1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 21 */ 22 23 #include <linux/latencytop.h> 24 #include <linux/sched.h> 25 #include <linux/cpumask.h> 26 #include <linux/cpuidle.h> 27 #include <linux/slab.h> 28 #include <linux/profile.h> 29 #include <linux/interrupt.h> 30 #include <linux/mempolicy.h> 31 #include <linux/migrate.h> 32 #include <linux/task_work.h> 33 34 #include <trace/events/sched.h> 35 36 #include "sched.h" 37 38 /* 39 * Targeted preemption latency for CPU-bound tasks: 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 41 * 42 * NOTE: this latency value is not the same as the concept of 43 * 'timeslice length' - timeslices in CFS are of variable length 44 * and have no persistent notion like in traditional, time-slice 45 * based scheduling concepts. 46 * 47 * (to see the precise effective timeslice length of your workload, 48 * run vmstat and monitor the context-switches (cs) field) 49 */ 50 unsigned int sysctl_sched_latency = 6000000ULL; 51 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 52 53 /* 54 * The initial- and re-scaling of tunables is configurable 55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 56 * 57 * Options are: 58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 61 */ 62 enum sched_tunable_scaling sysctl_sched_tunable_scaling 63 = SCHED_TUNABLESCALING_LOG; 64 65 /* 66 * Minimal preemption granularity for CPU-bound tasks: 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 68 */ 69 unsigned int sysctl_sched_min_granularity = 750000ULL; 70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 71 72 /* 73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 74 */ 75 static unsigned int sched_nr_latency = 8; 76 77 /* 78 * After fork, child runs first. If set to 0 (default) then 79 * parent will (try to) run first. 80 */ 81 unsigned int sysctl_sched_child_runs_first __read_mostly; 82 83 /* 84 * SCHED_OTHER wake-up granularity. 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 86 * 87 * This option delays the preemption effects of decoupled workloads 88 * and reduces their over-scheduling. Synchronous workloads will still 89 * have immediate wakeup/sleep latencies. 90 */ 91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 93 94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 95 96 /* 97 * The exponential sliding window over which load is averaged for shares 98 * distribution. 99 * (default: 10msec) 100 */ 101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 102 103 #ifdef CONFIG_CFS_BANDWIDTH 104 /* 105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 106 * each time a cfs_rq requests quota. 107 * 108 * Note: in the case that the slice exceeds the runtime remaining (either due 109 * to consumption or the quota being specified to be smaller than the slice) 110 * we will always only issue the remaining available time. 111 * 112 * default: 5 msec, units: microseconds 113 */ 114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 115 #endif 116 117 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 118 { 119 lw->weight += inc; 120 lw->inv_weight = 0; 121 } 122 123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 124 { 125 lw->weight -= dec; 126 lw->inv_weight = 0; 127 } 128 129 static inline void update_load_set(struct load_weight *lw, unsigned long w) 130 { 131 lw->weight = w; 132 lw->inv_weight = 0; 133 } 134 135 /* 136 * Increase the granularity value when there are more CPUs, 137 * because with more CPUs the 'effective latency' as visible 138 * to users decreases. But the relationship is not linear, 139 * so pick a second-best guess by going with the log2 of the 140 * number of CPUs. 141 * 142 * This idea comes from the SD scheduler of Con Kolivas: 143 */ 144 static int get_update_sysctl_factor(void) 145 { 146 unsigned int cpus = min_t(int, num_online_cpus(), 8); 147 unsigned int factor; 148 149 switch (sysctl_sched_tunable_scaling) { 150 case SCHED_TUNABLESCALING_NONE: 151 factor = 1; 152 break; 153 case SCHED_TUNABLESCALING_LINEAR: 154 factor = cpus; 155 break; 156 case SCHED_TUNABLESCALING_LOG: 157 default: 158 factor = 1 + ilog2(cpus); 159 break; 160 } 161 162 return factor; 163 } 164 165 static void update_sysctl(void) 166 { 167 unsigned int factor = get_update_sysctl_factor(); 168 169 #define SET_SYSCTL(name) \ 170 (sysctl_##name = (factor) * normalized_sysctl_##name) 171 SET_SYSCTL(sched_min_granularity); 172 SET_SYSCTL(sched_latency); 173 SET_SYSCTL(sched_wakeup_granularity); 174 #undef SET_SYSCTL 175 } 176 177 void sched_init_granularity(void) 178 { 179 update_sysctl(); 180 } 181 182 #define WMULT_CONST (~0U) 183 #define WMULT_SHIFT 32 184 185 static void __update_inv_weight(struct load_weight *lw) 186 { 187 unsigned long w; 188 189 if (likely(lw->inv_weight)) 190 return; 191 192 w = scale_load_down(lw->weight); 193 194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 195 lw->inv_weight = 1; 196 else if (unlikely(!w)) 197 lw->inv_weight = WMULT_CONST; 198 else 199 lw->inv_weight = WMULT_CONST / w; 200 } 201 202 /* 203 * delta_exec * weight / lw.weight 204 * OR 205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 206 * 207 * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case 208 * we're guaranteed shift stays positive because inv_weight is guaranteed to 209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 210 * 211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 212 * weight/lw.weight <= 1, and therefore our shift will also be positive. 213 */ 214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 215 { 216 u64 fact = scale_load_down(weight); 217 int shift = WMULT_SHIFT; 218 219 __update_inv_weight(lw); 220 221 if (unlikely(fact >> 32)) { 222 while (fact >> 32) { 223 fact >>= 1; 224 shift--; 225 } 226 } 227 228 /* hint to use a 32x32->64 mul */ 229 fact = (u64)(u32)fact * lw->inv_weight; 230 231 while (fact >> 32) { 232 fact >>= 1; 233 shift--; 234 } 235 236 return mul_u64_u32_shr(delta_exec, fact, shift); 237 } 238 239 240 const struct sched_class fair_sched_class; 241 242 /************************************************************** 243 * CFS operations on generic schedulable entities: 244 */ 245 246 #ifdef CONFIG_FAIR_GROUP_SCHED 247 248 /* cpu runqueue to which this cfs_rq is attached */ 249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 250 { 251 return cfs_rq->rq; 252 } 253 254 /* An entity is a task if it doesn't "own" a runqueue */ 255 #define entity_is_task(se) (!se->my_q) 256 257 static inline struct task_struct *task_of(struct sched_entity *se) 258 { 259 #ifdef CONFIG_SCHED_DEBUG 260 WARN_ON_ONCE(!entity_is_task(se)); 261 #endif 262 return container_of(se, struct task_struct, se); 263 } 264 265 /* Walk up scheduling entities hierarchy */ 266 #define for_each_sched_entity(se) \ 267 for (; se; se = se->parent) 268 269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 270 { 271 return p->se.cfs_rq; 272 } 273 274 /* runqueue on which this entity is (to be) queued */ 275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 276 { 277 return se->cfs_rq; 278 } 279 280 /* runqueue "owned" by this group */ 281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 282 { 283 return grp->my_q; 284 } 285 286 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 287 int force_update); 288 289 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 290 { 291 if (!cfs_rq->on_list) { 292 /* 293 * Ensure we either appear before our parent (if already 294 * enqueued) or force our parent to appear after us when it is 295 * enqueued. The fact that we always enqueue bottom-up 296 * reduces this to two cases. 297 */ 298 if (cfs_rq->tg->parent && 299 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 300 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 301 &rq_of(cfs_rq)->leaf_cfs_rq_list); 302 } else { 303 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 304 &rq_of(cfs_rq)->leaf_cfs_rq_list); 305 } 306 307 cfs_rq->on_list = 1; 308 /* We should have no load, but we need to update last_decay. */ 309 update_cfs_rq_blocked_load(cfs_rq, 0); 310 } 311 } 312 313 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 314 { 315 if (cfs_rq->on_list) { 316 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 317 cfs_rq->on_list = 0; 318 } 319 } 320 321 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 322 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 323 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 324 325 /* Do the two (enqueued) entities belong to the same group ? */ 326 static inline struct cfs_rq * 327 is_same_group(struct sched_entity *se, struct sched_entity *pse) 328 { 329 if (se->cfs_rq == pse->cfs_rq) 330 return se->cfs_rq; 331 332 return NULL; 333 } 334 335 static inline struct sched_entity *parent_entity(struct sched_entity *se) 336 { 337 return se->parent; 338 } 339 340 static void 341 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 342 { 343 int se_depth, pse_depth; 344 345 /* 346 * preemption test can be made between sibling entities who are in the 347 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 348 * both tasks until we find their ancestors who are siblings of common 349 * parent. 350 */ 351 352 /* First walk up until both entities are at same depth */ 353 se_depth = (*se)->depth; 354 pse_depth = (*pse)->depth; 355 356 while (se_depth > pse_depth) { 357 se_depth--; 358 *se = parent_entity(*se); 359 } 360 361 while (pse_depth > se_depth) { 362 pse_depth--; 363 *pse = parent_entity(*pse); 364 } 365 366 while (!is_same_group(*se, *pse)) { 367 *se = parent_entity(*se); 368 *pse = parent_entity(*pse); 369 } 370 } 371 372 #else /* !CONFIG_FAIR_GROUP_SCHED */ 373 374 static inline struct task_struct *task_of(struct sched_entity *se) 375 { 376 return container_of(se, struct task_struct, se); 377 } 378 379 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 380 { 381 return container_of(cfs_rq, struct rq, cfs); 382 } 383 384 #define entity_is_task(se) 1 385 386 #define for_each_sched_entity(se) \ 387 for (; se; se = NULL) 388 389 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 390 { 391 return &task_rq(p)->cfs; 392 } 393 394 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 395 { 396 struct task_struct *p = task_of(se); 397 struct rq *rq = task_rq(p); 398 399 return &rq->cfs; 400 } 401 402 /* runqueue "owned" by this group */ 403 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 404 { 405 return NULL; 406 } 407 408 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 409 { 410 } 411 412 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 413 { 414 } 415 416 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 417 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 418 419 static inline struct sched_entity *parent_entity(struct sched_entity *se) 420 { 421 return NULL; 422 } 423 424 static inline void 425 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 426 { 427 } 428 429 #endif /* CONFIG_FAIR_GROUP_SCHED */ 430 431 static __always_inline 432 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 433 434 /************************************************************** 435 * Scheduling class tree data structure manipulation methods: 436 */ 437 438 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 439 { 440 s64 delta = (s64)(vruntime - max_vruntime); 441 if (delta > 0) 442 max_vruntime = vruntime; 443 444 return max_vruntime; 445 } 446 447 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 448 { 449 s64 delta = (s64)(vruntime - min_vruntime); 450 if (delta < 0) 451 min_vruntime = vruntime; 452 453 return min_vruntime; 454 } 455 456 static inline int entity_before(struct sched_entity *a, 457 struct sched_entity *b) 458 { 459 return (s64)(a->vruntime - b->vruntime) < 0; 460 } 461 462 static void update_min_vruntime(struct cfs_rq *cfs_rq) 463 { 464 u64 vruntime = cfs_rq->min_vruntime; 465 466 if (cfs_rq->curr) 467 vruntime = cfs_rq->curr->vruntime; 468 469 if (cfs_rq->rb_leftmost) { 470 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 471 struct sched_entity, 472 run_node); 473 474 if (!cfs_rq->curr) 475 vruntime = se->vruntime; 476 else 477 vruntime = min_vruntime(vruntime, se->vruntime); 478 } 479 480 /* ensure we never gain time by being placed backwards. */ 481 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 482 #ifndef CONFIG_64BIT 483 smp_wmb(); 484 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 485 #endif 486 } 487 488 /* 489 * Enqueue an entity into the rb-tree: 490 */ 491 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 492 { 493 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 494 struct rb_node *parent = NULL; 495 struct sched_entity *entry; 496 int leftmost = 1; 497 498 /* 499 * Find the right place in the rbtree: 500 */ 501 while (*link) { 502 parent = *link; 503 entry = rb_entry(parent, struct sched_entity, run_node); 504 /* 505 * We dont care about collisions. Nodes with 506 * the same key stay together. 507 */ 508 if (entity_before(se, entry)) { 509 link = &parent->rb_left; 510 } else { 511 link = &parent->rb_right; 512 leftmost = 0; 513 } 514 } 515 516 /* 517 * Maintain a cache of leftmost tree entries (it is frequently 518 * used): 519 */ 520 if (leftmost) 521 cfs_rq->rb_leftmost = &se->run_node; 522 523 rb_link_node(&se->run_node, parent, link); 524 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 525 } 526 527 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 528 { 529 if (cfs_rq->rb_leftmost == &se->run_node) { 530 struct rb_node *next_node; 531 532 next_node = rb_next(&se->run_node); 533 cfs_rq->rb_leftmost = next_node; 534 } 535 536 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 537 } 538 539 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 540 { 541 struct rb_node *left = cfs_rq->rb_leftmost; 542 543 if (!left) 544 return NULL; 545 546 return rb_entry(left, struct sched_entity, run_node); 547 } 548 549 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 550 { 551 struct rb_node *next = rb_next(&se->run_node); 552 553 if (!next) 554 return NULL; 555 556 return rb_entry(next, struct sched_entity, run_node); 557 } 558 559 #ifdef CONFIG_SCHED_DEBUG 560 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 561 { 562 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 563 564 if (!last) 565 return NULL; 566 567 return rb_entry(last, struct sched_entity, run_node); 568 } 569 570 /************************************************************** 571 * Scheduling class statistics methods: 572 */ 573 574 int sched_proc_update_handler(struct ctl_table *table, int write, 575 void __user *buffer, size_t *lenp, 576 loff_t *ppos) 577 { 578 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 579 int factor = get_update_sysctl_factor(); 580 581 if (ret || !write) 582 return ret; 583 584 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 585 sysctl_sched_min_granularity); 586 587 #define WRT_SYSCTL(name) \ 588 (normalized_sysctl_##name = sysctl_##name / (factor)) 589 WRT_SYSCTL(sched_min_granularity); 590 WRT_SYSCTL(sched_latency); 591 WRT_SYSCTL(sched_wakeup_granularity); 592 #undef WRT_SYSCTL 593 594 return 0; 595 } 596 #endif 597 598 /* 599 * delta /= w 600 */ 601 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 602 { 603 if (unlikely(se->load.weight != NICE_0_LOAD)) 604 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 605 606 return delta; 607 } 608 609 /* 610 * The idea is to set a period in which each task runs once. 611 * 612 * When there are too many tasks (sched_nr_latency) we have to stretch 613 * this period because otherwise the slices get too small. 614 * 615 * p = (nr <= nl) ? l : l*nr/nl 616 */ 617 static u64 __sched_period(unsigned long nr_running) 618 { 619 u64 period = sysctl_sched_latency; 620 unsigned long nr_latency = sched_nr_latency; 621 622 if (unlikely(nr_running > nr_latency)) { 623 period = sysctl_sched_min_granularity; 624 period *= nr_running; 625 } 626 627 return period; 628 } 629 630 /* 631 * We calculate the wall-time slice from the period by taking a part 632 * proportional to the weight. 633 * 634 * s = p*P[w/rw] 635 */ 636 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 637 { 638 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 639 640 for_each_sched_entity(se) { 641 struct load_weight *load; 642 struct load_weight lw; 643 644 cfs_rq = cfs_rq_of(se); 645 load = &cfs_rq->load; 646 647 if (unlikely(!se->on_rq)) { 648 lw = cfs_rq->load; 649 650 update_load_add(&lw, se->load.weight); 651 load = &lw; 652 } 653 slice = __calc_delta(slice, se->load.weight, load); 654 } 655 return slice; 656 } 657 658 /* 659 * We calculate the vruntime slice of a to-be-inserted task. 660 * 661 * vs = s/w 662 */ 663 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 664 { 665 return calc_delta_fair(sched_slice(cfs_rq, se), se); 666 } 667 668 #ifdef CONFIG_SMP 669 static int select_idle_sibling(struct task_struct *p, int cpu); 670 static unsigned long task_h_load(struct task_struct *p); 671 672 static inline void __update_task_entity_contrib(struct sched_entity *se); 673 674 /* Give new task start runnable values to heavy its load in infant time */ 675 void init_task_runnable_average(struct task_struct *p) 676 { 677 u32 slice; 678 679 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10; 680 p->se.avg.runnable_avg_sum = slice; 681 p->se.avg.runnable_avg_period = slice; 682 __update_task_entity_contrib(&p->se); 683 } 684 #else 685 void init_task_runnable_average(struct task_struct *p) 686 { 687 } 688 #endif 689 690 /* 691 * Update the current task's runtime statistics. 692 */ 693 static void update_curr(struct cfs_rq *cfs_rq) 694 { 695 struct sched_entity *curr = cfs_rq->curr; 696 u64 now = rq_clock_task(rq_of(cfs_rq)); 697 u64 delta_exec; 698 699 if (unlikely(!curr)) 700 return; 701 702 delta_exec = now - curr->exec_start; 703 if (unlikely((s64)delta_exec <= 0)) 704 return; 705 706 curr->exec_start = now; 707 708 schedstat_set(curr->statistics.exec_max, 709 max(delta_exec, curr->statistics.exec_max)); 710 711 curr->sum_exec_runtime += delta_exec; 712 schedstat_add(cfs_rq, exec_clock, delta_exec); 713 714 curr->vruntime += calc_delta_fair(delta_exec, curr); 715 update_min_vruntime(cfs_rq); 716 717 if (entity_is_task(curr)) { 718 struct task_struct *curtask = task_of(curr); 719 720 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 721 cpuacct_charge(curtask, delta_exec); 722 account_group_exec_runtime(curtask, delta_exec); 723 } 724 725 account_cfs_rq_runtime(cfs_rq, delta_exec); 726 } 727 728 static void update_curr_fair(struct rq *rq) 729 { 730 update_curr(cfs_rq_of(&rq->curr->se)); 731 } 732 733 static inline void 734 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 735 { 736 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq))); 737 } 738 739 /* 740 * Task is being enqueued - update stats: 741 */ 742 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 743 { 744 /* 745 * Are we enqueueing a waiting task? (for current tasks 746 * a dequeue/enqueue event is a NOP) 747 */ 748 if (se != cfs_rq->curr) 749 update_stats_wait_start(cfs_rq, se); 750 } 751 752 static void 753 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 754 { 755 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, 756 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start)); 757 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); 758 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + 759 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 760 #ifdef CONFIG_SCHEDSTATS 761 if (entity_is_task(se)) { 762 trace_sched_stat_wait(task_of(se), 763 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start); 764 } 765 #endif 766 schedstat_set(se->statistics.wait_start, 0); 767 } 768 769 static inline void 770 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 771 { 772 /* 773 * Mark the end of the wait period if dequeueing a 774 * waiting task: 775 */ 776 if (se != cfs_rq->curr) 777 update_stats_wait_end(cfs_rq, se); 778 } 779 780 /* 781 * We are picking a new current task - update its stats: 782 */ 783 static inline void 784 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 785 { 786 /* 787 * We are starting a new run period: 788 */ 789 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 790 } 791 792 /************************************************** 793 * Scheduling class queueing methods: 794 */ 795 796 #ifdef CONFIG_NUMA_BALANCING 797 /* 798 * Approximate time to scan a full NUMA task in ms. The task scan period is 799 * calculated based on the tasks virtual memory size and 800 * numa_balancing_scan_size. 801 */ 802 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 803 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 804 805 /* Portion of address space to scan in MB */ 806 unsigned int sysctl_numa_balancing_scan_size = 256; 807 808 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 809 unsigned int sysctl_numa_balancing_scan_delay = 1000; 810 811 static unsigned int task_nr_scan_windows(struct task_struct *p) 812 { 813 unsigned long rss = 0; 814 unsigned long nr_scan_pages; 815 816 /* 817 * Calculations based on RSS as non-present and empty pages are skipped 818 * by the PTE scanner and NUMA hinting faults should be trapped based 819 * on resident pages 820 */ 821 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 822 rss = get_mm_rss(p->mm); 823 if (!rss) 824 rss = nr_scan_pages; 825 826 rss = round_up(rss, nr_scan_pages); 827 return rss / nr_scan_pages; 828 } 829 830 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 831 #define MAX_SCAN_WINDOW 2560 832 833 static unsigned int task_scan_min(struct task_struct *p) 834 { 835 unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size); 836 unsigned int scan, floor; 837 unsigned int windows = 1; 838 839 if (scan_size < MAX_SCAN_WINDOW) 840 windows = MAX_SCAN_WINDOW / scan_size; 841 floor = 1000 / windows; 842 843 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 844 return max_t(unsigned int, floor, scan); 845 } 846 847 static unsigned int task_scan_max(struct task_struct *p) 848 { 849 unsigned int smin = task_scan_min(p); 850 unsigned int smax; 851 852 /* Watch for min being lower than max due to floor calculations */ 853 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 854 return max(smin, smax); 855 } 856 857 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 858 { 859 rq->nr_numa_running += (p->numa_preferred_nid != -1); 860 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 861 } 862 863 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 864 { 865 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 866 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 867 } 868 869 struct numa_group { 870 atomic_t refcount; 871 872 spinlock_t lock; /* nr_tasks, tasks */ 873 int nr_tasks; 874 pid_t gid; 875 876 struct rcu_head rcu; 877 nodemask_t active_nodes; 878 unsigned long total_faults; 879 /* 880 * Faults_cpu is used to decide whether memory should move 881 * towards the CPU. As a consequence, these stats are weighted 882 * more by CPU use than by memory faults. 883 */ 884 unsigned long *faults_cpu; 885 unsigned long faults[0]; 886 }; 887 888 /* Shared or private faults. */ 889 #define NR_NUMA_HINT_FAULT_TYPES 2 890 891 /* Memory and CPU locality */ 892 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 893 894 /* Averaged statistics, and temporary buffers. */ 895 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 896 897 pid_t task_numa_group_id(struct task_struct *p) 898 { 899 return p->numa_group ? p->numa_group->gid : 0; 900 } 901 902 /* 903 * The averaged statistics, shared & private, memory & cpu, 904 * occupy the first half of the array. The second half of the 905 * array is for current counters, which are averaged into the 906 * first set by task_numa_placement. 907 */ 908 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 909 { 910 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 911 } 912 913 static inline unsigned long task_faults(struct task_struct *p, int nid) 914 { 915 if (!p->numa_faults) 916 return 0; 917 918 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 919 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 920 } 921 922 static inline unsigned long group_faults(struct task_struct *p, int nid) 923 { 924 if (!p->numa_group) 925 return 0; 926 927 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 928 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 929 } 930 931 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 932 { 933 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 934 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 935 } 936 937 /* Handle placement on systems where not all nodes are directly connected. */ 938 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 939 int maxdist, bool task) 940 { 941 unsigned long score = 0; 942 int node; 943 944 /* 945 * All nodes are directly connected, and the same distance 946 * from each other. No need for fancy placement algorithms. 947 */ 948 if (sched_numa_topology_type == NUMA_DIRECT) 949 return 0; 950 951 /* 952 * This code is called for each node, introducing N^2 complexity, 953 * which should be ok given the number of nodes rarely exceeds 8. 954 */ 955 for_each_online_node(node) { 956 unsigned long faults; 957 int dist = node_distance(nid, node); 958 959 /* 960 * The furthest away nodes in the system are not interesting 961 * for placement; nid was already counted. 962 */ 963 if (dist == sched_max_numa_distance || node == nid) 964 continue; 965 966 /* 967 * On systems with a backplane NUMA topology, compare groups 968 * of nodes, and move tasks towards the group with the most 969 * memory accesses. When comparing two nodes at distance 970 * "hoplimit", only nodes closer by than "hoplimit" are part 971 * of each group. Skip other nodes. 972 */ 973 if (sched_numa_topology_type == NUMA_BACKPLANE && 974 dist > maxdist) 975 continue; 976 977 /* Add up the faults from nearby nodes. */ 978 if (task) 979 faults = task_faults(p, node); 980 else 981 faults = group_faults(p, node); 982 983 /* 984 * On systems with a glueless mesh NUMA topology, there are 985 * no fixed "groups of nodes". Instead, nodes that are not 986 * directly connected bounce traffic through intermediate 987 * nodes; a numa_group can occupy any set of nodes. 988 * The further away a node is, the less the faults count. 989 * This seems to result in good task placement. 990 */ 991 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 992 faults *= (sched_max_numa_distance - dist); 993 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 994 } 995 996 score += faults; 997 } 998 999 return score; 1000 } 1001 1002 /* 1003 * These return the fraction of accesses done by a particular task, or 1004 * task group, on a particular numa node. The group weight is given a 1005 * larger multiplier, in order to group tasks together that are almost 1006 * evenly spread out between numa nodes. 1007 */ 1008 static inline unsigned long task_weight(struct task_struct *p, int nid, 1009 int dist) 1010 { 1011 unsigned long faults, total_faults; 1012 1013 if (!p->numa_faults) 1014 return 0; 1015 1016 total_faults = p->total_numa_faults; 1017 1018 if (!total_faults) 1019 return 0; 1020 1021 faults = task_faults(p, nid); 1022 faults += score_nearby_nodes(p, nid, dist, true); 1023 1024 return 1000 * faults / total_faults; 1025 } 1026 1027 static inline unsigned long group_weight(struct task_struct *p, int nid, 1028 int dist) 1029 { 1030 unsigned long faults, total_faults; 1031 1032 if (!p->numa_group) 1033 return 0; 1034 1035 total_faults = p->numa_group->total_faults; 1036 1037 if (!total_faults) 1038 return 0; 1039 1040 faults = group_faults(p, nid); 1041 faults += score_nearby_nodes(p, nid, dist, false); 1042 1043 return 1000 * faults / total_faults; 1044 } 1045 1046 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1047 int src_nid, int dst_cpu) 1048 { 1049 struct numa_group *ng = p->numa_group; 1050 int dst_nid = cpu_to_node(dst_cpu); 1051 int last_cpupid, this_cpupid; 1052 1053 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1054 1055 /* 1056 * Multi-stage node selection is used in conjunction with a periodic 1057 * migration fault to build a temporal task<->page relation. By using 1058 * a two-stage filter we remove short/unlikely relations. 1059 * 1060 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1061 * a task's usage of a particular page (n_p) per total usage of this 1062 * page (n_t) (in a given time-span) to a probability. 1063 * 1064 * Our periodic faults will sample this probability and getting the 1065 * same result twice in a row, given these samples are fully 1066 * independent, is then given by P(n)^2, provided our sample period 1067 * is sufficiently short compared to the usage pattern. 1068 * 1069 * This quadric squishes small probabilities, making it less likely we 1070 * act on an unlikely task<->page relation. 1071 */ 1072 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1073 if (!cpupid_pid_unset(last_cpupid) && 1074 cpupid_to_nid(last_cpupid) != dst_nid) 1075 return false; 1076 1077 /* Always allow migrate on private faults */ 1078 if (cpupid_match_pid(p, last_cpupid)) 1079 return true; 1080 1081 /* A shared fault, but p->numa_group has not been set up yet. */ 1082 if (!ng) 1083 return true; 1084 1085 /* 1086 * Do not migrate if the destination is not a node that 1087 * is actively used by this numa group. 1088 */ 1089 if (!node_isset(dst_nid, ng->active_nodes)) 1090 return false; 1091 1092 /* 1093 * Source is a node that is not actively used by this 1094 * numa group, while the destination is. Migrate. 1095 */ 1096 if (!node_isset(src_nid, ng->active_nodes)) 1097 return true; 1098 1099 /* 1100 * Both source and destination are nodes in active 1101 * use by this numa group. Maximize memory bandwidth 1102 * by migrating from more heavily used groups, to less 1103 * heavily used ones, spreading the load around. 1104 * Use a 1/4 hysteresis to avoid spurious page movement. 1105 */ 1106 return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4); 1107 } 1108 1109 static unsigned long weighted_cpuload(const int cpu); 1110 static unsigned long source_load(int cpu, int type); 1111 static unsigned long target_load(int cpu, int type); 1112 static unsigned long capacity_of(int cpu); 1113 static long effective_load(struct task_group *tg, int cpu, long wl, long wg); 1114 1115 /* Cached statistics for all CPUs within a node */ 1116 struct numa_stats { 1117 unsigned long nr_running; 1118 unsigned long load; 1119 1120 /* Total compute capacity of CPUs on a node */ 1121 unsigned long compute_capacity; 1122 1123 /* Approximate capacity in terms of runnable tasks on a node */ 1124 unsigned long task_capacity; 1125 int has_free_capacity; 1126 }; 1127 1128 /* 1129 * XXX borrowed from update_sg_lb_stats 1130 */ 1131 static void update_numa_stats(struct numa_stats *ns, int nid) 1132 { 1133 int smt, cpu, cpus = 0; 1134 unsigned long capacity; 1135 1136 memset(ns, 0, sizeof(*ns)); 1137 for_each_cpu(cpu, cpumask_of_node(nid)) { 1138 struct rq *rq = cpu_rq(cpu); 1139 1140 ns->nr_running += rq->nr_running; 1141 ns->load += weighted_cpuload(cpu); 1142 ns->compute_capacity += capacity_of(cpu); 1143 1144 cpus++; 1145 } 1146 1147 /* 1148 * If we raced with hotplug and there are no CPUs left in our mask 1149 * the @ns structure is NULL'ed and task_numa_compare() will 1150 * not find this node attractive. 1151 * 1152 * We'll either bail at !has_free_capacity, or we'll detect a huge 1153 * imbalance and bail there. 1154 */ 1155 if (!cpus) 1156 return; 1157 1158 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1159 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1160 capacity = cpus / smt; /* cores */ 1161 1162 ns->task_capacity = min_t(unsigned, capacity, 1163 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1164 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1165 } 1166 1167 struct task_numa_env { 1168 struct task_struct *p; 1169 1170 int src_cpu, src_nid; 1171 int dst_cpu, dst_nid; 1172 1173 struct numa_stats src_stats, dst_stats; 1174 1175 int imbalance_pct; 1176 int dist; 1177 1178 struct task_struct *best_task; 1179 long best_imp; 1180 int best_cpu; 1181 }; 1182 1183 static void task_numa_assign(struct task_numa_env *env, 1184 struct task_struct *p, long imp) 1185 { 1186 if (env->best_task) 1187 put_task_struct(env->best_task); 1188 if (p) 1189 get_task_struct(p); 1190 1191 env->best_task = p; 1192 env->best_imp = imp; 1193 env->best_cpu = env->dst_cpu; 1194 } 1195 1196 static bool load_too_imbalanced(long src_load, long dst_load, 1197 struct task_numa_env *env) 1198 { 1199 long imb, old_imb; 1200 long orig_src_load, orig_dst_load; 1201 long src_capacity, dst_capacity; 1202 1203 /* 1204 * The load is corrected for the CPU capacity available on each node. 1205 * 1206 * src_load dst_load 1207 * ------------ vs --------- 1208 * src_capacity dst_capacity 1209 */ 1210 src_capacity = env->src_stats.compute_capacity; 1211 dst_capacity = env->dst_stats.compute_capacity; 1212 1213 /* We care about the slope of the imbalance, not the direction. */ 1214 if (dst_load < src_load) 1215 swap(dst_load, src_load); 1216 1217 /* Is the difference below the threshold? */ 1218 imb = dst_load * src_capacity * 100 - 1219 src_load * dst_capacity * env->imbalance_pct; 1220 if (imb <= 0) 1221 return false; 1222 1223 /* 1224 * The imbalance is above the allowed threshold. 1225 * Compare it with the old imbalance. 1226 */ 1227 orig_src_load = env->src_stats.load; 1228 orig_dst_load = env->dst_stats.load; 1229 1230 if (orig_dst_load < orig_src_load) 1231 swap(orig_dst_load, orig_src_load); 1232 1233 old_imb = orig_dst_load * src_capacity * 100 - 1234 orig_src_load * dst_capacity * env->imbalance_pct; 1235 1236 /* Would this change make things worse? */ 1237 return (imb > old_imb); 1238 } 1239 1240 /* 1241 * This checks if the overall compute and NUMA accesses of the system would 1242 * be improved if the source tasks was migrated to the target dst_cpu taking 1243 * into account that it might be best if task running on the dst_cpu should 1244 * be exchanged with the source task 1245 */ 1246 static void task_numa_compare(struct task_numa_env *env, 1247 long taskimp, long groupimp) 1248 { 1249 struct rq *src_rq = cpu_rq(env->src_cpu); 1250 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1251 struct task_struct *cur; 1252 long src_load, dst_load; 1253 long load; 1254 long imp = env->p->numa_group ? groupimp : taskimp; 1255 long moveimp = imp; 1256 int dist = env->dist; 1257 1258 rcu_read_lock(); 1259 1260 raw_spin_lock_irq(&dst_rq->lock); 1261 cur = dst_rq->curr; 1262 /* 1263 * No need to move the exiting task, and this ensures that ->curr 1264 * wasn't reaped and thus get_task_struct() in task_numa_assign() 1265 * is safe under RCU read lock. 1266 * Note that rcu_read_lock() itself can't protect from the final 1267 * put_task_struct() after the last schedule(). 1268 */ 1269 if ((cur->flags & PF_EXITING) || is_idle_task(cur)) 1270 cur = NULL; 1271 raw_spin_unlock_irq(&dst_rq->lock); 1272 1273 /* 1274 * Because we have preemption enabled we can get migrated around and 1275 * end try selecting ourselves (current == env->p) as a swap candidate. 1276 */ 1277 if (cur == env->p) 1278 goto unlock; 1279 1280 /* 1281 * "imp" is the fault differential for the source task between the 1282 * source and destination node. Calculate the total differential for 1283 * the source task and potential destination task. The more negative 1284 * the value is, the more rmeote accesses that would be expected to 1285 * be incurred if the tasks were swapped. 1286 */ 1287 if (cur) { 1288 /* Skip this swap candidate if cannot move to the source cpu */ 1289 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) 1290 goto unlock; 1291 1292 /* 1293 * If dst and source tasks are in the same NUMA group, or not 1294 * in any group then look only at task weights. 1295 */ 1296 if (cur->numa_group == env->p->numa_group) { 1297 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1298 task_weight(cur, env->dst_nid, dist); 1299 /* 1300 * Add some hysteresis to prevent swapping the 1301 * tasks within a group over tiny differences. 1302 */ 1303 if (cur->numa_group) 1304 imp -= imp/16; 1305 } else { 1306 /* 1307 * Compare the group weights. If a task is all by 1308 * itself (not part of a group), use the task weight 1309 * instead. 1310 */ 1311 if (cur->numa_group) 1312 imp += group_weight(cur, env->src_nid, dist) - 1313 group_weight(cur, env->dst_nid, dist); 1314 else 1315 imp += task_weight(cur, env->src_nid, dist) - 1316 task_weight(cur, env->dst_nid, dist); 1317 } 1318 } 1319 1320 if (imp <= env->best_imp && moveimp <= env->best_imp) 1321 goto unlock; 1322 1323 if (!cur) { 1324 /* Is there capacity at our destination? */ 1325 if (env->src_stats.nr_running <= env->src_stats.task_capacity && 1326 !env->dst_stats.has_free_capacity) 1327 goto unlock; 1328 1329 goto balance; 1330 } 1331 1332 /* Balance doesn't matter much if we're running a task per cpu */ 1333 if (imp > env->best_imp && src_rq->nr_running == 1 && 1334 dst_rq->nr_running == 1) 1335 goto assign; 1336 1337 /* 1338 * In the overloaded case, try and keep the load balanced. 1339 */ 1340 balance: 1341 load = task_h_load(env->p); 1342 dst_load = env->dst_stats.load + load; 1343 src_load = env->src_stats.load - load; 1344 1345 if (moveimp > imp && moveimp > env->best_imp) { 1346 /* 1347 * If the improvement from just moving env->p direction is 1348 * better than swapping tasks around, check if a move is 1349 * possible. Store a slightly smaller score than moveimp, 1350 * so an actually idle CPU will win. 1351 */ 1352 if (!load_too_imbalanced(src_load, dst_load, env)) { 1353 imp = moveimp - 1; 1354 cur = NULL; 1355 goto assign; 1356 } 1357 } 1358 1359 if (imp <= env->best_imp) 1360 goto unlock; 1361 1362 if (cur) { 1363 load = task_h_load(cur); 1364 dst_load -= load; 1365 src_load += load; 1366 } 1367 1368 if (load_too_imbalanced(src_load, dst_load, env)) 1369 goto unlock; 1370 1371 /* 1372 * One idle CPU per node is evaluated for a task numa move. 1373 * Call select_idle_sibling to maybe find a better one. 1374 */ 1375 if (!cur) 1376 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu); 1377 1378 assign: 1379 task_numa_assign(env, cur, imp); 1380 unlock: 1381 rcu_read_unlock(); 1382 } 1383 1384 static void task_numa_find_cpu(struct task_numa_env *env, 1385 long taskimp, long groupimp) 1386 { 1387 int cpu; 1388 1389 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1390 /* Skip this CPU if the source task cannot migrate */ 1391 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) 1392 continue; 1393 1394 env->dst_cpu = cpu; 1395 task_numa_compare(env, taskimp, groupimp); 1396 } 1397 } 1398 1399 static int task_numa_migrate(struct task_struct *p) 1400 { 1401 struct task_numa_env env = { 1402 .p = p, 1403 1404 .src_cpu = task_cpu(p), 1405 .src_nid = task_node(p), 1406 1407 .imbalance_pct = 112, 1408 1409 .best_task = NULL, 1410 .best_imp = 0, 1411 .best_cpu = -1 1412 }; 1413 struct sched_domain *sd; 1414 unsigned long taskweight, groupweight; 1415 int nid, ret, dist; 1416 long taskimp, groupimp; 1417 1418 /* 1419 * Pick the lowest SD_NUMA domain, as that would have the smallest 1420 * imbalance and would be the first to start moving tasks about. 1421 * 1422 * And we want to avoid any moving of tasks about, as that would create 1423 * random movement of tasks -- counter the numa conditions we're trying 1424 * to satisfy here. 1425 */ 1426 rcu_read_lock(); 1427 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1428 if (sd) 1429 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1430 rcu_read_unlock(); 1431 1432 /* 1433 * Cpusets can break the scheduler domain tree into smaller 1434 * balance domains, some of which do not cross NUMA boundaries. 1435 * Tasks that are "trapped" in such domains cannot be migrated 1436 * elsewhere, so there is no point in (re)trying. 1437 */ 1438 if (unlikely(!sd)) { 1439 p->numa_preferred_nid = task_node(p); 1440 return -EINVAL; 1441 } 1442 1443 env.dst_nid = p->numa_preferred_nid; 1444 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1445 taskweight = task_weight(p, env.src_nid, dist); 1446 groupweight = group_weight(p, env.src_nid, dist); 1447 update_numa_stats(&env.src_stats, env.src_nid); 1448 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1449 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1450 update_numa_stats(&env.dst_stats, env.dst_nid); 1451 1452 /* Try to find a spot on the preferred nid. */ 1453 task_numa_find_cpu(&env, taskimp, groupimp); 1454 1455 /* 1456 * Look at other nodes in these cases: 1457 * - there is no space available on the preferred_nid 1458 * - the task is part of a numa_group that is interleaved across 1459 * multiple NUMA nodes; in order to better consolidate the group, 1460 * we need to check other locations. 1461 */ 1462 if (env.best_cpu == -1 || (p->numa_group && 1463 nodes_weight(p->numa_group->active_nodes) > 1)) { 1464 for_each_online_node(nid) { 1465 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1466 continue; 1467 1468 dist = node_distance(env.src_nid, env.dst_nid); 1469 if (sched_numa_topology_type == NUMA_BACKPLANE && 1470 dist != env.dist) { 1471 taskweight = task_weight(p, env.src_nid, dist); 1472 groupweight = group_weight(p, env.src_nid, dist); 1473 } 1474 1475 /* Only consider nodes where both task and groups benefit */ 1476 taskimp = task_weight(p, nid, dist) - taskweight; 1477 groupimp = group_weight(p, nid, dist) - groupweight; 1478 if (taskimp < 0 && groupimp < 0) 1479 continue; 1480 1481 env.dist = dist; 1482 env.dst_nid = nid; 1483 update_numa_stats(&env.dst_stats, env.dst_nid); 1484 task_numa_find_cpu(&env, taskimp, groupimp); 1485 } 1486 } 1487 1488 /* 1489 * If the task is part of a workload that spans multiple NUMA nodes, 1490 * and is migrating into one of the workload's active nodes, remember 1491 * this node as the task's preferred numa node, so the workload can 1492 * settle down. 1493 * A task that migrated to a second choice node will be better off 1494 * trying for a better one later. Do not set the preferred node here. 1495 */ 1496 if (p->numa_group) { 1497 if (env.best_cpu == -1) 1498 nid = env.src_nid; 1499 else 1500 nid = env.dst_nid; 1501 1502 if (node_isset(nid, p->numa_group->active_nodes)) 1503 sched_setnuma(p, env.dst_nid); 1504 } 1505 1506 /* No better CPU than the current one was found. */ 1507 if (env.best_cpu == -1) 1508 return -EAGAIN; 1509 1510 /* 1511 * Reset the scan period if the task is being rescheduled on an 1512 * alternative node to recheck if the tasks is now properly placed. 1513 */ 1514 p->numa_scan_period = task_scan_min(p); 1515 1516 if (env.best_task == NULL) { 1517 ret = migrate_task_to(p, env.best_cpu); 1518 if (ret != 0) 1519 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1520 return ret; 1521 } 1522 1523 ret = migrate_swap(p, env.best_task); 1524 if (ret != 0) 1525 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1526 put_task_struct(env.best_task); 1527 return ret; 1528 } 1529 1530 /* Attempt to migrate a task to a CPU on the preferred node. */ 1531 static void numa_migrate_preferred(struct task_struct *p) 1532 { 1533 unsigned long interval = HZ; 1534 1535 /* This task has no NUMA fault statistics yet */ 1536 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1537 return; 1538 1539 /* Periodically retry migrating the task to the preferred node */ 1540 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1541 p->numa_migrate_retry = jiffies + interval; 1542 1543 /* Success if task is already running on preferred CPU */ 1544 if (task_node(p) == p->numa_preferred_nid) 1545 return; 1546 1547 /* Otherwise, try migrate to a CPU on the preferred node */ 1548 task_numa_migrate(p); 1549 } 1550 1551 /* 1552 * Find the nodes on which the workload is actively running. We do this by 1553 * tracking the nodes from which NUMA hinting faults are triggered. This can 1554 * be different from the set of nodes where the workload's memory is currently 1555 * located. 1556 * 1557 * The bitmask is used to make smarter decisions on when to do NUMA page 1558 * migrations, To prevent flip-flopping, and excessive page migrations, nodes 1559 * are added when they cause over 6/16 of the maximum number of faults, but 1560 * only removed when they drop below 3/16. 1561 */ 1562 static void update_numa_active_node_mask(struct numa_group *numa_group) 1563 { 1564 unsigned long faults, max_faults = 0; 1565 int nid; 1566 1567 for_each_online_node(nid) { 1568 faults = group_faults_cpu(numa_group, nid); 1569 if (faults > max_faults) 1570 max_faults = faults; 1571 } 1572 1573 for_each_online_node(nid) { 1574 faults = group_faults_cpu(numa_group, nid); 1575 if (!node_isset(nid, numa_group->active_nodes)) { 1576 if (faults > max_faults * 6 / 16) 1577 node_set(nid, numa_group->active_nodes); 1578 } else if (faults < max_faults * 3 / 16) 1579 node_clear(nid, numa_group->active_nodes); 1580 } 1581 } 1582 1583 /* 1584 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1585 * increments. The more local the fault statistics are, the higher the scan 1586 * period will be for the next scan window. If local/(local+remote) ratio is 1587 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1588 * the scan period will decrease. Aim for 70% local accesses. 1589 */ 1590 #define NUMA_PERIOD_SLOTS 10 1591 #define NUMA_PERIOD_THRESHOLD 7 1592 1593 /* 1594 * Increase the scan period (slow down scanning) if the majority of 1595 * our memory is already on our local node, or if the majority of 1596 * the page accesses are shared with other processes. 1597 * Otherwise, decrease the scan period. 1598 */ 1599 static void update_task_scan_period(struct task_struct *p, 1600 unsigned long shared, unsigned long private) 1601 { 1602 unsigned int period_slot; 1603 int ratio; 1604 int diff; 1605 1606 unsigned long remote = p->numa_faults_locality[0]; 1607 unsigned long local = p->numa_faults_locality[1]; 1608 1609 /* 1610 * If there were no record hinting faults then either the task is 1611 * completely idle or all activity is areas that are not of interest 1612 * to automatic numa balancing. Related to that, if there were failed 1613 * migration then it implies we are migrating too quickly or the local 1614 * node is overloaded. In either case, scan slower 1615 */ 1616 if (local + shared == 0 || p->numa_faults_locality[2]) { 1617 p->numa_scan_period = min(p->numa_scan_period_max, 1618 p->numa_scan_period << 1); 1619 1620 p->mm->numa_next_scan = jiffies + 1621 msecs_to_jiffies(p->numa_scan_period); 1622 1623 return; 1624 } 1625 1626 /* 1627 * Prepare to scale scan period relative to the current period. 1628 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1629 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1630 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1631 */ 1632 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1633 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1634 if (ratio >= NUMA_PERIOD_THRESHOLD) { 1635 int slot = ratio - NUMA_PERIOD_THRESHOLD; 1636 if (!slot) 1637 slot = 1; 1638 diff = slot * period_slot; 1639 } else { 1640 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1641 1642 /* 1643 * Scale scan rate increases based on sharing. There is an 1644 * inverse relationship between the degree of sharing and 1645 * the adjustment made to the scanning period. Broadly 1646 * speaking the intent is that there is little point 1647 * scanning faster if shared accesses dominate as it may 1648 * simply bounce migrations uselessly 1649 */ 1650 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1)); 1651 diff = (diff * ratio) / NUMA_PERIOD_SLOTS; 1652 } 1653 1654 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1655 task_scan_min(p), task_scan_max(p)); 1656 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1657 } 1658 1659 /* 1660 * Get the fraction of time the task has been running since the last 1661 * NUMA placement cycle. The scheduler keeps similar statistics, but 1662 * decays those on a 32ms period, which is orders of magnitude off 1663 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1664 * stats only if the task is so new there are no NUMA statistics yet. 1665 */ 1666 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 1667 { 1668 u64 runtime, delta, now; 1669 /* Use the start of this time slice to avoid calculations. */ 1670 now = p->se.exec_start; 1671 runtime = p->se.sum_exec_runtime; 1672 1673 if (p->last_task_numa_placement) { 1674 delta = runtime - p->last_sum_exec_runtime; 1675 *period = now - p->last_task_numa_placement; 1676 } else { 1677 delta = p->se.avg.runnable_avg_sum; 1678 *period = p->se.avg.runnable_avg_period; 1679 } 1680 1681 p->last_sum_exec_runtime = runtime; 1682 p->last_task_numa_placement = now; 1683 1684 return delta; 1685 } 1686 1687 /* 1688 * Determine the preferred nid for a task in a numa_group. This needs to 1689 * be done in a way that produces consistent results with group_weight, 1690 * otherwise workloads might not converge. 1691 */ 1692 static int preferred_group_nid(struct task_struct *p, int nid) 1693 { 1694 nodemask_t nodes; 1695 int dist; 1696 1697 /* Direct connections between all NUMA nodes. */ 1698 if (sched_numa_topology_type == NUMA_DIRECT) 1699 return nid; 1700 1701 /* 1702 * On a system with glueless mesh NUMA topology, group_weight 1703 * scores nodes according to the number of NUMA hinting faults on 1704 * both the node itself, and on nearby nodes. 1705 */ 1706 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1707 unsigned long score, max_score = 0; 1708 int node, max_node = nid; 1709 1710 dist = sched_max_numa_distance; 1711 1712 for_each_online_node(node) { 1713 score = group_weight(p, node, dist); 1714 if (score > max_score) { 1715 max_score = score; 1716 max_node = node; 1717 } 1718 } 1719 return max_node; 1720 } 1721 1722 /* 1723 * Finding the preferred nid in a system with NUMA backplane 1724 * interconnect topology is more involved. The goal is to locate 1725 * tasks from numa_groups near each other in the system, and 1726 * untangle workloads from different sides of the system. This requires 1727 * searching down the hierarchy of node groups, recursively searching 1728 * inside the highest scoring group of nodes. The nodemask tricks 1729 * keep the complexity of the search down. 1730 */ 1731 nodes = node_online_map; 1732 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 1733 unsigned long max_faults = 0; 1734 nodemask_t max_group = NODE_MASK_NONE; 1735 int a, b; 1736 1737 /* Are there nodes at this distance from each other? */ 1738 if (!find_numa_distance(dist)) 1739 continue; 1740 1741 for_each_node_mask(a, nodes) { 1742 unsigned long faults = 0; 1743 nodemask_t this_group; 1744 nodes_clear(this_group); 1745 1746 /* Sum group's NUMA faults; includes a==b case. */ 1747 for_each_node_mask(b, nodes) { 1748 if (node_distance(a, b) < dist) { 1749 faults += group_faults(p, b); 1750 node_set(b, this_group); 1751 node_clear(b, nodes); 1752 } 1753 } 1754 1755 /* Remember the top group. */ 1756 if (faults > max_faults) { 1757 max_faults = faults; 1758 max_group = this_group; 1759 /* 1760 * subtle: at the smallest distance there is 1761 * just one node left in each "group", the 1762 * winner is the preferred nid. 1763 */ 1764 nid = a; 1765 } 1766 } 1767 /* Next round, evaluate the nodes within max_group. */ 1768 nodes = max_group; 1769 } 1770 return nid; 1771 } 1772 1773 static void task_numa_placement(struct task_struct *p) 1774 { 1775 int seq, nid, max_nid = -1, max_group_nid = -1; 1776 unsigned long max_faults = 0, max_group_faults = 0; 1777 unsigned long fault_types[2] = { 0, 0 }; 1778 unsigned long total_faults; 1779 u64 runtime, period; 1780 spinlock_t *group_lock = NULL; 1781 1782 seq = ACCESS_ONCE(p->mm->numa_scan_seq); 1783 if (p->numa_scan_seq == seq) 1784 return; 1785 p->numa_scan_seq = seq; 1786 p->numa_scan_period_max = task_scan_max(p); 1787 1788 total_faults = p->numa_faults_locality[0] + 1789 p->numa_faults_locality[1]; 1790 runtime = numa_get_avg_runtime(p, &period); 1791 1792 /* If the task is part of a group prevent parallel updates to group stats */ 1793 if (p->numa_group) { 1794 group_lock = &p->numa_group->lock; 1795 spin_lock_irq(group_lock); 1796 } 1797 1798 /* Find the node with the highest number of faults */ 1799 for_each_online_node(nid) { 1800 /* Keep track of the offsets in numa_faults array */ 1801 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 1802 unsigned long faults = 0, group_faults = 0; 1803 int priv; 1804 1805 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 1806 long diff, f_diff, f_weight; 1807 1808 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 1809 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 1810 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 1811 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 1812 1813 /* Decay existing window, copy faults since last scan */ 1814 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 1815 fault_types[priv] += p->numa_faults[membuf_idx]; 1816 p->numa_faults[membuf_idx] = 0; 1817 1818 /* 1819 * Normalize the faults_from, so all tasks in a group 1820 * count according to CPU use, instead of by the raw 1821 * number of faults. Tasks with little runtime have 1822 * little over-all impact on throughput, and thus their 1823 * faults are less important. 1824 */ 1825 f_weight = div64_u64(runtime << 16, period + 1); 1826 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 1827 (total_faults + 1); 1828 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 1829 p->numa_faults[cpubuf_idx] = 0; 1830 1831 p->numa_faults[mem_idx] += diff; 1832 p->numa_faults[cpu_idx] += f_diff; 1833 faults += p->numa_faults[mem_idx]; 1834 p->total_numa_faults += diff; 1835 if (p->numa_group) { 1836 /* 1837 * safe because we can only change our own group 1838 * 1839 * mem_idx represents the offset for a given 1840 * nid and priv in a specific region because it 1841 * is at the beginning of the numa_faults array. 1842 */ 1843 p->numa_group->faults[mem_idx] += diff; 1844 p->numa_group->faults_cpu[mem_idx] += f_diff; 1845 p->numa_group->total_faults += diff; 1846 group_faults += p->numa_group->faults[mem_idx]; 1847 } 1848 } 1849 1850 if (faults > max_faults) { 1851 max_faults = faults; 1852 max_nid = nid; 1853 } 1854 1855 if (group_faults > max_group_faults) { 1856 max_group_faults = group_faults; 1857 max_group_nid = nid; 1858 } 1859 } 1860 1861 update_task_scan_period(p, fault_types[0], fault_types[1]); 1862 1863 if (p->numa_group) { 1864 update_numa_active_node_mask(p->numa_group); 1865 spin_unlock_irq(group_lock); 1866 max_nid = preferred_group_nid(p, max_group_nid); 1867 } 1868 1869 if (max_faults) { 1870 /* Set the new preferred node */ 1871 if (max_nid != p->numa_preferred_nid) 1872 sched_setnuma(p, max_nid); 1873 1874 if (task_node(p) != p->numa_preferred_nid) 1875 numa_migrate_preferred(p); 1876 } 1877 } 1878 1879 static inline int get_numa_group(struct numa_group *grp) 1880 { 1881 return atomic_inc_not_zero(&grp->refcount); 1882 } 1883 1884 static inline void put_numa_group(struct numa_group *grp) 1885 { 1886 if (atomic_dec_and_test(&grp->refcount)) 1887 kfree_rcu(grp, rcu); 1888 } 1889 1890 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 1891 int *priv) 1892 { 1893 struct numa_group *grp, *my_grp; 1894 struct task_struct *tsk; 1895 bool join = false; 1896 int cpu = cpupid_to_cpu(cpupid); 1897 int i; 1898 1899 if (unlikely(!p->numa_group)) { 1900 unsigned int size = sizeof(struct numa_group) + 1901 4*nr_node_ids*sizeof(unsigned long); 1902 1903 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 1904 if (!grp) 1905 return; 1906 1907 atomic_set(&grp->refcount, 1); 1908 spin_lock_init(&grp->lock); 1909 grp->gid = p->pid; 1910 /* Second half of the array tracks nids where faults happen */ 1911 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 1912 nr_node_ids; 1913 1914 node_set(task_node(current), grp->active_nodes); 1915 1916 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 1917 grp->faults[i] = p->numa_faults[i]; 1918 1919 grp->total_faults = p->total_numa_faults; 1920 1921 grp->nr_tasks++; 1922 rcu_assign_pointer(p->numa_group, grp); 1923 } 1924 1925 rcu_read_lock(); 1926 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr); 1927 1928 if (!cpupid_match_pid(tsk, cpupid)) 1929 goto no_join; 1930 1931 grp = rcu_dereference(tsk->numa_group); 1932 if (!grp) 1933 goto no_join; 1934 1935 my_grp = p->numa_group; 1936 if (grp == my_grp) 1937 goto no_join; 1938 1939 /* 1940 * Only join the other group if its bigger; if we're the bigger group, 1941 * the other task will join us. 1942 */ 1943 if (my_grp->nr_tasks > grp->nr_tasks) 1944 goto no_join; 1945 1946 /* 1947 * Tie-break on the grp address. 1948 */ 1949 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 1950 goto no_join; 1951 1952 /* Always join threads in the same process. */ 1953 if (tsk->mm == current->mm) 1954 join = true; 1955 1956 /* Simple filter to avoid false positives due to PID collisions */ 1957 if (flags & TNF_SHARED) 1958 join = true; 1959 1960 /* Update priv based on whether false sharing was detected */ 1961 *priv = !join; 1962 1963 if (join && !get_numa_group(grp)) 1964 goto no_join; 1965 1966 rcu_read_unlock(); 1967 1968 if (!join) 1969 return; 1970 1971 BUG_ON(irqs_disabled()); 1972 double_lock_irq(&my_grp->lock, &grp->lock); 1973 1974 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 1975 my_grp->faults[i] -= p->numa_faults[i]; 1976 grp->faults[i] += p->numa_faults[i]; 1977 } 1978 my_grp->total_faults -= p->total_numa_faults; 1979 grp->total_faults += p->total_numa_faults; 1980 1981 my_grp->nr_tasks--; 1982 grp->nr_tasks++; 1983 1984 spin_unlock(&my_grp->lock); 1985 spin_unlock_irq(&grp->lock); 1986 1987 rcu_assign_pointer(p->numa_group, grp); 1988 1989 put_numa_group(my_grp); 1990 return; 1991 1992 no_join: 1993 rcu_read_unlock(); 1994 return; 1995 } 1996 1997 void task_numa_free(struct task_struct *p) 1998 { 1999 struct numa_group *grp = p->numa_group; 2000 void *numa_faults = p->numa_faults; 2001 unsigned long flags; 2002 int i; 2003 2004 if (grp) { 2005 spin_lock_irqsave(&grp->lock, flags); 2006 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2007 grp->faults[i] -= p->numa_faults[i]; 2008 grp->total_faults -= p->total_numa_faults; 2009 2010 grp->nr_tasks--; 2011 spin_unlock_irqrestore(&grp->lock, flags); 2012 RCU_INIT_POINTER(p->numa_group, NULL); 2013 put_numa_group(grp); 2014 } 2015 2016 p->numa_faults = NULL; 2017 kfree(numa_faults); 2018 } 2019 2020 /* 2021 * Got a PROT_NONE fault for a page on @node. 2022 */ 2023 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2024 { 2025 struct task_struct *p = current; 2026 bool migrated = flags & TNF_MIGRATED; 2027 int cpu_node = task_node(current); 2028 int local = !!(flags & TNF_FAULT_LOCAL); 2029 int priv; 2030 2031 if (!numabalancing_enabled) 2032 return; 2033 2034 /* for example, ksmd faulting in a user's mm */ 2035 if (!p->mm) 2036 return; 2037 2038 /* Allocate buffer to track faults on a per-node basis */ 2039 if (unlikely(!p->numa_faults)) { 2040 int size = sizeof(*p->numa_faults) * 2041 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2042 2043 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2044 if (!p->numa_faults) 2045 return; 2046 2047 p->total_numa_faults = 0; 2048 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2049 } 2050 2051 /* 2052 * First accesses are treated as private, otherwise consider accesses 2053 * to be private if the accessing pid has not changed 2054 */ 2055 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2056 priv = 1; 2057 } else { 2058 priv = cpupid_match_pid(p, last_cpupid); 2059 if (!priv && !(flags & TNF_NO_GROUP)) 2060 task_numa_group(p, last_cpupid, flags, &priv); 2061 } 2062 2063 /* 2064 * If a workload spans multiple NUMA nodes, a shared fault that 2065 * occurs wholly within the set of nodes that the workload is 2066 * actively using should be counted as local. This allows the 2067 * scan rate to slow down when a workload has settled down. 2068 */ 2069 if (!priv && !local && p->numa_group && 2070 node_isset(cpu_node, p->numa_group->active_nodes) && 2071 node_isset(mem_node, p->numa_group->active_nodes)) 2072 local = 1; 2073 2074 task_numa_placement(p); 2075 2076 /* 2077 * Retry task to preferred node migration periodically, in case it 2078 * case it previously failed, or the scheduler moved us. 2079 */ 2080 if (time_after(jiffies, p->numa_migrate_retry)) 2081 numa_migrate_preferred(p); 2082 2083 if (migrated) 2084 p->numa_pages_migrated += pages; 2085 if (flags & TNF_MIGRATE_FAIL) 2086 p->numa_faults_locality[2] += pages; 2087 2088 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2089 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2090 p->numa_faults_locality[local] += pages; 2091 } 2092 2093 static void reset_ptenuma_scan(struct task_struct *p) 2094 { 2095 ACCESS_ONCE(p->mm->numa_scan_seq)++; 2096 p->mm->numa_scan_offset = 0; 2097 } 2098 2099 /* 2100 * The expensive part of numa migration is done from task_work context. 2101 * Triggered from task_tick_numa(). 2102 */ 2103 void task_numa_work(struct callback_head *work) 2104 { 2105 unsigned long migrate, next_scan, now = jiffies; 2106 struct task_struct *p = current; 2107 struct mm_struct *mm = p->mm; 2108 struct vm_area_struct *vma; 2109 unsigned long start, end; 2110 unsigned long nr_pte_updates = 0; 2111 long pages; 2112 2113 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 2114 2115 work->next = work; /* protect against double add */ 2116 /* 2117 * Who cares about NUMA placement when they're dying. 2118 * 2119 * NOTE: make sure not to dereference p->mm before this check, 2120 * exit_task_work() happens _after_ exit_mm() so we could be called 2121 * without p->mm even though we still had it when we enqueued this 2122 * work. 2123 */ 2124 if (p->flags & PF_EXITING) 2125 return; 2126 2127 if (!mm->numa_next_scan) { 2128 mm->numa_next_scan = now + 2129 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2130 } 2131 2132 /* 2133 * Enforce maximal scan/migration frequency.. 2134 */ 2135 migrate = mm->numa_next_scan; 2136 if (time_before(now, migrate)) 2137 return; 2138 2139 if (p->numa_scan_period == 0) { 2140 p->numa_scan_period_max = task_scan_max(p); 2141 p->numa_scan_period = task_scan_min(p); 2142 } 2143 2144 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2145 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2146 return; 2147 2148 /* 2149 * Delay this task enough that another task of this mm will likely win 2150 * the next time around. 2151 */ 2152 p->node_stamp += 2 * TICK_NSEC; 2153 2154 start = mm->numa_scan_offset; 2155 pages = sysctl_numa_balancing_scan_size; 2156 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2157 if (!pages) 2158 return; 2159 2160 down_read(&mm->mmap_sem); 2161 vma = find_vma(mm, start); 2162 if (!vma) { 2163 reset_ptenuma_scan(p); 2164 start = 0; 2165 vma = mm->mmap; 2166 } 2167 for (; vma; vma = vma->vm_next) { 2168 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2169 is_vm_hugetlb_page(vma)) { 2170 continue; 2171 } 2172 2173 /* 2174 * Shared library pages mapped by multiple processes are not 2175 * migrated as it is expected they are cache replicated. Avoid 2176 * hinting faults in read-only file-backed mappings or the vdso 2177 * as migrating the pages will be of marginal benefit. 2178 */ 2179 if (!vma->vm_mm || 2180 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2181 continue; 2182 2183 /* 2184 * Skip inaccessible VMAs to avoid any confusion between 2185 * PROT_NONE and NUMA hinting ptes 2186 */ 2187 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2188 continue; 2189 2190 do { 2191 start = max(start, vma->vm_start); 2192 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2193 end = min(end, vma->vm_end); 2194 nr_pte_updates += change_prot_numa(vma, start, end); 2195 2196 /* 2197 * Scan sysctl_numa_balancing_scan_size but ensure that 2198 * at least one PTE is updated so that unused virtual 2199 * address space is quickly skipped. 2200 */ 2201 if (nr_pte_updates) 2202 pages -= (end - start) >> PAGE_SHIFT; 2203 2204 start = end; 2205 if (pages <= 0) 2206 goto out; 2207 2208 cond_resched(); 2209 } while (end != vma->vm_end); 2210 } 2211 2212 out: 2213 /* 2214 * It is possible to reach the end of the VMA list but the last few 2215 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2216 * would find the !migratable VMA on the next scan but not reset the 2217 * scanner to the start so check it now. 2218 */ 2219 if (vma) 2220 mm->numa_scan_offset = start; 2221 else 2222 reset_ptenuma_scan(p); 2223 up_read(&mm->mmap_sem); 2224 } 2225 2226 /* 2227 * Drive the periodic memory faults.. 2228 */ 2229 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2230 { 2231 struct callback_head *work = &curr->numa_work; 2232 u64 period, now; 2233 2234 /* 2235 * We don't care about NUMA placement if we don't have memory. 2236 */ 2237 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2238 return; 2239 2240 /* 2241 * Using runtime rather than walltime has the dual advantage that 2242 * we (mostly) drive the selection from busy threads and that the 2243 * task needs to have done some actual work before we bother with 2244 * NUMA placement. 2245 */ 2246 now = curr->se.sum_exec_runtime; 2247 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2248 2249 if (now - curr->node_stamp > period) { 2250 if (!curr->node_stamp) 2251 curr->numa_scan_period = task_scan_min(curr); 2252 curr->node_stamp += period; 2253 2254 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2255 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2256 task_work_add(curr, work, true); 2257 } 2258 } 2259 } 2260 #else 2261 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2262 { 2263 } 2264 2265 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2266 { 2267 } 2268 2269 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2270 { 2271 } 2272 #endif /* CONFIG_NUMA_BALANCING */ 2273 2274 static void 2275 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2276 { 2277 update_load_add(&cfs_rq->load, se->load.weight); 2278 if (!parent_entity(se)) 2279 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2280 #ifdef CONFIG_SMP 2281 if (entity_is_task(se)) { 2282 struct rq *rq = rq_of(cfs_rq); 2283 2284 account_numa_enqueue(rq, task_of(se)); 2285 list_add(&se->group_node, &rq->cfs_tasks); 2286 } 2287 #endif 2288 cfs_rq->nr_running++; 2289 } 2290 2291 static void 2292 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2293 { 2294 update_load_sub(&cfs_rq->load, se->load.weight); 2295 if (!parent_entity(se)) 2296 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2297 if (entity_is_task(se)) { 2298 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2299 list_del_init(&se->group_node); 2300 } 2301 cfs_rq->nr_running--; 2302 } 2303 2304 #ifdef CONFIG_FAIR_GROUP_SCHED 2305 # ifdef CONFIG_SMP 2306 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) 2307 { 2308 long tg_weight; 2309 2310 /* 2311 * Use this CPU's actual weight instead of the last load_contribution 2312 * to gain a more accurate current total weight. See 2313 * update_cfs_rq_load_contribution(). 2314 */ 2315 tg_weight = atomic_long_read(&tg->load_avg); 2316 tg_weight -= cfs_rq->tg_load_contrib; 2317 tg_weight += cfs_rq->load.weight; 2318 2319 return tg_weight; 2320 } 2321 2322 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2323 { 2324 long tg_weight, load, shares; 2325 2326 tg_weight = calc_tg_weight(tg, cfs_rq); 2327 load = cfs_rq->load.weight; 2328 2329 shares = (tg->shares * load); 2330 if (tg_weight) 2331 shares /= tg_weight; 2332 2333 if (shares < MIN_SHARES) 2334 shares = MIN_SHARES; 2335 if (shares > tg->shares) 2336 shares = tg->shares; 2337 2338 return shares; 2339 } 2340 # else /* CONFIG_SMP */ 2341 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2342 { 2343 return tg->shares; 2344 } 2345 # endif /* CONFIG_SMP */ 2346 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2347 unsigned long weight) 2348 { 2349 if (se->on_rq) { 2350 /* commit outstanding execution time */ 2351 if (cfs_rq->curr == se) 2352 update_curr(cfs_rq); 2353 account_entity_dequeue(cfs_rq, se); 2354 } 2355 2356 update_load_set(&se->load, weight); 2357 2358 if (se->on_rq) 2359 account_entity_enqueue(cfs_rq, se); 2360 } 2361 2362 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2363 2364 static void update_cfs_shares(struct cfs_rq *cfs_rq) 2365 { 2366 struct task_group *tg; 2367 struct sched_entity *se; 2368 long shares; 2369 2370 tg = cfs_rq->tg; 2371 se = tg->se[cpu_of(rq_of(cfs_rq))]; 2372 if (!se || throttled_hierarchy(cfs_rq)) 2373 return; 2374 #ifndef CONFIG_SMP 2375 if (likely(se->load.weight == tg->shares)) 2376 return; 2377 #endif 2378 shares = calc_cfs_shares(cfs_rq, tg); 2379 2380 reweight_entity(cfs_rq_of(se), se, shares); 2381 } 2382 #else /* CONFIG_FAIR_GROUP_SCHED */ 2383 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 2384 { 2385 } 2386 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2387 2388 #ifdef CONFIG_SMP 2389 /* 2390 * We choose a half-life close to 1 scheduling period. 2391 * Note: The tables below are dependent on this value. 2392 */ 2393 #define LOAD_AVG_PERIOD 32 2394 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 2395 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */ 2396 2397 /* Precomputed fixed inverse multiplies for multiplication by y^n */ 2398 static const u32 runnable_avg_yN_inv[] = { 2399 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 2400 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 2401 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 2402 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 2403 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 2404 0x85aac367, 0x82cd8698, 2405 }; 2406 2407 /* 2408 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 2409 * over-estimates when re-combining. 2410 */ 2411 static const u32 runnable_avg_yN_sum[] = { 2412 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 2413 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 2414 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 2415 }; 2416 2417 /* 2418 * Approximate: 2419 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 2420 */ 2421 static __always_inline u64 decay_load(u64 val, u64 n) 2422 { 2423 unsigned int local_n; 2424 2425 if (!n) 2426 return val; 2427 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 2428 return 0; 2429 2430 /* after bounds checking we can collapse to 32-bit */ 2431 local_n = n; 2432 2433 /* 2434 * As y^PERIOD = 1/2, we can combine 2435 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 2436 * With a look-up table which covers y^n (n<PERIOD) 2437 * 2438 * To achieve constant time decay_load. 2439 */ 2440 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 2441 val >>= local_n / LOAD_AVG_PERIOD; 2442 local_n %= LOAD_AVG_PERIOD; 2443 } 2444 2445 val *= runnable_avg_yN_inv[local_n]; 2446 /* We don't use SRR here since we always want to round down. */ 2447 return val >> 32; 2448 } 2449 2450 /* 2451 * For updates fully spanning n periods, the contribution to runnable 2452 * average will be: \Sum 1024*y^n 2453 * 2454 * We can compute this reasonably efficiently by combining: 2455 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 2456 */ 2457 static u32 __compute_runnable_contrib(u64 n) 2458 { 2459 u32 contrib = 0; 2460 2461 if (likely(n <= LOAD_AVG_PERIOD)) 2462 return runnable_avg_yN_sum[n]; 2463 else if (unlikely(n >= LOAD_AVG_MAX_N)) 2464 return LOAD_AVG_MAX; 2465 2466 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */ 2467 do { 2468 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */ 2469 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD]; 2470 2471 n -= LOAD_AVG_PERIOD; 2472 } while (n > LOAD_AVG_PERIOD); 2473 2474 contrib = decay_load(contrib, n); 2475 return contrib + runnable_avg_yN_sum[n]; 2476 } 2477 2478 /* 2479 * We can represent the historical contribution to runnable average as the 2480 * coefficients of a geometric series. To do this we sub-divide our runnable 2481 * history into segments of approximately 1ms (1024us); label the segment that 2482 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 2483 * 2484 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 2485 * p0 p1 p2 2486 * (now) (~1ms ago) (~2ms ago) 2487 * 2488 * Let u_i denote the fraction of p_i that the entity was runnable. 2489 * 2490 * We then designate the fractions u_i as our co-efficients, yielding the 2491 * following representation of historical load: 2492 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 2493 * 2494 * We choose y based on the with of a reasonably scheduling period, fixing: 2495 * y^32 = 0.5 2496 * 2497 * This means that the contribution to load ~32ms ago (u_32) will be weighted 2498 * approximately half as much as the contribution to load within the last ms 2499 * (u_0). 2500 * 2501 * When a period "rolls over" and we have new u_0`, multiplying the previous 2502 * sum again by y is sufficient to update: 2503 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 2504 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 2505 */ 2506 static __always_inline int __update_entity_runnable_avg(u64 now, 2507 struct sched_avg *sa, 2508 int runnable) 2509 { 2510 u64 delta, periods; 2511 u32 runnable_contrib; 2512 int delta_w, decayed = 0; 2513 2514 delta = now - sa->last_runnable_update; 2515 /* 2516 * This should only happen when time goes backwards, which it 2517 * unfortunately does during sched clock init when we swap over to TSC. 2518 */ 2519 if ((s64)delta < 0) { 2520 sa->last_runnable_update = now; 2521 return 0; 2522 } 2523 2524 /* 2525 * Use 1024ns as the unit of measurement since it's a reasonable 2526 * approximation of 1us and fast to compute. 2527 */ 2528 delta >>= 10; 2529 if (!delta) 2530 return 0; 2531 sa->last_runnable_update = now; 2532 2533 /* delta_w is the amount already accumulated against our next period */ 2534 delta_w = sa->runnable_avg_period % 1024; 2535 if (delta + delta_w >= 1024) { 2536 /* period roll-over */ 2537 decayed = 1; 2538 2539 /* 2540 * Now that we know we're crossing a period boundary, figure 2541 * out how much from delta we need to complete the current 2542 * period and accrue it. 2543 */ 2544 delta_w = 1024 - delta_w; 2545 if (runnable) 2546 sa->runnable_avg_sum += delta_w; 2547 sa->runnable_avg_period += delta_w; 2548 2549 delta -= delta_w; 2550 2551 /* Figure out how many additional periods this update spans */ 2552 periods = delta / 1024; 2553 delta %= 1024; 2554 2555 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum, 2556 periods + 1); 2557 sa->runnable_avg_period = decay_load(sa->runnable_avg_period, 2558 periods + 1); 2559 2560 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 2561 runnable_contrib = __compute_runnable_contrib(periods); 2562 if (runnable) 2563 sa->runnable_avg_sum += runnable_contrib; 2564 sa->runnable_avg_period += runnable_contrib; 2565 } 2566 2567 /* Remainder of delta accrued against u_0` */ 2568 if (runnable) 2569 sa->runnable_avg_sum += delta; 2570 sa->runnable_avg_period += delta; 2571 2572 return decayed; 2573 } 2574 2575 /* Synchronize an entity's decay with its parenting cfs_rq.*/ 2576 static inline u64 __synchronize_entity_decay(struct sched_entity *se) 2577 { 2578 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2579 u64 decays = atomic64_read(&cfs_rq->decay_counter); 2580 2581 decays -= se->avg.decay_count; 2582 se->avg.decay_count = 0; 2583 if (!decays) 2584 return 0; 2585 2586 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays); 2587 2588 return decays; 2589 } 2590 2591 #ifdef CONFIG_FAIR_GROUP_SCHED 2592 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 2593 int force_update) 2594 { 2595 struct task_group *tg = cfs_rq->tg; 2596 long tg_contrib; 2597 2598 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg; 2599 tg_contrib -= cfs_rq->tg_load_contrib; 2600 2601 if (!tg_contrib) 2602 return; 2603 2604 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) { 2605 atomic_long_add(tg_contrib, &tg->load_avg); 2606 cfs_rq->tg_load_contrib += tg_contrib; 2607 } 2608 } 2609 2610 /* 2611 * Aggregate cfs_rq runnable averages into an equivalent task_group 2612 * representation for computing load contributions. 2613 */ 2614 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 2615 struct cfs_rq *cfs_rq) 2616 { 2617 struct task_group *tg = cfs_rq->tg; 2618 long contrib; 2619 2620 /* The fraction of a cpu used by this cfs_rq */ 2621 contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT, 2622 sa->runnable_avg_period + 1); 2623 contrib -= cfs_rq->tg_runnable_contrib; 2624 2625 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) { 2626 atomic_add(contrib, &tg->runnable_avg); 2627 cfs_rq->tg_runnable_contrib += contrib; 2628 } 2629 } 2630 2631 static inline void __update_group_entity_contrib(struct sched_entity *se) 2632 { 2633 struct cfs_rq *cfs_rq = group_cfs_rq(se); 2634 struct task_group *tg = cfs_rq->tg; 2635 int runnable_avg; 2636 2637 u64 contrib; 2638 2639 contrib = cfs_rq->tg_load_contrib * tg->shares; 2640 se->avg.load_avg_contrib = div_u64(contrib, 2641 atomic_long_read(&tg->load_avg) + 1); 2642 2643 /* 2644 * For group entities we need to compute a correction term in the case 2645 * that they are consuming <1 cpu so that we would contribute the same 2646 * load as a task of equal weight. 2647 * 2648 * Explicitly co-ordinating this measurement would be expensive, but 2649 * fortunately the sum of each cpus contribution forms a usable 2650 * lower-bound on the true value. 2651 * 2652 * Consider the aggregate of 2 contributions. Either they are disjoint 2653 * (and the sum represents true value) or they are disjoint and we are 2654 * understating by the aggregate of their overlap. 2655 * 2656 * Extending this to N cpus, for a given overlap, the maximum amount we 2657 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of 2658 * cpus that overlap for this interval and w_i is the interval width. 2659 * 2660 * On a small machine; the first term is well-bounded which bounds the 2661 * total error since w_i is a subset of the period. Whereas on a 2662 * larger machine, while this first term can be larger, if w_i is the 2663 * of consequential size guaranteed to see n_i*w_i quickly converge to 2664 * our upper bound of 1-cpu. 2665 */ 2666 runnable_avg = atomic_read(&tg->runnable_avg); 2667 if (runnable_avg < NICE_0_LOAD) { 2668 se->avg.load_avg_contrib *= runnable_avg; 2669 se->avg.load_avg_contrib >>= NICE_0_SHIFT; 2670 } 2671 } 2672 2673 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) 2674 { 2675 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable); 2676 __update_tg_runnable_avg(&rq->avg, &rq->cfs); 2677 } 2678 #else /* CONFIG_FAIR_GROUP_SCHED */ 2679 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq, 2680 int force_update) {} 2681 static inline void __update_tg_runnable_avg(struct sched_avg *sa, 2682 struct cfs_rq *cfs_rq) {} 2683 static inline void __update_group_entity_contrib(struct sched_entity *se) {} 2684 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} 2685 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2686 2687 static inline void __update_task_entity_contrib(struct sched_entity *se) 2688 { 2689 u32 contrib; 2690 2691 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */ 2692 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight); 2693 contrib /= (se->avg.runnable_avg_period + 1); 2694 se->avg.load_avg_contrib = scale_load(contrib); 2695 } 2696 2697 /* Compute the current contribution to load_avg by se, return any delta */ 2698 static long __update_entity_load_avg_contrib(struct sched_entity *se) 2699 { 2700 long old_contrib = se->avg.load_avg_contrib; 2701 2702 if (entity_is_task(se)) { 2703 __update_task_entity_contrib(se); 2704 } else { 2705 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se)); 2706 __update_group_entity_contrib(se); 2707 } 2708 2709 return se->avg.load_avg_contrib - old_contrib; 2710 } 2711 2712 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq, 2713 long load_contrib) 2714 { 2715 if (likely(load_contrib < cfs_rq->blocked_load_avg)) 2716 cfs_rq->blocked_load_avg -= load_contrib; 2717 else 2718 cfs_rq->blocked_load_avg = 0; 2719 } 2720 2721 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 2722 2723 /* Update a sched_entity's runnable average */ 2724 static inline void update_entity_load_avg(struct sched_entity *se, 2725 int update_cfs_rq) 2726 { 2727 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2728 long contrib_delta; 2729 u64 now; 2730 2731 /* 2732 * For a group entity we need to use their owned cfs_rq_clock_task() in 2733 * case they are the parent of a throttled hierarchy. 2734 */ 2735 if (entity_is_task(se)) 2736 now = cfs_rq_clock_task(cfs_rq); 2737 else 2738 now = cfs_rq_clock_task(group_cfs_rq(se)); 2739 2740 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq)) 2741 return; 2742 2743 contrib_delta = __update_entity_load_avg_contrib(se); 2744 2745 if (!update_cfs_rq) 2746 return; 2747 2748 if (se->on_rq) 2749 cfs_rq->runnable_load_avg += contrib_delta; 2750 else 2751 subtract_blocked_load_contrib(cfs_rq, -contrib_delta); 2752 } 2753 2754 /* 2755 * Decay the load contributed by all blocked children and account this so that 2756 * their contribution may appropriately discounted when they wake up. 2757 */ 2758 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update) 2759 { 2760 u64 now = cfs_rq_clock_task(cfs_rq) >> 20; 2761 u64 decays; 2762 2763 decays = now - cfs_rq->last_decay; 2764 if (!decays && !force_update) 2765 return; 2766 2767 if (atomic_long_read(&cfs_rq->removed_load)) { 2768 unsigned long removed_load; 2769 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0); 2770 subtract_blocked_load_contrib(cfs_rq, removed_load); 2771 } 2772 2773 if (decays) { 2774 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg, 2775 decays); 2776 atomic64_add(decays, &cfs_rq->decay_counter); 2777 cfs_rq->last_decay = now; 2778 } 2779 2780 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update); 2781 } 2782 2783 /* Add the load generated by se into cfs_rq's child load-average */ 2784 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 2785 struct sched_entity *se, 2786 int wakeup) 2787 { 2788 /* 2789 * We track migrations using entity decay_count <= 0, on a wake-up 2790 * migration we use a negative decay count to track the remote decays 2791 * accumulated while sleeping. 2792 * 2793 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they 2794 * are seen by enqueue_entity_load_avg() as a migration with an already 2795 * constructed load_avg_contrib. 2796 */ 2797 if (unlikely(se->avg.decay_count <= 0)) { 2798 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq)); 2799 if (se->avg.decay_count) { 2800 /* 2801 * In a wake-up migration we have to approximate the 2802 * time sleeping. This is because we can't synchronize 2803 * clock_task between the two cpus, and it is not 2804 * guaranteed to be read-safe. Instead, we can 2805 * approximate this using our carried decays, which are 2806 * explicitly atomically readable. 2807 */ 2808 se->avg.last_runnable_update -= (-se->avg.decay_count) 2809 << 20; 2810 update_entity_load_avg(se, 0); 2811 /* Indicate that we're now synchronized and on-rq */ 2812 se->avg.decay_count = 0; 2813 } 2814 wakeup = 0; 2815 } else { 2816 __synchronize_entity_decay(se); 2817 } 2818 2819 /* migrated tasks did not contribute to our blocked load */ 2820 if (wakeup) { 2821 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 2822 update_entity_load_avg(se, 0); 2823 } 2824 2825 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib; 2826 /* we force update consideration on load-balancer moves */ 2827 update_cfs_rq_blocked_load(cfs_rq, !wakeup); 2828 } 2829 2830 /* 2831 * Remove se's load from this cfs_rq child load-average, if the entity is 2832 * transitioning to a blocked state we track its projected decay using 2833 * blocked_load_avg. 2834 */ 2835 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 2836 struct sched_entity *se, 2837 int sleep) 2838 { 2839 update_entity_load_avg(se, 1); 2840 /* we force update consideration on load-balancer moves */ 2841 update_cfs_rq_blocked_load(cfs_rq, !sleep); 2842 2843 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib; 2844 if (sleep) { 2845 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; 2846 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 2847 } /* migrations, e.g. sleep=0 leave decay_count == 0 */ 2848 } 2849 2850 /* 2851 * Update the rq's load with the elapsed running time before entering 2852 * idle. if the last scheduled task is not a CFS task, idle_enter will 2853 * be the only way to update the runnable statistic. 2854 */ 2855 void idle_enter_fair(struct rq *this_rq) 2856 { 2857 update_rq_runnable_avg(this_rq, 1); 2858 } 2859 2860 /* 2861 * Update the rq's load with the elapsed idle time before a task is 2862 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will 2863 * be the only way to update the runnable statistic. 2864 */ 2865 void idle_exit_fair(struct rq *this_rq) 2866 { 2867 update_rq_runnable_avg(this_rq, 0); 2868 } 2869 2870 static int idle_balance(struct rq *this_rq); 2871 2872 #else /* CONFIG_SMP */ 2873 2874 static inline void update_entity_load_avg(struct sched_entity *se, 2875 int update_cfs_rq) {} 2876 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {} 2877 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq, 2878 struct sched_entity *se, 2879 int wakeup) {} 2880 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq, 2881 struct sched_entity *se, 2882 int sleep) {} 2883 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, 2884 int force_update) {} 2885 2886 static inline int idle_balance(struct rq *rq) 2887 { 2888 return 0; 2889 } 2890 2891 #endif /* CONFIG_SMP */ 2892 2893 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 2894 { 2895 #ifdef CONFIG_SCHEDSTATS 2896 struct task_struct *tsk = NULL; 2897 2898 if (entity_is_task(se)) 2899 tsk = task_of(se); 2900 2901 if (se->statistics.sleep_start) { 2902 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; 2903 2904 if ((s64)delta < 0) 2905 delta = 0; 2906 2907 if (unlikely(delta > se->statistics.sleep_max)) 2908 se->statistics.sleep_max = delta; 2909 2910 se->statistics.sleep_start = 0; 2911 se->statistics.sum_sleep_runtime += delta; 2912 2913 if (tsk) { 2914 account_scheduler_latency(tsk, delta >> 10, 1); 2915 trace_sched_stat_sleep(tsk, delta); 2916 } 2917 } 2918 if (se->statistics.block_start) { 2919 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; 2920 2921 if ((s64)delta < 0) 2922 delta = 0; 2923 2924 if (unlikely(delta > se->statistics.block_max)) 2925 se->statistics.block_max = delta; 2926 2927 se->statistics.block_start = 0; 2928 se->statistics.sum_sleep_runtime += delta; 2929 2930 if (tsk) { 2931 if (tsk->in_iowait) { 2932 se->statistics.iowait_sum += delta; 2933 se->statistics.iowait_count++; 2934 trace_sched_stat_iowait(tsk, delta); 2935 } 2936 2937 trace_sched_stat_blocked(tsk, delta); 2938 2939 /* 2940 * Blocking time is in units of nanosecs, so shift by 2941 * 20 to get a milliseconds-range estimation of the 2942 * amount of time that the task spent sleeping: 2943 */ 2944 if (unlikely(prof_on == SLEEP_PROFILING)) { 2945 profile_hits(SLEEP_PROFILING, 2946 (void *)get_wchan(tsk), 2947 delta >> 20); 2948 } 2949 account_scheduler_latency(tsk, delta >> 10, 0); 2950 } 2951 } 2952 #endif 2953 } 2954 2955 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 2956 { 2957 #ifdef CONFIG_SCHED_DEBUG 2958 s64 d = se->vruntime - cfs_rq->min_vruntime; 2959 2960 if (d < 0) 2961 d = -d; 2962 2963 if (d > 3*sysctl_sched_latency) 2964 schedstat_inc(cfs_rq, nr_spread_over); 2965 #endif 2966 } 2967 2968 static void 2969 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 2970 { 2971 u64 vruntime = cfs_rq->min_vruntime; 2972 2973 /* 2974 * The 'current' period is already promised to the current tasks, 2975 * however the extra weight of the new task will slow them down a 2976 * little, place the new task so that it fits in the slot that 2977 * stays open at the end. 2978 */ 2979 if (initial && sched_feat(START_DEBIT)) 2980 vruntime += sched_vslice(cfs_rq, se); 2981 2982 /* sleeps up to a single latency don't count. */ 2983 if (!initial) { 2984 unsigned long thresh = sysctl_sched_latency; 2985 2986 /* 2987 * Halve their sleep time's effect, to allow 2988 * for a gentler effect of sleepers: 2989 */ 2990 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 2991 thresh >>= 1; 2992 2993 vruntime -= thresh; 2994 } 2995 2996 /* ensure we never gain time by being placed backwards. */ 2997 se->vruntime = max_vruntime(se->vruntime, vruntime); 2998 } 2999 3000 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3001 3002 static void 3003 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3004 { 3005 /* 3006 * Update the normalized vruntime before updating min_vruntime 3007 * through calling update_curr(). 3008 */ 3009 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) 3010 se->vruntime += cfs_rq->min_vruntime; 3011 3012 /* 3013 * Update run-time statistics of the 'current'. 3014 */ 3015 update_curr(cfs_rq); 3016 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP); 3017 account_entity_enqueue(cfs_rq, se); 3018 update_cfs_shares(cfs_rq); 3019 3020 if (flags & ENQUEUE_WAKEUP) { 3021 place_entity(cfs_rq, se, 0); 3022 enqueue_sleeper(cfs_rq, se); 3023 } 3024 3025 update_stats_enqueue(cfs_rq, se); 3026 check_spread(cfs_rq, se); 3027 if (se != cfs_rq->curr) 3028 __enqueue_entity(cfs_rq, se); 3029 se->on_rq = 1; 3030 3031 if (cfs_rq->nr_running == 1) { 3032 list_add_leaf_cfs_rq(cfs_rq); 3033 check_enqueue_throttle(cfs_rq); 3034 } 3035 } 3036 3037 static void __clear_buddies_last(struct sched_entity *se) 3038 { 3039 for_each_sched_entity(se) { 3040 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3041 if (cfs_rq->last != se) 3042 break; 3043 3044 cfs_rq->last = NULL; 3045 } 3046 } 3047 3048 static void __clear_buddies_next(struct sched_entity *se) 3049 { 3050 for_each_sched_entity(se) { 3051 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3052 if (cfs_rq->next != se) 3053 break; 3054 3055 cfs_rq->next = NULL; 3056 } 3057 } 3058 3059 static void __clear_buddies_skip(struct sched_entity *se) 3060 { 3061 for_each_sched_entity(se) { 3062 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3063 if (cfs_rq->skip != se) 3064 break; 3065 3066 cfs_rq->skip = NULL; 3067 } 3068 } 3069 3070 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3071 { 3072 if (cfs_rq->last == se) 3073 __clear_buddies_last(se); 3074 3075 if (cfs_rq->next == se) 3076 __clear_buddies_next(se); 3077 3078 if (cfs_rq->skip == se) 3079 __clear_buddies_skip(se); 3080 } 3081 3082 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3083 3084 static void 3085 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3086 { 3087 /* 3088 * Update run-time statistics of the 'current'. 3089 */ 3090 update_curr(cfs_rq); 3091 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP); 3092 3093 update_stats_dequeue(cfs_rq, se); 3094 if (flags & DEQUEUE_SLEEP) { 3095 #ifdef CONFIG_SCHEDSTATS 3096 if (entity_is_task(se)) { 3097 struct task_struct *tsk = task_of(se); 3098 3099 if (tsk->state & TASK_INTERRUPTIBLE) 3100 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); 3101 if (tsk->state & TASK_UNINTERRUPTIBLE) 3102 se->statistics.block_start = rq_clock(rq_of(cfs_rq)); 3103 } 3104 #endif 3105 } 3106 3107 clear_buddies(cfs_rq, se); 3108 3109 if (se != cfs_rq->curr) 3110 __dequeue_entity(cfs_rq, se); 3111 se->on_rq = 0; 3112 account_entity_dequeue(cfs_rq, se); 3113 3114 /* 3115 * Normalize the entity after updating the min_vruntime because the 3116 * update can refer to the ->curr item and we need to reflect this 3117 * movement in our normalized position. 3118 */ 3119 if (!(flags & DEQUEUE_SLEEP)) 3120 se->vruntime -= cfs_rq->min_vruntime; 3121 3122 /* return excess runtime on last dequeue */ 3123 return_cfs_rq_runtime(cfs_rq); 3124 3125 update_min_vruntime(cfs_rq); 3126 update_cfs_shares(cfs_rq); 3127 } 3128 3129 /* 3130 * Preempt the current task with a newly woken task if needed: 3131 */ 3132 static void 3133 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3134 { 3135 unsigned long ideal_runtime, delta_exec; 3136 struct sched_entity *se; 3137 s64 delta; 3138 3139 ideal_runtime = sched_slice(cfs_rq, curr); 3140 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 3141 if (delta_exec > ideal_runtime) { 3142 resched_curr(rq_of(cfs_rq)); 3143 /* 3144 * The current task ran long enough, ensure it doesn't get 3145 * re-elected due to buddy favours. 3146 */ 3147 clear_buddies(cfs_rq, curr); 3148 return; 3149 } 3150 3151 /* 3152 * Ensure that a task that missed wakeup preemption by a 3153 * narrow margin doesn't have to wait for a full slice. 3154 * This also mitigates buddy induced latencies under load. 3155 */ 3156 if (delta_exec < sysctl_sched_min_granularity) 3157 return; 3158 3159 se = __pick_first_entity(cfs_rq); 3160 delta = curr->vruntime - se->vruntime; 3161 3162 if (delta < 0) 3163 return; 3164 3165 if (delta > ideal_runtime) 3166 resched_curr(rq_of(cfs_rq)); 3167 } 3168 3169 static void 3170 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 3171 { 3172 /* 'current' is not kept within the tree. */ 3173 if (se->on_rq) { 3174 /* 3175 * Any task has to be enqueued before it get to execute on 3176 * a CPU. So account for the time it spent waiting on the 3177 * runqueue. 3178 */ 3179 update_stats_wait_end(cfs_rq, se); 3180 __dequeue_entity(cfs_rq, se); 3181 } 3182 3183 update_stats_curr_start(cfs_rq, se); 3184 cfs_rq->curr = se; 3185 #ifdef CONFIG_SCHEDSTATS 3186 /* 3187 * Track our maximum slice length, if the CPU's load is at 3188 * least twice that of our own weight (i.e. dont track it 3189 * when there are only lesser-weight tasks around): 3190 */ 3191 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 3192 se->statistics.slice_max = max(se->statistics.slice_max, 3193 se->sum_exec_runtime - se->prev_sum_exec_runtime); 3194 } 3195 #endif 3196 se->prev_sum_exec_runtime = se->sum_exec_runtime; 3197 } 3198 3199 static int 3200 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 3201 3202 /* 3203 * Pick the next process, keeping these things in mind, in this order: 3204 * 1) keep things fair between processes/task groups 3205 * 2) pick the "next" process, since someone really wants that to run 3206 * 3) pick the "last" process, for cache locality 3207 * 4) do not run the "skip" process, if something else is available 3208 */ 3209 static struct sched_entity * 3210 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3211 { 3212 struct sched_entity *left = __pick_first_entity(cfs_rq); 3213 struct sched_entity *se; 3214 3215 /* 3216 * If curr is set we have to see if its left of the leftmost entity 3217 * still in the tree, provided there was anything in the tree at all. 3218 */ 3219 if (!left || (curr && entity_before(curr, left))) 3220 left = curr; 3221 3222 se = left; /* ideally we run the leftmost entity */ 3223 3224 /* 3225 * Avoid running the skip buddy, if running something else can 3226 * be done without getting too unfair. 3227 */ 3228 if (cfs_rq->skip == se) { 3229 struct sched_entity *second; 3230 3231 if (se == curr) { 3232 second = __pick_first_entity(cfs_rq); 3233 } else { 3234 second = __pick_next_entity(se); 3235 if (!second || (curr && entity_before(curr, second))) 3236 second = curr; 3237 } 3238 3239 if (second && wakeup_preempt_entity(second, left) < 1) 3240 se = second; 3241 } 3242 3243 /* 3244 * Prefer last buddy, try to return the CPU to a preempted task. 3245 */ 3246 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 3247 se = cfs_rq->last; 3248 3249 /* 3250 * Someone really wants this to run. If it's not unfair, run it. 3251 */ 3252 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 3253 se = cfs_rq->next; 3254 3255 clear_buddies(cfs_rq, se); 3256 3257 return se; 3258 } 3259 3260 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3261 3262 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 3263 { 3264 /* 3265 * If still on the runqueue then deactivate_task() 3266 * was not called and update_curr() has to be done: 3267 */ 3268 if (prev->on_rq) 3269 update_curr(cfs_rq); 3270 3271 /* throttle cfs_rqs exceeding runtime */ 3272 check_cfs_rq_runtime(cfs_rq); 3273 3274 check_spread(cfs_rq, prev); 3275 if (prev->on_rq) { 3276 update_stats_wait_start(cfs_rq, prev); 3277 /* Put 'current' back into the tree. */ 3278 __enqueue_entity(cfs_rq, prev); 3279 /* in !on_rq case, update occurred at dequeue */ 3280 update_entity_load_avg(prev, 1); 3281 } 3282 cfs_rq->curr = NULL; 3283 } 3284 3285 static void 3286 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 3287 { 3288 /* 3289 * Update run-time statistics of the 'current'. 3290 */ 3291 update_curr(cfs_rq); 3292 3293 /* 3294 * Ensure that runnable average is periodically updated. 3295 */ 3296 update_entity_load_avg(curr, 1); 3297 update_cfs_rq_blocked_load(cfs_rq, 1); 3298 update_cfs_shares(cfs_rq); 3299 3300 #ifdef CONFIG_SCHED_HRTICK 3301 /* 3302 * queued ticks are scheduled to match the slice, so don't bother 3303 * validating it and just reschedule. 3304 */ 3305 if (queued) { 3306 resched_curr(rq_of(cfs_rq)); 3307 return; 3308 } 3309 /* 3310 * don't let the period tick interfere with the hrtick preemption 3311 */ 3312 if (!sched_feat(DOUBLE_TICK) && 3313 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 3314 return; 3315 #endif 3316 3317 if (cfs_rq->nr_running > 1) 3318 check_preempt_tick(cfs_rq, curr); 3319 } 3320 3321 3322 /************************************************** 3323 * CFS bandwidth control machinery 3324 */ 3325 3326 #ifdef CONFIG_CFS_BANDWIDTH 3327 3328 #ifdef HAVE_JUMP_LABEL 3329 static struct static_key __cfs_bandwidth_used; 3330 3331 static inline bool cfs_bandwidth_used(void) 3332 { 3333 return static_key_false(&__cfs_bandwidth_used); 3334 } 3335 3336 void cfs_bandwidth_usage_inc(void) 3337 { 3338 static_key_slow_inc(&__cfs_bandwidth_used); 3339 } 3340 3341 void cfs_bandwidth_usage_dec(void) 3342 { 3343 static_key_slow_dec(&__cfs_bandwidth_used); 3344 } 3345 #else /* HAVE_JUMP_LABEL */ 3346 static bool cfs_bandwidth_used(void) 3347 { 3348 return true; 3349 } 3350 3351 void cfs_bandwidth_usage_inc(void) {} 3352 void cfs_bandwidth_usage_dec(void) {} 3353 #endif /* HAVE_JUMP_LABEL */ 3354 3355 /* 3356 * default period for cfs group bandwidth. 3357 * default: 0.1s, units: nanoseconds 3358 */ 3359 static inline u64 default_cfs_period(void) 3360 { 3361 return 100000000ULL; 3362 } 3363 3364 static inline u64 sched_cfs_bandwidth_slice(void) 3365 { 3366 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 3367 } 3368 3369 /* 3370 * Replenish runtime according to assigned quota and update expiration time. 3371 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 3372 * additional synchronization around rq->lock. 3373 * 3374 * requires cfs_b->lock 3375 */ 3376 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 3377 { 3378 u64 now; 3379 3380 if (cfs_b->quota == RUNTIME_INF) 3381 return; 3382 3383 now = sched_clock_cpu(smp_processor_id()); 3384 cfs_b->runtime = cfs_b->quota; 3385 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 3386 } 3387 3388 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3389 { 3390 return &tg->cfs_bandwidth; 3391 } 3392 3393 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 3394 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3395 { 3396 if (unlikely(cfs_rq->throttle_count)) 3397 return cfs_rq->throttled_clock_task; 3398 3399 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 3400 } 3401 3402 /* returns 0 on failure to allocate runtime */ 3403 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3404 { 3405 struct task_group *tg = cfs_rq->tg; 3406 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 3407 u64 amount = 0, min_amount, expires; 3408 3409 /* note: this is a positive sum as runtime_remaining <= 0 */ 3410 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 3411 3412 raw_spin_lock(&cfs_b->lock); 3413 if (cfs_b->quota == RUNTIME_INF) 3414 amount = min_amount; 3415 else { 3416 /* 3417 * If the bandwidth pool has become inactive, then at least one 3418 * period must have elapsed since the last consumption. 3419 * Refresh the global state and ensure bandwidth timer becomes 3420 * active. 3421 */ 3422 if (!cfs_b->timer_active) { 3423 __refill_cfs_bandwidth_runtime(cfs_b); 3424 __start_cfs_bandwidth(cfs_b, false); 3425 } 3426 3427 if (cfs_b->runtime > 0) { 3428 amount = min(cfs_b->runtime, min_amount); 3429 cfs_b->runtime -= amount; 3430 cfs_b->idle = 0; 3431 } 3432 } 3433 expires = cfs_b->runtime_expires; 3434 raw_spin_unlock(&cfs_b->lock); 3435 3436 cfs_rq->runtime_remaining += amount; 3437 /* 3438 * we may have advanced our local expiration to account for allowed 3439 * spread between our sched_clock and the one on which runtime was 3440 * issued. 3441 */ 3442 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 3443 cfs_rq->runtime_expires = expires; 3444 3445 return cfs_rq->runtime_remaining > 0; 3446 } 3447 3448 /* 3449 * Note: This depends on the synchronization provided by sched_clock and the 3450 * fact that rq->clock snapshots this value. 3451 */ 3452 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3453 { 3454 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3455 3456 /* if the deadline is ahead of our clock, nothing to do */ 3457 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 3458 return; 3459 3460 if (cfs_rq->runtime_remaining < 0) 3461 return; 3462 3463 /* 3464 * If the local deadline has passed we have to consider the 3465 * possibility that our sched_clock is 'fast' and the global deadline 3466 * has not truly expired. 3467 * 3468 * Fortunately we can check determine whether this the case by checking 3469 * whether the global deadline has advanced. It is valid to compare 3470 * cfs_b->runtime_expires without any locks since we only care about 3471 * exact equality, so a partial write will still work. 3472 */ 3473 3474 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { 3475 /* extend local deadline, drift is bounded above by 2 ticks */ 3476 cfs_rq->runtime_expires += TICK_NSEC; 3477 } else { 3478 /* global deadline is ahead, expiration has passed */ 3479 cfs_rq->runtime_remaining = 0; 3480 } 3481 } 3482 3483 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3484 { 3485 /* dock delta_exec before expiring quota (as it could span periods) */ 3486 cfs_rq->runtime_remaining -= delta_exec; 3487 expire_cfs_rq_runtime(cfs_rq); 3488 3489 if (likely(cfs_rq->runtime_remaining > 0)) 3490 return; 3491 3492 /* 3493 * if we're unable to extend our runtime we resched so that the active 3494 * hierarchy can be throttled 3495 */ 3496 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 3497 resched_curr(rq_of(cfs_rq)); 3498 } 3499 3500 static __always_inline 3501 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3502 { 3503 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 3504 return; 3505 3506 __account_cfs_rq_runtime(cfs_rq, delta_exec); 3507 } 3508 3509 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3510 { 3511 return cfs_bandwidth_used() && cfs_rq->throttled; 3512 } 3513 3514 /* check whether cfs_rq, or any parent, is throttled */ 3515 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3516 { 3517 return cfs_bandwidth_used() && cfs_rq->throttle_count; 3518 } 3519 3520 /* 3521 * Ensure that neither of the group entities corresponding to src_cpu or 3522 * dest_cpu are members of a throttled hierarchy when performing group 3523 * load-balance operations. 3524 */ 3525 static inline int throttled_lb_pair(struct task_group *tg, 3526 int src_cpu, int dest_cpu) 3527 { 3528 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 3529 3530 src_cfs_rq = tg->cfs_rq[src_cpu]; 3531 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 3532 3533 return throttled_hierarchy(src_cfs_rq) || 3534 throttled_hierarchy(dest_cfs_rq); 3535 } 3536 3537 /* updated child weight may affect parent so we have to do this bottom up */ 3538 static int tg_unthrottle_up(struct task_group *tg, void *data) 3539 { 3540 struct rq *rq = data; 3541 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3542 3543 cfs_rq->throttle_count--; 3544 #ifdef CONFIG_SMP 3545 if (!cfs_rq->throttle_count) { 3546 /* adjust cfs_rq_clock_task() */ 3547 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 3548 cfs_rq->throttled_clock_task; 3549 } 3550 #endif 3551 3552 return 0; 3553 } 3554 3555 static int tg_throttle_down(struct task_group *tg, void *data) 3556 { 3557 struct rq *rq = data; 3558 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3559 3560 /* group is entering throttled state, stop time */ 3561 if (!cfs_rq->throttle_count) 3562 cfs_rq->throttled_clock_task = rq_clock_task(rq); 3563 cfs_rq->throttle_count++; 3564 3565 return 0; 3566 } 3567 3568 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 3569 { 3570 struct rq *rq = rq_of(cfs_rq); 3571 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3572 struct sched_entity *se; 3573 long task_delta, dequeue = 1; 3574 3575 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 3576 3577 /* freeze hierarchy runnable averages while throttled */ 3578 rcu_read_lock(); 3579 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 3580 rcu_read_unlock(); 3581 3582 task_delta = cfs_rq->h_nr_running; 3583 for_each_sched_entity(se) { 3584 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 3585 /* throttled entity or throttle-on-deactivate */ 3586 if (!se->on_rq) 3587 break; 3588 3589 if (dequeue) 3590 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 3591 qcfs_rq->h_nr_running -= task_delta; 3592 3593 if (qcfs_rq->load.weight) 3594 dequeue = 0; 3595 } 3596 3597 if (!se) 3598 sub_nr_running(rq, task_delta); 3599 3600 cfs_rq->throttled = 1; 3601 cfs_rq->throttled_clock = rq_clock(rq); 3602 raw_spin_lock(&cfs_b->lock); 3603 /* 3604 * Add to the _head_ of the list, so that an already-started 3605 * distribute_cfs_runtime will not see us 3606 */ 3607 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 3608 if (!cfs_b->timer_active) 3609 __start_cfs_bandwidth(cfs_b, false); 3610 raw_spin_unlock(&cfs_b->lock); 3611 } 3612 3613 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 3614 { 3615 struct rq *rq = rq_of(cfs_rq); 3616 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3617 struct sched_entity *se; 3618 int enqueue = 1; 3619 long task_delta; 3620 3621 se = cfs_rq->tg->se[cpu_of(rq)]; 3622 3623 cfs_rq->throttled = 0; 3624 3625 update_rq_clock(rq); 3626 3627 raw_spin_lock(&cfs_b->lock); 3628 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 3629 list_del_rcu(&cfs_rq->throttled_list); 3630 raw_spin_unlock(&cfs_b->lock); 3631 3632 /* update hierarchical throttle state */ 3633 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 3634 3635 if (!cfs_rq->load.weight) 3636 return; 3637 3638 task_delta = cfs_rq->h_nr_running; 3639 for_each_sched_entity(se) { 3640 if (se->on_rq) 3641 enqueue = 0; 3642 3643 cfs_rq = cfs_rq_of(se); 3644 if (enqueue) 3645 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 3646 cfs_rq->h_nr_running += task_delta; 3647 3648 if (cfs_rq_throttled(cfs_rq)) 3649 break; 3650 } 3651 3652 if (!se) 3653 add_nr_running(rq, task_delta); 3654 3655 /* determine whether we need to wake up potentially idle cpu */ 3656 if (rq->curr == rq->idle && rq->cfs.nr_running) 3657 resched_curr(rq); 3658 } 3659 3660 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 3661 u64 remaining, u64 expires) 3662 { 3663 struct cfs_rq *cfs_rq; 3664 u64 runtime; 3665 u64 starting_runtime = remaining; 3666 3667 rcu_read_lock(); 3668 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 3669 throttled_list) { 3670 struct rq *rq = rq_of(cfs_rq); 3671 3672 raw_spin_lock(&rq->lock); 3673 if (!cfs_rq_throttled(cfs_rq)) 3674 goto next; 3675 3676 runtime = -cfs_rq->runtime_remaining + 1; 3677 if (runtime > remaining) 3678 runtime = remaining; 3679 remaining -= runtime; 3680 3681 cfs_rq->runtime_remaining += runtime; 3682 cfs_rq->runtime_expires = expires; 3683 3684 /* we check whether we're throttled above */ 3685 if (cfs_rq->runtime_remaining > 0) 3686 unthrottle_cfs_rq(cfs_rq); 3687 3688 next: 3689 raw_spin_unlock(&rq->lock); 3690 3691 if (!remaining) 3692 break; 3693 } 3694 rcu_read_unlock(); 3695 3696 return starting_runtime - remaining; 3697 } 3698 3699 /* 3700 * Responsible for refilling a task_group's bandwidth and unthrottling its 3701 * cfs_rqs as appropriate. If there has been no activity within the last 3702 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 3703 * used to track this state. 3704 */ 3705 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 3706 { 3707 u64 runtime, runtime_expires; 3708 int throttled; 3709 3710 /* no need to continue the timer with no bandwidth constraint */ 3711 if (cfs_b->quota == RUNTIME_INF) 3712 goto out_deactivate; 3713 3714 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3715 cfs_b->nr_periods += overrun; 3716 3717 /* 3718 * idle depends on !throttled (for the case of a large deficit), and if 3719 * we're going inactive then everything else can be deferred 3720 */ 3721 if (cfs_b->idle && !throttled) 3722 goto out_deactivate; 3723 3724 /* 3725 * if we have relooped after returning idle once, we need to update our 3726 * status as actually running, so that other cpus doing 3727 * __start_cfs_bandwidth will stop trying to cancel us. 3728 */ 3729 cfs_b->timer_active = 1; 3730 3731 __refill_cfs_bandwidth_runtime(cfs_b); 3732 3733 if (!throttled) { 3734 /* mark as potentially idle for the upcoming period */ 3735 cfs_b->idle = 1; 3736 return 0; 3737 } 3738 3739 /* account preceding periods in which throttling occurred */ 3740 cfs_b->nr_throttled += overrun; 3741 3742 runtime_expires = cfs_b->runtime_expires; 3743 3744 /* 3745 * This check is repeated as we are holding onto the new bandwidth while 3746 * we unthrottle. This can potentially race with an unthrottled group 3747 * trying to acquire new bandwidth from the global pool. This can result 3748 * in us over-using our runtime if it is all used during this loop, but 3749 * only by limited amounts in that extreme case. 3750 */ 3751 while (throttled && cfs_b->runtime > 0) { 3752 runtime = cfs_b->runtime; 3753 raw_spin_unlock(&cfs_b->lock); 3754 /* we can't nest cfs_b->lock while distributing bandwidth */ 3755 runtime = distribute_cfs_runtime(cfs_b, runtime, 3756 runtime_expires); 3757 raw_spin_lock(&cfs_b->lock); 3758 3759 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 3760 3761 cfs_b->runtime -= min(runtime, cfs_b->runtime); 3762 } 3763 3764 /* 3765 * While we are ensured activity in the period following an 3766 * unthrottle, this also covers the case in which the new bandwidth is 3767 * insufficient to cover the existing bandwidth deficit. (Forcing the 3768 * timer to remain active while there are any throttled entities.) 3769 */ 3770 cfs_b->idle = 0; 3771 3772 return 0; 3773 3774 out_deactivate: 3775 cfs_b->timer_active = 0; 3776 return 1; 3777 } 3778 3779 /* a cfs_rq won't donate quota below this amount */ 3780 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 3781 /* minimum remaining period time to redistribute slack quota */ 3782 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 3783 /* how long we wait to gather additional slack before distributing */ 3784 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 3785 3786 /* 3787 * Are we near the end of the current quota period? 3788 * 3789 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 3790 * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of 3791 * migrate_hrtimers, base is never cleared, so we are fine. 3792 */ 3793 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 3794 { 3795 struct hrtimer *refresh_timer = &cfs_b->period_timer; 3796 u64 remaining; 3797 3798 /* if the call-back is running a quota refresh is already occurring */ 3799 if (hrtimer_callback_running(refresh_timer)) 3800 return 1; 3801 3802 /* is a quota refresh about to occur? */ 3803 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 3804 if (remaining < min_expire) 3805 return 1; 3806 3807 return 0; 3808 } 3809 3810 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 3811 { 3812 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 3813 3814 /* if there's a quota refresh soon don't bother with slack */ 3815 if (runtime_refresh_within(cfs_b, min_left)) 3816 return; 3817 3818 start_bandwidth_timer(&cfs_b->slack_timer, 3819 ns_to_ktime(cfs_bandwidth_slack_period)); 3820 } 3821 3822 /* we know any runtime found here is valid as update_curr() precedes return */ 3823 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3824 { 3825 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3826 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 3827 3828 if (slack_runtime <= 0) 3829 return; 3830 3831 raw_spin_lock(&cfs_b->lock); 3832 if (cfs_b->quota != RUNTIME_INF && 3833 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 3834 cfs_b->runtime += slack_runtime; 3835 3836 /* we are under rq->lock, defer unthrottling using a timer */ 3837 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 3838 !list_empty(&cfs_b->throttled_cfs_rq)) 3839 start_cfs_slack_bandwidth(cfs_b); 3840 } 3841 raw_spin_unlock(&cfs_b->lock); 3842 3843 /* even if it's not valid for return we don't want to try again */ 3844 cfs_rq->runtime_remaining -= slack_runtime; 3845 } 3846 3847 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3848 { 3849 if (!cfs_bandwidth_used()) 3850 return; 3851 3852 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 3853 return; 3854 3855 __return_cfs_rq_runtime(cfs_rq); 3856 } 3857 3858 /* 3859 * This is done with a timer (instead of inline with bandwidth return) since 3860 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 3861 */ 3862 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 3863 { 3864 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 3865 u64 expires; 3866 3867 /* confirm we're still not at a refresh boundary */ 3868 raw_spin_lock(&cfs_b->lock); 3869 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 3870 raw_spin_unlock(&cfs_b->lock); 3871 return; 3872 } 3873 3874 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 3875 runtime = cfs_b->runtime; 3876 3877 expires = cfs_b->runtime_expires; 3878 raw_spin_unlock(&cfs_b->lock); 3879 3880 if (!runtime) 3881 return; 3882 3883 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 3884 3885 raw_spin_lock(&cfs_b->lock); 3886 if (expires == cfs_b->runtime_expires) 3887 cfs_b->runtime -= min(runtime, cfs_b->runtime); 3888 raw_spin_unlock(&cfs_b->lock); 3889 } 3890 3891 /* 3892 * When a group wakes up we want to make sure that its quota is not already 3893 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 3894 * runtime as update_curr() throttling can not not trigger until it's on-rq. 3895 */ 3896 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 3897 { 3898 if (!cfs_bandwidth_used()) 3899 return; 3900 3901 /* an active group must be handled by the update_curr()->put() path */ 3902 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 3903 return; 3904 3905 /* ensure the group is not already throttled */ 3906 if (cfs_rq_throttled(cfs_rq)) 3907 return; 3908 3909 /* update runtime allocation */ 3910 account_cfs_rq_runtime(cfs_rq, 0); 3911 if (cfs_rq->runtime_remaining <= 0) 3912 throttle_cfs_rq(cfs_rq); 3913 } 3914 3915 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 3916 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3917 { 3918 if (!cfs_bandwidth_used()) 3919 return false; 3920 3921 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 3922 return false; 3923 3924 /* 3925 * it's possible for a throttled entity to be forced into a running 3926 * state (e.g. set_curr_task), in this case we're finished. 3927 */ 3928 if (cfs_rq_throttled(cfs_rq)) 3929 return true; 3930 3931 throttle_cfs_rq(cfs_rq); 3932 return true; 3933 } 3934 3935 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 3936 { 3937 struct cfs_bandwidth *cfs_b = 3938 container_of(timer, struct cfs_bandwidth, slack_timer); 3939 do_sched_cfs_slack_timer(cfs_b); 3940 3941 return HRTIMER_NORESTART; 3942 } 3943 3944 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 3945 { 3946 struct cfs_bandwidth *cfs_b = 3947 container_of(timer, struct cfs_bandwidth, period_timer); 3948 ktime_t now; 3949 int overrun; 3950 int idle = 0; 3951 3952 raw_spin_lock(&cfs_b->lock); 3953 for (;;) { 3954 now = hrtimer_cb_get_time(timer); 3955 overrun = hrtimer_forward(timer, now, cfs_b->period); 3956 3957 if (!overrun) 3958 break; 3959 3960 idle = do_sched_cfs_period_timer(cfs_b, overrun); 3961 } 3962 raw_spin_unlock(&cfs_b->lock); 3963 3964 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 3965 } 3966 3967 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 3968 { 3969 raw_spin_lock_init(&cfs_b->lock); 3970 cfs_b->runtime = 0; 3971 cfs_b->quota = RUNTIME_INF; 3972 cfs_b->period = ns_to_ktime(default_cfs_period()); 3973 3974 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 3975 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3976 cfs_b->period_timer.function = sched_cfs_period_timer; 3977 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3978 cfs_b->slack_timer.function = sched_cfs_slack_timer; 3979 } 3980 3981 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3982 { 3983 cfs_rq->runtime_enabled = 0; 3984 INIT_LIST_HEAD(&cfs_rq->throttled_list); 3985 } 3986 3987 /* requires cfs_b->lock, may release to reprogram timer */ 3988 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force) 3989 { 3990 /* 3991 * The timer may be active because we're trying to set a new bandwidth 3992 * period or because we're racing with the tear-down path 3993 * (timer_active==0 becomes visible before the hrtimer call-back 3994 * terminates). In either case we ensure that it's re-programmed 3995 */ 3996 while (unlikely(hrtimer_active(&cfs_b->period_timer)) && 3997 hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) { 3998 /* bounce the lock to allow do_sched_cfs_period_timer to run */ 3999 raw_spin_unlock(&cfs_b->lock); 4000 cpu_relax(); 4001 raw_spin_lock(&cfs_b->lock); 4002 /* if someone else restarted the timer then we're done */ 4003 if (!force && cfs_b->timer_active) 4004 return; 4005 } 4006 4007 cfs_b->timer_active = 1; 4008 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); 4009 } 4010 4011 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4012 { 4013 /* init_cfs_bandwidth() was not called */ 4014 if (!cfs_b->throttled_cfs_rq.next) 4015 return; 4016 4017 hrtimer_cancel(&cfs_b->period_timer); 4018 hrtimer_cancel(&cfs_b->slack_timer); 4019 } 4020 4021 static void __maybe_unused update_runtime_enabled(struct rq *rq) 4022 { 4023 struct cfs_rq *cfs_rq; 4024 4025 for_each_leaf_cfs_rq(rq, cfs_rq) { 4026 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth; 4027 4028 raw_spin_lock(&cfs_b->lock); 4029 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 4030 raw_spin_unlock(&cfs_b->lock); 4031 } 4032 } 4033 4034 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 4035 { 4036 struct cfs_rq *cfs_rq; 4037 4038 for_each_leaf_cfs_rq(rq, cfs_rq) { 4039 if (!cfs_rq->runtime_enabled) 4040 continue; 4041 4042 /* 4043 * clock_task is not advancing so we just need to make sure 4044 * there's some valid quota amount 4045 */ 4046 cfs_rq->runtime_remaining = 1; 4047 /* 4048 * Offline rq is schedulable till cpu is completely disabled 4049 * in take_cpu_down(), so we prevent new cfs throttling here. 4050 */ 4051 cfs_rq->runtime_enabled = 0; 4052 4053 if (cfs_rq_throttled(cfs_rq)) 4054 unthrottle_cfs_rq(cfs_rq); 4055 } 4056 } 4057 4058 #else /* CONFIG_CFS_BANDWIDTH */ 4059 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4060 { 4061 return rq_clock_task(rq_of(cfs_rq)); 4062 } 4063 4064 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 4065 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 4066 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 4067 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4068 4069 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4070 { 4071 return 0; 4072 } 4073 4074 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4075 { 4076 return 0; 4077 } 4078 4079 static inline int throttled_lb_pair(struct task_group *tg, 4080 int src_cpu, int dest_cpu) 4081 { 4082 return 0; 4083 } 4084 4085 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4086 4087 #ifdef CONFIG_FAIR_GROUP_SCHED 4088 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4089 #endif 4090 4091 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4092 { 4093 return NULL; 4094 } 4095 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4096 static inline void update_runtime_enabled(struct rq *rq) {} 4097 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 4098 4099 #endif /* CONFIG_CFS_BANDWIDTH */ 4100 4101 /************************************************** 4102 * CFS operations on tasks: 4103 */ 4104 4105 #ifdef CONFIG_SCHED_HRTICK 4106 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 4107 { 4108 struct sched_entity *se = &p->se; 4109 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4110 4111 WARN_ON(task_rq(p) != rq); 4112 4113 if (cfs_rq->nr_running > 1) { 4114 u64 slice = sched_slice(cfs_rq, se); 4115 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 4116 s64 delta = slice - ran; 4117 4118 if (delta < 0) { 4119 if (rq->curr == p) 4120 resched_curr(rq); 4121 return; 4122 } 4123 hrtick_start(rq, delta); 4124 } 4125 } 4126 4127 /* 4128 * called from enqueue/dequeue and updates the hrtick when the 4129 * current task is from our class and nr_running is low enough 4130 * to matter. 4131 */ 4132 static void hrtick_update(struct rq *rq) 4133 { 4134 struct task_struct *curr = rq->curr; 4135 4136 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 4137 return; 4138 4139 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 4140 hrtick_start_fair(rq, curr); 4141 } 4142 #else /* !CONFIG_SCHED_HRTICK */ 4143 static inline void 4144 hrtick_start_fair(struct rq *rq, struct task_struct *p) 4145 { 4146 } 4147 4148 static inline void hrtick_update(struct rq *rq) 4149 { 4150 } 4151 #endif 4152 4153 /* 4154 * The enqueue_task method is called before nr_running is 4155 * increased. Here we update the fair scheduling stats and 4156 * then put the task into the rbtree: 4157 */ 4158 static void 4159 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4160 { 4161 struct cfs_rq *cfs_rq; 4162 struct sched_entity *se = &p->se; 4163 4164 for_each_sched_entity(se) { 4165 if (se->on_rq) 4166 break; 4167 cfs_rq = cfs_rq_of(se); 4168 enqueue_entity(cfs_rq, se, flags); 4169 4170 /* 4171 * end evaluation on encountering a throttled cfs_rq 4172 * 4173 * note: in the case of encountering a throttled cfs_rq we will 4174 * post the final h_nr_running increment below. 4175 */ 4176 if (cfs_rq_throttled(cfs_rq)) 4177 break; 4178 cfs_rq->h_nr_running++; 4179 4180 flags = ENQUEUE_WAKEUP; 4181 } 4182 4183 for_each_sched_entity(se) { 4184 cfs_rq = cfs_rq_of(se); 4185 cfs_rq->h_nr_running++; 4186 4187 if (cfs_rq_throttled(cfs_rq)) 4188 break; 4189 4190 update_cfs_shares(cfs_rq); 4191 update_entity_load_avg(se, 1); 4192 } 4193 4194 if (!se) { 4195 update_rq_runnable_avg(rq, rq->nr_running); 4196 add_nr_running(rq, 1); 4197 } 4198 hrtick_update(rq); 4199 } 4200 4201 static void set_next_buddy(struct sched_entity *se); 4202 4203 /* 4204 * The dequeue_task method is called before nr_running is 4205 * decreased. We remove the task from the rbtree and 4206 * update the fair scheduling stats: 4207 */ 4208 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4209 { 4210 struct cfs_rq *cfs_rq; 4211 struct sched_entity *se = &p->se; 4212 int task_sleep = flags & DEQUEUE_SLEEP; 4213 4214 for_each_sched_entity(se) { 4215 cfs_rq = cfs_rq_of(se); 4216 dequeue_entity(cfs_rq, se, flags); 4217 4218 /* 4219 * end evaluation on encountering a throttled cfs_rq 4220 * 4221 * note: in the case of encountering a throttled cfs_rq we will 4222 * post the final h_nr_running decrement below. 4223 */ 4224 if (cfs_rq_throttled(cfs_rq)) 4225 break; 4226 cfs_rq->h_nr_running--; 4227 4228 /* Don't dequeue parent if it has other entities besides us */ 4229 if (cfs_rq->load.weight) { 4230 /* 4231 * Bias pick_next to pick a task from this cfs_rq, as 4232 * p is sleeping when it is within its sched_slice. 4233 */ 4234 if (task_sleep && parent_entity(se)) 4235 set_next_buddy(parent_entity(se)); 4236 4237 /* avoid re-evaluating load for this entity */ 4238 se = parent_entity(se); 4239 break; 4240 } 4241 flags |= DEQUEUE_SLEEP; 4242 } 4243 4244 for_each_sched_entity(se) { 4245 cfs_rq = cfs_rq_of(se); 4246 cfs_rq->h_nr_running--; 4247 4248 if (cfs_rq_throttled(cfs_rq)) 4249 break; 4250 4251 update_cfs_shares(cfs_rq); 4252 update_entity_load_avg(se, 1); 4253 } 4254 4255 if (!se) { 4256 sub_nr_running(rq, 1); 4257 update_rq_runnable_avg(rq, 1); 4258 } 4259 hrtick_update(rq); 4260 } 4261 4262 #ifdef CONFIG_SMP 4263 /* Used instead of source_load when we know the type == 0 */ 4264 static unsigned long weighted_cpuload(const int cpu) 4265 { 4266 return cpu_rq(cpu)->cfs.runnable_load_avg; 4267 } 4268 4269 /* 4270 * Return a low guess at the load of a migration-source cpu weighted 4271 * according to the scheduling class and "nice" value. 4272 * 4273 * We want to under-estimate the load of migration sources, to 4274 * balance conservatively. 4275 */ 4276 static unsigned long source_load(int cpu, int type) 4277 { 4278 struct rq *rq = cpu_rq(cpu); 4279 unsigned long total = weighted_cpuload(cpu); 4280 4281 if (type == 0 || !sched_feat(LB_BIAS)) 4282 return total; 4283 4284 return min(rq->cpu_load[type-1], total); 4285 } 4286 4287 /* 4288 * Return a high guess at the load of a migration-target cpu weighted 4289 * according to the scheduling class and "nice" value. 4290 */ 4291 static unsigned long target_load(int cpu, int type) 4292 { 4293 struct rq *rq = cpu_rq(cpu); 4294 unsigned long total = weighted_cpuload(cpu); 4295 4296 if (type == 0 || !sched_feat(LB_BIAS)) 4297 return total; 4298 4299 return max(rq->cpu_load[type-1], total); 4300 } 4301 4302 static unsigned long capacity_of(int cpu) 4303 { 4304 return cpu_rq(cpu)->cpu_capacity; 4305 } 4306 4307 static unsigned long cpu_avg_load_per_task(int cpu) 4308 { 4309 struct rq *rq = cpu_rq(cpu); 4310 unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running); 4311 unsigned long load_avg = rq->cfs.runnable_load_avg; 4312 4313 if (nr_running) 4314 return load_avg / nr_running; 4315 4316 return 0; 4317 } 4318 4319 static void record_wakee(struct task_struct *p) 4320 { 4321 /* 4322 * Rough decay (wiping) for cost saving, don't worry 4323 * about the boundary, really active task won't care 4324 * about the loss. 4325 */ 4326 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 4327 current->wakee_flips >>= 1; 4328 current->wakee_flip_decay_ts = jiffies; 4329 } 4330 4331 if (current->last_wakee != p) { 4332 current->last_wakee = p; 4333 current->wakee_flips++; 4334 } 4335 } 4336 4337 static void task_waking_fair(struct task_struct *p) 4338 { 4339 struct sched_entity *se = &p->se; 4340 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4341 u64 min_vruntime; 4342 4343 #ifndef CONFIG_64BIT 4344 u64 min_vruntime_copy; 4345 4346 do { 4347 min_vruntime_copy = cfs_rq->min_vruntime_copy; 4348 smp_rmb(); 4349 min_vruntime = cfs_rq->min_vruntime; 4350 } while (min_vruntime != min_vruntime_copy); 4351 #else 4352 min_vruntime = cfs_rq->min_vruntime; 4353 #endif 4354 4355 se->vruntime -= min_vruntime; 4356 record_wakee(p); 4357 } 4358 4359 #ifdef CONFIG_FAIR_GROUP_SCHED 4360 /* 4361 * effective_load() calculates the load change as seen from the root_task_group 4362 * 4363 * Adding load to a group doesn't make a group heavier, but can cause movement 4364 * of group shares between cpus. Assuming the shares were perfectly aligned one 4365 * can calculate the shift in shares. 4366 * 4367 * Calculate the effective load difference if @wl is added (subtracted) to @tg 4368 * on this @cpu and results in a total addition (subtraction) of @wg to the 4369 * total group weight. 4370 * 4371 * Given a runqueue weight distribution (rw_i) we can compute a shares 4372 * distribution (s_i) using: 4373 * 4374 * s_i = rw_i / \Sum rw_j (1) 4375 * 4376 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 4377 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 4378 * shares distribution (s_i): 4379 * 4380 * rw_i = { 2, 4, 1, 0 } 4381 * s_i = { 2/7, 4/7, 1/7, 0 } 4382 * 4383 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 4384 * task used to run on and the CPU the waker is running on), we need to 4385 * compute the effect of waking a task on either CPU and, in case of a sync 4386 * wakeup, compute the effect of the current task going to sleep. 4387 * 4388 * So for a change of @wl to the local @cpu with an overall group weight change 4389 * of @wl we can compute the new shares distribution (s'_i) using: 4390 * 4391 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 4392 * 4393 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 4394 * differences in waking a task to CPU 0. The additional task changes the 4395 * weight and shares distributions like: 4396 * 4397 * rw'_i = { 3, 4, 1, 0 } 4398 * s'_i = { 3/8, 4/8, 1/8, 0 } 4399 * 4400 * We can then compute the difference in effective weight by using: 4401 * 4402 * dw_i = S * (s'_i - s_i) (3) 4403 * 4404 * Where 'S' is the group weight as seen by its parent. 4405 * 4406 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 4407 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 4408 * 4/7) times the weight of the group. 4409 */ 4410 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4411 { 4412 struct sched_entity *se = tg->se[cpu]; 4413 4414 if (!tg->parent) /* the trivial, non-cgroup case */ 4415 return wl; 4416 4417 for_each_sched_entity(se) { 4418 long w, W; 4419 4420 tg = se->my_q->tg; 4421 4422 /* 4423 * W = @wg + \Sum rw_j 4424 */ 4425 W = wg + calc_tg_weight(tg, se->my_q); 4426 4427 /* 4428 * w = rw_i + @wl 4429 */ 4430 w = se->my_q->load.weight + wl; 4431 4432 /* 4433 * wl = S * s'_i; see (2) 4434 */ 4435 if (W > 0 && w < W) 4436 wl = (w * (long)tg->shares) / W; 4437 else 4438 wl = tg->shares; 4439 4440 /* 4441 * Per the above, wl is the new se->load.weight value; since 4442 * those are clipped to [MIN_SHARES, ...) do so now. See 4443 * calc_cfs_shares(). 4444 */ 4445 if (wl < MIN_SHARES) 4446 wl = MIN_SHARES; 4447 4448 /* 4449 * wl = dw_i = S * (s'_i - s_i); see (3) 4450 */ 4451 wl -= se->load.weight; 4452 4453 /* 4454 * Recursively apply this logic to all parent groups to compute 4455 * the final effective load change on the root group. Since 4456 * only the @tg group gets extra weight, all parent groups can 4457 * only redistribute existing shares. @wl is the shift in shares 4458 * resulting from this level per the above. 4459 */ 4460 wg = 0; 4461 } 4462 4463 return wl; 4464 } 4465 #else 4466 4467 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4468 { 4469 return wl; 4470 } 4471 4472 #endif 4473 4474 static int wake_wide(struct task_struct *p) 4475 { 4476 int factor = this_cpu_read(sd_llc_size); 4477 4478 /* 4479 * Yeah, it's the switching-frequency, could means many wakee or 4480 * rapidly switch, use factor here will just help to automatically 4481 * adjust the loose-degree, so bigger node will lead to more pull. 4482 */ 4483 if (p->wakee_flips > factor) { 4484 /* 4485 * wakee is somewhat hot, it needs certain amount of cpu 4486 * resource, so if waker is far more hot, prefer to leave 4487 * it alone. 4488 */ 4489 if (current->wakee_flips > (factor * p->wakee_flips)) 4490 return 1; 4491 } 4492 4493 return 0; 4494 } 4495 4496 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 4497 { 4498 s64 this_load, load; 4499 s64 this_eff_load, prev_eff_load; 4500 int idx, this_cpu, prev_cpu; 4501 struct task_group *tg; 4502 unsigned long weight; 4503 int balanced; 4504 4505 /* 4506 * If we wake multiple tasks be careful to not bounce 4507 * ourselves around too much. 4508 */ 4509 if (wake_wide(p)) 4510 return 0; 4511 4512 idx = sd->wake_idx; 4513 this_cpu = smp_processor_id(); 4514 prev_cpu = task_cpu(p); 4515 load = source_load(prev_cpu, idx); 4516 this_load = target_load(this_cpu, idx); 4517 4518 /* 4519 * If sync wakeup then subtract the (maximum possible) 4520 * effect of the currently running task from the load 4521 * of the current CPU: 4522 */ 4523 if (sync) { 4524 tg = task_group(current); 4525 weight = current->se.load.weight; 4526 4527 this_load += effective_load(tg, this_cpu, -weight, -weight); 4528 load += effective_load(tg, prev_cpu, 0, -weight); 4529 } 4530 4531 tg = task_group(p); 4532 weight = p->se.load.weight; 4533 4534 /* 4535 * In low-load situations, where prev_cpu is idle and this_cpu is idle 4536 * due to the sync cause above having dropped this_load to 0, we'll 4537 * always have an imbalance, but there's really nothing you can do 4538 * about that, so that's good too. 4539 * 4540 * Otherwise check if either cpus are near enough in load to allow this 4541 * task to be woken on this_cpu. 4542 */ 4543 this_eff_load = 100; 4544 this_eff_load *= capacity_of(prev_cpu); 4545 4546 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 4547 prev_eff_load *= capacity_of(this_cpu); 4548 4549 if (this_load > 0) { 4550 this_eff_load *= this_load + 4551 effective_load(tg, this_cpu, weight, weight); 4552 4553 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 4554 } 4555 4556 balanced = this_eff_load <= prev_eff_load; 4557 4558 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 4559 4560 if (!balanced) 4561 return 0; 4562 4563 schedstat_inc(sd, ttwu_move_affine); 4564 schedstat_inc(p, se.statistics.nr_wakeups_affine); 4565 4566 return 1; 4567 } 4568 4569 /* 4570 * find_idlest_group finds and returns the least busy CPU group within the 4571 * domain. 4572 */ 4573 static struct sched_group * 4574 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 4575 int this_cpu, int sd_flag) 4576 { 4577 struct sched_group *idlest = NULL, *group = sd->groups; 4578 unsigned long min_load = ULONG_MAX, this_load = 0; 4579 int load_idx = sd->forkexec_idx; 4580 int imbalance = 100 + (sd->imbalance_pct-100)/2; 4581 4582 if (sd_flag & SD_BALANCE_WAKE) 4583 load_idx = sd->wake_idx; 4584 4585 do { 4586 unsigned long load, avg_load; 4587 int local_group; 4588 int i; 4589 4590 /* Skip over this group if it has no CPUs allowed */ 4591 if (!cpumask_intersects(sched_group_cpus(group), 4592 tsk_cpus_allowed(p))) 4593 continue; 4594 4595 local_group = cpumask_test_cpu(this_cpu, 4596 sched_group_cpus(group)); 4597 4598 /* Tally up the load of all CPUs in the group */ 4599 avg_load = 0; 4600 4601 for_each_cpu(i, sched_group_cpus(group)) { 4602 /* Bias balancing toward cpus of our domain */ 4603 if (local_group) 4604 load = source_load(i, load_idx); 4605 else 4606 load = target_load(i, load_idx); 4607 4608 avg_load += load; 4609 } 4610 4611 /* Adjust by relative CPU capacity of the group */ 4612 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity; 4613 4614 if (local_group) { 4615 this_load = avg_load; 4616 } else if (avg_load < min_load) { 4617 min_load = avg_load; 4618 idlest = group; 4619 } 4620 } while (group = group->next, group != sd->groups); 4621 4622 if (!idlest || 100*this_load < imbalance*min_load) 4623 return NULL; 4624 return idlest; 4625 } 4626 4627 /* 4628 * find_idlest_cpu - find the idlest cpu among the cpus in group. 4629 */ 4630 static int 4631 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 4632 { 4633 unsigned long load, min_load = ULONG_MAX; 4634 unsigned int min_exit_latency = UINT_MAX; 4635 u64 latest_idle_timestamp = 0; 4636 int least_loaded_cpu = this_cpu; 4637 int shallowest_idle_cpu = -1; 4638 int i; 4639 4640 /* Traverse only the allowed CPUs */ 4641 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 4642 if (idle_cpu(i)) { 4643 struct rq *rq = cpu_rq(i); 4644 struct cpuidle_state *idle = idle_get_state(rq); 4645 if (idle && idle->exit_latency < min_exit_latency) { 4646 /* 4647 * We give priority to a CPU whose idle state 4648 * has the smallest exit latency irrespective 4649 * of any idle timestamp. 4650 */ 4651 min_exit_latency = idle->exit_latency; 4652 latest_idle_timestamp = rq->idle_stamp; 4653 shallowest_idle_cpu = i; 4654 } else if ((!idle || idle->exit_latency == min_exit_latency) && 4655 rq->idle_stamp > latest_idle_timestamp) { 4656 /* 4657 * If equal or no active idle state, then 4658 * the most recently idled CPU might have 4659 * a warmer cache. 4660 */ 4661 latest_idle_timestamp = rq->idle_stamp; 4662 shallowest_idle_cpu = i; 4663 } 4664 } else if (shallowest_idle_cpu == -1) { 4665 load = weighted_cpuload(i); 4666 if (load < min_load || (load == min_load && i == this_cpu)) { 4667 min_load = load; 4668 least_loaded_cpu = i; 4669 } 4670 } 4671 } 4672 4673 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 4674 } 4675 4676 /* 4677 * Try and locate an idle CPU in the sched_domain. 4678 */ 4679 static int select_idle_sibling(struct task_struct *p, int target) 4680 { 4681 struct sched_domain *sd; 4682 struct sched_group *sg; 4683 int i = task_cpu(p); 4684 4685 if (idle_cpu(target)) 4686 return target; 4687 4688 /* 4689 * If the prevous cpu is cache affine and idle, don't be stupid. 4690 */ 4691 if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) 4692 return i; 4693 4694 /* 4695 * Otherwise, iterate the domains and find an elegible idle cpu. 4696 */ 4697 sd = rcu_dereference(per_cpu(sd_llc, target)); 4698 for_each_lower_domain(sd) { 4699 sg = sd->groups; 4700 do { 4701 if (!cpumask_intersects(sched_group_cpus(sg), 4702 tsk_cpus_allowed(p))) 4703 goto next; 4704 4705 for_each_cpu(i, sched_group_cpus(sg)) { 4706 if (i == target || !idle_cpu(i)) 4707 goto next; 4708 } 4709 4710 target = cpumask_first_and(sched_group_cpus(sg), 4711 tsk_cpus_allowed(p)); 4712 goto done; 4713 next: 4714 sg = sg->next; 4715 } while (sg != sd->groups); 4716 } 4717 done: 4718 return target; 4719 } 4720 4721 /* 4722 * select_task_rq_fair: Select target runqueue for the waking task in domains 4723 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 4724 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 4725 * 4726 * Balances load by selecting the idlest cpu in the idlest group, or under 4727 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. 4728 * 4729 * Returns the target cpu number. 4730 * 4731 * preempt must be disabled. 4732 */ 4733 static int 4734 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 4735 { 4736 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 4737 int cpu = smp_processor_id(); 4738 int new_cpu = cpu; 4739 int want_affine = 0; 4740 int sync = wake_flags & WF_SYNC; 4741 4742 if (sd_flag & SD_BALANCE_WAKE) 4743 want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p)); 4744 4745 rcu_read_lock(); 4746 for_each_domain(cpu, tmp) { 4747 if (!(tmp->flags & SD_LOAD_BALANCE)) 4748 continue; 4749 4750 /* 4751 * If both cpu and prev_cpu are part of this domain, 4752 * cpu is a valid SD_WAKE_AFFINE target. 4753 */ 4754 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 4755 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 4756 affine_sd = tmp; 4757 break; 4758 } 4759 4760 if (tmp->flags & sd_flag) 4761 sd = tmp; 4762 } 4763 4764 if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync)) 4765 prev_cpu = cpu; 4766 4767 if (sd_flag & SD_BALANCE_WAKE) { 4768 new_cpu = select_idle_sibling(p, prev_cpu); 4769 goto unlock; 4770 } 4771 4772 while (sd) { 4773 struct sched_group *group; 4774 int weight; 4775 4776 if (!(sd->flags & sd_flag)) { 4777 sd = sd->child; 4778 continue; 4779 } 4780 4781 group = find_idlest_group(sd, p, cpu, sd_flag); 4782 if (!group) { 4783 sd = sd->child; 4784 continue; 4785 } 4786 4787 new_cpu = find_idlest_cpu(group, p, cpu); 4788 if (new_cpu == -1 || new_cpu == cpu) { 4789 /* Now try balancing at a lower domain level of cpu */ 4790 sd = sd->child; 4791 continue; 4792 } 4793 4794 /* Now try balancing at a lower domain level of new_cpu */ 4795 cpu = new_cpu; 4796 weight = sd->span_weight; 4797 sd = NULL; 4798 for_each_domain(cpu, tmp) { 4799 if (weight <= tmp->span_weight) 4800 break; 4801 if (tmp->flags & sd_flag) 4802 sd = tmp; 4803 } 4804 /* while loop will break here if sd == NULL */ 4805 } 4806 unlock: 4807 rcu_read_unlock(); 4808 4809 return new_cpu; 4810 } 4811 4812 /* 4813 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 4814 * cfs_rq_of(p) references at time of call are still valid and identify the 4815 * previous cpu. However, the caller only guarantees p->pi_lock is held; no 4816 * other assumptions, including the state of rq->lock, should be made. 4817 */ 4818 static void 4819 migrate_task_rq_fair(struct task_struct *p, int next_cpu) 4820 { 4821 struct sched_entity *se = &p->se; 4822 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4823 4824 /* 4825 * Load tracking: accumulate removed load so that it can be processed 4826 * when we next update owning cfs_rq under rq->lock. Tasks contribute 4827 * to blocked load iff they have a positive decay-count. It can never 4828 * be negative here since on-rq tasks have decay-count == 0. 4829 */ 4830 if (se->avg.decay_count) { 4831 se->avg.decay_count = -__synchronize_entity_decay(se); 4832 atomic_long_add(se->avg.load_avg_contrib, 4833 &cfs_rq->removed_load); 4834 } 4835 4836 /* We have migrated, no longer consider this task hot */ 4837 se->exec_start = 0; 4838 } 4839 #endif /* CONFIG_SMP */ 4840 4841 static unsigned long 4842 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 4843 { 4844 unsigned long gran = sysctl_sched_wakeup_granularity; 4845 4846 /* 4847 * Since its curr running now, convert the gran from real-time 4848 * to virtual-time in his units. 4849 * 4850 * By using 'se' instead of 'curr' we penalize light tasks, so 4851 * they get preempted easier. That is, if 'se' < 'curr' then 4852 * the resulting gran will be larger, therefore penalizing the 4853 * lighter, if otoh 'se' > 'curr' then the resulting gran will 4854 * be smaller, again penalizing the lighter task. 4855 * 4856 * This is especially important for buddies when the leftmost 4857 * task is higher priority than the buddy. 4858 */ 4859 return calc_delta_fair(gran, se); 4860 } 4861 4862 /* 4863 * Should 'se' preempt 'curr'. 4864 * 4865 * |s1 4866 * |s2 4867 * |s3 4868 * g 4869 * |<--->|c 4870 * 4871 * w(c, s1) = -1 4872 * w(c, s2) = 0 4873 * w(c, s3) = 1 4874 * 4875 */ 4876 static int 4877 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 4878 { 4879 s64 gran, vdiff = curr->vruntime - se->vruntime; 4880 4881 if (vdiff <= 0) 4882 return -1; 4883 4884 gran = wakeup_gran(curr, se); 4885 if (vdiff > gran) 4886 return 1; 4887 4888 return 0; 4889 } 4890 4891 static void set_last_buddy(struct sched_entity *se) 4892 { 4893 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 4894 return; 4895 4896 for_each_sched_entity(se) 4897 cfs_rq_of(se)->last = se; 4898 } 4899 4900 static void set_next_buddy(struct sched_entity *se) 4901 { 4902 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 4903 return; 4904 4905 for_each_sched_entity(se) 4906 cfs_rq_of(se)->next = se; 4907 } 4908 4909 static void set_skip_buddy(struct sched_entity *se) 4910 { 4911 for_each_sched_entity(se) 4912 cfs_rq_of(se)->skip = se; 4913 } 4914 4915 /* 4916 * Preempt the current task with a newly woken task if needed: 4917 */ 4918 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 4919 { 4920 struct task_struct *curr = rq->curr; 4921 struct sched_entity *se = &curr->se, *pse = &p->se; 4922 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 4923 int scale = cfs_rq->nr_running >= sched_nr_latency; 4924 int next_buddy_marked = 0; 4925 4926 if (unlikely(se == pse)) 4927 return; 4928 4929 /* 4930 * This is possible from callers such as attach_tasks(), in which we 4931 * unconditionally check_prempt_curr() after an enqueue (which may have 4932 * lead to a throttle). This both saves work and prevents false 4933 * next-buddy nomination below. 4934 */ 4935 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 4936 return; 4937 4938 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 4939 set_next_buddy(pse); 4940 next_buddy_marked = 1; 4941 } 4942 4943 /* 4944 * We can come here with TIF_NEED_RESCHED already set from new task 4945 * wake up path. 4946 * 4947 * Note: this also catches the edge-case of curr being in a throttled 4948 * group (e.g. via set_curr_task), since update_curr() (in the 4949 * enqueue of curr) will have resulted in resched being set. This 4950 * prevents us from potentially nominating it as a false LAST_BUDDY 4951 * below. 4952 */ 4953 if (test_tsk_need_resched(curr)) 4954 return; 4955 4956 /* Idle tasks are by definition preempted by non-idle tasks. */ 4957 if (unlikely(curr->policy == SCHED_IDLE) && 4958 likely(p->policy != SCHED_IDLE)) 4959 goto preempt; 4960 4961 /* 4962 * Batch and idle tasks do not preempt non-idle tasks (their preemption 4963 * is driven by the tick): 4964 */ 4965 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 4966 return; 4967 4968 find_matching_se(&se, &pse); 4969 update_curr(cfs_rq_of(se)); 4970 BUG_ON(!pse); 4971 if (wakeup_preempt_entity(se, pse) == 1) { 4972 /* 4973 * Bias pick_next to pick the sched entity that is 4974 * triggering this preemption. 4975 */ 4976 if (!next_buddy_marked) 4977 set_next_buddy(pse); 4978 goto preempt; 4979 } 4980 4981 return; 4982 4983 preempt: 4984 resched_curr(rq); 4985 /* 4986 * Only set the backward buddy when the current task is still 4987 * on the rq. This can happen when a wakeup gets interleaved 4988 * with schedule on the ->pre_schedule() or idle_balance() 4989 * point, either of which can * drop the rq lock. 4990 * 4991 * Also, during early boot the idle thread is in the fair class, 4992 * for obvious reasons its a bad idea to schedule back to it. 4993 */ 4994 if (unlikely(!se->on_rq || curr == rq->idle)) 4995 return; 4996 4997 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 4998 set_last_buddy(se); 4999 } 5000 5001 static struct task_struct * 5002 pick_next_task_fair(struct rq *rq, struct task_struct *prev) 5003 { 5004 struct cfs_rq *cfs_rq = &rq->cfs; 5005 struct sched_entity *se; 5006 struct task_struct *p; 5007 int new_tasks; 5008 5009 again: 5010 #ifdef CONFIG_FAIR_GROUP_SCHED 5011 if (!cfs_rq->nr_running) 5012 goto idle; 5013 5014 if (prev->sched_class != &fair_sched_class) 5015 goto simple; 5016 5017 /* 5018 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 5019 * likely that a next task is from the same cgroup as the current. 5020 * 5021 * Therefore attempt to avoid putting and setting the entire cgroup 5022 * hierarchy, only change the part that actually changes. 5023 */ 5024 5025 do { 5026 struct sched_entity *curr = cfs_rq->curr; 5027 5028 /* 5029 * Since we got here without doing put_prev_entity() we also 5030 * have to consider cfs_rq->curr. If it is still a runnable 5031 * entity, update_curr() will update its vruntime, otherwise 5032 * forget we've ever seen it. 5033 */ 5034 if (curr && curr->on_rq) 5035 update_curr(cfs_rq); 5036 else 5037 curr = NULL; 5038 5039 /* 5040 * This call to check_cfs_rq_runtime() will do the throttle and 5041 * dequeue its entity in the parent(s). Therefore the 'simple' 5042 * nr_running test will indeed be correct. 5043 */ 5044 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 5045 goto simple; 5046 5047 se = pick_next_entity(cfs_rq, curr); 5048 cfs_rq = group_cfs_rq(se); 5049 } while (cfs_rq); 5050 5051 p = task_of(se); 5052 5053 /* 5054 * Since we haven't yet done put_prev_entity and if the selected task 5055 * is a different task than we started out with, try and touch the 5056 * least amount of cfs_rqs. 5057 */ 5058 if (prev != p) { 5059 struct sched_entity *pse = &prev->se; 5060 5061 while (!(cfs_rq = is_same_group(se, pse))) { 5062 int se_depth = se->depth; 5063 int pse_depth = pse->depth; 5064 5065 if (se_depth <= pse_depth) { 5066 put_prev_entity(cfs_rq_of(pse), pse); 5067 pse = parent_entity(pse); 5068 } 5069 if (se_depth >= pse_depth) { 5070 set_next_entity(cfs_rq_of(se), se); 5071 se = parent_entity(se); 5072 } 5073 } 5074 5075 put_prev_entity(cfs_rq, pse); 5076 set_next_entity(cfs_rq, se); 5077 } 5078 5079 if (hrtick_enabled(rq)) 5080 hrtick_start_fair(rq, p); 5081 5082 return p; 5083 simple: 5084 cfs_rq = &rq->cfs; 5085 #endif 5086 5087 if (!cfs_rq->nr_running) 5088 goto idle; 5089 5090 put_prev_task(rq, prev); 5091 5092 do { 5093 se = pick_next_entity(cfs_rq, NULL); 5094 set_next_entity(cfs_rq, se); 5095 cfs_rq = group_cfs_rq(se); 5096 } while (cfs_rq); 5097 5098 p = task_of(se); 5099 5100 if (hrtick_enabled(rq)) 5101 hrtick_start_fair(rq, p); 5102 5103 return p; 5104 5105 idle: 5106 new_tasks = idle_balance(rq); 5107 /* 5108 * Because idle_balance() releases (and re-acquires) rq->lock, it is 5109 * possible for any higher priority task to appear. In that case we 5110 * must re-start the pick_next_entity() loop. 5111 */ 5112 if (new_tasks < 0) 5113 return RETRY_TASK; 5114 5115 if (new_tasks > 0) 5116 goto again; 5117 5118 return NULL; 5119 } 5120 5121 /* 5122 * Account for a descheduled task: 5123 */ 5124 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 5125 { 5126 struct sched_entity *se = &prev->se; 5127 struct cfs_rq *cfs_rq; 5128 5129 for_each_sched_entity(se) { 5130 cfs_rq = cfs_rq_of(se); 5131 put_prev_entity(cfs_rq, se); 5132 } 5133 } 5134 5135 /* 5136 * sched_yield() is very simple 5137 * 5138 * The magic of dealing with the ->skip buddy is in pick_next_entity. 5139 */ 5140 static void yield_task_fair(struct rq *rq) 5141 { 5142 struct task_struct *curr = rq->curr; 5143 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 5144 struct sched_entity *se = &curr->se; 5145 5146 /* 5147 * Are we the only task in the tree? 5148 */ 5149 if (unlikely(rq->nr_running == 1)) 5150 return; 5151 5152 clear_buddies(cfs_rq, se); 5153 5154 if (curr->policy != SCHED_BATCH) { 5155 update_rq_clock(rq); 5156 /* 5157 * Update run-time statistics of the 'current'. 5158 */ 5159 update_curr(cfs_rq); 5160 /* 5161 * Tell update_rq_clock() that we've just updated, 5162 * so we don't do microscopic update in schedule() 5163 * and double the fastpath cost. 5164 */ 5165 rq_clock_skip_update(rq, true); 5166 } 5167 5168 set_skip_buddy(se); 5169 } 5170 5171 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 5172 { 5173 struct sched_entity *se = &p->se; 5174 5175 /* throttled hierarchies are not runnable */ 5176 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 5177 return false; 5178 5179 /* Tell the scheduler that we'd really like pse to run next. */ 5180 set_next_buddy(se); 5181 5182 yield_task_fair(rq); 5183 5184 return true; 5185 } 5186 5187 #ifdef CONFIG_SMP 5188 /************************************************** 5189 * Fair scheduling class load-balancing methods. 5190 * 5191 * BASICS 5192 * 5193 * The purpose of load-balancing is to achieve the same basic fairness the 5194 * per-cpu scheduler provides, namely provide a proportional amount of compute 5195 * time to each task. This is expressed in the following equation: 5196 * 5197 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 5198 * 5199 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 5200 * W_i,0 is defined as: 5201 * 5202 * W_i,0 = \Sum_j w_i,j (2) 5203 * 5204 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 5205 * is derived from the nice value as per prio_to_weight[]. 5206 * 5207 * The weight average is an exponential decay average of the instantaneous 5208 * weight: 5209 * 5210 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 5211 * 5212 * C_i is the compute capacity of cpu i, typically it is the 5213 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 5214 * can also include other factors [XXX]. 5215 * 5216 * To achieve this balance we define a measure of imbalance which follows 5217 * directly from (1): 5218 * 5219 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 5220 * 5221 * We them move tasks around to minimize the imbalance. In the continuous 5222 * function space it is obvious this converges, in the discrete case we get 5223 * a few fun cases generally called infeasible weight scenarios. 5224 * 5225 * [XXX expand on: 5226 * - infeasible weights; 5227 * - local vs global optima in the discrete case. ] 5228 * 5229 * 5230 * SCHED DOMAINS 5231 * 5232 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 5233 * for all i,j solution, we create a tree of cpus that follows the hardware 5234 * topology where each level pairs two lower groups (or better). This results 5235 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 5236 * tree to only the first of the previous level and we decrease the frequency 5237 * of load-balance at each level inv. proportional to the number of cpus in 5238 * the groups. 5239 * 5240 * This yields: 5241 * 5242 * log_2 n 1 n 5243 * \Sum { --- * --- * 2^i } = O(n) (5) 5244 * i = 0 2^i 2^i 5245 * `- size of each group 5246 * | | `- number of cpus doing load-balance 5247 * | `- freq 5248 * `- sum over all levels 5249 * 5250 * Coupled with a limit on how many tasks we can migrate every balance pass, 5251 * this makes (5) the runtime complexity of the balancer. 5252 * 5253 * An important property here is that each CPU is still (indirectly) connected 5254 * to every other cpu in at most O(log n) steps: 5255 * 5256 * The adjacency matrix of the resulting graph is given by: 5257 * 5258 * log_2 n 5259 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 5260 * k = 0 5261 * 5262 * And you'll find that: 5263 * 5264 * A^(log_2 n)_i,j != 0 for all i,j (7) 5265 * 5266 * Showing there's indeed a path between every cpu in at most O(log n) steps. 5267 * The task movement gives a factor of O(m), giving a convergence complexity 5268 * of: 5269 * 5270 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 5271 * 5272 * 5273 * WORK CONSERVING 5274 * 5275 * In order to avoid CPUs going idle while there's still work to do, new idle 5276 * balancing is more aggressive and has the newly idle cpu iterate up the domain 5277 * tree itself instead of relying on other CPUs to bring it work. 5278 * 5279 * This adds some complexity to both (5) and (8) but it reduces the total idle 5280 * time. 5281 * 5282 * [XXX more?] 5283 * 5284 * 5285 * CGROUPS 5286 * 5287 * Cgroups make a horror show out of (2), instead of a simple sum we get: 5288 * 5289 * s_k,i 5290 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 5291 * S_k 5292 * 5293 * Where 5294 * 5295 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 5296 * 5297 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 5298 * 5299 * The big problem is S_k, its a global sum needed to compute a local (W_i) 5300 * property. 5301 * 5302 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 5303 * rewrite all of this once again.] 5304 */ 5305 5306 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 5307 5308 enum fbq_type { regular, remote, all }; 5309 5310 #define LBF_ALL_PINNED 0x01 5311 #define LBF_NEED_BREAK 0x02 5312 #define LBF_DST_PINNED 0x04 5313 #define LBF_SOME_PINNED 0x08 5314 5315 struct lb_env { 5316 struct sched_domain *sd; 5317 5318 struct rq *src_rq; 5319 int src_cpu; 5320 5321 int dst_cpu; 5322 struct rq *dst_rq; 5323 5324 struct cpumask *dst_grpmask; 5325 int new_dst_cpu; 5326 enum cpu_idle_type idle; 5327 long imbalance; 5328 /* The set of CPUs under consideration for load-balancing */ 5329 struct cpumask *cpus; 5330 5331 unsigned int flags; 5332 5333 unsigned int loop; 5334 unsigned int loop_break; 5335 unsigned int loop_max; 5336 5337 enum fbq_type fbq_type; 5338 struct list_head tasks; 5339 }; 5340 5341 /* 5342 * Is this task likely cache-hot: 5343 */ 5344 static int task_hot(struct task_struct *p, struct lb_env *env) 5345 { 5346 s64 delta; 5347 5348 lockdep_assert_held(&env->src_rq->lock); 5349 5350 if (p->sched_class != &fair_sched_class) 5351 return 0; 5352 5353 if (unlikely(p->policy == SCHED_IDLE)) 5354 return 0; 5355 5356 /* 5357 * Buddy candidates are cache hot: 5358 */ 5359 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 5360 (&p->se == cfs_rq_of(&p->se)->next || 5361 &p->se == cfs_rq_of(&p->se)->last)) 5362 return 1; 5363 5364 if (sysctl_sched_migration_cost == -1) 5365 return 1; 5366 if (sysctl_sched_migration_cost == 0) 5367 return 0; 5368 5369 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 5370 5371 return delta < (s64)sysctl_sched_migration_cost; 5372 } 5373 5374 #ifdef CONFIG_NUMA_BALANCING 5375 /* Returns true if the destination node has incurred more faults */ 5376 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env) 5377 { 5378 struct numa_group *numa_group = rcu_dereference(p->numa_group); 5379 int src_nid, dst_nid; 5380 5381 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults || 5382 !(env->sd->flags & SD_NUMA)) { 5383 return false; 5384 } 5385 5386 src_nid = cpu_to_node(env->src_cpu); 5387 dst_nid = cpu_to_node(env->dst_cpu); 5388 5389 if (src_nid == dst_nid) 5390 return false; 5391 5392 if (numa_group) { 5393 /* Task is already in the group's interleave set. */ 5394 if (node_isset(src_nid, numa_group->active_nodes)) 5395 return false; 5396 5397 /* Task is moving into the group's interleave set. */ 5398 if (node_isset(dst_nid, numa_group->active_nodes)) 5399 return true; 5400 5401 return group_faults(p, dst_nid) > group_faults(p, src_nid); 5402 } 5403 5404 /* Encourage migration to the preferred node. */ 5405 if (dst_nid == p->numa_preferred_nid) 5406 return true; 5407 5408 return task_faults(p, dst_nid) > task_faults(p, src_nid); 5409 } 5410 5411 5412 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 5413 { 5414 struct numa_group *numa_group = rcu_dereference(p->numa_group); 5415 int src_nid, dst_nid; 5416 5417 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER)) 5418 return false; 5419 5420 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 5421 return false; 5422 5423 src_nid = cpu_to_node(env->src_cpu); 5424 dst_nid = cpu_to_node(env->dst_cpu); 5425 5426 if (src_nid == dst_nid) 5427 return false; 5428 5429 if (numa_group) { 5430 /* Task is moving within/into the group's interleave set. */ 5431 if (node_isset(dst_nid, numa_group->active_nodes)) 5432 return false; 5433 5434 /* Task is moving out of the group's interleave set. */ 5435 if (node_isset(src_nid, numa_group->active_nodes)) 5436 return true; 5437 5438 return group_faults(p, dst_nid) < group_faults(p, src_nid); 5439 } 5440 5441 /* Migrating away from the preferred node is always bad. */ 5442 if (src_nid == p->numa_preferred_nid) 5443 return true; 5444 5445 return task_faults(p, dst_nid) < task_faults(p, src_nid); 5446 } 5447 5448 #else 5449 static inline bool migrate_improves_locality(struct task_struct *p, 5450 struct lb_env *env) 5451 { 5452 return false; 5453 } 5454 5455 static inline bool migrate_degrades_locality(struct task_struct *p, 5456 struct lb_env *env) 5457 { 5458 return false; 5459 } 5460 #endif 5461 5462 /* 5463 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 5464 */ 5465 static 5466 int can_migrate_task(struct task_struct *p, struct lb_env *env) 5467 { 5468 int tsk_cache_hot = 0; 5469 5470 lockdep_assert_held(&env->src_rq->lock); 5471 5472 /* 5473 * We do not migrate tasks that are: 5474 * 1) throttled_lb_pair, or 5475 * 2) cannot be migrated to this CPU due to cpus_allowed, or 5476 * 3) running (obviously), or 5477 * 4) are cache-hot on their current CPU. 5478 */ 5479 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 5480 return 0; 5481 5482 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 5483 int cpu; 5484 5485 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 5486 5487 env->flags |= LBF_SOME_PINNED; 5488 5489 /* 5490 * Remember if this task can be migrated to any other cpu in 5491 * our sched_group. We may want to revisit it if we couldn't 5492 * meet load balance goals by pulling other tasks on src_cpu. 5493 * 5494 * Also avoid computing new_dst_cpu if we have already computed 5495 * one in current iteration. 5496 */ 5497 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) 5498 return 0; 5499 5500 /* Prevent to re-select dst_cpu via env's cpus */ 5501 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 5502 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { 5503 env->flags |= LBF_DST_PINNED; 5504 env->new_dst_cpu = cpu; 5505 break; 5506 } 5507 } 5508 5509 return 0; 5510 } 5511 5512 /* Record that we found atleast one task that could run on dst_cpu */ 5513 env->flags &= ~LBF_ALL_PINNED; 5514 5515 if (task_running(env->src_rq, p)) { 5516 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 5517 return 0; 5518 } 5519 5520 /* 5521 * Aggressive migration if: 5522 * 1) destination numa is preferred 5523 * 2) task is cache cold, or 5524 * 3) too many balance attempts have failed. 5525 */ 5526 tsk_cache_hot = task_hot(p, env); 5527 if (!tsk_cache_hot) 5528 tsk_cache_hot = migrate_degrades_locality(p, env); 5529 5530 if (migrate_improves_locality(p, env) || !tsk_cache_hot || 5531 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 5532 if (tsk_cache_hot) { 5533 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 5534 schedstat_inc(p, se.statistics.nr_forced_migrations); 5535 } 5536 return 1; 5537 } 5538 5539 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 5540 return 0; 5541 } 5542 5543 /* 5544 * detach_task() -- detach the task for the migration specified in env 5545 */ 5546 static void detach_task(struct task_struct *p, struct lb_env *env) 5547 { 5548 lockdep_assert_held(&env->src_rq->lock); 5549 5550 deactivate_task(env->src_rq, p, 0); 5551 p->on_rq = TASK_ON_RQ_MIGRATING; 5552 set_task_cpu(p, env->dst_cpu); 5553 } 5554 5555 /* 5556 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 5557 * part of active balancing operations within "domain". 5558 * 5559 * Returns a task if successful and NULL otherwise. 5560 */ 5561 static struct task_struct *detach_one_task(struct lb_env *env) 5562 { 5563 struct task_struct *p, *n; 5564 5565 lockdep_assert_held(&env->src_rq->lock); 5566 5567 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 5568 if (!can_migrate_task(p, env)) 5569 continue; 5570 5571 detach_task(p, env); 5572 5573 /* 5574 * Right now, this is only the second place where 5575 * lb_gained[env->idle] is updated (other is detach_tasks) 5576 * so we can safely collect stats here rather than 5577 * inside detach_tasks(). 5578 */ 5579 schedstat_inc(env->sd, lb_gained[env->idle]); 5580 return p; 5581 } 5582 return NULL; 5583 } 5584 5585 static const unsigned int sched_nr_migrate_break = 32; 5586 5587 /* 5588 * detach_tasks() -- tries to detach up to imbalance weighted load from 5589 * busiest_rq, as part of a balancing operation within domain "sd". 5590 * 5591 * Returns number of detached tasks if successful and 0 otherwise. 5592 */ 5593 static int detach_tasks(struct lb_env *env) 5594 { 5595 struct list_head *tasks = &env->src_rq->cfs_tasks; 5596 struct task_struct *p; 5597 unsigned long load; 5598 int detached = 0; 5599 5600 lockdep_assert_held(&env->src_rq->lock); 5601 5602 if (env->imbalance <= 0) 5603 return 0; 5604 5605 while (!list_empty(tasks)) { 5606 p = list_first_entry(tasks, struct task_struct, se.group_node); 5607 5608 env->loop++; 5609 /* We've more or less seen every task there is, call it quits */ 5610 if (env->loop > env->loop_max) 5611 break; 5612 5613 /* take a breather every nr_migrate tasks */ 5614 if (env->loop > env->loop_break) { 5615 env->loop_break += sched_nr_migrate_break; 5616 env->flags |= LBF_NEED_BREAK; 5617 break; 5618 } 5619 5620 if (!can_migrate_task(p, env)) 5621 goto next; 5622 5623 load = task_h_load(p); 5624 5625 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 5626 goto next; 5627 5628 if ((load / 2) > env->imbalance) 5629 goto next; 5630 5631 detach_task(p, env); 5632 list_add(&p->se.group_node, &env->tasks); 5633 5634 detached++; 5635 env->imbalance -= load; 5636 5637 #ifdef CONFIG_PREEMPT 5638 /* 5639 * NEWIDLE balancing is a source of latency, so preemptible 5640 * kernels will stop after the first task is detached to minimize 5641 * the critical section. 5642 */ 5643 if (env->idle == CPU_NEWLY_IDLE) 5644 break; 5645 #endif 5646 5647 /* 5648 * We only want to steal up to the prescribed amount of 5649 * weighted load. 5650 */ 5651 if (env->imbalance <= 0) 5652 break; 5653 5654 continue; 5655 next: 5656 list_move_tail(&p->se.group_node, tasks); 5657 } 5658 5659 /* 5660 * Right now, this is one of only two places we collect this stat 5661 * so we can safely collect detach_one_task() stats here rather 5662 * than inside detach_one_task(). 5663 */ 5664 schedstat_add(env->sd, lb_gained[env->idle], detached); 5665 5666 return detached; 5667 } 5668 5669 /* 5670 * attach_task() -- attach the task detached by detach_task() to its new rq. 5671 */ 5672 static void attach_task(struct rq *rq, struct task_struct *p) 5673 { 5674 lockdep_assert_held(&rq->lock); 5675 5676 BUG_ON(task_rq(p) != rq); 5677 p->on_rq = TASK_ON_RQ_QUEUED; 5678 activate_task(rq, p, 0); 5679 check_preempt_curr(rq, p, 0); 5680 } 5681 5682 /* 5683 * attach_one_task() -- attaches the task returned from detach_one_task() to 5684 * its new rq. 5685 */ 5686 static void attach_one_task(struct rq *rq, struct task_struct *p) 5687 { 5688 raw_spin_lock(&rq->lock); 5689 attach_task(rq, p); 5690 raw_spin_unlock(&rq->lock); 5691 } 5692 5693 /* 5694 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 5695 * new rq. 5696 */ 5697 static void attach_tasks(struct lb_env *env) 5698 { 5699 struct list_head *tasks = &env->tasks; 5700 struct task_struct *p; 5701 5702 raw_spin_lock(&env->dst_rq->lock); 5703 5704 while (!list_empty(tasks)) { 5705 p = list_first_entry(tasks, struct task_struct, se.group_node); 5706 list_del_init(&p->se.group_node); 5707 5708 attach_task(env->dst_rq, p); 5709 } 5710 5711 raw_spin_unlock(&env->dst_rq->lock); 5712 } 5713 5714 #ifdef CONFIG_FAIR_GROUP_SCHED 5715 /* 5716 * update tg->load_weight by folding this cpu's load_avg 5717 */ 5718 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu) 5719 { 5720 struct sched_entity *se = tg->se[cpu]; 5721 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu]; 5722 5723 /* throttled entities do not contribute to load */ 5724 if (throttled_hierarchy(cfs_rq)) 5725 return; 5726 5727 update_cfs_rq_blocked_load(cfs_rq, 1); 5728 5729 if (se) { 5730 update_entity_load_avg(se, 1); 5731 /* 5732 * We pivot on our runnable average having decayed to zero for 5733 * list removal. This generally implies that all our children 5734 * have also been removed (modulo rounding error or bandwidth 5735 * control); however, such cases are rare and we can fix these 5736 * at enqueue. 5737 * 5738 * TODO: fix up out-of-order children on enqueue. 5739 */ 5740 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running) 5741 list_del_leaf_cfs_rq(cfs_rq); 5742 } else { 5743 struct rq *rq = rq_of(cfs_rq); 5744 update_rq_runnable_avg(rq, rq->nr_running); 5745 } 5746 } 5747 5748 static void update_blocked_averages(int cpu) 5749 { 5750 struct rq *rq = cpu_rq(cpu); 5751 struct cfs_rq *cfs_rq; 5752 unsigned long flags; 5753 5754 raw_spin_lock_irqsave(&rq->lock, flags); 5755 update_rq_clock(rq); 5756 /* 5757 * Iterates the task_group tree in a bottom up fashion, see 5758 * list_add_leaf_cfs_rq() for details. 5759 */ 5760 for_each_leaf_cfs_rq(rq, cfs_rq) { 5761 /* 5762 * Note: We may want to consider periodically releasing 5763 * rq->lock about these updates so that creating many task 5764 * groups does not result in continually extending hold time. 5765 */ 5766 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu); 5767 } 5768 5769 raw_spin_unlock_irqrestore(&rq->lock, flags); 5770 } 5771 5772 /* 5773 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 5774 * This needs to be done in a top-down fashion because the load of a child 5775 * group is a fraction of its parents load. 5776 */ 5777 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 5778 { 5779 struct rq *rq = rq_of(cfs_rq); 5780 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 5781 unsigned long now = jiffies; 5782 unsigned long load; 5783 5784 if (cfs_rq->last_h_load_update == now) 5785 return; 5786 5787 cfs_rq->h_load_next = NULL; 5788 for_each_sched_entity(se) { 5789 cfs_rq = cfs_rq_of(se); 5790 cfs_rq->h_load_next = se; 5791 if (cfs_rq->last_h_load_update == now) 5792 break; 5793 } 5794 5795 if (!se) { 5796 cfs_rq->h_load = cfs_rq->runnable_load_avg; 5797 cfs_rq->last_h_load_update = now; 5798 } 5799 5800 while ((se = cfs_rq->h_load_next) != NULL) { 5801 load = cfs_rq->h_load; 5802 load = div64_ul(load * se->avg.load_avg_contrib, 5803 cfs_rq->runnable_load_avg + 1); 5804 cfs_rq = group_cfs_rq(se); 5805 cfs_rq->h_load = load; 5806 cfs_rq->last_h_load_update = now; 5807 } 5808 } 5809 5810 static unsigned long task_h_load(struct task_struct *p) 5811 { 5812 struct cfs_rq *cfs_rq = task_cfs_rq(p); 5813 5814 update_cfs_rq_h_load(cfs_rq); 5815 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load, 5816 cfs_rq->runnable_load_avg + 1); 5817 } 5818 #else 5819 static inline void update_blocked_averages(int cpu) 5820 { 5821 } 5822 5823 static unsigned long task_h_load(struct task_struct *p) 5824 { 5825 return p->se.avg.load_avg_contrib; 5826 } 5827 #endif 5828 5829 /********** Helpers for find_busiest_group ************************/ 5830 5831 enum group_type { 5832 group_other = 0, 5833 group_imbalanced, 5834 group_overloaded, 5835 }; 5836 5837 /* 5838 * sg_lb_stats - stats of a sched_group required for load_balancing 5839 */ 5840 struct sg_lb_stats { 5841 unsigned long avg_load; /*Avg load across the CPUs of the group */ 5842 unsigned long group_load; /* Total load over the CPUs of the group */ 5843 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 5844 unsigned long load_per_task; 5845 unsigned long group_capacity; 5846 unsigned int sum_nr_running; /* Nr tasks running in the group */ 5847 unsigned int group_capacity_factor; 5848 unsigned int idle_cpus; 5849 unsigned int group_weight; 5850 enum group_type group_type; 5851 int group_has_free_capacity; 5852 #ifdef CONFIG_NUMA_BALANCING 5853 unsigned int nr_numa_running; 5854 unsigned int nr_preferred_running; 5855 #endif 5856 }; 5857 5858 /* 5859 * sd_lb_stats - Structure to store the statistics of a sched_domain 5860 * during load balancing. 5861 */ 5862 struct sd_lb_stats { 5863 struct sched_group *busiest; /* Busiest group in this sd */ 5864 struct sched_group *local; /* Local group in this sd */ 5865 unsigned long total_load; /* Total load of all groups in sd */ 5866 unsigned long total_capacity; /* Total capacity of all groups in sd */ 5867 unsigned long avg_load; /* Average load across all groups in sd */ 5868 5869 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 5870 struct sg_lb_stats local_stat; /* Statistics of the local group */ 5871 }; 5872 5873 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 5874 { 5875 /* 5876 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 5877 * local_stat because update_sg_lb_stats() does a full clear/assignment. 5878 * We must however clear busiest_stat::avg_load because 5879 * update_sd_pick_busiest() reads this before assignment. 5880 */ 5881 *sds = (struct sd_lb_stats){ 5882 .busiest = NULL, 5883 .local = NULL, 5884 .total_load = 0UL, 5885 .total_capacity = 0UL, 5886 .busiest_stat = { 5887 .avg_load = 0UL, 5888 .sum_nr_running = 0, 5889 .group_type = group_other, 5890 }, 5891 }; 5892 } 5893 5894 /** 5895 * get_sd_load_idx - Obtain the load index for a given sched domain. 5896 * @sd: The sched_domain whose load_idx is to be obtained. 5897 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 5898 * 5899 * Return: The load index. 5900 */ 5901 static inline int get_sd_load_idx(struct sched_domain *sd, 5902 enum cpu_idle_type idle) 5903 { 5904 int load_idx; 5905 5906 switch (idle) { 5907 case CPU_NOT_IDLE: 5908 load_idx = sd->busy_idx; 5909 break; 5910 5911 case CPU_NEWLY_IDLE: 5912 load_idx = sd->newidle_idx; 5913 break; 5914 default: 5915 load_idx = sd->idle_idx; 5916 break; 5917 } 5918 5919 return load_idx; 5920 } 5921 5922 static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu) 5923 { 5924 return SCHED_CAPACITY_SCALE; 5925 } 5926 5927 unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu) 5928 { 5929 return default_scale_capacity(sd, cpu); 5930 } 5931 5932 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu) 5933 { 5934 if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1)) 5935 return sd->smt_gain / sd->span_weight; 5936 5937 return SCHED_CAPACITY_SCALE; 5938 } 5939 5940 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu) 5941 { 5942 return default_scale_cpu_capacity(sd, cpu); 5943 } 5944 5945 static unsigned long scale_rt_capacity(int cpu) 5946 { 5947 struct rq *rq = cpu_rq(cpu); 5948 u64 total, available, age_stamp, avg; 5949 s64 delta; 5950 5951 /* 5952 * Since we're reading these variables without serialization make sure 5953 * we read them once before doing sanity checks on them. 5954 */ 5955 age_stamp = ACCESS_ONCE(rq->age_stamp); 5956 avg = ACCESS_ONCE(rq->rt_avg); 5957 delta = __rq_clock_broken(rq) - age_stamp; 5958 5959 if (unlikely(delta < 0)) 5960 delta = 0; 5961 5962 total = sched_avg_period() + delta; 5963 5964 if (unlikely(total < avg)) { 5965 /* Ensures that capacity won't end up being negative */ 5966 available = 0; 5967 } else { 5968 available = total - avg; 5969 } 5970 5971 if (unlikely((s64)total < SCHED_CAPACITY_SCALE)) 5972 total = SCHED_CAPACITY_SCALE; 5973 5974 total >>= SCHED_CAPACITY_SHIFT; 5975 5976 return div_u64(available, total); 5977 } 5978 5979 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 5980 { 5981 unsigned long capacity = SCHED_CAPACITY_SCALE; 5982 struct sched_group *sdg = sd->groups; 5983 5984 if (sched_feat(ARCH_CAPACITY)) 5985 capacity *= arch_scale_cpu_capacity(sd, cpu); 5986 else 5987 capacity *= default_scale_cpu_capacity(sd, cpu); 5988 5989 capacity >>= SCHED_CAPACITY_SHIFT; 5990 5991 sdg->sgc->capacity_orig = capacity; 5992 5993 if (sched_feat(ARCH_CAPACITY)) 5994 capacity *= arch_scale_freq_capacity(sd, cpu); 5995 else 5996 capacity *= default_scale_capacity(sd, cpu); 5997 5998 capacity >>= SCHED_CAPACITY_SHIFT; 5999 6000 capacity *= scale_rt_capacity(cpu); 6001 capacity >>= SCHED_CAPACITY_SHIFT; 6002 6003 if (!capacity) 6004 capacity = 1; 6005 6006 cpu_rq(cpu)->cpu_capacity = capacity; 6007 sdg->sgc->capacity = capacity; 6008 } 6009 6010 void update_group_capacity(struct sched_domain *sd, int cpu) 6011 { 6012 struct sched_domain *child = sd->child; 6013 struct sched_group *group, *sdg = sd->groups; 6014 unsigned long capacity, capacity_orig; 6015 unsigned long interval; 6016 6017 interval = msecs_to_jiffies(sd->balance_interval); 6018 interval = clamp(interval, 1UL, max_load_balance_interval); 6019 sdg->sgc->next_update = jiffies + interval; 6020 6021 if (!child) { 6022 update_cpu_capacity(sd, cpu); 6023 return; 6024 } 6025 6026 capacity_orig = capacity = 0; 6027 6028 if (child->flags & SD_OVERLAP) { 6029 /* 6030 * SD_OVERLAP domains cannot assume that child groups 6031 * span the current group. 6032 */ 6033 6034 for_each_cpu(cpu, sched_group_cpus(sdg)) { 6035 struct sched_group_capacity *sgc; 6036 struct rq *rq = cpu_rq(cpu); 6037 6038 /* 6039 * build_sched_domains() -> init_sched_groups_capacity() 6040 * gets here before we've attached the domains to the 6041 * runqueues. 6042 * 6043 * Use capacity_of(), which is set irrespective of domains 6044 * in update_cpu_capacity(). 6045 * 6046 * This avoids capacity/capacity_orig from being 0 and 6047 * causing divide-by-zero issues on boot. 6048 * 6049 * Runtime updates will correct capacity_orig. 6050 */ 6051 if (unlikely(!rq->sd)) { 6052 capacity_orig += capacity_of(cpu); 6053 capacity += capacity_of(cpu); 6054 continue; 6055 } 6056 6057 sgc = rq->sd->groups->sgc; 6058 capacity_orig += sgc->capacity_orig; 6059 capacity += sgc->capacity; 6060 } 6061 } else { 6062 /* 6063 * !SD_OVERLAP domains can assume that child groups 6064 * span the current group. 6065 */ 6066 6067 group = child->groups; 6068 do { 6069 capacity_orig += group->sgc->capacity_orig; 6070 capacity += group->sgc->capacity; 6071 group = group->next; 6072 } while (group != child->groups); 6073 } 6074 6075 sdg->sgc->capacity_orig = capacity_orig; 6076 sdg->sgc->capacity = capacity; 6077 } 6078 6079 /* 6080 * Try and fix up capacity for tiny siblings, this is needed when 6081 * things like SD_ASYM_PACKING need f_b_g to select another sibling 6082 * which on its own isn't powerful enough. 6083 * 6084 * See update_sd_pick_busiest() and check_asym_packing(). 6085 */ 6086 static inline int 6087 fix_small_capacity(struct sched_domain *sd, struct sched_group *group) 6088 { 6089 /* 6090 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE 6091 */ 6092 if (!(sd->flags & SD_SHARE_CPUCAPACITY)) 6093 return 0; 6094 6095 /* 6096 * If ~90% of the cpu_capacity is still there, we're good. 6097 */ 6098 if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29) 6099 return 1; 6100 6101 return 0; 6102 } 6103 6104 /* 6105 * Group imbalance indicates (and tries to solve) the problem where balancing 6106 * groups is inadequate due to tsk_cpus_allowed() constraints. 6107 * 6108 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 6109 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 6110 * Something like: 6111 * 6112 * { 0 1 2 3 } { 4 5 6 7 } 6113 * * * * * 6114 * 6115 * If we were to balance group-wise we'd place two tasks in the first group and 6116 * two tasks in the second group. Clearly this is undesired as it will overload 6117 * cpu 3 and leave one of the cpus in the second group unused. 6118 * 6119 * The current solution to this issue is detecting the skew in the first group 6120 * by noticing the lower domain failed to reach balance and had difficulty 6121 * moving tasks due to affinity constraints. 6122 * 6123 * When this is so detected; this group becomes a candidate for busiest; see 6124 * update_sd_pick_busiest(). And calculate_imbalance() and 6125 * find_busiest_group() avoid some of the usual balance conditions to allow it 6126 * to create an effective group imbalance. 6127 * 6128 * This is a somewhat tricky proposition since the next run might not find the 6129 * group imbalance and decide the groups need to be balanced again. A most 6130 * subtle and fragile situation. 6131 */ 6132 6133 static inline int sg_imbalanced(struct sched_group *group) 6134 { 6135 return group->sgc->imbalance; 6136 } 6137 6138 /* 6139 * Compute the group capacity factor. 6140 * 6141 * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by 6142 * first dividing out the smt factor and computing the actual number of cores 6143 * and limit unit capacity with that. 6144 */ 6145 static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group) 6146 { 6147 unsigned int capacity_factor, smt, cpus; 6148 unsigned int capacity, capacity_orig; 6149 6150 capacity = group->sgc->capacity; 6151 capacity_orig = group->sgc->capacity_orig; 6152 cpus = group->group_weight; 6153 6154 /* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */ 6155 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig); 6156 capacity_factor = cpus / smt; /* cores */ 6157 6158 capacity_factor = min_t(unsigned, 6159 capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE)); 6160 if (!capacity_factor) 6161 capacity_factor = fix_small_capacity(env->sd, group); 6162 6163 return capacity_factor; 6164 } 6165 6166 static enum group_type 6167 group_classify(struct sched_group *group, struct sg_lb_stats *sgs) 6168 { 6169 if (sgs->sum_nr_running > sgs->group_capacity_factor) 6170 return group_overloaded; 6171 6172 if (sg_imbalanced(group)) 6173 return group_imbalanced; 6174 6175 return group_other; 6176 } 6177 6178 /** 6179 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 6180 * @env: The load balancing environment. 6181 * @group: sched_group whose statistics are to be updated. 6182 * @load_idx: Load index of sched_domain of this_cpu for load calc. 6183 * @local_group: Does group contain this_cpu. 6184 * @sgs: variable to hold the statistics for this group. 6185 * @overload: Indicate more than one runnable task for any CPU. 6186 */ 6187 static inline void update_sg_lb_stats(struct lb_env *env, 6188 struct sched_group *group, int load_idx, 6189 int local_group, struct sg_lb_stats *sgs, 6190 bool *overload) 6191 { 6192 unsigned long load; 6193 int i; 6194 6195 memset(sgs, 0, sizeof(*sgs)); 6196 6197 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 6198 struct rq *rq = cpu_rq(i); 6199 6200 /* Bias balancing toward cpus of our domain */ 6201 if (local_group) 6202 load = target_load(i, load_idx); 6203 else 6204 load = source_load(i, load_idx); 6205 6206 sgs->group_load += load; 6207 sgs->sum_nr_running += rq->cfs.h_nr_running; 6208 6209 if (rq->nr_running > 1) 6210 *overload = true; 6211 6212 #ifdef CONFIG_NUMA_BALANCING 6213 sgs->nr_numa_running += rq->nr_numa_running; 6214 sgs->nr_preferred_running += rq->nr_preferred_running; 6215 #endif 6216 sgs->sum_weighted_load += weighted_cpuload(i); 6217 if (idle_cpu(i)) 6218 sgs->idle_cpus++; 6219 } 6220 6221 /* Adjust by relative CPU capacity of the group */ 6222 sgs->group_capacity = group->sgc->capacity; 6223 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 6224 6225 if (sgs->sum_nr_running) 6226 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 6227 6228 sgs->group_weight = group->group_weight; 6229 sgs->group_capacity_factor = sg_capacity_factor(env, group); 6230 sgs->group_type = group_classify(group, sgs); 6231 6232 if (sgs->group_capacity_factor > sgs->sum_nr_running) 6233 sgs->group_has_free_capacity = 1; 6234 } 6235 6236 /** 6237 * update_sd_pick_busiest - return 1 on busiest group 6238 * @env: The load balancing environment. 6239 * @sds: sched_domain statistics 6240 * @sg: sched_group candidate to be checked for being the busiest 6241 * @sgs: sched_group statistics 6242 * 6243 * Determine if @sg is a busier group than the previously selected 6244 * busiest group. 6245 * 6246 * Return: %true if @sg is a busier group than the previously selected 6247 * busiest group. %false otherwise. 6248 */ 6249 static bool update_sd_pick_busiest(struct lb_env *env, 6250 struct sd_lb_stats *sds, 6251 struct sched_group *sg, 6252 struct sg_lb_stats *sgs) 6253 { 6254 struct sg_lb_stats *busiest = &sds->busiest_stat; 6255 6256 if (sgs->group_type > busiest->group_type) 6257 return true; 6258 6259 if (sgs->group_type < busiest->group_type) 6260 return false; 6261 6262 if (sgs->avg_load <= busiest->avg_load) 6263 return false; 6264 6265 /* This is the busiest node in its class. */ 6266 if (!(env->sd->flags & SD_ASYM_PACKING)) 6267 return true; 6268 6269 /* 6270 * ASYM_PACKING needs to move all the work to the lowest 6271 * numbered CPUs in the group, therefore mark all groups 6272 * higher than ourself as busy. 6273 */ 6274 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) { 6275 if (!sds->busiest) 6276 return true; 6277 6278 if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) 6279 return true; 6280 } 6281 6282 return false; 6283 } 6284 6285 #ifdef CONFIG_NUMA_BALANCING 6286 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 6287 { 6288 if (sgs->sum_nr_running > sgs->nr_numa_running) 6289 return regular; 6290 if (sgs->sum_nr_running > sgs->nr_preferred_running) 6291 return remote; 6292 return all; 6293 } 6294 6295 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6296 { 6297 if (rq->nr_running > rq->nr_numa_running) 6298 return regular; 6299 if (rq->nr_running > rq->nr_preferred_running) 6300 return remote; 6301 return all; 6302 } 6303 #else 6304 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 6305 { 6306 return all; 6307 } 6308 6309 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6310 { 6311 return regular; 6312 } 6313 #endif /* CONFIG_NUMA_BALANCING */ 6314 6315 /** 6316 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 6317 * @env: The load balancing environment. 6318 * @sds: variable to hold the statistics for this sched_domain. 6319 */ 6320 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 6321 { 6322 struct sched_domain *child = env->sd->child; 6323 struct sched_group *sg = env->sd->groups; 6324 struct sg_lb_stats tmp_sgs; 6325 int load_idx, prefer_sibling = 0; 6326 bool overload = false; 6327 6328 if (child && child->flags & SD_PREFER_SIBLING) 6329 prefer_sibling = 1; 6330 6331 load_idx = get_sd_load_idx(env->sd, env->idle); 6332 6333 do { 6334 struct sg_lb_stats *sgs = &tmp_sgs; 6335 int local_group; 6336 6337 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 6338 if (local_group) { 6339 sds->local = sg; 6340 sgs = &sds->local_stat; 6341 6342 if (env->idle != CPU_NEWLY_IDLE || 6343 time_after_eq(jiffies, sg->sgc->next_update)) 6344 update_group_capacity(env->sd, env->dst_cpu); 6345 } 6346 6347 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 6348 &overload); 6349 6350 if (local_group) 6351 goto next_group; 6352 6353 /* 6354 * In case the child domain prefers tasks go to siblings 6355 * first, lower the sg capacity factor to one so that we'll try 6356 * and move all the excess tasks away. We lower the capacity 6357 * of a group only if the local group has the capacity to fit 6358 * these excess tasks, i.e. nr_running < group_capacity_factor. The 6359 * extra check prevents the case where you always pull from the 6360 * heaviest group when it is already under-utilized (possible 6361 * with a large weight task outweighs the tasks on the system). 6362 */ 6363 if (prefer_sibling && sds->local && 6364 sds->local_stat.group_has_free_capacity) { 6365 sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U); 6366 sgs->group_type = group_classify(sg, sgs); 6367 } 6368 6369 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 6370 sds->busiest = sg; 6371 sds->busiest_stat = *sgs; 6372 } 6373 6374 next_group: 6375 /* Now, start updating sd_lb_stats */ 6376 sds->total_load += sgs->group_load; 6377 sds->total_capacity += sgs->group_capacity; 6378 6379 sg = sg->next; 6380 } while (sg != env->sd->groups); 6381 6382 if (env->sd->flags & SD_NUMA) 6383 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 6384 6385 if (!env->sd->parent) { 6386 /* update overload indicator if we are at root domain */ 6387 if (env->dst_rq->rd->overload != overload) 6388 env->dst_rq->rd->overload = overload; 6389 } 6390 6391 } 6392 6393 /** 6394 * check_asym_packing - Check to see if the group is packed into the 6395 * sched doman. 6396 * 6397 * This is primarily intended to used at the sibling level. Some 6398 * cores like POWER7 prefer to use lower numbered SMT threads. In the 6399 * case of POWER7, it can move to lower SMT modes only when higher 6400 * threads are idle. When in lower SMT modes, the threads will 6401 * perform better since they share less core resources. Hence when we 6402 * have idle threads, we want them to be the higher ones. 6403 * 6404 * This packing function is run on idle threads. It checks to see if 6405 * the busiest CPU in this domain (core in the P7 case) has a higher 6406 * CPU number than the packing function is being run on. Here we are 6407 * assuming lower CPU number will be equivalent to lower a SMT thread 6408 * number. 6409 * 6410 * Return: 1 when packing is required and a task should be moved to 6411 * this CPU. The amount of the imbalance is returned in *imbalance. 6412 * 6413 * @env: The load balancing environment. 6414 * @sds: Statistics of the sched_domain which is to be packed 6415 */ 6416 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 6417 { 6418 int busiest_cpu; 6419 6420 if (!(env->sd->flags & SD_ASYM_PACKING)) 6421 return 0; 6422 6423 if (!sds->busiest) 6424 return 0; 6425 6426 busiest_cpu = group_first_cpu(sds->busiest); 6427 if (env->dst_cpu > busiest_cpu) 6428 return 0; 6429 6430 env->imbalance = DIV_ROUND_CLOSEST( 6431 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 6432 SCHED_CAPACITY_SCALE); 6433 6434 return 1; 6435 } 6436 6437 /** 6438 * fix_small_imbalance - Calculate the minor imbalance that exists 6439 * amongst the groups of a sched_domain, during 6440 * load balancing. 6441 * @env: The load balancing environment. 6442 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 6443 */ 6444 static inline 6445 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 6446 { 6447 unsigned long tmp, capa_now = 0, capa_move = 0; 6448 unsigned int imbn = 2; 6449 unsigned long scaled_busy_load_per_task; 6450 struct sg_lb_stats *local, *busiest; 6451 6452 local = &sds->local_stat; 6453 busiest = &sds->busiest_stat; 6454 6455 if (!local->sum_nr_running) 6456 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 6457 else if (busiest->load_per_task > local->load_per_task) 6458 imbn = 1; 6459 6460 scaled_busy_load_per_task = 6461 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 6462 busiest->group_capacity; 6463 6464 if (busiest->avg_load + scaled_busy_load_per_task >= 6465 local->avg_load + (scaled_busy_load_per_task * imbn)) { 6466 env->imbalance = busiest->load_per_task; 6467 return; 6468 } 6469 6470 /* 6471 * OK, we don't have enough imbalance to justify moving tasks, 6472 * however we may be able to increase total CPU capacity used by 6473 * moving them. 6474 */ 6475 6476 capa_now += busiest->group_capacity * 6477 min(busiest->load_per_task, busiest->avg_load); 6478 capa_now += local->group_capacity * 6479 min(local->load_per_task, local->avg_load); 6480 capa_now /= SCHED_CAPACITY_SCALE; 6481 6482 /* Amount of load we'd subtract */ 6483 if (busiest->avg_load > scaled_busy_load_per_task) { 6484 capa_move += busiest->group_capacity * 6485 min(busiest->load_per_task, 6486 busiest->avg_load - scaled_busy_load_per_task); 6487 } 6488 6489 /* Amount of load we'd add */ 6490 if (busiest->avg_load * busiest->group_capacity < 6491 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 6492 tmp = (busiest->avg_load * busiest->group_capacity) / 6493 local->group_capacity; 6494 } else { 6495 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 6496 local->group_capacity; 6497 } 6498 capa_move += local->group_capacity * 6499 min(local->load_per_task, local->avg_load + tmp); 6500 capa_move /= SCHED_CAPACITY_SCALE; 6501 6502 /* Move if we gain throughput */ 6503 if (capa_move > capa_now) 6504 env->imbalance = busiest->load_per_task; 6505 } 6506 6507 /** 6508 * calculate_imbalance - Calculate the amount of imbalance present within the 6509 * groups of a given sched_domain during load balance. 6510 * @env: load balance environment 6511 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 6512 */ 6513 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 6514 { 6515 unsigned long max_pull, load_above_capacity = ~0UL; 6516 struct sg_lb_stats *local, *busiest; 6517 6518 local = &sds->local_stat; 6519 busiest = &sds->busiest_stat; 6520 6521 if (busiest->group_type == group_imbalanced) { 6522 /* 6523 * In the group_imb case we cannot rely on group-wide averages 6524 * to ensure cpu-load equilibrium, look at wider averages. XXX 6525 */ 6526 busiest->load_per_task = 6527 min(busiest->load_per_task, sds->avg_load); 6528 } 6529 6530 /* 6531 * In the presence of smp nice balancing, certain scenarios can have 6532 * max load less than avg load(as we skip the groups at or below 6533 * its cpu_capacity, while calculating max_load..) 6534 */ 6535 if (busiest->avg_load <= sds->avg_load || 6536 local->avg_load >= sds->avg_load) { 6537 env->imbalance = 0; 6538 return fix_small_imbalance(env, sds); 6539 } 6540 6541 /* 6542 * If there aren't any idle cpus, avoid creating some. 6543 */ 6544 if (busiest->group_type == group_overloaded && 6545 local->group_type == group_overloaded) { 6546 load_above_capacity = 6547 (busiest->sum_nr_running - busiest->group_capacity_factor); 6548 6549 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE); 6550 load_above_capacity /= busiest->group_capacity; 6551 } 6552 6553 /* 6554 * We're trying to get all the cpus to the average_load, so we don't 6555 * want to push ourselves above the average load, nor do we wish to 6556 * reduce the max loaded cpu below the average load. At the same time, 6557 * we also don't want to reduce the group load below the group capacity 6558 * (so that we can implement power-savings policies etc). Thus we look 6559 * for the minimum possible imbalance. 6560 */ 6561 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 6562 6563 /* How much load to actually move to equalise the imbalance */ 6564 env->imbalance = min( 6565 max_pull * busiest->group_capacity, 6566 (sds->avg_load - local->avg_load) * local->group_capacity 6567 ) / SCHED_CAPACITY_SCALE; 6568 6569 /* 6570 * if *imbalance is less than the average load per runnable task 6571 * there is no guarantee that any tasks will be moved so we'll have 6572 * a think about bumping its value to force at least one task to be 6573 * moved 6574 */ 6575 if (env->imbalance < busiest->load_per_task) 6576 return fix_small_imbalance(env, sds); 6577 } 6578 6579 /******* find_busiest_group() helpers end here *********************/ 6580 6581 /** 6582 * find_busiest_group - Returns the busiest group within the sched_domain 6583 * if there is an imbalance. If there isn't an imbalance, and 6584 * the user has opted for power-savings, it returns a group whose 6585 * CPUs can be put to idle by rebalancing those tasks elsewhere, if 6586 * such a group exists. 6587 * 6588 * Also calculates the amount of weighted load which should be moved 6589 * to restore balance. 6590 * 6591 * @env: The load balancing environment. 6592 * 6593 * Return: - The busiest group if imbalance exists. 6594 * - If no imbalance and user has opted for power-savings balance, 6595 * return the least loaded group whose CPUs can be 6596 * put to idle by rebalancing its tasks onto our group. 6597 */ 6598 static struct sched_group *find_busiest_group(struct lb_env *env) 6599 { 6600 struct sg_lb_stats *local, *busiest; 6601 struct sd_lb_stats sds; 6602 6603 init_sd_lb_stats(&sds); 6604 6605 /* 6606 * Compute the various statistics relavent for load balancing at 6607 * this level. 6608 */ 6609 update_sd_lb_stats(env, &sds); 6610 local = &sds.local_stat; 6611 busiest = &sds.busiest_stat; 6612 6613 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) && 6614 check_asym_packing(env, &sds)) 6615 return sds.busiest; 6616 6617 /* There is no busy sibling group to pull tasks from */ 6618 if (!sds.busiest || busiest->sum_nr_running == 0) 6619 goto out_balanced; 6620 6621 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 6622 / sds.total_capacity; 6623 6624 /* 6625 * If the busiest group is imbalanced the below checks don't 6626 * work because they assume all things are equal, which typically 6627 * isn't true due to cpus_allowed constraints and the like. 6628 */ 6629 if (busiest->group_type == group_imbalanced) 6630 goto force_balance; 6631 6632 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 6633 if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity && 6634 !busiest->group_has_free_capacity) 6635 goto force_balance; 6636 6637 /* 6638 * If the local group is busier than the selected busiest group 6639 * don't try and pull any tasks. 6640 */ 6641 if (local->avg_load >= busiest->avg_load) 6642 goto out_balanced; 6643 6644 /* 6645 * Don't pull any tasks if this group is already above the domain 6646 * average load. 6647 */ 6648 if (local->avg_load >= sds.avg_load) 6649 goto out_balanced; 6650 6651 if (env->idle == CPU_IDLE) { 6652 /* 6653 * This cpu is idle. If the busiest group is not overloaded 6654 * and there is no imbalance between this and busiest group 6655 * wrt idle cpus, it is balanced. The imbalance becomes 6656 * significant if the diff is greater than 1 otherwise we 6657 * might end up to just move the imbalance on another group 6658 */ 6659 if ((busiest->group_type != group_overloaded) && 6660 (local->idle_cpus <= (busiest->idle_cpus + 1))) 6661 goto out_balanced; 6662 } else { 6663 /* 6664 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 6665 * imbalance_pct to be conservative. 6666 */ 6667 if (100 * busiest->avg_load <= 6668 env->sd->imbalance_pct * local->avg_load) 6669 goto out_balanced; 6670 } 6671 6672 force_balance: 6673 /* Looks like there is an imbalance. Compute it */ 6674 calculate_imbalance(env, &sds); 6675 return sds.busiest; 6676 6677 out_balanced: 6678 env->imbalance = 0; 6679 return NULL; 6680 } 6681 6682 /* 6683 * find_busiest_queue - find the busiest runqueue among the cpus in group. 6684 */ 6685 static struct rq *find_busiest_queue(struct lb_env *env, 6686 struct sched_group *group) 6687 { 6688 struct rq *busiest = NULL, *rq; 6689 unsigned long busiest_load = 0, busiest_capacity = 1; 6690 int i; 6691 6692 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 6693 unsigned long capacity, capacity_factor, wl; 6694 enum fbq_type rt; 6695 6696 rq = cpu_rq(i); 6697 rt = fbq_classify_rq(rq); 6698 6699 /* 6700 * We classify groups/runqueues into three groups: 6701 * - regular: there are !numa tasks 6702 * - remote: there are numa tasks that run on the 'wrong' node 6703 * - all: there is no distinction 6704 * 6705 * In order to avoid migrating ideally placed numa tasks, 6706 * ignore those when there's better options. 6707 * 6708 * If we ignore the actual busiest queue to migrate another 6709 * task, the next balance pass can still reduce the busiest 6710 * queue by moving tasks around inside the node. 6711 * 6712 * If we cannot move enough load due to this classification 6713 * the next pass will adjust the group classification and 6714 * allow migration of more tasks. 6715 * 6716 * Both cases only affect the total convergence complexity. 6717 */ 6718 if (rt > env->fbq_type) 6719 continue; 6720 6721 capacity = capacity_of(i); 6722 capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE); 6723 if (!capacity_factor) 6724 capacity_factor = fix_small_capacity(env->sd, group); 6725 6726 wl = weighted_cpuload(i); 6727 6728 /* 6729 * When comparing with imbalance, use weighted_cpuload() 6730 * which is not scaled with the cpu capacity. 6731 */ 6732 if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance) 6733 continue; 6734 6735 /* 6736 * For the load comparisons with the other cpu's, consider 6737 * the weighted_cpuload() scaled with the cpu capacity, so 6738 * that the load can be moved away from the cpu that is 6739 * potentially running at a lower capacity. 6740 * 6741 * Thus we're looking for max(wl_i / capacity_i), crosswise 6742 * multiplication to rid ourselves of the division works out 6743 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 6744 * our previous maximum. 6745 */ 6746 if (wl * busiest_capacity > busiest_load * capacity) { 6747 busiest_load = wl; 6748 busiest_capacity = capacity; 6749 busiest = rq; 6750 } 6751 } 6752 6753 return busiest; 6754 } 6755 6756 /* 6757 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 6758 * so long as it is large enough. 6759 */ 6760 #define MAX_PINNED_INTERVAL 512 6761 6762 /* Working cpumask for load_balance and load_balance_newidle. */ 6763 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6764 6765 static int need_active_balance(struct lb_env *env) 6766 { 6767 struct sched_domain *sd = env->sd; 6768 6769 if (env->idle == CPU_NEWLY_IDLE) { 6770 6771 /* 6772 * ASYM_PACKING needs to force migrate tasks from busy but 6773 * higher numbered CPUs in order to pack all tasks in the 6774 * lowest numbered CPUs. 6775 */ 6776 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 6777 return 1; 6778 } 6779 6780 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 6781 } 6782 6783 static int active_load_balance_cpu_stop(void *data); 6784 6785 static int should_we_balance(struct lb_env *env) 6786 { 6787 struct sched_group *sg = env->sd->groups; 6788 struct cpumask *sg_cpus, *sg_mask; 6789 int cpu, balance_cpu = -1; 6790 6791 /* 6792 * In the newly idle case, we will allow all the cpu's 6793 * to do the newly idle load balance. 6794 */ 6795 if (env->idle == CPU_NEWLY_IDLE) 6796 return 1; 6797 6798 sg_cpus = sched_group_cpus(sg); 6799 sg_mask = sched_group_mask(sg); 6800 /* Try to find first idle cpu */ 6801 for_each_cpu_and(cpu, sg_cpus, env->cpus) { 6802 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) 6803 continue; 6804 6805 balance_cpu = cpu; 6806 break; 6807 } 6808 6809 if (balance_cpu == -1) 6810 balance_cpu = group_balance_cpu(sg); 6811 6812 /* 6813 * First idle cpu or the first cpu(busiest) in this sched group 6814 * is eligible for doing load balancing at this and above domains. 6815 */ 6816 return balance_cpu == env->dst_cpu; 6817 } 6818 6819 /* 6820 * Check this_cpu to ensure it is balanced within domain. Attempt to move 6821 * tasks if there is an imbalance. 6822 */ 6823 static int load_balance(int this_cpu, struct rq *this_rq, 6824 struct sched_domain *sd, enum cpu_idle_type idle, 6825 int *continue_balancing) 6826 { 6827 int ld_moved, cur_ld_moved, active_balance = 0; 6828 struct sched_domain *sd_parent = sd->parent; 6829 struct sched_group *group; 6830 struct rq *busiest; 6831 unsigned long flags; 6832 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 6833 6834 struct lb_env env = { 6835 .sd = sd, 6836 .dst_cpu = this_cpu, 6837 .dst_rq = this_rq, 6838 .dst_grpmask = sched_group_cpus(sd->groups), 6839 .idle = idle, 6840 .loop_break = sched_nr_migrate_break, 6841 .cpus = cpus, 6842 .fbq_type = all, 6843 .tasks = LIST_HEAD_INIT(env.tasks), 6844 }; 6845 6846 /* 6847 * For NEWLY_IDLE load_balancing, we don't need to consider 6848 * other cpus in our group 6849 */ 6850 if (idle == CPU_NEWLY_IDLE) 6851 env.dst_grpmask = NULL; 6852 6853 cpumask_copy(cpus, cpu_active_mask); 6854 6855 schedstat_inc(sd, lb_count[idle]); 6856 6857 redo: 6858 if (!should_we_balance(&env)) { 6859 *continue_balancing = 0; 6860 goto out_balanced; 6861 } 6862 6863 group = find_busiest_group(&env); 6864 if (!group) { 6865 schedstat_inc(sd, lb_nobusyg[idle]); 6866 goto out_balanced; 6867 } 6868 6869 busiest = find_busiest_queue(&env, group); 6870 if (!busiest) { 6871 schedstat_inc(sd, lb_nobusyq[idle]); 6872 goto out_balanced; 6873 } 6874 6875 BUG_ON(busiest == env.dst_rq); 6876 6877 schedstat_add(sd, lb_imbalance[idle], env.imbalance); 6878 6879 ld_moved = 0; 6880 if (busiest->nr_running > 1) { 6881 /* 6882 * Attempt to move tasks. If find_busiest_group has found 6883 * an imbalance but busiest->nr_running <= 1, the group is 6884 * still unbalanced. ld_moved simply stays zero, so it is 6885 * correctly treated as an imbalance. 6886 */ 6887 env.flags |= LBF_ALL_PINNED; 6888 env.src_cpu = busiest->cpu; 6889 env.src_rq = busiest; 6890 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 6891 6892 more_balance: 6893 raw_spin_lock_irqsave(&busiest->lock, flags); 6894 6895 /* 6896 * cur_ld_moved - load moved in current iteration 6897 * ld_moved - cumulative load moved across iterations 6898 */ 6899 cur_ld_moved = detach_tasks(&env); 6900 6901 /* 6902 * We've detached some tasks from busiest_rq. Every 6903 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 6904 * unlock busiest->lock, and we are able to be sure 6905 * that nobody can manipulate the tasks in parallel. 6906 * See task_rq_lock() family for the details. 6907 */ 6908 6909 raw_spin_unlock(&busiest->lock); 6910 6911 if (cur_ld_moved) { 6912 attach_tasks(&env); 6913 ld_moved += cur_ld_moved; 6914 } 6915 6916 local_irq_restore(flags); 6917 6918 if (env.flags & LBF_NEED_BREAK) { 6919 env.flags &= ~LBF_NEED_BREAK; 6920 goto more_balance; 6921 } 6922 6923 /* 6924 * Revisit (affine) tasks on src_cpu that couldn't be moved to 6925 * us and move them to an alternate dst_cpu in our sched_group 6926 * where they can run. The upper limit on how many times we 6927 * iterate on same src_cpu is dependent on number of cpus in our 6928 * sched_group. 6929 * 6930 * This changes load balance semantics a bit on who can move 6931 * load to a given_cpu. In addition to the given_cpu itself 6932 * (or a ilb_cpu acting on its behalf where given_cpu is 6933 * nohz-idle), we now have balance_cpu in a position to move 6934 * load to given_cpu. In rare situations, this may cause 6935 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 6936 * _independently_ and at _same_ time to move some load to 6937 * given_cpu) causing exceess load to be moved to given_cpu. 6938 * This however should not happen so much in practice and 6939 * moreover subsequent load balance cycles should correct the 6940 * excess load moved. 6941 */ 6942 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 6943 6944 /* Prevent to re-select dst_cpu via env's cpus */ 6945 cpumask_clear_cpu(env.dst_cpu, env.cpus); 6946 6947 env.dst_rq = cpu_rq(env.new_dst_cpu); 6948 env.dst_cpu = env.new_dst_cpu; 6949 env.flags &= ~LBF_DST_PINNED; 6950 env.loop = 0; 6951 env.loop_break = sched_nr_migrate_break; 6952 6953 /* 6954 * Go back to "more_balance" rather than "redo" since we 6955 * need to continue with same src_cpu. 6956 */ 6957 goto more_balance; 6958 } 6959 6960 /* 6961 * We failed to reach balance because of affinity. 6962 */ 6963 if (sd_parent) { 6964 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 6965 6966 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 6967 *group_imbalance = 1; 6968 } 6969 6970 /* All tasks on this runqueue were pinned by CPU affinity */ 6971 if (unlikely(env.flags & LBF_ALL_PINNED)) { 6972 cpumask_clear_cpu(cpu_of(busiest), cpus); 6973 if (!cpumask_empty(cpus)) { 6974 env.loop = 0; 6975 env.loop_break = sched_nr_migrate_break; 6976 goto redo; 6977 } 6978 goto out_all_pinned; 6979 } 6980 } 6981 6982 if (!ld_moved) { 6983 schedstat_inc(sd, lb_failed[idle]); 6984 /* 6985 * Increment the failure counter only on periodic balance. 6986 * We do not want newidle balance, which can be very 6987 * frequent, pollute the failure counter causing 6988 * excessive cache_hot migrations and active balances. 6989 */ 6990 if (idle != CPU_NEWLY_IDLE) 6991 sd->nr_balance_failed++; 6992 6993 if (need_active_balance(&env)) { 6994 raw_spin_lock_irqsave(&busiest->lock, flags); 6995 6996 /* don't kick the active_load_balance_cpu_stop, 6997 * if the curr task on busiest cpu can't be 6998 * moved to this_cpu 6999 */ 7000 if (!cpumask_test_cpu(this_cpu, 7001 tsk_cpus_allowed(busiest->curr))) { 7002 raw_spin_unlock_irqrestore(&busiest->lock, 7003 flags); 7004 env.flags |= LBF_ALL_PINNED; 7005 goto out_one_pinned; 7006 } 7007 7008 /* 7009 * ->active_balance synchronizes accesses to 7010 * ->active_balance_work. Once set, it's cleared 7011 * only after active load balance is finished. 7012 */ 7013 if (!busiest->active_balance) { 7014 busiest->active_balance = 1; 7015 busiest->push_cpu = this_cpu; 7016 active_balance = 1; 7017 } 7018 raw_spin_unlock_irqrestore(&busiest->lock, flags); 7019 7020 if (active_balance) { 7021 stop_one_cpu_nowait(cpu_of(busiest), 7022 active_load_balance_cpu_stop, busiest, 7023 &busiest->active_balance_work); 7024 } 7025 7026 /* 7027 * We've kicked active balancing, reset the failure 7028 * counter. 7029 */ 7030 sd->nr_balance_failed = sd->cache_nice_tries+1; 7031 } 7032 } else 7033 sd->nr_balance_failed = 0; 7034 7035 if (likely(!active_balance)) { 7036 /* We were unbalanced, so reset the balancing interval */ 7037 sd->balance_interval = sd->min_interval; 7038 } else { 7039 /* 7040 * If we've begun active balancing, start to back off. This 7041 * case may not be covered by the all_pinned logic if there 7042 * is only 1 task on the busy runqueue (because we don't call 7043 * detach_tasks). 7044 */ 7045 if (sd->balance_interval < sd->max_interval) 7046 sd->balance_interval *= 2; 7047 } 7048 7049 goto out; 7050 7051 out_balanced: 7052 /* 7053 * We reach balance although we may have faced some affinity 7054 * constraints. Clear the imbalance flag if it was set. 7055 */ 7056 if (sd_parent) { 7057 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 7058 7059 if (*group_imbalance) 7060 *group_imbalance = 0; 7061 } 7062 7063 out_all_pinned: 7064 /* 7065 * We reach balance because all tasks are pinned at this level so 7066 * we can't migrate them. Let the imbalance flag set so parent level 7067 * can try to migrate them. 7068 */ 7069 schedstat_inc(sd, lb_balanced[idle]); 7070 7071 sd->nr_balance_failed = 0; 7072 7073 out_one_pinned: 7074 /* tune up the balancing interval */ 7075 if (((env.flags & LBF_ALL_PINNED) && 7076 sd->balance_interval < MAX_PINNED_INTERVAL) || 7077 (sd->balance_interval < sd->max_interval)) 7078 sd->balance_interval *= 2; 7079 7080 ld_moved = 0; 7081 out: 7082 return ld_moved; 7083 } 7084 7085 static inline unsigned long 7086 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 7087 { 7088 unsigned long interval = sd->balance_interval; 7089 7090 if (cpu_busy) 7091 interval *= sd->busy_factor; 7092 7093 /* scale ms to jiffies */ 7094 interval = msecs_to_jiffies(interval); 7095 interval = clamp(interval, 1UL, max_load_balance_interval); 7096 7097 return interval; 7098 } 7099 7100 static inline void 7101 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance) 7102 { 7103 unsigned long interval, next; 7104 7105 interval = get_sd_balance_interval(sd, cpu_busy); 7106 next = sd->last_balance + interval; 7107 7108 if (time_after(*next_balance, next)) 7109 *next_balance = next; 7110 } 7111 7112 /* 7113 * idle_balance is called by schedule() if this_cpu is about to become 7114 * idle. Attempts to pull tasks from other CPUs. 7115 */ 7116 static int idle_balance(struct rq *this_rq) 7117 { 7118 unsigned long next_balance = jiffies + HZ; 7119 int this_cpu = this_rq->cpu; 7120 struct sched_domain *sd; 7121 int pulled_task = 0; 7122 u64 curr_cost = 0; 7123 7124 idle_enter_fair(this_rq); 7125 7126 /* 7127 * We must set idle_stamp _before_ calling idle_balance(), such that we 7128 * measure the duration of idle_balance() as idle time. 7129 */ 7130 this_rq->idle_stamp = rq_clock(this_rq); 7131 7132 if (this_rq->avg_idle < sysctl_sched_migration_cost || 7133 !this_rq->rd->overload) { 7134 rcu_read_lock(); 7135 sd = rcu_dereference_check_sched_domain(this_rq->sd); 7136 if (sd) 7137 update_next_balance(sd, 0, &next_balance); 7138 rcu_read_unlock(); 7139 7140 goto out; 7141 } 7142 7143 /* 7144 * Drop the rq->lock, but keep IRQ/preempt disabled. 7145 */ 7146 raw_spin_unlock(&this_rq->lock); 7147 7148 update_blocked_averages(this_cpu); 7149 rcu_read_lock(); 7150 for_each_domain(this_cpu, sd) { 7151 int continue_balancing = 1; 7152 u64 t0, domain_cost; 7153 7154 if (!(sd->flags & SD_LOAD_BALANCE)) 7155 continue; 7156 7157 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 7158 update_next_balance(sd, 0, &next_balance); 7159 break; 7160 } 7161 7162 if (sd->flags & SD_BALANCE_NEWIDLE) { 7163 t0 = sched_clock_cpu(this_cpu); 7164 7165 pulled_task = load_balance(this_cpu, this_rq, 7166 sd, CPU_NEWLY_IDLE, 7167 &continue_balancing); 7168 7169 domain_cost = sched_clock_cpu(this_cpu) - t0; 7170 if (domain_cost > sd->max_newidle_lb_cost) 7171 sd->max_newidle_lb_cost = domain_cost; 7172 7173 curr_cost += domain_cost; 7174 } 7175 7176 update_next_balance(sd, 0, &next_balance); 7177 7178 /* 7179 * Stop searching for tasks to pull if there are 7180 * now runnable tasks on this rq. 7181 */ 7182 if (pulled_task || this_rq->nr_running > 0) 7183 break; 7184 } 7185 rcu_read_unlock(); 7186 7187 raw_spin_lock(&this_rq->lock); 7188 7189 if (curr_cost > this_rq->max_idle_balance_cost) 7190 this_rq->max_idle_balance_cost = curr_cost; 7191 7192 /* 7193 * While browsing the domains, we released the rq lock, a task could 7194 * have been enqueued in the meantime. Since we're not going idle, 7195 * pretend we pulled a task. 7196 */ 7197 if (this_rq->cfs.h_nr_running && !pulled_task) 7198 pulled_task = 1; 7199 7200 out: 7201 /* Move the next balance forward */ 7202 if (time_after(this_rq->next_balance, next_balance)) 7203 this_rq->next_balance = next_balance; 7204 7205 /* Is there a task of a high priority class? */ 7206 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 7207 pulled_task = -1; 7208 7209 if (pulled_task) { 7210 idle_exit_fair(this_rq); 7211 this_rq->idle_stamp = 0; 7212 } 7213 7214 return pulled_task; 7215 } 7216 7217 /* 7218 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 7219 * running tasks off the busiest CPU onto idle CPUs. It requires at 7220 * least 1 task to be running on each physical CPU where possible, and 7221 * avoids physical / logical imbalances. 7222 */ 7223 static int active_load_balance_cpu_stop(void *data) 7224 { 7225 struct rq *busiest_rq = data; 7226 int busiest_cpu = cpu_of(busiest_rq); 7227 int target_cpu = busiest_rq->push_cpu; 7228 struct rq *target_rq = cpu_rq(target_cpu); 7229 struct sched_domain *sd; 7230 struct task_struct *p = NULL; 7231 7232 raw_spin_lock_irq(&busiest_rq->lock); 7233 7234 /* make sure the requested cpu hasn't gone down in the meantime */ 7235 if (unlikely(busiest_cpu != smp_processor_id() || 7236 !busiest_rq->active_balance)) 7237 goto out_unlock; 7238 7239 /* Is there any task to move? */ 7240 if (busiest_rq->nr_running <= 1) 7241 goto out_unlock; 7242 7243 /* 7244 * This condition is "impossible", if it occurs 7245 * we need to fix it. Originally reported by 7246 * Bjorn Helgaas on a 128-cpu setup. 7247 */ 7248 BUG_ON(busiest_rq == target_rq); 7249 7250 /* Search for an sd spanning us and the target CPU. */ 7251 rcu_read_lock(); 7252 for_each_domain(target_cpu, sd) { 7253 if ((sd->flags & SD_LOAD_BALANCE) && 7254 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 7255 break; 7256 } 7257 7258 if (likely(sd)) { 7259 struct lb_env env = { 7260 .sd = sd, 7261 .dst_cpu = target_cpu, 7262 .dst_rq = target_rq, 7263 .src_cpu = busiest_rq->cpu, 7264 .src_rq = busiest_rq, 7265 .idle = CPU_IDLE, 7266 }; 7267 7268 schedstat_inc(sd, alb_count); 7269 7270 p = detach_one_task(&env); 7271 if (p) 7272 schedstat_inc(sd, alb_pushed); 7273 else 7274 schedstat_inc(sd, alb_failed); 7275 } 7276 rcu_read_unlock(); 7277 out_unlock: 7278 busiest_rq->active_balance = 0; 7279 raw_spin_unlock(&busiest_rq->lock); 7280 7281 if (p) 7282 attach_one_task(target_rq, p); 7283 7284 local_irq_enable(); 7285 7286 return 0; 7287 } 7288 7289 static inline int on_null_domain(struct rq *rq) 7290 { 7291 return unlikely(!rcu_dereference_sched(rq->sd)); 7292 } 7293 7294 #ifdef CONFIG_NO_HZ_COMMON 7295 /* 7296 * idle load balancing details 7297 * - When one of the busy CPUs notice that there may be an idle rebalancing 7298 * needed, they will kick the idle load balancer, which then does idle 7299 * load balancing for all the idle CPUs. 7300 */ 7301 static struct { 7302 cpumask_var_t idle_cpus_mask; 7303 atomic_t nr_cpus; 7304 unsigned long next_balance; /* in jiffy units */ 7305 } nohz ____cacheline_aligned; 7306 7307 static inline int find_new_ilb(void) 7308 { 7309 int ilb = cpumask_first(nohz.idle_cpus_mask); 7310 7311 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 7312 return ilb; 7313 7314 return nr_cpu_ids; 7315 } 7316 7317 /* 7318 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 7319 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 7320 * CPU (if there is one). 7321 */ 7322 static void nohz_balancer_kick(void) 7323 { 7324 int ilb_cpu; 7325 7326 nohz.next_balance++; 7327 7328 ilb_cpu = find_new_ilb(); 7329 7330 if (ilb_cpu >= nr_cpu_ids) 7331 return; 7332 7333 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 7334 return; 7335 /* 7336 * Use smp_send_reschedule() instead of resched_cpu(). 7337 * This way we generate a sched IPI on the target cpu which 7338 * is idle. And the softirq performing nohz idle load balance 7339 * will be run before returning from the IPI. 7340 */ 7341 smp_send_reschedule(ilb_cpu); 7342 return; 7343 } 7344 7345 static inline void nohz_balance_exit_idle(int cpu) 7346 { 7347 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 7348 /* 7349 * Completely isolated CPUs don't ever set, so we must test. 7350 */ 7351 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { 7352 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 7353 atomic_dec(&nohz.nr_cpus); 7354 } 7355 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7356 } 7357 } 7358 7359 static inline void set_cpu_sd_state_busy(void) 7360 { 7361 struct sched_domain *sd; 7362 int cpu = smp_processor_id(); 7363 7364 rcu_read_lock(); 7365 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7366 7367 if (!sd || !sd->nohz_idle) 7368 goto unlock; 7369 sd->nohz_idle = 0; 7370 7371 atomic_inc(&sd->groups->sgc->nr_busy_cpus); 7372 unlock: 7373 rcu_read_unlock(); 7374 } 7375 7376 void set_cpu_sd_state_idle(void) 7377 { 7378 struct sched_domain *sd; 7379 int cpu = smp_processor_id(); 7380 7381 rcu_read_lock(); 7382 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7383 7384 if (!sd || sd->nohz_idle) 7385 goto unlock; 7386 sd->nohz_idle = 1; 7387 7388 atomic_dec(&sd->groups->sgc->nr_busy_cpus); 7389 unlock: 7390 rcu_read_unlock(); 7391 } 7392 7393 /* 7394 * This routine will record that the cpu is going idle with tick stopped. 7395 * This info will be used in performing idle load balancing in the future. 7396 */ 7397 void nohz_balance_enter_idle(int cpu) 7398 { 7399 /* 7400 * If this cpu is going down, then nothing needs to be done. 7401 */ 7402 if (!cpu_active(cpu)) 7403 return; 7404 7405 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 7406 return; 7407 7408 /* 7409 * If we're a completely isolated CPU, we don't play. 7410 */ 7411 if (on_null_domain(cpu_rq(cpu))) 7412 return; 7413 7414 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 7415 atomic_inc(&nohz.nr_cpus); 7416 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7417 } 7418 7419 static int sched_ilb_notifier(struct notifier_block *nfb, 7420 unsigned long action, void *hcpu) 7421 { 7422 switch (action & ~CPU_TASKS_FROZEN) { 7423 case CPU_DYING: 7424 nohz_balance_exit_idle(smp_processor_id()); 7425 return NOTIFY_OK; 7426 default: 7427 return NOTIFY_DONE; 7428 } 7429 } 7430 #endif 7431 7432 static DEFINE_SPINLOCK(balancing); 7433 7434 /* 7435 * Scale the max load_balance interval with the number of CPUs in the system. 7436 * This trades load-balance latency on larger machines for less cross talk. 7437 */ 7438 void update_max_interval(void) 7439 { 7440 max_load_balance_interval = HZ*num_online_cpus()/10; 7441 } 7442 7443 /* 7444 * It checks each scheduling domain to see if it is due to be balanced, 7445 * and initiates a balancing operation if so. 7446 * 7447 * Balancing parameters are set up in init_sched_domains. 7448 */ 7449 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 7450 { 7451 int continue_balancing = 1; 7452 int cpu = rq->cpu; 7453 unsigned long interval; 7454 struct sched_domain *sd; 7455 /* Earliest time when we have to do rebalance again */ 7456 unsigned long next_balance = jiffies + 60*HZ; 7457 int update_next_balance = 0; 7458 int need_serialize, need_decay = 0; 7459 u64 max_cost = 0; 7460 7461 update_blocked_averages(cpu); 7462 7463 rcu_read_lock(); 7464 for_each_domain(cpu, sd) { 7465 /* 7466 * Decay the newidle max times here because this is a regular 7467 * visit to all the domains. Decay ~1% per second. 7468 */ 7469 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 7470 sd->max_newidle_lb_cost = 7471 (sd->max_newidle_lb_cost * 253) / 256; 7472 sd->next_decay_max_lb_cost = jiffies + HZ; 7473 need_decay = 1; 7474 } 7475 max_cost += sd->max_newidle_lb_cost; 7476 7477 if (!(sd->flags & SD_LOAD_BALANCE)) 7478 continue; 7479 7480 /* 7481 * Stop the load balance at this level. There is another 7482 * CPU in our sched group which is doing load balancing more 7483 * actively. 7484 */ 7485 if (!continue_balancing) { 7486 if (need_decay) 7487 continue; 7488 break; 7489 } 7490 7491 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 7492 7493 need_serialize = sd->flags & SD_SERIALIZE; 7494 if (need_serialize) { 7495 if (!spin_trylock(&balancing)) 7496 goto out; 7497 } 7498 7499 if (time_after_eq(jiffies, sd->last_balance + interval)) { 7500 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 7501 /* 7502 * The LBF_DST_PINNED logic could have changed 7503 * env->dst_cpu, so we can't know our idle 7504 * state even if we migrated tasks. Update it. 7505 */ 7506 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 7507 } 7508 sd->last_balance = jiffies; 7509 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 7510 } 7511 if (need_serialize) 7512 spin_unlock(&balancing); 7513 out: 7514 if (time_after(next_balance, sd->last_balance + interval)) { 7515 next_balance = sd->last_balance + interval; 7516 update_next_balance = 1; 7517 } 7518 } 7519 if (need_decay) { 7520 /* 7521 * Ensure the rq-wide value also decays but keep it at a 7522 * reasonable floor to avoid funnies with rq->avg_idle. 7523 */ 7524 rq->max_idle_balance_cost = 7525 max((u64)sysctl_sched_migration_cost, max_cost); 7526 } 7527 rcu_read_unlock(); 7528 7529 /* 7530 * next_balance will be updated only when there is a need. 7531 * When the cpu is attached to null domain for ex, it will not be 7532 * updated. 7533 */ 7534 if (likely(update_next_balance)) 7535 rq->next_balance = next_balance; 7536 } 7537 7538 #ifdef CONFIG_NO_HZ_COMMON 7539 /* 7540 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 7541 * rebalancing for all the cpus for whom scheduler ticks are stopped. 7542 */ 7543 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 7544 { 7545 int this_cpu = this_rq->cpu; 7546 struct rq *rq; 7547 int balance_cpu; 7548 7549 if (idle != CPU_IDLE || 7550 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 7551 goto end; 7552 7553 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 7554 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 7555 continue; 7556 7557 /* 7558 * If this cpu gets work to do, stop the load balancing 7559 * work being done for other cpus. Next load 7560 * balancing owner will pick it up. 7561 */ 7562 if (need_resched()) 7563 break; 7564 7565 rq = cpu_rq(balance_cpu); 7566 7567 /* 7568 * If time for next balance is due, 7569 * do the balance. 7570 */ 7571 if (time_after_eq(jiffies, rq->next_balance)) { 7572 raw_spin_lock_irq(&rq->lock); 7573 update_rq_clock(rq); 7574 update_idle_cpu_load(rq); 7575 raw_spin_unlock_irq(&rq->lock); 7576 rebalance_domains(rq, CPU_IDLE); 7577 } 7578 7579 if (time_after(this_rq->next_balance, rq->next_balance)) 7580 this_rq->next_balance = rq->next_balance; 7581 } 7582 nohz.next_balance = this_rq->next_balance; 7583 end: 7584 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 7585 } 7586 7587 /* 7588 * Current heuristic for kicking the idle load balancer in the presence 7589 * of an idle cpu is the system. 7590 * - This rq has more than one task. 7591 * - At any scheduler domain level, this cpu's scheduler group has multiple 7592 * busy cpu's exceeding the group's capacity. 7593 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 7594 * domain span are idle. 7595 */ 7596 static inline int nohz_kick_needed(struct rq *rq) 7597 { 7598 unsigned long now = jiffies; 7599 struct sched_domain *sd; 7600 struct sched_group_capacity *sgc; 7601 int nr_busy, cpu = rq->cpu; 7602 7603 if (unlikely(rq->idle_balance)) 7604 return 0; 7605 7606 /* 7607 * We may be recently in ticked or tickless idle mode. At the first 7608 * busy tick after returning from idle, we will update the busy stats. 7609 */ 7610 set_cpu_sd_state_busy(); 7611 nohz_balance_exit_idle(cpu); 7612 7613 /* 7614 * None are in tickless mode and hence no need for NOHZ idle load 7615 * balancing. 7616 */ 7617 if (likely(!atomic_read(&nohz.nr_cpus))) 7618 return 0; 7619 7620 if (time_before(now, nohz.next_balance)) 7621 return 0; 7622 7623 if (rq->nr_running >= 2) 7624 goto need_kick; 7625 7626 rcu_read_lock(); 7627 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7628 7629 if (sd) { 7630 sgc = sd->groups->sgc; 7631 nr_busy = atomic_read(&sgc->nr_busy_cpus); 7632 7633 if (nr_busy > 1) 7634 goto need_kick_unlock; 7635 } 7636 7637 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 7638 7639 if (sd && (cpumask_first_and(nohz.idle_cpus_mask, 7640 sched_domain_span(sd)) < cpu)) 7641 goto need_kick_unlock; 7642 7643 rcu_read_unlock(); 7644 return 0; 7645 7646 need_kick_unlock: 7647 rcu_read_unlock(); 7648 need_kick: 7649 return 1; 7650 } 7651 #else 7652 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 7653 #endif 7654 7655 /* 7656 * run_rebalance_domains is triggered when needed from the scheduler tick. 7657 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 7658 */ 7659 static void run_rebalance_domains(struct softirq_action *h) 7660 { 7661 struct rq *this_rq = this_rq(); 7662 enum cpu_idle_type idle = this_rq->idle_balance ? 7663 CPU_IDLE : CPU_NOT_IDLE; 7664 7665 rebalance_domains(this_rq, idle); 7666 7667 /* 7668 * If this cpu has a pending nohz_balance_kick, then do the 7669 * balancing on behalf of the other idle cpus whose ticks are 7670 * stopped. 7671 */ 7672 nohz_idle_balance(this_rq, idle); 7673 } 7674 7675 /* 7676 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 7677 */ 7678 void trigger_load_balance(struct rq *rq) 7679 { 7680 /* Don't need to rebalance while attached to NULL domain */ 7681 if (unlikely(on_null_domain(rq))) 7682 return; 7683 7684 if (time_after_eq(jiffies, rq->next_balance)) 7685 raise_softirq(SCHED_SOFTIRQ); 7686 #ifdef CONFIG_NO_HZ_COMMON 7687 if (nohz_kick_needed(rq)) 7688 nohz_balancer_kick(); 7689 #endif 7690 } 7691 7692 static void rq_online_fair(struct rq *rq) 7693 { 7694 update_sysctl(); 7695 7696 update_runtime_enabled(rq); 7697 } 7698 7699 static void rq_offline_fair(struct rq *rq) 7700 { 7701 update_sysctl(); 7702 7703 /* Ensure any throttled groups are reachable by pick_next_task */ 7704 unthrottle_offline_cfs_rqs(rq); 7705 } 7706 7707 #endif /* CONFIG_SMP */ 7708 7709 /* 7710 * scheduler tick hitting a task of our scheduling class: 7711 */ 7712 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 7713 { 7714 struct cfs_rq *cfs_rq; 7715 struct sched_entity *se = &curr->se; 7716 7717 for_each_sched_entity(se) { 7718 cfs_rq = cfs_rq_of(se); 7719 entity_tick(cfs_rq, se, queued); 7720 } 7721 7722 if (numabalancing_enabled) 7723 task_tick_numa(rq, curr); 7724 7725 update_rq_runnable_avg(rq, 1); 7726 } 7727 7728 /* 7729 * called on fork with the child task as argument from the parent's context 7730 * - child not yet on the tasklist 7731 * - preemption disabled 7732 */ 7733 static void task_fork_fair(struct task_struct *p) 7734 { 7735 struct cfs_rq *cfs_rq; 7736 struct sched_entity *se = &p->se, *curr; 7737 int this_cpu = smp_processor_id(); 7738 struct rq *rq = this_rq(); 7739 unsigned long flags; 7740 7741 raw_spin_lock_irqsave(&rq->lock, flags); 7742 7743 update_rq_clock(rq); 7744 7745 cfs_rq = task_cfs_rq(current); 7746 curr = cfs_rq->curr; 7747 7748 /* 7749 * Not only the cpu but also the task_group of the parent might have 7750 * been changed after parent->se.parent,cfs_rq were copied to 7751 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those 7752 * of child point to valid ones. 7753 */ 7754 rcu_read_lock(); 7755 __set_task_cpu(p, this_cpu); 7756 rcu_read_unlock(); 7757 7758 update_curr(cfs_rq); 7759 7760 if (curr) 7761 se->vruntime = curr->vruntime; 7762 place_entity(cfs_rq, se, 1); 7763 7764 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 7765 /* 7766 * Upon rescheduling, sched_class::put_prev_task() will place 7767 * 'current' within the tree based on its new key value. 7768 */ 7769 swap(curr->vruntime, se->vruntime); 7770 resched_curr(rq); 7771 } 7772 7773 se->vruntime -= cfs_rq->min_vruntime; 7774 7775 raw_spin_unlock_irqrestore(&rq->lock, flags); 7776 } 7777 7778 /* 7779 * Priority of the task has changed. Check to see if we preempt 7780 * the current task. 7781 */ 7782 static void 7783 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 7784 { 7785 if (!task_on_rq_queued(p)) 7786 return; 7787 7788 /* 7789 * Reschedule if we are currently running on this runqueue and 7790 * our priority decreased, or if we are not currently running on 7791 * this runqueue and our priority is higher than the current's 7792 */ 7793 if (rq->curr == p) { 7794 if (p->prio > oldprio) 7795 resched_curr(rq); 7796 } else 7797 check_preempt_curr(rq, p, 0); 7798 } 7799 7800 static void switched_from_fair(struct rq *rq, struct task_struct *p) 7801 { 7802 struct sched_entity *se = &p->se; 7803 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7804 7805 /* 7806 * Ensure the task's vruntime is normalized, so that when it's 7807 * switched back to the fair class the enqueue_entity(.flags=0) will 7808 * do the right thing. 7809 * 7810 * If it's queued, then the dequeue_entity(.flags=0) will already 7811 * have normalized the vruntime, if it's !queued, then only when 7812 * the task is sleeping will it still have non-normalized vruntime. 7813 */ 7814 if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) { 7815 /* 7816 * Fix up our vruntime so that the current sleep doesn't 7817 * cause 'unlimited' sleep bonus. 7818 */ 7819 place_entity(cfs_rq, se, 0); 7820 se->vruntime -= cfs_rq->min_vruntime; 7821 } 7822 7823 #ifdef CONFIG_SMP 7824 /* 7825 * Remove our load from contribution when we leave sched_fair 7826 * and ensure we don't carry in an old decay_count if we 7827 * switch back. 7828 */ 7829 if (se->avg.decay_count) { 7830 __synchronize_entity_decay(se); 7831 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib); 7832 } 7833 #endif 7834 } 7835 7836 /* 7837 * We switched to the sched_fair class. 7838 */ 7839 static void switched_to_fair(struct rq *rq, struct task_struct *p) 7840 { 7841 #ifdef CONFIG_FAIR_GROUP_SCHED 7842 struct sched_entity *se = &p->se; 7843 /* 7844 * Since the real-depth could have been changed (only FAIR 7845 * class maintain depth value), reset depth properly. 7846 */ 7847 se->depth = se->parent ? se->parent->depth + 1 : 0; 7848 #endif 7849 if (!task_on_rq_queued(p)) 7850 return; 7851 7852 /* 7853 * We were most likely switched from sched_rt, so 7854 * kick off the schedule if running, otherwise just see 7855 * if we can still preempt the current task. 7856 */ 7857 if (rq->curr == p) 7858 resched_curr(rq); 7859 else 7860 check_preempt_curr(rq, p, 0); 7861 } 7862 7863 /* Account for a task changing its policy or group. 7864 * 7865 * This routine is mostly called to set cfs_rq->curr field when a task 7866 * migrates between groups/classes. 7867 */ 7868 static void set_curr_task_fair(struct rq *rq) 7869 { 7870 struct sched_entity *se = &rq->curr->se; 7871 7872 for_each_sched_entity(se) { 7873 struct cfs_rq *cfs_rq = cfs_rq_of(se); 7874 7875 set_next_entity(cfs_rq, se); 7876 /* ensure bandwidth has been allocated on our new cfs_rq */ 7877 account_cfs_rq_runtime(cfs_rq, 0); 7878 } 7879 } 7880 7881 void init_cfs_rq(struct cfs_rq *cfs_rq) 7882 { 7883 cfs_rq->tasks_timeline = RB_ROOT; 7884 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 7885 #ifndef CONFIG_64BIT 7886 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 7887 #endif 7888 #ifdef CONFIG_SMP 7889 atomic64_set(&cfs_rq->decay_counter, 1); 7890 atomic_long_set(&cfs_rq->removed_load, 0); 7891 #endif 7892 } 7893 7894 #ifdef CONFIG_FAIR_GROUP_SCHED 7895 static void task_move_group_fair(struct task_struct *p, int queued) 7896 { 7897 struct sched_entity *se = &p->se; 7898 struct cfs_rq *cfs_rq; 7899 7900 /* 7901 * If the task was not on the rq at the time of this cgroup movement 7902 * it must have been asleep, sleeping tasks keep their ->vruntime 7903 * absolute on their old rq until wakeup (needed for the fair sleeper 7904 * bonus in place_entity()). 7905 * 7906 * If it was on the rq, we've just 'preempted' it, which does convert 7907 * ->vruntime to a relative base. 7908 * 7909 * Make sure both cases convert their relative position when migrating 7910 * to another cgroup's rq. This does somewhat interfere with the 7911 * fair sleeper stuff for the first placement, but who cares. 7912 */ 7913 /* 7914 * When !queued, vruntime of the task has usually NOT been normalized. 7915 * But there are some cases where it has already been normalized: 7916 * 7917 * - Moving a forked child which is waiting for being woken up by 7918 * wake_up_new_task(). 7919 * - Moving a task which has been woken up by try_to_wake_up() and 7920 * waiting for actually being woken up by sched_ttwu_pending(). 7921 * 7922 * To prevent boost or penalty in the new cfs_rq caused by delta 7923 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. 7924 */ 7925 if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING)) 7926 queued = 1; 7927 7928 if (!queued) 7929 se->vruntime -= cfs_rq_of(se)->min_vruntime; 7930 set_task_rq(p, task_cpu(p)); 7931 se->depth = se->parent ? se->parent->depth + 1 : 0; 7932 if (!queued) { 7933 cfs_rq = cfs_rq_of(se); 7934 se->vruntime += cfs_rq->min_vruntime; 7935 #ifdef CONFIG_SMP 7936 /* 7937 * migrate_task_rq_fair() will have removed our previous 7938 * contribution, but we must synchronize for ongoing future 7939 * decay. 7940 */ 7941 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter); 7942 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib; 7943 #endif 7944 } 7945 } 7946 7947 void free_fair_sched_group(struct task_group *tg) 7948 { 7949 int i; 7950 7951 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 7952 7953 for_each_possible_cpu(i) { 7954 if (tg->cfs_rq) 7955 kfree(tg->cfs_rq[i]); 7956 if (tg->se) 7957 kfree(tg->se[i]); 7958 } 7959 7960 kfree(tg->cfs_rq); 7961 kfree(tg->se); 7962 } 7963 7964 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 7965 { 7966 struct cfs_rq *cfs_rq; 7967 struct sched_entity *se; 7968 int i; 7969 7970 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 7971 if (!tg->cfs_rq) 7972 goto err; 7973 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 7974 if (!tg->se) 7975 goto err; 7976 7977 tg->shares = NICE_0_LOAD; 7978 7979 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 7980 7981 for_each_possible_cpu(i) { 7982 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 7983 GFP_KERNEL, cpu_to_node(i)); 7984 if (!cfs_rq) 7985 goto err; 7986 7987 se = kzalloc_node(sizeof(struct sched_entity), 7988 GFP_KERNEL, cpu_to_node(i)); 7989 if (!se) 7990 goto err_free_rq; 7991 7992 init_cfs_rq(cfs_rq); 7993 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 7994 } 7995 7996 return 1; 7997 7998 err_free_rq: 7999 kfree(cfs_rq); 8000 err: 8001 return 0; 8002 } 8003 8004 void unregister_fair_sched_group(struct task_group *tg, int cpu) 8005 { 8006 struct rq *rq = cpu_rq(cpu); 8007 unsigned long flags; 8008 8009 /* 8010 * Only empty task groups can be destroyed; so we can speculatively 8011 * check on_list without danger of it being re-added. 8012 */ 8013 if (!tg->cfs_rq[cpu]->on_list) 8014 return; 8015 8016 raw_spin_lock_irqsave(&rq->lock, flags); 8017 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 8018 raw_spin_unlock_irqrestore(&rq->lock, flags); 8019 } 8020 8021 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 8022 struct sched_entity *se, int cpu, 8023 struct sched_entity *parent) 8024 { 8025 struct rq *rq = cpu_rq(cpu); 8026 8027 cfs_rq->tg = tg; 8028 cfs_rq->rq = rq; 8029 init_cfs_rq_runtime(cfs_rq); 8030 8031 tg->cfs_rq[cpu] = cfs_rq; 8032 tg->se[cpu] = se; 8033 8034 /* se could be NULL for root_task_group */ 8035 if (!se) 8036 return; 8037 8038 if (!parent) { 8039 se->cfs_rq = &rq->cfs; 8040 se->depth = 0; 8041 } else { 8042 se->cfs_rq = parent->my_q; 8043 se->depth = parent->depth + 1; 8044 } 8045 8046 se->my_q = cfs_rq; 8047 /* guarantee group entities always have weight */ 8048 update_load_set(&se->load, NICE_0_LOAD); 8049 se->parent = parent; 8050 } 8051 8052 static DEFINE_MUTEX(shares_mutex); 8053 8054 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 8055 { 8056 int i; 8057 unsigned long flags; 8058 8059 /* 8060 * We can't change the weight of the root cgroup. 8061 */ 8062 if (!tg->se[0]) 8063 return -EINVAL; 8064 8065 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 8066 8067 mutex_lock(&shares_mutex); 8068 if (tg->shares == shares) 8069 goto done; 8070 8071 tg->shares = shares; 8072 for_each_possible_cpu(i) { 8073 struct rq *rq = cpu_rq(i); 8074 struct sched_entity *se; 8075 8076 se = tg->se[i]; 8077 /* Propagate contribution to hierarchy */ 8078 raw_spin_lock_irqsave(&rq->lock, flags); 8079 8080 /* Possible calls to update_curr() need rq clock */ 8081 update_rq_clock(rq); 8082 for_each_sched_entity(se) 8083 update_cfs_shares(group_cfs_rq(se)); 8084 raw_spin_unlock_irqrestore(&rq->lock, flags); 8085 } 8086 8087 done: 8088 mutex_unlock(&shares_mutex); 8089 return 0; 8090 } 8091 #else /* CONFIG_FAIR_GROUP_SCHED */ 8092 8093 void free_fair_sched_group(struct task_group *tg) { } 8094 8095 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8096 { 8097 return 1; 8098 } 8099 8100 void unregister_fair_sched_group(struct task_group *tg, int cpu) { } 8101 8102 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8103 8104 8105 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 8106 { 8107 struct sched_entity *se = &task->se; 8108 unsigned int rr_interval = 0; 8109 8110 /* 8111 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 8112 * idle runqueue: 8113 */ 8114 if (rq->cfs.load.weight) 8115 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 8116 8117 return rr_interval; 8118 } 8119 8120 /* 8121 * All the scheduling class methods: 8122 */ 8123 const struct sched_class fair_sched_class = { 8124 .next = &idle_sched_class, 8125 .enqueue_task = enqueue_task_fair, 8126 .dequeue_task = dequeue_task_fair, 8127 .yield_task = yield_task_fair, 8128 .yield_to_task = yield_to_task_fair, 8129 8130 .check_preempt_curr = check_preempt_wakeup, 8131 8132 .pick_next_task = pick_next_task_fair, 8133 .put_prev_task = put_prev_task_fair, 8134 8135 #ifdef CONFIG_SMP 8136 .select_task_rq = select_task_rq_fair, 8137 .migrate_task_rq = migrate_task_rq_fair, 8138 8139 .rq_online = rq_online_fair, 8140 .rq_offline = rq_offline_fair, 8141 8142 .task_waking = task_waking_fair, 8143 #endif 8144 8145 .set_curr_task = set_curr_task_fair, 8146 .task_tick = task_tick_fair, 8147 .task_fork = task_fork_fair, 8148 8149 .prio_changed = prio_changed_fair, 8150 .switched_from = switched_from_fair, 8151 .switched_to = switched_to_fair, 8152 8153 .get_rr_interval = get_rr_interval_fair, 8154 8155 .update_curr = update_curr_fair, 8156 8157 #ifdef CONFIG_FAIR_GROUP_SCHED 8158 .task_move_group = task_move_group_fair, 8159 #endif 8160 }; 8161 8162 #ifdef CONFIG_SCHED_DEBUG 8163 void print_cfs_stats(struct seq_file *m, int cpu) 8164 { 8165 struct cfs_rq *cfs_rq; 8166 8167 rcu_read_lock(); 8168 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 8169 print_cfs_rq(m, cpu, cfs_rq); 8170 rcu_read_unlock(); 8171 } 8172 #endif 8173 8174 __init void init_sched_fair_class(void) 8175 { 8176 #ifdef CONFIG_SMP 8177 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 8178 8179 #ifdef CONFIG_NO_HZ_COMMON 8180 nohz.next_balance = jiffies; 8181 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 8182 cpu_notifier(sched_ilb_notifier, 0); 8183 #endif 8184 #endif /* SMP */ 8185 8186 } 8187