1 /* 2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) 3 * 4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 5 * 6 * Interactivity improvements by Mike Galbraith 7 * (C) 2007 Mike Galbraith <efault@gmx.de> 8 * 9 * Various enhancements by Dmitry Adamushko. 10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> 11 * 12 * Group scheduling enhancements by Srivatsa Vaddagiri 13 * Copyright IBM Corporation, 2007 14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> 15 * 16 * Scaled math optimizations by Thomas Gleixner 17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> 18 * 19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 21 */ 22 23 #include <linux/sched.h> 24 #include <linux/latencytop.h> 25 #include <linux/cpumask.h> 26 #include <linux/cpuidle.h> 27 #include <linux/slab.h> 28 #include <linux/profile.h> 29 #include <linux/interrupt.h> 30 #include <linux/mempolicy.h> 31 #include <linux/migrate.h> 32 #include <linux/task_work.h> 33 34 #include <trace/events/sched.h> 35 36 #include "sched.h" 37 38 /* 39 * Targeted preemption latency for CPU-bound tasks: 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) 41 * 42 * NOTE: this latency value is not the same as the concept of 43 * 'timeslice length' - timeslices in CFS are of variable length 44 * and have no persistent notion like in traditional, time-slice 45 * based scheduling concepts. 46 * 47 * (to see the precise effective timeslice length of your workload, 48 * run vmstat and monitor the context-switches (cs) field) 49 */ 50 unsigned int sysctl_sched_latency = 6000000ULL; 51 unsigned int normalized_sysctl_sched_latency = 6000000ULL; 52 53 /* 54 * The initial- and re-scaling of tunables is configurable 55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) 56 * 57 * Options are: 58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1 59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) 60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus 61 */ 62 enum sched_tunable_scaling sysctl_sched_tunable_scaling 63 = SCHED_TUNABLESCALING_LOG; 64 65 /* 66 * Minimal preemption granularity for CPU-bound tasks: 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) 68 */ 69 unsigned int sysctl_sched_min_granularity = 750000ULL; 70 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; 71 72 /* 73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity 74 */ 75 static unsigned int sched_nr_latency = 8; 76 77 /* 78 * After fork, child runs first. If set to 0 (default) then 79 * parent will (try to) run first. 80 */ 81 unsigned int sysctl_sched_child_runs_first __read_mostly; 82 83 /* 84 * SCHED_OTHER wake-up granularity. 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) 86 * 87 * This option delays the preemption effects of decoupled workloads 88 * and reduces their over-scheduling. Synchronous workloads will still 89 * have immediate wakeup/sleep latencies. 90 */ 91 unsigned int sysctl_sched_wakeup_granularity = 1000000UL; 92 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; 93 94 const_debug unsigned int sysctl_sched_migration_cost = 500000UL; 95 96 /* 97 * The exponential sliding window over which load is averaged for shares 98 * distribution. 99 * (default: 10msec) 100 */ 101 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; 102 103 #ifdef CONFIG_CFS_BANDWIDTH 104 /* 105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool 106 * each time a cfs_rq requests quota. 107 * 108 * Note: in the case that the slice exceeds the runtime remaining (either due 109 * to consumption or the quota being specified to be smaller than the slice) 110 * we will always only issue the remaining available time. 111 * 112 * default: 5 msec, units: microseconds 113 */ 114 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; 115 #endif 116 117 static inline void update_load_add(struct load_weight *lw, unsigned long inc) 118 { 119 lw->weight += inc; 120 lw->inv_weight = 0; 121 } 122 123 static inline void update_load_sub(struct load_weight *lw, unsigned long dec) 124 { 125 lw->weight -= dec; 126 lw->inv_weight = 0; 127 } 128 129 static inline void update_load_set(struct load_weight *lw, unsigned long w) 130 { 131 lw->weight = w; 132 lw->inv_weight = 0; 133 } 134 135 /* 136 * Increase the granularity value when there are more CPUs, 137 * because with more CPUs the 'effective latency' as visible 138 * to users decreases. But the relationship is not linear, 139 * so pick a second-best guess by going with the log2 of the 140 * number of CPUs. 141 * 142 * This idea comes from the SD scheduler of Con Kolivas: 143 */ 144 static unsigned int get_update_sysctl_factor(void) 145 { 146 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8); 147 unsigned int factor; 148 149 switch (sysctl_sched_tunable_scaling) { 150 case SCHED_TUNABLESCALING_NONE: 151 factor = 1; 152 break; 153 case SCHED_TUNABLESCALING_LINEAR: 154 factor = cpus; 155 break; 156 case SCHED_TUNABLESCALING_LOG: 157 default: 158 factor = 1 + ilog2(cpus); 159 break; 160 } 161 162 return factor; 163 } 164 165 static void update_sysctl(void) 166 { 167 unsigned int factor = get_update_sysctl_factor(); 168 169 #define SET_SYSCTL(name) \ 170 (sysctl_##name = (factor) * normalized_sysctl_##name) 171 SET_SYSCTL(sched_min_granularity); 172 SET_SYSCTL(sched_latency); 173 SET_SYSCTL(sched_wakeup_granularity); 174 #undef SET_SYSCTL 175 } 176 177 void sched_init_granularity(void) 178 { 179 update_sysctl(); 180 } 181 182 #define WMULT_CONST (~0U) 183 #define WMULT_SHIFT 32 184 185 static void __update_inv_weight(struct load_weight *lw) 186 { 187 unsigned long w; 188 189 if (likely(lw->inv_weight)) 190 return; 191 192 w = scale_load_down(lw->weight); 193 194 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) 195 lw->inv_weight = 1; 196 else if (unlikely(!w)) 197 lw->inv_weight = WMULT_CONST; 198 else 199 lw->inv_weight = WMULT_CONST / w; 200 } 201 202 /* 203 * delta_exec * weight / lw.weight 204 * OR 205 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT 206 * 207 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case 208 * we're guaranteed shift stays positive because inv_weight is guaranteed to 209 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22. 210 * 211 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus 212 * weight/lw.weight <= 1, and therefore our shift will also be positive. 213 */ 214 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw) 215 { 216 u64 fact = scale_load_down(weight); 217 int shift = WMULT_SHIFT; 218 219 __update_inv_weight(lw); 220 221 if (unlikely(fact >> 32)) { 222 while (fact >> 32) { 223 fact >>= 1; 224 shift--; 225 } 226 } 227 228 /* hint to use a 32x32->64 mul */ 229 fact = (u64)(u32)fact * lw->inv_weight; 230 231 while (fact >> 32) { 232 fact >>= 1; 233 shift--; 234 } 235 236 return mul_u64_u32_shr(delta_exec, fact, shift); 237 } 238 239 240 const struct sched_class fair_sched_class; 241 242 /************************************************************** 243 * CFS operations on generic schedulable entities: 244 */ 245 246 #ifdef CONFIG_FAIR_GROUP_SCHED 247 248 /* cpu runqueue to which this cfs_rq is attached */ 249 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 250 { 251 return cfs_rq->rq; 252 } 253 254 /* An entity is a task if it doesn't "own" a runqueue */ 255 #define entity_is_task(se) (!se->my_q) 256 257 static inline struct task_struct *task_of(struct sched_entity *se) 258 { 259 #ifdef CONFIG_SCHED_DEBUG 260 WARN_ON_ONCE(!entity_is_task(se)); 261 #endif 262 return container_of(se, struct task_struct, se); 263 } 264 265 /* Walk up scheduling entities hierarchy */ 266 #define for_each_sched_entity(se) \ 267 for (; se; se = se->parent) 268 269 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 270 { 271 return p->se.cfs_rq; 272 } 273 274 /* runqueue on which this entity is (to be) queued */ 275 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 276 { 277 return se->cfs_rq; 278 } 279 280 /* runqueue "owned" by this group */ 281 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 282 { 283 return grp->my_q; 284 } 285 286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 287 { 288 if (!cfs_rq->on_list) { 289 /* 290 * Ensure we either appear before our parent (if already 291 * enqueued) or force our parent to appear after us when it is 292 * enqueued. The fact that we always enqueue bottom-up 293 * reduces this to two cases. 294 */ 295 if (cfs_rq->tg->parent && 296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { 297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, 298 &rq_of(cfs_rq)->leaf_cfs_rq_list); 299 } else { 300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, 301 &rq_of(cfs_rq)->leaf_cfs_rq_list); 302 } 303 304 cfs_rq->on_list = 1; 305 } 306 } 307 308 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 309 { 310 if (cfs_rq->on_list) { 311 list_del_rcu(&cfs_rq->leaf_cfs_rq_list); 312 cfs_rq->on_list = 0; 313 } 314 } 315 316 /* Iterate thr' all leaf cfs_rq's on a runqueue */ 317 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 318 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) 319 320 /* Do the two (enqueued) entities belong to the same group ? */ 321 static inline struct cfs_rq * 322 is_same_group(struct sched_entity *se, struct sched_entity *pse) 323 { 324 if (se->cfs_rq == pse->cfs_rq) 325 return se->cfs_rq; 326 327 return NULL; 328 } 329 330 static inline struct sched_entity *parent_entity(struct sched_entity *se) 331 { 332 return se->parent; 333 } 334 335 static void 336 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 337 { 338 int se_depth, pse_depth; 339 340 /* 341 * preemption test can be made between sibling entities who are in the 342 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of 343 * both tasks until we find their ancestors who are siblings of common 344 * parent. 345 */ 346 347 /* First walk up until both entities are at same depth */ 348 se_depth = (*se)->depth; 349 pse_depth = (*pse)->depth; 350 351 while (se_depth > pse_depth) { 352 se_depth--; 353 *se = parent_entity(*se); 354 } 355 356 while (pse_depth > se_depth) { 357 pse_depth--; 358 *pse = parent_entity(*pse); 359 } 360 361 while (!is_same_group(*se, *pse)) { 362 *se = parent_entity(*se); 363 *pse = parent_entity(*pse); 364 } 365 } 366 367 #else /* !CONFIG_FAIR_GROUP_SCHED */ 368 369 static inline struct task_struct *task_of(struct sched_entity *se) 370 { 371 return container_of(se, struct task_struct, se); 372 } 373 374 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 375 { 376 return container_of(cfs_rq, struct rq, cfs); 377 } 378 379 #define entity_is_task(se) 1 380 381 #define for_each_sched_entity(se) \ 382 for (; se; se = NULL) 383 384 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 385 { 386 return &task_rq(p)->cfs; 387 } 388 389 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) 390 { 391 struct task_struct *p = task_of(se); 392 struct rq *rq = task_rq(p); 393 394 return &rq->cfs; 395 } 396 397 /* runqueue "owned" by this group */ 398 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 399 { 400 return NULL; 401 } 402 403 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) 404 { 405 } 406 407 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) 408 { 409 } 410 411 #define for_each_leaf_cfs_rq(rq, cfs_rq) \ 412 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) 413 414 static inline struct sched_entity *parent_entity(struct sched_entity *se) 415 { 416 return NULL; 417 } 418 419 static inline void 420 find_matching_se(struct sched_entity **se, struct sched_entity **pse) 421 { 422 } 423 424 #endif /* CONFIG_FAIR_GROUP_SCHED */ 425 426 static __always_inline 427 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec); 428 429 /************************************************************** 430 * Scheduling class tree data structure manipulation methods: 431 */ 432 433 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime) 434 { 435 s64 delta = (s64)(vruntime - max_vruntime); 436 if (delta > 0) 437 max_vruntime = vruntime; 438 439 return max_vruntime; 440 } 441 442 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) 443 { 444 s64 delta = (s64)(vruntime - min_vruntime); 445 if (delta < 0) 446 min_vruntime = vruntime; 447 448 return min_vruntime; 449 } 450 451 static inline int entity_before(struct sched_entity *a, 452 struct sched_entity *b) 453 { 454 return (s64)(a->vruntime - b->vruntime) < 0; 455 } 456 457 static void update_min_vruntime(struct cfs_rq *cfs_rq) 458 { 459 u64 vruntime = cfs_rq->min_vruntime; 460 461 if (cfs_rq->curr) 462 vruntime = cfs_rq->curr->vruntime; 463 464 if (cfs_rq->rb_leftmost) { 465 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, 466 struct sched_entity, 467 run_node); 468 469 if (!cfs_rq->curr) 470 vruntime = se->vruntime; 471 else 472 vruntime = min_vruntime(vruntime, se->vruntime); 473 } 474 475 /* ensure we never gain time by being placed backwards. */ 476 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); 477 #ifndef CONFIG_64BIT 478 smp_wmb(); 479 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 480 #endif 481 } 482 483 /* 484 * Enqueue an entity into the rb-tree: 485 */ 486 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 487 { 488 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; 489 struct rb_node *parent = NULL; 490 struct sched_entity *entry; 491 int leftmost = 1; 492 493 /* 494 * Find the right place in the rbtree: 495 */ 496 while (*link) { 497 parent = *link; 498 entry = rb_entry(parent, struct sched_entity, run_node); 499 /* 500 * We dont care about collisions. Nodes with 501 * the same key stay together. 502 */ 503 if (entity_before(se, entry)) { 504 link = &parent->rb_left; 505 } else { 506 link = &parent->rb_right; 507 leftmost = 0; 508 } 509 } 510 511 /* 512 * Maintain a cache of leftmost tree entries (it is frequently 513 * used): 514 */ 515 if (leftmost) 516 cfs_rq->rb_leftmost = &se->run_node; 517 518 rb_link_node(&se->run_node, parent, link); 519 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); 520 } 521 522 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 523 { 524 if (cfs_rq->rb_leftmost == &se->run_node) { 525 struct rb_node *next_node; 526 527 next_node = rb_next(&se->run_node); 528 cfs_rq->rb_leftmost = next_node; 529 } 530 531 rb_erase(&se->run_node, &cfs_rq->tasks_timeline); 532 } 533 534 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) 535 { 536 struct rb_node *left = cfs_rq->rb_leftmost; 537 538 if (!left) 539 return NULL; 540 541 return rb_entry(left, struct sched_entity, run_node); 542 } 543 544 static struct sched_entity *__pick_next_entity(struct sched_entity *se) 545 { 546 struct rb_node *next = rb_next(&se->run_node); 547 548 if (!next) 549 return NULL; 550 551 return rb_entry(next, struct sched_entity, run_node); 552 } 553 554 #ifdef CONFIG_SCHED_DEBUG 555 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) 556 { 557 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); 558 559 if (!last) 560 return NULL; 561 562 return rb_entry(last, struct sched_entity, run_node); 563 } 564 565 /************************************************************** 566 * Scheduling class statistics methods: 567 */ 568 569 int sched_proc_update_handler(struct ctl_table *table, int write, 570 void __user *buffer, size_t *lenp, 571 loff_t *ppos) 572 { 573 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 574 unsigned int factor = get_update_sysctl_factor(); 575 576 if (ret || !write) 577 return ret; 578 579 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, 580 sysctl_sched_min_granularity); 581 582 #define WRT_SYSCTL(name) \ 583 (normalized_sysctl_##name = sysctl_##name / (factor)) 584 WRT_SYSCTL(sched_min_granularity); 585 WRT_SYSCTL(sched_latency); 586 WRT_SYSCTL(sched_wakeup_granularity); 587 #undef WRT_SYSCTL 588 589 return 0; 590 } 591 #endif 592 593 /* 594 * delta /= w 595 */ 596 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se) 597 { 598 if (unlikely(se->load.weight != NICE_0_LOAD)) 599 delta = __calc_delta(delta, NICE_0_LOAD, &se->load); 600 601 return delta; 602 } 603 604 /* 605 * The idea is to set a period in which each task runs once. 606 * 607 * When there are too many tasks (sched_nr_latency) we have to stretch 608 * this period because otherwise the slices get too small. 609 * 610 * p = (nr <= nl) ? l : l*nr/nl 611 */ 612 static u64 __sched_period(unsigned long nr_running) 613 { 614 if (unlikely(nr_running > sched_nr_latency)) 615 return nr_running * sysctl_sched_min_granularity; 616 else 617 return sysctl_sched_latency; 618 } 619 620 /* 621 * We calculate the wall-time slice from the period by taking a part 622 * proportional to the weight. 623 * 624 * s = p*P[w/rw] 625 */ 626 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) 627 { 628 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); 629 630 for_each_sched_entity(se) { 631 struct load_weight *load; 632 struct load_weight lw; 633 634 cfs_rq = cfs_rq_of(se); 635 load = &cfs_rq->load; 636 637 if (unlikely(!se->on_rq)) { 638 lw = cfs_rq->load; 639 640 update_load_add(&lw, se->load.weight); 641 load = &lw; 642 } 643 slice = __calc_delta(slice, se->load.weight, load); 644 } 645 return slice; 646 } 647 648 /* 649 * We calculate the vruntime slice of a to-be-inserted task. 650 * 651 * vs = s/w 652 */ 653 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) 654 { 655 return calc_delta_fair(sched_slice(cfs_rq, se), se); 656 } 657 658 #ifdef CONFIG_SMP 659 static int select_idle_sibling(struct task_struct *p, int cpu); 660 static unsigned long task_h_load(struct task_struct *p); 661 662 /* 663 * We choose a half-life close to 1 scheduling period. 664 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are 665 * dependent on this value. 666 */ 667 #define LOAD_AVG_PERIOD 32 668 #define LOAD_AVG_MAX 47742 /* maximum possible load avg */ 669 #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */ 670 671 /* Give new sched_entity start runnable values to heavy its load in infant time */ 672 void init_entity_runnable_average(struct sched_entity *se) 673 { 674 struct sched_avg *sa = &se->avg; 675 676 sa->last_update_time = 0; 677 /* 678 * sched_avg's period_contrib should be strictly less then 1024, so 679 * we give it 1023 to make sure it is almost a period (1024us), and 680 * will definitely be update (after enqueue). 681 */ 682 sa->period_contrib = 1023; 683 sa->load_avg = scale_load_down(se->load.weight); 684 sa->load_sum = sa->load_avg * LOAD_AVG_MAX; 685 /* 686 * At this point, util_avg won't be used in select_task_rq_fair anyway 687 */ 688 sa->util_avg = 0; 689 sa->util_sum = 0; 690 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */ 691 } 692 693 /* 694 * With new tasks being created, their initial util_avgs are extrapolated 695 * based on the cfs_rq's current util_avg: 696 * 697 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight 698 * 699 * However, in many cases, the above util_avg does not give a desired 700 * value. Moreover, the sum of the util_avgs may be divergent, such 701 * as when the series is a harmonic series. 702 * 703 * To solve this problem, we also cap the util_avg of successive tasks to 704 * only 1/2 of the left utilization budget: 705 * 706 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n 707 * 708 * where n denotes the nth task. 709 * 710 * For example, a simplest series from the beginning would be like: 711 * 712 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ... 713 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ... 714 * 715 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap) 716 * if util_avg > util_avg_cap. 717 */ 718 void post_init_entity_util_avg(struct sched_entity *se) 719 { 720 struct cfs_rq *cfs_rq = cfs_rq_of(se); 721 struct sched_avg *sa = &se->avg; 722 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2; 723 724 if (cap > 0) { 725 if (cfs_rq->avg.util_avg != 0) { 726 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight; 727 sa->util_avg /= (cfs_rq->avg.load_avg + 1); 728 729 if (sa->util_avg > cap) 730 sa->util_avg = cap; 731 } else { 732 sa->util_avg = cap; 733 } 734 sa->util_sum = sa->util_avg * LOAD_AVG_MAX; 735 } 736 } 737 738 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq); 739 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq); 740 #else 741 void init_entity_runnable_average(struct sched_entity *se) 742 { 743 } 744 void post_init_entity_util_avg(struct sched_entity *se) 745 { 746 } 747 #endif 748 749 /* 750 * Update the current task's runtime statistics. 751 */ 752 static void update_curr(struct cfs_rq *cfs_rq) 753 { 754 struct sched_entity *curr = cfs_rq->curr; 755 u64 now = rq_clock_task(rq_of(cfs_rq)); 756 u64 delta_exec; 757 758 if (unlikely(!curr)) 759 return; 760 761 delta_exec = now - curr->exec_start; 762 if (unlikely((s64)delta_exec <= 0)) 763 return; 764 765 curr->exec_start = now; 766 767 schedstat_set(curr->statistics.exec_max, 768 max(delta_exec, curr->statistics.exec_max)); 769 770 curr->sum_exec_runtime += delta_exec; 771 schedstat_add(cfs_rq, exec_clock, delta_exec); 772 773 curr->vruntime += calc_delta_fair(delta_exec, curr); 774 update_min_vruntime(cfs_rq); 775 776 if (entity_is_task(curr)) { 777 struct task_struct *curtask = task_of(curr); 778 779 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); 780 cpuacct_charge(curtask, delta_exec); 781 account_group_exec_runtime(curtask, delta_exec); 782 } 783 784 account_cfs_rq_runtime(cfs_rq, delta_exec); 785 } 786 787 static void update_curr_fair(struct rq *rq) 788 { 789 update_curr(cfs_rq_of(&rq->curr->se)); 790 } 791 792 #ifdef CONFIG_SCHEDSTATS 793 static inline void 794 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 795 { 796 u64 wait_start = rq_clock(rq_of(cfs_rq)); 797 798 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) && 799 likely(wait_start > se->statistics.wait_start)) 800 wait_start -= se->statistics.wait_start; 801 802 se->statistics.wait_start = wait_start; 803 } 804 805 static void 806 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 807 { 808 struct task_struct *p; 809 u64 delta; 810 811 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start; 812 813 if (entity_is_task(se)) { 814 p = task_of(se); 815 if (task_on_rq_migrating(p)) { 816 /* 817 * Preserve migrating task's wait time so wait_start 818 * time stamp can be adjusted to accumulate wait time 819 * prior to migration. 820 */ 821 se->statistics.wait_start = delta; 822 return; 823 } 824 trace_sched_stat_wait(p, delta); 825 } 826 827 se->statistics.wait_max = max(se->statistics.wait_max, delta); 828 se->statistics.wait_count++; 829 se->statistics.wait_sum += delta; 830 se->statistics.wait_start = 0; 831 } 832 833 /* 834 * Task is being enqueued - update stats: 835 */ 836 static inline void 837 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 838 { 839 /* 840 * Are we enqueueing a waiting task? (for current tasks 841 * a dequeue/enqueue event is a NOP) 842 */ 843 if (se != cfs_rq->curr) 844 update_stats_wait_start(cfs_rq, se); 845 } 846 847 static inline void 848 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 849 { 850 /* 851 * Mark the end of the wait period if dequeueing a 852 * waiting task: 853 */ 854 if (se != cfs_rq->curr) 855 update_stats_wait_end(cfs_rq, se); 856 857 if (flags & DEQUEUE_SLEEP) { 858 if (entity_is_task(se)) { 859 struct task_struct *tsk = task_of(se); 860 861 if (tsk->state & TASK_INTERRUPTIBLE) 862 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq)); 863 if (tsk->state & TASK_UNINTERRUPTIBLE) 864 se->statistics.block_start = rq_clock(rq_of(cfs_rq)); 865 } 866 } 867 868 } 869 #else 870 static inline void 871 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 872 { 873 } 874 875 static inline void 876 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) 877 { 878 } 879 880 static inline void 881 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 882 { 883 } 884 885 static inline void 886 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 887 { 888 } 889 #endif 890 891 /* 892 * We are picking a new current task - update its stats: 893 */ 894 static inline void 895 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) 896 { 897 /* 898 * We are starting a new run period: 899 */ 900 se->exec_start = rq_clock_task(rq_of(cfs_rq)); 901 } 902 903 /************************************************** 904 * Scheduling class queueing methods: 905 */ 906 907 #ifdef CONFIG_NUMA_BALANCING 908 /* 909 * Approximate time to scan a full NUMA task in ms. The task scan period is 910 * calculated based on the tasks virtual memory size and 911 * numa_balancing_scan_size. 912 */ 913 unsigned int sysctl_numa_balancing_scan_period_min = 1000; 914 unsigned int sysctl_numa_balancing_scan_period_max = 60000; 915 916 /* Portion of address space to scan in MB */ 917 unsigned int sysctl_numa_balancing_scan_size = 256; 918 919 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */ 920 unsigned int sysctl_numa_balancing_scan_delay = 1000; 921 922 static unsigned int task_nr_scan_windows(struct task_struct *p) 923 { 924 unsigned long rss = 0; 925 unsigned long nr_scan_pages; 926 927 /* 928 * Calculations based on RSS as non-present and empty pages are skipped 929 * by the PTE scanner and NUMA hinting faults should be trapped based 930 * on resident pages 931 */ 932 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT); 933 rss = get_mm_rss(p->mm); 934 if (!rss) 935 rss = nr_scan_pages; 936 937 rss = round_up(rss, nr_scan_pages); 938 return rss / nr_scan_pages; 939 } 940 941 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */ 942 #define MAX_SCAN_WINDOW 2560 943 944 static unsigned int task_scan_min(struct task_struct *p) 945 { 946 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size); 947 unsigned int scan, floor; 948 unsigned int windows = 1; 949 950 if (scan_size < MAX_SCAN_WINDOW) 951 windows = MAX_SCAN_WINDOW / scan_size; 952 floor = 1000 / windows; 953 954 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p); 955 return max_t(unsigned int, floor, scan); 956 } 957 958 static unsigned int task_scan_max(struct task_struct *p) 959 { 960 unsigned int smin = task_scan_min(p); 961 unsigned int smax; 962 963 /* Watch for min being lower than max due to floor calculations */ 964 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p); 965 return max(smin, smax); 966 } 967 968 static void account_numa_enqueue(struct rq *rq, struct task_struct *p) 969 { 970 rq->nr_numa_running += (p->numa_preferred_nid != -1); 971 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p)); 972 } 973 974 static void account_numa_dequeue(struct rq *rq, struct task_struct *p) 975 { 976 rq->nr_numa_running -= (p->numa_preferred_nid != -1); 977 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p)); 978 } 979 980 struct numa_group { 981 atomic_t refcount; 982 983 spinlock_t lock; /* nr_tasks, tasks */ 984 int nr_tasks; 985 pid_t gid; 986 int active_nodes; 987 988 struct rcu_head rcu; 989 unsigned long total_faults; 990 unsigned long max_faults_cpu; 991 /* 992 * Faults_cpu is used to decide whether memory should move 993 * towards the CPU. As a consequence, these stats are weighted 994 * more by CPU use than by memory faults. 995 */ 996 unsigned long *faults_cpu; 997 unsigned long faults[0]; 998 }; 999 1000 /* Shared or private faults. */ 1001 #define NR_NUMA_HINT_FAULT_TYPES 2 1002 1003 /* Memory and CPU locality */ 1004 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2) 1005 1006 /* Averaged statistics, and temporary buffers. */ 1007 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2) 1008 1009 pid_t task_numa_group_id(struct task_struct *p) 1010 { 1011 return p->numa_group ? p->numa_group->gid : 0; 1012 } 1013 1014 /* 1015 * The averaged statistics, shared & private, memory & cpu, 1016 * occupy the first half of the array. The second half of the 1017 * array is for current counters, which are averaged into the 1018 * first set by task_numa_placement. 1019 */ 1020 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv) 1021 { 1022 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv; 1023 } 1024 1025 static inline unsigned long task_faults(struct task_struct *p, int nid) 1026 { 1027 if (!p->numa_faults) 1028 return 0; 1029 1030 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1031 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1032 } 1033 1034 static inline unsigned long group_faults(struct task_struct *p, int nid) 1035 { 1036 if (!p->numa_group) 1037 return 0; 1038 1039 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] + 1040 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)]; 1041 } 1042 1043 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid) 1044 { 1045 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] + 1046 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)]; 1047 } 1048 1049 /* 1050 * A node triggering more than 1/3 as many NUMA faults as the maximum is 1051 * considered part of a numa group's pseudo-interleaving set. Migrations 1052 * between these nodes are slowed down, to allow things to settle down. 1053 */ 1054 #define ACTIVE_NODE_FRACTION 3 1055 1056 static bool numa_is_active_node(int nid, struct numa_group *ng) 1057 { 1058 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu; 1059 } 1060 1061 /* Handle placement on systems where not all nodes are directly connected. */ 1062 static unsigned long score_nearby_nodes(struct task_struct *p, int nid, 1063 int maxdist, bool task) 1064 { 1065 unsigned long score = 0; 1066 int node; 1067 1068 /* 1069 * All nodes are directly connected, and the same distance 1070 * from each other. No need for fancy placement algorithms. 1071 */ 1072 if (sched_numa_topology_type == NUMA_DIRECT) 1073 return 0; 1074 1075 /* 1076 * This code is called for each node, introducing N^2 complexity, 1077 * which should be ok given the number of nodes rarely exceeds 8. 1078 */ 1079 for_each_online_node(node) { 1080 unsigned long faults; 1081 int dist = node_distance(nid, node); 1082 1083 /* 1084 * The furthest away nodes in the system are not interesting 1085 * for placement; nid was already counted. 1086 */ 1087 if (dist == sched_max_numa_distance || node == nid) 1088 continue; 1089 1090 /* 1091 * On systems with a backplane NUMA topology, compare groups 1092 * of nodes, and move tasks towards the group with the most 1093 * memory accesses. When comparing two nodes at distance 1094 * "hoplimit", only nodes closer by than "hoplimit" are part 1095 * of each group. Skip other nodes. 1096 */ 1097 if (sched_numa_topology_type == NUMA_BACKPLANE && 1098 dist > maxdist) 1099 continue; 1100 1101 /* Add up the faults from nearby nodes. */ 1102 if (task) 1103 faults = task_faults(p, node); 1104 else 1105 faults = group_faults(p, node); 1106 1107 /* 1108 * On systems with a glueless mesh NUMA topology, there are 1109 * no fixed "groups of nodes". Instead, nodes that are not 1110 * directly connected bounce traffic through intermediate 1111 * nodes; a numa_group can occupy any set of nodes. 1112 * The further away a node is, the less the faults count. 1113 * This seems to result in good task placement. 1114 */ 1115 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1116 faults *= (sched_max_numa_distance - dist); 1117 faults /= (sched_max_numa_distance - LOCAL_DISTANCE); 1118 } 1119 1120 score += faults; 1121 } 1122 1123 return score; 1124 } 1125 1126 /* 1127 * These return the fraction of accesses done by a particular task, or 1128 * task group, on a particular numa node. The group weight is given a 1129 * larger multiplier, in order to group tasks together that are almost 1130 * evenly spread out between numa nodes. 1131 */ 1132 static inline unsigned long task_weight(struct task_struct *p, int nid, 1133 int dist) 1134 { 1135 unsigned long faults, total_faults; 1136 1137 if (!p->numa_faults) 1138 return 0; 1139 1140 total_faults = p->total_numa_faults; 1141 1142 if (!total_faults) 1143 return 0; 1144 1145 faults = task_faults(p, nid); 1146 faults += score_nearby_nodes(p, nid, dist, true); 1147 1148 return 1000 * faults / total_faults; 1149 } 1150 1151 static inline unsigned long group_weight(struct task_struct *p, int nid, 1152 int dist) 1153 { 1154 unsigned long faults, total_faults; 1155 1156 if (!p->numa_group) 1157 return 0; 1158 1159 total_faults = p->numa_group->total_faults; 1160 1161 if (!total_faults) 1162 return 0; 1163 1164 faults = group_faults(p, nid); 1165 faults += score_nearby_nodes(p, nid, dist, false); 1166 1167 return 1000 * faults / total_faults; 1168 } 1169 1170 bool should_numa_migrate_memory(struct task_struct *p, struct page * page, 1171 int src_nid, int dst_cpu) 1172 { 1173 struct numa_group *ng = p->numa_group; 1174 int dst_nid = cpu_to_node(dst_cpu); 1175 int last_cpupid, this_cpupid; 1176 1177 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid); 1178 1179 /* 1180 * Multi-stage node selection is used in conjunction with a periodic 1181 * migration fault to build a temporal task<->page relation. By using 1182 * a two-stage filter we remove short/unlikely relations. 1183 * 1184 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate 1185 * a task's usage of a particular page (n_p) per total usage of this 1186 * page (n_t) (in a given time-span) to a probability. 1187 * 1188 * Our periodic faults will sample this probability and getting the 1189 * same result twice in a row, given these samples are fully 1190 * independent, is then given by P(n)^2, provided our sample period 1191 * is sufficiently short compared to the usage pattern. 1192 * 1193 * This quadric squishes small probabilities, making it less likely we 1194 * act on an unlikely task<->page relation. 1195 */ 1196 last_cpupid = page_cpupid_xchg_last(page, this_cpupid); 1197 if (!cpupid_pid_unset(last_cpupid) && 1198 cpupid_to_nid(last_cpupid) != dst_nid) 1199 return false; 1200 1201 /* Always allow migrate on private faults */ 1202 if (cpupid_match_pid(p, last_cpupid)) 1203 return true; 1204 1205 /* A shared fault, but p->numa_group has not been set up yet. */ 1206 if (!ng) 1207 return true; 1208 1209 /* 1210 * Destination node is much more heavily used than the source 1211 * node? Allow migration. 1212 */ 1213 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) * 1214 ACTIVE_NODE_FRACTION) 1215 return true; 1216 1217 /* 1218 * Distribute memory according to CPU & memory use on each node, 1219 * with 3/4 hysteresis to avoid unnecessary memory migrations: 1220 * 1221 * faults_cpu(dst) 3 faults_cpu(src) 1222 * --------------- * - > --------------- 1223 * faults_mem(dst) 4 faults_mem(src) 1224 */ 1225 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 > 1226 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4; 1227 } 1228 1229 static unsigned long weighted_cpuload(const int cpu); 1230 static unsigned long source_load(int cpu, int type); 1231 static unsigned long target_load(int cpu, int type); 1232 static unsigned long capacity_of(int cpu); 1233 static long effective_load(struct task_group *tg, int cpu, long wl, long wg); 1234 1235 /* Cached statistics for all CPUs within a node */ 1236 struct numa_stats { 1237 unsigned long nr_running; 1238 unsigned long load; 1239 1240 /* Total compute capacity of CPUs on a node */ 1241 unsigned long compute_capacity; 1242 1243 /* Approximate capacity in terms of runnable tasks on a node */ 1244 unsigned long task_capacity; 1245 int has_free_capacity; 1246 }; 1247 1248 /* 1249 * XXX borrowed from update_sg_lb_stats 1250 */ 1251 static void update_numa_stats(struct numa_stats *ns, int nid) 1252 { 1253 int smt, cpu, cpus = 0; 1254 unsigned long capacity; 1255 1256 memset(ns, 0, sizeof(*ns)); 1257 for_each_cpu(cpu, cpumask_of_node(nid)) { 1258 struct rq *rq = cpu_rq(cpu); 1259 1260 ns->nr_running += rq->nr_running; 1261 ns->load += weighted_cpuload(cpu); 1262 ns->compute_capacity += capacity_of(cpu); 1263 1264 cpus++; 1265 } 1266 1267 /* 1268 * If we raced with hotplug and there are no CPUs left in our mask 1269 * the @ns structure is NULL'ed and task_numa_compare() will 1270 * not find this node attractive. 1271 * 1272 * We'll either bail at !has_free_capacity, or we'll detect a huge 1273 * imbalance and bail there. 1274 */ 1275 if (!cpus) 1276 return; 1277 1278 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */ 1279 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity); 1280 capacity = cpus / smt; /* cores */ 1281 1282 ns->task_capacity = min_t(unsigned, capacity, 1283 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE)); 1284 ns->has_free_capacity = (ns->nr_running < ns->task_capacity); 1285 } 1286 1287 struct task_numa_env { 1288 struct task_struct *p; 1289 1290 int src_cpu, src_nid; 1291 int dst_cpu, dst_nid; 1292 1293 struct numa_stats src_stats, dst_stats; 1294 1295 int imbalance_pct; 1296 int dist; 1297 1298 struct task_struct *best_task; 1299 long best_imp; 1300 int best_cpu; 1301 }; 1302 1303 static void task_numa_assign(struct task_numa_env *env, 1304 struct task_struct *p, long imp) 1305 { 1306 if (env->best_task) 1307 put_task_struct(env->best_task); 1308 1309 env->best_task = p; 1310 env->best_imp = imp; 1311 env->best_cpu = env->dst_cpu; 1312 } 1313 1314 static bool load_too_imbalanced(long src_load, long dst_load, 1315 struct task_numa_env *env) 1316 { 1317 long imb, old_imb; 1318 long orig_src_load, orig_dst_load; 1319 long src_capacity, dst_capacity; 1320 1321 /* 1322 * The load is corrected for the CPU capacity available on each node. 1323 * 1324 * src_load dst_load 1325 * ------------ vs --------- 1326 * src_capacity dst_capacity 1327 */ 1328 src_capacity = env->src_stats.compute_capacity; 1329 dst_capacity = env->dst_stats.compute_capacity; 1330 1331 /* We care about the slope of the imbalance, not the direction. */ 1332 if (dst_load < src_load) 1333 swap(dst_load, src_load); 1334 1335 /* Is the difference below the threshold? */ 1336 imb = dst_load * src_capacity * 100 - 1337 src_load * dst_capacity * env->imbalance_pct; 1338 if (imb <= 0) 1339 return false; 1340 1341 /* 1342 * The imbalance is above the allowed threshold. 1343 * Compare it with the old imbalance. 1344 */ 1345 orig_src_load = env->src_stats.load; 1346 orig_dst_load = env->dst_stats.load; 1347 1348 if (orig_dst_load < orig_src_load) 1349 swap(orig_dst_load, orig_src_load); 1350 1351 old_imb = orig_dst_load * src_capacity * 100 - 1352 orig_src_load * dst_capacity * env->imbalance_pct; 1353 1354 /* Would this change make things worse? */ 1355 return (imb > old_imb); 1356 } 1357 1358 /* 1359 * This checks if the overall compute and NUMA accesses of the system would 1360 * be improved if the source tasks was migrated to the target dst_cpu taking 1361 * into account that it might be best if task running on the dst_cpu should 1362 * be exchanged with the source task 1363 */ 1364 static void task_numa_compare(struct task_numa_env *env, 1365 long taskimp, long groupimp) 1366 { 1367 struct rq *src_rq = cpu_rq(env->src_cpu); 1368 struct rq *dst_rq = cpu_rq(env->dst_cpu); 1369 struct task_struct *cur; 1370 long src_load, dst_load; 1371 long load; 1372 long imp = env->p->numa_group ? groupimp : taskimp; 1373 long moveimp = imp; 1374 int dist = env->dist; 1375 bool assigned = false; 1376 1377 rcu_read_lock(); 1378 1379 raw_spin_lock_irq(&dst_rq->lock); 1380 cur = dst_rq->curr; 1381 /* 1382 * No need to move the exiting task or idle task. 1383 */ 1384 if ((cur->flags & PF_EXITING) || is_idle_task(cur)) 1385 cur = NULL; 1386 else { 1387 /* 1388 * The task_struct must be protected here to protect the 1389 * p->numa_faults access in the task_weight since the 1390 * numa_faults could already be freed in the following path: 1391 * finish_task_switch() 1392 * --> put_task_struct() 1393 * --> __put_task_struct() 1394 * --> task_numa_free() 1395 */ 1396 get_task_struct(cur); 1397 } 1398 1399 raw_spin_unlock_irq(&dst_rq->lock); 1400 1401 /* 1402 * Because we have preemption enabled we can get migrated around and 1403 * end try selecting ourselves (current == env->p) as a swap candidate. 1404 */ 1405 if (cur == env->p) 1406 goto unlock; 1407 1408 /* 1409 * "imp" is the fault differential for the source task between the 1410 * source and destination node. Calculate the total differential for 1411 * the source task and potential destination task. The more negative 1412 * the value is, the more rmeote accesses that would be expected to 1413 * be incurred if the tasks were swapped. 1414 */ 1415 if (cur) { 1416 /* Skip this swap candidate if cannot move to the source cpu */ 1417 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur))) 1418 goto unlock; 1419 1420 /* 1421 * If dst and source tasks are in the same NUMA group, or not 1422 * in any group then look only at task weights. 1423 */ 1424 if (cur->numa_group == env->p->numa_group) { 1425 imp = taskimp + task_weight(cur, env->src_nid, dist) - 1426 task_weight(cur, env->dst_nid, dist); 1427 /* 1428 * Add some hysteresis to prevent swapping the 1429 * tasks within a group over tiny differences. 1430 */ 1431 if (cur->numa_group) 1432 imp -= imp/16; 1433 } else { 1434 /* 1435 * Compare the group weights. If a task is all by 1436 * itself (not part of a group), use the task weight 1437 * instead. 1438 */ 1439 if (cur->numa_group) 1440 imp += group_weight(cur, env->src_nid, dist) - 1441 group_weight(cur, env->dst_nid, dist); 1442 else 1443 imp += task_weight(cur, env->src_nid, dist) - 1444 task_weight(cur, env->dst_nid, dist); 1445 } 1446 } 1447 1448 if (imp <= env->best_imp && moveimp <= env->best_imp) 1449 goto unlock; 1450 1451 if (!cur) { 1452 /* Is there capacity at our destination? */ 1453 if (env->src_stats.nr_running <= env->src_stats.task_capacity && 1454 !env->dst_stats.has_free_capacity) 1455 goto unlock; 1456 1457 goto balance; 1458 } 1459 1460 /* Balance doesn't matter much if we're running a task per cpu */ 1461 if (imp > env->best_imp && src_rq->nr_running == 1 && 1462 dst_rq->nr_running == 1) 1463 goto assign; 1464 1465 /* 1466 * In the overloaded case, try and keep the load balanced. 1467 */ 1468 balance: 1469 load = task_h_load(env->p); 1470 dst_load = env->dst_stats.load + load; 1471 src_load = env->src_stats.load - load; 1472 1473 if (moveimp > imp && moveimp > env->best_imp) { 1474 /* 1475 * If the improvement from just moving env->p direction is 1476 * better than swapping tasks around, check if a move is 1477 * possible. Store a slightly smaller score than moveimp, 1478 * so an actually idle CPU will win. 1479 */ 1480 if (!load_too_imbalanced(src_load, dst_load, env)) { 1481 imp = moveimp - 1; 1482 put_task_struct(cur); 1483 cur = NULL; 1484 goto assign; 1485 } 1486 } 1487 1488 if (imp <= env->best_imp) 1489 goto unlock; 1490 1491 if (cur) { 1492 load = task_h_load(cur); 1493 dst_load -= load; 1494 src_load += load; 1495 } 1496 1497 if (load_too_imbalanced(src_load, dst_load, env)) 1498 goto unlock; 1499 1500 /* 1501 * One idle CPU per node is evaluated for a task numa move. 1502 * Call select_idle_sibling to maybe find a better one. 1503 */ 1504 if (!cur) 1505 env->dst_cpu = select_idle_sibling(env->p, env->dst_cpu); 1506 1507 assign: 1508 assigned = true; 1509 task_numa_assign(env, cur, imp); 1510 unlock: 1511 rcu_read_unlock(); 1512 /* 1513 * The dst_rq->curr isn't assigned. The protection for task_struct is 1514 * finished. 1515 */ 1516 if (cur && !assigned) 1517 put_task_struct(cur); 1518 } 1519 1520 static void task_numa_find_cpu(struct task_numa_env *env, 1521 long taskimp, long groupimp) 1522 { 1523 int cpu; 1524 1525 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) { 1526 /* Skip this CPU if the source task cannot migrate */ 1527 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p))) 1528 continue; 1529 1530 env->dst_cpu = cpu; 1531 task_numa_compare(env, taskimp, groupimp); 1532 } 1533 } 1534 1535 /* Only move tasks to a NUMA node less busy than the current node. */ 1536 static bool numa_has_capacity(struct task_numa_env *env) 1537 { 1538 struct numa_stats *src = &env->src_stats; 1539 struct numa_stats *dst = &env->dst_stats; 1540 1541 if (src->has_free_capacity && !dst->has_free_capacity) 1542 return false; 1543 1544 /* 1545 * Only consider a task move if the source has a higher load 1546 * than the destination, corrected for CPU capacity on each node. 1547 * 1548 * src->load dst->load 1549 * --------------------- vs --------------------- 1550 * src->compute_capacity dst->compute_capacity 1551 */ 1552 if (src->load * dst->compute_capacity * env->imbalance_pct > 1553 1554 dst->load * src->compute_capacity * 100) 1555 return true; 1556 1557 return false; 1558 } 1559 1560 static int task_numa_migrate(struct task_struct *p) 1561 { 1562 struct task_numa_env env = { 1563 .p = p, 1564 1565 .src_cpu = task_cpu(p), 1566 .src_nid = task_node(p), 1567 1568 .imbalance_pct = 112, 1569 1570 .best_task = NULL, 1571 .best_imp = 0, 1572 .best_cpu = -1, 1573 }; 1574 struct sched_domain *sd; 1575 unsigned long taskweight, groupweight; 1576 int nid, ret, dist; 1577 long taskimp, groupimp; 1578 1579 /* 1580 * Pick the lowest SD_NUMA domain, as that would have the smallest 1581 * imbalance and would be the first to start moving tasks about. 1582 * 1583 * And we want to avoid any moving of tasks about, as that would create 1584 * random movement of tasks -- counter the numa conditions we're trying 1585 * to satisfy here. 1586 */ 1587 rcu_read_lock(); 1588 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu)); 1589 if (sd) 1590 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2; 1591 rcu_read_unlock(); 1592 1593 /* 1594 * Cpusets can break the scheduler domain tree into smaller 1595 * balance domains, some of which do not cross NUMA boundaries. 1596 * Tasks that are "trapped" in such domains cannot be migrated 1597 * elsewhere, so there is no point in (re)trying. 1598 */ 1599 if (unlikely(!sd)) { 1600 p->numa_preferred_nid = task_node(p); 1601 return -EINVAL; 1602 } 1603 1604 env.dst_nid = p->numa_preferred_nid; 1605 dist = env.dist = node_distance(env.src_nid, env.dst_nid); 1606 taskweight = task_weight(p, env.src_nid, dist); 1607 groupweight = group_weight(p, env.src_nid, dist); 1608 update_numa_stats(&env.src_stats, env.src_nid); 1609 taskimp = task_weight(p, env.dst_nid, dist) - taskweight; 1610 groupimp = group_weight(p, env.dst_nid, dist) - groupweight; 1611 update_numa_stats(&env.dst_stats, env.dst_nid); 1612 1613 /* Try to find a spot on the preferred nid. */ 1614 if (numa_has_capacity(&env)) 1615 task_numa_find_cpu(&env, taskimp, groupimp); 1616 1617 /* 1618 * Look at other nodes in these cases: 1619 * - there is no space available on the preferred_nid 1620 * - the task is part of a numa_group that is interleaved across 1621 * multiple NUMA nodes; in order to better consolidate the group, 1622 * we need to check other locations. 1623 */ 1624 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) { 1625 for_each_online_node(nid) { 1626 if (nid == env.src_nid || nid == p->numa_preferred_nid) 1627 continue; 1628 1629 dist = node_distance(env.src_nid, env.dst_nid); 1630 if (sched_numa_topology_type == NUMA_BACKPLANE && 1631 dist != env.dist) { 1632 taskweight = task_weight(p, env.src_nid, dist); 1633 groupweight = group_weight(p, env.src_nid, dist); 1634 } 1635 1636 /* Only consider nodes where both task and groups benefit */ 1637 taskimp = task_weight(p, nid, dist) - taskweight; 1638 groupimp = group_weight(p, nid, dist) - groupweight; 1639 if (taskimp < 0 && groupimp < 0) 1640 continue; 1641 1642 env.dist = dist; 1643 env.dst_nid = nid; 1644 update_numa_stats(&env.dst_stats, env.dst_nid); 1645 if (numa_has_capacity(&env)) 1646 task_numa_find_cpu(&env, taskimp, groupimp); 1647 } 1648 } 1649 1650 /* 1651 * If the task is part of a workload that spans multiple NUMA nodes, 1652 * and is migrating into one of the workload's active nodes, remember 1653 * this node as the task's preferred numa node, so the workload can 1654 * settle down. 1655 * A task that migrated to a second choice node will be better off 1656 * trying for a better one later. Do not set the preferred node here. 1657 */ 1658 if (p->numa_group) { 1659 struct numa_group *ng = p->numa_group; 1660 1661 if (env.best_cpu == -1) 1662 nid = env.src_nid; 1663 else 1664 nid = env.dst_nid; 1665 1666 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng)) 1667 sched_setnuma(p, env.dst_nid); 1668 } 1669 1670 /* No better CPU than the current one was found. */ 1671 if (env.best_cpu == -1) 1672 return -EAGAIN; 1673 1674 /* 1675 * Reset the scan period if the task is being rescheduled on an 1676 * alternative node to recheck if the tasks is now properly placed. 1677 */ 1678 p->numa_scan_period = task_scan_min(p); 1679 1680 if (env.best_task == NULL) { 1681 ret = migrate_task_to(p, env.best_cpu); 1682 if (ret != 0) 1683 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu); 1684 return ret; 1685 } 1686 1687 ret = migrate_swap(p, env.best_task); 1688 if (ret != 0) 1689 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task)); 1690 put_task_struct(env.best_task); 1691 return ret; 1692 } 1693 1694 /* Attempt to migrate a task to a CPU on the preferred node. */ 1695 static void numa_migrate_preferred(struct task_struct *p) 1696 { 1697 unsigned long interval = HZ; 1698 1699 /* This task has no NUMA fault statistics yet */ 1700 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults)) 1701 return; 1702 1703 /* Periodically retry migrating the task to the preferred node */ 1704 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16); 1705 p->numa_migrate_retry = jiffies + interval; 1706 1707 /* Success if task is already running on preferred CPU */ 1708 if (task_node(p) == p->numa_preferred_nid) 1709 return; 1710 1711 /* Otherwise, try migrate to a CPU on the preferred node */ 1712 task_numa_migrate(p); 1713 } 1714 1715 /* 1716 * Find out how many nodes on the workload is actively running on. Do this by 1717 * tracking the nodes from which NUMA hinting faults are triggered. This can 1718 * be different from the set of nodes where the workload's memory is currently 1719 * located. 1720 */ 1721 static void numa_group_count_active_nodes(struct numa_group *numa_group) 1722 { 1723 unsigned long faults, max_faults = 0; 1724 int nid, active_nodes = 0; 1725 1726 for_each_online_node(nid) { 1727 faults = group_faults_cpu(numa_group, nid); 1728 if (faults > max_faults) 1729 max_faults = faults; 1730 } 1731 1732 for_each_online_node(nid) { 1733 faults = group_faults_cpu(numa_group, nid); 1734 if (faults * ACTIVE_NODE_FRACTION > max_faults) 1735 active_nodes++; 1736 } 1737 1738 numa_group->max_faults_cpu = max_faults; 1739 numa_group->active_nodes = active_nodes; 1740 } 1741 1742 /* 1743 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS 1744 * increments. The more local the fault statistics are, the higher the scan 1745 * period will be for the next scan window. If local/(local+remote) ratio is 1746 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) 1747 * the scan period will decrease. Aim for 70% local accesses. 1748 */ 1749 #define NUMA_PERIOD_SLOTS 10 1750 #define NUMA_PERIOD_THRESHOLD 7 1751 1752 /* 1753 * Increase the scan period (slow down scanning) if the majority of 1754 * our memory is already on our local node, or if the majority of 1755 * the page accesses are shared with other processes. 1756 * Otherwise, decrease the scan period. 1757 */ 1758 static void update_task_scan_period(struct task_struct *p, 1759 unsigned long shared, unsigned long private) 1760 { 1761 unsigned int period_slot; 1762 int ratio; 1763 int diff; 1764 1765 unsigned long remote = p->numa_faults_locality[0]; 1766 unsigned long local = p->numa_faults_locality[1]; 1767 1768 /* 1769 * If there were no record hinting faults then either the task is 1770 * completely idle or all activity is areas that are not of interest 1771 * to automatic numa balancing. Related to that, if there were failed 1772 * migration then it implies we are migrating too quickly or the local 1773 * node is overloaded. In either case, scan slower 1774 */ 1775 if (local + shared == 0 || p->numa_faults_locality[2]) { 1776 p->numa_scan_period = min(p->numa_scan_period_max, 1777 p->numa_scan_period << 1); 1778 1779 p->mm->numa_next_scan = jiffies + 1780 msecs_to_jiffies(p->numa_scan_period); 1781 1782 return; 1783 } 1784 1785 /* 1786 * Prepare to scale scan period relative to the current period. 1787 * == NUMA_PERIOD_THRESHOLD scan period stays the same 1788 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster) 1789 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower) 1790 */ 1791 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS); 1792 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote); 1793 if (ratio >= NUMA_PERIOD_THRESHOLD) { 1794 int slot = ratio - NUMA_PERIOD_THRESHOLD; 1795 if (!slot) 1796 slot = 1; 1797 diff = slot * period_slot; 1798 } else { 1799 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot; 1800 1801 /* 1802 * Scale scan rate increases based on sharing. There is an 1803 * inverse relationship between the degree of sharing and 1804 * the adjustment made to the scanning period. Broadly 1805 * speaking the intent is that there is little point 1806 * scanning faster if shared accesses dominate as it may 1807 * simply bounce migrations uselessly 1808 */ 1809 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1)); 1810 diff = (diff * ratio) / NUMA_PERIOD_SLOTS; 1811 } 1812 1813 p->numa_scan_period = clamp(p->numa_scan_period + diff, 1814 task_scan_min(p), task_scan_max(p)); 1815 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 1816 } 1817 1818 /* 1819 * Get the fraction of time the task has been running since the last 1820 * NUMA placement cycle. The scheduler keeps similar statistics, but 1821 * decays those on a 32ms period, which is orders of magnitude off 1822 * from the dozens-of-seconds NUMA balancing period. Use the scheduler 1823 * stats only if the task is so new there are no NUMA statistics yet. 1824 */ 1825 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period) 1826 { 1827 u64 runtime, delta, now; 1828 /* Use the start of this time slice to avoid calculations. */ 1829 now = p->se.exec_start; 1830 runtime = p->se.sum_exec_runtime; 1831 1832 if (p->last_task_numa_placement) { 1833 delta = runtime - p->last_sum_exec_runtime; 1834 *period = now - p->last_task_numa_placement; 1835 } else { 1836 delta = p->se.avg.load_sum / p->se.load.weight; 1837 *period = LOAD_AVG_MAX; 1838 } 1839 1840 p->last_sum_exec_runtime = runtime; 1841 p->last_task_numa_placement = now; 1842 1843 return delta; 1844 } 1845 1846 /* 1847 * Determine the preferred nid for a task in a numa_group. This needs to 1848 * be done in a way that produces consistent results with group_weight, 1849 * otherwise workloads might not converge. 1850 */ 1851 static int preferred_group_nid(struct task_struct *p, int nid) 1852 { 1853 nodemask_t nodes; 1854 int dist; 1855 1856 /* Direct connections between all NUMA nodes. */ 1857 if (sched_numa_topology_type == NUMA_DIRECT) 1858 return nid; 1859 1860 /* 1861 * On a system with glueless mesh NUMA topology, group_weight 1862 * scores nodes according to the number of NUMA hinting faults on 1863 * both the node itself, and on nearby nodes. 1864 */ 1865 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) { 1866 unsigned long score, max_score = 0; 1867 int node, max_node = nid; 1868 1869 dist = sched_max_numa_distance; 1870 1871 for_each_online_node(node) { 1872 score = group_weight(p, node, dist); 1873 if (score > max_score) { 1874 max_score = score; 1875 max_node = node; 1876 } 1877 } 1878 return max_node; 1879 } 1880 1881 /* 1882 * Finding the preferred nid in a system with NUMA backplane 1883 * interconnect topology is more involved. The goal is to locate 1884 * tasks from numa_groups near each other in the system, and 1885 * untangle workloads from different sides of the system. This requires 1886 * searching down the hierarchy of node groups, recursively searching 1887 * inside the highest scoring group of nodes. The nodemask tricks 1888 * keep the complexity of the search down. 1889 */ 1890 nodes = node_online_map; 1891 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) { 1892 unsigned long max_faults = 0; 1893 nodemask_t max_group = NODE_MASK_NONE; 1894 int a, b; 1895 1896 /* Are there nodes at this distance from each other? */ 1897 if (!find_numa_distance(dist)) 1898 continue; 1899 1900 for_each_node_mask(a, nodes) { 1901 unsigned long faults = 0; 1902 nodemask_t this_group; 1903 nodes_clear(this_group); 1904 1905 /* Sum group's NUMA faults; includes a==b case. */ 1906 for_each_node_mask(b, nodes) { 1907 if (node_distance(a, b) < dist) { 1908 faults += group_faults(p, b); 1909 node_set(b, this_group); 1910 node_clear(b, nodes); 1911 } 1912 } 1913 1914 /* Remember the top group. */ 1915 if (faults > max_faults) { 1916 max_faults = faults; 1917 max_group = this_group; 1918 /* 1919 * subtle: at the smallest distance there is 1920 * just one node left in each "group", the 1921 * winner is the preferred nid. 1922 */ 1923 nid = a; 1924 } 1925 } 1926 /* Next round, evaluate the nodes within max_group. */ 1927 if (!max_faults) 1928 break; 1929 nodes = max_group; 1930 } 1931 return nid; 1932 } 1933 1934 static void task_numa_placement(struct task_struct *p) 1935 { 1936 int seq, nid, max_nid = -1, max_group_nid = -1; 1937 unsigned long max_faults = 0, max_group_faults = 0; 1938 unsigned long fault_types[2] = { 0, 0 }; 1939 unsigned long total_faults; 1940 u64 runtime, period; 1941 spinlock_t *group_lock = NULL; 1942 1943 /* 1944 * The p->mm->numa_scan_seq field gets updated without 1945 * exclusive access. Use READ_ONCE() here to ensure 1946 * that the field is read in a single access: 1947 */ 1948 seq = READ_ONCE(p->mm->numa_scan_seq); 1949 if (p->numa_scan_seq == seq) 1950 return; 1951 p->numa_scan_seq = seq; 1952 p->numa_scan_period_max = task_scan_max(p); 1953 1954 total_faults = p->numa_faults_locality[0] + 1955 p->numa_faults_locality[1]; 1956 runtime = numa_get_avg_runtime(p, &period); 1957 1958 /* If the task is part of a group prevent parallel updates to group stats */ 1959 if (p->numa_group) { 1960 group_lock = &p->numa_group->lock; 1961 spin_lock_irq(group_lock); 1962 } 1963 1964 /* Find the node with the highest number of faults */ 1965 for_each_online_node(nid) { 1966 /* Keep track of the offsets in numa_faults array */ 1967 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx; 1968 unsigned long faults = 0, group_faults = 0; 1969 int priv; 1970 1971 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) { 1972 long diff, f_diff, f_weight; 1973 1974 mem_idx = task_faults_idx(NUMA_MEM, nid, priv); 1975 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv); 1976 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv); 1977 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv); 1978 1979 /* Decay existing window, copy faults since last scan */ 1980 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2; 1981 fault_types[priv] += p->numa_faults[membuf_idx]; 1982 p->numa_faults[membuf_idx] = 0; 1983 1984 /* 1985 * Normalize the faults_from, so all tasks in a group 1986 * count according to CPU use, instead of by the raw 1987 * number of faults. Tasks with little runtime have 1988 * little over-all impact on throughput, and thus their 1989 * faults are less important. 1990 */ 1991 f_weight = div64_u64(runtime << 16, period + 1); 1992 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) / 1993 (total_faults + 1); 1994 f_diff = f_weight - p->numa_faults[cpu_idx] / 2; 1995 p->numa_faults[cpubuf_idx] = 0; 1996 1997 p->numa_faults[mem_idx] += diff; 1998 p->numa_faults[cpu_idx] += f_diff; 1999 faults += p->numa_faults[mem_idx]; 2000 p->total_numa_faults += diff; 2001 if (p->numa_group) { 2002 /* 2003 * safe because we can only change our own group 2004 * 2005 * mem_idx represents the offset for a given 2006 * nid and priv in a specific region because it 2007 * is at the beginning of the numa_faults array. 2008 */ 2009 p->numa_group->faults[mem_idx] += diff; 2010 p->numa_group->faults_cpu[mem_idx] += f_diff; 2011 p->numa_group->total_faults += diff; 2012 group_faults += p->numa_group->faults[mem_idx]; 2013 } 2014 } 2015 2016 if (faults > max_faults) { 2017 max_faults = faults; 2018 max_nid = nid; 2019 } 2020 2021 if (group_faults > max_group_faults) { 2022 max_group_faults = group_faults; 2023 max_group_nid = nid; 2024 } 2025 } 2026 2027 update_task_scan_period(p, fault_types[0], fault_types[1]); 2028 2029 if (p->numa_group) { 2030 numa_group_count_active_nodes(p->numa_group); 2031 spin_unlock_irq(group_lock); 2032 max_nid = preferred_group_nid(p, max_group_nid); 2033 } 2034 2035 if (max_faults) { 2036 /* Set the new preferred node */ 2037 if (max_nid != p->numa_preferred_nid) 2038 sched_setnuma(p, max_nid); 2039 2040 if (task_node(p) != p->numa_preferred_nid) 2041 numa_migrate_preferred(p); 2042 } 2043 } 2044 2045 static inline int get_numa_group(struct numa_group *grp) 2046 { 2047 return atomic_inc_not_zero(&grp->refcount); 2048 } 2049 2050 static inline void put_numa_group(struct numa_group *grp) 2051 { 2052 if (atomic_dec_and_test(&grp->refcount)) 2053 kfree_rcu(grp, rcu); 2054 } 2055 2056 static void task_numa_group(struct task_struct *p, int cpupid, int flags, 2057 int *priv) 2058 { 2059 struct numa_group *grp, *my_grp; 2060 struct task_struct *tsk; 2061 bool join = false; 2062 int cpu = cpupid_to_cpu(cpupid); 2063 int i; 2064 2065 if (unlikely(!p->numa_group)) { 2066 unsigned int size = sizeof(struct numa_group) + 2067 4*nr_node_ids*sizeof(unsigned long); 2068 2069 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN); 2070 if (!grp) 2071 return; 2072 2073 atomic_set(&grp->refcount, 1); 2074 grp->active_nodes = 1; 2075 grp->max_faults_cpu = 0; 2076 spin_lock_init(&grp->lock); 2077 grp->gid = p->pid; 2078 /* Second half of the array tracks nids where faults happen */ 2079 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES * 2080 nr_node_ids; 2081 2082 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2083 grp->faults[i] = p->numa_faults[i]; 2084 2085 grp->total_faults = p->total_numa_faults; 2086 2087 grp->nr_tasks++; 2088 rcu_assign_pointer(p->numa_group, grp); 2089 } 2090 2091 rcu_read_lock(); 2092 tsk = READ_ONCE(cpu_rq(cpu)->curr); 2093 2094 if (!cpupid_match_pid(tsk, cpupid)) 2095 goto no_join; 2096 2097 grp = rcu_dereference(tsk->numa_group); 2098 if (!grp) 2099 goto no_join; 2100 2101 my_grp = p->numa_group; 2102 if (grp == my_grp) 2103 goto no_join; 2104 2105 /* 2106 * Only join the other group if its bigger; if we're the bigger group, 2107 * the other task will join us. 2108 */ 2109 if (my_grp->nr_tasks > grp->nr_tasks) 2110 goto no_join; 2111 2112 /* 2113 * Tie-break on the grp address. 2114 */ 2115 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp) 2116 goto no_join; 2117 2118 /* Always join threads in the same process. */ 2119 if (tsk->mm == current->mm) 2120 join = true; 2121 2122 /* Simple filter to avoid false positives due to PID collisions */ 2123 if (flags & TNF_SHARED) 2124 join = true; 2125 2126 /* Update priv based on whether false sharing was detected */ 2127 *priv = !join; 2128 2129 if (join && !get_numa_group(grp)) 2130 goto no_join; 2131 2132 rcu_read_unlock(); 2133 2134 if (!join) 2135 return; 2136 2137 BUG_ON(irqs_disabled()); 2138 double_lock_irq(&my_grp->lock, &grp->lock); 2139 2140 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) { 2141 my_grp->faults[i] -= p->numa_faults[i]; 2142 grp->faults[i] += p->numa_faults[i]; 2143 } 2144 my_grp->total_faults -= p->total_numa_faults; 2145 grp->total_faults += p->total_numa_faults; 2146 2147 my_grp->nr_tasks--; 2148 grp->nr_tasks++; 2149 2150 spin_unlock(&my_grp->lock); 2151 spin_unlock_irq(&grp->lock); 2152 2153 rcu_assign_pointer(p->numa_group, grp); 2154 2155 put_numa_group(my_grp); 2156 return; 2157 2158 no_join: 2159 rcu_read_unlock(); 2160 return; 2161 } 2162 2163 void task_numa_free(struct task_struct *p) 2164 { 2165 struct numa_group *grp = p->numa_group; 2166 void *numa_faults = p->numa_faults; 2167 unsigned long flags; 2168 int i; 2169 2170 if (grp) { 2171 spin_lock_irqsave(&grp->lock, flags); 2172 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) 2173 grp->faults[i] -= p->numa_faults[i]; 2174 grp->total_faults -= p->total_numa_faults; 2175 2176 grp->nr_tasks--; 2177 spin_unlock_irqrestore(&grp->lock, flags); 2178 RCU_INIT_POINTER(p->numa_group, NULL); 2179 put_numa_group(grp); 2180 } 2181 2182 p->numa_faults = NULL; 2183 kfree(numa_faults); 2184 } 2185 2186 /* 2187 * Got a PROT_NONE fault for a page on @node. 2188 */ 2189 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags) 2190 { 2191 struct task_struct *p = current; 2192 bool migrated = flags & TNF_MIGRATED; 2193 int cpu_node = task_node(current); 2194 int local = !!(flags & TNF_FAULT_LOCAL); 2195 struct numa_group *ng; 2196 int priv; 2197 2198 if (!static_branch_likely(&sched_numa_balancing)) 2199 return; 2200 2201 /* for example, ksmd faulting in a user's mm */ 2202 if (!p->mm) 2203 return; 2204 2205 /* Allocate buffer to track faults on a per-node basis */ 2206 if (unlikely(!p->numa_faults)) { 2207 int size = sizeof(*p->numa_faults) * 2208 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids; 2209 2210 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN); 2211 if (!p->numa_faults) 2212 return; 2213 2214 p->total_numa_faults = 0; 2215 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality)); 2216 } 2217 2218 /* 2219 * First accesses are treated as private, otherwise consider accesses 2220 * to be private if the accessing pid has not changed 2221 */ 2222 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) { 2223 priv = 1; 2224 } else { 2225 priv = cpupid_match_pid(p, last_cpupid); 2226 if (!priv && !(flags & TNF_NO_GROUP)) 2227 task_numa_group(p, last_cpupid, flags, &priv); 2228 } 2229 2230 /* 2231 * If a workload spans multiple NUMA nodes, a shared fault that 2232 * occurs wholly within the set of nodes that the workload is 2233 * actively using should be counted as local. This allows the 2234 * scan rate to slow down when a workload has settled down. 2235 */ 2236 ng = p->numa_group; 2237 if (!priv && !local && ng && ng->active_nodes > 1 && 2238 numa_is_active_node(cpu_node, ng) && 2239 numa_is_active_node(mem_node, ng)) 2240 local = 1; 2241 2242 task_numa_placement(p); 2243 2244 /* 2245 * Retry task to preferred node migration periodically, in case it 2246 * case it previously failed, or the scheduler moved us. 2247 */ 2248 if (time_after(jiffies, p->numa_migrate_retry)) 2249 numa_migrate_preferred(p); 2250 2251 if (migrated) 2252 p->numa_pages_migrated += pages; 2253 if (flags & TNF_MIGRATE_FAIL) 2254 p->numa_faults_locality[2] += pages; 2255 2256 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages; 2257 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages; 2258 p->numa_faults_locality[local] += pages; 2259 } 2260 2261 static void reset_ptenuma_scan(struct task_struct *p) 2262 { 2263 /* 2264 * We only did a read acquisition of the mmap sem, so 2265 * p->mm->numa_scan_seq is written to without exclusive access 2266 * and the update is not guaranteed to be atomic. That's not 2267 * much of an issue though, since this is just used for 2268 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not 2269 * expensive, to avoid any form of compiler optimizations: 2270 */ 2271 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1); 2272 p->mm->numa_scan_offset = 0; 2273 } 2274 2275 /* 2276 * The expensive part of numa migration is done from task_work context. 2277 * Triggered from task_tick_numa(). 2278 */ 2279 void task_numa_work(struct callback_head *work) 2280 { 2281 unsigned long migrate, next_scan, now = jiffies; 2282 struct task_struct *p = current; 2283 struct mm_struct *mm = p->mm; 2284 u64 runtime = p->se.sum_exec_runtime; 2285 struct vm_area_struct *vma; 2286 unsigned long start, end; 2287 unsigned long nr_pte_updates = 0; 2288 long pages, virtpages; 2289 2290 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work)); 2291 2292 work->next = work; /* protect against double add */ 2293 /* 2294 * Who cares about NUMA placement when they're dying. 2295 * 2296 * NOTE: make sure not to dereference p->mm before this check, 2297 * exit_task_work() happens _after_ exit_mm() so we could be called 2298 * without p->mm even though we still had it when we enqueued this 2299 * work. 2300 */ 2301 if (p->flags & PF_EXITING) 2302 return; 2303 2304 if (!mm->numa_next_scan) { 2305 mm->numa_next_scan = now + 2306 msecs_to_jiffies(sysctl_numa_balancing_scan_delay); 2307 } 2308 2309 /* 2310 * Enforce maximal scan/migration frequency.. 2311 */ 2312 migrate = mm->numa_next_scan; 2313 if (time_before(now, migrate)) 2314 return; 2315 2316 if (p->numa_scan_period == 0) { 2317 p->numa_scan_period_max = task_scan_max(p); 2318 p->numa_scan_period = task_scan_min(p); 2319 } 2320 2321 next_scan = now + msecs_to_jiffies(p->numa_scan_period); 2322 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate) 2323 return; 2324 2325 /* 2326 * Delay this task enough that another task of this mm will likely win 2327 * the next time around. 2328 */ 2329 p->node_stamp += 2 * TICK_NSEC; 2330 2331 start = mm->numa_scan_offset; 2332 pages = sysctl_numa_balancing_scan_size; 2333 pages <<= 20 - PAGE_SHIFT; /* MB in pages */ 2334 virtpages = pages * 8; /* Scan up to this much virtual space */ 2335 if (!pages) 2336 return; 2337 2338 2339 down_read(&mm->mmap_sem); 2340 vma = find_vma(mm, start); 2341 if (!vma) { 2342 reset_ptenuma_scan(p); 2343 start = 0; 2344 vma = mm->mmap; 2345 } 2346 for (; vma; vma = vma->vm_next) { 2347 if (!vma_migratable(vma) || !vma_policy_mof(vma) || 2348 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) { 2349 continue; 2350 } 2351 2352 /* 2353 * Shared library pages mapped by multiple processes are not 2354 * migrated as it is expected they are cache replicated. Avoid 2355 * hinting faults in read-only file-backed mappings or the vdso 2356 * as migrating the pages will be of marginal benefit. 2357 */ 2358 if (!vma->vm_mm || 2359 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) 2360 continue; 2361 2362 /* 2363 * Skip inaccessible VMAs to avoid any confusion between 2364 * PROT_NONE and NUMA hinting ptes 2365 */ 2366 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))) 2367 continue; 2368 2369 do { 2370 start = max(start, vma->vm_start); 2371 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE); 2372 end = min(end, vma->vm_end); 2373 nr_pte_updates = change_prot_numa(vma, start, end); 2374 2375 /* 2376 * Try to scan sysctl_numa_balancing_size worth of 2377 * hpages that have at least one present PTE that 2378 * is not already pte-numa. If the VMA contains 2379 * areas that are unused or already full of prot_numa 2380 * PTEs, scan up to virtpages, to skip through those 2381 * areas faster. 2382 */ 2383 if (nr_pte_updates) 2384 pages -= (end - start) >> PAGE_SHIFT; 2385 virtpages -= (end - start) >> PAGE_SHIFT; 2386 2387 start = end; 2388 if (pages <= 0 || virtpages <= 0) 2389 goto out; 2390 2391 cond_resched(); 2392 } while (end != vma->vm_end); 2393 } 2394 2395 out: 2396 /* 2397 * It is possible to reach the end of the VMA list but the last few 2398 * VMAs are not guaranteed to the vma_migratable. If they are not, we 2399 * would find the !migratable VMA on the next scan but not reset the 2400 * scanner to the start so check it now. 2401 */ 2402 if (vma) 2403 mm->numa_scan_offset = start; 2404 else 2405 reset_ptenuma_scan(p); 2406 up_read(&mm->mmap_sem); 2407 2408 /* 2409 * Make sure tasks use at least 32x as much time to run other code 2410 * than they used here, to limit NUMA PTE scanning overhead to 3% max. 2411 * Usually update_task_scan_period slows down scanning enough; on an 2412 * overloaded system we need to limit overhead on a per task basis. 2413 */ 2414 if (unlikely(p->se.sum_exec_runtime != runtime)) { 2415 u64 diff = p->se.sum_exec_runtime - runtime; 2416 p->node_stamp += 32 * diff; 2417 } 2418 } 2419 2420 /* 2421 * Drive the periodic memory faults.. 2422 */ 2423 void task_tick_numa(struct rq *rq, struct task_struct *curr) 2424 { 2425 struct callback_head *work = &curr->numa_work; 2426 u64 period, now; 2427 2428 /* 2429 * We don't care about NUMA placement if we don't have memory. 2430 */ 2431 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work) 2432 return; 2433 2434 /* 2435 * Using runtime rather than walltime has the dual advantage that 2436 * we (mostly) drive the selection from busy threads and that the 2437 * task needs to have done some actual work before we bother with 2438 * NUMA placement. 2439 */ 2440 now = curr->se.sum_exec_runtime; 2441 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC; 2442 2443 if (now > curr->node_stamp + period) { 2444 if (!curr->node_stamp) 2445 curr->numa_scan_period = task_scan_min(curr); 2446 curr->node_stamp += period; 2447 2448 if (!time_before(jiffies, curr->mm->numa_next_scan)) { 2449 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */ 2450 task_work_add(curr, work, true); 2451 } 2452 } 2453 } 2454 #else 2455 static void task_tick_numa(struct rq *rq, struct task_struct *curr) 2456 { 2457 } 2458 2459 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p) 2460 { 2461 } 2462 2463 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p) 2464 { 2465 } 2466 #endif /* CONFIG_NUMA_BALANCING */ 2467 2468 static void 2469 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2470 { 2471 update_load_add(&cfs_rq->load, se->load.weight); 2472 if (!parent_entity(se)) 2473 update_load_add(&rq_of(cfs_rq)->load, se->load.weight); 2474 #ifdef CONFIG_SMP 2475 if (entity_is_task(se)) { 2476 struct rq *rq = rq_of(cfs_rq); 2477 2478 account_numa_enqueue(rq, task_of(se)); 2479 list_add(&se->group_node, &rq->cfs_tasks); 2480 } 2481 #endif 2482 cfs_rq->nr_running++; 2483 } 2484 2485 static void 2486 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) 2487 { 2488 update_load_sub(&cfs_rq->load, se->load.weight); 2489 if (!parent_entity(se)) 2490 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); 2491 #ifdef CONFIG_SMP 2492 if (entity_is_task(se)) { 2493 account_numa_dequeue(rq_of(cfs_rq), task_of(se)); 2494 list_del_init(&se->group_node); 2495 } 2496 #endif 2497 cfs_rq->nr_running--; 2498 } 2499 2500 #ifdef CONFIG_FAIR_GROUP_SCHED 2501 # ifdef CONFIG_SMP 2502 static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) 2503 { 2504 long tg_weight; 2505 2506 /* 2507 * Use this CPU's real-time load instead of the last load contribution 2508 * as the updating of the contribution is delayed, and we will use the 2509 * the real-time load to calc the share. See update_tg_load_avg(). 2510 */ 2511 tg_weight = atomic_long_read(&tg->load_avg); 2512 tg_weight -= cfs_rq->tg_load_avg_contrib; 2513 tg_weight += cfs_rq->load.weight; 2514 2515 return tg_weight; 2516 } 2517 2518 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2519 { 2520 long tg_weight, load, shares; 2521 2522 tg_weight = calc_tg_weight(tg, cfs_rq); 2523 load = cfs_rq->load.weight; 2524 2525 shares = (tg->shares * load); 2526 if (tg_weight) 2527 shares /= tg_weight; 2528 2529 if (shares < MIN_SHARES) 2530 shares = MIN_SHARES; 2531 if (shares > tg->shares) 2532 shares = tg->shares; 2533 2534 return shares; 2535 } 2536 # else /* CONFIG_SMP */ 2537 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) 2538 { 2539 return tg->shares; 2540 } 2541 # endif /* CONFIG_SMP */ 2542 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, 2543 unsigned long weight) 2544 { 2545 if (se->on_rq) { 2546 /* commit outstanding execution time */ 2547 if (cfs_rq->curr == se) 2548 update_curr(cfs_rq); 2549 account_entity_dequeue(cfs_rq, se); 2550 } 2551 2552 update_load_set(&se->load, weight); 2553 2554 if (se->on_rq) 2555 account_entity_enqueue(cfs_rq, se); 2556 } 2557 2558 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); 2559 2560 static void update_cfs_shares(struct cfs_rq *cfs_rq) 2561 { 2562 struct task_group *tg; 2563 struct sched_entity *se; 2564 long shares; 2565 2566 tg = cfs_rq->tg; 2567 se = tg->se[cpu_of(rq_of(cfs_rq))]; 2568 if (!se || throttled_hierarchy(cfs_rq)) 2569 return; 2570 #ifndef CONFIG_SMP 2571 if (likely(se->load.weight == tg->shares)) 2572 return; 2573 #endif 2574 shares = calc_cfs_shares(cfs_rq, tg); 2575 2576 reweight_entity(cfs_rq_of(se), se, shares); 2577 } 2578 #else /* CONFIG_FAIR_GROUP_SCHED */ 2579 static inline void update_cfs_shares(struct cfs_rq *cfs_rq) 2580 { 2581 } 2582 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2583 2584 #ifdef CONFIG_SMP 2585 /* Precomputed fixed inverse multiplies for multiplication by y^n */ 2586 static const u32 runnable_avg_yN_inv[] = { 2587 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6, 2588 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85, 2589 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581, 2590 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9, 2591 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80, 2592 0x85aac367, 0x82cd8698, 2593 }; 2594 2595 /* 2596 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent 2597 * over-estimates when re-combining. 2598 */ 2599 static const u32 runnable_avg_yN_sum[] = { 2600 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103, 2601 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082, 2602 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371, 2603 }; 2604 2605 /* 2606 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to 2607 * lower integers. See Documentation/scheduler/sched-avg.txt how these 2608 * were generated: 2609 */ 2610 static const u32 __accumulated_sum_N32[] = { 2611 0, 23371, 35056, 40899, 43820, 45281, 2612 46011, 46376, 46559, 46650, 46696, 46719, 2613 }; 2614 2615 /* 2616 * Approximate: 2617 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period) 2618 */ 2619 static __always_inline u64 decay_load(u64 val, u64 n) 2620 { 2621 unsigned int local_n; 2622 2623 if (!n) 2624 return val; 2625 else if (unlikely(n > LOAD_AVG_PERIOD * 63)) 2626 return 0; 2627 2628 /* after bounds checking we can collapse to 32-bit */ 2629 local_n = n; 2630 2631 /* 2632 * As y^PERIOD = 1/2, we can combine 2633 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 2634 * With a look-up table which covers y^n (n<PERIOD) 2635 * 2636 * To achieve constant time decay_load. 2637 */ 2638 if (unlikely(local_n >= LOAD_AVG_PERIOD)) { 2639 val >>= local_n / LOAD_AVG_PERIOD; 2640 local_n %= LOAD_AVG_PERIOD; 2641 } 2642 2643 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32); 2644 return val; 2645 } 2646 2647 /* 2648 * For updates fully spanning n periods, the contribution to runnable 2649 * average will be: \Sum 1024*y^n 2650 * 2651 * We can compute this reasonably efficiently by combining: 2652 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD} 2653 */ 2654 static u32 __compute_runnable_contrib(u64 n) 2655 { 2656 u32 contrib = 0; 2657 2658 if (likely(n <= LOAD_AVG_PERIOD)) 2659 return runnable_avg_yN_sum[n]; 2660 else if (unlikely(n >= LOAD_AVG_MAX_N)) 2661 return LOAD_AVG_MAX; 2662 2663 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */ 2664 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD]; 2665 n %= LOAD_AVG_PERIOD; 2666 contrib = decay_load(contrib, n); 2667 return contrib + runnable_avg_yN_sum[n]; 2668 } 2669 2670 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 2671 2672 /* 2673 * We can represent the historical contribution to runnable average as the 2674 * coefficients of a geometric series. To do this we sub-divide our runnable 2675 * history into segments of approximately 1ms (1024us); label the segment that 2676 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 2677 * 2678 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 2679 * p0 p1 p2 2680 * (now) (~1ms ago) (~2ms ago) 2681 * 2682 * Let u_i denote the fraction of p_i that the entity was runnable. 2683 * 2684 * We then designate the fractions u_i as our co-efficients, yielding the 2685 * following representation of historical load: 2686 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 2687 * 2688 * We choose y based on the with of a reasonably scheduling period, fixing: 2689 * y^32 = 0.5 2690 * 2691 * This means that the contribution to load ~32ms ago (u_32) will be weighted 2692 * approximately half as much as the contribution to load within the last ms 2693 * (u_0). 2694 * 2695 * When a period "rolls over" and we have new u_0`, multiplying the previous 2696 * sum again by y is sufficient to update: 2697 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 2698 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 2699 */ 2700 static __always_inline int 2701 __update_load_avg(u64 now, int cpu, struct sched_avg *sa, 2702 unsigned long weight, int running, struct cfs_rq *cfs_rq) 2703 { 2704 u64 delta, scaled_delta, periods; 2705 u32 contrib; 2706 unsigned int delta_w, scaled_delta_w, decayed = 0; 2707 unsigned long scale_freq, scale_cpu; 2708 2709 delta = now - sa->last_update_time; 2710 /* 2711 * This should only happen when time goes backwards, which it 2712 * unfortunately does during sched clock init when we swap over to TSC. 2713 */ 2714 if ((s64)delta < 0) { 2715 sa->last_update_time = now; 2716 return 0; 2717 } 2718 2719 /* 2720 * Use 1024ns as the unit of measurement since it's a reasonable 2721 * approximation of 1us and fast to compute. 2722 */ 2723 delta >>= 10; 2724 if (!delta) 2725 return 0; 2726 sa->last_update_time = now; 2727 2728 scale_freq = arch_scale_freq_capacity(NULL, cpu); 2729 scale_cpu = arch_scale_cpu_capacity(NULL, cpu); 2730 2731 /* delta_w is the amount already accumulated against our next period */ 2732 delta_w = sa->period_contrib; 2733 if (delta + delta_w >= 1024) { 2734 decayed = 1; 2735 2736 /* how much left for next period will start over, we don't know yet */ 2737 sa->period_contrib = 0; 2738 2739 /* 2740 * Now that we know we're crossing a period boundary, figure 2741 * out how much from delta we need to complete the current 2742 * period and accrue it. 2743 */ 2744 delta_w = 1024 - delta_w; 2745 scaled_delta_w = cap_scale(delta_w, scale_freq); 2746 if (weight) { 2747 sa->load_sum += weight * scaled_delta_w; 2748 if (cfs_rq) { 2749 cfs_rq->runnable_load_sum += 2750 weight * scaled_delta_w; 2751 } 2752 } 2753 if (running) 2754 sa->util_sum += scaled_delta_w * scale_cpu; 2755 2756 delta -= delta_w; 2757 2758 /* Figure out how many additional periods this update spans */ 2759 periods = delta / 1024; 2760 delta %= 1024; 2761 2762 sa->load_sum = decay_load(sa->load_sum, periods + 1); 2763 if (cfs_rq) { 2764 cfs_rq->runnable_load_sum = 2765 decay_load(cfs_rq->runnable_load_sum, periods + 1); 2766 } 2767 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1); 2768 2769 /* Efficiently calculate \sum (1..n_period) 1024*y^i */ 2770 contrib = __compute_runnable_contrib(periods); 2771 contrib = cap_scale(contrib, scale_freq); 2772 if (weight) { 2773 sa->load_sum += weight * contrib; 2774 if (cfs_rq) 2775 cfs_rq->runnable_load_sum += weight * contrib; 2776 } 2777 if (running) 2778 sa->util_sum += contrib * scale_cpu; 2779 } 2780 2781 /* Remainder of delta accrued against u_0` */ 2782 scaled_delta = cap_scale(delta, scale_freq); 2783 if (weight) { 2784 sa->load_sum += weight * scaled_delta; 2785 if (cfs_rq) 2786 cfs_rq->runnable_load_sum += weight * scaled_delta; 2787 } 2788 if (running) 2789 sa->util_sum += scaled_delta * scale_cpu; 2790 2791 sa->period_contrib += delta; 2792 2793 if (decayed) { 2794 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX); 2795 if (cfs_rq) { 2796 cfs_rq->runnable_load_avg = 2797 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX); 2798 } 2799 sa->util_avg = sa->util_sum / LOAD_AVG_MAX; 2800 } 2801 2802 return decayed; 2803 } 2804 2805 #ifdef CONFIG_FAIR_GROUP_SCHED 2806 /* 2807 * Updating tg's load_avg is necessary before update_cfs_share (which is done) 2808 * and effective_load (which is not done because it is too costly). 2809 */ 2810 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) 2811 { 2812 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib; 2813 2814 /* 2815 * No need to update load_avg for root_task_group as it is not used. 2816 */ 2817 if (cfs_rq->tg == &root_task_group) 2818 return; 2819 2820 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) { 2821 atomic_long_add(delta, &cfs_rq->tg->load_avg); 2822 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg; 2823 } 2824 } 2825 2826 /* 2827 * Called within set_task_rq() right before setting a task's cpu. The 2828 * caller only guarantees p->pi_lock is held; no other assumptions, 2829 * including the state of rq->lock, should be made. 2830 */ 2831 void set_task_rq_fair(struct sched_entity *se, 2832 struct cfs_rq *prev, struct cfs_rq *next) 2833 { 2834 if (!sched_feat(ATTACH_AGE_LOAD)) 2835 return; 2836 2837 /* 2838 * We are supposed to update the task to "current" time, then its up to 2839 * date and ready to go to new CPU/cfs_rq. But we have difficulty in 2840 * getting what current time is, so simply throw away the out-of-date 2841 * time. This will result in the wakee task is less decayed, but giving 2842 * the wakee more load sounds not bad. 2843 */ 2844 if (se->avg.last_update_time && prev) { 2845 u64 p_last_update_time; 2846 u64 n_last_update_time; 2847 2848 #ifndef CONFIG_64BIT 2849 u64 p_last_update_time_copy; 2850 u64 n_last_update_time_copy; 2851 2852 do { 2853 p_last_update_time_copy = prev->load_last_update_time_copy; 2854 n_last_update_time_copy = next->load_last_update_time_copy; 2855 2856 smp_rmb(); 2857 2858 p_last_update_time = prev->avg.last_update_time; 2859 n_last_update_time = next->avg.last_update_time; 2860 2861 } while (p_last_update_time != p_last_update_time_copy || 2862 n_last_update_time != n_last_update_time_copy); 2863 #else 2864 p_last_update_time = prev->avg.last_update_time; 2865 n_last_update_time = next->avg.last_update_time; 2866 #endif 2867 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)), 2868 &se->avg, 0, 0, NULL); 2869 se->avg.last_update_time = n_last_update_time; 2870 } 2871 } 2872 #else /* CONFIG_FAIR_GROUP_SCHED */ 2873 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {} 2874 #endif /* CONFIG_FAIR_GROUP_SCHED */ 2875 2876 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq); 2877 2878 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq) 2879 { 2880 struct rq *rq = rq_of(cfs_rq); 2881 int cpu = cpu_of(rq); 2882 2883 if (cpu == smp_processor_id() && &rq->cfs == cfs_rq) { 2884 unsigned long max = rq->cpu_capacity_orig; 2885 2886 /* 2887 * There are a few boundary cases this might miss but it should 2888 * get called often enough that that should (hopefully) not be 2889 * a real problem -- added to that it only calls on the local 2890 * CPU, so if we enqueue remotely we'll miss an update, but 2891 * the next tick/schedule should update. 2892 * 2893 * It will not get called when we go idle, because the idle 2894 * thread is a different class (!fair), nor will the utilization 2895 * number include things like RT tasks. 2896 * 2897 * As is, the util number is not freq-invariant (we'd have to 2898 * implement arch_scale_freq_capacity() for that). 2899 * 2900 * See cpu_util(). 2901 */ 2902 cpufreq_update_util(rq_clock(rq), 2903 min(cfs_rq->avg.util_avg, max), max); 2904 } 2905 } 2906 2907 /* 2908 * Unsigned subtract and clamp on underflow. 2909 * 2910 * Explicitly do a load-store to ensure the intermediate value never hits 2911 * memory. This allows lockless observations without ever seeing the negative 2912 * values. 2913 */ 2914 #define sub_positive(_ptr, _val) do { \ 2915 typeof(_ptr) ptr = (_ptr); \ 2916 typeof(*ptr) val = (_val); \ 2917 typeof(*ptr) res, var = READ_ONCE(*ptr); \ 2918 res = var - val; \ 2919 if (res > var) \ 2920 res = 0; \ 2921 WRITE_ONCE(*ptr, res); \ 2922 } while (0) 2923 2924 /* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */ 2925 static inline int 2926 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq) 2927 { 2928 struct sched_avg *sa = &cfs_rq->avg; 2929 int decayed, removed_load = 0, removed_util = 0; 2930 2931 if (atomic_long_read(&cfs_rq->removed_load_avg)) { 2932 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0); 2933 sub_positive(&sa->load_avg, r); 2934 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX); 2935 removed_load = 1; 2936 } 2937 2938 if (atomic_long_read(&cfs_rq->removed_util_avg)) { 2939 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0); 2940 sub_positive(&sa->util_avg, r); 2941 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX); 2942 removed_util = 1; 2943 } 2944 2945 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, 2946 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq); 2947 2948 #ifndef CONFIG_64BIT 2949 smp_wmb(); 2950 cfs_rq->load_last_update_time_copy = sa->last_update_time; 2951 #endif 2952 2953 if (update_freq && (decayed || removed_util)) 2954 cfs_rq_util_change(cfs_rq); 2955 2956 return decayed || removed_load; 2957 } 2958 2959 /* Update task and its cfs_rq load average */ 2960 static inline void update_load_avg(struct sched_entity *se, int update_tg) 2961 { 2962 struct cfs_rq *cfs_rq = cfs_rq_of(se); 2963 u64 now = cfs_rq_clock_task(cfs_rq); 2964 struct rq *rq = rq_of(cfs_rq); 2965 int cpu = cpu_of(rq); 2966 2967 /* 2968 * Track task load average for carrying it to new CPU after migrated, and 2969 * track group sched_entity load average for task_h_load calc in migration 2970 */ 2971 __update_load_avg(now, cpu, &se->avg, 2972 se->on_rq * scale_load_down(se->load.weight), 2973 cfs_rq->curr == se, NULL); 2974 2975 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg) 2976 update_tg_load_avg(cfs_rq, 0); 2977 } 2978 2979 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 2980 { 2981 if (!sched_feat(ATTACH_AGE_LOAD)) 2982 goto skip_aging; 2983 2984 /* 2985 * If we got migrated (either between CPUs or between cgroups) we'll 2986 * have aged the average right before clearing @last_update_time. 2987 */ 2988 if (se->avg.last_update_time) { 2989 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)), 2990 &se->avg, 0, 0, NULL); 2991 2992 /* 2993 * XXX: we could have just aged the entire load away if we've been 2994 * absent from the fair class for too long. 2995 */ 2996 } 2997 2998 skip_aging: 2999 se->avg.last_update_time = cfs_rq->avg.last_update_time; 3000 cfs_rq->avg.load_avg += se->avg.load_avg; 3001 cfs_rq->avg.load_sum += se->avg.load_sum; 3002 cfs_rq->avg.util_avg += se->avg.util_avg; 3003 cfs_rq->avg.util_sum += se->avg.util_sum; 3004 3005 cfs_rq_util_change(cfs_rq); 3006 } 3007 3008 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3009 { 3010 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)), 3011 &se->avg, se->on_rq * scale_load_down(se->load.weight), 3012 cfs_rq->curr == se, NULL); 3013 3014 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg); 3015 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum); 3016 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg); 3017 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum); 3018 3019 cfs_rq_util_change(cfs_rq); 3020 } 3021 3022 /* Add the load generated by se into cfs_rq's load average */ 3023 static inline void 3024 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3025 { 3026 struct sched_avg *sa = &se->avg; 3027 u64 now = cfs_rq_clock_task(cfs_rq); 3028 int migrated, decayed; 3029 3030 migrated = !sa->last_update_time; 3031 if (!migrated) { 3032 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa, 3033 se->on_rq * scale_load_down(se->load.weight), 3034 cfs_rq->curr == se, NULL); 3035 } 3036 3037 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated); 3038 3039 cfs_rq->runnable_load_avg += sa->load_avg; 3040 cfs_rq->runnable_load_sum += sa->load_sum; 3041 3042 if (migrated) 3043 attach_entity_load_avg(cfs_rq, se); 3044 3045 if (decayed || migrated) 3046 update_tg_load_avg(cfs_rq, 0); 3047 } 3048 3049 /* Remove the runnable load generated by se from cfs_rq's runnable load average */ 3050 static inline void 3051 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) 3052 { 3053 update_load_avg(se, 1); 3054 3055 cfs_rq->runnable_load_avg = 3056 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0); 3057 cfs_rq->runnable_load_sum = 3058 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0); 3059 } 3060 3061 #ifndef CONFIG_64BIT 3062 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3063 { 3064 u64 last_update_time_copy; 3065 u64 last_update_time; 3066 3067 do { 3068 last_update_time_copy = cfs_rq->load_last_update_time_copy; 3069 smp_rmb(); 3070 last_update_time = cfs_rq->avg.last_update_time; 3071 } while (last_update_time != last_update_time_copy); 3072 3073 return last_update_time; 3074 } 3075 #else 3076 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq) 3077 { 3078 return cfs_rq->avg.last_update_time; 3079 } 3080 #endif 3081 3082 /* 3083 * Task first catches up with cfs_rq, and then subtract 3084 * itself from the cfs_rq (task must be off the queue now). 3085 */ 3086 void remove_entity_load_avg(struct sched_entity *se) 3087 { 3088 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3089 u64 last_update_time; 3090 3091 /* 3092 * Newly created task or never used group entity should not be removed 3093 * from its (source) cfs_rq 3094 */ 3095 if (se->avg.last_update_time == 0) 3096 return; 3097 3098 last_update_time = cfs_rq_last_update_time(cfs_rq); 3099 3100 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL); 3101 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg); 3102 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg); 3103 } 3104 3105 static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq) 3106 { 3107 return cfs_rq->runnable_load_avg; 3108 } 3109 3110 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq) 3111 { 3112 return cfs_rq->avg.load_avg; 3113 } 3114 3115 static int idle_balance(struct rq *this_rq); 3116 3117 #else /* CONFIG_SMP */ 3118 3119 static inline void update_load_avg(struct sched_entity *se, int not_used) 3120 { 3121 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3122 struct rq *rq = rq_of(cfs_rq); 3123 3124 cpufreq_trigger_update(rq_clock(rq)); 3125 } 3126 3127 static inline void 3128 enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3129 static inline void 3130 dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3131 static inline void remove_entity_load_avg(struct sched_entity *se) {} 3132 3133 static inline void 3134 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3135 static inline void 3136 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {} 3137 3138 static inline int idle_balance(struct rq *rq) 3139 { 3140 return 0; 3141 } 3142 3143 #endif /* CONFIG_SMP */ 3144 3145 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) 3146 { 3147 #ifdef CONFIG_SCHEDSTATS 3148 struct task_struct *tsk = NULL; 3149 3150 if (entity_is_task(se)) 3151 tsk = task_of(se); 3152 3153 if (se->statistics.sleep_start) { 3154 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start; 3155 3156 if ((s64)delta < 0) 3157 delta = 0; 3158 3159 if (unlikely(delta > se->statistics.sleep_max)) 3160 se->statistics.sleep_max = delta; 3161 3162 se->statistics.sleep_start = 0; 3163 se->statistics.sum_sleep_runtime += delta; 3164 3165 if (tsk) { 3166 account_scheduler_latency(tsk, delta >> 10, 1); 3167 trace_sched_stat_sleep(tsk, delta); 3168 } 3169 } 3170 if (se->statistics.block_start) { 3171 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start; 3172 3173 if ((s64)delta < 0) 3174 delta = 0; 3175 3176 if (unlikely(delta > se->statistics.block_max)) 3177 se->statistics.block_max = delta; 3178 3179 se->statistics.block_start = 0; 3180 se->statistics.sum_sleep_runtime += delta; 3181 3182 if (tsk) { 3183 if (tsk->in_iowait) { 3184 se->statistics.iowait_sum += delta; 3185 se->statistics.iowait_count++; 3186 trace_sched_stat_iowait(tsk, delta); 3187 } 3188 3189 trace_sched_stat_blocked(tsk, delta); 3190 3191 /* 3192 * Blocking time is in units of nanosecs, so shift by 3193 * 20 to get a milliseconds-range estimation of the 3194 * amount of time that the task spent sleeping: 3195 */ 3196 if (unlikely(prof_on == SLEEP_PROFILING)) { 3197 profile_hits(SLEEP_PROFILING, 3198 (void *)get_wchan(tsk), 3199 delta >> 20); 3200 } 3201 account_scheduler_latency(tsk, delta >> 10, 0); 3202 } 3203 } 3204 #endif 3205 } 3206 3207 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) 3208 { 3209 #ifdef CONFIG_SCHED_DEBUG 3210 s64 d = se->vruntime - cfs_rq->min_vruntime; 3211 3212 if (d < 0) 3213 d = -d; 3214 3215 if (d > 3*sysctl_sched_latency) 3216 schedstat_inc(cfs_rq, nr_spread_over); 3217 #endif 3218 } 3219 3220 static void 3221 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) 3222 { 3223 u64 vruntime = cfs_rq->min_vruntime; 3224 3225 /* 3226 * The 'current' period is already promised to the current tasks, 3227 * however the extra weight of the new task will slow them down a 3228 * little, place the new task so that it fits in the slot that 3229 * stays open at the end. 3230 */ 3231 if (initial && sched_feat(START_DEBIT)) 3232 vruntime += sched_vslice(cfs_rq, se); 3233 3234 /* sleeps up to a single latency don't count. */ 3235 if (!initial) { 3236 unsigned long thresh = sysctl_sched_latency; 3237 3238 /* 3239 * Halve their sleep time's effect, to allow 3240 * for a gentler effect of sleepers: 3241 */ 3242 if (sched_feat(GENTLE_FAIR_SLEEPERS)) 3243 thresh >>= 1; 3244 3245 vruntime -= thresh; 3246 } 3247 3248 /* ensure we never gain time by being placed backwards. */ 3249 se->vruntime = max_vruntime(se->vruntime, vruntime); 3250 } 3251 3252 static void check_enqueue_throttle(struct cfs_rq *cfs_rq); 3253 3254 static inline void check_schedstat_required(void) 3255 { 3256 #ifdef CONFIG_SCHEDSTATS 3257 if (schedstat_enabled()) 3258 return; 3259 3260 /* Force schedstat enabled if a dependent tracepoint is active */ 3261 if (trace_sched_stat_wait_enabled() || 3262 trace_sched_stat_sleep_enabled() || 3263 trace_sched_stat_iowait_enabled() || 3264 trace_sched_stat_blocked_enabled() || 3265 trace_sched_stat_runtime_enabled()) { 3266 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, " 3267 "stat_blocked and stat_runtime require the " 3268 "kernel parameter schedstats=enabled or " 3269 "kernel.sched_schedstats=1\n"); 3270 } 3271 #endif 3272 } 3273 3274 3275 /* 3276 * MIGRATION 3277 * 3278 * dequeue 3279 * update_curr() 3280 * update_min_vruntime() 3281 * vruntime -= min_vruntime 3282 * 3283 * enqueue 3284 * update_curr() 3285 * update_min_vruntime() 3286 * vruntime += min_vruntime 3287 * 3288 * this way the vruntime transition between RQs is done when both 3289 * min_vruntime are up-to-date. 3290 * 3291 * WAKEUP (remote) 3292 * 3293 * ->migrate_task_rq_fair() (p->state == TASK_WAKING) 3294 * vruntime -= min_vruntime 3295 * 3296 * enqueue 3297 * update_curr() 3298 * update_min_vruntime() 3299 * vruntime += min_vruntime 3300 * 3301 * this way we don't have the most up-to-date min_vruntime on the originating 3302 * CPU and an up-to-date min_vruntime on the destination CPU. 3303 */ 3304 3305 static void 3306 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3307 { 3308 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED); 3309 bool curr = cfs_rq->curr == se; 3310 3311 /* 3312 * If we're the current task, we must renormalise before calling 3313 * update_curr(). 3314 */ 3315 if (renorm && curr) 3316 se->vruntime += cfs_rq->min_vruntime; 3317 3318 update_curr(cfs_rq); 3319 3320 /* 3321 * Otherwise, renormalise after, such that we're placed at the current 3322 * moment in time, instead of some random moment in the past. Being 3323 * placed in the past could significantly boost this task to the 3324 * fairness detriment of existing tasks. 3325 */ 3326 if (renorm && !curr) 3327 se->vruntime += cfs_rq->min_vruntime; 3328 3329 enqueue_entity_load_avg(cfs_rq, se); 3330 account_entity_enqueue(cfs_rq, se); 3331 update_cfs_shares(cfs_rq); 3332 3333 if (flags & ENQUEUE_WAKEUP) { 3334 place_entity(cfs_rq, se, 0); 3335 if (schedstat_enabled()) 3336 enqueue_sleeper(cfs_rq, se); 3337 } 3338 3339 check_schedstat_required(); 3340 if (schedstat_enabled()) { 3341 update_stats_enqueue(cfs_rq, se); 3342 check_spread(cfs_rq, se); 3343 } 3344 if (!curr) 3345 __enqueue_entity(cfs_rq, se); 3346 se->on_rq = 1; 3347 3348 if (cfs_rq->nr_running == 1) { 3349 list_add_leaf_cfs_rq(cfs_rq); 3350 check_enqueue_throttle(cfs_rq); 3351 } 3352 } 3353 3354 static void __clear_buddies_last(struct sched_entity *se) 3355 { 3356 for_each_sched_entity(se) { 3357 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3358 if (cfs_rq->last != se) 3359 break; 3360 3361 cfs_rq->last = NULL; 3362 } 3363 } 3364 3365 static void __clear_buddies_next(struct sched_entity *se) 3366 { 3367 for_each_sched_entity(se) { 3368 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3369 if (cfs_rq->next != se) 3370 break; 3371 3372 cfs_rq->next = NULL; 3373 } 3374 } 3375 3376 static void __clear_buddies_skip(struct sched_entity *se) 3377 { 3378 for_each_sched_entity(se) { 3379 struct cfs_rq *cfs_rq = cfs_rq_of(se); 3380 if (cfs_rq->skip != se) 3381 break; 3382 3383 cfs_rq->skip = NULL; 3384 } 3385 } 3386 3387 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) 3388 { 3389 if (cfs_rq->last == se) 3390 __clear_buddies_last(se); 3391 3392 if (cfs_rq->next == se) 3393 __clear_buddies_next(se); 3394 3395 if (cfs_rq->skip == se) 3396 __clear_buddies_skip(se); 3397 } 3398 3399 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3400 3401 static void 3402 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) 3403 { 3404 /* 3405 * Update run-time statistics of the 'current'. 3406 */ 3407 update_curr(cfs_rq); 3408 dequeue_entity_load_avg(cfs_rq, se); 3409 3410 if (schedstat_enabled()) 3411 update_stats_dequeue(cfs_rq, se, flags); 3412 3413 clear_buddies(cfs_rq, se); 3414 3415 if (se != cfs_rq->curr) 3416 __dequeue_entity(cfs_rq, se); 3417 se->on_rq = 0; 3418 account_entity_dequeue(cfs_rq, se); 3419 3420 /* 3421 * Normalize the entity after updating the min_vruntime because the 3422 * update can refer to the ->curr item and we need to reflect this 3423 * movement in our normalized position. 3424 */ 3425 if (!(flags & DEQUEUE_SLEEP)) 3426 se->vruntime -= cfs_rq->min_vruntime; 3427 3428 /* return excess runtime on last dequeue */ 3429 return_cfs_rq_runtime(cfs_rq); 3430 3431 update_min_vruntime(cfs_rq); 3432 update_cfs_shares(cfs_rq); 3433 } 3434 3435 /* 3436 * Preempt the current task with a newly woken task if needed: 3437 */ 3438 static void 3439 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3440 { 3441 unsigned long ideal_runtime, delta_exec; 3442 struct sched_entity *se; 3443 s64 delta; 3444 3445 ideal_runtime = sched_slice(cfs_rq, curr); 3446 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; 3447 if (delta_exec > ideal_runtime) { 3448 resched_curr(rq_of(cfs_rq)); 3449 /* 3450 * The current task ran long enough, ensure it doesn't get 3451 * re-elected due to buddy favours. 3452 */ 3453 clear_buddies(cfs_rq, curr); 3454 return; 3455 } 3456 3457 /* 3458 * Ensure that a task that missed wakeup preemption by a 3459 * narrow margin doesn't have to wait for a full slice. 3460 * This also mitigates buddy induced latencies under load. 3461 */ 3462 if (delta_exec < sysctl_sched_min_granularity) 3463 return; 3464 3465 se = __pick_first_entity(cfs_rq); 3466 delta = curr->vruntime - se->vruntime; 3467 3468 if (delta < 0) 3469 return; 3470 3471 if (delta > ideal_runtime) 3472 resched_curr(rq_of(cfs_rq)); 3473 } 3474 3475 static void 3476 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) 3477 { 3478 /* 'current' is not kept within the tree. */ 3479 if (se->on_rq) { 3480 /* 3481 * Any task has to be enqueued before it get to execute on 3482 * a CPU. So account for the time it spent waiting on the 3483 * runqueue. 3484 */ 3485 if (schedstat_enabled()) 3486 update_stats_wait_end(cfs_rq, se); 3487 __dequeue_entity(cfs_rq, se); 3488 update_load_avg(se, 1); 3489 } 3490 3491 update_stats_curr_start(cfs_rq, se); 3492 cfs_rq->curr = se; 3493 #ifdef CONFIG_SCHEDSTATS 3494 /* 3495 * Track our maximum slice length, if the CPU's load is at 3496 * least twice that of our own weight (i.e. dont track it 3497 * when there are only lesser-weight tasks around): 3498 */ 3499 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { 3500 se->statistics.slice_max = max(se->statistics.slice_max, 3501 se->sum_exec_runtime - se->prev_sum_exec_runtime); 3502 } 3503 #endif 3504 se->prev_sum_exec_runtime = se->sum_exec_runtime; 3505 } 3506 3507 static int 3508 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); 3509 3510 /* 3511 * Pick the next process, keeping these things in mind, in this order: 3512 * 1) keep things fair between processes/task groups 3513 * 2) pick the "next" process, since someone really wants that to run 3514 * 3) pick the "last" process, for cache locality 3515 * 4) do not run the "skip" process, if something else is available 3516 */ 3517 static struct sched_entity * 3518 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr) 3519 { 3520 struct sched_entity *left = __pick_first_entity(cfs_rq); 3521 struct sched_entity *se; 3522 3523 /* 3524 * If curr is set we have to see if its left of the leftmost entity 3525 * still in the tree, provided there was anything in the tree at all. 3526 */ 3527 if (!left || (curr && entity_before(curr, left))) 3528 left = curr; 3529 3530 se = left; /* ideally we run the leftmost entity */ 3531 3532 /* 3533 * Avoid running the skip buddy, if running something else can 3534 * be done without getting too unfair. 3535 */ 3536 if (cfs_rq->skip == se) { 3537 struct sched_entity *second; 3538 3539 if (se == curr) { 3540 second = __pick_first_entity(cfs_rq); 3541 } else { 3542 second = __pick_next_entity(se); 3543 if (!second || (curr && entity_before(curr, second))) 3544 second = curr; 3545 } 3546 3547 if (second && wakeup_preempt_entity(second, left) < 1) 3548 se = second; 3549 } 3550 3551 /* 3552 * Prefer last buddy, try to return the CPU to a preempted task. 3553 */ 3554 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) 3555 se = cfs_rq->last; 3556 3557 /* 3558 * Someone really wants this to run. If it's not unfair, run it. 3559 */ 3560 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) 3561 se = cfs_rq->next; 3562 3563 clear_buddies(cfs_rq, se); 3564 3565 return se; 3566 } 3567 3568 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq); 3569 3570 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) 3571 { 3572 /* 3573 * If still on the runqueue then deactivate_task() 3574 * was not called and update_curr() has to be done: 3575 */ 3576 if (prev->on_rq) 3577 update_curr(cfs_rq); 3578 3579 /* throttle cfs_rqs exceeding runtime */ 3580 check_cfs_rq_runtime(cfs_rq); 3581 3582 if (schedstat_enabled()) { 3583 check_spread(cfs_rq, prev); 3584 if (prev->on_rq) 3585 update_stats_wait_start(cfs_rq, prev); 3586 } 3587 3588 if (prev->on_rq) { 3589 /* Put 'current' back into the tree. */ 3590 __enqueue_entity(cfs_rq, prev); 3591 /* in !on_rq case, update occurred at dequeue */ 3592 update_load_avg(prev, 0); 3593 } 3594 cfs_rq->curr = NULL; 3595 } 3596 3597 static void 3598 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) 3599 { 3600 /* 3601 * Update run-time statistics of the 'current'. 3602 */ 3603 update_curr(cfs_rq); 3604 3605 /* 3606 * Ensure that runnable average is periodically updated. 3607 */ 3608 update_load_avg(curr, 1); 3609 update_cfs_shares(cfs_rq); 3610 3611 #ifdef CONFIG_SCHED_HRTICK 3612 /* 3613 * queued ticks are scheduled to match the slice, so don't bother 3614 * validating it and just reschedule. 3615 */ 3616 if (queued) { 3617 resched_curr(rq_of(cfs_rq)); 3618 return; 3619 } 3620 /* 3621 * don't let the period tick interfere with the hrtick preemption 3622 */ 3623 if (!sched_feat(DOUBLE_TICK) && 3624 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) 3625 return; 3626 #endif 3627 3628 if (cfs_rq->nr_running > 1) 3629 check_preempt_tick(cfs_rq, curr); 3630 } 3631 3632 3633 /************************************************** 3634 * CFS bandwidth control machinery 3635 */ 3636 3637 #ifdef CONFIG_CFS_BANDWIDTH 3638 3639 #ifdef HAVE_JUMP_LABEL 3640 static struct static_key __cfs_bandwidth_used; 3641 3642 static inline bool cfs_bandwidth_used(void) 3643 { 3644 return static_key_false(&__cfs_bandwidth_used); 3645 } 3646 3647 void cfs_bandwidth_usage_inc(void) 3648 { 3649 static_key_slow_inc(&__cfs_bandwidth_used); 3650 } 3651 3652 void cfs_bandwidth_usage_dec(void) 3653 { 3654 static_key_slow_dec(&__cfs_bandwidth_used); 3655 } 3656 #else /* HAVE_JUMP_LABEL */ 3657 static bool cfs_bandwidth_used(void) 3658 { 3659 return true; 3660 } 3661 3662 void cfs_bandwidth_usage_inc(void) {} 3663 void cfs_bandwidth_usage_dec(void) {} 3664 #endif /* HAVE_JUMP_LABEL */ 3665 3666 /* 3667 * default period for cfs group bandwidth. 3668 * default: 0.1s, units: nanoseconds 3669 */ 3670 static inline u64 default_cfs_period(void) 3671 { 3672 return 100000000ULL; 3673 } 3674 3675 static inline u64 sched_cfs_bandwidth_slice(void) 3676 { 3677 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; 3678 } 3679 3680 /* 3681 * Replenish runtime according to assigned quota and update expiration time. 3682 * We use sched_clock_cpu directly instead of rq->clock to avoid adding 3683 * additional synchronization around rq->lock. 3684 * 3685 * requires cfs_b->lock 3686 */ 3687 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) 3688 { 3689 u64 now; 3690 3691 if (cfs_b->quota == RUNTIME_INF) 3692 return; 3693 3694 now = sched_clock_cpu(smp_processor_id()); 3695 cfs_b->runtime = cfs_b->quota; 3696 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); 3697 } 3698 3699 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 3700 { 3701 return &tg->cfs_bandwidth; 3702 } 3703 3704 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */ 3705 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 3706 { 3707 if (unlikely(cfs_rq->throttle_count)) 3708 return cfs_rq->throttled_clock_task; 3709 3710 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time; 3711 } 3712 3713 /* returns 0 on failure to allocate runtime */ 3714 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3715 { 3716 struct task_group *tg = cfs_rq->tg; 3717 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); 3718 u64 amount = 0, min_amount, expires; 3719 3720 /* note: this is a positive sum as runtime_remaining <= 0 */ 3721 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; 3722 3723 raw_spin_lock(&cfs_b->lock); 3724 if (cfs_b->quota == RUNTIME_INF) 3725 amount = min_amount; 3726 else { 3727 start_cfs_bandwidth(cfs_b); 3728 3729 if (cfs_b->runtime > 0) { 3730 amount = min(cfs_b->runtime, min_amount); 3731 cfs_b->runtime -= amount; 3732 cfs_b->idle = 0; 3733 } 3734 } 3735 expires = cfs_b->runtime_expires; 3736 raw_spin_unlock(&cfs_b->lock); 3737 3738 cfs_rq->runtime_remaining += amount; 3739 /* 3740 * we may have advanced our local expiration to account for allowed 3741 * spread between our sched_clock and the one on which runtime was 3742 * issued. 3743 */ 3744 if ((s64)(expires - cfs_rq->runtime_expires) > 0) 3745 cfs_rq->runtime_expires = expires; 3746 3747 return cfs_rq->runtime_remaining > 0; 3748 } 3749 3750 /* 3751 * Note: This depends on the synchronization provided by sched_clock and the 3752 * fact that rq->clock snapshots this value. 3753 */ 3754 static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) 3755 { 3756 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3757 3758 /* if the deadline is ahead of our clock, nothing to do */ 3759 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0)) 3760 return; 3761 3762 if (cfs_rq->runtime_remaining < 0) 3763 return; 3764 3765 /* 3766 * If the local deadline has passed we have to consider the 3767 * possibility that our sched_clock is 'fast' and the global deadline 3768 * has not truly expired. 3769 * 3770 * Fortunately we can check determine whether this the case by checking 3771 * whether the global deadline has advanced. It is valid to compare 3772 * cfs_b->runtime_expires without any locks since we only care about 3773 * exact equality, so a partial write will still work. 3774 */ 3775 3776 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { 3777 /* extend local deadline, drift is bounded above by 2 ticks */ 3778 cfs_rq->runtime_expires += TICK_NSEC; 3779 } else { 3780 /* global deadline is ahead, expiration has passed */ 3781 cfs_rq->runtime_remaining = 0; 3782 } 3783 } 3784 3785 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3786 { 3787 /* dock delta_exec before expiring quota (as it could span periods) */ 3788 cfs_rq->runtime_remaining -= delta_exec; 3789 expire_cfs_rq_runtime(cfs_rq); 3790 3791 if (likely(cfs_rq->runtime_remaining > 0)) 3792 return; 3793 3794 /* 3795 * if we're unable to extend our runtime we resched so that the active 3796 * hierarchy can be throttled 3797 */ 3798 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) 3799 resched_curr(rq_of(cfs_rq)); 3800 } 3801 3802 static __always_inline 3803 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) 3804 { 3805 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) 3806 return; 3807 3808 __account_cfs_rq_runtime(cfs_rq, delta_exec); 3809 } 3810 3811 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 3812 { 3813 return cfs_bandwidth_used() && cfs_rq->throttled; 3814 } 3815 3816 /* check whether cfs_rq, or any parent, is throttled */ 3817 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 3818 { 3819 return cfs_bandwidth_used() && cfs_rq->throttle_count; 3820 } 3821 3822 /* 3823 * Ensure that neither of the group entities corresponding to src_cpu or 3824 * dest_cpu are members of a throttled hierarchy when performing group 3825 * load-balance operations. 3826 */ 3827 static inline int throttled_lb_pair(struct task_group *tg, 3828 int src_cpu, int dest_cpu) 3829 { 3830 struct cfs_rq *src_cfs_rq, *dest_cfs_rq; 3831 3832 src_cfs_rq = tg->cfs_rq[src_cpu]; 3833 dest_cfs_rq = tg->cfs_rq[dest_cpu]; 3834 3835 return throttled_hierarchy(src_cfs_rq) || 3836 throttled_hierarchy(dest_cfs_rq); 3837 } 3838 3839 /* updated child weight may affect parent so we have to do this bottom up */ 3840 static int tg_unthrottle_up(struct task_group *tg, void *data) 3841 { 3842 struct rq *rq = data; 3843 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3844 3845 cfs_rq->throttle_count--; 3846 #ifdef CONFIG_SMP 3847 if (!cfs_rq->throttle_count) { 3848 /* adjust cfs_rq_clock_task() */ 3849 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) - 3850 cfs_rq->throttled_clock_task; 3851 } 3852 #endif 3853 3854 return 0; 3855 } 3856 3857 static int tg_throttle_down(struct task_group *tg, void *data) 3858 { 3859 struct rq *rq = data; 3860 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; 3861 3862 /* group is entering throttled state, stop time */ 3863 if (!cfs_rq->throttle_count) 3864 cfs_rq->throttled_clock_task = rq_clock_task(rq); 3865 cfs_rq->throttle_count++; 3866 3867 return 0; 3868 } 3869 3870 static void throttle_cfs_rq(struct cfs_rq *cfs_rq) 3871 { 3872 struct rq *rq = rq_of(cfs_rq); 3873 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3874 struct sched_entity *se; 3875 long task_delta, dequeue = 1; 3876 bool empty; 3877 3878 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; 3879 3880 /* freeze hierarchy runnable averages while throttled */ 3881 rcu_read_lock(); 3882 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); 3883 rcu_read_unlock(); 3884 3885 task_delta = cfs_rq->h_nr_running; 3886 for_each_sched_entity(se) { 3887 struct cfs_rq *qcfs_rq = cfs_rq_of(se); 3888 /* throttled entity or throttle-on-deactivate */ 3889 if (!se->on_rq) 3890 break; 3891 3892 if (dequeue) 3893 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); 3894 qcfs_rq->h_nr_running -= task_delta; 3895 3896 if (qcfs_rq->load.weight) 3897 dequeue = 0; 3898 } 3899 3900 if (!se) 3901 sub_nr_running(rq, task_delta); 3902 3903 cfs_rq->throttled = 1; 3904 cfs_rq->throttled_clock = rq_clock(rq); 3905 raw_spin_lock(&cfs_b->lock); 3906 empty = list_empty(&cfs_b->throttled_cfs_rq); 3907 3908 /* 3909 * Add to the _head_ of the list, so that an already-started 3910 * distribute_cfs_runtime will not see us 3911 */ 3912 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); 3913 3914 /* 3915 * If we're the first throttled task, make sure the bandwidth 3916 * timer is running. 3917 */ 3918 if (empty) 3919 start_cfs_bandwidth(cfs_b); 3920 3921 raw_spin_unlock(&cfs_b->lock); 3922 } 3923 3924 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) 3925 { 3926 struct rq *rq = rq_of(cfs_rq); 3927 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 3928 struct sched_entity *se; 3929 int enqueue = 1; 3930 long task_delta; 3931 3932 se = cfs_rq->tg->se[cpu_of(rq)]; 3933 3934 cfs_rq->throttled = 0; 3935 3936 update_rq_clock(rq); 3937 3938 raw_spin_lock(&cfs_b->lock); 3939 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock; 3940 list_del_rcu(&cfs_rq->throttled_list); 3941 raw_spin_unlock(&cfs_b->lock); 3942 3943 /* update hierarchical throttle state */ 3944 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); 3945 3946 if (!cfs_rq->load.weight) 3947 return; 3948 3949 task_delta = cfs_rq->h_nr_running; 3950 for_each_sched_entity(se) { 3951 if (se->on_rq) 3952 enqueue = 0; 3953 3954 cfs_rq = cfs_rq_of(se); 3955 if (enqueue) 3956 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); 3957 cfs_rq->h_nr_running += task_delta; 3958 3959 if (cfs_rq_throttled(cfs_rq)) 3960 break; 3961 } 3962 3963 if (!se) 3964 add_nr_running(rq, task_delta); 3965 3966 /* determine whether we need to wake up potentially idle cpu */ 3967 if (rq->curr == rq->idle && rq->cfs.nr_running) 3968 resched_curr(rq); 3969 } 3970 3971 static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, 3972 u64 remaining, u64 expires) 3973 { 3974 struct cfs_rq *cfs_rq; 3975 u64 runtime; 3976 u64 starting_runtime = remaining; 3977 3978 rcu_read_lock(); 3979 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, 3980 throttled_list) { 3981 struct rq *rq = rq_of(cfs_rq); 3982 3983 raw_spin_lock(&rq->lock); 3984 if (!cfs_rq_throttled(cfs_rq)) 3985 goto next; 3986 3987 runtime = -cfs_rq->runtime_remaining + 1; 3988 if (runtime > remaining) 3989 runtime = remaining; 3990 remaining -= runtime; 3991 3992 cfs_rq->runtime_remaining += runtime; 3993 cfs_rq->runtime_expires = expires; 3994 3995 /* we check whether we're throttled above */ 3996 if (cfs_rq->runtime_remaining > 0) 3997 unthrottle_cfs_rq(cfs_rq); 3998 3999 next: 4000 raw_spin_unlock(&rq->lock); 4001 4002 if (!remaining) 4003 break; 4004 } 4005 rcu_read_unlock(); 4006 4007 return starting_runtime - remaining; 4008 } 4009 4010 /* 4011 * Responsible for refilling a task_group's bandwidth and unthrottling its 4012 * cfs_rqs as appropriate. If there has been no activity within the last 4013 * period the timer is deactivated until scheduling resumes; cfs_b->idle is 4014 * used to track this state. 4015 */ 4016 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) 4017 { 4018 u64 runtime, runtime_expires; 4019 int throttled; 4020 4021 /* no need to continue the timer with no bandwidth constraint */ 4022 if (cfs_b->quota == RUNTIME_INF) 4023 goto out_deactivate; 4024 4025 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4026 cfs_b->nr_periods += overrun; 4027 4028 /* 4029 * idle depends on !throttled (for the case of a large deficit), and if 4030 * we're going inactive then everything else can be deferred 4031 */ 4032 if (cfs_b->idle && !throttled) 4033 goto out_deactivate; 4034 4035 __refill_cfs_bandwidth_runtime(cfs_b); 4036 4037 if (!throttled) { 4038 /* mark as potentially idle for the upcoming period */ 4039 cfs_b->idle = 1; 4040 return 0; 4041 } 4042 4043 /* account preceding periods in which throttling occurred */ 4044 cfs_b->nr_throttled += overrun; 4045 4046 runtime_expires = cfs_b->runtime_expires; 4047 4048 /* 4049 * This check is repeated as we are holding onto the new bandwidth while 4050 * we unthrottle. This can potentially race with an unthrottled group 4051 * trying to acquire new bandwidth from the global pool. This can result 4052 * in us over-using our runtime if it is all used during this loop, but 4053 * only by limited amounts in that extreme case. 4054 */ 4055 while (throttled && cfs_b->runtime > 0) { 4056 runtime = cfs_b->runtime; 4057 raw_spin_unlock(&cfs_b->lock); 4058 /* we can't nest cfs_b->lock while distributing bandwidth */ 4059 runtime = distribute_cfs_runtime(cfs_b, runtime, 4060 runtime_expires); 4061 raw_spin_lock(&cfs_b->lock); 4062 4063 throttled = !list_empty(&cfs_b->throttled_cfs_rq); 4064 4065 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4066 } 4067 4068 /* 4069 * While we are ensured activity in the period following an 4070 * unthrottle, this also covers the case in which the new bandwidth is 4071 * insufficient to cover the existing bandwidth deficit. (Forcing the 4072 * timer to remain active while there are any throttled entities.) 4073 */ 4074 cfs_b->idle = 0; 4075 4076 return 0; 4077 4078 out_deactivate: 4079 return 1; 4080 } 4081 4082 /* a cfs_rq won't donate quota below this amount */ 4083 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; 4084 /* minimum remaining period time to redistribute slack quota */ 4085 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; 4086 /* how long we wait to gather additional slack before distributing */ 4087 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; 4088 4089 /* 4090 * Are we near the end of the current quota period? 4091 * 4092 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the 4093 * hrtimer base being cleared by hrtimer_start. In the case of 4094 * migrate_hrtimers, base is never cleared, so we are fine. 4095 */ 4096 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) 4097 { 4098 struct hrtimer *refresh_timer = &cfs_b->period_timer; 4099 u64 remaining; 4100 4101 /* if the call-back is running a quota refresh is already occurring */ 4102 if (hrtimer_callback_running(refresh_timer)) 4103 return 1; 4104 4105 /* is a quota refresh about to occur? */ 4106 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); 4107 if (remaining < min_expire) 4108 return 1; 4109 4110 return 0; 4111 } 4112 4113 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) 4114 { 4115 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; 4116 4117 /* if there's a quota refresh soon don't bother with slack */ 4118 if (runtime_refresh_within(cfs_b, min_left)) 4119 return; 4120 4121 hrtimer_start(&cfs_b->slack_timer, 4122 ns_to_ktime(cfs_bandwidth_slack_period), 4123 HRTIMER_MODE_REL); 4124 } 4125 4126 /* we know any runtime found here is valid as update_curr() precedes return */ 4127 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4128 { 4129 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); 4130 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; 4131 4132 if (slack_runtime <= 0) 4133 return; 4134 4135 raw_spin_lock(&cfs_b->lock); 4136 if (cfs_b->quota != RUNTIME_INF && 4137 cfs_rq->runtime_expires == cfs_b->runtime_expires) { 4138 cfs_b->runtime += slack_runtime; 4139 4140 /* we are under rq->lock, defer unthrottling using a timer */ 4141 if (cfs_b->runtime > sched_cfs_bandwidth_slice() && 4142 !list_empty(&cfs_b->throttled_cfs_rq)) 4143 start_cfs_slack_bandwidth(cfs_b); 4144 } 4145 raw_spin_unlock(&cfs_b->lock); 4146 4147 /* even if it's not valid for return we don't want to try again */ 4148 cfs_rq->runtime_remaining -= slack_runtime; 4149 } 4150 4151 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4152 { 4153 if (!cfs_bandwidth_used()) 4154 return; 4155 4156 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) 4157 return; 4158 4159 __return_cfs_rq_runtime(cfs_rq); 4160 } 4161 4162 /* 4163 * This is done with a timer (instead of inline with bandwidth return) since 4164 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. 4165 */ 4166 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) 4167 { 4168 u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); 4169 u64 expires; 4170 4171 /* confirm we're still not at a refresh boundary */ 4172 raw_spin_lock(&cfs_b->lock); 4173 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) { 4174 raw_spin_unlock(&cfs_b->lock); 4175 return; 4176 } 4177 4178 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) 4179 runtime = cfs_b->runtime; 4180 4181 expires = cfs_b->runtime_expires; 4182 raw_spin_unlock(&cfs_b->lock); 4183 4184 if (!runtime) 4185 return; 4186 4187 runtime = distribute_cfs_runtime(cfs_b, runtime, expires); 4188 4189 raw_spin_lock(&cfs_b->lock); 4190 if (expires == cfs_b->runtime_expires) 4191 cfs_b->runtime -= min(runtime, cfs_b->runtime); 4192 raw_spin_unlock(&cfs_b->lock); 4193 } 4194 4195 /* 4196 * When a group wakes up we want to make sure that its quota is not already 4197 * expired/exceeded, otherwise it may be allowed to steal additional ticks of 4198 * runtime as update_curr() throttling can not not trigger until it's on-rq. 4199 */ 4200 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) 4201 { 4202 if (!cfs_bandwidth_used()) 4203 return; 4204 4205 /* Synchronize hierarchical throttle counter: */ 4206 if (unlikely(!cfs_rq->throttle_uptodate)) { 4207 struct rq *rq = rq_of(cfs_rq); 4208 struct cfs_rq *pcfs_rq; 4209 struct task_group *tg; 4210 4211 cfs_rq->throttle_uptodate = 1; 4212 4213 /* Get closest up-to-date node, because leaves go first: */ 4214 for (tg = cfs_rq->tg->parent; tg; tg = tg->parent) { 4215 pcfs_rq = tg->cfs_rq[cpu_of(rq)]; 4216 if (pcfs_rq->throttle_uptodate) 4217 break; 4218 } 4219 if (tg) { 4220 cfs_rq->throttle_count = pcfs_rq->throttle_count; 4221 cfs_rq->throttled_clock_task = rq_clock_task(rq); 4222 } 4223 } 4224 4225 /* an active group must be handled by the update_curr()->put() path */ 4226 if (!cfs_rq->runtime_enabled || cfs_rq->curr) 4227 return; 4228 4229 /* ensure the group is not already throttled */ 4230 if (cfs_rq_throttled(cfs_rq)) 4231 return; 4232 4233 /* update runtime allocation */ 4234 account_cfs_rq_runtime(cfs_rq, 0); 4235 if (cfs_rq->runtime_remaining <= 0) 4236 throttle_cfs_rq(cfs_rq); 4237 } 4238 4239 /* conditionally throttle active cfs_rq's from put_prev_entity() */ 4240 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4241 { 4242 if (!cfs_bandwidth_used()) 4243 return false; 4244 4245 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) 4246 return false; 4247 4248 /* 4249 * it's possible for a throttled entity to be forced into a running 4250 * state (e.g. set_curr_task), in this case we're finished. 4251 */ 4252 if (cfs_rq_throttled(cfs_rq)) 4253 return true; 4254 4255 throttle_cfs_rq(cfs_rq); 4256 return true; 4257 } 4258 4259 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) 4260 { 4261 struct cfs_bandwidth *cfs_b = 4262 container_of(timer, struct cfs_bandwidth, slack_timer); 4263 4264 do_sched_cfs_slack_timer(cfs_b); 4265 4266 return HRTIMER_NORESTART; 4267 } 4268 4269 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) 4270 { 4271 struct cfs_bandwidth *cfs_b = 4272 container_of(timer, struct cfs_bandwidth, period_timer); 4273 int overrun; 4274 int idle = 0; 4275 4276 raw_spin_lock(&cfs_b->lock); 4277 for (;;) { 4278 overrun = hrtimer_forward_now(timer, cfs_b->period); 4279 if (!overrun) 4280 break; 4281 4282 idle = do_sched_cfs_period_timer(cfs_b, overrun); 4283 } 4284 if (idle) 4285 cfs_b->period_active = 0; 4286 raw_spin_unlock(&cfs_b->lock); 4287 4288 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; 4289 } 4290 4291 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4292 { 4293 raw_spin_lock_init(&cfs_b->lock); 4294 cfs_b->runtime = 0; 4295 cfs_b->quota = RUNTIME_INF; 4296 cfs_b->period = ns_to_ktime(default_cfs_period()); 4297 4298 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); 4299 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED); 4300 cfs_b->period_timer.function = sched_cfs_period_timer; 4301 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 4302 cfs_b->slack_timer.function = sched_cfs_slack_timer; 4303 } 4304 4305 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) 4306 { 4307 cfs_rq->runtime_enabled = 0; 4308 INIT_LIST_HEAD(&cfs_rq->throttled_list); 4309 } 4310 4311 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4312 { 4313 lockdep_assert_held(&cfs_b->lock); 4314 4315 if (!cfs_b->period_active) { 4316 cfs_b->period_active = 1; 4317 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period); 4318 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED); 4319 } 4320 } 4321 4322 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) 4323 { 4324 /* init_cfs_bandwidth() was not called */ 4325 if (!cfs_b->throttled_cfs_rq.next) 4326 return; 4327 4328 hrtimer_cancel(&cfs_b->period_timer); 4329 hrtimer_cancel(&cfs_b->slack_timer); 4330 } 4331 4332 static void __maybe_unused update_runtime_enabled(struct rq *rq) 4333 { 4334 struct cfs_rq *cfs_rq; 4335 4336 for_each_leaf_cfs_rq(rq, cfs_rq) { 4337 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth; 4338 4339 raw_spin_lock(&cfs_b->lock); 4340 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF; 4341 raw_spin_unlock(&cfs_b->lock); 4342 } 4343 } 4344 4345 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq) 4346 { 4347 struct cfs_rq *cfs_rq; 4348 4349 for_each_leaf_cfs_rq(rq, cfs_rq) { 4350 if (!cfs_rq->runtime_enabled) 4351 continue; 4352 4353 /* 4354 * clock_task is not advancing so we just need to make sure 4355 * there's some valid quota amount 4356 */ 4357 cfs_rq->runtime_remaining = 1; 4358 /* 4359 * Offline rq is schedulable till cpu is completely disabled 4360 * in take_cpu_down(), so we prevent new cfs throttling here. 4361 */ 4362 cfs_rq->runtime_enabled = 0; 4363 4364 if (cfs_rq_throttled(cfs_rq)) 4365 unthrottle_cfs_rq(cfs_rq); 4366 } 4367 } 4368 4369 #else /* CONFIG_CFS_BANDWIDTH */ 4370 static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq) 4371 { 4372 return rq_clock_task(rq_of(cfs_rq)); 4373 } 4374 4375 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {} 4376 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; } 4377 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} 4378 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4379 4380 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) 4381 { 4382 return 0; 4383 } 4384 4385 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) 4386 { 4387 return 0; 4388 } 4389 4390 static inline int throttled_lb_pair(struct task_group *tg, 4391 int src_cpu, int dest_cpu) 4392 { 4393 return 0; 4394 } 4395 4396 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4397 4398 #ifdef CONFIG_FAIR_GROUP_SCHED 4399 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} 4400 #endif 4401 4402 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) 4403 { 4404 return NULL; 4405 } 4406 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} 4407 static inline void update_runtime_enabled(struct rq *rq) {} 4408 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {} 4409 4410 #endif /* CONFIG_CFS_BANDWIDTH */ 4411 4412 /************************************************** 4413 * CFS operations on tasks: 4414 */ 4415 4416 #ifdef CONFIG_SCHED_HRTICK 4417 static void hrtick_start_fair(struct rq *rq, struct task_struct *p) 4418 { 4419 struct sched_entity *se = &p->se; 4420 struct cfs_rq *cfs_rq = cfs_rq_of(se); 4421 4422 WARN_ON(task_rq(p) != rq); 4423 4424 if (cfs_rq->nr_running > 1) { 4425 u64 slice = sched_slice(cfs_rq, se); 4426 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; 4427 s64 delta = slice - ran; 4428 4429 if (delta < 0) { 4430 if (rq->curr == p) 4431 resched_curr(rq); 4432 return; 4433 } 4434 hrtick_start(rq, delta); 4435 } 4436 } 4437 4438 /* 4439 * called from enqueue/dequeue and updates the hrtick when the 4440 * current task is from our class and nr_running is low enough 4441 * to matter. 4442 */ 4443 static void hrtick_update(struct rq *rq) 4444 { 4445 struct task_struct *curr = rq->curr; 4446 4447 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) 4448 return; 4449 4450 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) 4451 hrtick_start_fair(rq, curr); 4452 } 4453 #else /* !CONFIG_SCHED_HRTICK */ 4454 static inline void 4455 hrtick_start_fair(struct rq *rq, struct task_struct *p) 4456 { 4457 } 4458 4459 static inline void hrtick_update(struct rq *rq) 4460 { 4461 } 4462 #endif 4463 4464 /* 4465 * The enqueue_task method is called before nr_running is 4466 * increased. Here we update the fair scheduling stats and 4467 * then put the task into the rbtree: 4468 */ 4469 static void 4470 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4471 { 4472 struct cfs_rq *cfs_rq; 4473 struct sched_entity *se = &p->se; 4474 4475 for_each_sched_entity(se) { 4476 if (se->on_rq) 4477 break; 4478 cfs_rq = cfs_rq_of(se); 4479 enqueue_entity(cfs_rq, se, flags); 4480 4481 /* 4482 * end evaluation on encountering a throttled cfs_rq 4483 * 4484 * note: in the case of encountering a throttled cfs_rq we will 4485 * post the final h_nr_running increment below. 4486 */ 4487 if (cfs_rq_throttled(cfs_rq)) 4488 break; 4489 cfs_rq->h_nr_running++; 4490 4491 flags = ENQUEUE_WAKEUP; 4492 } 4493 4494 for_each_sched_entity(se) { 4495 cfs_rq = cfs_rq_of(se); 4496 cfs_rq->h_nr_running++; 4497 4498 if (cfs_rq_throttled(cfs_rq)) 4499 break; 4500 4501 update_load_avg(se, 1); 4502 update_cfs_shares(cfs_rq); 4503 } 4504 4505 if (!se) 4506 add_nr_running(rq, 1); 4507 4508 hrtick_update(rq); 4509 } 4510 4511 static void set_next_buddy(struct sched_entity *se); 4512 4513 /* 4514 * The dequeue_task method is called before nr_running is 4515 * decreased. We remove the task from the rbtree and 4516 * update the fair scheduling stats: 4517 */ 4518 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) 4519 { 4520 struct cfs_rq *cfs_rq; 4521 struct sched_entity *se = &p->se; 4522 int task_sleep = flags & DEQUEUE_SLEEP; 4523 4524 for_each_sched_entity(se) { 4525 cfs_rq = cfs_rq_of(se); 4526 dequeue_entity(cfs_rq, se, flags); 4527 4528 /* 4529 * end evaluation on encountering a throttled cfs_rq 4530 * 4531 * note: in the case of encountering a throttled cfs_rq we will 4532 * post the final h_nr_running decrement below. 4533 */ 4534 if (cfs_rq_throttled(cfs_rq)) 4535 break; 4536 cfs_rq->h_nr_running--; 4537 4538 /* Don't dequeue parent if it has other entities besides us */ 4539 if (cfs_rq->load.weight) { 4540 /* Avoid re-evaluating load for this entity: */ 4541 se = parent_entity(se); 4542 /* 4543 * Bias pick_next to pick a task from this cfs_rq, as 4544 * p is sleeping when it is within its sched_slice. 4545 */ 4546 if (task_sleep && se && !throttled_hierarchy(cfs_rq)) 4547 set_next_buddy(se); 4548 break; 4549 } 4550 flags |= DEQUEUE_SLEEP; 4551 } 4552 4553 for_each_sched_entity(se) { 4554 cfs_rq = cfs_rq_of(se); 4555 cfs_rq->h_nr_running--; 4556 4557 if (cfs_rq_throttled(cfs_rq)) 4558 break; 4559 4560 update_load_avg(se, 1); 4561 update_cfs_shares(cfs_rq); 4562 } 4563 4564 if (!se) 4565 sub_nr_running(rq, 1); 4566 4567 hrtick_update(rq); 4568 } 4569 4570 #ifdef CONFIG_SMP 4571 #ifdef CONFIG_NO_HZ_COMMON 4572 /* 4573 * per rq 'load' arrray crap; XXX kill this. 4574 */ 4575 4576 /* 4577 * The exact cpuload calculated at every tick would be: 4578 * 4579 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load 4580 * 4581 * If a cpu misses updates for n ticks (as it was idle) and update gets 4582 * called on the n+1-th tick when cpu may be busy, then we have: 4583 * 4584 * load_n = (1 - 1/2^i)^n * load_0 4585 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load 4586 * 4587 * decay_load_missed() below does efficient calculation of 4588 * 4589 * load' = (1 - 1/2^i)^n * load 4590 * 4591 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors. 4592 * This allows us to precompute the above in said factors, thereby allowing the 4593 * reduction of an arbitrary n in O(log_2 n) steps. (See also 4594 * fixed_power_int()) 4595 * 4596 * The calculation is approximated on a 128 point scale. 4597 */ 4598 #define DEGRADE_SHIFT 7 4599 4600 static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128}; 4601 static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = { 4602 { 0, 0, 0, 0, 0, 0, 0, 0 }, 4603 { 64, 32, 8, 0, 0, 0, 0, 0 }, 4604 { 96, 72, 40, 12, 1, 0, 0, 0 }, 4605 { 112, 98, 75, 43, 15, 1, 0, 0 }, 4606 { 120, 112, 98, 76, 45, 16, 2, 0 } 4607 }; 4608 4609 /* 4610 * Update cpu_load for any missed ticks, due to tickless idle. The backlog 4611 * would be when CPU is idle and so we just decay the old load without 4612 * adding any new load. 4613 */ 4614 static unsigned long 4615 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx) 4616 { 4617 int j = 0; 4618 4619 if (!missed_updates) 4620 return load; 4621 4622 if (missed_updates >= degrade_zero_ticks[idx]) 4623 return 0; 4624 4625 if (idx == 1) 4626 return load >> missed_updates; 4627 4628 while (missed_updates) { 4629 if (missed_updates % 2) 4630 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT; 4631 4632 missed_updates >>= 1; 4633 j++; 4634 } 4635 return load; 4636 } 4637 #endif /* CONFIG_NO_HZ_COMMON */ 4638 4639 /** 4640 * __cpu_load_update - update the rq->cpu_load[] statistics 4641 * @this_rq: The rq to update statistics for 4642 * @this_load: The current load 4643 * @pending_updates: The number of missed updates 4644 * 4645 * Update rq->cpu_load[] statistics. This function is usually called every 4646 * scheduler tick (TICK_NSEC). 4647 * 4648 * This function computes a decaying average: 4649 * 4650 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load 4651 * 4652 * Because of NOHZ it might not get called on every tick which gives need for 4653 * the @pending_updates argument. 4654 * 4655 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1 4656 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load 4657 * = A * (A * load[i]_n-2 + B) + B 4658 * = A * (A * (A * load[i]_n-3 + B) + B) + B 4659 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B 4660 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B 4661 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B 4662 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load 4663 * 4664 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as 4665 * any change in load would have resulted in the tick being turned back on. 4666 * 4667 * For regular NOHZ, this reduces to: 4668 * 4669 * load[i]_n = (1 - 1/2^i)^n * load[i]_0 4670 * 4671 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra 4672 * term. 4673 */ 4674 static void cpu_load_update(struct rq *this_rq, unsigned long this_load, 4675 unsigned long pending_updates) 4676 { 4677 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0]; 4678 int i, scale; 4679 4680 this_rq->nr_load_updates++; 4681 4682 /* Update our load: */ 4683 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */ 4684 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { 4685 unsigned long old_load, new_load; 4686 4687 /* scale is effectively 1 << i now, and >> i divides by scale */ 4688 4689 old_load = this_rq->cpu_load[i]; 4690 #ifdef CONFIG_NO_HZ_COMMON 4691 old_load = decay_load_missed(old_load, pending_updates - 1, i); 4692 if (tickless_load) { 4693 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i); 4694 /* 4695 * old_load can never be a negative value because a 4696 * decayed tickless_load cannot be greater than the 4697 * original tickless_load. 4698 */ 4699 old_load += tickless_load; 4700 } 4701 #endif 4702 new_load = this_load; 4703 /* 4704 * Round up the averaging division if load is increasing. This 4705 * prevents us from getting stuck on 9 if the load is 10, for 4706 * example. 4707 */ 4708 if (new_load > old_load) 4709 new_load += scale - 1; 4710 4711 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i; 4712 } 4713 4714 sched_avg_update(this_rq); 4715 } 4716 4717 /* Used instead of source_load when we know the type == 0 */ 4718 static unsigned long weighted_cpuload(const int cpu) 4719 { 4720 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs); 4721 } 4722 4723 #ifdef CONFIG_NO_HZ_COMMON 4724 /* 4725 * There is no sane way to deal with nohz on smp when using jiffies because the 4726 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading 4727 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}. 4728 * 4729 * Therefore we need to avoid the delta approach from the regular tick when 4730 * possible since that would seriously skew the load calculation. This is why we 4731 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on 4732 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle 4733 * loop exit, nohz_idle_balance, nohz full exit...) 4734 * 4735 * This means we might still be one tick off for nohz periods. 4736 */ 4737 4738 static void cpu_load_update_nohz(struct rq *this_rq, 4739 unsigned long curr_jiffies, 4740 unsigned long load) 4741 { 4742 unsigned long pending_updates; 4743 4744 pending_updates = curr_jiffies - this_rq->last_load_update_tick; 4745 if (pending_updates) { 4746 this_rq->last_load_update_tick = curr_jiffies; 4747 /* 4748 * In the regular NOHZ case, we were idle, this means load 0. 4749 * In the NOHZ_FULL case, we were non-idle, we should consider 4750 * its weighted load. 4751 */ 4752 cpu_load_update(this_rq, load, pending_updates); 4753 } 4754 } 4755 4756 /* 4757 * Called from nohz_idle_balance() to update the load ratings before doing the 4758 * idle balance. 4759 */ 4760 static void cpu_load_update_idle(struct rq *this_rq) 4761 { 4762 /* 4763 * bail if there's load or we're actually up-to-date. 4764 */ 4765 if (weighted_cpuload(cpu_of(this_rq))) 4766 return; 4767 4768 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0); 4769 } 4770 4771 /* 4772 * Record CPU load on nohz entry so we know the tickless load to account 4773 * on nohz exit. cpu_load[0] happens then to be updated more frequently 4774 * than other cpu_load[idx] but it should be fine as cpu_load readers 4775 * shouldn't rely into synchronized cpu_load[*] updates. 4776 */ 4777 void cpu_load_update_nohz_start(void) 4778 { 4779 struct rq *this_rq = this_rq(); 4780 4781 /* 4782 * This is all lockless but should be fine. If weighted_cpuload changes 4783 * concurrently we'll exit nohz. And cpu_load write can race with 4784 * cpu_load_update_idle() but both updater would be writing the same. 4785 */ 4786 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq)); 4787 } 4788 4789 /* 4790 * Account the tickless load in the end of a nohz frame. 4791 */ 4792 void cpu_load_update_nohz_stop(void) 4793 { 4794 unsigned long curr_jiffies = READ_ONCE(jiffies); 4795 struct rq *this_rq = this_rq(); 4796 unsigned long load; 4797 4798 if (curr_jiffies == this_rq->last_load_update_tick) 4799 return; 4800 4801 load = weighted_cpuload(cpu_of(this_rq)); 4802 raw_spin_lock(&this_rq->lock); 4803 update_rq_clock(this_rq); 4804 cpu_load_update_nohz(this_rq, curr_jiffies, load); 4805 raw_spin_unlock(&this_rq->lock); 4806 } 4807 #else /* !CONFIG_NO_HZ_COMMON */ 4808 static inline void cpu_load_update_nohz(struct rq *this_rq, 4809 unsigned long curr_jiffies, 4810 unsigned long load) { } 4811 #endif /* CONFIG_NO_HZ_COMMON */ 4812 4813 static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load) 4814 { 4815 #ifdef CONFIG_NO_HZ_COMMON 4816 /* See the mess around cpu_load_update_nohz(). */ 4817 this_rq->last_load_update_tick = READ_ONCE(jiffies); 4818 #endif 4819 cpu_load_update(this_rq, load, 1); 4820 } 4821 4822 /* 4823 * Called from scheduler_tick() 4824 */ 4825 void cpu_load_update_active(struct rq *this_rq) 4826 { 4827 unsigned long load = weighted_cpuload(cpu_of(this_rq)); 4828 4829 if (tick_nohz_tick_stopped()) 4830 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load); 4831 else 4832 cpu_load_update_periodic(this_rq, load); 4833 } 4834 4835 /* 4836 * Return a low guess at the load of a migration-source cpu weighted 4837 * according to the scheduling class and "nice" value. 4838 * 4839 * We want to under-estimate the load of migration sources, to 4840 * balance conservatively. 4841 */ 4842 static unsigned long source_load(int cpu, int type) 4843 { 4844 struct rq *rq = cpu_rq(cpu); 4845 unsigned long total = weighted_cpuload(cpu); 4846 4847 if (type == 0 || !sched_feat(LB_BIAS)) 4848 return total; 4849 4850 return min(rq->cpu_load[type-1], total); 4851 } 4852 4853 /* 4854 * Return a high guess at the load of a migration-target cpu weighted 4855 * according to the scheduling class and "nice" value. 4856 */ 4857 static unsigned long target_load(int cpu, int type) 4858 { 4859 struct rq *rq = cpu_rq(cpu); 4860 unsigned long total = weighted_cpuload(cpu); 4861 4862 if (type == 0 || !sched_feat(LB_BIAS)) 4863 return total; 4864 4865 return max(rq->cpu_load[type-1], total); 4866 } 4867 4868 static unsigned long capacity_of(int cpu) 4869 { 4870 return cpu_rq(cpu)->cpu_capacity; 4871 } 4872 4873 static unsigned long capacity_orig_of(int cpu) 4874 { 4875 return cpu_rq(cpu)->cpu_capacity_orig; 4876 } 4877 4878 static unsigned long cpu_avg_load_per_task(int cpu) 4879 { 4880 struct rq *rq = cpu_rq(cpu); 4881 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running); 4882 unsigned long load_avg = weighted_cpuload(cpu); 4883 4884 if (nr_running) 4885 return load_avg / nr_running; 4886 4887 return 0; 4888 } 4889 4890 #ifdef CONFIG_FAIR_GROUP_SCHED 4891 /* 4892 * effective_load() calculates the load change as seen from the root_task_group 4893 * 4894 * Adding load to a group doesn't make a group heavier, but can cause movement 4895 * of group shares between cpus. Assuming the shares were perfectly aligned one 4896 * can calculate the shift in shares. 4897 * 4898 * Calculate the effective load difference if @wl is added (subtracted) to @tg 4899 * on this @cpu and results in a total addition (subtraction) of @wg to the 4900 * total group weight. 4901 * 4902 * Given a runqueue weight distribution (rw_i) we can compute a shares 4903 * distribution (s_i) using: 4904 * 4905 * s_i = rw_i / \Sum rw_j (1) 4906 * 4907 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and 4908 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting 4909 * shares distribution (s_i): 4910 * 4911 * rw_i = { 2, 4, 1, 0 } 4912 * s_i = { 2/7, 4/7, 1/7, 0 } 4913 * 4914 * As per wake_affine() we're interested in the load of two CPUs (the CPU the 4915 * task used to run on and the CPU the waker is running on), we need to 4916 * compute the effect of waking a task on either CPU and, in case of a sync 4917 * wakeup, compute the effect of the current task going to sleep. 4918 * 4919 * So for a change of @wl to the local @cpu with an overall group weight change 4920 * of @wl we can compute the new shares distribution (s'_i) using: 4921 * 4922 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2) 4923 * 4924 * Suppose we're interested in CPUs 0 and 1, and want to compute the load 4925 * differences in waking a task to CPU 0. The additional task changes the 4926 * weight and shares distributions like: 4927 * 4928 * rw'_i = { 3, 4, 1, 0 } 4929 * s'_i = { 3/8, 4/8, 1/8, 0 } 4930 * 4931 * We can then compute the difference in effective weight by using: 4932 * 4933 * dw_i = S * (s'_i - s_i) (3) 4934 * 4935 * Where 'S' is the group weight as seen by its parent. 4936 * 4937 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) 4938 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - 4939 * 4/7) times the weight of the group. 4940 */ 4941 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4942 { 4943 struct sched_entity *se = tg->se[cpu]; 4944 4945 if (!tg->parent) /* the trivial, non-cgroup case */ 4946 return wl; 4947 4948 for_each_sched_entity(se) { 4949 long w, W; 4950 4951 tg = se->my_q->tg; 4952 4953 /* 4954 * W = @wg + \Sum rw_j 4955 */ 4956 W = wg + calc_tg_weight(tg, se->my_q); 4957 4958 /* 4959 * w = rw_i + @wl 4960 */ 4961 w = cfs_rq_load_avg(se->my_q) + wl; 4962 4963 /* 4964 * wl = S * s'_i; see (2) 4965 */ 4966 if (W > 0 && w < W) 4967 wl = (w * (long)tg->shares) / W; 4968 else 4969 wl = tg->shares; 4970 4971 /* 4972 * Per the above, wl is the new se->load.weight value; since 4973 * those are clipped to [MIN_SHARES, ...) do so now. See 4974 * calc_cfs_shares(). 4975 */ 4976 if (wl < MIN_SHARES) 4977 wl = MIN_SHARES; 4978 4979 /* 4980 * wl = dw_i = S * (s'_i - s_i); see (3) 4981 */ 4982 wl -= se->avg.load_avg; 4983 4984 /* 4985 * Recursively apply this logic to all parent groups to compute 4986 * the final effective load change on the root group. Since 4987 * only the @tg group gets extra weight, all parent groups can 4988 * only redistribute existing shares. @wl is the shift in shares 4989 * resulting from this level per the above. 4990 */ 4991 wg = 0; 4992 } 4993 4994 return wl; 4995 } 4996 #else 4997 4998 static long effective_load(struct task_group *tg, int cpu, long wl, long wg) 4999 { 5000 return wl; 5001 } 5002 5003 #endif 5004 5005 static void record_wakee(struct task_struct *p) 5006 { 5007 /* 5008 * Only decay a single time; tasks that have less then 1 wakeup per 5009 * jiffy will not have built up many flips. 5010 */ 5011 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) { 5012 current->wakee_flips >>= 1; 5013 current->wakee_flip_decay_ts = jiffies; 5014 } 5015 5016 if (current->last_wakee != p) { 5017 current->last_wakee = p; 5018 current->wakee_flips++; 5019 } 5020 } 5021 5022 /* 5023 * Detect M:N waker/wakee relationships via a switching-frequency heuristic. 5024 * 5025 * A waker of many should wake a different task than the one last awakened 5026 * at a frequency roughly N times higher than one of its wakees. 5027 * 5028 * In order to determine whether we should let the load spread vs consolidating 5029 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one 5030 * partner, and a factor of lls_size higher frequency in the other. 5031 * 5032 * With both conditions met, we can be relatively sure that the relationship is 5033 * non-monogamous, with partner count exceeding socket size. 5034 * 5035 * Waker/wakee being client/server, worker/dispatcher, interrupt source or 5036 * whatever is irrelevant, spread criteria is apparent partner count exceeds 5037 * socket size. 5038 */ 5039 static int wake_wide(struct task_struct *p) 5040 { 5041 unsigned int master = current->wakee_flips; 5042 unsigned int slave = p->wakee_flips; 5043 int factor = this_cpu_read(sd_llc_size); 5044 5045 if (master < slave) 5046 swap(master, slave); 5047 if (slave < factor || master < slave * factor) 5048 return 0; 5049 return 1; 5050 } 5051 5052 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) 5053 { 5054 s64 this_load, load; 5055 s64 this_eff_load, prev_eff_load; 5056 int idx, this_cpu, prev_cpu; 5057 struct task_group *tg; 5058 unsigned long weight; 5059 int balanced; 5060 5061 idx = sd->wake_idx; 5062 this_cpu = smp_processor_id(); 5063 prev_cpu = task_cpu(p); 5064 load = source_load(prev_cpu, idx); 5065 this_load = target_load(this_cpu, idx); 5066 5067 /* 5068 * If sync wakeup then subtract the (maximum possible) 5069 * effect of the currently running task from the load 5070 * of the current CPU: 5071 */ 5072 if (sync) { 5073 tg = task_group(current); 5074 weight = current->se.avg.load_avg; 5075 5076 this_load += effective_load(tg, this_cpu, -weight, -weight); 5077 load += effective_load(tg, prev_cpu, 0, -weight); 5078 } 5079 5080 tg = task_group(p); 5081 weight = p->se.avg.load_avg; 5082 5083 /* 5084 * In low-load situations, where prev_cpu is idle and this_cpu is idle 5085 * due to the sync cause above having dropped this_load to 0, we'll 5086 * always have an imbalance, but there's really nothing you can do 5087 * about that, so that's good too. 5088 * 5089 * Otherwise check if either cpus are near enough in load to allow this 5090 * task to be woken on this_cpu. 5091 */ 5092 this_eff_load = 100; 5093 this_eff_load *= capacity_of(prev_cpu); 5094 5095 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; 5096 prev_eff_load *= capacity_of(this_cpu); 5097 5098 if (this_load > 0) { 5099 this_eff_load *= this_load + 5100 effective_load(tg, this_cpu, weight, weight); 5101 5102 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); 5103 } 5104 5105 balanced = this_eff_load <= prev_eff_load; 5106 5107 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); 5108 5109 if (!balanced) 5110 return 0; 5111 5112 schedstat_inc(sd, ttwu_move_affine); 5113 schedstat_inc(p, se.statistics.nr_wakeups_affine); 5114 5115 return 1; 5116 } 5117 5118 /* 5119 * find_idlest_group finds and returns the least busy CPU group within the 5120 * domain. 5121 */ 5122 static struct sched_group * 5123 find_idlest_group(struct sched_domain *sd, struct task_struct *p, 5124 int this_cpu, int sd_flag) 5125 { 5126 struct sched_group *idlest = NULL, *group = sd->groups; 5127 unsigned long min_load = ULONG_MAX, this_load = 0; 5128 int load_idx = sd->forkexec_idx; 5129 int imbalance = 100 + (sd->imbalance_pct-100)/2; 5130 5131 if (sd_flag & SD_BALANCE_WAKE) 5132 load_idx = sd->wake_idx; 5133 5134 do { 5135 unsigned long load, avg_load; 5136 int local_group; 5137 int i; 5138 5139 /* Skip over this group if it has no CPUs allowed */ 5140 if (!cpumask_intersects(sched_group_cpus(group), 5141 tsk_cpus_allowed(p))) 5142 continue; 5143 5144 local_group = cpumask_test_cpu(this_cpu, 5145 sched_group_cpus(group)); 5146 5147 /* Tally up the load of all CPUs in the group */ 5148 avg_load = 0; 5149 5150 for_each_cpu(i, sched_group_cpus(group)) { 5151 /* Bias balancing toward cpus of our domain */ 5152 if (local_group) 5153 load = source_load(i, load_idx); 5154 else 5155 load = target_load(i, load_idx); 5156 5157 avg_load += load; 5158 } 5159 5160 /* Adjust by relative CPU capacity of the group */ 5161 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity; 5162 5163 if (local_group) { 5164 this_load = avg_load; 5165 } else if (avg_load < min_load) { 5166 min_load = avg_load; 5167 idlest = group; 5168 } 5169 } while (group = group->next, group != sd->groups); 5170 5171 if (!idlest || 100*this_load < imbalance*min_load) 5172 return NULL; 5173 return idlest; 5174 } 5175 5176 /* 5177 * find_idlest_cpu - find the idlest cpu among the cpus in group. 5178 */ 5179 static int 5180 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) 5181 { 5182 unsigned long load, min_load = ULONG_MAX; 5183 unsigned int min_exit_latency = UINT_MAX; 5184 u64 latest_idle_timestamp = 0; 5185 int least_loaded_cpu = this_cpu; 5186 int shallowest_idle_cpu = -1; 5187 int i; 5188 5189 /* Traverse only the allowed CPUs */ 5190 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { 5191 if (idle_cpu(i)) { 5192 struct rq *rq = cpu_rq(i); 5193 struct cpuidle_state *idle = idle_get_state(rq); 5194 if (idle && idle->exit_latency < min_exit_latency) { 5195 /* 5196 * We give priority to a CPU whose idle state 5197 * has the smallest exit latency irrespective 5198 * of any idle timestamp. 5199 */ 5200 min_exit_latency = idle->exit_latency; 5201 latest_idle_timestamp = rq->idle_stamp; 5202 shallowest_idle_cpu = i; 5203 } else if ((!idle || idle->exit_latency == min_exit_latency) && 5204 rq->idle_stamp > latest_idle_timestamp) { 5205 /* 5206 * If equal or no active idle state, then 5207 * the most recently idled CPU might have 5208 * a warmer cache. 5209 */ 5210 latest_idle_timestamp = rq->idle_stamp; 5211 shallowest_idle_cpu = i; 5212 } 5213 } else if (shallowest_idle_cpu == -1) { 5214 load = weighted_cpuload(i); 5215 if (load < min_load || (load == min_load && i == this_cpu)) { 5216 min_load = load; 5217 least_loaded_cpu = i; 5218 } 5219 } 5220 } 5221 5222 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu; 5223 } 5224 5225 /* 5226 * Try and locate an idle CPU in the sched_domain. 5227 */ 5228 static int select_idle_sibling(struct task_struct *p, int target) 5229 { 5230 struct sched_domain *sd; 5231 struct sched_group *sg; 5232 int i = task_cpu(p); 5233 5234 if (idle_cpu(target)) 5235 return target; 5236 5237 /* 5238 * If the prevous cpu is cache affine and idle, don't be stupid. 5239 */ 5240 if (i != target && cpus_share_cache(i, target) && idle_cpu(i)) 5241 return i; 5242 5243 /* 5244 * Otherwise, iterate the domains and find an eligible idle cpu. 5245 * 5246 * A completely idle sched group at higher domains is more 5247 * desirable than an idle group at a lower level, because lower 5248 * domains have smaller groups and usually share hardware 5249 * resources which causes tasks to contend on them, e.g. x86 5250 * hyperthread siblings in the lowest domain (SMT) can contend 5251 * on the shared cpu pipeline. 5252 * 5253 * However, while we prefer idle groups at higher domains 5254 * finding an idle cpu at the lowest domain is still better than 5255 * returning 'target', which we've already established, isn't 5256 * idle. 5257 */ 5258 sd = rcu_dereference(per_cpu(sd_llc, target)); 5259 for_each_lower_domain(sd) { 5260 sg = sd->groups; 5261 do { 5262 if (!cpumask_intersects(sched_group_cpus(sg), 5263 tsk_cpus_allowed(p))) 5264 goto next; 5265 5266 /* Ensure the entire group is idle */ 5267 for_each_cpu(i, sched_group_cpus(sg)) { 5268 if (i == target || !idle_cpu(i)) 5269 goto next; 5270 } 5271 5272 /* 5273 * It doesn't matter which cpu we pick, the 5274 * whole group is idle. 5275 */ 5276 target = cpumask_first_and(sched_group_cpus(sg), 5277 tsk_cpus_allowed(p)); 5278 goto done; 5279 next: 5280 sg = sg->next; 5281 } while (sg != sd->groups); 5282 } 5283 done: 5284 return target; 5285 } 5286 5287 /* 5288 * cpu_util returns the amount of capacity of a CPU that is used by CFS 5289 * tasks. The unit of the return value must be the one of capacity so we can 5290 * compare the utilization with the capacity of the CPU that is available for 5291 * CFS task (ie cpu_capacity). 5292 * 5293 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the 5294 * recent utilization of currently non-runnable tasks on a CPU. It represents 5295 * the amount of utilization of a CPU in the range [0..capacity_orig] where 5296 * capacity_orig is the cpu_capacity available at the highest frequency 5297 * (arch_scale_freq_capacity()). 5298 * The utilization of a CPU converges towards a sum equal to or less than the 5299 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is 5300 * the running time on this CPU scaled by capacity_curr. 5301 * 5302 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even 5303 * higher than capacity_orig because of unfortunate rounding in 5304 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until 5305 * the average stabilizes with the new running time. We need to check that the 5306 * utilization stays within the range of [0..capacity_orig] and cap it if 5307 * necessary. Without utilization capping, a group could be seen as overloaded 5308 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of 5309 * available capacity. We allow utilization to overshoot capacity_curr (but not 5310 * capacity_orig) as it useful for predicting the capacity required after task 5311 * migrations (scheduler-driven DVFS). 5312 */ 5313 static int cpu_util(int cpu) 5314 { 5315 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg; 5316 unsigned long capacity = capacity_orig_of(cpu); 5317 5318 return (util >= capacity) ? capacity : util; 5319 } 5320 5321 /* 5322 * select_task_rq_fair: Select target runqueue for the waking task in domains 5323 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE, 5324 * SD_BALANCE_FORK, or SD_BALANCE_EXEC. 5325 * 5326 * Balances load by selecting the idlest cpu in the idlest group, or under 5327 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set. 5328 * 5329 * Returns the target cpu number. 5330 * 5331 * preempt must be disabled. 5332 */ 5333 static int 5334 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags) 5335 { 5336 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; 5337 int cpu = smp_processor_id(); 5338 int new_cpu = prev_cpu; 5339 int want_affine = 0; 5340 int sync = wake_flags & WF_SYNC; 5341 5342 if (sd_flag & SD_BALANCE_WAKE) { 5343 record_wakee(p); 5344 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p)); 5345 } 5346 5347 rcu_read_lock(); 5348 for_each_domain(cpu, tmp) { 5349 if (!(tmp->flags & SD_LOAD_BALANCE)) 5350 break; 5351 5352 /* 5353 * If both cpu and prev_cpu are part of this domain, 5354 * cpu is a valid SD_WAKE_AFFINE target. 5355 */ 5356 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && 5357 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { 5358 affine_sd = tmp; 5359 break; 5360 } 5361 5362 if (tmp->flags & sd_flag) 5363 sd = tmp; 5364 else if (!want_affine) 5365 break; 5366 } 5367 5368 if (affine_sd) { 5369 sd = NULL; /* Prefer wake_affine over balance flags */ 5370 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync)) 5371 new_cpu = cpu; 5372 } 5373 5374 if (!sd) { 5375 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */ 5376 new_cpu = select_idle_sibling(p, new_cpu); 5377 5378 } else while (sd) { 5379 struct sched_group *group; 5380 int weight; 5381 5382 if (!(sd->flags & sd_flag)) { 5383 sd = sd->child; 5384 continue; 5385 } 5386 5387 group = find_idlest_group(sd, p, cpu, sd_flag); 5388 if (!group) { 5389 sd = sd->child; 5390 continue; 5391 } 5392 5393 new_cpu = find_idlest_cpu(group, p, cpu); 5394 if (new_cpu == -1 || new_cpu == cpu) { 5395 /* Now try balancing at a lower domain level of cpu */ 5396 sd = sd->child; 5397 continue; 5398 } 5399 5400 /* Now try balancing at a lower domain level of new_cpu */ 5401 cpu = new_cpu; 5402 weight = sd->span_weight; 5403 sd = NULL; 5404 for_each_domain(cpu, tmp) { 5405 if (weight <= tmp->span_weight) 5406 break; 5407 if (tmp->flags & sd_flag) 5408 sd = tmp; 5409 } 5410 /* while loop will break here if sd == NULL */ 5411 } 5412 rcu_read_unlock(); 5413 5414 return new_cpu; 5415 } 5416 5417 /* 5418 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and 5419 * cfs_rq_of(p) references at time of call are still valid and identify the 5420 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held. 5421 */ 5422 static void migrate_task_rq_fair(struct task_struct *p) 5423 { 5424 /* 5425 * As blocked tasks retain absolute vruntime the migration needs to 5426 * deal with this by subtracting the old and adding the new 5427 * min_vruntime -- the latter is done by enqueue_entity() when placing 5428 * the task on the new runqueue. 5429 */ 5430 if (p->state == TASK_WAKING) { 5431 struct sched_entity *se = &p->se; 5432 struct cfs_rq *cfs_rq = cfs_rq_of(se); 5433 u64 min_vruntime; 5434 5435 #ifndef CONFIG_64BIT 5436 u64 min_vruntime_copy; 5437 5438 do { 5439 min_vruntime_copy = cfs_rq->min_vruntime_copy; 5440 smp_rmb(); 5441 min_vruntime = cfs_rq->min_vruntime; 5442 } while (min_vruntime != min_vruntime_copy); 5443 #else 5444 min_vruntime = cfs_rq->min_vruntime; 5445 #endif 5446 5447 se->vruntime -= min_vruntime; 5448 } 5449 5450 /* 5451 * We are supposed to update the task to "current" time, then its up to date 5452 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting 5453 * what current time is, so simply throw away the out-of-date time. This 5454 * will result in the wakee task is less decayed, but giving the wakee more 5455 * load sounds not bad. 5456 */ 5457 remove_entity_load_avg(&p->se); 5458 5459 /* Tell new CPU we are migrated */ 5460 p->se.avg.last_update_time = 0; 5461 5462 /* We have migrated, no longer consider this task hot */ 5463 p->se.exec_start = 0; 5464 } 5465 5466 static void task_dead_fair(struct task_struct *p) 5467 { 5468 remove_entity_load_avg(&p->se); 5469 } 5470 #endif /* CONFIG_SMP */ 5471 5472 static unsigned long 5473 wakeup_gran(struct sched_entity *curr, struct sched_entity *se) 5474 { 5475 unsigned long gran = sysctl_sched_wakeup_granularity; 5476 5477 /* 5478 * Since its curr running now, convert the gran from real-time 5479 * to virtual-time in his units. 5480 * 5481 * By using 'se' instead of 'curr' we penalize light tasks, so 5482 * they get preempted easier. That is, if 'se' < 'curr' then 5483 * the resulting gran will be larger, therefore penalizing the 5484 * lighter, if otoh 'se' > 'curr' then the resulting gran will 5485 * be smaller, again penalizing the lighter task. 5486 * 5487 * This is especially important for buddies when the leftmost 5488 * task is higher priority than the buddy. 5489 */ 5490 return calc_delta_fair(gran, se); 5491 } 5492 5493 /* 5494 * Should 'se' preempt 'curr'. 5495 * 5496 * |s1 5497 * |s2 5498 * |s3 5499 * g 5500 * |<--->|c 5501 * 5502 * w(c, s1) = -1 5503 * w(c, s2) = 0 5504 * w(c, s3) = 1 5505 * 5506 */ 5507 static int 5508 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) 5509 { 5510 s64 gran, vdiff = curr->vruntime - se->vruntime; 5511 5512 if (vdiff <= 0) 5513 return -1; 5514 5515 gran = wakeup_gran(curr, se); 5516 if (vdiff > gran) 5517 return 1; 5518 5519 return 0; 5520 } 5521 5522 static void set_last_buddy(struct sched_entity *se) 5523 { 5524 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 5525 return; 5526 5527 for_each_sched_entity(se) 5528 cfs_rq_of(se)->last = se; 5529 } 5530 5531 static void set_next_buddy(struct sched_entity *se) 5532 { 5533 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) 5534 return; 5535 5536 for_each_sched_entity(se) 5537 cfs_rq_of(se)->next = se; 5538 } 5539 5540 static void set_skip_buddy(struct sched_entity *se) 5541 { 5542 for_each_sched_entity(se) 5543 cfs_rq_of(se)->skip = se; 5544 } 5545 5546 /* 5547 * Preempt the current task with a newly woken task if needed: 5548 */ 5549 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) 5550 { 5551 struct task_struct *curr = rq->curr; 5552 struct sched_entity *se = &curr->se, *pse = &p->se; 5553 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 5554 int scale = cfs_rq->nr_running >= sched_nr_latency; 5555 int next_buddy_marked = 0; 5556 5557 if (unlikely(se == pse)) 5558 return; 5559 5560 /* 5561 * This is possible from callers such as attach_tasks(), in which we 5562 * unconditionally check_prempt_curr() after an enqueue (which may have 5563 * lead to a throttle). This both saves work and prevents false 5564 * next-buddy nomination below. 5565 */ 5566 if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) 5567 return; 5568 5569 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { 5570 set_next_buddy(pse); 5571 next_buddy_marked = 1; 5572 } 5573 5574 /* 5575 * We can come here with TIF_NEED_RESCHED already set from new task 5576 * wake up path. 5577 * 5578 * Note: this also catches the edge-case of curr being in a throttled 5579 * group (e.g. via set_curr_task), since update_curr() (in the 5580 * enqueue of curr) will have resulted in resched being set. This 5581 * prevents us from potentially nominating it as a false LAST_BUDDY 5582 * below. 5583 */ 5584 if (test_tsk_need_resched(curr)) 5585 return; 5586 5587 /* Idle tasks are by definition preempted by non-idle tasks. */ 5588 if (unlikely(curr->policy == SCHED_IDLE) && 5589 likely(p->policy != SCHED_IDLE)) 5590 goto preempt; 5591 5592 /* 5593 * Batch and idle tasks do not preempt non-idle tasks (their preemption 5594 * is driven by the tick): 5595 */ 5596 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION)) 5597 return; 5598 5599 find_matching_se(&se, &pse); 5600 update_curr(cfs_rq_of(se)); 5601 BUG_ON(!pse); 5602 if (wakeup_preempt_entity(se, pse) == 1) { 5603 /* 5604 * Bias pick_next to pick the sched entity that is 5605 * triggering this preemption. 5606 */ 5607 if (!next_buddy_marked) 5608 set_next_buddy(pse); 5609 goto preempt; 5610 } 5611 5612 return; 5613 5614 preempt: 5615 resched_curr(rq); 5616 /* 5617 * Only set the backward buddy when the current task is still 5618 * on the rq. This can happen when a wakeup gets interleaved 5619 * with schedule on the ->pre_schedule() or idle_balance() 5620 * point, either of which can * drop the rq lock. 5621 * 5622 * Also, during early boot the idle thread is in the fair class, 5623 * for obvious reasons its a bad idea to schedule back to it. 5624 */ 5625 if (unlikely(!se->on_rq || curr == rq->idle)) 5626 return; 5627 5628 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) 5629 set_last_buddy(se); 5630 } 5631 5632 static struct task_struct * 5633 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie) 5634 { 5635 struct cfs_rq *cfs_rq = &rq->cfs; 5636 struct sched_entity *se; 5637 struct task_struct *p; 5638 int new_tasks; 5639 5640 again: 5641 #ifdef CONFIG_FAIR_GROUP_SCHED 5642 if (!cfs_rq->nr_running) 5643 goto idle; 5644 5645 if (prev->sched_class != &fair_sched_class) 5646 goto simple; 5647 5648 /* 5649 * Because of the set_next_buddy() in dequeue_task_fair() it is rather 5650 * likely that a next task is from the same cgroup as the current. 5651 * 5652 * Therefore attempt to avoid putting and setting the entire cgroup 5653 * hierarchy, only change the part that actually changes. 5654 */ 5655 5656 do { 5657 struct sched_entity *curr = cfs_rq->curr; 5658 5659 /* 5660 * Since we got here without doing put_prev_entity() we also 5661 * have to consider cfs_rq->curr. If it is still a runnable 5662 * entity, update_curr() will update its vruntime, otherwise 5663 * forget we've ever seen it. 5664 */ 5665 if (curr) { 5666 if (curr->on_rq) 5667 update_curr(cfs_rq); 5668 else 5669 curr = NULL; 5670 5671 /* 5672 * This call to check_cfs_rq_runtime() will do the 5673 * throttle and dequeue its entity in the parent(s). 5674 * Therefore the 'simple' nr_running test will indeed 5675 * be correct. 5676 */ 5677 if (unlikely(check_cfs_rq_runtime(cfs_rq))) 5678 goto simple; 5679 } 5680 5681 se = pick_next_entity(cfs_rq, curr); 5682 cfs_rq = group_cfs_rq(se); 5683 } while (cfs_rq); 5684 5685 p = task_of(se); 5686 5687 /* 5688 * Since we haven't yet done put_prev_entity and if the selected task 5689 * is a different task than we started out with, try and touch the 5690 * least amount of cfs_rqs. 5691 */ 5692 if (prev != p) { 5693 struct sched_entity *pse = &prev->se; 5694 5695 while (!(cfs_rq = is_same_group(se, pse))) { 5696 int se_depth = se->depth; 5697 int pse_depth = pse->depth; 5698 5699 if (se_depth <= pse_depth) { 5700 put_prev_entity(cfs_rq_of(pse), pse); 5701 pse = parent_entity(pse); 5702 } 5703 if (se_depth >= pse_depth) { 5704 set_next_entity(cfs_rq_of(se), se); 5705 se = parent_entity(se); 5706 } 5707 } 5708 5709 put_prev_entity(cfs_rq, pse); 5710 set_next_entity(cfs_rq, se); 5711 } 5712 5713 if (hrtick_enabled(rq)) 5714 hrtick_start_fair(rq, p); 5715 5716 return p; 5717 simple: 5718 cfs_rq = &rq->cfs; 5719 #endif 5720 5721 if (!cfs_rq->nr_running) 5722 goto idle; 5723 5724 put_prev_task(rq, prev); 5725 5726 do { 5727 se = pick_next_entity(cfs_rq, NULL); 5728 set_next_entity(cfs_rq, se); 5729 cfs_rq = group_cfs_rq(se); 5730 } while (cfs_rq); 5731 5732 p = task_of(se); 5733 5734 if (hrtick_enabled(rq)) 5735 hrtick_start_fair(rq, p); 5736 5737 return p; 5738 5739 idle: 5740 /* 5741 * This is OK, because current is on_cpu, which avoids it being picked 5742 * for load-balance and preemption/IRQs are still disabled avoiding 5743 * further scheduler activity on it and we're being very careful to 5744 * re-start the picking loop. 5745 */ 5746 lockdep_unpin_lock(&rq->lock, cookie); 5747 new_tasks = idle_balance(rq); 5748 lockdep_repin_lock(&rq->lock, cookie); 5749 /* 5750 * Because idle_balance() releases (and re-acquires) rq->lock, it is 5751 * possible for any higher priority task to appear. In that case we 5752 * must re-start the pick_next_entity() loop. 5753 */ 5754 if (new_tasks < 0) 5755 return RETRY_TASK; 5756 5757 if (new_tasks > 0) 5758 goto again; 5759 5760 return NULL; 5761 } 5762 5763 /* 5764 * Account for a descheduled task: 5765 */ 5766 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) 5767 { 5768 struct sched_entity *se = &prev->se; 5769 struct cfs_rq *cfs_rq; 5770 5771 for_each_sched_entity(se) { 5772 cfs_rq = cfs_rq_of(se); 5773 put_prev_entity(cfs_rq, se); 5774 } 5775 } 5776 5777 /* 5778 * sched_yield() is very simple 5779 * 5780 * The magic of dealing with the ->skip buddy is in pick_next_entity. 5781 */ 5782 static void yield_task_fair(struct rq *rq) 5783 { 5784 struct task_struct *curr = rq->curr; 5785 struct cfs_rq *cfs_rq = task_cfs_rq(curr); 5786 struct sched_entity *se = &curr->se; 5787 5788 /* 5789 * Are we the only task in the tree? 5790 */ 5791 if (unlikely(rq->nr_running == 1)) 5792 return; 5793 5794 clear_buddies(cfs_rq, se); 5795 5796 if (curr->policy != SCHED_BATCH) { 5797 update_rq_clock(rq); 5798 /* 5799 * Update run-time statistics of the 'current'. 5800 */ 5801 update_curr(cfs_rq); 5802 /* 5803 * Tell update_rq_clock() that we've just updated, 5804 * so we don't do microscopic update in schedule() 5805 * and double the fastpath cost. 5806 */ 5807 rq_clock_skip_update(rq, true); 5808 } 5809 5810 set_skip_buddy(se); 5811 } 5812 5813 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) 5814 { 5815 struct sched_entity *se = &p->se; 5816 5817 /* throttled hierarchies are not runnable */ 5818 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) 5819 return false; 5820 5821 /* Tell the scheduler that we'd really like pse to run next. */ 5822 set_next_buddy(se); 5823 5824 yield_task_fair(rq); 5825 5826 return true; 5827 } 5828 5829 #ifdef CONFIG_SMP 5830 /************************************************** 5831 * Fair scheduling class load-balancing methods. 5832 * 5833 * BASICS 5834 * 5835 * The purpose of load-balancing is to achieve the same basic fairness the 5836 * per-cpu scheduler provides, namely provide a proportional amount of compute 5837 * time to each task. This is expressed in the following equation: 5838 * 5839 * W_i,n/P_i == W_j,n/P_j for all i,j (1) 5840 * 5841 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight 5842 * W_i,0 is defined as: 5843 * 5844 * W_i,0 = \Sum_j w_i,j (2) 5845 * 5846 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight 5847 * is derived from the nice value as per sched_prio_to_weight[]. 5848 * 5849 * The weight average is an exponential decay average of the instantaneous 5850 * weight: 5851 * 5852 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3) 5853 * 5854 * C_i is the compute capacity of cpu i, typically it is the 5855 * fraction of 'recent' time available for SCHED_OTHER task execution. But it 5856 * can also include other factors [XXX]. 5857 * 5858 * To achieve this balance we define a measure of imbalance which follows 5859 * directly from (1): 5860 * 5861 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4) 5862 * 5863 * We them move tasks around to minimize the imbalance. In the continuous 5864 * function space it is obvious this converges, in the discrete case we get 5865 * a few fun cases generally called infeasible weight scenarios. 5866 * 5867 * [XXX expand on: 5868 * - infeasible weights; 5869 * - local vs global optima in the discrete case. ] 5870 * 5871 * 5872 * SCHED DOMAINS 5873 * 5874 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2) 5875 * for all i,j solution, we create a tree of cpus that follows the hardware 5876 * topology where each level pairs two lower groups (or better). This results 5877 * in O(log n) layers. Furthermore we reduce the number of cpus going up the 5878 * tree to only the first of the previous level and we decrease the frequency 5879 * of load-balance at each level inv. proportional to the number of cpus in 5880 * the groups. 5881 * 5882 * This yields: 5883 * 5884 * log_2 n 1 n 5885 * \Sum { --- * --- * 2^i } = O(n) (5) 5886 * i = 0 2^i 2^i 5887 * `- size of each group 5888 * | | `- number of cpus doing load-balance 5889 * | `- freq 5890 * `- sum over all levels 5891 * 5892 * Coupled with a limit on how many tasks we can migrate every balance pass, 5893 * this makes (5) the runtime complexity of the balancer. 5894 * 5895 * An important property here is that each CPU is still (indirectly) connected 5896 * to every other cpu in at most O(log n) steps: 5897 * 5898 * The adjacency matrix of the resulting graph is given by: 5899 * 5900 * log_2 n 5901 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6) 5902 * k = 0 5903 * 5904 * And you'll find that: 5905 * 5906 * A^(log_2 n)_i,j != 0 for all i,j (7) 5907 * 5908 * Showing there's indeed a path between every cpu in at most O(log n) steps. 5909 * The task movement gives a factor of O(m), giving a convergence complexity 5910 * of: 5911 * 5912 * O(nm log n), n := nr_cpus, m := nr_tasks (8) 5913 * 5914 * 5915 * WORK CONSERVING 5916 * 5917 * In order to avoid CPUs going idle while there's still work to do, new idle 5918 * balancing is more aggressive and has the newly idle cpu iterate up the domain 5919 * tree itself instead of relying on other CPUs to bring it work. 5920 * 5921 * This adds some complexity to both (5) and (8) but it reduces the total idle 5922 * time. 5923 * 5924 * [XXX more?] 5925 * 5926 * 5927 * CGROUPS 5928 * 5929 * Cgroups make a horror show out of (2), instead of a simple sum we get: 5930 * 5931 * s_k,i 5932 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9) 5933 * S_k 5934 * 5935 * Where 5936 * 5937 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10) 5938 * 5939 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i. 5940 * 5941 * The big problem is S_k, its a global sum needed to compute a local (W_i) 5942 * property. 5943 * 5944 * [XXX write more on how we solve this.. _after_ merging pjt's patches that 5945 * rewrite all of this once again.] 5946 */ 5947 5948 static unsigned long __read_mostly max_load_balance_interval = HZ/10; 5949 5950 enum fbq_type { regular, remote, all }; 5951 5952 #define LBF_ALL_PINNED 0x01 5953 #define LBF_NEED_BREAK 0x02 5954 #define LBF_DST_PINNED 0x04 5955 #define LBF_SOME_PINNED 0x08 5956 5957 struct lb_env { 5958 struct sched_domain *sd; 5959 5960 struct rq *src_rq; 5961 int src_cpu; 5962 5963 int dst_cpu; 5964 struct rq *dst_rq; 5965 5966 struct cpumask *dst_grpmask; 5967 int new_dst_cpu; 5968 enum cpu_idle_type idle; 5969 long imbalance; 5970 /* The set of CPUs under consideration for load-balancing */ 5971 struct cpumask *cpus; 5972 5973 unsigned int flags; 5974 5975 unsigned int loop; 5976 unsigned int loop_break; 5977 unsigned int loop_max; 5978 5979 enum fbq_type fbq_type; 5980 struct list_head tasks; 5981 }; 5982 5983 /* 5984 * Is this task likely cache-hot: 5985 */ 5986 static int task_hot(struct task_struct *p, struct lb_env *env) 5987 { 5988 s64 delta; 5989 5990 lockdep_assert_held(&env->src_rq->lock); 5991 5992 if (p->sched_class != &fair_sched_class) 5993 return 0; 5994 5995 if (unlikely(p->policy == SCHED_IDLE)) 5996 return 0; 5997 5998 /* 5999 * Buddy candidates are cache hot: 6000 */ 6001 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running && 6002 (&p->se == cfs_rq_of(&p->se)->next || 6003 &p->se == cfs_rq_of(&p->se)->last)) 6004 return 1; 6005 6006 if (sysctl_sched_migration_cost == -1) 6007 return 1; 6008 if (sysctl_sched_migration_cost == 0) 6009 return 0; 6010 6011 delta = rq_clock_task(env->src_rq) - p->se.exec_start; 6012 6013 return delta < (s64)sysctl_sched_migration_cost; 6014 } 6015 6016 #ifdef CONFIG_NUMA_BALANCING 6017 /* 6018 * Returns 1, if task migration degrades locality 6019 * Returns 0, if task migration improves locality i.e migration preferred. 6020 * Returns -1, if task migration is not affected by locality. 6021 */ 6022 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env) 6023 { 6024 struct numa_group *numa_group = rcu_dereference(p->numa_group); 6025 unsigned long src_faults, dst_faults; 6026 int src_nid, dst_nid; 6027 6028 if (!static_branch_likely(&sched_numa_balancing)) 6029 return -1; 6030 6031 if (!p->numa_faults || !(env->sd->flags & SD_NUMA)) 6032 return -1; 6033 6034 src_nid = cpu_to_node(env->src_cpu); 6035 dst_nid = cpu_to_node(env->dst_cpu); 6036 6037 if (src_nid == dst_nid) 6038 return -1; 6039 6040 /* Migrating away from the preferred node is always bad. */ 6041 if (src_nid == p->numa_preferred_nid) { 6042 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running) 6043 return 1; 6044 else 6045 return -1; 6046 } 6047 6048 /* Encourage migration to the preferred node. */ 6049 if (dst_nid == p->numa_preferred_nid) 6050 return 0; 6051 6052 if (numa_group) { 6053 src_faults = group_faults(p, src_nid); 6054 dst_faults = group_faults(p, dst_nid); 6055 } else { 6056 src_faults = task_faults(p, src_nid); 6057 dst_faults = task_faults(p, dst_nid); 6058 } 6059 6060 return dst_faults < src_faults; 6061 } 6062 6063 #else 6064 static inline int migrate_degrades_locality(struct task_struct *p, 6065 struct lb_env *env) 6066 { 6067 return -1; 6068 } 6069 #endif 6070 6071 /* 6072 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? 6073 */ 6074 static 6075 int can_migrate_task(struct task_struct *p, struct lb_env *env) 6076 { 6077 int tsk_cache_hot; 6078 6079 lockdep_assert_held(&env->src_rq->lock); 6080 6081 /* 6082 * We do not migrate tasks that are: 6083 * 1) throttled_lb_pair, or 6084 * 2) cannot be migrated to this CPU due to cpus_allowed, or 6085 * 3) running (obviously), or 6086 * 4) are cache-hot on their current CPU. 6087 */ 6088 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu)) 6089 return 0; 6090 6091 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) { 6092 int cpu; 6093 6094 schedstat_inc(p, se.statistics.nr_failed_migrations_affine); 6095 6096 env->flags |= LBF_SOME_PINNED; 6097 6098 /* 6099 * Remember if this task can be migrated to any other cpu in 6100 * our sched_group. We may want to revisit it if we couldn't 6101 * meet load balance goals by pulling other tasks on src_cpu. 6102 * 6103 * Also avoid computing new_dst_cpu if we have already computed 6104 * one in current iteration. 6105 */ 6106 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED)) 6107 return 0; 6108 6109 /* Prevent to re-select dst_cpu via env's cpus */ 6110 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) { 6111 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) { 6112 env->flags |= LBF_DST_PINNED; 6113 env->new_dst_cpu = cpu; 6114 break; 6115 } 6116 } 6117 6118 return 0; 6119 } 6120 6121 /* Record that we found atleast one task that could run on dst_cpu */ 6122 env->flags &= ~LBF_ALL_PINNED; 6123 6124 if (task_running(env->src_rq, p)) { 6125 schedstat_inc(p, se.statistics.nr_failed_migrations_running); 6126 return 0; 6127 } 6128 6129 /* 6130 * Aggressive migration if: 6131 * 1) destination numa is preferred 6132 * 2) task is cache cold, or 6133 * 3) too many balance attempts have failed. 6134 */ 6135 tsk_cache_hot = migrate_degrades_locality(p, env); 6136 if (tsk_cache_hot == -1) 6137 tsk_cache_hot = task_hot(p, env); 6138 6139 if (tsk_cache_hot <= 0 || 6140 env->sd->nr_balance_failed > env->sd->cache_nice_tries) { 6141 if (tsk_cache_hot == 1) { 6142 schedstat_inc(env->sd, lb_hot_gained[env->idle]); 6143 schedstat_inc(p, se.statistics.nr_forced_migrations); 6144 } 6145 return 1; 6146 } 6147 6148 schedstat_inc(p, se.statistics.nr_failed_migrations_hot); 6149 return 0; 6150 } 6151 6152 /* 6153 * detach_task() -- detach the task for the migration specified in env 6154 */ 6155 static void detach_task(struct task_struct *p, struct lb_env *env) 6156 { 6157 lockdep_assert_held(&env->src_rq->lock); 6158 6159 p->on_rq = TASK_ON_RQ_MIGRATING; 6160 deactivate_task(env->src_rq, p, 0); 6161 set_task_cpu(p, env->dst_cpu); 6162 } 6163 6164 /* 6165 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as 6166 * part of active balancing operations within "domain". 6167 * 6168 * Returns a task if successful and NULL otherwise. 6169 */ 6170 static struct task_struct *detach_one_task(struct lb_env *env) 6171 { 6172 struct task_struct *p, *n; 6173 6174 lockdep_assert_held(&env->src_rq->lock); 6175 6176 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) { 6177 if (!can_migrate_task(p, env)) 6178 continue; 6179 6180 detach_task(p, env); 6181 6182 /* 6183 * Right now, this is only the second place where 6184 * lb_gained[env->idle] is updated (other is detach_tasks) 6185 * so we can safely collect stats here rather than 6186 * inside detach_tasks(). 6187 */ 6188 schedstat_inc(env->sd, lb_gained[env->idle]); 6189 return p; 6190 } 6191 return NULL; 6192 } 6193 6194 static const unsigned int sched_nr_migrate_break = 32; 6195 6196 /* 6197 * detach_tasks() -- tries to detach up to imbalance weighted load from 6198 * busiest_rq, as part of a balancing operation within domain "sd". 6199 * 6200 * Returns number of detached tasks if successful and 0 otherwise. 6201 */ 6202 static int detach_tasks(struct lb_env *env) 6203 { 6204 struct list_head *tasks = &env->src_rq->cfs_tasks; 6205 struct task_struct *p; 6206 unsigned long load; 6207 int detached = 0; 6208 6209 lockdep_assert_held(&env->src_rq->lock); 6210 6211 if (env->imbalance <= 0) 6212 return 0; 6213 6214 while (!list_empty(tasks)) { 6215 /* 6216 * We don't want to steal all, otherwise we may be treated likewise, 6217 * which could at worst lead to a livelock crash. 6218 */ 6219 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1) 6220 break; 6221 6222 p = list_first_entry(tasks, struct task_struct, se.group_node); 6223 6224 env->loop++; 6225 /* We've more or less seen every task there is, call it quits */ 6226 if (env->loop > env->loop_max) 6227 break; 6228 6229 /* take a breather every nr_migrate tasks */ 6230 if (env->loop > env->loop_break) { 6231 env->loop_break += sched_nr_migrate_break; 6232 env->flags |= LBF_NEED_BREAK; 6233 break; 6234 } 6235 6236 if (!can_migrate_task(p, env)) 6237 goto next; 6238 6239 load = task_h_load(p); 6240 6241 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed) 6242 goto next; 6243 6244 if ((load / 2) > env->imbalance) 6245 goto next; 6246 6247 detach_task(p, env); 6248 list_add(&p->se.group_node, &env->tasks); 6249 6250 detached++; 6251 env->imbalance -= load; 6252 6253 #ifdef CONFIG_PREEMPT 6254 /* 6255 * NEWIDLE balancing is a source of latency, so preemptible 6256 * kernels will stop after the first task is detached to minimize 6257 * the critical section. 6258 */ 6259 if (env->idle == CPU_NEWLY_IDLE) 6260 break; 6261 #endif 6262 6263 /* 6264 * We only want to steal up to the prescribed amount of 6265 * weighted load. 6266 */ 6267 if (env->imbalance <= 0) 6268 break; 6269 6270 continue; 6271 next: 6272 list_move_tail(&p->se.group_node, tasks); 6273 } 6274 6275 /* 6276 * Right now, this is one of only two places we collect this stat 6277 * so we can safely collect detach_one_task() stats here rather 6278 * than inside detach_one_task(). 6279 */ 6280 schedstat_add(env->sd, lb_gained[env->idle], detached); 6281 6282 return detached; 6283 } 6284 6285 /* 6286 * attach_task() -- attach the task detached by detach_task() to its new rq. 6287 */ 6288 static void attach_task(struct rq *rq, struct task_struct *p) 6289 { 6290 lockdep_assert_held(&rq->lock); 6291 6292 BUG_ON(task_rq(p) != rq); 6293 activate_task(rq, p, 0); 6294 p->on_rq = TASK_ON_RQ_QUEUED; 6295 check_preempt_curr(rq, p, 0); 6296 } 6297 6298 /* 6299 * attach_one_task() -- attaches the task returned from detach_one_task() to 6300 * its new rq. 6301 */ 6302 static void attach_one_task(struct rq *rq, struct task_struct *p) 6303 { 6304 raw_spin_lock(&rq->lock); 6305 attach_task(rq, p); 6306 raw_spin_unlock(&rq->lock); 6307 } 6308 6309 /* 6310 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their 6311 * new rq. 6312 */ 6313 static void attach_tasks(struct lb_env *env) 6314 { 6315 struct list_head *tasks = &env->tasks; 6316 struct task_struct *p; 6317 6318 raw_spin_lock(&env->dst_rq->lock); 6319 6320 while (!list_empty(tasks)) { 6321 p = list_first_entry(tasks, struct task_struct, se.group_node); 6322 list_del_init(&p->se.group_node); 6323 6324 attach_task(env->dst_rq, p); 6325 } 6326 6327 raw_spin_unlock(&env->dst_rq->lock); 6328 } 6329 6330 #ifdef CONFIG_FAIR_GROUP_SCHED 6331 static void update_blocked_averages(int cpu) 6332 { 6333 struct rq *rq = cpu_rq(cpu); 6334 struct cfs_rq *cfs_rq; 6335 unsigned long flags; 6336 6337 raw_spin_lock_irqsave(&rq->lock, flags); 6338 update_rq_clock(rq); 6339 6340 /* 6341 * Iterates the task_group tree in a bottom up fashion, see 6342 * list_add_leaf_cfs_rq() for details. 6343 */ 6344 for_each_leaf_cfs_rq(rq, cfs_rq) { 6345 /* throttled entities do not contribute to load */ 6346 if (throttled_hierarchy(cfs_rq)) 6347 continue; 6348 6349 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true)) 6350 update_tg_load_avg(cfs_rq, 0); 6351 } 6352 raw_spin_unlock_irqrestore(&rq->lock, flags); 6353 } 6354 6355 /* 6356 * Compute the hierarchical load factor for cfs_rq and all its ascendants. 6357 * This needs to be done in a top-down fashion because the load of a child 6358 * group is a fraction of its parents load. 6359 */ 6360 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq) 6361 { 6362 struct rq *rq = rq_of(cfs_rq); 6363 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)]; 6364 unsigned long now = jiffies; 6365 unsigned long load; 6366 6367 if (cfs_rq->last_h_load_update == now) 6368 return; 6369 6370 cfs_rq->h_load_next = NULL; 6371 for_each_sched_entity(se) { 6372 cfs_rq = cfs_rq_of(se); 6373 cfs_rq->h_load_next = se; 6374 if (cfs_rq->last_h_load_update == now) 6375 break; 6376 } 6377 6378 if (!se) { 6379 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq); 6380 cfs_rq->last_h_load_update = now; 6381 } 6382 6383 while ((se = cfs_rq->h_load_next) != NULL) { 6384 load = cfs_rq->h_load; 6385 load = div64_ul(load * se->avg.load_avg, 6386 cfs_rq_load_avg(cfs_rq) + 1); 6387 cfs_rq = group_cfs_rq(se); 6388 cfs_rq->h_load = load; 6389 cfs_rq->last_h_load_update = now; 6390 } 6391 } 6392 6393 static unsigned long task_h_load(struct task_struct *p) 6394 { 6395 struct cfs_rq *cfs_rq = task_cfs_rq(p); 6396 6397 update_cfs_rq_h_load(cfs_rq); 6398 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load, 6399 cfs_rq_load_avg(cfs_rq) + 1); 6400 } 6401 #else 6402 static inline void update_blocked_averages(int cpu) 6403 { 6404 struct rq *rq = cpu_rq(cpu); 6405 struct cfs_rq *cfs_rq = &rq->cfs; 6406 unsigned long flags; 6407 6408 raw_spin_lock_irqsave(&rq->lock, flags); 6409 update_rq_clock(rq); 6410 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true); 6411 raw_spin_unlock_irqrestore(&rq->lock, flags); 6412 } 6413 6414 static unsigned long task_h_load(struct task_struct *p) 6415 { 6416 return p->se.avg.load_avg; 6417 } 6418 #endif 6419 6420 /********** Helpers for find_busiest_group ************************/ 6421 6422 enum group_type { 6423 group_other = 0, 6424 group_imbalanced, 6425 group_overloaded, 6426 }; 6427 6428 /* 6429 * sg_lb_stats - stats of a sched_group required for load_balancing 6430 */ 6431 struct sg_lb_stats { 6432 unsigned long avg_load; /*Avg load across the CPUs of the group */ 6433 unsigned long group_load; /* Total load over the CPUs of the group */ 6434 unsigned long sum_weighted_load; /* Weighted load of group's tasks */ 6435 unsigned long load_per_task; 6436 unsigned long group_capacity; 6437 unsigned long group_util; /* Total utilization of the group */ 6438 unsigned int sum_nr_running; /* Nr tasks running in the group */ 6439 unsigned int idle_cpus; 6440 unsigned int group_weight; 6441 enum group_type group_type; 6442 int group_no_capacity; 6443 #ifdef CONFIG_NUMA_BALANCING 6444 unsigned int nr_numa_running; 6445 unsigned int nr_preferred_running; 6446 #endif 6447 }; 6448 6449 /* 6450 * sd_lb_stats - Structure to store the statistics of a sched_domain 6451 * during load balancing. 6452 */ 6453 struct sd_lb_stats { 6454 struct sched_group *busiest; /* Busiest group in this sd */ 6455 struct sched_group *local; /* Local group in this sd */ 6456 unsigned long total_load; /* Total load of all groups in sd */ 6457 unsigned long total_capacity; /* Total capacity of all groups in sd */ 6458 unsigned long avg_load; /* Average load across all groups in sd */ 6459 6460 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */ 6461 struct sg_lb_stats local_stat; /* Statistics of the local group */ 6462 }; 6463 6464 static inline void init_sd_lb_stats(struct sd_lb_stats *sds) 6465 { 6466 /* 6467 * Skimp on the clearing to avoid duplicate work. We can avoid clearing 6468 * local_stat because update_sg_lb_stats() does a full clear/assignment. 6469 * We must however clear busiest_stat::avg_load because 6470 * update_sd_pick_busiest() reads this before assignment. 6471 */ 6472 *sds = (struct sd_lb_stats){ 6473 .busiest = NULL, 6474 .local = NULL, 6475 .total_load = 0UL, 6476 .total_capacity = 0UL, 6477 .busiest_stat = { 6478 .avg_load = 0UL, 6479 .sum_nr_running = 0, 6480 .group_type = group_other, 6481 }, 6482 }; 6483 } 6484 6485 /** 6486 * get_sd_load_idx - Obtain the load index for a given sched domain. 6487 * @sd: The sched_domain whose load_idx is to be obtained. 6488 * @idle: The idle status of the CPU for whose sd load_idx is obtained. 6489 * 6490 * Return: The load index. 6491 */ 6492 static inline int get_sd_load_idx(struct sched_domain *sd, 6493 enum cpu_idle_type idle) 6494 { 6495 int load_idx; 6496 6497 switch (idle) { 6498 case CPU_NOT_IDLE: 6499 load_idx = sd->busy_idx; 6500 break; 6501 6502 case CPU_NEWLY_IDLE: 6503 load_idx = sd->newidle_idx; 6504 break; 6505 default: 6506 load_idx = sd->idle_idx; 6507 break; 6508 } 6509 6510 return load_idx; 6511 } 6512 6513 static unsigned long scale_rt_capacity(int cpu) 6514 { 6515 struct rq *rq = cpu_rq(cpu); 6516 u64 total, used, age_stamp, avg; 6517 s64 delta; 6518 6519 /* 6520 * Since we're reading these variables without serialization make sure 6521 * we read them once before doing sanity checks on them. 6522 */ 6523 age_stamp = READ_ONCE(rq->age_stamp); 6524 avg = READ_ONCE(rq->rt_avg); 6525 delta = __rq_clock_broken(rq) - age_stamp; 6526 6527 if (unlikely(delta < 0)) 6528 delta = 0; 6529 6530 total = sched_avg_period() + delta; 6531 6532 used = div_u64(avg, total); 6533 6534 if (likely(used < SCHED_CAPACITY_SCALE)) 6535 return SCHED_CAPACITY_SCALE - used; 6536 6537 return 1; 6538 } 6539 6540 static void update_cpu_capacity(struct sched_domain *sd, int cpu) 6541 { 6542 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu); 6543 struct sched_group *sdg = sd->groups; 6544 6545 cpu_rq(cpu)->cpu_capacity_orig = capacity; 6546 6547 capacity *= scale_rt_capacity(cpu); 6548 capacity >>= SCHED_CAPACITY_SHIFT; 6549 6550 if (!capacity) 6551 capacity = 1; 6552 6553 cpu_rq(cpu)->cpu_capacity = capacity; 6554 sdg->sgc->capacity = capacity; 6555 } 6556 6557 void update_group_capacity(struct sched_domain *sd, int cpu) 6558 { 6559 struct sched_domain *child = sd->child; 6560 struct sched_group *group, *sdg = sd->groups; 6561 unsigned long capacity; 6562 unsigned long interval; 6563 6564 interval = msecs_to_jiffies(sd->balance_interval); 6565 interval = clamp(interval, 1UL, max_load_balance_interval); 6566 sdg->sgc->next_update = jiffies + interval; 6567 6568 if (!child) { 6569 update_cpu_capacity(sd, cpu); 6570 return; 6571 } 6572 6573 capacity = 0; 6574 6575 if (child->flags & SD_OVERLAP) { 6576 /* 6577 * SD_OVERLAP domains cannot assume that child groups 6578 * span the current group. 6579 */ 6580 6581 for_each_cpu(cpu, sched_group_cpus(sdg)) { 6582 struct sched_group_capacity *sgc; 6583 struct rq *rq = cpu_rq(cpu); 6584 6585 /* 6586 * build_sched_domains() -> init_sched_groups_capacity() 6587 * gets here before we've attached the domains to the 6588 * runqueues. 6589 * 6590 * Use capacity_of(), which is set irrespective of domains 6591 * in update_cpu_capacity(). 6592 * 6593 * This avoids capacity from being 0 and 6594 * causing divide-by-zero issues on boot. 6595 */ 6596 if (unlikely(!rq->sd)) { 6597 capacity += capacity_of(cpu); 6598 continue; 6599 } 6600 6601 sgc = rq->sd->groups->sgc; 6602 capacity += sgc->capacity; 6603 } 6604 } else { 6605 /* 6606 * !SD_OVERLAP domains can assume that child groups 6607 * span the current group. 6608 */ 6609 6610 group = child->groups; 6611 do { 6612 capacity += group->sgc->capacity; 6613 group = group->next; 6614 } while (group != child->groups); 6615 } 6616 6617 sdg->sgc->capacity = capacity; 6618 } 6619 6620 /* 6621 * Check whether the capacity of the rq has been noticeably reduced by side 6622 * activity. The imbalance_pct is used for the threshold. 6623 * Return true is the capacity is reduced 6624 */ 6625 static inline int 6626 check_cpu_capacity(struct rq *rq, struct sched_domain *sd) 6627 { 6628 return ((rq->cpu_capacity * sd->imbalance_pct) < 6629 (rq->cpu_capacity_orig * 100)); 6630 } 6631 6632 /* 6633 * Group imbalance indicates (and tries to solve) the problem where balancing 6634 * groups is inadequate due to tsk_cpus_allowed() constraints. 6635 * 6636 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a 6637 * cpumask covering 1 cpu of the first group and 3 cpus of the second group. 6638 * Something like: 6639 * 6640 * { 0 1 2 3 } { 4 5 6 7 } 6641 * * * * * 6642 * 6643 * If we were to balance group-wise we'd place two tasks in the first group and 6644 * two tasks in the second group. Clearly this is undesired as it will overload 6645 * cpu 3 and leave one of the cpus in the second group unused. 6646 * 6647 * The current solution to this issue is detecting the skew in the first group 6648 * by noticing the lower domain failed to reach balance and had difficulty 6649 * moving tasks due to affinity constraints. 6650 * 6651 * When this is so detected; this group becomes a candidate for busiest; see 6652 * update_sd_pick_busiest(). And calculate_imbalance() and 6653 * find_busiest_group() avoid some of the usual balance conditions to allow it 6654 * to create an effective group imbalance. 6655 * 6656 * This is a somewhat tricky proposition since the next run might not find the 6657 * group imbalance and decide the groups need to be balanced again. A most 6658 * subtle and fragile situation. 6659 */ 6660 6661 static inline int sg_imbalanced(struct sched_group *group) 6662 { 6663 return group->sgc->imbalance; 6664 } 6665 6666 /* 6667 * group_has_capacity returns true if the group has spare capacity that could 6668 * be used by some tasks. 6669 * We consider that a group has spare capacity if the * number of task is 6670 * smaller than the number of CPUs or if the utilization is lower than the 6671 * available capacity for CFS tasks. 6672 * For the latter, we use a threshold to stabilize the state, to take into 6673 * account the variance of the tasks' load and to return true if the available 6674 * capacity in meaningful for the load balancer. 6675 * As an example, an available capacity of 1% can appear but it doesn't make 6676 * any benefit for the load balance. 6677 */ 6678 static inline bool 6679 group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs) 6680 { 6681 if (sgs->sum_nr_running < sgs->group_weight) 6682 return true; 6683 6684 if ((sgs->group_capacity * 100) > 6685 (sgs->group_util * env->sd->imbalance_pct)) 6686 return true; 6687 6688 return false; 6689 } 6690 6691 /* 6692 * group_is_overloaded returns true if the group has more tasks than it can 6693 * handle. 6694 * group_is_overloaded is not equals to !group_has_capacity because a group 6695 * with the exact right number of tasks, has no more spare capacity but is not 6696 * overloaded so both group_has_capacity and group_is_overloaded return 6697 * false. 6698 */ 6699 static inline bool 6700 group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs) 6701 { 6702 if (sgs->sum_nr_running <= sgs->group_weight) 6703 return false; 6704 6705 if ((sgs->group_capacity * 100) < 6706 (sgs->group_util * env->sd->imbalance_pct)) 6707 return true; 6708 6709 return false; 6710 } 6711 6712 static inline enum 6713 group_type group_classify(struct sched_group *group, 6714 struct sg_lb_stats *sgs) 6715 { 6716 if (sgs->group_no_capacity) 6717 return group_overloaded; 6718 6719 if (sg_imbalanced(group)) 6720 return group_imbalanced; 6721 6722 return group_other; 6723 } 6724 6725 /** 6726 * update_sg_lb_stats - Update sched_group's statistics for load balancing. 6727 * @env: The load balancing environment. 6728 * @group: sched_group whose statistics are to be updated. 6729 * @load_idx: Load index of sched_domain of this_cpu for load calc. 6730 * @local_group: Does group contain this_cpu. 6731 * @sgs: variable to hold the statistics for this group. 6732 * @overload: Indicate more than one runnable task for any CPU. 6733 */ 6734 static inline void update_sg_lb_stats(struct lb_env *env, 6735 struct sched_group *group, int load_idx, 6736 int local_group, struct sg_lb_stats *sgs, 6737 bool *overload) 6738 { 6739 unsigned long load; 6740 int i, nr_running; 6741 6742 memset(sgs, 0, sizeof(*sgs)); 6743 6744 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 6745 struct rq *rq = cpu_rq(i); 6746 6747 /* Bias balancing toward cpus of our domain */ 6748 if (local_group) 6749 load = target_load(i, load_idx); 6750 else 6751 load = source_load(i, load_idx); 6752 6753 sgs->group_load += load; 6754 sgs->group_util += cpu_util(i); 6755 sgs->sum_nr_running += rq->cfs.h_nr_running; 6756 6757 nr_running = rq->nr_running; 6758 if (nr_running > 1) 6759 *overload = true; 6760 6761 #ifdef CONFIG_NUMA_BALANCING 6762 sgs->nr_numa_running += rq->nr_numa_running; 6763 sgs->nr_preferred_running += rq->nr_preferred_running; 6764 #endif 6765 sgs->sum_weighted_load += weighted_cpuload(i); 6766 /* 6767 * No need to call idle_cpu() if nr_running is not 0 6768 */ 6769 if (!nr_running && idle_cpu(i)) 6770 sgs->idle_cpus++; 6771 } 6772 6773 /* Adjust by relative CPU capacity of the group */ 6774 sgs->group_capacity = group->sgc->capacity; 6775 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity; 6776 6777 if (sgs->sum_nr_running) 6778 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; 6779 6780 sgs->group_weight = group->group_weight; 6781 6782 sgs->group_no_capacity = group_is_overloaded(env, sgs); 6783 sgs->group_type = group_classify(group, sgs); 6784 } 6785 6786 /** 6787 * update_sd_pick_busiest - return 1 on busiest group 6788 * @env: The load balancing environment. 6789 * @sds: sched_domain statistics 6790 * @sg: sched_group candidate to be checked for being the busiest 6791 * @sgs: sched_group statistics 6792 * 6793 * Determine if @sg is a busier group than the previously selected 6794 * busiest group. 6795 * 6796 * Return: %true if @sg is a busier group than the previously selected 6797 * busiest group. %false otherwise. 6798 */ 6799 static bool update_sd_pick_busiest(struct lb_env *env, 6800 struct sd_lb_stats *sds, 6801 struct sched_group *sg, 6802 struct sg_lb_stats *sgs) 6803 { 6804 struct sg_lb_stats *busiest = &sds->busiest_stat; 6805 6806 if (sgs->group_type > busiest->group_type) 6807 return true; 6808 6809 if (sgs->group_type < busiest->group_type) 6810 return false; 6811 6812 if (sgs->avg_load <= busiest->avg_load) 6813 return false; 6814 6815 /* This is the busiest node in its class. */ 6816 if (!(env->sd->flags & SD_ASYM_PACKING)) 6817 return true; 6818 6819 /* No ASYM_PACKING if target cpu is already busy */ 6820 if (env->idle == CPU_NOT_IDLE) 6821 return true; 6822 /* 6823 * ASYM_PACKING needs to move all the work to the lowest 6824 * numbered CPUs in the group, therefore mark all groups 6825 * higher than ourself as busy. 6826 */ 6827 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) { 6828 if (!sds->busiest) 6829 return true; 6830 6831 /* Prefer to move from highest possible cpu's work */ 6832 if (group_first_cpu(sds->busiest) < group_first_cpu(sg)) 6833 return true; 6834 } 6835 6836 return false; 6837 } 6838 6839 #ifdef CONFIG_NUMA_BALANCING 6840 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 6841 { 6842 if (sgs->sum_nr_running > sgs->nr_numa_running) 6843 return regular; 6844 if (sgs->sum_nr_running > sgs->nr_preferred_running) 6845 return remote; 6846 return all; 6847 } 6848 6849 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6850 { 6851 if (rq->nr_running > rq->nr_numa_running) 6852 return regular; 6853 if (rq->nr_running > rq->nr_preferred_running) 6854 return remote; 6855 return all; 6856 } 6857 #else 6858 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs) 6859 { 6860 return all; 6861 } 6862 6863 static inline enum fbq_type fbq_classify_rq(struct rq *rq) 6864 { 6865 return regular; 6866 } 6867 #endif /* CONFIG_NUMA_BALANCING */ 6868 6869 /** 6870 * update_sd_lb_stats - Update sched_domain's statistics for load balancing. 6871 * @env: The load balancing environment. 6872 * @sds: variable to hold the statistics for this sched_domain. 6873 */ 6874 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds) 6875 { 6876 struct sched_domain *child = env->sd->child; 6877 struct sched_group *sg = env->sd->groups; 6878 struct sg_lb_stats tmp_sgs; 6879 int load_idx, prefer_sibling = 0; 6880 bool overload = false; 6881 6882 if (child && child->flags & SD_PREFER_SIBLING) 6883 prefer_sibling = 1; 6884 6885 load_idx = get_sd_load_idx(env->sd, env->idle); 6886 6887 do { 6888 struct sg_lb_stats *sgs = &tmp_sgs; 6889 int local_group; 6890 6891 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg)); 6892 if (local_group) { 6893 sds->local = sg; 6894 sgs = &sds->local_stat; 6895 6896 if (env->idle != CPU_NEWLY_IDLE || 6897 time_after_eq(jiffies, sg->sgc->next_update)) 6898 update_group_capacity(env->sd, env->dst_cpu); 6899 } 6900 6901 update_sg_lb_stats(env, sg, load_idx, local_group, sgs, 6902 &overload); 6903 6904 if (local_group) 6905 goto next_group; 6906 6907 /* 6908 * In case the child domain prefers tasks go to siblings 6909 * first, lower the sg capacity so that we'll try 6910 * and move all the excess tasks away. We lower the capacity 6911 * of a group only if the local group has the capacity to fit 6912 * these excess tasks. The extra check prevents the case where 6913 * you always pull from the heaviest group when it is already 6914 * under-utilized (possible with a large weight task outweighs 6915 * the tasks on the system). 6916 */ 6917 if (prefer_sibling && sds->local && 6918 group_has_capacity(env, &sds->local_stat) && 6919 (sgs->sum_nr_running > 1)) { 6920 sgs->group_no_capacity = 1; 6921 sgs->group_type = group_classify(sg, sgs); 6922 } 6923 6924 if (update_sd_pick_busiest(env, sds, sg, sgs)) { 6925 sds->busiest = sg; 6926 sds->busiest_stat = *sgs; 6927 } 6928 6929 next_group: 6930 /* Now, start updating sd_lb_stats */ 6931 sds->total_load += sgs->group_load; 6932 sds->total_capacity += sgs->group_capacity; 6933 6934 sg = sg->next; 6935 } while (sg != env->sd->groups); 6936 6937 if (env->sd->flags & SD_NUMA) 6938 env->fbq_type = fbq_classify_group(&sds->busiest_stat); 6939 6940 if (!env->sd->parent) { 6941 /* update overload indicator if we are at root domain */ 6942 if (env->dst_rq->rd->overload != overload) 6943 env->dst_rq->rd->overload = overload; 6944 } 6945 6946 } 6947 6948 /** 6949 * check_asym_packing - Check to see if the group is packed into the 6950 * sched doman. 6951 * 6952 * This is primarily intended to used at the sibling level. Some 6953 * cores like POWER7 prefer to use lower numbered SMT threads. In the 6954 * case of POWER7, it can move to lower SMT modes only when higher 6955 * threads are idle. When in lower SMT modes, the threads will 6956 * perform better since they share less core resources. Hence when we 6957 * have idle threads, we want them to be the higher ones. 6958 * 6959 * This packing function is run on idle threads. It checks to see if 6960 * the busiest CPU in this domain (core in the P7 case) has a higher 6961 * CPU number than the packing function is being run on. Here we are 6962 * assuming lower CPU number will be equivalent to lower a SMT thread 6963 * number. 6964 * 6965 * Return: 1 when packing is required and a task should be moved to 6966 * this CPU. The amount of the imbalance is returned in *imbalance. 6967 * 6968 * @env: The load balancing environment. 6969 * @sds: Statistics of the sched_domain which is to be packed 6970 */ 6971 static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds) 6972 { 6973 int busiest_cpu; 6974 6975 if (!(env->sd->flags & SD_ASYM_PACKING)) 6976 return 0; 6977 6978 if (env->idle == CPU_NOT_IDLE) 6979 return 0; 6980 6981 if (!sds->busiest) 6982 return 0; 6983 6984 busiest_cpu = group_first_cpu(sds->busiest); 6985 if (env->dst_cpu > busiest_cpu) 6986 return 0; 6987 6988 env->imbalance = DIV_ROUND_CLOSEST( 6989 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity, 6990 SCHED_CAPACITY_SCALE); 6991 6992 return 1; 6993 } 6994 6995 /** 6996 * fix_small_imbalance - Calculate the minor imbalance that exists 6997 * amongst the groups of a sched_domain, during 6998 * load balancing. 6999 * @env: The load balancing environment. 7000 * @sds: Statistics of the sched_domain whose imbalance is to be calculated. 7001 */ 7002 static inline 7003 void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 7004 { 7005 unsigned long tmp, capa_now = 0, capa_move = 0; 7006 unsigned int imbn = 2; 7007 unsigned long scaled_busy_load_per_task; 7008 struct sg_lb_stats *local, *busiest; 7009 7010 local = &sds->local_stat; 7011 busiest = &sds->busiest_stat; 7012 7013 if (!local->sum_nr_running) 7014 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu); 7015 else if (busiest->load_per_task > local->load_per_task) 7016 imbn = 1; 7017 7018 scaled_busy_load_per_task = 7019 (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 7020 busiest->group_capacity; 7021 7022 if (busiest->avg_load + scaled_busy_load_per_task >= 7023 local->avg_load + (scaled_busy_load_per_task * imbn)) { 7024 env->imbalance = busiest->load_per_task; 7025 return; 7026 } 7027 7028 /* 7029 * OK, we don't have enough imbalance to justify moving tasks, 7030 * however we may be able to increase total CPU capacity used by 7031 * moving them. 7032 */ 7033 7034 capa_now += busiest->group_capacity * 7035 min(busiest->load_per_task, busiest->avg_load); 7036 capa_now += local->group_capacity * 7037 min(local->load_per_task, local->avg_load); 7038 capa_now /= SCHED_CAPACITY_SCALE; 7039 7040 /* Amount of load we'd subtract */ 7041 if (busiest->avg_load > scaled_busy_load_per_task) { 7042 capa_move += busiest->group_capacity * 7043 min(busiest->load_per_task, 7044 busiest->avg_load - scaled_busy_load_per_task); 7045 } 7046 7047 /* Amount of load we'd add */ 7048 if (busiest->avg_load * busiest->group_capacity < 7049 busiest->load_per_task * SCHED_CAPACITY_SCALE) { 7050 tmp = (busiest->avg_load * busiest->group_capacity) / 7051 local->group_capacity; 7052 } else { 7053 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) / 7054 local->group_capacity; 7055 } 7056 capa_move += local->group_capacity * 7057 min(local->load_per_task, local->avg_load + tmp); 7058 capa_move /= SCHED_CAPACITY_SCALE; 7059 7060 /* Move if we gain throughput */ 7061 if (capa_move > capa_now) 7062 env->imbalance = busiest->load_per_task; 7063 } 7064 7065 /** 7066 * calculate_imbalance - Calculate the amount of imbalance present within the 7067 * groups of a given sched_domain during load balance. 7068 * @env: load balance environment 7069 * @sds: statistics of the sched_domain whose imbalance is to be calculated. 7070 */ 7071 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds) 7072 { 7073 unsigned long max_pull, load_above_capacity = ~0UL; 7074 struct sg_lb_stats *local, *busiest; 7075 7076 local = &sds->local_stat; 7077 busiest = &sds->busiest_stat; 7078 7079 if (busiest->group_type == group_imbalanced) { 7080 /* 7081 * In the group_imb case we cannot rely on group-wide averages 7082 * to ensure cpu-load equilibrium, look at wider averages. XXX 7083 */ 7084 busiest->load_per_task = 7085 min(busiest->load_per_task, sds->avg_load); 7086 } 7087 7088 /* 7089 * Avg load of busiest sg can be less and avg load of local sg can 7090 * be greater than avg load across all sgs of sd because avg load 7091 * factors in sg capacity and sgs with smaller group_type are 7092 * skipped when updating the busiest sg: 7093 */ 7094 if (busiest->avg_load <= sds->avg_load || 7095 local->avg_load >= sds->avg_load) { 7096 env->imbalance = 0; 7097 return fix_small_imbalance(env, sds); 7098 } 7099 7100 /* 7101 * If there aren't any idle cpus, avoid creating some. 7102 */ 7103 if (busiest->group_type == group_overloaded && 7104 local->group_type == group_overloaded) { 7105 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE; 7106 if (load_above_capacity > busiest->group_capacity) { 7107 load_above_capacity -= busiest->group_capacity; 7108 load_above_capacity *= NICE_0_LOAD; 7109 load_above_capacity /= busiest->group_capacity; 7110 } else 7111 load_above_capacity = ~0UL; 7112 } 7113 7114 /* 7115 * We're trying to get all the cpus to the average_load, so we don't 7116 * want to push ourselves above the average load, nor do we wish to 7117 * reduce the max loaded cpu below the average load. At the same time, 7118 * we also don't want to reduce the group load below the group 7119 * capacity. Thus we look for the minimum possible imbalance. 7120 */ 7121 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity); 7122 7123 /* How much load to actually move to equalise the imbalance */ 7124 env->imbalance = min( 7125 max_pull * busiest->group_capacity, 7126 (sds->avg_load - local->avg_load) * local->group_capacity 7127 ) / SCHED_CAPACITY_SCALE; 7128 7129 /* 7130 * if *imbalance is less than the average load per runnable task 7131 * there is no guarantee that any tasks will be moved so we'll have 7132 * a think about bumping its value to force at least one task to be 7133 * moved 7134 */ 7135 if (env->imbalance < busiest->load_per_task) 7136 return fix_small_imbalance(env, sds); 7137 } 7138 7139 /******* find_busiest_group() helpers end here *********************/ 7140 7141 /** 7142 * find_busiest_group - Returns the busiest group within the sched_domain 7143 * if there is an imbalance. 7144 * 7145 * Also calculates the amount of weighted load which should be moved 7146 * to restore balance. 7147 * 7148 * @env: The load balancing environment. 7149 * 7150 * Return: - The busiest group if imbalance exists. 7151 */ 7152 static struct sched_group *find_busiest_group(struct lb_env *env) 7153 { 7154 struct sg_lb_stats *local, *busiest; 7155 struct sd_lb_stats sds; 7156 7157 init_sd_lb_stats(&sds); 7158 7159 /* 7160 * Compute the various statistics relavent for load balancing at 7161 * this level. 7162 */ 7163 update_sd_lb_stats(env, &sds); 7164 local = &sds.local_stat; 7165 busiest = &sds.busiest_stat; 7166 7167 /* ASYM feature bypasses nice load balance check */ 7168 if (check_asym_packing(env, &sds)) 7169 return sds.busiest; 7170 7171 /* There is no busy sibling group to pull tasks from */ 7172 if (!sds.busiest || busiest->sum_nr_running == 0) 7173 goto out_balanced; 7174 7175 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load) 7176 / sds.total_capacity; 7177 7178 /* 7179 * If the busiest group is imbalanced the below checks don't 7180 * work because they assume all things are equal, which typically 7181 * isn't true due to cpus_allowed constraints and the like. 7182 */ 7183 if (busiest->group_type == group_imbalanced) 7184 goto force_balance; 7185 7186 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ 7187 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) && 7188 busiest->group_no_capacity) 7189 goto force_balance; 7190 7191 /* 7192 * If the local group is busier than the selected busiest group 7193 * don't try and pull any tasks. 7194 */ 7195 if (local->avg_load >= busiest->avg_load) 7196 goto out_balanced; 7197 7198 /* 7199 * Don't pull any tasks if this group is already above the domain 7200 * average load. 7201 */ 7202 if (local->avg_load >= sds.avg_load) 7203 goto out_balanced; 7204 7205 if (env->idle == CPU_IDLE) { 7206 /* 7207 * This cpu is idle. If the busiest group is not overloaded 7208 * and there is no imbalance between this and busiest group 7209 * wrt idle cpus, it is balanced. The imbalance becomes 7210 * significant if the diff is greater than 1 otherwise we 7211 * might end up to just move the imbalance on another group 7212 */ 7213 if ((busiest->group_type != group_overloaded) && 7214 (local->idle_cpus <= (busiest->idle_cpus + 1))) 7215 goto out_balanced; 7216 } else { 7217 /* 7218 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use 7219 * imbalance_pct to be conservative. 7220 */ 7221 if (100 * busiest->avg_load <= 7222 env->sd->imbalance_pct * local->avg_load) 7223 goto out_balanced; 7224 } 7225 7226 force_balance: 7227 /* Looks like there is an imbalance. Compute it */ 7228 calculate_imbalance(env, &sds); 7229 return sds.busiest; 7230 7231 out_balanced: 7232 env->imbalance = 0; 7233 return NULL; 7234 } 7235 7236 /* 7237 * find_busiest_queue - find the busiest runqueue among the cpus in group. 7238 */ 7239 static struct rq *find_busiest_queue(struct lb_env *env, 7240 struct sched_group *group) 7241 { 7242 struct rq *busiest = NULL, *rq; 7243 unsigned long busiest_load = 0, busiest_capacity = 1; 7244 int i; 7245 7246 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { 7247 unsigned long capacity, wl; 7248 enum fbq_type rt; 7249 7250 rq = cpu_rq(i); 7251 rt = fbq_classify_rq(rq); 7252 7253 /* 7254 * We classify groups/runqueues into three groups: 7255 * - regular: there are !numa tasks 7256 * - remote: there are numa tasks that run on the 'wrong' node 7257 * - all: there is no distinction 7258 * 7259 * In order to avoid migrating ideally placed numa tasks, 7260 * ignore those when there's better options. 7261 * 7262 * If we ignore the actual busiest queue to migrate another 7263 * task, the next balance pass can still reduce the busiest 7264 * queue by moving tasks around inside the node. 7265 * 7266 * If we cannot move enough load due to this classification 7267 * the next pass will adjust the group classification and 7268 * allow migration of more tasks. 7269 * 7270 * Both cases only affect the total convergence complexity. 7271 */ 7272 if (rt > env->fbq_type) 7273 continue; 7274 7275 capacity = capacity_of(i); 7276 7277 wl = weighted_cpuload(i); 7278 7279 /* 7280 * When comparing with imbalance, use weighted_cpuload() 7281 * which is not scaled with the cpu capacity. 7282 */ 7283 7284 if (rq->nr_running == 1 && wl > env->imbalance && 7285 !check_cpu_capacity(rq, env->sd)) 7286 continue; 7287 7288 /* 7289 * For the load comparisons with the other cpu's, consider 7290 * the weighted_cpuload() scaled with the cpu capacity, so 7291 * that the load can be moved away from the cpu that is 7292 * potentially running at a lower capacity. 7293 * 7294 * Thus we're looking for max(wl_i / capacity_i), crosswise 7295 * multiplication to rid ourselves of the division works out 7296 * to: wl_i * capacity_j > wl_j * capacity_i; where j is 7297 * our previous maximum. 7298 */ 7299 if (wl * busiest_capacity > busiest_load * capacity) { 7300 busiest_load = wl; 7301 busiest_capacity = capacity; 7302 busiest = rq; 7303 } 7304 } 7305 7306 return busiest; 7307 } 7308 7309 /* 7310 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but 7311 * so long as it is large enough. 7312 */ 7313 #define MAX_PINNED_INTERVAL 512 7314 7315 /* Working cpumask for load_balance and load_balance_newidle. */ 7316 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask); 7317 7318 static int need_active_balance(struct lb_env *env) 7319 { 7320 struct sched_domain *sd = env->sd; 7321 7322 if (env->idle == CPU_NEWLY_IDLE) { 7323 7324 /* 7325 * ASYM_PACKING needs to force migrate tasks from busy but 7326 * higher numbered CPUs in order to pack all tasks in the 7327 * lowest numbered CPUs. 7328 */ 7329 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu) 7330 return 1; 7331 } 7332 7333 /* 7334 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task. 7335 * It's worth migrating the task if the src_cpu's capacity is reduced 7336 * because of other sched_class or IRQs if more capacity stays 7337 * available on dst_cpu. 7338 */ 7339 if ((env->idle != CPU_NOT_IDLE) && 7340 (env->src_rq->cfs.h_nr_running == 1)) { 7341 if ((check_cpu_capacity(env->src_rq, sd)) && 7342 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100)) 7343 return 1; 7344 } 7345 7346 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); 7347 } 7348 7349 static int active_load_balance_cpu_stop(void *data); 7350 7351 static int should_we_balance(struct lb_env *env) 7352 { 7353 struct sched_group *sg = env->sd->groups; 7354 struct cpumask *sg_cpus, *sg_mask; 7355 int cpu, balance_cpu = -1; 7356 7357 /* 7358 * In the newly idle case, we will allow all the cpu's 7359 * to do the newly idle load balance. 7360 */ 7361 if (env->idle == CPU_NEWLY_IDLE) 7362 return 1; 7363 7364 sg_cpus = sched_group_cpus(sg); 7365 sg_mask = sched_group_mask(sg); 7366 /* Try to find first idle cpu */ 7367 for_each_cpu_and(cpu, sg_cpus, env->cpus) { 7368 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu)) 7369 continue; 7370 7371 balance_cpu = cpu; 7372 break; 7373 } 7374 7375 if (balance_cpu == -1) 7376 balance_cpu = group_balance_cpu(sg); 7377 7378 /* 7379 * First idle cpu or the first cpu(busiest) in this sched group 7380 * is eligible for doing load balancing at this and above domains. 7381 */ 7382 return balance_cpu == env->dst_cpu; 7383 } 7384 7385 /* 7386 * Check this_cpu to ensure it is balanced within domain. Attempt to move 7387 * tasks if there is an imbalance. 7388 */ 7389 static int load_balance(int this_cpu, struct rq *this_rq, 7390 struct sched_domain *sd, enum cpu_idle_type idle, 7391 int *continue_balancing) 7392 { 7393 int ld_moved, cur_ld_moved, active_balance = 0; 7394 struct sched_domain *sd_parent = sd->parent; 7395 struct sched_group *group; 7396 struct rq *busiest; 7397 unsigned long flags; 7398 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask); 7399 7400 struct lb_env env = { 7401 .sd = sd, 7402 .dst_cpu = this_cpu, 7403 .dst_rq = this_rq, 7404 .dst_grpmask = sched_group_cpus(sd->groups), 7405 .idle = idle, 7406 .loop_break = sched_nr_migrate_break, 7407 .cpus = cpus, 7408 .fbq_type = all, 7409 .tasks = LIST_HEAD_INIT(env.tasks), 7410 }; 7411 7412 /* 7413 * For NEWLY_IDLE load_balancing, we don't need to consider 7414 * other cpus in our group 7415 */ 7416 if (idle == CPU_NEWLY_IDLE) 7417 env.dst_grpmask = NULL; 7418 7419 cpumask_copy(cpus, cpu_active_mask); 7420 7421 schedstat_inc(sd, lb_count[idle]); 7422 7423 redo: 7424 if (!should_we_balance(&env)) { 7425 *continue_balancing = 0; 7426 goto out_balanced; 7427 } 7428 7429 group = find_busiest_group(&env); 7430 if (!group) { 7431 schedstat_inc(sd, lb_nobusyg[idle]); 7432 goto out_balanced; 7433 } 7434 7435 busiest = find_busiest_queue(&env, group); 7436 if (!busiest) { 7437 schedstat_inc(sd, lb_nobusyq[idle]); 7438 goto out_balanced; 7439 } 7440 7441 BUG_ON(busiest == env.dst_rq); 7442 7443 schedstat_add(sd, lb_imbalance[idle], env.imbalance); 7444 7445 env.src_cpu = busiest->cpu; 7446 env.src_rq = busiest; 7447 7448 ld_moved = 0; 7449 if (busiest->nr_running > 1) { 7450 /* 7451 * Attempt to move tasks. If find_busiest_group has found 7452 * an imbalance but busiest->nr_running <= 1, the group is 7453 * still unbalanced. ld_moved simply stays zero, so it is 7454 * correctly treated as an imbalance. 7455 */ 7456 env.flags |= LBF_ALL_PINNED; 7457 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running); 7458 7459 more_balance: 7460 raw_spin_lock_irqsave(&busiest->lock, flags); 7461 7462 /* 7463 * cur_ld_moved - load moved in current iteration 7464 * ld_moved - cumulative load moved across iterations 7465 */ 7466 cur_ld_moved = detach_tasks(&env); 7467 7468 /* 7469 * We've detached some tasks from busiest_rq. Every 7470 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely 7471 * unlock busiest->lock, and we are able to be sure 7472 * that nobody can manipulate the tasks in parallel. 7473 * See task_rq_lock() family for the details. 7474 */ 7475 7476 raw_spin_unlock(&busiest->lock); 7477 7478 if (cur_ld_moved) { 7479 attach_tasks(&env); 7480 ld_moved += cur_ld_moved; 7481 } 7482 7483 local_irq_restore(flags); 7484 7485 if (env.flags & LBF_NEED_BREAK) { 7486 env.flags &= ~LBF_NEED_BREAK; 7487 goto more_balance; 7488 } 7489 7490 /* 7491 * Revisit (affine) tasks on src_cpu that couldn't be moved to 7492 * us and move them to an alternate dst_cpu in our sched_group 7493 * where they can run. The upper limit on how many times we 7494 * iterate on same src_cpu is dependent on number of cpus in our 7495 * sched_group. 7496 * 7497 * This changes load balance semantics a bit on who can move 7498 * load to a given_cpu. In addition to the given_cpu itself 7499 * (or a ilb_cpu acting on its behalf where given_cpu is 7500 * nohz-idle), we now have balance_cpu in a position to move 7501 * load to given_cpu. In rare situations, this may cause 7502 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding 7503 * _independently_ and at _same_ time to move some load to 7504 * given_cpu) causing exceess load to be moved to given_cpu. 7505 * This however should not happen so much in practice and 7506 * moreover subsequent load balance cycles should correct the 7507 * excess load moved. 7508 */ 7509 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) { 7510 7511 /* Prevent to re-select dst_cpu via env's cpus */ 7512 cpumask_clear_cpu(env.dst_cpu, env.cpus); 7513 7514 env.dst_rq = cpu_rq(env.new_dst_cpu); 7515 env.dst_cpu = env.new_dst_cpu; 7516 env.flags &= ~LBF_DST_PINNED; 7517 env.loop = 0; 7518 env.loop_break = sched_nr_migrate_break; 7519 7520 /* 7521 * Go back to "more_balance" rather than "redo" since we 7522 * need to continue with same src_cpu. 7523 */ 7524 goto more_balance; 7525 } 7526 7527 /* 7528 * We failed to reach balance because of affinity. 7529 */ 7530 if (sd_parent) { 7531 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 7532 7533 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) 7534 *group_imbalance = 1; 7535 } 7536 7537 /* All tasks on this runqueue were pinned by CPU affinity */ 7538 if (unlikely(env.flags & LBF_ALL_PINNED)) { 7539 cpumask_clear_cpu(cpu_of(busiest), cpus); 7540 if (!cpumask_empty(cpus)) { 7541 env.loop = 0; 7542 env.loop_break = sched_nr_migrate_break; 7543 goto redo; 7544 } 7545 goto out_all_pinned; 7546 } 7547 } 7548 7549 if (!ld_moved) { 7550 schedstat_inc(sd, lb_failed[idle]); 7551 /* 7552 * Increment the failure counter only on periodic balance. 7553 * We do not want newidle balance, which can be very 7554 * frequent, pollute the failure counter causing 7555 * excessive cache_hot migrations and active balances. 7556 */ 7557 if (idle != CPU_NEWLY_IDLE) 7558 sd->nr_balance_failed++; 7559 7560 if (need_active_balance(&env)) { 7561 raw_spin_lock_irqsave(&busiest->lock, flags); 7562 7563 /* don't kick the active_load_balance_cpu_stop, 7564 * if the curr task on busiest cpu can't be 7565 * moved to this_cpu 7566 */ 7567 if (!cpumask_test_cpu(this_cpu, 7568 tsk_cpus_allowed(busiest->curr))) { 7569 raw_spin_unlock_irqrestore(&busiest->lock, 7570 flags); 7571 env.flags |= LBF_ALL_PINNED; 7572 goto out_one_pinned; 7573 } 7574 7575 /* 7576 * ->active_balance synchronizes accesses to 7577 * ->active_balance_work. Once set, it's cleared 7578 * only after active load balance is finished. 7579 */ 7580 if (!busiest->active_balance) { 7581 busiest->active_balance = 1; 7582 busiest->push_cpu = this_cpu; 7583 active_balance = 1; 7584 } 7585 raw_spin_unlock_irqrestore(&busiest->lock, flags); 7586 7587 if (active_balance) { 7588 stop_one_cpu_nowait(cpu_of(busiest), 7589 active_load_balance_cpu_stop, busiest, 7590 &busiest->active_balance_work); 7591 } 7592 7593 /* We've kicked active balancing, force task migration. */ 7594 sd->nr_balance_failed = sd->cache_nice_tries+1; 7595 } 7596 } else 7597 sd->nr_balance_failed = 0; 7598 7599 if (likely(!active_balance)) { 7600 /* We were unbalanced, so reset the balancing interval */ 7601 sd->balance_interval = sd->min_interval; 7602 } else { 7603 /* 7604 * If we've begun active balancing, start to back off. This 7605 * case may not be covered by the all_pinned logic if there 7606 * is only 1 task on the busy runqueue (because we don't call 7607 * detach_tasks). 7608 */ 7609 if (sd->balance_interval < sd->max_interval) 7610 sd->balance_interval *= 2; 7611 } 7612 7613 goto out; 7614 7615 out_balanced: 7616 /* 7617 * We reach balance although we may have faced some affinity 7618 * constraints. Clear the imbalance flag if it was set. 7619 */ 7620 if (sd_parent) { 7621 int *group_imbalance = &sd_parent->groups->sgc->imbalance; 7622 7623 if (*group_imbalance) 7624 *group_imbalance = 0; 7625 } 7626 7627 out_all_pinned: 7628 /* 7629 * We reach balance because all tasks are pinned at this level so 7630 * we can't migrate them. Let the imbalance flag set so parent level 7631 * can try to migrate them. 7632 */ 7633 schedstat_inc(sd, lb_balanced[idle]); 7634 7635 sd->nr_balance_failed = 0; 7636 7637 out_one_pinned: 7638 /* tune up the balancing interval */ 7639 if (((env.flags & LBF_ALL_PINNED) && 7640 sd->balance_interval < MAX_PINNED_INTERVAL) || 7641 (sd->balance_interval < sd->max_interval)) 7642 sd->balance_interval *= 2; 7643 7644 ld_moved = 0; 7645 out: 7646 return ld_moved; 7647 } 7648 7649 static inline unsigned long 7650 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy) 7651 { 7652 unsigned long interval = sd->balance_interval; 7653 7654 if (cpu_busy) 7655 interval *= sd->busy_factor; 7656 7657 /* scale ms to jiffies */ 7658 interval = msecs_to_jiffies(interval); 7659 interval = clamp(interval, 1UL, max_load_balance_interval); 7660 7661 return interval; 7662 } 7663 7664 static inline void 7665 update_next_balance(struct sched_domain *sd, int cpu_busy, unsigned long *next_balance) 7666 { 7667 unsigned long interval, next; 7668 7669 interval = get_sd_balance_interval(sd, cpu_busy); 7670 next = sd->last_balance + interval; 7671 7672 if (time_after(*next_balance, next)) 7673 *next_balance = next; 7674 } 7675 7676 /* 7677 * idle_balance is called by schedule() if this_cpu is about to become 7678 * idle. Attempts to pull tasks from other CPUs. 7679 */ 7680 static int idle_balance(struct rq *this_rq) 7681 { 7682 unsigned long next_balance = jiffies + HZ; 7683 int this_cpu = this_rq->cpu; 7684 struct sched_domain *sd; 7685 int pulled_task = 0; 7686 u64 curr_cost = 0; 7687 7688 /* 7689 * We must set idle_stamp _before_ calling idle_balance(), such that we 7690 * measure the duration of idle_balance() as idle time. 7691 */ 7692 this_rq->idle_stamp = rq_clock(this_rq); 7693 7694 if (this_rq->avg_idle < sysctl_sched_migration_cost || 7695 !this_rq->rd->overload) { 7696 rcu_read_lock(); 7697 sd = rcu_dereference_check_sched_domain(this_rq->sd); 7698 if (sd) 7699 update_next_balance(sd, 0, &next_balance); 7700 rcu_read_unlock(); 7701 7702 goto out; 7703 } 7704 7705 raw_spin_unlock(&this_rq->lock); 7706 7707 update_blocked_averages(this_cpu); 7708 rcu_read_lock(); 7709 for_each_domain(this_cpu, sd) { 7710 int continue_balancing = 1; 7711 u64 t0, domain_cost; 7712 7713 if (!(sd->flags & SD_LOAD_BALANCE)) 7714 continue; 7715 7716 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) { 7717 update_next_balance(sd, 0, &next_balance); 7718 break; 7719 } 7720 7721 if (sd->flags & SD_BALANCE_NEWIDLE) { 7722 t0 = sched_clock_cpu(this_cpu); 7723 7724 pulled_task = load_balance(this_cpu, this_rq, 7725 sd, CPU_NEWLY_IDLE, 7726 &continue_balancing); 7727 7728 domain_cost = sched_clock_cpu(this_cpu) - t0; 7729 if (domain_cost > sd->max_newidle_lb_cost) 7730 sd->max_newidle_lb_cost = domain_cost; 7731 7732 curr_cost += domain_cost; 7733 } 7734 7735 update_next_balance(sd, 0, &next_balance); 7736 7737 /* 7738 * Stop searching for tasks to pull if there are 7739 * now runnable tasks on this rq. 7740 */ 7741 if (pulled_task || this_rq->nr_running > 0) 7742 break; 7743 } 7744 rcu_read_unlock(); 7745 7746 raw_spin_lock(&this_rq->lock); 7747 7748 if (curr_cost > this_rq->max_idle_balance_cost) 7749 this_rq->max_idle_balance_cost = curr_cost; 7750 7751 /* 7752 * While browsing the domains, we released the rq lock, a task could 7753 * have been enqueued in the meantime. Since we're not going idle, 7754 * pretend we pulled a task. 7755 */ 7756 if (this_rq->cfs.h_nr_running && !pulled_task) 7757 pulled_task = 1; 7758 7759 out: 7760 /* Move the next balance forward */ 7761 if (time_after(this_rq->next_balance, next_balance)) 7762 this_rq->next_balance = next_balance; 7763 7764 /* Is there a task of a high priority class? */ 7765 if (this_rq->nr_running != this_rq->cfs.h_nr_running) 7766 pulled_task = -1; 7767 7768 if (pulled_task) 7769 this_rq->idle_stamp = 0; 7770 7771 return pulled_task; 7772 } 7773 7774 /* 7775 * active_load_balance_cpu_stop is run by cpu stopper. It pushes 7776 * running tasks off the busiest CPU onto idle CPUs. It requires at 7777 * least 1 task to be running on each physical CPU where possible, and 7778 * avoids physical / logical imbalances. 7779 */ 7780 static int active_load_balance_cpu_stop(void *data) 7781 { 7782 struct rq *busiest_rq = data; 7783 int busiest_cpu = cpu_of(busiest_rq); 7784 int target_cpu = busiest_rq->push_cpu; 7785 struct rq *target_rq = cpu_rq(target_cpu); 7786 struct sched_domain *sd; 7787 struct task_struct *p = NULL; 7788 7789 raw_spin_lock_irq(&busiest_rq->lock); 7790 7791 /* make sure the requested cpu hasn't gone down in the meantime */ 7792 if (unlikely(busiest_cpu != smp_processor_id() || 7793 !busiest_rq->active_balance)) 7794 goto out_unlock; 7795 7796 /* Is there any task to move? */ 7797 if (busiest_rq->nr_running <= 1) 7798 goto out_unlock; 7799 7800 /* 7801 * This condition is "impossible", if it occurs 7802 * we need to fix it. Originally reported by 7803 * Bjorn Helgaas on a 128-cpu setup. 7804 */ 7805 BUG_ON(busiest_rq == target_rq); 7806 7807 /* Search for an sd spanning us and the target CPU. */ 7808 rcu_read_lock(); 7809 for_each_domain(target_cpu, sd) { 7810 if ((sd->flags & SD_LOAD_BALANCE) && 7811 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) 7812 break; 7813 } 7814 7815 if (likely(sd)) { 7816 struct lb_env env = { 7817 .sd = sd, 7818 .dst_cpu = target_cpu, 7819 .dst_rq = target_rq, 7820 .src_cpu = busiest_rq->cpu, 7821 .src_rq = busiest_rq, 7822 .idle = CPU_IDLE, 7823 }; 7824 7825 schedstat_inc(sd, alb_count); 7826 7827 p = detach_one_task(&env); 7828 if (p) { 7829 schedstat_inc(sd, alb_pushed); 7830 /* Active balancing done, reset the failure counter. */ 7831 sd->nr_balance_failed = 0; 7832 } else { 7833 schedstat_inc(sd, alb_failed); 7834 } 7835 } 7836 rcu_read_unlock(); 7837 out_unlock: 7838 busiest_rq->active_balance = 0; 7839 raw_spin_unlock(&busiest_rq->lock); 7840 7841 if (p) 7842 attach_one_task(target_rq, p); 7843 7844 local_irq_enable(); 7845 7846 return 0; 7847 } 7848 7849 static inline int on_null_domain(struct rq *rq) 7850 { 7851 return unlikely(!rcu_dereference_sched(rq->sd)); 7852 } 7853 7854 #ifdef CONFIG_NO_HZ_COMMON 7855 /* 7856 * idle load balancing details 7857 * - When one of the busy CPUs notice that there may be an idle rebalancing 7858 * needed, they will kick the idle load balancer, which then does idle 7859 * load balancing for all the idle CPUs. 7860 */ 7861 static struct { 7862 cpumask_var_t idle_cpus_mask; 7863 atomic_t nr_cpus; 7864 unsigned long next_balance; /* in jiffy units */ 7865 } nohz ____cacheline_aligned; 7866 7867 static inline int find_new_ilb(void) 7868 { 7869 int ilb = cpumask_first(nohz.idle_cpus_mask); 7870 7871 if (ilb < nr_cpu_ids && idle_cpu(ilb)) 7872 return ilb; 7873 7874 return nr_cpu_ids; 7875 } 7876 7877 /* 7878 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the 7879 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle 7880 * CPU (if there is one). 7881 */ 7882 static void nohz_balancer_kick(void) 7883 { 7884 int ilb_cpu; 7885 7886 nohz.next_balance++; 7887 7888 ilb_cpu = find_new_ilb(); 7889 7890 if (ilb_cpu >= nr_cpu_ids) 7891 return; 7892 7893 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) 7894 return; 7895 /* 7896 * Use smp_send_reschedule() instead of resched_cpu(). 7897 * This way we generate a sched IPI on the target cpu which 7898 * is idle. And the softirq performing nohz idle load balance 7899 * will be run before returning from the IPI. 7900 */ 7901 smp_send_reschedule(ilb_cpu); 7902 return; 7903 } 7904 7905 void nohz_balance_exit_idle(unsigned int cpu) 7906 { 7907 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { 7908 /* 7909 * Completely isolated CPUs don't ever set, so we must test. 7910 */ 7911 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) { 7912 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); 7913 atomic_dec(&nohz.nr_cpus); 7914 } 7915 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7916 } 7917 } 7918 7919 static inline void set_cpu_sd_state_busy(void) 7920 { 7921 struct sched_domain *sd; 7922 int cpu = smp_processor_id(); 7923 7924 rcu_read_lock(); 7925 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7926 7927 if (!sd || !sd->nohz_idle) 7928 goto unlock; 7929 sd->nohz_idle = 0; 7930 7931 atomic_inc(&sd->groups->sgc->nr_busy_cpus); 7932 unlock: 7933 rcu_read_unlock(); 7934 } 7935 7936 void set_cpu_sd_state_idle(void) 7937 { 7938 struct sched_domain *sd; 7939 int cpu = smp_processor_id(); 7940 7941 rcu_read_lock(); 7942 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 7943 7944 if (!sd || sd->nohz_idle) 7945 goto unlock; 7946 sd->nohz_idle = 1; 7947 7948 atomic_dec(&sd->groups->sgc->nr_busy_cpus); 7949 unlock: 7950 rcu_read_unlock(); 7951 } 7952 7953 /* 7954 * This routine will record that the cpu is going idle with tick stopped. 7955 * This info will be used in performing idle load balancing in the future. 7956 */ 7957 void nohz_balance_enter_idle(int cpu) 7958 { 7959 /* 7960 * If this cpu is going down, then nothing needs to be done. 7961 */ 7962 if (!cpu_active(cpu)) 7963 return; 7964 7965 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) 7966 return; 7967 7968 /* 7969 * If we're a completely isolated CPU, we don't play. 7970 */ 7971 if (on_null_domain(cpu_rq(cpu))) 7972 return; 7973 7974 cpumask_set_cpu(cpu, nohz.idle_cpus_mask); 7975 atomic_inc(&nohz.nr_cpus); 7976 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); 7977 } 7978 #endif 7979 7980 static DEFINE_SPINLOCK(balancing); 7981 7982 /* 7983 * Scale the max load_balance interval with the number of CPUs in the system. 7984 * This trades load-balance latency on larger machines for less cross talk. 7985 */ 7986 void update_max_interval(void) 7987 { 7988 max_load_balance_interval = HZ*num_online_cpus()/10; 7989 } 7990 7991 /* 7992 * It checks each scheduling domain to see if it is due to be balanced, 7993 * and initiates a balancing operation if so. 7994 * 7995 * Balancing parameters are set up in init_sched_domains. 7996 */ 7997 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) 7998 { 7999 int continue_balancing = 1; 8000 int cpu = rq->cpu; 8001 unsigned long interval; 8002 struct sched_domain *sd; 8003 /* Earliest time when we have to do rebalance again */ 8004 unsigned long next_balance = jiffies + 60*HZ; 8005 int update_next_balance = 0; 8006 int need_serialize, need_decay = 0; 8007 u64 max_cost = 0; 8008 8009 update_blocked_averages(cpu); 8010 8011 rcu_read_lock(); 8012 for_each_domain(cpu, sd) { 8013 /* 8014 * Decay the newidle max times here because this is a regular 8015 * visit to all the domains. Decay ~1% per second. 8016 */ 8017 if (time_after(jiffies, sd->next_decay_max_lb_cost)) { 8018 sd->max_newidle_lb_cost = 8019 (sd->max_newidle_lb_cost * 253) / 256; 8020 sd->next_decay_max_lb_cost = jiffies + HZ; 8021 need_decay = 1; 8022 } 8023 max_cost += sd->max_newidle_lb_cost; 8024 8025 if (!(sd->flags & SD_LOAD_BALANCE)) 8026 continue; 8027 8028 /* 8029 * Stop the load balance at this level. There is another 8030 * CPU in our sched group which is doing load balancing more 8031 * actively. 8032 */ 8033 if (!continue_balancing) { 8034 if (need_decay) 8035 continue; 8036 break; 8037 } 8038 8039 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8040 8041 need_serialize = sd->flags & SD_SERIALIZE; 8042 if (need_serialize) { 8043 if (!spin_trylock(&balancing)) 8044 goto out; 8045 } 8046 8047 if (time_after_eq(jiffies, sd->last_balance + interval)) { 8048 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) { 8049 /* 8050 * The LBF_DST_PINNED logic could have changed 8051 * env->dst_cpu, so we can't know our idle 8052 * state even if we migrated tasks. Update it. 8053 */ 8054 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE; 8055 } 8056 sd->last_balance = jiffies; 8057 interval = get_sd_balance_interval(sd, idle != CPU_IDLE); 8058 } 8059 if (need_serialize) 8060 spin_unlock(&balancing); 8061 out: 8062 if (time_after(next_balance, sd->last_balance + interval)) { 8063 next_balance = sd->last_balance + interval; 8064 update_next_balance = 1; 8065 } 8066 } 8067 if (need_decay) { 8068 /* 8069 * Ensure the rq-wide value also decays but keep it at a 8070 * reasonable floor to avoid funnies with rq->avg_idle. 8071 */ 8072 rq->max_idle_balance_cost = 8073 max((u64)sysctl_sched_migration_cost, max_cost); 8074 } 8075 rcu_read_unlock(); 8076 8077 /* 8078 * next_balance will be updated only when there is a need. 8079 * When the cpu is attached to null domain for ex, it will not be 8080 * updated. 8081 */ 8082 if (likely(update_next_balance)) { 8083 rq->next_balance = next_balance; 8084 8085 #ifdef CONFIG_NO_HZ_COMMON 8086 /* 8087 * If this CPU has been elected to perform the nohz idle 8088 * balance. Other idle CPUs have already rebalanced with 8089 * nohz_idle_balance() and nohz.next_balance has been 8090 * updated accordingly. This CPU is now running the idle load 8091 * balance for itself and we need to update the 8092 * nohz.next_balance accordingly. 8093 */ 8094 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance)) 8095 nohz.next_balance = rq->next_balance; 8096 #endif 8097 } 8098 } 8099 8100 #ifdef CONFIG_NO_HZ_COMMON 8101 /* 8102 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the 8103 * rebalancing for all the cpus for whom scheduler ticks are stopped. 8104 */ 8105 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) 8106 { 8107 int this_cpu = this_rq->cpu; 8108 struct rq *rq; 8109 int balance_cpu; 8110 /* Earliest time when we have to do rebalance again */ 8111 unsigned long next_balance = jiffies + 60*HZ; 8112 int update_next_balance = 0; 8113 8114 if (idle != CPU_IDLE || 8115 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) 8116 goto end; 8117 8118 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { 8119 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) 8120 continue; 8121 8122 /* 8123 * If this cpu gets work to do, stop the load balancing 8124 * work being done for other cpus. Next load 8125 * balancing owner will pick it up. 8126 */ 8127 if (need_resched()) 8128 break; 8129 8130 rq = cpu_rq(balance_cpu); 8131 8132 /* 8133 * If time for next balance is due, 8134 * do the balance. 8135 */ 8136 if (time_after_eq(jiffies, rq->next_balance)) { 8137 raw_spin_lock_irq(&rq->lock); 8138 update_rq_clock(rq); 8139 cpu_load_update_idle(rq); 8140 raw_spin_unlock_irq(&rq->lock); 8141 rebalance_domains(rq, CPU_IDLE); 8142 } 8143 8144 if (time_after(next_balance, rq->next_balance)) { 8145 next_balance = rq->next_balance; 8146 update_next_balance = 1; 8147 } 8148 } 8149 8150 /* 8151 * next_balance will be updated only when there is a need. 8152 * When the CPU is attached to null domain for ex, it will not be 8153 * updated. 8154 */ 8155 if (likely(update_next_balance)) 8156 nohz.next_balance = next_balance; 8157 end: 8158 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); 8159 } 8160 8161 /* 8162 * Current heuristic for kicking the idle load balancer in the presence 8163 * of an idle cpu in the system. 8164 * - This rq has more than one task. 8165 * - This rq has at least one CFS task and the capacity of the CPU is 8166 * significantly reduced because of RT tasks or IRQs. 8167 * - At parent of LLC scheduler domain level, this cpu's scheduler group has 8168 * multiple busy cpu. 8169 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler 8170 * domain span are idle. 8171 */ 8172 static inline bool nohz_kick_needed(struct rq *rq) 8173 { 8174 unsigned long now = jiffies; 8175 struct sched_domain *sd; 8176 struct sched_group_capacity *sgc; 8177 int nr_busy, cpu = rq->cpu; 8178 bool kick = false; 8179 8180 if (unlikely(rq->idle_balance)) 8181 return false; 8182 8183 /* 8184 * We may be recently in ticked or tickless idle mode. At the first 8185 * busy tick after returning from idle, we will update the busy stats. 8186 */ 8187 set_cpu_sd_state_busy(); 8188 nohz_balance_exit_idle(cpu); 8189 8190 /* 8191 * None are in tickless mode and hence no need for NOHZ idle load 8192 * balancing. 8193 */ 8194 if (likely(!atomic_read(&nohz.nr_cpus))) 8195 return false; 8196 8197 if (time_before(now, nohz.next_balance)) 8198 return false; 8199 8200 if (rq->nr_running >= 2) 8201 return true; 8202 8203 rcu_read_lock(); 8204 sd = rcu_dereference(per_cpu(sd_busy, cpu)); 8205 if (sd) { 8206 sgc = sd->groups->sgc; 8207 nr_busy = atomic_read(&sgc->nr_busy_cpus); 8208 8209 if (nr_busy > 1) { 8210 kick = true; 8211 goto unlock; 8212 } 8213 8214 } 8215 8216 sd = rcu_dereference(rq->sd); 8217 if (sd) { 8218 if ((rq->cfs.h_nr_running >= 1) && 8219 check_cpu_capacity(rq, sd)) { 8220 kick = true; 8221 goto unlock; 8222 } 8223 } 8224 8225 sd = rcu_dereference(per_cpu(sd_asym, cpu)); 8226 if (sd && (cpumask_first_and(nohz.idle_cpus_mask, 8227 sched_domain_span(sd)) < cpu)) { 8228 kick = true; 8229 goto unlock; 8230 } 8231 8232 unlock: 8233 rcu_read_unlock(); 8234 return kick; 8235 } 8236 #else 8237 static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } 8238 #endif 8239 8240 /* 8241 * run_rebalance_domains is triggered when needed from the scheduler tick. 8242 * Also triggered for nohz idle balancing (with nohz_balancing_kick set). 8243 */ 8244 static void run_rebalance_domains(struct softirq_action *h) 8245 { 8246 struct rq *this_rq = this_rq(); 8247 enum cpu_idle_type idle = this_rq->idle_balance ? 8248 CPU_IDLE : CPU_NOT_IDLE; 8249 8250 /* 8251 * If this cpu has a pending nohz_balance_kick, then do the 8252 * balancing on behalf of the other idle cpus whose ticks are 8253 * stopped. Do nohz_idle_balance *before* rebalance_domains to 8254 * give the idle cpus a chance to load balance. Else we may 8255 * load balance only within the local sched_domain hierarchy 8256 * and abort nohz_idle_balance altogether if we pull some load. 8257 */ 8258 nohz_idle_balance(this_rq, idle); 8259 rebalance_domains(this_rq, idle); 8260 } 8261 8262 /* 8263 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. 8264 */ 8265 void trigger_load_balance(struct rq *rq) 8266 { 8267 /* Don't need to rebalance while attached to NULL domain */ 8268 if (unlikely(on_null_domain(rq))) 8269 return; 8270 8271 if (time_after_eq(jiffies, rq->next_balance)) 8272 raise_softirq(SCHED_SOFTIRQ); 8273 #ifdef CONFIG_NO_HZ_COMMON 8274 if (nohz_kick_needed(rq)) 8275 nohz_balancer_kick(); 8276 #endif 8277 } 8278 8279 static void rq_online_fair(struct rq *rq) 8280 { 8281 update_sysctl(); 8282 8283 update_runtime_enabled(rq); 8284 } 8285 8286 static void rq_offline_fair(struct rq *rq) 8287 { 8288 update_sysctl(); 8289 8290 /* Ensure any throttled groups are reachable by pick_next_task */ 8291 unthrottle_offline_cfs_rqs(rq); 8292 } 8293 8294 #endif /* CONFIG_SMP */ 8295 8296 /* 8297 * scheduler tick hitting a task of our scheduling class: 8298 */ 8299 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) 8300 { 8301 struct cfs_rq *cfs_rq; 8302 struct sched_entity *se = &curr->se; 8303 8304 for_each_sched_entity(se) { 8305 cfs_rq = cfs_rq_of(se); 8306 entity_tick(cfs_rq, se, queued); 8307 } 8308 8309 if (static_branch_unlikely(&sched_numa_balancing)) 8310 task_tick_numa(rq, curr); 8311 } 8312 8313 /* 8314 * called on fork with the child task as argument from the parent's context 8315 * - child not yet on the tasklist 8316 * - preemption disabled 8317 */ 8318 static void task_fork_fair(struct task_struct *p) 8319 { 8320 struct cfs_rq *cfs_rq; 8321 struct sched_entity *se = &p->se, *curr; 8322 int this_cpu = smp_processor_id(); 8323 struct rq *rq = this_rq(); 8324 unsigned long flags; 8325 8326 raw_spin_lock_irqsave(&rq->lock, flags); 8327 8328 update_rq_clock(rq); 8329 8330 cfs_rq = task_cfs_rq(current); 8331 curr = cfs_rq->curr; 8332 8333 /* 8334 * Not only the cpu but also the task_group of the parent might have 8335 * been changed after parent->se.parent,cfs_rq were copied to 8336 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those 8337 * of child point to valid ones. 8338 */ 8339 rcu_read_lock(); 8340 __set_task_cpu(p, this_cpu); 8341 rcu_read_unlock(); 8342 8343 update_curr(cfs_rq); 8344 8345 if (curr) 8346 se->vruntime = curr->vruntime; 8347 place_entity(cfs_rq, se, 1); 8348 8349 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { 8350 /* 8351 * Upon rescheduling, sched_class::put_prev_task() will place 8352 * 'current' within the tree based on its new key value. 8353 */ 8354 swap(curr->vruntime, se->vruntime); 8355 resched_curr(rq); 8356 } 8357 8358 se->vruntime -= cfs_rq->min_vruntime; 8359 8360 raw_spin_unlock_irqrestore(&rq->lock, flags); 8361 } 8362 8363 /* 8364 * Priority of the task has changed. Check to see if we preempt 8365 * the current task. 8366 */ 8367 static void 8368 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) 8369 { 8370 if (!task_on_rq_queued(p)) 8371 return; 8372 8373 /* 8374 * Reschedule if we are currently running on this runqueue and 8375 * our priority decreased, or if we are not currently running on 8376 * this runqueue and our priority is higher than the current's 8377 */ 8378 if (rq->curr == p) { 8379 if (p->prio > oldprio) 8380 resched_curr(rq); 8381 } else 8382 check_preempt_curr(rq, p, 0); 8383 } 8384 8385 static inline bool vruntime_normalized(struct task_struct *p) 8386 { 8387 struct sched_entity *se = &p->se; 8388 8389 /* 8390 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases, 8391 * the dequeue_entity(.flags=0) will already have normalized the 8392 * vruntime. 8393 */ 8394 if (p->on_rq) 8395 return true; 8396 8397 /* 8398 * When !on_rq, vruntime of the task has usually NOT been normalized. 8399 * But there are some cases where it has already been normalized: 8400 * 8401 * - A forked child which is waiting for being woken up by 8402 * wake_up_new_task(). 8403 * - A task which has been woken up by try_to_wake_up() and 8404 * waiting for actually being woken up by sched_ttwu_pending(). 8405 */ 8406 if (!se->sum_exec_runtime || p->state == TASK_WAKING) 8407 return true; 8408 8409 return false; 8410 } 8411 8412 static void detach_task_cfs_rq(struct task_struct *p) 8413 { 8414 struct sched_entity *se = &p->se; 8415 struct cfs_rq *cfs_rq = cfs_rq_of(se); 8416 8417 if (!vruntime_normalized(p)) { 8418 /* 8419 * Fix up our vruntime so that the current sleep doesn't 8420 * cause 'unlimited' sleep bonus. 8421 */ 8422 place_entity(cfs_rq, se, 0); 8423 se->vruntime -= cfs_rq->min_vruntime; 8424 } 8425 8426 /* Catch up with the cfs_rq and remove our load when we leave */ 8427 detach_entity_load_avg(cfs_rq, se); 8428 } 8429 8430 static void attach_task_cfs_rq(struct task_struct *p) 8431 { 8432 struct sched_entity *se = &p->se; 8433 struct cfs_rq *cfs_rq = cfs_rq_of(se); 8434 8435 #ifdef CONFIG_FAIR_GROUP_SCHED 8436 /* 8437 * Since the real-depth could have been changed (only FAIR 8438 * class maintain depth value), reset depth properly. 8439 */ 8440 se->depth = se->parent ? se->parent->depth + 1 : 0; 8441 #endif 8442 8443 /* Synchronize task with its cfs_rq */ 8444 attach_entity_load_avg(cfs_rq, se); 8445 8446 if (!vruntime_normalized(p)) 8447 se->vruntime += cfs_rq->min_vruntime; 8448 } 8449 8450 static void switched_from_fair(struct rq *rq, struct task_struct *p) 8451 { 8452 detach_task_cfs_rq(p); 8453 } 8454 8455 static void switched_to_fair(struct rq *rq, struct task_struct *p) 8456 { 8457 attach_task_cfs_rq(p); 8458 8459 if (task_on_rq_queued(p)) { 8460 /* 8461 * We were most likely switched from sched_rt, so 8462 * kick off the schedule if running, otherwise just see 8463 * if we can still preempt the current task. 8464 */ 8465 if (rq->curr == p) 8466 resched_curr(rq); 8467 else 8468 check_preempt_curr(rq, p, 0); 8469 } 8470 } 8471 8472 /* Account for a task changing its policy or group. 8473 * 8474 * This routine is mostly called to set cfs_rq->curr field when a task 8475 * migrates between groups/classes. 8476 */ 8477 static void set_curr_task_fair(struct rq *rq) 8478 { 8479 struct sched_entity *se = &rq->curr->se; 8480 8481 for_each_sched_entity(se) { 8482 struct cfs_rq *cfs_rq = cfs_rq_of(se); 8483 8484 set_next_entity(cfs_rq, se); 8485 /* ensure bandwidth has been allocated on our new cfs_rq */ 8486 account_cfs_rq_runtime(cfs_rq, 0); 8487 } 8488 } 8489 8490 void init_cfs_rq(struct cfs_rq *cfs_rq) 8491 { 8492 cfs_rq->tasks_timeline = RB_ROOT; 8493 cfs_rq->min_vruntime = (u64)(-(1LL << 20)); 8494 #ifndef CONFIG_64BIT 8495 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; 8496 #endif 8497 #ifdef CONFIG_SMP 8498 atomic_long_set(&cfs_rq->removed_load_avg, 0); 8499 atomic_long_set(&cfs_rq->removed_util_avg, 0); 8500 #endif 8501 } 8502 8503 #ifdef CONFIG_FAIR_GROUP_SCHED 8504 static void task_move_group_fair(struct task_struct *p) 8505 { 8506 detach_task_cfs_rq(p); 8507 set_task_rq(p, task_cpu(p)); 8508 8509 #ifdef CONFIG_SMP 8510 /* Tell se's cfs_rq has been changed -- migrated */ 8511 p->se.avg.last_update_time = 0; 8512 #endif 8513 attach_task_cfs_rq(p); 8514 } 8515 8516 void free_fair_sched_group(struct task_group *tg) 8517 { 8518 int i; 8519 8520 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); 8521 8522 for_each_possible_cpu(i) { 8523 if (tg->cfs_rq) 8524 kfree(tg->cfs_rq[i]); 8525 if (tg->se) 8526 kfree(tg->se[i]); 8527 } 8528 8529 kfree(tg->cfs_rq); 8530 kfree(tg->se); 8531 } 8532 8533 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8534 { 8535 struct sched_entity *se; 8536 struct cfs_rq *cfs_rq; 8537 struct rq *rq; 8538 int i; 8539 8540 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); 8541 if (!tg->cfs_rq) 8542 goto err; 8543 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); 8544 if (!tg->se) 8545 goto err; 8546 8547 tg->shares = NICE_0_LOAD; 8548 8549 init_cfs_bandwidth(tg_cfs_bandwidth(tg)); 8550 8551 for_each_possible_cpu(i) { 8552 rq = cpu_rq(i); 8553 8554 cfs_rq = kzalloc_node(sizeof(struct cfs_rq), 8555 GFP_KERNEL, cpu_to_node(i)); 8556 if (!cfs_rq) 8557 goto err; 8558 8559 se = kzalloc_node(sizeof(struct sched_entity), 8560 GFP_KERNEL, cpu_to_node(i)); 8561 if (!se) 8562 goto err_free_rq; 8563 8564 init_cfs_rq(cfs_rq); 8565 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); 8566 init_entity_runnable_average(se); 8567 8568 raw_spin_lock_irq(&rq->lock); 8569 post_init_entity_util_avg(se); 8570 raw_spin_unlock_irq(&rq->lock); 8571 } 8572 8573 return 1; 8574 8575 err_free_rq: 8576 kfree(cfs_rq); 8577 err: 8578 return 0; 8579 } 8580 8581 void unregister_fair_sched_group(struct task_group *tg) 8582 { 8583 unsigned long flags; 8584 struct rq *rq; 8585 int cpu; 8586 8587 for_each_possible_cpu(cpu) { 8588 if (tg->se[cpu]) 8589 remove_entity_load_avg(tg->se[cpu]); 8590 8591 /* 8592 * Only empty task groups can be destroyed; so we can speculatively 8593 * check on_list without danger of it being re-added. 8594 */ 8595 if (!tg->cfs_rq[cpu]->on_list) 8596 continue; 8597 8598 rq = cpu_rq(cpu); 8599 8600 raw_spin_lock_irqsave(&rq->lock, flags); 8601 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); 8602 raw_spin_unlock_irqrestore(&rq->lock, flags); 8603 } 8604 } 8605 8606 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 8607 struct sched_entity *se, int cpu, 8608 struct sched_entity *parent) 8609 { 8610 struct rq *rq = cpu_rq(cpu); 8611 8612 cfs_rq->tg = tg; 8613 cfs_rq->rq = rq; 8614 init_cfs_rq_runtime(cfs_rq); 8615 8616 tg->cfs_rq[cpu] = cfs_rq; 8617 tg->se[cpu] = se; 8618 8619 /* se could be NULL for root_task_group */ 8620 if (!se) 8621 return; 8622 8623 if (!parent) { 8624 se->cfs_rq = &rq->cfs; 8625 se->depth = 0; 8626 } else { 8627 se->cfs_rq = parent->my_q; 8628 se->depth = parent->depth + 1; 8629 } 8630 8631 se->my_q = cfs_rq; 8632 /* guarantee group entities always have weight */ 8633 update_load_set(&se->load, NICE_0_LOAD); 8634 se->parent = parent; 8635 } 8636 8637 static DEFINE_MUTEX(shares_mutex); 8638 8639 int sched_group_set_shares(struct task_group *tg, unsigned long shares) 8640 { 8641 int i; 8642 unsigned long flags; 8643 8644 /* 8645 * We can't change the weight of the root cgroup. 8646 */ 8647 if (!tg->se[0]) 8648 return -EINVAL; 8649 8650 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); 8651 8652 mutex_lock(&shares_mutex); 8653 if (tg->shares == shares) 8654 goto done; 8655 8656 tg->shares = shares; 8657 for_each_possible_cpu(i) { 8658 struct rq *rq = cpu_rq(i); 8659 struct sched_entity *se; 8660 8661 se = tg->se[i]; 8662 /* Propagate contribution to hierarchy */ 8663 raw_spin_lock_irqsave(&rq->lock, flags); 8664 8665 /* Possible calls to update_curr() need rq clock */ 8666 update_rq_clock(rq); 8667 for_each_sched_entity(se) 8668 update_cfs_shares(group_cfs_rq(se)); 8669 raw_spin_unlock_irqrestore(&rq->lock, flags); 8670 } 8671 8672 done: 8673 mutex_unlock(&shares_mutex); 8674 return 0; 8675 } 8676 #else /* CONFIG_FAIR_GROUP_SCHED */ 8677 8678 void free_fair_sched_group(struct task_group *tg) { } 8679 8680 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 8681 { 8682 return 1; 8683 } 8684 8685 void unregister_fair_sched_group(struct task_group *tg) { } 8686 8687 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8688 8689 8690 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) 8691 { 8692 struct sched_entity *se = &task->se; 8693 unsigned int rr_interval = 0; 8694 8695 /* 8696 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise 8697 * idle runqueue: 8698 */ 8699 if (rq->cfs.load.weight) 8700 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se)); 8701 8702 return rr_interval; 8703 } 8704 8705 /* 8706 * All the scheduling class methods: 8707 */ 8708 const struct sched_class fair_sched_class = { 8709 .next = &idle_sched_class, 8710 .enqueue_task = enqueue_task_fair, 8711 .dequeue_task = dequeue_task_fair, 8712 .yield_task = yield_task_fair, 8713 .yield_to_task = yield_to_task_fair, 8714 8715 .check_preempt_curr = check_preempt_wakeup, 8716 8717 .pick_next_task = pick_next_task_fair, 8718 .put_prev_task = put_prev_task_fair, 8719 8720 #ifdef CONFIG_SMP 8721 .select_task_rq = select_task_rq_fair, 8722 .migrate_task_rq = migrate_task_rq_fair, 8723 8724 .rq_online = rq_online_fair, 8725 .rq_offline = rq_offline_fair, 8726 8727 .task_dead = task_dead_fair, 8728 .set_cpus_allowed = set_cpus_allowed_common, 8729 #endif 8730 8731 .set_curr_task = set_curr_task_fair, 8732 .task_tick = task_tick_fair, 8733 .task_fork = task_fork_fair, 8734 8735 .prio_changed = prio_changed_fair, 8736 .switched_from = switched_from_fair, 8737 .switched_to = switched_to_fair, 8738 8739 .get_rr_interval = get_rr_interval_fair, 8740 8741 .update_curr = update_curr_fair, 8742 8743 #ifdef CONFIG_FAIR_GROUP_SCHED 8744 .task_move_group = task_move_group_fair, 8745 #endif 8746 }; 8747 8748 #ifdef CONFIG_SCHED_DEBUG 8749 void print_cfs_stats(struct seq_file *m, int cpu) 8750 { 8751 struct cfs_rq *cfs_rq; 8752 8753 rcu_read_lock(); 8754 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) 8755 print_cfs_rq(m, cpu, cfs_rq); 8756 rcu_read_unlock(); 8757 } 8758 8759 #ifdef CONFIG_NUMA_BALANCING 8760 void show_numa_stats(struct task_struct *p, struct seq_file *m) 8761 { 8762 int node; 8763 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0; 8764 8765 for_each_online_node(node) { 8766 if (p->numa_faults) { 8767 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)]; 8768 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)]; 8769 } 8770 if (p->numa_group) { 8771 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)], 8772 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)]; 8773 } 8774 print_numa_stats(m, node, tsf, tpf, gsf, gpf); 8775 } 8776 } 8777 #endif /* CONFIG_NUMA_BALANCING */ 8778 #endif /* CONFIG_SCHED_DEBUG */ 8779 8780 __init void init_sched_fair_class(void) 8781 { 8782 #ifdef CONFIG_SMP 8783 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); 8784 8785 #ifdef CONFIG_NO_HZ_COMMON 8786 nohz.next_balance = jiffies; 8787 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); 8788 #endif 8789 #endif /* SMP */ 8790 8791 } 8792