xref: /linux/kernel/sched/fair.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3  *
4  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5  *
6  *  Interactivity improvements by Mike Galbraith
7  *  (C) 2007 Mike Galbraith <efault@gmx.de>
8  *
9  *  Various enhancements by Dmitry Adamushko.
10  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11  *
12  *  Group scheduling enhancements by Srivatsa Vaddagiri
13  *  Copyright IBM Corporation, 2007
14  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15  *
16  *  Scaled math optimizations by Thomas Gleixner
17  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18  *
19  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21  */
22 
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
26 #include <linux/cpuidle.h>
27 #include <linux/slab.h>
28 #include <linux/profile.h>
29 #include <linux/interrupt.h>
30 #include <linux/mempolicy.h>
31 #include <linux/migrate.h>
32 #include <linux/task_work.h>
33 
34 #include <trace/events/sched.h>
35 
36 #include "sched.h"
37 
38 /*
39  * Targeted preemption latency for CPU-bound tasks:
40  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41  *
42  * NOTE: this latency value is not the same as the concept of
43  * 'timeslice length' - timeslices in CFS are of variable length
44  * and have no persistent notion like in traditional, time-slice
45  * based scheduling concepts.
46  *
47  * (to see the precise effective timeslice length of your workload,
48  *  run vmstat and monitor the context-switches (cs) field)
49  */
50 unsigned int sysctl_sched_latency = 6000000ULL;
51 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
52 
53 /*
54  * The initial- and re-scaling of tunables is configurable
55  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56  *
57  * Options are:
58  * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59  * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60  * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61  */
62 enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 	= SCHED_TUNABLESCALING_LOG;
64 
65 /*
66  * Minimal preemption granularity for CPU-bound tasks:
67  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
68  */
69 unsigned int sysctl_sched_min_granularity = 750000ULL;
70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
71 
72 /*
73  * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74  */
75 static unsigned int sched_nr_latency = 8;
76 
77 /*
78  * After fork, child runs first. If set to 0 (default) then
79  * parent will (try to) run first.
80  */
81 unsigned int sysctl_sched_child_runs_first __read_mostly;
82 
83 /*
84  * SCHED_OTHER wake-up granularity.
85  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86  *
87  * This option delays the preemption effects of decoupled workloads
88  * and reduces their over-scheduling. Synchronous workloads will still
89  * have immediate wakeup/sleep latencies.
90  */
91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
93 
94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95 
96 /*
97  * The exponential sliding  window over which load is averaged for shares
98  * distribution.
99  * (default: 10msec)
100  */
101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102 
103 #ifdef CONFIG_CFS_BANDWIDTH
104 /*
105  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106  * each time a cfs_rq requests quota.
107  *
108  * Note: in the case that the slice exceeds the runtime remaining (either due
109  * to consumption or the quota being specified to be smaller than the slice)
110  * we will always only issue the remaining available time.
111  *
112  * default: 5 msec, units: microseconds
113   */
114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115 #endif
116 
117 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
118 {
119 	lw->weight += inc;
120 	lw->inv_weight = 0;
121 }
122 
123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
124 {
125 	lw->weight -= dec;
126 	lw->inv_weight = 0;
127 }
128 
129 static inline void update_load_set(struct load_weight *lw, unsigned long w)
130 {
131 	lw->weight = w;
132 	lw->inv_weight = 0;
133 }
134 
135 /*
136  * Increase the granularity value when there are more CPUs,
137  * because with more CPUs the 'effective latency' as visible
138  * to users decreases. But the relationship is not linear,
139  * so pick a second-best guess by going with the log2 of the
140  * number of CPUs.
141  *
142  * This idea comes from the SD scheduler of Con Kolivas:
143  */
144 static int get_update_sysctl_factor(void)
145 {
146 	unsigned int cpus = min_t(int, num_online_cpus(), 8);
147 	unsigned int factor;
148 
149 	switch (sysctl_sched_tunable_scaling) {
150 	case SCHED_TUNABLESCALING_NONE:
151 		factor = 1;
152 		break;
153 	case SCHED_TUNABLESCALING_LINEAR:
154 		factor = cpus;
155 		break;
156 	case SCHED_TUNABLESCALING_LOG:
157 	default:
158 		factor = 1 + ilog2(cpus);
159 		break;
160 	}
161 
162 	return factor;
163 }
164 
165 static void update_sysctl(void)
166 {
167 	unsigned int factor = get_update_sysctl_factor();
168 
169 #define SET_SYSCTL(name) \
170 	(sysctl_##name = (factor) * normalized_sysctl_##name)
171 	SET_SYSCTL(sched_min_granularity);
172 	SET_SYSCTL(sched_latency);
173 	SET_SYSCTL(sched_wakeup_granularity);
174 #undef SET_SYSCTL
175 }
176 
177 void sched_init_granularity(void)
178 {
179 	update_sysctl();
180 }
181 
182 #define WMULT_CONST	(~0U)
183 #define WMULT_SHIFT	32
184 
185 static void __update_inv_weight(struct load_weight *lw)
186 {
187 	unsigned long w;
188 
189 	if (likely(lw->inv_weight))
190 		return;
191 
192 	w = scale_load_down(lw->weight);
193 
194 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
195 		lw->inv_weight = 1;
196 	else if (unlikely(!w))
197 		lw->inv_weight = WMULT_CONST;
198 	else
199 		lw->inv_weight = WMULT_CONST / w;
200 }
201 
202 /*
203  * delta_exec * weight / lw.weight
204  *   OR
205  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
206  *
207  * Either weight := NICE_0_LOAD and lw \e prio_to_wmult[], in which case
208  * we're guaranteed shift stays positive because inv_weight is guaranteed to
209  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
210  *
211  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
212  * weight/lw.weight <= 1, and therefore our shift will also be positive.
213  */
214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
215 {
216 	u64 fact = scale_load_down(weight);
217 	int shift = WMULT_SHIFT;
218 
219 	__update_inv_weight(lw);
220 
221 	if (unlikely(fact >> 32)) {
222 		while (fact >> 32) {
223 			fact >>= 1;
224 			shift--;
225 		}
226 	}
227 
228 	/* hint to use a 32x32->64 mul */
229 	fact = (u64)(u32)fact * lw->inv_weight;
230 
231 	while (fact >> 32) {
232 		fact >>= 1;
233 		shift--;
234 	}
235 
236 	return mul_u64_u32_shr(delta_exec, fact, shift);
237 }
238 
239 
240 const struct sched_class fair_sched_class;
241 
242 /**************************************************************
243  * CFS operations on generic schedulable entities:
244  */
245 
246 #ifdef CONFIG_FAIR_GROUP_SCHED
247 
248 /* cpu runqueue to which this cfs_rq is attached */
249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
250 {
251 	return cfs_rq->rq;
252 }
253 
254 /* An entity is a task if it doesn't "own" a runqueue */
255 #define entity_is_task(se)	(!se->my_q)
256 
257 static inline struct task_struct *task_of(struct sched_entity *se)
258 {
259 #ifdef CONFIG_SCHED_DEBUG
260 	WARN_ON_ONCE(!entity_is_task(se));
261 #endif
262 	return container_of(se, struct task_struct, se);
263 }
264 
265 /* Walk up scheduling entities hierarchy */
266 #define for_each_sched_entity(se) \
267 		for (; se; se = se->parent)
268 
269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
270 {
271 	return p->se.cfs_rq;
272 }
273 
274 /* runqueue on which this entity is (to be) queued */
275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
276 {
277 	return se->cfs_rq;
278 }
279 
280 /* runqueue "owned" by this group */
281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
282 {
283 	return grp->my_q;
284 }
285 
286 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
287 				       int force_update);
288 
289 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 {
291 	if (!cfs_rq->on_list) {
292 		/*
293 		 * Ensure we either appear before our parent (if already
294 		 * enqueued) or force our parent to appear after us when it is
295 		 * enqueued.  The fact that we always enqueue bottom-up
296 		 * reduces this to two cases.
297 		 */
298 		if (cfs_rq->tg->parent &&
299 		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
300 			list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
301 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
302 		} else {
303 			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
304 				&rq_of(cfs_rq)->leaf_cfs_rq_list);
305 		}
306 
307 		cfs_rq->on_list = 1;
308 		/* We should have no load, but we need to update last_decay. */
309 		update_cfs_rq_blocked_load(cfs_rq, 0);
310 	}
311 }
312 
313 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
314 {
315 	if (cfs_rq->on_list) {
316 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
317 		cfs_rq->on_list = 0;
318 	}
319 }
320 
321 /* Iterate thr' all leaf cfs_rq's on a runqueue */
322 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
323 	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
324 
325 /* Do the two (enqueued) entities belong to the same group ? */
326 static inline struct cfs_rq *
327 is_same_group(struct sched_entity *se, struct sched_entity *pse)
328 {
329 	if (se->cfs_rq == pse->cfs_rq)
330 		return se->cfs_rq;
331 
332 	return NULL;
333 }
334 
335 static inline struct sched_entity *parent_entity(struct sched_entity *se)
336 {
337 	return se->parent;
338 }
339 
340 static void
341 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
342 {
343 	int se_depth, pse_depth;
344 
345 	/*
346 	 * preemption test can be made between sibling entities who are in the
347 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
348 	 * both tasks until we find their ancestors who are siblings of common
349 	 * parent.
350 	 */
351 
352 	/* First walk up until both entities are at same depth */
353 	se_depth = (*se)->depth;
354 	pse_depth = (*pse)->depth;
355 
356 	while (se_depth > pse_depth) {
357 		se_depth--;
358 		*se = parent_entity(*se);
359 	}
360 
361 	while (pse_depth > se_depth) {
362 		pse_depth--;
363 		*pse = parent_entity(*pse);
364 	}
365 
366 	while (!is_same_group(*se, *pse)) {
367 		*se = parent_entity(*se);
368 		*pse = parent_entity(*pse);
369 	}
370 }
371 
372 #else	/* !CONFIG_FAIR_GROUP_SCHED */
373 
374 static inline struct task_struct *task_of(struct sched_entity *se)
375 {
376 	return container_of(se, struct task_struct, se);
377 }
378 
379 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
380 {
381 	return container_of(cfs_rq, struct rq, cfs);
382 }
383 
384 #define entity_is_task(se)	1
385 
386 #define for_each_sched_entity(se) \
387 		for (; se; se = NULL)
388 
389 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
390 {
391 	return &task_rq(p)->cfs;
392 }
393 
394 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
395 {
396 	struct task_struct *p = task_of(se);
397 	struct rq *rq = task_rq(p);
398 
399 	return &rq->cfs;
400 }
401 
402 /* runqueue "owned" by this group */
403 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
404 {
405 	return NULL;
406 }
407 
408 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
409 {
410 }
411 
412 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
413 {
414 }
415 
416 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
417 		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
418 
419 static inline struct sched_entity *parent_entity(struct sched_entity *se)
420 {
421 	return NULL;
422 }
423 
424 static inline void
425 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
426 {
427 }
428 
429 #endif	/* CONFIG_FAIR_GROUP_SCHED */
430 
431 static __always_inline
432 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
433 
434 /**************************************************************
435  * Scheduling class tree data structure manipulation methods:
436  */
437 
438 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
439 {
440 	s64 delta = (s64)(vruntime - max_vruntime);
441 	if (delta > 0)
442 		max_vruntime = vruntime;
443 
444 	return max_vruntime;
445 }
446 
447 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
448 {
449 	s64 delta = (s64)(vruntime - min_vruntime);
450 	if (delta < 0)
451 		min_vruntime = vruntime;
452 
453 	return min_vruntime;
454 }
455 
456 static inline int entity_before(struct sched_entity *a,
457 				struct sched_entity *b)
458 {
459 	return (s64)(a->vruntime - b->vruntime) < 0;
460 }
461 
462 static void update_min_vruntime(struct cfs_rq *cfs_rq)
463 {
464 	u64 vruntime = cfs_rq->min_vruntime;
465 
466 	if (cfs_rq->curr)
467 		vruntime = cfs_rq->curr->vruntime;
468 
469 	if (cfs_rq->rb_leftmost) {
470 		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
471 						   struct sched_entity,
472 						   run_node);
473 
474 		if (!cfs_rq->curr)
475 			vruntime = se->vruntime;
476 		else
477 			vruntime = min_vruntime(vruntime, se->vruntime);
478 	}
479 
480 	/* ensure we never gain time by being placed backwards. */
481 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
482 #ifndef CONFIG_64BIT
483 	smp_wmb();
484 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
485 #endif
486 }
487 
488 /*
489  * Enqueue an entity into the rb-tree:
490  */
491 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
492 {
493 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
494 	struct rb_node *parent = NULL;
495 	struct sched_entity *entry;
496 	int leftmost = 1;
497 
498 	/*
499 	 * Find the right place in the rbtree:
500 	 */
501 	while (*link) {
502 		parent = *link;
503 		entry = rb_entry(parent, struct sched_entity, run_node);
504 		/*
505 		 * We dont care about collisions. Nodes with
506 		 * the same key stay together.
507 		 */
508 		if (entity_before(se, entry)) {
509 			link = &parent->rb_left;
510 		} else {
511 			link = &parent->rb_right;
512 			leftmost = 0;
513 		}
514 	}
515 
516 	/*
517 	 * Maintain a cache of leftmost tree entries (it is frequently
518 	 * used):
519 	 */
520 	if (leftmost)
521 		cfs_rq->rb_leftmost = &se->run_node;
522 
523 	rb_link_node(&se->run_node, parent, link);
524 	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
525 }
526 
527 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
528 {
529 	if (cfs_rq->rb_leftmost == &se->run_node) {
530 		struct rb_node *next_node;
531 
532 		next_node = rb_next(&se->run_node);
533 		cfs_rq->rb_leftmost = next_node;
534 	}
535 
536 	rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
537 }
538 
539 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
540 {
541 	struct rb_node *left = cfs_rq->rb_leftmost;
542 
543 	if (!left)
544 		return NULL;
545 
546 	return rb_entry(left, struct sched_entity, run_node);
547 }
548 
549 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
550 {
551 	struct rb_node *next = rb_next(&se->run_node);
552 
553 	if (!next)
554 		return NULL;
555 
556 	return rb_entry(next, struct sched_entity, run_node);
557 }
558 
559 #ifdef CONFIG_SCHED_DEBUG
560 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
561 {
562 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
563 
564 	if (!last)
565 		return NULL;
566 
567 	return rb_entry(last, struct sched_entity, run_node);
568 }
569 
570 /**************************************************************
571  * Scheduling class statistics methods:
572  */
573 
574 int sched_proc_update_handler(struct ctl_table *table, int write,
575 		void __user *buffer, size_t *lenp,
576 		loff_t *ppos)
577 {
578 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
579 	int factor = get_update_sysctl_factor();
580 
581 	if (ret || !write)
582 		return ret;
583 
584 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
585 					sysctl_sched_min_granularity);
586 
587 #define WRT_SYSCTL(name) \
588 	(normalized_sysctl_##name = sysctl_##name / (factor))
589 	WRT_SYSCTL(sched_min_granularity);
590 	WRT_SYSCTL(sched_latency);
591 	WRT_SYSCTL(sched_wakeup_granularity);
592 #undef WRT_SYSCTL
593 
594 	return 0;
595 }
596 #endif
597 
598 /*
599  * delta /= w
600  */
601 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
602 {
603 	if (unlikely(se->load.weight != NICE_0_LOAD))
604 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
605 
606 	return delta;
607 }
608 
609 /*
610  * The idea is to set a period in which each task runs once.
611  *
612  * When there are too many tasks (sched_nr_latency) we have to stretch
613  * this period because otherwise the slices get too small.
614  *
615  * p = (nr <= nl) ? l : l*nr/nl
616  */
617 static u64 __sched_period(unsigned long nr_running)
618 {
619 	u64 period = sysctl_sched_latency;
620 	unsigned long nr_latency = sched_nr_latency;
621 
622 	if (unlikely(nr_running > nr_latency)) {
623 		period = sysctl_sched_min_granularity;
624 		period *= nr_running;
625 	}
626 
627 	return period;
628 }
629 
630 /*
631  * We calculate the wall-time slice from the period by taking a part
632  * proportional to the weight.
633  *
634  * s = p*P[w/rw]
635  */
636 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
637 {
638 	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
639 
640 	for_each_sched_entity(se) {
641 		struct load_weight *load;
642 		struct load_weight lw;
643 
644 		cfs_rq = cfs_rq_of(se);
645 		load = &cfs_rq->load;
646 
647 		if (unlikely(!se->on_rq)) {
648 			lw = cfs_rq->load;
649 
650 			update_load_add(&lw, se->load.weight);
651 			load = &lw;
652 		}
653 		slice = __calc_delta(slice, se->load.weight, load);
654 	}
655 	return slice;
656 }
657 
658 /*
659  * We calculate the vruntime slice of a to-be-inserted task.
660  *
661  * vs = s/w
662  */
663 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
664 {
665 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
666 }
667 
668 #ifdef CONFIG_SMP
669 static int select_idle_sibling(struct task_struct *p, int cpu);
670 static unsigned long task_h_load(struct task_struct *p);
671 
672 static inline void __update_task_entity_contrib(struct sched_entity *se);
673 
674 /* Give new task start runnable values to heavy its load in infant time */
675 void init_task_runnable_average(struct task_struct *p)
676 {
677 	u32 slice;
678 
679 	slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
680 	p->se.avg.runnable_avg_sum = slice;
681 	p->se.avg.runnable_avg_period = slice;
682 	__update_task_entity_contrib(&p->se);
683 }
684 #else
685 void init_task_runnable_average(struct task_struct *p)
686 {
687 }
688 #endif
689 
690 /*
691  * Update the current task's runtime statistics.
692  */
693 static void update_curr(struct cfs_rq *cfs_rq)
694 {
695 	struct sched_entity *curr = cfs_rq->curr;
696 	u64 now = rq_clock_task(rq_of(cfs_rq));
697 	u64 delta_exec;
698 
699 	if (unlikely(!curr))
700 		return;
701 
702 	delta_exec = now - curr->exec_start;
703 	if (unlikely((s64)delta_exec <= 0))
704 		return;
705 
706 	curr->exec_start = now;
707 
708 	schedstat_set(curr->statistics.exec_max,
709 		      max(delta_exec, curr->statistics.exec_max));
710 
711 	curr->sum_exec_runtime += delta_exec;
712 	schedstat_add(cfs_rq, exec_clock, delta_exec);
713 
714 	curr->vruntime += calc_delta_fair(delta_exec, curr);
715 	update_min_vruntime(cfs_rq);
716 
717 	if (entity_is_task(curr)) {
718 		struct task_struct *curtask = task_of(curr);
719 
720 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
721 		cpuacct_charge(curtask, delta_exec);
722 		account_group_exec_runtime(curtask, delta_exec);
723 	}
724 
725 	account_cfs_rq_runtime(cfs_rq, delta_exec);
726 }
727 
728 static void update_curr_fair(struct rq *rq)
729 {
730 	update_curr(cfs_rq_of(&rq->curr->se));
731 }
732 
733 static inline void
734 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
735 {
736 	schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
737 }
738 
739 /*
740  * Task is being enqueued - update stats:
741  */
742 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
743 {
744 	/*
745 	 * Are we enqueueing a waiting task? (for current tasks
746 	 * a dequeue/enqueue event is a NOP)
747 	 */
748 	if (se != cfs_rq->curr)
749 		update_stats_wait_start(cfs_rq, se);
750 }
751 
752 static void
753 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
754 {
755 	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
756 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
757 	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
758 	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
759 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
760 #ifdef CONFIG_SCHEDSTATS
761 	if (entity_is_task(se)) {
762 		trace_sched_stat_wait(task_of(se),
763 			rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
764 	}
765 #endif
766 	schedstat_set(se->statistics.wait_start, 0);
767 }
768 
769 static inline void
770 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
771 {
772 	/*
773 	 * Mark the end of the wait period if dequeueing a
774 	 * waiting task:
775 	 */
776 	if (se != cfs_rq->curr)
777 		update_stats_wait_end(cfs_rq, se);
778 }
779 
780 /*
781  * We are picking a new current task - update its stats:
782  */
783 static inline void
784 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
785 {
786 	/*
787 	 * We are starting a new run period:
788 	 */
789 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
790 }
791 
792 /**************************************************
793  * Scheduling class queueing methods:
794  */
795 
796 #ifdef CONFIG_NUMA_BALANCING
797 /*
798  * Approximate time to scan a full NUMA task in ms. The task scan period is
799  * calculated based on the tasks virtual memory size and
800  * numa_balancing_scan_size.
801  */
802 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
803 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
804 
805 /* Portion of address space to scan in MB */
806 unsigned int sysctl_numa_balancing_scan_size = 256;
807 
808 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
809 unsigned int sysctl_numa_balancing_scan_delay = 1000;
810 
811 static unsigned int task_nr_scan_windows(struct task_struct *p)
812 {
813 	unsigned long rss = 0;
814 	unsigned long nr_scan_pages;
815 
816 	/*
817 	 * Calculations based on RSS as non-present and empty pages are skipped
818 	 * by the PTE scanner and NUMA hinting faults should be trapped based
819 	 * on resident pages
820 	 */
821 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
822 	rss = get_mm_rss(p->mm);
823 	if (!rss)
824 		rss = nr_scan_pages;
825 
826 	rss = round_up(rss, nr_scan_pages);
827 	return rss / nr_scan_pages;
828 }
829 
830 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
831 #define MAX_SCAN_WINDOW 2560
832 
833 static unsigned int task_scan_min(struct task_struct *p)
834 {
835 	unsigned int scan_size = ACCESS_ONCE(sysctl_numa_balancing_scan_size);
836 	unsigned int scan, floor;
837 	unsigned int windows = 1;
838 
839 	if (scan_size < MAX_SCAN_WINDOW)
840 		windows = MAX_SCAN_WINDOW / scan_size;
841 	floor = 1000 / windows;
842 
843 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
844 	return max_t(unsigned int, floor, scan);
845 }
846 
847 static unsigned int task_scan_max(struct task_struct *p)
848 {
849 	unsigned int smin = task_scan_min(p);
850 	unsigned int smax;
851 
852 	/* Watch for min being lower than max due to floor calculations */
853 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
854 	return max(smin, smax);
855 }
856 
857 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
858 {
859 	rq->nr_numa_running += (p->numa_preferred_nid != -1);
860 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
861 }
862 
863 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
864 {
865 	rq->nr_numa_running -= (p->numa_preferred_nid != -1);
866 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
867 }
868 
869 struct numa_group {
870 	atomic_t refcount;
871 
872 	spinlock_t lock; /* nr_tasks, tasks */
873 	int nr_tasks;
874 	pid_t gid;
875 
876 	struct rcu_head rcu;
877 	nodemask_t active_nodes;
878 	unsigned long total_faults;
879 	/*
880 	 * Faults_cpu is used to decide whether memory should move
881 	 * towards the CPU. As a consequence, these stats are weighted
882 	 * more by CPU use than by memory faults.
883 	 */
884 	unsigned long *faults_cpu;
885 	unsigned long faults[0];
886 };
887 
888 /* Shared or private faults. */
889 #define NR_NUMA_HINT_FAULT_TYPES 2
890 
891 /* Memory and CPU locality */
892 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
893 
894 /* Averaged statistics, and temporary buffers. */
895 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
896 
897 pid_t task_numa_group_id(struct task_struct *p)
898 {
899 	return p->numa_group ? p->numa_group->gid : 0;
900 }
901 
902 /*
903  * The averaged statistics, shared & private, memory & cpu,
904  * occupy the first half of the array. The second half of the
905  * array is for current counters, which are averaged into the
906  * first set by task_numa_placement.
907  */
908 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
909 {
910 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
911 }
912 
913 static inline unsigned long task_faults(struct task_struct *p, int nid)
914 {
915 	if (!p->numa_faults)
916 		return 0;
917 
918 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
919 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
920 }
921 
922 static inline unsigned long group_faults(struct task_struct *p, int nid)
923 {
924 	if (!p->numa_group)
925 		return 0;
926 
927 	return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
928 		p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
929 }
930 
931 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
932 {
933 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
934 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
935 }
936 
937 /* Handle placement on systems where not all nodes are directly connected. */
938 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
939 					int maxdist, bool task)
940 {
941 	unsigned long score = 0;
942 	int node;
943 
944 	/*
945 	 * All nodes are directly connected, and the same distance
946 	 * from each other. No need for fancy placement algorithms.
947 	 */
948 	if (sched_numa_topology_type == NUMA_DIRECT)
949 		return 0;
950 
951 	/*
952 	 * This code is called for each node, introducing N^2 complexity,
953 	 * which should be ok given the number of nodes rarely exceeds 8.
954 	 */
955 	for_each_online_node(node) {
956 		unsigned long faults;
957 		int dist = node_distance(nid, node);
958 
959 		/*
960 		 * The furthest away nodes in the system are not interesting
961 		 * for placement; nid was already counted.
962 		 */
963 		if (dist == sched_max_numa_distance || node == nid)
964 			continue;
965 
966 		/*
967 		 * On systems with a backplane NUMA topology, compare groups
968 		 * of nodes, and move tasks towards the group with the most
969 		 * memory accesses. When comparing two nodes at distance
970 		 * "hoplimit", only nodes closer by than "hoplimit" are part
971 		 * of each group. Skip other nodes.
972 		 */
973 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
974 					dist > maxdist)
975 			continue;
976 
977 		/* Add up the faults from nearby nodes. */
978 		if (task)
979 			faults = task_faults(p, node);
980 		else
981 			faults = group_faults(p, node);
982 
983 		/*
984 		 * On systems with a glueless mesh NUMA topology, there are
985 		 * no fixed "groups of nodes". Instead, nodes that are not
986 		 * directly connected bounce traffic through intermediate
987 		 * nodes; a numa_group can occupy any set of nodes.
988 		 * The further away a node is, the less the faults count.
989 		 * This seems to result in good task placement.
990 		 */
991 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
992 			faults *= (sched_max_numa_distance - dist);
993 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
994 		}
995 
996 		score += faults;
997 	}
998 
999 	return score;
1000 }
1001 
1002 /*
1003  * These return the fraction of accesses done by a particular task, or
1004  * task group, on a particular numa node.  The group weight is given a
1005  * larger multiplier, in order to group tasks together that are almost
1006  * evenly spread out between numa nodes.
1007  */
1008 static inline unsigned long task_weight(struct task_struct *p, int nid,
1009 					int dist)
1010 {
1011 	unsigned long faults, total_faults;
1012 
1013 	if (!p->numa_faults)
1014 		return 0;
1015 
1016 	total_faults = p->total_numa_faults;
1017 
1018 	if (!total_faults)
1019 		return 0;
1020 
1021 	faults = task_faults(p, nid);
1022 	faults += score_nearby_nodes(p, nid, dist, true);
1023 
1024 	return 1000 * faults / total_faults;
1025 }
1026 
1027 static inline unsigned long group_weight(struct task_struct *p, int nid,
1028 					 int dist)
1029 {
1030 	unsigned long faults, total_faults;
1031 
1032 	if (!p->numa_group)
1033 		return 0;
1034 
1035 	total_faults = p->numa_group->total_faults;
1036 
1037 	if (!total_faults)
1038 		return 0;
1039 
1040 	faults = group_faults(p, nid);
1041 	faults += score_nearby_nodes(p, nid, dist, false);
1042 
1043 	return 1000 * faults / total_faults;
1044 }
1045 
1046 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1047 				int src_nid, int dst_cpu)
1048 {
1049 	struct numa_group *ng = p->numa_group;
1050 	int dst_nid = cpu_to_node(dst_cpu);
1051 	int last_cpupid, this_cpupid;
1052 
1053 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1054 
1055 	/*
1056 	 * Multi-stage node selection is used in conjunction with a periodic
1057 	 * migration fault to build a temporal task<->page relation. By using
1058 	 * a two-stage filter we remove short/unlikely relations.
1059 	 *
1060 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1061 	 * a task's usage of a particular page (n_p) per total usage of this
1062 	 * page (n_t) (in a given time-span) to a probability.
1063 	 *
1064 	 * Our periodic faults will sample this probability and getting the
1065 	 * same result twice in a row, given these samples are fully
1066 	 * independent, is then given by P(n)^2, provided our sample period
1067 	 * is sufficiently short compared to the usage pattern.
1068 	 *
1069 	 * This quadric squishes small probabilities, making it less likely we
1070 	 * act on an unlikely task<->page relation.
1071 	 */
1072 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1073 	if (!cpupid_pid_unset(last_cpupid) &&
1074 				cpupid_to_nid(last_cpupid) != dst_nid)
1075 		return false;
1076 
1077 	/* Always allow migrate on private faults */
1078 	if (cpupid_match_pid(p, last_cpupid))
1079 		return true;
1080 
1081 	/* A shared fault, but p->numa_group has not been set up yet. */
1082 	if (!ng)
1083 		return true;
1084 
1085 	/*
1086 	 * Do not migrate if the destination is not a node that
1087 	 * is actively used by this numa group.
1088 	 */
1089 	if (!node_isset(dst_nid, ng->active_nodes))
1090 		return false;
1091 
1092 	/*
1093 	 * Source is a node that is not actively used by this
1094 	 * numa group, while the destination is. Migrate.
1095 	 */
1096 	if (!node_isset(src_nid, ng->active_nodes))
1097 		return true;
1098 
1099 	/*
1100 	 * Both source and destination are nodes in active
1101 	 * use by this numa group. Maximize memory bandwidth
1102 	 * by migrating from more heavily used groups, to less
1103 	 * heavily used ones, spreading the load around.
1104 	 * Use a 1/4 hysteresis to avoid spurious page movement.
1105 	 */
1106 	return group_faults(p, dst_nid) < (group_faults(p, src_nid) * 3 / 4);
1107 }
1108 
1109 static unsigned long weighted_cpuload(const int cpu);
1110 static unsigned long source_load(int cpu, int type);
1111 static unsigned long target_load(int cpu, int type);
1112 static unsigned long capacity_of(int cpu);
1113 static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1114 
1115 /* Cached statistics for all CPUs within a node */
1116 struct numa_stats {
1117 	unsigned long nr_running;
1118 	unsigned long load;
1119 
1120 	/* Total compute capacity of CPUs on a node */
1121 	unsigned long compute_capacity;
1122 
1123 	/* Approximate capacity in terms of runnable tasks on a node */
1124 	unsigned long task_capacity;
1125 	int has_free_capacity;
1126 };
1127 
1128 /*
1129  * XXX borrowed from update_sg_lb_stats
1130  */
1131 static void update_numa_stats(struct numa_stats *ns, int nid)
1132 {
1133 	int smt, cpu, cpus = 0;
1134 	unsigned long capacity;
1135 
1136 	memset(ns, 0, sizeof(*ns));
1137 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1138 		struct rq *rq = cpu_rq(cpu);
1139 
1140 		ns->nr_running += rq->nr_running;
1141 		ns->load += weighted_cpuload(cpu);
1142 		ns->compute_capacity += capacity_of(cpu);
1143 
1144 		cpus++;
1145 	}
1146 
1147 	/*
1148 	 * If we raced with hotplug and there are no CPUs left in our mask
1149 	 * the @ns structure is NULL'ed and task_numa_compare() will
1150 	 * not find this node attractive.
1151 	 *
1152 	 * We'll either bail at !has_free_capacity, or we'll detect a huge
1153 	 * imbalance and bail there.
1154 	 */
1155 	if (!cpus)
1156 		return;
1157 
1158 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1159 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1160 	capacity = cpus / smt; /* cores */
1161 
1162 	ns->task_capacity = min_t(unsigned, capacity,
1163 		DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1164 	ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
1165 }
1166 
1167 struct task_numa_env {
1168 	struct task_struct *p;
1169 
1170 	int src_cpu, src_nid;
1171 	int dst_cpu, dst_nid;
1172 
1173 	struct numa_stats src_stats, dst_stats;
1174 
1175 	int imbalance_pct;
1176 	int dist;
1177 
1178 	struct task_struct *best_task;
1179 	long best_imp;
1180 	int best_cpu;
1181 };
1182 
1183 static void task_numa_assign(struct task_numa_env *env,
1184 			     struct task_struct *p, long imp)
1185 {
1186 	if (env->best_task)
1187 		put_task_struct(env->best_task);
1188 	if (p)
1189 		get_task_struct(p);
1190 
1191 	env->best_task = p;
1192 	env->best_imp = imp;
1193 	env->best_cpu = env->dst_cpu;
1194 }
1195 
1196 static bool load_too_imbalanced(long src_load, long dst_load,
1197 				struct task_numa_env *env)
1198 {
1199 	long imb, old_imb;
1200 	long orig_src_load, orig_dst_load;
1201 	long src_capacity, dst_capacity;
1202 
1203 	/*
1204 	 * The load is corrected for the CPU capacity available on each node.
1205 	 *
1206 	 * src_load        dst_load
1207 	 * ------------ vs ---------
1208 	 * src_capacity    dst_capacity
1209 	 */
1210 	src_capacity = env->src_stats.compute_capacity;
1211 	dst_capacity = env->dst_stats.compute_capacity;
1212 
1213 	/* We care about the slope of the imbalance, not the direction. */
1214 	if (dst_load < src_load)
1215 		swap(dst_load, src_load);
1216 
1217 	/* Is the difference below the threshold? */
1218 	imb = dst_load * src_capacity * 100 -
1219 	      src_load * dst_capacity * env->imbalance_pct;
1220 	if (imb <= 0)
1221 		return false;
1222 
1223 	/*
1224 	 * The imbalance is above the allowed threshold.
1225 	 * Compare it with the old imbalance.
1226 	 */
1227 	orig_src_load = env->src_stats.load;
1228 	orig_dst_load = env->dst_stats.load;
1229 
1230 	if (orig_dst_load < orig_src_load)
1231 		swap(orig_dst_load, orig_src_load);
1232 
1233 	old_imb = orig_dst_load * src_capacity * 100 -
1234 		  orig_src_load * dst_capacity * env->imbalance_pct;
1235 
1236 	/* Would this change make things worse? */
1237 	return (imb > old_imb);
1238 }
1239 
1240 /*
1241  * This checks if the overall compute and NUMA accesses of the system would
1242  * be improved if the source tasks was migrated to the target dst_cpu taking
1243  * into account that it might be best if task running on the dst_cpu should
1244  * be exchanged with the source task
1245  */
1246 static void task_numa_compare(struct task_numa_env *env,
1247 			      long taskimp, long groupimp)
1248 {
1249 	struct rq *src_rq = cpu_rq(env->src_cpu);
1250 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1251 	struct task_struct *cur;
1252 	long src_load, dst_load;
1253 	long load;
1254 	long imp = env->p->numa_group ? groupimp : taskimp;
1255 	long moveimp = imp;
1256 	int dist = env->dist;
1257 
1258 	rcu_read_lock();
1259 
1260 	raw_spin_lock_irq(&dst_rq->lock);
1261 	cur = dst_rq->curr;
1262 	/*
1263 	 * No need to move the exiting task, and this ensures that ->curr
1264 	 * wasn't reaped and thus get_task_struct() in task_numa_assign()
1265 	 * is safe under RCU read lock.
1266 	 * Note that rcu_read_lock() itself can't protect from the final
1267 	 * put_task_struct() after the last schedule().
1268 	 */
1269 	if ((cur->flags & PF_EXITING) || is_idle_task(cur))
1270 		cur = NULL;
1271 	raw_spin_unlock_irq(&dst_rq->lock);
1272 
1273 	/*
1274 	 * Because we have preemption enabled we can get migrated around and
1275 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1276 	 */
1277 	if (cur == env->p)
1278 		goto unlock;
1279 
1280 	/*
1281 	 * "imp" is the fault differential for the source task between the
1282 	 * source and destination node. Calculate the total differential for
1283 	 * the source task and potential destination task. The more negative
1284 	 * the value is, the more rmeote accesses that would be expected to
1285 	 * be incurred if the tasks were swapped.
1286 	 */
1287 	if (cur) {
1288 		/* Skip this swap candidate if cannot move to the source cpu */
1289 		if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1290 			goto unlock;
1291 
1292 		/*
1293 		 * If dst and source tasks are in the same NUMA group, or not
1294 		 * in any group then look only at task weights.
1295 		 */
1296 		if (cur->numa_group == env->p->numa_group) {
1297 			imp = taskimp + task_weight(cur, env->src_nid, dist) -
1298 			      task_weight(cur, env->dst_nid, dist);
1299 			/*
1300 			 * Add some hysteresis to prevent swapping the
1301 			 * tasks within a group over tiny differences.
1302 			 */
1303 			if (cur->numa_group)
1304 				imp -= imp/16;
1305 		} else {
1306 			/*
1307 			 * Compare the group weights. If a task is all by
1308 			 * itself (not part of a group), use the task weight
1309 			 * instead.
1310 			 */
1311 			if (cur->numa_group)
1312 				imp += group_weight(cur, env->src_nid, dist) -
1313 				       group_weight(cur, env->dst_nid, dist);
1314 			else
1315 				imp += task_weight(cur, env->src_nid, dist) -
1316 				       task_weight(cur, env->dst_nid, dist);
1317 		}
1318 	}
1319 
1320 	if (imp <= env->best_imp && moveimp <= env->best_imp)
1321 		goto unlock;
1322 
1323 	if (!cur) {
1324 		/* Is there capacity at our destination? */
1325 		if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1326 		    !env->dst_stats.has_free_capacity)
1327 			goto unlock;
1328 
1329 		goto balance;
1330 	}
1331 
1332 	/* Balance doesn't matter much if we're running a task per cpu */
1333 	if (imp > env->best_imp && src_rq->nr_running == 1 &&
1334 			dst_rq->nr_running == 1)
1335 		goto assign;
1336 
1337 	/*
1338 	 * In the overloaded case, try and keep the load balanced.
1339 	 */
1340 balance:
1341 	load = task_h_load(env->p);
1342 	dst_load = env->dst_stats.load + load;
1343 	src_load = env->src_stats.load - load;
1344 
1345 	if (moveimp > imp && moveimp > env->best_imp) {
1346 		/*
1347 		 * If the improvement from just moving env->p direction is
1348 		 * better than swapping tasks around, check if a move is
1349 		 * possible. Store a slightly smaller score than moveimp,
1350 		 * so an actually idle CPU will win.
1351 		 */
1352 		if (!load_too_imbalanced(src_load, dst_load, env)) {
1353 			imp = moveimp - 1;
1354 			cur = NULL;
1355 			goto assign;
1356 		}
1357 	}
1358 
1359 	if (imp <= env->best_imp)
1360 		goto unlock;
1361 
1362 	if (cur) {
1363 		load = task_h_load(cur);
1364 		dst_load -= load;
1365 		src_load += load;
1366 	}
1367 
1368 	if (load_too_imbalanced(src_load, dst_load, env))
1369 		goto unlock;
1370 
1371 	/*
1372 	 * One idle CPU per node is evaluated for a task numa move.
1373 	 * Call select_idle_sibling to maybe find a better one.
1374 	 */
1375 	if (!cur)
1376 		env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu);
1377 
1378 assign:
1379 	task_numa_assign(env, cur, imp);
1380 unlock:
1381 	rcu_read_unlock();
1382 }
1383 
1384 static void task_numa_find_cpu(struct task_numa_env *env,
1385 				long taskimp, long groupimp)
1386 {
1387 	int cpu;
1388 
1389 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1390 		/* Skip this CPU if the source task cannot migrate */
1391 		if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1392 			continue;
1393 
1394 		env->dst_cpu = cpu;
1395 		task_numa_compare(env, taskimp, groupimp);
1396 	}
1397 }
1398 
1399 static int task_numa_migrate(struct task_struct *p)
1400 {
1401 	struct task_numa_env env = {
1402 		.p = p,
1403 
1404 		.src_cpu = task_cpu(p),
1405 		.src_nid = task_node(p),
1406 
1407 		.imbalance_pct = 112,
1408 
1409 		.best_task = NULL,
1410 		.best_imp = 0,
1411 		.best_cpu = -1
1412 	};
1413 	struct sched_domain *sd;
1414 	unsigned long taskweight, groupweight;
1415 	int nid, ret, dist;
1416 	long taskimp, groupimp;
1417 
1418 	/*
1419 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1420 	 * imbalance and would be the first to start moving tasks about.
1421 	 *
1422 	 * And we want to avoid any moving of tasks about, as that would create
1423 	 * random movement of tasks -- counter the numa conditions we're trying
1424 	 * to satisfy here.
1425 	 */
1426 	rcu_read_lock();
1427 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1428 	if (sd)
1429 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1430 	rcu_read_unlock();
1431 
1432 	/*
1433 	 * Cpusets can break the scheduler domain tree into smaller
1434 	 * balance domains, some of which do not cross NUMA boundaries.
1435 	 * Tasks that are "trapped" in such domains cannot be migrated
1436 	 * elsewhere, so there is no point in (re)trying.
1437 	 */
1438 	if (unlikely(!sd)) {
1439 		p->numa_preferred_nid = task_node(p);
1440 		return -EINVAL;
1441 	}
1442 
1443 	env.dst_nid = p->numa_preferred_nid;
1444 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1445 	taskweight = task_weight(p, env.src_nid, dist);
1446 	groupweight = group_weight(p, env.src_nid, dist);
1447 	update_numa_stats(&env.src_stats, env.src_nid);
1448 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1449 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1450 	update_numa_stats(&env.dst_stats, env.dst_nid);
1451 
1452 	/* Try to find a spot on the preferred nid. */
1453 	task_numa_find_cpu(&env, taskimp, groupimp);
1454 
1455 	/*
1456 	 * Look at other nodes in these cases:
1457 	 * - there is no space available on the preferred_nid
1458 	 * - the task is part of a numa_group that is interleaved across
1459 	 *   multiple NUMA nodes; in order to better consolidate the group,
1460 	 *   we need to check other locations.
1461 	 */
1462 	if (env.best_cpu == -1 || (p->numa_group &&
1463 			nodes_weight(p->numa_group->active_nodes) > 1)) {
1464 		for_each_online_node(nid) {
1465 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
1466 				continue;
1467 
1468 			dist = node_distance(env.src_nid, env.dst_nid);
1469 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
1470 						dist != env.dist) {
1471 				taskweight = task_weight(p, env.src_nid, dist);
1472 				groupweight = group_weight(p, env.src_nid, dist);
1473 			}
1474 
1475 			/* Only consider nodes where both task and groups benefit */
1476 			taskimp = task_weight(p, nid, dist) - taskweight;
1477 			groupimp = group_weight(p, nid, dist) - groupweight;
1478 			if (taskimp < 0 && groupimp < 0)
1479 				continue;
1480 
1481 			env.dist = dist;
1482 			env.dst_nid = nid;
1483 			update_numa_stats(&env.dst_stats, env.dst_nid);
1484 			task_numa_find_cpu(&env, taskimp, groupimp);
1485 		}
1486 	}
1487 
1488 	/*
1489 	 * If the task is part of a workload that spans multiple NUMA nodes,
1490 	 * and is migrating into one of the workload's active nodes, remember
1491 	 * this node as the task's preferred numa node, so the workload can
1492 	 * settle down.
1493 	 * A task that migrated to a second choice node will be better off
1494 	 * trying for a better one later. Do not set the preferred node here.
1495 	 */
1496 	if (p->numa_group) {
1497 		if (env.best_cpu == -1)
1498 			nid = env.src_nid;
1499 		else
1500 			nid = env.dst_nid;
1501 
1502 		if (node_isset(nid, p->numa_group->active_nodes))
1503 			sched_setnuma(p, env.dst_nid);
1504 	}
1505 
1506 	/* No better CPU than the current one was found. */
1507 	if (env.best_cpu == -1)
1508 		return -EAGAIN;
1509 
1510 	/*
1511 	 * Reset the scan period if the task is being rescheduled on an
1512 	 * alternative node to recheck if the tasks is now properly placed.
1513 	 */
1514 	p->numa_scan_period = task_scan_min(p);
1515 
1516 	if (env.best_task == NULL) {
1517 		ret = migrate_task_to(p, env.best_cpu);
1518 		if (ret != 0)
1519 			trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1520 		return ret;
1521 	}
1522 
1523 	ret = migrate_swap(p, env.best_task);
1524 	if (ret != 0)
1525 		trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1526 	put_task_struct(env.best_task);
1527 	return ret;
1528 }
1529 
1530 /* Attempt to migrate a task to a CPU on the preferred node. */
1531 static void numa_migrate_preferred(struct task_struct *p)
1532 {
1533 	unsigned long interval = HZ;
1534 
1535 	/* This task has no NUMA fault statistics yet */
1536 	if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1537 		return;
1538 
1539 	/* Periodically retry migrating the task to the preferred node */
1540 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1541 	p->numa_migrate_retry = jiffies + interval;
1542 
1543 	/* Success if task is already running on preferred CPU */
1544 	if (task_node(p) == p->numa_preferred_nid)
1545 		return;
1546 
1547 	/* Otherwise, try migrate to a CPU on the preferred node */
1548 	task_numa_migrate(p);
1549 }
1550 
1551 /*
1552  * Find the nodes on which the workload is actively running. We do this by
1553  * tracking the nodes from which NUMA hinting faults are triggered. This can
1554  * be different from the set of nodes where the workload's memory is currently
1555  * located.
1556  *
1557  * The bitmask is used to make smarter decisions on when to do NUMA page
1558  * migrations, To prevent flip-flopping, and excessive page migrations, nodes
1559  * are added when they cause over 6/16 of the maximum number of faults, but
1560  * only removed when they drop below 3/16.
1561  */
1562 static void update_numa_active_node_mask(struct numa_group *numa_group)
1563 {
1564 	unsigned long faults, max_faults = 0;
1565 	int nid;
1566 
1567 	for_each_online_node(nid) {
1568 		faults = group_faults_cpu(numa_group, nid);
1569 		if (faults > max_faults)
1570 			max_faults = faults;
1571 	}
1572 
1573 	for_each_online_node(nid) {
1574 		faults = group_faults_cpu(numa_group, nid);
1575 		if (!node_isset(nid, numa_group->active_nodes)) {
1576 			if (faults > max_faults * 6 / 16)
1577 				node_set(nid, numa_group->active_nodes);
1578 		} else if (faults < max_faults * 3 / 16)
1579 			node_clear(nid, numa_group->active_nodes);
1580 	}
1581 }
1582 
1583 /*
1584  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1585  * increments. The more local the fault statistics are, the higher the scan
1586  * period will be for the next scan window. If local/(local+remote) ratio is
1587  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1588  * the scan period will decrease. Aim for 70% local accesses.
1589  */
1590 #define NUMA_PERIOD_SLOTS 10
1591 #define NUMA_PERIOD_THRESHOLD 7
1592 
1593 /*
1594  * Increase the scan period (slow down scanning) if the majority of
1595  * our memory is already on our local node, or if the majority of
1596  * the page accesses are shared with other processes.
1597  * Otherwise, decrease the scan period.
1598  */
1599 static void update_task_scan_period(struct task_struct *p,
1600 			unsigned long shared, unsigned long private)
1601 {
1602 	unsigned int period_slot;
1603 	int ratio;
1604 	int diff;
1605 
1606 	unsigned long remote = p->numa_faults_locality[0];
1607 	unsigned long local = p->numa_faults_locality[1];
1608 
1609 	/*
1610 	 * If there were no record hinting faults then either the task is
1611 	 * completely idle or all activity is areas that are not of interest
1612 	 * to automatic numa balancing. Related to that, if there were failed
1613 	 * migration then it implies we are migrating too quickly or the local
1614 	 * node is overloaded. In either case, scan slower
1615 	 */
1616 	if (local + shared == 0 || p->numa_faults_locality[2]) {
1617 		p->numa_scan_period = min(p->numa_scan_period_max,
1618 			p->numa_scan_period << 1);
1619 
1620 		p->mm->numa_next_scan = jiffies +
1621 			msecs_to_jiffies(p->numa_scan_period);
1622 
1623 		return;
1624 	}
1625 
1626 	/*
1627 	 * Prepare to scale scan period relative to the current period.
1628 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
1629 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1630 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1631 	 */
1632 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1633 	ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1634 	if (ratio >= NUMA_PERIOD_THRESHOLD) {
1635 		int slot = ratio - NUMA_PERIOD_THRESHOLD;
1636 		if (!slot)
1637 			slot = 1;
1638 		diff = slot * period_slot;
1639 	} else {
1640 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1641 
1642 		/*
1643 		 * Scale scan rate increases based on sharing. There is an
1644 		 * inverse relationship between the degree of sharing and
1645 		 * the adjustment made to the scanning period. Broadly
1646 		 * speaking the intent is that there is little point
1647 		 * scanning faster if shared accesses dominate as it may
1648 		 * simply bounce migrations uselessly
1649 		 */
1650 		ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
1651 		diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1652 	}
1653 
1654 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
1655 			task_scan_min(p), task_scan_max(p));
1656 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1657 }
1658 
1659 /*
1660  * Get the fraction of time the task has been running since the last
1661  * NUMA placement cycle. The scheduler keeps similar statistics, but
1662  * decays those on a 32ms period, which is orders of magnitude off
1663  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1664  * stats only if the task is so new there are no NUMA statistics yet.
1665  */
1666 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1667 {
1668 	u64 runtime, delta, now;
1669 	/* Use the start of this time slice to avoid calculations. */
1670 	now = p->se.exec_start;
1671 	runtime = p->se.sum_exec_runtime;
1672 
1673 	if (p->last_task_numa_placement) {
1674 		delta = runtime - p->last_sum_exec_runtime;
1675 		*period = now - p->last_task_numa_placement;
1676 	} else {
1677 		delta = p->se.avg.runnable_avg_sum;
1678 		*period = p->se.avg.runnable_avg_period;
1679 	}
1680 
1681 	p->last_sum_exec_runtime = runtime;
1682 	p->last_task_numa_placement = now;
1683 
1684 	return delta;
1685 }
1686 
1687 /*
1688  * Determine the preferred nid for a task in a numa_group. This needs to
1689  * be done in a way that produces consistent results with group_weight,
1690  * otherwise workloads might not converge.
1691  */
1692 static int preferred_group_nid(struct task_struct *p, int nid)
1693 {
1694 	nodemask_t nodes;
1695 	int dist;
1696 
1697 	/* Direct connections between all NUMA nodes. */
1698 	if (sched_numa_topology_type == NUMA_DIRECT)
1699 		return nid;
1700 
1701 	/*
1702 	 * On a system with glueless mesh NUMA topology, group_weight
1703 	 * scores nodes according to the number of NUMA hinting faults on
1704 	 * both the node itself, and on nearby nodes.
1705 	 */
1706 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1707 		unsigned long score, max_score = 0;
1708 		int node, max_node = nid;
1709 
1710 		dist = sched_max_numa_distance;
1711 
1712 		for_each_online_node(node) {
1713 			score = group_weight(p, node, dist);
1714 			if (score > max_score) {
1715 				max_score = score;
1716 				max_node = node;
1717 			}
1718 		}
1719 		return max_node;
1720 	}
1721 
1722 	/*
1723 	 * Finding the preferred nid in a system with NUMA backplane
1724 	 * interconnect topology is more involved. The goal is to locate
1725 	 * tasks from numa_groups near each other in the system, and
1726 	 * untangle workloads from different sides of the system. This requires
1727 	 * searching down the hierarchy of node groups, recursively searching
1728 	 * inside the highest scoring group of nodes. The nodemask tricks
1729 	 * keep the complexity of the search down.
1730 	 */
1731 	nodes = node_online_map;
1732 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1733 		unsigned long max_faults = 0;
1734 		nodemask_t max_group = NODE_MASK_NONE;
1735 		int a, b;
1736 
1737 		/* Are there nodes at this distance from each other? */
1738 		if (!find_numa_distance(dist))
1739 			continue;
1740 
1741 		for_each_node_mask(a, nodes) {
1742 			unsigned long faults = 0;
1743 			nodemask_t this_group;
1744 			nodes_clear(this_group);
1745 
1746 			/* Sum group's NUMA faults; includes a==b case. */
1747 			for_each_node_mask(b, nodes) {
1748 				if (node_distance(a, b) < dist) {
1749 					faults += group_faults(p, b);
1750 					node_set(b, this_group);
1751 					node_clear(b, nodes);
1752 				}
1753 			}
1754 
1755 			/* Remember the top group. */
1756 			if (faults > max_faults) {
1757 				max_faults = faults;
1758 				max_group = this_group;
1759 				/*
1760 				 * subtle: at the smallest distance there is
1761 				 * just one node left in each "group", the
1762 				 * winner is the preferred nid.
1763 				 */
1764 				nid = a;
1765 			}
1766 		}
1767 		/* Next round, evaluate the nodes within max_group. */
1768 		nodes = max_group;
1769 	}
1770 	return nid;
1771 }
1772 
1773 static void task_numa_placement(struct task_struct *p)
1774 {
1775 	int seq, nid, max_nid = -1, max_group_nid = -1;
1776 	unsigned long max_faults = 0, max_group_faults = 0;
1777 	unsigned long fault_types[2] = { 0, 0 };
1778 	unsigned long total_faults;
1779 	u64 runtime, period;
1780 	spinlock_t *group_lock = NULL;
1781 
1782 	seq = ACCESS_ONCE(p->mm->numa_scan_seq);
1783 	if (p->numa_scan_seq == seq)
1784 		return;
1785 	p->numa_scan_seq = seq;
1786 	p->numa_scan_period_max = task_scan_max(p);
1787 
1788 	total_faults = p->numa_faults_locality[0] +
1789 		       p->numa_faults_locality[1];
1790 	runtime = numa_get_avg_runtime(p, &period);
1791 
1792 	/* If the task is part of a group prevent parallel updates to group stats */
1793 	if (p->numa_group) {
1794 		group_lock = &p->numa_group->lock;
1795 		spin_lock_irq(group_lock);
1796 	}
1797 
1798 	/* Find the node with the highest number of faults */
1799 	for_each_online_node(nid) {
1800 		/* Keep track of the offsets in numa_faults array */
1801 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
1802 		unsigned long faults = 0, group_faults = 0;
1803 		int priv;
1804 
1805 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
1806 			long diff, f_diff, f_weight;
1807 
1808 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
1809 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
1810 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
1811 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
1812 
1813 			/* Decay existing window, copy faults since last scan */
1814 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
1815 			fault_types[priv] += p->numa_faults[membuf_idx];
1816 			p->numa_faults[membuf_idx] = 0;
1817 
1818 			/*
1819 			 * Normalize the faults_from, so all tasks in a group
1820 			 * count according to CPU use, instead of by the raw
1821 			 * number of faults. Tasks with little runtime have
1822 			 * little over-all impact on throughput, and thus their
1823 			 * faults are less important.
1824 			 */
1825 			f_weight = div64_u64(runtime << 16, period + 1);
1826 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
1827 				   (total_faults + 1);
1828 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
1829 			p->numa_faults[cpubuf_idx] = 0;
1830 
1831 			p->numa_faults[mem_idx] += diff;
1832 			p->numa_faults[cpu_idx] += f_diff;
1833 			faults += p->numa_faults[mem_idx];
1834 			p->total_numa_faults += diff;
1835 			if (p->numa_group) {
1836 				/*
1837 				 * safe because we can only change our own group
1838 				 *
1839 				 * mem_idx represents the offset for a given
1840 				 * nid and priv in a specific region because it
1841 				 * is at the beginning of the numa_faults array.
1842 				 */
1843 				p->numa_group->faults[mem_idx] += diff;
1844 				p->numa_group->faults_cpu[mem_idx] += f_diff;
1845 				p->numa_group->total_faults += diff;
1846 				group_faults += p->numa_group->faults[mem_idx];
1847 			}
1848 		}
1849 
1850 		if (faults > max_faults) {
1851 			max_faults = faults;
1852 			max_nid = nid;
1853 		}
1854 
1855 		if (group_faults > max_group_faults) {
1856 			max_group_faults = group_faults;
1857 			max_group_nid = nid;
1858 		}
1859 	}
1860 
1861 	update_task_scan_period(p, fault_types[0], fault_types[1]);
1862 
1863 	if (p->numa_group) {
1864 		update_numa_active_node_mask(p->numa_group);
1865 		spin_unlock_irq(group_lock);
1866 		max_nid = preferred_group_nid(p, max_group_nid);
1867 	}
1868 
1869 	if (max_faults) {
1870 		/* Set the new preferred node */
1871 		if (max_nid != p->numa_preferred_nid)
1872 			sched_setnuma(p, max_nid);
1873 
1874 		if (task_node(p) != p->numa_preferred_nid)
1875 			numa_migrate_preferred(p);
1876 	}
1877 }
1878 
1879 static inline int get_numa_group(struct numa_group *grp)
1880 {
1881 	return atomic_inc_not_zero(&grp->refcount);
1882 }
1883 
1884 static inline void put_numa_group(struct numa_group *grp)
1885 {
1886 	if (atomic_dec_and_test(&grp->refcount))
1887 		kfree_rcu(grp, rcu);
1888 }
1889 
1890 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1891 			int *priv)
1892 {
1893 	struct numa_group *grp, *my_grp;
1894 	struct task_struct *tsk;
1895 	bool join = false;
1896 	int cpu = cpupid_to_cpu(cpupid);
1897 	int i;
1898 
1899 	if (unlikely(!p->numa_group)) {
1900 		unsigned int size = sizeof(struct numa_group) +
1901 				    4*nr_node_ids*sizeof(unsigned long);
1902 
1903 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1904 		if (!grp)
1905 			return;
1906 
1907 		atomic_set(&grp->refcount, 1);
1908 		spin_lock_init(&grp->lock);
1909 		grp->gid = p->pid;
1910 		/* Second half of the array tracks nids where faults happen */
1911 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
1912 						nr_node_ids;
1913 
1914 		node_set(task_node(current), grp->active_nodes);
1915 
1916 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
1917 			grp->faults[i] = p->numa_faults[i];
1918 
1919 		grp->total_faults = p->total_numa_faults;
1920 
1921 		grp->nr_tasks++;
1922 		rcu_assign_pointer(p->numa_group, grp);
1923 	}
1924 
1925 	rcu_read_lock();
1926 	tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1927 
1928 	if (!cpupid_match_pid(tsk, cpupid))
1929 		goto no_join;
1930 
1931 	grp = rcu_dereference(tsk->numa_group);
1932 	if (!grp)
1933 		goto no_join;
1934 
1935 	my_grp = p->numa_group;
1936 	if (grp == my_grp)
1937 		goto no_join;
1938 
1939 	/*
1940 	 * Only join the other group if its bigger; if we're the bigger group,
1941 	 * the other task will join us.
1942 	 */
1943 	if (my_grp->nr_tasks > grp->nr_tasks)
1944 		goto no_join;
1945 
1946 	/*
1947 	 * Tie-break on the grp address.
1948 	 */
1949 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1950 		goto no_join;
1951 
1952 	/* Always join threads in the same process. */
1953 	if (tsk->mm == current->mm)
1954 		join = true;
1955 
1956 	/* Simple filter to avoid false positives due to PID collisions */
1957 	if (flags & TNF_SHARED)
1958 		join = true;
1959 
1960 	/* Update priv based on whether false sharing was detected */
1961 	*priv = !join;
1962 
1963 	if (join && !get_numa_group(grp))
1964 		goto no_join;
1965 
1966 	rcu_read_unlock();
1967 
1968 	if (!join)
1969 		return;
1970 
1971 	BUG_ON(irqs_disabled());
1972 	double_lock_irq(&my_grp->lock, &grp->lock);
1973 
1974 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
1975 		my_grp->faults[i] -= p->numa_faults[i];
1976 		grp->faults[i] += p->numa_faults[i];
1977 	}
1978 	my_grp->total_faults -= p->total_numa_faults;
1979 	grp->total_faults += p->total_numa_faults;
1980 
1981 	my_grp->nr_tasks--;
1982 	grp->nr_tasks++;
1983 
1984 	spin_unlock(&my_grp->lock);
1985 	spin_unlock_irq(&grp->lock);
1986 
1987 	rcu_assign_pointer(p->numa_group, grp);
1988 
1989 	put_numa_group(my_grp);
1990 	return;
1991 
1992 no_join:
1993 	rcu_read_unlock();
1994 	return;
1995 }
1996 
1997 void task_numa_free(struct task_struct *p)
1998 {
1999 	struct numa_group *grp = p->numa_group;
2000 	void *numa_faults = p->numa_faults;
2001 	unsigned long flags;
2002 	int i;
2003 
2004 	if (grp) {
2005 		spin_lock_irqsave(&grp->lock, flags);
2006 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2007 			grp->faults[i] -= p->numa_faults[i];
2008 		grp->total_faults -= p->total_numa_faults;
2009 
2010 		grp->nr_tasks--;
2011 		spin_unlock_irqrestore(&grp->lock, flags);
2012 		RCU_INIT_POINTER(p->numa_group, NULL);
2013 		put_numa_group(grp);
2014 	}
2015 
2016 	p->numa_faults = NULL;
2017 	kfree(numa_faults);
2018 }
2019 
2020 /*
2021  * Got a PROT_NONE fault for a page on @node.
2022  */
2023 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2024 {
2025 	struct task_struct *p = current;
2026 	bool migrated = flags & TNF_MIGRATED;
2027 	int cpu_node = task_node(current);
2028 	int local = !!(flags & TNF_FAULT_LOCAL);
2029 	int priv;
2030 
2031 	if (!numabalancing_enabled)
2032 		return;
2033 
2034 	/* for example, ksmd faulting in a user's mm */
2035 	if (!p->mm)
2036 		return;
2037 
2038 	/* Allocate buffer to track faults on a per-node basis */
2039 	if (unlikely(!p->numa_faults)) {
2040 		int size = sizeof(*p->numa_faults) *
2041 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2042 
2043 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2044 		if (!p->numa_faults)
2045 			return;
2046 
2047 		p->total_numa_faults = 0;
2048 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2049 	}
2050 
2051 	/*
2052 	 * First accesses are treated as private, otherwise consider accesses
2053 	 * to be private if the accessing pid has not changed
2054 	 */
2055 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2056 		priv = 1;
2057 	} else {
2058 		priv = cpupid_match_pid(p, last_cpupid);
2059 		if (!priv && !(flags & TNF_NO_GROUP))
2060 			task_numa_group(p, last_cpupid, flags, &priv);
2061 	}
2062 
2063 	/*
2064 	 * If a workload spans multiple NUMA nodes, a shared fault that
2065 	 * occurs wholly within the set of nodes that the workload is
2066 	 * actively using should be counted as local. This allows the
2067 	 * scan rate to slow down when a workload has settled down.
2068 	 */
2069 	if (!priv && !local && p->numa_group &&
2070 			node_isset(cpu_node, p->numa_group->active_nodes) &&
2071 			node_isset(mem_node, p->numa_group->active_nodes))
2072 		local = 1;
2073 
2074 	task_numa_placement(p);
2075 
2076 	/*
2077 	 * Retry task to preferred node migration periodically, in case it
2078 	 * case it previously failed, or the scheduler moved us.
2079 	 */
2080 	if (time_after(jiffies, p->numa_migrate_retry))
2081 		numa_migrate_preferred(p);
2082 
2083 	if (migrated)
2084 		p->numa_pages_migrated += pages;
2085 	if (flags & TNF_MIGRATE_FAIL)
2086 		p->numa_faults_locality[2] += pages;
2087 
2088 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2089 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2090 	p->numa_faults_locality[local] += pages;
2091 }
2092 
2093 static void reset_ptenuma_scan(struct task_struct *p)
2094 {
2095 	ACCESS_ONCE(p->mm->numa_scan_seq)++;
2096 	p->mm->numa_scan_offset = 0;
2097 }
2098 
2099 /*
2100  * The expensive part of numa migration is done from task_work context.
2101  * Triggered from task_tick_numa().
2102  */
2103 void task_numa_work(struct callback_head *work)
2104 {
2105 	unsigned long migrate, next_scan, now = jiffies;
2106 	struct task_struct *p = current;
2107 	struct mm_struct *mm = p->mm;
2108 	struct vm_area_struct *vma;
2109 	unsigned long start, end;
2110 	unsigned long nr_pte_updates = 0;
2111 	long pages;
2112 
2113 	WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2114 
2115 	work->next = work; /* protect against double add */
2116 	/*
2117 	 * Who cares about NUMA placement when they're dying.
2118 	 *
2119 	 * NOTE: make sure not to dereference p->mm before this check,
2120 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2121 	 * without p->mm even though we still had it when we enqueued this
2122 	 * work.
2123 	 */
2124 	if (p->flags & PF_EXITING)
2125 		return;
2126 
2127 	if (!mm->numa_next_scan) {
2128 		mm->numa_next_scan = now +
2129 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2130 	}
2131 
2132 	/*
2133 	 * Enforce maximal scan/migration frequency..
2134 	 */
2135 	migrate = mm->numa_next_scan;
2136 	if (time_before(now, migrate))
2137 		return;
2138 
2139 	if (p->numa_scan_period == 0) {
2140 		p->numa_scan_period_max = task_scan_max(p);
2141 		p->numa_scan_period = task_scan_min(p);
2142 	}
2143 
2144 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2145 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2146 		return;
2147 
2148 	/*
2149 	 * Delay this task enough that another task of this mm will likely win
2150 	 * the next time around.
2151 	 */
2152 	p->node_stamp += 2 * TICK_NSEC;
2153 
2154 	start = mm->numa_scan_offset;
2155 	pages = sysctl_numa_balancing_scan_size;
2156 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2157 	if (!pages)
2158 		return;
2159 
2160 	down_read(&mm->mmap_sem);
2161 	vma = find_vma(mm, start);
2162 	if (!vma) {
2163 		reset_ptenuma_scan(p);
2164 		start = 0;
2165 		vma = mm->mmap;
2166 	}
2167 	for (; vma; vma = vma->vm_next) {
2168 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2169 			is_vm_hugetlb_page(vma)) {
2170 			continue;
2171 		}
2172 
2173 		/*
2174 		 * Shared library pages mapped by multiple processes are not
2175 		 * migrated as it is expected they are cache replicated. Avoid
2176 		 * hinting faults in read-only file-backed mappings or the vdso
2177 		 * as migrating the pages will be of marginal benefit.
2178 		 */
2179 		if (!vma->vm_mm ||
2180 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2181 			continue;
2182 
2183 		/*
2184 		 * Skip inaccessible VMAs to avoid any confusion between
2185 		 * PROT_NONE and NUMA hinting ptes
2186 		 */
2187 		if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2188 			continue;
2189 
2190 		do {
2191 			start = max(start, vma->vm_start);
2192 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2193 			end = min(end, vma->vm_end);
2194 			nr_pte_updates += change_prot_numa(vma, start, end);
2195 
2196 			/*
2197 			 * Scan sysctl_numa_balancing_scan_size but ensure that
2198 			 * at least one PTE is updated so that unused virtual
2199 			 * address space is quickly skipped.
2200 			 */
2201 			if (nr_pte_updates)
2202 				pages -= (end - start) >> PAGE_SHIFT;
2203 
2204 			start = end;
2205 			if (pages <= 0)
2206 				goto out;
2207 
2208 			cond_resched();
2209 		} while (end != vma->vm_end);
2210 	}
2211 
2212 out:
2213 	/*
2214 	 * It is possible to reach the end of the VMA list but the last few
2215 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2216 	 * would find the !migratable VMA on the next scan but not reset the
2217 	 * scanner to the start so check it now.
2218 	 */
2219 	if (vma)
2220 		mm->numa_scan_offset = start;
2221 	else
2222 		reset_ptenuma_scan(p);
2223 	up_read(&mm->mmap_sem);
2224 }
2225 
2226 /*
2227  * Drive the periodic memory faults..
2228  */
2229 void task_tick_numa(struct rq *rq, struct task_struct *curr)
2230 {
2231 	struct callback_head *work = &curr->numa_work;
2232 	u64 period, now;
2233 
2234 	/*
2235 	 * We don't care about NUMA placement if we don't have memory.
2236 	 */
2237 	if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2238 		return;
2239 
2240 	/*
2241 	 * Using runtime rather than walltime has the dual advantage that
2242 	 * we (mostly) drive the selection from busy threads and that the
2243 	 * task needs to have done some actual work before we bother with
2244 	 * NUMA placement.
2245 	 */
2246 	now = curr->se.sum_exec_runtime;
2247 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2248 
2249 	if (now - curr->node_stamp > period) {
2250 		if (!curr->node_stamp)
2251 			curr->numa_scan_period = task_scan_min(curr);
2252 		curr->node_stamp += period;
2253 
2254 		if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2255 			init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2256 			task_work_add(curr, work, true);
2257 		}
2258 	}
2259 }
2260 #else
2261 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2262 {
2263 }
2264 
2265 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2266 {
2267 }
2268 
2269 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2270 {
2271 }
2272 #endif /* CONFIG_NUMA_BALANCING */
2273 
2274 static void
2275 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2276 {
2277 	update_load_add(&cfs_rq->load, se->load.weight);
2278 	if (!parent_entity(se))
2279 		update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2280 #ifdef CONFIG_SMP
2281 	if (entity_is_task(se)) {
2282 		struct rq *rq = rq_of(cfs_rq);
2283 
2284 		account_numa_enqueue(rq, task_of(se));
2285 		list_add(&se->group_node, &rq->cfs_tasks);
2286 	}
2287 #endif
2288 	cfs_rq->nr_running++;
2289 }
2290 
2291 static void
2292 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2293 {
2294 	update_load_sub(&cfs_rq->load, se->load.weight);
2295 	if (!parent_entity(se))
2296 		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2297 	if (entity_is_task(se)) {
2298 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2299 		list_del_init(&se->group_node);
2300 	}
2301 	cfs_rq->nr_running--;
2302 }
2303 
2304 #ifdef CONFIG_FAIR_GROUP_SCHED
2305 # ifdef CONFIG_SMP
2306 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
2307 {
2308 	long tg_weight;
2309 
2310 	/*
2311 	 * Use this CPU's actual weight instead of the last load_contribution
2312 	 * to gain a more accurate current total weight. See
2313 	 * update_cfs_rq_load_contribution().
2314 	 */
2315 	tg_weight = atomic_long_read(&tg->load_avg);
2316 	tg_weight -= cfs_rq->tg_load_contrib;
2317 	tg_weight += cfs_rq->load.weight;
2318 
2319 	return tg_weight;
2320 }
2321 
2322 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2323 {
2324 	long tg_weight, load, shares;
2325 
2326 	tg_weight = calc_tg_weight(tg, cfs_rq);
2327 	load = cfs_rq->load.weight;
2328 
2329 	shares = (tg->shares * load);
2330 	if (tg_weight)
2331 		shares /= tg_weight;
2332 
2333 	if (shares < MIN_SHARES)
2334 		shares = MIN_SHARES;
2335 	if (shares > tg->shares)
2336 		shares = tg->shares;
2337 
2338 	return shares;
2339 }
2340 # else /* CONFIG_SMP */
2341 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
2342 {
2343 	return tg->shares;
2344 }
2345 # endif /* CONFIG_SMP */
2346 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2347 			    unsigned long weight)
2348 {
2349 	if (se->on_rq) {
2350 		/* commit outstanding execution time */
2351 		if (cfs_rq->curr == se)
2352 			update_curr(cfs_rq);
2353 		account_entity_dequeue(cfs_rq, se);
2354 	}
2355 
2356 	update_load_set(&se->load, weight);
2357 
2358 	if (se->on_rq)
2359 		account_entity_enqueue(cfs_rq, se);
2360 }
2361 
2362 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2363 
2364 static void update_cfs_shares(struct cfs_rq *cfs_rq)
2365 {
2366 	struct task_group *tg;
2367 	struct sched_entity *se;
2368 	long shares;
2369 
2370 	tg = cfs_rq->tg;
2371 	se = tg->se[cpu_of(rq_of(cfs_rq))];
2372 	if (!se || throttled_hierarchy(cfs_rq))
2373 		return;
2374 #ifndef CONFIG_SMP
2375 	if (likely(se->load.weight == tg->shares))
2376 		return;
2377 #endif
2378 	shares = calc_cfs_shares(cfs_rq, tg);
2379 
2380 	reweight_entity(cfs_rq_of(se), se, shares);
2381 }
2382 #else /* CONFIG_FAIR_GROUP_SCHED */
2383 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2384 {
2385 }
2386 #endif /* CONFIG_FAIR_GROUP_SCHED */
2387 
2388 #ifdef CONFIG_SMP
2389 /*
2390  * We choose a half-life close to 1 scheduling period.
2391  * Note: The tables below are dependent on this value.
2392  */
2393 #define LOAD_AVG_PERIOD 32
2394 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */
2395 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
2396 
2397 /* Precomputed fixed inverse multiplies for multiplication by y^n */
2398 static const u32 runnable_avg_yN_inv[] = {
2399 	0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2400 	0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2401 	0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2402 	0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2403 	0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2404 	0x85aac367, 0x82cd8698,
2405 };
2406 
2407 /*
2408  * Precomputed \Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent
2409  * over-estimates when re-combining.
2410  */
2411 static const u32 runnable_avg_yN_sum[] = {
2412 	    0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2413 	 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2414 	17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2415 };
2416 
2417 /*
2418  * Approximate:
2419  *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period)
2420  */
2421 static __always_inline u64 decay_load(u64 val, u64 n)
2422 {
2423 	unsigned int local_n;
2424 
2425 	if (!n)
2426 		return val;
2427 	else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2428 		return 0;
2429 
2430 	/* after bounds checking we can collapse to 32-bit */
2431 	local_n = n;
2432 
2433 	/*
2434 	 * As y^PERIOD = 1/2, we can combine
2435 	 *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2436 	 * With a look-up table which covers y^n (n<PERIOD)
2437 	 *
2438 	 * To achieve constant time decay_load.
2439 	 */
2440 	if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2441 		val >>= local_n / LOAD_AVG_PERIOD;
2442 		local_n %= LOAD_AVG_PERIOD;
2443 	}
2444 
2445 	val *= runnable_avg_yN_inv[local_n];
2446 	/* We don't use SRR here since we always want to round down. */
2447 	return val >> 32;
2448 }
2449 
2450 /*
2451  * For updates fully spanning n periods, the contribution to runnable
2452  * average will be: \Sum 1024*y^n
2453  *
2454  * We can compute this reasonably efficiently by combining:
2455  *   y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for  n <PERIOD}
2456  */
2457 static u32 __compute_runnable_contrib(u64 n)
2458 {
2459 	u32 contrib = 0;
2460 
2461 	if (likely(n <= LOAD_AVG_PERIOD))
2462 		return runnable_avg_yN_sum[n];
2463 	else if (unlikely(n >= LOAD_AVG_MAX_N))
2464 		return LOAD_AVG_MAX;
2465 
2466 	/* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2467 	do {
2468 		contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2469 		contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2470 
2471 		n -= LOAD_AVG_PERIOD;
2472 	} while (n > LOAD_AVG_PERIOD);
2473 
2474 	contrib = decay_load(contrib, n);
2475 	return contrib + runnable_avg_yN_sum[n];
2476 }
2477 
2478 /*
2479  * We can represent the historical contribution to runnable average as the
2480  * coefficients of a geometric series.  To do this we sub-divide our runnable
2481  * history into segments of approximately 1ms (1024us); label the segment that
2482  * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2483  *
2484  * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2485  *      p0            p1           p2
2486  *     (now)       (~1ms ago)  (~2ms ago)
2487  *
2488  * Let u_i denote the fraction of p_i that the entity was runnable.
2489  *
2490  * We then designate the fractions u_i as our co-efficients, yielding the
2491  * following representation of historical load:
2492  *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2493  *
2494  * We choose y based on the with of a reasonably scheduling period, fixing:
2495  *   y^32 = 0.5
2496  *
2497  * This means that the contribution to load ~32ms ago (u_32) will be weighted
2498  * approximately half as much as the contribution to load within the last ms
2499  * (u_0).
2500  *
2501  * When a period "rolls over" and we have new u_0`, multiplying the previous
2502  * sum again by y is sufficient to update:
2503  *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2504  *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2505  */
2506 static __always_inline int __update_entity_runnable_avg(u64 now,
2507 							struct sched_avg *sa,
2508 							int runnable)
2509 {
2510 	u64 delta, periods;
2511 	u32 runnable_contrib;
2512 	int delta_w, decayed = 0;
2513 
2514 	delta = now - sa->last_runnable_update;
2515 	/*
2516 	 * This should only happen when time goes backwards, which it
2517 	 * unfortunately does during sched clock init when we swap over to TSC.
2518 	 */
2519 	if ((s64)delta < 0) {
2520 		sa->last_runnable_update = now;
2521 		return 0;
2522 	}
2523 
2524 	/*
2525 	 * Use 1024ns as the unit of measurement since it's a reasonable
2526 	 * approximation of 1us and fast to compute.
2527 	 */
2528 	delta >>= 10;
2529 	if (!delta)
2530 		return 0;
2531 	sa->last_runnable_update = now;
2532 
2533 	/* delta_w is the amount already accumulated against our next period */
2534 	delta_w = sa->runnable_avg_period % 1024;
2535 	if (delta + delta_w >= 1024) {
2536 		/* period roll-over */
2537 		decayed = 1;
2538 
2539 		/*
2540 		 * Now that we know we're crossing a period boundary, figure
2541 		 * out how much from delta we need to complete the current
2542 		 * period and accrue it.
2543 		 */
2544 		delta_w = 1024 - delta_w;
2545 		if (runnable)
2546 			sa->runnable_avg_sum += delta_w;
2547 		sa->runnable_avg_period += delta_w;
2548 
2549 		delta -= delta_w;
2550 
2551 		/* Figure out how many additional periods this update spans */
2552 		periods = delta / 1024;
2553 		delta %= 1024;
2554 
2555 		sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2556 						  periods + 1);
2557 		sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2558 						     periods + 1);
2559 
2560 		/* Efficiently calculate \sum (1..n_period) 1024*y^i */
2561 		runnable_contrib = __compute_runnable_contrib(periods);
2562 		if (runnable)
2563 			sa->runnable_avg_sum += runnable_contrib;
2564 		sa->runnable_avg_period += runnable_contrib;
2565 	}
2566 
2567 	/* Remainder of delta accrued against u_0` */
2568 	if (runnable)
2569 		sa->runnable_avg_sum += delta;
2570 	sa->runnable_avg_period += delta;
2571 
2572 	return decayed;
2573 }
2574 
2575 /* Synchronize an entity's decay with its parenting cfs_rq.*/
2576 static inline u64 __synchronize_entity_decay(struct sched_entity *se)
2577 {
2578 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2579 	u64 decays = atomic64_read(&cfs_rq->decay_counter);
2580 
2581 	decays -= se->avg.decay_count;
2582 	se->avg.decay_count = 0;
2583 	if (!decays)
2584 		return 0;
2585 
2586 	se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2587 
2588 	return decays;
2589 }
2590 
2591 #ifdef CONFIG_FAIR_GROUP_SCHED
2592 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2593 						 int force_update)
2594 {
2595 	struct task_group *tg = cfs_rq->tg;
2596 	long tg_contrib;
2597 
2598 	tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2599 	tg_contrib -= cfs_rq->tg_load_contrib;
2600 
2601 	if (!tg_contrib)
2602 		return;
2603 
2604 	if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2605 		atomic_long_add(tg_contrib, &tg->load_avg);
2606 		cfs_rq->tg_load_contrib += tg_contrib;
2607 	}
2608 }
2609 
2610 /*
2611  * Aggregate cfs_rq runnable averages into an equivalent task_group
2612  * representation for computing load contributions.
2613  */
2614 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2615 						  struct cfs_rq *cfs_rq)
2616 {
2617 	struct task_group *tg = cfs_rq->tg;
2618 	long contrib;
2619 
2620 	/* The fraction of a cpu used by this cfs_rq */
2621 	contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
2622 			  sa->runnable_avg_period + 1);
2623 	contrib -= cfs_rq->tg_runnable_contrib;
2624 
2625 	if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2626 		atomic_add(contrib, &tg->runnable_avg);
2627 		cfs_rq->tg_runnable_contrib += contrib;
2628 	}
2629 }
2630 
2631 static inline void __update_group_entity_contrib(struct sched_entity *se)
2632 {
2633 	struct cfs_rq *cfs_rq = group_cfs_rq(se);
2634 	struct task_group *tg = cfs_rq->tg;
2635 	int runnable_avg;
2636 
2637 	u64 contrib;
2638 
2639 	contrib = cfs_rq->tg_load_contrib * tg->shares;
2640 	se->avg.load_avg_contrib = div_u64(contrib,
2641 				     atomic_long_read(&tg->load_avg) + 1);
2642 
2643 	/*
2644 	 * For group entities we need to compute a correction term in the case
2645 	 * that they are consuming <1 cpu so that we would contribute the same
2646 	 * load as a task of equal weight.
2647 	 *
2648 	 * Explicitly co-ordinating this measurement would be expensive, but
2649 	 * fortunately the sum of each cpus contribution forms a usable
2650 	 * lower-bound on the true value.
2651 	 *
2652 	 * Consider the aggregate of 2 contributions.  Either they are disjoint
2653 	 * (and the sum represents true value) or they are disjoint and we are
2654 	 * understating by the aggregate of their overlap.
2655 	 *
2656 	 * Extending this to N cpus, for a given overlap, the maximum amount we
2657 	 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2658 	 * cpus that overlap for this interval and w_i is the interval width.
2659 	 *
2660 	 * On a small machine; the first term is well-bounded which bounds the
2661 	 * total error since w_i is a subset of the period.  Whereas on a
2662 	 * larger machine, while this first term can be larger, if w_i is the
2663 	 * of consequential size guaranteed to see n_i*w_i quickly converge to
2664 	 * our upper bound of 1-cpu.
2665 	 */
2666 	runnable_avg = atomic_read(&tg->runnable_avg);
2667 	if (runnable_avg < NICE_0_LOAD) {
2668 		se->avg.load_avg_contrib *= runnable_avg;
2669 		se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2670 	}
2671 }
2672 
2673 static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2674 {
2675 	__update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
2676 	__update_tg_runnable_avg(&rq->avg, &rq->cfs);
2677 }
2678 #else /* CONFIG_FAIR_GROUP_SCHED */
2679 static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2680 						 int force_update) {}
2681 static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2682 						  struct cfs_rq *cfs_rq) {}
2683 static inline void __update_group_entity_contrib(struct sched_entity *se) {}
2684 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2685 #endif /* CONFIG_FAIR_GROUP_SCHED */
2686 
2687 static inline void __update_task_entity_contrib(struct sched_entity *se)
2688 {
2689 	u32 contrib;
2690 
2691 	/* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2692 	contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2693 	contrib /= (se->avg.runnable_avg_period + 1);
2694 	se->avg.load_avg_contrib = scale_load(contrib);
2695 }
2696 
2697 /* Compute the current contribution to load_avg by se, return any delta */
2698 static long __update_entity_load_avg_contrib(struct sched_entity *se)
2699 {
2700 	long old_contrib = se->avg.load_avg_contrib;
2701 
2702 	if (entity_is_task(se)) {
2703 		__update_task_entity_contrib(se);
2704 	} else {
2705 		__update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
2706 		__update_group_entity_contrib(se);
2707 	}
2708 
2709 	return se->avg.load_avg_contrib - old_contrib;
2710 }
2711 
2712 static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2713 						 long load_contrib)
2714 {
2715 	if (likely(load_contrib < cfs_rq->blocked_load_avg))
2716 		cfs_rq->blocked_load_avg -= load_contrib;
2717 	else
2718 		cfs_rq->blocked_load_avg = 0;
2719 }
2720 
2721 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2722 
2723 /* Update a sched_entity's runnable average */
2724 static inline void update_entity_load_avg(struct sched_entity *se,
2725 					  int update_cfs_rq)
2726 {
2727 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
2728 	long contrib_delta;
2729 	u64 now;
2730 
2731 	/*
2732 	 * For a group entity we need to use their owned cfs_rq_clock_task() in
2733 	 * case they are the parent of a throttled hierarchy.
2734 	 */
2735 	if (entity_is_task(se))
2736 		now = cfs_rq_clock_task(cfs_rq);
2737 	else
2738 		now = cfs_rq_clock_task(group_cfs_rq(se));
2739 
2740 	if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
2741 		return;
2742 
2743 	contrib_delta = __update_entity_load_avg_contrib(se);
2744 
2745 	if (!update_cfs_rq)
2746 		return;
2747 
2748 	if (se->on_rq)
2749 		cfs_rq->runnable_load_avg += contrib_delta;
2750 	else
2751 		subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2752 }
2753 
2754 /*
2755  * Decay the load contributed by all blocked children and account this so that
2756  * their contribution may appropriately discounted when they wake up.
2757  */
2758 static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
2759 {
2760 	u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
2761 	u64 decays;
2762 
2763 	decays = now - cfs_rq->last_decay;
2764 	if (!decays && !force_update)
2765 		return;
2766 
2767 	if (atomic_long_read(&cfs_rq->removed_load)) {
2768 		unsigned long removed_load;
2769 		removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
2770 		subtract_blocked_load_contrib(cfs_rq, removed_load);
2771 	}
2772 
2773 	if (decays) {
2774 		cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2775 						      decays);
2776 		atomic64_add(decays, &cfs_rq->decay_counter);
2777 		cfs_rq->last_decay = now;
2778 	}
2779 
2780 	__update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
2781 }
2782 
2783 /* Add the load generated by se into cfs_rq's child load-average */
2784 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2785 						  struct sched_entity *se,
2786 						  int wakeup)
2787 {
2788 	/*
2789 	 * We track migrations using entity decay_count <= 0, on a wake-up
2790 	 * migration we use a negative decay count to track the remote decays
2791 	 * accumulated while sleeping.
2792 	 *
2793 	 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2794 	 * are seen by enqueue_entity_load_avg() as a migration with an already
2795 	 * constructed load_avg_contrib.
2796 	 */
2797 	if (unlikely(se->avg.decay_count <= 0)) {
2798 		se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
2799 		if (se->avg.decay_count) {
2800 			/*
2801 			 * In a wake-up migration we have to approximate the
2802 			 * time sleeping.  This is because we can't synchronize
2803 			 * clock_task between the two cpus, and it is not
2804 			 * guaranteed to be read-safe.  Instead, we can
2805 			 * approximate this using our carried decays, which are
2806 			 * explicitly atomically readable.
2807 			 */
2808 			se->avg.last_runnable_update -= (-se->avg.decay_count)
2809 							<< 20;
2810 			update_entity_load_avg(se, 0);
2811 			/* Indicate that we're now synchronized and on-rq */
2812 			se->avg.decay_count = 0;
2813 		}
2814 		wakeup = 0;
2815 	} else {
2816 		__synchronize_entity_decay(se);
2817 	}
2818 
2819 	/* migrated tasks did not contribute to our blocked load */
2820 	if (wakeup) {
2821 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
2822 		update_entity_load_avg(se, 0);
2823 	}
2824 
2825 	cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
2826 	/* we force update consideration on load-balancer moves */
2827 	update_cfs_rq_blocked_load(cfs_rq, !wakeup);
2828 }
2829 
2830 /*
2831  * Remove se's load from this cfs_rq child load-average, if the entity is
2832  * transitioning to a blocked state we track its projected decay using
2833  * blocked_load_avg.
2834  */
2835 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2836 						  struct sched_entity *se,
2837 						  int sleep)
2838 {
2839 	update_entity_load_avg(se, 1);
2840 	/* we force update consideration on load-balancer moves */
2841 	update_cfs_rq_blocked_load(cfs_rq, !sleep);
2842 
2843 	cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
2844 	if (sleep) {
2845 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2846 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2847 	} /* migrations, e.g. sleep=0 leave decay_count == 0 */
2848 }
2849 
2850 /*
2851  * Update the rq's load with the elapsed running time before entering
2852  * idle. if the last scheduled task is not a CFS task, idle_enter will
2853  * be the only way to update the runnable statistic.
2854  */
2855 void idle_enter_fair(struct rq *this_rq)
2856 {
2857 	update_rq_runnable_avg(this_rq, 1);
2858 }
2859 
2860 /*
2861  * Update the rq's load with the elapsed idle time before a task is
2862  * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2863  * be the only way to update the runnable statistic.
2864  */
2865 void idle_exit_fair(struct rq *this_rq)
2866 {
2867 	update_rq_runnable_avg(this_rq, 0);
2868 }
2869 
2870 static int idle_balance(struct rq *this_rq);
2871 
2872 #else /* CONFIG_SMP */
2873 
2874 static inline void update_entity_load_avg(struct sched_entity *se,
2875 					  int update_cfs_rq) {}
2876 static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
2877 static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
2878 					   struct sched_entity *se,
2879 					   int wakeup) {}
2880 static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
2881 					   struct sched_entity *se,
2882 					   int sleep) {}
2883 static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2884 					      int force_update) {}
2885 
2886 static inline int idle_balance(struct rq *rq)
2887 {
2888 	return 0;
2889 }
2890 
2891 #endif /* CONFIG_SMP */
2892 
2893 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
2894 {
2895 #ifdef CONFIG_SCHEDSTATS
2896 	struct task_struct *tsk = NULL;
2897 
2898 	if (entity_is_task(se))
2899 		tsk = task_of(se);
2900 
2901 	if (se->statistics.sleep_start) {
2902 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
2903 
2904 		if ((s64)delta < 0)
2905 			delta = 0;
2906 
2907 		if (unlikely(delta > se->statistics.sleep_max))
2908 			se->statistics.sleep_max = delta;
2909 
2910 		se->statistics.sleep_start = 0;
2911 		se->statistics.sum_sleep_runtime += delta;
2912 
2913 		if (tsk) {
2914 			account_scheduler_latency(tsk, delta >> 10, 1);
2915 			trace_sched_stat_sleep(tsk, delta);
2916 		}
2917 	}
2918 	if (se->statistics.block_start) {
2919 		u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
2920 
2921 		if ((s64)delta < 0)
2922 			delta = 0;
2923 
2924 		if (unlikely(delta > se->statistics.block_max))
2925 			se->statistics.block_max = delta;
2926 
2927 		se->statistics.block_start = 0;
2928 		se->statistics.sum_sleep_runtime += delta;
2929 
2930 		if (tsk) {
2931 			if (tsk->in_iowait) {
2932 				se->statistics.iowait_sum += delta;
2933 				se->statistics.iowait_count++;
2934 				trace_sched_stat_iowait(tsk, delta);
2935 			}
2936 
2937 			trace_sched_stat_blocked(tsk, delta);
2938 
2939 			/*
2940 			 * Blocking time is in units of nanosecs, so shift by
2941 			 * 20 to get a milliseconds-range estimation of the
2942 			 * amount of time that the task spent sleeping:
2943 			 */
2944 			if (unlikely(prof_on == SLEEP_PROFILING)) {
2945 				profile_hits(SLEEP_PROFILING,
2946 						(void *)get_wchan(tsk),
2947 						delta >> 20);
2948 			}
2949 			account_scheduler_latency(tsk, delta >> 10, 0);
2950 		}
2951 	}
2952 #endif
2953 }
2954 
2955 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2956 {
2957 #ifdef CONFIG_SCHED_DEBUG
2958 	s64 d = se->vruntime - cfs_rq->min_vruntime;
2959 
2960 	if (d < 0)
2961 		d = -d;
2962 
2963 	if (d > 3*sysctl_sched_latency)
2964 		schedstat_inc(cfs_rq, nr_spread_over);
2965 #endif
2966 }
2967 
2968 static void
2969 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2970 {
2971 	u64 vruntime = cfs_rq->min_vruntime;
2972 
2973 	/*
2974 	 * The 'current' period is already promised to the current tasks,
2975 	 * however the extra weight of the new task will slow them down a
2976 	 * little, place the new task so that it fits in the slot that
2977 	 * stays open at the end.
2978 	 */
2979 	if (initial && sched_feat(START_DEBIT))
2980 		vruntime += sched_vslice(cfs_rq, se);
2981 
2982 	/* sleeps up to a single latency don't count. */
2983 	if (!initial) {
2984 		unsigned long thresh = sysctl_sched_latency;
2985 
2986 		/*
2987 		 * Halve their sleep time's effect, to allow
2988 		 * for a gentler effect of sleepers:
2989 		 */
2990 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
2991 			thresh >>= 1;
2992 
2993 		vruntime -= thresh;
2994 	}
2995 
2996 	/* ensure we never gain time by being placed backwards. */
2997 	se->vruntime = max_vruntime(se->vruntime, vruntime);
2998 }
2999 
3000 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3001 
3002 static void
3003 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3004 {
3005 	/*
3006 	 * Update the normalized vruntime before updating min_vruntime
3007 	 * through calling update_curr().
3008 	 */
3009 	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
3010 		se->vruntime += cfs_rq->min_vruntime;
3011 
3012 	/*
3013 	 * Update run-time statistics of the 'current'.
3014 	 */
3015 	update_curr(cfs_rq);
3016 	enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
3017 	account_entity_enqueue(cfs_rq, se);
3018 	update_cfs_shares(cfs_rq);
3019 
3020 	if (flags & ENQUEUE_WAKEUP) {
3021 		place_entity(cfs_rq, se, 0);
3022 		enqueue_sleeper(cfs_rq, se);
3023 	}
3024 
3025 	update_stats_enqueue(cfs_rq, se);
3026 	check_spread(cfs_rq, se);
3027 	if (se != cfs_rq->curr)
3028 		__enqueue_entity(cfs_rq, se);
3029 	se->on_rq = 1;
3030 
3031 	if (cfs_rq->nr_running == 1) {
3032 		list_add_leaf_cfs_rq(cfs_rq);
3033 		check_enqueue_throttle(cfs_rq);
3034 	}
3035 }
3036 
3037 static void __clear_buddies_last(struct sched_entity *se)
3038 {
3039 	for_each_sched_entity(se) {
3040 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3041 		if (cfs_rq->last != se)
3042 			break;
3043 
3044 		cfs_rq->last = NULL;
3045 	}
3046 }
3047 
3048 static void __clear_buddies_next(struct sched_entity *se)
3049 {
3050 	for_each_sched_entity(se) {
3051 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3052 		if (cfs_rq->next != se)
3053 			break;
3054 
3055 		cfs_rq->next = NULL;
3056 	}
3057 }
3058 
3059 static void __clear_buddies_skip(struct sched_entity *se)
3060 {
3061 	for_each_sched_entity(se) {
3062 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
3063 		if (cfs_rq->skip != se)
3064 			break;
3065 
3066 		cfs_rq->skip = NULL;
3067 	}
3068 }
3069 
3070 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3071 {
3072 	if (cfs_rq->last == se)
3073 		__clear_buddies_last(se);
3074 
3075 	if (cfs_rq->next == se)
3076 		__clear_buddies_next(se);
3077 
3078 	if (cfs_rq->skip == se)
3079 		__clear_buddies_skip(se);
3080 }
3081 
3082 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3083 
3084 static void
3085 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3086 {
3087 	/*
3088 	 * Update run-time statistics of the 'current'.
3089 	 */
3090 	update_curr(cfs_rq);
3091 	dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
3092 
3093 	update_stats_dequeue(cfs_rq, se);
3094 	if (flags & DEQUEUE_SLEEP) {
3095 #ifdef CONFIG_SCHEDSTATS
3096 		if (entity_is_task(se)) {
3097 			struct task_struct *tsk = task_of(se);
3098 
3099 			if (tsk->state & TASK_INTERRUPTIBLE)
3100 				se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
3101 			if (tsk->state & TASK_UNINTERRUPTIBLE)
3102 				se->statistics.block_start = rq_clock(rq_of(cfs_rq));
3103 		}
3104 #endif
3105 	}
3106 
3107 	clear_buddies(cfs_rq, se);
3108 
3109 	if (se != cfs_rq->curr)
3110 		__dequeue_entity(cfs_rq, se);
3111 	se->on_rq = 0;
3112 	account_entity_dequeue(cfs_rq, se);
3113 
3114 	/*
3115 	 * Normalize the entity after updating the min_vruntime because the
3116 	 * update can refer to the ->curr item and we need to reflect this
3117 	 * movement in our normalized position.
3118 	 */
3119 	if (!(flags & DEQUEUE_SLEEP))
3120 		se->vruntime -= cfs_rq->min_vruntime;
3121 
3122 	/* return excess runtime on last dequeue */
3123 	return_cfs_rq_runtime(cfs_rq);
3124 
3125 	update_min_vruntime(cfs_rq);
3126 	update_cfs_shares(cfs_rq);
3127 }
3128 
3129 /*
3130  * Preempt the current task with a newly woken task if needed:
3131  */
3132 static void
3133 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3134 {
3135 	unsigned long ideal_runtime, delta_exec;
3136 	struct sched_entity *se;
3137 	s64 delta;
3138 
3139 	ideal_runtime = sched_slice(cfs_rq, curr);
3140 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
3141 	if (delta_exec > ideal_runtime) {
3142 		resched_curr(rq_of(cfs_rq));
3143 		/*
3144 		 * The current task ran long enough, ensure it doesn't get
3145 		 * re-elected due to buddy favours.
3146 		 */
3147 		clear_buddies(cfs_rq, curr);
3148 		return;
3149 	}
3150 
3151 	/*
3152 	 * Ensure that a task that missed wakeup preemption by a
3153 	 * narrow margin doesn't have to wait for a full slice.
3154 	 * This also mitigates buddy induced latencies under load.
3155 	 */
3156 	if (delta_exec < sysctl_sched_min_granularity)
3157 		return;
3158 
3159 	se = __pick_first_entity(cfs_rq);
3160 	delta = curr->vruntime - se->vruntime;
3161 
3162 	if (delta < 0)
3163 		return;
3164 
3165 	if (delta > ideal_runtime)
3166 		resched_curr(rq_of(cfs_rq));
3167 }
3168 
3169 static void
3170 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
3171 {
3172 	/* 'current' is not kept within the tree. */
3173 	if (se->on_rq) {
3174 		/*
3175 		 * Any task has to be enqueued before it get to execute on
3176 		 * a CPU. So account for the time it spent waiting on the
3177 		 * runqueue.
3178 		 */
3179 		update_stats_wait_end(cfs_rq, se);
3180 		__dequeue_entity(cfs_rq, se);
3181 	}
3182 
3183 	update_stats_curr_start(cfs_rq, se);
3184 	cfs_rq->curr = se;
3185 #ifdef CONFIG_SCHEDSTATS
3186 	/*
3187 	 * Track our maximum slice length, if the CPU's load is at
3188 	 * least twice that of our own weight (i.e. dont track it
3189 	 * when there are only lesser-weight tasks around):
3190 	 */
3191 	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
3192 		se->statistics.slice_max = max(se->statistics.slice_max,
3193 			se->sum_exec_runtime - se->prev_sum_exec_runtime);
3194 	}
3195 #endif
3196 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
3197 }
3198 
3199 static int
3200 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3201 
3202 /*
3203  * Pick the next process, keeping these things in mind, in this order:
3204  * 1) keep things fair between processes/task groups
3205  * 2) pick the "next" process, since someone really wants that to run
3206  * 3) pick the "last" process, for cache locality
3207  * 4) do not run the "skip" process, if something else is available
3208  */
3209 static struct sched_entity *
3210 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
3211 {
3212 	struct sched_entity *left = __pick_first_entity(cfs_rq);
3213 	struct sched_entity *se;
3214 
3215 	/*
3216 	 * If curr is set we have to see if its left of the leftmost entity
3217 	 * still in the tree, provided there was anything in the tree at all.
3218 	 */
3219 	if (!left || (curr && entity_before(curr, left)))
3220 		left = curr;
3221 
3222 	se = left; /* ideally we run the leftmost entity */
3223 
3224 	/*
3225 	 * Avoid running the skip buddy, if running something else can
3226 	 * be done without getting too unfair.
3227 	 */
3228 	if (cfs_rq->skip == se) {
3229 		struct sched_entity *second;
3230 
3231 		if (se == curr) {
3232 			second = __pick_first_entity(cfs_rq);
3233 		} else {
3234 			second = __pick_next_entity(se);
3235 			if (!second || (curr && entity_before(curr, second)))
3236 				second = curr;
3237 		}
3238 
3239 		if (second && wakeup_preempt_entity(second, left) < 1)
3240 			se = second;
3241 	}
3242 
3243 	/*
3244 	 * Prefer last buddy, try to return the CPU to a preempted task.
3245 	 */
3246 	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3247 		se = cfs_rq->last;
3248 
3249 	/*
3250 	 * Someone really wants this to run. If it's not unfair, run it.
3251 	 */
3252 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3253 		se = cfs_rq->next;
3254 
3255 	clear_buddies(cfs_rq, se);
3256 
3257 	return se;
3258 }
3259 
3260 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3261 
3262 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
3263 {
3264 	/*
3265 	 * If still on the runqueue then deactivate_task()
3266 	 * was not called and update_curr() has to be done:
3267 	 */
3268 	if (prev->on_rq)
3269 		update_curr(cfs_rq);
3270 
3271 	/* throttle cfs_rqs exceeding runtime */
3272 	check_cfs_rq_runtime(cfs_rq);
3273 
3274 	check_spread(cfs_rq, prev);
3275 	if (prev->on_rq) {
3276 		update_stats_wait_start(cfs_rq, prev);
3277 		/* Put 'current' back into the tree. */
3278 		__enqueue_entity(cfs_rq, prev);
3279 		/* in !on_rq case, update occurred at dequeue */
3280 		update_entity_load_avg(prev, 1);
3281 	}
3282 	cfs_rq->curr = NULL;
3283 }
3284 
3285 static void
3286 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
3287 {
3288 	/*
3289 	 * Update run-time statistics of the 'current'.
3290 	 */
3291 	update_curr(cfs_rq);
3292 
3293 	/*
3294 	 * Ensure that runnable average is periodically updated.
3295 	 */
3296 	update_entity_load_avg(curr, 1);
3297 	update_cfs_rq_blocked_load(cfs_rq, 1);
3298 	update_cfs_shares(cfs_rq);
3299 
3300 #ifdef CONFIG_SCHED_HRTICK
3301 	/*
3302 	 * queued ticks are scheduled to match the slice, so don't bother
3303 	 * validating it and just reschedule.
3304 	 */
3305 	if (queued) {
3306 		resched_curr(rq_of(cfs_rq));
3307 		return;
3308 	}
3309 	/*
3310 	 * don't let the period tick interfere with the hrtick preemption
3311 	 */
3312 	if (!sched_feat(DOUBLE_TICK) &&
3313 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3314 		return;
3315 #endif
3316 
3317 	if (cfs_rq->nr_running > 1)
3318 		check_preempt_tick(cfs_rq, curr);
3319 }
3320 
3321 
3322 /**************************************************
3323  * CFS bandwidth control machinery
3324  */
3325 
3326 #ifdef CONFIG_CFS_BANDWIDTH
3327 
3328 #ifdef HAVE_JUMP_LABEL
3329 static struct static_key __cfs_bandwidth_used;
3330 
3331 static inline bool cfs_bandwidth_used(void)
3332 {
3333 	return static_key_false(&__cfs_bandwidth_used);
3334 }
3335 
3336 void cfs_bandwidth_usage_inc(void)
3337 {
3338 	static_key_slow_inc(&__cfs_bandwidth_used);
3339 }
3340 
3341 void cfs_bandwidth_usage_dec(void)
3342 {
3343 	static_key_slow_dec(&__cfs_bandwidth_used);
3344 }
3345 #else /* HAVE_JUMP_LABEL */
3346 static bool cfs_bandwidth_used(void)
3347 {
3348 	return true;
3349 }
3350 
3351 void cfs_bandwidth_usage_inc(void) {}
3352 void cfs_bandwidth_usage_dec(void) {}
3353 #endif /* HAVE_JUMP_LABEL */
3354 
3355 /*
3356  * default period for cfs group bandwidth.
3357  * default: 0.1s, units: nanoseconds
3358  */
3359 static inline u64 default_cfs_period(void)
3360 {
3361 	return 100000000ULL;
3362 }
3363 
3364 static inline u64 sched_cfs_bandwidth_slice(void)
3365 {
3366 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3367 }
3368 
3369 /*
3370  * Replenish runtime according to assigned quota and update expiration time.
3371  * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3372  * additional synchronization around rq->lock.
3373  *
3374  * requires cfs_b->lock
3375  */
3376 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
3377 {
3378 	u64 now;
3379 
3380 	if (cfs_b->quota == RUNTIME_INF)
3381 		return;
3382 
3383 	now = sched_clock_cpu(smp_processor_id());
3384 	cfs_b->runtime = cfs_b->quota;
3385 	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3386 }
3387 
3388 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3389 {
3390 	return &tg->cfs_bandwidth;
3391 }
3392 
3393 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3394 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3395 {
3396 	if (unlikely(cfs_rq->throttle_count))
3397 		return cfs_rq->throttled_clock_task;
3398 
3399 	return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
3400 }
3401 
3402 /* returns 0 on failure to allocate runtime */
3403 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3404 {
3405 	struct task_group *tg = cfs_rq->tg;
3406 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
3407 	u64 amount = 0, min_amount, expires;
3408 
3409 	/* note: this is a positive sum as runtime_remaining <= 0 */
3410 	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3411 
3412 	raw_spin_lock(&cfs_b->lock);
3413 	if (cfs_b->quota == RUNTIME_INF)
3414 		amount = min_amount;
3415 	else {
3416 		/*
3417 		 * If the bandwidth pool has become inactive, then at least one
3418 		 * period must have elapsed since the last consumption.
3419 		 * Refresh the global state and ensure bandwidth timer becomes
3420 		 * active.
3421 		 */
3422 		if (!cfs_b->timer_active) {
3423 			__refill_cfs_bandwidth_runtime(cfs_b);
3424 			__start_cfs_bandwidth(cfs_b, false);
3425 		}
3426 
3427 		if (cfs_b->runtime > 0) {
3428 			amount = min(cfs_b->runtime, min_amount);
3429 			cfs_b->runtime -= amount;
3430 			cfs_b->idle = 0;
3431 		}
3432 	}
3433 	expires = cfs_b->runtime_expires;
3434 	raw_spin_unlock(&cfs_b->lock);
3435 
3436 	cfs_rq->runtime_remaining += amount;
3437 	/*
3438 	 * we may have advanced our local expiration to account for allowed
3439 	 * spread between our sched_clock and the one on which runtime was
3440 	 * issued.
3441 	 */
3442 	if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3443 		cfs_rq->runtime_expires = expires;
3444 
3445 	return cfs_rq->runtime_remaining > 0;
3446 }
3447 
3448 /*
3449  * Note: This depends on the synchronization provided by sched_clock and the
3450  * fact that rq->clock snapshots this value.
3451  */
3452 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3453 {
3454 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3455 
3456 	/* if the deadline is ahead of our clock, nothing to do */
3457 	if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
3458 		return;
3459 
3460 	if (cfs_rq->runtime_remaining < 0)
3461 		return;
3462 
3463 	/*
3464 	 * If the local deadline has passed we have to consider the
3465 	 * possibility that our sched_clock is 'fast' and the global deadline
3466 	 * has not truly expired.
3467 	 *
3468 	 * Fortunately we can check determine whether this the case by checking
3469 	 * whether the global deadline has advanced. It is valid to compare
3470 	 * cfs_b->runtime_expires without any locks since we only care about
3471 	 * exact equality, so a partial write will still work.
3472 	 */
3473 
3474 	if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
3475 		/* extend local deadline, drift is bounded above by 2 ticks */
3476 		cfs_rq->runtime_expires += TICK_NSEC;
3477 	} else {
3478 		/* global deadline is ahead, expiration has passed */
3479 		cfs_rq->runtime_remaining = 0;
3480 	}
3481 }
3482 
3483 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3484 {
3485 	/* dock delta_exec before expiring quota (as it could span periods) */
3486 	cfs_rq->runtime_remaining -= delta_exec;
3487 	expire_cfs_rq_runtime(cfs_rq);
3488 
3489 	if (likely(cfs_rq->runtime_remaining > 0))
3490 		return;
3491 
3492 	/*
3493 	 * if we're unable to extend our runtime we resched so that the active
3494 	 * hierarchy can be throttled
3495 	 */
3496 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3497 		resched_curr(rq_of(cfs_rq));
3498 }
3499 
3500 static __always_inline
3501 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
3502 {
3503 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
3504 		return;
3505 
3506 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
3507 }
3508 
3509 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3510 {
3511 	return cfs_bandwidth_used() && cfs_rq->throttled;
3512 }
3513 
3514 /* check whether cfs_rq, or any parent, is throttled */
3515 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3516 {
3517 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
3518 }
3519 
3520 /*
3521  * Ensure that neither of the group entities corresponding to src_cpu or
3522  * dest_cpu are members of a throttled hierarchy when performing group
3523  * load-balance operations.
3524  */
3525 static inline int throttled_lb_pair(struct task_group *tg,
3526 				    int src_cpu, int dest_cpu)
3527 {
3528 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3529 
3530 	src_cfs_rq = tg->cfs_rq[src_cpu];
3531 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
3532 
3533 	return throttled_hierarchy(src_cfs_rq) ||
3534 	       throttled_hierarchy(dest_cfs_rq);
3535 }
3536 
3537 /* updated child weight may affect parent so we have to do this bottom up */
3538 static int tg_unthrottle_up(struct task_group *tg, void *data)
3539 {
3540 	struct rq *rq = data;
3541 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3542 
3543 	cfs_rq->throttle_count--;
3544 #ifdef CONFIG_SMP
3545 	if (!cfs_rq->throttle_count) {
3546 		/* adjust cfs_rq_clock_task() */
3547 		cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
3548 					     cfs_rq->throttled_clock_task;
3549 	}
3550 #endif
3551 
3552 	return 0;
3553 }
3554 
3555 static int tg_throttle_down(struct task_group *tg, void *data)
3556 {
3557 	struct rq *rq = data;
3558 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3559 
3560 	/* group is entering throttled state, stop time */
3561 	if (!cfs_rq->throttle_count)
3562 		cfs_rq->throttled_clock_task = rq_clock_task(rq);
3563 	cfs_rq->throttle_count++;
3564 
3565 	return 0;
3566 }
3567 
3568 static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
3569 {
3570 	struct rq *rq = rq_of(cfs_rq);
3571 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3572 	struct sched_entity *se;
3573 	long task_delta, dequeue = 1;
3574 
3575 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3576 
3577 	/* freeze hierarchy runnable averages while throttled */
3578 	rcu_read_lock();
3579 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3580 	rcu_read_unlock();
3581 
3582 	task_delta = cfs_rq->h_nr_running;
3583 	for_each_sched_entity(se) {
3584 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3585 		/* throttled entity or throttle-on-deactivate */
3586 		if (!se->on_rq)
3587 			break;
3588 
3589 		if (dequeue)
3590 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3591 		qcfs_rq->h_nr_running -= task_delta;
3592 
3593 		if (qcfs_rq->load.weight)
3594 			dequeue = 0;
3595 	}
3596 
3597 	if (!se)
3598 		sub_nr_running(rq, task_delta);
3599 
3600 	cfs_rq->throttled = 1;
3601 	cfs_rq->throttled_clock = rq_clock(rq);
3602 	raw_spin_lock(&cfs_b->lock);
3603 	/*
3604 	 * Add to the _head_ of the list, so that an already-started
3605 	 * distribute_cfs_runtime will not see us
3606 	 */
3607 	list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3608 	if (!cfs_b->timer_active)
3609 		__start_cfs_bandwidth(cfs_b, false);
3610 	raw_spin_unlock(&cfs_b->lock);
3611 }
3612 
3613 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
3614 {
3615 	struct rq *rq = rq_of(cfs_rq);
3616 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3617 	struct sched_entity *se;
3618 	int enqueue = 1;
3619 	long task_delta;
3620 
3621 	se = cfs_rq->tg->se[cpu_of(rq)];
3622 
3623 	cfs_rq->throttled = 0;
3624 
3625 	update_rq_clock(rq);
3626 
3627 	raw_spin_lock(&cfs_b->lock);
3628 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
3629 	list_del_rcu(&cfs_rq->throttled_list);
3630 	raw_spin_unlock(&cfs_b->lock);
3631 
3632 	/* update hierarchical throttle state */
3633 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3634 
3635 	if (!cfs_rq->load.weight)
3636 		return;
3637 
3638 	task_delta = cfs_rq->h_nr_running;
3639 	for_each_sched_entity(se) {
3640 		if (se->on_rq)
3641 			enqueue = 0;
3642 
3643 		cfs_rq = cfs_rq_of(se);
3644 		if (enqueue)
3645 			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3646 		cfs_rq->h_nr_running += task_delta;
3647 
3648 		if (cfs_rq_throttled(cfs_rq))
3649 			break;
3650 	}
3651 
3652 	if (!se)
3653 		add_nr_running(rq, task_delta);
3654 
3655 	/* determine whether we need to wake up potentially idle cpu */
3656 	if (rq->curr == rq->idle && rq->cfs.nr_running)
3657 		resched_curr(rq);
3658 }
3659 
3660 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3661 		u64 remaining, u64 expires)
3662 {
3663 	struct cfs_rq *cfs_rq;
3664 	u64 runtime;
3665 	u64 starting_runtime = remaining;
3666 
3667 	rcu_read_lock();
3668 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3669 				throttled_list) {
3670 		struct rq *rq = rq_of(cfs_rq);
3671 
3672 		raw_spin_lock(&rq->lock);
3673 		if (!cfs_rq_throttled(cfs_rq))
3674 			goto next;
3675 
3676 		runtime = -cfs_rq->runtime_remaining + 1;
3677 		if (runtime > remaining)
3678 			runtime = remaining;
3679 		remaining -= runtime;
3680 
3681 		cfs_rq->runtime_remaining += runtime;
3682 		cfs_rq->runtime_expires = expires;
3683 
3684 		/* we check whether we're throttled above */
3685 		if (cfs_rq->runtime_remaining > 0)
3686 			unthrottle_cfs_rq(cfs_rq);
3687 
3688 next:
3689 		raw_spin_unlock(&rq->lock);
3690 
3691 		if (!remaining)
3692 			break;
3693 	}
3694 	rcu_read_unlock();
3695 
3696 	return starting_runtime - remaining;
3697 }
3698 
3699 /*
3700  * Responsible for refilling a task_group's bandwidth and unthrottling its
3701  * cfs_rqs as appropriate. If there has been no activity within the last
3702  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3703  * used to track this state.
3704  */
3705 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3706 {
3707 	u64 runtime, runtime_expires;
3708 	int throttled;
3709 
3710 	/* no need to continue the timer with no bandwidth constraint */
3711 	if (cfs_b->quota == RUNTIME_INF)
3712 		goto out_deactivate;
3713 
3714 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3715 	cfs_b->nr_periods += overrun;
3716 
3717 	/*
3718 	 * idle depends on !throttled (for the case of a large deficit), and if
3719 	 * we're going inactive then everything else can be deferred
3720 	 */
3721 	if (cfs_b->idle && !throttled)
3722 		goto out_deactivate;
3723 
3724 	/*
3725 	 * if we have relooped after returning idle once, we need to update our
3726 	 * status as actually running, so that other cpus doing
3727 	 * __start_cfs_bandwidth will stop trying to cancel us.
3728 	 */
3729 	cfs_b->timer_active = 1;
3730 
3731 	__refill_cfs_bandwidth_runtime(cfs_b);
3732 
3733 	if (!throttled) {
3734 		/* mark as potentially idle for the upcoming period */
3735 		cfs_b->idle = 1;
3736 		return 0;
3737 	}
3738 
3739 	/* account preceding periods in which throttling occurred */
3740 	cfs_b->nr_throttled += overrun;
3741 
3742 	runtime_expires = cfs_b->runtime_expires;
3743 
3744 	/*
3745 	 * This check is repeated as we are holding onto the new bandwidth while
3746 	 * we unthrottle. This can potentially race with an unthrottled group
3747 	 * trying to acquire new bandwidth from the global pool. This can result
3748 	 * in us over-using our runtime if it is all used during this loop, but
3749 	 * only by limited amounts in that extreme case.
3750 	 */
3751 	while (throttled && cfs_b->runtime > 0) {
3752 		runtime = cfs_b->runtime;
3753 		raw_spin_unlock(&cfs_b->lock);
3754 		/* we can't nest cfs_b->lock while distributing bandwidth */
3755 		runtime = distribute_cfs_runtime(cfs_b, runtime,
3756 						 runtime_expires);
3757 		raw_spin_lock(&cfs_b->lock);
3758 
3759 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3760 
3761 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3762 	}
3763 
3764 	/*
3765 	 * While we are ensured activity in the period following an
3766 	 * unthrottle, this also covers the case in which the new bandwidth is
3767 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
3768 	 * timer to remain active while there are any throttled entities.)
3769 	 */
3770 	cfs_b->idle = 0;
3771 
3772 	return 0;
3773 
3774 out_deactivate:
3775 	cfs_b->timer_active = 0;
3776 	return 1;
3777 }
3778 
3779 /* a cfs_rq won't donate quota below this amount */
3780 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3781 /* minimum remaining period time to redistribute slack quota */
3782 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3783 /* how long we wait to gather additional slack before distributing */
3784 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3785 
3786 /*
3787  * Are we near the end of the current quota period?
3788  *
3789  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
3790  * hrtimer base being cleared by __hrtimer_start_range_ns. In the case of
3791  * migrate_hrtimers, base is never cleared, so we are fine.
3792  */
3793 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3794 {
3795 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
3796 	u64 remaining;
3797 
3798 	/* if the call-back is running a quota refresh is already occurring */
3799 	if (hrtimer_callback_running(refresh_timer))
3800 		return 1;
3801 
3802 	/* is a quota refresh about to occur? */
3803 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3804 	if (remaining < min_expire)
3805 		return 1;
3806 
3807 	return 0;
3808 }
3809 
3810 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3811 {
3812 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3813 
3814 	/* if there's a quota refresh soon don't bother with slack */
3815 	if (runtime_refresh_within(cfs_b, min_left))
3816 		return;
3817 
3818 	start_bandwidth_timer(&cfs_b->slack_timer,
3819 				ns_to_ktime(cfs_bandwidth_slack_period));
3820 }
3821 
3822 /* we know any runtime found here is valid as update_curr() precedes return */
3823 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3824 {
3825 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3826 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3827 
3828 	if (slack_runtime <= 0)
3829 		return;
3830 
3831 	raw_spin_lock(&cfs_b->lock);
3832 	if (cfs_b->quota != RUNTIME_INF &&
3833 	    cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3834 		cfs_b->runtime += slack_runtime;
3835 
3836 		/* we are under rq->lock, defer unthrottling using a timer */
3837 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3838 		    !list_empty(&cfs_b->throttled_cfs_rq))
3839 			start_cfs_slack_bandwidth(cfs_b);
3840 	}
3841 	raw_spin_unlock(&cfs_b->lock);
3842 
3843 	/* even if it's not valid for return we don't want to try again */
3844 	cfs_rq->runtime_remaining -= slack_runtime;
3845 }
3846 
3847 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3848 {
3849 	if (!cfs_bandwidth_used())
3850 		return;
3851 
3852 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
3853 		return;
3854 
3855 	__return_cfs_rq_runtime(cfs_rq);
3856 }
3857 
3858 /*
3859  * This is done with a timer (instead of inline with bandwidth return) since
3860  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3861  */
3862 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3863 {
3864 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3865 	u64 expires;
3866 
3867 	/* confirm we're still not at a refresh boundary */
3868 	raw_spin_lock(&cfs_b->lock);
3869 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
3870 		raw_spin_unlock(&cfs_b->lock);
3871 		return;
3872 	}
3873 
3874 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
3875 		runtime = cfs_b->runtime;
3876 
3877 	expires = cfs_b->runtime_expires;
3878 	raw_spin_unlock(&cfs_b->lock);
3879 
3880 	if (!runtime)
3881 		return;
3882 
3883 	runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3884 
3885 	raw_spin_lock(&cfs_b->lock);
3886 	if (expires == cfs_b->runtime_expires)
3887 		cfs_b->runtime -= min(runtime, cfs_b->runtime);
3888 	raw_spin_unlock(&cfs_b->lock);
3889 }
3890 
3891 /*
3892  * When a group wakes up we want to make sure that its quota is not already
3893  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3894  * runtime as update_curr() throttling can not not trigger until it's on-rq.
3895  */
3896 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3897 {
3898 	if (!cfs_bandwidth_used())
3899 		return;
3900 
3901 	/* an active group must be handled by the update_curr()->put() path */
3902 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3903 		return;
3904 
3905 	/* ensure the group is not already throttled */
3906 	if (cfs_rq_throttled(cfs_rq))
3907 		return;
3908 
3909 	/* update runtime allocation */
3910 	account_cfs_rq_runtime(cfs_rq, 0);
3911 	if (cfs_rq->runtime_remaining <= 0)
3912 		throttle_cfs_rq(cfs_rq);
3913 }
3914 
3915 /* conditionally throttle active cfs_rq's from put_prev_entity() */
3916 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3917 {
3918 	if (!cfs_bandwidth_used())
3919 		return false;
3920 
3921 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3922 		return false;
3923 
3924 	/*
3925 	 * it's possible for a throttled entity to be forced into a running
3926 	 * state (e.g. set_curr_task), in this case we're finished.
3927 	 */
3928 	if (cfs_rq_throttled(cfs_rq))
3929 		return true;
3930 
3931 	throttle_cfs_rq(cfs_rq);
3932 	return true;
3933 }
3934 
3935 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3936 {
3937 	struct cfs_bandwidth *cfs_b =
3938 		container_of(timer, struct cfs_bandwidth, slack_timer);
3939 	do_sched_cfs_slack_timer(cfs_b);
3940 
3941 	return HRTIMER_NORESTART;
3942 }
3943 
3944 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3945 {
3946 	struct cfs_bandwidth *cfs_b =
3947 		container_of(timer, struct cfs_bandwidth, period_timer);
3948 	ktime_t now;
3949 	int overrun;
3950 	int idle = 0;
3951 
3952 	raw_spin_lock(&cfs_b->lock);
3953 	for (;;) {
3954 		now = hrtimer_cb_get_time(timer);
3955 		overrun = hrtimer_forward(timer, now, cfs_b->period);
3956 
3957 		if (!overrun)
3958 			break;
3959 
3960 		idle = do_sched_cfs_period_timer(cfs_b, overrun);
3961 	}
3962 	raw_spin_unlock(&cfs_b->lock);
3963 
3964 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3965 }
3966 
3967 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3968 {
3969 	raw_spin_lock_init(&cfs_b->lock);
3970 	cfs_b->runtime = 0;
3971 	cfs_b->quota = RUNTIME_INF;
3972 	cfs_b->period = ns_to_ktime(default_cfs_period());
3973 
3974 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3975 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3976 	cfs_b->period_timer.function = sched_cfs_period_timer;
3977 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3978 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
3979 }
3980 
3981 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3982 {
3983 	cfs_rq->runtime_enabled = 0;
3984 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
3985 }
3986 
3987 /* requires cfs_b->lock, may release to reprogram timer */
3988 void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b, bool force)
3989 {
3990 	/*
3991 	 * The timer may be active because we're trying to set a new bandwidth
3992 	 * period or because we're racing with the tear-down path
3993 	 * (timer_active==0 becomes visible before the hrtimer call-back
3994 	 * terminates).  In either case we ensure that it's re-programmed
3995 	 */
3996 	while (unlikely(hrtimer_active(&cfs_b->period_timer)) &&
3997 	       hrtimer_try_to_cancel(&cfs_b->period_timer) < 0) {
3998 		/* bounce the lock to allow do_sched_cfs_period_timer to run */
3999 		raw_spin_unlock(&cfs_b->lock);
4000 		cpu_relax();
4001 		raw_spin_lock(&cfs_b->lock);
4002 		/* if someone else restarted the timer then we're done */
4003 		if (!force && cfs_b->timer_active)
4004 			return;
4005 	}
4006 
4007 	cfs_b->timer_active = 1;
4008 	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
4009 }
4010 
4011 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4012 {
4013 	/* init_cfs_bandwidth() was not called */
4014 	if (!cfs_b->throttled_cfs_rq.next)
4015 		return;
4016 
4017 	hrtimer_cancel(&cfs_b->period_timer);
4018 	hrtimer_cancel(&cfs_b->slack_timer);
4019 }
4020 
4021 static void __maybe_unused update_runtime_enabled(struct rq *rq)
4022 {
4023 	struct cfs_rq *cfs_rq;
4024 
4025 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4026 		struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4027 
4028 		raw_spin_lock(&cfs_b->lock);
4029 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4030 		raw_spin_unlock(&cfs_b->lock);
4031 	}
4032 }
4033 
4034 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4035 {
4036 	struct cfs_rq *cfs_rq;
4037 
4038 	for_each_leaf_cfs_rq(rq, cfs_rq) {
4039 		if (!cfs_rq->runtime_enabled)
4040 			continue;
4041 
4042 		/*
4043 		 * clock_task is not advancing so we just need to make sure
4044 		 * there's some valid quota amount
4045 		 */
4046 		cfs_rq->runtime_remaining = 1;
4047 		/*
4048 		 * Offline rq is schedulable till cpu is completely disabled
4049 		 * in take_cpu_down(), so we prevent new cfs throttling here.
4050 		 */
4051 		cfs_rq->runtime_enabled = 0;
4052 
4053 		if (cfs_rq_throttled(cfs_rq))
4054 			unthrottle_cfs_rq(cfs_rq);
4055 	}
4056 }
4057 
4058 #else /* CONFIG_CFS_BANDWIDTH */
4059 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4060 {
4061 	return rq_clock_task(rq_of(cfs_rq));
4062 }
4063 
4064 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4065 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4066 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4067 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4068 
4069 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4070 {
4071 	return 0;
4072 }
4073 
4074 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4075 {
4076 	return 0;
4077 }
4078 
4079 static inline int throttled_lb_pair(struct task_group *tg,
4080 				    int src_cpu, int dest_cpu)
4081 {
4082 	return 0;
4083 }
4084 
4085 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4086 
4087 #ifdef CONFIG_FAIR_GROUP_SCHED
4088 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4089 #endif
4090 
4091 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4092 {
4093 	return NULL;
4094 }
4095 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4096 static inline void update_runtime_enabled(struct rq *rq) {}
4097 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
4098 
4099 #endif /* CONFIG_CFS_BANDWIDTH */
4100 
4101 /**************************************************
4102  * CFS operations on tasks:
4103  */
4104 
4105 #ifdef CONFIG_SCHED_HRTICK
4106 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4107 {
4108 	struct sched_entity *se = &p->se;
4109 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4110 
4111 	WARN_ON(task_rq(p) != rq);
4112 
4113 	if (cfs_rq->nr_running > 1) {
4114 		u64 slice = sched_slice(cfs_rq, se);
4115 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4116 		s64 delta = slice - ran;
4117 
4118 		if (delta < 0) {
4119 			if (rq->curr == p)
4120 				resched_curr(rq);
4121 			return;
4122 		}
4123 		hrtick_start(rq, delta);
4124 	}
4125 }
4126 
4127 /*
4128  * called from enqueue/dequeue and updates the hrtick when the
4129  * current task is from our class and nr_running is low enough
4130  * to matter.
4131  */
4132 static void hrtick_update(struct rq *rq)
4133 {
4134 	struct task_struct *curr = rq->curr;
4135 
4136 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
4137 		return;
4138 
4139 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4140 		hrtick_start_fair(rq, curr);
4141 }
4142 #else /* !CONFIG_SCHED_HRTICK */
4143 static inline void
4144 hrtick_start_fair(struct rq *rq, struct task_struct *p)
4145 {
4146 }
4147 
4148 static inline void hrtick_update(struct rq *rq)
4149 {
4150 }
4151 #endif
4152 
4153 /*
4154  * The enqueue_task method is called before nr_running is
4155  * increased. Here we update the fair scheduling stats and
4156  * then put the task into the rbtree:
4157  */
4158 static void
4159 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4160 {
4161 	struct cfs_rq *cfs_rq;
4162 	struct sched_entity *se = &p->se;
4163 
4164 	for_each_sched_entity(se) {
4165 		if (se->on_rq)
4166 			break;
4167 		cfs_rq = cfs_rq_of(se);
4168 		enqueue_entity(cfs_rq, se, flags);
4169 
4170 		/*
4171 		 * end evaluation on encountering a throttled cfs_rq
4172 		 *
4173 		 * note: in the case of encountering a throttled cfs_rq we will
4174 		 * post the final h_nr_running increment below.
4175 		*/
4176 		if (cfs_rq_throttled(cfs_rq))
4177 			break;
4178 		cfs_rq->h_nr_running++;
4179 
4180 		flags = ENQUEUE_WAKEUP;
4181 	}
4182 
4183 	for_each_sched_entity(se) {
4184 		cfs_rq = cfs_rq_of(se);
4185 		cfs_rq->h_nr_running++;
4186 
4187 		if (cfs_rq_throttled(cfs_rq))
4188 			break;
4189 
4190 		update_cfs_shares(cfs_rq);
4191 		update_entity_load_avg(se, 1);
4192 	}
4193 
4194 	if (!se) {
4195 		update_rq_runnable_avg(rq, rq->nr_running);
4196 		add_nr_running(rq, 1);
4197 	}
4198 	hrtick_update(rq);
4199 }
4200 
4201 static void set_next_buddy(struct sched_entity *se);
4202 
4203 /*
4204  * The dequeue_task method is called before nr_running is
4205  * decreased. We remove the task from the rbtree and
4206  * update the fair scheduling stats:
4207  */
4208 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
4209 {
4210 	struct cfs_rq *cfs_rq;
4211 	struct sched_entity *se = &p->se;
4212 	int task_sleep = flags & DEQUEUE_SLEEP;
4213 
4214 	for_each_sched_entity(se) {
4215 		cfs_rq = cfs_rq_of(se);
4216 		dequeue_entity(cfs_rq, se, flags);
4217 
4218 		/*
4219 		 * end evaluation on encountering a throttled cfs_rq
4220 		 *
4221 		 * note: in the case of encountering a throttled cfs_rq we will
4222 		 * post the final h_nr_running decrement below.
4223 		*/
4224 		if (cfs_rq_throttled(cfs_rq))
4225 			break;
4226 		cfs_rq->h_nr_running--;
4227 
4228 		/* Don't dequeue parent if it has other entities besides us */
4229 		if (cfs_rq->load.weight) {
4230 			/*
4231 			 * Bias pick_next to pick a task from this cfs_rq, as
4232 			 * p is sleeping when it is within its sched_slice.
4233 			 */
4234 			if (task_sleep && parent_entity(se))
4235 				set_next_buddy(parent_entity(se));
4236 
4237 			/* avoid re-evaluating load for this entity */
4238 			se = parent_entity(se);
4239 			break;
4240 		}
4241 		flags |= DEQUEUE_SLEEP;
4242 	}
4243 
4244 	for_each_sched_entity(se) {
4245 		cfs_rq = cfs_rq_of(se);
4246 		cfs_rq->h_nr_running--;
4247 
4248 		if (cfs_rq_throttled(cfs_rq))
4249 			break;
4250 
4251 		update_cfs_shares(cfs_rq);
4252 		update_entity_load_avg(se, 1);
4253 	}
4254 
4255 	if (!se) {
4256 		sub_nr_running(rq, 1);
4257 		update_rq_runnable_avg(rq, 1);
4258 	}
4259 	hrtick_update(rq);
4260 }
4261 
4262 #ifdef CONFIG_SMP
4263 /* Used instead of source_load when we know the type == 0 */
4264 static unsigned long weighted_cpuload(const int cpu)
4265 {
4266 	return cpu_rq(cpu)->cfs.runnable_load_avg;
4267 }
4268 
4269 /*
4270  * Return a low guess at the load of a migration-source cpu weighted
4271  * according to the scheduling class and "nice" value.
4272  *
4273  * We want to under-estimate the load of migration sources, to
4274  * balance conservatively.
4275  */
4276 static unsigned long source_load(int cpu, int type)
4277 {
4278 	struct rq *rq = cpu_rq(cpu);
4279 	unsigned long total = weighted_cpuload(cpu);
4280 
4281 	if (type == 0 || !sched_feat(LB_BIAS))
4282 		return total;
4283 
4284 	return min(rq->cpu_load[type-1], total);
4285 }
4286 
4287 /*
4288  * Return a high guess at the load of a migration-target cpu weighted
4289  * according to the scheduling class and "nice" value.
4290  */
4291 static unsigned long target_load(int cpu, int type)
4292 {
4293 	struct rq *rq = cpu_rq(cpu);
4294 	unsigned long total = weighted_cpuload(cpu);
4295 
4296 	if (type == 0 || !sched_feat(LB_BIAS))
4297 		return total;
4298 
4299 	return max(rq->cpu_load[type-1], total);
4300 }
4301 
4302 static unsigned long capacity_of(int cpu)
4303 {
4304 	return cpu_rq(cpu)->cpu_capacity;
4305 }
4306 
4307 static unsigned long cpu_avg_load_per_task(int cpu)
4308 {
4309 	struct rq *rq = cpu_rq(cpu);
4310 	unsigned long nr_running = ACCESS_ONCE(rq->cfs.h_nr_running);
4311 	unsigned long load_avg = rq->cfs.runnable_load_avg;
4312 
4313 	if (nr_running)
4314 		return load_avg / nr_running;
4315 
4316 	return 0;
4317 }
4318 
4319 static void record_wakee(struct task_struct *p)
4320 {
4321 	/*
4322 	 * Rough decay (wiping) for cost saving, don't worry
4323 	 * about the boundary, really active task won't care
4324 	 * about the loss.
4325 	 */
4326 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
4327 		current->wakee_flips >>= 1;
4328 		current->wakee_flip_decay_ts = jiffies;
4329 	}
4330 
4331 	if (current->last_wakee != p) {
4332 		current->last_wakee = p;
4333 		current->wakee_flips++;
4334 	}
4335 }
4336 
4337 static void task_waking_fair(struct task_struct *p)
4338 {
4339 	struct sched_entity *se = &p->se;
4340 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4341 	u64 min_vruntime;
4342 
4343 #ifndef CONFIG_64BIT
4344 	u64 min_vruntime_copy;
4345 
4346 	do {
4347 		min_vruntime_copy = cfs_rq->min_vruntime_copy;
4348 		smp_rmb();
4349 		min_vruntime = cfs_rq->min_vruntime;
4350 	} while (min_vruntime != min_vruntime_copy);
4351 #else
4352 	min_vruntime = cfs_rq->min_vruntime;
4353 #endif
4354 
4355 	se->vruntime -= min_vruntime;
4356 	record_wakee(p);
4357 }
4358 
4359 #ifdef CONFIG_FAIR_GROUP_SCHED
4360 /*
4361  * effective_load() calculates the load change as seen from the root_task_group
4362  *
4363  * Adding load to a group doesn't make a group heavier, but can cause movement
4364  * of group shares between cpus. Assuming the shares were perfectly aligned one
4365  * can calculate the shift in shares.
4366  *
4367  * Calculate the effective load difference if @wl is added (subtracted) to @tg
4368  * on this @cpu and results in a total addition (subtraction) of @wg to the
4369  * total group weight.
4370  *
4371  * Given a runqueue weight distribution (rw_i) we can compute a shares
4372  * distribution (s_i) using:
4373  *
4374  *   s_i = rw_i / \Sum rw_j						(1)
4375  *
4376  * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4377  * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4378  * shares distribution (s_i):
4379  *
4380  *   rw_i = {   2,   4,   1,   0 }
4381  *   s_i  = { 2/7, 4/7, 1/7,   0 }
4382  *
4383  * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4384  * task used to run on and the CPU the waker is running on), we need to
4385  * compute the effect of waking a task on either CPU and, in case of a sync
4386  * wakeup, compute the effect of the current task going to sleep.
4387  *
4388  * So for a change of @wl to the local @cpu with an overall group weight change
4389  * of @wl we can compute the new shares distribution (s'_i) using:
4390  *
4391  *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2)
4392  *
4393  * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4394  * differences in waking a task to CPU 0. The additional task changes the
4395  * weight and shares distributions like:
4396  *
4397  *   rw'_i = {   3,   4,   1,   0 }
4398  *   s'_i  = { 3/8, 4/8, 1/8,   0 }
4399  *
4400  * We can then compute the difference in effective weight by using:
4401  *
4402  *   dw_i = S * (s'_i - s_i)						(3)
4403  *
4404  * Where 'S' is the group weight as seen by its parent.
4405  *
4406  * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4407  * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4408  * 4/7) times the weight of the group.
4409  */
4410 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4411 {
4412 	struct sched_entity *se = tg->se[cpu];
4413 
4414 	if (!tg->parent)	/* the trivial, non-cgroup case */
4415 		return wl;
4416 
4417 	for_each_sched_entity(se) {
4418 		long w, W;
4419 
4420 		tg = se->my_q->tg;
4421 
4422 		/*
4423 		 * W = @wg + \Sum rw_j
4424 		 */
4425 		W = wg + calc_tg_weight(tg, se->my_q);
4426 
4427 		/*
4428 		 * w = rw_i + @wl
4429 		 */
4430 		w = se->my_q->load.weight + wl;
4431 
4432 		/*
4433 		 * wl = S * s'_i; see (2)
4434 		 */
4435 		if (W > 0 && w < W)
4436 			wl = (w * (long)tg->shares) / W;
4437 		else
4438 			wl = tg->shares;
4439 
4440 		/*
4441 		 * Per the above, wl is the new se->load.weight value; since
4442 		 * those are clipped to [MIN_SHARES, ...) do so now. See
4443 		 * calc_cfs_shares().
4444 		 */
4445 		if (wl < MIN_SHARES)
4446 			wl = MIN_SHARES;
4447 
4448 		/*
4449 		 * wl = dw_i = S * (s'_i - s_i); see (3)
4450 		 */
4451 		wl -= se->load.weight;
4452 
4453 		/*
4454 		 * Recursively apply this logic to all parent groups to compute
4455 		 * the final effective load change on the root group. Since
4456 		 * only the @tg group gets extra weight, all parent groups can
4457 		 * only redistribute existing shares. @wl is the shift in shares
4458 		 * resulting from this level per the above.
4459 		 */
4460 		wg = 0;
4461 	}
4462 
4463 	return wl;
4464 }
4465 #else
4466 
4467 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4468 {
4469 	return wl;
4470 }
4471 
4472 #endif
4473 
4474 static int wake_wide(struct task_struct *p)
4475 {
4476 	int factor = this_cpu_read(sd_llc_size);
4477 
4478 	/*
4479 	 * Yeah, it's the switching-frequency, could means many wakee or
4480 	 * rapidly switch, use factor here will just help to automatically
4481 	 * adjust the loose-degree, so bigger node will lead to more pull.
4482 	 */
4483 	if (p->wakee_flips > factor) {
4484 		/*
4485 		 * wakee is somewhat hot, it needs certain amount of cpu
4486 		 * resource, so if waker is far more hot, prefer to leave
4487 		 * it alone.
4488 		 */
4489 		if (current->wakee_flips > (factor * p->wakee_flips))
4490 			return 1;
4491 	}
4492 
4493 	return 0;
4494 }
4495 
4496 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
4497 {
4498 	s64 this_load, load;
4499 	s64 this_eff_load, prev_eff_load;
4500 	int idx, this_cpu, prev_cpu;
4501 	struct task_group *tg;
4502 	unsigned long weight;
4503 	int balanced;
4504 
4505 	/*
4506 	 * If we wake multiple tasks be careful to not bounce
4507 	 * ourselves around too much.
4508 	 */
4509 	if (wake_wide(p))
4510 		return 0;
4511 
4512 	idx	  = sd->wake_idx;
4513 	this_cpu  = smp_processor_id();
4514 	prev_cpu  = task_cpu(p);
4515 	load	  = source_load(prev_cpu, idx);
4516 	this_load = target_load(this_cpu, idx);
4517 
4518 	/*
4519 	 * If sync wakeup then subtract the (maximum possible)
4520 	 * effect of the currently running task from the load
4521 	 * of the current CPU:
4522 	 */
4523 	if (sync) {
4524 		tg = task_group(current);
4525 		weight = current->se.load.weight;
4526 
4527 		this_load += effective_load(tg, this_cpu, -weight, -weight);
4528 		load += effective_load(tg, prev_cpu, 0, -weight);
4529 	}
4530 
4531 	tg = task_group(p);
4532 	weight = p->se.load.weight;
4533 
4534 	/*
4535 	 * In low-load situations, where prev_cpu is idle and this_cpu is idle
4536 	 * due to the sync cause above having dropped this_load to 0, we'll
4537 	 * always have an imbalance, but there's really nothing you can do
4538 	 * about that, so that's good too.
4539 	 *
4540 	 * Otherwise check if either cpus are near enough in load to allow this
4541 	 * task to be woken on this_cpu.
4542 	 */
4543 	this_eff_load = 100;
4544 	this_eff_load *= capacity_of(prev_cpu);
4545 
4546 	prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4547 	prev_eff_load *= capacity_of(this_cpu);
4548 
4549 	if (this_load > 0) {
4550 		this_eff_load *= this_load +
4551 			effective_load(tg, this_cpu, weight, weight);
4552 
4553 		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4554 	}
4555 
4556 	balanced = this_eff_load <= prev_eff_load;
4557 
4558 	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
4559 
4560 	if (!balanced)
4561 		return 0;
4562 
4563 	schedstat_inc(sd, ttwu_move_affine);
4564 	schedstat_inc(p, se.statistics.nr_wakeups_affine);
4565 
4566 	return 1;
4567 }
4568 
4569 /*
4570  * find_idlest_group finds and returns the least busy CPU group within the
4571  * domain.
4572  */
4573 static struct sched_group *
4574 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
4575 		  int this_cpu, int sd_flag)
4576 {
4577 	struct sched_group *idlest = NULL, *group = sd->groups;
4578 	unsigned long min_load = ULONG_MAX, this_load = 0;
4579 	int load_idx = sd->forkexec_idx;
4580 	int imbalance = 100 + (sd->imbalance_pct-100)/2;
4581 
4582 	if (sd_flag & SD_BALANCE_WAKE)
4583 		load_idx = sd->wake_idx;
4584 
4585 	do {
4586 		unsigned long load, avg_load;
4587 		int local_group;
4588 		int i;
4589 
4590 		/* Skip over this group if it has no CPUs allowed */
4591 		if (!cpumask_intersects(sched_group_cpus(group),
4592 					tsk_cpus_allowed(p)))
4593 			continue;
4594 
4595 		local_group = cpumask_test_cpu(this_cpu,
4596 					       sched_group_cpus(group));
4597 
4598 		/* Tally up the load of all CPUs in the group */
4599 		avg_load = 0;
4600 
4601 		for_each_cpu(i, sched_group_cpus(group)) {
4602 			/* Bias balancing toward cpus of our domain */
4603 			if (local_group)
4604 				load = source_load(i, load_idx);
4605 			else
4606 				load = target_load(i, load_idx);
4607 
4608 			avg_load += load;
4609 		}
4610 
4611 		/* Adjust by relative CPU capacity of the group */
4612 		avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
4613 
4614 		if (local_group) {
4615 			this_load = avg_load;
4616 		} else if (avg_load < min_load) {
4617 			min_load = avg_load;
4618 			idlest = group;
4619 		}
4620 	} while (group = group->next, group != sd->groups);
4621 
4622 	if (!idlest || 100*this_load < imbalance*min_load)
4623 		return NULL;
4624 	return idlest;
4625 }
4626 
4627 /*
4628  * find_idlest_cpu - find the idlest cpu among the cpus in group.
4629  */
4630 static int
4631 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4632 {
4633 	unsigned long load, min_load = ULONG_MAX;
4634 	unsigned int min_exit_latency = UINT_MAX;
4635 	u64 latest_idle_timestamp = 0;
4636 	int least_loaded_cpu = this_cpu;
4637 	int shallowest_idle_cpu = -1;
4638 	int i;
4639 
4640 	/* Traverse only the allowed CPUs */
4641 	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
4642 		if (idle_cpu(i)) {
4643 			struct rq *rq = cpu_rq(i);
4644 			struct cpuidle_state *idle = idle_get_state(rq);
4645 			if (idle && idle->exit_latency < min_exit_latency) {
4646 				/*
4647 				 * We give priority to a CPU whose idle state
4648 				 * has the smallest exit latency irrespective
4649 				 * of any idle timestamp.
4650 				 */
4651 				min_exit_latency = idle->exit_latency;
4652 				latest_idle_timestamp = rq->idle_stamp;
4653 				shallowest_idle_cpu = i;
4654 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
4655 				   rq->idle_stamp > latest_idle_timestamp) {
4656 				/*
4657 				 * If equal or no active idle state, then
4658 				 * the most recently idled CPU might have
4659 				 * a warmer cache.
4660 				 */
4661 				latest_idle_timestamp = rq->idle_stamp;
4662 				shallowest_idle_cpu = i;
4663 			}
4664 		} else if (shallowest_idle_cpu == -1) {
4665 			load = weighted_cpuload(i);
4666 			if (load < min_load || (load == min_load && i == this_cpu)) {
4667 				min_load = load;
4668 				least_loaded_cpu = i;
4669 			}
4670 		}
4671 	}
4672 
4673 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
4674 }
4675 
4676 /*
4677  * Try and locate an idle CPU in the sched_domain.
4678  */
4679 static int select_idle_sibling(struct task_struct *p, int target)
4680 {
4681 	struct sched_domain *sd;
4682 	struct sched_group *sg;
4683 	int i = task_cpu(p);
4684 
4685 	if (idle_cpu(target))
4686 		return target;
4687 
4688 	/*
4689 	 * If the prevous cpu is cache affine and idle, don't be stupid.
4690 	 */
4691 	if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4692 		return i;
4693 
4694 	/*
4695 	 * Otherwise, iterate the domains and find an elegible idle cpu.
4696 	 */
4697 	sd = rcu_dereference(per_cpu(sd_llc, target));
4698 	for_each_lower_domain(sd) {
4699 		sg = sd->groups;
4700 		do {
4701 			if (!cpumask_intersects(sched_group_cpus(sg),
4702 						tsk_cpus_allowed(p)))
4703 				goto next;
4704 
4705 			for_each_cpu(i, sched_group_cpus(sg)) {
4706 				if (i == target || !idle_cpu(i))
4707 					goto next;
4708 			}
4709 
4710 			target = cpumask_first_and(sched_group_cpus(sg),
4711 					tsk_cpus_allowed(p));
4712 			goto done;
4713 next:
4714 			sg = sg->next;
4715 		} while (sg != sd->groups);
4716 	}
4717 done:
4718 	return target;
4719 }
4720 
4721 /*
4722  * select_task_rq_fair: Select target runqueue for the waking task in domains
4723  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
4724  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
4725  *
4726  * Balances load by selecting the idlest cpu in the idlest group, or under
4727  * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
4728  *
4729  * Returns the target cpu number.
4730  *
4731  * preempt must be disabled.
4732  */
4733 static int
4734 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
4735 {
4736 	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
4737 	int cpu = smp_processor_id();
4738 	int new_cpu = cpu;
4739 	int want_affine = 0;
4740 	int sync = wake_flags & WF_SYNC;
4741 
4742 	if (sd_flag & SD_BALANCE_WAKE)
4743 		want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
4744 
4745 	rcu_read_lock();
4746 	for_each_domain(cpu, tmp) {
4747 		if (!(tmp->flags & SD_LOAD_BALANCE))
4748 			continue;
4749 
4750 		/*
4751 		 * If both cpu and prev_cpu are part of this domain,
4752 		 * cpu is a valid SD_WAKE_AFFINE target.
4753 		 */
4754 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4755 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4756 			affine_sd = tmp;
4757 			break;
4758 		}
4759 
4760 		if (tmp->flags & sd_flag)
4761 			sd = tmp;
4762 	}
4763 
4764 	if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
4765 		prev_cpu = cpu;
4766 
4767 	if (sd_flag & SD_BALANCE_WAKE) {
4768 		new_cpu = select_idle_sibling(p, prev_cpu);
4769 		goto unlock;
4770 	}
4771 
4772 	while (sd) {
4773 		struct sched_group *group;
4774 		int weight;
4775 
4776 		if (!(sd->flags & sd_flag)) {
4777 			sd = sd->child;
4778 			continue;
4779 		}
4780 
4781 		group = find_idlest_group(sd, p, cpu, sd_flag);
4782 		if (!group) {
4783 			sd = sd->child;
4784 			continue;
4785 		}
4786 
4787 		new_cpu = find_idlest_cpu(group, p, cpu);
4788 		if (new_cpu == -1 || new_cpu == cpu) {
4789 			/* Now try balancing at a lower domain level of cpu */
4790 			sd = sd->child;
4791 			continue;
4792 		}
4793 
4794 		/* Now try balancing at a lower domain level of new_cpu */
4795 		cpu = new_cpu;
4796 		weight = sd->span_weight;
4797 		sd = NULL;
4798 		for_each_domain(cpu, tmp) {
4799 			if (weight <= tmp->span_weight)
4800 				break;
4801 			if (tmp->flags & sd_flag)
4802 				sd = tmp;
4803 		}
4804 		/* while loop will break here if sd == NULL */
4805 	}
4806 unlock:
4807 	rcu_read_unlock();
4808 
4809 	return new_cpu;
4810 }
4811 
4812 /*
4813  * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4814  * cfs_rq_of(p) references at time of call are still valid and identify the
4815  * previous cpu.  However, the caller only guarantees p->pi_lock is held; no
4816  * other assumptions, including the state of rq->lock, should be made.
4817  */
4818 static void
4819 migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4820 {
4821 	struct sched_entity *se = &p->se;
4822 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4823 
4824 	/*
4825 	 * Load tracking: accumulate removed load so that it can be processed
4826 	 * when we next update owning cfs_rq under rq->lock.  Tasks contribute
4827 	 * to blocked load iff they have a positive decay-count.  It can never
4828 	 * be negative here since on-rq tasks have decay-count == 0.
4829 	 */
4830 	if (se->avg.decay_count) {
4831 		se->avg.decay_count = -__synchronize_entity_decay(se);
4832 		atomic_long_add(se->avg.load_avg_contrib,
4833 						&cfs_rq->removed_load);
4834 	}
4835 
4836 	/* We have migrated, no longer consider this task hot */
4837 	se->exec_start = 0;
4838 }
4839 #endif /* CONFIG_SMP */
4840 
4841 static unsigned long
4842 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
4843 {
4844 	unsigned long gran = sysctl_sched_wakeup_granularity;
4845 
4846 	/*
4847 	 * Since its curr running now, convert the gran from real-time
4848 	 * to virtual-time in his units.
4849 	 *
4850 	 * By using 'se' instead of 'curr' we penalize light tasks, so
4851 	 * they get preempted easier. That is, if 'se' < 'curr' then
4852 	 * the resulting gran will be larger, therefore penalizing the
4853 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4854 	 * be smaller, again penalizing the lighter task.
4855 	 *
4856 	 * This is especially important for buddies when the leftmost
4857 	 * task is higher priority than the buddy.
4858 	 */
4859 	return calc_delta_fair(gran, se);
4860 }
4861 
4862 /*
4863  * Should 'se' preempt 'curr'.
4864  *
4865  *             |s1
4866  *        |s2
4867  *   |s3
4868  *         g
4869  *      |<--->|c
4870  *
4871  *  w(c, s1) = -1
4872  *  w(c, s2) =  0
4873  *  w(c, s3) =  1
4874  *
4875  */
4876 static int
4877 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4878 {
4879 	s64 gran, vdiff = curr->vruntime - se->vruntime;
4880 
4881 	if (vdiff <= 0)
4882 		return -1;
4883 
4884 	gran = wakeup_gran(curr, se);
4885 	if (vdiff > gran)
4886 		return 1;
4887 
4888 	return 0;
4889 }
4890 
4891 static void set_last_buddy(struct sched_entity *se)
4892 {
4893 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4894 		return;
4895 
4896 	for_each_sched_entity(se)
4897 		cfs_rq_of(se)->last = se;
4898 }
4899 
4900 static void set_next_buddy(struct sched_entity *se)
4901 {
4902 	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4903 		return;
4904 
4905 	for_each_sched_entity(se)
4906 		cfs_rq_of(se)->next = se;
4907 }
4908 
4909 static void set_skip_buddy(struct sched_entity *se)
4910 {
4911 	for_each_sched_entity(se)
4912 		cfs_rq_of(se)->skip = se;
4913 }
4914 
4915 /*
4916  * Preempt the current task with a newly woken task if needed:
4917  */
4918 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
4919 {
4920 	struct task_struct *curr = rq->curr;
4921 	struct sched_entity *se = &curr->se, *pse = &p->se;
4922 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4923 	int scale = cfs_rq->nr_running >= sched_nr_latency;
4924 	int next_buddy_marked = 0;
4925 
4926 	if (unlikely(se == pse))
4927 		return;
4928 
4929 	/*
4930 	 * This is possible from callers such as attach_tasks(), in which we
4931 	 * unconditionally check_prempt_curr() after an enqueue (which may have
4932 	 * lead to a throttle).  This both saves work and prevents false
4933 	 * next-buddy nomination below.
4934 	 */
4935 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4936 		return;
4937 
4938 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
4939 		set_next_buddy(pse);
4940 		next_buddy_marked = 1;
4941 	}
4942 
4943 	/*
4944 	 * We can come here with TIF_NEED_RESCHED already set from new task
4945 	 * wake up path.
4946 	 *
4947 	 * Note: this also catches the edge-case of curr being in a throttled
4948 	 * group (e.g. via set_curr_task), since update_curr() (in the
4949 	 * enqueue of curr) will have resulted in resched being set.  This
4950 	 * prevents us from potentially nominating it as a false LAST_BUDDY
4951 	 * below.
4952 	 */
4953 	if (test_tsk_need_resched(curr))
4954 		return;
4955 
4956 	/* Idle tasks are by definition preempted by non-idle tasks. */
4957 	if (unlikely(curr->policy == SCHED_IDLE) &&
4958 	    likely(p->policy != SCHED_IDLE))
4959 		goto preempt;
4960 
4961 	/*
4962 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4963 	 * is driven by the tick):
4964 	 */
4965 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
4966 		return;
4967 
4968 	find_matching_se(&se, &pse);
4969 	update_curr(cfs_rq_of(se));
4970 	BUG_ON(!pse);
4971 	if (wakeup_preempt_entity(se, pse) == 1) {
4972 		/*
4973 		 * Bias pick_next to pick the sched entity that is
4974 		 * triggering this preemption.
4975 		 */
4976 		if (!next_buddy_marked)
4977 			set_next_buddy(pse);
4978 		goto preempt;
4979 	}
4980 
4981 	return;
4982 
4983 preempt:
4984 	resched_curr(rq);
4985 	/*
4986 	 * Only set the backward buddy when the current task is still
4987 	 * on the rq. This can happen when a wakeup gets interleaved
4988 	 * with schedule on the ->pre_schedule() or idle_balance()
4989 	 * point, either of which can * drop the rq lock.
4990 	 *
4991 	 * Also, during early boot the idle thread is in the fair class,
4992 	 * for obvious reasons its a bad idea to schedule back to it.
4993 	 */
4994 	if (unlikely(!se->on_rq || curr == rq->idle))
4995 		return;
4996 
4997 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4998 		set_last_buddy(se);
4999 }
5000 
5001 static struct task_struct *
5002 pick_next_task_fair(struct rq *rq, struct task_struct *prev)
5003 {
5004 	struct cfs_rq *cfs_rq = &rq->cfs;
5005 	struct sched_entity *se;
5006 	struct task_struct *p;
5007 	int new_tasks;
5008 
5009 again:
5010 #ifdef CONFIG_FAIR_GROUP_SCHED
5011 	if (!cfs_rq->nr_running)
5012 		goto idle;
5013 
5014 	if (prev->sched_class != &fair_sched_class)
5015 		goto simple;
5016 
5017 	/*
5018 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5019 	 * likely that a next task is from the same cgroup as the current.
5020 	 *
5021 	 * Therefore attempt to avoid putting and setting the entire cgroup
5022 	 * hierarchy, only change the part that actually changes.
5023 	 */
5024 
5025 	do {
5026 		struct sched_entity *curr = cfs_rq->curr;
5027 
5028 		/*
5029 		 * Since we got here without doing put_prev_entity() we also
5030 		 * have to consider cfs_rq->curr. If it is still a runnable
5031 		 * entity, update_curr() will update its vruntime, otherwise
5032 		 * forget we've ever seen it.
5033 		 */
5034 		if (curr && curr->on_rq)
5035 			update_curr(cfs_rq);
5036 		else
5037 			curr = NULL;
5038 
5039 		/*
5040 		 * This call to check_cfs_rq_runtime() will do the throttle and
5041 		 * dequeue its entity in the parent(s). Therefore the 'simple'
5042 		 * nr_running test will indeed be correct.
5043 		 */
5044 		if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5045 			goto simple;
5046 
5047 		se = pick_next_entity(cfs_rq, curr);
5048 		cfs_rq = group_cfs_rq(se);
5049 	} while (cfs_rq);
5050 
5051 	p = task_of(se);
5052 
5053 	/*
5054 	 * Since we haven't yet done put_prev_entity and if the selected task
5055 	 * is a different task than we started out with, try and touch the
5056 	 * least amount of cfs_rqs.
5057 	 */
5058 	if (prev != p) {
5059 		struct sched_entity *pse = &prev->se;
5060 
5061 		while (!(cfs_rq = is_same_group(se, pse))) {
5062 			int se_depth = se->depth;
5063 			int pse_depth = pse->depth;
5064 
5065 			if (se_depth <= pse_depth) {
5066 				put_prev_entity(cfs_rq_of(pse), pse);
5067 				pse = parent_entity(pse);
5068 			}
5069 			if (se_depth >= pse_depth) {
5070 				set_next_entity(cfs_rq_of(se), se);
5071 				se = parent_entity(se);
5072 			}
5073 		}
5074 
5075 		put_prev_entity(cfs_rq, pse);
5076 		set_next_entity(cfs_rq, se);
5077 	}
5078 
5079 	if (hrtick_enabled(rq))
5080 		hrtick_start_fair(rq, p);
5081 
5082 	return p;
5083 simple:
5084 	cfs_rq = &rq->cfs;
5085 #endif
5086 
5087 	if (!cfs_rq->nr_running)
5088 		goto idle;
5089 
5090 	put_prev_task(rq, prev);
5091 
5092 	do {
5093 		se = pick_next_entity(cfs_rq, NULL);
5094 		set_next_entity(cfs_rq, se);
5095 		cfs_rq = group_cfs_rq(se);
5096 	} while (cfs_rq);
5097 
5098 	p = task_of(se);
5099 
5100 	if (hrtick_enabled(rq))
5101 		hrtick_start_fair(rq, p);
5102 
5103 	return p;
5104 
5105 idle:
5106 	new_tasks = idle_balance(rq);
5107 	/*
5108 	 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5109 	 * possible for any higher priority task to appear. In that case we
5110 	 * must re-start the pick_next_entity() loop.
5111 	 */
5112 	if (new_tasks < 0)
5113 		return RETRY_TASK;
5114 
5115 	if (new_tasks > 0)
5116 		goto again;
5117 
5118 	return NULL;
5119 }
5120 
5121 /*
5122  * Account for a descheduled task:
5123  */
5124 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
5125 {
5126 	struct sched_entity *se = &prev->se;
5127 	struct cfs_rq *cfs_rq;
5128 
5129 	for_each_sched_entity(se) {
5130 		cfs_rq = cfs_rq_of(se);
5131 		put_prev_entity(cfs_rq, se);
5132 	}
5133 }
5134 
5135 /*
5136  * sched_yield() is very simple
5137  *
5138  * The magic of dealing with the ->skip buddy is in pick_next_entity.
5139  */
5140 static void yield_task_fair(struct rq *rq)
5141 {
5142 	struct task_struct *curr = rq->curr;
5143 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5144 	struct sched_entity *se = &curr->se;
5145 
5146 	/*
5147 	 * Are we the only task in the tree?
5148 	 */
5149 	if (unlikely(rq->nr_running == 1))
5150 		return;
5151 
5152 	clear_buddies(cfs_rq, se);
5153 
5154 	if (curr->policy != SCHED_BATCH) {
5155 		update_rq_clock(rq);
5156 		/*
5157 		 * Update run-time statistics of the 'current'.
5158 		 */
5159 		update_curr(cfs_rq);
5160 		/*
5161 		 * Tell update_rq_clock() that we've just updated,
5162 		 * so we don't do microscopic update in schedule()
5163 		 * and double the fastpath cost.
5164 		 */
5165 		rq_clock_skip_update(rq, true);
5166 	}
5167 
5168 	set_skip_buddy(se);
5169 }
5170 
5171 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5172 {
5173 	struct sched_entity *se = &p->se;
5174 
5175 	/* throttled hierarchies are not runnable */
5176 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
5177 		return false;
5178 
5179 	/* Tell the scheduler that we'd really like pse to run next. */
5180 	set_next_buddy(se);
5181 
5182 	yield_task_fair(rq);
5183 
5184 	return true;
5185 }
5186 
5187 #ifdef CONFIG_SMP
5188 /**************************************************
5189  * Fair scheduling class load-balancing methods.
5190  *
5191  * BASICS
5192  *
5193  * The purpose of load-balancing is to achieve the same basic fairness the
5194  * per-cpu scheduler provides, namely provide a proportional amount of compute
5195  * time to each task. This is expressed in the following equation:
5196  *
5197  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
5198  *
5199  * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5200  * W_i,0 is defined as:
5201  *
5202  *   W_i,0 = \Sum_j w_i,j                                             (2)
5203  *
5204  * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
5205  * is derived from the nice value as per prio_to_weight[].
5206  *
5207  * The weight average is an exponential decay average of the instantaneous
5208  * weight:
5209  *
5210  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
5211  *
5212  * C_i is the compute capacity of cpu i, typically it is the
5213  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5214  * can also include other factors [XXX].
5215  *
5216  * To achieve this balance we define a measure of imbalance which follows
5217  * directly from (1):
5218  *
5219  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
5220  *
5221  * We them move tasks around to minimize the imbalance. In the continuous
5222  * function space it is obvious this converges, in the discrete case we get
5223  * a few fun cases generally called infeasible weight scenarios.
5224  *
5225  * [XXX expand on:
5226  *     - infeasible weights;
5227  *     - local vs global optima in the discrete case. ]
5228  *
5229  *
5230  * SCHED DOMAINS
5231  *
5232  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5233  * for all i,j solution, we create a tree of cpus that follows the hardware
5234  * topology where each level pairs two lower groups (or better). This results
5235  * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5236  * tree to only the first of the previous level and we decrease the frequency
5237  * of load-balance at each level inv. proportional to the number of cpus in
5238  * the groups.
5239  *
5240  * This yields:
5241  *
5242  *     log_2 n     1     n
5243  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
5244  *     i = 0      2^i   2^i
5245  *                               `- size of each group
5246  *         |         |     `- number of cpus doing load-balance
5247  *         |         `- freq
5248  *         `- sum over all levels
5249  *
5250  * Coupled with a limit on how many tasks we can migrate every balance pass,
5251  * this makes (5) the runtime complexity of the balancer.
5252  *
5253  * An important property here is that each CPU is still (indirectly) connected
5254  * to every other cpu in at most O(log n) steps:
5255  *
5256  * The adjacency matrix of the resulting graph is given by:
5257  *
5258  *             log_2 n
5259  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
5260  *             k = 0
5261  *
5262  * And you'll find that:
5263  *
5264  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
5265  *
5266  * Showing there's indeed a path between every cpu in at most O(log n) steps.
5267  * The task movement gives a factor of O(m), giving a convergence complexity
5268  * of:
5269  *
5270  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
5271  *
5272  *
5273  * WORK CONSERVING
5274  *
5275  * In order to avoid CPUs going idle while there's still work to do, new idle
5276  * balancing is more aggressive and has the newly idle cpu iterate up the domain
5277  * tree itself instead of relying on other CPUs to bring it work.
5278  *
5279  * This adds some complexity to both (5) and (8) but it reduces the total idle
5280  * time.
5281  *
5282  * [XXX more?]
5283  *
5284  *
5285  * CGROUPS
5286  *
5287  * Cgroups make a horror show out of (2), instead of a simple sum we get:
5288  *
5289  *                                s_k,i
5290  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
5291  *                                 S_k
5292  *
5293  * Where
5294  *
5295  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
5296  *
5297  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
5298  *
5299  * The big problem is S_k, its a global sum needed to compute a local (W_i)
5300  * property.
5301  *
5302  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
5303  *      rewrite all of this once again.]
5304  */
5305 
5306 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
5307 
5308 enum fbq_type { regular, remote, all };
5309 
5310 #define LBF_ALL_PINNED	0x01
5311 #define LBF_NEED_BREAK	0x02
5312 #define LBF_DST_PINNED  0x04
5313 #define LBF_SOME_PINNED	0x08
5314 
5315 struct lb_env {
5316 	struct sched_domain	*sd;
5317 
5318 	struct rq		*src_rq;
5319 	int			src_cpu;
5320 
5321 	int			dst_cpu;
5322 	struct rq		*dst_rq;
5323 
5324 	struct cpumask		*dst_grpmask;
5325 	int			new_dst_cpu;
5326 	enum cpu_idle_type	idle;
5327 	long			imbalance;
5328 	/* The set of CPUs under consideration for load-balancing */
5329 	struct cpumask		*cpus;
5330 
5331 	unsigned int		flags;
5332 
5333 	unsigned int		loop;
5334 	unsigned int		loop_break;
5335 	unsigned int		loop_max;
5336 
5337 	enum fbq_type		fbq_type;
5338 	struct list_head	tasks;
5339 };
5340 
5341 /*
5342  * Is this task likely cache-hot:
5343  */
5344 static int task_hot(struct task_struct *p, struct lb_env *env)
5345 {
5346 	s64 delta;
5347 
5348 	lockdep_assert_held(&env->src_rq->lock);
5349 
5350 	if (p->sched_class != &fair_sched_class)
5351 		return 0;
5352 
5353 	if (unlikely(p->policy == SCHED_IDLE))
5354 		return 0;
5355 
5356 	/*
5357 	 * Buddy candidates are cache hot:
5358 	 */
5359 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
5360 			(&p->se == cfs_rq_of(&p->se)->next ||
5361 			 &p->se == cfs_rq_of(&p->se)->last))
5362 		return 1;
5363 
5364 	if (sysctl_sched_migration_cost == -1)
5365 		return 1;
5366 	if (sysctl_sched_migration_cost == 0)
5367 		return 0;
5368 
5369 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
5370 
5371 	return delta < (s64)sysctl_sched_migration_cost;
5372 }
5373 
5374 #ifdef CONFIG_NUMA_BALANCING
5375 /* Returns true if the destination node has incurred more faults */
5376 static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
5377 {
5378 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5379 	int src_nid, dst_nid;
5380 
5381 	if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
5382 	    !(env->sd->flags & SD_NUMA)) {
5383 		return false;
5384 	}
5385 
5386 	src_nid = cpu_to_node(env->src_cpu);
5387 	dst_nid = cpu_to_node(env->dst_cpu);
5388 
5389 	if (src_nid == dst_nid)
5390 		return false;
5391 
5392 	if (numa_group) {
5393 		/* Task is already in the group's interleave set. */
5394 		if (node_isset(src_nid, numa_group->active_nodes))
5395 			return false;
5396 
5397 		/* Task is moving into the group's interleave set. */
5398 		if (node_isset(dst_nid, numa_group->active_nodes))
5399 			return true;
5400 
5401 		return group_faults(p, dst_nid) > group_faults(p, src_nid);
5402 	}
5403 
5404 	/* Encourage migration to the preferred node. */
5405 	if (dst_nid == p->numa_preferred_nid)
5406 		return true;
5407 
5408 	return task_faults(p, dst_nid) > task_faults(p, src_nid);
5409 }
5410 
5411 
5412 static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
5413 {
5414 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
5415 	int src_nid, dst_nid;
5416 
5417 	if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
5418 		return false;
5419 
5420 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
5421 		return false;
5422 
5423 	src_nid = cpu_to_node(env->src_cpu);
5424 	dst_nid = cpu_to_node(env->dst_cpu);
5425 
5426 	if (src_nid == dst_nid)
5427 		return false;
5428 
5429 	if (numa_group) {
5430 		/* Task is moving within/into the group's interleave set. */
5431 		if (node_isset(dst_nid, numa_group->active_nodes))
5432 			return false;
5433 
5434 		/* Task is moving out of the group's interleave set. */
5435 		if (node_isset(src_nid, numa_group->active_nodes))
5436 			return true;
5437 
5438 		return group_faults(p, dst_nid) < group_faults(p, src_nid);
5439 	}
5440 
5441 	/* Migrating away from the preferred node is always bad. */
5442 	if (src_nid == p->numa_preferred_nid)
5443 		return true;
5444 
5445 	return task_faults(p, dst_nid) < task_faults(p, src_nid);
5446 }
5447 
5448 #else
5449 static inline bool migrate_improves_locality(struct task_struct *p,
5450 					     struct lb_env *env)
5451 {
5452 	return false;
5453 }
5454 
5455 static inline bool migrate_degrades_locality(struct task_struct *p,
5456 					     struct lb_env *env)
5457 {
5458 	return false;
5459 }
5460 #endif
5461 
5462 /*
5463  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
5464  */
5465 static
5466 int can_migrate_task(struct task_struct *p, struct lb_env *env)
5467 {
5468 	int tsk_cache_hot = 0;
5469 
5470 	lockdep_assert_held(&env->src_rq->lock);
5471 
5472 	/*
5473 	 * We do not migrate tasks that are:
5474 	 * 1) throttled_lb_pair, or
5475 	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
5476 	 * 3) running (obviously), or
5477 	 * 4) are cache-hot on their current CPU.
5478 	 */
5479 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
5480 		return 0;
5481 
5482 	if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
5483 		int cpu;
5484 
5485 		schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
5486 
5487 		env->flags |= LBF_SOME_PINNED;
5488 
5489 		/*
5490 		 * Remember if this task can be migrated to any other cpu in
5491 		 * our sched_group. We may want to revisit it if we couldn't
5492 		 * meet load balance goals by pulling other tasks on src_cpu.
5493 		 *
5494 		 * Also avoid computing new_dst_cpu if we have already computed
5495 		 * one in current iteration.
5496 		 */
5497 		if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
5498 			return 0;
5499 
5500 		/* Prevent to re-select dst_cpu via env's cpus */
5501 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
5502 			if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
5503 				env->flags |= LBF_DST_PINNED;
5504 				env->new_dst_cpu = cpu;
5505 				break;
5506 			}
5507 		}
5508 
5509 		return 0;
5510 	}
5511 
5512 	/* Record that we found atleast one task that could run on dst_cpu */
5513 	env->flags &= ~LBF_ALL_PINNED;
5514 
5515 	if (task_running(env->src_rq, p)) {
5516 		schedstat_inc(p, se.statistics.nr_failed_migrations_running);
5517 		return 0;
5518 	}
5519 
5520 	/*
5521 	 * Aggressive migration if:
5522 	 * 1) destination numa is preferred
5523 	 * 2) task is cache cold, or
5524 	 * 3) too many balance attempts have failed.
5525 	 */
5526 	tsk_cache_hot = task_hot(p, env);
5527 	if (!tsk_cache_hot)
5528 		tsk_cache_hot = migrate_degrades_locality(p, env);
5529 
5530 	if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
5531 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
5532 		if (tsk_cache_hot) {
5533 			schedstat_inc(env->sd, lb_hot_gained[env->idle]);
5534 			schedstat_inc(p, se.statistics.nr_forced_migrations);
5535 		}
5536 		return 1;
5537 	}
5538 
5539 	schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
5540 	return 0;
5541 }
5542 
5543 /*
5544  * detach_task() -- detach the task for the migration specified in env
5545  */
5546 static void detach_task(struct task_struct *p, struct lb_env *env)
5547 {
5548 	lockdep_assert_held(&env->src_rq->lock);
5549 
5550 	deactivate_task(env->src_rq, p, 0);
5551 	p->on_rq = TASK_ON_RQ_MIGRATING;
5552 	set_task_cpu(p, env->dst_cpu);
5553 }
5554 
5555 /*
5556  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
5557  * part of active balancing operations within "domain".
5558  *
5559  * Returns a task if successful and NULL otherwise.
5560  */
5561 static struct task_struct *detach_one_task(struct lb_env *env)
5562 {
5563 	struct task_struct *p, *n;
5564 
5565 	lockdep_assert_held(&env->src_rq->lock);
5566 
5567 	list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
5568 		if (!can_migrate_task(p, env))
5569 			continue;
5570 
5571 		detach_task(p, env);
5572 
5573 		/*
5574 		 * Right now, this is only the second place where
5575 		 * lb_gained[env->idle] is updated (other is detach_tasks)
5576 		 * so we can safely collect stats here rather than
5577 		 * inside detach_tasks().
5578 		 */
5579 		schedstat_inc(env->sd, lb_gained[env->idle]);
5580 		return p;
5581 	}
5582 	return NULL;
5583 }
5584 
5585 static const unsigned int sched_nr_migrate_break = 32;
5586 
5587 /*
5588  * detach_tasks() -- tries to detach up to imbalance weighted load from
5589  * busiest_rq, as part of a balancing operation within domain "sd".
5590  *
5591  * Returns number of detached tasks if successful and 0 otherwise.
5592  */
5593 static int detach_tasks(struct lb_env *env)
5594 {
5595 	struct list_head *tasks = &env->src_rq->cfs_tasks;
5596 	struct task_struct *p;
5597 	unsigned long load;
5598 	int detached = 0;
5599 
5600 	lockdep_assert_held(&env->src_rq->lock);
5601 
5602 	if (env->imbalance <= 0)
5603 		return 0;
5604 
5605 	while (!list_empty(tasks)) {
5606 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5607 
5608 		env->loop++;
5609 		/* We've more or less seen every task there is, call it quits */
5610 		if (env->loop > env->loop_max)
5611 			break;
5612 
5613 		/* take a breather every nr_migrate tasks */
5614 		if (env->loop > env->loop_break) {
5615 			env->loop_break += sched_nr_migrate_break;
5616 			env->flags |= LBF_NEED_BREAK;
5617 			break;
5618 		}
5619 
5620 		if (!can_migrate_task(p, env))
5621 			goto next;
5622 
5623 		load = task_h_load(p);
5624 
5625 		if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
5626 			goto next;
5627 
5628 		if ((load / 2) > env->imbalance)
5629 			goto next;
5630 
5631 		detach_task(p, env);
5632 		list_add(&p->se.group_node, &env->tasks);
5633 
5634 		detached++;
5635 		env->imbalance -= load;
5636 
5637 #ifdef CONFIG_PREEMPT
5638 		/*
5639 		 * NEWIDLE balancing is a source of latency, so preemptible
5640 		 * kernels will stop after the first task is detached to minimize
5641 		 * the critical section.
5642 		 */
5643 		if (env->idle == CPU_NEWLY_IDLE)
5644 			break;
5645 #endif
5646 
5647 		/*
5648 		 * We only want to steal up to the prescribed amount of
5649 		 * weighted load.
5650 		 */
5651 		if (env->imbalance <= 0)
5652 			break;
5653 
5654 		continue;
5655 next:
5656 		list_move_tail(&p->se.group_node, tasks);
5657 	}
5658 
5659 	/*
5660 	 * Right now, this is one of only two places we collect this stat
5661 	 * so we can safely collect detach_one_task() stats here rather
5662 	 * than inside detach_one_task().
5663 	 */
5664 	schedstat_add(env->sd, lb_gained[env->idle], detached);
5665 
5666 	return detached;
5667 }
5668 
5669 /*
5670  * attach_task() -- attach the task detached by detach_task() to its new rq.
5671  */
5672 static void attach_task(struct rq *rq, struct task_struct *p)
5673 {
5674 	lockdep_assert_held(&rq->lock);
5675 
5676 	BUG_ON(task_rq(p) != rq);
5677 	p->on_rq = TASK_ON_RQ_QUEUED;
5678 	activate_task(rq, p, 0);
5679 	check_preempt_curr(rq, p, 0);
5680 }
5681 
5682 /*
5683  * attach_one_task() -- attaches the task returned from detach_one_task() to
5684  * its new rq.
5685  */
5686 static void attach_one_task(struct rq *rq, struct task_struct *p)
5687 {
5688 	raw_spin_lock(&rq->lock);
5689 	attach_task(rq, p);
5690 	raw_spin_unlock(&rq->lock);
5691 }
5692 
5693 /*
5694  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
5695  * new rq.
5696  */
5697 static void attach_tasks(struct lb_env *env)
5698 {
5699 	struct list_head *tasks = &env->tasks;
5700 	struct task_struct *p;
5701 
5702 	raw_spin_lock(&env->dst_rq->lock);
5703 
5704 	while (!list_empty(tasks)) {
5705 		p = list_first_entry(tasks, struct task_struct, se.group_node);
5706 		list_del_init(&p->se.group_node);
5707 
5708 		attach_task(env->dst_rq, p);
5709 	}
5710 
5711 	raw_spin_unlock(&env->dst_rq->lock);
5712 }
5713 
5714 #ifdef CONFIG_FAIR_GROUP_SCHED
5715 /*
5716  * update tg->load_weight by folding this cpu's load_avg
5717  */
5718 static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
5719 {
5720 	struct sched_entity *se = tg->se[cpu];
5721 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
5722 
5723 	/* throttled entities do not contribute to load */
5724 	if (throttled_hierarchy(cfs_rq))
5725 		return;
5726 
5727 	update_cfs_rq_blocked_load(cfs_rq, 1);
5728 
5729 	if (se) {
5730 		update_entity_load_avg(se, 1);
5731 		/*
5732 		 * We pivot on our runnable average having decayed to zero for
5733 		 * list removal.  This generally implies that all our children
5734 		 * have also been removed (modulo rounding error or bandwidth
5735 		 * control); however, such cases are rare and we can fix these
5736 		 * at enqueue.
5737 		 *
5738 		 * TODO: fix up out-of-order children on enqueue.
5739 		 */
5740 		if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5741 			list_del_leaf_cfs_rq(cfs_rq);
5742 	} else {
5743 		struct rq *rq = rq_of(cfs_rq);
5744 		update_rq_runnable_avg(rq, rq->nr_running);
5745 	}
5746 }
5747 
5748 static void update_blocked_averages(int cpu)
5749 {
5750 	struct rq *rq = cpu_rq(cpu);
5751 	struct cfs_rq *cfs_rq;
5752 	unsigned long flags;
5753 
5754 	raw_spin_lock_irqsave(&rq->lock, flags);
5755 	update_rq_clock(rq);
5756 	/*
5757 	 * Iterates the task_group tree in a bottom up fashion, see
5758 	 * list_add_leaf_cfs_rq() for details.
5759 	 */
5760 	for_each_leaf_cfs_rq(rq, cfs_rq) {
5761 		/*
5762 		 * Note: We may want to consider periodically releasing
5763 		 * rq->lock about these updates so that creating many task
5764 		 * groups does not result in continually extending hold time.
5765 		 */
5766 		__update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
5767 	}
5768 
5769 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5770 }
5771 
5772 /*
5773  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
5774  * This needs to be done in a top-down fashion because the load of a child
5775  * group is a fraction of its parents load.
5776  */
5777 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
5778 {
5779 	struct rq *rq = rq_of(cfs_rq);
5780 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
5781 	unsigned long now = jiffies;
5782 	unsigned long load;
5783 
5784 	if (cfs_rq->last_h_load_update == now)
5785 		return;
5786 
5787 	cfs_rq->h_load_next = NULL;
5788 	for_each_sched_entity(se) {
5789 		cfs_rq = cfs_rq_of(se);
5790 		cfs_rq->h_load_next = se;
5791 		if (cfs_rq->last_h_load_update == now)
5792 			break;
5793 	}
5794 
5795 	if (!se) {
5796 		cfs_rq->h_load = cfs_rq->runnable_load_avg;
5797 		cfs_rq->last_h_load_update = now;
5798 	}
5799 
5800 	while ((se = cfs_rq->h_load_next) != NULL) {
5801 		load = cfs_rq->h_load;
5802 		load = div64_ul(load * se->avg.load_avg_contrib,
5803 				cfs_rq->runnable_load_avg + 1);
5804 		cfs_rq = group_cfs_rq(se);
5805 		cfs_rq->h_load = load;
5806 		cfs_rq->last_h_load_update = now;
5807 	}
5808 }
5809 
5810 static unsigned long task_h_load(struct task_struct *p)
5811 {
5812 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
5813 
5814 	update_cfs_rq_h_load(cfs_rq);
5815 	return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5816 			cfs_rq->runnable_load_avg + 1);
5817 }
5818 #else
5819 static inline void update_blocked_averages(int cpu)
5820 {
5821 }
5822 
5823 static unsigned long task_h_load(struct task_struct *p)
5824 {
5825 	return p->se.avg.load_avg_contrib;
5826 }
5827 #endif
5828 
5829 /********** Helpers for find_busiest_group ************************/
5830 
5831 enum group_type {
5832 	group_other = 0,
5833 	group_imbalanced,
5834 	group_overloaded,
5835 };
5836 
5837 /*
5838  * sg_lb_stats - stats of a sched_group required for load_balancing
5839  */
5840 struct sg_lb_stats {
5841 	unsigned long avg_load; /*Avg load across the CPUs of the group */
5842 	unsigned long group_load; /* Total load over the CPUs of the group */
5843 	unsigned long sum_weighted_load; /* Weighted load of group's tasks */
5844 	unsigned long load_per_task;
5845 	unsigned long group_capacity;
5846 	unsigned int sum_nr_running; /* Nr tasks running in the group */
5847 	unsigned int group_capacity_factor;
5848 	unsigned int idle_cpus;
5849 	unsigned int group_weight;
5850 	enum group_type group_type;
5851 	int group_has_free_capacity;
5852 #ifdef CONFIG_NUMA_BALANCING
5853 	unsigned int nr_numa_running;
5854 	unsigned int nr_preferred_running;
5855 #endif
5856 };
5857 
5858 /*
5859  * sd_lb_stats - Structure to store the statistics of a sched_domain
5860  *		 during load balancing.
5861  */
5862 struct sd_lb_stats {
5863 	struct sched_group *busiest;	/* Busiest group in this sd */
5864 	struct sched_group *local;	/* Local group in this sd */
5865 	unsigned long total_load;	/* Total load of all groups in sd */
5866 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
5867 	unsigned long avg_load;	/* Average load across all groups in sd */
5868 
5869 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
5870 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
5871 };
5872 
5873 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5874 {
5875 	/*
5876 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5877 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5878 	 * We must however clear busiest_stat::avg_load because
5879 	 * update_sd_pick_busiest() reads this before assignment.
5880 	 */
5881 	*sds = (struct sd_lb_stats){
5882 		.busiest = NULL,
5883 		.local = NULL,
5884 		.total_load = 0UL,
5885 		.total_capacity = 0UL,
5886 		.busiest_stat = {
5887 			.avg_load = 0UL,
5888 			.sum_nr_running = 0,
5889 			.group_type = group_other,
5890 		},
5891 	};
5892 }
5893 
5894 /**
5895  * get_sd_load_idx - Obtain the load index for a given sched domain.
5896  * @sd: The sched_domain whose load_idx is to be obtained.
5897  * @idle: The idle status of the CPU for whose sd load_idx is obtained.
5898  *
5899  * Return: The load index.
5900  */
5901 static inline int get_sd_load_idx(struct sched_domain *sd,
5902 					enum cpu_idle_type idle)
5903 {
5904 	int load_idx;
5905 
5906 	switch (idle) {
5907 	case CPU_NOT_IDLE:
5908 		load_idx = sd->busy_idx;
5909 		break;
5910 
5911 	case CPU_NEWLY_IDLE:
5912 		load_idx = sd->newidle_idx;
5913 		break;
5914 	default:
5915 		load_idx = sd->idle_idx;
5916 		break;
5917 	}
5918 
5919 	return load_idx;
5920 }
5921 
5922 static unsigned long default_scale_capacity(struct sched_domain *sd, int cpu)
5923 {
5924 	return SCHED_CAPACITY_SCALE;
5925 }
5926 
5927 unsigned long __weak arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
5928 {
5929 	return default_scale_capacity(sd, cpu);
5930 }
5931 
5932 static unsigned long default_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5933 {
5934 	if ((sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
5935 		return sd->smt_gain / sd->span_weight;
5936 
5937 	return SCHED_CAPACITY_SCALE;
5938 }
5939 
5940 unsigned long __weak arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
5941 {
5942 	return default_scale_cpu_capacity(sd, cpu);
5943 }
5944 
5945 static unsigned long scale_rt_capacity(int cpu)
5946 {
5947 	struct rq *rq = cpu_rq(cpu);
5948 	u64 total, available, age_stamp, avg;
5949 	s64 delta;
5950 
5951 	/*
5952 	 * Since we're reading these variables without serialization make sure
5953 	 * we read them once before doing sanity checks on them.
5954 	 */
5955 	age_stamp = ACCESS_ONCE(rq->age_stamp);
5956 	avg = ACCESS_ONCE(rq->rt_avg);
5957 	delta = __rq_clock_broken(rq) - age_stamp;
5958 
5959 	if (unlikely(delta < 0))
5960 		delta = 0;
5961 
5962 	total = sched_avg_period() + delta;
5963 
5964 	if (unlikely(total < avg)) {
5965 		/* Ensures that capacity won't end up being negative */
5966 		available = 0;
5967 	} else {
5968 		available = total - avg;
5969 	}
5970 
5971 	if (unlikely((s64)total < SCHED_CAPACITY_SCALE))
5972 		total = SCHED_CAPACITY_SCALE;
5973 
5974 	total >>= SCHED_CAPACITY_SHIFT;
5975 
5976 	return div_u64(available, total);
5977 }
5978 
5979 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
5980 {
5981 	unsigned long capacity = SCHED_CAPACITY_SCALE;
5982 	struct sched_group *sdg = sd->groups;
5983 
5984 	if (sched_feat(ARCH_CAPACITY))
5985 		capacity *= arch_scale_cpu_capacity(sd, cpu);
5986 	else
5987 		capacity *= default_scale_cpu_capacity(sd, cpu);
5988 
5989 	capacity >>= SCHED_CAPACITY_SHIFT;
5990 
5991 	sdg->sgc->capacity_orig = capacity;
5992 
5993 	if (sched_feat(ARCH_CAPACITY))
5994 		capacity *= arch_scale_freq_capacity(sd, cpu);
5995 	else
5996 		capacity *= default_scale_capacity(sd, cpu);
5997 
5998 	capacity >>= SCHED_CAPACITY_SHIFT;
5999 
6000 	capacity *= scale_rt_capacity(cpu);
6001 	capacity >>= SCHED_CAPACITY_SHIFT;
6002 
6003 	if (!capacity)
6004 		capacity = 1;
6005 
6006 	cpu_rq(cpu)->cpu_capacity = capacity;
6007 	sdg->sgc->capacity = capacity;
6008 }
6009 
6010 void update_group_capacity(struct sched_domain *sd, int cpu)
6011 {
6012 	struct sched_domain *child = sd->child;
6013 	struct sched_group *group, *sdg = sd->groups;
6014 	unsigned long capacity, capacity_orig;
6015 	unsigned long interval;
6016 
6017 	interval = msecs_to_jiffies(sd->balance_interval);
6018 	interval = clamp(interval, 1UL, max_load_balance_interval);
6019 	sdg->sgc->next_update = jiffies + interval;
6020 
6021 	if (!child) {
6022 		update_cpu_capacity(sd, cpu);
6023 		return;
6024 	}
6025 
6026 	capacity_orig = capacity = 0;
6027 
6028 	if (child->flags & SD_OVERLAP) {
6029 		/*
6030 		 * SD_OVERLAP domains cannot assume that child groups
6031 		 * span the current group.
6032 		 */
6033 
6034 		for_each_cpu(cpu, sched_group_cpus(sdg)) {
6035 			struct sched_group_capacity *sgc;
6036 			struct rq *rq = cpu_rq(cpu);
6037 
6038 			/*
6039 			 * build_sched_domains() -> init_sched_groups_capacity()
6040 			 * gets here before we've attached the domains to the
6041 			 * runqueues.
6042 			 *
6043 			 * Use capacity_of(), which is set irrespective of domains
6044 			 * in update_cpu_capacity().
6045 			 *
6046 			 * This avoids capacity/capacity_orig from being 0 and
6047 			 * causing divide-by-zero issues on boot.
6048 			 *
6049 			 * Runtime updates will correct capacity_orig.
6050 			 */
6051 			if (unlikely(!rq->sd)) {
6052 				capacity_orig += capacity_of(cpu);
6053 				capacity += capacity_of(cpu);
6054 				continue;
6055 			}
6056 
6057 			sgc = rq->sd->groups->sgc;
6058 			capacity_orig += sgc->capacity_orig;
6059 			capacity += sgc->capacity;
6060 		}
6061 	} else  {
6062 		/*
6063 		 * !SD_OVERLAP domains can assume that child groups
6064 		 * span the current group.
6065 		 */
6066 
6067 		group = child->groups;
6068 		do {
6069 			capacity_orig += group->sgc->capacity_orig;
6070 			capacity += group->sgc->capacity;
6071 			group = group->next;
6072 		} while (group != child->groups);
6073 	}
6074 
6075 	sdg->sgc->capacity_orig = capacity_orig;
6076 	sdg->sgc->capacity = capacity;
6077 }
6078 
6079 /*
6080  * Try and fix up capacity for tiny siblings, this is needed when
6081  * things like SD_ASYM_PACKING need f_b_g to select another sibling
6082  * which on its own isn't powerful enough.
6083  *
6084  * See update_sd_pick_busiest() and check_asym_packing().
6085  */
6086 static inline int
6087 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
6088 {
6089 	/*
6090 	 * Only siblings can have significantly less than SCHED_CAPACITY_SCALE
6091 	 */
6092 	if (!(sd->flags & SD_SHARE_CPUCAPACITY))
6093 		return 0;
6094 
6095 	/*
6096 	 * If ~90% of the cpu_capacity is still there, we're good.
6097 	 */
6098 	if (group->sgc->capacity * 32 > group->sgc->capacity_orig * 29)
6099 		return 1;
6100 
6101 	return 0;
6102 }
6103 
6104 /*
6105  * Group imbalance indicates (and tries to solve) the problem where balancing
6106  * groups is inadequate due to tsk_cpus_allowed() constraints.
6107  *
6108  * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6109  * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6110  * Something like:
6111  *
6112  * 	{ 0 1 2 3 } { 4 5 6 7 }
6113  * 	        *     * * *
6114  *
6115  * If we were to balance group-wise we'd place two tasks in the first group and
6116  * two tasks in the second group. Clearly this is undesired as it will overload
6117  * cpu 3 and leave one of the cpus in the second group unused.
6118  *
6119  * The current solution to this issue is detecting the skew in the first group
6120  * by noticing the lower domain failed to reach balance and had difficulty
6121  * moving tasks due to affinity constraints.
6122  *
6123  * When this is so detected; this group becomes a candidate for busiest; see
6124  * update_sd_pick_busiest(). And calculate_imbalance() and
6125  * find_busiest_group() avoid some of the usual balance conditions to allow it
6126  * to create an effective group imbalance.
6127  *
6128  * This is a somewhat tricky proposition since the next run might not find the
6129  * group imbalance and decide the groups need to be balanced again. A most
6130  * subtle and fragile situation.
6131  */
6132 
6133 static inline int sg_imbalanced(struct sched_group *group)
6134 {
6135 	return group->sgc->imbalance;
6136 }
6137 
6138 /*
6139  * Compute the group capacity factor.
6140  *
6141  * Avoid the issue where N*frac(smt_capacity) >= 1 creates 'phantom' cores by
6142  * first dividing out the smt factor and computing the actual number of cores
6143  * and limit unit capacity with that.
6144  */
6145 static inline int sg_capacity_factor(struct lb_env *env, struct sched_group *group)
6146 {
6147 	unsigned int capacity_factor, smt, cpus;
6148 	unsigned int capacity, capacity_orig;
6149 
6150 	capacity = group->sgc->capacity;
6151 	capacity_orig = group->sgc->capacity_orig;
6152 	cpus = group->group_weight;
6153 
6154 	/* smt := ceil(cpus / capacity), assumes: 1 < smt_capacity < 2 */
6155 	smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, capacity_orig);
6156 	capacity_factor = cpus / smt; /* cores */
6157 
6158 	capacity_factor = min_t(unsigned,
6159 		capacity_factor, DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE));
6160 	if (!capacity_factor)
6161 		capacity_factor = fix_small_capacity(env->sd, group);
6162 
6163 	return capacity_factor;
6164 }
6165 
6166 static enum group_type
6167 group_classify(struct sched_group *group, struct sg_lb_stats *sgs)
6168 {
6169 	if (sgs->sum_nr_running > sgs->group_capacity_factor)
6170 		return group_overloaded;
6171 
6172 	if (sg_imbalanced(group))
6173 		return group_imbalanced;
6174 
6175 	return group_other;
6176 }
6177 
6178 /**
6179  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
6180  * @env: The load balancing environment.
6181  * @group: sched_group whose statistics are to be updated.
6182  * @load_idx: Load index of sched_domain of this_cpu for load calc.
6183  * @local_group: Does group contain this_cpu.
6184  * @sgs: variable to hold the statistics for this group.
6185  * @overload: Indicate more than one runnable task for any CPU.
6186  */
6187 static inline void update_sg_lb_stats(struct lb_env *env,
6188 			struct sched_group *group, int load_idx,
6189 			int local_group, struct sg_lb_stats *sgs,
6190 			bool *overload)
6191 {
6192 	unsigned long load;
6193 	int i;
6194 
6195 	memset(sgs, 0, sizeof(*sgs));
6196 
6197 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6198 		struct rq *rq = cpu_rq(i);
6199 
6200 		/* Bias balancing toward cpus of our domain */
6201 		if (local_group)
6202 			load = target_load(i, load_idx);
6203 		else
6204 			load = source_load(i, load_idx);
6205 
6206 		sgs->group_load += load;
6207 		sgs->sum_nr_running += rq->cfs.h_nr_running;
6208 
6209 		if (rq->nr_running > 1)
6210 			*overload = true;
6211 
6212 #ifdef CONFIG_NUMA_BALANCING
6213 		sgs->nr_numa_running += rq->nr_numa_running;
6214 		sgs->nr_preferred_running += rq->nr_preferred_running;
6215 #endif
6216 		sgs->sum_weighted_load += weighted_cpuload(i);
6217 		if (idle_cpu(i))
6218 			sgs->idle_cpus++;
6219 	}
6220 
6221 	/* Adjust by relative CPU capacity of the group */
6222 	sgs->group_capacity = group->sgc->capacity;
6223 	sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
6224 
6225 	if (sgs->sum_nr_running)
6226 		sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
6227 
6228 	sgs->group_weight = group->group_weight;
6229 	sgs->group_capacity_factor = sg_capacity_factor(env, group);
6230 	sgs->group_type = group_classify(group, sgs);
6231 
6232 	if (sgs->group_capacity_factor > sgs->sum_nr_running)
6233 		sgs->group_has_free_capacity = 1;
6234 }
6235 
6236 /**
6237  * update_sd_pick_busiest - return 1 on busiest group
6238  * @env: The load balancing environment.
6239  * @sds: sched_domain statistics
6240  * @sg: sched_group candidate to be checked for being the busiest
6241  * @sgs: sched_group statistics
6242  *
6243  * Determine if @sg is a busier group than the previously selected
6244  * busiest group.
6245  *
6246  * Return: %true if @sg is a busier group than the previously selected
6247  * busiest group. %false otherwise.
6248  */
6249 static bool update_sd_pick_busiest(struct lb_env *env,
6250 				   struct sd_lb_stats *sds,
6251 				   struct sched_group *sg,
6252 				   struct sg_lb_stats *sgs)
6253 {
6254 	struct sg_lb_stats *busiest = &sds->busiest_stat;
6255 
6256 	if (sgs->group_type > busiest->group_type)
6257 		return true;
6258 
6259 	if (sgs->group_type < busiest->group_type)
6260 		return false;
6261 
6262 	if (sgs->avg_load <= busiest->avg_load)
6263 		return false;
6264 
6265 	/* This is the busiest node in its class. */
6266 	if (!(env->sd->flags & SD_ASYM_PACKING))
6267 		return true;
6268 
6269 	/*
6270 	 * ASYM_PACKING needs to move all the work to the lowest
6271 	 * numbered CPUs in the group, therefore mark all groups
6272 	 * higher than ourself as busy.
6273 	 */
6274 	if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
6275 		if (!sds->busiest)
6276 			return true;
6277 
6278 		if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
6279 			return true;
6280 	}
6281 
6282 	return false;
6283 }
6284 
6285 #ifdef CONFIG_NUMA_BALANCING
6286 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6287 {
6288 	if (sgs->sum_nr_running > sgs->nr_numa_running)
6289 		return regular;
6290 	if (sgs->sum_nr_running > sgs->nr_preferred_running)
6291 		return remote;
6292 	return all;
6293 }
6294 
6295 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6296 {
6297 	if (rq->nr_running > rq->nr_numa_running)
6298 		return regular;
6299 	if (rq->nr_running > rq->nr_preferred_running)
6300 		return remote;
6301 	return all;
6302 }
6303 #else
6304 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6305 {
6306 	return all;
6307 }
6308 
6309 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6310 {
6311 	return regular;
6312 }
6313 #endif /* CONFIG_NUMA_BALANCING */
6314 
6315 /**
6316  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
6317  * @env: The load balancing environment.
6318  * @sds: variable to hold the statistics for this sched_domain.
6319  */
6320 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
6321 {
6322 	struct sched_domain *child = env->sd->child;
6323 	struct sched_group *sg = env->sd->groups;
6324 	struct sg_lb_stats tmp_sgs;
6325 	int load_idx, prefer_sibling = 0;
6326 	bool overload = false;
6327 
6328 	if (child && child->flags & SD_PREFER_SIBLING)
6329 		prefer_sibling = 1;
6330 
6331 	load_idx = get_sd_load_idx(env->sd, env->idle);
6332 
6333 	do {
6334 		struct sg_lb_stats *sgs = &tmp_sgs;
6335 		int local_group;
6336 
6337 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
6338 		if (local_group) {
6339 			sds->local = sg;
6340 			sgs = &sds->local_stat;
6341 
6342 			if (env->idle != CPU_NEWLY_IDLE ||
6343 			    time_after_eq(jiffies, sg->sgc->next_update))
6344 				update_group_capacity(env->sd, env->dst_cpu);
6345 		}
6346 
6347 		update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6348 						&overload);
6349 
6350 		if (local_group)
6351 			goto next_group;
6352 
6353 		/*
6354 		 * In case the child domain prefers tasks go to siblings
6355 		 * first, lower the sg capacity factor to one so that we'll try
6356 		 * and move all the excess tasks away. We lower the capacity
6357 		 * of a group only if the local group has the capacity to fit
6358 		 * these excess tasks, i.e. nr_running < group_capacity_factor. The
6359 		 * extra check prevents the case where you always pull from the
6360 		 * heaviest group when it is already under-utilized (possible
6361 		 * with a large weight task outweighs the tasks on the system).
6362 		 */
6363 		if (prefer_sibling && sds->local &&
6364 		    sds->local_stat.group_has_free_capacity) {
6365 			sgs->group_capacity_factor = min(sgs->group_capacity_factor, 1U);
6366 			sgs->group_type = group_classify(sg, sgs);
6367 		}
6368 
6369 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
6370 			sds->busiest = sg;
6371 			sds->busiest_stat = *sgs;
6372 		}
6373 
6374 next_group:
6375 		/* Now, start updating sd_lb_stats */
6376 		sds->total_load += sgs->group_load;
6377 		sds->total_capacity += sgs->group_capacity;
6378 
6379 		sg = sg->next;
6380 	} while (sg != env->sd->groups);
6381 
6382 	if (env->sd->flags & SD_NUMA)
6383 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
6384 
6385 	if (!env->sd->parent) {
6386 		/* update overload indicator if we are at root domain */
6387 		if (env->dst_rq->rd->overload != overload)
6388 			env->dst_rq->rd->overload = overload;
6389 	}
6390 
6391 }
6392 
6393 /**
6394  * check_asym_packing - Check to see if the group is packed into the
6395  *			sched doman.
6396  *
6397  * This is primarily intended to used at the sibling level.  Some
6398  * cores like POWER7 prefer to use lower numbered SMT threads.  In the
6399  * case of POWER7, it can move to lower SMT modes only when higher
6400  * threads are idle.  When in lower SMT modes, the threads will
6401  * perform better since they share less core resources.  Hence when we
6402  * have idle threads, we want them to be the higher ones.
6403  *
6404  * This packing function is run on idle threads.  It checks to see if
6405  * the busiest CPU in this domain (core in the P7 case) has a higher
6406  * CPU number than the packing function is being run on.  Here we are
6407  * assuming lower CPU number will be equivalent to lower a SMT thread
6408  * number.
6409  *
6410  * Return: 1 when packing is required and a task should be moved to
6411  * this CPU.  The amount of the imbalance is returned in *imbalance.
6412  *
6413  * @env: The load balancing environment.
6414  * @sds: Statistics of the sched_domain which is to be packed
6415  */
6416 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
6417 {
6418 	int busiest_cpu;
6419 
6420 	if (!(env->sd->flags & SD_ASYM_PACKING))
6421 		return 0;
6422 
6423 	if (!sds->busiest)
6424 		return 0;
6425 
6426 	busiest_cpu = group_first_cpu(sds->busiest);
6427 	if (env->dst_cpu > busiest_cpu)
6428 		return 0;
6429 
6430 	env->imbalance = DIV_ROUND_CLOSEST(
6431 		sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
6432 		SCHED_CAPACITY_SCALE);
6433 
6434 	return 1;
6435 }
6436 
6437 /**
6438  * fix_small_imbalance - Calculate the minor imbalance that exists
6439  *			amongst the groups of a sched_domain, during
6440  *			load balancing.
6441  * @env: The load balancing environment.
6442  * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
6443  */
6444 static inline
6445 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6446 {
6447 	unsigned long tmp, capa_now = 0, capa_move = 0;
6448 	unsigned int imbn = 2;
6449 	unsigned long scaled_busy_load_per_task;
6450 	struct sg_lb_stats *local, *busiest;
6451 
6452 	local = &sds->local_stat;
6453 	busiest = &sds->busiest_stat;
6454 
6455 	if (!local->sum_nr_running)
6456 		local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
6457 	else if (busiest->load_per_task > local->load_per_task)
6458 		imbn = 1;
6459 
6460 	scaled_busy_load_per_task =
6461 		(busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6462 		busiest->group_capacity;
6463 
6464 	if (busiest->avg_load + scaled_busy_load_per_task >=
6465 	    local->avg_load + (scaled_busy_load_per_task * imbn)) {
6466 		env->imbalance = busiest->load_per_task;
6467 		return;
6468 	}
6469 
6470 	/*
6471 	 * OK, we don't have enough imbalance to justify moving tasks,
6472 	 * however we may be able to increase total CPU capacity used by
6473 	 * moving them.
6474 	 */
6475 
6476 	capa_now += busiest->group_capacity *
6477 			min(busiest->load_per_task, busiest->avg_load);
6478 	capa_now += local->group_capacity *
6479 			min(local->load_per_task, local->avg_load);
6480 	capa_now /= SCHED_CAPACITY_SCALE;
6481 
6482 	/* Amount of load we'd subtract */
6483 	if (busiest->avg_load > scaled_busy_load_per_task) {
6484 		capa_move += busiest->group_capacity *
6485 			    min(busiest->load_per_task,
6486 				busiest->avg_load - scaled_busy_load_per_task);
6487 	}
6488 
6489 	/* Amount of load we'd add */
6490 	if (busiest->avg_load * busiest->group_capacity <
6491 	    busiest->load_per_task * SCHED_CAPACITY_SCALE) {
6492 		tmp = (busiest->avg_load * busiest->group_capacity) /
6493 		      local->group_capacity;
6494 	} else {
6495 		tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
6496 		      local->group_capacity;
6497 	}
6498 	capa_move += local->group_capacity *
6499 		    min(local->load_per_task, local->avg_load + tmp);
6500 	capa_move /= SCHED_CAPACITY_SCALE;
6501 
6502 	/* Move if we gain throughput */
6503 	if (capa_move > capa_now)
6504 		env->imbalance = busiest->load_per_task;
6505 }
6506 
6507 /**
6508  * calculate_imbalance - Calculate the amount of imbalance present within the
6509  *			 groups of a given sched_domain during load balance.
6510  * @env: load balance environment
6511  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
6512  */
6513 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
6514 {
6515 	unsigned long max_pull, load_above_capacity = ~0UL;
6516 	struct sg_lb_stats *local, *busiest;
6517 
6518 	local = &sds->local_stat;
6519 	busiest = &sds->busiest_stat;
6520 
6521 	if (busiest->group_type == group_imbalanced) {
6522 		/*
6523 		 * In the group_imb case we cannot rely on group-wide averages
6524 		 * to ensure cpu-load equilibrium, look at wider averages. XXX
6525 		 */
6526 		busiest->load_per_task =
6527 			min(busiest->load_per_task, sds->avg_load);
6528 	}
6529 
6530 	/*
6531 	 * In the presence of smp nice balancing, certain scenarios can have
6532 	 * max load less than avg load(as we skip the groups at or below
6533 	 * its cpu_capacity, while calculating max_load..)
6534 	 */
6535 	if (busiest->avg_load <= sds->avg_load ||
6536 	    local->avg_load >= sds->avg_load) {
6537 		env->imbalance = 0;
6538 		return fix_small_imbalance(env, sds);
6539 	}
6540 
6541 	/*
6542 	 * If there aren't any idle cpus, avoid creating some.
6543 	 */
6544 	if (busiest->group_type == group_overloaded &&
6545 	    local->group_type   == group_overloaded) {
6546 		load_above_capacity =
6547 			(busiest->sum_nr_running - busiest->group_capacity_factor);
6548 
6549 		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_CAPACITY_SCALE);
6550 		load_above_capacity /= busiest->group_capacity;
6551 	}
6552 
6553 	/*
6554 	 * We're trying to get all the cpus to the average_load, so we don't
6555 	 * want to push ourselves above the average load, nor do we wish to
6556 	 * reduce the max loaded cpu below the average load. At the same time,
6557 	 * we also don't want to reduce the group load below the group capacity
6558 	 * (so that we can implement power-savings policies etc). Thus we look
6559 	 * for the minimum possible imbalance.
6560 	 */
6561 	max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
6562 
6563 	/* How much load to actually move to equalise the imbalance */
6564 	env->imbalance = min(
6565 		max_pull * busiest->group_capacity,
6566 		(sds->avg_load - local->avg_load) * local->group_capacity
6567 	) / SCHED_CAPACITY_SCALE;
6568 
6569 	/*
6570 	 * if *imbalance is less than the average load per runnable task
6571 	 * there is no guarantee that any tasks will be moved so we'll have
6572 	 * a think about bumping its value to force at least one task to be
6573 	 * moved
6574 	 */
6575 	if (env->imbalance < busiest->load_per_task)
6576 		return fix_small_imbalance(env, sds);
6577 }
6578 
6579 /******* find_busiest_group() helpers end here *********************/
6580 
6581 /**
6582  * find_busiest_group - Returns the busiest group within the sched_domain
6583  * if there is an imbalance. If there isn't an imbalance, and
6584  * the user has opted for power-savings, it returns a group whose
6585  * CPUs can be put to idle by rebalancing those tasks elsewhere, if
6586  * such a group exists.
6587  *
6588  * Also calculates the amount of weighted load which should be moved
6589  * to restore balance.
6590  *
6591  * @env: The load balancing environment.
6592  *
6593  * Return:	- The busiest group if imbalance exists.
6594  *		- If no imbalance and user has opted for power-savings balance,
6595  *		   return the least loaded group whose CPUs can be
6596  *		   put to idle by rebalancing its tasks onto our group.
6597  */
6598 static struct sched_group *find_busiest_group(struct lb_env *env)
6599 {
6600 	struct sg_lb_stats *local, *busiest;
6601 	struct sd_lb_stats sds;
6602 
6603 	init_sd_lb_stats(&sds);
6604 
6605 	/*
6606 	 * Compute the various statistics relavent for load balancing at
6607 	 * this level.
6608 	 */
6609 	update_sd_lb_stats(env, &sds);
6610 	local = &sds.local_stat;
6611 	busiest = &sds.busiest_stat;
6612 
6613 	if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
6614 	    check_asym_packing(env, &sds))
6615 		return sds.busiest;
6616 
6617 	/* There is no busy sibling group to pull tasks from */
6618 	if (!sds.busiest || busiest->sum_nr_running == 0)
6619 		goto out_balanced;
6620 
6621 	sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
6622 						/ sds.total_capacity;
6623 
6624 	/*
6625 	 * If the busiest group is imbalanced the below checks don't
6626 	 * work because they assume all things are equal, which typically
6627 	 * isn't true due to cpus_allowed constraints and the like.
6628 	 */
6629 	if (busiest->group_type == group_imbalanced)
6630 		goto force_balance;
6631 
6632 	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
6633 	if (env->idle == CPU_NEWLY_IDLE && local->group_has_free_capacity &&
6634 	    !busiest->group_has_free_capacity)
6635 		goto force_balance;
6636 
6637 	/*
6638 	 * If the local group is busier than the selected busiest group
6639 	 * don't try and pull any tasks.
6640 	 */
6641 	if (local->avg_load >= busiest->avg_load)
6642 		goto out_balanced;
6643 
6644 	/*
6645 	 * Don't pull any tasks if this group is already above the domain
6646 	 * average load.
6647 	 */
6648 	if (local->avg_load >= sds.avg_load)
6649 		goto out_balanced;
6650 
6651 	if (env->idle == CPU_IDLE) {
6652 		/*
6653 		 * This cpu is idle. If the busiest group is not overloaded
6654 		 * and there is no imbalance between this and busiest group
6655 		 * wrt idle cpus, it is balanced. The imbalance becomes
6656 		 * significant if the diff is greater than 1 otherwise we
6657 		 * might end up to just move the imbalance on another group
6658 		 */
6659 		if ((busiest->group_type != group_overloaded) &&
6660 				(local->idle_cpus <= (busiest->idle_cpus + 1)))
6661 			goto out_balanced;
6662 	} else {
6663 		/*
6664 		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
6665 		 * imbalance_pct to be conservative.
6666 		 */
6667 		if (100 * busiest->avg_load <=
6668 				env->sd->imbalance_pct * local->avg_load)
6669 			goto out_balanced;
6670 	}
6671 
6672 force_balance:
6673 	/* Looks like there is an imbalance. Compute it */
6674 	calculate_imbalance(env, &sds);
6675 	return sds.busiest;
6676 
6677 out_balanced:
6678 	env->imbalance = 0;
6679 	return NULL;
6680 }
6681 
6682 /*
6683  * find_busiest_queue - find the busiest runqueue among the cpus in group.
6684  */
6685 static struct rq *find_busiest_queue(struct lb_env *env,
6686 				     struct sched_group *group)
6687 {
6688 	struct rq *busiest = NULL, *rq;
6689 	unsigned long busiest_load = 0, busiest_capacity = 1;
6690 	int i;
6691 
6692 	for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
6693 		unsigned long capacity, capacity_factor, wl;
6694 		enum fbq_type rt;
6695 
6696 		rq = cpu_rq(i);
6697 		rt = fbq_classify_rq(rq);
6698 
6699 		/*
6700 		 * We classify groups/runqueues into three groups:
6701 		 *  - regular: there are !numa tasks
6702 		 *  - remote:  there are numa tasks that run on the 'wrong' node
6703 		 *  - all:     there is no distinction
6704 		 *
6705 		 * In order to avoid migrating ideally placed numa tasks,
6706 		 * ignore those when there's better options.
6707 		 *
6708 		 * If we ignore the actual busiest queue to migrate another
6709 		 * task, the next balance pass can still reduce the busiest
6710 		 * queue by moving tasks around inside the node.
6711 		 *
6712 		 * If we cannot move enough load due to this classification
6713 		 * the next pass will adjust the group classification and
6714 		 * allow migration of more tasks.
6715 		 *
6716 		 * Both cases only affect the total convergence complexity.
6717 		 */
6718 		if (rt > env->fbq_type)
6719 			continue;
6720 
6721 		capacity = capacity_of(i);
6722 		capacity_factor = DIV_ROUND_CLOSEST(capacity, SCHED_CAPACITY_SCALE);
6723 		if (!capacity_factor)
6724 			capacity_factor = fix_small_capacity(env->sd, group);
6725 
6726 		wl = weighted_cpuload(i);
6727 
6728 		/*
6729 		 * When comparing with imbalance, use weighted_cpuload()
6730 		 * which is not scaled with the cpu capacity.
6731 		 */
6732 		if (capacity_factor && rq->nr_running == 1 && wl > env->imbalance)
6733 			continue;
6734 
6735 		/*
6736 		 * For the load comparisons with the other cpu's, consider
6737 		 * the weighted_cpuload() scaled with the cpu capacity, so
6738 		 * that the load can be moved away from the cpu that is
6739 		 * potentially running at a lower capacity.
6740 		 *
6741 		 * Thus we're looking for max(wl_i / capacity_i), crosswise
6742 		 * multiplication to rid ourselves of the division works out
6743 		 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
6744 		 * our previous maximum.
6745 		 */
6746 		if (wl * busiest_capacity > busiest_load * capacity) {
6747 			busiest_load = wl;
6748 			busiest_capacity = capacity;
6749 			busiest = rq;
6750 		}
6751 	}
6752 
6753 	return busiest;
6754 }
6755 
6756 /*
6757  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6758  * so long as it is large enough.
6759  */
6760 #define MAX_PINNED_INTERVAL	512
6761 
6762 /* Working cpumask for load_balance and load_balance_newidle. */
6763 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6764 
6765 static int need_active_balance(struct lb_env *env)
6766 {
6767 	struct sched_domain *sd = env->sd;
6768 
6769 	if (env->idle == CPU_NEWLY_IDLE) {
6770 
6771 		/*
6772 		 * ASYM_PACKING needs to force migrate tasks from busy but
6773 		 * higher numbered CPUs in order to pack all tasks in the
6774 		 * lowest numbered CPUs.
6775 		 */
6776 		if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
6777 			return 1;
6778 	}
6779 
6780 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6781 }
6782 
6783 static int active_load_balance_cpu_stop(void *data);
6784 
6785 static int should_we_balance(struct lb_env *env)
6786 {
6787 	struct sched_group *sg = env->sd->groups;
6788 	struct cpumask *sg_cpus, *sg_mask;
6789 	int cpu, balance_cpu = -1;
6790 
6791 	/*
6792 	 * In the newly idle case, we will allow all the cpu's
6793 	 * to do the newly idle load balance.
6794 	 */
6795 	if (env->idle == CPU_NEWLY_IDLE)
6796 		return 1;
6797 
6798 	sg_cpus = sched_group_cpus(sg);
6799 	sg_mask = sched_group_mask(sg);
6800 	/* Try to find first idle cpu */
6801 	for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6802 		if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6803 			continue;
6804 
6805 		balance_cpu = cpu;
6806 		break;
6807 	}
6808 
6809 	if (balance_cpu == -1)
6810 		balance_cpu = group_balance_cpu(sg);
6811 
6812 	/*
6813 	 * First idle cpu or the first cpu(busiest) in this sched group
6814 	 * is eligible for doing load balancing at this and above domains.
6815 	 */
6816 	return balance_cpu == env->dst_cpu;
6817 }
6818 
6819 /*
6820  * Check this_cpu to ensure it is balanced within domain. Attempt to move
6821  * tasks if there is an imbalance.
6822  */
6823 static int load_balance(int this_cpu, struct rq *this_rq,
6824 			struct sched_domain *sd, enum cpu_idle_type idle,
6825 			int *continue_balancing)
6826 {
6827 	int ld_moved, cur_ld_moved, active_balance = 0;
6828 	struct sched_domain *sd_parent = sd->parent;
6829 	struct sched_group *group;
6830 	struct rq *busiest;
6831 	unsigned long flags;
6832 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
6833 
6834 	struct lb_env env = {
6835 		.sd		= sd,
6836 		.dst_cpu	= this_cpu,
6837 		.dst_rq		= this_rq,
6838 		.dst_grpmask    = sched_group_cpus(sd->groups),
6839 		.idle		= idle,
6840 		.loop_break	= sched_nr_migrate_break,
6841 		.cpus		= cpus,
6842 		.fbq_type	= all,
6843 		.tasks		= LIST_HEAD_INIT(env.tasks),
6844 	};
6845 
6846 	/*
6847 	 * For NEWLY_IDLE load_balancing, we don't need to consider
6848 	 * other cpus in our group
6849 	 */
6850 	if (idle == CPU_NEWLY_IDLE)
6851 		env.dst_grpmask = NULL;
6852 
6853 	cpumask_copy(cpus, cpu_active_mask);
6854 
6855 	schedstat_inc(sd, lb_count[idle]);
6856 
6857 redo:
6858 	if (!should_we_balance(&env)) {
6859 		*continue_balancing = 0;
6860 		goto out_balanced;
6861 	}
6862 
6863 	group = find_busiest_group(&env);
6864 	if (!group) {
6865 		schedstat_inc(sd, lb_nobusyg[idle]);
6866 		goto out_balanced;
6867 	}
6868 
6869 	busiest = find_busiest_queue(&env, group);
6870 	if (!busiest) {
6871 		schedstat_inc(sd, lb_nobusyq[idle]);
6872 		goto out_balanced;
6873 	}
6874 
6875 	BUG_ON(busiest == env.dst_rq);
6876 
6877 	schedstat_add(sd, lb_imbalance[idle], env.imbalance);
6878 
6879 	ld_moved = 0;
6880 	if (busiest->nr_running > 1) {
6881 		/*
6882 		 * Attempt to move tasks. If find_busiest_group has found
6883 		 * an imbalance but busiest->nr_running <= 1, the group is
6884 		 * still unbalanced. ld_moved simply stays zero, so it is
6885 		 * correctly treated as an imbalance.
6886 		 */
6887 		env.flags |= LBF_ALL_PINNED;
6888 		env.src_cpu   = busiest->cpu;
6889 		env.src_rq    = busiest;
6890 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
6891 
6892 more_balance:
6893 		raw_spin_lock_irqsave(&busiest->lock, flags);
6894 
6895 		/*
6896 		 * cur_ld_moved - load moved in current iteration
6897 		 * ld_moved     - cumulative load moved across iterations
6898 		 */
6899 		cur_ld_moved = detach_tasks(&env);
6900 
6901 		/*
6902 		 * We've detached some tasks from busiest_rq. Every
6903 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
6904 		 * unlock busiest->lock, and we are able to be sure
6905 		 * that nobody can manipulate the tasks in parallel.
6906 		 * See task_rq_lock() family for the details.
6907 		 */
6908 
6909 		raw_spin_unlock(&busiest->lock);
6910 
6911 		if (cur_ld_moved) {
6912 			attach_tasks(&env);
6913 			ld_moved += cur_ld_moved;
6914 		}
6915 
6916 		local_irq_restore(flags);
6917 
6918 		if (env.flags & LBF_NEED_BREAK) {
6919 			env.flags &= ~LBF_NEED_BREAK;
6920 			goto more_balance;
6921 		}
6922 
6923 		/*
6924 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6925 		 * us and move them to an alternate dst_cpu in our sched_group
6926 		 * where they can run. The upper limit on how many times we
6927 		 * iterate on same src_cpu is dependent on number of cpus in our
6928 		 * sched_group.
6929 		 *
6930 		 * This changes load balance semantics a bit on who can move
6931 		 * load to a given_cpu. In addition to the given_cpu itself
6932 		 * (or a ilb_cpu acting on its behalf where given_cpu is
6933 		 * nohz-idle), we now have balance_cpu in a position to move
6934 		 * load to given_cpu. In rare situations, this may cause
6935 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6936 		 * _independently_ and at _same_ time to move some load to
6937 		 * given_cpu) causing exceess load to be moved to given_cpu.
6938 		 * This however should not happen so much in practice and
6939 		 * moreover subsequent load balance cycles should correct the
6940 		 * excess load moved.
6941 		 */
6942 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
6943 
6944 			/* Prevent to re-select dst_cpu via env's cpus */
6945 			cpumask_clear_cpu(env.dst_cpu, env.cpus);
6946 
6947 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
6948 			env.dst_cpu	 = env.new_dst_cpu;
6949 			env.flags	&= ~LBF_DST_PINNED;
6950 			env.loop	 = 0;
6951 			env.loop_break	 = sched_nr_migrate_break;
6952 
6953 			/*
6954 			 * Go back to "more_balance" rather than "redo" since we
6955 			 * need to continue with same src_cpu.
6956 			 */
6957 			goto more_balance;
6958 		}
6959 
6960 		/*
6961 		 * We failed to reach balance because of affinity.
6962 		 */
6963 		if (sd_parent) {
6964 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6965 
6966 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6967 				*group_imbalance = 1;
6968 		}
6969 
6970 		/* All tasks on this runqueue were pinned by CPU affinity */
6971 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
6972 			cpumask_clear_cpu(cpu_of(busiest), cpus);
6973 			if (!cpumask_empty(cpus)) {
6974 				env.loop = 0;
6975 				env.loop_break = sched_nr_migrate_break;
6976 				goto redo;
6977 			}
6978 			goto out_all_pinned;
6979 		}
6980 	}
6981 
6982 	if (!ld_moved) {
6983 		schedstat_inc(sd, lb_failed[idle]);
6984 		/*
6985 		 * Increment the failure counter only on periodic balance.
6986 		 * We do not want newidle balance, which can be very
6987 		 * frequent, pollute the failure counter causing
6988 		 * excessive cache_hot migrations and active balances.
6989 		 */
6990 		if (idle != CPU_NEWLY_IDLE)
6991 			sd->nr_balance_failed++;
6992 
6993 		if (need_active_balance(&env)) {
6994 			raw_spin_lock_irqsave(&busiest->lock, flags);
6995 
6996 			/* don't kick the active_load_balance_cpu_stop,
6997 			 * if the curr task on busiest cpu can't be
6998 			 * moved to this_cpu
6999 			 */
7000 			if (!cpumask_test_cpu(this_cpu,
7001 					tsk_cpus_allowed(busiest->curr))) {
7002 				raw_spin_unlock_irqrestore(&busiest->lock,
7003 							    flags);
7004 				env.flags |= LBF_ALL_PINNED;
7005 				goto out_one_pinned;
7006 			}
7007 
7008 			/*
7009 			 * ->active_balance synchronizes accesses to
7010 			 * ->active_balance_work.  Once set, it's cleared
7011 			 * only after active load balance is finished.
7012 			 */
7013 			if (!busiest->active_balance) {
7014 				busiest->active_balance = 1;
7015 				busiest->push_cpu = this_cpu;
7016 				active_balance = 1;
7017 			}
7018 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
7019 
7020 			if (active_balance) {
7021 				stop_one_cpu_nowait(cpu_of(busiest),
7022 					active_load_balance_cpu_stop, busiest,
7023 					&busiest->active_balance_work);
7024 			}
7025 
7026 			/*
7027 			 * We've kicked active balancing, reset the failure
7028 			 * counter.
7029 			 */
7030 			sd->nr_balance_failed = sd->cache_nice_tries+1;
7031 		}
7032 	} else
7033 		sd->nr_balance_failed = 0;
7034 
7035 	if (likely(!active_balance)) {
7036 		/* We were unbalanced, so reset the balancing interval */
7037 		sd->balance_interval = sd->min_interval;
7038 	} else {
7039 		/*
7040 		 * If we've begun active balancing, start to back off. This
7041 		 * case may not be covered by the all_pinned logic if there
7042 		 * is only 1 task on the busy runqueue (because we don't call
7043 		 * detach_tasks).
7044 		 */
7045 		if (sd->balance_interval < sd->max_interval)
7046 			sd->balance_interval *= 2;
7047 	}
7048 
7049 	goto out;
7050 
7051 out_balanced:
7052 	/*
7053 	 * We reach balance although we may have faced some affinity
7054 	 * constraints. Clear the imbalance flag if it was set.
7055 	 */
7056 	if (sd_parent) {
7057 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7058 
7059 		if (*group_imbalance)
7060 			*group_imbalance = 0;
7061 	}
7062 
7063 out_all_pinned:
7064 	/*
7065 	 * We reach balance because all tasks are pinned at this level so
7066 	 * we can't migrate them. Let the imbalance flag set so parent level
7067 	 * can try to migrate them.
7068 	 */
7069 	schedstat_inc(sd, lb_balanced[idle]);
7070 
7071 	sd->nr_balance_failed = 0;
7072 
7073 out_one_pinned:
7074 	/* tune up the balancing interval */
7075 	if (((env.flags & LBF_ALL_PINNED) &&
7076 			sd->balance_interval < MAX_PINNED_INTERVAL) ||
7077 			(sd->balance_interval < sd->max_interval))
7078 		sd->balance_interval *= 2;
7079 
7080 	ld_moved = 0;
7081 out:
7082 	return ld_moved;
7083 }
7084 
7085 static inline unsigned long
7086 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7087 {
7088 	unsigned long interval = sd->balance_interval;
7089 
7090 	if (cpu_busy)
7091 		interval *= sd->busy_factor;
7092 
7093 	/* scale ms to jiffies */
7094 	interval = msecs_to_jiffies(interval);
7095 	interval = clamp(interval, 1UL, max_load_balance_interval);
7096 
7097 	return interval;
7098 }
7099 
7100 static inline void
7101 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance)
7102 {
7103 	unsigned long interval, next;
7104 
7105 	interval = get_sd_balance_interval(sd, cpu_busy);
7106 	next = sd->last_balance + interval;
7107 
7108 	if (time_after(*next_balance, next))
7109 		*next_balance = next;
7110 }
7111 
7112 /*
7113  * idle_balance is called by schedule() if this_cpu is about to become
7114  * idle. Attempts to pull tasks from other CPUs.
7115  */
7116 static int idle_balance(struct rq *this_rq)
7117 {
7118 	unsigned long next_balance = jiffies + HZ;
7119 	int this_cpu = this_rq->cpu;
7120 	struct sched_domain *sd;
7121 	int pulled_task = 0;
7122 	u64 curr_cost = 0;
7123 
7124 	idle_enter_fair(this_rq);
7125 
7126 	/*
7127 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
7128 	 * measure the duration of idle_balance() as idle time.
7129 	 */
7130 	this_rq->idle_stamp = rq_clock(this_rq);
7131 
7132 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7133 	    !this_rq->rd->overload) {
7134 		rcu_read_lock();
7135 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
7136 		if (sd)
7137 			update_next_balance(sd, 0, &next_balance);
7138 		rcu_read_unlock();
7139 
7140 		goto out;
7141 	}
7142 
7143 	/*
7144 	 * Drop the rq->lock, but keep IRQ/preempt disabled.
7145 	 */
7146 	raw_spin_unlock(&this_rq->lock);
7147 
7148 	update_blocked_averages(this_cpu);
7149 	rcu_read_lock();
7150 	for_each_domain(this_cpu, sd) {
7151 		int continue_balancing = 1;
7152 		u64 t0, domain_cost;
7153 
7154 		if (!(sd->flags & SD_LOAD_BALANCE))
7155 			continue;
7156 
7157 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
7158 			update_next_balance(sd, 0, &next_balance);
7159 			break;
7160 		}
7161 
7162 		if (sd->flags & SD_BALANCE_NEWIDLE) {
7163 			t0 = sched_clock_cpu(this_cpu);
7164 
7165 			pulled_task = load_balance(this_cpu, this_rq,
7166 						   sd, CPU_NEWLY_IDLE,
7167 						   &continue_balancing);
7168 
7169 			domain_cost = sched_clock_cpu(this_cpu) - t0;
7170 			if (domain_cost > sd->max_newidle_lb_cost)
7171 				sd->max_newidle_lb_cost = domain_cost;
7172 
7173 			curr_cost += domain_cost;
7174 		}
7175 
7176 		update_next_balance(sd, 0, &next_balance);
7177 
7178 		/*
7179 		 * Stop searching for tasks to pull if there are
7180 		 * now runnable tasks on this rq.
7181 		 */
7182 		if (pulled_task || this_rq->nr_running > 0)
7183 			break;
7184 	}
7185 	rcu_read_unlock();
7186 
7187 	raw_spin_lock(&this_rq->lock);
7188 
7189 	if (curr_cost > this_rq->max_idle_balance_cost)
7190 		this_rq->max_idle_balance_cost = curr_cost;
7191 
7192 	/*
7193 	 * While browsing the domains, we released the rq lock, a task could
7194 	 * have been enqueued in the meantime. Since we're not going idle,
7195 	 * pretend we pulled a task.
7196 	 */
7197 	if (this_rq->cfs.h_nr_running && !pulled_task)
7198 		pulled_task = 1;
7199 
7200 out:
7201 	/* Move the next balance forward */
7202 	if (time_after(this_rq->next_balance, next_balance))
7203 		this_rq->next_balance = next_balance;
7204 
7205 	/* Is there a task of a high priority class? */
7206 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
7207 		pulled_task = -1;
7208 
7209 	if (pulled_task) {
7210 		idle_exit_fair(this_rq);
7211 		this_rq->idle_stamp = 0;
7212 	}
7213 
7214 	return pulled_task;
7215 }
7216 
7217 /*
7218  * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7219  * running tasks off the busiest CPU onto idle CPUs. It requires at
7220  * least 1 task to be running on each physical CPU where possible, and
7221  * avoids physical / logical imbalances.
7222  */
7223 static int active_load_balance_cpu_stop(void *data)
7224 {
7225 	struct rq *busiest_rq = data;
7226 	int busiest_cpu = cpu_of(busiest_rq);
7227 	int target_cpu = busiest_rq->push_cpu;
7228 	struct rq *target_rq = cpu_rq(target_cpu);
7229 	struct sched_domain *sd;
7230 	struct task_struct *p = NULL;
7231 
7232 	raw_spin_lock_irq(&busiest_rq->lock);
7233 
7234 	/* make sure the requested cpu hasn't gone down in the meantime */
7235 	if (unlikely(busiest_cpu != smp_processor_id() ||
7236 		     !busiest_rq->active_balance))
7237 		goto out_unlock;
7238 
7239 	/* Is there any task to move? */
7240 	if (busiest_rq->nr_running <= 1)
7241 		goto out_unlock;
7242 
7243 	/*
7244 	 * This condition is "impossible", if it occurs
7245 	 * we need to fix it. Originally reported by
7246 	 * Bjorn Helgaas on a 128-cpu setup.
7247 	 */
7248 	BUG_ON(busiest_rq == target_rq);
7249 
7250 	/* Search for an sd spanning us and the target CPU. */
7251 	rcu_read_lock();
7252 	for_each_domain(target_cpu, sd) {
7253 		if ((sd->flags & SD_LOAD_BALANCE) &&
7254 		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7255 				break;
7256 	}
7257 
7258 	if (likely(sd)) {
7259 		struct lb_env env = {
7260 			.sd		= sd,
7261 			.dst_cpu	= target_cpu,
7262 			.dst_rq		= target_rq,
7263 			.src_cpu	= busiest_rq->cpu,
7264 			.src_rq		= busiest_rq,
7265 			.idle		= CPU_IDLE,
7266 		};
7267 
7268 		schedstat_inc(sd, alb_count);
7269 
7270 		p = detach_one_task(&env);
7271 		if (p)
7272 			schedstat_inc(sd, alb_pushed);
7273 		else
7274 			schedstat_inc(sd, alb_failed);
7275 	}
7276 	rcu_read_unlock();
7277 out_unlock:
7278 	busiest_rq->active_balance = 0;
7279 	raw_spin_unlock(&busiest_rq->lock);
7280 
7281 	if (p)
7282 		attach_one_task(target_rq, p);
7283 
7284 	local_irq_enable();
7285 
7286 	return 0;
7287 }
7288 
7289 static inline int on_null_domain(struct rq *rq)
7290 {
7291 	return unlikely(!rcu_dereference_sched(rq->sd));
7292 }
7293 
7294 #ifdef CONFIG_NO_HZ_COMMON
7295 /*
7296  * idle load balancing details
7297  * - When one of the busy CPUs notice that there may be an idle rebalancing
7298  *   needed, they will kick the idle load balancer, which then does idle
7299  *   load balancing for all the idle CPUs.
7300  */
7301 static struct {
7302 	cpumask_var_t idle_cpus_mask;
7303 	atomic_t nr_cpus;
7304 	unsigned long next_balance;     /* in jiffy units */
7305 } nohz ____cacheline_aligned;
7306 
7307 static inline int find_new_ilb(void)
7308 {
7309 	int ilb = cpumask_first(nohz.idle_cpus_mask);
7310 
7311 	if (ilb < nr_cpu_ids && idle_cpu(ilb))
7312 		return ilb;
7313 
7314 	return nr_cpu_ids;
7315 }
7316 
7317 /*
7318  * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7319  * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7320  * CPU (if there is one).
7321  */
7322 static void nohz_balancer_kick(void)
7323 {
7324 	int ilb_cpu;
7325 
7326 	nohz.next_balance++;
7327 
7328 	ilb_cpu = find_new_ilb();
7329 
7330 	if (ilb_cpu >= nr_cpu_ids)
7331 		return;
7332 
7333 	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
7334 		return;
7335 	/*
7336 	 * Use smp_send_reschedule() instead of resched_cpu().
7337 	 * This way we generate a sched IPI on the target cpu which
7338 	 * is idle. And the softirq performing nohz idle load balance
7339 	 * will be run before returning from the IPI.
7340 	 */
7341 	smp_send_reschedule(ilb_cpu);
7342 	return;
7343 }
7344 
7345 static inline void nohz_balance_exit_idle(int cpu)
7346 {
7347 	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
7348 		/*
7349 		 * Completely isolated CPUs don't ever set, so we must test.
7350 		 */
7351 		if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7352 			cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7353 			atomic_dec(&nohz.nr_cpus);
7354 		}
7355 		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7356 	}
7357 }
7358 
7359 static inline void set_cpu_sd_state_busy(void)
7360 {
7361 	struct sched_domain *sd;
7362 	int cpu = smp_processor_id();
7363 
7364 	rcu_read_lock();
7365 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7366 
7367 	if (!sd || !sd->nohz_idle)
7368 		goto unlock;
7369 	sd->nohz_idle = 0;
7370 
7371 	atomic_inc(&sd->groups->sgc->nr_busy_cpus);
7372 unlock:
7373 	rcu_read_unlock();
7374 }
7375 
7376 void set_cpu_sd_state_idle(void)
7377 {
7378 	struct sched_domain *sd;
7379 	int cpu = smp_processor_id();
7380 
7381 	rcu_read_lock();
7382 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7383 
7384 	if (!sd || sd->nohz_idle)
7385 		goto unlock;
7386 	sd->nohz_idle = 1;
7387 
7388 	atomic_dec(&sd->groups->sgc->nr_busy_cpus);
7389 unlock:
7390 	rcu_read_unlock();
7391 }
7392 
7393 /*
7394  * This routine will record that the cpu is going idle with tick stopped.
7395  * This info will be used in performing idle load balancing in the future.
7396  */
7397 void nohz_balance_enter_idle(int cpu)
7398 {
7399 	/*
7400 	 * If this cpu is going down, then nothing needs to be done.
7401 	 */
7402 	if (!cpu_active(cpu))
7403 		return;
7404 
7405 	if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
7406 		return;
7407 
7408 	/*
7409 	 * If we're a completely isolated CPU, we don't play.
7410 	 */
7411 	if (on_null_domain(cpu_rq(cpu)))
7412 		return;
7413 
7414 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
7415 	atomic_inc(&nohz.nr_cpus);
7416 	set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7417 }
7418 
7419 static int sched_ilb_notifier(struct notifier_block *nfb,
7420 					unsigned long action, void *hcpu)
7421 {
7422 	switch (action & ~CPU_TASKS_FROZEN) {
7423 	case CPU_DYING:
7424 		nohz_balance_exit_idle(smp_processor_id());
7425 		return NOTIFY_OK;
7426 	default:
7427 		return NOTIFY_DONE;
7428 	}
7429 }
7430 #endif
7431 
7432 static DEFINE_SPINLOCK(balancing);
7433 
7434 /*
7435  * Scale the max load_balance interval with the number of CPUs in the system.
7436  * This trades load-balance latency on larger machines for less cross talk.
7437  */
7438 void update_max_interval(void)
7439 {
7440 	max_load_balance_interval = HZ*num_online_cpus()/10;
7441 }
7442 
7443 /*
7444  * It checks each scheduling domain to see if it is due to be balanced,
7445  * and initiates a balancing operation if so.
7446  *
7447  * Balancing parameters are set up in init_sched_domains.
7448  */
7449 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
7450 {
7451 	int continue_balancing = 1;
7452 	int cpu = rq->cpu;
7453 	unsigned long interval;
7454 	struct sched_domain *sd;
7455 	/* Earliest time when we have to do rebalance again */
7456 	unsigned long next_balance = jiffies + 60*HZ;
7457 	int update_next_balance = 0;
7458 	int need_serialize, need_decay = 0;
7459 	u64 max_cost = 0;
7460 
7461 	update_blocked_averages(cpu);
7462 
7463 	rcu_read_lock();
7464 	for_each_domain(cpu, sd) {
7465 		/*
7466 		 * Decay the newidle max times here because this is a regular
7467 		 * visit to all the domains. Decay ~1% per second.
7468 		 */
7469 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
7470 			sd->max_newidle_lb_cost =
7471 				(sd->max_newidle_lb_cost * 253) / 256;
7472 			sd->next_decay_max_lb_cost = jiffies + HZ;
7473 			need_decay = 1;
7474 		}
7475 		max_cost += sd->max_newidle_lb_cost;
7476 
7477 		if (!(sd->flags & SD_LOAD_BALANCE))
7478 			continue;
7479 
7480 		/*
7481 		 * Stop the load balance at this level. There is another
7482 		 * CPU in our sched group which is doing load balancing more
7483 		 * actively.
7484 		 */
7485 		if (!continue_balancing) {
7486 			if (need_decay)
7487 				continue;
7488 			break;
7489 		}
7490 
7491 		interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7492 
7493 		need_serialize = sd->flags & SD_SERIALIZE;
7494 		if (need_serialize) {
7495 			if (!spin_trylock(&balancing))
7496 				goto out;
7497 		}
7498 
7499 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
7500 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
7501 				/*
7502 				 * The LBF_DST_PINNED logic could have changed
7503 				 * env->dst_cpu, so we can't know our idle
7504 				 * state even if we migrated tasks. Update it.
7505 				 */
7506 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
7507 			}
7508 			sd->last_balance = jiffies;
7509 			interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
7510 		}
7511 		if (need_serialize)
7512 			spin_unlock(&balancing);
7513 out:
7514 		if (time_after(next_balance, sd->last_balance + interval)) {
7515 			next_balance = sd->last_balance + interval;
7516 			update_next_balance = 1;
7517 		}
7518 	}
7519 	if (need_decay) {
7520 		/*
7521 		 * Ensure the rq-wide value also decays but keep it at a
7522 		 * reasonable floor to avoid funnies with rq->avg_idle.
7523 		 */
7524 		rq->max_idle_balance_cost =
7525 			max((u64)sysctl_sched_migration_cost, max_cost);
7526 	}
7527 	rcu_read_unlock();
7528 
7529 	/*
7530 	 * next_balance will be updated only when there is a need.
7531 	 * When the cpu is attached to null domain for ex, it will not be
7532 	 * updated.
7533 	 */
7534 	if (likely(update_next_balance))
7535 		rq->next_balance = next_balance;
7536 }
7537 
7538 #ifdef CONFIG_NO_HZ_COMMON
7539 /*
7540  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
7541  * rebalancing for all the cpus for whom scheduler ticks are stopped.
7542  */
7543 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
7544 {
7545 	int this_cpu = this_rq->cpu;
7546 	struct rq *rq;
7547 	int balance_cpu;
7548 
7549 	if (idle != CPU_IDLE ||
7550 	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
7551 		goto end;
7552 
7553 	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
7554 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
7555 			continue;
7556 
7557 		/*
7558 		 * If this cpu gets work to do, stop the load balancing
7559 		 * work being done for other cpus. Next load
7560 		 * balancing owner will pick it up.
7561 		 */
7562 		if (need_resched())
7563 			break;
7564 
7565 		rq = cpu_rq(balance_cpu);
7566 
7567 		/*
7568 		 * If time for next balance is due,
7569 		 * do the balance.
7570 		 */
7571 		if (time_after_eq(jiffies, rq->next_balance)) {
7572 			raw_spin_lock_irq(&rq->lock);
7573 			update_rq_clock(rq);
7574 			update_idle_cpu_load(rq);
7575 			raw_spin_unlock_irq(&rq->lock);
7576 			rebalance_domains(rq, CPU_IDLE);
7577 		}
7578 
7579 		if (time_after(this_rq->next_balance, rq->next_balance))
7580 			this_rq->next_balance = rq->next_balance;
7581 	}
7582 	nohz.next_balance = this_rq->next_balance;
7583 end:
7584 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
7585 }
7586 
7587 /*
7588  * Current heuristic for kicking the idle load balancer in the presence
7589  * of an idle cpu is the system.
7590  *   - This rq has more than one task.
7591  *   - At any scheduler domain level, this cpu's scheduler group has multiple
7592  *     busy cpu's exceeding the group's capacity.
7593  *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
7594  *     domain span are idle.
7595  */
7596 static inline int nohz_kick_needed(struct rq *rq)
7597 {
7598 	unsigned long now = jiffies;
7599 	struct sched_domain *sd;
7600 	struct sched_group_capacity *sgc;
7601 	int nr_busy, cpu = rq->cpu;
7602 
7603 	if (unlikely(rq->idle_balance))
7604 		return 0;
7605 
7606        /*
7607 	* We may be recently in ticked or tickless idle mode. At the first
7608 	* busy tick after returning from idle, we will update the busy stats.
7609 	*/
7610 	set_cpu_sd_state_busy();
7611 	nohz_balance_exit_idle(cpu);
7612 
7613 	/*
7614 	 * None are in tickless mode and hence no need for NOHZ idle load
7615 	 * balancing.
7616 	 */
7617 	if (likely(!atomic_read(&nohz.nr_cpus)))
7618 		return 0;
7619 
7620 	if (time_before(now, nohz.next_balance))
7621 		return 0;
7622 
7623 	if (rq->nr_running >= 2)
7624 		goto need_kick;
7625 
7626 	rcu_read_lock();
7627 	sd = rcu_dereference(per_cpu(sd_busy, cpu));
7628 
7629 	if (sd) {
7630 		sgc = sd->groups->sgc;
7631 		nr_busy = atomic_read(&sgc->nr_busy_cpus);
7632 
7633 		if (nr_busy > 1)
7634 			goto need_kick_unlock;
7635 	}
7636 
7637 	sd = rcu_dereference(per_cpu(sd_asym, cpu));
7638 
7639 	if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
7640 				  sched_domain_span(sd)) < cpu))
7641 		goto need_kick_unlock;
7642 
7643 	rcu_read_unlock();
7644 	return 0;
7645 
7646 need_kick_unlock:
7647 	rcu_read_unlock();
7648 need_kick:
7649 	return 1;
7650 }
7651 #else
7652 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
7653 #endif
7654 
7655 /*
7656  * run_rebalance_domains is triggered when needed from the scheduler tick.
7657  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
7658  */
7659 static void run_rebalance_domains(struct softirq_action *h)
7660 {
7661 	struct rq *this_rq = this_rq();
7662 	enum cpu_idle_type idle = this_rq->idle_balance ?
7663 						CPU_IDLE : CPU_NOT_IDLE;
7664 
7665 	rebalance_domains(this_rq, idle);
7666 
7667 	/*
7668 	 * If this cpu has a pending nohz_balance_kick, then do the
7669 	 * balancing on behalf of the other idle cpus whose ticks are
7670 	 * stopped.
7671 	 */
7672 	nohz_idle_balance(this_rq, idle);
7673 }
7674 
7675 /*
7676  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
7677  */
7678 void trigger_load_balance(struct rq *rq)
7679 {
7680 	/* Don't need to rebalance while attached to NULL domain */
7681 	if (unlikely(on_null_domain(rq)))
7682 		return;
7683 
7684 	if (time_after_eq(jiffies, rq->next_balance))
7685 		raise_softirq(SCHED_SOFTIRQ);
7686 #ifdef CONFIG_NO_HZ_COMMON
7687 	if (nohz_kick_needed(rq))
7688 		nohz_balancer_kick();
7689 #endif
7690 }
7691 
7692 static void rq_online_fair(struct rq *rq)
7693 {
7694 	update_sysctl();
7695 
7696 	update_runtime_enabled(rq);
7697 }
7698 
7699 static void rq_offline_fair(struct rq *rq)
7700 {
7701 	update_sysctl();
7702 
7703 	/* Ensure any throttled groups are reachable by pick_next_task */
7704 	unthrottle_offline_cfs_rqs(rq);
7705 }
7706 
7707 #endif /* CONFIG_SMP */
7708 
7709 /*
7710  * scheduler tick hitting a task of our scheduling class:
7711  */
7712 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
7713 {
7714 	struct cfs_rq *cfs_rq;
7715 	struct sched_entity *se = &curr->se;
7716 
7717 	for_each_sched_entity(se) {
7718 		cfs_rq = cfs_rq_of(se);
7719 		entity_tick(cfs_rq, se, queued);
7720 	}
7721 
7722 	if (numabalancing_enabled)
7723 		task_tick_numa(rq, curr);
7724 
7725 	update_rq_runnable_avg(rq, 1);
7726 }
7727 
7728 /*
7729  * called on fork with the child task as argument from the parent's context
7730  *  - child not yet on the tasklist
7731  *  - preemption disabled
7732  */
7733 static void task_fork_fair(struct task_struct *p)
7734 {
7735 	struct cfs_rq *cfs_rq;
7736 	struct sched_entity *se = &p->se, *curr;
7737 	int this_cpu = smp_processor_id();
7738 	struct rq *rq = this_rq();
7739 	unsigned long flags;
7740 
7741 	raw_spin_lock_irqsave(&rq->lock, flags);
7742 
7743 	update_rq_clock(rq);
7744 
7745 	cfs_rq = task_cfs_rq(current);
7746 	curr = cfs_rq->curr;
7747 
7748 	/*
7749 	 * Not only the cpu but also the task_group of the parent might have
7750 	 * been changed after parent->se.parent,cfs_rq were copied to
7751 	 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
7752 	 * of child point to valid ones.
7753 	 */
7754 	rcu_read_lock();
7755 	__set_task_cpu(p, this_cpu);
7756 	rcu_read_unlock();
7757 
7758 	update_curr(cfs_rq);
7759 
7760 	if (curr)
7761 		se->vruntime = curr->vruntime;
7762 	place_entity(cfs_rq, se, 1);
7763 
7764 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
7765 		/*
7766 		 * Upon rescheduling, sched_class::put_prev_task() will place
7767 		 * 'current' within the tree based on its new key value.
7768 		 */
7769 		swap(curr->vruntime, se->vruntime);
7770 		resched_curr(rq);
7771 	}
7772 
7773 	se->vruntime -= cfs_rq->min_vruntime;
7774 
7775 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7776 }
7777 
7778 /*
7779  * Priority of the task has changed. Check to see if we preempt
7780  * the current task.
7781  */
7782 static void
7783 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
7784 {
7785 	if (!task_on_rq_queued(p))
7786 		return;
7787 
7788 	/*
7789 	 * Reschedule if we are currently running on this runqueue and
7790 	 * our priority decreased, or if we are not currently running on
7791 	 * this runqueue and our priority is higher than the current's
7792 	 */
7793 	if (rq->curr == p) {
7794 		if (p->prio > oldprio)
7795 			resched_curr(rq);
7796 	} else
7797 		check_preempt_curr(rq, p, 0);
7798 }
7799 
7800 static void switched_from_fair(struct rq *rq, struct task_struct *p)
7801 {
7802 	struct sched_entity *se = &p->se;
7803 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
7804 
7805 	/*
7806 	 * Ensure the task's vruntime is normalized, so that when it's
7807 	 * switched back to the fair class the enqueue_entity(.flags=0) will
7808 	 * do the right thing.
7809 	 *
7810 	 * If it's queued, then the dequeue_entity(.flags=0) will already
7811 	 * have normalized the vruntime, if it's !queued, then only when
7812 	 * the task is sleeping will it still have non-normalized vruntime.
7813 	 */
7814 	if (!task_on_rq_queued(p) && p->state != TASK_RUNNING) {
7815 		/*
7816 		 * Fix up our vruntime so that the current sleep doesn't
7817 		 * cause 'unlimited' sleep bonus.
7818 		 */
7819 		place_entity(cfs_rq, se, 0);
7820 		se->vruntime -= cfs_rq->min_vruntime;
7821 	}
7822 
7823 #ifdef CONFIG_SMP
7824 	/*
7825 	* Remove our load from contribution when we leave sched_fair
7826 	* and ensure we don't carry in an old decay_count if we
7827 	* switch back.
7828 	*/
7829 	if (se->avg.decay_count) {
7830 		__synchronize_entity_decay(se);
7831 		subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
7832 	}
7833 #endif
7834 }
7835 
7836 /*
7837  * We switched to the sched_fair class.
7838  */
7839 static void switched_to_fair(struct rq *rq, struct task_struct *p)
7840 {
7841 #ifdef CONFIG_FAIR_GROUP_SCHED
7842 	struct sched_entity *se = &p->se;
7843 	/*
7844 	 * Since the real-depth could have been changed (only FAIR
7845 	 * class maintain depth value), reset depth properly.
7846 	 */
7847 	se->depth = se->parent ? se->parent->depth + 1 : 0;
7848 #endif
7849 	if (!task_on_rq_queued(p))
7850 		return;
7851 
7852 	/*
7853 	 * We were most likely switched from sched_rt, so
7854 	 * kick off the schedule if running, otherwise just see
7855 	 * if we can still preempt the current task.
7856 	 */
7857 	if (rq->curr == p)
7858 		resched_curr(rq);
7859 	else
7860 		check_preempt_curr(rq, p, 0);
7861 }
7862 
7863 /* Account for a task changing its policy or group.
7864  *
7865  * This routine is mostly called to set cfs_rq->curr field when a task
7866  * migrates between groups/classes.
7867  */
7868 static void set_curr_task_fair(struct rq *rq)
7869 {
7870 	struct sched_entity *se = &rq->curr->se;
7871 
7872 	for_each_sched_entity(se) {
7873 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7874 
7875 		set_next_entity(cfs_rq, se);
7876 		/* ensure bandwidth has been allocated on our new cfs_rq */
7877 		account_cfs_rq_runtime(cfs_rq, 0);
7878 	}
7879 }
7880 
7881 void init_cfs_rq(struct cfs_rq *cfs_rq)
7882 {
7883 	cfs_rq->tasks_timeline = RB_ROOT;
7884 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7885 #ifndef CONFIG_64BIT
7886 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7887 #endif
7888 #ifdef CONFIG_SMP
7889 	atomic64_set(&cfs_rq->decay_counter, 1);
7890 	atomic_long_set(&cfs_rq->removed_load, 0);
7891 #endif
7892 }
7893 
7894 #ifdef CONFIG_FAIR_GROUP_SCHED
7895 static void task_move_group_fair(struct task_struct *p, int queued)
7896 {
7897 	struct sched_entity *se = &p->se;
7898 	struct cfs_rq *cfs_rq;
7899 
7900 	/*
7901 	 * If the task was not on the rq at the time of this cgroup movement
7902 	 * it must have been asleep, sleeping tasks keep their ->vruntime
7903 	 * absolute on their old rq until wakeup (needed for the fair sleeper
7904 	 * bonus in place_entity()).
7905 	 *
7906 	 * If it was on the rq, we've just 'preempted' it, which does convert
7907 	 * ->vruntime to a relative base.
7908 	 *
7909 	 * Make sure both cases convert their relative position when migrating
7910 	 * to another cgroup's rq. This does somewhat interfere with the
7911 	 * fair sleeper stuff for the first placement, but who cares.
7912 	 */
7913 	/*
7914 	 * When !queued, vruntime of the task has usually NOT been normalized.
7915 	 * But there are some cases where it has already been normalized:
7916 	 *
7917 	 * - Moving a forked child which is waiting for being woken up by
7918 	 *   wake_up_new_task().
7919 	 * - Moving a task which has been woken up by try_to_wake_up() and
7920 	 *   waiting for actually being woken up by sched_ttwu_pending().
7921 	 *
7922 	 * To prevent boost or penalty in the new cfs_rq caused by delta
7923 	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7924 	 */
7925 	if (!queued && (!se->sum_exec_runtime || p->state == TASK_WAKING))
7926 		queued = 1;
7927 
7928 	if (!queued)
7929 		se->vruntime -= cfs_rq_of(se)->min_vruntime;
7930 	set_task_rq(p, task_cpu(p));
7931 	se->depth = se->parent ? se->parent->depth + 1 : 0;
7932 	if (!queued) {
7933 		cfs_rq = cfs_rq_of(se);
7934 		se->vruntime += cfs_rq->min_vruntime;
7935 #ifdef CONFIG_SMP
7936 		/*
7937 		 * migrate_task_rq_fair() will have removed our previous
7938 		 * contribution, but we must synchronize for ongoing future
7939 		 * decay.
7940 		 */
7941 		se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7942 		cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
7943 #endif
7944 	}
7945 }
7946 
7947 void free_fair_sched_group(struct task_group *tg)
7948 {
7949 	int i;
7950 
7951 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7952 
7953 	for_each_possible_cpu(i) {
7954 		if (tg->cfs_rq)
7955 			kfree(tg->cfs_rq[i]);
7956 		if (tg->se)
7957 			kfree(tg->se[i]);
7958 	}
7959 
7960 	kfree(tg->cfs_rq);
7961 	kfree(tg->se);
7962 }
7963 
7964 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7965 {
7966 	struct cfs_rq *cfs_rq;
7967 	struct sched_entity *se;
7968 	int i;
7969 
7970 	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7971 	if (!tg->cfs_rq)
7972 		goto err;
7973 	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7974 	if (!tg->se)
7975 		goto err;
7976 
7977 	tg->shares = NICE_0_LOAD;
7978 
7979 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7980 
7981 	for_each_possible_cpu(i) {
7982 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7983 				      GFP_KERNEL, cpu_to_node(i));
7984 		if (!cfs_rq)
7985 			goto err;
7986 
7987 		se = kzalloc_node(sizeof(struct sched_entity),
7988 				  GFP_KERNEL, cpu_to_node(i));
7989 		if (!se)
7990 			goto err_free_rq;
7991 
7992 		init_cfs_rq(cfs_rq);
7993 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7994 	}
7995 
7996 	return 1;
7997 
7998 err_free_rq:
7999 	kfree(cfs_rq);
8000 err:
8001 	return 0;
8002 }
8003 
8004 void unregister_fair_sched_group(struct task_group *tg, int cpu)
8005 {
8006 	struct rq *rq = cpu_rq(cpu);
8007 	unsigned long flags;
8008 
8009 	/*
8010 	* Only empty task groups can be destroyed; so we can speculatively
8011 	* check on_list without danger of it being re-added.
8012 	*/
8013 	if (!tg->cfs_rq[cpu]->on_list)
8014 		return;
8015 
8016 	raw_spin_lock_irqsave(&rq->lock, flags);
8017 	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8018 	raw_spin_unlock_irqrestore(&rq->lock, flags);
8019 }
8020 
8021 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8022 			struct sched_entity *se, int cpu,
8023 			struct sched_entity *parent)
8024 {
8025 	struct rq *rq = cpu_rq(cpu);
8026 
8027 	cfs_rq->tg = tg;
8028 	cfs_rq->rq = rq;
8029 	init_cfs_rq_runtime(cfs_rq);
8030 
8031 	tg->cfs_rq[cpu] = cfs_rq;
8032 	tg->se[cpu] = se;
8033 
8034 	/* se could be NULL for root_task_group */
8035 	if (!se)
8036 		return;
8037 
8038 	if (!parent) {
8039 		se->cfs_rq = &rq->cfs;
8040 		se->depth = 0;
8041 	} else {
8042 		se->cfs_rq = parent->my_q;
8043 		se->depth = parent->depth + 1;
8044 	}
8045 
8046 	se->my_q = cfs_rq;
8047 	/* guarantee group entities always have weight */
8048 	update_load_set(&se->load, NICE_0_LOAD);
8049 	se->parent = parent;
8050 }
8051 
8052 static DEFINE_MUTEX(shares_mutex);
8053 
8054 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8055 {
8056 	int i;
8057 	unsigned long flags;
8058 
8059 	/*
8060 	 * We can't change the weight of the root cgroup.
8061 	 */
8062 	if (!tg->se[0])
8063 		return -EINVAL;
8064 
8065 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8066 
8067 	mutex_lock(&shares_mutex);
8068 	if (tg->shares == shares)
8069 		goto done;
8070 
8071 	tg->shares = shares;
8072 	for_each_possible_cpu(i) {
8073 		struct rq *rq = cpu_rq(i);
8074 		struct sched_entity *se;
8075 
8076 		se = tg->se[i];
8077 		/* Propagate contribution to hierarchy */
8078 		raw_spin_lock_irqsave(&rq->lock, flags);
8079 
8080 		/* Possible calls to update_curr() need rq clock */
8081 		update_rq_clock(rq);
8082 		for_each_sched_entity(se)
8083 			update_cfs_shares(group_cfs_rq(se));
8084 		raw_spin_unlock_irqrestore(&rq->lock, flags);
8085 	}
8086 
8087 done:
8088 	mutex_unlock(&shares_mutex);
8089 	return 0;
8090 }
8091 #else /* CONFIG_FAIR_GROUP_SCHED */
8092 
8093 void free_fair_sched_group(struct task_group *tg) { }
8094 
8095 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8096 {
8097 	return 1;
8098 }
8099 
8100 void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
8101 
8102 #endif /* CONFIG_FAIR_GROUP_SCHED */
8103 
8104 
8105 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
8106 {
8107 	struct sched_entity *se = &task->se;
8108 	unsigned int rr_interval = 0;
8109 
8110 	/*
8111 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8112 	 * idle runqueue:
8113 	 */
8114 	if (rq->cfs.load.weight)
8115 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
8116 
8117 	return rr_interval;
8118 }
8119 
8120 /*
8121  * All the scheduling class methods:
8122  */
8123 const struct sched_class fair_sched_class = {
8124 	.next			= &idle_sched_class,
8125 	.enqueue_task		= enqueue_task_fair,
8126 	.dequeue_task		= dequeue_task_fair,
8127 	.yield_task		= yield_task_fair,
8128 	.yield_to_task		= yield_to_task_fair,
8129 
8130 	.check_preempt_curr	= check_preempt_wakeup,
8131 
8132 	.pick_next_task		= pick_next_task_fair,
8133 	.put_prev_task		= put_prev_task_fair,
8134 
8135 #ifdef CONFIG_SMP
8136 	.select_task_rq		= select_task_rq_fair,
8137 	.migrate_task_rq	= migrate_task_rq_fair,
8138 
8139 	.rq_online		= rq_online_fair,
8140 	.rq_offline		= rq_offline_fair,
8141 
8142 	.task_waking		= task_waking_fair,
8143 #endif
8144 
8145 	.set_curr_task          = set_curr_task_fair,
8146 	.task_tick		= task_tick_fair,
8147 	.task_fork		= task_fork_fair,
8148 
8149 	.prio_changed		= prio_changed_fair,
8150 	.switched_from		= switched_from_fair,
8151 	.switched_to		= switched_to_fair,
8152 
8153 	.get_rr_interval	= get_rr_interval_fair,
8154 
8155 	.update_curr		= update_curr_fair,
8156 
8157 #ifdef CONFIG_FAIR_GROUP_SCHED
8158 	.task_move_group	= task_move_group_fair,
8159 #endif
8160 };
8161 
8162 #ifdef CONFIG_SCHED_DEBUG
8163 void print_cfs_stats(struct seq_file *m, int cpu)
8164 {
8165 	struct cfs_rq *cfs_rq;
8166 
8167 	rcu_read_lock();
8168 	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
8169 		print_cfs_rq(m, cpu, cfs_rq);
8170 	rcu_read_unlock();
8171 }
8172 #endif
8173 
8174 __init void init_sched_fair_class(void)
8175 {
8176 #ifdef CONFIG_SMP
8177 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8178 
8179 #ifdef CONFIG_NO_HZ_COMMON
8180 	nohz.next_balance = jiffies;
8181 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8182 	cpu_notifier(sched_ilb_notifier, 0);
8183 #endif
8184 #endif /* SMP */
8185 
8186 }
8187