xref: /linux/kernel/sched/fair.c (revision e2afb7de6e7dad21f9d709f80f23bbd3c5bdad11)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22 
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33 
34 #include <trace/events/sched.h>
35 
36 #include "sched.h"
37 
38 /*
39  * Targeted preemption latency for CPU-bound tasks:
40  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41  *
42  * NOTE: this latency value is not the same as the concept of
43  * 'timeslice length' - timeslices in CFS are of variable length
44  * and have no persistent notion like in traditional, time-slice
45  * based scheduling concepts.
46  *
47  * (to see the precise effective timeslice length of your workload,
48  *  run vmstat and monitor the context-switches (cs) field)
49  */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52 
53 /*
54  * The initial- and re-scaling of tunables is configurable
55  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56  *
57  * Options are:
58  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61  */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 	= SCHED_TUNABLESCALING_LOG;
64 
65 /*
66  * Minimal preemption granularity for CPU-bound tasks:
67  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68  */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 
72 /*
73  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74  */
75 static unsigned int sched_nr_latency = 8;
76 
77 /*
78  * After fork, child runs first. If set to 0 (default) then
79  * parent will (try to) run first.
80  */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82 
83 /*
84  * SCHED_OTHER wake-up granularity.
85  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86  *
87  * This option delays the preemption effects of decoupled workloads
88  * and reduces their over-scheduling. Synchronous workloads will still
89  * have immediate wakeup/sleep latencies.
90  */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95 
96 /*
97  * The exponential sliding  window over which load is averaged for shares
98  * distribution.
99  * (default: 10msec)
100  */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102 
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106  * each time a cfs_rq requests quota.
107  *
108  * Note: in the case that the slice exceeds the runtime remaining (either due
109  * to consumption or the quota being specified to be smaller than the slice)
110  * we will always only issue the remaining available time.
111  *
112  * default: 5 msec, units: microseconds
113   */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116 
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 	lw->weight += inc;
120 	lw->inv_weight = 0;
121 }
122 
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 	lw->weight -= dec;
126 	lw->inv_weight = 0;
127 }
128 
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 	lw->weight = w;
132 	lw->inv_weight = 0;
133 }
134 
135 /*
136  * Increase the granularity value when there are more CPUs,
137  * because with more CPUs the 'effective latency' as visible
138  * to users decreases. But the relationship is not linear,
139  * so pick a second-best guess by going with the log2 of the
140  * number of CPUs.
141  *
142  * This idea comes from the SD scheduler of Con Kolivas:
143  */
144 static int get_update_sysctl_factor(void)
145 {
146 	unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 	unsigned int factor;
148 
149 	switch (sysctl_sched_tunable_scaling) {
150 	case SCHED_TUNABLESCALING_NONE:
151 		factor = 1;
152 		break;
153 	case SCHED_TUNABLESCALING_LINEAR:
154 		factor = cpus;
155 		break;
156 	case SCHED_TUNABLESCALING_LOG:
157 	default:
158 		factor = 1 + ilog2(cpus);
159 		break;
160 	}
161 
162 	return factor;
163 }
164 
165 static void update_sysctl(void)
166 {
167 	unsigned int factor = get_update_sysctl_factor();
168 
169 #define SET_SYSCTL(name) \
170 	(sysctl_##name = (factor) * normalized_sysctl_##name)
171 	SET_SYSCTL(sched_min_granularity);
172 	SET_SYSCTL(sched_latency);
173 	SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176 
177 void sched_init_granularity(void)
178 {
179 	update_sysctl();
180 }
181 
182 #define WMULT_CONST	(~0U)
183 #define WMULT_SHIFT	32
184 
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 	unsigned long w;
188 
189 	if (likely(lw->inv_weight))
190 		return;
191 
192 	w = scale_load_down(lw->weight);
193 
194 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 		lw->inv_weight = 1;
196 	else if (unlikely(!w))
197 		lw->inv_weight = WMULT_CONST;
198 	else
199 		lw->inv_weight = WMULT_CONST / w;
200 }
201 
202 /*
203  * delta_exec * weight / lw.weight
204  *   OR
205  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206  *
207  * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208  * we're guaranteed shift stays positive because inv_weight is guaranteed to
209  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210  *
211  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212  * weight/lw.weight <= 1, and therefore our shift will also be positive.
213  */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 	u64 fact = scale_load_down(weight);
217 	int shift = WMULT_SHIFT;
218 
219 	__update_inv_weight(lw);
220 
221 	if (unlikely(fact >> 32)) {
222 		while (fact >> 32) {
223 			fact >>= 1;
224 			shift--;
225 		}
226 	}
227 
228 	/* hint to use a 32x32->64 mul */
229 	fact = (u64)(u32)fact * lw->inv_weight;
230 
231 	while (fact >> 32) {
232 		fact >>= 1;
233 		shift--;
234 	}
235 
236 	return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238 
239 
240 const struct sched_class fair_sched_class;
241 
242 /**************************************************************
243  * CFS operations on generic schedulable entities:
244  */
245 
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247 
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 	return cfs_rq->rq;
252 }
253 
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se)	(!se->my_q)
256 
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 	WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 	return container_of(se, struct task_struct, se);
263 }
264 
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 		for (; se; se = se->parent)
268 
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 	return p->se.cfs_rq;
272 }
273 
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 	return se->cfs_rq;
278 }
279 
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 	return grp->my_q;
284 }
285 
286 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 				       int force_update);
288 
289 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 {
291 	if (!cfs_rq->on_list) {
292 		/*
293 		 * Ensure we either appear before our parent (if already
294 		 * enqueued) or force our parent to appear after us when it is
295 		 * enqueued.  The fact that we always enqueue bottom-up
296 		 * reduces this to two cases.
297 		 */
298 		if (cfs_rq->tg->parent &&
299 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302 		} else {
303 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
305 		}
306 
307 		cfs_rq->on_list = 1;
308 		/* We should have no load, but we need to update last_decay. */
309 		update_cfs_rq_blocked_load(cfs_rq, 0);
310 	}
311 }
312 
313 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314 {
315 	if (cfs_rq->on_list) {
316 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 		cfs_rq->on_list = 0;
318 	}
319 }
320 
321 /* Iterate thr' all leaf cfs_rq's on a runqueue */
322 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324 
325 /* Do the two (enqueued) entities belong to the same group ? */
326 static inline struct cfs_rq *
327 is_same_group(struct sched_entity *se, struct sched_entity *pse)
328 {
329 	if (se->cfs_rq == pse->cfs_rq)
330 		return se->cfs_rq;
331 
332 	return NULL;
333 }
334 
335 static inline struct sched_entity *parent_entity(struct sched_entity *se)
336 {
337 	return se->parent;
338 }
339 
340 static void
341 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342 {
343 	int se_depth, pse_depth;
344 
345 	/*
346 	 * preemption test can be made between sibling entities who are in the
347 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 	 * both tasks until we find their ancestors who are siblings of common
349 	 * parent.
350 	 */
351 
352 	/* First walk up until both entities are at same depth */
353 	se_depth = (*se)->depth;
354 	pse_depth = (*pse)->depth;
355 
356 	while (se_depth > pse_depth) {
357 		se_depth--;
358 		*se = parent_entity(*se);
359 	}
360 
361 	while (pse_depth > se_depth) {
362 		pse_depth--;
363 		*pse = parent_entity(*pse);
364 	}
365 
366 	while (!is_same_group(*se, *pse)) {
367 		*se = parent_entity(*se);
368 		*pse = parent_entity(*pse);
369 	}
370 }
371 
372 #else	/* !CONFIG_FAIR_GROUP_SCHED */
373 
374 static inline struct task_struct *task_of(struct sched_entity *se)
375 {
376 	return container_of(se, struct task_struct, se);
377 }
378 
379 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380 {
381 	return container_of(cfs_rq, struct rq, cfs);
382 }
383 
384 #define entity_is_task(se)	1
385 
386 #define for_each_sched_entity(se) \
387 		for (; se; se = NULL)
388 
389 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
390 {
391 	return &task_rq(p)->cfs;
392 }
393 
394 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395 {
396 	struct task_struct *p = task_of(se);
397 	struct rq *rq = task_rq(p);
398 
399 	return &rq->cfs;
400 }
401 
402 /* runqueue "owned" by this group */
403 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404 {
405 	return NULL;
406 }
407 
408 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409 {
410 }
411 
412 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413 {
414 }
415 
416 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418 
419 static inline struct sched_entity *parent_entity(struct sched_entity *se)
420 {
421 	return NULL;
422 }
423 
424 static inline void
425 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426 {
427 }
428 
429 #endif	/* CONFIG_FAIR_GROUP_SCHED */
430 
431 static __always_inline
432 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
433 
434 /**************************************************************
435  * Scheduling class tree data structure manipulation methods:
436  */
437 
438 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
439 {
440 	s64 delta = (s64)(vruntime - max_vruntime);
441 	if (delta > 0)
442 		max_vruntime = vruntime;
443 
444 	return max_vruntime;
445 }
446 
447 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
448 {
449 	s64 delta = (s64)(vruntime - min_vruntime);
450 	if (delta < 0)
451 		min_vruntime = vruntime;
452 
453 	return min_vruntime;
454 }
455 
456 static inline int entity_before(struct sched_entity *a,
457 				struct sched_entity *b)
458 {
459 	return (s64)(a->vruntime - b->vruntime) < 0;
460 }
461 
462 static void update_min_vruntime(struct cfs_rq *cfs_rq)
463 {
464 	u64 vruntime = cfs_rq->min_vruntime;
465 
466 	if (cfs_rq->curr)
467 		vruntime = cfs_rq->curr->vruntime;
468 
469 	if (cfs_rq->rb_leftmost) {
470 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 						   struct sched_entity,
472 						   run_node);
473 
474 		if (!cfs_rq->curr)
475 			vruntime = se->vruntime;
476 		else
477 			vruntime = min_vruntime(vruntime, se->vruntime);
478 	}
479 
480 	/* ensure we never gain time by being placed backwards. */
481 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
482 #ifndef CONFIG_64BIT
483 	smp_wmb();
484 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485 #endif
486 }
487 
488 /*
489  * Enqueue an entity into the rb-tree:
490  */
491 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
492 {
493 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 	struct rb_node *parent = NULL;
495 	struct sched_entity *entry;
496 	int leftmost = 1;
497 
498 	/*
499 	 * Find the right place in the rbtree:
500 	 */
501 	while (*link) {
502 		parent = *link;
503 		entry = rb_entry(parent, struct sched_entity, run_node);
504 		/*
505 		 * We dont care about collisions. Nodes with
506 		 * the same key stay together.
507 		 */
508 		if (entity_before(se, entry)) {
509 			link = &parent->rb_left;
510 		} else {
511 			link = &parent->rb_right;
512 			leftmost = 0;
513 		}
514 	}
515 
516 	/*
517 	 * Maintain a cache of leftmost tree entries (it is frequently
518 	 * used):
519 	 */
520 	if (leftmost)
521 		cfs_rq->rb_leftmost = &se->run_node;
522 
523 	rb_link_node(&se->run_node, parent, link);
524 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
525 }
526 
527 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
528 {
529 	if (cfs_rq->rb_leftmost == &se->run_node) {
530 		struct rb_node *next_node;
531 
532 		next_node = rb_next(&se->run_node);
533 		cfs_rq->rb_leftmost = next_node;
534 	}
535 
536 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
537 }
538 
539 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
540 {
541 	struct rb_node *left = cfs_rq->rb_leftmost;
542 
543 	if (!left)
544 		return NULL;
545 
546 	return rb_entry(left, struct sched_entity, run_node);
547 }
548 
549 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550 {
551 	struct rb_node *next = rb_next(&se->run_node);
552 
553 	if (!next)
554 		return NULL;
555 
556 	return rb_entry(next, struct sched_entity, run_node);
557 }
558 
559 #ifdef CONFIG_SCHED_DEBUG
560 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
561 {
562 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
563 
564 	if (!last)
565 		return NULL;
566 
567 	return rb_entry(last, struct sched_entity, run_node);
568 }
569 
570 /**************************************************************
571  * Scheduling class statistics methods:
572  */
573 
574 int sched_proc_update_handler(struct ctl_table *table, int write,
575 		void __user *buffer, size_t *lenp,
576 		loff_t *ppos)
577 {
578 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579 	int factor = get_update_sysctl_factor();
580 
581 	if (ret || !write)
582 		return ret;
583 
584 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 					sysctl_sched_min_granularity);
586 
587 #define WRT_SYSCTL(name) \
588 	(normalized_sysctl_##name = sysctl_##name / (factor))
589 	WRT_SYSCTL(sched_min_granularity);
590 	WRT_SYSCTL(sched_latency);
591 	WRT_SYSCTL(sched_wakeup_granularity);
592 #undef WRT_SYSCTL
593 
594 	return 0;
595 }
596 #endif
597 
598 /*
599  * delta /= w
600  */
601 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
602 {
603 	if (unlikely(se->load.weight != NICE_0_LOAD))
604 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
605 
606 	return delta;
607 }
608 
609 /*
610  * The idea is to set a period in which each task runs once.
611  *
612  * When there are too many tasks (sched_nr_latency) we have to stretch
613  * this period because otherwise the slices get too small.
614  *
615  * p = (nr <= nl) ? l : l*nr/nl
616  */
617 static u64 __sched_period(unsigned long nr_running)
618 {
619 	u64 period = sysctl_sched_latency;
620 	unsigned long nr_latency = sched_nr_latency;
621 
622 	if (unlikely(nr_running > nr_latency)) {
623 		period = sysctl_sched_min_granularity;
624 		period *= nr_running;
625 	}
626 
627 	return period;
628 }
629 
630 /*
631  * We calculate the wall-time slice from the period by taking a part
632  * proportional to the weight.
633  *
634  * s = p*P[w/rw]
635  */
636 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637 {
638 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639 
640 	for_each_sched_entity(se) {
641 		struct load_weight *load;
642 		struct load_weight lw;
643 
644 		cfs_rq = cfs_rq_of(se);
645 		load = &cfs_rq->load;
646 
647 		if (unlikely(!se->on_rq)) {
648 			lw = cfs_rq->load;
649 
650 			update_load_add(&lw, se->load.weight);
651 			load = &lw;
652 		}
653 		slice = __calc_delta(slice, se->load.weight, load);
654 	}
655 	return slice;
656 }
657 
658 /*
659  * We calculate the vruntime slice of a to-be-inserted task.
660  *
661  * vs = s/w
662  */
663 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
664 {
665 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
666 }
667 
668 #ifdef CONFIG_SMP
669 static int select_idle_sibling(struct task_struct *p, int cpu);
670 static unsigned long task_h_load(struct task_struct *p);
671 
672 static inline void __update_task_entity_contrib(struct sched_entity *se);
673 
674 /* Give new task start runnable values to heavy its load in infant time */
675 void init_task_runnable_average(struct task_struct *p)
676 {
677 	u32 slice;
678 
679 	p->se.avg.decay_count = 0;
680 	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
681 	p->se.avg.runnable_avg_sum = slice;
682 	p->se.avg.runnable_avg_period = slice;
683 	__update_task_entity_contrib(&p->se);
684 }
685 #else
686 void init_task_runnable_average(struct task_struct *p)
687 {
688 }
689 #endif
690 
691 /*
692  * Update the current task's runtime statistics.
693  */
694 static void update_curr(struct cfs_rq *cfs_rq)
695 {
696 	struct sched_entity *curr = cfs_rq->curr;
697 	u64 now = rq_clock_task(rq_of(cfs_rq));
698 	u64 delta_exec;
699 
700 	if (unlikely(!curr))
701 		return;
702 
703 	delta_exec = now - curr->exec_start;
704 	if (unlikely((s64)delta_exec <= 0))
705 		return;
706 
707 	curr->exec_start = now;
708 
709 	schedstat_set(curr->statistics.exec_max,
710 		      max(delta_exec, curr->statistics.exec_max));
711 
712 	curr->sum_exec_runtime += delta_exec;
713 	schedstat_add(cfs_rq, exec_clock, delta_exec);
714 
715 	curr->vruntime += calc_delta_fair(delta_exec, curr);
716 	update_min_vruntime(cfs_rq);
717 
718 	if (entity_is_task(curr)) {
719 		struct task_struct *curtask = task_of(curr);
720 
721 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
722 		cpuacct_charge(curtask, delta_exec);
723 		account_group_exec_runtime(curtask, delta_exec);
724 	}
725 
726 	account_cfs_rq_runtime(cfs_rq, delta_exec);
727 }
728 
729 static void update_curr_fair(struct rq *rq)
730 {
731 	update_curr(cfs_rq_of(&rq->curr->se));
732 }
733 
734 static inline void
735 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
736 {
737 	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
738 }
739 
740 /*
741  * Task is being enqueued - update stats:
742  */
743 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
744 {
745 	/*
746 	 * Are we enqueueing a waiting task? (for current tasks
747 	 * a dequeue/enqueue event is a NOP)
748 	 */
749 	if (se != cfs_rq->curr)
750 		update_stats_wait_start(cfs_rq, se);
751 }
752 
753 static void
754 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
755 {
756 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
757 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
758 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
759 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
760 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
761 #ifdef CONFIG_SCHEDSTATS
762 	if (entity_is_task(se)) {
763 		trace_sched_stat_wait(task_of(se),
764 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
765 	}
766 #endif
767 	schedstat_set(se->statistics.wait_start, 0);
768 }
769 
770 static inline void
771 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
772 {
773 	/*
774 	 * Mark the end of the wait period if dequeueing a
775 	 * waiting task:
776 	 */
777 	if (se != cfs_rq->curr)
778 		update_stats_wait_end(cfs_rq, se);
779 }
780 
781 /*
782  * We are picking a new current task - update its stats:
783  */
784 static inline void
785 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
786 {
787 	/*
788 	 * We are starting a new run period:
789 	 */
790 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
791 }
792 
793 /**************************************************
794  * Scheduling class queueing methods:
795  */
796 
797 #ifdef CONFIG_NUMA_BALANCING
798 /*
799  * Approximate time to scan a full NUMA task in ms. The task scan period is
800  * calculated based on the tasks virtual memory size and
801  * numa_balancing_scan_size.
802  */
803 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
804 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
805 
806 /* Portion of address space to scan in MB */
807 unsigned int sysctl_numa_balancing_scan_size = 256;
808 
809 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
810 unsigned int sysctl_numa_balancing_scan_delay = 1000;
811 
812 static unsigned int task_nr_scan_windows(struct task_struct *p)
813 {
814 	unsigned long rss = 0;
815 	unsigned long nr_scan_pages;
816 
817 	/*
818 	 * Calculations based on RSS as non-present and empty pages are skipped
819 	 * by the PTE scanner and NUMA hinting faults should be trapped based
820 	 * on resident pages
821 	 */
822 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
823 	rss = get_mm_rss(p->mm);
824 	if (!rss)
825 		rss = nr_scan_pages;
826 
827 	rss = round_up(rss, nr_scan_pages);
828 	return rss / nr_scan_pages;
829 }
830 
831 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
832 #define MAX_SCAN_WINDOW 2560
833 
834 static unsigned int task_scan_min(struct task_struct *p)
835 {
836 	unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
837 	unsigned int scan, floor;
838 	unsigned int windows = 1;
839 
840 	if (scan_size < MAX_SCAN_WINDOW)
841 		windows = MAX_SCAN_WINDOW / scan_size;
842 	floor = 1000 / windows;
843 
844 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
845 	return max_t(unsigned int, floor, scan);
846 }
847 
848 static unsigned int task_scan_max(struct task_struct *p)
849 {
850 	unsigned int smin = task_scan_min(p);
851 	unsigned int smax;
852 
853 	/* Watch for min being lower than max due to floor calculations */
854 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
855 	return max(smin, smax);
856 }
857 
858 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
859 {
860 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
861 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
862 }
863 
864 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
865 {
866 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
867 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
868 }
869 
870 struct numa_group {
871 	atomic_t refcount;
872 
873 	spinlock_t lock; /* nr_tasks, tasks */
874 	int nr_tasks;
875 	pid_t gid;
876 	struct list_head task_list;
877 
878 	struct rcu_head rcu;
879 	nodemask_t active_nodes;
880 	unsigned long total_faults;
881 	/*
882 	 * Faults_cpu is used to decide whether memory should move
883 	 * towards the CPU. As a consequence, these stats are weighted
884 	 * more by CPU use than by memory faults.
885 	 */
886 	unsigned long *faults_cpu;
887 	unsigned long faults[0];
888 };
889 
890 /* Shared or private faults. */
891 #define NR_NUMA_HINT_FAULT_TYPES 2
892 
893 /* Memory and CPU locality */
894 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
895 
896 /* Averaged statistics, and temporary buffers. */
897 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
898 
899 pid_t task_numa_group_id(struct task_struct *p)
900 {
901 	return p->numa_group ? p->numa_group->gid : 0;
902 }
903 
904 static inline int task_faults_idx(int nid, int priv)
905 {
906 	return NR_NUMA_HINT_FAULT_TYPES * nid + priv;
907 }
908 
909 static inline unsigned long task_faults(struct task_struct *p, int nid)
910 {
911 	if (!p->numa_faults_memory)
912 		return 0;
913 
914 	return p->numa_faults_memory[task_faults_idx(nid, 0)] +
915 		p->numa_faults_memory[task_faults_idx(nid, 1)];
916 }
917 
918 static inline unsigned long group_faults(struct task_struct *p, int nid)
919 {
920 	if (!p->numa_group)
921 		return 0;
922 
923 	return p->numa_group->faults[task_faults_idx(nid, 0)] +
924 		p->numa_group->faults[task_faults_idx(nid, 1)];
925 }
926 
927 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
928 {
929 	return group->faults_cpu[task_faults_idx(nid, 0)] +
930 		group->faults_cpu[task_faults_idx(nid, 1)];
931 }
932 
933 /*
934  * These return the fraction of accesses done by a particular task, or
935  * task group, on a particular numa node.  The group weight is given a
936  * larger multiplier, in order to group tasks together that are almost
937  * evenly spread out between numa nodes.
938  */
939 static inline unsigned long task_weight(struct task_struct *p, int nid)
940 {
941 	unsigned long total_faults;
942 
943 	if (!p->numa_faults_memory)
944 		return 0;
945 
946 	total_faults = p->total_numa_faults;
947 
948 	if (!total_faults)
949 		return 0;
950 
951 	return 1000 * task_faults(p, nid) / total_faults;
952 }
953 
954 static inline unsigned long group_weight(struct task_struct *p, int nid)
955 {
956 	if (!p->numa_group || !p->numa_group->total_faults)
957 		return 0;
958 
959 	return 1000 * group_faults(p, nid) / p->numa_group->total_faults;
960 }
961 
962 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
963 				int src_nid, int dst_cpu)
964 {
965 	struct numa_group *ng = p->numa_group;
966 	int dst_nid = cpu_to_node(dst_cpu);
967 	int last_cpupid, this_cpupid;
968 
969 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
970 
971 	/*
972 	 * Multi-stage node selection is used in conjunction with a periodic
973 	 * migration fault to build a temporal task<->page relation. By using
974 	 * a two-stage filter we remove short/unlikely relations.
975 	 *
976 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
977 	 * a task's usage of a particular page (n_p) per total usage of this
978 	 * page (n_t) (in a given time-span) to a probability.
979 	 *
980 	 * Our periodic faults will sample this probability and getting the
981 	 * same result twice in a row, given these samples are fully
982 	 * independent, is then given by P(n)^2, provided our sample period
983 	 * is sufficiently short compared to the usage pattern.
984 	 *
985 	 * This quadric squishes small probabilities, making it less likely we
986 	 * act on an unlikely task<->page relation.
987 	 */
988 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
989 	if (!cpupid_pid_unset(last_cpupid) &&
990 				cpupid_to_nid(last_cpupid) != dst_nid)
991 		return false;
992 
993 	/* Always allow migrate on private faults */
994 	if (cpupid_match_pid(p, last_cpupid))
995 		return true;
996 
997 	/* A shared fault, but p->numa_group has not been set up yet. */
998 	if (!ng)
999 		return true;
1000 
1001 	/*
1002 	 * Do not migrate if the destination is not a node that
1003 	 * is actively used by this numa group.
1004 	 */
1005 	if (!node_isset(dst_nid, ng->active_nodes))
1006 		return false;
1007 
1008 	/*
1009 	 * Source is a node that is not actively used by this
1010 	 * numa group, while the destination is. Migrate.
1011 	 */
1012 	if (!node_isset(src_nid, ng->active_nodes))
1013 		return true;
1014 
1015 	/*
1016 	 * Both source and destination are nodes in active
1017 	 * use by this numa group. Maximize memory bandwidth
1018 	 * by migrating from more heavily used groups, to less
1019 	 * heavily used ones, spreading the load around.
1020 	 * Use a 1/4 hysteresis to avoid spurious page movement.
1021 	 */
1022 	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1023 }
1024 
1025 static unsigned long weighted_cpuload(const int cpu);
1026 static unsigned long source_load(int cpu, int type);
1027 static unsigned long target_load(int cpu, int type);
1028 static unsigned long capacity_of(int cpu);
1029 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1030 
1031 /* Cached statistics for all CPUs within a node */
1032 struct numa_stats {
1033 	unsigned long nr_running;
1034 	unsigned long load;
1035 
1036 	/* Total compute capacity of CPUs on a node */
1037 	unsigned long compute_capacity;
1038 
1039 	/* Approximate capacity in terms of runnable tasks on a node */
1040 	unsigned long task_capacity;
1041 	int has_free_capacity;
1042 };
1043 
1044 /*
1045  * XXX borrowed from update_sg_lb_stats
1046  */
1047 static void update_numa_stats(struct numa_stats *ns, int nid)
1048 {
1049 	int smt, cpu, cpus = 0;
1050 	unsigned long capacity;
1051 
1052 	memset(ns, 0, sizeof(*ns));
1053 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1054 		struct rq *rq = cpu_rq(cpu);
1055 
1056 		ns->nr_running += rq->nr_running;
1057 		ns->load += weighted_cpuload(cpu);
1058 		ns->compute_capacity += capacity_of(cpu);
1059 
1060 		cpus++;
1061 	}
1062 
1063 	/*
1064 	 * If we raced with hotplug and there are no CPUs left in our mask
1065 	 * the @ns structure is NULL'ed and task_numa_compare() will
1066 	 * not find this node attractive.
1067 	 *
1068 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1069 	 * imbalance and bail there.
1070 	 */
1071 	if (!cpus)
1072 		return;
1073 
1074 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1075 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1076 	capacity = cpus / smt; /* cores */
1077 
1078 	ns->task_capacity = min_t(unsigned, capacity,
1079 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1080 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1081 }
1082 
1083 struct task_numa_env {
1084 	struct task_struct *p;
1085 
1086 	int src_cpu, src_nid;
1087 	int dst_cpu, dst_nid;
1088 
1089 	struct numa_stats src_stats, dst_stats;
1090 
1091 	int imbalance_pct;
1092 
1093 	struct task_struct *best_task;
1094 	long best_imp;
1095 	int best_cpu;
1096 };
1097 
1098 static void task_numa_assign(struct task_numa_env *env,
1099 			     struct task_struct *p, long imp)
1100 {
1101 	if (env->best_task)
1102 		put_task_struct(env->best_task);
1103 	if (p)
1104 		get_task_struct(p);
1105 
1106 	env->best_task = p;
1107 	env->best_imp = imp;
1108 	env->best_cpu = env->dst_cpu;
1109 }
1110 
1111 static bool load_too_imbalanced(long src_load, long dst_load,
1112 				struct task_numa_env *env)
1113 {
1114 	long imb, old_imb;
1115 	long orig_src_load, orig_dst_load;
1116 	long src_capacity, dst_capacity;
1117 
1118 	/*
1119 	 * The load is corrected for the CPU capacity available on each node.
1120 	 *
1121 	 * src_load        dst_load
1122 	 * ------------ vs ---------
1123 	 * src_capacity    dst_capacity
1124 	 */
1125 	src_capacity = env->src_stats.compute_capacity;
1126 	dst_capacity = env->dst_stats.compute_capacity;
1127 
1128 	/* We care about the slope of the imbalance, not the direction. */
1129 	if (dst_load < src_load)
1130 		swap(dst_load, src_load);
1131 
1132 	/* Is the difference below the threshold? */
1133 	imb = dst_load * src_capacity * 100 -
1134 	      src_load * dst_capacity * env->imbalance_pct;
1135 	if (imb <= 0)
1136 		return false;
1137 
1138 	/*
1139 	 * The imbalance is above the allowed threshold.
1140 	 * Compare it with the old imbalance.
1141 	 */
1142 	orig_src_load = env->src_stats.load;
1143 	orig_dst_load = env->dst_stats.load;
1144 
1145 	if (orig_dst_load < orig_src_load)
1146 		swap(orig_dst_load, orig_src_load);
1147 
1148 	old_imb = orig_dst_load * src_capacity * 100 -
1149 		  orig_src_load * dst_capacity * env->imbalance_pct;
1150 
1151 	/* Would this change make things worse? */
1152 	return (imb > old_imb);
1153 }
1154 
1155 /*
1156  * This checks if the overall compute and NUMA accesses of the system would
1157  * be improved if the source tasks was migrated to the target dst_cpu taking
1158  * into account that it might be best if task running on the dst_cpu should
1159  * be exchanged with the source task
1160  */
1161 static void task_numa_compare(struct task_numa_env *env,
1162 			      long taskimp, long groupimp)
1163 {
1164 	struct rq *src_rq = cpu_rq(env->src_cpu);
1165 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1166 	struct task_struct *cur;
1167 	long src_load, dst_load;
1168 	long load;
1169 	long imp = env->p->numa_group ? groupimp : taskimp;
1170 	long moveimp = imp;
1171 
1172 	rcu_read_lock();
1173 
1174 	raw_spin_lock_irq(&dst_rq->lock);
1175 	cur = dst_rq->curr;
1176 	/*
1177 	 * No need to move the exiting task, and this ensures that ->curr
1178 	 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1179 	 * is safe under RCU read lock.
1180 	 * Note that rcu_read_lock() itself can't protect from the final
1181 	 * put_task_struct() after the last schedule().
1182 	 */
1183 	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1184 		cur = NULL;
1185 	raw_spin_unlock_irq(&dst_rq->lock);
1186 
1187 	/*
1188 	 * Because we have preemption enabled we can get migrated around and
1189 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1190 	 */
1191 	if (cur == env->p)
1192 		goto unlock;
1193 
1194 	/*
1195 	 * "imp" is the fault differential for the source task between the
1196 	 * source and destination node. Calculate the total differential for
1197 	 * the source task and potential destination task. The more negative
1198 	 * the value is, the more rmeote accesses that would be expected to
1199 	 * be incurred if the tasks were swapped.
1200 	 */
1201 	if (cur) {
1202 		/* Skip this swap candidate if cannot move to the source cpu */
1203 		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1204 			goto unlock;
1205 
1206 		/*
1207 		 * If dst and source tasks are in the same NUMA group, or not
1208 		 * in any group then look only at task weights.
1209 		 */
1210 		if (cur->numa_group == env->p->numa_group) {
1211 			imp = taskimp + task_weight(cur, env->src_nid) -
1212 			      task_weight(cur, env->dst_nid);
1213 			/*
1214 			 * Add some hysteresis to prevent swapping the
1215 			 * tasks within a group over tiny differences.
1216 			 */
1217 			if (cur->numa_group)
1218 				imp -= imp/16;
1219 		} else {
1220 			/*
1221 			 * Compare the group weights. If a task is all by
1222 			 * itself (not part of a group), use the task weight
1223 			 * instead.
1224 			 */
1225 			if (cur->numa_group)
1226 				imp += group_weight(cur, env->src_nid) -
1227 				       group_weight(cur, env->dst_nid);
1228 			else
1229 				imp += task_weight(cur, env->src_nid) -
1230 				       task_weight(cur, env->dst_nid);
1231 		}
1232 	}
1233 
1234 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1235 		goto unlock;
1236 
1237 	if (!cur) {
1238 		/* Is there capacity at our destination? */
1239 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1240 		    !env->dst_stats.has_free_capacity)
1241 			goto unlock;
1242 
1243 		goto balance;
1244 	}
1245 
1246 	/* Balance doesn't matter much if we're running a task per cpu */
1247 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1248 			dst_rq->nr_running == 1)
1249 		goto assign;
1250 
1251 	/*
1252 	 * In the overloaded case, try and keep the load balanced.
1253 	 */
1254 balance:
1255 	load = task_h_load(env->p);
1256 	dst_load = env->dst_stats.load + load;
1257 	src_load = env->src_stats.load - load;
1258 
1259 	if (moveimp > imp && moveimp > env->best_imp) {
1260 		/*
1261 		 * If the improvement from just moving env->p direction is
1262 		 * better than swapping tasks around, check if a move is
1263 		 * possible. Store a slightly smaller score than moveimp,
1264 		 * so an actually idle CPU will win.
1265 		 */
1266 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1267 			imp = moveimp - 1;
1268 			cur = NULL;
1269 			goto assign;
1270 		}
1271 	}
1272 
1273 	if (imp <= env->best_imp)
1274 		goto unlock;
1275 
1276 	if (cur) {
1277 		load = task_h_load(cur);
1278 		dst_load -= load;
1279 		src_load += load;
1280 	}
1281 
1282 	if (load_too_imbalanced(src_load, dst_load, env))
1283 		goto unlock;
1284 
1285 	/*
1286 	 * One idle CPU per node is evaluated for a task numa move.
1287 	 * Call select_idle_sibling to maybe find a better one.
1288 	 */
1289 	if (!cur)
1290 		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1291 
1292 assign:
1293 	task_numa_assign(env, cur, imp);
1294 unlock:
1295 	rcu_read_unlock();
1296 }
1297 
1298 static void task_numa_find_cpu(struct task_numa_env *env,
1299 				long taskimp, long groupimp)
1300 {
1301 	int cpu;
1302 
1303 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1304 		/* Skip this CPU if the source task cannot migrate */
1305 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1306 			continue;
1307 
1308 		env->dst_cpu = cpu;
1309 		task_numa_compare(env, taskimp, groupimp);
1310 	}
1311 }
1312 
1313 static int task_numa_migrate(struct task_struct *p)
1314 {
1315 	struct task_numa_env env = {
1316 		.p = p,
1317 
1318 		.src_cpu = task_cpu(p),
1319 		.src_nid = task_node(p),
1320 
1321 		.imbalance_pct = 112,
1322 
1323 		.best_task = NULL,
1324 		.best_imp = 0,
1325 		.best_cpu = -1
1326 	};
1327 	struct sched_domain *sd;
1328 	unsigned long taskweight, groupweight;
1329 	int nid, ret;
1330 	long taskimp, groupimp;
1331 
1332 	/*
1333 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1334 	 * imbalance and would be the first to start moving tasks about.
1335 	 *
1336 	 * And we want to avoid any moving of tasks about, as that would create
1337 	 * random movement of tasks -- counter the numa conditions we're trying
1338 	 * to satisfy here.
1339 	 */
1340 	rcu_read_lock();
1341 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1342 	if (sd)
1343 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1344 	rcu_read_unlock();
1345 
1346 	/*
1347 	 * Cpusets can break the scheduler domain tree into smaller
1348 	 * balance domains, some of which do not cross NUMA boundaries.
1349 	 * Tasks that are "trapped" in such domains cannot be migrated
1350 	 * elsewhere, so there is no point in (re)trying.
1351 	 */
1352 	if (unlikely(!sd)) {
1353 		p->numa_preferred_nid = task_node(p);
1354 		return -EINVAL;
1355 	}
1356 
1357 	taskweight = task_weight(p, env.src_nid);
1358 	groupweight = group_weight(p, env.src_nid);
1359 	update_numa_stats(&env.src_stats, env.src_nid);
1360 	env.dst_nid = p->numa_preferred_nid;
1361 	taskimp = task_weight(p, env.dst_nid) - taskweight;
1362 	groupimp = group_weight(p, env.dst_nid) - groupweight;
1363 	update_numa_stats(&env.dst_stats, env.dst_nid);
1364 
1365 	/* Try to find a spot on the preferred nid. */
1366 	task_numa_find_cpu(&env, taskimp, groupimp);
1367 
1368 	/* No space available on the preferred nid. Look elsewhere. */
1369 	if (env.best_cpu == -1) {
1370 		for_each_online_node(nid) {
1371 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1372 				continue;
1373 
1374 			/* Only consider nodes where both task and groups benefit */
1375 			taskimp = task_weight(p, nid) - taskweight;
1376 			groupimp = group_weight(p, nid) - groupweight;
1377 			if (taskimp < 0 && groupimp < 0)
1378 				continue;
1379 
1380 			env.dst_nid = nid;
1381 			update_numa_stats(&env.dst_stats, env.dst_nid);
1382 			task_numa_find_cpu(&env, taskimp, groupimp);
1383 		}
1384 	}
1385 
1386 	/*
1387 	 * If the task is part of a workload that spans multiple NUMA nodes,
1388 	 * and is migrating into one of the workload's active nodes, remember
1389 	 * this node as the task's preferred numa node, so the workload can
1390 	 * settle down.
1391 	 * A task that migrated to a second choice node will be better off
1392 	 * trying for a better one later. Do not set the preferred node here.
1393 	 */
1394 	if (p->numa_group) {
1395 		if (env.best_cpu == -1)
1396 			nid = env.src_nid;
1397 		else
1398 			nid = env.dst_nid;
1399 
1400 		if (node_isset(nid, p->numa_group->active_nodes))
1401 			sched_setnuma(p, env.dst_nid);
1402 	}
1403 
1404 	/* No better CPU than the current one was found. */
1405 	if (env.best_cpu == -1)
1406 		return -EAGAIN;
1407 
1408 	/*
1409 	 * Reset the scan period if the task is being rescheduled on an
1410 	 * alternative node to recheck if the tasks is now properly placed.
1411 	 */
1412 	p->numa_scan_period = task_scan_min(p);
1413 
1414 	if (env.best_task == NULL) {
1415 		ret = migrate_task_to(p, env.best_cpu);
1416 		if (ret != 0)
1417 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1418 		return ret;
1419 	}
1420 
1421 	ret = migrate_swap(p, env.best_task);
1422 	if (ret != 0)
1423 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1424 	put_task_struct(env.best_task);
1425 	return ret;
1426 }
1427 
1428 /* Attempt to migrate a task to a CPU on the preferred node. */
1429 static void numa_migrate_preferred(struct task_struct *p)
1430 {
1431 	unsigned long interval = HZ;
1432 
1433 	/* This task has no NUMA fault statistics yet */
1434 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults_memory))
1435 		return;
1436 
1437 	/* Periodically retry migrating the task to the preferred node */
1438 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1439 	p->numa_migrate_retry = jiffies + interval;
1440 
1441 	/* Success if task is already running on preferred CPU */
1442 	if (task_node(p) == p->numa_preferred_nid)
1443 		return;
1444 
1445 	/* Otherwise, try migrate to a CPU on the preferred node */
1446 	task_numa_migrate(p);
1447 }
1448 
1449 /*
1450  * Find the nodes on which the workload is actively running. We do this by
1451  * tracking the nodes from which NUMA hinting faults are triggered. This can
1452  * be different from the set of nodes where the workload's memory is currently
1453  * located.
1454  *
1455  * The bitmask is used to make smarter decisions on when to do NUMA page
1456  * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1457  * are added when they cause over 6/16 of the maximum number of faults, but
1458  * only removed when they drop below 3/16.
1459  */
1460 static void update_numa_active_node_mask(struct numa_group *numa_group)
1461 {
1462 	unsigned long faults, max_faults = 0;
1463 	int nid;
1464 
1465 	for_each_online_node(nid) {
1466 		faults = group_faults_cpu(numa_group, nid);
1467 		if (faults > max_faults)
1468 			max_faults = faults;
1469 	}
1470 
1471 	for_each_online_node(nid) {
1472 		faults = group_faults_cpu(numa_group, nid);
1473 		if (!node_isset(nid, numa_group->active_nodes)) {
1474 			if (faults > max_faults * 6 / 16)
1475 				node_set(nid, numa_group->active_nodes);
1476 		} else if (faults < max_faults * 3 / 16)
1477 			node_clear(nid, numa_group->active_nodes);
1478 	}
1479 }
1480 
1481 /*
1482  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1483  * increments. The more local the fault statistics are, the higher the scan
1484  * period will be for the next scan window. If local/(local+remote) ratio is
1485  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1486  * the scan period will decrease. Aim for 70% local accesses.
1487  */
1488 #define NUMA_PERIOD_SLOTS 10
1489 #define NUMA_PERIOD_THRESHOLD 7
1490 
1491 /*
1492  * Increase the scan period (slow down scanning) if the majority of
1493  * our memory is already on our local node, or if the majority of
1494  * the page accesses are shared with other processes.
1495  * Otherwise, decrease the scan period.
1496  */
1497 static void update_task_scan_period(struct task_struct *p,
1498 			unsigned long shared, unsigned long private)
1499 {
1500 	unsigned int period_slot;
1501 	int ratio;
1502 	int diff;
1503 
1504 	unsigned long remote = p->numa_faults_locality[0];
1505 	unsigned long local = p->numa_faults_locality[1];
1506 
1507 	/*
1508 	 * If there were no record hinting faults then either the task is
1509 	 * completely idle or all activity is areas that are not of interest
1510 	 * to automatic numa balancing. Scan slower
1511 	 */
1512 	if (local + shared == 0) {
1513 		p->numa_scan_period = min(p->numa_scan_period_max,
1514 			p->numa_scan_period << 1);
1515 
1516 		p->mm->numa_next_scan = jiffies +
1517 			msecs_to_jiffies(p->numa_scan_period);
1518 
1519 		return;
1520 	}
1521 
1522 	/*
1523 	 * Prepare to scale scan period relative to the current period.
1524 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1525 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1526 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1527 	 */
1528 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1529 	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1530 	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1531 		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1532 		if (!slot)
1533 			slot = 1;
1534 		diff = slot * period_slot;
1535 	} else {
1536 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1537 
1538 		/*
1539 		 * Scale scan rate increases based on sharing. There is an
1540 		 * inverse relationship between the degree of sharing and
1541 		 * the adjustment made to the scanning period. Broadly
1542 		 * speaking the intent is that there is little point
1543 		 * scanning faster if shared accesses dominate as it may
1544 		 * simply bounce migrations uselessly
1545 		 */
1546 		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1547 		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1548 	}
1549 
1550 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1551 			task_scan_min(p), task_scan_max(p));
1552 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1553 }
1554 
1555 /*
1556  * Get the fraction of time the task has been running since the last
1557  * NUMA placement cycle. The scheduler keeps similar statistics, but
1558  * decays those on a 32ms period, which is orders of magnitude off
1559  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1560  * stats only if the task is so new there are no NUMA statistics yet.
1561  */
1562 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1563 {
1564 	u64 runtime, delta, now;
1565 	/* Use the start of this time slice to avoid calculations. */
1566 	now = p->se.exec_start;
1567 	runtime = p->se.sum_exec_runtime;
1568 
1569 	if (p->last_task_numa_placement) {
1570 		delta = runtime - p->last_sum_exec_runtime;
1571 		*period = now - p->last_task_numa_placement;
1572 	} else {
1573 		delta = p->se.avg.runnable_avg_sum;
1574 		*period = p->se.avg.runnable_avg_period;
1575 	}
1576 
1577 	p->last_sum_exec_runtime = runtime;
1578 	p->last_task_numa_placement = now;
1579 
1580 	return delta;
1581 }
1582 
1583 static void task_numa_placement(struct task_struct *p)
1584 {
1585 	int seq, nid, max_nid = -1, max_group_nid = -1;
1586 	unsigned long max_faults = 0, max_group_faults = 0;
1587 	unsigned long fault_types[2] = { 0, 0 };
1588 	unsigned long total_faults;
1589 	u64 runtime, period;
1590 	spinlock_t *group_lock = NULL;
1591 
1592 	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1593 	if (p->numa_scan_seq == seq)
1594 		return;
1595 	p->numa_scan_seq = seq;
1596 	p->numa_scan_period_max = task_scan_max(p);
1597 
1598 	total_faults = p->numa_faults_locality[0] +
1599 		       p->numa_faults_locality[1];
1600 	runtime = numa_get_avg_runtime(p, &period);
1601 
1602 	/* If the task is part of a group prevent parallel updates to group stats */
1603 	if (p->numa_group) {
1604 		group_lock = &p->numa_group->lock;
1605 		spin_lock_irq(group_lock);
1606 	}
1607 
1608 	/* Find the node with the highest number of faults */
1609 	for_each_online_node(nid) {
1610 		unsigned long faults = 0, group_faults = 0;
1611 		int priv, i;
1612 
1613 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1614 			long diff, f_diff, f_weight;
1615 
1616 			i = task_faults_idx(nid, priv);
1617 
1618 			/* Decay existing window, copy faults since last scan */
1619 			diff = p->numa_faults_buffer_memory[i] - p->numa_faults_memory[i] / 2;
1620 			fault_types[priv] += p->numa_faults_buffer_memory[i];
1621 			p->numa_faults_buffer_memory[i] = 0;
1622 
1623 			/*
1624 			 * Normalize the faults_from, so all tasks in a group
1625 			 * count according to CPU use, instead of by the raw
1626 			 * number of faults. Tasks with little runtime have
1627 			 * little over-all impact on throughput, and thus their
1628 			 * faults are less important.
1629 			 */
1630 			f_weight = div64_u64(runtime << 16, period + 1);
1631 			f_weight = (f_weight * p->numa_faults_buffer_cpu[i]) /
1632 				   (total_faults + 1);
1633 			f_diff = f_weight - p->numa_faults_cpu[i] / 2;
1634 			p->numa_faults_buffer_cpu[i] = 0;
1635 
1636 			p->numa_faults_memory[i] += diff;
1637 			p->numa_faults_cpu[i] += f_diff;
1638 			faults += p->numa_faults_memory[i];
1639 			p->total_numa_faults += diff;
1640 			if (p->numa_group) {
1641 				/* safe because we can only change our own group */
1642 				p->numa_group->faults[i] += diff;
1643 				p->numa_group->faults_cpu[i] += f_diff;
1644 				p->numa_group->total_faults += diff;
1645 				group_faults += p->numa_group->faults[i];
1646 			}
1647 		}
1648 
1649 		if (faults > max_faults) {
1650 			max_faults = faults;
1651 			max_nid = nid;
1652 		}
1653 
1654 		if (group_faults > max_group_faults) {
1655 			max_group_faults = group_faults;
1656 			max_group_nid = nid;
1657 		}
1658 	}
1659 
1660 	update_task_scan_period(p, fault_types[0], fault_types[1]);
1661 
1662 	if (p->numa_group) {
1663 		update_numa_active_node_mask(p->numa_group);
1664 		spin_unlock_irq(group_lock);
1665 		max_nid = max_group_nid;
1666 	}
1667 
1668 	if (max_faults) {
1669 		/* Set the new preferred node */
1670 		if (max_nid != p->numa_preferred_nid)
1671 			sched_setnuma(p, max_nid);
1672 
1673 		if (task_node(p) != p->numa_preferred_nid)
1674 			numa_migrate_preferred(p);
1675 	}
1676 }
1677 
1678 static inline int get_numa_group(struct numa_group *grp)
1679 {
1680 	return atomic_inc_not_zero(&grp->refcount);
1681 }
1682 
1683 static inline void put_numa_group(struct numa_group *grp)
1684 {
1685 	if (atomic_dec_and_test(&grp->refcount))
1686 		kfree_rcu(grp, rcu);
1687 }
1688 
1689 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1690 			int *priv)
1691 {
1692 	struct numa_group *grp, *my_grp;
1693 	struct task_struct *tsk;
1694 	bool join = false;
1695 	int cpu = cpupid_to_cpu(cpupid);
1696 	int i;
1697 
1698 	if (unlikely(!p->numa_group)) {
1699 		unsigned int size = sizeof(struct numa_group) +
1700 				    4*nr_node_ids*sizeof(unsigned long);
1701 
1702 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1703 		if (!grp)
1704 			return;
1705 
1706 		atomic_set(&grp->refcount, 1);
1707 		spin_lock_init(&grp->lock);
1708 		INIT_LIST_HEAD(&grp->task_list);
1709 		grp->gid = p->pid;
1710 		/* Second half of the array tracks nids where faults happen */
1711 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1712 						nr_node_ids;
1713 
1714 		node_set(task_node(current), grp->active_nodes);
1715 
1716 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1717 			grp->faults[i] = p->numa_faults_memory[i];
1718 
1719 		grp->total_faults = p->total_numa_faults;
1720 
1721 		list_add(&p->numa_entry, &grp->task_list);
1722 		grp->nr_tasks++;
1723 		rcu_assign_pointer(p->numa_group, grp);
1724 	}
1725 
1726 	rcu_read_lock();
1727 	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1728 
1729 	if (!cpupid_match_pid(tsk, cpupid))
1730 		goto no_join;
1731 
1732 	grp = rcu_dereference(tsk->numa_group);
1733 	if (!grp)
1734 		goto no_join;
1735 
1736 	my_grp = p->numa_group;
1737 	if (grp == my_grp)
1738 		goto no_join;
1739 
1740 	/*
1741 	 * Only join the other group if its bigger; if we're the bigger group,
1742 	 * the other task will join us.
1743 	 */
1744 	if (my_grp->nr_tasks > grp->nr_tasks)
1745 		goto no_join;
1746 
1747 	/*
1748 	 * Tie-break on the grp address.
1749 	 */
1750 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1751 		goto no_join;
1752 
1753 	/* Always join threads in the same process. */
1754 	if (tsk->mm == current->mm)
1755 		join = true;
1756 
1757 	/* Simple filter to avoid false positives due to PID collisions */
1758 	if (flags & TNF_SHARED)
1759 		join = true;
1760 
1761 	/* Update priv based on whether false sharing was detected */
1762 	*priv = !join;
1763 
1764 	if (join && !get_numa_group(grp))
1765 		goto no_join;
1766 
1767 	rcu_read_unlock();
1768 
1769 	if (!join)
1770 		return;
1771 
1772 	BUG_ON(irqs_disabled());
1773 	double_lock_irq(&my_grp->lock, &grp->lock);
1774 
1775 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1776 		my_grp->faults[i] -= p->numa_faults_memory[i];
1777 		grp->faults[i] += p->numa_faults_memory[i];
1778 	}
1779 	my_grp->total_faults -= p->total_numa_faults;
1780 	grp->total_faults += p->total_numa_faults;
1781 
1782 	list_move(&p->numa_entry, &grp->task_list);
1783 	my_grp->nr_tasks--;
1784 	grp->nr_tasks++;
1785 
1786 	spin_unlock(&my_grp->lock);
1787 	spin_unlock_irq(&grp->lock);
1788 
1789 	rcu_assign_pointer(p->numa_group, grp);
1790 
1791 	put_numa_group(my_grp);
1792 	return;
1793 
1794 no_join:
1795 	rcu_read_unlock();
1796 	return;
1797 }
1798 
1799 void task_numa_free(struct task_struct *p)
1800 {
1801 	struct numa_group *grp = p->numa_group;
1802 	void *numa_faults = p->numa_faults_memory;
1803 	unsigned long flags;
1804 	int i;
1805 
1806 	if (grp) {
1807 		spin_lock_irqsave(&grp->lock, flags);
1808 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1809 			grp->faults[i] -= p->numa_faults_memory[i];
1810 		grp->total_faults -= p->total_numa_faults;
1811 
1812 		list_del(&p->numa_entry);
1813 		grp->nr_tasks--;
1814 		spin_unlock_irqrestore(&grp->lock, flags);
1815 		RCU_INIT_POINTER(p->numa_group, NULL);
1816 		put_numa_group(grp);
1817 	}
1818 
1819 	p->numa_faults_memory = NULL;
1820 	p->numa_faults_buffer_memory = NULL;
1821 	p->numa_faults_cpu= NULL;
1822 	p->numa_faults_buffer_cpu = NULL;
1823 	kfree(numa_faults);
1824 }
1825 
1826 /*
1827  * Got a PROT_NONE fault for a page on @node.
1828  */
1829 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
1830 {
1831 	struct task_struct *p = current;
1832 	bool migrated = flags & TNF_MIGRATED;
1833 	int cpu_node = task_node(current);
1834 	int local = !!(flags & TNF_FAULT_LOCAL);
1835 	int priv;
1836 
1837 	if (!numabalancing_enabled)
1838 		return;
1839 
1840 	/* for example, ksmd faulting in a user's mm */
1841 	if (!p->mm)
1842 		return;
1843 
1844 	/* Allocate buffer to track faults on a per-node basis */
1845 	if (unlikely(!p->numa_faults_memory)) {
1846 		int size = sizeof(*p->numa_faults_memory) *
1847 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
1848 
1849 		p->numa_faults_memory = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
1850 		if (!p->numa_faults_memory)
1851 			return;
1852 
1853 		BUG_ON(p->numa_faults_buffer_memory);
1854 		/*
1855 		 * The averaged statistics, shared & private, memory & cpu,
1856 		 * occupy the first half of the array. The second half of the
1857 		 * array is for current counters, which are averaged into the
1858 		 * first set by task_numa_placement.
1859 		 */
1860 		p->numa_faults_cpu = p->numa_faults_memory + (2 * nr_node_ids);
1861 		p->numa_faults_buffer_memory = p->numa_faults_memory + (4 * nr_node_ids);
1862 		p->numa_faults_buffer_cpu = p->numa_faults_memory + (6 * nr_node_ids);
1863 		p->total_numa_faults = 0;
1864 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1865 	}
1866 
1867 	/*
1868 	 * First accesses are treated as private, otherwise consider accesses
1869 	 * to be private if the accessing pid has not changed
1870 	 */
1871 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1872 		priv = 1;
1873 	} else {
1874 		priv = cpupid_match_pid(p, last_cpupid);
1875 		if (!priv && !(flags & TNF_NO_GROUP))
1876 			task_numa_group(p, last_cpupid, flags, &priv);
1877 	}
1878 
1879 	/*
1880 	 * If a workload spans multiple NUMA nodes, a shared fault that
1881 	 * occurs wholly within the set of nodes that the workload is
1882 	 * actively using should be counted as local. This allows the
1883 	 * scan rate to slow down when a workload has settled down.
1884 	 */
1885 	if (!priv && !local && p->numa_group &&
1886 			node_isset(cpu_node, p->numa_group->active_nodes) &&
1887 			node_isset(mem_node, p->numa_group->active_nodes))
1888 		local = 1;
1889 
1890 	task_numa_placement(p);
1891 
1892 	/*
1893 	 * Retry task to preferred node migration periodically, in case it
1894 	 * case it previously failed, or the scheduler moved us.
1895 	 */
1896 	if (time_after(jiffies, p->numa_migrate_retry))
1897 		numa_migrate_preferred(p);
1898 
1899 	if (migrated)
1900 		p->numa_pages_migrated += pages;
1901 
1902 	p->numa_faults_buffer_memory[task_faults_idx(mem_node, priv)] += pages;
1903 	p->numa_faults_buffer_cpu[task_faults_idx(cpu_node, priv)] += pages;
1904 	p->numa_faults_locality[local] += pages;
1905 }
1906 
1907 static void reset_ptenuma_scan(struct task_struct *p)
1908 {
1909 	ACCESS_ONCE(p->mm->numa_scan_seq)++;
1910 	p->mm->numa_scan_offset = 0;
1911 }
1912 
1913 /*
1914  * The expensive part of numa migration is done from task_work context.
1915  * Triggered from task_tick_numa().
1916  */
1917 void task_numa_work(struct callback_head *work)
1918 {
1919 	unsigned long migrate, next_scan, now = jiffies;
1920 	struct task_struct *p = current;
1921 	struct mm_struct *mm = p->mm;
1922 	struct vm_area_struct *vma;
1923 	unsigned long start, end;
1924 	unsigned long nr_pte_updates = 0;
1925 	long pages;
1926 
1927 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1928 
1929 	work->next = work; /* protect against double add */
1930 	/*
1931 	 * Who cares about NUMA placement when they're dying.
1932 	 *
1933 	 * NOTE: make sure not to dereference p->mm before this check,
1934 	 * exit_task_work() happens _after_ exit_mm() so we could be called
1935 	 * without p->mm even though we still had it when we enqueued this
1936 	 * work.
1937 	 */
1938 	if (p->flags & PF_EXITING)
1939 		return;
1940 
1941 	if (!mm->numa_next_scan) {
1942 		mm->numa_next_scan = now +
1943 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1944 	}
1945 
1946 	/*
1947 	 * Enforce maximal scan/migration frequency..
1948 	 */
1949 	migrate = mm->numa_next_scan;
1950 	if (time_before(now, migrate))
1951 		return;
1952 
1953 	if (p->numa_scan_period == 0) {
1954 		p->numa_scan_period_max = task_scan_max(p);
1955 		p->numa_scan_period = task_scan_min(p);
1956 	}
1957 
1958 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1959 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1960 		return;
1961 
1962 	/*
1963 	 * Delay this task enough that another task of this mm will likely win
1964 	 * the next time around.
1965 	 */
1966 	p->node_stamp += 2 * TICK_NSEC;
1967 
1968 	start = mm->numa_scan_offset;
1969 	pages = sysctl_numa_balancing_scan_size;
1970 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1971 	if (!pages)
1972 		return;
1973 
1974 	down_read(&mm->mmap_sem);
1975 	vma = find_vma(mm, start);
1976 	if (!vma) {
1977 		reset_ptenuma_scan(p);
1978 		start = 0;
1979 		vma = mm->mmap;
1980 	}
1981 	for (; vma; vma = vma->vm_next) {
1982 		if (!vma_migratable(vma) || !vma_policy_mof(vma))
1983 			continue;
1984 
1985 		/*
1986 		 * Shared library pages mapped by multiple processes are not
1987 		 * migrated as it is expected they are cache replicated. Avoid
1988 		 * hinting faults in read-only file-backed mappings or the vdso
1989 		 * as migrating the pages will be of marginal benefit.
1990 		 */
1991 		if (!vma->vm_mm ||
1992 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1993 			continue;
1994 
1995 		/*
1996 		 * Skip inaccessible VMAs to avoid any confusion between
1997 		 * PROT_NONE and NUMA hinting ptes
1998 		 */
1999 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2000 			continue;
2001 
2002 		do {
2003 			start = max(start, vma->vm_start);
2004 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2005 			end = min(end, vma->vm_end);
2006 			nr_pte_updates += change_prot_numa(vma, start, end);
2007 
2008 			/*
2009 			 * Scan sysctl_numa_balancing_scan_size but ensure that
2010 			 * at least one PTE is updated so that unused virtual
2011 			 * address space is quickly skipped.
2012 			 */
2013 			if (nr_pte_updates)
2014 				pages -= (end - start) >> PAGE_SHIFT;
2015 
2016 			start = end;
2017 			if (pages <= 0)
2018 				goto out;
2019 
2020 			cond_resched();
2021 		} while (end != vma->vm_end);
2022 	}
2023 
2024 out:
2025 	/*
2026 	 * It is possible to reach the end of the VMA list but the last few
2027 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2028 	 * would find the !migratable VMA on the next scan but not reset the
2029 	 * scanner to the start so check it now.
2030 	 */
2031 	if (vma)
2032 		mm->numa_scan_offset = start;
2033 	else
2034 		reset_ptenuma_scan(p);
2035 	up_read(&mm->mmap_sem);
2036 }
2037 
2038 /*
2039  * Drive the periodic memory faults..
2040  */
2041 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2042 {
2043 	struct callback_head *work = &curr->numa_work;
2044 	u64 period, now;
2045 
2046 	/*
2047 	 * We don't care about NUMA placement if we don't have memory.
2048 	 */
2049 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2050 		return;
2051 
2052 	/*
2053 	 * Using runtime rather than walltime has the dual advantage that
2054 	 * we (mostly) drive the selection from busy threads and that the
2055 	 * task needs to have done some actual work before we bother with
2056 	 * NUMA placement.
2057 	 */
2058 	now = curr->se.sum_exec_runtime;
2059 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2060 
2061 	if (now - curr->node_stamp > period) {
2062 		if (!curr->node_stamp)
2063 			curr->numa_scan_period = task_scan_min(curr);
2064 		curr->node_stamp += period;
2065 
2066 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2067 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2068 			task_work_add(curr, work, true);
2069 		}
2070 	}
2071 }
2072 #else
2073 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2074 {
2075 }
2076 
2077 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2078 {
2079 }
2080 
2081 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2082 {
2083 }
2084 #endif /* CONFIG_NUMA_BALANCING */
2085 
2086 static void
2087 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2088 {
2089 	update_load_add(&cfs_rq->load, se->load.weight);
2090 	if (!parent_entity(se))
2091 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2092 #ifdef CONFIG_SMP
2093 	if (entity_is_task(se)) {
2094 		struct rq *rq = rq_of(cfs_rq);
2095 
2096 		account_numa_enqueue(rq, task_of(se));
2097 		list_add(&se->group_node, &rq->cfs_tasks);
2098 	}
2099 #endif
2100 	cfs_rq->nr_running++;
2101 }
2102 
2103 static void
2104 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2105 {
2106 	update_load_sub(&cfs_rq->load, se->load.weight);
2107 	if (!parent_entity(se))
2108 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2109 	if (entity_is_task(se)) {
2110 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2111 		list_del_init(&se->group_node);
2112 	}
2113 	cfs_rq->nr_running--;
2114 }
2115 
2116 #ifdef CONFIG_FAIR_GROUP_SCHED
2117 # ifdef CONFIG_SMP
2118 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2119 {
2120 	long tg_weight;
2121 
2122 	/*
2123 	 * Use this CPU's actual weight instead of the last load_contribution
2124 	 * to gain a more accurate current total weight. See
2125 	 * update_cfs_rq_load_contribution().
2126 	 */
2127 	tg_weight = atomic_long_read(&tg->load_avg);
2128 	tg_weight -= cfs_rq->tg_load_contrib;
2129 	tg_weight += cfs_rq->load.weight;
2130 
2131 	return tg_weight;
2132 }
2133 
2134 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2135 {
2136 	long tg_weight, load, shares;
2137 
2138 	tg_weight = calc_tg_weight(tg, cfs_rq);
2139 	load = cfs_rq->load.weight;
2140 
2141 	shares = (tg->shares * load);
2142 	if (tg_weight)
2143 		shares /= tg_weight;
2144 
2145 	if (shares < MIN_SHARES)
2146 		shares = MIN_SHARES;
2147 	if (shares > tg->shares)
2148 		shares = tg->shares;
2149 
2150 	return shares;
2151 }
2152 # else /* CONFIG_SMP */
2153 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2154 {
2155 	return tg->shares;
2156 }
2157 # endif /* CONFIG_SMP */
2158 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2159 			    unsigned long weight)
2160 {
2161 	if (se->on_rq) {
2162 		/* commit outstanding execution time */
2163 		if (cfs_rq->curr == se)
2164 			update_curr(cfs_rq);
2165 		account_entity_dequeue(cfs_rq, se);
2166 	}
2167 
2168 	update_load_set(&se->load, weight);
2169 
2170 	if (se->on_rq)
2171 		account_entity_enqueue(cfs_rq, se);
2172 }
2173 
2174 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2175 
2176 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2177 {
2178 	struct task_group *tg;
2179 	struct sched_entity *se;
2180 	long shares;
2181 
2182 	tg = cfs_rq->tg;
2183 	se = tg->se[cpu_of(rq_of(cfs_rq))];
2184 	if (!se || throttled_hierarchy(cfs_rq))
2185 		return;
2186 #ifndef CONFIG_SMP
2187 	if (likely(se->load.weight == tg->shares))
2188 		return;
2189 #endif
2190 	shares = calc_cfs_shares(cfs_rq, tg);
2191 
2192 	reweight_entity(cfs_rq_of(se), se, shares);
2193 }
2194 #else /* CONFIG_FAIR_GROUP_SCHED */
2195 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2196 {
2197 }
2198 #endif /* CONFIG_FAIR_GROUP_SCHED */
2199 
2200 #ifdef CONFIG_SMP
2201 /*
2202  * We choose a half-life close to 1 scheduling period.
2203  * Note: The tables below are dependent on this value.
2204  */
2205 #define LOAD_AVG_PERIOD 32
2206 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2207 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2208 
2209 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2210 static const u32 runnable_avg_yN_inv[] = {
2211 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2212 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2213 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2214 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2215 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2216 	0x85aac367, 0x82cd8698,
2217 };
2218 
2219 /*
2220  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2221  * over-estimates when re-combining.
2222  */
2223 static const u32 runnable_avg_yN_sum[] = {
2224 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2225 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2226 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2227 };
2228 
2229 /*
2230  * Approximate:
2231  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2232  */
2233 static __always_inline u64 decay_load(u64 val, u64 n)
2234 {
2235 	unsigned int local_n;
2236 
2237 	if (!n)
2238 		return val;
2239 	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2240 		return 0;
2241 
2242 	/* after bounds checking we can collapse to 32-bit */
2243 	local_n = n;
2244 
2245 	/*
2246 	 * As y^PERIOD = 1/2, we can combine
2247 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2248 	 * With a look-up table which covers y^n (n<PERIOD)
2249 	 *
2250 	 * To achieve constant time decay_load.
2251 	 */
2252 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2253 		val >>= local_n / LOAD_AVG_PERIOD;
2254 		local_n %= LOAD_AVG_PERIOD;
2255 	}
2256 
2257 	val *= runnable_avg_yN_inv[local_n];
2258 	/* We don't use SRR here since we always want to round down. */
2259 	return val >> 32;
2260 }
2261 
2262 /*
2263  * For updates fully spanning n periods, the contribution to runnable
2264  * average will be: \Sum 1024*y^n
2265  *
2266  * We can compute this reasonably efficiently by combining:
2267  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2268  */
2269 static u32 __compute_runnable_contrib(u64 n)
2270 {
2271 	u32 contrib = 0;
2272 
2273 	if (likely(n <= LOAD_AVG_PERIOD))
2274 		return runnable_avg_yN_sum[n];
2275 	else if (unlikely(n >= LOAD_AVG_MAX_N))
2276 		return LOAD_AVG_MAX;
2277 
2278 	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2279 	do {
2280 		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2281 		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2282 
2283 		n -= LOAD_AVG_PERIOD;
2284 	} while (n > LOAD_AVG_PERIOD);
2285 
2286 	contrib = decay_load(contrib, n);
2287 	return contrib + runnable_avg_yN_sum[n];
2288 }
2289 
2290 /*
2291  * We can represent the historical contribution to runnable average as the
2292  * coefficients of a geometric series.  To do this we sub-divide our runnable
2293  * history into segments of approximately 1ms (1024us); label the segment that
2294  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2295  *
2296  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2297  *      p0            p1           p2
2298  *     (now)       (~1ms ago)  (~2ms ago)
2299  *
2300  * Let u_i denote the fraction of p_i that the entity was runnable.
2301  *
2302  * We then designate the fractions u_i as our co-efficients, yielding the
2303  * following representation of historical load:
2304  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2305  *
2306  * We choose y based on the with of a reasonably scheduling period, fixing:
2307  *   y^32 = 0.5
2308  *
2309  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2310  * approximately half as much as the contribution to load within the last ms
2311  * (u_0).
2312  *
2313  * When a period "rolls over" and we have new u_0`, multiplying the previous
2314  * sum again by y is sufficient to update:
2315  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2316  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2317  */
2318 static __always_inline int __update_entity_runnable_avg(u64 now,
2319 							struct sched_avg *sa,
2320 							int runnable)
2321 {
2322 	u64 delta, periods;
2323 	u32 runnable_contrib;
2324 	int delta_w, decayed = 0;
2325 
2326 	delta = now - sa->last_runnable_update;
2327 	/*
2328 	 * This should only happen when time goes backwards, which it
2329 	 * unfortunately does during sched clock init when we swap over to TSC.
2330 	 */
2331 	if ((s64)delta < 0) {
2332 		sa->last_runnable_update = now;
2333 		return 0;
2334 	}
2335 
2336 	/*
2337 	 * Use 1024ns as the unit of measurement since it's a reasonable
2338 	 * approximation of 1us and fast to compute.
2339 	 */
2340 	delta >>= 10;
2341 	if (!delta)
2342 		return 0;
2343 	sa->last_runnable_update = now;
2344 
2345 	/* delta_w is the amount already accumulated against our next period */
2346 	delta_w = sa->runnable_avg_period % 1024;
2347 	if (delta + delta_w >= 1024) {
2348 		/* period roll-over */
2349 		decayed = 1;
2350 
2351 		/*
2352 		 * Now that we know we're crossing a period boundary, figure
2353 		 * out how much from delta we need to complete the current
2354 		 * period and accrue it.
2355 		 */
2356 		delta_w = 1024 - delta_w;
2357 		if (runnable)
2358 			sa->runnable_avg_sum += delta_w;
2359 		sa->runnable_avg_period += delta_w;
2360 
2361 		delta -= delta_w;
2362 
2363 		/* Figure out how many additional periods this update spans */
2364 		periods = delta / 1024;
2365 		delta %= 1024;
2366 
2367 		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2368 						  periods + 1);
2369 		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2370 						     periods + 1);
2371 
2372 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2373 		runnable_contrib = __compute_runnable_contrib(periods);
2374 		if (runnable)
2375 			sa->runnable_avg_sum += runnable_contrib;
2376 		sa->runnable_avg_period += runnable_contrib;
2377 	}
2378 
2379 	/* Remainder of delta accrued against u_0` */
2380 	if (runnable)
2381 		sa->runnable_avg_sum += delta;
2382 	sa->runnable_avg_period += delta;
2383 
2384 	return decayed;
2385 }
2386 
2387 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2388 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2389 {
2390 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2391 	u64 decays = atomic64_read(&cfs_rq->decay_counter);
2392 
2393 	decays -= se->avg.decay_count;
2394 	if (!decays)
2395 		return 0;
2396 
2397 	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2398 	se->avg.decay_count = 0;
2399 
2400 	return decays;
2401 }
2402 
2403 #ifdef CONFIG_FAIR_GROUP_SCHED
2404 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2405 						 int force_update)
2406 {
2407 	struct task_group *tg = cfs_rq->tg;
2408 	long tg_contrib;
2409 
2410 	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2411 	tg_contrib -= cfs_rq->tg_load_contrib;
2412 
2413 	if (!tg_contrib)
2414 		return;
2415 
2416 	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2417 		atomic_long_add(tg_contrib, &tg->load_avg);
2418 		cfs_rq->tg_load_contrib += tg_contrib;
2419 	}
2420 }
2421 
2422 /*
2423  * Aggregate cfs_rq runnable averages into an equivalent task_group
2424  * representation for computing load contributions.
2425  */
2426 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2427 						  struct cfs_rq *cfs_rq)
2428 {
2429 	struct task_group *tg = cfs_rq->tg;
2430 	long contrib;
2431 
2432 	/* The fraction of a cpu used by this cfs_rq */
2433 	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2434 			  sa->runnable_avg_period + 1);
2435 	contrib -= cfs_rq->tg_runnable_contrib;
2436 
2437 	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2438 		atomic_add(contrib, &tg->runnable_avg);
2439 		cfs_rq->tg_runnable_contrib += contrib;
2440 	}
2441 }
2442 
2443 static inline void __update_group_entity_contrib(struct sched_entity *se)
2444 {
2445 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2446 	struct task_group *tg = cfs_rq->tg;
2447 	int runnable_avg;
2448 
2449 	u64 contrib;
2450 
2451 	contrib = cfs_rq->tg_load_contrib * tg->shares;
2452 	se->avg.load_avg_contrib = div_u64(contrib,
2453 				     atomic_long_read(&tg->load_avg) + 1);
2454 
2455 	/*
2456 	 * For group entities we need to compute a correction term in the case
2457 	 * that they are consuming <1 cpu so that we would contribute the same
2458 	 * load as a task of equal weight.
2459 	 *
2460 	 * Explicitly co-ordinating this measurement would be expensive, but
2461 	 * fortunately the sum of each cpus contribution forms a usable
2462 	 * lower-bound on the true value.
2463 	 *
2464 	 * Consider the aggregate of 2 contributions.  Either they are disjoint
2465 	 * (and the sum represents true value) or they are disjoint and we are
2466 	 * understating by the aggregate of their overlap.
2467 	 *
2468 	 * Extending this to N cpus, for a given overlap, the maximum amount we
2469 	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2470 	 * cpus that overlap for this interval and w_i is the interval width.
2471 	 *
2472 	 * On a small machine; the first term is well-bounded which bounds the
2473 	 * total error since w_i is a subset of the period.  Whereas on a
2474 	 * larger machine, while this first term can be larger, if w_i is the
2475 	 * of consequential size guaranteed to see n_i*w_i quickly converge to
2476 	 * our upper bound of 1-cpu.
2477 	 */
2478 	runnable_avg = atomic_read(&tg->runnable_avg);
2479 	if (runnable_avg < NICE_0_LOAD) {
2480 		se->avg.load_avg_contrib *= runnable_avg;
2481 		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2482 	}
2483 }
2484 
2485 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2486 {
2487 	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2488 	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
2489 }
2490 #else /* CONFIG_FAIR_GROUP_SCHED */
2491 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2492 						 int force_update) {}
2493 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2494 						  struct cfs_rq *cfs_rq) {}
2495 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2496 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2497 #endif /* CONFIG_FAIR_GROUP_SCHED */
2498 
2499 static inline void __update_task_entity_contrib(struct sched_entity *se)
2500 {
2501 	u32 contrib;
2502 
2503 	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2504 	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2505 	contrib /= (se->avg.runnable_avg_period + 1);
2506 	se->avg.load_avg_contrib = scale_load(contrib);
2507 }
2508 
2509 /* Compute the current contribution to load_avg by se, return any delta */
2510 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2511 {
2512 	long old_contrib = se->avg.load_avg_contrib;
2513 
2514 	if (entity_is_task(se)) {
2515 		__update_task_entity_contrib(se);
2516 	} else {
2517 		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2518 		__update_group_entity_contrib(se);
2519 	}
2520 
2521 	return se->avg.load_avg_contrib - old_contrib;
2522 }
2523 
2524 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2525 						 long load_contrib)
2526 {
2527 	if (likely(load_contrib < cfs_rq->blocked_load_avg))
2528 		cfs_rq->blocked_load_avg -= load_contrib;
2529 	else
2530 		cfs_rq->blocked_load_avg = 0;
2531 }
2532 
2533 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2534 
2535 /* Update a sched_entity's runnable average */
2536 static inline void update_entity_load_avg(struct sched_entity *se,
2537 					  int update_cfs_rq)
2538 {
2539 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2540 	long contrib_delta;
2541 	u64 now;
2542 
2543 	/*
2544 	 * For a group entity we need to use their owned cfs_rq_clock_task() in
2545 	 * case they are the parent of a throttled hierarchy.
2546 	 */
2547 	if (entity_is_task(se))
2548 		now = cfs_rq_clock_task(cfs_rq);
2549 	else
2550 		now = cfs_rq_clock_task(group_cfs_rq(se));
2551 
2552 	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2553 		return;
2554 
2555 	contrib_delta = __update_entity_load_avg_contrib(se);
2556 
2557 	if (!update_cfs_rq)
2558 		return;
2559 
2560 	if (se->on_rq)
2561 		cfs_rq->runnable_load_avg += contrib_delta;
2562 	else
2563 		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2564 }
2565 
2566 /*
2567  * Decay the load contributed by all blocked children and account this so that
2568  * their contribution may appropriately discounted when they wake up.
2569  */
2570 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2571 {
2572 	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2573 	u64 decays;
2574 
2575 	decays = now - cfs_rq->last_decay;
2576 	if (!decays && !force_update)
2577 		return;
2578 
2579 	if (atomic_long_read(&cfs_rq->removed_load)) {
2580 		unsigned long removed_load;
2581 		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2582 		subtract_blocked_load_contrib(cfs_rq, removed_load);
2583 	}
2584 
2585 	if (decays) {
2586 		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2587 						      decays);
2588 		atomic64_add(decays, &cfs_rq->decay_counter);
2589 		cfs_rq->last_decay = now;
2590 	}
2591 
2592 	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2593 }
2594 
2595 /* Add the load generated by se into cfs_rq's child load-average */
2596 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2597 						  struct sched_entity *se,
2598 						  int wakeup)
2599 {
2600 	/*
2601 	 * We track migrations using entity decay_count <= 0, on a wake-up
2602 	 * migration we use a negative decay count to track the remote decays
2603 	 * accumulated while sleeping.
2604 	 *
2605 	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2606 	 * are seen by enqueue_entity_load_avg() as a migration with an already
2607 	 * constructed load_avg_contrib.
2608 	 */
2609 	if (unlikely(se->avg.decay_count <= 0)) {
2610 		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2611 		if (se->avg.decay_count) {
2612 			/*
2613 			 * In a wake-up migration we have to approximate the
2614 			 * time sleeping.  This is because we can't synchronize
2615 			 * clock_task between the two cpus, and it is not
2616 			 * guaranteed to be read-safe.  Instead, we can
2617 			 * approximate this using our carried decays, which are
2618 			 * explicitly atomically readable.
2619 			 */
2620 			se->avg.last_runnable_update -= (-se->avg.decay_count)
2621 							<< 20;
2622 			update_entity_load_avg(se, 0);
2623 			/* Indicate that we're now synchronized and on-rq */
2624 			se->avg.decay_count = 0;
2625 		}
2626 		wakeup = 0;
2627 	} else {
2628 		__synchronize_entity_decay(se);
2629 	}
2630 
2631 	/* migrated tasks did not contribute to our blocked load */
2632 	if (wakeup) {
2633 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2634 		update_entity_load_avg(se, 0);
2635 	}
2636 
2637 	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2638 	/* we force update consideration on load-balancer moves */
2639 	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2640 }
2641 
2642 /*
2643  * Remove se's load from this cfs_rq child load-average, if the entity is
2644  * transitioning to a blocked state we track its projected decay using
2645  * blocked_load_avg.
2646  */
2647 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2648 						  struct sched_entity *se,
2649 						  int sleep)
2650 {
2651 	update_entity_load_avg(se, 1);
2652 	/* we force update consideration on load-balancer moves */
2653 	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2654 
2655 	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2656 	if (sleep) {
2657 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2658 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2659 	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2660 }
2661 
2662 /*
2663  * Update the rq's load with the elapsed running time before entering
2664  * idle. if the last scheduled task is not a CFS task, idle_enter will
2665  * be the only way to update the runnable statistic.
2666  */
2667 void idle_enter_fair(struct rq *this_rq)
2668 {
2669 	update_rq_runnable_avg(this_rq, 1);
2670 }
2671 
2672 /*
2673  * Update the rq's load with the elapsed idle time before a task is
2674  * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2675  * be the only way to update the runnable statistic.
2676  */
2677 void idle_exit_fair(struct rq *this_rq)
2678 {
2679 	update_rq_runnable_avg(this_rq, 0);
2680 }
2681 
2682 static int idle_balance(struct rq *this_rq);
2683 
2684 #else /* CONFIG_SMP */
2685 
2686 static inline void update_entity_load_avg(struct sched_entity *se,
2687 					  int update_cfs_rq) {}
2688 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2689 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2690 					   struct sched_entity *se,
2691 					   int wakeup) {}
2692 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2693 					   struct sched_entity *se,
2694 					   int sleep) {}
2695 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2696 					      int force_update) {}
2697 
2698 static inline int idle_balance(struct rq *rq)
2699 {
2700 	return 0;
2701 }
2702 
2703 #endif /* CONFIG_SMP */
2704 
2705 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2706 {
2707 #ifdef CONFIG_SCHEDSTATS
2708 	struct task_struct *tsk = NULL;
2709 
2710 	if (entity_is_task(se))
2711 		tsk = task_of(se);
2712 
2713 	if (se->statistics.sleep_start) {
2714 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2715 
2716 		if ((s64)delta < 0)
2717 			delta = 0;
2718 
2719 		if (unlikely(delta > se->statistics.sleep_max))
2720 			se->statistics.sleep_max = delta;
2721 
2722 		se->statistics.sleep_start = 0;
2723 		se->statistics.sum_sleep_runtime += delta;
2724 
2725 		if (tsk) {
2726 			account_scheduler_latency(tsk, delta >> 10, 1);
2727 			trace_sched_stat_sleep(tsk, delta);
2728 		}
2729 	}
2730 	if (se->statistics.block_start) {
2731 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2732 
2733 		if ((s64)delta < 0)
2734 			delta = 0;
2735 
2736 		if (unlikely(delta > se->statistics.block_max))
2737 			se->statistics.block_max = delta;
2738 
2739 		se->statistics.block_start = 0;
2740 		se->statistics.sum_sleep_runtime += delta;
2741 
2742 		if (tsk) {
2743 			if (tsk->in_iowait) {
2744 				se->statistics.iowait_sum += delta;
2745 				se->statistics.iowait_count++;
2746 				trace_sched_stat_iowait(tsk, delta);
2747 			}
2748 
2749 			trace_sched_stat_blocked(tsk, delta);
2750 
2751 			/*
2752 			 * Blocking time is in units of nanosecs, so shift by
2753 			 * 20 to get a milliseconds-range estimation of the
2754 			 * amount of time that the task spent sleeping:
2755 			 */
2756 			if (unlikely(prof_on == SLEEP_PROFILING)) {
2757 				profile_hits(SLEEP_PROFILING,
2758 						(void *)get_wchan(tsk),
2759 						delta >> 20);
2760 			}
2761 			account_scheduler_latency(tsk, delta >> 10, 0);
2762 		}
2763 	}
2764 #endif
2765 }
2766 
2767 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2768 {
2769 #ifdef CONFIG_SCHED_DEBUG
2770 	s64 d = se->vruntime - cfs_rq->min_vruntime;
2771 
2772 	if (d < 0)
2773 		d = -d;
2774 
2775 	if (d > 3*sysctl_sched_latency)
2776 		schedstat_inc(cfs_rq, nr_spread_over);
2777 #endif
2778 }
2779 
2780 static void
2781 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2782 {
2783 	u64 vruntime = cfs_rq->min_vruntime;
2784 
2785 	/*
2786 	 * The 'current' period is already promised to the current tasks,
2787 	 * however the extra weight of the new task will slow them down a
2788 	 * little, place the new task so that it fits in the slot that
2789 	 * stays open at the end.
2790 	 */
2791 	if (initial && sched_feat(START_DEBIT))
2792 		vruntime += sched_vslice(cfs_rq, se);
2793 
2794 	/* sleeps up to a single latency don't count. */
2795 	if (!initial) {
2796 		unsigned long thresh = sysctl_sched_latency;
2797 
2798 		/*
2799 		 * Halve their sleep time's effect, to allow
2800 		 * for a gentler effect of sleepers:
2801 		 */
2802 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
2803 			thresh >>= 1;
2804 
2805 		vruntime -= thresh;
2806 	}
2807 
2808 	/* ensure we never gain time by being placed backwards. */
2809 	se->vruntime = max_vruntime(se->vruntime, vruntime);
2810 }
2811 
2812 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2813 
2814 static void
2815 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2816 {
2817 	/*
2818 	 * Update the normalized vruntime before updating min_vruntime
2819 	 * through calling update_curr().
2820 	 */
2821 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
2822 		se->vruntime += cfs_rq->min_vruntime;
2823 
2824 	/*
2825 	 * Update run-time statistics of the 'current'.
2826 	 */
2827 	update_curr(cfs_rq);
2828 	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
2829 	account_entity_enqueue(cfs_rq, se);
2830 	update_cfs_shares(cfs_rq);
2831 
2832 	if (flags & ENQUEUE_WAKEUP) {
2833 		place_entity(cfs_rq, se, 0);
2834 		enqueue_sleeper(cfs_rq, se);
2835 	}
2836 
2837 	update_stats_enqueue(cfs_rq, se);
2838 	check_spread(cfs_rq, se);
2839 	if (se != cfs_rq->curr)
2840 		__enqueue_entity(cfs_rq, se);
2841 	se->on_rq = 1;
2842 
2843 	if (cfs_rq->nr_running == 1) {
2844 		list_add_leaf_cfs_rq(cfs_rq);
2845 		check_enqueue_throttle(cfs_rq);
2846 	}
2847 }
2848 
2849 static void __clear_buddies_last(struct sched_entity *se)
2850 {
2851 	for_each_sched_entity(se) {
2852 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2853 		if (cfs_rq->last != se)
2854 			break;
2855 
2856 		cfs_rq->last = NULL;
2857 	}
2858 }
2859 
2860 static void __clear_buddies_next(struct sched_entity *se)
2861 {
2862 	for_each_sched_entity(se) {
2863 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2864 		if (cfs_rq->next != se)
2865 			break;
2866 
2867 		cfs_rq->next = NULL;
2868 	}
2869 }
2870 
2871 static void __clear_buddies_skip(struct sched_entity *se)
2872 {
2873 	for_each_sched_entity(se) {
2874 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
2875 		if (cfs_rq->skip != se)
2876 			break;
2877 
2878 		cfs_rq->skip = NULL;
2879 	}
2880 }
2881 
2882 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2883 {
2884 	if (cfs_rq->last == se)
2885 		__clear_buddies_last(se);
2886 
2887 	if (cfs_rq->next == se)
2888 		__clear_buddies_next(se);
2889 
2890 	if (cfs_rq->skip == se)
2891 		__clear_buddies_skip(se);
2892 }
2893 
2894 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2895 
2896 static void
2897 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
2898 {
2899 	/*
2900 	 * Update run-time statistics of the 'current'.
2901 	 */
2902 	update_curr(cfs_rq);
2903 	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
2904 
2905 	update_stats_dequeue(cfs_rq, se);
2906 	if (flags & DEQUEUE_SLEEP) {
2907 #ifdef CONFIG_SCHEDSTATS
2908 		if (entity_is_task(se)) {
2909 			struct task_struct *tsk = task_of(se);
2910 
2911 			if (tsk->state & TASK_INTERRUPTIBLE)
2912 				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
2913 			if (tsk->state & TASK_UNINTERRUPTIBLE)
2914 				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
2915 		}
2916 #endif
2917 	}
2918 
2919 	clear_buddies(cfs_rq, se);
2920 
2921 	if (se != cfs_rq->curr)
2922 		__dequeue_entity(cfs_rq, se);
2923 	se->on_rq = 0;
2924 	account_entity_dequeue(cfs_rq, se);
2925 
2926 	/*
2927 	 * Normalize the entity after updating the min_vruntime because the
2928 	 * update can refer to the ->curr item and we need to reflect this
2929 	 * movement in our normalized position.
2930 	 */
2931 	if (!(flags & DEQUEUE_SLEEP))
2932 		se->vruntime -= cfs_rq->min_vruntime;
2933 
2934 	/* return excess runtime on last dequeue */
2935 	return_cfs_rq_runtime(cfs_rq);
2936 
2937 	update_min_vruntime(cfs_rq);
2938 	update_cfs_shares(cfs_rq);
2939 }
2940 
2941 /*
2942  * Preempt the current task with a newly woken task if needed:
2943  */
2944 static void
2945 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
2946 {
2947 	unsigned long ideal_runtime, delta_exec;
2948 	struct sched_entity *se;
2949 	s64 delta;
2950 
2951 	ideal_runtime = sched_slice(cfs_rq, curr);
2952 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
2953 	if (delta_exec > ideal_runtime) {
2954 		resched_curr(rq_of(cfs_rq));
2955 		/*
2956 		 * The current task ran long enough, ensure it doesn't get
2957 		 * re-elected due to buddy favours.
2958 		 */
2959 		clear_buddies(cfs_rq, curr);
2960 		return;
2961 	}
2962 
2963 	/*
2964 	 * Ensure that a task that missed wakeup preemption by a
2965 	 * narrow margin doesn't have to wait for a full slice.
2966 	 * This also mitigates buddy induced latencies under load.
2967 	 */
2968 	if (delta_exec < sysctl_sched_min_granularity)
2969 		return;
2970 
2971 	se = __pick_first_entity(cfs_rq);
2972 	delta = curr->vruntime - se->vruntime;
2973 
2974 	if (delta < 0)
2975 		return;
2976 
2977 	if (delta > ideal_runtime)
2978 		resched_curr(rq_of(cfs_rq));
2979 }
2980 
2981 static void
2982 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2983 {
2984 	/* 'current' is not kept within the tree. */
2985 	if (se->on_rq) {
2986 		/*
2987 		 * Any task has to be enqueued before it get to execute on
2988 		 * a CPU. So account for the time it spent waiting on the
2989 		 * runqueue.
2990 		 */
2991 		update_stats_wait_end(cfs_rq, se);
2992 		__dequeue_entity(cfs_rq, se);
2993 	}
2994 
2995 	update_stats_curr_start(cfs_rq, se);
2996 	cfs_rq->curr = se;
2997 #ifdef CONFIG_SCHEDSTATS
2998 	/*
2999 	 * Track our maximum slice length, if the CPU's load is at
3000 	 * least twice that of our own weight (i.e. dont track it
3001 	 * when there are only lesser-weight tasks around):
3002 	 */
3003 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3004 		se->statistics.slice_max = max(se->statistics.slice_max,
3005 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
3006 	}
3007 #endif
3008 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3009 }
3010 
3011 static int
3012 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3013 
3014 /*
3015  * Pick the next process, keeping these things in mind, in this order:
3016  * 1) keep things fair between processes/task groups
3017  * 2) pick the "next" process, since someone really wants that to run
3018  * 3) pick the "last" process, for cache locality
3019  * 4) do not run the "skip" process, if something else is available
3020  */
3021 static struct sched_entity *
3022 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3023 {
3024 	struct sched_entity *left = __pick_first_entity(cfs_rq);
3025 	struct sched_entity *se;
3026 
3027 	/*
3028 	 * If curr is set we have to see if its left of the leftmost entity
3029 	 * still in the tree, provided there was anything in the tree at all.
3030 	 */
3031 	if (!left || (curr && entity_before(curr, left)))
3032 		left = curr;
3033 
3034 	se = left; /* ideally we run the leftmost entity */
3035 
3036 	/*
3037 	 * Avoid running the skip buddy, if running something else can
3038 	 * be done without getting too unfair.
3039 	 */
3040 	if (cfs_rq->skip == se) {
3041 		struct sched_entity *second;
3042 
3043 		if (se == curr) {
3044 			second = __pick_first_entity(cfs_rq);
3045 		} else {
3046 			second = __pick_next_entity(se);
3047 			if (!second || (curr && entity_before(curr, second)))
3048 				second = curr;
3049 		}
3050 
3051 		if (second && wakeup_preempt_entity(second, left) < 1)
3052 			se = second;
3053 	}
3054 
3055 	/*
3056 	 * Prefer last buddy, try to return the CPU to a preempted task.
3057 	 */
3058 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3059 		se = cfs_rq->last;
3060 
3061 	/*
3062 	 * Someone really wants this to run. If it's not unfair, run it.
3063 	 */
3064 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3065 		se = cfs_rq->next;
3066 
3067 	clear_buddies(cfs_rq, se);
3068 
3069 	return se;
3070 }
3071 
3072 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3073 
3074 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3075 {
3076 	/*
3077 	 * If still on the runqueue then deactivate_task()
3078 	 * was not called and update_curr() has to be done:
3079 	 */
3080 	if (prev->on_rq)
3081 		update_curr(cfs_rq);
3082 
3083 	/* throttle cfs_rqs exceeding runtime */
3084 	check_cfs_rq_runtime(cfs_rq);
3085 
3086 	check_spread(cfs_rq, prev);
3087 	if (prev->on_rq) {
3088 		update_stats_wait_start(cfs_rq, prev);
3089 		/* Put 'current' back into the tree. */
3090 		__enqueue_entity(cfs_rq, prev);
3091 		/* in !on_rq case, update occurred at dequeue */
3092 		update_entity_load_avg(prev, 1);
3093 	}
3094 	cfs_rq->curr = NULL;
3095 }
3096 
3097 static void
3098 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3099 {
3100 	/*
3101 	 * Update run-time statistics of the 'current'.
3102 	 */
3103 	update_curr(cfs_rq);
3104 
3105 	/*
3106 	 * Ensure that runnable average is periodically updated.
3107 	 */
3108 	update_entity_load_avg(curr, 1);
3109 	update_cfs_rq_blocked_load(cfs_rq, 1);
3110 	update_cfs_shares(cfs_rq);
3111 
3112 #ifdef CONFIG_SCHED_HRTICK
3113 	/*
3114 	 * queued ticks are scheduled to match the slice, so don't bother
3115 	 * validating it and just reschedule.
3116 	 */
3117 	if (queued) {
3118 		resched_curr(rq_of(cfs_rq));
3119 		return;
3120 	}
3121 	/*
3122 	 * don't let the period tick interfere with the hrtick preemption
3123 	 */
3124 	if (!sched_feat(DOUBLE_TICK) &&
3125 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3126 		return;
3127 #endif
3128 
3129 	if (cfs_rq->nr_running > 1)
3130 		check_preempt_tick(cfs_rq, curr);
3131 }
3132 
3133 
3134 /**************************************************
3135  * CFS bandwidth control machinery
3136  */
3137 
3138 #ifdef CONFIG_CFS_BANDWIDTH
3139 
3140 #ifdef HAVE_JUMP_LABEL
3141 static struct static_key __cfs_bandwidth_used;
3142 
3143 static inline bool cfs_bandwidth_used(void)
3144 {
3145 	return static_key_false(&__cfs_bandwidth_used);
3146 }
3147 
3148 void cfs_bandwidth_usage_inc(void)
3149 {
3150 	static_key_slow_inc(&__cfs_bandwidth_used);
3151 }
3152 
3153 void cfs_bandwidth_usage_dec(void)
3154 {
3155 	static_key_slow_dec(&__cfs_bandwidth_used);
3156 }
3157 #else /* HAVE_JUMP_LABEL */
3158 static bool cfs_bandwidth_used(void)
3159 {
3160 	return true;
3161 }
3162 
3163 void cfs_bandwidth_usage_inc(void) {}
3164 void cfs_bandwidth_usage_dec(void) {}
3165 #endif /* HAVE_JUMP_LABEL */
3166 
3167 /*
3168  * default period for cfs group bandwidth.
3169  * default: 0.1s, units: nanoseconds
3170  */
3171 static inline u64 default_cfs_period(void)
3172 {
3173 	return 100000000ULL;
3174 }
3175 
3176 static inline u64 sched_cfs_bandwidth_slice(void)
3177 {
3178 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3179 }
3180 
3181 /*
3182  * Replenish runtime according to assigned quota and update expiration time.
3183  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3184  * additional synchronization around rq->lock.
3185  *
3186  * requires cfs_b->lock
3187  */
3188 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3189 {
3190 	u64 now;
3191 
3192 	if (cfs_b->quota == RUNTIME_INF)
3193 		return;
3194 
3195 	now = sched_clock_cpu(smp_processor_id());
3196 	cfs_b->runtime = cfs_b->quota;
3197 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3198 }
3199 
3200 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3201 {
3202 	return &tg->cfs_bandwidth;
3203 }
3204 
3205 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3206 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3207 {
3208 	if (unlikely(cfs_rq->throttle_count))
3209 		return cfs_rq->throttled_clock_task;
3210 
3211 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3212 }
3213 
3214 /* returns 0 on failure to allocate runtime */
3215 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3216 {
3217 	struct task_group *tg = cfs_rq->tg;
3218 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3219 	u64 amount = 0, min_amount, expires;
3220 
3221 	/* note: this is a positive sum as runtime_remaining <= 0 */
3222 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3223 
3224 	raw_spin_lock(&cfs_b->lock);
3225 	if (cfs_b->quota == RUNTIME_INF)
3226 		amount = min_amount;
3227 	else {
3228 		/*
3229 		 * If the bandwidth pool has become inactive, then at least one
3230 		 * period must have elapsed since the last consumption.
3231 		 * Refresh the global state and ensure bandwidth timer becomes
3232 		 * active.
3233 		 */
3234 		if (!cfs_b->timer_active) {
3235 			__refill_cfs_bandwidth_runtime(cfs_b);
3236 			__start_cfs_bandwidth(cfs_b, false);
3237 		}
3238 
3239 		if (cfs_b->runtime > 0) {
3240 			amount = min(cfs_b->runtime, min_amount);
3241 			cfs_b->runtime -= amount;
3242 			cfs_b->idle = 0;
3243 		}
3244 	}
3245 	expires = cfs_b->runtime_expires;
3246 	raw_spin_unlock(&cfs_b->lock);
3247 
3248 	cfs_rq->runtime_remaining += amount;
3249 	/*
3250 	 * we may have advanced our local expiration to account for allowed
3251 	 * spread between our sched_clock and the one on which runtime was
3252 	 * issued.
3253 	 */
3254 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3255 		cfs_rq->runtime_expires = expires;
3256 
3257 	return cfs_rq->runtime_remaining > 0;
3258 }
3259 
3260 /*
3261  * Note: This depends on the synchronization provided by sched_clock and the
3262  * fact that rq->clock snapshots this value.
3263  */
3264 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3265 {
3266 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3267 
3268 	/* if the deadline is ahead of our clock, nothing to do */
3269 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3270 		return;
3271 
3272 	if (cfs_rq->runtime_remaining < 0)
3273 		return;
3274 
3275 	/*
3276 	 * If the local deadline has passed we have to consider the
3277 	 * possibility that our sched_clock is 'fast' and the global deadline
3278 	 * has not truly expired.
3279 	 *
3280 	 * Fortunately we can check determine whether this the case by checking
3281 	 * whether the global deadline has advanced. It is valid to compare
3282 	 * cfs_b->runtime_expires without any locks since we only care about
3283 	 * exact equality, so a partial write will still work.
3284 	 */
3285 
3286 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3287 		/* extend local deadline, drift is bounded above by 2 ticks */
3288 		cfs_rq->runtime_expires += TICK_NSEC;
3289 	} else {
3290 		/* global deadline is ahead, expiration has passed */
3291 		cfs_rq->runtime_remaining = 0;
3292 	}
3293 }
3294 
3295 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3296 {
3297 	/* dock delta_exec before expiring quota (as it could span periods) */
3298 	cfs_rq->runtime_remaining -= delta_exec;
3299 	expire_cfs_rq_runtime(cfs_rq);
3300 
3301 	if (likely(cfs_rq->runtime_remaining > 0))
3302 		return;
3303 
3304 	/*
3305 	 * if we're unable to extend our runtime we resched so that the active
3306 	 * hierarchy can be throttled
3307 	 */
3308 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3309 		resched_curr(rq_of(cfs_rq));
3310 }
3311 
3312 static __always_inline
3313 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3314 {
3315 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3316 		return;
3317 
3318 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
3319 }
3320 
3321 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3322 {
3323 	return cfs_bandwidth_used() && cfs_rq->throttled;
3324 }
3325 
3326 /* check whether cfs_rq, or any parent, is throttled */
3327 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3328 {
3329 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3330 }
3331 
3332 /*
3333  * Ensure that neither of the group entities corresponding to src_cpu or
3334  * dest_cpu are members of a throttled hierarchy when performing group
3335  * load-balance operations.
3336  */
3337 static inline int throttled_lb_pair(struct task_group *tg,
3338 				    int src_cpu, int dest_cpu)
3339 {
3340 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3341 
3342 	src_cfs_rq = tg->cfs_rq[src_cpu];
3343 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
3344 
3345 	return throttled_hierarchy(src_cfs_rq) ||
3346 	       throttled_hierarchy(dest_cfs_rq);
3347 }
3348 
3349 /* updated child weight may affect parent so we have to do this bottom up */
3350 static int tg_unthrottle_up(struct task_group *tg, void *data)
3351 {
3352 	struct rq *rq = data;
3353 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3354 
3355 	cfs_rq->throttle_count--;
3356 #ifdef CONFIG_SMP
3357 	if (!cfs_rq->throttle_count) {
3358 		/* adjust cfs_rq_clock_task() */
3359 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3360 					     cfs_rq->throttled_clock_task;
3361 	}
3362 #endif
3363 
3364 	return 0;
3365 }
3366 
3367 static int tg_throttle_down(struct task_group *tg, void *data)
3368 {
3369 	struct rq *rq = data;
3370 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3371 
3372 	/* group is entering throttled state, stop time */
3373 	if (!cfs_rq->throttle_count)
3374 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3375 	cfs_rq->throttle_count++;
3376 
3377 	return 0;
3378 }
3379 
3380 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3381 {
3382 	struct rq *rq = rq_of(cfs_rq);
3383 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3384 	struct sched_entity *se;
3385 	long task_delta, dequeue = 1;
3386 
3387 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3388 
3389 	/* freeze hierarchy runnable averages while throttled */
3390 	rcu_read_lock();
3391 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3392 	rcu_read_unlock();
3393 
3394 	task_delta = cfs_rq->h_nr_running;
3395 	for_each_sched_entity(se) {
3396 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3397 		/* throttled entity or throttle-on-deactivate */
3398 		if (!se->on_rq)
3399 			break;
3400 
3401 		if (dequeue)
3402 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3403 		qcfs_rq->h_nr_running -= task_delta;
3404 
3405 		if (qcfs_rq->load.weight)
3406 			dequeue = 0;
3407 	}
3408 
3409 	if (!se)
3410 		sub_nr_running(rq, task_delta);
3411 
3412 	cfs_rq->throttled = 1;
3413 	cfs_rq->throttled_clock = rq_clock(rq);
3414 	raw_spin_lock(&cfs_b->lock);
3415 	/*
3416 	 * Add to the _head_ of the list, so that an already-started
3417 	 * distribute_cfs_runtime will not see us
3418 	 */
3419 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3420 	if (!cfs_b->timer_active)
3421 		__start_cfs_bandwidth(cfs_b, false);
3422 	raw_spin_unlock(&cfs_b->lock);
3423 }
3424 
3425 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3426 {
3427 	struct rq *rq = rq_of(cfs_rq);
3428 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3429 	struct sched_entity *se;
3430 	int enqueue = 1;
3431 	long task_delta;
3432 
3433 	se = cfs_rq->tg->se[cpu_of(rq)];
3434 
3435 	cfs_rq->throttled = 0;
3436 
3437 	update_rq_clock(rq);
3438 
3439 	raw_spin_lock(&cfs_b->lock);
3440 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3441 	list_del_rcu(&cfs_rq->throttled_list);
3442 	raw_spin_unlock(&cfs_b->lock);
3443 
3444 	/* update hierarchical throttle state */
3445 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3446 
3447 	if (!cfs_rq->load.weight)
3448 		return;
3449 
3450 	task_delta = cfs_rq->h_nr_running;
3451 	for_each_sched_entity(se) {
3452 		if (se->on_rq)
3453 			enqueue = 0;
3454 
3455 		cfs_rq = cfs_rq_of(se);
3456 		if (enqueue)
3457 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3458 		cfs_rq->h_nr_running += task_delta;
3459 
3460 		if (cfs_rq_throttled(cfs_rq))
3461 			break;
3462 	}
3463 
3464 	if (!se)
3465 		add_nr_running(rq, task_delta);
3466 
3467 	/* determine whether we need to wake up potentially idle cpu */
3468 	if (rq->curr == rq->idle && rq->cfs.nr_running)
3469 		resched_curr(rq);
3470 }
3471 
3472 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3473 		u64 remaining, u64 expires)
3474 {
3475 	struct cfs_rq *cfs_rq;
3476 	u64 runtime;
3477 	u64 starting_runtime = remaining;
3478 
3479 	rcu_read_lock();
3480 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3481 				throttled_list) {
3482 		struct rq *rq = rq_of(cfs_rq);
3483 
3484 		raw_spin_lock(&rq->lock);
3485 		if (!cfs_rq_throttled(cfs_rq))
3486 			goto next;
3487 
3488 		runtime = -cfs_rq->runtime_remaining + 1;
3489 		if (runtime > remaining)
3490 			runtime = remaining;
3491 		remaining -= runtime;
3492 
3493 		cfs_rq->runtime_remaining += runtime;
3494 		cfs_rq->runtime_expires = expires;
3495 
3496 		/* we check whether we're throttled above */
3497 		if (cfs_rq->runtime_remaining > 0)
3498 			unthrottle_cfs_rq(cfs_rq);
3499 
3500 next:
3501 		raw_spin_unlock(&rq->lock);
3502 
3503 		if (!remaining)
3504 			break;
3505 	}
3506 	rcu_read_unlock();
3507 
3508 	return starting_runtime - remaining;
3509 }
3510 
3511 /*
3512  * Responsible for refilling a task_group's bandwidth and unthrottling its
3513  * cfs_rqs as appropriate. If there has been no activity within the last
3514  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3515  * used to track this state.
3516  */
3517 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3518 {
3519 	u64 runtime, runtime_expires;
3520 	int throttled;
3521 
3522 	/* no need to continue the timer with no bandwidth constraint */
3523 	if (cfs_b->quota == RUNTIME_INF)
3524 		goto out_deactivate;
3525 
3526 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3527 	cfs_b->nr_periods += overrun;
3528 
3529 	/*
3530 	 * idle depends on !throttled (for the case of a large deficit), and if
3531 	 * we're going inactive then everything else can be deferred
3532 	 */
3533 	if (cfs_b->idle && !throttled)
3534 		goto out_deactivate;
3535 
3536 	/*
3537 	 * if we have relooped after returning idle once, we need to update our
3538 	 * status as actually running, so that other cpus doing
3539 	 * __start_cfs_bandwidth will stop trying to cancel us.
3540 	 */
3541 	cfs_b->timer_active = 1;
3542 
3543 	__refill_cfs_bandwidth_runtime(cfs_b);
3544 
3545 	if (!throttled) {
3546 		/* mark as potentially idle for the upcoming period */
3547 		cfs_b->idle = 1;
3548 		return 0;
3549 	}
3550 
3551 	/* account preceding periods in which throttling occurred */
3552 	cfs_b->nr_throttled += overrun;
3553 
3554 	runtime_expires = cfs_b->runtime_expires;
3555 
3556 	/*
3557 	 * This check is repeated as we are holding onto the new bandwidth while
3558 	 * we unthrottle. This can potentially race with an unthrottled group
3559 	 * trying to acquire new bandwidth from the global pool. This can result
3560 	 * in us over-using our runtime if it is all used during this loop, but
3561 	 * only by limited amounts in that extreme case.
3562 	 */
3563 	while (throttled && cfs_b->runtime > 0) {
3564 		runtime = cfs_b->runtime;
3565 		raw_spin_unlock(&cfs_b->lock);
3566 		/* we can't nest cfs_b->lock while distributing bandwidth */
3567 		runtime = distribute_cfs_runtime(cfs_b, runtime,
3568 						 runtime_expires);
3569 		raw_spin_lock(&cfs_b->lock);
3570 
3571 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3572 
3573 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3574 	}
3575 
3576 	/*
3577 	 * While we are ensured activity in the period following an
3578 	 * unthrottle, this also covers the case in which the new bandwidth is
3579 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
3580 	 * timer to remain active while there are any throttled entities.)
3581 	 */
3582 	cfs_b->idle = 0;
3583 
3584 	return 0;
3585 
3586 out_deactivate:
3587 	cfs_b->timer_active = 0;
3588 	return 1;
3589 }
3590 
3591 /* a cfs_rq won't donate quota below this amount */
3592 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3593 /* minimum remaining period time to redistribute slack quota */
3594 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3595 /* how long we wait to gather additional slack before distributing */
3596 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3597 
3598 /*
3599  * Are we near the end of the current quota period?
3600  *
3601  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3602  * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3603  * migrate_hrtimers, base is never cleared, so we are fine.
3604  */
3605 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3606 {
3607 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
3608 	u64 remaining;
3609 
3610 	/* if the call-back is running a quota refresh is already occurring */
3611 	if (hrtimer_callback_running(refresh_timer))
3612 		return 1;
3613 
3614 	/* is a quota refresh about to occur? */
3615 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3616 	if (remaining < min_expire)
3617 		return 1;
3618 
3619 	return 0;
3620 }
3621 
3622 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3623 {
3624 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3625 
3626 	/* if there's a quota refresh soon don't bother with slack */
3627 	if (runtime_refresh_within(cfs_b, min_left))
3628 		return;
3629 
3630 	start_bandwidth_timer(&cfs_b->slack_timer,
3631 				ns_to_ktime(cfs_bandwidth_slack_period));
3632 }
3633 
3634 /* we know any runtime found here is valid as update_curr() precedes return */
3635 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3636 {
3637 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3638 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3639 
3640 	if (slack_runtime <= 0)
3641 		return;
3642 
3643 	raw_spin_lock(&cfs_b->lock);
3644 	if (cfs_b->quota != RUNTIME_INF &&
3645 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3646 		cfs_b->runtime += slack_runtime;
3647 
3648 		/* we are under rq->lock, defer unthrottling using a timer */
3649 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3650 		    !list_empty(&cfs_b->throttled_cfs_rq))
3651 			start_cfs_slack_bandwidth(cfs_b);
3652 	}
3653 	raw_spin_unlock(&cfs_b->lock);
3654 
3655 	/* even if it's not valid for return we don't want to try again */
3656 	cfs_rq->runtime_remaining -= slack_runtime;
3657 }
3658 
3659 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3660 {
3661 	if (!cfs_bandwidth_used())
3662 		return;
3663 
3664 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3665 		return;
3666 
3667 	__return_cfs_rq_runtime(cfs_rq);
3668 }
3669 
3670 /*
3671  * This is done with a timer (instead of inline with bandwidth return) since
3672  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3673  */
3674 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3675 {
3676 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3677 	u64 expires;
3678 
3679 	/* confirm we're still not at a refresh boundary */
3680 	raw_spin_lock(&cfs_b->lock);
3681 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3682 		raw_spin_unlock(&cfs_b->lock);
3683 		return;
3684 	}
3685 
3686 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3687 		runtime = cfs_b->runtime;
3688 
3689 	expires = cfs_b->runtime_expires;
3690 	raw_spin_unlock(&cfs_b->lock);
3691 
3692 	if (!runtime)
3693 		return;
3694 
3695 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3696 
3697 	raw_spin_lock(&cfs_b->lock);
3698 	if (expires == cfs_b->runtime_expires)
3699 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3700 	raw_spin_unlock(&cfs_b->lock);
3701 }
3702 
3703 /*
3704  * When a group wakes up we want to make sure that its quota is not already
3705  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3706  * runtime as update_curr() throttling can not not trigger until it's on-rq.
3707  */
3708 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3709 {
3710 	if (!cfs_bandwidth_used())
3711 		return;
3712 
3713 	/* an active group must be handled by the update_curr()->put() path */
3714 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3715 		return;
3716 
3717 	/* ensure the group is not already throttled */
3718 	if (cfs_rq_throttled(cfs_rq))
3719 		return;
3720 
3721 	/* update runtime allocation */
3722 	account_cfs_rq_runtime(cfs_rq, 0);
3723 	if (cfs_rq->runtime_remaining <= 0)
3724 		throttle_cfs_rq(cfs_rq);
3725 }
3726 
3727 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3728 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3729 {
3730 	if (!cfs_bandwidth_used())
3731 		return false;
3732 
3733 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3734 		return false;
3735 
3736 	/*
3737 	 * it's possible for a throttled entity to be forced into a running
3738 	 * state (e.g. set_curr_task), in this case we're finished.
3739 	 */
3740 	if (cfs_rq_throttled(cfs_rq))
3741 		return true;
3742 
3743 	throttle_cfs_rq(cfs_rq);
3744 	return true;
3745 }
3746 
3747 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3748 {
3749 	struct cfs_bandwidth *cfs_b =
3750 		container_of(timer, struct cfs_bandwidth, slack_timer);
3751 	do_sched_cfs_slack_timer(cfs_b);
3752 
3753 	return HRTIMER_NORESTART;
3754 }
3755 
3756 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3757 {
3758 	struct cfs_bandwidth *cfs_b =
3759 		container_of(timer, struct cfs_bandwidth, period_timer);
3760 	ktime_t now;
3761 	int overrun;
3762 	int idle = 0;
3763 
3764 	raw_spin_lock(&cfs_b->lock);
3765 	for (;;) {
3766 		now = hrtimer_cb_get_time(timer);
3767 		overrun = hrtimer_forward(timer, now, cfs_b->period);
3768 
3769 		if (!overrun)
3770 			break;
3771 
3772 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
3773 	}
3774 	raw_spin_unlock(&cfs_b->lock);
3775 
3776 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3777 }
3778 
3779 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3780 {
3781 	raw_spin_lock_init(&cfs_b->lock);
3782 	cfs_b->runtime = 0;
3783 	cfs_b->quota = RUNTIME_INF;
3784 	cfs_b->period = ns_to_ktime(default_cfs_period());
3785 
3786 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3787 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3788 	cfs_b->period_timer.function = sched_cfs_period_timer;
3789 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3790 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
3791 }
3792 
3793 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3794 {
3795 	cfs_rq->runtime_enabled = 0;
3796 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
3797 }
3798 
3799 /* requires cfs_b->lock, may release to reprogram timer */
3800 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3801 {
3802 	/*
3803 	 * The timer may be active because we're trying to set a new bandwidth
3804 	 * period or because we're racing with the tear-down path
3805 	 * (timer_active==0 becomes visible before the hrtimer call-back
3806 	 * terminates).  In either case we ensure that it's re-programmed
3807 	 */
3808 	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3809 	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3810 		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3811 		raw_spin_unlock(&cfs_b->lock);
3812 		cpu_relax();
3813 		raw_spin_lock(&cfs_b->lock);
3814 		/* if someone else restarted the timer then we're done */
3815 		if (!force && cfs_b->timer_active)
3816 			return;
3817 	}
3818 
3819 	cfs_b->timer_active = 1;
3820 	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3821 }
3822 
3823 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3824 {
3825 	hrtimer_cancel(&cfs_b->period_timer);
3826 	hrtimer_cancel(&cfs_b->slack_timer);
3827 }
3828 
3829 static void __maybe_unused update_runtime_enabled(struct rq *rq)
3830 {
3831 	struct cfs_rq *cfs_rq;
3832 
3833 	for_each_leaf_cfs_rq(rq, cfs_rq) {
3834 		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
3835 
3836 		raw_spin_lock(&cfs_b->lock);
3837 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
3838 		raw_spin_unlock(&cfs_b->lock);
3839 	}
3840 }
3841 
3842 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
3843 {
3844 	struct cfs_rq *cfs_rq;
3845 
3846 	for_each_leaf_cfs_rq(rq, cfs_rq) {
3847 		if (!cfs_rq->runtime_enabled)
3848 			continue;
3849 
3850 		/*
3851 		 * clock_task is not advancing so we just need to make sure
3852 		 * there's some valid quota amount
3853 		 */
3854 		cfs_rq->runtime_remaining = 1;
3855 		/*
3856 		 * Offline rq is schedulable till cpu is completely disabled
3857 		 * in take_cpu_down(), so we prevent new cfs throttling here.
3858 		 */
3859 		cfs_rq->runtime_enabled = 0;
3860 
3861 		if (cfs_rq_throttled(cfs_rq))
3862 			unthrottle_cfs_rq(cfs_rq);
3863 	}
3864 }
3865 
3866 #else /* CONFIG_CFS_BANDWIDTH */
3867 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3868 {
3869 	return rq_clock_task(rq_of(cfs_rq));
3870 }
3871 
3872 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
3873 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
3874 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
3875 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3876 
3877 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3878 {
3879 	return 0;
3880 }
3881 
3882 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3883 {
3884 	return 0;
3885 }
3886 
3887 static inline int throttled_lb_pair(struct task_group *tg,
3888 				    int src_cpu, int dest_cpu)
3889 {
3890 	return 0;
3891 }
3892 
3893 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3894 
3895 #ifdef CONFIG_FAIR_GROUP_SCHED
3896 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3897 #endif
3898 
3899 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3900 {
3901 	return NULL;
3902 }
3903 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3904 static inline void update_runtime_enabled(struct rq *rq) {}
3905 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
3906 
3907 #endif /* CONFIG_CFS_BANDWIDTH */
3908 
3909 /**************************************************
3910  * CFS operations on tasks:
3911  */
3912 
3913 #ifdef CONFIG_SCHED_HRTICK
3914 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3915 {
3916 	struct sched_entity *se = &p->se;
3917 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3918 
3919 	WARN_ON(task_rq(p) != rq);
3920 
3921 	if (cfs_rq->nr_running > 1) {
3922 		u64 slice = sched_slice(cfs_rq, se);
3923 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3924 		s64 delta = slice - ran;
3925 
3926 		if (delta < 0) {
3927 			if (rq->curr == p)
3928 				resched_curr(rq);
3929 			return;
3930 		}
3931 		hrtick_start(rq, delta);
3932 	}
3933 }
3934 
3935 /*
3936  * called from enqueue/dequeue and updates the hrtick when the
3937  * current task is from our class and nr_running is low enough
3938  * to matter.
3939  */
3940 static void hrtick_update(struct rq *rq)
3941 {
3942 	struct task_struct *curr = rq->curr;
3943 
3944 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
3945 		return;
3946 
3947 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3948 		hrtick_start_fair(rq, curr);
3949 }
3950 #else /* !CONFIG_SCHED_HRTICK */
3951 static inline void
3952 hrtick_start_fair(struct rq *rq, struct task_struct *p)
3953 {
3954 }
3955 
3956 static inline void hrtick_update(struct rq *rq)
3957 {
3958 }
3959 #endif
3960 
3961 /*
3962  * The enqueue_task method is called before nr_running is
3963  * increased. Here we update the fair scheduling stats and
3964  * then put the task into the rbtree:
3965  */
3966 static void
3967 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
3968 {
3969 	struct cfs_rq *cfs_rq;
3970 	struct sched_entity *se = &p->se;
3971 
3972 	for_each_sched_entity(se) {
3973 		if (se->on_rq)
3974 			break;
3975 		cfs_rq = cfs_rq_of(se);
3976 		enqueue_entity(cfs_rq, se, flags);
3977 
3978 		/*
3979 		 * end evaluation on encountering a throttled cfs_rq
3980 		 *
3981 		 * note: in the case of encountering a throttled cfs_rq we will
3982 		 * post the final h_nr_running increment below.
3983 		*/
3984 		if (cfs_rq_throttled(cfs_rq))
3985 			break;
3986 		cfs_rq->h_nr_running++;
3987 
3988 		flags = ENQUEUE_WAKEUP;
3989 	}
3990 
3991 	for_each_sched_entity(se) {
3992 		cfs_rq = cfs_rq_of(se);
3993 		cfs_rq->h_nr_running++;
3994 
3995 		if (cfs_rq_throttled(cfs_rq))
3996 			break;
3997 
3998 		update_cfs_shares(cfs_rq);
3999 		update_entity_load_avg(se, 1);
4000 	}
4001 
4002 	if (!se) {
4003 		update_rq_runnable_avg(rq, rq->nr_running);
4004 		add_nr_running(rq, 1);
4005 	}
4006 	hrtick_update(rq);
4007 }
4008 
4009 static void set_next_buddy(struct sched_entity *se);
4010 
4011 /*
4012  * The dequeue_task method is called before nr_running is
4013  * decreased. We remove the task from the rbtree and
4014  * update the fair scheduling stats:
4015  */
4016 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4017 {
4018 	struct cfs_rq *cfs_rq;
4019 	struct sched_entity *se = &p->se;
4020 	int task_sleep = flags & DEQUEUE_SLEEP;
4021 
4022 	for_each_sched_entity(se) {
4023 		cfs_rq = cfs_rq_of(se);
4024 		dequeue_entity(cfs_rq, se, flags);
4025 
4026 		/*
4027 		 * end evaluation on encountering a throttled cfs_rq
4028 		 *
4029 		 * note: in the case of encountering a throttled cfs_rq we will
4030 		 * post the final h_nr_running decrement below.
4031 		*/
4032 		if (cfs_rq_throttled(cfs_rq))
4033 			break;
4034 		cfs_rq->h_nr_running--;
4035 
4036 		/* Don't dequeue parent if it has other entities besides us */
4037 		if (cfs_rq->load.weight) {
4038 			/*
4039 			 * Bias pick_next to pick a task from this cfs_rq, as
4040 			 * p is sleeping when it is within its sched_slice.
4041 			 */
4042 			if (task_sleep && parent_entity(se))
4043 				set_next_buddy(parent_entity(se));
4044 
4045 			/* avoid re-evaluating load for this entity */
4046 			se = parent_entity(se);
4047 			break;
4048 		}
4049 		flags |= DEQUEUE_SLEEP;
4050 	}
4051 
4052 	for_each_sched_entity(se) {
4053 		cfs_rq = cfs_rq_of(se);
4054 		cfs_rq->h_nr_running--;
4055 
4056 		if (cfs_rq_throttled(cfs_rq))
4057 			break;
4058 
4059 		update_cfs_shares(cfs_rq);
4060 		update_entity_load_avg(se, 1);
4061 	}
4062 
4063 	if (!se) {
4064 		sub_nr_running(rq, 1);
4065 		update_rq_runnable_avg(rq, 1);
4066 	}
4067 	hrtick_update(rq);
4068 }
4069 
4070 #ifdef CONFIG_SMP
4071 /* Used instead of source_load when we know the type == 0 */
4072 static unsigned long weighted_cpuload(const int cpu)
4073 {
4074 	return cpu_rq(cpu)->cfs.runnable_load_avg;
4075 }
4076 
4077 /*
4078  * Return a low guess at the load of a migration-source cpu weighted
4079  * according to the scheduling class and "nice" value.
4080  *
4081  * We want to under-estimate the load of migration sources, to
4082  * balance conservatively.
4083  */
4084 static unsigned long source_load(int cpu, int type)
4085 {
4086 	struct rq *rq = cpu_rq(cpu);
4087 	unsigned long total = weighted_cpuload(cpu);
4088 
4089 	if (type == 0 || !sched_feat(LB_BIAS))
4090 		return total;
4091 
4092 	return min(rq->cpu_load[type-1], total);
4093 }
4094 
4095 /*
4096  * Return a high guess at the load of a migration-target cpu weighted
4097  * according to the scheduling class and "nice" value.
4098  */
4099 static unsigned long target_load(int cpu, int type)
4100 {
4101 	struct rq *rq = cpu_rq(cpu);
4102 	unsigned long total = weighted_cpuload(cpu);
4103 
4104 	if (type == 0 || !sched_feat(LB_BIAS))
4105 		return total;
4106 
4107 	return max(rq->cpu_load[type-1], total);
4108 }
4109 
4110 static unsigned long capacity_of(int cpu)
4111 {
4112 	return cpu_rq(cpu)->cpu_capacity;
4113 }
4114 
4115 static unsigned long cpu_avg_load_per_task(int cpu)
4116 {
4117 	struct rq *rq = cpu_rq(cpu);
4118 	unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
4119 	unsigned long load_avg = rq->cfs.runnable_load_avg;
4120 
4121 	if (nr_running)
4122 		return load_avg / nr_running;
4123 
4124 	return 0;
4125 }
4126 
4127 static void record_wakee(struct task_struct *p)
4128 {
4129 	/*
4130 	 * Rough decay (wiping) for cost saving, don't worry
4131 	 * about the boundary, really active task won't care
4132 	 * about the loss.
4133 	 */
4134 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4135 		current->wakee_flips >>= 1;
4136 		current->wakee_flip_decay_ts = jiffies;
4137 	}
4138 
4139 	if (current->last_wakee != p) {
4140 		current->last_wakee = p;
4141 		current->wakee_flips++;
4142 	}
4143 }
4144 
4145 static void task_waking_fair(struct task_struct *p)
4146 {
4147 	struct sched_entity *se = &p->se;
4148 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4149 	u64 min_vruntime;
4150 
4151 #ifndef CONFIG_64BIT
4152 	u64 min_vruntime_copy;
4153 
4154 	do {
4155 		min_vruntime_copy = cfs_rq->min_vruntime_copy;
4156 		smp_rmb();
4157 		min_vruntime = cfs_rq->min_vruntime;
4158 	} while (min_vruntime != min_vruntime_copy);
4159 #else
4160 	min_vruntime = cfs_rq->min_vruntime;
4161 #endif
4162 
4163 	se->vruntime -= min_vruntime;
4164 	record_wakee(p);
4165 }
4166 
4167 #ifdef CONFIG_FAIR_GROUP_SCHED
4168 /*
4169  * effective_load() calculates the load change as seen from the root_task_group
4170  *
4171  * Adding load to a group doesn't make a group heavier, but can cause movement
4172  * of group shares between cpus. Assuming the shares were perfectly aligned one
4173  * can calculate the shift in shares.
4174  *
4175  * Calculate the effective load difference if @wl is added (subtracted) to @tg
4176  * on this @cpu and results in a total addition (subtraction) of @wg to the
4177  * total group weight.
4178  *
4179  * Given a runqueue weight distribution (rw_i) we can compute a shares
4180  * distribution (s_i) using:
4181  *
4182  *   s_i = rw_i / \Sum rw_j						(1)
4183  *
4184  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4185  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4186  * shares distribution (s_i):
4187  *
4188  *   rw_i = {   2,   4,   1,   0 }
4189  *   s_i  = { 2/7, 4/7, 1/7,   0 }
4190  *
4191  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4192  * task used to run on and the CPU the waker is running on), we need to
4193  * compute the effect of waking a task on either CPU and, in case of a sync
4194  * wakeup, compute the effect of the current task going to sleep.
4195  *
4196  * So for a change of @wl to the local @cpu with an overall group weight change
4197  * of @wl we can compute the new shares distribution (s'_i) using:
4198  *
4199  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
4200  *
4201  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4202  * differences in waking a task to CPU 0. The additional task changes the
4203  * weight and shares distributions like:
4204  *
4205  *   rw'_i = {   3,   4,   1,   0 }
4206  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4207  *
4208  * We can then compute the difference in effective weight by using:
4209  *
4210  *   dw_i = S * (s'_i - s_i)						(3)
4211  *
4212  * Where 'S' is the group weight as seen by its parent.
4213  *
4214  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4215  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4216  * 4/7) times the weight of the group.
4217  */
4218 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4219 {
4220 	struct sched_entity *se = tg->se[cpu];
4221 
4222 	if (!tg->parent)	/* the trivial, non-cgroup case */
4223 		return wl;
4224 
4225 	for_each_sched_entity(se) {
4226 		long w, W;
4227 
4228 		tg = se->my_q->tg;
4229 
4230 		/*
4231 		 * W = @wg + \Sum rw_j
4232 		 */
4233 		W = wg + calc_tg_weight(tg, se->my_q);
4234 
4235 		/*
4236 		 * w = rw_i + @wl
4237 		 */
4238 		w = se->my_q->load.weight + wl;
4239 
4240 		/*
4241 		 * wl = S * s'_i; see (2)
4242 		 */
4243 		if (W > 0 && w < W)
4244 			wl = (w * tg->shares) / W;
4245 		else
4246 			wl = tg->shares;
4247 
4248 		/*
4249 		 * Per the above, wl is the new se->load.weight value; since
4250 		 * those are clipped to [MIN_SHARES, ...) do so now. See
4251 		 * calc_cfs_shares().
4252 		 */
4253 		if (wl < MIN_SHARES)
4254 			wl = MIN_SHARES;
4255 
4256 		/*
4257 		 * wl = dw_i = S * (s'_i - s_i); see (3)
4258 		 */
4259 		wl -= se->load.weight;
4260 
4261 		/*
4262 		 * Recursively apply this logic to all parent groups to compute
4263 		 * the final effective load change on the root group. Since
4264 		 * only the @tg group gets extra weight, all parent groups can
4265 		 * only redistribute existing shares. @wl is the shift in shares
4266 		 * resulting from this level per the above.
4267 		 */
4268 		wg = 0;
4269 	}
4270 
4271 	return wl;
4272 }
4273 #else
4274 
4275 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4276 {
4277 	return wl;
4278 }
4279 
4280 #endif
4281 
4282 static int wake_wide(struct task_struct *p)
4283 {
4284 	int factor = this_cpu_read(sd_llc_size);
4285 
4286 	/*
4287 	 * Yeah, it's the switching-frequency, could means many wakee or
4288 	 * rapidly switch, use factor here will just help to automatically
4289 	 * adjust the loose-degree, so bigger node will lead to more pull.
4290 	 */
4291 	if (p->wakee_flips > factor) {
4292 		/*
4293 		 * wakee is somewhat hot, it needs certain amount of cpu
4294 		 * resource, so if waker is far more hot, prefer to leave
4295 		 * it alone.
4296 		 */
4297 		if (current->wakee_flips > (factor * p->wakee_flips))
4298 			return 1;
4299 	}
4300 
4301 	return 0;
4302 }
4303 
4304 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4305 {
4306 	s64 this_load, load;
4307 	s64 this_eff_load, prev_eff_load;
4308 	int idx, this_cpu, prev_cpu;
4309 	struct task_group *tg;
4310 	unsigned long weight;
4311 	int balanced;
4312 
4313 	/*
4314 	 * If we wake multiple tasks be careful to not bounce
4315 	 * ourselves around too much.
4316 	 */
4317 	if (wake_wide(p))
4318 		return 0;
4319 
4320 	idx	  = sd->wake_idx;
4321 	this_cpu  = smp_processor_id();
4322 	prev_cpu  = task_cpu(p);
4323 	load	  = source_load(prev_cpu, idx);
4324 	this_load = target_load(this_cpu, idx);
4325 
4326 	/*
4327 	 * If sync wakeup then subtract the (maximum possible)
4328 	 * effect of the currently running task from the load
4329 	 * of the current CPU:
4330 	 */
4331 	if (sync) {
4332 		tg = task_group(current);
4333 		weight = current->se.load.weight;
4334 
4335 		this_load += effective_load(tg, this_cpu, -weight, -weight);
4336 		load += effective_load(tg, prev_cpu, 0, -weight);
4337 	}
4338 
4339 	tg = task_group(p);
4340 	weight = p->se.load.weight;
4341 
4342 	/*
4343 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4344 	 * due to the sync cause above having dropped this_load to 0, we'll
4345 	 * always have an imbalance, but there's really nothing you can do
4346 	 * about that, so that's good too.
4347 	 *
4348 	 * Otherwise check if either cpus are near enough in load to allow this
4349 	 * task to be woken on this_cpu.
4350 	 */
4351 	this_eff_load = 100;
4352 	this_eff_load *= capacity_of(prev_cpu);
4353 
4354 	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4355 	prev_eff_load *= capacity_of(this_cpu);
4356 
4357 	if (this_load > 0) {
4358 		this_eff_load *= this_load +
4359 			effective_load(tg, this_cpu, weight, weight);
4360 
4361 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4362 	}
4363 
4364 	balanced = this_eff_load <= prev_eff_load;
4365 
4366 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4367 
4368 	if (!balanced)
4369 		return 0;
4370 
4371 	schedstat_inc(sd, ttwu_move_affine);
4372 	schedstat_inc(p, se.statistics.nr_wakeups_affine);
4373 
4374 	return 1;
4375 }
4376 
4377 /*
4378  * find_idlest_group finds and returns the least busy CPU group within the
4379  * domain.
4380  */
4381 static struct sched_group *
4382 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4383 		  int this_cpu, int sd_flag)
4384 {
4385 	struct sched_group *idlest = NULL, *group = sd->groups;
4386 	unsigned long min_load = ULONG_MAX, this_load = 0;
4387 	int load_idx = sd->forkexec_idx;
4388 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4389 
4390 	if (sd_flag & SD_BALANCE_WAKE)
4391 		load_idx = sd->wake_idx;
4392 
4393 	do {
4394 		unsigned long load, avg_load;
4395 		int local_group;
4396 		int i;
4397 
4398 		/* Skip over this group if it has no CPUs allowed */
4399 		if (!cpumask_intersects(sched_group_cpus(group),
4400 					tsk_cpus_allowed(p)))
4401 			continue;
4402 
4403 		local_group = cpumask_test_cpu(this_cpu,
4404 					       sched_group_cpus(group));
4405 
4406 		/* Tally up the load of all CPUs in the group */
4407 		avg_load = 0;
4408 
4409 		for_each_cpu(i, sched_group_cpus(group)) {
4410 			/* Bias balancing toward cpus of our domain */
4411 			if (local_group)
4412 				load = source_load(i, load_idx);
4413 			else
4414 				load = target_load(i, load_idx);
4415 
4416 			avg_load += load;
4417 		}
4418 
4419 		/* Adjust by relative CPU capacity of the group */
4420 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4421 
4422 		if (local_group) {
4423 			this_load = avg_load;
4424 		} else if (avg_load < min_load) {
4425 			min_load = avg_load;
4426 			idlest = group;
4427 		}
4428 	} while (group = group->next, group != sd->groups);
4429 
4430 	if (!idlest || 100*this_load < imbalance*min_load)
4431 		return NULL;
4432 	return idlest;
4433 }
4434 
4435 /*
4436  * find_idlest_cpu - find the idlest cpu among the cpus in group.
4437  */
4438 static int
4439 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4440 {
4441 	unsigned long load, min_load = ULONG_MAX;
4442 	unsigned int min_exit_latency = UINT_MAX;
4443 	u64 latest_idle_timestamp = 0;
4444 	int least_loaded_cpu = this_cpu;
4445 	int shallowest_idle_cpu = -1;
4446 	int i;
4447 
4448 	/* Traverse only the allowed CPUs */
4449 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4450 		if (idle_cpu(i)) {
4451 			struct rq *rq = cpu_rq(i);
4452 			struct cpuidle_state *idle = idle_get_state(rq);
4453 			if (idle && idle->exit_latency < min_exit_latency) {
4454 				/*
4455 				 * We give priority to a CPU whose idle state
4456 				 * has the smallest exit latency irrespective
4457 				 * of any idle timestamp.
4458 				 */
4459 				min_exit_latency = idle->exit_latency;
4460 				latest_idle_timestamp = rq->idle_stamp;
4461 				shallowest_idle_cpu = i;
4462 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
4463 				   rq->idle_stamp > latest_idle_timestamp) {
4464 				/*
4465 				 * If equal or no active idle state, then
4466 				 * the most recently idled CPU might have
4467 				 * a warmer cache.
4468 				 */
4469 				latest_idle_timestamp = rq->idle_stamp;
4470 				shallowest_idle_cpu = i;
4471 			}
4472 		} else {
4473 			load = weighted_cpuload(i);
4474 			if (load < min_load || (load == min_load && i == this_cpu)) {
4475 				min_load = load;
4476 				least_loaded_cpu = i;
4477 			}
4478 		}
4479 	}
4480 
4481 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4482 }
4483 
4484 /*
4485  * Try and locate an idle CPU in the sched_domain.
4486  */
4487 static int select_idle_sibling(struct task_struct *p, int target)
4488 {
4489 	struct sched_domain *sd;
4490 	struct sched_group *sg;
4491 	int i = task_cpu(p);
4492 
4493 	if (idle_cpu(target))
4494 		return target;
4495 
4496 	/*
4497 	 * If the prevous cpu is cache affine and idle, don't be stupid.
4498 	 */
4499 	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4500 		return i;
4501 
4502 	/*
4503 	 * Otherwise, iterate the domains and find an elegible idle cpu.
4504 	 */
4505 	sd = rcu_dereference(per_cpu(sd_llc, target));
4506 	for_each_lower_domain(sd) {
4507 		sg = sd->groups;
4508 		do {
4509 			if (!cpumask_intersects(sched_group_cpus(sg),
4510 						tsk_cpus_allowed(p)))
4511 				goto next;
4512 
4513 			for_each_cpu(i, sched_group_cpus(sg)) {
4514 				if (i == target || !idle_cpu(i))
4515 					goto next;
4516 			}
4517 
4518 			target = cpumask_first_and(sched_group_cpus(sg),
4519 					tsk_cpus_allowed(p));
4520 			goto done;
4521 next:
4522 			sg = sg->next;
4523 		} while (sg != sd->groups);
4524 	}
4525 done:
4526 	return target;
4527 }
4528 
4529 /*
4530  * select_task_rq_fair: Select target runqueue for the waking task in domains
4531  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4532  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4533  *
4534  * Balances load by selecting the idlest cpu in the idlest group, or under
4535  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4536  *
4537  * Returns the target cpu number.
4538  *
4539  * preempt must be disabled.
4540  */
4541 static int
4542 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4543 {
4544 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4545 	int cpu = smp_processor_id();
4546 	int new_cpu = cpu;
4547 	int want_affine = 0;
4548 	int sync = wake_flags & WF_SYNC;
4549 
4550 	if (p->nr_cpus_allowed == 1)
4551 		return prev_cpu;
4552 
4553 	if (sd_flag & SD_BALANCE_WAKE)
4554 		want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4555 
4556 	rcu_read_lock();
4557 	for_each_domain(cpu, tmp) {
4558 		if (!(tmp->flags & SD_LOAD_BALANCE))
4559 			continue;
4560 
4561 		/*
4562 		 * If both cpu and prev_cpu are part of this domain,
4563 		 * cpu is a valid SD_WAKE_AFFINE target.
4564 		 */
4565 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4566 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4567 			affine_sd = tmp;
4568 			break;
4569 		}
4570 
4571 		if (tmp->flags & sd_flag)
4572 			sd = tmp;
4573 	}
4574 
4575 	if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4576 		prev_cpu = cpu;
4577 
4578 	if (sd_flag & SD_BALANCE_WAKE) {
4579 		new_cpu = select_idle_sibling(p, prev_cpu);
4580 		goto unlock;
4581 	}
4582 
4583 	while (sd) {
4584 		struct sched_group *group;
4585 		int weight;
4586 
4587 		if (!(sd->flags & sd_flag)) {
4588 			sd = sd->child;
4589 			continue;
4590 		}
4591 
4592 		group = find_idlest_group(sd, p, cpu, sd_flag);
4593 		if (!group) {
4594 			sd = sd->child;
4595 			continue;
4596 		}
4597 
4598 		new_cpu = find_idlest_cpu(group, p, cpu);
4599 		if (new_cpu == -1 || new_cpu == cpu) {
4600 			/* Now try balancing at a lower domain level of cpu */
4601 			sd = sd->child;
4602 			continue;
4603 		}
4604 
4605 		/* Now try balancing at a lower domain level of new_cpu */
4606 		cpu = new_cpu;
4607 		weight = sd->span_weight;
4608 		sd = NULL;
4609 		for_each_domain(cpu, tmp) {
4610 			if (weight <= tmp->span_weight)
4611 				break;
4612 			if (tmp->flags & sd_flag)
4613 				sd = tmp;
4614 		}
4615 		/* while loop will break here if sd == NULL */
4616 	}
4617 unlock:
4618 	rcu_read_unlock();
4619 
4620 	return new_cpu;
4621 }
4622 
4623 /*
4624  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4625  * cfs_rq_of(p) references at time of call are still valid and identify the
4626  * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
4627  * other assumptions, including the state of rq->lock, should be made.
4628  */
4629 static void
4630 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4631 {
4632 	struct sched_entity *se = &p->se;
4633 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4634 
4635 	/*
4636 	 * Load tracking: accumulate removed load so that it can be processed
4637 	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
4638 	 * to blocked load iff they have a positive decay-count.  It can never
4639 	 * be negative here since on-rq tasks have decay-count == 0.
4640 	 */
4641 	if (se->avg.decay_count) {
4642 		se->avg.decay_count = -__synchronize_entity_decay(se);
4643 		atomic_long_add(se->avg.load_avg_contrib,
4644 						&cfs_rq->removed_load);
4645 	}
4646 
4647 	/* We have migrated, no longer consider this task hot */
4648 	se->exec_start = 0;
4649 }
4650 #endif /* CONFIG_SMP */
4651 
4652 static unsigned long
4653 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4654 {
4655 	unsigned long gran = sysctl_sched_wakeup_granularity;
4656 
4657 	/*
4658 	 * Since its curr running now, convert the gran from real-time
4659 	 * to virtual-time in his units.
4660 	 *
4661 	 * By using 'se' instead of 'curr' we penalize light tasks, so
4662 	 * they get preempted easier. That is, if 'se' < 'curr' then
4663 	 * the resulting gran will be larger, therefore penalizing the
4664 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4665 	 * be smaller, again penalizing the lighter task.
4666 	 *
4667 	 * This is especially important for buddies when the leftmost
4668 	 * task is higher priority than the buddy.
4669 	 */
4670 	return calc_delta_fair(gran, se);
4671 }
4672 
4673 /*
4674  * Should 'se' preempt 'curr'.
4675  *
4676  *             |s1
4677  *        |s2
4678  *   |s3
4679  *         g
4680  *      |<--->|c
4681  *
4682  *  w(c, s1) = -1
4683  *  w(c, s2) =  0
4684  *  w(c, s3) =  1
4685  *
4686  */
4687 static int
4688 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4689 {
4690 	s64 gran, vdiff = curr->vruntime - se->vruntime;
4691 
4692 	if (vdiff <= 0)
4693 		return -1;
4694 
4695 	gran = wakeup_gran(curr, se);
4696 	if (vdiff > gran)
4697 		return 1;
4698 
4699 	return 0;
4700 }
4701 
4702 static void set_last_buddy(struct sched_entity *se)
4703 {
4704 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4705 		return;
4706 
4707 	for_each_sched_entity(se)
4708 		cfs_rq_of(se)->last = se;
4709 }
4710 
4711 static void set_next_buddy(struct sched_entity *se)
4712 {
4713 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4714 		return;
4715 
4716 	for_each_sched_entity(se)
4717 		cfs_rq_of(se)->next = se;
4718 }
4719 
4720 static void set_skip_buddy(struct sched_entity *se)
4721 {
4722 	for_each_sched_entity(se)
4723 		cfs_rq_of(se)->skip = se;
4724 }
4725 
4726 /*
4727  * Preempt the current task with a newly woken task if needed:
4728  */
4729 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4730 {
4731 	struct task_struct *curr = rq->curr;
4732 	struct sched_entity *se = &curr->se, *pse = &p->se;
4733 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4734 	int scale = cfs_rq->nr_running >= sched_nr_latency;
4735 	int next_buddy_marked = 0;
4736 
4737 	if (unlikely(se == pse))
4738 		return;
4739 
4740 	/*
4741 	 * This is possible from callers such as attach_tasks(), in which we
4742 	 * unconditionally check_prempt_curr() after an enqueue (which may have
4743 	 * lead to a throttle).  This both saves work and prevents false
4744 	 * next-buddy nomination below.
4745 	 */
4746 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4747 		return;
4748 
4749 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4750 		set_next_buddy(pse);
4751 		next_buddy_marked = 1;
4752 	}
4753 
4754 	/*
4755 	 * We can come here with TIF_NEED_RESCHED already set from new task
4756 	 * wake up path.
4757 	 *
4758 	 * Note: this also catches the edge-case of curr being in a throttled
4759 	 * group (e.g. via set_curr_task), since update_curr() (in the
4760 	 * enqueue of curr) will have resulted in resched being set.  This
4761 	 * prevents us from potentially nominating it as a false LAST_BUDDY
4762 	 * below.
4763 	 */
4764 	if (test_tsk_need_resched(curr))
4765 		return;
4766 
4767 	/* Idle tasks are by definition preempted by non-idle tasks. */
4768 	if (unlikely(curr->policy == SCHED_IDLE) &&
4769 	    likely(p->policy != SCHED_IDLE))
4770 		goto preempt;
4771 
4772 	/*
4773 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4774 	 * is driven by the tick):
4775 	 */
4776 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4777 		return;
4778 
4779 	find_matching_se(&se, &pse);
4780 	update_curr(cfs_rq_of(se));
4781 	BUG_ON(!pse);
4782 	if (wakeup_preempt_entity(se, pse) == 1) {
4783 		/*
4784 		 * Bias pick_next to pick the sched entity that is
4785 		 * triggering this preemption.
4786 		 */
4787 		if (!next_buddy_marked)
4788 			set_next_buddy(pse);
4789 		goto preempt;
4790 	}
4791 
4792 	return;
4793 
4794 preempt:
4795 	resched_curr(rq);
4796 	/*
4797 	 * Only set the backward buddy when the current task is still
4798 	 * on the rq. This can happen when a wakeup gets interleaved
4799 	 * with schedule on the ->pre_schedule() or idle_balance()
4800 	 * point, either of which can * drop the rq lock.
4801 	 *
4802 	 * Also, during early boot the idle thread is in the fair class,
4803 	 * for obvious reasons its a bad idea to schedule back to it.
4804 	 */
4805 	if (unlikely(!se->on_rq || curr == rq->idle))
4806 		return;
4807 
4808 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4809 		set_last_buddy(se);
4810 }
4811 
4812 static struct task_struct *
4813 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
4814 {
4815 	struct cfs_rq *cfs_rq = &rq->cfs;
4816 	struct sched_entity *se;
4817 	struct task_struct *p;
4818 	int new_tasks;
4819 
4820 again:
4821 #ifdef CONFIG_FAIR_GROUP_SCHED
4822 	if (!cfs_rq->nr_running)
4823 		goto idle;
4824 
4825 	if (prev->sched_class != &fair_sched_class)
4826 		goto simple;
4827 
4828 	/*
4829 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
4830 	 * likely that a next task is from the same cgroup as the current.
4831 	 *
4832 	 * Therefore attempt to avoid putting and setting the entire cgroup
4833 	 * hierarchy, only change the part that actually changes.
4834 	 */
4835 
4836 	do {
4837 		struct sched_entity *curr = cfs_rq->curr;
4838 
4839 		/*
4840 		 * Since we got here without doing put_prev_entity() we also
4841 		 * have to consider cfs_rq->curr. If it is still a runnable
4842 		 * entity, update_curr() will update its vruntime, otherwise
4843 		 * forget we've ever seen it.
4844 		 */
4845 		if (curr && curr->on_rq)
4846 			update_curr(cfs_rq);
4847 		else
4848 			curr = NULL;
4849 
4850 		/*
4851 		 * This call to check_cfs_rq_runtime() will do the throttle and
4852 		 * dequeue its entity in the parent(s). Therefore the 'simple'
4853 		 * nr_running test will indeed be correct.
4854 		 */
4855 		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
4856 			goto simple;
4857 
4858 		se = pick_next_entity(cfs_rq, curr);
4859 		cfs_rq = group_cfs_rq(se);
4860 	} while (cfs_rq);
4861 
4862 	p = task_of(se);
4863 
4864 	/*
4865 	 * Since we haven't yet done put_prev_entity and if the selected task
4866 	 * is a different task than we started out with, try and touch the
4867 	 * least amount of cfs_rqs.
4868 	 */
4869 	if (prev != p) {
4870 		struct sched_entity *pse = &prev->se;
4871 
4872 		while (!(cfs_rq = is_same_group(se, pse))) {
4873 			int se_depth = se->depth;
4874 			int pse_depth = pse->depth;
4875 
4876 			if (se_depth <= pse_depth) {
4877 				put_prev_entity(cfs_rq_of(pse), pse);
4878 				pse = parent_entity(pse);
4879 			}
4880 			if (se_depth >= pse_depth) {
4881 				set_next_entity(cfs_rq_of(se), se);
4882 				se = parent_entity(se);
4883 			}
4884 		}
4885 
4886 		put_prev_entity(cfs_rq, pse);
4887 		set_next_entity(cfs_rq, se);
4888 	}
4889 
4890 	if (hrtick_enabled(rq))
4891 		hrtick_start_fair(rq, p);
4892 
4893 	return p;
4894 simple:
4895 	cfs_rq = &rq->cfs;
4896 #endif
4897 
4898 	if (!cfs_rq->nr_running)
4899 		goto idle;
4900 
4901 	put_prev_task(rq, prev);
4902 
4903 	do {
4904 		se = pick_next_entity(cfs_rq, NULL);
4905 		set_next_entity(cfs_rq, se);
4906 		cfs_rq = group_cfs_rq(se);
4907 	} while (cfs_rq);
4908 
4909 	p = task_of(se);
4910 
4911 	if (hrtick_enabled(rq))
4912 		hrtick_start_fair(rq, p);
4913 
4914 	return p;
4915 
4916 idle:
4917 	new_tasks = idle_balance(rq);
4918 	/*
4919 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
4920 	 * possible for any higher priority task to appear. In that case we
4921 	 * must re-start the pick_next_entity() loop.
4922 	 */
4923 	if (new_tasks < 0)
4924 		return RETRY_TASK;
4925 
4926 	if (new_tasks > 0)
4927 		goto again;
4928 
4929 	return NULL;
4930 }
4931 
4932 /*
4933  * Account for a descheduled task:
4934  */
4935 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
4936 {
4937 	struct sched_entity *se = &prev->se;
4938 	struct cfs_rq *cfs_rq;
4939 
4940 	for_each_sched_entity(se) {
4941 		cfs_rq = cfs_rq_of(se);
4942 		put_prev_entity(cfs_rq, se);
4943 	}
4944 }
4945 
4946 /*
4947  * sched_yield() is very simple
4948  *
4949  * The magic of dealing with the ->skip buddy is in pick_next_entity.
4950  */
4951 static void yield_task_fair(struct rq *rq)
4952 {
4953 	struct task_struct *curr = rq->curr;
4954 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4955 	struct sched_entity *se = &curr->se;
4956 
4957 	/*
4958 	 * Are we the only task in the tree?
4959 	 */
4960 	if (unlikely(rq->nr_running == 1))
4961 		return;
4962 
4963 	clear_buddies(cfs_rq, se);
4964 
4965 	if (curr->policy != SCHED_BATCH) {
4966 		update_rq_clock(rq);
4967 		/*
4968 		 * Update run-time statistics of the 'current'.
4969 		 */
4970 		update_curr(cfs_rq);
4971 		/*
4972 		 * Tell update_rq_clock() that we've just updated,
4973 		 * so we don't do microscopic update in schedule()
4974 		 * and double the fastpath cost.
4975 		 */
4976 		 rq->skip_clock_update = 1;
4977 	}
4978 
4979 	set_skip_buddy(se);
4980 }
4981 
4982 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4983 {
4984 	struct sched_entity *se = &p->se;
4985 
4986 	/* throttled hierarchies are not runnable */
4987 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
4988 		return false;
4989 
4990 	/* Tell the scheduler that we'd really like pse to run next. */
4991 	set_next_buddy(se);
4992 
4993 	yield_task_fair(rq);
4994 
4995 	return true;
4996 }
4997 
4998 #ifdef CONFIG_SMP
4999 /**************************************************
5000  * Fair scheduling class load-balancing methods.
5001  *
5002  * BASICS
5003  *
5004  * The purpose of load-balancing is to achieve the same basic fairness the
5005  * per-cpu scheduler provides, namely provide a proportional amount of compute
5006  * time to each task. This is expressed in the following equation:
5007  *
5008  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
5009  *
5010  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5011  * W_i,0 is defined as:
5012  *
5013  *   W_i,0 = \Sum_j w_i,j                                             (2)
5014  *
5015  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5016  * is derived from the nice value as per prio_to_weight[].
5017  *
5018  * The weight average is an exponential decay average of the instantaneous
5019  * weight:
5020  *
5021  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
5022  *
5023  * C_i is the compute capacity of cpu i, typically it is the
5024  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5025  * can also include other factors [XXX].
5026  *
5027  * To achieve this balance we define a measure of imbalance which follows
5028  * directly from (1):
5029  *
5030  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
5031  *
5032  * We them move tasks around to minimize the imbalance. In the continuous
5033  * function space it is obvious this converges, in the discrete case we get
5034  * a few fun cases generally called infeasible weight scenarios.
5035  *
5036  * [XXX expand on:
5037  *     - infeasible weights;
5038  *     - local vs global optima in the discrete case. ]
5039  *
5040  *
5041  * SCHED DOMAINS
5042  *
5043  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5044  * for all i,j solution, we create a tree of cpus that follows the hardware
5045  * topology where each level pairs two lower groups (or better). This results
5046  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5047  * tree to only the first of the previous level and we decrease the frequency
5048  * of load-balance at each level inv. proportional to the number of cpus in
5049  * the groups.
5050  *
5051  * This yields:
5052  *
5053  *     log_2 n     1     n
5054  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
5055  *     i = 0      2^i   2^i
5056  *                               `- size of each group
5057  *         |         |     `- number of cpus doing load-balance
5058  *         |         `- freq
5059  *         `- sum over all levels
5060  *
5061  * Coupled with a limit on how many tasks we can migrate every balance pass,
5062  * this makes (5) the runtime complexity of the balancer.
5063  *
5064  * An important property here is that each CPU is still (indirectly) connected
5065  * to every other cpu in at most O(log n) steps:
5066  *
5067  * The adjacency matrix of the resulting graph is given by:
5068  *
5069  *             log_2 n
5070  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
5071  *             k = 0
5072  *
5073  * And you'll find that:
5074  *
5075  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
5076  *
5077  * Showing there's indeed a path between every cpu in at most O(log n) steps.
5078  * The task movement gives a factor of O(m), giving a convergence complexity
5079  * of:
5080  *
5081  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
5082  *
5083  *
5084  * WORK CONSERVING
5085  *
5086  * In order to avoid CPUs going idle while there's still work to do, new idle
5087  * balancing is more aggressive and has the newly idle cpu iterate up the domain
5088  * tree itself instead of relying on other CPUs to bring it work.
5089  *
5090  * This adds some complexity to both (5) and (8) but it reduces the total idle
5091  * time.
5092  *
5093  * [XXX more?]
5094  *
5095  *
5096  * CGROUPS
5097  *
5098  * Cgroups make a horror show out of (2), instead of a simple sum we get:
5099  *
5100  *                                s_k,i
5101  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
5102  *                                 S_k
5103  *
5104  * Where
5105  *
5106  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
5107  *
5108  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5109  *
5110  * The big problem is S_k, its a global sum needed to compute a local (W_i)
5111  * property.
5112  *
5113  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5114  *      rewrite all of this once again.]
5115  */
5116 
5117 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5118 
5119 enum fbq_type { regular, remote, all };
5120 
5121 #define LBF_ALL_PINNED	0x01
5122 #define LBF_NEED_BREAK	0x02
5123 #define LBF_DST_PINNED  0x04
5124 #define LBF_SOME_PINNED	0x08
5125 
5126 struct lb_env {
5127 	struct sched_domain	*sd;
5128 
5129 	struct rq		*src_rq;
5130 	int			src_cpu;
5131 
5132 	int			dst_cpu;
5133 	struct rq		*dst_rq;
5134 
5135 	struct cpumask		*dst_grpmask;
5136 	int			new_dst_cpu;
5137 	enum cpu_idle_type	idle;
5138 	long			imbalance;
5139 	/* The set of CPUs under consideration for load-balancing */
5140 	struct cpumask		*cpus;
5141 
5142 	unsigned int		flags;
5143 
5144 	unsigned int		loop;
5145 	unsigned int		loop_break;
5146 	unsigned int		loop_max;
5147 
5148 	enum fbq_type		fbq_type;
5149 	struct list_head	tasks;
5150 };
5151 
5152 /*
5153  * Is this task likely cache-hot:
5154  */
5155 static int task_hot(struct task_struct *p, struct lb_env *env)
5156 {
5157 	s64 delta;
5158 
5159 	lockdep_assert_held(&env->src_rq->lock);
5160 
5161 	if (p->sched_class != &fair_sched_class)
5162 		return 0;
5163 
5164 	if (unlikely(p->policy == SCHED_IDLE))
5165 		return 0;
5166 
5167 	/*
5168 	 * Buddy candidates are cache hot:
5169 	 */
5170 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5171 			(&p->se == cfs_rq_of(&p->se)->next ||
5172 			 &p->se == cfs_rq_of(&p->se)->last))
5173 		return 1;
5174 
5175 	if (sysctl_sched_migration_cost == -1)
5176 		return 1;
5177 	if (sysctl_sched_migration_cost == 0)
5178 		return 0;
5179 
5180 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5181 
5182 	return delta < (s64)sysctl_sched_migration_cost;
5183 }
5184 
5185 #ifdef CONFIG_NUMA_BALANCING
5186 /* Returns true if the destination node has incurred more faults */
5187 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5188 {
5189 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5190 	int src_nid, dst_nid;
5191 
5192 	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults_memory ||
5193 	    !(env->sd->flags & SD_NUMA)) {
5194 		return false;
5195 	}
5196 
5197 	src_nid = cpu_to_node(env->src_cpu);
5198 	dst_nid = cpu_to_node(env->dst_cpu);
5199 
5200 	if (src_nid == dst_nid)
5201 		return false;
5202 
5203 	if (numa_group) {
5204 		/* Task is already in the group's interleave set. */
5205 		if (node_isset(src_nid, numa_group->active_nodes))
5206 			return false;
5207 
5208 		/* Task is moving into the group's interleave set. */
5209 		if (node_isset(dst_nid, numa_group->active_nodes))
5210 			return true;
5211 
5212 		return group_faults(p, dst_nid) > group_faults(p, src_nid);
5213 	}
5214 
5215 	/* Encourage migration to the preferred node. */
5216 	if (dst_nid == p->numa_preferred_nid)
5217 		return true;
5218 
5219 	return task_faults(p, dst_nid) > task_faults(p, src_nid);
5220 }
5221 
5222 
5223 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5224 {
5225 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5226 	int src_nid, dst_nid;
5227 
5228 	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5229 		return false;
5230 
5231 	if (!p->numa_faults_memory || !(env->sd->flags & SD_NUMA))
5232 		return false;
5233 
5234 	src_nid = cpu_to_node(env->src_cpu);
5235 	dst_nid = cpu_to_node(env->dst_cpu);
5236 
5237 	if (src_nid == dst_nid)
5238 		return false;
5239 
5240 	if (numa_group) {
5241 		/* Task is moving within/into the group's interleave set. */
5242 		if (node_isset(dst_nid, numa_group->active_nodes))
5243 			return false;
5244 
5245 		/* Task is moving out of the group's interleave set. */
5246 		if (node_isset(src_nid, numa_group->active_nodes))
5247 			return true;
5248 
5249 		return group_faults(p, dst_nid) < group_faults(p, src_nid);
5250 	}
5251 
5252 	/* Migrating away from the preferred node is always bad. */
5253 	if (src_nid == p->numa_preferred_nid)
5254 		return true;
5255 
5256 	return task_faults(p, dst_nid) < task_faults(p, src_nid);
5257 }
5258 
5259 #else
5260 static inline bool migrate_improves_locality(struct task_struct *p,
5261 					     struct lb_env *env)
5262 {
5263 	return false;
5264 }
5265 
5266 static inline bool migrate_degrades_locality(struct task_struct *p,
5267 					     struct lb_env *env)
5268 {
5269 	return false;
5270 }
5271 #endif
5272 
5273 /*
5274  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5275  */
5276 static
5277 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5278 {
5279 	int tsk_cache_hot = 0;
5280 
5281 	lockdep_assert_held(&env->src_rq->lock);
5282 
5283 	/*
5284 	 * We do not migrate tasks that are:
5285 	 * 1) throttled_lb_pair, or
5286 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5287 	 * 3) running (obviously), or
5288 	 * 4) are cache-hot on their current CPU.
5289 	 */
5290 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5291 		return 0;
5292 
5293 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5294 		int cpu;
5295 
5296 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5297 
5298 		env->flags |= LBF_SOME_PINNED;
5299 
5300 		/*
5301 		 * Remember if this task can be migrated to any other cpu in
5302 		 * our sched_group. We may want to revisit it if we couldn't
5303 		 * meet load balance goals by pulling other tasks on src_cpu.
5304 		 *
5305 		 * Also avoid computing new_dst_cpu if we have already computed
5306 		 * one in current iteration.
5307 		 */
5308 		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5309 			return 0;
5310 
5311 		/* Prevent to re-select dst_cpu via env's cpus */
5312 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5313 			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5314 				env->flags |= LBF_DST_PINNED;
5315 				env->new_dst_cpu = cpu;
5316 				break;
5317 			}
5318 		}
5319 
5320 		return 0;
5321 	}
5322 
5323 	/* Record that we found atleast one task that could run on dst_cpu */
5324 	env->flags &= ~LBF_ALL_PINNED;
5325 
5326 	if (task_running(env->src_rq, p)) {
5327 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5328 		return 0;
5329 	}
5330 
5331 	/*
5332 	 * Aggressive migration if:
5333 	 * 1) destination numa is preferred
5334 	 * 2) task is cache cold, or
5335 	 * 3) too many balance attempts have failed.
5336 	 */
5337 	tsk_cache_hot = task_hot(p, env);
5338 	if (!tsk_cache_hot)
5339 		tsk_cache_hot = migrate_degrades_locality(p, env);
5340 
5341 	if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5342 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5343 		if (tsk_cache_hot) {
5344 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5345 			schedstat_inc(p, se.statistics.nr_forced_migrations);
5346 		}
5347 		return 1;
5348 	}
5349 
5350 	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5351 	return 0;
5352 }
5353 
5354 /*
5355  * detach_task() -- detach the task for the migration specified in env
5356  */
5357 static void detach_task(struct task_struct *p, struct lb_env *env)
5358 {
5359 	lockdep_assert_held(&env->src_rq->lock);
5360 
5361 	deactivate_task(env->src_rq, p, 0);
5362 	p->on_rq = TASK_ON_RQ_MIGRATING;
5363 	set_task_cpu(p, env->dst_cpu);
5364 }
5365 
5366 /*
5367  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5368  * part of active balancing operations within "domain".
5369  *
5370  * Returns a task if successful and NULL otherwise.
5371  */
5372 static struct task_struct *detach_one_task(struct lb_env *env)
5373 {
5374 	struct task_struct *p, *n;
5375 
5376 	lockdep_assert_held(&env->src_rq->lock);
5377 
5378 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5379 		if (!can_migrate_task(p, env))
5380 			continue;
5381 
5382 		detach_task(p, env);
5383 
5384 		/*
5385 		 * Right now, this is only the second place where
5386 		 * lb_gained[env->idle] is updated (other is detach_tasks)
5387 		 * so we can safely collect stats here rather than
5388 		 * inside detach_tasks().
5389 		 */
5390 		schedstat_inc(env->sd, lb_gained[env->idle]);
5391 		return p;
5392 	}
5393 	return NULL;
5394 }
5395 
5396 static const unsigned int sched_nr_migrate_break = 32;
5397 
5398 /*
5399  * detach_tasks() -- tries to detach up to imbalance weighted load from
5400  * busiest_rq, as part of a balancing operation within domain "sd".
5401  *
5402  * Returns number of detached tasks if successful and 0 otherwise.
5403  */
5404 static int detach_tasks(struct lb_env *env)
5405 {
5406 	struct list_head *tasks = &env->src_rq->cfs_tasks;
5407 	struct task_struct *p;
5408 	unsigned long load;
5409 	int detached = 0;
5410 
5411 	lockdep_assert_held(&env->src_rq->lock);
5412 
5413 	if (env->imbalance <= 0)
5414 		return 0;
5415 
5416 	while (!list_empty(tasks)) {
5417 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5418 
5419 		env->loop++;
5420 		/* We've more or less seen every task there is, call it quits */
5421 		if (env->loop > env->loop_max)
5422 			break;
5423 
5424 		/* take a breather every nr_migrate tasks */
5425 		if (env->loop > env->loop_break) {
5426 			env->loop_break += sched_nr_migrate_break;
5427 			env->flags |= LBF_NEED_BREAK;
5428 			break;
5429 		}
5430 
5431 		if (!can_migrate_task(p, env))
5432 			goto next;
5433 
5434 		load = task_h_load(p);
5435 
5436 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5437 			goto next;
5438 
5439 		if ((load / 2) > env->imbalance)
5440 			goto next;
5441 
5442 		detach_task(p, env);
5443 		list_add(&p->se.group_node, &env->tasks);
5444 
5445 		detached++;
5446 		env->imbalance -= load;
5447 
5448 #ifdef CONFIG_PREEMPT
5449 		/*
5450 		 * NEWIDLE balancing is a source of latency, so preemptible
5451 		 * kernels will stop after the first task is detached to minimize
5452 		 * the critical section.
5453 		 */
5454 		if (env->idle == CPU_NEWLY_IDLE)
5455 			break;
5456 #endif
5457 
5458 		/*
5459 		 * We only want to steal up to the prescribed amount of
5460 		 * weighted load.
5461 		 */
5462 		if (env->imbalance <= 0)
5463 			break;
5464 
5465 		continue;
5466 next:
5467 		list_move_tail(&p->se.group_node, tasks);
5468 	}
5469 
5470 	/*
5471 	 * Right now, this is one of only two places we collect this stat
5472 	 * so we can safely collect detach_one_task() stats here rather
5473 	 * than inside detach_one_task().
5474 	 */
5475 	schedstat_add(env->sd, lb_gained[env->idle], detached);
5476 
5477 	return detached;
5478 }
5479 
5480 /*
5481  * attach_task() -- attach the task detached by detach_task() to its new rq.
5482  */
5483 static void attach_task(struct rq *rq, struct task_struct *p)
5484 {
5485 	lockdep_assert_held(&rq->lock);
5486 
5487 	BUG_ON(task_rq(p) != rq);
5488 	p->on_rq = TASK_ON_RQ_QUEUED;
5489 	activate_task(rq, p, 0);
5490 	check_preempt_curr(rq, p, 0);
5491 }
5492 
5493 /*
5494  * attach_one_task() -- attaches the task returned from detach_one_task() to
5495  * its new rq.
5496  */
5497 static void attach_one_task(struct rq *rq, struct task_struct *p)
5498 {
5499 	raw_spin_lock(&rq->lock);
5500 	attach_task(rq, p);
5501 	raw_spin_unlock(&rq->lock);
5502 }
5503 
5504 /*
5505  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5506  * new rq.
5507  */
5508 static void attach_tasks(struct lb_env *env)
5509 {
5510 	struct list_head *tasks = &env->tasks;
5511 	struct task_struct *p;
5512 
5513 	raw_spin_lock(&env->dst_rq->lock);
5514 
5515 	while (!list_empty(tasks)) {
5516 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5517 		list_del_init(&p->se.group_node);
5518 
5519 		attach_task(env->dst_rq, p);
5520 	}
5521 
5522 	raw_spin_unlock(&env->dst_rq->lock);
5523 }
5524 
5525 #ifdef CONFIG_FAIR_GROUP_SCHED
5526 /*
5527  * update tg->load_weight by folding this cpu's load_avg
5528  */
5529 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5530 {
5531 	struct sched_entity *se = tg->se[cpu];
5532 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5533 
5534 	/* throttled entities do not contribute to load */
5535 	if (throttled_hierarchy(cfs_rq))
5536 		return;
5537 
5538 	update_cfs_rq_blocked_load(cfs_rq, 1);
5539 
5540 	if (se) {
5541 		update_entity_load_avg(se, 1);
5542 		/*
5543 		 * We pivot on our runnable average having decayed to zero for
5544 		 * list removal.  This generally implies that all our children
5545 		 * have also been removed (modulo rounding error or bandwidth
5546 		 * control); however, such cases are rare and we can fix these
5547 		 * at enqueue.
5548 		 *
5549 		 * TODO: fix up out-of-order children on enqueue.
5550 		 */
5551 		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5552 			list_del_leaf_cfs_rq(cfs_rq);
5553 	} else {
5554 		struct rq *rq = rq_of(cfs_rq);
5555 		update_rq_runnable_avg(rq, rq->nr_running);
5556 	}
5557 }
5558 
5559 static void update_blocked_averages(int cpu)
5560 {
5561 	struct rq *rq = cpu_rq(cpu);
5562 	struct cfs_rq *cfs_rq;
5563 	unsigned long flags;
5564 
5565 	raw_spin_lock_irqsave(&rq->lock, flags);
5566 	update_rq_clock(rq);
5567 	/*
5568 	 * Iterates the task_group tree in a bottom up fashion, see
5569 	 * list_add_leaf_cfs_rq() for details.
5570 	 */
5571 	for_each_leaf_cfs_rq(rq, cfs_rq) {
5572 		/*
5573 		 * Note: We may want to consider periodically releasing
5574 		 * rq->lock about these updates so that creating many task
5575 		 * groups does not result in continually extending hold time.
5576 		 */
5577 		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5578 	}
5579 
5580 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5581 }
5582 
5583 /*
5584  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5585  * This needs to be done in a top-down fashion because the load of a child
5586  * group is a fraction of its parents load.
5587  */
5588 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5589 {
5590 	struct rq *rq = rq_of(cfs_rq);
5591 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5592 	unsigned long now = jiffies;
5593 	unsigned long load;
5594 
5595 	if (cfs_rq->last_h_load_update == now)
5596 		return;
5597 
5598 	cfs_rq->h_load_next = NULL;
5599 	for_each_sched_entity(se) {
5600 		cfs_rq = cfs_rq_of(se);
5601 		cfs_rq->h_load_next = se;
5602 		if (cfs_rq->last_h_load_update == now)
5603 			break;
5604 	}
5605 
5606 	if (!se) {
5607 		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5608 		cfs_rq->last_h_load_update = now;
5609 	}
5610 
5611 	while ((se = cfs_rq->h_load_next) != NULL) {
5612 		load = cfs_rq->h_load;
5613 		load = div64_ul(load * se->avg.load_avg_contrib,
5614 				cfs_rq->runnable_load_avg + 1);
5615 		cfs_rq = group_cfs_rq(se);
5616 		cfs_rq->h_load = load;
5617 		cfs_rq->last_h_load_update = now;
5618 	}
5619 }
5620 
5621 static unsigned long task_h_load(struct task_struct *p)
5622 {
5623 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
5624 
5625 	update_cfs_rq_h_load(cfs_rq);
5626 	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5627 			cfs_rq->runnable_load_avg + 1);
5628 }
5629 #else
5630 static inline void update_blocked_averages(int cpu)
5631 {
5632 }
5633 
5634 static unsigned long task_h_load(struct task_struct *p)
5635 {
5636 	return p->se.avg.load_avg_contrib;
5637 }
5638 #endif
5639 
5640 /********** Helpers for find_busiest_group ************************/
5641 
5642 enum group_type {
5643 	group_other = 0,
5644 	group_imbalanced,
5645 	group_overloaded,
5646 };
5647 
5648 /*
5649  * sg_lb_stats - stats of a sched_group required for load_balancing
5650  */
5651 struct sg_lb_stats {
5652 	unsigned long avg_load; /*Avg load across the CPUs of the group */
5653 	unsigned long group_load; /* Total load over the CPUs of the group */
5654 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5655 	unsigned long load_per_task;
5656 	unsigned long group_capacity;
5657 	unsigned int sum_nr_running; /* Nr tasks running in the group */
5658 	unsigned int group_capacity_factor;
5659 	unsigned int idle_cpus;
5660 	unsigned int group_weight;
5661 	enum group_type group_type;
5662 	int group_has_free_capacity;
5663 #ifdef CONFIG_NUMA_BALANCING
5664 	unsigned int nr_numa_running;
5665 	unsigned int nr_preferred_running;
5666 #endif
5667 };
5668 
5669 /*
5670  * sd_lb_stats - Structure to store the statistics of a sched_domain
5671  *		 during load balancing.
5672  */
5673 struct sd_lb_stats {
5674 	struct sched_group *busiest;	/* Busiest group in this sd */
5675 	struct sched_group *local;	/* Local group in this sd */
5676 	unsigned long total_load;	/* Total load of all groups in sd */
5677 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
5678 	unsigned long avg_load;	/* Average load across all groups in sd */
5679 
5680 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5681 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
5682 };
5683 
5684 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5685 {
5686 	/*
5687 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5688 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5689 	 * We must however clear busiest_stat::avg_load because
5690 	 * update_sd_pick_busiest() reads this before assignment.
5691 	 */
5692 	*sds = (struct sd_lb_stats){
5693 		.busiest = NULL,
5694 		.local = NULL,
5695 		.total_load = 0UL,
5696 		.total_capacity = 0UL,
5697 		.busiest_stat = {
5698 			.avg_load = 0UL,
5699 			.sum_nr_running = 0,
5700 			.group_type = group_other,
5701 		},
5702 	};
5703 }
5704 
5705 /**
5706  * get_sd_load_idx - Obtain the load index for a given sched domain.
5707  * @sd: The sched_domain whose load_idx is to be obtained.
5708  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5709  *
5710  * Return: The load index.
5711  */
5712 static inline int get_sd_load_idx(struct sched_domain *sd,
5713 					enum cpu_idle_type idle)
5714 {
5715 	int load_idx;
5716 
5717 	switch (idle) {
5718 	case CPU_NOT_IDLE:
5719 		load_idx = sd->busy_idx;
5720 		break;
5721 
5722 	case CPU_NEWLY_IDLE:
5723 		load_idx = sd->newidle_idx;
5724 		break;
5725 	default:
5726 		load_idx = sd->idle_idx;
5727 		break;
5728 	}
5729 
5730 	return load_idx;
5731 }
5732 
5733 static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5734 {
5735 	return SCHED_CAPACITY_SCALE;
5736 }
5737 
5738 unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5739 {
5740 	return default_scale_capacity(sd, cpu);
5741 }
5742 
5743 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5744 {
5745 	if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5746 		return sd->smt_gain / sd->span_weight;
5747 
5748 	return SCHED_CAPACITY_SCALE;
5749 }
5750 
5751 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5752 {
5753 	return default_scale_cpu_capacity(sd, cpu);
5754 }
5755 
5756 static unsigned long scale_rt_capacity(int cpu)
5757 {
5758 	struct rq *rq = cpu_rq(cpu);
5759 	u64 total, available, age_stamp, avg;
5760 	s64 delta;
5761 
5762 	/*
5763 	 * Since we're reading these variables without serialization make sure
5764 	 * we read them once before doing sanity checks on them.
5765 	 */
5766 	age_stamp = ACCESS_ONCE(rq->age_stamp);
5767 	avg = ACCESS_ONCE(rq->rt_avg);
5768 
5769 	delta = rq_clock(rq) - age_stamp;
5770 	if (unlikely(delta < 0))
5771 		delta = 0;
5772 
5773 	total = sched_avg_period() + delta;
5774 
5775 	if (unlikely(total < avg)) {
5776 		/* Ensures that capacity won't end up being negative */
5777 		available = 0;
5778 	} else {
5779 		available = total - avg;
5780 	}
5781 
5782 	if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5783 		total = SCHED_CAPACITY_SCALE;
5784 
5785 	total >>= SCHED_CAPACITY_SHIFT;
5786 
5787 	return div_u64(available, total);
5788 }
5789 
5790 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5791 {
5792 	unsigned long capacity = SCHED_CAPACITY_SCALE;
5793 	struct sched_group *sdg = sd->groups;
5794 
5795 	if (sched_feat(ARCH_CAPACITY))
5796 		capacity *= arch_scale_cpu_capacity(sd, cpu);
5797 	else
5798 		capacity *= default_scale_cpu_capacity(sd, cpu);
5799 
5800 	capacity >>= SCHED_CAPACITY_SHIFT;
5801 
5802 	sdg->sgc->capacity_orig = capacity;
5803 
5804 	if (sched_feat(ARCH_CAPACITY))
5805 		capacity *= arch_scale_freq_capacity(sd, cpu);
5806 	else
5807 		capacity *= default_scale_capacity(sd, cpu);
5808 
5809 	capacity >>= SCHED_CAPACITY_SHIFT;
5810 
5811 	capacity *= scale_rt_capacity(cpu);
5812 	capacity >>= SCHED_CAPACITY_SHIFT;
5813 
5814 	if (!capacity)
5815 		capacity = 1;
5816 
5817 	cpu_rq(cpu)->cpu_capacity = capacity;
5818 	sdg->sgc->capacity = capacity;
5819 }
5820 
5821 void update_group_capacity(struct sched_domain *sd, int cpu)
5822 {
5823 	struct sched_domain *child = sd->child;
5824 	struct sched_group *group, *sdg = sd->groups;
5825 	unsigned long capacity, capacity_orig;
5826 	unsigned long interval;
5827 
5828 	interval = msecs_to_jiffies(sd->balance_interval);
5829 	interval = clamp(interval, 1UL, max_load_balance_interval);
5830 	sdg->sgc->next_update = jiffies + interval;
5831 
5832 	if (!child) {
5833 		update_cpu_capacity(sd, cpu);
5834 		return;
5835 	}
5836 
5837 	capacity_orig = capacity = 0;
5838 
5839 	if (child->flags & SD_OVERLAP) {
5840 		/*
5841 		 * SD_OVERLAP domains cannot assume that child groups
5842 		 * span the current group.
5843 		 */
5844 
5845 		for_each_cpu(cpu, sched_group_cpus(sdg)) {
5846 			struct sched_group_capacity *sgc;
5847 			struct rq *rq = cpu_rq(cpu);
5848 
5849 			/*
5850 			 * build_sched_domains() -> init_sched_groups_capacity()
5851 			 * gets here before we've attached the domains to the
5852 			 * runqueues.
5853 			 *
5854 			 * Use capacity_of(), which is set irrespective of domains
5855 			 * in update_cpu_capacity().
5856 			 *
5857 			 * This avoids capacity/capacity_orig from being 0 and
5858 			 * causing divide-by-zero issues on boot.
5859 			 *
5860 			 * Runtime updates will correct capacity_orig.
5861 			 */
5862 			if (unlikely(!rq->sd)) {
5863 				capacity_orig += capacity_of(cpu);
5864 				capacity += capacity_of(cpu);
5865 				continue;
5866 			}
5867 
5868 			sgc = rq->sd->groups->sgc;
5869 			capacity_orig += sgc->capacity_orig;
5870 			capacity += sgc->capacity;
5871 		}
5872 	} else  {
5873 		/*
5874 		 * !SD_OVERLAP domains can assume that child groups
5875 		 * span the current group.
5876 		 */
5877 
5878 		group = child->groups;
5879 		do {
5880 			capacity_orig += group->sgc->capacity_orig;
5881 			capacity += group->sgc->capacity;
5882 			group = group->next;
5883 		} while (group != child->groups);
5884 	}
5885 
5886 	sdg->sgc->capacity_orig = capacity_orig;
5887 	sdg->sgc->capacity = capacity;
5888 }
5889 
5890 /*
5891  * Try and fix up capacity for tiny siblings, this is needed when
5892  * things like SD_ASYM_PACKING need f_b_g to select another sibling
5893  * which on its own isn't powerful enough.
5894  *
5895  * See update_sd_pick_busiest() and check_asym_packing().
5896  */
5897 static inline int
5898 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5899 {
5900 	/*
5901 	 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
5902 	 */
5903 	if (!(sd->flags & SD_SHARE_CPUCAPACITY))
5904 		return 0;
5905 
5906 	/*
5907 	 * If ~90% of the cpu_capacity is still there, we're good.
5908 	 */
5909 	if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
5910 		return 1;
5911 
5912 	return 0;
5913 }
5914 
5915 /*
5916  * Group imbalance indicates (and tries to solve) the problem where balancing
5917  * groups is inadequate due to tsk_cpus_allowed() constraints.
5918  *
5919  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5920  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5921  * Something like:
5922  *
5923  * 	{ 0 1 2 3 } { 4 5 6 7 }
5924  * 	        *     * * *
5925  *
5926  * If we were to balance group-wise we'd place two tasks in the first group and
5927  * two tasks in the second group. Clearly this is undesired as it will overload
5928  * cpu 3 and leave one of the cpus in the second group unused.
5929  *
5930  * The current solution to this issue is detecting the skew in the first group
5931  * by noticing the lower domain failed to reach balance and had difficulty
5932  * moving tasks due to affinity constraints.
5933  *
5934  * When this is so detected; this group becomes a candidate for busiest; see
5935  * update_sd_pick_busiest(). And calculate_imbalance() and
5936  * find_busiest_group() avoid some of the usual balance conditions to allow it
5937  * to create an effective group imbalance.
5938  *
5939  * This is a somewhat tricky proposition since the next run might not find the
5940  * group imbalance and decide the groups need to be balanced again. A most
5941  * subtle and fragile situation.
5942  */
5943 
5944 static inline int sg_imbalanced(struct sched_group *group)
5945 {
5946 	return group->sgc->imbalance;
5947 }
5948 
5949 /*
5950  * Compute the group capacity factor.
5951  *
5952  * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
5953  * first dividing out the smt factor and computing the actual number of cores
5954  * and limit unit capacity with that.
5955  */
5956 static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
5957 {
5958 	unsigned int capacity_factor, smt, cpus;
5959 	unsigned int capacity, capacity_orig;
5960 
5961 	capacity = group->sgc->capacity;
5962 	capacity_orig = group->sgc->capacity_orig;
5963 	cpus = group->group_weight;
5964 
5965 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
5966 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
5967 	capacity_factor = cpus / smt; /* cores */
5968 
5969 	capacity_factor = min_t(unsigned,
5970 		capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
5971 	if (!capacity_factor)
5972 		capacity_factor = fix_small_capacity(env->sd, group);
5973 
5974 	return capacity_factor;
5975 }
5976 
5977 static enum group_type
5978 group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
5979 {
5980 	if (sgs->sum_nr_running > sgs->group_capacity_factor)
5981 		return group_overloaded;
5982 
5983 	if (sg_imbalanced(group))
5984 		return group_imbalanced;
5985 
5986 	return group_other;
5987 }
5988 
5989 /**
5990  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5991  * @env: The load balancing environment.
5992  * @group: sched_group whose statistics are to be updated.
5993  * @load_idx: Load index of sched_domain of this_cpu for load calc.
5994  * @local_group: Does group contain this_cpu.
5995  * @sgs: variable to hold the statistics for this group.
5996  * @overload: Indicate more than one runnable task for any CPU.
5997  */
5998 static inline void update_sg_lb_stats(struct lb_env *env,
5999 			struct sched_group *group, int load_idx,
6000 			int local_group, struct sg_lb_stats *sgs,
6001 			bool *overload)
6002 {
6003 	unsigned long load;
6004 	int i;
6005 
6006 	memset(sgs, 0, sizeof(*sgs));
6007 
6008 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6009 		struct rq *rq = cpu_rq(i);
6010 
6011 		/* Bias balancing toward cpus of our domain */
6012 		if (local_group)
6013 			load = target_load(i, load_idx);
6014 		else
6015 			load = source_load(i, load_idx);
6016 
6017 		sgs->group_load += load;
6018 		sgs->sum_nr_running += rq->cfs.h_nr_running;
6019 
6020 		if (rq->nr_running > 1)
6021 			*overload = true;
6022 
6023 #ifdef CONFIG_NUMA_BALANCING
6024 		sgs->nr_numa_running += rq->nr_numa_running;
6025 		sgs->nr_preferred_running += rq->nr_preferred_running;
6026 #endif
6027 		sgs->sum_weighted_load += weighted_cpuload(i);
6028 		if (idle_cpu(i))
6029 			sgs->idle_cpus++;
6030 	}
6031 
6032 	/* Adjust by relative CPU capacity of the group */
6033 	sgs->group_capacity = group->sgc->capacity;
6034 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6035 
6036 	if (sgs->sum_nr_running)
6037 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6038 
6039 	sgs->group_weight = group->group_weight;
6040 	sgs->group_capacity_factor = sg_capacity_factor(env, group);
6041 	sgs->group_type = group_classify(group, sgs);
6042 
6043 	if (sgs->group_capacity_factor > sgs->sum_nr_running)
6044 		sgs->group_has_free_capacity = 1;
6045 }
6046 
6047 /**
6048  * update_sd_pick_busiest - return 1 on busiest group
6049  * @env: The load balancing environment.
6050  * @sds: sched_domain statistics
6051  * @sg: sched_group candidate to be checked for being the busiest
6052  * @sgs: sched_group statistics
6053  *
6054  * Determine if @sg is a busier group than the previously selected
6055  * busiest group.
6056  *
6057  * Return: %true if @sg is a busier group than the previously selected
6058  * busiest group. %false otherwise.
6059  */
6060 static bool update_sd_pick_busiest(struct lb_env *env,
6061 				   struct sd_lb_stats *sds,
6062 				   struct sched_group *sg,
6063 				   struct sg_lb_stats *sgs)
6064 {
6065 	struct sg_lb_stats *busiest = &sds->busiest_stat;
6066 
6067 	if (sgs->group_type > busiest->group_type)
6068 		return true;
6069 
6070 	if (sgs->group_type < busiest->group_type)
6071 		return false;
6072 
6073 	if (sgs->avg_load <= busiest->avg_load)
6074 		return false;
6075 
6076 	/* This is the busiest node in its class. */
6077 	if (!(env->sd->flags & SD_ASYM_PACKING))
6078 		return true;
6079 
6080 	/*
6081 	 * ASYM_PACKING needs to move all the work to the lowest
6082 	 * numbered CPUs in the group, therefore mark all groups
6083 	 * higher than ourself as busy.
6084 	 */
6085 	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6086 		if (!sds->busiest)
6087 			return true;
6088 
6089 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6090 			return true;
6091 	}
6092 
6093 	return false;
6094 }
6095 
6096 #ifdef CONFIG_NUMA_BALANCING
6097 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6098 {
6099 	if (sgs->sum_nr_running > sgs->nr_numa_running)
6100 		return regular;
6101 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
6102 		return remote;
6103 	return all;
6104 }
6105 
6106 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6107 {
6108 	if (rq->nr_running > rq->nr_numa_running)
6109 		return regular;
6110 	if (rq->nr_running > rq->nr_preferred_running)
6111 		return remote;
6112 	return all;
6113 }
6114 #else
6115 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6116 {
6117 	return all;
6118 }
6119 
6120 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6121 {
6122 	return regular;
6123 }
6124 #endif /* CONFIG_NUMA_BALANCING */
6125 
6126 /**
6127  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6128  * @env: The load balancing environment.
6129  * @sds: variable to hold the statistics for this sched_domain.
6130  */
6131 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6132 {
6133 	struct sched_domain *child = env->sd->child;
6134 	struct sched_group *sg = env->sd->groups;
6135 	struct sg_lb_stats tmp_sgs;
6136 	int load_idx, prefer_sibling = 0;
6137 	bool overload = false;
6138 
6139 	if (child && child->flags & SD_PREFER_SIBLING)
6140 		prefer_sibling = 1;
6141 
6142 	load_idx = get_sd_load_idx(env->sd, env->idle);
6143 
6144 	do {
6145 		struct sg_lb_stats *sgs = &tmp_sgs;
6146 		int local_group;
6147 
6148 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6149 		if (local_group) {
6150 			sds->local = sg;
6151 			sgs = &sds->local_stat;
6152 
6153 			if (env->idle != CPU_NEWLY_IDLE ||
6154 			    time_after_eq(jiffies, sg->sgc->next_update))
6155 				update_group_capacity(env->sd, env->dst_cpu);
6156 		}
6157 
6158 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6159 						&overload);
6160 
6161 		if (local_group)
6162 			goto next_group;
6163 
6164 		/*
6165 		 * In case the child domain prefers tasks go to siblings
6166 		 * first, lower the sg capacity factor to one so that we'll try
6167 		 * and move all the excess tasks away. We lower the capacity
6168 		 * of a group only if the local group has the capacity to fit
6169 		 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6170 		 * extra check prevents the case where you always pull from the
6171 		 * heaviest group when it is already under-utilized (possible
6172 		 * with a large weight task outweighs the tasks on the system).
6173 		 */
6174 		if (prefer_sibling && sds->local &&
6175 		    sds->local_stat.group_has_free_capacity)
6176 			sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6177 
6178 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6179 			sds->busiest = sg;
6180 			sds->busiest_stat = *sgs;
6181 		}
6182 
6183 next_group:
6184 		/* Now, start updating sd_lb_stats */
6185 		sds->total_load += sgs->group_load;
6186 		sds->total_capacity += sgs->group_capacity;
6187 
6188 		sg = sg->next;
6189 	} while (sg != env->sd->groups);
6190 
6191 	if (env->sd->flags & SD_NUMA)
6192 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6193 
6194 	if (!env->sd->parent) {
6195 		/* update overload indicator if we are at root domain */
6196 		if (env->dst_rq->rd->overload != overload)
6197 			env->dst_rq->rd->overload = overload;
6198 	}
6199 
6200 }
6201 
6202 /**
6203  * check_asym_packing - Check to see if the group is packed into the
6204  *			sched doman.
6205  *
6206  * This is primarily intended to used at the sibling level.  Some
6207  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
6208  * case of POWER7, it can move to lower SMT modes only when higher
6209  * threads are idle.  When in lower SMT modes, the threads will
6210  * perform better since they share less core resources.  Hence when we
6211  * have idle threads, we want them to be the higher ones.
6212  *
6213  * This packing function is run on idle threads.  It checks to see if
6214  * the busiest CPU in this domain (core in the P7 case) has a higher
6215  * CPU number than the packing function is being run on.  Here we are
6216  * assuming lower CPU number will be equivalent to lower a SMT thread
6217  * number.
6218  *
6219  * Return: 1 when packing is required and a task should be moved to
6220  * this CPU.  The amount of the imbalance is returned in *imbalance.
6221  *
6222  * @env: The load balancing environment.
6223  * @sds: Statistics of the sched_domain which is to be packed
6224  */
6225 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6226 {
6227 	int busiest_cpu;
6228 
6229 	if (!(env->sd->flags & SD_ASYM_PACKING))
6230 		return 0;
6231 
6232 	if (!sds->busiest)
6233 		return 0;
6234 
6235 	busiest_cpu = group_first_cpu(sds->busiest);
6236 	if (env->dst_cpu > busiest_cpu)
6237 		return 0;
6238 
6239 	env->imbalance = DIV_ROUND_CLOSEST(
6240 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6241 		SCHED_CAPACITY_SCALE);
6242 
6243 	return 1;
6244 }
6245 
6246 /**
6247  * fix_small_imbalance - Calculate the minor imbalance that exists
6248  *			amongst the groups of a sched_domain, during
6249  *			load balancing.
6250  * @env: The load balancing environment.
6251  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6252  */
6253 static inline
6254 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6255 {
6256 	unsigned long tmp, capa_now = 0, capa_move = 0;
6257 	unsigned int imbn = 2;
6258 	unsigned long scaled_busy_load_per_task;
6259 	struct sg_lb_stats *local, *busiest;
6260 
6261 	local = &sds->local_stat;
6262 	busiest = &sds->busiest_stat;
6263 
6264 	if (!local->sum_nr_running)
6265 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6266 	else if (busiest->load_per_task > local->load_per_task)
6267 		imbn = 1;
6268 
6269 	scaled_busy_load_per_task =
6270 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6271 		busiest->group_capacity;
6272 
6273 	if (busiest->avg_load + scaled_busy_load_per_task >=
6274 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
6275 		env->imbalance = busiest->load_per_task;
6276 		return;
6277 	}
6278 
6279 	/*
6280 	 * OK, we don't have enough imbalance to justify moving tasks,
6281 	 * however we may be able to increase total CPU capacity used by
6282 	 * moving them.
6283 	 */
6284 
6285 	capa_now += busiest->group_capacity *
6286 			min(busiest->load_per_task, busiest->avg_load);
6287 	capa_now += local->group_capacity *
6288 			min(local->load_per_task, local->avg_load);
6289 	capa_now /= SCHED_CAPACITY_SCALE;
6290 
6291 	/* Amount of load we'd subtract */
6292 	if (busiest->avg_load > scaled_busy_load_per_task) {
6293 		capa_move += busiest->group_capacity *
6294 			    min(busiest->load_per_task,
6295 				busiest->avg_load - scaled_busy_load_per_task);
6296 	}
6297 
6298 	/* Amount of load we'd add */
6299 	if (busiest->avg_load * busiest->group_capacity <
6300 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6301 		tmp = (busiest->avg_load * busiest->group_capacity) /
6302 		      local->group_capacity;
6303 	} else {
6304 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6305 		      local->group_capacity;
6306 	}
6307 	capa_move += local->group_capacity *
6308 		    min(local->load_per_task, local->avg_load + tmp);
6309 	capa_move /= SCHED_CAPACITY_SCALE;
6310 
6311 	/* Move if we gain throughput */
6312 	if (capa_move > capa_now)
6313 		env->imbalance = busiest->load_per_task;
6314 }
6315 
6316 /**
6317  * calculate_imbalance - Calculate the amount of imbalance present within the
6318  *			 groups of a given sched_domain during load balance.
6319  * @env: load balance environment
6320  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6321  */
6322 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6323 {
6324 	unsigned long max_pull, load_above_capacity = ~0UL;
6325 	struct sg_lb_stats *local, *busiest;
6326 
6327 	local = &sds->local_stat;
6328 	busiest = &sds->busiest_stat;
6329 
6330 	if (busiest->group_type == group_imbalanced) {
6331 		/*
6332 		 * In the group_imb case we cannot rely on group-wide averages
6333 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
6334 		 */
6335 		busiest->load_per_task =
6336 			min(busiest->load_per_task, sds->avg_load);
6337 	}
6338 
6339 	/*
6340 	 * In the presence of smp nice balancing, certain scenarios can have
6341 	 * max load less than avg load(as we skip the groups at or below
6342 	 * its cpu_capacity, while calculating max_load..)
6343 	 */
6344 	if (busiest->avg_load <= sds->avg_load ||
6345 	    local->avg_load >= sds->avg_load) {
6346 		env->imbalance = 0;
6347 		return fix_small_imbalance(env, sds);
6348 	}
6349 
6350 	/*
6351 	 * If there aren't any idle cpus, avoid creating some.
6352 	 */
6353 	if (busiest->group_type == group_overloaded &&
6354 	    local->group_type   == group_overloaded) {
6355 		load_above_capacity =
6356 			(busiest->sum_nr_running - busiest->group_capacity_factor);
6357 
6358 		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6359 		load_above_capacity /= busiest->group_capacity;
6360 	}
6361 
6362 	/*
6363 	 * We're trying to get all the cpus to the average_load, so we don't
6364 	 * want to push ourselves above the average load, nor do we wish to
6365 	 * reduce the max loaded cpu below the average load. At the same time,
6366 	 * we also don't want to reduce the group load below the group capacity
6367 	 * (so that we can implement power-savings policies etc). Thus we look
6368 	 * for the minimum possible imbalance.
6369 	 */
6370 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6371 
6372 	/* How much load to actually move to equalise the imbalance */
6373 	env->imbalance = min(
6374 		max_pull * busiest->group_capacity,
6375 		(sds->avg_load - local->avg_load) * local->group_capacity
6376 	) / SCHED_CAPACITY_SCALE;
6377 
6378 	/*
6379 	 * if *imbalance is less than the average load per runnable task
6380 	 * there is no guarantee that any tasks will be moved so we'll have
6381 	 * a think about bumping its value to force at least one task to be
6382 	 * moved
6383 	 */
6384 	if (env->imbalance < busiest->load_per_task)
6385 		return fix_small_imbalance(env, sds);
6386 }
6387 
6388 /******* find_busiest_group() helpers end here *********************/
6389 
6390 /**
6391  * find_busiest_group - Returns the busiest group within the sched_domain
6392  * if there is an imbalance. If there isn't an imbalance, and
6393  * the user has opted for power-savings, it returns a group whose
6394  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6395  * such a group exists.
6396  *
6397  * Also calculates the amount of weighted load which should be moved
6398  * to restore balance.
6399  *
6400  * @env: The load balancing environment.
6401  *
6402  * Return:	- The busiest group if imbalance exists.
6403  *		- If no imbalance and user has opted for power-savings balance,
6404  *		   return the least loaded group whose CPUs can be
6405  *		   put to idle by rebalancing its tasks onto our group.
6406  */
6407 static struct sched_group *find_busiest_group(struct lb_env *env)
6408 {
6409 	struct sg_lb_stats *local, *busiest;
6410 	struct sd_lb_stats sds;
6411 
6412 	init_sd_lb_stats(&sds);
6413 
6414 	/*
6415 	 * Compute the various statistics relavent for load balancing at
6416 	 * this level.
6417 	 */
6418 	update_sd_lb_stats(env, &sds);
6419 	local = &sds.local_stat;
6420 	busiest = &sds.busiest_stat;
6421 
6422 	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6423 	    check_asym_packing(env, &sds))
6424 		return sds.busiest;
6425 
6426 	/* There is no busy sibling group to pull tasks from */
6427 	if (!sds.busiest || busiest->sum_nr_running == 0)
6428 		goto out_balanced;
6429 
6430 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6431 						/ sds.total_capacity;
6432 
6433 	/*
6434 	 * If the busiest group is imbalanced the below checks don't
6435 	 * work because they assume all things are equal, which typically
6436 	 * isn't true due to cpus_allowed constraints and the like.
6437 	 */
6438 	if (busiest->group_type == group_imbalanced)
6439 		goto force_balance;
6440 
6441 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6442 	if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6443 	    !busiest->group_has_free_capacity)
6444 		goto force_balance;
6445 
6446 	/*
6447 	 * If the local group is busier than the selected busiest group
6448 	 * don't try and pull any tasks.
6449 	 */
6450 	if (local->avg_load >= busiest->avg_load)
6451 		goto out_balanced;
6452 
6453 	/*
6454 	 * Don't pull any tasks if this group is already above the domain
6455 	 * average load.
6456 	 */
6457 	if (local->avg_load >= sds.avg_load)
6458 		goto out_balanced;
6459 
6460 	if (env->idle == CPU_IDLE) {
6461 		/*
6462 		 * This cpu is idle. If the busiest group is not overloaded
6463 		 * and there is no imbalance between this and busiest group
6464 		 * wrt idle cpus, it is balanced. The imbalance becomes
6465 		 * significant if the diff is greater than 1 otherwise we
6466 		 * might end up to just move the imbalance on another group
6467 		 */
6468 		if ((busiest->group_type != group_overloaded) &&
6469 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
6470 			goto out_balanced;
6471 	} else {
6472 		/*
6473 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6474 		 * imbalance_pct to be conservative.
6475 		 */
6476 		if (100 * busiest->avg_load <=
6477 				env->sd->imbalance_pct * local->avg_load)
6478 			goto out_balanced;
6479 	}
6480 
6481 force_balance:
6482 	/* Looks like there is an imbalance. Compute it */
6483 	calculate_imbalance(env, &sds);
6484 	return sds.busiest;
6485 
6486 out_balanced:
6487 	env->imbalance = 0;
6488 	return NULL;
6489 }
6490 
6491 /*
6492  * find_busiest_queue - find the busiest runqueue among the cpus in group.
6493  */
6494 static struct rq *find_busiest_queue(struct lb_env *env,
6495 				     struct sched_group *group)
6496 {
6497 	struct rq *busiest = NULL, *rq;
6498 	unsigned long busiest_load = 0, busiest_capacity = 1;
6499 	int i;
6500 
6501 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6502 		unsigned long capacity, capacity_factor, wl;
6503 		enum fbq_type rt;
6504 
6505 		rq = cpu_rq(i);
6506 		rt = fbq_classify_rq(rq);
6507 
6508 		/*
6509 		 * We classify groups/runqueues into three groups:
6510 		 *  - regular: there are !numa tasks
6511 		 *  - remote:  there are numa tasks that run on the 'wrong' node
6512 		 *  - all:     there is no distinction
6513 		 *
6514 		 * In order to avoid migrating ideally placed numa tasks,
6515 		 * ignore those when there's better options.
6516 		 *
6517 		 * If we ignore the actual busiest queue to migrate another
6518 		 * task, the next balance pass can still reduce the busiest
6519 		 * queue by moving tasks around inside the node.
6520 		 *
6521 		 * If we cannot move enough load due to this classification
6522 		 * the next pass will adjust the group classification and
6523 		 * allow migration of more tasks.
6524 		 *
6525 		 * Both cases only affect the total convergence complexity.
6526 		 */
6527 		if (rt > env->fbq_type)
6528 			continue;
6529 
6530 		capacity = capacity_of(i);
6531 		capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6532 		if (!capacity_factor)
6533 			capacity_factor = fix_small_capacity(env->sd, group);
6534 
6535 		wl = weighted_cpuload(i);
6536 
6537 		/*
6538 		 * When comparing with imbalance, use weighted_cpuload()
6539 		 * which is not scaled with the cpu capacity.
6540 		 */
6541 		if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6542 			continue;
6543 
6544 		/*
6545 		 * For the load comparisons with the other cpu's, consider
6546 		 * the weighted_cpuload() scaled with the cpu capacity, so
6547 		 * that the load can be moved away from the cpu that is
6548 		 * potentially running at a lower capacity.
6549 		 *
6550 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6551 		 * multiplication to rid ourselves of the division works out
6552 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
6553 		 * our previous maximum.
6554 		 */
6555 		if (wl * busiest_capacity > busiest_load * capacity) {
6556 			busiest_load = wl;
6557 			busiest_capacity = capacity;
6558 			busiest = rq;
6559 		}
6560 	}
6561 
6562 	return busiest;
6563 }
6564 
6565 /*
6566  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6567  * so long as it is large enough.
6568  */
6569 #define MAX_PINNED_INTERVAL	512
6570 
6571 /* Working cpumask for load_balance and load_balance_newidle. */
6572 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6573 
6574 static int need_active_balance(struct lb_env *env)
6575 {
6576 	struct sched_domain *sd = env->sd;
6577 
6578 	if (env->idle == CPU_NEWLY_IDLE) {
6579 
6580 		/*
6581 		 * ASYM_PACKING needs to force migrate tasks from busy but
6582 		 * higher numbered CPUs in order to pack all tasks in the
6583 		 * lowest numbered CPUs.
6584 		 */
6585 		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6586 			return 1;
6587 	}
6588 
6589 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6590 }
6591 
6592 static int active_load_balance_cpu_stop(void *data);
6593 
6594 static int should_we_balance(struct lb_env *env)
6595 {
6596 	struct sched_group *sg = env->sd->groups;
6597 	struct cpumask *sg_cpus, *sg_mask;
6598 	int cpu, balance_cpu = -1;
6599 
6600 	/*
6601 	 * In the newly idle case, we will allow all the cpu's
6602 	 * to do the newly idle load balance.
6603 	 */
6604 	if (env->idle == CPU_NEWLY_IDLE)
6605 		return 1;
6606 
6607 	sg_cpus = sched_group_cpus(sg);
6608 	sg_mask = sched_group_mask(sg);
6609 	/* Try to find first idle cpu */
6610 	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6611 		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6612 			continue;
6613 
6614 		balance_cpu = cpu;
6615 		break;
6616 	}
6617 
6618 	if (balance_cpu == -1)
6619 		balance_cpu = group_balance_cpu(sg);
6620 
6621 	/*
6622 	 * First idle cpu or the first cpu(busiest) in this sched group
6623 	 * is eligible for doing load balancing at this and above domains.
6624 	 */
6625 	return balance_cpu == env->dst_cpu;
6626 }
6627 
6628 /*
6629  * Check this_cpu to ensure it is balanced within domain. Attempt to move
6630  * tasks if there is an imbalance.
6631  */
6632 static int load_balance(int this_cpu, struct rq *this_rq,
6633 			struct sched_domain *sd, enum cpu_idle_type idle,
6634 			int *continue_balancing)
6635 {
6636 	int ld_moved, cur_ld_moved, active_balance = 0;
6637 	struct sched_domain *sd_parent = sd->parent;
6638 	struct sched_group *group;
6639 	struct rq *busiest;
6640 	unsigned long flags;
6641 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6642 
6643 	struct lb_env env = {
6644 		.sd		= sd,
6645 		.dst_cpu	= this_cpu,
6646 		.dst_rq		= this_rq,
6647 		.dst_grpmask    = sched_group_cpus(sd->groups),
6648 		.idle		= idle,
6649 		.loop_break	= sched_nr_migrate_break,
6650 		.cpus		= cpus,
6651 		.fbq_type	= all,
6652 		.tasks		= LIST_HEAD_INIT(env.tasks),
6653 	};
6654 
6655 	/*
6656 	 * For NEWLY_IDLE load_balancing, we don't need to consider
6657 	 * other cpus in our group
6658 	 */
6659 	if (idle == CPU_NEWLY_IDLE)
6660 		env.dst_grpmask = NULL;
6661 
6662 	cpumask_copy(cpus, cpu_active_mask);
6663 
6664 	schedstat_inc(sd, lb_count[idle]);
6665 
6666 redo:
6667 	if (!should_we_balance(&env)) {
6668 		*continue_balancing = 0;
6669 		goto out_balanced;
6670 	}
6671 
6672 	group = find_busiest_group(&env);
6673 	if (!group) {
6674 		schedstat_inc(sd, lb_nobusyg[idle]);
6675 		goto out_balanced;
6676 	}
6677 
6678 	busiest = find_busiest_queue(&env, group);
6679 	if (!busiest) {
6680 		schedstat_inc(sd, lb_nobusyq[idle]);
6681 		goto out_balanced;
6682 	}
6683 
6684 	BUG_ON(busiest == env.dst_rq);
6685 
6686 	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6687 
6688 	ld_moved = 0;
6689 	if (busiest->nr_running > 1) {
6690 		/*
6691 		 * Attempt to move tasks. If find_busiest_group has found
6692 		 * an imbalance but busiest->nr_running <= 1, the group is
6693 		 * still unbalanced. ld_moved simply stays zero, so it is
6694 		 * correctly treated as an imbalance.
6695 		 */
6696 		env.flags |= LBF_ALL_PINNED;
6697 		env.src_cpu   = busiest->cpu;
6698 		env.src_rq    = busiest;
6699 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6700 
6701 more_balance:
6702 		raw_spin_lock_irqsave(&busiest->lock, flags);
6703 
6704 		/*
6705 		 * cur_ld_moved - load moved in current iteration
6706 		 * ld_moved     - cumulative load moved across iterations
6707 		 */
6708 		cur_ld_moved = detach_tasks(&env);
6709 
6710 		/*
6711 		 * We've detached some tasks from busiest_rq. Every
6712 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6713 		 * unlock busiest->lock, and we are able to be sure
6714 		 * that nobody can manipulate the tasks in parallel.
6715 		 * See task_rq_lock() family for the details.
6716 		 */
6717 
6718 		raw_spin_unlock(&busiest->lock);
6719 
6720 		if (cur_ld_moved) {
6721 			attach_tasks(&env);
6722 			ld_moved += cur_ld_moved;
6723 		}
6724 
6725 		local_irq_restore(flags);
6726 
6727 		if (env.flags & LBF_NEED_BREAK) {
6728 			env.flags &= ~LBF_NEED_BREAK;
6729 			goto more_balance;
6730 		}
6731 
6732 		/*
6733 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6734 		 * us and move them to an alternate dst_cpu in our sched_group
6735 		 * where they can run. The upper limit on how many times we
6736 		 * iterate on same src_cpu is dependent on number of cpus in our
6737 		 * sched_group.
6738 		 *
6739 		 * This changes load balance semantics a bit on who can move
6740 		 * load to a given_cpu. In addition to the given_cpu itself
6741 		 * (or a ilb_cpu acting on its behalf where given_cpu is
6742 		 * nohz-idle), we now have balance_cpu in a position to move
6743 		 * load to given_cpu. In rare situations, this may cause
6744 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6745 		 * _independently_ and at _same_ time to move some load to
6746 		 * given_cpu) causing exceess load to be moved to given_cpu.
6747 		 * This however should not happen so much in practice and
6748 		 * moreover subsequent load balance cycles should correct the
6749 		 * excess load moved.
6750 		 */
6751 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6752 
6753 			/* Prevent to re-select dst_cpu via env's cpus */
6754 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
6755 
6756 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6757 			env.dst_cpu	 = env.new_dst_cpu;
6758 			env.flags	&= ~LBF_DST_PINNED;
6759 			env.loop	 = 0;
6760 			env.loop_break	 = sched_nr_migrate_break;
6761 
6762 			/*
6763 			 * Go back to "more_balance" rather than "redo" since we
6764 			 * need to continue with same src_cpu.
6765 			 */
6766 			goto more_balance;
6767 		}
6768 
6769 		/*
6770 		 * We failed to reach balance because of affinity.
6771 		 */
6772 		if (sd_parent) {
6773 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6774 
6775 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6776 				*group_imbalance = 1;
6777 		}
6778 
6779 		/* All tasks on this runqueue were pinned by CPU affinity */
6780 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6781 			cpumask_clear_cpu(cpu_of(busiest), cpus);
6782 			if (!cpumask_empty(cpus)) {
6783 				env.loop = 0;
6784 				env.loop_break = sched_nr_migrate_break;
6785 				goto redo;
6786 			}
6787 			goto out_all_pinned;
6788 		}
6789 	}
6790 
6791 	if (!ld_moved) {
6792 		schedstat_inc(sd, lb_failed[idle]);
6793 		/*
6794 		 * Increment the failure counter only on periodic balance.
6795 		 * We do not want newidle balance, which can be very
6796 		 * frequent, pollute the failure counter causing
6797 		 * excessive cache_hot migrations and active balances.
6798 		 */
6799 		if (idle != CPU_NEWLY_IDLE)
6800 			sd->nr_balance_failed++;
6801 
6802 		if (need_active_balance(&env)) {
6803 			raw_spin_lock_irqsave(&busiest->lock, flags);
6804 
6805 			/* don't kick the active_load_balance_cpu_stop,
6806 			 * if the curr task on busiest cpu can't be
6807 			 * moved to this_cpu
6808 			 */
6809 			if (!cpumask_test_cpu(this_cpu,
6810 					tsk_cpus_allowed(busiest->curr))) {
6811 				raw_spin_unlock_irqrestore(&busiest->lock,
6812 							    flags);
6813 				env.flags |= LBF_ALL_PINNED;
6814 				goto out_one_pinned;
6815 			}
6816 
6817 			/*
6818 			 * ->active_balance synchronizes accesses to
6819 			 * ->active_balance_work.  Once set, it's cleared
6820 			 * only after active load balance is finished.
6821 			 */
6822 			if (!busiest->active_balance) {
6823 				busiest->active_balance = 1;
6824 				busiest->push_cpu = this_cpu;
6825 				active_balance = 1;
6826 			}
6827 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
6828 
6829 			if (active_balance) {
6830 				stop_one_cpu_nowait(cpu_of(busiest),
6831 					active_load_balance_cpu_stop, busiest,
6832 					&busiest->active_balance_work);
6833 			}
6834 
6835 			/*
6836 			 * We've kicked active balancing, reset the failure
6837 			 * counter.
6838 			 */
6839 			sd->nr_balance_failed = sd->cache_nice_tries+1;
6840 		}
6841 	} else
6842 		sd->nr_balance_failed = 0;
6843 
6844 	if (likely(!active_balance)) {
6845 		/* We were unbalanced, so reset the balancing interval */
6846 		sd->balance_interval = sd->min_interval;
6847 	} else {
6848 		/*
6849 		 * If we've begun active balancing, start to back off. This
6850 		 * case may not be covered by the all_pinned logic if there
6851 		 * is only 1 task on the busy runqueue (because we don't call
6852 		 * detach_tasks).
6853 		 */
6854 		if (sd->balance_interval < sd->max_interval)
6855 			sd->balance_interval *= 2;
6856 	}
6857 
6858 	goto out;
6859 
6860 out_balanced:
6861 	/*
6862 	 * We reach balance although we may have faced some affinity
6863 	 * constraints. Clear the imbalance flag if it was set.
6864 	 */
6865 	if (sd_parent) {
6866 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6867 
6868 		if (*group_imbalance)
6869 			*group_imbalance = 0;
6870 	}
6871 
6872 out_all_pinned:
6873 	/*
6874 	 * We reach balance because all tasks are pinned at this level so
6875 	 * we can't migrate them. Let the imbalance flag set so parent level
6876 	 * can try to migrate them.
6877 	 */
6878 	schedstat_inc(sd, lb_balanced[idle]);
6879 
6880 	sd->nr_balance_failed = 0;
6881 
6882 out_one_pinned:
6883 	/* tune up the balancing interval */
6884 	if (((env.flags & LBF_ALL_PINNED) &&
6885 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
6886 			(sd->balance_interval < sd->max_interval))
6887 		sd->balance_interval *= 2;
6888 
6889 	ld_moved = 0;
6890 out:
6891 	return ld_moved;
6892 }
6893 
6894 static inline unsigned long
6895 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
6896 {
6897 	unsigned long interval = sd->balance_interval;
6898 
6899 	if (cpu_busy)
6900 		interval *= sd->busy_factor;
6901 
6902 	/* scale ms to jiffies */
6903 	interval = msecs_to_jiffies(interval);
6904 	interval = clamp(interval, 1UL, max_load_balance_interval);
6905 
6906 	return interval;
6907 }
6908 
6909 static inline void
6910 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
6911 {
6912 	unsigned long interval, next;
6913 
6914 	interval = get_sd_balance_interval(sd, cpu_busy);
6915 	next = sd->last_balance + interval;
6916 
6917 	if (time_after(*next_balance, next))
6918 		*next_balance = next;
6919 }
6920 
6921 /*
6922  * idle_balance is called by schedule() if this_cpu is about to become
6923  * idle. Attempts to pull tasks from other CPUs.
6924  */
6925 static int idle_balance(struct rq *this_rq)
6926 {
6927 	unsigned long next_balance = jiffies + HZ;
6928 	int this_cpu = this_rq->cpu;
6929 	struct sched_domain *sd;
6930 	int pulled_task = 0;
6931 	u64 curr_cost = 0;
6932 
6933 	idle_enter_fair(this_rq);
6934 
6935 	/*
6936 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
6937 	 * measure the duration of idle_balance() as idle time.
6938 	 */
6939 	this_rq->idle_stamp = rq_clock(this_rq);
6940 
6941 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
6942 	    !this_rq->rd->overload) {
6943 		rcu_read_lock();
6944 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
6945 		if (sd)
6946 			update_next_balance(sd, 0, &next_balance);
6947 		rcu_read_unlock();
6948 
6949 		goto out;
6950 	}
6951 
6952 	/*
6953 	 * Drop the rq->lock, but keep IRQ/preempt disabled.
6954 	 */
6955 	raw_spin_unlock(&this_rq->lock);
6956 
6957 	update_blocked_averages(this_cpu);
6958 	rcu_read_lock();
6959 	for_each_domain(this_cpu, sd) {
6960 		int continue_balancing = 1;
6961 		u64 t0, domain_cost;
6962 
6963 		if (!(sd->flags & SD_LOAD_BALANCE))
6964 			continue;
6965 
6966 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
6967 			update_next_balance(sd, 0, &next_balance);
6968 			break;
6969 		}
6970 
6971 		if (sd->flags & SD_BALANCE_NEWIDLE) {
6972 			t0 = sched_clock_cpu(this_cpu);
6973 
6974 			pulled_task = load_balance(this_cpu, this_rq,
6975 						   sd, CPU_NEWLY_IDLE,
6976 						   &continue_balancing);
6977 
6978 			domain_cost = sched_clock_cpu(this_cpu) - t0;
6979 			if (domain_cost > sd->max_newidle_lb_cost)
6980 				sd->max_newidle_lb_cost = domain_cost;
6981 
6982 			curr_cost += domain_cost;
6983 		}
6984 
6985 		update_next_balance(sd, 0, &next_balance);
6986 
6987 		/*
6988 		 * Stop searching for tasks to pull if there are
6989 		 * now runnable tasks on this rq.
6990 		 */
6991 		if (pulled_task || this_rq->nr_running > 0)
6992 			break;
6993 	}
6994 	rcu_read_unlock();
6995 
6996 	raw_spin_lock(&this_rq->lock);
6997 
6998 	if (curr_cost > this_rq->max_idle_balance_cost)
6999 		this_rq->max_idle_balance_cost = curr_cost;
7000 
7001 	/*
7002 	 * While browsing the domains, we released the rq lock, a task could
7003 	 * have been enqueued in the meantime. Since we're not going idle,
7004 	 * pretend we pulled a task.
7005 	 */
7006 	if (this_rq->cfs.h_nr_running && !pulled_task)
7007 		pulled_task = 1;
7008 
7009 out:
7010 	/* Move the next balance forward */
7011 	if (time_after(this_rq->next_balance, next_balance))
7012 		this_rq->next_balance = next_balance;
7013 
7014 	/* Is there a task of a high priority class? */
7015 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7016 		pulled_task = -1;
7017 
7018 	if (pulled_task) {
7019 		idle_exit_fair(this_rq);
7020 		this_rq->idle_stamp = 0;
7021 	}
7022 
7023 	return pulled_task;
7024 }
7025 
7026 /*
7027  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7028  * running tasks off the busiest CPU onto idle CPUs. It requires at
7029  * least 1 task to be running on each physical CPU where possible, and
7030  * avoids physical / logical imbalances.
7031  */
7032 static int active_load_balance_cpu_stop(void *data)
7033 {
7034 	struct rq *busiest_rq = data;
7035 	int busiest_cpu = cpu_of(busiest_rq);
7036 	int target_cpu = busiest_rq->push_cpu;
7037 	struct rq *target_rq = cpu_rq(target_cpu);
7038 	struct sched_domain *sd;
7039 	struct task_struct *p = NULL;
7040 
7041 	raw_spin_lock_irq(&busiest_rq->lock);
7042 
7043 	/* make sure the requested cpu hasn't gone down in the meantime */
7044 	if (unlikely(busiest_cpu != smp_processor_id() ||
7045 		     !busiest_rq->active_balance))
7046 		goto out_unlock;
7047 
7048 	/* Is there any task to move? */
7049 	if (busiest_rq->nr_running <= 1)
7050 		goto out_unlock;
7051 
7052 	/*
7053 	 * This condition is "impossible", if it occurs
7054 	 * we need to fix it. Originally reported by
7055 	 * Bjorn Helgaas on a 128-cpu setup.
7056 	 */
7057 	BUG_ON(busiest_rq == target_rq);
7058 
7059 	/* Search for an sd spanning us and the target CPU. */
7060 	rcu_read_lock();
7061 	for_each_domain(target_cpu, sd) {
7062 		if ((sd->flags & SD_LOAD_BALANCE) &&
7063 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7064 				break;
7065 	}
7066 
7067 	if (likely(sd)) {
7068 		struct lb_env env = {
7069 			.sd		= sd,
7070 			.dst_cpu	= target_cpu,
7071 			.dst_rq		= target_rq,
7072 			.src_cpu	= busiest_rq->cpu,
7073 			.src_rq		= busiest_rq,
7074 			.idle		= CPU_IDLE,
7075 		};
7076 
7077 		schedstat_inc(sd, alb_count);
7078 
7079 		p = detach_one_task(&env);
7080 		if (p)
7081 			schedstat_inc(sd, alb_pushed);
7082 		else
7083 			schedstat_inc(sd, alb_failed);
7084 	}
7085 	rcu_read_unlock();
7086 out_unlock:
7087 	busiest_rq->active_balance = 0;
7088 	raw_spin_unlock(&busiest_rq->lock);
7089 
7090 	if (p)
7091 		attach_one_task(target_rq, p);
7092 
7093 	local_irq_enable();
7094 
7095 	return 0;
7096 }
7097 
7098 static inline int on_null_domain(struct rq *rq)
7099 {
7100 	return unlikely(!rcu_dereference_sched(rq->sd));
7101 }
7102 
7103 #ifdef CONFIG_NO_HZ_COMMON
7104 /*
7105  * idle load balancing details
7106  * - When one of the busy CPUs notice that there may be an idle rebalancing
7107  *   needed, they will kick the idle load balancer, which then does idle
7108  *   load balancing for all the idle CPUs.
7109  */
7110 static struct {
7111 	cpumask_var_t idle_cpus_mask;
7112 	atomic_t nr_cpus;
7113 	unsigned long next_balance;     /* in jiffy units */
7114 } nohz ____cacheline_aligned;
7115 
7116 static inline int find_new_ilb(void)
7117 {
7118 	int ilb = cpumask_first(nohz.idle_cpus_mask);
7119 
7120 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
7121 		return ilb;
7122 
7123 	return nr_cpu_ids;
7124 }
7125 
7126 /*
7127  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7128  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7129  * CPU (if there is one).
7130  */
7131 static void nohz_balancer_kick(void)
7132 {
7133 	int ilb_cpu;
7134 
7135 	nohz.next_balance++;
7136 
7137 	ilb_cpu = find_new_ilb();
7138 
7139 	if (ilb_cpu >= nr_cpu_ids)
7140 		return;
7141 
7142 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7143 		return;
7144 	/*
7145 	 * Use smp_send_reschedule() instead of resched_cpu().
7146 	 * This way we generate a sched IPI on the target cpu which
7147 	 * is idle. And the softirq performing nohz idle load balance
7148 	 * will be run before returning from the IPI.
7149 	 */
7150 	smp_send_reschedule(ilb_cpu);
7151 	return;
7152 }
7153 
7154 static inline void nohz_balance_exit_idle(int cpu)
7155 {
7156 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7157 		/*
7158 		 * Completely isolated CPUs don't ever set, so we must test.
7159 		 */
7160 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7161 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7162 			atomic_dec(&nohz.nr_cpus);
7163 		}
7164 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7165 	}
7166 }
7167 
7168 static inline void set_cpu_sd_state_busy(void)
7169 {
7170 	struct sched_domain *sd;
7171 	int cpu = smp_processor_id();
7172 
7173 	rcu_read_lock();
7174 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7175 
7176 	if (!sd || !sd->nohz_idle)
7177 		goto unlock;
7178 	sd->nohz_idle = 0;
7179 
7180 	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7181 unlock:
7182 	rcu_read_unlock();
7183 }
7184 
7185 void set_cpu_sd_state_idle(void)
7186 {
7187 	struct sched_domain *sd;
7188 	int cpu = smp_processor_id();
7189 
7190 	rcu_read_lock();
7191 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7192 
7193 	if (!sd || sd->nohz_idle)
7194 		goto unlock;
7195 	sd->nohz_idle = 1;
7196 
7197 	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7198 unlock:
7199 	rcu_read_unlock();
7200 }
7201 
7202 /*
7203  * This routine will record that the cpu is going idle with tick stopped.
7204  * This info will be used in performing idle load balancing in the future.
7205  */
7206 void nohz_balance_enter_idle(int cpu)
7207 {
7208 	/*
7209 	 * If this cpu is going down, then nothing needs to be done.
7210 	 */
7211 	if (!cpu_active(cpu))
7212 		return;
7213 
7214 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7215 		return;
7216 
7217 	/*
7218 	 * If we're a completely isolated CPU, we don't play.
7219 	 */
7220 	if (on_null_domain(cpu_rq(cpu)))
7221 		return;
7222 
7223 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7224 	atomic_inc(&nohz.nr_cpus);
7225 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7226 }
7227 
7228 static int sched_ilb_notifier(struct notifier_block *nfb,
7229 					unsigned long action, void *hcpu)
7230 {
7231 	switch (action & ~CPU_TASKS_FROZEN) {
7232 	case CPU_DYING:
7233 		nohz_balance_exit_idle(smp_processor_id());
7234 		return NOTIFY_OK;
7235 	default:
7236 		return NOTIFY_DONE;
7237 	}
7238 }
7239 #endif
7240 
7241 static DEFINE_SPINLOCK(balancing);
7242 
7243 /*
7244  * Scale the max load_balance interval with the number of CPUs in the system.
7245  * This trades load-balance latency on larger machines for less cross talk.
7246  */
7247 void update_max_interval(void)
7248 {
7249 	max_load_balance_interval = HZ*num_online_cpus()/10;
7250 }
7251 
7252 /*
7253  * It checks each scheduling domain to see if it is due to be balanced,
7254  * and initiates a balancing operation if so.
7255  *
7256  * Balancing parameters are set up in init_sched_domains.
7257  */
7258 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7259 {
7260 	int continue_balancing = 1;
7261 	int cpu = rq->cpu;
7262 	unsigned long interval;
7263 	struct sched_domain *sd;
7264 	/* Earliest time when we have to do rebalance again */
7265 	unsigned long next_balance = jiffies + 60*HZ;
7266 	int update_next_balance = 0;
7267 	int need_serialize, need_decay = 0;
7268 	u64 max_cost = 0;
7269 
7270 	update_blocked_averages(cpu);
7271 
7272 	rcu_read_lock();
7273 	for_each_domain(cpu, sd) {
7274 		/*
7275 		 * Decay the newidle max times here because this is a regular
7276 		 * visit to all the domains. Decay ~1% per second.
7277 		 */
7278 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7279 			sd->max_newidle_lb_cost =
7280 				(sd->max_newidle_lb_cost * 253) / 256;
7281 			sd->next_decay_max_lb_cost = jiffies + HZ;
7282 			need_decay = 1;
7283 		}
7284 		max_cost += sd->max_newidle_lb_cost;
7285 
7286 		if (!(sd->flags & SD_LOAD_BALANCE))
7287 			continue;
7288 
7289 		/*
7290 		 * Stop the load balance at this level. There is another
7291 		 * CPU in our sched group which is doing load balancing more
7292 		 * actively.
7293 		 */
7294 		if (!continue_balancing) {
7295 			if (need_decay)
7296 				continue;
7297 			break;
7298 		}
7299 
7300 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7301 
7302 		need_serialize = sd->flags & SD_SERIALIZE;
7303 		if (need_serialize) {
7304 			if (!spin_trylock(&balancing))
7305 				goto out;
7306 		}
7307 
7308 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7309 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7310 				/*
7311 				 * The LBF_DST_PINNED logic could have changed
7312 				 * env->dst_cpu, so we can't know our idle
7313 				 * state even if we migrated tasks. Update it.
7314 				 */
7315 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7316 			}
7317 			sd->last_balance = jiffies;
7318 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7319 		}
7320 		if (need_serialize)
7321 			spin_unlock(&balancing);
7322 out:
7323 		if (time_after(next_balance, sd->last_balance + interval)) {
7324 			next_balance = sd->last_balance + interval;
7325 			update_next_balance = 1;
7326 		}
7327 	}
7328 	if (need_decay) {
7329 		/*
7330 		 * Ensure the rq-wide value also decays but keep it at a
7331 		 * reasonable floor to avoid funnies with rq->avg_idle.
7332 		 */
7333 		rq->max_idle_balance_cost =
7334 			max((u64)sysctl_sched_migration_cost, max_cost);
7335 	}
7336 	rcu_read_unlock();
7337 
7338 	/*
7339 	 * next_balance will be updated only when there is a need.
7340 	 * When the cpu is attached to null domain for ex, it will not be
7341 	 * updated.
7342 	 */
7343 	if (likely(update_next_balance))
7344 		rq->next_balance = next_balance;
7345 }
7346 
7347 #ifdef CONFIG_NO_HZ_COMMON
7348 /*
7349  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7350  * rebalancing for all the cpus for whom scheduler ticks are stopped.
7351  */
7352 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7353 {
7354 	int this_cpu = this_rq->cpu;
7355 	struct rq *rq;
7356 	int balance_cpu;
7357 
7358 	if (idle != CPU_IDLE ||
7359 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7360 		goto end;
7361 
7362 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7363 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7364 			continue;
7365 
7366 		/*
7367 		 * If this cpu gets work to do, stop the load balancing
7368 		 * work being done for other cpus. Next load
7369 		 * balancing owner will pick it up.
7370 		 */
7371 		if (need_resched())
7372 			break;
7373 
7374 		rq = cpu_rq(balance_cpu);
7375 
7376 		/*
7377 		 * If time for next balance is due,
7378 		 * do the balance.
7379 		 */
7380 		if (time_after_eq(jiffies, rq->next_balance)) {
7381 			raw_spin_lock_irq(&rq->lock);
7382 			update_rq_clock(rq);
7383 			update_idle_cpu_load(rq);
7384 			raw_spin_unlock_irq(&rq->lock);
7385 			rebalance_domains(rq, CPU_IDLE);
7386 		}
7387 
7388 		if (time_after(this_rq->next_balance, rq->next_balance))
7389 			this_rq->next_balance = rq->next_balance;
7390 	}
7391 	nohz.next_balance = this_rq->next_balance;
7392 end:
7393 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7394 }
7395 
7396 /*
7397  * Current heuristic for kicking the idle load balancer in the presence
7398  * of an idle cpu is the system.
7399  *   - This rq has more than one task.
7400  *   - At any scheduler domain level, this cpu's scheduler group has multiple
7401  *     busy cpu's exceeding the group's capacity.
7402  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7403  *     domain span are idle.
7404  */
7405 static inline int nohz_kick_needed(struct rq *rq)
7406 {
7407 	unsigned long now = jiffies;
7408 	struct sched_domain *sd;
7409 	struct sched_group_capacity *sgc;
7410 	int nr_busy, cpu = rq->cpu;
7411 
7412 	if (unlikely(rq->idle_balance))
7413 		return 0;
7414 
7415        /*
7416 	* We may be recently in ticked or tickless idle mode. At the first
7417 	* busy tick after returning from idle, we will update the busy stats.
7418 	*/
7419 	set_cpu_sd_state_busy();
7420 	nohz_balance_exit_idle(cpu);
7421 
7422 	/*
7423 	 * None are in tickless mode and hence no need for NOHZ idle load
7424 	 * balancing.
7425 	 */
7426 	if (likely(!atomic_read(&nohz.nr_cpus)))
7427 		return 0;
7428 
7429 	if (time_before(now, nohz.next_balance))
7430 		return 0;
7431 
7432 	if (rq->nr_running >= 2)
7433 		goto need_kick;
7434 
7435 	rcu_read_lock();
7436 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7437 
7438 	if (sd) {
7439 		sgc = sd->groups->sgc;
7440 		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7441 
7442 		if (nr_busy > 1)
7443 			goto need_kick_unlock;
7444 	}
7445 
7446 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
7447 
7448 	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7449 				  sched_domain_span(sd)) < cpu))
7450 		goto need_kick_unlock;
7451 
7452 	rcu_read_unlock();
7453 	return 0;
7454 
7455 need_kick_unlock:
7456 	rcu_read_unlock();
7457 need_kick:
7458 	return 1;
7459 }
7460 #else
7461 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7462 #endif
7463 
7464 /*
7465  * run_rebalance_domains is triggered when needed from the scheduler tick.
7466  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7467  */
7468 static void run_rebalance_domains(struct softirq_action *h)
7469 {
7470 	struct rq *this_rq = this_rq();
7471 	enum cpu_idle_type idle = this_rq->idle_balance ?
7472 						CPU_IDLE : CPU_NOT_IDLE;
7473 
7474 	rebalance_domains(this_rq, idle);
7475 
7476 	/*
7477 	 * If this cpu has a pending nohz_balance_kick, then do the
7478 	 * balancing on behalf of the other idle cpus whose ticks are
7479 	 * stopped.
7480 	 */
7481 	nohz_idle_balance(this_rq, idle);
7482 }
7483 
7484 /*
7485  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7486  */
7487 void trigger_load_balance(struct rq *rq)
7488 {
7489 	/* Don't need to rebalance while attached to NULL domain */
7490 	if (unlikely(on_null_domain(rq)))
7491 		return;
7492 
7493 	if (time_after_eq(jiffies, rq->next_balance))
7494 		raise_softirq(SCHED_SOFTIRQ);
7495 #ifdef CONFIG_NO_HZ_COMMON
7496 	if (nohz_kick_needed(rq))
7497 		nohz_balancer_kick();
7498 #endif
7499 }
7500 
7501 static void rq_online_fair(struct rq *rq)
7502 {
7503 	update_sysctl();
7504 
7505 	update_runtime_enabled(rq);
7506 }
7507 
7508 static void rq_offline_fair(struct rq *rq)
7509 {
7510 	update_sysctl();
7511 
7512 	/* Ensure any throttled groups are reachable by pick_next_task */
7513 	unthrottle_offline_cfs_rqs(rq);
7514 }
7515 
7516 #endif /* CONFIG_SMP */
7517 
7518 /*
7519  * scheduler tick hitting a task of our scheduling class:
7520  */
7521 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7522 {
7523 	struct cfs_rq *cfs_rq;
7524 	struct sched_entity *se = &curr->se;
7525 
7526 	for_each_sched_entity(se) {
7527 		cfs_rq = cfs_rq_of(se);
7528 		entity_tick(cfs_rq, se, queued);
7529 	}
7530 
7531 	if (numabalancing_enabled)
7532 		task_tick_numa(rq, curr);
7533 
7534 	update_rq_runnable_avg(rq, 1);
7535 }
7536 
7537 /*
7538  * called on fork with the child task as argument from the parent's context
7539  *  - child not yet on the tasklist
7540  *  - preemption disabled
7541  */
7542 static void task_fork_fair(struct task_struct *p)
7543 {
7544 	struct cfs_rq *cfs_rq;
7545 	struct sched_entity *se = &p->se, *curr;
7546 	int this_cpu = smp_processor_id();
7547 	struct rq *rq = this_rq();
7548 	unsigned long flags;
7549 
7550 	raw_spin_lock_irqsave(&rq->lock, flags);
7551 
7552 	update_rq_clock(rq);
7553 
7554 	cfs_rq = task_cfs_rq(current);
7555 	curr = cfs_rq->curr;
7556 
7557 	/*
7558 	 * Not only the cpu but also the task_group of the parent might have
7559 	 * been changed after parent->se.parent,cfs_rq were copied to
7560 	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7561 	 * of child point to valid ones.
7562 	 */
7563 	rcu_read_lock();
7564 	__set_task_cpu(p, this_cpu);
7565 	rcu_read_unlock();
7566 
7567 	update_curr(cfs_rq);
7568 
7569 	if (curr)
7570 		se->vruntime = curr->vruntime;
7571 	place_entity(cfs_rq, se, 1);
7572 
7573 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7574 		/*
7575 		 * Upon rescheduling, sched_class::put_prev_task() will place
7576 		 * 'current' within the tree based on its new key value.
7577 		 */
7578 		swap(curr->vruntime, se->vruntime);
7579 		resched_curr(rq);
7580 	}
7581 
7582 	se->vruntime -= cfs_rq->min_vruntime;
7583 
7584 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7585 }
7586 
7587 /*
7588  * Priority of the task has changed. Check to see if we preempt
7589  * the current task.
7590  */
7591 static void
7592 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7593 {
7594 	if (!task_on_rq_queued(p))
7595 		return;
7596 
7597 	/*
7598 	 * Reschedule if we are currently running on this runqueue and
7599 	 * our priority decreased, or if we are not currently running on
7600 	 * this runqueue and our priority is higher than the current's
7601 	 */
7602 	if (rq->curr == p) {
7603 		if (p->prio > oldprio)
7604 			resched_curr(rq);
7605 	} else
7606 		check_preempt_curr(rq, p, 0);
7607 }
7608 
7609 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7610 {
7611 	struct sched_entity *se = &p->se;
7612 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
7613 
7614 	/*
7615 	 * Ensure the task's vruntime is normalized, so that when it's
7616 	 * switched back to the fair class the enqueue_entity(.flags=0) will
7617 	 * do the right thing.
7618 	 *
7619 	 * If it's queued, then the dequeue_entity(.flags=0) will already
7620 	 * have normalized the vruntime, if it's !queued, then only when
7621 	 * the task is sleeping will it still have non-normalized vruntime.
7622 	 */
7623 	if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7624 		/*
7625 		 * Fix up our vruntime so that the current sleep doesn't
7626 		 * cause 'unlimited' sleep bonus.
7627 		 */
7628 		place_entity(cfs_rq, se, 0);
7629 		se->vruntime -= cfs_rq->min_vruntime;
7630 	}
7631 
7632 #ifdef CONFIG_SMP
7633 	/*
7634 	* Remove our load from contribution when we leave sched_fair
7635 	* and ensure we don't carry in an old decay_count if we
7636 	* switch back.
7637 	*/
7638 	if (se->avg.decay_count) {
7639 		__synchronize_entity_decay(se);
7640 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7641 	}
7642 #endif
7643 }
7644 
7645 /*
7646  * We switched to the sched_fair class.
7647  */
7648 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7649 {
7650 #ifdef CONFIG_FAIR_GROUP_SCHED
7651 	struct sched_entity *se = &p->se;
7652 	/*
7653 	 * Since the real-depth could have been changed (only FAIR
7654 	 * class maintain depth value), reset depth properly.
7655 	 */
7656 	se->depth = se->parent ? se->parent->depth + 1 : 0;
7657 #endif
7658 	if (!task_on_rq_queued(p))
7659 		return;
7660 
7661 	/*
7662 	 * We were most likely switched from sched_rt, so
7663 	 * kick off the schedule if running, otherwise just see
7664 	 * if we can still preempt the current task.
7665 	 */
7666 	if (rq->curr == p)
7667 		resched_curr(rq);
7668 	else
7669 		check_preempt_curr(rq, p, 0);
7670 }
7671 
7672 /* Account for a task changing its policy or group.
7673  *
7674  * This routine is mostly called to set cfs_rq->curr field when a task
7675  * migrates between groups/classes.
7676  */
7677 static void set_curr_task_fair(struct rq *rq)
7678 {
7679 	struct sched_entity *se = &rq->curr->se;
7680 
7681 	for_each_sched_entity(se) {
7682 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7683 
7684 		set_next_entity(cfs_rq, se);
7685 		/* ensure bandwidth has been allocated on our new cfs_rq */
7686 		account_cfs_rq_runtime(cfs_rq, 0);
7687 	}
7688 }
7689 
7690 void init_cfs_rq(struct cfs_rq *cfs_rq)
7691 {
7692 	cfs_rq->tasks_timeline = RB_ROOT;
7693 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7694 #ifndef CONFIG_64BIT
7695 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7696 #endif
7697 #ifdef CONFIG_SMP
7698 	atomic64_set(&cfs_rq->decay_counter, 1);
7699 	atomic_long_set(&cfs_rq->removed_load, 0);
7700 #endif
7701 }
7702 
7703 #ifdef CONFIG_FAIR_GROUP_SCHED
7704 static void task_move_group_fair(struct task_struct *p, int queued)
7705 {
7706 	struct sched_entity *se = &p->se;
7707 	struct cfs_rq *cfs_rq;
7708 
7709 	/*
7710 	 * If the task was not on the rq at the time of this cgroup movement
7711 	 * it must have been asleep, sleeping tasks keep their ->vruntime
7712 	 * absolute on their old rq until wakeup (needed for the fair sleeper
7713 	 * bonus in place_entity()).
7714 	 *
7715 	 * If it was on the rq, we've just 'preempted' it, which does convert
7716 	 * ->vruntime to a relative base.
7717 	 *
7718 	 * Make sure both cases convert their relative position when migrating
7719 	 * to another cgroup's rq. This does somewhat interfere with the
7720 	 * fair sleeper stuff for the first placement, but who cares.
7721 	 */
7722 	/*
7723 	 * When !queued, vruntime of the task has usually NOT been normalized.
7724 	 * But there are some cases where it has already been normalized:
7725 	 *
7726 	 * - Moving a forked child which is waiting for being woken up by
7727 	 *   wake_up_new_task().
7728 	 * - Moving a task which has been woken up by try_to_wake_up() and
7729 	 *   waiting for actually being woken up by sched_ttwu_pending().
7730 	 *
7731 	 * To prevent boost or penalty in the new cfs_rq caused by delta
7732 	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7733 	 */
7734 	if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7735 		queued = 1;
7736 
7737 	if (!queued)
7738 		se->vruntime -= cfs_rq_of(se)->min_vruntime;
7739 	set_task_rq(p, task_cpu(p));
7740 	se->depth = se->parent ? se->parent->depth + 1 : 0;
7741 	if (!queued) {
7742 		cfs_rq = cfs_rq_of(se);
7743 		se->vruntime += cfs_rq->min_vruntime;
7744 #ifdef CONFIG_SMP
7745 		/*
7746 		 * migrate_task_rq_fair() will have removed our previous
7747 		 * contribution, but we must synchronize for ongoing future
7748 		 * decay.
7749 		 */
7750 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7751 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7752 #endif
7753 	}
7754 }
7755 
7756 void free_fair_sched_group(struct task_group *tg)
7757 {
7758 	int i;
7759 
7760 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7761 
7762 	for_each_possible_cpu(i) {
7763 		if (tg->cfs_rq)
7764 			kfree(tg->cfs_rq[i]);
7765 		if (tg->se)
7766 			kfree(tg->se[i]);
7767 	}
7768 
7769 	kfree(tg->cfs_rq);
7770 	kfree(tg->se);
7771 }
7772 
7773 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7774 {
7775 	struct cfs_rq *cfs_rq;
7776 	struct sched_entity *se;
7777 	int i;
7778 
7779 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7780 	if (!tg->cfs_rq)
7781 		goto err;
7782 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7783 	if (!tg->se)
7784 		goto err;
7785 
7786 	tg->shares = NICE_0_LOAD;
7787 
7788 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7789 
7790 	for_each_possible_cpu(i) {
7791 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7792 				      GFP_KERNEL, cpu_to_node(i));
7793 		if (!cfs_rq)
7794 			goto err;
7795 
7796 		se = kzalloc_node(sizeof(struct sched_entity),
7797 				  GFP_KERNEL, cpu_to_node(i));
7798 		if (!se)
7799 			goto err_free_rq;
7800 
7801 		init_cfs_rq(cfs_rq);
7802 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7803 	}
7804 
7805 	return 1;
7806 
7807 err_free_rq:
7808 	kfree(cfs_rq);
7809 err:
7810 	return 0;
7811 }
7812 
7813 void unregister_fair_sched_group(struct task_group *tg, int cpu)
7814 {
7815 	struct rq *rq = cpu_rq(cpu);
7816 	unsigned long flags;
7817 
7818 	/*
7819 	* Only empty task groups can be destroyed; so we can speculatively
7820 	* check on_list without danger of it being re-added.
7821 	*/
7822 	if (!tg->cfs_rq[cpu]->on_list)
7823 		return;
7824 
7825 	raw_spin_lock_irqsave(&rq->lock, flags);
7826 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7827 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7828 }
7829 
7830 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7831 			struct sched_entity *se, int cpu,
7832 			struct sched_entity *parent)
7833 {
7834 	struct rq *rq = cpu_rq(cpu);
7835 
7836 	cfs_rq->tg = tg;
7837 	cfs_rq->rq = rq;
7838 	init_cfs_rq_runtime(cfs_rq);
7839 
7840 	tg->cfs_rq[cpu] = cfs_rq;
7841 	tg->se[cpu] = se;
7842 
7843 	/* se could be NULL for root_task_group */
7844 	if (!se)
7845 		return;
7846 
7847 	if (!parent) {
7848 		se->cfs_rq = &rq->cfs;
7849 		se->depth = 0;
7850 	} else {
7851 		se->cfs_rq = parent->my_q;
7852 		se->depth = parent->depth + 1;
7853 	}
7854 
7855 	se->my_q = cfs_rq;
7856 	/* guarantee group entities always have weight */
7857 	update_load_set(&se->load, NICE_0_LOAD);
7858 	se->parent = parent;
7859 }
7860 
7861 static DEFINE_MUTEX(shares_mutex);
7862 
7863 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7864 {
7865 	int i;
7866 	unsigned long flags;
7867 
7868 	/*
7869 	 * We can't change the weight of the root cgroup.
7870 	 */
7871 	if (!tg->se[0])
7872 		return -EINVAL;
7873 
7874 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7875 
7876 	mutex_lock(&shares_mutex);
7877 	if (tg->shares == shares)
7878 		goto done;
7879 
7880 	tg->shares = shares;
7881 	for_each_possible_cpu(i) {
7882 		struct rq *rq = cpu_rq(i);
7883 		struct sched_entity *se;
7884 
7885 		se = tg->se[i];
7886 		/* Propagate contribution to hierarchy */
7887 		raw_spin_lock_irqsave(&rq->lock, flags);
7888 
7889 		/* Possible calls to update_curr() need rq clock */
7890 		update_rq_clock(rq);
7891 		for_each_sched_entity(se)
7892 			update_cfs_shares(group_cfs_rq(se));
7893 		raw_spin_unlock_irqrestore(&rq->lock, flags);
7894 	}
7895 
7896 done:
7897 	mutex_unlock(&shares_mutex);
7898 	return 0;
7899 }
7900 #else /* CONFIG_FAIR_GROUP_SCHED */
7901 
7902 void free_fair_sched_group(struct task_group *tg) { }
7903 
7904 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7905 {
7906 	return 1;
7907 }
7908 
7909 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7910 
7911 #endif /* CONFIG_FAIR_GROUP_SCHED */
7912 
7913 
7914 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
7915 {
7916 	struct sched_entity *se = &task->se;
7917 	unsigned int rr_interval = 0;
7918 
7919 	/*
7920 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7921 	 * idle runqueue:
7922 	 */
7923 	if (rq->cfs.load.weight)
7924 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
7925 
7926 	return rr_interval;
7927 }
7928 
7929 /*
7930  * All the scheduling class methods:
7931  */
7932 const struct sched_class fair_sched_class = {
7933 	.next			= &idle_sched_class,
7934 	.enqueue_task		= enqueue_task_fair,
7935 	.dequeue_task		= dequeue_task_fair,
7936 	.yield_task		= yield_task_fair,
7937 	.yield_to_task		= yield_to_task_fair,
7938 
7939 	.check_preempt_curr	= check_preempt_wakeup,
7940 
7941 	.pick_next_task		= pick_next_task_fair,
7942 	.put_prev_task		= put_prev_task_fair,
7943 
7944 #ifdef CONFIG_SMP
7945 	.select_task_rq		= select_task_rq_fair,
7946 	.migrate_task_rq	= migrate_task_rq_fair,
7947 
7948 	.rq_online		= rq_online_fair,
7949 	.rq_offline		= rq_offline_fair,
7950 
7951 	.task_waking		= task_waking_fair,
7952 #endif
7953 
7954 	.set_curr_task          = set_curr_task_fair,
7955 	.task_tick		= task_tick_fair,
7956 	.task_fork		= task_fork_fair,
7957 
7958 	.prio_changed		= prio_changed_fair,
7959 	.switched_from		= switched_from_fair,
7960 	.switched_to		= switched_to_fair,
7961 
7962 	.get_rr_interval	= get_rr_interval_fair,
7963 
7964 	.update_curr		= update_curr_fair,
7965 
7966 #ifdef CONFIG_FAIR_GROUP_SCHED
7967 	.task_move_group	= task_move_group_fair,
7968 #endif
7969 };
7970 
7971 #ifdef CONFIG_SCHED_DEBUG
7972 void print_cfs_stats(struct seq_file *m, int cpu)
7973 {
7974 	struct cfs_rq *cfs_rq;
7975 
7976 	rcu_read_lock();
7977 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
7978 		print_cfs_rq(m, cpu, cfs_rq);
7979 	rcu_read_unlock();
7980 }
7981 #endif
7982 
7983 __init void init_sched_fair_class(void)
7984 {
7985 #ifdef CONFIG_SMP
7986 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7987 
7988 #ifdef CONFIG_NO_HZ_COMMON
7989 	nohz.next_balance = jiffies;
7990 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7991 	cpu_notifier(sched_ilb_notifier, 0);
7992 #endif
7993 #endif /* SMP */
7994 
7995 }
7996