_sched_migration_cost == 0) 9246 return 0; 9247 9248 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 9249 9250 return delta < (s64)sysctl_sched_migration_cost; 9251 } 9252 9253 #ifdef CONFIG_NUMA_BALANCING 9254 /* 9255 * Returns a positive value, if task migration degrades locality. 9256 * Returns 0, if task migration is not affected by locality. 9257 * Returns a negative value, if task migration improves locality i.e migration preferred. 9258 */ 9259 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 9260 { 9261 struct numa_group *numa_group = rcu_dereference(p->numa_group); 9262 unsigned long src_weight, dst_weight; 9263 int src_nid, dst_nid, dist; 9264 9265 if (!static_branch_likely(&sched_numa_balancing)) 9266 return 0; 9267 9268 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 9269 return 0; 9270 9271 src_nid = cpu_to_node(env->src_cpu); 9272 dst_nid = cpu_to_node(env->dst_cpu); 9273 9274 if (src_nid == dst_nid) 9275 return 0; 9276 9277 /* Migrating away from the preferred node is always bad. */ 9278 if (src_nid == p->numa_preferred_nid) { 9279 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 9280 return 1; 9281 else 9282 return 0; 9283 } 9284 9285 /* Encourage migration to the preferred node. */ 9286 if (dst_nid == p->numa_preferred_nid) 9287 return -1; 9288 9289 /* Leaving a core idle is often worse than degrading locality. */ 9290 if (env->idle == CPU_IDLE) 9291 return 0; 9292 9293 dist = node_distance(src_nid, dst_nid); 9294 if (numa_group) { 9295 src_weight = group_weight(p, src_nid, dist); 9296 dst_weight = group_weight(p, dst_nid, dist); 9297 } else { 9298 src_weight = task_weight(p, src_nid, dist); 9299 dst_weight = task_weight(p, dst_nid, dist); 9300 } 9301 9302 return src_weight - dst_weight; 9303 } 9304 9305 #else 9306 static inline long migrate_degrades_locality(struct task_struct *p, 9307 struct lb_env *env) 9308 { 9309 return 0; 9310 } 9311 #endif 9312 9313 /* 9314 * Check whether the task is ineligible on the destination cpu 9315 * 9316 * When the PLACE_LAG scheduling feature is enabled and 9317 * dst_cfs_rq->nr_queued is greater than 1, if the task 9318 * is ineligible, it will also be ineligible when 9319 * it is migrated to the destination cpu. 9320 */ 9321 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu) 9322 { 9323 struct cfs_rq *dst_cfs_rq; 9324 9325 #ifdef CONFIG_FAIR_GROUP_SCHED 9326 dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu]; 9327 #else 9328 dst_cfs_rq = &cpu_rq(dest_cpu)->cfs; 9329 #endif 9330 if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued && 9331 !entity_eligible(task_cfs_rq(p), &p->se)) 9332 return 1; 9333 9334 return 0; 9335 } 9336 9337 /* 9338 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 9339 */ 9340 static 9341 int can_migrate_task(struct task_struct *p, struct lb_env *env) 9342 { 9343 long degrades, hot; 9344 9345 lockdep_assert_rq_held(env->src_rq); 9346 if (p->sched_task_hot) 9347 p->sched_task_hot = 0; 9348 9349 /* 9350 * We do not migrate tasks that are: 9351 * 1) delayed dequeued unless we migrate load, or 9352 * 2) throttled_lb_pair, or 9353 * 3) cannot be migrated to this CPU due to cpus_ptr, or 9354 * 4) running (obviously), or 9355 * 5) are cache-hot on their current CPU. 9356 */ 9357 if ((p->se.sched_delayed) && (env->migration_type != migrate_load)) 9358 return 0; 9359 9360 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 9361 return 0; 9362 9363 /* 9364 * We want to prioritize the migration of eligible tasks. 9365 * For ineligible tasks we soft-limit them and only allow 9366 * them to migrate when nr_balance_failed is non-zero to 9367 * avoid load-balancing trying very hard to balance the load. 9368 */ 9369 if (!env->sd->nr_balance_failed && 9370 task_is_ineligible_on_dst_cpu(p, env->dst_cpu)) 9371 return 0; 9372 9373 /* Disregard percpu kthreads; they are where they need to be. */ 9374 if (kthread_is_per_cpu(p)) 9375 return 0; 9376 9377 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9378 int cpu; 9379 9380 schedstat_inc(p->stats.nr_failed_migrations_affine); 9381 9382 env->flags |= LBF_SOME_PINNED; 9383 9384 /* 9385 * Remember if this task can be migrated to any other CPU in 9386 * our sched_group. We may want to revisit it if we couldn't 9387 * meet load balance goals by pulling other tasks on src_cpu. 9388 * 9389 * Avoid computing new_dst_cpu 9390 * - for NEWLY_IDLE 9391 * - if we have already computed one in current iteration 9392 * - if it's an active balance 9393 */ 9394 if (env->idle == CPU_NEWLY_IDLE || 9395 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9396 return 0; 9397 9398 /* Prevent to re-select dst_cpu via env's CPUs: */ 9399 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 9400 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 9401 env->flags |= LBF_DST_PINNED; 9402 env->new_dst_cpu = cpu; 9403 break; 9404 } 9405 } 9406 9407 return 0; 9408 } 9409 9410 /* Record that we found at least one task that could run on dst_cpu */ 9411 env->flags &= ~LBF_ALL_PINNED; 9412 9413 if (task_on_cpu(env->src_rq, p)) { 9414 schedstat_inc(p->stats.nr_failed_migrations_running); 9415 return 0; 9416 } 9417 9418 /* 9419 * Aggressive migration if: 9420 * 1) active balance 9421 * 2) destination numa is preferred 9422 * 3) task is cache cold, or 9423 * 4) too many balance attempts have failed. 9424 */ 9425 if (env->flags & LBF_ACTIVE_LB) 9426 return 1; 9427 9428 degrades = migrate_degrades_locality(p, env); 9429 if (!degrades) 9430 hot = task_hot(p, env); 9431 else 9432 hot = degrades > 0; 9433 9434 if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9435 if (hot) 9436 p->sched_task_hot = 1; 9437 return 1; 9438 } 9439 9440 schedstat_inc(p->stats.nr_failed_migrations_hot); 9441 return 0; 9442 } 9443 9444 /* 9445 * detach_task() -- detach the task for the migration specified in env 9446 */ 9447 static void detach_task(struct task_struct *p, struct lb_env *env) 9448 { 9449 lockdep_assert_rq_held(env->src_rq); 9450 9451 if (p->sched_task_hot) { 9452 p->sched_task_hot = 0; 9453 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9454 schedstat_inc(p->stats.nr_forced_migrations); 9455 } 9456 9457 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9458 set_task_cpu(p, env->dst_cpu); 9459 } 9460 9461 /* 9462 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9463 * part of active balancing operations within "domain". 9464 * 9465 * Returns a task if successful and NULL otherwise. 9466 */ 9467 static struct task_struct *detach_one_task(struct lb_env *env) 9468 { 9469 struct task_struct *p; 9470 9471 lockdep_assert_rq_held(env->src_rq); 9472 9473 list_for_each_entry_reverse(p, 9474 &env->src_rq->cfs_tasks, se.group_node) { 9475 if (!can_migrate_task(p, env)) 9476 continue; 9477 9478 detach_task(p, env); 9479 9480 /* 9481 * Right now, this is only the second place where 9482 * lb_gained[env->idle] is updated (other is detach_tasks) 9483 * so we can safely collect stats here rather than 9484 * inside detach_tasks(). 9485 */ 9486 schedstat_inc(env->sd->lb_gained[env->idle]); 9487 return p; 9488 } 9489 return NULL; 9490 } 9491 9492 /* 9493 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9494 * busiest_rq, as part of a balancing operation within domain "sd". 9495 * 9496 * Returns number of detached tasks if successful and 0 otherwise. 9497 */ 9498 static int detach_tasks(struct lb_env *env) 9499 { 9500 struct list_head *tasks = &env->src_rq->cfs_tasks; 9501 unsigned long util, load; 9502 struct task_struct *p; 9503 int detached = 0; 9504 9505 lockdep_assert_rq_held(env->src_rq); 9506 9507 /* 9508 * Source run queue has been emptied by another CPU, clear 9509 * LBF_ALL_PINNED flag as we will not test any task. 9510 */ 9511 if (env->src_rq->nr_running <= 1) { 9512 env->flags &= ~LBF_ALL_PINNED; 9513 return 0; 9514 } 9515 9516 if (env->imbalance <= 0) 9517 return 0; 9518 9519 while (!list_empty(tasks)) { 9520 /* 9521 * We don't want to steal all, otherwise we may be treated likewise, 9522 * which could at worst lead to a livelock crash. 9523 */ 9524 if (env->idle && env->src_rq->nr_running <= 1) 9525 break; 9526 9527 env->loop++; 9528 /* We've more or less seen every task there is, call it quits */ 9529 if (env->loop > env->loop_max) 9530 break; 9531 9532 /* take a breather every nr_migrate tasks */ 9533 if (env->loop > env->loop_break) { 9534 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9535 env->flags |= LBF_NEED_BREAK; 9536 break; 9537 } 9538 9539 p = list_last_entry(tasks, struct task_struct, se.group_node); 9540 9541 if (!can_migrate_task(p, env)) 9542 goto next; 9543 9544 switch (env->migration_type) { 9545 case migrate_load: 9546 /* 9547 * Depending of the number of CPUs and tasks and the 9548 * cgroup hierarchy, task_h_load() can return a null 9549 * value. Make sure that env->imbalance decreases 9550 * otherwise detach_tasks() will stop only after 9551 * detaching up to loop_max tasks. 9552 */ 9553 load = max_t(unsigned long, task_h_load(p), 1); 9554 9555 if (sched_feat(LB_MIN) && 9556 load < 16 && !env->sd->nr_balance_failed) 9557 goto next; 9558 9559 /* 9560 * Make sure that we don't migrate too much load. 9561 * Nevertheless, let relax the constraint if 9562 * scheduler fails to find a good waiting task to 9563 * migrate. 9564 */ 9565 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9566 goto next; 9567 9568 env->imbalance -= load; 9569 break; 9570 9571 case migrate_util: 9572 util = task_util_est(p); 9573 9574 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9575 goto next; 9576 9577 env->imbalance -= util; 9578 break; 9579 9580 case migrate_task: 9581 env->imbalance--; 9582 break; 9583 9584 case migrate_misfit: 9585 /* This is not a misfit task */ 9586 if (task_fits_cpu(p, env->src_cpu)) 9587 goto next; 9588 9589 env->imbalance = 0; 9590 break; 9591 } 9592 9593 detach_task(p, env); 9594 list_add(&p->se.group_node, &env->tasks); 9595 9596 detached++; 9597 9598 #ifdef CONFIG_PREEMPTION 9599 /* 9600 * NEWIDLE balancing is a source of latency, so preemptible 9601 * kernels will stop after the first task is detached to minimize 9602 * the critical section. 9603 */ 9604 if (env->idle == CPU_NEWLY_IDLE) 9605 break; 9606 #endif 9607 9608 /* 9609 * We only want to steal up to the prescribed amount of 9610 * load/util/tasks. 9611 */ 9612 if (env->imbalance <= 0) 9613 break; 9614 9615 continue; 9616 next: 9617 if (p->sched_task_hot) 9618 schedstat_inc(p->stats.nr_failed_migrations_hot); 9619 9620 list_move(&p->se.group_node, tasks); 9621 } 9622 9623 /* 9624 * Right now, this is one of only two places we collect this stat 9625 * so we can safely collect detach_one_task() stats here rather 9626 * than inside detach_one_task(). 9627 */ 9628 schedstat_add(env->sd->lb_gained[env->idle], detached); 9629 9630 return detached; 9631 } 9632 9633 /* 9634 * attach_task() -- attach the task detached by detach_task() to its new rq. 9635 */ 9636 static void attach_task(struct rq *rq, struct task_struct *p) 9637 { 9638 lockdep_assert_rq_held(rq); 9639 9640 WARN_ON_ONCE(task_rq(p) != rq); 9641 activate_task(rq, p, ENQUEUE_NOCLOCK); 9642 wakeup_preempt(rq, p, 0); 9643 } 9644 9645 /* 9646 * attach_one_task() -- attaches the task returned from detach_one_task() to 9647 * its new rq. 9648 */ 9649 static void attach_one_task(struct rq *rq, struct task_struct *p) 9650 { 9651 struct rq_flags rf; 9652 9653 rq_lock(rq, &rf); 9654 update_rq_clock(rq); 9655 attach_task(rq, p); 9656 rq_unlock(rq, &rf); 9657 } 9658 9659 /* 9660 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9661 * new rq. 9662 */ 9663 static void attach_tasks(struct lb_env *env) 9664 { 9665 struct list_head *tasks = &env->tasks; 9666 struct task_struct *p; 9667 struct rq_flags rf; 9668 9669 rq_lock(env->dst_rq, &rf); 9670 update_rq_clock(env->dst_rq); 9671 9672 while (!list_empty(tasks)) { 9673 p = list_first_entry(tasks, struct task_struct, se.group_node); 9674 list_del_init(&p->se.group_node); 9675 9676 attach_task(env->dst_rq, p); 9677 } 9678 9679 rq_unlock(env->dst_rq, &rf); 9680 } 9681 9682 #ifdef CONFIG_NO_HZ_COMMON 9683 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9684 { 9685 if (cfs_rq->avg.load_avg) 9686 return true; 9687 9688 if (cfs_rq->avg.util_avg) 9689 return true; 9690 9691 return false; 9692 } 9693 9694 static inline bool others_have_blocked(struct rq *rq) 9695 { 9696 if (cpu_util_rt(rq)) 9697 return true; 9698 9699 if (cpu_util_dl(rq)) 9700 return true; 9701 9702 if (hw_load_avg(rq)) 9703 return true; 9704 9705 if (cpu_util_irq(rq)) 9706 return true; 9707 9708 return false; 9709 } 9710 9711 static inline void update_blocked_load_tick(struct rq *rq) 9712 { 9713 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9714 } 9715 9716 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9717 { 9718 if (!has_blocked) 9719 rq->has_blocked_load = 0; 9720 } 9721 #else 9722 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9723 static inline bool others_have_blocked(struct rq *rq) { return false; } 9724 static inline void update_blocked_load_tick(struct rq *rq) {} 9725 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9726 #endif 9727 9728 static bool __update_blocked_others(struct rq *rq, bool *done) 9729 { 9730 bool updated; 9731 9732 /* 9733 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9734 * DL and IRQ signals have been updated before updating CFS. 9735 */ 9736 updated = update_other_load_avgs(rq); 9737 9738 if (others_have_blocked(rq)) 9739 *done = false; 9740 9741 return updated; 9742 } 9743 9744 #ifdef CONFIG_FAIR_GROUP_SCHED 9745 9746 static bool __update_blocked_fair(struct rq *rq, bool *done) 9747 { 9748 struct cfs_rq *cfs_rq, *pos; 9749 bool decayed = false; 9750 int cpu = cpu_of(rq); 9751 9752 /* 9753 * Iterates the task_group tree in a bottom up fashion, see 9754 * list_add_leaf_cfs_rq() for details. 9755 */ 9756 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9757 struct sched_entity *se; 9758 9759 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9760 update_tg_load_avg(cfs_rq); 9761 9762 if (cfs_rq->nr_queued == 0) 9763 update_idle_cfs_rq_clock_pelt(cfs_rq); 9764 9765 if (cfs_rq == &rq->cfs) 9766 decayed = true; 9767 } 9768 9769 /* Propagate pending load changes to the parent, if any: */ 9770 se = cfs_rq->tg->se[cpu]; 9771 if (se && !skip_blocked_update(se)) 9772 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9773 9774 /* 9775 * There can be a lot of idle CPU cgroups. Don't let fully 9776 * decayed cfs_rqs linger on the list. 9777 */ 9778 if (cfs_rq_is_decayed(cfs_rq)) 9779 list_del_leaf_cfs_rq(cfs_rq); 9780 9781 /* Don't need periodic decay once load/util_avg are null */ 9782 if (cfs_rq_has_blocked(cfs_rq)) 9783 *done = false; 9784 } 9785 9786 return decayed; 9787 } 9788 9789 /* 9790 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9791 * This needs to be done in a top-down fashion because the load of a child 9792 * group is a fraction of its parents load. 9793 */ 9794 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9795 { 9796 struct rq *rq = rq_of(cfs_rq); 9797 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9798 unsigned long now = jiffies; 9799 unsigned long load; 9800 9801 if (cfs_rq->last_h_load_update == now) 9802 return; 9803 9804 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9805 for_each_sched_entity(se) { 9806 cfs_rq = cfs_rq_of(se); 9807 WRITE_ONCE(cfs_rq->h_load_next, se); 9808 if (cfs_rq->last_h_load_update == now) 9809 break; 9810 } 9811 9812 if (!se) { 9813 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9814 cfs_rq->last_h_load_update = now; 9815 } 9816 9817 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9818 load = cfs_rq->h_load; 9819 load = div64_ul(load * se->avg.load_avg, 9820 cfs_rq_load_avg(cfs_rq) + 1); 9821 cfs_rq = group_cfs_rq(se); 9822 cfs_rq->h_load = load; 9823 cfs_rq->last_h_load_update = now; 9824 } 9825 } 9826 9827 static unsigned long task_h_load(struct task_struct *p) 9828 { 9829 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9830 9831 update_cfs_rq_h_load(cfs_rq); 9832 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9833 cfs_rq_load_avg(cfs_rq) + 1); 9834 } 9835 #else 9836 static bool __update_blocked_fair(struct rq *rq, bool *done) 9837 { 9838 struct cfs_rq *cfs_rq = &rq->cfs; 9839 bool decayed; 9840 9841 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9842 if (cfs_rq_has_blocked(cfs_rq)) 9843 *done = false; 9844 9845 return decayed; 9846 } 9847 9848 static unsigned long task_h_load(struct task_struct *p) 9849 { 9850 return p->se.avg.load_avg; 9851 } 9852 #endif 9853 9854 static void sched_balance_update_blocked_averages(int cpu) 9855 { 9856 bool decayed = false, done = true; 9857 struct rq *rq = cpu_rq(cpu); 9858 struct rq_flags rf; 9859 9860 rq_lock_irqsave(rq, &rf); 9861 update_blocked_load_tick(rq); 9862 update_rq_clock(rq); 9863 9864 decayed |= __update_blocked_others(rq, &done); 9865 decayed |= __update_blocked_fair(rq, &done); 9866 9867 update_blocked_load_status(rq, !done); 9868 if (decayed) 9869 cpufreq_update_util(rq, 0); 9870 rq_unlock_irqrestore(rq, &rf); 9871 } 9872 9873 /********** Helpers for sched_balance_find_src_group ************************/ 9874 9875 /* 9876 * sg_lb_stats - stats of a sched_group required for load-balancing: 9877 */ 9878 struct sg_lb_stats { 9879 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9880 unsigned long group_load; /* Total load over the CPUs of the group */ 9881 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9882 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9883 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9884 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9885 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9886 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9887 unsigned int group_weight; 9888 enum group_type group_type; 9889 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9890 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9891 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9892 #ifdef CONFIG_NUMA_BALANCING 9893 unsigned int nr_numa_running; 9894 unsigned int nr_preferred_running; 9895 #endif 9896 }; 9897 9898 /* 9899 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9900 */ 9901 struct sd_lb_stats { 9902 struct sched_group *busiest; /* Busiest group in this sd */ 9903 struct sched_group *local; /* Local group in this sd */ 9904 unsigned long total_load; /* Total load of all groups in sd */ 9905 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9906 unsigned long avg_load; /* Average load across all groups in sd */ 9907 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 9908 9909 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 9910 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9911 }; 9912 9913 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9914 { 9915 /* 9916 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9917 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9918 * We must however set busiest_stat::group_type and 9919 * busiest_stat::idle_cpus to the worst busiest group because 9920 * update_sd_pick_busiest() reads these before assignment. 9921 */ 9922 *sds = (struct sd_lb_stats){ 9923 .busiest = NULL, 9924 .local = NULL, 9925 .total_load = 0UL, 9926 .total_capacity = 0UL, 9927 .busiest_stat = { 9928 .idle_cpus = UINT_MAX, 9929 .group_type = group_has_spare, 9930 }, 9931 }; 9932 } 9933 9934 static unsigned long scale_rt_capacity(int cpu) 9935 { 9936 unsigned long max = get_actual_cpu_capacity(cpu); 9937 struct rq *rq = cpu_rq(cpu); 9938 unsigned long used, free; 9939 unsigned long irq; 9940 9941 irq = cpu_util_irq(rq); 9942 9943 if (unlikely(irq >= max)) 9944 return 1; 9945 9946 /* 9947 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9948 * (running and not running) with weights 0 and 1024 respectively. 9949 */ 9950 used = cpu_util_rt(rq); 9951 used += cpu_util_dl(rq); 9952 9953 if (unlikely(used >= max)) 9954 return 1; 9955 9956 free = max - used; 9957 9958 return scale_irq_capacity(free, irq, max); 9959 } 9960 9961 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9962 { 9963 unsigned long capacity = scale_rt_capacity(cpu); 9964 struct sched_group *sdg = sd->groups; 9965 9966 if (!capacity) 9967 capacity = 1; 9968 9969 cpu_rq(cpu)->cpu_capacity = capacity; 9970 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9971 9972 sdg->sgc->capacity = capacity; 9973 sdg->sgc->min_capacity = capacity; 9974 sdg->sgc->max_capacity = capacity; 9975 } 9976 9977 void update_group_capacity(struct sched_domain *sd, int cpu) 9978 { 9979 struct sched_domain *child = sd->child; 9980 struct sched_group *group, *sdg = sd->groups; 9981 unsigned long capacity, min_capacity, max_capacity; 9982 unsigned long interval; 9983 9984 interval = msecs_to_jiffies(sd->balance_interval); 9985 interval = clamp(interval, 1UL, max_load_balance_interval); 9986 sdg->sgc->next_update = jiffies + interval; 9987 9988 if (!child) { 9989 update_cpu_capacity(sd, cpu); 9990 return; 9991 } 9992 9993 capacity = 0; 9994 min_capacity = ULONG_MAX; 9995 max_capacity = 0; 9996 9997 if (child->flags & SD_OVERLAP) { 9998 /* 9999 * SD_OVERLAP domains cannot assume that child groups 10000 * span the current group. 10001 */ 10002 10003 for_each_cpu(cpu, sched_group_span(sdg)) { 10004 unsigned long cpu_cap = capacity_of(cpu); 10005 10006 capacity += cpu_cap; 10007 min_capacity = min(cpu_cap, min_capacity); 10008 max_capacity = max(cpu_cap, max_capacity); 10009 } 10010 } else { 10011 /* 10012 * !SD_OVERLAP domains can assume that child groups 10013 * span the current group. 10014 */ 10015 10016 group = child->groups; 10017 do { 10018 struct sched_group_capacity *sgc = group->sgc; 10019 10020 capacity += sgc->capacity; 10021 min_capacity = min(sgc->min_capacity, min_capacity); 10022 max_capacity = max(sgc->max_capacity, max_capacity); 10023 group = group->next; 10024 } while (group != child->groups); 10025 } 10026 10027 sdg->sgc->capacity = capacity; 10028 sdg->sgc->min_capacity = min_capacity; 10029 sdg->sgc->max_capacity = max_capacity; 10030 } 10031 10032 /* 10033 * Check whether the capacity of the rq has been noticeably reduced by side 10034 * activity. The imbalance_pct is used for the threshold. 10035 * Return true is the capacity is reduced 10036 */ 10037 static inline int 10038 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 10039 { 10040 return ((rq->cpu_capacity * sd->imbalance_pct) < 10041 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 10042 } 10043 10044 /* Check if the rq has a misfit task */ 10045 static inline bool check_misfit_status(struct rq *rq) 10046 { 10047 return rq->misfit_task_load; 10048 } 10049 10050 /* 10051 * Group imbalance indicates (and tries to solve) the problem where balancing 10052 * groups is inadequate due to ->cpus_ptr constraints. 10053 * 10054 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 10055 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 10056 * Something like: 10057 * 10058 * { 0 1 2 3 } { 4 5 6 7 } 10059 * * * * * 10060 * 10061 * If we were to balance group-wise we'd place two tasks in the first group and 10062 * two tasks in the second group. Clearly this is undesired as it will overload 10063 * cpu 3 and leave one of the CPUs in the second group unused. 10064 * 10065 * The current solution to this issue is detecting the skew in the first group 10066 * by noticing the lower domain failed to reach balance and had difficulty 10067 * moving tasks due to affinity constraints. 10068 * 10069 * When this is so detected; this group becomes a candidate for busiest; see 10070 * update_sd_pick_busiest(). And calculate_imbalance() and 10071 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 10072 * to create an effective group imbalance. 10073 * 10074 * This is a somewhat tricky proposition since the next run might not find the 10075 * group imbalance and decide the groups need to be balanced again. A most 10076 * subtle and fragile situation. 10077 */ 10078 10079 static inline int sg_imbalanced(struct sched_group *group) 10080 { 10081 return group->sgc->imbalance; 10082 } 10083 10084 /* 10085 * group_has_capacity returns true if the group has spare capacity that could 10086 * be used by some tasks. 10087 * We consider that a group has spare capacity if the number of task is 10088 * smaller than the number of CPUs or if the utilization is lower than the 10089 * available capacity for CFS tasks. 10090 * For the latter, we use a threshold to stabilize the state, to take into 10091 * account the variance of the tasks' load and to return true if the available 10092 * capacity in meaningful for the load balancer. 10093 * As an example, an available capacity of 1% can appear but it doesn't make 10094 * any benefit for the load balance. 10095 */ 10096 static inline bool 10097 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10098 { 10099 if (sgs->sum_nr_running < sgs->group_weight) 10100 return true; 10101 10102 if ((sgs->group_capacity * imbalance_pct) < 10103 (sgs->group_runnable * 100)) 10104 return false; 10105 10106 if ((sgs->group_capacity * 100) > 10107 (sgs->group_util * imbalance_pct)) 10108 return true; 10109 10110 return false; 10111 } 10112 10113 /* 10114 * group_is_overloaded returns true if the group has more tasks than it can 10115 * handle. 10116 * group_is_overloaded is not equals to !group_has_capacity because a group 10117 * with the exact right number of tasks, has no more spare capacity but is not 10118 * overloaded so both group_has_capacity and group_is_overloaded return 10119 * false. 10120 */ 10121 static inline bool 10122 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 10123 { 10124 if (sgs->sum_nr_running <= sgs->group_weight) 10125 return false; 10126 10127 if ((sgs->group_capacity * 100) < 10128 (sgs->group_util * imbalance_pct)) 10129 return true; 10130 10131 if ((sgs->group_capacity * imbalance_pct) < 10132 (sgs->group_runnable * 100)) 10133 return true; 10134 10135 return false; 10136 } 10137 10138 static inline enum 10139 group_type group_classify(unsigned int imbalance_pct, 10140 struct sched_group *group, 10141 struct sg_lb_stats *sgs) 10142 { 10143 if (group_is_overloaded(imbalance_pct, sgs)) 10144 return group_overloaded; 10145 10146 if (sg_imbalanced(group)) 10147 return group_imbalanced; 10148 10149 if (sgs->group_asym_packing) 10150 return group_asym_packing; 10151 10152 if (sgs->group_smt_balance) 10153 return group_smt_balance; 10154 10155 if (sgs->group_misfit_task_load) 10156 return group_misfit_task; 10157 10158 if (!group_has_capacity(imbalance_pct, sgs)) 10159 return group_fully_busy; 10160 10161 return group_has_spare; 10162 } 10163 10164 /** 10165 * sched_use_asym_prio - Check whether asym_packing priority must be used 10166 * @sd: The scheduling domain of the load balancing 10167 * @cpu: A CPU 10168 * 10169 * Always use CPU priority when balancing load between SMT siblings. When 10170 * balancing load between cores, it is not sufficient that @cpu is idle. Only 10171 * use CPU priority if the whole core is idle. 10172 * 10173 * Returns: True if the priority of @cpu must be followed. False otherwise. 10174 */ 10175 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 10176 { 10177 if (!(sd->flags & SD_ASYM_PACKING)) 10178 return false; 10179 10180 if (!sched_smt_active()) 10181 return true; 10182 10183 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 10184 } 10185 10186 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 10187 { 10188 /* 10189 * First check if @dst_cpu can do asym_packing load balance. Only do it 10190 * if it has higher priority than @src_cpu. 10191 */ 10192 return sched_use_asym_prio(sd, dst_cpu) && 10193 sched_asym_prefer(dst_cpu, src_cpu); 10194 } 10195 10196 /** 10197 * sched_group_asym - Check if the destination CPU can do asym_packing balance 10198 * @env: The load balancing environment 10199 * @sgs: Load-balancing statistics of the candidate busiest group 10200 * @group: The candidate busiest group 10201 * 10202 * @env::dst_cpu can do asym_packing if it has higher priority than the 10203 * preferred CPU of @group. 10204 * 10205 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 10206 * otherwise. 10207 */ 10208 static inline bool 10209 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 10210 { 10211 /* 10212 * CPU priorities do not make sense for SMT cores with more than one 10213 * busy sibling. 10214 */ 10215 if ((group->flags & SD_SHARE_CPUCAPACITY) && 10216 (sgs->group_weight - sgs->idle_cpus != 1)) 10217 return false; 10218 10219 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu); 10220 } 10221 10222 /* One group has more than one SMT CPU while the other group does not */ 10223 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 10224 struct sched_group *sg2) 10225 { 10226 if (!sg1 || !sg2) 10227 return false; 10228 10229 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 10230 (sg2->flags & SD_SHARE_CPUCAPACITY); 10231 } 10232 10233 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 10234 struct sched_group *group) 10235 { 10236 if (!env->idle) 10237 return false; 10238 10239 /* 10240 * For SMT source group, it is better to move a task 10241 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 10242 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 10243 * will not be on. 10244 */ 10245 if (group->flags & SD_SHARE_CPUCAPACITY && 10246 sgs->sum_h_nr_running > 1) 10247 return true; 10248 10249 return false; 10250 } 10251 10252 static inline long sibling_imbalance(struct lb_env *env, 10253 struct sd_lb_stats *sds, 10254 struct sg_lb_stats *busiest, 10255 struct sg_lb_stats *local) 10256 { 10257 int ncores_busiest, ncores_local; 10258 long imbalance; 10259 10260 if (!env->idle || !busiest->sum_nr_running) 10261 return 0; 10262 10263 ncores_busiest = sds->busiest->cores; 10264 ncores_local = sds->local->cores; 10265 10266 if (ncores_busiest == ncores_local) { 10267 imbalance = busiest->sum_nr_running; 10268 lsub_positive(&imbalance, local->sum_nr_running); 10269 return imbalance; 10270 } 10271 10272 /* Balance such that nr_running/ncores ratio are same on both groups */ 10273 imbalance = ncores_local * busiest->sum_nr_running; 10274 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 10275 /* Normalize imbalance and do rounding on normalization */ 10276 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 10277 imbalance /= ncores_local + ncores_busiest; 10278 10279 /* Take advantage of resource in an empty sched group */ 10280 if (imbalance <= 1 && local->sum_nr_running == 0 && 10281 busiest->sum_nr_running > 1) 10282 imbalance = 2; 10283 10284 return imbalance; 10285 } 10286 10287 static inline bool 10288 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 10289 { 10290 /* 10291 * When there is more than 1 task, the group_overloaded case already 10292 * takes care of cpu with reduced capacity 10293 */ 10294 if (rq->cfs.h_nr_runnable != 1) 10295 return false; 10296 10297 return check_cpu_capacity(rq, sd); 10298 } 10299 10300 /** 10301 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 10302 * @env: The load balancing environment. 10303 * @sds: Load-balancing data with statistics of the local group. 10304 * @group: sched_group whose statistics are to be updated. 10305 * @sgs: variable to hold the statistics for this group. 10306 * @sg_overloaded: sched_group is overloaded 10307 * @sg_overutilized: sched_group is overutilized 10308 */ 10309 static inline void update_sg_lb_stats(struct lb_env *env, 10310 struct sd_lb_stats *sds, 10311 struct sched_group *group, 10312 struct sg_lb_stats *sgs, 10313 bool *sg_overloaded, 10314 bool *sg_overutilized) 10315 { 10316 int i, nr_running, local_group, sd_flags = env->sd->flags; 10317 bool balancing_at_rd = !env->sd->parent; 10318 10319 memset(sgs, 0, sizeof(*sgs)); 10320 10321 local_group = group == sds->local; 10322 10323 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 10324 struct rq *rq = cpu_rq(i); 10325 unsigned long load = cpu_load(rq); 10326 10327 sgs->group_load += load; 10328 sgs->group_util += cpu_util_cfs(i); 10329 sgs->group_runnable += cpu_runnable(rq); 10330 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable; 10331 10332 nr_running = rq->nr_running; 10333 sgs->sum_nr_running += nr_running; 10334 10335 if (cpu_overutilized(i)) 10336 *sg_overutilized = 1; 10337 10338 /* 10339 * No need to call idle_cpu() if nr_running is not 0 10340 */ 10341 if (!nr_running && idle_cpu(i)) { 10342 sgs->idle_cpus++; 10343 /* Idle cpu can't have misfit task */ 10344 continue; 10345 } 10346 10347 /* Overload indicator is only updated at root domain */ 10348 if (balancing_at_rd && nr_running > 1) 10349 *sg_overloaded = 1; 10350 10351 #ifdef CONFIG_NUMA_BALANCING 10352 /* Only fbq_classify_group() uses this to classify NUMA groups */ 10353 if (sd_flags & SD_NUMA) { 10354 sgs->nr_numa_running += rq->nr_numa_running; 10355 sgs->nr_preferred_running += rq->nr_preferred_running; 10356 } 10357 #endif 10358 if (local_group) 10359 continue; 10360 10361 if (sd_flags & SD_ASYM_CPUCAPACITY) { 10362 /* Check for a misfit task on the cpu */ 10363 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 10364 sgs->group_misfit_task_load = rq->misfit_task_load; 10365 *sg_overloaded = 1; 10366 } 10367 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 10368 /* Check for a task running on a CPU with reduced capacity */ 10369 if (sgs->group_misfit_task_load < load) 10370 sgs->group_misfit_task_load = load; 10371 } 10372 } 10373 10374 sgs->group_capacity = group->sgc->capacity; 10375 10376 sgs->group_weight = group->group_weight; 10377 10378 /* Check if dst CPU is idle and preferred to this group */ 10379 if (!local_group && env->idle && sgs->sum_h_nr_running && 10380 sched_group_asym(env, sgs, group)) 10381 sgs->group_asym_packing = 1; 10382 10383 /* Check for loaded SMT group to be balanced to dst CPU */ 10384 if (!local_group && smt_balance(env, sgs, group)) 10385 sgs->group_smt_balance = 1; 10386 10387 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10388 10389 /* Computing avg_load makes sense only when group is overloaded */ 10390 if (sgs->group_type == group_overloaded) 10391 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10392 sgs->group_capacity; 10393 } 10394 10395 /** 10396 * update_sd_pick_busiest - return 1 on busiest group 10397 * @env: The load balancing environment. 10398 * @sds: sched_domain statistics 10399 * @sg: sched_group candidate to be checked for being the busiest 10400 * @sgs: sched_group statistics 10401 * 10402 * Determine if @sg is a busier group than the previously selected 10403 * busiest group. 10404 * 10405 * Return: %true if @sg is a busier group than the previously selected 10406 * busiest group. %false otherwise. 10407 */ 10408 static bool update_sd_pick_busiest(struct lb_env *env, 10409 struct sd_lb_stats *sds, 10410 struct sched_group *sg, 10411 struct sg_lb_stats *sgs) 10412 { 10413 struct sg_lb_stats *busiest = &sds->busiest_stat; 10414 10415 /* Make sure that there is at least one task to pull */ 10416 if (!sgs->sum_h_nr_running) 10417 return false; 10418 10419 /* 10420 * Don't try to pull misfit tasks we can't help. 10421 * We can use max_capacity here as reduction in capacity on some 10422 * CPUs in the group should either be possible to resolve 10423 * internally or be covered by avg_load imbalance (eventually). 10424 */ 10425 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10426 (sgs->group_type == group_misfit_task) && 10427 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10428 sds->local_stat.group_type != group_has_spare)) 10429 return false; 10430 10431 if (sgs->group_type > busiest->group_type) 10432 return true; 10433 10434 if (sgs->group_type < busiest->group_type) 10435 return false; 10436 10437 /* 10438 * The candidate and the current busiest group are the same type of 10439 * group. Let check which one is the busiest according to the type. 10440 */ 10441 10442 switch (sgs->group_type) { 10443 case group_overloaded: 10444 /* Select the overloaded group with highest avg_load. */ 10445 return sgs->avg_load > busiest->avg_load; 10446 10447 case group_imbalanced: 10448 /* 10449 * Select the 1st imbalanced group as we don't have any way to 10450 * choose one more than another. 10451 */ 10452 return false; 10453 10454 case group_asym_packing: 10455 /* Prefer to move from lowest priority CPU's work */ 10456 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu); 10457 10458 case group_misfit_task: 10459 /* 10460 * If we have more than one misfit sg go with the biggest 10461 * misfit. 10462 */ 10463 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10464 10465 case group_smt_balance: 10466 /* 10467 * Check if we have spare CPUs on either SMT group to 10468 * choose has spare or fully busy handling. 10469 */ 10470 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10471 goto has_spare; 10472 10473 fallthrough; 10474 10475 case group_fully_busy: 10476 /* 10477 * Select the fully busy group with highest avg_load. In 10478 * theory, there is no need to pull task from such kind of 10479 * group because tasks have all compute capacity that they need 10480 * but we can still improve the overall throughput by reducing 10481 * contention when accessing shared HW resources. 10482 * 10483 * XXX for now avg_load is not computed and always 0 so we 10484 * select the 1st one, except if @sg is composed of SMT 10485 * siblings. 10486 */ 10487 10488 if (sgs->avg_load < busiest->avg_load) 10489 return false; 10490 10491 if (sgs->avg_load == busiest->avg_load) { 10492 /* 10493 * SMT sched groups need more help than non-SMT groups. 10494 * If @sg happens to also be SMT, either choice is good. 10495 */ 10496 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10497 return false; 10498 } 10499 10500 break; 10501 10502 case group_has_spare: 10503 /* 10504 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10505 * as we do not want to pull task off SMT core with one task 10506 * and make the core idle. 10507 */ 10508 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10509 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10510 return false; 10511 else 10512 return true; 10513 } 10514 has_spare: 10515 10516 /* 10517 * Select not overloaded group with lowest number of idle CPUs 10518 * and highest number of running tasks. We could also compare 10519 * the spare capacity which is more stable but it can end up 10520 * that the group has less spare capacity but finally more idle 10521 * CPUs which means less opportunity to pull tasks. 10522 */ 10523 if (sgs->idle_cpus > busiest->idle_cpus) 10524 return false; 10525 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10526 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10527 return false; 10528 10529 break; 10530 } 10531 10532 /* 10533 * Candidate sg has no more than one task per CPU and has higher 10534 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10535 * throughput. Maximize throughput, power/energy consequences are not 10536 * considered. 10537 */ 10538 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10539 (sgs->group_type <= group_fully_busy) && 10540 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10541 return false; 10542 10543 return true; 10544 } 10545 10546 #ifdef CONFIG_NUMA_BALANCING 10547 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10548 { 10549 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10550 return regular; 10551 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10552 return remote; 10553 return all; 10554 } 10555 10556 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10557 { 10558 if (rq->nr_running > rq->nr_numa_running) 10559 return regular; 10560 if (rq->nr_running > rq->nr_preferred_running) 10561 return remote; 10562 return all; 10563 } 10564 #else 10565 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10566 { 10567 return all; 10568 } 10569 10570 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10571 { 10572 return regular; 10573 } 10574 #endif /* CONFIG_NUMA_BALANCING */ 10575 10576 10577 struct sg_lb_stats; 10578 10579 /* 10580 * task_running_on_cpu - return 1 if @p is running on @cpu. 10581 */ 10582 10583 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10584 { 10585 /* Task has no contribution or is new */ 10586 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10587 return 0; 10588 10589 if (task_on_rq_queued(p)) 10590 return 1; 10591 10592 return 0; 10593 } 10594 10595 /** 10596 * idle_cpu_without - would a given CPU be idle without p ? 10597 * @cpu: the processor on which idleness is tested. 10598 * @p: task which should be ignored. 10599 * 10600 * Return: 1 if the CPU would be idle. 0 otherwise. 10601 */ 10602 static int idle_cpu_without(int cpu, struct task_struct *p) 10603 { 10604 struct rq *rq = cpu_rq(cpu); 10605 10606 if (rq->curr != rq->idle && rq->curr != p) 10607 return 0; 10608 10609 /* 10610 * rq->nr_running can't be used but an updated version without the 10611 * impact of p on cpu must be used instead. The updated nr_running 10612 * be computed and tested before calling idle_cpu_without(). 10613 */ 10614 10615 if (rq->ttwu_pending) 10616 return 0; 10617 10618 return 1; 10619 } 10620 10621 /* 10622 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10623 * @sd: The sched_domain level to look for idlest group. 10624 * @group: sched_group whose statistics are to be updated. 10625 * @sgs: variable to hold the statistics for this group. 10626 * @p: The task for which we look for the idlest group/CPU. 10627 */ 10628 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10629 struct sched_group *group, 10630 struct sg_lb_stats *sgs, 10631 struct task_struct *p) 10632 { 10633 int i, nr_running; 10634 10635 memset(sgs, 0, sizeof(*sgs)); 10636 10637 /* Assume that task can't fit any CPU of the group */ 10638 if (sd->flags & SD_ASYM_CPUCAPACITY) 10639 sgs->group_misfit_task_load = 1; 10640 10641 for_each_cpu(i, sched_group_span(group)) { 10642 struct rq *rq = cpu_rq(i); 10643 unsigned int local; 10644 10645 sgs->group_load += cpu_load_without(rq, p); 10646 sgs->group_util += cpu_util_without(i, p); 10647 sgs->group_runnable += cpu_runnable_without(rq, p); 10648 local = task_running_on_cpu(i, p); 10649 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local; 10650 10651 nr_running = rq->nr_running - local; 10652 sgs->sum_nr_running += nr_running; 10653 10654 /* 10655 * No need to call idle_cpu_without() if nr_running is not 0 10656 */ 10657 if (!nr_running && idle_cpu_without(i, p)) 10658 sgs->idle_cpus++; 10659 10660 /* Check if task fits in the CPU */ 10661 if (sd->flags & SD_ASYM_CPUCAPACITY && 10662 sgs->group_misfit_task_load && 10663 task_fits_cpu(p, i)) 10664 sgs->group_misfit_task_load = 0; 10665 10666 } 10667 10668 sgs->group_capacity = group->sgc->capacity; 10669 10670 sgs->group_weight = group->group_weight; 10671 10672 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10673 10674 /* 10675 * Computing avg_load makes sense only when group is fully busy or 10676 * overloaded 10677 */ 10678 if (sgs->group_type == group_fully_busy || 10679 sgs->group_type == group_overloaded) 10680 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10681 sgs->group_capacity; 10682 } 10683 10684 static bool update_pick_idlest(struct sched_group *idlest, 10685 struct sg_lb_stats *idlest_sgs, 10686 struct sched_group *group, 10687 struct sg_lb_stats *sgs) 10688 { 10689 if (sgs->group_type < idlest_sgs->group_type) 10690 return true; 10691 10692 if (sgs->group_type > idlest_sgs->group_type) 10693 return false; 10694 10695 /* 10696 * The candidate and the current idlest group are the same type of 10697 * group. Let check which one is the idlest according to the type. 10698 */ 10699 10700 switch (sgs->group_type) { 10701 case group_overloaded: 10702 case group_fully_busy: 10703 /* Select the group with lowest avg_load. */ 10704 if (idlest_sgs->avg_load <= sgs->avg_load) 10705 return false; 10706 break; 10707 10708 case group_imbalanced: 10709 case group_asym_packing: 10710 case group_smt_balance: 10711 /* Those types are not used in the slow wakeup path */ 10712 return false; 10713 10714 case group_misfit_task: 10715 /* Select group with the highest max capacity */ 10716 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10717 return false; 10718 break; 10719 10720 case group_has_spare: 10721 /* Select group with most idle CPUs */ 10722 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10723 return false; 10724 10725 /* Select group with lowest group_util */ 10726 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10727 idlest_sgs->group_util <= sgs->group_util) 10728 return false; 10729 10730 break; 10731 } 10732 10733 return true; 10734 } 10735 10736 /* 10737 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10738 * domain. 10739 * 10740 * Assumes p is allowed on at least one CPU in sd. 10741 */ 10742 static struct sched_group * 10743 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10744 { 10745 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10746 struct sg_lb_stats local_sgs, tmp_sgs; 10747 struct sg_lb_stats *sgs; 10748 unsigned long imbalance; 10749 struct sg_lb_stats idlest_sgs = { 10750 .avg_load = UINT_MAX, 10751 .group_type = group_overloaded, 10752 }; 10753 10754 do { 10755 int local_group; 10756 10757 /* Skip over this group if it has no CPUs allowed */ 10758 if (!cpumask_intersects(sched_group_span(group), 10759 p->cpus_ptr)) 10760 continue; 10761 10762 /* Skip over this group if no cookie matched */ 10763 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10764 continue; 10765 10766 local_group = cpumask_test_cpu(this_cpu, 10767 sched_group_span(group)); 10768 10769 if (local_group) { 10770 sgs = &local_sgs; 10771 local = group; 10772 } else { 10773 sgs = &tmp_sgs; 10774 } 10775 10776 update_sg_wakeup_stats(sd, group, sgs, p); 10777 10778 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10779 idlest = group; 10780 idlest_sgs = *sgs; 10781 } 10782 10783 } while (group = group->next, group != sd->groups); 10784 10785 10786 /* There is no idlest group to push tasks to */ 10787 if (!idlest) 10788 return NULL; 10789 10790 /* The local group has been skipped because of CPU affinity */ 10791 if (!local) 10792 return idlest; 10793 10794 /* 10795 * If the local group is idler than the selected idlest group 10796 * don't try and push the task. 10797 */ 10798 if (local_sgs.group_type < idlest_sgs.group_type) 10799 return NULL; 10800 10801 /* 10802 * If the local group is busier than the selected idlest group 10803 * try and push the task. 10804 */ 10805 if (local_sgs.group_type > idlest_sgs.group_type) 10806 return idlest; 10807 10808 switch (local_sgs.group_type) { 10809 case group_overloaded: 10810 case group_fully_busy: 10811 10812 /* Calculate allowed imbalance based on load */ 10813 imbalance = scale_load_down(NICE_0_LOAD) * 10814 (sd->imbalance_pct-100) / 100; 10815 10816 /* 10817 * When comparing groups across NUMA domains, it's possible for 10818 * the local domain to be very lightly loaded relative to the 10819 * remote domains but "imbalance" skews the comparison making 10820 * remote CPUs look much more favourable. When considering 10821 * cross-domain, add imbalance to the load on the remote node 10822 * and consider staying local. 10823 */ 10824 10825 if ((sd->flags & SD_NUMA) && 10826 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10827 return NULL; 10828 10829 /* 10830 * If the local group is less loaded than the selected 10831 * idlest group don't try and push any tasks. 10832 */ 10833 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10834 return NULL; 10835 10836 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10837 return NULL; 10838 break; 10839 10840 case group_imbalanced: 10841 case group_asym_packing: 10842 case group_smt_balance: 10843 /* Those type are not used in the slow wakeup path */ 10844 return NULL; 10845 10846 case group_misfit_task: 10847 /* Select group with the highest max capacity */ 10848 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10849 return NULL; 10850 break; 10851 10852 case group_has_spare: 10853 #ifdef CONFIG_NUMA 10854 if (sd->flags & SD_NUMA) { 10855 int imb_numa_nr = sd->imb_numa_nr; 10856 #ifdef CONFIG_NUMA_BALANCING 10857 int idlest_cpu; 10858 /* 10859 * If there is spare capacity at NUMA, try to select 10860 * the preferred node 10861 */ 10862 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10863 return NULL; 10864 10865 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10866 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10867 return idlest; 10868 #endif /* CONFIG_NUMA_BALANCING */ 10869 /* 10870 * Otherwise, keep the task close to the wakeup source 10871 * and improve locality if the number of running tasks 10872 * would remain below threshold where an imbalance is 10873 * allowed while accounting for the possibility the 10874 * task is pinned to a subset of CPUs. If there is a 10875 * real need of migration, periodic load balance will 10876 * take care of it. 10877 */ 10878 if (p->nr_cpus_allowed != NR_CPUS) { 10879 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10880 10881 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10882 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10883 } 10884 10885 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10886 if (!adjust_numa_imbalance(imbalance, 10887 local_sgs.sum_nr_running + 1, 10888 imb_numa_nr)) { 10889 return NULL; 10890 } 10891 } 10892 #endif /* CONFIG_NUMA */ 10893 10894 /* 10895 * Select group with highest number of idle CPUs. We could also 10896 * compare the utilization which is more stable but it can end 10897 * up that the group has less spare capacity but finally more 10898 * idle CPUs which means more opportunity to run task. 10899 */ 10900 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10901 return NULL; 10902 break; 10903 } 10904 10905 return idlest; 10906 } 10907 10908 static void update_idle_cpu_scan(struct lb_env *env, 10909 unsigned long sum_util) 10910 { 10911 struct sched_domain_shared *sd_share; 10912 int llc_weight, pct; 10913 u64 x, y, tmp; 10914 /* 10915 * Update the number of CPUs to scan in LLC domain, which could 10916 * be used as a hint in select_idle_cpu(). The update of sd_share 10917 * could be expensive because it is within a shared cache line. 10918 * So the write of this hint only occurs during periodic load 10919 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10920 * can fire way more frequently than the former. 10921 */ 10922 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10923 return; 10924 10925 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10926 if (env->sd->span_weight != llc_weight) 10927 return; 10928 10929 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10930 if (!sd_share) 10931 return; 10932 10933 /* 10934 * The number of CPUs to search drops as sum_util increases, when 10935 * sum_util hits 85% or above, the scan stops. 10936 * The reason to choose 85% as the threshold is because this is the 10937 * imbalance_pct(117) when a LLC sched group is overloaded. 10938 * 10939 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10940 * and y'= y / SCHED_CAPACITY_SCALE 10941 * 10942 * x is the ratio of sum_util compared to the CPU capacity: 10943 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10944 * y' is the ratio of CPUs to be scanned in the LLC domain, 10945 * and the number of CPUs to scan is calculated by: 10946 * 10947 * nr_scan = llc_weight * y' [2] 10948 * 10949 * When x hits the threshold of overloaded, AKA, when 10950 * x = 100 / pct, y drops to 0. According to [1], 10951 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10952 * 10953 * Scale x by SCHED_CAPACITY_SCALE: 10954 * x' = sum_util / llc_weight; [3] 10955 * 10956 * and finally [1] becomes: 10957 * y = SCHED_CAPACITY_SCALE - 10958 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10959 * 10960 */ 10961 /* equation [3] */ 10962 x = sum_util; 10963 do_div(x, llc_weight); 10964 10965 /* equation [4] */ 10966 pct = env->sd->imbalance_pct; 10967 tmp = x * x * pct * pct; 10968 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10969 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10970 y = SCHED_CAPACITY_SCALE - tmp; 10971 10972 /* equation [2] */ 10973 y *= llc_weight; 10974 do_div(y, SCHED_CAPACITY_SCALE); 10975 if ((int)y != sd_share->nr_idle_scan) 10976 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10977 } 10978 10979 /** 10980 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10981 * @env: The load balancing environment. 10982 * @sds: variable to hold the statistics for this sched_domain. 10983 */ 10984 10985 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10986 { 10987 struct sched_group *sg = env->sd->groups; 10988 struct sg_lb_stats *local = &sds->local_stat; 10989 struct sg_lb_stats tmp_sgs; 10990 unsigned long sum_util = 0; 10991 bool sg_overloaded = 0, sg_overutilized = 0; 10992 10993 do { 10994 struct sg_lb_stats *sgs = &tmp_sgs; 10995 int local_group; 10996 10997 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10998 if (local_group) { 10999 sds->local = sg; 11000 sgs = local; 11001 11002 if (env->idle != CPU_NEWLY_IDLE || 11003 time_after_eq(jiffies, sg->sgc->next_update)) 11004 update_group_capacity(env->sd, env->dst_cpu); 11005 } 11006 11007 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 11008 11009 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 11010 sds->busiest = sg; 11011 sds->busiest_stat = *sgs; 11012 } 11013 11014 /* Now, start updating sd_lb_stats */ 11015 sds->total_load += sgs->group_load; 11016 sds->total_capacity += sgs->group_capacity; 11017 11018 sum_util += sgs->group_util; 11019 sg = sg->next; 11020 } while (sg != env->sd->groups); 11021 11022 /* 11023 * Indicate that the child domain of the busiest group prefers tasks 11024 * go to a child's sibling domains first. NB the flags of a sched group 11025 * are those of the child domain. 11026 */ 11027 if (sds->busiest) 11028 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 11029 11030 11031 if (env->sd->flags & SD_NUMA) 11032 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 11033 11034 if (!env->sd->parent) { 11035 /* update overload indicator if we are at root domain */ 11036 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 11037 11038 /* Update over-utilization (tipping point, U >= 0) indicator */ 11039 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11040 } else if (sg_overutilized) { 11041 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 11042 } 11043 11044 update_idle_cpu_scan(env, sum_util); 11045 } 11046 11047 /** 11048 * calculate_imbalance - Calculate the amount of imbalance present within the 11049 * groups of a given sched_domain during load balance. 11050 * @env: load balance environment 11051 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 11052 */ 11053 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 11054 { 11055 struct sg_lb_stats *local, *busiest; 11056 11057 local = &sds->local_stat; 11058 busiest = &sds->busiest_stat; 11059 11060 if (busiest->group_type == group_misfit_task) { 11061 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 11062 /* Set imbalance to allow misfit tasks to be balanced. */ 11063 env->migration_type = migrate_misfit; 11064 env->imbalance = 1; 11065 } else { 11066 /* 11067 * Set load imbalance to allow moving task from cpu 11068 * with reduced capacity. 11069 */ 11070 env->migration_type = migrate_load; 11071 env->imbalance = busiest->group_misfit_task_load; 11072 } 11073 return; 11074 } 11075 11076 if (busiest->group_type == group_asym_packing) { 11077 /* 11078 * In case of asym capacity, we will try to migrate all load to 11079 * the preferred CPU. 11080 */ 11081 env->migration_type = migrate_task; 11082 env->imbalance = busiest->sum_h_nr_running; 11083 return; 11084 } 11085 11086 if (busiest->group_type == group_smt_balance) { 11087 /* Reduce number of tasks sharing CPU capacity */ 11088 env->migration_type = migrate_task; 11089 env->imbalance = 1; 11090 return; 11091 } 11092 11093 if (busiest->group_type == group_imbalanced) { 11094 /* 11095 * In the group_imb case we cannot rely on group-wide averages 11096 * to ensure CPU-load equilibrium, try to move any task to fix 11097 * the imbalance. The next load balance will take care of 11098 * balancing back the system. 11099 */ 11100 env->migration_type = migrate_task; 11101 env->imbalance = 1; 11102 return; 11103 } 11104 11105 /* 11106 * Try to use spare capacity of local group without overloading it or 11107 * emptying busiest. 11108 */ 11109 if (local->group_type == group_has_spare) { 11110 if ((busiest->group_type > group_fully_busy) && 11111 !(env->sd->flags & SD_SHARE_LLC)) { 11112 /* 11113 * If busiest is overloaded, try to fill spare 11114 * capacity. This might end up creating spare capacity 11115 * in busiest or busiest still being overloaded but 11116 * there is no simple way to directly compute the 11117 * amount of load to migrate in order to balance the 11118 * system. 11119 */ 11120 env->migration_type = migrate_util; 11121 env->imbalance = max(local->group_capacity, local->group_util) - 11122 local->group_util; 11123 11124 /* 11125 * In some cases, the group's utilization is max or even 11126 * higher than capacity because of migrations but the 11127 * local CPU is (newly) idle. There is at least one 11128 * waiting task in this overloaded busiest group. Let's 11129 * try to pull it. 11130 */ 11131 if (env->idle && env->imbalance == 0) { 11132 env->migration_type = migrate_task; 11133 env->imbalance = 1; 11134 } 11135 11136 return; 11137 } 11138 11139 if (busiest->group_weight == 1 || sds->prefer_sibling) { 11140 /* 11141 * When prefer sibling, evenly spread running tasks on 11142 * groups. 11143 */ 11144 env->migration_type = migrate_task; 11145 env->imbalance = sibling_imbalance(env, sds, busiest, local); 11146 } else { 11147 11148 /* 11149 * If there is no overload, we just want to even the number of 11150 * idle CPUs. 11151 */ 11152 env->migration_type = migrate_task; 11153 env->imbalance = max_t(long, 0, 11154 (local->idle_cpus - busiest->idle_cpus)); 11155 } 11156 11157 #ifdef CONFIG_NUMA 11158 /* Consider allowing a small imbalance between NUMA groups */ 11159 if (env->sd->flags & SD_NUMA) { 11160 env->imbalance = adjust_numa_imbalance(env->imbalance, 11161 local->sum_nr_running + 1, 11162 env->sd->imb_numa_nr); 11163 } 11164 #endif 11165 11166 /* Number of tasks to move to restore balance */ 11167 env->imbalance >>= 1; 11168 11169 return; 11170 } 11171 11172 /* 11173 * Local is fully busy but has to take more load to relieve the 11174 * busiest group 11175 */ 11176 if (local->group_type < group_overloaded) { 11177 /* 11178 * Local will become overloaded so the avg_load metrics are 11179 * finally needed. 11180 */ 11181 11182 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 11183 local->group_capacity; 11184 11185 /* 11186 * If the local group is more loaded than the selected 11187 * busiest group don't try to pull any tasks. 11188 */ 11189 if (local->avg_load >= busiest->avg_load) { 11190 env->imbalance = 0; 11191 return; 11192 } 11193 11194 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 11195 sds->total_capacity; 11196 11197 /* 11198 * If the local group is more loaded than the average system 11199 * load, don't try to pull any tasks. 11200 */ 11201 if (local->avg_load >= sds->avg_load) { 11202 env->imbalance = 0; 11203 return; 11204 } 11205 11206 } 11207 11208 /* 11209 * Both group are or will become overloaded and we're trying to get all 11210 * the CPUs to the average_load, so we don't want to push ourselves 11211 * above the average load, nor do we wish to reduce the max loaded CPU 11212 * below the average load. At the same time, we also don't want to 11213 * reduce the group load below the group capacity. Thus we look for 11214 * the minimum possible imbalance. 11215 */ 11216 env->migration_type = migrate_load; 11217 env->imbalance = min( 11218 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 11219 (sds->avg_load - local->avg_load) * local->group_capacity 11220 ) / SCHED_CAPACITY_SCALE; 11221 } 11222 11223 /******* sched_balance_find_src_group() helpers end here *********************/ 11224 11225 /* 11226 * Decision matrix according to the local and busiest group type: 11227 * 11228 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 11229 * has_spare nr_idle balanced N/A N/A balanced balanced 11230 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 11231 * misfit_task force N/A N/A N/A N/A N/A 11232 * asym_packing force force N/A N/A force force 11233 * imbalanced force force N/A N/A force force 11234 * overloaded force force N/A N/A force avg_load 11235 * 11236 * N/A : Not Applicable because already filtered while updating 11237 * statistics. 11238 * balanced : The system is balanced for these 2 groups. 11239 * force : Calculate the imbalance as load migration is probably needed. 11240 * avg_load : Only if imbalance is significant enough. 11241 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 11242 * different in groups. 11243 */ 11244 11245 /** 11246 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 11247 * if there is an imbalance. 11248 * @env: The load balancing environment. 11249 * 11250 * Also calculates the amount of runnable load which should be moved 11251 * to restore balance. 11252 * 11253 * Return: - The busiest group if imbalance exists. 11254 */ 11255 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 11256 { 11257 struct sg_lb_stats *local, *busiest; 11258 struct sd_lb_stats sds; 11259 11260 init_sd_lb_stats(&sds); 11261 11262 /* 11263 * Compute the various statistics relevant for load balancing at 11264 * this level. 11265 */ 11266 update_sd_lb_stats(env, &sds); 11267 11268 /* There is no busy sibling group to pull tasks from */ 11269 if (!sds.busiest) 11270 goto out_balanced; 11271 11272 busiest = &sds.busiest_stat; 11273 11274 /* Misfit tasks should be dealt with regardless of the avg load */ 11275 if (busiest->group_type == group_misfit_task) 11276 goto force_balance; 11277 11278 if (!is_rd_overutilized(env->dst_rq->rd) && 11279 rcu_dereference(env->dst_rq->rd->pd)) 11280 goto out_balanced; 11281 11282 /* ASYM feature bypasses nice load balance check */ 11283 if (busiest->group_type == group_asym_packing) 11284 goto force_balance; 11285 11286 /* 11287 * If the busiest group is imbalanced the below checks don't 11288 * work because they assume all things are equal, which typically 11289 * isn't true due to cpus_ptr constraints and the like. 11290 */ 11291 if (busiest->group_type == group_imbalanced) 11292 goto force_balance; 11293 11294 local = &sds.local_stat; 11295 /* 11296 * If the local group is busier than the selected busiest group 11297 * don't try and pull any tasks. 11298 */ 11299 if (local->group_type > busiest->group_type) 11300 goto out_balanced; 11301 11302 /* 11303 * When groups are overloaded, use the avg_load to ensure fairness 11304 * between tasks. 11305 */ 11306 if (local->group_type == group_overloaded) { 11307 /* 11308 * If the local group is more loaded than the selected 11309 * busiest group don't try to pull any tasks. 11310 */ 11311 if (local->avg_load >= busiest->avg_load) 11312 goto out_balanced; 11313 11314 /* XXX broken for overlapping NUMA groups */ 11315 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 11316 sds.total_capacity; 11317 11318 /* 11319 * Don't pull any tasks if this group is already above the 11320 * domain average load. 11321 */ 11322 if (local->avg_load >= sds.avg_load) 11323 goto out_balanced; 11324 11325 /* 11326 * If the busiest group is more loaded, use imbalance_pct to be 11327 * conservative. 11328 */ 11329 if (100 * busiest->avg_load <= 11330 env->sd->imbalance_pct * local->avg_load) 11331 goto out_balanced; 11332 } 11333 11334 /* 11335 * Try to move all excess tasks to a sibling domain of the busiest 11336 * group's child domain. 11337 */ 11338 if (sds.prefer_sibling && local->group_type == group_has_spare && 11339 sibling_imbalance(env, &sds, busiest, local) > 1) 11340 goto force_balance; 11341 11342 if (busiest->group_type != group_overloaded) { 11343 if (!env->idle) { 11344 /* 11345 * If the busiest group is not overloaded (and as a 11346 * result the local one too) but this CPU is already 11347 * busy, let another idle CPU try to pull task. 11348 */ 11349 goto out_balanced; 11350 } 11351 11352 if (busiest->group_type == group_smt_balance && 11353 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 11354 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 11355 goto force_balance; 11356 } 11357 11358 if (busiest->group_weight > 1 && 11359 local->idle_cpus <= (busiest->idle_cpus + 1)) { 11360 /* 11361 * If the busiest group is not overloaded 11362 * and there is no imbalance between this and busiest 11363 * group wrt idle CPUs, it is balanced. The imbalance 11364 * becomes significant if the diff is greater than 1 11365 * otherwise we might end up to just move the imbalance 11366 * on another group. Of course this applies only if 11367 * there is more than 1 CPU per group. 11368 */ 11369 goto out_balanced; 11370 } 11371 11372 if (busiest->sum_h_nr_running == 1) { 11373 /* 11374 * busiest doesn't have any tasks waiting to run 11375 */ 11376 goto out_balanced; 11377 } 11378 } 11379 11380 force_balance: 11381 /* Looks like there is an imbalance. Compute it */ 11382 calculate_imbalance(env, &sds); 11383 return env->imbalance ? sds.busiest : NULL; 11384 11385 out_balanced: 11386 env->imbalance = 0; 11387 return NULL; 11388 } 11389 11390 /* 11391 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11392 */ 11393 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11394 struct sched_group *group) 11395 { 11396 struct rq *busiest = NULL, *rq; 11397 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11398 unsigned int busiest_nr = 0; 11399 int i; 11400 11401 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11402 unsigned long capacity, load, util; 11403 unsigned int nr_running; 11404 enum fbq_type rt; 11405 11406 rq = cpu_rq(i); 11407 rt = fbq_classify_rq(rq); 11408 11409 /* 11410 * We classify groups/runqueues into three groups: 11411 * - regular: there are !numa tasks 11412 * - remote: there are numa tasks that run on the 'wrong' node 11413 * - all: there is no distinction 11414 * 11415 * In order to avoid migrating ideally placed numa tasks, 11416 * ignore those when there's better options. 11417 * 11418 * If we ignore the actual busiest queue to migrate another 11419 * task, the next balance pass can still reduce the busiest 11420 * queue by moving tasks around inside the node. 11421 * 11422 * If we cannot move enough load due to this classification 11423 * the next pass will adjust the group classification and 11424 * allow migration of more tasks. 11425 * 11426 * Both cases only affect the total convergence complexity. 11427 */ 11428 if (rt > env->fbq_type) 11429 continue; 11430 11431 nr_running = rq->cfs.h_nr_runnable; 11432 if (!nr_running) 11433 continue; 11434 11435 capacity = capacity_of(i); 11436 11437 /* 11438 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11439 * eventually lead to active_balancing high->low capacity. 11440 * Higher per-CPU capacity is considered better than balancing 11441 * average load. 11442 */ 11443 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11444 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11445 nr_running == 1) 11446 continue; 11447 11448 /* 11449 * Make sure we only pull tasks from a CPU of lower priority 11450 * when balancing between SMT siblings. 11451 * 11452 * If balancing between cores, let lower priority CPUs help 11453 * SMT cores with more than one busy sibling. 11454 */ 11455 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11456 continue; 11457 11458 switch (env->migration_type) { 11459 case migrate_load: 11460 /* 11461 * When comparing with load imbalance, use cpu_load() 11462 * which is not scaled with the CPU capacity. 11463 */ 11464 load = cpu_load(rq); 11465 11466 if (nr_running == 1 && load > env->imbalance && 11467 !check_cpu_capacity(rq, env->sd)) 11468 break; 11469 11470 /* 11471 * For the load comparisons with the other CPUs, 11472 * consider the cpu_load() scaled with the CPU 11473 * capacity, so that the load can be moved away 11474 * from the CPU that is potentially running at a 11475 * lower capacity. 11476 * 11477 * Thus we're looking for max(load_i / capacity_i), 11478 * crosswise multiplication to rid ourselves of the 11479 * division works out to: 11480 * load_i * capacity_j > load_j * capacity_i; 11481 * where j is our previous maximum. 11482 */ 11483 if (load * busiest_capacity > busiest_load * capacity) { 11484 busiest_load = load; 11485 busiest_capacity = capacity; 11486 busiest = rq; 11487 } 11488 break; 11489 11490 case migrate_util: 11491 util = cpu_util_cfs_boost(i); 11492 11493 /* 11494 * Don't try to pull utilization from a CPU with one 11495 * running task. Whatever its utilization, we will fail 11496 * detach the task. 11497 */ 11498 if (nr_running <= 1) 11499 continue; 11500 11501 if (busiest_util < util) { 11502 busiest_util = util; 11503 busiest = rq; 11504 } 11505 break; 11506 11507 case migrate_task: 11508 if (busiest_nr < nr_running) { 11509 busiest_nr = nr_running; 11510 busiest = rq; 11511 } 11512 break; 11513 11514 case migrate_misfit: 11515 /* 11516 * For ASYM_CPUCAPACITY domains with misfit tasks we 11517 * simply seek the "biggest" misfit task. 11518 */ 11519 if (rq->misfit_task_load > busiest_load) { 11520 busiest_load = rq->misfit_task_load; 11521 busiest = rq; 11522 } 11523 11524 break; 11525 11526 } 11527 } 11528 11529 return busiest; 11530 } 11531 11532 /* 11533 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11534 * so long as it is large enough. 11535 */ 11536 #define MAX_PINNED_INTERVAL 512 11537 11538 static inline bool 11539 asym_active_balance(struct lb_env *env) 11540 { 11541 /* 11542 * ASYM_PACKING needs to force migrate tasks from busy but lower 11543 * priority CPUs in order to pack all tasks in the highest priority 11544 * CPUs. When done between cores, do it only if the whole core if the 11545 * whole core is idle. 11546 * 11547 * If @env::src_cpu is an SMT core with busy siblings, let 11548 * the lower priority @env::dst_cpu help it. Do not follow 11549 * CPU priority. 11550 */ 11551 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11552 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11553 !sched_use_asym_prio(env->sd, env->src_cpu)); 11554 } 11555 11556 static inline bool 11557 imbalanced_active_balance(struct lb_env *env) 11558 { 11559 struct sched_domain *sd = env->sd; 11560 11561 /* 11562 * The imbalanced case includes the case of pinned tasks preventing a fair 11563 * distribution of the load on the system but also the even distribution of the 11564 * threads on a system with spare capacity 11565 */ 11566 if ((env->migration_type == migrate_task) && 11567 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11568 return 1; 11569 11570 return 0; 11571 } 11572 11573 static int need_active_balance(struct lb_env *env) 11574 { 11575 struct sched_domain *sd = env->sd; 11576 11577 if (asym_active_balance(env)) 11578 return 1; 11579 11580 if (imbalanced_active_balance(env)) 11581 return 1; 11582 11583 /* 11584 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11585 * It's worth migrating the task if the src_cpu's capacity is reduced 11586 * because of other sched_class or IRQs if more capacity stays 11587 * available on dst_cpu. 11588 */ 11589 if (env->idle && 11590 (env->src_rq->cfs.h_nr_runnable == 1)) { 11591 if ((check_cpu_capacity(env->src_rq, sd)) && 11592 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11593 return 1; 11594 } 11595 11596 if (env->migration_type == migrate_misfit) 11597 return 1; 11598 11599 return 0; 11600 } 11601 11602 static int active_load_balance_cpu_stop(void *data); 11603 11604 static int should_we_balance(struct lb_env *env) 11605 { 11606 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11607 struct sched_group *sg = env->sd->groups; 11608 int cpu, idle_smt = -1; 11609 11610 /* 11611 * Ensure the balancing environment is consistent; can happen 11612 * when the softirq triggers 'during' hotplug. 11613 */ 11614 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11615 return 0; 11616 11617 /* 11618 * In the newly idle case, we will allow all the CPUs 11619 * to do the newly idle load balance. 11620 * 11621 * However, we bail out if we already have tasks or a wakeup pending, 11622 * to optimize wakeup latency. 11623 */ 11624 if (env->idle == CPU_NEWLY_IDLE) { 11625 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11626 return 0; 11627 return 1; 11628 } 11629 11630 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11631 /* Try to find first idle CPU */ 11632 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11633 if (!idle_cpu(cpu)) 11634 continue; 11635 11636 /* 11637 * Don't balance to idle SMT in busy core right away when 11638 * balancing cores, but remember the first idle SMT CPU for 11639 * later consideration. Find CPU on an idle core first. 11640 */ 11641 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11642 if (idle_smt == -1) 11643 idle_smt = cpu; 11644 /* 11645 * If the core is not idle, and first SMT sibling which is 11646 * idle has been found, then its not needed to check other 11647 * SMT siblings for idleness: 11648 */ 11649 #ifdef CONFIG_SCHED_SMT 11650 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11651 #endif 11652 continue; 11653 } 11654 11655 /* 11656 * Are we the first idle core in a non-SMT domain or higher, 11657 * or the first idle CPU in a SMT domain? 11658 */ 11659 return cpu == env->dst_cpu; 11660 } 11661 11662 /* Are we the first idle CPU with busy siblings? */ 11663 if (idle_smt != -1) 11664 return idle_smt == env->dst_cpu; 11665 11666 /* Are we the first CPU of this group ? */ 11667 return group_balance_cpu(sg) == env->dst_cpu; 11668 } 11669 11670 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd, 11671 enum cpu_idle_type idle) 11672 { 11673 if (!schedstat_enabled()) 11674 return; 11675 11676 switch (env->migration_type) { 11677 case migrate_load: 11678 __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance); 11679 break; 11680 case migrate_util: 11681 __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance); 11682 break; 11683 case migrate_task: 11684 __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance); 11685 break; 11686 case migrate_misfit: 11687 __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance); 11688 break; 11689 } 11690 } 11691 11692 /* 11693 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11694 * tasks if there is an imbalance. 11695 */ 11696 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11697 struct sched_domain *sd, enum cpu_idle_type idle, 11698 int *continue_balancing) 11699 { 11700 int ld_moved, cur_ld_moved, active_balance = 0; 11701 struct sched_domain *sd_parent = sd->parent; 11702 struct sched_group *group; 11703 struct rq *busiest; 11704 struct rq_flags rf; 11705 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11706 struct lb_env env = { 11707 .sd = sd, 11708 .dst_cpu = this_cpu, 11709 .dst_rq = this_rq, 11710 .dst_grpmask = group_balance_mask(sd->groups), 11711 .idle = idle, 11712 .loop_break = SCHED_NR_MIGRATE_BREAK, 11713 .cpus = cpus, 11714 .fbq_type = all, 11715 .tasks = LIST_HEAD_INIT(env.tasks), 11716 }; 11717 11718 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11719 11720 schedstat_inc(sd->lb_count[idle]); 11721 11722 redo: 11723 if (!should_we_balance(&env)) { 11724 *continue_balancing = 0; 11725 goto out_balanced; 11726 } 11727 11728 group = sched_balance_find_src_group(&env); 11729 if (!group) { 11730 schedstat_inc(sd->lb_nobusyg[idle]); 11731 goto out_balanced; 11732 } 11733 11734 busiest = sched_balance_find_src_rq(&env, group); 11735 if (!busiest) { 11736 schedstat_inc(sd->lb_nobusyq[idle]); 11737 goto out_balanced; 11738 } 11739 11740 WARN_ON_ONCE(busiest == env.dst_rq); 11741 11742 update_lb_imbalance_stat(&env, sd, idle); 11743 11744 env.src_cpu = busiest->cpu; 11745 env.src_rq = busiest; 11746 11747 ld_moved = 0; 11748 /* Clear this flag as soon as we find a pullable task */ 11749 env.flags |= LBF_ALL_PINNED; 11750 if (busiest->nr_running > 1) { 11751 /* 11752 * Attempt to move tasks. If sched_balance_find_src_group has found 11753 * an imbalance but busiest->nr_running <= 1, the group is 11754 * still unbalanced. ld_moved simply stays zero, so it is 11755 * correctly treated as an imbalance. 11756 */ 11757 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11758 11759 more_balance: 11760 rq_lock_irqsave(busiest, &rf); 11761 update_rq_clock(busiest); 11762 11763 /* 11764 * cur_ld_moved - load moved in current iteration 11765 * ld_moved - cumulative load moved across iterations 11766 */ 11767 cur_ld_moved = detach_tasks(&env); 11768 11769 /* 11770 * We've detached some tasks from busiest_rq. Every 11771 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11772 * unlock busiest->lock, and we are able to be sure 11773 * that nobody can manipulate the tasks in parallel. 11774 * See task_rq_lock() family for the details. 11775 */ 11776 11777 rq_unlock(busiest, &rf); 11778 11779 if (cur_ld_moved) { 11780 attach_tasks(&env); 11781 ld_moved += cur_ld_moved; 11782 } 11783 11784 local_irq_restore(rf.flags); 11785 11786 if (env.flags & LBF_NEED_BREAK) { 11787 env.flags &= ~LBF_NEED_BREAK; 11788 goto more_balance; 11789 } 11790 11791 /* 11792 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11793 * us and move them to an alternate dst_cpu in our sched_group 11794 * where they can run. The upper limit on how many times we 11795 * iterate on same src_cpu is dependent on number of CPUs in our 11796 * sched_group. 11797 * 11798 * This changes load balance semantics a bit on who can move 11799 * load to a given_cpu. In addition to the given_cpu itself 11800 * (or a ilb_cpu acting on its behalf where given_cpu is 11801 * nohz-idle), we now have balance_cpu in a position to move 11802 * load to given_cpu. In rare situations, this may cause 11803 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11804 * _independently_ and at _same_ time to move some load to 11805 * given_cpu) causing excess load to be moved to given_cpu. 11806 * This however should not happen so much in practice and 11807 * moreover subsequent load balance cycles should correct the 11808 * excess load moved. 11809 */ 11810 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11811 11812 /* Prevent to re-select dst_cpu via env's CPUs */ 11813 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11814 11815 env.dst_rq = cpu_rq(env.new_dst_cpu); 11816 env.dst_cpu = env.new_dst_cpu; 11817 env.flags &= ~LBF_DST_PINNED; 11818 env.loop = 0; 11819 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11820 11821 /* 11822 * Go back to "more_balance" rather than "redo" since we 11823 * need to continue with same src_cpu. 11824 */ 11825 goto more_balance; 11826 } 11827 11828 /* 11829 * We failed to reach balance because of affinity. 11830 */ 11831 if (sd_parent) { 11832 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11833 11834 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11835 *group_imbalance = 1; 11836 } 11837 11838 /* All tasks on this runqueue were pinned by CPU affinity */ 11839 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11840 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11841 /* 11842 * Attempting to continue load balancing at the current 11843 * sched_domain level only makes sense if there are 11844 * active CPUs remaining as possible busiest CPUs to 11845 * pull load from which are not contained within the 11846 * destination group that is receiving any migrated 11847 * load. 11848 */ 11849 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11850 env.loop = 0; 11851 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11852 goto redo; 11853 } 11854 goto out_all_pinned; 11855 } 11856 } 11857 11858 if (!ld_moved) { 11859 schedstat_inc(sd->lb_failed[idle]); 11860 /* 11861 * Increment the failure counter only on periodic balance. 11862 * We do not want newidle balance, which can be very 11863 * frequent, pollute the failure counter causing 11864 * excessive cache_hot migrations and active balances. 11865 * 11866 * Similarly for migration_misfit which is not related to 11867 * load/util migration, don't pollute nr_balance_failed. 11868 */ 11869 if (idle != CPU_NEWLY_IDLE && 11870 env.migration_type != migrate_misfit) 11871 sd->nr_balance_failed++; 11872 11873 if (need_active_balance(&env)) { 11874 unsigned long flags; 11875 11876 raw_spin_rq_lock_irqsave(busiest, flags); 11877 11878 /* 11879 * Don't kick the active_load_balance_cpu_stop, 11880 * if the curr task on busiest CPU can't be 11881 * moved to this_cpu: 11882 */ 11883 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11884 raw_spin_rq_unlock_irqrestore(busiest, flags); 11885 goto out_one_pinned; 11886 } 11887 11888 /* Record that we found at least one task that could run on this_cpu */ 11889 env.flags &= ~LBF_ALL_PINNED; 11890 11891 /* 11892 * ->active_balance synchronizes accesses to 11893 * ->active_balance_work. Once set, it's cleared 11894 * only after active load balance is finished. 11895 */ 11896 if (!busiest->active_balance) { 11897 busiest->active_balance = 1; 11898 busiest->push_cpu = this_cpu; 11899 active_balance = 1; 11900 } 11901 11902 preempt_disable(); 11903 raw_spin_rq_unlock_irqrestore(busiest, flags); 11904 if (active_balance) { 11905 stop_one_cpu_nowait(cpu_of(busiest), 11906 active_load_balance_cpu_stop, busiest, 11907 &busiest->active_balance_work); 11908 } 11909 preempt_enable(); 11910 } 11911 } else { 11912 sd->nr_balance_failed = 0; 11913 } 11914 11915 if (likely(!active_balance) || need_active_balance(&env)) { 11916 /* We were unbalanced, so reset the balancing interval */ 11917 sd->balance_interval = sd->min_interval; 11918 } 11919 11920 goto out; 11921 11922 out_balanced: 11923 /* 11924 * We reach balance although we may have faced some affinity 11925 * constraints. Clear the imbalance flag only if other tasks got 11926 * a chance to move and fix the imbalance. 11927 */ 11928 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11929 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11930 11931 if (*group_imbalance) 11932 *group_imbalance = 0; 11933 } 11934 11935 out_all_pinned: 11936 /* 11937 * We reach balance because all tasks are pinned at this level so 11938 * we can't migrate them. Let the imbalance flag set so parent level 11939 * can try to migrate them. 11940 */ 11941 schedstat_inc(sd->lb_balanced[idle]); 11942 11943 sd->nr_balance_failed = 0; 11944 11945 out_one_pinned: 11946 ld_moved = 0; 11947 11948 /* 11949 * sched_balance_newidle() disregards balance intervals, so we could 11950 * repeatedly reach this code, which would lead to balance_interval 11951 * skyrocketing in a short amount of time. Skip the balance_interval 11952 * increase logic to avoid that. 11953 * 11954 * Similarly misfit migration which is not necessarily an indication of 11955 * the system being busy and requires lb to backoff to let it settle 11956 * down. 11957 */ 11958 if (env.idle == CPU_NEWLY_IDLE || 11959 env.migration_type == migrate_misfit) 11960 goto out; 11961 11962 /* tune up the balancing interval */ 11963 if ((env.flags & LBF_ALL_PINNED && 11964 sd->balance_interval < MAX_PINNED_INTERVAL) || 11965 sd->balance_interval < sd->max_interval) 11966 sd->balance_interval *= 2; 11967 out: 11968 return ld_moved; 11969 } 11970 11971 static inline unsigned long 11972 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11973 { 11974 unsigned long interval = sd->balance_interval; 11975 11976 if (cpu_busy) 11977 interval *= sd->busy_factor; 11978 11979 /* scale ms to jiffies */ 11980 interval = msecs_to_jiffies(interval); 11981 11982 /* 11983 * Reduce likelihood of busy balancing at higher domains racing with 11984 * balancing at lower domains by preventing their balancing periods 11985 * from being multiples of each other. 11986 */ 11987 if (cpu_busy) 11988 interval -= 1; 11989 11990 interval = clamp(interval, 1UL, max_load_balance_interval); 11991 11992 return interval; 11993 } 11994 11995 static inline void 11996 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11997 { 11998 unsigned long interval, next; 11999 12000 /* used by idle balance, so cpu_busy = 0 */ 12001 interval = get_sd_balance_interval(sd, 0); 12002 next = sd->last_balance + interval; 12003 12004 if (time_after(*next_balance, next)) 12005 *next_balance = next; 12006 } 12007 12008 /* 12009 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 12010 * running tasks off the busiest CPU onto idle CPUs. It requires at 12011 * least 1 task to be running on each physical CPU where possible, and 12012 * avoids physical / logical imbalances. 12013 */ 12014 static int active_load_balance_cpu_stop(void *data) 12015 { 12016 struct rq *busiest_rq = data; 12017 int busiest_cpu = cpu_of(busiest_rq); 12018 int target_cpu = busiest_rq->push_cpu; 12019 struct rq *target_rq = cpu_rq(target_cpu); 12020 struct sched_domain *sd; 12021 struct task_struct *p = NULL; 12022 struct rq_flags rf; 12023 12024 rq_lock_irq(busiest_rq, &rf); 12025 /* 12026 * Between queueing the stop-work and running it is a hole in which 12027 * CPUs can become inactive. We should not move tasks from or to 12028 * inactive CPUs. 12029 */ 12030 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 12031 goto out_unlock; 12032 12033 /* Make sure the requested CPU hasn't gone down in the meantime: */ 12034 if (unlikely(busiest_cpu != smp_processor_id() || 12035 !busiest_rq->active_balance)) 12036 goto out_unlock; 12037 12038 /* Is there any task to move? */ 12039 if (busiest_rq->nr_running <= 1) 12040 goto out_unlock; 12041 12042 /* 12043 * This condition is "impossible", if it occurs 12044 * we need to fix it. Originally reported by 12045 * Bjorn Helgaas on a 128-CPU setup. 12046 */ 12047 WARN_ON_ONCE(busiest_rq == target_rq); 12048 12049 /* Search for an sd spanning us and the target CPU. */ 12050 rcu_read_lock(); 12051 for_each_domain(target_cpu, sd) { 12052 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 12053 break; 12054 } 12055 12056 if (likely(sd)) { 12057 struct lb_env env = { 12058 .sd = sd, 12059 .dst_cpu = target_cpu, 12060 .dst_rq = target_rq, 12061 .src_cpu = busiest_rq->cpu, 12062 .src_rq = busiest_rq, 12063 .idle = CPU_IDLE, 12064 .flags = LBF_ACTIVE_LB, 12065 }; 12066 12067 schedstat_inc(sd->alb_count); 12068 update_rq_clock(busiest_rq); 12069 12070 p = detach_one_task(&env); 12071 if (p) { 12072 schedstat_inc(sd->alb_pushed); 12073 /* Active balancing done, reset the failure counter. */ 12074 sd->nr_balance_failed = 0; 12075 } else { 12076 schedstat_inc(sd->alb_failed); 12077 } 12078 } 12079 rcu_read_unlock(); 12080 out_unlock: 12081 busiest_rq->active_balance = 0; 12082 rq_unlock(busiest_rq, &rf); 12083 12084 if (p) 12085 attach_one_task(target_rq, p); 12086 12087 local_irq_enable(); 12088 12089 return 0; 12090 } 12091 12092 /* 12093 * This flag serializes load-balancing passes over large domains 12094 * (above the NODE topology level) - only one load-balancing instance 12095 * may run at a time, to reduce overhead on very large systems with 12096 * lots of CPUs and large NUMA distances. 12097 * 12098 * - Note that load-balancing passes triggered while another one 12099 * is executing are skipped and not re-tried. 12100 * 12101 * - Also note that this does not serialize rebalance_domains() 12102 * execution, as non-SD_SERIALIZE domains will still be 12103 * load-balanced in parallel. 12104 */ 12105 static atomic_t sched_balance_running = ATOMIC_INIT(0); 12106 12107 /* 12108 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 12109 * This trades load-balance latency on larger machines for less cross talk. 12110 */ 12111 void update_max_interval(void) 12112 { 12113 max_load_balance_interval = HZ*num_online_cpus()/10; 12114 } 12115 12116 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 12117 { 12118 if (cost > sd->max_newidle_lb_cost) { 12119 /* 12120 * Track max cost of a domain to make sure to not delay the 12121 * next wakeup on the CPU. 12122 */ 12123 sd->max_newidle_lb_cost = cost; 12124 sd->last_decay_max_lb_cost = jiffies; 12125 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 12126 /* 12127 * Decay the newidle max times by ~1% per second to ensure that 12128 * it is not outdated and the current max cost is actually 12129 * shorter. 12130 */ 12131 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 12132 sd->last_decay_max_lb_cost = jiffies; 12133 12134 return true; 12135 } 12136 12137 return false; 12138 } 12139 12140 /* 12141 * It checks each scheduling domain to see if it is due to be balanced, 12142 * and initiates a balancing operation if so. 12143 * 12144 * Balancing parameters are set up in init_sched_domains. 12145 */ 12146 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 12147 { 12148 int continue_balancing = 1; 12149 int cpu = rq->cpu; 12150 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 12151 unsigned long interval; 12152 struct sched_domain *sd; 12153 /* Earliest time when we have to do rebalance again */ 12154 unsigned long next_balance = jiffies + 60*HZ; 12155 int update_next_balance = 0; 12156 int need_serialize, need_decay = 0; 12157 u64 max_cost = 0; 12158 12159 rcu_read_lock(); 12160 for_each_domain(cpu, sd) { 12161 /* 12162 * Decay the newidle max times here because this is a regular 12163 * visit to all the domains. 12164 */ 12165 need_decay = update_newidle_cost(sd, 0); 12166 max_cost += sd->max_newidle_lb_cost; 12167 12168 /* 12169 * Stop the load balance at this level. There is another 12170 * CPU in our sched group which is doing load balancing more 12171 * actively. 12172 */ 12173 if (!continue_balancing) { 12174 if (need_decay) 12175 continue; 12176 break; 12177 } 12178 12179 interval = get_sd_balance_interval(sd, busy); 12180 12181 need_serialize = sd->flags & SD_SERIALIZE; 12182 if (need_serialize) { 12183 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) 12184 goto out; 12185 } 12186 12187 if (time_after_eq(jiffies, sd->last_balance + interval)) { 12188 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 12189 /* 12190 * The LBF_DST_PINNED logic could have changed 12191 * env->dst_cpu, so we can't know our idle 12192 * state even if we migrated tasks. Update it. 12193 */ 12194 idle = idle_cpu(cpu); 12195 busy = !idle && !sched_idle_cpu(cpu); 12196 } 12197 sd->last_balance = jiffies; 12198 interval = get_sd_balance_interval(sd, busy); 12199 } 12200 if (need_serialize) 12201 atomic_set_release(&sched_balance_running, 0); 12202 out: 12203 if (time_after(next_balance, sd->last_balance + interval)) { 12204 next_balance = sd->last_balance + interval; 12205 update_next_balance = 1; 12206 } 12207 } 12208 if (need_decay) { 12209 /* 12210 * Ensure the rq-wide value also decays but keep it at a 12211 * reasonable floor to avoid funnies with rq->avg_idle. 12212 */ 12213 rq->max_idle_balance_cost = 12214 max((u64)sysctl_sched_migration_cost, max_cost); 12215 } 12216 rcu_read_unlock(); 12217 12218 /* 12219 * next_balance will be updated only when there is a need. 12220 * When the cpu is attached to null domain for ex, it will not be 12221 * updated. 12222 */ 12223 if (likely(update_next_balance)) 12224 rq->next_balance = next_balance; 12225 12226 } 12227 12228 static inline int on_null_domain(struct rq *rq) 12229 { 12230 return unlikely(!rcu_dereference_sched(rq->sd)); 12231 } 12232 12233 #ifdef CONFIG_NO_HZ_COMMON 12234 /* 12235 * NOHZ idle load balancing (ILB) details: 12236 * 12237 * - When one of the busy CPUs notices that there may be an idle rebalancing 12238 * needed, they will kick the idle load balancer, which then does idle 12239 * load balancing for all the idle CPUs. 12240 */ 12241 static inline int find_new_ilb(void) 12242 { 12243 const struct cpumask *hk_mask; 12244 int ilb_cpu; 12245 12246 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 12247 12248 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 12249 12250 if (ilb_cpu == smp_processor_id()) 12251 continue; 12252 12253 if (idle_cpu(ilb_cpu)) 12254 return ilb_cpu; 12255 } 12256 12257 return -1; 12258 } 12259 12260 /* 12261 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 12262 * SMP function call (IPI). 12263 * 12264 * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set 12265 * (if there is one). 12266 */ 12267 static void kick_ilb(unsigned int flags) 12268 { 12269 int ilb_cpu; 12270 12271 /* 12272 * Increase nohz.next_balance only when if full ilb is triggered but 12273 * not if we only update stats. 12274 */ 12275 if (flags & NOHZ_BALANCE_KICK) 12276 nohz.next_balance = jiffies+1; 12277 12278 ilb_cpu = find_new_ilb(); 12279 if (ilb_cpu < 0) 12280 return; 12281 12282 /* 12283 * Don't bother if no new NOHZ balance work items for ilb_cpu, 12284 * i.e. all bits in flags are already set in ilb_cpu. 12285 */ 12286 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) 12287 return; 12288 12289 /* 12290 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 12291 * the first flag owns it; cleared by nohz_csd_func(). 12292 */ 12293 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 12294 if (flags & NOHZ_KICK_MASK) 12295 return; 12296 12297 /* 12298 * This way we generate an IPI on the target CPU which 12299 * is idle, and the softirq performing NOHZ idle load balancing 12300 * will be run before returning from the IPI. 12301 */ 12302 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 12303 } 12304 12305 /* 12306 * Current decision point for kicking the idle load balancer in the presence 12307 * of idle CPUs in the system. 12308 */ 12309 static void nohz_balancer_kick(struct rq *rq) 12310 { 12311 unsigned long now = jiffies; 12312 struct sched_domain_shared *sds; 12313 struct sched_domain *sd; 12314 int nr_busy, i, cpu = rq->cpu; 12315 unsigned int flags = 0; 12316 12317 if (unlikely(rq->idle_balance)) 12318 return; 12319 12320 /* 12321 * We may be recently in ticked or tickless idle mode. At the first 12322 * busy tick after returning from idle, we will update the busy stats. 12323 */ 12324 nohz_balance_exit_idle(rq); 12325 12326 /* 12327 * None are in tickless mode and hence no need for NOHZ idle load 12328 * balancing: 12329 */ 12330 if (likely(!atomic_read(&nohz.nr_cpus))) 12331 return; 12332 12333 if (READ_ONCE(nohz.has_blocked) && 12334 time_after(now, READ_ONCE(nohz.next_blocked))) 12335 flags = NOHZ_STATS_KICK; 12336 12337 if (time_before(now, nohz.next_balance)) 12338 goto out; 12339 12340 if (rq->nr_running >= 2) { 12341 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12342 goto out; 12343 } 12344 12345 rcu_read_lock(); 12346 12347 sd = rcu_dereference(rq->sd); 12348 if (sd) { 12349 /* 12350 * If there's a runnable CFS task and the current CPU has reduced 12351 * capacity, kick the ILB to see if there's a better CPU to run on: 12352 */ 12353 if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) { 12354 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12355 goto unlock; 12356 } 12357 } 12358 12359 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 12360 if (sd) { 12361 /* 12362 * When ASYM_PACKING; see if there's a more preferred CPU 12363 * currently idle; in which case, kick the ILB to move tasks 12364 * around. 12365 * 12366 * When balancing between cores, all the SMT siblings of the 12367 * preferred CPU must be idle. 12368 */ 12369 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 12370 if (sched_asym(sd, i, cpu)) { 12371 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12372 goto unlock; 12373 } 12374 } 12375 } 12376 12377 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 12378 if (sd) { 12379 /* 12380 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 12381 * to run the misfit task on. 12382 */ 12383 if (check_misfit_status(rq)) { 12384 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12385 goto unlock; 12386 } 12387 12388 /* 12389 * For asymmetric systems, we do not want to nicely balance 12390 * cache use, instead we want to embrace asymmetry and only 12391 * ensure tasks have enough CPU capacity. 12392 * 12393 * Skip the LLC logic because it's not relevant in that case. 12394 */ 12395 goto unlock; 12396 } 12397 12398 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 12399 if (sds) { 12400 /* 12401 * If there is an imbalance between LLC domains (IOW we could 12402 * increase the overall cache utilization), we need a less-loaded LLC 12403 * domain to pull some load from. Likewise, we may need to spread 12404 * load within the current LLC domain (e.g. packed SMT cores but 12405 * other CPUs are idle). We can't really know from here how busy 12406 * the others are - so just get a NOHZ balance going if it looks 12407 * like this LLC domain has tasks we could move. 12408 */ 12409 nr_busy = atomic_read(&sds->nr_busy_cpus); 12410 if (nr_busy > 1) { 12411 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12412 goto unlock; 12413 } 12414 } 12415 unlock: 12416 rcu_read_unlock(); 12417 out: 12418 if (READ_ONCE(nohz.needs_update)) 12419 flags |= NOHZ_NEXT_KICK; 12420 12421 if (flags) 12422 kick_ilb(flags); 12423 } 12424 12425 static void set_cpu_sd_state_busy(int cpu) 12426 { 12427 struct sched_domain *sd; 12428 12429 rcu_read_lock(); 12430 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12431 12432 if (!sd || !sd->nohz_idle) 12433 goto unlock; 12434 sd->nohz_idle = 0; 12435 12436 atomic_inc(&sd->shared->nr_busy_cpus); 12437 unlock: 12438 rcu_read_unlock(); 12439 } 12440 12441 void nohz_balance_exit_idle(struct rq *rq) 12442 { 12443 SCHED_WARN_ON(rq != this_rq()); 12444 12445 if (likely(!rq->nohz_tick_stopped)) 12446 return; 12447 12448 rq->nohz_tick_stopped = 0; 12449 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12450 atomic_dec(&nohz.nr_cpus); 12451 12452 set_cpu_sd_state_busy(rq->cpu); 12453 } 12454 12455 static void set_cpu_sd_state_idle(int cpu) 12456 { 12457 struct sched_domain *sd; 12458 12459 rcu_read_lock(); 12460 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12461 12462 if (!sd || sd->nohz_idle) 12463 goto unlock; 12464 sd->nohz_idle = 1; 12465 12466 atomic_dec(&sd->shared->nr_busy_cpus); 12467 unlock: 12468 rcu_read_unlock(); 12469 } 12470 12471 /* 12472 * This routine will record that the CPU is going idle with tick stopped. 12473 * This info will be used in performing idle load balancing in the future. 12474 */ 12475 void nohz_balance_enter_idle(int cpu) 12476 { 12477 struct rq *rq = cpu_rq(cpu); 12478 12479 SCHED_WARN_ON(cpu != smp_processor_id()); 12480 12481 /* If this CPU is going down, then nothing needs to be done: */ 12482 if (!cpu_active(cpu)) 12483 return; 12484 12485 /* 12486 * Can be set safely without rq->lock held 12487 * If a clear happens, it will have evaluated last additions because 12488 * rq->lock is held during the check and the clear 12489 */ 12490 rq->has_blocked_load = 1; 12491 12492 /* 12493 * The tick is still stopped but load could have been added in the 12494 * meantime. We set the nohz.has_blocked flag to trig a check of the 12495 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12496 * of nohz.has_blocked can only happen after checking the new load 12497 */ 12498 if (rq->nohz_tick_stopped) 12499 goto out; 12500 12501 /* If we're a completely isolated CPU, we don't play: */ 12502 if (on_null_domain(rq)) 12503 return; 12504 12505 rq->nohz_tick_stopped = 1; 12506 12507 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12508 atomic_inc(&nohz.nr_cpus); 12509 12510 /* 12511 * Ensures that if nohz_idle_balance() fails to observe our 12512 * @idle_cpus_mask store, it must observe the @has_blocked 12513 * and @needs_update stores. 12514 */ 12515 smp_mb__after_atomic(); 12516 12517 set_cpu_sd_state_idle(cpu); 12518 12519 WRITE_ONCE(nohz.needs_update, 1); 12520 out: 12521 /* 12522 * Each time a cpu enter idle, we assume that it has blocked load and 12523 * enable the periodic update of the load of idle CPUs 12524 */ 12525 WRITE_ONCE(nohz.has_blocked, 1); 12526 } 12527 12528 static bool update_nohz_stats(struct rq *rq) 12529 { 12530 unsigned int cpu = rq->cpu; 12531 12532 if (!rq->has_blocked_load) 12533 return false; 12534 12535 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12536 return false; 12537 12538 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12539 return true; 12540 12541 sched_balance_update_blocked_averages(cpu); 12542 12543 return rq->has_blocked_load; 12544 } 12545 12546 /* 12547 * Internal function that runs load balance for all idle CPUs. The load balance 12548 * can be a simple update of blocked load or a complete load balance with 12549 * tasks movement depending of flags. 12550 */ 12551 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12552 { 12553 /* Earliest time when we have to do rebalance again */ 12554 unsigned long now = jiffies; 12555 unsigned long next_balance = now + 60*HZ; 12556 bool has_blocked_load = false; 12557 int update_next_balance = 0; 12558 int this_cpu = this_rq->cpu; 12559 int balance_cpu; 12560 struct rq *rq; 12561 12562 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12563 12564 /* 12565 * We assume there will be no idle load after this update and clear 12566 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12567 * set the has_blocked flag and trigger another update of idle load. 12568 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12569 * setting the flag, we are sure to not clear the state and not 12570 * check the load of an idle cpu. 12571 * 12572 * Same applies to idle_cpus_mask vs needs_update. 12573 */ 12574 if (flags & NOHZ_STATS_KICK) 12575 WRITE_ONCE(nohz.has_blocked, 0); 12576 if (flags & NOHZ_NEXT_KICK) 12577 WRITE_ONCE(nohz.needs_update, 0); 12578 12579 /* 12580 * Ensures that if we miss the CPU, we must see the has_blocked 12581 * store from nohz_balance_enter_idle(). 12582 */ 12583 smp_mb(); 12584 12585 /* 12586 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12587 * chance for other idle cpu to pull load. 12588 */ 12589 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12590 if (!idle_cpu(balance_cpu)) 12591 continue; 12592 12593 /* 12594 * If this CPU gets work to do, stop the load balancing 12595 * work being done for other CPUs. Next load 12596 * balancing owner will pick it up. 12597 */ 12598 if (!idle_cpu(this_cpu) && need_resched()) { 12599 if (flags & NOHZ_STATS_KICK) 12600 has_blocked_load = true; 12601 if (flags & NOHZ_NEXT_KICK) 12602 WRITE_ONCE(nohz.needs_update, 1); 12603 goto abort; 12604 } 12605 12606 rq = cpu_rq(balance_cpu); 12607 12608 if (flags & NOHZ_STATS_KICK) 12609 has_blocked_load |= update_nohz_stats(rq); 12610 12611 /* 12612 * If time for next balance is due, 12613 * do the balance. 12614 */ 12615 if (time_after_eq(jiffies, rq->next_balance)) { 12616 struct rq_flags rf; 12617 12618 rq_lock_irqsave(rq, &rf); 12619 update_rq_clock(rq); 12620 rq_unlock_irqrestore(rq, &rf); 12621 12622 if (flags & NOHZ_BALANCE_KICK) 12623 sched_balance_domains(rq, CPU_IDLE); 12624 } 12625 12626 if (time_after(next_balance, rq->next_balance)) { 12627 next_balance = rq->next_balance; 12628 update_next_balance = 1; 12629 } 12630 } 12631 12632 /* 12633 * next_balance will be updated only when there is a need. 12634 * When the CPU is attached to null domain for ex, it will not be 12635 * updated. 12636 */ 12637 if (likely(update_next_balance)) 12638 nohz.next_balance = next_balance; 12639 12640 if (flags & NOHZ_STATS_KICK) 12641 WRITE_ONCE(nohz.next_blocked, 12642 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12643 12644 abort: 12645 /* There is still blocked load, enable periodic update */ 12646 if (has_blocked_load) 12647 WRITE_ONCE(nohz.has_blocked, 1); 12648 } 12649 12650 /* 12651 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12652 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12653 */ 12654 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12655 { 12656 unsigned int flags = this_rq->nohz_idle_balance; 12657 12658 if (!flags) 12659 return false; 12660 12661 this_rq->nohz_idle_balance = 0; 12662 12663 if (idle != CPU_IDLE) 12664 return false; 12665 12666 _nohz_idle_balance(this_rq, flags); 12667 12668 return true; 12669 } 12670 12671 /* 12672 * Check if we need to directly run the ILB for updating blocked load before 12673 * entering idle state. Here we run ILB directly without issuing IPIs. 12674 * 12675 * Note that when this function is called, the tick may not yet be stopped on 12676 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12677 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12678 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12679 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12680 * called from this function on (this) CPU that's not yet in the mask. That's 12681 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12682 * updating the blocked load of already idle CPUs without waking up one of 12683 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12684 * cpu about to enter idle, because it can take a long time. 12685 */ 12686 void nohz_run_idle_balance(int cpu) 12687 { 12688 unsigned int flags; 12689 12690 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12691 12692 /* 12693 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12694 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12695 */ 12696 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12697 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12698 } 12699 12700 static void nohz_newidle_balance(struct rq *this_rq) 12701 { 12702 int this_cpu = this_rq->cpu; 12703 12704 /* Will wake up very soon. No time for doing anything else*/ 12705 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12706 return; 12707 12708 /* Don't need to update blocked load of idle CPUs*/ 12709 if (!READ_ONCE(nohz.has_blocked) || 12710 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12711 return; 12712 12713 /* 12714 * Set the need to trigger ILB in order to update blocked load 12715 * before entering idle state. 12716 */ 12717 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12718 } 12719 12720 #else /* !CONFIG_NO_HZ_COMMON */ 12721 static inline void nohz_balancer_kick(struct rq *rq) { } 12722 12723 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12724 { 12725 return false; 12726 } 12727 12728 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12729 #endif /* CONFIG_NO_HZ_COMMON */ 12730 12731 /* 12732 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12733 * idle. Attempts to pull tasks from other CPUs. 12734 * 12735 * Returns: 12736 * < 0 - we released the lock and there are !fair tasks present 12737 * 0 - failed, no new tasks 12738 * > 0 - success, new (fair) tasks present 12739 */ 12740 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12741 { 12742 unsigned long next_balance = jiffies + HZ; 12743 int this_cpu = this_rq->cpu; 12744 int continue_balancing = 1; 12745 u64 t0, t1, curr_cost = 0; 12746 struct sched_domain *sd; 12747 int pulled_task = 0; 12748 12749 update_misfit_status(NULL, this_rq); 12750 12751 /* 12752 * There is a task waiting to run. No need to search for one. 12753 * Return 0; the task will be enqueued when switching to idle. 12754 */ 12755 if (this_rq->ttwu_pending) 12756 return 0; 12757 12758 /* 12759 * We must set idle_stamp _before_ calling sched_balance_rq() 12760 * for CPU_NEWLY_IDLE, such that we measure the this duration 12761 * as idle time. 12762 */ 12763 this_rq->idle_stamp = rq_clock(this_rq); 12764 12765 /* 12766 * Do not pull tasks towards !active CPUs... 12767 */ 12768 if (!cpu_active(this_cpu)) 12769 return 0; 12770 12771 /* 12772 * This is OK, because current is on_cpu, which avoids it being picked 12773 * for load-balance and preemption/IRQs are still disabled avoiding 12774 * further scheduler activity on it and we're being very careful to 12775 * re-start the picking loop. 12776 */ 12777 rq_unpin_lock(this_rq, rf); 12778 12779 rcu_read_lock(); 12780 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12781 12782 if (!get_rd_overloaded(this_rq->rd) || 12783 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12784 12785 if (sd) 12786 update_next_balance(sd, &next_balance); 12787 rcu_read_unlock(); 12788 12789 goto out; 12790 } 12791 rcu_read_unlock(); 12792 12793 raw_spin_rq_unlock(this_rq); 12794 12795 t0 = sched_clock_cpu(this_cpu); 12796 sched_balance_update_blocked_averages(this_cpu); 12797 12798 rcu_read_lock(); 12799 for_each_domain(this_cpu, sd) { 12800 u64 domain_cost; 12801 12802 update_next_balance(sd, &next_balance); 12803 12804 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12805 break; 12806 12807 if (sd->flags & SD_BALANCE_NEWIDLE) { 12808 12809 pulled_task = sched_balance_rq(this_cpu, this_rq, 12810 sd, CPU_NEWLY_IDLE, 12811 &continue_balancing); 12812 12813 t1 = sched_clock_cpu(this_cpu); 12814 domain_cost = t1 - t0; 12815 update_newidle_cost(sd, domain_cost); 12816 12817 curr_cost += domain_cost; 12818 t0 = t1; 12819 } 12820 12821 /* 12822 * Stop searching for tasks to pull if there are 12823 * now runnable tasks on this rq. 12824 */ 12825 if (pulled_task || !continue_balancing) 12826 break; 12827 } 12828 rcu_read_unlock(); 12829 12830 raw_spin_rq_lock(this_rq); 12831 12832 if (curr_cost > this_rq->max_idle_balance_cost) 12833 this_rq->max_idle_balance_cost = curr_cost; 12834 12835 /* 12836 * While browsing the domains, we released the rq lock, a task could 12837 * have been enqueued in the meantime. Since we're not going idle, 12838 * pretend we pulled a task. 12839 */ 12840 if (this_rq->cfs.h_nr_queued && !pulled_task) 12841 pulled_task = 1; 12842 12843 /* Is there a task of a high priority class? */ 12844 if (this_rq->nr_running != this_rq->cfs.h_nr_queued) 12845 pulled_task = -1; 12846 12847 out: 12848 /* Move the next balance forward */ 12849 if (time_after(this_rq->next_balance, next_balance)) 12850 this_rq->next_balance = next_balance; 12851 12852 if (pulled_task) 12853 this_rq->idle_stamp = 0; 12854 else 12855 nohz_newidle_balance(this_rq); 12856 12857 rq_repin_lock(this_rq, rf); 12858 12859 return pulled_task; 12860 } 12861 12862 /* 12863 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 12864 * 12865 * - directly from the local sched_tick() for periodic load balancing 12866 * 12867 * - indirectly from a remote sched_tick() for NOHZ idle balancing 12868 * through the SMP cross-call nohz_csd_func() 12869 */ 12870 static __latent_entropy void sched_balance_softirq(void) 12871 { 12872 struct rq *this_rq = this_rq(); 12873 enum cpu_idle_type idle = this_rq->idle_balance; 12874 /* 12875 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 12876 * balancing on behalf of the other idle CPUs whose ticks are 12877 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 12878 * give the idle CPUs a chance to load balance. Else we may 12879 * load balance only within the local sched_domain hierarchy 12880 * and abort nohz_idle_balance altogether if we pull some load. 12881 */ 12882 if (nohz_idle_balance(this_rq, idle)) 12883 return; 12884 12885 /* normal load balance */ 12886 sched_balance_update_blocked_averages(this_rq->cpu); 12887 sched_balance_domains(this_rq, idle); 12888 } 12889 12890 /* 12891 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12892 */ 12893 void sched_balance_trigger(struct rq *rq) 12894 { 12895 /* 12896 * Don't need to rebalance while attached to NULL domain or 12897 * runqueue CPU is not active 12898 */ 12899 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12900 return; 12901 12902 if (time_after_eq(jiffies, rq->next_balance)) 12903 raise_softirq(SCHED_SOFTIRQ); 12904 12905 nohz_balancer_kick(rq); 12906 } 12907 12908 static void rq_online_fair(struct rq *rq) 12909 { 12910 update_sysctl(); 12911 12912 update_runtime_enabled(rq); 12913 } 12914 12915 static void rq_offline_fair(struct rq *rq) 12916 { 12917 update_sysctl(); 12918 12919 /* Ensure any throttled groups are reachable by pick_next_task */ 12920 unthrottle_offline_cfs_rqs(rq); 12921 12922 /* Ensure that we remove rq contribution to group share: */ 12923 clear_tg_offline_cfs_rqs(rq); 12924 } 12925 12926 #endif /* CONFIG_SMP */ 12927 12928 #ifdef CONFIG_SCHED_CORE 12929 static inline bool 12930 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12931 { 12932 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12933 u64 slice = se->slice; 12934 12935 return (rtime * min_nr_tasks > slice); 12936 } 12937 12938 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12939 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12940 { 12941 if (!sched_core_enabled(rq)) 12942 return; 12943 12944 /* 12945 * If runqueue has only one task which used up its slice and 12946 * if the sibling is forced idle, then trigger schedule to 12947 * give forced idle task a chance. 12948 * 12949 * sched_slice() considers only this active rq and it gets the 12950 * whole slice. But during force idle, we have siblings acting 12951 * like a single runqueue and hence we need to consider runnable 12952 * tasks on this CPU and the forced idle CPU. Ideally, we should 12953 * go through the forced idle rq, but that would be a perf hit. 12954 * We can assume that the forced idle CPU has at least 12955 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12956 * if we need to give up the CPU. 12957 */ 12958 if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 && 12959 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12960 resched_curr(rq); 12961 } 12962 12963 /* 12964 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12965 */ 12966 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12967 bool forceidle) 12968 { 12969 for_each_sched_entity(se) { 12970 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12971 12972 if (forceidle) { 12973 if (cfs_rq->forceidle_seq == fi_seq) 12974 break; 12975 cfs_rq->forceidle_seq = fi_seq; 12976 } 12977 12978 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12979 } 12980 } 12981 12982 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12983 { 12984 struct sched_entity *se = &p->se; 12985 12986 if (p->sched_class != &fair_sched_class) 12987 return; 12988 12989 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12990 } 12991 12992 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12993 bool in_fi) 12994 { 12995 struct rq *rq = task_rq(a); 12996 const struct sched_entity *sea = &a->se; 12997 const struct sched_entity *seb = &b->se; 12998 struct cfs_rq *cfs_rqa; 12999 struct cfs_rq *cfs_rqb; 13000 s64 delta; 13001 13002 SCHED_WARN_ON(task_rq(b)->core != rq->core); 13003 13004 #ifdef CONFIG_FAIR_GROUP_SCHED 13005 /* 13006 * Find an se in the hierarchy for tasks a and b, such that the se's 13007 * are immediate siblings. 13008 */ 13009 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 13010 int sea_depth = sea->depth; 13011 int seb_depth = seb->depth; 13012 13013 if (sea_depth >= seb_depth) 13014 sea = parent_entity(sea); 13015 if (sea_depth <= seb_depth) 13016 seb = parent_entity(seb); 13017 } 13018 13019 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 13020 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 13021 13022 cfs_rqa = sea->cfs_rq; 13023 cfs_rqb = seb->cfs_rq; 13024 #else 13025 cfs_rqa = &task_rq(a)->cfs; 13026 cfs_rqb = &task_rq(b)->cfs; 13027 #endif 13028 13029 /* 13030 * Find delta after normalizing se's vruntime with its cfs_rq's 13031 * min_vruntime_fi, which would have been updated in prior calls 13032 * to se_fi_update(). 13033 */ 13034 delta = (s64)(sea->vruntime - seb->vruntime) + 13035 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 13036 13037 return delta > 0; 13038 } 13039 13040 static int task_is_throttled_fair(struct task_struct *p, int cpu) 13041 { 13042 struct cfs_rq *cfs_rq; 13043 13044 #ifdef CONFIG_FAIR_GROUP_SCHED 13045 cfs_rq = task_group(p)->cfs_rq[cpu]; 13046 #else 13047 cfs_rq = &cpu_rq(cpu)->cfs; 13048 #endif 13049 return throttled_hierarchy(cfs_rq); 13050 } 13051 #else 13052 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 13053 #endif 13054 13055 /* 13056 * scheduler tick hitting a task of our scheduling class. 13057 * 13058 * NOTE: This function can be called remotely by the tick offload that 13059 * goes along full dynticks. Therefore no local assumption can be made 13060 * and everything must be accessed through the @rq and @curr passed in 13061 * parameters. 13062 */ 13063 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 13064 { 13065 struct cfs_rq *cfs_rq; 13066 struct sched_entity *se = &curr->se; 13067 13068 for_each_sched_entity(se) { 13069 cfs_rq = cfs_rq_of(se); 13070 entity_tick(cfs_rq, se, queued); 13071 } 13072 13073 if (static_branch_unlikely(&sched_numa_balancing)) 13074 task_tick_numa(rq, curr); 13075 13076 update_misfit_status(curr, rq); 13077 check_update_overutilized_status(task_rq(curr)); 13078 13079 task_tick_core(rq, curr); 13080 } 13081 13082 /* 13083 * called on fork with the child task as argument from the parent's context 13084 * - child not yet on the tasklist 13085 * - preemption disabled 13086 */ 13087 static void task_fork_fair(struct task_struct *p) 13088 { 13089 set_task_max_allowed_capacity(p); 13090 } 13091 13092 /* 13093 * Priority of the task has changed. Check to see if we preempt 13094 * the current task. 13095 */ 13096 static void 13097 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 13098 { 13099 if (!task_on_rq_queued(p)) 13100 return; 13101 13102 if (rq->cfs.nr_queued == 1) 13103 return; 13104 13105 /* 13106 * Reschedule if we are currently running on this runqueue and 13107 * our priority decreased, or if we are not currently running on 13108 * this runqueue and our priority is higher than the current's 13109 */ 13110 if (task_current_donor(rq, p)) { 13111 if (p->prio > oldprio) 13112 resched_curr(rq); 13113 } else 13114 wakeup_preempt(rq, p, 0); 13115 } 13116 13117 #ifdef CONFIG_FAIR_GROUP_SCHED 13118 /* 13119 * Propagate the changes of the sched_entity across the tg tree to make it 13120 * visible to the root 13121 */ 13122 static void propagate_entity_cfs_rq(struct sched_entity *se) 13123 { 13124 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13125 13126 if (cfs_rq_throttled(cfs_rq)) 13127 return; 13128 13129 if (!throttled_hierarchy(cfs_rq)) 13130 list_add_leaf_cfs_rq(cfs_rq); 13131 13132 /* Start to propagate at parent */ 13133 se = se->parent; 13134 13135 for_each_sched_entity(se) { 13136 cfs_rq = cfs_rq_of(se); 13137 13138 update_load_avg(cfs_rq, se, UPDATE_TG); 13139 13140 if (cfs_rq_throttled(cfs_rq)) 13141 break; 13142 13143 if (!throttled_hierarchy(cfs_rq)) 13144 list_add_leaf_cfs_rq(cfs_rq); 13145 } 13146 } 13147 #else 13148 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 13149 #endif 13150 13151 static void detach_entity_cfs_rq(struct sched_entity *se) 13152 { 13153 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13154 13155 #ifdef CONFIG_SMP 13156 /* 13157 * In case the task sched_avg hasn't been attached: 13158 * - A forked task which hasn't been woken up by wake_up_new_task(). 13159 * - A task which has been woken up by try_to_wake_up() but is 13160 * waiting for actually being woken up by sched_ttwu_pending(). 13161 */ 13162 if (!se->avg.last_update_time) 13163 return; 13164 #endif 13165 13166 /* Catch up with the cfs_rq and remove our load when we leave */ 13167 update_load_avg(cfs_rq, se, 0); 13168 detach_entity_load_avg(cfs_rq, se); 13169 update_tg_load_avg(cfs_rq); 13170 propagate_entity_cfs_rq(se); 13171 } 13172 13173 static void attach_entity_cfs_rq(struct sched_entity *se) 13174 { 13175 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13176 13177 /* Synchronize entity with its cfs_rq */ 13178 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 13179 attach_entity_load_avg(cfs_rq, se); 13180 update_tg_load_avg(cfs_rq); 13181 propagate_entity_cfs_rq(se); 13182 } 13183 13184 static void detach_task_cfs_rq(struct task_struct *p) 13185 { 13186 struct sched_entity *se = &p->se; 13187 13188 detach_entity_cfs_rq(se); 13189 } 13190 13191 static void attach_task_cfs_rq(struct task_struct *p) 13192 { 13193 struct sched_entity *se = &p->se; 13194 13195 attach_entity_cfs_rq(se); 13196 } 13197 13198 static void switched_from_fair(struct rq *rq, struct task_struct *p) 13199 { 13200 detach_task_cfs_rq(p); 13201 } 13202 13203 static void switched_to_fair(struct rq *rq, struct task_struct *p) 13204 { 13205 SCHED_WARN_ON(p->se.sched_delayed); 13206 13207 attach_task_cfs_rq(p); 13208 13209 set_task_max_allowed_capacity(p); 13210 13211 if (task_on_rq_queued(p)) { 13212 /* 13213 * We were most likely switched from sched_rt, so 13214 * kick off the schedule if running, otherwise just see 13215 * if we can still preempt the current task. 13216 */ 13217 if (task_current_donor(rq, p)) 13218 resched_curr(rq); 13219 else 13220 wakeup_preempt(rq, p, 0); 13221 } 13222 } 13223 13224 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13225 { 13226 struct sched_entity *se = &p->se; 13227 13228 #ifdef CONFIG_SMP 13229 if (task_on_rq_queued(p)) { 13230 /* 13231 * Move the next running task to the front of the list, so our 13232 * cfs_tasks list becomes MRU one. 13233 */ 13234 list_move(&se->group_node, &rq->cfs_tasks); 13235 } 13236 #endif 13237 if (!first) 13238 return; 13239 13240 SCHED_WARN_ON(se->sched_delayed); 13241 13242 if (hrtick_enabled_fair(rq)) 13243 hrtick_start_fair(rq, p); 13244 13245 update_misfit_status(p, rq); 13246 sched_fair_update_stop_tick(rq, p); 13247 } 13248 13249 /* 13250 * Account for a task changing its policy or group. 13251 * 13252 * This routine is mostly called to set cfs_rq->curr field when a task 13253 * migrates between groups/classes. 13254 */ 13255 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 13256 { 13257 struct sched_entity *se = &p->se; 13258 13259 for_each_sched_entity(se) { 13260 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13261 13262 set_next_entity(cfs_rq, se); 13263 /* ensure bandwidth has been allocated on our new cfs_rq */ 13264 account_cfs_rq_runtime(cfs_rq, 0); 13265 } 13266 13267 __set_next_task_fair(rq, p, first); 13268 } 13269 13270 void init_cfs_rq(struct cfs_rq *cfs_rq) 13271 { 13272 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 13273 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 13274 #ifdef CONFIG_SMP 13275 raw_spin_lock_init(&cfs_rq->removed.lock); 13276 #endif 13277 } 13278 13279 #ifdef CONFIG_FAIR_GROUP_SCHED 13280 static void task_change_group_fair(struct task_struct *p) 13281 { 13282 /* 13283 * We couldn't detach or attach a forked task which 13284 * hasn't been woken up by wake_up_new_task(). 13285 */ 13286 if (READ_ONCE(p->__state) == TASK_NEW) 13287 return; 13288 13289 detach_task_cfs_rq(p); 13290 13291 #ifdef CONFIG_SMP 13292 /* Tell se's cfs_rq has been changed -- migrated */ 13293 p->se.avg.last_update_time = 0; 13294 #endif 13295 set_task_rq(p, task_cpu(p)); 13296 attach_task_cfs_rq(p); 13297 } 13298 13299 void free_fair_sched_group(struct task_group *tg) 13300 { 13301 int i; 13302 13303 for_each_possible_cpu(i) { 13304 if (tg->cfs_rq) 13305 kfree(tg->cfs_rq[i]); 13306 if (tg->se) 13307 kfree(tg->se[i]); 13308 } 13309 13310 kfree(tg->cfs_rq); 13311 kfree(tg->se); 13312 } 13313 13314 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 13315 { 13316 struct sched_entity *se; 13317 struct cfs_rq *cfs_rq; 13318 int i; 13319 13320 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 13321 if (!tg->cfs_rq) 13322 goto err; 13323 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 13324 if (!tg->se) 13325 goto err; 13326 13327 tg->shares = NICE_0_LOAD; 13328 13329 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 13330 13331 for_each_possible_cpu(i) { 13332 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 13333 GFP_KERNEL, cpu_to_node(i)); 13334 if (!cfs_rq) 13335 goto err; 13336 13337 se = kzalloc_node(sizeof(struct sched_entity_stats), 13338 GFP_KERNEL, cpu_to_node(i)); 13339 if (!se) 13340 goto err_free_rq; 13341 13342 init_cfs_rq(cfs_rq); 13343 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 13344 init_entity_runnable_average(se); 13345 } 13346 13347 return 1; 13348 13349 err_free_rq: 13350 kfree(cfs_rq); 13351 err: 13352 return 0; 13353 } 13354 13355 void online_fair_sched_group(struct task_group *tg) 13356 { 13357 struct sched_entity *se; 13358 struct rq_flags rf; 13359 struct rq *rq; 13360 int i; 13361 13362 for_each_possible_cpu(i) { 13363 rq = cpu_rq(i); 13364 se = tg->se[i]; 13365 rq_lock_irq(rq, &rf); 13366 update_rq_clock(rq); 13367 attach_entity_cfs_rq(se); 13368 sync_throttle(tg, i); 13369 rq_unlock_irq(rq, &rf); 13370 } 13371 } 13372 13373 void unregister_fair_sched_group(struct task_group *tg) 13374 { 13375 int cpu; 13376 13377 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 13378 13379 for_each_possible_cpu(cpu) { 13380 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 13381 struct sched_entity *se = tg->se[cpu]; 13382 struct rq *rq = cpu_rq(cpu); 13383 13384 if (se) { 13385 if (se->sched_delayed) { 13386 guard(rq_lock_irqsave)(rq); 13387 if (se->sched_delayed) { 13388 update_rq_clock(rq); 13389 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 13390 } 13391 list_del_leaf_cfs_rq(cfs_rq); 13392 } 13393 remove_entity_load_avg(se); 13394 } 13395 13396 /* 13397 * Only empty task groups can be destroyed; so we can speculatively 13398 * check on_list without danger of it being re-added. 13399 */ 13400 if (cfs_rq->on_list) { 13401 guard(rq_lock_irqsave)(rq); 13402 list_del_leaf_cfs_rq(cfs_rq); 13403 } 13404 } 13405 } 13406 13407 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13408 struct sched_entity *se, int cpu, 13409 struct sched_entity *parent) 13410 { 13411 struct rq *rq = cpu_rq(cpu); 13412 13413 cfs_rq->tg = tg; 13414 cfs_rq->rq = rq; 13415 init_cfs_rq_runtime(cfs_rq); 13416 13417 tg->cfs_rq[cpu] = cfs_rq; 13418 tg->se[cpu] = se; 13419 13420 /* se could be NULL for root_task_group */ 13421 if (!se) 13422 return; 13423 13424 if (!parent) { 13425 se->cfs_rq = &rq->cfs; 13426 se->depth = 0; 13427 } else { 13428 se->cfs_rq = parent->my_q; 13429 se->depth = parent->depth + 1; 13430 } 13431 13432 se->my_q = cfs_rq; 13433 /* guarantee group entities always have weight */ 13434 update_load_set(&se->load, NICE_0_LOAD); 13435 se->parent = parent; 13436 } 13437 13438 static DEFINE_MUTEX(shares_mutex); 13439 13440 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13441 { 13442 int i; 13443 13444 lockdep_assert_held(&shares_mutex); 13445 13446 /* 13447 * We can't change the weight of the root cgroup. 13448 */ 13449 if (!tg->se[0]) 13450 return -EINVAL; 13451 13452 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13453 13454 if (tg->shares == shares) 13455 return 0; 13456 13457 tg->shares = shares; 13458 for_each_possible_cpu(i) { 13459 struct rq *rq = cpu_rq(i); 13460 struct sched_entity *se = tg->se[i]; 13461 struct rq_flags rf; 13462 13463 /* Propagate contribution to hierarchy */ 13464 rq_lock_irqsave(rq, &rf); 13465 update_rq_clock(rq); 13466 for_each_sched_entity(se) { 13467 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13468 update_cfs_group(se); 13469 } 13470 rq_unlock_irqrestore(rq, &rf); 13471 } 13472 13473 return 0; 13474 } 13475 13476 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13477 { 13478 int ret; 13479 13480 mutex_lock(&shares_mutex); 13481 if (tg_is_idle(tg)) 13482 ret = -EINVAL; 13483 else 13484 ret = __sched_group_set_shares(tg, shares); 13485 mutex_unlock(&shares_mutex); 13486 13487 return ret; 13488 } 13489 13490 int sched_group_set_idle(struct task_group *tg, long idle) 13491 { 13492 int i; 13493 13494 if (tg == &root_task_group) 13495 return -EINVAL; 13496 13497 if (idle < 0 || idle > 1) 13498 return -EINVAL; 13499 13500 mutex_lock(&shares_mutex); 13501 13502 if (tg->idle == idle) { 13503 mutex_unlock(&shares_mutex); 13504 return 0; 13505 } 13506 13507 tg->idle = idle; 13508 13509 for_each_possible_cpu(i) { 13510 struct rq *rq = cpu_rq(i); 13511 struct sched_entity *se = tg->se[i]; 13512 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i]; 13513 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13514 long idle_task_delta; 13515 struct rq_flags rf; 13516 13517 rq_lock_irqsave(rq, &rf); 13518 13519 grp_cfs_rq->idle = idle; 13520 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13521 goto next_cpu; 13522 13523 idle_task_delta = grp_cfs_rq->h_nr_queued - 13524 grp_cfs_rq->h_nr_idle; 13525 if (!cfs_rq_is_idle(grp_cfs_rq)) 13526 idle_task_delta *= -1; 13527 13528 for_each_sched_entity(se) { 13529 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13530 13531 if (!se->on_rq) 13532 break; 13533 13534 cfs_rq->h_nr_idle += idle_task_delta; 13535 13536 /* Already accounted at parent level and above. */ 13537 if (cfs_rq_is_idle(cfs_rq)) 13538 break; 13539 } 13540 13541 next_cpu: 13542 rq_unlock_irqrestore(rq, &rf); 13543 } 13544 13545 /* Idle groups have minimum weight. */ 13546 if (tg_is_idle(tg)) 13547 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13548 else 13549 __sched_group_set_shares(tg, NICE_0_LOAD); 13550 13551 mutex_unlock(&shares_mutex); 13552 return 0; 13553 } 13554 13555 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13556 13557 13558 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13559 { 13560 struct sched_entity *se = &task->se; 13561 unsigned int rr_interval = 0; 13562 13563 /* 13564 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13565 * idle runqueue: 13566 */ 13567 if (rq->cfs.load.weight) 13568 rr_interval = NS_TO_JIFFIES(se->slice); 13569 13570 return rr_interval; 13571 } 13572 13573 /* 13574 * All the scheduling class methods: 13575 */ 13576 DEFINE_SCHED_CLASS(fair) = { 13577 13578 .enqueue_task = enqueue_task_fair, 13579 .dequeue_task = dequeue_task_fair, 13580 .yield_task = yield_task_fair, 13581 .yield_to_task = yield_to_task_fair, 13582 13583 .wakeup_preempt = check_preempt_wakeup_fair, 13584 13585 .pick_task = pick_task_fair, 13586 .pick_next_task = __pick_next_task_fair, 13587 .put_prev_task = put_prev_task_fair, 13588 .set_next_task = set_next_task_fair, 13589 13590 #ifdef CONFIG_SMP 13591 .balance = balance_fair, 13592 .select_task_rq = select_task_rq_fair, 13593 .migrate_task_rq = migrate_task_rq_fair, 13594 13595 .rq_online = rq_online_fair, 13596 .rq_offline = rq_offline_fair, 13597 13598 .task_dead = task_dead_fair, 13599 .set_cpus_allowed = set_cpus_allowed_fair, 13600 #endif 13601 13602 .task_tick = task_tick_fair, 13603 .task_fork = task_fork_fair, 13604 13605 .reweight_task = reweight_task_fair, 13606 .prio_changed = prio_changed_fair, 13607 .switched_from = switched_from_fair, 13608 .switched_to = switched_to_fair, 13609 13610 .get_rr_interval = get_rr_interval_fair, 13611 13612 .update_curr = update_curr_fair, 13613 13614 #ifdef CONFIG_FAIR_GROUP_SCHED 13615 .task_change_group = task_change_group_fair, 13616 #endif 13617 13618 #ifdef CONFIG_SCHED_CORE 13619 .task_is_throttled = task_is_throttled_fair, 13620 #endif 13621 13622 #ifdef CONFIG_UCLAMP_TASK 13623 .uclamp_enabled = 1, 13624 #endif 13625 }; 13626 13627 #ifdef CONFIG_SCHED_DEBUG 13628 void print_cfs_stats(struct seq_file *m, int cpu) 13629 { 13630 struct cfs_rq *cfs_rq, *pos; 13631 13632 rcu_read_lock(); 13633 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13634 print_cfs_rq(m, cpu, cfs_rq); 13635 rcu_read_unlock(); 13636 } 13637 13638 #ifdef CONFIG_NUMA_BALANCING 13639 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13640 { 13641 int node; 13642 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13643 struct numa_group *ng; 13644 13645 rcu_read_lock(); 13646 ng = rcu_dereference(p->numa_group); 13647 for_each_online_node(node) { 13648 if (p->numa_faults) { 13649 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13650 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13651 } 13652 if (ng) { 13653 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13654 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13655 } 13656 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13657 } 13658 rcu_read_unlock(); 13659 } 13660 #endif /* CONFIG_NUMA_BALANCING */ 13661 #endif /* CONFIG_SCHED_DEBUG */ 13662 13663 __init void init_sched_fair_class(void) 13664 { 13665 #ifdef CONFIG_SMP 13666 int i; 13667 13668 for_each_possible_cpu(i) { 13669 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13670 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13671 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13672 GFP_KERNEL, cpu_to_node(i)); 13673 13674 #ifdef CONFIG_CFS_BANDWIDTH 13675 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13676 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13677 #endif 13678 } 13679 13680 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13681 13682 #ifdef CONFIG_NO_HZ_COMMON 13683 nohz.next_balance = jiffies; 13684 nohz.next_blocked = jiffies; 13685 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13686 #endif 13687 #endif /* SMP */ 13688 13689 } 13690