xref: /linux/kernel/sched/fair.c (revision e0b2fdb352b7991664b23ae5e15b537cd79a7820)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
51 
52 #include <asm/switch_to.h>
53 
54 #include "sched.h"
55 #include "stats.h"
56 #include "autogroup.h"
57 
58 /*
59  * The initial- and re-scaling of tunables is configurable
60  *
61  * Options are:
62  *
63  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
64  *   SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
65  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
66  *
67  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
68  */
69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
70 
71 /*
72  * Minimal preemption granularity for CPU-bound tasks:
73  *
74  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
75  */
76 unsigned int sysctl_sched_base_slice			= 750000ULL;
77 static unsigned int normalized_sysctl_sched_base_slice	= 750000ULL;
78 
79 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
80 
81 static int __init setup_sched_thermal_decay_shift(char *str)
82 {
83 	pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
84 	return 1;
85 }
86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
87 
88 #ifdef CONFIG_SMP
89 /*
90  * For asym packing, by default the lower numbered CPU has higher priority.
91  */
92 int __weak arch_asym_cpu_priority(int cpu)
93 {
94 	return -cpu;
95 }
96 
97 /*
98  * The margin used when comparing utilization with CPU capacity.
99  *
100  * (default: ~20%)
101  */
102 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
103 
104 /*
105  * The margin used when comparing CPU capacities.
106  * is 'cap1' noticeably greater than 'cap2'
107  *
108  * (default: ~5%)
109  */
110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
111 #endif
112 
113 #ifdef CONFIG_CFS_BANDWIDTH
114 /*
115  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
116  * each time a cfs_rq requests quota.
117  *
118  * Note: in the case that the slice exceeds the runtime remaining (either due
119  * to consumption or the quota being specified to be smaller than the slice)
120  * we will always only issue the remaining available time.
121  *
122  * (default: 5 msec, units: microseconds)
123  */
124 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
125 #endif
126 
127 #ifdef CONFIG_NUMA_BALANCING
128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
129 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
130 #endif
131 
132 #ifdef CONFIG_SYSCTL
133 static struct ctl_table sched_fair_sysctls[] = {
134 #ifdef CONFIG_CFS_BANDWIDTH
135 	{
136 		.procname       = "sched_cfs_bandwidth_slice_us",
137 		.data           = &sysctl_sched_cfs_bandwidth_slice,
138 		.maxlen         = sizeof(unsigned int),
139 		.mode           = 0644,
140 		.proc_handler   = proc_dointvec_minmax,
141 		.extra1         = SYSCTL_ONE,
142 	},
143 #endif
144 #ifdef CONFIG_NUMA_BALANCING
145 	{
146 		.procname	= "numa_balancing_promote_rate_limit_MBps",
147 		.data		= &sysctl_numa_balancing_promote_rate_limit,
148 		.maxlen		= sizeof(unsigned int),
149 		.mode		= 0644,
150 		.proc_handler	= proc_dointvec_minmax,
151 		.extra1		= SYSCTL_ZERO,
152 	},
153 #endif /* CONFIG_NUMA_BALANCING */
154 };
155 
156 static int __init sched_fair_sysctl_init(void)
157 {
158 	register_sysctl_init("kernel", sched_fair_sysctls);
159 	return 0;
160 }
161 late_initcall(sched_fair_sysctl_init);
162 #endif
163 
164 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
165 {
166 	lw->weight += inc;
167 	lw->inv_weight = 0;
168 }
169 
170 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
171 {
172 	lw->weight -= dec;
173 	lw->inv_weight = 0;
174 }
175 
176 static inline void update_load_set(struct load_weight *lw, unsigned long w)
177 {
178 	lw->weight = w;
179 	lw->inv_weight = 0;
180 }
181 
182 /*
183  * Increase the granularity value when there are more CPUs,
184  * because with more CPUs the 'effective latency' as visible
185  * to users decreases. But the relationship is not linear,
186  * so pick a second-best guess by going with the log2 of the
187  * number of CPUs.
188  *
189  * This idea comes from the SD scheduler of Con Kolivas:
190  */
191 static unsigned int get_update_sysctl_factor(void)
192 {
193 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
194 	unsigned int factor;
195 
196 	switch (sysctl_sched_tunable_scaling) {
197 	case SCHED_TUNABLESCALING_NONE:
198 		factor = 1;
199 		break;
200 	case SCHED_TUNABLESCALING_LINEAR:
201 		factor = cpus;
202 		break;
203 	case SCHED_TUNABLESCALING_LOG:
204 	default:
205 		factor = 1 + ilog2(cpus);
206 		break;
207 	}
208 
209 	return factor;
210 }
211 
212 static void update_sysctl(void)
213 {
214 	unsigned int factor = get_update_sysctl_factor();
215 
216 #define SET_SYSCTL(name) \
217 	(sysctl_##name = (factor) * normalized_sysctl_##name)
218 	SET_SYSCTL(sched_base_slice);
219 #undef SET_SYSCTL
220 }
221 
222 void __init sched_init_granularity(void)
223 {
224 	update_sysctl();
225 }
226 
227 #define WMULT_CONST	(~0U)
228 #define WMULT_SHIFT	32
229 
230 static void __update_inv_weight(struct load_weight *lw)
231 {
232 	unsigned long w;
233 
234 	if (likely(lw->inv_weight))
235 		return;
236 
237 	w = scale_load_down(lw->weight);
238 
239 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
240 		lw->inv_weight = 1;
241 	else if (unlikely(!w))
242 		lw->inv_weight = WMULT_CONST;
243 	else
244 		lw->inv_weight = WMULT_CONST / w;
245 }
246 
247 /*
248  * delta_exec * weight / lw.weight
249  *   OR
250  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
251  *
252  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
253  * we're guaranteed shift stays positive because inv_weight is guaranteed to
254  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
255  *
256  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
257  * weight/lw.weight <= 1, and therefore our shift will also be positive.
258  */
259 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
260 {
261 	u64 fact = scale_load_down(weight);
262 	u32 fact_hi = (u32)(fact >> 32);
263 	int shift = WMULT_SHIFT;
264 	int fs;
265 
266 	__update_inv_weight(lw);
267 
268 	if (unlikely(fact_hi)) {
269 		fs = fls(fact_hi);
270 		shift -= fs;
271 		fact >>= fs;
272 	}
273 
274 	fact = mul_u32_u32(fact, lw->inv_weight);
275 
276 	fact_hi = (u32)(fact >> 32);
277 	if (fact_hi) {
278 		fs = fls(fact_hi);
279 		shift -= fs;
280 		fact >>= fs;
281 	}
282 
283 	return mul_u64_u32_shr(delta_exec, fact, shift);
284 }
285 
286 /*
287  * delta /= w
288  */
289 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
290 {
291 	if (unlikely(se->load.weight != NICE_0_LOAD))
292 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
293 
294 	return delta;
295 }
296 
297 const struct sched_class fair_sched_class;
298 
299 /**************************************************************
300  * CFS operations on generic schedulable entities:
301  */
302 
303 #ifdef CONFIG_FAIR_GROUP_SCHED
304 
305 /* Walk up scheduling entities hierarchy */
306 #define for_each_sched_entity(se) \
307 		for (; se; se = se->parent)
308 
309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
310 {
311 	struct rq *rq = rq_of(cfs_rq);
312 	int cpu = cpu_of(rq);
313 
314 	if (cfs_rq->on_list)
315 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
316 
317 	cfs_rq->on_list = 1;
318 
319 	/*
320 	 * Ensure we either appear before our parent (if already
321 	 * enqueued) or force our parent to appear after us when it is
322 	 * enqueued. The fact that we always enqueue bottom-up
323 	 * reduces this to two cases and a special case for the root
324 	 * cfs_rq. Furthermore, it also means that we will always reset
325 	 * tmp_alone_branch either when the branch is connected
326 	 * to a tree or when we reach the top of the tree
327 	 */
328 	if (cfs_rq->tg->parent &&
329 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
330 		/*
331 		 * If parent is already on the list, we add the child
332 		 * just before. Thanks to circular linked property of
333 		 * the list, this means to put the child at the tail
334 		 * of the list that starts by parent.
335 		 */
336 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
338 		/*
339 		 * The branch is now connected to its tree so we can
340 		 * reset tmp_alone_branch to the beginning of the
341 		 * list.
342 		 */
343 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
344 		return true;
345 	}
346 
347 	if (!cfs_rq->tg->parent) {
348 		/*
349 		 * cfs rq without parent should be put
350 		 * at the tail of the list.
351 		 */
352 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
353 			&rq->leaf_cfs_rq_list);
354 		/*
355 		 * We have reach the top of a tree so we can reset
356 		 * tmp_alone_branch to the beginning of the list.
357 		 */
358 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
359 		return true;
360 	}
361 
362 	/*
363 	 * The parent has not already been added so we want to
364 	 * make sure that it will be put after us.
365 	 * tmp_alone_branch points to the begin of the branch
366 	 * where we will add parent.
367 	 */
368 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
369 	/*
370 	 * update tmp_alone_branch to points to the new begin
371 	 * of the branch
372 	 */
373 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
374 	return false;
375 }
376 
377 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
378 {
379 	if (cfs_rq->on_list) {
380 		struct rq *rq = rq_of(cfs_rq);
381 
382 		/*
383 		 * With cfs_rq being unthrottled/throttled during an enqueue,
384 		 * it can happen the tmp_alone_branch points to the leaf that
385 		 * we finally want to delete. In this case, tmp_alone_branch moves
386 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
387 		 * at the end of the enqueue.
388 		 */
389 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
390 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
391 
392 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
393 		cfs_rq->on_list = 0;
394 	}
395 }
396 
397 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
398 {
399 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
400 }
401 
402 /* Iterate through all leaf cfs_rq's on a runqueue */
403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
404 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
405 				 leaf_cfs_rq_list)
406 
407 /* Do the two (enqueued) entities belong to the same group ? */
408 static inline struct cfs_rq *
409 is_same_group(struct sched_entity *se, struct sched_entity *pse)
410 {
411 	if (se->cfs_rq == pse->cfs_rq)
412 		return se->cfs_rq;
413 
414 	return NULL;
415 }
416 
417 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
418 {
419 	return se->parent;
420 }
421 
422 static void
423 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
424 {
425 	int se_depth, pse_depth;
426 
427 	/*
428 	 * preemption test can be made between sibling entities who are in the
429 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
430 	 * both tasks until we find their ancestors who are siblings of common
431 	 * parent.
432 	 */
433 
434 	/* First walk up until both entities are at same depth */
435 	se_depth = (*se)->depth;
436 	pse_depth = (*pse)->depth;
437 
438 	while (se_depth > pse_depth) {
439 		se_depth--;
440 		*se = parent_entity(*se);
441 	}
442 
443 	while (pse_depth > se_depth) {
444 		pse_depth--;
445 		*pse = parent_entity(*pse);
446 	}
447 
448 	while (!is_same_group(*se, *pse)) {
449 		*se = parent_entity(*se);
450 		*pse = parent_entity(*pse);
451 	}
452 }
453 
454 static int tg_is_idle(struct task_group *tg)
455 {
456 	return tg->idle > 0;
457 }
458 
459 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
460 {
461 	return cfs_rq->idle > 0;
462 }
463 
464 static int se_is_idle(struct sched_entity *se)
465 {
466 	if (entity_is_task(se))
467 		return task_has_idle_policy(task_of(se));
468 	return cfs_rq_is_idle(group_cfs_rq(se));
469 }
470 
471 #else	/* !CONFIG_FAIR_GROUP_SCHED */
472 
473 #define for_each_sched_entity(se) \
474 		for (; se; se = NULL)
475 
476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
477 {
478 	return true;
479 }
480 
481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
482 {
483 }
484 
485 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
486 {
487 }
488 
489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
490 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
491 
492 static inline struct sched_entity *parent_entity(struct sched_entity *se)
493 {
494 	return NULL;
495 }
496 
497 static inline void
498 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
499 {
500 }
501 
502 static inline int tg_is_idle(struct task_group *tg)
503 {
504 	return 0;
505 }
506 
507 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
508 {
509 	return 0;
510 }
511 
512 static int se_is_idle(struct sched_entity *se)
513 {
514 	return 0;
515 }
516 
517 #endif	/* CONFIG_FAIR_GROUP_SCHED */
518 
519 static __always_inline
520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
521 
522 /**************************************************************
523  * Scheduling class tree data structure manipulation methods:
524  */
525 
526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
527 {
528 	s64 delta = (s64)(vruntime - max_vruntime);
529 	if (delta > 0)
530 		max_vruntime = vruntime;
531 
532 	return max_vruntime;
533 }
534 
535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
536 {
537 	s64 delta = (s64)(vruntime - min_vruntime);
538 	if (delta < 0)
539 		min_vruntime = vruntime;
540 
541 	return min_vruntime;
542 }
543 
544 static inline bool entity_before(const struct sched_entity *a,
545 				 const struct sched_entity *b)
546 {
547 	/*
548 	 * Tiebreak on vruntime seems unnecessary since it can
549 	 * hardly happen.
550 	 */
551 	return (s64)(a->deadline - b->deadline) < 0;
552 }
553 
554 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
555 {
556 	return (s64)(se->vruntime - cfs_rq->min_vruntime);
557 }
558 
559 #define __node_2_se(node) \
560 	rb_entry((node), struct sched_entity, run_node)
561 
562 /*
563  * Compute virtual time from the per-task service numbers:
564  *
565  * Fair schedulers conserve lag:
566  *
567  *   \Sum lag_i = 0
568  *
569  * Where lag_i is given by:
570  *
571  *   lag_i = S - s_i = w_i * (V - v_i)
572  *
573  * Where S is the ideal service time and V is it's virtual time counterpart.
574  * Therefore:
575  *
576  *   \Sum lag_i = 0
577  *   \Sum w_i * (V - v_i) = 0
578  *   \Sum w_i * V - w_i * v_i = 0
579  *
580  * From which we can solve an expression for V in v_i (which we have in
581  * se->vruntime):
582  *
583  *       \Sum v_i * w_i   \Sum v_i * w_i
584  *   V = -------------- = --------------
585  *          \Sum w_i            W
586  *
587  * Specifically, this is the weighted average of all entity virtual runtimes.
588  *
589  * [[ NOTE: this is only equal to the ideal scheduler under the condition
590  *          that join/leave operations happen at lag_i = 0, otherwise the
591  *          virtual time has non-contiguous motion equivalent to:
592  *
593  *	      V +-= lag_i / W
594  *
595  *	    Also see the comment in place_entity() that deals with this. ]]
596  *
597  * However, since v_i is u64, and the multiplication could easily overflow
598  * transform it into a relative form that uses smaller quantities:
599  *
600  * Substitute: v_i == (v_i - v0) + v0
601  *
602  *     \Sum ((v_i - v0) + v0) * w_i   \Sum (v_i - v0) * w_i
603  * V = ---------------------------- = --------------------- + v0
604  *                  W                            W
605  *
606  * Which we track using:
607  *
608  *                    v0 := cfs_rq->min_vruntime
609  * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
610  *              \Sum w_i := cfs_rq->avg_load
611  *
612  * Since min_vruntime is a monotonic increasing variable that closely tracks
613  * the per-task service, these deltas: (v_i - v), will be in the order of the
614  * maximal (virtual) lag induced in the system due to quantisation.
615  *
616  * Also, we use scale_load_down() to reduce the size.
617  *
618  * As measured, the max (key * weight) value was ~44 bits for a kernel build.
619  */
620 static void
621 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
622 {
623 	unsigned long weight = scale_load_down(se->load.weight);
624 	s64 key = entity_key(cfs_rq, se);
625 
626 	cfs_rq->avg_vruntime += key * weight;
627 	cfs_rq->avg_load += weight;
628 }
629 
630 static void
631 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
632 {
633 	unsigned long weight = scale_load_down(se->load.weight);
634 	s64 key = entity_key(cfs_rq, se);
635 
636 	cfs_rq->avg_vruntime -= key * weight;
637 	cfs_rq->avg_load -= weight;
638 }
639 
640 static inline
641 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
642 {
643 	/*
644 	 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
645 	 */
646 	cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
647 }
648 
649 /*
650  * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
651  * For this to be so, the result of this function must have a left bias.
652  */
653 u64 avg_vruntime(struct cfs_rq *cfs_rq)
654 {
655 	struct sched_entity *curr = cfs_rq->curr;
656 	s64 avg = cfs_rq->avg_vruntime;
657 	long load = cfs_rq->avg_load;
658 
659 	if (curr && curr->on_rq) {
660 		unsigned long weight = scale_load_down(curr->load.weight);
661 
662 		avg += entity_key(cfs_rq, curr) * weight;
663 		load += weight;
664 	}
665 
666 	if (load) {
667 		/* sign flips effective floor / ceiling */
668 		if (avg < 0)
669 			avg -= (load - 1);
670 		avg = div_s64(avg, load);
671 	}
672 
673 	return cfs_rq->min_vruntime + avg;
674 }
675 
676 /*
677  * lag_i = S - s_i = w_i * (V - v_i)
678  *
679  * However, since V is approximated by the weighted average of all entities it
680  * is possible -- by addition/removal/reweight to the tree -- to move V around
681  * and end up with a larger lag than we started with.
682  *
683  * Limit this to either double the slice length with a minimum of TICK_NSEC
684  * since that is the timing granularity.
685  *
686  * EEVDF gives the following limit for a steady state system:
687  *
688  *   -r_max < lag < max(r_max, q)
689  *
690  * XXX could add max_slice to the augmented data to track this.
691  */
692 static s64 entity_lag(u64 avruntime, struct sched_entity *se)
693 {
694 	s64 vlag, limit;
695 
696 	vlag = avruntime - se->vruntime;
697 	limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
698 
699 	return clamp(vlag, -limit, limit);
700 }
701 
702 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
703 {
704 	SCHED_WARN_ON(!se->on_rq);
705 
706 	se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
707 }
708 
709 /*
710  * Entity is eligible once it received less service than it ought to have,
711  * eg. lag >= 0.
712  *
713  * lag_i = S - s_i = w_i*(V - v_i)
714  *
715  * lag_i >= 0 -> V >= v_i
716  *
717  *     \Sum (v_i - v)*w_i
718  * V = ------------------ + v
719  *          \Sum w_i
720  *
721  * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
722  *
723  * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
724  *       to the loss in precision caused by the division.
725  */
726 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
727 {
728 	struct sched_entity *curr = cfs_rq->curr;
729 	s64 avg = cfs_rq->avg_vruntime;
730 	long load = cfs_rq->avg_load;
731 
732 	if (curr && curr->on_rq) {
733 		unsigned long weight = scale_load_down(curr->load.weight);
734 
735 		avg += entity_key(cfs_rq, curr) * weight;
736 		load += weight;
737 	}
738 
739 	return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
740 }
741 
742 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
743 {
744 	return vruntime_eligible(cfs_rq, se->vruntime);
745 }
746 
747 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
748 {
749 	u64 min_vruntime = cfs_rq->min_vruntime;
750 	/*
751 	 * open coded max_vruntime() to allow updating avg_vruntime
752 	 */
753 	s64 delta = (s64)(vruntime - min_vruntime);
754 	if (delta > 0) {
755 		avg_vruntime_update(cfs_rq, delta);
756 		min_vruntime = vruntime;
757 	}
758 	return min_vruntime;
759 }
760 
761 static void update_min_vruntime(struct cfs_rq *cfs_rq)
762 {
763 	struct sched_entity *se = __pick_root_entity(cfs_rq);
764 	struct sched_entity *curr = cfs_rq->curr;
765 	u64 vruntime = cfs_rq->min_vruntime;
766 
767 	if (curr) {
768 		if (curr->on_rq)
769 			vruntime = curr->vruntime;
770 		else
771 			curr = NULL;
772 	}
773 
774 	if (se) {
775 		if (!curr)
776 			vruntime = se->min_vruntime;
777 		else
778 			vruntime = min_vruntime(vruntime, se->min_vruntime);
779 	}
780 
781 	/* ensure we never gain time by being placed backwards. */
782 	u64_u32_store(cfs_rq->min_vruntime,
783 		      __update_min_vruntime(cfs_rq, vruntime));
784 }
785 
786 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
787 {
788 	return entity_before(__node_2_se(a), __node_2_se(b));
789 }
790 
791 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
792 
793 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
794 {
795 	if (node) {
796 		struct sched_entity *rse = __node_2_se(node);
797 		if (vruntime_gt(min_vruntime, se, rse))
798 			se->min_vruntime = rse->min_vruntime;
799 	}
800 }
801 
802 /*
803  * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
804  */
805 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
806 {
807 	u64 old_min_vruntime = se->min_vruntime;
808 	struct rb_node *node = &se->run_node;
809 
810 	se->min_vruntime = se->vruntime;
811 	__min_vruntime_update(se, node->rb_right);
812 	__min_vruntime_update(se, node->rb_left);
813 
814 	return se->min_vruntime == old_min_vruntime;
815 }
816 
817 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
818 		     run_node, min_vruntime, min_vruntime_update);
819 
820 /*
821  * Enqueue an entity into the rb-tree:
822  */
823 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
824 {
825 	avg_vruntime_add(cfs_rq, se);
826 	se->min_vruntime = se->vruntime;
827 	rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
828 				__entity_less, &min_vruntime_cb);
829 }
830 
831 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
832 {
833 	rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
834 				  &min_vruntime_cb);
835 	avg_vruntime_sub(cfs_rq, se);
836 }
837 
838 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
839 {
840 	struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
841 
842 	if (!root)
843 		return NULL;
844 
845 	return __node_2_se(root);
846 }
847 
848 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
849 {
850 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
851 
852 	if (!left)
853 		return NULL;
854 
855 	return __node_2_se(left);
856 }
857 
858 /*
859  * Earliest Eligible Virtual Deadline First
860  *
861  * In order to provide latency guarantees for different request sizes
862  * EEVDF selects the best runnable task from two criteria:
863  *
864  *  1) the task must be eligible (must be owed service)
865  *
866  *  2) from those tasks that meet 1), we select the one
867  *     with the earliest virtual deadline.
868  *
869  * We can do this in O(log n) time due to an augmented RB-tree. The
870  * tree keeps the entries sorted on deadline, but also functions as a
871  * heap based on the vruntime by keeping:
872  *
873  *  se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
874  *
875  * Which allows tree pruning through eligibility.
876  */
877 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
878 {
879 	struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
880 	struct sched_entity *se = __pick_first_entity(cfs_rq);
881 	struct sched_entity *curr = cfs_rq->curr;
882 	struct sched_entity *best = NULL;
883 
884 	/*
885 	 * We can safely skip eligibility check if there is only one entity
886 	 * in this cfs_rq, saving some cycles.
887 	 */
888 	if (cfs_rq->nr_running == 1)
889 		return curr && curr->on_rq ? curr : se;
890 
891 	if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
892 		curr = NULL;
893 
894 	/*
895 	 * Once selected, run a task until it either becomes non-eligible or
896 	 * until it gets a new slice. See the HACK in set_next_entity().
897 	 */
898 	if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
899 		return curr;
900 
901 	/* Pick the leftmost entity if it's eligible */
902 	if (se && entity_eligible(cfs_rq, se)) {
903 		best = se;
904 		goto found;
905 	}
906 
907 	/* Heap search for the EEVD entity */
908 	while (node) {
909 		struct rb_node *left = node->rb_left;
910 
911 		/*
912 		 * Eligible entities in left subtree are always better
913 		 * choices, since they have earlier deadlines.
914 		 */
915 		if (left && vruntime_eligible(cfs_rq,
916 					__node_2_se(left)->min_vruntime)) {
917 			node = left;
918 			continue;
919 		}
920 
921 		se = __node_2_se(node);
922 
923 		/*
924 		 * The left subtree either is empty or has no eligible
925 		 * entity, so check the current node since it is the one
926 		 * with earliest deadline that might be eligible.
927 		 */
928 		if (entity_eligible(cfs_rq, se)) {
929 			best = se;
930 			break;
931 		}
932 
933 		node = node->rb_right;
934 	}
935 found:
936 	if (!best || (curr && entity_before(curr, best)))
937 		best = curr;
938 
939 	return best;
940 }
941 
942 #ifdef CONFIG_SCHED_DEBUG
943 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
944 {
945 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
946 
947 	if (!last)
948 		return NULL;
949 
950 	return __node_2_se(last);
951 }
952 
953 /**************************************************************
954  * Scheduling class statistics methods:
955  */
956 #ifdef CONFIG_SMP
957 int sched_update_scaling(void)
958 {
959 	unsigned int factor = get_update_sysctl_factor();
960 
961 #define WRT_SYSCTL(name) \
962 	(normalized_sysctl_##name = sysctl_##name / (factor))
963 	WRT_SYSCTL(sched_base_slice);
964 #undef WRT_SYSCTL
965 
966 	return 0;
967 }
968 #endif
969 #endif
970 
971 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
972 
973 /*
974  * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
975  * this is probably good enough.
976  */
977 static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
978 {
979 	if ((s64)(se->vruntime - se->deadline) < 0)
980 		return;
981 
982 	/*
983 	 * For EEVDF the virtual time slope is determined by w_i (iow.
984 	 * nice) while the request time r_i is determined by
985 	 * sysctl_sched_base_slice.
986 	 */
987 	se->slice = sysctl_sched_base_slice;
988 
989 	/*
990 	 * EEVDF: vd_i = ve_i + r_i / w_i
991 	 */
992 	se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
993 
994 	/*
995 	 * The task has consumed its request, reschedule.
996 	 */
997 	if (cfs_rq->nr_running > 1) {
998 		resched_curr(rq_of(cfs_rq));
999 		clear_buddies(cfs_rq, se);
1000 	}
1001 }
1002 
1003 #include "pelt.h"
1004 #ifdef CONFIG_SMP
1005 
1006 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1007 static unsigned long task_h_load(struct task_struct *p);
1008 static unsigned long capacity_of(int cpu);
1009 
1010 /* Give new sched_entity start runnable values to heavy its load in infant time */
1011 void init_entity_runnable_average(struct sched_entity *se)
1012 {
1013 	struct sched_avg *sa = &se->avg;
1014 
1015 	memset(sa, 0, sizeof(*sa));
1016 
1017 	/*
1018 	 * Tasks are initialized with full load to be seen as heavy tasks until
1019 	 * they get a chance to stabilize to their real load level.
1020 	 * Group entities are initialized with zero load to reflect the fact that
1021 	 * nothing has been attached to the task group yet.
1022 	 */
1023 	if (entity_is_task(se))
1024 		sa->load_avg = scale_load_down(se->load.weight);
1025 
1026 	/* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1027 }
1028 
1029 /*
1030  * With new tasks being created, their initial util_avgs are extrapolated
1031  * based on the cfs_rq's current util_avg:
1032  *
1033  *   util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1034  *		* se_weight(se)
1035  *
1036  * However, in many cases, the above util_avg does not give a desired
1037  * value. Moreover, the sum of the util_avgs may be divergent, such
1038  * as when the series is a harmonic series.
1039  *
1040  * To solve this problem, we also cap the util_avg of successive tasks to
1041  * only 1/2 of the left utilization budget:
1042  *
1043  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1044  *
1045  * where n denotes the nth task and cpu_scale the CPU capacity.
1046  *
1047  * For example, for a CPU with 1024 of capacity, a simplest series from
1048  * the beginning would be like:
1049  *
1050  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
1051  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1052  *
1053  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1054  * if util_avg > util_avg_cap.
1055  */
1056 void post_init_entity_util_avg(struct task_struct *p)
1057 {
1058 	struct sched_entity *se = &p->se;
1059 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
1060 	struct sched_avg *sa = &se->avg;
1061 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1062 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1063 
1064 	if (p->sched_class != &fair_sched_class) {
1065 		/*
1066 		 * For !fair tasks do:
1067 		 *
1068 		update_cfs_rq_load_avg(now, cfs_rq);
1069 		attach_entity_load_avg(cfs_rq, se);
1070 		switched_from_fair(rq, p);
1071 		 *
1072 		 * such that the next switched_to_fair() has the
1073 		 * expected state.
1074 		 */
1075 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1076 		return;
1077 	}
1078 
1079 	if (cap > 0) {
1080 		if (cfs_rq->avg.util_avg != 0) {
1081 			sa->util_avg  = cfs_rq->avg.util_avg * se_weight(se);
1082 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1083 
1084 			if (sa->util_avg > cap)
1085 				sa->util_avg = cap;
1086 		} else {
1087 			sa->util_avg = cap;
1088 		}
1089 	}
1090 
1091 	sa->runnable_avg = sa->util_avg;
1092 }
1093 
1094 #else /* !CONFIG_SMP */
1095 void init_entity_runnable_average(struct sched_entity *se)
1096 {
1097 }
1098 void post_init_entity_util_avg(struct task_struct *p)
1099 {
1100 }
1101 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1102 {
1103 }
1104 #endif /* CONFIG_SMP */
1105 
1106 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1107 {
1108 	u64 now = rq_clock_task(rq);
1109 	s64 delta_exec;
1110 
1111 	delta_exec = now - curr->exec_start;
1112 	if (unlikely(delta_exec <= 0))
1113 		return delta_exec;
1114 
1115 	curr->exec_start = now;
1116 	curr->sum_exec_runtime += delta_exec;
1117 
1118 	if (schedstat_enabled()) {
1119 		struct sched_statistics *stats;
1120 
1121 		stats = __schedstats_from_se(curr);
1122 		__schedstat_set(stats->exec_max,
1123 				max(delta_exec, stats->exec_max));
1124 	}
1125 
1126 	return delta_exec;
1127 }
1128 
1129 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1130 {
1131 	trace_sched_stat_runtime(p, delta_exec);
1132 	account_group_exec_runtime(p, delta_exec);
1133 	cgroup_account_cputime(p, delta_exec);
1134 	if (p->dl_server)
1135 		dl_server_update(p->dl_server, delta_exec);
1136 }
1137 
1138 /*
1139  * Used by other classes to account runtime.
1140  */
1141 s64 update_curr_common(struct rq *rq)
1142 {
1143 	struct task_struct *curr = rq->curr;
1144 	s64 delta_exec;
1145 
1146 	delta_exec = update_curr_se(rq, &curr->se);
1147 	if (likely(delta_exec > 0))
1148 		update_curr_task(curr, delta_exec);
1149 
1150 	return delta_exec;
1151 }
1152 
1153 /*
1154  * Update the current task's runtime statistics.
1155  */
1156 static void update_curr(struct cfs_rq *cfs_rq)
1157 {
1158 	struct sched_entity *curr = cfs_rq->curr;
1159 	s64 delta_exec;
1160 
1161 	if (unlikely(!curr))
1162 		return;
1163 
1164 	delta_exec = update_curr_se(rq_of(cfs_rq), curr);
1165 	if (unlikely(delta_exec <= 0))
1166 		return;
1167 
1168 	curr->vruntime += calc_delta_fair(delta_exec, curr);
1169 	update_deadline(cfs_rq, curr);
1170 	update_min_vruntime(cfs_rq);
1171 
1172 	if (entity_is_task(curr))
1173 		update_curr_task(task_of(curr), delta_exec);
1174 
1175 	account_cfs_rq_runtime(cfs_rq, delta_exec);
1176 }
1177 
1178 static void update_curr_fair(struct rq *rq)
1179 {
1180 	update_curr(cfs_rq_of(&rq->curr->se));
1181 }
1182 
1183 static inline void
1184 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1185 {
1186 	struct sched_statistics *stats;
1187 	struct task_struct *p = NULL;
1188 
1189 	if (!schedstat_enabled())
1190 		return;
1191 
1192 	stats = __schedstats_from_se(se);
1193 
1194 	if (entity_is_task(se))
1195 		p = task_of(se);
1196 
1197 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
1198 }
1199 
1200 static inline void
1201 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1202 {
1203 	struct sched_statistics *stats;
1204 	struct task_struct *p = NULL;
1205 
1206 	if (!schedstat_enabled())
1207 		return;
1208 
1209 	stats = __schedstats_from_se(se);
1210 
1211 	/*
1212 	 * When the sched_schedstat changes from 0 to 1, some sched se
1213 	 * maybe already in the runqueue, the se->statistics.wait_start
1214 	 * will be 0.So it will let the delta wrong. We need to avoid this
1215 	 * scenario.
1216 	 */
1217 	if (unlikely(!schedstat_val(stats->wait_start)))
1218 		return;
1219 
1220 	if (entity_is_task(se))
1221 		p = task_of(se);
1222 
1223 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
1224 }
1225 
1226 static inline void
1227 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1228 {
1229 	struct sched_statistics *stats;
1230 	struct task_struct *tsk = NULL;
1231 
1232 	if (!schedstat_enabled())
1233 		return;
1234 
1235 	stats = __schedstats_from_se(se);
1236 
1237 	if (entity_is_task(se))
1238 		tsk = task_of(se);
1239 
1240 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1241 }
1242 
1243 /*
1244  * Task is being enqueued - update stats:
1245  */
1246 static inline void
1247 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1248 {
1249 	if (!schedstat_enabled())
1250 		return;
1251 
1252 	/*
1253 	 * Are we enqueueing a waiting task? (for current tasks
1254 	 * a dequeue/enqueue event is a NOP)
1255 	 */
1256 	if (se != cfs_rq->curr)
1257 		update_stats_wait_start_fair(cfs_rq, se);
1258 
1259 	if (flags & ENQUEUE_WAKEUP)
1260 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1261 }
1262 
1263 static inline void
1264 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1265 {
1266 
1267 	if (!schedstat_enabled())
1268 		return;
1269 
1270 	/*
1271 	 * Mark the end of the wait period if dequeueing a
1272 	 * waiting task:
1273 	 */
1274 	if (se != cfs_rq->curr)
1275 		update_stats_wait_end_fair(cfs_rq, se);
1276 
1277 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1278 		struct task_struct *tsk = task_of(se);
1279 		unsigned int state;
1280 
1281 		/* XXX racy against TTWU */
1282 		state = READ_ONCE(tsk->__state);
1283 		if (state & TASK_INTERRUPTIBLE)
1284 			__schedstat_set(tsk->stats.sleep_start,
1285 				      rq_clock(rq_of(cfs_rq)));
1286 		if (state & TASK_UNINTERRUPTIBLE)
1287 			__schedstat_set(tsk->stats.block_start,
1288 				      rq_clock(rq_of(cfs_rq)));
1289 	}
1290 }
1291 
1292 /*
1293  * We are picking a new current task - update its stats:
1294  */
1295 static inline void
1296 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1297 {
1298 	/*
1299 	 * We are starting a new run period:
1300 	 */
1301 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1302 }
1303 
1304 /**************************************************
1305  * Scheduling class queueing methods:
1306  */
1307 
1308 static inline bool is_core_idle(int cpu)
1309 {
1310 #ifdef CONFIG_SCHED_SMT
1311 	int sibling;
1312 
1313 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1314 		if (cpu == sibling)
1315 			continue;
1316 
1317 		if (!idle_cpu(sibling))
1318 			return false;
1319 	}
1320 #endif
1321 
1322 	return true;
1323 }
1324 
1325 #ifdef CONFIG_NUMA
1326 #define NUMA_IMBALANCE_MIN 2
1327 
1328 static inline long
1329 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1330 {
1331 	/*
1332 	 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1333 	 * threshold. Above this threshold, individual tasks may be contending
1334 	 * for both memory bandwidth and any shared HT resources.  This is an
1335 	 * approximation as the number of running tasks may not be related to
1336 	 * the number of busy CPUs due to sched_setaffinity.
1337 	 */
1338 	if (dst_running > imb_numa_nr)
1339 		return imbalance;
1340 
1341 	/*
1342 	 * Allow a small imbalance based on a simple pair of communicating
1343 	 * tasks that remain local when the destination is lightly loaded.
1344 	 */
1345 	if (imbalance <= NUMA_IMBALANCE_MIN)
1346 		return 0;
1347 
1348 	return imbalance;
1349 }
1350 #endif /* CONFIG_NUMA */
1351 
1352 #ifdef CONFIG_NUMA_BALANCING
1353 /*
1354  * Approximate time to scan a full NUMA task in ms. The task scan period is
1355  * calculated based on the tasks virtual memory size and
1356  * numa_balancing_scan_size.
1357  */
1358 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1359 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1360 
1361 /* Portion of address space to scan in MB */
1362 unsigned int sysctl_numa_balancing_scan_size = 256;
1363 
1364 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1365 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1366 
1367 /* The page with hint page fault latency < threshold in ms is considered hot */
1368 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1369 
1370 struct numa_group {
1371 	refcount_t refcount;
1372 
1373 	spinlock_t lock; /* nr_tasks, tasks */
1374 	int nr_tasks;
1375 	pid_t gid;
1376 	int active_nodes;
1377 
1378 	struct rcu_head rcu;
1379 	unsigned long total_faults;
1380 	unsigned long max_faults_cpu;
1381 	/*
1382 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1383 	 *
1384 	 * Faults_cpu is used to decide whether memory should move
1385 	 * towards the CPU. As a consequence, these stats are weighted
1386 	 * more by CPU use than by memory faults.
1387 	 */
1388 	unsigned long faults[];
1389 };
1390 
1391 /*
1392  * For functions that can be called in multiple contexts that permit reading
1393  * ->numa_group (see struct task_struct for locking rules).
1394  */
1395 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1396 {
1397 	return rcu_dereference_check(p->numa_group, p == current ||
1398 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1399 }
1400 
1401 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1402 {
1403 	return rcu_dereference_protected(p->numa_group, p == current);
1404 }
1405 
1406 static inline unsigned long group_faults_priv(struct numa_group *ng);
1407 static inline unsigned long group_faults_shared(struct numa_group *ng);
1408 
1409 static unsigned int task_nr_scan_windows(struct task_struct *p)
1410 {
1411 	unsigned long rss = 0;
1412 	unsigned long nr_scan_pages;
1413 
1414 	/*
1415 	 * Calculations based on RSS as non-present and empty pages are skipped
1416 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1417 	 * on resident pages
1418 	 */
1419 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1420 	rss = get_mm_rss(p->mm);
1421 	if (!rss)
1422 		rss = nr_scan_pages;
1423 
1424 	rss = round_up(rss, nr_scan_pages);
1425 	return rss / nr_scan_pages;
1426 }
1427 
1428 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1429 #define MAX_SCAN_WINDOW 2560
1430 
1431 static unsigned int task_scan_min(struct task_struct *p)
1432 {
1433 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1434 	unsigned int scan, floor;
1435 	unsigned int windows = 1;
1436 
1437 	if (scan_size < MAX_SCAN_WINDOW)
1438 		windows = MAX_SCAN_WINDOW / scan_size;
1439 	floor = 1000 / windows;
1440 
1441 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1442 	return max_t(unsigned int, floor, scan);
1443 }
1444 
1445 static unsigned int task_scan_start(struct task_struct *p)
1446 {
1447 	unsigned long smin = task_scan_min(p);
1448 	unsigned long period = smin;
1449 	struct numa_group *ng;
1450 
1451 	/* Scale the maximum scan period with the amount of shared memory. */
1452 	rcu_read_lock();
1453 	ng = rcu_dereference(p->numa_group);
1454 	if (ng) {
1455 		unsigned long shared = group_faults_shared(ng);
1456 		unsigned long private = group_faults_priv(ng);
1457 
1458 		period *= refcount_read(&ng->refcount);
1459 		period *= shared + 1;
1460 		period /= private + shared + 1;
1461 	}
1462 	rcu_read_unlock();
1463 
1464 	return max(smin, period);
1465 }
1466 
1467 static unsigned int task_scan_max(struct task_struct *p)
1468 {
1469 	unsigned long smin = task_scan_min(p);
1470 	unsigned long smax;
1471 	struct numa_group *ng;
1472 
1473 	/* Watch for min being lower than max due to floor calculations */
1474 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1475 
1476 	/* Scale the maximum scan period with the amount of shared memory. */
1477 	ng = deref_curr_numa_group(p);
1478 	if (ng) {
1479 		unsigned long shared = group_faults_shared(ng);
1480 		unsigned long private = group_faults_priv(ng);
1481 		unsigned long period = smax;
1482 
1483 		period *= refcount_read(&ng->refcount);
1484 		period *= shared + 1;
1485 		period /= private + shared + 1;
1486 
1487 		smax = max(smax, period);
1488 	}
1489 
1490 	return max(smin, smax);
1491 }
1492 
1493 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1494 {
1495 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1496 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1497 }
1498 
1499 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1500 {
1501 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1502 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1503 }
1504 
1505 /* Shared or private faults. */
1506 #define NR_NUMA_HINT_FAULT_TYPES 2
1507 
1508 /* Memory and CPU locality */
1509 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1510 
1511 /* Averaged statistics, and temporary buffers. */
1512 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1513 
1514 pid_t task_numa_group_id(struct task_struct *p)
1515 {
1516 	struct numa_group *ng;
1517 	pid_t gid = 0;
1518 
1519 	rcu_read_lock();
1520 	ng = rcu_dereference(p->numa_group);
1521 	if (ng)
1522 		gid = ng->gid;
1523 	rcu_read_unlock();
1524 
1525 	return gid;
1526 }
1527 
1528 /*
1529  * The averaged statistics, shared & private, memory & CPU,
1530  * occupy the first half of the array. The second half of the
1531  * array is for current counters, which are averaged into the
1532  * first set by task_numa_placement.
1533  */
1534 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1535 {
1536 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1537 }
1538 
1539 static inline unsigned long task_faults(struct task_struct *p, int nid)
1540 {
1541 	if (!p->numa_faults)
1542 		return 0;
1543 
1544 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1545 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1546 }
1547 
1548 static inline unsigned long group_faults(struct task_struct *p, int nid)
1549 {
1550 	struct numa_group *ng = deref_task_numa_group(p);
1551 
1552 	if (!ng)
1553 		return 0;
1554 
1555 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1556 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1557 }
1558 
1559 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1560 {
1561 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1562 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1563 }
1564 
1565 static inline unsigned long group_faults_priv(struct numa_group *ng)
1566 {
1567 	unsigned long faults = 0;
1568 	int node;
1569 
1570 	for_each_online_node(node) {
1571 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1572 	}
1573 
1574 	return faults;
1575 }
1576 
1577 static inline unsigned long group_faults_shared(struct numa_group *ng)
1578 {
1579 	unsigned long faults = 0;
1580 	int node;
1581 
1582 	for_each_online_node(node) {
1583 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1584 	}
1585 
1586 	return faults;
1587 }
1588 
1589 /*
1590  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1591  * considered part of a numa group's pseudo-interleaving set. Migrations
1592  * between these nodes are slowed down, to allow things to settle down.
1593  */
1594 #define ACTIVE_NODE_FRACTION 3
1595 
1596 static bool numa_is_active_node(int nid, struct numa_group *ng)
1597 {
1598 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1599 }
1600 
1601 /* Handle placement on systems where not all nodes are directly connected. */
1602 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1603 					int lim_dist, bool task)
1604 {
1605 	unsigned long score = 0;
1606 	int node, max_dist;
1607 
1608 	/*
1609 	 * All nodes are directly connected, and the same distance
1610 	 * from each other. No need for fancy placement algorithms.
1611 	 */
1612 	if (sched_numa_topology_type == NUMA_DIRECT)
1613 		return 0;
1614 
1615 	/* sched_max_numa_distance may be changed in parallel. */
1616 	max_dist = READ_ONCE(sched_max_numa_distance);
1617 	/*
1618 	 * This code is called for each node, introducing N^2 complexity,
1619 	 * which should be OK given the number of nodes rarely exceeds 8.
1620 	 */
1621 	for_each_online_node(node) {
1622 		unsigned long faults;
1623 		int dist = node_distance(nid, node);
1624 
1625 		/*
1626 		 * The furthest away nodes in the system are not interesting
1627 		 * for placement; nid was already counted.
1628 		 */
1629 		if (dist >= max_dist || node == nid)
1630 			continue;
1631 
1632 		/*
1633 		 * On systems with a backplane NUMA topology, compare groups
1634 		 * of nodes, and move tasks towards the group with the most
1635 		 * memory accesses. When comparing two nodes at distance
1636 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1637 		 * of each group. Skip other nodes.
1638 		 */
1639 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1640 			continue;
1641 
1642 		/* Add up the faults from nearby nodes. */
1643 		if (task)
1644 			faults = task_faults(p, node);
1645 		else
1646 			faults = group_faults(p, node);
1647 
1648 		/*
1649 		 * On systems with a glueless mesh NUMA topology, there are
1650 		 * no fixed "groups of nodes". Instead, nodes that are not
1651 		 * directly connected bounce traffic through intermediate
1652 		 * nodes; a numa_group can occupy any set of nodes.
1653 		 * The further away a node is, the less the faults count.
1654 		 * This seems to result in good task placement.
1655 		 */
1656 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1657 			faults *= (max_dist - dist);
1658 			faults /= (max_dist - LOCAL_DISTANCE);
1659 		}
1660 
1661 		score += faults;
1662 	}
1663 
1664 	return score;
1665 }
1666 
1667 /*
1668  * These return the fraction of accesses done by a particular task, or
1669  * task group, on a particular numa node.  The group weight is given a
1670  * larger multiplier, in order to group tasks together that are almost
1671  * evenly spread out between numa nodes.
1672  */
1673 static inline unsigned long task_weight(struct task_struct *p, int nid,
1674 					int dist)
1675 {
1676 	unsigned long faults, total_faults;
1677 
1678 	if (!p->numa_faults)
1679 		return 0;
1680 
1681 	total_faults = p->total_numa_faults;
1682 
1683 	if (!total_faults)
1684 		return 0;
1685 
1686 	faults = task_faults(p, nid);
1687 	faults += score_nearby_nodes(p, nid, dist, true);
1688 
1689 	return 1000 * faults / total_faults;
1690 }
1691 
1692 static inline unsigned long group_weight(struct task_struct *p, int nid,
1693 					 int dist)
1694 {
1695 	struct numa_group *ng = deref_task_numa_group(p);
1696 	unsigned long faults, total_faults;
1697 
1698 	if (!ng)
1699 		return 0;
1700 
1701 	total_faults = ng->total_faults;
1702 
1703 	if (!total_faults)
1704 		return 0;
1705 
1706 	faults = group_faults(p, nid);
1707 	faults += score_nearby_nodes(p, nid, dist, false);
1708 
1709 	return 1000 * faults / total_faults;
1710 }
1711 
1712 /*
1713  * If memory tiering mode is enabled, cpupid of slow memory page is
1714  * used to record scan time instead of CPU and PID.  When tiering mode
1715  * is disabled at run time, the scan time (in cpupid) will be
1716  * interpreted as CPU and PID.  So CPU needs to be checked to avoid to
1717  * access out of array bound.
1718  */
1719 static inline bool cpupid_valid(int cpupid)
1720 {
1721 	return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1722 }
1723 
1724 /*
1725  * For memory tiering mode, if there are enough free pages (more than
1726  * enough watermark defined here) in fast memory node, to take full
1727  * advantage of fast memory capacity, all recently accessed slow
1728  * memory pages will be migrated to fast memory node without
1729  * considering hot threshold.
1730  */
1731 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1732 {
1733 	int z;
1734 	unsigned long enough_wmark;
1735 
1736 	enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1737 			   pgdat->node_present_pages >> 4);
1738 	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1739 		struct zone *zone = pgdat->node_zones + z;
1740 
1741 		if (!populated_zone(zone))
1742 			continue;
1743 
1744 		if (zone_watermark_ok(zone, 0,
1745 				      wmark_pages(zone, WMARK_PROMO) + enough_wmark,
1746 				      ZONE_MOVABLE, 0))
1747 			return true;
1748 	}
1749 	return false;
1750 }
1751 
1752 /*
1753  * For memory tiering mode, when page tables are scanned, the scan
1754  * time will be recorded in struct page in addition to make page
1755  * PROT_NONE for slow memory page.  So when the page is accessed, in
1756  * hint page fault handler, the hint page fault latency is calculated
1757  * via,
1758  *
1759  *	hint page fault latency = hint page fault time - scan time
1760  *
1761  * The smaller the hint page fault latency, the higher the possibility
1762  * for the page to be hot.
1763  */
1764 static int numa_hint_fault_latency(struct folio *folio)
1765 {
1766 	int last_time, time;
1767 
1768 	time = jiffies_to_msecs(jiffies);
1769 	last_time = folio_xchg_access_time(folio, time);
1770 
1771 	return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1772 }
1773 
1774 /*
1775  * For memory tiering mode, too high promotion/demotion throughput may
1776  * hurt application latency.  So we provide a mechanism to rate limit
1777  * the number of pages that are tried to be promoted.
1778  */
1779 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1780 				      unsigned long rate_limit, int nr)
1781 {
1782 	unsigned long nr_cand;
1783 	unsigned int now, start;
1784 
1785 	now = jiffies_to_msecs(jiffies);
1786 	mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1787 	nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1788 	start = pgdat->nbp_rl_start;
1789 	if (now - start > MSEC_PER_SEC &&
1790 	    cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1791 		pgdat->nbp_rl_nr_cand = nr_cand;
1792 	if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1793 		return true;
1794 	return false;
1795 }
1796 
1797 #define NUMA_MIGRATION_ADJUST_STEPS	16
1798 
1799 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1800 					    unsigned long rate_limit,
1801 					    unsigned int ref_th)
1802 {
1803 	unsigned int now, start, th_period, unit_th, th;
1804 	unsigned long nr_cand, ref_cand, diff_cand;
1805 
1806 	now = jiffies_to_msecs(jiffies);
1807 	th_period = sysctl_numa_balancing_scan_period_max;
1808 	start = pgdat->nbp_th_start;
1809 	if (now - start > th_period &&
1810 	    cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1811 		ref_cand = rate_limit *
1812 			sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1813 		nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1814 		diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1815 		unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1816 		th = pgdat->nbp_threshold ? : ref_th;
1817 		if (diff_cand > ref_cand * 11 / 10)
1818 			th = max(th - unit_th, unit_th);
1819 		else if (diff_cand < ref_cand * 9 / 10)
1820 			th = min(th + unit_th, ref_th * 2);
1821 		pgdat->nbp_th_nr_cand = nr_cand;
1822 		pgdat->nbp_threshold = th;
1823 	}
1824 }
1825 
1826 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1827 				int src_nid, int dst_cpu)
1828 {
1829 	struct numa_group *ng = deref_curr_numa_group(p);
1830 	int dst_nid = cpu_to_node(dst_cpu);
1831 	int last_cpupid, this_cpupid;
1832 
1833 	/*
1834 	 * Cannot migrate to memoryless nodes.
1835 	 */
1836 	if (!node_state(dst_nid, N_MEMORY))
1837 		return false;
1838 
1839 	/*
1840 	 * The pages in slow memory node should be migrated according
1841 	 * to hot/cold instead of private/shared.
1842 	 */
1843 	if (folio_use_access_time(folio)) {
1844 		struct pglist_data *pgdat;
1845 		unsigned long rate_limit;
1846 		unsigned int latency, th, def_th;
1847 
1848 		pgdat = NODE_DATA(dst_nid);
1849 		if (pgdat_free_space_enough(pgdat)) {
1850 			/* workload changed, reset hot threshold */
1851 			pgdat->nbp_threshold = 0;
1852 			return true;
1853 		}
1854 
1855 		def_th = sysctl_numa_balancing_hot_threshold;
1856 		rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1857 			(20 - PAGE_SHIFT);
1858 		numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1859 
1860 		th = pgdat->nbp_threshold ? : def_th;
1861 		latency = numa_hint_fault_latency(folio);
1862 		if (latency >= th)
1863 			return false;
1864 
1865 		return !numa_promotion_rate_limit(pgdat, rate_limit,
1866 						  folio_nr_pages(folio));
1867 	}
1868 
1869 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1870 	last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1871 
1872 	if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1873 	    !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1874 		return false;
1875 
1876 	/*
1877 	 * Allow first faults or private faults to migrate immediately early in
1878 	 * the lifetime of a task. The magic number 4 is based on waiting for
1879 	 * two full passes of the "multi-stage node selection" test that is
1880 	 * executed below.
1881 	 */
1882 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1883 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1884 		return true;
1885 
1886 	/*
1887 	 * Multi-stage node selection is used in conjunction with a periodic
1888 	 * migration fault to build a temporal task<->page relation. By using
1889 	 * a two-stage filter we remove short/unlikely relations.
1890 	 *
1891 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1892 	 * a task's usage of a particular page (n_p) per total usage of this
1893 	 * page (n_t) (in a given time-span) to a probability.
1894 	 *
1895 	 * Our periodic faults will sample this probability and getting the
1896 	 * same result twice in a row, given these samples are fully
1897 	 * independent, is then given by P(n)^2, provided our sample period
1898 	 * is sufficiently short compared to the usage pattern.
1899 	 *
1900 	 * This quadric squishes small probabilities, making it less likely we
1901 	 * act on an unlikely task<->page relation.
1902 	 */
1903 	if (!cpupid_pid_unset(last_cpupid) &&
1904 				cpupid_to_nid(last_cpupid) != dst_nid)
1905 		return false;
1906 
1907 	/* Always allow migrate on private faults */
1908 	if (cpupid_match_pid(p, last_cpupid))
1909 		return true;
1910 
1911 	/* A shared fault, but p->numa_group has not been set up yet. */
1912 	if (!ng)
1913 		return true;
1914 
1915 	/*
1916 	 * Destination node is much more heavily used than the source
1917 	 * node? Allow migration.
1918 	 */
1919 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1920 					ACTIVE_NODE_FRACTION)
1921 		return true;
1922 
1923 	/*
1924 	 * Distribute memory according to CPU & memory use on each node,
1925 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1926 	 *
1927 	 * faults_cpu(dst)   3   faults_cpu(src)
1928 	 * --------------- * - > ---------------
1929 	 * faults_mem(dst)   4   faults_mem(src)
1930 	 */
1931 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1932 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1933 }
1934 
1935 /*
1936  * 'numa_type' describes the node at the moment of load balancing.
1937  */
1938 enum numa_type {
1939 	/* The node has spare capacity that can be used to run more tasks.  */
1940 	node_has_spare = 0,
1941 	/*
1942 	 * The node is fully used and the tasks don't compete for more CPU
1943 	 * cycles. Nevertheless, some tasks might wait before running.
1944 	 */
1945 	node_fully_busy,
1946 	/*
1947 	 * The node is overloaded and can't provide expected CPU cycles to all
1948 	 * tasks.
1949 	 */
1950 	node_overloaded
1951 };
1952 
1953 /* Cached statistics for all CPUs within a node */
1954 struct numa_stats {
1955 	unsigned long load;
1956 	unsigned long runnable;
1957 	unsigned long util;
1958 	/* Total compute capacity of CPUs on a node */
1959 	unsigned long compute_capacity;
1960 	unsigned int nr_running;
1961 	unsigned int weight;
1962 	enum numa_type node_type;
1963 	int idle_cpu;
1964 };
1965 
1966 struct task_numa_env {
1967 	struct task_struct *p;
1968 
1969 	int src_cpu, src_nid;
1970 	int dst_cpu, dst_nid;
1971 	int imb_numa_nr;
1972 
1973 	struct numa_stats src_stats, dst_stats;
1974 
1975 	int imbalance_pct;
1976 	int dist;
1977 
1978 	struct task_struct *best_task;
1979 	long best_imp;
1980 	int best_cpu;
1981 };
1982 
1983 static unsigned long cpu_load(struct rq *rq);
1984 static unsigned long cpu_runnable(struct rq *rq);
1985 
1986 static inline enum
1987 numa_type numa_classify(unsigned int imbalance_pct,
1988 			 struct numa_stats *ns)
1989 {
1990 	if ((ns->nr_running > ns->weight) &&
1991 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1992 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1993 		return node_overloaded;
1994 
1995 	if ((ns->nr_running < ns->weight) ||
1996 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1997 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1998 		return node_has_spare;
1999 
2000 	return node_fully_busy;
2001 }
2002 
2003 #ifdef CONFIG_SCHED_SMT
2004 /* Forward declarations of select_idle_sibling helpers */
2005 static inline bool test_idle_cores(int cpu);
2006 static inline int numa_idle_core(int idle_core, int cpu)
2007 {
2008 	if (!static_branch_likely(&sched_smt_present) ||
2009 	    idle_core >= 0 || !test_idle_cores(cpu))
2010 		return idle_core;
2011 
2012 	/*
2013 	 * Prefer cores instead of packing HT siblings
2014 	 * and triggering future load balancing.
2015 	 */
2016 	if (is_core_idle(cpu))
2017 		idle_core = cpu;
2018 
2019 	return idle_core;
2020 }
2021 #else
2022 static inline int numa_idle_core(int idle_core, int cpu)
2023 {
2024 	return idle_core;
2025 }
2026 #endif
2027 
2028 /*
2029  * Gather all necessary information to make NUMA balancing placement
2030  * decisions that are compatible with standard load balancer. This
2031  * borrows code and logic from update_sg_lb_stats but sharing a
2032  * common implementation is impractical.
2033  */
2034 static void update_numa_stats(struct task_numa_env *env,
2035 			      struct numa_stats *ns, int nid,
2036 			      bool find_idle)
2037 {
2038 	int cpu, idle_core = -1;
2039 
2040 	memset(ns, 0, sizeof(*ns));
2041 	ns->idle_cpu = -1;
2042 
2043 	rcu_read_lock();
2044 	for_each_cpu(cpu, cpumask_of_node(nid)) {
2045 		struct rq *rq = cpu_rq(cpu);
2046 
2047 		ns->load += cpu_load(rq);
2048 		ns->runnable += cpu_runnable(rq);
2049 		ns->util += cpu_util_cfs(cpu);
2050 		ns->nr_running += rq->cfs.h_nr_running;
2051 		ns->compute_capacity += capacity_of(cpu);
2052 
2053 		if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2054 			if (READ_ONCE(rq->numa_migrate_on) ||
2055 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2056 				continue;
2057 
2058 			if (ns->idle_cpu == -1)
2059 				ns->idle_cpu = cpu;
2060 
2061 			idle_core = numa_idle_core(idle_core, cpu);
2062 		}
2063 	}
2064 	rcu_read_unlock();
2065 
2066 	ns->weight = cpumask_weight(cpumask_of_node(nid));
2067 
2068 	ns->node_type = numa_classify(env->imbalance_pct, ns);
2069 
2070 	if (idle_core >= 0)
2071 		ns->idle_cpu = idle_core;
2072 }
2073 
2074 static void task_numa_assign(struct task_numa_env *env,
2075 			     struct task_struct *p, long imp)
2076 {
2077 	struct rq *rq = cpu_rq(env->dst_cpu);
2078 
2079 	/* Check if run-queue part of active NUMA balance. */
2080 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2081 		int cpu;
2082 		int start = env->dst_cpu;
2083 
2084 		/* Find alternative idle CPU. */
2085 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2086 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2087 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2088 				continue;
2089 			}
2090 
2091 			env->dst_cpu = cpu;
2092 			rq = cpu_rq(env->dst_cpu);
2093 			if (!xchg(&rq->numa_migrate_on, 1))
2094 				goto assign;
2095 		}
2096 
2097 		/* Failed to find an alternative idle CPU */
2098 		return;
2099 	}
2100 
2101 assign:
2102 	/*
2103 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
2104 	 * found a better CPU to move/swap.
2105 	 */
2106 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2107 		rq = cpu_rq(env->best_cpu);
2108 		WRITE_ONCE(rq->numa_migrate_on, 0);
2109 	}
2110 
2111 	if (env->best_task)
2112 		put_task_struct(env->best_task);
2113 	if (p)
2114 		get_task_struct(p);
2115 
2116 	env->best_task = p;
2117 	env->best_imp = imp;
2118 	env->best_cpu = env->dst_cpu;
2119 }
2120 
2121 static bool load_too_imbalanced(long src_load, long dst_load,
2122 				struct task_numa_env *env)
2123 {
2124 	long imb, old_imb;
2125 	long orig_src_load, orig_dst_load;
2126 	long src_capacity, dst_capacity;
2127 
2128 	/*
2129 	 * The load is corrected for the CPU capacity available on each node.
2130 	 *
2131 	 * src_load        dst_load
2132 	 * ------------ vs ---------
2133 	 * src_capacity    dst_capacity
2134 	 */
2135 	src_capacity = env->src_stats.compute_capacity;
2136 	dst_capacity = env->dst_stats.compute_capacity;
2137 
2138 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2139 
2140 	orig_src_load = env->src_stats.load;
2141 	orig_dst_load = env->dst_stats.load;
2142 
2143 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2144 
2145 	/* Would this change make things worse? */
2146 	return (imb > old_imb);
2147 }
2148 
2149 /*
2150  * Maximum NUMA importance can be 1998 (2*999);
2151  * SMALLIMP @ 30 would be close to 1998/64.
2152  * Used to deter task migration.
2153  */
2154 #define SMALLIMP	30
2155 
2156 /*
2157  * This checks if the overall compute and NUMA accesses of the system would
2158  * be improved if the source tasks was migrated to the target dst_cpu taking
2159  * into account that it might be best if task running on the dst_cpu should
2160  * be exchanged with the source task
2161  */
2162 static bool task_numa_compare(struct task_numa_env *env,
2163 			      long taskimp, long groupimp, bool maymove)
2164 {
2165 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2166 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
2167 	long imp = p_ng ? groupimp : taskimp;
2168 	struct task_struct *cur;
2169 	long src_load, dst_load;
2170 	int dist = env->dist;
2171 	long moveimp = imp;
2172 	long load;
2173 	bool stopsearch = false;
2174 
2175 	if (READ_ONCE(dst_rq->numa_migrate_on))
2176 		return false;
2177 
2178 	rcu_read_lock();
2179 	cur = rcu_dereference(dst_rq->curr);
2180 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2181 		cur = NULL;
2182 
2183 	/*
2184 	 * Because we have preemption enabled we can get migrated around and
2185 	 * end try selecting ourselves (current == env->p) as a swap candidate.
2186 	 */
2187 	if (cur == env->p) {
2188 		stopsearch = true;
2189 		goto unlock;
2190 	}
2191 
2192 	if (!cur) {
2193 		if (maymove && moveimp >= env->best_imp)
2194 			goto assign;
2195 		else
2196 			goto unlock;
2197 	}
2198 
2199 	/* Skip this swap candidate if cannot move to the source cpu. */
2200 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2201 		goto unlock;
2202 
2203 	/*
2204 	 * Skip this swap candidate if it is not moving to its preferred
2205 	 * node and the best task is.
2206 	 */
2207 	if (env->best_task &&
2208 	    env->best_task->numa_preferred_nid == env->src_nid &&
2209 	    cur->numa_preferred_nid != env->src_nid) {
2210 		goto unlock;
2211 	}
2212 
2213 	/*
2214 	 * "imp" is the fault differential for the source task between the
2215 	 * source and destination node. Calculate the total differential for
2216 	 * the source task and potential destination task. The more negative
2217 	 * the value is, the more remote accesses that would be expected to
2218 	 * be incurred if the tasks were swapped.
2219 	 *
2220 	 * If dst and source tasks are in the same NUMA group, or not
2221 	 * in any group then look only at task weights.
2222 	 */
2223 	cur_ng = rcu_dereference(cur->numa_group);
2224 	if (cur_ng == p_ng) {
2225 		/*
2226 		 * Do not swap within a group or between tasks that have
2227 		 * no group if there is spare capacity. Swapping does
2228 		 * not address the load imbalance and helps one task at
2229 		 * the cost of punishing another.
2230 		 */
2231 		if (env->dst_stats.node_type == node_has_spare)
2232 			goto unlock;
2233 
2234 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
2235 		      task_weight(cur, env->dst_nid, dist);
2236 		/*
2237 		 * Add some hysteresis to prevent swapping the
2238 		 * tasks within a group over tiny differences.
2239 		 */
2240 		if (cur_ng)
2241 			imp -= imp / 16;
2242 	} else {
2243 		/*
2244 		 * Compare the group weights. If a task is all by itself
2245 		 * (not part of a group), use the task weight instead.
2246 		 */
2247 		if (cur_ng && p_ng)
2248 			imp += group_weight(cur, env->src_nid, dist) -
2249 			       group_weight(cur, env->dst_nid, dist);
2250 		else
2251 			imp += task_weight(cur, env->src_nid, dist) -
2252 			       task_weight(cur, env->dst_nid, dist);
2253 	}
2254 
2255 	/* Discourage picking a task already on its preferred node */
2256 	if (cur->numa_preferred_nid == env->dst_nid)
2257 		imp -= imp / 16;
2258 
2259 	/*
2260 	 * Encourage picking a task that moves to its preferred node.
2261 	 * This potentially makes imp larger than it's maximum of
2262 	 * 1998 (see SMALLIMP and task_weight for why) but in this
2263 	 * case, it does not matter.
2264 	 */
2265 	if (cur->numa_preferred_nid == env->src_nid)
2266 		imp += imp / 8;
2267 
2268 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
2269 		imp = moveimp;
2270 		cur = NULL;
2271 		goto assign;
2272 	}
2273 
2274 	/*
2275 	 * Prefer swapping with a task moving to its preferred node over a
2276 	 * task that is not.
2277 	 */
2278 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2279 	    env->best_task->numa_preferred_nid != env->src_nid) {
2280 		goto assign;
2281 	}
2282 
2283 	/*
2284 	 * If the NUMA importance is less than SMALLIMP,
2285 	 * task migration might only result in ping pong
2286 	 * of tasks and also hurt performance due to cache
2287 	 * misses.
2288 	 */
2289 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2290 		goto unlock;
2291 
2292 	/*
2293 	 * In the overloaded case, try and keep the load balanced.
2294 	 */
2295 	load = task_h_load(env->p) - task_h_load(cur);
2296 	if (!load)
2297 		goto assign;
2298 
2299 	dst_load = env->dst_stats.load + load;
2300 	src_load = env->src_stats.load - load;
2301 
2302 	if (load_too_imbalanced(src_load, dst_load, env))
2303 		goto unlock;
2304 
2305 assign:
2306 	/* Evaluate an idle CPU for a task numa move. */
2307 	if (!cur) {
2308 		int cpu = env->dst_stats.idle_cpu;
2309 
2310 		/* Nothing cached so current CPU went idle since the search. */
2311 		if (cpu < 0)
2312 			cpu = env->dst_cpu;
2313 
2314 		/*
2315 		 * If the CPU is no longer truly idle and the previous best CPU
2316 		 * is, keep using it.
2317 		 */
2318 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2319 		    idle_cpu(env->best_cpu)) {
2320 			cpu = env->best_cpu;
2321 		}
2322 
2323 		env->dst_cpu = cpu;
2324 	}
2325 
2326 	task_numa_assign(env, cur, imp);
2327 
2328 	/*
2329 	 * If a move to idle is allowed because there is capacity or load
2330 	 * balance improves then stop the search. While a better swap
2331 	 * candidate may exist, a search is not free.
2332 	 */
2333 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2334 		stopsearch = true;
2335 
2336 	/*
2337 	 * If a swap candidate must be identified and the current best task
2338 	 * moves its preferred node then stop the search.
2339 	 */
2340 	if (!maymove && env->best_task &&
2341 	    env->best_task->numa_preferred_nid == env->src_nid) {
2342 		stopsearch = true;
2343 	}
2344 unlock:
2345 	rcu_read_unlock();
2346 
2347 	return stopsearch;
2348 }
2349 
2350 static void task_numa_find_cpu(struct task_numa_env *env,
2351 				long taskimp, long groupimp)
2352 {
2353 	bool maymove = false;
2354 	int cpu;
2355 
2356 	/*
2357 	 * If dst node has spare capacity, then check if there is an
2358 	 * imbalance that would be overruled by the load balancer.
2359 	 */
2360 	if (env->dst_stats.node_type == node_has_spare) {
2361 		unsigned int imbalance;
2362 		int src_running, dst_running;
2363 
2364 		/*
2365 		 * Would movement cause an imbalance? Note that if src has
2366 		 * more running tasks that the imbalance is ignored as the
2367 		 * move improves the imbalance from the perspective of the
2368 		 * CPU load balancer.
2369 		 * */
2370 		src_running = env->src_stats.nr_running - 1;
2371 		dst_running = env->dst_stats.nr_running + 1;
2372 		imbalance = max(0, dst_running - src_running);
2373 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
2374 						  env->imb_numa_nr);
2375 
2376 		/* Use idle CPU if there is no imbalance */
2377 		if (!imbalance) {
2378 			maymove = true;
2379 			if (env->dst_stats.idle_cpu >= 0) {
2380 				env->dst_cpu = env->dst_stats.idle_cpu;
2381 				task_numa_assign(env, NULL, 0);
2382 				return;
2383 			}
2384 		}
2385 	} else {
2386 		long src_load, dst_load, load;
2387 		/*
2388 		 * If the improvement from just moving env->p direction is better
2389 		 * than swapping tasks around, check if a move is possible.
2390 		 */
2391 		load = task_h_load(env->p);
2392 		dst_load = env->dst_stats.load + load;
2393 		src_load = env->src_stats.load - load;
2394 		maymove = !load_too_imbalanced(src_load, dst_load, env);
2395 	}
2396 
2397 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2398 		/* Skip this CPU if the source task cannot migrate */
2399 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2400 			continue;
2401 
2402 		env->dst_cpu = cpu;
2403 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2404 			break;
2405 	}
2406 }
2407 
2408 static int task_numa_migrate(struct task_struct *p)
2409 {
2410 	struct task_numa_env env = {
2411 		.p = p,
2412 
2413 		.src_cpu = task_cpu(p),
2414 		.src_nid = task_node(p),
2415 
2416 		.imbalance_pct = 112,
2417 
2418 		.best_task = NULL,
2419 		.best_imp = 0,
2420 		.best_cpu = -1,
2421 	};
2422 	unsigned long taskweight, groupweight;
2423 	struct sched_domain *sd;
2424 	long taskimp, groupimp;
2425 	struct numa_group *ng;
2426 	struct rq *best_rq;
2427 	int nid, ret, dist;
2428 
2429 	/*
2430 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2431 	 * imbalance and would be the first to start moving tasks about.
2432 	 *
2433 	 * And we want to avoid any moving of tasks about, as that would create
2434 	 * random movement of tasks -- counter the numa conditions we're trying
2435 	 * to satisfy here.
2436 	 */
2437 	rcu_read_lock();
2438 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2439 	if (sd) {
2440 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2441 		env.imb_numa_nr = sd->imb_numa_nr;
2442 	}
2443 	rcu_read_unlock();
2444 
2445 	/*
2446 	 * Cpusets can break the scheduler domain tree into smaller
2447 	 * balance domains, some of which do not cross NUMA boundaries.
2448 	 * Tasks that are "trapped" in such domains cannot be migrated
2449 	 * elsewhere, so there is no point in (re)trying.
2450 	 */
2451 	if (unlikely(!sd)) {
2452 		sched_setnuma(p, task_node(p));
2453 		return -EINVAL;
2454 	}
2455 
2456 	env.dst_nid = p->numa_preferred_nid;
2457 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2458 	taskweight = task_weight(p, env.src_nid, dist);
2459 	groupweight = group_weight(p, env.src_nid, dist);
2460 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2461 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2462 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2463 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2464 
2465 	/* Try to find a spot on the preferred nid. */
2466 	task_numa_find_cpu(&env, taskimp, groupimp);
2467 
2468 	/*
2469 	 * Look at other nodes in these cases:
2470 	 * - there is no space available on the preferred_nid
2471 	 * - the task is part of a numa_group that is interleaved across
2472 	 *   multiple NUMA nodes; in order to better consolidate the group,
2473 	 *   we need to check other locations.
2474 	 */
2475 	ng = deref_curr_numa_group(p);
2476 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2477 		for_each_node_state(nid, N_CPU) {
2478 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2479 				continue;
2480 
2481 			dist = node_distance(env.src_nid, env.dst_nid);
2482 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2483 						dist != env.dist) {
2484 				taskweight = task_weight(p, env.src_nid, dist);
2485 				groupweight = group_weight(p, env.src_nid, dist);
2486 			}
2487 
2488 			/* Only consider nodes where both task and groups benefit */
2489 			taskimp = task_weight(p, nid, dist) - taskweight;
2490 			groupimp = group_weight(p, nid, dist) - groupweight;
2491 			if (taskimp < 0 && groupimp < 0)
2492 				continue;
2493 
2494 			env.dist = dist;
2495 			env.dst_nid = nid;
2496 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2497 			task_numa_find_cpu(&env, taskimp, groupimp);
2498 		}
2499 	}
2500 
2501 	/*
2502 	 * If the task is part of a workload that spans multiple NUMA nodes,
2503 	 * and is migrating into one of the workload's active nodes, remember
2504 	 * this node as the task's preferred numa node, so the workload can
2505 	 * settle down.
2506 	 * A task that migrated to a second choice node will be better off
2507 	 * trying for a better one later. Do not set the preferred node here.
2508 	 */
2509 	if (ng) {
2510 		if (env.best_cpu == -1)
2511 			nid = env.src_nid;
2512 		else
2513 			nid = cpu_to_node(env.best_cpu);
2514 
2515 		if (nid != p->numa_preferred_nid)
2516 			sched_setnuma(p, nid);
2517 	}
2518 
2519 	/* No better CPU than the current one was found. */
2520 	if (env.best_cpu == -1) {
2521 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2522 		return -EAGAIN;
2523 	}
2524 
2525 	best_rq = cpu_rq(env.best_cpu);
2526 	if (env.best_task == NULL) {
2527 		ret = migrate_task_to(p, env.best_cpu);
2528 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2529 		if (ret != 0)
2530 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2531 		return ret;
2532 	}
2533 
2534 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2535 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2536 
2537 	if (ret != 0)
2538 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2539 	put_task_struct(env.best_task);
2540 	return ret;
2541 }
2542 
2543 /* Attempt to migrate a task to a CPU on the preferred node. */
2544 static void numa_migrate_preferred(struct task_struct *p)
2545 {
2546 	unsigned long interval = HZ;
2547 
2548 	/* This task has no NUMA fault statistics yet */
2549 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2550 		return;
2551 
2552 	/* Periodically retry migrating the task to the preferred node */
2553 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2554 	p->numa_migrate_retry = jiffies + interval;
2555 
2556 	/* Success if task is already running on preferred CPU */
2557 	if (task_node(p) == p->numa_preferred_nid)
2558 		return;
2559 
2560 	/* Otherwise, try migrate to a CPU on the preferred node */
2561 	task_numa_migrate(p);
2562 }
2563 
2564 /*
2565  * Find out how many nodes the workload is actively running on. Do this by
2566  * tracking the nodes from which NUMA hinting faults are triggered. This can
2567  * be different from the set of nodes where the workload's memory is currently
2568  * located.
2569  */
2570 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2571 {
2572 	unsigned long faults, max_faults = 0;
2573 	int nid, active_nodes = 0;
2574 
2575 	for_each_node_state(nid, N_CPU) {
2576 		faults = group_faults_cpu(numa_group, nid);
2577 		if (faults > max_faults)
2578 			max_faults = faults;
2579 	}
2580 
2581 	for_each_node_state(nid, N_CPU) {
2582 		faults = group_faults_cpu(numa_group, nid);
2583 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2584 			active_nodes++;
2585 	}
2586 
2587 	numa_group->max_faults_cpu = max_faults;
2588 	numa_group->active_nodes = active_nodes;
2589 }
2590 
2591 /*
2592  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2593  * increments. The more local the fault statistics are, the higher the scan
2594  * period will be for the next scan window. If local/(local+remote) ratio is
2595  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2596  * the scan period will decrease. Aim for 70% local accesses.
2597  */
2598 #define NUMA_PERIOD_SLOTS 10
2599 #define NUMA_PERIOD_THRESHOLD 7
2600 
2601 /*
2602  * Increase the scan period (slow down scanning) if the majority of
2603  * our memory is already on our local node, or if the majority of
2604  * the page accesses are shared with other processes.
2605  * Otherwise, decrease the scan period.
2606  */
2607 static void update_task_scan_period(struct task_struct *p,
2608 			unsigned long shared, unsigned long private)
2609 {
2610 	unsigned int period_slot;
2611 	int lr_ratio, ps_ratio;
2612 	int diff;
2613 
2614 	unsigned long remote = p->numa_faults_locality[0];
2615 	unsigned long local = p->numa_faults_locality[1];
2616 
2617 	/*
2618 	 * If there were no record hinting faults then either the task is
2619 	 * completely idle or all activity is in areas that are not of interest
2620 	 * to automatic numa balancing. Related to that, if there were failed
2621 	 * migration then it implies we are migrating too quickly or the local
2622 	 * node is overloaded. In either case, scan slower
2623 	 */
2624 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2625 		p->numa_scan_period = min(p->numa_scan_period_max,
2626 			p->numa_scan_period << 1);
2627 
2628 		p->mm->numa_next_scan = jiffies +
2629 			msecs_to_jiffies(p->numa_scan_period);
2630 
2631 		return;
2632 	}
2633 
2634 	/*
2635 	 * Prepare to scale scan period relative to the current period.
2636 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2637 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2638 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2639 	 */
2640 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2641 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2642 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2643 
2644 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2645 		/*
2646 		 * Most memory accesses are local. There is no need to
2647 		 * do fast NUMA scanning, since memory is already local.
2648 		 */
2649 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2650 		if (!slot)
2651 			slot = 1;
2652 		diff = slot * period_slot;
2653 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2654 		/*
2655 		 * Most memory accesses are shared with other tasks.
2656 		 * There is no point in continuing fast NUMA scanning,
2657 		 * since other tasks may just move the memory elsewhere.
2658 		 */
2659 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2660 		if (!slot)
2661 			slot = 1;
2662 		diff = slot * period_slot;
2663 	} else {
2664 		/*
2665 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2666 		 * yet they are not on the local NUMA node. Speed up
2667 		 * NUMA scanning to get the memory moved over.
2668 		 */
2669 		int ratio = max(lr_ratio, ps_ratio);
2670 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2671 	}
2672 
2673 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2674 			task_scan_min(p), task_scan_max(p));
2675 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2676 }
2677 
2678 /*
2679  * Get the fraction of time the task has been running since the last
2680  * NUMA placement cycle. The scheduler keeps similar statistics, but
2681  * decays those on a 32ms period, which is orders of magnitude off
2682  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2683  * stats only if the task is so new there are no NUMA statistics yet.
2684  */
2685 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2686 {
2687 	u64 runtime, delta, now;
2688 	/* Use the start of this time slice to avoid calculations. */
2689 	now = p->se.exec_start;
2690 	runtime = p->se.sum_exec_runtime;
2691 
2692 	if (p->last_task_numa_placement) {
2693 		delta = runtime - p->last_sum_exec_runtime;
2694 		*period = now - p->last_task_numa_placement;
2695 
2696 		/* Avoid time going backwards, prevent potential divide error: */
2697 		if (unlikely((s64)*period < 0))
2698 			*period = 0;
2699 	} else {
2700 		delta = p->se.avg.load_sum;
2701 		*period = LOAD_AVG_MAX;
2702 	}
2703 
2704 	p->last_sum_exec_runtime = runtime;
2705 	p->last_task_numa_placement = now;
2706 
2707 	return delta;
2708 }
2709 
2710 /*
2711  * Determine the preferred nid for a task in a numa_group. This needs to
2712  * be done in a way that produces consistent results with group_weight,
2713  * otherwise workloads might not converge.
2714  */
2715 static int preferred_group_nid(struct task_struct *p, int nid)
2716 {
2717 	nodemask_t nodes;
2718 	int dist;
2719 
2720 	/* Direct connections between all NUMA nodes. */
2721 	if (sched_numa_topology_type == NUMA_DIRECT)
2722 		return nid;
2723 
2724 	/*
2725 	 * On a system with glueless mesh NUMA topology, group_weight
2726 	 * scores nodes according to the number of NUMA hinting faults on
2727 	 * both the node itself, and on nearby nodes.
2728 	 */
2729 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2730 		unsigned long score, max_score = 0;
2731 		int node, max_node = nid;
2732 
2733 		dist = sched_max_numa_distance;
2734 
2735 		for_each_node_state(node, N_CPU) {
2736 			score = group_weight(p, node, dist);
2737 			if (score > max_score) {
2738 				max_score = score;
2739 				max_node = node;
2740 			}
2741 		}
2742 		return max_node;
2743 	}
2744 
2745 	/*
2746 	 * Finding the preferred nid in a system with NUMA backplane
2747 	 * interconnect topology is more involved. The goal is to locate
2748 	 * tasks from numa_groups near each other in the system, and
2749 	 * untangle workloads from different sides of the system. This requires
2750 	 * searching down the hierarchy of node groups, recursively searching
2751 	 * inside the highest scoring group of nodes. The nodemask tricks
2752 	 * keep the complexity of the search down.
2753 	 */
2754 	nodes = node_states[N_CPU];
2755 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2756 		unsigned long max_faults = 0;
2757 		nodemask_t max_group = NODE_MASK_NONE;
2758 		int a, b;
2759 
2760 		/* Are there nodes at this distance from each other? */
2761 		if (!find_numa_distance(dist))
2762 			continue;
2763 
2764 		for_each_node_mask(a, nodes) {
2765 			unsigned long faults = 0;
2766 			nodemask_t this_group;
2767 			nodes_clear(this_group);
2768 
2769 			/* Sum group's NUMA faults; includes a==b case. */
2770 			for_each_node_mask(b, nodes) {
2771 				if (node_distance(a, b) < dist) {
2772 					faults += group_faults(p, b);
2773 					node_set(b, this_group);
2774 					node_clear(b, nodes);
2775 				}
2776 			}
2777 
2778 			/* Remember the top group. */
2779 			if (faults > max_faults) {
2780 				max_faults = faults;
2781 				max_group = this_group;
2782 				/*
2783 				 * subtle: at the smallest distance there is
2784 				 * just one node left in each "group", the
2785 				 * winner is the preferred nid.
2786 				 */
2787 				nid = a;
2788 			}
2789 		}
2790 		/* Next round, evaluate the nodes within max_group. */
2791 		if (!max_faults)
2792 			break;
2793 		nodes = max_group;
2794 	}
2795 	return nid;
2796 }
2797 
2798 static void task_numa_placement(struct task_struct *p)
2799 {
2800 	int seq, nid, max_nid = NUMA_NO_NODE;
2801 	unsigned long max_faults = 0;
2802 	unsigned long fault_types[2] = { 0, 0 };
2803 	unsigned long total_faults;
2804 	u64 runtime, period;
2805 	spinlock_t *group_lock = NULL;
2806 	struct numa_group *ng;
2807 
2808 	/*
2809 	 * The p->mm->numa_scan_seq field gets updated without
2810 	 * exclusive access. Use READ_ONCE() here to ensure
2811 	 * that the field is read in a single access:
2812 	 */
2813 	seq = READ_ONCE(p->mm->numa_scan_seq);
2814 	if (p->numa_scan_seq == seq)
2815 		return;
2816 	p->numa_scan_seq = seq;
2817 	p->numa_scan_period_max = task_scan_max(p);
2818 
2819 	total_faults = p->numa_faults_locality[0] +
2820 		       p->numa_faults_locality[1];
2821 	runtime = numa_get_avg_runtime(p, &period);
2822 
2823 	/* If the task is part of a group prevent parallel updates to group stats */
2824 	ng = deref_curr_numa_group(p);
2825 	if (ng) {
2826 		group_lock = &ng->lock;
2827 		spin_lock_irq(group_lock);
2828 	}
2829 
2830 	/* Find the node with the highest number of faults */
2831 	for_each_online_node(nid) {
2832 		/* Keep track of the offsets in numa_faults array */
2833 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2834 		unsigned long faults = 0, group_faults = 0;
2835 		int priv;
2836 
2837 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2838 			long diff, f_diff, f_weight;
2839 
2840 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2841 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2842 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2843 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2844 
2845 			/* Decay existing window, copy faults since last scan */
2846 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2847 			fault_types[priv] += p->numa_faults[membuf_idx];
2848 			p->numa_faults[membuf_idx] = 0;
2849 
2850 			/*
2851 			 * Normalize the faults_from, so all tasks in a group
2852 			 * count according to CPU use, instead of by the raw
2853 			 * number of faults. Tasks with little runtime have
2854 			 * little over-all impact on throughput, and thus their
2855 			 * faults are less important.
2856 			 */
2857 			f_weight = div64_u64(runtime << 16, period + 1);
2858 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2859 				   (total_faults + 1);
2860 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2861 			p->numa_faults[cpubuf_idx] = 0;
2862 
2863 			p->numa_faults[mem_idx] += diff;
2864 			p->numa_faults[cpu_idx] += f_diff;
2865 			faults += p->numa_faults[mem_idx];
2866 			p->total_numa_faults += diff;
2867 			if (ng) {
2868 				/*
2869 				 * safe because we can only change our own group
2870 				 *
2871 				 * mem_idx represents the offset for a given
2872 				 * nid and priv in a specific region because it
2873 				 * is at the beginning of the numa_faults array.
2874 				 */
2875 				ng->faults[mem_idx] += diff;
2876 				ng->faults[cpu_idx] += f_diff;
2877 				ng->total_faults += diff;
2878 				group_faults += ng->faults[mem_idx];
2879 			}
2880 		}
2881 
2882 		if (!ng) {
2883 			if (faults > max_faults) {
2884 				max_faults = faults;
2885 				max_nid = nid;
2886 			}
2887 		} else if (group_faults > max_faults) {
2888 			max_faults = group_faults;
2889 			max_nid = nid;
2890 		}
2891 	}
2892 
2893 	/* Cannot migrate task to CPU-less node */
2894 	max_nid = numa_nearest_node(max_nid, N_CPU);
2895 
2896 	if (ng) {
2897 		numa_group_count_active_nodes(ng);
2898 		spin_unlock_irq(group_lock);
2899 		max_nid = preferred_group_nid(p, max_nid);
2900 	}
2901 
2902 	if (max_faults) {
2903 		/* Set the new preferred node */
2904 		if (max_nid != p->numa_preferred_nid)
2905 			sched_setnuma(p, max_nid);
2906 	}
2907 
2908 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2909 }
2910 
2911 static inline int get_numa_group(struct numa_group *grp)
2912 {
2913 	return refcount_inc_not_zero(&grp->refcount);
2914 }
2915 
2916 static inline void put_numa_group(struct numa_group *grp)
2917 {
2918 	if (refcount_dec_and_test(&grp->refcount))
2919 		kfree_rcu(grp, rcu);
2920 }
2921 
2922 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2923 			int *priv)
2924 {
2925 	struct numa_group *grp, *my_grp;
2926 	struct task_struct *tsk;
2927 	bool join = false;
2928 	int cpu = cpupid_to_cpu(cpupid);
2929 	int i;
2930 
2931 	if (unlikely(!deref_curr_numa_group(p))) {
2932 		unsigned int size = sizeof(struct numa_group) +
2933 				    NR_NUMA_HINT_FAULT_STATS *
2934 				    nr_node_ids * sizeof(unsigned long);
2935 
2936 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2937 		if (!grp)
2938 			return;
2939 
2940 		refcount_set(&grp->refcount, 1);
2941 		grp->active_nodes = 1;
2942 		grp->max_faults_cpu = 0;
2943 		spin_lock_init(&grp->lock);
2944 		grp->gid = p->pid;
2945 
2946 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2947 			grp->faults[i] = p->numa_faults[i];
2948 
2949 		grp->total_faults = p->total_numa_faults;
2950 
2951 		grp->nr_tasks++;
2952 		rcu_assign_pointer(p->numa_group, grp);
2953 	}
2954 
2955 	rcu_read_lock();
2956 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2957 
2958 	if (!cpupid_match_pid(tsk, cpupid))
2959 		goto no_join;
2960 
2961 	grp = rcu_dereference(tsk->numa_group);
2962 	if (!grp)
2963 		goto no_join;
2964 
2965 	my_grp = deref_curr_numa_group(p);
2966 	if (grp == my_grp)
2967 		goto no_join;
2968 
2969 	/*
2970 	 * Only join the other group if its bigger; if we're the bigger group,
2971 	 * the other task will join us.
2972 	 */
2973 	if (my_grp->nr_tasks > grp->nr_tasks)
2974 		goto no_join;
2975 
2976 	/*
2977 	 * Tie-break on the grp address.
2978 	 */
2979 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2980 		goto no_join;
2981 
2982 	/* Always join threads in the same process. */
2983 	if (tsk->mm == current->mm)
2984 		join = true;
2985 
2986 	/* Simple filter to avoid false positives due to PID collisions */
2987 	if (flags & TNF_SHARED)
2988 		join = true;
2989 
2990 	/* Update priv based on whether false sharing was detected */
2991 	*priv = !join;
2992 
2993 	if (join && !get_numa_group(grp))
2994 		goto no_join;
2995 
2996 	rcu_read_unlock();
2997 
2998 	if (!join)
2999 		return;
3000 
3001 	WARN_ON_ONCE(irqs_disabled());
3002 	double_lock_irq(&my_grp->lock, &grp->lock);
3003 
3004 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3005 		my_grp->faults[i] -= p->numa_faults[i];
3006 		grp->faults[i] += p->numa_faults[i];
3007 	}
3008 	my_grp->total_faults -= p->total_numa_faults;
3009 	grp->total_faults += p->total_numa_faults;
3010 
3011 	my_grp->nr_tasks--;
3012 	grp->nr_tasks++;
3013 
3014 	spin_unlock(&my_grp->lock);
3015 	spin_unlock_irq(&grp->lock);
3016 
3017 	rcu_assign_pointer(p->numa_group, grp);
3018 
3019 	put_numa_group(my_grp);
3020 	return;
3021 
3022 no_join:
3023 	rcu_read_unlock();
3024 	return;
3025 }
3026 
3027 /*
3028  * Get rid of NUMA statistics associated with a task (either current or dead).
3029  * If @final is set, the task is dead and has reached refcount zero, so we can
3030  * safely free all relevant data structures. Otherwise, there might be
3031  * concurrent reads from places like load balancing and procfs, and we should
3032  * reset the data back to default state without freeing ->numa_faults.
3033  */
3034 void task_numa_free(struct task_struct *p, bool final)
3035 {
3036 	/* safe: p either is current or is being freed by current */
3037 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3038 	unsigned long *numa_faults = p->numa_faults;
3039 	unsigned long flags;
3040 	int i;
3041 
3042 	if (!numa_faults)
3043 		return;
3044 
3045 	if (grp) {
3046 		spin_lock_irqsave(&grp->lock, flags);
3047 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3048 			grp->faults[i] -= p->numa_faults[i];
3049 		grp->total_faults -= p->total_numa_faults;
3050 
3051 		grp->nr_tasks--;
3052 		spin_unlock_irqrestore(&grp->lock, flags);
3053 		RCU_INIT_POINTER(p->numa_group, NULL);
3054 		put_numa_group(grp);
3055 	}
3056 
3057 	if (final) {
3058 		p->numa_faults = NULL;
3059 		kfree(numa_faults);
3060 	} else {
3061 		p->total_numa_faults = 0;
3062 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3063 			numa_faults[i] = 0;
3064 	}
3065 }
3066 
3067 /*
3068  * Got a PROT_NONE fault for a page on @node.
3069  */
3070 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3071 {
3072 	struct task_struct *p = current;
3073 	bool migrated = flags & TNF_MIGRATED;
3074 	int cpu_node = task_node(current);
3075 	int local = !!(flags & TNF_FAULT_LOCAL);
3076 	struct numa_group *ng;
3077 	int priv;
3078 
3079 	if (!static_branch_likely(&sched_numa_balancing))
3080 		return;
3081 
3082 	/* for example, ksmd faulting in a user's mm */
3083 	if (!p->mm)
3084 		return;
3085 
3086 	/*
3087 	 * NUMA faults statistics are unnecessary for the slow memory
3088 	 * node for memory tiering mode.
3089 	 */
3090 	if (!node_is_toptier(mem_node) &&
3091 	    (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3092 	     !cpupid_valid(last_cpupid)))
3093 		return;
3094 
3095 	/* Allocate buffer to track faults on a per-node basis */
3096 	if (unlikely(!p->numa_faults)) {
3097 		int size = sizeof(*p->numa_faults) *
3098 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3099 
3100 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3101 		if (!p->numa_faults)
3102 			return;
3103 
3104 		p->total_numa_faults = 0;
3105 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3106 	}
3107 
3108 	/*
3109 	 * First accesses are treated as private, otherwise consider accesses
3110 	 * to be private if the accessing pid has not changed
3111 	 */
3112 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3113 		priv = 1;
3114 	} else {
3115 		priv = cpupid_match_pid(p, last_cpupid);
3116 		if (!priv && !(flags & TNF_NO_GROUP))
3117 			task_numa_group(p, last_cpupid, flags, &priv);
3118 	}
3119 
3120 	/*
3121 	 * If a workload spans multiple NUMA nodes, a shared fault that
3122 	 * occurs wholly within the set of nodes that the workload is
3123 	 * actively using should be counted as local. This allows the
3124 	 * scan rate to slow down when a workload has settled down.
3125 	 */
3126 	ng = deref_curr_numa_group(p);
3127 	if (!priv && !local && ng && ng->active_nodes > 1 &&
3128 				numa_is_active_node(cpu_node, ng) &&
3129 				numa_is_active_node(mem_node, ng))
3130 		local = 1;
3131 
3132 	/*
3133 	 * Retry to migrate task to preferred node periodically, in case it
3134 	 * previously failed, or the scheduler moved us.
3135 	 */
3136 	if (time_after(jiffies, p->numa_migrate_retry)) {
3137 		task_numa_placement(p);
3138 		numa_migrate_preferred(p);
3139 	}
3140 
3141 	if (migrated)
3142 		p->numa_pages_migrated += pages;
3143 	if (flags & TNF_MIGRATE_FAIL)
3144 		p->numa_faults_locality[2] += pages;
3145 
3146 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3147 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3148 	p->numa_faults_locality[local] += pages;
3149 }
3150 
3151 static void reset_ptenuma_scan(struct task_struct *p)
3152 {
3153 	/*
3154 	 * We only did a read acquisition of the mmap sem, so
3155 	 * p->mm->numa_scan_seq is written to without exclusive access
3156 	 * and the update is not guaranteed to be atomic. That's not
3157 	 * much of an issue though, since this is just used for
3158 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3159 	 * expensive, to avoid any form of compiler optimizations:
3160 	 */
3161 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3162 	p->mm->numa_scan_offset = 0;
3163 }
3164 
3165 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3166 {
3167 	unsigned long pids;
3168 	/*
3169 	 * Allow unconditional access first two times, so that all the (pages)
3170 	 * of VMAs get prot_none fault introduced irrespective of accesses.
3171 	 * This is also done to avoid any side effect of task scanning
3172 	 * amplifying the unfairness of disjoint set of VMAs' access.
3173 	 */
3174 	if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3175 		return true;
3176 
3177 	pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3178 	if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3179 		return true;
3180 
3181 	/*
3182 	 * Complete a scan that has already started regardless of PID access, or
3183 	 * some VMAs may never be scanned in multi-threaded applications:
3184 	 */
3185 	if (mm->numa_scan_offset > vma->vm_start) {
3186 		trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3187 		return true;
3188 	}
3189 
3190 	return false;
3191 }
3192 
3193 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3194 
3195 /*
3196  * The expensive part of numa migration is done from task_work context.
3197  * Triggered from task_tick_numa().
3198  */
3199 static void task_numa_work(struct callback_head *work)
3200 {
3201 	unsigned long migrate, next_scan, now = jiffies;
3202 	struct task_struct *p = current;
3203 	struct mm_struct *mm = p->mm;
3204 	u64 runtime = p->se.sum_exec_runtime;
3205 	struct vm_area_struct *vma;
3206 	unsigned long start, end;
3207 	unsigned long nr_pte_updates = 0;
3208 	long pages, virtpages;
3209 	struct vma_iterator vmi;
3210 	bool vma_pids_skipped;
3211 	bool vma_pids_forced = false;
3212 
3213 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3214 
3215 	work->next = work;
3216 	/*
3217 	 * Who cares about NUMA placement when they're dying.
3218 	 *
3219 	 * NOTE: make sure not to dereference p->mm before this check,
3220 	 * exit_task_work() happens _after_ exit_mm() so we could be called
3221 	 * without p->mm even though we still had it when we enqueued this
3222 	 * work.
3223 	 */
3224 	if (p->flags & PF_EXITING)
3225 		return;
3226 
3227 	if (!mm->numa_next_scan) {
3228 		mm->numa_next_scan = now +
3229 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3230 	}
3231 
3232 	/*
3233 	 * Enforce maximal scan/migration frequency..
3234 	 */
3235 	migrate = mm->numa_next_scan;
3236 	if (time_before(now, migrate))
3237 		return;
3238 
3239 	if (p->numa_scan_period == 0) {
3240 		p->numa_scan_period_max = task_scan_max(p);
3241 		p->numa_scan_period = task_scan_start(p);
3242 	}
3243 
3244 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3245 	if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3246 		return;
3247 
3248 	/*
3249 	 * Delay this task enough that another task of this mm will likely win
3250 	 * the next time around.
3251 	 */
3252 	p->node_stamp += 2 * TICK_NSEC;
3253 
3254 	pages = sysctl_numa_balancing_scan_size;
3255 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3256 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
3257 	if (!pages)
3258 		return;
3259 
3260 
3261 	if (!mmap_read_trylock(mm))
3262 		return;
3263 
3264 	/*
3265 	 * VMAs are skipped if the current PID has not trapped a fault within
3266 	 * the VMA recently. Allow scanning to be forced if there is no
3267 	 * suitable VMA remaining.
3268 	 */
3269 	vma_pids_skipped = false;
3270 
3271 retry_pids:
3272 	start = mm->numa_scan_offset;
3273 	vma_iter_init(&vmi, mm, start);
3274 	vma = vma_next(&vmi);
3275 	if (!vma) {
3276 		reset_ptenuma_scan(p);
3277 		start = 0;
3278 		vma_iter_set(&vmi, start);
3279 		vma = vma_next(&vmi);
3280 	}
3281 
3282 	do {
3283 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3284 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3285 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3286 			continue;
3287 		}
3288 
3289 		/*
3290 		 * Shared library pages mapped by multiple processes are not
3291 		 * migrated as it is expected they are cache replicated. Avoid
3292 		 * hinting faults in read-only file-backed mappings or the vDSO
3293 		 * as migrating the pages will be of marginal benefit.
3294 		 */
3295 		if (!vma->vm_mm ||
3296 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3297 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3298 			continue;
3299 		}
3300 
3301 		/*
3302 		 * Skip inaccessible VMAs to avoid any confusion between
3303 		 * PROT_NONE and NUMA hinting PTEs
3304 		 */
3305 		if (!vma_is_accessible(vma)) {
3306 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3307 			continue;
3308 		}
3309 
3310 		/* Initialise new per-VMA NUMAB state. */
3311 		if (!vma->numab_state) {
3312 			vma->numab_state = kzalloc(sizeof(struct vma_numab_state),
3313 				GFP_KERNEL);
3314 			if (!vma->numab_state)
3315 				continue;
3316 
3317 			vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3318 
3319 			vma->numab_state->next_scan = now +
3320 				msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3321 
3322 			/* Reset happens after 4 times scan delay of scan start */
3323 			vma->numab_state->pids_active_reset =  vma->numab_state->next_scan +
3324 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3325 
3326 			/*
3327 			 * Ensure prev_scan_seq does not match numa_scan_seq,
3328 			 * to prevent VMAs being skipped prematurely on the
3329 			 * first scan:
3330 			 */
3331 			 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3332 		}
3333 
3334 		/*
3335 		 * Scanning the VMAs of short lived tasks add more overhead. So
3336 		 * delay the scan for new VMAs.
3337 		 */
3338 		if (mm->numa_scan_seq && time_before(jiffies,
3339 						vma->numab_state->next_scan)) {
3340 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3341 			continue;
3342 		}
3343 
3344 		/* RESET access PIDs regularly for old VMAs. */
3345 		if (mm->numa_scan_seq &&
3346 				time_after(jiffies, vma->numab_state->pids_active_reset)) {
3347 			vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3348 				msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3349 			vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3350 			vma->numab_state->pids_active[1] = 0;
3351 		}
3352 
3353 		/* Do not rescan VMAs twice within the same sequence. */
3354 		if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3355 			mm->numa_scan_offset = vma->vm_end;
3356 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3357 			continue;
3358 		}
3359 
3360 		/*
3361 		 * Do not scan the VMA if task has not accessed it, unless no other
3362 		 * VMA candidate exists.
3363 		 */
3364 		if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3365 			vma_pids_skipped = true;
3366 			trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3367 			continue;
3368 		}
3369 
3370 		do {
3371 			start = max(start, vma->vm_start);
3372 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3373 			end = min(end, vma->vm_end);
3374 			nr_pte_updates = change_prot_numa(vma, start, end);
3375 
3376 			/*
3377 			 * Try to scan sysctl_numa_balancing_size worth of
3378 			 * hpages that have at least one present PTE that
3379 			 * is not already PTE-numa. If the VMA contains
3380 			 * areas that are unused or already full of prot_numa
3381 			 * PTEs, scan up to virtpages, to skip through those
3382 			 * areas faster.
3383 			 */
3384 			if (nr_pte_updates)
3385 				pages -= (end - start) >> PAGE_SHIFT;
3386 			virtpages -= (end - start) >> PAGE_SHIFT;
3387 
3388 			start = end;
3389 			if (pages <= 0 || virtpages <= 0)
3390 				goto out;
3391 
3392 			cond_resched();
3393 		} while (end != vma->vm_end);
3394 
3395 		/* VMA scan is complete, do not scan until next sequence. */
3396 		vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3397 
3398 		/*
3399 		 * Only force scan within one VMA at a time, to limit the
3400 		 * cost of scanning a potentially uninteresting VMA.
3401 		 */
3402 		if (vma_pids_forced)
3403 			break;
3404 	} for_each_vma(vmi, vma);
3405 
3406 	/*
3407 	 * If no VMAs are remaining and VMAs were skipped due to the PID
3408 	 * not accessing the VMA previously, then force a scan to ensure
3409 	 * forward progress:
3410 	 */
3411 	if (!vma && !vma_pids_forced && vma_pids_skipped) {
3412 		vma_pids_forced = true;
3413 		goto retry_pids;
3414 	}
3415 
3416 out:
3417 	/*
3418 	 * It is possible to reach the end of the VMA list but the last few
3419 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3420 	 * would find the !migratable VMA on the next scan but not reset the
3421 	 * scanner to the start so check it now.
3422 	 */
3423 	if (vma)
3424 		mm->numa_scan_offset = start;
3425 	else
3426 		reset_ptenuma_scan(p);
3427 	mmap_read_unlock(mm);
3428 
3429 	/*
3430 	 * Make sure tasks use at least 32x as much time to run other code
3431 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3432 	 * Usually update_task_scan_period slows down scanning enough; on an
3433 	 * overloaded system we need to limit overhead on a per task basis.
3434 	 */
3435 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
3436 		u64 diff = p->se.sum_exec_runtime - runtime;
3437 		p->node_stamp += 32 * diff;
3438 	}
3439 }
3440 
3441 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3442 {
3443 	int mm_users = 0;
3444 	struct mm_struct *mm = p->mm;
3445 
3446 	if (mm) {
3447 		mm_users = atomic_read(&mm->mm_users);
3448 		if (mm_users == 1) {
3449 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3450 			mm->numa_scan_seq = 0;
3451 		}
3452 	}
3453 	p->node_stamp			= 0;
3454 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
3455 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
3456 	p->numa_migrate_retry		= 0;
3457 	/* Protect against double add, see task_tick_numa and task_numa_work */
3458 	p->numa_work.next		= &p->numa_work;
3459 	p->numa_faults			= NULL;
3460 	p->numa_pages_migrated		= 0;
3461 	p->total_numa_faults		= 0;
3462 	RCU_INIT_POINTER(p->numa_group, NULL);
3463 	p->last_task_numa_placement	= 0;
3464 	p->last_sum_exec_runtime	= 0;
3465 
3466 	init_task_work(&p->numa_work, task_numa_work);
3467 
3468 	/* New address space, reset the preferred nid */
3469 	if (!(clone_flags & CLONE_VM)) {
3470 		p->numa_preferred_nid = NUMA_NO_NODE;
3471 		return;
3472 	}
3473 
3474 	/*
3475 	 * New thread, keep existing numa_preferred_nid which should be copied
3476 	 * already by arch_dup_task_struct but stagger when scans start.
3477 	 */
3478 	if (mm) {
3479 		unsigned int delay;
3480 
3481 		delay = min_t(unsigned int, task_scan_max(current),
3482 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3483 		delay += 2 * TICK_NSEC;
3484 		p->node_stamp = delay;
3485 	}
3486 }
3487 
3488 /*
3489  * Drive the periodic memory faults..
3490  */
3491 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3492 {
3493 	struct callback_head *work = &curr->numa_work;
3494 	u64 period, now;
3495 
3496 	/*
3497 	 * We don't care about NUMA placement if we don't have memory.
3498 	 */
3499 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3500 		return;
3501 
3502 	/*
3503 	 * Using runtime rather than walltime has the dual advantage that
3504 	 * we (mostly) drive the selection from busy threads and that the
3505 	 * task needs to have done some actual work before we bother with
3506 	 * NUMA placement.
3507 	 */
3508 	now = curr->se.sum_exec_runtime;
3509 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3510 
3511 	if (now > curr->node_stamp + period) {
3512 		if (!curr->node_stamp)
3513 			curr->numa_scan_period = task_scan_start(curr);
3514 		curr->node_stamp += period;
3515 
3516 		if (!time_before(jiffies, curr->mm->numa_next_scan))
3517 			task_work_add(curr, work, TWA_RESUME);
3518 	}
3519 }
3520 
3521 static void update_scan_period(struct task_struct *p, int new_cpu)
3522 {
3523 	int src_nid = cpu_to_node(task_cpu(p));
3524 	int dst_nid = cpu_to_node(new_cpu);
3525 
3526 	if (!static_branch_likely(&sched_numa_balancing))
3527 		return;
3528 
3529 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3530 		return;
3531 
3532 	if (src_nid == dst_nid)
3533 		return;
3534 
3535 	/*
3536 	 * Allow resets if faults have been trapped before one scan
3537 	 * has completed. This is most likely due to a new task that
3538 	 * is pulled cross-node due to wakeups or load balancing.
3539 	 */
3540 	if (p->numa_scan_seq) {
3541 		/*
3542 		 * Avoid scan adjustments if moving to the preferred
3543 		 * node or if the task was not previously running on
3544 		 * the preferred node.
3545 		 */
3546 		if (dst_nid == p->numa_preferred_nid ||
3547 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
3548 			src_nid != p->numa_preferred_nid))
3549 			return;
3550 	}
3551 
3552 	p->numa_scan_period = task_scan_start(p);
3553 }
3554 
3555 #else
3556 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3557 {
3558 }
3559 
3560 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3561 {
3562 }
3563 
3564 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3565 {
3566 }
3567 
3568 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3569 {
3570 }
3571 
3572 #endif /* CONFIG_NUMA_BALANCING */
3573 
3574 static void
3575 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3576 {
3577 	update_load_add(&cfs_rq->load, se->load.weight);
3578 #ifdef CONFIG_SMP
3579 	if (entity_is_task(se)) {
3580 		struct rq *rq = rq_of(cfs_rq);
3581 
3582 		account_numa_enqueue(rq, task_of(se));
3583 		list_add(&se->group_node, &rq->cfs_tasks);
3584 	}
3585 #endif
3586 	cfs_rq->nr_running++;
3587 	if (se_is_idle(se))
3588 		cfs_rq->idle_nr_running++;
3589 }
3590 
3591 static void
3592 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3593 {
3594 	update_load_sub(&cfs_rq->load, se->load.weight);
3595 #ifdef CONFIG_SMP
3596 	if (entity_is_task(se)) {
3597 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3598 		list_del_init(&se->group_node);
3599 	}
3600 #endif
3601 	cfs_rq->nr_running--;
3602 	if (se_is_idle(se))
3603 		cfs_rq->idle_nr_running--;
3604 }
3605 
3606 /*
3607  * Signed add and clamp on underflow.
3608  *
3609  * Explicitly do a load-store to ensure the intermediate value never hits
3610  * memory. This allows lockless observations without ever seeing the negative
3611  * values.
3612  */
3613 #define add_positive(_ptr, _val) do {                           \
3614 	typeof(_ptr) ptr = (_ptr);                              \
3615 	typeof(_val) val = (_val);                              \
3616 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3617 								\
3618 	res = var + val;                                        \
3619 								\
3620 	if (val < 0 && res > var)                               \
3621 		res = 0;                                        \
3622 								\
3623 	WRITE_ONCE(*ptr, res);                                  \
3624 } while (0)
3625 
3626 /*
3627  * Unsigned subtract and clamp on underflow.
3628  *
3629  * Explicitly do a load-store to ensure the intermediate value never hits
3630  * memory. This allows lockless observations without ever seeing the negative
3631  * values.
3632  */
3633 #define sub_positive(_ptr, _val) do {				\
3634 	typeof(_ptr) ptr = (_ptr);				\
3635 	typeof(*ptr) val = (_val);				\
3636 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3637 	res = var - val;					\
3638 	if (res > var)						\
3639 		res = 0;					\
3640 	WRITE_ONCE(*ptr, res);					\
3641 } while (0)
3642 
3643 /*
3644  * Remove and clamp on negative, from a local variable.
3645  *
3646  * A variant of sub_positive(), which does not use explicit load-store
3647  * and is thus optimized for local variable updates.
3648  */
3649 #define lsub_positive(_ptr, _val) do {				\
3650 	typeof(_ptr) ptr = (_ptr);				\
3651 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3652 } while (0)
3653 
3654 #ifdef CONFIG_SMP
3655 static inline void
3656 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3657 {
3658 	cfs_rq->avg.load_avg += se->avg.load_avg;
3659 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3660 }
3661 
3662 static inline void
3663 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3664 {
3665 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3666 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3667 	/* See update_cfs_rq_load_avg() */
3668 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3669 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3670 }
3671 #else
3672 static inline void
3673 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3674 static inline void
3675 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3676 #endif
3677 
3678 static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
3679 			   unsigned long weight)
3680 {
3681 	unsigned long old_weight = se->load.weight;
3682 	s64 vlag, vslice;
3683 
3684 	/*
3685 	 * VRUNTIME
3686 	 * --------
3687 	 *
3688 	 * COROLLARY #1: The virtual runtime of the entity needs to be
3689 	 * adjusted if re-weight at !0-lag point.
3690 	 *
3691 	 * Proof: For contradiction assume this is not true, so we can
3692 	 * re-weight without changing vruntime at !0-lag point.
3693 	 *
3694 	 *             Weight	VRuntime   Avg-VRuntime
3695 	 *     before    w          v            V
3696 	 *      after    w'         v'           V'
3697 	 *
3698 	 * Since lag needs to be preserved through re-weight:
3699 	 *
3700 	 *	lag = (V - v)*w = (V'- v')*w', where v = v'
3701 	 *	==>	V' = (V - v)*w/w' + v		(1)
3702 	 *
3703 	 * Let W be the total weight of the entities before reweight,
3704 	 * since V' is the new weighted average of entities:
3705 	 *
3706 	 *	V' = (WV + w'v - wv) / (W + w' - w)	(2)
3707 	 *
3708 	 * by using (1) & (2) we obtain:
3709 	 *
3710 	 *	(WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3711 	 *	==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3712 	 *	==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3713 	 *	==>	(V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3714 	 *
3715 	 * Since we are doing at !0-lag point which means V != v, we
3716 	 * can simplify (3):
3717 	 *
3718 	 *	==>	W / (W + w' - w) = w / w'
3719 	 *	==>	Ww' = Ww + ww' - ww
3720 	 *	==>	W * (w' - w) = w * (w' - w)
3721 	 *	==>	W = w	(re-weight indicates w' != w)
3722 	 *
3723 	 * So the cfs_rq contains only one entity, hence vruntime of
3724 	 * the entity @v should always equal to the cfs_rq's weighted
3725 	 * average vruntime @V, which means we will always re-weight
3726 	 * at 0-lag point, thus breach assumption. Proof completed.
3727 	 *
3728 	 *
3729 	 * COROLLARY #2: Re-weight does NOT affect weighted average
3730 	 * vruntime of all the entities.
3731 	 *
3732 	 * Proof: According to corollary #1, Eq. (1) should be:
3733 	 *
3734 	 *	(V - v)*w = (V' - v')*w'
3735 	 *	==>    v' = V' - (V - v)*w/w'		(4)
3736 	 *
3737 	 * According to the weighted average formula, we have:
3738 	 *
3739 	 *	V' = (WV - wv + w'v') / (W - w + w')
3740 	 *	   = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3741 	 *	   = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3742 	 *	   = (WV + w'V' - Vw) / (W - w + w')
3743 	 *
3744 	 *	==>  V'*(W - w + w') = WV + w'V' - Vw
3745 	 *	==>	V' * (W - w) = (W - w) * V	(5)
3746 	 *
3747 	 * If the entity is the only one in the cfs_rq, then reweight
3748 	 * always occurs at 0-lag point, so V won't change. Or else
3749 	 * there are other entities, hence W != w, then Eq. (5) turns
3750 	 * into V' = V. So V won't change in either case, proof done.
3751 	 *
3752 	 *
3753 	 * So according to corollary #1 & #2, the effect of re-weight
3754 	 * on vruntime should be:
3755 	 *
3756 	 *	v' = V' - (V - v) * w / w'		(4)
3757 	 *	   = V  - (V - v) * w / w'
3758 	 *	   = V  - vl * w / w'
3759 	 *	   = V  - vl'
3760 	 */
3761 	if (avruntime != se->vruntime) {
3762 		vlag = entity_lag(avruntime, se);
3763 		vlag = div_s64(vlag * old_weight, weight);
3764 		se->vruntime = avruntime - vlag;
3765 	}
3766 
3767 	/*
3768 	 * DEADLINE
3769 	 * --------
3770 	 *
3771 	 * When the weight changes, the virtual time slope changes and
3772 	 * we should adjust the relative virtual deadline accordingly.
3773 	 *
3774 	 *	d' = v' + (d - v)*w/w'
3775 	 *	   = V' - (V - v)*w/w' + (d - v)*w/w'
3776 	 *	   = V  - (V - v)*w/w' + (d - v)*w/w'
3777 	 *	   = V  + (d - V)*w/w'
3778 	 */
3779 	vslice = (s64)(se->deadline - avruntime);
3780 	vslice = div_s64(vslice * old_weight, weight);
3781 	se->deadline = avruntime + vslice;
3782 }
3783 
3784 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3785 			    unsigned long weight)
3786 {
3787 	bool curr = cfs_rq->curr == se;
3788 	u64 avruntime;
3789 
3790 	if (se->on_rq) {
3791 		/* commit outstanding execution time */
3792 		update_curr(cfs_rq);
3793 		avruntime = avg_vruntime(cfs_rq);
3794 		if (!curr)
3795 			__dequeue_entity(cfs_rq, se);
3796 		update_load_sub(&cfs_rq->load, se->load.weight);
3797 	}
3798 	dequeue_load_avg(cfs_rq, se);
3799 
3800 	if (se->on_rq) {
3801 		reweight_eevdf(se, avruntime, weight);
3802 	} else {
3803 		/*
3804 		 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3805 		 * we need to scale se->vlag when w_i changes.
3806 		 */
3807 		se->vlag = div_s64(se->vlag * se->load.weight, weight);
3808 	}
3809 
3810 	update_load_set(&se->load, weight);
3811 
3812 #ifdef CONFIG_SMP
3813 	do {
3814 		u32 divider = get_pelt_divider(&se->avg);
3815 
3816 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3817 	} while (0);
3818 #endif
3819 
3820 	enqueue_load_avg(cfs_rq, se);
3821 	if (se->on_rq) {
3822 		update_load_add(&cfs_rq->load, se->load.weight);
3823 		if (!curr)
3824 			__enqueue_entity(cfs_rq, se);
3825 
3826 		/*
3827 		 * The entity's vruntime has been adjusted, so let's check
3828 		 * whether the rq-wide min_vruntime needs updated too. Since
3829 		 * the calculations above require stable min_vruntime rather
3830 		 * than up-to-date one, we do the update at the end of the
3831 		 * reweight process.
3832 		 */
3833 		update_min_vruntime(cfs_rq);
3834 	}
3835 }
3836 
3837 void reweight_task(struct task_struct *p, const struct load_weight *lw)
3838 {
3839 	struct sched_entity *se = &p->se;
3840 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3841 	struct load_weight *load = &se->load;
3842 
3843 	reweight_entity(cfs_rq, se, lw->weight);
3844 	load->inv_weight = lw->inv_weight;
3845 }
3846 
3847 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3848 
3849 #ifdef CONFIG_FAIR_GROUP_SCHED
3850 #ifdef CONFIG_SMP
3851 /*
3852  * All this does is approximate the hierarchical proportion which includes that
3853  * global sum we all love to hate.
3854  *
3855  * That is, the weight of a group entity, is the proportional share of the
3856  * group weight based on the group runqueue weights. That is:
3857  *
3858  *                     tg->weight * grq->load.weight
3859  *   ge->load.weight = -----------------------------               (1)
3860  *                       \Sum grq->load.weight
3861  *
3862  * Now, because computing that sum is prohibitively expensive to compute (been
3863  * there, done that) we approximate it with this average stuff. The average
3864  * moves slower and therefore the approximation is cheaper and more stable.
3865  *
3866  * So instead of the above, we substitute:
3867  *
3868  *   grq->load.weight -> grq->avg.load_avg                         (2)
3869  *
3870  * which yields the following:
3871  *
3872  *                     tg->weight * grq->avg.load_avg
3873  *   ge->load.weight = ------------------------------              (3)
3874  *                             tg->load_avg
3875  *
3876  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3877  *
3878  * That is shares_avg, and it is right (given the approximation (2)).
3879  *
3880  * The problem with it is that because the average is slow -- it was designed
3881  * to be exactly that of course -- this leads to transients in boundary
3882  * conditions. In specific, the case where the group was idle and we start the
3883  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3884  * yielding bad latency etc..
3885  *
3886  * Now, in that special case (1) reduces to:
3887  *
3888  *                     tg->weight * grq->load.weight
3889  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3890  *                         grp->load.weight
3891  *
3892  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3893  *
3894  * So what we do is modify our approximation (3) to approach (4) in the (near)
3895  * UP case, like:
3896  *
3897  *   ge->load.weight =
3898  *
3899  *              tg->weight * grq->load.weight
3900  *     ---------------------------------------------------         (5)
3901  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3902  *
3903  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3904  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3905  *
3906  *
3907  *                     tg->weight * grq->load.weight
3908  *   ge->load.weight = -----------------------------		   (6)
3909  *                             tg_load_avg'
3910  *
3911  * Where:
3912  *
3913  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3914  *                  max(grq->load.weight, grq->avg.load_avg)
3915  *
3916  * And that is shares_weight and is icky. In the (near) UP case it approaches
3917  * (4) while in the normal case it approaches (3). It consistently
3918  * overestimates the ge->load.weight and therefore:
3919  *
3920  *   \Sum ge->load.weight >= tg->weight
3921  *
3922  * hence icky!
3923  */
3924 static long calc_group_shares(struct cfs_rq *cfs_rq)
3925 {
3926 	long tg_weight, tg_shares, load, shares;
3927 	struct task_group *tg = cfs_rq->tg;
3928 
3929 	tg_shares = READ_ONCE(tg->shares);
3930 
3931 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3932 
3933 	tg_weight = atomic_long_read(&tg->load_avg);
3934 
3935 	/* Ensure tg_weight >= load */
3936 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3937 	tg_weight += load;
3938 
3939 	shares = (tg_shares * load);
3940 	if (tg_weight)
3941 		shares /= tg_weight;
3942 
3943 	/*
3944 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3945 	 * of a group with small tg->shares value. It is a floor value which is
3946 	 * assigned as a minimum load.weight to the sched_entity representing
3947 	 * the group on a CPU.
3948 	 *
3949 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3950 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3951 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3952 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3953 	 * instead of 0.
3954 	 */
3955 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3956 }
3957 #endif /* CONFIG_SMP */
3958 
3959 /*
3960  * Recomputes the group entity based on the current state of its group
3961  * runqueue.
3962  */
3963 static void update_cfs_group(struct sched_entity *se)
3964 {
3965 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3966 	long shares;
3967 
3968 	if (!gcfs_rq)
3969 		return;
3970 
3971 	if (throttled_hierarchy(gcfs_rq))
3972 		return;
3973 
3974 #ifndef CONFIG_SMP
3975 	shares = READ_ONCE(gcfs_rq->tg->shares);
3976 #else
3977 	shares = calc_group_shares(gcfs_rq);
3978 #endif
3979 	if (unlikely(se->load.weight != shares))
3980 		reweight_entity(cfs_rq_of(se), se, shares);
3981 }
3982 
3983 #else /* CONFIG_FAIR_GROUP_SCHED */
3984 static inline void update_cfs_group(struct sched_entity *se)
3985 {
3986 }
3987 #endif /* CONFIG_FAIR_GROUP_SCHED */
3988 
3989 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3990 {
3991 	struct rq *rq = rq_of(cfs_rq);
3992 
3993 	if (&rq->cfs == cfs_rq) {
3994 		/*
3995 		 * There are a few boundary cases this might miss but it should
3996 		 * get called often enough that that should (hopefully) not be
3997 		 * a real problem.
3998 		 *
3999 		 * It will not get called when we go idle, because the idle
4000 		 * thread is a different class (!fair), nor will the utilization
4001 		 * number include things like RT tasks.
4002 		 *
4003 		 * As is, the util number is not freq-invariant (we'd have to
4004 		 * implement arch_scale_freq_capacity() for that).
4005 		 *
4006 		 * See cpu_util_cfs().
4007 		 */
4008 		cpufreq_update_util(rq, flags);
4009 	}
4010 }
4011 
4012 #ifdef CONFIG_SMP
4013 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4014 {
4015 	if (sa->load_sum)
4016 		return false;
4017 
4018 	if (sa->util_sum)
4019 		return false;
4020 
4021 	if (sa->runnable_sum)
4022 		return false;
4023 
4024 	/*
4025 	 * _avg must be null when _sum are null because _avg = _sum / divider
4026 	 * Make sure that rounding and/or propagation of PELT values never
4027 	 * break this.
4028 	 */
4029 	SCHED_WARN_ON(sa->load_avg ||
4030 		      sa->util_avg ||
4031 		      sa->runnable_avg);
4032 
4033 	return true;
4034 }
4035 
4036 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4037 {
4038 	return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4039 				 cfs_rq->last_update_time_copy);
4040 }
4041 #ifdef CONFIG_FAIR_GROUP_SCHED
4042 /*
4043  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4044  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4045  * bottom-up, we only have to test whether the cfs_rq before us on the list
4046  * is our child.
4047  * If cfs_rq is not on the list, test whether a child needs its to be added to
4048  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
4049  */
4050 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4051 {
4052 	struct cfs_rq *prev_cfs_rq;
4053 	struct list_head *prev;
4054 
4055 	if (cfs_rq->on_list) {
4056 		prev = cfs_rq->leaf_cfs_rq_list.prev;
4057 	} else {
4058 		struct rq *rq = rq_of(cfs_rq);
4059 
4060 		prev = rq->tmp_alone_branch;
4061 	}
4062 
4063 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4064 
4065 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4066 }
4067 
4068 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4069 {
4070 	if (cfs_rq->load.weight)
4071 		return false;
4072 
4073 	if (!load_avg_is_decayed(&cfs_rq->avg))
4074 		return false;
4075 
4076 	if (child_cfs_rq_on_list(cfs_rq))
4077 		return false;
4078 
4079 	return true;
4080 }
4081 
4082 /**
4083  * update_tg_load_avg - update the tg's load avg
4084  * @cfs_rq: the cfs_rq whose avg changed
4085  *
4086  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4087  * However, because tg->load_avg is a global value there are performance
4088  * considerations.
4089  *
4090  * In order to avoid having to look at the other cfs_rq's, we use a
4091  * differential update where we store the last value we propagated. This in
4092  * turn allows skipping updates if the differential is 'small'.
4093  *
4094  * Updating tg's load_avg is necessary before update_cfs_share().
4095  */
4096 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4097 {
4098 	long delta;
4099 	u64 now;
4100 
4101 	/*
4102 	 * No need to update load_avg for root_task_group as it is not used.
4103 	 */
4104 	if (cfs_rq->tg == &root_task_group)
4105 		return;
4106 
4107 	/* rq has been offline and doesn't contribute to the share anymore: */
4108 	if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4109 		return;
4110 
4111 	/*
4112 	 * For migration heavy workloads, access to tg->load_avg can be
4113 	 * unbound. Limit the update rate to at most once per ms.
4114 	 */
4115 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4116 	if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4117 		return;
4118 
4119 	delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4120 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4121 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
4122 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4123 		cfs_rq->last_update_tg_load_avg = now;
4124 	}
4125 }
4126 
4127 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4128 {
4129 	long delta;
4130 	u64 now;
4131 
4132 	/*
4133 	 * No need to update load_avg for root_task_group, as it is not used.
4134 	 */
4135 	if (cfs_rq->tg == &root_task_group)
4136 		return;
4137 
4138 	now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4139 	delta = 0 - cfs_rq->tg_load_avg_contrib;
4140 	atomic_long_add(delta, &cfs_rq->tg->load_avg);
4141 	cfs_rq->tg_load_avg_contrib = 0;
4142 	cfs_rq->last_update_tg_load_avg = now;
4143 }
4144 
4145 /* CPU offline callback: */
4146 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4147 {
4148 	struct task_group *tg;
4149 
4150 	lockdep_assert_rq_held(rq);
4151 
4152 	/*
4153 	 * The rq clock has already been updated in
4154 	 * set_rq_offline(), so we should skip updating
4155 	 * the rq clock again in unthrottle_cfs_rq().
4156 	 */
4157 	rq_clock_start_loop_update(rq);
4158 
4159 	rcu_read_lock();
4160 	list_for_each_entry_rcu(tg, &task_groups, list) {
4161 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4162 
4163 		clear_tg_load_avg(cfs_rq);
4164 	}
4165 	rcu_read_unlock();
4166 
4167 	rq_clock_stop_loop_update(rq);
4168 }
4169 
4170 /*
4171  * Called within set_task_rq() right before setting a task's CPU. The
4172  * caller only guarantees p->pi_lock is held; no other assumptions,
4173  * including the state of rq->lock, should be made.
4174  */
4175 void set_task_rq_fair(struct sched_entity *se,
4176 		      struct cfs_rq *prev, struct cfs_rq *next)
4177 {
4178 	u64 p_last_update_time;
4179 	u64 n_last_update_time;
4180 
4181 	if (!sched_feat(ATTACH_AGE_LOAD))
4182 		return;
4183 
4184 	/*
4185 	 * We are supposed to update the task to "current" time, then its up to
4186 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4187 	 * getting what current time is, so simply throw away the out-of-date
4188 	 * time. This will result in the wakee task is less decayed, but giving
4189 	 * the wakee more load sounds not bad.
4190 	 */
4191 	if (!(se->avg.last_update_time && prev))
4192 		return;
4193 
4194 	p_last_update_time = cfs_rq_last_update_time(prev);
4195 	n_last_update_time = cfs_rq_last_update_time(next);
4196 
4197 	__update_load_avg_blocked_se(p_last_update_time, se);
4198 	se->avg.last_update_time = n_last_update_time;
4199 }
4200 
4201 /*
4202  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4203  * propagate its contribution. The key to this propagation is the invariant
4204  * that for each group:
4205  *
4206  *   ge->avg == grq->avg						(1)
4207  *
4208  * _IFF_ we look at the pure running and runnable sums. Because they
4209  * represent the very same entity, just at different points in the hierarchy.
4210  *
4211  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4212  * and simply copies the running/runnable sum over (but still wrong, because
4213  * the group entity and group rq do not have their PELT windows aligned).
4214  *
4215  * However, update_tg_cfs_load() is more complex. So we have:
4216  *
4217  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
4218  *
4219  * And since, like util, the runnable part should be directly transferable,
4220  * the following would _appear_ to be the straight forward approach:
4221  *
4222  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
4223  *
4224  * And per (1) we have:
4225  *
4226  *   ge->avg.runnable_avg == grq->avg.runnable_avg
4227  *
4228  * Which gives:
4229  *
4230  *                      ge->load.weight * grq->avg.load_avg
4231  *   ge->avg.load_avg = -----------------------------------		(4)
4232  *                               grq->load.weight
4233  *
4234  * Except that is wrong!
4235  *
4236  * Because while for entities historical weight is not important and we
4237  * really only care about our future and therefore can consider a pure
4238  * runnable sum, runqueues can NOT do this.
4239  *
4240  * We specifically want runqueues to have a load_avg that includes
4241  * historical weights. Those represent the blocked load, the load we expect
4242  * to (shortly) return to us. This only works by keeping the weights as
4243  * integral part of the sum. We therefore cannot decompose as per (3).
4244  *
4245  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4246  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4247  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4248  * runnable section of these tasks overlap (or not). If they were to perfectly
4249  * align the rq as a whole would be runnable 2/3 of the time. If however we
4250  * always have at least 1 runnable task, the rq as a whole is always runnable.
4251  *
4252  * So we'll have to approximate.. :/
4253  *
4254  * Given the constraint:
4255  *
4256  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4257  *
4258  * We can construct a rule that adds runnable to a rq by assuming minimal
4259  * overlap.
4260  *
4261  * On removal, we'll assume each task is equally runnable; which yields:
4262  *
4263  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4264  *
4265  * XXX: only do this for the part of runnable > running ?
4266  *
4267  */
4268 static inline void
4269 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4270 {
4271 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4272 	u32 new_sum, divider;
4273 
4274 	/* Nothing to update */
4275 	if (!delta_avg)
4276 		return;
4277 
4278 	/*
4279 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4280 	 * See ___update_load_avg() for details.
4281 	 */
4282 	divider = get_pelt_divider(&cfs_rq->avg);
4283 
4284 
4285 	/* Set new sched_entity's utilization */
4286 	se->avg.util_avg = gcfs_rq->avg.util_avg;
4287 	new_sum = se->avg.util_avg * divider;
4288 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
4289 	se->avg.util_sum = new_sum;
4290 
4291 	/* Update parent cfs_rq utilization */
4292 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
4293 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
4294 
4295 	/* See update_cfs_rq_load_avg() */
4296 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4297 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4298 }
4299 
4300 static inline void
4301 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4302 {
4303 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4304 	u32 new_sum, divider;
4305 
4306 	/* Nothing to update */
4307 	if (!delta_avg)
4308 		return;
4309 
4310 	/*
4311 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4312 	 * See ___update_load_avg() for details.
4313 	 */
4314 	divider = get_pelt_divider(&cfs_rq->avg);
4315 
4316 	/* Set new sched_entity's runnable */
4317 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4318 	new_sum = se->avg.runnable_avg * divider;
4319 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4320 	se->avg.runnable_sum = new_sum;
4321 
4322 	/* Update parent cfs_rq runnable */
4323 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4324 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4325 	/* See update_cfs_rq_load_avg() */
4326 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4327 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4328 }
4329 
4330 static inline void
4331 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4332 {
4333 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4334 	unsigned long load_avg;
4335 	u64 load_sum = 0;
4336 	s64 delta_sum;
4337 	u32 divider;
4338 
4339 	if (!runnable_sum)
4340 		return;
4341 
4342 	gcfs_rq->prop_runnable_sum = 0;
4343 
4344 	/*
4345 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4346 	 * See ___update_load_avg() for details.
4347 	 */
4348 	divider = get_pelt_divider(&cfs_rq->avg);
4349 
4350 	if (runnable_sum >= 0) {
4351 		/*
4352 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4353 		 * the CPU is saturated running == runnable.
4354 		 */
4355 		runnable_sum += se->avg.load_sum;
4356 		runnable_sum = min_t(long, runnable_sum, divider);
4357 	} else {
4358 		/*
4359 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4360 		 * assuming all tasks are equally runnable.
4361 		 */
4362 		if (scale_load_down(gcfs_rq->load.weight)) {
4363 			load_sum = div_u64(gcfs_rq->avg.load_sum,
4364 				scale_load_down(gcfs_rq->load.weight));
4365 		}
4366 
4367 		/* But make sure to not inflate se's runnable */
4368 		runnable_sum = min(se->avg.load_sum, load_sum);
4369 	}
4370 
4371 	/*
4372 	 * runnable_sum can't be lower than running_sum
4373 	 * Rescale running sum to be in the same range as runnable sum
4374 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
4375 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
4376 	 */
4377 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4378 	runnable_sum = max(runnable_sum, running_sum);
4379 
4380 	load_sum = se_weight(se) * runnable_sum;
4381 	load_avg = div_u64(load_sum, divider);
4382 
4383 	delta_avg = load_avg - se->avg.load_avg;
4384 	if (!delta_avg)
4385 		return;
4386 
4387 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4388 
4389 	se->avg.load_sum = runnable_sum;
4390 	se->avg.load_avg = load_avg;
4391 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
4392 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
4393 	/* See update_cfs_rq_load_avg() */
4394 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4395 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4396 }
4397 
4398 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4399 {
4400 	cfs_rq->propagate = 1;
4401 	cfs_rq->prop_runnable_sum += runnable_sum;
4402 }
4403 
4404 /* Update task and its cfs_rq load average */
4405 static inline int propagate_entity_load_avg(struct sched_entity *se)
4406 {
4407 	struct cfs_rq *cfs_rq, *gcfs_rq;
4408 
4409 	if (entity_is_task(se))
4410 		return 0;
4411 
4412 	gcfs_rq = group_cfs_rq(se);
4413 	if (!gcfs_rq->propagate)
4414 		return 0;
4415 
4416 	gcfs_rq->propagate = 0;
4417 
4418 	cfs_rq = cfs_rq_of(se);
4419 
4420 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4421 
4422 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4423 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4424 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4425 
4426 	trace_pelt_cfs_tp(cfs_rq);
4427 	trace_pelt_se_tp(se);
4428 
4429 	return 1;
4430 }
4431 
4432 /*
4433  * Check if we need to update the load and the utilization of a blocked
4434  * group_entity:
4435  */
4436 static inline bool skip_blocked_update(struct sched_entity *se)
4437 {
4438 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4439 
4440 	/*
4441 	 * If sched_entity still have not zero load or utilization, we have to
4442 	 * decay it:
4443 	 */
4444 	if (se->avg.load_avg || se->avg.util_avg)
4445 		return false;
4446 
4447 	/*
4448 	 * If there is a pending propagation, we have to update the load and
4449 	 * the utilization of the sched_entity:
4450 	 */
4451 	if (gcfs_rq->propagate)
4452 		return false;
4453 
4454 	/*
4455 	 * Otherwise, the load and the utilization of the sched_entity is
4456 	 * already zero and there is no pending propagation, so it will be a
4457 	 * waste of time to try to decay it:
4458 	 */
4459 	return true;
4460 }
4461 
4462 #else /* CONFIG_FAIR_GROUP_SCHED */
4463 
4464 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4465 
4466 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4467 
4468 static inline int propagate_entity_load_avg(struct sched_entity *se)
4469 {
4470 	return 0;
4471 }
4472 
4473 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4474 
4475 #endif /* CONFIG_FAIR_GROUP_SCHED */
4476 
4477 #ifdef CONFIG_NO_HZ_COMMON
4478 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4479 {
4480 	u64 throttled = 0, now, lut;
4481 	struct cfs_rq *cfs_rq;
4482 	struct rq *rq;
4483 	bool is_idle;
4484 
4485 	if (load_avg_is_decayed(&se->avg))
4486 		return;
4487 
4488 	cfs_rq = cfs_rq_of(se);
4489 	rq = rq_of(cfs_rq);
4490 
4491 	rcu_read_lock();
4492 	is_idle = is_idle_task(rcu_dereference(rq->curr));
4493 	rcu_read_unlock();
4494 
4495 	/*
4496 	 * The lag estimation comes with a cost we don't want to pay all the
4497 	 * time. Hence, limiting to the case where the source CPU is idle and
4498 	 * we know we are at the greatest risk to have an outdated clock.
4499 	 */
4500 	if (!is_idle)
4501 		return;
4502 
4503 	/*
4504 	 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4505 	 *
4506 	 *   last_update_time (the cfs_rq's last_update_time)
4507 	 *	= cfs_rq_clock_pelt()@cfs_rq_idle
4508 	 *      = rq_clock_pelt()@cfs_rq_idle
4509 	 *        - cfs->throttled_clock_pelt_time@cfs_rq_idle
4510 	 *
4511 	 *   cfs_idle_lag (delta between rq's update and cfs_rq's update)
4512 	 *      = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4513 	 *
4514 	 *   rq_idle_lag (delta between now and rq's update)
4515 	 *      = sched_clock_cpu() - rq_clock()@rq_idle
4516 	 *
4517 	 * We can then write:
4518 	 *
4519 	 *    now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4520 	 *          sched_clock_cpu() - rq_clock()@rq_idle
4521 	 * Where:
4522 	 *      rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4523 	 *      rq_clock()@rq_idle      is rq->clock_idle
4524 	 *      cfs->throttled_clock_pelt_time@cfs_rq_idle
4525 	 *                              is cfs_rq->throttled_pelt_idle
4526 	 */
4527 
4528 #ifdef CONFIG_CFS_BANDWIDTH
4529 	throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4530 	/* The clock has been stopped for throttling */
4531 	if (throttled == U64_MAX)
4532 		return;
4533 #endif
4534 	now = u64_u32_load(rq->clock_pelt_idle);
4535 	/*
4536 	 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4537 	 * is observed the old clock_pelt_idle value and the new clock_idle,
4538 	 * which lead to an underestimation. The opposite would lead to an
4539 	 * overestimation.
4540 	 */
4541 	smp_rmb();
4542 	lut = cfs_rq_last_update_time(cfs_rq);
4543 
4544 	now -= throttled;
4545 	if (now < lut)
4546 		/*
4547 		 * cfs_rq->avg.last_update_time is more recent than our
4548 		 * estimation, let's use it.
4549 		 */
4550 		now = lut;
4551 	else
4552 		now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4553 
4554 	__update_load_avg_blocked_se(now, se);
4555 }
4556 #else
4557 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4558 #endif
4559 
4560 /**
4561  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4562  * @now: current time, as per cfs_rq_clock_pelt()
4563  * @cfs_rq: cfs_rq to update
4564  *
4565  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4566  * avg. The immediate corollary is that all (fair) tasks must be attached.
4567  *
4568  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4569  *
4570  * Return: true if the load decayed or we removed load.
4571  *
4572  * Since both these conditions indicate a changed cfs_rq->avg.load we should
4573  * call update_tg_load_avg() when this function returns true.
4574  */
4575 static inline int
4576 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4577 {
4578 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4579 	struct sched_avg *sa = &cfs_rq->avg;
4580 	int decayed = 0;
4581 
4582 	if (cfs_rq->removed.nr) {
4583 		unsigned long r;
4584 		u32 divider = get_pelt_divider(&cfs_rq->avg);
4585 
4586 		raw_spin_lock(&cfs_rq->removed.lock);
4587 		swap(cfs_rq->removed.util_avg, removed_util);
4588 		swap(cfs_rq->removed.load_avg, removed_load);
4589 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
4590 		cfs_rq->removed.nr = 0;
4591 		raw_spin_unlock(&cfs_rq->removed.lock);
4592 
4593 		r = removed_load;
4594 		sub_positive(&sa->load_avg, r);
4595 		sub_positive(&sa->load_sum, r * divider);
4596 		/* See sa->util_sum below */
4597 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4598 
4599 		r = removed_util;
4600 		sub_positive(&sa->util_avg, r);
4601 		sub_positive(&sa->util_sum, r * divider);
4602 		/*
4603 		 * Because of rounding, se->util_sum might ends up being +1 more than
4604 		 * cfs->util_sum. Although this is not a problem by itself, detaching
4605 		 * a lot of tasks with the rounding problem between 2 updates of
4606 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4607 		 * cfs_util_avg is not.
4608 		 * Check that util_sum is still above its lower bound for the new
4609 		 * util_avg. Given that period_contrib might have moved since the last
4610 		 * sync, we are only sure that util_sum must be above or equal to
4611 		 *    util_avg * minimum possible divider
4612 		 */
4613 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4614 
4615 		r = removed_runnable;
4616 		sub_positive(&sa->runnable_avg, r);
4617 		sub_positive(&sa->runnable_sum, r * divider);
4618 		/* See sa->util_sum above */
4619 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
4620 					      sa->runnable_avg * PELT_MIN_DIVIDER);
4621 
4622 		/*
4623 		 * removed_runnable is the unweighted version of removed_load so we
4624 		 * can use it to estimate removed_load_sum.
4625 		 */
4626 		add_tg_cfs_propagate(cfs_rq,
4627 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4628 
4629 		decayed = 1;
4630 	}
4631 
4632 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4633 	u64_u32_store_copy(sa->last_update_time,
4634 			   cfs_rq->last_update_time_copy,
4635 			   sa->last_update_time);
4636 	return decayed;
4637 }
4638 
4639 /**
4640  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4641  * @cfs_rq: cfs_rq to attach to
4642  * @se: sched_entity to attach
4643  *
4644  * Must call update_cfs_rq_load_avg() before this, since we rely on
4645  * cfs_rq->avg.last_update_time being current.
4646  */
4647 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4648 {
4649 	/*
4650 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4651 	 * See ___update_load_avg() for details.
4652 	 */
4653 	u32 divider = get_pelt_divider(&cfs_rq->avg);
4654 
4655 	/*
4656 	 * When we attach the @se to the @cfs_rq, we must align the decay
4657 	 * window because without that, really weird and wonderful things can
4658 	 * happen.
4659 	 *
4660 	 * XXX illustrate
4661 	 */
4662 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
4663 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
4664 
4665 	/*
4666 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4667 	 * period_contrib. This isn't strictly correct, but since we're
4668 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4669 	 * _sum a little.
4670 	 */
4671 	se->avg.util_sum = se->avg.util_avg * divider;
4672 
4673 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
4674 
4675 	se->avg.load_sum = se->avg.load_avg * divider;
4676 	if (se_weight(se) < se->avg.load_sum)
4677 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4678 	else
4679 		se->avg.load_sum = 1;
4680 
4681 	enqueue_load_avg(cfs_rq, se);
4682 	cfs_rq->avg.util_avg += se->avg.util_avg;
4683 	cfs_rq->avg.util_sum += se->avg.util_sum;
4684 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4685 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4686 
4687 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4688 
4689 	cfs_rq_util_change(cfs_rq, 0);
4690 
4691 	trace_pelt_cfs_tp(cfs_rq);
4692 }
4693 
4694 /**
4695  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4696  * @cfs_rq: cfs_rq to detach from
4697  * @se: sched_entity to detach
4698  *
4699  * Must call update_cfs_rq_load_avg() before this, since we rely on
4700  * cfs_rq->avg.last_update_time being current.
4701  */
4702 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4703 {
4704 	dequeue_load_avg(cfs_rq, se);
4705 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4706 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4707 	/* See update_cfs_rq_load_avg() */
4708 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4709 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4710 
4711 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4712 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4713 	/* See update_cfs_rq_load_avg() */
4714 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4715 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4716 
4717 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4718 
4719 	cfs_rq_util_change(cfs_rq, 0);
4720 
4721 	trace_pelt_cfs_tp(cfs_rq);
4722 }
4723 
4724 /*
4725  * Optional action to be done while updating the load average
4726  */
4727 #define UPDATE_TG	0x1
4728 #define SKIP_AGE_LOAD	0x2
4729 #define DO_ATTACH	0x4
4730 #define DO_DETACH	0x8
4731 
4732 /* Update task and its cfs_rq load average */
4733 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4734 {
4735 	u64 now = cfs_rq_clock_pelt(cfs_rq);
4736 	int decayed;
4737 
4738 	/*
4739 	 * Track task load average for carrying it to new CPU after migrated, and
4740 	 * track group sched_entity load average for task_h_load calculation in migration
4741 	 */
4742 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4743 		__update_load_avg_se(now, cfs_rq, se);
4744 
4745 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
4746 	decayed |= propagate_entity_load_avg(se);
4747 
4748 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4749 
4750 		/*
4751 		 * DO_ATTACH means we're here from enqueue_entity().
4752 		 * !last_update_time means we've passed through
4753 		 * migrate_task_rq_fair() indicating we migrated.
4754 		 *
4755 		 * IOW we're enqueueing a task on a new CPU.
4756 		 */
4757 		attach_entity_load_avg(cfs_rq, se);
4758 		update_tg_load_avg(cfs_rq);
4759 
4760 	} else if (flags & DO_DETACH) {
4761 		/*
4762 		 * DO_DETACH means we're here from dequeue_entity()
4763 		 * and we are migrating task out of the CPU.
4764 		 */
4765 		detach_entity_load_avg(cfs_rq, se);
4766 		update_tg_load_avg(cfs_rq);
4767 	} else if (decayed) {
4768 		cfs_rq_util_change(cfs_rq, 0);
4769 
4770 		if (flags & UPDATE_TG)
4771 			update_tg_load_avg(cfs_rq);
4772 	}
4773 }
4774 
4775 /*
4776  * Synchronize entity load avg of dequeued entity without locking
4777  * the previous rq.
4778  */
4779 static void sync_entity_load_avg(struct sched_entity *se)
4780 {
4781 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4782 	u64 last_update_time;
4783 
4784 	last_update_time = cfs_rq_last_update_time(cfs_rq);
4785 	__update_load_avg_blocked_se(last_update_time, se);
4786 }
4787 
4788 /*
4789  * Task first catches up with cfs_rq, and then subtract
4790  * itself from the cfs_rq (task must be off the queue now).
4791  */
4792 static void remove_entity_load_avg(struct sched_entity *se)
4793 {
4794 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
4795 	unsigned long flags;
4796 
4797 	/*
4798 	 * tasks cannot exit without having gone through wake_up_new_task() ->
4799 	 * enqueue_task_fair() which will have added things to the cfs_rq,
4800 	 * so we can remove unconditionally.
4801 	 */
4802 
4803 	sync_entity_load_avg(se);
4804 
4805 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4806 	++cfs_rq->removed.nr;
4807 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
4808 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
4809 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
4810 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4811 }
4812 
4813 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4814 {
4815 	return cfs_rq->avg.runnable_avg;
4816 }
4817 
4818 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4819 {
4820 	return cfs_rq->avg.load_avg;
4821 }
4822 
4823 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4824 
4825 static inline unsigned long task_util(struct task_struct *p)
4826 {
4827 	return READ_ONCE(p->se.avg.util_avg);
4828 }
4829 
4830 static inline unsigned long task_runnable(struct task_struct *p)
4831 {
4832 	return READ_ONCE(p->se.avg.runnable_avg);
4833 }
4834 
4835 static inline unsigned long _task_util_est(struct task_struct *p)
4836 {
4837 	return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4838 }
4839 
4840 static inline unsigned long task_util_est(struct task_struct *p)
4841 {
4842 	return max(task_util(p), _task_util_est(p));
4843 }
4844 
4845 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4846 				    struct task_struct *p)
4847 {
4848 	unsigned int enqueued;
4849 
4850 	if (!sched_feat(UTIL_EST))
4851 		return;
4852 
4853 	/* Update root cfs_rq's estimated utilization */
4854 	enqueued  = cfs_rq->avg.util_est;
4855 	enqueued += _task_util_est(p);
4856 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4857 
4858 	trace_sched_util_est_cfs_tp(cfs_rq);
4859 }
4860 
4861 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4862 				    struct task_struct *p)
4863 {
4864 	unsigned int enqueued;
4865 
4866 	if (!sched_feat(UTIL_EST))
4867 		return;
4868 
4869 	/* Update root cfs_rq's estimated utilization */
4870 	enqueued  = cfs_rq->avg.util_est;
4871 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4872 	WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4873 
4874 	trace_sched_util_est_cfs_tp(cfs_rq);
4875 }
4876 
4877 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4878 
4879 static inline void util_est_update(struct cfs_rq *cfs_rq,
4880 				   struct task_struct *p,
4881 				   bool task_sleep)
4882 {
4883 	unsigned int ewma, dequeued, last_ewma_diff;
4884 
4885 	if (!sched_feat(UTIL_EST))
4886 		return;
4887 
4888 	/*
4889 	 * Skip update of task's estimated utilization when the task has not
4890 	 * yet completed an activation, e.g. being migrated.
4891 	 */
4892 	if (!task_sleep)
4893 		return;
4894 
4895 	/* Get current estimate of utilization */
4896 	ewma = READ_ONCE(p->se.avg.util_est);
4897 
4898 	/*
4899 	 * If the PELT values haven't changed since enqueue time,
4900 	 * skip the util_est update.
4901 	 */
4902 	if (ewma & UTIL_AVG_UNCHANGED)
4903 		return;
4904 
4905 	/* Get utilization at dequeue */
4906 	dequeued = task_util(p);
4907 
4908 	/*
4909 	 * Reset EWMA on utilization increases, the moving average is used only
4910 	 * to smooth utilization decreases.
4911 	 */
4912 	if (ewma <= dequeued) {
4913 		ewma = dequeued;
4914 		goto done;
4915 	}
4916 
4917 	/*
4918 	 * Skip update of task's estimated utilization when its members are
4919 	 * already ~1% close to its last activation value.
4920 	 */
4921 	last_ewma_diff = ewma - dequeued;
4922 	if (last_ewma_diff < UTIL_EST_MARGIN)
4923 		goto done;
4924 
4925 	/*
4926 	 * To avoid overestimation of actual task utilization, skip updates if
4927 	 * we cannot grant there is idle time in this CPU.
4928 	 */
4929 	if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
4930 		return;
4931 
4932 	/*
4933 	 * To avoid underestimate of task utilization, skip updates of EWMA if
4934 	 * we cannot grant that thread got all CPU time it wanted.
4935 	 */
4936 	if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
4937 		goto done;
4938 
4939 
4940 	/*
4941 	 * Update Task's estimated utilization
4942 	 *
4943 	 * When *p completes an activation we can consolidate another sample
4944 	 * of the task size. This is done by using this value to update the
4945 	 * Exponential Weighted Moving Average (EWMA):
4946 	 *
4947 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4948 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4949 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4950 	 *          = w * (      -last_ewma_diff           ) +     ewma(t-1)
4951 	 *          = w * (-last_ewma_diff +  ewma(t-1) / w)
4952 	 *
4953 	 * Where 'w' is the weight of new samples, which is configured to be
4954 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4955 	 */
4956 	ewma <<= UTIL_EST_WEIGHT_SHIFT;
4957 	ewma  -= last_ewma_diff;
4958 	ewma >>= UTIL_EST_WEIGHT_SHIFT;
4959 done:
4960 	ewma |= UTIL_AVG_UNCHANGED;
4961 	WRITE_ONCE(p->se.avg.util_est, ewma);
4962 
4963 	trace_sched_util_est_se_tp(&p->se);
4964 }
4965 
4966 static inline unsigned long get_actual_cpu_capacity(int cpu)
4967 {
4968 	unsigned long capacity = arch_scale_cpu_capacity(cpu);
4969 
4970 	capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
4971 
4972 	return capacity;
4973 }
4974 
4975 static inline int util_fits_cpu(unsigned long util,
4976 				unsigned long uclamp_min,
4977 				unsigned long uclamp_max,
4978 				int cpu)
4979 {
4980 	unsigned long capacity = capacity_of(cpu);
4981 	unsigned long capacity_orig;
4982 	bool fits, uclamp_max_fits;
4983 
4984 	/*
4985 	 * Check if the real util fits without any uclamp boost/cap applied.
4986 	 */
4987 	fits = fits_capacity(util, capacity);
4988 
4989 	if (!uclamp_is_used())
4990 		return fits;
4991 
4992 	/*
4993 	 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
4994 	 * uclamp_max. We only care about capacity pressure (by using
4995 	 * capacity_of()) for comparing against the real util.
4996 	 *
4997 	 * If a task is boosted to 1024 for example, we don't want a tiny
4998 	 * pressure to skew the check whether it fits a CPU or not.
4999 	 *
5000 	 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
5001 	 * should fit a little cpu even if there's some pressure.
5002 	 *
5003 	 * Only exception is for HW or cpufreq pressure since it has a direct impact
5004 	 * on available OPP of the system.
5005 	 *
5006 	 * We honour it for uclamp_min only as a drop in performance level
5007 	 * could result in not getting the requested minimum performance level.
5008 	 *
5009 	 * For uclamp_max, we can tolerate a drop in performance level as the
5010 	 * goal is to cap the task. So it's okay if it's getting less.
5011 	 */
5012 	capacity_orig = arch_scale_cpu_capacity(cpu);
5013 
5014 	/*
5015 	 * We want to force a task to fit a cpu as implied by uclamp_max.
5016 	 * But we do have some corner cases to cater for..
5017 	 *
5018 	 *
5019 	 *                                 C=z
5020 	 *   |                             ___
5021 	 *   |                  C=y       |   |
5022 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
5023 	 *   |      C=x        |   |      |   |
5024 	 *   |      ___        |   |      |   |
5025 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
5026 	 *   |     |   |       |   |      |   |
5027 	 *   |     |   |       |   |      |   |
5028 	 *   +----------------------------------------
5029 	 *         CPU0        CPU1       CPU2
5030 	 *
5031 	 *   In the above example if a task is capped to a specific performance
5032 	 *   point, y, then when:
5033 	 *
5034 	 *   * util = 80% of x then it does not fit on CPU0 and should migrate
5035 	 *     to CPU1
5036 	 *   * util = 80% of y then it is forced to fit on CPU1 to honour
5037 	 *     uclamp_max request.
5038 	 *
5039 	 *   which is what we're enforcing here. A task always fits if
5040 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5041 	 *   the normal upmigration rules should withhold still.
5042 	 *
5043 	 *   Only exception is when we are on max capacity, then we need to be
5044 	 *   careful not to block overutilized state. This is so because:
5045 	 *
5046 	 *     1. There's no concept of capping at max_capacity! We can't go
5047 	 *        beyond this performance level anyway.
5048 	 *     2. The system is being saturated when we're operating near
5049 	 *        max capacity, it doesn't make sense to block overutilized.
5050 	 */
5051 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5052 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5053 	fits = fits || uclamp_max_fits;
5054 
5055 	/*
5056 	 *
5057 	 *                                 C=z
5058 	 *   |                             ___       (region a, capped, util >= uclamp_max)
5059 	 *   |                  C=y       |   |
5060 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5061 	 *   |      C=x        |   |      |   |
5062 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
5063 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5064 	 *   |     |   |       |   |      |   |
5065 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
5066 	 *   +----------------------------------------
5067 	 *         CPU0        CPU1       CPU2
5068 	 *
5069 	 * a) If util > uclamp_max, then we're capped, we don't care about
5070 	 *    actual fitness value here. We only care if uclamp_max fits
5071 	 *    capacity without taking margin/pressure into account.
5072 	 *    See comment above.
5073 	 *
5074 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
5075 	 *    fits_capacity() rules apply. Except we need to ensure that we
5076 	 *    enforce we remain within uclamp_max, see comment above.
5077 	 *
5078 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5079 	 *    need to take into account the boosted value fits the CPU without
5080 	 *    taking margin/pressure into account.
5081 	 *
5082 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
5083 	 * just need to consider an extra check for case (c) after ensuring we
5084 	 * handle the case uclamp_min > uclamp_max.
5085 	 */
5086 	uclamp_min = min(uclamp_min, uclamp_max);
5087 	if (fits && (util < uclamp_min) &&
5088 	    (uclamp_min > get_actual_cpu_capacity(cpu)))
5089 		return -1;
5090 
5091 	return fits;
5092 }
5093 
5094 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5095 {
5096 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5097 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5098 	unsigned long util = task_util_est(p);
5099 	/*
5100 	 * Return true only if the cpu fully fits the task requirements, which
5101 	 * include the utilization but also the performance hints.
5102 	 */
5103 	return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5104 }
5105 
5106 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5107 {
5108 	int cpu = cpu_of(rq);
5109 
5110 	if (!sched_asym_cpucap_active())
5111 		return;
5112 
5113 	/*
5114 	 * Affinity allows us to go somewhere higher?  Or are we on biggest
5115 	 * available CPU already? Or do we fit into this CPU ?
5116 	 */
5117 	if (!p || (p->nr_cpus_allowed == 1) ||
5118 	    (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5119 	    task_fits_cpu(p, cpu)) {
5120 
5121 		rq->misfit_task_load = 0;
5122 		return;
5123 	}
5124 
5125 	/*
5126 	 * Make sure that misfit_task_load will not be null even if
5127 	 * task_h_load() returns 0.
5128 	 */
5129 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5130 }
5131 
5132 #else /* CONFIG_SMP */
5133 
5134 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5135 {
5136 	return !cfs_rq->nr_running;
5137 }
5138 
5139 #define UPDATE_TG	0x0
5140 #define SKIP_AGE_LOAD	0x0
5141 #define DO_ATTACH	0x0
5142 #define DO_DETACH	0x0
5143 
5144 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5145 {
5146 	cfs_rq_util_change(cfs_rq, 0);
5147 }
5148 
5149 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5150 
5151 static inline void
5152 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5153 static inline void
5154 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5155 
5156 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
5157 {
5158 	return 0;
5159 }
5160 
5161 static inline void
5162 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5163 
5164 static inline void
5165 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5166 
5167 static inline void
5168 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5169 		bool task_sleep) {}
5170 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5171 
5172 #endif /* CONFIG_SMP */
5173 
5174 static void
5175 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5176 {
5177 	u64 vslice, vruntime = avg_vruntime(cfs_rq);
5178 	s64 lag = 0;
5179 
5180 	se->slice = sysctl_sched_base_slice;
5181 	vslice = calc_delta_fair(se->slice, se);
5182 
5183 	/*
5184 	 * Due to how V is constructed as the weighted average of entities,
5185 	 * adding tasks with positive lag, or removing tasks with negative lag
5186 	 * will move 'time' backwards, this can screw around with the lag of
5187 	 * other tasks.
5188 	 *
5189 	 * EEVDF: placement strategy #1 / #2
5190 	 */
5191 	if (sched_feat(PLACE_LAG) && cfs_rq->nr_running) {
5192 		struct sched_entity *curr = cfs_rq->curr;
5193 		unsigned long load;
5194 
5195 		lag = se->vlag;
5196 
5197 		/*
5198 		 * If we want to place a task and preserve lag, we have to
5199 		 * consider the effect of the new entity on the weighted
5200 		 * average and compensate for this, otherwise lag can quickly
5201 		 * evaporate.
5202 		 *
5203 		 * Lag is defined as:
5204 		 *
5205 		 *   lag_i = S - s_i = w_i * (V - v_i)
5206 		 *
5207 		 * To avoid the 'w_i' term all over the place, we only track
5208 		 * the virtual lag:
5209 		 *
5210 		 *   vl_i = V - v_i <=> v_i = V - vl_i
5211 		 *
5212 		 * And we take V to be the weighted average of all v:
5213 		 *
5214 		 *   V = (\Sum w_j*v_j) / W
5215 		 *
5216 		 * Where W is: \Sum w_j
5217 		 *
5218 		 * Then, the weighted average after adding an entity with lag
5219 		 * vl_i is given by:
5220 		 *
5221 		 *   V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5222 		 *      = (W*V + w_i*(V - vl_i)) / (W + w_i)
5223 		 *      = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5224 		 *      = (V*(W + w_i) - w_i*l) / (W + w_i)
5225 		 *      = V - w_i*vl_i / (W + w_i)
5226 		 *
5227 		 * And the actual lag after adding an entity with vl_i is:
5228 		 *
5229 		 *   vl'_i = V' - v_i
5230 		 *         = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5231 		 *         = vl_i - w_i*vl_i / (W + w_i)
5232 		 *
5233 		 * Which is strictly less than vl_i. So in order to preserve lag
5234 		 * we should inflate the lag before placement such that the
5235 		 * effective lag after placement comes out right.
5236 		 *
5237 		 * As such, invert the above relation for vl'_i to get the vl_i
5238 		 * we need to use such that the lag after placement is the lag
5239 		 * we computed before dequeue.
5240 		 *
5241 		 *   vl'_i = vl_i - w_i*vl_i / (W + w_i)
5242 		 *         = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5243 		 *
5244 		 *   (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5245 		 *                   = W*vl_i
5246 		 *
5247 		 *   vl_i = (W + w_i)*vl'_i / W
5248 		 */
5249 		load = cfs_rq->avg_load;
5250 		if (curr && curr->on_rq)
5251 			load += scale_load_down(curr->load.weight);
5252 
5253 		lag *= load + scale_load_down(se->load.weight);
5254 		if (WARN_ON_ONCE(!load))
5255 			load = 1;
5256 		lag = div_s64(lag, load);
5257 	}
5258 
5259 	se->vruntime = vruntime - lag;
5260 
5261 	/*
5262 	 * When joining the competition; the existing tasks will be,
5263 	 * on average, halfway through their slice, as such start tasks
5264 	 * off with half a slice to ease into the competition.
5265 	 */
5266 	if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5267 		vslice /= 2;
5268 
5269 	/*
5270 	 * EEVDF: vd_i = ve_i + r_i/w_i
5271 	 */
5272 	se->deadline = se->vruntime + vslice;
5273 }
5274 
5275 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5276 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5277 
5278 static inline bool cfs_bandwidth_used(void);
5279 
5280 static void
5281 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5282 {
5283 	bool curr = cfs_rq->curr == se;
5284 
5285 	/*
5286 	 * If we're the current task, we must renormalise before calling
5287 	 * update_curr().
5288 	 */
5289 	if (curr)
5290 		place_entity(cfs_rq, se, flags);
5291 
5292 	update_curr(cfs_rq);
5293 
5294 	/*
5295 	 * When enqueuing a sched_entity, we must:
5296 	 *   - Update loads to have both entity and cfs_rq synced with now.
5297 	 *   - For group_entity, update its runnable_weight to reflect the new
5298 	 *     h_nr_running of its group cfs_rq.
5299 	 *   - For group_entity, update its weight to reflect the new share of
5300 	 *     its group cfs_rq
5301 	 *   - Add its new weight to cfs_rq->load.weight
5302 	 */
5303 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5304 	se_update_runnable(se);
5305 	/*
5306 	 * XXX update_load_avg() above will have attached us to the pelt sum;
5307 	 * but update_cfs_group() here will re-adjust the weight and have to
5308 	 * undo/redo all that. Seems wasteful.
5309 	 */
5310 	update_cfs_group(se);
5311 
5312 	/*
5313 	 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5314 	 * we can place the entity.
5315 	 */
5316 	if (!curr)
5317 		place_entity(cfs_rq, se, flags);
5318 
5319 	account_entity_enqueue(cfs_rq, se);
5320 
5321 	/* Entity has migrated, no longer consider this task hot */
5322 	if (flags & ENQUEUE_MIGRATED)
5323 		se->exec_start = 0;
5324 
5325 	check_schedstat_required();
5326 	update_stats_enqueue_fair(cfs_rq, se, flags);
5327 	if (!curr)
5328 		__enqueue_entity(cfs_rq, se);
5329 	se->on_rq = 1;
5330 
5331 	if (cfs_rq->nr_running == 1) {
5332 		check_enqueue_throttle(cfs_rq);
5333 		if (!throttled_hierarchy(cfs_rq)) {
5334 			list_add_leaf_cfs_rq(cfs_rq);
5335 		} else {
5336 #ifdef CONFIG_CFS_BANDWIDTH
5337 			struct rq *rq = rq_of(cfs_rq);
5338 
5339 			if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5340 				cfs_rq->throttled_clock = rq_clock(rq);
5341 			if (!cfs_rq->throttled_clock_self)
5342 				cfs_rq->throttled_clock_self = rq_clock(rq);
5343 #endif
5344 		}
5345 	}
5346 }
5347 
5348 static void __clear_buddies_next(struct sched_entity *se)
5349 {
5350 	for_each_sched_entity(se) {
5351 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
5352 		if (cfs_rq->next != se)
5353 			break;
5354 
5355 		cfs_rq->next = NULL;
5356 	}
5357 }
5358 
5359 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5360 {
5361 	if (cfs_rq->next == se)
5362 		__clear_buddies_next(se);
5363 }
5364 
5365 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5366 
5367 static void
5368 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5369 {
5370 	int action = UPDATE_TG;
5371 
5372 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5373 		action |= DO_DETACH;
5374 
5375 	/*
5376 	 * Update run-time statistics of the 'current'.
5377 	 */
5378 	update_curr(cfs_rq);
5379 
5380 	/*
5381 	 * When dequeuing a sched_entity, we must:
5382 	 *   - Update loads to have both entity and cfs_rq synced with now.
5383 	 *   - For group_entity, update its runnable_weight to reflect the new
5384 	 *     h_nr_running of its group cfs_rq.
5385 	 *   - Subtract its previous weight from cfs_rq->load.weight.
5386 	 *   - For group entity, update its weight to reflect the new share
5387 	 *     of its group cfs_rq.
5388 	 */
5389 	update_load_avg(cfs_rq, se, action);
5390 	se_update_runnable(se);
5391 
5392 	update_stats_dequeue_fair(cfs_rq, se, flags);
5393 
5394 	clear_buddies(cfs_rq, se);
5395 
5396 	update_entity_lag(cfs_rq, se);
5397 	if (se != cfs_rq->curr)
5398 		__dequeue_entity(cfs_rq, se);
5399 	se->on_rq = 0;
5400 	account_entity_dequeue(cfs_rq, se);
5401 
5402 	/* return excess runtime on last dequeue */
5403 	return_cfs_rq_runtime(cfs_rq);
5404 
5405 	update_cfs_group(se);
5406 
5407 	/*
5408 	 * Now advance min_vruntime if @se was the entity holding it back,
5409 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5410 	 * put back on, and if we advance min_vruntime, we'll be placed back
5411 	 * further than we started -- i.e. we'll be penalized.
5412 	 */
5413 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5414 		update_min_vruntime(cfs_rq);
5415 
5416 	if (cfs_rq->nr_running == 0)
5417 		update_idle_cfs_rq_clock_pelt(cfs_rq);
5418 }
5419 
5420 static void
5421 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5422 {
5423 	clear_buddies(cfs_rq, se);
5424 
5425 	/* 'current' is not kept within the tree. */
5426 	if (se->on_rq) {
5427 		/*
5428 		 * Any task has to be enqueued before it get to execute on
5429 		 * a CPU. So account for the time it spent waiting on the
5430 		 * runqueue.
5431 		 */
5432 		update_stats_wait_end_fair(cfs_rq, se);
5433 		__dequeue_entity(cfs_rq, se);
5434 		update_load_avg(cfs_rq, se, UPDATE_TG);
5435 		/*
5436 		 * HACK, stash a copy of deadline at the point of pick in vlag,
5437 		 * which isn't used until dequeue.
5438 		 */
5439 		se->vlag = se->deadline;
5440 	}
5441 
5442 	update_stats_curr_start(cfs_rq, se);
5443 	cfs_rq->curr = se;
5444 
5445 	/*
5446 	 * Track our maximum slice length, if the CPU's load is at
5447 	 * least twice that of our own weight (i.e. don't track it
5448 	 * when there are only lesser-weight tasks around):
5449 	 */
5450 	if (schedstat_enabled() &&
5451 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5452 		struct sched_statistics *stats;
5453 
5454 		stats = __schedstats_from_se(se);
5455 		__schedstat_set(stats->slice_max,
5456 				max((u64)stats->slice_max,
5457 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
5458 	}
5459 
5460 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
5461 }
5462 
5463 /*
5464  * Pick the next process, keeping these things in mind, in this order:
5465  * 1) keep things fair between processes/task groups
5466  * 2) pick the "next" process, since someone really wants that to run
5467  * 3) pick the "last" process, for cache locality
5468  * 4) do not run the "skip" process, if something else is available
5469  */
5470 static struct sched_entity *
5471 pick_next_entity(struct cfs_rq *cfs_rq)
5472 {
5473 	/*
5474 	 * Enabling NEXT_BUDDY will affect latency but not fairness.
5475 	 */
5476 	if (sched_feat(NEXT_BUDDY) &&
5477 	    cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
5478 		return cfs_rq->next;
5479 
5480 	return pick_eevdf(cfs_rq);
5481 }
5482 
5483 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5484 
5485 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5486 {
5487 	/*
5488 	 * If still on the runqueue then deactivate_task()
5489 	 * was not called and update_curr() has to be done:
5490 	 */
5491 	if (prev->on_rq)
5492 		update_curr(cfs_rq);
5493 
5494 	/* throttle cfs_rqs exceeding runtime */
5495 	check_cfs_rq_runtime(cfs_rq);
5496 
5497 	if (prev->on_rq) {
5498 		update_stats_wait_start_fair(cfs_rq, prev);
5499 		/* Put 'current' back into the tree. */
5500 		__enqueue_entity(cfs_rq, prev);
5501 		/* in !on_rq case, update occurred at dequeue */
5502 		update_load_avg(cfs_rq, prev, 0);
5503 	}
5504 	cfs_rq->curr = NULL;
5505 }
5506 
5507 static void
5508 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5509 {
5510 	/*
5511 	 * Update run-time statistics of the 'current'.
5512 	 */
5513 	update_curr(cfs_rq);
5514 
5515 	/*
5516 	 * Ensure that runnable average is periodically updated.
5517 	 */
5518 	update_load_avg(cfs_rq, curr, UPDATE_TG);
5519 	update_cfs_group(curr);
5520 
5521 #ifdef CONFIG_SCHED_HRTICK
5522 	/*
5523 	 * queued ticks are scheduled to match the slice, so don't bother
5524 	 * validating it and just reschedule.
5525 	 */
5526 	if (queued) {
5527 		resched_curr(rq_of(cfs_rq));
5528 		return;
5529 	}
5530 	/*
5531 	 * don't let the period tick interfere with the hrtick preemption
5532 	 */
5533 	if (!sched_feat(DOUBLE_TICK) &&
5534 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
5535 		return;
5536 #endif
5537 }
5538 
5539 
5540 /**************************************************
5541  * CFS bandwidth control machinery
5542  */
5543 
5544 #ifdef CONFIG_CFS_BANDWIDTH
5545 
5546 #ifdef CONFIG_JUMP_LABEL
5547 static struct static_key __cfs_bandwidth_used;
5548 
5549 static inline bool cfs_bandwidth_used(void)
5550 {
5551 	return static_key_false(&__cfs_bandwidth_used);
5552 }
5553 
5554 void cfs_bandwidth_usage_inc(void)
5555 {
5556 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5557 }
5558 
5559 void cfs_bandwidth_usage_dec(void)
5560 {
5561 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5562 }
5563 #else /* CONFIG_JUMP_LABEL */
5564 static bool cfs_bandwidth_used(void)
5565 {
5566 	return true;
5567 }
5568 
5569 void cfs_bandwidth_usage_inc(void) {}
5570 void cfs_bandwidth_usage_dec(void) {}
5571 #endif /* CONFIG_JUMP_LABEL */
5572 
5573 /*
5574  * default period for cfs group bandwidth.
5575  * default: 0.1s, units: nanoseconds
5576  */
5577 static inline u64 default_cfs_period(void)
5578 {
5579 	return 100000000ULL;
5580 }
5581 
5582 static inline u64 sched_cfs_bandwidth_slice(void)
5583 {
5584 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5585 }
5586 
5587 /*
5588  * Replenish runtime according to assigned quota. We use sched_clock_cpu
5589  * directly instead of rq->clock to avoid adding additional synchronization
5590  * around rq->lock.
5591  *
5592  * requires cfs_b->lock
5593  */
5594 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5595 {
5596 	s64 runtime;
5597 
5598 	if (unlikely(cfs_b->quota == RUNTIME_INF))
5599 		return;
5600 
5601 	cfs_b->runtime += cfs_b->quota;
5602 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
5603 	if (runtime > 0) {
5604 		cfs_b->burst_time += runtime;
5605 		cfs_b->nr_burst++;
5606 	}
5607 
5608 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5609 	cfs_b->runtime_snap = cfs_b->runtime;
5610 }
5611 
5612 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5613 {
5614 	return &tg->cfs_bandwidth;
5615 }
5616 
5617 /* returns 0 on failure to allocate runtime */
5618 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5619 				   struct cfs_rq *cfs_rq, u64 target_runtime)
5620 {
5621 	u64 min_amount, amount = 0;
5622 
5623 	lockdep_assert_held(&cfs_b->lock);
5624 
5625 	/* note: this is a positive sum as runtime_remaining <= 0 */
5626 	min_amount = target_runtime - cfs_rq->runtime_remaining;
5627 
5628 	if (cfs_b->quota == RUNTIME_INF)
5629 		amount = min_amount;
5630 	else {
5631 		start_cfs_bandwidth(cfs_b);
5632 
5633 		if (cfs_b->runtime > 0) {
5634 			amount = min(cfs_b->runtime, min_amount);
5635 			cfs_b->runtime -= amount;
5636 			cfs_b->idle = 0;
5637 		}
5638 	}
5639 
5640 	cfs_rq->runtime_remaining += amount;
5641 
5642 	return cfs_rq->runtime_remaining > 0;
5643 }
5644 
5645 /* returns 0 on failure to allocate runtime */
5646 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5647 {
5648 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5649 	int ret;
5650 
5651 	raw_spin_lock(&cfs_b->lock);
5652 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5653 	raw_spin_unlock(&cfs_b->lock);
5654 
5655 	return ret;
5656 }
5657 
5658 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5659 {
5660 	/* dock delta_exec before expiring quota (as it could span periods) */
5661 	cfs_rq->runtime_remaining -= delta_exec;
5662 
5663 	if (likely(cfs_rq->runtime_remaining > 0))
5664 		return;
5665 
5666 	if (cfs_rq->throttled)
5667 		return;
5668 	/*
5669 	 * if we're unable to extend our runtime we resched so that the active
5670 	 * hierarchy can be throttled
5671 	 */
5672 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5673 		resched_curr(rq_of(cfs_rq));
5674 }
5675 
5676 static __always_inline
5677 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5678 {
5679 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5680 		return;
5681 
5682 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
5683 }
5684 
5685 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5686 {
5687 	return cfs_bandwidth_used() && cfs_rq->throttled;
5688 }
5689 
5690 /* check whether cfs_rq, or any parent, is throttled */
5691 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5692 {
5693 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
5694 }
5695 
5696 /*
5697  * Ensure that neither of the group entities corresponding to src_cpu or
5698  * dest_cpu are members of a throttled hierarchy when performing group
5699  * load-balance operations.
5700  */
5701 static inline int throttled_lb_pair(struct task_group *tg,
5702 				    int src_cpu, int dest_cpu)
5703 {
5704 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5705 
5706 	src_cfs_rq = tg->cfs_rq[src_cpu];
5707 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5708 
5709 	return throttled_hierarchy(src_cfs_rq) ||
5710 	       throttled_hierarchy(dest_cfs_rq);
5711 }
5712 
5713 static int tg_unthrottle_up(struct task_group *tg, void *data)
5714 {
5715 	struct rq *rq = data;
5716 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5717 
5718 	cfs_rq->throttle_count--;
5719 	if (!cfs_rq->throttle_count) {
5720 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5721 					     cfs_rq->throttled_clock_pelt;
5722 
5723 		/* Add cfs_rq with load or one or more already running entities to the list */
5724 		if (!cfs_rq_is_decayed(cfs_rq))
5725 			list_add_leaf_cfs_rq(cfs_rq);
5726 
5727 		if (cfs_rq->throttled_clock_self) {
5728 			u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5729 
5730 			cfs_rq->throttled_clock_self = 0;
5731 
5732 			if (SCHED_WARN_ON((s64)delta < 0))
5733 				delta = 0;
5734 
5735 			cfs_rq->throttled_clock_self_time += delta;
5736 		}
5737 	}
5738 
5739 	return 0;
5740 }
5741 
5742 static int tg_throttle_down(struct task_group *tg, void *data)
5743 {
5744 	struct rq *rq = data;
5745 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5746 
5747 	/* group is entering throttled state, stop time */
5748 	if (!cfs_rq->throttle_count) {
5749 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5750 		list_del_leaf_cfs_rq(cfs_rq);
5751 
5752 		SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5753 		if (cfs_rq->nr_running)
5754 			cfs_rq->throttled_clock_self = rq_clock(rq);
5755 	}
5756 	cfs_rq->throttle_count++;
5757 
5758 	return 0;
5759 }
5760 
5761 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5762 {
5763 	struct rq *rq = rq_of(cfs_rq);
5764 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5765 	struct sched_entity *se;
5766 	long task_delta, idle_task_delta, dequeue = 1;
5767 
5768 	raw_spin_lock(&cfs_b->lock);
5769 	/* This will start the period timer if necessary */
5770 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5771 		/*
5772 		 * We have raced with bandwidth becoming available, and if we
5773 		 * actually throttled the timer might not unthrottle us for an
5774 		 * entire period. We additionally needed to make sure that any
5775 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5776 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5777 		 * for 1ns of runtime rather than just check cfs_b.
5778 		 */
5779 		dequeue = 0;
5780 	} else {
5781 		list_add_tail_rcu(&cfs_rq->throttled_list,
5782 				  &cfs_b->throttled_cfs_rq);
5783 	}
5784 	raw_spin_unlock(&cfs_b->lock);
5785 
5786 	if (!dequeue)
5787 		return false;  /* Throttle no longer required. */
5788 
5789 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5790 
5791 	/* freeze hierarchy runnable averages while throttled */
5792 	rcu_read_lock();
5793 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5794 	rcu_read_unlock();
5795 
5796 	task_delta = cfs_rq->h_nr_running;
5797 	idle_task_delta = cfs_rq->idle_h_nr_running;
5798 	for_each_sched_entity(se) {
5799 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5800 		/* throttled entity or throttle-on-deactivate */
5801 		if (!se->on_rq)
5802 			goto done;
5803 
5804 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5805 
5806 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5807 			idle_task_delta = cfs_rq->h_nr_running;
5808 
5809 		qcfs_rq->h_nr_running -= task_delta;
5810 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5811 
5812 		if (qcfs_rq->load.weight) {
5813 			/* Avoid re-evaluating load for this entity: */
5814 			se = parent_entity(se);
5815 			break;
5816 		}
5817 	}
5818 
5819 	for_each_sched_entity(se) {
5820 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5821 		/* throttled entity or throttle-on-deactivate */
5822 		if (!se->on_rq)
5823 			goto done;
5824 
5825 		update_load_avg(qcfs_rq, se, 0);
5826 		se_update_runnable(se);
5827 
5828 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5829 			idle_task_delta = cfs_rq->h_nr_running;
5830 
5831 		qcfs_rq->h_nr_running -= task_delta;
5832 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5833 	}
5834 
5835 	/* At this point se is NULL and we are at root level*/
5836 	sub_nr_running(rq, task_delta);
5837 
5838 done:
5839 	/*
5840 	 * Note: distribution will already see us throttled via the
5841 	 * throttled-list.  rq->lock protects completion.
5842 	 */
5843 	cfs_rq->throttled = 1;
5844 	SCHED_WARN_ON(cfs_rq->throttled_clock);
5845 	if (cfs_rq->nr_running)
5846 		cfs_rq->throttled_clock = rq_clock(rq);
5847 	return true;
5848 }
5849 
5850 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5851 {
5852 	struct rq *rq = rq_of(cfs_rq);
5853 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5854 	struct sched_entity *se;
5855 	long task_delta, idle_task_delta;
5856 
5857 	se = cfs_rq->tg->se[cpu_of(rq)];
5858 
5859 	cfs_rq->throttled = 0;
5860 
5861 	update_rq_clock(rq);
5862 
5863 	raw_spin_lock(&cfs_b->lock);
5864 	if (cfs_rq->throttled_clock) {
5865 		cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5866 		cfs_rq->throttled_clock = 0;
5867 	}
5868 	list_del_rcu(&cfs_rq->throttled_list);
5869 	raw_spin_unlock(&cfs_b->lock);
5870 
5871 	/* update hierarchical throttle state */
5872 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5873 
5874 	if (!cfs_rq->load.weight) {
5875 		if (!cfs_rq->on_list)
5876 			return;
5877 		/*
5878 		 * Nothing to run but something to decay (on_list)?
5879 		 * Complete the branch.
5880 		 */
5881 		for_each_sched_entity(se) {
5882 			if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
5883 				break;
5884 		}
5885 		goto unthrottle_throttle;
5886 	}
5887 
5888 	task_delta = cfs_rq->h_nr_running;
5889 	idle_task_delta = cfs_rq->idle_h_nr_running;
5890 	for_each_sched_entity(se) {
5891 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5892 
5893 		if (se->on_rq)
5894 			break;
5895 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5896 
5897 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5898 			idle_task_delta = cfs_rq->h_nr_running;
5899 
5900 		qcfs_rq->h_nr_running += task_delta;
5901 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5902 
5903 		/* end evaluation on encountering a throttled cfs_rq */
5904 		if (cfs_rq_throttled(qcfs_rq))
5905 			goto unthrottle_throttle;
5906 	}
5907 
5908 	for_each_sched_entity(se) {
5909 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5910 
5911 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5912 		se_update_runnable(se);
5913 
5914 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5915 			idle_task_delta = cfs_rq->h_nr_running;
5916 
5917 		qcfs_rq->h_nr_running += task_delta;
5918 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5919 
5920 		/* end evaluation on encountering a throttled cfs_rq */
5921 		if (cfs_rq_throttled(qcfs_rq))
5922 			goto unthrottle_throttle;
5923 	}
5924 
5925 	/* At this point se is NULL and we are at root level*/
5926 	add_nr_running(rq, task_delta);
5927 
5928 unthrottle_throttle:
5929 	assert_list_leaf_cfs_rq(rq);
5930 
5931 	/* Determine whether we need to wake up potentially idle CPU: */
5932 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5933 		resched_curr(rq);
5934 }
5935 
5936 #ifdef CONFIG_SMP
5937 static void __cfsb_csd_unthrottle(void *arg)
5938 {
5939 	struct cfs_rq *cursor, *tmp;
5940 	struct rq *rq = arg;
5941 	struct rq_flags rf;
5942 
5943 	rq_lock(rq, &rf);
5944 
5945 	/*
5946 	 * Iterating over the list can trigger several call to
5947 	 * update_rq_clock() in unthrottle_cfs_rq().
5948 	 * Do it once and skip the potential next ones.
5949 	 */
5950 	update_rq_clock(rq);
5951 	rq_clock_start_loop_update(rq);
5952 
5953 	/*
5954 	 * Since we hold rq lock we're safe from concurrent manipulation of
5955 	 * the CSD list. However, this RCU critical section annotates the
5956 	 * fact that we pair with sched_free_group_rcu(), so that we cannot
5957 	 * race with group being freed in the window between removing it
5958 	 * from the list and advancing to the next entry in the list.
5959 	 */
5960 	rcu_read_lock();
5961 
5962 	list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
5963 				 throttled_csd_list) {
5964 		list_del_init(&cursor->throttled_csd_list);
5965 
5966 		if (cfs_rq_throttled(cursor))
5967 			unthrottle_cfs_rq(cursor);
5968 	}
5969 
5970 	rcu_read_unlock();
5971 
5972 	rq_clock_stop_loop_update(rq);
5973 	rq_unlock(rq, &rf);
5974 }
5975 
5976 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5977 {
5978 	struct rq *rq = rq_of(cfs_rq);
5979 	bool first;
5980 
5981 	if (rq == this_rq()) {
5982 		unthrottle_cfs_rq(cfs_rq);
5983 		return;
5984 	}
5985 
5986 	/* Already enqueued */
5987 	if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
5988 		return;
5989 
5990 	first = list_empty(&rq->cfsb_csd_list);
5991 	list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
5992 	if (first)
5993 		smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
5994 }
5995 #else
5996 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
5997 {
5998 	unthrottle_cfs_rq(cfs_rq);
5999 }
6000 #endif
6001 
6002 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6003 {
6004 	lockdep_assert_rq_held(rq_of(cfs_rq));
6005 
6006 	if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
6007 	    cfs_rq->runtime_remaining <= 0))
6008 		return;
6009 
6010 	__unthrottle_cfs_rq_async(cfs_rq);
6011 }
6012 
6013 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6014 {
6015 	int this_cpu = smp_processor_id();
6016 	u64 runtime, remaining = 1;
6017 	bool throttled = false;
6018 	struct cfs_rq *cfs_rq, *tmp;
6019 	struct rq_flags rf;
6020 	struct rq *rq;
6021 	LIST_HEAD(local_unthrottle);
6022 
6023 	rcu_read_lock();
6024 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6025 				throttled_list) {
6026 		rq = rq_of(cfs_rq);
6027 
6028 		if (!remaining) {
6029 			throttled = true;
6030 			break;
6031 		}
6032 
6033 		rq_lock_irqsave(rq, &rf);
6034 		if (!cfs_rq_throttled(cfs_rq))
6035 			goto next;
6036 
6037 		/* Already queued for async unthrottle */
6038 		if (!list_empty(&cfs_rq->throttled_csd_list))
6039 			goto next;
6040 
6041 		/* By the above checks, this should never be true */
6042 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6043 
6044 		raw_spin_lock(&cfs_b->lock);
6045 		runtime = -cfs_rq->runtime_remaining + 1;
6046 		if (runtime > cfs_b->runtime)
6047 			runtime = cfs_b->runtime;
6048 		cfs_b->runtime -= runtime;
6049 		remaining = cfs_b->runtime;
6050 		raw_spin_unlock(&cfs_b->lock);
6051 
6052 		cfs_rq->runtime_remaining += runtime;
6053 
6054 		/* we check whether we're throttled above */
6055 		if (cfs_rq->runtime_remaining > 0) {
6056 			if (cpu_of(rq) != this_cpu) {
6057 				unthrottle_cfs_rq_async(cfs_rq);
6058 			} else {
6059 				/*
6060 				 * We currently only expect to be unthrottling
6061 				 * a single cfs_rq locally.
6062 				 */
6063 				SCHED_WARN_ON(!list_empty(&local_unthrottle));
6064 				list_add_tail(&cfs_rq->throttled_csd_list,
6065 					      &local_unthrottle);
6066 			}
6067 		} else {
6068 			throttled = true;
6069 		}
6070 
6071 next:
6072 		rq_unlock_irqrestore(rq, &rf);
6073 	}
6074 
6075 	list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6076 				 throttled_csd_list) {
6077 		struct rq *rq = rq_of(cfs_rq);
6078 
6079 		rq_lock_irqsave(rq, &rf);
6080 
6081 		list_del_init(&cfs_rq->throttled_csd_list);
6082 
6083 		if (cfs_rq_throttled(cfs_rq))
6084 			unthrottle_cfs_rq(cfs_rq);
6085 
6086 		rq_unlock_irqrestore(rq, &rf);
6087 	}
6088 	SCHED_WARN_ON(!list_empty(&local_unthrottle));
6089 
6090 	rcu_read_unlock();
6091 
6092 	return throttled;
6093 }
6094 
6095 /*
6096  * Responsible for refilling a task_group's bandwidth and unthrottling its
6097  * cfs_rqs as appropriate. If there has been no activity within the last
6098  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6099  * used to track this state.
6100  */
6101 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6102 {
6103 	int throttled;
6104 
6105 	/* no need to continue the timer with no bandwidth constraint */
6106 	if (cfs_b->quota == RUNTIME_INF)
6107 		goto out_deactivate;
6108 
6109 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6110 	cfs_b->nr_periods += overrun;
6111 
6112 	/* Refill extra burst quota even if cfs_b->idle */
6113 	__refill_cfs_bandwidth_runtime(cfs_b);
6114 
6115 	/*
6116 	 * idle depends on !throttled (for the case of a large deficit), and if
6117 	 * we're going inactive then everything else can be deferred
6118 	 */
6119 	if (cfs_b->idle && !throttled)
6120 		goto out_deactivate;
6121 
6122 	if (!throttled) {
6123 		/* mark as potentially idle for the upcoming period */
6124 		cfs_b->idle = 1;
6125 		return 0;
6126 	}
6127 
6128 	/* account preceding periods in which throttling occurred */
6129 	cfs_b->nr_throttled += overrun;
6130 
6131 	/*
6132 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
6133 	 */
6134 	while (throttled && cfs_b->runtime > 0) {
6135 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6136 		/* we can't nest cfs_b->lock while distributing bandwidth */
6137 		throttled = distribute_cfs_runtime(cfs_b);
6138 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
6139 	}
6140 
6141 	/*
6142 	 * While we are ensured activity in the period following an
6143 	 * unthrottle, this also covers the case in which the new bandwidth is
6144 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
6145 	 * timer to remain active while there are any throttled entities.)
6146 	 */
6147 	cfs_b->idle = 0;
6148 
6149 	return 0;
6150 
6151 out_deactivate:
6152 	return 1;
6153 }
6154 
6155 /* a cfs_rq won't donate quota below this amount */
6156 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6157 /* minimum remaining period time to redistribute slack quota */
6158 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6159 /* how long we wait to gather additional slack before distributing */
6160 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6161 
6162 /*
6163  * Are we near the end of the current quota period?
6164  *
6165  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6166  * hrtimer base being cleared by hrtimer_start. In the case of
6167  * migrate_hrtimers, base is never cleared, so we are fine.
6168  */
6169 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6170 {
6171 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
6172 	s64 remaining;
6173 
6174 	/* if the call-back is running a quota refresh is already occurring */
6175 	if (hrtimer_callback_running(refresh_timer))
6176 		return 1;
6177 
6178 	/* is a quota refresh about to occur? */
6179 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6180 	if (remaining < (s64)min_expire)
6181 		return 1;
6182 
6183 	return 0;
6184 }
6185 
6186 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6187 {
6188 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6189 
6190 	/* if there's a quota refresh soon don't bother with slack */
6191 	if (runtime_refresh_within(cfs_b, min_left))
6192 		return;
6193 
6194 	/* don't push forwards an existing deferred unthrottle */
6195 	if (cfs_b->slack_started)
6196 		return;
6197 	cfs_b->slack_started = true;
6198 
6199 	hrtimer_start(&cfs_b->slack_timer,
6200 			ns_to_ktime(cfs_bandwidth_slack_period),
6201 			HRTIMER_MODE_REL);
6202 }
6203 
6204 /* we know any runtime found here is valid as update_curr() precedes return */
6205 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6206 {
6207 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6208 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6209 
6210 	if (slack_runtime <= 0)
6211 		return;
6212 
6213 	raw_spin_lock(&cfs_b->lock);
6214 	if (cfs_b->quota != RUNTIME_INF) {
6215 		cfs_b->runtime += slack_runtime;
6216 
6217 		/* we are under rq->lock, defer unthrottling using a timer */
6218 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6219 		    !list_empty(&cfs_b->throttled_cfs_rq))
6220 			start_cfs_slack_bandwidth(cfs_b);
6221 	}
6222 	raw_spin_unlock(&cfs_b->lock);
6223 
6224 	/* even if it's not valid for return we don't want to try again */
6225 	cfs_rq->runtime_remaining -= slack_runtime;
6226 }
6227 
6228 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6229 {
6230 	if (!cfs_bandwidth_used())
6231 		return;
6232 
6233 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6234 		return;
6235 
6236 	__return_cfs_rq_runtime(cfs_rq);
6237 }
6238 
6239 /*
6240  * This is done with a timer (instead of inline with bandwidth return) since
6241  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6242  */
6243 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6244 {
6245 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6246 	unsigned long flags;
6247 
6248 	/* confirm we're still not at a refresh boundary */
6249 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6250 	cfs_b->slack_started = false;
6251 
6252 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6253 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6254 		return;
6255 	}
6256 
6257 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6258 		runtime = cfs_b->runtime;
6259 
6260 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6261 
6262 	if (!runtime)
6263 		return;
6264 
6265 	distribute_cfs_runtime(cfs_b);
6266 }
6267 
6268 /*
6269  * When a group wakes up we want to make sure that its quota is not already
6270  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6271  * runtime as update_curr() throttling can not trigger until it's on-rq.
6272  */
6273 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6274 {
6275 	if (!cfs_bandwidth_used())
6276 		return;
6277 
6278 	/* an active group must be handled by the update_curr()->put() path */
6279 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6280 		return;
6281 
6282 	/* ensure the group is not already throttled */
6283 	if (cfs_rq_throttled(cfs_rq))
6284 		return;
6285 
6286 	/* update runtime allocation */
6287 	account_cfs_rq_runtime(cfs_rq, 0);
6288 	if (cfs_rq->runtime_remaining <= 0)
6289 		throttle_cfs_rq(cfs_rq);
6290 }
6291 
6292 static void sync_throttle(struct task_group *tg, int cpu)
6293 {
6294 	struct cfs_rq *pcfs_rq, *cfs_rq;
6295 
6296 	if (!cfs_bandwidth_used())
6297 		return;
6298 
6299 	if (!tg->parent)
6300 		return;
6301 
6302 	cfs_rq = tg->cfs_rq[cpu];
6303 	pcfs_rq = tg->parent->cfs_rq[cpu];
6304 
6305 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
6306 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6307 }
6308 
6309 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6310 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6311 {
6312 	if (!cfs_bandwidth_used())
6313 		return false;
6314 
6315 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6316 		return false;
6317 
6318 	/*
6319 	 * it's possible for a throttled entity to be forced into a running
6320 	 * state (e.g. set_curr_task), in this case we're finished.
6321 	 */
6322 	if (cfs_rq_throttled(cfs_rq))
6323 		return true;
6324 
6325 	return throttle_cfs_rq(cfs_rq);
6326 }
6327 
6328 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6329 {
6330 	struct cfs_bandwidth *cfs_b =
6331 		container_of(timer, struct cfs_bandwidth, slack_timer);
6332 
6333 	do_sched_cfs_slack_timer(cfs_b);
6334 
6335 	return HRTIMER_NORESTART;
6336 }
6337 
6338 extern const u64 max_cfs_quota_period;
6339 
6340 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6341 {
6342 	struct cfs_bandwidth *cfs_b =
6343 		container_of(timer, struct cfs_bandwidth, period_timer);
6344 	unsigned long flags;
6345 	int overrun;
6346 	int idle = 0;
6347 	int count = 0;
6348 
6349 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
6350 	for (;;) {
6351 		overrun = hrtimer_forward_now(timer, cfs_b->period);
6352 		if (!overrun)
6353 			break;
6354 
6355 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6356 
6357 		if (++count > 3) {
6358 			u64 new, old = ktime_to_ns(cfs_b->period);
6359 
6360 			/*
6361 			 * Grow period by a factor of 2 to avoid losing precision.
6362 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6363 			 * to fail.
6364 			 */
6365 			new = old * 2;
6366 			if (new < max_cfs_quota_period) {
6367 				cfs_b->period = ns_to_ktime(new);
6368 				cfs_b->quota *= 2;
6369 				cfs_b->burst *= 2;
6370 
6371 				pr_warn_ratelimited(
6372 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6373 					smp_processor_id(),
6374 					div_u64(new, NSEC_PER_USEC),
6375 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6376 			} else {
6377 				pr_warn_ratelimited(
6378 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6379 					smp_processor_id(),
6380 					div_u64(old, NSEC_PER_USEC),
6381 					div_u64(cfs_b->quota, NSEC_PER_USEC));
6382 			}
6383 
6384 			/* reset count so we don't come right back in here */
6385 			count = 0;
6386 		}
6387 	}
6388 	if (idle)
6389 		cfs_b->period_active = 0;
6390 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6391 
6392 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6393 }
6394 
6395 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6396 {
6397 	raw_spin_lock_init(&cfs_b->lock);
6398 	cfs_b->runtime = 0;
6399 	cfs_b->quota = RUNTIME_INF;
6400 	cfs_b->period = ns_to_ktime(default_cfs_period());
6401 	cfs_b->burst = 0;
6402 	cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6403 
6404 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6405 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6406 	cfs_b->period_timer.function = sched_cfs_period_timer;
6407 
6408 	/* Add a random offset so that timers interleave */
6409 	hrtimer_set_expires(&cfs_b->period_timer,
6410 			    get_random_u32_below(cfs_b->period));
6411 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6412 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
6413 	cfs_b->slack_started = false;
6414 }
6415 
6416 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6417 {
6418 	cfs_rq->runtime_enabled = 0;
6419 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
6420 	INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6421 }
6422 
6423 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6424 {
6425 	lockdep_assert_held(&cfs_b->lock);
6426 
6427 	if (cfs_b->period_active)
6428 		return;
6429 
6430 	cfs_b->period_active = 1;
6431 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6432 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6433 }
6434 
6435 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6436 {
6437 	int __maybe_unused i;
6438 
6439 	/* init_cfs_bandwidth() was not called */
6440 	if (!cfs_b->throttled_cfs_rq.next)
6441 		return;
6442 
6443 	hrtimer_cancel(&cfs_b->period_timer);
6444 	hrtimer_cancel(&cfs_b->slack_timer);
6445 
6446 	/*
6447 	 * It is possible that we still have some cfs_rq's pending on a CSD
6448 	 * list, though this race is very rare. In order for this to occur, we
6449 	 * must have raced with the last task leaving the group while there
6450 	 * exist throttled cfs_rq(s), and the period_timer must have queued the
6451 	 * CSD item but the remote cpu has not yet processed it. To handle this,
6452 	 * we can simply flush all pending CSD work inline here. We're
6453 	 * guaranteed at this point that no additional cfs_rq of this group can
6454 	 * join a CSD list.
6455 	 */
6456 #ifdef CONFIG_SMP
6457 	for_each_possible_cpu(i) {
6458 		struct rq *rq = cpu_rq(i);
6459 		unsigned long flags;
6460 
6461 		if (list_empty(&rq->cfsb_csd_list))
6462 			continue;
6463 
6464 		local_irq_save(flags);
6465 		__cfsb_csd_unthrottle(rq);
6466 		local_irq_restore(flags);
6467 	}
6468 #endif
6469 }
6470 
6471 /*
6472  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6473  *
6474  * The race is harmless, since modifying bandwidth settings of unhooked group
6475  * bits doesn't do much.
6476  */
6477 
6478 /* cpu online callback */
6479 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6480 {
6481 	struct task_group *tg;
6482 
6483 	lockdep_assert_rq_held(rq);
6484 
6485 	rcu_read_lock();
6486 	list_for_each_entry_rcu(tg, &task_groups, list) {
6487 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6488 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6489 
6490 		raw_spin_lock(&cfs_b->lock);
6491 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6492 		raw_spin_unlock(&cfs_b->lock);
6493 	}
6494 	rcu_read_unlock();
6495 }
6496 
6497 /* cpu offline callback */
6498 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6499 {
6500 	struct task_group *tg;
6501 
6502 	lockdep_assert_rq_held(rq);
6503 
6504 	/*
6505 	 * The rq clock has already been updated in the
6506 	 * set_rq_offline(), so we should skip updating
6507 	 * the rq clock again in unthrottle_cfs_rq().
6508 	 */
6509 	rq_clock_start_loop_update(rq);
6510 
6511 	rcu_read_lock();
6512 	list_for_each_entry_rcu(tg, &task_groups, list) {
6513 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6514 
6515 		if (!cfs_rq->runtime_enabled)
6516 			continue;
6517 
6518 		/*
6519 		 * clock_task is not advancing so we just need to make sure
6520 		 * there's some valid quota amount
6521 		 */
6522 		cfs_rq->runtime_remaining = 1;
6523 		/*
6524 		 * Offline rq is schedulable till CPU is completely disabled
6525 		 * in take_cpu_down(), so we prevent new cfs throttling here.
6526 		 */
6527 		cfs_rq->runtime_enabled = 0;
6528 
6529 		if (cfs_rq_throttled(cfs_rq))
6530 			unthrottle_cfs_rq(cfs_rq);
6531 	}
6532 	rcu_read_unlock();
6533 
6534 	rq_clock_stop_loop_update(rq);
6535 }
6536 
6537 bool cfs_task_bw_constrained(struct task_struct *p)
6538 {
6539 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
6540 
6541 	if (!cfs_bandwidth_used())
6542 		return false;
6543 
6544 	if (cfs_rq->runtime_enabled ||
6545 	    tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6546 		return true;
6547 
6548 	return false;
6549 }
6550 
6551 #ifdef CONFIG_NO_HZ_FULL
6552 /* called from pick_next_task_fair() */
6553 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6554 {
6555 	int cpu = cpu_of(rq);
6556 
6557 	if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
6558 		return;
6559 
6560 	if (!tick_nohz_full_cpu(cpu))
6561 		return;
6562 
6563 	if (rq->nr_running != 1)
6564 		return;
6565 
6566 	/*
6567 	 *  We know there is only one task runnable and we've just picked it. The
6568 	 *  normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6569 	 *  be otherwise able to stop the tick. Just need to check if we are using
6570 	 *  bandwidth control.
6571 	 */
6572 	if (cfs_task_bw_constrained(p))
6573 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6574 }
6575 #endif
6576 
6577 #else /* CONFIG_CFS_BANDWIDTH */
6578 
6579 static inline bool cfs_bandwidth_used(void)
6580 {
6581 	return false;
6582 }
6583 
6584 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6585 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6586 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6587 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6588 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6589 
6590 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6591 {
6592 	return 0;
6593 }
6594 
6595 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6596 {
6597 	return 0;
6598 }
6599 
6600 static inline int throttled_lb_pair(struct task_group *tg,
6601 				    int src_cpu, int dest_cpu)
6602 {
6603 	return 0;
6604 }
6605 
6606 #ifdef CONFIG_FAIR_GROUP_SCHED
6607 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6608 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6609 #endif
6610 
6611 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6612 {
6613 	return NULL;
6614 }
6615 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6616 static inline void update_runtime_enabled(struct rq *rq) {}
6617 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6618 #ifdef CONFIG_CGROUP_SCHED
6619 bool cfs_task_bw_constrained(struct task_struct *p)
6620 {
6621 	return false;
6622 }
6623 #endif
6624 #endif /* CONFIG_CFS_BANDWIDTH */
6625 
6626 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6627 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6628 #endif
6629 
6630 /**************************************************
6631  * CFS operations on tasks:
6632  */
6633 
6634 #ifdef CONFIG_SCHED_HRTICK
6635 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6636 {
6637 	struct sched_entity *se = &p->se;
6638 
6639 	SCHED_WARN_ON(task_rq(p) != rq);
6640 
6641 	if (rq->cfs.h_nr_running > 1) {
6642 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6643 		u64 slice = se->slice;
6644 		s64 delta = slice - ran;
6645 
6646 		if (delta < 0) {
6647 			if (task_current(rq, p))
6648 				resched_curr(rq);
6649 			return;
6650 		}
6651 		hrtick_start(rq, delta);
6652 	}
6653 }
6654 
6655 /*
6656  * called from enqueue/dequeue and updates the hrtick when the
6657  * current task is from our class and nr_running is low enough
6658  * to matter.
6659  */
6660 static void hrtick_update(struct rq *rq)
6661 {
6662 	struct task_struct *curr = rq->curr;
6663 
6664 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
6665 		return;
6666 
6667 	hrtick_start_fair(rq, curr);
6668 }
6669 #else /* !CONFIG_SCHED_HRTICK */
6670 static inline void
6671 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6672 {
6673 }
6674 
6675 static inline void hrtick_update(struct rq *rq)
6676 {
6677 }
6678 #endif
6679 
6680 #ifdef CONFIG_SMP
6681 static inline bool cpu_overutilized(int cpu)
6682 {
6683 	unsigned long  rq_util_min, rq_util_max;
6684 
6685 	if (!sched_energy_enabled())
6686 		return false;
6687 
6688 	rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6689 	rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6690 
6691 	/* Return true only if the utilization doesn't fit CPU's capacity */
6692 	return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6693 }
6694 
6695 /*
6696  * overutilized value make sense only if EAS is enabled
6697  */
6698 static inline bool is_rd_overutilized(struct root_domain *rd)
6699 {
6700 	return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6701 }
6702 
6703 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6704 {
6705 	if (!sched_energy_enabled())
6706 		return;
6707 
6708 	WRITE_ONCE(rd->overutilized, flag);
6709 	trace_sched_overutilized_tp(rd, flag);
6710 }
6711 
6712 static inline void check_update_overutilized_status(struct rq *rq)
6713 {
6714 	/*
6715 	 * overutilized field is used for load balancing decisions only
6716 	 * if energy aware scheduler is being used
6717 	 */
6718 
6719 	if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6720 		set_rd_overutilized(rq->rd, 1);
6721 }
6722 #else
6723 static inline void check_update_overutilized_status(struct rq *rq) { }
6724 #endif
6725 
6726 /* Runqueue only has SCHED_IDLE tasks enqueued */
6727 static int sched_idle_rq(struct rq *rq)
6728 {
6729 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6730 			rq->nr_running);
6731 }
6732 
6733 #ifdef CONFIG_SMP
6734 static int sched_idle_cpu(int cpu)
6735 {
6736 	return sched_idle_rq(cpu_rq(cpu));
6737 }
6738 #endif
6739 
6740 /*
6741  * The enqueue_task method is called before nr_running is
6742  * increased. Here we update the fair scheduling stats and
6743  * then put the task into the rbtree:
6744  */
6745 static void
6746 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6747 {
6748 	struct cfs_rq *cfs_rq;
6749 	struct sched_entity *se = &p->se;
6750 	int idle_h_nr_running = task_has_idle_policy(p);
6751 	int task_new = !(flags & ENQUEUE_WAKEUP);
6752 
6753 	/*
6754 	 * The code below (indirectly) updates schedutil which looks at
6755 	 * the cfs_rq utilization to select a frequency.
6756 	 * Let's add the task's estimated utilization to the cfs_rq's
6757 	 * estimated utilization, before we update schedutil.
6758 	 */
6759 	util_est_enqueue(&rq->cfs, p);
6760 
6761 	/*
6762 	 * If in_iowait is set, the code below may not trigger any cpufreq
6763 	 * utilization updates, so do it here explicitly with the IOWAIT flag
6764 	 * passed.
6765 	 */
6766 	if (p->in_iowait)
6767 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6768 
6769 	for_each_sched_entity(se) {
6770 		if (se->on_rq)
6771 			break;
6772 		cfs_rq = cfs_rq_of(se);
6773 		enqueue_entity(cfs_rq, se, flags);
6774 
6775 		cfs_rq->h_nr_running++;
6776 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6777 
6778 		if (cfs_rq_is_idle(cfs_rq))
6779 			idle_h_nr_running = 1;
6780 
6781 		/* end evaluation on encountering a throttled cfs_rq */
6782 		if (cfs_rq_throttled(cfs_rq))
6783 			goto enqueue_throttle;
6784 
6785 		flags = ENQUEUE_WAKEUP;
6786 	}
6787 
6788 	for_each_sched_entity(se) {
6789 		cfs_rq = cfs_rq_of(se);
6790 
6791 		update_load_avg(cfs_rq, se, UPDATE_TG);
6792 		se_update_runnable(se);
6793 		update_cfs_group(se);
6794 
6795 		cfs_rq->h_nr_running++;
6796 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
6797 
6798 		if (cfs_rq_is_idle(cfs_rq))
6799 			idle_h_nr_running = 1;
6800 
6801 		/* end evaluation on encountering a throttled cfs_rq */
6802 		if (cfs_rq_throttled(cfs_rq))
6803 			goto enqueue_throttle;
6804 	}
6805 
6806 	/* At this point se is NULL and we are at root level*/
6807 	add_nr_running(rq, 1);
6808 
6809 	/*
6810 	 * Since new tasks are assigned an initial util_avg equal to
6811 	 * half of the spare capacity of their CPU, tiny tasks have the
6812 	 * ability to cross the overutilized threshold, which will
6813 	 * result in the load balancer ruining all the task placement
6814 	 * done by EAS. As a way to mitigate that effect, do not account
6815 	 * for the first enqueue operation of new tasks during the
6816 	 * overutilized flag detection.
6817 	 *
6818 	 * A better way of solving this problem would be to wait for
6819 	 * the PELT signals of tasks to converge before taking them
6820 	 * into account, but that is not straightforward to implement,
6821 	 * and the following generally works well enough in practice.
6822 	 */
6823 	if (!task_new)
6824 		check_update_overutilized_status(rq);
6825 
6826 enqueue_throttle:
6827 	assert_list_leaf_cfs_rq(rq);
6828 
6829 	hrtick_update(rq);
6830 }
6831 
6832 static void set_next_buddy(struct sched_entity *se);
6833 
6834 /*
6835  * The dequeue_task method is called before nr_running is
6836  * decreased. We remove the task from the rbtree and
6837  * update the fair scheduling stats:
6838  */
6839 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6840 {
6841 	struct cfs_rq *cfs_rq;
6842 	struct sched_entity *se = &p->se;
6843 	int task_sleep = flags & DEQUEUE_SLEEP;
6844 	int idle_h_nr_running = task_has_idle_policy(p);
6845 	bool was_sched_idle = sched_idle_rq(rq);
6846 
6847 	util_est_dequeue(&rq->cfs, p);
6848 
6849 	for_each_sched_entity(se) {
6850 		cfs_rq = cfs_rq_of(se);
6851 		dequeue_entity(cfs_rq, se, flags);
6852 
6853 		cfs_rq->h_nr_running--;
6854 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6855 
6856 		if (cfs_rq_is_idle(cfs_rq))
6857 			idle_h_nr_running = 1;
6858 
6859 		/* end evaluation on encountering a throttled cfs_rq */
6860 		if (cfs_rq_throttled(cfs_rq))
6861 			goto dequeue_throttle;
6862 
6863 		/* Don't dequeue parent if it has other entities besides us */
6864 		if (cfs_rq->load.weight) {
6865 			/* Avoid re-evaluating load for this entity: */
6866 			se = parent_entity(se);
6867 			/*
6868 			 * Bias pick_next to pick a task from this cfs_rq, as
6869 			 * p is sleeping when it is within its sched_slice.
6870 			 */
6871 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
6872 				set_next_buddy(se);
6873 			break;
6874 		}
6875 		flags |= DEQUEUE_SLEEP;
6876 	}
6877 
6878 	for_each_sched_entity(se) {
6879 		cfs_rq = cfs_rq_of(se);
6880 
6881 		update_load_avg(cfs_rq, se, UPDATE_TG);
6882 		se_update_runnable(se);
6883 		update_cfs_group(se);
6884 
6885 		cfs_rq->h_nr_running--;
6886 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
6887 
6888 		if (cfs_rq_is_idle(cfs_rq))
6889 			idle_h_nr_running = 1;
6890 
6891 		/* end evaluation on encountering a throttled cfs_rq */
6892 		if (cfs_rq_throttled(cfs_rq))
6893 			goto dequeue_throttle;
6894 
6895 	}
6896 
6897 	/* At this point se is NULL and we are at root level*/
6898 	sub_nr_running(rq, 1);
6899 
6900 	/* balance early to pull high priority tasks */
6901 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
6902 		rq->next_balance = jiffies;
6903 
6904 dequeue_throttle:
6905 	util_est_update(&rq->cfs, p, task_sleep);
6906 	hrtick_update(rq);
6907 }
6908 
6909 #ifdef CONFIG_SMP
6910 
6911 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
6912 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6913 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
6914 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
6915 
6916 #ifdef CONFIG_NO_HZ_COMMON
6917 
6918 static struct {
6919 	cpumask_var_t idle_cpus_mask;
6920 	atomic_t nr_cpus;
6921 	int has_blocked;		/* Idle CPUS has blocked load */
6922 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
6923 	unsigned long next_balance;     /* in jiffy units */
6924 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6925 } nohz ____cacheline_aligned;
6926 
6927 #endif /* CONFIG_NO_HZ_COMMON */
6928 
6929 static unsigned long cpu_load(struct rq *rq)
6930 {
6931 	return cfs_rq_load_avg(&rq->cfs);
6932 }
6933 
6934 /*
6935  * cpu_load_without - compute CPU load without any contributions from *p
6936  * @cpu: the CPU which load is requested
6937  * @p: the task which load should be discounted
6938  *
6939  * The load of a CPU is defined by the load of tasks currently enqueued on that
6940  * CPU as well as tasks which are currently sleeping after an execution on that
6941  * CPU.
6942  *
6943  * This method returns the load of the specified CPU by discounting the load of
6944  * the specified task, whenever the task is currently contributing to the CPU
6945  * load.
6946  */
6947 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6948 {
6949 	struct cfs_rq *cfs_rq;
6950 	unsigned int load;
6951 
6952 	/* Task has no contribution or is new */
6953 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6954 		return cpu_load(rq);
6955 
6956 	cfs_rq = &rq->cfs;
6957 	load = READ_ONCE(cfs_rq->avg.load_avg);
6958 
6959 	/* Discount task's util from CPU's util */
6960 	lsub_positive(&load, task_h_load(p));
6961 
6962 	return load;
6963 }
6964 
6965 static unsigned long cpu_runnable(struct rq *rq)
6966 {
6967 	return cfs_rq_runnable_avg(&rq->cfs);
6968 }
6969 
6970 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6971 {
6972 	struct cfs_rq *cfs_rq;
6973 	unsigned int runnable;
6974 
6975 	/* Task has no contribution or is new */
6976 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6977 		return cpu_runnable(rq);
6978 
6979 	cfs_rq = &rq->cfs;
6980 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6981 
6982 	/* Discount task's runnable from CPU's runnable */
6983 	lsub_positive(&runnable, p->se.avg.runnable_avg);
6984 
6985 	return runnable;
6986 }
6987 
6988 static unsigned long capacity_of(int cpu)
6989 {
6990 	return cpu_rq(cpu)->cpu_capacity;
6991 }
6992 
6993 static void record_wakee(struct task_struct *p)
6994 {
6995 	/*
6996 	 * Only decay a single time; tasks that have less then 1 wakeup per
6997 	 * jiffy will not have built up many flips.
6998 	 */
6999 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7000 		current->wakee_flips >>= 1;
7001 		current->wakee_flip_decay_ts = jiffies;
7002 	}
7003 
7004 	if (current->last_wakee != p) {
7005 		current->last_wakee = p;
7006 		current->wakee_flips++;
7007 	}
7008 }
7009 
7010 /*
7011  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7012  *
7013  * A waker of many should wake a different task than the one last awakened
7014  * at a frequency roughly N times higher than one of its wakees.
7015  *
7016  * In order to determine whether we should let the load spread vs consolidating
7017  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7018  * partner, and a factor of lls_size higher frequency in the other.
7019  *
7020  * With both conditions met, we can be relatively sure that the relationship is
7021  * non-monogamous, with partner count exceeding socket size.
7022  *
7023  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7024  * whatever is irrelevant, spread criteria is apparent partner count exceeds
7025  * socket size.
7026  */
7027 static int wake_wide(struct task_struct *p)
7028 {
7029 	unsigned int master = current->wakee_flips;
7030 	unsigned int slave = p->wakee_flips;
7031 	int factor = __this_cpu_read(sd_llc_size);
7032 
7033 	if (master < slave)
7034 		swap(master, slave);
7035 	if (slave < factor || master < slave * factor)
7036 		return 0;
7037 	return 1;
7038 }
7039 
7040 /*
7041  * The purpose of wake_affine() is to quickly determine on which CPU we can run
7042  * soonest. For the purpose of speed we only consider the waking and previous
7043  * CPU.
7044  *
7045  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7046  *			cache-affine and is (or	will be) idle.
7047  *
7048  * wake_affine_weight() - considers the weight to reflect the average
7049  *			  scheduling latency of the CPUs. This seems to work
7050  *			  for the overloaded case.
7051  */
7052 static int
7053 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7054 {
7055 	/*
7056 	 * If this_cpu is idle, it implies the wakeup is from interrupt
7057 	 * context. Only allow the move if cache is shared. Otherwise an
7058 	 * interrupt intensive workload could force all tasks onto one
7059 	 * node depending on the IO topology or IRQ affinity settings.
7060 	 *
7061 	 * If the prev_cpu is idle and cache affine then avoid a migration.
7062 	 * There is no guarantee that the cache hot data from an interrupt
7063 	 * is more important than cache hot data on the prev_cpu and from
7064 	 * a cpufreq perspective, it's better to have higher utilisation
7065 	 * on one CPU.
7066 	 */
7067 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7068 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7069 
7070 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
7071 		return this_cpu;
7072 
7073 	if (available_idle_cpu(prev_cpu))
7074 		return prev_cpu;
7075 
7076 	return nr_cpumask_bits;
7077 }
7078 
7079 static int
7080 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7081 		   int this_cpu, int prev_cpu, int sync)
7082 {
7083 	s64 this_eff_load, prev_eff_load;
7084 	unsigned long task_load;
7085 
7086 	this_eff_load = cpu_load(cpu_rq(this_cpu));
7087 
7088 	if (sync) {
7089 		unsigned long current_load = task_h_load(current);
7090 
7091 		if (current_load > this_eff_load)
7092 			return this_cpu;
7093 
7094 		this_eff_load -= current_load;
7095 	}
7096 
7097 	task_load = task_h_load(p);
7098 
7099 	this_eff_load += task_load;
7100 	if (sched_feat(WA_BIAS))
7101 		this_eff_load *= 100;
7102 	this_eff_load *= capacity_of(prev_cpu);
7103 
7104 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7105 	prev_eff_load -= task_load;
7106 	if (sched_feat(WA_BIAS))
7107 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7108 	prev_eff_load *= capacity_of(this_cpu);
7109 
7110 	/*
7111 	 * If sync, adjust the weight of prev_eff_load such that if
7112 	 * prev_eff == this_eff that select_idle_sibling() will consider
7113 	 * stacking the wakee on top of the waker if no other CPU is
7114 	 * idle.
7115 	 */
7116 	if (sync)
7117 		prev_eff_load += 1;
7118 
7119 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7120 }
7121 
7122 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7123 		       int this_cpu, int prev_cpu, int sync)
7124 {
7125 	int target = nr_cpumask_bits;
7126 
7127 	if (sched_feat(WA_IDLE))
7128 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
7129 
7130 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7131 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7132 
7133 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7134 	if (target != this_cpu)
7135 		return prev_cpu;
7136 
7137 	schedstat_inc(sd->ttwu_move_affine);
7138 	schedstat_inc(p->stats.nr_wakeups_affine);
7139 	return target;
7140 }
7141 
7142 static struct sched_group *
7143 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7144 
7145 /*
7146  * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7147  */
7148 static int
7149 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7150 {
7151 	unsigned long load, min_load = ULONG_MAX;
7152 	unsigned int min_exit_latency = UINT_MAX;
7153 	u64 latest_idle_timestamp = 0;
7154 	int least_loaded_cpu = this_cpu;
7155 	int shallowest_idle_cpu = -1;
7156 	int i;
7157 
7158 	/* Check if we have any choice: */
7159 	if (group->group_weight == 1)
7160 		return cpumask_first(sched_group_span(group));
7161 
7162 	/* Traverse only the allowed CPUs */
7163 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7164 		struct rq *rq = cpu_rq(i);
7165 
7166 		if (!sched_core_cookie_match(rq, p))
7167 			continue;
7168 
7169 		if (sched_idle_cpu(i))
7170 			return i;
7171 
7172 		if (available_idle_cpu(i)) {
7173 			struct cpuidle_state *idle = idle_get_state(rq);
7174 			if (idle && idle->exit_latency < min_exit_latency) {
7175 				/*
7176 				 * We give priority to a CPU whose idle state
7177 				 * has the smallest exit latency irrespective
7178 				 * of any idle timestamp.
7179 				 */
7180 				min_exit_latency = idle->exit_latency;
7181 				latest_idle_timestamp = rq->idle_stamp;
7182 				shallowest_idle_cpu = i;
7183 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
7184 				   rq->idle_stamp > latest_idle_timestamp) {
7185 				/*
7186 				 * If equal or no active idle state, then
7187 				 * the most recently idled CPU might have
7188 				 * a warmer cache.
7189 				 */
7190 				latest_idle_timestamp = rq->idle_stamp;
7191 				shallowest_idle_cpu = i;
7192 			}
7193 		} else if (shallowest_idle_cpu == -1) {
7194 			load = cpu_load(cpu_rq(i));
7195 			if (load < min_load) {
7196 				min_load = load;
7197 				least_loaded_cpu = i;
7198 			}
7199 		}
7200 	}
7201 
7202 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7203 }
7204 
7205 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7206 				  int cpu, int prev_cpu, int sd_flag)
7207 {
7208 	int new_cpu = cpu;
7209 
7210 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7211 		return prev_cpu;
7212 
7213 	/*
7214 	 * We need task's util for cpu_util_without, sync it up to
7215 	 * prev_cpu's last_update_time.
7216 	 */
7217 	if (!(sd_flag & SD_BALANCE_FORK))
7218 		sync_entity_load_avg(&p->se);
7219 
7220 	while (sd) {
7221 		struct sched_group *group;
7222 		struct sched_domain *tmp;
7223 		int weight;
7224 
7225 		if (!(sd->flags & sd_flag)) {
7226 			sd = sd->child;
7227 			continue;
7228 		}
7229 
7230 		group = sched_balance_find_dst_group(sd, p, cpu);
7231 		if (!group) {
7232 			sd = sd->child;
7233 			continue;
7234 		}
7235 
7236 		new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7237 		if (new_cpu == cpu) {
7238 			/* Now try balancing at a lower domain level of 'cpu': */
7239 			sd = sd->child;
7240 			continue;
7241 		}
7242 
7243 		/* Now try balancing at a lower domain level of 'new_cpu': */
7244 		cpu = new_cpu;
7245 		weight = sd->span_weight;
7246 		sd = NULL;
7247 		for_each_domain(cpu, tmp) {
7248 			if (weight <= tmp->span_weight)
7249 				break;
7250 			if (tmp->flags & sd_flag)
7251 				sd = tmp;
7252 		}
7253 	}
7254 
7255 	return new_cpu;
7256 }
7257 
7258 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7259 {
7260 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7261 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
7262 		return cpu;
7263 
7264 	return -1;
7265 }
7266 
7267 #ifdef CONFIG_SCHED_SMT
7268 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7269 EXPORT_SYMBOL_GPL(sched_smt_present);
7270 
7271 static inline void set_idle_cores(int cpu, int val)
7272 {
7273 	struct sched_domain_shared *sds;
7274 
7275 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7276 	if (sds)
7277 		WRITE_ONCE(sds->has_idle_cores, val);
7278 }
7279 
7280 static inline bool test_idle_cores(int cpu)
7281 {
7282 	struct sched_domain_shared *sds;
7283 
7284 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7285 	if (sds)
7286 		return READ_ONCE(sds->has_idle_cores);
7287 
7288 	return false;
7289 }
7290 
7291 /*
7292  * Scans the local SMT mask to see if the entire core is idle, and records this
7293  * information in sd_llc_shared->has_idle_cores.
7294  *
7295  * Since SMT siblings share all cache levels, inspecting this limited remote
7296  * state should be fairly cheap.
7297  */
7298 void __update_idle_core(struct rq *rq)
7299 {
7300 	int core = cpu_of(rq);
7301 	int cpu;
7302 
7303 	rcu_read_lock();
7304 	if (test_idle_cores(core))
7305 		goto unlock;
7306 
7307 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7308 		if (cpu == core)
7309 			continue;
7310 
7311 		if (!available_idle_cpu(cpu))
7312 			goto unlock;
7313 	}
7314 
7315 	set_idle_cores(core, 1);
7316 unlock:
7317 	rcu_read_unlock();
7318 }
7319 
7320 /*
7321  * Scan the entire LLC domain for idle cores; this dynamically switches off if
7322  * there are no idle cores left in the system; tracked through
7323  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7324  */
7325 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7326 {
7327 	bool idle = true;
7328 	int cpu;
7329 
7330 	for_each_cpu(cpu, cpu_smt_mask(core)) {
7331 		if (!available_idle_cpu(cpu)) {
7332 			idle = false;
7333 			if (*idle_cpu == -1) {
7334 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7335 					*idle_cpu = cpu;
7336 					break;
7337 				}
7338 				continue;
7339 			}
7340 			break;
7341 		}
7342 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7343 			*idle_cpu = cpu;
7344 	}
7345 
7346 	if (idle)
7347 		return core;
7348 
7349 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7350 	return -1;
7351 }
7352 
7353 /*
7354  * Scan the local SMT mask for idle CPUs.
7355  */
7356 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7357 {
7358 	int cpu;
7359 
7360 	for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7361 		if (cpu == target)
7362 			continue;
7363 		/*
7364 		 * Check if the CPU is in the LLC scheduling domain of @target.
7365 		 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7366 		 */
7367 		if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7368 			continue;
7369 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7370 			return cpu;
7371 	}
7372 
7373 	return -1;
7374 }
7375 
7376 #else /* CONFIG_SCHED_SMT */
7377 
7378 static inline void set_idle_cores(int cpu, int val)
7379 {
7380 }
7381 
7382 static inline bool test_idle_cores(int cpu)
7383 {
7384 	return false;
7385 }
7386 
7387 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7388 {
7389 	return __select_idle_cpu(core, p);
7390 }
7391 
7392 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7393 {
7394 	return -1;
7395 }
7396 
7397 #endif /* CONFIG_SCHED_SMT */
7398 
7399 /*
7400  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7401  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7402  * average idle time for this rq (as found in rq->avg_idle).
7403  */
7404 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7405 {
7406 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7407 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
7408 	struct sched_domain_shared *sd_share;
7409 
7410 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7411 
7412 	if (sched_feat(SIS_UTIL)) {
7413 		sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7414 		if (sd_share) {
7415 			/* because !--nr is the condition to stop scan */
7416 			nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7417 			/* overloaded LLC is unlikely to have idle cpu/core */
7418 			if (nr == 1)
7419 				return -1;
7420 		}
7421 	}
7422 
7423 	if (static_branch_unlikely(&sched_cluster_active)) {
7424 		struct sched_group *sg = sd->groups;
7425 
7426 		if (sg->flags & SD_CLUSTER) {
7427 			for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7428 				if (!cpumask_test_cpu(cpu, cpus))
7429 					continue;
7430 
7431 				if (has_idle_core) {
7432 					i = select_idle_core(p, cpu, cpus, &idle_cpu);
7433 					if ((unsigned int)i < nr_cpumask_bits)
7434 						return i;
7435 				} else {
7436 					if (--nr <= 0)
7437 						return -1;
7438 					idle_cpu = __select_idle_cpu(cpu, p);
7439 					if ((unsigned int)idle_cpu < nr_cpumask_bits)
7440 						return idle_cpu;
7441 				}
7442 			}
7443 			cpumask_andnot(cpus, cpus, sched_group_span(sg));
7444 		}
7445 	}
7446 
7447 	for_each_cpu_wrap(cpu, cpus, target + 1) {
7448 		if (has_idle_core) {
7449 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
7450 			if ((unsigned int)i < nr_cpumask_bits)
7451 				return i;
7452 
7453 		} else {
7454 			if (--nr <= 0)
7455 				return -1;
7456 			idle_cpu = __select_idle_cpu(cpu, p);
7457 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
7458 				break;
7459 		}
7460 	}
7461 
7462 	if (has_idle_core)
7463 		set_idle_cores(target, false);
7464 
7465 	return idle_cpu;
7466 }
7467 
7468 /*
7469  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7470  * the task fits. If no CPU is big enough, but there are idle ones, try to
7471  * maximize capacity.
7472  */
7473 static int
7474 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7475 {
7476 	unsigned long task_util, util_min, util_max, best_cap = 0;
7477 	int fits, best_fits = 0;
7478 	int cpu, best_cpu = -1;
7479 	struct cpumask *cpus;
7480 
7481 	cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7482 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7483 
7484 	task_util = task_util_est(p);
7485 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
7486 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
7487 
7488 	for_each_cpu_wrap(cpu, cpus, target) {
7489 		unsigned long cpu_cap = capacity_of(cpu);
7490 
7491 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7492 			continue;
7493 
7494 		fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7495 
7496 		/* This CPU fits with all requirements */
7497 		if (fits > 0)
7498 			return cpu;
7499 		/*
7500 		 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7501 		 * Look for the CPU with best capacity.
7502 		 */
7503 		else if (fits < 0)
7504 			cpu_cap = get_actual_cpu_capacity(cpu);
7505 
7506 		/*
7507 		 * First, select CPU which fits better (-1 being better than 0).
7508 		 * Then, select the one with best capacity at same level.
7509 		 */
7510 		if ((fits < best_fits) ||
7511 		    ((fits == best_fits) && (cpu_cap > best_cap))) {
7512 			best_cap = cpu_cap;
7513 			best_cpu = cpu;
7514 			best_fits = fits;
7515 		}
7516 	}
7517 
7518 	return best_cpu;
7519 }
7520 
7521 static inline bool asym_fits_cpu(unsigned long util,
7522 				 unsigned long util_min,
7523 				 unsigned long util_max,
7524 				 int cpu)
7525 {
7526 	if (sched_asym_cpucap_active())
7527 		/*
7528 		 * Return true only if the cpu fully fits the task requirements
7529 		 * which include the utilization and the performance hints.
7530 		 */
7531 		return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7532 
7533 	return true;
7534 }
7535 
7536 /*
7537  * Try and locate an idle core/thread in the LLC cache domain.
7538  */
7539 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7540 {
7541 	bool has_idle_core = false;
7542 	struct sched_domain *sd;
7543 	unsigned long task_util, util_min, util_max;
7544 	int i, recent_used_cpu, prev_aff = -1;
7545 
7546 	/*
7547 	 * On asymmetric system, update task utilization because we will check
7548 	 * that the task fits with CPU's capacity.
7549 	 */
7550 	if (sched_asym_cpucap_active()) {
7551 		sync_entity_load_avg(&p->se);
7552 		task_util = task_util_est(p);
7553 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
7554 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
7555 	}
7556 
7557 	/*
7558 	 * per-cpu select_rq_mask usage
7559 	 */
7560 	lockdep_assert_irqs_disabled();
7561 
7562 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7563 	    asym_fits_cpu(task_util, util_min, util_max, target))
7564 		return target;
7565 
7566 	/*
7567 	 * If the previous CPU is cache affine and idle, don't be stupid:
7568 	 */
7569 	if (prev != target && cpus_share_cache(prev, target) &&
7570 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7571 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7572 
7573 		if (!static_branch_unlikely(&sched_cluster_active) ||
7574 		    cpus_share_resources(prev, target))
7575 			return prev;
7576 
7577 		prev_aff = prev;
7578 	}
7579 
7580 	/*
7581 	 * Allow a per-cpu kthread to stack with the wakee if the
7582 	 * kworker thread and the tasks previous CPUs are the same.
7583 	 * The assumption is that the wakee queued work for the
7584 	 * per-cpu kthread that is now complete and the wakeup is
7585 	 * essentially a sync wakeup. An obvious example of this
7586 	 * pattern is IO completions.
7587 	 */
7588 	if (is_per_cpu_kthread(current) &&
7589 	    in_task() &&
7590 	    prev == smp_processor_id() &&
7591 	    this_rq()->nr_running <= 1 &&
7592 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
7593 		return prev;
7594 	}
7595 
7596 	/* Check a recently used CPU as a potential idle candidate: */
7597 	recent_used_cpu = p->recent_used_cpu;
7598 	p->recent_used_cpu = prev;
7599 	if (recent_used_cpu != prev &&
7600 	    recent_used_cpu != target &&
7601 	    cpus_share_cache(recent_used_cpu, target) &&
7602 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7603 	    cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7604 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7605 
7606 		if (!static_branch_unlikely(&sched_cluster_active) ||
7607 		    cpus_share_resources(recent_used_cpu, target))
7608 			return recent_used_cpu;
7609 
7610 	} else {
7611 		recent_used_cpu = -1;
7612 	}
7613 
7614 	/*
7615 	 * For asymmetric CPU capacity systems, our domain of interest is
7616 	 * sd_asym_cpucapacity rather than sd_llc.
7617 	 */
7618 	if (sched_asym_cpucap_active()) {
7619 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7620 		/*
7621 		 * On an asymmetric CPU capacity system where an exclusive
7622 		 * cpuset defines a symmetric island (i.e. one unique
7623 		 * capacity_orig value through the cpuset), the key will be set
7624 		 * but the CPUs within that cpuset will not have a domain with
7625 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7626 		 * capacity path.
7627 		 */
7628 		if (sd) {
7629 			i = select_idle_capacity(p, sd, target);
7630 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
7631 		}
7632 	}
7633 
7634 	sd = rcu_dereference(per_cpu(sd_llc, target));
7635 	if (!sd)
7636 		return target;
7637 
7638 	if (sched_smt_active()) {
7639 		has_idle_core = test_idle_cores(target);
7640 
7641 		if (!has_idle_core && cpus_share_cache(prev, target)) {
7642 			i = select_idle_smt(p, sd, prev);
7643 			if ((unsigned int)i < nr_cpumask_bits)
7644 				return i;
7645 		}
7646 	}
7647 
7648 	i = select_idle_cpu(p, sd, has_idle_core, target);
7649 	if ((unsigned)i < nr_cpumask_bits)
7650 		return i;
7651 
7652 	/*
7653 	 * For cluster machines which have lower sharing cache like L2 or
7654 	 * LLC Tag, we tend to find an idle CPU in the target's cluster
7655 	 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7656 	 * use them if possible when no idle CPU found in select_idle_cpu().
7657 	 */
7658 	if ((unsigned int)prev_aff < nr_cpumask_bits)
7659 		return prev_aff;
7660 	if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7661 		return recent_used_cpu;
7662 
7663 	return target;
7664 }
7665 
7666 /**
7667  * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7668  * @cpu: the CPU to get the utilization for
7669  * @p: task for which the CPU utilization should be predicted or NULL
7670  * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7671  * @boost: 1 to enable boosting, otherwise 0
7672  *
7673  * The unit of the return value must be the same as the one of CPU capacity
7674  * so that CPU utilization can be compared with CPU capacity.
7675  *
7676  * CPU utilization is the sum of running time of runnable tasks plus the
7677  * recent utilization of currently non-runnable tasks on that CPU.
7678  * It represents the amount of CPU capacity currently used by CFS tasks in
7679  * the range [0..max CPU capacity] with max CPU capacity being the CPU
7680  * capacity at f_max.
7681  *
7682  * The estimated CPU utilization is defined as the maximum between CPU
7683  * utilization and sum of the estimated utilization of the currently
7684  * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7685  * previously-executed tasks, which helps better deduce how busy a CPU will
7686  * be when a long-sleeping task wakes up. The contribution to CPU utilization
7687  * of such a task would be significantly decayed at this point of time.
7688  *
7689  * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7690  * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7691  * utilization. Boosting is implemented in cpu_util() so that internal
7692  * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7693  * latter via cpu_util_cfs_boost().
7694  *
7695  * CPU utilization can be higher than the current CPU capacity
7696  * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7697  * of rounding errors as well as task migrations or wakeups of new tasks.
7698  * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7699  * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7700  * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7701  * capacity. CPU utilization is allowed to overshoot current CPU capacity
7702  * though since this is useful for predicting the CPU capacity required
7703  * after task migrations (scheduler-driven DVFS).
7704  *
7705  * Return: (Boosted) (estimated) utilization for the specified CPU.
7706  */
7707 static unsigned long
7708 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7709 {
7710 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7711 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7712 	unsigned long runnable;
7713 
7714 	if (boost) {
7715 		runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7716 		util = max(util, runnable);
7717 	}
7718 
7719 	/*
7720 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7721 	 * contribution. If @p migrates from another CPU to @cpu add its
7722 	 * contribution. In all the other cases @cpu is not impacted by the
7723 	 * migration so its util_avg is already correct.
7724 	 */
7725 	if (p && task_cpu(p) == cpu && dst_cpu != cpu)
7726 		lsub_positive(&util, task_util(p));
7727 	else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
7728 		util += task_util(p);
7729 
7730 	if (sched_feat(UTIL_EST)) {
7731 		unsigned long util_est;
7732 
7733 		util_est = READ_ONCE(cfs_rq->avg.util_est);
7734 
7735 		/*
7736 		 * During wake-up @p isn't enqueued yet and doesn't contribute
7737 		 * to any cpu_rq(cpu)->cfs.avg.util_est.
7738 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
7739 		 * has been enqueued.
7740 		 *
7741 		 * During exec (@dst_cpu = -1) @p is enqueued and does
7742 		 * contribute to cpu_rq(cpu)->cfs.util_est.
7743 		 * Remove it to "simulate" cpu_util without @p's contribution.
7744 		 *
7745 		 * Despite the task_on_rq_queued(@p) check there is still a
7746 		 * small window for a possible race when an exec
7747 		 * select_task_rq_fair() races with LB's detach_task().
7748 		 *
7749 		 *   detach_task()
7750 		 *     deactivate_task()
7751 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
7752 		 *       -------------------------------- A
7753 		 *       dequeue_task()                    \
7754 		 *         dequeue_task_fair()              + Race Time
7755 		 *           util_est_dequeue()            /
7756 		 *       -------------------------------- B
7757 		 *
7758 		 * The additional check "current == p" is required to further
7759 		 * reduce the race window.
7760 		 */
7761 		if (dst_cpu == cpu)
7762 			util_est += _task_util_est(p);
7763 		else if (p && unlikely(task_on_rq_queued(p) || current == p))
7764 			lsub_positive(&util_est, _task_util_est(p));
7765 
7766 		util = max(util, util_est);
7767 	}
7768 
7769 	return min(util, arch_scale_cpu_capacity(cpu));
7770 }
7771 
7772 unsigned long cpu_util_cfs(int cpu)
7773 {
7774 	return cpu_util(cpu, NULL, -1, 0);
7775 }
7776 
7777 unsigned long cpu_util_cfs_boost(int cpu)
7778 {
7779 	return cpu_util(cpu, NULL, -1, 1);
7780 }
7781 
7782 /*
7783  * cpu_util_without: compute cpu utilization without any contributions from *p
7784  * @cpu: the CPU which utilization is requested
7785  * @p: the task which utilization should be discounted
7786  *
7787  * The utilization of a CPU is defined by the utilization of tasks currently
7788  * enqueued on that CPU as well as tasks which are currently sleeping after an
7789  * execution on that CPU.
7790  *
7791  * This method returns the utilization of the specified CPU by discounting the
7792  * utilization of the specified task, whenever the task is currently
7793  * contributing to the CPU utilization.
7794  */
7795 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
7796 {
7797 	/* Task has no contribution or is new */
7798 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7799 		p = NULL;
7800 
7801 	return cpu_util(cpu, p, -1, 0);
7802 }
7803 
7804 /*
7805  * energy_env - Utilization landscape for energy estimation.
7806  * @task_busy_time: Utilization contribution by the task for which we test the
7807  *                  placement. Given by eenv_task_busy_time().
7808  * @pd_busy_time:   Utilization of the whole perf domain without the task
7809  *                  contribution. Given by eenv_pd_busy_time().
7810  * @cpu_cap:        Maximum CPU capacity for the perf domain.
7811  * @pd_cap:         Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
7812  */
7813 struct energy_env {
7814 	unsigned long task_busy_time;
7815 	unsigned long pd_busy_time;
7816 	unsigned long cpu_cap;
7817 	unsigned long pd_cap;
7818 };
7819 
7820 /*
7821  * Compute the task busy time for compute_energy(). This time cannot be
7822  * injected directly into effective_cpu_util() because of the IRQ scaling.
7823  * The latter only makes sense with the most recent CPUs where the task has
7824  * run.
7825  */
7826 static inline void eenv_task_busy_time(struct energy_env *eenv,
7827 				       struct task_struct *p, int prev_cpu)
7828 {
7829 	unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
7830 	unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
7831 
7832 	if (unlikely(irq >= max_cap))
7833 		busy_time = max_cap;
7834 	else
7835 		busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
7836 
7837 	eenv->task_busy_time = busy_time;
7838 }
7839 
7840 /*
7841  * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
7842  * utilization for each @pd_cpus, it however doesn't take into account
7843  * clamping since the ratio (utilization / cpu_capacity) is already enough to
7844  * scale the EM reported power consumption at the (eventually clamped)
7845  * cpu_capacity.
7846  *
7847  * The contribution of the task @p for which we want to estimate the
7848  * energy cost is removed (by cpu_util()) and must be calculated
7849  * separately (see eenv_task_busy_time). This ensures:
7850  *
7851  *   - A stable PD utilization, no matter which CPU of that PD we want to place
7852  *     the task on.
7853  *
7854  *   - A fair comparison between CPUs as the task contribution (task_util())
7855  *     will always be the same no matter which CPU utilization we rely on
7856  *     (util_avg or util_est).
7857  *
7858  * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
7859  * exceed @eenv->pd_cap.
7860  */
7861 static inline void eenv_pd_busy_time(struct energy_env *eenv,
7862 				     struct cpumask *pd_cpus,
7863 				     struct task_struct *p)
7864 {
7865 	unsigned long busy_time = 0;
7866 	int cpu;
7867 
7868 	for_each_cpu(cpu, pd_cpus) {
7869 		unsigned long util = cpu_util(cpu, p, -1, 0);
7870 
7871 		busy_time += effective_cpu_util(cpu, util, NULL, NULL);
7872 	}
7873 
7874 	eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
7875 }
7876 
7877 /*
7878  * Compute the maximum utilization for compute_energy() when the task @p
7879  * is placed on the cpu @dst_cpu.
7880  *
7881  * Returns the maximum utilization among @eenv->cpus. This utilization can't
7882  * exceed @eenv->cpu_cap.
7883  */
7884 static inline unsigned long
7885 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
7886 		 struct task_struct *p, int dst_cpu)
7887 {
7888 	unsigned long max_util = 0;
7889 	int cpu;
7890 
7891 	for_each_cpu(cpu, pd_cpus) {
7892 		struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
7893 		unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
7894 		unsigned long eff_util, min, max;
7895 
7896 		/*
7897 		 * Performance domain frequency: utilization clamping
7898 		 * must be considered since it affects the selection
7899 		 * of the performance domain frequency.
7900 		 * NOTE: in case RT tasks are running, by default the min
7901 		 * utilization can be max OPP.
7902 		 */
7903 		eff_util = effective_cpu_util(cpu, util, &min, &max);
7904 
7905 		/* Task's uclamp can modify min and max value */
7906 		if (tsk && uclamp_is_used()) {
7907 			min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
7908 
7909 			/*
7910 			 * If there is no active max uclamp constraint,
7911 			 * directly use task's one, otherwise keep max.
7912 			 */
7913 			if (uclamp_rq_is_idle(cpu_rq(cpu)))
7914 				max = uclamp_eff_value(p, UCLAMP_MAX);
7915 			else
7916 				max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
7917 		}
7918 
7919 		eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
7920 		max_util = max(max_util, eff_util);
7921 	}
7922 
7923 	return min(max_util, eenv->cpu_cap);
7924 }
7925 
7926 /*
7927  * compute_energy(): Use the Energy Model to estimate the energy that @pd would
7928  * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
7929  * contribution is ignored.
7930  */
7931 static inline unsigned long
7932 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
7933 	       struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
7934 {
7935 	unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
7936 	unsigned long busy_time = eenv->pd_busy_time;
7937 	unsigned long energy;
7938 
7939 	if (dst_cpu >= 0)
7940 		busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
7941 
7942 	energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
7943 
7944 	trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
7945 
7946 	return energy;
7947 }
7948 
7949 /*
7950  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
7951  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
7952  * spare capacity in each performance domain and uses it as a potential
7953  * candidate to execute the task. Then, it uses the Energy Model to figure
7954  * out which of the CPU candidates is the most energy-efficient.
7955  *
7956  * The rationale for this heuristic is as follows. In a performance domain,
7957  * all the most energy efficient CPU candidates (according to the Energy
7958  * Model) are those for which we'll request a low frequency. When there are
7959  * several CPUs for which the frequency request will be the same, we don't
7960  * have enough data to break the tie between them, because the Energy Model
7961  * only includes active power costs. With this model, if we assume that
7962  * frequency requests follow utilization (e.g. using schedutil), the CPU with
7963  * the maximum spare capacity in a performance domain is guaranteed to be among
7964  * the best candidates of the performance domain.
7965  *
7966  * In practice, it could be preferable from an energy standpoint to pack
7967  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
7968  * but that could also hurt our chances to go cluster idle, and we have no
7969  * ways to tell with the current Energy Model if this is actually a good
7970  * idea or not. So, find_energy_efficient_cpu() basically favors
7971  * cluster-packing, and spreading inside a cluster. That should at least be
7972  * a good thing for latency, and this is consistent with the idea that most
7973  * of the energy savings of EAS come from the asymmetry of the system, and
7974  * not so much from breaking the tie between identical CPUs. That's also the
7975  * reason why EAS is enabled in the topology code only for systems where
7976  * SD_ASYM_CPUCAPACITY is set.
7977  *
7978  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
7979  * they don't have any useful utilization data yet and it's not possible to
7980  * forecast their impact on energy consumption. Consequently, they will be
7981  * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
7982  * to be energy-inefficient in some use-cases. The alternative would be to
7983  * bias new tasks towards specific types of CPUs first, or to try to infer
7984  * their util_avg from the parent task, but those heuristics could hurt
7985  * other use-cases too. So, until someone finds a better way to solve this,
7986  * let's keep things simple by re-using the existing slow path.
7987  */
7988 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
7989 {
7990 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7991 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7992 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7993 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7994 	struct root_domain *rd = this_rq()->rd;
7995 	int cpu, best_energy_cpu, target = -1;
7996 	int prev_fits = -1, best_fits = -1;
7997 	unsigned long best_actual_cap = 0;
7998 	unsigned long prev_actual_cap = 0;
7999 	struct sched_domain *sd;
8000 	struct perf_domain *pd;
8001 	struct energy_env eenv;
8002 
8003 	rcu_read_lock();
8004 	pd = rcu_dereference(rd->pd);
8005 	if (!pd)
8006 		goto unlock;
8007 
8008 	/*
8009 	 * Energy-aware wake-up happens on the lowest sched_domain starting
8010 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8011 	 */
8012 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8013 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8014 		sd = sd->parent;
8015 	if (!sd)
8016 		goto unlock;
8017 
8018 	target = prev_cpu;
8019 
8020 	sync_entity_load_avg(&p->se);
8021 	if (!task_util_est(p) && p_util_min == 0)
8022 		goto unlock;
8023 
8024 	eenv_task_busy_time(&eenv, p, prev_cpu);
8025 
8026 	for (; pd; pd = pd->next) {
8027 		unsigned long util_min = p_util_min, util_max = p_util_max;
8028 		unsigned long cpu_cap, cpu_actual_cap, util;
8029 		long prev_spare_cap = -1, max_spare_cap = -1;
8030 		unsigned long rq_util_min, rq_util_max;
8031 		unsigned long cur_delta, base_energy;
8032 		int max_spare_cap_cpu = -1;
8033 		int fits, max_fits = -1;
8034 
8035 		cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8036 
8037 		if (cpumask_empty(cpus))
8038 			continue;
8039 
8040 		/* Account external pressure for the energy estimation */
8041 		cpu = cpumask_first(cpus);
8042 		cpu_actual_cap = get_actual_cpu_capacity(cpu);
8043 
8044 		eenv.cpu_cap = cpu_actual_cap;
8045 		eenv.pd_cap = 0;
8046 
8047 		for_each_cpu(cpu, cpus) {
8048 			struct rq *rq = cpu_rq(cpu);
8049 
8050 			eenv.pd_cap += cpu_actual_cap;
8051 
8052 			if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8053 				continue;
8054 
8055 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8056 				continue;
8057 
8058 			util = cpu_util(cpu, p, cpu, 0);
8059 			cpu_cap = capacity_of(cpu);
8060 
8061 			/*
8062 			 * Skip CPUs that cannot satisfy the capacity request.
8063 			 * IOW, placing the task there would make the CPU
8064 			 * overutilized. Take uclamp into account to see how
8065 			 * much capacity we can get out of the CPU; this is
8066 			 * aligned with sched_cpu_util().
8067 			 */
8068 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8069 				/*
8070 				 * Open code uclamp_rq_util_with() except for
8071 				 * the clamp() part. I.e.: apply max aggregation
8072 				 * only. util_fits_cpu() logic requires to
8073 				 * operate on non clamped util but must use the
8074 				 * max-aggregated uclamp_{min, max}.
8075 				 */
8076 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8077 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8078 
8079 				util_min = max(rq_util_min, p_util_min);
8080 				util_max = max(rq_util_max, p_util_max);
8081 			}
8082 
8083 			fits = util_fits_cpu(util, util_min, util_max, cpu);
8084 			if (!fits)
8085 				continue;
8086 
8087 			lsub_positive(&cpu_cap, util);
8088 
8089 			if (cpu == prev_cpu) {
8090 				/* Always use prev_cpu as a candidate. */
8091 				prev_spare_cap = cpu_cap;
8092 				prev_fits = fits;
8093 			} else if ((fits > max_fits) ||
8094 				   ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8095 				/*
8096 				 * Find the CPU with the maximum spare capacity
8097 				 * among the remaining CPUs in the performance
8098 				 * domain.
8099 				 */
8100 				max_spare_cap = cpu_cap;
8101 				max_spare_cap_cpu = cpu;
8102 				max_fits = fits;
8103 			}
8104 		}
8105 
8106 		if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8107 			continue;
8108 
8109 		eenv_pd_busy_time(&eenv, cpus, p);
8110 		/* Compute the 'base' energy of the pd, without @p */
8111 		base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8112 
8113 		/* Evaluate the energy impact of using prev_cpu. */
8114 		if (prev_spare_cap > -1) {
8115 			prev_delta = compute_energy(&eenv, pd, cpus, p,
8116 						    prev_cpu);
8117 			/* CPU utilization has changed */
8118 			if (prev_delta < base_energy)
8119 				goto unlock;
8120 			prev_delta -= base_energy;
8121 			prev_actual_cap = cpu_actual_cap;
8122 			best_delta = min(best_delta, prev_delta);
8123 		}
8124 
8125 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
8126 		if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8127 			/* Current best energy cpu fits better */
8128 			if (max_fits < best_fits)
8129 				continue;
8130 
8131 			/*
8132 			 * Both don't fit performance hint (i.e. uclamp_min)
8133 			 * but best energy cpu has better capacity.
8134 			 */
8135 			if ((max_fits < 0) &&
8136 			    (cpu_actual_cap <= best_actual_cap))
8137 				continue;
8138 
8139 			cur_delta = compute_energy(&eenv, pd, cpus, p,
8140 						   max_spare_cap_cpu);
8141 			/* CPU utilization has changed */
8142 			if (cur_delta < base_energy)
8143 				goto unlock;
8144 			cur_delta -= base_energy;
8145 
8146 			/*
8147 			 * Both fit for the task but best energy cpu has lower
8148 			 * energy impact.
8149 			 */
8150 			if ((max_fits > 0) && (best_fits > 0) &&
8151 			    (cur_delta >= best_delta))
8152 				continue;
8153 
8154 			best_delta = cur_delta;
8155 			best_energy_cpu = max_spare_cap_cpu;
8156 			best_fits = max_fits;
8157 			best_actual_cap = cpu_actual_cap;
8158 		}
8159 	}
8160 	rcu_read_unlock();
8161 
8162 	if ((best_fits > prev_fits) ||
8163 	    ((best_fits > 0) && (best_delta < prev_delta)) ||
8164 	    ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8165 		target = best_energy_cpu;
8166 
8167 	return target;
8168 
8169 unlock:
8170 	rcu_read_unlock();
8171 
8172 	return target;
8173 }
8174 
8175 /*
8176  * select_task_rq_fair: Select target runqueue for the waking task in domains
8177  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8178  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8179  *
8180  * Balances load by selecting the idlest CPU in the idlest group, or under
8181  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8182  *
8183  * Returns the target CPU number.
8184  */
8185 static int
8186 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8187 {
8188 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8189 	struct sched_domain *tmp, *sd = NULL;
8190 	int cpu = smp_processor_id();
8191 	int new_cpu = prev_cpu;
8192 	int want_affine = 0;
8193 	/* SD_flags and WF_flags share the first nibble */
8194 	int sd_flag = wake_flags & 0xF;
8195 
8196 	/*
8197 	 * required for stable ->cpus_allowed
8198 	 */
8199 	lockdep_assert_held(&p->pi_lock);
8200 	if (wake_flags & WF_TTWU) {
8201 		record_wakee(p);
8202 
8203 		if ((wake_flags & WF_CURRENT_CPU) &&
8204 		    cpumask_test_cpu(cpu, p->cpus_ptr))
8205 			return cpu;
8206 
8207 		if (!is_rd_overutilized(this_rq()->rd)) {
8208 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8209 			if (new_cpu >= 0)
8210 				return new_cpu;
8211 			new_cpu = prev_cpu;
8212 		}
8213 
8214 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8215 	}
8216 
8217 	rcu_read_lock();
8218 	for_each_domain(cpu, tmp) {
8219 		/*
8220 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
8221 		 * cpu is a valid SD_WAKE_AFFINE target.
8222 		 */
8223 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8224 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8225 			if (cpu != prev_cpu)
8226 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8227 
8228 			sd = NULL; /* Prefer wake_affine over balance flags */
8229 			break;
8230 		}
8231 
8232 		/*
8233 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8234 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8235 		 * will usually go to the fast path.
8236 		 */
8237 		if (tmp->flags & sd_flag)
8238 			sd = tmp;
8239 		else if (!want_affine)
8240 			break;
8241 	}
8242 
8243 	if (unlikely(sd)) {
8244 		/* Slow path */
8245 		new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8246 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
8247 		/* Fast path */
8248 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8249 	}
8250 	rcu_read_unlock();
8251 
8252 	return new_cpu;
8253 }
8254 
8255 /*
8256  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8257  * cfs_rq_of(p) references at time of call are still valid and identify the
8258  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8259  */
8260 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8261 {
8262 	struct sched_entity *se = &p->se;
8263 
8264 	if (!task_on_rq_migrating(p)) {
8265 		remove_entity_load_avg(se);
8266 
8267 		/*
8268 		 * Here, the task's PELT values have been updated according to
8269 		 * the current rq's clock. But if that clock hasn't been
8270 		 * updated in a while, a substantial idle time will be missed,
8271 		 * leading to an inflation after wake-up on the new rq.
8272 		 *
8273 		 * Estimate the missing time from the cfs_rq last_update_time
8274 		 * and update sched_avg to improve the PELT continuity after
8275 		 * migration.
8276 		 */
8277 		migrate_se_pelt_lag(se);
8278 	}
8279 
8280 	/* Tell new CPU we are migrated */
8281 	se->avg.last_update_time = 0;
8282 
8283 	update_scan_period(p, new_cpu);
8284 }
8285 
8286 static void task_dead_fair(struct task_struct *p)
8287 {
8288 	remove_entity_load_avg(&p->se);
8289 }
8290 
8291 /*
8292  * Set the max capacity the task is allowed to run at for misfit detection.
8293  */
8294 static void set_task_max_allowed_capacity(struct task_struct *p)
8295 {
8296 	struct asym_cap_data *entry;
8297 
8298 	if (!sched_asym_cpucap_active())
8299 		return;
8300 
8301 	rcu_read_lock();
8302 	list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8303 		cpumask_t *cpumask;
8304 
8305 		cpumask = cpu_capacity_span(entry);
8306 		if (!cpumask_intersects(p->cpus_ptr, cpumask))
8307 			continue;
8308 
8309 		p->max_allowed_capacity = entry->capacity;
8310 		break;
8311 	}
8312 	rcu_read_unlock();
8313 }
8314 
8315 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8316 {
8317 	set_cpus_allowed_common(p, ctx);
8318 	set_task_max_allowed_capacity(p);
8319 }
8320 
8321 static int
8322 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8323 {
8324 	if (rq->nr_running)
8325 		return 1;
8326 
8327 	return sched_balance_newidle(rq, rf) != 0;
8328 }
8329 #else
8330 static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
8331 #endif /* CONFIG_SMP */
8332 
8333 static void set_next_buddy(struct sched_entity *se)
8334 {
8335 	for_each_sched_entity(se) {
8336 		if (SCHED_WARN_ON(!se->on_rq))
8337 			return;
8338 		if (se_is_idle(se))
8339 			return;
8340 		cfs_rq_of(se)->next = se;
8341 	}
8342 }
8343 
8344 /*
8345  * Preempt the current task with a newly woken task if needed:
8346  */
8347 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8348 {
8349 	struct task_struct *curr = rq->curr;
8350 	struct sched_entity *se = &curr->se, *pse = &p->se;
8351 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8352 	int cse_is_idle, pse_is_idle;
8353 
8354 	if (unlikely(se == pse))
8355 		return;
8356 
8357 	/*
8358 	 * This is possible from callers such as attach_tasks(), in which we
8359 	 * unconditionally wakeup_preempt() after an enqueue (which may have
8360 	 * lead to a throttle).  This both saves work and prevents false
8361 	 * next-buddy nomination below.
8362 	 */
8363 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8364 		return;
8365 
8366 	if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8367 		set_next_buddy(pse);
8368 	}
8369 
8370 	/*
8371 	 * We can come here with TIF_NEED_RESCHED already set from new task
8372 	 * wake up path.
8373 	 *
8374 	 * Note: this also catches the edge-case of curr being in a throttled
8375 	 * group (e.g. via set_curr_task), since update_curr() (in the
8376 	 * enqueue of curr) will have resulted in resched being set.  This
8377 	 * prevents us from potentially nominating it as a false LAST_BUDDY
8378 	 * below.
8379 	 */
8380 	if (test_tsk_need_resched(curr))
8381 		return;
8382 
8383 	/* Idle tasks are by definition preempted by non-idle tasks. */
8384 	if (unlikely(task_has_idle_policy(curr)) &&
8385 	    likely(!task_has_idle_policy(p)))
8386 		goto preempt;
8387 
8388 	/*
8389 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
8390 	 * is driven by the tick):
8391 	 */
8392 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
8393 		return;
8394 
8395 	find_matching_se(&se, &pse);
8396 	WARN_ON_ONCE(!pse);
8397 
8398 	cse_is_idle = se_is_idle(se);
8399 	pse_is_idle = se_is_idle(pse);
8400 
8401 	/*
8402 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
8403 	 * in the inverse case).
8404 	 */
8405 	if (cse_is_idle && !pse_is_idle)
8406 		goto preempt;
8407 	if (cse_is_idle != pse_is_idle)
8408 		return;
8409 
8410 	cfs_rq = cfs_rq_of(se);
8411 	update_curr(cfs_rq);
8412 
8413 	/*
8414 	 * XXX pick_eevdf(cfs_rq) != se ?
8415 	 */
8416 	if (pick_eevdf(cfs_rq) == pse)
8417 		goto preempt;
8418 
8419 	return;
8420 
8421 preempt:
8422 	resched_curr(rq);
8423 }
8424 
8425 #ifdef CONFIG_SMP
8426 static struct task_struct *pick_task_fair(struct rq *rq)
8427 {
8428 	struct sched_entity *se;
8429 	struct cfs_rq *cfs_rq;
8430 
8431 again:
8432 	cfs_rq = &rq->cfs;
8433 	if (!cfs_rq->nr_running)
8434 		return NULL;
8435 
8436 	do {
8437 		struct sched_entity *curr = cfs_rq->curr;
8438 
8439 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
8440 		if (curr) {
8441 			if (curr->on_rq)
8442 				update_curr(cfs_rq);
8443 			else
8444 				curr = NULL;
8445 
8446 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8447 				goto again;
8448 		}
8449 
8450 		se = pick_next_entity(cfs_rq);
8451 		cfs_rq = group_cfs_rq(se);
8452 	} while (cfs_rq);
8453 
8454 	return task_of(se);
8455 }
8456 #endif
8457 
8458 struct task_struct *
8459 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8460 {
8461 	struct cfs_rq *cfs_rq = &rq->cfs;
8462 	struct sched_entity *se;
8463 	struct task_struct *p;
8464 	int new_tasks;
8465 
8466 again:
8467 	if (!sched_fair_runnable(rq))
8468 		goto idle;
8469 
8470 #ifdef CONFIG_FAIR_GROUP_SCHED
8471 	if (!prev || prev->sched_class != &fair_sched_class)
8472 		goto simple;
8473 
8474 	/*
8475 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8476 	 * likely that a next task is from the same cgroup as the current.
8477 	 *
8478 	 * Therefore attempt to avoid putting and setting the entire cgroup
8479 	 * hierarchy, only change the part that actually changes.
8480 	 */
8481 
8482 	do {
8483 		struct sched_entity *curr = cfs_rq->curr;
8484 
8485 		/*
8486 		 * Since we got here without doing put_prev_entity() we also
8487 		 * have to consider cfs_rq->curr. If it is still a runnable
8488 		 * entity, update_curr() will update its vruntime, otherwise
8489 		 * forget we've ever seen it.
8490 		 */
8491 		if (curr) {
8492 			if (curr->on_rq)
8493 				update_curr(cfs_rq);
8494 			else
8495 				curr = NULL;
8496 
8497 			/*
8498 			 * This call to check_cfs_rq_runtime() will do the
8499 			 * throttle and dequeue its entity in the parent(s).
8500 			 * Therefore the nr_running test will indeed
8501 			 * be correct.
8502 			 */
8503 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
8504 				cfs_rq = &rq->cfs;
8505 
8506 				if (!cfs_rq->nr_running)
8507 					goto idle;
8508 
8509 				goto simple;
8510 			}
8511 		}
8512 
8513 		se = pick_next_entity(cfs_rq);
8514 		cfs_rq = group_cfs_rq(se);
8515 	} while (cfs_rq);
8516 
8517 	p = task_of(se);
8518 
8519 	/*
8520 	 * Since we haven't yet done put_prev_entity and if the selected task
8521 	 * is a different task than we started out with, try and touch the
8522 	 * least amount of cfs_rqs.
8523 	 */
8524 	if (prev != p) {
8525 		struct sched_entity *pse = &prev->se;
8526 
8527 		while (!(cfs_rq = is_same_group(se, pse))) {
8528 			int se_depth = se->depth;
8529 			int pse_depth = pse->depth;
8530 
8531 			if (se_depth <= pse_depth) {
8532 				put_prev_entity(cfs_rq_of(pse), pse);
8533 				pse = parent_entity(pse);
8534 			}
8535 			if (se_depth >= pse_depth) {
8536 				set_next_entity(cfs_rq_of(se), se);
8537 				se = parent_entity(se);
8538 			}
8539 		}
8540 
8541 		put_prev_entity(cfs_rq, pse);
8542 		set_next_entity(cfs_rq, se);
8543 	}
8544 
8545 	goto done;
8546 simple:
8547 #endif
8548 	if (prev)
8549 		put_prev_task(rq, prev);
8550 
8551 	do {
8552 		se = pick_next_entity(cfs_rq);
8553 		set_next_entity(cfs_rq, se);
8554 		cfs_rq = group_cfs_rq(se);
8555 	} while (cfs_rq);
8556 
8557 	p = task_of(se);
8558 
8559 done: __maybe_unused;
8560 #ifdef CONFIG_SMP
8561 	/*
8562 	 * Move the next running task to the front of
8563 	 * the list, so our cfs_tasks list becomes MRU
8564 	 * one.
8565 	 */
8566 	list_move(&p->se.group_node, &rq->cfs_tasks);
8567 #endif
8568 
8569 	if (hrtick_enabled_fair(rq))
8570 		hrtick_start_fair(rq, p);
8571 
8572 	update_misfit_status(p, rq);
8573 	sched_fair_update_stop_tick(rq, p);
8574 
8575 	return p;
8576 
8577 idle:
8578 	if (!rf)
8579 		return NULL;
8580 
8581 	new_tasks = sched_balance_newidle(rq, rf);
8582 
8583 	/*
8584 	 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8585 	 * possible for any higher priority task to appear. In that case we
8586 	 * must re-start the pick_next_entity() loop.
8587 	 */
8588 	if (new_tasks < 0)
8589 		return RETRY_TASK;
8590 
8591 	if (new_tasks > 0)
8592 		goto again;
8593 
8594 	/*
8595 	 * rq is about to be idle, check if we need to update the
8596 	 * lost_idle_time of clock_pelt
8597 	 */
8598 	update_idle_rq_clock_pelt(rq);
8599 
8600 	return NULL;
8601 }
8602 
8603 static struct task_struct *__pick_next_task_fair(struct rq *rq)
8604 {
8605 	return pick_next_task_fair(rq, NULL, NULL);
8606 }
8607 
8608 /*
8609  * Account for a descheduled task:
8610  */
8611 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
8612 {
8613 	struct sched_entity *se = &prev->se;
8614 	struct cfs_rq *cfs_rq;
8615 
8616 	for_each_sched_entity(se) {
8617 		cfs_rq = cfs_rq_of(se);
8618 		put_prev_entity(cfs_rq, se);
8619 	}
8620 }
8621 
8622 /*
8623  * sched_yield() is very simple
8624  */
8625 static void yield_task_fair(struct rq *rq)
8626 {
8627 	struct task_struct *curr = rq->curr;
8628 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8629 	struct sched_entity *se = &curr->se;
8630 
8631 	/*
8632 	 * Are we the only task in the tree?
8633 	 */
8634 	if (unlikely(rq->nr_running == 1))
8635 		return;
8636 
8637 	clear_buddies(cfs_rq, se);
8638 
8639 	update_rq_clock(rq);
8640 	/*
8641 	 * Update run-time statistics of the 'current'.
8642 	 */
8643 	update_curr(cfs_rq);
8644 	/*
8645 	 * Tell update_rq_clock() that we've just updated,
8646 	 * so we don't do microscopic update in schedule()
8647 	 * and double the fastpath cost.
8648 	 */
8649 	rq_clock_skip_update(rq);
8650 
8651 	se->deadline += calc_delta_fair(se->slice, se);
8652 }
8653 
8654 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
8655 {
8656 	struct sched_entity *se = &p->se;
8657 
8658 	/* throttled hierarchies are not runnable */
8659 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
8660 		return false;
8661 
8662 	/* Tell the scheduler that we'd really like se to run next. */
8663 	set_next_buddy(se);
8664 
8665 	yield_task_fair(rq);
8666 
8667 	return true;
8668 }
8669 
8670 #ifdef CONFIG_SMP
8671 /**************************************************
8672  * Fair scheduling class load-balancing methods.
8673  *
8674  * BASICS
8675  *
8676  * The purpose of load-balancing is to achieve the same basic fairness the
8677  * per-CPU scheduler provides, namely provide a proportional amount of compute
8678  * time to each task. This is expressed in the following equation:
8679  *
8680  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
8681  *
8682  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
8683  * W_i,0 is defined as:
8684  *
8685  *   W_i,0 = \Sum_j w_i,j                                             (2)
8686  *
8687  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
8688  * is derived from the nice value as per sched_prio_to_weight[].
8689  *
8690  * The weight average is an exponential decay average of the instantaneous
8691  * weight:
8692  *
8693  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
8694  *
8695  * C_i is the compute capacity of CPU i, typically it is the
8696  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
8697  * can also include other factors [XXX].
8698  *
8699  * To achieve this balance we define a measure of imbalance which follows
8700  * directly from (1):
8701  *
8702  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
8703  *
8704  * We them move tasks around to minimize the imbalance. In the continuous
8705  * function space it is obvious this converges, in the discrete case we get
8706  * a few fun cases generally called infeasible weight scenarios.
8707  *
8708  * [XXX expand on:
8709  *     - infeasible weights;
8710  *     - local vs global optima in the discrete case. ]
8711  *
8712  *
8713  * SCHED DOMAINS
8714  *
8715  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
8716  * for all i,j solution, we create a tree of CPUs that follows the hardware
8717  * topology where each level pairs two lower groups (or better). This results
8718  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
8719  * tree to only the first of the previous level and we decrease the frequency
8720  * of load-balance at each level inversely proportional to the number of CPUs in
8721  * the groups.
8722  *
8723  * This yields:
8724  *
8725  *     log_2 n     1     n
8726  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
8727  *     i = 0      2^i   2^i
8728  *                               `- size of each group
8729  *         |         |     `- number of CPUs doing load-balance
8730  *         |         `- freq
8731  *         `- sum over all levels
8732  *
8733  * Coupled with a limit on how many tasks we can migrate every balance pass,
8734  * this makes (5) the runtime complexity of the balancer.
8735  *
8736  * An important property here is that each CPU is still (indirectly) connected
8737  * to every other CPU in at most O(log n) steps:
8738  *
8739  * The adjacency matrix of the resulting graph is given by:
8740  *
8741  *             log_2 n
8742  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
8743  *             k = 0
8744  *
8745  * And you'll find that:
8746  *
8747  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
8748  *
8749  * Showing there's indeed a path between every CPU in at most O(log n) steps.
8750  * The task movement gives a factor of O(m), giving a convergence complexity
8751  * of:
8752  *
8753  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
8754  *
8755  *
8756  * WORK CONSERVING
8757  *
8758  * In order to avoid CPUs going idle while there's still work to do, new idle
8759  * balancing is more aggressive and has the newly idle CPU iterate up the domain
8760  * tree itself instead of relying on other CPUs to bring it work.
8761  *
8762  * This adds some complexity to both (5) and (8) but it reduces the total idle
8763  * time.
8764  *
8765  * [XXX more?]
8766  *
8767  *
8768  * CGROUPS
8769  *
8770  * Cgroups make a horror show out of (2), instead of a simple sum we get:
8771  *
8772  *                                s_k,i
8773  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
8774  *                                 S_k
8775  *
8776  * Where
8777  *
8778  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
8779  *
8780  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
8781  *
8782  * The big problem is S_k, its a global sum needed to compute a local (W_i)
8783  * property.
8784  *
8785  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
8786  *      rewrite all of this once again.]
8787  */
8788 
8789 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
8790 
8791 enum fbq_type { regular, remote, all };
8792 
8793 /*
8794  * 'group_type' describes the group of CPUs at the moment of load balancing.
8795  *
8796  * The enum is ordered by pulling priority, with the group with lowest priority
8797  * first so the group_type can simply be compared when selecting the busiest
8798  * group. See update_sd_pick_busiest().
8799  */
8800 enum group_type {
8801 	/* The group has spare capacity that can be used to run more tasks.  */
8802 	group_has_spare = 0,
8803 	/*
8804 	 * The group is fully used and the tasks don't compete for more CPU
8805 	 * cycles. Nevertheless, some tasks might wait before running.
8806 	 */
8807 	group_fully_busy,
8808 	/*
8809 	 * One task doesn't fit with CPU's capacity and must be migrated to a
8810 	 * more powerful CPU.
8811 	 */
8812 	group_misfit_task,
8813 	/*
8814 	 * Balance SMT group that's fully busy. Can benefit from migration
8815 	 * a task on SMT with busy sibling to another CPU on idle core.
8816 	 */
8817 	group_smt_balance,
8818 	/*
8819 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
8820 	 * and the task should be migrated to it instead of running on the
8821 	 * current CPU.
8822 	 */
8823 	group_asym_packing,
8824 	/*
8825 	 * The tasks' affinity constraints previously prevented the scheduler
8826 	 * from balancing the load across the system.
8827 	 */
8828 	group_imbalanced,
8829 	/*
8830 	 * The CPU is overloaded and can't provide expected CPU cycles to all
8831 	 * tasks.
8832 	 */
8833 	group_overloaded
8834 };
8835 
8836 enum migration_type {
8837 	migrate_load = 0,
8838 	migrate_util,
8839 	migrate_task,
8840 	migrate_misfit
8841 };
8842 
8843 #define LBF_ALL_PINNED	0x01
8844 #define LBF_NEED_BREAK	0x02
8845 #define LBF_DST_PINNED  0x04
8846 #define LBF_SOME_PINNED	0x08
8847 #define LBF_ACTIVE_LB	0x10
8848 
8849 struct lb_env {
8850 	struct sched_domain	*sd;
8851 
8852 	struct rq		*src_rq;
8853 	int			src_cpu;
8854 
8855 	int			dst_cpu;
8856 	struct rq		*dst_rq;
8857 
8858 	struct cpumask		*dst_grpmask;
8859 	int			new_dst_cpu;
8860 	enum cpu_idle_type	idle;
8861 	long			imbalance;
8862 	/* The set of CPUs under consideration for load-balancing */
8863 	struct cpumask		*cpus;
8864 
8865 	unsigned int		flags;
8866 
8867 	unsigned int		loop;
8868 	unsigned int		loop_break;
8869 	unsigned int		loop_max;
8870 
8871 	enum fbq_type		fbq_type;
8872 	enum migration_type	migration_type;
8873 	struct list_head	tasks;
8874 };
8875 
8876 /*
8877  * Is this task likely cache-hot:
8878  */
8879 static int task_hot(struct task_struct *p, struct lb_env *env)
8880 {
8881 	s64 delta;
8882 
8883 	lockdep_assert_rq_held(env->src_rq);
8884 
8885 	if (p->sched_class != &fair_sched_class)
8886 		return 0;
8887 
8888 	if (unlikely(task_has_idle_policy(p)))
8889 		return 0;
8890 
8891 	/* SMT siblings share cache */
8892 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8893 		return 0;
8894 
8895 	/*
8896 	 * Buddy candidates are cache hot:
8897 	 */
8898 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8899 	    (&p->se == cfs_rq_of(&p->se)->next))
8900 		return 1;
8901 
8902 	if (sysctl_sched_migration_cost == -1)
8903 		return 1;
8904 
8905 	/*
8906 	 * Don't migrate task if the task's cookie does not match
8907 	 * with the destination CPU's core cookie.
8908 	 */
8909 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8910 		return 1;
8911 
8912 	if (sysctl_sched_migration_cost == 0)
8913 		return 0;
8914 
8915 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8916 
8917 	return delta < (s64)sysctl_sched_migration_cost;
8918 }
8919 
8920 #ifdef CONFIG_NUMA_BALANCING
8921 /*
8922  * Returns 1, if task migration degrades locality
8923  * Returns 0, if task migration improves locality i.e migration preferred.
8924  * Returns -1, if task migration is not affected by locality.
8925  */
8926 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8927 {
8928 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
8929 	unsigned long src_weight, dst_weight;
8930 	int src_nid, dst_nid, dist;
8931 
8932 	if (!static_branch_likely(&sched_numa_balancing))
8933 		return -1;
8934 
8935 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8936 		return -1;
8937 
8938 	src_nid = cpu_to_node(env->src_cpu);
8939 	dst_nid = cpu_to_node(env->dst_cpu);
8940 
8941 	if (src_nid == dst_nid)
8942 		return -1;
8943 
8944 	/* Migrating away from the preferred node is always bad. */
8945 	if (src_nid == p->numa_preferred_nid) {
8946 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8947 			return 1;
8948 		else
8949 			return -1;
8950 	}
8951 
8952 	/* Encourage migration to the preferred node. */
8953 	if (dst_nid == p->numa_preferred_nid)
8954 		return 0;
8955 
8956 	/* Leaving a core idle is often worse than degrading locality. */
8957 	if (env->idle == CPU_IDLE)
8958 		return -1;
8959 
8960 	dist = node_distance(src_nid, dst_nid);
8961 	if (numa_group) {
8962 		src_weight = group_weight(p, src_nid, dist);
8963 		dst_weight = group_weight(p, dst_nid, dist);
8964 	} else {
8965 		src_weight = task_weight(p, src_nid, dist);
8966 		dst_weight = task_weight(p, dst_nid, dist);
8967 	}
8968 
8969 	return dst_weight < src_weight;
8970 }
8971 
8972 #else
8973 static inline int migrate_degrades_locality(struct task_struct *p,
8974 					     struct lb_env *env)
8975 {
8976 	return -1;
8977 }
8978 #endif
8979 
8980 /*
8981  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8982  */
8983 static
8984 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8985 {
8986 	int tsk_cache_hot;
8987 
8988 	lockdep_assert_rq_held(env->src_rq);
8989 
8990 	/*
8991 	 * We do not migrate tasks that are:
8992 	 * 1) throttled_lb_pair, or
8993 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8994 	 * 3) running (obviously), or
8995 	 * 4) are cache-hot on their current CPU.
8996 	 */
8997 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8998 		return 0;
8999 
9000 	/* Disregard percpu kthreads; they are where they need to be. */
9001 	if (kthread_is_per_cpu(p))
9002 		return 0;
9003 
9004 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9005 		int cpu;
9006 
9007 		schedstat_inc(p->stats.nr_failed_migrations_affine);
9008 
9009 		env->flags |= LBF_SOME_PINNED;
9010 
9011 		/*
9012 		 * Remember if this task can be migrated to any other CPU in
9013 		 * our sched_group. We may want to revisit it if we couldn't
9014 		 * meet load balance goals by pulling other tasks on src_cpu.
9015 		 *
9016 		 * Avoid computing new_dst_cpu
9017 		 * - for NEWLY_IDLE
9018 		 * - if we have already computed one in current iteration
9019 		 * - if it's an active balance
9020 		 */
9021 		if (env->idle == CPU_NEWLY_IDLE ||
9022 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9023 			return 0;
9024 
9025 		/* Prevent to re-select dst_cpu via env's CPUs: */
9026 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
9027 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
9028 				env->flags |= LBF_DST_PINNED;
9029 				env->new_dst_cpu = cpu;
9030 				break;
9031 			}
9032 		}
9033 
9034 		return 0;
9035 	}
9036 
9037 	/* Record that we found at least one task that could run on dst_cpu */
9038 	env->flags &= ~LBF_ALL_PINNED;
9039 
9040 	if (task_on_cpu(env->src_rq, p)) {
9041 		schedstat_inc(p->stats.nr_failed_migrations_running);
9042 		return 0;
9043 	}
9044 
9045 	/*
9046 	 * Aggressive migration if:
9047 	 * 1) active balance
9048 	 * 2) destination numa is preferred
9049 	 * 3) task is cache cold, or
9050 	 * 4) too many balance attempts have failed.
9051 	 */
9052 	if (env->flags & LBF_ACTIVE_LB)
9053 		return 1;
9054 
9055 	tsk_cache_hot = migrate_degrades_locality(p, env);
9056 	if (tsk_cache_hot == -1)
9057 		tsk_cache_hot = task_hot(p, env);
9058 
9059 	if (tsk_cache_hot <= 0 ||
9060 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9061 		if (tsk_cache_hot == 1) {
9062 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9063 			schedstat_inc(p->stats.nr_forced_migrations);
9064 		}
9065 		return 1;
9066 	}
9067 
9068 	schedstat_inc(p->stats.nr_failed_migrations_hot);
9069 	return 0;
9070 }
9071 
9072 /*
9073  * detach_task() -- detach the task for the migration specified in env
9074  */
9075 static void detach_task(struct task_struct *p, struct lb_env *env)
9076 {
9077 	lockdep_assert_rq_held(env->src_rq);
9078 
9079 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9080 	set_task_cpu(p, env->dst_cpu);
9081 }
9082 
9083 /*
9084  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9085  * part of active balancing operations within "domain".
9086  *
9087  * Returns a task if successful and NULL otherwise.
9088  */
9089 static struct task_struct *detach_one_task(struct lb_env *env)
9090 {
9091 	struct task_struct *p;
9092 
9093 	lockdep_assert_rq_held(env->src_rq);
9094 
9095 	list_for_each_entry_reverse(p,
9096 			&env->src_rq->cfs_tasks, se.group_node) {
9097 		if (!can_migrate_task(p, env))
9098 			continue;
9099 
9100 		detach_task(p, env);
9101 
9102 		/*
9103 		 * Right now, this is only the second place where
9104 		 * lb_gained[env->idle] is updated (other is detach_tasks)
9105 		 * so we can safely collect stats here rather than
9106 		 * inside detach_tasks().
9107 		 */
9108 		schedstat_inc(env->sd->lb_gained[env->idle]);
9109 		return p;
9110 	}
9111 	return NULL;
9112 }
9113 
9114 /*
9115  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9116  * busiest_rq, as part of a balancing operation within domain "sd".
9117  *
9118  * Returns number of detached tasks if successful and 0 otherwise.
9119  */
9120 static int detach_tasks(struct lb_env *env)
9121 {
9122 	struct list_head *tasks = &env->src_rq->cfs_tasks;
9123 	unsigned long util, load;
9124 	struct task_struct *p;
9125 	int detached = 0;
9126 
9127 	lockdep_assert_rq_held(env->src_rq);
9128 
9129 	/*
9130 	 * Source run queue has been emptied by another CPU, clear
9131 	 * LBF_ALL_PINNED flag as we will not test any task.
9132 	 */
9133 	if (env->src_rq->nr_running <= 1) {
9134 		env->flags &= ~LBF_ALL_PINNED;
9135 		return 0;
9136 	}
9137 
9138 	if (env->imbalance <= 0)
9139 		return 0;
9140 
9141 	while (!list_empty(tasks)) {
9142 		/*
9143 		 * We don't want to steal all, otherwise we may be treated likewise,
9144 		 * which could at worst lead to a livelock crash.
9145 		 */
9146 		if (env->idle && env->src_rq->nr_running <= 1)
9147 			break;
9148 
9149 		env->loop++;
9150 		/* We've more or less seen every task there is, call it quits */
9151 		if (env->loop > env->loop_max)
9152 			break;
9153 
9154 		/* take a breather every nr_migrate tasks */
9155 		if (env->loop > env->loop_break) {
9156 			env->loop_break += SCHED_NR_MIGRATE_BREAK;
9157 			env->flags |= LBF_NEED_BREAK;
9158 			break;
9159 		}
9160 
9161 		p = list_last_entry(tasks, struct task_struct, se.group_node);
9162 
9163 		if (!can_migrate_task(p, env))
9164 			goto next;
9165 
9166 		switch (env->migration_type) {
9167 		case migrate_load:
9168 			/*
9169 			 * Depending of the number of CPUs and tasks and the
9170 			 * cgroup hierarchy, task_h_load() can return a null
9171 			 * value. Make sure that env->imbalance decreases
9172 			 * otherwise detach_tasks() will stop only after
9173 			 * detaching up to loop_max tasks.
9174 			 */
9175 			load = max_t(unsigned long, task_h_load(p), 1);
9176 
9177 			if (sched_feat(LB_MIN) &&
9178 			    load < 16 && !env->sd->nr_balance_failed)
9179 				goto next;
9180 
9181 			/*
9182 			 * Make sure that we don't migrate too much load.
9183 			 * Nevertheless, let relax the constraint if
9184 			 * scheduler fails to find a good waiting task to
9185 			 * migrate.
9186 			 */
9187 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9188 				goto next;
9189 
9190 			env->imbalance -= load;
9191 			break;
9192 
9193 		case migrate_util:
9194 			util = task_util_est(p);
9195 
9196 			if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9197 				goto next;
9198 
9199 			env->imbalance -= util;
9200 			break;
9201 
9202 		case migrate_task:
9203 			env->imbalance--;
9204 			break;
9205 
9206 		case migrate_misfit:
9207 			/* This is not a misfit task */
9208 			if (task_fits_cpu(p, env->src_cpu))
9209 				goto next;
9210 
9211 			env->imbalance = 0;
9212 			break;
9213 		}
9214 
9215 		detach_task(p, env);
9216 		list_add(&p->se.group_node, &env->tasks);
9217 
9218 		detached++;
9219 
9220 #ifdef CONFIG_PREEMPTION
9221 		/*
9222 		 * NEWIDLE balancing is a source of latency, so preemptible
9223 		 * kernels will stop after the first task is detached to minimize
9224 		 * the critical section.
9225 		 */
9226 		if (env->idle == CPU_NEWLY_IDLE)
9227 			break;
9228 #endif
9229 
9230 		/*
9231 		 * We only want to steal up to the prescribed amount of
9232 		 * load/util/tasks.
9233 		 */
9234 		if (env->imbalance <= 0)
9235 			break;
9236 
9237 		continue;
9238 next:
9239 		list_move(&p->se.group_node, tasks);
9240 	}
9241 
9242 	/*
9243 	 * Right now, this is one of only two places we collect this stat
9244 	 * so we can safely collect detach_one_task() stats here rather
9245 	 * than inside detach_one_task().
9246 	 */
9247 	schedstat_add(env->sd->lb_gained[env->idle], detached);
9248 
9249 	return detached;
9250 }
9251 
9252 /*
9253  * attach_task() -- attach the task detached by detach_task() to its new rq.
9254  */
9255 static void attach_task(struct rq *rq, struct task_struct *p)
9256 {
9257 	lockdep_assert_rq_held(rq);
9258 
9259 	WARN_ON_ONCE(task_rq(p) != rq);
9260 	activate_task(rq, p, ENQUEUE_NOCLOCK);
9261 	wakeup_preempt(rq, p, 0);
9262 }
9263 
9264 /*
9265  * attach_one_task() -- attaches the task returned from detach_one_task() to
9266  * its new rq.
9267  */
9268 static void attach_one_task(struct rq *rq, struct task_struct *p)
9269 {
9270 	struct rq_flags rf;
9271 
9272 	rq_lock(rq, &rf);
9273 	update_rq_clock(rq);
9274 	attach_task(rq, p);
9275 	rq_unlock(rq, &rf);
9276 }
9277 
9278 /*
9279  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9280  * new rq.
9281  */
9282 static void attach_tasks(struct lb_env *env)
9283 {
9284 	struct list_head *tasks = &env->tasks;
9285 	struct task_struct *p;
9286 	struct rq_flags rf;
9287 
9288 	rq_lock(env->dst_rq, &rf);
9289 	update_rq_clock(env->dst_rq);
9290 
9291 	while (!list_empty(tasks)) {
9292 		p = list_first_entry(tasks, struct task_struct, se.group_node);
9293 		list_del_init(&p->se.group_node);
9294 
9295 		attach_task(env->dst_rq, p);
9296 	}
9297 
9298 	rq_unlock(env->dst_rq, &rf);
9299 }
9300 
9301 #ifdef CONFIG_NO_HZ_COMMON
9302 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9303 {
9304 	if (cfs_rq->avg.load_avg)
9305 		return true;
9306 
9307 	if (cfs_rq->avg.util_avg)
9308 		return true;
9309 
9310 	return false;
9311 }
9312 
9313 static inline bool others_have_blocked(struct rq *rq)
9314 {
9315 	if (cpu_util_rt(rq))
9316 		return true;
9317 
9318 	if (cpu_util_dl(rq))
9319 		return true;
9320 
9321 	if (hw_load_avg(rq))
9322 		return true;
9323 
9324 	if (cpu_util_irq(rq))
9325 		return true;
9326 
9327 	return false;
9328 }
9329 
9330 static inline void update_blocked_load_tick(struct rq *rq)
9331 {
9332 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9333 }
9334 
9335 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9336 {
9337 	if (!has_blocked)
9338 		rq->has_blocked_load = 0;
9339 }
9340 #else
9341 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9342 static inline bool others_have_blocked(struct rq *rq) { return false; }
9343 static inline void update_blocked_load_tick(struct rq *rq) {}
9344 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9345 #endif
9346 
9347 static bool __update_blocked_others(struct rq *rq, bool *done)
9348 {
9349 	const struct sched_class *curr_class;
9350 	u64 now = rq_clock_pelt(rq);
9351 	unsigned long hw_pressure;
9352 	bool decayed;
9353 
9354 	/*
9355 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9356 	 * DL and IRQ signals have been updated before updating CFS.
9357 	 */
9358 	curr_class = rq->curr->sched_class;
9359 
9360 	hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
9361 
9362 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
9363 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
9364 		  update_hw_load_avg(now, rq, hw_pressure) |
9365 		  update_irq_load_avg(rq, 0);
9366 
9367 	if (others_have_blocked(rq))
9368 		*done = false;
9369 
9370 	return decayed;
9371 }
9372 
9373 #ifdef CONFIG_FAIR_GROUP_SCHED
9374 
9375 static bool __update_blocked_fair(struct rq *rq, bool *done)
9376 {
9377 	struct cfs_rq *cfs_rq, *pos;
9378 	bool decayed = false;
9379 	int cpu = cpu_of(rq);
9380 
9381 	/*
9382 	 * Iterates the task_group tree in a bottom up fashion, see
9383 	 * list_add_leaf_cfs_rq() for details.
9384 	 */
9385 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9386 		struct sched_entity *se;
9387 
9388 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9389 			update_tg_load_avg(cfs_rq);
9390 
9391 			if (cfs_rq->nr_running == 0)
9392 				update_idle_cfs_rq_clock_pelt(cfs_rq);
9393 
9394 			if (cfs_rq == &rq->cfs)
9395 				decayed = true;
9396 		}
9397 
9398 		/* Propagate pending load changes to the parent, if any: */
9399 		se = cfs_rq->tg->se[cpu];
9400 		if (se && !skip_blocked_update(se))
9401 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9402 
9403 		/*
9404 		 * There can be a lot of idle CPU cgroups.  Don't let fully
9405 		 * decayed cfs_rqs linger on the list.
9406 		 */
9407 		if (cfs_rq_is_decayed(cfs_rq))
9408 			list_del_leaf_cfs_rq(cfs_rq);
9409 
9410 		/* Don't need periodic decay once load/util_avg are null */
9411 		if (cfs_rq_has_blocked(cfs_rq))
9412 			*done = false;
9413 	}
9414 
9415 	return decayed;
9416 }
9417 
9418 /*
9419  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9420  * This needs to be done in a top-down fashion because the load of a child
9421  * group is a fraction of its parents load.
9422  */
9423 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9424 {
9425 	struct rq *rq = rq_of(cfs_rq);
9426 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9427 	unsigned long now = jiffies;
9428 	unsigned long load;
9429 
9430 	if (cfs_rq->last_h_load_update == now)
9431 		return;
9432 
9433 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
9434 	for_each_sched_entity(se) {
9435 		cfs_rq = cfs_rq_of(se);
9436 		WRITE_ONCE(cfs_rq->h_load_next, se);
9437 		if (cfs_rq->last_h_load_update == now)
9438 			break;
9439 	}
9440 
9441 	if (!se) {
9442 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9443 		cfs_rq->last_h_load_update = now;
9444 	}
9445 
9446 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9447 		load = cfs_rq->h_load;
9448 		load = div64_ul(load * se->avg.load_avg,
9449 			cfs_rq_load_avg(cfs_rq) + 1);
9450 		cfs_rq = group_cfs_rq(se);
9451 		cfs_rq->h_load = load;
9452 		cfs_rq->last_h_load_update = now;
9453 	}
9454 }
9455 
9456 static unsigned long task_h_load(struct task_struct *p)
9457 {
9458 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
9459 
9460 	update_cfs_rq_h_load(cfs_rq);
9461 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9462 			cfs_rq_load_avg(cfs_rq) + 1);
9463 }
9464 #else
9465 static bool __update_blocked_fair(struct rq *rq, bool *done)
9466 {
9467 	struct cfs_rq *cfs_rq = &rq->cfs;
9468 	bool decayed;
9469 
9470 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9471 	if (cfs_rq_has_blocked(cfs_rq))
9472 		*done = false;
9473 
9474 	return decayed;
9475 }
9476 
9477 static unsigned long task_h_load(struct task_struct *p)
9478 {
9479 	return p->se.avg.load_avg;
9480 }
9481 #endif
9482 
9483 static void sched_balance_update_blocked_averages(int cpu)
9484 {
9485 	bool decayed = false, done = true;
9486 	struct rq *rq = cpu_rq(cpu);
9487 	struct rq_flags rf;
9488 
9489 	rq_lock_irqsave(rq, &rf);
9490 	update_blocked_load_tick(rq);
9491 	update_rq_clock(rq);
9492 
9493 	decayed |= __update_blocked_others(rq, &done);
9494 	decayed |= __update_blocked_fair(rq, &done);
9495 
9496 	update_blocked_load_status(rq, !done);
9497 	if (decayed)
9498 		cpufreq_update_util(rq, 0);
9499 	rq_unlock_irqrestore(rq, &rf);
9500 }
9501 
9502 /********** Helpers for sched_balance_find_src_group ************************/
9503 
9504 /*
9505  * sg_lb_stats - stats of a sched_group required for load-balancing:
9506  */
9507 struct sg_lb_stats {
9508 	unsigned long avg_load;			/* Avg load            over the CPUs of the group */
9509 	unsigned long group_load;		/* Total load          over the CPUs of the group */
9510 	unsigned long group_capacity;		/* Capacity            over the CPUs of the group */
9511 	unsigned long group_util;		/* Total utilization   over the CPUs of the group */
9512 	unsigned long group_runnable;		/* Total runnable time over the CPUs of the group */
9513 	unsigned int sum_nr_running;		/* Nr of all tasks running in the group */
9514 	unsigned int sum_h_nr_running;		/* Nr of CFS tasks running in the group */
9515 	unsigned int idle_cpus;                 /* Nr of idle CPUs         in the group */
9516 	unsigned int group_weight;
9517 	enum group_type group_type;
9518 	unsigned int group_asym_packing;	/* Tasks should be moved to preferred CPU */
9519 	unsigned int group_smt_balance;		/* Task on busy SMT be moved */
9520 	unsigned long group_misfit_task_load;	/* A CPU has a task too big for its capacity */
9521 #ifdef CONFIG_NUMA_BALANCING
9522 	unsigned int nr_numa_running;
9523 	unsigned int nr_preferred_running;
9524 #endif
9525 };
9526 
9527 /*
9528  * sd_lb_stats - stats of a sched_domain required for load-balancing:
9529  */
9530 struct sd_lb_stats {
9531 	struct sched_group *busiest;		/* Busiest group in this sd */
9532 	struct sched_group *local;		/* Local group in this sd */
9533 	unsigned long total_load;		/* Total load of all groups in sd */
9534 	unsigned long total_capacity;		/* Total capacity of all groups in sd */
9535 	unsigned long avg_load;			/* Average load across all groups in sd */
9536 	unsigned int prefer_sibling;		/* Tasks should go to sibling first */
9537 
9538 	struct sg_lb_stats busiest_stat;	/* Statistics of the busiest group */
9539 	struct sg_lb_stats local_stat;		/* Statistics of the local group */
9540 };
9541 
9542 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9543 {
9544 	/*
9545 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9546 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9547 	 * We must however set busiest_stat::group_type and
9548 	 * busiest_stat::idle_cpus to the worst busiest group because
9549 	 * update_sd_pick_busiest() reads these before assignment.
9550 	 */
9551 	*sds = (struct sd_lb_stats){
9552 		.busiest = NULL,
9553 		.local = NULL,
9554 		.total_load = 0UL,
9555 		.total_capacity = 0UL,
9556 		.busiest_stat = {
9557 			.idle_cpus = UINT_MAX,
9558 			.group_type = group_has_spare,
9559 		},
9560 	};
9561 }
9562 
9563 static unsigned long scale_rt_capacity(int cpu)
9564 {
9565 	unsigned long max = get_actual_cpu_capacity(cpu);
9566 	struct rq *rq = cpu_rq(cpu);
9567 	unsigned long used, free;
9568 	unsigned long irq;
9569 
9570 	irq = cpu_util_irq(rq);
9571 
9572 	if (unlikely(irq >= max))
9573 		return 1;
9574 
9575 	/*
9576 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9577 	 * (running and not running) with weights 0 and 1024 respectively.
9578 	 */
9579 	used = cpu_util_rt(rq);
9580 	used += cpu_util_dl(rq);
9581 
9582 	if (unlikely(used >= max))
9583 		return 1;
9584 
9585 	free = max - used;
9586 
9587 	return scale_irq_capacity(free, irq, max);
9588 }
9589 
9590 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9591 {
9592 	unsigned long capacity = scale_rt_capacity(cpu);
9593 	struct sched_group *sdg = sd->groups;
9594 
9595 	if (!capacity)
9596 		capacity = 1;
9597 
9598 	cpu_rq(cpu)->cpu_capacity = capacity;
9599 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9600 
9601 	sdg->sgc->capacity = capacity;
9602 	sdg->sgc->min_capacity = capacity;
9603 	sdg->sgc->max_capacity = capacity;
9604 }
9605 
9606 void update_group_capacity(struct sched_domain *sd, int cpu)
9607 {
9608 	struct sched_domain *child = sd->child;
9609 	struct sched_group *group, *sdg = sd->groups;
9610 	unsigned long capacity, min_capacity, max_capacity;
9611 	unsigned long interval;
9612 
9613 	interval = msecs_to_jiffies(sd->balance_interval);
9614 	interval = clamp(interval, 1UL, max_load_balance_interval);
9615 	sdg->sgc->next_update = jiffies + interval;
9616 
9617 	if (!child) {
9618 		update_cpu_capacity(sd, cpu);
9619 		return;
9620 	}
9621 
9622 	capacity = 0;
9623 	min_capacity = ULONG_MAX;
9624 	max_capacity = 0;
9625 
9626 	if (child->flags & SD_OVERLAP) {
9627 		/*
9628 		 * SD_OVERLAP domains cannot assume that child groups
9629 		 * span the current group.
9630 		 */
9631 
9632 		for_each_cpu(cpu, sched_group_span(sdg)) {
9633 			unsigned long cpu_cap = capacity_of(cpu);
9634 
9635 			capacity += cpu_cap;
9636 			min_capacity = min(cpu_cap, min_capacity);
9637 			max_capacity = max(cpu_cap, max_capacity);
9638 		}
9639 	} else  {
9640 		/*
9641 		 * !SD_OVERLAP domains can assume that child groups
9642 		 * span the current group.
9643 		 */
9644 
9645 		group = child->groups;
9646 		do {
9647 			struct sched_group_capacity *sgc = group->sgc;
9648 
9649 			capacity += sgc->capacity;
9650 			min_capacity = min(sgc->min_capacity, min_capacity);
9651 			max_capacity = max(sgc->max_capacity, max_capacity);
9652 			group = group->next;
9653 		} while (group != child->groups);
9654 	}
9655 
9656 	sdg->sgc->capacity = capacity;
9657 	sdg->sgc->min_capacity = min_capacity;
9658 	sdg->sgc->max_capacity = max_capacity;
9659 }
9660 
9661 /*
9662  * Check whether the capacity of the rq has been noticeably reduced by side
9663  * activity. The imbalance_pct is used for the threshold.
9664  * Return true is the capacity is reduced
9665  */
9666 static inline int
9667 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9668 {
9669 	return ((rq->cpu_capacity * sd->imbalance_pct) <
9670 				(arch_scale_cpu_capacity(cpu_of(rq)) * 100));
9671 }
9672 
9673 /* Check if the rq has a misfit task */
9674 static inline bool check_misfit_status(struct rq *rq)
9675 {
9676 	return rq->misfit_task_load;
9677 }
9678 
9679 /*
9680  * Group imbalance indicates (and tries to solve) the problem where balancing
9681  * groups is inadequate due to ->cpus_ptr constraints.
9682  *
9683  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
9684  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
9685  * Something like:
9686  *
9687  *	{ 0 1 2 3 } { 4 5 6 7 }
9688  *	        *     * * *
9689  *
9690  * If we were to balance group-wise we'd place two tasks in the first group and
9691  * two tasks in the second group. Clearly this is undesired as it will overload
9692  * cpu 3 and leave one of the CPUs in the second group unused.
9693  *
9694  * The current solution to this issue is detecting the skew in the first group
9695  * by noticing the lower domain failed to reach balance and had difficulty
9696  * moving tasks due to affinity constraints.
9697  *
9698  * When this is so detected; this group becomes a candidate for busiest; see
9699  * update_sd_pick_busiest(). And calculate_imbalance() and
9700  * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
9701  * to create an effective group imbalance.
9702  *
9703  * This is a somewhat tricky proposition since the next run might not find the
9704  * group imbalance and decide the groups need to be balanced again. A most
9705  * subtle and fragile situation.
9706  */
9707 
9708 static inline int sg_imbalanced(struct sched_group *group)
9709 {
9710 	return group->sgc->imbalance;
9711 }
9712 
9713 /*
9714  * group_has_capacity returns true if the group has spare capacity that could
9715  * be used by some tasks.
9716  * We consider that a group has spare capacity if the number of task is
9717  * smaller than the number of CPUs or if the utilization is lower than the
9718  * available capacity for CFS tasks.
9719  * For the latter, we use a threshold to stabilize the state, to take into
9720  * account the variance of the tasks' load and to return true if the available
9721  * capacity in meaningful for the load balancer.
9722  * As an example, an available capacity of 1% can appear but it doesn't make
9723  * any benefit for the load balance.
9724  */
9725 static inline bool
9726 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9727 {
9728 	if (sgs->sum_nr_running < sgs->group_weight)
9729 		return true;
9730 
9731 	if ((sgs->group_capacity * imbalance_pct) <
9732 			(sgs->group_runnable * 100))
9733 		return false;
9734 
9735 	if ((sgs->group_capacity * 100) >
9736 			(sgs->group_util * imbalance_pct))
9737 		return true;
9738 
9739 	return false;
9740 }
9741 
9742 /*
9743  *  group_is_overloaded returns true if the group has more tasks than it can
9744  *  handle.
9745  *  group_is_overloaded is not equals to !group_has_capacity because a group
9746  *  with the exact right number of tasks, has no more spare capacity but is not
9747  *  overloaded so both group_has_capacity and group_is_overloaded return
9748  *  false.
9749  */
9750 static inline bool
9751 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
9752 {
9753 	if (sgs->sum_nr_running <= sgs->group_weight)
9754 		return false;
9755 
9756 	if ((sgs->group_capacity * 100) <
9757 			(sgs->group_util * imbalance_pct))
9758 		return true;
9759 
9760 	if ((sgs->group_capacity * imbalance_pct) <
9761 			(sgs->group_runnable * 100))
9762 		return true;
9763 
9764 	return false;
9765 }
9766 
9767 static inline enum
9768 group_type group_classify(unsigned int imbalance_pct,
9769 			  struct sched_group *group,
9770 			  struct sg_lb_stats *sgs)
9771 {
9772 	if (group_is_overloaded(imbalance_pct, sgs))
9773 		return group_overloaded;
9774 
9775 	if (sg_imbalanced(group))
9776 		return group_imbalanced;
9777 
9778 	if (sgs->group_asym_packing)
9779 		return group_asym_packing;
9780 
9781 	if (sgs->group_smt_balance)
9782 		return group_smt_balance;
9783 
9784 	if (sgs->group_misfit_task_load)
9785 		return group_misfit_task;
9786 
9787 	if (!group_has_capacity(imbalance_pct, sgs))
9788 		return group_fully_busy;
9789 
9790 	return group_has_spare;
9791 }
9792 
9793 /**
9794  * sched_use_asym_prio - Check whether asym_packing priority must be used
9795  * @sd:		The scheduling domain of the load balancing
9796  * @cpu:	A CPU
9797  *
9798  * Always use CPU priority when balancing load between SMT siblings. When
9799  * balancing load between cores, it is not sufficient that @cpu is idle. Only
9800  * use CPU priority if the whole core is idle.
9801  *
9802  * Returns: True if the priority of @cpu must be followed. False otherwise.
9803  */
9804 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
9805 {
9806 	if (!(sd->flags & SD_ASYM_PACKING))
9807 		return false;
9808 
9809 	if (!sched_smt_active())
9810 		return true;
9811 
9812 	return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
9813 }
9814 
9815 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
9816 {
9817 	/*
9818 	 * First check if @dst_cpu can do asym_packing load balance. Only do it
9819 	 * if it has higher priority than @src_cpu.
9820 	 */
9821 	return sched_use_asym_prio(sd, dst_cpu) &&
9822 		sched_asym_prefer(dst_cpu, src_cpu);
9823 }
9824 
9825 /**
9826  * sched_group_asym - Check if the destination CPU can do asym_packing balance
9827  * @env:	The load balancing environment
9828  * @sgs:	Load-balancing statistics of the candidate busiest group
9829  * @group:	The candidate busiest group
9830  *
9831  * @env::dst_cpu can do asym_packing if it has higher priority than the
9832  * preferred CPU of @group.
9833  *
9834  * Return: true if @env::dst_cpu can do with asym_packing load balance. False
9835  * otherwise.
9836  */
9837 static inline bool
9838 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
9839 {
9840 	/*
9841 	 * CPU priorities do not make sense for SMT cores with more than one
9842 	 * busy sibling.
9843 	 */
9844 	if ((group->flags & SD_SHARE_CPUCAPACITY) &&
9845 	    (sgs->group_weight - sgs->idle_cpus != 1))
9846 		return false;
9847 
9848 	return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
9849 }
9850 
9851 /* One group has more than one SMT CPU while the other group does not */
9852 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
9853 				    struct sched_group *sg2)
9854 {
9855 	if (!sg1 || !sg2)
9856 		return false;
9857 
9858 	return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
9859 		(sg2->flags & SD_SHARE_CPUCAPACITY);
9860 }
9861 
9862 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
9863 			       struct sched_group *group)
9864 {
9865 	if (!env->idle)
9866 		return false;
9867 
9868 	/*
9869 	 * For SMT source group, it is better to move a task
9870 	 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
9871 	 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
9872 	 * will not be on.
9873 	 */
9874 	if (group->flags & SD_SHARE_CPUCAPACITY &&
9875 	    sgs->sum_h_nr_running > 1)
9876 		return true;
9877 
9878 	return false;
9879 }
9880 
9881 static inline long sibling_imbalance(struct lb_env *env,
9882 				    struct sd_lb_stats *sds,
9883 				    struct sg_lb_stats *busiest,
9884 				    struct sg_lb_stats *local)
9885 {
9886 	int ncores_busiest, ncores_local;
9887 	long imbalance;
9888 
9889 	if (!env->idle || !busiest->sum_nr_running)
9890 		return 0;
9891 
9892 	ncores_busiest = sds->busiest->cores;
9893 	ncores_local = sds->local->cores;
9894 
9895 	if (ncores_busiest == ncores_local) {
9896 		imbalance = busiest->sum_nr_running;
9897 		lsub_positive(&imbalance, local->sum_nr_running);
9898 		return imbalance;
9899 	}
9900 
9901 	/* Balance such that nr_running/ncores ratio are same on both groups */
9902 	imbalance = ncores_local * busiest->sum_nr_running;
9903 	lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
9904 	/* Normalize imbalance and do rounding on normalization */
9905 	imbalance = 2 * imbalance + ncores_local + ncores_busiest;
9906 	imbalance /= ncores_local + ncores_busiest;
9907 
9908 	/* Take advantage of resource in an empty sched group */
9909 	if (imbalance <= 1 && local->sum_nr_running == 0 &&
9910 	    busiest->sum_nr_running > 1)
9911 		imbalance = 2;
9912 
9913 	return imbalance;
9914 }
9915 
9916 static inline bool
9917 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
9918 {
9919 	/*
9920 	 * When there is more than 1 task, the group_overloaded case already
9921 	 * takes care of cpu with reduced capacity
9922 	 */
9923 	if (rq->cfs.h_nr_running != 1)
9924 		return false;
9925 
9926 	return check_cpu_capacity(rq, sd);
9927 }
9928 
9929 /**
9930  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
9931  * @env: The load balancing environment.
9932  * @sds: Load-balancing data with statistics of the local group.
9933  * @group: sched_group whose statistics are to be updated.
9934  * @sgs: variable to hold the statistics for this group.
9935  * @sg_overloaded: sched_group is overloaded
9936  * @sg_overutilized: sched_group is overutilized
9937  */
9938 static inline void update_sg_lb_stats(struct lb_env *env,
9939 				      struct sd_lb_stats *sds,
9940 				      struct sched_group *group,
9941 				      struct sg_lb_stats *sgs,
9942 				      bool *sg_overloaded,
9943 				      bool *sg_overutilized)
9944 {
9945 	int i, nr_running, local_group;
9946 
9947 	memset(sgs, 0, sizeof(*sgs));
9948 
9949 	local_group = group == sds->local;
9950 
9951 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9952 		struct rq *rq = cpu_rq(i);
9953 		unsigned long load = cpu_load(rq);
9954 
9955 		sgs->group_load += load;
9956 		sgs->group_util += cpu_util_cfs(i);
9957 		sgs->group_runnable += cpu_runnable(rq);
9958 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
9959 
9960 		nr_running = rq->nr_running;
9961 		sgs->sum_nr_running += nr_running;
9962 
9963 		if (nr_running > 1)
9964 			*sg_overloaded = 1;
9965 
9966 		if (cpu_overutilized(i))
9967 			*sg_overutilized = 1;
9968 
9969 #ifdef CONFIG_NUMA_BALANCING
9970 		sgs->nr_numa_running += rq->nr_numa_running;
9971 		sgs->nr_preferred_running += rq->nr_preferred_running;
9972 #endif
9973 		/*
9974 		 * No need to call idle_cpu() if nr_running is not 0
9975 		 */
9976 		if (!nr_running && idle_cpu(i)) {
9977 			sgs->idle_cpus++;
9978 			/* Idle cpu can't have misfit task */
9979 			continue;
9980 		}
9981 
9982 		if (local_group)
9983 			continue;
9984 
9985 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
9986 			/* Check for a misfit task on the cpu */
9987 			if (sgs->group_misfit_task_load < rq->misfit_task_load) {
9988 				sgs->group_misfit_task_load = rq->misfit_task_load;
9989 				*sg_overloaded = 1;
9990 			}
9991 		} else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
9992 			/* Check for a task running on a CPU with reduced capacity */
9993 			if (sgs->group_misfit_task_load < load)
9994 				sgs->group_misfit_task_load = load;
9995 		}
9996 	}
9997 
9998 	sgs->group_capacity = group->sgc->capacity;
9999 
10000 	sgs->group_weight = group->group_weight;
10001 
10002 	/* Check if dst CPU is idle and preferred to this group */
10003 	if (!local_group && env->idle && sgs->sum_h_nr_running &&
10004 	    sched_group_asym(env, sgs, group))
10005 		sgs->group_asym_packing = 1;
10006 
10007 	/* Check for loaded SMT group to be balanced to dst CPU */
10008 	if (!local_group && smt_balance(env, sgs, group))
10009 		sgs->group_smt_balance = 1;
10010 
10011 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10012 
10013 	/* Computing avg_load makes sense only when group is overloaded */
10014 	if (sgs->group_type == group_overloaded)
10015 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10016 				sgs->group_capacity;
10017 }
10018 
10019 /**
10020  * update_sd_pick_busiest - return 1 on busiest group
10021  * @env: The load balancing environment.
10022  * @sds: sched_domain statistics
10023  * @sg: sched_group candidate to be checked for being the busiest
10024  * @sgs: sched_group statistics
10025  *
10026  * Determine if @sg is a busier group than the previously selected
10027  * busiest group.
10028  *
10029  * Return: %true if @sg is a busier group than the previously selected
10030  * busiest group. %false otherwise.
10031  */
10032 static bool update_sd_pick_busiest(struct lb_env *env,
10033 				   struct sd_lb_stats *sds,
10034 				   struct sched_group *sg,
10035 				   struct sg_lb_stats *sgs)
10036 {
10037 	struct sg_lb_stats *busiest = &sds->busiest_stat;
10038 
10039 	/* Make sure that there is at least one task to pull */
10040 	if (!sgs->sum_h_nr_running)
10041 		return false;
10042 
10043 	/*
10044 	 * Don't try to pull misfit tasks we can't help.
10045 	 * We can use max_capacity here as reduction in capacity on some
10046 	 * CPUs in the group should either be possible to resolve
10047 	 * internally or be covered by avg_load imbalance (eventually).
10048 	 */
10049 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10050 	    (sgs->group_type == group_misfit_task) &&
10051 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10052 	     sds->local_stat.group_type != group_has_spare))
10053 		return false;
10054 
10055 	if (sgs->group_type > busiest->group_type)
10056 		return true;
10057 
10058 	if (sgs->group_type < busiest->group_type)
10059 		return false;
10060 
10061 	/*
10062 	 * The candidate and the current busiest group are the same type of
10063 	 * group. Let check which one is the busiest according to the type.
10064 	 */
10065 
10066 	switch (sgs->group_type) {
10067 	case group_overloaded:
10068 		/* Select the overloaded group with highest avg_load. */
10069 		return sgs->avg_load > busiest->avg_load;
10070 
10071 	case group_imbalanced:
10072 		/*
10073 		 * Select the 1st imbalanced group as we don't have any way to
10074 		 * choose one more than another.
10075 		 */
10076 		return false;
10077 
10078 	case group_asym_packing:
10079 		/* Prefer to move from lowest priority CPU's work */
10080 		return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
10081 
10082 	case group_misfit_task:
10083 		/*
10084 		 * If we have more than one misfit sg go with the biggest
10085 		 * misfit.
10086 		 */
10087 		return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10088 
10089 	case group_smt_balance:
10090 		/*
10091 		 * Check if we have spare CPUs on either SMT group to
10092 		 * choose has spare or fully busy handling.
10093 		 */
10094 		if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10095 			goto has_spare;
10096 
10097 		fallthrough;
10098 
10099 	case group_fully_busy:
10100 		/*
10101 		 * Select the fully busy group with highest avg_load. In
10102 		 * theory, there is no need to pull task from such kind of
10103 		 * group because tasks have all compute capacity that they need
10104 		 * but we can still improve the overall throughput by reducing
10105 		 * contention when accessing shared HW resources.
10106 		 *
10107 		 * XXX for now avg_load is not computed and always 0 so we
10108 		 * select the 1st one, except if @sg is composed of SMT
10109 		 * siblings.
10110 		 */
10111 
10112 		if (sgs->avg_load < busiest->avg_load)
10113 			return false;
10114 
10115 		if (sgs->avg_load == busiest->avg_load) {
10116 			/*
10117 			 * SMT sched groups need more help than non-SMT groups.
10118 			 * If @sg happens to also be SMT, either choice is good.
10119 			 */
10120 			if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10121 				return false;
10122 		}
10123 
10124 		break;
10125 
10126 	case group_has_spare:
10127 		/*
10128 		 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10129 		 * as we do not want to pull task off SMT core with one task
10130 		 * and make the core idle.
10131 		 */
10132 		if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10133 			if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10134 				return false;
10135 			else
10136 				return true;
10137 		}
10138 has_spare:
10139 
10140 		/*
10141 		 * Select not overloaded group with lowest number of idle CPUs
10142 		 * and highest number of running tasks. We could also compare
10143 		 * the spare capacity which is more stable but it can end up
10144 		 * that the group has less spare capacity but finally more idle
10145 		 * CPUs which means less opportunity to pull tasks.
10146 		 */
10147 		if (sgs->idle_cpus > busiest->idle_cpus)
10148 			return false;
10149 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10150 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
10151 			return false;
10152 
10153 		break;
10154 	}
10155 
10156 	/*
10157 	 * Candidate sg has no more than one task per CPU and has higher
10158 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10159 	 * throughput. Maximize throughput, power/energy consequences are not
10160 	 * considered.
10161 	 */
10162 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10163 	    (sgs->group_type <= group_fully_busy) &&
10164 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10165 		return false;
10166 
10167 	return true;
10168 }
10169 
10170 #ifdef CONFIG_NUMA_BALANCING
10171 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10172 {
10173 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10174 		return regular;
10175 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10176 		return remote;
10177 	return all;
10178 }
10179 
10180 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10181 {
10182 	if (rq->nr_running > rq->nr_numa_running)
10183 		return regular;
10184 	if (rq->nr_running > rq->nr_preferred_running)
10185 		return remote;
10186 	return all;
10187 }
10188 #else
10189 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10190 {
10191 	return all;
10192 }
10193 
10194 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10195 {
10196 	return regular;
10197 }
10198 #endif /* CONFIG_NUMA_BALANCING */
10199 
10200 
10201 struct sg_lb_stats;
10202 
10203 /*
10204  * task_running_on_cpu - return 1 if @p is running on @cpu.
10205  */
10206 
10207 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10208 {
10209 	/* Task has no contribution or is new */
10210 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10211 		return 0;
10212 
10213 	if (task_on_rq_queued(p))
10214 		return 1;
10215 
10216 	return 0;
10217 }
10218 
10219 /**
10220  * idle_cpu_without - would a given CPU be idle without p ?
10221  * @cpu: the processor on which idleness is tested.
10222  * @p: task which should be ignored.
10223  *
10224  * Return: 1 if the CPU would be idle. 0 otherwise.
10225  */
10226 static int idle_cpu_without(int cpu, struct task_struct *p)
10227 {
10228 	struct rq *rq = cpu_rq(cpu);
10229 
10230 	if (rq->curr != rq->idle && rq->curr != p)
10231 		return 0;
10232 
10233 	/*
10234 	 * rq->nr_running can't be used but an updated version without the
10235 	 * impact of p on cpu must be used instead. The updated nr_running
10236 	 * be computed and tested before calling idle_cpu_without().
10237 	 */
10238 
10239 	if (rq->ttwu_pending)
10240 		return 0;
10241 
10242 	return 1;
10243 }
10244 
10245 /*
10246  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10247  * @sd: The sched_domain level to look for idlest group.
10248  * @group: sched_group whose statistics are to be updated.
10249  * @sgs: variable to hold the statistics for this group.
10250  * @p: The task for which we look for the idlest group/CPU.
10251  */
10252 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10253 					  struct sched_group *group,
10254 					  struct sg_lb_stats *sgs,
10255 					  struct task_struct *p)
10256 {
10257 	int i, nr_running;
10258 
10259 	memset(sgs, 0, sizeof(*sgs));
10260 
10261 	/* Assume that task can't fit any CPU of the group */
10262 	if (sd->flags & SD_ASYM_CPUCAPACITY)
10263 		sgs->group_misfit_task_load = 1;
10264 
10265 	for_each_cpu(i, sched_group_span(group)) {
10266 		struct rq *rq = cpu_rq(i);
10267 		unsigned int local;
10268 
10269 		sgs->group_load += cpu_load_without(rq, p);
10270 		sgs->group_util += cpu_util_without(i, p);
10271 		sgs->group_runnable += cpu_runnable_without(rq, p);
10272 		local = task_running_on_cpu(i, p);
10273 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10274 
10275 		nr_running = rq->nr_running - local;
10276 		sgs->sum_nr_running += nr_running;
10277 
10278 		/*
10279 		 * No need to call idle_cpu_without() if nr_running is not 0
10280 		 */
10281 		if (!nr_running && idle_cpu_without(i, p))
10282 			sgs->idle_cpus++;
10283 
10284 		/* Check if task fits in the CPU */
10285 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
10286 		    sgs->group_misfit_task_load &&
10287 		    task_fits_cpu(p, i))
10288 			sgs->group_misfit_task_load = 0;
10289 
10290 	}
10291 
10292 	sgs->group_capacity = group->sgc->capacity;
10293 
10294 	sgs->group_weight = group->group_weight;
10295 
10296 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10297 
10298 	/*
10299 	 * Computing avg_load makes sense only when group is fully busy or
10300 	 * overloaded
10301 	 */
10302 	if (sgs->group_type == group_fully_busy ||
10303 		sgs->group_type == group_overloaded)
10304 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10305 				sgs->group_capacity;
10306 }
10307 
10308 static bool update_pick_idlest(struct sched_group *idlest,
10309 			       struct sg_lb_stats *idlest_sgs,
10310 			       struct sched_group *group,
10311 			       struct sg_lb_stats *sgs)
10312 {
10313 	if (sgs->group_type < idlest_sgs->group_type)
10314 		return true;
10315 
10316 	if (sgs->group_type > idlest_sgs->group_type)
10317 		return false;
10318 
10319 	/*
10320 	 * The candidate and the current idlest group are the same type of
10321 	 * group. Let check which one is the idlest according to the type.
10322 	 */
10323 
10324 	switch (sgs->group_type) {
10325 	case group_overloaded:
10326 	case group_fully_busy:
10327 		/* Select the group with lowest avg_load. */
10328 		if (idlest_sgs->avg_load <= sgs->avg_load)
10329 			return false;
10330 		break;
10331 
10332 	case group_imbalanced:
10333 	case group_asym_packing:
10334 	case group_smt_balance:
10335 		/* Those types are not used in the slow wakeup path */
10336 		return false;
10337 
10338 	case group_misfit_task:
10339 		/* Select group with the highest max capacity */
10340 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10341 			return false;
10342 		break;
10343 
10344 	case group_has_spare:
10345 		/* Select group with most idle CPUs */
10346 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10347 			return false;
10348 
10349 		/* Select group with lowest group_util */
10350 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10351 			idlest_sgs->group_util <= sgs->group_util)
10352 			return false;
10353 
10354 		break;
10355 	}
10356 
10357 	return true;
10358 }
10359 
10360 /*
10361  * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10362  * domain.
10363  *
10364  * Assumes p is allowed on at least one CPU in sd.
10365  */
10366 static struct sched_group *
10367 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10368 {
10369 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10370 	struct sg_lb_stats local_sgs, tmp_sgs;
10371 	struct sg_lb_stats *sgs;
10372 	unsigned long imbalance;
10373 	struct sg_lb_stats idlest_sgs = {
10374 			.avg_load = UINT_MAX,
10375 			.group_type = group_overloaded,
10376 	};
10377 
10378 	do {
10379 		int local_group;
10380 
10381 		/* Skip over this group if it has no CPUs allowed */
10382 		if (!cpumask_intersects(sched_group_span(group),
10383 					p->cpus_ptr))
10384 			continue;
10385 
10386 		/* Skip over this group if no cookie matched */
10387 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10388 			continue;
10389 
10390 		local_group = cpumask_test_cpu(this_cpu,
10391 					       sched_group_span(group));
10392 
10393 		if (local_group) {
10394 			sgs = &local_sgs;
10395 			local = group;
10396 		} else {
10397 			sgs = &tmp_sgs;
10398 		}
10399 
10400 		update_sg_wakeup_stats(sd, group, sgs, p);
10401 
10402 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10403 			idlest = group;
10404 			idlest_sgs = *sgs;
10405 		}
10406 
10407 	} while (group = group->next, group != sd->groups);
10408 
10409 
10410 	/* There is no idlest group to push tasks to */
10411 	if (!idlest)
10412 		return NULL;
10413 
10414 	/* The local group has been skipped because of CPU affinity */
10415 	if (!local)
10416 		return idlest;
10417 
10418 	/*
10419 	 * If the local group is idler than the selected idlest group
10420 	 * don't try and push the task.
10421 	 */
10422 	if (local_sgs.group_type < idlest_sgs.group_type)
10423 		return NULL;
10424 
10425 	/*
10426 	 * If the local group is busier than the selected idlest group
10427 	 * try and push the task.
10428 	 */
10429 	if (local_sgs.group_type > idlest_sgs.group_type)
10430 		return idlest;
10431 
10432 	switch (local_sgs.group_type) {
10433 	case group_overloaded:
10434 	case group_fully_busy:
10435 
10436 		/* Calculate allowed imbalance based on load */
10437 		imbalance = scale_load_down(NICE_0_LOAD) *
10438 				(sd->imbalance_pct-100) / 100;
10439 
10440 		/*
10441 		 * When comparing groups across NUMA domains, it's possible for
10442 		 * the local domain to be very lightly loaded relative to the
10443 		 * remote domains but "imbalance" skews the comparison making
10444 		 * remote CPUs look much more favourable. When considering
10445 		 * cross-domain, add imbalance to the load on the remote node
10446 		 * and consider staying local.
10447 		 */
10448 
10449 		if ((sd->flags & SD_NUMA) &&
10450 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10451 			return NULL;
10452 
10453 		/*
10454 		 * If the local group is less loaded than the selected
10455 		 * idlest group don't try and push any tasks.
10456 		 */
10457 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10458 			return NULL;
10459 
10460 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10461 			return NULL;
10462 		break;
10463 
10464 	case group_imbalanced:
10465 	case group_asym_packing:
10466 	case group_smt_balance:
10467 		/* Those type are not used in the slow wakeup path */
10468 		return NULL;
10469 
10470 	case group_misfit_task:
10471 		/* Select group with the highest max capacity */
10472 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10473 			return NULL;
10474 		break;
10475 
10476 	case group_has_spare:
10477 #ifdef CONFIG_NUMA
10478 		if (sd->flags & SD_NUMA) {
10479 			int imb_numa_nr = sd->imb_numa_nr;
10480 #ifdef CONFIG_NUMA_BALANCING
10481 			int idlest_cpu;
10482 			/*
10483 			 * If there is spare capacity at NUMA, try to select
10484 			 * the preferred node
10485 			 */
10486 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10487 				return NULL;
10488 
10489 			idlest_cpu = cpumask_first(sched_group_span(idlest));
10490 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10491 				return idlest;
10492 #endif /* CONFIG_NUMA_BALANCING */
10493 			/*
10494 			 * Otherwise, keep the task close to the wakeup source
10495 			 * and improve locality if the number of running tasks
10496 			 * would remain below threshold where an imbalance is
10497 			 * allowed while accounting for the possibility the
10498 			 * task is pinned to a subset of CPUs. If there is a
10499 			 * real need of migration, periodic load balance will
10500 			 * take care of it.
10501 			 */
10502 			if (p->nr_cpus_allowed != NR_CPUS) {
10503 				struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10504 
10505 				cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10506 				imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10507 			}
10508 
10509 			imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10510 			if (!adjust_numa_imbalance(imbalance,
10511 						   local_sgs.sum_nr_running + 1,
10512 						   imb_numa_nr)) {
10513 				return NULL;
10514 			}
10515 		}
10516 #endif /* CONFIG_NUMA */
10517 
10518 		/*
10519 		 * Select group with highest number of idle CPUs. We could also
10520 		 * compare the utilization which is more stable but it can end
10521 		 * up that the group has less spare capacity but finally more
10522 		 * idle CPUs which means more opportunity to run task.
10523 		 */
10524 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10525 			return NULL;
10526 		break;
10527 	}
10528 
10529 	return idlest;
10530 }
10531 
10532 static void update_idle_cpu_scan(struct lb_env *env,
10533 				 unsigned long sum_util)
10534 {
10535 	struct sched_domain_shared *sd_share;
10536 	int llc_weight, pct;
10537 	u64 x, y, tmp;
10538 	/*
10539 	 * Update the number of CPUs to scan in LLC domain, which could
10540 	 * be used as a hint in select_idle_cpu(). The update of sd_share
10541 	 * could be expensive because it is within a shared cache line.
10542 	 * So the write of this hint only occurs during periodic load
10543 	 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10544 	 * can fire way more frequently than the former.
10545 	 */
10546 	if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10547 		return;
10548 
10549 	llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10550 	if (env->sd->span_weight != llc_weight)
10551 		return;
10552 
10553 	sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10554 	if (!sd_share)
10555 		return;
10556 
10557 	/*
10558 	 * The number of CPUs to search drops as sum_util increases, when
10559 	 * sum_util hits 85% or above, the scan stops.
10560 	 * The reason to choose 85% as the threshold is because this is the
10561 	 * imbalance_pct(117) when a LLC sched group is overloaded.
10562 	 *
10563 	 * let y = SCHED_CAPACITY_SCALE - p * x^2                       [1]
10564 	 * and y'= y / SCHED_CAPACITY_SCALE
10565 	 *
10566 	 * x is the ratio of sum_util compared to the CPU capacity:
10567 	 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10568 	 * y' is the ratio of CPUs to be scanned in the LLC domain,
10569 	 * and the number of CPUs to scan is calculated by:
10570 	 *
10571 	 * nr_scan = llc_weight * y'                                    [2]
10572 	 *
10573 	 * When x hits the threshold of overloaded, AKA, when
10574 	 * x = 100 / pct, y drops to 0. According to [1],
10575 	 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10576 	 *
10577 	 * Scale x by SCHED_CAPACITY_SCALE:
10578 	 * x' = sum_util / llc_weight;                                  [3]
10579 	 *
10580 	 * and finally [1] becomes:
10581 	 * y = SCHED_CAPACITY_SCALE -
10582 	 *     x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE)            [4]
10583 	 *
10584 	 */
10585 	/* equation [3] */
10586 	x = sum_util;
10587 	do_div(x, llc_weight);
10588 
10589 	/* equation [4] */
10590 	pct = env->sd->imbalance_pct;
10591 	tmp = x * x * pct * pct;
10592 	do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10593 	tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10594 	y = SCHED_CAPACITY_SCALE - tmp;
10595 
10596 	/* equation [2] */
10597 	y *= llc_weight;
10598 	do_div(y, SCHED_CAPACITY_SCALE);
10599 	if ((int)y != sd_share->nr_idle_scan)
10600 		WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10601 }
10602 
10603 /**
10604  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10605  * @env: The load balancing environment.
10606  * @sds: variable to hold the statistics for this sched_domain.
10607  */
10608 
10609 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10610 {
10611 	struct sched_group *sg = env->sd->groups;
10612 	struct sg_lb_stats *local = &sds->local_stat;
10613 	struct sg_lb_stats tmp_sgs;
10614 	unsigned long sum_util = 0;
10615 	bool sg_overloaded = 0, sg_overutilized = 0;
10616 
10617 	do {
10618 		struct sg_lb_stats *sgs = &tmp_sgs;
10619 		int local_group;
10620 
10621 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10622 		if (local_group) {
10623 			sds->local = sg;
10624 			sgs = local;
10625 
10626 			if (env->idle != CPU_NEWLY_IDLE ||
10627 			    time_after_eq(jiffies, sg->sgc->next_update))
10628 				update_group_capacity(env->sd, env->dst_cpu);
10629 		}
10630 
10631 		update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
10632 
10633 		if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
10634 			sds->busiest = sg;
10635 			sds->busiest_stat = *sgs;
10636 		}
10637 
10638 		/* Now, start updating sd_lb_stats */
10639 		sds->total_load += sgs->group_load;
10640 		sds->total_capacity += sgs->group_capacity;
10641 
10642 		sum_util += sgs->group_util;
10643 		sg = sg->next;
10644 	} while (sg != env->sd->groups);
10645 
10646 	/*
10647 	 * Indicate that the child domain of the busiest group prefers tasks
10648 	 * go to a child's sibling domains first. NB the flags of a sched group
10649 	 * are those of the child domain.
10650 	 */
10651 	if (sds->busiest)
10652 		sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
10653 
10654 
10655 	if (env->sd->flags & SD_NUMA)
10656 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
10657 
10658 	if (!env->sd->parent) {
10659 		/* update overload indicator if we are at root domain */
10660 		set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
10661 
10662 		/* Update over-utilization (tipping point, U >= 0) indicator */
10663 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
10664 	} else if (sg_overutilized) {
10665 		set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
10666 	}
10667 
10668 	update_idle_cpu_scan(env, sum_util);
10669 }
10670 
10671 /**
10672  * calculate_imbalance - Calculate the amount of imbalance present within the
10673  *			 groups of a given sched_domain during load balance.
10674  * @env: load balance environment
10675  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
10676  */
10677 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
10678 {
10679 	struct sg_lb_stats *local, *busiest;
10680 
10681 	local = &sds->local_stat;
10682 	busiest = &sds->busiest_stat;
10683 
10684 	if (busiest->group_type == group_misfit_task) {
10685 		if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10686 			/* Set imbalance to allow misfit tasks to be balanced. */
10687 			env->migration_type = migrate_misfit;
10688 			env->imbalance = 1;
10689 		} else {
10690 			/*
10691 			 * Set load imbalance to allow moving task from cpu
10692 			 * with reduced capacity.
10693 			 */
10694 			env->migration_type = migrate_load;
10695 			env->imbalance = busiest->group_misfit_task_load;
10696 		}
10697 		return;
10698 	}
10699 
10700 	if (busiest->group_type == group_asym_packing) {
10701 		/*
10702 		 * In case of asym capacity, we will try to migrate all load to
10703 		 * the preferred CPU.
10704 		 */
10705 		env->migration_type = migrate_task;
10706 		env->imbalance = busiest->sum_h_nr_running;
10707 		return;
10708 	}
10709 
10710 	if (busiest->group_type == group_smt_balance) {
10711 		/* Reduce number of tasks sharing CPU capacity */
10712 		env->migration_type = migrate_task;
10713 		env->imbalance = 1;
10714 		return;
10715 	}
10716 
10717 	if (busiest->group_type == group_imbalanced) {
10718 		/*
10719 		 * In the group_imb case we cannot rely on group-wide averages
10720 		 * to ensure CPU-load equilibrium, try to move any task to fix
10721 		 * the imbalance. The next load balance will take care of
10722 		 * balancing back the system.
10723 		 */
10724 		env->migration_type = migrate_task;
10725 		env->imbalance = 1;
10726 		return;
10727 	}
10728 
10729 	/*
10730 	 * Try to use spare capacity of local group without overloading it or
10731 	 * emptying busiest.
10732 	 */
10733 	if (local->group_type == group_has_spare) {
10734 		if ((busiest->group_type > group_fully_busy) &&
10735 		    !(env->sd->flags & SD_SHARE_LLC)) {
10736 			/*
10737 			 * If busiest is overloaded, try to fill spare
10738 			 * capacity. This might end up creating spare capacity
10739 			 * in busiest or busiest still being overloaded but
10740 			 * there is no simple way to directly compute the
10741 			 * amount of load to migrate in order to balance the
10742 			 * system.
10743 			 */
10744 			env->migration_type = migrate_util;
10745 			env->imbalance = max(local->group_capacity, local->group_util) -
10746 					 local->group_util;
10747 
10748 			/*
10749 			 * In some cases, the group's utilization is max or even
10750 			 * higher than capacity because of migrations but the
10751 			 * local CPU is (newly) idle. There is at least one
10752 			 * waiting task in this overloaded busiest group. Let's
10753 			 * try to pull it.
10754 			 */
10755 			if (env->idle && env->imbalance == 0) {
10756 				env->migration_type = migrate_task;
10757 				env->imbalance = 1;
10758 			}
10759 
10760 			return;
10761 		}
10762 
10763 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
10764 			/*
10765 			 * When prefer sibling, evenly spread running tasks on
10766 			 * groups.
10767 			 */
10768 			env->migration_type = migrate_task;
10769 			env->imbalance = sibling_imbalance(env, sds, busiest, local);
10770 		} else {
10771 
10772 			/*
10773 			 * If there is no overload, we just want to even the number of
10774 			 * idle CPUs.
10775 			 */
10776 			env->migration_type = migrate_task;
10777 			env->imbalance = max_t(long, 0,
10778 					       (local->idle_cpus - busiest->idle_cpus));
10779 		}
10780 
10781 #ifdef CONFIG_NUMA
10782 		/* Consider allowing a small imbalance between NUMA groups */
10783 		if (env->sd->flags & SD_NUMA) {
10784 			env->imbalance = adjust_numa_imbalance(env->imbalance,
10785 							       local->sum_nr_running + 1,
10786 							       env->sd->imb_numa_nr);
10787 		}
10788 #endif
10789 
10790 		/* Number of tasks to move to restore balance */
10791 		env->imbalance >>= 1;
10792 
10793 		return;
10794 	}
10795 
10796 	/*
10797 	 * Local is fully busy but has to take more load to relieve the
10798 	 * busiest group
10799 	 */
10800 	if (local->group_type < group_overloaded) {
10801 		/*
10802 		 * Local will become overloaded so the avg_load metrics are
10803 		 * finally needed.
10804 		 */
10805 
10806 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
10807 				  local->group_capacity;
10808 
10809 		/*
10810 		 * If the local group is more loaded than the selected
10811 		 * busiest group don't try to pull any tasks.
10812 		 */
10813 		if (local->avg_load >= busiest->avg_load) {
10814 			env->imbalance = 0;
10815 			return;
10816 		}
10817 
10818 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
10819 				sds->total_capacity;
10820 
10821 		/*
10822 		 * If the local group is more loaded than the average system
10823 		 * load, don't try to pull any tasks.
10824 		 */
10825 		if (local->avg_load >= sds->avg_load) {
10826 			env->imbalance = 0;
10827 			return;
10828 		}
10829 
10830 	}
10831 
10832 	/*
10833 	 * Both group are or will become overloaded and we're trying to get all
10834 	 * the CPUs to the average_load, so we don't want to push ourselves
10835 	 * above the average load, nor do we wish to reduce the max loaded CPU
10836 	 * below the average load. At the same time, we also don't want to
10837 	 * reduce the group load below the group capacity. Thus we look for
10838 	 * the minimum possible imbalance.
10839 	 */
10840 	env->migration_type = migrate_load;
10841 	env->imbalance = min(
10842 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
10843 		(sds->avg_load - local->avg_load) * local->group_capacity
10844 	) / SCHED_CAPACITY_SCALE;
10845 }
10846 
10847 /******* sched_balance_find_src_group() helpers end here *********************/
10848 
10849 /*
10850  * Decision matrix according to the local and busiest group type:
10851  *
10852  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
10853  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
10854  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
10855  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
10856  * asym_packing     force     force      N/A    N/A  force      force
10857  * imbalanced       force     force      N/A    N/A  force      force
10858  * overloaded       force     force      N/A    N/A  force      avg_load
10859  *
10860  * N/A :      Not Applicable because already filtered while updating
10861  *            statistics.
10862  * balanced : The system is balanced for these 2 groups.
10863  * force :    Calculate the imbalance as load migration is probably needed.
10864  * avg_load : Only if imbalance is significant enough.
10865  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
10866  *            different in groups.
10867  */
10868 
10869 /**
10870  * sched_balance_find_src_group - Returns the busiest group within the sched_domain
10871  * if there is an imbalance.
10872  * @env: The load balancing environment.
10873  *
10874  * Also calculates the amount of runnable load which should be moved
10875  * to restore balance.
10876  *
10877  * Return:	- The busiest group if imbalance exists.
10878  */
10879 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
10880 {
10881 	struct sg_lb_stats *local, *busiest;
10882 	struct sd_lb_stats sds;
10883 
10884 	init_sd_lb_stats(&sds);
10885 
10886 	/*
10887 	 * Compute the various statistics relevant for load balancing at
10888 	 * this level.
10889 	 */
10890 	update_sd_lb_stats(env, &sds);
10891 
10892 	/* There is no busy sibling group to pull tasks from */
10893 	if (!sds.busiest)
10894 		goto out_balanced;
10895 
10896 	busiest = &sds.busiest_stat;
10897 
10898 	/* Misfit tasks should be dealt with regardless of the avg load */
10899 	if (busiest->group_type == group_misfit_task)
10900 		goto force_balance;
10901 
10902 	if (!is_rd_overutilized(env->dst_rq->rd) &&
10903 	    rcu_dereference(env->dst_rq->rd->pd))
10904 		goto out_balanced;
10905 
10906 	/* ASYM feature bypasses nice load balance check */
10907 	if (busiest->group_type == group_asym_packing)
10908 		goto force_balance;
10909 
10910 	/*
10911 	 * If the busiest group is imbalanced the below checks don't
10912 	 * work because they assume all things are equal, which typically
10913 	 * isn't true due to cpus_ptr constraints and the like.
10914 	 */
10915 	if (busiest->group_type == group_imbalanced)
10916 		goto force_balance;
10917 
10918 	local = &sds.local_stat;
10919 	/*
10920 	 * If the local group is busier than the selected busiest group
10921 	 * don't try and pull any tasks.
10922 	 */
10923 	if (local->group_type > busiest->group_type)
10924 		goto out_balanced;
10925 
10926 	/*
10927 	 * When groups are overloaded, use the avg_load to ensure fairness
10928 	 * between tasks.
10929 	 */
10930 	if (local->group_type == group_overloaded) {
10931 		/*
10932 		 * If the local group is more loaded than the selected
10933 		 * busiest group don't try to pull any tasks.
10934 		 */
10935 		if (local->avg_load >= busiest->avg_load)
10936 			goto out_balanced;
10937 
10938 		/* XXX broken for overlapping NUMA groups */
10939 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
10940 				sds.total_capacity;
10941 
10942 		/*
10943 		 * Don't pull any tasks if this group is already above the
10944 		 * domain average load.
10945 		 */
10946 		if (local->avg_load >= sds.avg_load)
10947 			goto out_balanced;
10948 
10949 		/*
10950 		 * If the busiest group is more loaded, use imbalance_pct to be
10951 		 * conservative.
10952 		 */
10953 		if (100 * busiest->avg_load <=
10954 				env->sd->imbalance_pct * local->avg_load)
10955 			goto out_balanced;
10956 	}
10957 
10958 	/*
10959 	 * Try to move all excess tasks to a sibling domain of the busiest
10960 	 * group's child domain.
10961 	 */
10962 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
10963 	    sibling_imbalance(env, &sds, busiest, local) > 1)
10964 		goto force_balance;
10965 
10966 	if (busiest->group_type != group_overloaded) {
10967 		if (!env->idle) {
10968 			/*
10969 			 * If the busiest group is not overloaded (and as a
10970 			 * result the local one too) but this CPU is already
10971 			 * busy, let another idle CPU try to pull task.
10972 			 */
10973 			goto out_balanced;
10974 		}
10975 
10976 		if (busiest->group_type == group_smt_balance &&
10977 		    smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
10978 			/* Let non SMT CPU pull from SMT CPU sharing with sibling */
10979 			goto force_balance;
10980 		}
10981 
10982 		if (busiest->group_weight > 1 &&
10983 		    local->idle_cpus <= (busiest->idle_cpus + 1)) {
10984 			/*
10985 			 * If the busiest group is not overloaded
10986 			 * and there is no imbalance between this and busiest
10987 			 * group wrt idle CPUs, it is balanced. The imbalance
10988 			 * becomes significant if the diff is greater than 1
10989 			 * otherwise we might end up to just move the imbalance
10990 			 * on another group. Of course this applies only if
10991 			 * there is more than 1 CPU per group.
10992 			 */
10993 			goto out_balanced;
10994 		}
10995 
10996 		if (busiest->sum_h_nr_running == 1) {
10997 			/*
10998 			 * busiest doesn't have any tasks waiting to run
10999 			 */
11000 			goto out_balanced;
11001 		}
11002 	}
11003 
11004 force_balance:
11005 	/* Looks like there is an imbalance. Compute it */
11006 	calculate_imbalance(env, &sds);
11007 	return env->imbalance ? sds.busiest : NULL;
11008 
11009 out_balanced:
11010 	env->imbalance = 0;
11011 	return NULL;
11012 }
11013 
11014 /*
11015  * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11016  */
11017 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11018 				     struct sched_group *group)
11019 {
11020 	struct rq *busiest = NULL, *rq;
11021 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11022 	unsigned int busiest_nr = 0;
11023 	int i;
11024 
11025 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11026 		unsigned long capacity, load, util;
11027 		unsigned int nr_running;
11028 		enum fbq_type rt;
11029 
11030 		rq = cpu_rq(i);
11031 		rt = fbq_classify_rq(rq);
11032 
11033 		/*
11034 		 * We classify groups/runqueues into three groups:
11035 		 *  - regular: there are !numa tasks
11036 		 *  - remote:  there are numa tasks that run on the 'wrong' node
11037 		 *  - all:     there is no distinction
11038 		 *
11039 		 * In order to avoid migrating ideally placed numa tasks,
11040 		 * ignore those when there's better options.
11041 		 *
11042 		 * If we ignore the actual busiest queue to migrate another
11043 		 * task, the next balance pass can still reduce the busiest
11044 		 * queue by moving tasks around inside the node.
11045 		 *
11046 		 * If we cannot move enough load due to this classification
11047 		 * the next pass will adjust the group classification and
11048 		 * allow migration of more tasks.
11049 		 *
11050 		 * Both cases only affect the total convergence complexity.
11051 		 */
11052 		if (rt > env->fbq_type)
11053 			continue;
11054 
11055 		nr_running = rq->cfs.h_nr_running;
11056 		if (!nr_running)
11057 			continue;
11058 
11059 		capacity = capacity_of(i);
11060 
11061 		/*
11062 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11063 		 * eventually lead to active_balancing high->low capacity.
11064 		 * Higher per-CPU capacity is considered better than balancing
11065 		 * average load.
11066 		 */
11067 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11068 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11069 		    nr_running == 1)
11070 			continue;
11071 
11072 		/*
11073 		 * Make sure we only pull tasks from a CPU of lower priority
11074 		 * when balancing between SMT siblings.
11075 		 *
11076 		 * If balancing between cores, let lower priority CPUs help
11077 		 * SMT cores with more than one busy sibling.
11078 		 */
11079 		if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11080 			continue;
11081 
11082 		switch (env->migration_type) {
11083 		case migrate_load:
11084 			/*
11085 			 * When comparing with load imbalance, use cpu_load()
11086 			 * which is not scaled with the CPU capacity.
11087 			 */
11088 			load = cpu_load(rq);
11089 
11090 			if (nr_running == 1 && load > env->imbalance &&
11091 			    !check_cpu_capacity(rq, env->sd))
11092 				break;
11093 
11094 			/*
11095 			 * For the load comparisons with the other CPUs,
11096 			 * consider the cpu_load() scaled with the CPU
11097 			 * capacity, so that the load can be moved away
11098 			 * from the CPU that is potentially running at a
11099 			 * lower capacity.
11100 			 *
11101 			 * Thus we're looking for max(load_i / capacity_i),
11102 			 * crosswise multiplication to rid ourselves of the
11103 			 * division works out to:
11104 			 * load_i * capacity_j > load_j * capacity_i;
11105 			 * where j is our previous maximum.
11106 			 */
11107 			if (load * busiest_capacity > busiest_load * capacity) {
11108 				busiest_load = load;
11109 				busiest_capacity = capacity;
11110 				busiest = rq;
11111 			}
11112 			break;
11113 
11114 		case migrate_util:
11115 			util = cpu_util_cfs_boost(i);
11116 
11117 			/*
11118 			 * Don't try to pull utilization from a CPU with one
11119 			 * running task. Whatever its utilization, we will fail
11120 			 * detach the task.
11121 			 */
11122 			if (nr_running <= 1)
11123 				continue;
11124 
11125 			if (busiest_util < util) {
11126 				busiest_util = util;
11127 				busiest = rq;
11128 			}
11129 			break;
11130 
11131 		case migrate_task:
11132 			if (busiest_nr < nr_running) {
11133 				busiest_nr = nr_running;
11134 				busiest = rq;
11135 			}
11136 			break;
11137 
11138 		case migrate_misfit:
11139 			/*
11140 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
11141 			 * simply seek the "biggest" misfit task.
11142 			 */
11143 			if (rq->misfit_task_load > busiest_load) {
11144 				busiest_load = rq->misfit_task_load;
11145 				busiest = rq;
11146 			}
11147 
11148 			break;
11149 
11150 		}
11151 	}
11152 
11153 	return busiest;
11154 }
11155 
11156 /*
11157  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11158  * so long as it is large enough.
11159  */
11160 #define MAX_PINNED_INTERVAL	512
11161 
11162 static inline bool
11163 asym_active_balance(struct lb_env *env)
11164 {
11165 	/*
11166 	 * ASYM_PACKING needs to force migrate tasks from busy but lower
11167 	 * priority CPUs in order to pack all tasks in the highest priority
11168 	 * CPUs. When done between cores, do it only if the whole core if the
11169 	 * whole core is idle.
11170 	 *
11171 	 * If @env::src_cpu is an SMT core with busy siblings, let
11172 	 * the lower priority @env::dst_cpu help it. Do not follow
11173 	 * CPU priority.
11174 	 */
11175 	return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11176 	       (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11177 		!sched_use_asym_prio(env->sd, env->src_cpu));
11178 }
11179 
11180 static inline bool
11181 imbalanced_active_balance(struct lb_env *env)
11182 {
11183 	struct sched_domain *sd = env->sd;
11184 
11185 	/*
11186 	 * The imbalanced case includes the case of pinned tasks preventing a fair
11187 	 * distribution of the load on the system but also the even distribution of the
11188 	 * threads on a system with spare capacity
11189 	 */
11190 	if ((env->migration_type == migrate_task) &&
11191 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
11192 		return 1;
11193 
11194 	return 0;
11195 }
11196 
11197 static int need_active_balance(struct lb_env *env)
11198 {
11199 	struct sched_domain *sd = env->sd;
11200 
11201 	if (asym_active_balance(env))
11202 		return 1;
11203 
11204 	if (imbalanced_active_balance(env))
11205 		return 1;
11206 
11207 	/*
11208 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11209 	 * It's worth migrating the task if the src_cpu's capacity is reduced
11210 	 * because of other sched_class or IRQs if more capacity stays
11211 	 * available on dst_cpu.
11212 	 */
11213 	if (env->idle &&
11214 	    (env->src_rq->cfs.h_nr_running == 1)) {
11215 		if ((check_cpu_capacity(env->src_rq, sd)) &&
11216 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11217 			return 1;
11218 	}
11219 
11220 	if (env->migration_type == migrate_misfit)
11221 		return 1;
11222 
11223 	return 0;
11224 }
11225 
11226 static int active_load_balance_cpu_stop(void *data);
11227 
11228 static int should_we_balance(struct lb_env *env)
11229 {
11230 	struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11231 	struct sched_group *sg = env->sd->groups;
11232 	int cpu, idle_smt = -1;
11233 
11234 	/*
11235 	 * Ensure the balancing environment is consistent; can happen
11236 	 * when the softirq triggers 'during' hotplug.
11237 	 */
11238 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11239 		return 0;
11240 
11241 	/*
11242 	 * In the newly idle case, we will allow all the CPUs
11243 	 * to do the newly idle load balance.
11244 	 *
11245 	 * However, we bail out if we already have tasks or a wakeup pending,
11246 	 * to optimize wakeup latency.
11247 	 */
11248 	if (env->idle == CPU_NEWLY_IDLE) {
11249 		if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11250 			return 0;
11251 		return 1;
11252 	}
11253 
11254 	cpumask_copy(swb_cpus, group_balance_mask(sg));
11255 	/* Try to find first idle CPU */
11256 	for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11257 		if (!idle_cpu(cpu))
11258 			continue;
11259 
11260 		/*
11261 		 * Don't balance to idle SMT in busy core right away when
11262 		 * balancing cores, but remember the first idle SMT CPU for
11263 		 * later consideration.  Find CPU on an idle core first.
11264 		 */
11265 		if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11266 			if (idle_smt == -1)
11267 				idle_smt = cpu;
11268 			/*
11269 			 * If the core is not idle, and first SMT sibling which is
11270 			 * idle has been found, then its not needed to check other
11271 			 * SMT siblings for idleness:
11272 			 */
11273 #ifdef CONFIG_SCHED_SMT
11274 			cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11275 #endif
11276 			continue;
11277 		}
11278 
11279 		/*
11280 		 * Are we the first idle core in a non-SMT domain or higher,
11281 		 * or the first idle CPU in a SMT domain?
11282 		 */
11283 		return cpu == env->dst_cpu;
11284 	}
11285 
11286 	/* Are we the first idle CPU with busy siblings? */
11287 	if (idle_smt != -1)
11288 		return idle_smt == env->dst_cpu;
11289 
11290 	/* Are we the first CPU of this group ? */
11291 	return group_balance_cpu(sg) == env->dst_cpu;
11292 }
11293 
11294 /*
11295  * Check this_cpu to ensure it is balanced within domain. Attempt to move
11296  * tasks if there is an imbalance.
11297  */
11298 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11299 			struct sched_domain *sd, enum cpu_idle_type idle,
11300 			int *continue_balancing)
11301 {
11302 	int ld_moved, cur_ld_moved, active_balance = 0;
11303 	struct sched_domain *sd_parent = sd->parent;
11304 	struct sched_group *group;
11305 	struct rq *busiest;
11306 	struct rq_flags rf;
11307 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11308 	struct lb_env env = {
11309 		.sd		= sd,
11310 		.dst_cpu	= this_cpu,
11311 		.dst_rq		= this_rq,
11312 		.dst_grpmask    = group_balance_mask(sd->groups),
11313 		.idle		= idle,
11314 		.loop_break	= SCHED_NR_MIGRATE_BREAK,
11315 		.cpus		= cpus,
11316 		.fbq_type	= all,
11317 		.tasks		= LIST_HEAD_INIT(env.tasks),
11318 	};
11319 
11320 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11321 
11322 	schedstat_inc(sd->lb_count[idle]);
11323 
11324 redo:
11325 	if (!should_we_balance(&env)) {
11326 		*continue_balancing = 0;
11327 		goto out_balanced;
11328 	}
11329 
11330 	group = sched_balance_find_src_group(&env);
11331 	if (!group) {
11332 		schedstat_inc(sd->lb_nobusyg[idle]);
11333 		goto out_balanced;
11334 	}
11335 
11336 	busiest = sched_balance_find_src_rq(&env, group);
11337 	if (!busiest) {
11338 		schedstat_inc(sd->lb_nobusyq[idle]);
11339 		goto out_balanced;
11340 	}
11341 
11342 	WARN_ON_ONCE(busiest == env.dst_rq);
11343 
11344 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11345 
11346 	env.src_cpu = busiest->cpu;
11347 	env.src_rq = busiest;
11348 
11349 	ld_moved = 0;
11350 	/* Clear this flag as soon as we find a pullable task */
11351 	env.flags |= LBF_ALL_PINNED;
11352 	if (busiest->nr_running > 1) {
11353 		/*
11354 		 * Attempt to move tasks. If sched_balance_find_src_group has found
11355 		 * an imbalance but busiest->nr_running <= 1, the group is
11356 		 * still unbalanced. ld_moved simply stays zero, so it is
11357 		 * correctly treated as an imbalance.
11358 		 */
11359 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
11360 
11361 more_balance:
11362 		rq_lock_irqsave(busiest, &rf);
11363 		update_rq_clock(busiest);
11364 
11365 		/*
11366 		 * cur_ld_moved - load moved in current iteration
11367 		 * ld_moved     - cumulative load moved across iterations
11368 		 */
11369 		cur_ld_moved = detach_tasks(&env);
11370 
11371 		/*
11372 		 * We've detached some tasks from busiest_rq. Every
11373 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11374 		 * unlock busiest->lock, and we are able to be sure
11375 		 * that nobody can manipulate the tasks in parallel.
11376 		 * See task_rq_lock() family for the details.
11377 		 */
11378 
11379 		rq_unlock(busiest, &rf);
11380 
11381 		if (cur_ld_moved) {
11382 			attach_tasks(&env);
11383 			ld_moved += cur_ld_moved;
11384 		}
11385 
11386 		local_irq_restore(rf.flags);
11387 
11388 		if (env.flags & LBF_NEED_BREAK) {
11389 			env.flags &= ~LBF_NEED_BREAK;
11390 			goto more_balance;
11391 		}
11392 
11393 		/*
11394 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11395 		 * us and move them to an alternate dst_cpu in our sched_group
11396 		 * where they can run. The upper limit on how many times we
11397 		 * iterate on same src_cpu is dependent on number of CPUs in our
11398 		 * sched_group.
11399 		 *
11400 		 * This changes load balance semantics a bit on who can move
11401 		 * load to a given_cpu. In addition to the given_cpu itself
11402 		 * (or a ilb_cpu acting on its behalf where given_cpu is
11403 		 * nohz-idle), we now have balance_cpu in a position to move
11404 		 * load to given_cpu. In rare situations, this may cause
11405 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11406 		 * _independently_ and at _same_ time to move some load to
11407 		 * given_cpu) causing excess load to be moved to given_cpu.
11408 		 * This however should not happen so much in practice and
11409 		 * moreover subsequent load balance cycles should correct the
11410 		 * excess load moved.
11411 		 */
11412 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11413 
11414 			/* Prevent to re-select dst_cpu via env's CPUs */
11415 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
11416 
11417 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
11418 			env.dst_cpu	 = env.new_dst_cpu;
11419 			env.flags	&= ~LBF_DST_PINNED;
11420 			env.loop	 = 0;
11421 			env.loop_break	 = SCHED_NR_MIGRATE_BREAK;
11422 
11423 			/*
11424 			 * Go back to "more_balance" rather than "redo" since we
11425 			 * need to continue with same src_cpu.
11426 			 */
11427 			goto more_balance;
11428 		}
11429 
11430 		/*
11431 		 * We failed to reach balance because of affinity.
11432 		 */
11433 		if (sd_parent) {
11434 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11435 
11436 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11437 				*group_imbalance = 1;
11438 		}
11439 
11440 		/* All tasks on this runqueue were pinned by CPU affinity */
11441 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
11442 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
11443 			/*
11444 			 * Attempting to continue load balancing at the current
11445 			 * sched_domain level only makes sense if there are
11446 			 * active CPUs remaining as possible busiest CPUs to
11447 			 * pull load from which are not contained within the
11448 			 * destination group that is receiving any migrated
11449 			 * load.
11450 			 */
11451 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
11452 				env.loop = 0;
11453 				env.loop_break = SCHED_NR_MIGRATE_BREAK;
11454 				goto redo;
11455 			}
11456 			goto out_all_pinned;
11457 		}
11458 	}
11459 
11460 	if (!ld_moved) {
11461 		schedstat_inc(sd->lb_failed[idle]);
11462 		/*
11463 		 * Increment the failure counter only on periodic balance.
11464 		 * We do not want newidle balance, which can be very
11465 		 * frequent, pollute the failure counter causing
11466 		 * excessive cache_hot migrations and active balances.
11467 		 *
11468 		 * Similarly for migration_misfit which is not related to
11469 		 * load/util migration, don't pollute nr_balance_failed.
11470 		 */
11471 		if (idle != CPU_NEWLY_IDLE &&
11472 		    env.migration_type != migrate_misfit)
11473 			sd->nr_balance_failed++;
11474 
11475 		if (need_active_balance(&env)) {
11476 			unsigned long flags;
11477 
11478 			raw_spin_rq_lock_irqsave(busiest, flags);
11479 
11480 			/*
11481 			 * Don't kick the active_load_balance_cpu_stop,
11482 			 * if the curr task on busiest CPU can't be
11483 			 * moved to this_cpu:
11484 			 */
11485 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11486 				raw_spin_rq_unlock_irqrestore(busiest, flags);
11487 				goto out_one_pinned;
11488 			}
11489 
11490 			/* Record that we found at least one task that could run on this_cpu */
11491 			env.flags &= ~LBF_ALL_PINNED;
11492 
11493 			/*
11494 			 * ->active_balance synchronizes accesses to
11495 			 * ->active_balance_work.  Once set, it's cleared
11496 			 * only after active load balance is finished.
11497 			 */
11498 			if (!busiest->active_balance) {
11499 				busiest->active_balance = 1;
11500 				busiest->push_cpu = this_cpu;
11501 				active_balance = 1;
11502 			}
11503 
11504 			preempt_disable();
11505 			raw_spin_rq_unlock_irqrestore(busiest, flags);
11506 			if (active_balance) {
11507 				stop_one_cpu_nowait(cpu_of(busiest),
11508 					active_load_balance_cpu_stop, busiest,
11509 					&busiest->active_balance_work);
11510 			}
11511 			preempt_enable();
11512 		}
11513 	} else {
11514 		sd->nr_balance_failed = 0;
11515 	}
11516 
11517 	if (likely(!active_balance) || need_active_balance(&env)) {
11518 		/* We were unbalanced, so reset the balancing interval */
11519 		sd->balance_interval = sd->min_interval;
11520 	}
11521 
11522 	goto out;
11523 
11524 out_balanced:
11525 	/*
11526 	 * We reach balance although we may have faced some affinity
11527 	 * constraints. Clear the imbalance flag only if other tasks got
11528 	 * a chance to move and fix the imbalance.
11529 	 */
11530 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11531 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11532 
11533 		if (*group_imbalance)
11534 			*group_imbalance = 0;
11535 	}
11536 
11537 out_all_pinned:
11538 	/*
11539 	 * We reach balance because all tasks are pinned at this level so
11540 	 * we can't migrate them. Let the imbalance flag set so parent level
11541 	 * can try to migrate them.
11542 	 */
11543 	schedstat_inc(sd->lb_balanced[idle]);
11544 
11545 	sd->nr_balance_failed = 0;
11546 
11547 out_one_pinned:
11548 	ld_moved = 0;
11549 
11550 	/*
11551 	 * sched_balance_newidle() disregards balance intervals, so we could
11552 	 * repeatedly reach this code, which would lead to balance_interval
11553 	 * skyrocketing in a short amount of time. Skip the balance_interval
11554 	 * increase logic to avoid that.
11555 	 *
11556 	 * Similarly misfit migration which is not necessarily an indication of
11557 	 * the system being busy and requires lb to backoff to let it settle
11558 	 * down.
11559 	 */
11560 	if (env.idle == CPU_NEWLY_IDLE ||
11561 	    env.migration_type == migrate_misfit)
11562 		goto out;
11563 
11564 	/* tune up the balancing interval */
11565 	if ((env.flags & LBF_ALL_PINNED &&
11566 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
11567 	    sd->balance_interval < sd->max_interval)
11568 		sd->balance_interval *= 2;
11569 out:
11570 	return ld_moved;
11571 }
11572 
11573 static inline unsigned long
11574 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11575 {
11576 	unsigned long interval = sd->balance_interval;
11577 
11578 	if (cpu_busy)
11579 		interval *= sd->busy_factor;
11580 
11581 	/* scale ms to jiffies */
11582 	interval = msecs_to_jiffies(interval);
11583 
11584 	/*
11585 	 * Reduce likelihood of busy balancing at higher domains racing with
11586 	 * balancing at lower domains by preventing their balancing periods
11587 	 * from being multiples of each other.
11588 	 */
11589 	if (cpu_busy)
11590 		interval -= 1;
11591 
11592 	interval = clamp(interval, 1UL, max_load_balance_interval);
11593 
11594 	return interval;
11595 }
11596 
11597 static inline void
11598 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11599 {
11600 	unsigned long interval, next;
11601 
11602 	/* used by idle balance, so cpu_busy = 0 */
11603 	interval = get_sd_balance_interval(sd, 0);
11604 	next = sd->last_balance + interval;
11605 
11606 	if (time_after(*next_balance, next))
11607 		*next_balance = next;
11608 }
11609 
11610 /*
11611  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11612  * running tasks off the busiest CPU onto idle CPUs. It requires at
11613  * least 1 task to be running on each physical CPU where possible, and
11614  * avoids physical / logical imbalances.
11615  */
11616 static int active_load_balance_cpu_stop(void *data)
11617 {
11618 	struct rq *busiest_rq = data;
11619 	int busiest_cpu = cpu_of(busiest_rq);
11620 	int target_cpu = busiest_rq->push_cpu;
11621 	struct rq *target_rq = cpu_rq(target_cpu);
11622 	struct sched_domain *sd;
11623 	struct task_struct *p = NULL;
11624 	struct rq_flags rf;
11625 
11626 	rq_lock_irq(busiest_rq, &rf);
11627 	/*
11628 	 * Between queueing the stop-work and running it is a hole in which
11629 	 * CPUs can become inactive. We should not move tasks from or to
11630 	 * inactive CPUs.
11631 	 */
11632 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
11633 		goto out_unlock;
11634 
11635 	/* Make sure the requested CPU hasn't gone down in the meantime: */
11636 	if (unlikely(busiest_cpu != smp_processor_id() ||
11637 		     !busiest_rq->active_balance))
11638 		goto out_unlock;
11639 
11640 	/* Is there any task to move? */
11641 	if (busiest_rq->nr_running <= 1)
11642 		goto out_unlock;
11643 
11644 	/*
11645 	 * This condition is "impossible", if it occurs
11646 	 * we need to fix it. Originally reported by
11647 	 * Bjorn Helgaas on a 128-CPU setup.
11648 	 */
11649 	WARN_ON_ONCE(busiest_rq == target_rq);
11650 
11651 	/* Search for an sd spanning us and the target CPU. */
11652 	rcu_read_lock();
11653 	for_each_domain(target_cpu, sd) {
11654 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
11655 			break;
11656 	}
11657 
11658 	if (likely(sd)) {
11659 		struct lb_env env = {
11660 			.sd		= sd,
11661 			.dst_cpu	= target_cpu,
11662 			.dst_rq		= target_rq,
11663 			.src_cpu	= busiest_rq->cpu,
11664 			.src_rq		= busiest_rq,
11665 			.idle		= CPU_IDLE,
11666 			.flags		= LBF_ACTIVE_LB,
11667 		};
11668 
11669 		schedstat_inc(sd->alb_count);
11670 		update_rq_clock(busiest_rq);
11671 
11672 		p = detach_one_task(&env);
11673 		if (p) {
11674 			schedstat_inc(sd->alb_pushed);
11675 			/* Active balancing done, reset the failure counter. */
11676 			sd->nr_balance_failed = 0;
11677 		} else {
11678 			schedstat_inc(sd->alb_failed);
11679 		}
11680 	}
11681 	rcu_read_unlock();
11682 out_unlock:
11683 	busiest_rq->active_balance = 0;
11684 	rq_unlock(busiest_rq, &rf);
11685 
11686 	if (p)
11687 		attach_one_task(target_rq, p);
11688 
11689 	local_irq_enable();
11690 
11691 	return 0;
11692 }
11693 
11694 /*
11695  * This flag serializes load-balancing passes over large domains
11696  * (above the NODE topology level) - only one load-balancing instance
11697  * may run at a time, to reduce overhead on very large systems with
11698  * lots of CPUs and large NUMA distances.
11699  *
11700  * - Note that load-balancing passes triggered while another one
11701  *   is executing are skipped and not re-tried.
11702  *
11703  * - Also note that this does not serialize rebalance_domains()
11704  *   execution, as non-SD_SERIALIZE domains will still be
11705  *   load-balanced in parallel.
11706  */
11707 static atomic_t sched_balance_running = ATOMIC_INIT(0);
11708 
11709 /*
11710  * Scale the max sched_balance_rq interval with the number of CPUs in the system.
11711  * This trades load-balance latency on larger machines for less cross talk.
11712  */
11713 void update_max_interval(void)
11714 {
11715 	max_load_balance_interval = HZ*num_online_cpus()/10;
11716 }
11717 
11718 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
11719 {
11720 	if (cost > sd->max_newidle_lb_cost) {
11721 		/*
11722 		 * Track max cost of a domain to make sure to not delay the
11723 		 * next wakeup on the CPU.
11724 		 */
11725 		sd->max_newidle_lb_cost = cost;
11726 		sd->last_decay_max_lb_cost = jiffies;
11727 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
11728 		/*
11729 		 * Decay the newidle max times by ~1% per second to ensure that
11730 		 * it is not outdated and the current max cost is actually
11731 		 * shorter.
11732 		 */
11733 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
11734 		sd->last_decay_max_lb_cost = jiffies;
11735 
11736 		return true;
11737 	}
11738 
11739 	return false;
11740 }
11741 
11742 /*
11743  * It checks each scheduling domain to see if it is due to be balanced,
11744  * and initiates a balancing operation if so.
11745  *
11746  * Balancing parameters are set up in init_sched_domains.
11747  */
11748 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
11749 {
11750 	int continue_balancing = 1;
11751 	int cpu = rq->cpu;
11752 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
11753 	unsigned long interval;
11754 	struct sched_domain *sd;
11755 	/* Earliest time when we have to do rebalance again */
11756 	unsigned long next_balance = jiffies + 60*HZ;
11757 	int update_next_balance = 0;
11758 	int need_serialize, need_decay = 0;
11759 	u64 max_cost = 0;
11760 
11761 	rcu_read_lock();
11762 	for_each_domain(cpu, sd) {
11763 		/*
11764 		 * Decay the newidle max times here because this is a regular
11765 		 * visit to all the domains.
11766 		 */
11767 		need_decay = update_newidle_cost(sd, 0);
11768 		max_cost += sd->max_newidle_lb_cost;
11769 
11770 		/*
11771 		 * Stop the load balance at this level. There is another
11772 		 * CPU in our sched group which is doing load balancing more
11773 		 * actively.
11774 		 */
11775 		if (!continue_balancing) {
11776 			if (need_decay)
11777 				continue;
11778 			break;
11779 		}
11780 
11781 		interval = get_sd_balance_interval(sd, busy);
11782 
11783 		need_serialize = sd->flags & SD_SERIALIZE;
11784 		if (need_serialize) {
11785 			if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
11786 				goto out;
11787 		}
11788 
11789 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
11790 			if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
11791 				/*
11792 				 * The LBF_DST_PINNED logic could have changed
11793 				 * env->dst_cpu, so we can't know our idle
11794 				 * state even if we migrated tasks. Update it.
11795 				 */
11796 				idle = idle_cpu(cpu);
11797 				busy = !idle && !sched_idle_cpu(cpu);
11798 			}
11799 			sd->last_balance = jiffies;
11800 			interval = get_sd_balance_interval(sd, busy);
11801 		}
11802 		if (need_serialize)
11803 			atomic_set_release(&sched_balance_running, 0);
11804 out:
11805 		if (time_after(next_balance, sd->last_balance + interval)) {
11806 			next_balance = sd->last_balance + interval;
11807 			update_next_balance = 1;
11808 		}
11809 	}
11810 	if (need_decay) {
11811 		/*
11812 		 * Ensure the rq-wide value also decays but keep it at a
11813 		 * reasonable floor to avoid funnies with rq->avg_idle.
11814 		 */
11815 		rq->max_idle_balance_cost =
11816 			max((u64)sysctl_sched_migration_cost, max_cost);
11817 	}
11818 	rcu_read_unlock();
11819 
11820 	/*
11821 	 * next_balance will be updated only when there is a need.
11822 	 * When the cpu is attached to null domain for ex, it will not be
11823 	 * updated.
11824 	 */
11825 	if (likely(update_next_balance))
11826 		rq->next_balance = next_balance;
11827 
11828 }
11829 
11830 static inline int on_null_domain(struct rq *rq)
11831 {
11832 	return unlikely(!rcu_dereference_sched(rq->sd));
11833 }
11834 
11835 #ifdef CONFIG_NO_HZ_COMMON
11836 /*
11837  * NOHZ idle load balancing (ILB) details:
11838  *
11839  * - When one of the busy CPUs notices that there may be an idle rebalancing
11840  *   needed, they will kick the idle load balancer, which then does idle
11841  *   load balancing for all the idle CPUs.
11842  *
11843  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
11844  *   anywhere yet.
11845  */
11846 static inline int find_new_ilb(void)
11847 {
11848 	const struct cpumask *hk_mask;
11849 	int ilb_cpu;
11850 
11851 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
11852 
11853 	for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
11854 
11855 		if (ilb_cpu == smp_processor_id())
11856 			continue;
11857 
11858 		if (idle_cpu(ilb_cpu))
11859 			return ilb_cpu;
11860 	}
11861 
11862 	return -1;
11863 }
11864 
11865 /*
11866  * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
11867  * SMP function call (IPI).
11868  *
11869  * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
11870  */
11871 static void kick_ilb(unsigned int flags)
11872 {
11873 	int ilb_cpu;
11874 
11875 	/*
11876 	 * Increase nohz.next_balance only when if full ilb is triggered but
11877 	 * not if we only update stats.
11878 	 */
11879 	if (flags & NOHZ_BALANCE_KICK)
11880 		nohz.next_balance = jiffies+1;
11881 
11882 	ilb_cpu = find_new_ilb();
11883 	if (ilb_cpu < 0)
11884 		return;
11885 
11886 	/*
11887 	 * Don't bother if no new NOHZ balance work items for ilb_cpu,
11888 	 * i.e. all bits in flags are already set in ilb_cpu.
11889 	 */
11890 	if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
11891 		return;
11892 
11893 	/*
11894 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
11895 	 * the first flag owns it; cleared by nohz_csd_func().
11896 	 */
11897 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
11898 	if (flags & NOHZ_KICK_MASK)
11899 		return;
11900 
11901 	/*
11902 	 * This way we generate an IPI on the target CPU which
11903 	 * is idle, and the softirq performing NOHZ idle load balancing
11904 	 * will be run before returning from the IPI.
11905 	 */
11906 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
11907 }
11908 
11909 /*
11910  * Current decision point for kicking the idle load balancer in the presence
11911  * of idle CPUs in the system.
11912  */
11913 static void nohz_balancer_kick(struct rq *rq)
11914 {
11915 	unsigned long now = jiffies;
11916 	struct sched_domain_shared *sds;
11917 	struct sched_domain *sd;
11918 	int nr_busy, i, cpu = rq->cpu;
11919 	unsigned int flags = 0;
11920 
11921 	if (unlikely(rq->idle_balance))
11922 		return;
11923 
11924 	/*
11925 	 * We may be recently in ticked or tickless idle mode. At the first
11926 	 * busy tick after returning from idle, we will update the busy stats.
11927 	 */
11928 	nohz_balance_exit_idle(rq);
11929 
11930 	/*
11931 	 * None are in tickless mode and hence no need for NOHZ idle load
11932 	 * balancing:
11933 	 */
11934 	if (likely(!atomic_read(&nohz.nr_cpus)))
11935 		return;
11936 
11937 	if (READ_ONCE(nohz.has_blocked) &&
11938 	    time_after(now, READ_ONCE(nohz.next_blocked)))
11939 		flags = NOHZ_STATS_KICK;
11940 
11941 	if (time_before(now, nohz.next_balance))
11942 		goto out;
11943 
11944 	if (rq->nr_running >= 2) {
11945 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11946 		goto out;
11947 	}
11948 
11949 	rcu_read_lock();
11950 
11951 	sd = rcu_dereference(rq->sd);
11952 	if (sd) {
11953 		/*
11954 		 * If there's a runnable CFS task and the current CPU has reduced
11955 		 * capacity, kick the ILB to see if there's a better CPU to run on:
11956 		 */
11957 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
11958 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11959 			goto unlock;
11960 		}
11961 	}
11962 
11963 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
11964 	if (sd) {
11965 		/*
11966 		 * When ASYM_PACKING; see if there's a more preferred CPU
11967 		 * currently idle; in which case, kick the ILB to move tasks
11968 		 * around.
11969 		 *
11970 		 * When balancing between cores, all the SMT siblings of the
11971 		 * preferred CPU must be idle.
11972 		 */
11973 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
11974 			if (sched_asym(sd, i, cpu)) {
11975 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11976 				goto unlock;
11977 			}
11978 		}
11979 	}
11980 
11981 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
11982 	if (sd) {
11983 		/*
11984 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
11985 		 * to run the misfit task on.
11986 		 */
11987 		if (check_misfit_status(rq)) {
11988 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
11989 			goto unlock;
11990 		}
11991 
11992 		/*
11993 		 * For asymmetric systems, we do not want to nicely balance
11994 		 * cache use, instead we want to embrace asymmetry and only
11995 		 * ensure tasks have enough CPU capacity.
11996 		 *
11997 		 * Skip the LLC logic because it's not relevant in that case.
11998 		 */
11999 		goto unlock;
12000 	}
12001 
12002 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12003 	if (sds) {
12004 		/*
12005 		 * If there is an imbalance between LLC domains (IOW we could
12006 		 * increase the overall cache utilization), we need a less-loaded LLC
12007 		 * domain to pull some load from. Likewise, we may need to spread
12008 		 * load within the current LLC domain (e.g. packed SMT cores but
12009 		 * other CPUs are idle). We can't really know from here how busy
12010 		 * the others are - so just get a NOHZ balance going if it looks
12011 		 * like this LLC domain has tasks we could move.
12012 		 */
12013 		nr_busy = atomic_read(&sds->nr_busy_cpus);
12014 		if (nr_busy > 1) {
12015 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12016 			goto unlock;
12017 		}
12018 	}
12019 unlock:
12020 	rcu_read_unlock();
12021 out:
12022 	if (READ_ONCE(nohz.needs_update))
12023 		flags |= NOHZ_NEXT_KICK;
12024 
12025 	if (flags)
12026 		kick_ilb(flags);
12027 }
12028 
12029 static void set_cpu_sd_state_busy(int cpu)
12030 {
12031 	struct sched_domain *sd;
12032 
12033 	rcu_read_lock();
12034 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12035 
12036 	if (!sd || !sd->nohz_idle)
12037 		goto unlock;
12038 	sd->nohz_idle = 0;
12039 
12040 	atomic_inc(&sd->shared->nr_busy_cpus);
12041 unlock:
12042 	rcu_read_unlock();
12043 }
12044 
12045 void nohz_balance_exit_idle(struct rq *rq)
12046 {
12047 	SCHED_WARN_ON(rq != this_rq());
12048 
12049 	if (likely(!rq->nohz_tick_stopped))
12050 		return;
12051 
12052 	rq->nohz_tick_stopped = 0;
12053 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12054 	atomic_dec(&nohz.nr_cpus);
12055 
12056 	set_cpu_sd_state_busy(rq->cpu);
12057 }
12058 
12059 static void set_cpu_sd_state_idle(int cpu)
12060 {
12061 	struct sched_domain *sd;
12062 
12063 	rcu_read_lock();
12064 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
12065 
12066 	if (!sd || sd->nohz_idle)
12067 		goto unlock;
12068 	sd->nohz_idle = 1;
12069 
12070 	atomic_dec(&sd->shared->nr_busy_cpus);
12071 unlock:
12072 	rcu_read_unlock();
12073 }
12074 
12075 /*
12076  * This routine will record that the CPU is going idle with tick stopped.
12077  * This info will be used in performing idle load balancing in the future.
12078  */
12079 void nohz_balance_enter_idle(int cpu)
12080 {
12081 	struct rq *rq = cpu_rq(cpu);
12082 
12083 	SCHED_WARN_ON(cpu != smp_processor_id());
12084 
12085 	/* If this CPU is going down, then nothing needs to be done: */
12086 	if (!cpu_active(cpu))
12087 		return;
12088 
12089 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
12090 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12091 		return;
12092 
12093 	/*
12094 	 * Can be set safely without rq->lock held
12095 	 * If a clear happens, it will have evaluated last additions because
12096 	 * rq->lock is held during the check and the clear
12097 	 */
12098 	rq->has_blocked_load = 1;
12099 
12100 	/*
12101 	 * The tick is still stopped but load could have been added in the
12102 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
12103 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12104 	 * of nohz.has_blocked can only happen after checking the new load
12105 	 */
12106 	if (rq->nohz_tick_stopped)
12107 		goto out;
12108 
12109 	/* If we're a completely isolated CPU, we don't play: */
12110 	if (on_null_domain(rq))
12111 		return;
12112 
12113 	rq->nohz_tick_stopped = 1;
12114 
12115 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12116 	atomic_inc(&nohz.nr_cpus);
12117 
12118 	/*
12119 	 * Ensures that if nohz_idle_balance() fails to observe our
12120 	 * @idle_cpus_mask store, it must observe the @has_blocked
12121 	 * and @needs_update stores.
12122 	 */
12123 	smp_mb__after_atomic();
12124 
12125 	set_cpu_sd_state_idle(cpu);
12126 
12127 	WRITE_ONCE(nohz.needs_update, 1);
12128 out:
12129 	/*
12130 	 * Each time a cpu enter idle, we assume that it has blocked load and
12131 	 * enable the periodic update of the load of idle CPUs
12132 	 */
12133 	WRITE_ONCE(nohz.has_blocked, 1);
12134 }
12135 
12136 static bool update_nohz_stats(struct rq *rq)
12137 {
12138 	unsigned int cpu = rq->cpu;
12139 
12140 	if (!rq->has_blocked_load)
12141 		return false;
12142 
12143 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12144 		return false;
12145 
12146 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12147 		return true;
12148 
12149 	sched_balance_update_blocked_averages(cpu);
12150 
12151 	return rq->has_blocked_load;
12152 }
12153 
12154 /*
12155  * Internal function that runs load balance for all idle CPUs. The load balance
12156  * can be a simple update of blocked load or a complete load balance with
12157  * tasks movement depending of flags.
12158  */
12159 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12160 {
12161 	/* Earliest time when we have to do rebalance again */
12162 	unsigned long now = jiffies;
12163 	unsigned long next_balance = now + 60*HZ;
12164 	bool has_blocked_load = false;
12165 	int update_next_balance = 0;
12166 	int this_cpu = this_rq->cpu;
12167 	int balance_cpu;
12168 	struct rq *rq;
12169 
12170 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12171 
12172 	/*
12173 	 * We assume there will be no idle load after this update and clear
12174 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12175 	 * set the has_blocked flag and trigger another update of idle load.
12176 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12177 	 * setting the flag, we are sure to not clear the state and not
12178 	 * check the load of an idle cpu.
12179 	 *
12180 	 * Same applies to idle_cpus_mask vs needs_update.
12181 	 */
12182 	if (flags & NOHZ_STATS_KICK)
12183 		WRITE_ONCE(nohz.has_blocked, 0);
12184 	if (flags & NOHZ_NEXT_KICK)
12185 		WRITE_ONCE(nohz.needs_update, 0);
12186 
12187 	/*
12188 	 * Ensures that if we miss the CPU, we must see the has_blocked
12189 	 * store from nohz_balance_enter_idle().
12190 	 */
12191 	smp_mb();
12192 
12193 	/*
12194 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12195 	 * chance for other idle cpu to pull load.
12196 	 */
12197 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
12198 		if (!idle_cpu(balance_cpu))
12199 			continue;
12200 
12201 		/*
12202 		 * If this CPU gets work to do, stop the load balancing
12203 		 * work being done for other CPUs. Next load
12204 		 * balancing owner will pick it up.
12205 		 */
12206 		if (need_resched()) {
12207 			if (flags & NOHZ_STATS_KICK)
12208 				has_blocked_load = true;
12209 			if (flags & NOHZ_NEXT_KICK)
12210 				WRITE_ONCE(nohz.needs_update, 1);
12211 			goto abort;
12212 		}
12213 
12214 		rq = cpu_rq(balance_cpu);
12215 
12216 		if (flags & NOHZ_STATS_KICK)
12217 			has_blocked_load |= update_nohz_stats(rq);
12218 
12219 		/*
12220 		 * If time for next balance is due,
12221 		 * do the balance.
12222 		 */
12223 		if (time_after_eq(jiffies, rq->next_balance)) {
12224 			struct rq_flags rf;
12225 
12226 			rq_lock_irqsave(rq, &rf);
12227 			update_rq_clock(rq);
12228 			rq_unlock_irqrestore(rq, &rf);
12229 
12230 			if (flags & NOHZ_BALANCE_KICK)
12231 				sched_balance_domains(rq, CPU_IDLE);
12232 		}
12233 
12234 		if (time_after(next_balance, rq->next_balance)) {
12235 			next_balance = rq->next_balance;
12236 			update_next_balance = 1;
12237 		}
12238 	}
12239 
12240 	/*
12241 	 * next_balance will be updated only when there is a need.
12242 	 * When the CPU is attached to null domain for ex, it will not be
12243 	 * updated.
12244 	 */
12245 	if (likely(update_next_balance))
12246 		nohz.next_balance = next_balance;
12247 
12248 	if (flags & NOHZ_STATS_KICK)
12249 		WRITE_ONCE(nohz.next_blocked,
12250 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12251 
12252 abort:
12253 	/* There is still blocked load, enable periodic update */
12254 	if (has_blocked_load)
12255 		WRITE_ONCE(nohz.has_blocked, 1);
12256 }
12257 
12258 /*
12259  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12260  * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12261  */
12262 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12263 {
12264 	unsigned int flags = this_rq->nohz_idle_balance;
12265 
12266 	if (!flags)
12267 		return false;
12268 
12269 	this_rq->nohz_idle_balance = 0;
12270 
12271 	if (idle != CPU_IDLE)
12272 		return false;
12273 
12274 	_nohz_idle_balance(this_rq, flags);
12275 
12276 	return true;
12277 }
12278 
12279 /*
12280  * Check if we need to directly run the ILB for updating blocked load before
12281  * entering idle state. Here we run ILB directly without issuing IPIs.
12282  *
12283  * Note that when this function is called, the tick may not yet be stopped on
12284  * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12285  * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12286  * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12287  * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12288  * called from this function on (this) CPU that's not yet in the mask. That's
12289  * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12290  * updating the blocked load of already idle CPUs without waking up one of
12291  * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12292  * cpu about to enter idle, because it can take a long time.
12293  */
12294 void nohz_run_idle_balance(int cpu)
12295 {
12296 	unsigned int flags;
12297 
12298 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12299 
12300 	/*
12301 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12302 	 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12303 	 */
12304 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12305 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12306 }
12307 
12308 static void nohz_newidle_balance(struct rq *this_rq)
12309 {
12310 	int this_cpu = this_rq->cpu;
12311 
12312 	/*
12313 	 * This CPU doesn't want to be disturbed by scheduler
12314 	 * housekeeping
12315 	 */
12316 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12317 		return;
12318 
12319 	/* Will wake up very soon. No time for doing anything else*/
12320 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
12321 		return;
12322 
12323 	/* Don't need to update blocked load of idle CPUs*/
12324 	if (!READ_ONCE(nohz.has_blocked) ||
12325 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12326 		return;
12327 
12328 	/*
12329 	 * Set the need to trigger ILB in order to update blocked load
12330 	 * before entering idle state.
12331 	 */
12332 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12333 }
12334 
12335 #else /* !CONFIG_NO_HZ_COMMON */
12336 static inline void nohz_balancer_kick(struct rq *rq) { }
12337 
12338 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12339 {
12340 	return false;
12341 }
12342 
12343 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12344 #endif /* CONFIG_NO_HZ_COMMON */
12345 
12346 /*
12347  * sched_balance_newidle is called by schedule() if this_cpu is about to become
12348  * idle. Attempts to pull tasks from other CPUs.
12349  *
12350  * Returns:
12351  *   < 0 - we released the lock and there are !fair tasks present
12352  *     0 - failed, no new tasks
12353  *   > 0 - success, new (fair) tasks present
12354  */
12355 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12356 {
12357 	unsigned long next_balance = jiffies + HZ;
12358 	int this_cpu = this_rq->cpu;
12359 	int continue_balancing = 1;
12360 	u64 t0, t1, curr_cost = 0;
12361 	struct sched_domain *sd;
12362 	int pulled_task = 0;
12363 
12364 	update_misfit_status(NULL, this_rq);
12365 
12366 	/*
12367 	 * There is a task waiting to run. No need to search for one.
12368 	 * Return 0; the task will be enqueued when switching to idle.
12369 	 */
12370 	if (this_rq->ttwu_pending)
12371 		return 0;
12372 
12373 	/*
12374 	 * We must set idle_stamp _before_ calling sched_balance_rq()
12375 	 * for CPU_NEWLY_IDLE, such that we measure the this duration
12376 	 * as idle time.
12377 	 */
12378 	this_rq->idle_stamp = rq_clock(this_rq);
12379 
12380 	/*
12381 	 * Do not pull tasks towards !active CPUs...
12382 	 */
12383 	if (!cpu_active(this_cpu))
12384 		return 0;
12385 
12386 	/*
12387 	 * This is OK, because current is on_cpu, which avoids it being picked
12388 	 * for load-balance and preemption/IRQs are still disabled avoiding
12389 	 * further scheduler activity on it and we're being very careful to
12390 	 * re-start the picking loop.
12391 	 */
12392 	rq_unpin_lock(this_rq, rf);
12393 
12394 	rcu_read_lock();
12395 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
12396 
12397 	if (!get_rd_overloaded(this_rq->rd) ||
12398 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12399 
12400 		if (sd)
12401 			update_next_balance(sd, &next_balance);
12402 		rcu_read_unlock();
12403 
12404 		goto out;
12405 	}
12406 	rcu_read_unlock();
12407 
12408 	raw_spin_rq_unlock(this_rq);
12409 
12410 	t0 = sched_clock_cpu(this_cpu);
12411 	sched_balance_update_blocked_averages(this_cpu);
12412 
12413 	rcu_read_lock();
12414 	for_each_domain(this_cpu, sd) {
12415 		u64 domain_cost;
12416 
12417 		update_next_balance(sd, &next_balance);
12418 
12419 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12420 			break;
12421 
12422 		if (sd->flags & SD_BALANCE_NEWIDLE) {
12423 
12424 			pulled_task = sched_balance_rq(this_cpu, this_rq,
12425 						   sd, CPU_NEWLY_IDLE,
12426 						   &continue_balancing);
12427 
12428 			t1 = sched_clock_cpu(this_cpu);
12429 			domain_cost = t1 - t0;
12430 			update_newidle_cost(sd, domain_cost);
12431 
12432 			curr_cost += domain_cost;
12433 			t0 = t1;
12434 		}
12435 
12436 		/*
12437 		 * Stop searching for tasks to pull if there are
12438 		 * now runnable tasks on this rq.
12439 		 */
12440 		if (pulled_task || !continue_balancing)
12441 			break;
12442 	}
12443 	rcu_read_unlock();
12444 
12445 	raw_spin_rq_lock(this_rq);
12446 
12447 	if (curr_cost > this_rq->max_idle_balance_cost)
12448 		this_rq->max_idle_balance_cost = curr_cost;
12449 
12450 	/*
12451 	 * While browsing the domains, we released the rq lock, a task could
12452 	 * have been enqueued in the meantime. Since we're not going idle,
12453 	 * pretend we pulled a task.
12454 	 */
12455 	if (this_rq->cfs.h_nr_running && !pulled_task)
12456 		pulled_task = 1;
12457 
12458 	/* Is there a task of a high priority class? */
12459 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12460 		pulled_task = -1;
12461 
12462 out:
12463 	/* Move the next balance forward */
12464 	if (time_after(this_rq->next_balance, next_balance))
12465 		this_rq->next_balance = next_balance;
12466 
12467 	if (pulled_task)
12468 		this_rq->idle_stamp = 0;
12469 	else
12470 		nohz_newidle_balance(this_rq);
12471 
12472 	rq_repin_lock(this_rq, rf);
12473 
12474 	return pulled_task;
12475 }
12476 
12477 /*
12478  * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12479  *
12480  * - directly from the local scheduler_tick() for periodic load balancing
12481  *
12482  * - indirectly from a remote scheduler_tick() for NOHZ idle balancing
12483  *   through the SMP cross-call nohz_csd_func()
12484  */
12485 static __latent_entropy void sched_balance_softirq(struct softirq_action *h)
12486 {
12487 	struct rq *this_rq = this_rq();
12488 	enum cpu_idle_type idle = this_rq->idle_balance;
12489 	/*
12490 	 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12491 	 * balancing on behalf of the other idle CPUs whose ticks are
12492 	 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12493 	 * give the idle CPUs a chance to load balance. Else we may
12494 	 * load balance only within the local sched_domain hierarchy
12495 	 * and abort nohz_idle_balance altogether if we pull some load.
12496 	 */
12497 	if (nohz_idle_balance(this_rq, idle))
12498 		return;
12499 
12500 	/* normal load balance */
12501 	sched_balance_update_blocked_averages(this_rq->cpu);
12502 	sched_balance_domains(this_rq, idle);
12503 }
12504 
12505 /*
12506  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12507  */
12508 void sched_balance_trigger(struct rq *rq)
12509 {
12510 	/*
12511 	 * Don't need to rebalance while attached to NULL domain or
12512 	 * runqueue CPU is not active
12513 	 */
12514 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12515 		return;
12516 
12517 	if (time_after_eq(jiffies, rq->next_balance))
12518 		raise_softirq(SCHED_SOFTIRQ);
12519 
12520 	nohz_balancer_kick(rq);
12521 }
12522 
12523 static void rq_online_fair(struct rq *rq)
12524 {
12525 	update_sysctl();
12526 
12527 	update_runtime_enabled(rq);
12528 }
12529 
12530 static void rq_offline_fair(struct rq *rq)
12531 {
12532 	update_sysctl();
12533 
12534 	/* Ensure any throttled groups are reachable by pick_next_task */
12535 	unthrottle_offline_cfs_rqs(rq);
12536 
12537 	/* Ensure that we remove rq contribution to group share: */
12538 	clear_tg_offline_cfs_rqs(rq);
12539 }
12540 
12541 #endif /* CONFIG_SMP */
12542 
12543 #ifdef CONFIG_SCHED_CORE
12544 static inline bool
12545 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12546 {
12547 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12548 	u64 slice = se->slice;
12549 
12550 	return (rtime * min_nr_tasks > slice);
12551 }
12552 
12553 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
12554 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12555 {
12556 	if (!sched_core_enabled(rq))
12557 		return;
12558 
12559 	/*
12560 	 * If runqueue has only one task which used up its slice and
12561 	 * if the sibling is forced idle, then trigger schedule to
12562 	 * give forced idle task a chance.
12563 	 *
12564 	 * sched_slice() considers only this active rq and it gets the
12565 	 * whole slice. But during force idle, we have siblings acting
12566 	 * like a single runqueue and hence we need to consider runnable
12567 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
12568 	 * go through the forced idle rq, but that would be a perf hit.
12569 	 * We can assume that the forced idle CPU has at least
12570 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12571 	 * if we need to give up the CPU.
12572 	 */
12573 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12574 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12575 		resched_curr(rq);
12576 }
12577 
12578 /*
12579  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12580  */
12581 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12582 			 bool forceidle)
12583 {
12584 	for_each_sched_entity(se) {
12585 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12586 
12587 		if (forceidle) {
12588 			if (cfs_rq->forceidle_seq == fi_seq)
12589 				break;
12590 			cfs_rq->forceidle_seq = fi_seq;
12591 		}
12592 
12593 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12594 	}
12595 }
12596 
12597 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12598 {
12599 	struct sched_entity *se = &p->se;
12600 
12601 	if (p->sched_class != &fair_sched_class)
12602 		return;
12603 
12604 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12605 }
12606 
12607 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12608 			bool in_fi)
12609 {
12610 	struct rq *rq = task_rq(a);
12611 	const struct sched_entity *sea = &a->se;
12612 	const struct sched_entity *seb = &b->se;
12613 	struct cfs_rq *cfs_rqa;
12614 	struct cfs_rq *cfs_rqb;
12615 	s64 delta;
12616 
12617 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
12618 
12619 #ifdef CONFIG_FAIR_GROUP_SCHED
12620 	/*
12621 	 * Find an se in the hierarchy for tasks a and b, such that the se's
12622 	 * are immediate siblings.
12623 	 */
12624 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12625 		int sea_depth = sea->depth;
12626 		int seb_depth = seb->depth;
12627 
12628 		if (sea_depth >= seb_depth)
12629 			sea = parent_entity(sea);
12630 		if (sea_depth <= seb_depth)
12631 			seb = parent_entity(seb);
12632 	}
12633 
12634 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
12635 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
12636 
12637 	cfs_rqa = sea->cfs_rq;
12638 	cfs_rqb = seb->cfs_rq;
12639 #else
12640 	cfs_rqa = &task_rq(a)->cfs;
12641 	cfs_rqb = &task_rq(b)->cfs;
12642 #endif
12643 
12644 	/*
12645 	 * Find delta after normalizing se's vruntime with its cfs_rq's
12646 	 * min_vruntime_fi, which would have been updated in prior calls
12647 	 * to se_fi_update().
12648 	 */
12649 	delta = (s64)(sea->vruntime - seb->vruntime) +
12650 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
12651 
12652 	return delta > 0;
12653 }
12654 
12655 static int task_is_throttled_fair(struct task_struct *p, int cpu)
12656 {
12657 	struct cfs_rq *cfs_rq;
12658 
12659 #ifdef CONFIG_FAIR_GROUP_SCHED
12660 	cfs_rq = task_group(p)->cfs_rq[cpu];
12661 #else
12662 	cfs_rq = &cpu_rq(cpu)->cfs;
12663 #endif
12664 	return throttled_hierarchy(cfs_rq);
12665 }
12666 #else
12667 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
12668 #endif
12669 
12670 /*
12671  * scheduler tick hitting a task of our scheduling class.
12672  *
12673  * NOTE: This function can be called remotely by the tick offload that
12674  * goes along full dynticks. Therefore no local assumption can be made
12675  * and everything must be accessed through the @rq and @curr passed in
12676  * parameters.
12677  */
12678 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
12679 {
12680 	struct cfs_rq *cfs_rq;
12681 	struct sched_entity *se = &curr->se;
12682 
12683 	for_each_sched_entity(se) {
12684 		cfs_rq = cfs_rq_of(se);
12685 		entity_tick(cfs_rq, se, queued);
12686 	}
12687 
12688 	if (static_branch_unlikely(&sched_numa_balancing))
12689 		task_tick_numa(rq, curr);
12690 
12691 	update_misfit_status(curr, rq);
12692 	check_update_overutilized_status(task_rq(curr));
12693 
12694 	task_tick_core(rq, curr);
12695 }
12696 
12697 /*
12698  * called on fork with the child task as argument from the parent's context
12699  *  - child not yet on the tasklist
12700  *  - preemption disabled
12701  */
12702 static void task_fork_fair(struct task_struct *p)
12703 {
12704 	struct sched_entity *se = &p->se, *curr;
12705 	struct cfs_rq *cfs_rq;
12706 	struct rq *rq = this_rq();
12707 	struct rq_flags rf;
12708 
12709 	rq_lock(rq, &rf);
12710 	update_rq_clock(rq);
12711 
12712 	set_task_max_allowed_capacity(p);
12713 
12714 	cfs_rq = task_cfs_rq(current);
12715 	curr = cfs_rq->curr;
12716 	if (curr)
12717 		update_curr(cfs_rq);
12718 	place_entity(cfs_rq, se, ENQUEUE_INITIAL);
12719 	rq_unlock(rq, &rf);
12720 }
12721 
12722 /*
12723  * Priority of the task has changed. Check to see if we preempt
12724  * the current task.
12725  */
12726 static void
12727 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
12728 {
12729 	if (!task_on_rq_queued(p))
12730 		return;
12731 
12732 	if (rq->cfs.nr_running == 1)
12733 		return;
12734 
12735 	/*
12736 	 * Reschedule if we are currently running on this runqueue and
12737 	 * our priority decreased, or if we are not currently running on
12738 	 * this runqueue and our priority is higher than the current's
12739 	 */
12740 	if (task_current(rq, p)) {
12741 		if (p->prio > oldprio)
12742 			resched_curr(rq);
12743 	} else
12744 		wakeup_preempt(rq, p, 0);
12745 }
12746 
12747 #ifdef CONFIG_FAIR_GROUP_SCHED
12748 /*
12749  * Propagate the changes of the sched_entity across the tg tree to make it
12750  * visible to the root
12751  */
12752 static void propagate_entity_cfs_rq(struct sched_entity *se)
12753 {
12754 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12755 
12756 	if (cfs_rq_throttled(cfs_rq))
12757 		return;
12758 
12759 	if (!throttled_hierarchy(cfs_rq))
12760 		list_add_leaf_cfs_rq(cfs_rq);
12761 
12762 	/* Start to propagate at parent */
12763 	se = se->parent;
12764 
12765 	for_each_sched_entity(se) {
12766 		cfs_rq = cfs_rq_of(se);
12767 
12768 		update_load_avg(cfs_rq, se, UPDATE_TG);
12769 
12770 		if (cfs_rq_throttled(cfs_rq))
12771 			break;
12772 
12773 		if (!throttled_hierarchy(cfs_rq))
12774 			list_add_leaf_cfs_rq(cfs_rq);
12775 	}
12776 }
12777 #else
12778 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
12779 #endif
12780 
12781 static void detach_entity_cfs_rq(struct sched_entity *se)
12782 {
12783 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12784 
12785 #ifdef CONFIG_SMP
12786 	/*
12787 	 * In case the task sched_avg hasn't been attached:
12788 	 * - A forked task which hasn't been woken up by wake_up_new_task().
12789 	 * - A task which has been woken up by try_to_wake_up() but is
12790 	 *   waiting for actually being woken up by sched_ttwu_pending().
12791 	 */
12792 	if (!se->avg.last_update_time)
12793 		return;
12794 #endif
12795 
12796 	/* Catch up with the cfs_rq and remove our load when we leave */
12797 	update_load_avg(cfs_rq, se, 0);
12798 	detach_entity_load_avg(cfs_rq, se);
12799 	update_tg_load_avg(cfs_rq);
12800 	propagate_entity_cfs_rq(se);
12801 }
12802 
12803 static void attach_entity_cfs_rq(struct sched_entity *se)
12804 {
12805 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
12806 
12807 	/* Synchronize entity with its cfs_rq */
12808 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
12809 	attach_entity_load_avg(cfs_rq, se);
12810 	update_tg_load_avg(cfs_rq);
12811 	propagate_entity_cfs_rq(se);
12812 }
12813 
12814 static void detach_task_cfs_rq(struct task_struct *p)
12815 {
12816 	struct sched_entity *se = &p->se;
12817 
12818 	detach_entity_cfs_rq(se);
12819 }
12820 
12821 static void attach_task_cfs_rq(struct task_struct *p)
12822 {
12823 	struct sched_entity *se = &p->se;
12824 
12825 	attach_entity_cfs_rq(se);
12826 }
12827 
12828 static void switched_from_fair(struct rq *rq, struct task_struct *p)
12829 {
12830 	detach_task_cfs_rq(p);
12831 }
12832 
12833 static void switched_to_fair(struct rq *rq, struct task_struct *p)
12834 {
12835 	attach_task_cfs_rq(p);
12836 
12837 	set_task_max_allowed_capacity(p);
12838 
12839 	if (task_on_rq_queued(p)) {
12840 		/*
12841 		 * We were most likely switched from sched_rt, so
12842 		 * kick off the schedule if running, otherwise just see
12843 		 * if we can still preempt the current task.
12844 		 */
12845 		if (task_current(rq, p))
12846 			resched_curr(rq);
12847 		else
12848 			wakeup_preempt(rq, p, 0);
12849 	}
12850 }
12851 
12852 /* Account for a task changing its policy or group.
12853  *
12854  * This routine is mostly called to set cfs_rq->curr field when a task
12855  * migrates between groups/classes.
12856  */
12857 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
12858 {
12859 	struct sched_entity *se = &p->se;
12860 
12861 #ifdef CONFIG_SMP
12862 	if (task_on_rq_queued(p)) {
12863 		/*
12864 		 * Move the next running task to the front of the list, so our
12865 		 * cfs_tasks list becomes MRU one.
12866 		 */
12867 		list_move(&se->group_node, &rq->cfs_tasks);
12868 	}
12869 #endif
12870 
12871 	for_each_sched_entity(se) {
12872 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
12873 
12874 		set_next_entity(cfs_rq, se);
12875 		/* ensure bandwidth has been allocated on our new cfs_rq */
12876 		account_cfs_rq_runtime(cfs_rq, 0);
12877 	}
12878 }
12879 
12880 void init_cfs_rq(struct cfs_rq *cfs_rq)
12881 {
12882 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
12883 	u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
12884 #ifdef CONFIG_SMP
12885 	raw_spin_lock_init(&cfs_rq->removed.lock);
12886 #endif
12887 }
12888 
12889 #ifdef CONFIG_FAIR_GROUP_SCHED
12890 static void task_change_group_fair(struct task_struct *p)
12891 {
12892 	/*
12893 	 * We couldn't detach or attach a forked task which
12894 	 * hasn't been woken up by wake_up_new_task().
12895 	 */
12896 	if (READ_ONCE(p->__state) == TASK_NEW)
12897 		return;
12898 
12899 	detach_task_cfs_rq(p);
12900 
12901 #ifdef CONFIG_SMP
12902 	/* Tell se's cfs_rq has been changed -- migrated */
12903 	p->se.avg.last_update_time = 0;
12904 #endif
12905 	set_task_rq(p, task_cpu(p));
12906 	attach_task_cfs_rq(p);
12907 }
12908 
12909 void free_fair_sched_group(struct task_group *tg)
12910 {
12911 	int i;
12912 
12913 	for_each_possible_cpu(i) {
12914 		if (tg->cfs_rq)
12915 			kfree(tg->cfs_rq[i]);
12916 		if (tg->se)
12917 			kfree(tg->se[i]);
12918 	}
12919 
12920 	kfree(tg->cfs_rq);
12921 	kfree(tg->se);
12922 }
12923 
12924 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
12925 {
12926 	struct sched_entity *se;
12927 	struct cfs_rq *cfs_rq;
12928 	int i;
12929 
12930 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
12931 	if (!tg->cfs_rq)
12932 		goto err;
12933 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
12934 	if (!tg->se)
12935 		goto err;
12936 
12937 	tg->shares = NICE_0_LOAD;
12938 
12939 	init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
12940 
12941 	for_each_possible_cpu(i) {
12942 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
12943 				      GFP_KERNEL, cpu_to_node(i));
12944 		if (!cfs_rq)
12945 			goto err;
12946 
12947 		se = kzalloc_node(sizeof(struct sched_entity_stats),
12948 				  GFP_KERNEL, cpu_to_node(i));
12949 		if (!se)
12950 			goto err_free_rq;
12951 
12952 		init_cfs_rq(cfs_rq);
12953 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
12954 		init_entity_runnable_average(se);
12955 	}
12956 
12957 	return 1;
12958 
12959 err_free_rq:
12960 	kfree(cfs_rq);
12961 err:
12962 	return 0;
12963 }
12964 
12965 void online_fair_sched_group(struct task_group *tg)
12966 {
12967 	struct sched_entity *se;
12968 	struct rq_flags rf;
12969 	struct rq *rq;
12970 	int i;
12971 
12972 	for_each_possible_cpu(i) {
12973 		rq = cpu_rq(i);
12974 		se = tg->se[i];
12975 		rq_lock_irq(rq, &rf);
12976 		update_rq_clock(rq);
12977 		attach_entity_cfs_rq(se);
12978 		sync_throttle(tg, i);
12979 		rq_unlock_irq(rq, &rf);
12980 	}
12981 }
12982 
12983 void unregister_fair_sched_group(struct task_group *tg)
12984 {
12985 	unsigned long flags;
12986 	struct rq *rq;
12987 	int cpu;
12988 
12989 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
12990 
12991 	for_each_possible_cpu(cpu) {
12992 		if (tg->se[cpu])
12993 			remove_entity_load_avg(tg->se[cpu]);
12994 
12995 		/*
12996 		 * Only empty task groups can be destroyed; so we can speculatively
12997 		 * check on_list without danger of it being re-added.
12998 		 */
12999 		if (!tg->cfs_rq[cpu]->on_list)
13000 			continue;
13001 
13002 		rq = cpu_rq(cpu);
13003 
13004 		raw_spin_rq_lock_irqsave(rq, flags);
13005 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
13006 		raw_spin_rq_unlock_irqrestore(rq, flags);
13007 	}
13008 }
13009 
13010 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13011 			struct sched_entity *se, int cpu,
13012 			struct sched_entity *parent)
13013 {
13014 	struct rq *rq = cpu_rq(cpu);
13015 
13016 	cfs_rq->tg = tg;
13017 	cfs_rq->rq = rq;
13018 	init_cfs_rq_runtime(cfs_rq);
13019 
13020 	tg->cfs_rq[cpu] = cfs_rq;
13021 	tg->se[cpu] = se;
13022 
13023 	/* se could be NULL for root_task_group */
13024 	if (!se)
13025 		return;
13026 
13027 	if (!parent) {
13028 		se->cfs_rq = &rq->cfs;
13029 		se->depth = 0;
13030 	} else {
13031 		se->cfs_rq = parent->my_q;
13032 		se->depth = parent->depth + 1;
13033 	}
13034 
13035 	se->my_q = cfs_rq;
13036 	/* guarantee group entities always have weight */
13037 	update_load_set(&se->load, NICE_0_LOAD);
13038 	se->parent = parent;
13039 }
13040 
13041 static DEFINE_MUTEX(shares_mutex);
13042 
13043 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13044 {
13045 	int i;
13046 
13047 	lockdep_assert_held(&shares_mutex);
13048 
13049 	/*
13050 	 * We can't change the weight of the root cgroup.
13051 	 */
13052 	if (!tg->se[0])
13053 		return -EINVAL;
13054 
13055 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13056 
13057 	if (tg->shares == shares)
13058 		return 0;
13059 
13060 	tg->shares = shares;
13061 	for_each_possible_cpu(i) {
13062 		struct rq *rq = cpu_rq(i);
13063 		struct sched_entity *se = tg->se[i];
13064 		struct rq_flags rf;
13065 
13066 		/* Propagate contribution to hierarchy */
13067 		rq_lock_irqsave(rq, &rf);
13068 		update_rq_clock(rq);
13069 		for_each_sched_entity(se) {
13070 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13071 			update_cfs_group(se);
13072 		}
13073 		rq_unlock_irqrestore(rq, &rf);
13074 	}
13075 
13076 	return 0;
13077 }
13078 
13079 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13080 {
13081 	int ret;
13082 
13083 	mutex_lock(&shares_mutex);
13084 	if (tg_is_idle(tg))
13085 		ret = -EINVAL;
13086 	else
13087 		ret = __sched_group_set_shares(tg, shares);
13088 	mutex_unlock(&shares_mutex);
13089 
13090 	return ret;
13091 }
13092 
13093 int sched_group_set_idle(struct task_group *tg, long idle)
13094 {
13095 	int i;
13096 
13097 	if (tg == &root_task_group)
13098 		return -EINVAL;
13099 
13100 	if (idle < 0 || idle > 1)
13101 		return -EINVAL;
13102 
13103 	mutex_lock(&shares_mutex);
13104 
13105 	if (tg->idle == idle) {
13106 		mutex_unlock(&shares_mutex);
13107 		return 0;
13108 	}
13109 
13110 	tg->idle = idle;
13111 
13112 	for_each_possible_cpu(i) {
13113 		struct rq *rq = cpu_rq(i);
13114 		struct sched_entity *se = tg->se[i];
13115 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13116 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13117 		long idle_task_delta;
13118 		struct rq_flags rf;
13119 
13120 		rq_lock_irqsave(rq, &rf);
13121 
13122 		grp_cfs_rq->idle = idle;
13123 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13124 			goto next_cpu;
13125 
13126 		if (se->on_rq) {
13127 			parent_cfs_rq = cfs_rq_of(se);
13128 			if (cfs_rq_is_idle(grp_cfs_rq))
13129 				parent_cfs_rq->idle_nr_running++;
13130 			else
13131 				parent_cfs_rq->idle_nr_running--;
13132 		}
13133 
13134 		idle_task_delta = grp_cfs_rq->h_nr_running -
13135 				  grp_cfs_rq->idle_h_nr_running;
13136 		if (!cfs_rq_is_idle(grp_cfs_rq))
13137 			idle_task_delta *= -1;
13138 
13139 		for_each_sched_entity(se) {
13140 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
13141 
13142 			if (!se->on_rq)
13143 				break;
13144 
13145 			cfs_rq->idle_h_nr_running += idle_task_delta;
13146 
13147 			/* Already accounted at parent level and above. */
13148 			if (cfs_rq_is_idle(cfs_rq))
13149 				break;
13150 		}
13151 
13152 next_cpu:
13153 		rq_unlock_irqrestore(rq, &rf);
13154 	}
13155 
13156 	/* Idle groups have minimum weight. */
13157 	if (tg_is_idle(tg))
13158 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13159 	else
13160 		__sched_group_set_shares(tg, NICE_0_LOAD);
13161 
13162 	mutex_unlock(&shares_mutex);
13163 	return 0;
13164 }
13165 
13166 #endif /* CONFIG_FAIR_GROUP_SCHED */
13167 
13168 
13169 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13170 {
13171 	struct sched_entity *se = &task->se;
13172 	unsigned int rr_interval = 0;
13173 
13174 	/*
13175 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13176 	 * idle runqueue:
13177 	 */
13178 	if (rq->cfs.load.weight)
13179 		rr_interval = NS_TO_JIFFIES(se->slice);
13180 
13181 	return rr_interval;
13182 }
13183 
13184 /*
13185  * All the scheduling class methods:
13186  */
13187 DEFINE_SCHED_CLASS(fair) = {
13188 
13189 	.enqueue_task		= enqueue_task_fair,
13190 	.dequeue_task		= dequeue_task_fair,
13191 	.yield_task		= yield_task_fair,
13192 	.yield_to_task		= yield_to_task_fair,
13193 
13194 	.wakeup_preempt		= check_preempt_wakeup_fair,
13195 
13196 	.pick_next_task		= __pick_next_task_fair,
13197 	.put_prev_task		= put_prev_task_fair,
13198 	.set_next_task          = set_next_task_fair,
13199 
13200 #ifdef CONFIG_SMP
13201 	.balance		= balance_fair,
13202 	.pick_task		= pick_task_fair,
13203 	.select_task_rq		= select_task_rq_fair,
13204 	.migrate_task_rq	= migrate_task_rq_fair,
13205 
13206 	.rq_online		= rq_online_fair,
13207 	.rq_offline		= rq_offline_fair,
13208 
13209 	.task_dead		= task_dead_fair,
13210 	.set_cpus_allowed	= set_cpus_allowed_fair,
13211 #endif
13212 
13213 	.task_tick		= task_tick_fair,
13214 	.task_fork		= task_fork_fair,
13215 
13216 	.prio_changed		= prio_changed_fair,
13217 	.switched_from		= switched_from_fair,
13218 	.switched_to		= switched_to_fair,
13219 
13220 	.get_rr_interval	= get_rr_interval_fair,
13221 
13222 	.update_curr		= update_curr_fair,
13223 
13224 #ifdef CONFIG_FAIR_GROUP_SCHED
13225 	.task_change_group	= task_change_group_fair,
13226 #endif
13227 
13228 #ifdef CONFIG_SCHED_CORE
13229 	.task_is_throttled	= task_is_throttled_fair,
13230 #endif
13231 
13232 #ifdef CONFIG_UCLAMP_TASK
13233 	.uclamp_enabled		= 1,
13234 #endif
13235 };
13236 
13237 #ifdef CONFIG_SCHED_DEBUG
13238 void print_cfs_stats(struct seq_file *m, int cpu)
13239 {
13240 	struct cfs_rq *cfs_rq, *pos;
13241 
13242 	rcu_read_lock();
13243 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13244 		print_cfs_rq(m, cpu, cfs_rq);
13245 	rcu_read_unlock();
13246 }
13247 
13248 #ifdef CONFIG_NUMA_BALANCING
13249 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13250 {
13251 	int node;
13252 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13253 	struct numa_group *ng;
13254 
13255 	rcu_read_lock();
13256 	ng = rcu_dereference(p->numa_group);
13257 	for_each_online_node(node) {
13258 		if (p->numa_faults) {
13259 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13260 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13261 		}
13262 		if (ng) {
13263 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13264 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13265 		}
13266 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13267 	}
13268 	rcu_read_unlock();
13269 }
13270 #endif /* CONFIG_NUMA_BALANCING */
13271 #endif /* CONFIG_SCHED_DEBUG */
13272 
13273 __init void init_sched_fair_class(void)
13274 {
13275 #ifdef CONFIG_SMP
13276 	int i;
13277 
13278 	for_each_possible_cpu(i) {
13279 		zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13280 		zalloc_cpumask_var_node(&per_cpu(select_rq_mask,    i), GFP_KERNEL, cpu_to_node(i));
13281 		zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13282 					GFP_KERNEL, cpu_to_node(i));
13283 
13284 #ifdef CONFIG_CFS_BANDWIDTH
13285 		INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13286 		INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13287 #endif
13288 	}
13289 
13290 	open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13291 
13292 #ifdef CONFIG_NO_HZ_COMMON
13293 	nohz.next_balance = jiffies;
13294 	nohz.next_blocked = jiffies;
13295 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13296 #endif
13297 #endif /* SMP */
13298 
13299 }
13300