1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 4 * 5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 6 * 7 * Interactivity improvements by Mike Galbraith 8 * (C) 2007 Mike Galbraith <efault@gmx.de> 9 * 10 * Various enhancements by Dmitry Adamushko. 11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 12 * 13 * Group scheduling enhancements by Srivatsa Vaddagiri 14 * Copyright IBM Corporation, 2007 15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 16 * 17 * Scaled math optimizations by Thomas Gleixner 18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 19 * 20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 22 */ 23 #include <linux/energy_model.h> 24 #include <linux/mmap_lock.h> 25 #include <linux/hugetlb_inline.h> 26 #include <linux/jiffies.h> 27 #include <linux/mm_api.h> 28 #include <linux/highmem.h> 29 #include <linux/spinlock_api.h> 30 #include <linux/cpumask_api.h> 31 #include <linux/lockdep_api.h> 32 #include <linux/softirq.h> 33 #include <linux/refcount_api.h> 34 #include <linux/topology.h> 35 #include <linux/sched/clock.h> 36 #include <linux/sched/cond_resched.h> 37 #include <linux/sched/cputime.h> 38 #include <linux/sched/isolation.h> 39 #include <linux/sched/nohz.h> 40 41 #include <linux/cpuidle.h> 42 #include <linux/interrupt.h> 43 #include <linux/memory-tiers.h> 44 #include <linux/mempolicy.h> 45 #include <linux/mutex_api.h> 46 #include <linux/profile.h> 47 #include <linux/psi.h> 48 #include <linux/ratelimit.h> 49 #include <linux/task_work.h> 50 #include <linux/rbtree_augmented.h> 51 52 #include <asm/switch_to.h> 53 54 #include "sched.h" 55 #include "stats.h" 56 #include "autogroup.h" 57 58 /* 59 * The initial- and re-scaling of tunables is configurable 60 * 61 * Options are: 62 * 63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 64 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus) 65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 66 * 67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 68 */ 69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG; 70 71 /* 72 * Minimal preemption granularity for CPU-bound tasks: 73 * 74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 75 */ 76 unsigned int sysctl_sched_base_slice = 750000ULL; 77 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL; 78 79 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 80 81 static int __init setup_sched_thermal_decay_shift(char *str) 82 { 83 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n"); 84 return 1; 85 } 86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift); 87 88 #ifdef CONFIG_SMP 89 /* 90 * For asym packing, by default the lower numbered CPU has higher priority. 91 */ 92 int __weak arch_asym_cpu_priority(int cpu) 93 { 94 return -cpu; 95 } 96 97 /* 98 * The margin used when comparing utilization with CPU capacity. 99 * 100 * (default: ~20%) 101 */ 102 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024) 103 104 /* 105 * The margin used when comparing CPU capacities. 106 * is 'cap1' noticeably greater than 'cap2' 107 * 108 * (default: ~5%) 109 */ 110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078) 111 #endif 112 113 #ifdef CONFIG_CFS_BANDWIDTH 114 /* 115 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 116 * each time a cfs_rq requests quota. 117 * 118 * Note: in the case that the slice exceeds the runtime remaining (either due 119 * to consumption or the quota being specified to be smaller than the slice) 120 * we will always only issue the remaining available time. 121 * 122 * (default: 5 msec, units: microseconds) 123 */ 124 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 125 #endif 126 127 #ifdef CONFIG_NUMA_BALANCING 128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */ 129 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536; 130 #endif 131 132 #ifdef CONFIG_SYSCTL 133 static struct ctl_table sched_fair_sysctls[] = { 134 #ifdef CONFIG_CFS_BANDWIDTH 135 { 136 .procname = "sched_cfs_bandwidth_slice_us", 137 .data = &sysctl_sched_cfs_bandwidth_slice, 138 .maxlen = sizeof(unsigned int), 139 .mode = 0644, 140 .proc_handler = proc_dointvec_minmax, 141 .extra1 = SYSCTL_ONE, 142 }, 143 #endif 144 #ifdef CONFIG_NUMA_BALANCING 145 { 146 .procname = "numa_balancing_promote_rate_limit_MBps", 147 .data = &sysctl_numa_balancing_promote_rate_limit, 148 .maxlen = sizeof(unsigned int), 149 .mode = 0644, 150 .proc_handler = proc_dointvec_minmax, 151 .extra1 = SYSCTL_ZERO, 152 }, 153 #endif /* CONFIG_NUMA_BALANCING */ 154 }; 155 156 static int __init sched_fair_sysctl_init(void) 157 { 158 register_sysctl_init("kernel", sched_fair_sysctls); 159 return 0; 160 } 161 late_initcall(sched_fair_sysctl_init); 162 #endif 163 164 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 165 { 166 lw->weight += inc; 167 lw->inv_weight = 0; 168 } 169 170 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 171 { 172 lw->weight -= dec; 173 lw->inv_weight = 0; 174 } 175 176 static inline void update_load_set(struct load_weight *lw, unsigned long w) 177 { 178 lw->weight = w; 179 lw->inv_weight = 0; 180 } 181 182 /* 183 * Increase the granularity value when there are more CPUs, 184 * because with more CPUs the 'effective latency' as visible 185 * to users decreases. But the relationship is not linear, 186 * so pick a second-best guess by going with the log2 of the 187 * number of CPUs. 188 * 189 * This idea comes from the SD scheduler of Con Kolivas: 190 */ 191 static unsigned int get_update_sysctl_factor(void) 192 { 193 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 194 unsigned int factor; 195 196 switch (sysctl_sched_tunable_scaling) { 197 case SCHED_TUNABLESCALING_NONE: 198 factor = 1; 199 break; 200 case SCHED_TUNABLESCALING_LINEAR: 201 factor = cpus; 202 break; 203 case SCHED_TUNABLESCALING_LOG: 204 default: 205 factor = 1 + ilog2(cpus); 206 break; 207 } 208 209 return factor; 210 } 211 212 static void update_sysctl(void) 213 { 214 unsigned int factor = get_update_sysctl_factor(); 215 216 #define SET_SYSCTL(name) \ 217 (sysctl_##name = (factor) * normalized_sysctl_##name) 218 SET_SYSCTL(sched_base_slice); 219 #undef SET_SYSCTL 220 } 221 222 void __init sched_init_granularity(void) 223 { 224 update_sysctl(); 225 } 226 227 #define WMULT_CONST (~0U) 228 #define WMULT_SHIFT 32 229 230 static void __update_inv_weight(struct load_weight *lw) 231 { 232 unsigned long w; 233 234 if (likely(lw->inv_weight)) 235 return; 236 237 w = scale_load_down(lw->weight); 238 239 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 240 lw->inv_weight = 1; 241 else if (unlikely(!w)) 242 lw->inv_weight = WMULT_CONST; 243 else 244 lw->inv_weight = WMULT_CONST / w; 245 } 246 247 /* 248 * delta_exec * weight / lw.weight 249 * OR 250 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 251 * 252 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 253 * we're guaranteed shift stays positive because inv_weight is guaranteed to 254 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 255 * 256 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 257 * weight/lw.weight <= 1, and therefore our shift will also be positive. 258 */ 259 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 260 { 261 u64 fact = scale_load_down(weight); 262 u32 fact_hi = (u32)(fact >> 32); 263 int shift = WMULT_SHIFT; 264 int fs; 265 266 __update_inv_weight(lw); 267 268 if (unlikely(fact_hi)) { 269 fs = fls(fact_hi); 270 shift -= fs; 271 fact >>= fs; 272 } 273 274 fact = mul_u32_u32(fact, lw->inv_weight); 275 276 fact_hi = (u32)(fact >> 32); 277 if (fact_hi) { 278 fs = fls(fact_hi); 279 shift -= fs; 280 fact >>= fs; 281 } 282 283 return mul_u64_u32_shr(delta_exec, fact, shift); 284 } 285 286 /* 287 * delta /= w 288 */ 289 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 290 { 291 if (unlikely(se->load.weight != NICE_0_LOAD)) 292 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 293 294 return delta; 295 } 296 297 const struct sched_class fair_sched_class; 298 299 /************************************************************** 300 * CFS operations on generic schedulable entities: 301 */ 302 303 #ifdef CONFIG_FAIR_GROUP_SCHED 304 305 /* Walk up scheduling entities hierarchy */ 306 #define for_each_sched_entity(se) \ 307 for (; se; se = se->parent) 308 309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 310 { 311 struct rq *rq = rq_of(cfs_rq); 312 int cpu = cpu_of(rq); 313 314 if (cfs_rq->on_list) 315 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list; 316 317 cfs_rq->on_list = 1; 318 319 /* 320 * Ensure we either appear before our parent (if already 321 * enqueued) or force our parent to appear after us when it is 322 * enqueued. The fact that we always enqueue bottom-up 323 * reduces this to two cases and a special case for the root 324 * cfs_rq. Furthermore, it also means that we will always reset 325 * tmp_alone_branch either when the branch is connected 326 * to a tree or when we reach the top of the tree 327 */ 328 if (cfs_rq->tg->parent && 329 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) { 330 /* 331 * If parent is already on the list, we add the child 332 * just before. Thanks to circular linked property of 333 * the list, this means to put the child at the tail 334 * of the list that starts by parent. 335 */ 336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 337 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list)); 338 /* 339 * The branch is now connected to its tree so we can 340 * reset tmp_alone_branch to the beginning of the 341 * list. 342 */ 343 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 344 return true; 345 } 346 347 if (!cfs_rq->tg->parent) { 348 /* 349 * cfs rq without parent should be put 350 * at the tail of the list. 351 */ 352 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 353 &rq->leaf_cfs_rq_list); 354 /* 355 * We have reach the top of a tree so we can reset 356 * tmp_alone_branch to the beginning of the list. 357 */ 358 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 359 return true; 360 } 361 362 /* 363 * The parent has not already been added so we want to 364 * make sure that it will be put after us. 365 * tmp_alone_branch points to the begin of the branch 366 * where we will add parent. 367 */ 368 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch); 369 /* 370 * update tmp_alone_branch to points to the new begin 371 * of the branch 372 */ 373 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list; 374 return false; 375 } 376 377 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 378 { 379 if (cfs_rq->on_list) { 380 struct rq *rq = rq_of(cfs_rq); 381 382 /* 383 * With cfs_rq being unthrottled/throttled during an enqueue, 384 * it can happen the tmp_alone_branch points to the leaf that 385 * we finally want to delete. In this case, tmp_alone_branch moves 386 * to the prev element but it will point to rq->leaf_cfs_rq_list 387 * at the end of the enqueue. 388 */ 389 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list) 390 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev; 391 392 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 393 cfs_rq->on_list = 0; 394 } 395 } 396 397 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 398 { 399 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list); 400 } 401 402 /* Iterate through all leaf cfs_rq's on a runqueue */ 403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 404 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \ 405 leaf_cfs_rq_list) 406 407 /* Do the two (enqueued) entities belong to the same group ? */ 408 static inline struct cfs_rq * 409 is_same_group(struct sched_entity *se, struct sched_entity *pse) 410 { 411 if (se->cfs_rq == pse->cfs_rq) 412 return se->cfs_rq; 413 414 return NULL; 415 } 416 417 static inline struct sched_entity *parent_entity(const struct sched_entity *se) 418 { 419 return se->parent; 420 } 421 422 static void 423 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 424 { 425 int se_depth, pse_depth; 426 427 /* 428 * preemption test can be made between sibling entities who are in the 429 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 430 * both tasks until we find their ancestors who are siblings of common 431 * parent. 432 */ 433 434 /* First walk up until both entities are at same depth */ 435 se_depth = (*se)->depth; 436 pse_depth = (*pse)->depth; 437 438 while (se_depth > pse_depth) { 439 se_depth--; 440 *se = parent_entity(*se); 441 } 442 443 while (pse_depth > se_depth) { 444 pse_depth--; 445 *pse = parent_entity(*pse); 446 } 447 448 while (!is_same_group(*se, *pse)) { 449 *se = parent_entity(*se); 450 *pse = parent_entity(*pse); 451 } 452 } 453 454 static int tg_is_idle(struct task_group *tg) 455 { 456 return tg->idle > 0; 457 } 458 459 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 460 { 461 return cfs_rq->idle > 0; 462 } 463 464 static int se_is_idle(struct sched_entity *se) 465 { 466 if (entity_is_task(se)) 467 return task_has_idle_policy(task_of(se)); 468 return cfs_rq_is_idle(group_cfs_rq(se)); 469 } 470 471 #else /* !CONFIG_FAIR_GROUP_SCHED */ 472 473 #define for_each_sched_entity(se) \ 474 for (; se; se = NULL) 475 476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 477 { 478 return true; 479 } 480 481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 482 { 483 } 484 485 static inline void assert_list_leaf_cfs_rq(struct rq *rq) 486 { 487 } 488 489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \ 490 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos) 491 492 static inline struct sched_entity *parent_entity(struct sched_entity *se) 493 { 494 return NULL; 495 } 496 497 static inline void 498 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 499 { 500 } 501 502 static inline int tg_is_idle(struct task_group *tg) 503 { 504 return 0; 505 } 506 507 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq) 508 { 509 return 0; 510 } 511 512 static int se_is_idle(struct sched_entity *se) 513 { 514 return 0; 515 } 516 517 #endif /* CONFIG_FAIR_GROUP_SCHED */ 518 519 static __always_inline 520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 521 522 /************************************************************** 523 * Scheduling class tree data structure manipulation methods: 524 */ 525 526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 527 { 528 s64 delta = (s64)(vruntime - max_vruntime); 529 if (delta > 0) 530 max_vruntime = vruntime; 531 532 return max_vruntime; 533 } 534 535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 536 { 537 s64 delta = (s64)(vruntime - min_vruntime); 538 if (delta < 0) 539 min_vruntime = vruntime; 540 541 return min_vruntime; 542 } 543 544 static inline bool entity_before(const struct sched_entity *a, 545 const struct sched_entity *b) 546 { 547 /* 548 * Tiebreak on vruntime seems unnecessary since it can 549 * hardly happen. 550 */ 551 return (s64)(a->deadline - b->deadline) < 0; 552 } 553 554 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se) 555 { 556 return (s64)(se->vruntime - cfs_rq->min_vruntime); 557 } 558 559 #define __node_2_se(node) \ 560 rb_entry((node), struct sched_entity, run_node) 561 562 /* 563 * Compute virtual time from the per-task service numbers: 564 * 565 * Fair schedulers conserve lag: 566 * 567 * \Sum lag_i = 0 568 * 569 * Where lag_i is given by: 570 * 571 * lag_i = S - s_i = w_i * (V - v_i) 572 * 573 * Where S is the ideal service time and V is it's virtual time counterpart. 574 * Therefore: 575 * 576 * \Sum lag_i = 0 577 * \Sum w_i * (V - v_i) = 0 578 * \Sum w_i * V - w_i * v_i = 0 579 * 580 * From which we can solve an expression for V in v_i (which we have in 581 * se->vruntime): 582 * 583 * \Sum v_i * w_i \Sum v_i * w_i 584 * V = -------------- = -------------- 585 * \Sum w_i W 586 * 587 * Specifically, this is the weighted average of all entity virtual runtimes. 588 * 589 * [[ NOTE: this is only equal to the ideal scheduler under the condition 590 * that join/leave operations happen at lag_i = 0, otherwise the 591 * virtual time has non-contiguous motion equivalent to: 592 * 593 * V +-= lag_i / W 594 * 595 * Also see the comment in place_entity() that deals with this. ]] 596 * 597 * However, since v_i is u64, and the multiplication could easily overflow 598 * transform it into a relative form that uses smaller quantities: 599 * 600 * Substitute: v_i == (v_i - v0) + v0 601 * 602 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i 603 * V = ---------------------------- = --------------------- + v0 604 * W W 605 * 606 * Which we track using: 607 * 608 * v0 := cfs_rq->min_vruntime 609 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime 610 * \Sum w_i := cfs_rq->avg_load 611 * 612 * Since min_vruntime is a monotonic increasing variable that closely tracks 613 * the per-task service, these deltas: (v_i - v), will be in the order of the 614 * maximal (virtual) lag induced in the system due to quantisation. 615 * 616 * Also, we use scale_load_down() to reduce the size. 617 * 618 * As measured, the max (key * weight) value was ~44 bits for a kernel build. 619 */ 620 static void 621 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se) 622 { 623 unsigned long weight = scale_load_down(se->load.weight); 624 s64 key = entity_key(cfs_rq, se); 625 626 cfs_rq->avg_vruntime += key * weight; 627 cfs_rq->avg_load += weight; 628 } 629 630 static void 631 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se) 632 { 633 unsigned long weight = scale_load_down(se->load.weight); 634 s64 key = entity_key(cfs_rq, se); 635 636 cfs_rq->avg_vruntime -= key * weight; 637 cfs_rq->avg_load -= weight; 638 } 639 640 static inline 641 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta) 642 { 643 /* 644 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load 645 */ 646 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta; 647 } 648 649 /* 650 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true 651 * For this to be so, the result of this function must have a left bias. 652 */ 653 u64 avg_vruntime(struct cfs_rq *cfs_rq) 654 { 655 struct sched_entity *curr = cfs_rq->curr; 656 s64 avg = cfs_rq->avg_vruntime; 657 long load = cfs_rq->avg_load; 658 659 if (curr && curr->on_rq) { 660 unsigned long weight = scale_load_down(curr->load.weight); 661 662 avg += entity_key(cfs_rq, curr) * weight; 663 load += weight; 664 } 665 666 if (load) { 667 /* sign flips effective floor / ceiling */ 668 if (avg < 0) 669 avg -= (load - 1); 670 avg = div_s64(avg, load); 671 } 672 673 return cfs_rq->min_vruntime + avg; 674 } 675 676 /* 677 * lag_i = S - s_i = w_i * (V - v_i) 678 * 679 * However, since V is approximated by the weighted average of all entities it 680 * is possible -- by addition/removal/reweight to the tree -- to move V around 681 * and end up with a larger lag than we started with. 682 * 683 * Limit this to either double the slice length with a minimum of TICK_NSEC 684 * since that is the timing granularity. 685 * 686 * EEVDF gives the following limit for a steady state system: 687 * 688 * -r_max < lag < max(r_max, q) 689 * 690 * XXX could add max_slice to the augmented data to track this. 691 */ 692 static s64 entity_lag(u64 avruntime, struct sched_entity *se) 693 { 694 s64 vlag, limit; 695 696 vlag = avruntime - se->vruntime; 697 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se); 698 699 return clamp(vlag, -limit, limit); 700 } 701 702 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se) 703 { 704 SCHED_WARN_ON(!se->on_rq); 705 706 se->vlag = entity_lag(avg_vruntime(cfs_rq), se); 707 } 708 709 /* 710 * Entity is eligible once it received less service than it ought to have, 711 * eg. lag >= 0. 712 * 713 * lag_i = S - s_i = w_i*(V - v_i) 714 * 715 * lag_i >= 0 -> V >= v_i 716 * 717 * \Sum (v_i - v)*w_i 718 * V = ------------------ + v 719 * \Sum w_i 720 * 721 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i) 722 * 723 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due 724 * to the loss in precision caused by the division. 725 */ 726 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime) 727 { 728 struct sched_entity *curr = cfs_rq->curr; 729 s64 avg = cfs_rq->avg_vruntime; 730 long load = cfs_rq->avg_load; 731 732 if (curr && curr->on_rq) { 733 unsigned long weight = scale_load_down(curr->load.weight); 734 735 avg += entity_key(cfs_rq, curr) * weight; 736 load += weight; 737 } 738 739 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load; 740 } 741 742 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se) 743 { 744 return vruntime_eligible(cfs_rq, se->vruntime); 745 } 746 747 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime) 748 { 749 u64 min_vruntime = cfs_rq->min_vruntime; 750 /* 751 * open coded max_vruntime() to allow updating avg_vruntime 752 */ 753 s64 delta = (s64)(vruntime - min_vruntime); 754 if (delta > 0) { 755 avg_vruntime_update(cfs_rq, delta); 756 min_vruntime = vruntime; 757 } 758 return min_vruntime; 759 } 760 761 static void update_min_vruntime(struct cfs_rq *cfs_rq) 762 { 763 struct sched_entity *se = __pick_root_entity(cfs_rq); 764 struct sched_entity *curr = cfs_rq->curr; 765 u64 vruntime = cfs_rq->min_vruntime; 766 767 if (curr) { 768 if (curr->on_rq) 769 vruntime = curr->vruntime; 770 else 771 curr = NULL; 772 } 773 774 if (se) { 775 if (!curr) 776 vruntime = se->min_vruntime; 777 else 778 vruntime = min_vruntime(vruntime, se->min_vruntime); 779 } 780 781 /* ensure we never gain time by being placed backwards. */ 782 u64_u32_store(cfs_rq->min_vruntime, 783 __update_min_vruntime(cfs_rq, vruntime)); 784 } 785 786 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b) 787 { 788 return entity_before(__node_2_se(a), __node_2_se(b)); 789 } 790 791 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; }) 792 793 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node) 794 { 795 if (node) { 796 struct sched_entity *rse = __node_2_se(node); 797 if (vruntime_gt(min_vruntime, se, rse)) 798 se->min_vruntime = rse->min_vruntime; 799 } 800 } 801 802 /* 803 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime) 804 */ 805 static inline bool min_vruntime_update(struct sched_entity *se, bool exit) 806 { 807 u64 old_min_vruntime = se->min_vruntime; 808 struct rb_node *node = &se->run_node; 809 810 se->min_vruntime = se->vruntime; 811 __min_vruntime_update(se, node->rb_right); 812 __min_vruntime_update(se, node->rb_left); 813 814 return se->min_vruntime == old_min_vruntime; 815 } 816 817 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity, 818 run_node, min_vruntime, min_vruntime_update); 819 820 /* 821 * Enqueue an entity into the rb-tree: 822 */ 823 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 824 { 825 avg_vruntime_add(cfs_rq, se); 826 se->min_vruntime = se->vruntime; 827 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 828 __entity_less, &min_vruntime_cb); 829 } 830 831 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 832 { 833 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline, 834 &min_vruntime_cb); 835 avg_vruntime_sub(cfs_rq, se); 836 } 837 838 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq) 839 { 840 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node; 841 842 if (!root) 843 return NULL; 844 845 return __node_2_se(root); 846 } 847 848 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 849 { 850 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline); 851 852 if (!left) 853 return NULL; 854 855 return __node_2_se(left); 856 } 857 858 /* 859 * Earliest Eligible Virtual Deadline First 860 * 861 * In order to provide latency guarantees for different request sizes 862 * EEVDF selects the best runnable task from two criteria: 863 * 864 * 1) the task must be eligible (must be owed service) 865 * 866 * 2) from those tasks that meet 1), we select the one 867 * with the earliest virtual deadline. 868 * 869 * We can do this in O(log n) time due to an augmented RB-tree. The 870 * tree keeps the entries sorted on deadline, but also functions as a 871 * heap based on the vruntime by keeping: 872 * 873 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime) 874 * 875 * Which allows tree pruning through eligibility. 876 */ 877 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq) 878 { 879 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node; 880 struct sched_entity *se = __pick_first_entity(cfs_rq); 881 struct sched_entity *curr = cfs_rq->curr; 882 struct sched_entity *best = NULL; 883 884 /* 885 * We can safely skip eligibility check if there is only one entity 886 * in this cfs_rq, saving some cycles. 887 */ 888 if (cfs_rq->nr_running == 1) 889 return curr && curr->on_rq ? curr : se; 890 891 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr))) 892 curr = NULL; 893 894 /* 895 * Once selected, run a task until it either becomes non-eligible or 896 * until it gets a new slice. See the HACK in set_next_entity(). 897 */ 898 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline) 899 return curr; 900 901 /* Pick the leftmost entity if it's eligible */ 902 if (se && entity_eligible(cfs_rq, se)) { 903 best = se; 904 goto found; 905 } 906 907 /* Heap search for the EEVD entity */ 908 while (node) { 909 struct rb_node *left = node->rb_left; 910 911 /* 912 * Eligible entities in left subtree are always better 913 * choices, since they have earlier deadlines. 914 */ 915 if (left && vruntime_eligible(cfs_rq, 916 __node_2_se(left)->min_vruntime)) { 917 node = left; 918 continue; 919 } 920 921 se = __node_2_se(node); 922 923 /* 924 * The left subtree either is empty or has no eligible 925 * entity, so check the current node since it is the one 926 * with earliest deadline that might be eligible. 927 */ 928 if (entity_eligible(cfs_rq, se)) { 929 best = se; 930 break; 931 } 932 933 node = node->rb_right; 934 } 935 found: 936 if (!best || (curr && entity_before(curr, best))) 937 best = curr; 938 939 return best; 940 } 941 942 #ifdef CONFIG_SCHED_DEBUG 943 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 944 { 945 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root); 946 947 if (!last) 948 return NULL; 949 950 return __node_2_se(last); 951 } 952 953 /************************************************************** 954 * Scheduling class statistics methods: 955 */ 956 #ifdef CONFIG_SMP 957 int sched_update_scaling(void) 958 { 959 unsigned int factor = get_update_sysctl_factor(); 960 961 #define WRT_SYSCTL(name) \ 962 (normalized_sysctl_##name = sysctl_##name / (factor)) 963 WRT_SYSCTL(sched_base_slice); 964 #undef WRT_SYSCTL 965 966 return 0; 967 } 968 #endif 969 #endif 970 971 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se); 972 973 /* 974 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i 975 * this is probably good enough. 976 */ 977 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se) 978 { 979 if ((s64)(se->vruntime - se->deadline) < 0) 980 return; 981 982 /* 983 * For EEVDF the virtual time slope is determined by w_i (iow. 984 * nice) while the request time r_i is determined by 985 * sysctl_sched_base_slice. 986 */ 987 se->slice = sysctl_sched_base_slice; 988 989 /* 990 * EEVDF: vd_i = ve_i + r_i / w_i 991 */ 992 se->deadline = se->vruntime + calc_delta_fair(se->slice, se); 993 994 /* 995 * The task has consumed its request, reschedule. 996 */ 997 if (cfs_rq->nr_running > 1) { 998 resched_curr(rq_of(cfs_rq)); 999 clear_buddies(cfs_rq, se); 1000 } 1001 } 1002 1003 #include "pelt.h" 1004 #ifdef CONFIG_SMP 1005 1006 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu); 1007 static unsigned long task_h_load(struct task_struct *p); 1008 static unsigned long capacity_of(int cpu); 1009 1010 /* Give new sched_entity start runnable values to heavy its load in infant time */ 1011 void init_entity_runnable_average(struct sched_entity *se) 1012 { 1013 struct sched_avg *sa = &se->avg; 1014 1015 memset(sa, 0, sizeof(*sa)); 1016 1017 /* 1018 * Tasks are initialized with full load to be seen as heavy tasks until 1019 * they get a chance to stabilize to their real load level. 1020 * Group entities are initialized with zero load to reflect the fact that 1021 * nothing has been attached to the task group yet. 1022 */ 1023 if (entity_is_task(se)) 1024 sa->load_avg = scale_load_down(se->load.weight); 1025 1026 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */ 1027 } 1028 1029 /* 1030 * With new tasks being created, their initial util_avgs are extrapolated 1031 * based on the cfs_rq's current util_avg: 1032 * 1033 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1) 1034 * * se_weight(se) 1035 * 1036 * However, in many cases, the above util_avg does not give a desired 1037 * value. Moreover, the sum of the util_avgs may be divergent, such 1038 * as when the series is a harmonic series. 1039 * 1040 * To solve this problem, we also cap the util_avg of successive tasks to 1041 * only 1/2 of the left utilization budget: 1042 * 1043 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n 1044 * 1045 * where n denotes the nth task and cpu_scale the CPU capacity. 1046 * 1047 * For example, for a CPU with 1024 of capacity, a simplest series from 1048 * the beginning would be like: 1049 * 1050 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 1051 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 1052 * 1053 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 1054 * if util_avg > util_avg_cap. 1055 */ 1056 void post_init_entity_util_avg(struct task_struct *p) 1057 { 1058 struct sched_entity *se = &p->se; 1059 struct cfs_rq *cfs_rq = cfs_rq_of(se); 1060 struct sched_avg *sa = &se->avg; 1061 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))); 1062 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2; 1063 1064 if (p->sched_class != &fair_sched_class) { 1065 /* 1066 * For !fair tasks do: 1067 * 1068 update_cfs_rq_load_avg(now, cfs_rq); 1069 attach_entity_load_avg(cfs_rq, se); 1070 switched_from_fair(rq, p); 1071 * 1072 * such that the next switched_to_fair() has the 1073 * expected state. 1074 */ 1075 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq); 1076 return; 1077 } 1078 1079 if (cap > 0) { 1080 if (cfs_rq->avg.util_avg != 0) { 1081 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se); 1082 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 1083 1084 if (sa->util_avg > cap) 1085 sa->util_avg = cap; 1086 } else { 1087 sa->util_avg = cap; 1088 } 1089 } 1090 1091 sa->runnable_avg = sa->util_avg; 1092 } 1093 1094 #else /* !CONFIG_SMP */ 1095 void init_entity_runnable_average(struct sched_entity *se) 1096 { 1097 } 1098 void post_init_entity_util_avg(struct task_struct *p) 1099 { 1100 } 1101 static void update_tg_load_avg(struct cfs_rq *cfs_rq) 1102 { 1103 } 1104 #endif /* CONFIG_SMP */ 1105 1106 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr) 1107 { 1108 u64 now = rq_clock_task(rq); 1109 s64 delta_exec; 1110 1111 delta_exec = now - curr->exec_start; 1112 if (unlikely(delta_exec <= 0)) 1113 return delta_exec; 1114 1115 curr->exec_start = now; 1116 curr->sum_exec_runtime += delta_exec; 1117 1118 if (schedstat_enabled()) { 1119 struct sched_statistics *stats; 1120 1121 stats = __schedstats_from_se(curr); 1122 __schedstat_set(stats->exec_max, 1123 max(delta_exec, stats->exec_max)); 1124 } 1125 1126 return delta_exec; 1127 } 1128 1129 static inline void update_curr_task(struct task_struct *p, s64 delta_exec) 1130 { 1131 trace_sched_stat_runtime(p, delta_exec); 1132 account_group_exec_runtime(p, delta_exec); 1133 cgroup_account_cputime(p, delta_exec); 1134 if (p->dl_server) 1135 dl_server_update(p->dl_server, delta_exec); 1136 } 1137 1138 /* 1139 * Used by other classes to account runtime. 1140 */ 1141 s64 update_curr_common(struct rq *rq) 1142 { 1143 struct task_struct *curr = rq->curr; 1144 s64 delta_exec; 1145 1146 delta_exec = update_curr_se(rq, &curr->se); 1147 if (likely(delta_exec > 0)) 1148 update_curr_task(curr, delta_exec); 1149 1150 return delta_exec; 1151 } 1152 1153 /* 1154 * Update the current task's runtime statistics. 1155 */ 1156 static void update_curr(struct cfs_rq *cfs_rq) 1157 { 1158 struct sched_entity *curr = cfs_rq->curr; 1159 s64 delta_exec; 1160 1161 if (unlikely(!curr)) 1162 return; 1163 1164 delta_exec = update_curr_se(rq_of(cfs_rq), curr); 1165 if (unlikely(delta_exec <= 0)) 1166 return; 1167 1168 curr->vruntime += calc_delta_fair(delta_exec, curr); 1169 update_deadline(cfs_rq, curr); 1170 update_min_vruntime(cfs_rq); 1171 1172 if (entity_is_task(curr)) 1173 update_curr_task(task_of(curr), delta_exec); 1174 1175 account_cfs_rq_runtime(cfs_rq, delta_exec); 1176 } 1177 1178 static void update_curr_fair(struct rq *rq) 1179 { 1180 update_curr(cfs_rq_of(&rq->curr->se)); 1181 } 1182 1183 static inline void 1184 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1185 { 1186 struct sched_statistics *stats; 1187 struct task_struct *p = NULL; 1188 1189 if (!schedstat_enabled()) 1190 return; 1191 1192 stats = __schedstats_from_se(se); 1193 1194 if (entity_is_task(se)) 1195 p = task_of(se); 1196 1197 __update_stats_wait_start(rq_of(cfs_rq), p, stats); 1198 } 1199 1200 static inline void 1201 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1202 { 1203 struct sched_statistics *stats; 1204 struct task_struct *p = NULL; 1205 1206 if (!schedstat_enabled()) 1207 return; 1208 1209 stats = __schedstats_from_se(se); 1210 1211 /* 1212 * When the sched_schedstat changes from 0 to 1, some sched se 1213 * maybe already in the runqueue, the se->statistics.wait_start 1214 * will be 0.So it will let the delta wrong. We need to avoid this 1215 * scenario. 1216 */ 1217 if (unlikely(!schedstat_val(stats->wait_start))) 1218 return; 1219 1220 if (entity_is_task(se)) 1221 p = task_of(se); 1222 1223 __update_stats_wait_end(rq_of(cfs_rq), p, stats); 1224 } 1225 1226 static inline void 1227 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se) 1228 { 1229 struct sched_statistics *stats; 1230 struct task_struct *tsk = NULL; 1231 1232 if (!schedstat_enabled()) 1233 return; 1234 1235 stats = __schedstats_from_se(se); 1236 1237 if (entity_is_task(se)) 1238 tsk = task_of(se); 1239 1240 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats); 1241 } 1242 1243 /* 1244 * Task is being enqueued - update stats: 1245 */ 1246 static inline void 1247 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1248 { 1249 if (!schedstat_enabled()) 1250 return; 1251 1252 /* 1253 * Are we enqueueing a waiting task? (for current tasks 1254 * a dequeue/enqueue event is a NOP) 1255 */ 1256 if (se != cfs_rq->curr) 1257 update_stats_wait_start_fair(cfs_rq, se); 1258 1259 if (flags & ENQUEUE_WAKEUP) 1260 update_stats_enqueue_sleeper_fair(cfs_rq, se); 1261 } 1262 1263 static inline void 1264 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 1265 { 1266 1267 if (!schedstat_enabled()) 1268 return; 1269 1270 /* 1271 * Mark the end of the wait period if dequeueing a 1272 * waiting task: 1273 */ 1274 if (se != cfs_rq->curr) 1275 update_stats_wait_end_fair(cfs_rq, se); 1276 1277 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) { 1278 struct task_struct *tsk = task_of(se); 1279 unsigned int state; 1280 1281 /* XXX racy against TTWU */ 1282 state = READ_ONCE(tsk->__state); 1283 if (state & TASK_INTERRUPTIBLE) 1284 __schedstat_set(tsk->stats.sleep_start, 1285 rq_clock(rq_of(cfs_rq))); 1286 if (state & TASK_UNINTERRUPTIBLE) 1287 __schedstat_set(tsk->stats.block_start, 1288 rq_clock(rq_of(cfs_rq))); 1289 } 1290 } 1291 1292 /* 1293 * We are picking a new current task - update its stats: 1294 */ 1295 static inline void 1296 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 1297 { 1298 /* 1299 * We are starting a new run period: 1300 */ 1301 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 1302 } 1303 1304 /************************************************** 1305 * Scheduling class queueing methods: 1306 */ 1307 1308 static inline bool is_core_idle(int cpu) 1309 { 1310 #ifdef CONFIG_SCHED_SMT 1311 int sibling; 1312 1313 for_each_cpu(sibling, cpu_smt_mask(cpu)) { 1314 if (cpu == sibling) 1315 continue; 1316 1317 if (!idle_cpu(sibling)) 1318 return false; 1319 } 1320 #endif 1321 1322 return true; 1323 } 1324 1325 #ifdef CONFIG_NUMA 1326 #define NUMA_IMBALANCE_MIN 2 1327 1328 static inline long 1329 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr) 1330 { 1331 /* 1332 * Allow a NUMA imbalance if busy CPUs is less than the maximum 1333 * threshold. Above this threshold, individual tasks may be contending 1334 * for both memory bandwidth and any shared HT resources. This is an 1335 * approximation as the number of running tasks may not be related to 1336 * the number of busy CPUs due to sched_setaffinity. 1337 */ 1338 if (dst_running > imb_numa_nr) 1339 return imbalance; 1340 1341 /* 1342 * Allow a small imbalance based on a simple pair of communicating 1343 * tasks that remain local when the destination is lightly loaded. 1344 */ 1345 if (imbalance <= NUMA_IMBALANCE_MIN) 1346 return 0; 1347 1348 return imbalance; 1349 } 1350 #endif /* CONFIG_NUMA */ 1351 1352 #ifdef CONFIG_NUMA_BALANCING 1353 /* 1354 * Approximate time to scan a full NUMA task in ms. The task scan period is 1355 * calculated based on the tasks virtual memory size and 1356 * numa_balancing_scan_size. 1357 */ 1358 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 1359 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 1360 1361 /* Portion of address space to scan in MB */ 1362 unsigned int sysctl_numa_balancing_scan_size = 256; 1363 1364 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 1365 unsigned int sysctl_numa_balancing_scan_delay = 1000; 1366 1367 /* The page with hint page fault latency < threshold in ms is considered hot */ 1368 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC; 1369 1370 struct numa_group { 1371 refcount_t refcount; 1372 1373 spinlock_t lock; /* nr_tasks, tasks */ 1374 int nr_tasks; 1375 pid_t gid; 1376 int active_nodes; 1377 1378 struct rcu_head rcu; 1379 unsigned long total_faults; 1380 unsigned long max_faults_cpu; 1381 /* 1382 * faults[] array is split into two regions: faults_mem and faults_cpu. 1383 * 1384 * Faults_cpu is used to decide whether memory should move 1385 * towards the CPU. As a consequence, these stats are weighted 1386 * more by CPU use than by memory faults. 1387 */ 1388 unsigned long faults[]; 1389 }; 1390 1391 /* 1392 * For functions that can be called in multiple contexts that permit reading 1393 * ->numa_group (see struct task_struct for locking rules). 1394 */ 1395 static struct numa_group *deref_task_numa_group(struct task_struct *p) 1396 { 1397 return rcu_dereference_check(p->numa_group, p == current || 1398 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu))); 1399 } 1400 1401 static struct numa_group *deref_curr_numa_group(struct task_struct *p) 1402 { 1403 return rcu_dereference_protected(p->numa_group, p == current); 1404 } 1405 1406 static inline unsigned long group_faults_priv(struct numa_group *ng); 1407 static inline unsigned long group_faults_shared(struct numa_group *ng); 1408 1409 static unsigned int task_nr_scan_windows(struct task_struct *p) 1410 { 1411 unsigned long rss = 0; 1412 unsigned long nr_scan_pages; 1413 1414 /* 1415 * Calculations based on RSS as non-present and empty pages are skipped 1416 * by the PTE scanner and NUMA hinting faults should be trapped based 1417 * on resident pages 1418 */ 1419 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 1420 rss = get_mm_rss(p->mm); 1421 if (!rss) 1422 rss = nr_scan_pages; 1423 1424 rss = round_up(rss, nr_scan_pages); 1425 return rss / nr_scan_pages; 1426 } 1427 1428 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 1429 #define MAX_SCAN_WINDOW 2560 1430 1431 static unsigned int task_scan_min(struct task_struct *p) 1432 { 1433 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 1434 unsigned int scan, floor; 1435 unsigned int windows = 1; 1436 1437 if (scan_size < MAX_SCAN_WINDOW) 1438 windows = MAX_SCAN_WINDOW / scan_size; 1439 floor = 1000 / windows; 1440 1441 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 1442 return max_t(unsigned int, floor, scan); 1443 } 1444 1445 static unsigned int task_scan_start(struct task_struct *p) 1446 { 1447 unsigned long smin = task_scan_min(p); 1448 unsigned long period = smin; 1449 struct numa_group *ng; 1450 1451 /* Scale the maximum scan period with the amount of shared memory. */ 1452 rcu_read_lock(); 1453 ng = rcu_dereference(p->numa_group); 1454 if (ng) { 1455 unsigned long shared = group_faults_shared(ng); 1456 unsigned long private = group_faults_priv(ng); 1457 1458 period *= refcount_read(&ng->refcount); 1459 period *= shared + 1; 1460 period /= private + shared + 1; 1461 } 1462 rcu_read_unlock(); 1463 1464 return max(smin, period); 1465 } 1466 1467 static unsigned int task_scan_max(struct task_struct *p) 1468 { 1469 unsigned long smin = task_scan_min(p); 1470 unsigned long smax; 1471 struct numa_group *ng; 1472 1473 /* Watch for min being lower than max due to floor calculations */ 1474 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 1475 1476 /* Scale the maximum scan period with the amount of shared memory. */ 1477 ng = deref_curr_numa_group(p); 1478 if (ng) { 1479 unsigned long shared = group_faults_shared(ng); 1480 unsigned long private = group_faults_priv(ng); 1481 unsigned long period = smax; 1482 1483 period *= refcount_read(&ng->refcount); 1484 period *= shared + 1; 1485 period /= private + shared + 1; 1486 1487 smax = max(smax, period); 1488 } 1489 1490 return max(smin, smax); 1491 } 1492 1493 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 1494 { 1495 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE); 1496 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 1497 } 1498 1499 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 1500 { 1501 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE); 1502 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 1503 } 1504 1505 /* Shared or private faults. */ 1506 #define NR_NUMA_HINT_FAULT_TYPES 2 1507 1508 /* Memory and CPU locality */ 1509 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1510 1511 /* Averaged statistics, and temporary buffers. */ 1512 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1513 1514 pid_t task_numa_group_id(struct task_struct *p) 1515 { 1516 struct numa_group *ng; 1517 pid_t gid = 0; 1518 1519 rcu_read_lock(); 1520 ng = rcu_dereference(p->numa_group); 1521 if (ng) 1522 gid = ng->gid; 1523 rcu_read_unlock(); 1524 1525 return gid; 1526 } 1527 1528 /* 1529 * The averaged statistics, shared & private, memory & CPU, 1530 * occupy the first half of the array. The second half of the 1531 * array is for current counters, which are averaged into the 1532 * first set by task_numa_placement. 1533 */ 1534 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1535 { 1536 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1537 } 1538 1539 static inline unsigned long task_faults(struct task_struct *p, int nid) 1540 { 1541 if (!p->numa_faults) 1542 return 0; 1543 1544 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1545 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1546 } 1547 1548 static inline unsigned long group_faults(struct task_struct *p, int nid) 1549 { 1550 struct numa_group *ng = deref_task_numa_group(p); 1551 1552 if (!ng) 1553 return 0; 1554 1555 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1556 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1557 } 1558 1559 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1560 { 1561 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] + 1562 group->faults[task_faults_idx(NUMA_CPU, nid, 1)]; 1563 } 1564 1565 static inline unsigned long group_faults_priv(struct numa_group *ng) 1566 { 1567 unsigned long faults = 0; 1568 int node; 1569 1570 for_each_online_node(node) { 1571 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 1572 } 1573 1574 return faults; 1575 } 1576 1577 static inline unsigned long group_faults_shared(struct numa_group *ng) 1578 { 1579 unsigned long faults = 0; 1580 int node; 1581 1582 for_each_online_node(node) { 1583 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)]; 1584 } 1585 1586 return faults; 1587 } 1588 1589 /* 1590 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1591 * considered part of a numa group's pseudo-interleaving set. Migrations 1592 * between these nodes are slowed down, to allow things to settle down. 1593 */ 1594 #define ACTIVE_NODE_FRACTION 3 1595 1596 static bool numa_is_active_node(int nid, struct numa_group *ng) 1597 { 1598 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1599 } 1600 1601 /* Handle placement on systems where not all nodes are directly connected. */ 1602 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1603 int lim_dist, bool task) 1604 { 1605 unsigned long score = 0; 1606 int node, max_dist; 1607 1608 /* 1609 * All nodes are directly connected, and the same distance 1610 * from each other. No need for fancy placement algorithms. 1611 */ 1612 if (sched_numa_topology_type == NUMA_DIRECT) 1613 return 0; 1614 1615 /* sched_max_numa_distance may be changed in parallel. */ 1616 max_dist = READ_ONCE(sched_max_numa_distance); 1617 /* 1618 * This code is called for each node, introducing N^2 complexity, 1619 * which should be OK given the number of nodes rarely exceeds 8. 1620 */ 1621 for_each_online_node(node) { 1622 unsigned long faults; 1623 int dist = node_distance(nid, node); 1624 1625 /* 1626 * The furthest away nodes in the system are not interesting 1627 * for placement; nid was already counted. 1628 */ 1629 if (dist >= max_dist || node == nid) 1630 continue; 1631 1632 /* 1633 * On systems with a backplane NUMA topology, compare groups 1634 * of nodes, and move tasks towards the group with the most 1635 * memory accesses. When comparing two nodes at distance 1636 * "hoplimit", only nodes closer by than "hoplimit" are part 1637 * of each group. Skip other nodes. 1638 */ 1639 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist) 1640 continue; 1641 1642 /* Add up the faults from nearby nodes. */ 1643 if (task) 1644 faults = task_faults(p, node); 1645 else 1646 faults = group_faults(p, node); 1647 1648 /* 1649 * On systems with a glueless mesh NUMA topology, there are 1650 * no fixed "groups of nodes". Instead, nodes that are not 1651 * directly connected bounce traffic through intermediate 1652 * nodes; a numa_group can occupy any set of nodes. 1653 * The further away a node is, the less the faults count. 1654 * This seems to result in good task placement. 1655 */ 1656 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1657 faults *= (max_dist - dist); 1658 faults /= (max_dist - LOCAL_DISTANCE); 1659 } 1660 1661 score += faults; 1662 } 1663 1664 return score; 1665 } 1666 1667 /* 1668 * These return the fraction of accesses done by a particular task, or 1669 * task group, on a particular numa node. The group weight is given a 1670 * larger multiplier, in order to group tasks together that are almost 1671 * evenly spread out between numa nodes. 1672 */ 1673 static inline unsigned long task_weight(struct task_struct *p, int nid, 1674 int dist) 1675 { 1676 unsigned long faults, total_faults; 1677 1678 if (!p->numa_faults) 1679 return 0; 1680 1681 total_faults = p->total_numa_faults; 1682 1683 if (!total_faults) 1684 return 0; 1685 1686 faults = task_faults(p, nid); 1687 faults += score_nearby_nodes(p, nid, dist, true); 1688 1689 return 1000 * faults / total_faults; 1690 } 1691 1692 static inline unsigned long group_weight(struct task_struct *p, int nid, 1693 int dist) 1694 { 1695 struct numa_group *ng = deref_task_numa_group(p); 1696 unsigned long faults, total_faults; 1697 1698 if (!ng) 1699 return 0; 1700 1701 total_faults = ng->total_faults; 1702 1703 if (!total_faults) 1704 return 0; 1705 1706 faults = group_faults(p, nid); 1707 faults += score_nearby_nodes(p, nid, dist, false); 1708 1709 return 1000 * faults / total_faults; 1710 } 1711 1712 /* 1713 * If memory tiering mode is enabled, cpupid of slow memory page is 1714 * used to record scan time instead of CPU and PID. When tiering mode 1715 * is disabled at run time, the scan time (in cpupid) will be 1716 * interpreted as CPU and PID. So CPU needs to be checked to avoid to 1717 * access out of array bound. 1718 */ 1719 static inline bool cpupid_valid(int cpupid) 1720 { 1721 return cpupid_to_cpu(cpupid) < nr_cpu_ids; 1722 } 1723 1724 /* 1725 * For memory tiering mode, if there are enough free pages (more than 1726 * enough watermark defined here) in fast memory node, to take full 1727 * advantage of fast memory capacity, all recently accessed slow 1728 * memory pages will be migrated to fast memory node without 1729 * considering hot threshold. 1730 */ 1731 static bool pgdat_free_space_enough(struct pglist_data *pgdat) 1732 { 1733 int z; 1734 unsigned long enough_wmark; 1735 1736 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT, 1737 pgdat->node_present_pages >> 4); 1738 for (z = pgdat->nr_zones - 1; z >= 0; z--) { 1739 struct zone *zone = pgdat->node_zones + z; 1740 1741 if (!populated_zone(zone)) 1742 continue; 1743 1744 if (zone_watermark_ok(zone, 0, 1745 wmark_pages(zone, WMARK_PROMO) + enough_wmark, 1746 ZONE_MOVABLE, 0)) 1747 return true; 1748 } 1749 return false; 1750 } 1751 1752 /* 1753 * For memory tiering mode, when page tables are scanned, the scan 1754 * time will be recorded in struct page in addition to make page 1755 * PROT_NONE for slow memory page. So when the page is accessed, in 1756 * hint page fault handler, the hint page fault latency is calculated 1757 * via, 1758 * 1759 * hint page fault latency = hint page fault time - scan time 1760 * 1761 * The smaller the hint page fault latency, the higher the possibility 1762 * for the page to be hot. 1763 */ 1764 static int numa_hint_fault_latency(struct folio *folio) 1765 { 1766 int last_time, time; 1767 1768 time = jiffies_to_msecs(jiffies); 1769 last_time = folio_xchg_access_time(folio, time); 1770 1771 return (time - last_time) & PAGE_ACCESS_TIME_MASK; 1772 } 1773 1774 /* 1775 * For memory tiering mode, too high promotion/demotion throughput may 1776 * hurt application latency. So we provide a mechanism to rate limit 1777 * the number of pages that are tried to be promoted. 1778 */ 1779 static bool numa_promotion_rate_limit(struct pglist_data *pgdat, 1780 unsigned long rate_limit, int nr) 1781 { 1782 unsigned long nr_cand; 1783 unsigned int now, start; 1784 1785 now = jiffies_to_msecs(jiffies); 1786 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr); 1787 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1788 start = pgdat->nbp_rl_start; 1789 if (now - start > MSEC_PER_SEC && 1790 cmpxchg(&pgdat->nbp_rl_start, start, now) == start) 1791 pgdat->nbp_rl_nr_cand = nr_cand; 1792 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit) 1793 return true; 1794 return false; 1795 } 1796 1797 #define NUMA_MIGRATION_ADJUST_STEPS 16 1798 1799 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat, 1800 unsigned long rate_limit, 1801 unsigned int ref_th) 1802 { 1803 unsigned int now, start, th_period, unit_th, th; 1804 unsigned long nr_cand, ref_cand, diff_cand; 1805 1806 now = jiffies_to_msecs(jiffies); 1807 th_period = sysctl_numa_balancing_scan_period_max; 1808 start = pgdat->nbp_th_start; 1809 if (now - start > th_period && 1810 cmpxchg(&pgdat->nbp_th_start, start, now) == start) { 1811 ref_cand = rate_limit * 1812 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC; 1813 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 1814 diff_cand = nr_cand - pgdat->nbp_th_nr_cand; 1815 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS; 1816 th = pgdat->nbp_threshold ? : ref_th; 1817 if (diff_cand > ref_cand * 11 / 10) 1818 th = max(th - unit_th, unit_th); 1819 else if (diff_cand < ref_cand * 9 / 10) 1820 th = min(th + unit_th, ref_th * 2); 1821 pgdat->nbp_th_nr_cand = nr_cand; 1822 pgdat->nbp_threshold = th; 1823 } 1824 } 1825 1826 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio, 1827 int src_nid, int dst_cpu) 1828 { 1829 struct numa_group *ng = deref_curr_numa_group(p); 1830 int dst_nid = cpu_to_node(dst_cpu); 1831 int last_cpupid, this_cpupid; 1832 1833 /* 1834 * Cannot migrate to memoryless nodes. 1835 */ 1836 if (!node_state(dst_nid, N_MEMORY)) 1837 return false; 1838 1839 /* 1840 * The pages in slow memory node should be migrated according 1841 * to hot/cold instead of private/shared. 1842 */ 1843 if (folio_use_access_time(folio)) { 1844 struct pglist_data *pgdat; 1845 unsigned long rate_limit; 1846 unsigned int latency, th, def_th; 1847 1848 pgdat = NODE_DATA(dst_nid); 1849 if (pgdat_free_space_enough(pgdat)) { 1850 /* workload changed, reset hot threshold */ 1851 pgdat->nbp_threshold = 0; 1852 return true; 1853 } 1854 1855 def_th = sysctl_numa_balancing_hot_threshold; 1856 rate_limit = sysctl_numa_balancing_promote_rate_limit << \ 1857 (20 - PAGE_SHIFT); 1858 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th); 1859 1860 th = pgdat->nbp_threshold ? : def_th; 1861 latency = numa_hint_fault_latency(folio); 1862 if (latency >= th) 1863 return false; 1864 1865 return !numa_promotion_rate_limit(pgdat, rate_limit, 1866 folio_nr_pages(folio)); 1867 } 1868 1869 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1870 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid); 1871 1872 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 1873 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid)) 1874 return false; 1875 1876 /* 1877 * Allow first faults or private faults to migrate immediately early in 1878 * the lifetime of a task. The magic number 4 is based on waiting for 1879 * two full passes of the "multi-stage node selection" test that is 1880 * executed below. 1881 */ 1882 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) && 1883 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid))) 1884 return true; 1885 1886 /* 1887 * Multi-stage node selection is used in conjunction with a periodic 1888 * migration fault to build a temporal task<->page relation. By using 1889 * a two-stage filter we remove short/unlikely relations. 1890 * 1891 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1892 * a task's usage of a particular page (n_p) per total usage of this 1893 * page (n_t) (in a given time-span) to a probability. 1894 * 1895 * Our periodic faults will sample this probability and getting the 1896 * same result twice in a row, given these samples are fully 1897 * independent, is then given by P(n)^2, provided our sample period 1898 * is sufficiently short compared to the usage pattern. 1899 * 1900 * This quadric squishes small probabilities, making it less likely we 1901 * act on an unlikely task<->page relation. 1902 */ 1903 if (!cpupid_pid_unset(last_cpupid) && 1904 cpupid_to_nid(last_cpupid) != dst_nid) 1905 return false; 1906 1907 /* Always allow migrate on private faults */ 1908 if (cpupid_match_pid(p, last_cpupid)) 1909 return true; 1910 1911 /* A shared fault, but p->numa_group has not been set up yet. */ 1912 if (!ng) 1913 return true; 1914 1915 /* 1916 * Destination node is much more heavily used than the source 1917 * node? Allow migration. 1918 */ 1919 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1920 ACTIVE_NODE_FRACTION) 1921 return true; 1922 1923 /* 1924 * Distribute memory according to CPU & memory use on each node, 1925 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1926 * 1927 * faults_cpu(dst) 3 faults_cpu(src) 1928 * --------------- * - > --------------- 1929 * faults_mem(dst) 4 faults_mem(src) 1930 */ 1931 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1932 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1933 } 1934 1935 /* 1936 * 'numa_type' describes the node at the moment of load balancing. 1937 */ 1938 enum numa_type { 1939 /* The node has spare capacity that can be used to run more tasks. */ 1940 node_has_spare = 0, 1941 /* 1942 * The node is fully used and the tasks don't compete for more CPU 1943 * cycles. Nevertheless, some tasks might wait before running. 1944 */ 1945 node_fully_busy, 1946 /* 1947 * The node is overloaded and can't provide expected CPU cycles to all 1948 * tasks. 1949 */ 1950 node_overloaded 1951 }; 1952 1953 /* Cached statistics for all CPUs within a node */ 1954 struct numa_stats { 1955 unsigned long load; 1956 unsigned long runnable; 1957 unsigned long util; 1958 /* Total compute capacity of CPUs on a node */ 1959 unsigned long compute_capacity; 1960 unsigned int nr_running; 1961 unsigned int weight; 1962 enum numa_type node_type; 1963 int idle_cpu; 1964 }; 1965 1966 struct task_numa_env { 1967 struct task_struct *p; 1968 1969 int src_cpu, src_nid; 1970 int dst_cpu, dst_nid; 1971 int imb_numa_nr; 1972 1973 struct numa_stats src_stats, dst_stats; 1974 1975 int imbalance_pct; 1976 int dist; 1977 1978 struct task_struct *best_task; 1979 long best_imp; 1980 int best_cpu; 1981 }; 1982 1983 static unsigned long cpu_load(struct rq *rq); 1984 static unsigned long cpu_runnable(struct rq *rq); 1985 1986 static inline enum 1987 numa_type numa_classify(unsigned int imbalance_pct, 1988 struct numa_stats *ns) 1989 { 1990 if ((ns->nr_running > ns->weight) && 1991 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) || 1992 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100)))) 1993 return node_overloaded; 1994 1995 if ((ns->nr_running < ns->weight) || 1996 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) && 1997 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100)))) 1998 return node_has_spare; 1999 2000 return node_fully_busy; 2001 } 2002 2003 #ifdef CONFIG_SCHED_SMT 2004 /* Forward declarations of select_idle_sibling helpers */ 2005 static inline bool test_idle_cores(int cpu); 2006 static inline int numa_idle_core(int idle_core, int cpu) 2007 { 2008 if (!static_branch_likely(&sched_smt_present) || 2009 idle_core >= 0 || !test_idle_cores(cpu)) 2010 return idle_core; 2011 2012 /* 2013 * Prefer cores instead of packing HT siblings 2014 * and triggering future load balancing. 2015 */ 2016 if (is_core_idle(cpu)) 2017 idle_core = cpu; 2018 2019 return idle_core; 2020 } 2021 #else 2022 static inline int numa_idle_core(int idle_core, int cpu) 2023 { 2024 return idle_core; 2025 } 2026 #endif 2027 2028 /* 2029 * Gather all necessary information to make NUMA balancing placement 2030 * decisions that are compatible with standard load balancer. This 2031 * borrows code and logic from update_sg_lb_stats but sharing a 2032 * common implementation is impractical. 2033 */ 2034 static void update_numa_stats(struct task_numa_env *env, 2035 struct numa_stats *ns, int nid, 2036 bool find_idle) 2037 { 2038 int cpu, idle_core = -1; 2039 2040 memset(ns, 0, sizeof(*ns)); 2041 ns->idle_cpu = -1; 2042 2043 rcu_read_lock(); 2044 for_each_cpu(cpu, cpumask_of_node(nid)) { 2045 struct rq *rq = cpu_rq(cpu); 2046 2047 ns->load += cpu_load(rq); 2048 ns->runnable += cpu_runnable(rq); 2049 ns->util += cpu_util_cfs(cpu); 2050 ns->nr_running += rq->cfs.h_nr_running; 2051 ns->compute_capacity += capacity_of(cpu); 2052 2053 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) { 2054 if (READ_ONCE(rq->numa_migrate_on) || 2055 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2056 continue; 2057 2058 if (ns->idle_cpu == -1) 2059 ns->idle_cpu = cpu; 2060 2061 idle_core = numa_idle_core(idle_core, cpu); 2062 } 2063 } 2064 rcu_read_unlock(); 2065 2066 ns->weight = cpumask_weight(cpumask_of_node(nid)); 2067 2068 ns->node_type = numa_classify(env->imbalance_pct, ns); 2069 2070 if (idle_core >= 0) 2071 ns->idle_cpu = idle_core; 2072 } 2073 2074 static void task_numa_assign(struct task_numa_env *env, 2075 struct task_struct *p, long imp) 2076 { 2077 struct rq *rq = cpu_rq(env->dst_cpu); 2078 2079 /* Check if run-queue part of active NUMA balance. */ 2080 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) { 2081 int cpu; 2082 int start = env->dst_cpu; 2083 2084 /* Find alternative idle CPU. */ 2085 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) { 2086 if (cpu == env->best_cpu || !idle_cpu(cpu) || 2087 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) { 2088 continue; 2089 } 2090 2091 env->dst_cpu = cpu; 2092 rq = cpu_rq(env->dst_cpu); 2093 if (!xchg(&rq->numa_migrate_on, 1)) 2094 goto assign; 2095 } 2096 2097 /* Failed to find an alternative idle CPU */ 2098 return; 2099 } 2100 2101 assign: 2102 /* 2103 * Clear previous best_cpu/rq numa-migrate flag, since task now 2104 * found a better CPU to move/swap. 2105 */ 2106 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) { 2107 rq = cpu_rq(env->best_cpu); 2108 WRITE_ONCE(rq->numa_migrate_on, 0); 2109 } 2110 2111 if (env->best_task) 2112 put_task_struct(env->best_task); 2113 if (p) 2114 get_task_struct(p); 2115 2116 env->best_task = p; 2117 env->best_imp = imp; 2118 env->best_cpu = env->dst_cpu; 2119 } 2120 2121 static bool load_too_imbalanced(long src_load, long dst_load, 2122 struct task_numa_env *env) 2123 { 2124 long imb, old_imb; 2125 long orig_src_load, orig_dst_load; 2126 long src_capacity, dst_capacity; 2127 2128 /* 2129 * The load is corrected for the CPU capacity available on each node. 2130 * 2131 * src_load dst_load 2132 * ------------ vs --------- 2133 * src_capacity dst_capacity 2134 */ 2135 src_capacity = env->src_stats.compute_capacity; 2136 dst_capacity = env->dst_stats.compute_capacity; 2137 2138 imb = abs(dst_load * src_capacity - src_load * dst_capacity); 2139 2140 orig_src_load = env->src_stats.load; 2141 orig_dst_load = env->dst_stats.load; 2142 2143 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity); 2144 2145 /* Would this change make things worse? */ 2146 return (imb > old_imb); 2147 } 2148 2149 /* 2150 * Maximum NUMA importance can be 1998 (2*999); 2151 * SMALLIMP @ 30 would be close to 1998/64. 2152 * Used to deter task migration. 2153 */ 2154 #define SMALLIMP 30 2155 2156 /* 2157 * This checks if the overall compute and NUMA accesses of the system would 2158 * be improved if the source tasks was migrated to the target dst_cpu taking 2159 * into account that it might be best if task running on the dst_cpu should 2160 * be exchanged with the source task 2161 */ 2162 static bool task_numa_compare(struct task_numa_env *env, 2163 long taskimp, long groupimp, bool maymove) 2164 { 2165 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p); 2166 struct rq *dst_rq = cpu_rq(env->dst_cpu); 2167 long imp = p_ng ? groupimp : taskimp; 2168 struct task_struct *cur; 2169 long src_load, dst_load; 2170 int dist = env->dist; 2171 long moveimp = imp; 2172 long load; 2173 bool stopsearch = false; 2174 2175 if (READ_ONCE(dst_rq->numa_migrate_on)) 2176 return false; 2177 2178 rcu_read_lock(); 2179 cur = rcu_dereference(dst_rq->curr); 2180 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur))) 2181 cur = NULL; 2182 2183 /* 2184 * Because we have preemption enabled we can get migrated around and 2185 * end try selecting ourselves (current == env->p) as a swap candidate. 2186 */ 2187 if (cur == env->p) { 2188 stopsearch = true; 2189 goto unlock; 2190 } 2191 2192 if (!cur) { 2193 if (maymove && moveimp >= env->best_imp) 2194 goto assign; 2195 else 2196 goto unlock; 2197 } 2198 2199 /* Skip this swap candidate if cannot move to the source cpu. */ 2200 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr)) 2201 goto unlock; 2202 2203 /* 2204 * Skip this swap candidate if it is not moving to its preferred 2205 * node and the best task is. 2206 */ 2207 if (env->best_task && 2208 env->best_task->numa_preferred_nid == env->src_nid && 2209 cur->numa_preferred_nid != env->src_nid) { 2210 goto unlock; 2211 } 2212 2213 /* 2214 * "imp" is the fault differential for the source task between the 2215 * source and destination node. Calculate the total differential for 2216 * the source task and potential destination task. The more negative 2217 * the value is, the more remote accesses that would be expected to 2218 * be incurred if the tasks were swapped. 2219 * 2220 * If dst and source tasks are in the same NUMA group, or not 2221 * in any group then look only at task weights. 2222 */ 2223 cur_ng = rcu_dereference(cur->numa_group); 2224 if (cur_ng == p_ng) { 2225 /* 2226 * Do not swap within a group or between tasks that have 2227 * no group if there is spare capacity. Swapping does 2228 * not address the load imbalance and helps one task at 2229 * the cost of punishing another. 2230 */ 2231 if (env->dst_stats.node_type == node_has_spare) 2232 goto unlock; 2233 2234 imp = taskimp + task_weight(cur, env->src_nid, dist) - 2235 task_weight(cur, env->dst_nid, dist); 2236 /* 2237 * Add some hysteresis to prevent swapping the 2238 * tasks within a group over tiny differences. 2239 */ 2240 if (cur_ng) 2241 imp -= imp / 16; 2242 } else { 2243 /* 2244 * Compare the group weights. If a task is all by itself 2245 * (not part of a group), use the task weight instead. 2246 */ 2247 if (cur_ng && p_ng) 2248 imp += group_weight(cur, env->src_nid, dist) - 2249 group_weight(cur, env->dst_nid, dist); 2250 else 2251 imp += task_weight(cur, env->src_nid, dist) - 2252 task_weight(cur, env->dst_nid, dist); 2253 } 2254 2255 /* Discourage picking a task already on its preferred node */ 2256 if (cur->numa_preferred_nid == env->dst_nid) 2257 imp -= imp / 16; 2258 2259 /* 2260 * Encourage picking a task that moves to its preferred node. 2261 * This potentially makes imp larger than it's maximum of 2262 * 1998 (see SMALLIMP and task_weight for why) but in this 2263 * case, it does not matter. 2264 */ 2265 if (cur->numa_preferred_nid == env->src_nid) 2266 imp += imp / 8; 2267 2268 if (maymove && moveimp > imp && moveimp > env->best_imp) { 2269 imp = moveimp; 2270 cur = NULL; 2271 goto assign; 2272 } 2273 2274 /* 2275 * Prefer swapping with a task moving to its preferred node over a 2276 * task that is not. 2277 */ 2278 if (env->best_task && cur->numa_preferred_nid == env->src_nid && 2279 env->best_task->numa_preferred_nid != env->src_nid) { 2280 goto assign; 2281 } 2282 2283 /* 2284 * If the NUMA importance is less than SMALLIMP, 2285 * task migration might only result in ping pong 2286 * of tasks and also hurt performance due to cache 2287 * misses. 2288 */ 2289 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2) 2290 goto unlock; 2291 2292 /* 2293 * In the overloaded case, try and keep the load balanced. 2294 */ 2295 load = task_h_load(env->p) - task_h_load(cur); 2296 if (!load) 2297 goto assign; 2298 2299 dst_load = env->dst_stats.load + load; 2300 src_load = env->src_stats.load - load; 2301 2302 if (load_too_imbalanced(src_load, dst_load, env)) 2303 goto unlock; 2304 2305 assign: 2306 /* Evaluate an idle CPU for a task numa move. */ 2307 if (!cur) { 2308 int cpu = env->dst_stats.idle_cpu; 2309 2310 /* Nothing cached so current CPU went idle since the search. */ 2311 if (cpu < 0) 2312 cpu = env->dst_cpu; 2313 2314 /* 2315 * If the CPU is no longer truly idle and the previous best CPU 2316 * is, keep using it. 2317 */ 2318 if (!idle_cpu(cpu) && env->best_cpu >= 0 && 2319 idle_cpu(env->best_cpu)) { 2320 cpu = env->best_cpu; 2321 } 2322 2323 env->dst_cpu = cpu; 2324 } 2325 2326 task_numa_assign(env, cur, imp); 2327 2328 /* 2329 * If a move to idle is allowed because there is capacity or load 2330 * balance improves then stop the search. While a better swap 2331 * candidate may exist, a search is not free. 2332 */ 2333 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu)) 2334 stopsearch = true; 2335 2336 /* 2337 * If a swap candidate must be identified and the current best task 2338 * moves its preferred node then stop the search. 2339 */ 2340 if (!maymove && env->best_task && 2341 env->best_task->numa_preferred_nid == env->src_nid) { 2342 stopsearch = true; 2343 } 2344 unlock: 2345 rcu_read_unlock(); 2346 2347 return stopsearch; 2348 } 2349 2350 static void task_numa_find_cpu(struct task_numa_env *env, 2351 long taskimp, long groupimp) 2352 { 2353 bool maymove = false; 2354 int cpu; 2355 2356 /* 2357 * If dst node has spare capacity, then check if there is an 2358 * imbalance that would be overruled by the load balancer. 2359 */ 2360 if (env->dst_stats.node_type == node_has_spare) { 2361 unsigned int imbalance; 2362 int src_running, dst_running; 2363 2364 /* 2365 * Would movement cause an imbalance? Note that if src has 2366 * more running tasks that the imbalance is ignored as the 2367 * move improves the imbalance from the perspective of the 2368 * CPU load balancer. 2369 * */ 2370 src_running = env->src_stats.nr_running - 1; 2371 dst_running = env->dst_stats.nr_running + 1; 2372 imbalance = max(0, dst_running - src_running); 2373 imbalance = adjust_numa_imbalance(imbalance, dst_running, 2374 env->imb_numa_nr); 2375 2376 /* Use idle CPU if there is no imbalance */ 2377 if (!imbalance) { 2378 maymove = true; 2379 if (env->dst_stats.idle_cpu >= 0) { 2380 env->dst_cpu = env->dst_stats.idle_cpu; 2381 task_numa_assign(env, NULL, 0); 2382 return; 2383 } 2384 } 2385 } else { 2386 long src_load, dst_load, load; 2387 /* 2388 * If the improvement from just moving env->p direction is better 2389 * than swapping tasks around, check if a move is possible. 2390 */ 2391 load = task_h_load(env->p); 2392 dst_load = env->dst_stats.load + load; 2393 src_load = env->src_stats.load - load; 2394 maymove = !load_too_imbalanced(src_load, dst_load, env); 2395 } 2396 2397 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 2398 /* Skip this CPU if the source task cannot migrate */ 2399 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr)) 2400 continue; 2401 2402 env->dst_cpu = cpu; 2403 if (task_numa_compare(env, taskimp, groupimp, maymove)) 2404 break; 2405 } 2406 } 2407 2408 static int task_numa_migrate(struct task_struct *p) 2409 { 2410 struct task_numa_env env = { 2411 .p = p, 2412 2413 .src_cpu = task_cpu(p), 2414 .src_nid = task_node(p), 2415 2416 .imbalance_pct = 112, 2417 2418 .best_task = NULL, 2419 .best_imp = 0, 2420 .best_cpu = -1, 2421 }; 2422 unsigned long taskweight, groupweight; 2423 struct sched_domain *sd; 2424 long taskimp, groupimp; 2425 struct numa_group *ng; 2426 struct rq *best_rq; 2427 int nid, ret, dist; 2428 2429 /* 2430 * Pick the lowest SD_NUMA domain, as that would have the smallest 2431 * imbalance and would be the first to start moving tasks about. 2432 * 2433 * And we want to avoid any moving of tasks about, as that would create 2434 * random movement of tasks -- counter the numa conditions we're trying 2435 * to satisfy here. 2436 */ 2437 rcu_read_lock(); 2438 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 2439 if (sd) { 2440 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 2441 env.imb_numa_nr = sd->imb_numa_nr; 2442 } 2443 rcu_read_unlock(); 2444 2445 /* 2446 * Cpusets can break the scheduler domain tree into smaller 2447 * balance domains, some of which do not cross NUMA boundaries. 2448 * Tasks that are "trapped" in such domains cannot be migrated 2449 * elsewhere, so there is no point in (re)trying. 2450 */ 2451 if (unlikely(!sd)) { 2452 sched_setnuma(p, task_node(p)); 2453 return -EINVAL; 2454 } 2455 2456 env.dst_nid = p->numa_preferred_nid; 2457 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 2458 taskweight = task_weight(p, env.src_nid, dist); 2459 groupweight = group_weight(p, env.src_nid, dist); 2460 update_numa_stats(&env, &env.src_stats, env.src_nid, false); 2461 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 2462 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 2463 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2464 2465 /* Try to find a spot on the preferred nid. */ 2466 task_numa_find_cpu(&env, taskimp, groupimp); 2467 2468 /* 2469 * Look at other nodes in these cases: 2470 * - there is no space available on the preferred_nid 2471 * - the task is part of a numa_group that is interleaved across 2472 * multiple NUMA nodes; in order to better consolidate the group, 2473 * we need to check other locations. 2474 */ 2475 ng = deref_curr_numa_group(p); 2476 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) { 2477 for_each_node_state(nid, N_CPU) { 2478 if (nid == env.src_nid || nid == p->numa_preferred_nid) 2479 continue; 2480 2481 dist = node_distance(env.src_nid, env.dst_nid); 2482 if (sched_numa_topology_type == NUMA_BACKPLANE && 2483 dist != env.dist) { 2484 taskweight = task_weight(p, env.src_nid, dist); 2485 groupweight = group_weight(p, env.src_nid, dist); 2486 } 2487 2488 /* Only consider nodes where both task and groups benefit */ 2489 taskimp = task_weight(p, nid, dist) - taskweight; 2490 groupimp = group_weight(p, nid, dist) - groupweight; 2491 if (taskimp < 0 && groupimp < 0) 2492 continue; 2493 2494 env.dist = dist; 2495 env.dst_nid = nid; 2496 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true); 2497 task_numa_find_cpu(&env, taskimp, groupimp); 2498 } 2499 } 2500 2501 /* 2502 * If the task is part of a workload that spans multiple NUMA nodes, 2503 * and is migrating into one of the workload's active nodes, remember 2504 * this node as the task's preferred numa node, so the workload can 2505 * settle down. 2506 * A task that migrated to a second choice node will be better off 2507 * trying for a better one later. Do not set the preferred node here. 2508 */ 2509 if (ng) { 2510 if (env.best_cpu == -1) 2511 nid = env.src_nid; 2512 else 2513 nid = cpu_to_node(env.best_cpu); 2514 2515 if (nid != p->numa_preferred_nid) 2516 sched_setnuma(p, nid); 2517 } 2518 2519 /* No better CPU than the current one was found. */ 2520 if (env.best_cpu == -1) { 2521 trace_sched_stick_numa(p, env.src_cpu, NULL, -1); 2522 return -EAGAIN; 2523 } 2524 2525 best_rq = cpu_rq(env.best_cpu); 2526 if (env.best_task == NULL) { 2527 ret = migrate_task_to(p, env.best_cpu); 2528 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2529 if (ret != 0) 2530 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu); 2531 return ret; 2532 } 2533 2534 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu); 2535 WRITE_ONCE(best_rq->numa_migrate_on, 0); 2536 2537 if (ret != 0) 2538 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu); 2539 put_task_struct(env.best_task); 2540 return ret; 2541 } 2542 2543 /* Attempt to migrate a task to a CPU on the preferred node. */ 2544 static void numa_migrate_preferred(struct task_struct *p) 2545 { 2546 unsigned long interval = HZ; 2547 2548 /* This task has no NUMA fault statistics yet */ 2549 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults)) 2550 return; 2551 2552 /* Periodically retry migrating the task to the preferred node */ 2553 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 2554 p->numa_migrate_retry = jiffies + interval; 2555 2556 /* Success if task is already running on preferred CPU */ 2557 if (task_node(p) == p->numa_preferred_nid) 2558 return; 2559 2560 /* Otherwise, try migrate to a CPU on the preferred node */ 2561 task_numa_migrate(p); 2562 } 2563 2564 /* 2565 * Find out how many nodes the workload is actively running on. Do this by 2566 * tracking the nodes from which NUMA hinting faults are triggered. This can 2567 * be different from the set of nodes where the workload's memory is currently 2568 * located. 2569 */ 2570 static void numa_group_count_active_nodes(struct numa_group *numa_group) 2571 { 2572 unsigned long faults, max_faults = 0; 2573 int nid, active_nodes = 0; 2574 2575 for_each_node_state(nid, N_CPU) { 2576 faults = group_faults_cpu(numa_group, nid); 2577 if (faults > max_faults) 2578 max_faults = faults; 2579 } 2580 2581 for_each_node_state(nid, N_CPU) { 2582 faults = group_faults_cpu(numa_group, nid); 2583 if (faults * ACTIVE_NODE_FRACTION > max_faults) 2584 active_nodes++; 2585 } 2586 2587 numa_group->max_faults_cpu = max_faults; 2588 numa_group->active_nodes = active_nodes; 2589 } 2590 2591 /* 2592 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 2593 * increments. The more local the fault statistics are, the higher the scan 2594 * period will be for the next scan window. If local/(local+remote) ratio is 2595 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 2596 * the scan period will decrease. Aim for 70% local accesses. 2597 */ 2598 #define NUMA_PERIOD_SLOTS 10 2599 #define NUMA_PERIOD_THRESHOLD 7 2600 2601 /* 2602 * Increase the scan period (slow down scanning) if the majority of 2603 * our memory is already on our local node, or if the majority of 2604 * the page accesses are shared with other processes. 2605 * Otherwise, decrease the scan period. 2606 */ 2607 static void update_task_scan_period(struct task_struct *p, 2608 unsigned long shared, unsigned long private) 2609 { 2610 unsigned int period_slot; 2611 int lr_ratio, ps_ratio; 2612 int diff; 2613 2614 unsigned long remote = p->numa_faults_locality[0]; 2615 unsigned long local = p->numa_faults_locality[1]; 2616 2617 /* 2618 * If there were no record hinting faults then either the task is 2619 * completely idle or all activity is in areas that are not of interest 2620 * to automatic numa balancing. Related to that, if there were failed 2621 * migration then it implies we are migrating too quickly or the local 2622 * node is overloaded. In either case, scan slower 2623 */ 2624 if (local + shared == 0 || p->numa_faults_locality[2]) { 2625 p->numa_scan_period = min(p->numa_scan_period_max, 2626 p->numa_scan_period << 1); 2627 2628 p->mm->numa_next_scan = jiffies + 2629 msecs_to_jiffies(p->numa_scan_period); 2630 2631 return; 2632 } 2633 2634 /* 2635 * Prepare to scale scan period relative to the current period. 2636 * == NUMA_PERIOD_THRESHOLD scan period stays the same 2637 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 2638 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 2639 */ 2640 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 2641 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 2642 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared); 2643 2644 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) { 2645 /* 2646 * Most memory accesses are local. There is no need to 2647 * do fast NUMA scanning, since memory is already local. 2648 */ 2649 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD; 2650 if (!slot) 2651 slot = 1; 2652 diff = slot * period_slot; 2653 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) { 2654 /* 2655 * Most memory accesses are shared with other tasks. 2656 * There is no point in continuing fast NUMA scanning, 2657 * since other tasks may just move the memory elsewhere. 2658 */ 2659 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD; 2660 if (!slot) 2661 slot = 1; 2662 diff = slot * period_slot; 2663 } else { 2664 /* 2665 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS, 2666 * yet they are not on the local NUMA node. Speed up 2667 * NUMA scanning to get the memory moved over. 2668 */ 2669 int ratio = max(lr_ratio, ps_ratio); 2670 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 2671 } 2672 2673 p->numa_scan_period = clamp(p->numa_scan_period + diff, 2674 task_scan_min(p), task_scan_max(p)); 2675 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2676 } 2677 2678 /* 2679 * Get the fraction of time the task has been running since the last 2680 * NUMA placement cycle. The scheduler keeps similar statistics, but 2681 * decays those on a 32ms period, which is orders of magnitude off 2682 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 2683 * stats only if the task is so new there are no NUMA statistics yet. 2684 */ 2685 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 2686 { 2687 u64 runtime, delta, now; 2688 /* Use the start of this time slice to avoid calculations. */ 2689 now = p->se.exec_start; 2690 runtime = p->se.sum_exec_runtime; 2691 2692 if (p->last_task_numa_placement) { 2693 delta = runtime - p->last_sum_exec_runtime; 2694 *period = now - p->last_task_numa_placement; 2695 2696 /* Avoid time going backwards, prevent potential divide error: */ 2697 if (unlikely((s64)*period < 0)) 2698 *period = 0; 2699 } else { 2700 delta = p->se.avg.load_sum; 2701 *period = LOAD_AVG_MAX; 2702 } 2703 2704 p->last_sum_exec_runtime = runtime; 2705 p->last_task_numa_placement = now; 2706 2707 return delta; 2708 } 2709 2710 /* 2711 * Determine the preferred nid for a task in a numa_group. This needs to 2712 * be done in a way that produces consistent results with group_weight, 2713 * otherwise workloads might not converge. 2714 */ 2715 static int preferred_group_nid(struct task_struct *p, int nid) 2716 { 2717 nodemask_t nodes; 2718 int dist; 2719 2720 /* Direct connections between all NUMA nodes. */ 2721 if (sched_numa_topology_type == NUMA_DIRECT) 2722 return nid; 2723 2724 /* 2725 * On a system with glueless mesh NUMA topology, group_weight 2726 * scores nodes according to the number of NUMA hinting faults on 2727 * both the node itself, and on nearby nodes. 2728 */ 2729 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 2730 unsigned long score, max_score = 0; 2731 int node, max_node = nid; 2732 2733 dist = sched_max_numa_distance; 2734 2735 for_each_node_state(node, N_CPU) { 2736 score = group_weight(p, node, dist); 2737 if (score > max_score) { 2738 max_score = score; 2739 max_node = node; 2740 } 2741 } 2742 return max_node; 2743 } 2744 2745 /* 2746 * Finding the preferred nid in a system with NUMA backplane 2747 * interconnect topology is more involved. The goal is to locate 2748 * tasks from numa_groups near each other in the system, and 2749 * untangle workloads from different sides of the system. This requires 2750 * searching down the hierarchy of node groups, recursively searching 2751 * inside the highest scoring group of nodes. The nodemask tricks 2752 * keep the complexity of the search down. 2753 */ 2754 nodes = node_states[N_CPU]; 2755 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 2756 unsigned long max_faults = 0; 2757 nodemask_t max_group = NODE_MASK_NONE; 2758 int a, b; 2759 2760 /* Are there nodes at this distance from each other? */ 2761 if (!find_numa_distance(dist)) 2762 continue; 2763 2764 for_each_node_mask(a, nodes) { 2765 unsigned long faults = 0; 2766 nodemask_t this_group; 2767 nodes_clear(this_group); 2768 2769 /* Sum group's NUMA faults; includes a==b case. */ 2770 for_each_node_mask(b, nodes) { 2771 if (node_distance(a, b) < dist) { 2772 faults += group_faults(p, b); 2773 node_set(b, this_group); 2774 node_clear(b, nodes); 2775 } 2776 } 2777 2778 /* Remember the top group. */ 2779 if (faults > max_faults) { 2780 max_faults = faults; 2781 max_group = this_group; 2782 /* 2783 * subtle: at the smallest distance there is 2784 * just one node left in each "group", the 2785 * winner is the preferred nid. 2786 */ 2787 nid = a; 2788 } 2789 } 2790 /* Next round, evaluate the nodes within max_group. */ 2791 if (!max_faults) 2792 break; 2793 nodes = max_group; 2794 } 2795 return nid; 2796 } 2797 2798 static void task_numa_placement(struct task_struct *p) 2799 { 2800 int seq, nid, max_nid = NUMA_NO_NODE; 2801 unsigned long max_faults = 0; 2802 unsigned long fault_types[2] = { 0, 0 }; 2803 unsigned long total_faults; 2804 u64 runtime, period; 2805 spinlock_t *group_lock = NULL; 2806 struct numa_group *ng; 2807 2808 /* 2809 * The p->mm->numa_scan_seq field gets updated without 2810 * exclusive access. Use READ_ONCE() here to ensure 2811 * that the field is read in a single access: 2812 */ 2813 seq = READ_ONCE(p->mm->numa_scan_seq); 2814 if (p->numa_scan_seq == seq) 2815 return; 2816 p->numa_scan_seq = seq; 2817 p->numa_scan_period_max = task_scan_max(p); 2818 2819 total_faults = p->numa_faults_locality[0] + 2820 p->numa_faults_locality[1]; 2821 runtime = numa_get_avg_runtime(p, &period); 2822 2823 /* If the task is part of a group prevent parallel updates to group stats */ 2824 ng = deref_curr_numa_group(p); 2825 if (ng) { 2826 group_lock = &ng->lock; 2827 spin_lock_irq(group_lock); 2828 } 2829 2830 /* Find the node with the highest number of faults */ 2831 for_each_online_node(nid) { 2832 /* Keep track of the offsets in numa_faults array */ 2833 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 2834 unsigned long faults = 0, group_faults = 0; 2835 int priv; 2836 2837 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 2838 long diff, f_diff, f_weight; 2839 2840 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 2841 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 2842 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 2843 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 2844 2845 /* Decay existing window, copy faults since last scan */ 2846 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 2847 fault_types[priv] += p->numa_faults[membuf_idx]; 2848 p->numa_faults[membuf_idx] = 0; 2849 2850 /* 2851 * Normalize the faults_from, so all tasks in a group 2852 * count according to CPU use, instead of by the raw 2853 * number of faults. Tasks with little runtime have 2854 * little over-all impact on throughput, and thus their 2855 * faults are less important. 2856 */ 2857 f_weight = div64_u64(runtime << 16, period + 1); 2858 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 2859 (total_faults + 1); 2860 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 2861 p->numa_faults[cpubuf_idx] = 0; 2862 2863 p->numa_faults[mem_idx] += diff; 2864 p->numa_faults[cpu_idx] += f_diff; 2865 faults += p->numa_faults[mem_idx]; 2866 p->total_numa_faults += diff; 2867 if (ng) { 2868 /* 2869 * safe because we can only change our own group 2870 * 2871 * mem_idx represents the offset for a given 2872 * nid and priv in a specific region because it 2873 * is at the beginning of the numa_faults array. 2874 */ 2875 ng->faults[mem_idx] += diff; 2876 ng->faults[cpu_idx] += f_diff; 2877 ng->total_faults += diff; 2878 group_faults += ng->faults[mem_idx]; 2879 } 2880 } 2881 2882 if (!ng) { 2883 if (faults > max_faults) { 2884 max_faults = faults; 2885 max_nid = nid; 2886 } 2887 } else if (group_faults > max_faults) { 2888 max_faults = group_faults; 2889 max_nid = nid; 2890 } 2891 } 2892 2893 /* Cannot migrate task to CPU-less node */ 2894 max_nid = numa_nearest_node(max_nid, N_CPU); 2895 2896 if (ng) { 2897 numa_group_count_active_nodes(ng); 2898 spin_unlock_irq(group_lock); 2899 max_nid = preferred_group_nid(p, max_nid); 2900 } 2901 2902 if (max_faults) { 2903 /* Set the new preferred node */ 2904 if (max_nid != p->numa_preferred_nid) 2905 sched_setnuma(p, max_nid); 2906 } 2907 2908 update_task_scan_period(p, fault_types[0], fault_types[1]); 2909 } 2910 2911 static inline int get_numa_group(struct numa_group *grp) 2912 { 2913 return refcount_inc_not_zero(&grp->refcount); 2914 } 2915 2916 static inline void put_numa_group(struct numa_group *grp) 2917 { 2918 if (refcount_dec_and_test(&grp->refcount)) 2919 kfree_rcu(grp, rcu); 2920 } 2921 2922 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2923 int *priv) 2924 { 2925 struct numa_group *grp, *my_grp; 2926 struct task_struct *tsk; 2927 bool join = false; 2928 int cpu = cpupid_to_cpu(cpupid); 2929 int i; 2930 2931 if (unlikely(!deref_curr_numa_group(p))) { 2932 unsigned int size = sizeof(struct numa_group) + 2933 NR_NUMA_HINT_FAULT_STATS * 2934 nr_node_ids * sizeof(unsigned long); 2935 2936 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2937 if (!grp) 2938 return; 2939 2940 refcount_set(&grp->refcount, 1); 2941 grp->active_nodes = 1; 2942 grp->max_faults_cpu = 0; 2943 spin_lock_init(&grp->lock); 2944 grp->gid = p->pid; 2945 2946 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2947 grp->faults[i] = p->numa_faults[i]; 2948 2949 grp->total_faults = p->total_numa_faults; 2950 2951 grp->nr_tasks++; 2952 rcu_assign_pointer(p->numa_group, grp); 2953 } 2954 2955 rcu_read_lock(); 2956 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2957 2958 if (!cpupid_match_pid(tsk, cpupid)) 2959 goto no_join; 2960 2961 grp = rcu_dereference(tsk->numa_group); 2962 if (!grp) 2963 goto no_join; 2964 2965 my_grp = deref_curr_numa_group(p); 2966 if (grp == my_grp) 2967 goto no_join; 2968 2969 /* 2970 * Only join the other group if its bigger; if we're the bigger group, 2971 * the other task will join us. 2972 */ 2973 if (my_grp->nr_tasks > grp->nr_tasks) 2974 goto no_join; 2975 2976 /* 2977 * Tie-break on the grp address. 2978 */ 2979 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2980 goto no_join; 2981 2982 /* Always join threads in the same process. */ 2983 if (tsk->mm == current->mm) 2984 join = true; 2985 2986 /* Simple filter to avoid false positives due to PID collisions */ 2987 if (flags & TNF_SHARED) 2988 join = true; 2989 2990 /* Update priv based on whether false sharing was detected */ 2991 *priv = !join; 2992 2993 if (join && !get_numa_group(grp)) 2994 goto no_join; 2995 2996 rcu_read_unlock(); 2997 2998 if (!join) 2999 return; 3000 3001 WARN_ON_ONCE(irqs_disabled()); 3002 double_lock_irq(&my_grp->lock, &grp->lock); 3003 3004 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 3005 my_grp->faults[i] -= p->numa_faults[i]; 3006 grp->faults[i] += p->numa_faults[i]; 3007 } 3008 my_grp->total_faults -= p->total_numa_faults; 3009 grp->total_faults += p->total_numa_faults; 3010 3011 my_grp->nr_tasks--; 3012 grp->nr_tasks++; 3013 3014 spin_unlock(&my_grp->lock); 3015 spin_unlock_irq(&grp->lock); 3016 3017 rcu_assign_pointer(p->numa_group, grp); 3018 3019 put_numa_group(my_grp); 3020 return; 3021 3022 no_join: 3023 rcu_read_unlock(); 3024 return; 3025 } 3026 3027 /* 3028 * Get rid of NUMA statistics associated with a task (either current or dead). 3029 * If @final is set, the task is dead and has reached refcount zero, so we can 3030 * safely free all relevant data structures. Otherwise, there might be 3031 * concurrent reads from places like load balancing and procfs, and we should 3032 * reset the data back to default state without freeing ->numa_faults. 3033 */ 3034 void task_numa_free(struct task_struct *p, bool final) 3035 { 3036 /* safe: p either is current or is being freed by current */ 3037 struct numa_group *grp = rcu_dereference_raw(p->numa_group); 3038 unsigned long *numa_faults = p->numa_faults; 3039 unsigned long flags; 3040 int i; 3041 3042 if (!numa_faults) 3043 return; 3044 3045 if (grp) { 3046 spin_lock_irqsave(&grp->lock, flags); 3047 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3048 grp->faults[i] -= p->numa_faults[i]; 3049 grp->total_faults -= p->total_numa_faults; 3050 3051 grp->nr_tasks--; 3052 spin_unlock_irqrestore(&grp->lock, flags); 3053 RCU_INIT_POINTER(p->numa_group, NULL); 3054 put_numa_group(grp); 3055 } 3056 3057 if (final) { 3058 p->numa_faults = NULL; 3059 kfree(numa_faults); 3060 } else { 3061 p->total_numa_faults = 0; 3062 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 3063 numa_faults[i] = 0; 3064 } 3065 } 3066 3067 /* 3068 * Got a PROT_NONE fault for a page on @node. 3069 */ 3070 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 3071 { 3072 struct task_struct *p = current; 3073 bool migrated = flags & TNF_MIGRATED; 3074 int cpu_node = task_node(current); 3075 int local = !!(flags & TNF_FAULT_LOCAL); 3076 struct numa_group *ng; 3077 int priv; 3078 3079 if (!static_branch_likely(&sched_numa_balancing)) 3080 return; 3081 3082 /* for example, ksmd faulting in a user's mm */ 3083 if (!p->mm) 3084 return; 3085 3086 /* 3087 * NUMA faults statistics are unnecessary for the slow memory 3088 * node for memory tiering mode. 3089 */ 3090 if (!node_is_toptier(mem_node) && 3091 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING || 3092 !cpupid_valid(last_cpupid))) 3093 return; 3094 3095 /* Allocate buffer to track faults on a per-node basis */ 3096 if (unlikely(!p->numa_faults)) { 3097 int size = sizeof(*p->numa_faults) * 3098 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 3099 3100 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 3101 if (!p->numa_faults) 3102 return; 3103 3104 p->total_numa_faults = 0; 3105 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 3106 } 3107 3108 /* 3109 * First accesses are treated as private, otherwise consider accesses 3110 * to be private if the accessing pid has not changed 3111 */ 3112 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 3113 priv = 1; 3114 } else { 3115 priv = cpupid_match_pid(p, last_cpupid); 3116 if (!priv && !(flags & TNF_NO_GROUP)) 3117 task_numa_group(p, last_cpupid, flags, &priv); 3118 } 3119 3120 /* 3121 * If a workload spans multiple NUMA nodes, a shared fault that 3122 * occurs wholly within the set of nodes that the workload is 3123 * actively using should be counted as local. This allows the 3124 * scan rate to slow down when a workload has settled down. 3125 */ 3126 ng = deref_curr_numa_group(p); 3127 if (!priv && !local && ng && ng->active_nodes > 1 && 3128 numa_is_active_node(cpu_node, ng) && 3129 numa_is_active_node(mem_node, ng)) 3130 local = 1; 3131 3132 /* 3133 * Retry to migrate task to preferred node periodically, in case it 3134 * previously failed, or the scheduler moved us. 3135 */ 3136 if (time_after(jiffies, p->numa_migrate_retry)) { 3137 task_numa_placement(p); 3138 numa_migrate_preferred(p); 3139 } 3140 3141 if (migrated) 3142 p->numa_pages_migrated += pages; 3143 if (flags & TNF_MIGRATE_FAIL) 3144 p->numa_faults_locality[2] += pages; 3145 3146 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 3147 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 3148 p->numa_faults_locality[local] += pages; 3149 } 3150 3151 static void reset_ptenuma_scan(struct task_struct *p) 3152 { 3153 /* 3154 * We only did a read acquisition of the mmap sem, so 3155 * p->mm->numa_scan_seq is written to without exclusive access 3156 * and the update is not guaranteed to be atomic. That's not 3157 * much of an issue though, since this is just used for 3158 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 3159 * expensive, to avoid any form of compiler optimizations: 3160 */ 3161 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 3162 p->mm->numa_scan_offset = 0; 3163 } 3164 3165 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma) 3166 { 3167 unsigned long pids; 3168 /* 3169 * Allow unconditional access first two times, so that all the (pages) 3170 * of VMAs get prot_none fault introduced irrespective of accesses. 3171 * This is also done to avoid any side effect of task scanning 3172 * amplifying the unfairness of disjoint set of VMAs' access. 3173 */ 3174 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2) 3175 return true; 3176 3177 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1]; 3178 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids)) 3179 return true; 3180 3181 /* 3182 * Complete a scan that has already started regardless of PID access, or 3183 * some VMAs may never be scanned in multi-threaded applications: 3184 */ 3185 if (mm->numa_scan_offset > vma->vm_start) { 3186 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID); 3187 return true; 3188 } 3189 3190 return false; 3191 } 3192 3193 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay) 3194 3195 /* 3196 * The expensive part of numa migration is done from task_work context. 3197 * Triggered from task_tick_numa(). 3198 */ 3199 static void task_numa_work(struct callback_head *work) 3200 { 3201 unsigned long migrate, next_scan, now = jiffies; 3202 struct task_struct *p = current; 3203 struct mm_struct *mm = p->mm; 3204 u64 runtime = p->se.sum_exec_runtime; 3205 struct vm_area_struct *vma; 3206 unsigned long start, end; 3207 unsigned long nr_pte_updates = 0; 3208 long pages, virtpages; 3209 struct vma_iterator vmi; 3210 bool vma_pids_skipped; 3211 bool vma_pids_forced = false; 3212 3213 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work)); 3214 3215 work->next = work; 3216 /* 3217 * Who cares about NUMA placement when they're dying. 3218 * 3219 * NOTE: make sure not to dereference p->mm before this check, 3220 * exit_task_work() happens _after_ exit_mm() so we could be called 3221 * without p->mm even though we still had it when we enqueued this 3222 * work. 3223 */ 3224 if (p->flags & PF_EXITING) 3225 return; 3226 3227 if (!mm->numa_next_scan) { 3228 mm->numa_next_scan = now + 3229 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3230 } 3231 3232 /* 3233 * Enforce maximal scan/migration frequency.. 3234 */ 3235 migrate = mm->numa_next_scan; 3236 if (time_before(now, migrate)) 3237 return; 3238 3239 if (p->numa_scan_period == 0) { 3240 p->numa_scan_period_max = task_scan_max(p); 3241 p->numa_scan_period = task_scan_start(p); 3242 } 3243 3244 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 3245 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan)) 3246 return; 3247 3248 /* 3249 * Delay this task enough that another task of this mm will likely win 3250 * the next time around. 3251 */ 3252 p->node_stamp += 2 * TICK_NSEC; 3253 3254 pages = sysctl_numa_balancing_scan_size; 3255 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 3256 virtpages = pages * 8; /* Scan up to this much virtual space */ 3257 if (!pages) 3258 return; 3259 3260 3261 if (!mmap_read_trylock(mm)) 3262 return; 3263 3264 /* 3265 * VMAs are skipped if the current PID has not trapped a fault within 3266 * the VMA recently. Allow scanning to be forced if there is no 3267 * suitable VMA remaining. 3268 */ 3269 vma_pids_skipped = false; 3270 3271 retry_pids: 3272 start = mm->numa_scan_offset; 3273 vma_iter_init(&vmi, mm, start); 3274 vma = vma_next(&vmi); 3275 if (!vma) { 3276 reset_ptenuma_scan(p); 3277 start = 0; 3278 vma_iter_set(&vmi, start); 3279 vma = vma_next(&vmi); 3280 } 3281 3282 do { 3283 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 3284 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 3285 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE); 3286 continue; 3287 } 3288 3289 /* 3290 * Shared library pages mapped by multiple processes are not 3291 * migrated as it is expected they are cache replicated. Avoid 3292 * hinting faults in read-only file-backed mappings or the vDSO 3293 * as migrating the pages will be of marginal benefit. 3294 */ 3295 if (!vma->vm_mm || 3296 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) { 3297 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO); 3298 continue; 3299 } 3300 3301 /* 3302 * Skip inaccessible VMAs to avoid any confusion between 3303 * PROT_NONE and NUMA hinting PTEs 3304 */ 3305 if (!vma_is_accessible(vma)) { 3306 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE); 3307 continue; 3308 } 3309 3310 /* Initialise new per-VMA NUMAB state. */ 3311 if (!vma->numab_state) { 3312 vma->numab_state = kzalloc(sizeof(struct vma_numab_state), 3313 GFP_KERNEL); 3314 if (!vma->numab_state) 3315 continue; 3316 3317 vma->numab_state->start_scan_seq = mm->numa_scan_seq; 3318 3319 vma->numab_state->next_scan = now + 3320 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3321 3322 /* Reset happens after 4 times scan delay of scan start */ 3323 vma->numab_state->pids_active_reset = vma->numab_state->next_scan + 3324 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3325 3326 /* 3327 * Ensure prev_scan_seq does not match numa_scan_seq, 3328 * to prevent VMAs being skipped prematurely on the 3329 * first scan: 3330 */ 3331 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1; 3332 } 3333 3334 /* 3335 * Scanning the VMAs of short lived tasks add more overhead. So 3336 * delay the scan for new VMAs. 3337 */ 3338 if (mm->numa_scan_seq && time_before(jiffies, 3339 vma->numab_state->next_scan)) { 3340 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY); 3341 continue; 3342 } 3343 3344 /* RESET access PIDs regularly for old VMAs. */ 3345 if (mm->numa_scan_seq && 3346 time_after(jiffies, vma->numab_state->pids_active_reset)) { 3347 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset + 3348 msecs_to_jiffies(VMA_PID_RESET_PERIOD); 3349 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]); 3350 vma->numab_state->pids_active[1] = 0; 3351 } 3352 3353 /* Do not rescan VMAs twice within the same sequence. */ 3354 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) { 3355 mm->numa_scan_offset = vma->vm_end; 3356 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED); 3357 continue; 3358 } 3359 3360 /* 3361 * Do not scan the VMA if task has not accessed it, unless no other 3362 * VMA candidate exists. 3363 */ 3364 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) { 3365 vma_pids_skipped = true; 3366 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE); 3367 continue; 3368 } 3369 3370 do { 3371 start = max(start, vma->vm_start); 3372 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 3373 end = min(end, vma->vm_end); 3374 nr_pte_updates = change_prot_numa(vma, start, end); 3375 3376 /* 3377 * Try to scan sysctl_numa_balancing_size worth of 3378 * hpages that have at least one present PTE that 3379 * is not already PTE-numa. If the VMA contains 3380 * areas that are unused or already full of prot_numa 3381 * PTEs, scan up to virtpages, to skip through those 3382 * areas faster. 3383 */ 3384 if (nr_pte_updates) 3385 pages -= (end - start) >> PAGE_SHIFT; 3386 virtpages -= (end - start) >> PAGE_SHIFT; 3387 3388 start = end; 3389 if (pages <= 0 || virtpages <= 0) 3390 goto out; 3391 3392 cond_resched(); 3393 } while (end != vma->vm_end); 3394 3395 /* VMA scan is complete, do not scan until next sequence. */ 3396 vma->numab_state->prev_scan_seq = mm->numa_scan_seq; 3397 3398 /* 3399 * Only force scan within one VMA at a time, to limit the 3400 * cost of scanning a potentially uninteresting VMA. 3401 */ 3402 if (vma_pids_forced) 3403 break; 3404 } for_each_vma(vmi, vma); 3405 3406 /* 3407 * If no VMAs are remaining and VMAs were skipped due to the PID 3408 * not accessing the VMA previously, then force a scan to ensure 3409 * forward progress: 3410 */ 3411 if (!vma && !vma_pids_forced && vma_pids_skipped) { 3412 vma_pids_forced = true; 3413 goto retry_pids; 3414 } 3415 3416 out: 3417 /* 3418 * It is possible to reach the end of the VMA list but the last few 3419 * VMAs are not guaranteed to the vma_migratable. If they are not, we 3420 * would find the !migratable VMA on the next scan but not reset the 3421 * scanner to the start so check it now. 3422 */ 3423 if (vma) 3424 mm->numa_scan_offset = start; 3425 else 3426 reset_ptenuma_scan(p); 3427 mmap_read_unlock(mm); 3428 3429 /* 3430 * Make sure tasks use at least 32x as much time to run other code 3431 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 3432 * Usually update_task_scan_period slows down scanning enough; on an 3433 * overloaded system we need to limit overhead on a per task basis. 3434 */ 3435 if (unlikely(p->se.sum_exec_runtime != runtime)) { 3436 u64 diff = p->se.sum_exec_runtime - runtime; 3437 p->node_stamp += 32 * diff; 3438 } 3439 } 3440 3441 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 3442 { 3443 int mm_users = 0; 3444 struct mm_struct *mm = p->mm; 3445 3446 if (mm) { 3447 mm_users = atomic_read(&mm->mm_users); 3448 if (mm_users == 1) { 3449 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 3450 mm->numa_scan_seq = 0; 3451 } 3452 } 3453 p->node_stamp = 0; 3454 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0; 3455 p->numa_scan_period = sysctl_numa_balancing_scan_delay; 3456 p->numa_migrate_retry = 0; 3457 /* Protect against double add, see task_tick_numa and task_numa_work */ 3458 p->numa_work.next = &p->numa_work; 3459 p->numa_faults = NULL; 3460 p->numa_pages_migrated = 0; 3461 p->total_numa_faults = 0; 3462 RCU_INIT_POINTER(p->numa_group, NULL); 3463 p->last_task_numa_placement = 0; 3464 p->last_sum_exec_runtime = 0; 3465 3466 init_task_work(&p->numa_work, task_numa_work); 3467 3468 /* New address space, reset the preferred nid */ 3469 if (!(clone_flags & CLONE_VM)) { 3470 p->numa_preferred_nid = NUMA_NO_NODE; 3471 return; 3472 } 3473 3474 /* 3475 * New thread, keep existing numa_preferred_nid which should be copied 3476 * already by arch_dup_task_struct but stagger when scans start. 3477 */ 3478 if (mm) { 3479 unsigned int delay; 3480 3481 delay = min_t(unsigned int, task_scan_max(current), 3482 current->numa_scan_period * mm_users * NSEC_PER_MSEC); 3483 delay += 2 * TICK_NSEC; 3484 p->node_stamp = delay; 3485 } 3486 } 3487 3488 /* 3489 * Drive the periodic memory faults.. 3490 */ 3491 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3492 { 3493 struct callback_head *work = &curr->numa_work; 3494 u64 period, now; 3495 3496 /* 3497 * We don't care about NUMA placement if we don't have memory. 3498 */ 3499 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work) 3500 return; 3501 3502 /* 3503 * Using runtime rather than walltime has the dual advantage that 3504 * we (mostly) drive the selection from busy threads and that the 3505 * task needs to have done some actual work before we bother with 3506 * NUMA placement. 3507 */ 3508 now = curr->se.sum_exec_runtime; 3509 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 3510 3511 if (now > curr->node_stamp + period) { 3512 if (!curr->node_stamp) 3513 curr->numa_scan_period = task_scan_start(curr); 3514 curr->node_stamp += period; 3515 3516 if (!time_before(jiffies, curr->mm->numa_next_scan)) 3517 task_work_add(curr, work, TWA_RESUME); 3518 } 3519 } 3520 3521 static void update_scan_period(struct task_struct *p, int new_cpu) 3522 { 3523 int src_nid = cpu_to_node(task_cpu(p)); 3524 int dst_nid = cpu_to_node(new_cpu); 3525 3526 if (!static_branch_likely(&sched_numa_balancing)) 3527 return; 3528 3529 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING)) 3530 return; 3531 3532 if (src_nid == dst_nid) 3533 return; 3534 3535 /* 3536 * Allow resets if faults have been trapped before one scan 3537 * has completed. This is most likely due to a new task that 3538 * is pulled cross-node due to wakeups or load balancing. 3539 */ 3540 if (p->numa_scan_seq) { 3541 /* 3542 * Avoid scan adjustments if moving to the preferred 3543 * node or if the task was not previously running on 3544 * the preferred node. 3545 */ 3546 if (dst_nid == p->numa_preferred_nid || 3547 (p->numa_preferred_nid != NUMA_NO_NODE && 3548 src_nid != p->numa_preferred_nid)) 3549 return; 3550 } 3551 3552 p->numa_scan_period = task_scan_start(p); 3553 } 3554 3555 #else 3556 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 3557 { 3558 } 3559 3560 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 3561 { 3562 } 3563 3564 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 3565 { 3566 } 3567 3568 static inline void update_scan_period(struct task_struct *p, int new_cpu) 3569 { 3570 } 3571 3572 #endif /* CONFIG_NUMA_BALANCING */ 3573 3574 static void 3575 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3576 { 3577 update_load_add(&cfs_rq->load, se->load.weight); 3578 #ifdef CONFIG_SMP 3579 if (entity_is_task(se)) { 3580 struct rq *rq = rq_of(cfs_rq); 3581 3582 account_numa_enqueue(rq, task_of(se)); 3583 list_add(&se->group_node, &rq->cfs_tasks); 3584 } 3585 #endif 3586 cfs_rq->nr_running++; 3587 if (se_is_idle(se)) 3588 cfs_rq->idle_nr_running++; 3589 } 3590 3591 static void 3592 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 3593 { 3594 update_load_sub(&cfs_rq->load, se->load.weight); 3595 #ifdef CONFIG_SMP 3596 if (entity_is_task(se)) { 3597 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 3598 list_del_init(&se->group_node); 3599 } 3600 #endif 3601 cfs_rq->nr_running--; 3602 if (se_is_idle(se)) 3603 cfs_rq->idle_nr_running--; 3604 } 3605 3606 /* 3607 * Signed add and clamp on underflow. 3608 * 3609 * Explicitly do a load-store to ensure the intermediate value never hits 3610 * memory. This allows lockless observations without ever seeing the negative 3611 * values. 3612 */ 3613 #define add_positive(_ptr, _val) do { \ 3614 typeof(_ptr) ptr = (_ptr); \ 3615 typeof(_val) val = (_val); \ 3616 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3617 \ 3618 res = var + val; \ 3619 \ 3620 if (val < 0 && res > var) \ 3621 res = 0; \ 3622 \ 3623 WRITE_ONCE(*ptr, res); \ 3624 } while (0) 3625 3626 /* 3627 * Unsigned subtract and clamp on underflow. 3628 * 3629 * Explicitly do a load-store to ensure the intermediate value never hits 3630 * memory. This allows lockless observations without ever seeing the negative 3631 * values. 3632 */ 3633 #define sub_positive(_ptr, _val) do { \ 3634 typeof(_ptr) ptr = (_ptr); \ 3635 typeof(*ptr) val = (_val); \ 3636 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 3637 res = var - val; \ 3638 if (res > var) \ 3639 res = 0; \ 3640 WRITE_ONCE(*ptr, res); \ 3641 } while (0) 3642 3643 /* 3644 * Remove and clamp on negative, from a local variable. 3645 * 3646 * A variant of sub_positive(), which does not use explicit load-store 3647 * and is thus optimized for local variable updates. 3648 */ 3649 #define lsub_positive(_ptr, _val) do { \ 3650 typeof(_ptr) ptr = (_ptr); \ 3651 *ptr -= min_t(typeof(*ptr), *ptr, _val); \ 3652 } while (0) 3653 3654 #ifdef CONFIG_SMP 3655 static inline void 3656 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3657 { 3658 cfs_rq->avg.load_avg += se->avg.load_avg; 3659 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum; 3660 } 3661 3662 static inline void 3663 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3664 { 3665 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3666 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum); 3667 /* See update_cfs_rq_load_avg() */ 3668 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 3669 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 3670 } 3671 #else 3672 static inline void 3673 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3674 static inline void 3675 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { } 3676 #endif 3677 3678 static void reweight_eevdf(struct sched_entity *se, u64 avruntime, 3679 unsigned long weight) 3680 { 3681 unsigned long old_weight = se->load.weight; 3682 s64 vlag, vslice; 3683 3684 /* 3685 * VRUNTIME 3686 * -------- 3687 * 3688 * COROLLARY #1: The virtual runtime of the entity needs to be 3689 * adjusted if re-weight at !0-lag point. 3690 * 3691 * Proof: For contradiction assume this is not true, so we can 3692 * re-weight without changing vruntime at !0-lag point. 3693 * 3694 * Weight VRuntime Avg-VRuntime 3695 * before w v V 3696 * after w' v' V' 3697 * 3698 * Since lag needs to be preserved through re-weight: 3699 * 3700 * lag = (V - v)*w = (V'- v')*w', where v = v' 3701 * ==> V' = (V - v)*w/w' + v (1) 3702 * 3703 * Let W be the total weight of the entities before reweight, 3704 * since V' is the new weighted average of entities: 3705 * 3706 * V' = (WV + w'v - wv) / (W + w' - w) (2) 3707 * 3708 * by using (1) & (2) we obtain: 3709 * 3710 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v 3711 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v 3712 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v 3713 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3) 3714 * 3715 * Since we are doing at !0-lag point which means V != v, we 3716 * can simplify (3): 3717 * 3718 * ==> W / (W + w' - w) = w / w' 3719 * ==> Ww' = Ww + ww' - ww 3720 * ==> W * (w' - w) = w * (w' - w) 3721 * ==> W = w (re-weight indicates w' != w) 3722 * 3723 * So the cfs_rq contains only one entity, hence vruntime of 3724 * the entity @v should always equal to the cfs_rq's weighted 3725 * average vruntime @V, which means we will always re-weight 3726 * at 0-lag point, thus breach assumption. Proof completed. 3727 * 3728 * 3729 * COROLLARY #2: Re-weight does NOT affect weighted average 3730 * vruntime of all the entities. 3731 * 3732 * Proof: According to corollary #1, Eq. (1) should be: 3733 * 3734 * (V - v)*w = (V' - v')*w' 3735 * ==> v' = V' - (V - v)*w/w' (4) 3736 * 3737 * According to the weighted average formula, we have: 3738 * 3739 * V' = (WV - wv + w'v') / (W - w + w') 3740 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w') 3741 * = (WV - wv + w'V' - Vw + wv) / (W - w + w') 3742 * = (WV + w'V' - Vw) / (W - w + w') 3743 * 3744 * ==> V'*(W - w + w') = WV + w'V' - Vw 3745 * ==> V' * (W - w) = (W - w) * V (5) 3746 * 3747 * If the entity is the only one in the cfs_rq, then reweight 3748 * always occurs at 0-lag point, so V won't change. Or else 3749 * there are other entities, hence W != w, then Eq. (5) turns 3750 * into V' = V. So V won't change in either case, proof done. 3751 * 3752 * 3753 * So according to corollary #1 & #2, the effect of re-weight 3754 * on vruntime should be: 3755 * 3756 * v' = V' - (V - v) * w / w' (4) 3757 * = V - (V - v) * w / w' 3758 * = V - vl * w / w' 3759 * = V - vl' 3760 */ 3761 if (avruntime != se->vruntime) { 3762 vlag = entity_lag(avruntime, se); 3763 vlag = div_s64(vlag * old_weight, weight); 3764 se->vruntime = avruntime - vlag; 3765 } 3766 3767 /* 3768 * DEADLINE 3769 * -------- 3770 * 3771 * When the weight changes, the virtual time slope changes and 3772 * we should adjust the relative virtual deadline accordingly. 3773 * 3774 * d' = v' + (d - v)*w/w' 3775 * = V' - (V - v)*w/w' + (d - v)*w/w' 3776 * = V - (V - v)*w/w' + (d - v)*w/w' 3777 * = V + (d - V)*w/w' 3778 */ 3779 vslice = (s64)(se->deadline - avruntime); 3780 vslice = div_s64(vslice * old_weight, weight); 3781 se->deadline = avruntime + vslice; 3782 } 3783 3784 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 3785 unsigned long weight) 3786 { 3787 bool curr = cfs_rq->curr == se; 3788 u64 avruntime; 3789 3790 if (se->on_rq) { 3791 /* commit outstanding execution time */ 3792 update_curr(cfs_rq); 3793 avruntime = avg_vruntime(cfs_rq); 3794 if (!curr) 3795 __dequeue_entity(cfs_rq, se); 3796 update_load_sub(&cfs_rq->load, se->load.weight); 3797 } 3798 dequeue_load_avg(cfs_rq, se); 3799 3800 if (se->on_rq) { 3801 reweight_eevdf(se, avruntime, weight); 3802 } else { 3803 /* 3804 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i), 3805 * we need to scale se->vlag when w_i changes. 3806 */ 3807 se->vlag = div_s64(se->vlag * se->load.weight, weight); 3808 } 3809 3810 update_load_set(&se->load, weight); 3811 3812 #ifdef CONFIG_SMP 3813 do { 3814 u32 divider = get_pelt_divider(&se->avg); 3815 3816 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider); 3817 } while (0); 3818 #endif 3819 3820 enqueue_load_avg(cfs_rq, se); 3821 if (se->on_rq) { 3822 update_load_add(&cfs_rq->load, se->load.weight); 3823 if (!curr) 3824 __enqueue_entity(cfs_rq, se); 3825 3826 /* 3827 * The entity's vruntime has been adjusted, so let's check 3828 * whether the rq-wide min_vruntime needs updated too. Since 3829 * the calculations above require stable min_vruntime rather 3830 * than up-to-date one, we do the update at the end of the 3831 * reweight process. 3832 */ 3833 update_min_vruntime(cfs_rq); 3834 } 3835 } 3836 3837 void reweight_task(struct task_struct *p, const struct load_weight *lw) 3838 { 3839 struct sched_entity *se = &p->se; 3840 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3841 struct load_weight *load = &se->load; 3842 3843 reweight_entity(cfs_rq, se, lw->weight); 3844 load->inv_weight = lw->inv_weight; 3845 } 3846 3847 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 3848 3849 #ifdef CONFIG_FAIR_GROUP_SCHED 3850 #ifdef CONFIG_SMP 3851 /* 3852 * All this does is approximate the hierarchical proportion which includes that 3853 * global sum we all love to hate. 3854 * 3855 * That is, the weight of a group entity, is the proportional share of the 3856 * group weight based on the group runqueue weights. That is: 3857 * 3858 * tg->weight * grq->load.weight 3859 * ge->load.weight = ----------------------------- (1) 3860 * \Sum grq->load.weight 3861 * 3862 * Now, because computing that sum is prohibitively expensive to compute (been 3863 * there, done that) we approximate it with this average stuff. The average 3864 * moves slower and therefore the approximation is cheaper and more stable. 3865 * 3866 * So instead of the above, we substitute: 3867 * 3868 * grq->load.weight -> grq->avg.load_avg (2) 3869 * 3870 * which yields the following: 3871 * 3872 * tg->weight * grq->avg.load_avg 3873 * ge->load.weight = ------------------------------ (3) 3874 * tg->load_avg 3875 * 3876 * Where: tg->load_avg ~= \Sum grq->avg.load_avg 3877 * 3878 * That is shares_avg, and it is right (given the approximation (2)). 3879 * 3880 * The problem with it is that because the average is slow -- it was designed 3881 * to be exactly that of course -- this leads to transients in boundary 3882 * conditions. In specific, the case where the group was idle and we start the 3883 * one task. It takes time for our CPU's grq->avg.load_avg to build up, 3884 * yielding bad latency etc.. 3885 * 3886 * Now, in that special case (1) reduces to: 3887 * 3888 * tg->weight * grq->load.weight 3889 * ge->load.weight = ----------------------------- = tg->weight (4) 3890 * grp->load.weight 3891 * 3892 * That is, the sum collapses because all other CPUs are idle; the UP scenario. 3893 * 3894 * So what we do is modify our approximation (3) to approach (4) in the (near) 3895 * UP case, like: 3896 * 3897 * ge->load.weight = 3898 * 3899 * tg->weight * grq->load.weight 3900 * --------------------------------------------------- (5) 3901 * tg->load_avg - grq->avg.load_avg + grq->load.weight 3902 * 3903 * But because grq->load.weight can drop to 0, resulting in a divide by zero, 3904 * we need to use grq->avg.load_avg as its lower bound, which then gives: 3905 * 3906 * 3907 * tg->weight * grq->load.weight 3908 * ge->load.weight = ----------------------------- (6) 3909 * tg_load_avg' 3910 * 3911 * Where: 3912 * 3913 * tg_load_avg' = tg->load_avg - grq->avg.load_avg + 3914 * max(grq->load.weight, grq->avg.load_avg) 3915 * 3916 * And that is shares_weight and is icky. In the (near) UP case it approaches 3917 * (4) while in the normal case it approaches (3). It consistently 3918 * overestimates the ge->load.weight and therefore: 3919 * 3920 * \Sum ge->load.weight >= tg->weight 3921 * 3922 * hence icky! 3923 */ 3924 static long calc_group_shares(struct cfs_rq *cfs_rq) 3925 { 3926 long tg_weight, tg_shares, load, shares; 3927 struct task_group *tg = cfs_rq->tg; 3928 3929 tg_shares = READ_ONCE(tg->shares); 3930 3931 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg); 3932 3933 tg_weight = atomic_long_read(&tg->load_avg); 3934 3935 /* Ensure tg_weight >= load */ 3936 tg_weight -= cfs_rq->tg_load_avg_contrib; 3937 tg_weight += load; 3938 3939 shares = (tg_shares * load); 3940 if (tg_weight) 3941 shares /= tg_weight; 3942 3943 /* 3944 * MIN_SHARES has to be unscaled here to support per-CPU partitioning 3945 * of a group with small tg->shares value. It is a floor value which is 3946 * assigned as a minimum load.weight to the sched_entity representing 3947 * the group on a CPU. 3948 * 3949 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024 3950 * on an 8-core system with 8 tasks each runnable on one CPU shares has 3951 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In 3952 * case no task is runnable on a CPU MIN_SHARES=2 should be returned 3953 * instead of 0. 3954 */ 3955 return clamp_t(long, shares, MIN_SHARES, tg_shares); 3956 } 3957 #endif /* CONFIG_SMP */ 3958 3959 /* 3960 * Recomputes the group entity based on the current state of its group 3961 * runqueue. 3962 */ 3963 static void update_cfs_group(struct sched_entity *se) 3964 { 3965 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 3966 long shares; 3967 3968 if (!gcfs_rq) 3969 return; 3970 3971 if (throttled_hierarchy(gcfs_rq)) 3972 return; 3973 3974 #ifndef CONFIG_SMP 3975 shares = READ_ONCE(gcfs_rq->tg->shares); 3976 #else 3977 shares = calc_group_shares(gcfs_rq); 3978 #endif 3979 if (unlikely(se->load.weight != shares)) 3980 reweight_entity(cfs_rq_of(se), se, shares); 3981 } 3982 3983 #else /* CONFIG_FAIR_GROUP_SCHED */ 3984 static inline void update_cfs_group(struct sched_entity *se) 3985 { 3986 } 3987 #endif /* CONFIG_FAIR_GROUP_SCHED */ 3988 3989 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags) 3990 { 3991 struct rq *rq = rq_of(cfs_rq); 3992 3993 if (&rq->cfs == cfs_rq) { 3994 /* 3995 * There are a few boundary cases this might miss but it should 3996 * get called often enough that that should (hopefully) not be 3997 * a real problem. 3998 * 3999 * It will not get called when we go idle, because the idle 4000 * thread is a different class (!fair), nor will the utilization 4001 * number include things like RT tasks. 4002 * 4003 * As is, the util number is not freq-invariant (we'd have to 4004 * implement arch_scale_freq_capacity() for that). 4005 * 4006 * See cpu_util_cfs(). 4007 */ 4008 cpufreq_update_util(rq, flags); 4009 } 4010 } 4011 4012 #ifdef CONFIG_SMP 4013 static inline bool load_avg_is_decayed(struct sched_avg *sa) 4014 { 4015 if (sa->load_sum) 4016 return false; 4017 4018 if (sa->util_sum) 4019 return false; 4020 4021 if (sa->runnable_sum) 4022 return false; 4023 4024 /* 4025 * _avg must be null when _sum are null because _avg = _sum / divider 4026 * Make sure that rounding and/or propagation of PELT values never 4027 * break this. 4028 */ 4029 SCHED_WARN_ON(sa->load_avg || 4030 sa->util_avg || 4031 sa->runnable_avg); 4032 4033 return true; 4034 } 4035 4036 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 4037 { 4038 return u64_u32_load_copy(cfs_rq->avg.last_update_time, 4039 cfs_rq->last_update_time_copy); 4040 } 4041 #ifdef CONFIG_FAIR_GROUP_SCHED 4042 /* 4043 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list 4044 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list 4045 * bottom-up, we only have to test whether the cfs_rq before us on the list 4046 * is our child. 4047 * If cfs_rq is not on the list, test whether a child needs its to be added to 4048 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details). 4049 */ 4050 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq) 4051 { 4052 struct cfs_rq *prev_cfs_rq; 4053 struct list_head *prev; 4054 4055 if (cfs_rq->on_list) { 4056 prev = cfs_rq->leaf_cfs_rq_list.prev; 4057 } else { 4058 struct rq *rq = rq_of(cfs_rq); 4059 4060 prev = rq->tmp_alone_branch; 4061 } 4062 4063 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list); 4064 4065 return (prev_cfs_rq->tg->parent == cfs_rq->tg); 4066 } 4067 4068 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 4069 { 4070 if (cfs_rq->load.weight) 4071 return false; 4072 4073 if (!load_avg_is_decayed(&cfs_rq->avg)) 4074 return false; 4075 4076 if (child_cfs_rq_on_list(cfs_rq)) 4077 return false; 4078 4079 return true; 4080 } 4081 4082 /** 4083 * update_tg_load_avg - update the tg's load avg 4084 * @cfs_rq: the cfs_rq whose avg changed 4085 * 4086 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load. 4087 * However, because tg->load_avg is a global value there are performance 4088 * considerations. 4089 * 4090 * In order to avoid having to look at the other cfs_rq's, we use a 4091 * differential update where we store the last value we propagated. This in 4092 * turn allows skipping updates if the differential is 'small'. 4093 * 4094 * Updating tg's load_avg is necessary before update_cfs_share(). 4095 */ 4096 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) 4097 { 4098 long delta; 4099 u64 now; 4100 4101 /* 4102 * No need to update load_avg for root_task_group as it is not used. 4103 */ 4104 if (cfs_rq->tg == &root_task_group) 4105 return; 4106 4107 /* rq has been offline and doesn't contribute to the share anymore: */ 4108 if (!cpu_active(cpu_of(rq_of(cfs_rq)))) 4109 return; 4110 4111 /* 4112 * For migration heavy workloads, access to tg->load_avg can be 4113 * unbound. Limit the update rate to at most once per ms. 4114 */ 4115 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4116 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC) 4117 return; 4118 4119 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 4120 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 4121 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4122 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 4123 cfs_rq->last_update_tg_load_avg = now; 4124 } 4125 } 4126 4127 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq) 4128 { 4129 long delta; 4130 u64 now; 4131 4132 /* 4133 * No need to update load_avg for root_task_group, as it is not used. 4134 */ 4135 if (cfs_rq->tg == &root_task_group) 4136 return; 4137 4138 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq))); 4139 delta = 0 - cfs_rq->tg_load_avg_contrib; 4140 atomic_long_add(delta, &cfs_rq->tg->load_avg); 4141 cfs_rq->tg_load_avg_contrib = 0; 4142 cfs_rq->last_update_tg_load_avg = now; 4143 } 4144 4145 /* CPU offline callback: */ 4146 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq) 4147 { 4148 struct task_group *tg; 4149 4150 lockdep_assert_rq_held(rq); 4151 4152 /* 4153 * The rq clock has already been updated in 4154 * set_rq_offline(), so we should skip updating 4155 * the rq clock again in unthrottle_cfs_rq(). 4156 */ 4157 rq_clock_start_loop_update(rq); 4158 4159 rcu_read_lock(); 4160 list_for_each_entry_rcu(tg, &task_groups, list) { 4161 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 4162 4163 clear_tg_load_avg(cfs_rq); 4164 } 4165 rcu_read_unlock(); 4166 4167 rq_clock_stop_loop_update(rq); 4168 } 4169 4170 /* 4171 * Called within set_task_rq() right before setting a task's CPU. The 4172 * caller only guarantees p->pi_lock is held; no other assumptions, 4173 * including the state of rq->lock, should be made. 4174 */ 4175 void set_task_rq_fair(struct sched_entity *se, 4176 struct cfs_rq *prev, struct cfs_rq *next) 4177 { 4178 u64 p_last_update_time; 4179 u64 n_last_update_time; 4180 4181 if (!sched_feat(ATTACH_AGE_LOAD)) 4182 return; 4183 4184 /* 4185 * We are supposed to update the task to "current" time, then its up to 4186 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 4187 * getting what current time is, so simply throw away the out-of-date 4188 * time. This will result in the wakee task is less decayed, but giving 4189 * the wakee more load sounds not bad. 4190 */ 4191 if (!(se->avg.last_update_time && prev)) 4192 return; 4193 4194 p_last_update_time = cfs_rq_last_update_time(prev); 4195 n_last_update_time = cfs_rq_last_update_time(next); 4196 4197 __update_load_avg_blocked_se(p_last_update_time, se); 4198 se->avg.last_update_time = n_last_update_time; 4199 } 4200 4201 /* 4202 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to 4203 * propagate its contribution. The key to this propagation is the invariant 4204 * that for each group: 4205 * 4206 * ge->avg == grq->avg (1) 4207 * 4208 * _IFF_ we look at the pure running and runnable sums. Because they 4209 * represent the very same entity, just at different points in the hierarchy. 4210 * 4211 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial 4212 * and simply copies the running/runnable sum over (but still wrong, because 4213 * the group entity and group rq do not have their PELT windows aligned). 4214 * 4215 * However, update_tg_cfs_load() is more complex. So we have: 4216 * 4217 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2) 4218 * 4219 * And since, like util, the runnable part should be directly transferable, 4220 * the following would _appear_ to be the straight forward approach: 4221 * 4222 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3) 4223 * 4224 * And per (1) we have: 4225 * 4226 * ge->avg.runnable_avg == grq->avg.runnable_avg 4227 * 4228 * Which gives: 4229 * 4230 * ge->load.weight * grq->avg.load_avg 4231 * ge->avg.load_avg = ----------------------------------- (4) 4232 * grq->load.weight 4233 * 4234 * Except that is wrong! 4235 * 4236 * Because while for entities historical weight is not important and we 4237 * really only care about our future and therefore can consider a pure 4238 * runnable sum, runqueues can NOT do this. 4239 * 4240 * We specifically want runqueues to have a load_avg that includes 4241 * historical weights. Those represent the blocked load, the load we expect 4242 * to (shortly) return to us. This only works by keeping the weights as 4243 * integral part of the sum. We therefore cannot decompose as per (3). 4244 * 4245 * Another reason this doesn't work is that runnable isn't a 0-sum entity. 4246 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the 4247 * rq itself is runnable anywhere between 2/3 and 1 depending on how the 4248 * runnable section of these tasks overlap (or not). If they were to perfectly 4249 * align the rq as a whole would be runnable 2/3 of the time. If however we 4250 * always have at least 1 runnable task, the rq as a whole is always runnable. 4251 * 4252 * So we'll have to approximate.. :/ 4253 * 4254 * Given the constraint: 4255 * 4256 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX 4257 * 4258 * We can construct a rule that adds runnable to a rq by assuming minimal 4259 * overlap. 4260 * 4261 * On removal, we'll assume each task is equally runnable; which yields: 4262 * 4263 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight 4264 * 4265 * XXX: only do this for the part of runnable > running ? 4266 * 4267 */ 4268 static inline void 4269 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4270 { 4271 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg; 4272 u32 new_sum, divider; 4273 4274 /* Nothing to update */ 4275 if (!delta_avg) 4276 return; 4277 4278 /* 4279 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4280 * See ___update_load_avg() for details. 4281 */ 4282 divider = get_pelt_divider(&cfs_rq->avg); 4283 4284 4285 /* Set new sched_entity's utilization */ 4286 se->avg.util_avg = gcfs_rq->avg.util_avg; 4287 new_sum = se->avg.util_avg * divider; 4288 delta_sum = (long)new_sum - (long)se->avg.util_sum; 4289 se->avg.util_sum = new_sum; 4290 4291 /* Update parent cfs_rq utilization */ 4292 add_positive(&cfs_rq->avg.util_avg, delta_avg); 4293 add_positive(&cfs_rq->avg.util_sum, delta_sum); 4294 4295 /* See update_cfs_rq_load_avg() */ 4296 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4297 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4298 } 4299 4300 static inline void 4301 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4302 { 4303 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg; 4304 u32 new_sum, divider; 4305 4306 /* Nothing to update */ 4307 if (!delta_avg) 4308 return; 4309 4310 /* 4311 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4312 * See ___update_load_avg() for details. 4313 */ 4314 divider = get_pelt_divider(&cfs_rq->avg); 4315 4316 /* Set new sched_entity's runnable */ 4317 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg; 4318 new_sum = se->avg.runnable_avg * divider; 4319 delta_sum = (long)new_sum - (long)se->avg.runnable_sum; 4320 se->avg.runnable_sum = new_sum; 4321 4322 /* Update parent cfs_rq runnable */ 4323 add_positive(&cfs_rq->avg.runnable_avg, delta_avg); 4324 add_positive(&cfs_rq->avg.runnable_sum, delta_sum); 4325 /* See update_cfs_rq_load_avg() */ 4326 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4327 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4328 } 4329 4330 static inline void 4331 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq) 4332 { 4333 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum; 4334 unsigned long load_avg; 4335 u64 load_sum = 0; 4336 s64 delta_sum; 4337 u32 divider; 4338 4339 if (!runnable_sum) 4340 return; 4341 4342 gcfs_rq->prop_runnable_sum = 0; 4343 4344 /* 4345 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4346 * See ___update_load_avg() for details. 4347 */ 4348 divider = get_pelt_divider(&cfs_rq->avg); 4349 4350 if (runnable_sum >= 0) { 4351 /* 4352 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until 4353 * the CPU is saturated running == runnable. 4354 */ 4355 runnable_sum += se->avg.load_sum; 4356 runnable_sum = min_t(long, runnable_sum, divider); 4357 } else { 4358 /* 4359 * Estimate the new unweighted runnable_sum of the gcfs_rq by 4360 * assuming all tasks are equally runnable. 4361 */ 4362 if (scale_load_down(gcfs_rq->load.weight)) { 4363 load_sum = div_u64(gcfs_rq->avg.load_sum, 4364 scale_load_down(gcfs_rq->load.weight)); 4365 } 4366 4367 /* But make sure to not inflate se's runnable */ 4368 runnable_sum = min(se->avg.load_sum, load_sum); 4369 } 4370 4371 /* 4372 * runnable_sum can't be lower than running_sum 4373 * Rescale running sum to be in the same range as runnable sum 4374 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT] 4375 * runnable_sum is in [0 : LOAD_AVG_MAX] 4376 */ 4377 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT; 4378 runnable_sum = max(runnable_sum, running_sum); 4379 4380 load_sum = se_weight(se) * runnable_sum; 4381 load_avg = div_u64(load_sum, divider); 4382 4383 delta_avg = load_avg - se->avg.load_avg; 4384 if (!delta_avg) 4385 return; 4386 4387 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum; 4388 4389 se->avg.load_sum = runnable_sum; 4390 se->avg.load_avg = load_avg; 4391 add_positive(&cfs_rq->avg.load_avg, delta_avg); 4392 add_positive(&cfs_rq->avg.load_sum, delta_sum); 4393 /* See update_cfs_rq_load_avg() */ 4394 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum, 4395 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER); 4396 } 4397 4398 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) 4399 { 4400 cfs_rq->propagate = 1; 4401 cfs_rq->prop_runnable_sum += runnable_sum; 4402 } 4403 4404 /* Update task and its cfs_rq load average */ 4405 static inline int propagate_entity_load_avg(struct sched_entity *se) 4406 { 4407 struct cfs_rq *cfs_rq, *gcfs_rq; 4408 4409 if (entity_is_task(se)) 4410 return 0; 4411 4412 gcfs_rq = group_cfs_rq(se); 4413 if (!gcfs_rq->propagate) 4414 return 0; 4415 4416 gcfs_rq->propagate = 0; 4417 4418 cfs_rq = cfs_rq_of(se); 4419 4420 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum); 4421 4422 update_tg_cfs_util(cfs_rq, se, gcfs_rq); 4423 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq); 4424 update_tg_cfs_load(cfs_rq, se, gcfs_rq); 4425 4426 trace_pelt_cfs_tp(cfs_rq); 4427 trace_pelt_se_tp(se); 4428 4429 return 1; 4430 } 4431 4432 /* 4433 * Check if we need to update the load and the utilization of a blocked 4434 * group_entity: 4435 */ 4436 static inline bool skip_blocked_update(struct sched_entity *se) 4437 { 4438 struct cfs_rq *gcfs_rq = group_cfs_rq(se); 4439 4440 /* 4441 * If sched_entity still have not zero load or utilization, we have to 4442 * decay it: 4443 */ 4444 if (se->avg.load_avg || se->avg.util_avg) 4445 return false; 4446 4447 /* 4448 * If there is a pending propagation, we have to update the load and 4449 * the utilization of the sched_entity: 4450 */ 4451 if (gcfs_rq->propagate) 4452 return false; 4453 4454 /* 4455 * Otherwise, the load and the utilization of the sched_entity is 4456 * already zero and there is no pending propagation, so it will be a 4457 * waste of time to try to decay it: 4458 */ 4459 return true; 4460 } 4461 4462 #else /* CONFIG_FAIR_GROUP_SCHED */ 4463 4464 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {} 4465 4466 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {} 4467 4468 static inline int propagate_entity_load_avg(struct sched_entity *se) 4469 { 4470 return 0; 4471 } 4472 4473 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {} 4474 4475 #endif /* CONFIG_FAIR_GROUP_SCHED */ 4476 4477 #ifdef CONFIG_NO_HZ_COMMON 4478 static inline void migrate_se_pelt_lag(struct sched_entity *se) 4479 { 4480 u64 throttled = 0, now, lut; 4481 struct cfs_rq *cfs_rq; 4482 struct rq *rq; 4483 bool is_idle; 4484 4485 if (load_avg_is_decayed(&se->avg)) 4486 return; 4487 4488 cfs_rq = cfs_rq_of(se); 4489 rq = rq_of(cfs_rq); 4490 4491 rcu_read_lock(); 4492 is_idle = is_idle_task(rcu_dereference(rq->curr)); 4493 rcu_read_unlock(); 4494 4495 /* 4496 * The lag estimation comes with a cost we don't want to pay all the 4497 * time. Hence, limiting to the case where the source CPU is idle and 4498 * we know we are at the greatest risk to have an outdated clock. 4499 */ 4500 if (!is_idle) 4501 return; 4502 4503 /* 4504 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where: 4505 * 4506 * last_update_time (the cfs_rq's last_update_time) 4507 * = cfs_rq_clock_pelt()@cfs_rq_idle 4508 * = rq_clock_pelt()@cfs_rq_idle 4509 * - cfs->throttled_clock_pelt_time@cfs_rq_idle 4510 * 4511 * cfs_idle_lag (delta between rq's update and cfs_rq's update) 4512 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle 4513 * 4514 * rq_idle_lag (delta between now and rq's update) 4515 * = sched_clock_cpu() - rq_clock()@rq_idle 4516 * 4517 * We can then write: 4518 * 4519 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time + 4520 * sched_clock_cpu() - rq_clock()@rq_idle 4521 * Where: 4522 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle 4523 * rq_clock()@rq_idle is rq->clock_idle 4524 * cfs->throttled_clock_pelt_time@cfs_rq_idle 4525 * is cfs_rq->throttled_pelt_idle 4526 */ 4527 4528 #ifdef CONFIG_CFS_BANDWIDTH 4529 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle); 4530 /* The clock has been stopped for throttling */ 4531 if (throttled == U64_MAX) 4532 return; 4533 #endif 4534 now = u64_u32_load(rq->clock_pelt_idle); 4535 /* 4536 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case 4537 * is observed the old clock_pelt_idle value and the new clock_idle, 4538 * which lead to an underestimation. The opposite would lead to an 4539 * overestimation. 4540 */ 4541 smp_rmb(); 4542 lut = cfs_rq_last_update_time(cfs_rq); 4543 4544 now -= throttled; 4545 if (now < lut) 4546 /* 4547 * cfs_rq->avg.last_update_time is more recent than our 4548 * estimation, let's use it. 4549 */ 4550 now = lut; 4551 else 4552 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle); 4553 4554 __update_load_avg_blocked_se(now, se); 4555 } 4556 #else 4557 static void migrate_se_pelt_lag(struct sched_entity *se) {} 4558 #endif 4559 4560 /** 4561 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 4562 * @now: current time, as per cfs_rq_clock_pelt() 4563 * @cfs_rq: cfs_rq to update 4564 * 4565 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 4566 * avg. The immediate corollary is that all (fair) tasks must be attached. 4567 * 4568 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 4569 * 4570 * Return: true if the load decayed or we removed load. 4571 * 4572 * Since both these conditions indicate a changed cfs_rq->avg.load we should 4573 * call update_tg_load_avg() when this function returns true. 4574 */ 4575 static inline int 4576 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq) 4577 { 4578 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0; 4579 struct sched_avg *sa = &cfs_rq->avg; 4580 int decayed = 0; 4581 4582 if (cfs_rq->removed.nr) { 4583 unsigned long r; 4584 u32 divider = get_pelt_divider(&cfs_rq->avg); 4585 4586 raw_spin_lock(&cfs_rq->removed.lock); 4587 swap(cfs_rq->removed.util_avg, removed_util); 4588 swap(cfs_rq->removed.load_avg, removed_load); 4589 swap(cfs_rq->removed.runnable_avg, removed_runnable); 4590 cfs_rq->removed.nr = 0; 4591 raw_spin_unlock(&cfs_rq->removed.lock); 4592 4593 r = removed_load; 4594 sub_positive(&sa->load_avg, r); 4595 sub_positive(&sa->load_sum, r * divider); 4596 /* See sa->util_sum below */ 4597 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER); 4598 4599 r = removed_util; 4600 sub_positive(&sa->util_avg, r); 4601 sub_positive(&sa->util_sum, r * divider); 4602 /* 4603 * Because of rounding, se->util_sum might ends up being +1 more than 4604 * cfs->util_sum. Although this is not a problem by itself, detaching 4605 * a lot of tasks with the rounding problem between 2 updates of 4606 * util_avg (~1ms) can make cfs->util_sum becoming null whereas 4607 * cfs_util_avg is not. 4608 * Check that util_sum is still above its lower bound for the new 4609 * util_avg. Given that period_contrib might have moved since the last 4610 * sync, we are only sure that util_sum must be above or equal to 4611 * util_avg * minimum possible divider 4612 */ 4613 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER); 4614 4615 r = removed_runnable; 4616 sub_positive(&sa->runnable_avg, r); 4617 sub_positive(&sa->runnable_sum, r * divider); 4618 /* See sa->util_sum above */ 4619 sa->runnable_sum = max_t(u32, sa->runnable_sum, 4620 sa->runnable_avg * PELT_MIN_DIVIDER); 4621 4622 /* 4623 * removed_runnable is the unweighted version of removed_load so we 4624 * can use it to estimate removed_load_sum. 4625 */ 4626 add_tg_cfs_propagate(cfs_rq, 4627 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT); 4628 4629 decayed = 1; 4630 } 4631 4632 decayed |= __update_load_avg_cfs_rq(now, cfs_rq); 4633 u64_u32_store_copy(sa->last_update_time, 4634 cfs_rq->last_update_time_copy, 4635 sa->last_update_time); 4636 return decayed; 4637 } 4638 4639 /** 4640 * attach_entity_load_avg - attach this entity to its cfs_rq load avg 4641 * @cfs_rq: cfs_rq to attach to 4642 * @se: sched_entity to attach 4643 * 4644 * Must call update_cfs_rq_load_avg() before this, since we rely on 4645 * cfs_rq->avg.last_update_time being current. 4646 */ 4647 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4648 { 4649 /* 4650 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se. 4651 * See ___update_load_avg() for details. 4652 */ 4653 u32 divider = get_pelt_divider(&cfs_rq->avg); 4654 4655 /* 4656 * When we attach the @se to the @cfs_rq, we must align the decay 4657 * window because without that, really weird and wonderful things can 4658 * happen. 4659 * 4660 * XXX illustrate 4661 */ 4662 se->avg.last_update_time = cfs_rq->avg.last_update_time; 4663 se->avg.period_contrib = cfs_rq->avg.period_contrib; 4664 4665 /* 4666 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new 4667 * period_contrib. This isn't strictly correct, but since we're 4668 * entirely outside of the PELT hierarchy, nobody cares if we truncate 4669 * _sum a little. 4670 */ 4671 se->avg.util_sum = se->avg.util_avg * divider; 4672 4673 se->avg.runnable_sum = se->avg.runnable_avg * divider; 4674 4675 se->avg.load_sum = se->avg.load_avg * divider; 4676 if (se_weight(se) < se->avg.load_sum) 4677 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se)); 4678 else 4679 se->avg.load_sum = 1; 4680 4681 enqueue_load_avg(cfs_rq, se); 4682 cfs_rq->avg.util_avg += se->avg.util_avg; 4683 cfs_rq->avg.util_sum += se->avg.util_sum; 4684 cfs_rq->avg.runnable_avg += se->avg.runnable_avg; 4685 cfs_rq->avg.runnable_sum += se->avg.runnable_sum; 4686 4687 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum); 4688 4689 cfs_rq_util_change(cfs_rq, 0); 4690 4691 trace_pelt_cfs_tp(cfs_rq); 4692 } 4693 4694 /** 4695 * detach_entity_load_avg - detach this entity from its cfs_rq load avg 4696 * @cfs_rq: cfs_rq to detach from 4697 * @se: sched_entity to detach 4698 * 4699 * Must call update_cfs_rq_load_avg() before this, since we rely on 4700 * cfs_rq->avg.last_update_time being current. 4701 */ 4702 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 4703 { 4704 dequeue_load_avg(cfs_rq, se); 4705 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 4706 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 4707 /* See update_cfs_rq_load_avg() */ 4708 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum, 4709 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER); 4710 4711 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg); 4712 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum); 4713 /* See update_cfs_rq_load_avg() */ 4714 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum, 4715 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER); 4716 4717 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum); 4718 4719 cfs_rq_util_change(cfs_rq, 0); 4720 4721 trace_pelt_cfs_tp(cfs_rq); 4722 } 4723 4724 /* 4725 * Optional action to be done while updating the load average 4726 */ 4727 #define UPDATE_TG 0x1 4728 #define SKIP_AGE_LOAD 0x2 4729 #define DO_ATTACH 0x4 4730 #define DO_DETACH 0x8 4731 4732 /* Update task and its cfs_rq load average */ 4733 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 4734 { 4735 u64 now = cfs_rq_clock_pelt(cfs_rq); 4736 int decayed; 4737 4738 /* 4739 * Track task load average for carrying it to new CPU after migrated, and 4740 * track group sched_entity load average for task_h_load calculation in migration 4741 */ 4742 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) 4743 __update_load_avg_se(now, cfs_rq, se); 4744 4745 decayed = update_cfs_rq_load_avg(now, cfs_rq); 4746 decayed |= propagate_entity_load_avg(se); 4747 4748 if (!se->avg.last_update_time && (flags & DO_ATTACH)) { 4749 4750 /* 4751 * DO_ATTACH means we're here from enqueue_entity(). 4752 * !last_update_time means we've passed through 4753 * migrate_task_rq_fair() indicating we migrated. 4754 * 4755 * IOW we're enqueueing a task on a new CPU. 4756 */ 4757 attach_entity_load_avg(cfs_rq, se); 4758 update_tg_load_avg(cfs_rq); 4759 4760 } else if (flags & DO_DETACH) { 4761 /* 4762 * DO_DETACH means we're here from dequeue_entity() 4763 * and we are migrating task out of the CPU. 4764 */ 4765 detach_entity_load_avg(cfs_rq, se); 4766 update_tg_load_avg(cfs_rq); 4767 } else if (decayed) { 4768 cfs_rq_util_change(cfs_rq, 0); 4769 4770 if (flags & UPDATE_TG) 4771 update_tg_load_avg(cfs_rq); 4772 } 4773 } 4774 4775 /* 4776 * Synchronize entity load avg of dequeued entity without locking 4777 * the previous rq. 4778 */ 4779 static void sync_entity_load_avg(struct sched_entity *se) 4780 { 4781 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4782 u64 last_update_time; 4783 4784 last_update_time = cfs_rq_last_update_time(cfs_rq); 4785 __update_load_avg_blocked_se(last_update_time, se); 4786 } 4787 4788 /* 4789 * Task first catches up with cfs_rq, and then subtract 4790 * itself from the cfs_rq (task must be off the queue now). 4791 */ 4792 static void remove_entity_load_avg(struct sched_entity *se) 4793 { 4794 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4795 unsigned long flags; 4796 4797 /* 4798 * tasks cannot exit without having gone through wake_up_new_task() -> 4799 * enqueue_task_fair() which will have added things to the cfs_rq, 4800 * so we can remove unconditionally. 4801 */ 4802 4803 sync_entity_load_avg(se); 4804 4805 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags); 4806 ++cfs_rq->removed.nr; 4807 cfs_rq->removed.util_avg += se->avg.util_avg; 4808 cfs_rq->removed.load_avg += se->avg.load_avg; 4809 cfs_rq->removed.runnable_avg += se->avg.runnable_avg; 4810 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags); 4811 } 4812 4813 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq) 4814 { 4815 return cfs_rq->avg.runnable_avg; 4816 } 4817 4818 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 4819 { 4820 return cfs_rq->avg.load_avg; 4821 } 4822 4823 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf); 4824 4825 static inline unsigned long task_util(struct task_struct *p) 4826 { 4827 return READ_ONCE(p->se.avg.util_avg); 4828 } 4829 4830 static inline unsigned long task_runnable(struct task_struct *p) 4831 { 4832 return READ_ONCE(p->se.avg.runnable_avg); 4833 } 4834 4835 static inline unsigned long _task_util_est(struct task_struct *p) 4836 { 4837 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED; 4838 } 4839 4840 static inline unsigned long task_util_est(struct task_struct *p) 4841 { 4842 return max(task_util(p), _task_util_est(p)); 4843 } 4844 4845 static inline void util_est_enqueue(struct cfs_rq *cfs_rq, 4846 struct task_struct *p) 4847 { 4848 unsigned int enqueued; 4849 4850 if (!sched_feat(UTIL_EST)) 4851 return; 4852 4853 /* Update root cfs_rq's estimated utilization */ 4854 enqueued = cfs_rq->avg.util_est; 4855 enqueued += _task_util_est(p); 4856 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4857 4858 trace_sched_util_est_cfs_tp(cfs_rq); 4859 } 4860 4861 static inline void util_est_dequeue(struct cfs_rq *cfs_rq, 4862 struct task_struct *p) 4863 { 4864 unsigned int enqueued; 4865 4866 if (!sched_feat(UTIL_EST)) 4867 return; 4868 4869 /* Update root cfs_rq's estimated utilization */ 4870 enqueued = cfs_rq->avg.util_est; 4871 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p)); 4872 WRITE_ONCE(cfs_rq->avg.util_est, enqueued); 4873 4874 trace_sched_util_est_cfs_tp(cfs_rq); 4875 } 4876 4877 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100) 4878 4879 static inline void util_est_update(struct cfs_rq *cfs_rq, 4880 struct task_struct *p, 4881 bool task_sleep) 4882 { 4883 unsigned int ewma, dequeued, last_ewma_diff; 4884 4885 if (!sched_feat(UTIL_EST)) 4886 return; 4887 4888 /* 4889 * Skip update of task's estimated utilization when the task has not 4890 * yet completed an activation, e.g. being migrated. 4891 */ 4892 if (!task_sleep) 4893 return; 4894 4895 /* Get current estimate of utilization */ 4896 ewma = READ_ONCE(p->se.avg.util_est); 4897 4898 /* 4899 * If the PELT values haven't changed since enqueue time, 4900 * skip the util_est update. 4901 */ 4902 if (ewma & UTIL_AVG_UNCHANGED) 4903 return; 4904 4905 /* Get utilization at dequeue */ 4906 dequeued = task_util(p); 4907 4908 /* 4909 * Reset EWMA on utilization increases, the moving average is used only 4910 * to smooth utilization decreases. 4911 */ 4912 if (ewma <= dequeued) { 4913 ewma = dequeued; 4914 goto done; 4915 } 4916 4917 /* 4918 * Skip update of task's estimated utilization when its members are 4919 * already ~1% close to its last activation value. 4920 */ 4921 last_ewma_diff = ewma - dequeued; 4922 if (last_ewma_diff < UTIL_EST_MARGIN) 4923 goto done; 4924 4925 /* 4926 * To avoid overestimation of actual task utilization, skip updates if 4927 * we cannot grant there is idle time in this CPU. 4928 */ 4929 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)))) 4930 return; 4931 4932 /* 4933 * To avoid underestimate of task utilization, skip updates of EWMA if 4934 * we cannot grant that thread got all CPU time it wanted. 4935 */ 4936 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p)) 4937 goto done; 4938 4939 4940 /* 4941 * Update Task's estimated utilization 4942 * 4943 * When *p completes an activation we can consolidate another sample 4944 * of the task size. This is done by using this value to update the 4945 * Exponential Weighted Moving Average (EWMA): 4946 * 4947 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1) 4948 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1) 4949 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1) 4950 * = w * ( -last_ewma_diff ) + ewma(t-1) 4951 * = w * (-last_ewma_diff + ewma(t-1) / w) 4952 * 4953 * Where 'w' is the weight of new samples, which is configured to be 4954 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT) 4955 */ 4956 ewma <<= UTIL_EST_WEIGHT_SHIFT; 4957 ewma -= last_ewma_diff; 4958 ewma >>= UTIL_EST_WEIGHT_SHIFT; 4959 done: 4960 ewma |= UTIL_AVG_UNCHANGED; 4961 WRITE_ONCE(p->se.avg.util_est, ewma); 4962 4963 trace_sched_util_est_se_tp(&p->se); 4964 } 4965 4966 static inline unsigned long get_actual_cpu_capacity(int cpu) 4967 { 4968 unsigned long capacity = arch_scale_cpu_capacity(cpu); 4969 4970 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu)); 4971 4972 return capacity; 4973 } 4974 4975 static inline int util_fits_cpu(unsigned long util, 4976 unsigned long uclamp_min, 4977 unsigned long uclamp_max, 4978 int cpu) 4979 { 4980 unsigned long capacity = capacity_of(cpu); 4981 unsigned long capacity_orig; 4982 bool fits, uclamp_max_fits; 4983 4984 /* 4985 * Check if the real util fits without any uclamp boost/cap applied. 4986 */ 4987 fits = fits_capacity(util, capacity); 4988 4989 if (!uclamp_is_used()) 4990 return fits; 4991 4992 /* 4993 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and 4994 * uclamp_max. We only care about capacity pressure (by using 4995 * capacity_of()) for comparing against the real util. 4996 * 4997 * If a task is boosted to 1024 for example, we don't want a tiny 4998 * pressure to skew the check whether it fits a CPU or not. 4999 * 5000 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it 5001 * should fit a little cpu even if there's some pressure. 5002 * 5003 * Only exception is for HW or cpufreq pressure since it has a direct impact 5004 * on available OPP of the system. 5005 * 5006 * We honour it for uclamp_min only as a drop in performance level 5007 * could result in not getting the requested minimum performance level. 5008 * 5009 * For uclamp_max, we can tolerate a drop in performance level as the 5010 * goal is to cap the task. So it's okay if it's getting less. 5011 */ 5012 capacity_orig = arch_scale_cpu_capacity(cpu); 5013 5014 /* 5015 * We want to force a task to fit a cpu as implied by uclamp_max. 5016 * But we do have some corner cases to cater for.. 5017 * 5018 * 5019 * C=z 5020 * | ___ 5021 * | C=y | | 5022 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5023 * | C=x | | | | 5024 * | ___ | | | | 5025 * | | | | | | | (util somewhere in this region) 5026 * | | | | | | | 5027 * | | | | | | | 5028 * +---------------------------------------- 5029 * CPU0 CPU1 CPU2 5030 * 5031 * In the above example if a task is capped to a specific performance 5032 * point, y, then when: 5033 * 5034 * * util = 80% of x then it does not fit on CPU0 and should migrate 5035 * to CPU1 5036 * * util = 80% of y then it is forced to fit on CPU1 to honour 5037 * uclamp_max request. 5038 * 5039 * which is what we're enforcing here. A task always fits if 5040 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig, 5041 * the normal upmigration rules should withhold still. 5042 * 5043 * Only exception is when we are on max capacity, then we need to be 5044 * careful not to block overutilized state. This is so because: 5045 * 5046 * 1. There's no concept of capping at max_capacity! We can't go 5047 * beyond this performance level anyway. 5048 * 2. The system is being saturated when we're operating near 5049 * max capacity, it doesn't make sense to block overutilized. 5050 */ 5051 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE); 5052 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig); 5053 fits = fits || uclamp_max_fits; 5054 5055 /* 5056 * 5057 * C=z 5058 * | ___ (region a, capped, util >= uclamp_max) 5059 * | C=y | | 5060 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max 5061 * | C=x | | | | 5062 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max) 5063 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min 5064 * | | | | | | | 5065 * | | | | | | | (region c, boosted, util < uclamp_min) 5066 * +---------------------------------------- 5067 * CPU0 CPU1 CPU2 5068 * 5069 * a) If util > uclamp_max, then we're capped, we don't care about 5070 * actual fitness value here. We only care if uclamp_max fits 5071 * capacity without taking margin/pressure into account. 5072 * See comment above. 5073 * 5074 * b) If uclamp_min <= util <= uclamp_max, then the normal 5075 * fits_capacity() rules apply. Except we need to ensure that we 5076 * enforce we remain within uclamp_max, see comment above. 5077 * 5078 * c) If util < uclamp_min, then we are boosted. Same as (b) but we 5079 * need to take into account the boosted value fits the CPU without 5080 * taking margin/pressure into account. 5081 * 5082 * Cases (a) and (b) are handled in the 'fits' variable already. We 5083 * just need to consider an extra check for case (c) after ensuring we 5084 * handle the case uclamp_min > uclamp_max. 5085 */ 5086 uclamp_min = min(uclamp_min, uclamp_max); 5087 if (fits && (util < uclamp_min) && 5088 (uclamp_min > get_actual_cpu_capacity(cpu))) 5089 return -1; 5090 5091 return fits; 5092 } 5093 5094 static inline int task_fits_cpu(struct task_struct *p, int cpu) 5095 { 5096 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN); 5097 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX); 5098 unsigned long util = task_util_est(p); 5099 /* 5100 * Return true only if the cpu fully fits the task requirements, which 5101 * include the utilization but also the performance hints. 5102 */ 5103 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0); 5104 } 5105 5106 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) 5107 { 5108 int cpu = cpu_of(rq); 5109 5110 if (!sched_asym_cpucap_active()) 5111 return; 5112 5113 /* 5114 * Affinity allows us to go somewhere higher? Or are we on biggest 5115 * available CPU already? Or do we fit into this CPU ? 5116 */ 5117 if (!p || (p->nr_cpus_allowed == 1) || 5118 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) || 5119 task_fits_cpu(p, cpu)) { 5120 5121 rq->misfit_task_load = 0; 5122 return; 5123 } 5124 5125 /* 5126 * Make sure that misfit_task_load will not be null even if 5127 * task_h_load() returns 0. 5128 */ 5129 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1); 5130 } 5131 5132 #else /* CONFIG_SMP */ 5133 5134 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq) 5135 { 5136 return !cfs_rq->nr_running; 5137 } 5138 5139 #define UPDATE_TG 0x0 5140 #define SKIP_AGE_LOAD 0x0 5141 #define DO_ATTACH 0x0 5142 #define DO_DETACH 0x0 5143 5144 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1) 5145 { 5146 cfs_rq_util_change(cfs_rq, 0); 5147 } 5148 5149 static inline void remove_entity_load_avg(struct sched_entity *se) {} 5150 5151 static inline void 5152 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5153 static inline void 5154 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 5155 5156 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf) 5157 { 5158 return 0; 5159 } 5160 5161 static inline void 5162 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5163 5164 static inline void 5165 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {} 5166 5167 static inline void 5168 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p, 5169 bool task_sleep) {} 5170 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {} 5171 5172 #endif /* CONFIG_SMP */ 5173 5174 static void 5175 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5176 { 5177 u64 vslice, vruntime = avg_vruntime(cfs_rq); 5178 s64 lag = 0; 5179 5180 se->slice = sysctl_sched_base_slice; 5181 vslice = calc_delta_fair(se->slice, se); 5182 5183 /* 5184 * Due to how V is constructed as the weighted average of entities, 5185 * adding tasks with positive lag, or removing tasks with negative lag 5186 * will move 'time' backwards, this can screw around with the lag of 5187 * other tasks. 5188 * 5189 * EEVDF: placement strategy #1 / #2 5190 */ 5191 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) { 5192 struct sched_entity *curr = cfs_rq->curr; 5193 unsigned long load; 5194 5195 lag = se->vlag; 5196 5197 /* 5198 * If we want to place a task and preserve lag, we have to 5199 * consider the effect of the new entity on the weighted 5200 * average and compensate for this, otherwise lag can quickly 5201 * evaporate. 5202 * 5203 * Lag is defined as: 5204 * 5205 * lag_i = S - s_i = w_i * (V - v_i) 5206 * 5207 * To avoid the 'w_i' term all over the place, we only track 5208 * the virtual lag: 5209 * 5210 * vl_i = V - v_i <=> v_i = V - vl_i 5211 * 5212 * And we take V to be the weighted average of all v: 5213 * 5214 * V = (\Sum w_j*v_j) / W 5215 * 5216 * Where W is: \Sum w_j 5217 * 5218 * Then, the weighted average after adding an entity with lag 5219 * vl_i is given by: 5220 * 5221 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i) 5222 * = (W*V + w_i*(V - vl_i)) / (W + w_i) 5223 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i) 5224 * = (V*(W + w_i) - w_i*l) / (W + w_i) 5225 * = V - w_i*vl_i / (W + w_i) 5226 * 5227 * And the actual lag after adding an entity with vl_i is: 5228 * 5229 * vl'_i = V' - v_i 5230 * = V - w_i*vl_i / (W + w_i) - (V - vl_i) 5231 * = vl_i - w_i*vl_i / (W + w_i) 5232 * 5233 * Which is strictly less than vl_i. So in order to preserve lag 5234 * we should inflate the lag before placement such that the 5235 * effective lag after placement comes out right. 5236 * 5237 * As such, invert the above relation for vl'_i to get the vl_i 5238 * we need to use such that the lag after placement is the lag 5239 * we computed before dequeue. 5240 * 5241 * vl'_i = vl_i - w_i*vl_i / (W + w_i) 5242 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i) 5243 * 5244 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i 5245 * = W*vl_i 5246 * 5247 * vl_i = (W + w_i)*vl'_i / W 5248 */ 5249 load = cfs_rq->avg_load; 5250 if (curr && curr->on_rq) 5251 load += scale_load_down(curr->load.weight); 5252 5253 lag *= load + scale_load_down(se->load.weight); 5254 if (WARN_ON_ONCE(!load)) 5255 load = 1; 5256 lag = div_s64(lag, load); 5257 } 5258 5259 se->vruntime = vruntime - lag; 5260 5261 /* 5262 * When joining the competition; the existing tasks will be, 5263 * on average, halfway through their slice, as such start tasks 5264 * off with half a slice to ease into the competition. 5265 */ 5266 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL)) 5267 vslice /= 2; 5268 5269 /* 5270 * EEVDF: vd_i = ve_i + r_i/w_i 5271 */ 5272 se->deadline = se->vruntime + vslice; 5273 } 5274 5275 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 5276 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq); 5277 5278 static inline bool cfs_bandwidth_used(void); 5279 5280 static void 5281 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5282 { 5283 bool curr = cfs_rq->curr == se; 5284 5285 /* 5286 * If we're the current task, we must renormalise before calling 5287 * update_curr(). 5288 */ 5289 if (curr) 5290 place_entity(cfs_rq, se, flags); 5291 5292 update_curr(cfs_rq); 5293 5294 /* 5295 * When enqueuing a sched_entity, we must: 5296 * - Update loads to have both entity and cfs_rq synced with now. 5297 * - For group_entity, update its runnable_weight to reflect the new 5298 * h_nr_running of its group cfs_rq. 5299 * - For group_entity, update its weight to reflect the new share of 5300 * its group cfs_rq 5301 * - Add its new weight to cfs_rq->load.weight 5302 */ 5303 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH); 5304 se_update_runnable(se); 5305 /* 5306 * XXX update_load_avg() above will have attached us to the pelt sum; 5307 * but update_cfs_group() here will re-adjust the weight and have to 5308 * undo/redo all that. Seems wasteful. 5309 */ 5310 update_cfs_group(se); 5311 5312 /* 5313 * XXX now that the entity has been re-weighted, and it's lag adjusted, 5314 * we can place the entity. 5315 */ 5316 if (!curr) 5317 place_entity(cfs_rq, se, flags); 5318 5319 account_entity_enqueue(cfs_rq, se); 5320 5321 /* Entity has migrated, no longer consider this task hot */ 5322 if (flags & ENQUEUE_MIGRATED) 5323 se->exec_start = 0; 5324 5325 check_schedstat_required(); 5326 update_stats_enqueue_fair(cfs_rq, se, flags); 5327 if (!curr) 5328 __enqueue_entity(cfs_rq, se); 5329 se->on_rq = 1; 5330 5331 if (cfs_rq->nr_running == 1) { 5332 check_enqueue_throttle(cfs_rq); 5333 if (!throttled_hierarchy(cfs_rq)) { 5334 list_add_leaf_cfs_rq(cfs_rq); 5335 } else { 5336 #ifdef CONFIG_CFS_BANDWIDTH 5337 struct rq *rq = rq_of(cfs_rq); 5338 5339 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock) 5340 cfs_rq->throttled_clock = rq_clock(rq); 5341 if (!cfs_rq->throttled_clock_self) 5342 cfs_rq->throttled_clock_self = rq_clock(rq); 5343 #endif 5344 } 5345 } 5346 } 5347 5348 static void __clear_buddies_next(struct sched_entity *se) 5349 { 5350 for_each_sched_entity(se) { 5351 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5352 if (cfs_rq->next != se) 5353 break; 5354 5355 cfs_rq->next = NULL; 5356 } 5357 } 5358 5359 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 5360 { 5361 if (cfs_rq->next == se) 5362 __clear_buddies_next(se); 5363 } 5364 5365 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5366 5367 static void 5368 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 5369 { 5370 int action = UPDATE_TG; 5371 5372 if (entity_is_task(se) && task_on_rq_migrating(task_of(se))) 5373 action |= DO_DETACH; 5374 5375 /* 5376 * Update run-time statistics of the 'current'. 5377 */ 5378 update_curr(cfs_rq); 5379 5380 /* 5381 * When dequeuing a sched_entity, we must: 5382 * - Update loads to have both entity and cfs_rq synced with now. 5383 * - For group_entity, update its runnable_weight to reflect the new 5384 * h_nr_running of its group cfs_rq. 5385 * - Subtract its previous weight from cfs_rq->load.weight. 5386 * - For group entity, update its weight to reflect the new share 5387 * of its group cfs_rq. 5388 */ 5389 update_load_avg(cfs_rq, se, action); 5390 se_update_runnable(se); 5391 5392 update_stats_dequeue_fair(cfs_rq, se, flags); 5393 5394 clear_buddies(cfs_rq, se); 5395 5396 update_entity_lag(cfs_rq, se); 5397 if (se != cfs_rq->curr) 5398 __dequeue_entity(cfs_rq, se); 5399 se->on_rq = 0; 5400 account_entity_dequeue(cfs_rq, se); 5401 5402 /* return excess runtime on last dequeue */ 5403 return_cfs_rq_runtime(cfs_rq); 5404 5405 update_cfs_group(se); 5406 5407 /* 5408 * Now advance min_vruntime if @se was the entity holding it back, 5409 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be 5410 * put back on, and if we advance min_vruntime, we'll be placed back 5411 * further than we started -- i.e. we'll be penalized. 5412 */ 5413 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE) 5414 update_min_vruntime(cfs_rq); 5415 5416 if (cfs_rq->nr_running == 0) 5417 update_idle_cfs_rq_clock_pelt(cfs_rq); 5418 } 5419 5420 static void 5421 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 5422 { 5423 clear_buddies(cfs_rq, se); 5424 5425 /* 'current' is not kept within the tree. */ 5426 if (se->on_rq) { 5427 /* 5428 * Any task has to be enqueued before it get to execute on 5429 * a CPU. So account for the time it spent waiting on the 5430 * runqueue. 5431 */ 5432 update_stats_wait_end_fair(cfs_rq, se); 5433 __dequeue_entity(cfs_rq, se); 5434 update_load_avg(cfs_rq, se, UPDATE_TG); 5435 /* 5436 * HACK, stash a copy of deadline at the point of pick in vlag, 5437 * which isn't used until dequeue. 5438 */ 5439 se->vlag = se->deadline; 5440 } 5441 5442 update_stats_curr_start(cfs_rq, se); 5443 cfs_rq->curr = se; 5444 5445 /* 5446 * Track our maximum slice length, if the CPU's load is at 5447 * least twice that of our own weight (i.e. don't track it 5448 * when there are only lesser-weight tasks around): 5449 */ 5450 if (schedstat_enabled() && 5451 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) { 5452 struct sched_statistics *stats; 5453 5454 stats = __schedstats_from_se(se); 5455 __schedstat_set(stats->slice_max, 5456 max((u64)stats->slice_max, 5457 se->sum_exec_runtime - se->prev_sum_exec_runtime)); 5458 } 5459 5460 se->prev_sum_exec_runtime = se->sum_exec_runtime; 5461 } 5462 5463 /* 5464 * Pick the next process, keeping these things in mind, in this order: 5465 * 1) keep things fair between processes/task groups 5466 * 2) pick the "next" process, since someone really wants that to run 5467 * 3) pick the "last" process, for cache locality 5468 * 4) do not run the "skip" process, if something else is available 5469 */ 5470 static struct sched_entity * 5471 pick_next_entity(struct cfs_rq *cfs_rq) 5472 { 5473 /* 5474 * Enabling NEXT_BUDDY will affect latency but not fairness. 5475 */ 5476 if (sched_feat(NEXT_BUDDY) && 5477 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) 5478 return cfs_rq->next; 5479 5480 return pick_eevdf(cfs_rq); 5481 } 5482 5483 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 5484 5485 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 5486 { 5487 /* 5488 * If still on the runqueue then deactivate_task() 5489 * was not called and update_curr() has to be done: 5490 */ 5491 if (prev->on_rq) 5492 update_curr(cfs_rq); 5493 5494 /* throttle cfs_rqs exceeding runtime */ 5495 check_cfs_rq_runtime(cfs_rq); 5496 5497 if (prev->on_rq) { 5498 update_stats_wait_start_fair(cfs_rq, prev); 5499 /* Put 'current' back into the tree. */ 5500 __enqueue_entity(cfs_rq, prev); 5501 /* in !on_rq case, update occurred at dequeue */ 5502 update_load_avg(cfs_rq, prev, 0); 5503 } 5504 cfs_rq->curr = NULL; 5505 } 5506 5507 static void 5508 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 5509 { 5510 /* 5511 * Update run-time statistics of the 'current'. 5512 */ 5513 update_curr(cfs_rq); 5514 5515 /* 5516 * Ensure that runnable average is periodically updated. 5517 */ 5518 update_load_avg(cfs_rq, curr, UPDATE_TG); 5519 update_cfs_group(curr); 5520 5521 #ifdef CONFIG_SCHED_HRTICK 5522 /* 5523 * queued ticks are scheduled to match the slice, so don't bother 5524 * validating it and just reschedule. 5525 */ 5526 if (queued) { 5527 resched_curr(rq_of(cfs_rq)); 5528 return; 5529 } 5530 /* 5531 * don't let the period tick interfere with the hrtick preemption 5532 */ 5533 if (!sched_feat(DOUBLE_TICK) && 5534 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 5535 return; 5536 #endif 5537 } 5538 5539 5540 /************************************************** 5541 * CFS bandwidth control machinery 5542 */ 5543 5544 #ifdef CONFIG_CFS_BANDWIDTH 5545 5546 #ifdef CONFIG_JUMP_LABEL 5547 static struct static_key __cfs_bandwidth_used; 5548 5549 static inline bool cfs_bandwidth_used(void) 5550 { 5551 return static_key_false(&__cfs_bandwidth_used); 5552 } 5553 5554 void cfs_bandwidth_usage_inc(void) 5555 { 5556 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used); 5557 } 5558 5559 void cfs_bandwidth_usage_dec(void) 5560 { 5561 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used); 5562 } 5563 #else /* CONFIG_JUMP_LABEL */ 5564 static bool cfs_bandwidth_used(void) 5565 { 5566 return true; 5567 } 5568 5569 void cfs_bandwidth_usage_inc(void) {} 5570 void cfs_bandwidth_usage_dec(void) {} 5571 #endif /* CONFIG_JUMP_LABEL */ 5572 5573 /* 5574 * default period for cfs group bandwidth. 5575 * default: 0.1s, units: nanoseconds 5576 */ 5577 static inline u64 default_cfs_period(void) 5578 { 5579 return 100000000ULL; 5580 } 5581 5582 static inline u64 sched_cfs_bandwidth_slice(void) 5583 { 5584 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 5585 } 5586 5587 /* 5588 * Replenish runtime according to assigned quota. We use sched_clock_cpu 5589 * directly instead of rq->clock to avoid adding additional synchronization 5590 * around rq->lock. 5591 * 5592 * requires cfs_b->lock 5593 */ 5594 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 5595 { 5596 s64 runtime; 5597 5598 if (unlikely(cfs_b->quota == RUNTIME_INF)) 5599 return; 5600 5601 cfs_b->runtime += cfs_b->quota; 5602 runtime = cfs_b->runtime_snap - cfs_b->runtime; 5603 if (runtime > 0) { 5604 cfs_b->burst_time += runtime; 5605 cfs_b->nr_burst++; 5606 } 5607 5608 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst); 5609 cfs_b->runtime_snap = cfs_b->runtime; 5610 } 5611 5612 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 5613 { 5614 return &tg->cfs_bandwidth; 5615 } 5616 5617 /* returns 0 on failure to allocate runtime */ 5618 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b, 5619 struct cfs_rq *cfs_rq, u64 target_runtime) 5620 { 5621 u64 min_amount, amount = 0; 5622 5623 lockdep_assert_held(&cfs_b->lock); 5624 5625 /* note: this is a positive sum as runtime_remaining <= 0 */ 5626 min_amount = target_runtime - cfs_rq->runtime_remaining; 5627 5628 if (cfs_b->quota == RUNTIME_INF) 5629 amount = min_amount; 5630 else { 5631 start_cfs_bandwidth(cfs_b); 5632 5633 if (cfs_b->runtime > 0) { 5634 amount = min(cfs_b->runtime, min_amount); 5635 cfs_b->runtime -= amount; 5636 cfs_b->idle = 0; 5637 } 5638 } 5639 5640 cfs_rq->runtime_remaining += amount; 5641 5642 return cfs_rq->runtime_remaining > 0; 5643 } 5644 5645 /* returns 0 on failure to allocate runtime */ 5646 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 5647 { 5648 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5649 int ret; 5650 5651 raw_spin_lock(&cfs_b->lock); 5652 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice()); 5653 raw_spin_unlock(&cfs_b->lock); 5654 5655 return ret; 5656 } 5657 5658 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5659 { 5660 /* dock delta_exec before expiring quota (as it could span periods) */ 5661 cfs_rq->runtime_remaining -= delta_exec; 5662 5663 if (likely(cfs_rq->runtime_remaining > 0)) 5664 return; 5665 5666 if (cfs_rq->throttled) 5667 return; 5668 /* 5669 * if we're unable to extend our runtime we resched so that the active 5670 * hierarchy can be throttled 5671 */ 5672 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 5673 resched_curr(rq_of(cfs_rq)); 5674 } 5675 5676 static __always_inline 5677 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 5678 { 5679 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 5680 return; 5681 5682 __account_cfs_rq_runtime(cfs_rq, delta_exec); 5683 } 5684 5685 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 5686 { 5687 return cfs_bandwidth_used() && cfs_rq->throttled; 5688 } 5689 5690 /* check whether cfs_rq, or any parent, is throttled */ 5691 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 5692 { 5693 return cfs_bandwidth_used() && cfs_rq->throttle_count; 5694 } 5695 5696 /* 5697 * Ensure that neither of the group entities corresponding to src_cpu or 5698 * dest_cpu are members of a throttled hierarchy when performing group 5699 * load-balance operations. 5700 */ 5701 static inline int throttled_lb_pair(struct task_group *tg, 5702 int src_cpu, int dest_cpu) 5703 { 5704 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 5705 5706 src_cfs_rq = tg->cfs_rq[src_cpu]; 5707 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 5708 5709 return throttled_hierarchy(src_cfs_rq) || 5710 throttled_hierarchy(dest_cfs_rq); 5711 } 5712 5713 static int tg_unthrottle_up(struct task_group *tg, void *data) 5714 { 5715 struct rq *rq = data; 5716 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5717 5718 cfs_rq->throttle_count--; 5719 if (!cfs_rq->throttle_count) { 5720 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) - 5721 cfs_rq->throttled_clock_pelt; 5722 5723 /* Add cfs_rq with load or one or more already running entities to the list */ 5724 if (!cfs_rq_is_decayed(cfs_rq)) 5725 list_add_leaf_cfs_rq(cfs_rq); 5726 5727 if (cfs_rq->throttled_clock_self) { 5728 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self; 5729 5730 cfs_rq->throttled_clock_self = 0; 5731 5732 if (SCHED_WARN_ON((s64)delta < 0)) 5733 delta = 0; 5734 5735 cfs_rq->throttled_clock_self_time += delta; 5736 } 5737 } 5738 5739 return 0; 5740 } 5741 5742 static int tg_throttle_down(struct task_group *tg, void *data) 5743 { 5744 struct rq *rq = data; 5745 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 5746 5747 /* group is entering throttled state, stop time */ 5748 if (!cfs_rq->throttle_count) { 5749 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq); 5750 list_del_leaf_cfs_rq(cfs_rq); 5751 5752 SCHED_WARN_ON(cfs_rq->throttled_clock_self); 5753 if (cfs_rq->nr_running) 5754 cfs_rq->throttled_clock_self = rq_clock(rq); 5755 } 5756 cfs_rq->throttle_count++; 5757 5758 return 0; 5759 } 5760 5761 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq) 5762 { 5763 struct rq *rq = rq_of(cfs_rq); 5764 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5765 struct sched_entity *se; 5766 long task_delta, idle_task_delta, dequeue = 1; 5767 5768 raw_spin_lock(&cfs_b->lock); 5769 /* This will start the period timer if necessary */ 5770 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) { 5771 /* 5772 * We have raced with bandwidth becoming available, and if we 5773 * actually throttled the timer might not unthrottle us for an 5774 * entire period. We additionally needed to make sure that any 5775 * subsequent check_cfs_rq_runtime calls agree not to throttle 5776 * us, as we may commit to do cfs put_prev+pick_next, so we ask 5777 * for 1ns of runtime rather than just check cfs_b. 5778 */ 5779 dequeue = 0; 5780 } else { 5781 list_add_tail_rcu(&cfs_rq->throttled_list, 5782 &cfs_b->throttled_cfs_rq); 5783 } 5784 raw_spin_unlock(&cfs_b->lock); 5785 5786 if (!dequeue) 5787 return false; /* Throttle no longer required. */ 5788 5789 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 5790 5791 /* freeze hierarchy runnable averages while throttled */ 5792 rcu_read_lock(); 5793 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 5794 rcu_read_unlock(); 5795 5796 task_delta = cfs_rq->h_nr_running; 5797 idle_task_delta = cfs_rq->idle_h_nr_running; 5798 for_each_sched_entity(se) { 5799 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5800 /* throttled entity or throttle-on-deactivate */ 5801 if (!se->on_rq) 5802 goto done; 5803 5804 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 5805 5806 if (cfs_rq_is_idle(group_cfs_rq(se))) 5807 idle_task_delta = cfs_rq->h_nr_running; 5808 5809 qcfs_rq->h_nr_running -= task_delta; 5810 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5811 5812 if (qcfs_rq->load.weight) { 5813 /* Avoid re-evaluating load for this entity: */ 5814 se = parent_entity(se); 5815 break; 5816 } 5817 } 5818 5819 for_each_sched_entity(se) { 5820 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5821 /* throttled entity or throttle-on-deactivate */ 5822 if (!se->on_rq) 5823 goto done; 5824 5825 update_load_avg(qcfs_rq, se, 0); 5826 se_update_runnable(se); 5827 5828 if (cfs_rq_is_idle(group_cfs_rq(se))) 5829 idle_task_delta = cfs_rq->h_nr_running; 5830 5831 qcfs_rq->h_nr_running -= task_delta; 5832 qcfs_rq->idle_h_nr_running -= idle_task_delta; 5833 } 5834 5835 /* At this point se is NULL and we are at root level*/ 5836 sub_nr_running(rq, task_delta); 5837 5838 done: 5839 /* 5840 * Note: distribution will already see us throttled via the 5841 * throttled-list. rq->lock protects completion. 5842 */ 5843 cfs_rq->throttled = 1; 5844 SCHED_WARN_ON(cfs_rq->throttled_clock); 5845 if (cfs_rq->nr_running) 5846 cfs_rq->throttled_clock = rq_clock(rq); 5847 return true; 5848 } 5849 5850 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 5851 { 5852 struct rq *rq = rq_of(cfs_rq); 5853 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 5854 struct sched_entity *se; 5855 long task_delta, idle_task_delta; 5856 5857 se = cfs_rq->tg->se[cpu_of(rq)]; 5858 5859 cfs_rq->throttled = 0; 5860 5861 update_rq_clock(rq); 5862 5863 raw_spin_lock(&cfs_b->lock); 5864 if (cfs_rq->throttled_clock) { 5865 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 5866 cfs_rq->throttled_clock = 0; 5867 } 5868 list_del_rcu(&cfs_rq->throttled_list); 5869 raw_spin_unlock(&cfs_b->lock); 5870 5871 /* update hierarchical throttle state */ 5872 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 5873 5874 if (!cfs_rq->load.weight) { 5875 if (!cfs_rq->on_list) 5876 return; 5877 /* 5878 * Nothing to run but something to decay (on_list)? 5879 * Complete the branch. 5880 */ 5881 for_each_sched_entity(se) { 5882 if (list_add_leaf_cfs_rq(cfs_rq_of(se))) 5883 break; 5884 } 5885 goto unthrottle_throttle; 5886 } 5887 5888 task_delta = cfs_rq->h_nr_running; 5889 idle_task_delta = cfs_rq->idle_h_nr_running; 5890 for_each_sched_entity(se) { 5891 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5892 5893 if (se->on_rq) 5894 break; 5895 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP); 5896 5897 if (cfs_rq_is_idle(group_cfs_rq(se))) 5898 idle_task_delta = cfs_rq->h_nr_running; 5899 5900 qcfs_rq->h_nr_running += task_delta; 5901 qcfs_rq->idle_h_nr_running += idle_task_delta; 5902 5903 /* end evaluation on encountering a throttled cfs_rq */ 5904 if (cfs_rq_throttled(qcfs_rq)) 5905 goto unthrottle_throttle; 5906 } 5907 5908 for_each_sched_entity(se) { 5909 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 5910 5911 update_load_avg(qcfs_rq, se, UPDATE_TG); 5912 se_update_runnable(se); 5913 5914 if (cfs_rq_is_idle(group_cfs_rq(se))) 5915 idle_task_delta = cfs_rq->h_nr_running; 5916 5917 qcfs_rq->h_nr_running += task_delta; 5918 qcfs_rq->idle_h_nr_running += idle_task_delta; 5919 5920 /* end evaluation on encountering a throttled cfs_rq */ 5921 if (cfs_rq_throttled(qcfs_rq)) 5922 goto unthrottle_throttle; 5923 } 5924 5925 /* At this point se is NULL and we are at root level*/ 5926 add_nr_running(rq, task_delta); 5927 5928 unthrottle_throttle: 5929 assert_list_leaf_cfs_rq(rq); 5930 5931 /* Determine whether we need to wake up potentially idle CPU: */ 5932 if (rq->curr == rq->idle && rq->cfs.nr_running) 5933 resched_curr(rq); 5934 } 5935 5936 #ifdef CONFIG_SMP 5937 static void __cfsb_csd_unthrottle(void *arg) 5938 { 5939 struct cfs_rq *cursor, *tmp; 5940 struct rq *rq = arg; 5941 struct rq_flags rf; 5942 5943 rq_lock(rq, &rf); 5944 5945 /* 5946 * Iterating over the list can trigger several call to 5947 * update_rq_clock() in unthrottle_cfs_rq(). 5948 * Do it once and skip the potential next ones. 5949 */ 5950 update_rq_clock(rq); 5951 rq_clock_start_loop_update(rq); 5952 5953 /* 5954 * Since we hold rq lock we're safe from concurrent manipulation of 5955 * the CSD list. However, this RCU critical section annotates the 5956 * fact that we pair with sched_free_group_rcu(), so that we cannot 5957 * race with group being freed in the window between removing it 5958 * from the list and advancing to the next entry in the list. 5959 */ 5960 rcu_read_lock(); 5961 5962 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list, 5963 throttled_csd_list) { 5964 list_del_init(&cursor->throttled_csd_list); 5965 5966 if (cfs_rq_throttled(cursor)) 5967 unthrottle_cfs_rq(cursor); 5968 } 5969 5970 rcu_read_unlock(); 5971 5972 rq_clock_stop_loop_update(rq); 5973 rq_unlock(rq, &rf); 5974 } 5975 5976 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5977 { 5978 struct rq *rq = rq_of(cfs_rq); 5979 bool first; 5980 5981 if (rq == this_rq()) { 5982 unthrottle_cfs_rq(cfs_rq); 5983 return; 5984 } 5985 5986 /* Already enqueued */ 5987 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list))) 5988 return; 5989 5990 first = list_empty(&rq->cfsb_csd_list); 5991 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list); 5992 if (first) 5993 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd); 5994 } 5995 #else 5996 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 5997 { 5998 unthrottle_cfs_rq(cfs_rq); 5999 } 6000 #endif 6001 6002 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq) 6003 { 6004 lockdep_assert_rq_held(rq_of(cfs_rq)); 6005 6006 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) || 6007 cfs_rq->runtime_remaining <= 0)) 6008 return; 6009 6010 __unthrottle_cfs_rq_async(cfs_rq); 6011 } 6012 6013 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b) 6014 { 6015 int this_cpu = smp_processor_id(); 6016 u64 runtime, remaining = 1; 6017 bool throttled = false; 6018 struct cfs_rq *cfs_rq, *tmp; 6019 struct rq_flags rf; 6020 struct rq *rq; 6021 LIST_HEAD(local_unthrottle); 6022 6023 rcu_read_lock(); 6024 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 6025 throttled_list) { 6026 rq = rq_of(cfs_rq); 6027 6028 if (!remaining) { 6029 throttled = true; 6030 break; 6031 } 6032 6033 rq_lock_irqsave(rq, &rf); 6034 if (!cfs_rq_throttled(cfs_rq)) 6035 goto next; 6036 6037 /* Already queued for async unthrottle */ 6038 if (!list_empty(&cfs_rq->throttled_csd_list)) 6039 goto next; 6040 6041 /* By the above checks, this should never be true */ 6042 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0); 6043 6044 raw_spin_lock(&cfs_b->lock); 6045 runtime = -cfs_rq->runtime_remaining + 1; 6046 if (runtime > cfs_b->runtime) 6047 runtime = cfs_b->runtime; 6048 cfs_b->runtime -= runtime; 6049 remaining = cfs_b->runtime; 6050 raw_spin_unlock(&cfs_b->lock); 6051 6052 cfs_rq->runtime_remaining += runtime; 6053 6054 /* we check whether we're throttled above */ 6055 if (cfs_rq->runtime_remaining > 0) { 6056 if (cpu_of(rq) != this_cpu) { 6057 unthrottle_cfs_rq_async(cfs_rq); 6058 } else { 6059 /* 6060 * We currently only expect to be unthrottling 6061 * a single cfs_rq locally. 6062 */ 6063 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6064 list_add_tail(&cfs_rq->throttled_csd_list, 6065 &local_unthrottle); 6066 } 6067 } else { 6068 throttled = true; 6069 } 6070 6071 next: 6072 rq_unlock_irqrestore(rq, &rf); 6073 } 6074 6075 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle, 6076 throttled_csd_list) { 6077 struct rq *rq = rq_of(cfs_rq); 6078 6079 rq_lock_irqsave(rq, &rf); 6080 6081 list_del_init(&cfs_rq->throttled_csd_list); 6082 6083 if (cfs_rq_throttled(cfs_rq)) 6084 unthrottle_cfs_rq(cfs_rq); 6085 6086 rq_unlock_irqrestore(rq, &rf); 6087 } 6088 SCHED_WARN_ON(!list_empty(&local_unthrottle)); 6089 6090 rcu_read_unlock(); 6091 6092 return throttled; 6093 } 6094 6095 /* 6096 * Responsible for refilling a task_group's bandwidth and unthrottling its 6097 * cfs_rqs as appropriate. If there has been no activity within the last 6098 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 6099 * used to track this state. 6100 */ 6101 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags) 6102 { 6103 int throttled; 6104 6105 /* no need to continue the timer with no bandwidth constraint */ 6106 if (cfs_b->quota == RUNTIME_INF) 6107 goto out_deactivate; 6108 6109 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 6110 cfs_b->nr_periods += overrun; 6111 6112 /* Refill extra burst quota even if cfs_b->idle */ 6113 __refill_cfs_bandwidth_runtime(cfs_b); 6114 6115 /* 6116 * idle depends on !throttled (for the case of a large deficit), and if 6117 * we're going inactive then everything else can be deferred 6118 */ 6119 if (cfs_b->idle && !throttled) 6120 goto out_deactivate; 6121 6122 if (!throttled) { 6123 /* mark as potentially idle for the upcoming period */ 6124 cfs_b->idle = 1; 6125 return 0; 6126 } 6127 6128 /* account preceding periods in which throttling occurred */ 6129 cfs_b->nr_throttled += overrun; 6130 6131 /* 6132 * This check is repeated as we release cfs_b->lock while we unthrottle. 6133 */ 6134 while (throttled && cfs_b->runtime > 0) { 6135 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6136 /* we can't nest cfs_b->lock while distributing bandwidth */ 6137 throttled = distribute_cfs_runtime(cfs_b); 6138 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6139 } 6140 6141 /* 6142 * While we are ensured activity in the period following an 6143 * unthrottle, this also covers the case in which the new bandwidth is 6144 * insufficient to cover the existing bandwidth deficit. (Forcing the 6145 * timer to remain active while there are any throttled entities.) 6146 */ 6147 cfs_b->idle = 0; 6148 6149 return 0; 6150 6151 out_deactivate: 6152 return 1; 6153 } 6154 6155 /* a cfs_rq won't donate quota below this amount */ 6156 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 6157 /* minimum remaining period time to redistribute slack quota */ 6158 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 6159 /* how long we wait to gather additional slack before distributing */ 6160 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 6161 6162 /* 6163 * Are we near the end of the current quota period? 6164 * 6165 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 6166 * hrtimer base being cleared by hrtimer_start. In the case of 6167 * migrate_hrtimers, base is never cleared, so we are fine. 6168 */ 6169 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 6170 { 6171 struct hrtimer *refresh_timer = &cfs_b->period_timer; 6172 s64 remaining; 6173 6174 /* if the call-back is running a quota refresh is already occurring */ 6175 if (hrtimer_callback_running(refresh_timer)) 6176 return 1; 6177 6178 /* is a quota refresh about to occur? */ 6179 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 6180 if (remaining < (s64)min_expire) 6181 return 1; 6182 6183 return 0; 6184 } 6185 6186 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 6187 { 6188 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 6189 6190 /* if there's a quota refresh soon don't bother with slack */ 6191 if (runtime_refresh_within(cfs_b, min_left)) 6192 return; 6193 6194 /* don't push forwards an existing deferred unthrottle */ 6195 if (cfs_b->slack_started) 6196 return; 6197 cfs_b->slack_started = true; 6198 6199 hrtimer_start(&cfs_b->slack_timer, 6200 ns_to_ktime(cfs_bandwidth_slack_period), 6201 HRTIMER_MODE_REL); 6202 } 6203 6204 /* we know any runtime found here is valid as update_curr() precedes return */ 6205 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6206 { 6207 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 6208 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 6209 6210 if (slack_runtime <= 0) 6211 return; 6212 6213 raw_spin_lock(&cfs_b->lock); 6214 if (cfs_b->quota != RUNTIME_INF) { 6215 cfs_b->runtime += slack_runtime; 6216 6217 /* we are under rq->lock, defer unthrottling using a timer */ 6218 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 6219 !list_empty(&cfs_b->throttled_cfs_rq)) 6220 start_cfs_slack_bandwidth(cfs_b); 6221 } 6222 raw_spin_unlock(&cfs_b->lock); 6223 6224 /* even if it's not valid for return we don't want to try again */ 6225 cfs_rq->runtime_remaining -= slack_runtime; 6226 } 6227 6228 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6229 { 6230 if (!cfs_bandwidth_used()) 6231 return; 6232 6233 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 6234 return; 6235 6236 __return_cfs_rq_runtime(cfs_rq); 6237 } 6238 6239 /* 6240 * This is done with a timer (instead of inline with bandwidth return) since 6241 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 6242 */ 6243 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 6244 { 6245 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 6246 unsigned long flags; 6247 6248 /* confirm we're still not at a refresh boundary */ 6249 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6250 cfs_b->slack_started = false; 6251 6252 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 6253 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6254 return; 6255 } 6256 6257 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 6258 runtime = cfs_b->runtime; 6259 6260 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6261 6262 if (!runtime) 6263 return; 6264 6265 distribute_cfs_runtime(cfs_b); 6266 } 6267 6268 /* 6269 * When a group wakes up we want to make sure that its quota is not already 6270 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 6271 * runtime as update_curr() throttling can not trigger until it's on-rq. 6272 */ 6273 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 6274 { 6275 if (!cfs_bandwidth_used()) 6276 return; 6277 6278 /* an active group must be handled by the update_curr()->put() path */ 6279 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 6280 return; 6281 6282 /* ensure the group is not already throttled */ 6283 if (cfs_rq_throttled(cfs_rq)) 6284 return; 6285 6286 /* update runtime allocation */ 6287 account_cfs_rq_runtime(cfs_rq, 0); 6288 if (cfs_rq->runtime_remaining <= 0) 6289 throttle_cfs_rq(cfs_rq); 6290 } 6291 6292 static void sync_throttle(struct task_group *tg, int cpu) 6293 { 6294 struct cfs_rq *pcfs_rq, *cfs_rq; 6295 6296 if (!cfs_bandwidth_used()) 6297 return; 6298 6299 if (!tg->parent) 6300 return; 6301 6302 cfs_rq = tg->cfs_rq[cpu]; 6303 pcfs_rq = tg->parent->cfs_rq[cpu]; 6304 6305 cfs_rq->throttle_count = pcfs_rq->throttle_count; 6306 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu)); 6307 } 6308 6309 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 6310 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6311 { 6312 if (!cfs_bandwidth_used()) 6313 return false; 6314 6315 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 6316 return false; 6317 6318 /* 6319 * it's possible for a throttled entity to be forced into a running 6320 * state (e.g. set_curr_task), in this case we're finished. 6321 */ 6322 if (cfs_rq_throttled(cfs_rq)) 6323 return true; 6324 6325 return throttle_cfs_rq(cfs_rq); 6326 } 6327 6328 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 6329 { 6330 struct cfs_bandwidth *cfs_b = 6331 container_of(timer, struct cfs_bandwidth, slack_timer); 6332 6333 do_sched_cfs_slack_timer(cfs_b); 6334 6335 return HRTIMER_NORESTART; 6336 } 6337 6338 extern const u64 max_cfs_quota_period; 6339 6340 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 6341 { 6342 struct cfs_bandwidth *cfs_b = 6343 container_of(timer, struct cfs_bandwidth, period_timer); 6344 unsigned long flags; 6345 int overrun; 6346 int idle = 0; 6347 int count = 0; 6348 6349 raw_spin_lock_irqsave(&cfs_b->lock, flags); 6350 for (;;) { 6351 overrun = hrtimer_forward_now(timer, cfs_b->period); 6352 if (!overrun) 6353 break; 6354 6355 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags); 6356 6357 if (++count > 3) { 6358 u64 new, old = ktime_to_ns(cfs_b->period); 6359 6360 /* 6361 * Grow period by a factor of 2 to avoid losing precision. 6362 * Precision loss in the quota/period ratio can cause __cfs_schedulable 6363 * to fail. 6364 */ 6365 new = old * 2; 6366 if (new < max_cfs_quota_period) { 6367 cfs_b->period = ns_to_ktime(new); 6368 cfs_b->quota *= 2; 6369 cfs_b->burst *= 2; 6370 6371 pr_warn_ratelimited( 6372 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6373 smp_processor_id(), 6374 div_u64(new, NSEC_PER_USEC), 6375 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6376 } else { 6377 pr_warn_ratelimited( 6378 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n", 6379 smp_processor_id(), 6380 div_u64(old, NSEC_PER_USEC), 6381 div_u64(cfs_b->quota, NSEC_PER_USEC)); 6382 } 6383 6384 /* reset count so we don't come right back in here */ 6385 count = 0; 6386 } 6387 } 6388 if (idle) 6389 cfs_b->period_active = 0; 6390 raw_spin_unlock_irqrestore(&cfs_b->lock, flags); 6391 6392 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 6393 } 6394 6395 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) 6396 { 6397 raw_spin_lock_init(&cfs_b->lock); 6398 cfs_b->runtime = 0; 6399 cfs_b->quota = RUNTIME_INF; 6400 cfs_b->period = ns_to_ktime(default_cfs_period()); 6401 cfs_b->burst = 0; 6402 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF; 6403 6404 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 6405 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 6406 cfs_b->period_timer.function = sched_cfs_period_timer; 6407 6408 /* Add a random offset so that timers interleave */ 6409 hrtimer_set_expires(&cfs_b->period_timer, 6410 get_random_u32_below(cfs_b->period)); 6411 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6412 cfs_b->slack_timer.function = sched_cfs_slack_timer; 6413 cfs_b->slack_started = false; 6414 } 6415 6416 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 6417 { 6418 cfs_rq->runtime_enabled = 0; 6419 INIT_LIST_HEAD(&cfs_rq->throttled_list); 6420 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list); 6421 } 6422 6423 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6424 { 6425 lockdep_assert_held(&cfs_b->lock); 6426 6427 if (cfs_b->period_active) 6428 return; 6429 6430 cfs_b->period_active = 1; 6431 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 6432 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 6433 } 6434 6435 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 6436 { 6437 int __maybe_unused i; 6438 6439 /* init_cfs_bandwidth() was not called */ 6440 if (!cfs_b->throttled_cfs_rq.next) 6441 return; 6442 6443 hrtimer_cancel(&cfs_b->period_timer); 6444 hrtimer_cancel(&cfs_b->slack_timer); 6445 6446 /* 6447 * It is possible that we still have some cfs_rq's pending on a CSD 6448 * list, though this race is very rare. In order for this to occur, we 6449 * must have raced with the last task leaving the group while there 6450 * exist throttled cfs_rq(s), and the period_timer must have queued the 6451 * CSD item but the remote cpu has not yet processed it. To handle this, 6452 * we can simply flush all pending CSD work inline here. We're 6453 * guaranteed at this point that no additional cfs_rq of this group can 6454 * join a CSD list. 6455 */ 6456 #ifdef CONFIG_SMP 6457 for_each_possible_cpu(i) { 6458 struct rq *rq = cpu_rq(i); 6459 unsigned long flags; 6460 6461 if (list_empty(&rq->cfsb_csd_list)) 6462 continue; 6463 6464 local_irq_save(flags); 6465 __cfsb_csd_unthrottle(rq); 6466 local_irq_restore(flags); 6467 } 6468 #endif 6469 } 6470 6471 /* 6472 * Both these CPU hotplug callbacks race against unregister_fair_sched_group() 6473 * 6474 * The race is harmless, since modifying bandwidth settings of unhooked group 6475 * bits doesn't do much. 6476 */ 6477 6478 /* cpu online callback */ 6479 static void __maybe_unused update_runtime_enabled(struct rq *rq) 6480 { 6481 struct task_group *tg; 6482 6483 lockdep_assert_rq_held(rq); 6484 6485 rcu_read_lock(); 6486 list_for_each_entry_rcu(tg, &task_groups, list) { 6487 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 6488 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6489 6490 raw_spin_lock(&cfs_b->lock); 6491 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 6492 raw_spin_unlock(&cfs_b->lock); 6493 } 6494 rcu_read_unlock(); 6495 } 6496 6497 /* cpu offline callback */ 6498 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 6499 { 6500 struct task_group *tg; 6501 6502 lockdep_assert_rq_held(rq); 6503 6504 /* 6505 * The rq clock has already been updated in the 6506 * set_rq_offline(), so we should skip updating 6507 * the rq clock again in unthrottle_cfs_rq(). 6508 */ 6509 rq_clock_start_loop_update(rq); 6510 6511 rcu_read_lock(); 6512 list_for_each_entry_rcu(tg, &task_groups, list) { 6513 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 6514 6515 if (!cfs_rq->runtime_enabled) 6516 continue; 6517 6518 /* 6519 * clock_task is not advancing so we just need to make sure 6520 * there's some valid quota amount 6521 */ 6522 cfs_rq->runtime_remaining = 1; 6523 /* 6524 * Offline rq is schedulable till CPU is completely disabled 6525 * in take_cpu_down(), so we prevent new cfs throttling here. 6526 */ 6527 cfs_rq->runtime_enabled = 0; 6528 6529 if (cfs_rq_throttled(cfs_rq)) 6530 unthrottle_cfs_rq(cfs_rq); 6531 } 6532 rcu_read_unlock(); 6533 6534 rq_clock_stop_loop_update(rq); 6535 } 6536 6537 bool cfs_task_bw_constrained(struct task_struct *p) 6538 { 6539 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6540 6541 if (!cfs_bandwidth_used()) 6542 return false; 6543 6544 if (cfs_rq->runtime_enabled || 6545 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF) 6546 return true; 6547 6548 return false; 6549 } 6550 6551 #ifdef CONFIG_NO_HZ_FULL 6552 /* called from pick_next_task_fair() */ 6553 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) 6554 { 6555 int cpu = cpu_of(rq); 6556 6557 if (!sched_feat(HZ_BW) || !cfs_bandwidth_used()) 6558 return; 6559 6560 if (!tick_nohz_full_cpu(cpu)) 6561 return; 6562 6563 if (rq->nr_running != 1) 6564 return; 6565 6566 /* 6567 * We know there is only one task runnable and we've just picked it. The 6568 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will 6569 * be otherwise able to stop the tick. Just need to check if we are using 6570 * bandwidth control. 6571 */ 6572 if (cfs_task_bw_constrained(p)) 6573 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 6574 } 6575 #endif 6576 6577 #else /* CONFIG_CFS_BANDWIDTH */ 6578 6579 static inline bool cfs_bandwidth_used(void) 6580 { 6581 return false; 6582 } 6583 6584 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 6585 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 6586 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 6587 static inline void sync_throttle(struct task_group *tg, int cpu) {} 6588 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6589 6590 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 6591 { 6592 return 0; 6593 } 6594 6595 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 6596 { 6597 return 0; 6598 } 6599 6600 static inline int throttled_lb_pair(struct task_group *tg, 6601 int src_cpu, int dest_cpu) 6602 { 6603 return 0; 6604 } 6605 6606 #ifdef CONFIG_FAIR_GROUP_SCHED 6607 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {} 6608 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 6609 #endif 6610 6611 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 6612 { 6613 return NULL; 6614 } 6615 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 6616 static inline void update_runtime_enabled(struct rq *rq) {} 6617 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 6618 #ifdef CONFIG_CGROUP_SCHED 6619 bool cfs_task_bw_constrained(struct task_struct *p) 6620 { 6621 return false; 6622 } 6623 #endif 6624 #endif /* CONFIG_CFS_BANDWIDTH */ 6625 6626 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL) 6627 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {} 6628 #endif 6629 6630 /************************************************** 6631 * CFS operations on tasks: 6632 */ 6633 6634 #ifdef CONFIG_SCHED_HRTICK 6635 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 6636 { 6637 struct sched_entity *se = &p->se; 6638 6639 SCHED_WARN_ON(task_rq(p) != rq); 6640 6641 if (rq->cfs.h_nr_running > 1) { 6642 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 6643 u64 slice = se->slice; 6644 s64 delta = slice - ran; 6645 6646 if (delta < 0) { 6647 if (task_current(rq, p)) 6648 resched_curr(rq); 6649 return; 6650 } 6651 hrtick_start(rq, delta); 6652 } 6653 } 6654 6655 /* 6656 * called from enqueue/dequeue and updates the hrtick when the 6657 * current task is from our class and nr_running is low enough 6658 * to matter. 6659 */ 6660 static void hrtick_update(struct rq *rq) 6661 { 6662 struct task_struct *curr = rq->curr; 6663 6664 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class) 6665 return; 6666 6667 hrtick_start_fair(rq, curr); 6668 } 6669 #else /* !CONFIG_SCHED_HRTICK */ 6670 static inline void 6671 hrtick_start_fair(struct rq *rq, struct task_struct *p) 6672 { 6673 } 6674 6675 static inline void hrtick_update(struct rq *rq) 6676 { 6677 } 6678 #endif 6679 6680 #ifdef CONFIG_SMP 6681 static inline bool cpu_overutilized(int cpu) 6682 { 6683 unsigned long rq_util_min, rq_util_max; 6684 6685 if (!sched_energy_enabled()) 6686 return false; 6687 6688 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN); 6689 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX); 6690 6691 /* Return true only if the utilization doesn't fit CPU's capacity */ 6692 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu); 6693 } 6694 6695 /* 6696 * overutilized value make sense only if EAS is enabled 6697 */ 6698 static inline bool is_rd_overutilized(struct root_domain *rd) 6699 { 6700 return !sched_energy_enabled() || READ_ONCE(rd->overutilized); 6701 } 6702 6703 static inline void set_rd_overutilized(struct root_domain *rd, bool flag) 6704 { 6705 if (!sched_energy_enabled()) 6706 return; 6707 6708 WRITE_ONCE(rd->overutilized, flag); 6709 trace_sched_overutilized_tp(rd, flag); 6710 } 6711 6712 static inline void check_update_overutilized_status(struct rq *rq) 6713 { 6714 /* 6715 * overutilized field is used for load balancing decisions only 6716 * if energy aware scheduler is being used 6717 */ 6718 6719 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu)) 6720 set_rd_overutilized(rq->rd, 1); 6721 } 6722 #else 6723 static inline void check_update_overutilized_status(struct rq *rq) { } 6724 #endif 6725 6726 /* Runqueue only has SCHED_IDLE tasks enqueued */ 6727 static int sched_idle_rq(struct rq *rq) 6728 { 6729 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running && 6730 rq->nr_running); 6731 } 6732 6733 #ifdef CONFIG_SMP 6734 static int sched_idle_cpu(int cpu) 6735 { 6736 return sched_idle_rq(cpu_rq(cpu)); 6737 } 6738 #endif 6739 6740 /* 6741 * The enqueue_task method is called before nr_running is 6742 * increased. Here we update the fair scheduling stats and 6743 * then put the task into the rbtree: 6744 */ 6745 static void 6746 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6747 { 6748 struct cfs_rq *cfs_rq; 6749 struct sched_entity *se = &p->se; 6750 int idle_h_nr_running = task_has_idle_policy(p); 6751 int task_new = !(flags & ENQUEUE_WAKEUP); 6752 6753 /* 6754 * The code below (indirectly) updates schedutil which looks at 6755 * the cfs_rq utilization to select a frequency. 6756 * Let's add the task's estimated utilization to the cfs_rq's 6757 * estimated utilization, before we update schedutil. 6758 */ 6759 util_est_enqueue(&rq->cfs, p); 6760 6761 /* 6762 * If in_iowait is set, the code below may not trigger any cpufreq 6763 * utilization updates, so do it here explicitly with the IOWAIT flag 6764 * passed. 6765 */ 6766 if (p->in_iowait) 6767 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT); 6768 6769 for_each_sched_entity(se) { 6770 if (se->on_rq) 6771 break; 6772 cfs_rq = cfs_rq_of(se); 6773 enqueue_entity(cfs_rq, se, flags); 6774 6775 cfs_rq->h_nr_running++; 6776 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6777 6778 if (cfs_rq_is_idle(cfs_rq)) 6779 idle_h_nr_running = 1; 6780 6781 /* end evaluation on encountering a throttled cfs_rq */ 6782 if (cfs_rq_throttled(cfs_rq)) 6783 goto enqueue_throttle; 6784 6785 flags = ENQUEUE_WAKEUP; 6786 } 6787 6788 for_each_sched_entity(se) { 6789 cfs_rq = cfs_rq_of(se); 6790 6791 update_load_avg(cfs_rq, se, UPDATE_TG); 6792 se_update_runnable(se); 6793 update_cfs_group(se); 6794 6795 cfs_rq->h_nr_running++; 6796 cfs_rq->idle_h_nr_running += idle_h_nr_running; 6797 6798 if (cfs_rq_is_idle(cfs_rq)) 6799 idle_h_nr_running = 1; 6800 6801 /* end evaluation on encountering a throttled cfs_rq */ 6802 if (cfs_rq_throttled(cfs_rq)) 6803 goto enqueue_throttle; 6804 } 6805 6806 /* At this point se is NULL and we are at root level*/ 6807 add_nr_running(rq, 1); 6808 6809 /* 6810 * Since new tasks are assigned an initial util_avg equal to 6811 * half of the spare capacity of their CPU, tiny tasks have the 6812 * ability to cross the overutilized threshold, which will 6813 * result in the load balancer ruining all the task placement 6814 * done by EAS. As a way to mitigate that effect, do not account 6815 * for the first enqueue operation of new tasks during the 6816 * overutilized flag detection. 6817 * 6818 * A better way of solving this problem would be to wait for 6819 * the PELT signals of tasks to converge before taking them 6820 * into account, but that is not straightforward to implement, 6821 * and the following generally works well enough in practice. 6822 */ 6823 if (!task_new) 6824 check_update_overutilized_status(rq); 6825 6826 enqueue_throttle: 6827 assert_list_leaf_cfs_rq(rq); 6828 6829 hrtick_update(rq); 6830 } 6831 6832 static void set_next_buddy(struct sched_entity *se); 6833 6834 /* 6835 * The dequeue_task method is called before nr_running is 6836 * decreased. We remove the task from the rbtree and 6837 * update the fair scheduling stats: 6838 */ 6839 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 6840 { 6841 struct cfs_rq *cfs_rq; 6842 struct sched_entity *se = &p->se; 6843 int task_sleep = flags & DEQUEUE_SLEEP; 6844 int idle_h_nr_running = task_has_idle_policy(p); 6845 bool was_sched_idle = sched_idle_rq(rq); 6846 6847 util_est_dequeue(&rq->cfs, p); 6848 6849 for_each_sched_entity(se) { 6850 cfs_rq = cfs_rq_of(se); 6851 dequeue_entity(cfs_rq, se, flags); 6852 6853 cfs_rq->h_nr_running--; 6854 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6855 6856 if (cfs_rq_is_idle(cfs_rq)) 6857 idle_h_nr_running = 1; 6858 6859 /* end evaluation on encountering a throttled cfs_rq */ 6860 if (cfs_rq_throttled(cfs_rq)) 6861 goto dequeue_throttle; 6862 6863 /* Don't dequeue parent if it has other entities besides us */ 6864 if (cfs_rq->load.weight) { 6865 /* Avoid re-evaluating load for this entity: */ 6866 se = parent_entity(se); 6867 /* 6868 * Bias pick_next to pick a task from this cfs_rq, as 6869 * p is sleeping when it is within its sched_slice. 6870 */ 6871 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 6872 set_next_buddy(se); 6873 break; 6874 } 6875 flags |= DEQUEUE_SLEEP; 6876 } 6877 6878 for_each_sched_entity(se) { 6879 cfs_rq = cfs_rq_of(se); 6880 6881 update_load_avg(cfs_rq, se, UPDATE_TG); 6882 se_update_runnable(se); 6883 update_cfs_group(se); 6884 6885 cfs_rq->h_nr_running--; 6886 cfs_rq->idle_h_nr_running -= idle_h_nr_running; 6887 6888 if (cfs_rq_is_idle(cfs_rq)) 6889 idle_h_nr_running = 1; 6890 6891 /* end evaluation on encountering a throttled cfs_rq */ 6892 if (cfs_rq_throttled(cfs_rq)) 6893 goto dequeue_throttle; 6894 6895 } 6896 6897 /* At this point se is NULL and we are at root level*/ 6898 sub_nr_running(rq, 1); 6899 6900 /* balance early to pull high priority tasks */ 6901 if (unlikely(!was_sched_idle && sched_idle_rq(rq))) 6902 rq->next_balance = jiffies; 6903 6904 dequeue_throttle: 6905 util_est_update(&rq->cfs, p, task_sleep); 6906 hrtick_update(rq); 6907 } 6908 6909 #ifdef CONFIG_SMP 6910 6911 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */ 6912 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 6913 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask); 6914 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask); 6915 6916 #ifdef CONFIG_NO_HZ_COMMON 6917 6918 static struct { 6919 cpumask_var_t idle_cpus_mask; 6920 atomic_t nr_cpus; 6921 int has_blocked; /* Idle CPUS has blocked load */ 6922 int needs_update; /* Newly idle CPUs need their next_balance collated */ 6923 unsigned long next_balance; /* in jiffy units */ 6924 unsigned long next_blocked; /* Next update of blocked load in jiffies */ 6925 } nohz ____cacheline_aligned; 6926 6927 #endif /* CONFIG_NO_HZ_COMMON */ 6928 6929 static unsigned long cpu_load(struct rq *rq) 6930 { 6931 return cfs_rq_load_avg(&rq->cfs); 6932 } 6933 6934 /* 6935 * cpu_load_without - compute CPU load without any contributions from *p 6936 * @cpu: the CPU which load is requested 6937 * @p: the task which load should be discounted 6938 * 6939 * The load of a CPU is defined by the load of tasks currently enqueued on that 6940 * CPU as well as tasks which are currently sleeping after an execution on that 6941 * CPU. 6942 * 6943 * This method returns the load of the specified CPU by discounting the load of 6944 * the specified task, whenever the task is currently contributing to the CPU 6945 * load. 6946 */ 6947 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p) 6948 { 6949 struct cfs_rq *cfs_rq; 6950 unsigned int load; 6951 6952 /* Task has no contribution or is new */ 6953 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6954 return cpu_load(rq); 6955 6956 cfs_rq = &rq->cfs; 6957 load = READ_ONCE(cfs_rq->avg.load_avg); 6958 6959 /* Discount task's util from CPU's util */ 6960 lsub_positive(&load, task_h_load(p)); 6961 6962 return load; 6963 } 6964 6965 static unsigned long cpu_runnable(struct rq *rq) 6966 { 6967 return cfs_rq_runnable_avg(&rq->cfs); 6968 } 6969 6970 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p) 6971 { 6972 struct cfs_rq *cfs_rq; 6973 unsigned int runnable; 6974 6975 /* Task has no contribution or is new */ 6976 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 6977 return cpu_runnable(rq); 6978 6979 cfs_rq = &rq->cfs; 6980 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 6981 6982 /* Discount task's runnable from CPU's runnable */ 6983 lsub_positive(&runnable, p->se.avg.runnable_avg); 6984 6985 return runnable; 6986 } 6987 6988 static unsigned long capacity_of(int cpu) 6989 { 6990 return cpu_rq(cpu)->cpu_capacity; 6991 } 6992 6993 static void record_wakee(struct task_struct *p) 6994 { 6995 /* 6996 * Only decay a single time; tasks that have less then 1 wakeup per 6997 * jiffy will not have built up many flips. 6998 */ 6999 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 7000 current->wakee_flips >>= 1; 7001 current->wakee_flip_decay_ts = jiffies; 7002 } 7003 7004 if (current->last_wakee != p) { 7005 current->last_wakee = p; 7006 current->wakee_flips++; 7007 } 7008 } 7009 7010 /* 7011 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 7012 * 7013 * A waker of many should wake a different task than the one last awakened 7014 * at a frequency roughly N times higher than one of its wakees. 7015 * 7016 * In order to determine whether we should let the load spread vs consolidating 7017 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 7018 * partner, and a factor of lls_size higher frequency in the other. 7019 * 7020 * With both conditions met, we can be relatively sure that the relationship is 7021 * non-monogamous, with partner count exceeding socket size. 7022 * 7023 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 7024 * whatever is irrelevant, spread criteria is apparent partner count exceeds 7025 * socket size. 7026 */ 7027 static int wake_wide(struct task_struct *p) 7028 { 7029 unsigned int master = current->wakee_flips; 7030 unsigned int slave = p->wakee_flips; 7031 int factor = __this_cpu_read(sd_llc_size); 7032 7033 if (master < slave) 7034 swap(master, slave); 7035 if (slave < factor || master < slave * factor) 7036 return 0; 7037 return 1; 7038 } 7039 7040 /* 7041 * The purpose of wake_affine() is to quickly determine on which CPU we can run 7042 * soonest. For the purpose of speed we only consider the waking and previous 7043 * CPU. 7044 * 7045 * wake_affine_idle() - only considers 'now', it check if the waking CPU is 7046 * cache-affine and is (or will be) idle. 7047 * 7048 * wake_affine_weight() - considers the weight to reflect the average 7049 * scheduling latency of the CPUs. This seems to work 7050 * for the overloaded case. 7051 */ 7052 static int 7053 wake_affine_idle(int this_cpu, int prev_cpu, int sync) 7054 { 7055 /* 7056 * If this_cpu is idle, it implies the wakeup is from interrupt 7057 * context. Only allow the move if cache is shared. Otherwise an 7058 * interrupt intensive workload could force all tasks onto one 7059 * node depending on the IO topology or IRQ affinity settings. 7060 * 7061 * If the prev_cpu is idle and cache affine then avoid a migration. 7062 * There is no guarantee that the cache hot data from an interrupt 7063 * is more important than cache hot data on the prev_cpu and from 7064 * a cpufreq perspective, it's better to have higher utilisation 7065 * on one CPU. 7066 */ 7067 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu)) 7068 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu; 7069 7070 if (sync && cpu_rq(this_cpu)->nr_running == 1) 7071 return this_cpu; 7072 7073 if (available_idle_cpu(prev_cpu)) 7074 return prev_cpu; 7075 7076 return nr_cpumask_bits; 7077 } 7078 7079 static int 7080 wake_affine_weight(struct sched_domain *sd, struct task_struct *p, 7081 int this_cpu, int prev_cpu, int sync) 7082 { 7083 s64 this_eff_load, prev_eff_load; 7084 unsigned long task_load; 7085 7086 this_eff_load = cpu_load(cpu_rq(this_cpu)); 7087 7088 if (sync) { 7089 unsigned long current_load = task_h_load(current); 7090 7091 if (current_load > this_eff_load) 7092 return this_cpu; 7093 7094 this_eff_load -= current_load; 7095 } 7096 7097 task_load = task_h_load(p); 7098 7099 this_eff_load += task_load; 7100 if (sched_feat(WA_BIAS)) 7101 this_eff_load *= 100; 7102 this_eff_load *= capacity_of(prev_cpu); 7103 7104 prev_eff_load = cpu_load(cpu_rq(prev_cpu)); 7105 prev_eff_load -= task_load; 7106 if (sched_feat(WA_BIAS)) 7107 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2; 7108 prev_eff_load *= capacity_of(this_cpu); 7109 7110 /* 7111 * If sync, adjust the weight of prev_eff_load such that if 7112 * prev_eff == this_eff that select_idle_sibling() will consider 7113 * stacking the wakee on top of the waker if no other CPU is 7114 * idle. 7115 */ 7116 if (sync) 7117 prev_eff_load += 1; 7118 7119 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits; 7120 } 7121 7122 static int wake_affine(struct sched_domain *sd, struct task_struct *p, 7123 int this_cpu, int prev_cpu, int sync) 7124 { 7125 int target = nr_cpumask_bits; 7126 7127 if (sched_feat(WA_IDLE)) 7128 target = wake_affine_idle(this_cpu, prev_cpu, sync); 7129 7130 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits) 7131 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync); 7132 7133 schedstat_inc(p->stats.nr_wakeups_affine_attempts); 7134 if (target != this_cpu) 7135 return prev_cpu; 7136 7137 schedstat_inc(sd->ttwu_move_affine); 7138 schedstat_inc(p->stats.nr_wakeups_affine); 7139 return target; 7140 } 7141 7142 static struct sched_group * 7143 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu); 7144 7145 /* 7146 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group. 7147 */ 7148 static int 7149 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 7150 { 7151 unsigned long load, min_load = ULONG_MAX; 7152 unsigned int min_exit_latency = UINT_MAX; 7153 u64 latest_idle_timestamp = 0; 7154 int least_loaded_cpu = this_cpu; 7155 int shallowest_idle_cpu = -1; 7156 int i; 7157 7158 /* Check if we have any choice: */ 7159 if (group->group_weight == 1) 7160 return cpumask_first(sched_group_span(group)); 7161 7162 /* Traverse only the allowed CPUs */ 7163 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) { 7164 struct rq *rq = cpu_rq(i); 7165 7166 if (!sched_core_cookie_match(rq, p)) 7167 continue; 7168 7169 if (sched_idle_cpu(i)) 7170 return i; 7171 7172 if (available_idle_cpu(i)) { 7173 struct cpuidle_state *idle = idle_get_state(rq); 7174 if (idle && idle->exit_latency < min_exit_latency) { 7175 /* 7176 * We give priority to a CPU whose idle state 7177 * has the smallest exit latency irrespective 7178 * of any idle timestamp. 7179 */ 7180 min_exit_latency = idle->exit_latency; 7181 latest_idle_timestamp = rq->idle_stamp; 7182 shallowest_idle_cpu = i; 7183 } else if ((!idle || idle->exit_latency == min_exit_latency) && 7184 rq->idle_stamp > latest_idle_timestamp) { 7185 /* 7186 * If equal or no active idle state, then 7187 * the most recently idled CPU might have 7188 * a warmer cache. 7189 */ 7190 latest_idle_timestamp = rq->idle_stamp; 7191 shallowest_idle_cpu = i; 7192 } 7193 } else if (shallowest_idle_cpu == -1) { 7194 load = cpu_load(cpu_rq(i)); 7195 if (load < min_load) { 7196 min_load = load; 7197 least_loaded_cpu = i; 7198 } 7199 } 7200 } 7201 7202 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 7203 } 7204 7205 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p, 7206 int cpu, int prev_cpu, int sd_flag) 7207 { 7208 int new_cpu = cpu; 7209 7210 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr)) 7211 return prev_cpu; 7212 7213 /* 7214 * We need task's util for cpu_util_without, sync it up to 7215 * prev_cpu's last_update_time. 7216 */ 7217 if (!(sd_flag & SD_BALANCE_FORK)) 7218 sync_entity_load_avg(&p->se); 7219 7220 while (sd) { 7221 struct sched_group *group; 7222 struct sched_domain *tmp; 7223 int weight; 7224 7225 if (!(sd->flags & sd_flag)) { 7226 sd = sd->child; 7227 continue; 7228 } 7229 7230 group = sched_balance_find_dst_group(sd, p, cpu); 7231 if (!group) { 7232 sd = sd->child; 7233 continue; 7234 } 7235 7236 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu); 7237 if (new_cpu == cpu) { 7238 /* Now try balancing at a lower domain level of 'cpu': */ 7239 sd = sd->child; 7240 continue; 7241 } 7242 7243 /* Now try balancing at a lower domain level of 'new_cpu': */ 7244 cpu = new_cpu; 7245 weight = sd->span_weight; 7246 sd = NULL; 7247 for_each_domain(cpu, tmp) { 7248 if (weight <= tmp->span_weight) 7249 break; 7250 if (tmp->flags & sd_flag) 7251 sd = tmp; 7252 } 7253 } 7254 7255 return new_cpu; 7256 } 7257 7258 static inline int __select_idle_cpu(int cpu, struct task_struct *p) 7259 { 7260 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) && 7261 sched_cpu_cookie_match(cpu_rq(cpu), p)) 7262 return cpu; 7263 7264 return -1; 7265 } 7266 7267 #ifdef CONFIG_SCHED_SMT 7268 DEFINE_STATIC_KEY_FALSE(sched_smt_present); 7269 EXPORT_SYMBOL_GPL(sched_smt_present); 7270 7271 static inline void set_idle_cores(int cpu, int val) 7272 { 7273 struct sched_domain_shared *sds; 7274 7275 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7276 if (sds) 7277 WRITE_ONCE(sds->has_idle_cores, val); 7278 } 7279 7280 static inline bool test_idle_cores(int cpu) 7281 { 7282 struct sched_domain_shared *sds; 7283 7284 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 7285 if (sds) 7286 return READ_ONCE(sds->has_idle_cores); 7287 7288 return false; 7289 } 7290 7291 /* 7292 * Scans the local SMT mask to see if the entire core is idle, and records this 7293 * information in sd_llc_shared->has_idle_cores. 7294 * 7295 * Since SMT siblings share all cache levels, inspecting this limited remote 7296 * state should be fairly cheap. 7297 */ 7298 void __update_idle_core(struct rq *rq) 7299 { 7300 int core = cpu_of(rq); 7301 int cpu; 7302 7303 rcu_read_lock(); 7304 if (test_idle_cores(core)) 7305 goto unlock; 7306 7307 for_each_cpu(cpu, cpu_smt_mask(core)) { 7308 if (cpu == core) 7309 continue; 7310 7311 if (!available_idle_cpu(cpu)) 7312 goto unlock; 7313 } 7314 7315 set_idle_cores(core, 1); 7316 unlock: 7317 rcu_read_unlock(); 7318 } 7319 7320 /* 7321 * Scan the entire LLC domain for idle cores; this dynamically switches off if 7322 * there are no idle cores left in the system; tracked through 7323 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above. 7324 */ 7325 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7326 { 7327 bool idle = true; 7328 int cpu; 7329 7330 for_each_cpu(cpu, cpu_smt_mask(core)) { 7331 if (!available_idle_cpu(cpu)) { 7332 idle = false; 7333 if (*idle_cpu == -1) { 7334 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) { 7335 *idle_cpu = cpu; 7336 break; 7337 } 7338 continue; 7339 } 7340 break; 7341 } 7342 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus)) 7343 *idle_cpu = cpu; 7344 } 7345 7346 if (idle) 7347 return core; 7348 7349 cpumask_andnot(cpus, cpus, cpu_smt_mask(core)); 7350 return -1; 7351 } 7352 7353 /* 7354 * Scan the local SMT mask for idle CPUs. 7355 */ 7356 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7357 { 7358 int cpu; 7359 7360 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) { 7361 if (cpu == target) 7362 continue; 7363 /* 7364 * Check if the CPU is in the LLC scheduling domain of @target. 7365 * Due to isolcpus, there is no guarantee that all the siblings are in the domain. 7366 */ 7367 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 7368 continue; 7369 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu)) 7370 return cpu; 7371 } 7372 7373 return -1; 7374 } 7375 7376 #else /* CONFIG_SCHED_SMT */ 7377 7378 static inline void set_idle_cores(int cpu, int val) 7379 { 7380 } 7381 7382 static inline bool test_idle_cores(int cpu) 7383 { 7384 return false; 7385 } 7386 7387 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu) 7388 { 7389 return __select_idle_cpu(core, p); 7390 } 7391 7392 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target) 7393 { 7394 return -1; 7395 } 7396 7397 #endif /* CONFIG_SCHED_SMT */ 7398 7399 /* 7400 * Scan the LLC domain for idle CPUs; this is dynamically regulated by 7401 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the 7402 * average idle time for this rq (as found in rq->avg_idle). 7403 */ 7404 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target) 7405 { 7406 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7407 int i, cpu, idle_cpu = -1, nr = INT_MAX; 7408 struct sched_domain_shared *sd_share; 7409 7410 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7411 7412 if (sched_feat(SIS_UTIL)) { 7413 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target)); 7414 if (sd_share) { 7415 /* because !--nr is the condition to stop scan */ 7416 nr = READ_ONCE(sd_share->nr_idle_scan) + 1; 7417 /* overloaded LLC is unlikely to have idle cpu/core */ 7418 if (nr == 1) 7419 return -1; 7420 } 7421 } 7422 7423 if (static_branch_unlikely(&sched_cluster_active)) { 7424 struct sched_group *sg = sd->groups; 7425 7426 if (sg->flags & SD_CLUSTER) { 7427 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) { 7428 if (!cpumask_test_cpu(cpu, cpus)) 7429 continue; 7430 7431 if (has_idle_core) { 7432 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7433 if ((unsigned int)i < nr_cpumask_bits) 7434 return i; 7435 } else { 7436 if (--nr <= 0) 7437 return -1; 7438 idle_cpu = __select_idle_cpu(cpu, p); 7439 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7440 return idle_cpu; 7441 } 7442 } 7443 cpumask_andnot(cpus, cpus, sched_group_span(sg)); 7444 } 7445 } 7446 7447 for_each_cpu_wrap(cpu, cpus, target + 1) { 7448 if (has_idle_core) { 7449 i = select_idle_core(p, cpu, cpus, &idle_cpu); 7450 if ((unsigned int)i < nr_cpumask_bits) 7451 return i; 7452 7453 } else { 7454 if (--nr <= 0) 7455 return -1; 7456 idle_cpu = __select_idle_cpu(cpu, p); 7457 if ((unsigned int)idle_cpu < nr_cpumask_bits) 7458 break; 7459 } 7460 } 7461 7462 if (has_idle_core) 7463 set_idle_cores(target, false); 7464 7465 return idle_cpu; 7466 } 7467 7468 /* 7469 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which 7470 * the task fits. If no CPU is big enough, but there are idle ones, try to 7471 * maximize capacity. 7472 */ 7473 static int 7474 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target) 7475 { 7476 unsigned long task_util, util_min, util_max, best_cap = 0; 7477 int fits, best_fits = 0; 7478 int cpu, best_cpu = -1; 7479 struct cpumask *cpus; 7480 7481 cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7482 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr); 7483 7484 task_util = task_util_est(p); 7485 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7486 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7487 7488 for_each_cpu_wrap(cpu, cpus, target) { 7489 unsigned long cpu_cap = capacity_of(cpu); 7490 7491 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu)) 7492 continue; 7493 7494 fits = util_fits_cpu(task_util, util_min, util_max, cpu); 7495 7496 /* This CPU fits with all requirements */ 7497 if (fits > 0) 7498 return cpu; 7499 /* 7500 * Only the min performance hint (i.e. uclamp_min) doesn't fit. 7501 * Look for the CPU with best capacity. 7502 */ 7503 else if (fits < 0) 7504 cpu_cap = get_actual_cpu_capacity(cpu); 7505 7506 /* 7507 * First, select CPU which fits better (-1 being better than 0). 7508 * Then, select the one with best capacity at same level. 7509 */ 7510 if ((fits < best_fits) || 7511 ((fits == best_fits) && (cpu_cap > best_cap))) { 7512 best_cap = cpu_cap; 7513 best_cpu = cpu; 7514 best_fits = fits; 7515 } 7516 } 7517 7518 return best_cpu; 7519 } 7520 7521 static inline bool asym_fits_cpu(unsigned long util, 7522 unsigned long util_min, 7523 unsigned long util_max, 7524 int cpu) 7525 { 7526 if (sched_asym_cpucap_active()) 7527 /* 7528 * Return true only if the cpu fully fits the task requirements 7529 * which include the utilization and the performance hints. 7530 */ 7531 return (util_fits_cpu(util, util_min, util_max, cpu) > 0); 7532 7533 return true; 7534 } 7535 7536 /* 7537 * Try and locate an idle core/thread in the LLC cache domain. 7538 */ 7539 static int select_idle_sibling(struct task_struct *p, int prev, int target) 7540 { 7541 bool has_idle_core = false; 7542 struct sched_domain *sd; 7543 unsigned long task_util, util_min, util_max; 7544 int i, recent_used_cpu, prev_aff = -1; 7545 7546 /* 7547 * On asymmetric system, update task utilization because we will check 7548 * that the task fits with CPU's capacity. 7549 */ 7550 if (sched_asym_cpucap_active()) { 7551 sync_entity_load_avg(&p->se); 7552 task_util = task_util_est(p); 7553 util_min = uclamp_eff_value(p, UCLAMP_MIN); 7554 util_max = uclamp_eff_value(p, UCLAMP_MAX); 7555 } 7556 7557 /* 7558 * per-cpu select_rq_mask usage 7559 */ 7560 lockdep_assert_irqs_disabled(); 7561 7562 if ((available_idle_cpu(target) || sched_idle_cpu(target)) && 7563 asym_fits_cpu(task_util, util_min, util_max, target)) 7564 return target; 7565 7566 /* 7567 * If the previous CPU is cache affine and idle, don't be stupid: 7568 */ 7569 if (prev != target && cpus_share_cache(prev, target) && 7570 (available_idle_cpu(prev) || sched_idle_cpu(prev)) && 7571 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7572 7573 if (!static_branch_unlikely(&sched_cluster_active) || 7574 cpus_share_resources(prev, target)) 7575 return prev; 7576 7577 prev_aff = prev; 7578 } 7579 7580 /* 7581 * Allow a per-cpu kthread to stack with the wakee if the 7582 * kworker thread and the tasks previous CPUs are the same. 7583 * The assumption is that the wakee queued work for the 7584 * per-cpu kthread that is now complete and the wakeup is 7585 * essentially a sync wakeup. An obvious example of this 7586 * pattern is IO completions. 7587 */ 7588 if (is_per_cpu_kthread(current) && 7589 in_task() && 7590 prev == smp_processor_id() && 7591 this_rq()->nr_running <= 1 && 7592 asym_fits_cpu(task_util, util_min, util_max, prev)) { 7593 return prev; 7594 } 7595 7596 /* Check a recently used CPU as a potential idle candidate: */ 7597 recent_used_cpu = p->recent_used_cpu; 7598 p->recent_used_cpu = prev; 7599 if (recent_used_cpu != prev && 7600 recent_used_cpu != target && 7601 cpus_share_cache(recent_used_cpu, target) && 7602 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) && 7603 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) && 7604 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) { 7605 7606 if (!static_branch_unlikely(&sched_cluster_active) || 7607 cpus_share_resources(recent_used_cpu, target)) 7608 return recent_used_cpu; 7609 7610 } else { 7611 recent_used_cpu = -1; 7612 } 7613 7614 /* 7615 * For asymmetric CPU capacity systems, our domain of interest is 7616 * sd_asym_cpucapacity rather than sd_llc. 7617 */ 7618 if (sched_asym_cpucap_active()) { 7619 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target)); 7620 /* 7621 * On an asymmetric CPU capacity system where an exclusive 7622 * cpuset defines a symmetric island (i.e. one unique 7623 * capacity_orig value through the cpuset), the key will be set 7624 * but the CPUs within that cpuset will not have a domain with 7625 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric 7626 * capacity path. 7627 */ 7628 if (sd) { 7629 i = select_idle_capacity(p, sd, target); 7630 return ((unsigned)i < nr_cpumask_bits) ? i : target; 7631 } 7632 } 7633 7634 sd = rcu_dereference(per_cpu(sd_llc, target)); 7635 if (!sd) 7636 return target; 7637 7638 if (sched_smt_active()) { 7639 has_idle_core = test_idle_cores(target); 7640 7641 if (!has_idle_core && cpus_share_cache(prev, target)) { 7642 i = select_idle_smt(p, sd, prev); 7643 if ((unsigned int)i < nr_cpumask_bits) 7644 return i; 7645 } 7646 } 7647 7648 i = select_idle_cpu(p, sd, has_idle_core, target); 7649 if ((unsigned)i < nr_cpumask_bits) 7650 return i; 7651 7652 /* 7653 * For cluster machines which have lower sharing cache like L2 or 7654 * LLC Tag, we tend to find an idle CPU in the target's cluster 7655 * first. But prev_cpu or recent_used_cpu may also be a good candidate, 7656 * use them if possible when no idle CPU found in select_idle_cpu(). 7657 */ 7658 if ((unsigned int)prev_aff < nr_cpumask_bits) 7659 return prev_aff; 7660 if ((unsigned int)recent_used_cpu < nr_cpumask_bits) 7661 return recent_used_cpu; 7662 7663 return target; 7664 } 7665 7666 /** 7667 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks. 7668 * @cpu: the CPU to get the utilization for 7669 * @p: task for which the CPU utilization should be predicted or NULL 7670 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL 7671 * @boost: 1 to enable boosting, otherwise 0 7672 * 7673 * The unit of the return value must be the same as the one of CPU capacity 7674 * so that CPU utilization can be compared with CPU capacity. 7675 * 7676 * CPU utilization is the sum of running time of runnable tasks plus the 7677 * recent utilization of currently non-runnable tasks on that CPU. 7678 * It represents the amount of CPU capacity currently used by CFS tasks in 7679 * the range [0..max CPU capacity] with max CPU capacity being the CPU 7680 * capacity at f_max. 7681 * 7682 * The estimated CPU utilization is defined as the maximum between CPU 7683 * utilization and sum of the estimated utilization of the currently 7684 * runnable tasks on that CPU. It preserves a utilization "snapshot" of 7685 * previously-executed tasks, which helps better deduce how busy a CPU will 7686 * be when a long-sleeping task wakes up. The contribution to CPU utilization 7687 * of such a task would be significantly decayed at this point of time. 7688 * 7689 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization). 7690 * CPU contention for CFS tasks can be detected by CPU runnable > CPU 7691 * utilization. Boosting is implemented in cpu_util() so that internal 7692 * users (e.g. EAS) can use it next to external users (e.g. schedutil), 7693 * latter via cpu_util_cfs_boost(). 7694 * 7695 * CPU utilization can be higher than the current CPU capacity 7696 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because 7697 * of rounding errors as well as task migrations or wakeups of new tasks. 7698 * CPU utilization has to be capped to fit into the [0..max CPU capacity] 7699 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%) 7700 * could be seen as over-utilized even though CPU1 has 20% of spare CPU 7701 * capacity. CPU utilization is allowed to overshoot current CPU capacity 7702 * though since this is useful for predicting the CPU capacity required 7703 * after task migrations (scheduler-driven DVFS). 7704 * 7705 * Return: (Boosted) (estimated) utilization for the specified CPU. 7706 */ 7707 static unsigned long 7708 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost) 7709 { 7710 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs; 7711 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg); 7712 unsigned long runnable; 7713 7714 if (boost) { 7715 runnable = READ_ONCE(cfs_rq->avg.runnable_avg); 7716 util = max(util, runnable); 7717 } 7718 7719 /* 7720 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its 7721 * contribution. If @p migrates from another CPU to @cpu add its 7722 * contribution. In all the other cases @cpu is not impacted by the 7723 * migration so its util_avg is already correct. 7724 */ 7725 if (p && task_cpu(p) == cpu && dst_cpu != cpu) 7726 lsub_positive(&util, task_util(p)); 7727 else if (p && task_cpu(p) != cpu && dst_cpu == cpu) 7728 util += task_util(p); 7729 7730 if (sched_feat(UTIL_EST)) { 7731 unsigned long util_est; 7732 7733 util_est = READ_ONCE(cfs_rq->avg.util_est); 7734 7735 /* 7736 * During wake-up @p isn't enqueued yet and doesn't contribute 7737 * to any cpu_rq(cpu)->cfs.avg.util_est. 7738 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p 7739 * has been enqueued. 7740 * 7741 * During exec (@dst_cpu = -1) @p is enqueued and does 7742 * contribute to cpu_rq(cpu)->cfs.util_est. 7743 * Remove it to "simulate" cpu_util without @p's contribution. 7744 * 7745 * Despite the task_on_rq_queued(@p) check there is still a 7746 * small window for a possible race when an exec 7747 * select_task_rq_fair() races with LB's detach_task(). 7748 * 7749 * detach_task() 7750 * deactivate_task() 7751 * p->on_rq = TASK_ON_RQ_MIGRATING; 7752 * -------------------------------- A 7753 * dequeue_task() \ 7754 * dequeue_task_fair() + Race Time 7755 * util_est_dequeue() / 7756 * -------------------------------- B 7757 * 7758 * The additional check "current == p" is required to further 7759 * reduce the race window. 7760 */ 7761 if (dst_cpu == cpu) 7762 util_est += _task_util_est(p); 7763 else if (p && unlikely(task_on_rq_queued(p) || current == p)) 7764 lsub_positive(&util_est, _task_util_est(p)); 7765 7766 util = max(util, util_est); 7767 } 7768 7769 return min(util, arch_scale_cpu_capacity(cpu)); 7770 } 7771 7772 unsigned long cpu_util_cfs(int cpu) 7773 { 7774 return cpu_util(cpu, NULL, -1, 0); 7775 } 7776 7777 unsigned long cpu_util_cfs_boost(int cpu) 7778 { 7779 return cpu_util(cpu, NULL, -1, 1); 7780 } 7781 7782 /* 7783 * cpu_util_without: compute cpu utilization without any contributions from *p 7784 * @cpu: the CPU which utilization is requested 7785 * @p: the task which utilization should be discounted 7786 * 7787 * The utilization of a CPU is defined by the utilization of tasks currently 7788 * enqueued on that CPU as well as tasks which are currently sleeping after an 7789 * execution on that CPU. 7790 * 7791 * This method returns the utilization of the specified CPU by discounting the 7792 * utilization of the specified task, whenever the task is currently 7793 * contributing to the CPU utilization. 7794 */ 7795 static unsigned long cpu_util_without(int cpu, struct task_struct *p) 7796 { 7797 /* Task has no contribution or is new */ 7798 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 7799 p = NULL; 7800 7801 return cpu_util(cpu, p, -1, 0); 7802 } 7803 7804 /* 7805 * energy_env - Utilization landscape for energy estimation. 7806 * @task_busy_time: Utilization contribution by the task for which we test the 7807 * placement. Given by eenv_task_busy_time(). 7808 * @pd_busy_time: Utilization of the whole perf domain without the task 7809 * contribution. Given by eenv_pd_busy_time(). 7810 * @cpu_cap: Maximum CPU capacity for the perf domain. 7811 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap). 7812 */ 7813 struct energy_env { 7814 unsigned long task_busy_time; 7815 unsigned long pd_busy_time; 7816 unsigned long cpu_cap; 7817 unsigned long pd_cap; 7818 }; 7819 7820 /* 7821 * Compute the task busy time for compute_energy(). This time cannot be 7822 * injected directly into effective_cpu_util() because of the IRQ scaling. 7823 * The latter only makes sense with the most recent CPUs where the task has 7824 * run. 7825 */ 7826 static inline void eenv_task_busy_time(struct energy_env *eenv, 7827 struct task_struct *p, int prev_cpu) 7828 { 7829 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu); 7830 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu)); 7831 7832 if (unlikely(irq >= max_cap)) 7833 busy_time = max_cap; 7834 else 7835 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap); 7836 7837 eenv->task_busy_time = busy_time; 7838 } 7839 7840 /* 7841 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the 7842 * utilization for each @pd_cpus, it however doesn't take into account 7843 * clamping since the ratio (utilization / cpu_capacity) is already enough to 7844 * scale the EM reported power consumption at the (eventually clamped) 7845 * cpu_capacity. 7846 * 7847 * The contribution of the task @p for which we want to estimate the 7848 * energy cost is removed (by cpu_util()) and must be calculated 7849 * separately (see eenv_task_busy_time). This ensures: 7850 * 7851 * - A stable PD utilization, no matter which CPU of that PD we want to place 7852 * the task on. 7853 * 7854 * - A fair comparison between CPUs as the task contribution (task_util()) 7855 * will always be the same no matter which CPU utilization we rely on 7856 * (util_avg or util_est). 7857 * 7858 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't 7859 * exceed @eenv->pd_cap. 7860 */ 7861 static inline void eenv_pd_busy_time(struct energy_env *eenv, 7862 struct cpumask *pd_cpus, 7863 struct task_struct *p) 7864 { 7865 unsigned long busy_time = 0; 7866 int cpu; 7867 7868 for_each_cpu(cpu, pd_cpus) { 7869 unsigned long util = cpu_util(cpu, p, -1, 0); 7870 7871 busy_time += effective_cpu_util(cpu, util, NULL, NULL); 7872 } 7873 7874 eenv->pd_busy_time = min(eenv->pd_cap, busy_time); 7875 } 7876 7877 /* 7878 * Compute the maximum utilization for compute_energy() when the task @p 7879 * is placed on the cpu @dst_cpu. 7880 * 7881 * Returns the maximum utilization among @eenv->cpus. This utilization can't 7882 * exceed @eenv->cpu_cap. 7883 */ 7884 static inline unsigned long 7885 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus, 7886 struct task_struct *p, int dst_cpu) 7887 { 7888 unsigned long max_util = 0; 7889 int cpu; 7890 7891 for_each_cpu(cpu, pd_cpus) { 7892 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL; 7893 unsigned long util = cpu_util(cpu, p, dst_cpu, 1); 7894 unsigned long eff_util, min, max; 7895 7896 /* 7897 * Performance domain frequency: utilization clamping 7898 * must be considered since it affects the selection 7899 * of the performance domain frequency. 7900 * NOTE: in case RT tasks are running, by default the min 7901 * utilization can be max OPP. 7902 */ 7903 eff_util = effective_cpu_util(cpu, util, &min, &max); 7904 7905 /* Task's uclamp can modify min and max value */ 7906 if (tsk && uclamp_is_used()) { 7907 min = max(min, uclamp_eff_value(p, UCLAMP_MIN)); 7908 7909 /* 7910 * If there is no active max uclamp constraint, 7911 * directly use task's one, otherwise keep max. 7912 */ 7913 if (uclamp_rq_is_idle(cpu_rq(cpu))) 7914 max = uclamp_eff_value(p, UCLAMP_MAX); 7915 else 7916 max = max(max, uclamp_eff_value(p, UCLAMP_MAX)); 7917 } 7918 7919 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max); 7920 max_util = max(max_util, eff_util); 7921 } 7922 7923 return min(max_util, eenv->cpu_cap); 7924 } 7925 7926 /* 7927 * compute_energy(): Use the Energy Model to estimate the energy that @pd would 7928 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task 7929 * contribution is ignored. 7930 */ 7931 static inline unsigned long 7932 compute_energy(struct energy_env *eenv, struct perf_domain *pd, 7933 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu) 7934 { 7935 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu); 7936 unsigned long busy_time = eenv->pd_busy_time; 7937 unsigned long energy; 7938 7939 if (dst_cpu >= 0) 7940 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time); 7941 7942 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap); 7943 7944 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time); 7945 7946 return energy; 7947 } 7948 7949 /* 7950 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the 7951 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum 7952 * spare capacity in each performance domain and uses it as a potential 7953 * candidate to execute the task. Then, it uses the Energy Model to figure 7954 * out which of the CPU candidates is the most energy-efficient. 7955 * 7956 * The rationale for this heuristic is as follows. In a performance domain, 7957 * all the most energy efficient CPU candidates (according to the Energy 7958 * Model) are those for which we'll request a low frequency. When there are 7959 * several CPUs for which the frequency request will be the same, we don't 7960 * have enough data to break the tie between them, because the Energy Model 7961 * only includes active power costs. With this model, if we assume that 7962 * frequency requests follow utilization (e.g. using schedutil), the CPU with 7963 * the maximum spare capacity in a performance domain is guaranteed to be among 7964 * the best candidates of the performance domain. 7965 * 7966 * In practice, it could be preferable from an energy standpoint to pack 7967 * small tasks on a CPU in order to let other CPUs go in deeper idle states, 7968 * but that could also hurt our chances to go cluster idle, and we have no 7969 * ways to tell with the current Energy Model if this is actually a good 7970 * idea or not. So, find_energy_efficient_cpu() basically favors 7971 * cluster-packing, and spreading inside a cluster. That should at least be 7972 * a good thing for latency, and this is consistent with the idea that most 7973 * of the energy savings of EAS come from the asymmetry of the system, and 7974 * not so much from breaking the tie between identical CPUs. That's also the 7975 * reason why EAS is enabled in the topology code only for systems where 7976 * SD_ASYM_CPUCAPACITY is set. 7977 * 7978 * NOTE: Forkees are not accepted in the energy-aware wake-up path because 7979 * they don't have any useful utilization data yet and it's not possible to 7980 * forecast their impact on energy consumption. Consequently, they will be 7981 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out 7982 * to be energy-inefficient in some use-cases. The alternative would be to 7983 * bias new tasks towards specific types of CPUs first, or to try to infer 7984 * their util_avg from the parent task, but those heuristics could hurt 7985 * other use-cases too. So, until someone finds a better way to solve this, 7986 * let's keep things simple by re-using the existing slow path. 7987 */ 7988 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu) 7989 { 7990 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 7991 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX; 7992 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0; 7993 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024; 7994 struct root_domain *rd = this_rq()->rd; 7995 int cpu, best_energy_cpu, target = -1; 7996 int prev_fits = -1, best_fits = -1; 7997 unsigned long best_actual_cap = 0; 7998 unsigned long prev_actual_cap = 0; 7999 struct sched_domain *sd; 8000 struct perf_domain *pd; 8001 struct energy_env eenv; 8002 8003 rcu_read_lock(); 8004 pd = rcu_dereference(rd->pd); 8005 if (!pd) 8006 goto unlock; 8007 8008 /* 8009 * Energy-aware wake-up happens on the lowest sched_domain starting 8010 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu. 8011 */ 8012 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity)); 8013 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) 8014 sd = sd->parent; 8015 if (!sd) 8016 goto unlock; 8017 8018 target = prev_cpu; 8019 8020 sync_entity_load_avg(&p->se); 8021 if (!task_util_est(p) && p_util_min == 0) 8022 goto unlock; 8023 8024 eenv_task_busy_time(&eenv, p, prev_cpu); 8025 8026 for (; pd; pd = pd->next) { 8027 unsigned long util_min = p_util_min, util_max = p_util_max; 8028 unsigned long cpu_cap, cpu_actual_cap, util; 8029 long prev_spare_cap = -1, max_spare_cap = -1; 8030 unsigned long rq_util_min, rq_util_max; 8031 unsigned long cur_delta, base_energy; 8032 int max_spare_cap_cpu = -1; 8033 int fits, max_fits = -1; 8034 8035 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask); 8036 8037 if (cpumask_empty(cpus)) 8038 continue; 8039 8040 /* Account external pressure for the energy estimation */ 8041 cpu = cpumask_first(cpus); 8042 cpu_actual_cap = get_actual_cpu_capacity(cpu); 8043 8044 eenv.cpu_cap = cpu_actual_cap; 8045 eenv.pd_cap = 0; 8046 8047 for_each_cpu(cpu, cpus) { 8048 struct rq *rq = cpu_rq(cpu); 8049 8050 eenv.pd_cap += cpu_actual_cap; 8051 8052 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) 8053 continue; 8054 8055 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 8056 continue; 8057 8058 util = cpu_util(cpu, p, cpu, 0); 8059 cpu_cap = capacity_of(cpu); 8060 8061 /* 8062 * Skip CPUs that cannot satisfy the capacity request. 8063 * IOW, placing the task there would make the CPU 8064 * overutilized. Take uclamp into account to see how 8065 * much capacity we can get out of the CPU; this is 8066 * aligned with sched_cpu_util(). 8067 */ 8068 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) { 8069 /* 8070 * Open code uclamp_rq_util_with() except for 8071 * the clamp() part. I.e.: apply max aggregation 8072 * only. util_fits_cpu() logic requires to 8073 * operate on non clamped util but must use the 8074 * max-aggregated uclamp_{min, max}. 8075 */ 8076 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN); 8077 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX); 8078 8079 util_min = max(rq_util_min, p_util_min); 8080 util_max = max(rq_util_max, p_util_max); 8081 } 8082 8083 fits = util_fits_cpu(util, util_min, util_max, cpu); 8084 if (!fits) 8085 continue; 8086 8087 lsub_positive(&cpu_cap, util); 8088 8089 if (cpu == prev_cpu) { 8090 /* Always use prev_cpu as a candidate. */ 8091 prev_spare_cap = cpu_cap; 8092 prev_fits = fits; 8093 } else if ((fits > max_fits) || 8094 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) { 8095 /* 8096 * Find the CPU with the maximum spare capacity 8097 * among the remaining CPUs in the performance 8098 * domain. 8099 */ 8100 max_spare_cap = cpu_cap; 8101 max_spare_cap_cpu = cpu; 8102 max_fits = fits; 8103 } 8104 } 8105 8106 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0) 8107 continue; 8108 8109 eenv_pd_busy_time(&eenv, cpus, p); 8110 /* Compute the 'base' energy of the pd, without @p */ 8111 base_energy = compute_energy(&eenv, pd, cpus, p, -1); 8112 8113 /* Evaluate the energy impact of using prev_cpu. */ 8114 if (prev_spare_cap > -1) { 8115 prev_delta = compute_energy(&eenv, pd, cpus, p, 8116 prev_cpu); 8117 /* CPU utilization has changed */ 8118 if (prev_delta < base_energy) 8119 goto unlock; 8120 prev_delta -= base_energy; 8121 prev_actual_cap = cpu_actual_cap; 8122 best_delta = min(best_delta, prev_delta); 8123 } 8124 8125 /* Evaluate the energy impact of using max_spare_cap_cpu. */ 8126 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) { 8127 /* Current best energy cpu fits better */ 8128 if (max_fits < best_fits) 8129 continue; 8130 8131 /* 8132 * Both don't fit performance hint (i.e. uclamp_min) 8133 * but best energy cpu has better capacity. 8134 */ 8135 if ((max_fits < 0) && 8136 (cpu_actual_cap <= best_actual_cap)) 8137 continue; 8138 8139 cur_delta = compute_energy(&eenv, pd, cpus, p, 8140 max_spare_cap_cpu); 8141 /* CPU utilization has changed */ 8142 if (cur_delta < base_energy) 8143 goto unlock; 8144 cur_delta -= base_energy; 8145 8146 /* 8147 * Both fit for the task but best energy cpu has lower 8148 * energy impact. 8149 */ 8150 if ((max_fits > 0) && (best_fits > 0) && 8151 (cur_delta >= best_delta)) 8152 continue; 8153 8154 best_delta = cur_delta; 8155 best_energy_cpu = max_spare_cap_cpu; 8156 best_fits = max_fits; 8157 best_actual_cap = cpu_actual_cap; 8158 } 8159 } 8160 rcu_read_unlock(); 8161 8162 if ((best_fits > prev_fits) || 8163 ((best_fits > 0) && (best_delta < prev_delta)) || 8164 ((best_fits < 0) && (best_actual_cap > prev_actual_cap))) 8165 target = best_energy_cpu; 8166 8167 return target; 8168 8169 unlock: 8170 rcu_read_unlock(); 8171 8172 return target; 8173 } 8174 8175 /* 8176 * select_task_rq_fair: Select target runqueue for the waking task in domains 8177 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE, 8178 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 8179 * 8180 * Balances load by selecting the idlest CPU in the idlest group, or under 8181 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set. 8182 * 8183 * Returns the target CPU number. 8184 */ 8185 static int 8186 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags) 8187 { 8188 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING); 8189 struct sched_domain *tmp, *sd = NULL; 8190 int cpu = smp_processor_id(); 8191 int new_cpu = prev_cpu; 8192 int want_affine = 0; 8193 /* SD_flags and WF_flags share the first nibble */ 8194 int sd_flag = wake_flags & 0xF; 8195 8196 /* 8197 * required for stable ->cpus_allowed 8198 */ 8199 lockdep_assert_held(&p->pi_lock); 8200 if (wake_flags & WF_TTWU) { 8201 record_wakee(p); 8202 8203 if ((wake_flags & WF_CURRENT_CPU) && 8204 cpumask_test_cpu(cpu, p->cpus_ptr)) 8205 return cpu; 8206 8207 if (!is_rd_overutilized(this_rq()->rd)) { 8208 new_cpu = find_energy_efficient_cpu(p, prev_cpu); 8209 if (new_cpu >= 0) 8210 return new_cpu; 8211 new_cpu = prev_cpu; 8212 } 8213 8214 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr); 8215 } 8216 8217 rcu_read_lock(); 8218 for_each_domain(cpu, tmp) { 8219 /* 8220 * If both 'cpu' and 'prev_cpu' are part of this domain, 8221 * cpu is a valid SD_WAKE_AFFINE target. 8222 */ 8223 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 8224 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 8225 if (cpu != prev_cpu) 8226 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync); 8227 8228 sd = NULL; /* Prefer wake_affine over balance flags */ 8229 break; 8230 } 8231 8232 /* 8233 * Usually only true for WF_EXEC and WF_FORK, as sched_domains 8234 * usually do not have SD_BALANCE_WAKE set. That means wakeup 8235 * will usually go to the fast path. 8236 */ 8237 if (tmp->flags & sd_flag) 8238 sd = tmp; 8239 else if (!want_affine) 8240 break; 8241 } 8242 8243 if (unlikely(sd)) { 8244 /* Slow path */ 8245 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag); 8246 } else if (wake_flags & WF_TTWU) { /* XXX always ? */ 8247 /* Fast path */ 8248 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu); 8249 } 8250 rcu_read_unlock(); 8251 8252 return new_cpu; 8253 } 8254 8255 /* 8256 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and 8257 * cfs_rq_of(p) references at time of call are still valid and identify the 8258 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 8259 */ 8260 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu) 8261 { 8262 struct sched_entity *se = &p->se; 8263 8264 if (!task_on_rq_migrating(p)) { 8265 remove_entity_load_avg(se); 8266 8267 /* 8268 * Here, the task's PELT values have been updated according to 8269 * the current rq's clock. But if that clock hasn't been 8270 * updated in a while, a substantial idle time will be missed, 8271 * leading to an inflation after wake-up on the new rq. 8272 * 8273 * Estimate the missing time from the cfs_rq last_update_time 8274 * and update sched_avg to improve the PELT continuity after 8275 * migration. 8276 */ 8277 migrate_se_pelt_lag(se); 8278 } 8279 8280 /* Tell new CPU we are migrated */ 8281 se->avg.last_update_time = 0; 8282 8283 update_scan_period(p, new_cpu); 8284 } 8285 8286 static void task_dead_fair(struct task_struct *p) 8287 { 8288 remove_entity_load_avg(&p->se); 8289 } 8290 8291 /* 8292 * Set the max capacity the task is allowed to run at for misfit detection. 8293 */ 8294 static void set_task_max_allowed_capacity(struct task_struct *p) 8295 { 8296 struct asym_cap_data *entry; 8297 8298 if (!sched_asym_cpucap_active()) 8299 return; 8300 8301 rcu_read_lock(); 8302 list_for_each_entry_rcu(entry, &asym_cap_list, link) { 8303 cpumask_t *cpumask; 8304 8305 cpumask = cpu_capacity_span(entry); 8306 if (!cpumask_intersects(p->cpus_ptr, cpumask)) 8307 continue; 8308 8309 p->max_allowed_capacity = entry->capacity; 8310 break; 8311 } 8312 rcu_read_unlock(); 8313 } 8314 8315 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx) 8316 { 8317 set_cpus_allowed_common(p, ctx); 8318 set_task_max_allowed_capacity(p); 8319 } 8320 8321 static int 8322 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8323 { 8324 if (rq->nr_running) 8325 return 1; 8326 8327 return sched_balance_newidle(rq, rf) != 0; 8328 } 8329 #else 8330 static inline void set_task_max_allowed_capacity(struct task_struct *p) {} 8331 #endif /* CONFIG_SMP */ 8332 8333 static void set_next_buddy(struct sched_entity *se) 8334 { 8335 for_each_sched_entity(se) { 8336 if (SCHED_WARN_ON(!se->on_rq)) 8337 return; 8338 if (se_is_idle(se)) 8339 return; 8340 cfs_rq_of(se)->next = se; 8341 } 8342 } 8343 8344 /* 8345 * Preempt the current task with a newly woken task if needed: 8346 */ 8347 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags) 8348 { 8349 struct task_struct *curr = rq->curr; 8350 struct sched_entity *se = &curr->se, *pse = &p->se; 8351 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8352 int cse_is_idle, pse_is_idle; 8353 8354 if (unlikely(se == pse)) 8355 return; 8356 8357 /* 8358 * This is possible from callers such as attach_tasks(), in which we 8359 * unconditionally wakeup_preempt() after an enqueue (which may have 8360 * lead to a throttle). This both saves work and prevents false 8361 * next-buddy nomination below. 8362 */ 8363 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 8364 return; 8365 8366 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) { 8367 set_next_buddy(pse); 8368 } 8369 8370 /* 8371 * We can come here with TIF_NEED_RESCHED already set from new task 8372 * wake up path. 8373 * 8374 * Note: this also catches the edge-case of curr being in a throttled 8375 * group (e.g. via set_curr_task), since update_curr() (in the 8376 * enqueue of curr) will have resulted in resched being set. This 8377 * prevents us from potentially nominating it as a false LAST_BUDDY 8378 * below. 8379 */ 8380 if (test_tsk_need_resched(curr)) 8381 return; 8382 8383 /* Idle tasks are by definition preempted by non-idle tasks. */ 8384 if (unlikely(task_has_idle_policy(curr)) && 8385 likely(!task_has_idle_policy(p))) 8386 goto preempt; 8387 8388 /* 8389 * Batch and idle tasks do not preempt non-idle tasks (their preemption 8390 * is driven by the tick): 8391 */ 8392 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 8393 return; 8394 8395 find_matching_se(&se, &pse); 8396 WARN_ON_ONCE(!pse); 8397 8398 cse_is_idle = se_is_idle(se); 8399 pse_is_idle = se_is_idle(pse); 8400 8401 /* 8402 * Preempt an idle group in favor of a non-idle group (and don't preempt 8403 * in the inverse case). 8404 */ 8405 if (cse_is_idle && !pse_is_idle) 8406 goto preempt; 8407 if (cse_is_idle != pse_is_idle) 8408 return; 8409 8410 cfs_rq = cfs_rq_of(se); 8411 update_curr(cfs_rq); 8412 8413 /* 8414 * XXX pick_eevdf(cfs_rq) != se ? 8415 */ 8416 if (pick_eevdf(cfs_rq) == pse) 8417 goto preempt; 8418 8419 return; 8420 8421 preempt: 8422 resched_curr(rq); 8423 } 8424 8425 #ifdef CONFIG_SMP 8426 static struct task_struct *pick_task_fair(struct rq *rq) 8427 { 8428 struct sched_entity *se; 8429 struct cfs_rq *cfs_rq; 8430 8431 again: 8432 cfs_rq = &rq->cfs; 8433 if (!cfs_rq->nr_running) 8434 return NULL; 8435 8436 do { 8437 struct sched_entity *curr = cfs_rq->curr; 8438 8439 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */ 8440 if (curr) { 8441 if (curr->on_rq) 8442 update_curr(cfs_rq); 8443 else 8444 curr = NULL; 8445 8446 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 8447 goto again; 8448 } 8449 8450 se = pick_next_entity(cfs_rq); 8451 cfs_rq = group_cfs_rq(se); 8452 } while (cfs_rq); 8453 8454 return task_of(se); 8455 } 8456 #endif 8457 8458 struct task_struct * 8459 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 8460 { 8461 struct cfs_rq *cfs_rq = &rq->cfs; 8462 struct sched_entity *se; 8463 struct task_struct *p; 8464 int new_tasks; 8465 8466 again: 8467 if (!sched_fair_runnable(rq)) 8468 goto idle; 8469 8470 #ifdef CONFIG_FAIR_GROUP_SCHED 8471 if (!prev || prev->sched_class != &fair_sched_class) 8472 goto simple; 8473 8474 /* 8475 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 8476 * likely that a next task is from the same cgroup as the current. 8477 * 8478 * Therefore attempt to avoid putting and setting the entire cgroup 8479 * hierarchy, only change the part that actually changes. 8480 */ 8481 8482 do { 8483 struct sched_entity *curr = cfs_rq->curr; 8484 8485 /* 8486 * Since we got here without doing put_prev_entity() we also 8487 * have to consider cfs_rq->curr. If it is still a runnable 8488 * entity, update_curr() will update its vruntime, otherwise 8489 * forget we've ever seen it. 8490 */ 8491 if (curr) { 8492 if (curr->on_rq) 8493 update_curr(cfs_rq); 8494 else 8495 curr = NULL; 8496 8497 /* 8498 * This call to check_cfs_rq_runtime() will do the 8499 * throttle and dequeue its entity in the parent(s). 8500 * Therefore the nr_running test will indeed 8501 * be correct. 8502 */ 8503 if (unlikely(check_cfs_rq_runtime(cfs_rq))) { 8504 cfs_rq = &rq->cfs; 8505 8506 if (!cfs_rq->nr_running) 8507 goto idle; 8508 8509 goto simple; 8510 } 8511 } 8512 8513 se = pick_next_entity(cfs_rq); 8514 cfs_rq = group_cfs_rq(se); 8515 } while (cfs_rq); 8516 8517 p = task_of(se); 8518 8519 /* 8520 * Since we haven't yet done put_prev_entity and if the selected task 8521 * is a different task than we started out with, try and touch the 8522 * least amount of cfs_rqs. 8523 */ 8524 if (prev != p) { 8525 struct sched_entity *pse = &prev->se; 8526 8527 while (!(cfs_rq = is_same_group(se, pse))) { 8528 int se_depth = se->depth; 8529 int pse_depth = pse->depth; 8530 8531 if (se_depth <= pse_depth) { 8532 put_prev_entity(cfs_rq_of(pse), pse); 8533 pse = parent_entity(pse); 8534 } 8535 if (se_depth >= pse_depth) { 8536 set_next_entity(cfs_rq_of(se), se); 8537 se = parent_entity(se); 8538 } 8539 } 8540 8541 put_prev_entity(cfs_rq, pse); 8542 set_next_entity(cfs_rq, se); 8543 } 8544 8545 goto done; 8546 simple: 8547 #endif 8548 if (prev) 8549 put_prev_task(rq, prev); 8550 8551 do { 8552 se = pick_next_entity(cfs_rq); 8553 set_next_entity(cfs_rq, se); 8554 cfs_rq = group_cfs_rq(se); 8555 } while (cfs_rq); 8556 8557 p = task_of(se); 8558 8559 done: __maybe_unused; 8560 #ifdef CONFIG_SMP 8561 /* 8562 * Move the next running task to the front of 8563 * the list, so our cfs_tasks list becomes MRU 8564 * one. 8565 */ 8566 list_move(&p->se.group_node, &rq->cfs_tasks); 8567 #endif 8568 8569 if (hrtick_enabled_fair(rq)) 8570 hrtick_start_fair(rq, p); 8571 8572 update_misfit_status(p, rq); 8573 sched_fair_update_stop_tick(rq, p); 8574 8575 return p; 8576 8577 idle: 8578 if (!rf) 8579 return NULL; 8580 8581 new_tasks = sched_balance_newidle(rq, rf); 8582 8583 /* 8584 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is 8585 * possible for any higher priority task to appear. In that case we 8586 * must re-start the pick_next_entity() loop. 8587 */ 8588 if (new_tasks < 0) 8589 return RETRY_TASK; 8590 8591 if (new_tasks > 0) 8592 goto again; 8593 8594 /* 8595 * rq is about to be idle, check if we need to update the 8596 * lost_idle_time of clock_pelt 8597 */ 8598 update_idle_rq_clock_pelt(rq); 8599 8600 return NULL; 8601 } 8602 8603 static struct task_struct *__pick_next_task_fair(struct rq *rq) 8604 { 8605 return pick_next_task_fair(rq, NULL, NULL); 8606 } 8607 8608 /* 8609 * Account for a descheduled task: 8610 */ 8611 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 8612 { 8613 struct sched_entity *se = &prev->se; 8614 struct cfs_rq *cfs_rq; 8615 8616 for_each_sched_entity(se) { 8617 cfs_rq = cfs_rq_of(se); 8618 put_prev_entity(cfs_rq, se); 8619 } 8620 } 8621 8622 /* 8623 * sched_yield() is very simple 8624 */ 8625 static void yield_task_fair(struct rq *rq) 8626 { 8627 struct task_struct *curr = rq->curr; 8628 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 8629 struct sched_entity *se = &curr->se; 8630 8631 /* 8632 * Are we the only task in the tree? 8633 */ 8634 if (unlikely(rq->nr_running == 1)) 8635 return; 8636 8637 clear_buddies(cfs_rq, se); 8638 8639 update_rq_clock(rq); 8640 /* 8641 * Update run-time statistics of the 'current'. 8642 */ 8643 update_curr(cfs_rq); 8644 /* 8645 * Tell update_rq_clock() that we've just updated, 8646 * so we don't do microscopic update in schedule() 8647 * and double the fastpath cost. 8648 */ 8649 rq_clock_skip_update(rq); 8650 8651 se->deadline += calc_delta_fair(se->slice, se); 8652 } 8653 8654 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p) 8655 { 8656 struct sched_entity *se = &p->se; 8657 8658 /* throttled hierarchies are not runnable */ 8659 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 8660 return false; 8661 8662 /* Tell the scheduler that we'd really like se to run next. */ 8663 set_next_buddy(se); 8664 8665 yield_task_fair(rq); 8666 8667 return true; 8668 } 8669 8670 #ifdef CONFIG_SMP 8671 /************************************************** 8672 * Fair scheduling class load-balancing methods. 8673 * 8674 * BASICS 8675 * 8676 * The purpose of load-balancing is to achieve the same basic fairness the 8677 * per-CPU scheduler provides, namely provide a proportional amount of compute 8678 * time to each task. This is expressed in the following equation: 8679 * 8680 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 8681 * 8682 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight 8683 * W_i,0 is defined as: 8684 * 8685 * W_i,0 = \Sum_j w_i,j (2) 8686 * 8687 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight 8688 * is derived from the nice value as per sched_prio_to_weight[]. 8689 * 8690 * The weight average is an exponential decay average of the instantaneous 8691 * weight: 8692 * 8693 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 8694 * 8695 * C_i is the compute capacity of CPU i, typically it is the 8696 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 8697 * can also include other factors [XXX]. 8698 * 8699 * To achieve this balance we define a measure of imbalance which follows 8700 * directly from (1): 8701 * 8702 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 8703 * 8704 * We them move tasks around to minimize the imbalance. In the continuous 8705 * function space it is obvious this converges, in the discrete case we get 8706 * a few fun cases generally called infeasible weight scenarios. 8707 * 8708 * [XXX expand on: 8709 * - infeasible weights; 8710 * - local vs global optima in the discrete case. ] 8711 * 8712 * 8713 * SCHED DOMAINS 8714 * 8715 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 8716 * for all i,j solution, we create a tree of CPUs that follows the hardware 8717 * topology where each level pairs two lower groups (or better). This results 8718 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the 8719 * tree to only the first of the previous level and we decrease the frequency 8720 * of load-balance at each level inversely proportional to the number of CPUs in 8721 * the groups. 8722 * 8723 * This yields: 8724 * 8725 * log_2 n 1 n 8726 * \Sum { --- * --- * 2^i } = O(n) (5) 8727 * i = 0 2^i 2^i 8728 * `- size of each group 8729 * | | `- number of CPUs doing load-balance 8730 * | `- freq 8731 * `- sum over all levels 8732 * 8733 * Coupled with a limit on how many tasks we can migrate every balance pass, 8734 * this makes (5) the runtime complexity of the balancer. 8735 * 8736 * An important property here is that each CPU is still (indirectly) connected 8737 * to every other CPU in at most O(log n) steps: 8738 * 8739 * The adjacency matrix of the resulting graph is given by: 8740 * 8741 * log_2 n 8742 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 8743 * k = 0 8744 * 8745 * And you'll find that: 8746 * 8747 * A^(log_2 n)_i,j != 0 for all i,j (7) 8748 * 8749 * Showing there's indeed a path between every CPU in at most O(log n) steps. 8750 * The task movement gives a factor of O(m), giving a convergence complexity 8751 * of: 8752 * 8753 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 8754 * 8755 * 8756 * WORK CONSERVING 8757 * 8758 * In order to avoid CPUs going idle while there's still work to do, new idle 8759 * balancing is more aggressive and has the newly idle CPU iterate up the domain 8760 * tree itself instead of relying on other CPUs to bring it work. 8761 * 8762 * This adds some complexity to both (5) and (8) but it reduces the total idle 8763 * time. 8764 * 8765 * [XXX more?] 8766 * 8767 * 8768 * CGROUPS 8769 * 8770 * Cgroups make a horror show out of (2), instead of a simple sum we get: 8771 * 8772 * s_k,i 8773 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 8774 * S_k 8775 * 8776 * Where 8777 * 8778 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 8779 * 8780 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i. 8781 * 8782 * The big problem is S_k, its a global sum needed to compute a local (W_i) 8783 * property. 8784 * 8785 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 8786 * rewrite all of this once again.] 8787 */ 8788 8789 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 8790 8791 enum fbq_type { regular, remote, all }; 8792 8793 /* 8794 * 'group_type' describes the group of CPUs at the moment of load balancing. 8795 * 8796 * The enum is ordered by pulling priority, with the group with lowest priority 8797 * first so the group_type can simply be compared when selecting the busiest 8798 * group. See update_sd_pick_busiest(). 8799 */ 8800 enum group_type { 8801 /* The group has spare capacity that can be used to run more tasks. */ 8802 group_has_spare = 0, 8803 /* 8804 * The group is fully used and the tasks don't compete for more CPU 8805 * cycles. Nevertheless, some tasks might wait before running. 8806 */ 8807 group_fully_busy, 8808 /* 8809 * One task doesn't fit with CPU's capacity and must be migrated to a 8810 * more powerful CPU. 8811 */ 8812 group_misfit_task, 8813 /* 8814 * Balance SMT group that's fully busy. Can benefit from migration 8815 * a task on SMT with busy sibling to another CPU on idle core. 8816 */ 8817 group_smt_balance, 8818 /* 8819 * SD_ASYM_PACKING only: One local CPU with higher capacity is available, 8820 * and the task should be migrated to it instead of running on the 8821 * current CPU. 8822 */ 8823 group_asym_packing, 8824 /* 8825 * The tasks' affinity constraints previously prevented the scheduler 8826 * from balancing the load across the system. 8827 */ 8828 group_imbalanced, 8829 /* 8830 * The CPU is overloaded and can't provide expected CPU cycles to all 8831 * tasks. 8832 */ 8833 group_overloaded 8834 }; 8835 8836 enum migration_type { 8837 migrate_load = 0, 8838 migrate_util, 8839 migrate_task, 8840 migrate_misfit 8841 }; 8842 8843 #define LBF_ALL_PINNED 0x01 8844 #define LBF_NEED_BREAK 0x02 8845 #define LBF_DST_PINNED 0x04 8846 #define LBF_SOME_PINNED 0x08 8847 #define LBF_ACTIVE_LB 0x10 8848 8849 struct lb_env { 8850 struct sched_domain *sd; 8851 8852 struct rq *src_rq; 8853 int src_cpu; 8854 8855 int dst_cpu; 8856 struct rq *dst_rq; 8857 8858 struct cpumask *dst_grpmask; 8859 int new_dst_cpu; 8860 enum cpu_idle_type idle; 8861 long imbalance; 8862 /* The set of CPUs under consideration for load-balancing */ 8863 struct cpumask *cpus; 8864 8865 unsigned int flags; 8866 8867 unsigned int loop; 8868 unsigned int loop_break; 8869 unsigned int loop_max; 8870 8871 enum fbq_type fbq_type; 8872 enum migration_type migration_type; 8873 struct list_head tasks; 8874 }; 8875 8876 /* 8877 * Is this task likely cache-hot: 8878 */ 8879 static int task_hot(struct task_struct *p, struct lb_env *env) 8880 { 8881 s64 delta; 8882 8883 lockdep_assert_rq_held(env->src_rq); 8884 8885 if (p->sched_class != &fair_sched_class) 8886 return 0; 8887 8888 if (unlikely(task_has_idle_policy(p))) 8889 return 0; 8890 8891 /* SMT siblings share cache */ 8892 if (env->sd->flags & SD_SHARE_CPUCAPACITY) 8893 return 0; 8894 8895 /* 8896 * Buddy candidates are cache hot: 8897 */ 8898 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 8899 (&p->se == cfs_rq_of(&p->se)->next)) 8900 return 1; 8901 8902 if (sysctl_sched_migration_cost == -1) 8903 return 1; 8904 8905 /* 8906 * Don't migrate task if the task's cookie does not match 8907 * with the destination CPU's core cookie. 8908 */ 8909 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p)) 8910 return 1; 8911 8912 if (sysctl_sched_migration_cost == 0) 8913 return 0; 8914 8915 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 8916 8917 return delta < (s64)sysctl_sched_migration_cost; 8918 } 8919 8920 #ifdef CONFIG_NUMA_BALANCING 8921 /* 8922 * Returns 1, if task migration degrades locality 8923 * Returns 0, if task migration improves locality i.e migration preferred. 8924 * Returns -1, if task migration is not affected by locality. 8925 */ 8926 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 8927 { 8928 struct numa_group *numa_group = rcu_dereference(p->numa_group); 8929 unsigned long src_weight, dst_weight; 8930 int src_nid, dst_nid, dist; 8931 8932 if (!static_branch_likely(&sched_numa_balancing)) 8933 return -1; 8934 8935 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 8936 return -1; 8937 8938 src_nid = cpu_to_node(env->src_cpu); 8939 dst_nid = cpu_to_node(env->dst_cpu); 8940 8941 if (src_nid == dst_nid) 8942 return -1; 8943 8944 /* Migrating away from the preferred node is always bad. */ 8945 if (src_nid == p->numa_preferred_nid) { 8946 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 8947 return 1; 8948 else 8949 return -1; 8950 } 8951 8952 /* Encourage migration to the preferred node. */ 8953 if (dst_nid == p->numa_preferred_nid) 8954 return 0; 8955 8956 /* Leaving a core idle is often worse than degrading locality. */ 8957 if (env->idle == CPU_IDLE) 8958 return -1; 8959 8960 dist = node_distance(src_nid, dst_nid); 8961 if (numa_group) { 8962 src_weight = group_weight(p, src_nid, dist); 8963 dst_weight = group_weight(p, dst_nid, dist); 8964 } else { 8965 src_weight = task_weight(p, src_nid, dist); 8966 dst_weight = task_weight(p, dst_nid, dist); 8967 } 8968 8969 return dst_weight < src_weight; 8970 } 8971 8972 #else 8973 static inline int migrate_degrades_locality(struct task_struct *p, 8974 struct lb_env *env) 8975 { 8976 return -1; 8977 } 8978 #endif 8979 8980 /* 8981 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 8982 */ 8983 static 8984 int can_migrate_task(struct task_struct *p, struct lb_env *env) 8985 { 8986 int tsk_cache_hot; 8987 8988 lockdep_assert_rq_held(env->src_rq); 8989 8990 /* 8991 * We do not migrate tasks that are: 8992 * 1) throttled_lb_pair, or 8993 * 2) cannot be migrated to this CPU due to cpus_ptr, or 8994 * 3) running (obviously), or 8995 * 4) are cache-hot on their current CPU. 8996 */ 8997 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 8998 return 0; 8999 9000 /* Disregard percpu kthreads; they are where they need to be. */ 9001 if (kthread_is_per_cpu(p)) 9002 return 0; 9003 9004 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) { 9005 int cpu; 9006 9007 schedstat_inc(p->stats.nr_failed_migrations_affine); 9008 9009 env->flags |= LBF_SOME_PINNED; 9010 9011 /* 9012 * Remember if this task can be migrated to any other CPU in 9013 * our sched_group. We may want to revisit it if we couldn't 9014 * meet load balance goals by pulling other tasks on src_cpu. 9015 * 9016 * Avoid computing new_dst_cpu 9017 * - for NEWLY_IDLE 9018 * - if we have already computed one in current iteration 9019 * - if it's an active balance 9020 */ 9021 if (env->idle == CPU_NEWLY_IDLE || 9022 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB)) 9023 return 0; 9024 9025 /* Prevent to re-select dst_cpu via env's CPUs: */ 9026 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 9027 if (cpumask_test_cpu(cpu, p->cpus_ptr)) { 9028 env->flags |= LBF_DST_PINNED; 9029 env->new_dst_cpu = cpu; 9030 break; 9031 } 9032 } 9033 9034 return 0; 9035 } 9036 9037 /* Record that we found at least one task that could run on dst_cpu */ 9038 env->flags &= ~LBF_ALL_PINNED; 9039 9040 if (task_on_cpu(env->src_rq, p)) { 9041 schedstat_inc(p->stats.nr_failed_migrations_running); 9042 return 0; 9043 } 9044 9045 /* 9046 * Aggressive migration if: 9047 * 1) active balance 9048 * 2) destination numa is preferred 9049 * 3) task is cache cold, or 9050 * 4) too many balance attempts have failed. 9051 */ 9052 if (env->flags & LBF_ACTIVE_LB) 9053 return 1; 9054 9055 tsk_cache_hot = migrate_degrades_locality(p, env); 9056 if (tsk_cache_hot == -1) 9057 tsk_cache_hot = task_hot(p, env); 9058 9059 if (tsk_cache_hot <= 0 || 9060 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 9061 if (tsk_cache_hot == 1) { 9062 schedstat_inc(env->sd->lb_hot_gained[env->idle]); 9063 schedstat_inc(p->stats.nr_forced_migrations); 9064 } 9065 return 1; 9066 } 9067 9068 schedstat_inc(p->stats.nr_failed_migrations_hot); 9069 return 0; 9070 } 9071 9072 /* 9073 * detach_task() -- detach the task for the migration specified in env 9074 */ 9075 static void detach_task(struct task_struct *p, struct lb_env *env) 9076 { 9077 lockdep_assert_rq_held(env->src_rq); 9078 9079 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK); 9080 set_task_cpu(p, env->dst_cpu); 9081 } 9082 9083 /* 9084 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 9085 * part of active balancing operations within "domain". 9086 * 9087 * Returns a task if successful and NULL otherwise. 9088 */ 9089 static struct task_struct *detach_one_task(struct lb_env *env) 9090 { 9091 struct task_struct *p; 9092 9093 lockdep_assert_rq_held(env->src_rq); 9094 9095 list_for_each_entry_reverse(p, 9096 &env->src_rq->cfs_tasks, se.group_node) { 9097 if (!can_migrate_task(p, env)) 9098 continue; 9099 9100 detach_task(p, env); 9101 9102 /* 9103 * Right now, this is only the second place where 9104 * lb_gained[env->idle] is updated (other is detach_tasks) 9105 * so we can safely collect stats here rather than 9106 * inside detach_tasks(). 9107 */ 9108 schedstat_inc(env->sd->lb_gained[env->idle]); 9109 return p; 9110 } 9111 return NULL; 9112 } 9113 9114 /* 9115 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from 9116 * busiest_rq, as part of a balancing operation within domain "sd". 9117 * 9118 * Returns number of detached tasks if successful and 0 otherwise. 9119 */ 9120 static int detach_tasks(struct lb_env *env) 9121 { 9122 struct list_head *tasks = &env->src_rq->cfs_tasks; 9123 unsigned long util, load; 9124 struct task_struct *p; 9125 int detached = 0; 9126 9127 lockdep_assert_rq_held(env->src_rq); 9128 9129 /* 9130 * Source run queue has been emptied by another CPU, clear 9131 * LBF_ALL_PINNED flag as we will not test any task. 9132 */ 9133 if (env->src_rq->nr_running <= 1) { 9134 env->flags &= ~LBF_ALL_PINNED; 9135 return 0; 9136 } 9137 9138 if (env->imbalance <= 0) 9139 return 0; 9140 9141 while (!list_empty(tasks)) { 9142 /* 9143 * We don't want to steal all, otherwise we may be treated likewise, 9144 * which could at worst lead to a livelock crash. 9145 */ 9146 if (env->idle && env->src_rq->nr_running <= 1) 9147 break; 9148 9149 env->loop++; 9150 /* We've more or less seen every task there is, call it quits */ 9151 if (env->loop > env->loop_max) 9152 break; 9153 9154 /* take a breather every nr_migrate tasks */ 9155 if (env->loop > env->loop_break) { 9156 env->loop_break += SCHED_NR_MIGRATE_BREAK; 9157 env->flags |= LBF_NEED_BREAK; 9158 break; 9159 } 9160 9161 p = list_last_entry(tasks, struct task_struct, se.group_node); 9162 9163 if (!can_migrate_task(p, env)) 9164 goto next; 9165 9166 switch (env->migration_type) { 9167 case migrate_load: 9168 /* 9169 * Depending of the number of CPUs and tasks and the 9170 * cgroup hierarchy, task_h_load() can return a null 9171 * value. Make sure that env->imbalance decreases 9172 * otherwise detach_tasks() will stop only after 9173 * detaching up to loop_max tasks. 9174 */ 9175 load = max_t(unsigned long, task_h_load(p), 1); 9176 9177 if (sched_feat(LB_MIN) && 9178 load < 16 && !env->sd->nr_balance_failed) 9179 goto next; 9180 9181 /* 9182 * Make sure that we don't migrate too much load. 9183 * Nevertheless, let relax the constraint if 9184 * scheduler fails to find a good waiting task to 9185 * migrate. 9186 */ 9187 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance) 9188 goto next; 9189 9190 env->imbalance -= load; 9191 break; 9192 9193 case migrate_util: 9194 util = task_util_est(p); 9195 9196 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance) 9197 goto next; 9198 9199 env->imbalance -= util; 9200 break; 9201 9202 case migrate_task: 9203 env->imbalance--; 9204 break; 9205 9206 case migrate_misfit: 9207 /* This is not a misfit task */ 9208 if (task_fits_cpu(p, env->src_cpu)) 9209 goto next; 9210 9211 env->imbalance = 0; 9212 break; 9213 } 9214 9215 detach_task(p, env); 9216 list_add(&p->se.group_node, &env->tasks); 9217 9218 detached++; 9219 9220 #ifdef CONFIG_PREEMPTION 9221 /* 9222 * NEWIDLE balancing is a source of latency, so preemptible 9223 * kernels will stop after the first task is detached to minimize 9224 * the critical section. 9225 */ 9226 if (env->idle == CPU_NEWLY_IDLE) 9227 break; 9228 #endif 9229 9230 /* 9231 * We only want to steal up to the prescribed amount of 9232 * load/util/tasks. 9233 */ 9234 if (env->imbalance <= 0) 9235 break; 9236 9237 continue; 9238 next: 9239 list_move(&p->se.group_node, tasks); 9240 } 9241 9242 /* 9243 * Right now, this is one of only two places we collect this stat 9244 * so we can safely collect detach_one_task() stats here rather 9245 * than inside detach_one_task(). 9246 */ 9247 schedstat_add(env->sd->lb_gained[env->idle], detached); 9248 9249 return detached; 9250 } 9251 9252 /* 9253 * attach_task() -- attach the task detached by detach_task() to its new rq. 9254 */ 9255 static void attach_task(struct rq *rq, struct task_struct *p) 9256 { 9257 lockdep_assert_rq_held(rq); 9258 9259 WARN_ON_ONCE(task_rq(p) != rq); 9260 activate_task(rq, p, ENQUEUE_NOCLOCK); 9261 wakeup_preempt(rq, p, 0); 9262 } 9263 9264 /* 9265 * attach_one_task() -- attaches the task returned from detach_one_task() to 9266 * its new rq. 9267 */ 9268 static void attach_one_task(struct rq *rq, struct task_struct *p) 9269 { 9270 struct rq_flags rf; 9271 9272 rq_lock(rq, &rf); 9273 update_rq_clock(rq); 9274 attach_task(rq, p); 9275 rq_unlock(rq, &rf); 9276 } 9277 9278 /* 9279 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 9280 * new rq. 9281 */ 9282 static void attach_tasks(struct lb_env *env) 9283 { 9284 struct list_head *tasks = &env->tasks; 9285 struct task_struct *p; 9286 struct rq_flags rf; 9287 9288 rq_lock(env->dst_rq, &rf); 9289 update_rq_clock(env->dst_rq); 9290 9291 while (!list_empty(tasks)) { 9292 p = list_first_entry(tasks, struct task_struct, se.group_node); 9293 list_del_init(&p->se.group_node); 9294 9295 attach_task(env->dst_rq, p); 9296 } 9297 9298 rq_unlock(env->dst_rq, &rf); 9299 } 9300 9301 #ifdef CONFIG_NO_HZ_COMMON 9302 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) 9303 { 9304 if (cfs_rq->avg.load_avg) 9305 return true; 9306 9307 if (cfs_rq->avg.util_avg) 9308 return true; 9309 9310 return false; 9311 } 9312 9313 static inline bool others_have_blocked(struct rq *rq) 9314 { 9315 if (cpu_util_rt(rq)) 9316 return true; 9317 9318 if (cpu_util_dl(rq)) 9319 return true; 9320 9321 if (hw_load_avg(rq)) 9322 return true; 9323 9324 if (cpu_util_irq(rq)) 9325 return true; 9326 9327 return false; 9328 } 9329 9330 static inline void update_blocked_load_tick(struct rq *rq) 9331 { 9332 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies); 9333 } 9334 9335 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) 9336 { 9337 if (!has_blocked) 9338 rq->has_blocked_load = 0; 9339 } 9340 #else 9341 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; } 9342 static inline bool others_have_blocked(struct rq *rq) { return false; } 9343 static inline void update_blocked_load_tick(struct rq *rq) {} 9344 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {} 9345 #endif 9346 9347 static bool __update_blocked_others(struct rq *rq, bool *done) 9348 { 9349 const struct sched_class *curr_class; 9350 u64 now = rq_clock_pelt(rq); 9351 unsigned long hw_pressure; 9352 bool decayed; 9353 9354 /* 9355 * update_load_avg() can call cpufreq_update_util(). Make sure that RT, 9356 * DL and IRQ signals have been updated before updating CFS. 9357 */ 9358 curr_class = rq->curr->sched_class; 9359 9360 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 9361 9362 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) | 9363 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) | 9364 update_hw_load_avg(now, rq, hw_pressure) | 9365 update_irq_load_avg(rq, 0); 9366 9367 if (others_have_blocked(rq)) 9368 *done = false; 9369 9370 return decayed; 9371 } 9372 9373 #ifdef CONFIG_FAIR_GROUP_SCHED 9374 9375 static bool __update_blocked_fair(struct rq *rq, bool *done) 9376 { 9377 struct cfs_rq *cfs_rq, *pos; 9378 bool decayed = false; 9379 int cpu = cpu_of(rq); 9380 9381 /* 9382 * Iterates the task_group tree in a bottom up fashion, see 9383 * list_add_leaf_cfs_rq() for details. 9384 */ 9385 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) { 9386 struct sched_entity *se; 9387 9388 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) { 9389 update_tg_load_avg(cfs_rq); 9390 9391 if (cfs_rq->nr_running == 0) 9392 update_idle_cfs_rq_clock_pelt(cfs_rq); 9393 9394 if (cfs_rq == &rq->cfs) 9395 decayed = true; 9396 } 9397 9398 /* Propagate pending load changes to the parent, if any: */ 9399 se = cfs_rq->tg->se[cpu]; 9400 if (se && !skip_blocked_update(se)) 9401 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 9402 9403 /* 9404 * There can be a lot of idle CPU cgroups. Don't let fully 9405 * decayed cfs_rqs linger on the list. 9406 */ 9407 if (cfs_rq_is_decayed(cfs_rq)) 9408 list_del_leaf_cfs_rq(cfs_rq); 9409 9410 /* Don't need periodic decay once load/util_avg are null */ 9411 if (cfs_rq_has_blocked(cfs_rq)) 9412 *done = false; 9413 } 9414 9415 return decayed; 9416 } 9417 9418 /* 9419 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 9420 * This needs to be done in a top-down fashion because the load of a child 9421 * group is a fraction of its parents load. 9422 */ 9423 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 9424 { 9425 struct rq *rq = rq_of(cfs_rq); 9426 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 9427 unsigned long now = jiffies; 9428 unsigned long load; 9429 9430 if (cfs_rq->last_h_load_update == now) 9431 return; 9432 9433 WRITE_ONCE(cfs_rq->h_load_next, NULL); 9434 for_each_sched_entity(se) { 9435 cfs_rq = cfs_rq_of(se); 9436 WRITE_ONCE(cfs_rq->h_load_next, se); 9437 if (cfs_rq->last_h_load_update == now) 9438 break; 9439 } 9440 9441 if (!se) { 9442 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 9443 cfs_rq->last_h_load_update = now; 9444 } 9445 9446 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) { 9447 load = cfs_rq->h_load; 9448 load = div64_ul(load * se->avg.load_avg, 9449 cfs_rq_load_avg(cfs_rq) + 1); 9450 cfs_rq = group_cfs_rq(se); 9451 cfs_rq->h_load = load; 9452 cfs_rq->last_h_load_update = now; 9453 } 9454 } 9455 9456 static unsigned long task_h_load(struct task_struct *p) 9457 { 9458 struct cfs_rq *cfs_rq = task_cfs_rq(p); 9459 9460 update_cfs_rq_h_load(cfs_rq); 9461 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 9462 cfs_rq_load_avg(cfs_rq) + 1); 9463 } 9464 #else 9465 static bool __update_blocked_fair(struct rq *rq, bool *done) 9466 { 9467 struct cfs_rq *cfs_rq = &rq->cfs; 9468 bool decayed; 9469 9470 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq); 9471 if (cfs_rq_has_blocked(cfs_rq)) 9472 *done = false; 9473 9474 return decayed; 9475 } 9476 9477 static unsigned long task_h_load(struct task_struct *p) 9478 { 9479 return p->se.avg.load_avg; 9480 } 9481 #endif 9482 9483 static void sched_balance_update_blocked_averages(int cpu) 9484 { 9485 bool decayed = false, done = true; 9486 struct rq *rq = cpu_rq(cpu); 9487 struct rq_flags rf; 9488 9489 rq_lock_irqsave(rq, &rf); 9490 update_blocked_load_tick(rq); 9491 update_rq_clock(rq); 9492 9493 decayed |= __update_blocked_others(rq, &done); 9494 decayed |= __update_blocked_fair(rq, &done); 9495 9496 update_blocked_load_status(rq, !done); 9497 if (decayed) 9498 cpufreq_update_util(rq, 0); 9499 rq_unlock_irqrestore(rq, &rf); 9500 } 9501 9502 /********** Helpers for sched_balance_find_src_group ************************/ 9503 9504 /* 9505 * sg_lb_stats - stats of a sched_group required for load-balancing: 9506 */ 9507 struct sg_lb_stats { 9508 unsigned long avg_load; /* Avg load over the CPUs of the group */ 9509 unsigned long group_load; /* Total load over the CPUs of the group */ 9510 unsigned long group_capacity; /* Capacity over the CPUs of the group */ 9511 unsigned long group_util; /* Total utilization over the CPUs of the group */ 9512 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */ 9513 unsigned int sum_nr_running; /* Nr of all tasks running in the group */ 9514 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */ 9515 unsigned int idle_cpus; /* Nr of idle CPUs in the group */ 9516 unsigned int group_weight; 9517 enum group_type group_type; 9518 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */ 9519 unsigned int group_smt_balance; /* Task on busy SMT be moved */ 9520 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */ 9521 #ifdef CONFIG_NUMA_BALANCING 9522 unsigned int nr_numa_running; 9523 unsigned int nr_preferred_running; 9524 #endif 9525 }; 9526 9527 /* 9528 * sd_lb_stats - stats of a sched_domain required for load-balancing: 9529 */ 9530 struct sd_lb_stats { 9531 struct sched_group *busiest; /* Busiest group in this sd */ 9532 struct sched_group *local; /* Local group in this sd */ 9533 unsigned long total_load; /* Total load of all groups in sd */ 9534 unsigned long total_capacity; /* Total capacity of all groups in sd */ 9535 unsigned long avg_load; /* Average load across all groups in sd */ 9536 unsigned int prefer_sibling; /* Tasks should go to sibling first */ 9537 9538 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */ 9539 struct sg_lb_stats local_stat; /* Statistics of the local group */ 9540 }; 9541 9542 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 9543 { 9544 /* 9545 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 9546 * local_stat because update_sg_lb_stats() does a full clear/assignment. 9547 * We must however set busiest_stat::group_type and 9548 * busiest_stat::idle_cpus to the worst busiest group because 9549 * update_sd_pick_busiest() reads these before assignment. 9550 */ 9551 *sds = (struct sd_lb_stats){ 9552 .busiest = NULL, 9553 .local = NULL, 9554 .total_load = 0UL, 9555 .total_capacity = 0UL, 9556 .busiest_stat = { 9557 .idle_cpus = UINT_MAX, 9558 .group_type = group_has_spare, 9559 }, 9560 }; 9561 } 9562 9563 static unsigned long scale_rt_capacity(int cpu) 9564 { 9565 unsigned long max = get_actual_cpu_capacity(cpu); 9566 struct rq *rq = cpu_rq(cpu); 9567 unsigned long used, free; 9568 unsigned long irq; 9569 9570 irq = cpu_util_irq(rq); 9571 9572 if (unlikely(irq >= max)) 9573 return 1; 9574 9575 /* 9576 * avg_rt.util_avg and avg_dl.util_avg track binary signals 9577 * (running and not running) with weights 0 and 1024 respectively. 9578 */ 9579 used = cpu_util_rt(rq); 9580 used += cpu_util_dl(rq); 9581 9582 if (unlikely(used >= max)) 9583 return 1; 9584 9585 free = max - used; 9586 9587 return scale_irq_capacity(free, irq, max); 9588 } 9589 9590 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 9591 { 9592 unsigned long capacity = scale_rt_capacity(cpu); 9593 struct sched_group *sdg = sd->groups; 9594 9595 if (!capacity) 9596 capacity = 1; 9597 9598 cpu_rq(cpu)->cpu_capacity = capacity; 9599 trace_sched_cpu_capacity_tp(cpu_rq(cpu)); 9600 9601 sdg->sgc->capacity = capacity; 9602 sdg->sgc->min_capacity = capacity; 9603 sdg->sgc->max_capacity = capacity; 9604 } 9605 9606 void update_group_capacity(struct sched_domain *sd, int cpu) 9607 { 9608 struct sched_domain *child = sd->child; 9609 struct sched_group *group, *sdg = sd->groups; 9610 unsigned long capacity, min_capacity, max_capacity; 9611 unsigned long interval; 9612 9613 interval = msecs_to_jiffies(sd->balance_interval); 9614 interval = clamp(interval, 1UL, max_load_balance_interval); 9615 sdg->sgc->next_update = jiffies + interval; 9616 9617 if (!child) { 9618 update_cpu_capacity(sd, cpu); 9619 return; 9620 } 9621 9622 capacity = 0; 9623 min_capacity = ULONG_MAX; 9624 max_capacity = 0; 9625 9626 if (child->flags & SD_OVERLAP) { 9627 /* 9628 * SD_OVERLAP domains cannot assume that child groups 9629 * span the current group. 9630 */ 9631 9632 for_each_cpu(cpu, sched_group_span(sdg)) { 9633 unsigned long cpu_cap = capacity_of(cpu); 9634 9635 capacity += cpu_cap; 9636 min_capacity = min(cpu_cap, min_capacity); 9637 max_capacity = max(cpu_cap, max_capacity); 9638 } 9639 } else { 9640 /* 9641 * !SD_OVERLAP domains can assume that child groups 9642 * span the current group. 9643 */ 9644 9645 group = child->groups; 9646 do { 9647 struct sched_group_capacity *sgc = group->sgc; 9648 9649 capacity += sgc->capacity; 9650 min_capacity = min(sgc->min_capacity, min_capacity); 9651 max_capacity = max(sgc->max_capacity, max_capacity); 9652 group = group->next; 9653 } while (group != child->groups); 9654 } 9655 9656 sdg->sgc->capacity = capacity; 9657 sdg->sgc->min_capacity = min_capacity; 9658 sdg->sgc->max_capacity = max_capacity; 9659 } 9660 9661 /* 9662 * Check whether the capacity of the rq has been noticeably reduced by side 9663 * activity. The imbalance_pct is used for the threshold. 9664 * Return true is the capacity is reduced 9665 */ 9666 static inline int 9667 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 9668 { 9669 return ((rq->cpu_capacity * sd->imbalance_pct) < 9670 (arch_scale_cpu_capacity(cpu_of(rq)) * 100)); 9671 } 9672 9673 /* Check if the rq has a misfit task */ 9674 static inline bool check_misfit_status(struct rq *rq) 9675 { 9676 return rq->misfit_task_load; 9677 } 9678 9679 /* 9680 * Group imbalance indicates (and tries to solve) the problem where balancing 9681 * groups is inadequate due to ->cpus_ptr constraints. 9682 * 9683 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a 9684 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group. 9685 * Something like: 9686 * 9687 * { 0 1 2 3 } { 4 5 6 7 } 9688 * * * * * 9689 * 9690 * If we were to balance group-wise we'd place two tasks in the first group and 9691 * two tasks in the second group. Clearly this is undesired as it will overload 9692 * cpu 3 and leave one of the CPUs in the second group unused. 9693 * 9694 * The current solution to this issue is detecting the skew in the first group 9695 * by noticing the lower domain failed to reach balance and had difficulty 9696 * moving tasks due to affinity constraints. 9697 * 9698 * When this is so detected; this group becomes a candidate for busiest; see 9699 * update_sd_pick_busiest(). And calculate_imbalance() and 9700 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it 9701 * to create an effective group imbalance. 9702 * 9703 * This is a somewhat tricky proposition since the next run might not find the 9704 * group imbalance and decide the groups need to be balanced again. A most 9705 * subtle and fragile situation. 9706 */ 9707 9708 static inline int sg_imbalanced(struct sched_group *group) 9709 { 9710 return group->sgc->imbalance; 9711 } 9712 9713 /* 9714 * group_has_capacity returns true if the group has spare capacity that could 9715 * be used by some tasks. 9716 * We consider that a group has spare capacity if the number of task is 9717 * smaller than the number of CPUs or if the utilization is lower than the 9718 * available capacity for CFS tasks. 9719 * For the latter, we use a threshold to stabilize the state, to take into 9720 * account the variance of the tasks' load and to return true if the available 9721 * capacity in meaningful for the load balancer. 9722 * As an example, an available capacity of 1% can appear but it doesn't make 9723 * any benefit for the load balance. 9724 */ 9725 static inline bool 9726 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9727 { 9728 if (sgs->sum_nr_running < sgs->group_weight) 9729 return true; 9730 9731 if ((sgs->group_capacity * imbalance_pct) < 9732 (sgs->group_runnable * 100)) 9733 return false; 9734 9735 if ((sgs->group_capacity * 100) > 9736 (sgs->group_util * imbalance_pct)) 9737 return true; 9738 9739 return false; 9740 } 9741 9742 /* 9743 * group_is_overloaded returns true if the group has more tasks than it can 9744 * handle. 9745 * group_is_overloaded is not equals to !group_has_capacity because a group 9746 * with the exact right number of tasks, has no more spare capacity but is not 9747 * overloaded so both group_has_capacity and group_is_overloaded return 9748 * false. 9749 */ 9750 static inline bool 9751 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs) 9752 { 9753 if (sgs->sum_nr_running <= sgs->group_weight) 9754 return false; 9755 9756 if ((sgs->group_capacity * 100) < 9757 (sgs->group_util * imbalance_pct)) 9758 return true; 9759 9760 if ((sgs->group_capacity * imbalance_pct) < 9761 (sgs->group_runnable * 100)) 9762 return true; 9763 9764 return false; 9765 } 9766 9767 static inline enum 9768 group_type group_classify(unsigned int imbalance_pct, 9769 struct sched_group *group, 9770 struct sg_lb_stats *sgs) 9771 { 9772 if (group_is_overloaded(imbalance_pct, sgs)) 9773 return group_overloaded; 9774 9775 if (sg_imbalanced(group)) 9776 return group_imbalanced; 9777 9778 if (sgs->group_asym_packing) 9779 return group_asym_packing; 9780 9781 if (sgs->group_smt_balance) 9782 return group_smt_balance; 9783 9784 if (sgs->group_misfit_task_load) 9785 return group_misfit_task; 9786 9787 if (!group_has_capacity(imbalance_pct, sgs)) 9788 return group_fully_busy; 9789 9790 return group_has_spare; 9791 } 9792 9793 /** 9794 * sched_use_asym_prio - Check whether asym_packing priority must be used 9795 * @sd: The scheduling domain of the load balancing 9796 * @cpu: A CPU 9797 * 9798 * Always use CPU priority when balancing load between SMT siblings. When 9799 * balancing load between cores, it is not sufficient that @cpu is idle. Only 9800 * use CPU priority if the whole core is idle. 9801 * 9802 * Returns: True if the priority of @cpu must be followed. False otherwise. 9803 */ 9804 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu) 9805 { 9806 if (!(sd->flags & SD_ASYM_PACKING)) 9807 return false; 9808 9809 if (!sched_smt_active()) 9810 return true; 9811 9812 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu); 9813 } 9814 9815 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu) 9816 { 9817 /* 9818 * First check if @dst_cpu can do asym_packing load balance. Only do it 9819 * if it has higher priority than @src_cpu. 9820 */ 9821 return sched_use_asym_prio(sd, dst_cpu) && 9822 sched_asym_prefer(dst_cpu, src_cpu); 9823 } 9824 9825 /** 9826 * sched_group_asym - Check if the destination CPU can do asym_packing balance 9827 * @env: The load balancing environment 9828 * @sgs: Load-balancing statistics of the candidate busiest group 9829 * @group: The candidate busiest group 9830 * 9831 * @env::dst_cpu can do asym_packing if it has higher priority than the 9832 * preferred CPU of @group. 9833 * 9834 * Return: true if @env::dst_cpu can do with asym_packing load balance. False 9835 * otherwise. 9836 */ 9837 static inline bool 9838 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group) 9839 { 9840 /* 9841 * CPU priorities do not make sense for SMT cores with more than one 9842 * busy sibling. 9843 */ 9844 if ((group->flags & SD_SHARE_CPUCAPACITY) && 9845 (sgs->group_weight - sgs->idle_cpus != 1)) 9846 return false; 9847 9848 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu); 9849 } 9850 9851 /* One group has more than one SMT CPU while the other group does not */ 9852 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1, 9853 struct sched_group *sg2) 9854 { 9855 if (!sg1 || !sg2) 9856 return false; 9857 9858 return (sg1->flags & SD_SHARE_CPUCAPACITY) != 9859 (sg2->flags & SD_SHARE_CPUCAPACITY); 9860 } 9861 9862 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs, 9863 struct sched_group *group) 9864 { 9865 if (!env->idle) 9866 return false; 9867 9868 /* 9869 * For SMT source group, it is better to move a task 9870 * to a CPU that doesn't have multiple tasks sharing its CPU capacity. 9871 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY 9872 * will not be on. 9873 */ 9874 if (group->flags & SD_SHARE_CPUCAPACITY && 9875 sgs->sum_h_nr_running > 1) 9876 return true; 9877 9878 return false; 9879 } 9880 9881 static inline long sibling_imbalance(struct lb_env *env, 9882 struct sd_lb_stats *sds, 9883 struct sg_lb_stats *busiest, 9884 struct sg_lb_stats *local) 9885 { 9886 int ncores_busiest, ncores_local; 9887 long imbalance; 9888 9889 if (!env->idle || !busiest->sum_nr_running) 9890 return 0; 9891 9892 ncores_busiest = sds->busiest->cores; 9893 ncores_local = sds->local->cores; 9894 9895 if (ncores_busiest == ncores_local) { 9896 imbalance = busiest->sum_nr_running; 9897 lsub_positive(&imbalance, local->sum_nr_running); 9898 return imbalance; 9899 } 9900 9901 /* Balance such that nr_running/ncores ratio are same on both groups */ 9902 imbalance = ncores_local * busiest->sum_nr_running; 9903 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running); 9904 /* Normalize imbalance and do rounding on normalization */ 9905 imbalance = 2 * imbalance + ncores_local + ncores_busiest; 9906 imbalance /= ncores_local + ncores_busiest; 9907 9908 /* Take advantage of resource in an empty sched group */ 9909 if (imbalance <= 1 && local->sum_nr_running == 0 && 9910 busiest->sum_nr_running > 1) 9911 imbalance = 2; 9912 9913 return imbalance; 9914 } 9915 9916 static inline bool 9917 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd) 9918 { 9919 /* 9920 * When there is more than 1 task, the group_overloaded case already 9921 * takes care of cpu with reduced capacity 9922 */ 9923 if (rq->cfs.h_nr_running != 1) 9924 return false; 9925 9926 return check_cpu_capacity(rq, sd); 9927 } 9928 9929 /** 9930 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 9931 * @env: The load balancing environment. 9932 * @sds: Load-balancing data with statistics of the local group. 9933 * @group: sched_group whose statistics are to be updated. 9934 * @sgs: variable to hold the statistics for this group. 9935 * @sg_overloaded: sched_group is overloaded 9936 * @sg_overutilized: sched_group is overutilized 9937 */ 9938 static inline void update_sg_lb_stats(struct lb_env *env, 9939 struct sd_lb_stats *sds, 9940 struct sched_group *group, 9941 struct sg_lb_stats *sgs, 9942 bool *sg_overloaded, 9943 bool *sg_overutilized) 9944 { 9945 int i, nr_running, local_group; 9946 9947 memset(sgs, 0, sizeof(*sgs)); 9948 9949 local_group = group == sds->local; 9950 9951 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 9952 struct rq *rq = cpu_rq(i); 9953 unsigned long load = cpu_load(rq); 9954 9955 sgs->group_load += load; 9956 sgs->group_util += cpu_util_cfs(i); 9957 sgs->group_runnable += cpu_runnable(rq); 9958 sgs->sum_h_nr_running += rq->cfs.h_nr_running; 9959 9960 nr_running = rq->nr_running; 9961 sgs->sum_nr_running += nr_running; 9962 9963 if (nr_running > 1) 9964 *sg_overloaded = 1; 9965 9966 if (cpu_overutilized(i)) 9967 *sg_overutilized = 1; 9968 9969 #ifdef CONFIG_NUMA_BALANCING 9970 sgs->nr_numa_running += rq->nr_numa_running; 9971 sgs->nr_preferred_running += rq->nr_preferred_running; 9972 #endif 9973 /* 9974 * No need to call idle_cpu() if nr_running is not 0 9975 */ 9976 if (!nr_running && idle_cpu(i)) { 9977 sgs->idle_cpus++; 9978 /* Idle cpu can't have misfit task */ 9979 continue; 9980 } 9981 9982 if (local_group) 9983 continue; 9984 9985 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 9986 /* Check for a misfit task on the cpu */ 9987 if (sgs->group_misfit_task_load < rq->misfit_task_load) { 9988 sgs->group_misfit_task_load = rq->misfit_task_load; 9989 *sg_overloaded = 1; 9990 } 9991 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) { 9992 /* Check for a task running on a CPU with reduced capacity */ 9993 if (sgs->group_misfit_task_load < load) 9994 sgs->group_misfit_task_load = load; 9995 } 9996 } 9997 9998 sgs->group_capacity = group->sgc->capacity; 9999 10000 sgs->group_weight = group->group_weight; 10001 10002 /* Check if dst CPU is idle and preferred to this group */ 10003 if (!local_group && env->idle && sgs->sum_h_nr_running && 10004 sched_group_asym(env, sgs, group)) 10005 sgs->group_asym_packing = 1; 10006 10007 /* Check for loaded SMT group to be balanced to dst CPU */ 10008 if (!local_group && smt_balance(env, sgs, group)) 10009 sgs->group_smt_balance = 1; 10010 10011 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs); 10012 10013 /* Computing avg_load makes sense only when group is overloaded */ 10014 if (sgs->group_type == group_overloaded) 10015 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10016 sgs->group_capacity; 10017 } 10018 10019 /** 10020 * update_sd_pick_busiest - return 1 on busiest group 10021 * @env: The load balancing environment. 10022 * @sds: sched_domain statistics 10023 * @sg: sched_group candidate to be checked for being the busiest 10024 * @sgs: sched_group statistics 10025 * 10026 * Determine if @sg is a busier group than the previously selected 10027 * busiest group. 10028 * 10029 * Return: %true if @sg is a busier group than the previously selected 10030 * busiest group. %false otherwise. 10031 */ 10032 static bool update_sd_pick_busiest(struct lb_env *env, 10033 struct sd_lb_stats *sds, 10034 struct sched_group *sg, 10035 struct sg_lb_stats *sgs) 10036 { 10037 struct sg_lb_stats *busiest = &sds->busiest_stat; 10038 10039 /* Make sure that there is at least one task to pull */ 10040 if (!sgs->sum_h_nr_running) 10041 return false; 10042 10043 /* 10044 * Don't try to pull misfit tasks we can't help. 10045 * We can use max_capacity here as reduction in capacity on some 10046 * CPUs in the group should either be possible to resolve 10047 * internally or be covered by avg_load imbalance (eventually). 10048 */ 10049 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10050 (sgs->group_type == group_misfit_task) && 10051 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) || 10052 sds->local_stat.group_type != group_has_spare)) 10053 return false; 10054 10055 if (sgs->group_type > busiest->group_type) 10056 return true; 10057 10058 if (sgs->group_type < busiest->group_type) 10059 return false; 10060 10061 /* 10062 * The candidate and the current busiest group are the same type of 10063 * group. Let check which one is the busiest according to the type. 10064 */ 10065 10066 switch (sgs->group_type) { 10067 case group_overloaded: 10068 /* Select the overloaded group with highest avg_load. */ 10069 return sgs->avg_load > busiest->avg_load; 10070 10071 case group_imbalanced: 10072 /* 10073 * Select the 1st imbalanced group as we don't have any way to 10074 * choose one more than another. 10075 */ 10076 return false; 10077 10078 case group_asym_packing: 10079 /* Prefer to move from lowest priority CPU's work */ 10080 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu); 10081 10082 case group_misfit_task: 10083 /* 10084 * If we have more than one misfit sg go with the biggest 10085 * misfit. 10086 */ 10087 return sgs->group_misfit_task_load > busiest->group_misfit_task_load; 10088 10089 case group_smt_balance: 10090 /* 10091 * Check if we have spare CPUs on either SMT group to 10092 * choose has spare or fully busy handling. 10093 */ 10094 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0) 10095 goto has_spare; 10096 10097 fallthrough; 10098 10099 case group_fully_busy: 10100 /* 10101 * Select the fully busy group with highest avg_load. In 10102 * theory, there is no need to pull task from such kind of 10103 * group because tasks have all compute capacity that they need 10104 * but we can still improve the overall throughput by reducing 10105 * contention when accessing shared HW resources. 10106 * 10107 * XXX for now avg_load is not computed and always 0 so we 10108 * select the 1st one, except if @sg is composed of SMT 10109 * siblings. 10110 */ 10111 10112 if (sgs->avg_load < busiest->avg_load) 10113 return false; 10114 10115 if (sgs->avg_load == busiest->avg_load) { 10116 /* 10117 * SMT sched groups need more help than non-SMT groups. 10118 * If @sg happens to also be SMT, either choice is good. 10119 */ 10120 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY) 10121 return false; 10122 } 10123 10124 break; 10125 10126 case group_has_spare: 10127 /* 10128 * Do not pick sg with SMT CPUs over sg with pure CPUs, 10129 * as we do not want to pull task off SMT core with one task 10130 * and make the core idle. 10131 */ 10132 if (smt_vs_nonsmt_groups(sds->busiest, sg)) { 10133 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1) 10134 return false; 10135 else 10136 return true; 10137 } 10138 has_spare: 10139 10140 /* 10141 * Select not overloaded group with lowest number of idle CPUs 10142 * and highest number of running tasks. We could also compare 10143 * the spare capacity which is more stable but it can end up 10144 * that the group has less spare capacity but finally more idle 10145 * CPUs which means less opportunity to pull tasks. 10146 */ 10147 if (sgs->idle_cpus > busiest->idle_cpus) 10148 return false; 10149 else if ((sgs->idle_cpus == busiest->idle_cpus) && 10150 (sgs->sum_nr_running <= busiest->sum_nr_running)) 10151 return false; 10152 10153 break; 10154 } 10155 10156 /* 10157 * Candidate sg has no more than one task per CPU and has higher 10158 * per-CPU capacity. Migrating tasks to less capable CPUs may harm 10159 * throughput. Maximize throughput, power/energy consequences are not 10160 * considered. 10161 */ 10162 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) && 10163 (sgs->group_type <= group_fully_busy) && 10164 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu)))) 10165 return false; 10166 10167 return true; 10168 } 10169 10170 #ifdef CONFIG_NUMA_BALANCING 10171 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10172 { 10173 if (sgs->sum_h_nr_running > sgs->nr_numa_running) 10174 return regular; 10175 if (sgs->sum_h_nr_running > sgs->nr_preferred_running) 10176 return remote; 10177 return all; 10178 } 10179 10180 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10181 { 10182 if (rq->nr_running > rq->nr_numa_running) 10183 return regular; 10184 if (rq->nr_running > rq->nr_preferred_running) 10185 return remote; 10186 return all; 10187 } 10188 #else 10189 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 10190 { 10191 return all; 10192 } 10193 10194 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 10195 { 10196 return regular; 10197 } 10198 #endif /* CONFIG_NUMA_BALANCING */ 10199 10200 10201 struct sg_lb_stats; 10202 10203 /* 10204 * task_running_on_cpu - return 1 if @p is running on @cpu. 10205 */ 10206 10207 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p) 10208 { 10209 /* Task has no contribution or is new */ 10210 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time)) 10211 return 0; 10212 10213 if (task_on_rq_queued(p)) 10214 return 1; 10215 10216 return 0; 10217 } 10218 10219 /** 10220 * idle_cpu_without - would a given CPU be idle without p ? 10221 * @cpu: the processor on which idleness is tested. 10222 * @p: task which should be ignored. 10223 * 10224 * Return: 1 if the CPU would be idle. 0 otherwise. 10225 */ 10226 static int idle_cpu_without(int cpu, struct task_struct *p) 10227 { 10228 struct rq *rq = cpu_rq(cpu); 10229 10230 if (rq->curr != rq->idle && rq->curr != p) 10231 return 0; 10232 10233 /* 10234 * rq->nr_running can't be used but an updated version without the 10235 * impact of p on cpu must be used instead. The updated nr_running 10236 * be computed and tested before calling idle_cpu_without(). 10237 */ 10238 10239 if (rq->ttwu_pending) 10240 return 0; 10241 10242 return 1; 10243 } 10244 10245 /* 10246 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup. 10247 * @sd: The sched_domain level to look for idlest group. 10248 * @group: sched_group whose statistics are to be updated. 10249 * @sgs: variable to hold the statistics for this group. 10250 * @p: The task for which we look for the idlest group/CPU. 10251 */ 10252 static inline void update_sg_wakeup_stats(struct sched_domain *sd, 10253 struct sched_group *group, 10254 struct sg_lb_stats *sgs, 10255 struct task_struct *p) 10256 { 10257 int i, nr_running; 10258 10259 memset(sgs, 0, sizeof(*sgs)); 10260 10261 /* Assume that task can't fit any CPU of the group */ 10262 if (sd->flags & SD_ASYM_CPUCAPACITY) 10263 sgs->group_misfit_task_load = 1; 10264 10265 for_each_cpu(i, sched_group_span(group)) { 10266 struct rq *rq = cpu_rq(i); 10267 unsigned int local; 10268 10269 sgs->group_load += cpu_load_without(rq, p); 10270 sgs->group_util += cpu_util_without(i, p); 10271 sgs->group_runnable += cpu_runnable_without(rq, p); 10272 local = task_running_on_cpu(i, p); 10273 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local; 10274 10275 nr_running = rq->nr_running - local; 10276 sgs->sum_nr_running += nr_running; 10277 10278 /* 10279 * No need to call idle_cpu_without() if nr_running is not 0 10280 */ 10281 if (!nr_running && idle_cpu_without(i, p)) 10282 sgs->idle_cpus++; 10283 10284 /* Check if task fits in the CPU */ 10285 if (sd->flags & SD_ASYM_CPUCAPACITY && 10286 sgs->group_misfit_task_load && 10287 task_fits_cpu(p, i)) 10288 sgs->group_misfit_task_load = 0; 10289 10290 } 10291 10292 sgs->group_capacity = group->sgc->capacity; 10293 10294 sgs->group_weight = group->group_weight; 10295 10296 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs); 10297 10298 /* 10299 * Computing avg_load makes sense only when group is fully busy or 10300 * overloaded 10301 */ 10302 if (sgs->group_type == group_fully_busy || 10303 sgs->group_type == group_overloaded) 10304 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) / 10305 sgs->group_capacity; 10306 } 10307 10308 static bool update_pick_idlest(struct sched_group *idlest, 10309 struct sg_lb_stats *idlest_sgs, 10310 struct sched_group *group, 10311 struct sg_lb_stats *sgs) 10312 { 10313 if (sgs->group_type < idlest_sgs->group_type) 10314 return true; 10315 10316 if (sgs->group_type > idlest_sgs->group_type) 10317 return false; 10318 10319 /* 10320 * The candidate and the current idlest group are the same type of 10321 * group. Let check which one is the idlest according to the type. 10322 */ 10323 10324 switch (sgs->group_type) { 10325 case group_overloaded: 10326 case group_fully_busy: 10327 /* Select the group with lowest avg_load. */ 10328 if (idlest_sgs->avg_load <= sgs->avg_load) 10329 return false; 10330 break; 10331 10332 case group_imbalanced: 10333 case group_asym_packing: 10334 case group_smt_balance: 10335 /* Those types are not used in the slow wakeup path */ 10336 return false; 10337 10338 case group_misfit_task: 10339 /* Select group with the highest max capacity */ 10340 if (idlest->sgc->max_capacity >= group->sgc->max_capacity) 10341 return false; 10342 break; 10343 10344 case group_has_spare: 10345 /* Select group with most idle CPUs */ 10346 if (idlest_sgs->idle_cpus > sgs->idle_cpus) 10347 return false; 10348 10349 /* Select group with lowest group_util */ 10350 if (idlest_sgs->idle_cpus == sgs->idle_cpus && 10351 idlest_sgs->group_util <= sgs->group_util) 10352 return false; 10353 10354 break; 10355 } 10356 10357 return true; 10358 } 10359 10360 /* 10361 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the 10362 * domain. 10363 * 10364 * Assumes p is allowed on at least one CPU in sd. 10365 */ 10366 static struct sched_group * 10367 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) 10368 { 10369 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups; 10370 struct sg_lb_stats local_sgs, tmp_sgs; 10371 struct sg_lb_stats *sgs; 10372 unsigned long imbalance; 10373 struct sg_lb_stats idlest_sgs = { 10374 .avg_load = UINT_MAX, 10375 .group_type = group_overloaded, 10376 }; 10377 10378 do { 10379 int local_group; 10380 10381 /* Skip over this group if it has no CPUs allowed */ 10382 if (!cpumask_intersects(sched_group_span(group), 10383 p->cpus_ptr)) 10384 continue; 10385 10386 /* Skip over this group if no cookie matched */ 10387 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group)) 10388 continue; 10389 10390 local_group = cpumask_test_cpu(this_cpu, 10391 sched_group_span(group)); 10392 10393 if (local_group) { 10394 sgs = &local_sgs; 10395 local = group; 10396 } else { 10397 sgs = &tmp_sgs; 10398 } 10399 10400 update_sg_wakeup_stats(sd, group, sgs, p); 10401 10402 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) { 10403 idlest = group; 10404 idlest_sgs = *sgs; 10405 } 10406 10407 } while (group = group->next, group != sd->groups); 10408 10409 10410 /* There is no idlest group to push tasks to */ 10411 if (!idlest) 10412 return NULL; 10413 10414 /* The local group has been skipped because of CPU affinity */ 10415 if (!local) 10416 return idlest; 10417 10418 /* 10419 * If the local group is idler than the selected idlest group 10420 * don't try and push the task. 10421 */ 10422 if (local_sgs.group_type < idlest_sgs.group_type) 10423 return NULL; 10424 10425 /* 10426 * If the local group is busier than the selected idlest group 10427 * try and push the task. 10428 */ 10429 if (local_sgs.group_type > idlest_sgs.group_type) 10430 return idlest; 10431 10432 switch (local_sgs.group_type) { 10433 case group_overloaded: 10434 case group_fully_busy: 10435 10436 /* Calculate allowed imbalance based on load */ 10437 imbalance = scale_load_down(NICE_0_LOAD) * 10438 (sd->imbalance_pct-100) / 100; 10439 10440 /* 10441 * When comparing groups across NUMA domains, it's possible for 10442 * the local domain to be very lightly loaded relative to the 10443 * remote domains but "imbalance" skews the comparison making 10444 * remote CPUs look much more favourable. When considering 10445 * cross-domain, add imbalance to the load on the remote node 10446 * and consider staying local. 10447 */ 10448 10449 if ((sd->flags & SD_NUMA) && 10450 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load)) 10451 return NULL; 10452 10453 /* 10454 * If the local group is less loaded than the selected 10455 * idlest group don't try and push any tasks. 10456 */ 10457 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance)) 10458 return NULL; 10459 10460 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load) 10461 return NULL; 10462 break; 10463 10464 case group_imbalanced: 10465 case group_asym_packing: 10466 case group_smt_balance: 10467 /* Those type are not used in the slow wakeup path */ 10468 return NULL; 10469 10470 case group_misfit_task: 10471 /* Select group with the highest max capacity */ 10472 if (local->sgc->max_capacity >= idlest->sgc->max_capacity) 10473 return NULL; 10474 break; 10475 10476 case group_has_spare: 10477 #ifdef CONFIG_NUMA 10478 if (sd->flags & SD_NUMA) { 10479 int imb_numa_nr = sd->imb_numa_nr; 10480 #ifdef CONFIG_NUMA_BALANCING 10481 int idlest_cpu; 10482 /* 10483 * If there is spare capacity at NUMA, try to select 10484 * the preferred node 10485 */ 10486 if (cpu_to_node(this_cpu) == p->numa_preferred_nid) 10487 return NULL; 10488 10489 idlest_cpu = cpumask_first(sched_group_span(idlest)); 10490 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid) 10491 return idlest; 10492 #endif /* CONFIG_NUMA_BALANCING */ 10493 /* 10494 * Otherwise, keep the task close to the wakeup source 10495 * and improve locality if the number of running tasks 10496 * would remain below threshold where an imbalance is 10497 * allowed while accounting for the possibility the 10498 * task is pinned to a subset of CPUs. If there is a 10499 * real need of migration, periodic load balance will 10500 * take care of it. 10501 */ 10502 if (p->nr_cpus_allowed != NR_CPUS) { 10503 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask); 10504 10505 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr); 10506 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr); 10507 } 10508 10509 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus); 10510 if (!adjust_numa_imbalance(imbalance, 10511 local_sgs.sum_nr_running + 1, 10512 imb_numa_nr)) { 10513 return NULL; 10514 } 10515 } 10516 #endif /* CONFIG_NUMA */ 10517 10518 /* 10519 * Select group with highest number of idle CPUs. We could also 10520 * compare the utilization which is more stable but it can end 10521 * up that the group has less spare capacity but finally more 10522 * idle CPUs which means more opportunity to run task. 10523 */ 10524 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus) 10525 return NULL; 10526 break; 10527 } 10528 10529 return idlest; 10530 } 10531 10532 static void update_idle_cpu_scan(struct lb_env *env, 10533 unsigned long sum_util) 10534 { 10535 struct sched_domain_shared *sd_share; 10536 int llc_weight, pct; 10537 u64 x, y, tmp; 10538 /* 10539 * Update the number of CPUs to scan in LLC domain, which could 10540 * be used as a hint in select_idle_cpu(). The update of sd_share 10541 * could be expensive because it is within a shared cache line. 10542 * So the write of this hint only occurs during periodic load 10543 * balancing, rather than CPU_NEWLY_IDLE, because the latter 10544 * can fire way more frequently than the former. 10545 */ 10546 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE) 10547 return; 10548 10549 llc_weight = per_cpu(sd_llc_size, env->dst_cpu); 10550 if (env->sd->span_weight != llc_weight) 10551 return; 10552 10553 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu)); 10554 if (!sd_share) 10555 return; 10556 10557 /* 10558 * The number of CPUs to search drops as sum_util increases, when 10559 * sum_util hits 85% or above, the scan stops. 10560 * The reason to choose 85% as the threshold is because this is the 10561 * imbalance_pct(117) when a LLC sched group is overloaded. 10562 * 10563 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1] 10564 * and y'= y / SCHED_CAPACITY_SCALE 10565 * 10566 * x is the ratio of sum_util compared to the CPU capacity: 10567 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE) 10568 * y' is the ratio of CPUs to be scanned in the LLC domain, 10569 * and the number of CPUs to scan is calculated by: 10570 * 10571 * nr_scan = llc_weight * y' [2] 10572 * 10573 * When x hits the threshold of overloaded, AKA, when 10574 * x = 100 / pct, y drops to 0. According to [1], 10575 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000 10576 * 10577 * Scale x by SCHED_CAPACITY_SCALE: 10578 * x' = sum_util / llc_weight; [3] 10579 * 10580 * and finally [1] becomes: 10581 * y = SCHED_CAPACITY_SCALE - 10582 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4] 10583 * 10584 */ 10585 /* equation [3] */ 10586 x = sum_util; 10587 do_div(x, llc_weight); 10588 10589 /* equation [4] */ 10590 pct = env->sd->imbalance_pct; 10591 tmp = x * x * pct * pct; 10592 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE); 10593 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE); 10594 y = SCHED_CAPACITY_SCALE - tmp; 10595 10596 /* equation [2] */ 10597 y *= llc_weight; 10598 do_div(y, SCHED_CAPACITY_SCALE); 10599 if ((int)y != sd_share->nr_idle_scan) 10600 WRITE_ONCE(sd_share->nr_idle_scan, (int)y); 10601 } 10602 10603 /** 10604 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 10605 * @env: The load balancing environment. 10606 * @sds: variable to hold the statistics for this sched_domain. 10607 */ 10608 10609 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 10610 { 10611 struct sched_group *sg = env->sd->groups; 10612 struct sg_lb_stats *local = &sds->local_stat; 10613 struct sg_lb_stats tmp_sgs; 10614 unsigned long sum_util = 0; 10615 bool sg_overloaded = 0, sg_overutilized = 0; 10616 10617 do { 10618 struct sg_lb_stats *sgs = &tmp_sgs; 10619 int local_group; 10620 10621 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg)); 10622 if (local_group) { 10623 sds->local = sg; 10624 sgs = local; 10625 10626 if (env->idle != CPU_NEWLY_IDLE || 10627 time_after_eq(jiffies, sg->sgc->next_update)) 10628 update_group_capacity(env->sd, env->dst_cpu); 10629 } 10630 10631 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized); 10632 10633 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) { 10634 sds->busiest = sg; 10635 sds->busiest_stat = *sgs; 10636 } 10637 10638 /* Now, start updating sd_lb_stats */ 10639 sds->total_load += sgs->group_load; 10640 sds->total_capacity += sgs->group_capacity; 10641 10642 sum_util += sgs->group_util; 10643 sg = sg->next; 10644 } while (sg != env->sd->groups); 10645 10646 /* 10647 * Indicate that the child domain of the busiest group prefers tasks 10648 * go to a child's sibling domains first. NB the flags of a sched group 10649 * are those of the child domain. 10650 */ 10651 if (sds->busiest) 10652 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING); 10653 10654 10655 if (env->sd->flags & SD_NUMA) 10656 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 10657 10658 if (!env->sd->parent) { 10659 /* update overload indicator if we are at root domain */ 10660 set_rd_overloaded(env->dst_rq->rd, sg_overloaded); 10661 10662 /* Update over-utilization (tipping point, U >= 0) indicator */ 10663 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 10664 } else if (sg_overutilized) { 10665 set_rd_overutilized(env->dst_rq->rd, sg_overutilized); 10666 } 10667 10668 update_idle_cpu_scan(env, sum_util); 10669 } 10670 10671 /** 10672 * calculate_imbalance - Calculate the amount of imbalance present within the 10673 * groups of a given sched_domain during load balance. 10674 * @env: load balance environment 10675 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 10676 */ 10677 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 10678 { 10679 struct sg_lb_stats *local, *busiest; 10680 10681 local = &sds->local_stat; 10682 busiest = &sds->busiest_stat; 10683 10684 if (busiest->group_type == group_misfit_task) { 10685 if (env->sd->flags & SD_ASYM_CPUCAPACITY) { 10686 /* Set imbalance to allow misfit tasks to be balanced. */ 10687 env->migration_type = migrate_misfit; 10688 env->imbalance = 1; 10689 } else { 10690 /* 10691 * Set load imbalance to allow moving task from cpu 10692 * with reduced capacity. 10693 */ 10694 env->migration_type = migrate_load; 10695 env->imbalance = busiest->group_misfit_task_load; 10696 } 10697 return; 10698 } 10699 10700 if (busiest->group_type == group_asym_packing) { 10701 /* 10702 * In case of asym capacity, we will try to migrate all load to 10703 * the preferred CPU. 10704 */ 10705 env->migration_type = migrate_task; 10706 env->imbalance = busiest->sum_h_nr_running; 10707 return; 10708 } 10709 10710 if (busiest->group_type == group_smt_balance) { 10711 /* Reduce number of tasks sharing CPU capacity */ 10712 env->migration_type = migrate_task; 10713 env->imbalance = 1; 10714 return; 10715 } 10716 10717 if (busiest->group_type == group_imbalanced) { 10718 /* 10719 * In the group_imb case we cannot rely on group-wide averages 10720 * to ensure CPU-load equilibrium, try to move any task to fix 10721 * the imbalance. The next load balance will take care of 10722 * balancing back the system. 10723 */ 10724 env->migration_type = migrate_task; 10725 env->imbalance = 1; 10726 return; 10727 } 10728 10729 /* 10730 * Try to use spare capacity of local group without overloading it or 10731 * emptying busiest. 10732 */ 10733 if (local->group_type == group_has_spare) { 10734 if ((busiest->group_type > group_fully_busy) && 10735 !(env->sd->flags & SD_SHARE_LLC)) { 10736 /* 10737 * If busiest is overloaded, try to fill spare 10738 * capacity. This might end up creating spare capacity 10739 * in busiest or busiest still being overloaded but 10740 * there is no simple way to directly compute the 10741 * amount of load to migrate in order to balance the 10742 * system. 10743 */ 10744 env->migration_type = migrate_util; 10745 env->imbalance = max(local->group_capacity, local->group_util) - 10746 local->group_util; 10747 10748 /* 10749 * In some cases, the group's utilization is max or even 10750 * higher than capacity because of migrations but the 10751 * local CPU is (newly) idle. There is at least one 10752 * waiting task in this overloaded busiest group. Let's 10753 * try to pull it. 10754 */ 10755 if (env->idle && env->imbalance == 0) { 10756 env->migration_type = migrate_task; 10757 env->imbalance = 1; 10758 } 10759 10760 return; 10761 } 10762 10763 if (busiest->group_weight == 1 || sds->prefer_sibling) { 10764 /* 10765 * When prefer sibling, evenly spread running tasks on 10766 * groups. 10767 */ 10768 env->migration_type = migrate_task; 10769 env->imbalance = sibling_imbalance(env, sds, busiest, local); 10770 } else { 10771 10772 /* 10773 * If there is no overload, we just want to even the number of 10774 * idle CPUs. 10775 */ 10776 env->migration_type = migrate_task; 10777 env->imbalance = max_t(long, 0, 10778 (local->idle_cpus - busiest->idle_cpus)); 10779 } 10780 10781 #ifdef CONFIG_NUMA 10782 /* Consider allowing a small imbalance between NUMA groups */ 10783 if (env->sd->flags & SD_NUMA) { 10784 env->imbalance = adjust_numa_imbalance(env->imbalance, 10785 local->sum_nr_running + 1, 10786 env->sd->imb_numa_nr); 10787 } 10788 #endif 10789 10790 /* Number of tasks to move to restore balance */ 10791 env->imbalance >>= 1; 10792 10793 return; 10794 } 10795 10796 /* 10797 * Local is fully busy but has to take more load to relieve the 10798 * busiest group 10799 */ 10800 if (local->group_type < group_overloaded) { 10801 /* 10802 * Local will become overloaded so the avg_load metrics are 10803 * finally needed. 10804 */ 10805 10806 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) / 10807 local->group_capacity; 10808 10809 /* 10810 * If the local group is more loaded than the selected 10811 * busiest group don't try to pull any tasks. 10812 */ 10813 if (local->avg_load >= busiest->avg_load) { 10814 env->imbalance = 0; 10815 return; 10816 } 10817 10818 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) / 10819 sds->total_capacity; 10820 10821 /* 10822 * If the local group is more loaded than the average system 10823 * load, don't try to pull any tasks. 10824 */ 10825 if (local->avg_load >= sds->avg_load) { 10826 env->imbalance = 0; 10827 return; 10828 } 10829 10830 } 10831 10832 /* 10833 * Both group are or will become overloaded and we're trying to get all 10834 * the CPUs to the average_load, so we don't want to push ourselves 10835 * above the average load, nor do we wish to reduce the max loaded CPU 10836 * below the average load. At the same time, we also don't want to 10837 * reduce the group load below the group capacity. Thus we look for 10838 * the minimum possible imbalance. 10839 */ 10840 env->migration_type = migrate_load; 10841 env->imbalance = min( 10842 (busiest->avg_load - sds->avg_load) * busiest->group_capacity, 10843 (sds->avg_load - local->avg_load) * local->group_capacity 10844 ) / SCHED_CAPACITY_SCALE; 10845 } 10846 10847 /******* sched_balance_find_src_group() helpers end here *********************/ 10848 10849 /* 10850 * Decision matrix according to the local and busiest group type: 10851 * 10852 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded 10853 * has_spare nr_idle balanced N/A N/A balanced balanced 10854 * fully_busy nr_idle nr_idle N/A N/A balanced balanced 10855 * misfit_task force N/A N/A N/A N/A N/A 10856 * asym_packing force force N/A N/A force force 10857 * imbalanced force force N/A N/A force force 10858 * overloaded force force N/A N/A force avg_load 10859 * 10860 * N/A : Not Applicable because already filtered while updating 10861 * statistics. 10862 * balanced : The system is balanced for these 2 groups. 10863 * force : Calculate the imbalance as load migration is probably needed. 10864 * avg_load : Only if imbalance is significant enough. 10865 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite 10866 * different in groups. 10867 */ 10868 10869 /** 10870 * sched_balance_find_src_group - Returns the busiest group within the sched_domain 10871 * if there is an imbalance. 10872 * @env: The load balancing environment. 10873 * 10874 * Also calculates the amount of runnable load which should be moved 10875 * to restore balance. 10876 * 10877 * Return: - The busiest group if imbalance exists. 10878 */ 10879 static struct sched_group *sched_balance_find_src_group(struct lb_env *env) 10880 { 10881 struct sg_lb_stats *local, *busiest; 10882 struct sd_lb_stats sds; 10883 10884 init_sd_lb_stats(&sds); 10885 10886 /* 10887 * Compute the various statistics relevant for load balancing at 10888 * this level. 10889 */ 10890 update_sd_lb_stats(env, &sds); 10891 10892 /* There is no busy sibling group to pull tasks from */ 10893 if (!sds.busiest) 10894 goto out_balanced; 10895 10896 busiest = &sds.busiest_stat; 10897 10898 /* Misfit tasks should be dealt with regardless of the avg load */ 10899 if (busiest->group_type == group_misfit_task) 10900 goto force_balance; 10901 10902 if (!is_rd_overutilized(env->dst_rq->rd) && 10903 rcu_dereference(env->dst_rq->rd->pd)) 10904 goto out_balanced; 10905 10906 /* ASYM feature bypasses nice load balance check */ 10907 if (busiest->group_type == group_asym_packing) 10908 goto force_balance; 10909 10910 /* 10911 * If the busiest group is imbalanced the below checks don't 10912 * work because they assume all things are equal, which typically 10913 * isn't true due to cpus_ptr constraints and the like. 10914 */ 10915 if (busiest->group_type == group_imbalanced) 10916 goto force_balance; 10917 10918 local = &sds.local_stat; 10919 /* 10920 * If the local group is busier than the selected busiest group 10921 * don't try and pull any tasks. 10922 */ 10923 if (local->group_type > busiest->group_type) 10924 goto out_balanced; 10925 10926 /* 10927 * When groups are overloaded, use the avg_load to ensure fairness 10928 * between tasks. 10929 */ 10930 if (local->group_type == group_overloaded) { 10931 /* 10932 * If the local group is more loaded than the selected 10933 * busiest group don't try to pull any tasks. 10934 */ 10935 if (local->avg_load >= busiest->avg_load) 10936 goto out_balanced; 10937 10938 /* XXX broken for overlapping NUMA groups */ 10939 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) / 10940 sds.total_capacity; 10941 10942 /* 10943 * Don't pull any tasks if this group is already above the 10944 * domain average load. 10945 */ 10946 if (local->avg_load >= sds.avg_load) 10947 goto out_balanced; 10948 10949 /* 10950 * If the busiest group is more loaded, use imbalance_pct to be 10951 * conservative. 10952 */ 10953 if (100 * busiest->avg_load <= 10954 env->sd->imbalance_pct * local->avg_load) 10955 goto out_balanced; 10956 } 10957 10958 /* 10959 * Try to move all excess tasks to a sibling domain of the busiest 10960 * group's child domain. 10961 */ 10962 if (sds.prefer_sibling && local->group_type == group_has_spare && 10963 sibling_imbalance(env, &sds, busiest, local) > 1) 10964 goto force_balance; 10965 10966 if (busiest->group_type != group_overloaded) { 10967 if (!env->idle) { 10968 /* 10969 * If the busiest group is not overloaded (and as a 10970 * result the local one too) but this CPU is already 10971 * busy, let another idle CPU try to pull task. 10972 */ 10973 goto out_balanced; 10974 } 10975 10976 if (busiest->group_type == group_smt_balance && 10977 smt_vs_nonsmt_groups(sds.local, sds.busiest)) { 10978 /* Let non SMT CPU pull from SMT CPU sharing with sibling */ 10979 goto force_balance; 10980 } 10981 10982 if (busiest->group_weight > 1 && 10983 local->idle_cpus <= (busiest->idle_cpus + 1)) { 10984 /* 10985 * If the busiest group is not overloaded 10986 * and there is no imbalance between this and busiest 10987 * group wrt idle CPUs, it is balanced. The imbalance 10988 * becomes significant if the diff is greater than 1 10989 * otherwise we might end up to just move the imbalance 10990 * on another group. Of course this applies only if 10991 * there is more than 1 CPU per group. 10992 */ 10993 goto out_balanced; 10994 } 10995 10996 if (busiest->sum_h_nr_running == 1) { 10997 /* 10998 * busiest doesn't have any tasks waiting to run 10999 */ 11000 goto out_balanced; 11001 } 11002 } 11003 11004 force_balance: 11005 /* Looks like there is an imbalance. Compute it */ 11006 calculate_imbalance(env, &sds); 11007 return env->imbalance ? sds.busiest : NULL; 11008 11009 out_balanced: 11010 env->imbalance = 0; 11011 return NULL; 11012 } 11013 11014 /* 11015 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group. 11016 */ 11017 static struct rq *sched_balance_find_src_rq(struct lb_env *env, 11018 struct sched_group *group) 11019 { 11020 struct rq *busiest = NULL, *rq; 11021 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1; 11022 unsigned int busiest_nr = 0; 11023 int i; 11024 11025 for_each_cpu_and(i, sched_group_span(group), env->cpus) { 11026 unsigned long capacity, load, util; 11027 unsigned int nr_running; 11028 enum fbq_type rt; 11029 11030 rq = cpu_rq(i); 11031 rt = fbq_classify_rq(rq); 11032 11033 /* 11034 * We classify groups/runqueues into three groups: 11035 * - regular: there are !numa tasks 11036 * - remote: there are numa tasks that run on the 'wrong' node 11037 * - all: there is no distinction 11038 * 11039 * In order to avoid migrating ideally placed numa tasks, 11040 * ignore those when there's better options. 11041 * 11042 * If we ignore the actual busiest queue to migrate another 11043 * task, the next balance pass can still reduce the busiest 11044 * queue by moving tasks around inside the node. 11045 * 11046 * If we cannot move enough load due to this classification 11047 * the next pass will adjust the group classification and 11048 * allow migration of more tasks. 11049 * 11050 * Both cases only affect the total convergence complexity. 11051 */ 11052 if (rt > env->fbq_type) 11053 continue; 11054 11055 nr_running = rq->cfs.h_nr_running; 11056 if (!nr_running) 11057 continue; 11058 11059 capacity = capacity_of(i); 11060 11061 /* 11062 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could 11063 * eventually lead to active_balancing high->low capacity. 11064 * Higher per-CPU capacity is considered better than balancing 11065 * average load. 11066 */ 11067 if (env->sd->flags & SD_ASYM_CPUCAPACITY && 11068 !capacity_greater(capacity_of(env->dst_cpu), capacity) && 11069 nr_running == 1) 11070 continue; 11071 11072 /* 11073 * Make sure we only pull tasks from a CPU of lower priority 11074 * when balancing between SMT siblings. 11075 * 11076 * If balancing between cores, let lower priority CPUs help 11077 * SMT cores with more than one busy sibling. 11078 */ 11079 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1) 11080 continue; 11081 11082 switch (env->migration_type) { 11083 case migrate_load: 11084 /* 11085 * When comparing with load imbalance, use cpu_load() 11086 * which is not scaled with the CPU capacity. 11087 */ 11088 load = cpu_load(rq); 11089 11090 if (nr_running == 1 && load > env->imbalance && 11091 !check_cpu_capacity(rq, env->sd)) 11092 break; 11093 11094 /* 11095 * For the load comparisons with the other CPUs, 11096 * consider the cpu_load() scaled with the CPU 11097 * capacity, so that the load can be moved away 11098 * from the CPU that is potentially running at a 11099 * lower capacity. 11100 * 11101 * Thus we're looking for max(load_i / capacity_i), 11102 * crosswise multiplication to rid ourselves of the 11103 * division works out to: 11104 * load_i * capacity_j > load_j * capacity_i; 11105 * where j is our previous maximum. 11106 */ 11107 if (load * busiest_capacity > busiest_load * capacity) { 11108 busiest_load = load; 11109 busiest_capacity = capacity; 11110 busiest = rq; 11111 } 11112 break; 11113 11114 case migrate_util: 11115 util = cpu_util_cfs_boost(i); 11116 11117 /* 11118 * Don't try to pull utilization from a CPU with one 11119 * running task. Whatever its utilization, we will fail 11120 * detach the task. 11121 */ 11122 if (nr_running <= 1) 11123 continue; 11124 11125 if (busiest_util < util) { 11126 busiest_util = util; 11127 busiest = rq; 11128 } 11129 break; 11130 11131 case migrate_task: 11132 if (busiest_nr < nr_running) { 11133 busiest_nr = nr_running; 11134 busiest = rq; 11135 } 11136 break; 11137 11138 case migrate_misfit: 11139 /* 11140 * For ASYM_CPUCAPACITY domains with misfit tasks we 11141 * simply seek the "biggest" misfit task. 11142 */ 11143 if (rq->misfit_task_load > busiest_load) { 11144 busiest_load = rq->misfit_task_load; 11145 busiest = rq; 11146 } 11147 11148 break; 11149 11150 } 11151 } 11152 11153 return busiest; 11154 } 11155 11156 /* 11157 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 11158 * so long as it is large enough. 11159 */ 11160 #define MAX_PINNED_INTERVAL 512 11161 11162 static inline bool 11163 asym_active_balance(struct lb_env *env) 11164 { 11165 /* 11166 * ASYM_PACKING needs to force migrate tasks from busy but lower 11167 * priority CPUs in order to pack all tasks in the highest priority 11168 * CPUs. When done between cores, do it only if the whole core if the 11169 * whole core is idle. 11170 * 11171 * If @env::src_cpu is an SMT core with busy siblings, let 11172 * the lower priority @env::dst_cpu help it. Do not follow 11173 * CPU priority. 11174 */ 11175 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) && 11176 (sched_asym_prefer(env->dst_cpu, env->src_cpu) || 11177 !sched_use_asym_prio(env->sd, env->src_cpu)); 11178 } 11179 11180 static inline bool 11181 imbalanced_active_balance(struct lb_env *env) 11182 { 11183 struct sched_domain *sd = env->sd; 11184 11185 /* 11186 * The imbalanced case includes the case of pinned tasks preventing a fair 11187 * distribution of the load on the system but also the even distribution of the 11188 * threads on a system with spare capacity 11189 */ 11190 if ((env->migration_type == migrate_task) && 11191 (sd->nr_balance_failed > sd->cache_nice_tries+2)) 11192 return 1; 11193 11194 return 0; 11195 } 11196 11197 static int need_active_balance(struct lb_env *env) 11198 { 11199 struct sched_domain *sd = env->sd; 11200 11201 if (asym_active_balance(env)) 11202 return 1; 11203 11204 if (imbalanced_active_balance(env)) 11205 return 1; 11206 11207 /* 11208 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 11209 * It's worth migrating the task if the src_cpu's capacity is reduced 11210 * because of other sched_class or IRQs if more capacity stays 11211 * available on dst_cpu. 11212 */ 11213 if (env->idle && 11214 (env->src_rq->cfs.h_nr_running == 1)) { 11215 if ((check_cpu_capacity(env->src_rq, sd)) && 11216 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 11217 return 1; 11218 } 11219 11220 if (env->migration_type == migrate_misfit) 11221 return 1; 11222 11223 return 0; 11224 } 11225 11226 static int active_load_balance_cpu_stop(void *data); 11227 11228 static int should_we_balance(struct lb_env *env) 11229 { 11230 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask); 11231 struct sched_group *sg = env->sd->groups; 11232 int cpu, idle_smt = -1; 11233 11234 /* 11235 * Ensure the balancing environment is consistent; can happen 11236 * when the softirq triggers 'during' hotplug. 11237 */ 11238 if (!cpumask_test_cpu(env->dst_cpu, env->cpus)) 11239 return 0; 11240 11241 /* 11242 * In the newly idle case, we will allow all the CPUs 11243 * to do the newly idle load balance. 11244 * 11245 * However, we bail out if we already have tasks or a wakeup pending, 11246 * to optimize wakeup latency. 11247 */ 11248 if (env->idle == CPU_NEWLY_IDLE) { 11249 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending) 11250 return 0; 11251 return 1; 11252 } 11253 11254 cpumask_copy(swb_cpus, group_balance_mask(sg)); 11255 /* Try to find first idle CPU */ 11256 for_each_cpu_and(cpu, swb_cpus, env->cpus) { 11257 if (!idle_cpu(cpu)) 11258 continue; 11259 11260 /* 11261 * Don't balance to idle SMT in busy core right away when 11262 * balancing cores, but remember the first idle SMT CPU for 11263 * later consideration. Find CPU on an idle core first. 11264 */ 11265 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) { 11266 if (idle_smt == -1) 11267 idle_smt = cpu; 11268 /* 11269 * If the core is not idle, and first SMT sibling which is 11270 * idle has been found, then its not needed to check other 11271 * SMT siblings for idleness: 11272 */ 11273 #ifdef CONFIG_SCHED_SMT 11274 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu)); 11275 #endif 11276 continue; 11277 } 11278 11279 /* 11280 * Are we the first idle core in a non-SMT domain or higher, 11281 * or the first idle CPU in a SMT domain? 11282 */ 11283 return cpu == env->dst_cpu; 11284 } 11285 11286 /* Are we the first idle CPU with busy siblings? */ 11287 if (idle_smt != -1) 11288 return idle_smt == env->dst_cpu; 11289 11290 /* Are we the first CPU of this group ? */ 11291 return group_balance_cpu(sg) == env->dst_cpu; 11292 } 11293 11294 /* 11295 * Check this_cpu to ensure it is balanced within domain. Attempt to move 11296 * tasks if there is an imbalance. 11297 */ 11298 static int sched_balance_rq(int this_cpu, struct rq *this_rq, 11299 struct sched_domain *sd, enum cpu_idle_type idle, 11300 int *continue_balancing) 11301 { 11302 int ld_moved, cur_ld_moved, active_balance = 0; 11303 struct sched_domain *sd_parent = sd->parent; 11304 struct sched_group *group; 11305 struct rq *busiest; 11306 struct rq_flags rf; 11307 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 11308 struct lb_env env = { 11309 .sd = sd, 11310 .dst_cpu = this_cpu, 11311 .dst_rq = this_rq, 11312 .dst_grpmask = group_balance_mask(sd->groups), 11313 .idle = idle, 11314 .loop_break = SCHED_NR_MIGRATE_BREAK, 11315 .cpus = cpus, 11316 .fbq_type = all, 11317 .tasks = LIST_HEAD_INIT(env.tasks), 11318 }; 11319 11320 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask); 11321 11322 schedstat_inc(sd->lb_count[idle]); 11323 11324 redo: 11325 if (!should_we_balance(&env)) { 11326 *continue_balancing = 0; 11327 goto out_balanced; 11328 } 11329 11330 group = sched_balance_find_src_group(&env); 11331 if (!group) { 11332 schedstat_inc(sd->lb_nobusyg[idle]); 11333 goto out_balanced; 11334 } 11335 11336 busiest = sched_balance_find_src_rq(&env, group); 11337 if (!busiest) { 11338 schedstat_inc(sd->lb_nobusyq[idle]); 11339 goto out_balanced; 11340 } 11341 11342 WARN_ON_ONCE(busiest == env.dst_rq); 11343 11344 schedstat_add(sd->lb_imbalance[idle], env.imbalance); 11345 11346 env.src_cpu = busiest->cpu; 11347 env.src_rq = busiest; 11348 11349 ld_moved = 0; 11350 /* Clear this flag as soon as we find a pullable task */ 11351 env.flags |= LBF_ALL_PINNED; 11352 if (busiest->nr_running > 1) { 11353 /* 11354 * Attempt to move tasks. If sched_balance_find_src_group has found 11355 * an imbalance but busiest->nr_running <= 1, the group is 11356 * still unbalanced. ld_moved simply stays zero, so it is 11357 * correctly treated as an imbalance. 11358 */ 11359 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 11360 11361 more_balance: 11362 rq_lock_irqsave(busiest, &rf); 11363 update_rq_clock(busiest); 11364 11365 /* 11366 * cur_ld_moved - load moved in current iteration 11367 * ld_moved - cumulative load moved across iterations 11368 */ 11369 cur_ld_moved = detach_tasks(&env); 11370 11371 /* 11372 * We've detached some tasks from busiest_rq. Every 11373 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 11374 * unlock busiest->lock, and we are able to be sure 11375 * that nobody can manipulate the tasks in parallel. 11376 * See task_rq_lock() family for the details. 11377 */ 11378 11379 rq_unlock(busiest, &rf); 11380 11381 if (cur_ld_moved) { 11382 attach_tasks(&env); 11383 ld_moved += cur_ld_moved; 11384 } 11385 11386 local_irq_restore(rf.flags); 11387 11388 if (env.flags & LBF_NEED_BREAK) { 11389 env.flags &= ~LBF_NEED_BREAK; 11390 goto more_balance; 11391 } 11392 11393 /* 11394 * Revisit (affine) tasks on src_cpu that couldn't be moved to 11395 * us and move them to an alternate dst_cpu in our sched_group 11396 * where they can run. The upper limit on how many times we 11397 * iterate on same src_cpu is dependent on number of CPUs in our 11398 * sched_group. 11399 * 11400 * This changes load balance semantics a bit on who can move 11401 * load to a given_cpu. In addition to the given_cpu itself 11402 * (or a ilb_cpu acting on its behalf where given_cpu is 11403 * nohz-idle), we now have balance_cpu in a position to move 11404 * load to given_cpu. In rare situations, this may cause 11405 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 11406 * _independently_ and at _same_ time to move some load to 11407 * given_cpu) causing excess load to be moved to given_cpu. 11408 * This however should not happen so much in practice and 11409 * moreover subsequent load balance cycles should correct the 11410 * excess load moved. 11411 */ 11412 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 11413 11414 /* Prevent to re-select dst_cpu via env's CPUs */ 11415 __cpumask_clear_cpu(env.dst_cpu, env.cpus); 11416 11417 env.dst_rq = cpu_rq(env.new_dst_cpu); 11418 env.dst_cpu = env.new_dst_cpu; 11419 env.flags &= ~LBF_DST_PINNED; 11420 env.loop = 0; 11421 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11422 11423 /* 11424 * Go back to "more_balance" rather than "redo" since we 11425 * need to continue with same src_cpu. 11426 */ 11427 goto more_balance; 11428 } 11429 11430 /* 11431 * We failed to reach balance because of affinity. 11432 */ 11433 if (sd_parent) { 11434 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11435 11436 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 11437 *group_imbalance = 1; 11438 } 11439 11440 /* All tasks on this runqueue were pinned by CPU affinity */ 11441 if (unlikely(env.flags & LBF_ALL_PINNED)) { 11442 __cpumask_clear_cpu(cpu_of(busiest), cpus); 11443 /* 11444 * Attempting to continue load balancing at the current 11445 * sched_domain level only makes sense if there are 11446 * active CPUs remaining as possible busiest CPUs to 11447 * pull load from which are not contained within the 11448 * destination group that is receiving any migrated 11449 * load. 11450 */ 11451 if (!cpumask_subset(cpus, env.dst_grpmask)) { 11452 env.loop = 0; 11453 env.loop_break = SCHED_NR_MIGRATE_BREAK; 11454 goto redo; 11455 } 11456 goto out_all_pinned; 11457 } 11458 } 11459 11460 if (!ld_moved) { 11461 schedstat_inc(sd->lb_failed[idle]); 11462 /* 11463 * Increment the failure counter only on periodic balance. 11464 * We do not want newidle balance, which can be very 11465 * frequent, pollute the failure counter causing 11466 * excessive cache_hot migrations and active balances. 11467 * 11468 * Similarly for migration_misfit which is not related to 11469 * load/util migration, don't pollute nr_balance_failed. 11470 */ 11471 if (idle != CPU_NEWLY_IDLE && 11472 env.migration_type != migrate_misfit) 11473 sd->nr_balance_failed++; 11474 11475 if (need_active_balance(&env)) { 11476 unsigned long flags; 11477 11478 raw_spin_rq_lock_irqsave(busiest, flags); 11479 11480 /* 11481 * Don't kick the active_load_balance_cpu_stop, 11482 * if the curr task on busiest CPU can't be 11483 * moved to this_cpu: 11484 */ 11485 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) { 11486 raw_spin_rq_unlock_irqrestore(busiest, flags); 11487 goto out_one_pinned; 11488 } 11489 11490 /* Record that we found at least one task that could run on this_cpu */ 11491 env.flags &= ~LBF_ALL_PINNED; 11492 11493 /* 11494 * ->active_balance synchronizes accesses to 11495 * ->active_balance_work. Once set, it's cleared 11496 * only after active load balance is finished. 11497 */ 11498 if (!busiest->active_balance) { 11499 busiest->active_balance = 1; 11500 busiest->push_cpu = this_cpu; 11501 active_balance = 1; 11502 } 11503 11504 preempt_disable(); 11505 raw_spin_rq_unlock_irqrestore(busiest, flags); 11506 if (active_balance) { 11507 stop_one_cpu_nowait(cpu_of(busiest), 11508 active_load_balance_cpu_stop, busiest, 11509 &busiest->active_balance_work); 11510 } 11511 preempt_enable(); 11512 } 11513 } else { 11514 sd->nr_balance_failed = 0; 11515 } 11516 11517 if (likely(!active_balance) || need_active_balance(&env)) { 11518 /* We were unbalanced, so reset the balancing interval */ 11519 sd->balance_interval = sd->min_interval; 11520 } 11521 11522 goto out; 11523 11524 out_balanced: 11525 /* 11526 * We reach balance although we may have faced some affinity 11527 * constraints. Clear the imbalance flag only if other tasks got 11528 * a chance to move and fix the imbalance. 11529 */ 11530 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) { 11531 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 11532 11533 if (*group_imbalance) 11534 *group_imbalance = 0; 11535 } 11536 11537 out_all_pinned: 11538 /* 11539 * We reach balance because all tasks are pinned at this level so 11540 * we can't migrate them. Let the imbalance flag set so parent level 11541 * can try to migrate them. 11542 */ 11543 schedstat_inc(sd->lb_balanced[idle]); 11544 11545 sd->nr_balance_failed = 0; 11546 11547 out_one_pinned: 11548 ld_moved = 0; 11549 11550 /* 11551 * sched_balance_newidle() disregards balance intervals, so we could 11552 * repeatedly reach this code, which would lead to balance_interval 11553 * skyrocketing in a short amount of time. Skip the balance_interval 11554 * increase logic to avoid that. 11555 * 11556 * Similarly misfit migration which is not necessarily an indication of 11557 * the system being busy and requires lb to backoff to let it settle 11558 * down. 11559 */ 11560 if (env.idle == CPU_NEWLY_IDLE || 11561 env.migration_type == migrate_misfit) 11562 goto out; 11563 11564 /* tune up the balancing interval */ 11565 if ((env.flags & LBF_ALL_PINNED && 11566 sd->balance_interval < MAX_PINNED_INTERVAL) || 11567 sd->balance_interval < sd->max_interval) 11568 sd->balance_interval *= 2; 11569 out: 11570 return ld_moved; 11571 } 11572 11573 static inline unsigned long 11574 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 11575 { 11576 unsigned long interval = sd->balance_interval; 11577 11578 if (cpu_busy) 11579 interval *= sd->busy_factor; 11580 11581 /* scale ms to jiffies */ 11582 interval = msecs_to_jiffies(interval); 11583 11584 /* 11585 * Reduce likelihood of busy balancing at higher domains racing with 11586 * balancing at lower domains by preventing their balancing periods 11587 * from being multiples of each other. 11588 */ 11589 if (cpu_busy) 11590 interval -= 1; 11591 11592 interval = clamp(interval, 1UL, max_load_balance_interval); 11593 11594 return interval; 11595 } 11596 11597 static inline void 11598 update_next_balance(struct sched_domain *sd, unsigned long *next_balance) 11599 { 11600 unsigned long interval, next; 11601 11602 /* used by idle balance, so cpu_busy = 0 */ 11603 interval = get_sd_balance_interval(sd, 0); 11604 next = sd->last_balance + interval; 11605 11606 if (time_after(*next_balance, next)) 11607 *next_balance = next; 11608 } 11609 11610 /* 11611 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes 11612 * running tasks off the busiest CPU onto idle CPUs. It requires at 11613 * least 1 task to be running on each physical CPU where possible, and 11614 * avoids physical / logical imbalances. 11615 */ 11616 static int active_load_balance_cpu_stop(void *data) 11617 { 11618 struct rq *busiest_rq = data; 11619 int busiest_cpu = cpu_of(busiest_rq); 11620 int target_cpu = busiest_rq->push_cpu; 11621 struct rq *target_rq = cpu_rq(target_cpu); 11622 struct sched_domain *sd; 11623 struct task_struct *p = NULL; 11624 struct rq_flags rf; 11625 11626 rq_lock_irq(busiest_rq, &rf); 11627 /* 11628 * Between queueing the stop-work and running it is a hole in which 11629 * CPUs can become inactive. We should not move tasks from or to 11630 * inactive CPUs. 11631 */ 11632 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu)) 11633 goto out_unlock; 11634 11635 /* Make sure the requested CPU hasn't gone down in the meantime: */ 11636 if (unlikely(busiest_cpu != smp_processor_id() || 11637 !busiest_rq->active_balance)) 11638 goto out_unlock; 11639 11640 /* Is there any task to move? */ 11641 if (busiest_rq->nr_running <= 1) 11642 goto out_unlock; 11643 11644 /* 11645 * This condition is "impossible", if it occurs 11646 * we need to fix it. Originally reported by 11647 * Bjorn Helgaas on a 128-CPU setup. 11648 */ 11649 WARN_ON_ONCE(busiest_rq == target_rq); 11650 11651 /* Search for an sd spanning us and the target CPU. */ 11652 rcu_read_lock(); 11653 for_each_domain(target_cpu, sd) { 11654 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 11655 break; 11656 } 11657 11658 if (likely(sd)) { 11659 struct lb_env env = { 11660 .sd = sd, 11661 .dst_cpu = target_cpu, 11662 .dst_rq = target_rq, 11663 .src_cpu = busiest_rq->cpu, 11664 .src_rq = busiest_rq, 11665 .idle = CPU_IDLE, 11666 .flags = LBF_ACTIVE_LB, 11667 }; 11668 11669 schedstat_inc(sd->alb_count); 11670 update_rq_clock(busiest_rq); 11671 11672 p = detach_one_task(&env); 11673 if (p) { 11674 schedstat_inc(sd->alb_pushed); 11675 /* Active balancing done, reset the failure counter. */ 11676 sd->nr_balance_failed = 0; 11677 } else { 11678 schedstat_inc(sd->alb_failed); 11679 } 11680 } 11681 rcu_read_unlock(); 11682 out_unlock: 11683 busiest_rq->active_balance = 0; 11684 rq_unlock(busiest_rq, &rf); 11685 11686 if (p) 11687 attach_one_task(target_rq, p); 11688 11689 local_irq_enable(); 11690 11691 return 0; 11692 } 11693 11694 /* 11695 * This flag serializes load-balancing passes over large domains 11696 * (above the NODE topology level) - only one load-balancing instance 11697 * may run at a time, to reduce overhead on very large systems with 11698 * lots of CPUs and large NUMA distances. 11699 * 11700 * - Note that load-balancing passes triggered while another one 11701 * is executing are skipped and not re-tried. 11702 * 11703 * - Also note that this does not serialize rebalance_domains() 11704 * execution, as non-SD_SERIALIZE domains will still be 11705 * load-balanced in parallel. 11706 */ 11707 static atomic_t sched_balance_running = ATOMIC_INIT(0); 11708 11709 /* 11710 * Scale the max sched_balance_rq interval with the number of CPUs in the system. 11711 * This trades load-balance latency on larger machines for less cross talk. 11712 */ 11713 void update_max_interval(void) 11714 { 11715 max_load_balance_interval = HZ*num_online_cpus()/10; 11716 } 11717 11718 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost) 11719 { 11720 if (cost > sd->max_newidle_lb_cost) { 11721 /* 11722 * Track max cost of a domain to make sure to not delay the 11723 * next wakeup on the CPU. 11724 */ 11725 sd->max_newidle_lb_cost = cost; 11726 sd->last_decay_max_lb_cost = jiffies; 11727 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) { 11728 /* 11729 * Decay the newidle max times by ~1% per second to ensure that 11730 * it is not outdated and the current max cost is actually 11731 * shorter. 11732 */ 11733 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256; 11734 sd->last_decay_max_lb_cost = jiffies; 11735 11736 return true; 11737 } 11738 11739 return false; 11740 } 11741 11742 /* 11743 * It checks each scheduling domain to see if it is due to be balanced, 11744 * and initiates a balancing operation if so. 11745 * 11746 * Balancing parameters are set up in init_sched_domains. 11747 */ 11748 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle) 11749 { 11750 int continue_balancing = 1; 11751 int cpu = rq->cpu; 11752 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu); 11753 unsigned long interval; 11754 struct sched_domain *sd; 11755 /* Earliest time when we have to do rebalance again */ 11756 unsigned long next_balance = jiffies + 60*HZ; 11757 int update_next_balance = 0; 11758 int need_serialize, need_decay = 0; 11759 u64 max_cost = 0; 11760 11761 rcu_read_lock(); 11762 for_each_domain(cpu, sd) { 11763 /* 11764 * Decay the newidle max times here because this is a regular 11765 * visit to all the domains. 11766 */ 11767 need_decay = update_newidle_cost(sd, 0); 11768 max_cost += sd->max_newidle_lb_cost; 11769 11770 /* 11771 * Stop the load balance at this level. There is another 11772 * CPU in our sched group which is doing load balancing more 11773 * actively. 11774 */ 11775 if (!continue_balancing) { 11776 if (need_decay) 11777 continue; 11778 break; 11779 } 11780 11781 interval = get_sd_balance_interval(sd, busy); 11782 11783 need_serialize = sd->flags & SD_SERIALIZE; 11784 if (need_serialize) { 11785 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1)) 11786 goto out; 11787 } 11788 11789 if (time_after_eq(jiffies, sd->last_balance + interval)) { 11790 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) { 11791 /* 11792 * The LBF_DST_PINNED logic could have changed 11793 * env->dst_cpu, so we can't know our idle 11794 * state even if we migrated tasks. Update it. 11795 */ 11796 idle = idle_cpu(cpu); 11797 busy = !idle && !sched_idle_cpu(cpu); 11798 } 11799 sd->last_balance = jiffies; 11800 interval = get_sd_balance_interval(sd, busy); 11801 } 11802 if (need_serialize) 11803 atomic_set_release(&sched_balance_running, 0); 11804 out: 11805 if (time_after(next_balance, sd->last_balance + interval)) { 11806 next_balance = sd->last_balance + interval; 11807 update_next_balance = 1; 11808 } 11809 } 11810 if (need_decay) { 11811 /* 11812 * Ensure the rq-wide value also decays but keep it at a 11813 * reasonable floor to avoid funnies with rq->avg_idle. 11814 */ 11815 rq->max_idle_balance_cost = 11816 max((u64)sysctl_sched_migration_cost, max_cost); 11817 } 11818 rcu_read_unlock(); 11819 11820 /* 11821 * next_balance will be updated only when there is a need. 11822 * When the cpu is attached to null domain for ex, it will not be 11823 * updated. 11824 */ 11825 if (likely(update_next_balance)) 11826 rq->next_balance = next_balance; 11827 11828 } 11829 11830 static inline int on_null_domain(struct rq *rq) 11831 { 11832 return unlikely(!rcu_dereference_sched(rq->sd)); 11833 } 11834 11835 #ifdef CONFIG_NO_HZ_COMMON 11836 /* 11837 * NOHZ idle load balancing (ILB) details: 11838 * 11839 * - When one of the busy CPUs notices that there may be an idle rebalancing 11840 * needed, they will kick the idle load balancer, which then does idle 11841 * load balancing for all the idle CPUs. 11842 * 11843 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set 11844 * anywhere yet. 11845 */ 11846 static inline int find_new_ilb(void) 11847 { 11848 const struct cpumask *hk_mask; 11849 int ilb_cpu; 11850 11851 hk_mask = housekeeping_cpumask(HK_TYPE_MISC); 11852 11853 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) { 11854 11855 if (ilb_cpu == smp_processor_id()) 11856 continue; 11857 11858 if (idle_cpu(ilb_cpu)) 11859 return ilb_cpu; 11860 } 11861 11862 return -1; 11863 } 11864 11865 /* 11866 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU 11867 * SMP function call (IPI). 11868 * 11869 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one). 11870 */ 11871 static void kick_ilb(unsigned int flags) 11872 { 11873 int ilb_cpu; 11874 11875 /* 11876 * Increase nohz.next_balance only when if full ilb is triggered but 11877 * not if we only update stats. 11878 */ 11879 if (flags & NOHZ_BALANCE_KICK) 11880 nohz.next_balance = jiffies+1; 11881 11882 ilb_cpu = find_new_ilb(); 11883 if (ilb_cpu < 0) 11884 return; 11885 11886 /* 11887 * Don't bother if no new NOHZ balance work items for ilb_cpu, 11888 * i.e. all bits in flags are already set in ilb_cpu. 11889 */ 11890 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags) 11891 return; 11892 11893 /* 11894 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets 11895 * the first flag owns it; cleared by nohz_csd_func(). 11896 */ 11897 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu)); 11898 if (flags & NOHZ_KICK_MASK) 11899 return; 11900 11901 /* 11902 * This way we generate an IPI on the target CPU which 11903 * is idle, and the softirq performing NOHZ idle load balancing 11904 * will be run before returning from the IPI. 11905 */ 11906 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd); 11907 } 11908 11909 /* 11910 * Current decision point for kicking the idle load balancer in the presence 11911 * of idle CPUs in the system. 11912 */ 11913 static void nohz_balancer_kick(struct rq *rq) 11914 { 11915 unsigned long now = jiffies; 11916 struct sched_domain_shared *sds; 11917 struct sched_domain *sd; 11918 int nr_busy, i, cpu = rq->cpu; 11919 unsigned int flags = 0; 11920 11921 if (unlikely(rq->idle_balance)) 11922 return; 11923 11924 /* 11925 * We may be recently in ticked or tickless idle mode. At the first 11926 * busy tick after returning from idle, we will update the busy stats. 11927 */ 11928 nohz_balance_exit_idle(rq); 11929 11930 /* 11931 * None are in tickless mode and hence no need for NOHZ idle load 11932 * balancing: 11933 */ 11934 if (likely(!atomic_read(&nohz.nr_cpus))) 11935 return; 11936 11937 if (READ_ONCE(nohz.has_blocked) && 11938 time_after(now, READ_ONCE(nohz.next_blocked))) 11939 flags = NOHZ_STATS_KICK; 11940 11941 if (time_before(now, nohz.next_balance)) 11942 goto out; 11943 11944 if (rq->nr_running >= 2) { 11945 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11946 goto out; 11947 } 11948 11949 rcu_read_lock(); 11950 11951 sd = rcu_dereference(rq->sd); 11952 if (sd) { 11953 /* 11954 * If there's a runnable CFS task and the current CPU has reduced 11955 * capacity, kick the ILB to see if there's a better CPU to run on: 11956 */ 11957 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) { 11958 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11959 goto unlock; 11960 } 11961 } 11962 11963 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu)); 11964 if (sd) { 11965 /* 11966 * When ASYM_PACKING; see if there's a more preferred CPU 11967 * currently idle; in which case, kick the ILB to move tasks 11968 * around. 11969 * 11970 * When balancing between cores, all the SMT siblings of the 11971 * preferred CPU must be idle. 11972 */ 11973 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) { 11974 if (sched_asym(sd, i, cpu)) { 11975 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11976 goto unlock; 11977 } 11978 } 11979 } 11980 11981 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu)); 11982 if (sd) { 11983 /* 11984 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU 11985 * to run the misfit task on. 11986 */ 11987 if (check_misfit_status(rq)) { 11988 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 11989 goto unlock; 11990 } 11991 11992 /* 11993 * For asymmetric systems, we do not want to nicely balance 11994 * cache use, instead we want to embrace asymmetry and only 11995 * ensure tasks have enough CPU capacity. 11996 * 11997 * Skip the LLC logic because it's not relevant in that case. 11998 */ 11999 goto unlock; 12000 } 12001 12002 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu)); 12003 if (sds) { 12004 /* 12005 * If there is an imbalance between LLC domains (IOW we could 12006 * increase the overall cache utilization), we need a less-loaded LLC 12007 * domain to pull some load from. Likewise, we may need to spread 12008 * load within the current LLC domain (e.g. packed SMT cores but 12009 * other CPUs are idle). We can't really know from here how busy 12010 * the others are - so just get a NOHZ balance going if it looks 12011 * like this LLC domain has tasks we could move. 12012 */ 12013 nr_busy = atomic_read(&sds->nr_busy_cpus); 12014 if (nr_busy > 1) { 12015 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK; 12016 goto unlock; 12017 } 12018 } 12019 unlock: 12020 rcu_read_unlock(); 12021 out: 12022 if (READ_ONCE(nohz.needs_update)) 12023 flags |= NOHZ_NEXT_KICK; 12024 12025 if (flags) 12026 kick_ilb(flags); 12027 } 12028 12029 static void set_cpu_sd_state_busy(int cpu) 12030 { 12031 struct sched_domain *sd; 12032 12033 rcu_read_lock(); 12034 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12035 12036 if (!sd || !sd->nohz_idle) 12037 goto unlock; 12038 sd->nohz_idle = 0; 12039 12040 atomic_inc(&sd->shared->nr_busy_cpus); 12041 unlock: 12042 rcu_read_unlock(); 12043 } 12044 12045 void nohz_balance_exit_idle(struct rq *rq) 12046 { 12047 SCHED_WARN_ON(rq != this_rq()); 12048 12049 if (likely(!rq->nohz_tick_stopped)) 12050 return; 12051 12052 rq->nohz_tick_stopped = 0; 12053 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask); 12054 atomic_dec(&nohz.nr_cpus); 12055 12056 set_cpu_sd_state_busy(rq->cpu); 12057 } 12058 12059 static void set_cpu_sd_state_idle(int cpu) 12060 { 12061 struct sched_domain *sd; 12062 12063 rcu_read_lock(); 12064 sd = rcu_dereference(per_cpu(sd_llc, cpu)); 12065 12066 if (!sd || sd->nohz_idle) 12067 goto unlock; 12068 sd->nohz_idle = 1; 12069 12070 atomic_dec(&sd->shared->nr_busy_cpus); 12071 unlock: 12072 rcu_read_unlock(); 12073 } 12074 12075 /* 12076 * This routine will record that the CPU is going idle with tick stopped. 12077 * This info will be used in performing idle load balancing in the future. 12078 */ 12079 void nohz_balance_enter_idle(int cpu) 12080 { 12081 struct rq *rq = cpu_rq(cpu); 12082 12083 SCHED_WARN_ON(cpu != smp_processor_id()); 12084 12085 /* If this CPU is going down, then nothing needs to be done: */ 12086 if (!cpu_active(cpu)) 12087 return; 12088 12089 /* Spare idle load balancing on CPUs that don't want to be disturbed: */ 12090 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED)) 12091 return; 12092 12093 /* 12094 * Can be set safely without rq->lock held 12095 * If a clear happens, it will have evaluated last additions because 12096 * rq->lock is held during the check and the clear 12097 */ 12098 rq->has_blocked_load = 1; 12099 12100 /* 12101 * The tick is still stopped but load could have been added in the 12102 * meantime. We set the nohz.has_blocked flag to trig a check of the 12103 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear 12104 * of nohz.has_blocked can only happen after checking the new load 12105 */ 12106 if (rq->nohz_tick_stopped) 12107 goto out; 12108 12109 /* If we're a completely isolated CPU, we don't play: */ 12110 if (on_null_domain(rq)) 12111 return; 12112 12113 rq->nohz_tick_stopped = 1; 12114 12115 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 12116 atomic_inc(&nohz.nr_cpus); 12117 12118 /* 12119 * Ensures that if nohz_idle_balance() fails to observe our 12120 * @idle_cpus_mask store, it must observe the @has_blocked 12121 * and @needs_update stores. 12122 */ 12123 smp_mb__after_atomic(); 12124 12125 set_cpu_sd_state_idle(cpu); 12126 12127 WRITE_ONCE(nohz.needs_update, 1); 12128 out: 12129 /* 12130 * Each time a cpu enter idle, we assume that it has blocked load and 12131 * enable the periodic update of the load of idle CPUs 12132 */ 12133 WRITE_ONCE(nohz.has_blocked, 1); 12134 } 12135 12136 static bool update_nohz_stats(struct rq *rq) 12137 { 12138 unsigned int cpu = rq->cpu; 12139 12140 if (!rq->has_blocked_load) 12141 return false; 12142 12143 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask)) 12144 return false; 12145 12146 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick))) 12147 return true; 12148 12149 sched_balance_update_blocked_averages(cpu); 12150 12151 return rq->has_blocked_load; 12152 } 12153 12154 /* 12155 * Internal function that runs load balance for all idle CPUs. The load balance 12156 * can be a simple update of blocked load or a complete load balance with 12157 * tasks movement depending of flags. 12158 */ 12159 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags) 12160 { 12161 /* Earliest time when we have to do rebalance again */ 12162 unsigned long now = jiffies; 12163 unsigned long next_balance = now + 60*HZ; 12164 bool has_blocked_load = false; 12165 int update_next_balance = 0; 12166 int this_cpu = this_rq->cpu; 12167 int balance_cpu; 12168 struct rq *rq; 12169 12170 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK); 12171 12172 /* 12173 * We assume there will be no idle load after this update and clear 12174 * the has_blocked flag. If a cpu enters idle in the mean time, it will 12175 * set the has_blocked flag and trigger another update of idle load. 12176 * Because a cpu that becomes idle, is added to idle_cpus_mask before 12177 * setting the flag, we are sure to not clear the state and not 12178 * check the load of an idle cpu. 12179 * 12180 * Same applies to idle_cpus_mask vs needs_update. 12181 */ 12182 if (flags & NOHZ_STATS_KICK) 12183 WRITE_ONCE(nohz.has_blocked, 0); 12184 if (flags & NOHZ_NEXT_KICK) 12185 WRITE_ONCE(nohz.needs_update, 0); 12186 12187 /* 12188 * Ensures that if we miss the CPU, we must see the has_blocked 12189 * store from nohz_balance_enter_idle(). 12190 */ 12191 smp_mb(); 12192 12193 /* 12194 * Start with the next CPU after this_cpu so we will end with this_cpu and let a 12195 * chance for other idle cpu to pull load. 12196 */ 12197 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) { 12198 if (!idle_cpu(balance_cpu)) 12199 continue; 12200 12201 /* 12202 * If this CPU gets work to do, stop the load balancing 12203 * work being done for other CPUs. Next load 12204 * balancing owner will pick it up. 12205 */ 12206 if (need_resched()) { 12207 if (flags & NOHZ_STATS_KICK) 12208 has_blocked_load = true; 12209 if (flags & NOHZ_NEXT_KICK) 12210 WRITE_ONCE(nohz.needs_update, 1); 12211 goto abort; 12212 } 12213 12214 rq = cpu_rq(balance_cpu); 12215 12216 if (flags & NOHZ_STATS_KICK) 12217 has_blocked_load |= update_nohz_stats(rq); 12218 12219 /* 12220 * If time for next balance is due, 12221 * do the balance. 12222 */ 12223 if (time_after_eq(jiffies, rq->next_balance)) { 12224 struct rq_flags rf; 12225 12226 rq_lock_irqsave(rq, &rf); 12227 update_rq_clock(rq); 12228 rq_unlock_irqrestore(rq, &rf); 12229 12230 if (flags & NOHZ_BALANCE_KICK) 12231 sched_balance_domains(rq, CPU_IDLE); 12232 } 12233 12234 if (time_after(next_balance, rq->next_balance)) { 12235 next_balance = rq->next_balance; 12236 update_next_balance = 1; 12237 } 12238 } 12239 12240 /* 12241 * next_balance will be updated only when there is a need. 12242 * When the CPU is attached to null domain for ex, it will not be 12243 * updated. 12244 */ 12245 if (likely(update_next_balance)) 12246 nohz.next_balance = next_balance; 12247 12248 if (flags & NOHZ_STATS_KICK) 12249 WRITE_ONCE(nohz.next_blocked, 12250 now + msecs_to_jiffies(LOAD_AVG_PERIOD)); 12251 12252 abort: 12253 /* There is still blocked load, enable periodic update */ 12254 if (has_blocked_load) 12255 WRITE_ONCE(nohz.has_blocked, 1); 12256 } 12257 12258 /* 12259 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 12260 * rebalancing for all the CPUs for whom scheduler ticks are stopped. 12261 */ 12262 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12263 { 12264 unsigned int flags = this_rq->nohz_idle_balance; 12265 12266 if (!flags) 12267 return false; 12268 12269 this_rq->nohz_idle_balance = 0; 12270 12271 if (idle != CPU_IDLE) 12272 return false; 12273 12274 _nohz_idle_balance(this_rq, flags); 12275 12276 return true; 12277 } 12278 12279 /* 12280 * Check if we need to directly run the ILB for updating blocked load before 12281 * entering idle state. Here we run ILB directly without issuing IPIs. 12282 * 12283 * Note that when this function is called, the tick may not yet be stopped on 12284 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and 12285 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates 12286 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle 12287 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is 12288 * called from this function on (this) CPU that's not yet in the mask. That's 12289 * OK because the goal of nohz_run_idle_balance() is to run ILB only for 12290 * updating the blocked load of already idle CPUs without waking up one of 12291 * those idle CPUs and outside the preempt disable / IRQ off phase of the local 12292 * cpu about to enter idle, because it can take a long time. 12293 */ 12294 void nohz_run_idle_balance(int cpu) 12295 { 12296 unsigned int flags; 12297 12298 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu)); 12299 12300 /* 12301 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen 12302 * (i.e. NOHZ_STATS_KICK set) and will do the same. 12303 */ 12304 if ((flags == NOHZ_NEWILB_KICK) && !need_resched()) 12305 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK); 12306 } 12307 12308 static void nohz_newidle_balance(struct rq *this_rq) 12309 { 12310 int this_cpu = this_rq->cpu; 12311 12312 /* 12313 * This CPU doesn't want to be disturbed by scheduler 12314 * housekeeping 12315 */ 12316 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED)) 12317 return; 12318 12319 /* Will wake up very soon. No time for doing anything else*/ 12320 if (this_rq->avg_idle < sysctl_sched_migration_cost) 12321 return; 12322 12323 /* Don't need to update blocked load of idle CPUs*/ 12324 if (!READ_ONCE(nohz.has_blocked) || 12325 time_before(jiffies, READ_ONCE(nohz.next_blocked))) 12326 return; 12327 12328 /* 12329 * Set the need to trigger ILB in order to update blocked load 12330 * before entering idle state. 12331 */ 12332 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu)); 12333 } 12334 12335 #else /* !CONFIG_NO_HZ_COMMON */ 12336 static inline void nohz_balancer_kick(struct rq *rq) { } 12337 12338 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 12339 { 12340 return false; 12341 } 12342 12343 static inline void nohz_newidle_balance(struct rq *this_rq) { } 12344 #endif /* CONFIG_NO_HZ_COMMON */ 12345 12346 /* 12347 * sched_balance_newidle is called by schedule() if this_cpu is about to become 12348 * idle. Attempts to pull tasks from other CPUs. 12349 * 12350 * Returns: 12351 * < 0 - we released the lock and there are !fair tasks present 12352 * 0 - failed, no new tasks 12353 * > 0 - success, new (fair) tasks present 12354 */ 12355 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf) 12356 { 12357 unsigned long next_balance = jiffies + HZ; 12358 int this_cpu = this_rq->cpu; 12359 int continue_balancing = 1; 12360 u64 t0, t1, curr_cost = 0; 12361 struct sched_domain *sd; 12362 int pulled_task = 0; 12363 12364 update_misfit_status(NULL, this_rq); 12365 12366 /* 12367 * There is a task waiting to run. No need to search for one. 12368 * Return 0; the task will be enqueued when switching to idle. 12369 */ 12370 if (this_rq->ttwu_pending) 12371 return 0; 12372 12373 /* 12374 * We must set idle_stamp _before_ calling sched_balance_rq() 12375 * for CPU_NEWLY_IDLE, such that we measure the this duration 12376 * as idle time. 12377 */ 12378 this_rq->idle_stamp = rq_clock(this_rq); 12379 12380 /* 12381 * Do not pull tasks towards !active CPUs... 12382 */ 12383 if (!cpu_active(this_cpu)) 12384 return 0; 12385 12386 /* 12387 * This is OK, because current is on_cpu, which avoids it being picked 12388 * for load-balance and preemption/IRQs are still disabled avoiding 12389 * further scheduler activity on it and we're being very careful to 12390 * re-start the picking loop. 12391 */ 12392 rq_unpin_lock(this_rq, rf); 12393 12394 rcu_read_lock(); 12395 sd = rcu_dereference_check_sched_domain(this_rq->sd); 12396 12397 if (!get_rd_overloaded(this_rq->rd) || 12398 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) { 12399 12400 if (sd) 12401 update_next_balance(sd, &next_balance); 12402 rcu_read_unlock(); 12403 12404 goto out; 12405 } 12406 rcu_read_unlock(); 12407 12408 raw_spin_rq_unlock(this_rq); 12409 12410 t0 = sched_clock_cpu(this_cpu); 12411 sched_balance_update_blocked_averages(this_cpu); 12412 12413 rcu_read_lock(); 12414 for_each_domain(this_cpu, sd) { 12415 u64 domain_cost; 12416 12417 update_next_balance(sd, &next_balance); 12418 12419 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) 12420 break; 12421 12422 if (sd->flags & SD_BALANCE_NEWIDLE) { 12423 12424 pulled_task = sched_balance_rq(this_cpu, this_rq, 12425 sd, CPU_NEWLY_IDLE, 12426 &continue_balancing); 12427 12428 t1 = sched_clock_cpu(this_cpu); 12429 domain_cost = t1 - t0; 12430 update_newidle_cost(sd, domain_cost); 12431 12432 curr_cost += domain_cost; 12433 t0 = t1; 12434 } 12435 12436 /* 12437 * Stop searching for tasks to pull if there are 12438 * now runnable tasks on this rq. 12439 */ 12440 if (pulled_task || !continue_balancing) 12441 break; 12442 } 12443 rcu_read_unlock(); 12444 12445 raw_spin_rq_lock(this_rq); 12446 12447 if (curr_cost > this_rq->max_idle_balance_cost) 12448 this_rq->max_idle_balance_cost = curr_cost; 12449 12450 /* 12451 * While browsing the domains, we released the rq lock, a task could 12452 * have been enqueued in the meantime. Since we're not going idle, 12453 * pretend we pulled a task. 12454 */ 12455 if (this_rq->cfs.h_nr_running && !pulled_task) 12456 pulled_task = 1; 12457 12458 /* Is there a task of a high priority class? */ 12459 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 12460 pulled_task = -1; 12461 12462 out: 12463 /* Move the next balance forward */ 12464 if (time_after(this_rq->next_balance, next_balance)) 12465 this_rq->next_balance = next_balance; 12466 12467 if (pulled_task) 12468 this_rq->idle_stamp = 0; 12469 else 12470 nohz_newidle_balance(this_rq); 12471 12472 rq_repin_lock(this_rq, rf); 12473 12474 return pulled_task; 12475 } 12476 12477 /* 12478 * This softirq handler is triggered via SCHED_SOFTIRQ from two places: 12479 * 12480 * - directly from the local scheduler_tick() for periodic load balancing 12481 * 12482 * - indirectly from a remote scheduler_tick() for NOHZ idle balancing 12483 * through the SMP cross-call nohz_csd_func() 12484 */ 12485 static __latent_entropy void sched_balance_softirq(struct softirq_action *h) 12486 { 12487 struct rq *this_rq = this_rq(); 12488 enum cpu_idle_type idle = this_rq->idle_balance; 12489 /* 12490 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the 12491 * balancing on behalf of the other idle CPUs whose ticks are 12492 * stopped. Do nohz_idle_balance *before* sched_balance_domains to 12493 * give the idle CPUs a chance to load balance. Else we may 12494 * load balance only within the local sched_domain hierarchy 12495 * and abort nohz_idle_balance altogether if we pull some load. 12496 */ 12497 if (nohz_idle_balance(this_rq, idle)) 12498 return; 12499 12500 /* normal load balance */ 12501 sched_balance_update_blocked_averages(this_rq->cpu); 12502 sched_balance_domains(this_rq, idle); 12503 } 12504 12505 /* 12506 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 12507 */ 12508 void sched_balance_trigger(struct rq *rq) 12509 { 12510 /* 12511 * Don't need to rebalance while attached to NULL domain or 12512 * runqueue CPU is not active 12513 */ 12514 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq)))) 12515 return; 12516 12517 if (time_after_eq(jiffies, rq->next_balance)) 12518 raise_softirq(SCHED_SOFTIRQ); 12519 12520 nohz_balancer_kick(rq); 12521 } 12522 12523 static void rq_online_fair(struct rq *rq) 12524 { 12525 update_sysctl(); 12526 12527 update_runtime_enabled(rq); 12528 } 12529 12530 static void rq_offline_fair(struct rq *rq) 12531 { 12532 update_sysctl(); 12533 12534 /* Ensure any throttled groups are reachable by pick_next_task */ 12535 unthrottle_offline_cfs_rqs(rq); 12536 12537 /* Ensure that we remove rq contribution to group share: */ 12538 clear_tg_offline_cfs_rqs(rq); 12539 } 12540 12541 #endif /* CONFIG_SMP */ 12542 12543 #ifdef CONFIG_SCHED_CORE 12544 static inline bool 12545 __entity_slice_used(struct sched_entity *se, int min_nr_tasks) 12546 { 12547 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime; 12548 u64 slice = se->slice; 12549 12550 return (rtime * min_nr_tasks > slice); 12551 } 12552 12553 #define MIN_NR_TASKS_DURING_FORCEIDLE 2 12554 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) 12555 { 12556 if (!sched_core_enabled(rq)) 12557 return; 12558 12559 /* 12560 * If runqueue has only one task which used up its slice and 12561 * if the sibling is forced idle, then trigger schedule to 12562 * give forced idle task a chance. 12563 * 12564 * sched_slice() considers only this active rq and it gets the 12565 * whole slice. But during force idle, we have siblings acting 12566 * like a single runqueue and hence we need to consider runnable 12567 * tasks on this CPU and the forced idle CPU. Ideally, we should 12568 * go through the forced idle rq, but that would be a perf hit. 12569 * We can assume that the forced idle CPU has at least 12570 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check 12571 * if we need to give up the CPU. 12572 */ 12573 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 && 12574 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE)) 12575 resched_curr(rq); 12576 } 12577 12578 /* 12579 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed. 12580 */ 12581 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq, 12582 bool forceidle) 12583 { 12584 for_each_sched_entity(se) { 12585 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12586 12587 if (forceidle) { 12588 if (cfs_rq->forceidle_seq == fi_seq) 12589 break; 12590 cfs_rq->forceidle_seq = fi_seq; 12591 } 12592 12593 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime; 12594 } 12595 } 12596 12597 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi) 12598 { 12599 struct sched_entity *se = &p->se; 12600 12601 if (p->sched_class != &fair_sched_class) 12602 return; 12603 12604 se_fi_update(se, rq->core->core_forceidle_seq, in_fi); 12605 } 12606 12607 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b, 12608 bool in_fi) 12609 { 12610 struct rq *rq = task_rq(a); 12611 const struct sched_entity *sea = &a->se; 12612 const struct sched_entity *seb = &b->se; 12613 struct cfs_rq *cfs_rqa; 12614 struct cfs_rq *cfs_rqb; 12615 s64 delta; 12616 12617 SCHED_WARN_ON(task_rq(b)->core != rq->core); 12618 12619 #ifdef CONFIG_FAIR_GROUP_SCHED 12620 /* 12621 * Find an se in the hierarchy for tasks a and b, such that the se's 12622 * are immediate siblings. 12623 */ 12624 while (sea->cfs_rq->tg != seb->cfs_rq->tg) { 12625 int sea_depth = sea->depth; 12626 int seb_depth = seb->depth; 12627 12628 if (sea_depth >= seb_depth) 12629 sea = parent_entity(sea); 12630 if (sea_depth <= seb_depth) 12631 seb = parent_entity(seb); 12632 } 12633 12634 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi); 12635 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi); 12636 12637 cfs_rqa = sea->cfs_rq; 12638 cfs_rqb = seb->cfs_rq; 12639 #else 12640 cfs_rqa = &task_rq(a)->cfs; 12641 cfs_rqb = &task_rq(b)->cfs; 12642 #endif 12643 12644 /* 12645 * Find delta after normalizing se's vruntime with its cfs_rq's 12646 * min_vruntime_fi, which would have been updated in prior calls 12647 * to se_fi_update(). 12648 */ 12649 delta = (s64)(sea->vruntime - seb->vruntime) + 12650 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi); 12651 12652 return delta > 0; 12653 } 12654 12655 static int task_is_throttled_fair(struct task_struct *p, int cpu) 12656 { 12657 struct cfs_rq *cfs_rq; 12658 12659 #ifdef CONFIG_FAIR_GROUP_SCHED 12660 cfs_rq = task_group(p)->cfs_rq[cpu]; 12661 #else 12662 cfs_rq = &cpu_rq(cpu)->cfs; 12663 #endif 12664 return throttled_hierarchy(cfs_rq); 12665 } 12666 #else 12667 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {} 12668 #endif 12669 12670 /* 12671 * scheduler tick hitting a task of our scheduling class. 12672 * 12673 * NOTE: This function can be called remotely by the tick offload that 12674 * goes along full dynticks. Therefore no local assumption can be made 12675 * and everything must be accessed through the @rq and @curr passed in 12676 * parameters. 12677 */ 12678 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 12679 { 12680 struct cfs_rq *cfs_rq; 12681 struct sched_entity *se = &curr->se; 12682 12683 for_each_sched_entity(se) { 12684 cfs_rq = cfs_rq_of(se); 12685 entity_tick(cfs_rq, se, queued); 12686 } 12687 12688 if (static_branch_unlikely(&sched_numa_balancing)) 12689 task_tick_numa(rq, curr); 12690 12691 update_misfit_status(curr, rq); 12692 check_update_overutilized_status(task_rq(curr)); 12693 12694 task_tick_core(rq, curr); 12695 } 12696 12697 /* 12698 * called on fork with the child task as argument from the parent's context 12699 * - child not yet on the tasklist 12700 * - preemption disabled 12701 */ 12702 static void task_fork_fair(struct task_struct *p) 12703 { 12704 struct sched_entity *se = &p->se, *curr; 12705 struct cfs_rq *cfs_rq; 12706 struct rq *rq = this_rq(); 12707 struct rq_flags rf; 12708 12709 rq_lock(rq, &rf); 12710 update_rq_clock(rq); 12711 12712 set_task_max_allowed_capacity(p); 12713 12714 cfs_rq = task_cfs_rq(current); 12715 curr = cfs_rq->curr; 12716 if (curr) 12717 update_curr(cfs_rq); 12718 place_entity(cfs_rq, se, ENQUEUE_INITIAL); 12719 rq_unlock(rq, &rf); 12720 } 12721 12722 /* 12723 * Priority of the task has changed. Check to see if we preempt 12724 * the current task. 12725 */ 12726 static void 12727 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 12728 { 12729 if (!task_on_rq_queued(p)) 12730 return; 12731 12732 if (rq->cfs.nr_running == 1) 12733 return; 12734 12735 /* 12736 * Reschedule if we are currently running on this runqueue and 12737 * our priority decreased, or if we are not currently running on 12738 * this runqueue and our priority is higher than the current's 12739 */ 12740 if (task_current(rq, p)) { 12741 if (p->prio > oldprio) 12742 resched_curr(rq); 12743 } else 12744 wakeup_preempt(rq, p, 0); 12745 } 12746 12747 #ifdef CONFIG_FAIR_GROUP_SCHED 12748 /* 12749 * Propagate the changes of the sched_entity across the tg tree to make it 12750 * visible to the root 12751 */ 12752 static void propagate_entity_cfs_rq(struct sched_entity *se) 12753 { 12754 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12755 12756 if (cfs_rq_throttled(cfs_rq)) 12757 return; 12758 12759 if (!throttled_hierarchy(cfs_rq)) 12760 list_add_leaf_cfs_rq(cfs_rq); 12761 12762 /* Start to propagate at parent */ 12763 se = se->parent; 12764 12765 for_each_sched_entity(se) { 12766 cfs_rq = cfs_rq_of(se); 12767 12768 update_load_avg(cfs_rq, se, UPDATE_TG); 12769 12770 if (cfs_rq_throttled(cfs_rq)) 12771 break; 12772 12773 if (!throttled_hierarchy(cfs_rq)) 12774 list_add_leaf_cfs_rq(cfs_rq); 12775 } 12776 } 12777 #else 12778 static void propagate_entity_cfs_rq(struct sched_entity *se) { } 12779 #endif 12780 12781 static void detach_entity_cfs_rq(struct sched_entity *se) 12782 { 12783 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12784 12785 #ifdef CONFIG_SMP 12786 /* 12787 * In case the task sched_avg hasn't been attached: 12788 * - A forked task which hasn't been woken up by wake_up_new_task(). 12789 * - A task which has been woken up by try_to_wake_up() but is 12790 * waiting for actually being woken up by sched_ttwu_pending(). 12791 */ 12792 if (!se->avg.last_update_time) 12793 return; 12794 #endif 12795 12796 /* Catch up with the cfs_rq and remove our load when we leave */ 12797 update_load_avg(cfs_rq, se, 0); 12798 detach_entity_load_avg(cfs_rq, se); 12799 update_tg_load_avg(cfs_rq); 12800 propagate_entity_cfs_rq(se); 12801 } 12802 12803 static void attach_entity_cfs_rq(struct sched_entity *se) 12804 { 12805 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12806 12807 /* Synchronize entity with its cfs_rq */ 12808 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD); 12809 attach_entity_load_avg(cfs_rq, se); 12810 update_tg_load_avg(cfs_rq); 12811 propagate_entity_cfs_rq(se); 12812 } 12813 12814 static void detach_task_cfs_rq(struct task_struct *p) 12815 { 12816 struct sched_entity *se = &p->se; 12817 12818 detach_entity_cfs_rq(se); 12819 } 12820 12821 static void attach_task_cfs_rq(struct task_struct *p) 12822 { 12823 struct sched_entity *se = &p->se; 12824 12825 attach_entity_cfs_rq(se); 12826 } 12827 12828 static void switched_from_fair(struct rq *rq, struct task_struct *p) 12829 { 12830 detach_task_cfs_rq(p); 12831 } 12832 12833 static void switched_to_fair(struct rq *rq, struct task_struct *p) 12834 { 12835 attach_task_cfs_rq(p); 12836 12837 set_task_max_allowed_capacity(p); 12838 12839 if (task_on_rq_queued(p)) { 12840 /* 12841 * We were most likely switched from sched_rt, so 12842 * kick off the schedule if running, otherwise just see 12843 * if we can still preempt the current task. 12844 */ 12845 if (task_current(rq, p)) 12846 resched_curr(rq); 12847 else 12848 wakeup_preempt(rq, p, 0); 12849 } 12850 } 12851 12852 /* Account for a task changing its policy or group. 12853 * 12854 * This routine is mostly called to set cfs_rq->curr field when a task 12855 * migrates between groups/classes. 12856 */ 12857 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first) 12858 { 12859 struct sched_entity *se = &p->se; 12860 12861 #ifdef CONFIG_SMP 12862 if (task_on_rq_queued(p)) { 12863 /* 12864 * Move the next running task to the front of the list, so our 12865 * cfs_tasks list becomes MRU one. 12866 */ 12867 list_move(&se->group_node, &rq->cfs_tasks); 12868 } 12869 #endif 12870 12871 for_each_sched_entity(se) { 12872 struct cfs_rq *cfs_rq = cfs_rq_of(se); 12873 12874 set_next_entity(cfs_rq, se); 12875 /* ensure bandwidth has been allocated on our new cfs_rq */ 12876 account_cfs_rq_runtime(cfs_rq, 0); 12877 } 12878 } 12879 12880 void init_cfs_rq(struct cfs_rq *cfs_rq) 12881 { 12882 cfs_rq->tasks_timeline = RB_ROOT_CACHED; 12883 u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20))); 12884 #ifdef CONFIG_SMP 12885 raw_spin_lock_init(&cfs_rq->removed.lock); 12886 #endif 12887 } 12888 12889 #ifdef CONFIG_FAIR_GROUP_SCHED 12890 static void task_change_group_fair(struct task_struct *p) 12891 { 12892 /* 12893 * We couldn't detach or attach a forked task which 12894 * hasn't been woken up by wake_up_new_task(). 12895 */ 12896 if (READ_ONCE(p->__state) == TASK_NEW) 12897 return; 12898 12899 detach_task_cfs_rq(p); 12900 12901 #ifdef CONFIG_SMP 12902 /* Tell se's cfs_rq has been changed -- migrated */ 12903 p->se.avg.last_update_time = 0; 12904 #endif 12905 set_task_rq(p, task_cpu(p)); 12906 attach_task_cfs_rq(p); 12907 } 12908 12909 void free_fair_sched_group(struct task_group *tg) 12910 { 12911 int i; 12912 12913 for_each_possible_cpu(i) { 12914 if (tg->cfs_rq) 12915 kfree(tg->cfs_rq[i]); 12916 if (tg->se) 12917 kfree(tg->se[i]); 12918 } 12919 12920 kfree(tg->cfs_rq); 12921 kfree(tg->se); 12922 } 12923 12924 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 12925 { 12926 struct sched_entity *se; 12927 struct cfs_rq *cfs_rq; 12928 int i; 12929 12930 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL); 12931 if (!tg->cfs_rq) 12932 goto err; 12933 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL); 12934 if (!tg->se) 12935 goto err; 12936 12937 tg->shares = NICE_0_LOAD; 12938 12939 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent)); 12940 12941 for_each_possible_cpu(i) { 12942 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 12943 GFP_KERNEL, cpu_to_node(i)); 12944 if (!cfs_rq) 12945 goto err; 12946 12947 se = kzalloc_node(sizeof(struct sched_entity_stats), 12948 GFP_KERNEL, cpu_to_node(i)); 12949 if (!se) 12950 goto err_free_rq; 12951 12952 init_cfs_rq(cfs_rq); 12953 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 12954 init_entity_runnable_average(se); 12955 } 12956 12957 return 1; 12958 12959 err_free_rq: 12960 kfree(cfs_rq); 12961 err: 12962 return 0; 12963 } 12964 12965 void online_fair_sched_group(struct task_group *tg) 12966 { 12967 struct sched_entity *se; 12968 struct rq_flags rf; 12969 struct rq *rq; 12970 int i; 12971 12972 for_each_possible_cpu(i) { 12973 rq = cpu_rq(i); 12974 se = tg->se[i]; 12975 rq_lock_irq(rq, &rf); 12976 update_rq_clock(rq); 12977 attach_entity_cfs_rq(se); 12978 sync_throttle(tg, i); 12979 rq_unlock_irq(rq, &rf); 12980 } 12981 } 12982 12983 void unregister_fair_sched_group(struct task_group *tg) 12984 { 12985 unsigned long flags; 12986 struct rq *rq; 12987 int cpu; 12988 12989 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 12990 12991 for_each_possible_cpu(cpu) { 12992 if (tg->se[cpu]) 12993 remove_entity_load_avg(tg->se[cpu]); 12994 12995 /* 12996 * Only empty task groups can be destroyed; so we can speculatively 12997 * check on_list without danger of it being re-added. 12998 */ 12999 if (!tg->cfs_rq[cpu]->on_list) 13000 continue; 13001 13002 rq = cpu_rq(cpu); 13003 13004 raw_spin_rq_lock_irqsave(rq, flags); 13005 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 13006 raw_spin_rq_unlock_irqrestore(rq, flags); 13007 } 13008 } 13009 13010 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 13011 struct sched_entity *se, int cpu, 13012 struct sched_entity *parent) 13013 { 13014 struct rq *rq = cpu_rq(cpu); 13015 13016 cfs_rq->tg = tg; 13017 cfs_rq->rq = rq; 13018 init_cfs_rq_runtime(cfs_rq); 13019 13020 tg->cfs_rq[cpu] = cfs_rq; 13021 tg->se[cpu] = se; 13022 13023 /* se could be NULL for root_task_group */ 13024 if (!se) 13025 return; 13026 13027 if (!parent) { 13028 se->cfs_rq = &rq->cfs; 13029 se->depth = 0; 13030 } else { 13031 se->cfs_rq = parent->my_q; 13032 se->depth = parent->depth + 1; 13033 } 13034 13035 se->my_q = cfs_rq; 13036 /* guarantee group entities always have weight */ 13037 update_load_set(&se->load, NICE_0_LOAD); 13038 se->parent = parent; 13039 } 13040 13041 static DEFINE_MUTEX(shares_mutex); 13042 13043 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares) 13044 { 13045 int i; 13046 13047 lockdep_assert_held(&shares_mutex); 13048 13049 /* 13050 * We can't change the weight of the root cgroup. 13051 */ 13052 if (!tg->se[0]) 13053 return -EINVAL; 13054 13055 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 13056 13057 if (tg->shares == shares) 13058 return 0; 13059 13060 tg->shares = shares; 13061 for_each_possible_cpu(i) { 13062 struct rq *rq = cpu_rq(i); 13063 struct sched_entity *se = tg->se[i]; 13064 struct rq_flags rf; 13065 13066 /* Propagate contribution to hierarchy */ 13067 rq_lock_irqsave(rq, &rf); 13068 update_rq_clock(rq); 13069 for_each_sched_entity(se) { 13070 update_load_avg(cfs_rq_of(se), se, UPDATE_TG); 13071 update_cfs_group(se); 13072 } 13073 rq_unlock_irqrestore(rq, &rf); 13074 } 13075 13076 return 0; 13077 } 13078 13079 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 13080 { 13081 int ret; 13082 13083 mutex_lock(&shares_mutex); 13084 if (tg_is_idle(tg)) 13085 ret = -EINVAL; 13086 else 13087 ret = __sched_group_set_shares(tg, shares); 13088 mutex_unlock(&shares_mutex); 13089 13090 return ret; 13091 } 13092 13093 int sched_group_set_idle(struct task_group *tg, long idle) 13094 { 13095 int i; 13096 13097 if (tg == &root_task_group) 13098 return -EINVAL; 13099 13100 if (idle < 0 || idle > 1) 13101 return -EINVAL; 13102 13103 mutex_lock(&shares_mutex); 13104 13105 if (tg->idle == idle) { 13106 mutex_unlock(&shares_mutex); 13107 return 0; 13108 } 13109 13110 tg->idle = idle; 13111 13112 for_each_possible_cpu(i) { 13113 struct rq *rq = cpu_rq(i); 13114 struct sched_entity *se = tg->se[i]; 13115 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i]; 13116 bool was_idle = cfs_rq_is_idle(grp_cfs_rq); 13117 long idle_task_delta; 13118 struct rq_flags rf; 13119 13120 rq_lock_irqsave(rq, &rf); 13121 13122 grp_cfs_rq->idle = idle; 13123 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq))) 13124 goto next_cpu; 13125 13126 if (se->on_rq) { 13127 parent_cfs_rq = cfs_rq_of(se); 13128 if (cfs_rq_is_idle(grp_cfs_rq)) 13129 parent_cfs_rq->idle_nr_running++; 13130 else 13131 parent_cfs_rq->idle_nr_running--; 13132 } 13133 13134 idle_task_delta = grp_cfs_rq->h_nr_running - 13135 grp_cfs_rq->idle_h_nr_running; 13136 if (!cfs_rq_is_idle(grp_cfs_rq)) 13137 idle_task_delta *= -1; 13138 13139 for_each_sched_entity(se) { 13140 struct cfs_rq *cfs_rq = cfs_rq_of(se); 13141 13142 if (!se->on_rq) 13143 break; 13144 13145 cfs_rq->idle_h_nr_running += idle_task_delta; 13146 13147 /* Already accounted at parent level and above. */ 13148 if (cfs_rq_is_idle(cfs_rq)) 13149 break; 13150 } 13151 13152 next_cpu: 13153 rq_unlock_irqrestore(rq, &rf); 13154 } 13155 13156 /* Idle groups have minimum weight. */ 13157 if (tg_is_idle(tg)) 13158 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO)); 13159 else 13160 __sched_group_set_shares(tg, NICE_0_LOAD); 13161 13162 mutex_unlock(&shares_mutex); 13163 return 0; 13164 } 13165 13166 #endif /* CONFIG_FAIR_GROUP_SCHED */ 13167 13168 13169 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 13170 { 13171 struct sched_entity *se = &task->se; 13172 unsigned int rr_interval = 0; 13173 13174 /* 13175 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 13176 * idle runqueue: 13177 */ 13178 if (rq->cfs.load.weight) 13179 rr_interval = NS_TO_JIFFIES(se->slice); 13180 13181 return rr_interval; 13182 } 13183 13184 /* 13185 * All the scheduling class methods: 13186 */ 13187 DEFINE_SCHED_CLASS(fair) = { 13188 13189 .enqueue_task = enqueue_task_fair, 13190 .dequeue_task = dequeue_task_fair, 13191 .yield_task = yield_task_fair, 13192 .yield_to_task = yield_to_task_fair, 13193 13194 .wakeup_preempt = check_preempt_wakeup_fair, 13195 13196 .pick_next_task = __pick_next_task_fair, 13197 .put_prev_task = put_prev_task_fair, 13198 .set_next_task = set_next_task_fair, 13199 13200 #ifdef CONFIG_SMP 13201 .balance = balance_fair, 13202 .pick_task = pick_task_fair, 13203 .select_task_rq = select_task_rq_fair, 13204 .migrate_task_rq = migrate_task_rq_fair, 13205 13206 .rq_online = rq_online_fair, 13207 .rq_offline = rq_offline_fair, 13208 13209 .task_dead = task_dead_fair, 13210 .set_cpus_allowed = set_cpus_allowed_fair, 13211 #endif 13212 13213 .task_tick = task_tick_fair, 13214 .task_fork = task_fork_fair, 13215 13216 .prio_changed = prio_changed_fair, 13217 .switched_from = switched_from_fair, 13218 .switched_to = switched_to_fair, 13219 13220 .get_rr_interval = get_rr_interval_fair, 13221 13222 .update_curr = update_curr_fair, 13223 13224 #ifdef CONFIG_FAIR_GROUP_SCHED 13225 .task_change_group = task_change_group_fair, 13226 #endif 13227 13228 #ifdef CONFIG_SCHED_CORE 13229 .task_is_throttled = task_is_throttled_fair, 13230 #endif 13231 13232 #ifdef CONFIG_UCLAMP_TASK 13233 .uclamp_enabled = 1, 13234 #endif 13235 }; 13236 13237 #ifdef CONFIG_SCHED_DEBUG 13238 void print_cfs_stats(struct seq_file *m, int cpu) 13239 { 13240 struct cfs_rq *cfs_rq, *pos; 13241 13242 rcu_read_lock(); 13243 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos) 13244 print_cfs_rq(m, cpu, cfs_rq); 13245 rcu_read_unlock(); 13246 } 13247 13248 #ifdef CONFIG_NUMA_BALANCING 13249 void show_numa_stats(struct task_struct *p, struct seq_file *m) 13250 { 13251 int node; 13252 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 13253 struct numa_group *ng; 13254 13255 rcu_read_lock(); 13256 ng = rcu_dereference(p->numa_group); 13257 for_each_online_node(node) { 13258 if (p->numa_faults) { 13259 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 13260 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 13261 } 13262 if (ng) { 13263 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)], 13264 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)]; 13265 } 13266 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 13267 } 13268 rcu_read_unlock(); 13269 } 13270 #endif /* CONFIG_NUMA_BALANCING */ 13271 #endif /* CONFIG_SCHED_DEBUG */ 13272 13273 __init void init_sched_fair_class(void) 13274 { 13275 #ifdef CONFIG_SMP 13276 int i; 13277 13278 for_each_possible_cpu(i) { 13279 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i)); 13280 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i)); 13281 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i), 13282 GFP_KERNEL, cpu_to_node(i)); 13283 13284 #ifdef CONFIG_CFS_BANDWIDTH 13285 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i)); 13286 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list); 13287 #endif 13288 } 13289 13290 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq); 13291 13292 #ifdef CONFIG_NO_HZ_COMMON 13293 nohz.next_balance = jiffies; 13294 nohz.next_blocked = jiffies; 13295 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 13296 #endif 13297 #endif /* SMP */ 13298 13299 } 13300