xref: /linux/kernel/sched/fair.c (revision da1d9caf95def6f0320819cf941c9fd1069ba9e1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/mempolicy.h>
44 #include <linux/mutex_api.h>
45 #include <linux/profile.h>
46 #include <linux/psi.h>
47 #include <linux/ratelimit.h>
48 #include <linux/task_work.h>
49 
50 #include <asm/switch_to.h>
51 
52 #include <linux/sched/cond_resched.h>
53 
54 #include "sched.h"
55 #include "stats.h"
56 #include "autogroup.h"
57 
58 /*
59  * Targeted preemption latency for CPU-bound tasks:
60  *
61  * NOTE: this latency value is not the same as the concept of
62  * 'timeslice length' - timeslices in CFS are of variable length
63  * and have no persistent notion like in traditional, time-slice
64  * based scheduling concepts.
65  *
66  * (to see the precise effective timeslice length of your workload,
67  *  run vmstat and monitor the context-switches (cs) field)
68  *
69  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
70  */
71 unsigned int sysctl_sched_latency			= 6000000ULL;
72 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
73 
74 /*
75  * The initial- and re-scaling of tunables is configurable
76  *
77  * Options are:
78  *
79  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
80  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
81  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
82  *
83  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
84  */
85 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
86 
87 /*
88  * Minimal preemption granularity for CPU-bound tasks:
89  *
90  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
91  */
92 unsigned int sysctl_sched_min_granularity			= 750000ULL;
93 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
94 
95 /*
96  * Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
97  * Applies only when SCHED_IDLE tasks compete with normal tasks.
98  *
99  * (default: 0.75 msec)
100  */
101 unsigned int sysctl_sched_idle_min_granularity			= 750000ULL;
102 
103 /*
104  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
105  */
106 static unsigned int sched_nr_latency = 8;
107 
108 /*
109  * After fork, child runs first. If set to 0 (default) then
110  * parent will (try to) run first.
111  */
112 unsigned int sysctl_sched_child_runs_first __read_mostly;
113 
114 /*
115  * SCHED_OTHER wake-up granularity.
116  *
117  * This option delays the preemption effects of decoupled workloads
118  * and reduces their over-scheduling. Synchronous workloads will still
119  * have immediate wakeup/sleep latencies.
120  *
121  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
122  */
123 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
124 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
125 
126 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
127 
128 int sched_thermal_decay_shift;
129 static int __init setup_sched_thermal_decay_shift(char *str)
130 {
131 	int _shift = 0;
132 
133 	if (kstrtoint(str, 0, &_shift))
134 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
135 
136 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
137 	return 1;
138 }
139 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
140 
141 #ifdef CONFIG_SMP
142 /*
143  * For asym packing, by default the lower numbered CPU has higher priority.
144  */
145 int __weak arch_asym_cpu_priority(int cpu)
146 {
147 	return -cpu;
148 }
149 
150 /*
151  * The margin used when comparing utilization with CPU capacity.
152  *
153  * (default: ~20%)
154  */
155 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
156 
157 /*
158  * The margin used when comparing CPU capacities.
159  * is 'cap1' noticeably greater than 'cap2'
160  *
161  * (default: ~5%)
162  */
163 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
164 #endif
165 
166 #ifdef CONFIG_CFS_BANDWIDTH
167 /*
168  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
169  * each time a cfs_rq requests quota.
170  *
171  * Note: in the case that the slice exceeds the runtime remaining (either due
172  * to consumption or the quota being specified to be smaller than the slice)
173  * we will always only issue the remaining available time.
174  *
175  * (default: 5 msec, units: microseconds)
176  */
177 static unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
178 #endif
179 
180 #ifdef CONFIG_SYSCTL
181 static struct ctl_table sched_fair_sysctls[] = {
182 	{
183 		.procname       = "sched_child_runs_first",
184 		.data           = &sysctl_sched_child_runs_first,
185 		.maxlen         = sizeof(unsigned int),
186 		.mode           = 0644,
187 		.proc_handler   = proc_dointvec,
188 	},
189 #ifdef CONFIG_CFS_BANDWIDTH
190 	{
191 		.procname       = "sched_cfs_bandwidth_slice_us",
192 		.data           = &sysctl_sched_cfs_bandwidth_slice,
193 		.maxlen         = sizeof(unsigned int),
194 		.mode           = 0644,
195 		.proc_handler   = proc_dointvec_minmax,
196 		.extra1         = SYSCTL_ONE,
197 	},
198 #endif
199 	{}
200 };
201 
202 static int __init sched_fair_sysctl_init(void)
203 {
204 	register_sysctl_init("kernel", sched_fair_sysctls);
205 	return 0;
206 }
207 late_initcall(sched_fair_sysctl_init);
208 #endif
209 
210 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
211 {
212 	lw->weight += inc;
213 	lw->inv_weight = 0;
214 }
215 
216 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
217 {
218 	lw->weight -= dec;
219 	lw->inv_weight = 0;
220 }
221 
222 static inline void update_load_set(struct load_weight *lw, unsigned long w)
223 {
224 	lw->weight = w;
225 	lw->inv_weight = 0;
226 }
227 
228 /*
229  * Increase the granularity value when there are more CPUs,
230  * because with more CPUs the 'effective latency' as visible
231  * to users decreases. But the relationship is not linear,
232  * so pick a second-best guess by going with the log2 of the
233  * number of CPUs.
234  *
235  * This idea comes from the SD scheduler of Con Kolivas:
236  */
237 static unsigned int get_update_sysctl_factor(void)
238 {
239 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
240 	unsigned int factor;
241 
242 	switch (sysctl_sched_tunable_scaling) {
243 	case SCHED_TUNABLESCALING_NONE:
244 		factor = 1;
245 		break;
246 	case SCHED_TUNABLESCALING_LINEAR:
247 		factor = cpus;
248 		break;
249 	case SCHED_TUNABLESCALING_LOG:
250 	default:
251 		factor = 1 + ilog2(cpus);
252 		break;
253 	}
254 
255 	return factor;
256 }
257 
258 static void update_sysctl(void)
259 {
260 	unsigned int factor = get_update_sysctl_factor();
261 
262 #define SET_SYSCTL(name) \
263 	(sysctl_##name = (factor) * normalized_sysctl_##name)
264 	SET_SYSCTL(sched_min_granularity);
265 	SET_SYSCTL(sched_latency);
266 	SET_SYSCTL(sched_wakeup_granularity);
267 #undef SET_SYSCTL
268 }
269 
270 void __init sched_init_granularity(void)
271 {
272 	update_sysctl();
273 }
274 
275 #define WMULT_CONST	(~0U)
276 #define WMULT_SHIFT	32
277 
278 static void __update_inv_weight(struct load_weight *lw)
279 {
280 	unsigned long w;
281 
282 	if (likely(lw->inv_weight))
283 		return;
284 
285 	w = scale_load_down(lw->weight);
286 
287 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
288 		lw->inv_weight = 1;
289 	else if (unlikely(!w))
290 		lw->inv_weight = WMULT_CONST;
291 	else
292 		lw->inv_weight = WMULT_CONST / w;
293 }
294 
295 /*
296  * delta_exec * weight / lw.weight
297  *   OR
298  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
299  *
300  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
301  * we're guaranteed shift stays positive because inv_weight is guaranteed to
302  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
303  *
304  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
305  * weight/lw.weight <= 1, and therefore our shift will also be positive.
306  */
307 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
308 {
309 	u64 fact = scale_load_down(weight);
310 	u32 fact_hi = (u32)(fact >> 32);
311 	int shift = WMULT_SHIFT;
312 	int fs;
313 
314 	__update_inv_weight(lw);
315 
316 	if (unlikely(fact_hi)) {
317 		fs = fls(fact_hi);
318 		shift -= fs;
319 		fact >>= fs;
320 	}
321 
322 	fact = mul_u32_u32(fact, lw->inv_weight);
323 
324 	fact_hi = (u32)(fact >> 32);
325 	if (fact_hi) {
326 		fs = fls(fact_hi);
327 		shift -= fs;
328 		fact >>= fs;
329 	}
330 
331 	return mul_u64_u32_shr(delta_exec, fact, shift);
332 }
333 
334 
335 const struct sched_class fair_sched_class;
336 
337 /**************************************************************
338  * CFS operations on generic schedulable entities:
339  */
340 
341 #ifdef CONFIG_FAIR_GROUP_SCHED
342 
343 /* Walk up scheduling entities hierarchy */
344 #define for_each_sched_entity(se) \
345 		for (; se; se = se->parent)
346 
347 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
348 {
349 	struct rq *rq = rq_of(cfs_rq);
350 	int cpu = cpu_of(rq);
351 
352 	if (cfs_rq->on_list)
353 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
354 
355 	cfs_rq->on_list = 1;
356 
357 	/*
358 	 * Ensure we either appear before our parent (if already
359 	 * enqueued) or force our parent to appear after us when it is
360 	 * enqueued. The fact that we always enqueue bottom-up
361 	 * reduces this to two cases and a special case for the root
362 	 * cfs_rq. Furthermore, it also means that we will always reset
363 	 * tmp_alone_branch either when the branch is connected
364 	 * to a tree or when we reach the top of the tree
365 	 */
366 	if (cfs_rq->tg->parent &&
367 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
368 		/*
369 		 * If parent is already on the list, we add the child
370 		 * just before. Thanks to circular linked property of
371 		 * the list, this means to put the child at the tail
372 		 * of the list that starts by parent.
373 		 */
374 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
375 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
376 		/*
377 		 * The branch is now connected to its tree so we can
378 		 * reset tmp_alone_branch to the beginning of the
379 		 * list.
380 		 */
381 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
382 		return true;
383 	}
384 
385 	if (!cfs_rq->tg->parent) {
386 		/*
387 		 * cfs rq without parent should be put
388 		 * at the tail of the list.
389 		 */
390 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
391 			&rq->leaf_cfs_rq_list);
392 		/*
393 		 * We have reach the top of a tree so we can reset
394 		 * tmp_alone_branch to the beginning of the list.
395 		 */
396 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
397 		return true;
398 	}
399 
400 	/*
401 	 * The parent has not already been added so we want to
402 	 * make sure that it will be put after us.
403 	 * tmp_alone_branch points to the begin of the branch
404 	 * where we will add parent.
405 	 */
406 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
407 	/*
408 	 * update tmp_alone_branch to points to the new begin
409 	 * of the branch
410 	 */
411 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
412 	return false;
413 }
414 
415 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
416 {
417 	if (cfs_rq->on_list) {
418 		struct rq *rq = rq_of(cfs_rq);
419 
420 		/*
421 		 * With cfs_rq being unthrottled/throttled during an enqueue,
422 		 * it can happen the tmp_alone_branch points the a leaf that
423 		 * we finally want to del. In this case, tmp_alone_branch moves
424 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
425 		 * at the end of the enqueue.
426 		 */
427 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
428 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
429 
430 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
431 		cfs_rq->on_list = 0;
432 	}
433 }
434 
435 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
436 {
437 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
438 }
439 
440 /* Iterate thr' all leaf cfs_rq's on a runqueue */
441 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
442 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
443 				 leaf_cfs_rq_list)
444 
445 /* Do the two (enqueued) entities belong to the same group ? */
446 static inline struct cfs_rq *
447 is_same_group(struct sched_entity *se, struct sched_entity *pse)
448 {
449 	if (se->cfs_rq == pse->cfs_rq)
450 		return se->cfs_rq;
451 
452 	return NULL;
453 }
454 
455 static inline struct sched_entity *parent_entity(struct sched_entity *se)
456 {
457 	return se->parent;
458 }
459 
460 static void
461 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
462 {
463 	int se_depth, pse_depth;
464 
465 	/*
466 	 * preemption test can be made between sibling entities who are in the
467 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
468 	 * both tasks until we find their ancestors who are siblings of common
469 	 * parent.
470 	 */
471 
472 	/* First walk up until both entities are at same depth */
473 	se_depth = (*se)->depth;
474 	pse_depth = (*pse)->depth;
475 
476 	while (se_depth > pse_depth) {
477 		se_depth--;
478 		*se = parent_entity(*se);
479 	}
480 
481 	while (pse_depth > se_depth) {
482 		pse_depth--;
483 		*pse = parent_entity(*pse);
484 	}
485 
486 	while (!is_same_group(*se, *pse)) {
487 		*se = parent_entity(*se);
488 		*pse = parent_entity(*pse);
489 	}
490 }
491 
492 static int tg_is_idle(struct task_group *tg)
493 {
494 	return tg->idle > 0;
495 }
496 
497 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
498 {
499 	return cfs_rq->idle > 0;
500 }
501 
502 static int se_is_idle(struct sched_entity *se)
503 {
504 	if (entity_is_task(se))
505 		return task_has_idle_policy(task_of(se));
506 	return cfs_rq_is_idle(group_cfs_rq(se));
507 }
508 
509 #else	/* !CONFIG_FAIR_GROUP_SCHED */
510 
511 #define for_each_sched_entity(se) \
512 		for (; se; se = NULL)
513 
514 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
515 {
516 	return true;
517 }
518 
519 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
520 {
521 }
522 
523 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
524 {
525 }
526 
527 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
528 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
529 
530 static inline struct sched_entity *parent_entity(struct sched_entity *se)
531 {
532 	return NULL;
533 }
534 
535 static inline void
536 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
537 {
538 }
539 
540 static inline int tg_is_idle(struct task_group *tg)
541 {
542 	return 0;
543 }
544 
545 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
546 {
547 	return 0;
548 }
549 
550 static int se_is_idle(struct sched_entity *se)
551 {
552 	return 0;
553 }
554 
555 #endif	/* CONFIG_FAIR_GROUP_SCHED */
556 
557 static __always_inline
558 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
559 
560 /**************************************************************
561  * Scheduling class tree data structure manipulation methods:
562  */
563 
564 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
565 {
566 	s64 delta = (s64)(vruntime - max_vruntime);
567 	if (delta > 0)
568 		max_vruntime = vruntime;
569 
570 	return max_vruntime;
571 }
572 
573 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
574 {
575 	s64 delta = (s64)(vruntime - min_vruntime);
576 	if (delta < 0)
577 		min_vruntime = vruntime;
578 
579 	return min_vruntime;
580 }
581 
582 static inline bool entity_before(struct sched_entity *a,
583 				struct sched_entity *b)
584 {
585 	return (s64)(a->vruntime - b->vruntime) < 0;
586 }
587 
588 #define __node_2_se(node) \
589 	rb_entry((node), struct sched_entity, run_node)
590 
591 static void update_min_vruntime(struct cfs_rq *cfs_rq)
592 {
593 	struct sched_entity *curr = cfs_rq->curr;
594 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
595 
596 	u64 vruntime = cfs_rq->min_vruntime;
597 
598 	if (curr) {
599 		if (curr->on_rq)
600 			vruntime = curr->vruntime;
601 		else
602 			curr = NULL;
603 	}
604 
605 	if (leftmost) { /* non-empty tree */
606 		struct sched_entity *se = __node_2_se(leftmost);
607 
608 		if (!curr)
609 			vruntime = se->vruntime;
610 		else
611 			vruntime = min_vruntime(vruntime, se->vruntime);
612 	}
613 
614 	/* ensure we never gain time by being placed backwards. */
615 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
616 #ifndef CONFIG_64BIT
617 	smp_wmb();
618 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
619 #endif
620 }
621 
622 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
623 {
624 	return entity_before(__node_2_se(a), __node_2_se(b));
625 }
626 
627 /*
628  * Enqueue an entity into the rb-tree:
629  */
630 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
631 {
632 	rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
633 }
634 
635 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
636 {
637 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
638 }
639 
640 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
641 {
642 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
643 
644 	if (!left)
645 		return NULL;
646 
647 	return __node_2_se(left);
648 }
649 
650 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
651 {
652 	struct rb_node *next = rb_next(&se->run_node);
653 
654 	if (!next)
655 		return NULL;
656 
657 	return __node_2_se(next);
658 }
659 
660 #ifdef CONFIG_SCHED_DEBUG
661 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
662 {
663 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
664 
665 	if (!last)
666 		return NULL;
667 
668 	return __node_2_se(last);
669 }
670 
671 /**************************************************************
672  * Scheduling class statistics methods:
673  */
674 
675 int sched_update_scaling(void)
676 {
677 	unsigned int factor = get_update_sysctl_factor();
678 
679 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
680 					sysctl_sched_min_granularity);
681 
682 #define WRT_SYSCTL(name) \
683 	(normalized_sysctl_##name = sysctl_##name / (factor))
684 	WRT_SYSCTL(sched_min_granularity);
685 	WRT_SYSCTL(sched_latency);
686 	WRT_SYSCTL(sched_wakeup_granularity);
687 #undef WRT_SYSCTL
688 
689 	return 0;
690 }
691 #endif
692 
693 /*
694  * delta /= w
695  */
696 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
697 {
698 	if (unlikely(se->load.weight != NICE_0_LOAD))
699 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
700 
701 	return delta;
702 }
703 
704 /*
705  * The idea is to set a period in which each task runs once.
706  *
707  * When there are too many tasks (sched_nr_latency) we have to stretch
708  * this period because otherwise the slices get too small.
709  *
710  * p = (nr <= nl) ? l : l*nr/nl
711  */
712 static u64 __sched_period(unsigned long nr_running)
713 {
714 	if (unlikely(nr_running > sched_nr_latency))
715 		return nr_running * sysctl_sched_min_granularity;
716 	else
717 		return sysctl_sched_latency;
718 }
719 
720 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
721 
722 /*
723  * We calculate the wall-time slice from the period by taking a part
724  * proportional to the weight.
725  *
726  * s = p*P[w/rw]
727  */
728 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
729 {
730 	unsigned int nr_running = cfs_rq->nr_running;
731 	struct sched_entity *init_se = se;
732 	unsigned int min_gran;
733 	u64 slice;
734 
735 	if (sched_feat(ALT_PERIOD))
736 		nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
737 
738 	slice = __sched_period(nr_running + !se->on_rq);
739 
740 	for_each_sched_entity(se) {
741 		struct load_weight *load;
742 		struct load_weight lw;
743 		struct cfs_rq *qcfs_rq;
744 
745 		qcfs_rq = cfs_rq_of(se);
746 		load = &qcfs_rq->load;
747 
748 		if (unlikely(!se->on_rq)) {
749 			lw = qcfs_rq->load;
750 
751 			update_load_add(&lw, se->load.weight);
752 			load = &lw;
753 		}
754 		slice = __calc_delta(slice, se->load.weight, load);
755 	}
756 
757 	if (sched_feat(BASE_SLICE)) {
758 		if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
759 			min_gran = sysctl_sched_idle_min_granularity;
760 		else
761 			min_gran = sysctl_sched_min_granularity;
762 
763 		slice = max_t(u64, slice, min_gran);
764 	}
765 
766 	return slice;
767 }
768 
769 /*
770  * We calculate the vruntime slice of a to-be-inserted task.
771  *
772  * vs = s/w
773  */
774 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
775 {
776 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
777 }
778 
779 #include "pelt.h"
780 #ifdef CONFIG_SMP
781 
782 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
783 static unsigned long task_h_load(struct task_struct *p);
784 static unsigned long capacity_of(int cpu);
785 
786 /* Give new sched_entity start runnable values to heavy its load in infant time */
787 void init_entity_runnable_average(struct sched_entity *se)
788 {
789 	struct sched_avg *sa = &se->avg;
790 
791 	memset(sa, 0, sizeof(*sa));
792 
793 	/*
794 	 * Tasks are initialized with full load to be seen as heavy tasks until
795 	 * they get a chance to stabilize to their real load level.
796 	 * Group entities are initialized with zero load to reflect the fact that
797 	 * nothing has been attached to the task group yet.
798 	 */
799 	if (entity_is_task(se))
800 		sa->load_avg = scale_load_down(se->load.weight);
801 
802 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
803 }
804 
805 static void attach_entity_cfs_rq(struct sched_entity *se);
806 
807 /*
808  * With new tasks being created, their initial util_avgs are extrapolated
809  * based on the cfs_rq's current util_avg:
810  *
811  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
812  *
813  * However, in many cases, the above util_avg does not give a desired
814  * value. Moreover, the sum of the util_avgs may be divergent, such
815  * as when the series is a harmonic series.
816  *
817  * To solve this problem, we also cap the util_avg of successive tasks to
818  * only 1/2 of the left utilization budget:
819  *
820  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
821  *
822  * where n denotes the nth task and cpu_scale the CPU capacity.
823  *
824  * For example, for a CPU with 1024 of capacity, a simplest series from
825  * the beginning would be like:
826  *
827  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
828  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
829  *
830  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
831  * if util_avg > util_avg_cap.
832  */
833 void post_init_entity_util_avg(struct task_struct *p)
834 {
835 	struct sched_entity *se = &p->se;
836 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
837 	struct sched_avg *sa = &se->avg;
838 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
839 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
840 
841 	if (cap > 0) {
842 		if (cfs_rq->avg.util_avg != 0) {
843 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
844 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
845 
846 			if (sa->util_avg > cap)
847 				sa->util_avg = cap;
848 		} else {
849 			sa->util_avg = cap;
850 		}
851 	}
852 
853 	sa->runnable_avg = sa->util_avg;
854 
855 	if (p->sched_class != &fair_sched_class) {
856 		/*
857 		 * For !fair tasks do:
858 		 *
859 		update_cfs_rq_load_avg(now, cfs_rq);
860 		attach_entity_load_avg(cfs_rq, se);
861 		switched_from_fair(rq, p);
862 		 *
863 		 * such that the next switched_to_fair() has the
864 		 * expected state.
865 		 */
866 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
867 		return;
868 	}
869 
870 	attach_entity_cfs_rq(se);
871 }
872 
873 #else /* !CONFIG_SMP */
874 void init_entity_runnable_average(struct sched_entity *se)
875 {
876 }
877 void post_init_entity_util_avg(struct task_struct *p)
878 {
879 }
880 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
881 {
882 }
883 #endif /* CONFIG_SMP */
884 
885 /*
886  * Update the current task's runtime statistics.
887  */
888 static void update_curr(struct cfs_rq *cfs_rq)
889 {
890 	struct sched_entity *curr = cfs_rq->curr;
891 	u64 now = rq_clock_task(rq_of(cfs_rq));
892 	u64 delta_exec;
893 
894 	if (unlikely(!curr))
895 		return;
896 
897 	delta_exec = now - curr->exec_start;
898 	if (unlikely((s64)delta_exec <= 0))
899 		return;
900 
901 	curr->exec_start = now;
902 
903 	if (schedstat_enabled()) {
904 		struct sched_statistics *stats;
905 
906 		stats = __schedstats_from_se(curr);
907 		__schedstat_set(stats->exec_max,
908 				max(delta_exec, stats->exec_max));
909 	}
910 
911 	curr->sum_exec_runtime += delta_exec;
912 	schedstat_add(cfs_rq->exec_clock, delta_exec);
913 
914 	curr->vruntime += calc_delta_fair(delta_exec, curr);
915 	update_min_vruntime(cfs_rq);
916 
917 	if (entity_is_task(curr)) {
918 		struct task_struct *curtask = task_of(curr);
919 
920 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
921 		cgroup_account_cputime(curtask, delta_exec);
922 		account_group_exec_runtime(curtask, delta_exec);
923 	}
924 
925 	account_cfs_rq_runtime(cfs_rq, delta_exec);
926 }
927 
928 static void update_curr_fair(struct rq *rq)
929 {
930 	update_curr(cfs_rq_of(&rq->curr->se));
931 }
932 
933 static inline void
934 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
935 {
936 	struct sched_statistics *stats;
937 	struct task_struct *p = NULL;
938 
939 	if (!schedstat_enabled())
940 		return;
941 
942 	stats = __schedstats_from_se(se);
943 
944 	if (entity_is_task(se))
945 		p = task_of(se);
946 
947 	__update_stats_wait_start(rq_of(cfs_rq), p, stats);
948 }
949 
950 static inline void
951 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
952 {
953 	struct sched_statistics *stats;
954 	struct task_struct *p = NULL;
955 
956 	if (!schedstat_enabled())
957 		return;
958 
959 	stats = __schedstats_from_se(se);
960 
961 	/*
962 	 * When the sched_schedstat changes from 0 to 1, some sched se
963 	 * maybe already in the runqueue, the se->statistics.wait_start
964 	 * will be 0.So it will let the delta wrong. We need to avoid this
965 	 * scenario.
966 	 */
967 	if (unlikely(!schedstat_val(stats->wait_start)))
968 		return;
969 
970 	if (entity_is_task(se))
971 		p = task_of(se);
972 
973 	__update_stats_wait_end(rq_of(cfs_rq), p, stats);
974 }
975 
976 static inline void
977 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
978 {
979 	struct sched_statistics *stats;
980 	struct task_struct *tsk = NULL;
981 
982 	if (!schedstat_enabled())
983 		return;
984 
985 	stats = __schedstats_from_se(se);
986 
987 	if (entity_is_task(se))
988 		tsk = task_of(se);
989 
990 	__update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
991 }
992 
993 /*
994  * Task is being enqueued - update stats:
995  */
996 static inline void
997 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
998 {
999 	if (!schedstat_enabled())
1000 		return;
1001 
1002 	/*
1003 	 * Are we enqueueing a waiting task? (for current tasks
1004 	 * a dequeue/enqueue event is a NOP)
1005 	 */
1006 	if (se != cfs_rq->curr)
1007 		update_stats_wait_start_fair(cfs_rq, se);
1008 
1009 	if (flags & ENQUEUE_WAKEUP)
1010 		update_stats_enqueue_sleeper_fair(cfs_rq, se);
1011 }
1012 
1013 static inline void
1014 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1015 {
1016 
1017 	if (!schedstat_enabled())
1018 		return;
1019 
1020 	/*
1021 	 * Mark the end of the wait period if dequeueing a
1022 	 * waiting task:
1023 	 */
1024 	if (se != cfs_rq->curr)
1025 		update_stats_wait_end_fair(cfs_rq, se);
1026 
1027 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1028 		struct task_struct *tsk = task_of(se);
1029 		unsigned int state;
1030 
1031 		/* XXX racy against TTWU */
1032 		state = READ_ONCE(tsk->__state);
1033 		if (state & TASK_INTERRUPTIBLE)
1034 			__schedstat_set(tsk->stats.sleep_start,
1035 				      rq_clock(rq_of(cfs_rq)));
1036 		if (state & TASK_UNINTERRUPTIBLE)
1037 			__schedstat_set(tsk->stats.block_start,
1038 				      rq_clock(rq_of(cfs_rq)));
1039 	}
1040 }
1041 
1042 /*
1043  * We are picking a new current task - update its stats:
1044  */
1045 static inline void
1046 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1047 {
1048 	/*
1049 	 * We are starting a new run period:
1050 	 */
1051 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1052 }
1053 
1054 /**************************************************
1055  * Scheduling class queueing methods:
1056  */
1057 
1058 #ifdef CONFIG_NUMA_BALANCING
1059 /*
1060  * Approximate time to scan a full NUMA task in ms. The task scan period is
1061  * calculated based on the tasks virtual memory size and
1062  * numa_balancing_scan_size.
1063  */
1064 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1065 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1066 
1067 /* Portion of address space to scan in MB */
1068 unsigned int sysctl_numa_balancing_scan_size = 256;
1069 
1070 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1071 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1072 
1073 struct numa_group {
1074 	refcount_t refcount;
1075 
1076 	spinlock_t lock; /* nr_tasks, tasks */
1077 	int nr_tasks;
1078 	pid_t gid;
1079 	int active_nodes;
1080 
1081 	struct rcu_head rcu;
1082 	unsigned long total_faults;
1083 	unsigned long max_faults_cpu;
1084 	/*
1085 	 * faults[] array is split into two regions: faults_mem and faults_cpu.
1086 	 *
1087 	 * Faults_cpu is used to decide whether memory should move
1088 	 * towards the CPU. As a consequence, these stats are weighted
1089 	 * more by CPU use than by memory faults.
1090 	 */
1091 	unsigned long faults[];
1092 };
1093 
1094 /*
1095  * For functions that can be called in multiple contexts that permit reading
1096  * ->numa_group (see struct task_struct for locking rules).
1097  */
1098 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1099 {
1100 	return rcu_dereference_check(p->numa_group, p == current ||
1101 		(lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1102 }
1103 
1104 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1105 {
1106 	return rcu_dereference_protected(p->numa_group, p == current);
1107 }
1108 
1109 static inline unsigned long group_faults_priv(struct numa_group *ng);
1110 static inline unsigned long group_faults_shared(struct numa_group *ng);
1111 
1112 static unsigned int task_nr_scan_windows(struct task_struct *p)
1113 {
1114 	unsigned long rss = 0;
1115 	unsigned long nr_scan_pages;
1116 
1117 	/*
1118 	 * Calculations based on RSS as non-present and empty pages are skipped
1119 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1120 	 * on resident pages
1121 	 */
1122 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1123 	rss = get_mm_rss(p->mm);
1124 	if (!rss)
1125 		rss = nr_scan_pages;
1126 
1127 	rss = round_up(rss, nr_scan_pages);
1128 	return rss / nr_scan_pages;
1129 }
1130 
1131 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1132 #define MAX_SCAN_WINDOW 2560
1133 
1134 static unsigned int task_scan_min(struct task_struct *p)
1135 {
1136 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1137 	unsigned int scan, floor;
1138 	unsigned int windows = 1;
1139 
1140 	if (scan_size < MAX_SCAN_WINDOW)
1141 		windows = MAX_SCAN_WINDOW / scan_size;
1142 	floor = 1000 / windows;
1143 
1144 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1145 	return max_t(unsigned int, floor, scan);
1146 }
1147 
1148 static unsigned int task_scan_start(struct task_struct *p)
1149 {
1150 	unsigned long smin = task_scan_min(p);
1151 	unsigned long period = smin;
1152 	struct numa_group *ng;
1153 
1154 	/* Scale the maximum scan period with the amount of shared memory. */
1155 	rcu_read_lock();
1156 	ng = rcu_dereference(p->numa_group);
1157 	if (ng) {
1158 		unsigned long shared = group_faults_shared(ng);
1159 		unsigned long private = group_faults_priv(ng);
1160 
1161 		period *= refcount_read(&ng->refcount);
1162 		period *= shared + 1;
1163 		period /= private + shared + 1;
1164 	}
1165 	rcu_read_unlock();
1166 
1167 	return max(smin, period);
1168 }
1169 
1170 static unsigned int task_scan_max(struct task_struct *p)
1171 {
1172 	unsigned long smin = task_scan_min(p);
1173 	unsigned long smax;
1174 	struct numa_group *ng;
1175 
1176 	/* Watch for min being lower than max due to floor calculations */
1177 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1178 
1179 	/* Scale the maximum scan period with the amount of shared memory. */
1180 	ng = deref_curr_numa_group(p);
1181 	if (ng) {
1182 		unsigned long shared = group_faults_shared(ng);
1183 		unsigned long private = group_faults_priv(ng);
1184 		unsigned long period = smax;
1185 
1186 		period *= refcount_read(&ng->refcount);
1187 		period *= shared + 1;
1188 		period /= private + shared + 1;
1189 
1190 		smax = max(smax, period);
1191 	}
1192 
1193 	return max(smin, smax);
1194 }
1195 
1196 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1197 {
1198 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1199 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1200 }
1201 
1202 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1203 {
1204 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1205 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1206 }
1207 
1208 /* Shared or private faults. */
1209 #define NR_NUMA_HINT_FAULT_TYPES 2
1210 
1211 /* Memory and CPU locality */
1212 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1213 
1214 /* Averaged statistics, and temporary buffers. */
1215 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1216 
1217 pid_t task_numa_group_id(struct task_struct *p)
1218 {
1219 	struct numa_group *ng;
1220 	pid_t gid = 0;
1221 
1222 	rcu_read_lock();
1223 	ng = rcu_dereference(p->numa_group);
1224 	if (ng)
1225 		gid = ng->gid;
1226 	rcu_read_unlock();
1227 
1228 	return gid;
1229 }
1230 
1231 /*
1232  * The averaged statistics, shared & private, memory & CPU,
1233  * occupy the first half of the array. The second half of the
1234  * array is for current counters, which are averaged into the
1235  * first set by task_numa_placement.
1236  */
1237 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1238 {
1239 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1240 }
1241 
1242 static inline unsigned long task_faults(struct task_struct *p, int nid)
1243 {
1244 	if (!p->numa_faults)
1245 		return 0;
1246 
1247 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1248 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1249 }
1250 
1251 static inline unsigned long group_faults(struct task_struct *p, int nid)
1252 {
1253 	struct numa_group *ng = deref_task_numa_group(p);
1254 
1255 	if (!ng)
1256 		return 0;
1257 
1258 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1259 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1260 }
1261 
1262 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1263 {
1264 	return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1265 		group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1266 }
1267 
1268 static inline unsigned long group_faults_priv(struct numa_group *ng)
1269 {
1270 	unsigned long faults = 0;
1271 	int node;
1272 
1273 	for_each_online_node(node) {
1274 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1275 	}
1276 
1277 	return faults;
1278 }
1279 
1280 static inline unsigned long group_faults_shared(struct numa_group *ng)
1281 {
1282 	unsigned long faults = 0;
1283 	int node;
1284 
1285 	for_each_online_node(node) {
1286 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1287 	}
1288 
1289 	return faults;
1290 }
1291 
1292 /*
1293  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1294  * considered part of a numa group's pseudo-interleaving set. Migrations
1295  * between these nodes are slowed down, to allow things to settle down.
1296  */
1297 #define ACTIVE_NODE_FRACTION 3
1298 
1299 static bool numa_is_active_node(int nid, struct numa_group *ng)
1300 {
1301 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1302 }
1303 
1304 /* Handle placement on systems where not all nodes are directly connected. */
1305 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1306 					int lim_dist, bool task)
1307 {
1308 	unsigned long score = 0;
1309 	int node, max_dist;
1310 
1311 	/*
1312 	 * All nodes are directly connected, and the same distance
1313 	 * from each other. No need for fancy placement algorithms.
1314 	 */
1315 	if (sched_numa_topology_type == NUMA_DIRECT)
1316 		return 0;
1317 
1318 	/* sched_max_numa_distance may be changed in parallel. */
1319 	max_dist = READ_ONCE(sched_max_numa_distance);
1320 	/*
1321 	 * This code is called for each node, introducing N^2 complexity,
1322 	 * which should be ok given the number of nodes rarely exceeds 8.
1323 	 */
1324 	for_each_online_node(node) {
1325 		unsigned long faults;
1326 		int dist = node_distance(nid, node);
1327 
1328 		/*
1329 		 * The furthest away nodes in the system are not interesting
1330 		 * for placement; nid was already counted.
1331 		 */
1332 		if (dist >= max_dist || node == nid)
1333 			continue;
1334 
1335 		/*
1336 		 * On systems with a backplane NUMA topology, compare groups
1337 		 * of nodes, and move tasks towards the group with the most
1338 		 * memory accesses. When comparing two nodes at distance
1339 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1340 		 * of each group. Skip other nodes.
1341 		 */
1342 		if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1343 			continue;
1344 
1345 		/* Add up the faults from nearby nodes. */
1346 		if (task)
1347 			faults = task_faults(p, node);
1348 		else
1349 			faults = group_faults(p, node);
1350 
1351 		/*
1352 		 * On systems with a glueless mesh NUMA topology, there are
1353 		 * no fixed "groups of nodes". Instead, nodes that are not
1354 		 * directly connected bounce traffic through intermediate
1355 		 * nodes; a numa_group can occupy any set of nodes.
1356 		 * The further away a node is, the less the faults count.
1357 		 * This seems to result in good task placement.
1358 		 */
1359 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1360 			faults *= (max_dist - dist);
1361 			faults /= (max_dist - LOCAL_DISTANCE);
1362 		}
1363 
1364 		score += faults;
1365 	}
1366 
1367 	return score;
1368 }
1369 
1370 /*
1371  * These return the fraction of accesses done by a particular task, or
1372  * task group, on a particular numa node.  The group weight is given a
1373  * larger multiplier, in order to group tasks together that are almost
1374  * evenly spread out between numa nodes.
1375  */
1376 static inline unsigned long task_weight(struct task_struct *p, int nid,
1377 					int dist)
1378 {
1379 	unsigned long faults, total_faults;
1380 
1381 	if (!p->numa_faults)
1382 		return 0;
1383 
1384 	total_faults = p->total_numa_faults;
1385 
1386 	if (!total_faults)
1387 		return 0;
1388 
1389 	faults = task_faults(p, nid);
1390 	faults += score_nearby_nodes(p, nid, dist, true);
1391 
1392 	return 1000 * faults / total_faults;
1393 }
1394 
1395 static inline unsigned long group_weight(struct task_struct *p, int nid,
1396 					 int dist)
1397 {
1398 	struct numa_group *ng = deref_task_numa_group(p);
1399 	unsigned long faults, total_faults;
1400 
1401 	if (!ng)
1402 		return 0;
1403 
1404 	total_faults = ng->total_faults;
1405 
1406 	if (!total_faults)
1407 		return 0;
1408 
1409 	faults = group_faults(p, nid);
1410 	faults += score_nearby_nodes(p, nid, dist, false);
1411 
1412 	return 1000 * faults / total_faults;
1413 }
1414 
1415 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1416 				int src_nid, int dst_cpu)
1417 {
1418 	struct numa_group *ng = deref_curr_numa_group(p);
1419 	int dst_nid = cpu_to_node(dst_cpu);
1420 	int last_cpupid, this_cpupid;
1421 
1422 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1423 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1424 
1425 	/*
1426 	 * Allow first faults or private faults to migrate immediately early in
1427 	 * the lifetime of a task. The magic number 4 is based on waiting for
1428 	 * two full passes of the "multi-stage node selection" test that is
1429 	 * executed below.
1430 	 */
1431 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1432 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1433 		return true;
1434 
1435 	/*
1436 	 * Multi-stage node selection is used in conjunction with a periodic
1437 	 * migration fault to build a temporal task<->page relation. By using
1438 	 * a two-stage filter we remove short/unlikely relations.
1439 	 *
1440 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1441 	 * a task's usage of a particular page (n_p) per total usage of this
1442 	 * page (n_t) (in a given time-span) to a probability.
1443 	 *
1444 	 * Our periodic faults will sample this probability and getting the
1445 	 * same result twice in a row, given these samples are fully
1446 	 * independent, is then given by P(n)^2, provided our sample period
1447 	 * is sufficiently short compared to the usage pattern.
1448 	 *
1449 	 * This quadric squishes small probabilities, making it less likely we
1450 	 * act on an unlikely task<->page relation.
1451 	 */
1452 	if (!cpupid_pid_unset(last_cpupid) &&
1453 				cpupid_to_nid(last_cpupid) != dst_nid)
1454 		return false;
1455 
1456 	/* Always allow migrate on private faults */
1457 	if (cpupid_match_pid(p, last_cpupid))
1458 		return true;
1459 
1460 	/* A shared fault, but p->numa_group has not been set up yet. */
1461 	if (!ng)
1462 		return true;
1463 
1464 	/*
1465 	 * Destination node is much more heavily used than the source
1466 	 * node? Allow migration.
1467 	 */
1468 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1469 					ACTIVE_NODE_FRACTION)
1470 		return true;
1471 
1472 	/*
1473 	 * Distribute memory according to CPU & memory use on each node,
1474 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1475 	 *
1476 	 * faults_cpu(dst)   3   faults_cpu(src)
1477 	 * --------------- * - > ---------------
1478 	 * faults_mem(dst)   4   faults_mem(src)
1479 	 */
1480 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1481 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1482 }
1483 
1484 /*
1485  * 'numa_type' describes the node at the moment of load balancing.
1486  */
1487 enum numa_type {
1488 	/* The node has spare capacity that can be used to run more tasks.  */
1489 	node_has_spare = 0,
1490 	/*
1491 	 * The node is fully used and the tasks don't compete for more CPU
1492 	 * cycles. Nevertheless, some tasks might wait before running.
1493 	 */
1494 	node_fully_busy,
1495 	/*
1496 	 * The node is overloaded and can't provide expected CPU cycles to all
1497 	 * tasks.
1498 	 */
1499 	node_overloaded
1500 };
1501 
1502 /* Cached statistics for all CPUs within a node */
1503 struct numa_stats {
1504 	unsigned long load;
1505 	unsigned long runnable;
1506 	unsigned long util;
1507 	/* Total compute capacity of CPUs on a node */
1508 	unsigned long compute_capacity;
1509 	unsigned int nr_running;
1510 	unsigned int weight;
1511 	enum numa_type node_type;
1512 	int idle_cpu;
1513 };
1514 
1515 static inline bool is_core_idle(int cpu)
1516 {
1517 #ifdef CONFIG_SCHED_SMT
1518 	int sibling;
1519 
1520 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1521 		if (cpu == sibling)
1522 			continue;
1523 
1524 		if (!idle_cpu(sibling))
1525 			return false;
1526 	}
1527 #endif
1528 
1529 	return true;
1530 }
1531 
1532 struct task_numa_env {
1533 	struct task_struct *p;
1534 
1535 	int src_cpu, src_nid;
1536 	int dst_cpu, dst_nid;
1537 	int imb_numa_nr;
1538 
1539 	struct numa_stats src_stats, dst_stats;
1540 
1541 	int imbalance_pct;
1542 	int dist;
1543 
1544 	struct task_struct *best_task;
1545 	long best_imp;
1546 	int best_cpu;
1547 };
1548 
1549 static unsigned long cpu_load(struct rq *rq);
1550 static unsigned long cpu_runnable(struct rq *rq);
1551 static inline long adjust_numa_imbalance(int imbalance,
1552 					int dst_running, int imb_numa_nr);
1553 
1554 static inline enum
1555 numa_type numa_classify(unsigned int imbalance_pct,
1556 			 struct numa_stats *ns)
1557 {
1558 	if ((ns->nr_running > ns->weight) &&
1559 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1560 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1561 		return node_overloaded;
1562 
1563 	if ((ns->nr_running < ns->weight) ||
1564 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1565 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1566 		return node_has_spare;
1567 
1568 	return node_fully_busy;
1569 }
1570 
1571 #ifdef CONFIG_SCHED_SMT
1572 /* Forward declarations of select_idle_sibling helpers */
1573 static inline bool test_idle_cores(int cpu, bool def);
1574 static inline int numa_idle_core(int idle_core, int cpu)
1575 {
1576 	if (!static_branch_likely(&sched_smt_present) ||
1577 	    idle_core >= 0 || !test_idle_cores(cpu, false))
1578 		return idle_core;
1579 
1580 	/*
1581 	 * Prefer cores instead of packing HT siblings
1582 	 * and triggering future load balancing.
1583 	 */
1584 	if (is_core_idle(cpu))
1585 		idle_core = cpu;
1586 
1587 	return idle_core;
1588 }
1589 #else
1590 static inline int numa_idle_core(int idle_core, int cpu)
1591 {
1592 	return idle_core;
1593 }
1594 #endif
1595 
1596 /*
1597  * Gather all necessary information to make NUMA balancing placement
1598  * decisions that are compatible with standard load balancer. This
1599  * borrows code and logic from update_sg_lb_stats but sharing a
1600  * common implementation is impractical.
1601  */
1602 static void update_numa_stats(struct task_numa_env *env,
1603 			      struct numa_stats *ns, int nid,
1604 			      bool find_idle)
1605 {
1606 	int cpu, idle_core = -1;
1607 
1608 	memset(ns, 0, sizeof(*ns));
1609 	ns->idle_cpu = -1;
1610 
1611 	rcu_read_lock();
1612 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1613 		struct rq *rq = cpu_rq(cpu);
1614 
1615 		ns->load += cpu_load(rq);
1616 		ns->runnable += cpu_runnable(rq);
1617 		ns->util += cpu_util_cfs(cpu);
1618 		ns->nr_running += rq->cfs.h_nr_running;
1619 		ns->compute_capacity += capacity_of(cpu);
1620 
1621 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1622 			if (READ_ONCE(rq->numa_migrate_on) ||
1623 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1624 				continue;
1625 
1626 			if (ns->idle_cpu == -1)
1627 				ns->idle_cpu = cpu;
1628 
1629 			idle_core = numa_idle_core(idle_core, cpu);
1630 		}
1631 	}
1632 	rcu_read_unlock();
1633 
1634 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1635 
1636 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1637 
1638 	if (idle_core >= 0)
1639 		ns->idle_cpu = idle_core;
1640 }
1641 
1642 static void task_numa_assign(struct task_numa_env *env,
1643 			     struct task_struct *p, long imp)
1644 {
1645 	struct rq *rq = cpu_rq(env->dst_cpu);
1646 
1647 	/* Check if run-queue part of active NUMA balance. */
1648 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1649 		int cpu;
1650 		int start = env->dst_cpu;
1651 
1652 		/* Find alternative idle CPU. */
1653 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1654 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1655 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1656 				continue;
1657 			}
1658 
1659 			env->dst_cpu = cpu;
1660 			rq = cpu_rq(env->dst_cpu);
1661 			if (!xchg(&rq->numa_migrate_on, 1))
1662 				goto assign;
1663 		}
1664 
1665 		/* Failed to find an alternative idle CPU */
1666 		return;
1667 	}
1668 
1669 assign:
1670 	/*
1671 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1672 	 * found a better CPU to move/swap.
1673 	 */
1674 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1675 		rq = cpu_rq(env->best_cpu);
1676 		WRITE_ONCE(rq->numa_migrate_on, 0);
1677 	}
1678 
1679 	if (env->best_task)
1680 		put_task_struct(env->best_task);
1681 	if (p)
1682 		get_task_struct(p);
1683 
1684 	env->best_task = p;
1685 	env->best_imp = imp;
1686 	env->best_cpu = env->dst_cpu;
1687 }
1688 
1689 static bool load_too_imbalanced(long src_load, long dst_load,
1690 				struct task_numa_env *env)
1691 {
1692 	long imb, old_imb;
1693 	long orig_src_load, orig_dst_load;
1694 	long src_capacity, dst_capacity;
1695 
1696 	/*
1697 	 * The load is corrected for the CPU capacity available on each node.
1698 	 *
1699 	 * src_load        dst_load
1700 	 * ------------ vs ---------
1701 	 * src_capacity    dst_capacity
1702 	 */
1703 	src_capacity = env->src_stats.compute_capacity;
1704 	dst_capacity = env->dst_stats.compute_capacity;
1705 
1706 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1707 
1708 	orig_src_load = env->src_stats.load;
1709 	orig_dst_load = env->dst_stats.load;
1710 
1711 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1712 
1713 	/* Would this change make things worse? */
1714 	return (imb > old_imb);
1715 }
1716 
1717 /*
1718  * Maximum NUMA importance can be 1998 (2*999);
1719  * SMALLIMP @ 30 would be close to 1998/64.
1720  * Used to deter task migration.
1721  */
1722 #define SMALLIMP	30
1723 
1724 /*
1725  * This checks if the overall compute and NUMA accesses of the system would
1726  * be improved if the source tasks was migrated to the target dst_cpu taking
1727  * into account that it might be best if task running on the dst_cpu should
1728  * be exchanged with the source task
1729  */
1730 static bool task_numa_compare(struct task_numa_env *env,
1731 			      long taskimp, long groupimp, bool maymove)
1732 {
1733 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1734 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1735 	long imp = p_ng ? groupimp : taskimp;
1736 	struct task_struct *cur;
1737 	long src_load, dst_load;
1738 	int dist = env->dist;
1739 	long moveimp = imp;
1740 	long load;
1741 	bool stopsearch = false;
1742 
1743 	if (READ_ONCE(dst_rq->numa_migrate_on))
1744 		return false;
1745 
1746 	rcu_read_lock();
1747 	cur = rcu_dereference(dst_rq->curr);
1748 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1749 		cur = NULL;
1750 
1751 	/*
1752 	 * Because we have preemption enabled we can get migrated around and
1753 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1754 	 */
1755 	if (cur == env->p) {
1756 		stopsearch = true;
1757 		goto unlock;
1758 	}
1759 
1760 	if (!cur) {
1761 		if (maymove && moveimp >= env->best_imp)
1762 			goto assign;
1763 		else
1764 			goto unlock;
1765 	}
1766 
1767 	/* Skip this swap candidate if cannot move to the source cpu. */
1768 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1769 		goto unlock;
1770 
1771 	/*
1772 	 * Skip this swap candidate if it is not moving to its preferred
1773 	 * node and the best task is.
1774 	 */
1775 	if (env->best_task &&
1776 	    env->best_task->numa_preferred_nid == env->src_nid &&
1777 	    cur->numa_preferred_nid != env->src_nid) {
1778 		goto unlock;
1779 	}
1780 
1781 	/*
1782 	 * "imp" is the fault differential for the source task between the
1783 	 * source and destination node. Calculate the total differential for
1784 	 * the source task and potential destination task. The more negative
1785 	 * the value is, the more remote accesses that would be expected to
1786 	 * be incurred if the tasks were swapped.
1787 	 *
1788 	 * If dst and source tasks are in the same NUMA group, or not
1789 	 * in any group then look only at task weights.
1790 	 */
1791 	cur_ng = rcu_dereference(cur->numa_group);
1792 	if (cur_ng == p_ng) {
1793 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1794 		      task_weight(cur, env->dst_nid, dist);
1795 		/*
1796 		 * Add some hysteresis to prevent swapping the
1797 		 * tasks within a group over tiny differences.
1798 		 */
1799 		if (cur_ng)
1800 			imp -= imp / 16;
1801 	} else {
1802 		/*
1803 		 * Compare the group weights. If a task is all by itself
1804 		 * (not part of a group), use the task weight instead.
1805 		 */
1806 		if (cur_ng && p_ng)
1807 			imp += group_weight(cur, env->src_nid, dist) -
1808 			       group_weight(cur, env->dst_nid, dist);
1809 		else
1810 			imp += task_weight(cur, env->src_nid, dist) -
1811 			       task_weight(cur, env->dst_nid, dist);
1812 	}
1813 
1814 	/* Discourage picking a task already on its preferred node */
1815 	if (cur->numa_preferred_nid == env->dst_nid)
1816 		imp -= imp / 16;
1817 
1818 	/*
1819 	 * Encourage picking a task that moves to its preferred node.
1820 	 * This potentially makes imp larger than it's maximum of
1821 	 * 1998 (see SMALLIMP and task_weight for why) but in this
1822 	 * case, it does not matter.
1823 	 */
1824 	if (cur->numa_preferred_nid == env->src_nid)
1825 		imp += imp / 8;
1826 
1827 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1828 		imp = moveimp;
1829 		cur = NULL;
1830 		goto assign;
1831 	}
1832 
1833 	/*
1834 	 * Prefer swapping with a task moving to its preferred node over a
1835 	 * task that is not.
1836 	 */
1837 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1838 	    env->best_task->numa_preferred_nid != env->src_nid) {
1839 		goto assign;
1840 	}
1841 
1842 	/*
1843 	 * If the NUMA importance is less than SMALLIMP,
1844 	 * task migration might only result in ping pong
1845 	 * of tasks and also hurt performance due to cache
1846 	 * misses.
1847 	 */
1848 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1849 		goto unlock;
1850 
1851 	/*
1852 	 * In the overloaded case, try and keep the load balanced.
1853 	 */
1854 	load = task_h_load(env->p) - task_h_load(cur);
1855 	if (!load)
1856 		goto assign;
1857 
1858 	dst_load = env->dst_stats.load + load;
1859 	src_load = env->src_stats.load - load;
1860 
1861 	if (load_too_imbalanced(src_load, dst_load, env))
1862 		goto unlock;
1863 
1864 assign:
1865 	/* Evaluate an idle CPU for a task numa move. */
1866 	if (!cur) {
1867 		int cpu = env->dst_stats.idle_cpu;
1868 
1869 		/* Nothing cached so current CPU went idle since the search. */
1870 		if (cpu < 0)
1871 			cpu = env->dst_cpu;
1872 
1873 		/*
1874 		 * If the CPU is no longer truly idle and the previous best CPU
1875 		 * is, keep using it.
1876 		 */
1877 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1878 		    idle_cpu(env->best_cpu)) {
1879 			cpu = env->best_cpu;
1880 		}
1881 
1882 		env->dst_cpu = cpu;
1883 	}
1884 
1885 	task_numa_assign(env, cur, imp);
1886 
1887 	/*
1888 	 * If a move to idle is allowed because there is capacity or load
1889 	 * balance improves then stop the search. While a better swap
1890 	 * candidate may exist, a search is not free.
1891 	 */
1892 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1893 		stopsearch = true;
1894 
1895 	/*
1896 	 * If a swap candidate must be identified and the current best task
1897 	 * moves its preferred node then stop the search.
1898 	 */
1899 	if (!maymove && env->best_task &&
1900 	    env->best_task->numa_preferred_nid == env->src_nid) {
1901 		stopsearch = true;
1902 	}
1903 unlock:
1904 	rcu_read_unlock();
1905 
1906 	return stopsearch;
1907 }
1908 
1909 static void task_numa_find_cpu(struct task_numa_env *env,
1910 				long taskimp, long groupimp)
1911 {
1912 	bool maymove = false;
1913 	int cpu;
1914 
1915 	/*
1916 	 * If dst node has spare capacity, then check if there is an
1917 	 * imbalance that would be overruled by the load balancer.
1918 	 */
1919 	if (env->dst_stats.node_type == node_has_spare) {
1920 		unsigned int imbalance;
1921 		int src_running, dst_running;
1922 
1923 		/*
1924 		 * Would movement cause an imbalance? Note that if src has
1925 		 * more running tasks that the imbalance is ignored as the
1926 		 * move improves the imbalance from the perspective of the
1927 		 * CPU load balancer.
1928 		 * */
1929 		src_running = env->src_stats.nr_running - 1;
1930 		dst_running = env->dst_stats.nr_running + 1;
1931 		imbalance = max(0, dst_running - src_running);
1932 		imbalance = adjust_numa_imbalance(imbalance, dst_running,
1933 						  env->imb_numa_nr);
1934 
1935 		/* Use idle CPU if there is no imbalance */
1936 		if (!imbalance) {
1937 			maymove = true;
1938 			if (env->dst_stats.idle_cpu >= 0) {
1939 				env->dst_cpu = env->dst_stats.idle_cpu;
1940 				task_numa_assign(env, NULL, 0);
1941 				return;
1942 			}
1943 		}
1944 	} else {
1945 		long src_load, dst_load, load;
1946 		/*
1947 		 * If the improvement from just moving env->p direction is better
1948 		 * than swapping tasks around, check if a move is possible.
1949 		 */
1950 		load = task_h_load(env->p);
1951 		dst_load = env->dst_stats.load + load;
1952 		src_load = env->src_stats.load - load;
1953 		maymove = !load_too_imbalanced(src_load, dst_load, env);
1954 	}
1955 
1956 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1957 		/* Skip this CPU if the source task cannot migrate */
1958 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1959 			continue;
1960 
1961 		env->dst_cpu = cpu;
1962 		if (task_numa_compare(env, taskimp, groupimp, maymove))
1963 			break;
1964 	}
1965 }
1966 
1967 static int task_numa_migrate(struct task_struct *p)
1968 {
1969 	struct task_numa_env env = {
1970 		.p = p,
1971 
1972 		.src_cpu = task_cpu(p),
1973 		.src_nid = task_node(p),
1974 
1975 		.imbalance_pct = 112,
1976 
1977 		.best_task = NULL,
1978 		.best_imp = 0,
1979 		.best_cpu = -1,
1980 	};
1981 	unsigned long taskweight, groupweight;
1982 	struct sched_domain *sd;
1983 	long taskimp, groupimp;
1984 	struct numa_group *ng;
1985 	struct rq *best_rq;
1986 	int nid, ret, dist;
1987 
1988 	/*
1989 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
1990 	 * imbalance and would be the first to start moving tasks about.
1991 	 *
1992 	 * And we want to avoid any moving of tasks about, as that would create
1993 	 * random movement of tasks -- counter the numa conditions we're trying
1994 	 * to satisfy here.
1995 	 */
1996 	rcu_read_lock();
1997 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1998 	if (sd) {
1999 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2000 		env.imb_numa_nr = sd->imb_numa_nr;
2001 	}
2002 	rcu_read_unlock();
2003 
2004 	/*
2005 	 * Cpusets can break the scheduler domain tree into smaller
2006 	 * balance domains, some of which do not cross NUMA boundaries.
2007 	 * Tasks that are "trapped" in such domains cannot be migrated
2008 	 * elsewhere, so there is no point in (re)trying.
2009 	 */
2010 	if (unlikely(!sd)) {
2011 		sched_setnuma(p, task_node(p));
2012 		return -EINVAL;
2013 	}
2014 
2015 	env.dst_nid = p->numa_preferred_nid;
2016 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2017 	taskweight = task_weight(p, env.src_nid, dist);
2018 	groupweight = group_weight(p, env.src_nid, dist);
2019 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2020 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2021 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2022 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2023 
2024 	/* Try to find a spot on the preferred nid. */
2025 	task_numa_find_cpu(&env, taskimp, groupimp);
2026 
2027 	/*
2028 	 * Look at other nodes in these cases:
2029 	 * - there is no space available on the preferred_nid
2030 	 * - the task is part of a numa_group that is interleaved across
2031 	 *   multiple NUMA nodes; in order to better consolidate the group,
2032 	 *   we need to check other locations.
2033 	 */
2034 	ng = deref_curr_numa_group(p);
2035 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2036 		for_each_node_state(nid, N_CPU) {
2037 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2038 				continue;
2039 
2040 			dist = node_distance(env.src_nid, env.dst_nid);
2041 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2042 						dist != env.dist) {
2043 				taskweight = task_weight(p, env.src_nid, dist);
2044 				groupweight = group_weight(p, env.src_nid, dist);
2045 			}
2046 
2047 			/* Only consider nodes where both task and groups benefit */
2048 			taskimp = task_weight(p, nid, dist) - taskweight;
2049 			groupimp = group_weight(p, nid, dist) - groupweight;
2050 			if (taskimp < 0 && groupimp < 0)
2051 				continue;
2052 
2053 			env.dist = dist;
2054 			env.dst_nid = nid;
2055 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2056 			task_numa_find_cpu(&env, taskimp, groupimp);
2057 		}
2058 	}
2059 
2060 	/*
2061 	 * If the task is part of a workload that spans multiple NUMA nodes,
2062 	 * and is migrating into one of the workload's active nodes, remember
2063 	 * this node as the task's preferred numa node, so the workload can
2064 	 * settle down.
2065 	 * A task that migrated to a second choice node will be better off
2066 	 * trying for a better one later. Do not set the preferred node here.
2067 	 */
2068 	if (ng) {
2069 		if (env.best_cpu == -1)
2070 			nid = env.src_nid;
2071 		else
2072 			nid = cpu_to_node(env.best_cpu);
2073 
2074 		if (nid != p->numa_preferred_nid)
2075 			sched_setnuma(p, nid);
2076 	}
2077 
2078 	/* No better CPU than the current one was found. */
2079 	if (env.best_cpu == -1) {
2080 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2081 		return -EAGAIN;
2082 	}
2083 
2084 	best_rq = cpu_rq(env.best_cpu);
2085 	if (env.best_task == NULL) {
2086 		ret = migrate_task_to(p, env.best_cpu);
2087 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2088 		if (ret != 0)
2089 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2090 		return ret;
2091 	}
2092 
2093 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2094 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2095 
2096 	if (ret != 0)
2097 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2098 	put_task_struct(env.best_task);
2099 	return ret;
2100 }
2101 
2102 /* Attempt to migrate a task to a CPU on the preferred node. */
2103 static void numa_migrate_preferred(struct task_struct *p)
2104 {
2105 	unsigned long interval = HZ;
2106 
2107 	/* This task has no NUMA fault statistics yet */
2108 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2109 		return;
2110 
2111 	/* Periodically retry migrating the task to the preferred node */
2112 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2113 	p->numa_migrate_retry = jiffies + interval;
2114 
2115 	/* Success if task is already running on preferred CPU */
2116 	if (task_node(p) == p->numa_preferred_nid)
2117 		return;
2118 
2119 	/* Otherwise, try migrate to a CPU on the preferred node */
2120 	task_numa_migrate(p);
2121 }
2122 
2123 /*
2124  * Find out how many nodes the workload is actively running on. Do this by
2125  * tracking the nodes from which NUMA hinting faults are triggered. This can
2126  * be different from the set of nodes where the workload's memory is currently
2127  * located.
2128  */
2129 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2130 {
2131 	unsigned long faults, max_faults = 0;
2132 	int nid, active_nodes = 0;
2133 
2134 	for_each_node_state(nid, N_CPU) {
2135 		faults = group_faults_cpu(numa_group, nid);
2136 		if (faults > max_faults)
2137 			max_faults = faults;
2138 	}
2139 
2140 	for_each_node_state(nid, N_CPU) {
2141 		faults = group_faults_cpu(numa_group, nid);
2142 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2143 			active_nodes++;
2144 	}
2145 
2146 	numa_group->max_faults_cpu = max_faults;
2147 	numa_group->active_nodes = active_nodes;
2148 }
2149 
2150 /*
2151  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2152  * increments. The more local the fault statistics are, the higher the scan
2153  * period will be for the next scan window. If local/(local+remote) ratio is
2154  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2155  * the scan period will decrease. Aim for 70% local accesses.
2156  */
2157 #define NUMA_PERIOD_SLOTS 10
2158 #define NUMA_PERIOD_THRESHOLD 7
2159 
2160 /*
2161  * Increase the scan period (slow down scanning) if the majority of
2162  * our memory is already on our local node, or if the majority of
2163  * the page accesses are shared with other processes.
2164  * Otherwise, decrease the scan period.
2165  */
2166 static void update_task_scan_period(struct task_struct *p,
2167 			unsigned long shared, unsigned long private)
2168 {
2169 	unsigned int period_slot;
2170 	int lr_ratio, ps_ratio;
2171 	int diff;
2172 
2173 	unsigned long remote = p->numa_faults_locality[0];
2174 	unsigned long local = p->numa_faults_locality[1];
2175 
2176 	/*
2177 	 * If there were no record hinting faults then either the task is
2178 	 * completely idle or all activity is in areas that are not of interest
2179 	 * to automatic numa balancing. Related to that, if there were failed
2180 	 * migration then it implies we are migrating too quickly or the local
2181 	 * node is overloaded. In either case, scan slower
2182 	 */
2183 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2184 		p->numa_scan_period = min(p->numa_scan_period_max,
2185 			p->numa_scan_period << 1);
2186 
2187 		p->mm->numa_next_scan = jiffies +
2188 			msecs_to_jiffies(p->numa_scan_period);
2189 
2190 		return;
2191 	}
2192 
2193 	/*
2194 	 * Prepare to scale scan period relative to the current period.
2195 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2196 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2197 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2198 	 */
2199 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2200 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2201 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2202 
2203 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2204 		/*
2205 		 * Most memory accesses are local. There is no need to
2206 		 * do fast NUMA scanning, since memory is already local.
2207 		 */
2208 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2209 		if (!slot)
2210 			slot = 1;
2211 		diff = slot * period_slot;
2212 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2213 		/*
2214 		 * Most memory accesses are shared with other tasks.
2215 		 * There is no point in continuing fast NUMA scanning,
2216 		 * since other tasks may just move the memory elsewhere.
2217 		 */
2218 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2219 		if (!slot)
2220 			slot = 1;
2221 		diff = slot * period_slot;
2222 	} else {
2223 		/*
2224 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2225 		 * yet they are not on the local NUMA node. Speed up
2226 		 * NUMA scanning to get the memory moved over.
2227 		 */
2228 		int ratio = max(lr_ratio, ps_ratio);
2229 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2230 	}
2231 
2232 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2233 			task_scan_min(p), task_scan_max(p));
2234 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2235 }
2236 
2237 /*
2238  * Get the fraction of time the task has been running since the last
2239  * NUMA placement cycle. The scheduler keeps similar statistics, but
2240  * decays those on a 32ms period, which is orders of magnitude off
2241  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2242  * stats only if the task is so new there are no NUMA statistics yet.
2243  */
2244 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2245 {
2246 	u64 runtime, delta, now;
2247 	/* Use the start of this time slice to avoid calculations. */
2248 	now = p->se.exec_start;
2249 	runtime = p->se.sum_exec_runtime;
2250 
2251 	if (p->last_task_numa_placement) {
2252 		delta = runtime - p->last_sum_exec_runtime;
2253 		*period = now - p->last_task_numa_placement;
2254 
2255 		/* Avoid time going backwards, prevent potential divide error: */
2256 		if (unlikely((s64)*period < 0))
2257 			*period = 0;
2258 	} else {
2259 		delta = p->se.avg.load_sum;
2260 		*period = LOAD_AVG_MAX;
2261 	}
2262 
2263 	p->last_sum_exec_runtime = runtime;
2264 	p->last_task_numa_placement = now;
2265 
2266 	return delta;
2267 }
2268 
2269 /*
2270  * Determine the preferred nid for a task in a numa_group. This needs to
2271  * be done in a way that produces consistent results with group_weight,
2272  * otherwise workloads might not converge.
2273  */
2274 static int preferred_group_nid(struct task_struct *p, int nid)
2275 {
2276 	nodemask_t nodes;
2277 	int dist;
2278 
2279 	/* Direct connections between all NUMA nodes. */
2280 	if (sched_numa_topology_type == NUMA_DIRECT)
2281 		return nid;
2282 
2283 	/*
2284 	 * On a system with glueless mesh NUMA topology, group_weight
2285 	 * scores nodes according to the number of NUMA hinting faults on
2286 	 * both the node itself, and on nearby nodes.
2287 	 */
2288 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2289 		unsigned long score, max_score = 0;
2290 		int node, max_node = nid;
2291 
2292 		dist = sched_max_numa_distance;
2293 
2294 		for_each_node_state(node, N_CPU) {
2295 			score = group_weight(p, node, dist);
2296 			if (score > max_score) {
2297 				max_score = score;
2298 				max_node = node;
2299 			}
2300 		}
2301 		return max_node;
2302 	}
2303 
2304 	/*
2305 	 * Finding the preferred nid in a system with NUMA backplane
2306 	 * interconnect topology is more involved. The goal is to locate
2307 	 * tasks from numa_groups near each other in the system, and
2308 	 * untangle workloads from different sides of the system. This requires
2309 	 * searching down the hierarchy of node groups, recursively searching
2310 	 * inside the highest scoring group of nodes. The nodemask tricks
2311 	 * keep the complexity of the search down.
2312 	 */
2313 	nodes = node_states[N_CPU];
2314 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2315 		unsigned long max_faults = 0;
2316 		nodemask_t max_group = NODE_MASK_NONE;
2317 		int a, b;
2318 
2319 		/* Are there nodes at this distance from each other? */
2320 		if (!find_numa_distance(dist))
2321 			continue;
2322 
2323 		for_each_node_mask(a, nodes) {
2324 			unsigned long faults = 0;
2325 			nodemask_t this_group;
2326 			nodes_clear(this_group);
2327 
2328 			/* Sum group's NUMA faults; includes a==b case. */
2329 			for_each_node_mask(b, nodes) {
2330 				if (node_distance(a, b) < dist) {
2331 					faults += group_faults(p, b);
2332 					node_set(b, this_group);
2333 					node_clear(b, nodes);
2334 				}
2335 			}
2336 
2337 			/* Remember the top group. */
2338 			if (faults > max_faults) {
2339 				max_faults = faults;
2340 				max_group = this_group;
2341 				/*
2342 				 * subtle: at the smallest distance there is
2343 				 * just one node left in each "group", the
2344 				 * winner is the preferred nid.
2345 				 */
2346 				nid = a;
2347 			}
2348 		}
2349 		/* Next round, evaluate the nodes within max_group. */
2350 		if (!max_faults)
2351 			break;
2352 		nodes = max_group;
2353 	}
2354 	return nid;
2355 }
2356 
2357 static void task_numa_placement(struct task_struct *p)
2358 {
2359 	int seq, nid, max_nid = NUMA_NO_NODE;
2360 	unsigned long max_faults = 0;
2361 	unsigned long fault_types[2] = { 0, 0 };
2362 	unsigned long total_faults;
2363 	u64 runtime, period;
2364 	spinlock_t *group_lock = NULL;
2365 	struct numa_group *ng;
2366 
2367 	/*
2368 	 * The p->mm->numa_scan_seq field gets updated without
2369 	 * exclusive access. Use READ_ONCE() here to ensure
2370 	 * that the field is read in a single access:
2371 	 */
2372 	seq = READ_ONCE(p->mm->numa_scan_seq);
2373 	if (p->numa_scan_seq == seq)
2374 		return;
2375 	p->numa_scan_seq = seq;
2376 	p->numa_scan_period_max = task_scan_max(p);
2377 
2378 	total_faults = p->numa_faults_locality[0] +
2379 		       p->numa_faults_locality[1];
2380 	runtime = numa_get_avg_runtime(p, &period);
2381 
2382 	/* If the task is part of a group prevent parallel updates to group stats */
2383 	ng = deref_curr_numa_group(p);
2384 	if (ng) {
2385 		group_lock = &ng->lock;
2386 		spin_lock_irq(group_lock);
2387 	}
2388 
2389 	/* Find the node with the highest number of faults */
2390 	for_each_online_node(nid) {
2391 		/* Keep track of the offsets in numa_faults array */
2392 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2393 		unsigned long faults = 0, group_faults = 0;
2394 		int priv;
2395 
2396 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2397 			long diff, f_diff, f_weight;
2398 
2399 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2400 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2401 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2402 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2403 
2404 			/* Decay existing window, copy faults since last scan */
2405 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2406 			fault_types[priv] += p->numa_faults[membuf_idx];
2407 			p->numa_faults[membuf_idx] = 0;
2408 
2409 			/*
2410 			 * Normalize the faults_from, so all tasks in a group
2411 			 * count according to CPU use, instead of by the raw
2412 			 * number of faults. Tasks with little runtime have
2413 			 * little over-all impact on throughput, and thus their
2414 			 * faults are less important.
2415 			 */
2416 			f_weight = div64_u64(runtime << 16, period + 1);
2417 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2418 				   (total_faults + 1);
2419 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2420 			p->numa_faults[cpubuf_idx] = 0;
2421 
2422 			p->numa_faults[mem_idx] += diff;
2423 			p->numa_faults[cpu_idx] += f_diff;
2424 			faults += p->numa_faults[mem_idx];
2425 			p->total_numa_faults += diff;
2426 			if (ng) {
2427 				/*
2428 				 * safe because we can only change our own group
2429 				 *
2430 				 * mem_idx represents the offset for a given
2431 				 * nid and priv in a specific region because it
2432 				 * is at the beginning of the numa_faults array.
2433 				 */
2434 				ng->faults[mem_idx] += diff;
2435 				ng->faults[cpu_idx] += f_diff;
2436 				ng->total_faults += diff;
2437 				group_faults += ng->faults[mem_idx];
2438 			}
2439 		}
2440 
2441 		if (!ng) {
2442 			if (faults > max_faults) {
2443 				max_faults = faults;
2444 				max_nid = nid;
2445 			}
2446 		} else if (group_faults > max_faults) {
2447 			max_faults = group_faults;
2448 			max_nid = nid;
2449 		}
2450 	}
2451 
2452 	/* Cannot migrate task to CPU-less node */
2453 	if (max_nid != NUMA_NO_NODE && !node_state(max_nid, N_CPU)) {
2454 		int near_nid = max_nid;
2455 		int distance, near_distance = INT_MAX;
2456 
2457 		for_each_node_state(nid, N_CPU) {
2458 			distance = node_distance(max_nid, nid);
2459 			if (distance < near_distance) {
2460 				near_nid = nid;
2461 				near_distance = distance;
2462 			}
2463 		}
2464 		max_nid = near_nid;
2465 	}
2466 
2467 	if (ng) {
2468 		numa_group_count_active_nodes(ng);
2469 		spin_unlock_irq(group_lock);
2470 		max_nid = preferred_group_nid(p, max_nid);
2471 	}
2472 
2473 	if (max_faults) {
2474 		/* Set the new preferred node */
2475 		if (max_nid != p->numa_preferred_nid)
2476 			sched_setnuma(p, max_nid);
2477 	}
2478 
2479 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2480 }
2481 
2482 static inline int get_numa_group(struct numa_group *grp)
2483 {
2484 	return refcount_inc_not_zero(&grp->refcount);
2485 }
2486 
2487 static inline void put_numa_group(struct numa_group *grp)
2488 {
2489 	if (refcount_dec_and_test(&grp->refcount))
2490 		kfree_rcu(grp, rcu);
2491 }
2492 
2493 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2494 			int *priv)
2495 {
2496 	struct numa_group *grp, *my_grp;
2497 	struct task_struct *tsk;
2498 	bool join = false;
2499 	int cpu = cpupid_to_cpu(cpupid);
2500 	int i;
2501 
2502 	if (unlikely(!deref_curr_numa_group(p))) {
2503 		unsigned int size = sizeof(struct numa_group) +
2504 				    NR_NUMA_HINT_FAULT_STATS *
2505 				    nr_node_ids * sizeof(unsigned long);
2506 
2507 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2508 		if (!grp)
2509 			return;
2510 
2511 		refcount_set(&grp->refcount, 1);
2512 		grp->active_nodes = 1;
2513 		grp->max_faults_cpu = 0;
2514 		spin_lock_init(&grp->lock);
2515 		grp->gid = p->pid;
2516 
2517 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2518 			grp->faults[i] = p->numa_faults[i];
2519 
2520 		grp->total_faults = p->total_numa_faults;
2521 
2522 		grp->nr_tasks++;
2523 		rcu_assign_pointer(p->numa_group, grp);
2524 	}
2525 
2526 	rcu_read_lock();
2527 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2528 
2529 	if (!cpupid_match_pid(tsk, cpupid))
2530 		goto no_join;
2531 
2532 	grp = rcu_dereference(tsk->numa_group);
2533 	if (!grp)
2534 		goto no_join;
2535 
2536 	my_grp = deref_curr_numa_group(p);
2537 	if (grp == my_grp)
2538 		goto no_join;
2539 
2540 	/*
2541 	 * Only join the other group if its bigger; if we're the bigger group,
2542 	 * the other task will join us.
2543 	 */
2544 	if (my_grp->nr_tasks > grp->nr_tasks)
2545 		goto no_join;
2546 
2547 	/*
2548 	 * Tie-break on the grp address.
2549 	 */
2550 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2551 		goto no_join;
2552 
2553 	/* Always join threads in the same process. */
2554 	if (tsk->mm == current->mm)
2555 		join = true;
2556 
2557 	/* Simple filter to avoid false positives due to PID collisions */
2558 	if (flags & TNF_SHARED)
2559 		join = true;
2560 
2561 	/* Update priv based on whether false sharing was detected */
2562 	*priv = !join;
2563 
2564 	if (join && !get_numa_group(grp))
2565 		goto no_join;
2566 
2567 	rcu_read_unlock();
2568 
2569 	if (!join)
2570 		return;
2571 
2572 	BUG_ON(irqs_disabled());
2573 	double_lock_irq(&my_grp->lock, &grp->lock);
2574 
2575 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2576 		my_grp->faults[i] -= p->numa_faults[i];
2577 		grp->faults[i] += p->numa_faults[i];
2578 	}
2579 	my_grp->total_faults -= p->total_numa_faults;
2580 	grp->total_faults += p->total_numa_faults;
2581 
2582 	my_grp->nr_tasks--;
2583 	grp->nr_tasks++;
2584 
2585 	spin_unlock(&my_grp->lock);
2586 	spin_unlock_irq(&grp->lock);
2587 
2588 	rcu_assign_pointer(p->numa_group, grp);
2589 
2590 	put_numa_group(my_grp);
2591 	return;
2592 
2593 no_join:
2594 	rcu_read_unlock();
2595 	return;
2596 }
2597 
2598 /*
2599  * Get rid of NUMA statistics associated with a task (either current or dead).
2600  * If @final is set, the task is dead and has reached refcount zero, so we can
2601  * safely free all relevant data structures. Otherwise, there might be
2602  * concurrent reads from places like load balancing and procfs, and we should
2603  * reset the data back to default state without freeing ->numa_faults.
2604  */
2605 void task_numa_free(struct task_struct *p, bool final)
2606 {
2607 	/* safe: p either is current or is being freed by current */
2608 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2609 	unsigned long *numa_faults = p->numa_faults;
2610 	unsigned long flags;
2611 	int i;
2612 
2613 	if (!numa_faults)
2614 		return;
2615 
2616 	if (grp) {
2617 		spin_lock_irqsave(&grp->lock, flags);
2618 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2619 			grp->faults[i] -= p->numa_faults[i];
2620 		grp->total_faults -= p->total_numa_faults;
2621 
2622 		grp->nr_tasks--;
2623 		spin_unlock_irqrestore(&grp->lock, flags);
2624 		RCU_INIT_POINTER(p->numa_group, NULL);
2625 		put_numa_group(grp);
2626 	}
2627 
2628 	if (final) {
2629 		p->numa_faults = NULL;
2630 		kfree(numa_faults);
2631 	} else {
2632 		p->total_numa_faults = 0;
2633 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2634 			numa_faults[i] = 0;
2635 	}
2636 }
2637 
2638 /*
2639  * Got a PROT_NONE fault for a page on @node.
2640  */
2641 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2642 {
2643 	struct task_struct *p = current;
2644 	bool migrated = flags & TNF_MIGRATED;
2645 	int cpu_node = task_node(current);
2646 	int local = !!(flags & TNF_FAULT_LOCAL);
2647 	struct numa_group *ng;
2648 	int priv;
2649 
2650 	if (!static_branch_likely(&sched_numa_balancing))
2651 		return;
2652 
2653 	/* for example, ksmd faulting in a user's mm */
2654 	if (!p->mm)
2655 		return;
2656 
2657 	/* Allocate buffer to track faults on a per-node basis */
2658 	if (unlikely(!p->numa_faults)) {
2659 		int size = sizeof(*p->numa_faults) *
2660 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2661 
2662 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2663 		if (!p->numa_faults)
2664 			return;
2665 
2666 		p->total_numa_faults = 0;
2667 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2668 	}
2669 
2670 	/*
2671 	 * First accesses are treated as private, otherwise consider accesses
2672 	 * to be private if the accessing pid has not changed
2673 	 */
2674 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2675 		priv = 1;
2676 	} else {
2677 		priv = cpupid_match_pid(p, last_cpupid);
2678 		if (!priv && !(flags & TNF_NO_GROUP))
2679 			task_numa_group(p, last_cpupid, flags, &priv);
2680 	}
2681 
2682 	/*
2683 	 * If a workload spans multiple NUMA nodes, a shared fault that
2684 	 * occurs wholly within the set of nodes that the workload is
2685 	 * actively using should be counted as local. This allows the
2686 	 * scan rate to slow down when a workload has settled down.
2687 	 */
2688 	ng = deref_curr_numa_group(p);
2689 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2690 				numa_is_active_node(cpu_node, ng) &&
2691 				numa_is_active_node(mem_node, ng))
2692 		local = 1;
2693 
2694 	/*
2695 	 * Retry to migrate task to preferred node periodically, in case it
2696 	 * previously failed, or the scheduler moved us.
2697 	 */
2698 	if (time_after(jiffies, p->numa_migrate_retry)) {
2699 		task_numa_placement(p);
2700 		numa_migrate_preferred(p);
2701 	}
2702 
2703 	if (migrated)
2704 		p->numa_pages_migrated += pages;
2705 	if (flags & TNF_MIGRATE_FAIL)
2706 		p->numa_faults_locality[2] += pages;
2707 
2708 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2709 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2710 	p->numa_faults_locality[local] += pages;
2711 }
2712 
2713 static void reset_ptenuma_scan(struct task_struct *p)
2714 {
2715 	/*
2716 	 * We only did a read acquisition of the mmap sem, so
2717 	 * p->mm->numa_scan_seq is written to without exclusive access
2718 	 * and the update is not guaranteed to be atomic. That's not
2719 	 * much of an issue though, since this is just used for
2720 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2721 	 * expensive, to avoid any form of compiler optimizations:
2722 	 */
2723 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2724 	p->mm->numa_scan_offset = 0;
2725 }
2726 
2727 /*
2728  * The expensive part of numa migration is done from task_work context.
2729  * Triggered from task_tick_numa().
2730  */
2731 static void task_numa_work(struct callback_head *work)
2732 {
2733 	unsigned long migrate, next_scan, now = jiffies;
2734 	struct task_struct *p = current;
2735 	struct mm_struct *mm = p->mm;
2736 	u64 runtime = p->se.sum_exec_runtime;
2737 	struct vm_area_struct *vma;
2738 	unsigned long start, end;
2739 	unsigned long nr_pte_updates = 0;
2740 	long pages, virtpages;
2741 
2742 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2743 
2744 	work->next = work;
2745 	/*
2746 	 * Who cares about NUMA placement when they're dying.
2747 	 *
2748 	 * NOTE: make sure not to dereference p->mm before this check,
2749 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2750 	 * without p->mm even though we still had it when we enqueued this
2751 	 * work.
2752 	 */
2753 	if (p->flags & PF_EXITING)
2754 		return;
2755 
2756 	if (!mm->numa_next_scan) {
2757 		mm->numa_next_scan = now +
2758 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2759 	}
2760 
2761 	/*
2762 	 * Enforce maximal scan/migration frequency..
2763 	 */
2764 	migrate = mm->numa_next_scan;
2765 	if (time_before(now, migrate))
2766 		return;
2767 
2768 	if (p->numa_scan_period == 0) {
2769 		p->numa_scan_period_max = task_scan_max(p);
2770 		p->numa_scan_period = task_scan_start(p);
2771 	}
2772 
2773 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2774 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2775 		return;
2776 
2777 	/*
2778 	 * Delay this task enough that another task of this mm will likely win
2779 	 * the next time around.
2780 	 */
2781 	p->node_stamp += 2 * TICK_NSEC;
2782 
2783 	start = mm->numa_scan_offset;
2784 	pages = sysctl_numa_balancing_scan_size;
2785 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2786 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2787 	if (!pages)
2788 		return;
2789 
2790 
2791 	if (!mmap_read_trylock(mm))
2792 		return;
2793 	vma = find_vma(mm, start);
2794 	if (!vma) {
2795 		reset_ptenuma_scan(p);
2796 		start = 0;
2797 		vma = mm->mmap;
2798 	}
2799 	for (; vma; vma = vma->vm_next) {
2800 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2801 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2802 			continue;
2803 		}
2804 
2805 		/*
2806 		 * Shared library pages mapped by multiple processes are not
2807 		 * migrated as it is expected they are cache replicated. Avoid
2808 		 * hinting faults in read-only file-backed mappings or the vdso
2809 		 * as migrating the pages will be of marginal benefit.
2810 		 */
2811 		if (!vma->vm_mm ||
2812 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2813 			continue;
2814 
2815 		/*
2816 		 * Skip inaccessible VMAs to avoid any confusion between
2817 		 * PROT_NONE and NUMA hinting ptes
2818 		 */
2819 		if (!vma_is_accessible(vma))
2820 			continue;
2821 
2822 		do {
2823 			start = max(start, vma->vm_start);
2824 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2825 			end = min(end, vma->vm_end);
2826 			nr_pte_updates = change_prot_numa(vma, start, end);
2827 
2828 			/*
2829 			 * Try to scan sysctl_numa_balancing_size worth of
2830 			 * hpages that have at least one present PTE that
2831 			 * is not already pte-numa. If the VMA contains
2832 			 * areas that are unused or already full of prot_numa
2833 			 * PTEs, scan up to virtpages, to skip through those
2834 			 * areas faster.
2835 			 */
2836 			if (nr_pte_updates)
2837 				pages -= (end - start) >> PAGE_SHIFT;
2838 			virtpages -= (end - start) >> PAGE_SHIFT;
2839 
2840 			start = end;
2841 			if (pages <= 0 || virtpages <= 0)
2842 				goto out;
2843 
2844 			cond_resched();
2845 		} while (end != vma->vm_end);
2846 	}
2847 
2848 out:
2849 	/*
2850 	 * It is possible to reach the end of the VMA list but the last few
2851 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2852 	 * would find the !migratable VMA on the next scan but not reset the
2853 	 * scanner to the start so check it now.
2854 	 */
2855 	if (vma)
2856 		mm->numa_scan_offset = start;
2857 	else
2858 		reset_ptenuma_scan(p);
2859 	mmap_read_unlock(mm);
2860 
2861 	/*
2862 	 * Make sure tasks use at least 32x as much time to run other code
2863 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2864 	 * Usually update_task_scan_period slows down scanning enough; on an
2865 	 * overloaded system we need to limit overhead on a per task basis.
2866 	 */
2867 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2868 		u64 diff = p->se.sum_exec_runtime - runtime;
2869 		p->node_stamp += 32 * diff;
2870 	}
2871 }
2872 
2873 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2874 {
2875 	int mm_users = 0;
2876 	struct mm_struct *mm = p->mm;
2877 
2878 	if (mm) {
2879 		mm_users = atomic_read(&mm->mm_users);
2880 		if (mm_users == 1) {
2881 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2882 			mm->numa_scan_seq = 0;
2883 		}
2884 	}
2885 	p->node_stamp			= 0;
2886 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2887 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2888 	/* Protect against double add, see task_tick_numa and task_numa_work */
2889 	p->numa_work.next		= &p->numa_work;
2890 	p->numa_faults			= NULL;
2891 	p->numa_pages_migrated		= 0;
2892 	p->total_numa_faults		= 0;
2893 	RCU_INIT_POINTER(p->numa_group, NULL);
2894 	p->last_task_numa_placement	= 0;
2895 	p->last_sum_exec_runtime	= 0;
2896 
2897 	init_task_work(&p->numa_work, task_numa_work);
2898 
2899 	/* New address space, reset the preferred nid */
2900 	if (!(clone_flags & CLONE_VM)) {
2901 		p->numa_preferred_nid = NUMA_NO_NODE;
2902 		return;
2903 	}
2904 
2905 	/*
2906 	 * New thread, keep existing numa_preferred_nid which should be copied
2907 	 * already by arch_dup_task_struct but stagger when scans start.
2908 	 */
2909 	if (mm) {
2910 		unsigned int delay;
2911 
2912 		delay = min_t(unsigned int, task_scan_max(current),
2913 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2914 		delay += 2 * TICK_NSEC;
2915 		p->node_stamp = delay;
2916 	}
2917 }
2918 
2919 /*
2920  * Drive the periodic memory faults..
2921  */
2922 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2923 {
2924 	struct callback_head *work = &curr->numa_work;
2925 	u64 period, now;
2926 
2927 	/*
2928 	 * We don't care about NUMA placement if we don't have memory.
2929 	 */
2930 	if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2931 		return;
2932 
2933 	/*
2934 	 * Using runtime rather than walltime has the dual advantage that
2935 	 * we (mostly) drive the selection from busy threads and that the
2936 	 * task needs to have done some actual work before we bother with
2937 	 * NUMA placement.
2938 	 */
2939 	now = curr->se.sum_exec_runtime;
2940 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2941 
2942 	if (now > curr->node_stamp + period) {
2943 		if (!curr->node_stamp)
2944 			curr->numa_scan_period = task_scan_start(curr);
2945 		curr->node_stamp += period;
2946 
2947 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2948 			task_work_add(curr, work, TWA_RESUME);
2949 	}
2950 }
2951 
2952 static void update_scan_period(struct task_struct *p, int new_cpu)
2953 {
2954 	int src_nid = cpu_to_node(task_cpu(p));
2955 	int dst_nid = cpu_to_node(new_cpu);
2956 
2957 	if (!static_branch_likely(&sched_numa_balancing))
2958 		return;
2959 
2960 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2961 		return;
2962 
2963 	if (src_nid == dst_nid)
2964 		return;
2965 
2966 	/*
2967 	 * Allow resets if faults have been trapped before one scan
2968 	 * has completed. This is most likely due to a new task that
2969 	 * is pulled cross-node due to wakeups or load balancing.
2970 	 */
2971 	if (p->numa_scan_seq) {
2972 		/*
2973 		 * Avoid scan adjustments if moving to the preferred
2974 		 * node or if the task was not previously running on
2975 		 * the preferred node.
2976 		 */
2977 		if (dst_nid == p->numa_preferred_nid ||
2978 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2979 			src_nid != p->numa_preferred_nid))
2980 			return;
2981 	}
2982 
2983 	p->numa_scan_period = task_scan_start(p);
2984 }
2985 
2986 #else
2987 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2988 {
2989 }
2990 
2991 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2992 {
2993 }
2994 
2995 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2996 {
2997 }
2998 
2999 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3000 {
3001 }
3002 
3003 #endif /* CONFIG_NUMA_BALANCING */
3004 
3005 static void
3006 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3007 {
3008 	update_load_add(&cfs_rq->load, se->load.weight);
3009 #ifdef CONFIG_SMP
3010 	if (entity_is_task(se)) {
3011 		struct rq *rq = rq_of(cfs_rq);
3012 
3013 		account_numa_enqueue(rq, task_of(se));
3014 		list_add(&se->group_node, &rq->cfs_tasks);
3015 	}
3016 #endif
3017 	cfs_rq->nr_running++;
3018 	if (se_is_idle(se))
3019 		cfs_rq->idle_nr_running++;
3020 }
3021 
3022 static void
3023 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3024 {
3025 	update_load_sub(&cfs_rq->load, se->load.weight);
3026 #ifdef CONFIG_SMP
3027 	if (entity_is_task(se)) {
3028 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3029 		list_del_init(&se->group_node);
3030 	}
3031 #endif
3032 	cfs_rq->nr_running--;
3033 	if (se_is_idle(se))
3034 		cfs_rq->idle_nr_running--;
3035 }
3036 
3037 /*
3038  * Signed add and clamp on underflow.
3039  *
3040  * Explicitly do a load-store to ensure the intermediate value never hits
3041  * memory. This allows lockless observations without ever seeing the negative
3042  * values.
3043  */
3044 #define add_positive(_ptr, _val) do {                           \
3045 	typeof(_ptr) ptr = (_ptr);                              \
3046 	typeof(_val) val = (_val);                              \
3047 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3048 								\
3049 	res = var + val;                                        \
3050 								\
3051 	if (val < 0 && res > var)                               \
3052 		res = 0;                                        \
3053 								\
3054 	WRITE_ONCE(*ptr, res);                                  \
3055 } while (0)
3056 
3057 /*
3058  * Unsigned subtract and clamp on underflow.
3059  *
3060  * Explicitly do a load-store to ensure the intermediate value never hits
3061  * memory. This allows lockless observations without ever seeing the negative
3062  * values.
3063  */
3064 #define sub_positive(_ptr, _val) do {				\
3065 	typeof(_ptr) ptr = (_ptr);				\
3066 	typeof(*ptr) val = (_val);				\
3067 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3068 	res = var - val;					\
3069 	if (res > var)						\
3070 		res = 0;					\
3071 	WRITE_ONCE(*ptr, res);					\
3072 } while (0)
3073 
3074 /*
3075  * Remove and clamp on negative, from a local variable.
3076  *
3077  * A variant of sub_positive(), which does not use explicit load-store
3078  * and is thus optimized for local variable updates.
3079  */
3080 #define lsub_positive(_ptr, _val) do {				\
3081 	typeof(_ptr) ptr = (_ptr);				\
3082 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3083 } while (0)
3084 
3085 #ifdef CONFIG_SMP
3086 static inline void
3087 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3088 {
3089 	cfs_rq->avg.load_avg += se->avg.load_avg;
3090 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3091 }
3092 
3093 static inline void
3094 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3095 {
3096 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3097 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3098 	/* See update_cfs_rq_load_avg() */
3099 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3100 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3101 }
3102 #else
3103 static inline void
3104 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3105 static inline void
3106 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3107 #endif
3108 
3109 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3110 			    unsigned long weight)
3111 {
3112 	if (se->on_rq) {
3113 		/* commit outstanding execution time */
3114 		if (cfs_rq->curr == se)
3115 			update_curr(cfs_rq);
3116 		update_load_sub(&cfs_rq->load, se->load.weight);
3117 	}
3118 	dequeue_load_avg(cfs_rq, se);
3119 
3120 	update_load_set(&se->load, weight);
3121 
3122 #ifdef CONFIG_SMP
3123 	do {
3124 		u32 divider = get_pelt_divider(&se->avg);
3125 
3126 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3127 	} while (0);
3128 #endif
3129 
3130 	enqueue_load_avg(cfs_rq, se);
3131 	if (se->on_rq)
3132 		update_load_add(&cfs_rq->load, se->load.weight);
3133 
3134 }
3135 
3136 void reweight_task(struct task_struct *p, int prio)
3137 {
3138 	struct sched_entity *se = &p->se;
3139 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3140 	struct load_weight *load = &se->load;
3141 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3142 
3143 	reweight_entity(cfs_rq, se, weight);
3144 	load->inv_weight = sched_prio_to_wmult[prio];
3145 }
3146 
3147 #ifdef CONFIG_FAIR_GROUP_SCHED
3148 #ifdef CONFIG_SMP
3149 /*
3150  * All this does is approximate the hierarchical proportion which includes that
3151  * global sum we all love to hate.
3152  *
3153  * That is, the weight of a group entity, is the proportional share of the
3154  * group weight based on the group runqueue weights. That is:
3155  *
3156  *                     tg->weight * grq->load.weight
3157  *   ge->load.weight = -----------------------------               (1)
3158  *                       \Sum grq->load.weight
3159  *
3160  * Now, because computing that sum is prohibitively expensive to compute (been
3161  * there, done that) we approximate it with this average stuff. The average
3162  * moves slower and therefore the approximation is cheaper and more stable.
3163  *
3164  * So instead of the above, we substitute:
3165  *
3166  *   grq->load.weight -> grq->avg.load_avg                         (2)
3167  *
3168  * which yields the following:
3169  *
3170  *                     tg->weight * grq->avg.load_avg
3171  *   ge->load.weight = ------------------------------              (3)
3172  *                             tg->load_avg
3173  *
3174  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3175  *
3176  * That is shares_avg, and it is right (given the approximation (2)).
3177  *
3178  * The problem with it is that because the average is slow -- it was designed
3179  * to be exactly that of course -- this leads to transients in boundary
3180  * conditions. In specific, the case where the group was idle and we start the
3181  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3182  * yielding bad latency etc..
3183  *
3184  * Now, in that special case (1) reduces to:
3185  *
3186  *                     tg->weight * grq->load.weight
3187  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3188  *                         grp->load.weight
3189  *
3190  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3191  *
3192  * So what we do is modify our approximation (3) to approach (4) in the (near)
3193  * UP case, like:
3194  *
3195  *   ge->load.weight =
3196  *
3197  *              tg->weight * grq->load.weight
3198  *     ---------------------------------------------------         (5)
3199  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3200  *
3201  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3202  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3203  *
3204  *
3205  *                     tg->weight * grq->load.weight
3206  *   ge->load.weight = -----------------------------		   (6)
3207  *                             tg_load_avg'
3208  *
3209  * Where:
3210  *
3211  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3212  *                  max(grq->load.weight, grq->avg.load_avg)
3213  *
3214  * And that is shares_weight and is icky. In the (near) UP case it approaches
3215  * (4) while in the normal case it approaches (3). It consistently
3216  * overestimates the ge->load.weight and therefore:
3217  *
3218  *   \Sum ge->load.weight >= tg->weight
3219  *
3220  * hence icky!
3221  */
3222 static long calc_group_shares(struct cfs_rq *cfs_rq)
3223 {
3224 	long tg_weight, tg_shares, load, shares;
3225 	struct task_group *tg = cfs_rq->tg;
3226 
3227 	tg_shares = READ_ONCE(tg->shares);
3228 
3229 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3230 
3231 	tg_weight = atomic_long_read(&tg->load_avg);
3232 
3233 	/* Ensure tg_weight >= load */
3234 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3235 	tg_weight += load;
3236 
3237 	shares = (tg_shares * load);
3238 	if (tg_weight)
3239 		shares /= tg_weight;
3240 
3241 	/*
3242 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3243 	 * of a group with small tg->shares value. It is a floor value which is
3244 	 * assigned as a minimum load.weight to the sched_entity representing
3245 	 * the group on a CPU.
3246 	 *
3247 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3248 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3249 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3250 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3251 	 * instead of 0.
3252 	 */
3253 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3254 }
3255 #endif /* CONFIG_SMP */
3256 
3257 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3258 
3259 /*
3260  * Recomputes the group entity based on the current state of its group
3261  * runqueue.
3262  */
3263 static void update_cfs_group(struct sched_entity *se)
3264 {
3265 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3266 	long shares;
3267 
3268 	if (!gcfs_rq)
3269 		return;
3270 
3271 	if (throttled_hierarchy(gcfs_rq))
3272 		return;
3273 
3274 #ifndef CONFIG_SMP
3275 	shares = READ_ONCE(gcfs_rq->tg->shares);
3276 
3277 	if (likely(se->load.weight == shares))
3278 		return;
3279 #else
3280 	shares   = calc_group_shares(gcfs_rq);
3281 #endif
3282 
3283 	reweight_entity(cfs_rq_of(se), se, shares);
3284 }
3285 
3286 #else /* CONFIG_FAIR_GROUP_SCHED */
3287 static inline void update_cfs_group(struct sched_entity *se)
3288 {
3289 }
3290 #endif /* CONFIG_FAIR_GROUP_SCHED */
3291 
3292 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3293 {
3294 	struct rq *rq = rq_of(cfs_rq);
3295 
3296 	if (&rq->cfs == cfs_rq) {
3297 		/*
3298 		 * There are a few boundary cases this might miss but it should
3299 		 * get called often enough that that should (hopefully) not be
3300 		 * a real problem.
3301 		 *
3302 		 * It will not get called when we go idle, because the idle
3303 		 * thread is a different class (!fair), nor will the utilization
3304 		 * number include things like RT tasks.
3305 		 *
3306 		 * As is, the util number is not freq-invariant (we'd have to
3307 		 * implement arch_scale_freq_capacity() for that).
3308 		 *
3309 		 * See cpu_util_cfs().
3310 		 */
3311 		cpufreq_update_util(rq, flags);
3312 	}
3313 }
3314 
3315 #ifdef CONFIG_SMP
3316 #ifdef CONFIG_FAIR_GROUP_SCHED
3317 /*
3318  * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3319  * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3320  * bottom-up, we only have to test whether the cfs_rq before us on the list
3321  * is our child.
3322  * If cfs_rq is not on the list, test whether a child needs its to be added to
3323  * connect a branch to the tree  * (see list_add_leaf_cfs_rq() for details).
3324  */
3325 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3326 {
3327 	struct cfs_rq *prev_cfs_rq;
3328 	struct list_head *prev;
3329 
3330 	if (cfs_rq->on_list) {
3331 		prev = cfs_rq->leaf_cfs_rq_list.prev;
3332 	} else {
3333 		struct rq *rq = rq_of(cfs_rq);
3334 
3335 		prev = rq->tmp_alone_branch;
3336 	}
3337 
3338 	prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3339 
3340 	return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3341 }
3342 
3343 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3344 {
3345 	if (cfs_rq->load.weight)
3346 		return false;
3347 
3348 	if (cfs_rq->avg.load_sum)
3349 		return false;
3350 
3351 	if (cfs_rq->avg.util_sum)
3352 		return false;
3353 
3354 	if (cfs_rq->avg.runnable_sum)
3355 		return false;
3356 
3357 	if (child_cfs_rq_on_list(cfs_rq))
3358 		return false;
3359 
3360 	/*
3361 	 * _avg must be null when _sum are null because _avg = _sum / divider
3362 	 * Make sure that rounding and/or propagation of PELT values never
3363 	 * break this.
3364 	 */
3365 	SCHED_WARN_ON(cfs_rq->avg.load_avg ||
3366 		      cfs_rq->avg.util_avg ||
3367 		      cfs_rq->avg.runnable_avg);
3368 
3369 	return true;
3370 }
3371 
3372 /**
3373  * update_tg_load_avg - update the tg's load avg
3374  * @cfs_rq: the cfs_rq whose avg changed
3375  *
3376  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3377  * However, because tg->load_avg is a global value there are performance
3378  * considerations.
3379  *
3380  * In order to avoid having to look at the other cfs_rq's, we use a
3381  * differential update where we store the last value we propagated. This in
3382  * turn allows skipping updates if the differential is 'small'.
3383  *
3384  * Updating tg's load_avg is necessary before update_cfs_share().
3385  */
3386 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3387 {
3388 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3389 
3390 	/*
3391 	 * No need to update load_avg for root_task_group as it is not used.
3392 	 */
3393 	if (cfs_rq->tg == &root_task_group)
3394 		return;
3395 
3396 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3397 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3398 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3399 	}
3400 }
3401 
3402 /*
3403  * Called within set_task_rq() right before setting a task's CPU. The
3404  * caller only guarantees p->pi_lock is held; no other assumptions,
3405  * including the state of rq->lock, should be made.
3406  */
3407 void set_task_rq_fair(struct sched_entity *se,
3408 		      struct cfs_rq *prev, struct cfs_rq *next)
3409 {
3410 	u64 p_last_update_time;
3411 	u64 n_last_update_time;
3412 
3413 	if (!sched_feat(ATTACH_AGE_LOAD))
3414 		return;
3415 
3416 	/*
3417 	 * We are supposed to update the task to "current" time, then its up to
3418 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3419 	 * getting what current time is, so simply throw away the out-of-date
3420 	 * time. This will result in the wakee task is less decayed, but giving
3421 	 * the wakee more load sounds not bad.
3422 	 */
3423 	if (!(se->avg.last_update_time && prev))
3424 		return;
3425 
3426 #ifndef CONFIG_64BIT
3427 	{
3428 		u64 p_last_update_time_copy;
3429 		u64 n_last_update_time_copy;
3430 
3431 		do {
3432 			p_last_update_time_copy = prev->load_last_update_time_copy;
3433 			n_last_update_time_copy = next->load_last_update_time_copy;
3434 
3435 			smp_rmb();
3436 
3437 			p_last_update_time = prev->avg.last_update_time;
3438 			n_last_update_time = next->avg.last_update_time;
3439 
3440 		} while (p_last_update_time != p_last_update_time_copy ||
3441 			 n_last_update_time != n_last_update_time_copy);
3442 	}
3443 #else
3444 	p_last_update_time = prev->avg.last_update_time;
3445 	n_last_update_time = next->avg.last_update_time;
3446 #endif
3447 	__update_load_avg_blocked_se(p_last_update_time, se);
3448 	se->avg.last_update_time = n_last_update_time;
3449 }
3450 
3451 /*
3452  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3453  * propagate its contribution. The key to this propagation is the invariant
3454  * that for each group:
3455  *
3456  *   ge->avg == grq->avg						(1)
3457  *
3458  * _IFF_ we look at the pure running and runnable sums. Because they
3459  * represent the very same entity, just at different points in the hierarchy.
3460  *
3461  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3462  * and simply copies the running/runnable sum over (but still wrong, because
3463  * the group entity and group rq do not have their PELT windows aligned).
3464  *
3465  * However, update_tg_cfs_load() is more complex. So we have:
3466  *
3467  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3468  *
3469  * And since, like util, the runnable part should be directly transferable,
3470  * the following would _appear_ to be the straight forward approach:
3471  *
3472  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3473  *
3474  * And per (1) we have:
3475  *
3476  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3477  *
3478  * Which gives:
3479  *
3480  *                      ge->load.weight * grq->avg.load_avg
3481  *   ge->avg.load_avg = -----------------------------------		(4)
3482  *                               grq->load.weight
3483  *
3484  * Except that is wrong!
3485  *
3486  * Because while for entities historical weight is not important and we
3487  * really only care about our future and therefore can consider a pure
3488  * runnable sum, runqueues can NOT do this.
3489  *
3490  * We specifically want runqueues to have a load_avg that includes
3491  * historical weights. Those represent the blocked load, the load we expect
3492  * to (shortly) return to us. This only works by keeping the weights as
3493  * integral part of the sum. We therefore cannot decompose as per (3).
3494  *
3495  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3496  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3497  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3498  * runnable section of these tasks overlap (or not). If they were to perfectly
3499  * align the rq as a whole would be runnable 2/3 of the time. If however we
3500  * always have at least 1 runnable task, the rq as a whole is always runnable.
3501  *
3502  * So we'll have to approximate.. :/
3503  *
3504  * Given the constraint:
3505  *
3506  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3507  *
3508  * We can construct a rule that adds runnable to a rq by assuming minimal
3509  * overlap.
3510  *
3511  * On removal, we'll assume each task is equally runnable; which yields:
3512  *
3513  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3514  *
3515  * XXX: only do this for the part of runnable > running ?
3516  *
3517  */
3518 static inline void
3519 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3520 {
3521 	long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
3522 	u32 new_sum, divider;
3523 
3524 	/* Nothing to update */
3525 	if (!delta_avg)
3526 		return;
3527 
3528 	/*
3529 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3530 	 * See ___update_load_avg() for details.
3531 	 */
3532 	divider = get_pelt_divider(&cfs_rq->avg);
3533 
3534 
3535 	/* Set new sched_entity's utilization */
3536 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3537 	new_sum = se->avg.util_avg * divider;
3538 	delta_sum = (long)new_sum - (long)se->avg.util_sum;
3539 	se->avg.util_sum = new_sum;
3540 
3541 	/* Update parent cfs_rq utilization */
3542 	add_positive(&cfs_rq->avg.util_avg, delta_avg);
3543 	add_positive(&cfs_rq->avg.util_sum, delta_sum);
3544 
3545 	/* See update_cfs_rq_load_avg() */
3546 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3547 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
3548 }
3549 
3550 static inline void
3551 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3552 {
3553 	long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3554 	u32 new_sum, divider;
3555 
3556 	/* Nothing to update */
3557 	if (!delta_avg)
3558 		return;
3559 
3560 	/*
3561 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3562 	 * See ___update_load_avg() for details.
3563 	 */
3564 	divider = get_pelt_divider(&cfs_rq->avg);
3565 
3566 	/* Set new sched_entity's runnable */
3567 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3568 	new_sum = se->avg.runnable_avg * divider;
3569 	delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
3570 	se->avg.runnable_sum = new_sum;
3571 
3572 	/* Update parent cfs_rq runnable */
3573 	add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
3574 	add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
3575 	/* See update_cfs_rq_load_avg() */
3576 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3577 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
3578 }
3579 
3580 static inline void
3581 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3582 {
3583 	long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3584 	unsigned long load_avg;
3585 	u64 load_sum = 0;
3586 	s64 delta_sum;
3587 	u32 divider;
3588 
3589 	if (!runnable_sum)
3590 		return;
3591 
3592 	gcfs_rq->prop_runnable_sum = 0;
3593 
3594 	/*
3595 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3596 	 * See ___update_load_avg() for details.
3597 	 */
3598 	divider = get_pelt_divider(&cfs_rq->avg);
3599 
3600 	if (runnable_sum >= 0) {
3601 		/*
3602 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3603 		 * the CPU is saturated running == runnable.
3604 		 */
3605 		runnable_sum += se->avg.load_sum;
3606 		runnable_sum = min_t(long, runnable_sum, divider);
3607 	} else {
3608 		/*
3609 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3610 		 * assuming all tasks are equally runnable.
3611 		 */
3612 		if (scale_load_down(gcfs_rq->load.weight)) {
3613 			load_sum = div_u64(gcfs_rq->avg.load_sum,
3614 				scale_load_down(gcfs_rq->load.weight));
3615 		}
3616 
3617 		/* But make sure to not inflate se's runnable */
3618 		runnable_sum = min(se->avg.load_sum, load_sum);
3619 	}
3620 
3621 	/*
3622 	 * runnable_sum can't be lower than running_sum
3623 	 * Rescale running sum to be in the same range as runnable sum
3624 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3625 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3626 	 */
3627 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3628 	runnable_sum = max(runnable_sum, running_sum);
3629 
3630 	load_sum = se_weight(se) * runnable_sum;
3631 	load_avg = div_u64(load_sum, divider);
3632 
3633 	delta_avg = load_avg - se->avg.load_avg;
3634 	if (!delta_avg)
3635 		return;
3636 
3637 	delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3638 
3639 	se->avg.load_sum = runnable_sum;
3640 	se->avg.load_avg = load_avg;
3641 	add_positive(&cfs_rq->avg.load_avg, delta_avg);
3642 	add_positive(&cfs_rq->avg.load_sum, delta_sum);
3643 	/* See update_cfs_rq_load_avg() */
3644 	cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3645 					  cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3646 }
3647 
3648 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3649 {
3650 	cfs_rq->propagate = 1;
3651 	cfs_rq->prop_runnable_sum += runnable_sum;
3652 }
3653 
3654 /* Update task and its cfs_rq load average */
3655 static inline int propagate_entity_load_avg(struct sched_entity *se)
3656 {
3657 	struct cfs_rq *cfs_rq, *gcfs_rq;
3658 
3659 	if (entity_is_task(se))
3660 		return 0;
3661 
3662 	gcfs_rq = group_cfs_rq(se);
3663 	if (!gcfs_rq->propagate)
3664 		return 0;
3665 
3666 	gcfs_rq->propagate = 0;
3667 
3668 	cfs_rq = cfs_rq_of(se);
3669 
3670 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3671 
3672 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3673 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3674 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3675 
3676 	trace_pelt_cfs_tp(cfs_rq);
3677 	trace_pelt_se_tp(se);
3678 
3679 	return 1;
3680 }
3681 
3682 /*
3683  * Check if we need to update the load and the utilization of a blocked
3684  * group_entity:
3685  */
3686 static inline bool skip_blocked_update(struct sched_entity *se)
3687 {
3688 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3689 
3690 	/*
3691 	 * If sched_entity still have not zero load or utilization, we have to
3692 	 * decay it:
3693 	 */
3694 	if (se->avg.load_avg || se->avg.util_avg)
3695 		return false;
3696 
3697 	/*
3698 	 * If there is a pending propagation, we have to update the load and
3699 	 * the utilization of the sched_entity:
3700 	 */
3701 	if (gcfs_rq->propagate)
3702 		return false;
3703 
3704 	/*
3705 	 * Otherwise, the load and the utilization of the sched_entity is
3706 	 * already zero and there is no pending propagation, so it will be a
3707 	 * waste of time to try to decay it:
3708 	 */
3709 	return true;
3710 }
3711 
3712 #else /* CONFIG_FAIR_GROUP_SCHED */
3713 
3714 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3715 
3716 static inline int propagate_entity_load_avg(struct sched_entity *se)
3717 {
3718 	return 0;
3719 }
3720 
3721 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3722 
3723 #endif /* CONFIG_FAIR_GROUP_SCHED */
3724 
3725 /**
3726  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3727  * @now: current time, as per cfs_rq_clock_pelt()
3728  * @cfs_rq: cfs_rq to update
3729  *
3730  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3731  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3732  * post_init_entity_util_avg().
3733  *
3734  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3735  *
3736  * Return: true if the load decayed or we removed load.
3737  *
3738  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3739  * call update_tg_load_avg() when this function returns true.
3740  */
3741 static inline int
3742 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3743 {
3744 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3745 	struct sched_avg *sa = &cfs_rq->avg;
3746 	int decayed = 0;
3747 
3748 	if (cfs_rq->removed.nr) {
3749 		unsigned long r;
3750 		u32 divider = get_pelt_divider(&cfs_rq->avg);
3751 
3752 		raw_spin_lock(&cfs_rq->removed.lock);
3753 		swap(cfs_rq->removed.util_avg, removed_util);
3754 		swap(cfs_rq->removed.load_avg, removed_load);
3755 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
3756 		cfs_rq->removed.nr = 0;
3757 		raw_spin_unlock(&cfs_rq->removed.lock);
3758 
3759 		r = removed_load;
3760 		sub_positive(&sa->load_avg, r);
3761 		sub_positive(&sa->load_sum, r * divider);
3762 		/* See sa->util_sum below */
3763 		sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
3764 
3765 		r = removed_util;
3766 		sub_positive(&sa->util_avg, r);
3767 		sub_positive(&sa->util_sum, r * divider);
3768 		/*
3769 		 * Because of rounding, se->util_sum might ends up being +1 more than
3770 		 * cfs->util_sum. Although this is not a problem by itself, detaching
3771 		 * a lot of tasks with the rounding problem between 2 updates of
3772 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
3773 		 * cfs_util_avg is not.
3774 		 * Check that util_sum is still above its lower bound for the new
3775 		 * util_avg. Given that period_contrib might have moved since the last
3776 		 * sync, we are only sure that util_sum must be above or equal to
3777 		 *    util_avg * minimum possible divider
3778 		 */
3779 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
3780 
3781 		r = removed_runnable;
3782 		sub_positive(&sa->runnable_avg, r);
3783 		sub_positive(&sa->runnable_sum, r * divider);
3784 		/* See sa->util_sum above */
3785 		sa->runnable_sum = max_t(u32, sa->runnable_sum,
3786 					      sa->runnable_avg * PELT_MIN_DIVIDER);
3787 
3788 		/*
3789 		 * removed_runnable is the unweighted version of removed_load so we
3790 		 * can use it to estimate removed_load_sum.
3791 		 */
3792 		add_tg_cfs_propagate(cfs_rq,
3793 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3794 
3795 		decayed = 1;
3796 	}
3797 
3798 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3799 
3800 #ifndef CONFIG_64BIT
3801 	smp_wmb();
3802 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3803 #endif
3804 
3805 	return decayed;
3806 }
3807 
3808 /**
3809  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3810  * @cfs_rq: cfs_rq to attach to
3811  * @se: sched_entity to attach
3812  *
3813  * Must call update_cfs_rq_load_avg() before this, since we rely on
3814  * cfs_rq->avg.last_update_time being current.
3815  */
3816 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3817 {
3818 	/*
3819 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3820 	 * See ___update_load_avg() for details.
3821 	 */
3822 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3823 
3824 	/*
3825 	 * When we attach the @se to the @cfs_rq, we must align the decay
3826 	 * window because without that, really weird and wonderful things can
3827 	 * happen.
3828 	 *
3829 	 * XXX illustrate
3830 	 */
3831 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3832 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3833 
3834 	/*
3835 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3836 	 * period_contrib. This isn't strictly correct, but since we're
3837 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3838 	 * _sum a little.
3839 	 */
3840 	se->avg.util_sum = se->avg.util_avg * divider;
3841 
3842 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3843 
3844 	se->avg.load_sum = se->avg.load_avg * divider;
3845 	if (se_weight(se) < se->avg.load_sum)
3846 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
3847 	else
3848 		se->avg.load_sum = 1;
3849 
3850 	enqueue_load_avg(cfs_rq, se);
3851 	cfs_rq->avg.util_avg += se->avg.util_avg;
3852 	cfs_rq->avg.util_sum += se->avg.util_sum;
3853 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3854 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3855 
3856 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3857 
3858 	cfs_rq_util_change(cfs_rq, 0);
3859 
3860 	trace_pelt_cfs_tp(cfs_rq);
3861 }
3862 
3863 /**
3864  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3865  * @cfs_rq: cfs_rq to detach from
3866  * @se: sched_entity to detach
3867  *
3868  * Must call update_cfs_rq_load_avg() before this, since we rely on
3869  * cfs_rq->avg.last_update_time being current.
3870  */
3871 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3872 {
3873 	dequeue_load_avg(cfs_rq, se);
3874 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3875 	sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3876 	/* See update_cfs_rq_load_avg() */
3877 	cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
3878 					  cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
3879 
3880 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3881 	sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
3882 	/* See update_cfs_rq_load_avg() */
3883 	cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
3884 					      cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
3885 
3886 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3887 
3888 	cfs_rq_util_change(cfs_rq, 0);
3889 
3890 	trace_pelt_cfs_tp(cfs_rq);
3891 }
3892 
3893 /*
3894  * Optional action to be done while updating the load average
3895  */
3896 #define UPDATE_TG	0x1
3897 #define SKIP_AGE_LOAD	0x2
3898 #define DO_ATTACH	0x4
3899 
3900 /* Update task and its cfs_rq load average */
3901 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3902 {
3903 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3904 	int decayed;
3905 
3906 	/*
3907 	 * Track task load average for carrying it to new CPU after migrated, and
3908 	 * track group sched_entity load average for task_h_load calc in migration
3909 	 */
3910 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3911 		__update_load_avg_se(now, cfs_rq, se);
3912 
3913 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3914 	decayed |= propagate_entity_load_avg(se);
3915 
3916 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3917 
3918 		/*
3919 		 * DO_ATTACH means we're here from enqueue_entity().
3920 		 * !last_update_time means we've passed through
3921 		 * migrate_task_rq_fair() indicating we migrated.
3922 		 *
3923 		 * IOW we're enqueueing a task on a new CPU.
3924 		 */
3925 		attach_entity_load_avg(cfs_rq, se);
3926 		update_tg_load_avg(cfs_rq);
3927 
3928 	} else if (decayed) {
3929 		cfs_rq_util_change(cfs_rq, 0);
3930 
3931 		if (flags & UPDATE_TG)
3932 			update_tg_load_avg(cfs_rq);
3933 	}
3934 }
3935 
3936 #ifndef CONFIG_64BIT
3937 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3938 {
3939 	u64 last_update_time_copy;
3940 	u64 last_update_time;
3941 
3942 	do {
3943 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3944 		smp_rmb();
3945 		last_update_time = cfs_rq->avg.last_update_time;
3946 	} while (last_update_time != last_update_time_copy);
3947 
3948 	return last_update_time;
3949 }
3950 #else
3951 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3952 {
3953 	return cfs_rq->avg.last_update_time;
3954 }
3955 #endif
3956 
3957 /*
3958  * Synchronize entity load avg of dequeued entity without locking
3959  * the previous rq.
3960  */
3961 static void sync_entity_load_avg(struct sched_entity *se)
3962 {
3963 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3964 	u64 last_update_time;
3965 
3966 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3967 	__update_load_avg_blocked_se(last_update_time, se);
3968 }
3969 
3970 /*
3971  * Task first catches up with cfs_rq, and then subtract
3972  * itself from the cfs_rq (task must be off the queue now).
3973  */
3974 static void remove_entity_load_avg(struct sched_entity *se)
3975 {
3976 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3977 	unsigned long flags;
3978 
3979 	/*
3980 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3981 	 * post_init_entity_util_avg() which will have added things to the
3982 	 * cfs_rq, so we can remove unconditionally.
3983 	 */
3984 
3985 	sync_entity_load_avg(se);
3986 
3987 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3988 	++cfs_rq->removed.nr;
3989 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3990 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3991 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
3992 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3993 }
3994 
3995 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3996 {
3997 	return cfs_rq->avg.runnable_avg;
3998 }
3999 
4000 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4001 {
4002 	return cfs_rq->avg.load_avg;
4003 }
4004 
4005 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
4006 
4007 static inline unsigned long task_util(struct task_struct *p)
4008 {
4009 	return READ_ONCE(p->se.avg.util_avg);
4010 }
4011 
4012 static inline unsigned long _task_util_est(struct task_struct *p)
4013 {
4014 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
4015 
4016 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
4017 }
4018 
4019 static inline unsigned long task_util_est(struct task_struct *p)
4020 {
4021 	return max(task_util(p), _task_util_est(p));
4022 }
4023 
4024 #ifdef CONFIG_UCLAMP_TASK
4025 static inline unsigned long uclamp_task_util(struct task_struct *p)
4026 {
4027 	return clamp(task_util_est(p),
4028 		     uclamp_eff_value(p, UCLAMP_MIN),
4029 		     uclamp_eff_value(p, UCLAMP_MAX));
4030 }
4031 #else
4032 static inline unsigned long uclamp_task_util(struct task_struct *p)
4033 {
4034 	return task_util_est(p);
4035 }
4036 #endif
4037 
4038 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4039 				    struct task_struct *p)
4040 {
4041 	unsigned int enqueued;
4042 
4043 	if (!sched_feat(UTIL_EST))
4044 		return;
4045 
4046 	/* Update root cfs_rq's estimated utilization */
4047 	enqueued  = cfs_rq->avg.util_est.enqueued;
4048 	enqueued += _task_util_est(p);
4049 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4050 
4051 	trace_sched_util_est_cfs_tp(cfs_rq);
4052 }
4053 
4054 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4055 				    struct task_struct *p)
4056 {
4057 	unsigned int enqueued;
4058 
4059 	if (!sched_feat(UTIL_EST))
4060 		return;
4061 
4062 	/* Update root cfs_rq's estimated utilization */
4063 	enqueued  = cfs_rq->avg.util_est.enqueued;
4064 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4065 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4066 
4067 	trace_sched_util_est_cfs_tp(cfs_rq);
4068 }
4069 
4070 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4071 
4072 /*
4073  * Check if a (signed) value is within a specified (unsigned) margin,
4074  * based on the observation that:
4075  *
4076  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4077  *
4078  * NOTE: this only works when value + margin < INT_MAX.
4079  */
4080 static inline bool within_margin(int value, int margin)
4081 {
4082 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4083 }
4084 
4085 static inline void util_est_update(struct cfs_rq *cfs_rq,
4086 				   struct task_struct *p,
4087 				   bool task_sleep)
4088 {
4089 	long last_ewma_diff, last_enqueued_diff;
4090 	struct util_est ue;
4091 
4092 	if (!sched_feat(UTIL_EST))
4093 		return;
4094 
4095 	/*
4096 	 * Skip update of task's estimated utilization when the task has not
4097 	 * yet completed an activation, e.g. being migrated.
4098 	 */
4099 	if (!task_sleep)
4100 		return;
4101 
4102 	/*
4103 	 * If the PELT values haven't changed since enqueue time,
4104 	 * skip the util_est update.
4105 	 */
4106 	ue = p->se.avg.util_est;
4107 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4108 		return;
4109 
4110 	last_enqueued_diff = ue.enqueued;
4111 
4112 	/*
4113 	 * Reset EWMA on utilization increases, the moving average is used only
4114 	 * to smooth utilization decreases.
4115 	 */
4116 	ue.enqueued = task_util(p);
4117 	if (sched_feat(UTIL_EST_FASTUP)) {
4118 		if (ue.ewma < ue.enqueued) {
4119 			ue.ewma = ue.enqueued;
4120 			goto done;
4121 		}
4122 	}
4123 
4124 	/*
4125 	 * Skip update of task's estimated utilization when its members are
4126 	 * already ~1% close to its last activation value.
4127 	 */
4128 	last_ewma_diff = ue.enqueued - ue.ewma;
4129 	last_enqueued_diff -= ue.enqueued;
4130 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4131 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4132 			goto done;
4133 
4134 		return;
4135 	}
4136 
4137 	/*
4138 	 * To avoid overestimation of actual task utilization, skip updates if
4139 	 * we cannot grant there is idle time in this CPU.
4140 	 */
4141 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4142 		return;
4143 
4144 	/*
4145 	 * Update Task's estimated utilization
4146 	 *
4147 	 * When *p completes an activation we can consolidate another sample
4148 	 * of the task size. This is done by storing the current PELT value
4149 	 * as ue.enqueued and by using this value to update the Exponential
4150 	 * Weighted Moving Average (EWMA):
4151 	 *
4152 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4153 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4154 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4155 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4156 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4157 	 *
4158 	 * Where 'w' is the weight of new samples, which is configured to be
4159 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4160 	 */
4161 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4162 	ue.ewma  += last_ewma_diff;
4163 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4164 done:
4165 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4166 	WRITE_ONCE(p->se.avg.util_est, ue);
4167 
4168 	trace_sched_util_est_se_tp(&p->se);
4169 }
4170 
4171 static inline int task_fits_capacity(struct task_struct *p,
4172 				     unsigned long capacity)
4173 {
4174 	return fits_capacity(uclamp_task_util(p), capacity);
4175 }
4176 
4177 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4178 {
4179 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
4180 		return;
4181 
4182 	if (!p || p->nr_cpus_allowed == 1) {
4183 		rq->misfit_task_load = 0;
4184 		return;
4185 	}
4186 
4187 	if (task_fits_capacity(p, capacity_of(cpu_of(rq)))) {
4188 		rq->misfit_task_load = 0;
4189 		return;
4190 	}
4191 
4192 	/*
4193 	 * Make sure that misfit_task_load will not be null even if
4194 	 * task_h_load() returns 0.
4195 	 */
4196 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4197 }
4198 
4199 #else /* CONFIG_SMP */
4200 
4201 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4202 {
4203 	return true;
4204 }
4205 
4206 #define UPDATE_TG	0x0
4207 #define SKIP_AGE_LOAD	0x0
4208 #define DO_ATTACH	0x0
4209 
4210 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4211 {
4212 	cfs_rq_util_change(cfs_rq, 0);
4213 }
4214 
4215 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4216 
4217 static inline void
4218 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4219 static inline void
4220 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4221 
4222 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4223 {
4224 	return 0;
4225 }
4226 
4227 static inline void
4228 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4229 
4230 static inline void
4231 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4232 
4233 static inline void
4234 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4235 		bool task_sleep) {}
4236 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4237 
4238 #endif /* CONFIG_SMP */
4239 
4240 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4241 {
4242 #ifdef CONFIG_SCHED_DEBUG
4243 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4244 
4245 	if (d < 0)
4246 		d = -d;
4247 
4248 	if (d > 3*sysctl_sched_latency)
4249 		schedstat_inc(cfs_rq->nr_spread_over);
4250 #endif
4251 }
4252 
4253 static void
4254 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4255 {
4256 	u64 vruntime = cfs_rq->min_vruntime;
4257 
4258 	/*
4259 	 * The 'current' period is already promised to the current tasks,
4260 	 * however the extra weight of the new task will slow them down a
4261 	 * little, place the new task so that it fits in the slot that
4262 	 * stays open at the end.
4263 	 */
4264 	if (initial && sched_feat(START_DEBIT))
4265 		vruntime += sched_vslice(cfs_rq, se);
4266 
4267 	/* sleeps up to a single latency don't count. */
4268 	if (!initial) {
4269 		unsigned long thresh;
4270 
4271 		if (se_is_idle(se))
4272 			thresh = sysctl_sched_min_granularity;
4273 		else
4274 			thresh = sysctl_sched_latency;
4275 
4276 		/*
4277 		 * Halve their sleep time's effect, to allow
4278 		 * for a gentler effect of sleepers:
4279 		 */
4280 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4281 			thresh >>= 1;
4282 
4283 		vruntime -= thresh;
4284 	}
4285 
4286 	/* ensure we never gain time by being placed backwards. */
4287 	se->vruntime = max_vruntime(se->vruntime, vruntime);
4288 }
4289 
4290 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4291 
4292 static inline bool cfs_bandwidth_used(void);
4293 
4294 /*
4295  * MIGRATION
4296  *
4297  *	dequeue
4298  *	  update_curr()
4299  *	    update_min_vruntime()
4300  *	  vruntime -= min_vruntime
4301  *
4302  *	enqueue
4303  *	  update_curr()
4304  *	    update_min_vruntime()
4305  *	  vruntime += min_vruntime
4306  *
4307  * this way the vruntime transition between RQs is done when both
4308  * min_vruntime are up-to-date.
4309  *
4310  * WAKEUP (remote)
4311  *
4312  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4313  *	  vruntime -= min_vruntime
4314  *
4315  *	enqueue
4316  *	  update_curr()
4317  *	    update_min_vruntime()
4318  *	  vruntime += min_vruntime
4319  *
4320  * this way we don't have the most up-to-date min_vruntime on the originating
4321  * CPU and an up-to-date min_vruntime on the destination CPU.
4322  */
4323 
4324 static void
4325 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4326 {
4327 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4328 	bool curr = cfs_rq->curr == se;
4329 
4330 	/*
4331 	 * If we're the current task, we must renormalise before calling
4332 	 * update_curr().
4333 	 */
4334 	if (renorm && curr)
4335 		se->vruntime += cfs_rq->min_vruntime;
4336 
4337 	update_curr(cfs_rq);
4338 
4339 	/*
4340 	 * Otherwise, renormalise after, such that we're placed at the current
4341 	 * moment in time, instead of some random moment in the past. Being
4342 	 * placed in the past could significantly boost this task to the
4343 	 * fairness detriment of existing tasks.
4344 	 */
4345 	if (renorm && !curr)
4346 		se->vruntime += cfs_rq->min_vruntime;
4347 
4348 	/*
4349 	 * When enqueuing a sched_entity, we must:
4350 	 *   - Update loads to have both entity and cfs_rq synced with now.
4351 	 *   - Add its load to cfs_rq->runnable_avg
4352 	 *   - For group_entity, update its weight to reflect the new share of
4353 	 *     its group cfs_rq
4354 	 *   - Add its new weight to cfs_rq->load.weight
4355 	 */
4356 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4357 	se_update_runnable(se);
4358 	update_cfs_group(se);
4359 	account_entity_enqueue(cfs_rq, se);
4360 
4361 	if (flags & ENQUEUE_WAKEUP)
4362 		place_entity(cfs_rq, se, 0);
4363 
4364 	check_schedstat_required();
4365 	update_stats_enqueue_fair(cfs_rq, se, flags);
4366 	check_spread(cfs_rq, se);
4367 	if (!curr)
4368 		__enqueue_entity(cfs_rq, se);
4369 	se->on_rq = 1;
4370 
4371 	/*
4372 	 * When bandwidth control is enabled, cfs might have been removed
4373 	 * because of a parent been throttled but cfs->nr_running > 1. Try to
4374 	 * add it unconditionally.
4375 	 */
4376 	if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4377 		list_add_leaf_cfs_rq(cfs_rq);
4378 
4379 	if (cfs_rq->nr_running == 1)
4380 		check_enqueue_throttle(cfs_rq);
4381 }
4382 
4383 static void __clear_buddies_last(struct sched_entity *se)
4384 {
4385 	for_each_sched_entity(se) {
4386 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4387 		if (cfs_rq->last != se)
4388 			break;
4389 
4390 		cfs_rq->last = NULL;
4391 	}
4392 }
4393 
4394 static void __clear_buddies_next(struct sched_entity *se)
4395 {
4396 	for_each_sched_entity(se) {
4397 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4398 		if (cfs_rq->next != se)
4399 			break;
4400 
4401 		cfs_rq->next = NULL;
4402 	}
4403 }
4404 
4405 static void __clear_buddies_skip(struct sched_entity *se)
4406 {
4407 	for_each_sched_entity(se) {
4408 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4409 		if (cfs_rq->skip != se)
4410 			break;
4411 
4412 		cfs_rq->skip = NULL;
4413 	}
4414 }
4415 
4416 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4417 {
4418 	if (cfs_rq->last == se)
4419 		__clear_buddies_last(se);
4420 
4421 	if (cfs_rq->next == se)
4422 		__clear_buddies_next(se);
4423 
4424 	if (cfs_rq->skip == se)
4425 		__clear_buddies_skip(se);
4426 }
4427 
4428 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4429 
4430 static void
4431 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4432 {
4433 	/*
4434 	 * Update run-time statistics of the 'current'.
4435 	 */
4436 	update_curr(cfs_rq);
4437 
4438 	/*
4439 	 * When dequeuing a sched_entity, we must:
4440 	 *   - Update loads to have both entity and cfs_rq synced with now.
4441 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4442 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4443 	 *   - For group entity, update its weight to reflect the new share
4444 	 *     of its group cfs_rq.
4445 	 */
4446 	update_load_avg(cfs_rq, se, UPDATE_TG);
4447 	se_update_runnable(se);
4448 
4449 	update_stats_dequeue_fair(cfs_rq, se, flags);
4450 
4451 	clear_buddies(cfs_rq, se);
4452 
4453 	if (se != cfs_rq->curr)
4454 		__dequeue_entity(cfs_rq, se);
4455 	se->on_rq = 0;
4456 	account_entity_dequeue(cfs_rq, se);
4457 
4458 	/*
4459 	 * Normalize after update_curr(); which will also have moved
4460 	 * min_vruntime if @se is the one holding it back. But before doing
4461 	 * update_min_vruntime() again, which will discount @se's position and
4462 	 * can move min_vruntime forward still more.
4463 	 */
4464 	if (!(flags & DEQUEUE_SLEEP))
4465 		se->vruntime -= cfs_rq->min_vruntime;
4466 
4467 	/* return excess runtime on last dequeue */
4468 	return_cfs_rq_runtime(cfs_rq);
4469 
4470 	update_cfs_group(se);
4471 
4472 	/*
4473 	 * Now advance min_vruntime if @se was the entity holding it back,
4474 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4475 	 * put back on, and if we advance min_vruntime, we'll be placed back
4476 	 * further than we started -- ie. we'll be penalized.
4477 	 */
4478 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4479 		update_min_vruntime(cfs_rq);
4480 }
4481 
4482 /*
4483  * Preempt the current task with a newly woken task if needed:
4484  */
4485 static void
4486 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4487 {
4488 	unsigned long ideal_runtime, delta_exec;
4489 	struct sched_entity *se;
4490 	s64 delta;
4491 
4492 	ideal_runtime = sched_slice(cfs_rq, curr);
4493 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4494 	if (delta_exec > ideal_runtime) {
4495 		resched_curr(rq_of(cfs_rq));
4496 		/*
4497 		 * The current task ran long enough, ensure it doesn't get
4498 		 * re-elected due to buddy favours.
4499 		 */
4500 		clear_buddies(cfs_rq, curr);
4501 		return;
4502 	}
4503 
4504 	/*
4505 	 * Ensure that a task that missed wakeup preemption by a
4506 	 * narrow margin doesn't have to wait for a full slice.
4507 	 * This also mitigates buddy induced latencies under load.
4508 	 */
4509 	if (delta_exec < sysctl_sched_min_granularity)
4510 		return;
4511 
4512 	se = __pick_first_entity(cfs_rq);
4513 	delta = curr->vruntime - se->vruntime;
4514 
4515 	if (delta < 0)
4516 		return;
4517 
4518 	if (delta > ideal_runtime)
4519 		resched_curr(rq_of(cfs_rq));
4520 }
4521 
4522 static void
4523 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4524 {
4525 	clear_buddies(cfs_rq, se);
4526 
4527 	/* 'current' is not kept within the tree. */
4528 	if (se->on_rq) {
4529 		/*
4530 		 * Any task has to be enqueued before it get to execute on
4531 		 * a CPU. So account for the time it spent waiting on the
4532 		 * runqueue.
4533 		 */
4534 		update_stats_wait_end_fair(cfs_rq, se);
4535 		__dequeue_entity(cfs_rq, se);
4536 		update_load_avg(cfs_rq, se, UPDATE_TG);
4537 	}
4538 
4539 	update_stats_curr_start(cfs_rq, se);
4540 	cfs_rq->curr = se;
4541 
4542 	/*
4543 	 * Track our maximum slice length, if the CPU's load is at
4544 	 * least twice that of our own weight (i.e. dont track it
4545 	 * when there are only lesser-weight tasks around):
4546 	 */
4547 	if (schedstat_enabled() &&
4548 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4549 		struct sched_statistics *stats;
4550 
4551 		stats = __schedstats_from_se(se);
4552 		__schedstat_set(stats->slice_max,
4553 				max((u64)stats->slice_max,
4554 				    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4555 	}
4556 
4557 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4558 }
4559 
4560 static int
4561 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4562 
4563 /*
4564  * Pick the next process, keeping these things in mind, in this order:
4565  * 1) keep things fair between processes/task groups
4566  * 2) pick the "next" process, since someone really wants that to run
4567  * 3) pick the "last" process, for cache locality
4568  * 4) do not run the "skip" process, if something else is available
4569  */
4570 static struct sched_entity *
4571 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4572 {
4573 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4574 	struct sched_entity *se;
4575 
4576 	/*
4577 	 * If curr is set we have to see if its left of the leftmost entity
4578 	 * still in the tree, provided there was anything in the tree at all.
4579 	 */
4580 	if (!left || (curr && entity_before(curr, left)))
4581 		left = curr;
4582 
4583 	se = left; /* ideally we run the leftmost entity */
4584 
4585 	/*
4586 	 * Avoid running the skip buddy, if running something else can
4587 	 * be done without getting too unfair.
4588 	 */
4589 	if (cfs_rq->skip && cfs_rq->skip == se) {
4590 		struct sched_entity *second;
4591 
4592 		if (se == curr) {
4593 			second = __pick_first_entity(cfs_rq);
4594 		} else {
4595 			second = __pick_next_entity(se);
4596 			if (!second || (curr && entity_before(curr, second)))
4597 				second = curr;
4598 		}
4599 
4600 		if (second && wakeup_preempt_entity(second, left) < 1)
4601 			se = second;
4602 	}
4603 
4604 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4605 		/*
4606 		 * Someone really wants this to run. If it's not unfair, run it.
4607 		 */
4608 		se = cfs_rq->next;
4609 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4610 		/*
4611 		 * Prefer last buddy, try to return the CPU to a preempted task.
4612 		 */
4613 		se = cfs_rq->last;
4614 	}
4615 
4616 	return se;
4617 }
4618 
4619 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4620 
4621 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4622 {
4623 	/*
4624 	 * If still on the runqueue then deactivate_task()
4625 	 * was not called and update_curr() has to be done:
4626 	 */
4627 	if (prev->on_rq)
4628 		update_curr(cfs_rq);
4629 
4630 	/* throttle cfs_rqs exceeding runtime */
4631 	check_cfs_rq_runtime(cfs_rq);
4632 
4633 	check_spread(cfs_rq, prev);
4634 
4635 	if (prev->on_rq) {
4636 		update_stats_wait_start_fair(cfs_rq, prev);
4637 		/* Put 'current' back into the tree. */
4638 		__enqueue_entity(cfs_rq, prev);
4639 		/* in !on_rq case, update occurred at dequeue */
4640 		update_load_avg(cfs_rq, prev, 0);
4641 	}
4642 	cfs_rq->curr = NULL;
4643 }
4644 
4645 static void
4646 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4647 {
4648 	/*
4649 	 * Update run-time statistics of the 'current'.
4650 	 */
4651 	update_curr(cfs_rq);
4652 
4653 	/*
4654 	 * Ensure that runnable average is periodically updated.
4655 	 */
4656 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4657 	update_cfs_group(curr);
4658 
4659 #ifdef CONFIG_SCHED_HRTICK
4660 	/*
4661 	 * queued ticks are scheduled to match the slice, so don't bother
4662 	 * validating it and just reschedule.
4663 	 */
4664 	if (queued) {
4665 		resched_curr(rq_of(cfs_rq));
4666 		return;
4667 	}
4668 	/*
4669 	 * don't let the period tick interfere with the hrtick preemption
4670 	 */
4671 	if (!sched_feat(DOUBLE_TICK) &&
4672 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4673 		return;
4674 #endif
4675 
4676 	if (cfs_rq->nr_running > 1)
4677 		check_preempt_tick(cfs_rq, curr);
4678 }
4679 
4680 
4681 /**************************************************
4682  * CFS bandwidth control machinery
4683  */
4684 
4685 #ifdef CONFIG_CFS_BANDWIDTH
4686 
4687 #ifdef CONFIG_JUMP_LABEL
4688 static struct static_key __cfs_bandwidth_used;
4689 
4690 static inline bool cfs_bandwidth_used(void)
4691 {
4692 	return static_key_false(&__cfs_bandwidth_used);
4693 }
4694 
4695 void cfs_bandwidth_usage_inc(void)
4696 {
4697 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4698 }
4699 
4700 void cfs_bandwidth_usage_dec(void)
4701 {
4702 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4703 }
4704 #else /* CONFIG_JUMP_LABEL */
4705 static bool cfs_bandwidth_used(void)
4706 {
4707 	return true;
4708 }
4709 
4710 void cfs_bandwidth_usage_inc(void) {}
4711 void cfs_bandwidth_usage_dec(void) {}
4712 #endif /* CONFIG_JUMP_LABEL */
4713 
4714 /*
4715  * default period for cfs group bandwidth.
4716  * default: 0.1s, units: nanoseconds
4717  */
4718 static inline u64 default_cfs_period(void)
4719 {
4720 	return 100000000ULL;
4721 }
4722 
4723 static inline u64 sched_cfs_bandwidth_slice(void)
4724 {
4725 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4726 }
4727 
4728 /*
4729  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4730  * directly instead of rq->clock to avoid adding additional synchronization
4731  * around rq->lock.
4732  *
4733  * requires cfs_b->lock
4734  */
4735 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4736 {
4737 	s64 runtime;
4738 
4739 	if (unlikely(cfs_b->quota == RUNTIME_INF))
4740 		return;
4741 
4742 	cfs_b->runtime += cfs_b->quota;
4743 	runtime = cfs_b->runtime_snap - cfs_b->runtime;
4744 	if (runtime > 0) {
4745 		cfs_b->burst_time += runtime;
4746 		cfs_b->nr_burst++;
4747 	}
4748 
4749 	cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
4750 	cfs_b->runtime_snap = cfs_b->runtime;
4751 }
4752 
4753 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4754 {
4755 	return &tg->cfs_bandwidth;
4756 }
4757 
4758 /* returns 0 on failure to allocate runtime */
4759 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4760 				   struct cfs_rq *cfs_rq, u64 target_runtime)
4761 {
4762 	u64 min_amount, amount = 0;
4763 
4764 	lockdep_assert_held(&cfs_b->lock);
4765 
4766 	/* note: this is a positive sum as runtime_remaining <= 0 */
4767 	min_amount = target_runtime - cfs_rq->runtime_remaining;
4768 
4769 	if (cfs_b->quota == RUNTIME_INF)
4770 		amount = min_amount;
4771 	else {
4772 		start_cfs_bandwidth(cfs_b);
4773 
4774 		if (cfs_b->runtime > 0) {
4775 			amount = min(cfs_b->runtime, min_amount);
4776 			cfs_b->runtime -= amount;
4777 			cfs_b->idle = 0;
4778 		}
4779 	}
4780 
4781 	cfs_rq->runtime_remaining += amount;
4782 
4783 	return cfs_rq->runtime_remaining > 0;
4784 }
4785 
4786 /* returns 0 on failure to allocate runtime */
4787 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4788 {
4789 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4790 	int ret;
4791 
4792 	raw_spin_lock(&cfs_b->lock);
4793 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4794 	raw_spin_unlock(&cfs_b->lock);
4795 
4796 	return ret;
4797 }
4798 
4799 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4800 {
4801 	/* dock delta_exec before expiring quota (as it could span periods) */
4802 	cfs_rq->runtime_remaining -= delta_exec;
4803 
4804 	if (likely(cfs_rq->runtime_remaining > 0))
4805 		return;
4806 
4807 	if (cfs_rq->throttled)
4808 		return;
4809 	/*
4810 	 * if we're unable to extend our runtime we resched so that the active
4811 	 * hierarchy can be throttled
4812 	 */
4813 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4814 		resched_curr(rq_of(cfs_rq));
4815 }
4816 
4817 static __always_inline
4818 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4819 {
4820 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4821 		return;
4822 
4823 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4824 }
4825 
4826 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4827 {
4828 	return cfs_bandwidth_used() && cfs_rq->throttled;
4829 }
4830 
4831 /* check whether cfs_rq, or any parent, is throttled */
4832 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4833 {
4834 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4835 }
4836 
4837 /*
4838  * Ensure that neither of the group entities corresponding to src_cpu or
4839  * dest_cpu are members of a throttled hierarchy when performing group
4840  * load-balance operations.
4841  */
4842 static inline int throttled_lb_pair(struct task_group *tg,
4843 				    int src_cpu, int dest_cpu)
4844 {
4845 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4846 
4847 	src_cfs_rq = tg->cfs_rq[src_cpu];
4848 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
4849 
4850 	return throttled_hierarchy(src_cfs_rq) ||
4851 	       throttled_hierarchy(dest_cfs_rq);
4852 }
4853 
4854 static int tg_unthrottle_up(struct task_group *tg, void *data)
4855 {
4856 	struct rq *rq = data;
4857 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4858 
4859 	cfs_rq->throttle_count--;
4860 	if (!cfs_rq->throttle_count) {
4861 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
4862 					     cfs_rq->throttled_clock_pelt;
4863 
4864 		/* Add cfs_rq with load or one or more already running entities to the list */
4865 		if (!cfs_rq_is_decayed(cfs_rq))
4866 			list_add_leaf_cfs_rq(cfs_rq);
4867 	}
4868 
4869 	return 0;
4870 }
4871 
4872 static int tg_throttle_down(struct task_group *tg, void *data)
4873 {
4874 	struct rq *rq = data;
4875 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4876 
4877 	/* group is entering throttled state, stop time */
4878 	if (!cfs_rq->throttle_count) {
4879 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
4880 		list_del_leaf_cfs_rq(cfs_rq);
4881 	}
4882 	cfs_rq->throttle_count++;
4883 
4884 	return 0;
4885 }
4886 
4887 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
4888 {
4889 	struct rq *rq = rq_of(cfs_rq);
4890 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4891 	struct sched_entity *se;
4892 	long task_delta, idle_task_delta, dequeue = 1;
4893 
4894 	raw_spin_lock(&cfs_b->lock);
4895 	/* This will start the period timer if necessary */
4896 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
4897 		/*
4898 		 * We have raced with bandwidth becoming available, and if we
4899 		 * actually throttled the timer might not unthrottle us for an
4900 		 * entire period. We additionally needed to make sure that any
4901 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
4902 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
4903 		 * for 1ns of runtime rather than just check cfs_b.
4904 		 */
4905 		dequeue = 0;
4906 	} else {
4907 		list_add_tail_rcu(&cfs_rq->throttled_list,
4908 				  &cfs_b->throttled_cfs_rq);
4909 	}
4910 	raw_spin_unlock(&cfs_b->lock);
4911 
4912 	if (!dequeue)
4913 		return false;  /* Throttle no longer required. */
4914 
4915 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4916 
4917 	/* freeze hierarchy runnable averages while throttled */
4918 	rcu_read_lock();
4919 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4920 	rcu_read_unlock();
4921 
4922 	task_delta = cfs_rq->h_nr_running;
4923 	idle_task_delta = cfs_rq->idle_h_nr_running;
4924 	for_each_sched_entity(se) {
4925 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4926 		/* throttled entity or throttle-on-deactivate */
4927 		if (!se->on_rq)
4928 			goto done;
4929 
4930 		dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4931 
4932 		if (cfs_rq_is_idle(group_cfs_rq(se)))
4933 			idle_task_delta = cfs_rq->h_nr_running;
4934 
4935 		qcfs_rq->h_nr_running -= task_delta;
4936 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4937 
4938 		if (qcfs_rq->load.weight) {
4939 			/* Avoid re-evaluating load for this entity: */
4940 			se = parent_entity(se);
4941 			break;
4942 		}
4943 	}
4944 
4945 	for_each_sched_entity(se) {
4946 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4947 		/* throttled entity or throttle-on-deactivate */
4948 		if (!se->on_rq)
4949 			goto done;
4950 
4951 		update_load_avg(qcfs_rq, se, 0);
4952 		se_update_runnable(se);
4953 
4954 		if (cfs_rq_is_idle(group_cfs_rq(se)))
4955 			idle_task_delta = cfs_rq->h_nr_running;
4956 
4957 		qcfs_rq->h_nr_running -= task_delta;
4958 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
4959 	}
4960 
4961 	/* At this point se is NULL and we are at root level*/
4962 	sub_nr_running(rq, task_delta);
4963 
4964 done:
4965 	/*
4966 	 * Note: distribution will already see us throttled via the
4967 	 * throttled-list.  rq->lock protects completion.
4968 	 */
4969 	cfs_rq->throttled = 1;
4970 	cfs_rq->throttled_clock = rq_clock(rq);
4971 	return true;
4972 }
4973 
4974 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4975 {
4976 	struct rq *rq = rq_of(cfs_rq);
4977 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4978 	struct sched_entity *se;
4979 	long task_delta, idle_task_delta;
4980 
4981 	se = cfs_rq->tg->se[cpu_of(rq)];
4982 
4983 	cfs_rq->throttled = 0;
4984 
4985 	update_rq_clock(rq);
4986 
4987 	raw_spin_lock(&cfs_b->lock);
4988 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4989 	list_del_rcu(&cfs_rq->throttled_list);
4990 	raw_spin_unlock(&cfs_b->lock);
4991 
4992 	/* update hierarchical throttle state */
4993 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4994 
4995 	/* Nothing to run but something to decay (on_list)? Complete the branch */
4996 	if (!cfs_rq->load.weight) {
4997 		if (cfs_rq->on_list)
4998 			goto unthrottle_throttle;
4999 		return;
5000 	}
5001 
5002 	task_delta = cfs_rq->h_nr_running;
5003 	idle_task_delta = cfs_rq->idle_h_nr_running;
5004 	for_each_sched_entity(se) {
5005 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5006 
5007 		if (se->on_rq)
5008 			break;
5009 		enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5010 
5011 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5012 			idle_task_delta = cfs_rq->h_nr_running;
5013 
5014 		qcfs_rq->h_nr_running += task_delta;
5015 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5016 
5017 		/* end evaluation on encountering a throttled cfs_rq */
5018 		if (cfs_rq_throttled(qcfs_rq))
5019 			goto unthrottle_throttle;
5020 	}
5021 
5022 	for_each_sched_entity(se) {
5023 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5024 
5025 		update_load_avg(qcfs_rq, se, UPDATE_TG);
5026 		se_update_runnable(se);
5027 
5028 		if (cfs_rq_is_idle(group_cfs_rq(se)))
5029 			idle_task_delta = cfs_rq->h_nr_running;
5030 
5031 		qcfs_rq->h_nr_running += task_delta;
5032 		qcfs_rq->idle_h_nr_running += idle_task_delta;
5033 
5034 		/* end evaluation on encountering a throttled cfs_rq */
5035 		if (cfs_rq_throttled(qcfs_rq))
5036 			goto unthrottle_throttle;
5037 
5038 		/*
5039 		 * One parent has been throttled and cfs_rq removed from the
5040 		 * list. Add it back to not break the leaf list.
5041 		 */
5042 		if (throttled_hierarchy(qcfs_rq))
5043 			list_add_leaf_cfs_rq(qcfs_rq);
5044 	}
5045 
5046 	/* At this point se is NULL and we are at root level*/
5047 	add_nr_running(rq, task_delta);
5048 
5049 unthrottle_throttle:
5050 	/*
5051 	 * The cfs_rq_throttled() breaks in the above iteration can result in
5052 	 * incomplete leaf list maintenance, resulting in triggering the
5053 	 * assertion below.
5054 	 */
5055 	for_each_sched_entity(se) {
5056 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5057 
5058 		if (list_add_leaf_cfs_rq(qcfs_rq))
5059 			break;
5060 	}
5061 
5062 	assert_list_leaf_cfs_rq(rq);
5063 
5064 	/* Determine whether we need to wake up potentially idle CPU: */
5065 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5066 		resched_curr(rq);
5067 }
5068 
5069 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5070 {
5071 	struct cfs_rq *cfs_rq;
5072 	u64 runtime, remaining = 1;
5073 
5074 	rcu_read_lock();
5075 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5076 				throttled_list) {
5077 		struct rq *rq = rq_of(cfs_rq);
5078 		struct rq_flags rf;
5079 
5080 		rq_lock_irqsave(rq, &rf);
5081 		if (!cfs_rq_throttled(cfs_rq))
5082 			goto next;
5083 
5084 		/* By the above check, this should never be true */
5085 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5086 
5087 		raw_spin_lock(&cfs_b->lock);
5088 		runtime = -cfs_rq->runtime_remaining + 1;
5089 		if (runtime > cfs_b->runtime)
5090 			runtime = cfs_b->runtime;
5091 		cfs_b->runtime -= runtime;
5092 		remaining = cfs_b->runtime;
5093 		raw_spin_unlock(&cfs_b->lock);
5094 
5095 		cfs_rq->runtime_remaining += runtime;
5096 
5097 		/* we check whether we're throttled above */
5098 		if (cfs_rq->runtime_remaining > 0)
5099 			unthrottle_cfs_rq(cfs_rq);
5100 
5101 next:
5102 		rq_unlock_irqrestore(rq, &rf);
5103 
5104 		if (!remaining)
5105 			break;
5106 	}
5107 	rcu_read_unlock();
5108 }
5109 
5110 /*
5111  * Responsible for refilling a task_group's bandwidth and unthrottling its
5112  * cfs_rqs as appropriate. If there has been no activity within the last
5113  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5114  * used to track this state.
5115  */
5116 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5117 {
5118 	int throttled;
5119 
5120 	/* no need to continue the timer with no bandwidth constraint */
5121 	if (cfs_b->quota == RUNTIME_INF)
5122 		goto out_deactivate;
5123 
5124 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5125 	cfs_b->nr_periods += overrun;
5126 
5127 	/* Refill extra burst quota even if cfs_b->idle */
5128 	__refill_cfs_bandwidth_runtime(cfs_b);
5129 
5130 	/*
5131 	 * idle depends on !throttled (for the case of a large deficit), and if
5132 	 * we're going inactive then everything else can be deferred
5133 	 */
5134 	if (cfs_b->idle && !throttled)
5135 		goto out_deactivate;
5136 
5137 	if (!throttled) {
5138 		/* mark as potentially idle for the upcoming period */
5139 		cfs_b->idle = 1;
5140 		return 0;
5141 	}
5142 
5143 	/* account preceding periods in which throttling occurred */
5144 	cfs_b->nr_throttled += overrun;
5145 
5146 	/*
5147 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
5148 	 */
5149 	while (throttled && cfs_b->runtime > 0) {
5150 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5151 		/* we can't nest cfs_b->lock while distributing bandwidth */
5152 		distribute_cfs_runtime(cfs_b);
5153 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5154 
5155 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5156 	}
5157 
5158 	/*
5159 	 * While we are ensured activity in the period following an
5160 	 * unthrottle, this also covers the case in which the new bandwidth is
5161 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5162 	 * timer to remain active while there are any throttled entities.)
5163 	 */
5164 	cfs_b->idle = 0;
5165 
5166 	return 0;
5167 
5168 out_deactivate:
5169 	return 1;
5170 }
5171 
5172 /* a cfs_rq won't donate quota below this amount */
5173 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5174 /* minimum remaining period time to redistribute slack quota */
5175 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5176 /* how long we wait to gather additional slack before distributing */
5177 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5178 
5179 /*
5180  * Are we near the end of the current quota period?
5181  *
5182  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5183  * hrtimer base being cleared by hrtimer_start. In the case of
5184  * migrate_hrtimers, base is never cleared, so we are fine.
5185  */
5186 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5187 {
5188 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5189 	s64 remaining;
5190 
5191 	/* if the call-back is running a quota refresh is already occurring */
5192 	if (hrtimer_callback_running(refresh_timer))
5193 		return 1;
5194 
5195 	/* is a quota refresh about to occur? */
5196 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5197 	if (remaining < (s64)min_expire)
5198 		return 1;
5199 
5200 	return 0;
5201 }
5202 
5203 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5204 {
5205 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5206 
5207 	/* if there's a quota refresh soon don't bother with slack */
5208 	if (runtime_refresh_within(cfs_b, min_left))
5209 		return;
5210 
5211 	/* don't push forwards an existing deferred unthrottle */
5212 	if (cfs_b->slack_started)
5213 		return;
5214 	cfs_b->slack_started = true;
5215 
5216 	hrtimer_start(&cfs_b->slack_timer,
5217 			ns_to_ktime(cfs_bandwidth_slack_period),
5218 			HRTIMER_MODE_REL);
5219 }
5220 
5221 /* we know any runtime found here is valid as update_curr() precedes return */
5222 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5223 {
5224 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5225 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5226 
5227 	if (slack_runtime <= 0)
5228 		return;
5229 
5230 	raw_spin_lock(&cfs_b->lock);
5231 	if (cfs_b->quota != RUNTIME_INF) {
5232 		cfs_b->runtime += slack_runtime;
5233 
5234 		/* we are under rq->lock, defer unthrottling using a timer */
5235 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5236 		    !list_empty(&cfs_b->throttled_cfs_rq))
5237 			start_cfs_slack_bandwidth(cfs_b);
5238 	}
5239 	raw_spin_unlock(&cfs_b->lock);
5240 
5241 	/* even if it's not valid for return we don't want to try again */
5242 	cfs_rq->runtime_remaining -= slack_runtime;
5243 }
5244 
5245 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5246 {
5247 	if (!cfs_bandwidth_used())
5248 		return;
5249 
5250 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5251 		return;
5252 
5253 	__return_cfs_rq_runtime(cfs_rq);
5254 }
5255 
5256 /*
5257  * This is done with a timer (instead of inline with bandwidth return) since
5258  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5259  */
5260 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5261 {
5262 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5263 	unsigned long flags;
5264 
5265 	/* confirm we're still not at a refresh boundary */
5266 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5267 	cfs_b->slack_started = false;
5268 
5269 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5270 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5271 		return;
5272 	}
5273 
5274 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5275 		runtime = cfs_b->runtime;
5276 
5277 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5278 
5279 	if (!runtime)
5280 		return;
5281 
5282 	distribute_cfs_runtime(cfs_b);
5283 }
5284 
5285 /*
5286  * When a group wakes up we want to make sure that its quota is not already
5287  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5288  * runtime as update_curr() throttling can not trigger until it's on-rq.
5289  */
5290 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5291 {
5292 	if (!cfs_bandwidth_used())
5293 		return;
5294 
5295 	/* an active group must be handled by the update_curr()->put() path */
5296 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5297 		return;
5298 
5299 	/* ensure the group is not already throttled */
5300 	if (cfs_rq_throttled(cfs_rq))
5301 		return;
5302 
5303 	/* update runtime allocation */
5304 	account_cfs_rq_runtime(cfs_rq, 0);
5305 	if (cfs_rq->runtime_remaining <= 0)
5306 		throttle_cfs_rq(cfs_rq);
5307 }
5308 
5309 static void sync_throttle(struct task_group *tg, int cpu)
5310 {
5311 	struct cfs_rq *pcfs_rq, *cfs_rq;
5312 
5313 	if (!cfs_bandwidth_used())
5314 		return;
5315 
5316 	if (!tg->parent)
5317 		return;
5318 
5319 	cfs_rq = tg->cfs_rq[cpu];
5320 	pcfs_rq = tg->parent->cfs_rq[cpu];
5321 
5322 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5323 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
5324 }
5325 
5326 /* conditionally throttle active cfs_rq's from put_prev_entity() */
5327 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5328 {
5329 	if (!cfs_bandwidth_used())
5330 		return false;
5331 
5332 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5333 		return false;
5334 
5335 	/*
5336 	 * it's possible for a throttled entity to be forced into a running
5337 	 * state (e.g. set_curr_task), in this case we're finished.
5338 	 */
5339 	if (cfs_rq_throttled(cfs_rq))
5340 		return true;
5341 
5342 	return throttle_cfs_rq(cfs_rq);
5343 }
5344 
5345 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5346 {
5347 	struct cfs_bandwidth *cfs_b =
5348 		container_of(timer, struct cfs_bandwidth, slack_timer);
5349 
5350 	do_sched_cfs_slack_timer(cfs_b);
5351 
5352 	return HRTIMER_NORESTART;
5353 }
5354 
5355 extern const u64 max_cfs_quota_period;
5356 
5357 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5358 {
5359 	struct cfs_bandwidth *cfs_b =
5360 		container_of(timer, struct cfs_bandwidth, period_timer);
5361 	unsigned long flags;
5362 	int overrun;
5363 	int idle = 0;
5364 	int count = 0;
5365 
5366 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5367 	for (;;) {
5368 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5369 		if (!overrun)
5370 			break;
5371 
5372 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5373 
5374 		if (++count > 3) {
5375 			u64 new, old = ktime_to_ns(cfs_b->period);
5376 
5377 			/*
5378 			 * Grow period by a factor of 2 to avoid losing precision.
5379 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5380 			 * to fail.
5381 			 */
5382 			new = old * 2;
5383 			if (new < max_cfs_quota_period) {
5384 				cfs_b->period = ns_to_ktime(new);
5385 				cfs_b->quota *= 2;
5386 				cfs_b->burst *= 2;
5387 
5388 				pr_warn_ratelimited(
5389 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5390 					smp_processor_id(),
5391 					div_u64(new, NSEC_PER_USEC),
5392 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5393 			} else {
5394 				pr_warn_ratelimited(
5395 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5396 					smp_processor_id(),
5397 					div_u64(old, NSEC_PER_USEC),
5398 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5399 			}
5400 
5401 			/* reset count so we don't come right back in here */
5402 			count = 0;
5403 		}
5404 	}
5405 	if (idle)
5406 		cfs_b->period_active = 0;
5407 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5408 
5409 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5410 }
5411 
5412 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5413 {
5414 	raw_spin_lock_init(&cfs_b->lock);
5415 	cfs_b->runtime = 0;
5416 	cfs_b->quota = RUNTIME_INF;
5417 	cfs_b->period = ns_to_ktime(default_cfs_period());
5418 	cfs_b->burst = 0;
5419 
5420 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5421 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5422 	cfs_b->period_timer.function = sched_cfs_period_timer;
5423 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5424 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5425 	cfs_b->slack_started = false;
5426 }
5427 
5428 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5429 {
5430 	cfs_rq->runtime_enabled = 0;
5431 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5432 }
5433 
5434 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5435 {
5436 	lockdep_assert_held(&cfs_b->lock);
5437 
5438 	if (cfs_b->period_active)
5439 		return;
5440 
5441 	cfs_b->period_active = 1;
5442 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5443 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5444 }
5445 
5446 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5447 {
5448 	/* init_cfs_bandwidth() was not called */
5449 	if (!cfs_b->throttled_cfs_rq.next)
5450 		return;
5451 
5452 	hrtimer_cancel(&cfs_b->period_timer);
5453 	hrtimer_cancel(&cfs_b->slack_timer);
5454 }
5455 
5456 /*
5457  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5458  *
5459  * The race is harmless, since modifying bandwidth settings of unhooked group
5460  * bits doesn't do much.
5461  */
5462 
5463 /* cpu online callback */
5464 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5465 {
5466 	struct task_group *tg;
5467 
5468 	lockdep_assert_rq_held(rq);
5469 
5470 	rcu_read_lock();
5471 	list_for_each_entry_rcu(tg, &task_groups, list) {
5472 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5473 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5474 
5475 		raw_spin_lock(&cfs_b->lock);
5476 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5477 		raw_spin_unlock(&cfs_b->lock);
5478 	}
5479 	rcu_read_unlock();
5480 }
5481 
5482 /* cpu offline callback */
5483 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5484 {
5485 	struct task_group *tg;
5486 
5487 	lockdep_assert_rq_held(rq);
5488 
5489 	rcu_read_lock();
5490 	list_for_each_entry_rcu(tg, &task_groups, list) {
5491 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5492 
5493 		if (!cfs_rq->runtime_enabled)
5494 			continue;
5495 
5496 		/*
5497 		 * clock_task is not advancing so we just need to make sure
5498 		 * there's some valid quota amount
5499 		 */
5500 		cfs_rq->runtime_remaining = 1;
5501 		/*
5502 		 * Offline rq is schedulable till CPU is completely disabled
5503 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5504 		 */
5505 		cfs_rq->runtime_enabled = 0;
5506 
5507 		if (cfs_rq_throttled(cfs_rq))
5508 			unthrottle_cfs_rq(cfs_rq);
5509 	}
5510 	rcu_read_unlock();
5511 }
5512 
5513 #else /* CONFIG_CFS_BANDWIDTH */
5514 
5515 static inline bool cfs_bandwidth_used(void)
5516 {
5517 	return false;
5518 }
5519 
5520 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
5521 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
5522 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
5523 static inline void sync_throttle(struct task_group *tg, int cpu) {}
5524 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5525 
5526 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5527 {
5528 	return 0;
5529 }
5530 
5531 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5532 {
5533 	return 0;
5534 }
5535 
5536 static inline int throttled_lb_pair(struct task_group *tg,
5537 				    int src_cpu, int dest_cpu)
5538 {
5539 	return 0;
5540 }
5541 
5542 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5543 
5544 #ifdef CONFIG_FAIR_GROUP_SCHED
5545 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5546 #endif
5547 
5548 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5549 {
5550 	return NULL;
5551 }
5552 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5553 static inline void update_runtime_enabled(struct rq *rq) {}
5554 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5555 
5556 #endif /* CONFIG_CFS_BANDWIDTH */
5557 
5558 /**************************************************
5559  * CFS operations on tasks:
5560  */
5561 
5562 #ifdef CONFIG_SCHED_HRTICK
5563 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5564 {
5565 	struct sched_entity *se = &p->se;
5566 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5567 
5568 	SCHED_WARN_ON(task_rq(p) != rq);
5569 
5570 	if (rq->cfs.h_nr_running > 1) {
5571 		u64 slice = sched_slice(cfs_rq, se);
5572 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5573 		s64 delta = slice - ran;
5574 
5575 		if (delta < 0) {
5576 			if (task_current(rq, p))
5577 				resched_curr(rq);
5578 			return;
5579 		}
5580 		hrtick_start(rq, delta);
5581 	}
5582 }
5583 
5584 /*
5585  * called from enqueue/dequeue and updates the hrtick when the
5586  * current task is from our class and nr_running is low enough
5587  * to matter.
5588  */
5589 static void hrtick_update(struct rq *rq)
5590 {
5591 	struct task_struct *curr = rq->curr;
5592 
5593 	if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5594 		return;
5595 
5596 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5597 		hrtick_start_fair(rq, curr);
5598 }
5599 #else /* !CONFIG_SCHED_HRTICK */
5600 static inline void
5601 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5602 {
5603 }
5604 
5605 static inline void hrtick_update(struct rq *rq)
5606 {
5607 }
5608 #endif
5609 
5610 #ifdef CONFIG_SMP
5611 static inline bool cpu_overutilized(int cpu)
5612 {
5613 	return !fits_capacity(cpu_util_cfs(cpu), capacity_of(cpu));
5614 }
5615 
5616 static inline void update_overutilized_status(struct rq *rq)
5617 {
5618 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5619 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5620 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5621 	}
5622 }
5623 #else
5624 static inline void update_overutilized_status(struct rq *rq) { }
5625 #endif
5626 
5627 /* Runqueue only has SCHED_IDLE tasks enqueued */
5628 static int sched_idle_rq(struct rq *rq)
5629 {
5630 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5631 			rq->nr_running);
5632 }
5633 
5634 /*
5635  * Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
5636  * of idle_nr_running, which does not consider idle descendants of normal
5637  * entities.
5638  */
5639 static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
5640 {
5641 	return cfs_rq->nr_running &&
5642 		cfs_rq->nr_running == cfs_rq->idle_nr_running;
5643 }
5644 
5645 #ifdef CONFIG_SMP
5646 static int sched_idle_cpu(int cpu)
5647 {
5648 	return sched_idle_rq(cpu_rq(cpu));
5649 }
5650 #endif
5651 
5652 /*
5653  * The enqueue_task method is called before nr_running is
5654  * increased. Here we update the fair scheduling stats and
5655  * then put the task into the rbtree:
5656  */
5657 static void
5658 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5659 {
5660 	struct cfs_rq *cfs_rq;
5661 	struct sched_entity *se = &p->se;
5662 	int idle_h_nr_running = task_has_idle_policy(p);
5663 	int task_new = !(flags & ENQUEUE_WAKEUP);
5664 
5665 	/*
5666 	 * The code below (indirectly) updates schedutil which looks at
5667 	 * the cfs_rq utilization to select a frequency.
5668 	 * Let's add the task's estimated utilization to the cfs_rq's
5669 	 * estimated utilization, before we update schedutil.
5670 	 */
5671 	util_est_enqueue(&rq->cfs, p);
5672 
5673 	/*
5674 	 * If in_iowait is set, the code below may not trigger any cpufreq
5675 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5676 	 * passed.
5677 	 */
5678 	if (p->in_iowait)
5679 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5680 
5681 	for_each_sched_entity(se) {
5682 		if (se->on_rq)
5683 			break;
5684 		cfs_rq = cfs_rq_of(se);
5685 		enqueue_entity(cfs_rq, se, flags);
5686 
5687 		cfs_rq->h_nr_running++;
5688 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5689 
5690 		if (cfs_rq_is_idle(cfs_rq))
5691 			idle_h_nr_running = 1;
5692 
5693 		/* end evaluation on encountering a throttled cfs_rq */
5694 		if (cfs_rq_throttled(cfs_rq))
5695 			goto enqueue_throttle;
5696 
5697 		flags = ENQUEUE_WAKEUP;
5698 	}
5699 
5700 	for_each_sched_entity(se) {
5701 		cfs_rq = cfs_rq_of(se);
5702 
5703 		update_load_avg(cfs_rq, se, UPDATE_TG);
5704 		se_update_runnable(se);
5705 		update_cfs_group(se);
5706 
5707 		cfs_rq->h_nr_running++;
5708 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5709 
5710 		if (cfs_rq_is_idle(cfs_rq))
5711 			idle_h_nr_running = 1;
5712 
5713 		/* end evaluation on encountering a throttled cfs_rq */
5714 		if (cfs_rq_throttled(cfs_rq))
5715 			goto enqueue_throttle;
5716 
5717                /*
5718                 * One parent has been throttled and cfs_rq removed from the
5719                 * list. Add it back to not break the leaf list.
5720                 */
5721                if (throttled_hierarchy(cfs_rq))
5722                        list_add_leaf_cfs_rq(cfs_rq);
5723 	}
5724 
5725 	/* At this point se is NULL and we are at root level*/
5726 	add_nr_running(rq, 1);
5727 
5728 	/*
5729 	 * Since new tasks are assigned an initial util_avg equal to
5730 	 * half of the spare capacity of their CPU, tiny tasks have the
5731 	 * ability to cross the overutilized threshold, which will
5732 	 * result in the load balancer ruining all the task placement
5733 	 * done by EAS. As a way to mitigate that effect, do not account
5734 	 * for the first enqueue operation of new tasks during the
5735 	 * overutilized flag detection.
5736 	 *
5737 	 * A better way of solving this problem would be to wait for
5738 	 * the PELT signals of tasks to converge before taking them
5739 	 * into account, but that is not straightforward to implement,
5740 	 * and the following generally works well enough in practice.
5741 	 */
5742 	if (!task_new)
5743 		update_overutilized_status(rq);
5744 
5745 enqueue_throttle:
5746 	if (cfs_bandwidth_used()) {
5747 		/*
5748 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5749 		 * breaks in the above iteration can result in incomplete
5750 		 * leaf list maintenance, resulting in triggering the assertion
5751 		 * below.
5752 		 */
5753 		for_each_sched_entity(se) {
5754 			cfs_rq = cfs_rq_of(se);
5755 
5756 			if (list_add_leaf_cfs_rq(cfs_rq))
5757 				break;
5758 		}
5759 	}
5760 
5761 	assert_list_leaf_cfs_rq(rq);
5762 
5763 	hrtick_update(rq);
5764 }
5765 
5766 static void set_next_buddy(struct sched_entity *se);
5767 
5768 /*
5769  * The dequeue_task method is called before nr_running is
5770  * decreased. We remove the task from the rbtree and
5771  * update the fair scheduling stats:
5772  */
5773 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5774 {
5775 	struct cfs_rq *cfs_rq;
5776 	struct sched_entity *se = &p->se;
5777 	int task_sleep = flags & DEQUEUE_SLEEP;
5778 	int idle_h_nr_running = task_has_idle_policy(p);
5779 	bool was_sched_idle = sched_idle_rq(rq);
5780 
5781 	util_est_dequeue(&rq->cfs, p);
5782 
5783 	for_each_sched_entity(se) {
5784 		cfs_rq = cfs_rq_of(se);
5785 		dequeue_entity(cfs_rq, se, flags);
5786 
5787 		cfs_rq->h_nr_running--;
5788 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5789 
5790 		if (cfs_rq_is_idle(cfs_rq))
5791 			idle_h_nr_running = 1;
5792 
5793 		/* end evaluation on encountering a throttled cfs_rq */
5794 		if (cfs_rq_throttled(cfs_rq))
5795 			goto dequeue_throttle;
5796 
5797 		/* Don't dequeue parent if it has other entities besides us */
5798 		if (cfs_rq->load.weight) {
5799 			/* Avoid re-evaluating load for this entity: */
5800 			se = parent_entity(se);
5801 			/*
5802 			 * Bias pick_next to pick a task from this cfs_rq, as
5803 			 * p is sleeping when it is within its sched_slice.
5804 			 */
5805 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5806 				set_next_buddy(se);
5807 			break;
5808 		}
5809 		flags |= DEQUEUE_SLEEP;
5810 	}
5811 
5812 	for_each_sched_entity(se) {
5813 		cfs_rq = cfs_rq_of(se);
5814 
5815 		update_load_avg(cfs_rq, se, UPDATE_TG);
5816 		se_update_runnable(se);
5817 		update_cfs_group(se);
5818 
5819 		cfs_rq->h_nr_running--;
5820 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5821 
5822 		if (cfs_rq_is_idle(cfs_rq))
5823 			idle_h_nr_running = 1;
5824 
5825 		/* end evaluation on encountering a throttled cfs_rq */
5826 		if (cfs_rq_throttled(cfs_rq))
5827 			goto dequeue_throttle;
5828 
5829 	}
5830 
5831 	/* At this point se is NULL and we are at root level*/
5832 	sub_nr_running(rq, 1);
5833 
5834 	/* balance early to pull high priority tasks */
5835 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5836 		rq->next_balance = jiffies;
5837 
5838 dequeue_throttle:
5839 	util_est_update(&rq->cfs, p, task_sleep);
5840 	hrtick_update(rq);
5841 }
5842 
5843 #ifdef CONFIG_SMP
5844 
5845 /* Working cpumask for: load_balance, load_balance_newidle. */
5846 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5847 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5848 
5849 #ifdef CONFIG_NO_HZ_COMMON
5850 
5851 static struct {
5852 	cpumask_var_t idle_cpus_mask;
5853 	atomic_t nr_cpus;
5854 	int has_blocked;		/* Idle CPUS has blocked load */
5855 	int needs_update;		/* Newly idle CPUs need their next_balance collated */
5856 	unsigned long next_balance;     /* in jiffy units */
5857 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
5858 } nohz ____cacheline_aligned;
5859 
5860 #endif /* CONFIG_NO_HZ_COMMON */
5861 
5862 static unsigned long cpu_load(struct rq *rq)
5863 {
5864 	return cfs_rq_load_avg(&rq->cfs);
5865 }
5866 
5867 /*
5868  * cpu_load_without - compute CPU load without any contributions from *p
5869  * @cpu: the CPU which load is requested
5870  * @p: the task which load should be discounted
5871  *
5872  * The load of a CPU is defined by the load of tasks currently enqueued on that
5873  * CPU as well as tasks which are currently sleeping after an execution on that
5874  * CPU.
5875  *
5876  * This method returns the load of the specified CPU by discounting the load of
5877  * the specified task, whenever the task is currently contributing to the CPU
5878  * load.
5879  */
5880 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
5881 {
5882 	struct cfs_rq *cfs_rq;
5883 	unsigned int load;
5884 
5885 	/* Task has no contribution or is new */
5886 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5887 		return cpu_load(rq);
5888 
5889 	cfs_rq = &rq->cfs;
5890 	load = READ_ONCE(cfs_rq->avg.load_avg);
5891 
5892 	/* Discount task's util from CPU's util */
5893 	lsub_positive(&load, task_h_load(p));
5894 
5895 	return load;
5896 }
5897 
5898 static unsigned long cpu_runnable(struct rq *rq)
5899 {
5900 	return cfs_rq_runnable_avg(&rq->cfs);
5901 }
5902 
5903 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
5904 {
5905 	struct cfs_rq *cfs_rq;
5906 	unsigned int runnable;
5907 
5908 	/* Task has no contribution or is new */
5909 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
5910 		return cpu_runnable(rq);
5911 
5912 	cfs_rq = &rq->cfs;
5913 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
5914 
5915 	/* Discount task's runnable from CPU's runnable */
5916 	lsub_positive(&runnable, p->se.avg.runnable_avg);
5917 
5918 	return runnable;
5919 }
5920 
5921 static unsigned long capacity_of(int cpu)
5922 {
5923 	return cpu_rq(cpu)->cpu_capacity;
5924 }
5925 
5926 static void record_wakee(struct task_struct *p)
5927 {
5928 	/*
5929 	 * Only decay a single time; tasks that have less then 1 wakeup per
5930 	 * jiffy will not have built up many flips.
5931 	 */
5932 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5933 		current->wakee_flips >>= 1;
5934 		current->wakee_flip_decay_ts = jiffies;
5935 	}
5936 
5937 	if (current->last_wakee != p) {
5938 		current->last_wakee = p;
5939 		current->wakee_flips++;
5940 	}
5941 }
5942 
5943 /*
5944  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5945  *
5946  * A waker of many should wake a different task than the one last awakened
5947  * at a frequency roughly N times higher than one of its wakees.
5948  *
5949  * In order to determine whether we should let the load spread vs consolidating
5950  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5951  * partner, and a factor of lls_size higher frequency in the other.
5952  *
5953  * With both conditions met, we can be relatively sure that the relationship is
5954  * non-monogamous, with partner count exceeding socket size.
5955  *
5956  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5957  * whatever is irrelevant, spread criteria is apparent partner count exceeds
5958  * socket size.
5959  */
5960 static int wake_wide(struct task_struct *p)
5961 {
5962 	unsigned int master = current->wakee_flips;
5963 	unsigned int slave = p->wakee_flips;
5964 	int factor = __this_cpu_read(sd_llc_size);
5965 
5966 	if (master < slave)
5967 		swap(master, slave);
5968 	if (slave < factor || master < slave * factor)
5969 		return 0;
5970 	return 1;
5971 }
5972 
5973 /*
5974  * The purpose of wake_affine() is to quickly determine on which CPU we can run
5975  * soonest. For the purpose of speed we only consider the waking and previous
5976  * CPU.
5977  *
5978  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5979  *			cache-affine and is (or	will be) idle.
5980  *
5981  * wake_affine_weight() - considers the weight to reflect the average
5982  *			  scheduling latency of the CPUs. This seems to work
5983  *			  for the overloaded case.
5984  */
5985 static int
5986 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5987 {
5988 	/*
5989 	 * If this_cpu is idle, it implies the wakeup is from interrupt
5990 	 * context. Only allow the move if cache is shared. Otherwise an
5991 	 * interrupt intensive workload could force all tasks onto one
5992 	 * node depending on the IO topology or IRQ affinity settings.
5993 	 *
5994 	 * If the prev_cpu is idle and cache affine then avoid a migration.
5995 	 * There is no guarantee that the cache hot data from an interrupt
5996 	 * is more important than cache hot data on the prev_cpu and from
5997 	 * a cpufreq perspective, it's better to have higher utilisation
5998 	 * on one CPU.
5999 	 */
6000 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6001 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6002 
6003 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
6004 		return this_cpu;
6005 
6006 	if (available_idle_cpu(prev_cpu))
6007 		return prev_cpu;
6008 
6009 	return nr_cpumask_bits;
6010 }
6011 
6012 static int
6013 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6014 		   int this_cpu, int prev_cpu, int sync)
6015 {
6016 	s64 this_eff_load, prev_eff_load;
6017 	unsigned long task_load;
6018 
6019 	this_eff_load = cpu_load(cpu_rq(this_cpu));
6020 
6021 	if (sync) {
6022 		unsigned long current_load = task_h_load(current);
6023 
6024 		if (current_load > this_eff_load)
6025 			return this_cpu;
6026 
6027 		this_eff_load -= current_load;
6028 	}
6029 
6030 	task_load = task_h_load(p);
6031 
6032 	this_eff_load += task_load;
6033 	if (sched_feat(WA_BIAS))
6034 		this_eff_load *= 100;
6035 	this_eff_load *= capacity_of(prev_cpu);
6036 
6037 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6038 	prev_eff_load -= task_load;
6039 	if (sched_feat(WA_BIAS))
6040 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6041 	prev_eff_load *= capacity_of(this_cpu);
6042 
6043 	/*
6044 	 * If sync, adjust the weight of prev_eff_load such that if
6045 	 * prev_eff == this_eff that select_idle_sibling() will consider
6046 	 * stacking the wakee on top of the waker if no other CPU is
6047 	 * idle.
6048 	 */
6049 	if (sync)
6050 		prev_eff_load += 1;
6051 
6052 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6053 }
6054 
6055 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6056 		       int this_cpu, int prev_cpu, int sync)
6057 {
6058 	int target = nr_cpumask_bits;
6059 
6060 	if (sched_feat(WA_IDLE))
6061 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
6062 
6063 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6064 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6065 
6066 	schedstat_inc(p->stats.nr_wakeups_affine_attempts);
6067 	if (target == nr_cpumask_bits)
6068 		return prev_cpu;
6069 
6070 	schedstat_inc(sd->ttwu_move_affine);
6071 	schedstat_inc(p->stats.nr_wakeups_affine);
6072 	return target;
6073 }
6074 
6075 static struct sched_group *
6076 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6077 
6078 /*
6079  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6080  */
6081 static int
6082 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6083 {
6084 	unsigned long load, min_load = ULONG_MAX;
6085 	unsigned int min_exit_latency = UINT_MAX;
6086 	u64 latest_idle_timestamp = 0;
6087 	int least_loaded_cpu = this_cpu;
6088 	int shallowest_idle_cpu = -1;
6089 	int i;
6090 
6091 	/* Check if we have any choice: */
6092 	if (group->group_weight == 1)
6093 		return cpumask_first(sched_group_span(group));
6094 
6095 	/* Traverse only the allowed CPUs */
6096 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6097 		struct rq *rq = cpu_rq(i);
6098 
6099 		if (!sched_core_cookie_match(rq, p))
6100 			continue;
6101 
6102 		if (sched_idle_cpu(i))
6103 			return i;
6104 
6105 		if (available_idle_cpu(i)) {
6106 			struct cpuidle_state *idle = idle_get_state(rq);
6107 			if (idle && idle->exit_latency < min_exit_latency) {
6108 				/*
6109 				 * We give priority to a CPU whose idle state
6110 				 * has the smallest exit latency irrespective
6111 				 * of any idle timestamp.
6112 				 */
6113 				min_exit_latency = idle->exit_latency;
6114 				latest_idle_timestamp = rq->idle_stamp;
6115 				shallowest_idle_cpu = i;
6116 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
6117 				   rq->idle_stamp > latest_idle_timestamp) {
6118 				/*
6119 				 * If equal or no active idle state, then
6120 				 * the most recently idled CPU might have
6121 				 * a warmer cache.
6122 				 */
6123 				latest_idle_timestamp = rq->idle_stamp;
6124 				shallowest_idle_cpu = i;
6125 			}
6126 		} else if (shallowest_idle_cpu == -1) {
6127 			load = cpu_load(cpu_rq(i));
6128 			if (load < min_load) {
6129 				min_load = load;
6130 				least_loaded_cpu = i;
6131 			}
6132 		}
6133 	}
6134 
6135 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6136 }
6137 
6138 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6139 				  int cpu, int prev_cpu, int sd_flag)
6140 {
6141 	int new_cpu = cpu;
6142 
6143 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6144 		return prev_cpu;
6145 
6146 	/*
6147 	 * We need task's util for cpu_util_without, sync it up to
6148 	 * prev_cpu's last_update_time.
6149 	 */
6150 	if (!(sd_flag & SD_BALANCE_FORK))
6151 		sync_entity_load_avg(&p->se);
6152 
6153 	while (sd) {
6154 		struct sched_group *group;
6155 		struct sched_domain *tmp;
6156 		int weight;
6157 
6158 		if (!(sd->flags & sd_flag)) {
6159 			sd = sd->child;
6160 			continue;
6161 		}
6162 
6163 		group = find_idlest_group(sd, p, cpu);
6164 		if (!group) {
6165 			sd = sd->child;
6166 			continue;
6167 		}
6168 
6169 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6170 		if (new_cpu == cpu) {
6171 			/* Now try balancing at a lower domain level of 'cpu': */
6172 			sd = sd->child;
6173 			continue;
6174 		}
6175 
6176 		/* Now try balancing at a lower domain level of 'new_cpu': */
6177 		cpu = new_cpu;
6178 		weight = sd->span_weight;
6179 		sd = NULL;
6180 		for_each_domain(cpu, tmp) {
6181 			if (weight <= tmp->span_weight)
6182 				break;
6183 			if (tmp->flags & sd_flag)
6184 				sd = tmp;
6185 		}
6186 	}
6187 
6188 	return new_cpu;
6189 }
6190 
6191 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6192 {
6193 	if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6194 	    sched_cpu_cookie_match(cpu_rq(cpu), p))
6195 		return cpu;
6196 
6197 	return -1;
6198 }
6199 
6200 #ifdef CONFIG_SCHED_SMT
6201 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6202 EXPORT_SYMBOL_GPL(sched_smt_present);
6203 
6204 static inline void set_idle_cores(int cpu, int val)
6205 {
6206 	struct sched_domain_shared *sds;
6207 
6208 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6209 	if (sds)
6210 		WRITE_ONCE(sds->has_idle_cores, val);
6211 }
6212 
6213 static inline bool test_idle_cores(int cpu, bool def)
6214 {
6215 	struct sched_domain_shared *sds;
6216 
6217 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6218 	if (sds)
6219 		return READ_ONCE(sds->has_idle_cores);
6220 
6221 	return def;
6222 }
6223 
6224 /*
6225  * Scans the local SMT mask to see if the entire core is idle, and records this
6226  * information in sd_llc_shared->has_idle_cores.
6227  *
6228  * Since SMT siblings share all cache levels, inspecting this limited remote
6229  * state should be fairly cheap.
6230  */
6231 void __update_idle_core(struct rq *rq)
6232 {
6233 	int core = cpu_of(rq);
6234 	int cpu;
6235 
6236 	rcu_read_lock();
6237 	if (test_idle_cores(core, true))
6238 		goto unlock;
6239 
6240 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6241 		if (cpu == core)
6242 			continue;
6243 
6244 		if (!available_idle_cpu(cpu))
6245 			goto unlock;
6246 	}
6247 
6248 	set_idle_cores(core, 1);
6249 unlock:
6250 	rcu_read_unlock();
6251 }
6252 
6253 /*
6254  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6255  * there are no idle cores left in the system; tracked through
6256  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6257  */
6258 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6259 {
6260 	bool idle = true;
6261 	int cpu;
6262 
6263 	if (!static_branch_likely(&sched_smt_present))
6264 		return __select_idle_cpu(core, p);
6265 
6266 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6267 		if (!available_idle_cpu(cpu)) {
6268 			idle = false;
6269 			if (*idle_cpu == -1) {
6270 				if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6271 					*idle_cpu = cpu;
6272 					break;
6273 				}
6274 				continue;
6275 			}
6276 			break;
6277 		}
6278 		if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6279 			*idle_cpu = cpu;
6280 	}
6281 
6282 	if (idle)
6283 		return core;
6284 
6285 	cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6286 	return -1;
6287 }
6288 
6289 /*
6290  * Scan the local SMT mask for idle CPUs.
6291  */
6292 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6293 {
6294 	int cpu;
6295 
6296 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6297 		if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6298 		    !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6299 			continue;
6300 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6301 			return cpu;
6302 	}
6303 
6304 	return -1;
6305 }
6306 
6307 #else /* CONFIG_SCHED_SMT */
6308 
6309 static inline void set_idle_cores(int cpu, int val)
6310 {
6311 }
6312 
6313 static inline bool test_idle_cores(int cpu, bool def)
6314 {
6315 	return def;
6316 }
6317 
6318 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6319 {
6320 	return __select_idle_cpu(core, p);
6321 }
6322 
6323 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6324 {
6325 	return -1;
6326 }
6327 
6328 #endif /* CONFIG_SCHED_SMT */
6329 
6330 /*
6331  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6332  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6333  * average idle time for this rq (as found in rq->avg_idle).
6334  */
6335 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6336 {
6337 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6338 	int i, cpu, idle_cpu = -1, nr = INT_MAX;
6339 	struct rq *this_rq = this_rq();
6340 	int this = smp_processor_id();
6341 	struct sched_domain *this_sd;
6342 	u64 time = 0;
6343 
6344 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6345 	if (!this_sd)
6346 		return -1;
6347 
6348 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6349 
6350 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6351 		u64 avg_cost, avg_idle, span_avg;
6352 		unsigned long now = jiffies;
6353 
6354 		/*
6355 		 * If we're busy, the assumption that the last idle period
6356 		 * predicts the future is flawed; age away the remaining
6357 		 * predicted idle time.
6358 		 */
6359 		if (unlikely(this_rq->wake_stamp < now)) {
6360 			while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6361 				this_rq->wake_stamp++;
6362 				this_rq->wake_avg_idle >>= 1;
6363 			}
6364 		}
6365 
6366 		avg_idle = this_rq->wake_avg_idle;
6367 		avg_cost = this_sd->avg_scan_cost + 1;
6368 
6369 		span_avg = sd->span_weight * avg_idle;
6370 		if (span_avg > 4*avg_cost)
6371 			nr = div_u64(span_avg, avg_cost);
6372 		else
6373 			nr = 4;
6374 
6375 		time = cpu_clock(this);
6376 	}
6377 
6378 	for_each_cpu_wrap(cpu, cpus, target + 1) {
6379 		if (has_idle_core) {
6380 			i = select_idle_core(p, cpu, cpus, &idle_cpu);
6381 			if ((unsigned int)i < nr_cpumask_bits)
6382 				return i;
6383 
6384 		} else {
6385 			if (!--nr)
6386 				return -1;
6387 			idle_cpu = __select_idle_cpu(cpu, p);
6388 			if ((unsigned int)idle_cpu < nr_cpumask_bits)
6389 				break;
6390 		}
6391 	}
6392 
6393 	if (has_idle_core)
6394 		set_idle_cores(target, false);
6395 
6396 	if (sched_feat(SIS_PROP) && !has_idle_core) {
6397 		time = cpu_clock(this) - time;
6398 
6399 		/*
6400 		 * Account for the scan cost of wakeups against the average
6401 		 * idle time.
6402 		 */
6403 		this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6404 
6405 		update_avg(&this_sd->avg_scan_cost, time);
6406 	}
6407 
6408 	return idle_cpu;
6409 }
6410 
6411 /*
6412  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6413  * the task fits. If no CPU is big enough, but there are idle ones, try to
6414  * maximize capacity.
6415  */
6416 static int
6417 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6418 {
6419 	unsigned long task_util, best_cap = 0;
6420 	int cpu, best_cpu = -1;
6421 	struct cpumask *cpus;
6422 
6423 	cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6424 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6425 
6426 	task_util = uclamp_task_util(p);
6427 
6428 	for_each_cpu_wrap(cpu, cpus, target) {
6429 		unsigned long cpu_cap = capacity_of(cpu);
6430 
6431 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6432 			continue;
6433 		if (fits_capacity(task_util, cpu_cap))
6434 			return cpu;
6435 
6436 		if (cpu_cap > best_cap) {
6437 			best_cap = cpu_cap;
6438 			best_cpu = cpu;
6439 		}
6440 	}
6441 
6442 	return best_cpu;
6443 }
6444 
6445 static inline bool asym_fits_capacity(unsigned long task_util, int cpu)
6446 {
6447 	if (static_branch_unlikely(&sched_asym_cpucapacity))
6448 		return fits_capacity(task_util, capacity_of(cpu));
6449 
6450 	return true;
6451 }
6452 
6453 /*
6454  * Try and locate an idle core/thread in the LLC cache domain.
6455  */
6456 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6457 {
6458 	bool has_idle_core = false;
6459 	struct sched_domain *sd;
6460 	unsigned long task_util;
6461 	int i, recent_used_cpu;
6462 
6463 	/*
6464 	 * On asymmetric system, update task utilization because we will check
6465 	 * that the task fits with cpu's capacity.
6466 	 */
6467 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6468 		sync_entity_load_avg(&p->se);
6469 		task_util = uclamp_task_util(p);
6470 	}
6471 
6472 	/*
6473 	 * per-cpu select_idle_mask usage
6474 	 */
6475 	lockdep_assert_irqs_disabled();
6476 
6477 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6478 	    asym_fits_capacity(task_util, target))
6479 		return target;
6480 
6481 	/*
6482 	 * If the previous CPU is cache affine and idle, don't be stupid:
6483 	 */
6484 	if (prev != target && cpus_share_cache(prev, target) &&
6485 	    (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6486 	    asym_fits_capacity(task_util, prev))
6487 		return prev;
6488 
6489 	/*
6490 	 * Allow a per-cpu kthread to stack with the wakee if the
6491 	 * kworker thread and the tasks previous CPUs are the same.
6492 	 * The assumption is that the wakee queued work for the
6493 	 * per-cpu kthread that is now complete and the wakeup is
6494 	 * essentially a sync wakeup. An obvious example of this
6495 	 * pattern is IO completions.
6496 	 */
6497 	if (is_per_cpu_kthread(current) &&
6498 	    in_task() &&
6499 	    prev == smp_processor_id() &&
6500 	    this_rq()->nr_running <= 1 &&
6501 	    asym_fits_capacity(task_util, prev)) {
6502 		return prev;
6503 	}
6504 
6505 	/* Check a recently used CPU as a potential idle candidate: */
6506 	recent_used_cpu = p->recent_used_cpu;
6507 	p->recent_used_cpu = prev;
6508 	if (recent_used_cpu != prev &&
6509 	    recent_used_cpu != target &&
6510 	    cpus_share_cache(recent_used_cpu, target) &&
6511 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6512 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6513 	    asym_fits_capacity(task_util, recent_used_cpu)) {
6514 		return recent_used_cpu;
6515 	}
6516 
6517 	/*
6518 	 * For asymmetric CPU capacity systems, our domain of interest is
6519 	 * sd_asym_cpucapacity rather than sd_llc.
6520 	 */
6521 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6522 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6523 		/*
6524 		 * On an asymmetric CPU capacity system where an exclusive
6525 		 * cpuset defines a symmetric island (i.e. one unique
6526 		 * capacity_orig value through the cpuset), the key will be set
6527 		 * but the CPUs within that cpuset will not have a domain with
6528 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6529 		 * capacity path.
6530 		 */
6531 		if (sd) {
6532 			i = select_idle_capacity(p, sd, target);
6533 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
6534 		}
6535 	}
6536 
6537 	sd = rcu_dereference(per_cpu(sd_llc, target));
6538 	if (!sd)
6539 		return target;
6540 
6541 	if (sched_smt_active()) {
6542 		has_idle_core = test_idle_cores(target, false);
6543 
6544 		if (!has_idle_core && cpus_share_cache(prev, target)) {
6545 			i = select_idle_smt(p, sd, prev);
6546 			if ((unsigned int)i < nr_cpumask_bits)
6547 				return i;
6548 		}
6549 	}
6550 
6551 	i = select_idle_cpu(p, sd, has_idle_core, target);
6552 	if ((unsigned)i < nr_cpumask_bits)
6553 		return i;
6554 
6555 	return target;
6556 }
6557 
6558 /*
6559  * Predicts what cpu_util(@cpu) would return if @p was removed from @cpu
6560  * (@dst_cpu = -1) or migrated to @dst_cpu.
6561  */
6562 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6563 {
6564 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6565 	unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
6566 
6567 	/*
6568 	 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
6569 	 * contribution. If @p migrates from another CPU to @cpu add its
6570 	 * contribution. In all the other cases @cpu is not impacted by the
6571 	 * migration so its util_avg is already correct.
6572 	 */
6573 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6574 		lsub_positive(&util, task_util(p));
6575 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6576 		util += task_util(p);
6577 
6578 	if (sched_feat(UTIL_EST)) {
6579 		unsigned long util_est;
6580 
6581 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6582 
6583 		/*
6584 		 * During wake-up @p isn't enqueued yet and doesn't contribute
6585 		 * to any cpu_rq(cpu)->cfs.avg.util_est.enqueued.
6586 		 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
6587 		 * has been enqueued.
6588 		 *
6589 		 * During exec (@dst_cpu = -1) @p is enqueued and does
6590 		 * contribute to cpu_rq(cpu)->cfs.util_est.enqueued.
6591 		 * Remove it to "simulate" cpu_util without @p's contribution.
6592 		 *
6593 		 * Despite the task_on_rq_queued(@p) check there is still a
6594 		 * small window for a possible race when an exec
6595 		 * select_task_rq_fair() races with LB's detach_task().
6596 		 *
6597 		 *   detach_task()
6598 		 *     deactivate_task()
6599 		 *       p->on_rq = TASK_ON_RQ_MIGRATING;
6600 		 *       -------------------------------- A
6601 		 *       dequeue_task()                    \
6602 		 *         dequeue_task_fair()              + Race Time
6603 		 *           util_est_dequeue()            /
6604 		 *       -------------------------------- B
6605 		 *
6606 		 * The additional check "current == p" is required to further
6607 		 * reduce the race window.
6608 		 */
6609 		if (dst_cpu == cpu)
6610 			util_est += _task_util_est(p);
6611 		else if (unlikely(task_on_rq_queued(p) || current == p))
6612 			lsub_positive(&util_est, _task_util_est(p));
6613 
6614 		util = max(util, util_est);
6615 	}
6616 
6617 	return min(util, capacity_orig_of(cpu));
6618 }
6619 
6620 /*
6621  * cpu_util_without: compute cpu utilization without any contributions from *p
6622  * @cpu: the CPU which utilization is requested
6623  * @p: the task which utilization should be discounted
6624  *
6625  * The utilization of a CPU is defined by the utilization of tasks currently
6626  * enqueued on that CPU as well as tasks which are currently sleeping after an
6627  * execution on that CPU.
6628  *
6629  * This method returns the utilization of the specified CPU by discounting the
6630  * utilization of the specified task, whenever the task is currently
6631  * contributing to the CPU utilization.
6632  */
6633 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6634 {
6635 	/* Task has no contribution or is new */
6636 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6637 		return cpu_util_cfs(cpu);
6638 
6639 	return cpu_util_next(cpu, p, -1);
6640 }
6641 
6642 /*
6643  * compute_energy(): Estimates the energy that @pd would consume if @p was
6644  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6645  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6646  * to compute what would be the energy if we decided to actually migrate that
6647  * task.
6648  */
6649 static long
6650 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6651 {
6652 	struct cpumask *pd_mask = perf_domain_span(pd);
6653 	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6654 	unsigned long max_util = 0, sum_util = 0;
6655 	unsigned long _cpu_cap = cpu_cap;
6656 	int cpu;
6657 
6658 	_cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
6659 
6660 	/*
6661 	 * The capacity state of CPUs of the current rd can be driven by CPUs
6662 	 * of another rd if they belong to the same pd. So, account for the
6663 	 * utilization of these CPUs too by masking pd with cpu_online_mask
6664 	 * instead of the rd span.
6665 	 *
6666 	 * If an entire pd is outside of the current rd, it will not appear in
6667 	 * its pd list and will not be accounted by compute_energy().
6668 	 */
6669 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6670 		unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6671 		unsigned long cpu_util, util_running = util_freq;
6672 		struct task_struct *tsk = NULL;
6673 
6674 		/*
6675 		 * When @p is placed on @cpu:
6676 		 *
6677 		 * util_running = max(cpu_util, cpu_util_est) +
6678 		 *		  max(task_util, _task_util_est)
6679 		 *
6680 		 * while cpu_util_next is: max(cpu_util + task_util,
6681 		 *			       cpu_util_est + _task_util_est)
6682 		 */
6683 		if (cpu == dst_cpu) {
6684 			tsk = p;
6685 			util_running =
6686 				cpu_util_next(cpu, p, -1) + task_util_est(p);
6687 		}
6688 
6689 		/*
6690 		 * Busy time computation: utilization clamping is not
6691 		 * required since the ratio (sum_util / cpu_capacity)
6692 		 * is already enough to scale the EM reported power
6693 		 * consumption at the (eventually clamped) cpu_capacity.
6694 		 */
6695 		cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
6696 					      ENERGY_UTIL, NULL);
6697 
6698 		sum_util += min(cpu_util, _cpu_cap);
6699 
6700 		/*
6701 		 * Performance domain frequency: utilization clamping
6702 		 * must be considered since it affects the selection
6703 		 * of the performance domain frequency.
6704 		 * NOTE: in case RT tasks are running, by default the
6705 		 * FREQUENCY_UTIL's utilization can be max OPP.
6706 		 */
6707 		cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
6708 					      FREQUENCY_UTIL, tsk);
6709 		max_util = max(max_util, min(cpu_util, _cpu_cap));
6710 	}
6711 
6712 	return em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
6713 }
6714 
6715 /*
6716  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6717  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6718  * spare capacity in each performance domain and uses it as a potential
6719  * candidate to execute the task. Then, it uses the Energy Model to figure
6720  * out which of the CPU candidates is the most energy-efficient.
6721  *
6722  * The rationale for this heuristic is as follows. In a performance domain,
6723  * all the most energy efficient CPU candidates (according to the Energy
6724  * Model) are those for which we'll request a low frequency. When there are
6725  * several CPUs for which the frequency request will be the same, we don't
6726  * have enough data to break the tie between them, because the Energy Model
6727  * only includes active power costs. With this model, if we assume that
6728  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6729  * the maximum spare capacity in a performance domain is guaranteed to be among
6730  * the best candidates of the performance domain.
6731  *
6732  * In practice, it could be preferable from an energy standpoint to pack
6733  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6734  * but that could also hurt our chances to go cluster idle, and we have no
6735  * ways to tell with the current Energy Model if this is actually a good
6736  * idea or not. So, find_energy_efficient_cpu() basically favors
6737  * cluster-packing, and spreading inside a cluster. That should at least be
6738  * a good thing for latency, and this is consistent with the idea that most
6739  * of the energy savings of EAS come from the asymmetry of the system, and
6740  * not so much from breaking the tie between identical CPUs. That's also the
6741  * reason why EAS is enabled in the topology code only for systems where
6742  * SD_ASYM_CPUCAPACITY is set.
6743  *
6744  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6745  * they don't have any useful utilization data yet and it's not possible to
6746  * forecast their impact on energy consumption. Consequently, they will be
6747  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6748  * to be energy-inefficient in some use-cases. The alternative would be to
6749  * bias new tasks towards specific types of CPUs first, or to try to infer
6750  * their util_avg from the parent task, but those heuristics could hurt
6751  * other use-cases too. So, until someone finds a better way to solve this,
6752  * let's keep things simple by re-using the existing slow path.
6753  */
6754 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6755 {
6756 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6757 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6758 	int cpu, best_energy_cpu = prev_cpu, target = -1;
6759 	unsigned long cpu_cap, util, base_energy = 0;
6760 	struct sched_domain *sd;
6761 	struct perf_domain *pd;
6762 
6763 	rcu_read_lock();
6764 	pd = rcu_dereference(rd->pd);
6765 	if (!pd || READ_ONCE(rd->overutilized))
6766 		goto unlock;
6767 
6768 	/*
6769 	 * Energy-aware wake-up happens on the lowest sched_domain starting
6770 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
6771 	 */
6772 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
6773 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
6774 		sd = sd->parent;
6775 	if (!sd)
6776 		goto unlock;
6777 
6778 	target = prev_cpu;
6779 
6780 	sync_entity_load_avg(&p->se);
6781 	if (!task_util_est(p))
6782 		goto unlock;
6783 
6784 	for (; pd; pd = pd->next) {
6785 		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
6786 		bool compute_prev_delta = false;
6787 		unsigned long base_energy_pd;
6788 		int max_spare_cap_cpu = -1;
6789 
6790 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
6791 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
6792 				continue;
6793 
6794 			util = cpu_util_next(cpu, p, cpu);
6795 			cpu_cap = capacity_of(cpu);
6796 			spare_cap = cpu_cap;
6797 			lsub_positive(&spare_cap, util);
6798 
6799 			/*
6800 			 * Skip CPUs that cannot satisfy the capacity request.
6801 			 * IOW, placing the task there would make the CPU
6802 			 * overutilized. Take uclamp into account to see how
6803 			 * much capacity we can get out of the CPU; this is
6804 			 * aligned with sched_cpu_util().
6805 			 */
6806 			util = uclamp_rq_util_with(cpu_rq(cpu), util, p);
6807 			if (!fits_capacity(util, cpu_cap))
6808 				continue;
6809 
6810 			if (cpu == prev_cpu) {
6811 				/* Always use prev_cpu as a candidate. */
6812 				compute_prev_delta = true;
6813 			} else if (spare_cap > max_spare_cap) {
6814 				/*
6815 				 * Find the CPU with the maximum spare capacity
6816 				 * in the performance domain.
6817 				 */
6818 				max_spare_cap = spare_cap;
6819 				max_spare_cap_cpu = cpu;
6820 			}
6821 		}
6822 
6823 		if (max_spare_cap_cpu < 0 && !compute_prev_delta)
6824 			continue;
6825 
6826 		/* Compute the 'base' energy of the pd, without @p */
6827 		base_energy_pd = compute_energy(p, -1, pd);
6828 		base_energy += base_energy_pd;
6829 
6830 		/* Evaluate the energy impact of using prev_cpu. */
6831 		if (compute_prev_delta) {
6832 			prev_delta = compute_energy(p, prev_cpu, pd);
6833 			if (prev_delta < base_energy_pd)
6834 				goto unlock;
6835 			prev_delta -= base_energy_pd;
6836 			best_delta = min(best_delta, prev_delta);
6837 		}
6838 
6839 		/* Evaluate the energy impact of using max_spare_cap_cpu. */
6840 		if (max_spare_cap_cpu >= 0) {
6841 			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
6842 			if (cur_delta < base_energy_pd)
6843 				goto unlock;
6844 			cur_delta -= base_energy_pd;
6845 			if (cur_delta < best_delta) {
6846 				best_delta = cur_delta;
6847 				best_energy_cpu = max_spare_cap_cpu;
6848 			}
6849 		}
6850 	}
6851 	rcu_read_unlock();
6852 
6853 	/*
6854 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
6855 	 * least 6% of the energy used by prev_cpu.
6856 	 */
6857 	if ((prev_delta == ULONG_MAX) ||
6858 	    (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
6859 		target = best_energy_cpu;
6860 
6861 	return target;
6862 
6863 unlock:
6864 	rcu_read_unlock();
6865 
6866 	return target;
6867 }
6868 
6869 /*
6870  * select_task_rq_fair: Select target runqueue for the waking task in domains
6871  * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
6872  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6873  *
6874  * Balances load by selecting the idlest CPU in the idlest group, or under
6875  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6876  *
6877  * Returns the target CPU number.
6878  */
6879 static int
6880 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
6881 {
6882 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6883 	struct sched_domain *tmp, *sd = NULL;
6884 	int cpu = smp_processor_id();
6885 	int new_cpu = prev_cpu;
6886 	int want_affine = 0;
6887 	/* SD_flags and WF_flags share the first nibble */
6888 	int sd_flag = wake_flags & 0xF;
6889 
6890 	/*
6891 	 * required for stable ->cpus_allowed
6892 	 */
6893 	lockdep_assert_held(&p->pi_lock);
6894 	if (wake_flags & WF_TTWU) {
6895 		record_wakee(p);
6896 
6897 		if (sched_energy_enabled()) {
6898 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
6899 			if (new_cpu >= 0)
6900 				return new_cpu;
6901 			new_cpu = prev_cpu;
6902 		}
6903 
6904 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
6905 	}
6906 
6907 	rcu_read_lock();
6908 	for_each_domain(cpu, tmp) {
6909 		/*
6910 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
6911 		 * cpu is a valid SD_WAKE_AFFINE target.
6912 		 */
6913 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6914 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6915 			if (cpu != prev_cpu)
6916 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6917 
6918 			sd = NULL; /* Prefer wake_affine over balance flags */
6919 			break;
6920 		}
6921 
6922 		/*
6923 		 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
6924 		 * usually do not have SD_BALANCE_WAKE set. That means wakeup
6925 		 * will usually go to the fast path.
6926 		 */
6927 		if (tmp->flags & sd_flag)
6928 			sd = tmp;
6929 		else if (!want_affine)
6930 			break;
6931 	}
6932 
6933 	if (unlikely(sd)) {
6934 		/* Slow path */
6935 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6936 	} else if (wake_flags & WF_TTWU) { /* XXX always ? */
6937 		/* Fast path */
6938 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6939 	}
6940 	rcu_read_unlock();
6941 
6942 	return new_cpu;
6943 }
6944 
6945 static void detach_entity_cfs_rq(struct sched_entity *se);
6946 
6947 /*
6948  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6949  * cfs_rq_of(p) references at time of call are still valid and identify the
6950  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6951  */
6952 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6953 {
6954 	/*
6955 	 * As blocked tasks retain absolute vruntime the migration needs to
6956 	 * deal with this by subtracting the old and adding the new
6957 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
6958 	 * the task on the new runqueue.
6959 	 */
6960 	if (READ_ONCE(p->__state) == TASK_WAKING) {
6961 		struct sched_entity *se = &p->se;
6962 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
6963 		u64 min_vruntime;
6964 
6965 #ifndef CONFIG_64BIT
6966 		u64 min_vruntime_copy;
6967 
6968 		do {
6969 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
6970 			smp_rmb();
6971 			min_vruntime = cfs_rq->min_vruntime;
6972 		} while (min_vruntime != min_vruntime_copy);
6973 #else
6974 		min_vruntime = cfs_rq->min_vruntime;
6975 #endif
6976 
6977 		se->vruntime -= min_vruntime;
6978 	}
6979 
6980 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6981 		/*
6982 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6983 		 * rq->lock and can modify state directly.
6984 		 */
6985 		lockdep_assert_rq_held(task_rq(p));
6986 		detach_entity_cfs_rq(&p->se);
6987 
6988 	} else {
6989 		/*
6990 		 * We are supposed to update the task to "current" time, then
6991 		 * its up to date and ready to go to new CPU/cfs_rq. But we
6992 		 * have difficulty in getting what current time is, so simply
6993 		 * throw away the out-of-date time. This will result in the
6994 		 * wakee task is less decayed, but giving the wakee more load
6995 		 * sounds not bad.
6996 		 */
6997 		remove_entity_load_avg(&p->se);
6998 	}
6999 
7000 	/* Tell new CPU we are migrated */
7001 	p->se.avg.last_update_time = 0;
7002 
7003 	/* We have migrated, no longer consider this task hot */
7004 	p->se.exec_start = 0;
7005 
7006 	update_scan_period(p, new_cpu);
7007 }
7008 
7009 static void task_dead_fair(struct task_struct *p)
7010 {
7011 	remove_entity_load_avg(&p->se);
7012 }
7013 
7014 static int
7015 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7016 {
7017 	if (rq->nr_running)
7018 		return 1;
7019 
7020 	return newidle_balance(rq, rf) != 0;
7021 }
7022 #endif /* CONFIG_SMP */
7023 
7024 static unsigned long wakeup_gran(struct sched_entity *se)
7025 {
7026 	unsigned long gran = sysctl_sched_wakeup_granularity;
7027 
7028 	/*
7029 	 * Since its curr running now, convert the gran from real-time
7030 	 * to virtual-time in his units.
7031 	 *
7032 	 * By using 'se' instead of 'curr' we penalize light tasks, so
7033 	 * they get preempted easier. That is, if 'se' < 'curr' then
7034 	 * the resulting gran will be larger, therefore penalizing the
7035 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7036 	 * be smaller, again penalizing the lighter task.
7037 	 *
7038 	 * This is especially important for buddies when the leftmost
7039 	 * task is higher priority than the buddy.
7040 	 */
7041 	return calc_delta_fair(gran, se);
7042 }
7043 
7044 /*
7045  * Should 'se' preempt 'curr'.
7046  *
7047  *             |s1
7048  *        |s2
7049  *   |s3
7050  *         g
7051  *      |<--->|c
7052  *
7053  *  w(c, s1) = -1
7054  *  w(c, s2) =  0
7055  *  w(c, s3) =  1
7056  *
7057  */
7058 static int
7059 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7060 {
7061 	s64 gran, vdiff = curr->vruntime - se->vruntime;
7062 
7063 	if (vdiff <= 0)
7064 		return -1;
7065 
7066 	gran = wakeup_gran(se);
7067 	if (vdiff > gran)
7068 		return 1;
7069 
7070 	return 0;
7071 }
7072 
7073 static void set_last_buddy(struct sched_entity *se)
7074 {
7075 	for_each_sched_entity(se) {
7076 		if (SCHED_WARN_ON(!se->on_rq))
7077 			return;
7078 		if (se_is_idle(se))
7079 			return;
7080 		cfs_rq_of(se)->last = se;
7081 	}
7082 }
7083 
7084 static void set_next_buddy(struct sched_entity *se)
7085 {
7086 	for_each_sched_entity(se) {
7087 		if (SCHED_WARN_ON(!se->on_rq))
7088 			return;
7089 		if (se_is_idle(se))
7090 			return;
7091 		cfs_rq_of(se)->next = se;
7092 	}
7093 }
7094 
7095 static void set_skip_buddy(struct sched_entity *se)
7096 {
7097 	for_each_sched_entity(se)
7098 		cfs_rq_of(se)->skip = se;
7099 }
7100 
7101 /*
7102  * Preempt the current task with a newly woken task if needed:
7103  */
7104 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7105 {
7106 	struct task_struct *curr = rq->curr;
7107 	struct sched_entity *se = &curr->se, *pse = &p->se;
7108 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7109 	int scale = cfs_rq->nr_running >= sched_nr_latency;
7110 	int next_buddy_marked = 0;
7111 	int cse_is_idle, pse_is_idle;
7112 
7113 	if (unlikely(se == pse))
7114 		return;
7115 
7116 	/*
7117 	 * This is possible from callers such as attach_tasks(), in which we
7118 	 * unconditionally check_preempt_curr() after an enqueue (which may have
7119 	 * lead to a throttle).  This both saves work and prevents false
7120 	 * next-buddy nomination below.
7121 	 */
7122 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7123 		return;
7124 
7125 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7126 		set_next_buddy(pse);
7127 		next_buddy_marked = 1;
7128 	}
7129 
7130 	/*
7131 	 * We can come here with TIF_NEED_RESCHED already set from new task
7132 	 * wake up path.
7133 	 *
7134 	 * Note: this also catches the edge-case of curr being in a throttled
7135 	 * group (e.g. via set_curr_task), since update_curr() (in the
7136 	 * enqueue of curr) will have resulted in resched being set.  This
7137 	 * prevents us from potentially nominating it as a false LAST_BUDDY
7138 	 * below.
7139 	 */
7140 	if (test_tsk_need_resched(curr))
7141 		return;
7142 
7143 	/* Idle tasks are by definition preempted by non-idle tasks. */
7144 	if (unlikely(task_has_idle_policy(curr)) &&
7145 	    likely(!task_has_idle_policy(p)))
7146 		goto preempt;
7147 
7148 	/*
7149 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7150 	 * is driven by the tick):
7151 	 */
7152 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7153 		return;
7154 
7155 	find_matching_se(&se, &pse);
7156 	BUG_ON(!pse);
7157 
7158 	cse_is_idle = se_is_idle(se);
7159 	pse_is_idle = se_is_idle(pse);
7160 
7161 	/*
7162 	 * Preempt an idle group in favor of a non-idle group (and don't preempt
7163 	 * in the inverse case).
7164 	 */
7165 	if (cse_is_idle && !pse_is_idle)
7166 		goto preempt;
7167 	if (cse_is_idle != pse_is_idle)
7168 		return;
7169 
7170 	update_curr(cfs_rq_of(se));
7171 	if (wakeup_preempt_entity(se, pse) == 1) {
7172 		/*
7173 		 * Bias pick_next to pick the sched entity that is
7174 		 * triggering this preemption.
7175 		 */
7176 		if (!next_buddy_marked)
7177 			set_next_buddy(pse);
7178 		goto preempt;
7179 	}
7180 
7181 	return;
7182 
7183 preempt:
7184 	resched_curr(rq);
7185 	/*
7186 	 * Only set the backward buddy when the current task is still
7187 	 * on the rq. This can happen when a wakeup gets interleaved
7188 	 * with schedule on the ->pre_schedule() or idle_balance()
7189 	 * point, either of which can * drop the rq lock.
7190 	 *
7191 	 * Also, during early boot the idle thread is in the fair class,
7192 	 * for obvious reasons its a bad idea to schedule back to it.
7193 	 */
7194 	if (unlikely(!se->on_rq || curr == rq->idle))
7195 		return;
7196 
7197 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7198 		set_last_buddy(se);
7199 }
7200 
7201 #ifdef CONFIG_SMP
7202 static struct task_struct *pick_task_fair(struct rq *rq)
7203 {
7204 	struct sched_entity *se;
7205 	struct cfs_rq *cfs_rq;
7206 
7207 again:
7208 	cfs_rq = &rq->cfs;
7209 	if (!cfs_rq->nr_running)
7210 		return NULL;
7211 
7212 	do {
7213 		struct sched_entity *curr = cfs_rq->curr;
7214 
7215 		/* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7216 		if (curr) {
7217 			if (curr->on_rq)
7218 				update_curr(cfs_rq);
7219 			else
7220 				curr = NULL;
7221 
7222 			if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7223 				goto again;
7224 		}
7225 
7226 		se = pick_next_entity(cfs_rq, curr);
7227 		cfs_rq = group_cfs_rq(se);
7228 	} while (cfs_rq);
7229 
7230 	return task_of(se);
7231 }
7232 #endif
7233 
7234 struct task_struct *
7235 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7236 {
7237 	struct cfs_rq *cfs_rq = &rq->cfs;
7238 	struct sched_entity *se;
7239 	struct task_struct *p;
7240 	int new_tasks;
7241 
7242 again:
7243 	if (!sched_fair_runnable(rq))
7244 		goto idle;
7245 
7246 #ifdef CONFIG_FAIR_GROUP_SCHED
7247 	if (!prev || prev->sched_class != &fair_sched_class)
7248 		goto simple;
7249 
7250 	/*
7251 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7252 	 * likely that a next task is from the same cgroup as the current.
7253 	 *
7254 	 * Therefore attempt to avoid putting and setting the entire cgroup
7255 	 * hierarchy, only change the part that actually changes.
7256 	 */
7257 
7258 	do {
7259 		struct sched_entity *curr = cfs_rq->curr;
7260 
7261 		/*
7262 		 * Since we got here without doing put_prev_entity() we also
7263 		 * have to consider cfs_rq->curr. If it is still a runnable
7264 		 * entity, update_curr() will update its vruntime, otherwise
7265 		 * forget we've ever seen it.
7266 		 */
7267 		if (curr) {
7268 			if (curr->on_rq)
7269 				update_curr(cfs_rq);
7270 			else
7271 				curr = NULL;
7272 
7273 			/*
7274 			 * This call to check_cfs_rq_runtime() will do the
7275 			 * throttle and dequeue its entity in the parent(s).
7276 			 * Therefore the nr_running test will indeed
7277 			 * be correct.
7278 			 */
7279 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7280 				cfs_rq = &rq->cfs;
7281 
7282 				if (!cfs_rq->nr_running)
7283 					goto idle;
7284 
7285 				goto simple;
7286 			}
7287 		}
7288 
7289 		se = pick_next_entity(cfs_rq, curr);
7290 		cfs_rq = group_cfs_rq(se);
7291 	} while (cfs_rq);
7292 
7293 	p = task_of(se);
7294 
7295 	/*
7296 	 * Since we haven't yet done put_prev_entity and if the selected task
7297 	 * is a different task than we started out with, try and touch the
7298 	 * least amount of cfs_rqs.
7299 	 */
7300 	if (prev != p) {
7301 		struct sched_entity *pse = &prev->se;
7302 
7303 		while (!(cfs_rq = is_same_group(se, pse))) {
7304 			int se_depth = se->depth;
7305 			int pse_depth = pse->depth;
7306 
7307 			if (se_depth <= pse_depth) {
7308 				put_prev_entity(cfs_rq_of(pse), pse);
7309 				pse = parent_entity(pse);
7310 			}
7311 			if (se_depth >= pse_depth) {
7312 				set_next_entity(cfs_rq_of(se), se);
7313 				se = parent_entity(se);
7314 			}
7315 		}
7316 
7317 		put_prev_entity(cfs_rq, pse);
7318 		set_next_entity(cfs_rq, se);
7319 	}
7320 
7321 	goto done;
7322 simple:
7323 #endif
7324 	if (prev)
7325 		put_prev_task(rq, prev);
7326 
7327 	do {
7328 		se = pick_next_entity(cfs_rq, NULL);
7329 		set_next_entity(cfs_rq, se);
7330 		cfs_rq = group_cfs_rq(se);
7331 	} while (cfs_rq);
7332 
7333 	p = task_of(se);
7334 
7335 done: __maybe_unused;
7336 #ifdef CONFIG_SMP
7337 	/*
7338 	 * Move the next running task to the front of
7339 	 * the list, so our cfs_tasks list becomes MRU
7340 	 * one.
7341 	 */
7342 	list_move(&p->se.group_node, &rq->cfs_tasks);
7343 #endif
7344 
7345 	if (hrtick_enabled_fair(rq))
7346 		hrtick_start_fair(rq, p);
7347 
7348 	update_misfit_status(p, rq);
7349 
7350 	return p;
7351 
7352 idle:
7353 	if (!rf)
7354 		return NULL;
7355 
7356 	new_tasks = newidle_balance(rq, rf);
7357 
7358 	/*
7359 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7360 	 * possible for any higher priority task to appear. In that case we
7361 	 * must re-start the pick_next_entity() loop.
7362 	 */
7363 	if (new_tasks < 0)
7364 		return RETRY_TASK;
7365 
7366 	if (new_tasks > 0)
7367 		goto again;
7368 
7369 	/*
7370 	 * rq is about to be idle, check if we need to update the
7371 	 * lost_idle_time of clock_pelt
7372 	 */
7373 	update_idle_rq_clock_pelt(rq);
7374 
7375 	return NULL;
7376 }
7377 
7378 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7379 {
7380 	return pick_next_task_fair(rq, NULL, NULL);
7381 }
7382 
7383 /*
7384  * Account for a descheduled task:
7385  */
7386 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7387 {
7388 	struct sched_entity *se = &prev->se;
7389 	struct cfs_rq *cfs_rq;
7390 
7391 	for_each_sched_entity(se) {
7392 		cfs_rq = cfs_rq_of(se);
7393 		put_prev_entity(cfs_rq, se);
7394 	}
7395 }
7396 
7397 /*
7398  * sched_yield() is very simple
7399  *
7400  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7401  */
7402 static void yield_task_fair(struct rq *rq)
7403 {
7404 	struct task_struct *curr = rq->curr;
7405 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7406 	struct sched_entity *se = &curr->se;
7407 
7408 	/*
7409 	 * Are we the only task in the tree?
7410 	 */
7411 	if (unlikely(rq->nr_running == 1))
7412 		return;
7413 
7414 	clear_buddies(cfs_rq, se);
7415 
7416 	if (curr->policy != SCHED_BATCH) {
7417 		update_rq_clock(rq);
7418 		/*
7419 		 * Update run-time statistics of the 'current'.
7420 		 */
7421 		update_curr(cfs_rq);
7422 		/*
7423 		 * Tell update_rq_clock() that we've just updated,
7424 		 * so we don't do microscopic update in schedule()
7425 		 * and double the fastpath cost.
7426 		 */
7427 		rq_clock_skip_update(rq);
7428 	}
7429 
7430 	set_skip_buddy(se);
7431 }
7432 
7433 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7434 {
7435 	struct sched_entity *se = &p->se;
7436 
7437 	/* throttled hierarchies are not runnable */
7438 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7439 		return false;
7440 
7441 	/* Tell the scheduler that we'd really like pse to run next. */
7442 	set_next_buddy(se);
7443 
7444 	yield_task_fair(rq);
7445 
7446 	return true;
7447 }
7448 
7449 #ifdef CONFIG_SMP
7450 /**************************************************
7451  * Fair scheduling class load-balancing methods.
7452  *
7453  * BASICS
7454  *
7455  * The purpose of load-balancing is to achieve the same basic fairness the
7456  * per-CPU scheduler provides, namely provide a proportional amount of compute
7457  * time to each task. This is expressed in the following equation:
7458  *
7459  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7460  *
7461  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7462  * W_i,0 is defined as:
7463  *
7464  *   W_i,0 = \Sum_j w_i,j                                             (2)
7465  *
7466  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7467  * is derived from the nice value as per sched_prio_to_weight[].
7468  *
7469  * The weight average is an exponential decay average of the instantaneous
7470  * weight:
7471  *
7472  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7473  *
7474  * C_i is the compute capacity of CPU i, typically it is the
7475  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7476  * can also include other factors [XXX].
7477  *
7478  * To achieve this balance we define a measure of imbalance which follows
7479  * directly from (1):
7480  *
7481  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7482  *
7483  * We them move tasks around to minimize the imbalance. In the continuous
7484  * function space it is obvious this converges, in the discrete case we get
7485  * a few fun cases generally called infeasible weight scenarios.
7486  *
7487  * [XXX expand on:
7488  *     - infeasible weights;
7489  *     - local vs global optima in the discrete case. ]
7490  *
7491  *
7492  * SCHED DOMAINS
7493  *
7494  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7495  * for all i,j solution, we create a tree of CPUs that follows the hardware
7496  * topology where each level pairs two lower groups (or better). This results
7497  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7498  * tree to only the first of the previous level and we decrease the frequency
7499  * of load-balance at each level inv. proportional to the number of CPUs in
7500  * the groups.
7501  *
7502  * This yields:
7503  *
7504  *     log_2 n     1     n
7505  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7506  *     i = 0      2^i   2^i
7507  *                               `- size of each group
7508  *         |         |     `- number of CPUs doing load-balance
7509  *         |         `- freq
7510  *         `- sum over all levels
7511  *
7512  * Coupled with a limit on how many tasks we can migrate every balance pass,
7513  * this makes (5) the runtime complexity of the balancer.
7514  *
7515  * An important property here is that each CPU is still (indirectly) connected
7516  * to every other CPU in at most O(log n) steps:
7517  *
7518  * The adjacency matrix of the resulting graph is given by:
7519  *
7520  *             log_2 n
7521  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7522  *             k = 0
7523  *
7524  * And you'll find that:
7525  *
7526  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7527  *
7528  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7529  * The task movement gives a factor of O(m), giving a convergence complexity
7530  * of:
7531  *
7532  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7533  *
7534  *
7535  * WORK CONSERVING
7536  *
7537  * In order to avoid CPUs going idle while there's still work to do, new idle
7538  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7539  * tree itself instead of relying on other CPUs to bring it work.
7540  *
7541  * This adds some complexity to both (5) and (8) but it reduces the total idle
7542  * time.
7543  *
7544  * [XXX more?]
7545  *
7546  *
7547  * CGROUPS
7548  *
7549  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7550  *
7551  *                                s_k,i
7552  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7553  *                                 S_k
7554  *
7555  * Where
7556  *
7557  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7558  *
7559  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7560  *
7561  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7562  * property.
7563  *
7564  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7565  *      rewrite all of this once again.]
7566  */
7567 
7568 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7569 
7570 enum fbq_type { regular, remote, all };
7571 
7572 /*
7573  * 'group_type' describes the group of CPUs at the moment of load balancing.
7574  *
7575  * The enum is ordered by pulling priority, with the group with lowest priority
7576  * first so the group_type can simply be compared when selecting the busiest
7577  * group. See update_sd_pick_busiest().
7578  */
7579 enum group_type {
7580 	/* The group has spare capacity that can be used to run more tasks.  */
7581 	group_has_spare = 0,
7582 	/*
7583 	 * The group is fully used and the tasks don't compete for more CPU
7584 	 * cycles. Nevertheless, some tasks might wait before running.
7585 	 */
7586 	group_fully_busy,
7587 	/*
7588 	 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7589 	 * and must be migrated to a more powerful CPU.
7590 	 */
7591 	group_misfit_task,
7592 	/*
7593 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7594 	 * and the task should be migrated to it instead of running on the
7595 	 * current CPU.
7596 	 */
7597 	group_asym_packing,
7598 	/*
7599 	 * The tasks' affinity constraints previously prevented the scheduler
7600 	 * from balancing the load across the system.
7601 	 */
7602 	group_imbalanced,
7603 	/*
7604 	 * The CPU is overloaded and can't provide expected CPU cycles to all
7605 	 * tasks.
7606 	 */
7607 	group_overloaded
7608 };
7609 
7610 enum migration_type {
7611 	migrate_load = 0,
7612 	migrate_util,
7613 	migrate_task,
7614 	migrate_misfit
7615 };
7616 
7617 #define LBF_ALL_PINNED	0x01
7618 #define LBF_NEED_BREAK	0x02
7619 #define LBF_DST_PINNED  0x04
7620 #define LBF_SOME_PINNED	0x08
7621 #define LBF_ACTIVE_LB	0x10
7622 
7623 struct lb_env {
7624 	struct sched_domain	*sd;
7625 
7626 	struct rq		*src_rq;
7627 	int			src_cpu;
7628 
7629 	int			dst_cpu;
7630 	struct rq		*dst_rq;
7631 
7632 	struct cpumask		*dst_grpmask;
7633 	int			new_dst_cpu;
7634 	enum cpu_idle_type	idle;
7635 	long			imbalance;
7636 	/* The set of CPUs under consideration for load-balancing */
7637 	struct cpumask		*cpus;
7638 
7639 	unsigned int		flags;
7640 
7641 	unsigned int		loop;
7642 	unsigned int		loop_break;
7643 	unsigned int		loop_max;
7644 
7645 	enum fbq_type		fbq_type;
7646 	enum migration_type	migration_type;
7647 	struct list_head	tasks;
7648 };
7649 
7650 /*
7651  * Is this task likely cache-hot:
7652  */
7653 static int task_hot(struct task_struct *p, struct lb_env *env)
7654 {
7655 	s64 delta;
7656 
7657 	lockdep_assert_rq_held(env->src_rq);
7658 
7659 	if (p->sched_class != &fair_sched_class)
7660 		return 0;
7661 
7662 	if (unlikely(task_has_idle_policy(p)))
7663 		return 0;
7664 
7665 	/* SMT siblings share cache */
7666 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7667 		return 0;
7668 
7669 	/*
7670 	 * Buddy candidates are cache hot:
7671 	 */
7672 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7673 			(&p->se == cfs_rq_of(&p->se)->next ||
7674 			 &p->se == cfs_rq_of(&p->se)->last))
7675 		return 1;
7676 
7677 	if (sysctl_sched_migration_cost == -1)
7678 		return 1;
7679 
7680 	/*
7681 	 * Don't migrate task if the task's cookie does not match
7682 	 * with the destination CPU's core cookie.
7683 	 */
7684 	if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
7685 		return 1;
7686 
7687 	if (sysctl_sched_migration_cost == 0)
7688 		return 0;
7689 
7690 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7691 
7692 	return delta < (s64)sysctl_sched_migration_cost;
7693 }
7694 
7695 #ifdef CONFIG_NUMA_BALANCING
7696 /*
7697  * Returns 1, if task migration degrades locality
7698  * Returns 0, if task migration improves locality i.e migration preferred.
7699  * Returns -1, if task migration is not affected by locality.
7700  */
7701 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7702 {
7703 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7704 	unsigned long src_weight, dst_weight;
7705 	int src_nid, dst_nid, dist;
7706 
7707 	if (!static_branch_likely(&sched_numa_balancing))
7708 		return -1;
7709 
7710 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7711 		return -1;
7712 
7713 	src_nid = cpu_to_node(env->src_cpu);
7714 	dst_nid = cpu_to_node(env->dst_cpu);
7715 
7716 	if (src_nid == dst_nid)
7717 		return -1;
7718 
7719 	/* Migrating away from the preferred node is always bad. */
7720 	if (src_nid == p->numa_preferred_nid) {
7721 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7722 			return 1;
7723 		else
7724 			return -1;
7725 	}
7726 
7727 	/* Encourage migration to the preferred node. */
7728 	if (dst_nid == p->numa_preferred_nid)
7729 		return 0;
7730 
7731 	/* Leaving a core idle is often worse than degrading locality. */
7732 	if (env->idle == CPU_IDLE)
7733 		return -1;
7734 
7735 	dist = node_distance(src_nid, dst_nid);
7736 	if (numa_group) {
7737 		src_weight = group_weight(p, src_nid, dist);
7738 		dst_weight = group_weight(p, dst_nid, dist);
7739 	} else {
7740 		src_weight = task_weight(p, src_nid, dist);
7741 		dst_weight = task_weight(p, dst_nid, dist);
7742 	}
7743 
7744 	return dst_weight < src_weight;
7745 }
7746 
7747 #else
7748 static inline int migrate_degrades_locality(struct task_struct *p,
7749 					     struct lb_env *env)
7750 {
7751 	return -1;
7752 }
7753 #endif
7754 
7755 /*
7756  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7757  */
7758 static
7759 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7760 {
7761 	int tsk_cache_hot;
7762 
7763 	lockdep_assert_rq_held(env->src_rq);
7764 
7765 	/*
7766 	 * We do not migrate tasks that are:
7767 	 * 1) throttled_lb_pair, or
7768 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
7769 	 * 3) running (obviously), or
7770 	 * 4) are cache-hot on their current CPU.
7771 	 */
7772 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7773 		return 0;
7774 
7775 	/* Disregard pcpu kthreads; they are where they need to be. */
7776 	if (kthread_is_per_cpu(p))
7777 		return 0;
7778 
7779 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
7780 		int cpu;
7781 
7782 		schedstat_inc(p->stats.nr_failed_migrations_affine);
7783 
7784 		env->flags |= LBF_SOME_PINNED;
7785 
7786 		/*
7787 		 * Remember if this task can be migrated to any other CPU in
7788 		 * our sched_group. We may want to revisit it if we couldn't
7789 		 * meet load balance goals by pulling other tasks on src_cpu.
7790 		 *
7791 		 * Avoid computing new_dst_cpu
7792 		 * - for NEWLY_IDLE
7793 		 * - if we have already computed one in current iteration
7794 		 * - if it's an active balance
7795 		 */
7796 		if (env->idle == CPU_NEWLY_IDLE ||
7797 		    env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
7798 			return 0;
7799 
7800 		/* Prevent to re-select dst_cpu via env's CPUs: */
7801 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7802 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
7803 				env->flags |= LBF_DST_PINNED;
7804 				env->new_dst_cpu = cpu;
7805 				break;
7806 			}
7807 		}
7808 
7809 		return 0;
7810 	}
7811 
7812 	/* Record that we found at least one task that could run on dst_cpu */
7813 	env->flags &= ~LBF_ALL_PINNED;
7814 
7815 	if (task_running(env->src_rq, p)) {
7816 		schedstat_inc(p->stats.nr_failed_migrations_running);
7817 		return 0;
7818 	}
7819 
7820 	/*
7821 	 * Aggressive migration if:
7822 	 * 1) active balance
7823 	 * 2) destination numa is preferred
7824 	 * 3) task is cache cold, or
7825 	 * 4) too many balance attempts have failed.
7826 	 */
7827 	if (env->flags & LBF_ACTIVE_LB)
7828 		return 1;
7829 
7830 	tsk_cache_hot = migrate_degrades_locality(p, env);
7831 	if (tsk_cache_hot == -1)
7832 		tsk_cache_hot = task_hot(p, env);
7833 
7834 	if (tsk_cache_hot <= 0 ||
7835 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7836 		if (tsk_cache_hot == 1) {
7837 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7838 			schedstat_inc(p->stats.nr_forced_migrations);
7839 		}
7840 		return 1;
7841 	}
7842 
7843 	schedstat_inc(p->stats.nr_failed_migrations_hot);
7844 	return 0;
7845 }
7846 
7847 /*
7848  * detach_task() -- detach the task for the migration specified in env
7849  */
7850 static void detach_task(struct task_struct *p, struct lb_env *env)
7851 {
7852 	lockdep_assert_rq_held(env->src_rq);
7853 
7854 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7855 	set_task_cpu(p, env->dst_cpu);
7856 }
7857 
7858 /*
7859  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7860  * part of active balancing operations within "domain".
7861  *
7862  * Returns a task if successful and NULL otherwise.
7863  */
7864 static struct task_struct *detach_one_task(struct lb_env *env)
7865 {
7866 	struct task_struct *p;
7867 
7868 	lockdep_assert_rq_held(env->src_rq);
7869 
7870 	list_for_each_entry_reverse(p,
7871 			&env->src_rq->cfs_tasks, se.group_node) {
7872 		if (!can_migrate_task(p, env))
7873 			continue;
7874 
7875 		detach_task(p, env);
7876 
7877 		/*
7878 		 * Right now, this is only the second place where
7879 		 * lb_gained[env->idle] is updated (other is detach_tasks)
7880 		 * so we can safely collect stats here rather than
7881 		 * inside detach_tasks().
7882 		 */
7883 		schedstat_inc(env->sd->lb_gained[env->idle]);
7884 		return p;
7885 	}
7886 	return NULL;
7887 }
7888 
7889 static const unsigned int sched_nr_migrate_break = 32;
7890 
7891 /*
7892  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
7893  * busiest_rq, as part of a balancing operation within domain "sd".
7894  *
7895  * Returns number of detached tasks if successful and 0 otherwise.
7896  */
7897 static int detach_tasks(struct lb_env *env)
7898 {
7899 	struct list_head *tasks = &env->src_rq->cfs_tasks;
7900 	unsigned long util, load;
7901 	struct task_struct *p;
7902 	int detached = 0;
7903 
7904 	lockdep_assert_rq_held(env->src_rq);
7905 
7906 	/*
7907 	 * Source run queue has been emptied by another CPU, clear
7908 	 * LBF_ALL_PINNED flag as we will not test any task.
7909 	 */
7910 	if (env->src_rq->nr_running <= 1) {
7911 		env->flags &= ~LBF_ALL_PINNED;
7912 		return 0;
7913 	}
7914 
7915 	if (env->imbalance <= 0)
7916 		return 0;
7917 
7918 	while (!list_empty(tasks)) {
7919 		/*
7920 		 * We don't want to steal all, otherwise we may be treated likewise,
7921 		 * which could at worst lead to a livelock crash.
7922 		 */
7923 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7924 			break;
7925 
7926 		p = list_last_entry(tasks, struct task_struct, se.group_node);
7927 
7928 		env->loop++;
7929 		/* We've more or less seen every task there is, call it quits */
7930 		if (env->loop > env->loop_max)
7931 			break;
7932 
7933 		/* take a breather every nr_migrate tasks */
7934 		if (env->loop > env->loop_break) {
7935 			env->loop_break += sched_nr_migrate_break;
7936 			env->flags |= LBF_NEED_BREAK;
7937 			break;
7938 		}
7939 
7940 		if (!can_migrate_task(p, env))
7941 			goto next;
7942 
7943 		switch (env->migration_type) {
7944 		case migrate_load:
7945 			/*
7946 			 * Depending of the number of CPUs and tasks and the
7947 			 * cgroup hierarchy, task_h_load() can return a null
7948 			 * value. Make sure that env->imbalance decreases
7949 			 * otherwise detach_tasks() will stop only after
7950 			 * detaching up to loop_max tasks.
7951 			 */
7952 			load = max_t(unsigned long, task_h_load(p), 1);
7953 
7954 			if (sched_feat(LB_MIN) &&
7955 			    load < 16 && !env->sd->nr_balance_failed)
7956 				goto next;
7957 
7958 			/*
7959 			 * Make sure that we don't migrate too much load.
7960 			 * Nevertheless, let relax the constraint if
7961 			 * scheduler fails to find a good waiting task to
7962 			 * migrate.
7963 			 */
7964 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
7965 				goto next;
7966 
7967 			env->imbalance -= load;
7968 			break;
7969 
7970 		case migrate_util:
7971 			util = task_util_est(p);
7972 
7973 			if (util > env->imbalance)
7974 				goto next;
7975 
7976 			env->imbalance -= util;
7977 			break;
7978 
7979 		case migrate_task:
7980 			env->imbalance--;
7981 			break;
7982 
7983 		case migrate_misfit:
7984 			/* This is not a misfit task */
7985 			if (task_fits_capacity(p, capacity_of(env->src_cpu)))
7986 				goto next;
7987 
7988 			env->imbalance = 0;
7989 			break;
7990 		}
7991 
7992 		detach_task(p, env);
7993 		list_add(&p->se.group_node, &env->tasks);
7994 
7995 		detached++;
7996 
7997 #ifdef CONFIG_PREEMPTION
7998 		/*
7999 		 * NEWIDLE balancing is a source of latency, so preemptible
8000 		 * kernels will stop after the first task is detached to minimize
8001 		 * the critical section.
8002 		 */
8003 		if (env->idle == CPU_NEWLY_IDLE)
8004 			break;
8005 #endif
8006 
8007 		/*
8008 		 * We only want to steal up to the prescribed amount of
8009 		 * load/util/tasks.
8010 		 */
8011 		if (env->imbalance <= 0)
8012 			break;
8013 
8014 		continue;
8015 next:
8016 		list_move(&p->se.group_node, tasks);
8017 	}
8018 
8019 	/*
8020 	 * Right now, this is one of only two places we collect this stat
8021 	 * so we can safely collect detach_one_task() stats here rather
8022 	 * than inside detach_one_task().
8023 	 */
8024 	schedstat_add(env->sd->lb_gained[env->idle], detached);
8025 
8026 	return detached;
8027 }
8028 
8029 /*
8030  * attach_task() -- attach the task detached by detach_task() to its new rq.
8031  */
8032 static void attach_task(struct rq *rq, struct task_struct *p)
8033 {
8034 	lockdep_assert_rq_held(rq);
8035 
8036 	BUG_ON(task_rq(p) != rq);
8037 	activate_task(rq, p, ENQUEUE_NOCLOCK);
8038 	check_preempt_curr(rq, p, 0);
8039 }
8040 
8041 /*
8042  * attach_one_task() -- attaches the task returned from detach_one_task() to
8043  * its new rq.
8044  */
8045 static void attach_one_task(struct rq *rq, struct task_struct *p)
8046 {
8047 	struct rq_flags rf;
8048 
8049 	rq_lock(rq, &rf);
8050 	update_rq_clock(rq);
8051 	attach_task(rq, p);
8052 	rq_unlock(rq, &rf);
8053 }
8054 
8055 /*
8056  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8057  * new rq.
8058  */
8059 static void attach_tasks(struct lb_env *env)
8060 {
8061 	struct list_head *tasks = &env->tasks;
8062 	struct task_struct *p;
8063 	struct rq_flags rf;
8064 
8065 	rq_lock(env->dst_rq, &rf);
8066 	update_rq_clock(env->dst_rq);
8067 
8068 	while (!list_empty(tasks)) {
8069 		p = list_first_entry(tasks, struct task_struct, se.group_node);
8070 		list_del_init(&p->se.group_node);
8071 
8072 		attach_task(env->dst_rq, p);
8073 	}
8074 
8075 	rq_unlock(env->dst_rq, &rf);
8076 }
8077 
8078 #ifdef CONFIG_NO_HZ_COMMON
8079 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8080 {
8081 	if (cfs_rq->avg.load_avg)
8082 		return true;
8083 
8084 	if (cfs_rq->avg.util_avg)
8085 		return true;
8086 
8087 	return false;
8088 }
8089 
8090 static inline bool others_have_blocked(struct rq *rq)
8091 {
8092 	if (READ_ONCE(rq->avg_rt.util_avg))
8093 		return true;
8094 
8095 	if (READ_ONCE(rq->avg_dl.util_avg))
8096 		return true;
8097 
8098 	if (thermal_load_avg(rq))
8099 		return true;
8100 
8101 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8102 	if (READ_ONCE(rq->avg_irq.util_avg))
8103 		return true;
8104 #endif
8105 
8106 	return false;
8107 }
8108 
8109 static inline void update_blocked_load_tick(struct rq *rq)
8110 {
8111 	WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8112 }
8113 
8114 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8115 {
8116 	if (!has_blocked)
8117 		rq->has_blocked_load = 0;
8118 }
8119 #else
8120 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
8121 static inline bool others_have_blocked(struct rq *rq) { return false; }
8122 static inline void update_blocked_load_tick(struct rq *rq) {}
8123 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8124 #endif
8125 
8126 static bool __update_blocked_others(struct rq *rq, bool *done)
8127 {
8128 	const struct sched_class *curr_class;
8129 	u64 now = rq_clock_pelt(rq);
8130 	unsigned long thermal_pressure;
8131 	bool decayed;
8132 
8133 	/*
8134 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8135 	 * DL and IRQ signals have been updated before updating CFS.
8136 	 */
8137 	curr_class = rq->curr->sched_class;
8138 
8139 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8140 
8141 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8142 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8143 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8144 		  update_irq_load_avg(rq, 0);
8145 
8146 	if (others_have_blocked(rq))
8147 		*done = false;
8148 
8149 	return decayed;
8150 }
8151 
8152 #ifdef CONFIG_FAIR_GROUP_SCHED
8153 
8154 static bool __update_blocked_fair(struct rq *rq, bool *done)
8155 {
8156 	struct cfs_rq *cfs_rq, *pos;
8157 	bool decayed = false;
8158 	int cpu = cpu_of(rq);
8159 
8160 	/*
8161 	 * Iterates the task_group tree in a bottom up fashion, see
8162 	 * list_add_leaf_cfs_rq() for details.
8163 	 */
8164 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8165 		struct sched_entity *se;
8166 
8167 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8168 			update_tg_load_avg(cfs_rq);
8169 
8170 			if (cfs_rq == &rq->cfs)
8171 				decayed = true;
8172 		}
8173 
8174 		/* Propagate pending load changes to the parent, if any: */
8175 		se = cfs_rq->tg->se[cpu];
8176 		if (se && !skip_blocked_update(se))
8177 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8178 
8179 		/*
8180 		 * There can be a lot of idle CPU cgroups.  Don't let fully
8181 		 * decayed cfs_rqs linger on the list.
8182 		 */
8183 		if (cfs_rq_is_decayed(cfs_rq))
8184 			list_del_leaf_cfs_rq(cfs_rq);
8185 
8186 		/* Don't need periodic decay once load/util_avg are null */
8187 		if (cfs_rq_has_blocked(cfs_rq))
8188 			*done = false;
8189 	}
8190 
8191 	return decayed;
8192 }
8193 
8194 /*
8195  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8196  * This needs to be done in a top-down fashion because the load of a child
8197  * group is a fraction of its parents load.
8198  */
8199 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8200 {
8201 	struct rq *rq = rq_of(cfs_rq);
8202 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8203 	unsigned long now = jiffies;
8204 	unsigned long load;
8205 
8206 	if (cfs_rq->last_h_load_update == now)
8207 		return;
8208 
8209 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
8210 	for_each_sched_entity(se) {
8211 		cfs_rq = cfs_rq_of(se);
8212 		WRITE_ONCE(cfs_rq->h_load_next, se);
8213 		if (cfs_rq->last_h_load_update == now)
8214 			break;
8215 	}
8216 
8217 	if (!se) {
8218 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8219 		cfs_rq->last_h_load_update = now;
8220 	}
8221 
8222 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8223 		load = cfs_rq->h_load;
8224 		load = div64_ul(load * se->avg.load_avg,
8225 			cfs_rq_load_avg(cfs_rq) + 1);
8226 		cfs_rq = group_cfs_rq(se);
8227 		cfs_rq->h_load = load;
8228 		cfs_rq->last_h_load_update = now;
8229 	}
8230 }
8231 
8232 static unsigned long task_h_load(struct task_struct *p)
8233 {
8234 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
8235 
8236 	update_cfs_rq_h_load(cfs_rq);
8237 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8238 			cfs_rq_load_avg(cfs_rq) + 1);
8239 }
8240 #else
8241 static bool __update_blocked_fair(struct rq *rq, bool *done)
8242 {
8243 	struct cfs_rq *cfs_rq = &rq->cfs;
8244 	bool decayed;
8245 
8246 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8247 	if (cfs_rq_has_blocked(cfs_rq))
8248 		*done = false;
8249 
8250 	return decayed;
8251 }
8252 
8253 static unsigned long task_h_load(struct task_struct *p)
8254 {
8255 	return p->se.avg.load_avg;
8256 }
8257 #endif
8258 
8259 static void update_blocked_averages(int cpu)
8260 {
8261 	bool decayed = false, done = true;
8262 	struct rq *rq = cpu_rq(cpu);
8263 	struct rq_flags rf;
8264 
8265 	rq_lock_irqsave(rq, &rf);
8266 	update_blocked_load_tick(rq);
8267 	update_rq_clock(rq);
8268 
8269 	decayed |= __update_blocked_others(rq, &done);
8270 	decayed |= __update_blocked_fair(rq, &done);
8271 
8272 	update_blocked_load_status(rq, !done);
8273 	if (decayed)
8274 		cpufreq_update_util(rq, 0);
8275 	rq_unlock_irqrestore(rq, &rf);
8276 }
8277 
8278 /********** Helpers for find_busiest_group ************************/
8279 
8280 /*
8281  * sg_lb_stats - stats of a sched_group required for load_balancing
8282  */
8283 struct sg_lb_stats {
8284 	unsigned long avg_load; /*Avg load across the CPUs of the group */
8285 	unsigned long group_load; /* Total load over the CPUs of the group */
8286 	unsigned long group_capacity;
8287 	unsigned long group_util; /* Total utilization over the CPUs of the group */
8288 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8289 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
8290 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8291 	unsigned int idle_cpus;
8292 	unsigned int group_weight;
8293 	enum group_type group_type;
8294 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8295 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8296 #ifdef CONFIG_NUMA_BALANCING
8297 	unsigned int nr_numa_running;
8298 	unsigned int nr_preferred_running;
8299 #endif
8300 };
8301 
8302 /*
8303  * sd_lb_stats - Structure to store the statistics of a sched_domain
8304  *		 during load balancing.
8305  */
8306 struct sd_lb_stats {
8307 	struct sched_group *busiest;	/* Busiest group in this sd */
8308 	struct sched_group *local;	/* Local group in this sd */
8309 	unsigned long total_load;	/* Total load of all groups in sd */
8310 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
8311 	unsigned long avg_load;	/* Average load across all groups in sd */
8312 	unsigned int prefer_sibling; /* tasks should go to sibling first */
8313 
8314 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8315 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
8316 };
8317 
8318 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8319 {
8320 	/*
8321 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8322 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8323 	 * We must however set busiest_stat::group_type and
8324 	 * busiest_stat::idle_cpus to the worst busiest group because
8325 	 * update_sd_pick_busiest() reads these before assignment.
8326 	 */
8327 	*sds = (struct sd_lb_stats){
8328 		.busiest = NULL,
8329 		.local = NULL,
8330 		.total_load = 0UL,
8331 		.total_capacity = 0UL,
8332 		.busiest_stat = {
8333 			.idle_cpus = UINT_MAX,
8334 			.group_type = group_has_spare,
8335 		},
8336 	};
8337 }
8338 
8339 static unsigned long scale_rt_capacity(int cpu)
8340 {
8341 	struct rq *rq = cpu_rq(cpu);
8342 	unsigned long max = arch_scale_cpu_capacity(cpu);
8343 	unsigned long used, free;
8344 	unsigned long irq;
8345 
8346 	irq = cpu_util_irq(rq);
8347 
8348 	if (unlikely(irq >= max))
8349 		return 1;
8350 
8351 	/*
8352 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8353 	 * (running and not running) with weights 0 and 1024 respectively.
8354 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
8355 	 * average uses the actual delta max capacity(load).
8356 	 */
8357 	used = READ_ONCE(rq->avg_rt.util_avg);
8358 	used += READ_ONCE(rq->avg_dl.util_avg);
8359 	used += thermal_load_avg(rq);
8360 
8361 	if (unlikely(used >= max))
8362 		return 1;
8363 
8364 	free = max - used;
8365 
8366 	return scale_irq_capacity(free, irq, max);
8367 }
8368 
8369 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8370 {
8371 	unsigned long capacity = scale_rt_capacity(cpu);
8372 	struct sched_group *sdg = sd->groups;
8373 
8374 	cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8375 
8376 	if (!capacity)
8377 		capacity = 1;
8378 
8379 	cpu_rq(cpu)->cpu_capacity = capacity;
8380 	trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8381 
8382 	sdg->sgc->capacity = capacity;
8383 	sdg->sgc->min_capacity = capacity;
8384 	sdg->sgc->max_capacity = capacity;
8385 }
8386 
8387 void update_group_capacity(struct sched_domain *sd, int cpu)
8388 {
8389 	struct sched_domain *child = sd->child;
8390 	struct sched_group *group, *sdg = sd->groups;
8391 	unsigned long capacity, min_capacity, max_capacity;
8392 	unsigned long interval;
8393 
8394 	interval = msecs_to_jiffies(sd->balance_interval);
8395 	interval = clamp(interval, 1UL, max_load_balance_interval);
8396 	sdg->sgc->next_update = jiffies + interval;
8397 
8398 	if (!child) {
8399 		update_cpu_capacity(sd, cpu);
8400 		return;
8401 	}
8402 
8403 	capacity = 0;
8404 	min_capacity = ULONG_MAX;
8405 	max_capacity = 0;
8406 
8407 	if (child->flags & SD_OVERLAP) {
8408 		/*
8409 		 * SD_OVERLAP domains cannot assume that child groups
8410 		 * span the current group.
8411 		 */
8412 
8413 		for_each_cpu(cpu, sched_group_span(sdg)) {
8414 			unsigned long cpu_cap = capacity_of(cpu);
8415 
8416 			capacity += cpu_cap;
8417 			min_capacity = min(cpu_cap, min_capacity);
8418 			max_capacity = max(cpu_cap, max_capacity);
8419 		}
8420 	} else  {
8421 		/*
8422 		 * !SD_OVERLAP domains can assume that child groups
8423 		 * span the current group.
8424 		 */
8425 
8426 		group = child->groups;
8427 		do {
8428 			struct sched_group_capacity *sgc = group->sgc;
8429 
8430 			capacity += sgc->capacity;
8431 			min_capacity = min(sgc->min_capacity, min_capacity);
8432 			max_capacity = max(sgc->max_capacity, max_capacity);
8433 			group = group->next;
8434 		} while (group != child->groups);
8435 	}
8436 
8437 	sdg->sgc->capacity = capacity;
8438 	sdg->sgc->min_capacity = min_capacity;
8439 	sdg->sgc->max_capacity = max_capacity;
8440 }
8441 
8442 /*
8443  * Check whether the capacity of the rq has been noticeably reduced by side
8444  * activity. The imbalance_pct is used for the threshold.
8445  * Return true is the capacity is reduced
8446  */
8447 static inline int
8448 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8449 {
8450 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8451 				(rq->cpu_capacity_orig * 100));
8452 }
8453 
8454 /*
8455  * Check whether a rq has a misfit task and if it looks like we can actually
8456  * help that task: we can migrate the task to a CPU of higher capacity, or
8457  * the task's current CPU is heavily pressured.
8458  */
8459 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8460 {
8461 	return rq->misfit_task_load &&
8462 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8463 		 check_cpu_capacity(rq, sd));
8464 }
8465 
8466 /*
8467  * Group imbalance indicates (and tries to solve) the problem where balancing
8468  * groups is inadequate due to ->cpus_ptr constraints.
8469  *
8470  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8471  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8472  * Something like:
8473  *
8474  *	{ 0 1 2 3 } { 4 5 6 7 }
8475  *	        *     * * *
8476  *
8477  * If we were to balance group-wise we'd place two tasks in the first group and
8478  * two tasks in the second group. Clearly this is undesired as it will overload
8479  * cpu 3 and leave one of the CPUs in the second group unused.
8480  *
8481  * The current solution to this issue is detecting the skew in the first group
8482  * by noticing the lower domain failed to reach balance and had difficulty
8483  * moving tasks due to affinity constraints.
8484  *
8485  * When this is so detected; this group becomes a candidate for busiest; see
8486  * update_sd_pick_busiest(). And calculate_imbalance() and
8487  * find_busiest_group() avoid some of the usual balance conditions to allow it
8488  * to create an effective group imbalance.
8489  *
8490  * This is a somewhat tricky proposition since the next run might not find the
8491  * group imbalance and decide the groups need to be balanced again. A most
8492  * subtle and fragile situation.
8493  */
8494 
8495 static inline int sg_imbalanced(struct sched_group *group)
8496 {
8497 	return group->sgc->imbalance;
8498 }
8499 
8500 /*
8501  * group_has_capacity returns true if the group has spare capacity that could
8502  * be used by some tasks.
8503  * We consider that a group has spare capacity if the  * number of task is
8504  * smaller than the number of CPUs or if the utilization is lower than the
8505  * available capacity for CFS tasks.
8506  * For the latter, we use a threshold to stabilize the state, to take into
8507  * account the variance of the tasks' load and to return true if the available
8508  * capacity in meaningful for the load balancer.
8509  * As an example, an available capacity of 1% can appear but it doesn't make
8510  * any benefit for the load balance.
8511  */
8512 static inline bool
8513 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8514 {
8515 	if (sgs->sum_nr_running < sgs->group_weight)
8516 		return true;
8517 
8518 	if ((sgs->group_capacity * imbalance_pct) <
8519 			(sgs->group_runnable * 100))
8520 		return false;
8521 
8522 	if ((sgs->group_capacity * 100) >
8523 			(sgs->group_util * imbalance_pct))
8524 		return true;
8525 
8526 	return false;
8527 }
8528 
8529 /*
8530  *  group_is_overloaded returns true if the group has more tasks than it can
8531  *  handle.
8532  *  group_is_overloaded is not equals to !group_has_capacity because a group
8533  *  with the exact right number of tasks, has no more spare capacity but is not
8534  *  overloaded so both group_has_capacity and group_is_overloaded return
8535  *  false.
8536  */
8537 static inline bool
8538 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8539 {
8540 	if (sgs->sum_nr_running <= sgs->group_weight)
8541 		return false;
8542 
8543 	if ((sgs->group_capacity * 100) <
8544 			(sgs->group_util * imbalance_pct))
8545 		return true;
8546 
8547 	if ((sgs->group_capacity * imbalance_pct) <
8548 			(sgs->group_runnable * 100))
8549 		return true;
8550 
8551 	return false;
8552 }
8553 
8554 static inline enum
8555 group_type group_classify(unsigned int imbalance_pct,
8556 			  struct sched_group *group,
8557 			  struct sg_lb_stats *sgs)
8558 {
8559 	if (group_is_overloaded(imbalance_pct, sgs))
8560 		return group_overloaded;
8561 
8562 	if (sg_imbalanced(group))
8563 		return group_imbalanced;
8564 
8565 	if (sgs->group_asym_packing)
8566 		return group_asym_packing;
8567 
8568 	if (sgs->group_misfit_task_load)
8569 		return group_misfit_task;
8570 
8571 	if (!group_has_capacity(imbalance_pct, sgs))
8572 		return group_fully_busy;
8573 
8574 	return group_has_spare;
8575 }
8576 
8577 /**
8578  * asym_smt_can_pull_tasks - Check whether the load balancing CPU can pull tasks
8579  * @dst_cpu:	Destination CPU of the load balancing
8580  * @sds:	Load-balancing data with statistics of the local group
8581  * @sgs:	Load-balancing statistics of the candidate busiest group
8582  * @sg:		The candidate busiest group
8583  *
8584  * Check the state of the SMT siblings of both @sds::local and @sg and decide
8585  * if @dst_cpu can pull tasks.
8586  *
8587  * If @dst_cpu does not have SMT siblings, it can pull tasks if two or more of
8588  * the SMT siblings of @sg are busy. If only one CPU in @sg is busy, pull tasks
8589  * only if @dst_cpu has higher priority.
8590  *
8591  * If both @dst_cpu and @sg have SMT siblings, and @sg has exactly one more
8592  * busy CPU than @sds::local, let @dst_cpu pull tasks if it has higher priority.
8593  * Bigger imbalances in the number of busy CPUs will be dealt with in
8594  * update_sd_pick_busiest().
8595  *
8596  * If @sg does not have SMT siblings, only pull tasks if all of the SMT siblings
8597  * of @dst_cpu are idle and @sg has lower priority.
8598  *
8599  * Return: true if @dst_cpu can pull tasks, false otherwise.
8600  */
8601 static bool asym_smt_can_pull_tasks(int dst_cpu, struct sd_lb_stats *sds,
8602 				    struct sg_lb_stats *sgs,
8603 				    struct sched_group *sg)
8604 {
8605 #ifdef CONFIG_SCHED_SMT
8606 	bool local_is_smt, sg_is_smt;
8607 	int sg_busy_cpus;
8608 
8609 	local_is_smt = sds->local->flags & SD_SHARE_CPUCAPACITY;
8610 	sg_is_smt = sg->flags & SD_SHARE_CPUCAPACITY;
8611 
8612 	sg_busy_cpus = sgs->group_weight - sgs->idle_cpus;
8613 
8614 	if (!local_is_smt) {
8615 		/*
8616 		 * If we are here, @dst_cpu is idle and does not have SMT
8617 		 * siblings. Pull tasks if candidate group has two or more
8618 		 * busy CPUs.
8619 		 */
8620 		if (sg_busy_cpus >= 2) /* implies sg_is_smt */
8621 			return true;
8622 
8623 		/*
8624 		 * @dst_cpu does not have SMT siblings. @sg may have SMT
8625 		 * siblings and only one is busy. In such case, @dst_cpu
8626 		 * can help if it has higher priority and is idle (i.e.,
8627 		 * it has no running tasks).
8628 		 */
8629 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8630 	}
8631 
8632 	/* @dst_cpu has SMT siblings. */
8633 
8634 	if (sg_is_smt) {
8635 		int local_busy_cpus = sds->local->group_weight -
8636 				      sds->local_stat.idle_cpus;
8637 		int busy_cpus_delta = sg_busy_cpus - local_busy_cpus;
8638 
8639 		if (busy_cpus_delta == 1)
8640 			return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8641 
8642 		return false;
8643 	}
8644 
8645 	/*
8646 	 * @sg does not have SMT siblings. Ensure that @sds::local does not end
8647 	 * up with more than one busy SMT sibling and only pull tasks if there
8648 	 * are not busy CPUs (i.e., no CPU has running tasks).
8649 	 */
8650 	if (!sds->local_stat.sum_nr_running)
8651 		return sched_asym_prefer(dst_cpu, sg->asym_prefer_cpu);
8652 
8653 	return false;
8654 #else
8655 	/* Always return false so that callers deal with non-SMT cases. */
8656 	return false;
8657 #endif
8658 }
8659 
8660 static inline bool
8661 sched_asym(struct lb_env *env, struct sd_lb_stats *sds,  struct sg_lb_stats *sgs,
8662 	   struct sched_group *group)
8663 {
8664 	/* Only do SMT checks if either local or candidate have SMT siblings */
8665 	if ((sds->local->flags & SD_SHARE_CPUCAPACITY) ||
8666 	    (group->flags & SD_SHARE_CPUCAPACITY))
8667 		return asym_smt_can_pull_tasks(env->dst_cpu, sds, sgs, group);
8668 
8669 	return sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu);
8670 }
8671 
8672 /**
8673  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8674  * @env: The load balancing environment.
8675  * @sds: Load-balancing data with statistics of the local group.
8676  * @group: sched_group whose statistics are to be updated.
8677  * @sgs: variable to hold the statistics for this group.
8678  * @sg_status: Holds flag indicating the status of the sched_group
8679  */
8680 static inline void update_sg_lb_stats(struct lb_env *env,
8681 				      struct sd_lb_stats *sds,
8682 				      struct sched_group *group,
8683 				      struct sg_lb_stats *sgs,
8684 				      int *sg_status)
8685 {
8686 	int i, nr_running, local_group;
8687 
8688 	memset(sgs, 0, sizeof(*sgs));
8689 
8690 	local_group = group == sds->local;
8691 
8692 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8693 		struct rq *rq = cpu_rq(i);
8694 
8695 		sgs->group_load += cpu_load(rq);
8696 		sgs->group_util += cpu_util_cfs(i);
8697 		sgs->group_runnable += cpu_runnable(rq);
8698 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8699 
8700 		nr_running = rq->nr_running;
8701 		sgs->sum_nr_running += nr_running;
8702 
8703 		if (nr_running > 1)
8704 			*sg_status |= SG_OVERLOAD;
8705 
8706 		if (cpu_overutilized(i))
8707 			*sg_status |= SG_OVERUTILIZED;
8708 
8709 #ifdef CONFIG_NUMA_BALANCING
8710 		sgs->nr_numa_running += rq->nr_numa_running;
8711 		sgs->nr_preferred_running += rq->nr_preferred_running;
8712 #endif
8713 		/*
8714 		 * No need to call idle_cpu() if nr_running is not 0
8715 		 */
8716 		if (!nr_running && idle_cpu(i)) {
8717 			sgs->idle_cpus++;
8718 			/* Idle cpu can't have misfit task */
8719 			continue;
8720 		}
8721 
8722 		if (local_group)
8723 			continue;
8724 
8725 		/* Check for a misfit task on the cpu */
8726 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8727 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
8728 			sgs->group_misfit_task_load = rq->misfit_task_load;
8729 			*sg_status |= SG_OVERLOAD;
8730 		}
8731 	}
8732 
8733 	sgs->group_capacity = group->sgc->capacity;
8734 
8735 	sgs->group_weight = group->group_weight;
8736 
8737 	/* Check if dst CPU is idle and preferred to this group */
8738 	if (!local_group && env->sd->flags & SD_ASYM_PACKING &&
8739 	    env->idle != CPU_NOT_IDLE && sgs->sum_h_nr_running &&
8740 	    sched_asym(env, sds, sgs, group)) {
8741 		sgs->group_asym_packing = 1;
8742 	}
8743 
8744 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
8745 
8746 	/* Computing avg_load makes sense only when group is overloaded */
8747 	if (sgs->group_type == group_overloaded)
8748 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
8749 				sgs->group_capacity;
8750 }
8751 
8752 /**
8753  * update_sd_pick_busiest - return 1 on busiest group
8754  * @env: The load balancing environment.
8755  * @sds: sched_domain statistics
8756  * @sg: sched_group candidate to be checked for being the busiest
8757  * @sgs: sched_group statistics
8758  *
8759  * Determine if @sg is a busier group than the previously selected
8760  * busiest group.
8761  *
8762  * Return: %true if @sg is a busier group than the previously selected
8763  * busiest group. %false otherwise.
8764  */
8765 static bool update_sd_pick_busiest(struct lb_env *env,
8766 				   struct sd_lb_stats *sds,
8767 				   struct sched_group *sg,
8768 				   struct sg_lb_stats *sgs)
8769 {
8770 	struct sg_lb_stats *busiest = &sds->busiest_stat;
8771 
8772 	/* Make sure that there is at least one task to pull */
8773 	if (!sgs->sum_h_nr_running)
8774 		return false;
8775 
8776 	/*
8777 	 * Don't try to pull misfit tasks we can't help.
8778 	 * We can use max_capacity here as reduction in capacity on some
8779 	 * CPUs in the group should either be possible to resolve
8780 	 * internally or be covered by avg_load imbalance (eventually).
8781 	 */
8782 	if (sgs->group_type == group_misfit_task &&
8783 	    (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
8784 	     sds->local_stat.group_type != group_has_spare))
8785 		return false;
8786 
8787 	if (sgs->group_type > busiest->group_type)
8788 		return true;
8789 
8790 	if (sgs->group_type < busiest->group_type)
8791 		return false;
8792 
8793 	/*
8794 	 * The candidate and the current busiest group are the same type of
8795 	 * group. Let check which one is the busiest according to the type.
8796 	 */
8797 
8798 	switch (sgs->group_type) {
8799 	case group_overloaded:
8800 		/* Select the overloaded group with highest avg_load. */
8801 		if (sgs->avg_load <= busiest->avg_load)
8802 			return false;
8803 		break;
8804 
8805 	case group_imbalanced:
8806 		/*
8807 		 * Select the 1st imbalanced group as we don't have any way to
8808 		 * choose one more than another.
8809 		 */
8810 		return false;
8811 
8812 	case group_asym_packing:
8813 		/* Prefer to move from lowest priority CPU's work */
8814 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
8815 			return false;
8816 		break;
8817 
8818 	case group_misfit_task:
8819 		/*
8820 		 * If we have more than one misfit sg go with the biggest
8821 		 * misfit.
8822 		 */
8823 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
8824 			return false;
8825 		break;
8826 
8827 	case group_fully_busy:
8828 		/*
8829 		 * Select the fully busy group with highest avg_load. In
8830 		 * theory, there is no need to pull task from such kind of
8831 		 * group because tasks have all compute capacity that they need
8832 		 * but we can still improve the overall throughput by reducing
8833 		 * contention when accessing shared HW resources.
8834 		 *
8835 		 * XXX for now avg_load is not computed and always 0 so we
8836 		 * select the 1st one.
8837 		 */
8838 		if (sgs->avg_load <= busiest->avg_load)
8839 			return false;
8840 		break;
8841 
8842 	case group_has_spare:
8843 		/*
8844 		 * Select not overloaded group with lowest number of idle cpus
8845 		 * and highest number of running tasks. We could also compare
8846 		 * the spare capacity which is more stable but it can end up
8847 		 * that the group has less spare capacity but finally more idle
8848 		 * CPUs which means less opportunity to pull tasks.
8849 		 */
8850 		if (sgs->idle_cpus > busiest->idle_cpus)
8851 			return false;
8852 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
8853 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
8854 			return false;
8855 
8856 		break;
8857 	}
8858 
8859 	/*
8860 	 * Candidate sg has no more than one task per CPU and has higher
8861 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
8862 	 * throughput. Maximize throughput, power/energy consequences are not
8863 	 * considered.
8864 	 */
8865 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
8866 	    (sgs->group_type <= group_fully_busy) &&
8867 	    (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
8868 		return false;
8869 
8870 	return true;
8871 }
8872 
8873 #ifdef CONFIG_NUMA_BALANCING
8874 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8875 {
8876 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
8877 		return regular;
8878 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
8879 		return remote;
8880 	return all;
8881 }
8882 
8883 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8884 {
8885 	if (rq->nr_running > rq->nr_numa_running)
8886 		return regular;
8887 	if (rq->nr_running > rq->nr_preferred_running)
8888 		return remote;
8889 	return all;
8890 }
8891 #else
8892 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
8893 {
8894 	return all;
8895 }
8896 
8897 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
8898 {
8899 	return regular;
8900 }
8901 #endif /* CONFIG_NUMA_BALANCING */
8902 
8903 
8904 struct sg_lb_stats;
8905 
8906 /*
8907  * task_running_on_cpu - return 1 if @p is running on @cpu.
8908  */
8909 
8910 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
8911 {
8912 	/* Task has no contribution or is new */
8913 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8914 		return 0;
8915 
8916 	if (task_on_rq_queued(p))
8917 		return 1;
8918 
8919 	return 0;
8920 }
8921 
8922 /**
8923  * idle_cpu_without - would a given CPU be idle without p ?
8924  * @cpu: the processor on which idleness is tested.
8925  * @p: task which should be ignored.
8926  *
8927  * Return: 1 if the CPU would be idle. 0 otherwise.
8928  */
8929 static int idle_cpu_without(int cpu, struct task_struct *p)
8930 {
8931 	struct rq *rq = cpu_rq(cpu);
8932 
8933 	if (rq->curr != rq->idle && rq->curr != p)
8934 		return 0;
8935 
8936 	/*
8937 	 * rq->nr_running can't be used but an updated version without the
8938 	 * impact of p on cpu must be used instead. The updated nr_running
8939 	 * be computed and tested before calling idle_cpu_without().
8940 	 */
8941 
8942 #ifdef CONFIG_SMP
8943 	if (rq->ttwu_pending)
8944 		return 0;
8945 #endif
8946 
8947 	return 1;
8948 }
8949 
8950 /*
8951  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
8952  * @sd: The sched_domain level to look for idlest group.
8953  * @group: sched_group whose statistics are to be updated.
8954  * @sgs: variable to hold the statistics for this group.
8955  * @p: The task for which we look for the idlest group/CPU.
8956  */
8957 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
8958 					  struct sched_group *group,
8959 					  struct sg_lb_stats *sgs,
8960 					  struct task_struct *p)
8961 {
8962 	int i, nr_running;
8963 
8964 	memset(sgs, 0, sizeof(*sgs));
8965 
8966 	for_each_cpu(i, sched_group_span(group)) {
8967 		struct rq *rq = cpu_rq(i);
8968 		unsigned int local;
8969 
8970 		sgs->group_load += cpu_load_without(rq, p);
8971 		sgs->group_util += cpu_util_without(i, p);
8972 		sgs->group_runnable += cpu_runnable_without(rq, p);
8973 		local = task_running_on_cpu(i, p);
8974 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
8975 
8976 		nr_running = rq->nr_running - local;
8977 		sgs->sum_nr_running += nr_running;
8978 
8979 		/*
8980 		 * No need to call idle_cpu_without() if nr_running is not 0
8981 		 */
8982 		if (!nr_running && idle_cpu_without(i, p))
8983 			sgs->idle_cpus++;
8984 
8985 	}
8986 
8987 	/* Check if task fits in the group */
8988 	if (sd->flags & SD_ASYM_CPUCAPACITY &&
8989 	    !task_fits_capacity(p, group->sgc->max_capacity)) {
8990 		sgs->group_misfit_task_load = 1;
8991 	}
8992 
8993 	sgs->group_capacity = group->sgc->capacity;
8994 
8995 	sgs->group_weight = group->group_weight;
8996 
8997 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
8998 
8999 	/*
9000 	 * Computing avg_load makes sense only when group is fully busy or
9001 	 * overloaded
9002 	 */
9003 	if (sgs->group_type == group_fully_busy ||
9004 		sgs->group_type == group_overloaded)
9005 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9006 				sgs->group_capacity;
9007 }
9008 
9009 static bool update_pick_idlest(struct sched_group *idlest,
9010 			       struct sg_lb_stats *idlest_sgs,
9011 			       struct sched_group *group,
9012 			       struct sg_lb_stats *sgs)
9013 {
9014 	if (sgs->group_type < idlest_sgs->group_type)
9015 		return true;
9016 
9017 	if (sgs->group_type > idlest_sgs->group_type)
9018 		return false;
9019 
9020 	/*
9021 	 * The candidate and the current idlest group are the same type of
9022 	 * group. Let check which one is the idlest according to the type.
9023 	 */
9024 
9025 	switch (sgs->group_type) {
9026 	case group_overloaded:
9027 	case group_fully_busy:
9028 		/* Select the group with lowest avg_load. */
9029 		if (idlest_sgs->avg_load <= sgs->avg_load)
9030 			return false;
9031 		break;
9032 
9033 	case group_imbalanced:
9034 	case group_asym_packing:
9035 		/* Those types are not used in the slow wakeup path */
9036 		return false;
9037 
9038 	case group_misfit_task:
9039 		/* Select group with the highest max capacity */
9040 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
9041 			return false;
9042 		break;
9043 
9044 	case group_has_spare:
9045 		/* Select group with most idle CPUs */
9046 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
9047 			return false;
9048 
9049 		/* Select group with lowest group_util */
9050 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9051 			idlest_sgs->group_util <= sgs->group_util)
9052 			return false;
9053 
9054 		break;
9055 	}
9056 
9057 	return true;
9058 }
9059 
9060 /*
9061  * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
9062  * This is an approximation as the number of running tasks may not be
9063  * related to the number of busy CPUs due to sched_setaffinity.
9064  */
9065 static inline bool allow_numa_imbalance(int running, int imb_numa_nr)
9066 {
9067 	return running <= imb_numa_nr;
9068 }
9069 
9070 /*
9071  * find_idlest_group() finds and returns the least busy CPU group within the
9072  * domain.
9073  *
9074  * Assumes p is allowed on at least one CPU in sd.
9075  */
9076 static struct sched_group *
9077 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9078 {
9079 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9080 	struct sg_lb_stats local_sgs, tmp_sgs;
9081 	struct sg_lb_stats *sgs;
9082 	unsigned long imbalance;
9083 	struct sg_lb_stats idlest_sgs = {
9084 			.avg_load = UINT_MAX,
9085 			.group_type = group_overloaded,
9086 	};
9087 
9088 	do {
9089 		int local_group;
9090 
9091 		/* Skip over this group if it has no CPUs allowed */
9092 		if (!cpumask_intersects(sched_group_span(group),
9093 					p->cpus_ptr))
9094 			continue;
9095 
9096 		/* Skip over this group if no cookie matched */
9097 		if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9098 			continue;
9099 
9100 		local_group = cpumask_test_cpu(this_cpu,
9101 					       sched_group_span(group));
9102 
9103 		if (local_group) {
9104 			sgs = &local_sgs;
9105 			local = group;
9106 		} else {
9107 			sgs = &tmp_sgs;
9108 		}
9109 
9110 		update_sg_wakeup_stats(sd, group, sgs, p);
9111 
9112 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9113 			idlest = group;
9114 			idlest_sgs = *sgs;
9115 		}
9116 
9117 	} while (group = group->next, group != sd->groups);
9118 
9119 
9120 	/* There is no idlest group to push tasks to */
9121 	if (!idlest)
9122 		return NULL;
9123 
9124 	/* The local group has been skipped because of CPU affinity */
9125 	if (!local)
9126 		return idlest;
9127 
9128 	/*
9129 	 * If the local group is idler than the selected idlest group
9130 	 * don't try and push the task.
9131 	 */
9132 	if (local_sgs.group_type < idlest_sgs.group_type)
9133 		return NULL;
9134 
9135 	/*
9136 	 * If the local group is busier than the selected idlest group
9137 	 * try and push the task.
9138 	 */
9139 	if (local_sgs.group_type > idlest_sgs.group_type)
9140 		return idlest;
9141 
9142 	switch (local_sgs.group_type) {
9143 	case group_overloaded:
9144 	case group_fully_busy:
9145 
9146 		/* Calculate allowed imbalance based on load */
9147 		imbalance = scale_load_down(NICE_0_LOAD) *
9148 				(sd->imbalance_pct-100) / 100;
9149 
9150 		/*
9151 		 * When comparing groups across NUMA domains, it's possible for
9152 		 * the local domain to be very lightly loaded relative to the
9153 		 * remote domains but "imbalance" skews the comparison making
9154 		 * remote CPUs look much more favourable. When considering
9155 		 * cross-domain, add imbalance to the load on the remote node
9156 		 * and consider staying local.
9157 		 */
9158 
9159 		if ((sd->flags & SD_NUMA) &&
9160 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9161 			return NULL;
9162 
9163 		/*
9164 		 * If the local group is less loaded than the selected
9165 		 * idlest group don't try and push any tasks.
9166 		 */
9167 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9168 			return NULL;
9169 
9170 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9171 			return NULL;
9172 		break;
9173 
9174 	case group_imbalanced:
9175 	case group_asym_packing:
9176 		/* Those type are not used in the slow wakeup path */
9177 		return NULL;
9178 
9179 	case group_misfit_task:
9180 		/* Select group with the highest max capacity */
9181 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9182 			return NULL;
9183 		break;
9184 
9185 	case group_has_spare:
9186 		if (sd->flags & SD_NUMA) {
9187 #ifdef CONFIG_NUMA_BALANCING
9188 			int idlest_cpu;
9189 			/*
9190 			 * If there is spare capacity at NUMA, try to select
9191 			 * the preferred node
9192 			 */
9193 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9194 				return NULL;
9195 
9196 			idlest_cpu = cpumask_first(sched_group_span(idlest));
9197 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9198 				return idlest;
9199 #endif
9200 			/*
9201 			 * Otherwise, keep the task close to the wakeup source
9202 			 * and improve locality if the number of running tasks
9203 			 * would remain below threshold where an imbalance is
9204 			 * allowed. If there is a real need of migration,
9205 			 * periodic load balance will take care of it.
9206 			 */
9207 			if (allow_numa_imbalance(local_sgs.sum_nr_running + 1, sd->imb_numa_nr))
9208 				return NULL;
9209 		}
9210 
9211 		/*
9212 		 * Select group with highest number of idle CPUs. We could also
9213 		 * compare the utilization which is more stable but it can end
9214 		 * up that the group has less spare capacity but finally more
9215 		 * idle CPUs which means more opportunity to run task.
9216 		 */
9217 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9218 			return NULL;
9219 		break;
9220 	}
9221 
9222 	return idlest;
9223 }
9224 
9225 /**
9226  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9227  * @env: The load balancing environment.
9228  * @sds: variable to hold the statistics for this sched_domain.
9229  */
9230 
9231 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9232 {
9233 	struct sched_domain *child = env->sd->child;
9234 	struct sched_group *sg = env->sd->groups;
9235 	struct sg_lb_stats *local = &sds->local_stat;
9236 	struct sg_lb_stats tmp_sgs;
9237 	int sg_status = 0;
9238 
9239 	do {
9240 		struct sg_lb_stats *sgs = &tmp_sgs;
9241 		int local_group;
9242 
9243 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9244 		if (local_group) {
9245 			sds->local = sg;
9246 			sgs = local;
9247 
9248 			if (env->idle != CPU_NEWLY_IDLE ||
9249 			    time_after_eq(jiffies, sg->sgc->next_update))
9250 				update_group_capacity(env->sd, env->dst_cpu);
9251 		}
9252 
9253 		update_sg_lb_stats(env, sds, sg, sgs, &sg_status);
9254 
9255 		if (local_group)
9256 			goto next_group;
9257 
9258 
9259 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9260 			sds->busiest = sg;
9261 			sds->busiest_stat = *sgs;
9262 		}
9263 
9264 next_group:
9265 		/* Now, start updating sd_lb_stats */
9266 		sds->total_load += sgs->group_load;
9267 		sds->total_capacity += sgs->group_capacity;
9268 
9269 		sg = sg->next;
9270 	} while (sg != env->sd->groups);
9271 
9272 	/* Tag domain that child domain prefers tasks go to siblings first */
9273 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9274 
9275 
9276 	if (env->sd->flags & SD_NUMA)
9277 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9278 
9279 	if (!env->sd->parent) {
9280 		struct root_domain *rd = env->dst_rq->rd;
9281 
9282 		/* update overload indicator if we are at root domain */
9283 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9284 
9285 		/* Update over-utilization (tipping point, U >= 0) indicator */
9286 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9287 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9288 	} else if (sg_status & SG_OVERUTILIZED) {
9289 		struct root_domain *rd = env->dst_rq->rd;
9290 
9291 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9292 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9293 	}
9294 }
9295 
9296 #define NUMA_IMBALANCE_MIN 2
9297 
9298 static inline long adjust_numa_imbalance(int imbalance,
9299 				int dst_running, int imb_numa_nr)
9300 {
9301 	if (!allow_numa_imbalance(dst_running, imb_numa_nr))
9302 		return imbalance;
9303 
9304 	/*
9305 	 * Allow a small imbalance based on a simple pair of communicating
9306 	 * tasks that remain local when the destination is lightly loaded.
9307 	 */
9308 	if (imbalance <= NUMA_IMBALANCE_MIN)
9309 		return 0;
9310 
9311 	return imbalance;
9312 }
9313 
9314 /**
9315  * calculate_imbalance - Calculate the amount of imbalance present within the
9316  *			 groups of a given sched_domain during load balance.
9317  * @env: load balance environment
9318  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9319  */
9320 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9321 {
9322 	struct sg_lb_stats *local, *busiest;
9323 
9324 	local = &sds->local_stat;
9325 	busiest = &sds->busiest_stat;
9326 
9327 	if (busiest->group_type == group_misfit_task) {
9328 		/* Set imbalance to allow misfit tasks to be balanced. */
9329 		env->migration_type = migrate_misfit;
9330 		env->imbalance = 1;
9331 		return;
9332 	}
9333 
9334 	if (busiest->group_type == group_asym_packing) {
9335 		/*
9336 		 * In case of asym capacity, we will try to migrate all load to
9337 		 * the preferred CPU.
9338 		 */
9339 		env->migration_type = migrate_task;
9340 		env->imbalance = busiest->sum_h_nr_running;
9341 		return;
9342 	}
9343 
9344 	if (busiest->group_type == group_imbalanced) {
9345 		/*
9346 		 * In the group_imb case we cannot rely on group-wide averages
9347 		 * to ensure CPU-load equilibrium, try to move any task to fix
9348 		 * the imbalance. The next load balance will take care of
9349 		 * balancing back the system.
9350 		 */
9351 		env->migration_type = migrate_task;
9352 		env->imbalance = 1;
9353 		return;
9354 	}
9355 
9356 	/*
9357 	 * Try to use spare capacity of local group without overloading it or
9358 	 * emptying busiest.
9359 	 */
9360 	if (local->group_type == group_has_spare) {
9361 		if ((busiest->group_type > group_fully_busy) &&
9362 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9363 			/*
9364 			 * If busiest is overloaded, try to fill spare
9365 			 * capacity. This might end up creating spare capacity
9366 			 * in busiest or busiest still being overloaded but
9367 			 * there is no simple way to directly compute the
9368 			 * amount of load to migrate in order to balance the
9369 			 * system.
9370 			 */
9371 			env->migration_type = migrate_util;
9372 			env->imbalance = max(local->group_capacity, local->group_util) -
9373 					 local->group_util;
9374 
9375 			/*
9376 			 * In some cases, the group's utilization is max or even
9377 			 * higher than capacity because of migrations but the
9378 			 * local CPU is (newly) idle. There is at least one
9379 			 * waiting task in this overloaded busiest group. Let's
9380 			 * try to pull it.
9381 			 */
9382 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9383 				env->migration_type = migrate_task;
9384 				env->imbalance = 1;
9385 			}
9386 
9387 			return;
9388 		}
9389 
9390 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
9391 			unsigned int nr_diff = busiest->sum_nr_running;
9392 			/*
9393 			 * When prefer sibling, evenly spread running tasks on
9394 			 * groups.
9395 			 */
9396 			env->migration_type = migrate_task;
9397 			lsub_positive(&nr_diff, local->sum_nr_running);
9398 			env->imbalance = nr_diff >> 1;
9399 		} else {
9400 
9401 			/*
9402 			 * If there is no overload, we just want to even the number of
9403 			 * idle cpus.
9404 			 */
9405 			env->migration_type = migrate_task;
9406 			env->imbalance = max_t(long, 0, (local->idle_cpus -
9407 						 busiest->idle_cpus) >> 1);
9408 		}
9409 
9410 		/* Consider allowing a small imbalance between NUMA groups */
9411 		if (env->sd->flags & SD_NUMA) {
9412 			env->imbalance = adjust_numa_imbalance(env->imbalance,
9413 				local->sum_nr_running + 1, env->sd->imb_numa_nr);
9414 		}
9415 
9416 		return;
9417 	}
9418 
9419 	/*
9420 	 * Local is fully busy but has to take more load to relieve the
9421 	 * busiest group
9422 	 */
9423 	if (local->group_type < group_overloaded) {
9424 		/*
9425 		 * Local will become overloaded so the avg_load metrics are
9426 		 * finally needed.
9427 		 */
9428 
9429 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9430 				  local->group_capacity;
9431 
9432 		/*
9433 		 * If the local group is more loaded than the selected
9434 		 * busiest group don't try to pull any tasks.
9435 		 */
9436 		if (local->avg_load >= busiest->avg_load) {
9437 			env->imbalance = 0;
9438 			return;
9439 		}
9440 
9441 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9442 				sds->total_capacity;
9443 	}
9444 
9445 	/*
9446 	 * Both group are or will become overloaded and we're trying to get all
9447 	 * the CPUs to the average_load, so we don't want to push ourselves
9448 	 * above the average load, nor do we wish to reduce the max loaded CPU
9449 	 * below the average load. At the same time, we also don't want to
9450 	 * reduce the group load below the group capacity. Thus we look for
9451 	 * the minimum possible imbalance.
9452 	 */
9453 	env->migration_type = migrate_load;
9454 	env->imbalance = min(
9455 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9456 		(sds->avg_load - local->avg_load) * local->group_capacity
9457 	) / SCHED_CAPACITY_SCALE;
9458 }
9459 
9460 /******* find_busiest_group() helpers end here *********************/
9461 
9462 /*
9463  * Decision matrix according to the local and busiest group type:
9464  *
9465  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9466  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9467  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9468  * misfit_task      force     N/A        N/A    N/A  N/A        N/A
9469  * asym_packing     force     force      N/A    N/A  force      force
9470  * imbalanced       force     force      N/A    N/A  force      force
9471  * overloaded       force     force      N/A    N/A  force      avg_load
9472  *
9473  * N/A :      Not Applicable because already filtered while updating
9474  *            statistics.
9475  * balanced : The system is balanced for these 2 groups.
9476  * force :    Calculate the imbalance as load migration is probably needed.
9477  * avg_load : Only if imbalance is significant enough.
9478  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9479  *            different in groups.
9480  */
9481 
9482 /**
9483  * find_busiest_group - Returns the busiest group within the sched_domain
9484  * if there is an imbalance.
9485  * @env: The load balancing environment.
9486  *
9487  * Also calculates the amount of runnable load which should be moved
9488  * to restore balance.
9489  *
9490  * Return:	- The busiest group if imbalance exists.
9491  */
9492 static struct sched_group *find_busiest_group(struct lb_env *env)
9493 {
9494 	struct sg_lb_stats *local, *busiest;
9495 	struct sd_lb_stats sds;
9496 
9497 	init_sd_lb_stats(&sds);
9498 
9499 	/*
9500 	 * Compute the various statistics relevant for load balancing at
9501 	 * this level.
9502 	 */
9503 	update_sd_lb_stats(env, &sds);
9504 
9505 	if (sched_energy_enabled()) {
9506 		struct root_domain *rd = env->dst_rq->rd;
9507 
9508 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9509 			goto out_balanced;
9510 	}
9511 
9512 	local = &sds.local_stat;
9513 	busiest = &sds.busiest_stat;
9514 
9515 	/* There is no busy sibling group to pull tasks from */
9516 	if (!sds.busiest)
9517 		goto out_balanced;
9518 
9519 	/* Misfit tasks should be dealt with regardless of the avg load */
9520 	if (busiest->group_type == group_misfit_task)
9521 		goto force_balance;
9522 
9523 	/* ASYM feature bypasses nice load balance check */
9524 	if (busiest->group_type == group_asym_packing)
9525 		goto force_balance;
9526 
9527 	/*
9528 	 * If the busiest group is imbalanced the below checks don't
9529 	 * work because they assume all things are equal, which typically
9530 	 * isn't true due to cpus_ptr constraints and the like.
9531 	 */
9532 	if (busiest->group_type == group_imbalanced)
9533 		goto force_balance;
9534 
9535 	/*
9536 	 * If the local group is busier than the selected busiest group
9537 	 * don't try and pull any tasks.
9538 	 */
9539 	if (local->group_type > busiest->group_type)
9540 		goto out_balanced;
9541 
9542 	/*
9543 	 * When groups are overloaded, use the avg_load to ensure fairness
9544 	 * between tasks.
9545 	 */
9546 	if (local->group_type == group_overloaded) {
9547 		/*
9548 		 * If the local group is more loaded than the selected
9549 		 * busiest group don't try to pull any tasks.
9550 		 */
9551 		if (local->avg_load >= busiest->avg_load)
9552 			goto out_balanced;
9553 
9554 		/* XXX broken for overlapping NUMA groups */
9555 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9556 				sds.total_capacity;
9557 
9558 		/*
9559 		 * Don't pull any tasks if this group is already above the
9560 		 * domain average load.
9561 		 */
9562 		if (local->avg_load >= sds.avg_load)
9563 			goto out_balanced;
9564 
9565 		/*
9566 		 * If the busiest group is more loaded, use imbalance_pct to be
9567 		 * conservative.
9568 		 */
9569 		if (100 * busiest->avg_load <=
9570 				env->sd->imbalance_pct * local->avg_load)
9571 			goto out_balanced;
9572 	}
9573 
9574 	/* Try to move all excess tasks to child's sibling domain */
9575 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
9576 	    busiest->sum_nr_running > local->sum_nr_running + 1)
9577 		goto force_balance;
9578 
9579 	if (busiest->group_type != group_overloaded) {
9580 		if (env->idle == CPU_NOT_IDLE)
9581 			/*
9582 			 * If the busiest group is not overloaded (and as a
9583 			 * result the local one too) but this CPU is already
9584 			 * busy, let another idle CPU try to pull task.
9585 			 */
9586 			goto out_balanced;
9587 
9588 		if (busiest->group_weight > 1 &&
9589 		    local->idle_cpus <= (busiest->idle_cpus + 1))
9590 			/*
9591 			 * If the busiest group is not overloaded
9592 			 * and there is no imbalance between this and busiest
9593 			 * group wrt idle CPUs, it is balanced. The imbalance
9594 			 * becomes significant if the diff is greater than 1
9595 			 * otherwise we might end up to just move the imbalance
9596 			 * on another group. Of course this applies only if
9597 			 * there is more than 1 CPU per group.
9598 			 */
9599 			goto out_balanced;
9600 
9601 		if (busiest->sum_h_nr_running == 1)
9602 			/*
9603 			 * busiest doesn't have any tasks waiting to run
9604 			 */
9605 			goto out_balanced;
9606 	}
9607 
9608 force_balance:
9609 	/* Looks like there is an imbalance. Compute it */
9610 	calculate_imbalance(env, &sds);
9611 	return env->imbalance ? sds.busiest : NULL;
9612 
9613 out_balanced:
9614 	env->imbalance = 0;
9615 	return NULL;
9616 }
9617 
9618 /*
9619  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9620  */
9621 static struct rq *find_busiest_queue(struct lb_env *env,
9622 				     struct sched_group *group)
9623 {
9624 	struct rq *busiest = NULL, *rq;
9625 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9626 	unsigned int busiest_nr = 0;
9627 	int i;
9628 
9629 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9630 		unsigned long capacity, load, util;
9631 		unsigned int nr_running;
9632 		enum fbq_type rt;
9633 
9634 		rq = cpu_rq(i);
9635 		rt = fbq_classify_rq(rq);
9636 
9637 		/*
9638 		 * We classify groups/runqueues into three groups:
9639 		 *  - regular: there are !numa tasks
9640 		 *  - remote:  there are numa tasks that run on the 'wrong' node
9641 		 *  - all:     there is no distinction
9642 		 *
9643 		 * In order to avoid migrating ideally placed numa tasks,
9644 		 * ignore those when there's better options.
9645 		 *
9646 		 * If we ignore the actual busiest queue to migrate another
9647 		 * task, the next balance pass can still reduce the busiest
9648 		 * queue by moving tasks around inside the node.
9649 		 *
9650 		 * If we cannot move enough load due to this classification
9651 		 * the next pass will adjust the group classification and
9652 		 * allow migration of more tasks.
9653 		 *
9654 		 * Both cases only affect the total convergence complexity.
9655 		 */
9656 		if (rt > env->fbq_type)
9657 			continue;
9658 
9659 		nr_running = rq->cfs.h_nr_running;
9660 		if (!nr_running)
9661 			continue;
9662 
9663 		capacity = capacity_of(i);
9664 
9665 		/*
9666 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9667 		 * eventually lead to active_balancing high->low capacity.
9668 		 * Higher per-CPU capacity is considered better than balancing
9669 		 * average load.
9670 		 */
9671 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9672 		    !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
9673 		    nr_running == 1)
9674 			continue;
9675 
9676 		/* Make sure we only pull tasks from a CPU of lower priority */
9677 		if ((env->sd->flags & SD_ASYM_PACKING) &&
9678 		    sched_asym_prefer(i, env->dst_cpu) &&
9679 		    nr_running == 1)
9680 			continue;
9681 
9682 		switch (env->migration_type) {
9683 		case migrate_load:
9684 			/*
9685 			 * When comparing with load imbalance, use cpu_load()
9686 			 * which is not scaled with the CPU capacity.
9687 			 */
9688 			load = cpu_load(rq);
9689 
9690 			if (nr_running == 1 && load > env->imbalance &&
9691 			    !check_cpu_capacity(rq, env->sd))
9692 				break;
9693 
9694 			/*
9695 			 * For the load comparisons with the other CPUs,
9696 			 * consider the cpu_load() scaled with the CPU
9697 			 * capacity, so that the load can be moved away
9698 			 * from the CPU that is potentially running at a
9699 			 * lower capacity.
9700 			 *
9701 			 * Thus we're looking for max(load_i / capacity_i),
9702 			 * crosswise multiplication to rid ourselves of the
9703 			 * division works out to:
9704 			 * load_i * capacity_j > load_j * capacity_i;
9705 			 * where j is our previous maximum.
9706 			 */
9707 			if (load * busiest_capacity > busiest_load * capacity) {
9708 				busiest_load = load;
9709 				busiest_capacity = capacity;
9710 				busiest = rq;
9711 			}
9712 			break;
9713 
9714 		case migrate_util:
9715 			util = cpu_util_cfs(i);
9716 
9717 			/*
9718 			 * Don't try to pull utilization from a CPU with one
9719 			 * running task. Whatever its utilization, we will fail
9720 			 * detach the task.
9721 			 */
9722 			if (nr_running <= 1)
9723 				continue;
9724 
9725 			if (busiest_util < util) {
9726 				busiest_util = util;
9727 				busiest = rq;
9728 			}
9729 			break;
9730 
9731 		case migrate_task:
9732 			if (busiest_nr < nr_running) {
9733 				busiest_nr = nr_running;
9734 				busiest = rq;
9735 			}
9736 			break;
9737 
9738 		case migrate_misfit:
9739 			/*
9740 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
9741 			 * simply seek the "biggest" misfit task.
9742 			 */
9743 			if (rq->misfit_task_load > busiest_load) {
9744 				busiest_load = rq->misfit_task_load;
9745 				busiest = rq;
9746 			}
9747 
9748 			break;
9749 
9750 		}
9751 	}
9752 
9753 	return busiest;
9754 }
9755 
9756 /*
9757  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
9758  * so long as it is large enough.
9759  */
9760 #define MAX_PINNED_INTERVAL	512
9761 
9762 static inline bool
9763 asym_active_balance(struct lb_env *env)
9764 {
9765 	/*
9766 	 * ASYM_PACKING needs to force migrate tasks from busy but
9767 	 * lower priority CPUs in order to pack all tasks in the
9768 	 * highest priority CPUs.
9769 	 */
9770 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
9771 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
9772 }
9773 
9774 static inline bool
9775 imbalanced_active_balance(struct lb_env *env)
9776 {
9777 	struct sched_domain *sd = env->sd;
9778 
9779 	/*
9780 	 * The imbalanced case includes the case of pinned tasks preventing a fair
9781 	 * distribution of the load on the system but also the even distribution of the
9782 	 * threads on a system with spare capacity
9783 	 */
9784 	if ((env->migration_type == migrate_task) &&
9785 	    (sd->nr_balance_failed > sd->cache_nice_tries+2))
9786 		return 1;
9787 
9788 	return 0;
9789 }
9790 
9791 static int need_active_balance(struct lb_env *env)
9792 {
9793 	struct sched_domain *sd = env->sd;
9794 
9795 	if (asym_active_balance(env))
9796 		return 1;
9797 
9798 	if (imbalanced_active_balance(env))
9799 		return 1;
9800 
9801 	/*
9802 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
9803 	 * It's worth migrating the task if the src_cpu's capacity is reduced
9804 	 * because of other sched_class or IRQs if more capacity stays
9805 	 * available on dst_cpu.
9806 	 */
9807 	if ((env->idle != CPU_NOT_IDLE) &&
9808 	    (env->src_rq->cfs.h_nr_running == 1)) {
9809 		if ((check_cpu_capacity(env->src_rq, sd)) &&
9810 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
9811 			return 1;
9812 	}
9813 
9814 	if (env->migration_type == migrate_misfit)
9815 		return 1;
9816 
9817 	return 0;
9818 }
9819 
9820 static int active_load_balance_cpu_stop(void *data);
9821 
9822 static int should_we_balance(struct lb_env *env)
9823 {
9824 	struct sched_group *sg = env->sd->groups;
9825 	int cpu;
9826 
9827 	/*
9828 	 * Ensure the balancing environment is consistent; can happen
9829 	 * when the softirq triggers 'during' hotplug.
9830 	 */
9831 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
9832 		return 0;
9833 
9834 	/*
9835 	 * In the newly idle case, we will allow all the CPUs
9836 	 * to do the newly idle load balance.
9837 	 */
9838 	if (env->idle == CPU_NEWLY_IDLE)
9839 		return 1;
9840 
9841 	/* Try to find first idle CPU */
9842 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
9843 		if (!idle_cpu(cpu))
9844 			continue;
9845 
9846 		/* Are we the first idle CPU? */
9847 		return cpu == env->dst_cpu;
9848 	}
9849 
9850 	/* Are we the first CPU of this group ? */
9851 	return group_balance_cpu(sg) == env->dst_cpu;
9852 }
9853 
9854 /*
9855  * Check this_cpu to ensure it is balanced within domain. Attempt to move
9856  * tasks if there is an imbalance.
9857  */
9858 static int load_balance(int this_cpu, struct rq *this_rq,
9859 			struct sched_domain *sd, enum cpu_idle_type idle,
9860 			int *continue_balancing)
9861 {
9862 	int ld_moved, cur_ld_moved, active_balance = 0;
9863 	struct sched_domain *sd_parent = sd->parent;
9864 	struct sched_group *group;
9865 	struct rq *busiest;
9866 	struct rq_flags rf;
9867 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
9868 
9869 	struct lb_env env = {
9870 		.sd		= sd,
9871 		.dst_cpu	= this_cpu,
9872 		.dst_rq		= this_rq,
9873 		.dst_grpmask    = sched_group_span(sd->groups),
9874 		.idle		= idle,
9875 		.loop_break	= sched_nr_migrate_break,
9876 		.cpus		= cpus,
9877 		.fbq_type	= all,
9878 		.tasks		= LIST_HEAD_INIT(env.tasks),
9879 	};
9880 
9881 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
9882 
9883 	schedstat_inc(sd->lb_count[idle]);
9884 
9885 redo:
9886 	if (!should_we_balance(&env)) {
9887 		*continue_balancing = 0;
9888 		goto out_balanced;
9889 	}
9890 
9891 	group = find_busiest_group(&env);
9892 	if (!group) {
9893 		schedstat_inc(sd->lb_nobusyg[idle]);
9894 		goto out_balanced;
9895 	}
9896 
9897 	busiest = find_busiest_queue(&env, group);
9898 	if (!busiest) {
9899 		schedstat_inc(sd->lb_nobusyq[idle]);
9900 		goto out_balanced;
9901 	}
9902 
9903 	BUG_ON(busiest == env.dst_rq);
9904 
9905 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
9906 
9907 	env.src_cpu = busiest->cpu;
9908 	env.src_rq = busiest;
9909 
9910 	ld_moved = 0;
9911 	/* Clear this flag as soon as we find a pullable task */
9912 	env.flags |= LBF_ALL_PINNED;
9913 	if (busiest->nr_running > 1) {
9914 		/*
9915 		 * Attempt to move tasks. If find_busiest_group has found
9916 		 * an imbalance but busiest->nr_running <= 1, the group is
9917 		 * still unbalanced. ld_moved simply stays zero, so it is
9918 		 * correctly treated as an imbalance.
9919 		 */
9920 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
9921 
9922 more_balance:
9923 		rq_lock_irqsave(busiest, &rf);
9924 		update_rq_clock(busiest);
9925 
9926 		/*
9927 		 * cur_ld_moved - load moved in current iteration
9928 		 * ld_moved     - cumulative load moved across iterations
9929 		 */
9930 		cur_ld_moved = detach_tasks(&env);
9931 
9932 		/*
9933 		 * We've detached some tasks from busiest_rq. Every
9934 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
9935 		 * unlock busiest->lock, and we are able to be sure
9936 		 * that nobody can manipulate the tasks in parallel.
9937 		 * See task_rq_lock() family for the details.
9938 		 */
9939 
9940 		rq_unlock(busiest, &rf);
9941 
9942 		if (cur_ld_moved) {
9943 			attach_tasks(&env);
9944 			ld_moved += cur_ld_moved;
9945 		}
9946 
9947 		local_irq_restore(rf.flags);
9948 
9949 		if (env.flags & LBF_NEED_BREAK) {
9950 			env.flags &= ~LBF_NEED_BREAK;
9951 			goto more_balance;
9952 		}
9953 
9954 		/*
9955 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
9956 		 * us and move them to an alternate dst_cpu in our sched_group
9957 		 * where they can run. The upper limit on how many times we
9958 		 * iterate on same src_cpu is dependent on number of CPUs in our
9959 		 * sched_group.
9960 		 *
9961 		 * This changes load balance semantics a bit on who can move
9962 		 * load to a given_cpu. In addition to the given_cpu itself
9963 		 * (or a ilb_cpu acting on its behalf where given_cpu is
9964 		 * nohz-idle), we now have balance_cpu in a position to move
9965 		 * load to given_cpu. In rare situations, this may cause
9966 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
9967 		 * _independently_ and at _same_ time to move some load to
9968 		 * given_cpu) causing excess load to be moved to given_cpu.
9969 		 * This however should not happen so much in practice and
9970 		 * moreover subsequent load balance cycles should correct the
9971 		 * excess load moved.
9972 		 */
9973 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
9974 
9975 			/* Prevent to re-select dst_cpu via env's CPUs */
9976 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
9977 
9978 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
9979 			env.dst_cpu	 = env.new_dst_cpu;
9980 			env.flags	&= ~LBF_DST_PINNED;
9981 			env.loop	 = 0;
9982 			env.loop_break	 = sched_nr_migrate_break;
9983 
9984 			/*
9985 			 * Go back to "more_balance" rather than "redo" since we
9986 			 * need to continue with same src_cpu.
9987 			 */
9988 			goto more_balance;
9989 		}
9990 
9991 		/*
9992 		 * We failed to reach balance because of affinity.
9993 		 */
9994 		if (sd_parent) {
9995 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
9996 
9997 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
9998 				*group_imbalance = 1;
9999 		}
10000 
10001 		/* All tasks on this runqueue were pinned by CPU affinity */
10002 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
10003 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
10004 			/*
10005 			 * Attempting to continue load balancing at the current
10006 			 * sched_domain level only makes sense if there are
10007 			 * active CPUs remaining as possible busiest CPUs to
10008 			 * pull load from which are not contained within the
10009 			 * destination group that is receiving any migrated
10010 			 * load.
10011 			 */
10012 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
10013 				env.loop = 0;
10014 				env.loop_break = sched_nr_migrate_break;
10015 				goto redo;
10016 			}
10017 			goto out_all_pinned;
10018 		}
10019 	}
10020 
10021 	if (!ld_moved) {
10022 		schedstat_inc(sd->lb_failed[idle]);
10023 		/*
10024 		 * Increment the failure counter only on periodic balance.
10025 		 * We do not want newidle balance, which can be very
10026 		 * frequent, pollute the failure counter causing
10027 		 * excessive cache_hot migrations and active balances.
10028 		 */
10029 		if (idle != CPU_NEWLY_IDLE)
10030 			sd->nr_balance_failed++;
10031 
10032 		if (need_active_balance(&env)) {
10033 			unsigned long flags;
10034 
10035 			raw_spin_rq_lock_irqsave(busiest, flags);
10036 
10037 			/*
10038 			 * Don't kick the active_load_balance_cpu_stop,
10039 			 * if the curr task on busiest CPU can't be
10040 			 * moved to this_cpu:
10041 			 */
10042 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
10043 				raw_spin_rq_unlock_irqrestore(busiest, flags);
10044 				goto out_one_pinned;
10045 			}
10046 
10047 			/* Record that we found at least one task that could run on this_cpu */
10048 			env.flags &= ~LBF_ALL_PINNED;
10049 
10050 			/*
10051 			 * ->active_balance synchronizes accesses to
10052 			 * ->active_balance_work.  Once set, it's cleared
10053 			 * only after active load balance is finished.
10054 			 */
10055 			if (!busiest->active_balance) {
10056 				busiest->active_balance = 1;
10057 				busiest->push_cpu = this_cpu;
10058 				active_balance = 1;
10059 			}
10060 			raw_spin_rq_unlock_irqrestore(busiest, flags);
10061 
10062 			if (active_balance) {
10063 				stop_one_cpu_nowait(cpu_of(busiest),
10064 					active_load_balance_cpu_stop, busiest,
10065 					&busiest->active_balance_work);
10066 			}
10067 		}
10068 	} else {
10069 		sd->nr_balance_failed = 0;
10070 	}
10071 
10072 	if (likely(!active_balance) || need_active_balance(&env)) {
10073 		/* We were unbalanced, so reset the balancing interval */
10074 		sd->balance_interval = sd->min_interval;
10075 	}
10076 
10077 	goto out;
10078 
10079 out_balanced:
10080 	/*
10081 	 * We reach balance although we may have faced some affinity
10082 	 * constraints. Clear the imbalance flag only if other tasks got
10083 	 * a chance to move and fix the imbalance.
10084 	 */
10085 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10086 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10087 
10088 		if (*group_imbalance)
10089 			*group_imbalance = 0;
10090 	}
10091 
10092 out_all_pinned:
10093 	/*
10094 	 * We reach balance because all tasks are pinned at this level so
10095 	 * we can't migrate them. Let the imbalance flag set so parent level
10096 	 * can try to migrate them.
10097 	 */
10098 	schedstat_inc(sd->lb_balanced[idle]);
10099 
10100 	sd->nr_balance_failed = 0;
10101 
10102 out_one_pinned:
10103 	ld_moved = 0;
10104 
10105 	/*
10106 	 * newidle_balance() disregards balance intervals, so we could
10107 	 * repeatedly reach this code, which would lead to balance_interval
10108 	 * skyrocketing in a short amount of time. Skip the balance_interval
10109 	 * increase logic to avoid that.
10110 	 */
10111 	if (env.idle == CPU_NEWLY_IDLE)
10112 		goto out;
10113 
10114 	/* tune up the balancing interval */
10115 	if ((env.flags & LBF_ALL_PINNED &&
10116 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
10117 	    sd->balance_interval < sd->max_interval)
10118 		sd->balance_interval *= 2;
10119 out:
10120 	return ld_moved;
10121 }
10122 
10123 static inline unsigned long
10124 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10125 {
10126 	unsigned long interval = sd->balance_interval;
10127 
10128 	if (cpu_busy)
10129 		interval *= sd->busy_factor;
10130 
10131 	/* scale ms to jiffies */
10132 	interval = msecs_to_jiffies(interval);
10133 
10134 	/*
10135 	 * Reduce likelihood of busy balancing at higher domains racing with
10136 	 * balancing at lower domains by preventing their balancing periods
10137 	 * from being multiples of each other.
10138 	 */
10139 	if (cpu_busy)
10140 		interval -= 1;
10141 
10142 	interval = clamp(interval, 1UL, max_load_balance_interval);
10143 
10144 	return interval;
10145 }
10146 
10147 static inline void
10148 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10149 {
10150 	unsigned long interval, next;
10151 
10152 	/* used by idle balance, so cpu_busy = 0 */
10153 	interval = get_sd_balance_interval(sd, 0);
10154 	next = sd->last_balance + interval;
10155 
10156 	if (time_after(*next_balance, next))
10157 		*next_balance = next;
10158 }
10159 
10160 /*
10161  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10162  * running tasks off the busiest CPU onto idle CPUs. It requires at
10163  * least 1 task to be running on each physical CPU where possible, and
10164  * avoids physical / logical imbalances.
10165  */
10166 static int active_load_balance_cpu_stop(void *data)
10167 {
10168 	struct rq *busiest_rq = data;
10169 	int busiest_cpu = cpu_of(busiest_rq);
10170 	int target_cpu = busiest_rq->push_cpu;
10171 	struct rq *target_rq = cpu_rq(target_cpu);
10172 	struct sched_domain *sd;
10173 	struct task_struct *p = NULL;
10174 	struct rq_flags rf;
10175 
10176 	rq_lock_irq(busiest_rq, &rf);
10177 	/*
10178 	 * Between queueing the stop-work and running it is a hole in which
10179 	 * CPUs can become inactive. We should not move tasks from or to
10180 	 * inactive CPUs.
10181 	 */
10182 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10183 		goto out_unlock;
10184 
10185 	/* Make sure the requested CPU hasn't gone down in the meantime: */
10186 	if (unlikely(busiest_cpu != smp_processor_id() ||
10187 		     !busiest_rq->active_balance))
10188 		goto out_unlock;
10189 
10190 	/* Is there any task to move? */
10191 	if (busiest_rq->nr_running <= 1)
10192 		goto out_unlock;
10193 
10194 	/*
10195 	 * This condition is "impossible", if it occurs
10196 	 * we need to fix it. Originally reported by
10197 	 * Bjorn Helgaas on a 128-CPU setup.
10198 	 */
10199 	BUG_ON(busiest_rq == target_rq);
10200 
10201 	/* Search for an sd spanning us and the target CPU. */
10202 	rcu_read_lock();
10203 	for_each_domain(target_cpu, sd) {
10204 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10205 			break;
10206 	}
10207 
10208 	if (likely(sd)) {
10209 		struct lb_env env = {
10210 			.sd		= sd,
10211 			.dst_cpu	= target_cpu,
10212 			.dst_rq		= target_rq,
10213 			.src_cpu	= busiest_rq->cpu,
10214 			.src_rq		= busiest_rq,
10215 			.idle		= CPU_IDLE,
10216 			.flags		= LBF_ACTIVE_LB,
10217 		};
10218 
10219 		schedstat_inc(sd->alb_count);
10220 		update_rq_clock(busiest_rq);
10221 
10222 		p = detach_one_task(&env);
10223 		if (p) {
10224 			schedstat_inc(sd->alb_pushed);
10225 			/* Active balancing done, reset the failure counter. */
10226 			sd->nr_balance_failed = 0;
10227 		} else {
10228 			schedstat_inc(sd->alb_failed);
10229 		}
10230 	}
10231 	rcu_read_unlock();
10232 out_unlock:
10233 	busiest_rq->active_balance = 0;
10234 	rq_unlock(busiest_rq, &rf);
10235 
10236 	if (p)
10237 		attach_one_task(target_rq, p);
10238 
10239 	local_irq_enable();
10240 
10241 	return 0;
10242 }
10243 
10244 static DEFINE_SPINLOCK(balancing);
10245 
10246 /*
10247  * Scale the max load_balance interval with the number of CPUs in the system.
10248  * This trades load-balance latency on larger machines for less cross talk.
10249  */
10250 void update_max_interval(void)
10251 {
10252 	max_load_balance_interval = HZ*num_online_cpus()/10;
10253 }
10254 
10255 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
10256 {
10257 	if (cost > sd->max_newidle_lb_cost) {
10258 		/*
10259 		 * Track max cost of a domain to make sure to not delay the
10260 		 * next wakeup on the CPU.
10261 		 */
10262 		sd->max_newidle_lb_cost = cost;
10263 		sd->last_decay_max_lb_cost = jiffies;
10264 	} else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
10265 		/*
10266 		 * Decay the newidle max times by ~1% per second to ensure that
10267 		 * it is not outdated and the current max cost is actually
10268 		 * shorter.
10269 		 */
10270 		sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
10271 		sd->last_decay_max_lb_cost = jiffies;
10272 
10273 		return true;
10274 	}
10275 
10276 	return false;
10277 }
10278 
10279 /*
10280  * It checks each scheduling domain to see if it is due to be balanced,
10281  * and initiates a balancing operation if so.
10282  *
10283  * Balancing parameters are set up in init_sched_domains.
10284  */
10285 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10286 {
10287 	int continue_balancing = 1;
10288 	int cpu = rq->cpu;
10289 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10290 	unsigned long interval;
10291 	struct sched_domain *sd;
10292 	/* Earliest time when we have to do rebalance again */
10293 	unsigned long next_balance = jiffies + 60*HZ;
10294 	int update_next_balance = 0;
10295 	int need_serialize, need_decay = 0;
10296 	u64 max_cost = 0;
10297 
10298 	rcu_read_lock();
10299 	for_each_domain(cpu, sd) {
10300 		/*
10301 		 * Decay the newidle max times here because this is a regular
10302 		 * visit to all the domains.
10303 		 */
10304 		need_decay = update_newidle_cost(sd, 0);
10305 		max_cost += sd->max_newidle_lb_cost;
10306 
10307 		/*
10308 		 * Stop the load balance at this level. There is another
10309 		 * CPU in our sched group which is doing load balancing more
10310 		 * actively.
10311 		 */
10312 		if (!continue_balancing) {
10313 			if (need_decay)
10314 				continue;
10315 			break;
10316 		}
10317 
10318 		interval = get_sd_balance_interval(sd, busy);
10319 
10320 		need_serialize = sd->flags & SD_SERIALIZE;
10321 		if (need_serialize) {
10322 			if (!spin_trylock(&balancing))
10323 				goto out;
10324 		}
10325 
10326 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
10327 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10328 				/*
10329 				 * The LBF_DST_PINNED logic could have changed
10330 				 * env->dst_cpu, so we can't know our idle
10331 				 * state even if we migrated tasks. Update it.
10332 				 */
10333 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10334 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10335 			}
10336 			sd->last_balance = jiffies;
10337 			interval = get_sd_balance_interval(sd, busy);
10338 		}
10339 		if (need_serialize)
10340 			spin_unlock(&balancing);
10341 out:
10342 		if (time_after(next_balance, sd->last_balance + interval)) {
10343 			next_balance = sd->last_balance + interval;
10344 			update_next_balance = 1;
10345 		}
10346 	}
10347 	if (need_decay) {
10348 		/*
10349 		 * Ensure the rq-wide value also decays but keep it at a
10350 		 * reasonable floor to avoid funnies with rq->avg_idle.
10351 		 */
10352 		rq->max_idle_balance_cost =
10353 			max((u64)sysctl_sched_migration_cost, max_cost);
10354 	}
10355 	rcu_read_unlock();
10356 
10357 	/*
10358 	 * next_balance will be updated only when there is a need.
10359 	 * When the cpu is attached to null domain for ex, it will not be
10360 	 * updated.
10361 	 */
10362 	if (likely(update_next_balance))
10363 		rq->next_balance = next_balance;
10364 
10365 }
10366 
10367 static inline int on_null_domain(struct rq *rq)
10368 {
10369 	return unlikely(!rcu_dereference_sched(rq->sd));
10370 }
10371 
10372 #ifdef CONFIG_NO_HZ_COMMON
10373 /*
10374  * idle load balancing details
10375  * - When one of the busy CPUs notice that there may be an idle rebalancing
10376  *   needed, they will kick the idle load balancer, which then does idle
10377  *   load balancing for all the idle CPUs.
10378  * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED not set
10379  *   anywhere yet.
10380  */
10381 
10382 static inline int find_new_ilb(void)
10383 {
10384 	int ilb;
10385 	const struct cpumask *hk_mask;
10386 
10387 	hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
10388 
10389 	for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
10390 
10391 		if (ilb == smp_processor_id())
10392 			continue;
10393 
10394 		if (idle_cpu(ilb))
10395 			return ilb;
10396 	}
10397 
10398 	return nr_cpu_ids;
10399 }
10400 
10401 /*
10402  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10403  * idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
10404  */
10405 static void kick_ilb(unsigned int flags)
10406 {
10407 	int ilb_cpu;
10408 
10409 	/*
10410 	 * Increase nohz.next_balance only when if full ilb is triggered but
10411 	 * not if we only update stats.
10412 	 */
10413 	if (flags & NOHZ_BALANCE_KICK)
10414 		nohz.next_balance = jiffies+1;
10415 
10416 	ilb_cpu = find_new_ilb();
10417 
10418 	if (ilb_cpu >= nr_cpu_ids)
10419 		return;
10420 
10421 	/*
10422 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10423 	 * the first flag owns it; cleared by nohz_csd_func().
10424 	 */
10425 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10426 	if (flags & NOHZ_KICK_MASK)
10427 		return;
10428 
10429 	/*
10430 	 * This way we generate an IPI on the target CPU which
10431 	 * is idle. And the softirq performing nohz idle load balance
10432 	 * will be run before returning from the IPI.
10433 	 */
10434 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10435 }
10436 
10437 /*
10438  * Current decision point for kicking the idle load balancer in the presence
10439  * of idle CPUs in the system.
10440  */
10441 static void nohz_balancer_kick(struct rq *rq)
10442 {
10443 	unsigned long now = jiffies;
10444 	struct sched_domain_shared *sds;
10445 	struct sched_domain *sd;
10446 	int nr_busy, i, cpu = rq->cpu;
10447 	unsigned int flags = 0;
10448 
10449 	if (unlikely(rq->idle_balance))
10450 		return;
10451 
10452 	/*
10453 	 * We may be recently in ticked or tickless idle mode. At the first
10454 	 * busy tick after returning from idle, we will update the busy stats.
10455 	 */
10456 	nohz_balance_exit_idle(rq);
10457 
10458 	/*
10459 	 * None are in tickless mode and hence no need for NOHZ idle load
10460 	 * balancing.
10461 	 */
10462 	if (likely(!atomic_read(&nohz.nr_cpus)))
10463 		return;
10464 
10465 	if (READ_ONCE(nohz.has_blocked) &&
10466 	    time_after(now, READ_ONCE(nohz.next_blocked)))
10467 		flags = NOHZ_STATS_KICK;
10468 
10469 	if (time_before(now, nohz.next_balance))
10470 		goto out;
10471 
10472 	if (rq->nr_running >= 2) {
10473 		flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10474 		goto out;
10475 	}
10476 
10477 	rcu_read_lock();
10478 
10479 	sd = rcu_dereference(rq->sd);
10480 	if (sd) {
10481 		/*
10482 		 * If there's a CFS task and the current CPU has reduced
10483 		 * capacity; kick the ILB to see if there's a better CPU to run
10484 		 * on.
10485 		 */
10486 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10487 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10488 			goto unlock;
10489 		}
10490 	}
10491 
10492 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10493 	if (sd) {
10494 		/*
10495 		 * When ASYM_PACKING; see if there's a more preferred CPU
10496 		 * currently idle; in which case, kick the ILB to move tasks
10497 		 * around.
10498 		 */
10499 		for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10500 			if (sched_asym_prefer(i, cpu)) {
10501 				flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10502 				goto unlock;
10503 			}
10504 		}
10505 	}
10506 
10507 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10508 	if (sd) {
10509 		/*
10510 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10511 		 * to run the misfit task on.
10512 		 */
10513 		if (check_misfit_status(rq, sd)) {
10514 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10515 			goto unlock;
10516 		}
10517 
10518 		/*
10519 		 * For asymmetric systems, we do not want to nicely balance
10520 		 * cache use, instead we want to embrace asymmetry and only
10521 		 * ensure tasks have enough CPU capacity.
10522 		 *
10523 		 * Skip the LLC logic because it's not relevant in that case.
10524 		 */
10525 		goto unlock;
10526 	}
10527 
10528 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10529 	if (sds) {
10530 		/*
10531 		 * If there is an imbalance between LLC domains (IOW we could
10532 		 * increase the overall cache use), we need some less-loaded LLC
10533 		 * domain to pull some load. Likewise, we may need to spread
10534 		 * load within the current LLC domain (e.g. packed SMT cores but
10535 		 * other CPUs are idle). We can't really know from here how busy
10536 		 * the others are - so just get a nohz balance going if it looks
10537 		 * like this LLC domain has tasks we could move.
10538 		 */
10539 		nr_busy = atomic_read(&sds->nr_busy_cpus);
10540 		if (nr_busy > 1) {
10541 			flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
10542 			goto unlock;
10543 		}
10544 	}
10545 unlock:
10546 	rcu_read_unlock();
10547 out:
10548 	if (READ_ONCE(nohz.needs_update))
10549 		flags |= NOHZ_NEXT_KICK;
10550 
10551 	if (flags)
10552 		kick_ilb(flags);
10553 }
10554 
10555 static void set_cpu_sd_state_busy(int cpu)
10556 {
10557 	struct sched_domain *sd;
10558 
10559 	rcu_read_lock();
10560 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10561 
10562 	if (!sd || !sd->nohz_idle)
10563 		goto unlock;
10564 	sd->nohz_idle = 0;
10565 
10566 	atomic_inc(&sd->shared->nr_busy_cpus);
10567 unlock:
10568 	rcu_read_unlock();
10569 }
10570 
10571 void nohz_balance_exit_idle(struct rq *rq)
10572 {
10573 	SCHED_WARN_ON(rq != this_rq());
10574 
10575 	if (likely(!rq->nohz_tick_stopped))
10576 		return;
10577 
10578 	rq->nohz_tick_stopped = 0;
10579 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10580 	atomic_dec(&nohz.nr_cpus);
10581 
10582 	set_cpu_sd_state_busy(rq->cpu);
10583 }
10584 
10585 static void set_cpu_sd_state_idle(int cpu)
10586 {
10587 	struct sched_domain *sd;
10588 
10589 	rcu_read_lock();
10590 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10591 
10592 	if (!sd || sd->nohz_idle)
10593 		goto unlock;
10594 	sd->nohz_idle = 1;
10595 
10596 	atomic_dec(&sd->shared->nr_busy_cpus);
10597 unlock:
10598 	rcu_read_unlock();
10599 }
10600 
10601 /*
10602  * This routine will record that the CPU is going idle with tick stopped.
10603  * This info will be used in performing idle load balancing in the future.
10604  */
10605 void nohz_balance_enter_idle(int cpu)
10606 {
10607 	struct rq *rq = cpu_rq(cpu);
10608 
10609 	SCHED_WARN_ON(cpu != smp_processor_id());
10610 
10611 	/* If this CPU is going down, then nothing needs to be done: */
10612 	if (!cpu_active(cpu))
10613 		return;
10614 
10615 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
10616 	if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
10617 		return;
10618 
10619 	/*
10620 	 * Can be set safely without rq->lock held
10621 	 * If a clear happens, it will have evaluated last additions because
10622 	 * rq->lock is held during the check and the clear
10623 	 */
10624 	rq->has_blocked_load = 1;
10625 
10626 	/*
10627 	 * The tick is still stopped but load could have been added in the
10628 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
10629 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10630 	 * of nohz.has_blocked can only happen after checking the new load
10631 	 */
10632 	if (rq->nohz_tick_stopped)
10633 		goto out;
10634 
10635 	/* If we're a completely isolated CPU, we don't play: */
10636 	if (on_null_domain(rq))
10637 		return;
10638 
10639 	rq->nohz_tick_stopped = 1;
10640 
10641 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10642 	atomic_inc(&nohz.nr_cpus);
10643 
10644 	/*
10645 	 * Ensures that if nohz_idle_balance() fails to observe our
10646 	 * @idle_cpus_mask store, it must observe the @has_blocked
10647 	 * and @needs_update stores.
10648 	 */
10649 	smp_mb__after_atomic();
10650 
10651 	set_cpu_sd_state_idle(cpu);
10652 
10653 	WRITE_ONCE(nohz.needs_update, 1);
10654 out:
10655 	/*
10656 	 * Each time a cpu enter idle, we assume that it has blocked load and
10657 	 * enable the periodic update of the load of idle cpus
10658 	 */
10659 	WRITE_ONCE(nohz.has_blocked, 1);
10660 }
10661 
10662 static bool update_nohz_stats(struct rq *rq)
10663 {
10664 	unsigned int cpu = rq->cpu;
10665 
10666 	if (!rq->has_blocked_load)
10667 		return false;
10668 
10669 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10670 		return false;
10671 
10672 	if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10673 		return true;
10674 
10675 	update_blocked_averages(cpu);
10676 
10677 	return rq->has_blocked_load;
10678 }
10679 
10680 /*
10681  * Internal function that runs load balance for all idle cpus. The load balance
10682  * can be a simple update of blocked load or a complete load balance with
10683  * tasks movement depending of flags.
10684  */
10685 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10686 			       enum cpu_idle_type idle)
10687 {
10688 	/* Earliest time when we have to do rebalance again */
10689 	unsigned long now = jiffies;
10690 	unsigned long next_balance = now + 60*HZ;
10691 	bool has_blocked_load = false;
10692 	int update_next_balance = 0;
10693 	int this_cpu = this_rq->cpu;
10694 	int balance_cpu;
10695 	struct rq *rq;
10696 
10697 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10698 
10699 	/*
10700 	 * We assume there will be no idle load after this update and clear
10701 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10702 	 * set the has_blocked flag and trigger another update of idle load.
10703 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10704 	 * setting the flag, we are sure to not clear the state and not
10705 	 * check the load of an idle cpu.
10706 	 *
10707 	 * Same applies to idle_cpus_mask vs needs_update.
10708 	 */
10709 	if (flags & NOHZ_STATS_KICK)
10710 		WRITE_ONCE(nohz.has_blocked, 0);
10711 	if (flags & NOHZ_NEXT_KICK)
10712 		WRITE_ONCE(nohz.needs_update, 0);
10713 
10714 	/*
10715 	 * Ensures that if we miss the CPU, we must see the has_blocked
10716 	 * store from nohz_balance_enter_idle().
10717 	 */
10718 	smp_mb();
10719 
10720 	/*
10721 	 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10722 	 * chance for other idle cpu to pull load.
10723 	 */
10724 	for_each_cpu_wrap(balance_cpu,  nohz.idle_cpus_mask, this_cpu+1) {
10725 		if (!idle_cpu(balance_cpu))
10726 			continue;
10727 
10728 		/*
10729 		 * If this CPU gets work to do, stop the load balancing
10730 		 * work being done for other CPUs. Next load
10731 		 * balancing owner will pick it up.
10732 		 */
10733 		if (need_resched()) {
10734 			if (flags & NOHZ_STATS_KICK)
10735 				has_blocked_load = true;
10736 			if (flags & NOHZ_NEXT_KICK)
10737 				WRITE_ONCE(nohz.needs_update, 1);
10738 			goto abort;
10739 		}
10740 
10741 		rq = cpu_rq(balance_cpu);
10742 
10743 		if (flags & NOHZ_STATS_KICK)
10744 			has_blocked_load |= update_nohz_stats(rq);
10745 
10746 		/*
10747 		 * If time for next balance is due,
10748 		 * do the balance.
10749 		 */
10750 		if (time_after_eq(jiffies, rq->next_balance)) {
10751 			struct rq_flags rf;
10752 
10753 			rq_lock_irqsave(rq, &rf);
10754 			update_rq_clock(rq);
10755 			rq_unlock_irqrestore(rq, &rf);
10756 
10757 			if (flags & NOHZ_BALANCE_KICK)
10758 				rebalance_domains(rq, CPU_IDLE);
10759 		}
10760 
10761 		if (time_after(next_balance, rq->next_balance)) {
10762 			next_balance = rq->next_balance;
10763 			update_next_balance = 1;
10764 		}
10765 	}
10766 
10767 	/*
10768 	 * next_balance will be updated only when there is a need.
10769 	 * When the CPU is attached to null domain for ex, it will not be
10770 	 * updated.
10771 	 */
10772 	if (likely(update_next_balance))
10773 		nohz.next_balance = next_balance;
10774 
10775 	if (flags & NOHZ_STATS_KICK)
10776 		WRITE_ONCE(nohz.next_blocked,
10777 			   now + msecs_to_jiffies(LOAD_AVG_PERIOD));
10778 
10779 abort:
10780 	/* There is still blocked load, enable periodic update */
10781 	if (has_blocked_load)
10782 		WRITE_ONCE(nohz.has_blocked, 1);
10783 }
10784 
10785 /*
10786  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
10787  * rebalancing for all the cpus for whom scheduler ticks are stopped.
10788  */
10789 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10790 {
10791 	unsigned int flags = this_rq->nohz_idle_balance;
10792 
10793 	if (!flags)
10794 		return false;
10795 
10796 	this_rq->nohz_idle_balance = 0;
10797 
10798 	if (idle != CPU_IDLE)
10799 		return false;
10800 
10801 	_nohz_idle_balance(this_rq, flags, idle);
10802 
10803 	return true;
10804 }
10805 
10806 /*
10807  * Check if we need to run the ILB for updating blocked load before entering
10808  * idle state.
10809  */
10810 void nohz_run_idle_balance(int cpu)
10811 {
10812 	unsigned int flags;
10813 
10814 	flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
10815 
10816 	/*
10817 	 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
10818 	 * (ie NOHZ_STATS_KICK set) and will do the same.
10819 	 */
10820 	if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
10821 		_nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
10822 }
10823 
10824 static void nohz_newidle_balance(struct rq *this_rq)
10825 {
10826 	int this_cpu = this_rq->cpu;
10827 
10828 	/*
10829 	 * This CPU doesn't want to be disturbed by scheduler
10830 	 * housekeeping
10831 	 */
10832 	if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
10833 		return;
10834 
10835 	/* Will wake up very soon. No time for doing anything else*/
10836 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
10837 		return;
10838 
10839 	/* Don't need to update blocked load of idle CPUs*/
10840 	if (!READ_ONCE(nohz.has_blocked) ||
10841 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
10842 		return;
10843 
10844 	/*
10845 	 * Set the need to trigger ILB in order to update blocked load
10846 	 * before entering idle state.
10847 	 */
10848 	atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
10849 }
10850 
10851 #else /* !CONFIG_NO_HZ_COMMON */
10852 static inline void nohz_balancer_kick(struct rq *rq) { }
10853 
10854 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
10855 {
10856 	return false;
10857 }
10858 
10859 static inline void nohz_newidle_balance(struct rq *this_rq) { }
10860 #endif /* CONFIG_NO_HZ_COMMON */
10861 
10862 /*
10863  * newidle_balance is called by schedule() if this_cpu is about to become
10864  * idle. Attempts to pull tasks from other CPUs.
10865  *
10866  * Returns:
10867  *   < 0 - we released the lock and there are !fair tasks present
10868  *     0 - failed, no new tasks
10869  *   > 0 - success, new (fair) tasks present
10870  */
10871 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
10872 {
10873 	unsigned long next_balance = jiffies + HZ;
10874 	int this_cpu = this_rq->cpu;
10875 	u64 t0, t1, curr_cost = 0;
10876 	struct sched_domain *sd;
10877 	int pulled_task = 0;
10878 
10879 	update_misfit_status(NULL, this_rq);
10880 
10881 	/*
10882 	 * There is a task waiting to run. No need to search for one.
10883 	 * Return 0; the task will be enqueued when switching to idle.
10884 	 */
10885 	if (this_rq->ttwu_pending)
10886 		return 0;
10887 
10888 	/*
10889 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
10890 	 * measure the duration of idle_balance() as idle time.
10891 	 */
10892 	this_rq->idle_stamp = rq_clock(this_rq);
10893 
10894 	/*
10895 	 * Do not pull tasks towards !active CPUs...
10896 	 */
10897 	if (!cpu_active(this_cpu))
10898 		return 0;
10899 
10900 	/*
10901 	 * This is OK, because current is on_cpu, which avoids it being picked
10902 	 * for load-balance and preemption/IRQs are still disabled avoiding
10903 	 * further scheduler activity on it and we're being very careful to
10904 	 * re-start the picking loop.
10905 	 */
10906 	rq_unpin_lock(this_rq, rf);
10907 
10908 	rcu_read_lock();
10909 	sd = rcu_dereference_check_sched_domain(this_rq->sd);
10910 
10911 	if (!READ_ONCE(this_rq->rd->overload) ||
10912 	    (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
10913 
10914 		if (sd)
10915 			update_next_balance(sd, &next_balance);
10916 		rcu_read_unlock();
10917 
10918 		goto out;
10919 	}
10920 	rcu_read_unlock();
10921 
10922 	raw_spin_rq_unlock(this_rq);
10923 
10924 	t0 = sched_clock_cpu(this_cpu);
10925 	update_blocked_averages(this_cpu);
10926 
10927 	rcu_read_lock();
10928 	for_each_domain(this_cpu, sd) {
10929 		int continue_balancing = 1;
10930 		u64 domain_cost;
10931 
10932 		update_next_balance(sd, &next_balance);
10933 
10934 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
10935 			break;
10936 
10937 		if (sd->flags & SD_BALANCE_NEWIDLE) {
10938 
10939 			pulled_task = load_balance(this_cpu, this_rq,
10940 						   sd, CPU_NEWLY_IDLE,
10941 						   &continue_balancing);
10942 
10943 			t1 = sched_clock_cpu(this_cpu);
10944 			domain_cost = t1 - t0;
10945 			update_newidle_cost(sd, domain_cost);
10946 
10947 			curr_cost += domain_cost;
10948 			t0 = t1;
10949 		}
10950 
10951 		/*
10952 		 * Stop searching for tasks to pull if there are
10953 		 * now runnable tasks on this rq.
10954 		 */
10955 		if (pulled_task || this_rq->nr_running > 0 ||
10956 		    this_rq->ttwu_pending)
10957 			break;
10958 	}
10959 	rcu_read_unlock();
10960 
10961 	raw_spin_rq_lock(this_rq);
10962 
10963 	if (curr_cost > this_rq->max_idle_balance_cost)
10964 		this_rq->max_idle_balance_cost = curr_cost;
10965 
10966 	/*
10967 	 * While browsing the domains, we released the rq lock, a task could
10968 	 * have been enqueued in the meantime. Since we're not going idle,
10969 	 * pretend we pulled a task.
10970 	 */
10971 	if (this_rq->cfs.h_nr_running && !pulled_task)
10972 		pulled_task = 1;
10973 
10974 	/* Is there a task of a high priority class? */
10975 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
10976 		pulled_task = -1;
10977 
10978 out:
10979 	/* Move the next balance forward */
10980 	if (time_after(this_rq->next_balance, next_balance))
10981 		this_rq->next_balance = next_balance;
10982 
10983 	if (pulled_task)
10984 		this_rq->idle_stamp = 0;
10985 	else
10986 		nohz_newidle_balance(this_rq);
10987 
10988 	rq_repin_lock(this_rq, rf);
10989 
10990 	return pulled_task;
10991 }
10992 
10993 /*
10994  * run_rebalance_domains is triggered when needed from the scheduler tick.
10995  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
10996  */
10997 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
10998 {
10999 	struct rq *this_rq = this_rq();
11000 	enum cpu_idle_type idle = this_rq->idle_balance ?
11001 						CPU_IDLE : CPU_NOT_IDLE;
11002 
11003 	/*
11004 	 * If this CPU has a pending nohz_balance_kick, then do the
11005 	 * balancing on behalf of the other idle CPUs whose ticks are
11006 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
11007 	 * give the idle CPUs a chance to load balance. Else we may
11008 	 * load balance only within the local sched_domain hierarchy
11009 	 * and abort nohz_idle_balance altogether if we pull some load.
11010 	 */
11011 	if (nohz_idle_balance(this_rq, idle))
11012 		return;
11013 
11014 	/* normal load balance */
11015 	update_blocked_averages(this_rq->cpu);
11016 	rebalance_domains(this_rq, idle);
11017 }
11018 
11019 /*
11020  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
11021  */
11022 void trigger_load_balance(struct rq *rq)
11023 {
11024 	/*
11025 	 * Don't need to rebalance while attached to NULL domain or
11026 	 * runqueue CPU is not active
11027 	 */
11028 	if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
11029 		return;
11030 
11031 	if (time_after_eq(jiffies, rq->next_balance))
11032 		raise_softirq(SCHED_SOFTIRQ);
11033 
11034 	nohz_balancer_kick(rq);
11035 }
11036 
11037 static void rq_online_fair(struct rq *rq)
11038 {
11039 	update_sysctl();
11040 
11041 	update_runtime_enabled(rq);
11042 }
11043 
11044 static void rq_offline_fair(struct rq *rq)
11045 {
11046 	update_sysctl();
11047 
11048 	/* Ensure any throttled groups are reachable by pick_next_task */
11049 	unthrottle_offline_cfs_rqs(rq);
11050 }
11051 
11052 #endif /* CONFIG_SMP */
11053 
11054 #ifdef CONFIG_SCHED_CORE
11055 static inline bool
11056 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
11057 {
11058 	u64 slice = sched_slice(cfs_rq_of(se), se);
11059 	u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
11060 
11061 	return (rtime * min_nr_tasks > slice);
11062 }
11063 
11064 #define MIN_NR_TASKS_DURING_FORCEIDLE	2
11065 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
11066 {
11067 	if (!sched_core_enabled(rq))
11068 		return;
11069 
11070 	/*
11071 	 * If runqueue has only one task which used up its slice and
11072 	 * if the sibling is forced idle, then trigger schedule to
11073 	 * give forced idle task a chance.
11074 	 *
11075 	 * sched_slice() considers only this active rq and it gets the
11076 	 * whole slice. But during force idle, we have siblings acting
11077 	 * like a single runqueue and hence we need to consider runnable
11078 	 * tasks on this CPU and the forced idle CPU. Ideally, we should
11079 	 * go through the forced idle rq, but that would be a perf hit.
11080 	 * We can assume that the forced idle CPU has at least
11081 	 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
11082 	 * if we need to give up the CPU.
11083 	 */
11084 	if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
11085 	    __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
11086 		resched_curr(rq);
11087 }
11088 
11089 /*
11090  * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
11091  */
11092 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
11093 {
11094 	for_each_sched_entity(se) {
11095 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11096 
11097 		if (forceidle) {
11098 			if (cfs_rq->forceidle_seq == fi_seq)
11099 				break;
11100 			cfs_rq->forceidle_seq = fi_seq;
11101 		}
11102 
11103 		cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11104 	}
11105 }
11106 
11107 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11108 {
11109 	struct sched_entity *se = &p->se;
11110 
11111 	if (p->sched_class != &fair_sched_class)
11112 		return;
11113 
11114 	se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11115 }
11116 
11117 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11118 {
11119 	struct rq *rq = task_rq(a);
11120 	struct sched_entity *sea = &a->se;
11121 	struct sched_entity *seb = &b->se;
11122 	struct cfs_rq *cfs_rqa;
11123 	struct cfs_rq *cfs_rqb;
11124 	s64 delta;
11125 
11126 	SCHED_WARN_ON(task_rq(b)->core != rq->core);
11127 
11128 #ifdef CONFIG_FAIR_GROUP_SCHED
11129 	/*
11130 	 * Find an se in the hierarchy for tasks a and b, such that the se's
11131 	 * are immediate siblings.
11132 	 */
11133 	while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11134 		int sea_depth = sea->depth;
11135 		int seb_depth = seb->depth;
11136 
11137 		if (sea_depth >= seb_depth)
11138 			sea = parent_entity(sea);
11139 		if (sea_depth <= seb_depth)
11140 			seb = parent_entity(seb);
11141 	}
11142 
11143 	se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11144 	se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11145 
11146 	cfs_rqa = sea->cfs_rq;
11147 	cfs_rqb = seb->cfs_rq;
11148 #else
11149 	cfs_rqa = &task_rq(a)->cfs;
11150 	cfs_rqb = &task_rq(b)->cfs;
11151 #endif
11152 
11153 	/*
11154 	 * Find delta after normalizing se's vruntime with its cfs_rq's
11155 	 * min_vruntime_fi, which would have been updated in prior calls
11156 	 * to se_fi_update().
11157 	 */
11158 	delta = (s64)(sea->vruntime - seb->vruntime) +
11159 		(s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11160 
11161 	return delta > 0;
11162 }
11163 #else
11164 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11165 #endif
11166 
11167 /*
11168  * scheduler tick hitting a task of our scheduling class.
11169  *
11170  * NOTE: This function can be called remotely by the tick offload that
11171  * goes along full dynticks. Therefore no local assumption can be made
11172  * and everything must be accessed through the @rq and @curr passed in
11173  * parameters.
11174  */
11175 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11176 {
11177 	struct cfs_rq *cfs_rq;
11178 	struct sched_entity *se = &curr->se;
11179 
11180 	for_each_sched_entity(se) {
11181 		cfs_rq = cfs_rq_of(se);
11182 		entity_tick(cfs_rq, se, queued);
11183 	}
11184 
11185 	if (static_branch_unlikely(&sched_numa_balancing))
11186 		task_tick_numa(rq, curr);
11187 
11188 	update_misfit_status(curr, rq);
11189 	update_overutilized_status(task_rq(curr));
11190 
11191 	task_tick_core(rq, curr);
11192 }
11193 
11194 /*
11195  * called on fork with the child task as argument from the parent's context
11196  *  - child not yet on the tasklist
11197  *  - preemption disabled
11198  */
11199 static void task_fork_fair(struct task_struct *p)
11200 {
11201 	struct cfs_rq *cfs_rq;
11202 	struct sched_entity *se = &p->se, *curr;
11203 	struct rq *rq = this_rq();
11204 	struct rq_flags rf;
11205 
11206 	rq_lock(rq, &rf);
11207 	update_rq_clock(rq);
11208 
11209 	cfs_rq = task_cfs_rq(current);
11210 	curr = cfs_rq->curr;
11211 	if (curr) {
11212 		update_curr(cfs_rq);
11213 		se->vruntime = curr->vruntime;
11214 	}
11215 	place_entity(cfs_rq, se, 1);
11216 
11217 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11218 		/*
11219 		 * Upon rescheduling, sched_class::put_prev_task() will place
11220 		 * 'current' within the tree based on its new key value.
11221 		 */
11222 		swap(curr->vruntime, se->vruntime);
11223 		resched_curr(rq);
11224 	}
11225 
11226 	se->vruntime -= cfs_rq->min_vruntime;
11227 	rq_unlock(rq, &rf);
11228 }
11229 
11230 /*
11231  * Priority of the task has changed. Check to see if we preempt
11232  * the current task.
11233  */
11234 static void
11235 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11236 {
11237 	if (!task_on_rq_queued(p))
11238 		return;
11239 
11240 	if (rq->cfs.nr_running == 1)
11241 		return;
11242 
11243 	/*
11244 	 * Reschedule if we are currently running on this runqueue and
11245 	 * our priority decreased, or if we are not currently running on
11246 	 * this runqueue and our priority is higher than the current's
11247 	 */
11248 	if (task_current(rq, p)) {
11249 		if (p->prio > oldprio)
11250 			resched_curr(rq);
11251 	} else
11252 		check_preempt_curr(rq, p, 0);
11253 }
11254 
11255 static inline bool vruntime_normalized(struct task_struct *p)
11256 {
11257 	struct sched_entity *se = &p->se;
11258 
11259 	/*
11260 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11261 	 * the dequeue_entity(.flags=0) will already have normalized the
11262 	 * vruntime.
11263 	 */
11264 	if (p->on_rq)
11265 		return true;
11266 
11267 	/*
11268 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
11269 	 * But there are some cases where it has already been normalized:
11270 	 *
11271 	 * - A forked child which is waiting for being woken up by
11272 	 *   wake_up_new_task().
11273 	 * - A task which has been woken up by try_to_wake_up() and
11274 	 *   waiting for actually being woken up by sched_ttwu_pending().
11275 	 */
11276 	if (!se->sum_exec_runtime ||
11277 	    (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11278 		return true;
11279 
11280 	return false;
11281 }
11282 
11283 #ifdef CONFIG_FAIR_GROUP_SCHED
11284 /*
11285  * Propagate the changes of the sched_entity across the tg tree to make it
11286  * visible to the root
11287  */
11288 static void propagate_entity_cfs_rq(struct sched_entity *se)
11289 {
11290 	struct cfs_rq *cfs_rq;
11291 
11292 	list_add_leaf_cfs_rq(cfs_rq_of(se));
11293 
11294 	/* Start to propagate at parent */
11295 	se = se->parent;
11296 
11297 	for_each_sched_entity(se) {
11298 		cfs_rq = cfs_rq_of(se);
11299 
11300 		if (!cfs_rq_throttled(cfs_rq)){
11301 			update_load_avg(cfs_rq, se, UPDATE_TG);
11302 			list_add_leaf_cfs_rq(cfs_rq);
11303 			continue;
11304 		}
11305 
11306 		if (list_add_leaf_cfs_rq(cfs_rq))
11307 			break;
11308 	}
11309 }
11310 #else
11311 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11312 #endif
11313 
11314 static void detach_entity_cfs_rq(struct sched_entity *se)
11315 {
11316 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11317 
11318 	/* Catch up with the cfs_rq and remove our load when we leave */
11319 	update_load_avg(cfs_rq, se, 0);
11320 	detach_entity_load_avg(cfs_rq, se);
11321 	update_tg_load_avg(cfs_rq);
11322 	propagate_entity_cfs_rq(se);
11323 }
11324 
11325 static void attach_entity_cfs_rq(struct sched_entity *se)
11326 {
11327 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11328 
11329 #ifdef CONFIG_FAIR_GROUP_SCHED
11330 	/*
11331 	 * Since the real-depth could have been changed (only FAIR
11332 	 * class maintain depth value), reset depth properly.
11333 	 */
11334 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11335 #endif
11336 
11337 	/* Synchronize entity with its cfs_rq */
11338 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11339 	attach_entity_load_avg(cfs_rq, se);
11340 	update_tg_load_avg(cfs_rq);
11341 	propagate_entity_cfs_rq(se);
11342 }
11343 
11344 static void detach_task_cfs_rq(struct task_struct *p)
11345 {
11346 	struct sched_entity *se = &p->se;
11347 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11348 
11349 	if (!vruntime_normalized(p)) {
11350 		/*
11351 		 * Fix up our vruntime so that the current sleep doesn't
11352 		 * cause 'unlimited' sleep bonus.
11353 		 */
11354 		place_entity(cfs_rq, se, 0);
11355 		se->vruntime -= cfs_rq->min_vruntime;
11356 	}
11357 
11358 	detach_entity_cfs_rq(se);
11359 }
11360 
11361 static void attach_task_cfs_rq(struct task_struct *p)
11362 {
11363 	struct sched_entity *se = &p->se;
11364 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11365 
11366 	attach_entity_cfs_rq(se);
11367 
11368 	if (!vruntime_normalized(p))
11369 		se->vruntime += cfs_rq->min_vruntime;
11370 }
11371 
11372 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11373 {
11374 	detach_task_cfs_rq(p);
11375 }
11376 
11377 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11378 {
11379 	attach_task_cfs_rq(p);
11380 
11381 	if (task_on_rq_queued(p)) {
11382 		/*
11383 		 * We were most likely switched from sched_rt, so
11384 		 * kick off the schedule if running, otherwise just see
11385 		 * if we can still preempt the current task.
11386 		 */
11387 		if (task_current(rq, p))
11388 			resched_curr(rq);
11389 		else
11390 			check_preempt_curr(rq, p, 0);
11391 	}
11392 }
11393 
11394 /* Account for a task changing its policy or group.
11395  *
11396  * This routine is mostly called to set cfs_rq->curr field when a task
11397  * migrates between groups/classes.
11398  */
11399 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11400 {
11401 	struct sched_entity *se = &p->se;
11402 
11403 #ifdef CONFIG_SMP
11404 	if (task_on_rq_queued(p)) {
11405 		/*
11406 		 * Move the next running task to the front of the list, so our
11407 		 * cfs_tasks list becomes MRU one.
11408 		 */
11409 		list_move(&se->group_node, &rq->cfs_tasks);
11410 	}
11411 #endif
11412 
11413 	for_each_sched_entity(se) {
11414 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11415 
11416 		set_next_entity(cfs_rq, se);
11417 		/* ensure bandwidth has been allocated on our new cfs_rq */
11418 		account_cfs_rq_runtime(cfs_rq, 0);
11419 	}
11420 }
11421 
11422 void init_cfs_rq(struct cfs_rq *cfs_rq)
11423 {
11424 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11425 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11426 #ifndef CONFIG_64BIT
11427 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11428 #endif
11429 #ifdef CONFIG_SMP
11430 	raw_spin_lock_init(&cfs_rq->removed.lock);
11431 #endif
11432 }
11433 
11434 #ifdef CONFIG_FAIR_GROUP_SCHED
11435 static void task_set_group_fair(struct task_struct *p)
11436 {
11437 	struct sched_entity *se = &p->se;
11438 
11439 	set_task_rq(p, task_cpu(p));
11440 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11441 }
11442 
11443 static void task_move_group_fair(struct task_struct *p)
11444 {
11445 	detach_task_cfs_rq(p);
11446 	set_task_rq(p, task_cpu(p));
11447 
11448 #ifdef CONFIG_SMP
11449 	/* Tell se's cfs_rq has been changed -- migrated */
11450 	p->se.avg.last_update_time = 0;
11451 #endif
11452 	attach_task_cfs_rq(p);
11453 }
11454 
11455 static void task_change_group_fair(struct task_struct *p, int type)
11456 {
11457 	switch (type) {
11458 	case TASK_SET_GROUP:
11459 		task_set_group_fair(p);
11460 		break;
11461 
11462 	case TASK_MOVE_GROUP:
11463 		task_move_group_fair(p);
11464 		break;
11465 	}
11466 }
11467 
11468 void free_fair_sched_group(struct task_group *tg)
11469 {
11470 	int i;
11471 
11472 	for_each_possible_cpu(i) {
11473 		if (tg->cfs_rq)
11474 			kfree(tg->cfs_rq[i]);
11475 		if (tg->se)
11476 			kfree(tg->se[i]);
11477 	}
11478 
11479 	kfree(tg->cfs_rq);
11480 	kfree(tg->se);
11481 }
11482 
11483 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11484 {
11485 	struct sched_entity *se;
11486 	struct cfs_rq *cfs_rq;
11487 	int i;
11488 
11489 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11490 	if (!tg->cfs_rq)
11491 		goto err;
11492 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11493 	if (!tg->se)
11494 		goto err;
11495 
11496 	tg->shares = NICE_0_LOAD;
11497 
11498 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11499 
11500 	for_each_possible_cpu(i) {
11501 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11502 				      GFP_KERNEL, cpu_to_node(i));
11503 		if (!cfs_rq)
11504 			goto err;
11505 
11506 		se = kzalloc_node(sizeof(struct sched_entity_stats),
11507 				  GFP_KERNEL, cpu_to_node(i));
11508 		if (!se)
11509 			goto err_free_rq;
11510 
11511 		init_cfs_rq(cfs_rq);
11512 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11513 		init_entity_runnable_average(se);
11514 	}
11515 
11516 	return 1;
11517 
11518 err_free_rq:
11519 	kfree(cfs_rq);
11520 err:
11521 	return 0;
11522 }
11523 
11524 void online_fair_sched_group(struct task_group *tg)
11525 {
11526 	struct sched_entity *se;
11527 	struct rq_flags rf;
11528 	struct rq *rq;
11529 	int i;
11530 
11531 	for_each_possible_cpu(i) {
11532 		rq = cpu_rq(i);
11533 		se = tg->se[i];
11534 		rq_lock_irq(rq, &rf);
11535 		update_rq_clock(rq);
11536 		attach_entity_cfs_rq(se);
11537 		sync_throttle(tg, i);
11538 		rq_unlock_irq(rq, &rf);
11539 	}
11540 }
11541 
11542 void unregister_fair_sched_group(struct task_group *tg)
11543 {
11544 	unsigned long flags;
11545 	struct rq *rq;
11546 	int cpu;
11547 
11548 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11549 
11550 	for_each_possible_cpu(cpu) {
11551 		if (tg->se[cpu])
11552 			remove_entity_load_avg(tg->se[cpu]);
11553 
11554 		/*
11555 		 * Only empty task groups can be destroyed; so we can speculatively
11556 		 * check on_list without danger of it being re-added.
11557 		 */
11558 		if (!tg->cfs_rq[cpu]->on_list)
11559 			continue;
11560 
11561 		rq = cpu_rq(cpu);
11562 
11563 		raw_spin_rq_lock_irqsave(rq, flags);
11564 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11565 		raw_spin_rq_unlock_irqrestore(rq, flags);
11566 	}
11567 }
11568 
11569 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11570 			struct sched_entity *se, int cpu,
11571 			struct sched_entity *parent)
11572 {
11573 	struct rq *rq = cpu_rq(cpu);
11574 
11575 	cfs_rq->tg = tg;
11576 	cfs_rq->rq = rq;
11577 	init_cfs_rq_runtime(cfs_rq);
11578 
11579 	tg->cfs_rq[cpu] = cfs_rq;
11580 	tg->se[cpu] = se;
11581 
11582 	/* se could be NULL for root_task_group */
11583 	if (!se)
11584 		return;
11585 
11586 	if (!parent) {
11587 		se->cfs_rq = &rq->cfs;
11588 		se->depth = 0;
11589 	} else {
11590 		se->cfs_rq = parent->my_q;
11591 		se->depth = parent->depth + 1;
11592 	}
11593 
11594 	se->my_q = cfs_rq;
11595 	/* guarantee group entities always have weight */
11596 	update_load_set(&se->load, NICE_0_LOAD);
11597 	se->parent = parent;
11598 }
11599 
11600 static DEFINE_MUTEX(shares_mutex);
11601 
11602 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
11603 {
11604 	int i;
11605 
11606 	lockdep_assert_held(&shares_mutex);
11607 
11608 	/*
11609 	 * We can't change the weight of the root cgroup.
11610 	 */
11611 	if (!tg->se[0])
11612 		return -EINVAL;
11613 
11614 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11615 
11616 	if (tg->shares == shares)
11617 		return 0;
11618 
11619 	tg->shares = shares;
11620 	for_each_possible_cpu(i) {
11621 		struct rq *rq = cpu_rq(i);
11622 		struct sched_entity *se = tg->se[i];
11623 		struct rq_flags rf;
11624 
11625 		/* Propagate contribution to hierarchy */
11626 		rq_lock_irqsave(rq, &rf);
11627 		update_rq_clock(rq);
11628 		for_each_sched_entity(se) {
11629 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11630 			update_cfs_group(se);
11631 		}
11632 		rq_unlock_irqrestore(rq, &rf);
11633 	}
11634 
11635 	return 0;
11636 }
11637 
11638 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11639 {
11640 	int ret;
11641 
11642 	mutex_lock(&shares_mutex);
11643 	if (tg_is_idle(tg))
11644 		ret = -EINVAL;
11645 	else
11646 		ret = __sched_group_set_shares(tg, shares);
11647 	mutex_unlock(&shares_mutex);
11648 
11649 	return ret;
11650 }
11651 
11652 int sched_group_set_idle(struct task_group *tg, long idle)
11653 {
11654 	int i;
11655 
11656 	if (tg == &root_task_group)
11657 		return -EINVAL;
11658 
11659 	if (idle < 0 || idle > 1)
11660 		return -EINVAL;
11661 
11662 	mutex_lock(&shares_mutex);
11663 
11664 	if (tg->idle == idle) {
11665 		mutex_unlock(&shares_mutex);
11666 		return 0;
11667 	}
11668 
11669 	tg->idle = idle;
11670 
11671 	for_each_possible_cpu(i) {
11672 		struct rq *rq = cpu_rq(i);
11673 		struct sched_entity *se = tg->se[i];
11674 		struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
11675 		bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
11676 		long idle_task_delta;
11677 		struct rq_flags rf;
11678 
11679 		rq_lock_irqsave(rq, &rf);
11680 
11681 		grp_cfs_rq->idle = idle;
11682 		if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
11683 			goto next_cpu;
11684 
11685 		if (se->on_rq) {
11686 			parent_cfs_rq = cfs_rq_of(se);
11687 			if (cfs_rq_is_idle(grp_cfs_rq))
11688 				parent_cfs_rq->idle_nr_running++;
11689 			else
11690 				parent_cfs_rq->idle_nr_running--;
11691 		}
11692 
11693 		idle_task_delta = grp_cfs_rq->h_nr_running -
11694 				  grp_cfs_rq->idle_h_nr_running;
11695 		if (!cfs_rq_is_idle(grp_cfs_rq))
11696 			idle_task_delta *= -1;
11697 
11698 		for_each_sched_entity(se) {
11699 			struct cfs_rq *cfs_rq = cfs_rq_of(se);
11700 
11701 			if (!se->on_rq)
11702 				break;
11703 
11704 			cfs_rq->idle_h_nr_running += idle_task_delta;
11705 
11706 			/* Already accounted at parent level and above. */
11707 			if (cfs_rq_is_idle(cfs_rq))
11708 				break;
11709 		}
11710 
11711 next_cpu:
11712 		rq_unlock_irqrestore(rq, &rf);
11713 	}
11714 
11715 	/* Idle groups have minimum weight. */
11716 	if (tg_is_idle(tg))
11717 		__sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
11718 	else
11719 		__sched_group_set_shares(tg, NICE_0_LOAD);
11720 
11721 	mutex_unlock(&shares_mutex);
11722 	return 0;
11723 }
11724 
11725 #else /* CONFIG_FAIR_GROUP_SCHED */
11726 
11727 void free_fair_sched_group(struct task_group *tg) { }
11728 
11729 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11730 {
11731 	return 1;
11732 }
11733 
11734 void online_fair_sched_group(struct task_group *tg) { }
11735 
11736 void unregister_fair_sched_group(struct task_group *tg) { }
11737 
11738 #endif /* CONFIG_FAIR_GROUP_SCHED */
11739 
11740 
11741 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11742 {
11743 	struct sched_entity *se = &task->se;
11744 	unsigned int rr_interval = 0;
11745 
11746 	/*
11747 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11748 	 * idle runqueue:
11749 	 */
11750 	if (rq->cfs.load.weight)
11751 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11752 
11753 	return rr_interval;
11754 }
11755 
11756 /*
11757  * All the scheduling class methods:
11758  */
11759 DEFINE_SCHED_CLASS(fair) = {
11760 
11761 	.enqueue_task		= enqueue_task_fair,
11762 	.dequeue_task		= dequeue_task_fair,
11763 	.yield_task		= yield_task_fair,
11764 	.yield_to_task		= yield_to_task_fair,
11765 
11766 	.check_preempt_curr	= check_preempt_wakeup,
11767 
11768 	.pick_next_task		= __pick_next_task_fair,
11769 	.put_prev_task		= put_prev_task_fair,
11770 	.set_next_task          = set_next_task_fair,
11771 
11772 #ifdef CONFIG_SMP
11773 	.balance		= balance_fair,
11774 	.pick_task		= pick_task_fair,
11775 	.select_task_rq		= select_task_rq_fair,
11776 	.migrate_task_rq	= migrate_task_rq_fair,
11777 
11778 	.rq_online		= rq_online_fair,
11779 	.rq_offline		= rq_offline_fair,
11780 
11781 	.task_dead		= task_dead_fair,
11782 	.set_cpus_allowed	= set_cpus_allowed_common,
11783 #endif
11784 
11785 	.task_tick		= task_tick_fair,
11786 	.task_fork		= task_fork_fair,
11787 
11788 	.prio_changed		= prio_changed_fair,
11789 	.switched_from		= switched_from_fair,
11790 	.switched_to		= switched_to_fair,
11791 
11792 	.get_rr_interval	= get_rr_interval_fair,
11793 
11794 	.update_curr		= update_curr_fair,
11795 
11796 #ifdef CONFIG_FAIR_GROUP_SCHED
11797 	.task_change_group	= task_change_group_fair,
11798 #endif
11799 
11800 #ifdef CONFIG_UCLAMP_TASK
11801 	.uclamp_enabled		= 1,
11802 #endif
11803 };
11804 
11805 #ifdef CONFIG_SCHED_DEBUG
11806 void print_cfs_stats(struct seq_file *m, int cpu)
11807 {
11808 	struct cfs_rq *cfs_rq, *pos;
11809 
11810 	rcu_read_lock();
11811 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
11812 		print_cfs_rq(m, cpu, cfs_rq);
11813 	rcu_read_unlock();
11814 }
11815 
11816 #ifdef CONFIG_NUMA_BALANCING
11817 void show_numa_stats(struct task_struct *p, struct seq_file *m)
11818 {
11819 	int node;
11820 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
11821 	struct numa_group *ng;
11822 
11823 	rcu_read_lock();
11824 	ng = rcu_dereference(p->numa_group);
11825 	for_each_online_node(node) {
11826 		if (p->numa_faults) {
11827 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
11828 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
11829 		}
11830 		if (ng) {
11831 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
11832 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
11833 		}
11834 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
11835 	}
11836 	rcu_read_unlock();
11837 }
11838 #endif /* CONFIG_NUMA_BALANCING */
11839 #endif /* CONFIG_SCHED_DEBUG */
11840 
11841 __init void init_sched_fair_class(void)
11842 {
11843 #ifdef CONFIG_SMP
11844 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
11845 
11846 #ifdef CONFIG_NO_HZ_COMMON
11847 	nohz.next_balance = jiffies;
11848 	nohz.next_blocked = jiffies;
11849 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
11850 #endif
11851 #endif /* SMP */
11852 
11853 }
11854